From 6f5bcd9eedbd0926f2b20842ff618c8ac849be96 Mon Sep 17 00:00:00 2001 From: daviddrazen Date: Mon, 22 Feb 2010 03:36:58 +0000 Subject: [PATCH] Initial import of original WAFO code. --- gendocwafo.py | 4 + manifest | 22 + setup.py | 56 + wafo/__init__.py | 9 + wafo/c_library.pyd | Bin 0 -> 45056 bytes wafo/covariance/__init__.py | 7 + wafo/covariance/core.py | 826 + wafo/data/__init__.py | 3 + wafo/data/atlantic.dat | 582 + wafo/data/gfaks89.dat | 39000 +++++++ wafo/data/gfaksr89.dat | 39000 +++++++ wafo/data/info.py | 442 + wafo/data/japansea.dat | 692 + wafo/data/northsea.dat | 60646 +++++++++++ wafo/data/sea.dat | 9524 ++ wafo/data/sea.m | 16 + wafo/data/sfa89.dat | 144 + wafo/data/sn.dat | 40 + wafo/data/wafoLogoNewWithBorder.png | Bin 0 -> 23976 bytes wafo/data/wafoLogoNewWithBorder.svg | 211 + wafo/data/wafoLogoNewWithoutBorder.png | Bin 0 -> 13118 bytes wafo/data/wafoLogoNewWithoutBorder.svg | 243 + wafo/data/wafologoWithBorder.png | Bin 0 -> 24186 bytes wafo/data/yura87.dat | 85547 ++++++++++++++++ wafo/data_structures.py | 2659 + wafo/dctpack.py | 107 + wafo/definitions.py | 284 + wafo/definitions.~py | 281 + wafo/demo_sg.py | 43 + wafo/diffsumfunq.pyd | Bin 0 -> 50146 bytes wafo/diffsumfunq.pyf | 30 + wafo/disufq.pyf | 30 + wafo/disufq1.c | 446 + wafo/findrfc.c | 117 + wafo/gaussian.py | 367 + wafo/info.py | 83 + wafo/integrate.py | 1494 + wafo/interpolate.py | 418 + wafo/kdetools.py | 609 + wafo/meshgrid.py | 132 + wafo/misc.py | 1895 + wafo/mvn.pyd | Bin 0 -> 569827 bytes wafo/mvn.pyf | 39 + wafo/mvn1.pyf | 129 + wafo/mvndst.f | 1130 + wafo/namedtuple.py | 132 + wafo/objects.py | 1454 + wafo/plotbackend.py | 18 + wafo/polynomial.py | 1650 + wafo/polynomial_old.py | 1207 + wafo/rfcmodule.pyf | 14 + wafo/rindmod.pyd | Bin 0 -> 1044909 bytes wafo/sg_filter.py | 84 + wafo/source/c_codes/build_all.py | 19 + wafo/source/c_codes/c_functions.c | 615 + wafo/source/c_codes/c_library.pyd | Bin 0 -> 45056 bytes wafo/source/c_codes/c_library.pyf | 45 + wafo/source/c_codes/old/build_all.py | 16 + wafo/source/c_codes/old/diffsumfunq.pyd | Bin 0 -> 50658 bytes wafo/source/c_codes/old/diffsumfunq.pyf | 30 + wafo/source/c_codes/old/disufq.pyf | 30 + wafo/source/c_codes/old/disufq1.c | 446 + wafo/source/c_codes/old/findcross.c | 53 + wafo/source/c_codes/old/findrfc.c | 118 + wafo/source/c_codes/old/rfc.pyd | Bin 0 -> 16384 bytes wafo/source/c_codes/old/rfc.pyf | 14 + wafo/source/cov2XXXpdf/bounds/cov2acdfb.f | 450 + wafo/source/cov2XXXpdf/bounds/cov2mmpdfb.f | 356 + wafo/source/cov2XXXpdf/bounds/cov2tccpdfb.f | 504 + wafo/source/cov2XXXpdf/bounds/cov2tthpdfb.f | 497 + wafo/source/cov2XXXpdf/cov2acdf.f | 445 + wafo/source/cov2XXXpdf/cov2mmpdf.f | 357 + wafo/source/cov2XXXpdf/cov2mmtpdf.f | 769 + wafo/source/cov2XXXpdf/cov2tccpdf.f | 498 + wafo/source/cov2XXXpdf/cov2tcpdf.f | 440 + wafo/source/cov2XXXpdf/cov2thpdf.f | 569 + wafo/source/cov2XXXpdf/cov2thpdfalan.f | 632 + wafo/source/cov2XXXpdf/cov2tthpdf.f | 505 + wafo/source/mreg/build_all.py | 35 + wafo/source/mreg/checkmod.mod | 46 + wafo/source/mreg/cov2mmpdfmod.mod | 151 + wafo/source/mreg/cov2mmpdfreg.f | 651 + wafo/source/mreg/cov2mmpdfreg_intfc.f | 559 + wafo/source/mreg/dsvdc.f | 613 + wafo/source/mreg/epsmod.mod | 25 + wafo/source/mreg/expaccmod.mod | 23 + wafo/source/mreg/infcmod.mod | 32 + wafo/source/mreg/mregmod.mod | 97 + wafo/source/mreg/mregmodule.f | 3044 + wafo/source/mreg/quadrmod.mod | 37 + wafo/source/mreg/rintmod.mod | 23 + wafo/source/mreg/sizemod.mod | 28 + wafo/source/mreg/svd.mod | 92 + wafo/source/mreg/tbrmod.mod | 34 + wafo/source/mvnprd/adaptivegausskronrod.mod | 112 + wafo/source/mvnprd/build_all.py | 30 + wafo/source/mvnprd/erfcoremod.mod | 51 + wafo/source/mvnprd/functioninterface.mod | 27 + wafo/source/mvnprd/integration1dmodule.mod | 241 + wafo/source/mvnprd/mvnprd.dsp | 93 + wafo/source/mvnprd/mvnprd.dsw | 29 + wafo/source/mvnprd/mvnprd.f | 1099 + wafo/source/mvnprd/mvnprd.pyf | 23 + wafo/source/mvnprd/mvnprd_interface.f | 87 + wafo/source/mvnprd/mvnprdmod.pyd | Bin 0 -> 734479 bytes wafo/source/mvnprd/mvnprodcorrprb.f | 4335 + wafo/source/mvnprd/mvnprodcorrprb_interface.f | 33 + wafo/source/mvnprd/mvnprodcorrprbmod.mod | 45 + .../mvnprodcorrprb/adaptivegausskronrod.mod | 112 + .../mvnprd/old/mvnprodcorrprb/build_all.py | 24 + .../mvnprd/old/mvnprodcorrprb/erfcoremod.mod | 51 + .../old/mvnprodcorrprb/functioninterface.mod | 27 + .../mvnprodcorrprb/integration1dmodule.mod | 241 + .../mvnprd/old/mvnprodcorrprb/mvnprdmod.pyd | Bin 0 -> 697588 bytes .../old/mvnprodcorrprb/mvnprodcorrprb.f | 4335 + .../mvnprodcorrprb/mvnprodcorrprb_interface.f | 33 + .../old/mvnprodcorrprb/mvnprodcorrprbmod.mod | 44 + .../old/AdaptiveGaussKronrod.f90 | 1802 + .../old/adaptivegausskronrod.mod | 112 + .../old/adaptivegausskronrod.pyf | 157 + .../old/adaptivegausskronrod.pyfo | 149 + .../mvnprd/old/mvnprodcorrprb/old/dea.f | 390 + .../mvnprd/old/mvnprodcorrprb/old/deamod.pyf | 6 + .../mvnprd/old/mvnprodcorrprb/old/erfcore.f90 | 344 + .../mvnprd/old/mvnprodcorrprb/old/erfcore.pyd | Bin 0 -> 50047 bytes .../old/mvnprodcorrprb/old/erfcoremod.mod | 51 + .../mvnprodcorrprb/old/functioninterface.mod | 27 + .../mvnprodcorrprb/old/integration1Dmodule.f | 1460 + .../old/integration1Dmodule.f90 | 1461 + .../old/integration1dmodule.mod | 241 + .../mvnprd/old/mvnprodcorrprb/old/mvn.exe | Bin 0 -> 669055 bytes .../old/mvnprodcorrprb/old/mvnprodcorrprb.f90 | 4329 + .../old/mvnprodcorrprb/old/mvnprodcorrprb.pyf | 24 + .../mvnprodcorrprb/old/mvnprodcorrprbmod.f90 | 666 + .../old/test_mvnprodcorrprb.dsp | 97 + .../old/test_mvnprodcorrprb.dsw | 29 + .../mvnprodcorrprb/old/test_mvnprodcorrprb.f | 39 + .../old/test_mvnprodcorrprb.opt | Bin 0 -> 44544 bytes .../old/test_mvnprodcorrprb.plg | 26 + wafo/source/rind2007/.cproject | 608 + wafo/source/rind2007/.project | 81 + wafo/source/rind2007/New File.txt | 21 + wafo/source/rind2007/adaptmod.mod | 69 + wafo/source/rind2007/build_all.py | 38 + wafo/source/rind2007/c1c2mod.mod | 38 + wafo/source/rind2007/dkbvrcmod.mod | 44 + wafo/source/rind2007/erfcoremod.f | 339 + wafo/source/rind2007/fimod.f | 1595 + wafo/source/rind2007/fimod.mod | 216 + wafo/source/rind2007/funcmod.mod | 61 + wafo/source/rind2007/globalconst.mod | 64 + wafo/source/rind2007/globaldata.mod | 160 + wafo/source/rind2007/intmodule.f | 3856 + wafo/source/rind2007/jacobmod.f | 20 + wafo/source/rind2007/jacobmod.mod | 29 + wafo/source/rind2007/krbvrcmod.mod | 44 + wafo/source/rind2007/krobovmod.mod | 44 + wafo/source/rind2007/precisionmod.mod | 26 + wafo/source/rind2007/quad.mod | 271 + wafo/source/rind2007/rcrudemod.mod | 42 + wafo/source/rind2007/rind71mod.f | 4157 + wafo/source/rind2007/rind71mod.mod | 81 + wafo/source/rind2007/rind_interface.f | 222 + wafo/source/rind2007/rindmod.f | 2435 + wafo/source/rind2007/rindmod.mod | 112 + wafo/source/rind2007/rindmod.pyd | Bin 0 -> 1046957 bytes wafo/source/rind2007/ssobolmod.mod | 68 + wafo/source/rind2007/swapmod.f | 27 + wafo/source/rind2007/swapmod.mod | 42 + wafo/source/rind2007/test_fimod.dsp | 103 + wafo/source/rind2007/test_fimod.dsw | 29 + wafo/source/rind2007/test_fimod.exe | Bin 0 -> 618156 bytes wafo/source/rind2007/test_fimod.f | 48 + wafo/source/rind2007/test_rind71mod.exe | Bin 0 -> 930267 bytes wafo/source/rind2007/test_rind71mod.f | 85 + wafo/source/rind2007/test_rindmod.exe | Bin 0 -> 808124 bytes wafo/source/rind2007/test_rindmod.f | 69 + wafo/source/rind2007/test_rindmod2007.exe | Bin 0 -> 616568 bytes wafo/source/rind2007/test_rindmod2007.opt | Bin 0 -> 45568 bytes wafo/source/rind2007/test_rindmod2007.plg | 39 + wafo/source/rind2007/trivariatevar.mod | 39 + wafo/source/test_f90/hello.f90 | 9 + wafo/source/test_f90/hello.mod | 41 + wafo/source/test_f90/hello.pyd | Bin 0 -> 527140 bytes wafo/source/test_f90/hello.txt | 188 + wafo/source/test_f90/hello_interface.f90 | 9 + wafo/source/test_f90/mymod.f90 | 47 + wafo/source/test_f90/mymod.pyd | Bin 0 -> 595188 bytes wafo/source/test_f90/types.f90 | 11 + wafo/source/test_f90/types.mod | 34 + wafo/spectrum/__init__.py | 11 + wafo/spectrum/core.py | 2485 + wafo/spectrum/dispersion_relation.py | 203 + wafo/spectrum/models.py | 1997 + wafo/transform/__init__.py | 6 + wafo/transform/core.py | 192 + wafo/transform/models.py | 469 + wafo/wafodata.py | 210 + 198 files changed, 308380 insertions(+) create mode 100755 gendocwafo.py create mode 100755 manifest create mode 100755 setup.py create mode 100755 wafo/__init__.py create mode 100755 wafo/c_library.pyd create mode 100755 wafo/covariance/__init__.py create mode 100755 wafo/covariance/core.py create mode 100755 wafo/data/__init__.py create mode 100755 wafo/data/atlantic.dat create mode 100755 wafo/data/gfaks89.dat create mode 100755 wafo/data/gfaksr89.dat create mode 100755 wafo/data/info.py create mode 100755 wafo/data/japansea.dat create mode 100755 wafo/data/northsea.dat create mode 100755 wafo/data/sea.dat create mode 100755 wafo/data/sea.m create mode 100755 wafo/data/sfa89.dat create mode 100755 wafo/data/sn.dat create mode 100755 wafo/data/wafoLogoNewWithBorder.png create mode 100755 wafo/data/wafoLogoNewWithBorder.svg create mode 100755 wafo/data/wafoLogoNewWithoutBorder.png create mode 100755 wafo/data/wafoLogoNewWithoutBorder.svg create mode 100755 wafo/data/wafologoWithBorder.png create mode 100755 wafo/data/yura87.dat create mode 100755 wafo/data_structures.py create mode 100755 wafo/dctpack.py create mode 100755 wafo/definitions.py create mode 100755 wafo/definitions.~py create mode 100755 wafo/demo_sg.py create mode 100755 wafo/diffsumfunq.pyd create mode 100755 wafo/diffsumfunq.pyf create mode 100755 wafo/disufq.pyf create mode 100755 wafo/disufq1.c create mode 100755 wafo/findrfc.c create mode 100755 wafo/gaussian.py create mode 100755 wafo/info.py create mode 100755 wafo/integrate.py create mode 100755 wafo/interpolate.py create mode 100755 wafo/kdetools.py create mode 100755 wafo/meshgrid.py create mode 100755 wafo/misc.py create mode 100755 wafo/mvn.pyd create mode 100755 wafo/mvn.pyf create mode 100755 wafo/mvn1.pyf create mode 100755 wafo/mvndst.f create mode 100755 wafo/namedtuple.py create mode 100755 wafo/objects.py create mode 100755 wafo/plotbackend.py create mode 100755 wafo/polynomial.py create mode 100755 wafo/polynomial_old.py create mode 100755 wafo/rfcmodule.pyf create mode 100755 wafo/rindmod.pyd create mode 100755 wafo/sg_filter.py create mode 100755 wafo/source/c_codes/build_all.py create mode 100755 wafo/source/c_codes/c_functions.c create mode 100755 wafo/source/c_codes/c_library.pyd create mode 100755 wafo/source/c_codes/c_library.pyf create mode 100755 wafo/source/c_codes/old/build_all.py create mode 100755 wafo/source/c_codes/old/diffsumfunq.pyd create mode 100755 wafo/source/c_codes/old/diffsumfunq.pyf create mode 100755 wafo/source/c_codes/old/disufq.pyf create mode 100755 wafo/source/c_codes/old/disufq1.c create mode 100755 wafo/source/c_codes/old/findcross.c create mode 100755 wafo/source/c_codes/old/findrfc.c create mode 100755 wafo/source/c_codes/old/rfc.pyd create mode 100755 wafo/source/c_codes/old/rfc.pyf create mode 100755 wafo/source/cov2XXXpdf/bounds/cov2acdfb.f create mode 100755 wafo/source/cov2XXXpdf/bounds/cov2mmpdfb.f create mode 100755 wafo/source/cov2XXXpdf/bounds/cov2tccpdfb.f create mode 100755 wafo/source/cov2XXXpdf/bounds/cov2tthpdfb.f create mode 100755 wafo/source/cov2XXXpdf/cov2acdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2mmpdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2mmtpdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2tccpdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2tcpdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2thpdf.f create mode 100755 wafo/source/cov2XXXpdf/cov2thpdfalan.f create mode 100755 wafo/source/cov2XXXpdf/cov2tthpdf.f create mode 100755 wafo/source/mreg/build_all.py create mode 100755 wafo/source/mreg/checkmod.mod create mode 100755 wafo/source/mreg/cov2mmpdfmod.mod create mode 100755 wafo/source/mreg/cov2mmpdfreg.f create mode 100755 wafo/source/mreg/cov2mmpdfreg_intfc.f create mode 100755 wafo/source/mreg/dsvdc.f create mode 100755 wafo/source/mreg/epsmod.mod create mode 100755 wafo/source/mreg/expaccmod.mod create mode 100755 wafo/source/mreg/infcmod.mod create mode 100755 wafo/source/mreg/mregmod.mod create mode 100755 wafo/source/mreg/mregmodule.f create mode 100755 wafo/source/mreg/quadrmod.mod create mode 100755 wafo/source/mreg/rintmod.mod create mode 100755 wafo/source/mreg/sizemod.mod create mode 100755 wafo/source/mreg/svd.mod create mode 100755 wafo/source/mreg/tbrmod.mod create mode 100755 wafo/source/mvnprd/adaptivegausskronrod.mod create mode 100755 wafo/source/mvnprd/build_all.py create mode 100755 wafo/source/mvnprd/erfcoremod.mod create mode 100755 wafo/source/mvnprd/functioninterface.mod create mode 100755 wafo/source/mvnprd/integration1dmodule.mod create mode 100755 wafo/source/mvnprd/mvnprd.dsp create mode 100755 wafo/source/mvnprd/mvnprd.dsw create mode 100755 wafo/source/mvnprd/mvnprd.f create mode 100755 wafo/source/mvnprd/mvnprd.pyf create mode 100755 wafo/source/mvnprd/mvnprd_interface.f create mode 100755 wafo/source/mvnprd/mvnprdmod.pyd create mode 100755 wafo/source/mvnprd/mvnprodcorrprb.f create mode 100755 wafo/source/mvnprd/mvnprodcorrprb_interface.f create mode 100755 wafo/source/mvnprd/mvnprodcorrprbmod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/adaptivegausskronrod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/build_all.py create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/erfcoremod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/functioninterface.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/integration1dmodule.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/mvnprdmod.pyd create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprb.f create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprb_interface.f create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprbmod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/AdaptiveGaussKronrod.f90 create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyf create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyfo create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/dea.f create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/deamod.pyf create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.f90 create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.pyd create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcoremod.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/functioninterface.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/integration1Dmodule.f create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/integration1Dmodule.f90 create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/integration1dmodule.mod create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/mvn.exe create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.f90 create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.pyf create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprbmod.f90 create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsp create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsw create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.f create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.opt create mode 100755 wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.plg create mode 100755 wafo/source/rind2007/.cproject create mode 100755 wafo/source/rind2007/.project create mode 100755 wafo/source/rind2007/New File.txt create mode 100755 wafo/source/rind2007/adaptmod.mod create mode 100755 wafo/source/rind2007/build_all.py create mode 100755 wafo/source/rind2007/c1c2mod.mod create mode 100755 wafo/source/rind2007/dkbvrcmod.mod create mode 100755 wafo/source/rind2007/erfcoremod.f create mode 100755 wafo/source/rind2007/fimod.f create mode 100755 wafo/source/rind2007/fimod.mod create mode 100755 wafo/source/rind2007/funcmod.mod create mode 100755 wafo/source/rind2007/globalconst.mod create mode 100755 wafo/source/rind2007/globaldata.mod create mode 100755 wafo/source/rind2007/intmodule.f create mode 100755 wafo/source/rind2007/jacobmod.f create mode 100755 wafo/source/rind2007/jacobmod.mod create mode 100755 wafo/source/rind2007/krbvrcmod.mod create mode 100755 wafo/source/rind2007/krobovmod.mod create mode 100755 wafo/source/rind2007/precisionmod.mod create mode 100755 wafo/source/rind2007/quad.mod create mode 100755 wafo/source/rind2007/rcrudemod.mod create mode 100755 wafo/source/rind2007/rind71mod.f create mode 100755 wafo/source/rind2007/rind71mod.mod create mode 100755 wafo/source/rind2007/rind_interface.f create mode 100755 wafo/source/rind2007/rindmod.f create mode 100755 wafo/source/rind2007/rindmod.mod create mode 100755 wafo/source/rind2007/rindmod.pyd create mode 100755 wafo/source/rind2007/ssobolmod.mod create mode 100755 wafo/source/rind2007/swapmod.f create mode 100755 wafo/source/rind2007/swapmod.mod create mode 100755 wafo/source/rind2007/test_fimod.dsp create mode 100755 wafo/source/rind2007/test_fimod.dsw create mode 100755 wafo/source/rind2007/test_fimod.exe create mode 100755 wafo/source/rind2007/test_fimod.f create mode 100755 wafo/source/rind2007/test_rind71mod.exe create mode 100755 wafo/source/rind2007/test_rind71mod.f create mode 100755 wafo/source/rind2007/test_rindmod.exe create mode 100755 wafo/source/rind2007/test_rindmod.f create mode 100755 wafo/source/rind2007/test_rindmod2007.exe create mode 100755 wafo/source/rind2007/test_rindmod2007.opt create mode 100755 wafo/source/rind2007/test_rindmod2007.plg create mode 100755 wafo/source/rind2007/trivariatevar.mod create mode 100755 wafo/source/test_f90/hello.f90 create mode 100755 wafo/source/test_f90/hello.mod create mode 100755 wafo/source/test_f90/hello.pyd create mode 100755 wafo/source/test_f90/hello.txt create mode 100755 wafo/source/test_f90/hello_interface.f90 create mode 100755 wafo/source/test_f90/mymod.f90 create mode 100755 wafo/source/test_f90/mymod.pyd create mode 100755 wafo/source/test_f90/types.f90 create mode 100755 wafo/source/test_f90/types.mod create mode 100755 wafo/spectrum/__init__.py create mode 100755 wafo/spectrum/core.py create mode 100755 wafo/spectrum/dispersion_relation.py create mode 100755 wafo/spectrum/models.py create mode 100755 wafo/transform/__init__.py create mode 100755 wafo/transform/core.py create mode 100755 wafo/transform/models.py create mode 100755 wafo/wafodata.py diff --git a/gendocwafo.py b/gendocwafo.py new file mode 100755 index 0000000..a93850d --- /dev/null +++ b/gendocwafo.py @@ -0,0 +1,4 @@ + +import os + +os.system('epydoc --html -o html --name wafo --graph all src/wafo') \ No newline at end of file diff --git a/manifest b/manifest new file mode 100755 index 0000000..c64f3a8 --- /dev/null +++ b/manifest @@ -0,0 +1,22 @@ +setup.py +src\wafo\__init__.py +src\wafo\dctpack.py +src\wafo\definitions.py +src\wafo\demo_sg.py +src\wafo\info.py +src\wafo\interpolate.py +src\wafo\kdetools.py +src\wafo\misc.py +src\wafo\namedtuple.py +src\wafo\objects.py +src\wafo\plotbackend.py +src\wafo\polynomial.py +src\wafo\polynomial_old.py +src\wafo\sg_filter.py +src\wafo\data\__init__.py +src\wafo\data\info.py +src\wafo\spectrum\__init__.py +src\wafo\spectrum\dispersion_relation.py +src\wafo\spectrum\models.py +src\wafo\transform\__init__.py +src\wafo\transform\models.py diff --git a/setup.py b/setup.py new file mode 100755 index 0000000..465474e --- /dev/null +++ b/setup.py @@ -0,0 +1,56 @@ +""" +Install wafo + +Usage: + +python setup.py install [, --prefix=$PREFIX] + +python setup.py develop +python setup.py bdist_wininst +""" +#!/usr/bin/env python +import os, sys + +# make sure we import from WAFO in this package, not an installed one: +sys.path.insert(0, os.path.join('src')) +import wafo + +if __file__ == 'setupegg.py': + # http://peak.telecommunity.com/DevCenter/setuptools + from setuptools import setup, Extension +else: + from distutils.core import setup + +package_name = "wafo" +subpackages = ('spectrum','data','transform','covariance') +subpackagesfull = [os.path.join(package_name,f) for f in subpackages] +subtests = [os.path.join(subpkg,'test') for subpkg in subpackages] + +testscripts = [os.path.join(subtst, f) for subtst in subtests + for f in os.listdir(os.path.join('src',package_name,subtst)) + if not (f.startswith('.') or f.endswith('~') or + f.endswith('.old') or f.endswith('.bak'))] +datadir = 'data' +datafiles = [os.path.join(datadir, f) for f in os.listdir(os.path.join('src',package_name,datadir)) + if not (f.endswith('.py') or f.endswith('test') )] +#docs = [os.path.join('doc', f) for f in os.listdir('doc')] +packagedata = testscripts + datafiles + ['c_library.pyd'] #,'disufq1.c','diffsumfunq.pyd','diffsumfunq.pyf','findrfc.c','rfc.pyd','rfc.pyf'] + + +setup( + version = '0.11', + author='WAFO-group', + author_email='wafo@maths.lth.se', + description = wafo.__doc__, + license = "GPL", + url='http://www.maths.lth.se/matstat/wafo/', + name = package_name.upper(), + package_dir = {'': 'src'}, + packages = [package_name,] + list(subpackagesfull), + package_data = {package_name: packagedata}, + #package_data = {'': ['wafo.cfg']}, + #scripts = [os.path.join('bin', f) + # for f in os.listdir('bin') + # if not (f.startswith('.') or f.endswith('~') or + # f.endswith('.old') or f.endswith('.bak'))], + ) diff --git a/wafo/__init__.py b/wafo/__init__.py new file mode 100755 index 0000000..2d89078 --- /dev/null +++ b/wafo/__init__.py @@ -0,0 +1,9 @@ + +from info import __doc__ +import wafo.misc +import wafo.data +import wafo.objects +import wafo.spectrum +import wafo.transform +import wafo.definitions +import wafo.polynomial \ No newline at end of file diff --git a/wafo/c_library.pyd b/wafo/c_library.pyd new file mode 100755 index 0000000000000000000000000000000000000000..9e014dd008953a72d4f1e93488a97655d6629b13 GIT binary patch literal 45056 zcmeIb3w%@8l{b29i=YsJL?RQVaT28wMZ|{4mi&}#WU#>`Hps@?uD75Gigdw8&k|956IIr5+N;Zm72Ehkbp@D`u=P0 zb0qndgtm8nGvBrOZJl%WW4-p;YpuP`gR=W}3Q2+>C{Q91L3jyA`m?j&Fa8-u^NibG zo+0eN_O;tzN+^Bp_DXj{o4%#B`To|rP5Sz}rlw|(e!WZI>TS|DH0g_$uh4I5cDm+I zpFYhXfnNTzc{{HQF6xuZ<8R;EcP*}GoRE)q^i5;erF}|vOzBhM*m?X`c70uNVP87C zPGQ%b$8Tf(JCEPQjuj2{Zh}3U6GyQilqM*ILI0eka@!eU#_iW7Or0jwqQ=f^?GNCn zL1|&v8g`Crk{A8SM`0f>s2~0k*)J~GwS454_J;&v8QS08EC>$PZ-Spaf}ol*L0epP z3*gw}u8Gc%`xmy}at`Nb*^npy}CF-v?YZdRHr| zBNfzp->k(`o!skXl41v(yBnE zL0_?P3i=tt|5OU~4*L&jJOAJ{$qcAFs{oN{fcqsNkhB2w=|BqfN4b{6#Egk$$`utG z3#&kAnq#91SR(Jdp_!X0hF+k8)S8Oa5htb7E)L0xFr-Xlc4?19ZXkmzM zmnreOBr5jAr~vlCWgsOjgpuN6WkofUy8oOqlwxp1Dh*EmA)O4sqlB<24UQ4>h&R$fPSGqtOC?8)raQ^bxa?Ye|q)$@V}6romd}+VpRO~`e5t)>-AyB zxeh254;x2wpL*4HGA!y9+yLaJG-nGV1 zS%KwYBb$VaMieJX5sFl!yQQ5}Q}HO5ne&ed>-s zC1Kh?j9Yjd>K*7XY{x)HxNLY#&tFi_QiI7|f}Z7pU53Zevm$)Q*q%>OPe{hyjh=*B zTOPKJMeX6JbKI{o)DW{HoIJK$8OK}c)^rixN`tK;{Kv6Kzrm3z)qCMZxk-ja-k5*^ zr4_KAn6dEGC79nsT5BJ!obmSaBist$MtK#G$VR!yU<4aRGM}T>`I85)U5>+D676(o_cU& zA!BCM$>9n+b(#VbT>t;QNmAx;39*aJIa!93IUbeQyjqu zptF*T3InQS7zyeRsHGB1zQaIkhs00L3RSjpT$IpRdpQ>BPPF>ZXrc1O88M;vL@(yWL!;N&Qfk4BMJpTUSa z3fGq)TxY>OV(JoWqd{NeQAf%Iw3I1Ua+e4Q`n97$tOHIx6GYW445ot8ZA-N*hr?L zmM$Adn#NZ_25OmUWarE@z8!#RjJSm-$u#=nO`{K3eW1n%OukX3v1Z31Vw9UkJ;oAJ zQ+fF5k4GB3es#y66-*;wgwc&mBZWs2gqs9aR zldW(RRjC2IAX1kCR6CY`X;+6~7srJq#jQYlcvc)PUp%g4!o>sTTHulcq;YULXlF4> zbX~jHGT`=@JD1w<3wBw8+=9dl@kdc>ybsvESct&(-PD7yHo6rRCx`8@##m9zxFPOV zb#*f}4BLQ>1%B2K$o+dQvW-!9=8%`+yb0fm=S{Z#tD}O1t0aG^f%59GFQ_U9wo2yC zDh+PVSWEci0>C3vYP|?AV~e-ZwAvlzyGGiCTe86w6Yq#-uUl zAghSHjjD2gf+e#N|J-S8oB180sRetoXN|ZPhn{J~IcDRsk361Ei&0Y41HrHBi%LZI4C|qE+t4HCmDlyHs77L@mPTi;!LPd=?c#9cUGbJx zxOBK5$8~k&E%$C5Q9D%Se)=C-4I}kAoJW!?(eqh~y2NYzhfJgLGS9R?x+~3pz+Thx z3Y`a@g7}51@UgpK?Zs;xfbKt}DHdOAI7)LY?x0ScJ%N9wqxZeFHLEGZwNgCiKRfI{ zXAxH_SBPs~O<%%Q~KeagVy%4%$Ov2=7FoVjqQP%PGY%_UgkCx>Y+#Y^ww7kIO6LYmAPfF(dj15${O34j)n(6w96Pf104~J_~CQ zni^QH4Bo`hdsU%?V2y^Idu|L(<<(OjzByVwPNnuO{xX#Iyjg^Ub=dwK#+gAgjz1#e?Ss-I9}K(L&X?41=F z2rO2F3Ml|F0;zG}5WpHkh019E4*)SZlXII)-4jCzqk9iWd;c@_E+69E)uDk<;Sj(Y zWU%3AM_QJ_@-w_6BjZY_@XScS{@*M7e^mNEvimjO>R^GRZSQLqd!M3^Ls94=4IR0t{d?Y&`~v17Z*%5fPK%X`~6TLQA%; zM{ljaCz1Mz$3uk@n+YBprWev@#6LVMlt5F#aRk{k(ImlC7%*P9(BGHn@6}jOz_S>9 zFAq*f=EgK|ijTE~rVe~K@csv9LIXhUU5z$lc-yDMlWg}NO!W7&xUk!G{m13hoM|o3Ca8|WBVm@kqlQDwq`O(N=eQ*|CO?i0g zPe`!`SDfkzUGvM2sIKVY#Vq@0J-sbgjF4P|+9B~>HrSIaU9-WDs1{q#`$B`)6T~SD zP?uNuIRPZazDMj!J?I}+kTliZGf4aUJ`Z@_)%Y((yt9H;O!X4H>A|XD4({f`+5Srj z-kYVSLZ}9BD)fG%tMX^Ul8dKkXtGqB;LVV@c;st?CK`E*-2Y*zrO-P!un=n?ZY<+F z!D|jyDLK}!4bI_XSxe!=7OADsduL!F6e>CvB(ot2-n)WT8kyufXz;D_n1{7eQ=xZS zU}2Ix`k=ypSZ{qx-JQT!g_cy#`qtLUoy5?MK`j$+f_Hwf@?D9nl)>8xa*EVe`0({| zTcLNVBn?c4VWIVe?`7zT5z3HTvu^F`J}3@dFF_ zQ9wHFVlm~qZ8%kh6i3i)RXBm|Yw!HNXb<%C$cIcmHD zDP~GRl(6wah!Wf;GKwX!;e`YexRs;E%Ge~_%Fw+WQi8unA1oOHN2VwVL;*kyjRKK? zdsb26HKBVc8ZPno>Pd!vh*OUrhdzSToVxS3S0a&Ik0DJR_#TNLS-ya(9|uY&T1aCQ zq+BM-(adP)8MSqX?hiJ#W35y--E~#*b;W<*Ez%LZgKvf31)uK3|M5L3_mIYU& zy|~(ggIJalQV=K35RZEUifIF6)hU@^lXWsU-AMY;Vc3o#7)ghLU!@-NUr_*oDmYz_ zW_9;_h)n`T$8{L$26eW8r%y*N#RKj2YG7)0UHjQW68AIY8QhICxJuv?z>g2VEl;M{BSI6JXF` zN!y$zZfJ%bX zLW&!LO8nqT8&pvx-5t}11T>Atued3ca?=>xQ0+L(id#b|w*m^SmC=~53Edi6s0=Pg z{735!zvu{_iBs^bq`J{K7Y&D2Q@3$=rga#HS?)O==Ecg;I%Q~~Ca4bCHNoo;fm}zZ zIbKb$gi?4TWt|kdc?_q88X^RX-rujs62|iNAJh-@!jDA-k6{GZ->1i#AqLpgJaP9|Kz2F4Uqel}<`vqcLi!I7UwNVvbI2^idvHiP3?R;cf}Sf7;D{va!?P$!N8s+LGpcF5T8k~}?)9GmE;np|DVZ>s zym%O7))FLd3=;#S!3aA|b<(?5a>#4c z-45K|khWf88En2~DO%7&9XNX(2KG`6Qf5SafE?{GK=F-Y&}#&*8nHJ}o&Y#b-hPHq zYiX-y5?7`Kw8scVK=qoENO)Jh_x0XiDUi=PN0%$Lfy#qQTeGcRo<_C?!UyH^HM`r!Rrd0i2+fs0-er105_Je)vYY zt|$DHEHoWp#0_2}#gUSY1Vy9>!43|FKtmPKd6;S$Tcs9;pG{?j$wDKe}* z;kCd3y7X|0!Tk&o1WK`nNp_>BkIK;4@?_&r_hOOhK_|ghcOM}0!dC&5pSf*BDKy6` zG?-geY8lxP3jeg?@l-NFIe}%Ddp}B~n??5C4-=D4LiybCdV(KEcasz#pmqrm*vA+(ay zQzSAF0{;!F$advK;V5Q?Qf7{TBRerbk!%YEiVHa*2ndNRxNJs`G75+FjnN`IB!Wy{ zqE`=^xzQtNoFs&X1dIp*Z$nX7yk8t=L!oV{|`H8JtXq74siYqm#IDw;pT*S9h-@`EnkPtX0BCtEv1N$D6IP5Um za^gi^G!v$ICRL{`w7xs=D#oWtK}Ia-=m{3Rg>EPVz8@eSlnt=8R~>lj8n&t_a-*dJ zKptt;Fne4Jqe8JDG<%3QTgcRt9Y71)f6!wgJ<8N$(4Zc4f#o2j8KfN#UGJ1k2etyz zDuMywfh3mqe*hV+b(jHiS*Loj#E1@LrR*>m9Ske_oIzdGPROeqHic4F?Wc|n;2+K$ zp;Hnc14jprqQZ@Nr6nxehZ0=55t=z-W`~;zwpydsLR$5wd(pieRxSKo23xo|HwJP0 zmP%};0-g>lv;;Dej0{0zwu{pbt|ZVOO~gv@Im31g0tj~CLV!VmQDiK*fq)ZDaWu#x z+cpu=JP0Sc&!q#Vd}+kw(!JwaZ1{)+Oc)_U#se`rh4WBQOs-0{MdNd+?hYoxPgVBO zED*mK+8(Gpjxb&mD1C$6i<=MyJa17fPc$NyCrzOsKj5J_9#3?=hrk^{cZvAf*l1oO zh4KiLNcUn9y?t~*}8ijuG8fImKr zmqUChj88)BI3|pzN(#zGhVe4gkzu@C%PpXMC5Q12Nxx|WA!8mlj0exK0As><8J--R zkHfQMHAnXx5A*n8yqn`45ys2V;=_2kj)n2<vMjZ;fFTsW;1?Ct$f?b4MkJJ;X!>I$J^b8wjePsSp3P9IPl~bB)l7_u+ zg^G=FIZd(HrtYj!g3_`azVR@r1NB;5uhogY*j0!p12&e}^uZ`!>HVFe5Zef5cDJSk zeEmwCwg-HDx~>CE<|5U;p$n8Ar`e~;5X)3-+n}ThCY~~7ph!ts%SsIDMi)qfBpuzK z!ka*FZqdh+h+>%`q_`v=gjX@38v@u4T2g!vW{EUF@k$ghZvKM5K zXToDjEPs|3OJEwK3Cu>q$`Y7#Yh(>ZQ|{D`lqGDRyf>u;CSQTL&qaF@Dx-3kDj3y) zpnVugWMm>#xzVwTTmVc9O&v8(&RvqH9ta|LNqNiVBl4Cq%862!d?+5BU!}y|pXC}P zAo}$%f!uI~5~4JZpSZ*_*7Id7cLe=IsKlgghkQY{F|=xkvVumQz=VVvVc>Ar>j`S7 z{8*VPpt^(}YanyvFyWXl;kjmL2zC@I^e~_;4JM3s6h=T?BjqEIr$nEiYARG1OEfC2 zqN&4ZNDGb06&I;te$>=xTn?&nkW-i5e+6Ag(A#*%vInGL+FR6tAq9w(?1wD_T)jwC zcXRzaz&AlY7QuK1)d0K-a9ZSi2`ON2Ky@RcPPSXZQ%gv2Ks{uYjOH#`GY5y<<);)E z9blF~PG2gMfVNm8dQ(!*2a1L%jadt&M4Ypo2=b-`ijL@@&HHc_D0)kmdRp`)=0px%ZEWbob5J``g5%)9BrZW{Skf@_A50GC_V5m1tO% zbUNT0R>G1Xm&xqf(~QJG=@C?>pp|DeNkRZ>zM0g}~9Se`5{DQaIV4;S> zqr)Szoc$xSoE$ojkoY-G2uX$}g~vrE0w(7=YokGuk%A;+aLG`p2D#3D%5}oplOtoX zk`8%t(k5;`R0+^~+RJ__u2jK)AgVuL*p6nLODfz*IZq_CShPeM8_>R$`T7_pYuU^9*t6jYJO2r|;)JVt`G;i+*|ur!IX&}oQu{Qaao z6RC31O_=JNsP9-!lEZsBkS?;Kua){5?_ud;$|;Sb)9TLqCs;s0-z*zz$?gS~!Ilx>h>ba+77+{W(}4CJ1S^7k zi}fr+o5F6fa+4k?MJysm9w~@Ckik^%y@G9V7<~hk({$i(6~!>PV~kCwk^+NWERzlFi3e=g8Q_tr%~%Hw3|0r@5ADmZLRn1ygOtp)!)_pn z3G<;sCB0{b9TdWlSVFTM3C(~u7gJe_(KPiKMo-zazzq|TsHLUFGMWb9p*nP-jHYS4 zjAm_odQHw~+Q;#Dv5Y2pyAc^pb}uF^7|TS;8O<0R*=@x#n&dS`W;E@};N6tktBqzM zC(dZvM`bh#+K7y%eJDuxjAF3(_Ao|K;W!yhOao;!0Sw8^TFPkJDWlmwBBLn7Q;L%t39O;GwG~ig$2NUN=nFX~*qR|y5lWHM zyF>hj2B=;IrvvT7-XG?p2VDlIphG+5H_3ibeiPzl$xVVYBDqQT<23Qf&64=!W*FV0 zmO@_VNNq}fTS^AGj>~j%6JrWGK|9ec zWjeorZh}B`PvLa)OA}_r9Z*e`=94%`?Wa)Qhxf1$!JvK*#>p0HLJrm4DvI`3Qfi!7 zm2R=^!zr{mPqPR0~#Oi%i$BxfFjwIv(=4T&NW9Q{b*1C)k%!#|QgToxDfj z@qYh^cppzS#Erx}*YaQ=CnO0r@o|wpXNhM-`FS+nFQIt9L{5sbc%PzFDcDEY&lgO5 zVib9UYnkW96F4dCJ{IL?=;lHr(xmZw0RFrKY3Wyw`b$WM{}xfdETHkCez|S5N*CP* z{kV;y{t_Pb(>)^=DMd4(Y$q#4{Uj+w{_sQ0<+$<7EdksTi~Z?!s&@E@-6R5O8^Cjl zJ*c7FC$k&8gA}u?!!83=~D9p#?Z7{E;%AGy(%z zLX|h5odTga8i1SS__%L`SEF{oH?pKBg5#tsw3qOp-wCt;2|c#3M%{TdKJST1$9w4B zY#f#1bR#|M@9(v{U%~_Zcs(GEJteP-zCM66de4A=r2*f%pcgz-~%iG=40^0|B9+=Y_eVjpw0;Vf(9q#A5=~p@c?muz>)BT(%x~@ zdkHtodYnWuaqWmCrx20&DuH;59%tp^ko#5eU3K^xfxU}B@8{1>#9JnKv{{cwpuJh0 z5%Dm<**WK_FBgwbDY{WjF*{*ato;B0KlvTpSh;gNGPt z>Q|Oe$IGV}d@ec|-@TaXO)lx0s_y(Af#Dwx`RGZUqjJQniF|i~0gSw6i5l=`;6Oi) z1FG&=4hZbAY3rZ1&0|BNBb4*e$a_Qn(cZmRLXcy%pcttw5iT{s*|}{KK|~ zqOpJ&gL6j`RPA_%)`Y*u?#^MOr6r*moB>UwH)WtsI?Uu+ zTpCE7=)C}Z2xi@Cyj_C#RoJ?s=eQJNvJJ1sTs(F2(L0WGJwc0=KG;I~3u~n%9n&H? z+1XQ7?YW7*TGCB;>0>RPX%T^*ttNnoJj@q5BUslO^^+Bt6>*bFd`HX^`(*j+o;aR& zn>VH7s7L$6ssvorBzR}wO$C2{B9_1zbI;(En|u5NczeX7Bd&p5zj((%3aqUceLw!_ z5>6T}(4|;9UxCNP)g7nlqGSF(9AGM@nR}wt_zWrLp3bA&ZVN0^^5?nx6?2hJiHOZA zv2wlwscnVzpzrtM5>?XS0B)w0yB$?{^~a&C2$U$wpCySzb`oGn$lyPu@ee0@r;F7p zv2>OqpqN!ScrAvCr6xtvVR0wPtn*Dz0ow6;RN@pehqHL~MxjF7Nv0Sli1Zz7t(D`G zEaj1%9*D_*$RHEV-o1_RS8(MzSrC|nlvj3RqGR&ZJaH^2j#Va!uD}jo6~?a%jYIZP#Y4*rMxlXvK0}*JhpAlG5eSiRCF>n^VLV zeU~FeEZ28!#))43_!DrHlQq$hHNi)Wh9K(Bo@!4rTMjEDJI_JtP$RNggY*R$9hL^& zCA6MWKS>Y1`j1CwJu?fvt&rJg?PHy9V&5*RcKBxD1(9tE>q&2E=bPT-e#K)ndQjDQ z)GNJ=qk2r#J_c~=y`SP9kgtzs8VY3X-MU_WUfyqeEJ6KuJ20^G{jKxFfkBg)Ocu6W zR6SPi@E^3hKYoh6yU0TiE#{hiYH0PneG)=~{FBc2eQL~`?z- z?syd*TZ&|=DU_*wIxdu7=ZxN5LlEGn3?T z%)1QoP|5O0>H=KVW9q$^?AAWt8!}m$L>6OJJW^gwj1EnN5YX{HtGfs7gJyH2^C+47 zZOL@&>ZCs>VOzoye~;pB@5fXv7JdJ6XOC~L^|NiWS5%j~P2UqVvde;kj+G)_%>p;u zR?GL-R;sKAw|)&X98m2DEEW8@iCdMD***``ExoTbmGf;EwXei8zLYc0-rpJoCm zd1KmW7c0MiS-lreYkdDQ5H7J^@_pNUwDWy7yW6f4wNI+|9xSvT_kCi8VyHWQ%rzbM zLL=TnVxh&Yr>{-uA#7P>?&pCOF$88U$A2gV!tdF3yQq3aQWToD%ji+TdfYi<1r?sQ~XVwFr$?n#~b;0{=L%!3TX;M`!+R7;VVfwy9c6F4|grn zc&}N)xp~ytnoBm0gQexIKv& zWD2mG|A6xpKEL7$1lM;e{KJue?M`oDJbu0#P{v9`n{8z4*+`so$>=q0qNq8{zUz8Q)coq421Z*T2^8AA{ zHwvh$lB*DO@L+)UB?jzED#b-AQDqcYXsTf3CGSIf0}bMV6!2{K_s^GnB)#}UPqw9~ zyKh2#gVFqpA<<8&t*u!n_Fez`wqJO^>gM-%^ih1} zKaNkyRl#vEwCr<)K!{hhzoo^zlN@!Bgc}|(k*EF2qQ~QUfeRG=s^90`%|L4=T8U4f8QQdT^yN>FnZ`1mRXZXziVa+$^`#+!I zo9q8v^G(BrKD)Yu-U1h^^*er*00r3bDgAnK%~p|Fs>HFlsbn_>}GKGYZC$VJT#&!n~J9Xf!^y#|M+{?f8^_yA}b@2m5AMJu_4a!E%INQrhalK z6lX9;T%w;%#N^YDy7Ll5&jix(CpHNRSlX##Kc-IBav4rc?w3gJm!@x9NOH$qXfPL- zW>B4G+k8p2DBhCjRlibdxFPkR`jzVG<@hcQh;Cu4gAtv~G$)ZnA6p!wG^bhv{oN>t z$9q4z=Hf~JhY4gI@oy!3oopaSSVMKk_wjW?ZaDBQ2-&S*Y27^XJEbEu6vo4277vSW zgzxx-zC@w!Tm>j>K=cC`7y1;QnWF`CWu&|ga0BupGa%+3IP!@4$?rn=eqX16K)TRw z?f0GUJgV;KK&7-;v2xr(bOD+#ko-ojQnB>M0umsY^%VCSxhK5tMc;cPJEBh!RIwI) z$bZKqtdB{UVnUd9$^5|Pkws_193f}89xm#NmDSSjQ*t=!4l5oIxX`EZn#C%7o)zEg zpsB#8OTN`k(P34JxJ@Y@QSZH5E1twFALgF(|4TeZtLnp~^DopOO%_!!9t_}j$2szf zlNz^s_x;*!OSZB4j7L zv1HyNjpt#&J_Oh_@qbS&@Vo5j38s>tCj$o`fiJsmy-}S099_t{*s<4mA6SlJsn{zk z#y$9OGRH*$5YI5M41&}lx{~+_eZSzG-hUP^5}ks5`2bt253rQ5P0$h9Fo(9&A9cRD z<OPhL3+1Kd+{Lk_P%tA9+N{k z+V^T?wgs9RnQbC{EixcP@y^JdQVAh%n;)4@N4Rxyx|W)+?V7#@72f6U?ZC~G*quH1 zKI^1PWY-6``1QgwboFd4e!|^w+U_4U;;aQ{{R)EupAL2l_zBZzo+1p*y@LyY)5eB@ zNAutf;&d7yN_9`PMFe-QJ zS#<|YzaUkHe* zUsBgr0_?d#Mmdc&Glc%K%Mr2o?BLhL;&Y->yw*`3rj5$I_x6ddFg2Qc!gm56c#O=} z5#Ra5cf@;5WVRBQZW4-{Re21m@GNx2_OLJFF(|?(G2tw!HE?f9A0*@;3H<=j`-{&W z!TFA@?9ldgzw0vchi63?RL^yh6N6JBLK(lm_^e{^o$!w^j9}CfjCCBw2@Zn}UkS!~ zf)SamAufCdWrFtxe?CnD0zINPk}RNw&!>CMCPCwT1_OAajQmOfCG`y5b}1h2a)pu5 zyWC$)ZXXjg94H=gK1<#E#Ihl0*K|6)7wPb$<-n){+{kPjeyMu$Z&CvP)g++7|3^oE z*Wh^eK|y#ETbT2b66wJ5_V^tZ-?`w%D(qwGd`0i_3J0OgM; ziC#gNg_*v#as=gUvjcCrGAa5gufP#?PfJDh(z?)oj9zb9Rna6o_2uO23=2R09;Hu?v1HRjLV8mp>+ z+=^NRAuX=%1=PWW3x>G5G|~gqjraHeM;&Pt99xQ8TWc0Kw{EI~uJzJ&dworXx5?A6 z$%Uq7NbgqEE?T~RqpRLiQ`lD3+~9P0S_MN~ZRM607u^DOY>~Pxad`?op4Jtf)`q70 z1z|c`mTqckZuQjgLs_%a+vpNHB>XE}9;xeQsb+b7y|=a1<-|IaY8ExR>RN@ViH_&o3ZWfTE%R<#?}7jt zn~DF;7(<wjL{QsO&+QBT|lT==xu0pR@F6nU4jy$ z3tR86an!Z8xhlQDUfATk$F=35=2mB$@K90>x-V;Pa)DBBJ)kv7+%9uHgo$vqcp93U zkkmqLQ3J#eK@rEYTr*-kE^cj>t6iXo3z#HC;{@Sf2rg!pi=R(ytAxveN%9D7GVe@U z9}^!-n;JYEkOlTnrU9f0LLpHuO*U1mB%H2IHH%wa(1c&n=*109&N7$B-Ru-@!&q5^ zh)`LF?u^mDsJW@W&I92Txf+FP8J9G}GQY=&VsJquavt84YM8VoeVr47TG%EHeGl|W zydSTrA!IPikE!L7BJS7kvZSl*eD3kCT?hK#!^`z)GS)s z*3jg}fANVkPaV#Fl(?aV1iV35lu*;qj418J#0^YJLQXthnB6VT2zsp z&cH4}f6Rc#)w)UesZdkr+~{rd)NF7zz_OJJH8qP`T2|G!cosJ_qKoinp~l5Drp8^@ zy-kL%O{yQf6 z+r+jh`g&{|8X8?reckQSWg#v_%`y!tm%( zH@jUxpoK^gxdrJ+=Zn2f^%UXj+Zyg~s`GeTU3t^=dc@6X4NV)G_4)b@IB(rhZ`_ie z=HArMG(@7Xo1ATWBS7f&1S&cJk!zg?aDlx^-^_M-3??w6&q#0$730%+6(kAEmVHINs&8#>Ycp<1dvHRnit5NnEf`;^9*p+>&(tXB6aw~WPvFimH3H84 z69I|Y=n3e_90AAu<#5KKC3ggjO%uW342?5B-82F~(-#96U#{6BL12Qv6v_ntH0rmY zX`_rEpT!A`Dd-y4p33k@&HongEb*MyKJd_0z#Nypk@mi|@UMkuZjB2dYOjX8@#Qxn zAgOJ*8v4lg)8F`UYHJ&2B&~t{wmR84{YJe(#-ux-i2Og@9nge)b$@VGz1cK>b=XWD zzLICUdSCNgK+rso@*>JUl>I0#p&URtgz_rN2^7-bsH+*V&*0W51MQ=2Y6jx?zr@ju z2j^-X&3G`b%0W!P&s96B3E*6fvl)+l5fwXK~qnk02r};v74S#ERw8H*| z^f9yhH-Pt*{NVT^99Mo{$q!xyyszR1#|QUU_`&f3F2f&|gCJ)n=*TuqsFNesm^HzR z-1yJ!=otz6qjCS0|MuJ=XiPTGm-_(5dMGrHUEw1w$Fu}Zv^f5 zf7qS>jp!B%uzyPd-T0rD|10bB7tt2=N9Z(e4p=W)He}}-*z+og4Os4u?qE06H8wo# z(#uI<`3|?Dz`y$_IsBk^lK$+q^y@BYesgW|rH8qUPO3D{Y@a9B`n?o7nI?g4#)m-`Q=`P&d0xKTnTi6D3gVA*ctD zB&KH>SeqcsnO#3;9?p3Nd^VmS!gFCb%uUlbH6znY&smU2seVi!)V0;uHR3@dfpBf$ zDP*1%pI@IRUDp6{UZbnY*fKYN_QTGC*-m2{G-GZa;*DmI3tG`b-^QLk(zi+}`!ryiC$b0OXTu#4d1=?r?RhbaTjnH*~BTbi-c#}gfb(2TjB_fRWT41uR&T;Qu|9-i=M8_}&!ev$=nAgc}Xtp=zzIBXQyy$Ts7=aBS{WJK*uqEa(^)&pSJ zUk+Z9*GlKxS8!X(lyuD z%$~KXYeaSlw@&8G({IAlHhOp6gD$<(1&5DC=)^N|O|+cb*xjD{Au6LV+nFX{smn13 zS&o>kh{rRRLncP`0MBpNFeJD!fV?1{&C$2H?x&kNavxWF3m&?oyFDH~9)ANpu13I{NXo9|si zxQABfX}~(Apq#3|L}rX`AEeY+SMTz%nUc7OQ7KE0O<7DLjF;KYc}Vm`r;JZ0B)y@b z9RdXnBV;%Y^EiJ0xNaugKZ9H(b%5oid7?ir9!BKHy3+KdEu2nf z%W*2V>5ZG}wtzA+9-Hc#w&>~cFlYp9gR5;Wvw0KHHW4p>9X->8C?$36uC_dql+m?e z10|TDc`&3=Zlx+&5EIF8d^+_;x)(}}y4nfuw29;xm0_IF(pbJ5!$3`xv^0|N{3a)> z#?-gvuNFYPpkK>dq$;USrdkk|{nq|dK9iHb|3^vy5o-}1SWGl2O(~{3OiN7_ru$5f zn4UC!$Mme}1=B&(Dbt@!x2G4RSEf7DA4qRa-;v&z{%ZQ$>4_OPW!#mqF5{7mZ)H4_ z@qEVKj8`%Q^R?!gW{Ww`yvf{Z7R}!?_nKcfzh(ZVd6vasnQJjwmRTOO?6JIH*=zYX z%ZHZBmc-1W%)2wUWT<-KALj&fl5$PCRk`)K?%d|wZ|D9j_jvA!-1l;g zd6{{6d4+jT<~^PFOy2W(zt6jvcR4S~y1-gyt+3u}{kip5*0A+{+a}vK+x7W3<>%+G z%=hL0DF3zmi}|+}+*7c*U|WH|;E96&x8VJPj|%=+@JYdq3zjTcx!}G9bqgL_@NWzH z793gd2E7rW$CIl#++j*LWts9JyQfThO#jpL8`FQ7E}E{G^3qGv%OJnQ>6aljF=J=O zcQT&J_(8@C89&MRdB)+4*D?k&KFkPb{3+w}j3l$te7#v`)|>A%XPIs0Li2s*4Upuw z&0+Hev(EAj%a1Ku6k1=lZ_zo2%3XTd)%c%5i92?E`i`o3wu={3{mrrR>EGpCr%=1Q~I{G9oS`Mi0$ zrO;AlnVPvg^V^vpX8N;MXa7U?3)zF&-^i)SIhpg*+;?(+lbeud%`4BV$$KPkZ{E?o zQ+c1{&9Pdo>#YA^ZL)RPzGr*OmQi3YSX!{6V12=N7raAw?Rfqb2bF1=DJgw_`n&0` zW&AGVV#W<-hk2v9-Mq_u-25B!C+3-!#g_XlTP-hJc4zL-Je2vn%!^sS#eC1mxhuz! z^Ua)RbB^bHkTWy)mfTahx97R?{xxrc#9VED z*8B(aMSMBtE=#dxjpb3xdlqG8T4s6XW0@~xzLXivygut|S+{4+%d%yy$$BEI4jOqR z``6jO&rZr&mh)Incg{f0b-8n(i(7O5G5349M{?iDeK%L1Hz#j?-g|i->!a2#>k;dl z)>GCY>!;QPTaE1jTdPg9_1J!4d&9Op|B3u><^MK+IA18Zso?7cSp@|Js|xB0yaihe zUMM(G@NU6x3LFcn7BoQr-d*q+$+lJy4&l&h`mX7S>9pyx>6Y~R^o{A8(;rEHH2v}P z@1%d4o`khpoAE%#mW(uT*=F8nK5PE2<%gDkwVbsiWd6_0eVM<^yplOJD>*AYt2xV% zU7Ec*dwq68_O9%wvVV~MdiFcncjdTpl;G-v-1fX}dEI%t^1he%!@PgVdpYk&-fQ6N z*LmT*^LdfH>#REKt=8Gr`BsZ{k+s(9vHs5b4O^Nm)0SsjU~}0v+uCjax9!Ka1GaOv zOSWtBXXdZVcjnW(C-mZQ5!Om&`YPBOclwLz`_f5ia!|i3eRuj>> import numpy as np + >>> import wafo.spectrum as sp + >>> Sj = sp.models.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S = sp.SpecData1D(Sj(w),w) #Make spectrum object from numerical values + + See also + -------- + WafoData + CovData + """ + + def __init__(self,*args,**kwds): + super(CovData1D, self).__init__(*args,**kwds) + + self.name = 'WAFO Covariance Object' + self.type = 'time' + self.lagtype = 't' + self.h = inf + self.tr = None + self.phi = 0. + self.v = 0. + self.norm = 0 + somekeys = ['phi', 'name', 'h', 'tr', 'lagtype', 'v', 'type', 'norm'] + + self.__dict__.update(sub_dict_select(kwds,somekeys)) + + self.setlabels() + def setlabels(self): + ''' Set automatic title, x-,y- and z- labels + + based on type, + ''' + + N = len(self.type) + if N==0: + raise ValueError('Object does not appear to be initialized, it is empty!') + + labels = ['','ACF',''] + + if self.lagtype.startswith('t'): + labels[0] = 'Lag [s]' + else: + labels[0] = 'Lag [m]' + + if self.norm: + title = 'Auto Correlation Function ' + labels[0] = labels[0].split('[')[0] + else: + title = 'Auto Covariance Function ' + + self.labels.title = title + self.labels.xlab = labels[0] + self.labels.ylab = labels[1] + self.labels.zlab = labels[2] + + + +## def copy(self): +## kwds = self.__dict__.copy() +## wdata = CovData1D(**kwds) +## return wdata + + def tospecdata(self, rate=None, method='linear', nugget=0.0, trunc=1e-5, fast=True): + ''' + Computes spectral density from the auto covariance function + + Parameters + ---------- + rate = scalar, int + 1,2,4,8...2^r, interpolation rate for f (default 1) + + method: string + interpolation method 'stineman', 'linear', 'cubic' + + nugget = scalar, real + nugget effect to ensure that round off errors do not result in + negative spectral estimates. Good choice might be 10^-12. + + trunc : scalar, real + truncates all spectral values where S/max(S) < trunc + 0 <= trunc <1 This is to ensure that high frequency + noise is not added to the spectrum. (default 1e-5) + fast : bool + if True : zero-pad to obtain power of 2 length ACF (default) + otherwise no zero-padding of ACF, slower but more accurate. + + Returns + -------- + S = SpecData1D object + spectral density + + NB! This routine requires that the covariance is evenly spaced + starting from zero lag. Currently only capable of 1D matrices. + + Example: + >>> import wafo.spectrum.models as sm + >>> import numpy as np + >>> import scipy.signal.signaltools as st + >>> L = 129 + >>> t = np.linspace(0,75,L) + >>> R = np.zeros(L) + >>> win = st.parzen(41) + >>> R[0:21] = win[20:41] + >>> R0 = CovData1D(R,t) + >>> S0 = R0.tospecdata() + + >>> Sj = sm.Jonswap() + >>> S = Sj.tospecdata() + >>> R2 = S.tocovdata() + >>> S1 = R2.tospecdata() + >>> assert(all(abs(S1.data-S.data)<1e-4) ,'COV2SPEC') + + See also + -------- + spec2cov + datastructures + ''' + + dT = self.sampling_period() + # dT = time-step between data points. + + ACF, unused_ti = atleast_1d(self.data, self.args) + + if self.lagtype in 't': + spectype = 'freq' + ftype = 'w' + else: + spectype = 'k1d' + ftype = 'k' + + if rate is None: + rate = 1 ##interpolation rate + else: + rate = 2**nextpow2(rate) ##make sure rate is a power of 2 + + + ## add a nugget effect to ensure that round off errors + ## do not result in negative spectral estimates + ACF[0] = ACF[0] +nugget + n = ACF.size + # embedding a circulant vector and Fourier transform + if fast: + nfft = 2**nextpow2(2*n-2) + else: + nfft = 2*n-2 + + nf = nfft/2 ## number of frequencies + ACF = r_[ACF,zeros(nfft-2*n+2),ACF[n-1:0:-1]] + + Rper = (fft(ACF,nfft).real).clip(0) ## periodogram + RperMax = Rper.max() + Rper = where(Rper 1: + So.args = linspace(0, pi/dT, nf*rate) + if method=='stineman': + So.data = stineman_interp(So.args, w, S) + else: + intfun = interpolate.interp1d(w, S, kind=method) + So.data = intfun(So.args) + So.data = So.data.clip(0) # clip negative values to 0 + return So + + def sampling_period(self): + ''' + Returns sampling interval + + Returns + --------- + dt : scalar + sampling interval, unit: + [s] if lagtype=='t' + [m] otherwise + ''' + dt1 = self.args[1]-self.args[0] + n = size(self.args)-1 + t = self.args[-1]-self.args[0] + dt = t/n + if abs(dt-dt1) > 1e-10: + warnings.warn('Data is not uniformly sampled!') + return dt + + def sim(self, ns=None, cases=1, dt=None, iseed=None, derivative=False): + ''' + Simulates a Gaussian process and its derivative from ACF + + Parameters + ---------- + ns : scalar + number of simulated points. (default length(S)-1=n-1). + If ns>n-1 it is assummed that R(k)=0 for all k>n-1 + cases : scalar + number of replicates (default=1) + dt : scalar + step in grid (default dt is defined by the Nyquist freq) + iseed : int or state + starting state/seed number for the random number generator + (default none is set) + derivative : bool + if true : return derivative of simulated signal as well + otherwise + + Returns + ------- + xs = a cases+1 column matrix ( t,X1(t) X2(t) ...). + xsder = a cases+1 column matrix ( t,X1'(t) X2'(t) ...). + + Details + ------- + Performs a fast and exact simulation of stationary zero mean + Gaussian process through circulant embedding of the covariance matrix. + + If the ACF has a non-empty field .tr, then the transformation is + applied to the simulated data, the result is a simulation of a transformed + Gaussian process. + + Note: The simulation may give high frequency ripple when used with a + small dt. + + Example: + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap() + >>> S = Sj.tospecdata() #Make spec + >>> R = S.tocovdata() + >>> x = R.sim(ns=1000,dt=0.2) + + See also + -------- + spec2sdat, gaus2dat + + Reference + ----------- + C.R Dietrich and G. N. Newsam (1997) + "Fast and exact simulation of stationary + Gaussian process through circulant embedding + of the Covariance matrix" + SIAM J. SCI. COMPT. Vol 18, No 4, pp. 1088-1107 + ''' + + # TODO fix it, it does not work + + # Add a nugget effect to ensure that round off errors + # do not result in negative spectral estimates + nugget = 0 # 10**-12 + + _set_seed(iseed) + + ACF = self.data.ravel() + n = ACF.size + + + I = ACF.argmax() + if I != 0: + raise ValueError('ACF does not have a maximum at zero lag') + + ACF.shape = (n, 1) + + dT = self.sampling_period() + + x = zeros((ns, cases+1)) + + if derivative: + xder = x.copy() + + ## add a nugget effect to ensure that round off errors + ## do not result in negative spectral estimates + ACF[0] = ACF[0] + nugget + + ## Fast and exact simulation of simulation of stationary + ## Gaussian process throug circulant embedding of the + ## Covariance matrix + floatinfo = finfo(float) + if (abs(ACF[-1]) > floatinfo.eps): ## assuming ACF(n+1)==0 + m2 = 2*n-1 + nfft = 2**nextpow2(max(m2, 2*ns)) + ACF = r_[ACF, zeros((nfft-m2,1)), ACF[-1:0:-1,:]] + #disp('Warning: I am now assuming that ACF(k)=0 ') + #disp('for k>MAXLAG.') + else: # # ACF(n)==0 + m2 = 2*n-2 + nfft = 2**nextpow2(max(m2, 2*ns)) + ACF = r_[ACF, zeros((nfft-m2, 1)), ACF[n-1:1:-1, :]] + + ##m2=2*n-2 + S = fft(ACF,nfft,axis=0).real ## periodogram + + I = S.argmax() + k = flatnonzero(S<0) + if k.size>0: + #disp('Warning: Not able to construct a nonnegative circulant ') + #disp('vector from the ACF. Apply the parzen windowfunction ') + #disp('to the ACF in order to avoid this.') + #disp('The returned result is now only an approximation.') + + # truncating negative values to zero to ensure that + # that this noise is not added to the simulated timeseries + + S[k] = 0. + + ix = flatnonzero(k>2*I) + if ix.size>0: +## # truncating all oscillating values above 2 times the peak +## # frequency to zero to ensure that +## # that high frequency noise is not added to +## # the simulated timeseries. + ix0 = k[ix[0]] + S[ix0:-ix0] =0.0 + + + + trunc = 1e-5 + maxS = S[I] + k = flatnonzero(S[I:-I]0: + S[k+I]=0. + ## truncating small values to zero to ensure that + ## that high frequency noise is not added to + ## the simulated timeseries + + cases1 = floor(cases/2) + cases2 = ceil(cases/2) +# Generate standard normal random numbers for the simulations + + #randn = np.random.randn + epsi = randn(nfft,cases2)+1j*randn(nfft,cases2) + Ssqr = sqrt(S/(nfft)) # #sqrt(S(wn)*dw ) + ephat = epsi*Ssqr #[:,np.newaxis] + y = fft(ephat,nfft,axis=0) + x[:, 1:cases+1] = hstack((y[2:ns+2, 0:cases2].real, y[2:ns+2, 0:cases1].imag)) + + x[:, 0] = linspace(0,(ns-1)*dT,ns) ##(0:dT:(dT*(np-1)))' + + if derivative: + Ssqr = Ssqr*r_[0:(nfft/2+1), -(nfft/2-1):0]*2*pi/nfft/dT + ephat = epsi*Ssqr #[:,newaxis] + y = fft(ephat,nfft,axis=0) + xder[:, 1:(cases+1)] = hstack((y[2:ns+2, 0:cases2].imag -y[2:ns+2, 0:cases1].real)) + xder[:, 0] = x[:,0] + + if self.tr is not None: + print(' Transforming data.') + g = self.tr + if derivative: + for ix in range(cases): + tmp = g.gauss2dat(x[:,ix+1], xder[:,ix+1]) + x[:,ix+1] = tmp[0] + xder[:,ix+1] = tmp[1] + else: + for ix in range(cases): + x[:, ix+1] = g.gauss2dat(x[:, ix+1]) + + if derivative: + return x, xder + else: + return x + + def simcond(self, xo, cases=1, method='approx', inds=None): + """ + Simulate values conditionally on observed known values + + Parameters + ---------- + x : array-like + datavector including missing data. + (missing data must be NaN if inds is not given) + Assumption: The covariance of x is equal to self and have the + same sample period. + cases : scalar integer + number of cases, i.e., number of columns of sample (default=1) + method : string + defining method used in the conditional simulation. Options are: + 'approximate': Condition only on the closest points. Pros: quite fast + 'pseudo': Use pseudo inverse to calculate conditional covariance matrix + 'exact' : Exact simulation. Cons: Slow for large data sets, may not + return any result due to near singularity of the covariance matrix. + inds : integers + indices to spurious or missing data in x + + Returns + ------- + sample : ndarray + a random sample of the missing values conditioned on the observed data. + mu, sigma : ndarray + mean and standard deviation, respectively, of the missing values + conditioned on the observed data. + + + Notes + ----- + SIMCOND generates the missing values from x conditioned on the observed + values assuming x comes from a multivariate Gaussian distribution + with zero expectation and Auto Covariance function R. + + See also + -------- + CovData1D.sim + TimeSeries.reconstruct, + rndnormnd + + Reference + --------- + Brodtkorb, P, Myrhaug, D, and Rue, H (2001) + "Joint distribution of wave height and wave crest velocity from + reconstructed data with application to ringing" + Int. Journal of Offshore and Polar Engineering, Vol 11, No. 1, pp 23--32 + + Brodtkorb, P, Myrhaug, D, and Rue, H (1999) + "Joint distribution of wave height and wave crest velocity from + reconstructed data" + in Proceedings of 9th ISOPE Conference, Vol III, pp 66-73 + """ + # TODO does not work yet. + + # secret methods: + # 'dec1-3': different decomposing algorithm's + # which is only correct for a variables + # having the Markov property + # Cons: 3 is not correct at all, but seems to give + # a reasonable result + # Pros: 1 is slow, 2 is quite fast and 3 is very fast + # Note: (mu1oStd is not given for method ='dec3') + compute_sigma = True + x = atleast_1d(xo).ravel() + acf = atleast_1d(self.data).ravel() + + N = len(x) + n = len(acf) + + i = acf.argmax() + if i != 0: + raise ValueError('This is not a valid ACF!!') + + + if not inds is None: + x[inds] = nan + inds = where(isnan(x))[0] #indices to the unknown observations + + Ns = len(inds) # # missing values + if Ns == 0: + warnings.warn('No missing data, unable to continue.') + return xo, zeros(Ns), zeros(Ns) + #end + if Ns == N:# simulated surface from the apriori distribution + txt = '''All data missing, + returning sample from the unconditional distribution.''' + warnings.warn(txt) + return self.sim(ns=N, cases=cases), zeros(Ns), zeros(Ns) + + indg = where(1-isnan(x))[0] #indices to the known observations + + #initializing variables + mu1o = zeros(Ns, 1) + mu1o_std = mu1o + sample = zeros((Ns, cases)) + if method[0] == 'd': + # simulated surface from the apriori distribution + xs = self.sim(ns=N, cases=cases) + mu1os = zeros((Ns, cases)) + + if method.startswith('dec1'): + # only correct for variables having the Markov property + # but still seems to give a reasonable answer. Slow procedure. + Sigma = sptoeplitz(hstack((acf, zeros(N-n)))) + + #Soo=Sigma(~inds,~inds); # covariance between known observations + #S11=Sigma(inds,inds); # covariance between unknown observations + #S1o=Sigma(inds,~inds);# covariance between known and unknown observations + #tmp=S1o*pinv(full(Soo)); + #tmp=S1o/Soo; # this is time consuming if Soo large + tmp = 2*Sigma[inds, indg]/(Sigma[indg, indg] + Sigma[indg, indg].T ) + + if compute_sigma: + #standard deviation of the expected surface + #mu1o_std=sqrt(diag(S11-tmp*S1o')); + mu1o_std = sqrt(diag(Sigma[inds, inds]-tmp*Sigma[indg, inds])) + + + #expected surface conditioned on the known observations from x + mu1o = tmp*x[indg] + #expected surface conditioned on the known observations from xs + mu1os = tmp*(xs[indg,:]) + # sampled surface conditioned on the known observations + sample = mu1o + xs[inds,:] - mu1os + + elif method.startswith('dec2'): + # only correct for variables having the Markov property + # but still seems to give a reasonable answer + # approximating the expected surfaces conditioned on + # the known observations from x and xs by only using the closest points + Sigma = sptoeplitz(hstack((acf,zeros(n)))) + n2 = int(floor(n/2)) + idx = r_[0:2*n] + max(0,inds[0]-n2) # indices to the points used + tmpinds = zeros(N,dtype=bool) + tmpinds[inds] = True # temporary storage of indices to missing points + tinds = where(tmpinds[idx])[0] # indices to the points used + tindg = where(1-tmpinds[idx])[0] + ns = len(tinds); # number of missing data in the interval + nprev = 0; # number of previously simulated points + xsinds = xs[inds,:] + while ns>0: + tmp=2*Sigma[tinds, tindg]/(Sigma[tindg, tindg]+Sigma[tindg, tindg].T) + if compute_sigma: + #standard deviation of the expected surface + #mu1o_std=sqrt(diag(S11-tmp*S1o')); + ix = slice(nprev+1,nprev+ns+1) + mu1o_std[ix] = max(mu1o_std[ix], + sqrt(diag(Sigma[tinds, tinds]-tmp*Sigma[tindg,tinds]))) + #end + + #expected surface conditioned on the closest known observations + # from x and xs2 + mu1o[(nprev+1):(nprev+ns+1)] = tmp*x[idx[tindg]] + mu1os[(nprev+1):(nprev+ns+1),:] = tmp*xs[idx[tindg],:] + + if idx[-1]==N-1:# + ns =0 # no more points to simulate + else: + # updating by putting expected surface into x + x[idx[tinds]] = mu1o[(nprev+1):(nprev+ns+1)] + xs[idx[tinds]] = mu1os[(nprev+1):(nprev+ns+1)] + + nw = sum(tmpinds[idx[-n2:]])# # data which we want to simulate once + tmpinds[idx[:-n2]] = False # removing indices to data .. + # which has been simulated + nprev = nprev+ns-nw # update # points simulated so far + + if (nw==0) and (nprev0: + #make sure MATLAB uses a symmetric matrix solver + tmp = 2*Sigma[tinds,tindg]/(Sigma[tindg,tindg]+Sigma[tindg,tindg].T) + Sigma1o = Sigma[tinds,tinds] - tmp*Sigma[tindg,tinds] + if compute_sigma: + #standard deviation of the expected surface + #mu1o_std=sqrt(diag(S11-tmp*S1o')); + mu1o_std[(nprev+1):(nprev+ns+1)] = max( mu1o_std[(nprev+1):(nprev+ns)] , + sqrt(diag(Sigma1o))) + #end + + #expected surface conditioned on the closest known observations from x + mu1o[(nprev+1):(nprev+ns+1)] = tmp*x2[idx[tindg]] + #sample conditioned on the known observations from x + sample[(nprev+1):(nprev+ns+1),:] = rndnormnd(tmp*x[idx[tindg]],Sigma1o, cases) + if idx[-1] == N-1: + ns = 0 # no more points to simulate + else: + # updating + x2[idx[tinds]] = mu1o[(nprev+1):(nprev+ns+1)] #expected surface + x[idx[tinds]] = sample[(nprev+1):(nprev+ns+1)]#sampled surface + nw = sum(tmpinds[idx[-n2::]]==True)# # data we want to simulate once more + tmpinds[idx[:-n2]] = False # removing indices to data .. + # which has been simulated + nprev = nprev+ns-nw # update # points simulated so far + + if (nw==0) and (nprev0.3*n: + return toeplitz(x) + else: + spdiags = sparse.dia_matrix + data = x[k].reshape(-1,1).repeat(n,axis=-1) + offsets = k + y = spdiags((data, offsets), shape=(n,n)) + if k[0]==0: + offsets = k[1::] + data = data[1::,:] + return y + spdiags((data, -offsets), shape=(n,n)) + +def test_covdata(): + import wafo.data + x = wafo.data.sea() + ts = wafo.objects.mat2timeseries(x) + rf = ts.tocovdata(lag=150) + rf.plot() + +def main(): + import wafo.spectrum.models as sm + import matplotlib + matplotlib.interactive(True) + Sj = sm.Jonswap() + S = Sj.tospecdata() #Make spec + S.plot() + R = S.tocovdata() + R.plot() + #x = R.sim(ns=1000,dt=0.2) + + +if __name__ == '__main__': + if True: #False : # + import doctest + doctest.testmod() + else: + main() \ No newline at end of file diff --git a/wafo/data/__init__.py b/wafo/data/__init__.py new file mode 100755 index 0000000..011591c --- /dev/null +++ b/wafo/data/__init__.py @@ -0,0 +1,3 @@ + +from wafo.data.info import __doc__ +from wafo.data.info import * diff --git a/wafo/data/atlantic.dat b/wafo/data/atlantic.dat new file mode 100755 index 0000000..7786ff1 --- /dev/null +++ b/wafo/data/atlantic.dat @@ -0,0 +1,582 @@ + 5.4829629629629641e+00 + 4.3614999999999986e+00 + 5.2602325581395339e+00 + 3.0619230769230770e+00 + 4.4896296296296301e+00 + 3.3681395348837206e+00 + 4.0259523809523818e+00 + 4.3966666666666665e+00 + 4.2999999999999998e+00 + 7.0564705882352934e+00 + 6.1440000000000001e+00 + 4.3543243243243239e+00 + 4.3595121951219520e+00 + 7.1674999999999995e+00 + 6.0100000000000007e+00 + 3.8176923076923064e+00 + 3.8862962962962957e+00 + 4.4436363636363652e+00 + 4.8211111111111098e+00 + 7.1261904761904749e+00 + 3.7118181818181823e+00 + 8.1500000000000004e+00 + 7.7725000000000000e+00 + 4.5788000000000011e+00 + 4.1022222222222222e+00 + 5.2209756097560973e+00 + 5.7300000000000004e+00 + 2.7129629629629628e+00 + 2.4211111111111108e+00 + 2.8095454545454532e+00 + 2.4837209302325594e+00 + 2.4050000000000002e+00 + 4.2750000000000004e+00 + 3.9422222222222221e+00 + 3.8742307692307696e+00 + 2.3256818181818173e+00 + 2.6061538461538465e+00 + 3.0470370370370370e+00 + 1.8579545454545447e+00 + 4.8434090909090912e+00 + 4.7172093023255792e+00 + 2.9300000000000002e+00 + 3.2725000000000000e+00 + 5.7482608695652173e+00 + 4.5774074074074083e+00 + 5.3236363636363633e+00 + 5.9372499999999988e+00 + 5.0633333333333335e+00 + 7.6900000000000004e+00 + 4.9976923076923079e+00 + 5.0788888888888879e+00 + 4.1337209302325579e+00 + 4.6752272727272706e+00 + 2.1450000000000000e+00 + 2.9566666666666670e+00 + 1.1678124999999998e+01 + 1.0795000000000000e+01 + 6.3430000000000009e+00 + 5.9580952380952388e+00 + 9.2199999999999989e+00 + 6.3524999999999991e+00 + 6.3756000000000004e+00 + 7.0014285714285718e+00 + 5.0088372093023246e+00 + 6.2643243243243232e+00 + 6.1133333333333333e+00 + 5.3249999999999993e+00 + 2.7474074074074073e+00 + 4.6804545454545430e+00 + 5.7633333333333336e+00 + 5.0625000000000000e+00 + 4.9824999999999999e+00 + 6.3411999999999997e+00 + 4.5371428571428583e+00 + 3.5171428571428587e+00 + 3.1532558139534879e+00 + 5.2366666666666664e+00 + 5.1399999999999988e+00 + 8.4735714285714288e+00 + 7.1446666666666658e+00 + 3.5134090909090903e+00 + 2.9665909090909079e+00 + 6.0766666666666671e+00 + 3.8666666666666667e+00 + 4.9534615384615384e+00 + 4.8718518518518508e+00 + 4.8771428571428563e+00 + 6.2160975609756104e+00 + 6.8499999999999996e+00 + 4.2533333333333330e+00 + 4.9648148148148143e+00 + 4.9369230769230761e+00 + 5.1770833333333330e+00 + 3.1988372093023254e+00 + 3.6213636363636370e+00 + 9.4099999999999984e+00 + 7.7975000000000003e+00 + 6.8578947368421055e+00 + 7.5875000000000004e+00 + 1.9634090909090893e+00 + 2.4779545454545455e+00 + 5.7725000000000000e+00 + 5.6566666666666663e+00 + 3.5634615384615382e+00 + 3.4437037037037039e+00 + 2.9709090909090894e+00 + 2.8075000000000006e+00 + 5.7266666666666666e+00 + 5.0633333333333335e+00 + 5.6592307692307688e+00 + 4.8769230769230765e+00 + 4.5544186046511639e+00 + 5.0542105263157877e+00 + 8.0066666666666677e+00 + 6.9049999999999994e+00 + 3.1661538461538474e+00 + 2.7900000000000000e+00 + 2.2986363636363647e+00 + 2.8874418604651164e+00 + 3.5874999999999999e+00 + 4.4849999999999994e+00 + 9.3166666666666682e+00 + 9.7884615384615401e+00 + 3.9845454545454548e+00 + 3.8721052631578958e+00 + 4.7133333333333338e+00 + 3.8250000000000002e+00 + 4.3996153846153847e+00 + 3.8052000000000006e+00 + 4.9980952380952370e+00 + 4.2854545454545452e+00 + 3.9000000000000004e+00 + 3.5349999999999997e+00 + 2.4480769230769228e+00 + 3.1014814814814819e+00 + 8.3771428571428572e+00 + 9.8775000000000013e+00 + 3.9299999999999997e+00 + 5.6400000000000006e+00 + 9.2333333333333343e+00 + 7.3440909090909097e+00 + 5.8252380952380962e+00 + 6.1797674418604664e+00 + 4.2533333333333330e+00 + 4.2750000000000004e+00 + 4.2941666666666665e+00 + 4.6457692307692309e+00 + 4.7833333333333332e+00 + 3.3774999999999995e+00 + 3.2266666666666675e+00 + 2.3244444444444445e+00 + 2.4297674418604669e+00 + 2.5704761904761906e+00 + 2.6066666666666669e+00 + 2.1533333333333333e+00 + 3.3025925925925925e+00 + 3.0223809523809528e+00 + 5.0890697674418597e+00 + 4.8595348837209293e+00 + 3.8475000000000001e+00 + 4.0325000000000006e+00 + 4.7977777777777764e+00 + 4.2389285714285716e+00 + 4.8243902439024371e+00 + 6.7746666666666640e+00 + 4.9933333333333332e+00 + 1.2701333333333332e+01 + 1.0377999999999998e+01 + 9.7267999999999990e+00 + 6.4125581395348812e+00 + 3.2033333333333331e+00 + 5.6233333333333340e+00 + 2.8969999999999989e+00 + 8.4913793103448274e+00 + 5.1333333333333329e+00 + 4.6433333333333335e+00 + 2.9820000000000007e+00 + 2.6970370370370373e+00 + 2.9765909090909086e+00 + 3.3188372093023251e+00 + 4.4299999999999997e+00 + 3.7174999999999998e+00 + 4.2815384615384611e+00 + 3.6144444444444441e+00 + 3.9388095238095255e+00 + 3.8513953488372095e+00 + 4.3999999999999995e+00 + 4.6066666666666665e+00 + 4.5448148148148153e+00 + 5.7560000000000002e+00 + 5.3117857142857128e+00 + 2.5165909090909095e+00 + 2.8383720930232559e+00 + 3.8250000000000002e+00 + 6.2425000000000006e+00 + 3.9725925925925933e+00 + 3.7232142857142856e+00 + 4.3255813953488396e+00 + 4.5230952380952374e+00 + 4.6066666666666665e+00 + 4.2233333333333336e+00 + 4.4750000000000014e+00 + 4.5025925925925936e+00 + 5.7267500000000009e+00 + 6.3217647058823534e+00 + 4.0433333333333339e+00 + 4.2074999999999996e+00 + 5.2319230769230769e+00 + 5.7133333333333338e+00 + 1.9861363636363627e+00 + 2.6293181818181823e+00 + 4.6733333333333329e+00 + 6.7050000000000001e+00 + 3.8875999999999999e+00 + 5.0888000000000000e+00 + 5.5153488372093014e+00 + 7.4194444444444452e+00 + 6.1099999999999994e+00 + 5.3824999999999994e+00 + 4.2187499999999991e+00 + 3.8128571428571418e+00 + 3.4400000000000004e+00 + 4.1067441860465115e+00 + 2.6999999999999997e+00 + 2.8600000000000003e+00 + 4.0196153846153839e+00 + 3.8457692307692311e+00 + 3.8817948717948707e+00 + 3.7552272727272711e+00 + 7.4275000000000002e+00 + 8.6899999999999995e+00 + 6.4753846153846162e+00 + 6.0141666666666653e+00 + 8.0438235294117675e+00 + 5.9988235294117649e+00 + 6.7933333333333339e+00 + 3.1400000000000001e+00 + 3.3200000000000003e+00 + 4.1522222222222203e+00 + 3.8577777777777786e+00 + 3.3722727272727266e+00 + 3.3793181818181810e+00 + 4.2266666666666666e+00 + 3.5549999999999997e+00 + 4.5107407407407401e+00 + 3.5775000000000001e+00 + 6.9528571428571420e+00 + 6.0760526315789498e+00 + 4.3299999999999992e+00 + 3.0000000000000000e+00 + 7.0819999999999981e+00 + 6.2977777777777781e+00 + 3.2575000000000003e+00 + 3.5443181818181810e+00 + 9.6750000000000007e+00 + 8.2336363636363643e+00 + 8.7376923076923081e+00 + 8.5203448275862055e+00 + 7.6451724137931034e+00 + 3.8666666666666667e+00 + 3.5866666666666673e+00 + 4.9269230769230763e+00 + 5.9090909090909101e+00 + 4.4325000000000001e+00 + 5.4964102564102548e+00 + 2.8775000000000004e+00 + 3.2966666666666669e+00 + 2.5385185185185191e+00 + 2.6122222222222224e+00 + 4.2142222222222214e+00 + 4.1902631578947371e+00 + 4.6266666666666660e+00 + 3.8533333333333335e+00 + 8.4165000000000010e+00 + 5.5291666666666659e+00 + 2.3225581395348835e+00 + 3.0686363636363638e+00 + 4.0800000000000001e+00 + 3.7133333333333329e+00 + 5.5911538461538459e+00 + 6.5222727272727266e+00 + 3.6168181818181817e+00 + 3.4525000000000015e+00 + 3.1800000000000002e+00 + 4.3366666666666669e+00 + 4.1024999999999991e+00 + 6.4061111111111115e+00 + 6.1661904761904767e+00 + 8.1230000000000011e+00 + 5.8008571428571418e+00 + 6.4733333333333336e+00 + 1.0175000000000001e+01 + 5.0976190476190473e+00 + 5.2099999999999991e+00 + 3.5631818181818171e+00 + 4.1541860465116276e+00 + 5.4874999999999998e+00 + 6.9100000000000001e+00 + 9.7192857142857143e+00 + 9.8164285714285722e+00 + 5.6602564102564097e+00 + 8.7630769230769214e+00 + 1.0220000000000001e+01 + 1.0695000000000000e+01 + 3.3466666666666676e+00 + 3.4067857142857143e+00 + 3.1056818181818184e+00 + 3.2893023255813940e+00 + 5.6650000000000009e+00 + 6.1125000000000007e+00 + 9.8085714285714314e+00 + 1.2693333333333333e+01 + 6.8272222222222219e+00 + 5.9281249999999996e+00 + 4.7619999999999996e+00 + 3.9049999999999998e+00 + 6.0947500000000012e+00 + 5.3353333333333337e+00 + 4.9464705882352931e+00 + 2.7939999999999992e+00 + 3.6475000000000000e+00 + 4.0997222222222245e+00 + 4.8644444444444437e+00 + 5.6488235294117644e+00 + 7.6616666666666688e+00 + 3.9233333333333325e+00 + 4.2925806451612898e+00 + 5.9369565217391322e+00 + 5.0370588235294118e+00 + 3.7346666666666666e+00 + 4.6871428571428577e+00 + 6.2183333333333337e+00 + 4.9388888888888873e+00 + 3.6206249999999986e+00 + 7.6308823529411747e+00 + 4.7541176470588242e+00 + 4.6737209302325571e+00 + 4.8757142857142863e+00 + 6.9187179487179495e+00 + 6.2716666666666656e+00 + 3.2473333333333332e+00 + 2.9200000000000004e+00 + 2.6910810810810815e+00 + 4.6559090909090921e+00 + 8.3445454545454538e+00 + 4.6804545454545439e+00 + 2.2156249999999997e+00 + 1.9752941176470586e+00 + 2.5693478260869576e+00 + 2.1659999999999995e+00 + 5.6924999999999999e+00 + 4.6219444444444466e+00 + 3.3962222222222200e+00 + 3.8658823529411754e+00 + 5.9802439024390246e+00 + 5.5507142857142862e+00 + 7.6572727272727281e+00 + 7.2237837837837819e+00 + 4.6305555555555564e+00 + 3.9100000000000006e+00 + 4.6493750000000000e+00 + 5.5844444444444434e+00 + 3.0119565217391302e+00 + 6.4043750000000008e+00 + 9.5586206896551715e+00 + 7.2057142857142855e+00 + 5.6258333333333317e+00 + 5.7640476190476182e+00 + 7.1963636363636363e+00 + 5.6874418604651167e+00 + 5.4273333333333342e+00 + 6.0615151515151524e+00 + 5.5800000000000018e+00 + 4.1017647058823528e+00 + 2.6497777777777776e+00 + 5.2453333333333330e+00 + 7.3470967741935489e+00 + 4.3131818181818193e+00 + 5.5653333333333324e+00 + 7.0499999999999980e+00 + 3.7619999999999991e+00 + 5.0675757575757592e+00 + 5.9769999999999985e+00 + 6.7249999999999988e+00 + 8.6042307692307691e+00 + 3.5806666666666662e+00 + 3.5815625000000004e+00 + 3.7788636363636381e+00 + 3.7358333333333325e+00 + 5.1269565217391317e+00 + 4.8678571428571429e+00 + 5.5264705882352940e+00 + 4.2017073170731711e+00 + 3.7105882352941166e+00 + 5.3206818181818178e+00 + 2.9713333333333343e+00 + 2.7563888888888886e+00 + 7.6529629629629641e+00 + 6.4521428571428556e+00 + 5.8050000000000006e+00 + 2.0128571428571429e+00 + 4.2888888888888896e+00 + 5.9328571428571450e+00 + 1.0609999999999999e+01 + 3.7197777777777770e+00 + 3.1337500000000009e+00 + 3.2837837837837829e+00 + 4.4520000000000000e+00 + 4.6988235294117651e+00 + 5.7946511627906983e+00 + 4.8130769230769230e+00 + 5.3478125000000007e+00 + 6.2370731707317066e+00 + 7.8106249999999990e+00 + 3.8891304347826114e+00 + 2.3959999999999999e+00 + 4.2005405405405414e+00 + 4.7605128205128180e+00 + 6.9815384615384621e+00 + 9.1547058823529408e+00 + 4.0542857142857134e+00 + 3.8008333333333320e+00 + 3.1255813953488385e+00 + 4.2582352941176467e+00 + 4.8453488372093014e+00 + 5.1150000000000002e+00 + 4.7213513513513510e+00 + 3.4827272727272724e+00 + 3.0505882352941178e+00 + 2.7824444444444429e+00 + 7.7399999999999993e+00 + 1.0409130434782606e+01 + 5.9644444444444451e+00 + 1.0795999999999999e+01 + 8.9992592592592597e+00 + 6.3976923076923091e+00 + 7.1279310344827573e+00 + 4.2302272727272721e+00 + 3.2905882352941180e+00 + 4.7038636363636357e+00 + 3.4220000000000002e+00 + 4.2258823529411762e+00 + 3.2204444444444449e+00 + 2.4581249999999999e+00 + 2.1877777777777769e+00 + 2.1423913043478255e+00 + 2.2755555555555547e+00 + 3.2992857142857148e+00 + 4.5726666666666667e+00 + 4.4771428571428586e+00 + 4.4768181818181816e+00 + 4.5383333333333340e+00 + 4.2769565217391312e+00 + 4.6015384615384614e+00 + 5.7247058823529393e+00 + 4.9804444444444425e+00 + 3.6694444444444434e+00 + 1.1215238095238094e+01 + 9.1850000000000005e+00 + 5.3722222222222227e+00 + 6.2425000000000042e+00 + 7.3538461538461544e+00 + 3.0506250000000006e+00 + 7.5833333333333321e+00 + 4.0663636363636355e+00 + 3.4388235294117653e+00 + 3.5664444444444445e+00 + 3.0406666666666671e+00 + 3.8337142857142852e+00 + 3.7924444444444458e+00 + 5.3774999999999986e+00 + 4.4091111111111108e+00 + 4.1324999999999994e+00 + 3.8061111111111114e+00 + 4.5399999999999991e+00 + 3.6055555555555543e+00 + 3.9333333333333367e+00 + 7.2324324324324314e+00 + 2.5419999999999998e+00 + 3.4575675675675668e+00 + 5.8765116279069751e+00 + 9.4742857142857133e+00 + 3.7115217391304345e+00 + 4.8933333333333326e+00 + 6.4018181818181805e+00 + 4.4633333333333329e+00 + 3.6568750000000003e+00 + 4.3422727272727268e+00 + 4.2013333333333325e+00 + 4.1880555555555556e+00 + 3.4113636363636362e+00 + 4.9605882352941180e+00 + 4.7213333333333320e+00 + 2.1199999999999992e+00 + 3.2251351351351345e+00 + 7.0423333333333336e+00 + 4.8461111111111101e+00 + 3.5000000000000000e+00 + 4.7093333333333343e+00 + 6.8564516129032258e+00 + 5.3060465116279092e+00 + 3.3566666666666656e+00 + 4.4884444444444425e+00 + 3.9066666666666667e+00 + 4.9237837837837830e+00 + 2.8633333333333337e+00 + 2.3141176470588238e+00 + 3.9447727272727278e+00 + 3.9740000000000006e+00 + 3.1935135135135138e+00 + 7.9008333333333338e+00 + 1.2878000000000000e+01 + 7.3702380952380944e+00 + 8.6866666666666656e+00 + 5.4328571428571442e+00 + 5.2213953488372109e+00 + 9.0155555555555562e+00 + 3.6631707317073179e+00 + 3.6888888888888900e+00 + 4.1529545454545467e+00 + 3.5973333333333337e+00 + 3.4672972972972973e+00 + 3.3593333333333320e+00 + 3.2805882352941182e+00 + 4.6777777777777771e+00 + 6.9690909090909088e+00 + 5.7182758620689640e+00 + 2.7732608695652186e+00 + 3.6272222222222235e+00 + 6.5997368421052620e+00 + 3.5273333333333339e+00 + 3.3930555555555548e+00 + 1.0433571428571428e+01 + 9.1080000000000005e+00 + 8.6382608695652188e+00 + 8.7341666666666669e+00 + 7.3107692307692300e+00 + 3.3476744186046501e+00 + 2.6300000000000003e+00 + 4.5486666666666657e+00 + 3.9621428571428572e+00 + 5.5491176470588242e+00 + 2.5150000000000010e+00 + 2.5094444444444446e+00 + 2.1204651162790711e+00 + 4.4307142857142860e+00 + 4.5968571428571421e+00 + 5.1136585365853655e+00 + 4.6394444444444449e+00 + 6.1210000000000004e+00 + 2.0293750000000004e+00 + 3.0340540540540539e+00 + 3.5041304347826112e+00 + 3.1037499999999993e+00 + 5.1755813953488401e+00 + 3.9831250000000002e+00 + 4.4294594594594594e+00 + 4.3844444444444450e+00 + 3.9411111111111108e+00 + 6.6910526315789474e+00 + 8.6833333333333318e+00 + 5.3197058823529408e+00 + 6.9751612903225810e+00 + 5.9539999999999997e+00 + 4.9557777777777785e+00 + 3.4481250000000006e+00 + 4.9451428571428577e+00 + 6.9590322580645161e+00 + 8.6592307692307688e+00 + 8.1816666666666666e+00 + 5.0956249999999992e+00 + 8.1888000000000005e+00 + 1.0237058823529411e+01 + 5.3599999999999994e+00 + 3.6475555555555559e+00 + 3.2793333333333341e+00 + 5.1406060606060597e+00 + 5.8326190476190503e+00 + 5.1949999999999985e+00 + 1.0530500000000000e+01 + 6.6633333333333340e+00 + 5.4306060606060624e+00 diff --git a/wafo/data/gfaks89.dat b/wafo/data/gfaks89.dat new file mode 100755 index 0000000..5c07ddb --- /dev/null +++ b/wafo/data/gfaks89.dat @@ -0,0 +1,39000 @@ + 0.0000000e+00 -1.9667949e-01 + 4.0000000e-01 -4.6667949e-01 + 8.0000000e-01 -3.8667949e-01 + 1.2000000e+00 -1.6679487e-02 + 1.6000000e+00 2.5332051e-01 + 2.0000000e+00 6.3332051e-01 + 2.4000000e+00 4.2332051e-01 + 2.8000000e+00 -8.6679487e-02 + 3.2000000e+00 -5.0667949e-01 + 3.6000000e+00 -9.2667949e-01 + 4.0000000e+00 -1.3566795e+00 + 4.4000000e+00 -1.9166795e+00 + 4.8000000e+00 -2.0266795e+00 + 5.2000000e+00 -2.2366795e+00 + 5.6000000e+00 -2.2866795e+00 + 6.0000000e+00 -1.3466795e+00 + 6.4000000e+00 -1.2166795e+00 + 6.8000000e+00 -9.8667949e-01 + 7.2000000e+00 -7.7667949e-01 + 7.6000000e+00 -6.5667949e-01 + 8.0000000e+00 -5.3667949e-01 + 8.4000000e+00 -1.9667949e-01 + 8.8000000e+00 -3.9667949e-01 + 9.2000000e+00 -6.1667949e-01 + 9.6000000e+00 -6.9667949e-01 + 1.0000000e+01 -6.5667949e-01 + 1.0400000e+01 -6.0667949e-01 + 1.0800000e+01 -3.7667949e-01 + 1.1200000e+01 -1.1667949e-01 + 1.1600000e+01 -1.9667949e-01 + 1.2000000e+01 -2.5667949e-01 + 1.2400000e+01 -2.5667949e-01 + 1.2800000e+01 -2.5667949e-01 + 1.3200000e+01 -1.4466795e+00 + 1.3600000e+01 -1.4266795e+00 + 1.4000000e+01 -1.3566795e+00 + 1.4400000e+01 -8.9667949e-01 + 1.4800000e+01 -4.6679487e-02 + 1.5200000e+01 3.0332051e-01 + 1.5600000e+01 3.7332051e-01 + 1.6000000e+01 5.5332051e-01 + 1.6400000e+01 9.5332051e-01 + 1.6800000e+01 1.6033205e+00 + 1.7200000e+01 2.3533205e+00 + 1.7600000e+01 2.8633205e+00 + 1.8000000e+01 2.8733205e+00 + 1.8400000e+01 2.3033205e+00 + 1.8800000e+01 2.0133205e+00 + 1.9200000e+01 1.9833205e+00 + 1.9600000e+01 1.9833205e+00 + 2.0000000e+01 1.9833205e+00 + 2.0400000e+01 -2.4667949e-01 + 2.0800000e+01 -1.3766795e+00 + 2.1200000e+01 -1.4066795e+00 + 2.1600000e+01 -1.5166795e+00 + 2.2000000e+01 -1.7866795e+00 + 2.2400000e+01 -2.0666795e+00 + 2.2800000e+01 -2.2866795e+00 + 2.3200000e+01 -2.7566795e+00 + 2.3600000e+01 -2.7766795e+00 + 2.4000000e+01 -3.3366795e+00 + 2.4400000e+01 -3.5066795e+00 + 2.4800000e+01 -2.7966795e+00 + 2.5200000e+01 -2.5166795e+00 + 2.5600000e+01 -1.0966795e+00 + 2.6000000e+01 3.0332051e-01 + 2.6400000e+01 7.0332051e-01 + 2.6800000e+01 2.5533205e+00 + 2.7200000e+01 2.0533205e+00 + 2.7600000e+01 1.3833205e+00 + 2.8000000e+01 1.3033205e+00 + 2.8400000e+01 1.3033205e+00 + 2.8800000e+01 1.3332051e-01 + 2.9200000e+01 -1.6766795e+00 + 2.9600000e+01 -2.3566795e+00 + 3.0000000e+01 -2.8266795e+00 + 3.0400000e+01 -2.8466795e+00 + 3.0800000e+01 -2.6066795e+00 + 3.1200000e+01 -1.9166795e+00 + 3.1600000e+01 -1.8766795e+00 + 3.2000000e+01 -1.8266795e+00 + 3.2400000e+01 -1.5066795e+00 + 3.2800000e+01 -1.0566795e+00 + 3.3200000e+01 -9.8667949e-01 + 3.3600000e+01 -9.8667949e-01 + 3.4000000e+01 -9.9667949e-01 + 3.4400000e+01 -9.9667949e-01 + 3.4800000e+01 -9.5667949e-01 + 3.5200000e+01 1.7433205e+00 + 3.5600000e+01 1.9533205e+00 + 3.6000000e+01 1.8733205e+00 + 3.6400000e+01 1.9433205e+00 + 3.6800000e+01 2.3733205e+00 + 3.7200000e+01 2.8233205e+00 + 3.7600000e+01 2.8833205e+00 + 3.8000000e+01 2.7633205e+00 + 3.8400000e+01 1.8933205e+00 + 3.8800000e+01 1.7933205e+00 + 3.9200000e+01 1.7933205e+00 + 3.9600000e+01 -1.6966795e+00 + 4.0000000e+01 -2.3366795e+00 + 4.0400000e+01 -2.2566795e+00 + 4.0800000e+01 -2.2966795e+00 + 4.1200000e+01 -2.1266795e+00 + 4.1600000e+01 -2.2066795e+00 + 4.2000000e+01 -2.2166795e+00 + 4.2400000e+01 -2.1166795e+00 + 4.2800000e+01 -2.1666795e+00 + 4.3200000e+01 -1.9466795e+00 + 4.3600000e+01 -1.5866795e+00 + 4.4000000e+01 -1.4166795e+00 + 4.4400000e+01 -1.1966795e+00 + 4.4800000e+01 -1.2766795e+00 + 4.5200000e+01 -1.3766795e+00 + 4.5600000e+01 -1.3666795e+00 + 4.6000000e+01 -1.3266795e+00 + 4.6400000e+01 -1.0966795e+00 + 4.6800000e+01 -1.2066795e+00 + 4.7200000e+01 -9.2667949e-01 + 4.7600000e+01 -6.9667949e-01 + 4.8000000e+01 -5.1667949e-01 + 4.8400000e+01 -4.2667949e-01 + 4.8800000e+01 -1.9667949e-01 + 4.9200000e+01 -1.3667949e-01 + 4.9600000e+01 -3.0667949e-01 + 5.0000000e+01 -2.2667949e-01 + 5.0400000e+01 -6.3667949e-01 + 5.0800000e+01 -9.0667949e-01 + 5.1200000e+01 -8.6667949e-01 + 5.1600000e+01 -9.4667949e-01 + 5.2000000e+01 -1.0766795e+00 + 5.2400000e+01 -9.2667949e-01 + 5.2800000e+01 -8.0667949e-01 + 5.3200000e+01 -5.9667949e-01 + 5.3600000e+01 5.3320513e-02 + 5.4000000e+01 4.6332051e-01 + 5.4400000e+01 7.4332051e-01 + 5.4800000e+01 8.8332051e-01 + 5.5200000e+01 1.0333205e+00 + 5.5600000e+01 1.3733205e+00 + 5.6000000e+01 1.5533205e+00 + 5.6400000e+01 1.7233205e+00 + 5.6800000e+01 2.4333205e+00 + 5.7200000e+01 2.8033205e+00 + 5.7600000e+01 2.8033205e+00 + 5.8000000e+01 2.0533205e+00 + 5.8400000e+01 7.6332051e-01 + 5.8800000e+01 -4.6679487e-02 + 5.9200000e+01 -4.9667949e-01 + 5.9600000e+01 -7.6667949e-01 + 6.0000000e+01 -1.1166795e+00 + 6.0400000e+01 -1.5566795e+00 + 6.0800000e+01 -1.6166795e+00 + 6.1200000e+01 -1.6166795e+00 + 6.1600000e+01 -1.6166795e+00 + 6.2000000e+01 -1.6166795e+00 + 6.2400000e+01 -3.5666795e+00 + 6.2800000e+01 -4.5266795e+00 + 6.3200000e+01 -4.3266795e+00 + 6.3600000e+01 -3.8066795e+00 + 6.4000000e+01 -3.7066795e+00 + 6.4400000e+01 -3.6966795e+00 + 6.4800000e+01 -1.0866795e+00 + 6.5200000e+01 2.8332051e-01 + 6.5600000e+01 2.4332051e-01 + 6.6000000e+01 4.4332051e-01 + 6.6400000e+01 7.5332051e-01 + 6.6800000e+01 6.5332051e-01 + 6.7200000e+01 3.8332051e-01 + 6.7600000e+01 -1.0667949e-01 + 6.8000000e+01 -5.5667949e-01 + 6.8400000e+01 -6.7667949e-01 + 6.8800000e+01 -8.0667949e-01 + 6.9200000e+01 -8.2667949e-01 + 6.9600000e+01 -1.5266795e+00 + 7.0000000e+01 -1.6266795e+00 + 7.0400000e+01 -1.3166795e+00 + 7.0800000e+01 -7.9667949e-01 + 7.1200000e+01 -2.9667949e-01 + 7.1600000e+01 -2.4667949e-01 + 7.2000000e+01 5.1332051e-01 + 7.2400000e+01 5.1332051e-01 + 7.2800000e+01 3.9332051e-01 + 7.3200000e+01 4.4332051e-01 + 7.3600000e+01 5.9332051e-01 + 7.4000000e+01 6.6332051e-01 + 7.4400000e+01 8.3332051e-01 + 7.4800000e+01 1.0033205e+00 + 7.5200000e+01 1.2333205e+00 + 7.5600000e+01 1.0233205e+00 + 7.6000000e+01 7.2332051e-01 + 7.6400000e+01 8.0332051e-01 + 7.6800000e+01 1.1133205e+00 + 7.7200000e+01 1.2333205e+00 + 7.7600000e+01 1.2233205e+00 + 7.8000000e+01 1.2633205e+00 + 7.8400000e+01 7.4332051e-01 + 7.8800000e+01 8.3320513e-02 + 7.9200000e+01 -1.5166795e+00 + 7.9600000e+01 -1.8966795e+00 + 8.0000000e+01 -3.1366795e+00 + 8.0400000e+01 -3.3366795e+00 + 8.0800000e+01 -3.3566795e+00 + 8.1200000e+01 -3.2266795e+00 + 8.1600000e+01 -3.1666795e+00 + 8.2000000e+01 -3.1366795e+00 + 8.2400000e+01 -3.0966795e+00 + 8.2800000e+01 -2.8466795e+00 + 8.3200000e+01 -2.7366795e+00 + 8.3600000e+01 -2.7266795e+00 + 8.4000000e+01 -2.7266795e+00 + 8.4400000e+01 -2.6066795e+00 + 8.4800000e+01 3.0332051e-01 + 8.5200000e+01 4.7332051e-01 + 8.5600000e+01 5.5332051e-01 + 8.6000000e+01 3.0332051e-01 + 8.6400000e+01 -4.1667949e-01 + 8.6800000e+01 -1.0166795e+00 + 8.7200000e+01 -1.3366795e+00 + 8.7600000e+01 -1.4966795e+00 + 8.8000000e+01 -1.5666795e+00 + 8.8400000e+01 -1.6066795e+00 + 8.8800000e+01 -1.5866795e+00 + 8.9200000e+01 -1.5466795e+00 + 8.9600000e+01 -1.3866795e+00 + 9.0000000e+01 -1.1966795e+00 + 9.0400000e+01 -9.2667949e-01 + 9.0800000e+01 -2.3667949e-01 + 9.1200000e+01 2.5332051e-01 + 9.1600000e+01 6.6332051e-01 + 9.2000000e+01 7.1332051e-01 + 9.2400000e+01 7.1332051e-01 + 9.2800000e+01 8.5332051e-01 + 9.3200000e+01 2.1133205e+00 + 9.3600000e+01 2.1533205e+00 + 9.4000000e+01 1.7933205e+00 + 9.4400000e+01 1.6333205e+00 + 9.4800000e+01 1.0833205e+00 + 9.5200000e+01 8.2332051e-01 + 9.5600000e+01 4.3332051e-01 + 9.6000000e+01 -1.0667949e-01 + 9.6400000e+01 -4.5667949e-01 + 9.6800000e+01 -1.1966795e+00 + 9.7200000e+01 -1.3266795e+00 + 9.7600000e+01 -1.3166795e+00 + 9.8000000e+01 -1.3266795e+00 + 9.8400000e+01 -1.7666795e+00 + 9.8800000e+01 -2.0366795e+00 + 9.9200000e+01 -2.0266795e+00 + 9.9600000e+01 -2.2266795e+00 + 1.0000000e+02 -2.6066795e+00 + 1.0040000e+02 -2.5566795e+00 + 1.0080000e+02 -2.4066795e+00 + 1.0120000e+02 -1.8066795e+00 + 1.0160000e+02 -1.2066795e+00 + 1.0200000e+02 -7.1667949e-01 + 1.0240000e+02 -7.6679487e-02 + 1.0280000e+02 7.0332051e-01 + 1.0320000e+02 9.6332051e-01 + 1.0360000e+02 7.0332051e-01 + 1.0400000e+02 5.9332051e-01 + 1.0440000e+02 5.4332051e-01 + 1.0480000e+02 5.7332051e-01 + 1.0520000e+02 4.5332051e-01 + 1.0560000e+02 2.6332051e-01 + 1.0600000e+02 1.2332051e-01 + 1.0640000e+02 -6.3667949e-01 + 1.0680000e+02 -8.3667949e-01 + 1.0720000e+02 -1.0666795e+00 + 1.0760000e+02 -1.7766795e+00 + 1.0800000e+02 -2.6966795e+00 + 1.0840000e+02 -2.9666795e+00 + 1.0880000e+02 -2.9766795e+00 + 1.0920000e+02 -2.9766795e+00 + 1.0960000e+02 -3.0066795e+00 + 1.1000000e+02 -2.9466795e+00 + 1.1040000e+02 -2.4966795e+00 + 1.1080000e+02 -2.4166795e+00 + 1.1120000e+02 -2.7667949e-01 + 1.1160000e+02 -6.6679487e-02 + 1.1200000e+02 -6.6679487e-02 + 1.1240000e+02 -2.6679487e-02 + 1.1280000e+02 4.2533205e+00 + 1.1320000e+02 4.2233205e+00 + 1.1360000e+02 4.0233205e+00 + 1.1400000e+02 3.7633205e+00 + 1.1440000e+02 2.9133205e+00 + 1.1480000e+02 1.5533205e+00 + 1.1520000e+02 9.3320513e-02 + 1.1560000e+02 -1.0766795e+00 + 1.1600000e+02 -2.1766795e+00 + 1.1640000e+02 -3.1566795e+00 + 1.1680000e+02 -3.8466795e+00 + 1.1720000e+02 -4.0666795e+00 + 1.1760000e+02 -3.9966795e+00 + 1.1800000e+02 -3.5666795e+00 + 1.1840000e+02 -3.2966795e+00 + 1.1880000e+02 -3.0266795e+00 + 1.1920000e+02 -2.5266795e+00 + 1.1960000e+02 -2.2466795e+00 + 1.2000000e+02 -1.9566795e+00 + 1.2040000e+02 -1.3866795e+00 + 1.2080000e+02 1.2332051e-01 + 1.2120000e+02 3.7332051e-01 + 1.2160000e+02 1.1533205e+00 + 1.2200000e+02 2.0033205e+00 + 1.2240000e+02 2.6733205e+00 + 1.2280000e+02 2.4033205e+00 + 1.2320000e+02 2.1233205e+00 + 1.2360000e+02 2.1133205e+00 + 1.2400000e+02 9.8332051e-01 + 1.2440000e+02 -2.4667949e-01 + 1.2480000e+02 -7.1667949e-01 + 1.2520000e+02 -8.8667949e-01 + 1.2560000e+02 -1.9766795e+00 + 1.2600000e+02 -2.1266795e+00 + 1.2640000e+02 -2.1466795e+00 + 1.2680000e+02 -2.1466795e+00 + 1.2720000e+02 -2.3966795e+00 + 1.2760000e+02 -2.7966795e+00 + 1.2800000e+02 -2.8266795e+00 + 1.2840000e+02 -2.4166795e+00 + 1.2880000e+02 -1.7466795e+00 + 1.2920000e+02 -1.3166795e+00 + 1.2960000e+02 -6.5667949e-01 + 1.3000000e+02 1.7332051e-01 + 1.3040000e+02 1.1733205e+00 + 1.3080000e+02 1.9533205e+00 + 1.3120000e+02 2.4733205e+00 + 1.3160000e+02 2.3733205e+00 + 1.3200000e+02 2.3733205e+00 + 1.3240000e+02 1.9633205e+00 + 1.3280000e+02 1.7833205e+00 + 1.3320000e+02 1.6833205e+00 + 1.3360000e+02 6.3332051e-01 + 1.3400000e+02 1.8332051e-01 + 1.3440000e+02 -5.7667949e-01 + 1.3480000e+02 -1.2866795e+00 + 1.3520000e+02 -1.3066795e+00 + 1.3560000e+02 -1.9966795e+00 + 1.3600000e+02 -2.3266795e+00 + 1.3640000e+02 -2.1666795e+00 + 1.3680000e+02 -1.8566795e+00 + 1.3720000e+02 -1.4666795e+00 + 1.3760000e+02 -1.2366795e+00 + 1.3800000e+02 -1.0766795e+00 + 1.3840000e+02 -5.9667949e-01 + 1.3880000e+02 3.9332051e-01 + 1.3920000e+02 1.2933205e+00 + 1.3960000e+02 1.7033205e+00 + 1.4000000e+02 1.3233205e+00 + 1.4040000e+02 1.1433205e+00 + 1.4080000e+02 1.1433205e+00 + 1.4120000e+02 1.1433205e+00 + 1.4160000e+02 -1.9667949e-01 + 1.4200000e+02 -5.8667949e-01 + 1.4240000e+02 -7.5667949e-01 + 1.4280000e+02 -1.4466795e+00 + 1.4320000e+02 -1.5366795e+00 + 1.4360000e+02 -2.0466795e+00 + 1.4400000e+02 -2.3766795e+00 + 1.4440000e+02 -2.0566795e+00 + 1.4480000e+02 -1.9066795e+00 + 1.4520000e+02 -1.8666795e+00 + 1.4560000e+02 -1.4966795e+00 + 1.4600000e+02 -1.1966795e+00 + 1.4640000e+02 -1.1766795e+00 + 1.4680000e+02 -1.1766795e+00 + 1.4720000e+02 -9.2667949e-01 + 1.4760000e+02 1.2332051e-01 + 1.4800000e+02 4.0332051e-01 + 1.4840000e+02 2.0332051e-01 + 1.4880000e+02 -1.1667949e-01 + 1.4920000e+02 -5.0667949e-01 + 1.4960000e+02 -1.1466795e+00 + 1.5000000e+02 -1.2766795e+00 + 1.5040000e+02 -1.0666795e+00 + 1.5080000e+02 -6.7667949e-01 + 1.5120000e+02 -4.8667949e-01 + 1.5160000e+02 -4.8667949e-01 + 1.5200000e+02 -4.8667949e-01 + 1.5240000e+02 1.0333205e+00 + 1.5280000e+02 1.6033205e+00 + 1.5320000e+02 8.3332051e-01 + 1.5360000e+02 5.3320513e-02 + 1.5400000e+02 -4.2667949e-01 + 1.5440000e+02 -8.5667949e-01 + 1.5480000e+02 -1.0466795e+00 + 1.5520000e+02 -1.2266795e+00 + 1.5560000e+02 -1.4166795e+00 + 1.5600000e+02 -1.8866795e+00 + 1.5640000e+02 -2.1966795e+00 + 1.5680000e+02 -1.9766795e+00 + 1.5720000e+02 -1.6166795e+00 + 1.5760000e+02 -1.2166795e+00 + 1.5800000e+02 3.3320513e-02 + 1.5840000e+02 2.4332051e-01 + 1.5880000e+02 4.3320513e-02 + 1.5920000e+02 -3.2667949e-01 + 1.5960000e+02 -4.0667949e-01 + 1.6000000e+02 -2.4667949e-01 + 1.6040000e+02 2.6332051e-01 + 1.6080000e+02 1.1633205e+00 + 1.6120000e+02 2.1833205e+00 + 1.6160000e+02 3.2833205e+00 + 1.6200000e+02 2.7033205e+00 + 1.6240000e+02 1.4033205e+00 + 1.6280000e+02 6.4332051e-01 + 1.6320000e+02 5.8332051e-01 + 1.6360000e+02 5.7332051e-01 + 1.6400000e+02 -5.3667949e-01 + 1.6440000e+02 -3.1366795e+00 + 1.6480000e+02 -3.0766795e+00 + 1.6520000e+02 -2.9866795e+00 + 1.6560000e+02 -2.5266795e+00 + 1.6600000e+02 -2.4766795e+00 + 1.6640000e+02 -2.4466795e+00 + 1.6680000e+02 -2.2966795e+00 + 1.6720000e+02 -2.1166795e+00 + 1.6760000e+02 -1.8166795e+00 + 1.6800000e+02 -1.3966795e+00 + 1.6840000e+02 -9.4667949e-01 + 1.6880000e+02 -5.5667949e-01 + 1.6920000e+02 -6.6679487e-02 + 1.6960000e+02 5.0332051e-01 + 1.7000000e+02 8.8332051e-01 + 1.7040000e+02 9.6332051e-01 + 1.7080000e+02 1.4433205e+00 + 1.7120000e+02 1.8633205e+00 + 1.7160000e+02 1.5933205e+00 + 1.7200000e+02 1.2633205e+00 + 1.7240000e+02 6.6332051e-01 + 1.7280000e+02 4.1332051e-01 + 1.7320000e+02 2.7332051e-01 + 1.7360000e+02 1.3320513e-02 + 1.7400000e+02 -4.0667949e-01 + 1.7440000e+02 -9.4667949e-01 + 1.7480000e+02 -1.3566795e+00 + 1.7520000e+02 -1.7866795e+00 + 1.7560000e+02 -1.8866795e+00 + 1.7600000e+02 -1.6766795e+00 + 1.7640000e+02 -1.1966795e+00 + 1.7680000e+02 -8.6667949e-01 + 1.7720000e+02 -7.1667949e-01 + 1.7760000e+02 -5.4667949e-01 + 1.7800000e+02 -5.1667949e-01 + 1.7840000e+02 -1.7667949e-01 + 1.7880000e+02 3.3205128e-03 + 1.7920000e+02 4.5332051e-01 + 1.7960000e+02 2.2332051e-01 + 1.8000000e+02 -1.6679487e-02 + 1.8040000e+02 -2.8667949e-01 + 1.8080000e+02 -5.1667949e-01 + 1.8120000e+02 -3.4667949e-01 + 1.8160000e+02 -2.1667949e-01 + 1.8200000e+02 3.6332051e-01 + 1.8240000e+02 4.8332051e-01 + 1.8280000e+02 8.3320513e-02 + 1.8320000e+02 -5.5667949e-01 + 1.8360000e+02 -1.0466795e+00 + 1.8400000e+02 -1.3266795e+00 + 1.8440000e+02 -1.4766795e+00 + 1.8480000e+02 -1.8766795e+00 + 1.8520000e+02 -2.0466795e+00 + 1.8560000e+02 -2.1966795e+00 + 1.8600000e+02 -2.1666795e+00 + 1.8640000e+02 -2.0166795e+00 + 1.8680000e+02 -1.6666795e+00 + 1.8720000e+02 -1.3066795e+00 + 1.8760000e+02 -1.0666795e+00 + 1.8800000e+02 -6.9667949e-01 + 1.8840000e+02 5.3320513e-02 + 1.8880000e+02 1.7332051e-01 + 1.8920000e+02 2.8332051e-01 + 1.8960000e+02 4.1332051e-01 + 1.9000000e+02 2.4332051e-01 + 1.9040000e+02 1.3332051e-01 + 1.9080000e+02 3.4332051e-01 + 1.9120000e+02 4.9332051e-01 + 1.9160000e+02 5.0332051e-01 + 1.9200000e+02 4.7332051e-01 + 1.9240000e+02 5.3332051e-01 + 1.9280000e+02 9.0332051e-01 + 1.9320000e+02 1.2033205e+00 + 1.9360000e+02 1.3333205e+00 + 1.9400000e+02 9.1332051e-01 + 1.9440000e+02 6.3332051e-01 + 1.9480000e+02 6.2332051e-01 + 1.9520000e+02 6.2332051e-01 + 1.9560000e+02 -9.9667949e-01 + 1.9600000e+02 -1.5166795e+00 + 1.9640000e+02 -1.0966795e+00 + 1.9680000e+02 -9.0667949e-01 + 1.9720000e+02 -4.5667949e-01 + 1.9760000e+02 -3.6667949e-01 + 1.9800000e+02 -4.4667949e-01 + 1.9840000e+02 -2.2667949e-01 + 1.9880000e+02 -2.6667949e-01 + 1.9920000e+02 -2.1667949e-01 + 1.9960000e+02 -1.9667949e-01 + 2.0000000e+02 2.1332051e-01 + 2.0040000e+02 7.2332051e-01 + 2.0080000e+02 5.2332051e-01 + 2.0120000e+02 2.5332051e-01 + 2.0160000e+02 -2.4667949e-01 + 2.0200000e+02 -6.0667949e-01 + 2.0240000e+02 -1.3466795e+00 + 2.0280000e+02 -1.5066795e+00 + 2.0320000e+02 -1.9866795e+00 + 2.0360000e+02 -2.6366795e+00 + 2.0400000e+02 -2.2666795e+00 + 2.0440000e+02 -1.8466795e+00 + 2.0480000e+02 -1.5266795e+00 + 2.0520000e+02 -1.3066795e+00 + 2.0560000e+02 -1.0666795e+00 + 2.0600000e+02 -9.1667949e-01 + 2.0640000e+02 -3.7667949e-01 + 2.0680000e+02 1.7332051e-01 + 2.0720000e+02 4.0332051e-01 + 2.0760000e+02 2.3332051e-01 + 2.0800000e+02 5.2332051e-01 + 2.0840000e+02 8.8332051e-01 + 2.0880000e+02 7.2332051e-01 + 2.0920000e+02 6.1332051e-01 + 2.0960000e+02 4.9332051e-01 + 2.1000000e+02 5.5332051e-01 + 2.1040000e+02 2.1332051e-01 + 2.1080000e+02 -6.6679487e-02 + 2.1120000e+02 -7.6679487e-02 + 2.1160000e+02 -7.6679487e-02 + 2.1200000e+02 -9.2667949e-01 + 2.1240000e+02 -1.4766795e+00 + 2.1280000e+02 -1.1466795e+00 + 2.1320000e+02 -8.5667949e-01 + 2.1360000e+02 -4.5667949e-01 + 2.1400000e+02 -2.8667949e-01 + 2.1440000e+02 -2.3667949e-01 + 2.1480000e+02 -1.5667949e-01 + 2.1520000e+02 -3.6667949e-01 + 2.1560000e+02 -3.1667949e-01 + 2.1600000e+02 -6.6679487e-02 + 2.1640000e+02 6.5332051e-01 + 2.1680000e+02 1.2433205e+00 + 2.1720000e+02 1.3933205e+00 + 2.1760000e+02 1.3833205e+00 + 2.1800000e+02 7.5332051e-01 + 2.1840000e+02 7.0332051e-01 + 2.1880000e+02 7.0332051e-01 + 2.1920000e+02 6.6332051e-01 + 2.1960000e+02 -1.3666795e+00 + 2.2000000e+02 -1.6466795e+00 + 2.2040000e+02 -1.5966795e+00 + 2.2080000e+02 -1.4066795e+00 + 2.2120000e+02 -1.2066795e+00 + 2.2160000e+02 -9.7667949e-01 + 2.2200000e+02 -7.0667949e-01 + 2.2240000e+02 -4.8667949e-01 + 2.2280000e+02 -6.7667949e-01 + 2.2320000e+02 -9.9667949e-01 + 2.2360000e+02 -1.2266795e+00 + 2.2400000e+02 -1.2166795e+00 + 2.2440000e+02 -1.0266795e+00 + 2.2480000e+02 -7.8667949e-01 + 2.2520000e+02 -3.7667949e-01 + 2.2560000e+02 2.3320513e-02 + 2.2600000e+02 8.9332051e-01 + 2.2640000e+02 5.4332051e-01 + 2.2680000e+02 -5.6679487e-02 + 2.2720000e+02 -5.5667949e-01 + 2.2760000e+02 -8.9667949e-01 + 2.2800000e+02 -1.2866795e+00 + 2.2840000e+02 -1.4866795e+00 + 2.2880000e+02 -1.2766795e+00 + 2.2920000e+02 -9.9667949e-01 + 2.2960000e+02 -3.3667949e-01 + 2.3000000e+02 5.8332051e-01 + 2.3040000e+02 9.0332051e-01 + 2.3080000e+02 1.0533205e+00 + 2.3120000e+02 1.1133205e+00 + 2.3160000e+02 9.1332051e-01 + 2.3200000e+02 4.4332051e-01 + 2.3240000e+02 2.3320513e-02 + 2.3280000e+02 -3.0667949e-01 + 2.3320000e+02 -5.4667949e-01 + 2.3360000e+02 -5.9667949e-01 + 2.3400000e+02 -8.0667949e-01 + 2.3440000e+02 -1.0866795e+00 + 2.3480000e+02 -1.3466795e+00 + 2.3520000e+02 -1.9466795e+00 + 2.3560000e+02 -2.2966795e+00 + 2.3600000e+02 -2.4066795e+00 + 2.3640000e+02 -2.1166795e+00 + 2.3680000e+02 -1.6966795e+00 + 2.3720000e+02 -1.0966795e+00 + 2.3760000e+02 -5.5667949e-01 + 2.3800000e+02 1.6332051e-01 + 2.3840000e+02 6.5332051e-01 + 2.3880000e+02 8.3332051e-01 + 2.3920000e+02 6.3332051e-01 + 2.3960000e+02 1.5332051e-01 + 2.4000000e+02 -3.9667949e-01 + 2.4040000e+02 -4.7667949e-01 + 2.4080000e+02 -1.3466795e+00 + 2.4120000e+02 -1.7266795e+00 + 2.4160000e+02 -1.8566795e+00 + 2.4200000e+02 -1.5166795e+00 + 2.4240000e+02 -6.0667949e-01 + 2.4280000e+02 1.7332051e-01 + 2.4320000e+02 -4.6679487e-02 + 2.4360000e+02 -6.4667949e-01 + 2.4400000e+02 -7.1667949e-01 + 2.4440000e+02 -7.2667949e-01 + 2.4480000e+02 -2.0667949e-01 + 2.4520000e+02 1.4332051e-01 + 2.4560000e+02 2.2332051e-01 + 2.4600000e+02 1.4332051e-01 + 2.4640000e+02 1.6332051e-01 + 2.4680000e+02 4.9332051e-01 + 2.4720000e+02 9.2332051e-01 + 2.4760000e+02 1.3033205e+00 + 2.4800000e+02 8.6332051e-01 + 2.4840000e+02 6.0332051e-01 + 2.4880000e+02 6.1332051e-01 + 2.4920000e+02 7.1332051e-01 + 2.4960000e+02 -1.9667949e-01 + 2.5000000e+02 -8.0667949e-01 + 2.5040000e+02 -8.2667949e-01 + 2.5080000e+02 -8.2667949e-01 + 2.5120000e+02 -8.2667949e-01 + 2.5160000e+02 -1.3366795e+00 + 2.5200000e+02 -1.3066795e+00 + 2.5240000e+02 -4.2667949e-01 + 2.5280000e+02 1.2332051e-01 + 2.5320000e+02 2.1332051e-01 + 2.5360000e+02 2.1332051e-01 + 2.5400000e+02 1.1433205e+00 + 2.5440000e+02 5.9332051e-01 + 2.5480000e+02 1.3332051e-01 + 2.5520000e+02 1.2332051e-01 + 2.5560000e+02 -1.1667949e-01 + 2.5600000e+02 -1.6366795e+00 + 2.5640000e+02 -1.5066795e+00 + 2.5680000e+02 -9.0667949e-01 + 2.5720000e+02 -4.4667949e-01 + 2.5760000e+02 -1.7667949e-01 + 2.5800000e+02 -2.0667949e-01 + 2.5840000e+02 -2.7667949e-01 + 2.5880000e+02 -2.7667949e-01 + 2.5920000e+02 -2.6667949e-01 + 2.5960000e+02 -5.6667949e-01 + 2.6000000e+02 -8.0667949e-01 + 2.6040000e+02 -8.3667949e-01 + 2.6080000e+02 -8.3667949e-01 + 2.6120000e+02 -1.3566795e+00 + 2.6160000e+02 -1.7166795e+00 + 2.6200000e+02 -1.5366795e+00 + 2.6240000e+02 -1.2866795e+00 + 2.6280000e+02 -9.6667949e-01 + 2.6320000e+02 -6.9667949e-01 + 2.6360000e+02 -5.4667949e-01 + 2.6400000e+02 -6.3667949e-01 + 2.6440000e+02 -6.6667949e-01 + 2.6480000e+02 -5.0667949e-01 + 2.6520000e+02 -2.0667949e-01 + 2.6560000e+02 1.8332051e-01 + 2.6600000e+02 8.8332051e-01 + 2.6640000e+02 8.0332051e-01 + 2.6680000e+02 4.5332051e-01 + 2.6720000e+02 5.3320513e-02 + 2.6760000e+02 -1.6679487e-02 + 2.6800000e+02 -5.7667949e-01 + 2.6840000e+02 -3.7667949e-01 + 2.6880000e+02 1.1332051e-01 + 2.6920000e+02 2.1332051e-01 + 2.6960000e+02 8.2332051e-01 + 2.7000000e+02 1.1233205e+00 + 2.7040000e+02 1.0433205e+00 + 2.7080000e+02 8.3332051e-01 + 2.7120000e+02 1.9332051e-01 + 2.7160000e+02 -4.5667949e-01 + 2.7200000e+02 -6.0667949e-01 + 2.7240000e+02 -1.3166795e+00 + 2.7280000e+02 -1.8966795e+00 + 2.7320000e+02 -2.1966795e+00 + 2.7360000e+02 -1.7666795e+00 + 2.7400000e+02 -1.1966795e+00 + 2.7440000e+02 -1.0766795e+00 + 2.7480000e+02 -9.7667949e-01 + 2.7520000e+02 -6.6667949e-01 + 2.7560000e+02 -1.5667949e-01 + 2.7600000e+02 -5.6679487e-02 + 2.7640000e+02 2.4332051e-01 + 2.7680000e+02 6.4332051e-01 + 2.7720000e+02 7.2332051e-01 + 2.7760000e+02 3.6332051e-01 + 2.7800000e+02 2.6332051e-01 + 2.7840000e+02 -5.6679487e-02 + 2.7880000e+02 -2.1266795e+00 + 2.7920000e+02 -2.6966795e+00 + 2.7960000e+02 -2.9466795e+00 + 2.8000000e+02 -2.9666795e+00 + 2.8040000e+02 -2.2166795e+00 + 2.8080000e+02 -1.3766795e+00 + 2.8120000e+02 -8.2667949e-01 + 2.8160000e+02 -6.5667949e-01 + 2.8200000e+02 -4.5667949e-01 + 2.8240000e+02 -2.5667949e-01 + 2.8280000e+02 4.3320513e-02 + 2.8320000e+02 3.9332051e-01 + 2.8360000e+02 -8.6679487e-02 + 2.8400000e+02 -2.3667949e-01 + 2.8440000e+02 -5.8667949e-01 + 2.8480000e+02 -1.2766795e+00 + 2.8520000e+02 -9.4667949e-01 + 2.8560000e+02 -3.4667949e-01 + 2.8600000e+02 4.9332051e-01 + 2.8640000e+02 9.1332051e-01 + 2.8680000e+02 1.0133205e+00 + 2.8720000e+02 1.2133205e+00 + 2.8760000e+02 1.3033205e+00 + 2.8800000e+02 1.2933205e+00 + 2.8840000e+02 1.0333205e+00 + 2.8880000e+02 2.7332051e-01 + 2.8920000e+02 -1.9667949e-01 + 2.8960000e+02 -9.0667949e-01 + 2.9000000e+02 -1.5666795e+00 + 2.9040000e+02 -2.1566795e+00 + 2.9080000e+02 -2.0666795e+00 + 2.9120000e+02 -1.5066795e+00 + 2.9160000e+02 -7.9667949e-01 + 2.9200000e+02 -4.6679487e-02 + 2.9240000e+02 2.8332051e-01 + 2.9280000e+02 3.6332051e-01 + 2.9320000e+02 7.7332051e-01 + 2.9360000e+02 1.0733205e+00 + 2.9400000e+02 1.3733205e+00 + 2.9440000e+02 1.7333205e+00 + 2.9480000e+02 1.9633205e+00 + 2.9520000e+02 1.4933205e+00 + 2.9560000e+02 9.9332051e-01 + 2.9600000e+02 4.2332051e-01 + 2.9640000e+02 1.6332051e-01 + 2.9680000e+02 1.5332051e-01 + 2.9720000e+02 1.5332051e-01 + 2.9760000e+02 -2.1667949e-01 + 2.9800000e+02 -3.4466795e+00 + 2.9840000e+02 -3.8566795e+00 + 2.9880000e+02 -3.8466795e+00 + 2.9920000e+02 -3.6966795e+00 + 2.9960000e+02 -3.3866795e+00 + 3.0000000e+02 -3.1266795e+00 + 3.0040000e+02 -2.4066795e+00 + 3.0080000e+02 -1.9666795e+00 + 3.0120000e+02 -4.9667949e-01 + 3.0160000e+02 3.3320513e-02 + 3.0200000e+02 4.2332051e-01 + 3.0240000e+02 7.6332051e-01 + 3.0280000e+02 9.7332051e-01 + 3.0320000e+02 1.2233205e+00 + 3.0360000e+02 1.4533205e+00 + 3.0400000e+02 1.5233205e+00 + 3.0440000e+02 8.8332051e-01 + 3.0480000e+02 2.4332051e-01 + 3.0520000e+02 -3.9667949e-01 + 3.0560000e+02 -6.3667949e-01 + 3.0600000e+02 -9.0667949e-01 + 3.0640000e+02 -1.2866795e+00 + 3.0680000e+02 -1.3966795e+00 + 3.0720000e+02 -1.3566795e+00 + 3.0760000e+02 -1.3566795e+00 + 3.0800000e+02 -5.8667949e-01 + 3.0840000e+02 -5.6667949e-01 + 3.0880000e+02 -7.6667949e-01 + 3.0920000e+02 -9.9667949e-01 + 3.0960000e+02 -8.9667949e-01 + 3.1000000e+02 -1.0366795e+00 + 3.1040000e+02 -9.0667949e-01 + 3.1080000e+02 -7.4667949e-01 + 3.1120000e+02 -2.3667949e-01 + 3.1160000e+02 1.3332051e-01 + 3.1200000e+02 6.4332051e-01 + 3.1240000e+02 1.4233205e+00 + 3.1280000e+02 2.0833205e+00 + 3.1320000e+02 2.3933205e+00 + 3.1360000e+02 2.2533205e+00 + 3.1400000e+02 1.6433205e+00 + 3.1440000e+02 1.4533205e+00 + 3.1480000e+02 1.3033205e+00 + 3.1520000e+02 1.3033205e+00 + 3.1560000e+02 1.3833205e+00 + 3.1600000e+02 8.8332051e-01 + 3.1640000e+02 7.8332051e-01 + 3.1680000e+02 -5.6667949e-01 + 3.1720000e+02 -1.2166795e+00 + 3.1760000e+02 -1.8366795e+00 + 3.1800000e+02 -1.9066795e+00 + 3.1840000e+02 -2.5366795e+00 + 3.1880000e+02 -2.9566795e+00 + 3.1920000e+02 -3.5466795e+00 + 3.1960000e+02 -3.8766795e+00 + 3.2000000e+02 -3.9866795e+00 + 3.2040000e+02 -3.2566795e+00 + 3.2080000e+02 -2.7266795e+00 + 3.2120000e+02 -2.5466795e+00 + 3.2160000e+02 -2.3766795e+00 + 3.2200000e+02 -1.7566795e+00 + 3.2240000e+02 -1.2566795e+00 + 3.2280000e+02 -5.0667949e-01 + 3.2320000e+02 -4.9667949e-01 + 3.2360000e+02 -3.4667949e-01 + 3.2400000e+02 -2.7667949e-01 + 3.2440000e+02 -1.6679487e-02 + 3.2480000e+02 5.8332051e-01 + 3.2520000e+02 1.3833205e+00 + 3.2560000e+02 1.7933205e+00 + 3.2600000e+02 2.0033205e+00 + 3.2640000e+02 2.5033205e+00 + 3.2680000e+02 2.0533205e+00 + 3.2720000e+02 1.8233205e+00 + 3.2760000e+02 1.3033205e+00 + 3.2800000e+02 8.2332051e-01 + 3.2840000e+02 4.8332051e-01 + 3.2880000e+02 3.7332051e-01 + 3.2920000e+02 1.3332051e-01 + 3.2960000e+02 -1.5667949e-01 + 3.3000000e+02 -8.2667949e-01 + 3.3040000e+02 -1.2866795e+00 + 3.3080000e+02 -1.2966795e+00 + 3.3120000e+02 -1.3066795e+00 + 3.3160000e+02 -2.5466795e+00 + 3.3200000e+02 -2.1466795e+00 + 3.3240000e+02 -1.7666795e+00 + 3.3280000e+02 -1.7466795e+00 + 3.3320000e+02 -1.7466795e+00 + 3.3360000e+02 -1.7466795e+00 + 3.3400000e+02 3.3332051e-01 + 3.3440000e+02 2.2633205e+00 + 3.3480000e+02 1.8433205e+00 + 3.3520000e+02 1.4233205e+00 + 3.3560000e+02 7.4332051e-01 + 3.3600000e+02 2.8332051e-01 + 3.3640000e+02 1.7332051e-01 + 3.3680000e+02 1.3332051e-01 + 3.3720000e+02 5.3320513e-02 + 3.3760000e+02 -3.5667949e-01 + 3.3800000e+02 -3.8667949e-01 + 3.3840000e+02 -1.2366795e+00 + 3.3880000e+02 -1.9466795e+00 + 3.3920000e+02 -2.1966795e+00 + 3.3960000e+02 -2.2966795e+00 + 3.4000000e+02 -2.4866795e+00 + 3.4040000e+02 -2.4466795e+00 + 3.4080000e+02 -2.5266795e+00 + 3.4120000e+02 -2.6966795e+00 + 3.4160000e+02 -3.0066795e+00 + 3.4200000e+02 -3.0466795e+00 + 3.4240000e+02 -3.2966795e+00 + 3.4280000e+02 -2.9466795e+00 + 3.4320000e+02 -2.0866795e+00 + 3.4360000e+02 -1.1566795e+00 + 3.4400000e+02 -5.4667949e-01 + 3.4440000e+02 -1.2667949e-01 + 3.4480000e+02 -6.6794872e-03 + 3.4520000e+02 4.3320513e-02 + 3.4560000e+02 -1.2667949e-01 + 3.4600000e+02 -2.7667949e-01 + 3.4640000e+02 2.9332051e-01 + 3.4680000e+02 1.1233205e+00 + 3.4720000e+02 2.2833205e+00 + 3.4760000e+02 3.6133205e+00 + 3.4800000e+02 4.7533205e+00 + 3.4840000e+02 4.5733205e+00 + 3.4880000e+02 3.9533205e+00 + 3.4920000e+02 2.6933205e+00 + 3.4960000e+02 1.8433205e+00 + 3.5000000e+02 9.2332051e-01 + 3.5040000e+02 4.3320513e-02 + 3.5080000e+02 -1.0366795e+00 + 3.5120000e+02 -1.9666795e+00 + 3.5160000e+02 -2.6966795e+00 + 3.5200000e+02 -3.0166795e+00 + 3.5240000e+02 -3.0766795e+00 + 3.5280000e+02 -3.0766795e+00 + 3.5320000e+02 -2.7466795e+00 + 3.5360000e+02 -2.3666795e+00 + 3.5400000e+02 -2.3366795e+00 + 3.5440000e+02 -1.9166795e+00 + 3.5480000e+02 -1.4966795e+00 + 3.5520000e+02 -4.2667949e-01 + 3.5560000e+02 9.6332051e-01 + 3.5600000e+02 1.7433205e+00 + 3.5640000e+02 2.7633205e+00 + 3.5680000e+02 2.8033205e+00 + 3.5720000e+02 1.9333205e+00 + 3.5760000e+02 1.1133205e+00 + 3.5800000e+02 6.2332051e-01 + 3.5840000e+02 5.3320513e-02 + 3.5880000e+02 -3.0667949e-01 + 3.5920000e+02 -6.3667949e-01 + 3.5960000e+02 -1.2366795e+00 + 3.6000000e+02 -1.8966795e+00 + 3.6040000e+02 -2.4766795e+00 + 3.6080000e+02 -2.9166795e+00 + 3.6120000e+02 -3.0766795e+00 + 3.6160000e+02 -3.3366795e+00 + 3.6200000e+02 -3.5466795e+00 + 3.6240000e+02 -3.7366795e+00 + 3.6280000e+02 -3.6266795e+00 + 3.6320000e+02 -3.2866795e+00 + 3.6360000e+02 -2.8366795e+00 + 3.6400000e+02 -2.2966795e+00 + 3.6440000e+02 -1.9766795e+00 + 3.6480000e+02 -1.8966795e+00 + 3.6520000e+02 -1.2466795e+00 + 3.6560000e+02 2.3332051e-01 + 3.6600000e+02 8.7332051e-01 + 3.6640000e+02 9.4332051e-01 + 3.6680000e+02 9.4332051e-01 + 3.6720000e+02 2.0733205e+00 + 3.6760000e+02 4.6133205e+00 + 3.6800000e+02 4.2833205e+00 + 3.6840000e+02 2.8633205e+00 + 3.6880000e+02 2.2733205e+00 + 3.6920000e+02 1.4533205e+00 + 3.6960000e+02 7.4332051e-01 + 3.7000000e+02 5.2332051e-01 + 3.7040000e+02 5.1332051e-01 + 3.7080000e+02 3.4332051e-01 + 3.7120000e+02 -2.9667949e-01 + 3.7160000e+02 -4.5667949e-01 + 3.7200000e+02 -4.5667949e-01 + 3.7240000e+02 -1.3866795e+00 + 3.7280000e+02 -1.9666795e+00 + 3.7320000e+02 -2.1666795e+00 + 3.7360000e+02 -2.0666795e+00 + 3.7400000e+02 -1.7666795e+00 + 3.7440000e+02 -1.5366795e+00 + 3.7480000e+02 -1.2866795e+00 + 3.7520000e+02 -9.8667949e-01 + 3.7560000e+02 -6.7667949e-01 + 3.7600000e+02 -2.1667949e-01 + 3.7640000e+02 -6.0667949e-01 + 3.7680000e+02 -1.1466795e+00 + 3.7720000e+02 -1.4266795e+00 + 3.7760000e+02 -1.4666795e+00 + 3.7800000e+02 -1.3966795e+00 + 3.7840000e+02 -1.0766795e+00 + 3.7880000e+02 -8.1667949e-01 + 3.7920000e+02 -7.7667949e-01 + 3.7960000e+02 -7.7667949e-01 + 3.8000000e+02 -5.7667949e-01 + 3.8040000e+02 -3.0667949e-01 + 3.8080000e+02 -5.9667949e-01 + 3.8120000e+02 -6.9667949e-01 + 3.8160000e+02 -7.4667949e-01 + 3.8200000e+02 -8.9667949e-01 + 3.8240000e+02 -9.1667949e-01 + 3.8280000e+02 -1.1466795e+00 + 3.8320000e+02 -1.8866795e+00 + 3.8360000e+02 -1.8466795e+00 + 3.8400000e+02 -1.4666795e+00 + 3.8440000e+02 -1.5866795e+00 + 3.8480000e+02 -1.7566795e+00 + 3.8520000e+02 -1.8266795e+00 + 3.8560000e+02 -1.5466795e+00 + 3.8600000e+02 -1.2666795e+00 + 3.8640000e+02 -7.7667949e-01 + 3.8680000e+02 -6.9667949e-01 + 3.8720000e+02 -6.9667949e-01 + 3.8760000e+02 -6.9667949e-01 + 3.8800000e+02 1.0033205e+00 + 3.8840000e+02 2.2833205e+00 + 3.8880000e+02 2.4433205e+00 + 3.8920000e+02 2.1833205e+00 + 3.8960000e+02 1.8433205e+00 + 3.9000000e+02 1.7133205e+00 + 3.9040000e+02 1.5733205e+00 + 3.9080000e+02 1.2933205e+00 + 3.9120000e+02 6.9332051e-01 + 3.9160000e+02 2.1332051e-01 + 3.9200000e+02 -2.7667949e-01 + 3.9240000e+02 -6.4667949e-01 + 3.9280000e+02 -1.0866795e+00 + 3.9320000e+02 -1.3366795e+00 + 3.9360000e+02 -1.6966795e+00 + 3.9400000e+02 -3.3166795e+00 + 3.9440000e+02 -3.5466795e+00 + 3.9480000e+02 -3.6966795e+00 + 3.9520000e+02 -3.5366795e+00 + 3.9560000e+02 -2.8366795e+00 + 3.9600000e+02 -2.5866795e+00 + 3.9640000e+02 -2.5766795e+00 + 3.9680000e+02 -2.5766795e+00 + 3.9720000e+02 -2.5866795e+00 + 3.9760000e+02 1.0333205e+00 + 3.9800000e+02 1.6533205e+00 + 3.9840000e+02 1.3933205e+00 + 3.9880000e+02 6.6332051e-01 + 3.9920000e+02 -6.6794872e-03 + 3.9960000e+02 -2.0667949e-01 + 4.0000000e+02 -4.4667949e-01 + 4.0040000e+02 -7.4667949e-01 + 4.0080000e+02 -1.1166795e+00 + 4.0120000e+02 -1.6666795e+00 + 4.0160000e+02 -1.9466795e+00 + 4.0200000e+02 -2.0166795e+00 + 4.0240000e+02 -2.0566795e+00 + 4.0280000e+02 -2.0866795e+00 + 4.0320000e+02 -1.9666795e+00 + 4.0360000e+02 -2.1166795e+00 + 4.0400000e+02 -2.5866795e+00 + 4.0440000e+02 -2.6766795e+00 + 4.0480000e+02 -2.0666795e+00 + 4.0520000e+02 -1.4466795e+00 + 4.0560000e+02 -1.3766795e+00 + 4.0600000e+02 8.9332051e-01 + 4.0640000e+02 2.4033205e+00 + 4.0680000e+02 2.6433205e+00 + 4.0720000e+02 2.8933205e+00 + 4.0760000e+02 2.9233205e+00 + 4.0800000e+02 2.9133205e+00 + 4.0840000e+02 2.8933205e+00 + 4.0880000e+02 2.6933205e+00 + 4.0920000e+02 2.4633205e+00 + 4.0960000e+02 1.5033205e+00 + 4.1000000e+02 6.0332051e-01 + 4.1040000e+02 5.5332051e-01 + 4.1080000e+02 5.5332051e-01 + 4.1120000e+02 5.5332051e-01 + 4.1160000e+02 8.3320513e-02 + 4.1200000e+02 -2.6566795e+00 + 4.1240000e+02 -3.3666795e+00 + 4.1280000e+02 -3.5066795e+00 + 4.1320000e+02 -3.4166795e+00 + 4.1360000e+02 -3.0566795e+00 + 4.1400000e+02 -2.8766795e+00 + 4.1440000e+02 -2.6666795e+00 + 4.1480000e+02 -2.1366795e+00 + 4.1520000e+02 -1.0866795e+00 + 4.1560000e+02 3.3320513e-02 + 4.1600000e+02 3.2332051e-01 + 4.1640000e+02 4.1332051e-01 + 4.1680000e+02 2.7433205e+00 + 4.1720000e+02 2.4833205e+00 + 4.1760000e+02 2.0433205e+00 + 4.1800000e+02 1.6633205e+00 + 4.1840000e+02 1.1133205e+00 + 4.1880000e+02 6.2332051e-01 + 4.1920000e+02 5.7332051e-01 + 4.1960000e+02 5.7332051e-01 + 4.2000000e+02 5.7332051e-01 + 4.2040000e+02 5.7332051e-01 + 4.2080000e+02 5.7332051e-01 + 4.2120000e+02 5.7332051e-01 + 4.2160000e+02 4.1332051e-01 + 4.2200000e+02 -2.1966795e+00 + 4.2240000e+02 -1.9766795e+00 + 4.2280000e+02 -1.6366795e+00 + 4.2320000e+02 -1.5266795e+00 + 4.2360000e+02 -1.5866795e+00 + 4.2400000e+02 -1.2966795e+00 + 4.2440000e+02 -9.8667949e-01 + 4.2480000e+02 -6.6667949e-01 + 4.2520000e+02 -5.3667949e-01 + 4.2560000e+02 4.1332051e-01 + 4.2600000e+02 1.4133205e+00 + 4.2640000e+02 1.8033205e+00 + 4.2680000e+02 2.7833205e+00 + 4.2720000e+02 2.7433205e+00 + 4.2760000e+02 2.2533205e+00 + 4.2800000e+02 1.5833205e+00 + 4.2840000e+02 9.7332051e-01 + 4.2880000e+02 3.5332051e-01 + 4.2920000e+02 -9.8667949e-01 + 4.2960000e+02 -1.5266795e+00 + 4.3000000e+02 -1.7166795e+00 + 4.3040000e+02 -1.7266795e+00 + 4.3080000e+02 -1.7266795e+00 + 4.3120000e+02 -1.7166795e+00 + 4.3160000e+02 -1.7266795e+00 + 4.3200000e+02 -2.9666795e+00 + 4.3240000e+02 -2.7066795e+00 + 4.3280000e+02 -1.8766795e+00 + 4.3320000e+02 -1.6166795e+00 + 4.3360000e+02 -1.6066795e+00 + 4.3400000e+02 -1.6066795e+00 + 4.3440000e+02 -1.6066795e+00 + 4.3480000e+02 -1.6066795e+00 + 4.3520000e+02 -1.5066795e+00 + 4.3560000e+02 9.9332051e-01 + 4.3600000e+02 1.0033205e+00 + 4.3640000e+02 1.0033205e+00 + 4.3680000e+02 -5.1667949e-01 + 4.3720000e+02 -6.5667949e-01 + 4.3760000e+02 -3.5667949e-01 + 4.3800000e+02 -9.6679487e-02 + 4.3840000e+02 8.2332051e-01 + 4.3880000e+02 1.3033205e+00 + 4.3920000e+02 1.1633205e+00 + 4.3960000e+02 7.9332051e-01 + 4.4000000e+02 6.6332051e-01 + 4.4040000e+02 6.5332051e-01 + 4.4080000e+02 6.5332051e-01 + 4.4120000e+02 6.5332051e-01 + 4.4160000e+02 6.5332051e-01 + 4.4200000e+02 5.4332051e-01 + 4.4240000e+02 -2.4566795e+00 + 4.4280000e+02 -2.2866795e+00 + 4.4320000e+02 -1.8666795e+00 + 4.4360000e+02 -1.6366795e+00 + 4.4400000e+02 -1.6266795e+00 + 4.4440000e+02 -1.6266795e+00 + 4.4480000e+02 -1.6266795e+00 + 4.4520000e+02 -1.5866795e+00 + 4.4560000e+02 2.9332051e-01 + 4.4600000e+02 3.0332051e-01 + 4.4640000e+02 9.3320513e-02 + 4.4680000e+02 -2.6679487e-02 + 4.4720000e+02 -1.0667949e-01 + 4.4760000e+02 -1.5667949e-01 + 4.4800000e+02 8.3320513e-02 + 4.4840000e+02 4.2332051e-01 + 4.4880000e+02 5.4332051e-01 + 4.4920000e+02 5.2332051e-01 + 4.4960000e+02 2.5332051e-01 + 4.5000000e+02 -2.8667949e-01 + 4.5040000e+02 -1.0466795e+00 + 4.5080000e+02 -1.6966795e+00 + 4.5120000e+02 -1.7866795e+00 + 4.5160000e+02 -2.3566795e+00 + 4.5200000e+02 -2.6266795e+00 + 4.5240000e+02 -2.7366795e+00 + 4.5280000e+02 -2.9066795e+00 + 4.5320000e+02 -2.9266795e+00 + 4.5360000e+02 -2.5466795e+00 + 4.5400000e+02 -2.1566795e+00 + 4.5440000e+02 -2.1266795e+00 + 4.5480000e+02 -1.7366795e+00 + 4.5520000e+02 5.7332051e-01 + 4.5560000e+02 1.0533205e+00 + 4.5600000e+02 1.4333205e+00 + 4.5640000e+02 2.0833205e+00 + 4.5680000e+02 2.6933205e+00 + 4.5720000e+02 3.0833205e+00 + 4.5760000e+02 2.9533205e+00 + 4.5800000e+02 2.5533205e+00 + 4.5840000e+02 2.0733205e+00 + 4.5880000e+02 1.8633205e+00 + 4.5920000e+02 1.3033205e+00 + 4.5960000e+02 9.3320513e-02 + 4.6000000e+02 -2.1667949e-01 + 4.6040000e+02 -2.0166795e+00 + 4.6080000e+02 -3.4466795e+00 + 4.6120000e+02 -4.2866795e+00 + 4.6160000e+02 -4.4866795e+00 + 4.6200000e+02 -4.3566795e+00 + 4.6240000e+02 -4.3166795e+00 + 4.6280000e+02 -4.3066795e+00 + 4.6320000e+02 -1.4066795e+00 + 4.6360000e+02 -6.1667949e-01 + 4.6400000e+02 -3.6679487e-02 + 4.6440000e+02 3.3332051e-01 + 4.6480000e+02 -1.1667949e-01 + 4.6520000e+02 -5.2667949e-01 + 4.6560000e+02 -6.7667949e-01 + 4.6600000e+02 -6.7667949e-01 + 4.6640000e+02 -2.9667949e-01 + 4.6680000e+02 3.3332051e-01 + 4.6720000e+02 8.0332051e-01 + 4.6760000e+02 9.6332051e-01 + 4.6800000e+02 9.7332051e-01 + 4.6840000e+02 4.8332051e-01 + 4.6880000e+02 -8.6679487e-02 + 4.6920000e+02 -3.6667949e-01 + 4.6960000e+02 -4.8667949e-01 + 4.7000000e+02 -5.1667949e-01 + 4.7040000e+02 -1.9667949e-01 + 4.7080000e+02 5.7332051e-01 + 4.7120000e+02 1.6332051e-01 + 4.7160000e+02 -5.9667949e-01 + 4.7200000e+02 -6.2667949e-01 + 4.7240000e+02 -1.3166795e+00 + 4.7280000e+02 -1.6766795e+00 + 4.7320000e+02 -1.1966795e+00 + 4.7360000e+02 -6.9667949e-01 + 4.7400000e+02 -6.7667949e-01 + 4.7440000e+02 -5.9667949e-01 + 4.7480000e+02 -2.5667949e-01 + 4.7520000e+02 -8.6679487e-02 + 4.7560000e+02 -1.1667949e-01 + 4.7600000e+02 -3.3667949e-01 + 4.7640000e+02 -3.2667949e-01 + 4.7680000e+02 3.3205128e-03 + 4.7720000e+02 1.4332051e-01 + 4.7760000e+02 1.1332051e-01 + 4.7800000e+02 4.2332051e-01 + 4.7840000e+02 7.1332051e-01 + 4.7880000e+02 1.2633205e+00 + 4.7920000e+02 9.4332051e-01 + 4.7960000e+02 6.6332051e-01 + 4.8000000e+02 6.4332051e-01 + 4.8040000e+02 6.0332051e-01 + 4.8080000e+02 -1.4866795e+00 + 4.8120000e+02 -1.5066795e+00 + 4.8160000e+02 -1.2266795e+00 + 4.8200000e+02 -1.0466795e+00 + 4.8240000e+02 -1.0366795e+00 + 4.8280000e+02 5.3332051e-01 + 4.8320000e+02 1.9332051e-01 + 4.8360000e+02 1.2332051e-01 + 4.8400000e+02 1.2332051e-01 + 4.8440000e+02 1.2332051e-01 + 4.8480000e+02 1.2332051e-01 + 4.8520000e+02 1.2332051e-01 + 4.8560000e+02 1.2332051e-01 + 4.8600000e+02 -1.5366795e+00 + 4.8640000e+02 -1.5466795e+00 + 4.8680000e+02 -1.0866795e+00 + 4.8720000e+02 -5.5667949e-01 + 4.8760000e+02 -4.8667949e-01 + 4.8800000e+02 1.0733205e+00 + 4.8840000e+02 1.7633205e+00 + 4.8880000e+02 1.8633205e+00 + 4.8920000e+02 1.6833205e+00 + 4.8960000e+02 1.3833205e+00 + 4.9000000e+02 9.4332051e-01 + 4.9040000e+02 3.4332051e-01 + 4.9080000e+02 1.3320513e-02 + 4.9120000e+02 -1.6679487e-02 + 4.9160000e+02 1.5332051e-01 + 4.9200000e+02 4.0332051e-01 + 4.9240000e+02 1.3332051e-01 + 4.9280000e+02 -3.3667949e-01 + 4.9320000e+02 -9.1667949e-01 + 4.9360000e+02 -1.2666795e+00 + 4.9400000e+02 -1.5566795e+00 + 4.9440000e+02 -1.7266795e+00 + 4.9480000e+02 -1.8766795e+00 + 4.9520000e+02 -1.9066795e+00 + 4.9560000e+02 -1.2566795e+00 + 4.9600000e+02 -5.9667949e-01 + 4.9640000e+02 3.7332051e-01 + 4.9680000e+02 9.6332051e-01 + 4.9720000e+02 1.0933205e+00 + 4.9760000e+02 8.2332051e-01 + 4.9800000e+02 4.1332051e-01 + 4.9840000e+02 -2.6679487e-02 + 4.9880000e+02 -4.9667949e-01 + 4.9920000e+02 -7.6667949e-01 + 4.9960000e+02 -1.0766795e+00 + 5.0000000e+02 -1.3366795e+00 + 5.0040000e+02 -1.5066795e+00 + 5.0080000e+02 -1.6766795e+00 + 5.0120000e+02 -1.5966795e+00 + 5.0160000e+02 -1.5666795e+00 + 5.0200000e+02 -1.6966795e+00 + 5.0240000e+02 -1.6666795e+00 + 5.0280000e+02 -1.5266795e+00 + 5.0320000e+02 -1.1366795e+00 + 5.0360000e+02 -8.8667949e-01 + 5.0400000e+02 -6.1667949e-01 + 5.0440000e+02 -8.5667949e-01 + 5.0480000e+02 -1.0866795e+00 + 5.0520000e+02 -1.0766795e+00 + 5.0560000e+02 -1.0766795e+00 + 5.0600000e+02 -1.1466795e+00 + 5.0640000e+02 -1.3266795e+00 + 5.0680000e+02 -1.1966795e+00 + 5.0720000e+02 -7.7667949e-01 + 5.0760000e+02 -4.0667949e-01 + 5.0800000e+02 -3.6667949e-01 + 5.0840000e+02 2.1332051e-01 + 5.0880000e+02 9.2332051e-01 + 5.0920000e+02 1.5933205e+00 + 5.0960000e+02 1.9933205e+00 + 5.1000000e+02 3.4033205e+00 + 5.1040000e+02 2.9433205e+00 + 5.1080000e+02 2.1433205e+00 + 5.1120000e+02 1.4833205e+00 + 5.1160000e+02 7.2332051e-01 + 5.1200000e+02 -3.0667949e-01 + 5.1240000e+02 -4.9667949e-01 + 5.1280000e+02 -5.0667949e-01 + 5.1320000e+02 -5.0667949e-01 + 5.1360000e+02 -5.1667949e-01 + 5.1400000e+02 -2.6966795e+00 + 5.1440000e+02 -3.0066795e+00 + 5.1480000e+02 -2.8066795e+00 + 5.1520000e+02 -2.7866795e+00 + 5.1560000e+02 -2.6166795e+00 + 5.1600000e+02 -6.9667949e-01 + 5.1640000e+02 3.4332051e-01 + 5.1680000e+02 5.2332051e-01 + 5.1720000e+02 2.1733205e+00 + 5.1760000e+02 2.3533205e+00 + 5.1800000e+02 2.0133205e+00 + 5.1840000e+02 1.5733205e+00 + 5.1880000e+02 8.0332051e-01 + 5.1920000e+02 -4.6679487e-02 + 5.1960000e+02 -8.5667949e-01 + 5.2000000e+02 -1.2966795e+00 + 5.2040000e+02 -1.3566795e+00 + 5.2080000e+02 -1.3966795e+00 + 5.2120000e+02 -1.3166795e+00 + 5.2160000e+02 -1.4766795e+00 + 5.2200000e+02 -1.7366795e+00 + 5.2240000e+02 -1.7766795e+00 + 5.2280000e+02 -2.5666795e+00 + 5.2320000e+02 -2.7466795e+00 + 5.2360000e+02 -2.9966795e+00 + 5.2400000e+02 -3.2566795e+00 + 5.2440000e+02 -3.2766795e+00 + 5.2480000e+02 -2.8666795e+00 + 5.2520000e+02 -2.3466795e+00 + 5.2560000e+02 -1.6966795e+00 + 5.2600000e+02 -9.4667949e-01 + 5.2640000e+02 -2.6667949e-01 + 5.2680000e+02 -7.6679487e-02 + 5.2720000e+02 1.1333205e+00 + 5.2760000e+02 1.2533205e+00 + 5.2800000e+02 1.2533205e+00 + 5.2840000e+02 1.4733205e+00 + 5.2880000e+02 2.2633205e+00 + 5.2920000e+02 1.6933205e+00 + 5.2960000e+02 1.5533205e+00 + 5.3000000e+02 1.6633205e+00 + 5.3040000e+02 1.7833205e+00 + 5.3080000e+02 1.6533205e+00 + 5.3120000e+02 1.2933205e+00 + 5.3160000e+02 9.4332051e-01 + 5.3200000e+02 5.9332051e-01 + 5.3240000e+02 2.3332051e-01 + 5.3280000e+02 1.8332051e-01 + 5.3320000e+02 1.6332051e-01 + 5.3360000e+02 -1.7366795e+00 + 5.3400000e+02 -2.1766795e+00 + 5.3440000e+02 -2.4766795e+00 + 5.3480000e+02 -2.5266795e+00 + 5.3520000e+02 -2.4566795e+00 + 5.3560000e+02 -2.5066795e+00 + 5.3600000e+02 -2.7066795e+00 + 5.3640000e+02 -2.6466795e+00 + 5.3680000e+02 -2.1366795e+00 + 5.3720000e+02 -1.3966795e+00 + 5.3760000e+02 -4.4667949e-01 + 5.3800000e+02 6.0332051e-01 + 5.3840000e+02 9.3332051e-01 + 5.3880000e+02 1.7133205e+00 + 5.3920000e+02 1.9133205e+00 + 5.3960000e+02 1.4433205e+00 + 5.4000000e+02 8.4332051e-01 + 5.4040000e+02 3.7332051e-01 + 5.4080000e+02 -6.0667949e-01 + 5.4120000e+02 -7.1667949e-01 + 5.4160000e+02 -7.1667949e-01 + 5.4200000e+02 -7.1667949e-01 + 5.4240000e+02 -7.1667949e-01 + 5.4280000e+02 -1.2166795e+00 + 5.4320000e+02 -2.0466795e+00 + 5.4360000e+02 -1.7766795e+00 + 5.4400000e+02 -1.4266795e+00 + 5.4440000e+02 -9.8667949e-01 + 5.4480000e+02 -9.2667949e-01 + 5.4520000e+02 -9.2667949e-01 + 5.4560000e+02 -5.3667949e-01 + 5.4600000e+02 -1.6667949e-01 + 5.4640000e+02 9.1332051e-01 + 5.4680000e+02 1.4533205e+00 + 5.4720000e+02 3.4332051e-01 + 5.4760000e+02 -2.2667949e-01 + 5.4800000e+02 -2.5667949e-01 + 5.4840000e+02 -9.9667949e-01 + 5.4880000e+02 -1.1666795e+00 + 5.4920000e+02 -5.1667949e-01 + 5.4960000e+02 3.3205128e-03 + 5.5000000e+02 3.6332051e-01 + 5.5040000e+02 6.6332051e-01 + 5.5080000e+02 7.5332051e-01 + 5.5120000e+02 7.7332051e-01 + 5.5160000e+02 1.1333205e+00 + 5.5200000e+02 1.5433205e+00 + 5.5240000e+02 1.9333205e+00 + 5.5280000e+02 2.5233205e+00 + 5.5320000e+02 2.6933205e+00 + 5.5360000e+02 2.0533205e+00 + 5.5400000e+02 1.5333205e+00 + 5.5440000e+02 7.5332051e-01 + 5.5480000e+02 4.3332051e-01 + 5.5520000e+02 4.2332051e-01 + 5.5560000e+02 4.2332051e-01 + 5.5600000e+02 -1.6766795e+00 + 5.5640000e+02 -3.2966795e+00 + 5.5680000e+02 -3.3366795e+00 + 5.5720000e+02 -3.3366795e+00 + 5.5760000e+02 -3.3266795e+00 + 5.5800000e+02 -3.2166795e+00 + 5.5840000e+02 -3.0166795e+00 + 5.5880000e+02 -2.7966795e+00 + 5.5920000e+02 -2.1366795e+00 + 5.5960000e+02 -9.9667949e-01 + 5.6000000e+02 -9.6679487e-02 + 5.6040000e+02 9.9332051e-01 + 5.6080000e+02 1.7633205e+00 + 5.6120000e+02 1.3433205e+00 + 5.6160000e+02 1.2833205e+00 + 5.6200000e+02 1.0033205e+00 + 5.6240000e+02 6.6332051e-01 + 5.6280000e+02 7.8332051e-01 + 5.6320000e+02 9.4332051e-01 + 5.6360000e+02 8.4332051e-01 + 5.6400000e+02 1.7332051e-01 + 5.6440000e+02 -6.7667949e-01 + 5.6480000e+02 -7.2667949e-01 + 5.6520000e+02 -7.2667949e-01 + 5.6560000e+02 -7.2667949e-01 + 5.6600000e+02 -7.2667949e-01 + 5.6640000e+02 -1.8366795e+00 + 5.6680000e+02 -1.6166795e+00 + 5.6720000e+02 -1.3466795e+00 + 5.6760000e+02 -1.2366795e+00 + 5.6800000e+02 -8.1667949e-01 + 5.6840000e+02 -3.6667949e-01 + 5.6880000e+02 2.3332051e-01 + 5.6920000e+02 8.8332051e-01 + 5.6960000e+02 1.3333205e+00 + 5.7000000e+02 1.4733205e+00 + 5.7040000e+02 1.8033205e+00 + 5.7080000e+02 2.0433205e+00 + 5.7120000e+02 2.0233205e+00 + 5.7160000e+02 1.8933205e+00 + 5.7200000e+02 1.6533205e+00 + 5.7240000e+02 1.7633205e+00 + 5.7280000e+02 1.5533205e+00 + 5.7320000e+02 1.4533205e+00 + 5.7360000e+02 1.4433205e+00 + 5.7400000e+02 1.4533205e+00 + 5.7440000e+02 1.4433205e+00 + 5.7480000e+02 1.4433205e+00 + 5.7520000e+02 1.4433205e+00 + 5.7560000e+02 1.4433205e+00 + 5.7600000e+02 4.7332051e-01 + 5.7640000e+02 -2.0966795e+00 + 5.7680000e+02 -2.1966795e+00 + 5.7720000e+02 -2.2166795e+00 + 5.7760000e+02 -2.2466795e+00 + 5.7800000e+02 -2.3566795e+00 + 5.7840000e+02 -2.3766795e+00 + 5.7880000e+02 -2.3066795e+00 + 5.7920000e+02 -1.3666795e+00 + 5.7960000e+02 -9.6679487e-02 + 5.8000000e+02 9.9332051e-01 + 5.8040000e+02 1.3733205e+00 + 5.8080000e+02 1.2233205e+00 + 5.8120000e+02 7.8332051e-01 + 5.8160000e+02 2.2332051e-01 + 5.8200000e+02 -1.6679487e-02 + 5.8240000e+02 -2.6667949e-01 + 5.8280000e+02 -5.6667949e-01 + 5.8320000e+02 -8.2667949e-01 + 5.8360000e+02 -1.0766795e+00 + 5.8400000e+02 -1.1166795e+00 + 5.8440000e+02 -1.1166795e+00 + 5.8480000e+02 -1.7266795e+00 + 5.8520000e+02 -1.8966795e+00 + 5.8560000e+02 -1.1066795e+00 + 5.8600000e+02 -4.7667949e-01 + 5.8640000e+02 1.8332051e-01 + 5.8680000e+02 2.7332051e-01 + 5.8720000e+02 4.1332051e-01 + 5.8760000e+02 7.8332051e-01 + 5.8800000e+02 1.0433205e+00 + 5.8840000e+02 1.1033205e+00 + 5.8880000e+02 1.2733205e+00 + 5.8920000e+02 1.6833205e+00 + 5.8960000e+02 1.5733205e+00 + 5.9000000e+02 1.1433205e+00 + 5.9040000e+02 7.9332051e-01 + 5.9080000e+02 7.2332051e-01 + 5.9120000e+02 5.8332051e-01 + 5.9160000e+02 5.7332051e-01 + 5.9200000e+02 5.7332051e-01 + 5.9240000e+02 -7.6667949e-01 + 5.9280000e+02 -1.8466795e+00 + 5.9320000e+02 -2.0266795e+00 + 5.9360000e+02 -2.0166795e+00 + 5.9400000e+02 -1.9466795e+00 + 5.9440000e+02 -1.6966795e+00 + 5.9480000e+02 -1.4166795e+00 + 5.9520000e+02 -1.0166795e+00 + 5.9560000e+02 -7.4667949e-01 + 5.9600000e+02 -3.8667949e-01 + 5.9640000e+02 -2.6667949e-01 + 5.9680000e+02 -2.6679487e-02 + 5.9720000e+02 -2.1667949e-01 + 5.9760000e+02 -7.6679487e-02 + 5.9800000e+02 5.1332051e-01 + 5.9840000e+02 9.3332051e-01 + 5.9880000e+02 2.5332051e-01 + 5.9920000e+02 -1.6667949e-01 + 5.9960000e+02 -1.7667949e-01 + 6.0000000e+02 -1.7667949e-01 + 6.0040000e+02 -1.7667949e-01 + 6.0080000e+02 -1.9667949e-01 + 6.0120000e+02 -3.1266795e+00 + 6.0160000e+02 -3.0466795e+00 + 6.0200000e+02 -2.4166795e+00 + 6.0240000e+02 -2.2266795e+00 + 6.0280000e+02 -1.6766795e+00 + 6.0320000e+02 1.3320513e-02 + 6.0360000e+02 6.9332051e-01 + 6.0400000e+02 1.2133205e+00 + 6.0440000e+02 1.7033205e+00 + 6.0480000e+02 1.6033205e+00 + 6.0520000e+02 1.4933205e+00 + 6.0560000e+02 1.4033205e+00 + 6.0600000e+02 1.3033205e+00 + 6.0640000e+02 1.5933205e+00 + 6.0680000e+02 1.8733205e+00 + 6.0720000e+02 1.9333205e+00 + 6.0760000e+02 1.5533205e+00 + 6.0800000e+02 1.3233205e+00 + 6.0840000e+02 1.3033205e+00 + 6.0880000e+02 1.3033205e+00 + 6.0920000e+02 -8.8667949e-01 + 6.0960000e+02 -1.4466795e+00 + 6.1000000e+02 -1.5066795e+00 + 6.1040000e+02 -1.6266795e+00 + 6.1080000e+02 -1.2166795e+00 + 6.1120000e+02 -5.1667949e-01 + 6.1160000e+02 5.3320513e-02 + 6.1200000e+02 6.1332051e-01 + 6.1240000e+02 2.8332051e-01 + 6.1280000e+02 -3.6667949e-01 + 6.1320000e+02 -8.1667949e-01 + 6.1360000e+02 -1.5866795e+00 + 6.1400000e+02 -2.1766795e+00 + 6.1440000e+02 -1.6666795e+00 + 6.1480000e+02 -5.6667949e-01 + 6.1520000e+02 3.3205128e-03 + 6.1560000e+02 -8.6679487e-02 + 6.1600000e+02 -6.3667949e-01 + 6.1640000e+02 -7.9667949e-01 + 6.1680000e+02 -7.9667949e-01 + 6.1720000e+02 -7.9667949e-01 + 6.1760000e+02 -7.9667949e-01 + 6.1800000e+02 -1.0566795e+00 + 6.1840000e+02 -1.4866795e+00 + 6.1880000e+02 -1.5666795e+00 + 6.1920000e+02 -1.5066795e+00 + 6.1960000e+02 -1.3266795e+00 + 6.2000000e+02 -1.4666795e+00 + 6.2040000e+02 -1.2966795e+00 + 6.2080000e+02 -9.4667949e-01 + 6.2120000e+02 -9.7667949e-01 + 6.2160000e+02 -9.4667949e-01 + 6.2200000e+02 -9.5667949e-01 + 6.2240000e+02 -1.1466795e+00 + 6.2280000e+02 -1.2166795e+00 + 6.2320000e+02 -8.3667949e-01 + 6.2360000e+02 -5.0667949e-01 + 6.2400000e+02 -1.1667949e-01 + 6.2440000e+02 -4.6679487e-02 + 6.2480000e+02 -1.6679487e-02 + 6.2520000e+02 7.3320513e-02 + 6.2560000e+02 1.3332051e-01 + 6.2600000e+02 3.7332051e-01 + 6.2640000e+02 2.5332051e-01 + 6.2680000e+02 3.0332051e-01 + 6.2720000e+02 6.3332051e-01 + 6.2760000e+02 1.2433205e+00 + 6.2800000e+02 2.1433205e+00 + 6.2840000e+02 2.5033205e+00 + 6.2880000e+02 2.2733205e+00 + 6.2920000e+02 1.6733205e+00 + 6.2960000e+02 1.5033205e+00 + 6.3000000e+02 1.5033205e+00 + 6.3040000e+02 1.5033205e+00 + 6.3080000e+02 1.5033205e+00 + 6.3120000e+02 1.5033205e+00 + 6.3160000e+02 1.5033205e+00 + 6.3200000e+02 1.5033205e+00 + 6.3240000e+02 1.5033205e+00 + 6.3280000e+02 1.4933205e+00 + 6.3320000e+02 -1.5667949e-01 + 6.3360000e+02 -8.3667949e-01 + 6.3400000e+02 -1.3266795e+00 + 6.3440000e+02 -1.3866795e+00 + 6.3480000e+02 -1.1466795e+00 + 6.3520000e+02 -6.9667949e-01 + 6.3560000e+02 -8.1667949e-01 + 6.3600000e+02 -1.0566795e+00 + 6.3640000e+02 -9.6667949e-01 + 6.3680000e+02 -8.2667949e-01 + 6.3720000e+02 -1.2766795e+00 + 6.3760000e+02 -1.7066795e+00 + 6.3800000e+02 -1.6466795e+00 + 6.3840000e+02 -1.4666795e+00 + 6.3880000e+02 -1.0866795e+00 + 6.3920000e+02 -1.0766795e+00 + 6.3960000e+02 -1.1966795e+00 + 6.4000000e+02 -1.5166795e+00 + 6.4040000e+02 -1.6966795e+00 + 6.4080000e+02 -1.8666795e+00 + 6.4120000e+02 -1.8666795e+00 + 6.4160000e+02 -1.6666795e+00 + 6.4200000e+02 -1.3166795e+00 + 6.4240000e+02 -1.1066795e+00 + 6.4280000e+02 -7.6667949e-01 + 6.4320000e+02 -4.9667949e-01 + 6.4360000e+02 -1.9667949e-01 + 6.4400000e+02 3.0332051e-01 + 6.4440000e+02 4.5332051e-01 + 6.4480000e+02 4.8332051e-01 + 6.4520000e+02 2.7333205e+00 + 6.4560000e+02 2.7633205e+00 + 6.4600000e+02 2.0133205e+00 + 6.4640000e+02 1.0433205e+00 + 6.4680000e+02 4.0332051e-01 + 6.4720000e+02 -2.2667949e-01 + 6.4760000e+02 -5.4667949e-01 + 6.4800000e+02 -5.5667949e-01 + 6.4840000e+02 -5.5667949e-01 + 6.4880000e+02 -8.9667949e-01 + 6.4920000e+02 -5.8667949e-01 + 6.4960000e+02 -4.2667949e-01 + 6.5000000e+02 -9.6679487e-02 + 6.5040000e+02 3.3320513e-02 + 6.5080000e+02 1.2332051e-01 + 6.5120000e+02 1.5332051e-01 + 6.5160000e+02 9.3320513e-02 + 6.5200000e+02 1.7332051e-01 + 6.5240000e+02 5.7332051e-01 + 6.5280000e+02 4.9332051e-01 + 6.5320000e+02 2.2332051e-01 + 6.5360000e+02 2.3332051e-01 + 6.5400000e+02 2.2332051e-01 + 6.5440000e+02 -1.4667949e-01 + 6.5480000e+02 -3.1667949e-01 + 6.5520000e+02 -1.4466795e+00 + 6.5560000e+02 -2.3666795e+00 + 6.5600000e+02 -3.1266795e+00 + 6.5640000e+02 -3.1466795e+00 + 6.5680000e+02 -2.8166795e+00 + 6.5720000e+02 -2.5666795e+00 + 6.5760000e+02 -2.6066795e+00 + 6.5800000e+02 -2.6266795e+00 + 6.5840000e+02 -2.3466795e+00 + 6.5880000e+02 -2.0366795e+00 + 6.5920000e+02 -1.9466795e+00 + 6.5960000e+02 -6.3667949e-01 + 6.6000000e+02 -4.6667949e-01 + 6.6040000e+02 -4.8667949e-01 + 6.6080000e+02 -6.1667949e-01 + 6.6120000e+02 -6.7667949e-01 + 6.6160000e+02 -3.5667949e-01 + 6.6200000e+02 2.2332051e-01 + 6.6240000e+02 1.0133205e+00 + 6.6280000e+02 1.8733205e+00 + 6.6320000e+02 1.9933205e+00 + 6.6360000e+02 1.6733205e+00 + 6.6400000e+02 1.2733205e+00 + 6.6440000e+02 8.7332051e-01 + 6.6480000e+02 8.4332051e-01 + 6.6520000e+02 8.4332051e-01 + 6.6560000e+02 7.2332051e-01 + 6.6600000e+02 -6.3667949e-01 + 6.6640000e+02 -7.5667949e-01 + 6.6680000e+02 -7.7667949e-01 + 6.6720000e+02 -7.8667949e-01 + 6.6760000e+02 -8.7667949e-01 + 6.6800000e+02 -1.0266795e+00 + 6.6840000e+02 -1.0466795e+00 + 6.6880000e+02 -8.8667949e-01 + 6.6920000e+02 -5.4667949e-01 + 6.6960000e+02 -3.0667949e-01 + 6.7000000e+02 -1.7667949e-01 + 6.7040000e+02 8.3320513e-02 + 6.7080000e+02 3.5332051e-01 + 6.7120000e+02 4.1332051e-01 + 6.7160000e+02 5.9332051e-01 + 6.7200000e+02 8.8332051e-01 + 6.7240000e+02 1.3733205e+00 + 6.7280000e+02 2.0033205e+00 + 6.7320000e+02 1.8633205e+00 + 6.7360000e+02 4.8332051e-01 + 6.7400000e+02 -5.6667949e-01 + 6.7440000e+02 -1.5166795e+00 + 6.7480000e+02 -2.1766795e+00 + 6.7520000e+02 -2.7266795e+00 + 6.7560000e+02 -3.0766795e+00 + 6.7600000e+02 -3.2966795e+00 + 6.7640000e+02 -3.4566795e+00 + 6.7680000e+02 -3.6366795e+00 + 6.7720000e+02 -3.4966795e+00 + 6.7760000e+02 -3.2466795e+00 + 6.7800000e+02 -2.7566795e+00 + 6.7840000e+02 -2.6166795e+00 + 6.7880000e+02 -2.6166795e+00 + 6.7920000e+02 -2.6166795e+00 + 6.7960000e+02 -2.5566795e+00 + 6.8000000e+02 -1.7667949e-01 + 6.8040000e+02 3.0332051e-01 + 6.8080000e+02 3.0332051e-01 + 6.8120000e+02 3.6332051e-01 + 6.8160000e+02 1.7733205e+00 + 6.8200000e+02 2.2333205e+00 + 6.8240000e+02 2.6033205e+00 + 6.8280000e+02 3.2533205e+00 + 6.8320000e+02 3.4733205e+00 + 6.8360000e+02 3.2133205e+00 + 6.8400000e+02 3.1933205e+00 + 6.8440000e+02 3.1933205e+00 + 6.8480000e+02 3.1933205e+00 + 6.8520000e+02 3.1933205e+00 + 6.8560000e+02 3.1933205e+00 + 6.8600000e+02 3.1933205e+00 + 6.8640000e+02 -9.5667949e-01 + 6.8680000e+02 -2.7366795e+00 + 6.8720000e+02 -2.7866795e+00 + 6.8760000e+02 -2.4166795e+00 + 6.8800000e+02 -2.0466795e+00 + 6.8840000e+02 -1.4866795e+00 + 6.8880000e+02 -6.9667949e-01 + 6.8920000e+02 -3.8667949e-01 + 6.8960000e+02 -2.6679487e-02 + 6.9000000e+02 1.6332051e-01 + 6.9040000e+02 1.2133205e+00 + 6.9080000e+02 1.6833205e+00 + 6.9120000e+02 1.2333205e+00 + 6.9160000e+02 7.4332051e-01 + 6.9200000e+02 6.8332051e-01 + 6.9240000e+02 4.3332051e-01 + 6.9280000e+02 1.2332051e-01 + 6.9320000e+02 3.3205128e-03 + 6.9360000e+02 -2.1667949e-01 + 6.9400000e+02 -1.1166795e+00 + 6.9440000e+02 -1.3266795e+00 + 6.9480000e+02 -2.0366795e+00 + 6.9520000e+02 -2.1466795e+00 + 6.9560000e+02 -1.2066795e+00 + 6.9600000e+02 -1.2166795e+00 + 6.9640000e+02 -1.3666795e+00 + 6.9680000e+02 -1.3766795e+00 + 6.9720000e+02 -3.3866795e+00 + 6.9760000e+02 -3.6466795e+00 + 6.9800000e+02 -3.1966795e+00 + 6.9840000e+02 -2.7466795e+00 + 6.9880000e+02 -2.4166795e+00 + 6.9920000e+02 -2.3966795e+00 + 6.9960000e+02 -2.3966795e+00 + 7.0000000e+02 -2.3966795e+00 + 7.0040000e+02 -2.3366795e+00 + 7.0080000e+02 5.9332051e-01 + 7.0120000e+02 8.3332051e-01 + 7.0160000e+02 8.0332051e-01 + 7.0200000e+02 1.0233205e+00 + 7.0240000e+02 1.4233205e+00 + 7.0280000e+02 1.2433205e+00 + 7.0320000e+02 1.2133205e+00 + 7.0360000e+02 1.5233205e+00 + 7.0400000e+02 1.7033205e+00 + 7.0440000e+02 1.6633205e+00 + 7.0480000e+02 1.6433205e+00 + 7.0520000e+02 1.6333205e+00 + 7.0560000e+02 1.3733205e+00 + 7.0600000e+02 4.5332051e-01 + 7.0640000e+02 5.4332051e-01 + 7.0680000e+02 1.2332051e-01 + 7.0720000e+02 -5.8667949e-01 + 7.0760000e+02 -8.7667949e-01 + 7.0800000e+02 -1.3866795e+00 + 7.0840000e+02 -1.7066795e+00 + 7.0880000e+02 -1.3866795e+00 + 7.0920000e+02 -1.0666795e+00 + 7.0960000e+02 -1.0966795e+00 + 7.1000000e+02 -1.0566795e+00 + 7.1040000e+02 -1.1966795e+00 + 7.1080000e+02 -1.4966795e+00 + 7.1120000e+02 -2.0266795e+00 + 7.1160000e+02 -2.4466795e+00 + 7.1200000e+02 -2.4866795e+00 + 7.1240000e+02 -2.3066795e+00 + 7.1280000e+02 -1.9266795e+00 + 7.1320000e+02 -1.4066795e+00 + 7.1360000e+02 -6.5667949e-01 + 7.1400000e+02 -2.7667949e-01 + 7.1440000e+02 -1.7667949e-01 + 7.1480000e+02 -3.4667949e-01 + 7.1520000e+02 -5.1667949e-01 + 7.1560000e+02 -7.4667949e-01 + 7.1600000e+02 -4.0667949e-01 + 7.1640000e+02 5.3320513e-02 + 7.1680000e+02 3.3205128e-03 + 7.1720000e+02 1.0332051e-01 + 7.1760000e+02 9.3320513e-02 + 7.1800000e+02 -4.2667949e-01 + 7.1840000e+02 -1.0866795e+00 + 7.1880000e+02 -1.2866795e+00 + 7.1920000e+02 -2.1466795e+00 + 7.1960000e+02 -2.2066795e+00 + 7.2000000e+02 -1.7066795e+00 + 7.2040000e+02 -1.2766795e+00 + 7.2080000e+02 -1.0766795e+00 + 7.2120000e+02 -1.0866795e+00 + 7.2160000e+02 -1.0666795e+00 + 7.2200000e+02 -6.7667949e-01 + 7.2240000e+02 1.4332051e-01 + 7.2280000e+02 1.0533205e+00 + 7.2320000e+02 1.9333205e+00 + 7.2360000e+02 2.8933205e+00 + 7.2400000e+02 3.6933205e+00 + 7.2440000e+02 4.1533205e+00 + 7.2480000e+02 4.0233205e+00 + 7.2520000e+02 3.7933205e+00 + 7.2560000e+02 3.1733205e+00 + 7.2600000e+02 2.4633205e+00 + 7.2640000e+02 2.1633205e+00 + 7.2680000e+02 1.2133205e+00 + 7.2720000e+02 4.0332051e-01 + 7.2760000e+02 -9.6679487e-02 + 7.2800000e+02 -1.2667949e-01 + 7.2840000e+02 -1.2667949e-01 + 7.2880000e+02 -1.1667949e-01 + 7.2920000e+02 -1.1667949e-01 + 7.2960000e+02 -1.1667949e-01 + 7.3000000e+02 -1.1667949e-01 + 7.3040000e+02 -1.1667949e-01 + 7.3080000e+02 -5.1667949e-01 + 7.3120000e+02 -3.5866795e+00 + 7.3160000e+02 -3.5966795e+00 + 7.3200000e+02 -3.2766795e+00 + 7.3240000e+02 -2.8466795e+00 + 7.3280000e+02 -2.8166795e+00 + 7.3320000e+02 -2.8166795e+00 + 7.3360000e+02 -2.8066795e+00 + 7.3400000e+02 -2.8066795e+00 + 7.3440000e+02 -2.8066795e+00 + 7.3480000e+02 -2.8066795e+00 + 7.3520000e+02 -2.8066795e+00 + 7.3560000e+02 -7.6667949e-01 + 7.3600000e+02 -7.3667949e-01 + 7.3640000e+02 -7.4667949e-01 + 7.3680000e+02 -5.9667949e-01 + 7.3720000e+02 -3.3667949e-01 + 7.3760000e+02 -5.5667949e-01 + 7.3800000e+02 -9.4667949e-01 + 7.3840000e+02 -1.3466795e+00 + 7.3880000e+02 -1.3966795e+00 + 7.3920000e+02 -1.3766795e+00 + 7.3960000e+02 -6.1667949e-01 + 7.4000000e+02 -4.6667949e-01 + 7.4040000e+02 -2.8667949e-01 + 7.4080000e+02 5.3320513e-02 + 7.4120000e+02 -4.6679487e-02 + 7.4160000e+02 -1.0667949e-01 + 7.4200000e+02 3.9332051e-01 + 7.4240000e+02 7.5332051e-01 + 7.4280000e+02 1.3933205e+00 + 7.4320000e+02 1.6333205e+00 + 7.4360000e+02 1.4333205e+00 + 7.4400000e+02 1.2733205e+00 + 7.4440000e+02 8.6332051e-01 + 7.4480000e+02 4.7332051e-01 + 7.4520000e+02 2.3320513e-02 + 7.4560000e+02 -6.6794872e-03 + 7.4600000e+02 -5.6679487e-02 + 7.4640000e+02 4.3332051e-01 + 7.4680000e+02 9.1332051e-01 + 7.4720000e+02 1.2333205e+00 + 7.4760000e+02 1.5433205e+00 + 7.4800000e+02 1.9333205e+00 + 7.4840000e+02 1.3833205e+00 + 7.4880000e+02 9.4332051e-01 + 7.4920000e+02 9.0332051e-01 + 7.4960000e+02 9.0332051e-01 + 7.5000000e+02 9.0332051e-01 + 7.5040000e+02 -4.6679487e-02 + 7.5080000e+02 -4.1566795e+00 + 7.5120000e+02 -4.3266795e+00 + 7.5160000e+02 -4.7066795e+00 + 7.5200000e+02 -5.0166795e+00 + 7.5240000e+02 -4.7266795e+00 + 7.5280000e+02 -4.2166795e+00 + 7.5320000e+02 -3.2966795e+00 + 7.5360000e+02 -2.7966795e+00 + 7.5400000e+02 -2.4466795e+00 + 7.5440000e+02 1.0332051e-01 + 7.5480000e+02 1.0733205e+00 + 7.5520000e+02 1.9633205e+00 + 7.5560000e+02 2.7833205e+00 + 7.5600000e+02 3.2233205e+00 + 7.5640000e+02 3.1233205e+00 + 7.5680000e+02 2.8233205e+00 + 7.5720000e+02 1.9733205e+00 + 7.5760000e+02 1.2233205e+00 + 7.5800000e+02 1.1333205e+00 + 7.5840000e+02 1.1333205e+00 + 7.5880000e+02 1.1333205e+00 + 7.5920000e+02 1.1333205e+00 + 7.5960000e+02 1.1233205e+00 + 7.6000000e+02 1.1333205e+00 + 7.6040000e+02 1.1333205e+00 + 7.6080000e+02 -1.6966795e+00 + 7.6120000e+02 -2.3966795e+00 + 7.6160000e+02 -2.0966795e+00 + 7.6200000e+02 -9.1667949e-01 + 7.6240000e+02 -8.1667949e-01 + 7.6280000e+02 -8.0667949e-01 + 7.6320000e+02 -8.0667949e-01 + 7.6360000e+02 7.8332051e-01 + 7.6400000e+02 1.2133205e+00 + 7.6440000e+02 1.1933205e+00 + 7.6480000e+02 1.1833205e+00 + 7.6520000e+02 1.1533205e+00 + 7.6560000e+02 1.5333205e+00 + 7.6600000e+02 1.6233205e+00 + 7.6640000e+02 1.4233205e+00 + 7.6680000e+02 8.5332051e-01 + 7.6720000e+02 -1.3667949e-01 + 7.6760000e+02 -1.4966795e+00 + 7.6800000e+02 -1.8466795e+00 + 7.6840000e+02 -1.8566795e+00 + 7.6880000e+02 -1.9866795e+00 + 7.6920000e+02 -2.0466795e+00 + 7.6960000e+02 -2.0366795e+00 + 7.7000000e+02 -2.0366795e+00 + 7.7040000e+02 -2.0366795e+00 + 7.7080000e+02 -2.2966795e+00 + 7.7120000e+02 -2.4066795e+00 + 7.7160000e+02 -2.1966795e+00 + 7.7200000e+02 -1.8866795e+00 + 7.7240000e+02 -1.6966795e+00 + 7.7280000e+02 -1.3766795e+00 + 7.7320000e+02 -1.2566795e+00 + 7.7360000e+02 -1.2466795e+00 + 7.7400000e+02 -2.8667949e-01 + 7.7440000e+02 3.0332051e-01 + 7.7480000e+02 1.1833205e+00 + 7.7520000e+02 1.4533205e+00 + 7.7560000e+02 7.3332051e-01 + 7.7600000e+02 6.1332051e-01 + 7.7640000e+02 2.5332051e-01 + 7.7680000e+02 3.3320513e-02 + 7.7720000e+02 2.7332051e-01 + 7.7760000e+02 6.9332051e-01 + 7.7800000e+02 1.0533205e+00 + 7.7840000e+02 3.0533205e+00 + 7.7880000e+02 2.8633205e+00 + 7.7920000e+02 1.0533205e+00 + 7.7960000e+02 -1.0266795e+00 + 7.8000000e+02 -2.4866795e+00 + 7.8040000e+02 -3.3366795e+00 + 7.8080000e+02 -3.2566795e+00 + 7.8120000e+02 -2.3666795e+00 + 7.8160000e+02 -1.5066795e+00 + 7.8200000e+02 -1.2466795e+00 + 7.8240000e+02 -2.7667949e-01 + 7.8280000e+02 1.8332051e-01 + 7.8320000e+02 5.5332051e-01 + 7.8360000e+02 3.0332051e-01 + 7.8400000e+02 4.3320513e-02 + 7.8440000e+02 1.0332051e-01 + 7.8480000e+02 5.3320513e-02 + 7.8520000e+02 -1.6667949e-01 + 7.8560000e+02 -4.1667949e-01 + 7.8600000e+02 -6.2667949e-01 + 7.8640000e+02 -3.5667949e-01 + 7.8680000e+02 -1.0667949e-01 + 7.8720000e+02 2.0332051e-01 + 7.8760000e+02 2.1332051e-01 + 7.8800000e+02 2.1332051e-01 + 7.8840000e+02 2.5332051e-01 + 7.8880000e+02 6.5332051e-01 + 7.8920000e+02 1.7332051e-01 + 7.8960000e+02 -4.4667949e-01 + 7.9000000e+02 -4.9667949e-01 + 7.9040000e+02 -4.9667949e-01 + 7.9080000e+02 -7.2667949e-01 + 7.9120000e+02 -3.4266795e+00 + 7.9160000e+02 -3.3966795e+00 + 7.9200000e+02 -3.0166795e+00 + 7.9240000e+02 -2.9066795e+00 + 7.9280000e+02 -2.8966795e+00 + 7.9320000e+02 -2.8966795e+00 + 7.9360000e+02 -2.8966795e+00 + 7.9400000e+02 -2.8966795e+00 + 7.9440000e+02 -2.8966795e+00 + 7.9480000e+02 -2.8966795e+00 + 7.9520000e+02 -2.8866795e+00 + 7.9560000e+02 1.6332051e-01 + 7.9600000e+02 2.4333205e+00 + 7.9640000e+02 2.5533205e+00 + 7.9680000e+02 2.0833205e+00 + 7.9720000e+02 2.2733205e+00 + 7.9760000e+02 2.2833205e+00 + 7.9800000e+02 2.2833205e+00 + 7.9840000e+02 2.2833205e+00 + 7.9880000e+02 -1.7667949e-01 + 7.9920000e+02 -1.2266795e+00 + 7.9960000e+02 -1.2566795e+00 + 8.0000000e+02 -1.2466795e+00 + 8.0040000e+02 -2.8666795e+00 + 8.0080000e+02 -2.7966795e+00 + 8.0120000e+02 -2.4566795e+00 + 8.0160000e+02 -2.2766795e+00 + 8.0200000e+02 -2.0066795e+00 + 8.0240000e+02 -1.7966795e+00 + 8.0280000e+02 -1.5166795e+00 + 8.0320000e+02 -1.4766795e+00 + 8.0360000e+02 -1.1366795e+00 + 8.0400000e+02 3.7332051e-01 + 8.0440000e+02 9.0332051e-01 + 8.0480000e+02 1.3733205e+00 + 8.0520000e+02 1.5833205e+00 + 8.0560000e+02 1.3033205e+00 + 8.0600000e+02 9.4332051e-01 + 8.0640000e+02 7.1332051e-01 + 8.0680000e+02 6.0332051e-01 + 8.0720000e+02 3.7332051e-01 + 8.0760000e+02 -8.6679487e-02 + 8.0800000e+02 -5.6667949e-01 + 8.0840000e+02 -8.7667949e-01 + 8.0880000e+02 -1.1666795e+00 + 8.0920000e+02 -1.4866795e+00 + 8.0960000e+02 -1.7466795e+00 + 8.1000000e+02 -1.8166795e+00 + 8.1040000e+02 -1.4466795e+00 + 8.1080000e+02 -1.5666795e+00 + 8.1120000e+02 -1.8966795e+00 + 8.1160000e+02 -1.9566795e+00 + 8.1200000e+02 -1.5166795e+00 + 8.1240000e+02 -7.0667949e-01 + 8.1280000e+02 -2.8667949e-01 + 8.1320000e+02 -2.7667949e-01 + 8.1360000e+02 -2.7667949e-01 + 8.1400000e+02 -2.7667949e-01 + 8.1440000e+02 -2.7667949e-01 + 8.1480000e+02 4.3332051e-01 + 8.1520000e+02 6.9332051e-01 + 8.1560000e+02 9.3320513e-02 + 8.1600000e+02 -2.5667949e-01 + 8.1640000e+02 -3.7667949e-01 + 8.1680000e+02 -2.9667949e-01 + 8.1720000e+02 -2.9667949e-01 + 8.1760000e+02 -2.9667949e-01 + 8.1800000e+02 3.9332051e-01 + 8.1840000e+02 2.0332051e-01 + 8.1880000e+02 -5.4667949e-01 + 8.1920000e+02 -7.7667949e-01 + 8.1960000e+02 -7.8667949e-01 + 8.2000000e+02 -7.8667949e-01 + 8.2040000e+02 -7.8667949e-01 + 8.2080000e+02 -7.8667949e-01 + 8.2120000e+02 -2.7966795e+00 + 8.2160000e+02 -3.5866795e+00 + 8.2200000e+02 -3.5166795e+00 + 8.2240000e+02 -3.5066795e+00 + 8.2280000e+02 -3.5066795e+00 + 8.2320000e+02 -3.5066795e+00 + 8.2360000e+02 -3.4966795e+00 + 8.2400000e+02 -2.7666795e+00 + 8.2440000e+02 -2.2667949e-01 + 8.2480000e+02 1.3332051e-01 + 8.2520000e+02 1.4332051e-01 + 8.2560000e+02 4.8332051e-01 + 8.2600000e+02 1.4933205e+00 + 8.2640000e+02 1.3233205e+00 + 8.2680000e+02 8.9332051e-01 + 8.2720000e+02 5.0332051e-01 + 8.2760000e+02 2.1332051e-01 + 8.2800000e+02 -5.5667949e-01 + 8.2840000e+02 -9.9667949e-01 + 8.2880000e+02 -1.3266795e+00 + 8.2920000e+02 -1.5566795e+00 + 8.2960000e+02 -1.6566795e+00 + 8.3000000e+02 -1.7666795e+00 + 8.3040000e+02 -1.8466795e+00 + 8.3080000e+02 -1.6466795e+00 + 8.3120000e+02 -1.0466795e+00 + 8.3160000e+02 -7.9667949e-01 + 8.3200000e+02 -7.7667949e-01 + 8.3240000e+02 -7.7667949e-01 + 8.3280000e+02 -7.7667949e-01 + 8.3320000e+02 -4.9667949e-01 + 8.3360000e+02 5.9332051e-01 + 8.3400000e+02 4.5332051e-01 + 8.3440000e+02 4.1332051e-01 + 8.3480000e+02 5.0332051e-01 + 8.3520000e+02 6.2332051e-01 + 8.3560000e+02 8.0332051e-01 + 8.3600000e+02 7.6332051e-01 + 8.3640000e+02 7.1332051e-01 + 8.3680000e+02 5.4332051e-01 + 8.3720000e+02 -6.6679487e-02 + 8.3760000e+02 -1.4667949e-01 + 8.3800000e+02 -1.5667949e-01 + 8.3840000e+02 -9.9667949e-01 + 8.3880000e+02 -3.0667949e-01 + 8.3920000e+02 1.0733205e+00 + 8.3960000e+02 9.7332051e-01 + 8.4000000e+02 3.0332051e-01 + 8.4040000e+02 -9.2667949e-01 + 8.4080000e+02 -2.3466795e+00 + 8.4120000e+02 -3.4466795e+00 + 8.4160000e+02 -4.1266795e+00 + 8.4200000e+02 -4.3666795e+00 + 8.4240000e+02 -4.2466795e+00 + 8.4280000e+02 -4.0866795e+00 + 8.4320000e+02 -4.0766795e+00 + 8.4360000e+02 -4.0766795e+00 + 8.4400000e+02 -3.9266795e+00 + 8.4440000e+02 -3.8366795e+00 + 8.4480000e+02 -3.8366795e+00 + 8.4520000e+02 -3.8366795e+00 + 8.4560000e+02 -3.8366795e+00 + 8.4600000e+02 -3.8366795e+00 + 8.4640000e+02 -1.1466795e+00 + 8.4680000e+02 9.9332051e-01 + 8.4720000e+02 5.5332051e-01 + 8.4760000e+02 1.0332051e-01 + 8.4800000e+02 3.3320513e-02 + 8.4840000e+02 -8.5667949e-01 + 8.4880000e+02 -2.5566795e+00 + 8.4920000e+02 -2.9966795e+00 + 8.4960000e+02 -3.1566795e+00 + 8.5000000e+02 -3.0166795e+00 + 8.5040000e+02 -2.2366795e+00 + 8.5080000e+02 -1.0566795e+00 + 8.5120000e+02 -8.7667949e-01 + 8.5160000e+02 -8.6667949e-01 + 8.5200000e+02 -3.6679487e-02 + 8.5240000e+02 2.0332051e-01 + 8.5280000e+02 5.8332051e-01 + 8.5320000e+02 9.9332051e-01 + 8.5360000e+02 1.5933205e+00 + 8.5400000e+02 2.2133205e+00 + 8.5440000e+02 2.5533205e+00 + 8.5480000e+02 2.4433205e+00 + 8.5520000e+02 1.9633205e+00 + 8.5560000e+02 1.3533205e+00 + 8.5600000e+02 4.3320513e-02 + 8.5640000e+02 -5.6667949e-01 + 8.5680000e+02 -7.5667949e-01 + 8.5720000e+02 -1.2266795e+00 + 8.5760000e+02 -1.0466795e+00 + 8.5800000e+02 -5.3667949e-01 + 8.5840000e+02 -4.7667949e-01 + 8.5880000e+02 -7.6667949e-01 + 8.5920000e+02 -1.0466795e+00 + 8.5960000e+02 -1.1966795e+00 + 8.6000000e+02 -1.0766795e+00 + 8.6040000e+02 -9.4667949e-01 + 8.6080000e+02 -9.5667949e-01 + 8.6120000e+02 -1.2366795e+00 + 8.6160000e+02 -1.5666795e+00 + 8.6200000e+02 -1.6366795e+00 + 8.6240000e+02 -1.3366795e+00 + 8.6280000e+02 -1.4466795e+00 + 8.6320000e+02 -1.5466795e+00 + 8.6360000e+02 -1.4766795e+00 + 8.6400000e+02 -1.4266795e+00 + 8.6440000e+02 -1.4566795e+00 + 8.6480000e+02 -1.5266795e+00 + 8.6520000e+02 -1.0866795e+00 + 8.6560000e+02 -4.1667949e-01 + 8.6600000e+02 -6.6794872e-03 + 8.6640000e+02 5.3320513e-02 + 8.6680000e+02 4.3320513e-02 + 8.6720000e+02 -4.6679487e-02 + 8.6760000e+02 -8.4667949e-01 + 8.6800000e+02 -1.5866795e+00 + 8.6840000e+02 -1.9666795e+00 + 8.6880000e+02 -2.0466795e+00 + 8.6920000e+02 -1.9066795e+00 + 8.6960000e+02 -1.6766795e+00 + 8.7000000e+02 -1.2766795e+00 + 8.7040000e+02 -7.1667949e-01 + 8.7080000e+02 -2.8667949e-01 + 8.7120000e+02 -5.6679487e-02 + 8.7160000e+02 8.8332051e-01 + 8.7200000e+02 1.3433205e+00 + 8.7240000e+02 1.4033205e+00 + 8.7280000e+02 2.0333205e+00 + 8.7320000e+02 2.5333205e+00 + 8.7360000e+02 1.4533205e+00 + 8.7400000e+02 4.7332051e-01 + 8.7440000e+02 -2.6667949e-01 + 8.7480000e+02 -7.6667949e-01 + 8.7520000e+02 -7.7667949e-01 + 8.7560000e+02 -3.9667949e-01 + 8.7600000e+02 -2.2667949e-01 + 8.7640000e+02 -7.6679487e-02 + 8.7680000e+02 1.3332051e-01 + 8.7720000e+02 2.0332051e-01 + 8.7760000e+02 7.3320513e-02 + 8.7800000e+02 -3.6679487e-02 + 8.7840000e+02 -4.0667949e-01 + 8.7880000e+02 -7.5667949e-01 + 8.7920000e+02 -9.7667949e-01 + 8.7960000e+02 -1.1366795e+00 + 8.8000000e+02 -1.2966795e+00 + 8.8040000e+02 -1.4466795e+00 + 8.8080000e+02 -1.5366795e+00 + 8.8120000e+02 -1.4466795e+00 + 8.8160000e+02 -1.5066795e+00 + 8.8200000e+02 -1.6966795e+00 + 8.8240000e+02 -1.8466795e+00 + 8.8280000e+02 -1.7066795e+00 + 8.8320000e+02 -1.1566795e+00 + 8.8360000e+02 -3.6667949e-01 + 8.8400000e+02 3.7332051e-01 + 8.8440000e+02 8.3332051e-01 + 8.8480000e+02 6.8332051e-01 + 8.8520000e+02 4.6332051e-01 + 8.8560000e+02 3.2332051e-01 + 8.8600000e+02 2.1332051e-01 + 8.8640000e+02 -5.4667949e-01 + 8.8680000e+02 -1.5766795e+00 + 8.8720000e+02 -2.0766795e+00 + 8.8760000e+02 -2.8666795e+00 + 8.8800000e+02 -2.7266795e+00 + 8.8840000e+02 -2.4066795e+00 + 8.8880000e+02 -2.2266795e+00 + 8.8920000e+02 -1.7766795e+00 + 8.8960000e+02 -1.3266795e+00 + 8.9000000e+02 -6.9667949e-01 + 8.9040000e+02 -1.6667949e-01 + 8.9080000e+02 -1.6679487e-02 + 8.9120000e+02 1.8332051e-01 + 8.9160000e+02 6.3332051e-01 + 8.9200000e+02 1.2833205e+00 + 8.9240000e+02 2.2933205e+00 + 8.9280000e+02 3.0533205e+00 + 8.9320000e+02 3.5333205e+00 + 8.9360000e+02 3.8433205e+00 + 8.9400000e+02 4.1133205e+00 + 8.9440000e+02 3.8433205e+00 + 8.9480000e+02 3.1533205e+00 + 8.9520000e+02 2.9633205e+00 + 8.9560000e+02 2.9433205e+00 + 8.9600000e+02 2.9533205e+00 + 8.9640000e+02 2.5533205e+00 + 8.9680000e+02 -1.2966795e+00 + 8.9720000e+02 -2.1966795e+00 + 8.9760000e+02 -1.8266795e+00 + 8.9800000e+02 -1.5366795e+00 + 8.9840000e+02 -1.2866795e+00 + 8.9880000e+02 -1.4966795e+00 + 8.9920000e+02 -1.8566795e+00 + 8.9960000e+02 -2.3166795e+00 + 9.0000000e+02 -2.6266795e+00 + 9.0040000e+02 -2.3766795e+00 + 9.0080000e+02 -1.5866795e+00 + 9.0120000e+02 -9.6667949e-01 + 9.0160000e+02 -4.9667949e-01 + 9.0200000e+02 5.7332051e-01 + 9.0240000e+02 9.1332051e-01 + 9.0280000e+02 8.7332051e-01 + 9.0320000e+02 5.3332051e-01 + 9.0360000e+02 3.3205128e-03 + 9.0400000e+02 -5.5667949e-01 + 9.0440000e+02 -9.4667949e-01 + 9.0480000e+02 -8.6667949e-01 + 9.0520000e+02 -5.6667949e-01 + 9.0560000e+02 2.3320513e-02 + 9.0600000e+02 1.9332051e-01 + 9.0640000e+02 -2.2667949e-01 + 9.0680000e+02 -6.3667949e-01 + 9.0720000e+02 -1.0866795e+00 + 9.0760000e+02 -1.1966795e+00 + 9.0800000e+02 -1.1966795e+00 + 9.0840000e+02 -1.3466795e+00 + 9.0880000e+02 -1.5566795e+00 + 9.0920000e+02 -1.5666795e+00 + 9.0960000e+02 -1.1066795e+00 + 9.1000000e+02 -6.1667949e-01 + 9.1040000e+02 -4.8667949e-01 + 9.1080000e+02 -1.1667949e-01 + 9.1120000e+02 4.2332051e-01 + 9.1160000e+02 6.1332051e-01 + 9.1200000e+02 8.7332051e-01 + 9.1240000e+02 1.2933205e+00 + 9.1280000e+02 2.1133205e+00 + 9.1320000e+02 1.9633205e+00 + 9.1360000e+02 1.4533205e+00 + 9.1400000e+02 1.0833205e+00 + 9.1440000e+02 9.0332051e-01 + 9.1480000e+02 7.3332051e-01 + 9.1520000e+02 4.3332051e-01 + 9.1560000e+02 1.9332051e-01 + 9.1600000e+02 1.8332051e-01 + 9.1640000e+02 1.8332051e-01 + 9.1680000e+02 1.8332051e-01 + 9.1720000e+02 -4.5667949e-01 + 9.1760000e+02 -1.4066795e+00 + 9.1800000e+02 -3.0466795e+00 + 9.1840000e+02 -2.8666795e+00 + 9.1880000e+02 -2.9166795e+00 + 9.1920000e+02 -2.7566795e+00 + 9.1960000e+02 -2.8566795e+00 + 9.2000000e+02 -2.7866795e+00 + 9.2040000e+02 -2.3666795e+00 + 9.2080000e+02 -1.7966795e+00 + 9.2120000e+02 -1.0466795e+00 + 9.2160000e+02 -3.5667949e-01 + 9.2200000e+02 -1.9667949e-01 + 9.2240000e+02 -1.9667949e-01 + 9.2280000e+02 3.4332051e-01 + 9.2320000e+02 1.1233205e+00 + 9.2360000e+02 1.0133205e+00 + 9.2400000e+02 8.4332051e-01 + 9.2440000e+02 5.3332051e-01 + 9.2480000e+02 3.2332051e-01 + 9.2520000e+02 5.2332051e-01 + 9.2560000e+02 2.3332051e-01 + 9.2600000e+02 -4.5667949e-01 + 9.2640000e+02 -5.3667949e-01 + 9.2680000e+02 -2.0966795e+00 + 9.2720000e+02 -2.0866795e+00 + 9.2760000e+02 -1.4166795e+00 + 9.2800000e+02 -1.2266795e+00 + 9.2840000e+02 -1.2166795e+00 + 9.2880000e+02 -1.2166795e+00 + 9.2920000e+02 -1.2166795e+00 + 9.2960000e+02 1.1533205e+00 + 9.3000000e+02 1.6533205e+00 + 9.3040000e+02 1.4733205e+00 + 9.3080000e+02 1.0033205e+00 + 9.3120000e+02 6.5332051e-01 + 9.3160000e+02 6.2332051e-01 + 9.3200000e+02 8.3332051e-01 + 9.3240000e+02 1.0833205e+00 + 9.3280000e+02 1.1433205e+00 + 9.3320000e+02 9.7332051e-01 + 9.3360000e+02 4.2332051e-01 + 9.3400000e+02 -1.9667949e-01 + 9.3440000e+02 -1.0866795e+00 + 9.3480000e+02 -1.6566795e+00 + 9.3520000e+02 -2.1666795e+00 + 9.3560000e+02 -2.4966795e+00 + 9.3600000e+02 -2.9066795e+00 + 9.3640000e+02 -3.1666795e+00 + 9.3680000e+02 -3.3766795e+00 + 9.3720000e+02 -3.3266795e+00 + 9.3760000e+02 -2.8666795e+00 + 9.3800000e+02 -2.2166795e+00 + 9.3840000e+02 -1.2766795e+00 + 9.3880000e+02 -6.3667949e-01 + 9.3920000e+02 -6.5667949e-01 + 9.3960000e+02 -7.3667949e-01 + 9.4000000e+02 -9.9667949e-01 + 9.4040000e+02 -1.3466795e+00 + 9.4080000e+02 -1.7466795e+00 + 9.4120000e+02 -1.8366795e+00 + 9.4160000e+02 -1.2266795e+00 + 9.4200000e+02 -5.0667949e-01 + 9.4240000e+02 -3.6667949e-01 + 9.4280000e+02 -3.6667949e-01 + 9.4320000e+02 -9.6679487e-02 + 9.4360000e+02 1.4533205e+00 + 9.4400000e+02 1.0133205e+00 + 9.4440000e+02 4.6332051e-01 + 9.4480000e+02 -2.8667949e-01 + 9.4520000e+02 -9.0667949e-01 + 9.4560000e+02 -1.3066795e+00 + 9.4600000e+02 -1.1566795e+00 + 9.4640000e+02 -5.6667949e-01 + 9.4680000e+02 2.8332051e-01 + 9.4720000e+02 9.4332051e-01 + 9.4760000e+02 2.0533205e+00 + 9.4800000e+02 2.2833205e+00 + 9.4840000e+02 3.2533205e+00 + 9.4880000e+02 2.9133205e+00 + 9.4920000e+02 2.3433205e+00 + 9.4960000e+02 1.7033205e+00 + 9.5000000e+02 1.3533205e+00 + 9.5040000e+02 1.3033205e+00 + 9.5080000e+02 7.5332051e-01 + 9.5120000e+02 -2.9667949e-01 + 9.5160000e+02 -3.2667949e-01 + 9.5200000e+02 -3.2667949e-01 + 9.5240000e+02 -3.6667949e-01 + 9.5280000e+02 -1.5366795e+00 + 9.5320000e+02 -1.2866795e+00 + 9.5360000e+02 -7.4667949e-01 + 9.5400000e+02 1.9332051e-01 + 9.5440000e+02 5.3320513e-02 + 9.5480000e+02 -1.1666795e+00 + 9.5520000e+02 -1.5966795e+00 + 9.5560000e+02 -3.4466795e+00 + 9.5600000e+02 -3.7766795e+00 + 9.5640000e+02 -3.8366795e+00 + 9.5680000e+02 -3.8766795e+00 + 9.5720000e+02 -3.4466795e+00 + 9.5760000e+02 -3.0466795e+00 + 9.5800000e+02 -3.0166795e+00 + 9.5840000e+02 -2.7366795e+00 + 9.5880000e+02 -1.9667949e-01 + 9.5920000e+02 -2.6667949e-01 + 9.5960000e+02 -5.9667949e-01 + 9.6000000e+02 -7.3667949e-01 + 9.6040000e+02 -8.6667949e-01 + 9.6080000e+02 -1.1266795e+00 + 9.6120000e+02 -1.1266795e+00 + 9.6160000e+02 -1.0366795e+00 + 9.6200000e+02 -9.5667949e-01 + 9.6240000e+02 -7.8667949e-01 + 9.6280000e+02 -3.6667949e-01 + 9.6320000e+02 1.2332051e-01 + 9.6360000e+02 7.1332051e-01 + 9.6400000e+02 1.4233205e+00 + 9.6440000e+02 1.9333205e+00 + 9.6480000e+02 2.2033205e+00 + 9.6520000e+02 2.3433205e+00 + 9.6560000e+02 2.2933205e+00 + 9.6600000e+02 1.8733205e+00 + 9.6640000e+02 2.0133205e+00 + 9.6680000e+02 1.9733205e+00 + 9.6720000e+02 1.8533205e+00 + 9.6760000e+02 1.8433205e+00 + 9.6800000e+02 1.8433205e+00 + 9.6840000e+02 1.3733205e+00 + 9.6880000e+02 9.5332051e-01 + 9.6920000e+02 6.8332051e-01 + 9.6960000e+02 5.1332051e-01 + 9.7000000e+02 3.3332051e-01 + 9.7040000e+02 2.4332051e-01 + 9.7080000e+02 -5.9667949e-01 + 9.7120000e+02 -1.4266795e+00 + 9.7160000e+02 -1.4766795e+00 + 9.7200000e+02 -3.6966795e+00 + 9.7240000e+02 -4.2366795e+00 + 9.7280000e+02 -3.7666795e+00 + 9.7320000e+02 -2.7966795e+00 + 9.7360000e+02 -2.5566795e+00 + 9.7400000e+02 -2.5566795e+00 + 9.7440000e+02 -2.5566795e+00 + 9.7480000e+02 -2.5566795e+00 + 9.7520000e+02 -7.3667949e-01 + 9.7560000e+02 -5.0667949e-01 + 9.7600000e+02 -1.2566795e+00 + 9.7640000e+02 -1.3366795e+00 + 9.7680000e+02 -1.3366795e+00 + 9.7720000e+02 -2.7066795e+00 + 9.7760000e+02 -2.3766795e+00 + 9.7800000e+02 -1.9466795e+00 + 9.7840000e+02 -1.9166795e+00 + 9.7880000e+02 -1.9166795e+00 + 9.7920000e+02 -1.9166795e+00 + 9.7960000e+02 -1.8266795e+00 + 9.8000000e+02 -1.5266795e+00 + 9.8040000e+02 -1.8266795e+00 + 9.8080000e+02 -1.8066795e+00 + 9.8120000e+02 -1.7666795e+00 + 9.8160000e+02 -1.8266795e+00 + 9.8200000e+02 -1.7266795e+00 + 9.8240000e+02 -1.4966795e+00 + 9.8280000e+02 -1.0666795e+00 + 9.8320000e+02 -1.5667949e-01 + 9.8360000e+02 6.8332051e-01 + 9.8400000e+02 1.5733205e+00 + 9.8440000e+02 2.4833205e+00 + 9.8480000e+02 3.4133205e+00 + 9.8520000e+02 3.6433205e+00 + 9.8560000e+02 4.2833205e+00 + 9.8600000e+02 4.8033205e+00 + 9.8640000e+02 4.8233205e+00 + 9.8680000e+02 4.8033205e+00 + 9.8720000e+02 4.8033205e+00 + 9.8760000e+02 4.8033205e+00 + 9.8800000e+02 4.8033205e+00 + 9.8840000e+02 4.8033205e+00 + 9.8880000e+02 3.8933205e+00 + 9.8920000e+02 -1.7667949e-01 + 9.8960000e+02 -5.2667949e-01 + 9.9000000e+02 -4.4667949e-01 + 9.9040000e+02 -5.5667949e-01 + 9.9080000e+02 -7.2667949e-01 + 9.9120000e+02 -7.2667949e-01 + 9.9160000e+02 -7.2667949e-01 + 9.9200000e+02 -7.2667949e-01 + 9.9240000e+02 -3.8766795e+00 + 9.9280000e+02 -4.4666795e+00 + 9.9320000e+02 -4.5466795e+00 + 9.9360000e+02 -4.4166795e+00 + 9.9400000e+02 -4.2366795e+00 + 9.9440000e+02 -4.2266795e+00 + 9.9480000e+02 -3.8166795e+00 + 9.9520000e+02 -1.7966795e+00 + 9.9560000e+02 -1.6966795e+00 + 9.9600000e+02 -1.6966795e+00 + 9.9640000e+02 2.0033205e+00 + 9.9680000e+02 2.2933205e+00 + 9.9720000e+02 1.8933205e+00 + 9.9760000e+02 1.1133205e+00 + 9.9800000e+02 6.0332051e-01 + 9.9840000e+02 5.2332051e-01 + 9.9880000e+02 2.4332051e-01 + 9.9920000e+02 -4.0667949e-01 + 9.9960000e+02 -4.5667949e-01 + 1.0000000e+03 -4.6667949e-01 + 1.0004000e+03 -4.6667949e-01 + 1.0008000e+03 -2.4466795e+00 + 1.0012000e+03 -2.8466795e+00 + 1.0016000e+03 -2.7666795e+00 + 1.0020000e+03 -2.2266795e+00 + 1.0024000e+03 -1.6766795e+00 + 1.0028000e+03 -1.3666795e+00 + 1.0032000e+03 -1.1766795e+00 + 1.0036000e+03 -3.2667949e-01 + 1.0040000e+03 -2.2667949e-01 + 1.0044000e+03 2.4332051e-01 + 1.0048000e+03 9.0332051e-01 + 1.0052000e+03 1.3033205e+00 + 1.0056000e+03 2.0433205e+00 + 1.0060000e+03 2.4333205e+00 + 1.0064000e+03 2.6833205e+00 + 1.0068000e+03 2.4233205e+00 + 1.0072000e+03 2.4133205e+00 + 1.0076000e+03 2.4333205e+00 + 1.0080000e+03 1.7733205e+00 + 1.0084000e+03 1.7233205e+00 + 1.0088000e+03 1.4733205e+00 + 1.0092000e+03 1.0533205e+00 + 1.0096000e+03 8.3332051e-01 + 1.0100000e+03 6.6332051e-01 + 1.0104000e+03 6.5332051e-01 + 1.0108000e+03 6.5332051e-01 + 1.0112000e+03 6.5332051e-01 + 1.0116000e+03 6.5332051e-01 + 1.0120000e+03 6.5332051e-01 + 1.0124000e+03 6.4332051e-01 + 1.0128000e+03 -4.2366795e+00 + 1.0132000e+03 -4.8566795e+00 + 1.0136000e+03 -4.4666795e+00 + 1.0140000e+03 -3.8966795e+00 + 1.0144000e+03 -3.7666795e+00 + 1.0148000e+03 -1.7766795e+00 + 1.0152000e+03 -7.3667949e-01 + 1.0156000e+03 7.3320513e-02 + 1.0160000e+03 7.8332051e-01 + 1.0164000e+03 1.4033205e+00 + 1.0168000e+03 1.5833205e+00 + 1.0172000e+03 1.1633205e+00 + 1.0176000e+03 7.4332051e-01 + 1.0180000e+03 9.7332051e-01 + 1.0184000e+03 8.3332051e-01 + 1.0188000e+03 7.8332051e-01 + 1.0192000e+03 8.2332051e-01 + 1.0196000e+03 6.5332051e-01 + 1.0200000e+03 2.2332051e-01 + 1.0204000e+03 -1.7667949e-01 + 1.0208000e+03 -5.1667949e-01 + 1.0212000e+03 -1.0066795e+00 + 1.0216000e+03 -1.3966795e+00 + 1.0220000e+03 -1.4466795e+00 + 1.0224000e+03 -2.3066795e+00 + 1.0228000e+03 -2.4866795e+00 + 1.0232000e+03 -2.4066795e+00 + 1.0236000e+03 -2.1466795e+00 + 1.0240000e+03 -1.3866795e+00 + 1.0244000e+03 -1.0066795e+00 + 1.0248000e+03 -2.1667949e-01 + 1.0252000e+03 3.9332051e-01 + 1.0256000e+03 9.0332051e-01 + 1.0260000e+03 1.0433205e+00 + 1.0264000e+03 1.8433205e+00 + 1.0268000e+03 1.7533205e+00 + 1.0272000e+03 1.3633205e+00 + 1.0276000e+03 5.3332051e-01 + 1.0280000e+03 5.3320513e-02 + 1.0284000e+03 -2.6667949e-01 + 1.0288000e+03 -4.8667949e-01 + 1.0292000e+03 -6.0667949e-01 + 1.0296000e+03 -6.2667949e-01 + 1.0300000e+03 -2.3667949e-01 + 1.0304000e+03 2.0332051e-01 + 1.0308000e+03 5.3332051e-01 + 1.0312000e+03 9.3332051e-01 + 1.0316000e+03 5.2332051e-01 + 1.0320000e+03 4.3320513e-02 + 1.0324000e+03 3.3205128e-03 + 1.0328000e+03 3.3205128e-03 + 1.0332000e+03 3.3205128e-03 + 1.0336000e+03 -7.5667949e-01 + 1.0340000e+03 -1.6766795e+00 + 1.0344000e+03 -1.9566795e+00 + 1.0348000e+03 -2.0866795e+00 + 1.0352000e+03 -2.1766795e+00 + 1.0356000e+03 -2.2466795e+00 + 1.0360000e+03 -2.0666795e+00 + 1.0364000e+03 -1.8566795e+00 + 1.0368000e+03 -1.2666795e+00 + 1.0372000e+03 -5.5667949e-01 + 1.0376000e+03 -2.3667949e-01 + 1.0380000e+03 -1.7667949e-01 + 1.0384000e+03 5.8332051e-01 + 1.0388000e+03 1.3233205e+00 + 1.0392000e+03 1.5933205e+00 + 1.0396000e+03 1.8933205e+00 + 1.0400000e+03 1.9633205e+00 + 1.0404000e+03 1.9833205e+00 + 1.0408000e+03 1.6033205e+00 + 1.0412000e+03 1.1933205e+00 + 1.0416000e+03 1.2332051e-01 + 1.0420000e+03 -5.1667949e-01 + 1.0424000e+03 -1.6366795e+00 + 1.0428000e+03 -1.8766795e+00 + 1.0432000e+03 -2.1266795e+00 + 1.0436000e+03 -2.2166795e+00 + 1.0440000e+03 -2.2366795e+00 + 1.0444000e+03 -2.2166795e+00 + 1.0448000e+03 -2.3066795e+00 + 1.0452000e+03 -2.4566795e+00 + 1.0456000e+03 -2.3366795e+00 + 1.0460000e+03 -2.1266795e+00 + 1.0464000e+03 -1.8966795e+00 + 1.0468000e+03 -1.6966795e+00 + 1.0472000e+03 -1.3866795e+00 + 1.0476000e+03 -1.0966795e+00 + 1.0480000e+03 -5.7667949e-01 + 1.0484000e+03 -1.6667949e-01 + 1.0488000e+03 3.6332051e-01 + 1.0492000e+03 7.0332051e-01 + 1.0496000e+03 1.7333205e+00 + 1.0500000e+03 2.1133205e+00 + 1.0504000e+03 2.7933205e+00 + 1.0508000e+03 2.9933205e+00 + 1.0512000e+03 2.9633205e+00 + 1.0516000e+03 2.1133205e+00 + 1.0520000e+03 1.0033205e+00 + 1.0524000e+03 7.7332051e-01 + 1.0528000e+03 -4.4667949e-01 + 1.0532000e+03 -9.9667949e-01 + 1.0536000e+03 -1.2566795e+00 + 1.0540000e+03 -1.2766795e+00 + 1.0544000e+03 -1.7066795e+00 + 1.0548000e+03 -2.0366795e+00 + 1.0552000e+03 -2.1966795e+00 + 1.0556000e+03 -2.2966795e+00 + 1.0560000e+03 -2.3566795e+00 + 1.0564000e+03 -2.0566795e+00 + 1.0568000e+03 -1.5866795e+00 + 1.0572000e+03 -1.1466795e+00 + 1.0576000e+03 -9.4667949e-01 + 1.0580000e+03 -7.0667949e-01 + 1.0584000e+03 -6.7667949e-01 + 1.0588000e+03 -7.6667949e-01 + 1.0592000e+03 -8.4667949e-01 + 1.0596000e+03 -6.9667949e-01 + 1.0600000e+03 -2.7667949e-01 + 1.0604000e+03 1.6332051e-01 + 1.0608000e+03 -1.2667949e-01 + 1.0612000e+03 -3.6679487e-02 + 1.0616000e+03 3.4332051e-01 + 1.0620000e+03 7.3332051e-01 + 1.0624000e+03 6.7332051e-01 + 1.0628000e+03 1.9332051e-01 + 1.0632000e+03 -3.4667949e-01 + 1.0636000e+03 -1.0366795e+00 + 1.0640000e+03 -1.4466795e+00 + 1.0644000e+03 -1.8766795e+00 + 1.0648000e+03 -2.1966795e+00 + 1.0652000e+03 -2.3366795e+00 + 1.0656000e+03 -2.1566795e+00 + 1.0660000e+03 -1.7766795e+00 + 1.0664000e+03 -1.4966795e+00 + 1.0668000e+03 -1.2466795e+00 + 1.0672000e+03 -3.7667949e-01 + 1.0676000e+03 -4.6679487e-02 + 1.0680000e+03 -6.6679487e-02 + 1.0684000e+03 -7.6679487e-02 + 1.0688000e+03 1.4332051e-01 + 1.0692000e+03 3.6332051e-01 + 1.0696000e+03 9.0332051e-01 + 1.0700000e+03 1.1233205e+00 + 1.0704000e+03 1.1033205e+00 + 1.0708000e+03 6.3332051e-01 + 1.0712000e+03 4.8332051e-01 + 1.0716000e+03 4.8332051e-01 + 1.0720000e+03 6.6332051e-01 + 1.0724000e+03 6.2332051e-01 + 1.0728000e+03 2.1332051e-01 + 1.0732000e+03 1.2332051e-01 + 1.0736000e+03 -5.8667949e-01 + 1.0740000e+03 -8.1667949e-01 + 1.0744000e+03 -8.2667949e-01 + 1.0748000e+03 -8.3667949e-01 + 1.0752000e+03 -1.8166795e+00 + 1.0756000e+03 -1.5266795e+00 + 1.0760000e+03 -1.2166795e+00 + 1.0764000e+03 -8.1667949e-01 + 1.0768000e+03 -4.4667949e-01 + 1.0772000e+03 -4.7667949e-01 + 1.0776000e+03 -5.8667949e-01 + 1.0780000e+03 -5.9667949e-01 + 1.0784000e+03 -4.6667949e-01 + 1.0788000e+03 -1.3667949e-01 + 1.0792000e+03 -1.0667949e-01 + 1.0796000e+03 -1.9667949e-01 + 1.0800000e+03 -2.8667949e-01 + 1.0804000e+03 -3.8667949e-01 + 1.0808000e+03 -6.9667949e-01 + 1.0812000e+03 -7.3667949e-01 + 1.0816000e+03 -7.4667949e-01 + 1.0820000e+03 -8.0667949e-01 + 1.0824000e+03 -2.0366795e+00 + 1.0828000e+03 -1.6166795e+00 + 1.0832000e+03 -9.1667949e-01 + 1.0836000e+03 -2.9667949e-01 + 1.0840000e+03 7.7332051e-01 + 1.0844000e+03 4.8332051e-01 + 1.0848000e+03 1.3320513e-02 + 1.0852000e+03 -1.6679487e-02 + 1.0856000e+03 -1.6679487e-02 + 1.0860000e+03 -1.6679487e-02 + 1.0864000e+03 -2.6679487e-02 + 1.0868000e+03 -9.6679487e-02 + 1.0872000e+03 -4.8667949e-01 + 1.0876000e+03 -1.6667949e-01 + 1.0880000e+03 -2.6679487e-02 + 1.0884000e+03 1.4332051e-01 + 1.0888000e+03 3.4332051e-01 + 1.0892000e+03 1.9332051e-01 + 1.0896000e+03 2.0332051e-01 + 1.0900000e+03 5.1332051e-01 + 1.0904000e+03 7.5332051e-01 + 1.0908000e+03 8.3332051e-01 + 1.0912000e+03 1.7332051e-01 + 1.0916000e+03 -3.8667949e-01 + 1.0920000e+03 -8.5667949e-01 + 1.0924000e+03 -1.1566795e+00 + 1.0928000e+03 -1.0666795e+00 + 1.0932000e+03 -7.7667949e-01 + 1.0936000e+03 -5.4667949e-01 + 1.0940000e+03 -6.1667949e-01 + 1.0944000e+03 -4.4667949e-01 + 1.0948000e+03 -8.6679487e-02 + 1.0952000e+03 -2.0667949e-01 + 1.0956000e+03 -5.4667949e-01 + 1.0960000e+03 -6.7667949e-01 + 1.0964000e+03 -7.5667949e-01 + 1.0968000e+03 -5.8667949e-01 + 1.0972000e+03 -5.9667949e-01 + 1.0976000e+03 -8.3667949e-01 + 1.0980000e+03 -1.2966795e+00 + 1.0984000e+03 -1.6766795e+00 + 1.0988000e+03 -1.8766795e+00 + 1.0992000e+03 -1.6266795e+00 + 1.0996000e+03 -1.0266795e+00 + 1.1000000e+03 -6.0667949e-01 + 1.1004000e+03 -3.7667949e-01 + 1.1008000e+03 -4.4667949e-01 + 1.1012000e+03 -4.5667949e-01 + 1.1016000e+03 -3.4667949e-01 + 1.1020000e+03 -1.1667949e-01 + 1.1024000e+03 3.3320513e-02 + 1.1028000e+03 9.3320513e-02 + 1.1032000e+03 1.6332051e-01 + 1.1036000e+03 1.6332051e-01 + 1.1040000e+03 -1.4667949e-01 + 1.1044000e+03 -4.5667949e-01 + 1.1048000e+03 -5.4667949e-01 + 1.1052000e+03 -5.8667949e-01 + 1.1056000e+03 -9.4667949e-01 + 1.1060000e+03 -1.0566795e+00 + 1.1064000e+03 -9.9667949e-01 + 1.1068000e+03 -1.1966795e+00 + 1.1072000e+03 -1.3866795e+00 + 1.1076000e+03 -1.5766795e+00 + 1.1080000e+03 -1.7166795e+00 + 1.1084000e+03 -1.5966795e+00 + 1.1088000e+03 -1.0466795e+00 + 1.1092000e+03 -3.7667949e-01 + 1.1096000e+03 -2.0667949e-01 + 1.1100000e+03 -1.2667949e-01 + 1.1104000e+03 2.1332051e-01 + 1.1108000e+03 4.8332051e-01 + 1.1112000e+03 1.0533205e+00 + 1.1116000e+03 1.2933205e+00 + 1.1120000e+03 1.6133205e+00 + 1.1124000e+03 2.0733205e+00 + 1.1128000e+03 1.1733205e+00 + 1.1132000e+03 1.0332051e-01 + 1.1136000e+03 -6.2667949e-01 + 1.1140000e+03 -6.7667949e-01 + 1.1144000e+03 -1.2866795e+00 + 1.1148000e+03 -1.4566795e+00 + 1.1152000e+03 -1.0166795e+00 + 1.1156000e+03 -6.9667949e-01 + 1.1160000e+03 -6.5667949e-01 + 1.1164000e+03 -8.9667949e-01 + 1.1168000e+03 -1.1166795e+00 + 1.1172000e+03 -9.6667949e-01 + 1.1176000e+03 -6.5667949e-01 + 1.1180000e+03 -4.7667949e-01 + 1.1184000e+03 -6.4667949e-01 + 1.1188000e+03 -7.5667949e-01 + 1.1192000e+03 -8.7667949e-01 + 1.1196000e+03 -8.5667949e-01 + 1.1200000e+03 -5.4667949e-01 + 1.1204000e+03 -7.0667949e-01 + 1.1208000e+03 -5.9667949e-01 + 1.1212000e+03 -2.8667949e-01 + 1.1216000e+03 -3.9667949e-01 + 1.1220000e+03 -5.7667949e-01 + 1.1224000e+03 -5.9667949e-01 + 1.1228000e+03 -6.0667949e-01 + 1.1232000e+03 -7.3667949e-01 + 1.1236000e+03 -5.7667949e-01 + 1.1240000e+03 -3.0667949e-01 + 1.1244000e+03 2.4332051e-01 + 1.1248000e+03 1.5332051e-01 + 1.1252000e+03 -1.2667949e-01 + 1.1256000e+03 -7.0667949e-01 + 1.1260000e+03 -8.0667949e-01 + 1.1264000e+03 -8.0667949e-01 + 1.1268000e+03 -8.1667949e-01 + 1.1272000e+03 -1.5966795e+00 + 1.1276000e+03 -2.1166795e+00 + 1.1280000e+03 -2.0966795e+00 + 1.1284000e+03 -1.6466795e+00 + 1.1288000e+03 -1.1766795e+00 + 1.1292000e+03 -8.0667949e-01 + 1.1296000e+03 -3.3667949e-01 + 1.1300000e+03 -2.8667949e-01 + 1.1304000e+03 -6.6794872e-03 + 1.1308000e+03 7.2332051e-01 + 1.1312000e+03 1.1233205e+00 + 1.1316000e+03 1.4633205e+00 + 1.1320000e+03 1.6833205e+00 + 1.1324000e+03 1.9633205e+00 + 1.1328000e+03 2.1133205e+00 + 1.1332000e+03 1.6433205e+00 + 1.1336000e+03 1.6033205e+00 + 1.1340000e+03 1.6033205e+00 + 1.1344000e+03 1.6033205e+00 + 1.1348000e+03 -3.5667949e-01 + 1.1352000e+03 -1.3866795e+00 + 1.1356000e+03 -1.2066795e+00 + 1.1360000e+03 -1.1666795e+00 + 1.1364000e+03 -8.1667949e-01 + 1.1368000e+03 -3.8667949e-01 + 1.1372000e+03 -3.9667949e-01 + 1.1376000e+03 -6.1667949e-01 + 1.1380000e+03 -7.8667949e-01 + 1.1384000e+03 -8.4667949e-01 + 1.1388000e+03 -1.0066795e+00 + 1.1392000e+03 -1.3966795e+00 + 1.1396000e+03 -1.8066795e+00 + 1.1400000e+03 -2.0766795e+00 + 1.1404000e+03 -2.0766795e+00 + 1.1408000e+03 -1.8166795e+00 + 1.1412000e+03 -1.4666795e+00 + 1.1416000e+03 -1.1766795e+00 + 1.1420000e+03 -7.2667949e-01 + 1.1424000e+03 -5.4667949e-01 + 1.1428000e+03 6.4332051e-01 + 1.1432000e+03 9.3332051e-01 + 1.1436000e+03 1.4133205e+00 + 1.1440000e+03 6.0332051e-01 + 1.1444000e+03 3.6332051e-01 + 1.1448000e+03 1.7332051e-01 + 1.1452000e+03 3.2332051e-01 + 1.1456000e+03 4.3320513e-02 + 1.1460000e+03 -8.6667949e-01 + 1.1464000e+03 -1.1666795e+00 + 1.1468000e+03 -1.2766795e+00 + 1.1472000e+03 -1.5666795e+00 + 1.1476000e+03 -1.5066795e+00 + 1.1480000e+03 -1.3666795e+00 + 1.1484000e+03 -1.2466795e+00 + 1.1488000e+03 -1.6266795e+00 + 1.1492000e+03 -1.8166795e+00 + 1.1496000e+03 -1.8266795e+00 + 1.1500000e+03 -2.0566795e+00 + 1.1504000e+03 -2.3466795e+00 + 1.1508000e+03 -2.0266795e+00 + 1.1512000e+03 -1.5266795e+00 + 1.1516000e+03 -7.8667949e-01 + 1.1520000e+03 -1.1667949e-01 + 1.1524000e+03 1.2833205e+00 + 1.1528000e+03 1.3933205e+00 + 1.1532000e+03 1.9833205e+00 + 1.1536000e+03 4.1333205e+00 + 1.1540000e+03 3.8233205e+00 + 1.1544000e+03 3.2333205e+00 + 1.1548000e+03 2.5133205e+00 + 1.1552000e+03 1.3833205e+00 + 1.1556000e+03 1.0933205e+00 + 1.1560000e+03 2.5332051e-01 + 1.1564000e+03 -6.9667949e-01 + 1.1568000e+03 -1.3366795e+00 + 1.1572000e+03 -1.7766795e+00 + 1.1576000e+03 -1.8566795e+00 + 1.1580000e+03 -1.8966795e+00 + 1.1584000e+03 -2.0366795e+00 + 1.1588000e+03 -2.2366795e+00 + 1.1592000e+03 -2.4566795e+00 + 1.1596000e+03 -2.6966795e+00 + 1.1600000e+03 -2.5966795e+00 + 1.1604000e+03 -2.0266795e+00 + 1.1608000e+03 -1.2766795e+00 + 1.1612000e+03 -3.1667949e-01 + 1.1616000e+03 -1.5667949e-01 + 1.1620000e+03 2.3320513e-02 + 1.1624000e+03 2.5332051e-01 + 1.1628000e+03 4.8332051e-01 + 1.1632000e+03 5.8332051e-01 + 1.1636000e+03 5.2332051e-01 + 1.1640000e+03 4.6332051e-01 + 1.1644000e+03 -2.1667949e-01 + 1.1648000e+03 -2.3667949e-01 + 1.1652000e+03 -1.7667949e-01 + 1.1656000e+03 -1.9667949e-01 + 1.1660000e+03 -2.6679487e-02 + 1.1664000e+03 1.1332051e-01 + 1.1668000e+03 8.3320513e-02 + 1.1672000e+03 -1.4667949e-01 + 1.1676000e+03 -6.4667949e-01 + 1.1680000e+03 -1.1266795e+00 + 1.1684000e+03 -2.0066795e+00 + 1.1688000e+03 -2.0366795e+00 + 1.1692000e+03 -2.0366795e+00 + 1.1696000e+03 -3.0766795e+00 + 1.1700000e+03 -3.1566795e+00 + 1.1704000e+03 -2.7666795e+00 + 1.1708000e+03 -2.3966795e+00 + 1.1712000e+03 -2.0766795e+00 + 1.1716000e+03 -1.6266795e+00 + 1.1720000e+03 -1.1166795e+00 + 1.1724000e+03 -1.0266795e+00 + 1.1728000e+03 -5.1667949e-01 + 1.1732000e+03 1.6033205e+00 + 1.1736000e+03 2.0833205e+00 + 1.1740000e+03 3.7533205e+00 + 1.1744000e+03 3.7633205e+00 + 1.1748000e+03 3.3033205e+00 + 1.1752000e+03 2.2133205e+00 + 1.1756000e+03 1.4933205e+00 + 1.1760000e+03 9.7332051e-01 + 1.1764000e+03 5.9332051e-01 + 1.1768000e+03 5.5332051e-01 + 1.1772000e+03 3.5332051e-01 + 1.1776000e+03 1.1332051e-01 + 1.1780000e+03 -4.9667949e-01 + 1.1784000e+03 -1.1466795e+00 + 1.1788000e+03 -1.5766795e+00 + 1.1792000e+03 -1.5566795e+00 + 1.1796000e+03 -1.5866795e+00 + 1.1800000e+03 -1.5866795e+00 + 1.1804000e+03 -1.7666795e+00 + 1.1808000e+03 -1.8666795e+00 + 1.1812000e+03 -2.1966795e+00 + 1.1816000e+03 -2.2666795e+00 + 1.1820000e+03 -2.2966795e+00 + 1.1824000e+03 -1.9866795e+00 + 1.1828000e+03 -1.5166795e+00 + 1.1832000e+03 -1.2266795e+00 + 1.1836000e+03 -8.4667949e-01 + 1.1840000e+03 -7.3667949e-01 + 1.1844000e+03 1.0332051e-01 + 1.1848000e+03 3.6332051e-01 + 1.1852000e+03 5.1332051e-01 + 1.1856000e+03 3.0332051e-01 + 1.1860000e+03 -4.6679487e-02 + 1.1864000e+03 -3.3667949e-01 + 1.1868000e+03 -6.0667949e-01 + 1.1872000e+03 -9.4667949e-01 + 1.1876000e+03 -9.1667949e-01 + 1.1880000e+03 -4.4667949e-01 + 1.1884000e+03 -1.7667949e-01 + 1.1888000e+03 -1.4667949e-01 + 1.1892000e+03 -2.9667949e-01 + 1.1896000e+03 -6.9667949e-01 + 1.1900000e+03 -8.1667949e-01 + 1.1904000e+03 -1.0566795e+00 + 1.1908000e+03 -1.3066795e+00 + 1.1912000e+03 -1.3666795e+00 + 1.1916000e+03 -9.1667949e-01 + 1.1920000e+03 -8.8667949e-01 + 1.1924000e+03 -1.2866795e+00 + 1.1928000e+03 -1.4466795e+00 + 1.1932000e+03 -1.5966795e+00 + 1.1936000e+03 -1.4566795e+00 + 1.1940000e+03 -1.1366795e+00 + 1.1944000e+03 -7.4667949e-01 + 1.1948000e+03 -2.9667949e-01 + 1.1952000e+03 -7.6679487e-02 + 1.1956000e+03 1.1332051e-01 + 1.1960000e+03 6.8332051e-01 + 1.1964000e+03 1.5733205e+00 + 1.1968000e+03 2.1433205e+00 + 1.1972000e+03 2.4833205e+00 + 1.1976000e+03 2.5833205e+00 + 1.1980000e+03 3.2233205e+00 + 1.1984000e+03 2.8033205e+00 + 1.1988000e+03 2.0533205e+00 + 1.1992000e+03 -2.6679487e-02 + 1.1996000e+03 2.7553321e+01 + 1.2000000e+03 -8.3667949e-01 + 1.2004000e+03 -1.1766795e+00 + 1.2008000e+03 -1.0166795e+00 + 1.2012000e+03 -8.5667949e-01 + 1.2016000e+03 -1.1766795e+00 + 1.2020000e+03 -1.6266795e+00 + 1.2024000e+03 -2.3966795e+00 + 1.2028000e+03 -2.5866795e+00 + 1.2032000e+03 -2.4766795e+00 + 1.2036000e+03 -2.4766795e+00 + 1.2040000e+03 -2.7666795e+00 + 1.2044000e+03 -2.9266795e+00 + 1.2048000e+03 -2.8366795e+00 + 1.2052000e+03 -2.6666795e+00 + 1.2056000e+03 -2.3066795e+00 + 1.2060000e+03 -1.9866795e+00 + 1.2064000e+03 -1.4766795e+00 + 1.2068000e+03 -9.7667949e-01 + 1.2072000e+03 -9.1667949e-01 + 1.2076000e+03 -9.1667949e-01 + 1.2080000e+03 -9.1667949e-01 + 1.2084000e+03 1.7933205e+00 + 1.2088000e+03 2.8533205e+00 + 1.2092000e+03 2.6533205e+00 + 1.2096000e+03 2.0533205e+00 + 1.2100000e+03 9.9332051e-01 + 1.2104000e+03 -4.6667949e-01 + 1.2108000e+03 -1.5066795e+00 + 1.2112000e+03 -1.9766795e+00 + 1.2116000e+03 -2.2166795e+00 + 1.2120000e+03 -2.4466795e+00 + 1.2124000e+03 -2.7766795e+00 + 1.2128000e+03 -3.1566795e+00 + 1.2132000e+03 -3.2166795e+00 + 1.2136000e+03 -3.1266795e+00 + 1.2140000e+03 -2.5466795e+00 + 1.2144000e+03 -2.2366795e+00 + 1.2148000e+03 -1.0666795e+00 + 1.2152000e+03 -5.5667949e-01 + 1.2156000e+03 2.7332051e-01 + 1.2160000e+03 5.5332051e-01 + 1.2164000e+03 5.7332051e-01 + 1.2168000e+03 1.7433205e+00 + 1.2172000e+03 2.3033205e+00 + 1.2176000e+03 1.8633205e+00 + 1.2180000e+03 1.6633205e+00 + 1.2184000e+03 2.1233205e+00 + 1.2188000e+03 2.3233205e+00 + 1.2192000e+03 2.6333205e+00 + 1.2196000e+03 1.8333205e+00 + 1.2200000e+03 5.3332051e-01 + 1.2204000e+03 -8.4667949e-01 + 1.2208000e+03 -2.0366795e+00 + 1.2212000e+03 -2.9866795e+00 + 1.2216000e+03 -3.7166795e+00 + 1.2220000e+03 -4.0366795e+00 + 1.2224000e+03 -3.6966795e+00 + 1.2228000e+03 -3.2766795e+00 + 1.2232000e+03 -2.9966795e+00 + 1.2236000e+03 -2.8866795e+00 + 1.2240000e+03 -2.8066795e+00 + 1.2244000e+03 -2.3966795e+00 + 1.2248000e+03 -1.7166795e+00 + 1.2252000e+03 -8.0667949e-01 + 1.2256000e+03 3.9332051e-01 + 1.2260000e+03 1.3933205e+00 + 1.2264000e+03 1.6433205e+00 + 1.2268000e+03 1.9133205e+00 + 1.2272000e+03 2.0533205e+00 + 1.2276000e+03 2.0233205e+00 + 1.2280000e+03 1.8233205e+00 + 1.2284000e+03 1.3633205e+00 + 1.2288000e+03 8.0332051e-01 + 1.2292000e+03 1.6332051e-01 + 1.2296000e+03 -2.8667949e-01 + 1.2300000e+03 -3.9667949e-01 + 1.2304000e+03 -2.3667949e-01 + 1.2308000e+03 -5.6679487e-02 + 1.2312000e+03 -4.2667949e-01 + 1.2316000e+03 -8.7667949e-01 + 1.2320000e+03 -1.7366795e+00 + 1.2324000e+03 -2.1966795e+00 + 1.2328000e+03 -2.1566795e+00 + 1.2332000e+03 -1.8066795e+00 + 1.2336000e+03 -1.3366795e+00 + 1.2340000e+03 -9.4667949e-01 + 1.2344000e+03 -8.0667949e-01 + 1.2348000e+03 -6.6667949e-01 + 1.2352000e+03 -3.1667949e-01 + 1.2356000e+03 -1.5667949e-01 + 1.2360000e+03 1.8833205e+00 + 1.2364000e+03 2.0433205e+00 + 1.2368000e+03 2.0533205e+00 + 1.2372000e+03 2.0433205e+00 + 1.2376000e+03 1.7333205e+00 + 1.2380000e+03 7.7332051e-01 + 1.2384000e+03 3.0332051e-01 + 1.2388000e+03 -2.3667949e-01 + 1.2392000e+03 -3.9667949e-01 + 1.2396000e+03 -8.9667949e-01 + 1.2400000e+03 -9.4667949e-01 + 1.2404000e+03 -9.4667949e-01 + 1.2408000e+03 -9.9667949e-01 + 1.2412000e+03 -1.8266795e+00 + 1.2416000e+03 -2.6466795e+00 + 1.2420000e+03 -2.8666795e+00 + 1.2424000e+03 -2.7366795e+00 + 1.2428000e+03 -2.6766795e+00 + 1.2432000e+03 -2.2066795e+00 + 1.2436000e+03 -1.3166795e+00 + 1.2440000e+03 -6.2667949e-01 + 1.2444000e+03 -2.5667949e-01 + 1.2448000e+03 7.0332051e-01 + 1.2452000e+03 1.1033205e+00 + 1.2456000e+03 1.3033205e+00 + 1.2460000e+03 9.1332051e-01 + 1.2464000e+03 6.5332051e-01 + 1.2468000e+03 2.3332051e-01 + 1.2472000e+03 2.4332051e-01 + 1.2476000e+03 5.3320513e-02 + 1.2480000e+03 -2.0667949e-01 + 1.2484000e+03 -3.8667949e-01 + 1.2488000e+03 -6.7667949e-01 + 1.2492000e+03 -8.9667949e-01 + 1.2496000e+03 -1.1966795e+00 + 1.2500000e+03 -1.2466795e+00 + 1.2504000e+03 -1.1366795e+00 + 1.2508000e+03 -1.0866795e+00 + 1.2512000e+03 -1.0866795e+00 + 1.2516000e+03 -1.0866795e+00 + 1.2520000e+03 -1.0666795e+00 + 1.2524000e+03 -1.0066795e+00 + 1.2528000e+03 -5.7667949e-01 + 1.2532000e+03 -1.6667949e-01 + 1.2536000e+03 4.4332051e-01 + 1.2540000e+03 6.9332051e-01 + 1.2544000e+03 1.2733205e+00 + 1.2548000e+03 1.4633205e+00 + 1.2552000e+03 1.5033205e+00 + 1.2556000e+03 1.5533205e+00 + 1.2560000e+03 1.1733205e+00 + 1.2564000e+03 8.7332051e-01 + 1.2568000e+03 4.9332051e-01 + 1.2572000e+03 -3.6679487e-02 + 1.2576000e+03 -2.2667949e-01 + 1.2580000e+03 3.2332051e-01 + 1.2584000e+03 -2.7667949e-01 + 1.2588000e+03 -4.2667949e-01 + 1.2592000e+03 -4.4667949e-01 + 1.2596000e+03 -4.4667949e-01 + 1.2600000e+03 -4.4667949e-01 + 1.2604000e+03 -4.4667949e-01 + 1.2608000e+03 -4.4667949e-01 + 1.2612000e+03 -4.4667949e-01 + 1.2616000e+03 -1.4066795e+00 + 1.2620000e+03 -2.2166795e+00 + 1.2624000e+03 -1.7366795e+00 + 1.2628000e+03 -1.2566795e+00 + 1.2632000e+03 -9.4667949e-01 + 1.2636000e+03 -8.4667949e-01 + 1.2640000e+03 -2.9667949e-01 + 1.2644000e+03 2.6332051e-01 + 1.2648000e+03 4.0332051e-01 + 1.2652000e+03 4.1332051e-01 + 1.2656000e+03 4.1332051e-01 + 1.2660000e+03 4.6332051e-01 + 1.2664000e+03 2.6033205e+00 + 1.2668000e+03 2.1333205e+00 + 1.2672000e+03 1.5533205e+00 + 1.2676000e+03 1.0133205e+00 + 1.2680000e+03 3.0332051e-01 + 1.2684000e+03 -1.6679487e-02 + 1.2688000e+03 -3.3667949e-01 + 1.2692000e+03 -6.7667949e-01 + 1.2696000e+03 -8.5667949e-01 + 1.2700000e+03 -1.0266795e+00 + 1.2704000e+03 -1.3066795e+00 + 1.2708000e+03 -1.6166795e+00 + 1.2712000e+03 -2.0766795e+00 + 1.2716000e+03 -2.0966795e+00 + 1.2720000e+03 -1.5866795e+00 + 1.2724000e+03 -1.1166795e+00 + 1.2728000e+03 -1.0066795e+00 + 1.2732000e+03 -1.1266795e+00 + 1.2736000e+03 -1.1966795e+00 + 1.2740000e+03 -1.0066795e+00 + 1.2744000e+03 -6.1667949e-01 + 1.2748000e+03 -1.0667949e-01 + 1.2752000e+03 2.3332051e-01 + 1.2756000e+03 6.9332051e-01 + 1.2760000e+03 3.4332051e-01 + 1.2764000e+03 1.9332051e-01 + 1.2768000e+03 2.9332051e-01 + 1.2772000e+03 1.1233205e+00 + 1.2776000e+03 2.5332051e-01 + 1.2780000e+03 1.0332051e-01 + 1.2784000e+03 9.3320513e-02 + 1.2788000e+03 9.3320513e-02 + 1.2792000e+03 9.3320513e-02 + 1.2796000e+03 9.3320513e-02 + 1.2800000e+03 9.3320513e-02 + 1.2804000e+03 -1.3667949e-01 + 1.2808000e+03 -5.3667949e-01 + 1.2812000e+03 -8.2667949e-01 + 1.2816000e+03 -5.4667949e-01 + 1.2820000e+03 -3.9667949e-01 + 1.2824000e+03 -5.7667949e-01 + 1.2828000e+03 -6.1667949e-01 + 1.2832000e+03 -5.8667949e-01 + 1.2836000e+03 -4.2667949e-01 + 1.2840000e+03 -2.9667949e-01 + 1.2844000e+03 -2.0667949e-01 + 1.2848000e+03 -1.0667949e-01 + 1.2852000e+03 -2.9667949e-01 + 1.2856000e+03 -6.6667949e-01 + 1.2860000e+03 -7.8667949e-01 + 1.2864000e+03 -8.7667949e-01 + 1.2868000e+03 -7.3667949e-01 + 1.2872000e+03 -1.5667949e-01 + 1.2876000e+03 7.7332051e-01 + 1.2880000e+03 1.3233205e+00 + 1.2884000e+03 1.6233205e+00 + 1.2888000e+03 1.6333205e+00 + 1.2892000e+03 1.6333205e+00 + 1.2896000e+03 1.9233205e+00 + 1.2900000e+03 1.8733205e+00 + 1.2904000e+03 9.8332051e-01 + 1.2908000e+03 7.9332051e-01 + 1.2912000e+03 7.9332051e-01 + 1.2916000e+03 7.9332051e-01 + 1.2920000e+03 7.9332051e-01 + 1.2924000e+03 7.9332051e-01 + 1.2928000e+03 7.9332051e-01 + 1.2932000e+03 7.9332051e-01 + 1.2936000e+03 -4.8667949e-01 + 1.2940000e+03 -2.8366795e+00 + 1.2944000e+03 -2.4766795e+00 + 1.2948000e+03 -2.2466795e+00 + 1.2952000e+03 -2.2366795e+00 + 1.2956000e+03 -1.1566795e+00 + 1.2960000e+03 9.2332051e-01 + 1.2964000e+03 1.0133205e+00 + 1.2968000e+03 1.0233205e+00 + 1.2972000e+03 1.1833205e+00 + 1.2976000e+03 1.2133205e+00 + 1.2980000e+03 6.4332051e-01 + 1.2984000e+03 3.7332051e-01 + 1.2988000e+03 1.3332051e-01 + 1.2992000e+03 -1.1766795e+00 + 1.2996000e+03 -1.4666795e+00 + 1.3000000e+03 -1.5866795e+00 + 1.3004000e+03 -1.6266795e+00 + 1.3008000e+03 -1.3666795e+00 + 1.3012000e+03 -1.4066795e+00 + 1.3016000e+03 -1.3466795e+00 + 1.3020000e+03 -5.9667949e-01 + 1.3024000e+03 -2.0667949e-01 + 1.3028000e+03 3.3205128e-03 + 1.3032000e+03 2.7332051e-01 + 1.3036000e+03 1.6332051e-01 + 1.3040000e+03 7.3320513e-02 + 1.3044000e+03 1.7332051e-01 + 1.3048000e+03 5.5332051e-01 + 1.3052000e+03 1.9332051e-01 + 1.3056000e+03 -8.6679487e-02 + 1.3060000e+03 -1.7667949e-01 + 1.3064000e+03 -2.1667949e-01 + 1.3068000e+03 -1.0667949e-01 + 1.3072000e+03 3.3320513e-02 + 1.3076000e+03 3.3332051e-01 + 1.3080000e+03 7.5332051e-01 + 1.3084000e+03 1.3533205e+00 + 1.3088000e+03 1.3033205e+00 + 1.3092000e+03 7.4332051e-01 + 1.3096000e+03 3.3332051e-01 + 1.3100000e+03 3.0332051e-01 + 1.3104000e+03 -4.9667949e-01 + 1.3108000e+03 -2.7667949e-01 + 1.3112000e+03 3.3205128e-03 + 1.3116000e+03 -1.2667949e-01 + 1.3120000e+03 -8.2667949e-01 + 1.3124000e+03 -1.0266795e+00 + 1.3128000e+03 -2.2366795e+00 + 1.3132000e+03 -2.6666795e+00 + 1.3136000e+03 -2.8466795e+00 + 1.3140000e+03 -2.9466795e+00 + 1.3144000e+03 -2.9566795e+00 + 1.3148000e+03 -2.7366795e+00 + 1.3152000e+03 -2.2066795e+00 + 1.3156000e+03 -1.6766795e+00 + 1.3160000e+03 -1.5366795e+00 + 1.3164000e+03 -1.2766795e+00 + 1.3168000e+03 -9.8667949e-01 + 1.3172000e+03 -5.2667949e-01 + 1.3176000e+03 1.2332051e-01 + 1.3180000e+03 8.3332051e-01 + 1.3184000e+03 1.2333205e+00 + 1.3188000e+03 1.3233205e+00 + 1.3192000e+03 1.1033205e+00 + 1.3196000e+03 7.3332051e-01 + 1.3200000e+03 3.7332051e-01 + 1.3204000e+03 -9.6679487e-02 + 1.3208000e+03 -2.7667949e-01 + 1.3212000e+03 -1.0667949e-01 + 1.3216000e+03 4.0332051e-01 + 1.3220000e+03 3.7332051e-01 + 1.3224000e+03 1.2332051e-01 + 1.3228000e+03 -7.6679487e-02 + 1.3232000e+03 -1.0366795e+00 + 1.3236000e+03 -1.3366795e+00 + 1.3240000e+03 -1.2766795e+00 + 1.3244000e+03 -1.0866795e+00 + 1.3248000e+03 -8.5667949e-01 + 1.3252000e+03 -9.7667949e-01 + 1.3256000e+03 -9.4667949e-01 + 1.3260000e+03 -7.0667949e-01 + 1.3264000e+03 -2.8667949e-01 + 1.3268000e+03 -1.9667949e-01 + 1.3272000e+03 -1.9667949e-01 + 1.3276000e+03 2.9332051e-01 + 1.3280000e+03 1.6833205e+00 + 1.3284000e+03 2.0433205e+00 + 1.3288000e+03 2.5233205e+00 + 1.3292000e+03 4.6433205e+00 + 1.3296000e+03 3.7933205e+00 + 1.3300000e+03 3.5133205e+00 + 1.3304000e+03 3.5033205e+00 + 1.3308000e+03 3.5033205e+00 + 1.3312000e+03 3.5033205e+00 + 1.3316000e+03 3.5033205e+00 + 1.3320000e+03 3.5033205e+00 + 1.3324000e+03 3.4933205e+00 + 1.3328000e+03 3.4933205e+00 + 1.3332000e+03 3.4933205e+00 + 1.3336000e+03 3.4933205e+00 + 1.3340000e+03 3.4933205e+00 + 1.3344000e+03 3.0333205e+00 + 1.3348000e+03 -1.6466795e+00 + 1.3352000e+03 -2.8966795e+00 + 1.3356000e+03 -2.8466795e+00 + 1.3360000e+03 -2.8366795e+00 + 1.3364000e+03 -2.8366795e+00 + 1.3368000e+03 -2.8266795e+00 + 1.3372000e+03 -2.8266795e+00 + 1.3376000e+03 -2.8266795e+00 + 1.3380000e+03 -2.8266795e+00 + 1.3384000e+03 -8.8667949e-01 + 1.3388000e+03 3.3833205e+00 + 1.3392000e+03 3.8333205e+00 + 1.3396000e+03 3.4033205e+00 + 1.3400000e+03 3.3033205e+00 + 1.3404000e+03 3.2833205e+00 + 1.3408000e+03 1.1333205e+00 + 1.3412000e+03 2.5332051e-01 + 1.3416000e+03 2.0332051e-01 + 1.3420000e+03 2.0332051e-01 + 1.3424000e+03 -2.4266795e+00 + 1.3428000e+03 -2.8866795e+00 + 1.3432000e+03 -2.8366795e+00 + 1.3436000e+03 -2.5266795e+00 + 1.3440000e+03 -2.2166795e+00 + 1.3444000e+03 -1.9466795e+00 + 1.3448000e+03 -1.3566795e+00 + 1.3452000e+03 -1.0066795e+00 + 1.3456000e+03 -2.2667949e-01 + 1.3460000e+03 3.2332051e-01 + 1.3464000e+03 8.0332051e-01 + 1.3468000e+03 1.2033205e+00 + 1.3472000e+03 1.5533205e+00 + 1.3476000e+03 2.3933205e+00 + 1.3480000e+03 2.6633205e+00 + 1.3484000e+03 2.8033205e+00 + 1.3488000e+03 2.6233205e+00 + 1.3492000e+03 2.8033205e+00 + 1.3496000e+03 2.8833205e+00 + 1.3500000e+03 2.4633205e+00 + 1.3504000e+03 1.7733205e+00 + 1.3508000e+03 1.1433205e+00 + 1.3512000e+03 4.7332051e-01 + 1.3516000e+03 -3.9667949e-01 + 1.3520000e+03 -9.0667949e-01 + 1.3524000e+03 -1.2066795e+00 + 1.3528000e+03 -3.4866795e+00 + 1.3532000e+03 -4.0266795e+00 + 1.3536000e+03 -4.0366795e+00 + 1.3540000e+03 -4.0266795e+00 + 1.3544000e+03 -4.0266795e+00 + 1.3548000e+03 -4.0266795e+00 + 1.3552000e+03 -4.6666795e+00 + 1.3556000e+03 -5.1766795e+00 + 1.3560000e+03 -4.4866795e+00 + 1.3564000e+03 -3.3066795e+00 + 1.3568000e+03 -2.6766795e+00 + 1.3572000e+03 -2.6266795e+00 + 1.3576000e+03 -2.6366795e+00 + 1.3580000e+03 -2.6366795e+00 + 1.3584000e+03 -2.6366795e+00 + 1.3588000e+03 -2.3466795e+00 + 1.3592000e+03 4.7433205e+00 + 1.3596000e+03 4.2633205e+00 + 1.3600000e+03 3.0233205e+00 + 1.3604000e+03 1.7333205e+00 + 1.3608000e+03 7.8332051e-01 + 1.3612000e+03 2.2332051e-01 + 1.3616000e+03 -2.7667949e-01 + 1.3620000e+03 -5.6667949e-01 + 1.3624000e+03 -7.1667949e-01 + 1.3628000e+03 -9.8667949e-01 + 1.3632000e+03 -1.3866795e+00 + 1.3636000e+03 -1.8366795e+00 + 1.3640000e+03 -2.0066795e+00 + 1.3644000e+03 -1.8466795e+00 + 1.3648000e+03 -1.5566795e+00 + 1.3652000e+03 -1.1066795e+00 + 1.3656000e+03 -3.6667949e-01 + 1.3660000e+03 1.6332051e-01 + 1.3664000e+03 5.2332051e-01 + 1.3668000e+03 7.3332051e-01 + 1.3672000e+03 7.3332051e-01 + 1.3676000e+03 7.4332051e-01 + 1.3680000e+03 8.7332051e-01 + 1.3684000e+03 1.1733205e+00 + 1.3688000e+03 1.6433205e+00 + 1.3692000e+03 2.4133205e+00 + 1.3696000e+03 2.7833205e+00 + 1.3700000e+03 2.0833205e+00 + 1.3704000e+03 1.4233205e+00 + 1.3708000e+03 7.4332051e-01 + 1.3712000e+03 7.3320513e-02 + 1.3716000e+03 -6.7667949e-01 + 1.3720000e+03 -1.1366795e+00 + 1.3724000e+03 -1.6466795e+00 + 1.3728000e+03 -1.7466795e+00 + 1.3732000e+03 -2.4866795e+00 + 1.3736000e+03 -3.0966795e+00 + 1.3740000e+03 -3.2666795e+00 + 1.3744000e+03 -4.0066795e+00 + 1.3748000e+03 -4.3166795e+00 + 1.3752000e+03 -4.2066795e+00 + 1.3756000e+03 -3.6966795e+00 + 1.3760000e+03 -3.1566795e+00 + 1.3764000e+03 -2.5066795e+00 + 1.3768000e+03 -2.2166795e+00 + 1.3772000e+03 -1.6366795e+00 + 1.3776000e+03 -8.2667949e-01 + 1.3780000e+03 -4.1667949e-01 + 1.3784000e+03 1.2332051e-01 + 1.3788000e+03 6.9332051e-01 + 1.3792000e+03 1.0733205e+00 + 1.3796000e+03 1.2133205e+00 + 1.3800000e+03 9.8332051e-01 + 1.3804000e+03 6.1332051e-01 + 1.3808000e+03 7.0332051e-01 + 1.3812000e+03 8.9332051e-01 + 1.3816000e+03 1.7233205e+00 + 1.3820000e+03 2.9633205e+00 + 1.3824000e+03 3.5333205e+00 + 1.3828000e+03 3.2733205e+00 + 1.3832000e+03 2.5533205e+00 + 1.3836000e+03 2.5133205e+00 + 1.3840000e+03 2.5133205e+00 + 1.3844000e+03 2.5133205e+00 + 1.3848000e+03 2.5133205e+00 + 1.3852000e+03 2.5133205e+00 + 1.3856000e+03 2.5133205e+00 + 1.3860000e+03 1.0933205e+00 + 1.3864000e+03 -7.1667949e-01 + 1.3868000e+03 -8.9667949e-01 + 1.3872000e+03 -9.4667949e-01 + 1.3876000e+03 -7.9667949e-01 + 1.3880000e+03 -3.0667949e-01 + 1.3884000e+03 -1.6667949e-01 + 1.3888000e+03 -2.6667949e-01 + 1.3892000e+03 -1.4667949e-01 + 1.3896000e+03 6.4332051e-01 + 1.3900000e+03 5.5332051e-01 + 1.3904000e+03 9.3320513e-02 + 1.3908000e+03 -5.0667949e-01 + 1.3912000e+03 -4.5667949e-01 + 1.3916000e+03 -5.8667949e-01 + 1.3920000e+03 -9.6667949e-01 + 1.3924000e+03 -1.3766795e+00 + 1.3928000e+03 -1.6166795e+00 + 1.3932000e+03 -1.6366795e+00 + 1.3936000e+03 -1.6266795e+00 + 1.3940000e+03 -1.7066795e+00 + 1.3944000e+03 -2.2166795e+00 + 1.3948000e+03 -2.4666795e+00 + 1.3952000e+03 -2.8866795e+00 + 1.3956000e+03 -2.8266795e+00 + 1.3960000e+03 -2.6266795e+00 + 1.3964000e+03 -2.2966795e+00 + 1.3968000e+03 -1.9666795e+00 + 1.3972000e+03 -1.9066795e+00 + 1.3976000e+03 -1.5566795e+00 + 1.3980000e+03 -1.0166795e+00 + 1.3984000e+03 -4.4667949e-01 + 1.3988000e+03 -4.1667949e-01 + 1.3992000e+03 -5.0667949e-01 + 1.3996000e+03 -6.9667949e-01 + 1.4000000e+03 -5.2667949e-01 + 1.4004000e+03 -5.6679487e-02 + 1.4008000e+03 1.5332051e-01 + 1.4012000e+03 2.3332051e-01 + 1.4016000e+03 1.7833205e+00 + 1.4020000e+03 1.6233205e+00 + 1.4024000e+03 1.5733205e+00 + 1.4028000e+03 1.4933205e+00 + 1.4032000e+03 1.2933205e+00 + 1.4036000e+03 1.4333205e+00 + 1.4040000e+03 1.6233205e+00 + 1.4044000e+03 1.6333205e+00 + 1.4048000e+03 1.3033205e+00 + 1.4052000e+03 6.3332051e-01 + 1.4056000e+03 -1.6679487e-02 + 1.4060000e+03 -4.6679487e-02 + 1.4064000e+03 -7.2667949e-01 + 1.4068000e+03 -1.7466795e+00 + 1.4072000e+03 -1.7366795e+00 + 1.4076000e+03 -1.5866795e+00 + 1.4080000e+03 -1.0866795e+00 + 1.4084000e+03 -3.6667949e-01 + 1.4088000e+03 2.5332051e-01 + 1.4092000e+03 4.5332051e-01 + 1.4096000e+03 3.3332051e-01 + 1.4100000e+03 7.3320513e-02 + 1.4104000e+03 -1.3667949e-01 + 1.4108000e+03 -2.4667949e-01 + 1.4112000e+03 -2.0667949e-01 + 1.4116000e+03 -6.5667949e-01 + 1.4120000e+03 -7.5667949e-01 + 1.4124000e+03 -5.4667949e-01 + 1.4128000e+03 -3.9667949e-01 + 1.4132000e+03 -3.9667949e-01 + 1.4136000e+03 -6.9667949e-01 + 1.4140000e+03 -1.3466795e+00 + 1.4144000e+03 -1.9666795e+00 + 1.4148000e+03 -2.7066795e+00 + 1.4152000e+03 -3.0666795e+00 + 1.4156000e+03 -3.1166795e+00 + 1.4160000e+03 -3.0266795e+00 + 1.4164000e+03 -2.9466795e+00 + 1.4168000e+03 -2.7466795e+00 + 1.4172000e+03 -2.5066795e+00 + 1.4176000e+03 -2.4066795e+00 + 1.4180000e+03 -2.3866795e+00 + 1.4184000e+03 -2.3866795e+00 + 1.4188000e+03 -2.3466795e+00 + 1.4192000e+03 6.0332051e-01 + 1.4196000e+03 5.2332051e-01 + 1.4200000e+03 5.1332051e-01 + 1.4204000e+03 8.7332051e-01 + 1.4208000e+03 1.4033205e+00 + 1.4212000e+03 1.3633205e+00 + 1.4216000e+03 9.1332051e-01 + 1.4220000e+03 4.8332051e-01 + 1.4224000e+03 4.3332051e-01 + 1.4228000e+03 2.2332051e-01 + 1.4232000e+03 1.7332051e-01 + 1.4236000e+03 -9.6679487e-02 + 1.4240000e+03 -3.4667949e-01 + 1.4244000e+03 -4.2667949e-01 + 1.4248000e+03 -4.4667949e-01 + 1.4252000e+03 -6.9667949e-01 + 1.4256000e+03 -6.2667949e-01 + 1.4260000e+03 -3.6667949e-01 + 1.4264000e+03 4.3320513e-02 + 1.4268000e+03 4.9332051e-01 + 1.4272000e+03 7.3332051e-01 + 1.4276000e+03 6.1332051e-01 + 1.4280000e+03 2.9332051e-01 + 1.4284000e+03 -4.6679487e-02 + 1.4288000e+03 -5.7667949e-01 + 1.4292000e+03 -6.7667949e-01 + 1.4296000e+03 -7.2667949e-01 + 1.4300000e+03 -6.6667949e-01 + 1.4304000e+03 -5.3667949e-01 + 1.4308000e+03 -5.4667949e-01 + 1.4312000e+03 -7.9667949e-01 + 1.4316000e+03 -7.4667949e-01 + 1.4320000e+03 -2.7667949e-01 + 1.4324000e+03 3.3320513e-02 + 1.4328000e+03 -1.1667949e-01 + 1.4332000e+03 -6.1667949e-01 + 1.4336000e+03 -1.1666795e+00 + 1.4340000e+03 -1.4766795e+00 + 1.4344000e+03 -1.8266795e+00 + 1.4348000e+03 -1.9866795e+00 + 1.4352000e+03 -1.8066795e+00 + 1.4356000e+03 -1.3466795e+00 + 1.4360000e+03 -9.1667949e-01 + 1.4364000e+03 -5.7667949e-01 + 1.4368000e+03 -4.4667949e-01 + 1.4372000e+03 -7.1667949e-01 + 1.4376000e+03 -8.2667949e-01 + 1.4380000e+03 -6.0667949e-01 + 1.4384000e+03 -1.9667949e-01 + 1.4388000e+03 4.4332051e-01 + 1.4392000e+03 8.0332051e-01 + 1.4396000e+03 5.7332051e-01 + 1.4400000e+03 1.5332051e-01 + 1.4404000e+03 5.3320513e-02 + 1.4408000e+03 8.3320513e-02 + 1.4412000e+03 4.9332051e-01 + 1.4416000e+03 7.9332051e-01 + 1.4420000e+03 1.1033205e+00 + 1.4424000e+03 3.2332051e-01 + 1.4428000e+03 -2.6667949e-01 + 1.4432000e+03 -7.1667949e-01 + 1.4436000e+03 -1.0866795e+00 + 1.4440000e+03 -1.4666795e+00 + 1.4444000e+03 -2.0066795e+00 + 1.4448000e+03 -2.1566795e+00 + 1.4452000e+03 -2.0666795e+00 + 1.4456000e+03 -1.7766795e+00 + 1.4460000e+03 -1.6466795e+00 + 1.4464000e+03 -1.4766795e+00 + 1.4468000e+03 -1.1466795e+00 + 1.4472000e+03 -5.4667949e-01 + 1.4476000e+03 1.7332051e-01 + 1.4480000e+03 9.8332051e-01 + 1.4484000e+03 1.9233205e+00 + 1.4488000e+03 2.2433205e+00 + 1.4492000e+03 2.2433205e+00 + 1.4496000e+03 2.5333205e+00 + 1.4500000e+03 2.7433205e+00 + 1.4504000e+03 1.3733205e+00 + 1.4508000e+03 1.2332051e-01 + 1.4512000e+03 -1.0166795e+00 + 1.4516000e+03 -1.4466795e+00 + 1.4520000e+03 -1.4566795e+00 + 1.4524000e+03 -2.3966795e+00 + 1.4528000e+03 -2.7866795e+00 + 1.4532000e+03 -2.8866795e+00 + 1.4536000e+03 -2.9466795e+00 + 1.4540000e+03 -2.9866795e+00 + 1.4544000e+03 -2.7566795e+00 + 1.4548000e+03 -2.4766795e+00 + 1.4552000e+03 -2.2566795e+00 + 1.4556000e+03 -1.9866795e+00 + 1.4560000e+03 -1.7166795e+00 + 1.4564000e+03 -1.6966795e+00 + 1.4568000e+03 -2.3667949e-01 + 1.4572000e+03 1.5033205e+00 + 1.4576000e+03 1.8933205e+00 + 1.4580000e+03 2.4933205e+00 + 1.4584000e+03 2.9833205e+00 + 1.4588000e+03 3.0833205e+00 + 1.4592000e+03 2.7433205e+00 + 1.4596000e+03 1.8033205e+00 + 1.4600000e+03 1.0533205e+00 + 1.4604000e+03 1.0233205e+00 + 1.4608000e+03 1.0133205e+00 + 1.4612000e+03 8.3332051e-01 + 1.4616000e+03 8.2332051e-01 + 1.4620000e+03 7.8332051e-01 + 1.4624000e+03 -2.8066795e+00 + 1.4628000e+03 -2.6166795e+00 + 1.4632000e+03 -2.0766795e+00 + 1.4636000e+03 -1.7266795e+00 + 1.4640000e+03 -1.3366795e+00 + 1.4644000e+03 -1.0966795e+00 + 1.4648000e+03 -1.0166795e+00 + 1.4652000e+03 -9.4667949e-01 + 1.4656000e+03 -7.6667949e-01 + 1.4660000e+03 -6.6679487e-02 + 1.4664000e+03 6.2332051e-01 + 1.4668000e+03 6.8332051e-01 + 1.4672000e+03 3.7332051e-01 + 1.4676000e+03 5.3320513e-02 + 1.4680000e+03 -1.0667949e-01 + 1.4684000e+03 -3.3667949e-01 + 1.4688000e+03 -4.4667949e-01 + 1.4692000e+03 -5.4667949e-01 + 1.4696000e+03 -5.0667949e-01 + 1.4700000e+03 -7.9667949e-01 + 1.4704000e+03 -1.1266795e+00 + 1.4708000e+03 -1.1166795e+00 + 1.4712000e+03 -6.5667949e-01 + 1.4716000e+03 1.2332051e-01 + 1.4720000e+03 1.1733205e+00 + 1.4724000e+03 1.7533205e+00 + 1.4728000e+03 1.6433205e+00 + 1.4732000e+03 7.8332051e-01 + 1.4736000e+03 -3.2667949e-01 + 1.4740000e+03 -5.0667949e-01 + 1.4744000e+03 -1.3366795e+00 + 1.4748000e+03 -1.9966795e+00 + 1.4752000e+03 -1.7566795e+00 + 1.4756000e+03 -1.2266795e+00 + 1.4760000e+03 -7.1667949e-01 + 1.4764000e+03 -2.0667949e-01 + 1.4768000e+03 1.3332051e-01 + 1.4772000e+03 2.2332051e-01 + 1.4776000e+03 1.6332051e-01 + 1.4780000e+03 -1.6679487e-02 + 1.4784000e+03 -4.5667949e-01 + 1.4788000e+03 -8.1667949e-01 + 1.4792000e+03 -9.6667949e-01 + 1.4796000e+03 -1.0066795e+00 + 1.4800000e+03 -8.0667949e-01 + 1.4804000e+03 -3.0667949e-01 + 1.4808000e+03 5.5332051e-01 + 1.4812000e+03 1.5833205e+00 + 1.4816000e+03 1.7833205e+00 + 1.4820000e+03 1.6333205e+00 + 1.4824000e+03 1.1633205e+00 + 1.4828000e+03 7.4332051e-01 + 1.4832000e+03 7.4332051e-01 + 1.4836000e+03 6.7332051e-01 + 1.4840000e+03 3.2332051e-01 + 1.4844000e+03 1.6332051e-01 + 1.4848000e+03 -5.2667949e-01 + 1.4852000e+03 -1.8566795e+00 + 1.4856000e+03 -2.3466795e+00 + 1.4860000e+03 -2.4666795e+00 + 1.4864000e+03 -2.4666795e+00 + 1.4868000e+03 -2.4666795e+00 + 1.4872000e+03 -2.4566795e+00 + 1.4876000e+03 -2.4566795e+00 + 1.4880000e+03 -2.4566795e+00 + 1.4884000e+03 -2.4766795e+00 + 1.4888000e+03 -3.1366795e+00 + 1.4892000e+03 -2.5766795e+00 + 1.4896000e+03 -2.4866795e+00 + 1.4900000e+03 -2.4866795e+00 + 1.4904000e+03 -2.4866795e+00 + 1.4908000e+03 -2.4866795e+00 + 1.4912000e+03 9.7332051e-01 + 1.4916000e+03 3.4033205e+00 + 1.4920000e+03 3.2633205e+00 + 1.4924000e+03 2.5533205e+00 + 1.4928000e+03 1.7433205e+00 + 1.4932000e+03 1.1833205e+00 + 1.4936000e+03 9.4332051e-01 + 1.4940000e+03 9.3332051e-01 + 1.4944000e+03 9.4332051e-01 + 1.4948000e+03 9.4332051e-01 + 1.4952000e+03 9.3332051e-01 + 1.4956000e+03 9.3332051e-01 + 1.4960000e+03 9.3332051e-01 + 1.4964000e+03 9.3332051e-01 + 1.4968000e+03 9.4332051e-01 + 1.4972000e+03 9.3332051e-01 + 1.4976000e+03 9.3332051e-01 + 1.4980000e+03 9.3332051e-01 + 1.4984000e+03 -1.0666795e+00 + 1.4988000e+03 -1.8466795e+00 + 1.4992000e+03 -1.8566795e+00 + 1.4996000e+03 -1.8466795e+00 + 1.5000000e+03 -1.8466795e+00 + 1.5004000e+03 -1.8466795e+00 + 1.5008000e+03 -1.8466795e+00 + 1.5012000e+03 -1.8466795e+00 + 1.5016000e+03 -1.8466795e+00 + 1.5020000e+03 -1.8366795e+00 + 1.5024000e+03 -1.4466795e+00 + 1.5028000e+03 8.3320513e-02 + 1.5032000e+03 -2.9667949e-01 + 1.5036000e+03 -4.8667949e-01 + 1.5040000e+03 -5.4667949e-01 + 1.5044000e+03 -5.5667949e-01 + 1.5048000e+03 -5.5667949e-01 + 1.5052000e+03 -5.5667949e-01 + 1.5056000e+03 -5.5667949e-01 + 1.5060000e+03 -5.5667949e-01 + 1.5064000e+03 -5.6667949e-01 + 1.5068000e+03 -5.5667949e-01 + 1.5072000e+03 -1.5966795e+00 + 1.5076000e+03 -2.5766795e+00 + 1.5080000e+03 -2.0766795e+00 + 1.5084000e+03 -1.7366795e+00 + 1.5088000e+03 -1.9066795e+00 + 1.5092000e+03 -1.8266795e+00 + 1.5096000e+03 -1.5166795e+00 + 1.5100000e+03 -1.0466795e+00 + 1.5104000e+03 -5.0667949e-01 + 1.5108000e+03 -3.0667949e-01 + 1.5112000e+03 2.5332051e-01 + 1.5116000e+03 9.4332051e-01 + 1.5120000e+03 1.7233205e+00 + 1.5124000e+03 2.3733205e+00 + 1.5128000e+03 2.4633205e+00 + 1.5132000e+03 3.5033205e+00 + 1.5136000e+03 3.2833205e+00 + 1.5140000e+03 2.9533205e+00 + 1.5144000e+03 2.9333205e+00 + 1.5148000e+03 2.9333205e+00 + 1.5152000e+03 2.8033205e+00 + 1.5156000e+03 -7.3667949e-01 + 1.5160000e+03 -1.0866795e+00 + 1.5164000e+03 -2.1166795e+00 + 1.5168000e+03 -2.2566795e+00 + 1.5172000e+03 -2.1566795e+00 + 1.5176000e+03 -2.2166795e+00 + 1.5180000e+03 -2.1966795e+00 + 1.5184000e+03 -2.1566795e+00 + 1.5188000e+03 -1.9766795e+00 + 1.5192000e+03 -1.8666795e+00 + 1.5196000e+03 -1.4466795e+00 + 1.5200000e+03 -8.7667949e-01 + 1.5204000e+03 -3.8667949e-01 + 1.5208000e+03 7.3320513e-02 + 1.5212000e+03 4.2332051e-01 + 1.5216000e+03 6.3332051e-01 + 1.5220000e+03 5.7332051e-01 + 1.5224000e+03 1.3332051e-01 + 1.5228000e+03 -6.6679487e-02 + 1.5232000e+03 4.3320513e-02 + 1.5236000e+03 4.6332051e-01 + 1.5240000e+03 6.8332051e-01 + 1.5244000e+03 6.4332051e-01 + 1.5248000e+03 2.0332051e-01 + 1.5252000e+03 -2.9667949e-01 + 1.5256000e+03 -7.0667949e-01 + 1.5260000e+03 -1.0666795e+00 + 1.5264000e+03 -1.4766795e+00 + 1.5268000e+03 -1.6266795e+00 + 1.5272000e+03 -1.7066795e+00 + 1.5276000e+03 -1.8766795e+00 + 1.5280000e+03 -2.0166795e+00 + 1.5284000e+03 -1.9866795e+00 + 1.5288000e+03 -1.9166795e+00 + 1.5292000e+03 -1.6166795e+00 + 1.5296000e+03 -1.3866795e+00 + 1.5300000e+03 -7.2667949e-01 + 1.5304000e+03 -2.3667949e-01 + 1.5308000e+03 2.5332051e-01 + 1.5312000e+03 8.7332051e-01 + 1.5316000e+03 5.8332051e-01 + 1.5320000e+03 -6.6679487e-02 + 1.5324000e+03 -3.7667949e-01 + 1.5328000e+03 -6.6667949e-01 + 1.5332000e+03 -6.4667949e-01 + 1.5336000e+03 -2.4667949e-01 + 1.5340000e+03 5.0332051e-01 + 1.5344000e+03 1.2633205e+00 + 1.5348000e+03 1.1933205e+00 + 1.5352000e+03 7.3332051e-01 + 1.5356000e+03 2.1332051e-01 + 1.5360000e+03 -1.6667949e-01 + 1.5364000e+03 -5.5667949e-01 + 1.5368000e+03 -6.2667949e-01 + 1.5372000e+03 -4.9667949e-01 + 1.5376000e+03 -4.0667949e-01 + 1.5380000e+03 -5.1667949e-01 + 1.5384000e+03 -8.7667949e-01 + 1.5388000e+03 -1.1266795e+00 + 1.5392000e+03 -9.0667949e-01 + 1.5396000e+03 -4.4667949e-01 + 1.5400000e+03 1.6332051e-01 + 1.5404000e+03 -2.3667949e-01 + 1.5408000e+03 -4.9667949e-01 + 1.5412000e+03 -6.9667949e-01 + 1.5416000e+03 -7.5667949e-01 + 1.5420000e+03 -6.2667949e-01 + 1.5424000e+03 -4.5667949e-01 + 1.5428000e+03 -4.6667949e-01 + 1.5432000e+03 -5.3667949e-01 + 1.5436000e+03 -1.0366795e+00 + 1.5440000e+03 -1.5766795e+00 + 1.5444000e+03 -1.5866795e+00 + 1.5448000e+03 -1.3866795e+00 + 1.5452000e+03 -1.1966795e+00 + 1.5456000e+03 -1.0366795e+00 + 1.5460000e+03 -6.3667949e-01 + 1.5464000e+03 -1.6667949e-01 + 1.5468000e+03 -1.1667949e-01 + 1.5472000e+03 6.0332051e-01 + 1.5476000e+03 1.7433205e+00 + 1.5480000e+03 1.4133205e+00 + 1.5484000e+03 1.0233205e+00 + 1.5488000e+03 6.5332051e-01 + 1.5492000e+03 2.3332051e-01 + 1.5496000e+03 5.3320513e-02 + 1.5500000e+03 -4.7667949e-01 + 1.5504000e+03 -5.1667949e-01 + 1.5508000e+03 -8.4667949e-01 + 1.5512000e+03 -6.6667949e-01 + 1.5516000e+03 -4.0667949e-01 + 1.5520000e+03 -2.4667949e-01 + 1.5524000e+03 -4.2667949e-01 + 1.5528000e+03 -6.2667949e-01 + 1.5532000e+03 -1.1366795e+00 + 1.5536000e+03 -1.6666795e+00 + 1.5540000e+03 -1.8866795e+00 + 1.5544000e+03 -1.5866795e+00 + 1.5548000e+03 -1.0166795e+00 + 1.5552000e+03 5.3320513e-02 + 1.5556000e+03 8.2332051e-01 + 1.5560000e+03 7.1332051e-01 + 1.5564000e+03 7.0332051e-01 + 1.5568000e+03 7.0332051e-01 + 1.5572000e+03 3.8332051e-01 + 1.5576000e+03 -1.4466795e+00 + 1.5580000e+03 -1.7666795e+00 + 1.5584000e+03 -1.9466795e+00 + 1.5588000e+03 -1.8966795e+00 + 1.5592000e+03 -1.8166795e+00 + 1.5596000e+03 -1.5466795e+00 + 1.5600000e+03 -1.1366795e+00 + 1.5604000e+03 -9.4667949e-01 + 1.5608000e+03 -6.0667949e-01 + 1.5612000e+03 -2.0667949e-01 + 1.5616000e+03 1.2332051e-01 + 1.5620000e+03 4.1332051e-01 + 1.5624000e+03 1.8533205e+00 + 1.5628000e+03 1.6333205e+00 + 1.5632000e+03 1.6233205e+00 + 1.5636000e+03 1.6233205e+00 + 1.5640000e+03 1.2633205e+00 + 1.5644000e+03 -5.4667949e-01 + 1.5648000e+03 -1.1166795e+00 + 1.5652000e+03 -1.2066795e+00 + 1.5656000e+03 -1.1466795e+00 + 1.5660000e+03 -7.0667949e-01 + 1.5664000e+03 -2.9667949e-01 + 1.5668000e+03 -2.1667949e-01 + 1.5672000e+03 -2.6679487e-02 + 1.5676000e+03 2.9332051e-01 + 1.5680000e+03 4.1332051e-01 + 1.5684000e+03 5.7332051e-01 + 1.5688000e+03 3.6332051e-01 + 1.5692000e+03 4.3320513e-02 + 1.5696000e+03 -2.3667949e-01 + 1.5700000e+03 -5.4667949e-01 + 1.5704000e+03 -5.1667949e-01 + 1.5708000e+03 -3.5667949e-01 + 1.5712000e+03 -1.6667949e-01 + 1.5716000e+03 -9.6679487e-02 + 1.5720000e+03 -1.9667949e-01 + 1.5724000e+03 -5.2667949e-01 + 1.5728000e+03 -6.9667949e-01 + 1.5732000e+03 -7.8667949e-01 + 1.5736000e+03 -8.1667949e-01 + 1.5740000e+03 -8.7667949e-01 + 1.5744000e+03 -8.9667949e-01 + 1.5748000e+03 -1.2966795e+00 + 1.5752000e+03 -1.5266795e+00 + 1.5756000e+03 -1.6566795e+00 + 1.5760000e+03 -1.5766795e+00 + 1.5764000e+03 -1.4966795e+00 + 1.5768000e+03 -1.2366795e+00 + 1.5772000e+03 -9.2667949e-01 + 1.5776000e+03 -1.4766795e+00 + 1.5780000e+03 -1.9466795e+00 + 1.5784000e+03 -1.9266795e+00 + 1.5788000e+03 -1.7766795e+00 + 1.5792000e+03 -1.7166795e+00 + 1.5796000e+03 -1.6166795e+00 + 1.5800000e+03 -1.4666795e+00 + 1.5804000e+03 -1.3466795e+00 + 1.5808000e+03 -1.3066795e+00 + 1.5812000e+03 -1.2966795e+00 + 1.5816000e+03 -1.0166795e+00 + 1.5820000e+03 -2.2667949e-01 + 1.5824000e+03 3.3205128e-03 + 1.5828000e+03 2.0332051e-01 + 1.5832000e+03 2.5332051e-01 + 1.5836000e+03 2.5332051e-01 + 1.5840000e+03 6.3332051e-01 + 1.5844000e+03 1.8433205e+00 + 1.5848000e+03 1.4433205e+00 + 1.5852000e+03 1.4133205e+00 + 1.5856000e+03 1.4033205e+00 + 1.5860000e+03 1.4033205e+00 + 1.5864000e+03 1.4033205e+00 + 1.5868000e+03 1.4033205e+00 + 1.5872000e+03 1.2933205e+00 + 1.5876000e+03 3.8332051e-01 + 1.5880000e+03 9.3320513e-02 + 1.5884000e+03 -3.2667949e-01 + 1.5888000e+03 -3.5667949e-01 + 1.5892000e+03 -3.5667949e-01 + 1.5896000e+03 -3.5667949e-01 + 1.5900000e+03 -3.5667949e-01 + 1.5904000e+03 -9.1667949e-01 + 1.5908000e+03 -1.5766795e+00 + 1.5912000e+03 -1.6366795e+00 + 1.5916000e+03 -1.8266795e+00 + 1.5920000e+03 -1.8466795e+00 + 1.5924000e+03 -1.5466795e+00 + 1.5928000e+03 -9.4667949e-01 + 1.5932000e+03 -3.0667949e-01 + 1.5936000e+03 5.3332051e-01 + 1.5940000e+03 1.2233205e+00 + 1.5944000e+03 1.5033205e+00 + 1.5948000e+03 1.5433205e+00 + 1.5952000e+03 1.6033205e+00 + 1.5956000e+03 1.3033205e+00 + 1.5960000e+03 1.0533205e+00 + 1.5964000e+03 1.0333205e+00 + 1.5968000e+03 1.0333205e+00 + 1.5972000e+03 1.0333205e+00 + 1.5976000e+03 1.0333205e+00 + 1.5980000e+03 1.0333205e+00 + 1.5984000e+03 1.0333205e+00 + 1.5988000e+03 1.0333205e+00 + 1.5992000e+03 -1.3466795e+00 + 1.5996000e+03 -3.2566795e+00 + 1.6000000e+03 -3.1166795e+00 + 1.6004000e+03 -2.4866795e+00 + 1.6008000e+03 -2.4166795e+00 + 1.6012000e+03 -2.4166795e+00 + 1.6016000e+03 -2.2866795e+00 + 1.6020000e+03 9.3332051e-01 + 1.6024000e+03 1.4733205e+00 + 1.6028000e+03 1.5233205e+00 + 1.6032000e+03 1.5133205e+00 + 1.6036000e+03 1.6033205e+00 + 1.6040000e+03 4.5033205e+00 + 1.6044000e+03 3.5033205e+00 + 1.6048000e+03 2.2333205e+00 + 1.6052000e+03 8.0332051e-01 + 1.6056000e+03 7.0332051e-01 + 1.6060000e+03 7.0332051e-01 + 1.6064000e+03 7.0332051e-01 + 1.6068000e+03 7.0332051e-01 + 1.6072000e+03 -4.6667949e-01 + 1.6076000e+03 -1.3766795e+00 + 1.6080000e+03 -1.4666795e+00 + 1.6084000e+03 -1.4466795e+00 + 1.6088000e+03 -1.2166795e+00 + 1.6092000e+03 -7.7667949e-01 + 1.6096000e+03 -6.7667949e-01 + 1.6100000e+03 -6.6667949e-01 + 1.6104000e+03 -6.6667949e-01 + 1.6108000e+03 3.3332051e-01 + 1.6112000e+03 2.5332051e-01 + 1.6116000e+03 1.3320513e-02 + 1.6120000e+03 -4.8667949e-01 + 1.6124000e+03 -1.1566795e+00 + 1.6128000e+03 -1.2266795e+00 + 1.6132000e+03 -1.4866795e+00 + 1.6136000e+03 -2.1966795e+00 + 1.6140000e+03 -2.6066795e+00 + 1.6144000e+03 -2.5866795e+00 + 1.6148000e+03 -2.2066795e+00 + 1.6152000e+03 -1.4466795e+00 + 1.6156000e+03 -1.3666795e+00 + 1.6160000e+03 -1.3866795e+00 + 1.6164000e+03 -1.4566795e+00 + 1.6168000e+03 -1.5066795e+00 + 1.6172000e+03 -1.5866795e+00 + 1.6176000e+03 -1.1766795e+00 + 1.6180000e+03 -6.2667949e-01 + 1.6184000e+03 -2.2667949e-01 + 1.6188000e+03 2.2332051e-01 + 1.6192000e+03 6.0332051e-01 + 1.6196000e+03 1.0833205e+00 + 1.6200000e+03 1.5533205e+00 + 1.6204000e+03 1.8033205e+00 + 1.6208000e+03 1.2933205e+00 + 1.6212000e+03 9.1332051e-01 + 1.6216000e+03 5.5332051e-01 + 1.6220000e+03 3.4332051e-01 + 1.6224000e+03 -1.5667949e-01 + 1.6228000e+03 -3.7667949e-01 + 1.6232000e+03 -3.7667949e-01 + 1.6236000e+03 -3.7667949e-01 + 1.6240000e+03 -3.7667949e-01 + 1.6244000e+03 -7.7667949e-01 + 1.6248000e+03 -1.2566795e+00 + 1.6252000e+03 -1.0366795e+00 + 1.6256000e+03 -5.3667949e-01 + 1.6260000e+03 -1.7667949e-01 + 1.6264000e+03 2.4332051e-01 + 1.6268000e+03 5.5332051e-01 + 1.6272000e+03 8.6332051e-01 + 1.6276000e+03 1.1833205e+00 + 1.6280000e+03 1.2933205e+00 + 1.6284000e+03 1.5033205e+00 + 1.6288000e+03 1.5933205e+00 + 1.6292000e+03 1.6633205e+00 + 1.6296000e+03 1.3433205e+00 + 1.6300000e+03 9.1332051e-01 + 1.6304000e+03 6.3332051e-01 + 1.6308000e+03 3.8332051e-01 + 1.6312000e+03 2.1332051e-01 + 1.6316000e+03 -2.0667949e-01 + 1.6320000e+03 -3.2667949e-01 + 1.6324000e+03 -3.9667949e-01 + 1.6328000e+03 -2.4566795e+00 + 1.6332000e+03 -3.0366795e+00 + 1.6336000e+03 -3.2066795e+00 + 1.6340000e+03 -3.3566795e+00 + 1.6344000e+03 -3.4566795e+00 + 1.6348000e+03 -3.5066795e+00 + 1.6352000e+03 -3.5066795e+00 + 1.6356000e+03 -3.5466795e+00 + 1.6360000e+03 -3.4666795e+00 + 1.6364000e+03 -2.7566795e+00 + 1.6368000e+03 -2.5566795e+00 + 1.6372000e+03 -2.5566795e+00 + 1.6376000e+03 -2.5566795e+00 + 1.6380000e+03 -2.5566795e+00 + 1.6384000e+03 -2.5466795e+00 + 1.6388000e+03 -2.5566795e+00 + 1.6392000e+03 -2.5466795e+00 + 1.6396000e+03 -2.5466795e+00 + 1.6400000e+03 -1.2466795e+00 + 1.6404000e+03 2.5133205e+00 + 1.6408000e+03 2.1733205e+00 + 1.6412000e+03 2.0033205e+00 + 1.6416000e+03 1.4733205e+00 + 1.6420000e+03 9.5332051e-01 + 1.6424000e+03 8.6332051e-01 + 1.6428000e+03 8.6332051e-01 + 1.6432000e+03 8.6332051e-01 + 1.6436000e+03 8.6332051e-01 + 1.6440000e+03 8.6332051e-01 + 1.6444000e+03 8.6332051e-01 + 1.6448000e+03 8.5332051e-01 + 1.6452000e+03 8.5332051e-01 + 1.6456000e+03 -1.3766795e+00 + 1.6460000e+03 -1.8766795e+00 + 1.6464000e+03 -1.6066795e+00 + 1.6468000e+03 -1.0066795e+00 + 1.6472000e+03 -9.6667949e-01 + 1.6476000e+03 -9.6667949e-01 + 1.6480000e+03 -9.6667949e-01 + 1.6484000e+03 -5.8667949e-01 + 1.6488000e+03 2.5833205e+00 + 1.6492000e+03 2.8033205e+00 + 1.6496000e+03 2.7233205e+00 + 1.6500000e+03 2.9233205e+00 + 1.6504000e+03 2.7033205e+00 + 1.6508000e+03 2.6433205e+00 + 1.6512000e+03 5.7332051e-01 + 1.6516000e+03 -9.7667949e-01 + 1.6520000e+03 -1.0566795e+00 + 1.6524000e+03 -1.0566795e+00 + 1.6528000e+03 -1.0466795e+00 + 1.6532000e+03 -1.0466795e+00 + 1.6536000e+03 -1.0466795e+00 + 1.6540000e+03 -3.9566795e+00 + 1.6544000e+03 -3.8866795e+00 + 1.6548000e+03 -3.2566795e+00 + 1.6552000e+03 -2.6166795e+00 + 1.6556000e+03 -1.8366795e+00 + 1.6560000e+03 -8.5667949e-01 + 1.6564000e+03 4.2332051e-01 + 1.6568000e+03 1.3033205e+00 + 1.6572000e+03 1.4533205e+00 + 1.6576000e+03 1.7133205e+00 + 1.6580000e+03 1.8033205e+00 + 1.6584000e+03 1.7933205e+00 + 1.6588000e+03 1.8033205e+00 + 1.6592000e+03 1.4533205e+00 + 1.6596000e+03 9.7332051e-01 + 1.6600000e+03 6.0332051e-01 + 1.6604000e+03 5.9332051e-01 + 1.6608000e+03 5.9332051e-01 + 1.6612000e+03 5.9332051e-01 + 1.6616000e+03 5.9332051e-01 + 1.6620000e+03 5.9332051e-01 + 1.6624000e+03 5.9332051e-01 + 1.6628000e+03 5.9332051e-01 + 1.6632000e+03 -2.5667949e-01 + 1.6636000e+03 -1.8066795e+00 + 1.6640000e+03 -1.7266795e+00 + 1.6644000e+03 -1.7266795e+00 + 1.6648000e+03 -1.6766795e+00 + 1.6652000e+03 -1.3766795e+00 + 1.6656000e+03 -1.2766795e+00 + 1.6660000e+03 -1.2666795e+00 + 1.6664000e+03 -1.2666795e+00 + 1.6668000e+03 -1.2666795e+00 + 1.6672000e+03 2.3233205e+00 + 1.6676000e+03 3.4433205e+00 + 1.6680000e+03 3.2133205e+00 + 1.6684000e+03 2.8933205e+00 + 1.6688000e+03 2.0733205e+00 + 1.6692000e+03 1.9633205e+00 + 1.6696000e+03 1.5332051e-01 + 1.6700000e+03 -1.7266795e+00 + 1.6704000e+03 -2.4866795e+00 + 1.6708000e+03 -2.7466795e+00 + 1.6712000e+03 -3.2166795e+00 + 1.6716000e+03 -3.6966795e+00 + 1.6720000e+03 -3.8966795e+00 + 1.6724000e+03 -3.8366795e+00 + 1.6728000e+03 -3.5166795e+00 + 1.6732000e+03 -3.4866795e+00 + 1.6736000e+03 -3.3866795e+00 + 1.6740000e+03 -3.3666795e+00 + 1.6744000e+03 -1.3566795e+00 + 1.6748000e+03 -7.6667949e-01 + 1.6752000e+03 -5.8667949e-01 + 1.6756000e+03 -7.6679487e-02 + 1.6760000e+03 6.3332051e-01 + 1.6764000e+03 1.3633205e+00 + 1.6768000e+03 1.5733205e+00 + 1.6772000e+03 1.8633205e+00 + 1.6776000e+03 2.0333205e+00 + 1.6780000e+03 1.8433205e+00 + 1.6784000e+03 1.2833205e+00 + 1.6788000e+03 7.0332051e-01 + 1.6792000e+03 5.3332051e-01 + 1.6796000e+03 2.9332051e-01 + 1.6800000e+03 1.8332051e-01 + 1.6804000e+03 -4.1667949e-01 + 1.6808000e+03 -1.1966795e+00 + 1.6812000e+03 -1.5066795e+00 + 1.6816000e+03 -1.5166795e+00 + 1.6820000e+03 -1.9766795e+00 + 1.6824000e+03 -2.3066795e+00 + 1.6828000e+03 -2.1266795e+00 + 1.6832000e+03 -1.5966795e+00 + 1.6836000e+03 -8.9667949e-01 + 1.6840000e+03 -5.4667949e-01 + 1.6844000e+03 -5.8667949e-01 + 1.6848000e+03 -6.5667949e-01 + 1.6852000e+03 -1.1366795e+00 + 1.6856000e+03 -1.4466795e+00 + 1.6860000e+03 -1.3266795e+00 + 1.6864000e+03 -7.3667949e-01 + 1.6868000e+03 -1.5667949e-01 + 1.6872000e+03 1.7332051e-01 + 1.6876000e+03 1.0333205e+00 + 1.6880000e+03 1.9333205e+00 + 1.6884000e+03 2.7333205e+00 + 1.6888000e+03 3.3033205e+00 + 1.6892000e+03 4.0933205e+00 + 1.6896000e+03 3.8333205e+00 + 1.6900000e+03 2.5733205e+00 + 1.6904000e+03 1.2033205e+00 + 1.6908000e+03 4.4332051e-01 + 1.6912000e+03 -1.1666795e+00 + 1.6916000e+03 -1.9066795e+00 + 1.6920000e+03 -2.2466795e+00 + 1.6924000e+03 -2.4466795e+00 + 1.6928000e+03 -2.6766795e+00 + 1.6932000e+03 -2.9466795e+00 + 1.6936000e+03 -3.0366795e+00 + 1.6940000e+03 -2.7866795e+00 + 1.6944000e+03 -2.5066795e+00 + 1.6948000e+03 -2.4466795e+00 + 1.6952000e+03 -2.1266795e+00 + 1.6956000e+03 -1.9166795e+00 + 1.6960000e+03 -1.6266795e+00 + 1.6964000e+03 -1.3366795e+00 + 1.6968000e+03 -8.0667949e-01 + 1.6972000e+03 -1.6679487e-02 + 1.6976000e+03 6.5332051e-01 + 1.6980000e+03 1.0833205e+00 + 1.6984000e+03 1.6733205e+00 + 1.6988000e+03 2.6433205e+00 + 1.6992000e+03 2.5433205e+00 + 1.6996000e+03 1.4333205e+00 + 1.7000000e+03 -6.6794872e-03 + 1.7004000e+03 -6.0667949e-01 + 1.7008000e+03 -8.0667949e-01 + 1.7012000e+03 -7.6667949e-01 + 1.7016000e+03 -6.9667949e-01 + 1.7020000e+03 -4.9667949e-01 + 1.7024000e+03 -3.9667949e-01 + 1.7028000e+03 -4.1667949e-01 + 1.7032000e+03 -4.6667949e-01 + 1.7036000e+03 -7.2667949e-01 + 1.7040000e+03 -1.1166795e+00 + 1.7044000e+03 -1.4166795e+00 + 1.7048000e+03 -2.1766795e+00 + 1.7052000e+03 -2.8866795e+00 + 1.7056000e+03 -3.3666795e+00 + 1.7060000e+03 -3.3666795e+00 + 1.7064000e+03 -3.0166795e+00 + 1.7068000e+03 -2.9166795e+00 + 1.7072000e+03 -1.9766795e+00 + 1.7076000e+03 -1.1566795e+00 + 1.7080000e+03 2.9332051e-01 + 1.7084000e+03 1.1533205e+00 + 1.7088000e+03 1.6933205e+00 + 1.7092000e+03 2.5133205e+00 + 1.7096000e+03 3.3333205e+00 + 1.7100000e+03 3.6633205e+00 + 1.7104000e+03 3.5533205e+00 + 1.7108000e+03 3.1233205e+00 + 1.7112000e+03 2.6933205e+00 + 1.7116000e+03 1.7133205e+00 + 1.7120000e+03 5.3332051e-01 + 1.7124000e+03 -3.5667949e-01 + 1.7128000e+03 -7.3667949e-01 + 1.7132000e+03 -7.6667949e-01 + 1.7136000e+03 -2.1666795e+00 + 1.7140000e+03 -2.5366795e+00 + 1.7144000e+03 -2.2566795e+00 + 1.7148000e+03 -2.2866795e+00 + 1.7152000e+03 -2.5666795e+00 + 1.7156000e+03 -2.8466795e+00 + 1.7160000e+03 -2.9566795e+00 + 1.7164000e+03 -2.9166795e+00 + 1.7168000e+03 -2.5866795e+00 + 1.7172000e+03 -2.4766795e+00 + 1.7176000e+03 -2.4766795e+00 + 1.7180000e+03 -1.0566795e+00 + 1.7184000e+03 -2.1667949e-01 + 1.7188000e+03 1.6332051e-01 + 1.7192000e+03 1.8332051e-01 + 1.7196000e+03 1.8332051e-01 + 1.7200000e+03 1.3733205e+00 + 1.7204000e+03 1.9833205e+00 + 1.7208000e+03 1.5733205e+00 + 1.7212000e+03 1.4033205e+00 + 1.7216000e+03 1.3933205e+00 + 1.7220000e+03 1.3933205e+00 + 1.7224000e+03 1.3933205e+00 + 1.7228000e+03 1.3933205e+00 + 1.7232000e+03 1.3933205e+00 + 1.7236000e+03 1.3233205e+00 + 1.7240000e+03 -1.9966795e+00 + 1.7244000e+03 -1.7866795e+00 + 1.7248000e+03 -1.2366795e+00 + 1.7252000e+03 -1.0966795e+00 + 1.7256000e+03 -9.4667949e-01 + 1.7260000e+03 -6.9667949e-01 + 1.7264000e+03 -5.3667949e-01 + 1.7268000e+03 -5.3667949e-01 + 1.7272000e+03 -8.1667949e-01 + 1.7276000e+03 -1.1166795e+00 + 1.7280000e+03 -1.2266795e+00 + 1.7284000e+03 -7.4667949e-01 + 1.7288000e+03 -1.3667949e-01 + 1.7292000e+03 3.2332051e-01 + 1.7296000e+03 1.2433205e+00 + 1.7300000e+03 1.5033205e+00 + 1.7304000e+03 1.6933205e+00 + 1.7308000e+03 1.8233205e+00 + 1.7312000e+03 1.8933205e+00 + 1.7316000e+03 1.8833205e+00 + 1.7320000e+03 1.6833205e+00 + 1.7324000e+03 1.2733205e+00 + 1.7328000e+03 1.2333205e+00 + 1.7332000e+03 1.2133205e+00 + 1.7336000e+03 2.0332051e-01 + 1.7340000e+03 -1.9667949e-01 + 1.7344000e+03 -6.7667949e-01 + 1.7348000e+03 -8.6667949e-01 + 1.7352000e+03 -9.0667949e-01 + 1.7356000e+03 -1.6066795e+00 + 1.7360000e+03 -2.1066795e+00 + 1.7364000e+03 -2.1966795e+00 + 1.7368000e+03 -2.2266795e+00 + 1.7372000e+03 -2.3766795e+00 + 1.7376000e+03 -2.4266795e+00 + 1.7380000e+03 -2.4766795e+00 + 1.7384000e+03 -2.3366795e+00 + 1.7388000e+03 -1.7966795e+00 + 1.7392000e+03 -1.1566795e+00 + 1.7396000e+03 -6.6667949e-01 + 1.7400000e+03 -1.1667949e-01 + 1.7404000e+03 9.3320513e-02 + 1.7408000e+03 -1.2667949e-01 + 1.7412000e+03 -4.8667949e-01 + 1.7416000e+03 -4.4667949e-01 + 1.7420000e+03 -2.7667949e-01 + 1.7424000e+03 -2.1667949e-01 + 1.7428000e+03 -3.4667949e-01 + 1.7432000e+03 -8.1667949e-01 + 1.7436000e+03 -1.0666795e+00 + 1.7440000e+03 -1.1366795e+00 + 1.7444000e+03 -1.0866795e+00 + 1.7448000e+03 -5.3667949e-01 + 1.7452000e+03 8.3320513e-02 + 1.7456000e+03 6.3332051e-01 + 1.7460000e+03 9.9332051e-01 + 1.7464000e+03 1.2733205e+00 + 1.7468000e+03 1.4933205e+00 + 1.7472000e+03 1.5533205e+00 + 1.7476000e+03 1.2533205e+00 + 1.7480000e+03 6.5332051e-01 + 1.7484000e+03 -1.6679487e-02 + 1.7488000e+03 -5.5667949e-01 + 1.7492000e+03 -7.4667949e-01 + 1.7496000e+03 -7.2667949e-01 + 1.7500000e+03 -4.7667949e-01 + 1.7504000e+03 -4.4667949e-01 + 1.7508000e+03 -5.4667949e-01 + 1.7512000e+03 -1.0666795e+00 + 1.7516000e+03 -1.3166795e+00 + 1.7520000e+03 -1.0766795e+00 + 1.7524000e+03 -8.5667949e-01 + 1.7528000e+03 -7.6667949e-01 + 1.7532000e+03 -9.0667949e-01 + 1.7536000e+03 -1.1066795e+00 + 1.7540000e+03 -1.0266795e+00 + 1.7544000e+03 -8.5667949e-01 + 1.7548000e+03 -4.2667949e-01 + 1.7552000e+03 -9.6679487e-02 + 1.7556000e+03 2.3320513e-02 + 1.7560000e+03 3.3320513e-02 + 1.7564000e+03 8.2332051e-01 + 1.7568000e+03 1.0933205e+00 + 1.7572000e+03 8.4332051e-01 + 1.7576000e+03 3.4332051e-01 + 1.7580000e+03 -2.4667949e-01 + 1.7584000e+03 -7.7667949e-01 + 1.7588000e+03 -8.0667949e-01 + 1.7592000e+03 -8.0667949e-01 + 1.7596000e+03 -8.0667949e-01 + 1.7600000e+03 -2.3566795e+00 + 1.7604000e+03 -2.7366795e+00 + 1.7608000e+03 -2.6766795e+00 + 1.7612000e+03 -2.5866795e+00 + 1.7616000e+03 -2.4266795e+00 + 1.7620000e+03 -2.2966795e+00 + 1.7624000e+03 -2.0466795e+00 + 1.7628000e+03 -1.6666795e+00 + 1.7632000e+03 -1.6166795e+00 + 1.7636000e+03 -1.6166795e+00 + 1.7640000e+03 -1.6166795e+00 + 1.7644000e+03 -1.6166795e+00 + 1.7648000e+03 6.6332051e-01 + 1.7652000e+03 1.5533205e+00 + 1.7656000e+03 1.9333205e+00 + 1.7660000e+03 1.8933205e+00 + 1.7664000e+03 1.8833205e+00 + 1.7668000e+03 2.1233205e+00 + 1.7672000e+03 2.1833205e+00 + 1.7676000e+03 1.7633205e+00 + 1.7680000e+03 1.6533205e+00 + 1.7684000e+03 8.6332051e-01 + 1.7688000e+03 5.8332051e-01 + 1.7692000e+03 5.8332051e-01 + 1.7696000e+03 5.8332051e-01 + 1.7700000e+03 5.8332051e-01 + 1.7704000e+03 -2.0166795e+00 + 1.7708000e+03 -2.7266795e+00 + 1.7712000e+03 -2.8666795e+00 + 1.7716000e+03 -2.7366795e+00 + 1.7720000e+03 -2.3266795e+00 + 1.7724000e+03 -1.8566795e+00 + 1.7728000e+03 -1.5366795e+00 + 1.7732000e+03 -1.1966795e+00 + 1.7736000e+03 -6.5667949e-01 + 1.7740000e+03 5.0332051e-01 + 1.7744000e+03 6.0332051e-01 + 1.7748000e+03 6.0332051e-01 + 1.7752000e+03 7.4332051e-01 + 1.7756000e+03 1.4433205e+00 + 1.7760000e+03 1.1933205e+00 + 1.7764000e+03 5.0332051e-01 + 1.7768000e+03 2.2332051e-01 + 1.7772000e+03 -1.1166795e+00 + 1.7776000e+03 -1.3466795e+00 + 1.7780000e+03 -1.5466795e+00 + 1.7784000e+03 -2.1966795e+00 + 1.7788000e+03 -2.2266795e+00 + 1.7792000e+03 -2.2266795e+00 + 1.7796000e+03 -2.2266795e+00 + 1.7800000e+03 -2.2166795e+00 + 1.7804000e+03 -2.3566795e+00 + 1.7808000e+03 -2.4566795e+00 + 1.7812000e+03 -2.3866795e+00 + 1.7816000e+03 -2.1266795e+00 + 1.7820000e+03 -1.7066795e+00 + 1.7824000e+03 -1.4566795e+00 + 1.7828000e+03 -1.4466795e+00 + 1.7832000e+03 -1.4466795e+00 + 1.7836000e+03 -1.4466795e+00 + 1.7840000e+03 2.3733205e+00 + 1.7844000e+03 2.8533205e+00 + 1.7848000e+03 2.2533205e+00 + 1.7852000e+03 1.6733205e+00 + 1.7856000e+03 1.3033205e+00 + 1.7860000e+03 7.9332051e-01 + 1.7864000e+03 6.1332051e-01 + 1.7868000e+03 -5.6679487e-02 + 1.7872000e+03 -1.9667949e-01 + 1.7876000e+03 -1.9667949e-01 + 1.7880000e+03 -4.4667949e-01 + 1.7884000e+03 -1.5366795e+00 + 1.7888000e+03 -1.9066795e+00 + 1.7892000e+03 -1.4666795e+00 + 1.7896000e+03 -9.0667949e-01 + 1.7900000e+03 -2.8667949e-01 + 1.7904000e+03 7.3320513e-02 + 1.7908000e+03 -2.2667949e-01 + 1.7912000e+03 -3.8667949e-01 + 1.7916000e+03 -5.9667949e-01 + 1.7920000e+03 -6.6667949e-01 + 1.7924000e+03 -9.2667949e-01 + 1.7928000e+03 -1.0266795e+00 + 1.7932000e+03 -7.9667949e-01 + 1.7936000e+03 -6.0667949e-01 + 1.7940000e+03 -7.4667949e-01 + 1.7944000e+03 -9.7667949e-01 + 1.7948000e+03 -1.0466795e+00 + 1.7952000e+03 -1.1766795e+00 + 1.7956000e+03 -1.2266795e+00 + 1.7960000e+03 -1.1166795e+00 + 1.7964000e+03 -1.0566795e+00 + 1.7968000e+03 -8.6667949e-01 + 1.7972000e+03 -5.8667949e-01 + 1.7976000e+03 -2.4667949e-01 + 1.7980000e+03 9.3320513e-02 + 1.7984000e+03 -1.2667949e-01 + 1.7988000e+03 -4.6667949e-01 + 1.7992000e+03 -6.3667949e-01 + 1.7996000e+03 -3.1667949e-01 + 1.8000000e+03 -1.2667949e-01 + 1.8004000e+03 -1.4667949e-01 + 1.8008000e+03 -4.6667949e-01 + 1.8012000e+03 -9.2667949e-01 + 1.8016000e+03 -1.3066795e+00 + 1.8020000e+03 -1.3266795e+00 + 1.8024000e+03 -1.2066795e+00 + 1.8028000e+03 -1.0966795e+00 + 1.8032000e+03 -9.4667949e-01 + 1.8036000e+03 -5.6667949e-01 + 1.8040000e+03 -4.0667949e-01 + 1.8044000e+03 -2.9667949e-01 + 1.8048000e+03 -8.6679487e-02 + 1.8052000e+03 -5.6679487e-02 + 1.8056000e+03 -1.4667949e-01 + 1.8060000e+03 -3.4667949e-01 + 1.8064000e+03 -2.8667949e-01 + 1.8068000e+03 -1.2667949e-01 + 1.8072000e+03 2.9332051e-01 + 1.8076000e+03 7.9332051e-01 + 1.8080000e+03 1.8833205e+00 + 1.8084000e+03 2.4733205e+00 + 1.8088000e+03 1.6133205e+00 + 1.8092000e+03 8.0332051e-01 + 1.8096000e+03 4.1332051e-01 + 1.8100000e+03 -9.9667949e-01 + 1.8104000e+03 -1.6666795e+00 + 1.8108000e+03 -1.9566795e+00 + 1.8112000e+03 -2.1466795e+00 + 1.8116000e+03 -2.1966795e+00 + 1.8120000e+03 -2.0066795e+00 + 1.8124000e+03 -1.6466795e+00 + 1.8128000e+03 -1.2266795e+00 + 1.8132000e+03 -7.9667949e-01 + 1.8136000e+03 -1.9667949e-01 + 1.8140000e+03 1.5332051e-01 + 1.8144000e+03 1.4332051e-01 + 1.8148000e+03 2.1332051e-01 + 1.8152000e+03 3.6332051e-01 + 1.8156000e+03 1.8332051e-01 + 1.8160000e+03 4.3320513e-02 + 1.8164000e+03 -1.1667949e-01 + 1.8168000e+03 -7.6679487e-02 + 1.8172000e+03 -4.0667949e-01 + 1.8176000e+03 -1.0566795e+00 + 1.8180000e+03 -1.6366795e+00 + 1.8184000e+03 -1.7466795e+00 + 1.8188000e+03 -1.6266795e+00 + 1.8192000e+03 -1.0666795e+00 + 1.8196000e+03 -5.4667949e-01 + 1.8200000e+03 -1.6667949e-01 + 1.8204000e+03 1.3633205e+00 + 1.8208000e+03 1.1233205e+00 + 1.8212000e+03 6.2332051e-01 + 1.8216000e+03 2.1332051e-01 + 1.8220000e+03 3.3205128e-03 + 1.8224000e+03 -4.6679487e-02 + 1.8228000e+03 -1.3667949e-01 + 1.8232000e+03 -2.7667949e-01 + 1.8236000e+03 -2.8667949e-01 + 1.8240000e+03 -5.3667949e-01 + 1.8244000e+03 -2.2466795e+00 + 1.8248000e+03 -2.3566795e+00 + 1.8252000e+03 -2.3566795e+00 + 1.8256000e+03 -2.8466795e+00 + 1.8260000e+03 -2.4466795e+00 + 1.8264000e+03 -2.0066795e+00 + 1.8268000e+03 -1.9466795e+00 + 1.8272000e+03 -1.7566795e+00 + 1.8276000e+03 -9.4667949e-01 + 1.8280000e+03 -7.9667949e-01 + 1.8284000e+03 3.5332051e-01 + 1.8288000e+03 3.1533205e+00 + 1.8292000e+03 3.5733205e+00 + 1.8296000e+03 3.6033205e+00 + 1.8300000e+03 3.6933205e+00 + 1.8304000e+03 3.3033205e+00 + 1.8308000e+03 2.7133205e+00 + 1.8312000e+03 2.0733205e+00 + 1.8316000e+03 2.0033205e+00 + 1.8320000e+03 2.0133205e+00 + 1.8324000e+03 2.0133205e+00 + 1.8328000e+03 2.0133205e+00 + 1.8332000e+03 2.0033205e+00 + 1.8336000e+03 2.0033205e+00 + 1.8340000e+03 2.0033205e+00 + 1.8344000e+03 2.0033205e+00 + 1.8348000e+03 2.0033205e+00 + 1.8352000e+03 1.9933205e+00 + 1.8356000e+03 -1.0266795e+00 + 1.8360000e+03 -1.8566795e+00 + 1.8364000e+03 -1.5366795e+00 + 1.8368000e+03 -7.4667949e-01 + 1.8372000e+03 -6.1667949e-01 + 1.8376000e+03 -6.0667949e-01 + 1.8380000e+03 -6.0667949e-01 + 1.8384000e+03 3.9332051e-01 + 1.8388000e+03 3.7033205e+00 + 1.8392000e+03 3.7433205e+00 + 1.8396000e+03 3.7333205e+00 + 1.8400000e+03 3.7333205e+00 + 1.8404000e+03 3.7333205e+00 + 1.8408000e+03 3.7233205e+00 + 1.8412000e+03 3.7233205e+00 + 1.8416000e+03 3.6433205e+00 + 1.8420000e+03 -2.9266795e+00 + 1.8424000e+03 -3.8266795e+00 + 1.8428000e+03 -3.8666795e+00 + 1.8432000e+03 -3.7966795e+00 + 1.8436000e+03 -3.9666795e+00 + 1.8440000e+03 -4.0566795e+00 + 1.8444000e+03 -3.7066795e+00 + 1.8448000e+03 -3.1166795e+00 + 1.8452000e+03 -2.9966795e+00 + 1.8456000e+03 -2.9966795e+00 + 1.8460000e+03 -2.9866795e+00 + 1.8464000e+03 -2.9266795e+00 + 1.8468000e+03 1.8233205e+00 + 1.8472000e+03 3.1433205e+00 + 1.8476000e+03 3.5033205e+00 + 1.8480000e+03 3.7633205e+00 + 1.8484000e+03 3.8633205e+00 + 1.8488000e+03 3.7533205e+00 + 1.8492000e+03 3.5133205e+00 + 1.8496000e+03 3.4933205e+00 + 1.8500000e+03 1.2033205e+00 + 1.8504000e+03 4.5332051e-01 + 1.8508000e+03 4.2332051e-01 + 1.8512000e+03 4.2332051e-01 + 1.8516000e+03 4.2332051e-01 + 1.8520000e+03 4.3332051e-01 + 1.8524000e+03 4.3332051e-01 + 1.8528000e+03 4.3332051e-01 + 1.8532000e+03 4.3332051e-01 + 1.8536000e+03 4.0332051e-01 + 1.8540000e+03 -2.1366795e+00 + 1.8544000e+03 -1.8166795e+00 + 1.8548000e+03 -9.0667949e-01 + 1.8552000e+03 -6.1667949e-01 + 1.8556000e+03 -1.9667949e-01 + 1.8560000e+03 2.4332051e-01 + 1.8564000e+03 5.8332051e-01 + 1.8568000e+03 9.7332051e-01 + 1.8572000e+03 1.0933205e+00 + 1.8576000e+03 1.0833205e+00 + 1.8580000e+03 7.0332051e-01 + 1.8584000e+03 5.2332051e-01 + 1.8588000e+03 1.1332051e-01 + 1.8592000e+03 -2.3667949e-01 + 1.8596000e+03 -3.6679487e-02 + 1.8600000e+03 4.3320513e-02 + 1.8604000e+03 -3.4667949e-01 + 1.8608000e+03 -3.6667949e-01 + 1.8612000e+03 -5.7667949e-01 + 1.8616000e+03 -1.7266795e+00 + 1.8620000e+03 -1.5366795e+00 + 1.8624000e+03 -1.1966795e+00 + 1.8628000e+03 -7.6667949e-01 + 1.8632000e+03 -2.2667949e-01 + 1.8636000e+03 5.3320513e-02 + 1.8640000e+03 7.9332051e-01 + 1.8644000e+03 9.1332051e-01 + 1.8648000e+03 4.7332051e-01 + 1.8652000e+03 -1.5667949e-01 + 1.8656000e+03 -9.4667949e-01 + 1.8660000e+03 -1.2266795e+00 + 1.8664000e+03 -1.3166795e+00 + 1.8668000e+03 -1.5866795e+00 + 1.8672000e+03 -1.8266795e+00 + 1.8676000e+03 -2.2066795e+00 + 1.8680000e+03 -2.3866795e+00 + 1.8684000e+03 -2.2566795e+00 + 1.8688000e+03 -1.9566795e+00 + 1.8692000e+03 -1.5866795e+00 + 1.8696000e+03 -9.1667949e-01 + 1.8700000e+03 4.4332051e-01 + 1.8704000e+03 1.4833205e+00 + 1.8708000e+03 2.1333205e+00 + 1.8712000e+03 2.8433205e+00 + 1.8716000e+03 2.5933205e+00 + 1.8720000e+03 2.3533205e+00 + 1.8724000e+03 2.2033205e+00 + 1.8728000e+03 1.7233205e+00 + 1.8732000e+03 8.0332051e-01 + 1.8736000e+03 -1.6667949e-01 + 1.8740000e+03 -6.6667949e-01 + 1.8744000e+03 -1.2066795e+00 + 1.8748000e+03 -1.2766795e+00 + 1.8752000e+03 -7.7667949e-01 + 1.8756000e+03 -9.4667949e-01 + 1.8760000e+03 -1.3766795e+00 + 1.8764000e+03 -2.1466795e+00 + 1.8768000e+03 -2.9566795e+00 + 1.8772000e+03 -3.5066795e+00 + 1.8776000e+03 -3.7766795e+00 + 1.8780000e+03 -3.4766795e+00 + 1.8784000e+03 -2.9166795e+00 + 1.8788000e+03 -1.5366795e+00 + 1.8792000e+03 -3.0667949e-01 + 1.8796000e+03 7.3332051e-01 + 1.8800000e+03 1.6633205e+00 + 1.8804000e+03 2.2333205e+00 + 1.8808000e+03 2.0033205e+00 + 1.8812000e+03 1.8433205e+00 + 1.8816000e+03 1.5433205e+00 + 1.8820000e+03 1.4033205e+00 + 1.8824000e+03 1.4233205e+00 + 1.8828000e+03 1.9133205e+00 + 1.8832000e+03 2.0933205e+00 + 1.8836000e+03 2.1333205e+00 + 1.8840000e+03 1.3033205e+00 + 1.8844000e+03 2.9332051e-01 + 1.8848000e+03 -6.4667949e-01 + 1.8852000e+03 -1.2266795e+00 + 1.8856000e+03 -1.8166795e+00 + 1.8860000e+03 -2.1266795e+00 + 1.8864000e+03 -2.8466795e+00 + 1.8868000e+03 -3.2766795e+00 + 1.8872000e+03 -3.3566795e+00 + 1.8876000e+03 -3.0466795e+00 + 1.8880000e+03 -2.6366795e+00 + 1.8884000e+03 -2.5166795e+00 + 1.8888000e+03 -1.5766795e+00 + 1.8892000e+03 -1.2366795e+00 + 1.8896000e+03 -9.2667949e-01 + 1.8900000e+03 -3.5667949e-01 + 1.8904000e+03 2.3332051e-01 + 1.8908000e+03 1.0133205e+00 + 1.8912000e+03 1.6833205e+00 + 1.8916000e+03 2.1933205e+00 + 1.8920000e+03 2.1933205e+00 + 1.8924000e+03 1.7233205e+00 + 1.8928000e+03 1.2733205e+00 + 1.8932000e+03 5.2332051e-01 + 1.8936000e+03 -6.6794872e-03 + 1.8940000e+03 -2.8667949e-01 + 1.8944000e+03 -5.1667949e-01 + 1.8948000e+03 -8.7667949e-01 + 1.8952000e+03 -1.0666795e+00 + 1.8956000e+03 -1.3666795e+00 + 1.8960000e+03 -1.6366795e+00 + 1.8964000e+03 -1.7666795e+00 + 1.8968000e+03 -1.8166795e+00 + 1.8972000e+03 -1.9266795e+00 + 1.8976000e+03 -1.8066795e+00 + 1.8980000e+03 -1.4866795e+00 + 1.8984000e+03 -1.3766795e+00 + 1.8988000e+03 -1.0666795e+00 + 1.8992000e+03 -1.5066795e+00 + 1.8996000e+03 -1.3666795e+00 + 1.9000000e+03 -1.1566795e+00 + 1.9004000e+03 -1.1566795e+00 + 1.9008000e+03 -1.0366795e+00 + 1.9012000e+03 -8.1667949e-01 + 1.9016000e+03 -3.3667949e-01 + 1.9020000e+03 -1.0667949e-01 + 1.9024000e+03 -1.0667949e-01 + 1.9028000e+03 -9.6679487e-02 + 1.9032000e+03 -1.0667949e-01 + 1.9036000e+03 6.2332051e-01 + 1.9040000e+03 8.9332051e-01 + 1.9044000e+03 6.5332051e-01 + 1.9048000e+03 4.9332051e-01 + 1.9052000e+03 2.1332051e-01 + 1.9056000e+03 1.1332051e-01 + 1.9060000e+03 1.0332051e-01 + 1.9064000e+03 -1.1266795e+00 + 1.9068000e+03 -2.5866795e+00 + 1.9072000e+03 -2.8166795e+00 + 1.9076000e+03 -2.6166795e+00 + 1.9080000e+03 -2.0266795e+00 + 1.9084000e+03 -1.8366795e+00 + 1.9088000e+03 -1.0667949e-01 + 1.9092000e+03 3.8332051e-01 + 1.9096000e+03 4.0332051e-01 + 1.9100000e+03 4.4332051e-01 + 1.9104000e+03 1.5033205e+00 + 1.9108000e+03 1.0833205e+00 + 1.9112000e+03 4.8332051e-01 + 1.9116000e+03 -3.5667949e-01 + 1.9120000e+03 -1.4466795e+00 + 1.9124000e+03 -1.6366795e+00 + 1.9128000e+03 -1.7166795e+00 + 1.9132000e+03 -2.7466795e+00 + 1.9136000e+03 -3.3166795e+00 + 1.9140000e+03 -2.6466795e+00 + 1.9144000e+03 -1.5866795e+00 + 1.9148000e+03 -4.7667949e-01 + 1.9152000e+03 3.5332051e-01 + 1.9156000e+03 8.2332051e-01 + 1.9160000e+03 9.9332051e-01 + 1.9164000e+03 1.8233205e+00 + 1.9168000e+03 2.1333205e+00 + 1.9172000e+03 1.7133205e+00 + 1.9176000e+03 1.4333205e+00 + 1.9180000e+03 1.2433205e+00 + 1.9184000e+03 7.3320513e-02 + 1.9188000e+03 -2.5667949e-01 + 1.9192000e+03 -9.9667949e-01 + 1.9196000e+03 -1.4466795e+00 + 1.9200000e+03 -1.8166795e+00 + 1.9204000e+03 -1.8966795e+00 + 1.9208000e+03 -1.7866795e+00 + 1.9212000e+03 -1.7566795e+00 + 1.9216000e+03 -1.7166795e+00 + 1.9220000e+03 -1.1066795e+00 + 1.9224000e+03 -8.7667949e-01 + 1.9228000e+03 -6.0667949e-01 + 1.9232000e+03 -2.2667949e-01 + 1.9236000e+03 1.1332051e-01 + 1.9240000e+03 1.9332051e-01 + 1.9244000e+03 3.5332051e-01 + 1.9248000e+03 6.6332051e-01 + 1.9252000e+03 6.1332051e-01 + 1.9256000e+03 3.5332051e-01 + 1.9260000e+03 1.3332051e-01 + 1.9264000e+03 -5.6679487e-02 + 1.9268000e+03 4.3320513e-02 + 1.9272000e+03 1.9332051e-01 + 1.9276000e+03 1.0133205e+00 + 1.9280000e+03 1.6533205e+00 + 1.9284000e+03 1.7633205e+00 + 1.9288000e+03 1.5733205e+00 + 1.9292000e+03 1.1133205e+00 + 1.9296000e+03 3.8332051e-01 + 1.9300000e+03 -3.3667949e-01 + 1.9304000e+03 -1.1366795e+00 + 1.9308000e+03 -1.8066795e+00 + 1.9312000e+03 -2.3166795e+00 + 1.9316000e+03 -2.5466795e+00 + 1.9320000e+03 -2.5966795e+00 + 1.9324000e+03 -3.6066795e+00 + 1.9328000e+03 -3.7366795e+00 + 1.9332000e+03 -3.0566795e+00 + 1.9336000e+03 -2.4466795e+00 + 1.9340000e+03 -1.8266795e+00 + 1.9344000e+03 -1.3766795e+00 + 1.9348000e+03 -9.2667949e-01 + 1.9352000e+03 -7.9667949e-01 + 1.9356000e+03 -7.8667949e-01 + 1.9360000e+03 -7.8667949e-01 + 1.9364000e+03 -7.8667949e-01 + 1.9368000e+03 -7.8667949e-01 + 1.9372000e+03 8.3320513e-02 + 1.9376000e+03 1.1333205e+00 + 1.9380000e+03 1.4033205e+00 + 1.9384000e+03 1.3933205e+00 + 1.9388000e+03 1.3733205e+00 + 1.9392000e+03 1.1533205e+00 + 1.9396000e+03 8.7332051e-01 + 1.9400000e+03 5.8332051e-01 + 1.9404000e+03 9.3320513e-02 + 1.9408000e+03 -9.6679487e-02 + 1.9412000e+03 -1.5667949e-01 + 1.9416000e+03 -1.6667949e-01 + 1.9420000e+03 -1.7667949e-01 + 1.9424000e+03 -1.7667949e-01 + 1.9428000e+03 -1.6667949e-01 + 1.9432000e+03 -1.6667949e-01 + 1.9436000e+03 -1.6667949e-01 + 1.9440000e+03 -9.1667949e-01 + 1.9444000e+03 -2.2366795e+00 + 1.9448000e+03 -1.7266795e+00 + 1.9452000e+03 -1.6266795e+00 + 1.9456000e+03 -1.6266795e+00 + 1.9460000e+03 -1.6266795e+00 + 1.9464000e+03 1.1033205e+00 + 1.9468000e+03 2.1433205e+00 + 1.9472000e+03 2.2433205e+00 + 1.9476000e+03 2.4233205e+00 + 1.9480000e+03 2.3533205e+00 + 1.9484000e+03 2.0833205e+00 + 1.9488000e+03 1.6933205e+00 + 1.9492000e+03 1.3533205e+00 + 1.9496000e+03 9.8332051e-01 + 1.9500000e+03 5.0332051e-01 + 1.9504000e+03 4.8332051e-01 + 1.9508000e+03 -1.9667949e-01 + 1.9512000e+03 -2.6166795e+00 + 1.9516000e+03 -3.0666795e+00 + 1.9520000e+03 -3.3666795e+00 + 1.9524000e+03 -3.6166795e+00 + 1.9528000e+03 -3.8766795e+00 + 1.9532000e+03 -3.9666795e+00 + 1.9536000e+03 -3.7266795e+00 + 1.9540000e+03 -3.6266795e+00 + 1.9544000e+03 -3.6166795e+00 + 1.9548000e+03 -3.6166795e+00 + 1.9552000e+03 -3.6166795e+00 + 1.9556000e+03 -3.6166795e+00 + 1.9560000e+03 -3.6166795e+00 + 1.9564000e+03 -3.6166795e+00 + 1.9568000e+03 -3.4966795e+00 + 1.9572000e+03 1.2733205e+00 + 1.9576000e+03 1.3933205e+00 + 1.9580000e+03 1.5833205e+00 + 1.9584000e+03 1.8933205e+00 + 1.9588000e+03 1.3933205e+00 + 1.9592000e+03 7.6332051e-01 + 1.9596000e+03 2.6332051e-01 + 1.9600000e+03 1.8332051e-01 + 1.9604000e+03 1.8332051e-01 + 1.9608000e+03 -6.6794872e-03 + 1.9612000e+03 -1.2766795e+00 + 1.9616000e+03 -1.4866795e+00 + 1.9620000e+03 -1.7366795e+00 + 1.9624000e+03 -1.7366795e+00 + 1.9628000e+03 -1.5866795e+00 + 1.9632000e+03 -1.3766795e+00 + 1.9636000e+03 -1.1366795e+00 + 1.9640000e+03 -9.4667949e-01 + 1.9644000e+03 -7.9667949e-01 + 1.9648000e+03 -5.9667949e-01 + 1.9652000e+03 -5.6679487e-02 + 1.9656000e+03 4.2332051e-01 + 1.9660000e+03 6.2332051e-01 + 1.9664000e+03 6.5332051e-01 + 1.9668000e+03 6.4332051e-01 + 1.9672000e+03 6.4332051e-01 + 1.9676000e+03 1.0533205e+00 + 1.9680000e+03 1.4533205e+00 + 1.9684000e+03 8.4332051e-01 + 1.9688000e+03 -7.6679487e-02 + 1.9692000e+03 -8.9667949e-01 + 1.9696000e+03 -2.1766795e+00 + 1.9700000e+03 -2.6766795e+00 + 1.9704000e+03 -2.7266795e+00 + 1.9708000e+03 -2.5066795e+00 + 1.9712000e+03 -2.2866795e+00 + 1.9716000e+03 -2.2766795e+00 + 1.9720000e+03 -2.4066795e+00 + 1.9724000e+03 -2.4466795e+00 + 1.9728000e+03 -2.0466795e+00 + 1.9732000e+03 -1.6966795e+00 + 1.9736000e+03 -1.0566795e+00 + 1.9740000e+03 -6.1667949e-01 + 1.9744000e+03 -6.2667949e-01 + 1.9748000e+03 -6.2667949e-01 + 1.9752000e+03 -6.1667949e-01 + 1.9756000e+03 3.6332051e-01 + 1.9760000e+03 8.3332051e-01 + 1.9764000e+03 1.0933205e+00 + 1.9768000e+03 1.3233205e+00 + 1.9772000e+03 1.3233205e+00 + 1.9776000e+03 1.2433205e+00 + 1.9780000e+03 7.1332051e-01 + 1.9784000e+03 9.3320513e-02 + 1.9788000e+03 -1.2667949e-01 + 1.9792000e+03 -1.2667949e-01 + 1.9796000e+03 -1.2667949e-01 + 1.9800000e+03 -3.7667949e-01 + 1.9804000e+03 -2.2166795e+00 + 1.9808000e+03 -2.2466795e+00 + 1.9812000e+03 -2.0866795e+00 + 1.9816000e+03 -1.9066795e+00 + 1.9820000e+03 -1.8966795e+00 + 1.9824000e+03 -1.8966795e+00 + 1.9828000e+03 -1.8966795e+00 + 1.9832000e+03 -1.0466795e+00 + 1.9836000e+03 6.2332051e-01 + 1.9840000e+03 1.1333205e+00 + 1.9844000e+03 1.3033205e+00 + 1.9848000e+03 1.4633205e+00 + 1.9852000e+03 1.3833205e+00 + 1.9856000e+03 1.5533205e+00 + 1.9860000e+03 1.5933205e+00 + 1.9864000e+03 1.5133205e+00 + 1.9868000e+03 1.2233205e+00 + 1.9872000e+03 8.5332051e-01 + 1.9876000e+03 3.2332051e-01 + 1.9880000e+03 2.3320513e-02 + 1.9884000e+03 -4.2667949e-01 + 1.9888000e+03 -3.8667949e-01 + 1.9892000e+03 -3.3667949e-01 + 1.9896000e+03 -5.5667949e-01 + 1.9900000e+03 -1.9866795e+00 + 1.9904000e+03 -2.6366795e+00 + 1.9908000e+03 -3.1566795e+00 + 1.9912000e+03 -3.3866795e+00 + 1.9916000e+03 -3.5866795e+00 + 1.9920000e+03 -3.5166795e+00 + 1.9924000e+03 -2.7766795e+00 + 1.9928000e+03 -1.8566795e+00 + 1.9932000e+03 -8.4667949e-01 + 1.9936000e+03 1.9332051e-01 + 1.9940000e+03 8.4332051e-01 + 1.9944000e+03 9.3332051e-01 + 1.9948000e+03 1.1533205e+00 + 1.9952000e+03 1.1733205e+00 + 1.9956000e+03 9.7332051e-01 + 1.9960000e+03 4.8332051e-01 + 1.9964000e+03 -5.0667949e-01 + 1.9968000e+03 -1.4866795e+00 + 1.9972000e+03 -2.1266795e+00 + 1.9976000e+03 -2.1966795e+00 + 1.9980000e+03 -1.8066795e+00 + 1.9984000e+03 -1.2466795e+00 + 1.9988000e+03 -8.5667949e-01 + 1.9992000e+03 -5.4667949e-01 + 1.9996000e+03 -6.1667949e-01 + 2.0000000e+03 -4.7667949e-01 + 2.0004000e+03 -4.6679487e-02 + 2.0008000e+03 3.6332051e-01 + 2.0012000e+03 7.9332051e-01 + 2.0016000e+03 9.7332051e-01 + 2.0020000e+03 8.0332051e-01 + 2.0024000e+03 7.8332051e-01 + 2.0028000e+03 8.6332051e-01 + 2.0032000e+03 8.9332051e-01 + 2.0036000e+03 1.1633205e+00 + 2.0040000e+03 1.5533205e+00 + 2.0044000e+03 1.8033205e+00 + 2.0048000e+03 1.6433205e+00 + 2.0052000e+03 1.2633205e+00 + 2.0056000e+03 7.1332051e-01 + 2.0060000e+03 5.9332051e-01 + 2.0064000e+03 4.6332051e-01 + 2.0068000e+03 4.4332051e-01 + 2.0072000e+03 -1.1966795e+00 + 2.0076000e+03 -2.0766795e+00 + 2.0080000e+03 -2.3766795e+00 + 2.0084000e+03 -2.3766795e+00 + 2.0088000e+03 -2.3866795e+00 + 2.0092000e+03 -2.2266795e+00 + 2.0096000e+03 -2.1666795e+00 + 2.0100000e+03 -1.9466795e+00 + 2.0104000e+03 -1.1566795e+00 + 2.0108000e+03 -7.4667949e-01 + 2.0112000e+03 -6.5667949e-01 + 2.0116000e+03 -6.4667949e-01 + 2.0120000e+03 1.0733205e+00 + 2.0124000e+03 1.0533205e+00 + 2.0128000e+03 6.0332051e-01 + 2.0132000e+03 -1.6667949e-01 + 2.0136000e+03 -5.4667949e-01 + 2.0140000e+03 -1.3866795e+00 + 2.0144000e+03 -1.7366795e+00 + 2.0148000e+03 -1.8466795e+00 + 2.0152000e+03 -1.5966795e+00 + 2.0156000e+03 -1.1666795e+00 + 2.0160000e+03 -6.0667949e-01 + 2.0164000e+03 -3.8667949e-01 + 2.0168000e+03 -3.9667949e-01 + 2.0172000e+03 -7.8667949e-01 + 2.0176000e+03 -9.6667949e-01 + 2.0180000e+03 -1.2066795e+00 + 2.0184000e+03 -1.1466795e+00 + 2.0188000e+03 -1.2466795e+00 + 2.0192000e+03 -1.4866795e+00 + 2.0196000e+03 -1.7966795e+00 + 2.0200000e+03 -1.8666795e+00 + 2.0204000e+03 -1.6966795e+00 + 2.0208000e+03 -1.2666795e+00 + 2.0212000e+03 -1.0566795e+00 + 2.0216000e+03 -1.0466795e+00 + 2.0220000e+03 -1.0366795e+00 + 2.0224000e+03 3.9332051e-01 + 2.0228000e+03 1.0133205e+00 + 2.0232000e+03 1.7833205e+00 + 2.0236000e+03 2.1733205e+00 + 2.0240000e+03 2.5233205e+00 + 2.0244000e+03 4.0533205e+00 + 2.0248000e+03 3.5133205e+00 + 2.0252000e+03 2.8533205e+00 + 2.0256000e+03 1.4633205e+00 + 2.0260000e+03 4.6332051e-01 + 2.0264000e+03 2.7332051e-01 + 2.0268000e+03 -7.1667949e-01 + 2.0272000e+03 -9.9667949e-01 + 2.0276000e+03 -1.0366795e+00 + 2.0280000e+03 -1.4466795e+00 + 2.0284000e+03 -2.0866795e+00 + 2.0288000e+03 -2.6266795e+00 + 2.0292000e+03 -2.7766795e+00 + 2.0296000e+03 -2.5566795e+00 + 2.0300000e+03 -2.4166795e+00 + 2.0304000e+03 -2.2266795e+00 + 2.0308000e+03 -2.0166795e+00 + 2.0312000e+03 -1.6366795e+00 + 2.0316000e+03 -1.3666795e+00 + 2.0320000e+03 -1.0366795e+00 + 2.0324000e+03 -9.0667949e-01 + 2.0328000e+03 -7.1667949e-01 + 2.0332000e+03 -4.6667949e-01 + 2.0336000e+03 -1.2667949e-01 + 2.0340000e+03 5.3332051e-01 + 2.0344000e+03 9.3332051e-01 + 2.0348000e+03 7.2332051e-01 + 2.0352000e+03 4.0332051e-01 + 2.0356000e+03 8.3320513e-02 + 2.0360000e+03 -7.6679487e-02 + 2.0364000e+03 -2.0667949e-01 + 2.0368000e+03 -2.7667949e-01 + 2.0372000e+03 -2.8667949e-01 + 2.0376000e+03 -1.0466795e+00 + 2.0380000e+03 -1.3866795e+00 + 2.0384000e+03 -1.3966795e+00 + 2.0388000e+03 -1.3866795e+00 + 2.0392000e+03 -1.3866795e+00 + 2.0396000e+03 -1.4766795e+00 + 2.0400000e+03 -1.7566795e+00 + 2.0404000e+03 -8.4667949e-01 + 2.0408000e+03 -6.3667949e-01 + 2.0412000e+03 -6.2667949e-01 + 2.0416000e+03 -6.2667949e-01 + 2.0420000e+03 -6.2667949e-01 + 2.0424000e+03 3.8332051e-01 + 2.0428000e+03 1.7633205e+00 + 2.0432000e+03 1.3033205e+00 + 2.0436000e+03 1.0933205e+00 + 2.0440000e+03 1.1133205e+00 + 2.0444000e+03 1.1233205e+00 + 2.0448000e+03 1.3233205e+00 + 2.0452000e+03 1.0533205e+00 + 2.0456000e+03 4.9332051e-01 + 2.0460000e+03 -3.8667949e-01 + 2.0464000e+03 -9.9667949e-01 + 2.0468000e+03 -1.2766795e+00 + 2.0472000e+03 -1.0466795e+00 + 2.0476000e+03 -6.1667949e-01 + 2.0480000e+03 -3.3667949e-01 + 2.0484000e+03 -2.1667949e-01 + 2.0488000e+03 -4.4667949e-01 + 2.0492000e+03 -4.8667949e-01 + 2.0496000e+03 -2.1667949e-01 + 2.0500000e+03 1.5332051e-01 + 2.0504000e+03 4.6332051e-01 + 2.0508000e+03 3.7332051e-01 + 2.0512000e+03 3.6332051e-01 + 2.0516000e+03 3.5332051e-01 + 2.0520000e+03 1.9332051e-01 + 2.0524000e+03 -4.6667949e-01 + 2.0528000e+03 -9.5667949e-01 + 2.0532000e+03 -8.6667949e-01 + 2.0536000e+03 -1.0366795e+00 + 2.0540000e+03 -1.5666795e+00 + 2.0544000e+03 -2.3666795e+00 + 2.0548000e+03 -2.7366795e+00 + 2.0552000e+03 -2.7966795e+00 + 2.0556000e+03 -4.1066795e+00 + 2.0560000e+03 -3.9666795e+00 + 2.0564000e+03 -3.2766795e+00 + 2.0568000e+03 -2.3566795e+00 + 2.0572000e+03 -1.3866795e+00 + 2.0576000e+03 -5.8667949e-01 + 2.0580000e+03 9.3320513e-02 + 2.0584000e+03 7.9332051e-01 + 2.0588000e+03 1.5233205e+00 + 2.0592000e+03 2.1133205e+00 + 2.0596000e+03 2.4033205e+00 + 2.0600000e+03 2.4733205e+00 + 2.0604000e+03 2.7833205e+00 + 2.0608000e+03 2.7533205e+00 + 2.0612000e+03 2.6033205e+00 + 2.0616000e+03 2.2033205e+00 + 2.0620000e+03 1.8633205e+00 + 2.0624000e+03 1.1033205e+00 + 2.0628000e+03 5.8332051e-01 + 2.0632000e+03 -1.0866795e+00 + 2.0636000e+03 -1.8966795e+00 + 2.0640000e+03 -2.4566795e+00 + 2.0644000e+03 -2.9466795e+00 + 2.0648000e+03 -2.9066795e+00 + 2.0652000e+03 -2.5566795e+00 + 2.0656000e+03 -1.9566795e+00 + 2.0660000e+03 -1.7566795e+00 + 2.0664000e+03 -9.6667949e-01 + 2.0668000e+03 -7.3667949e-01 + 2.0672000e+03 -6.6667949e-01 + 2.0676000e+03 -4.1667949e-01 + 2.0680000e+03 -1.2667949e-01 + 2.0684000e+03 4.4332051e-01 + 2.0688000e+03 1.1133205e+00 + 2.0692000e+03 1.8733205e+00 + 2.0696000e+03 2.2733205e+00 + 2.0700000e+03 2.7333205e+00 + 2.0704000e+03 3.0233205e+00 + 2.0708000e+03 3.0333205e+00 + 2.0712000e+03 2.8033205e+00 + 2.0716000e+03 2.3233205e+00 + 2.0720000e+03 1.6933205e+00 + 2.0724000e+03 8.3332051e-01 + 2.0728000e+03 -7.6667949e-01 + 2.0732000e+03 -1.8966795e+00 + 2.0736000e+03 -1.9466795e+00 + 2.0740000e+03 -1.9466795e+00 + 2.0744000e+03 -5.2966795e+00 + 2.0748000e+03 -5.5966795e+00 + 2.0752000e+03 -5.5666795e+00 + 2.0756000e+03 -5.4666795e+00 + 2.0760000e+03 -5.2966795e+00 + 2.0764000e+03 -4.7866795e+00 + 2.0768000e+03 -3.8666795e+00 + 2.0772000e+03 -2.6366795e+00 + 2.0776000e+03 -1.0366795e+00 + 2.0780000e+03 7.2332051e-01 + 2.0784000e+03 1.7433205e+00 + 2.0788000e+03 3.4633205e+00 + 2.0792000e+03 4.8533205e+00 + 2.0796000e+03 5.3233205e+00 + 2.0800000e+03 5.4533205e+00 + 2.0804000e+03 5.4033205e+00 + 2.0808000e+03 5.1433205e+00 + 2.0812000e+03 4.1833205e+00 + 2.0816000e+03 3.9233205e+00 + 2.0820000e+03 3.0033205e+00 + 2.0824000e+03 3.3332051e-01 + 2.0828000e+03 -1.3166795e+00 + 2.0832000e+03 -2.5066795e+00 + 2.0836000e+03 -3.2466795e+00 + 2.0840000e+03 -3.7866795e+00 + 2.0844000e+03 -3.8566795e+00 + 2.0848000e+03 -3.4166795e+00 + 2.0852000e+03 -3.1666795e+00 + 2.0856000e+03 -3.0666795e+00 + 2.0860000e+03 -3.0666795e+00 + 2.0864000e+03 -2.5466795e+00 + 2.0868000e+03 -1.5766795e+00 + 2.0872000e+03 -6.0667949e-01 + 2.0876000e+03 8.0332051e-01 + 2.0880000e+03 1.2033205e+00 + 2.0884000e+03 1.5733205e+00 + 2.0888000e+03 1.7633205e+00 + 2.0892000e+03 1.5433205e+00 + 2.0896000e+03 1.0733205e+00 + 2.0900000e+03 5.8332051e-01 + 2.0904000e+03 1.5332051e-01 + 2.0908000e+03 -1.3667949e-01 + 2.0912000e+03 -1.7667949e-01 + 2.0916000e+03 -1.7667949e-01 + 2.0920000e+03 -4.8667949e-01 + 2.0924000e+03 -1.2466795e+00 + 2.0928000e+03 -1.0366795e+00 + 2.0932000e+03 -6.9667949e-01 + 2.0936000e+03 -3.3667949e-01 + 2.0940000e+03 -2.4667949e-01 + 2.0944000e+03 -2.8667949e-01 + 2.0948000e+03 -3.1667949e-01 + 2.0952000e+03 -7.4667949e-01 + 2.0956000e+03 -1.4566795e+00 + 2.0960000e+03 -2.0966795e+00 + 2.0964000e+03 -2.2866795e+00 + 2.0968000e+03 -2.3366795e+00 + 2.0972000e+03 -2.6966795e+00 + 2.0976000e+03 -2.7566795e+00 + 2.0980000e+03 -2.3066795e+00 + 2.0984000e+03 -1.4866795e+00 + 2.0988000e+03 -9.4667949e-01 + 2.0992000e+03 -8.7667949e-01 + 2.0996000e+03 -6.6667949e-01 + 2.1000000e+03 9.3332051e-01 + 2.1004000e+03 1.4433205e+00 + 2.1008000e+03 2.2533205e+00 + 2.1012000e+03 3.5733205e+00 + 2.1016000e+03 3.7333205e+00 + 2.1020000e+03 3.3533205e+00 + 2.1024000e+03 3.1233205e+00 + 2.1028000e+03 3.1033205e+00 + 2.1032000e+03 2.0533205e+00 + 2.1036000e+03 9.3320513e-02 + 2.1040000e+03 -5.0667949e-01 + 2.1044000e+03 -5.3667949e-01 + 2.1048000e+03 -5.2667949e-01 + 2.1052000e+03 -5.2667949e-01 + 2.1056000e+03 -2.0066795e+00 + 2.1060000e+03 -2.2866795e+00 + 2.1064000e+03 -2.6366795e+00 + 2.1068000e+03 -2.8966795e+00 + 2.1072000e+03 -2.6766795e+00 + 2.1076000e+03 -2.3066795e+00 + 2.1080000e+03 -2.0166795e+00 + 2.1084000e+03 -1.9866795e+00 + 2.1088000e+03 -1.9766795e+00 + 2.1092000e+03 -8.7667949e-01 + 2.1096000e+03 -6.5667949e-01 + 2.1100000e+03 -9.2667949e-01 + 2.1104000e+03 -8.5667949e-01 + 2.1108000e+03 -2.8667949e-01 + 2.1112000e+03 2.6332051e-01 + 2.1116000e+03 7.1332051e-01 + 2.1120000e+03 9.7332051e-01 + 2.1124000e+03 7.3332051e-01 + 2.1128000e+03 4.6332051e-01 + 2.1132000e+03 7.3320513e-02 + 2.1136000e+03 -5.3667949e-01 + 2.1140000e+03 -7.7667949e-01 + 2.1144000e+03 -1.1966795e+00 + 2.1148000e+03 -1.1066795e+00 + 2.1152000e+03 -9.2667949e-01 + 2.1156000e+03 -5.7667949e-01 + 2.1160000e+03 -4.6667949e-01 + 2.1164000e+03 -4.4667949e-01 + 2.1168000e+03 -4.7667949e-01 + 2.1172000e+03 -5.5667949e-01 + 2.1176000e+03 -6.1667949e-01 + 2.1180000e+03 -8.4667949e-01 + 2.1184000e+03 -8.9667949e-01 + 2.1188000e+03 -6.4667949e-01 + 2.1192000e+03 -2.0667949e-01 + 2.1196000e+03 9.3320513e-02 + 2.1200000e+03 3.9332051e-01 + 2.1204000e+03 7.9332051e-01 + 2.1208000e+03 8.2332051e-01 + 2.1212000e+03 2.2833205e+00 + 2.1216000e+03 4.6933205e+00 + 2.1220000e+03 3.8433205e+00 + 2.1224000e+03 3.1733205e+00 + 2.1228000e+03 3.1033205e+00 + 2.1232000e+03 3.1033205e+00 + 2.1236000e+03 3.1033205e+00 + 2.1240000e+03 3.1033205e+00 + 2.1244000e+03 -1.3666795e+00 + 2.1248000e+03 -3.9266795e+00 + 2.1252000e+03 -4.3066795e+00 + 2.1256000e+03 -4.5466795e+00 + 2.1260000e+03 -4.6566795e+00 + 2.1264000e+03 -4.5666795e+00 + 2.1268000e+03 -4.3266795e+00 + 2.1272000e+03 -3.5766795e+00 + 2.1276000e+03 -3.1466795e+00 + 2.1280000e+03 -3.1066795e+00 + 2.1284000e+03 -3.1066795e+00 + 2.1288000e+03 -3.1066795e+00 + 2.1292000e+03 -3.1066795e+00 + 2.1296000e+03 -3.1066795e+00 + 2.1300000e+03 -3.0066795e+00 + 2.1304000e+03 1.3933205e+00 + 2.1308000e+03 2.2433205e+00 + 2.1312000e+03 2.7433205e+00 + 2.1316000e+03 2.9233205e+00 + 2.1320000e+03 2.5433205e+00 + 2.1324000e+03 1.7833205e+00 + 2.1328000e+03 5.8332051e-01 + 2.1332000e+03 -6.3667949e-01 + 2.1336000e+03 -1.6966795e+00 + 2.1340000e+03 -2.3766795e+00 + 2.1344000e+03 -2.4266795e+00 + 2.1348000e+03 -2.6666795e+00 + 2.1352000e+03 -2.3766795e+00 + 2.1356000e+03 -1.8566795e+00 + 2.1360000e+03 -1.3566795e+00 + 2.1364000e+03 -8.9667949e-01 + 2.1368000e+03 -5.4667949e-01 + 2.1372000e+03 -4.7667949e-01 + 2.1376000e+03 4.5332051e-01 + 2.1380000e+03 1.1933205e+00 + 2.1384000e+03 1.8033205e+00 + 2.1388000e+03 3.2733205e+00 + 2.1392000e+03 3.5433205e+00 + 2.1396000e+03 2.5733205e+00 + 2.1400000e+03 2.4433205e+00 + 2.1404000e+03 2.3033205e+00 + 2.1408000e+03 1.6333205e+00 + 2.1412000e+03 1.1033205e+00 + 2.1416000e+03 1.0733205e+00 + 2.1420000e+03 9.3332051e-01 + 2.1424000e+03 4.9332051e-01 + 2.1428000e+03 -1.3166795e+00 + 2.1432000e+03 -2.2266795e+00 + 2.1436000e+03 -4.4166795e+00 + 2.1440000e+03 -5.1166795e+00 + 2.1444000e+03 -5.0466795e+00 + 2.1448000e+03 -4.7666795e+00 + 2.1452000e+03 -4.3566795e+00 + 2.1456000e+03 -3.8266795e+00 + 2.1460000e+03 -3.1566795e+00 + 2.1464000e+03 -2.3766795e+00 + 2.1468000e+03 -1.0666795e+00 + 2.1472000e+03 4.2332051e-01 + 2.1476000e+03 1.9933205e+00 + 2.1480000e+03 2.6533205e+00 + 2.1484000e+03 3.0833205e+00 + 2.1488000e+03 3.5933205e+00 + 2.1492000e+03 3.5333205e+00 + 2.1496000e+03 2.8733205e+00 + 2.1500000e+03 1.8633205e+00 + 2.1504000e+03 7.7332051e-01 + 2.1508000e+03 3.3205128e-03 + 2.1512000e+03 -5.4667949e-01 + 2.1516000e+03 -1.0766795e+00 + 2.1520000e+03 -1.5266795e+00 + 2.1524000e+03 -2.0866795e+00 + 2.1528000e+03 -2.4766795e+00 + 2.1532000e+03 -2.5866795e+00 + 2.1536000e+03 -2.3866795e+00 + 2.1540000e+03 -2.2466795e+00 + 2.1544000e+03 -1.9466795e+00 + 2.1548000e+03 -1.8466795e+00 + 2.1552000e+03 -1.8366795e+00 + 2.1556000e+03 -1.6066795e+00 + 2.1560000e+03 8.0332051e-01 + 2.1564000e+03 9.6332051e-01 + 2.1568000e+03 9.6332051e-01 + 2.1572000e+03 9.5332051e-01 + 2.1576000e+03 9.5332051e-01 + 2.1580000e+03 9.5332051e-01 + 2.1584000e+03 1.0533205e+00 + 2.1588000e+03 4.9433205e+00 + 2.1592000e+03 4.8233205e+00 + 2.1596000e+03 3.8533205e+00 + 2.1600000e+03 -1.6679487e-02 + 2.1604000e+03 -2.5966795e+00 + 2.1608000e+03 -3.6266795e+00 + 2.1612000e+03 -3.9166795e+00 + 2.1616000e+03 -3.5866795e+00 + 2.1620000e+03 -3.2266795e+00 + 2.1624000e+03 -3.1066795e+00 + 2.1628000e+03 -3.0366795e+00 + 2.1632000e+03 -3.5766795e+00 + 2.1636000e+03 -4.1766795e+00 + 2.1640000e+03 -4.4466795e+00 + 2.1644000e+03 -4.4466795e+00 + 2.1648000e+03 -3.8866795e+00 + 2.1652000e+03 -3.1666795e+00 + 2.1656000e+03 -2.5166795e+00 + 2.1660000e+03 -1.3166795e+00 + 2.1664000e+03 3.0332051e-01 + 2.1668000e+03 1.5233205e+00 + 2.1672000e+03 2.5533205e+00 + 2.1676000e+03 3.3933205e+00 + 2.1680000e+03 4.3733205e+00 + 2.1684000e+03 5.6433205e+00 + 2.1688000e+03 5.4533205e+00 + 2.1692000e+03 4.3033205e+00 + 2.1696000e+03 4.2033205e+00 + 2.1700000e+03 4.1933205e+00 + 2.1704000e+03 4.1933205e+00 + 2.1708000e+03 4.1933205e+00 + 2.1712000e+03 -4.4667949e-01 + 2.1716000e+03 -1.5466795e+00 + 2.1720000e+03 -1.5366795e+00 + 2.1724000e+03 -1.3366795e+00 + 2.1728000e+03 -1.2766795e+00 + 2.1732000e+03 -1.3466795e+00 + 2.1736000e+03 -1.2966795e+00 + 2.1740000e+03 -1.2666795e+00 + 2.1744000e+03 -1.5466795e+00 + 2.1748000e+03 -1.8966795e+00 + 2.1752000e+03 -1.9066795e+00 + 2.1756000e+03 -1.6166795e+00 + 2.1760000e+03 -1.5066795e+00 + 2.1764000e+03 -1.4966795e+00 + 2.1768000e+03 -1.4966795e+00 + 2.1772000e+03 2.6332051e-01 + 2.1776000e+03 3.0332051e-01 + 2.1780000e+03 5.4332051e-01 + 2.1784000e+03 9.3332051e-01 + 2.1788000e+03 1.8933205e+00 + 2.1792000e+03 2.5933205e+00 + 2.1796000e+03 3.5133205e+00 + 2.1800000e+03 4.2033205e+00 + 2.1804000e+03 3.3233205e+00 + 2.1808000e+03 1.6833205e+00 + 2.1812000e+03 3.3320513e-02 + 2.1816000e+03 -1.6566795e+00 + 2.1820000e+03 -3.1066795e+00 + 2.1824000e+03 -3.9466795e+00 + 2.1828000e+03 -4.2866795e+00 + 2.1832000e+03 -4.4566795e+00 + 2.1836000e+03 -5.3366795e+00 + 2.1840000e+03 -5.6966795e+00 + 2.1844000e+03 -5.2166795e+00 + 2.1848000e+03 -4.6566795e+00 + 2.1852000e+03 -4.5966795e+00 + 2.1856000e+03 -3.6066795e+00 + 2.1860000e+03 -1.3366795e+00 + 2.1864000e+03 -7.6667949e-01 + 2.1868000e+03 -1.3667949e-01 + 2.1872000e+03 7.4332051e-01 + 2.1876000e+03 1.1533205e+00 + 2.1880000e+03 1.2633205e+00 + 2.1884000e+03 1.2733205e+00 + 2.1888000e+03 1.5233205e+00 + 2.1892000e+03 1.9633205e+00 + 2.1896000e+03 2.4533205e+00 + 2.1900000e+03 2.7933205e+00 + 2.1904000e+03 3.1333205e+00 + 2.1908000e+03 3.4733205e+00 + 2.1912000e+03 3.4933205e+00 + 2.1916000e+03 3.0933205e+00 + 2.1920000e+03 2.7833205e+00 + 2.1924000e+03 1.5533205e+00 + 2.1928000e+03 1.3320513e-02 + 2.1932000e+03 -6.3667949e-01 + 2.1936000e+03 -6.6667949e-01 + 2.1940000e+03 -7.5667949e-01 + 2.1944000e+03 -1.4466795e+00 + 2.1948000e+03 -2.7266795e+00 + 2.1952000e+03 -2.2866795e+00 + 2.1956000e+03 -1.5166795e+00 + 2.1960000e+03 -5.6667949e-01 + 2.1964000e+03 -7.6679487e-02 + 2.1968000e+03 1.3332051e-01 + 2.1972000e+03 1.2332051e-01 + 2.1976000e+03 1.6332051e-01 + 2.1980000e+03 -5.6679487e-02 + 2.1984000e+03 -3.9667949e-01 + 2.1988000e+03 -9.7667949e-01 + 2.1992000e+03 -1.2866795e+00 + 2.1996000e+03 -1.3166795e+00 + 2.2000000e+03 -1.0066795e+00 + 2.2004000e+03 -8.8667949e-01 + 2.2008000e+03 -7.4667949e-01 + 2.2012000e+03 -5.1667949e-01 + 2.2016000e+03 5.3320513e-02 + 2.2020000e+03 6.6332051e-01 + 2.2024000e+03 8.7332051e-01 + 2.2028000e+03 1.0332051e-01 + 2.2032000e+03 -5.9667949e-01 + 2.2036000e+03 -1.2866795e+00 + 2.2040000e+03 -1.8866795e+00 + 2.2044000e+03 -2.3966795e+00 + 2.2048000e+03 -2.5966795e+00 + 2.2052000e+03 -2.6566795e+00 + 2.2056000e+03 -2.5966795e+00 + 2.2060000e+03 -2.2266795e+00 + 2.2064000e+03 -1.4566795e+00 + 2.2068000e+03 -4.0667949e-01 + 2.2072000e+03 7.6332051e-01 + 2.2076000e+03 1.6333205e+00 + 2.2080000e+03 2.1833205e+00 + 2.2084000e+03 1.4833205e+00 + 2.2088000e+03 7.4332051e-01 + 2.2092000e+03 2.4332051e-01 + 2.2096000e+03 1.9332051e-01 + 2.2100000e+03 3.4332051e-01 + 2.2104000e+03 7.5332051e-01 + 2.2108000e+03 8.9332051e-01 + 2.2112000e+03 7.9332051e-01 + 2.2116000e+03 6.1332051e-01 + 2.2120000e+03 5.1332051e-01 + 2.2124000e+03 5.5332051e-01 + 2.2128000e+03 5.9332051e-01 + 2.2132000e+03 7.0332051e-01 + 2.2136000e+03 9.7332051e-01 + 2.2140000e+03 7.9332051e-01 + 2.2144000e+03 4.0332051e-01 + 2.2148000e+03 -2.6667949e-01 + 2.2152000e+03 -8.1667949e-01 + 2.2156000e+03 -1.2266795e+00 + 2.2160000e+03 -1.3366795e+00 + 2.2164000e+03 -1.1766795e+00 + 2.2168000e+03 -7.8667949e-01 + 2.2172000e+03 -6.7667949e-01 + 2.2176000e+03 -6.6667949e-01 + 2.2180000e+03 -6.3667949e-01 + 2.2184000e+03 -8.7667949e-01 + 2.2188000e+03 -1.1766795e+00 + 2.2192000e+03 -1.1266795e+00 + 2.2196000e+03 -9.2667949e-01 + 2.2200000e+03 -1.1266795e+00 + 2.2204000e+03 -1.5166795e+00 + 2.2208000e+03 -1.8366795e+00 + 2.2212000e+03 -1.9466795e+00 + 2.2216000e+03 -1.7266795e+00 + 2.2220000e+03 -1.5266795e+00 + 2.2224000e+03 -1.0666795e+00 + 2.2228000e+03 -8.9667949e-01 + 2.2232000e+03 -1.0066795e+00 + 2.2236000e+03 -1.1966795e+00 + 2.2240000e+03 -1.2166795e+00 + 2.2244000e+03 -1.2666795e+00 + 2.2248000e+03 -1.1566795e+00 + 2.2252000e+03 -9.1667949e-01 + 2.2256000e+03 -7.1667949e-01 + 2.2260000e+03 -5.4667949e-01 + 2.2264000e+03 -3.5667949e-01 + 2.2268000e+03 -2.0667949e-01 + 2.2272000e+03 -1.0667949e-01 + 2.2276000e+03 4.5332051e-01 + 2.2280000e+03 5.4332051e-01 + 2.2284000e+03 8.3332051e-01 + 2.2288000e+03 9.7332051e-01 + 2.2292000e+03 9.1332051e-01 + 2.2296000e+03 5.7332051e-01 + 2.2300000e+03 1.2332051e-01 + 2.2304000e+03 -2.6667949e-01 + 2.2308000e+03 -2.6667949e-01 + 2.2312000e+03 -2.5667949e-01 + 2.2316000e+03 -2.4667949e-01 + 2.2320000e+03 -2.9667949e-01 + 2.2324000e+03 -6.7667949e-01 + 2.2328000e+03 -1.2566795e+00 + 2.2332000e+03 -1.7066795e+00 + 2.2336000e+03 -1.4766795e+00 + 2.2340000e+03 -6.1667949e-01 + 2.2344000e+03 5.8332051e-01 + 2.2348000e+03 8.3332051e-01 + 2.2352000e+03 1.0333205e+00 + 2.2356000e+03 9.7332051e-01 + 2.2360000e+03 4.0332051e-01 + 2.2364000e+03 1.5332051e-01 + 2.2368000e+03 2.8332051e-01 + 2.2372000e+03 4.7332051e-01 + 2.2376000e+03 6.7332051e-01 + 2.2380000e+03 1.4332051e-01 + 2.2384000e+03 -9.8667949e-01 + 2.2388000e+03 -1.6066795e+00 + 2.2392000e+03 -1.8066795e+00 + 2.2396000e+03 -1.6966795e+00 + 2.2400000e+03 -1.5966795e+00 + 2.2404000e+03 -1.5066795e+00 + 2.2408000e+03 -1.2666795e+00 + 2.2412000e+03 -7.7667949e-01 + 2.2416000e+03 -1.0166795e+00 + 2.2420000e+03 -1.6066795e+00 + 2.2424000e+03 -1.9666795e+00 + 2.2428000e+03 -1.9166795e+00 + 2.2432000e+03 -1.6066795e+00 + 2.2436000e+03 -1.5766795e+00 + 2.2440000e+03 -1.5566795e+00 + 2.2444000e+03 -1.1466795e+00 + 2.2448000e+03 -6.5667949e-01 + 2.2452000e+03 2.3320513e-02 + 2.2456000e+03 6.0332051e-01 + 2.2460000e+03 1.5733205e+00 + 2.2464000e+03 1.7433205e+00 + 2.2468000e+03 1.3333205e+00 + 2.2472000e+03 8.4332051e-01 + 2.2476000e+03 3.4332051e-01 + 2.2480000e+03 2.4332051e-01 + 2.2484000e+03 3.6332051e-01 + 2.2488000e+03 4.4332051e-01 + 2.2492000e+03 2.6332051e-01 + 2.2496000e+03 -4.5667949e-01 + 2.2500000e+03 -1.2466795e+00 + 2.2504000e+03 -1.6066795e+00 + 2.2508000e+03 -1.5666795e+00 + 2.2512000e+03 -1.0966795e+00 + 2.2516000e+03 -9.0667949e-01 + 2.2520000e+03 -8.1667949e-01 + 2.2524000e+03 -9.9667949e-01 + 2.2528000e+03 -1.3366795e+00 + 2.2532000e+03 -1.2566795e+00 + 2.2536000e+03 -9.7667949e-01 + 2.2540000e+03 -6.3667949e-01 + 2.2544000e+03 -3.2667949e-01 + 2.2548000e+03 -1.0667949e-01 + 2.2552000e+03 8.3320513e-02 + 2.2556000e+03 6.8332051e-01 + 2.2560000e+03 8.8332051e-01 + 2.2564000e+03 9.6332051e-01 + 2.2568000e+03 1.2033205e+00 + 2.2572000e+03 1.0833205e+00 + 2.2576000e+03 7.5332051e-01 + 2.2580000e+03 3.4332051e-01 + 2.2584000e+03 2.3320513e-02 + 2.2588000e+03 -6.1667949e-01 + 2.2592000e+03 -1.0666795e+00 + 2.2596000e+03 -1.0966795e+00 + 2.2600000e+03 -1.5166795e+00 + 2.2604000e+03 -1.5366795e+00 + 2.2608000e+03 -1.2066795e+00 + 2.2612000e+03 -1.1266795e+00 + 2.2616000e+03 -1.1266795e+00 + 2.2620000e+03 -1.3566795e+00 + 2.2624000e+03 -1.5966795e+00 + 2.2628000e+03 -1.7566795e+00 + 2.2632000e+03 -2.0366795e+00 + 2.2636000e+03 -2.0266795e+00 + 2.2640000e+03 -1.8066795e+00 + 2.2644000e+03 -1.5166795e+00 + 2.2648000e+03 -1.3566795e+00 + 2.2652000e+03 -1.1966795e+00 + 2.2656000e+03 -1.1266795e+00 + 2.2660000e+03 -8.5667949e-01 + 2.2664000e+03 -5.1667949e-01 + 2.2668000e+03 -5.6679487e-02 + 2.2672000e+03 3.0332051e-01 + 2.2676000e+03 5.9332051e-01 + 2.2680000e+03 9.4332051e-01 + 2.2684000e+03 1.2833205e+00 + 2.2688000e+03 1.5533205e+00 + 2.2692000e+03 1.9533205e+00 + 2.2696000e+03 2.1033205e+00 + 2.2700000e+03 2.6033205e+00 + 2.2704000e+03 2.9233205e+00 + 2.2708000e+03 2.4133205e+00 + 2.2712000e+03 1.9833205e+00 + 2.2716000e+03 3.3332051e-01 + 2.2720000e+03 -8.6679487e-02 + 2.2724000e+03 -4.7667949e-01 + 2.2728000e+03 -2.3066795e+00 + 2.2732000e+03 -2.3966795e+00 + 2.2736000e+03 -3.4566795e+00 + 2.2740000e+03 -4.0466795e+00 + 2.2744000e+03 -3.6666795e+00 + 2.2748000e+03 -3.4066795e+00 + 2.2752000e+03 -3.2466795e+00 + 2.2756000e+03 -2.9066795e+00 + 2.2760000e+03 -2.4866795e+00 + 2.2764000e+03 -2.2466795e+00 + 2.2768000e+03 -2.2366795e+00 + 2.2772000e+03 -2.2366795e+00 + 2.2776000e+03 -2.2366795e+00 + 2.2780000e+03 3.1133205e+00 + 2.2784000e+03 4.8933205e+00 + 2.2788000e+03 4.3333205e+00 + 2.2792000e+03 3.0533205e+00 + 2.2796000e+03 2.5533205e+00 + 2.2800000e+03 2.5533205e+00 + 2.2804000e+03 2.1733205e+00 + 2.2808000e+03 -3.6667949e-01 + 2.2812000e+03 -1.3566795e+00 + 2.2816000e+03 -2.1266795e+00 + 2.2820000e+03 -2.7866795e+00 + 2.2824000e+03 -3.1066795e+00 + 2.2828000e+03 -3.2366795e+00 + 2.2832000e+03 -3.3066795e+00 + 2.2836000e+03 -3.4066795e+00 + 2.2840000e+03 -3.3866795e+00 + 2.2844000e+03 -3.3166795e+00 + 2.2848000e+03 -3.0766795e+00 + 2.2852000e+03 -2.3666795e+00 + 2.2856000e+03 -1.6566795e+00 + 2.2860000e+03 -5.0667949e-01 + 2.2864000e+03 2.4332051e-01 + 2.2868000e+03 1.0033205e+00 + 2.2872000e+03 1.4633205e+00 + 2.2876000e+03 1.7033205e+00 + 2.2880000e+03 1.5533205e+00 + 2.2884000e+03 1.7333205e+00 + 2.2888000e+03 2.1733205e+00 + 2.2892000e+03 2.3933205e+00 + 2.2896000e+03 2.1033205e+00 + 2.2900000e+03 1.8733205e+00 + 2.2904000e+03 1.4533205e+00 + 2.2908000e+03 6.6332051e-01 + 2.2912000e+03 -3.3667949e-01 + 2.2916000e+03 -6.3667949e-01 + 2.2920000e+03 -6.4667949e-01 + 2.2924000e+03 -1.4766795e+00 + 2.2928000e+03 -2.2666795e+00 + 2.2932000e+03 -2.8166795e+00 + 2.2936000e+03 -3.0566795e+00 + 2.2940000e+03 -3.2066795e+00 + 2.2944000e+03 -3.0566795e+00 + 2.2948000e+03 -2.8866795e+00 + 2.2952000e+03 -2.0366795e+00 + 2.2956000e+03 -1.5166795e+00 + 2.2960000e+03 -1.4766795e+00 + 2.2964000e+03 8.0332051e-01 + 2.2968000e+03 1.4033205e+00 + 2.2972000e+03 1.9733205e+00 + 2.2976000e+03 2.4833205e+00 + 2.2980000e+03 2.5533205e+00 + 2.2984000e+03 2.4633205e+00 + 2.2988000e+03 2.5733205e+00 + 2.2992000e+03 2.6233205e+00 + 2.2996000e+03 2.3033205e+00 + 2.3000000e+03 1.9833205e+00 + 2.3004000e+03 1.9633205e+00 + 2.3008000e+03 1.9733205e+00 + 2.3012000e+03 1.9733205e+00 + 2.3016000e+03 -2.1966795e+00 + 2.3020000e+03 -3.8666795e+00 + 2.3024000e+03 -3.5266795e+00 + 2.3028000e+03 -3.0066795e+00 + 2.3032000e+03 -2.9266795e+00 + 2.3036000e+03 -2.9066795e+00 + 2.3040000e+03 -2.7366795e+00 + 2.3044000e+03 -2.5966795e+00 + 2.3048000e+03 -2.5666795e+00 + 2.3052000e+03 -2.5666795e+00 + 2.3056000e+03 -2.5666795e+00 + 2.3060000e+03 -2.5666795e+00 + 2.3064000e+03 -2.5666795e+00 + 2.3068000e+03 -1.4667949e-01 + 2.3072000e+03 5.3320513e-02 + 2.3076000e+03 -1.9667949e-01 + 2.3080000e+03 -3.1667949e-01 + 2.3084000e+03 -1.9667949e-01 + 2.3088000e+03 2.3320513e-02 + 2.3092000e+03 2.6332051e-01 + 2.3096000e+03 -1.0667949e-01 + 2.3100000e+03 -5.5667949e-01 + 2.3104000e+03 -6.2667949e-01 + 2.3108000e+03 -6.2667949e-01 + 2.3112000e+03 -6.2667949e-01 + 2.3116000e+03 -7.5667949e-01 + 2.3120000e+03 -6.5667949e-01 + 2.3124000e+03 -6.6667949e-01 + 2.3128000e+03 -6.4667949e-01 + 2.3132000e+03 -6.2667949e-01 + 2.3136000e+03 -2.6667949e-01 + 2.3140000e+03 2.3320513e-02 + 2.3144000e+03 3.5332051e-01 + 2.3148000e+03 2.4332051e-01 + 2.3152000e+03 1.7332051e-01 + 2.3156000e+03 3.5332051e-01 + 2.3160000e+03 9.5332051e-01 + 2.3164000e+03 1.3333205e+00 + 2.3168000e+03 1.3033205e+00 + 2.3172000e+03 9.7332051e-01 + 2.3176000e+03 7.7332051e-01 + 2.3180000e+03 7.7332051e-01 + 2.3184000e+03 7.5332051e-01 + 2.3188000e+03 -1.0066795e+00 + 2.3192000e+03 -1.4266795e+00 + 2.3196000e+03 -1.4566795e+00 + 2.3200000e+03 -8.5667949e-01 + 2.3204000e+03 -2.5667949e-01 + 2.3208000e+03 -2.8667949e-01 + 2.3212000e+03 -1.0266795e+00 + 2.3216000e+03 -1.5566795e+00 + 2.3220000e+03 -1.8366795e+00 + 2.3224000e+03 -1.6566795e+00 + 2.3228000e+03 -1.7666795e+00 + 2.3232000e+03 -1.8366795e+00 + 2.3236000e+03 -1.8966795e+00 + 2.3240000e+03 -1.8866795e+00 + 2.3244000e+03 -1.3466795e+00 + 2.3248000e+03 -7.1667949e-01 + 2.3252000e+03 -1.2667949e-01 + 2.3256000e+03 2.3320513e-02 + 2.3260000e+03 3.3320513e-02 + 2.3264000e+03 4.0332051e-01 + 2.3268000e+03 2.0332051e-01 + 2.3272000e+03 -3.6679487e-02 + 2.3276000e+03 6.7332051e-01 + 2.3280000e+03 -1.6679487e-02 + 2.3284000e+03 -6.6679487e-02 + 2.3288000e+03 -9.1667949e-01 + 2.3292000e+03 -2.5666795e+00 + 2.3296000e+03 -2.3966795e+00 + 2.3300000e+03 -1.8866795e+00 + 2.3304000e+03 -1.4566795e+00 + 2.3308000e+03 -9.6667949e-01 + 2.3312000e+03 -5.9667949e-01 + 2.3316000e+03 -3.1667949e-01 + 2.3320000e+03 -2.3667949e-01 + 2.3324000e+03 -6.6679487e-02 + 2.3328000e+03 3.8332051e-01 + 2.3332000e+03 8.5332051e-01 + 2.3336000e+03 1.3033205e+00 + 2.3340000e+03 1.8733205e+00 + 2.3344000e+03 2.2733205e+00 + 2.3348000e+03 2.6033205e+00 + 2.3352000e+03 2.6933205e+00 + 2.3356000e+03 2.4233205e+00 + 2.3360000e+03 2.0733205e+00 + 2.3364000e+03 1.3933205e+00 + 2.3368000e+03 5.1332051e-01 + 2.3372000e+03 -4.2667949e-01 + 2.3376000e+03 -1.1966795e+00 + 2.3380000e+03 -1.6566795e+00 + 2.3384000e+03 -1.9566795e+00 + 2.3388000e+03 -1.9766795e+00 + 2.3392000e+03 -1.8466795e+00 + 2.3396000e+03 -2.1466795e+00 + 2.3400000e+03 -2.1466795e+00 + 2.3404000e+03 -1.8566795e+00 + 2.3408000e+03 -1.4566795e+00 + 2.3412000e+03 -9.9667949e-01 + 2.3416000e+03 -4.9667949e-01 + 2.3420000e+03 -3.8667949e-01 + 2.3424000e+03 -2.3667949e-01 + 2.3428000e+03 2.7332051e-01 + 2.3432000e+03 7.2332051e-01 + 2.3436000e+03 3.8332051e-01 + 2.3440000e+03 -7.6679487e-02 + 2.3444000e+03 -3.4667949e-01 + 2.3448000e+03 -6.1667949e-01 + 2.3452000e+03 -6.3667949e-01 + 2.3456000e+03 -7.4667949e-01 + 2.3460000e+03 -9.0667949e-01 + 2.3464000e+03 -8.6667949e-01 + 2.3468000e+03 -7.0667949e-01 + 2.3472000e+03 -9.6667949e-01 + 2.3476000e+03 -1.1066795e+00 + 2.3480000e+03 -1.2366795e+00 + 2.3484000e+03 -1.3666795e+00 + 2.3488000e+03 -1.3366795e+00 + 2.3492000e+03 -1.2966795e+00 + 2.3496000e+03 -1.1166795e+00 + 2.3500000e+03 -1.1166795e+00 + 2.3504000e+03 -1.2266795e+00 + 2.3508000e+03 -1.4466795e+00 + 2.3512000e+03 -1.8266795e+00 + 2.3516000e+03 -1.7266795e+00 + 2.3520000e+03 -1.4666795e+00 + 2.3524000e+03 -2.2667949e-01 + 2.3528000e+03 1.0233205e+00 + 2.3532000e+03 2.2433205e+00 + 2.3536000e+03 2.7333205e+00 + 2.3540000e+03 2.7833205e+00 + 2.3544000e+03 3.0133205e+00 + 2.3548000e+03 2.5333205e+00 + 2.3552000e+03 1.8433205e+00 + 2.3556000e+03 5.7332051e-01 + 2.3560000e+03 -3.1667949e-01 + 2.3564000e+03 -8.9667949e-01 + 2.3568000e+03 -1.0466795e+00 + 2.3572000e+03 -1.0566795e+00 + 2.3576000e+03 -8.2667949e-01 + 2.3580000e+03 -4.7667949e-01 + 2.3584000e+03 -1.9667949e-01 + 2.3588000e+03 -1.6679487e-02 + 2.3592000e+03 -1.0667949e-01 + 2.3596000e+03 -3.2667949e-01 + 2.3600000e+03 -4.2667949e-01 + 2.3604000e+03 -5.7667949e-01 + 2.3608000e+03 -8.2667949e-01 + 2.3612000e+03 -9.1667949e-01 + 2.3616000e+03 -1.0566795e+00 + 2.3620000e+03 -1.0966795e+00 + 2.3624000e+03 -9.7667949e-01 + 2.3628000e+03 -1.0466795e+00 + 2.3632000e+03 -1.4866795e+00 + 2.3636000e+03 -1.7266795e+00 + 2.3640000e+03 -1.7766795e+00 + 2.3644000e+03 -1.7366795e+00 + 2.3648000e+03 -1.5166795e+00 + 2.3652000e+03 -1.0566795e+00 + 2.3656000e+03 -9.4667949e-01 + 2.3660000e+03 -1.0066795e+00 + 2.3664000e+03 -6.3667949e-01 + 2.3668000e+03 5.3320513e-02 + 2.3672000e+03 5.3332051e-01 + 2.3676000e+03 6.5332051e-01 + 2.3680000e+03 6.1332051e-01 + 2.3684000e+03 5.8332051e-01 + 2.3688000e+03 5.8332051e-01 + 2.3692000e+03 -3.8667949e-01 + 2.3696000e+03 -1.3366795e+00 + 2.3700000e+03 -1.5366795e+00 + 2.3704000e+03 -1.4166795e+00 + 2.3708000e+03 -9.7667949e-01 + 2.3712000e+03 -9.0667949e-01 + 2.3716000e+03 -8.9667949e-01 + 2.3720000e+03 -8.9667949e-01 + 2.3724000e+03 -8.9667949e-01 + 2.3728000e+03 9.0332051e-01 + 2.3732000e+03 8.7332051e-01 + 2.3736000e+03 3.3332051e-01 + 2.3740000e+03 2.0332051e-01 + 2.3744000e+03 -1.2966795e+00 + 2.3748000e+03 -1.6966795e+00 + 2.3752000e+03 -1.6966795e+00 + 2.3756000e+03 -2.2366795e+00 + 2.3760000e+03 -2.2266795e+00 + 2.3764000e+03 -2.1166795e+00 + 2.3768000e+03 -2.0466795e+00 + 2.3772000e+03 -1.8766795e+00 + 2.3776000e+03 -1.8666795e+00 + 2.3780000e+03 1.7533205e+00 + 2.3784000e+03 2.5033205e+00 + 2.3788000e+03 2.2433205e+00 + 2.3792000e+03 1.9033205e+00 + 2.3796000e+03 1.6833205e+00 + 2.3800000e+03 1.3233205e+00 + 2.3804000e+03 7.5332051e-01 + 2.3808000e+03 5.3332051e-01 + 2.3812000e+03 8.3332051e-01 + 2.3816000e+03 8.5332051e-01 + 2.3820000e+03 8.0332051e-01 + 2.3824000e+03 5.5332051e-01 + 2.3828000e+03 -5.6679487e-02 + 2.3832000e+03 -8.5667949e-01 + 2.3836000e+03 -1.1166795e+00 + 2.3840000e+03 -1.1266795e+00 + 2.3844000e+03 -1.1166795e+00 + 2.3848000e+03 -1.1166795e+00 + 2.3852000e+03 -1.1166795e+00 + 2.3856000e+03 -1.1166795e+00 + 2.3860000e+03 -1.1166795e+00 + 2.3864000e+03 -1.1166795e+00 + 2.3868000e+03 -1.1166795e+00 + 2.3872000e+03 -1.1366795e+00 + 2.3876000e+03 -2.9667949e-01 + 2.3880000e+03 -1.4667949e-01 + 2.3884000e+03 -1.4667949e-01 + 2.3888000e+03 -1.4667949e-01 + 2.3892000e+03 5.8332051e-01 + 2.3896000e+03 1.5933205e+00 + 2.3900000e+03 9.7332051e-01 + 2.3904000e+03 8.2332051e-01 + 2.3908000e+03 -1.0667949e-01 + 2.3912000e+03 -3.3667949e-01 + 2.3916000e+03 -9.2667949e-01 + 2.3920000e+03 -1.1266795e+00 + 2.3924000e+03 -1.1366795e+00 + 2.3928000e+03 -1.2166795e+00 + 2.3932000e+03 -1.2266795e+00 + 2.3936000e+03 -1.2266795e+00 + 2.3940000e+03 -1.5366795e+00 + 2.3944000e+03 -1.9766795e+00 + 2.3948000e+03 -1.3666795e+00 + 2.3952000e+03 -6.9667949e-01 + 2.3956000e+03 -4.4667949e-01 + 2.3960000e+03 -3.4667949e-01 + 2.3964000e+03 -1.9667949e-01 + 2.3968000e+03 1.6332051e-01 + 2.3972000e+03 2.8332051e-01 + 2.3976000e+03 4.8332051e-01 + 2.3980000e+03 8.2332051e-01 + 2.3984000e+03 1.6333205e+00 + 2.3988000e+03 2.3233205e+00 + 2.3992000e+03 2.7633205e+00 + 2.3996000e+03 2.7333205e+00 + 2.4000000e+03 2.4933205e+00 + 2.4004000e+03 2.2733205e+00 + 2.4008000e+03 2.2233205e+00 + 2.4012000e+03 2.0833205e+00 + 2.4016000e+03 2.0733205e+00 + 2.4020000e+03 2.0533205e+00 + 2.4024000e+03 -9.6667949e-01 + 2.4028000e+03 -1.6466795e+00 + 2.4032000e+03 -2.1266795e+00 + 2.4036000e+03 -2.2066795e+00 + 2.4040000e+03 -3.1466795e+00 + 2.4044000e+03 -3.5266795e+00 + 2.4048000e+03 -3.4966795e+00 + 2.4052000e+03 -3.1066795e+00 + 2.4056000e+03 -2.9466795e+00 + 2.4060000e+03 -2.7566795e+00 + 2.4064000e+03 -2.3066795e+00 + 2.4068000e+03 -1.7366795e+00 + 2.4072000e+03 -1.4966795e+00 + 2.4076000e+03 -3.2667949e-01 + 2.4080000e+03 5.3320513e-02 + 2.4084000e+03 3.6332051e-01 + 2.4088000e+03 5.3332051e-01 + 2.4092000e+03 6.1332051e-01 + 2.4096000e+03 8.8332051e-01 + 2.4100000e+03 9.1332051e-01 + 2.4104000e+03 1.6332051e-01 + 2.4108000e+03 -2.8667949e-01 + 2.4112000e+03 -5.7667949e-01 + 2.4116000e+03 -5.9667949e-01 + 2.4120000e+03 -3.2667949e-01 + 2.4124000e+03 1.3332051e-01 + 2.4128000e+03 2.5332051e-01 + 2.4132000e+03 1.4332051e-01 + 2.4136000e+03 -9.1667949e-01 + 2.4140000e+03 -1.3966795e+00 + 2.4144000e+03 -1.4266795e+00 + 2.4148000e+03 -1.4266795e+00 + 2.4152000e+03 -1.4866795e+00 + 2.4156000e+03 -1.3866795e+00 + 2.4160000e+03 -1.0066795e+00 + 2.4164000e+03 -8.1667949e-01 + 2.4168000e+03 2.9332051e-01 + 2.4172000e+03 9.3332051e-01 + 2.4176000e+03 1.4033205e+00 + 2.4180000e+03 1.8533205e+00 + 2.4184000e+03 2.5033205e+00 + 2.4188000e+03 2.4133205e+00 + 2.4192000e+03 2.5933205e+00 + 2.4196000e+03 2.5533205e+00 + 2.4200000e+03 2.0533205e+00 + 2.4204000e+03 1.6833205e+00 + 2.4208000e+03 1.0433205e+00 + 2.4212000e+03 1.0033205e+00 + 2.4216000e+03 1.0033205e+00 + 2.4220000e+03 1.0033205e+00 + 2.4224000e+03 1.0033205e+00 + 2.4228000e+03 1.0033205e+00 + 2.4232000e+03 -8.0667949e-01 + 2.4236000e+03 -2.3266795e+00 + 2.4240000e+03 -2.7366795e+00 + 2.4244000e+03 -2.6966795e+00 + 2.4248000e+03 -2.5066795e+00 + 2.4252000e+03 -2.7766795e+00 + 2.4256000e+03 -2.3766795e+00 + 2.4260000e+03 -1.3566795e+00 + 2.4264000e+03 -6.5667949e-01 + 2.4268000e+03 -3.7667949e-01 + 2.4272000e+03 -2.1667949e-01 + 2.4276000e+03 -2.5667949e-01 + 2.4280000e+03 -2.5667949e-01 + 2.4284000e+03 -1.9667949e-01 + 2.4288000e+03 2.6332051e-01 + 2.4292000e+03 7.7332051e-01 + 2.4296000e+03 1.1933205e+00 + 2.4300000e+03 1.4133205e+00 + 2.4304000e+03 1.0133205e+00 + 2.4308000e+03 4.6332051e-01 + 2.4312000e+03 3.3320513e-02 + 2.4316000e+03 -7.7667949e-01 + 2.4320000e+03 -1.4666795e+00 + 2.4324000e+03 -1.7666795e+00 + 2.4328000e+03 -1.7766795e+00 + 2.4332000e+03 -1.7666795e+00 + 2.4336000e+03 -2.6066795e+00 + 2.4340000e+03 -2.9766795e+00 + 2.4344000e+03 -2.4966795e+00 + 2.4348000e+03 -2.0966795e+00 + 2.4352000e+03 -1.6166795e+00 + 2.4356000e+03 -8.2667949e-01 + 2.4360000e+03 -1.3667949e-01 + 2.4364000e+03 1.1733205e+00 + 2.4368000e+03 2.5733205e+00 + 2.4372000e+03 4.4033205e+00 + 2.4376000e+03 4.3833205e+00 + 2.4380000e+03 3.8233205e+00 + 2.4384000e+03 3.0533205e+00 + 2.4388000e+03 2.5033205e+00 + 2.4392000e+03 2.0033205e+00 + 2.4396000e+03 1.2433205e+00 + 2.4400000e+03 5.9332051e-01 + 2.4404000e+03 -1.3667949e-01 + 2.4408000e+03 -7.9667949e-01 + 2.4412000e+03 -1.1366795e+00 + 2.4416000e+03 -1.3066795e+00 + 2.4420000e+03 -1.3666795e+00 + 2.4424000e+03 -1.4766795e+00 + 2.4428000e+03 -1.7366795e+00 + 2.4432000e+03 -2.0366795e+00 + 2.4436000e+03 -2.4866795e+00 + 2.4440000e+03 -2.6066795e+00 + 2.4444000e+03 -2.6566795e+00 + 2.4448000e+03 -2.6766795e+00 + 2.4452000e+03 -2.6766795e+00 + 2.4456000e+03 -2.4866795e+00 + 2.4460000e+03 -1.7366795e+00 + 2.4464000e+03 -9.4667949e-01 + 2.4468000e+03 1.2332051e-01 + 2.4472000e+03 7.5332051e-01 + 2.4476000e+03 1.7833205e+00 + 2.4480000e+03 1.5133205e+00 + 2.4484000e+03 8.8332051e-01 + 2.4488000e+03 6.0332051e-01 + 2.4492000e+03 5.5332051e-01 + 2.4496000e+03 -8.7667949e-01 + 2.4500000e+03 -1.3566795e+00 + 2.4504000e+03 -1.4566795e+00 + 2.4508000e+03 -1.3866795e+00 + 2.4512000e+03 -1.3166795e+00 + 2.4516000e+03 -1.0466795e+00 + 2.4520000e+03 -6.9667949e-01 + 2.4524000e+03 -6.6667949e-01 + 2.4528000e+03 -1.0166795e+00 + 2.4532000e+03 -1.2266795e+00 + 2.4536000e+03 -1.0366795e+00 + 2.4540000e+03 -5.9667949e-01 + 2.4544000e+03 -6.6679487e-02 + 2.4548000e+03 3.9332051e-01 + 2.4552000e+03 6.1332051e-01 + 2.4556000e+03 5.3332051e-01 + 2.4560000e+03 2.8332051e-01 + 2.4564000e+03 2.3320513e-02 + 2.4568000e+03 -1.0667949e-01 + 2.4572000e+03 -3.1667949e-01 + 2.4576000e+03 -9.6679487e-02 + 2.4580000e+03 4.8332051e-01 + 2.4584000e+03 6.6332051e-01 + 2.4588000e+03 7.2332051e-01 + 2.4592000e+03 1.3633205e+00 + 2.4596000e+03 1.0333205e+00 + 2.4600000e+03 1.5332051e-01 + 2.4604000e+03 -5.5667949e-01 + 2.4608000e+03 -1.2366795e+00 + 2.4612000e+03 -1.5166795e+00 + 2.4616000e+03 -1.5366795e+00 + 2.4620000e+03 -1.3466795e+00 + 2.4624000e+03 -9.8667949e-01 + 2.4628000e+03 -6.2667949e-01 + 2.4632000e+03 -3.8667949e-01 + 2.4636000e+03 -2.8667949e-01 + 2.4640000e+03 -2.9667949e-01 + 2.4644000e+03 -3.4667949e-01 + 2.4648000e+03 -6.9667949e-01 + 2.4652000e+03 -1.0466795e+00 + 2.4656000e+03 -9.0667949e-01 + 2.4660000e+03 -4.9667949e-01 + 2.4664000e+03 1.1332051e-01 + 2.4668000e+03 6.1332051e-01 + 2.4672000e+03 9.1332051e-01 + 2.4676000e+03 1.0533205e+00 + 2.4680000e+03 9.5332051e-01 + 2.4684000e+03 3.9332051e-01 + 2.4688000e+03 -6.6679487e-02 + 2.4692000e+03 -5.7667949e-01 + 2.4696000e+03 -1.0566795e+00 + 2.4700000e+03 -1.2666795e+00 + 2.4704000e+03 -1.5266795e+00 + 2.4708000e+03 -1.6666795e+00 + 2.4712000e+03 -2.0066795e+00 + 2.4716000e+03 -2.2866795e+00 + 2.4720000e+03 -2.4866795e+00 + 2.4724000e+03 -2.3866795e+00 + 2.4728000e+03 -2.1066795e+00 + 2.4732000e+03 -2.2866795e+00 + 2.4736000e+03 -2.2466795e+00 + 2.4740000e+03 -2.0066795e+00 + 2.4744000e+03 -1.5266795e+00 + 2.4748000e+03 -1.4766795e+00 + 2.4752000e+03 -1.4766795e+00 + 2.4756000e+03 -1.4766795e+00 + 2.4760000e+03 -1.4766795e+00 + 2.4764000e+03 -1.4766795e+00 + 2.4768000e+03 -1.4266795e+00 + 2.4772000e+03 2.0733205e+00 + 2.4776000e+03 1.4933205e+00 + 2.4780000e+03 8.0332051e-01 + 2.4784000e+03 3.8332051e-01 + 2.4788000e+03 2.7332051e-01 + 2.4792000e+03 2.1332051e-01 + 2.4796000e+03 9.3320513e-02 + 2.4800000e+03 8.3320513e-02 + 2.4804000e+03 -8.6679487e-02 + 2.4808000e+03 -1.0366795e+00 + 2.4812000e+03 -1.1666795e+00 + 2.4816000e+03 -1.1966795e+00 + 2.4820000e+03 -1.1966795e+00 + 2.4824000e+03 -1.1966795e+00 + 2.4828000e+03 -2.6966795e+00 + 2.4832000e+03 -2.7966795e+00 + 2.4836000e+03 -2.0266795e+00 + 2.4840000e+03 -1.4166795e+00 + 2.4844000e+03 -1.2166795e+00 + 2.4848000e+03 -1.1566795e+00 + 2.4852000e+03 -5.8667949e-01 + 2.4856000e+03 -3.9667949e-01 + 2.4860000e+03 2.3332051e-01 + 2.4864000e+03 4.5332051e-01 + 2.4868000e+03 4.6332051e-01 + 2.4872000e+03 4.6332051e-01 + 2.4876000e+03 1.2733205e+00 + 2.4880000e+03 2.2933205e+00 + 2.4884000e+03 2.2033205e+00 + 2.4888000e+03 2.1533205e+00 + 2.4892000e+03 3.3205128e-03 + 2.4896000e+03 -6.1667949e-01 + 2.4900000e+03 -9.2667949e-01 + 2.4904000e+03 -1.0366795e+00 + 2.4908000e+03 -1.3066795e+00 + 2.4912000e+03 -1.5066795e+00 + 2.4916000e+03 -1.7666795e+00 + 2.4920000e+03 -1.8466795e+00 + 2.4924000e+03 -1.8466795e+00 + 2.4928000e+03 -1.8466795e+00 + 2.4932000e+03 -1.8366795e+00 + 2.4936000e+03 -1.8366795e+00 + 2.4940000e+03 -1.8466795e+00 + 2.4944000e+03 -3.0666795e+00 + 2.4948000e+03 -2.5266795e+00 + 2.4952000e+03 -2.3566795e+00 + 2.4956000e+03 -2.3466795e+00 + 2.4960000e+03 -2.3466795e+00 + 2.4964000e+03 -2.3466795e+00 + 2.4968000e+03 -1.4466795e+00 + 2.4972000e+03 2.5233205e+00 + 2.4976000e+03 2.6933205e+00 + 2.4980000e+03 2.5233205e+00 + 2.4984000e+03 2.1233205e+00 + 2.4988000e+03 1.5133205e+00 + 2.4992000e+03 9.2332051e-01 + 2.4996000e+03 5.3320513e-02 + 2.5000000e+03 -3.7667949e-01 + 2.5004000e+03 -4.5667949e-01 + 2.5008000e+03 -2.9667949e-01 + 2.5012000e+03 -9.6679487e-02 + 2.5016000e+03 -3.1667949e-01 + 2.5020000e+03 -7.8667949e-01 + 2.5024000e+03 -8.3667949e-01 + 2.5028000e+03 -8.3667949e-01 + 2.5032000e+03 -8.3667949e-01 + 2.5036000e+03 -8.3667949e-01 + 2.5040000e+03 -8.3667949e-01 + 2.5044000e+03 -4.6667949e-01 + 2.5048000e+03 -7.6679487e-02 + 2.5052000e+03 3.3320513e-02 + 2.5056000e+03 4.3320513e-02 + 2.5060000e+03 -6.6794872e-03 + 2.5064000e+03 -2.1667949e-01 + 2.5068000e+03 -3.5667949e-01 + 2.5072000e+03 -4.4667949e-01 + 2.5076000e+03 -5.8667949e-01 + 2.5080000e+03 -6.6667949e-01 + 2.5084000e+03 -5.7667949e-01 + 2.5088000e+03 -2.6667949e-01 + 2.5092000e+03 -1.3667949e-01 + 2.5096000e+03 -9.6679487e-02 + 2.5100000e+03 -2.8667949e-01 + 2.5104000e+03 -4.5667949e-01 + 2.5108000e+03 -6.5667949e-01 + 2.5112000e+03 -7.8667949e-01 + 2.5116000e+03 -8.7667949e-01 + 2.5120000e+03 -9.1667949e-01 + 2.5124000e+03 -8.0667949e-01 + 2.5128000e+03 -6.1667949e-01 + 2.5132000e+03 -6.6667949e-01 + 2.5136000e+03 -8.6667949e-01 + 2.5140000e+03 -1.2066795e+00 + 2.5144000e+03 -1.0866795e+00 + 2.5148000e+03 -9.1667949e-01 + 2.5152000e+03 -9.1667949e-01 + 2.5156000e+03 -8.7667949e-01 + 2.5160000e+03 -8.6667949e-01 + 2.5164000e+03 -8.6667949e-01 + 2.5168000e+03 -9.7667949e-01 + 2.5172000e+03 -1.1966795e+00 + 2.5176000e+03 -1.3866795e+00 + 2.5180000e+03 -1.5766795e+00 + 2.5184000e+03 -1.3566795e+00 + 2.5188000e+03 -7.3667949e-01 + 2.5192000e+03 -4.6667949e-01 + 2.5196000e+03 -2.2667949e-01 + 2.5200000e+03 2.3332051e-01 + 2.5204000e+03 7.6332051e-01 + 2.5208000e+03 1.0233205e+00 + 2.5212000e+03 2.6833205e+00 + 2.5216000e+03 2.4333205e+00 + 2.5220000e+03 2.2233205e+00 + 2.5224000e+03 1.1333205e+00 + 2.5228000e+03 9.7332051e-01 + 2.5232000e+03 9.6332051e-01 + 2.5236000e+03 9.6332051e-01 + 2.5240000e+03 9.6332051e-01 + 2.5244000e+03 9.6332051e-01 + 2.5248000e+03 9.6332051e-01 + 2.5252000e+03 -9.2667949e-01 + 2.5256000e+03 -2.5266795e+00 + 2.5260000e+03 -2.1566795e+00 + 2.5264000e+03 -1.5766795e+00 + 2.5268000e+03 -9.0667949e-01 + 2.5272000e+03 -7.5667949e-01 + 2.5276000e+03 -5.5667949e-01 + 2.5280000e+03 -3.2667949e-01 + 2.5284000e+03 -2.0667949e-01 + 2.5288000e+03 -1.3667949e-01 + 2.5292000e+03 -1.6667949e-01 + 2.5296000e+03 -3.3667949e-01 + 2.5300000e+03 -2.5667949e-01 + 2.5304000e+03 1.0332051e-01 + 2.5308000e+03 4.7332051e-01 + 2.5312000e+03 8.3332051e-01 + 2.5316000e+03 3.0332051e-01 + 2.5320000e+03 -3.7667949e-01 + 2.5324000e+03 -8.9667949e-01 + 2.5328000e+03 -1.4466795e+00 + 2.5332000e+03 -1.6666795e+00 + 2.5336000e+03 -1.6566795e+00 + 2.5340000e+03 -1.5466795e+00 + 2.5344000e+03 -1.5066795e+00 + 2.5348000e+03 -1.2166795e+00 + 2.5352000e+03 -6.7667949e-01 + 2.5356000e+03 -4.6667949e-01 + 2.5360000e+03 -9.8667949e-01 + 2.5364000e+03 -1.3266795e+00 + 2.5368000e+03 -1.3466795e+00 + 2.5372000e+03 -1.3466795e+00 + 2.5376000e+03 -1.4566795e+00 + 2.5380000e+03 -1.0466795e+00 + 2.5384000e+03 -4.6667949e-01 + 2.5388000e+03 -3.3667949e-01 + 2.5392000e+03 -3.3667949e-01 + 2.5396000e+03 -3.0667949e-01 + 2.5400000e+03 1.2233205e+00 + 2.5404000e+03 1.2333205e+00 + 2.5408000e+03 1.4133205e+00 + 2.5412000e+03 1.9133205e+00 + 2.5416000e+03 2.3533205e+00 + 2.5420000e+03 2.8733205e+00 + 2.5424000e+03 2.3933205e+00 + 2.5428000e+03 2.3433205e+00 + 2.5432000e+03 2.3533205e+00 + 2.5436000e+03 1.7833205e+00 + 2.5440000e+03 -7.8667949e-01 + 2.5444000e+03 -9.1667949e-01 + 2.5448000e+03 -9.1667949e-01 + 2.5452000e+03 -9.1667949e-01 + 2.5456000e+03 -9.1667949e-01 + 2.5460000e+03 -2.7066795e+00 + 2.5464000e+03 -2.7466795e+00 + 2.5468000e+03 -2.5766795e+00 + 2.5472000e+03 -2.4266795e+00 + 2.5476000e+03 -1.9866795e+00 + 2.5480000e+03 -1.3066795e+00 + 2.5484000e+03 -5.9667949e-01 + 2.5488000e+03 -5.6679487e-02 + 2.5492000e+03 3.2332051e-01 + 2.5496000e+03 9.3332051e-01 + 2.5500000e+03 1.0533205e+00 + 2.5504000e+03 7.0332051e-01 + 2.5508000e+03 3.5332051e-01 + 2.5512000e+03 4.7332051e-01 + 2.5516000e+03 6.4332051e-01 + 2.5520000e+03 4.0332051e-01 + 2.5524000e+03 9.3320513e-02 + 2.5528000e+03 -9.6679487e-02 + 2.5532000e+03 -1.0667949e-01 + 2.5536000e+03 -2.6667949e-01 + 2.5540000e+03 -6.2667949e-01 + 2.5544000e+03 -1.0366795e+00 + 2.5548000e+03 -1.2866795e+00 + 2.5552000e+03 -1.3966795e+00 + 2.5556000e+03 -1.6466795e+00 + 2.5560000e+03 -1.8166795e+00 + 2.5564000e+03 -1.8466795e+00 + 2.5568000e+03 -1.8766795e+00 + 2.5572000e+03 -2.0866795e+00 + 2.5576000e+03 -2.0666795e+00 + 2.5580000e+03 -2.0166795e+00 + 2.5584000e+03 -1.5066795e+00 + 2.5588000e+03 -1.3366795e+00 + 2.5592000e+03 -1.3266795e+00 + 2.5596000e+03 -1.3266795e+00 + 2.5600000e+03 -1.3266795e+00 + 2.5604000e+03 -1.3266795e+00 + 2.5608000e+03 -1.3266795e+00 + 2.5612000e+03 1.5433205e+00 + 2.5616000e+03 2.2133205e+00 + 2.5620000e+03 1.7933205e+00 + 2.5624000e+03 1.6433205e+00 + 2.5628000e+03 1.4833205e+00 + 2.5632000e+03 1.4033205e+00 + 2.5636000e+03 1.0433205e+00 + 2.5640000e+03 9.2332051e-01 + 2.5644000e+03 9.2332051e-01 + 2.5648000e+03 -7.6667949e-01 + 2.5652000e+03 -2.6966795e+00 + 2.5656000e+03 -2.6966795e+00 + 2.5660000e+03 -2.6566795e+00 + 2.5664000e+03 -2.5966795e+00 + 2.5668000e+03 -2.6566795e+00 + 2.5672000e+03 -2.6566795e+00 + 2.5676000e+03 -2.2566795e+00 + 2.5680000e+03 -1.5466795e+00 + 2.5684000e+03 -4.4667949e-01 + 2.5688000e+03 -4.6679487e-02 + 2.5692000e+03 -2.1667949e-01 + 2.5696000e+03 -3.4667949e-01 + 2.5700000e+03 -1.3667949e-01 + 2.5704000e+03 5.2332051e-01 + 2.5708000e+03 8.5332051e-01 + 2.5712000e+03 1.0233205e+00 + 2.5716000e+03 1.1333205e+00 + 2.5720000e+03 1.2033205e+00 + 2.5724000e+03 1.1733205e+00 + 2.5728000e+03 5.2332051e-01 + 2.5732000e+03 -1.7667949e-01 + 2.5736000e+03 -7.0667949e-01 + 2.5740000e+03 -8.5667949e-01 + 2.5744000e+03 -8.5667949e-01 + 2.5748000e+03 -7.5667949e-01 + 2.5752000e+03 -5.0667949e-01 + 2.5756000e+03 -3.1667949e-01 + 2.5760000e+03 -4.2667949e-01 + 2.5764000e+03 -8.1667949e-01 + 2.5768000e+03 -8.5667949e-01 + 2.5772000e+03 -8.5667949e-01 + 2.5776000e+03 -1.6566795e+00 + 2.5780000e+03 -2.0366795e+00 + 2.5784000e+03 -1.4766795e+00 + 2.5788000e+03 -1.4166795e+00 + 2.5792000e+03 -1.4066795e+00 + 2.5796000e+03 6.1332051e-01 + 2.5800000e+03 5.3332051e-01 + 2.5804000e+03 3.6332051e-01 + 2.5808000e+03 3.8332051e-01 + 2.5812000e+03 2.3332051e-01 + 2.5816000e+03 -5.6679487e-02 + 2.5820000e+03 -4.6679487e-02 + 2.5824000e+03 1.2332051e-01 + 2.5828000e+03 7.2332051e-01 + 2.5832000e+03 1.0233205e+00 + 2.5836000e+03 1.1933205e+00 + 2.5840000e+03 1.1733205e+00 + 2.5844000e+03 9.6332051e-01 + 2.5848000e+03 8.6332051e-01 + 2.5852000e+03 6.3332051e-01 + 2.5856000e+03 -1.2667949e-01 + 2.5860000e+03 -4.9667949e-01 + 2.5864000e+03 -1.7366795e+00 + 2.5868000e+03 -2.8566795e+00 + 2.5872000e+03 -3.8166795e+00 + 2.5876000e+03 -4.3866795e+00 + 2.5880000e+03 -4.1766795e+00 + 2.5884000e+03 -3.6266795e+00 + 2.5888000e+03 -2.9866795e+00 + 2.5892000e+03 -2.0566795e+00 + 2.5896000e+03 -7.2667949e-01 + 2.5900000e+03 1.0333205e+00 + 2.5904000e+03 2.5133205e+00 + 2.5908000e+03 3.1133205e+00 + 2.5912000e+03 3.0333205e+00 + 2.5916000e+03 2.7233205e+00 + 2.5920000e+03 2.3333205e+00 + 2.5924000e+03 1.6333205e+00 + 2.5928000e+03 8.2332051e-01 + 2.5932000e+03 1.4332051e-01 + 2.5936000e+03 -4.8667949e-01 + 2.5940000e+03 -1.2666795e+00 + 2.5944000e+03 -1.6966795e+00 + 2.5948000e+03 -1.7166795e+00 + 2.5952000e+03 -1.4466795e+00 + 2.5956000e+03 -1.2466795e+00 + 2.5960000e+03 -8.6667949e-01 + 2.5964000e+03 -3.2667949e-01 + 2.5968000e+03 1.7332051e-01 + 2.5972000e+03 4.6332051e-01 + 2.5976000e+03 7.4332051e-01 + 2.5980000e+03 7.7332051e-01 + 2.5984000e+03 6.5332051e-01 + 2.5988000e+03 2.9332051e-01 + 2.5992000e+03 -1.4667949e-01 + 2.5996000e+03 -6.3667949e-01 + 2.6000000e+03 -7.3667949e-01 + 2.6004000e+03 -8.7667949e-01 + 2.6008000e+03 -1.0966795e+00 + 2.6012000e+03 -1.0966795e+00 + 2.6016000e+03 -8.9667949e-01 + 2.6020000e+03 -7.7667949e-01 + 2.6024000e+03 -8.0667949e-01 + 2.6028000e+03 -7.3667949e-01 + 2.6032000e+03 -8.9667949e-01 + 2.6036000e+03 -9.9667949e-01 + 2.6040000e+03 -7.9667949e-01 + 2.6044000e+03 -5.2667949e-01 + 2.6048000e+03 -1.9667949e-01 + 2.6052000e+03 1.5332051e-01 + 2.6056000e+03 3.0332051e-01 + 2.6060000e+03 3.7332051e-01 + 2.6064000e+03 -4.6679487e-02 + 2.6068000e+03 -4.1667949e-01 + 2.6072000e+03 -7.3667949e-01 + 2.6076000e+03 -1.1466795e+00 + 2.6080000e+03 -1.4166795e+00 + 2.6084000e+03 -1.4566795e+00 + 2.6088000e+03 -1.3066795e+00 + 2.6092000e+03 -8.7667949e-01 + 2.6096000e+03 -4.6667949e-01 + 2.6100000e+03 -2.4667949e-01 + 2.6104000e+03 -3.9667949e-01 + 2.6108000e+03 -5.8667949e-01 + 2.6112000e+03 -4.5667949e-01 + 2.6116000e+03 -2.0667949e-01 + 2.6120000e+03 2.2332051e-01 + 2.6124000e+03 6.6332051e-01 + 2.6128000e+03 8.3332051e-01 + 2.6132000e+03 6.6332051e-01 + 2.6136000e+03 7.3320513e-02 + 2.6140000e+03 -5.0667949e-01 + 2.6144000e+03 -6.3667949e-01 + 2.6148000e+03 -1.4266795e+00 + 2.6152000e+03 -1.5866795e+00 + 2.6156000e+03 -1.2966795e+00 + 2.6160000e+03 -8.9667949e-01 + 2.6164000e+03 -6.6667949e-01 + 2.6168000e+03 -2.5667949e-01 + 2.6172000e+03 1.3320513e-02 + 2.6176000e+03 1.3332051e-01 + 2.6180000e+03 1.0332051e-01 + 2.6184000e+03 -1.0667949e-01 + 2.6188000e+03 -1.9667949e-01 + 2.6192000e+03 1.6332051e-01 + 2.6196000e+03 6.7332051e-01 + 2.6200000e+03 8.9332051e-01 + 2.6204000e+03 9.8332051e-01 + 2.6208000e+03 7.0332051e-01 + 2.6212000e+03 3.6332051e-01 + 2.6216000e+03 1.5332051e-01 + 2.6220000e+03 -3.5667949e-01 + 2.6224000e+03 -8.7667949e-01 + 2.6228000e+03 -1.1966795e+00 + 2.6232000e+03 -1.2066795e+00 + 2.6236000e+03 -1.3666795e+00 + 2.6240000e+03 -1.4966795e+00 + 2.6244000e+03 -1.2766795e+00 + 2.6248000e+03 -1.1366795e+00 + 2.6252000e+03 -9.6667949e-01 + 2.6256000e+03 -7.7667949e-01 + 2.6260000e+03 -9.7667949e-01 + 2.6264000e+03 -1.0966795e+00 + 2.6268000e+03 -1.2466795e+00 + 2.6272000e+03 -1.0966795e+00 + 2.6276000e+03 -1.1166795e+00 + 2.6280000e+03 -1.0466795e+00 + 2.6284000e+03 -7.2667949e-01 + 2.6288000e+03 -5.3667949e-01 + 2.6292000e+03 -3.6667949e-01 + 2.6296000e+03 -3.4667949e-01 + 2.6300000e+03 -2.4667949e-01 + 2.6304000e+03 -3.7667949e-01 + 2.6308000e+03 -5.3667949e-01 + 2.6312000e+03 -7.1667949e-01 + 2.6316000e+03 -7.3667949e-01 + 2.6320000e+03 -6.3667949e-01 + 2.6324000e+03 -4.6667949e-01 + 2.6328000e+03 -7.4667949e-01 + 2.6332000e+03 -7.5667949e-01 + 2.6336000e+03 -9.0667949e-01 + 2.6340000e+03 -6.6667949e-01 + 2.6344000e+03 -1.9667949e-01 + 2.6348000e+03 2.5332051e-01 + 2.6352000e+03 4.7332051e-01 + 2.6356000e+03 1.7733205e+00 + 2.6360000e+03 2.1433205e+00 + 2.6364000e+03 1.7333205e+00 + 2.6368000e+03 1.2233205e+00 + 2.6372000e+03 8.7332051e-01 + 2.6376000e+03 6.2332051e-01 + 2.6380000e+03 4.5332051e-01 + 2.6384000e+03 4.3332051e-01 + 2.6388000e+03 4.3332051e-01 + 2.6392000e+03 4.3332051e-01 + 2.6396000e+03 -2.2166795e+00 + 2.6400000e+03 -3.0666795e+00 + 2.6404000e+03 -3.1266795e+00 + 2.6408000e+03 -3.0666795e+00 + 2.6412000e+03 -2.5466795e+00 + 2.6416000e+03 -2.1766795e+00 + 2.6420000e+03 -1.6966795e+00 + 2.6424000e+03 -1.1966795e+00 + 2.6428000e+03 -2.7667949e-01 + 2.6432000e+03 -3.1667949e-01 + 2.6436000e+03 -1.3667949e-01 + 2.6440000e+03 2.5332051e-01 + 2.6444000e+03 1.0933205e+00 + 2.6448000e+03 2.3033205e+00 + 2.6452000e+03 2.6633205e+00 + 2.6456000e+03 2.6033205e+00 + 2.6460000e+03 2.2033205e+00 + 2.6464000e+03 2.1233205e+00 + 2.6468000e+03 2.1133205e+00 + 2.6472000e+03 2.1133205e+00 + 2.6476000e+03 2.1133205e+00 + 2.6480000e+03 2.1133205e+00 + 2.6484000e+03 2.1133205e+00 + 2.6488000e+03 2.1133205e+00 + 2.6492000e+03 2.1133205e+00 + 2.6496000e+03 2.1133205e+00 + 2.6500000e+03 2.1133205e+00 + 2.6504000e+03 2.1133205e+00 + 2.6508000e+03 2.1133205e+00 + 2.6512000e+03 2.1133205e+00 + 2.6516000e+03 2.7332051e-01 + 2.6520000e+03 -2.7166795e+00 + 2.6524000e+03 -2.6466795e+00 + 2.6528000e+03 -1.7066795e+00 + 2.6532000e+03 -1.5966795e+00 + 2.6536000e+03 -1.5966795e+00 + 2.6540000e+03 -1.5966795e+00 + 2.6544000e+03 -1.4066795e+00 + 2.6548000e+03 2.9233205e+00 + 2.6552000e+03 2.5333205e+00 + 2.6556000e+03 1.9133205e+00 + 2.6560000e+03 1.2533205e+00 + 2.6564000e+03 6.7332051e-01 + 2.6568000e+03 5.3332051e-01 + 2.6572000e+03 5.3332051e-01 + 2.6576000e+03 5.5332051e-01 + 2.6580000e+03 2.9332051e-01 + 2.6584000e+03 2.3332051e-01 + 2.6588000e+03 2.1332051e-01 + 2.6592000e+03 5.3320513e-02 + 2.6596000e+03 -9.4667949e-01 + 2.6600000e+03 -1.2366795e+00 + 2.6604000e+03 -1.7666795e+00 + 2.6608000e+03 -2.0066795e+00 + 2.6612000e+03 -2.0566795e+00 + 2.6616000e+03 -1.9966795e+00 + 2.6620000e+03 -1.8466795e+00 + 2.6624000e+03 -1.6366795e+00 + 2.6628000e+03 -1.1166795e+00 + 2.6632000e+03 -1.0166795e+00 + 2.6636000e+03 -9.6667949e-01 + 2.6640000e+03 -1.0066795e+00 + 2.6644000e+03 -9.1667949e-01 + 2.6648000e+03 -6.5667949e-01 + 2.6652000e+03 -4.7667949e-01 + 2.6656000e+03 -2.5667949e-01 + 2.6660000e+03 -4.6679487e-02 + 2.6664000e+03 -1.6679487e-02 + 2.6668000e+03 9.3320513e-02 + 2.6672000e+03 4.9332051e-01 + 2.6676000e+03 6.9332051e-01 + 2.6680000e+03 7.0332051e-01 + 2.6684000e+03 7.6332051e-01 + 2.6688000e+03 7.2332051e-01 + 2.6692000e+03 7.5332051e-01 + 2.6696000e+03 3.3332051e-01 + 2.6700000e+03 -1.1667949e-01 + 2.6704000e+03 -3.0667949e-01 + 2.6708000e+03 -3.1667949e-01 + 2.6712000e+03 -3.1667949e-01 + 2.6716000e+03 -3.1667949e-01 + 2.6720000e+03 -3.1667949e-01 + 2.6724000e+03 -3.1667949e-01 + 2.6728000e+03 -3.1667949e-01 + 2.6732000e+03 -3.1667949e-01 + 2.6736000e+03 -3.1667949e-01 + 2.6740000e+03 -1.8766795e+00 + 2.6744000e+03 -2.3066795e+00 + 2.6748000e+03 -1.8666795e+00 + 2.6752000e+03 -1.5166795e+00 + 2.6756000e+03 -1.0766795e+00 + 2.6760000e+03 -4.2667949e-01 + 2.6764000e+03 1.3320513e-02 + 2.6768000e+03 4.6332051e-01 + 2.6772000e+03 4.8332051e-01 + 2.6776000e+03 4.5332051e-01 + 2.6780000e+03 1.0233205e+00 + 2.6784000e+03 1.6133205e+00 + 2.6788000e+03 1.6433205e+00 + 2.6792000e+03 2.9633205e+00 + 2.6796000e+03 3.7633205e+00 + 2.6800000e+03 3.0033205e+00 + 2.6804000e+03 2.9633205e+00 + 2.6808000e+03 2.9533205e+00 + 2.6812000e+03 2.9533205e+00 + 2.6816000e+03 2.9533205e+00 + 2.6820000e+03 2.9533205e+00 + 2.6824000e+03 2.9533205e+00 + 2.6828000e+03 5.3320513e-02 + 2.6832000e+03 -5.9667949e-01 + 2.6836000e+03 -6.3667949e-01 + 2.6840000e+03 -8.4667949e-01 + 2.6844000e+03 -1.1366795e+00 + 2.6848000e+03 -1.9866795e+00 + 2.6852000e+03 -2.1266795e+00 + 2.6856000e+03 -1.8466795e+00 + 2.6860000e+03 -1.2666795e+00 + 2.6864000e+03 -1.1966795e+00 + 2.6868000e+03 -1.1966795e+00 + 2.6872000e+03 -1.1666795e+00 + 2.6876000e+03 -1.4666795e+00 + 2.6880000e+03 -1.4966795e+00 + 2.6884000e+03 -1.0466795e+00 + 2.6888000e+03 -6.0667949e-01 + 2.6892000e+03 -2.6667949e-01 + 2.6896000e+03 2.8332051e-01 + 2.6900000e+03 6.2332051e-01 + 2.6904000e+03 7.0332051e-01 + 2.6908000e+03 7.9332051e-01 + 2.6912000e+03 8.0332051e-01 + 2.6916000e+03 1.0133205e+00 + 2.6920000e+03 1.0433205e+00 + 2.6924000e+03 8.0332051e-01 + 2.6928000e+03 2.4332051e-01 + 2.6932000e+03 -5.9667949e-01 + 2.6936000e+03 -1.5566795e+00 + 2.6940000e+03 -2.4866795e+00 + 2.6944000e+03 -3.0066795e+00 + 2.6948000e+03 -3.2566795e+00 + 2.6952000e+03 -3.5166795e+00 + 2.6956000e+03 -3.2166795e+00 + 2.6960000e+03 -3.1066795e+00 + 2.6964000e+03 -1.9566795e+00 + 2.6968000e+03 -1.8366795e+00 + 2.6972000e+03 -1.3366795e+00 + 2.6976000e+03 -4.9667949e-01 + 2.6980000e+03 5.3320513e-02 + 2.6984000e+03 1.7733205e+00 + 2.6988000e+03 2.7033205e+00 + 2.6992000e+03 2.8833205e+00 + 2.6996000e+03 2.5533205e+00 + 2.7000000e+03 1.9533205e+00 + 2.7004000e+03 1.6833205e+00 + 2.7008000e+03 1.6033205e+00 + 2.7012000e+03 1.7133205e+00 + 2.7016000e+03 1.5133205e+00 + 2.7020000e+03 9.6332051e-01 + 2.7024000e+03 1.6332051e-01 + 2.7028000e+03 -6.6667949e-01 + 2.7032000e+03 -1.2266795e+00 + 2.7036000e+03 -1.7366795e+00 + 2.7040000e+03 -2.0866795e+00 + 2.7044000e+03 -2.1566795e+00 + 2.7048000e+03 -1.8166795e+00 + 2.7052000e+03 -1.5666795e+00 + 2.7056000e+03 -1.4466795e+00 + 2.7060000e+03 -1.4066795e+00 + 2.7064000e+03 -9.9667949e-01 + 2.7068000e+03 -7.1667949e-01 + 2.7072000e+03 -5.4667949e-01 + 2.7076000e+03 8.3320513e-02 + 2.7080000e+03 6.5332051e-01 + 2.7084000e+03 3.0332051e-01 + 2.7088000e+03 -1.7667949e-01 + 2.7092000e+03 -5.6667949e-01 + 2.7096000e+03 -1.0666795e+00 + 2.7100000e+03 -1.6366795e+00 + 2.7104000e+03 -1.9766795e+00 + 2.7108000e+03 -2.0566795e+00 + 2.7112000e+03 -1.7566795e+00 + 2.7116000e+03 -1.4166795e+00 + 2.7120000e+03 -8.5667949e-01 + 2.7124000e+03 -1.6667949e-01 + 2.7128000e+03 4.7332051e-01 + 2.7132000e+03 9.0332051e-01 + 2.7136000e+03 1.0533205e+00 + 2.7140000e+03 9.5332051e-01 + 2.7144000e+03 6.2332051e-01 + 2.7148000e+03 1.2332051e-01 + 2.7152000e+03 -5.5667949e-01 + 2.7156000e+03 -1.1166795e+00 + 2.7160000e+03 -1.5966795e+00 + 2.7164000e+03 -1.8066795e+00 + 2.7168000e+03 -1.7166795e+00 + 2.7172000e+03 -1.3966795e+00 + 2.7176000e+03 -9.7667949e-01 + 2.7180000e+03 -5.8667949e-01 + 2.7184000e+03 -1.6667949e-01 + 2.7188000e+03 3.8332051e-01 + 2.7192000e+03 8.2332051e-01 + 2.7196000e+03 1.0533205e+00 + 2.7200000e+03 1.5833205e+00 + 2.7204000e+03 2.2833205e+00 + 2.7208000e+03 2.2333205e+00 + 2.7212000e+03 1.7433205e+00 + 2.7216000e+03 1.1533205e+00 + 2.7220000e+03 1.0733205e+00 + 2.7224000e+03 3.7332051e-01 + 2.7228000e+03 -3.1667949e-01 + 2.7232000e+03 -4.9667949e-01 + 2.7236000e+03 -7.1667949e-01 + 2.7240000e+03 -1.1066795e+00 + 2.7244000e+03 -1.2866795e+00 + 2.7248000e+03 -1.6966795e+00 + 2.7252000e+03 -1.6566795e+00 + 2.7256000e+03 -1.5366795e+00 + 2.7260000e+03 -1.6766795e+00 + 2.7264000e+03 -1.9566795e+00 + 2.7268000e+03 -2.0966795e+00 + 2.7272000e+03 -2.0266795e+00 + 2.7276000e+03 -1.5266795e+00 + 2.7280000e+03 -1.3766795e+00 + 2.7284000e+03 -1.3766795e+00 + 2.7288000e+03 -1.3766795e+00 + 2.7292000e+03 -1.3766795e+00 + 2.7296000e+03 -1.3766795e+00 + 2.7300000e+03 -7.5667949e-01 + 2.7304000e+03 -3.1667949e-01 + 2.7308000e+03 -4.1667949e-01 + 2.7312000e+03 -7.5667949e-01 + 2.7316000e+03 -1.0666795e+00 + 2.7320000e+03 -1.1366795e+00 + 2.7324000e+03 -1.2566795e+00 + 2.7328000e+03 -5.7667949e-01 + 2.7332000e+03 1.6332051e-01 + 2.7336000e+03 2.3332051e-01 + 2.7340000e+03 -4.1667949e-01 + 2.7344000e+03 -6.2667949e-01 + 2.7348000e+03 -6.5667949e-01 + 2.7352000e+03 -1.8266795e+00 + 2.7356000e+03 -1.6066795e+00 + 2.7360000e+03 -1.2866795e+00 + 2.7364000e+03 -1.2766795e+00 + 2.7368000e+03 1.7332051e-01 + 2.7372000e+03 4.4332051e-01 + 2.7376000e+03 5.5332051e-01 + 2.7380000e+03 6.5332051e-01 + 2.7384000e+03 6.7332051e-01 + 2.7388000e+03 7.8332051e-01 + 2.7392000e+03 1.0033205e+00 + 2.7396000e+03 1.0933205e+00 + 2.7400000e+03 1.2833205e+00 + 2.7404000e+03 1.3433205e+00 + 2.7408000e+03 1.3533205e+00 + 2.7412000e+03 1.4233205e+00 + 2.7416000e+03 7.8332051e-01 + 2.7420000e+03 6.0332051e-01 + 2.7424000e+03 5.9332051e-01 + 2.7428000e+03 5.9332051e-01 + 2.7432000e+03 -1.1266795e+00 + 2.7436000e+03 -2.4766795e+00 + 2.7440000e+03 -2.4766795e+00 + 2.7444000e+03 -2.2366795e+00 + 2.7448000e+03 -1.9066795e+00 + 2.7452000e+03 -1.8566795e+00 + 2.7456000e+03 -1.7466795e+00 + 2.7460000e+03 -1.8266795e+00 + 2.7464000e+03 -1.7766795e+00 + 2.7468000e+03 -1.6166795e+00 + 2.7472000e+03 -1.4466795e+00 + 2.7476000e+03 -1.1466795e+00 + 2.7480000e+03 -5.5667949e-01 + 2.7484000e+03 -1.6667949e-01 + 2.7488000e+03 1.6332051e-01 + 2.7492000e+03 6.0332051e-01 + 2.7496000e+03 9.5332051e-01 + 2.7500000e+03 1.1833205e+00 + 2.7504000e+03 1.4833205e+00 + 2.7508000e+03 1.6733205e+00 + 2.7512000e+03 1.0833205e+00 + 2.7516000e+03 3.6332051e-01 + 2.7520000e+03 -1.4667949e-01 + 2.7524000e+03 -2.9667949e-01 + 2.7528000e+03 -4.1667949e-01 + 2.7532000e+03 -2.9667949e-01 + 2.7536000e+03 5.3320513e-02 + 2.7540000e+03 2.7332051e-01 + 2.7544000e+03 1.8332051e-01 + 2.7548000e+03 5.3320513e-02 + 2.7552000e+03 5.3320513e-02 + 2.7556000e+03 5.3320513e-02 + 2.7560000e+03 5.3320513e-02 + 2.7564000e+03 -1.1466795e+00 + 2.7568000e+03 -2.1766795e+00 + 2.7572000e+03 -1.5666795e+00 + 2.7576000e+03 -8.1667949e-01 + 2.7580000e+03 -3.0667949e-01 + 2.7584000e+03 -3.5667949e-01 + 2.7588000e+03 -5.2667949e-01 + 2.7592000e+03 -9.4667949e-01 + 2.7596000e+03 -1.1666795e+00 + 2.7600000e+03 -5.2667949e-01 + 2.7604000e+03 5.3320513e-02 + 2.7608000e+03 1.0533205e+00 + 2.7612000e+03 1.4333205e+00 + 2.7616000e+03 1.6333205e+00 + 2.7620000e+03 1.6933205e+00 + 2.7624000e+03 1.3933205e+00 + 2.7628000e+03 1.2333205e+00 + 2.7632000e+03 1.3933205e+00 + 2.7636000e+03 1.3433205e+00 + 2.7640000e+03 -6.6794872e-03 + 2.7644000e+03 -3.1667949e-01 + 2.7648000e+03 -3.1667949e-01 + 2.7652000e+03 -3.1667949e-01 + 2.7656000e+03 -3.1667949e-01 + 2.7660000e+03 -3.1667949e-01 + 2.7664000e+03 -1.2566795e+00 + 2.7668000e+03 -3.2766795e+00 + 2.7672000e+03 -2.9966795e+00 + 2.7676000e+03 -2.7066795e+00 + 2.7680000e+03 -1.7866795e+00 + 2.7684000e+03 -4.7667949e-01 + 2.7688000e+03 8.8332051e-01 + 2.7692000e+03 2.1533205e+00 + 2.7696000e+03 3.1433205e+00 + 2.7700000e+03 3.4533205e+00 + 2.7704000e+03 3.6933205e+00 + 2.7708000e+03 3.7833205e+00 + 2.7712000e+03 3.1933205e+00 + 2.7716000e+03 2.5533205e+00 + 2.7720000e+03 2.2733205e+00 + 2.7724000e+03 2.1433205e+00 + 2.7728000e+03 2.0033205e+00 + 2.7732000e+03 1.6533205e+00 + 2.7736000e+03 1.5733205e+00 + 2.7740000e+03 1.5733205e+00 + 2.7744000e+03 1.5733205e+00 + 2.7748000e+03 1.5533205e+00 + 2.7752000e+03 1.5733205e+00 + 2.7756000e+03 1.5533205e+00 + 2.7760000e+03 1.5733205e+00 + 2.7764000e+03 1.5733205e+00 + 2.7768000e+03 1.5733205e+00 + 2.7772000e+03 1.5733205e+00 + 2.7776000e+03 1.5733205e+00 + 2.7780000e+03 1.5733205e+00 + 2.7784000e+03 1.5733205e+00 + 2.7788000e+03 1.1333205e+00 + 2.7792000e+03 -1.3466795e+00 + 2.7796000e+03 -1.1066795e+00 + 2.7800000e+03 -1.0966795e+00 + 2.7804000e+03 -1.0866795e+00 + 2.7808000e+03 -1.0866795e+00 + 2.7812000e+03 1.8733205e+00 + 2.7816000e+03 2.2733205e+00 + 2.7820000e+03 2.0833205e+00 + 2.7824000e+03 1.7933205e+00 + 2.7828000e+03 1.4633205e+00 + 2.7832000e+03 1.1433205e+00 + 2.7836000e+03 1.1233205e+00 + 2.7840000e+03 1.1233205e+00 + 2.7844000e+03 -9.4667949e-01 + 2.7848000e+03 -2.7166795e+00 + 2.7852000e+03 -2.4766795e+00 + 2.7856000e+03 -2.2666795e+00 + 2.7860000e+03 -1.9166795e+00 + 2.7864000e+03 -1.7466795e+00 + 2.7868000e+03 -1.6466795e+00 + 2.7872000e+03 -1.5166795e+00 + 2.7876000e+03 -1.1666795e+00 + 2.7880000e+03 -5.3667949e-01 + 2.7884000e+03 3.7332051e-01 + 2.7888000e+03 7.1332051e-01 + 2.7892000e+03 7.2332051e-01 + 2.7896000e+03 7.2332051e-01 + 2.7900000e+03 7.1332051e-01 + 2.7904000e+03 7.2332051e-01 + 2.7908000e+03 2.0933205e+00 + 2.7912000e+03 3.6233205e+00 + 2.7916000e+03 2.2733205e+00 + 2.7920000e+03 1.9533205e+00 + 2.7924000e+03 -2.7667949e-01 + 2.7928000e+03 -1.2766795e+00 + 2.7932000e+03 -1.5466795e+00 + 2.7936000e+03 -1.3466795e+00 + 2.7940000e+03 -1.3366795e+00 + 2.7944000e+03 -1.3566795e+00 + 2.7948000e+03 -1.4666795e+00 + 2.7952000e+03 -1.7666795e+00 + 2.7956000e+03 -2.1966795e+00 + 2.7960000e+03 -2.2566795e+00 + 2.7964000e+03 -2.1066795e+00 + 2.7968000e+03 -1.8966795e+00 + 2.7972000e+03 -1.8666795e+00 + 2.7976000e+03 -1.8466795e+00 + 2.7980000e+03 -1.4966795e+00 + 2.7984000e+03 -1.1366795e+00 + 2.7988000e+03 -1.1266795e+00 + 2.7992000e+03 -1.0066795e+00 + 2.7996000e+03 -1.0666795e+00 + 2.8000000e+03 -9.0667949e-01 + 2.8004000e+03 -7.0667949e-01 + 2.8008000e+03 -5.6667949e-01 + 2.8012000e+03 -7.6667949e-01 + 2.8016000e+03 -1.0366795e+00 + 2.8020000e+03 -1.3666795e+00 + 2.8024000e+03 -1.7866795e+00 + 2.8028000e+03 -1.5466795e+00 + 2.8032000e+03 -1.2266795e+00 + 2.8036000e+03 -8.4667949e-01 + 2.8040000e+03 -4.2667949e-01 + 2.8044000e+03 -1.7667949e-01 + 2.8048000e+03 2.3320513e-02 + 2.8052000e+03 4.8332051e-01 + 2.8056000e+03 6.3332051e-01 + 2.8060000e+03 8.8332051e-01 + 2.8064000e+03 1.2133205e+00 + 2.8068000e+03 1.3433205e+00 + 2.8072000e+03 1.5433205e+00 + 2.8076000e+03 1.4933205e+00 + 2.8080000e+03 1.4033205e+00 + 2.8084000e+03 1.3233205e+00 + 2.8088000e+03 4.0332051e-01 + 2.8092000e+03 5.5332051e-01 + 2.8096000e+03 4.8332051e-01 + 2.8100000e+03 7.4332051e-01 + 2.8104000e+03 8.5332051e-01 + 2.8108000e+03 9.5332051e-01 + 2.8112000e+03 1.0533205e+00 + 2.8116000e+03 1.0133205e+00 + 2.8120000e+03 4.7332051e-01 + 2.8124000e+03 -3.1667949e-01 + 2.8128000e+03 -4.2667949e-01 + 2.8132000e+03 -6.6667949e-01 + 2.8136000e+03 -1.6966795e+00 + 2.8140000e+03 -2.3766795e+00 + 2.8144000e+03 -2.4866795e+00 + 2.8148000e+03 -2.3866795e+00 + 2.8152000e+03 -2.4266795e+00 + 2.8156000e+03 -2.5866795e+00 + 2.8160000e+03 -2.5866795e+00 + 2.8164000e+03 -2.1666795e+00 + 2.8168000e+03 -2.0566795e+00 + 2.8172000e+03 -1.3866795e+00 + 2.8176000e+03 -7.0667949e-01 + 2.8180000e+03 -2.7667949e-01 + 2.8184000e+03 1.0833205e+00 + 2.8188000e+03 1.1333205e+00 + 2.8192000e+03 1.0833205e+00 + 2.8196000e+03 1.1733205e+00 + 2.8200000e+03 6.6332051e-01 + 2.8204000e+03 -7.9667949e-01 + 2.8208000e+03 -1.6466795e+00 + 2.8212000e+03 -1.9566795e+00 + 2.8216000e+03 -2.0366795e+00 + 2.8220000e+03 -1.9666795e+00 + 2.8224000e+03 -1.5066795e+00 + 2.8228000e+03 -1.3266795e+00 + 2.8232000e+03 -1.3166795e+00 + 2.8236000e+03 -1.3166795e+00 + 2.8240000e+03 1.3332051e-01 + 2.8244000e+03 -9.6679487e-02 + 2.8248000e+03 -3.6679487e-02 + 2.8252000e+03 2.0332051e-01 + 2.8256000e+03 6.8332051e-01 + 2.8260000e+03 1.0833205e+00 + 2.8264000e+03 1.7133205e+00 + 2.8268000e+03 2.1633205e+00 + 2.8272000e+03 2.4533205e+00 + 2.8276000e+03 2.3733205e+00 + 2.8280000e+03 1.6033205e+00 + 2.8284000e+03 7.9332051e-01 + 2.8288000e+03 1.6332051e-01 + 2.8292000e+03 -3.4667949e-01 + 2.8296000e+03 -8.0667949e-01 + 2.8300000e+03 -1.0566795e+00 + 2.8304000e+03 -1.3466795e+00 + 2.8308000e+03 -1.4566795e+00 + 2.8312000e+03 -1.9266795e+00 + 2.8316000e+03 -1.9166795e+00 + 2.8320000e+03 -1.6266795e+00 + 2.8324000e+03 -1.5766795e+00 + 2.8328000e+03 1.8332051e-01 + 2.8332000e+03 7.9332051e-01 + 2.8336000e+03 2.6332051e-01 + 2.8340000e+03 -1.1667949e-01 + 2.8344000e+03 -3.2667949e-01 + 2.8348000e+03 -3.0667949e-01 + 2.8352000e+03 -7.6679487e-02 + 2.8356000e+03 -1.2667949e-01 + 2.8360000e+03 -5.9667949e-01 + 2.8364000e+03 -7.3667949e-01 + 2.8368000e+03 -8.4667949e-01 + 2.8372000e+03 -2.3366795e+00 + 2.8376000e+03 -3.0166795e+00 + 2.8380000e+03 -3.1066795e+00 + 2.8384000e+03 -2.9566795e+00 + 2.8388000e+03 -2.7666795e+00 + 2.8392000e+03 -2.1566795e+00 + 2.8396000e+03 -1.8366795e+00 + 2.8400000e+03 -1.8066795e+00 + 2.8404000e+03 -1.0566795e+00 + 2.8408000e+03 -5.5667949e-01 + 2.8412000e+03 -5.3667949e-01 + 2.8416000e+03 -2.2667949e-01 + 2.8420000e+03 1.3332051e-01 + 2.8424000e+03 6.5332051e-01 + 2.8428000e+03 7.3332051e-01 + 2.8432000e+03 7.2332051e-01 + 2.8436000e+03 7.0332051e-01 + 2.8440000e+03 7.3332051e-01 + 2.8444000e+03 1.2133205e+00 + 2.8448000e+03 1.8033205e+00 + 2.8452000e+03 2.2233205e+00 + 2.8456000e+03 2.4233205e+00 + 2.8460000e+03 2.9833205e+00 + 2.8464000e+03 2.8933205e+00 + 2.8468000e+03 2.4433205e+00 + 2.8472000e+03 2.3933205e+00 + 2.8476000e+03 2.3933205e+00 + 2.8480000e+03 1.4233205e+00 + 2.8484000e+03 8.8332051e-01 + 2.8488000e+03 4.7332051e-01 + 2.8492000e+03 -2.9667949e-01 + 2.8496000e+03 -1.2966795e+00 + 2.8500000e+03 -1.6966795e+00 + 2.8504000e+03 -1.6966795e+00 + 2.8508000e+03 -1.6966795e+00 + 2.8512000e+03 -1.6966795e+00 + 2.8516000e+03 -1.6966795e+00 + 2.8520000e+03 -1.6966795e+00 + 2.8524000e+03 -3.2766795e+00 + 2.8528000e+03 -2.9466795e+00 + 2.8532000e+03 -1.8866795e+00 + 2.8536000e+03 -6.1667949e-01 + 2.8540000e+03 2.2332051e-01 + 2.8544000e+03 2.8332051e-01 + 2.8548000e+03 6.7332051e-01 + 2.8552000e+03 3.1233205e+00 + 2.8556000e+03 2.8433205e+00 + 2.8560000e+03 2.2433205e+00 + 2.8564000e+03 1.7733205e+00 + 2.8568000e+03 1.4233205e+00 + 2.8572000e+03 -4.6667949e-01 + 2.8576000e+03 -1.6666795e+00 + 2.8580000e+03 -3.1566795e+00 + 2.8584000e+03 -3.6566795e+00 + 2.8588000e+03 -3.7466795e+00 + 2.8592000e+03 -3.5066795e+00 + 2.8596000e+03 -2.8566795e+00 + 2.8600000e+03 -2.5966795e+00 + 2.8604000e+03 -1.8466795e+00 + 2.8608000e+03 -8.8667949e-01 + 2.8612000e+03 -2.2667949e-01 + 2.8616000e+03 1.2332051e-01 + 2.8620000e+03 3.4332051e-01 + 2.8624000e+03 4.2332051e-01 + 2.8628000e+03 3.7332051e-01 + 2.8632000e+03 4.9332051e-01 + 2.8636000e+03 7.0332051e-01 + 2.8640000e+03 1.0133205e+00 + 2.8644000e+03 1.5233205e+00 + 2.8648000e+03 1.8733205e+00 + 2.8652000e+03 2.1033205e+00 + 2.8656000e+03 2.0033205e+00 + 2.8660000e+03 2.0033205e+00 + 2.8664000e+03 2.1433205e+00 + 2.8668000e+03 2.4733205e+00 + 2.8672000e+03 2.6333205e+00 + 2.8676000e+03 2.3033205e+00 + 2.8680000e+03 1.9433205e+00 + 2.8684000e+03 1.6333205e+00 + 2.8688000e+03 1.0033205e+00 + 2.8692000e+03 9.7332051e-01 + 2.8696000e+03 9.7332051e-01 + 2.8700000e+03 9.7332051e-01 + 2.8704000e+03 9.7332051e-01 + 2.8708000e+03 9.7332051e-01 + 2.8712000e+03 -2.9766795e+00 + 2.8716000e+03 -4.2566795e+00 + 2.8720000e+03 -3.8366795e+00 + 2.8724000e+03 -3.2366795e+00 + 2.8728000e+03 -3.1466795e+00 + 2.8732000e+03 -3.1366795e+00 + 2.8736000e+03 -3.1366795e+00 + 2.8740000e+03 -3.1366795e+00 + 2.8744000e+03 -3.1366795e+00 + 2.8748000e+03 -3.1366795e+00 + 2.8752000e+03 -3.1366795e+00 + 2.8756000e+03 -3.1366795e+00 + 2.8760000e+03 -3.1266795e+00 + 2.8764000e+03 -3.1266795e+00 + 2.8768000e+03 -1.1966795e+00 + 2.8772000e+03 -3.9667949e-01 + 2.8776000e+03 8.3320513e-02 + 2.8780000e+03 8.5332051e-01 + 2.8784000e+03 1.5533205e+00 + 2.8788000e+03 1.9733205e+00 + 2.8792000e+03 2.2533205e+00 + 2.8796000e+03 1.8633205e+00 + 2.8800000e+03 1.2533205e+00 + 2.8804000e+03 1.1733205e+00 + 2.8808000e+03 1.1633205e+00 + 2.8812000e+03 1.1433205e+00 + 2.8816000e+03 -1.4266795e+00 + 2.8820000e+03 -1.4166795e+00 + 2.8824000e+03 -1.3966795e+00 + 2.8828000e+03 -2.4866795e+00 + 2.8832000e+03 -3.1766795e+00 + 2.8836000e+03 -3.3266795e+00 + 2.8840000e+03 -2.8766795e+00 + 2.8844000e+03 -2.2366795e+00 + 2.8848000e+03 -1.3866795e+00 + 2.8852000e+03 -1.1966795e+00 + 2.8856000e+03 -1.1966795e+00 + 2.8860000e+03 -1.3667949e-01 + 2.8864000e+03 3.0833205e+00 + 2.8868000e+03 3.3233205e+00 + 2.8872000e+03 3.4033205e+00 + 2.8876000e+03 3.2633205e+00 + 2.8880000e+03 3.4133205e+00 + 2.8884000e+03 3.4633205e+00 + 2.8888000e+03 2.5233205e+00 + 2.8892000e+03 2.2833205e+00 + 2.8896000e+03 2.2733205e+00 + 2.8900000e+03 2.2733205e+00 + 2.8904000e+03 2.2733205e+00 + 2.8908000e+03 2.2733205e+00 + 2.8912000e+03 2.2733205e+00 + 2.8916000e+03 2.2733205e+00 + 2.8920000e+03 2.2733205e+00 + 2.8924000e+03 2.2733205e+00 + 2.8928000e+03 2.2733205e+00 + 2.8932000e+03 2.2733205e+00 + 2.8936000e+03 2.2733205e+00 + 2.8940000e+03 -2.2766795e+00 + 2.8944000e+03 -3.8966795e+00 + 2.8948000e+03 -3.9466795e+00 + 2.8952000e+03 -3.9266795e+00 + 2.8956000e+03 -3.9266795e+00 + 2.8960000e+03 -3.9166795e+00 + 2.8964000e+03 -3.9166795e+00 + 2.8968000e+03 -3.9066795e+00 + 2.8972000e+03 -3.9066795e+00 + 2.8976000e+03 -3.9066795e+00 + 2.8980000e+03 3.0533205e+00 + 2.8984000e+03 4.0733205e+00 + 2.8988000e+03 3.7733205e+00 + 2.8992000e+03 3.7633205e+00 + 2.8996000e+03 3.7533205e+00 + 2.9000000e+03 3.7533205e+00 + 2.9004000e+03 3.7533205e+00 + 2.9008000e+03 3.7433205e+00 + 2.9012000e+03 3.7433205e+00 + 2.9016000e+03 3.7433205e+00 + 2.9020000e+03 3.7433205e+00 + 2.9024000e+03 3.7433205e+00 + 2.9028000e+03 3.7433205e+00 + 2.9032000e+03 3.7333205e+00 + 2.9036000e+03 3.7333205e+00 + 2.9040000e+03 3.7333205e+00 + 2.9044000e+03 7.3332051e-01 + 2.9048000e+03 -3.2366795e+00 + 2.9052000e+03 -3.3266795e+00 + 2.9056000e+03 -3.1466795e+00 + 2.9060000e+03 1.2332051e-01 + 2.9064000e+03 8.5332051e-01 + 2.9068000e+03 1.0933205e+00 + 2.9072000e+03 1.5833205e+00 + 2.9076000e+03 2.2233205e+00 + 2.9080000e+03 2.6933205e+00 + 2.9084000e+03 2.7833205e+00 + 2.9088000e+03 2.4633205e+00 + 2.9092000e+03 2.1733205e+00 + 2.9096000e+03 2.1733205e+00 + 2.9100000e+03 1.6933205e+00 + 2.9104000e+03 1.6533205e+00 + 2.9108000e+03 1.6433205e+00 + 2.9112000e+03 1.6533205e+00 + 2.9116000e+03 1.6533205e+00 + 2.9120000e+03 1.6533205e+00 + 2.9124000e+03 1.3333205e+00 + 2.9128000e+03 -9.1667949e-01 + 2.9132000e+03 -1.1766795e+00 + 2.9136000e+03 -1.1766795e+00 + 2.9140000e+03 -1.1766795e+00 + 2.9144000e+03 -1.1666795e+00 + 2.9148000e+03 -1.1666795e+00 + 2.9152000e+03 -1.1666795e+00 + 2.9156000e+03 -1.1666795e+00 + 2.9160000e+03 -1.1666795e+00 + 2.9164000e+03 -1.1666795e+00 + 2.9168000e+03 -1.1666795e+00 + 2.9172000e+03 -1.1666795e+00 + 2.9176000e+03 -1.1666795e+00 + 2.9180000e+03 -1.1666795e+00 + 2.9184000e+03 -1.1666795e+00 + 2.9188000e+03 -1.1666795e+00 + 2.9192000e+03 2.1433205e+00 + 2.9196000e+03 3.7533205e+00 + 2.9200000e+03 2.8333205e+00 + 2.9204000e+03 2.1033205e+00 + 2.9208000e+03 1.2233205e+00 + 2.9212000e+03 6.3332051e-01 + 2.9216000e+03 1.3332051e-01 + 2.9220000e+03 -2.2667949e-01 + 2.9224000e+03 -2.4667949e-01 + 2.9228000e+03 -2.4667949e-01 + 2.9232000e+03 -2.4667949e-01 + 2.9236000e+03 -1.1666795e+00 + 2.9240000e+03 -2.4666795e+00 + 2.9244000e+03 -2.3466795e+00 + 2.9248000e+03 -2.2666795e+00 + 2.9252000e+03 -2.1366795e+00 + 2.9256000e+03 -2.1766795e+00 + 2.9260000e+03 -2.3266795e+00 + 2.9264000e+03 -2.0366795e+00 + 2.9268000e+03 -1.7466795e+00 + 2.9272000e+03 -9.0667949e-01 + 2.9276000e+03 1.4332051e-01 + 2.9280000e+03 -5.6667949e-01 + 2.9284000e+03 -8.5667949e-01 + 2.9288000e+03 -8.7667949e-01 + 2.9292000e+03 -3.7667949e-01 + 2.9296000e+03 -1.1667949e-01 + 2.9300000e+03 1.7333205e+00 + 2.9304000e+03 2.2033205e+00 + 2.9308000e+03 2.1033205e+00 + 2.9312000e+03 1.8833205e+00 + 2.9316000e+03 1.8533205e+00 + 2.9320000e+03 1.8033205e+00 + 2.9324000e+03 1.5533205e+00 + 2.9328000e+03 1.0533205e+00 + 2.9332000e+03 6.8332051e-01 + 2.9336000e+03 6.6332051e-01 + 2.9340000e+03 6.7332051e-01 + 2.9344000e+03 -2.5666795e+00 + 2.9348000e+03 -3.5266795e+00 + 2.9352000e+03 -3.1066795e+00 + 2.9356000e+03 -2.5966795e+00 + 2.9360000e+03 -2.6566795e+00 + 2.9364000e+03 -3.0566795e+00 + 2.9368000e+03 -3.2566795e+00 + 2.9372000e+03 -3.0366795e+00 + 2.9376000e+03 -2.5766795e+00 + 2.9380000e+03 -2.3066795e+00 + 2.9384000e+03 -2.2266795e+00 + 2.9388000e+03 -2.2166795e+00 + 2.9392000e+03 3.0332051e-01 + 2.9396000e+03 7.0332051e-01 + 2.9400000e+03 7.9332051e-01 + 2.9404000e+03 1.2033205e+00 + 2.9408000e+03 1.5333205e+00 + 2.9412000e+03 1.5533205e+00 + 2.9416000e+03 3.9933205e+00 + 2.9420000e+03 4.0433205e+00 + 2.9424000e+03 3.6633205e+00 + 2.9428000e+03 2.9533205e+00 + 2.9432000e+03 2.4633205e+00 + 2.9436000e+03 2.4233205e+00 + 2.9440000e+03 2.3533205e+00 + 2.9444000e+03 7.2332051e-01 + 2.9448000e+03 -1.3866795e+00 + 2.9452000e+03 -2.7766795e+00 + 2.9456000e+03 -3.1966795e+00 + 2.9460000e+03 -3.4466795e+00 + 2.9464000e+03 -3.6966795e+00 + 2.9468000e+03 -3.9066795e+00 + 2.9472000e+03 -3.9266795e+00 + 2.9476000e+03 -3.6966795e+00 + 2.9480000e+03 -3.4666795e+00 + 2.9484000e+03 -3.4566795e+00 + 2.9488000e+03 -3.4566795e+00 + 2.9492000e+03 -3.4566795e+00 + 2.9496000e+03 -3.4566795e+00 + 2.9500000e+03 -3.4566795e+00 + 2.9504000e+03 -3.4466795e+00 + 2.9508000e+03 -2.1266795e+00 + 2.9512000e+03 5.9533205e+00 + 2.9516000e+03 5.7833205e+00 + 2.9520000e+03 5.2933205e+00 + 2.9524000e+03 5.2733205e+00 + 2.9528000e+03 5.2633205e+00 + 2.9532000e+03 5.2633205e+00 + 2.9536000e+03 5.2533205e+00 + 2.9540000e+03 5.2533205e+00 + 2.9544000e+03 -1.5966795e+00 + 2.9548000e+03 -3.0466795e+00 + 2.9552000e+03 -3.0766795e+00 + 2.9556000e+03 -3.0666795e+00 + 2.9560000e+03 -3.0666795e+00 + 2.9564000e+03 -3.0566795e+00 + 2.9568000e+03 -3.0566795e+00 + 2.9572000e+03 -4.2366795e+00 + 2.9576000e+03 -4.2566795e+00 + 2.9580000e+03 -3.5866795e+00 + 2.9584000e+03 -3.2366795e+00 + 2.9588000e+03 -3.2166795e+00 + 2.9592000e+03 -3.2166795e+00 + 2.9596000e+03 -3.2166795e+00 + 2.9600000e+03 -3.2166795e+00 + 2.9604000e+03 -3.2166795e+00 + 2.9608000e+03 2.0233205e+00 + 2.9612000e+03 2.7333205e+00 + 2.9616000e+03 2.3033205e+00 + 2.9620000e+03 2.4033205e+00 + 2.9624000e+03 2.8033205e+00 + 2.9628000e+03 2.6433205e+00 + 2.9632000e+03 2.3433205e+00 + 2.9636000e+03 2.2633205e+00 + 2.9640000e+03 6.7332051e-01 + 2.9644000e+03 -3.9667949e-01 + 2.9648000e+03 -9.6667949e-01 + 2.9652000e+03 -1.0866795e+00 + 2.9656000e+03 -9.8667949e-01 + 2.9660000e+03 -1.0966795e+00 + 2.9664000e+03 -1.5266795e+00 + 2.9668000e+03 -2.0366795e+00 + 2.9672000e+03 -2.6666795e+00 + 2.9676000e+03 -2.7966795e+00 + 2.9680000e+03 -3.3266795e+00 + 2.9684000e+03 -2.8866795e+00 + 2.9688000e+03 -1.7566795e+00 + 2.9692000e+03 -7.2667949e-01 + 2.9696000e+03 -8.6679487e-02 + 2.9700000e+03 4.1332051e-01 + 2.9704000e+03 5.8332051e-01 + 2.9708000e+03 8.6332051e-01 + 2.9712000e+03 1.3033205e+00 + 2.9716000e+03 1.8333205e+00 + 2.9720000e+03 2.3433205e+00 + 2.9724000e+03 1.8033205e+00 + 2.9728000e+03 1.5133205e+00 + 2.9732000e+03 1.0533205e+00 + 2.9736000e+03 1.0533205e+00 + 2.9740000e+03 8.0332051e-01 + 2.9744000e+03 3.2332051e-01 + 2.9748000e+03 -4.4667949e-01 + 2.9752000e+03 -1.1966795e+00 + 2.9756000e+03 -2.5066795e+00 + 2.9760000e+03 -3.6566795e+00 + 2.9764000e+03 -4.2566795e+00 + 2.9768000e+03 -4.4466795e+00 + 2.9772000e+03 -4.1666795e+00 + 2.9776000e+03 -3.3966795e+00 + 2.9780000e+03 -2.4666795e+00 + 2.9784000e+03 -1.6966795e+00 + 2.9788000e+03 -1.0066795e+00 + 2.9792000e+03 -3.5667949e-01 + 2.9796000e+03 -1.2667949e-01 + 2.9800000e+03 -3.6679487e-02 + 2.9804000e+03 5.3320513e-02 + 2.9808000e+03 -4.6679487e-02 + 2.9812000e+03 1.0332051e-01 + 2.9816000e+03 5.9332051e-01 + 2.9820000e+03 1.1233205e+00 + 2.9824000e+03 1.4333205e+00 + 2.9828000e+03 1.7133205e+00 + 2.9832000e+03 1.9033205e+00 + 2.9836000e+03 2.1033205e+00 + 2.9840000e+03 2.2333205e+00 + 2.9844000e+03 1.7333205e+00 + 2.9848000e+03 1.3833205e+00 + 2.9852000e+03 8.7332051e-01 + 2.9856000e+03 3.0332051e-01 + 2.9860000e+03 -4.4667949e-01 + 2.9864000e+03 -9.0667949e-01 + 2.9868000e+03 -8.6667949e-01 + 2.9872000e+03 -9.5667949e-01 + 2.9876000e+03 -8.8667949e-01 + 2.9880000e+03 -4.2667949e-01 + 2.9884000e+03 -3.5667949e-01 + 2.9888000e+03 -6.6667949e-01 + 2.9892000e+03 -7.0667949e-01 + 2.9896000e+03 -3.6667949e-01 + 2.9900000e+03 -1.4667949e-01 + 2.9904000e+03 -4.9667949e-01 + 2.9908000e+03 -1.0066795e+00 + 2.9912000e+03 -1.4466795e+00 + 2.9916000e+03 -1.7166795e+00 + 2.9920000e+03 -1.5366795e+00 + 2.9924000e+03 -1.1666795e+00 + 2.9928000e+03 -8.0667949e-01 + 2.9932000e+03 -8.1667949e-01 + 2.9936000e+03 -7.5667949e-01 + 2.9940000e+03 -5.1667949e-01 + 2.9944000e+03 -1.4667949e-01 + 2.9948000e+03 3.9332051e-01 + 2.9952000e+03 5.5332051e-01 + 2.9956000e+03 4.5332051e-01 + 2.9960000e+03 -6.6679487e-02 + 2.9964000e+03 -5.2667949e-01 + 2.9968000e+03 -1.1466795e+00 + 2.9972000e+03 -1.7466795e+00 + 2.9976000e+03 -1.9566795e+00 + 2.9980000e+03 -1.9766795e+00 + 2.9984000e+03 -1.8266795e+00 + 2.9988000e+03 -1.4166795e+00 + 2.9992000e+03 -1.1166795e+00 + 2.9996000e+03 -6.7667949e-01 + 3.0000000e+03 -4.2667949e-01 + 3.0004000e+03 -7.6679487e-02 + 3.0008000e+03 4.2332051e-01 + 3.0012000e+03 7.0332051e-01 + 3.0016000e+03 7.3332051e-01 + 3.0020000e+03 1.4332051e-01 + 3.0024000e+03 -3.7667949e-01 + 3.0028000e+03 -6.6667949e-01 + 3.0032000e+03 -5.8667949e-01 + 3.0036000e+03 -4.4667949e-01 + 3.0040000e+03 -1.6667949e-01 + 3.0044000e+03 1.6332051e-01 + 3.0048000e+03 -2.9667949e-01 + 3.0052000e+03 -3.7667949e-01 + 3.0056000e+03 -5.9667949e-01 + 3.0060000e+03 -4.5667949e-01 + 3.0064000e+03 -1.3667949e-01 + 3.0068000e+03 2.7332051e-01 + 3.0072000e+03 3.0332051e-01 + 3.0076000e+03 2.3332051e-01 + 3.0080000e+03 1.8332051e-01 + 3.0084000e+03 1.1332051e-01 + 3.0088000e+03 2.2332051e-01 + 3.0092000e+03 7.1332051e-01 + 3.0096000e+03 1.1233205e+00 + 3.0100000e+03 1.1133205e+00 + 3.0104000e+03 9.4332051e-01 + 3.0108000e+03 9.7332051e-01 + 3.0112000e+03 5.4332051e-01 + 3.0116000e+03 8.3320513e-02 + 3.0120000e+03 -1.9667949e-01 + 3.0124000e+03 -4.9667949e-01 + 3.0128000e+03 -6.4667949e-01 + 3.0132000e+03 -6.9667949e-01 + 3.0136000e+03 -1.4066795e+00 + 3.0140000e+03 -1.7466795e+00 + 3.0144000e+03 -1.7166795e+00 + 3.0148000e+03 -1.7066795e+00 + 3.0152000e+03 -1.4566795e+00 + 3.0156000e+03 -1.4266795e+00 + 3.0160000e+03 -2.2666795e+00 + 3.0164000e+03 -2.5166795e+00 + 3.0168000e+03 -2.4466795e+00 + 3.0172000e+03 -2.1466795e+00 + 3.0176000e+03 -1.4666795e+00 + 3.0180000e+03 -8.9667949e-01 + 3.0184000e+03 -6.4667949e-01 + 3.0188000e+03 -8.6679487e-02 + 3.0192000e+03 1.9332051e-01 + 3.0196000e+03 1.5332051e-01 + 3.0200000e+03 -2.2667949e-01 + 3.0204000e+03 -6.3667949e-01 + 3.0208000e+03 -7.0667949e-01 + 3.0212000e+03 -6.0667949e-01 + 3.0216000e+03 -3.1667949e-01 + 3.0220000e+03 -2.3667949e-01 + 3.0224000e+03 -6.6794872e-03 + 3.0228000e+03 2.3332051e-01 + 3.0232000e+03 5.3332051e-01 + 3.0236000e+03 5.4332051e-01 + 3.0240000e+03 8.0332051e-01 + 3.0244000e+03 9.4332051e-01 + 3.0248000e+03 1.1433205e+00 + 3.0252000e+03 3.3205128e-03 + 3.0256000e+03 -5.1667949e-01 + 3.0260000e+03 -5.3667949e-01 + 3.0264000e+03 -8.6667949e-01 + 3.0268000e+03 -2.3366795e+00 + 3.0272000e+03 -2.0866795e+00 + 3.0276000e+03 -1.5166795e+00 + 3.0280000e+03 -1.0666795e+00 + 3.0284000e+03 -6.1667949e-01 + 3.0288000e+03 -9.6679487e-02 + 3.0292000e+03 6.4332051e-01 + 3.0296000e+03 7.8332051e-01 + 3.0300000e+03 7.9332051e-01 + 3.0304000e+03 8.0332051e-01 + 3.0308000e+03 1.4033205e+00 + 3.0312000e+03 1.2733205e+00 + 3.0316000e+03 9.9332051e-01 + 3.0320000e+03 2.6332051e-01 + 3.0324000e+03 -1.5667949e-01 + 3.0328000e+03 -2.6667949e-01 + 3.0332000e+03 -3.0667949e-01 + 3.0336000e+03 -3.8667949e-01 + 3.0340000e+03 -5.3667949e-01 + 3.0344000e+03 -5.1667949e-01 + 3.0348000e+03 -6.7667949e-01 + 3.0352000e+03 -8.1667949e-01 + 3.0356000e+03 -8.2667949e-01 + 3.0360000e+03 -1.3766795e+00 + 3.0364000e+03 -1.4266795e+00 + 3.0368000e+03 -1.3866795e+00 + 3.0372000e+03 -1.3766795e+00 + 3.0376000e+03 -1.6066795e+00 + 3.0380000e+03 -1.9266795e+00 + 3.0384000e+03 -2.2866795e+00 + 3.0388000e+03 -2.1666795e+00 + 3.0392000e+03 -1.7066795e+00 + 3.0396000e+03 -1.0766795e+00 + 3.0400000e+03 -8.3667949e-01 + 3.0404000e+03 4.3320513e-02 + 3.0408000e+03 1.2633205e+00 + 3.0412000e+03 1.4933205e+00 + 3.0416000e+03 1.4233205e+00 + 3.0420000e+03 9.3332051e-01 + 3.0424000e+03 7.2332051e-01 + 3.0428000e+03 7.0332051e-01 + 3.0432000e+03 7.0332051e-01 + 3.0436000e+03 7.0332051e-01 + 3.0440000e+03 7.0332051e-01 + 3.0444000e+03 7.0332051e-01 + 3.0448000e+03 6.8332051e-01 + 3.0452000e+03 -1.0966795e+00 + 3.0456000e+03 -1.1666795e+00 + 3.0460000e+03 -1.3666795e+00 + 3.0464000e+03 -1.4066795e+00 + 3.0468000e+03 -1.2666795e+00 + 3.0472000e+03 -7.7667949e-01 + 3.0476000e+03 -4.1667949e-01 + 3.0480000e+03 -8.6679487e-02 + 3.0484000e+03 2.4332051e-01 + 3.0488000e+03 6.0332051e-01 + 3.0492000e+03 6.5332051e-01 + 3.0496000e+03 1.2833205e+00 + 3.0500000e+03 1.6933205e+00 + 3.0504000e+03 2.1033205e+00 + 3.0508000e+03 2.1233205e+00 + 3.0512000e+03 1.9133205e+00 + 3.0516000e+03 1.3033205e+00 + 3.0520000e+03 1.0033205e+00 + 3.0524000e+03 1.3332051e-01 + 3.0528000e+03 -5.0667949e-01 + 3.0532000e+03 -7.9667949e-01 + 3.0536000e+03 -8.1667949e-01 + 3.0540000e+03 -8.1667949e-01 + 3.0544000e+03 -8.0667949e-01 + 3.0548000e+03 -8.0667949e-01 + 3.0552000e+03 -8.3667949e-01 + 3.0556000e+03 -2.1666795e+00 + 3.0560000e+03 -1.6466795e+00 + 3.0564000e+03 -1.0266795e+00 + 3.0568000e+03 -6.0667949e-01 + 3.0572000e+03 -5.7667949e-01 + 3.0576000e+03 -5.7667949e-01 + 3.0580000e+03 -5.7667949e-01 + 3.0584000e+03 9.3320513e-02 + 3.0588000e+03 3.2332051e-01 + 3.0592000e+03 -3.4667949e-01 + 3.0596000e+03 -7.9667949e-01 + 3.0600000e+03 -1.8766795e+00 + 3.0604000e+03 -1.8066795e+00 + 3.0608000e+03 -1.7666795e+00 + 3.0612000e+03 -1.7366795e+00 + 3.0616000e+03 -9.2667949e-01 + 3.0620000e+03 -5.1667949e-01 + 3.0624000e+03 9.3320513e-02 + 3.0628000e+03 5.0332051e-01 + 3.0632000e+03 6.2332051e-01 + 3.0636000e+03 4.8332051e-01 + 3.0640000e+03 1.4332051e-01 + 3.0644000e+03 -3.7667949e-01 + 3.0648000e+03 -8.7667949e-01 + 3.0652000e+03 -1.2966795e+00 + 3.0656000e+03 -1.4866795e+00 + 3.0660000e+03 -1.5466795e+00 + 3.0664000e+03 -2.6966795e+00 + 3.0668000e+03 -2.2966795e+00 + 3.0672000e+03 -1.4866795e+00 + 3.0676000e+03 -4.9667949e-01 + 3.0680000e+03 6.1332051e-01 + 3.0684000e+03 1.1633205e+00 + 3.0688000e+03 1.1933205e+00 + 3.0692000e+03 1.1933205e+00 + 3.0696000e+03 1.1933205e+00 + 3.0700000e+03 1.2633205e+00 + 3.0704000e+03 1.0233205e+00 + 3.0708000e+03 6.2332051e-01 + 3.0712000e+03 4.0332051e-01 + 3.0716000e+03 5.1332051e-01 + 3.0720000e+03 5.5332051e-01 + 3.0724000e+03 2.8332051e-01 + 3.0728000e+03 -6.6679487e-02 + 3.0732000e+03 -7.3667949e-01 + 3.0736000e+03 -9.0667949e-01 + 3.0740000e+03 -9.1667949e-01 + 3.0744000e+03 -1.4966795e+00 + 3.0748000e+03 -1.5766795e+00 + 3.0752000e+03 -1.5866795e+00 + 3.0756000e+03 -1.4866795e+00 + 3.0760000e+03 -1.4766795e+00 + 3.0764000e+03 -1.4866795e+00 + 3.0768000e+03 -1.2166795e+00 + 3.0772000e+03 -7.8667949e-01 + 3.0776000e+03 -6.4667949e-01 + 3.0780000e+03 -6.1667949e-01 + 3.0784000e+03 -6.2667949e-01 + 3.0788000e+03 -6.1667949e-01 + 3.0792000e+03 -5.8667949e-01 + 3.0796000e+03 1.9332051e-01 + 3.0800000e+03 -3.5667949e-01 + 3.0804000e+03 -7.0667949e-01 + 3.0808000e+03 -6.9667949e-01 + 3.0812000e+03 -5.1667949e-01 + 3.0816000e+03 -5.6667949e-01 + 3.0820000e+03 -5.8667949e-01 + 3.0824000e+03 -5.7667949e-01 + 3.0828000e+03 -8.0667949e-01 + 3.0832000e+03 -3.2766795e+00 + 3.0836000e+03 -3.3466795e+00 + 3.0840000e+03 -2.8666795e+00 + 3.0844000e+03 -2.8166795e+00 + 3.0848000e+03 -2.8066795e+00 + 3.0852000e+03 -2.8066795e+00 + 3.0856000e+03 -2.8066795e+00 + 3.0860000e+03 -2.8066795e+00 + 3.0864000e+03 -2.5866795e+00 + 3.0868000e+03 -8.7667949e-01 + 3.0872000e+03 -6.5667949e-01 + 3.0876000e+03 -6.1667949e-01 + 3.0880000e+03 -5.5667949e-01 + 3.0884000e+03 8.8332051e-01 + 3.0888000e+03 1.3733205e+00 + 3.0892000e+03 2.0033205e+00 + 3.0896000e+03 2.3533205e+00 + 3.0900000e+03 2.3933205e+00 + 3.0904000e+03 2.1733205e+00 + 3.0908000e+03 1.7433205e+00 + 3.0912000e+03 1.2633205e+00 + 3.0916000e+03 5.5332051e-01 + 3.0920000e+03 5.3320513e-02 + 3.0924000e+03 1.3320513e-02 + 3.0928000e+03 1.3320513e-02 + 3.0932000e+03 3.3205128e-03 + 3.0936000e+03 -1.6466795e+00 + 3.0940000e+03 -1.8766795e+00 + 3.0944000e+03 -1.8766795e+00 + 3.0948000e+03 -2.0666795e+00 + 3.0952000e+03 -2.0666795e+00 + 3.0956000e+03 -2.4266795e+00 + 3.0960000e+03 -2.8566795e+00 + 3.0964000e+03 -2.8266795e+00 + 3.0968000e+03 -2.4166795e+00 + 3.0972000e+03 -1.6466795e+00 + 3.0976000e+03 -1.3266795e+00 + 3.0980000e+03 -1.2966795e+00 + 3.0984000e+03 2.8332051e-01 + 3.0988000e+03 1.2933205e+00 + 3.0992000e+03 1.3533205e+00 + 3.0996000e+03 2.4033205e+00 + 3.1000000e+03 2.9633205e+00 + 3.1004000e+03 2.1933205e+00 + 3.1008000e+03 1.1933205e+00 + 3.1012000e+03 2.6332051e-01 + 3.1016000e+03 7.3320513e-02 + 3.1020000e+03 5.3320513e-02 + 3.1024000e+03 7.3320513e-02 + 3.1028000e+03 5.3320513e-02 + 3.1032000e+03 7.3320513e-02 + 3.1036000e+03 5.3320513e-02 + 3.1040000e+03 7.3320513e-02 + 3.1044000e+03 -2.5066795e+00 + 3.1048000e+03 -2.7866795e+00 + 3.1052000e+03 -2.1166795e+00 + 3.1056000e+03 -1.7666795e+00 + 3.1060000e+03 -1.6566795e+00 + 3.1064000e+03 -1.6566795e+00 + 3.1068000e+03 -1.6066795e+00 + 3.1072000e+03 6.5332051e-01 + 3.1076000e+03 1.6233205e+00 + 3.1080000e+03 1.8333205e+00 + 3.1084000e+03 1.8333205e+00 + 3.1088000e+03 3.5333205e+00 + 3.1092000e+03 3.9033205e+00 + 3.1096000e+03 3.4333205e+00 + 3.1100000e+03 3.3033205e+00 + 3.1104000e+03 3.3033205e+00 + 3.1108000e+03 3.3033205e+00 + 3.1112000e+03 3.3033205e+00 + 3.1116000e+03 3.3033205e+00 + 3.1120000e+03 3.3033205e+00 + 3.1124000e+03 3.3033205e+00 + 3.1128000e+03 3.3033205e+00 + 3.1132000e+03 3.3033205e+00 + 3.1136000e+03 3.2933205e+00 + 3.1140000e+03 3.2933205e+00 + 3.1144000e+03 -3.5266795e+00 + 3.1148000e+03 -3.9766795e+00 + 3.1152000e+03 -3.4466795e+00 + 3.1156000e+03 -3.3366795e+00 + 3.1160000e+03 -3.3266795e+00 + 3.1164000e+03 -3.3266795e+00 + 3.1168000e+03 -3.3166795e+00 + 3.1172000e+03 -3.3166795e+00 + 3.1176000e+03 -3.3166795e+00 + 3.1180000e+03 -3.3166795e+00 + 3.1184000e+03 1.1233205e+00 + 3.1188000e+03 1.9433205e+00 + 3.1192000e+03 1.5533205e+00 + 3.1196000e+03 1.2733205e+00 + 3.1200000e+03 1.2533205e+00 + 3.1204000e+03 5.9332051e-01 + 3.1208000e+03 -1.8466795e+00 + 3.1212000e+03 -2.2866795e+00 + 3.1216000e+03 -2.4066795e+00 + 3.1220000e+03 -2.5066795e+00 + 3.1224000e+03 -2.2366795e+00 + 3.1228000e+03 -1.6266795e+00 + 3.1232000e+03 -1.3766795e+00 + 3.1236000e+03 5.3320513e-02 + 3.1240000e+03 1.4332051e-01 + 3.1244000e+03 1.4332051e-01 + 3.1248000e+03 2.7332051e-01 + 3.1252000e+03 6.6332051e-01 + 3.1256000e+03 5.8332051e-01 + 3.1260000e+03 7.7332051e-01 + 3.1264000e+03 1.0133205e+00 + 3.1268000e+03 1.3633205e+00 + 3.1272000e+03 1.5533205e+00 + 3.1276000e+03 1.8533205e+00 + 3.1280000e+03 1.8233205e+00 + 3.1284000e+03 1.6933205e+00 + 3.1288000e+03 1.1633205e+00 + 3.1292000e+03 1.0433205e+00 + 3.1296000e+03 1.0333205e+00 + 3.1300000e+03 2.4332051e-01 + 3.1304000e+03 -7.4667949e-01 + 3.1308000e+03 -7.7667949e-01 + 3.1312000e+03 -8.0667949e-01 + 3.1316000e+03 -9.2667949e-01 + 3.1320000e+03 -7.5667949e-01 + 3.1324000e+03 -8.0667949e-01 + 3.1328000e+03 -8.1667949e-01 + 3.1332000e+03 -8.1667949e-01 + 3.1336000e+03 -8.1667949e-01 + 3.1340000e+03 -8.1667949e-01 + 3.1344000e+03 -8.1667949e-01 + 3.1348000e+03 -2.7966795e+00 + 3.1352000e+03 -3.1666795e+00 + 3.1356000e+03 -3.2266795e+00 + 3.1360000e+03 -3.1966795e+00 + 3.1364000e+03 -2.8266795e+00 + 3.1368000e+03 -2.3666795e+00 + 3.1372000e+03 -1.6466795e+00 + 3.1376000e+03 -1.5966795e+00 + 3.1380000e+03 -1.5966795e+00 + 3.1384000e+03 1.1332051e-01 + 3.1388000e+03 7.2332051e-01 + 3.1392000e+03 9.0332051e-01 + 3.1396000e+03 1.4433205e+00 + 3.1400000e+03 1.6533205e+00 + 3.1404000e+03 1.5433205e+00 + 3.1408000e+03 1.2033205e+00 + 3.1412000e+03 9.8332051e-01 + 3.1416000e+03 1.0433205e+00 + 3.1420000e+03 1.1333205e+00 + 3.1424000e+03 1.4033205e+00 + 3.1428000e+03 1.5533205e+00 + 3.1432000e+03 1.6133205e+00 + 3.1436000e+03 1.4733205e+00 + 3.1440000e+03 1.4233205e+00 + 3.1444000e+03 1.4233205e+00 + 3.1448000e+03 1.4233205e+00 + 3.1452000e+03 1.0332051e-01 + 3.1456000e+03 -3.6667949e-01 + 3.1460000e+03 -3.7667949e-01 + 3.1464000e+03 -3.7667949e-01 + 3.1468000e+03 -3.7667949e-01 + 3.1472000e+03 -3.7667949e-01 + 3.1476000e+03 -8.9667949e-01 + 3.1480000e+03 -1.1366795e+00 + 3.1484000e+03 -5.0667949e-01 + 3.1488000e+03 -3.0667949e-01 + 3.1492000e+03 -3.0667949e-01 + 3.1496000e+03 1.3433205e+00 + 3.1500000e+03 1.9133205e+00 + 3.1504000e+03 2.0933205e+00 + 3.1508000e+03 1.5833205e+00 + 3.1512000e+03 1.0533205e+00 + 3.1516000e+03 1.0133205e+00 + 3.1520000e+03 1.0133205e+00 + 3.1524000e+03 1.0133205e+00 + 3.1528000e+03 1.0133205e+00 + 3.1532000e+03 1.0133205e+00 + 3.1536000e+03 1.0133205e+00 + 3.1540000e+03 1.0133205e+00 + 3.1544000e+03 1.0133205e+00 + 3.1548000e+03 -2.0966795e+00 + 3.1552000e+03 -3.4866795e+00 + 3.1556000e+03 -3.6166795e+00 + 3.1560000e+03 -3.6166795e+00 + 3.1564000e+03 -3.6466795e+00 + 3.1568000e+03 -3.6566795e+00 + 3.1572000e+03 -3.2966795e+00 + 3.1576000e+03 -3.1766795e+00 + 3.1580000e+03 -3.1766795e+00 + 3.1584000e+03 -3.1766795e+00 + 3.1588000e+03 -3.1766795e+00 + 3.1592000e+03 -3.1766795e+00 + 3.1596000e+03 -2.9666795e+00 + 3.1600000e+03 3.3733205e+00 + 3.1604000e+03 3.7333205e+00 + 3.1608000e+03 4.3033205e+00 + 3.1612000e+03 6.1033205e+00 + 3.1616000e+03 5.5233205e+00 + 3.1620000e+03 3.9733205e+00 + 3.1624000e+03 1.8733205e+00 + 3.1628000e+03 -6.6794872e-03 + 3.1632000e+03 -1.3566795e+00 + 3.1636000e+03 -1.9966795e+00 + 3.1640000e+03 -2.4966795e+00 + 3.1644000e+03 -2.5466795e+00 + 3.1648000e+03 -3.0566795e+00 + 3.1652000e+03 -3.1166795e+00 + 3.1656000e+03 -2.7366795e+00 + 3.1660000e+03 -2.5766795e+00 + 3.1664000e+03 -2.9266795e+00 + 3.1668000e+03 -2.5466795e+00 + 3.1672000e+03 -2.1966795e+00 + 3.1676000e+03 -1.7866795e+00 + 3.1680000e+03 -1.1966795e+00 + 3.1684000e+03 -5.4667949e-01 + 3.1688000e+03 -2.3667949e-01 + 3.1692000e+03 -6.6794872e-03 + 3.1696000e+03 4.3320513e-02 + 3.1700000e+03 2.0332051e-01 + 3.1704000e+03 5.4332051e-01 + 3.1708000e+03 8.4332051e-01 + 3.1712000e+03 1.0333205e+00 + 3.1716000e+03 1.3733205e+00 + 3.1720000e+03 1.5533205e+00 + 3.1724000e+03 1.5033205e+00 + 3.1728000e+03 1.1633205e+00 + 3.1732000e+03 8.4332051e-01 + 3.1736000e+03 -5.3667949e-01 + 3.1740000e+03 -1.7466795e+00 + 3.1744000e+03 -2.0666795e+00 + 3.1748000e+03 -2.0666795e+00 + 3.1752000e+03 -2.0666795e+00 + 3.1756000e+03 -2.0666795e+00 + 3.1760000e+03 -3.0466795e+00 + 3.1764000e+03 -3.4766795e+00 + 3.1768000e+03 -3.2466795e+00 + 3.1772000e+03 -2.6966795e+00 + 3.1776000e+03 -1.6566795e+00 + 3.1780000e+03 -8.8667949e-01 + 3.1784000e+03 -8.4667949e-01 + 3.1788000e+03 -8.4667949e-01 + 3.1792000e+03 2.7332051e-01 + 3.1796000e+03 3.9233205e+00 + 3.1800000e+03 4.0533205e+00 + 3.1804000e+03 3.1833205e+00 + 3.1808000e+03 2.6833205e+00 + 3.1812000e+03 2.1833205e+00 + 3.1816000e+03 1.6333205e+00 + 3.1820000e+03 9.3332051e-01 + 3.1824000e+03 7.8332051e-01 + 3.1828000e+03 7.7332051e-01 + 3.1832000e+03 2.7332051e-01 + 3.1836000e+03 -5.6667949e-01 + 3.1840000e+03 -5.8667949e-01 + 3.1844000e+03 -5.8667949e-01 + 3.1848000e+03 -5.8667949e-01 + 3.1852000e+03 -5.8667949e-01 + 3.1856000e+03 -5.8667949e-01 + 3.1860000e+03 -5.9667949e-01 + 3.1864000e+03 -1.8766795e+00 + 3.1868000e+03 -1.8566795e+00 + 3.1872000e+03 -1.4966795e+00 + 3.1876000e+03 -1.6666795e+00 + 3.1880000e+03 -1.9166795e+00 + 3.1884000e+03 -2.3066795e+00 + 3.1888000e+03 -2.2866795e+00 + 3.1892000e+03 -1.8866795e+00 + 3.1896000e+03 -1.5166795e+00 + 3.1900000e+03 -1.5166795e+00 + 3.1904000e+03 -1.1566795e+00 + 3.1908000e+03 -8.3667949e-01 + 3.1912000e+03 -1.6667949e-01 + 3.1916000e+03 3.7332051e-01 + 3.1920000e+03 1.0933205e+00 + 3.1924000e+03 1.7533205e+00 + 3.1928000e+03 2.5233205e+00 + 3.1932000e+03 2.4333205e+00 + 3.1936000e+03 2.1833205e+00 + 3.1940000e+03 2.0333205e+00 + 3.1944000e+03 1.7733205e+00 + 3.1948000e+03 1.5933205e+00 + 3.1952000e+03 1.3733205e+00 + 3.1956000e+03 1.1033205e+00 + 3.1960000e+03 2.8332051e-01 + 3.1964000e+03 -6.1667949e-01 + 3.1968000e+03 -1.2866795e+00 + 3.1972000e+03 -1.5266795e+00 + 3.1976000e+03 -1.3866795e+00 + 3.1980000e+03 -8.5667949e-01 + 3.1984000e+03 -2.6667949e-01 + 3.1988000e+03 -1.0667949e-01 + 3.1992000e+03 -3.1667949e-01 + 3.1996000e+03 -5.4667949e-01 + 3.2000000e+03 -1.0266795e+00 + 3.2004000e+03 -1.2666795e+00 + 3.2008000e+03 -1.4866795e+00 + 3.2012000e+03 -1.5766795e+00 + 3.2016000e+03 -1.2466795e+00 + 3.2020000e+03 -6.5667949e-01 + 3.2024000e+03 2.2332051e-01 + 3.2028000e+03 9.6332051e-01 + 3.2032000e+03 1.0933205e+00 + 3.2036000e+03 9.8332051e-01 + 3.2040000e+03 4.9332051e-01 + 3.2044000e+03 3.5332051e-01 + 3.2048000e+03 -7.2667949e-01 + 3.2052000e+03 -1.4866795e+00 + 3.2056000e+03 -1.5066795e+00 + 3.2060000e+03 -1.5066795e+00 + 3.2064000e+03 -1.5066795e+00 + 3.2068000e+03 -1.5066795e+00 + 3.2072000e+03 -1.5066795e+00 + 3.2076000e+03 -2.3966795e+00 + 3.2080000e+03 -2.8866795e+00 + 3.2084000e+03 -2.4766795e+00 + 3.2088000e+03 -1.2866795e+00 + 3.2092000e+03 -3.5667949e-01 + 3.2096000e+03 -6.6679487e-02 + 3.2100000e+03 -2.0667949e-01 + 3.2104000e+03 -6.6679487e-02 + 3.2108000e+03 1.2332051e-01 + 3.2112000e+03 2.6332051e-01 + 3.2116000e+03 7.5332051e-01 + 3.2120000e+03 1.4233205e+00 + 3.2124000e+03 2.1433205e+00 + 3.2128000e+03 2.9033205e+00 + 3.2132000e+03 3.4033205e+00 + 3.2136000e+03 3.7733205e+00 + 3.2140000e+03 2.9033205e+00 + 3.2144000e+03 1.6533205e+00 + 3.2148000e+03 4.4332051e-01 + 3.2152000e+03 -5.0667949e-01 + 3.2156000e+03 -1.1366795e+00 + 3.2160000e+03 -1.1666795e+00 + 3.2164000e+03 -7.6667949e-01 + 3.2168000e+03 -3.0667949e-01 + 3.2172000e+03 -3.8667949e-01 + 3.2176000e+03 -6.4667949e-01 + 3.2180000e+03 -9.0667949e-01 + 3.2184000e+03 -1.2266795e+00 + 3.2188000e+03 -1.7266795e+00 + 3.2192000e+03 -1.5566795e+00 + 3.2196000e+03 -1.0166795e+00 + 3.2200000e+03 -4.0667949e-01 + 3.2204000e+03 -1.2667949e-01 + 3.2208000e+03 -1.0667949e-01 + 3.2212000e+03 -1.9667949e-01 + 3.2216000e+03 -7.9667949e-01 + 3.2220000e+03 -1.2266795e+00 + 3.2224000e+03 -1.4466795e+00 + 3.2228000e+03 -1.2366795e+00 + 3.2232000e+03 -1.0766795e+00 + 3.2236000e+03 -7.5667949e-01 + 3.2240000e+03 -7.0667949e-01 + 3.2244000e+03 -9.1667949e-01 + 3.2248000e+03 -1.4666795e+00 + 3.2252000e+03 -1.9666795e+00 + 3.2256000e+03 -2.5266795e+00 + 3.2260000e+03 -2.9266795e+00 + 3.2264000e+03 -2.6166795e+00 + 3.2268000e+03 -2.3466795e+00 + 3.2272000e+03 -2.1066795e+00 + 3.2276000e+03 -1.5366795e+00 + 3.2280000e+03 -7.5667949e-01 + 3.2284000e+03 -2.3667949e-01 + 3.2288000e+03 4.3332051e-01 + 3.2292000e+03 9.5332051e-01 + 3.2296000e+03 1.4033205e+00 + 3.2300000e+03 1.6733205e+00 + 3.2304000e+03 1.9533205e+00 + 3.2308000e+03 2.0233205e+00 + 3.2312000e+03 2.0933205e+00 + 3.2316000e+03 2.2633205e+00 + 3.2320000e+03 2.3033205e+00 + 3.2324000e+03 1.7033205e+00 + 3.2328000e+03 1.6733205e+00 + 3.2332000e+03 7.6332051e-01 + 3.2336000e+03 -5.2667949e-01 + 3.2340000e+03 -5.7667949e-01 + 3.2344000e+03 -5.0667949e-01 + 3.2348000e+03 -6.4667949e-01 + 3.2352000e+03 -7.5667949e-01 + 3.2356000e+03 -9.4667949e-01 + 3.2360000e+03 -9.8667949e-01 + 3.2364000e+03 -1.1466795e+00 + 3.2368000e+03 -1.3366795e+00 + 3.2372000e+03 -1.1266795e+00 + 3.2376000e+03 -9.8667949e-01 + 3.2380000e+03 -4.0667949e-01 + 3.2384000e+03 3.3320513e-02 + 3.2388000e+03 -1.9667949e-01 + 3.2392000e+03 -7.2667949e-01 + 3.2396000e+03 -7.1667949e-01 + 3.2400000e+03 -6.4667949e-01 + 3.2404000e+03 -2.1667949e-01 + 3.2408000e+03 1.0332051e-01 + 3.2412000e+03 5.3320513e-02 + 3.2416000e+03 -1.6679487e-02 + 3.2420000e+03 -4.7667949e-01 + 3.2424000e+03 -6.3667949e-01 + 3.2428000e+03 -8.5667949e-01 + 3.2432000e+03 -8.5667949e-01 + 3.2436000e+03 -3.5667949e-01 + 3.2440000e+03 -1.5667949e-01 + 3.2444000e+03 -2.1667949e-01 + 3.2448000e+03 -5.9667949e-01 + 3.2452000e+03 -9.4667949e-01 + 3.2456000e+03 -1.1966795e+00 + 3.2460000e+03 -1.3866795e+00 + 3.2464000e+03 -1.7666795e+00 + 3.2468000e+03 -2.2666795e+00 + 3.2472000e+03 -2.4466795e+00 + 3.2476000e+03 -2.7766795e+00 + 3.2480000e+03 -2.5966795e+00 + 3.2484000e+03 -1.9466795e+00 + 3.2488000e+03 -1.2966795e+00 + 3.2492000e+03 -1.1666795e+00 + 3.2496000e+03 -2.9667949e-01 + 3.2500000e+03 1.5533205e+00 + 3.2504000e+03 1.8833205e+00 + 3.2508000e+03 1.7933205e+00 + 3.2512000e+03 1.9533205e+00 + 3.2516000e+03 2.0533205e+00 + 3.2520000e+03 2.3333205e+00 + 3.2524000e+03 2.6533205e+00 + 3.2528000e+03 2.9733205e+00 + 3.2532000e+03 3.9933205e+00 + 3.2536000e+03 3.9233205e+00 + 3.2540000e+03 3.5133205e+00 + 3.2544000e+03 3.4833205e+00 + 3.2548000e+03 3.4833205e+00 + 3.2552000e+03 3.4833205e+00 + 3.2556000e+03 3.4833205e+00 + 3.2560000e+03 3.4833205e+00 + 3.2564000e+03 3.4833205e+00 + 3.2568000e+03 3.4833205e+00 + 3.2572000e+03 3.4733205e+00 + 3.2576000e+03 3.4833205e+00 + 3.2580000e+03 3.4733205e+00 + 3.2584000e+03 -8.3667949e-01 + 3.2588000e+03 -3.0066795e+00 + 3.2592000e+03 -3.0266795e+00 + 3.2596000e+03 -3.0166795e+00 + 3.2600000e+03 6.4332051e-01 + 3.2604000e+03 1.7933205e+00 + 3.2608000e+03 2.1933205e+00 + 3.2612000e+03 2.3433205e+00 + 3.2616000e+03 2.5533205e+00 + 3.2620000e+03 1.9333205e+00 + 3.2624000e+03 1.4733205e+00 + 3.2628000e+03 7.2332051e-01 + 3.2632000e+03 5.3320513e-02 + 3.2636000e+03 -5.0667949e-01 + 3.2640000e+03 -5.6667949e-01 + 3.2644000e+03 -4.4667949e-01 + 3.2648000e+03 -5.7667949e-01 + 3.2652000e+03 -9.4667949e-01 + 3.2656000e+03 -1.2166795e+00 + 3.2660000e+03 -1.2066795e+00 + 3.2664000e+03 -1.6566795e+00 + 3.2668000e+03 -1.9666795e+00 + 3.2672000e+03 -2.2266795e+00 + 3.2676000e+03 -2.2766795e+00 + 3.2680000e+03 -2.0466795e+00 + 3.2684000e+03 -1.6466795e+00 + 3.2688000e+03 -1.0466795e+00 + 3.2692000e+03 -4.9667949e-01 + 3.2696000e+03 1.3320513e-02 + 3.2700000e+03 8.3320513e-02 + 3.2704000e+03 1.2332051e-01 + 3.2708000e+03 1.6933205e+00 + 3.2712000e+03 1.8533205e+00 + 3.2716000e+03 1.8733205e+00 + 3.2720000e+03 2.2333205e+00 + 3.2724000e+03 2.0533205e+00 + 3.2728000e+03 1.4733205e+00 + 3.2732000e+03 1.3433205e+00 + 3.2736000e+03 1.3333205e+00 + 3.2740000e+03 1.3333205e+00 + 3.2744000e+03 1.3433205e+00 + 3.2748000e+03 1.3333205e+00 + 3.2752000e+03 1.3333205e+00 + 3.2756000e+03 1.3333205e+00 + 3.2760000e+03 1.3333205e+00 + 3.2764000e+03 1.3333205e+00 + 3.2768000e+03 1.3333205e+00 + 3.2772000e+03 8.9332051e-01 + 3.2776000e+03 -3.6266795e+00 + 3.2780000e+03 -2.6366795e+00 + 3.2784000e+03 -2.4766795e+00 + 3.2788000e+03 -2.4766795e+00 + 3.2792000e+03 -2.4666795e+00 + 3.2796000e+03 -2.4666795e+00 + 3.2800000e+03 -1.6766795e+00 + 3.2804000e+03 2.0533205e+00 + 3.2808000e+03 2.5233205e+00 + 3.2812000e+03 2.6133205e+00 + 3.2816000e+03 2.3633205e+00 + 3.2820000e+03 2.0533205e+00 + 3.2824000e+03 1.3733205e+00 + 3.2828000e+03 6.9332051e-01 + 3.2832000e+03 -4.4667949e-01 + 3.2836000e+03 -1.9966795e+00 + 3.2840000e+03 -2.6366795e+00 + 3.2844000e+03 -2.6466795e+00 + 3.2848000e+03 -2.1766795e+00 + 3.2852000e+03 -1.8366795e+00 + 3.2856000e+03 -1.7566795e+00 + 3.2860000e+03 -1.6566795e+00 + 3.2864000e+03 -1.3466795e+00 + 3.2868000e+03 -7.4667949e-01 + 3.2872000e+03 1.7332051e-01 + 3.2876000e+03 6.2332051e-01 + 3.2880000e+03 7.0332051e-01 + 3.2884000e+03 2.2332051e-01 + 3.2888000e+03 2.9332051e-01 + 3.2892000e+03 7.9332051e-01 + 3.2896000e+03 1.0933205e+00 + 3.2900000e+03 1.3333205e+00 + 3.2904000e+03 1.1533205e+00 + 3.2908000e+03 7.8332051e-01 + 3.2912000e+03 6.9332051e-01 + 3.2916000e+03 5.3320513e-02 + 3.2920000e+03 -4.5667949e-01 + 3.2924000e+03 -1.1066795e+00 + 3.2928000e+03 -1.8066795e+00 + 3.2932000e+03 -2.2566795e+00 + 3.2936000e+03 -2.2466795e+00 + 3.2940000e+03 -1.9266795e+00 + 3.2944000e+03 -1.7166795e+00 + 3.2948000e+03 -1.5166795e+00 + 3.2952000e+03 -1.2066795e+00 + 3.2956000e+03 -1.1266795e+00 + 3.2960000e+03 3.0332051e-01 + 3.2964000e+03 9.1332051e-01 + 3.2968000e+03 4.6332051e-01 + 3.2972000e+03 1.3320513e-02 + 3.2976000e+03 -2.6667949e-01 + 3.2980000e+03 -3.5667949e-01 + 3.2984000e+03 -3.0667949e-01 + 3.2988000e+03 -9.6679487e-02 + 3.2992000e+03 1.8332051e-01 + 3.2996000e+03 4.3332051e-01 + 3.3000000e+03 2.9332051e-01 + 3.3004000e+03 -1.0667949e-01 + 3.3008000e+03 -3.5667949e-01 + 3.3012000e+03 -1.4866795e+00 + 3.3016000e+03 -1.8366795e+00 + 3.3020000e+03 -1.7666795e+00 + 3.3024000e+03 -1.3566795e+00 + 3.3028000e+03 -9.1667949e-01 + 3.3032000e+03 -6.3667949e-01 + 3.3036000e+03 -6.1667949e-01 + 3.3040000e+03 -6.0667949e-01 + 3.3044000e+03 -8.6667949e-01 + 3.3048000e+03 -1.3166795e+00 + 3.3052000e+03 -1.4666795e+00 + 3.3056000e+03 -1.4066795e+00 + 3.3060000e+03 -9.0667949e-01 + 3.3064000e+03 -2.2667949e-01 + 3.3068000e+03 3.7332051e-01 + 3.3072000e+03 1.0533205e+00 + 3.3076000e+03 2.2133205e+00 + 3.3080000e+03 2.7633205e+00 + 3.3084000e+03 3.3633205e+00 + 3.3088000e+03 3.5833205e+00 + 3.3092000e+03 2.8233205e+00 + 3.3096000e+03 1.5833205e+00 + 3.3100000e+03 3.3320513e-02 + 3.3104000e+03 -1.5666795e+00 + 3.3108000e+03 -3.0466795e+00 + 3.3112000e+03 -3.9566795e+00 + 3.3116000e+03 -4.1666795e+00 + 3.3120000e+03 -3.5566795e+00 + 3.3124000e+03 -2.7166795e+00 + 3.3128000e+03 -2.3066795e+00 + 3.3132000e+03 -2.2966795e+00 + 3.3136000e+03 -2.2866795e+00 + 3.3140000e+03 -2.2866795e+00 + 3.3144000e+03 -2.2866795e+00 + 3.3148000e+03 -2.2866795e+00 + 3.3152000e+03 -1.2766795e+00 + 3.3156000e+03 9.3332051e-01 + 3.3160000e+03 1.0333205e+00 + 3.3164000e+03 1.6133205e+00 + 3.3168000e+03 1.5433205e+00 + 3.3172000e+03 6.0332051e-01 + 3.3176000e+03 8.3320513e-02 + 3.3180000e+03 5.3320513e-02 + 3.3184000e+03 5.3320513e-02 + 3.3188000e+03 5.3320513e-02 + 3.3192000e+03 5.3320513e-02 + 3.3196000e+03 5.3320513e-02 + 3.3200000e+03 5.3320513e-02 + 3.3204000e+03 -1.5366795e+00 + 3.3208000e+03 -1.9466795e+00 + 3.3212000e+03 -1.2266795e+00 + 3.3216000e+03 -1.9667949e-01 + 3.3220000e+03 -9.6679487e-02 + 3.3224000e+03 -8.6679487e-02 + 3.3228000e+03 -9.6679487e-02 + 3.3232000e+03 -9.6679487e-02 + 3.3236000e+03 3.3320513e-02 + 3.3240000e+03 3.6332051e-01 + 3.3244000e+03 2.3332051e-01 + 3.3248000e+03 1.5332051e-01 + 3.3252000e+03 3.3320513e-02 + 3.3256000e+03 -1.5667949e-01 + 3.3260000e+03 -4.7667949e-01 + 3.3264000e+03 -9.7667949e-01 + 3.3268000e+03 -1.2566795e+00 + 3.3272000e+03 -1.2266795e+00 + 3.3276000e+03 -1.0666795e+00 + 3.3280000e+03 -7.0667949e-01 + 3.3284000e+03 -7.1667949e-01 + 3.3288000e+03 -1.1366795e+00 + 3.3292000e+03 -1.1066795e+00 + 3.3296000e+03 -3.2667949e-01 + 3.3300000e+03 3.3332051e-01 + 3.3304000e+03 4.6332051e-01 + 3.3308000e+03 6.7332051e-01 + 3.3312000e+03 8.6332051e-01 + 3.3316000e+03 8.0332051e-01 + 3.3320000e+03 8.0332051e-01 + 3.3324000e+03 8.0332051e-01 + 3.3328000e+03 8.0332051e-01 + 3.3332000e+03 8.0332051e-01 + 3.3336000e+03 7.3320513e-02 + 3.3340000e+03 -1.0566795e+00 + 3.3344000e+03 -4.0667949e-01 + 3.3348000e+03 2.2332051e-01 + 3.3352000e+03 3.3332051e-01 + 3.3356000e+03 3.3332051e-01 + 3.3360000e+03 1.0332051e-01 + 3.3364000e+03 -1.6667949e-01 + 3.3368000e+03 -4.5667949e-01 + 3.3372000e+03 -7.3667949e-01 + 3.3376000e+03 -7.7667949e-01 + 3.3380000e+03 -7.7667949e-01 + 3.3384000e+03 -7.7667949e-01 + 3.3388000e+03 -8.2667949e-01 + 3.3392000e+03 -8.8667949e-01 + 3.3396000e+03 -8.5667949e-01 + 3.3400000e+03 -7.5667949e-01 + 3.3404000e+03 -8.7667949e-01 + 3.3408000e+03 -1.1166795e+00 + 3.3412000e+03 -1.1966795e+00 + 3.3416000e+03 -1.2666795e+00 + 3.3420000e+03 -1.1566795e+00 + 3.3424000e+03 -1.0366795e+00 + 3.3428000e+03 -9.1667949e-01 + 3.3432000e+03 3.3332051e-01 + 3.3436000e+03 4.2332051e-01 + 3.3440000e+03 1.0533205e+00 + 3.3444000e+03 1.6933205e+00 + 3.3448000e+03 1.2133205e+00 + 3.3452000e+03 6.5332051e-01 + 3.3456000e+03 5.4332051e-01 + 3.3460000e+03 5.4332051e-01 + 3.3464000e+03 -7.6679487e-02 + 3.3468000e+03 -6.0667949e-01 + 3.3472000e+03 -6.1667949e-01 + 3.3476000e+03 -6.3667949e-01 + 3.3480000e+03 -1.2666795e+00 + 3.3484000e+03 -1.2966795e+00 + 3.3488000e+03 -1.2466795e+00 + 3.3492000e+03 -1.4966795e+00 + 3.3496000e+03 -1.5766795e+00 + 3.3500000e+03 -1.5866795e+00 + 3.3504000e+03 -1.7666795e+00 + 3.3508000e+03 -1.4166795e+00 + 3.3512000e+03 -9.9667949e-01 + 3.3516000e+03 -7.2667949e-01 + 3.3520000e+03 -6.7667949e-01 + 3.3524000e+03 -6.7667949e-01 + 3.3528000e+03 -6.7667949e-01 + 3.3532000e+03 -6.7667949e-01 + 3.3536000e+03 -6.7667949e-01 + 3.3540000e+03 -1.9667949e-01 + 3.3544000e+03 -7.6679487e-02 + 3.3548000e+03 -4.6667949e-01 + 3.3552000e+03 -5.7667949e-01 + 3.3556000e+03 -6.0667949e-01 + 3.3560000e+03 -6.6679487e-02 + 3.3564000e+03 -4.6679487e-02 + 3.3568000e+03 1.3320513e-02 + 3.3572000e+03 -1.4667949e-01 + 3.3576000e+03 -5.2667949e-01 + 3.3580000e+03 -7.5667949e-01 + 3.3584000e+03 -1.5166795e+00 + 3.3588000e+03 -2.1066795e+00 + 3.3592000e+03 -2.2366795e+00 + 3.3596000e+03 -2.2366795e+00 + 3.3600000e+03 -2.3466795e+00 + 3.3604000e+03 -2.0166795e+00 + 3.3608000e+03 -1.5666795e+00 + 3.3612000e+03 -1.4866795e+00 + 3.3616000e+03 7.3320513e-02 + 3.3620000e+03 8.2332051e-01 + 3.3624000e+03 9.5332051e-01 + 3.3628000e+03 9.5332051e-01 + 3.3632000e+03 2.1133205e+00 + 3.3636000e+03 2.8533205e+00 + 3.3640000e+03 2.4233205e+00 + 3.3644000e+03 1.7233205e+00 + 3.3648000e+03 9.0332051e-01 + 3.3652000e+03 2.7332051e-01 + 3.3656000e+03 1.7332051e-01 + 3.3660000e+03 1.7332051e-01 + 3.3664000e+03 1.7332051e-01 + 3.3668000e+03 1.7332051e-01 + 3.3672000e+03 -2.4766795e+00 + 3.3676000e+03 -2.9566795e+00 + 3.3680000e+03 -2.6666795e+00 + 3.3684000e+03 -2.3666795e+00 + 3.3688000e+03 -2.3266795e+00 + 3.3692000e+03 -2.3266795e+00 + 3.3696000e+03 -2.3166795e+00 + 3.3700000e+03 -2.3166795e+00 + 3.3704000e+03 -2.3166795e+00 + 3.3708000e+03 -2.3166795e+00 + 3.3712000e+03 -2.3166795e+00 + 3.3716000e+03 -2.3166795e+00 + 3.3720000e+03 -6.9667949e-01 + 3.3724000e+03 1.3633205e+00 + 3.3728000e+03 9.7332051e-01 + 3.3732000e+03 2.4332051e-01 + 3.3736000e+03 -1.6679487e-02 + 3.3740000e+03 -1.2966795e+00 + 3.3744000e+03 -1.4766795e+00 + 3.3748000e+03 -1.2666795e+00 + 3.3752000e+03 -7.1667949e-01 + 3.3756000e+03 -4.4667949e-01 + 3.3760000e+03 -2.2667949e-01 + 3.3764000e+03 -1.1667949e-01 + 3.3768000e+03 2.3332051e-01 + 3.3772000e+03 3.9332051e-01 + 3.3776000e+03 3.0332051e-01 + 3.3780000e+03 -1.9667949e-01 + 3.3784000e+03 -6.0667949e-01 + 3.3788000e+03 -6.1667949e-01 + 3.3792000e+03 -5.1667949e-01 + 3.3796000e+03 -2.1667949e-01 + 3.3800000e+03 -5.1667949e-01 + 3.3804000e+03 -6.3667949e-01 + 3.3808000e+03 -5.9667949e-01 + 3.3812000e+03 2.2332051e-01 + 3.3816000e+03 7.3332051e-01 + 3.3820000e+03 9.8332051e-01 + 3.3824000e+03 1.2733205e+00 + 3.3828000e+03 8.0332051e-01 + 3.3832000e+03 -7.6679487e-02 + 3.3836000e+03 -6.9667949e-01 + 3.3840000e+03 -1.2066795e+00 + 3.3844000e+03 -1.4466795e+00 + 3.3848000e+03 -1.4266795e+00 + 3.3852000e+03 -1.3866795e+00 + 3.3856000e+03 -1.2766795e+00 + 3.3860000e+03 -9.8667949e-01 + 3.3864000e+03 -4.6667949e-01 + 3.3868000e+03 -1.9667949e-01 + 3.3872000e+03 -1.2667949e-01 + 3.3876000e+03 -4.5667949e-01 + 3.3880000e+03 -5.0667949e-01 + 3.3884000e+03 -3.3667949e-01 + 3.3888000e+03 -1.5667949e-01 + 3.3892000e+03 -4.0667949e-01 + 3.3896000e+03 -8.7667949e-01 + 3.3900000e+03 -1.0566795e+00 + 3.3904000e+03 -1.5566795e+00 + 3.3908000e+03 -1.7066795e+00 + 3.3912000e+03 -2.1466795e+00 + 3.3916000e+03 -2.0366795e+00 + 3.3920000e+03 -1.4266795e+00 + 3.3924000e+03 -8.7667949e-01 + 3.3928000e+03 -5.3667949e-01 + 3.3932000e+03 -1.0667949e-01 + 3.3936000e+03 2.7332051e-01 + 3.3940000e+03 3.8332051e-01 + 3.3944000e+03 3.8332051e-01 + 3.3948000e+03 2.3332051e-01 + 3.3952000e+03 4.3320513e-02 + 3.3956000e+03 -2.0667949e-01 + 3.3960000e+03 -6.6794872e-03 + 3.3964000e+03 4.0332051e-01 + 3.3968000e+03 3.7332051e-01 + 3.3972000e+03 5.7332051e-01 + 3.3976000e+03 1.0533205e+00 + 3.3980000e+03 1.4133205e+00 + 3.3984000e+03 2.2633205e+00 + 3.3988000e+03 2.5933205e+00 + 3.3992000e+03 1.7933205e+00 + 3.3996000e+03 1.6033205e+00 + 3.4000000e+03 1.5533205e+00 + 3.4004000e+03 4.7332051e-01 + 3.4008000e+03 3.6332051e-01 + 3.4012000e+03 3.6332051e-01 + 3.4016000e+03 3.6332051e-01 + 3.4020000e+03 3.6332051e-01 + 3.4024000e+03 3.6332051e-01 + 3.4028000e+03 -1.6566795e+00 + 3.4032000e+03 -2.4466795e+00 + 3.4036000e+03 -2.4866795e+00 + 3.4040000e+03 -2.3266795e+00 + 3.4044000e+03 -2.1166795e+00 + 3.4048000e+03 -1.9266795e+00 + 3.4052000e+03 -1.5666795e+00 + 3.4056000e+03 -8.3667949e-01 + 3.4060000e+03 -1.9667949e-01 + 3.4064000e+03 4.2332051e-01 + 3.4068000e+03 1.5332051e-01 + 3.4072000e+03 -2.2667949e-01 + 3.4076000e+03 -5.1667949e-01 + 3.4080000e+03 -7.5667949e-01 + 3.4084000e+03 -8.5667949e-01 + 3.4088000e+03 -7.9667949e-01 + 3.4092000e+03 -7.5667949e-01 + 3.4096000e+03 -5.1667949e-01 + 3.4100000e+03 -3.9667949e-01 + 3.4104000e+03 -6.9667949e-01 + 3.4108000e+03 -9.8667949e-01 + 3.4112000e+03 -1.1266795e+00 + 3.4116000e+03 -1.6466795e+00 + 3.4120000e+03 -1.6066795e+00 + 3.4124000e+03 -1.3366795e+00 + 3.4128000e+03 -1.0266795e+00 + 3.4132000e+03 -6.5667949e-01 + 3.4136000e+03 -4.7667949e-01 + 3.4140000e+03 3.9332051e-01 + 3.4144000e+03 4.0332051e-01 + 3.4148000e+03 5.8332051e-01 + 3.4152000e+03 4.7332051e-01 + 3.4156000e+03 4.3332051e-01 + 3.4160000e+03 5.5332051e-01 + 3.4164000e+03 5.9332051e-01 + 3.4168000e+03 5.3332051e-01 + 3.4172000e+03 5.8332051e-01 + 3.4176000e+03 8.5332051e-01 + 3.4180000e+03 9.5332051e-01 + 3.4184000e+03 8.4332051e-01 + 3.4188000e+03 8.3332051e-01 + 3.4192000e+03 7.6332051e-01 + 3.4196000e+03 2.6332051e-01 + 3.4200000e+03 -3.1667949e-01 + 3.4204000e+03 -4.8667949e-01 + 3.4208000e+03 -4.6667949e-01 + 3.4212000e+03 -1.0667949e-01 + 3.4216000e+03 1.0332051e-01 + 3.4220000e+03 8.3320513e-02 + 3.4224000e+03 1.3320513e-02 + 3.4228000e+03 -3.3667949e-01 + 3.4232000e+03 -2.8667949e-01 + 3.4236000e+03 -1.0667949e-01 + 3.4240000e+03 -2.8667949e-01 + 3.4244000e+03 -3.3667949e-01 + 3.4248000e+03 -3.3667949e-01 + 3.4252000e+03 -1.4466795e+00 + 3.4256000e+03 -1.8866795e+00 + 3.4260000e+03 -1.7366795e+00 + 3.4264000e+03 -1.7866795e+00 + 3.4268000e+03 -2.2066795e+00 + 3.4272000e+03 -2.5666795e+00 + 3.4276000e+03 -2.5966795e+00 + 3.4280000e+03 -2.2666795e+00 + 3.4284000e+03 -1.9666795e+00 + 3.4288000e+03 -1.7466795e+00 + 3.4292000e+03 -1.7366795e+00 + 3.4296000e+03 -1.3066795e+00 + 3.4300000e+03 -1.5466795e+00 + 3.4304000e+03 -1.9766795e+00 + 3.4308000e+03 -2.0366795e+00 + 3.4312000e+03 -1.4466795e+00 + 3.4316000e+03 -1.0466795e+00 + 3.4320000e+03 -9.2667949e-01 + 3.4324000e+03 8.4332051e-01 + 3.4328000e+03 1.1933205e+00 + 3.4332000e+03 2.1933205e+00 + 3.4336000e+03 2.8433205e+00 + 3.4340000e+03 2.9533205e+00 + 3.4344000e+03 2.6633205e+00 + 3.4348000e+03 2.6433205e+00 + 3.4352000e+03 2.6233205e+00 + 3.4356000e+03 7.3320513e-02 + 3.4360000e+03 -6.2667949e-01 + 3.4364000e+03 -7.4667949e-01 + 3.4368000e+03 -1.3066795e+00 + 3.4372000e+03 -1.3166795e+00 + 3.4376000e+03 -9.5667949e-01 + 3.4380000e+03 -3.8667949e-01 + 3.4384000e+03 -1.5667949e-01 + 3.4388000e+03 -1.0667949e-01 + 3.4392000e+03 3.5332051e-01 + 3.4396000e+03 2.2332051e-01 + 3.4400000e+03 1.9332051e-01 + 3.4404000e+03 7.3320513e-02 + 3.4408000e+03 4.3320513e-02 + 3.4412000e+03 3.3205128e-03 + 3.4416000e+03 -6.6679487e-02 + 3.4420000e+03 -1.7667949e-01 + 3.4424000e+03 2.4332051e-01 + 3.4428000e+03 7.7332051e-01 + 3.4432000e+03 9.4332051e-01 + 3.4436000e+03 1.0033205e+00 + 3.4440000e+03 9.9332051e-01 + 3.4444000e+03 5.3332051e-01 + 3.4448000e+03 2.3320513e-02 + 3.4452000e+03 -2.6679487e-02 + 3.4456000e+03 -2.6679487e-02 + 3.4460000e+03 -2.6679487e-02 + 3.4464000e+03 -2.6679487e-02 + 3.4468000e+03 -2.6679487e-02 + 3.4472000e+03 -2.6679487e-02 + 3.4476000e+03 -2.6679487e-02 + 3.4480000e+03 -2.6679487e-02 + 3.4484000e+03 -2.6679487e-02 + 3.4488000e+03 -2.6679487e-02 + 3.4492000e+03 -2.6679487e-02 + 3.4496000e+03 -1.5466795e+00 + 3.4500000e+03 -2.0266795e+00 + 3.4504000e+03 -1.5366795e+00 + 3.4508000e+03 -1.1466795e+00 + 3.4512000e+03 -2.3667949e-01 + 3.4516000e+03 5.3320513e-02 + 3.4520000e+03 1.0332051e-01 + 3.4524000e+03 1.6433205e+00 + 3.4528000e+03 1.6333205e+00 + 3.4532000e+03 1.7333205e+00 + 3.4536000e+03 1.9933205e+00 + 3.4540000e+03 2.0533205e+00 + 3.4544000e+03 1.7733205e+00 + 3.4548000e+03 1.7233205e+00 + 3.4552000e+03 1.7233205e+00 + 3.4556000e+03 1.7133205e+00 + 3.4560000e+03 1.7133205e+00 + 3.4564000e+03 1.7133205e+00 + 3.4568000e+03 1.7133205e+00 + 3.4572000e+03 1.7133205e+00 + 3.4576000e+03 1.7133205e+00 + 3.4580000e+03 -4.4667949e-01 + 3.4584000e+03 -8.8667949e-01 + 3.4588000e+03 -7.5667949e-01 + 3.4592000e+03 5.3320513e-02 + 3.4596000e+03 2.5033205e+00 + 3.4600000e+03 2.2633205e+00 + 3.4604000e+03 1.8833205e+00 + 3.4608000e+03 1.4533205e+00 + 3.4612000e+03 1.4833205e+00 + 3.4616000e+03 1.8333205e+00 + 3.4620000e+03 2.1933205e+00 + 3.4624000e+03 1.7833205e+00 + 3.4628000e+03 1.4033205e+00 + 3.4632000e+03 1.3733205e+00 + 3.4636000e+03 1.3733205e+00 + 3.4640000e+03 1.3833205e+00 + 3.4644000e+03 1.3733205e+00 + 3.4648000e+03 1.3733205e+00 + 3.4652000e+03 1.3733205e+00 + 3.4656000e+03 1.3733205e+00 + 3.4660000e+03 1.3833205e+00 + 3.4664000e+03 1.3733205e+00 + 3.4668000e+03 3.3320513e-02 + 3.4672000e+03 -3.5466795e+00 + 3.4676000e+03 -2.8466795e+00 + 3.4680000e+03 -2.1666795e+00 + 3.4684000e+03 -1.4266795e+00 + 3.4688000e+03 -1.0966795e+00 + 3.4692000e+03 -3.3667949e-01 + 3.4696000e+03 4.2332051e-01 + 3.4700000e+03 1.0333205e+00 + 3.4704000e+03 1.4733205e+00 + 3.4708000e+03 1.8233205e+00 + 3.4712000e+03 1.9133205e+00 + 3.4716000e+03 1.7933205e+00 + 3.4720000e+03 1.7533205e+00 + 3.4724000e+03 1.8733205e+00 + 3.4728000e+03 1.4433205e+00 + 3.4732000e+03 1.3933205e+00 + 3.4736000e+03 1.3933205e+00 + 3.4740000e+03 1.3933205e+00 + 3.4744000e+03 1.3933205e+00 + 3.4748000e+03 1.3933205e+00 + 3.4752000e+03 1.3933205e+00 + 3.4756000e+03 1.3933205e+00 + 3.4760000e+03 -1.4766795e+00 + 3.4764000e+03 -2.2066795e+00 + 3.4768000e+03 -1.7366795e+00 + 3.4772000e+03 -1.6966795e+00 + 3.4776000e+03 -1.6966795e+00 + 3.4780000e+03 -9.7667949e-01 + 3.4784000e+03 -8.6679487e-02 + 3.4788000e+03 3.4332051e-01 + 3.4792000e+03 5.0332051e-01 + 3.4796000e+03 6.2332051e-01 + 3.4800000e+03 1.2833205e+00 + 3.4804000e+03 1.9333205e+00 + 3.4808000e+03 2.0333205e+00 + 3.4812000e+03 2.6333205e+00 + 3.4816000e+03 2.6033205e+00 + 3.4820000e+03 2.1733205e+00 + 3.4824000e+03 1.7233205e+00 + 3.4828000e+03 1.1433205e+00 + 3.4832000e+03 3.4332051e-01 + 3.4836000e+03 -7.6679487e-02 + 3.4840000e+03 -9.6679487e-02 + 3.4844000e+03 -8.2667949e-01 + 3.4848000e+03 -1.2666795e+00 + 3.4852000e+03 -1.3766795e+00 + 3.4856000e+03 -2.0566795e+00 + 3.4860000e+03 -2.3866795e+00 + 3.4864000e+03 -2.5266795e+00 + 3.4868000e+03 -2.5366795e+00 + 3.4872000e+03 -2.5366795e+00 + 3.4876000e+03 -2.5266795e+00 + 3.4880000e+03 -2.5266795e+00 + 3.4884000e+03 -2.5866795e+00 + 3.4888000e+03 -2.4766795e+00 + 3.4892000e+03 -1.7666795e+00 + 3.4896000e+03 -1.6066795e+00 + 3.4900000e+03 -1.5966795e+00 + 3.4904000e+03 -1.5966795e+00 + 3.4908000e+03 -1.5966795e+00 + 3.4912000e+03 -1.5966795e+00 + 3.4916000e+03 -1.5966795e+00 + 3.4920000e+03 -7.7667949e-01 + 3.4924000e+03 1.5833205e+00 + 3.4928000e+03 1.9033205e+00 + 3.4932000e+03 2.0533205e+00 + 3.4936000e+03 1.8033205e+00 + 3.4940000e+03 1.3533205e+00 + 3.4944000e+03 1.1033205e+00 + 3.4948000e+03 1.0233205e+00 + 3.4952000e+03 8.2332051e-01 + 3.4956000e+03 4.9332051e-01 + 3.4960000e+03 4.7332051e-01 + 3.4964000e+03 -1.9466795e+00 + 3.4968000e+03 -3.0166795e+00 + 3.4972000e+03 -3.3066795e+00 + 3.4976000e+03 -3.0966795e+00 + 3.4980000e+03 -2.6966795e+00 + 3.4984000e+03 -2.5466795e+00 + 3.4988000e+03 -2.4966795e+00 + 3.4992000e+03 -2.5166795e+00 + 3.4996000e+03 -2.6966795e+00 + 3.5000000e+03 -2.4566795e+00 + 3.5004000e+03 -2.0266795e+00 + 3.5008000e+03 -1.9966795e+00 + 3.5012000e+03 -1.6666795e+00 + 3.5016000e+03 1.4533205e+00 + 3.5020000e+03 2.3033205e+00 + 3.5024000e+03 3.1033205e+00 + 3.5028000e+03 3.7433205e+00 + 3.5032000e+03 3.9333205e+00 + 3.5036000e+03 3.5333205e+00 + 3.5040000e+03 3.1833205e+00 + 3.5044000e+03 3.1433205e+00 + 3.5048000e+03 3.1433205e+00 + 3.5052000e+03 3.1433205e+00 + 3.5056000e+03 3.0133205e+00 + 3.5060000e+03 1.0533205e+00 + 3.5064000e+03 9.0332051e-01 + 3.5068000e+03 9.0332051e-01 + 3.5072000e+03 9.0332051e-01 + 3.5076000e+03 9.0332051e-01 + 3.5080000e+03 9.0332051e-01 + 3.5084000e+03 -2.2667949e-01 + 3.5088000e+03 -7.2667949e-01 + 3.5092000e+03 -2.7766795e+00 + 3.5096000e+03 -3.1466795e+00 + 3.5100000e+03 -3.0766795e+00 + 3.5104000e+03 -2.9466795e+00 + 3.5108000e+03 -2.6766795e+00 + 3.5112000e+03 -2.4866795e+00 + 3.5116000e+03 -2.4566795e+00 + 3.5120000e+03 -2.4066795e+00 + 3.5124000e+03 6.2332051e-01 + 3.5128000e+03 9.6332051e-01 + 3.5132000e+03 1.4833205e+00 + 3.5136000e+03 3.1533205e+00 + 3.5140000e+03 3.2133205e+00 + 3.5144000e+03 3.2133205e+00 + 3.5148000e+03 3.2133205e+00 + 3.5152000e+03 -9.0667949e-01 + 3.5156000e+03 -1.6966795e+00 + 3.5160000e+03 -1.7066795e+00 + 3.5164000e+03 -1.6966795e+00 + 3.5168000e+03 -1.9466795e+00 + 3.5172000e+03 -1.9666795e+00 + 3.5176000e+03 -1.8966795e+00 + 3.5180000e+03 -1.7066795e+00 + 3.5184000e+03 -1.6966795e+00 + 3.5188000e+03 -1.7466795e+00 + 3.5192000e+03 -1.7366795e+00 + 3.5196000e+03 -1.7366795e+00 + 3.5200000e+03 -1.7166795e+00 + 3.5204000e+03 -1.3466795e+00 + 3.5208000e+03 -4.8667949e-01 + 3.5212000e+03 -1.9667949e-01 + 3.5216000e+03 -1.7667949e-01 + 3.5220000e+03 -1.7667949e-01 + 3.5224000e+03 -1.7667949e-01 + 3.5228000e+03 -7.6679487e-02 + 3.5232000e+03 2.7433205e+00 + 3.5236000e+03 2.6433205e+00 + 3.5240000e+03 2.0033205e+00 + 3.5244000e+03 8.5332051e-01 + 3.5248000e+03 5.4332051e-01 + 3.5252000e+03 4.8332051e-01 + 3.5256000e+03 4.3332051e-01 + 3.5260000e+03 4.8332051e-01 + 3.5264000e+03 8.4332051e-01 + 3.5268000e+03 4.7332051e-01 + 3.5272000e+03 2.0332051e-01 + 3.5276000e+03 -1.2667949e-01 + 3.5280000e+03 -3.6667949e-01 + 3.5284000e+03 -3.7667949e-01 + 3.5288000e+03 -3.7667949e-01 + 3.5292000e+03 -3.7667949e-01 + 3.5296000e+03 -1.6966795e+00 + 3.5300000e+03 -2.2066795e+00 + 3.5304000e+03 -1.9766795e+00 + 3.5308000e+03 -1.9566795e+00 + 3.5312000e+03 -1.9566795e+00 + 3.5316000e+03 -1.9566795e+00 + 3.5320000e+03 -1.8866795e+00 + 3.5324000e+03 -3.0667949e-01 + 3.5328000e+03 -3.7667949e-01 + 3.5332000e+03 -6.3667949e-01 + 3.5336000e+03 -1.2266795e+00 + 3.5340000e+03 -1.4966795e+00 + 3.5344000e+03 -1.7666795e+00 + 3.5348000e+03 -2.4466795e+00 + 3.5352000e+03 -2.4066795e+00 + 3.5356000e+03 -2.3666795e+00 + 3.5360000e+03 -2.0066795e+00 + 3.5364000e+03 -2.0966795e+00 + 3.5368000e+03 -2.1966795e+00 + 3.5372000e+03 -2.2666795e+00 + 3.5376000e+03 -1.9966795e+00 + 3.5380000e+03 -1.5366795e+00 + 3.5384000e+03 -1.0166795e+00 + 3.5388000e+03 -9.5667949e-01 + 3.5392000e+03 -9.5667949e-01 + 3.5396000e+03 -9.5667949e-01 + 3.5400000e+03 1.7933205e+00 + 3.5404000e+03 1.7633205e+00 + 3.5408000e+03 1.3633205e+00 + 3.5412000e+03 1.1633205e+00 + 3.5416000e+03 8.4332051e-01 + 3.5420000e+03 5.9332051e-01 + 3.5424000e+03 2.6332051e-01 + 3.5428000e+03 5.3320513e-02 + 3.5432000e+03 -1.5667949e-01 + 3.5436000e+03 -2.0667949e-01 + 3.5440000e+03 -1.1667949e-01 + 3.5444000e+03 -1.6679487e-02 + 3.5448000e+03 2.3320513e-02 + 3.5452000e+03 1.6332051e-01 + 3.5456000e+03 4.3332051e-01 + 3.5460000e+03 6.3332051e-01 + 3.5464000e+03 6.0332051e-01 + 3.5468000e+03 1.1133205e+00 + 3.5472000e+03 1.4933205e+00 + 3.5476000e+03 1.7133205e+00 + 3.5480000e+03 2.0233205e+00 + 3.5484000e+03 2.4333205e+00 + 3.5488000e+03 2.2333205e+00 + 3.5492000e+03 1.7033205e+00 + 3.5496000e+03 8.2332051e-01 + 3.5500000e+03 4.9332051e-01 + 3.5504000e+03 4.7332051e-01 + 3.5508000e+03 -1.4566795e+00 + 3.5512000e+03 -1.7666795e+00 + 3.5516000e+03 -1.7666795e+00 + 3.5520000e+03 -1.7666795e+00 + 3.5524000e+03 -1.7666795e+00 + 3.5528000e+03 -1.7566795e+00 + 3.5532000e+03 -1.7566795e+00 + 3.5536000e+03 -2.7166795e+00 + 3.5540000e+03 -2.9466795e+00 + 3.5544000e+03 -2.5666795e+00 + 3.5548000e+03 -2.5466795e+00 + 3.5552000e+03 -2.2666795e+00 + 3.5556000e+03 -1.9466795e+00 + 3.5560000e+03 -1.3666795e+00 + 3.5564000e+03 -1.1966795e+00 + 3.5568000e+03 -1.1966795e+00 + 3.5572000e+03 -1.1966795e+00 + 3.5576000e+03 -1.1966795e+00 + 3.5580000e+03 -1.1966795e+00 + 3.5584000e+03 -1.1966795e+00 + 3.5588000e+03 1.6633205e+00 + 3.5592000e+03 1.9933205e+00 + 3.5596000e+03 1.9333205e+00 + 3.5600000e+03 1.7633205e+00 + 3.5604000e+03 1.5233205e+00 + 3.5608000e+03 1.2633205e+00 + 3.5612000e+03 7.7332051e-01 + 3.5616000e+03 2.2332051e-01 + 3.5620000e+03 -8.6679487e-02 + 3.5624000e+03 -1.0667949e-01 + 3.5628000e+03 -1.0667949e-01 + 3.5632000e+03 -1.0667949e-01 + 3.5636000e+03 -1.0667949e-01 + 3.5640000e+03 -1.0667949e-01 + 3.5644000e+03 -1.6166795e+00 + 3.5648000e+03 -2.0366795e+00 + 3.5652000e+03 -2.0366795e+00 + 3.5656000e+03 -1.5666795e+00 + 3.5660000e+03 -1.2766795e+00 + 3.5664000e+03 3.5332051e-01 + 3.5668000e+03 5.9332051e-01 + 3.5672000e+03 6.7332051e-01 + 3.5676000e+03 7.8332051e-01 + 3.5680000e+03 1.0233205e+00 + 3.5684000e+03 1.6733205e+00 + 3.5688000e+03 2.0533205e+00 + 3.5692000e+03 2.5233205e+00 + 3.5696000e+03 1.6333205e+00 + 3.5700000e+03 1.5533205e+00 + 3.5704000e+03 1.5533205e+00 + 3.5708000e+03 1.5533205e+00 + 3.5712000e+03 1.5533205e+00 + 3.5716000e+03 1.5533205e+00 + 3.5720000e+03 1.5533205e+00 + 3.5724000e+03 1.5533205e+00 + 3.5728000e+03 1.5533205e+00 + 3.5732000e+03 1.5533205e+00 + 3.5736000e+03 1.5533205e+00 + 3.5740000e+03 1.5533205e+00 + 3.5744000e+03 1.5533205e+00 + 3.5748000e+03 1.5533205e+00 + 3.5752000e+03 -1.4266795e+00 + 3.5756000e+03 -2.7866795e+00 + 3.5760000e+03 -2.3266795e+00 + 3.5764000e+03 -2.2966795e+00 + 3.5768000e+03 -2.2866795e+00 + 3.5772000e+03 9.2332051e-01 + 3.5776000e+03 1.7133205e+00 + 3.5780000e+03 2.8033205e+00 + 3.5784000e+03 3.0033205e+00 + 3.5788000e+03 2.6833205e+00 + 3.5792000e+03 3.0333205e+00 + 3.5796000e+03 3.0733205e+00 + 3.5800000e+03 3.3533205e+00 + 3.5804000e+03 4.1033205e+00 + 3.5808000e+03 3.2633205e+00 + 3.5812000e+03 1.6433205e+00 + 3.5816000e+03 -2.7667949e-01 + 3.5820000e+03 -1.6166795e+00 + 3.5824000e+03 -2.0866795e+00 + 3.5828000e+03 -2.1066795e+00 + 3.5832000e+03 -1.9866795e+00 + 3.5836000e+03 -1.5066795e+00 + 3.5840000e+03 -1.4666795e+00 + 3.5844000e+03 -1.7266795e+00 + 3.5848000e+03 -1.9466795e+00 + 3.5852000e+03 -1.9466795e+00 + 3.5856000e+03 -1.8566795e+00 + 3.5860000e+03 -1.5866795e+00 + 3.5864000e+03 -1.4066795e+00 + 3.5868000e+03 -1.2066795e+00 + 3.5872000e+03 -1.1566795e+00 + 3.5876000e+03 -1.6667949e-01 + 3.5880000e+03 3.9332051e-01 + 3.5884000e+03 4.1332051e-01 + 3.5888000e+03 8.3332051e-01 + 3.5892000e+03 1.2733205e+00 + 3.5896000e+03 1.0033205e+00 + 3.5900000e+03 8.5332051e-01 + 3.5904000e+03 5.3332051e-01 + 3.5908000e+03 2.3332051e-01 + 3.5912000e+03 1.7332051e-01 + 3.5916000e+03 1.6332051e-01 + 3.5920000e+03 1.3320513e-02 + 3.5924000e+03 -4.0667949e-01 + 3.5928000e+03 -7.2667949e-01 + 3.5932000e+03 -1.7466795e+00 + 3.5936000e+03 -1.6666795e+00 + 3.5940000e+03 -1.2766795e+00 + 3.5944000e+03 -1.5766795e+00 + 3.5948000e+03 -1.8466795e+00 + 3.5952000e+03 -1.9666795e+00 + 3.5956000e+03 -1.9766795e+00 + 3.5960000e+03 -2.2366795e+00 + 3.5964000e+03 -1.9866795e+00 + 3.5968000e+03 -1.6966795e+00 + 3.5972000e+03 -1.0366795e+00 + 3.5976000e+03 -4.5667949e-01 + 3.5980000e+03 -4.4667949e-01 + 3.5984000e+03 -4.4667949e-01 + 3.5988000e+03 -4.4667949e-01 + 3.5992000e+03 -1.3667949e-01 + 3.5996000e+03 2.7553321e+01 + 3.6000000e+03 1.2033205e+00 + 3.6004000e+03 6.4332051e-01 + 3.6008000e+03 5.2332051e-01 + 3.6012000e+03 6.3332051e-01 + 3.6016000e+03 6.4332051e-01 + 3.6020000e+03 8.0332051e-01 + 3.6024000e+03 1.0333205e+00 + 3.6028000e+03 1.2533205e+00 + 3.6032000e+03 1.2933205e+00 + 3.6036000e+03 -1.6667949e-01 + 3.6040000e+03 -8.1667949e-01 + 3.6044000e+03 -8.3667949e-01 + 3.6048000e+03 -8.4667949e-01 + 3.6052000e+03 -2.2966795e+00 + 3.6056000e+03 -2.2566795e+00 + 3.6060000e+03 -1.6166795e+00 + 3.6064000e+03 -9.0667949e-01 + 3.6068000e+03 -7.6679487e-02 + 3.6072000e+03 3.5332051e-01 + 3.6076000e+03 6.4332051e-01 + 3.6080000e+03 1.0433205e+00 + 3.6084000e+03 1.5533205e+00 + 3.6088000e+03 1.7833205e+00 + 3.6092000e+03 6.1332051e-01 + 3.6096000e+03 -1.6667949e-01 + 3.6100000e+03 -5.9667949e-01 + 3.6104000e+03 -8.6667949e-01 + 3.6108000e+03 -8.7667949e-01 + 3.6112000e+03 -6.4667949e-01 + 3.6116000e+03 -2.1667949e-01 + 3.6120000e+03 3.2332051e-01 + 3.6124000e+03 8.7332051e-01 + 3.6128000e+03 1.1933205e+00 + 3.6132000e+03 5.1332051e-01 + 3.6136000e+03 1.2332051e-01 + 3.6140000e+03 1.0332051e-01 + 3.6144000e+03 1.0332051e-01 + 3.6148000e+03 1.1332051e-01 + 3.6152000e+03 -1.9466795e+00 + 3.6156000e+03 -1.8666795e+00 + 3.6160000e+03 -1.3366795e+00 + 3.6164000e+03 -1.0066795e+00 + 3.6168000e+03 -3.9667949e-01 + 3.6172000e+03 -3.6679487e-02 + 3.6176000e+03 3.9332051e-01 + 3.6180000e+03 8.2332051e-01 + 3.6184000e+03 1.3433205e+00 + 3.6188000e+03 1.5533205e+00 + 3.6192000e+03 1.0033205e+00 + 3.6196000e+03 4.3332051e-01 + 3.6200000e+03 2.9332051e-01 + 3.6204000e+03 2.8332051e-01 + 3.6208000e+03 2.8332051e-01 + 3.6212000e+03 5.3320513e-02 + 3.6216000e+03 -2.4466795e+00 + 3.6220000e+03 -2.5466795e+00 + 3.6224000e+03 -2.1566795e+00 + 3.6228000e+03 -1.3966795e+00 + 3.6232000e+03 -1.1466795e+00 + 3.6236000e+03 -1.0366795e+00 + 3.6240000e+03 -1.0366795e+00 + 3.6244000e+03 -1.0366795e+00 + 3.6248000e+03 -1.0366795e+00 + 3.6252000e+03 -1.0366795e+00 + 3.6256000e+03 -6.3667949e-01 + 3.6260000e+03 1.3533205e+00 + 3.6264000e+03 1.2033205e+00 + 3.6268000e+03 8.0332051e-01 + 3.6272000e+03 4.9332051e-01 + 3.6276000e+03 4.8332051e-01 + 3.6280000e+03 4.8332051e-01 + 3.6284000e+03 -4.2667949e-01 + 3.6288000e+03 -1.1966795e+00 + 3.6292000e+03 -9.6667949e-01 + 3.6296000e+03 -7.0667949e-01 + 3.6300000e+03 -4.0667949e-01 + 3.6304000e+03 -3.0667949e-01 + 3.6308000e+03 -4.0667949e-01 + 3.6312000e+03 -4.4667949e-01 + 3.6316000e+03 -4.4667949e-01 + 3.6320000e+03 -5.3667949e-01 + 3.6324000e+03 -5.8667949e-01 + 3.6328000e+03 -4.4667949e-01 + 3.6332000e+03 -7.6679487e-02 + 3.6336000e+03 1.3320513e-02 + 3.6340000e+03 1.3320513e-02 + 3.6344000e+03 -6.5667949e-01 + 3.6348000e+03 -1.0166795e+00 + 3.6352000e+03 -1.1066795e+00 + 3.6356000e+03 -1.1966795e+00 + 3.6360000e+03 -1.1966795e+00 + 3.6364000e+03 -8.3667949e-01 + 3.6368000e+03 -7.2667949e-01 + 3.6372000e+03 -3.7667949e-01 + 3.6376000e+03 2.3320513e-02 + 3.6380000e+03 2.1332051e-01 + 3.6384000e+03 9.3320513e-02 + 3.6388000e+03 -2.9667949e-01 + 3.6392000e+03 -1.2066795e+00 + 3.6396000e+03 -2.2466795e+00 + 3.6400000e+03 -2.5966795e+00 + 3.6404000e+03 -2.6966795e+00 + 3.6408000e+03 -2.3966795e+00 + 3.6412000e+03 -1.9966795e+00 + 3.6416000e+03 -1.7866795e+00 + 3.6420000e+03 -1.6566795e+00 + 3.6424000e+03 -1.7166795e+00 + 3.6428000e+03 -1.6966795e+00 + 3.6432000e+03 -1.6766795e+00 + 3.6436000e+03 -1.0766795e+00 + 3.6440000e+03 -3.0667949e-01 + 3.6444000e+03 5.0332051e-01 + 3.6448000e+03 7.0332051e-01 + 3.6452000e+03 7.0332051e-01 + 3.6456000e+03 7.0332051e-01 + 3.6460000e+03 7.0332051e-01 + 3.6464000e+03 7.0332051e-01 + 3.6468000e+03 8.2332051e-01 + 3.6472000e+03 3.6233205e+00 + 3.6476000e+03 3.2133205e+00 + 3.6480000e+03 3.1733205e+00 + 3.6484000e+03 3.1733205e+00 + 3.6488000e+03 3.1633205e+00 + 3.6492000e+03 1.7633205e+00 + 3.6496000e+03 -1.2266795e+00 + 3.6500000e+03 -1.4566795e+00 + 3.6504000e+03 -1.4666795e+00 + 3.6508000e+03 -1.4566795e+00 + 3.6512000e+03 -1.4566795e+00 + 3.6516000e+03 -1.4566795e+00 + 3.6520000e+03 -1.5266795e+00 + 3.6524000e+03 -2.3766795e+00 + 3.6528000e+03 -2.0866795e+00 + 3.6532000e+03 -1.8666795e+00 + 3.6536000e+03 -1.7466795e+00 + 3.6540000e+03 -1.7366795e+00 + 3.6544000e+03 -1.7366795e+00 + 3.6548000e+03 -1.7366795e+00 + 3.6552000e+03 -1.7366795e+00 + 3.6556000e+03 -1.7366795e+00 + 3.6560000e+03 -1.7366795e+00 + 3.6564000e+03 -1.6766795e+00 + 3.6568000e+03 -9.6667949e-01 + 3.6572000e+03 -1.5466795e+00 + 3.6576000e+03 -2.0666795e+00 + 3.6580000e+03 -2.1166795e+00 + 3.6584000e+03 -2.0066795e+00 + 3.6588000e+03 -1.8466795e+00 + 3.6592000e+03 -1.5166795e+00 + 3.6596000e+03 -1.1366795e+00 + 3.6600000e+03 -9.9667949e-01 + 3.6604000e+03 -9.9667949e-01 + 3.6608000e+03 -1.1466795e+00 + 3.6612000e+03 -1.3966795e+00 + 3.6616000e+03 -1.3666795e+00 + 3.6620000e+03 -1.3766795e+00 + 3.6624000e+03 -9.0667949e-01 + 3.6628000e+03 -8.3667949e-01 + 3.6632000e+03 -3.5667949e-01 + 3.6636000e+03 1.0933205e+00 + 3.6640000e+03 1.2733205e+00 + 3.6644000e+03 1.7033205e+00 + 3.6648000e+03 1.8233205e+00 + 3.6652000e+03 1.7233205e+00 + 3.6656000e+03 1.1333205e+00 + 3.6660000e+03 9.3332051e-01 + 3.6664000e+03 1.0033205e+00 + 3.6668000e+03 1.0833205e+00 + 3.6672000e+03 1.0533205e+00 + 3.6676000e+03 8.8332051e-01 + 3.6680000e+03 7.8332051e-01 + 3.6684000e+03 4.8332051e-01 + 3.6688000e+03 4.6332051e-01 + 3.6692000e+03 4.6332051e-01 + 3.6696000e+03 -2.8667949e-01 + 3.6700000e+03 -9.2667949e-01 + 3.6704000e+03 -8.5667949e-01 + 3.6708000e+03 -8.4667949e-01 + 3.6712000e+03 -8.4667949e-01 + 3.6716000e+03 -8.3667949e-01 + 3.6720000e+03 -6.0667949e-01 + 3.6724000e+03 -1.2766795e+00 + 3.6728000e+03 -1.8966795e+00 + 3.6732000e+03 -2.3266795e+00 + 3.6736000e+03 -2.7266795e+00 + 3.6740000e+03 -2.4566795e+00 + 3.6744000e+03 -2.0566795e+00 + 3.6748000e+03 -1.4866795e+00 + 3.6752000e+03 -9.7667949e-01 + 3.6756000e+03 -8.5667949e-01 + 3.6760000e+03 -8.3667949e-01 + 3.6764000e+03 -8.2667949e-01 + 3.6768000e+03 -1.5266795e+00 + 3.6772000e+03 -1.6966795e+00 + 3.6776000e+03 -1.4666795e+00 + 3.6780000e+03 -1.0866795e+00 + 3.6784000e+03 -3.2667949e-01 + 3.6788000e+03 2.5332051e-01 + 3.6792000e+03 3.7332051e-01 + 3.6796000e+03 2.1332051e-01 + 3.6800000e+03 -2.7667949e-01 + 3.6804000e+03 -5.6667949e-01 + 3.6808000e+03 -6.0667949e-01 + 3.6812000e+03 -6.0667949e-01 + 3.6816000e+03 -1.1566795e+00 + 3.6820000e+03 -1.3466795e+00 + 3.6824000e+03 -1.0066795e+00 + 3.6828000e+03 -7.7667949e-01 + 3.6832000e+03 -4.5667949e-01 + 3.6836000e+03 3.3205128e-03 + 3.6840000e+03 1.7332051e-01 + 3.6844000e+03 1.8332051e-01 + 3.6848000e+03 1.8332051e-01 + 3.6852000e+03 1.8332051e-01 + 3.6856000e+03 1.9332051e-01 + 3.6860000e+03 1.1333205e+00 + 3.6864000e+03 1.3033205e+00 + 3.6868000e+03 8.0332051e-01 + 3.6872000e+03 4.5332051e-01 + 3.6876000e+03 4.6332051e-01 + 3.6880000e+03 6.4332051e-01 + 3.6884000e+03 7.9332051e-01 + 3.6888000e+03 8.0332051e-01 + 3.6892000e+03 4.5332051e-01 + 3.6896000e+03 1.5332051e-01 + 3.6900000e+03 -3.5667949e-01 + 3.6904000e+03 -7.2667949e-01 + 3.6908000e+03 -7.5667949e-01 + 3.6912000e+03 -1.4166795e+00 + 3.6916000e+03 -1.4166795e+00 + 3.6920000e+03 -1.2066795e+00 + 3.6924000e+03 -1.2466795e+00 + 3.6928000e+03 -1.3066795e+00 + 3.6932000e+03 -1.3866795e+00 + 3.6936000e+03 -1.5766795e+00 + 3.6940000e+03 -1.5666795e+00 + 3.6944000e+03 -1.4566795e+00 + 3.6948000e+03 -1.3866795e+00 + 3.6952000e+03 -1.3666795e+00 + 3.6956000e+03 -1.6066795e+00 + 3.6960000e+03 -2.1366795e+00 + 3.6964000e+03 -2.2666795e+00 + 3.6968000e+03 -2.2766795e+00 + 3.6972000e+03 -1.9266795e+00 + 3.6976000e+03 -1.5866795e+00 + 3.6980000e+03 -1.2766795e+00 + 3.6984000e+03 -1.2466795e+00 + 3.6988000e+03 -1.2466795e+00 + 3.6992000e+03 -1.1966795e+00 + 3.6996000e+03 -9.9667949e-01 + 3.7000000e+03 4.3332051e-01 + 3.7004000e+03 1.2333205e+00 + 3.7008000e+03 1.5333205e+00 + 3.7012000e+03 1.5833205e+00 + 3.7016000e+03 1.3933205e+00 + 3.7020000e+03 1.3833205e+00 + 3.7024000e+03 1.3733205e+00 + 3.7028000e+03 1.3733205e+00 + 3.7032000e+03 1.3733205e+00 + 3.7036000e+03 -8.4667949e-01 + 3.7040000e+03 -1.2266795e+00 + 3.7044000e+03 -1.0566795e+00 + 3.7048000e+03 -8.4667949e-01 + 3.7052000e+03 -7.7667949e-01 + 3.7056000e+03 -6.6794872e-03 + 3.7060000e+03 1.0332051e-01 + 3.7064000e+03 6.4332051e-01 + 3.7068000e+03 7.8332051e-01 + 3.7072000e+03 7.6332051e-01 + 3.7076000e+03 5.5332051e-01 + 3.7080000e+03 2.4332051e-01 + 3.7084000e+03 -9.6679487e-02 + 3.7088000e+03 -5.9667949e-01 + 3.7092000e+03 -8.0667949e-01 + 3.7096000e+03 -8.8667949e-01 + 3.7100000e+03 -9.0667949e-01 + 3.7104000e+03 -5.6667949e-01 + 3.7108000e+03 -1.6679487e-02 + 3.7112000e+03 5.3320513e-02 + 3.7116000e+03 1.2033205e+00 + 3.7120000e+03 1.9933205e+00 + 3.7124000e+03 2.3933205e+00 + 3.7128000e+03 2.1133205e+00 + 3.7132000e+03 1.3333205e+00 + 3.7136000e+03 4.6332051e-01 + 3.7140000e+03 3.0332051e-01 + 3.7144000e+03 -1.2766795e+00 + 3.7148000e+03 -2.3166795e+00 + 3.7152000e+03 -3.1666795e+00 + 3.7156000e+03 -3.8266795e+00 + 3.7160000e+03 -4.0366795e+00 + 3.7164000e+03 -4.1366795e+00 + 3.7168000e+03 -3.8666795e+00 + 3.7172000e+03 -3.4066795e+00 + 3.7176000e+03 -3.3566795e+00 + 3.7180000e+03 -3.3566795e+00 + 3.7184000e+03 -3.3566795e+00 + 3.7188000e+03 -3.3566795e+00 + 3.7192000e+03 -8.6679487e-02 + 3.7196000e+03 2.8332051e-01 + 3.7200000e+03 2.8332051e-01 + 3.7204000e+03 4.2332051e-01 + 3.7208000e+03 5.2332051e-01 + 3.7212000e+03 7.6332051e-01 + 3.7216000e+03 8.0332051e-01 + 3.7220000e+03 9.9332051e-01 + 3.7224000e+03 1.0333205e+00 + 3.7228000e+03 8.8332051e-01 + 3.7232000e+03 5.0332051e-01 + 3.7236000e+03 1.8332051e-01 + 3.7240000e+03 -2.5667949e-01 + 3.7244000e+03 -3.2667949e-01 + 3.7248000e+03 -3.3667949e-01 + 3.7252000e+03 -3.3667949e-01 + 3.7256000e+03 -3.3667949e-01 + 3.7260000e+03 -1.8166795e+00 + 3.7264000e+03 -1.9866795e+00 + 3.7268000e+03 -1.6166795e+00 + 3.7272000e+03 -1.4566795e+00 + 3.7276000e+03 -2.9667949e-01 + 3.7280000e+03 2.0332051e-01 + 3.7284000e+03 2.2332051e-01 + 3.7288000e+03 2.3332051e-01 + 3.7292000e+03 6.4332051e-01 + 3.7296000e+03 1.0733205e+00 + 3.7300000e+03 8.5332051e-01 + 3.7304000e+03 3.4332051e-01 + 3.7308000e+03 1.1332051e-01 + 3.7312000e+03 -1.1667949e-01 + 3.7316000e+03 -3.5667949e-01 + 3.7320000e+03 -5.2667949e-01 + 3.7324000e+03 -3.9667949e-01 + 3.7328000e+03 -2.0667949e-01 + 3.7332000e+03 -1.5667949e-01 + 3.7336000e+03 -1.1667949e-01 + 3.7340000e+03 -2.8667949e-01 + 3.7344000e+03 -6.5667949e-01 + 3.7348000e+03 -9.2667949e-01 + 3.7352000e+03 -9.4667949e-01 + 3.7356000e+03 -8.5667949e-01 + 3.7360000e+03 -6.7667949e-01 + 3.7364000e+03 -2.9667949e-01 + 3.7368000e+03 3.9332051e-01 + 3.7372000e+03 2.9332051e-01 + 3.7376000e+03 -3.2667949e-01 + 3.7380000e+03 -6.9667949e-01 + 3.7384000e+03 -1.3166795e+00 + 3.7388000e+03 -1.4066795e+00 + 3.7392000e+03 -1.4166795e+00 + 3.7396000e+03 -1.4066795e+00 + 3.7400000e+03 -1.4066795e+00 + 3.7404000e+03 -1.4066795e+00 + 3.7408000e+03 -1.4066795e+00 + 3.7412000e+03 -1.4766795e+00 + 3.7416000e+03 -1.2966795e+00 + 3.7420000e+03 -8.5667949e-01 + 3.7424000e+03 -3.4667949e-01 + 3.7428000e+03 3.2332051e-01 + 3.7432000e+03 3.8332051e-01 + 3.7436000e+03 3.8332051e-01 + 3.7440000e+03 4.0332051e-01 + 3.7444000e+03 9.9332051e-01 + 3.7448000e+03 8.9332051e-01 + 3.7452000e+03 3.7332051e-01 + 3.7456000e+03 3.3320513e-02 + 3.7460000e+03 -2.0667949e-01 + 3.7464000e+03 -4.0667949e-01 + 3.7468000e+03 -5.7667949e-01 + 3.7472000e+03 -5.5667949e-01 + 3.7476000e+03 -7.5667949e-01 + 3.7480000e+03 -9.2667949e-01 + 3.7484000e+03 -8.6667949e-01 + 3.7488000e+03 -7.0667949e-01 + 3.7492000e+03 -5.5667949e-01 + 3.7496000e+03 -4.4667949e-01 + 3.7500000e+03 -3.2667949e-01 + 3.7504000e+03 -2.7667949e-01 + 3.7508000e+03 -1.4667949e-01 + 3.7512000e+03 -3.6679487e-02 + 3.7516000e+03 4.7332051e-01 + 3.7520000e+03 1.2733205e+00 + 3.7524000e+03 3.5533205e+00 + 3.7528000e+03 2.8033205e+00 + 3.7532000e+03 2.0133205e+00 + 3.7536000e+03 1.9933205e+00 + 3.7540000e+03 1.9733205e+00 + 3.7544000e+03 -1.2366795e+00 + 3.7548000e+03 -1.5966795e+00 + 3.7552000e+03 -1.3466795e+00 + 3.7556000e+03 -9.9667949e-01 + 3.7560000e+03 -6.7667949e-01 + 3.7564000e+03 -6.0667949e-01 + 3.7568000e+03 -1.9667949e-01 + 3.7572000e+03 -3.6667949e-01 + 3.7576000e+03 -6.3667949e-01 + 3.7580000e+03 -1.0166795e+00 + 3.7584000e+03 -1.1466795e+00 + 3.7588000e+03 -1.1466795e+00 + 3.7592000e+03 -1.4766795e+00 + 3.7596000e+03 -1.7066795e+00 + 3.7600000e+03 -1.4166795e+00 + 3.7604000e+03 -1.1466795e+00 + 3.7608000e+03 -1.0366795e+00 + 3.7612000e+03 -1.1766795e+00 + 3.7616000e+03 -1.2266795e+00 + 3.7620000e+03 -1.2666795e+00 + 3.7624000e+03 -9.5667949e-01 + 3.7628000e+03 -7.1667949e-01 + 3.7632000e+03 -6.5667949e-01 + 3.7636000e+03 -5.0667949e-01 + 3.7640000e+03 1.7332051e-01 + 3.7644000e+03 1.8332051e-01 + 3.7648000e+03 2.0332051e-01 + 3.7652000e+03 3.3332051e-01 + 3.7656000e+03 7.5332051e-01 + 3.7660000e+03 1.1333205e+00 + 3.7664000e+03 1.4133205e+00 + 3.7668000e+03 1.4333205e+00 + 3.7672000e+03 1.7833205e+00 + 3.7676000e+03 2.1233205e+00 + 3.7680000e+03 2.1033205e+00 + 3.7684000e+03 -3.2667949e-01 + 3.7688000e+03 -1.3666795e+00 + 3.7692000e+03 -1.9666795e+00 + 3.7696000e+03 -1.9866795e+00 + 3.7700000e+03 -1.8066795e+00 + 3.7704000e+03 -1.7666795e+00 + 3.7708000e+03 -1.7166795e+00 + 3.7712000e+03 -1.5066795e+00 + 3.7716000e+03 -1.4866795e+00 + 3.7720000e+03 -9.4667949e-01 + 3.7724000e+03 -1.6667949e-01 + 3.7728000e+03 2.0332051e-01 + 3.7732000e+03 2.3332051e-01 + 3.7736000e+03 3.3332051e-01 + 3.7740000e+03 4.7332051e-01 + 3.7744000e+03 9.2332051e-01 + 3.7748000e+03 1.1733205e+00 + 3.7752000e+03 2.0733205e+00 + 3.7756000e+03 1.9033205e+00 + 3.7760000e+03 1.1433205e+00 + 3.7764000e+03 2.3320513e-02 + 3.7768000e+03 -7.8667949e-01 + 3.7772000e+03 -1.3166795e+00 + 3.7776000e+03 -1.6466795e+00 + 3.7780000e+03 -2.0366795e+00 + 3.7784000e+03 -2.3066795e+00 + 3.7788000e+03 -2.5066795e+00 + 3.7792000e+03 -2.5266795e+00 + 3.7796000e+03 -2.5266795e+00 + 3.7800000e+03 -2.5966795e+00 + 3.7804000e+03 -4.4266795e+00 + 3.7808000e+03 -4.0566795e+00 + 3.7812000e+03 -3.3066795e+00 + 3.7816000e+03 -3.1166795e+00 + 3.7820000e+03 -3.1066795e+00 + 3.7824000e+03 -3.1066795e+00 + 3.7828000e+03 -3.1066795e+00 + 3.7832000e+03 -3.1066795e+00 + 3.7836000e+03 -3.1066795e+00 + 3.7840000e+03 -2.9266795e+00 + 3.7844000e+03 1.5933205e+00 + 3.7848000e+03 1.5933205e+00 + 3.7852000e+03 1.5533205e+00 + 3.7856000e+03 1.7633205e+00 + 3.7860000e+03 1.7733205e+00 + 3.7864000e+03 1.6533205e+00 + 3.7868000e+03 1.6933205e+00 + 3.7872000e+03 1.5433205e+00 + 3.7876000e+03 1.5033205e+00 + 3.7880000e+03 -6.6794872e-03 + 3.7884000e+03 -5.6667949e-01 + 3.7888000e+03 -8.7667949e-01 + 3.7892000e+03 -9.4667949e-01 + 3.7896000e+03 -1.0966795e+00 + 3.7900000e+03 -1.1166795e+00 + 3.7904000e+03 -1.3066795e+00 + 3.7908000e+03 -2.7866795e+00 + 3.7912000e+03 -2.6966795e+00 + 3.7916000e+03 -1.9166795e+00 + 3.7920000e+03 -1.3166795e+00 + 3.7924000e+03 -5.0667949e-01 + 3.7928000e+03 8.3320513e-02 + 3.7932000e+03 5.1332051e-01 + 3.7936000e+03 8.0332051e-01 + 3.7940000e+03 8.8332051e-01 + 3.7944000e+03 7.9332051e-01 + 3.7948000e+03 5.9332051e-01 + 3.7952000e+03 2.7332051e-01 + 3.7956000e+03 -3.6679487e-02 + 3.7960000e+03 -1.2667949e-01 + 3.7964000e+03 -1.2667949e-01 + 3.7968000e+03 -9.2667949e-01 + 3.7972000e+03 -2.1966795e+00 + 3.7976000e+03 -2.1366795e+00 + 3.7980000e+03 -1.9266795e+00 + 3.7984000e+03 -1.6766795e+00 + 3.7988000e+03 -1.3366795e+00 + 3.7992000e+03 -1.2666795e+00 + 3.7996000e+03 -1.2466795e+00 + 3.8000000e+03 -9.0667949e-01 + 3.8004000e+03 -8.6667949e-01 + 3.8008000e+03 -7.8667949e-01 + 3.8012000e+03 -4.0667949e-01 + 3.8016000e+03 1.4332051e-01 + 3.8020000e+03 4.9332051e-01 + 3.8024000e+03 8.2332051e-01 + 3.8028000e+03 1.2633205e+00 + 3.8032000e+03 1.7233205e+00 + 3.8036000e+03 1.7733205e+00 + 3.8040000e+03 1.3533205e+00 + 3.8044000e+03 9.8332051e-01 + 3.8048000e+03 5.5332051e-01 + 3.8052000e+03 -4.7667949e-01 + 3.8056000e+03 -5.3667949e-01 + 3.8060000e+03 -5.3667949e-01 + 3.8064000e+03 -5.3667949e-01 + 3.8068000e+03 -5.2667949e-01 + 3.8072000e+03 -1.1166795e+00 + 3.8076000e+03 -9.0667949e-01 + 3.8080000e+03 -5.6667949e-01 + 3.8084000e+03 -4.9667949e-01 + 3.8088000e+03 -5.1667949e-01 + 3.8092000e+03 -5.6667949e-01 + 3.8096000e+03 -1.2667949e-01 + 3.8100000e+03 1.3320513e-02 + 3.8104000e+03 8.9332051e-01 + 3.8108000e+03 1.4433205e+00 + 3.8112000e+03 1.5033205e+00 + 3.8116000e+03 1.1333205e+00 + 3.8120000e+03 6.5332051e-01 + 3.8124000e+03 6.1332051e-01 + 3.8128000e+03 -8.9667949e-01 + 3.8132000e+03 -1.3466795e+00 + 3.8136000e+03 -1.9666795e+00 + 3.8140000e+03 -2.3366795e+00 + 3.8144000e+03 -2.3966795e+00 + 3.8148000e+03 -2.1966795e+00 + 3.8152000e+03 -2.1566795e+00 + 3.8156000e+03 -1.9866795e+00 + 3.8160000e+03 -1.8966795e+00 + 3.8164000e+03 -1.2266795e+00 + 3.8168000e+03 -1.0966795e+00 + 3.8172000e+03 -1.0866795e+00 + 3.8176000e+03 -1.0866795e+00 + 3.8180000e+03 -1.0866795e+00 + 3.8184000e+03 -4.5667949e-01 + 3.8188000e+03 -4.8667949e-01 + 3.8192000e+03 -8.0667949e-01 + 3.8196000e+03 -9.2667949e-01 + 3.8200000e+03 -6.0667949e-01 + 3.8204000e+03 -1.2667949e-01 + 3.8208000e+03 4.1332051e-01 + 3.8212000e+03 5.5332051e-01 + 3.8216000e+03 3.9332051e-01 + 3.8220000e+03 2.6332051e-01 + 3.8224000e+03 4.9332051e-01 + 3.8228000e+03 9.7332051e-01 + 3.8232000e+03 1.4633205e+00 + 3.8236000e+03 1.7233205e+00 + 3.8240000e+03 1.5233205e+00 + 3.8244000e+03 1.2333205e+00 + 3.8248000e+03 1.3033205e+00 + 3.8252000e+03 7.9332051e-01 + 3.8256000e+03 1.3332051e-01 + 3.8260000e+03 -6.3667949e-01 + 3.8264000e+03 -1.7666795e+00 + 3.8268000e+03 -2.2066795e+00 + 3.8272000e+03 -2.9166795e+00 + 3.8276000e+03 -2.9266795e+00 + 3.8280000e+03 -1.9166795e+00 + 3.8284000e+03 -1.4766795e+00 + 3.8288000e+03 -1.0466795e+00 + 3.8292000e+03 -5.0667949e-01 + 3.8296000e+03 -3.6667949e-01 + 3.8300000e+03 1.7332051e-01 + 3.8304000e+03 1.0233205e+00 + 3.8308000e+03 1.3533205e+00 + 3.8312000e+03 2.3533205e+00 + 3.8316000e+03 2.7933205e+00 + 3.8320000e+03 2.0933205e+00 + 3.8324000e+03 -1.9667949e-01 + 3.8328000e+03 -1.7066795e+00 + 3.8332000e+03 -1.9766795e+00 + 3.8336000e+03 -1.4466795e+00 + 3.8340000e+03 -8.8667949e-01 + 3.8344000e+03 -8.3667949e-01 + 3.8348000e+03 -7.2667949e-01 + 3.8352000e+03 -3.7667949e-01 + 3.8356000e+03 -3.0667949e-01 + 3.8360000e+03 -3.5667949e-01 + 3.8364000e+03 -4.2667949e-01 + 3.8368000e+03 -5.8667949e-01 + 3.8372000e+03 -4.5667949e-01 + 3.8376000e+03 -1.6667949e-01 + 3.8380000e+03 1.9332051e-01 + 3.8384000e+03 -1.4966795e+00 + 3.8388000e+03 -1.8466795e+00 + 3.8392000e+03 -1.8466795e+00 + 3.8396000e+03 -1.8566795e+00 + 3.8400000e+03 -1.1066795e+00 + 3.8404000e+03 -5.6667949e-01 + 3.8408000e+03 -2.2667949e-01 + 3.8412000e+03 5.0332051e-01 + 3.8416000e+03 1.0933205e+00 + 3.8420000e+03 1.7433205e+00 + 3.8424000e+03 1.8933205e+00 + 3.8428000e+03 1.7533205e+00 + 3.8432000e+03 1.3033205e+00 + 3.8436000e+03 4.2332051e-01 + 3.8440000e+03 -4.7667949e-01 + 3.8444000e+03 -1.6667949e-01 + 3.8448000e+03 3.8332051e-01 + 3.8452000e+03 8.2332051e-01 + 3.8456000e+03 2.0833205e+00 + 3.8460000e+03 1.8633205e+00 + 3.8464000e+03 1.8433205e+00 + 3.8468000e+03 1.7633205e+00 + 3.8472000e+03 -1.6666795e+00 + 3.8476000e+03 -1.9666795e+00 + 3.8480000e+03 -1.9566795e+00 + 3.8484000e+03 -1.9666795e+00 + 3.8488000e+03 -1.9866795e+00 + 3.8492000e+03 -1.8566795e+00 + 3.8496000e+03 -1.8266795e+00 + 3.8500000e+03 -1.6166795e+00 + 3.8504000e+03 -1.1966795e+00 + 3.8508000e+03 -7.2667949e-01 + 3.8512000e+03 -3.5667949e-01 + 3.8516000e+03 -2.2667949e-01 + 3.8520000e+03 3.3320513e-02 + 3.8524000e+03 5.3320513e-02 + 3.8528000e+03 1.1332051e-01 + 3.8532000e+03 5.4332051e-01 + 3.8536000e+03 7.8332051e-01 + 3.8540000e+03 8.2332051e-01 + 3.8544000e+03 1.0433205e+00 + 3.8548000e+03 1.3333205e+00 + 3.8552000e+03 1.1933205e+00 + 3.8556000e+03 8.3332051e-01 + 3.8560000e+03 5.5332051e-01 + 3.8564000e+03 4.0332051e-01 + 3.8568000e+03 -1.6679487e-02 + 3.8572000e+03 -3.4667949e-01 + 3.8576000e+03 -8.8667949e-01 + 3.8580000e+03 -1.2966795e+00 + 3.8584000e+03 -2.0666795e+00 + 3.8588000e+03 -2.0966795e+00 + 3.8592000e+03 -2.0966795e+00 + 3.8596000e+03 -3.3866795e+00 + 3.8600000e+03 -4.3766795e+00 + 3.8604000e+03 -4.0166795e+00 + 3.8608000e+03 -3.4166795e+00 + 3.8612000e+03 -2.4166795e+00 + 3.8616000e+03 -1.3766795e+00 + 3.8620000e+03 -7.6679487e-02 + 3.8624000e+03 1.2633205e+00 + 3.8628000e+03 2.0433205e+00 + 3.8632000e+03 3.9133205e+00 + 3.8636000e+03 4.3533205e+00 + 3.8640000e+03 4.8333205e+00 + 3.8644000e+03 4.5533205e+00 + 3.8648000e+03 4.2233205e+00 + 3.8652000e+03 4.3233205e+00 + 3.8656000e+03 3.6633205e+00 + 3.8660000e+03 2.9433205e+00 + 3.8664000e+03 2.9033205e+00 + 3.8668000e+03 2.9033205e+00 + 3.8672000e+03 2.9033205e+00 + 3.8676000e+03 2.9033205e+00 + 3.8680000e+03 2.9033205e+00 + 3.8684000e+03 2.9033205e+00 + 3.8688000e+03 2.9033205e+00 + 3.8692000e+03 2.9033205e+00 + 3.8696000e+03 2.9033205e+00 + 3.8700000e+03 -2.1666795e+00 + 3.8704000e+03 -3.7866795e+00 + 3.8708000e+03 -3.7466795e+00 + 3.8712000e+03 -3.7366795e+00 + 3.8716000e+03 -3.7366795e+00 + 3.8720000e+03 -3.7266795e+00 + 3.8724000e+03 -3.7266795e+00 + 3.8728000e+03 -3.7266795e+00 + 3.8732000e+03 -1.4266795e+00 + 3.8736000e+03 3.9833205e+00 + 3.8740000e+03 3.9933205e+00 + 3.8744000e+03 3.3633205e+00 + 3.8748000e+03 2.0333205e+00 + 3.8752000e+03 9.4332051e-01 + 3.8756000e+03 -4.6667949e-01 + 3.8760000e+03 -7.9667949e-01 + 3.8764000e+03 -4.0366795e+00 + 3.8768000e+03 -5.7366795e+00 + 3.8772000e+03 -5.7966795e+00 + 3.8776000e+03 -5.6166795e+00 + 3.8780000e+03 -4.6166795e+00 + 3.8784000e+03 -3.5866795e+00 + 3.8788000e+03 -2.7266795e+00 + 3.8792000e+03 -2.3766795e+00 + 3.8796000e+03 -2.3666795e+00 + 3.8800000e+03 -2.3166795e+00 + 3.8804000e+03 1.8933205e+00 + 3.8808000e+03 2.7633205e+00 + 3.8812000e+03 3.6133205e+00 + 3.8816000e+03 4.5933205e+00 + 3.8820000e+03 5.1333205e+00 + 3.8824000e+03 5.2233205e+00 + 3.8828000e+03 5.8333205e+00 + 3.8832000e+03 5.7433205e+00 + 3.8836000e+03 4.5533205e+00 + 3.8840000e+03 1.5233205e+00 + 3.8844000e+03 -8.0667949e-01 + 3.8848000e+03 -1.7866795e+00 + 3.8852000e+03 -2.1766795e+00 + 3.8856000e+03 -2.6266795e+00 + 3.8860000e+03 -3.0366795e+00 + 3.8864000e+03 -3.2366795e+00 + 3.8868000e+03 -3.2066795e+00 + 3.8872000e+03 -3.0566795e+00 + 3.8876000e+03 -3.0366795e+00 + 3.8880000e+03 -2.9466795e+00 + 3.8884000e+03 -2.0666795e+00 + 3.8888000e+03 -1.9466795e+00 + 3.8892000e+03 -1.8366795e+00 + 3.8896000e+03 -6.6667949e-01 + 3.8900000e+03 3.5332051e-01 + 3.8904000e+03 9.3332051e-01 + 3.8908000e+03 1.4833205e+00 + 3.8912000e+03 1.8033205e+00 + 3.8916000e+03 2.0333205e+00 + 3.8920000e+03 1.9433205e+00 + 3.8924000e+03 1.5833205e+00 + 3.8928000e+03 9.9332051e-01 + 3.8932000e+03 3.9332051e-01 + 3.8936000e+03 -4.1667949e-01 + 3.8940000e+03 -1.3766795e+00 + 3.8944000e+03 -2.2266795e+00 + 3.8948000e+03 -2.7566795e+00 + 3.8952000e+03 -3.0366795e+00 + 3.8956000e+03 -3.4266795e+00 + 3.8960000e+03 -3.7366795e+00 + 3.8964000e+03 -3.8066795e+00 + 3.8968000e+03 -3.8166795e+00 + 3.8972000e+03 -3.1666795e+00 + 3.8976000e+03 -2.8466795e+00 + 3.8980000e+03 -1.7066795e+00 + 3.8984000e+03 -6.1667949e-01 + 3.8988000e+03 2.7332051e-01 + 3.8992000e+03 4.6332051e-01 + 3.8996000e+03 8.0332051e-01 + 3.9000000e+03 1.2633205e+00 + 3.9004000e+03 1.7833205e+00 + 3.9008000e+03 2.5133205e+00 + 3.9012000e+03 3.2233205e+00 + 3.9016000e+03 3.7233205e+00 + 3.9020000e+03 4.0533205e+00 + 3.9024000e+03 4.4133205e+00 + 3.9028000e+03 3.7833205e+00 + 3.9032000e+03 2.7433205e+00 + 3.9036000e+03 2.3633205e+00 + 3.9040000e+03 1.0332051e-01 + 3.9044000e+03 -7.9667949e-01 + 3.9048000e+03 -1.4466795e+00 + 3.9052000e+03 -1.8266795e+00 + 3.9056000e+03 -2.2466795e+00 + 3.9060000e+03 -2.2966795e+00 + 3.9064000e+03 -2.1966795e+00 + 3.9068000e+03 -2.1966795e+00 + 3.9072000e+03 -2.1766795e+00 + 3.9076000e+03 -1.8866795e+00 + 3.9080000e+03 -1.6166795e+00 + 3.9084000e+03 -1.0266795e+00 + 3.9088000e+03 -5.5667949e-01 + 3.9092000e+03 -4.4667949e-01 + 3.9096000e+03 -2.8667949e-01 + 3.9100000e+03 5.0332051e-01 + 3.9104000e+03 3.8332051e-01 + 3.9108000e+03 3.4332051e-01 + 3.9112000e+03 3.3332051e-01 + 3.9116000e+03 3.3332051e-01 + 3.9120000e+03 -1.7566795e+00 + 3.9124000e+03 -2.8766795e+00 + 3.9128000e+03 -2.4466795e+00 + 3.9132000e+03 -1.9566795e+00 + 3.9136000e+03 -1.9266795e+00 + 3.9140000e+03 -1.9466795e+00 + 3.9144000e+03 -1.9266795e+00 + 3.9148000e+03 -1.9266795e+00 + 3.9152000e+03 -1.1166795e+00 + 3.9156000e+03 -7.8667949e-01 + 3.9160000e+03 -8.0667949e-01 + 3.9164000e+03 -5.3667949e-01 + 3.9168000e+03 -1.6667949e-01 + 3.9172000e+03 1.8332051e-01 + 3.9176000e+03 2.1332051e-01 + 3.9180000e+03 2.1332051e-01 + 3.9184000e+03 2.2332051e-01 + 3.9188000e+03 6.4332051e-01 + 3.9192000e+03 8.0332051e-01 + 3.9196000e+03 5.9332051e-01 + 3.9200000e+03 3.4332051e-01 + 3.9204000e+03 4.1332051e-01 + 3.9208000e+03 5.0332051e-01 + 3.9212000e+03 4.5332051e-01 + 3.9216000e+03 2.4332051e-01 + 3.9220000e+03 3.3205128e-03 + 3.9224000e+03 -1.6679487e-02 + 3.9228000e+03 -1.6679487e-02 + 3.9232000e+03 -3.5667949e-01 + 3.9236000e+03 -1.6667949e-01 + 3.9240000e+03 1.6332051e-01 + 3.9244000e+03 1.9332051e-01 + 3.9248000e+03 1.9332051e-01 + 3.9252000e+03 1.8332051e-01 + 3.9256000e+03 1.9733205e+00 + 3.9260000e+03 1.4433205e+00 + 3.9264000e+03 4.7332051e-01 + 3.9268000e+03 -6.0667949e-01 + 3.9272000e+03 -1.4466795e+00 + 3.9276000e+03 -1.9266795e+00 + 3.9280000e+03 -2.3766795e+00 + 3.9284000e+03 -2.6566795e+00 + 3.9288000e+03 -2.9166795e+00 + 3.9292000e+03 -3.0466795e+00 + 3.9296000e+03 -2.9766795e+00 + 3.9300000e+03 -3.0266795e+00 + 3.9304000e+03 -3.3366795e+00 + 3.9308000e+03 -3.5966795e+00 + 3.9312000e+03 -3.4566795e+00 + 3.9316000e+03 -3.0666795e+00 + 3.9320000e+03 -2.5266795e+00 + 3.9324000e+03 -1.9766795e+00 + 3.9328000e+03 -1.9466795e+00 + 3.9332000e+03 -1.9466795e+00 + 3.9336000e+03 -1.9466795e+00 + 3.9340000e+03 -1.9466795e+00 + 3.9344000e+03 -1.9466795e+00 + 3.9348000e+03 1.1733205e+00 + 3.9352000e+03 1.8733205e+00 + 3.9356000e+03 1.6433205e+00 + 3.9360000e+03 1.5033205e+00 + 3.9364000e+03 5.3332051e-01 + 3.9368000e+03 4.5332051e-01 + 3.9372000e+03 4.5332051e-01 + 3.9376000e+03 3.0332051e-01 + 3.9380000e+03 2.6332051e-01 + 3.9384000e+03 2.6332051e-01 + 3.9388000e+03 2.6332051e-01 + 3.9392000e+03 -1.9667949e-01 + 3.9396000e+03 -4.6679487e-02 + 3.9400000e+03 4.3320513e-02 + 3.9404000e+03 1.2332051e-01 + 3.9408000e+03 2.8332051e-01 + 3.9412000e+03 2.7332051e-01 + 3.9416000e+03 -1.6667949e-01 + 3.9420000e+03 -6.1667949e-01 + 3.9424000e+03 -5.7667949e-01 + 3.9428000e+03 -7.6679487e-02 + 3.9432000e+03 3.2332051e-01 + 3.9436000e+03 4.2332051e-01 + 3.9440000e+03 3.8332051e-01 + 3.9444000e+03 -6.6679487e-02 + 3.9448000e+03 -4.9667949e-01 + 3.9452000e+03 -7.6667949e-01 + 3.9456000e+03 -8.7667949e-01 + 3.9460000e+03 -9.2667949e-01 + 3.9464000e+03 -1.4466795e+00 + 3.9468000e+03 -1.9466795e+00 + 3.9472000e+03 -1.6466795e+00 + 3.9476000e+03 -1.2666795e+00 + 3.9480000e+03 -9.6667949e-01 + 3.9484000e+03 -8.3667949e-01 + 3.9488000e+03 -9.2667949e-01 + 3.9492000e+03 -1.0366795e+00 + 3.9496000e+03 -1.1666795e+00 + 3.9500000e+03 -1.2166795e+00 + 3.9504000e+03 -1.2466795e+00 + 3.9508000e+03 -1.1666795e+00 + 3.9512000e+03 -8.9667949e-01 + 3.9516000e+03 -7.1667949e-01 + 3.9520000e+03 -1.0066795e+00 + 3.9524000e+03 -1.4066795e+00 + 3.9528000e+03 -1.4066795e+00 + 3.9532000e+03 -1.3166795e+00 + 3.9536000e+03 -1.2466795e+00 + 3.9540000e+03 -6.5667949e-01 + 3.9544000e+03 -1.4667949e-01 + 3.9548000e+03 3.6332051e-01 + 3.9552000e+03 4.9332051e-01 + 3.9556000e+03 7.4332051e-01 + 3.9560000e+03 8.9332051e-01 + 3.9564000e+03 8.0332051e-01 + 3.9568000e+03 2.9332051e-01 + 3.9572000e+03 2.3332051e-01 + 3.9576000e+03 6.6332051e-01 + 3.9580000e+03 1.2833205e+00 + 3.9584000e+03 1.9433205e+00 + 3.9588000e+03 2.1933205e+00 + 3.9592000e+03 2.2133205e+00 + 3.9596000e+03 3.4733205e+00 + 3.9600000e+03 2.8233205e+00 + 3.9604000e+03 2.7133205e+00 + 3.9608000e+03 2.7133205e+00 + 3.9612000e+03 2.7133205e+00 + 3.9616000e+03 2.7133205e+00 + 3.9620000e+03 2.7133205e+00 + 3.9624000e+03 2.7133205e+00 + 3.9628000e+03 2.7133205e+00 + 3.9632000e+03 2.7133205e+00 + 3.9636000e+03 2.7033205e+00 + 3.9640000e+03 2.7033205e+00 + 3.9644000e+03 3.4332051e-01 + 3.9648000e+03 -1.8166795e+00 + 3.9652000e+03 -2.2166795e+00 + 3.9656000e+03 -2.2166795e+00 + 3.9660000e+03 -1.8466795e+00 + 3.9664000e+03 -1.4766795e+00 + 3.9668000e+03 -1.0066795e+00 + 3.9672000e+03 -8.8667949e-01 + 3.9676000e+03 -3.6679487e-02 + 3.9680000e+03 5.3320513e-02 + 3.9684000e+03 2.7332051e-01 + 3.9688000e+03 1.3533205e+00 + 3.9692000e+03 1.8033205e+00 + 3.9696000e+03 2.0533205e+00 + 3.9700000e+03 2.0133205e+00 + 3.9704000e+03 2.0733205e+00 + 3.9708000e+03 1.5433205e+00 + 3.9712000e+03 1.2733205e+00 + 3.9716000e+03 1.2733205e+00 + 3.9720000e+03 1.2733205e+00 + 3.9724000e+03 1.2733205e+00 + 3.9728000e+03 1.2733205e+00 + 3.9732000e+03 1.2733205e+00 + 3.9736000e+03 1.2733205e+00 + 3.9740000e+03 1.2733205e+00 + 3.9744000e+03 1.2633205e+00 + 3.9748000e+03 1.2633205e+00 + 3.9752000e+03 1.2733205e+00 + 3.9756000e+03 1.1332051e-01 + 3.9760000e+03 -3.1667949e-01 + 3.9764000e+03 4.1332051e-01 + 3.9768000e+03 5.1332051e-01 + 3.9772000e+03 5.1332051e-01 + 3.9776000e+03 5.1332051e-01 + 3.9780000e+03 5.1332051e-01 + 3.9784000e+03 1.3633205e+00 + 3.9788000e+03 2.1333205e+00 + 3.9792000e+03 1.8333205e+00 + 3.9796000e+03 1.6533205e+00 + 3.9800000e+03 6.2332051e-01 + 3.9804000e+03 3.7332051e-01 + 3.9808000e+03 -2.8667949e-01 + 3.9812000e+03 -6.6667949e-01 + 3.9816000e+03 -6.7667949e-01 + 3.9820000e+03 -6.7667949e-01 + 3.9824000e+03 -6.7667949e-01 + 3.9828000e+03 -6.7667949e-01 + 3.9832000e+03 -6.7667949e-01 + 3.9836000e+03 -6.7667949e-01 + 3.9840000e+03 -6.6667949e-01 + 3.9844000e+03 -7.4667949e-01 + 3.9848000e+03 -1.7266795e+00 + 3.9852000e+03 -1.5066795e+00 + 3.9856000e+03 -1.3266795e+00 + 3.9860000e+03 -9.4667949e-01 + 3.9864000e+03 -6.9667949e-01 + 3.9868000e+03 -6.2667949e-01 + 3.9872000e+03 -5.9667949e-01 + 3.9876000e+03 -5.8667949e-01 + 3.9880000e+03 -4.2667949e-01 + 3.9884000e+03 4.9332051e-01 + 3.9888000e+03 4.6332051e-01 + 3.9892000e+03 2.0332051e-01 + 3.9896000e+03 -2.6679487e-02 + 3.9900000e+03 -1.9667949e-01 + 3.9904000e+03 -4.1667949e-01 + 3.9908000e+03 -6.5667949e-01 + 3.9912000e+03 -1.1166795e+00 + 3.9916000e+03 -1.1766795e+00 + 3.9920000e+03 -8.2667949e-01 + 3.9924000e+03 -5.4667949e-01 + 3.9928000e+03 -5.5667949e-01 + 3.9932000e+03 -5.9667949e-01 + 3.9936000e+03 -4.9667949e-01 + 3.9940000e+03 -2.5667949e-01 + 3.9944000e+03 -4.6679487e-02 + 3.9948000e+03 7.3320513e-02 + 3.9952000e+03 7.3320513e-02 + 3.9956000e+03 8.2332051e-01 + 3.9960000e+03 6.7332051e-01 + 3.9964000e+03 2.0332051e-01 + 3.9968000e+03 7.3320513e-02 + 3.9972000e+03 -6.6679487e-02 + 3.9976000e+03 -1.3667949e-01 + 3.9980000e+03 -9.6679487e-02 + 3.9984000e+03 -1.6667949e-01 + 3.9988000e+03 -3.6667949e-01 + 3.9992000e+03 -5.3667949e-01 + 3.9996000e+03 -9.1667949e-01 + 4.0000000e+03 -1.3366795e+00 + 4.0004000e+03 -1.6066795e+00 + 4.0008000e+03 -1.8066795e+00 + 4.0012000e+03 -1.8466795e+00 + 4.0016000e+03 -1.4466795e+00 + 4.0020000e+03 -8.5667949e-01 + 4.0024000e+03 -6.9667949e-01 + 4.0028000e+03 -6.9667949e-01 + 4.0032000e+03 -1.2667949e-01 + 4.0036000e+03 4.3320513e-02 + 4.0040000e+03 -6.6794872e-03 + 4.0044000e+03 -4.6679487e-02 + 4.0048000e+03 -6.6794872e-03 + 4.0052000e+03 2.6332051e-01 + 4.0056000e+03 3.6332051e-01 + 4.0060000e+03 2.7332051e-01 + 4.0064000e+03 1.7332051e-01 + 4.0068000e+03 -1.9667949e-01 + 4.0072000e+03 -2.8667949e-01 + 4.0076000e+03 -2.8667949e-01 + 4.0080000e+03 -2.9667949e-01 + 4.0084000e+03 -2.9667949e-01 + 4.0088000e+03 -2.9667949e-01 + 4.0092000e+03 -2.8667949e-01 + 4.0096000e+03 -2.9667949e-01 + 4.0100000e+03 -2.9667949e-01 + 4.0104000e+03 -3.3667949e-01 + 4.0108000e+03 -8.4667949e-01 + 4.0112000e+03 -2.8667949e-01 + 4.0116000e+03 -7.6679487e-02 + 4.0120000e+03 -6.6679487e-02 + 4.0124000e+03 -3.6679487e-02 + 4.0128000e+03 7.3332051e-01 + 4.0132000e+03 6.1332051e-01 + 4.0136000e+03 3.8332051e-01 + 4.0140000e+03 3.2332051e-01 + 4.0144000e+03 -7.8667949e-01 + 4.0148000e+03 -8.3667949e-01 + 4.0152000e+03 -7.4667949e-01 + 4.0156000e+03 -5.8667949e-01 + 4.0160000e+03 -5.6667949e-01 + 4.0164000e+03 -5.6667949e-01 + 4.0168000e+03 -5.5667949e-01 + 4.0172000e+03 1.4332051e-01 + 4.0176000e+03 2.3320513e-02 + 4.0180000e+03 -2.6679487e-02 + 4.0184000e+03 -1.0667949e-01 + 4.0188000e+03 -4.4667949e-01 + 4.0192000e+03 -7.9667949e-01 + 4.0196000e+03 -9.4667949e-01 + 4.0200000e+03 -1.0966795e+00 + 4.0204000e+03 -1.3366795e+00 + 4.0208000e+03 -1.6066795e+00 + 4.0212000e+03 -1.5966795e+00 + 4.0216000e+03 -1.3066795e+00 + 4.0220000e+03 -7.8667949e-01 + 4.0224000e+03 -7.0667949e-01 + 4.0228000e+03 1.8332051e-01 + 4.0232000e+03 4.6332051e-01 + 4.0236000e+03 2.3332051e-01 + 4.0240000e+03 -5.6667949e-01 + 4.0244000e+03 -6.9667949e-01 + 4.0248000e+03 -6.2667949e-01 + 4.0252000e+03 -5.0667949e-01 + 4.0256000e+03 -3.1667949e-01 + 4.0260000e+03 3.3320513e-02 + 4.0264000e+03 4.1332051e-01 + 4.0268000e+03 2.3332051e-01 + 4.0272000e+03 4.3320513e-02 + 4.0276000e+03 -1.6667949e-01 + 4.0280000e+03 -2.1667949e-01 + 4.0284000e+03 -5.6679487e-02 + 4.0288000e+03 2.9332051e-01 + 4.0292000e+03 7.1332051e-01 + 4.0296000e+03 8.0332051e-01 + 4.0300000e+03 3.0332051e-01 + 4.0304000e+03 1.3332051e-01 + 4.0308000e+03 1.2332051e-01 + 4.0312000e+03 1.2332051e-01 + 4.0316000e+03 1.2332051e-01 + 4.0320000e+03 1.2332051e-01 + 4.0324000e+03 -1.3966795e+00 + 4.0328000e+03 -1.6566795e+00 + 4.0332000e+03 -1.3466795e+00 + 4.0336000e+03 -1.2466795e+00 + 4.0340000e+03 -1.2466795e+00 + 4.0344000e+03 -1.2366795e+00 + 4.0348000e+03 -1.2066795e+00 + 4.0352000e+03 -1.0966795e+00 + 4.0356000e+03 -1.0866795e+00 + 4.0360000e+03 -6.3667949e-01 + 4.0364000e+03 1.8332051e-01 + 4.0368000e+03 3.9332051e-01 + 4.0372000e+03 4.1332051e-01 + 4.0376000e+03 2.9332051e-01 + 4.0380000e+03 1.1332051e-01 + 4.0384000e+03 -1.2667949e-01 + 4.0388000e+03 -3.2667949e-01 + 4.0392000e+03 -4.9667949e-01 + 4.0396000e+03 -7.5667949e-01 + 4.0400000e+03 -1.0966795e+00 + 4.0404000e+03 -1.2866795e+00 + 4.0408000e+03 -1.4466795e+00 + 4.0412000e+03 -1.6966795e+00 + 4.0416000e+03 -1.0966795e+00 + 4.0420000e+03 -3.5667949e-01 + 4.0424000e+03 6.0332051e-01 + 4.0428000e+03 9.4332051e-01 + 4.0432000e+03 1.7733205e+00 + 4.0436000e+03 1.4133205e+00 + 4.0440000e+03 1.1933205e+00 + 4.0444000e+03 9.0332051e-01 + 4.0448000e+03 8.0332051e-01 + 4.0452000e+03 5.3320513e-02 + 4.0456000e+03 -4.7667949e-01 + 4.0460000e+03 -6.2667949e-01 + 4.0464000e+03 -6.3667949e-01 + 4.0468000e+03 -6.5667949e-01 + 4.0472000e+03 -1.6466795e+00 + 4.0476000e+03 -1.7366795e+00 + 4.0480000e+03 -1.7166795e+00 + 4.0484000e+03 -1.7366795e+00 + 4.0488000e+03 -1.7466795e+00 + 4.0492000e+03 -1.7866795e+00 + 4.0496000e+03 -1.7666795e+00 + 4.0500000e+03 -1.2666795e+00 + 4.0504000e+03 -4.9667949e-01 + 4.0508000e+03 -1.9667949e-01 + 4.0512000e+03 1.1533205e+00 + 4.0516000e+03 1.3033205e+00 + 4.0520000e+03 1.3233205e+00 + 4.0524000e+03 1.3233205e+00 + 4.0528000e+03 2.2333205e+00 + 4.0532000e+03 1.7933205e+00 + 4.0536000e+03 1.3733205e+00 + 4.0540000e+03 1.3533205e+00 + 4.0544000e+03 1.3533205e+00 + 4.0548000e+03 1.3433205e+00 + 4.0552000e+03 1.3433205e+00 + 4.0556000e+03 1.3433205e+00 + 4.0560000e+03 1.3433205e+00 + 4.0564000e+03 1.3433205e+00 + 4.0568000e+03 1.3433205e+00 + 4.0572000e+03 1.3320513e-02 + 4.0576000e+03 -3.4966795e+00 + 4.0580000e+03 -3.9666795e+00 + 4.0584000e+03 -3.8366795e+00 + 4.0588000e+03 -3.1366795e+00 + 4.0592000e+03 -2.9966795e+00 + 4.0596000e+03 -2.9866795e+00 + 4.0600000e+03 -2.9866795e+00 + 4.0604000e+03 -3.4667949e-01 + 4.0608000e+03 8.6332051e-01 + 4.0612000e+03 8.9332051e-01 + 4.0616000e+03 8.9332051e-01 + 4.0620000e+03 1.1533205e+00 + 4.0624000e+03 1.8033205e+00 + 4.0628000e+03 1.6633205e+00 + 4.0632000e+03 1.4533205e+00 + 4.0636000e+03 1.3733205e+00 + 4.0640000e+03 1.5533205e+00 + 4.0644000e+03 1.6333205e+00 + 4.0648000e+03 1.3533205e+00 + 4.0652000e+03 1.0833205e+00 + 4.0656000e+03 1.0733205e+00 + 4.0660000e+03 1.0733205e+00 + 4.0664000e+03 1.0733205e+00 + 4.0668000e+03 1.0733205e+00 + 4.0672000e+03 -1.3466795e+00 + 4.0676000e+03 -1.8066795e+00 + 4.0680000e+03 -1.3966795e+00 + 4.0684000e+03 -7.7667949e-01 + 4.0688000e+03 -7.1667949e-01 + 4.0692000e+03 -9.4667949e-01 + 4.0696000e+03 -8.7667949e-01 + 4.0700000e+03 -6.5667949e-01 + 4.0704000e+03 -3.8667949e-01 + 4.0708000e+03 -2.1667949e-01 + 4.0712000e+03 -2.6679487e-02 + 4.0716000e+03 -1.1667949e-01 + 4.0720000e+03 -1.3667949e-01 + 4.0724000e+03 -1.2667949e-01 + 4.0728000e+03 -1.9667949e-01 + 4.0732000e+03 -1.4667949e-01 + 4.0736000e+03 -3.8667949e-01 + 4.0740000e+03 -5.0667949e-01 + 4.0744000e+03 -5.9667949e-01 + 4.0748000e+03 -6.5667949e-01 + 4.0752000e+03 -4.7667949e-01 + 4.0756000e+03 -4.4667949e-01 + 4.0760000e+03 -6.3667949e-01 + 4.0764000e+03 -7.0667949e-01 + 4.0768000e+03 -7.0667949e-01 + 4.0772000e+03 -7.1667949e-01 + 4.0776000e+03 -7.0667949e-01 + 4.0780000e+03 -7.1667949e-01 + 4.0784000e+03 -9.4667949e-01 + 4.0788000e+03 -1.6966795e+00 + 4.0792000e+03 -1.3666795e+00 + 4.0796000e+03 -1.1366795e+00 + 4.0800000e+03 -1.0966795e+00 + 4.0804000e+03 -1.0466795e+00 + 4.0808000e+03 -8.5667949e-01 + 4.0812000e+03 -6.5667949e-01 + 4.0816000e+03 -1.7667949e-01 + 4.0820000e+03 -1.6679487e-02 + 4.0824000e+03 -1.6679487e-02 + 4.0828000e+03 -1.6679487e-02 + 4.0832000e+03 8.2332051e-01 + 4.0836000e+03 1.2333205e+00 + 4.0840000e+03 1.3533205e+00 + 4.0844000e+03 1.3333205e+00 + 4.0848000e+03 1.3833205e+00 + 4.0852000e+03 1.2633205e+00 + 4.0856000e+03 9.2332051e-01 + 4.0860000e+03 6.4332051e-01 + 4.0864000e+03 4.1332051e-01 + 4.0868000e+03 1.7332051e-01 + 4.0872000e+03 2.2332051e-01 + 4.0876000e+03 2.5332051e-01 + 4.0880000e+03 1.8332051e-01 + 4.0884000e+03 -3.5667949e-01 + 4.0888000e+03 -8.5667949e-01 + 4.0892000e+03 -7.9667949e-01 + 4.0896000e+03 -7.1667949e-01 + 4.0900000e+03 -7.0667949e-01 + 4.0904000e+03 -7.8667949e-01 + 4.0908000e+03 -9.7667949e-01 + 4.0912000e+03 -1.7566795e+00 + 4.0916000e+03 -1.6466795e+00 + 4.0920000e+03 -1.2666795e+00 + 4.0924000e+03 -8.8667949e-01 + 4.0928000e+03 -5.8667949e-01 + 4.0932000e+03 4.3320513e-02 + 4.0936000e+03 2.9332051e-01 + 4.0940000e+03 3.6332051e-01 + 4.0944000e+03 5.9332051e-01 + 4.0948000e+03 4.2332051e-01 + 4.0952000e+03 2.0332051e-01 + 4.0956000e+03 3.3320513e-02 + 4.0960000e+03 3.3320513e-02 + 4.0964000e+03 3.3320513e-02 + 4.0968000e+03 3.3320513e-02 + 4.0972000e+03 3.3320513e-02 + 4.0976000e+03 3.3320513e-02 + 4.0980000e+03 3.3320513e-02 + 4.0984000e+03 3.3320513e-02 + 4.0988000e+03 3.3320513e-02 + 4.0992000e+03 3.3320513e-02 + 4.0996000e+03 -1.5466795e+00 + 4.1000000e+03 -2.0066795e+00 + 4.1004000e+03 -1.7366795e+00 + 4.1008000e+03 -1.7066795e+00 + 4.1012000e+03 -1.7066795e+00 + 4.1016000e+03 -1.6966795e+00 + 4.1020000e+03 -1.6966795e+00 + 4.1024000e+03 -1.6966795e+00 + 4.1028000e+03 -1.6966795e+00 + 4.1032000e+03 -1.6966795e+00 + 4.1036000e+03 -1.6966795e+00 + 4.1040000e+03 -2.6679487e-02 + 4.1044000e+03 1.2633205e+00 + 4.1048000e+03 1.4133205e+00 + 4.1052000e+03 1.5933205e+00 + 4.1056000e+03 1.7133205e+00 + 4.1060000e+03 1.7133205e+00 + 4.1064000e+03 1.6833205e+00 + 4.1068000e+03 1.6733205e+00 + 4.1072000e+03 1.6733205e+00 + 4.1076000e+03 1.6733205e+00 + 4.1080000e+03 -1.0166795e+00 + 4.1084000e+03 -1.9166795e+00 + 4.1088000e+03 -1.8166795e+00 + 4.1092000e+03 -1.1366795e+00 + 4.1096000e+03 -5.4667949e-01 + 4.1100000e+03 -5.8667949e-01 + 4.1104000e+03 -5.8667949e-01 + 4.1108000e+03 -5.8667949e-01 + 4.1112000e+03 -4.4667949e-01 + 4.1116000e+03 -4.8667949e-01 + 4.1120000e+03 -3.8667949e-01 + 4.1124000e+03 -3.1667949e-01 + 4.1128000e+03 -1.5667949e-01 + 4.1132000e+03 -1.5667949e-01 + 4.1136000e+03 -7.6667949e-01 + 4.1140000e+03 -8.1667949e-01 + 4.1144000e+03 -8.1667949e-01 + 4.1148000e+03 -9.4667949e-01 + 4.1152000e+03 -1.4766795e+00 + 4.1156000e+03 -1.3166795e+00 + 4.1160000e+03 -1.2466795e+00 + 4.1164000e+03 -1.2866795e+00 + 4.1168000e+03 -1.3666795e+00 + 4.1172000e+03 -1.2866795e+00 + 4.1176000e+03 -1.0466795e+00 + 4.1180000e+03 -6.2667949e-01 + 4.1184000e+03 -1.9667949e-01 + 4.1188000e+03 -1.3667949e-01 + 4.1192000e+03 5.5332051e-01 + 4.1196000e+03 7.5332051e-01 + 4.1200000e+03 8.3332051e-01 + 4.1204000e+03 6.7332051e-01 + 4.1208000e+03 9.0332051e-01 + 4.1212000e+03 8.4332051e-01 + 4.1216000e+03 5.0332051e-01 + 4.1220000e+03 4.8332051e-01 + 4.1224000e+03 4.8332051e-01 + 4.1228000e+03 -1.3667949e-01 + 4.1232000e+03 -1.0566795e+00 + 4.1236000e+03 -9.2667949e-01 + 4.1240000e+03 -9.1667949e-01 + 4.1244000e+03 -7.7667949e-01 + 4.1248000e+03 1.5332051e-01 + 4.1252000e+03 4.0332051e-01 + 4.1256000e+03 7.5332051e-01 + 4.1260000e+03 1.0933205e+00 + 4.1264000e+03 1.8033205e+00 + 4.1268000e+03 1.8033205e+00 + 4.1272000e+03 1.2333205e+00 + 4.1276000e+03 6.7332051e-01 + 4.1280000e+03 -5.2667949e-01 + 4.1284000e+03 -1.1266795e+00 + 4.1288000e+03 -1.7266795e+00 + 4.1292000e+03 -1.9266795e+00 + 4.1296000e+03 -1.5266795e+00 + 4.1300000e+03 -1.3466795e+00 + 4.1304000e+03 -1.2666795e+00 + 4.1308000e+03 -1.2566795e+00 + 4.1312000e+03 -1.2566795e+00 + 4.1316000e+03 -1.2566795e+00 + 4.1320000e+03 -9.4667949e-01 + 4.1324000e+03 -8.5667949e-01 + 4.1328000e+03 4.3320513e-02 + 4.1332000e+03 -1.5667949e-01 + 4.1336000e+03 -5.8667949e-01 + 4.1340000e+03 -1.0466795e+00 + 4.1344000e+03 -1.2166795e+00 + 4.1348000e+03 -1.3966795e+00 + 4.1352000e+03 -1.5266795e+00 + 4.1356000e+03 -1.5866795e+00 + 4.1360000e+03 -1.4966795e+00 + 4.1364000e+03 -1.6366795e+00 + 4.1368000e+03 -1.7166795e+00 + 4.1372000e+03 -1.8466795e+00 + 4.1376000e+03 -1.7166795e+00 + 4.1380000e+03 -1.5666795e+00 + 4.1384000e+03 -1.3866795e+00 + 4.1388000e+03 -1.0866795e+00 + 4.1392000e+03 -6.2667949e-01 + 4.1396000e+03 -4.4667949e-01 + 4.1400000e+03 1.2033205e+00 + 4.1404000e+03 1.9633205e+00 + 4.1408000e+03 2.0833205e+00 + 4.1412000e+03 1.5433205e+00 + 4.1416000e+03 1.0333205e+00 + 4.1420000e+03 5.4332051e-01 + 4.1424000e+03 1.7332051e-01 + 4.1428000e+03 -5.6679487e-02 + 4.1432000e+03 -7.6679487e-02 + 4.1436000e+03 -9.0667949e-01 + 4.1440000e+03 -1.0466795e+00 + 4.1444000e+03 -6.2667949e-01 + 4.1448000e+03 -3.8667949e-01 + 4.1452000e+03 -3.7667949e-01 + 4.1456000e+03 -3.7667949e-01 + 4.1460000e+03 -1.5667949e-01 + 4.1464000e+03 -5.2667949e-01 + 4.1468000e+03 -7.4667949e-01 + 4.1472000e+03 -8.4667949e-01 + 4.1476000e+03 -8.7667949e-01 + 4.1480000e+03 -6.9667949e-01 + 4.1484000e+03 -6.3667949e-01 + 4.1488000e+03 -6.9667949e-01 + 4.1492000e+03 -2.9667949e-01 + 4.1496000e+03 3.3320513e-02 + 4.1500000e+03 5.3320513e-02 + 4.1504000e+03 3.3332051e-01 + 4.1508000e+03 -3.0667949e-01 + 4.1512000e+03 -6.2667949e-01 + 4.1516000e+03 -6.4667949e-01 + 4.1520000e+03 -6.4667949e-01 + 4.1524000e+03 -6.4667949e-01 + 4.1528000e+03 -6.4667949e-01 + 4.1532000e+03 -1.1666795e+00 + 4.1536000e+03 -1.2766795e+00 + 4.1540000e+03 -1.2766795e+00 + 4.1544000e+03 -1.3166795e+00 + 4.1548000e+03 -1.4266795e+00 + 4.1552000e+03 -1.3066795e+00 + 4.1556000e+03 -9.9667949e-01 + 4.1560000e+03 -5.6667949e-01 + 4.1564000e+03 -1.9667949e-01 + 4.1568000e+03 4.4332051e-01 + 4.1572000e+03 1.0533205e+00 + 4.1576000e+03 1.1133205e+00 + 4.1580000e+03 1.1133205e+00 + 4.1584000e+03 2.0533205e+00 + 4.1588000e+03 1.9033205e+00 + 4.1592000e+03 1.7533205e+00 + 4.1596000e+03 1.7533205e+00 + 4.1600000e+03 1.7533205e+00 + 4.1604000e+03 1.7533205e+00 + 4.1608000e+03 1.7533205e+00 + 4.1612000e+03 1.7533205e+00 + 4.1616000e+03 1.7433205e+00 + 4.1620000e+03 1.7433205e+00 + 4.1624000e+03 8.2332051e-01 + 4.1628000e+03 -1.0466795e+00 + 4.1632000e+03 -1.0866795e+00 + 4.1636000e+03 -1.0866795e+00 + 4.1640000e+03 -1.0866795e+00 + 4.1644000e+03 -1.1266795e+00 + 4.1648000e+03 -1.0966795e+00 + 4.1652000e+03 -1.0066795e+00 + 4.1656000e+03 -9.4667949e-01 + 4.1660000e+03 -5.6667949e-01 + 4.1664000e+03 -5.3667949e-01 + 4.1668000e+03 -5.0667949e-01 + 4.1672000e+03 -5.0667949e-01 + 4.1676000e+03 -5.0667949e-01 + 4.1680000e+03 1.2333205e+00 + 4.1684000e+03 3.4233205e+00 + 4.1688000e+03 3.2833205e+00 + 4.1692000e+03 1.6833205e+00 + 4.1696000e+03 1.2332051e-01 + 4.1700000e+03 -1.3766795e+00 + 4.1704000e+03 -1.8866795e+00 + 4.1708000e+03 -1.9066795e+00 + 4.1712000e+03 -1.8966795e+00 + 4.1716000e+03 -1.8966795e+00 + 4.1720000e+03 -1.8966795e+00 + 4.1724000e+03 -1.8966795e+00 + 4.1728000e+03 -2.1066795e+00 + 4.1732000e+03 -1.7466795e+00 + 4.1736000e+03 -1.5866795e+00 + 4.1740000e+03 -1.5766795e+00 + 4.1744000e+03 -1.5766795e+00 + 4.1748000e+03 -9.0667949e-01 + 4.1752000e+03 3.4332051e-01 + 4.1756000e+03 1.0833205e+00 + 4.1760000e+03 1.4733205e+00 + 4.1764000e+03 1.6733205e+00 + 4.1768000e+03 1.5833205e+00 + 4.1772000e+03 1.4233205e+00 + 4.1776000e+03 1.4133205e+00 + 4.1780000e+03 1.2433205e+00 + 4.1784000e+03 1.2233205e+00 + 4.1788000e+03 1.2233205e+00 + 4.1792000e+03 -1.0766795e+00 + 4.1796000e+03 -1.5366795e+00 + 4.1800000e+03 -1.0466795e+00 + 4.1804000e+03 -8.8667949e-01 + 4.1808000e+03 -3.9667949e-01 + 4.1812000e+03 -1.6679487e-02 + 4.1816000e+03 1.2332051e-01 + 4.1820000e+03 1.3332051e-01 + 4.1824000e+03 1.2332051e-01 + 4.1828000e+03 4.1332051e-01 + 4.1832000e+03 6.1332051e-01 + 4.1836000e+03 5.7332051e-01 + 4.1840000e+03 6.5332051e-01 + 4.1844000e+03 8.7332051e-01 + 4.1848000e+03 9.7332051e-01 + 4.1852000e+03 9.8332051e-01 + 4.1856000e+03 1.0133205e+00 + 4.1860000e+03 1.3933205e+00 + 4.1864000e+03 1.3333205e+00 + 4.1868000e+03 7.0332051e-01 + 4.1872000e+03 -5.7667949e-01 + 4.1876000e+03 -1.1666795e+00 + 4.1880000e+03 -1.1666795e+00 + 4.1884000e+03 -1.2166795e+00 + 4.1888000e+03 -1.0266795e+00 + 4.1892000e+03 -1.3966795e+00 + 4.1896000e+03 -1.4266795e+00 + 4.1900000e+03 -1.4266795e+00 + 4.1904000e+03 -1.5866795e+00 + 4.1908000e+03 -2.8466795e+00 + 4.1912000e+03 -2.0566795e+00 + 4.1916000e+03 -9.8667949e-01 + 4.1920000e+03 -3.2667949e-01 + 4.1924000e+03 -1.2667949e-01 + 4.1928000e+03 9.5332051e-01 + 4.1932000e+03 1.2933205e+00 + 4.1936000e+03 1.1333205e+00 + 4.1940000e+03 1.1633205e+00 + 4.1944000e+03 8.8332051e-01 + 4.1948000e+03 7.7332051e-01 + 4.1952000e+03 8.0332051e-01 + 4.1956000e+03 8.2332051e-01 + 4.1960000e+03 4.9332051e-01 + 4.1964000e+03 3.2332051e-01 + 4.1968000e+03 -7.6679487e-02 + 4.1972000e+03 -5.2667949e-01 + 4.1976000e+03 -9.9667949e-01 + 4.1980000e+03 -1.4266795e+00 + 4.1984000e+03 -1.9966795e+00 + 4.1988000e+03 -2.6366795e+00 + 4.1992000e+03 -3.0866795e+00 + 4.1996000e+03 -3.1466795e+00 + 4.2000000e+03 -2.9966795e+00 + 4.2004000e+03 -2.5166795e+00 + 4.2008000e+03 -1.8266795e+00 + 4.2012000e+03 -9.9667949e-01 + 4.2016000e+03 -3.6667949e-01 + 4.2020000e+03 1.1733205e+00 + 4.2024000e+03 1.9433205e+00 + 4.2028000e+03 2.7533205e+00 + 4.2032000e+03 3.3733205e+00 + 4.2036000e+03 3.3833205e+00 + 4.2040000e+03 2.7833205e+00 + 4.2044000e+03 2.1933205e+00 + 4.2048000e+03 1.7833205e+00 + 4.2052000e+03 1.7733205e+00 + 4.2056000e+03 1.4033205e+00 + 4.2060000e+03 9.2332051e-01 + 4.2064000e+03 9.3320513e-02 + 4.2068000e+03 -7.3667949e-01 + 4.2072000e+03 -1.1966795e+00 + 4.2076000e+03 -1.4166795e+00 + 4.2080000e+03 -1.4466795e+00 + 4.2084000e+03 -1.4466795e+00 + 4.2088000e+03 -1.4466795e+00 + 4.2092000e+03 -1.4466795e+00 + 4.2096000e+03 -1.5866795e+00 + 4.2100000e+03 -2.5866795e+00 + 4.2104000e+03 -2.6266795e+00 + 4.2108000e+03 -2.3166795e+00 + 4.2112000e+03 -1.8466795e+00 + 4.2116000e+03 -1.3466795e+00 + 4.2120000e+03 -1.0667949e-01 + 4.2124000e+03 5.1332051e-01 + 4.2128000e+03 7.3332051e-01 + 4.2132000e+03 5.8332051e-01 + 4.2136000e+03 3.7332051e-01 + 4.2140000e+03 3.9332051e-01 + 4.2144000e+03 4.2332051e-01 + 4.2148000e+03 7.2332051e-01 + 4.2152000e+03 9.9332051e-01 + 4.2156000e+03 1.2333205e+00 + 4.2160000e+03 1.1033205e+00 + 4.2164000e+03 9.0332051e-01 + 4.2168000e+03 8.6332051e-01 + 4.2172000e+03 2.7332051e-01 + 4.2176000e+03 -4.9667949e-01 + 4.2180000e+03 -8.9667949e-01 + 4.2184000e+03 -6.5667949e-01 + 4.2188000e+03 -5.1667949e-01 + 4.2192000e+03 -5.0667949e-01 + 4.2196000e+03 -1.1166795e+00 + 4.2200000e+03 -1.2366795e+00 + 4.2204000e+03 -1.2366795e+00 + 4.2208000e+03 -1.2366795e+00 + 4.2212000e+03 -1.2366795e+00 + 4.2216000e+03 -1.4166795e+00 + 4.2220000e+03 -1.5266795e+00 + 4.2224000e+03 -8.5667949e-01 + 4.2228000e+03 -8.0667949e-01 + 4.2232000e+03 -7.9667949e-01 + 4.2236000e+03 -7.9667949e-01 + 4.2240000e+03 -7.9667949e-01 + 4.2244000e+03 -7.9667949e-01 + 4.2248000e+03 -7.9667949e-01 + 4.2252000e+03 5.3332051e-01 + 4.2256000e+03 4.1332051e-01 + 4.2260000e+03 -5.6679487e-02 + 4.2264000e+03 3.3205128e-03 + 4.2268000e+03 5.4332051e-01 + 4.2272000e+03 1.1033205e+00 + 4.2276000e+03 1.6333205e+00 + 4.2280000e+03 1.8933205e+00 + 4.2284000e+03 2.6933205e+00 + 4.2288000e+03 2.6233205e+00 + 4.2292000e+03 1.8333205e+00 + 4.2296000e+03 1.7933205e+00 + 4.2300000e+03 1.7833205e+00 + 4.2304000e+03 -2.2066795e+00 + 4.2308000e+03 -3.2766795e+00 + 4.2312000e+03 -3.6566795e+00 + 4.2316000e+03 -3.5766795e+00 + 4.2320000e+03 -3.2366795e+00 + 4.2324000e+03 -2.7366795e+00 + 4.2328000e+03 -2.4466795e+00 + 4.2332000e+03 -2.2066795e+00 + 4.2336000e+03 -2.1766795e+00 + 4.2340000e+03 -2.1766795e+00 + 4.2344000e+03 -1.7566795e+00 + 4.2348000e+03 -1.2066795e+00 + 4.2352000e+03 -8.2667949e-01 + 4.2356000e+03 -3.7667949e-01 + 4.2360000e+03 6.5332051e-01 + 4.2364000e+03 1.5233205e+00 + 4.2368000e+03 1.8733205e+00 + 4.2372000e+03 1.9533205e+00 + 4.2376000e+03 1.7933205e+00 + 4.2380000e+03 1.8833205e+00 + 4.2384000e+03 2.1933205e+00 + 4.2388000e+03 2.4033205e+00 + 4.2392000e+03 2.5233205e+00 + 4.2396000e+03 2.2233205e+00 + 4.2400000e+03 1.7833205e+00 + 4.2404000e+03 1.5333205e+00 + 4.2408000e+03 1.5333205e+00 + 4.2412000e+03 8.0332051e-01 + 4.2416000e+03 -2.3666795e+00 + 4.2420000e+03 -2.9566795e+00 + 4.2424000e+03 -3.2666795e+00 + 4.2428000e+03 -3.3766795e+00 + 4.2432000e+03 -3.5166795e+00 + 4.2436000e+03 -3.9466795e+00 + 4.2440000e+03 -4.1366795e+00 + 4.2444000e+03 -3.2766795e+00 + 4.2448000e+03 -3.0366795e+00 + 4.2452000e+03 -3.0366795e+00 + 4.2456000e+03 -3.0266795e+00 + 4.2460000e+03 -3.0266795e+00 + 4.2464000e+03 -3.0266795e+00 + 4.2468000e+03 -3.0266795e+00 + 4.2472000e+03 -3.0266795e+00 + 4.2476000e+03 -3.0266795e+00 + 4.2480000e+03 -2.9266795e+00 + 4.2484000e+03 9.4332051e-01 + 4.2488000e+03 1.3033205e+00 + 4.2492000e+03 1.1833205e+00 + 4.2496000e+03 1.1333205e+00 + 4.2500000e+03 8.0332051e-01 + 4.2504000e+03 6.3332051e-01 + 4.2508000e+03 6.0332051e-01 + 4.2512000e+03 7.0332051e-01 + 4.2516000e+03 7.3332051e-01 + 4.2520000e+03 -1.9066795e+00 + 4.2524000e+03 -2.7466795e+00 + 4.2528000e+03 -3.7766795e+00 + 4.2532000e+03 -4.1766795e+00 + 4.2536000e+03 -4.0466795e+00 + 4.2540000e+03 -3.6466795e+00 + 4.2544000e+03 -3.1966795e+00 + 4.2548000e+03 -2.4666795e+00 + 4.2552000e+03 -1.9566795e+00 + 4.2556000e+03 -1.9166795e+00 + 4.2560000e+03 -1.9066795e+00 + 4.2564000e+03 1.2533205e+00 + 4.2568000e+03 2.7933205e+00 + 4.2572000e+03 3.7433205e+00 + 4.2576000e+03 4.6733205e+00 + 4.2580000e+03 4.8533205e+00 + 4.2584000e+03 4.1133205e+00 + 4.2588000e+03 2.8233205e+00 + 4.2592000e+03 1.6133205e+00 + 4.2596000e+03 3.4332051e-01 + 4.2600000e+03 -4.0667949e-01 + 4.2604000e+03 -9.4667949e-01 + 4.2608000e+03 -1.1366795e+00 + 4.2612000e+03 -1.1366795e+00 + 4.2616000e+03 -1.1366795e+00 + 4.2620000e+03 -1.1366795e+00 + 4.2624000e+03 -1.9466795e+00 + 4.2628000e+03 -2.8666795e+00 + 4.2632000e+03 -2.7666795e+00 + 4.2636000e+03 -2.4466795e+00 + 4.2640000e+03 -2.0566795e+00 + 4.2644000e+03 -2.1666795e+00 + 4.2648000e+03 -1.9666795e+00 + 4.2652000e+03 -1.4866795e+00 + 4.2656000e+03 -8.6667949e-01 + 4.2660000e+03 3.7332051e-01 + 4.2664000e+03 1.3533205e+00 + 4.2668000e+03 1.3233205e+00 + 4.2672000e+03 1.0733205e+00 + 4.2676000e+03 1.0133205e+00 + 4.2680000e+03 1.2233205e+00 + 4.2684000e+03 1.3233205e+00 + 4.2688000e+03 1.2033205e+00 + 4.2692000e+03 1.0233205e+00 + 4.2696000e+03 6.2332051e-01 + 4.2700000e+03 5.5332051e-01 + 4.2704000e+03 5.5332051e-01 + 4.2708000e+03 5.5332051e-01 + 4.2712000e+03 5.5332051e-01 + 4.2716000e+03 3.9332051e-01 + 4.2720000e+03 3.4332051e-01 + 4.2724000e+03 -3.6679487e-02 + 4.2728000e+03 -2.1966795e+00 + 4.2732000e+03 -2.5966795e+00 + 4.2736000e+03 -2.6266795e+00 + 4.2740000e+03 -2.5566795e+00 + 4.2744000e+03 -2.3766795e+00 + 4.2748000e+03 -1.8466795e+00 + 4.2752000e+03 -1.7666795e+00 + 4.2756000e+03 -1.7666795e+00 + 4.2760000e+03 -1.7666795e+00 + 4.2764000e+03 -1.7666795e+00 + 4.2768000e+03 -1.1966795e+00 + 4.2772000e+03 -1.0666795e+00 + 4.2776000e+03 4.1033205e+00 + 4.2780000e+03 3.9033205e+00 + 4.2784000e+03 3.7133205e+00 + 4.2788000e+03 3.5833205e+00 + 4.2792000e+03 3.3833205e+00 + 4.2796000e+03 3.3733205e+00 + 4.2800000e+03 1.3333205e+00 + 4.2804000e+03 -4.8667949e-01 + 4.2808000e+03 -4.9667949e-01 + 4.2812000e+03 -4.8667949e-01 + 4.2816000e+03 -4.8667949e-01 + 4.2820000e+03 -4.8667949e-01 + 4.2824000e+03 -4.7667949e-01 + 4.2828000e+03 -4.1466795e+00 + 4.2832000e+03 -4.6966795e+00 + 4.2836000e+03 -4.4266795e+00 + 4.2840000e+03 -4.3466795e+00 + 4.2844000e+03 -4.3366795e+00 + 4.2848000e+03 -2.9266795e+00 + 4.2852000e+03 -2.6466795e+00 + 4.2856000e+03 -2.6466795e+00 + 4.2860000e+03 -2.6366795e+00 + 4.2864000e+03 -2.6466795e+00 + 4.2868000e+03 -2.6466795e+00 + 4.2872000e+03 -2.6366795e+00 + 4.2876000e+03 -2.6366795e+00 + 4.2880000e+03 -2.6366795e+00 + 4.2884000e+03 9.4332051e-01 + 4.2888000e+03 8.9332051e-01 + 4.2892000e+03 1.5332051e-01 + 4.2896000e+03 -2.7667949e-01 + 4.2900000e+03 -2.9667949e-01 + 4.2904000e+03 -2.9667949e-01 + 4.2908000e+03 -2.9667949e-01 + 4.2912000e+03 -2.9667949e-01 + 4.2916000e+03 -2.9667949e-01 + 4.2920000e+03 -1.1166795e+00 + 4.2924000e+03 -1.2266795e+00 + 4.2928000e+03 -8.9667949e-01 + 4.2932000e+03 -9.1667949e-01 + 4.2936000e+03 -1.1966795e+00 + 4.2940000e+03 -1.1566795e+00 + 4.2944000e+03 -1.0766795e+00 + 4.2948000e+03 -1.0866795e+00 + 4.2952000e+03 -1.0066795e+00 + 4.2956000e+03 -6.3667949e-01 + 4.2960000e+03 2.3320513e-02 + 4.2964000e+03 1.1833205e+00 + 4.2968000e+03 1.2633205e+00 + 4.2972000e+03 1.3433205e+00 + 4.2976000e+03 1.6833205e+00 + 4.2980000e+03 1.7033205e+00 + 4.2984000e+03 2.7533205e+00 + 4.2988000e+03 3.4933205e+00 + 4.2992000e+03 3.2433205e+00 + 4.2996000e+03 3.1133205e+00 + 4.3000000e+03 3.1033205e+00 + 4.3004000e+03 3.1033205e+00 + 4.3008000e+03 2.5133205e+00 + 4.3012000e+03 9.7332051e-01 + 4.3016000e+03 9.1332051e-01 + 4.3020000e+03 9.1332051e-01 + 4.3024000e+03 9.1332051e-01 + 4.3028000e+03 9.1332051e-01 + 4.3032000e+03 9.1332051e-01 + 4.3036000e+03 9.1332051e-01 + 4.3040000e+03 9.1332051e-01 + 4.3044000e+03 6.7332051e-01 + 4.3048000e+03 -5.4466795e+00 + 4.3052000e+03 -4.6766795e+00 + 4.3056000e+03 -3.3366795e+00 + 4.3060000e+03 -3.1166795e+00 + 4.3064000e+03 -3.1066795e+00 + 4.3068000e+03 -3.1066795e+00 + 4.3072000e+03 -3.1066795e+00 + 4.3076000e+03 -3.1066795e+00 + 4.3080000e+03 -3.6679487e-02 + 4.3084000e+03 7.0333205e+00 + 4.3088000e+03 6.7633205e+00 + 4.3092000e+03 3.9533205e+00 + 4.3096000e+03 8.8332051e-01 + 4.3100000e+03 5.2332051e-01 + 4.3104000e+03 1.4332051e-01 + 4.3108000e+03 -2.4266795e+00 + 4.3112000e+03 -2.5666795e+00 + 4.3116000e+03 -2.2666795e+00 + 4.3120000e+03 -1.8366795e+00 + 4.3124000e+03 -1.4666795e+00 + 4.3128000e+03 -1.3066795e+00 + 4.3132000e+03 -1.2366795e+00 + 4.3136000e+03 -1.2566795e+00 + 4.3140000e+03 -1.2366795e+00 + 4.3144000e+03 -9.4667949e-01 + 4.3148000e+03 -7.3667949e-01 + 4.3152000e+03 -7.1667949e-01 + 4.3156000e+03 -7.1667949e-01 + 4.3160000e+03 -7.1667949e-01 + 4.3164000e+03 -7.1667949e-01 + 4.3168000e+03 2.0733205e+00 + 4.3172000e+03 3.9033205e+00 + 4.3176000e+03 4.1133205e+00 + 4.3180000e+03 3.3033205e+00 + 4.3184000e+03 1.9733205e+00 + 4.3188000e+03 1.1733205e+00 + 4.3192000e+03 7.3332051e-01 + 4.3196000e+03 -2.5667949e-01 + 4.3200000e+03 -8.6667949e-01 + 4.3204000e+03 -9.2667949e-01 + 4.3208000e+03 -9.2667949e-01 + 4.3212000e+03 -9.2667949e-01 + 4.3216000e+03 -9.2667949e-01 + 4.3220000e+03 -1.1566795e+00 + 4.3224000e+03 -2.0166795e+00 + 4.3228000e+03 -2.0666795e+00 + 4.3232000e+03 -2.2366795e+00 + 4.3236000e+03 -3.8066795e+00 + 4.3240000e+03 -4.0666795e+00 + 4.3244000e+03 -4.2266795e+00 + 4.3248000e+03 -3.9066795e+00 + 4.3252000e+03 -3.3766795e+00 + 4.3256000e+03 -3.3166795e+00 + 4.3260000e+03 -3.3066795e+00 + 4.3264000e+03 -3.3166795e+00 + 4.3268000e+03 -3.3066795e+00 + 4.3272000e+03 -3.3066795e+00 + 4.3276000e+03 -3.3066795e+00 + 4.3280000e+03 -3.2966795e+00 + 4.3284000e+03 1.0833205e+00 + 4.3288000e+03 1.5933205e+00 + 4.3292000e+03 1.5833205e+00 + 4.3296000e+03 1.6433205e+00 + 4.3300000e+03 1.5233205e+00 + 4.3304000e+03 1.4533205e+00 + 4.3308000e+03 1.5533205e+00 + 4.3312000e+03 1.9633205e+00 + 4.3316000e+03 2.3433205e+00 + 4.3320000e+03 2.5033205e+00 + 4.3324000e+03 2.3933205e+00 + 4.3328000e+03 1.8233205e+00 + 4.3332000e+03 1.1433205e+00 + 4.3336000e+03 6.6332051e-01 + 4.3340000e+03 -2.1667949e-01 + 4.3344000e+03 -9.8667949e-01 + 4.3348000e+03 -1.4966795e+00 + 4.3352000e+03 -1.8766795e+00 + 4.3356000e+03 -1.7466795e+00 + 4.3360000e+03 -1.2466795e+00 + 4.3364000e+03 -1.0766795e+00 + 4.3368000e+03 -1.0366795e+00 + 4.3372000e+03 -9.6667949e-01 + 4.3376000e+03 4.1332051e-01 + 4.3380000e+03 5.1332051e-01 + 4.3384000e+03 1.9332051e-01 + 4.3388000e+03 3.3320513e-02 + 4.3392000e+03 2.3320513e-02 + 4.3396000e+03 2.3320513e-02 + 4.3400000e+03 2.3320513e-02 + 4.3404000e+03 2.3320513e-02 + 4.3408000e+03 2.3320513e-02 + 4.3412000e+03 2.3320513e-02 + 4.3416000e+03 -3.2667949e-01 + 4.3420000e+03 -1.1066795e+00 + 4.3424000e+03 -1.0466795e+00 + 4.3428000e+03 -1.0366795e+00 + 4.3432000e+03 3.3205128e-03 + 4.3436000e+03 2.1332051e-01 + 4.3440000e+03 -1.6679487e-02 + 4.3444000e+03 -3.1667949e-01 + 4.3448000e+03 -4.9667949e-01 + 4.3452000e+03 -6.9667949e-01 + 4.3456000e+03 -8.0667949e-01 + 4.3460000e+03 -8.4667949e-01 + 4.3464000e+03 -9.7667949e-01 + 4.3468000e+03 -8.2667949e-01 + 4.3472000e+03 -3.5667949e-01 + 4.3476000e+03 2.2332051e-01 + 4.3480000e+03 9.5332051e-01 + 4.3484000e+03 1.2033205e+00 + 4.3488000e+03 1.1733205e+00 + 4.3492000e+03 6.9332051e-01 + 4.3496000e+03 2.8332051e-01 + 4.3500000e+03 9.3320513e-02 + 4.3504000e+03 7.3320513e-02 + 4.3508000e+03 1.7332051e-01 + 4.3512000e+03 3.2332051e-01 + 4.3516000e+03 4.3332051e-01 + 4.3520000e+03 5.5332051e-01 + 4.3524000e+03 6.2332051e-01 + 4.3528000e+03 6.4332051e-01 + 4.3532000e+03 8.0332051e-01 + 4.3536000e+03 1.1933205e+00 + 4.3540000e+03 1.4533205e+00 + 4.3544000e+03 1.6733205e+00 + 4.3548000e+03 1.6433205e+00 + 4.3552000e+03 1.1733205e+00 + 4.3556000e+03 3.3332051e-01 + 4.3560000e+03 -1.7667949e-01 + 4.3564000e+03 -2.0667949e-01 + 4.3568000e+03 -1.9667949e-01 + 4.3572000e+03 -2.4667949e-01 + 4.3576000e+03 -1.8066795e+00 + 4.3580000e+03 -1.9566795e+00 + 4.3584000e+03 -1.9566795e+00 + 4.3588000e+03 -1.9566795e+00 + 4.3592000e+03 -1.9566795e+00 + 4.3596000e+03 -1.9966795e+00 + 4.3600000e+03 -2.0066795e+00 + 4.3604000e+03 -1.9866795e+00 + 4.3608000e+03 -1.8166795e+00 + 4.3612000e+03 -1.7266795e+00 + 4.3616000e+03 -1.6266795e+00 + 4.3620000e+03 -1.6266795e+00 + 4.3624000e+03 -1.5066795e+00 + 4.3628000e+03 -1.2366795e+00 + 4.3632000e+03 -1.0966795e+00 + 4.3636000e+03 -1.0066795e+00 + 4.3640000e+03 -7.2667949e-01 + 4.3644000e+03 -5.6667949e-01 + 4.3648000e+03 -5.4667949e-01 + 4.3652000e+03 -5.4667949e-01 + 4.3656000e+03 -5.4667949e-01 + 4.3660000e+03 -5.4667949e-01 + 4.3664000e+03 -5.4667949e-01 + 4.3668000e+03 -2.6679487e-02 + 4.3672000e+03 1.9833205e+00 + 4.3676000e+03 1.9533205e+00 + 4.3680000e+03 1.9533205e+00 + 4.3684000e+03 2.1033205e+00 + 4.3688000e+03 2.3933205e+00 + 4.3692000e+03 2.2633205e+00 + 4.3696000e+03 2.1933205e+00 + 4.3700000e+03 2.1933205e+00 + 4.3704000e+03 1.9333205e+00 + 4.3708000e+03 9.5332051e-01 + 4.3712000e+03 9.1332051e-01 + 4.3716000e+03 9.1332051e-01 + 4.3720000e+03 9.1332051e-01 + 4.3724000e+03 9.1332051e-01 + 4.3728000e+03 9.1332051e-01 + 4.3732000e+03 -9.1667949e-01 + 4.3736000e+03 -3.0466795e+00 + 4.3740000e+03 -2.3766795e+00 + 4.3744000e+03 -2.3266795e+00 + 4.3748000e+03 -2.3166795e+00 + 4.3752000e+03 -2.3166795e+00 + 4.3756000e+03 -2.2466795e+00 + 4.3760000e+03 1.7033205e+00 + 4.3764000e+03 2.1633205e+00 + 4.3768000e+03 2.0833205e+00 + 4.3772000e+03 1.7533205e+00 + 4.3776000e+03 1.5333205e+00 + 4.3780000e+03 1.5033205e+00 + 4.3784000e+03 1.5033205e+00 + 4.3788000e+03 1.5033205e+00 + 4.3792000e+03 1.5033205e+00 + 4.3796000e+03 1.5033205e+00 + 4.3800000e+03 1.5033205e+00 + 4.3804000e+03 1.5033205e+00 + 4.3808000e+03 1.5033205e+00 + 4.3812000e+03 -1.9766795e+00 + 4.3816000e+03 -2.9266795e+00 + 4.3820000e+03 -2.7866795e+00 + 4.3824000e+03 -2.4166795e+00 + 4.3828000e+03 -2.3666795e+00 + 4.3832000e+03 -1.5466795e+00 + 4.3836000e+03 -7.0667949e-01 + 4.3840000e+03 -6.6667949e-01 + 4.3844000e+03 -6.6667949e-01 + 4.3848000e+03 -6.6667949e-01 + 4.3852000e+03 1.3733205e+00 + 4.3856000e+03 1.4733205e+00 + 4.3860000e+03 1.1333205e+00 + 4.3864000e+03 8.3332051e-01 + 4.3868000e+03 7.4332051e-01 + 4.3872000e+03 3.0332051e-01 + 4.3876000e+03 2.3332051e-01 + 4.3880000e+03 -2.5667949e-01 + 4.3884000e+03 -2.0667949e-01 + 4.3888000e+03 3.3205128e-03 + 4.3892000e+03 -6.6679487e-02 + 4.3896000e+03 -1.5667949e-01 + 4.3900000e+03 -1.1667949e-01 + 4.3904000e+03 -1.1667949e-01 + 4.3908000e+03 -1.2667949e-01 + 4.3912000e+03 -2.4667949e-01 + 4.3916000e+03 -4.8667949e-01 + 4.3920000e+03 -5.9667949e-01 + 4.3924000e+03 -1.0066795e+00 + 4.3928000e+03 -1.2566795e+00 + 4.3932000e+03 -1.2666795e+00 + 4.3936000e+03 -1.2666795e+00 + 4.3940000e+03 -1.2666795e+00 + 4.3944000e+03 -1.2666795e+00 + 4.3948000e+03 -1.2766795e+00 + 4.3952000e+03 -1.0766795e+00 + 4.3956000e+03 -8.8667949e-01 + 4.3960000e+03 -8.2667949e-01 + 4.3964000e+03 -8.2667949e-01 + 4.3968000e+03 -8.2667949e-01 + 4.3972000e+03 -8.2667949e-01 + 4.3976000e+03 1.2233205e+00 + 4.3980000e+03 1.3633205e+00 + 4.3984000e+03 1.1733205e+00 + 4.3988000e+03 1.1633205e+00 + 4.3992000e+03 7.4332051e-01 + 4.3996000e+03 1.6332051e-01 + 4.4000000e+03 2.1332051e-01 + 4.4004000e+03 2.3332051e-01 + 4.4008000e+03 9.3320513e-02 + 4.4012000e+03 -3.7667949e-01 + 4.4016000e+03 -8.1667949e-01 + 4.4020000e+03 -8.5667949e-01 + 4.4024000e+03 -8.5667949e-01 + 4.4028000e+03 -8.5667949e-01 + 4.4032000e+03 -8.5667949e-01 + 4.4036000e+03 -8.5667949e-01 + 4.4040000e+03 -8.5667949e-01 + 4.4044000e+03 -1.1766795e+00 + 4.4048000e+03 -1.5766795e+00 + 4.4052000e+03 -1.1166795e+00 + 4.4056000e+03 -1.0966795e+00 + 4.4060000e+03 -1.0966795e+00 + 4.4064000e+03 -1.0866795e+00 + 4.4068000e+03 4.1332051e-01 + 4.4072000e+03 4.3332051e-01 + 4.4076000e+03 -1.0667949e-01 + 4.4080000e+03 -3.4667949e-01 + 4.4084000e+03 -3.5667949e-01 + 4.4088000e+03 -3.5667949e-01 + 4.4092000e+03 -3.5667949e-01 + 4.4096000e+03 -6.9667949e-01 + 4.4100000e+03 -1.1466795e+00 + 4.4104000e+03 -5.1667949e-01 + 4.4108000e+03 9.3320513e-02 + 4.4112000e+03 1.3332051e-01 + 4.4116000e+03 1.4332051e-01 + 4.4120000e+03 1.0533205e+00 + 4.4124000e+03 1.0233205e+00 + 4.4128000e+03 7.8332051e-01 + 4.4132000e+03 7.5332051e-01 + 4.4136000e+03 7.5332051e-01 + 4.4140000e+03 2.9332051e-01 + 4.4144000e+03 3.3205128e-03 + 4.4148000e+03 1.1332051e-01 + 4.4152000e+03 3.9332051e-01 + 4.4156000e+03 9.2332051e-01 + 4.4160000e+03 7.9332051e-01 + 4.4164000e+03 6.8332051e-01 + 4.4168000e+03 5.1332051e-01 + 4.4172000e+03 1.0332051e-01 + 4.4176000e+03 1.3320513e-02 + 4.4180000e+03 1.5332051e-01 + 4.4184000e+03 2.9332051e-01 + 4.4188000e+03 2.6332051e-01 + 4.4192000e+03 1.3332051e-01 + 4.4196000e+03 8.3320513e-02 + 4.4200000e+03 -8.4667949e-01 + 4.4204000e+03 -1.0266795e+00 + 4.4208000e+03 -1.0266795e+00 + 4.4212000e+03 -6.5667949e-01 + 4.4216000e+03 -8.0667949e-01 + 4.4220000e+03 -1.1466795e+00 + 4.4224000e+03 -1.2266795e+00 + 4.4228000e+03 -1.2266795e+00 + 4.4232000e+03 -1.2166795e+00 + 4.4236000e+03 -1.2266795e+00 + 4.4240000e+03 -1.2266795e+00 + 4.4244000e+03 -1.5966795e+00 + 4.4248000e+03 -1.5766795e+00 + 4.4252000e+03 -1.3366795e+00 + 4.4256000e+03 -6.2667949e-01 + 4.4260000e+03 -2.6667949e-01 + 4.4264000e+03 -6.6679487e-02 + 4.4268000e+03 -2.2667949e-01 + 4.4272000e+03 -3.1667949e-01 + 4.4276000e+03 -5.5667949e-01 + 4.4280000e+03 -8.5667949e-01 + 4.4284000e+03 -1.1166795e+00 + 4.4288000e+03 -1.5966795e+00 + 4.4292000e+03 -1.4066795e+00 + 4.4296000e+03 -1.1166795e+00 + 4.4300000e+03 -1.9667949e-01 + 4.4304000e+03 1.3320513e-02 + 4.4308000e+03 7.3320513e-02 + 4.4312000e+03 1.8033205e+00 + 4.4316000e+03 2.1533205e+00 + 4.4320000e+03 2.3433205e+00 + 4.4324000e+03 2.3533205e+00 + 4.4328000e+03 2.6633205e+00 + 4.4332000e+03 2.2933205e+00 + 4.4336000e+03 2.1233205e+00 + 4.4340000e+03 7.8332051e-01 + 4.4344000e+03 3.5332051e-01 + 4.4348000e+03 3.2332051e-01 + 4.4352000e+03 -8.1667949e-01 + 4.4356000e+03 -1.0966795e+00 + 4.4360000e+03 -1.0566795e+00 + 4.4364000e+03 -9.2667949e-01 + 4.4368000e+03 -8.7667949e-01 + 4.4372000e+03 -7.5667949e-01 + 4.4376000e+03 -7.7667949e-01 + 4.4380000e+03 -8.0667949e-01 + 4.4384000e+03 -1.1966795e+00 + 4.4388000e+03 -1.2666795e+00 + 4.4392000e+03 -1.4266795e+00 + 4.4396000e+03 -1.1966795e+00 + 4.4400000e+03 -7.7667949e-01 + 4.4404000e+03 -5.4667949e-01 + 4.4408000e+03 -5.5667949e-01 + 4.4412000e+03 -1.0866795e+00 + 4.4416000e+03 -1.3466795e+00 + 4.4420000e+03 -1.8066795e+00 + 4.4424000e+03 -1.7166795e+00 + 4.4428000e+03 -1.7066795e+00 + 4.4432000e+03 -1.3766795e+00 + 4.4436000e+03 -1.2766795e+00 + 4.4440000e+03 -1.2366795e+00 + 4.4444000e+03 -1.2066795e+00 + 4.4448000e+03 -1.1066795e+00 + 4.4452000e+03 -9.1667949e-01 + 4.4456000e+03 -7.8667949e-01 + 4.4460000e+03 -7.9667949e-01 + 4.4464000e+03 -9.5667949e-01 + 4.4468000e+03 -8.7667949e-01 + 4.4472000e+03 -6.1667949e-01 + 4.4476000e+03 -4.4667949e-01 + 4.4480000e+03 -1.0667949e-01 + 4.4484000e+03 7.6332051e-01 + 4.4488000e+03 1.2733205e+00 + 4.4492000e+03 1.3833205e+00 + 4.4496000e+03 1.4633205e+00 + 4.4500000e+03 1.4733205e+00 + 4.4504000e+03 1.4733205e+00 + 4.4508000e+03 1.7033205e+00 + 4.4512000e+03 1.5733205e+00 + 4.4516000e+03 1.4333205e+00 + 4.4520000e+03 1.2933205e+00 + 4.4524000e+03 1.2633205e+00 + 4.4528000e+03 1.1033205e+00 + 4.4532000e+03 9.6332051e-01 + 4.4536000e+03 9.3332051e-01 + 4.4540000e+03 9.3332051e-01 + 4.4544000e+03 8.0332051e-01 + 4.4548000e+03 2.4332051e-01 + 4.4552000e+03 2.1332051e-01 + 4.4556000e+03 -5.1667949e-01 + 4.4560000e+03 -2.3866795e+00 + 4.4564000e+03 -2.3166795e+00 + 4.4568000e+03 -1.8666795e+00 + 4.4572000e+03 -1.7566795e+00 + 4.4576000e+03 -1.1566795e+00 + 4.4580000e+03 -1.0266795e+00 + 4.4584000e+03 -7.4667949e-01 + 4.4588000e+03 -3.3667949e-01 + 4.4592000e+03 -2.5667949e-01 + 4.4596000e+03 1.0332051e-01 + 4.4600000e+03 2.9332051e-01 + 4.4604000e+03 3.0332051e-01 + 4.4608000e+03 3.0332051e-01 + 4.4612000e+03 3.3205128e-03 + 4.4616000e+03 -2.4667949e-01 + 4.4620000e+03 -9.1667949e-01 + 4.4624000e+03 -1.2766795e+00 + 4.4628000e+03 -1.1966795e+00 + 4.4632000e+03 -1.1766795e+00 + 4.4636000e+03 -1.1766795e+00 + 4.4640000e+03 -6.9667949e-01 + 4.4644000e+03 -6.6679487e-02 + 4.4648000e+03 -9.5667949e-01 + 4.4652000e+03 -2.0266795e+00 + 4.4656000e+03 -2.2166795e+00 + 4.4660000e+03 -2.2366795e+00 + 4.4664000e+03 -2.1266795e+00 + 4.4668000e+03 -1.4866795e+00 + 4.4672000e+03 -7.2667949e-01 + 4.4676000e+03 -3.4667949e-01 + 4.4680000e+03 -2.6679487e-02 + 4.4684000e+03 3.6332051e-01 + 4.4688000e+03 6.5332051e-01 + 4.4692000e+03 9.8332051e-01 + 4.4696000e+03 1.1833205e+00 + 4.4700000e+03 1.3533205e+00 + 4.4704000e+03 1.7233205e+00 + 4.4708000e+03 2.2533205e+00 + 4.4712000e+03 2.2733205e+00 + 4.4716000e+03 2.3333205e+00 + 4.4720000e+03 2.3833205e+00 + 4.4724000e+03 1.7533205e+00 + 4.4728000e+03 1.4333205e+00 + 4.4732000e+03 1.3433205e+00 + 4.4736000e+03 1.3333205e+00 + 4.4740000e+03 1.3233205e+00 + 4.4744000e+03 1.3233205e+00 + 4.4748000e+03 1.3233205e+00 + 4.4752000e+03 1.2233205e+00 + 4.4756000e+03 -1.6266795e+00 + 4.4760000e+03 -1.7666795e+00 + 4.4764000e+03 -1.2566795e+00 + 4.4768000e+03 -1.1466795e+00 + 4.4772000e+03 -9.2667949e-01 + 4.4776000e+03 -7.7667949e-01 + 4.4780000e+03 -7.9667949e-01 + 4.4784000e+03 -7.5667949e-01 + 4.4788000e+03 -5.7667949e-01 + 4.4792000e+03 -9.0667949e-01 + 4.4796000e+03 -1.1066795e+00 + 4.4800000e+03 -1.2066795e+00 + 4.4804000e+03 -1.0766795e+00 + 4.4808000e+03 -1.0966795e+00 + 4.4812000e+03 -1.2166795e+00 + 4.4816000e+03 -1.1566795e+00 + 4.4820000e+03 -9.5667949e-01 + 4.4824000e+03 -3.5667949e-01 + 4.4828000e+03 2.5332051e-01 + 4.4832000e+03 6.6332051e-01 + 4.4836000e+03 7.8332051e-01 + 4.4840000e+03 9.0332051e-01 + 4.4844000e+03 8.3332051e-01 + 4.4848000e+03 4.6332051e-01 + 4.4852000e+03 3.6332051e-01 + 4.4856000e+03 2.3332051e-01 + 4.4860000e+03 3.3332051e-01 + 4.4864000e+03 -2.0667949e-01 + 4.4868000e+03 -5.0667949e-01 + 4.4872000e+03 -8.1667949e-01 + 4.4876000e+03 -9.9667949e-01 + 4.4880000e+03 -1.3266795e+00 + 4.4884000e+03 -1.4166795e+00 + 4.4888000e+03 -1.0666795e+00 + 4.4892000e+03 -3.1667949e-01 + 4.4896000e+03 4.0332051e-01 + 4.4900000e+03 6.5332051e-01 + 4.4904000e+03 9.8332051e-01 + 4.4908000e+03 1.3733205e+00 + 4.4912000e+03 1.5933205e+00 + 4.4916000e+03 1.6033205e+00 + 4.4920000e+03 1.5533205e+00 + 4.4924000e+03 1.3033205e+00 + 4.4928000e+03 9.0332051e-01 + 4.4932000e+03 6.7332051e-01 + 4.4936000e+03 6.6332051e-01 + 4.4940000e+03 6.6332051e-01 + 4.4944000e+03 6.6332051e-01 + 4.4948000e+03 6.6332051e-01 + 4.4952000e+03 6.6332051e-01 + 4.4956000e+03 6.6332051e-01 + 4.4960000e+03 6.6332051e-01 + 4.4964000e+03 6.6332051e-01 + 4.4968000e+03 -2.2166795e+00 + 4.4972000e+03 -2.3766795e+00 + 4.4976000e+03 -2.1966795e+00 + 4.4980000e+03 -1.6966795e+00 + 4.4984000e+03 -1.1566795e+00 + 4.4988000e+03 -4.4667949e-01 + 4.4992000e+03 -1.0667949e-01 + 4.4996000e+03 -9.6679487e-02 + 4.5000000e+03 -3.6679487e-02 + 4.5004000e+03 1.3320513e-02 + 4.5008000e+03 -1.6679487e-02 + 4.5012000e+03 -8.6679487e-02 + 4.5016000e+03 -1.9667949e-01 + 4.5020000e+03 -5.7667949e-01 + 4.5024000e+03 -7.8667949e-01 + 4.5028000e+03 -6.2667949e-01 + 4.5032000e+03 -3.2667949e-01 + 4.5036000e+03 -2.0667949e-01 + 4.5040000e+03 4.3320513e-02 + 4.5044000e+03 4.4332051e-01 + 4.5048000e+03 9.5332051e-01 + 4.5052000e+03 9.0332051e-01 + 4.5056000e+03 8.5332051e-01 + 4.5060000e+03 4.5332051e-01 + 4.5064000e+03 3.9332051e-01 + 4.5068000e+03 -8.6667949e-01 + 4.5072000e+03 -2.5666795e+00 + 4.5076000e+03 -2.8666795e+00 + 4.5080000e+03 -2.8766795e+00 + 4.5084000e+03 -2.7266795e+00 + 4.5088000e+03 -1.9766795e+00 + 4.5092000e+03 -7.8667949e-01 + 4.5096000e+03 -1.5667949e-01 + 4.5100000e+03 1.0233205e+00 + 4.5104000e+03 1.5233205e+00 + 4.5108000e+03 2.8533205e+00 + 4.5112000e+03 3.6433205e+00 + 4.5116000e+03 4.5333205e+00 + 4.5120000e+03 4.3333205e+00 + 4.5124000e+03 3.8633205e+00 + 4.5128000e+03 2.3533205e+00 + 4.5132000e+03 1.0533205e+00 + 4.5136000e+03 1.5332051e-01 + 4.5140000e+03 -3.1667949e-01 + 4.5144000e+03 -4.0667949e-01 + 4.5148000e+03 -8.8667949e-01 + 4.5152000e+03 -1.4466795e+00 + 4.5156000e+03 -1.8966795e+00 + 4.5160000e+03 -1.9466795e+00 + 4.5164000e+03 -1.9466795e+00 + 4.5168000e+03 -2.8866795e+00 + 4.5172000e+03 -3.2866795e+00 + 4.5176000e+03 -3.2966795e+00 + 4.5180000e+03 -3.3866795e+00 + 4.5184000e+03 -3.2666795e+00 + 4.5188000e+03 -2.5466795e+00 + 4.5192000e+03 -1.6966795e+00 + 4.5196000e+03 -8.2667949e-01 + 4.5200000e+03 -8.6679487e-02 + 4.5204000e+03 4.3320513e-02 + 4.5208000e+03 3.0332051e-01 + 4.5212000e+03 7.7332051e-01 + 4.5216000e+03 9.7332051e-01 + 4.5220000e+03 6.0332051e-01 + 4.5224000e+03 4.1332051e-01 + 4.5228000e+03 8.5332051e-01 + 4.5232000e+03 1.1633205e+00 + 4.5236000e+03 1.3633205e+00 + 4.5240000e+03 1.4333205e+00 + 4.5244000e+03 1.3433205e+00 + 4.5248000e+03 7.9332051e-01 + 4.5252000e+03 1.2332051e-01 + 4.5256000e+03 -4.1667949e-01 + 4.5260000e+03 -6.7667949e-01 + 4.5264000e+03 -9.0667949e-01 + 4.5268000e+03 -9.9667949e-01 + 4.5272000e+03 -1.0766795e+00 + 4.5276000e+03 -1.4266795e+00 + 4.5280000e+03 -1.4966795e+00 + 4.5284000e+03 -1.8166795e+00 + 4.5288000e+03 -1.5666795e+00 + 4.5292000e+03 -1.0666795e+00 + 4.5296000e+03 1.2332051e-01 + 4.5300000e+03 8.6332051e-01 + 4.5304000e+03 9.8332051e-01 + 4.5308000e+03 9.3332051e-01 + 4.5312000e+03 1.2633205e+00 + 4.5316000e+03 1.4133205e+00 + 4.5320000e+03 1.2233205e+00 + 4.5324000e+03 9.9332051e-01 + 4.5328000e+03 1.0533205e+00 + 4.5332000e+03 1.0533205e+00 + 4.5336000e+03 7.3332051e-01 + 4.5340000e+03 1.5332051e-01 + 4.5344000e+03 1.2332051e-01 + 4.5348000e+03 -3.6679487e-02 + 4.5352000e+03 -1.9766795e+00 + 4.5356000e+03 -1.9466795e+00 + 4.5360000e+03 -1.9466795e+00 + 4.5364000e+03 -1.8966795e+00 + 4.5368000e+03 -1.4566795e+00 + 4.5372000e+03 -1.3266795e+00 + 4.5376000e+03 -1.1366795e+00 + 4.5380000e+03 -7.7667949e-01 + 4.5384000e+03 -3.9667949e-01 + 4.5388000e+03 -1.9667949e-01 + 4.5392000e+03 1.3320513e-02 + 4.5396000e+03 1.3320513e-02 + 4.5400000e+03 -3.6679487e-02 + 4.5404000e+03 -1.7667949e-01 + 4.5408000e+03 -2.1667949e-01 + 4.5412000e+03 -2.4667949e-01 + 4.5416000e+03 -3.6667949e-01 + 4.5420000e+03 -7.0667949e-01 + 4.5424000e+03 -1.0066795e+00 + 4.5428000e+03 -1.0566795e+00 + 4.5432000e+03 -1.0966795e+00 + 4.5436000e+03 -1.3366795e+00 + 4.5440000e+03 -1.4266795e+00 + 4.5444000e+03 -1.2966795e+00 + 4.5448000e+03 -8.6667949e-01 + 4.5452000e+03 -2.8667949e-01 + 4.5456000e+03 1.9332051e-01 + 4.5460000e+03 3.2332051e-01 + 4.5464000e+03 6.6332051e-01 + 4.5468000e+03 4.3332051e-01 + 4.5472000e+03 7.3320513e-02 + 4.5476000e+03 -9.6679487e-02 + 4.5480000e+03 -8.2667949e-01 + 4.5484000e+03 -8.8667949e-01 + 4.5488000e+03 -6.1667949e-01 + 4.5492000e+03 -3.5667949e-01 + 4.5496000e+03 -5.0667949e-01 + 4.5500000e+03 -6.2667949e-01 + 4.5504000e+03 -6.5667949e-01 + 4.5508000e+03 -6.5667949e-01 + 4.5512000e+03 -3.5667949e-01 + 4.5516000e+03 3.8332051e-01 + 4.5520000e+03 4.2332051e-01 + 4.5524000e+03 8.8332051e-01 + 4.5528000e+03 1.4033205e+00 + 4.5532000e+03 1.8033205e+00 + 4.5536000e+03 2.7233205e+00 + 4.5540000e+03 2.5533205e+00 + 4.5544000e+03 2.1533205e+00 + 4.5548000e+03 1.6833205e+00 + 4.5552000e+03 1.2533205e+00 + 4.5556000e+03 1.1733205e+00 + 4.5560000e+03 1.1733205e+00 + 4.5564000e+03 1.1733205e+00 + 4.5568000e+03 1.1733205e+00 + 4.5572000e+03 1.1733205e+00 + 4.5576000e+03 1.1733205e+00 + 4.5580000e+03 1.1733205e+00 + 4.5584000e+03 1.1733205e+00 + 4.5588000e+03 1.1733205e+00 + 4.5592000e+03 1.1633205e+00 + 4.5596000e+03 7.8332051e-01 + 4.5600000e+03 -2.7066795e+00 + 4.5604000e+03 -2.3866795e+00 + 4.5608000e+03 -2.0966795e+00 + 4.5612000e+03 -1.6766795e+00 + 4.5616000e+03 -5.6667949e-01 + 4.5620000e+03 -5.0667949e-01 + 4.5624000e+03 -5.0667949e-01 + 4.5628000e+03 -5.0667949e-01 + 4.5632000e+03 2.8833205e+00 + 4.5636000e+03 3.6333205e+00 + 4.5640000e+03 4.6833205e+00 + 4.5644000e+03 4.8033205e+00 + 4.5648000e+03 4.6933205e+00 + 4.5652000e+03 4.6933205e+00 + 4.5656000e+03 4.6833205e+00 + 4.5660000e+03 4.6833205e+00 + 4.5664000e+03 1.2533205e+00 + 4.5668000e+03 -1.2766795e+00 + 4.5672000e+03 -1.3466795e+00 + 4.5676000e+03 -1.3466795e+00 + 4.5680000e+03 -1.3366795e+00 + 4.5684000e+03 -1.3366795e+00 + 4.5688000e+03 -1.3366795e+00 + 4.5692000e+03 -1.3366795e+00 + 4.5696000e+03 -3.2966795e+00 + 4.5700000e+03 -3.2766795e+00 + 4.5704000e+03 -3.0866795e+00 + 4.5708000e+03 -3.0666795e+00 + 4.5712000e+03 -3.0666795e+00 + 4.5716000e+03 -3.0666795e+00 + 4.5720000e+03 -3.0566795e+00 + 4.5724000e+03 -3.0566795e+00 + 4.5728000e+03 -3.0566795e+00 + 4.5732000e+03 -3.0566795e+00 + 4.5736000e+03 -3.0566795e+00 + 4.5740000e+03 -3.0566795e+00 + 4.5744000e+03 1.8332051e-01 + 4.5748000e+03 3.3233205e+00 + 4.5752000e+03 3.1733205e+00 + 4.5756000e+03 2.8233205e+00 + 4.5760000e+03 2.8033205e+00 + 4.5764000e+03 2.8033205e+00 + 4.5768000e+03 2.7933205e+00 + 4.5772000e+03 2.7933205e+00 + 4.5776000e+03 2.7933205e+00 + 4.5780000e+03 2.7933205e+00 + 4.5784000e+03 2.7933205e+00 + 4.5788000e+03 2.7833205e+00 + 4.5792000e+03 2.7833205e+00 + 4.5796000e+03 2.7833205e+00 + 4.5800000e+03 2.7833205e+00 + 4.5804000e+03 2.7833205e+00 + 4.5808000e+03 2.7833205e+00 + 4.5812000e+03 2.7833205e+00 + 4.5816000e+03 2.7833205e+00 + 4.5820000e+03 2.7833205e+00 + 4.5824000e+03 2.7833205e+00 + 4.5828000e+03 2.7333205e+00 + 4.5832000e+03 -9.8667949e-01 + 4.5836000e+03 -1.3466795e+00 + 4.5840000e+03 -1.2766795e+00 + 4.5844000e+03 -1.0266795e+00 + 4.5848000e+03 -6.0667949e-01 + 4.5852000e+03 -3.6679487e-02 + 4.5856000e+03 2.3320513e-02 + 4.5860000e+03 1.6332051e-01 + 4.5864000e+03 3.0533205e+00 + 4.5868000e+03 2.7433205e+00 + 4.5872000e+03 2.7033205e+00 + 4.5876000e+03 2.3033205e+00 + 4.5880000e+03 6.9332051e-01 + 4.5884000e+03 -5.6667949e-01 + 4.5888000e+03 -1.2566795e+00 + 4.5892000e+03 -1.6666795e+00 + 4.5896000e+03 -1.9766795e+00 + 4.5900000e+03 -2.2466795e+00 + 4.5904000e+03 -2.3566795e+00 + 4.5908000e+03 -2.4466795e+00 + 4.5912000e+03 -2.4566795e+00 + 4.5916000e+03 -2.5266795e+00 + 4.5920000e+03 -2.6766795e+00 + 4.5924000e+03 -2.7066795e+00 + 4.5928000e+03 -2.4466795e+00 + 4.5932000e+03 -1.5966795e+00 + 4.5936000e+03 -7.1667949e-01 + 4.5940000e+03 -2.5667949e-01 + 4.5944000e+03 2.4733205e+00 + 4.5948000e+03 5.1633205e+00 + 4.5952000e+03 6.1933205e+00 + 4.5956000e+03 5.9333205e+00 + 4.5960000e+03 4.9233205e+00 + 4.5964000e+03 4.3933205e+00 + 4.5968000e+03 4.0733205e+00 + 4.5972000e+03 2.9933205e+00 + 4.5976000e+03 1.1733205e+00 + 4.5980000e+03 8.3332051e-01 + 4.5984000e+03 8.2332051e-01 + 4.5988000e+03 8.2332051e-01 + 4.5992000e+03 8.3332051e-01 + 4.5996000e+03 8.3332051e-01 + 4.6000000e+03 -2.3166795e+00 + 4.6004000e+03 -3.5166795e+00 + 4.6008000e+03 -3.5466795e+00 + 4.6012000e+03 -3.5666795e+00 + 4.6016000e+03 -4.8566795e+00 + 4.6020000e+03 -4.9266795e+00 + 4.6024000e+03 -4.6366795e+00 + 4.6028000e+03 -4.3066795e+00 + 4.6032000e+03 -3.8366795e+00 + 4.6036000e+03 -3.2966795e+00 + 4.6040000e+03 -2.3366795e+00 + 4.6044000e+03 -1.2566795e+00 + 4.6048000e+03 -1.0766795e+00 + 4.6052000e+03 -1.0766795e+00 + 4.6056000e+03 -1.0766795e+00 + 4.6060000e+03 -1.0766795e+00 + 4.6064000e+03 -1.0766795e+00 + 4.6068000e+03 -1.0566795e+00 + 4.6072000e+03 4.0333205e+00 + 4.6076000e+03 4.2233205e+00 + 4.6080000e+03 2.7433205e+00 + 4.6084000e+03 2.4833205e+00 + 4.6088000e+03 2.4733205e+00 + 4.6092000e+03 2.4733205e+00 + 4.6096000e+03 2.4733205e+00 + 4.6100000e+03 2.4733205e+00 + 4.6104000e+03 2.4733205e+00 + 4.6108000e+03 2.4733205e+00 + 4.6112000e+03 2.4633205e+00 + 4.6116000e+03 -2.7966795e+00 + 4.6120000e+03 -3.1666795e+00 + 4.6124000e+03 -2.5666795e+00 + 4.6128000e+03 -2.4266795e+00 + 4.6132000e+03 -2.4166795e+00 + 4.6136000e+03 -2.4166795e+00 + 4.6140000e+03 -2.4066795e+00 + 4.6144000e+03 -2.4166795e+00 + 4.6148000e+03 1.5833205e+00 + 4.6152000e+03 4.7333205e+00 + 4.6156000e+03 5.2933205e+00 + 4.6160000e+03 5.2333205e+00 + 4.6164000e+03 5.3733205e+00 + 4.6168000e+03 3.8233205e+00 + 4.6172000e+03 2.1933205e+00 + 4.6176000e+03 1.0133205e+00 + 4.6180000e+03 9.2332051e-01 + 4.6184000e+03 9.2332051e-01 + 4.6188000e+03 -1.2566795e+00 + 4.6192000e+03 -2.1366795e+00 + 4.6196000e+03 -2.1766795e+00 + 4.6200000e+03 -2.4866795e+00 + 4.6204000e+03 -2.8766795e+00 + 4.6208000e+03 -2.9466795e+00 + 4.6212000e+03 -2.9466795e+00 + 4.6216000e+03 -2.9466795e+00 + 4.6220000e+03 -3.2466795e+00 + 4.6224000e+03 -3.6066795e+00 + 4.6228000e+03 -3.0366795e+00 + 4.6232000e+03 -2.0966795e+00 + 4.6236000e+03 -5.6667949e-01 + 4.6240000e+03 -1.3667949e-01 + 4.6244000e+03 2.2332051e-01 + 4.6248000e+03 9.5332051e-01 + 4.6252000e+03 1.7333205e+00 + 4.6256000e+03 2.3033205e+00 + 4.6260000e+03 2.6633205e+00 + 4.6264000e+03 2.5533205e+00 + 4.6268000e+03 2.0533205e+00 + 4.6272000e+03 1.3433205e+00 + 4.6276000e+03 1.3332051e-01 + 4.6280000e+03 -4.7667949e-01 + 4.6284000e+03 -4.1667949e-01 + 4.6288000e+03 -2.6667949e-01 + 4.6292000e+03 1.4332051e-01 + 4.6296000e+03 1.5533205e+00 + 4.6300000e+03 1.4633205e+00 + 4.6304000e+03 1.2533205e+00 + 4.6308000e+03 1.2333205e+00 + 4.6312000e+03 1.2333205e+00 + 4.6316000e+03 1.2333205e+00 + 4.6320000e+03 1.2333205e+00 + 4.6324000e+03 7.4332051e-01 + 4.6328000e+03 -2.3366795e+00 + 4.6332000e+03 -2.2466795e+00 + 4.6336000e+03 -1.9666795e+00 + 4.6340000e+03 -1.3566795e+00 + 4.6344000e+03 -7.2667949e-01 + 4.6348000e+03 -5.6679487e-02 + 4.6352000e+03 5.4332051e-01 + 4.6356000e+03 8.2332051e-01 + 4.6360000e+03 8.2332051e-01 + 4.6364000e+03 8.2332051e-01 + 4.6368000e+03 2.3433205e+00 + 4.6372000e+03 2.8233205e+00 + 4.6376000e+03 2.3333205e+00 + 4.6380000e+03 1.9833205e+00 + 4.6384000e+03 7.1332051e-01 + 4.6388000e+03 3.7332051e-01 + 4.6392000e+03 3.7332051e-01 + 4.6396000e+03 3.6332051e-01 + 4.6400000e+03 3.7332051e-01 + 4.6404000e+03 3.7332051e-01 + 4.6408000e+03 3.7332051e-01 + 4.6412000e+03 3.7332051e-01 + 4.6416000e+03 2.8332051e-01 + 4.6420000e+03 -1.7866795e+00 + 4.6424000e+03 -1.5666795e+00 + 4.6428000e+03 -1.2566795e+00 + 4.6432000e+03 -1.2366795e+00 + 4.6436000e+03 8.3320513e-02 + 4.6440000e+03 5.5332051e-01 + 4.6444000e+03 7.9332051e-01 + 4.6448000e+03 1.0733205e+00 + 4.6452000e+03 1.6333205e+00 + 4.6456000e+03 2.2333205e+00 + 4.6460000e+03 2.6933205e+00 + 4.6464000e+03 2.8033205e+00 + 4.6468000e+03 2.4233205e+00 + 4.6472000e+03 1.3933205e+00 + 4.6476000e+03 1.3033205e+00 + 4.6480000e+03 1.3033205e+00 + 4.6484000e+03 1.3033205e+00 + 4.6488000e+03 6.6332051e-01 + 4.6492000e+03 4.7332051e-01 + 4.6496000e+03 4.6332051e-01 + 4.6500000e+03 4.7332051e-01 + 4.6504000e+03 4.7332051e-01 + 4.6508000e+03 -1.4566795e+00 + 4.6512000e+03 -2.6966795e+00 + 4.6516000e+03 -2.7766795e+00 + 4.6520000e+03 -2.4566795e+00 + 4.6524000e+03 -2.0266795e+00 + 4.6528000e+03 -1.8766795e+00 + 4.6532000e+03 -1.8766795e+00 + 4.6536000e+03 -1.8666795e+00 + 4.6540000e+03 -1.8766795e+00 + 4.6544000e+03 -1.8666795e+00 + 4.6548000e+03 -1.7166795e+00 + 4.6552000e+03 1.1333205e+00 + 4.6556000e+03 1.4233205e+00 + 4.6560000e+03 1.4133205e+00 + 4.6564000e+03 1.0533205e+00 + 4.6568000e+03 4.2332051e-01 + 4.6572000e+03 -1.9667949e-01 + 4.6576000e+03 -2.7667949e-01 + 4.6580000e+03 1.4332051e-01 + 4.6584000e+03 4.4332051e-01 + 4.6588000e+03 8.5332051e-01 + 4.6592000e+03 8.7332051e-01 + 4.6596000e+03 7.4332051e-01 + 4.6600000e+03 4.5332051e-01 + 4.6604000e+03 1.7332051e-01 + 4.6608000e+03 -1.6679487e-02 + 4.6612000e+03 -1.6679487e-02 + 4.6616000e+03 1.3320513e-02 + 4.6620000e+03 -9.6679487e-02 + 4.6624000e+03 -2.4667949e-01 + 4.6628000e+03 -3.2667949e-01 + 4.6632000e+03 -7.9667949e-01 + 4.6636000e+03 -8.7667949e-01 + 4.6640000e+03 -8.7667949e-01 + 4.6644000e+03 -8.7667949e-01 + 4.6648000e+03 -9.5667949e-01 + 4.6652000e+03 -1.3566795e+00 + 4.6656000e+03 -1.2566795e+00 + 4.6660000e+03 -6.9667949e-01 + 4.6664000e+03 6.0332051e-01 + 4.6668000e+03 9.1332051e-01 + 4.6672000e+03 6.0332051e-01 + 4.6676000e+03 1.1332051e-01 + 4.6680000e+03 -2.4667949e-01 + 4.6684000e+03 -3.9667949e-01 + 4.6688000e+03 -3.8667949e-01 + 4.6692000e+03 -3.6667949e-01 + 4.6696000e+03 -2.9667949e-01 + 4.6700000e+03 -5.6667949e-01 + 4.6704000e+03 -7.2667949e-01 + 4.6708000e+03 -7.3667949e-01 + 4.6712000e+03 -7.3667949e-01 + 4.6716000e+03 -7.3667949e-01 + 4.6720000e+03 -7.2667949e-01 + 4.6724000e+03 -7.3667949e-01 + 4.6728000e+03 -7.2667949e-01 + 4.6732000e+03 -7.2667949e-01 + 4.6736000e+03 -1.0466795e+00 + 4.6740000e+03 -1.4166795e+00 + 4.6744000e+03 -1.0866795e+00 + 4.6748000e+03 -6.4667949e-01 + 4.6752000e+03 -5.7667949e-01 + 4.6756000e+03 4.3332051e-01 + 4.6760000e+03 2.1433205e+00 + 4.6764000e+03 2.8633205e+00 + 4.6768000e+03 3.2233205e+00 + 4.6772000e+03 3.3033205e+00 + 4.6776000e+03 4.1533205e+00 + 4.6780000e+03 4.1033205e+00 + 4.6784000e+03 4.1033205e+00 + 4.6788000e+03 1.7533205e+00 + 4.6792000e+03 -1.2366795e+00 + 4.6796000e+03 -1.7166795e+00 + 4.6800000e+03 -1.7766795e+00 + 4.6804000e+03 -1.5266795e+00 + 4.6808000e+03 -9.1667949e-01 + 4.6812000e+03 -4.7667949e-01 + 4.6816000e+03 -4.4667949e-01 + 4.6820000e+03 -4.6667949e-01 + 4.6824000e+03 -5.5667949e-01 + 4.6828000e+03 -9.0667949e-01 + 4.6832000e+03 -1.1466795e+00 + 4.6836000e+03 -9.9667949e-01 + 4.6840000e+03 -7.7667949e-01 + 4.6844000e+03 -4.2667949e-01 + 4.6848000e+03 -1.3667949e-01 + 4.6852000e+03 1.1332051e-01 + 4.6856000e+03 -3.1667949e-01 + 4.6860000e+03 -1.0066795e+00 + 4.6864000e+03 -1.2066795e+00 + 4.6868000e+03 -1.2166795e+00 + 4.6872000e+03 -1.1466795e+00 + 4.6876000e+03 -8.3667949e-01 + 4.6880000e+03 -6.7667949e-01 + 4.6884000e+03 -5.4667949e-01 + 4.6888000e+03 -3.5667949e-01 + 4.6892000e+03 5.3320513e-02 + 4.6896000e+03 1.0332051e-01 + 4.6900000e+03 4.3320513e-02 + 4.6904000e+03 -2.2667949e-01 + 4.6908000e+03 -3.0667949e-01 + 4.6912000e+03 -3.1667949e-01 + 4.6916000e+03 -3.1667949e-01 + 4.6920000e+03 -3.8667949e-01 + 4.6924000e+03 -1.4766795e+00 + 4.6928000e+03 -1.0266795e+00 + 4.6932000e+03 -6.5667949e-01 + 4.6936000e+03 3.3320513e-02 + 4.6940000e+03 3.6332051e-01 + 4.6944000e+03 4.0332051e-01 + 4.6948000e+03 3.0332051e-01 + 4.6952000e+03 5.0332051e-01 + 4.6956000e+03 6.8332051e-01 + 4.6960000e+03 6.0332051e-01 + 4.6964000e+03 4.1332051e-01 + 4.6968000e+03 1.6332051e-01 + 4.6972000e+03 2.3320513e-02 + 4.6976000e+03 1.3320513e-02 + 4.6980000e+03 -1.0966795e+00 + 4.6984000e+03 -1.3566795e+00 + 4.6988000e+03 -1.1966795e+00 + 4.6992000e+03 -8.7667949e-01 + 4.6996000e+03 -5.7667949e-01 + 4.7000000e+03 -4.1667949e-01 + 4.7004000e+03 -5.5667949e-01 + 4.7008000e+03 -3.9667949e-01 + 4.7012000e+03 3.3320513e-02 + 4.7016000e+03 2.5332051e-01 + 4.7020000e+03 4.3332051e-01 + 4.7024000e+03 8.7332051e-01 + 4.7028000e+03 1.1833205e+00 + 4.7032000e+03 8.2332051e-01 + 4.7036000e+03 2.1332051e-01 + 4.7040000e+03 -2.2667949e-01 + 4.7044000e+03 -1.1266795e+00 + 4.7048000e+03 -1.1366795e+00 + 4.7052000e+03 -1.1566795e+00 + 4.7056000e+03 -1.1466795e+00 + 4.7060000e+03 -1.0666795e+00 + 4.7064000e+03 -1.0366795e+00 + 4.7068000e+03 -1.0066795e+00 + 4.7072000e+03 -1.0466795e+00 + 4.7076000e+03 -9.9667949e-01 + 4.7080000e+03 -9.0667949e-01 + 4.7084000e+03 -5.0667949e-01 + 4.7088000e+03 5.3320513e-02 + 4.7092000e+03 4.8332051e-01 + 4.7096000e+03 4.9332051e-01 + 4.7100000e+03 7.4332051e-01 + 4.7104000e+03 8.0332051e-01 + 4.7108000e+03 6.4332051e-01 + 4.7112000e+03 3.7332051e-01 + 4.7116000e+03 -1.5667949e-01 + 4.7120000e+03 -2.9667949e-01 + 4.7124000e+03 -5.0667949e-01 + 4.7128000e+03 -1.1266795e+00 + 4.7132000e+03 -1.3266795e+00 + 4.7136000e+03 -1.4566795e+00 + 4.7140000e+03 -1.4466795e+00 + 4.7144000e+03 -1.5466795e+00 + 4.7148000e+03 -1.5766795e+00 + 4.7152000e+03 -1.4466795e+00 + 4.7156000e+03 -1.0766795e+00 + 4.7160000e+03 -7.0667949e-01 + 4.7164000e+03 -7.2667949e-01 + 4.7168000e+03 -1.0766795e+00 + 4.7172000e+03 -1.3366795e+00 + 4.7176000e+03 -1.2966795e+00 + 4.7180000e+03 -1.2266795e+00 + 4.7184000e+03 -1.1566795e+00 + 4.7188000e+03 -8.7667949e-01 + 4.7192000e+03 -7.2667949e-01 + 4.7196000e+03 -4.6667949e-01 + 4.7200000e+03 3.3320513e-02 + 4.7204000e+03 1.9332051e-01 + 4.7208000e+03 4.1332051e-01 + 4.7212000e+03 8.2332051e-01 + 4.7216000e+03 6.9332051e-01 + 4.7220000e+03 3.0332051e-01 + 4.7224000e+03 6.9332051e-01 + 4.7228000e+03 1.2433205e+00 + 4.7232000e+03 1.5233205e+00 + 4.7236000e+03 1.5933205e+00 + 4.7240000e+03 1.5933205e+00 + 4.7244000e+03 1.6133205e+00 + 4.7248000e+03 2.2733205e+00 + 4.7252000e+03 1.7633205e+00 + 4.7256000e+03 9.5332051e-01 + 4.7260000e+03 -2.0667949e-01 + 4.7264000e+03 -7.1667949e-01 + 4.7268000e+03 -1.2366795e+00 + 4.7272000e+03 -2.4466795e+00 + 4.7276000e+03 -3.1366795e+00 + 4.7280000e+03 -3.4266795e+00 + 4.7284000e+03 -3.4866795e+00 + 4.7288000e+03 -3.2566795e+00 + 4.7292000e+03 -2.9766795e+00 + 4.7296000e+03 -2.5666795e+00 + 4.7300000e+03 -2.2166795e+00 + 4.7304000e+03 -1.7766795e+00 + 4.7308000e+03 -1.3966795e+00 + 4.7312000e+03 -2.9667949e-01 + 4.7316000e+03 -2.2667949e-01 + 4.7320000e+03 6.8332051e-01 + 4.7324000e+03 2.4833205e+00 + 4.7328000e+03 3.2433205e+00 + 4.7332000e+03 2.7233205e+00 + 4.7336000e+03 2.6533205e+00 + 4.7340000e+03 2.6433205e+00 + 4.7344000e+03 2.6433205e+00 + 4.7348000e+03 2.6433205e+00 + 4.7352000e+03 2.6433205e+00 + 4.7356000e+03 2.1433205e+00 + 4.7360000e+03 -2.1666795e+00 + 4.7364000e+03 -2.2266795e+00 + 4.7368000e+03 -2.0566795e+00 + 4.7372000e+03 -1.8966795e+00 + 4.7376000e+03 -1.6366795e+00 + 4.7380000e+03 -1.4466795e+00 + 4.7384000e+03 -8.8667949e-01 + 4.7388000e+03 -3.8667949e-01 + 4.7392000e+03 -3.6679487e-02 + 4.7396000e+03 2.4332051e-01 + 4.7400000e+03 5.5332051e-01 + 4.7404000e+03 7.2332051e-01 + 4.7408000e+03 1.2933205e+00 + 4.7412000e+03 1.8633205e+00 + 4.7416000e+03 1.9033205e+00 + 4.7420000e+03 1.7633205e+00 + 4.7424000e+03 1.7333205e+00 + 4.7428000e+03 1.1733205e+00 + 4.7432000e+03 7.1332051e-01 + 4.7436000e+03 9.4332051e-01 + 4.7440000e+03 1.5533205e+00 + 4.7444000e+03 2.0333205e+00 + 4.7448000e+03 2.0533205e+00 + 4.7452000e+03 1.5533205e+00 + 4.7456000e+03 1.1333205e+00 + 4.7460000e+03 8.8332051e-01 + 4.7464000e+03 8.2332051e-01 + 4.7468000e+03 5.8332051e-01 + 4.7472000e+03 3.8332051e-01 + 4.7476000e+03 3.8332051e-01 + 4.7480000e+03 -1.3666795e+00 + 4.7484000e+03 -2.2866795e+00 + 4.7488000e+03 -2.8266795e+00 + 4.7492000e+03 -3.0666795e+00 + 4.7496000e+03 -3.8066795e+00 + 4.7500000e+03 -3.8666795e+00 + 4.7504000e+03 -4.8166795e+00 + 4.7508000e+03 -4.6966795e+00 + 4.7512000e+03 -4.1766795e+00 + 4.7516000e+03 -3.7866795e+00 + 4.7520000e+03 -3.3366795e+00 + 4.7524000e+03 -6.4667949e-01 + 4.7528000e+03 -3.6679487e-02 + 4.7532000e+03 5.0332051e-01 + 4.7536000e+03 8.0332051e-01 + 4.7540000e+03 1.1733205e+00 + 4.7544000e+03 1.5433205e+00 + 4.7548000e+03 1.8333205e+00 + 4.7552000e+03 2.0333205e+00 + 4.7556000e+03 2.0433205e+00 + 4.7560000e+03 1.8033205e+00 + 4.7564000e+03 1.3233205e+00 + 4.7568000e+03 7.7332051e-01 + 4.7572000e+03 3.7332051e-01 + 4.7576000e+03 1.6332051e-01 + 4.7580000e+03 2.5332051e-01 + 4.7584000e+03 6.0332051e-01 + 4.7588000e+03 6.3332051e-01 + 4.7592000e+03 3.9332051e-01 + 4.7596000e+03 8.3320513e-02 + 4.7600000e+03 -1.0667949e-01 + 4.7604000e+03 -1.6667949e-01 + 4.7608000e+03 -1.9667949e-01 + 4.7612000e+03 -9.6679487e-02 + 4.7616000e+03 3.3332051e-01 + 4.7620000e+03 5.4332051e-01 + 4.7624000e+03 2.4332051e-01 + 4.7628000e+03 7.3320513e-02 + 4.7632000e+03 5.3320513e-02 + 4.7636000e+03 5.3320513e-02 + 4.7640000e+03 5.3320513e-02 + 4.7644000e+03 -6.0667949e-01 + 4.7648000e+03 -6.9667949e-01 + 4.7652000e+03 -1.7667949e-01 + 4.7656000e+03 1.1332051e-01 + 4.7660000e+03 3.0332051e-01 + 4.7664000e+03 5.5332051e-01 + 4.7668000e+03 5.8332051e-01 + 4.7672000e+03 2.9332051e-01 + 4.7676000e+03 -1.6679487e-02 + 4.7680000e+03 -1.0066795e+00 + 4.7684000e+03 -1.5766795e+00 + 4.7688000e+03 -1.6966795e+00 + 4.7692000e+03 -2.3366795e+00 + 4.7696000e+03 -2.9566795e+00 + 4.7700000e+03 -2.9966795e+00 + 4.7704000e+03 -3.0566795e+00 + 4.7708000e+03 -3.0766795e+00 + 4.7712000e+03 -3.0266795e+00 + 4.7716000e+03 -3.0766795e+00 + 4.7720000e+03 -2.2466795e+00 + 4.7724000e+03 -1.2466795e+00 + 4.7728000e+03 -1.0266795e+00 + 4.7732000e+03 -6.2667949e-01 + 4.7736000e+03 -4.6667949e-01 + 4.7740000e+03 -5.8667949e-01 + 4.7744000e+03 -3.6667949e-01 + 4.7748000e+03 2.1332051e-01 + 4.7752000e+03 8.4332051e-01 + 4.7756000e+03 1.7433205e+00 + 4.7760000e+03 2.3733205e+00 + 4.7764000e+03 2.4533205e+00 + 4.7768000e+03 2.0433205e+00 + 4.7772000e+03 1.7933205e+00 + 4.7776000e+03 1.7333205e+00 + 4.7780000e+03 1.7233205e+00 + 4.7784000e+03 1.7233205e+00 + 4.7788000e+03 1.4133205e+00 + 4.7792000e+03 1.3533205e+00 + 4.7796000e+03 1.5133205e+00 + 4.7800000e+03 1.4133205e+00 + 4.7804000e+03 1.4133205e+00 + 4.7808000e+03 1.2333205e+00 + 4.7812000e+03 9.2332051e-01 + 4.7816000e+03 7.5332051e-01 + 4.7820000e+03 7.0332051e-01 + 4.7824000e+03 6.9332051e-01 + 4.7828000e+03 6.9332051e-01 + 4.7832000e+03 6.9332051e-01 + 4.7836000e+03 7.0332051e-01 + 4.7840000e+03 6.9332051e-01 + 4.7844000e+03 7.0332051e-01 + 4.7848000e+03 6.9332051e-01 + 4.7852000e+03 6.1332051e-01 + 4.7856000e+03 -1.8066795e+00 + 4.7860000e+03 -2.5166795e+00 + 4.7864000e+03 -2.0566795e+00 + 4.7868000e+03 -1.9566795e+00 + 4.7872000e+03 -1.9566795e+00 + 4.7876000e+03 -1.9466795e+00 + 4.7880000e+03 -1.6566795e+00 + 4.7884000e+03 -8.6679487e-02 + 4.7888000e+03 -7.6679487e-02 + 4.7892000e+03 -1.4667949e-01 + 4.7896000e+03 -1.1667949e-01 + 4.7900000e+03 -4.6679487e-02 + 4.7904000e+03 1.3332051e-01 + 4.7908000e+03 1.5332051e-01 + 4.7912000e+03 1.9332051e-01 + 4.7916000e+03 2.3332051e-01 + 4.7920000e+03 8.3320513e-02 + 4.7924000e+03 5.3320513e-02 + 4.7928000e+03 5.3320513e-02 + 4.7932000e+03 5.3320513e-02 + 4.7936000e+03 5.3320513e-02 + 4.7940000e+03 5.3320513e-02 + 4.7944000e+03 -3.6667949e-01 + 4.7948000e+03 -1.1266795e+00 + 4.7952000e+03 -6.3667949e-01 + 4.7956000e+03 -3.6667949e-01 + 4.7960000e+03 -8.6679487e-02 + 4.7964000e+03 3.6332051e-01 + 4.7968000e+03 8.3332051e-01 + 4.7972000e+03 1.1733205e+00 + 4.7976000e+03 1.2433205e+00 + 4.7980000e+03 1.4233205e+00 + 4.7984000e+03 1.3733205e+00 + 4.7988000e+03 9.5332051e-01 + 4.7992000e+03 4.0332051e-01 + 4.7996000e+03 1.5332051e-01 + 4.8000000e+03 1.8332051e-01 + 4.8004000e+03 5.0332051e-01 + 4.8008000e+03 1.0133205e+00 + 4.8012000e+03 1.1133205e+00 + 4.8016000e+03 1.1433205e+00 + 4.8020000e+03 2.9033205e+00 + 4.8024000e+03 2.3533205e+00 + 4.8028000e+03 2.1433205e+00 + 4.8032000e+03 -5.9667949e-01 + 4.8036000e+03 -8.1667949e-01 + 4.8040000e+03 -1.9166795e+00 + 4.8044000e+03 -2.3866795e+00 + 4.8048000e+03 -2.3966795e+00 + 4.8052000e+03 -2.3866795e+00 + 4.8056000e+03 -2.3866795e+00 + 4.8060000e+03 -2.3866795e+00 + 4.8064000e+03 -2.3866795e+00 + 4.8068000e+03 -2.3866795e+00 + 4.8072000e+03 -2.2666795e+00 + 4.8076000e+03 -2.0266795e+00 + 4.8080000e+03 -1.9466795e+00 + 4.8084000e+03 -1.8366795e+00 + 4.8088000e+03 -1.1966795e+00 + 4.8092000e+03 -1.0566795e+00 + 4.8096000e+03 -4.9667949e-01 + 4.8100000e+03 5.3320513e-02 + 4.8104000e+03 6.7332051e-01 + 4.8108000e+03 1.5133205e+00 + 4.8112000e+03 1.9133205e+00 + 4.8116000e+03 2.5133205e+00 + 4.8120000e+03 4.0033205e+00 + 4.8124000e+03 3.4233205e+00 + 4.8128000e+03 2.6933205e+00 + 4.8132000e+03 2.5533205e+00 + 4.8136000e+03 2.5533205e+00 + 4.8140000e+03 2.5533205e+00 + 4.8144000e+03 2.5533205e+00 + 4.8148000e+03 2.5533205e+00 + 4.8152000e+03 2.5533205e+00 + 4.8156000e+03 2.5533205e+00 + 4.8160000e+03 2.5533205e+00 + 4.8164000e+03 2.5533205e+00 + 4.8168000e+03 2.5533205e+00 + 4.8172000e+03 2.0033205e+00 + 4.8176000e+03 4.9332051e-01 + 4.8180000e+03 2.3320513e-02 + 4.8184000e+03 -6.0667949e-01 + 4.8188000e+03 -5.3667949e-01 + 4.8192000e+03 -5.1667949e-01 + 4.8196000e+03 1.1533205e+00 + 4.8200000e+03 1.2733205e+00 + 4.8204000e+03 1.4033205e+00 + 4.8208000e+03 1.6733205e+00 + 4.8212000e+03 1.7433205e+00 + 4.8216000e+03 1.3733205e+00 + 4.8220000e+03 8.8332051e-01 + 4.8224000e+03 5.4332051e-01 + 4.8228000e+03 4.3332051e-01 + 4.8232000e+03 3.9332051e-01 + 4.8236000e+03 3.8332051e-01 + 4.8240000e+03 3.2332051e-01 + 4.8244000e+03 -4.7667949e-01 + 4.8248000e+03 -8.3667949e-01 + 4.8252000e+03 -2.1466795e+00 + 4.8256000e+03 -2.7966795e+00 + 4.8260000e+03 -2.8866795e+00 + 4.8264000e+03 -2.8866795e+00 + 4.8268000e+03 -2.8466795e+00 + 4.8272000e+03 -2.9466795e+00 + 4.8276000e+03 -2.7766795e+00 + 4.8280000e+03 -2.0366795e+00 + 4.8284000e+03 -1.9266795e+00 + 4.8288000e+03 -1.9266795e+00 + 4.8292000e+03 -1.9266795e+00 + 4.8296000e+03 -1.9266795e+00 + 4.8300000e+03 1.3833205e+00 + 4.8304000e+03 1.4333205e+00 + 4.8308000e+03 1.3933205e+00 + 4.8312000e+03 1.5533205e+00 + 4.8316000e+03 1.5233205e+00 + 4.8320000e+03 1.0933205e+00 + 4.8324000e+03 9.1332051e-01 + 4.8328000e+03 8.3332051e-01 + 4.8332000e+03 7.5332051e-01 + 4.8336000e+03 2.6332051e-01 + 4.8340000e+03 -9.6679487e-02 + 4.8344000e+03 -1.0667949e-01 + 4.8348000e+03 -6.6667949e-01 + 4.8352000e+03 -1.6766795e+00 + 4.8356000e+03 -1.6766795e+00 + 4.8360000e+03 -1.7666795e+00 + 4.8364000e+03 -1.8066795e+00 + 4.8368000e+03 -1.8066795e+00 + 4.8372000e+03 -2.7566795e+00 + 4.8376000e+03 -2.3666795e+00 + 4.8380000e+03 -1.9466795e+00 + 4.8384000e+03 -1.7266795e+00 + 4.8388000e+03 -4.8667949e-01 + 4.8392000e+03 -6.9667949e-01 + 4.8396000e+03 -5.2667949e-01 + 4.8400000e+03 -1.4667949e-01 + 4.8404000e+03 5.2332051e-01 + 4.8408000e+03 1.1333205e+00 + 4.8412000e+03 2.3033205e+00 + 4.8416000e+03 2.6033205e+00 + 4.8420000e+03 2.3233205e+00 + 4.8424000e+03 1.7233205e+00 + 4.8428000e+03 1.1833205e+00 + 4.8432000e+03 1.1233205e+00 + 4.8436000e+03 1.1233205e+00 + 4.8440000e+03 1.1233205e+00 + 4.8444000e+03 -1.0766795e+00 + 4.8448000e+03 -1.8866795e+00 + 4.8452000e+03 -1.6366795e+00 + 4.8456000e+03 -1.3266795e+00 + 4.8460000e+03 -9.7667949e-01 + 4.8464000e+03 -7.7667949e-01 + 4.8468000e+03 -7.6667949e-01 + 4.8472000e+03 -3.8667949e-01 + 4.8476000e+03 2.6332051e-01 + 4.8480000e+03 8.6332051e-01 + 4.8484000e+03 1.2933205e+00 + 4.8488000e+03 1.3633205e+00 + 4.8492000e+03 1.4433205e+00 + 4.8496000e+03 1.2533205e+00 + 4.8500000e+03 7.5332051e-01 + 4.8504000e+03 -7.6679487e-02 + 4.8508000e+03 -5.5667949e-01 + 4.8512000e+03 -7.3667949e-01 + 4.8516000e+03 -7.8667949e-01 + 4.8520000e+03 -9.2667949e-01 + 4.8524000e+03 -1.2466795e+00 + 4.8528000e+03 -1.7666795e+00 + 4.8532000e+03 -2.0466795e+00 + 4.8536000e+03 -2.1966795e+00 + 4.8540000e+03 -2.1266795e+00 + 4.8544000e+03 -1.9166795e+00 + 4.8548000e+03 -1.8466795e+00 + 4.8552000e+03 -1.6666795e+00 + 4.8556000e+03 -1.5366795e+00 + 4.8560000e+03 -1.4266795e+00 + 4.8564000e+03 -1.1466795e+00 + 4.8568000e+03 -5.8667949e-01 + 4.8572000e+03 -5.6679487e-02 + 4.8576000e+03 1.9332051e-01 + 4.8580000e+03 1.8332051e-01 + 4.8584000e+03 1.7332051e-01 + 4.8588000e+03 1.3332051e-01 + 4.8592000e+03 -5.3667949e-01 + 4.8596000e+03 -4.5667949e-01 + 4.8600000e+03 -4.6679487e-02 + 4.8604000e+03 4.3320513e-02 + 4.8608000e+03 4.3320513e-02 + 4.8612000e+03 -3.5667949e-01 + 4.8616000e+03 -5.1667949e-01 + 4.8620000e+03 -5.3667949e-01 + 4.8624000e+03 1.5332051e-01 + 4.8628000e+03 2.4332051e-01 + 4.8632000e+03 2.0332051e-01 + 4.8636000e+03 -2.6679487e-02 + 4.8640000e+03 -2.8667949e-01 + 4.8644000e+03 -2.4667949e-01 + 4.8648000e+03 -3.6679487e-02 + 4.8652000e+03 1.9332051e-01 + 4.8656000e+03 3.3332051e-01 + 4.8660000e+03 7.4332051e-01 + 4.8664000e+03 7.7332051e-01 + 4.8668000e+03 7.6332051e-01 + 4.8672000e+03 6.4332051e-01 + 4.8676000e+03 8.9332051e-01 + 4.8680000e+03 1.0433205e+00 + 4.8684000e+03 9.5332051e-01 + 4.8688000e+03 3.3332051e-01 + 4.8692000e+03 -3.1667949e-01 + 4.8696000e+03 -4.8667949e-01 + 4.8700000e+03 -6.7667949e-01 + 4.8704000e+03 -8.2667949e-01 + 4.8708000e+03 -8.1667949e-01 + 4.8712000e+03 -8.0667949e-01 + 4.8716000e+03 -7.6667949e-01 + 4.8720000e+03 -8.9667949e-01 + 4.8724000e+03 -8.2667949e-01 + 4.8728000e+03 -7.7667949e-01 + 4.8732000e+03 -8.0667949e-01 + 4.8736000e+03 -1.1966795e+00 + 4.8740000e+03 -1.6466795e+00 + 4.8744000e+03 -1.9866795e+00 + 4.8748000e+03 -2.3366795e+00 + 4.8752000e+03 -2.6966795e+00 + 4.8756000e+03 -2.7066795e+00 + 4.8760000e+03 -2.4066795e+00 + 4.8764000e+03 -1.9166795e+00 + 4.8768000e+03 -1.5866795e+00 + 4.8772000e+03 -8.0667949e-01 + 4.8776000e+03 -9.6679487e-02 + 4.8780000e+03 1.8332051e-01 + 4.8784000e+03 5.1332051e-01 + 4.8788000e+03 7.2332051e-01 + 4.8792000e+03 6.7332051e-01 + 4.8796000e+03 2.8332051e-01 + 4.8800000e+03 -6.6794872e-03 + 4.8804000e+03 -2.1667949e-01 + 4.8808000e+03 -2.4667949e-01 + 4.8812000e+03 -3.3667949e-01 + 4.8816000e+03 -4.2667949e-01 + 4.8820000e+03 -1.6679487e-02 + 4.8824000e+03 4.1332051e-01 + 4.8828000e+03 5.5332051e-01 + 4.8832000e+03 5.3332051e-01 + 4.8836000e+03 6.4332051e-01 + 4.8840000e+03 1.0333205e+00 + 4.8844000e+03 1.2633205e+00 + 4.8848000e+03 1.2633205e+00 + 4.8852000e+03 1.1933205e+00 + 4.8856000e+03 1.0233205e+00 + 4.8860000e+03 7.4332051e-01 + 4.8864000e+03 2.3332051e-01 + 4.8868000e+03 -6.6679487e-02 + 4.8872000e+03 -2.6667949e-01 + 4.8876000e+03 -5.1667949e-01 + 4.8880000e+03 -6.3667949e-01 + 4.8884000e+03 -8.0667949e-01 + 4.8888000e+03 -1.0566795e+00 + 4.8892000e+03 -6.6667949e-01 + 4.8896000e+03 -5.9667949e-01 + 4.8900000e+03 -1.0066795e+00 + 4.8904000e+03 -1.2866795e+00 + 4.8908000e+03 -2.0266795e+00 + 4.8912000e+03 -1.7666795e+00 + 4.8916000e+03 -1.5066795e+00 + 4.8920000e+03 -1.4866795e+00 + 4.8924000e+03 -1.4866795e+00 + 4.8928000e+03 -1.3166795e+00 + 4.8932000e+03 8.7332051e-01 + 4.8936000e+03 8.0332051e-01 + 4.8940000e+03 7.8332051e-01 + 4.8944000e+03 4.6332051e-01 + 4.8948000e+03 2.8332051e-01 + 4.8952000e+03 2.7332051e-01 + 4.8956000e+03 2.7332051e-01 + 4.8960000e+03 -1.1966795e+00 + 4.8964000e+03 -1.7766795e+00 + 4.8968000e+03 -1.8966795e+00 + 4.8972000e+03 -1.9666795e+00 + 4.8976000e+03 -2.2166795e+00 + 4.8980000e+03 -2.4566795e+00 + 4.8984000e+03 -2.5266795e+00 + 4.8988000e+03 -2.3366795e+00 + 4.8992000e+03 -1.4566795e+00 + 4.8996000e+03 -9.7667949e-01 + 4.9000000e+03 -9.2667949e-01 + 4.9004000e+03 -9.2667949e-01 + 4.9008000e+03 -9.1667949e-01 + 4.9012000e+03 -2.8667949e-01 + 4.9016000e+03 2.0533205e+00 + 4.9020000e+03 2.1933205e+00 + 4.9024000e+03 2.1333205e+00 + 4.9028000e+03 2.1133205e+00 + 4.9032000e+03 1.2533205e+00 + 4.9036000e+03 9.0332051e-01 + 4.9040000e+03 8.8332051e-01 + 4.9044000e+03 -7.7667949e-01 + 4.9048000e+03 -1.9466795e+00 + 4.9052000e+03 -2.0666795e+00 + 4.9056000e+03 -2.0666795e+00 + 4.9060000e+03 -2.0966795e+00 + 4.9064000e+03 -2.1566795e+00 + 4.9068000e+03 -2.1666795e+00 + 4.9072000e+03 -2.1666795e+00 + 4.9076000e+03 -1.9066795e+00 + 4.9080000e+03 -1.2266795e+00 + 4.9084000e+03 -1.1966795e+00 + 4.9088000e+03 -1.1966795e+00 + 4.9092000e+03 -1.1966795e+00 + 4.9096000e+03 2.1332051e-01 + 4.9100000e+03 1.2233205e+00 + 4.9104000e+03 1.2233205e+00 + 4.9108000e+03 1.3033205e+00 + 4.9112000e+03 1.5233205e+00 + 4.9116000e+03 2.0333205e+00 + 4.9120000e+03 1.6933205e+00 + 4.9124000e+03 1.2733205e+00 + 4.9128000e+03 3.0332051e-01 + 4.9132000e+03 2.2332051e-01 + 4.9136000e+03 2.1332051e-01 + 4.9140000e+03 5.3320513e-02 + 4.9144000e+03 -2.0266795e+00 + 4.9148000e+03 -2.0466795e+00 + 4.9152000e+03 -1.9666795e+00 + 4.9156000e+03 -1.9866795e+00 + 4.9160000e+03 -2.2766795e+00 + 4.9164000e+03 -2.3766795e+00 + 4.9168000e+03 -2.3866795e+00 + 4.9172000e+03 -2.9166795e+00 + 4.9176000e+03 -2.9066795e+00 + 4.9180000e+03 -2.8166795e+00 + 4.9184000e+03 -2.6366795e+00 + 4.9188000e+03 -5.8667949e-01 + 4.9192000e+03 -4.4667949e-01 + 4.9196000e+03 1.5433205e+00 + 4.9200000e+03 3.5733205e+00 + 4.9204000e+03 2.9733205e+00 + 4.9208000e+03 2.3233205e+00 + 4.9212000e+03 1.6433205e+00 + 4.9216000e+03 1.6133205e+00 + 4.9220000e+03 1.2933205e+00 + 4.9224000e+03 -2.1667949e-01 + 4.9228000e+03 -5.7667949e-01 + 4.9232000e+03 -6.3667949e-01 + 4.9236000e+03 -6.3667949e-01 + 4.9240000e+03 -1.1666795e+00 + 4.9244000e+03 -1.8966795e+00 + 4.9248000e+03 -2.0466795e+00 + 4.9252000e+03 -2.0466795e+00 + 4.9256000e+03 -2.0466795e+00 + 4.9260000e+03 -2.1266795e+00 + 4.9264000e+03 -2.2666795e+00 + 4.9268000e+03 -2.1166795e+00 + 4.9272000e+03 -1.5766795e+00 + 4.9276000e+03 -1.0166795e+00 + 4.9280000e+03 1.5332051e-01 + 4.9284000e+03 2.7332051e-01 + 4.9288000e+03 1.1633205e+00 + 4.9292000e+03 2.0533205e+00 + 4.9296000e+03 1.5433205e+00 + 4.9300000e+03 9.9332051e-01 + 4.9304000e+03 6.3332051e-01 + 4.9308000e+03 5.0332051e-01 + 4.9312000e+03 6.7332051e-01 + 4.9316000e+03 1.2133205e+00 + 4.9320000e+03 1.3433205e+00 + 4.9324000e+03 1.3433205e+00 + 4.9328000e+03 1.0433205e+00 + 4.9332000e+03 9.1332051e-01 + 4.9336000e+03 1.0333205e+00 + 4.9340000e+03 1.2633205e+00 + 4.9344000e+03 1.3933205e+00 + 4.9348000e+03 1.4033205e+00 + 4.9352000e+03 1.4133205e+00 + 4.9356000e+03 1.4033205e+00 + 4.9360000e+03 1.4033205e+00 + 4.9364000e+03 1.4133205e+00 + 4.9368000e+03 1.4133205e+00 + 4.9372000e+03 1.4033205e+00 + 4.9376000e+03 1.4133205e+00 + 4.9380000e+03 1.4033205e+00 + 4.9384000e+03 1.4033205e+00 + 4.9388000e+03 1.4033205e+00 + 4.9392000e+03 1.4033205e+00 + 4.9396000e+03 1.4033205e+00 + 4.9400000e+03 1.2733205e+00 + 4.9404000e+03 -1.8266795e+00 + 4.9408000e+03 -1.0966795e+00 + 4.9412000e+03 -4.4667949e-01 + 4.9416000e+03 1.2332051e-01 + 4.9420000e+03 1.0733205e+00 + 4.9424000e+03 1.2033205e+00 + 4.9428000e+03 1.2533205e+00 + 4.9432000e+03 1.4333205e+00 + 4.9436000e+03 1.6433205e+00 + 4.9440000e+03 1.4933205e+00 + 4.9444000e+03 1.2633205e+00 + 4.9448000e+03 7.9332051e-01 + 4.9452000e+03 5.5332051e-01 + 4.9456000e+03 5.1332051e-01 + 4.9460000e+03 4.5332051e-01 + 4.9464000e+03 8.3320513e-02 + 4.9468000e+03 -2.9667949e-01 + 4.9472000e+03 -1.0266795e+00 + 4.9476000e+03 -1.1966795e+00 + 4.9480000e+03 -1.4466795e+00 + 4.9484000e+03 -1.3966795e+00 + 4.9488000e+03 -1.0466795e+00 + 4.9492000e+03 -8.3667949e-01 + 4.9496000e+03 -8.2667949e-01 + 4.9500000e+03 -2.2667949e-01 + 4.9504000e+03 -3.2667949e-01 + 4.9508000e+03 -7.2667949e-01 + 4.9512000e+03 -8.6667949e-01 + 4.9516000e+03 -7.3667949e-01 + 4.9520000e+03 -8.9667949e-01 + 4.9524000e+03 -4.7667949e-01 + 4.9528000e+03 2.0332051e-01 + 4.9532000e+03 8.8332051e-01 + 4.9536000e+03 1.5733205e+00 + 4.9540000e+03 1.8033205e+00 + 4.9544000e+03 1.7833205e+00 + 4.9548000e+03 1.7133205e+00 + 4.9552000e+03 1.6933205e+00 + 4.9556000e+03 1.6933205e+00 + 4.9560000e+03 7.7332051e-01 + 4.9564000e+03 -8.6667949e-01 + 4.9568000e+03 -1.0066795e+00 + 4.9572000e+03 -7.5667949e-01 + 4.9576000e+03 -6.6667949e-01 + 4.9580000e+03 -6.0667949e-01 + 4.9584000e+03 -3.7667949e-01 + 4.9588000e+03 -5.3667949e-01 + 4.9592000e+03 -9.5667949e-01 + 4.9596000e+03 -1.3766795e+00 + 4.9600000e+03 -1.8766795e+00 + 4.9604000e+03 -2.0966795e+00 + 4.9608000e+03 -2.1366795e+00 + 4.9612000e+03 -2.4866795e+00 + 4.9616000e+03 -2.5166795e+00 + 4.9620000e+03 -2.3766795e+00 + 4.9624000e+03 -2.3866795e+00 + 4.9628000e+03 -2.3366795e+00 + 4.9632000e+03 -1.9266795e+00 + 4.9636000e+03 -1.1966795e+00 + 4.9640000e+03 -4.0667949e-01 + 4.9644000e+03 -2.5667949e-01 + 4.9648000e+03 1.2233205e+00 + 4.9652000e+03 1.5533205e+00 + 4.9656000e+03 1.6033205e+00 + 4.9660000e+03 1.8633205e+00 + 4.9664000e+03 2.2533205e+00 + 4.9668000e+03 2.5533205e+00 + 4.9672000e+03 2.6333205e+00 + 4.9676000e+03 2.8233205e+00 + 4.9680000e+03 2.6933205e+00 + 4.9684000e+03 2.8733205e+00 + 4.9688000e+03 2.0133205e+00 + 4.9692000e+03 3.9332051e-01 + 4.9696000e+03 -9.8667949e-01 + 4.9700000e+03 -1.3166795e+00 + 4.9704000e+03 -1.3166795e+00 + 4.9708000e+03 -1.3166795e+00 + 4.9712000e+03 -1.3166795e+00 + 4.9716000e+03 -1.3166795e+00 + 4.9720000e+03 -1.3166795e+00 + 4.9724000e+03 -2.5266795e+00 + 4.9728000e+03 -3.0166795e+00 + 4.9732000e+03 -2.5866795e+00 + 4.9736000e+03 -2.1266795e+00 + 4.9740000e+03 -2.0766795e+00 + 4.9744000e+03 -1.9866795e+00 + 4.9748000e+03 -7.6679487e-02 + 4.9752000e+03 1.5233205e+00 + 4.9756000e+03 2.1333205e+00 + 4.9760000e+03 2.1633205e+00 + 4.9764000e+03 3.0333205e+00 + 4.9768000e+03 3.9633205e+00 + 4.9772000e+03 3.7833205e+00 + 4.9776000e+03 3.5533205e+00 + 4.9780000e+03 2.9933205e+00 + 4.9784000e+03 2.8333205e+00 + 4.9788000e+03 2.8233205e+00 + 4.9792000e+03 2.8233205e+00 + 4.9796000e+03 2.8233205e+00 + 4.9800000e+03 2.8233205e+00 + 4.9804000e+03 2.8233205e+00 + 4.9808000e+03 2.8233205e+00 + 4.9812000e+03 2.8233205e+00 + 4.9816000e+03 2.8233205e+00 + 4.9820000e+03 2.8233205e+00 + 4.9824000e+03 2.8233205e+00 + 4.9828000e+03 -1.6679487e-02 + 4.9832000e+03 -1.8666795e+00 + 4.9836000e+03 -1.6966795e+00 + 4.9840000e+03 -1.6766795e+00 + 4.9844000e+03 -1.6666795e+00 + 4.9848000e+03 1.0033205e+00 + 4.9852000e+03 2.1333205e+00 + 4.9856000e+03 2.4033205e+00 + 4.9860000e+03 2.5533205e+00 + 4.9864000e+03 2.6433205e+00 + 4.9868000e+03 2.6633205e+00 + 4.9872000e+03 2.6533205e+00 + 4.9876000e+03 2.4933205e+00 + 4.9880000e+03 1.8833205e+00 + 4.9884000e+03 1.5933205e+00 + 4.9888000e+03 1.5833205e+00 + 4.9892000e+03 1.5833205e+00 + 4.9896000e+03 1.5833205e+00 + 4.9900000e+03 1.5833205e+00 + 4.9904000e+03 1.5833205e+00 + 4.9908000e+03 1.5833205e+00 + 4.9912000e+03 1.5833205e+00 + 4.9916000e+03 1.5833205e+00 + 4.9920000e+03 1.5833205e+00 + 4.9924000e+03 -1.0966795e+00 + 4.9928000e+03 -1.8966795e+00 + 4.9932000e+03 -1.8166795e+00 + 4.9936000e+03 -1.8066795e+00 + 4.9940000e+03 -1.8066795e+00 + 4.9944000e+03 2.6533205e+00 + 4.9948000e+03 4.2633205e+00 + 4.9952000e+03 4.7733205e+00 + 4.9956000e+03 4.3033205e+00 + 4.9960000e+03 3.1233205e+00 + 4.9964000e+03 2.1833205e+00 + 4.9968000e+03 2.0933205e+00 + 4.9972000e+03 1.7233205e+00 + 4.9976000e+03 -3.4667949e-01 + 4.9980000e+03 -4.7667949e-01 + 4.9984000e+03 -1.2766795e+00 + 4.9988000e+03 -1.7466795e+00 + 4.9992000e+03 -1.9966795e+00 + 4.9996000e+03 -2.0066795e+00 + 5.0000000e+03 -2.0066795e+00 + 5.0004000e+03 -2.0866795e+00 + 5.0008000e+03 -2.1066795e+00 + 5.0012000e+03 -2.1066795e+00 + 5.0016000e+03 -2.3666795e+00 + 5.0020000e+03 -2.2166795e+00 + 5.0024000e+03 -1.7466795e+00 + 5.0028000e+03 -1.6666795e+00 + 5.0032000e+03 -1.2966795e+00 + 5.0036000e+03 -1.2766795e+00 + 5.0040000e+03 -1.2766795e+00 + 5.0044000e+03 -1.2766795e+00 + 5.0048000e+03 -1.2766795e+00 + 5.0052000e+03 -1.2166795e+00 + 5.0056000e+03 2.6133205e+00 + 5.0060000e+03 2.6833205e+00 + 5.0064000e+03 1.8933205e+00 + 5.0068000e+03 1.2833205e+00 + 5.0072000e+03 1.2533205e+00 + 5.0076000e+03 1.2533205e+00 + 5.0080000e+03 1.2533205e+00 + 5.0084000e+03 1.2433205e+00 + 5.0088000e+03 1.1633205e+00 + 5.0092000e+03 -2.5766795e+00 + 5.0096000e+03 -2.7966795e+00 + 5.0100000e+03 -2.6366795e+00 + 5.0104000e+03 -2.3666795e+00 + 5.0108000e+03 -1.9566795e+00 + 5.0112000e+03 -1.4466795e+00 + 5.0116000e+03 -1.3766795e+00 + 5.0120000e+03 -1.3766795e+00 + 5.0124000e+03 -1.3766795e+00 + 5.0128000e+03 -1.3766795e+00 + 5.0132000e+03 -1.3766795e+00 + 5.0136000e+03 2.0333205e+00 + 5.0140000e+03 3.0133205e+00 + 5.0144000e+03 3.1033205e+00 + 5.0148000e+03 2.5333205e+00 + 5.0152000e+03 2.3233205e+00 + 5.0156000e+03 2.0833205e+00 + 5.0160000e+03 1.8033205e+00 + 5.0164000e+03 9.1332051e-01 + 5.0168000e+03 3.6332051e-01 + 5.0172000e+03 3.0332051e-01 + 5.0176000e+03 -1.1266795e+00 + 5.0180000e+03 -1.2566795e+00 + 5.0184000e+03 -1.2566795e+00 + 5.0188000e+03 -1.2466795e+00 + 5.0192000e+03 -2.5766795e+00 + 5.0196000e+03 -2.7766795e+00 + 5.0200000e+03 -2.5866795e+00 + 5.0204000e+03 -2.3566795e+00 + 5.0208000e+03 -1.8866795e+00 + 5.0212000e+03 -1.6166795e+00 + 5.0216000e+03 -8.4667949e-01 + 5.0220000e+03 -7.9667949e-01 + 5.0224000e+03 -7.9667949e-01 + 5.0228000e+03 -4.4667949e-01 + 5.0232000e+03 -1.6679487e-02 + 5.0236000e+03 3.3332051e-01 + 5.0240000e+03 2.0332051e-01 + 5.0244000e+03 -4.6679487e-02 + 5.0248000e+03 -2.5667949e-01 + 5.0252000e+03 -9.1667949e-01 + 5.0256000e+03 -1.4666795e+00 + 5.0260000e+03 -1.7466795e+00 + 5.0264000e+03 -1.6966795e+00 + 5.0268000e+03 -1.1566795e+00 + 5.0272000e+03 -9.6667949e-01 + 5.0276000e+03 -6.4667949e-01 + 5.0280000e+03 -4.9667949e-01 + 5.0284000e+03 -4.2667949e-01 + 5.0288000e+03 -2.5667949e-01 + 5.0292000e+03 -1.1667949e-01 + 5.0296000e+03 3.6332051e-01 + 5.0300000e+03 6.2332051e-01 + 5.0304000e+03 5.5332051e-01 + 5.0308000e+03 6.8332051e-01 + 5.0312000e+03 8.2332051e-01 + 5.0316000e+03 7.6332051e-01 + 5.0320000e+03 6.1332051e-01 + 5.0324000e+03 6.0332051e-01 + 5.0328000e+03 6.7332051e-01 + 5.0332000e+03 7.0332051e-01 + 5.0336000e+03 7.8332051e-01 + 5.0340000e+03 8.4332051e-01 + 5.0344000e+03 8.4332051e-01 + 5.0348000e+03 5.0332051e-01 + 5.0352000e+03 1.8332051e-01 + 5.0356000e+03 -1.9667949e-01 + 5.0360000e+03 -4.4667949e-01 + 5.0364000e+03 -6.5667949e-01 + 5.0368000e+03 -7.4667949e-01 + 5.0372000e+03 -7.8667949e-01 + 5.0376000e+03 -8.3667949e-01 + 5.0380000e+03 -1.3566795e+00 + 5.0384000e+03 -1.1266795e+00 + 5.0388000e+03 -7.3667949e-01 + 5.0392000e+03 -6.1667949e-01 + 5.0396000e+03 -6.0667949e-01 + 5.0400000e+03 -5.8667949e-01 + 5.0404000e+03 -3.6679487e-02 + 5.0408000e+03 -1.1466795e+00 + 5.0412000e+03 -2.0366795e+00 + 5.0416000e+03 -2.5466795e+00 + 5.0420000e+03 -2.7766795e+00 + 5.0424000e+03 -3.0666795e+00 + 5.0428000e+03 -3.2866795e+00 + 5.0432000e+03 -3.2866795e+00 + 5.0436000e+03 -3.1466795e+00 + 5.0440000e+03 -2.5666795e+00 + 5.0444000e+03 -1.7266795e+00 + 5.0448000e+03 -1.2466795e+00 + 5.0452000e+03 -1.2166795e+00 + 5.0456000e+03 -1.2166795e+00 + 5.0460000e+03 -1.2166795e+00 + 5.0464000e+03 2.8733205e+00 + 5.0468000e+03 3.1233205e+00 + 5.0472000e+03 3.1733205e+00 + 5.0476000e+03 2.9633205e+00 + 5.0480000e+03 2.1033205e+00 + 5.0484000e+03 1.5033205e+00 + 5.0488000e+03 1.4633205e+00 + 5.0492000e+03 1.4633205e+00 + 5.0496000e+03 1.4633205e+00 + 5.0500000e+03 1.4633205e+00 + 5.0504000e+03 1.3533205e+00 + 5.0508000e+03 -1.6266795e+00 + 5.0512000e+03 -1.6966795e+00 + 5.0516000e+03 -1.6266795e+00 + 5.0520000e+03 -1.3366795e+00 + 5.0524000e+03 -9.4667949e-01 + 5.0528000e+03 -5.3667949e-01 + 5.0532000e+03 -5.0667949e-01 + 5.0536000e+03 -5.0667949e-01 + 5.0540000e+03 -5.0667949e-01 + 5.0544000e+03 -5.0667949e-01 + 5.0548000e+03 -5.0667949e-01 + 5.0552000e+03 -5.0667949e-01 + 5.0556000e+03 1.0133205e+00 + 5.0560000e+03 9.7332051e-01 + 5.0564000e+03 5.2332051e-01 + 5.0568000e+03 4.3320513e-02 + 5.0572000e+03 1.3320513e-02 + 5.0576000e+03 3.3205128e-03 + 5.0580000e+03 3.3205128e-03 + 5.0584000e+03 3.3205128e-03 + 5.0588000e+03 1.3320513e-02 + 5.0592000e+03 3.3205128e-03 + 5.0596000e+03 3.3205128e-03 + 5.0600000e+03 3.3205128e-03 + 5.0604000e+03 3.3205128e-03 + 5.0608000e+03 1.3320513e-02 + 5.0612000e+03 -1.6679487e-02 + 5.0616000e+03 -1.6566795e+00 + 5.0620000e+03 -1.8266795e+00 + 5.0624000e+03 -9.6667949e-01 + 5.0628000e+03 -2.3667949e-01 + 5.0632000e+03 7.9332051e-01 + 5.0636000e+03 6.0332051e-01 + 5.0640000e+03 6.5332051e-01 + 5.0644000e+03 8.8332051e-01 + 5.0648000e+03 1.0233205e+00 + 5.0652000e+03 7.7332051e-01 + 5.0656000e+03 4.8332051e-01 + 5.0660000e+03 4.0332051e-01 + 5.0664000e+03 4.0332051e-01 + 5.0668000e+03 4.0332051e-01 + 5.0672000e+03 4.0332051e-01 + 5.0676000e+03 4.0332051e-01 + 5.0680000e+03 3.4332051e-01 + 5.0684000e+03 -1.6766795e+00 + 5.0688000e+03 -1.5766795e+00 + 5.0692000e+03 -9.6667949e-01 + 5.0696000e+03 -4.4667949e-01 + 5.0700000e+03 -3.7667949e-01 + 5.0704000e+03 1.9332051e-01 + 5.0708000e+03 2.3633205e+00 + 5.0712000e+03 2.4233205e+00 + 5.0716000e+03 2.2233205e+00 + 5.0720000e+03 2.0733205e+00 + 5.0724000e+03 2.1233205e+00 + 5.0728000e+03 2.0133205e+00 + 5.0732000e+03 1.7833205e+00 + 5.0736000e+03 1.4433205e+00 + 5.0740000e+03 8.5332051e-01 + 5.0744000e+03 7.3320513e-02 + 5.0748000e+03 -1.9667949e-01 + 5.0752000e+03 -2.0667949e-01 + 5.0756000e+03 -1.9667949e-01 + 5.0760000e+03 -3.0666795e+00 + 5.0764000e+03 -4.2766795e+00 + 5.0768000e+03 -3.8166795e+00 + 5.0772000e+03 -3.4666795e+00 + 5.0776000e+03 -3.3566795e+00 + 5.0780000e+03 -2.9666795e+00 + 5.0784000e+03 -2.7566795e+00 + 5.0788000e+03 -2.7466795e+00 + 5.0792000e+03 -2.7466795e+00 + 5.0796000e+03 -2.7466795e+00 + 5.0800000e+03 -2.7366795e+00 + 5.0804000e+03 1.2332051e-01 + 5.0808000e+03 2.2433205e+00 + 5.0812000e+03 2.4133205e+00 + 5.0816000e+03 2.7433205e+00 + 5.0820000e+03 2.4833205e+00 + 5.0824000e+03 1.6333205e+00 + 5.0828000e+03 1.5133205e+00 + 5.0832000e+03 1.5033205e+00 + 5.0836000e+03 1.5033205e+00 + 5.0840000e+03 1.5033205e+00 + 5.0844000e+03 1.5033205e+00 + 5.0848000e+03 -2.1966795e+00 + 5.0852000e+03 -2.7166795e+00 + 5.0856000e+03 -2.0066795e+00 + 5.0860000e+03 -1.4266795e+00 + 5.0864000e+03 -8.6667949e-01 + 5.0868000e+03 -8.2667949e-01 + 5.0872000e+03 6.0332051e-01 + 5.0876000e+03 1.2133205e+00 + 5.0880000e+03 1.7533205e+00 + 5.0884000e+03 1.8533205e+00 + 5.0888000e+03 1.9533205e+00 + 5.0892000e+03 2.7833205e+00 + 5.0896000e+03 2.9033205e+00 + 5.0900000e+03 2.9333205e+00 + 5.0904000e+03 3.2233205e+00 + 5.0908000e+03 3.5033205e+00 + 5.0912000e+03 3.6733205e+00 + 5.0916000e+03 3.6133205e+00 + 5.0920000e+03 3.0833205e+00 + 5.0924000e+03 2.9733205e+00 + 5.0928000e+03 2.9533205e+00 + 5.0932000e+03 2.9633205e+00 + 5.0936000e+03 2.9633205e+00 + 5.0940000e+03 2.9533205e+00 + 5.0944000e+03 2.9533205e+00 + 5.0948000e+03 -3.7766795e+00 + 5.0952000e+03 -4.3966795e+00 + 5.0956000e+03 -4.1966795e+00 + 5.0960000e+03 -4.0566795e+00 + 5.0964000e+03 -3.6966795e+00 + 5.0968000e+03 -3.1966795e+00 + 5.0972000e+03 -2.4266795e+00 + 5.0976000e+03 -1.9766795e+00 + 5.0980000e+03 -1.9466795e+00 + 5.0984000e+03 -1.9466795e+00 + 5.0988000e+03 -1.4566795e+00 + 5.0992000e+03 1.7333205e+00 + 5.0996000e+03 2.7933205e+00 + 5.1000000e+03 2.3233205e+00 + 5.1004000e+03 1.7133205e+00 + 5.1008000e+03 1.4033205e+00 + 5.1012000e+03 1.3833205e+00 + 5.1016000e+03 1.3833205e+00 + 5.1020000e+03 1.3833205e+00 + 5.1024000e+03 1.3833205e+00 + 5.1028000e+03 1.3733205e+00 + 5.1032000e+03 1.3733205e+00 + 5.1036000e+03 1.3733205e+00 + 5.1040000e+03 1.3733205e+00 + 5.1044000e+03 1.3733205e+00 + 5.1048000e+03 1.3733205e+00 + 5.1052000e+03 1.0133205e+00 + 5.1056000e+03 -1.1366795e+00 + 5.1060000e+03 -6.2667949e-01 + 5.1064000e+03 2.2332051e-01 + 5.1068000e+03 9.2332051e-01 + 5.1072000e+03 1.0033205e+00 + 5.1076000e+03 1.3033205e+00 + 5.1080000e+03 1.9533205e+00 + 5.1084000e+03 1.8933205e+00 + 5.1088000e+03 1.6933205e+00 + 5.1092000e+03 1.2833205e+00 + 5.1096000e+03 1.2433205e+00 + 5.1100000e+03 1.2433205e+00 + 5.1104000e+03 1.2433205e+00 + 5.1108000e+03 1.2433205e+00 + 5.1112000e+03 1.2133205e+00 + 5.1116000e+03 5.3320513e-02 + 5.1120000e+03 1.2332051e-01 + 5.1124000e+03 3.5332051e-01 + 5.1128000e+03 1.8332051e-01 + 5.1132000e+03 1.1332051e-01 + 5.1136000e+03 -7.6679487e-02 + 5.1140000e+03 -2.0667949e-01 + 5.1144000e+03 -2.2667949e-01 + 5.1148000e+03 -2.2667949e-01 + 5.1152000e+03 -2.2667949e-01 + 5.1156000e+03 -2.2667949e-01 + 5.1160000e+03 -2.2667949e-01 + 5.1164000e+03 -2.2667949e-01 + 5.1168000e+03 -1.7066795e+00 + 5.1172000e+03 -2.6266795e+00 + 5.1176000e+03 -2.0566795e+00 + 5.1180000e+03 -1.4866795e+00 + 5.1184000e+03 -1.4266795e+00 + 5.1188000e+03 -1.4266795e+00 + 5.1192000e+03 -1.4266795e+00 + 5.1196000e+03 6.0332051e-01 + 5.1200000e+03 6.1332051e-01 + 5.1204000e+03 2.5332051e-01 + 5.1208000e+03 -4.0667949e-01 + 5.1212000e+03 -3.0667949e-01 + 5.1216000e+03 7.3320513e-02 + 5.1220000e+03 7.5332051e-01 + 5.1224000e+03 1.3833205e+00 + 5.1228000e+03 2.0733205e+00 + 5.1232000e+03 2.5933205e+00 + 5.1236000e+03 2.6433205e+00 + 5.1240000e+03 2.5133205e+00 + 5.1244000e+03 1.9733205e+00 + 5.1248000e+03 1.8533205e+00 + 5.1252000e+03 1.8433205e+00 + 5.1256000e+03 1.8533205e+00 + 5.1260000e+03 -8.5667949e-01 + 5.1264000e+03 -1.4766795e+00 + 5.1268000e+03 -1.1666795e+00 + 5.1272000e+03 -7.1667949e-01 + 5.1276000e+03 -3.7667949e-01 + 5.1280000e+03 -1.6679487e-02 + 5.1284000e+03 -8.6679487e-02 + 5.1288000e+03 -3.9667949e-01 + 5.1292000e+03 -7.8667949e-01 + 5.1296000e+03 -9.9667949e-01 + 5.1300000e+03 -7.6667949e-01 + 5.1304000e+03 -2.0667949e-01 + 5.1308000e+03 -5.6679487e-02 + 5.1312000e+03 -4.6679487e-02 + 5.1316000e+03 -4.6679487e-02 + 5.1320000e+03 1.1332051e-01 + 5.1324000e+03 1.3332051e-01 + 5.1328000e+03 -7.0667949e-01 + 5.1332000e+03 -1.0966795e+00 + 5.1336000e+03 -1.1066795e+00 + 5.1340000e+03 -1.1066795e+00 + 5.1344000e+03 -1.1066795e+00 + 5.1348000e+03 -1.1066795e+00 + 5.1352000e+03 -1.1066795e+00 + 5.1356000e+03 -1.1966795e+00 + 5.1360000e+03 -1.7466795e+00 + 5.1364000e+03 -1.3466795e+00 + 5.1368000e+03 -9.7667949e-01 + 5.1372000e+03 -8.0667949e-01 + 5.1376000e+03 -7.8667949e-01 + 5.1380000e+03 -7.8667949e-01 + 5.1384000e+03 2.2332051e-01 + 5.1388000e+03 6.3332051e-01 + 5.1392000e+03 1.0233205e+00 + 5.1396000e+03 1.2133205e+00 + 5.1400000e+03 8.7332051e-01 + 5.1404000e+03 8.2332051e-01 + 5.1408000e+03 9.6332051e-01 + 5.1412000e+03 8.0332051e-01 + 5.1416000e+03 7.2332051e-01 + 5.1420000e+03 7.8332051e-01 + 5.1424000e+03 7.3332051e-01 + 5.1428000e+03 7.7332051e-01 + 5.1432000e+03 1.0533205e+00 + 5.1436000e+03 1.0233205e+00 + 5.1440000e+03 4.8332051e-01 + 5.1444000e+03 4.0332051e-01 + 5.1448000e+03 3.9332051e-01 + 5.1452000e+03 3.9332051e-01 + 5.1456000e+03 3.9332051e-01 + 5.1460000e+03 -1.2366795e+00 + 5.1464000e+03 -1.8466795e+00 + 5.1468000e+03 -1.7366795e+00 + 5.1472000e+03 -1.1966795e+00 + 5.1476000e+03 -9.8667949e-01 + 5.1480000e+03 -3.4667949e-01 + 5.1484000e+03 -1.1667949e-01 + 5.1488000e+03 1.7332051e-01 + 5.1492000e+03 4.9332051e-01 + 5.1496000e+03 8.2332051e-01 + 5.1500000e+03 1.1433205e+00 + 5.1504000e+03 1.2433205e+00 + 5.1508000e+03 9.0332051e-01 + 5.1512000e+03 4.4332051e-01 + 5.1516000e+03 3.3332051e-01 + 5.1520000e+03 -5.6667949e-01 + 5.1524000e+03 -5.0667949e-01 + 5.1528000e+03 -5.8667949e-01 + 5.1532000e+03 -5.9667949e-01 + 5.1536000e+03 -5.9667949e-01 + 5.1540000e+03 -5.9667949e-01 + 5.1544000e+03 -5.9667949e-01 + 5.1548000e+03 -5.9667949e-01 + 5.1552000e+03 -1.0766795e+00 + 5.1556000e+03 -3.4666795e+00 + 5.1560000e+03 -2.4666795e+00 + 5.1564000e+03 -2.2166795e+00 + 5.1568000e+03 -1.0266795e+00 + 5.1572000e+03 -5.1667949e-01 + 5.1576000e+03 2.8332051e-01 + 5.1580000e+03 1.2433205e+00 + 5.1584000e+03 1.4933205e+00 + 5.1588000e+03 1.5533205e+00 + 5.1592000e+03 3.9333205e+00 + 5.1596000e+03 3.7633205e+00 + 5.1600000e+03 3.3033205e+00 + 5.1604000e+03 3.2333205e+00 + 5.1608000e+03 3.0533205e+00 + 5.1612000e+03 2.6333205e+00 + 5.1616000e+03 2.4333205e+00 + 5.1620000e+03 2.4233205e+00 + 5.1624000e+03 1.2733205e+00 + 5.1628000e+03 -8.5667949e-01 + 5.1632000e+03 -1.5766795e+00 + 5.1636000e+03 -1.8666795e+00 + 5.1640000e+03 -1.8866795e+00 + 5.1644000e+03 -1.8766795e+00 + 5.1648000e+03 -1.8766795e+00 + 5.1652000e+03 -1.8766795e+00 + 5.1656000e+03 -1.8766795e+00 + 5.1660000e+03 -1.8766795e+00 + 5.1664000e+03 -1.9066795e+00 + 5.1668000e+03 -2.2666795e+00 + 5.1672000e+03 -2.0266795e+00 + 5.1676000e+03 -1.5966795e+00 + 5.1680000e+03 -1.4966795e+00 + 5.1684000e+03 -1.1966795e+00 + 5.1688000e+03 -6.0667949e-01 + 5.1692000e+03 4.3332051e-01 + 5.1696000e+03 8.4332051e-01 + 5.1700000e+03 8.6332051e-01 + 5.1704000e+03 1.2033205e+00 + 5.1708000e+03 2.4933205e+00 + 5.1712000e+03 1.9633205e+00 + 5.1716000e+03 1.5033205e+00 + 5.1720000e+03 8.2332051e-01 + 5.1724000e+03 8.3320513e-02 + 5.1728000e+03 5.3320513e-02 + 5.1732000e+03 5.3320513e-02 + 5.1736000e+03 5.3320513e-02 + 5.1740000e+03 5.3320513e-02 + 5.1744000e+03 4.3320513e-02 + 5.1748000e+03 -2.2266795e+00 + 5.1752000e+03 -2.4866795e+00 + 5.1756000e+03 -2.2666795e+00 + 5.1760000e+03 -1.8566795e+00 + 5.1764000e+03 -1.1966795e+00 + 5.1768000e+03 -9.8667949e-01 + 5.1772000e+03 4.2332051e-01 + 5.1776000e+03 1.0833205e+00 + 5.1780000e+03 1.4133205e+00 + 5.1784000e+03 1.7433205e+00 + 5.1788000e+03 2.2433205e+00 + 5.1792000e+03 2.4033205e+00 + 5.1796000e+03 2.6933205e+00 + 5.1800000e+03 2.9133205e+00 + 5.1804000e+03 2.7433205e+00 + 5.1808000e+03 2.6533205e+00 + 5.1812000e+03 2.5333205e+00 + 5.1816000e+03 1.9633205e+00 + 5.1820000e+03 1.3333205e+00 + 5.1824000e+03 -5.6679487e-02 + 5.1828000e+03 -1.8366795e+00 + 5.1832000e+03 -3.0766795e+00 + 5.1836000e+03 -3.6166795e+00 + 5.1840000e+03 -3.6766795e+00 + 5.1844000e+03 -3.8366795e+00 + 5.1848000e+03 -3.5866795e+00 + 5.1852000e+03 -3.4766795e+00 + 5.1856000e+03 -3.1966795e+00 + 5.1860000e+03 -2.8466795e+00 + 5.1864000e+03 -2.5266795e+00 + 5.1868000e+03 -1.7166795e+00 + 5.1872000e+03 -9.1667949e-01 + 5.1876000e+03 -1.3667949e-01 + 5.1880000e+03 2.7332051e-01 + 5.1884000e+03 7.4332051e-01 + 5.1888000e+03 1.8833205e+00 + 5.1892000e+03 2.3933205e+00 + 5.1896000e+03 2.4133205e+00 + 5.1900000e+03 1.9333205e+00 + 5.1904000e+03 1.9533205e+00 + 5.1908000e+03 1.8633205e+00 + 5.1912000e+03 5.1332051e-01 + 5.1916000e+03 -4.0667949e-01 + 5.1920000e+03 -1.3066795e+00 + 5.1924000e+03 -1.1066795e+00 + 5.1928000e+03 -9.5667949e-01 + 5.1932000e+03 -8.5667949e-01 + 5.1936000e+03 -7.7667949e-01 + 5.1940000e+03 -1.0066795e+00 + 5.1944000e+03 -9.9667949e-01 + 5.1948000e+03 -7.5667949e-01 + 5.1952000e+03 -5.1667949e-01 + 5.1956000e+03 -1.9667949e-01 + 5.1960000e+03 2.0332051e-01 + 5.1964000e+03 6.3332051e-01 + 5.1968000e+03 8.4332051e-01 + 5.1972000e+03 7.7332051e-01 + 5.1976000e+03 9.3332051e-01 + 5.1980000e+03 1.2733205e+00 + 5.1984000e+03 1.7133205e+00 + 5.1988000e+03 2.0833205e+00 + 5.1992000e+03 2.7833205e+00 + 5.1996000e+03 2.6933205e+00 + 5.2000000e+03 2.0233205e+00 + 5.2004000e+03 1.7333205e+00 + 5.2008000e+03 5.4332051e-01 + 5.2012000e+03 -1.1966795e+00 + 5.2016000e+03 -1.3466795e+00 + 5.2020000e+03 -1.5766795e+00 + 5.2024000e+03 -3.9666795e+00 + 5.2028000e+03 -3.9566795e+00 + 5.2032000e+03 -3.7866795e+00 + 5.2036000e+03 -3.4166795e+00 + 5.2040000e+03 -3.2766795e+00 + 5.2044000e+03 -3.2666795e+00 + 5.2048000e+03 -3.2666795e+00 + 5.2052000e+03 7.6332051e-01 + 5.2056000e+03 1.4133205e+00 + 5.2060000e+03 8.2332051e-01 + 5.2064000e+03 3.4332051e-01 + 5.2068000e+03 -1.4667949e-01 + 5.2072000e+03 -8.6679487e-02 + 5.2076000e+03 -1.6679487e-02 + 5.2080000e+03 -9.6679487e-02 + 5.2084000e+03 -8.6679487e-02 + 5.2088000e+03 -1.5667949e-01 + 5.2092000e+03 1.2332051e-01 + 5.2096000e+03 4.2332051e-01 + 5.2100000e+03 6.9332051e-01 + 5.2104000e+03 9.5332051e-01 + 5.2108000e+03 1.3033205e+00 + 5.2112000e+03 1.0233205e+00 + 5.2116000e+03 6.4332051e-01 + 5.2120000e+03 5.3320513e-02 + 5.2124000e+03 -2.3667949e-01 + 5.2128000e+03 -9.0667949e-01 + 5.2132000e+03 -9.7667949e-01 + 5.2136000e+03 -1.7666795e+00 + 5.2140000e+03 -2.3366795e+00 + 5.2144000e+03 -2.0166795e+00 + 5.2148000e+03 -1.6066795e+00 + 5.2152000e+03 -1.5766795e+00 + 5.2156000e+03 -1.5766795e+00 + 5.2160000e+03 -1.5766795e+00 + 5.2164000e+03 -1.0966795e+00 + 5.2168000e+03 -8.6679487e-02 + 5.2172000e+03 -5.5667949e-01 + 5.2176000e+03 -6.0667949e-01 + 5.2180000e+03 -3.7667949e-01 + 5.2184000e+03 -1.4667949e-01 + 5.2188000e+03 -2.6679487e-02 + 5.2192000e+03 -3.0667949e-01 + 5.2196000e+03 -3.5667949e-01 + 5.2200000e+03 -1.3667949e-01 + 5.2204000e+03 2.1332051e-01 + 5.2208000e+03 6.1332051e-01 + 5.2212000e+03 9.4332051e-01 + 5.2216000e+03 7.8332051e-01 + 5.2220000e+03 6.4332051e-01 + 5.2224000e+03 3.9332051e-01 + 5.2228000e+03 -1.7667949e-01 + 5.2232000e+03 -2.0667949e-01 + 5.2236000e+03 -2.0667949e-01 + 5.2240000e+03 -2.0667949e-01 + 5.2244000e+03 -2.0667949e-01 + 5.2248000e+03 -1.3466795e+00 + 5.2252000e+03 -1.6766795e+00 + 5.2256000e+03 -1.6966795e+00 + 5.2260000e+03 -1.6566795e+00 + 5.2264000e+03 -1.2566795e+00 + 5.2268000e+03 -6.6667949e-01 + 5.2272000e+03 -5.1667949e-01 + 5.2276000e+03 -5.1667949e-01 + 5.2280000e+03 5.4332051e-01 + 5.2284000e+03 1.2033205e+00 + 5.2288000e+03 1.6933205e+00 + 5.2292000e+03 1.8033205e+00 + 5.2296000e+03 1.5233205e+00 + 5.2300000e+03 1.4933205e+00 + 5.2304000e+03 1.4933205e+00 + 5.2308000e+03 1.4933205e+00 + 5.2312000e+03 1.4933205e+00 + 5.2316000e+03 1.4333205e+00 + 5.2320000e+03 -1.0666795e+00 + 5.2324000e+03 -1.2166795e+00 + 5.2328000e+03 -1.3566795e+00 + 5.2332000e+03 -1.4666795e+00 + 5.2336000e+03 -1.2566795e+00 + 5.2340000e+03 -1.0766795e+00 + 5.2344000e+03 -6.0667949e-01 + 5.2348000e+03 -2.7667949e-01 + 5.2352000e+03 -2.8667949e-01 + 5.2356000e+03 -4.2667949e-01 + 5.2360000e+03 -4.2667949e-01 + 5.2364000e+03 -3.8667949e-01 + 5.2368000e+03 -1.2667949e-01 + 5.2372000e+03 1.6332051e-01 + 5.2376000e+03 3.4332051e-01 + 5.2380000e+03 4.3332051e-01 + 5.2384000e+03 4.4332051e-01 + 5.2388000e+03 4.4332051e-01 + 5.2392000e+03 5.3332051e-01 + 5.2396000e+03 5.5332051e-01 + 5.2400000e+03 3.3320513e-02 + 5.2404000e+03 -3.1667949e-01 + 5.2408000e+03 -4.5667949e-01 + 5.2412000e+03 -4.8667949e-01 + 5.2416000e+03 -5.8667949e-01 + 5.2420000e+03 -8.4667949e-01 + 5.2424000e+03 -1.0766795e+00 + 5.2428000e+03 -1.1466795e+00 + 5.2432000e+03 -1.1466795e+00 + 5.2436000e+03 -1.1066795e+00 + 5.2440000e+03 -1.2266795e+00 + 5.2444000e+03 -1.1366795e+00 + 5.2448000e+03 -7.9667949e-01 + 5.2452000e+03 -5.3667949e-01 + 5.2456000e+03 -5.2667949e-01 + 5.2460000e+03 -5.2667949e-01 + 5.2464000e+03 -2.8667949e-01 + 5.2468000e+03 4.3332051e-01 + 5.2472000e+03 3.4332051e-01 + 5.2476000e+03 5.3320513e-02 + 5.2480000e+03 -5.6679487e-02 + 5.2484000e+03 -3.4667949e-01 + 5.2488000e+03 -5.9667949e-01 + 5.2492000e+03 -3.1667949e-01 + 5.2496000e+03 5.3320513e-02 + 5.2500000e+03 1.2733205e+00 + 5.2504000e+03 8.4332051e-01 + 5.2508000e+03 6.5332051e-01 + 5.2512000e+03 6.5332051e-01 + 5.2516000e+03 6.5332051e-01 + 5.2520000e+03 6.5332051e-01 + 5.2524000e+03 6.5332051e-01 + 5.2528000e+03 6.5332051e-01 + 5.2532000e+03 6.4332051e-01 + 5.2536000e+03 6.5332051e-01 + 5.2540000e+03 6.5332051e-01 + 5.2544000e+03 6.5332051e-01 + 5.2548000e+03 6.1332051e-01 + 5.2552000e+03 -1.9066795e+00 + 5.2556000e+03 -1.6766795e+00 + 5.2560000e+03 -1.2766795e+00 + 5.2564000e+03 -4.5667949e-01 + 5.2568000e+03 5.0332051e-01 + 5.2572000e+03 1.3633205e+00 + 5.2576000e+03 1.7033205e+00 + 5.2580000e+03 1.7033205e+00 + 5.2584000e+03 1.7033205e+00 + 5.2588000e+03 1.7033205e+00 + 5.2592000e+03 3.4633205e+00 + 5.2596000e+03 3.8033205e+00 + 5.2600000e+03 3.3033205e+00 + 5.2604000e+03 2.9933205e+00 + 5.2608000e+03 2.9733205e+00 + 5.2612000e+03 2.9733205e+00 + 5.2616000e+03 2.9733205e+00 + 5.2620000e+03 2.9733205e+00 + 5.2624000e+03 2.9733205e+00 + 5.2628000e+03 2.9733205e+00 + 5.2632000e+03 2.9733205e+00 + 5.2636000e+03 2.9633205e+00 + 5.2640000e+03 1.2633205e+00 + 5.2644000e+03 -3.2566795e+00 + 5.2648000e+03 -3.1466795e+00 + 5.2652000e+03 -3.0166795e+00 + 5.2656000e+03 -2.8266795e+00 + 5.2660000e+03 -2.4466795e+00 + 5.2664000e+03 -2.0766795e+00 + 5.2668000e+03 -2.0366795e+00 + 5.2672000e+03 -1.5566795e+00 + 5.2676000e+03 -1.3966795e+00 + 5.2680000e+03 -1.3866795e+00 + 5.2684000e+03 -1.3966795e+00 + 5.2688000e+03 7.3320513e-02 + 5.2692000e+03 1.3033205e+00 + 5.2696000e+03 1.2233205e+00 + 5.2700000e+03 1.2233205e+00 + 5.2704000e+03 -2.2667949e-01 + 5.2708000e+03 -5.6667949e-01 + 5.2712000e+03 -6.1667949e-01 + 5.2716000e+03 -1.0466795e+00 + 5.2720000e+03 -8.0667949e-01 + 5.2724000e+03 -5.9667949e-01 + 5.2728000e+03 -5.5667949e-01 + 5.2732000e+03 -5.7667949e-01 + 5.2736000e+03 -5.3667949e-01 + 5.2740000e+03 -3.1667949e-01 + 5.2744000e+03 -5.3667949e-01 + 5.2748000e+03 -7.3667949e-01 + 5.2752000e+03 -7.9667949e-01 + 5.2756000e+03 -8.2667949e-01 + 5.2760000e+03 -5.4667949e-01 + 5.2764000e+03 -6.6679487e-02 + 5.2768000e+03 2.9332051e-01 + 5.2772000e+03 5.5332051e-01 + 5.2776000e+03 5.8332051e-01 + 5.2780000e+03 5.7332051e-01 + 5.2784000e+03 7.1332051e-01 + 5.2788000e+03 3.8332051e-01 + 5.2792000e+03 1.2332051e-01 + 5.2796000e+03 1.3320513e-02 + 5.2800000e+03 5.3320513e-02 + 5.2804000e+03 9.3320513e-02 + 5.2808000e+03 4.4332051e-01 + 5.2812000e+03 5.9332051e-01 + 5.2816000e+03 5.4332051e-01 + 5.2820000e+03 4.3332051e-01 + 5.2824000e+03 5.2332051e-01 + 5.2828000e+03 3.5332051e-01 + 5.2832000e+03 -1.9667949e-01 + 5.2836000e+03 -3.6667949e-01 + 5.2840000e+03 -9.0667949e-01 + 5.2844000e+03 -1.0166795e+00 + 5.2848000e+03 -8.7667949e-01 + 5.2852000e+03 -1.4266795e+00 + 5.2856000e+03 -1.6066795e+00 + 5.2860000e+03 -1.6066795e+00 + 5.2864000e+03 -1.6066795e+00 + 5.2868000e+03 -1.6066795e+00 + 5.2872000e+03 -2.1766795e+00 + 5.2876000e+03 -2.5766795e+00 + 5.2880000e+03 -2.0766795e+00 + 5.2884000e+03 -1.4466795e+00 + 5.2888000e+03 -1.0366795e+00 + 5.2892000e+03 -7.2667949e-01 + 5.2896000e+03 -1.0366795e+00 + 5.2900000e+03 -1.3766795e+00 + 5.2904000e+03 -1.4066795e+00 + 5.2908000e+03 -1.1966795e+00 + 5.2912000e+03 -7.4667949e-01 + 5.2916000e+03 -6.3667949e-01 + 5.2920000e+03 -5.6679487e-02 + 5.2924000e+03 1.0433205e+00 + 5.2928000e+03 1.0733205e+00 + 5.2932000e+03 1.0733205e+00 + 5.2936000e+03 1.4233205e+00 + 5.2940000e+03 1.8833205e+00 + 5.2944000e+03 1.6633205e+00 + 5.2948000e+03 1.6733205e+00 + 5.2952000e+03 1.7033205e+00 + 5.2956000e+03 1.9133205e+00 + 5.2960000e+03 1.8833205e+00 + 5.2964000e+03 1.9733205e+00 + 5.2968000e+03 1.9833205e+00 + 5.2972000e+03 1.7533205e+00 + 5.2976000e+03 1.7333205e+00 + 5.2980000e+03 1.7333205e+00 + 5.2984000e+03 1.7333205e+00 + 5.2988000e+03 1.7333205e+00 + 5.2992000e+03 4.1332051e-01 + 5.2996000e+03 -2.5166795e+00 + 5.3000000e+03 -2.4066795e+00 + 5.3004000e+03 -2.1966795e+00 + 5.3008000e+03 -2.0966795e+00 + 5.3012000e+03 -1.8566795e+00 + 5.3016000e+03 -1.6266795e+00 + 5.3020000e+03 -1.3466795e+00 + 5.3024000e+03 -1.3266795e+00 + 5.3028000e+03 -1.4066795e+00 + 5.3032000e+03 -1.2966795e+00 + 5.3036000e+03 -9.2667949e-01 + 5.3040000e+03 -3.4667949e-01 + 5.3044000e+03 5.3320513e-02 + 5.3048000e+03 5.3320513e-02 + 5.3052000e+03 5.3320513e-02 + 5.3056000e+03 5.5332051e-01 + 5.3060000e+03 5.3320513e-02 + 5.3064000e+03 -3.2667949e-01 + 5.3068000e+03 -7.3667949e-01 + 5.3072000e+03 -1.5266795e+00 + 5.3076000e+03 -1.4666795e+00 + 5.3080000e+03 -1.2266795e+00 + 5.3084000e+03 -1.1766795e+00 + 5.3088000e+03 -9.1667949e-01 + 5.3092000e+03 -6.9667949e-01 + 5.3096000e+03 -8.3667949e-01 + 5.3100000e+03 -1.2066795e+00 + 5.3104000e+03 -1.4766795e+00 + 5.3108000e+03 -1.4966795e+00 + 5.3112000e+03 -1.4966795e+00 + 5.3116000e+03 -1.6966795e+00 + 5.3120000e+03 -1.3166795e+00 + 5.3124000e+03 -8.2667949e-01 + 5.3128000e+03 -7.8667949e-01 + 5.3132000e+03 -1.1667949e-01 + 5.3136000e+03 8.7332051e-01 + 5.3140000e+03 1.1333205e+00 + 5.3144000e+03 1.2633205e+00 + 5.3148000e+03 1.4333205e+00 + 5.3152000e+03 1.7533205e+00 + 5.3156000e+03 2.2633205e+00 + 5.3160000e+03 2.3433205e+00 + 5.3164000e+03 2.1733205e+00 + 5.3168000e+03 1.8833205e+00 + 5.3172000e+03 1.5733205e+00 + 5.3176000e+03 1.3433205e+00 + 5.3180000e+03 1.1533205e+00 + 5.3184000e+03 1.0733205e+00 + 5.3188000e+03 1.0733205e+00 + 5.3192000e+03 1.0733205e+00 + 5.3196000e+03 1.0733205e+00 + 5.3200000e+03 1.0733205e+00 + 5.3204000e+03 1.0733205e+00 + 5.3208000e+03 1.0733205e+00 + 5.3212000e+03 8.0332051e-01 + 5.3216000e+03 -2.1766795e+00 + 5.3220000e+03 -2.3166795e+00 + 5.3224000e+03 -2.2266795e+00 + 5.3228000e+03 -2.1466795e+00 + 5.3232000e+03 -2.1966795e+00 + 5.3236000e+03 -2.1566795e+00 + 5.3240000e+03 -2.0366795e+00 + 5.3244000e+03 -2.0866795e+00 + 5.3248000e+03 -1.8766795e+00 + 5.3252000e+03 -1.5366795e+00 + 5.3256000e+03 -1.4966795e+00 + 5.3260000e+03 -1.5066795e+00 + 5.3264000e+03 -1.5066795e+00 + 5.3268000e+03 -1.5066795e+00 + 5.3272000e+03 -1.4866795e+00 + 5.3276000e+03 1.3033205e+00 + 5.3280000e+03 1.2933205e+00 + 5.3284000e+03 1.2733205e+00 + 5.3288000e+03 1.2733205e+00 + 5.3292000e+03 -3.0667949e-01 + 5.3296000e+03 -8.5667949e-01 + 5.3300000e+03 -4.7667949e-01 + 5.3304000e+03 -1.3667949e-01 + 5.3308000e+03 5.3320513e-02 + 5.3312000e+03 2.3320513e-02 + 5.3316000e+03 -1.6679487e-02 + 5.3320000e+03 -3.6679487e-02 + 5.3324000e+03 4.0332051e-01 + 5.3328000e+03 6.2332051e-01 + 5.3332000e+03 5.3332051e-01 + 5.3336000e+03 2.7332051e-01 + 5.3340000e+03 -3.0667949e-01 + 5.3344000e+03 -9.1667949e-01 + 5.3348000e+03 -1.1966795e+00 + 5.3352000e+03 -1.2266795e+00 + 5.3356000e+03 -1.3366795e+00 + 5.3360000e+03 -1.7266795e+00 + 5.3364000e+03 -2.3066795e+00 + 5.3368000e+03 -2.6766795e+00 + 5.3372000e+03 -2.1666795e+00 + 5.3376000e+03 -1.6466795e+00 + 5.3380000e+03 -1.5766795e+00 + 5.3384000e+03 -1.5666795e+00 + 5.3388000e+03 -1.5666795e+00 + 5.3392000e+03 -1.5666795e+00 + 5.3396000e+03 -1.5666795e+00 + 5.3400000e+03 -1.5666795e+00 + 5.3404000e+03 -1.4466795e+00 + 5.3408000e+03 1.9533205e+00 + 5.3412000e+03 1.6733205e+00 + 5.3416000e+03 1.0233205e+00 + 5.3420000e+03 -1.9667949e-01 + 5.3424000e+03 -3.5667949e-01 + 5.3428000e+03 -1.5466795e+00 + 5.3432000e+03 -1.7366795e+00 + 5.3436000e+03 -1.2566795e+00 + 5.3440000e+03 -1.2266795e+00 + 5.3444000e+03 -1.3066795e+00 + 5.3448000e+03 -1.3466795e+00 + 5.3452000e+03 -1.3566795e+00 + 5.3456000e+03 -1.3566795e+00 + 5.3460000e+03 -1.3566795e+00 + 5.3464000e+03 -1.3466795e+00 + 5.3468000e+03 -2.2266795e+00 + 5.3472000e+03 -3.8566795e+00 + 5.3476000e+03 -3.2166795e+00 + 5.3480000e+03 -2.0366795e+00 + 5.3484000e+03 -4.5667949e-01 + 5.3488000e+03 -3.3667949e-01 + 5.3492000e+03 -3.2667949e-01 + 5.3496000e+03 1.3333205e+00 + 5.3500000e+03 2.6033205e+00 + 5.3504000e+03 2.4833205e+00 + 5.3508000e+03 2.2233205e+00 + 5.3512000e+03 1.2333205e+00 + 5.3516000e+03 4.7332051e-01 + 5.3520000e+03 1.1332051e-01 + 5.3524000e+03 8.3320513e-02 + 5.3528000e+03 1.0332051e-01 + 5.3532000e+03 4.3320513e-02 + 5.3536000e+03 -1.9667949e-01 + 5.3540000e+03 -4.1667949e-01 + 5.3544000e+03 -4.2667949e-01 + 5.3548000e+03 -4.2667949e-01 + 5.3552000e+03 -4.2667949e-01 + 5.3556000e+03 -1.0366795e+00 + 5.3560000e+03 -2.3766795e+00 + 5.3564000e+03 -1.9666795e+00 + 5.3568000e+03 -1.9066795e+00 + 5.3572000e+03 -1.8966795e+00 + 5.3576000e+03 -1.8966795e+00 + 5.3580000e+03 -1.8966795e+00 + 5.3584000e+03 -1.8966795e+00 + 5.3588000e+03 -1.8866795e+00 + 5.3592000e+03 2.5133205e+00 + 5.3596000e+03 3.4133205e+00 + 5.3600000e+03 2.9533205e+00 + 5.3604000e+03 2.3033205e+00 + 5.3608000e+03 1.8033205e+00 + 5.3612000e+03 1.2233205e+00 + 5.3616000e+03 7.2332051e-01 + 5.3620000e+03 -6.0667949e-01 + 5.3624000e+03 -1.1466795e+00 + 5.3628000e+03 -1.6966795e+00 + 5.3632000e+03 -2.0266795e+00 + 5.3636000e+03 -2.0866795e+00 + 5.3640000e+03 -2.0866795e+00 + 5.3644000e+03 -2.0866795e+00 + 5.3648000e+03 -2.0766795e+00 + 5.3652000e+03 -2.3566795e+00 + 5.3656000e+03 -2.0566795e+00 + 5.3660000e+03 -1.7766795e+00 + 5.3664000e+03 -1.4166795e+00 + 5.3668000e+03 -1.3566795e+00 + 5.3672000e+03 -1.2066795e+00 + 5.3676000e+03 -9.5667949e-01 + 5.3680000e+03 -7.4667949e-01 + 5.3684000e+03 -2.2667949e-01 + 5.3688000e+03 8.3320513e-02 + 5.3692000e+03 3.0332051e-01 + 5.3696000e+03 6.0332051e-01 + 5.3700000e+03 7.2332051e-01 + 5.3704000e+03 5.8332051e-01 + 5.3708000e+03 2.8332051e-01 + 5.3712000e+03 -1.0667949e-01 + 5.3716000e+03 -4.0667949e-01 + 5.3720000e+03 -5.9667949e-01 + 5.3724000e+03 -7.3667949e-01 + 5.3728000e+03 -8.0667949e-01 + 5.3732000e+03 -7.7667949e-01 + 5.3736000e+03 -6.9667949e-01 + 5.3740000e+03 -6.2667949e-01 + 5.3744000e+03 -6.9667949e-01 + 5.3748000e+03 -6.3667949e-01 + 5.3752000e+03 -4.0667949e-01 + 5.3756000e+03 -2.4667949e-01 + 5.3760000e+03 -2.1667949e-01 + 5.3764000e+03 -2.1667949e-01 + 5.3768000e+03 -2.1667949e-01 + 5.3772000e+03 -2.1667949e-01 + 5.3776000e+03 2.1332051e-01 + 5.3780000e+03 1.2833205e+00 + 5.3784000e+03 1.9733205e+00 + 5.3788000e+03 1.8633205e+00 + 5.3792000e+03 8.0332051e-01 + 5.3796000e+03 1.8332051e-01 + 5.3800000e+03 -3.5667949e-01 + 5.3804000e+03 -6.9667949e-01 + 5.3808000e+03 -8.4667949e-01 + 5.3812000e+03 -1.0966795e+00 + 5.3816000e+03 -1.1966795e+00 + 5.3820000e+03 -1.0166795e+00 + 5.3824000e+03 -8.8667949e-01 + 5.3828000e+03 -5.6667949e-01 + 5.3832000e+03 -7.0667949e-01 + 5.3836000e+03 -1.1966795e+00 + 5.3840000e+03 -1.3466795e+00 + 5.3844000e+03 -1.3466795e+00 + 5.3848000e+03 -1.3466795e+00 + 5.3852000e+03 -1.3466795e+00 + 5.3856000e+03 -3.3466795e+00 + 5.3860000e+03 -3.5166795e+00 + 5.3864000e+03 -3.4466795e+00 + 5.3868000e+03 -3.2366795e+00 + 5.3872000e+03 -2.1066795e+00 + 5.3876000e+03 -1.4066795e+00 + 5.3880000e+03 -1.3866795e+00 + 5.3884000e+03 -1.3866795e+00 + 5.3888000e+03 4.3332051e-01 + 5.3892000e+03 1.4333205e+00 + 5.3896000e+03 1.6433205e+00 + 5.3900000e+03 1.9333205e+00 + 5.3904000e+03 1.8633205e+00 + 5.3908000e+03 1.5033205e+00 + 5.3912000e+03 1.2733205e+00 + 5.3916000e+03 1.0933205e+00 + 5.3920000e+03 7.6332051e-01 + 5.3924000e+03 5.8332051e-01 + 5.3928000e+03 5.8332051e-01 + 5.3932000e+03 5.7332051e-01 + 5.3936000e+03 5.8332051e-01 + 5.3940000e+03 -8.0667949e-01 + 5.3944000e+03 -4.0667949e-01 + 5.3948000e+03 -2.6679487e-02 + 5.3952000e+03 -6.6794872e-03 + 5.3956000e+03 -6.6794872e-03 + 5.3960000e+03 7.3320513e-02 + 5.3964000e+03 5.9332051e-01 + 5.3968000e+03 7.3320513e-02 + 5.3972000e+03 2.3320513e-02 + 5.3976000e+03 1.3320513e-02 + 5.3980000e+03 1.3320513e-02 + 5.3984000e+03 3.3205128e-03 + 5.3988000e+03 -3.9667949e-01 + 5.3992000e+03 -1.0266795e+00 + 5.3996000e+03 -8.2667949e-01 + 5.4000000e+03 -3.5667949e-01 + 5.4004000e+03 -4.6679487e-02 + 5.4008000e+03 5.8332051e-01 + 5.4012000e+03 1.0733205e+00 + 5.4016000e+03 1.4833205e+00 + 5.4020000e+03 1.7233205e+00 + 5.4024000e+03 1.2333205e+00 + 5.4028000e+03 1.0733205e+00 + 5.4032000e+03 1.0533205e+00 + 5.4036000e+03 1.0533205e+00 + 5.4040000e+03 1.0533205e+00 + 5.4044000e+03 1.0533205e+00 + 5.4048000e+03 1.0533205e+00 + 5.4052000e+03 1.0533205e+00 + 5.4056000e+03 1.0533205e+00 + 5.4060000e+03 7.6332051e-01 + 5.4064000e+03 -3.0266795e+00 + 5.4068000e+03 -2.8866795e+00 + 5.4072000e+03 -2.4066795e+00 + 5.4076000e+03 -2.1666795e+00 + 5.4080000e+03 -2.1566795e+00 + 5.4084000e+03 -2.1566795e+00 + 5.4088000e+03 -2.1466795e+00 + 5.4092000e+03 -2.1466795e+00 + 5.4096000e+03 -2.1466795e+00 + 5.4100000e+03 -2.1466795e+00 + 5.4104000e+03 -2.1466795e+00 + 5.4108000e+03 -1.8466795e+00 + 5.4112000e+03 2.2133205e+00 + 5.4116000e+03 2.3733205e+00 + 5.4120000e+03 2.2733205e+00 + 5.4124000e+03 1.1933205e+00 + 5.4128000e+03 8.2332051e-01 + 5.4132000e+03 8.0332051e-01 + 5.4136000e+03 8.0332051e-01 + 5.4140000e+03 -3.6667949e-01 + 5.4144000e+03 -1.1366795e+00 + 5.4148000e+03 -1.2066795e+00 + 5.4152000e+03 -1.0066795e+00 + 5.4156000e+03 -9.1667949e-01 + 5.4160000e+03 -9.8667949e-01 + 5.4164000e+03 -1.1166795e+00 + 5.4168000e+03 -1.2366795e+00 + 5.4172000e+03 -1.2466795e+00 + 5.4176000e+03 -9.0667949e-01 + 5.4180000e+03 -6.2667949e-01 + 5.4184000e+03 -5.4667949e-01 + 5.4188000e+03 -2.5667949e-01 + 5.4192000e+03 -7.3667949e-01 + 5.4196000e+03 -1.0366795e+00 + 5.4200000e+03 -1.2266795e+00 + 5.4204000e+03 -8.7667949e-01 + 5.4208000e+03 -6.0667949e-01 + 5.4212000e+03 -8.6667949e-01 + 5.4216000e+03 -1.1966795e+00 + 5.4220000e+03 -1.3766795e+00 + 5.4224000e+03 -1.1766795e+00 + 5.4228000e+03 -7.4667949e-01 + 5.4232000e+03 -4.8667949e-01 + 5.4236000e+03 -9.6679487e-02 + 5.4240000e+03 9.3320513e-02 + 5.4244000e+03 2.4332051e-01 + 5.4248000e+03 4.1332051e-01 + 5.4252000e+03 6.8332051e-01 + 5.4256000e+03 8.9332051e-01 + 5.4260000e+03 8.7332051e-01 + 5.4264000e+03 3.5332051e-01 + 5.4268000e+03 -3.5667949e-01 + 5.4272000e+03 -9.7667949e-01 + 5.4276000e+03 -1.5866795e+00 + 5.4280000e+03 -1.9066795e+00 + 5.4284000e+03 -1.8766795e+00 + 5.4288000e+03 -1.6966795e+00 + 5.4292000e+03 -1.5866795e+00 + 5.4296000e+03 -1.5666795e+00 + 5.4300000e+03 -1.3866795e+00 + 5.4304000e+03 -1.3566795e+00 + 5.4308000e+03 -6.5667949e-01 + 5.4312000e+03 2.8332051e-01 + 5.4316000e+03 1.8533205e+00 + 5.4320000e+03 2.9833205e+00 + 5.4324000e+03 3.5833205e+00 + 5.4328000e+03 3.7833205e+00 + 5.4332000e+03 3.6033205e+00 + 5.4336000e+03 3.6333205e+00 + 5.4340000e+03 3.2733205e+00 + 5.4344000e+03 3.2433205e+00 + 5.4348000e+03 3.2333205e+00 + 5.4352000e+03 3.2333205e+00 + 5.4356000e+03 1.9833205e+00 + 5.4360000e+03 -1.2966795e+00 + 5.4364000e+03 -1.4466795e+00 + 5.4368000e+03 -1.4466795e+00 + 5.4372000e+03 -1.4266795e+00 + 5.4376000e+03 -1.5366795e+00 + 5.4380000e+03 -4.0266795e+00 + 5.4384000e+03 -4.1166795e+00 + 5.4388000e+03 -3.8466795e+00 + 5.4392000e+03 -3.6566795e+00 + 5.4396000e+03 -3.6366795e+00 + 5.4400000e+03 -3.6366795e+00 + 5.4404000e+03 -3.6366795e+00 + 5.4408000e+03 -3.6366795e+00 + 5.4412000e+03 -3.6366795e+00 + 5.4416000e+03 -3.6366795e+00 + 5.4420000e+03 -3.6366795e+00 + 5.4424000e+03 -3.6266795e+00 + 5.4428000e+03 -5.6667949e-01 + 5.4432000e+03 1.1033205e+00 + 5.4436000e+03 1.0933205e+00 + 5.4440000e+03 9.3332051e-01 + 5.4444000e+03 9.2332051e-01 + 5.4448000e+03 3.9332051e-01 + 5.4452000e+03 -1.9667949e-01 + 5.4456000e+03 -2.6667949e-01 + 5.4460000e+03 -4.7667949e-01 + 5.4464000e+03 -5.3667949e-01 + 5.4468000e+03 -9.2667949e-01 + 5.4472000e+03 -1.3266795e+00 + 5.4476000e+03 -1.6566795e+00 + 5.4480000e+03 -1.2966795e+00 + 5.4484000e+03 -9.7667949e-01 + 5.4488000e+03 -7.3667949e-01 + 5.4492000e+03 -7.1667949e-01 + 5.4496000e+03 -7.1667949e-01 + 5.4500000e+03 -7.1667949e-01 + 5.4504000e+03 2.0033205e+00 + 5.4508000e+03 1.2733205e+00 + 5.4512000e+03 9.3320513e-02 + 5.4516000e+03 -3.5667949e-01 + 5.4520000e+03 -4.6667949e-01 + 5.4524000e+03 -3.4667949e-01 + 5.4528000e+03 -3.8667949e-01 + 5.4532000e+03 -3.2667949e-01 + 5.4536000e+03 -6.6794872e-03 + 5.4540000e+03 4.3320513e-02 + 5.4544000e+03 2.8332051e-01 + 5.4548000e+03 5.5332051e-01 + 5.4552000e+03 5.1332051e-01 + 5.4556000e+03 5.1332051e-01 + 5.4560000e+03 3.0332051e-01 + 5.4564000e+03 9.3320513e-02 + 5.4568000e+03 -4.6667949e-01 + 5.4572000e+03 -1.0666795e+00 + 5.4576000e+03 -1.3466795e+00 + 5.4580000e+03 -1.4266795e+00 + 5.4584000e+03 -1.9866795e+00 + 5.4588000e+03 -2.1066795e+00 + 5.4592000e+03 -2.0466795e+00 + 5.4596000e+03 -1.7066795e+00 + 5.4600000e+03 -1.1466795e+00 + 5.4604000e+03 -7.0667949e-01 + 5.4608000e+03 -4.2667949e-01 + 5.4612000e+03 -1.0667949e-01 + 5.4616000e+03 -2.8667949e-01 + 5.4620000e+03 -4.1667949e-01 + 5.4624000e+03 -3.1667949e-01 + 5.4628000e+03 -1.9667949e-01 + 5.4632000e+03 -1.2667949e-01 + 5.4636000e+03 8.3320513e-02 + 5.4640000e+03 -9.6679487e-02 + 5.4644000e+03 -4.1667949e-01 + 5.4648000e+03 -4.8667949e-01 + 5.4652000e+03 -4.7667949e-01 + 5.4656000e+03 -1.9667949e-01 + 5.4660000e+03 4.3320513e-02 + 5.4664000e+03 -1.4667949e-01 + 5.4668000e+03 -4.4667949e-01 + 5.4672000e+03 -6.4667949e-01 + 5.4676000e+03 -9.5667949e-01 + 5.4680000e+03 -1.1466795e+00 + 5.4684000e+03 -1.1566795e+00 + 5.4688000e+03 -6.7667949e-01 + 5.4692000e+03 -4.0667949e-01 + 5.4696000e+03 -3.9667949e-01 + 5.4700000e+03 -3.9667949e-01 + 5.4704000e+03 -3.8667949e-01 + 5.4708000e+03 2.4033205e+00 + 5.4712000e+03 2.1733205e+00 + 5.4716000e+03 1.1633205e+00 + 5.4720000e+03 6.6332051e-01 + 5.4724000e+03 6.3332051e-01 + 5.4728000e+03 6.3332051e-01 + 5.4732000e+03 6.3332051e-01 + 5.4736000e+03 6.3332051e-01 + 5.4740000e+03 6.3332051e-01 + 5.4744000e+03 6.3332051e-01 + 5.4748000e+03 6.3332051e-01 + 5.4752000e+03 6.3332051e-01 + 5.4756000e+03 -1.7566795e+00 + 5.4760000e+03 -1.9166795e+00 + 5.4764000e+03 -1.9066795e+00 + 5.4768000e+03 -1.8966795e+00 + 5.4772000e+03 -1.8966795e+00 + 5.4776000e+03 -1.8966795e+00 + 5.4780000e+03 -1.8966795e+00 + 5.4784000e+03 6.1332051e-01 + 5.4788000e+03 6.9332051e-01 + 5.4792000e+03 3.8332051e-01 + 5.4796000e+03 2.1332051e-01 + 5.4800000e+03 1.2332051e-01 + 5.4804000e+03 5.3320513e-02 + 5.4808000e+03 1.5332051e-01 + 5.4812000e+03 8.3320513e-02 + 5.4816000e+03 -9.6679487e-02 + 5.4820000e+03 -2.0667949e-01 + 5.4824000e+03 -3.5667949e-01 + 5.4828000e+03 -4.0667949e-01 + 5.4832000e+03 -4.0667949e-01 + 5.4836000e+03 -2.0366795e+00 + 5.4840000e+03 -2.2866795e+00 + 5.4844000e+03 -2.2566795e+00 + 5.4848000e+03 -1.9266795e+00 + 5.4852000e+03 -1.4966795e+00 + 5.4856000e+03 -1.2266795e+00 + 5.4860000e+03 -8.0667949e-01 + 5.4864000e+03 4.8332051e-01 + 5.4868000e+03 1.4933205e+00 + 5.4872000e+03 2.1333205e+00 + 5.4876000e+03 2.3033205e+00 + 5.4880000e+03 1.8733205e+00 + 5.4884000e+03 1.3733205e+00 + 5.4888000e+03 1.0233205e+00 + 5.4892000e+03 8.9332051e-01 + 5.4896000e+03 6.5332051e-01 + 5.4900000e+03 5.5332051e-01 + 5.4904000e+03 5.4332051e-01 + 5.4908000e+03 -1.2366795e+00 + 5.4912000e+03 -1.6466795e+00 + 5.4916000e+03 -1.6266795e+00 + 5.4920000e+03 -1.5066795e+00 + 5.4924000e+03 -1.3166795e+00 + 5.4928000e+03 -1.1566795e+00 + 5.4932000e+03 -8.5667949e-01 + 5.4936000e+03 -8.0667949e-01 + 5.4940000e+03 -7.8667949e-01 + 5.4944000e+03 -3.8667949e-01 + 5.4948000e+03 -1.1766795e+00 + 5.4952000e+03 -1.5166795e+00 + 5.4956000e+03 -1.5266795e+00 + 5.4960000e+03 -1.5266795e+00 + 5.4964000e+03 -1.5266795e+00 + 5.4968000e+03 -1.5766795e+00 + 5.4972000e+03 -1.6966795e+00 + 5.4976000e+03 -1.6766795e+00 + 5.4980000e+03 -1.6766795e+00 + 5.4984000e+03 -1.6766795e+00 + 5.4988000e+03 -1.6766795e+00 + 5.4992000e+03 -1.6766795e+00 + 5.4996000e+03 -1.6766795e+00 + 5.5000000e+03 -8.6667949e-01 + 5.5004000e+03 1.7433205e+00 + 5.5008000e+03 1.2233205e+00 + 5.5012000e+03 9.1332051e-01 + 5.5016000e+03 8.5332051e-01 + 5.5020000e+03 7.7332051e-01 + 5.5024000e+03 4.9332051e-01 + 5.5028000e+03 1.7332051e-01 + 5.5032000e+03 -1.4667949e-01 + 5.5036000e+03 -2.6667949e-01 + 5.5040000e+03 -2.7667949e-01 + 5.5044000e+03 -2.7667949e-01 + 5.5048000e+03 -2.6667949e-01 + 5.5052000e+03 -2.6667949e-01 + 5.5056000e+03 -2.6667949e-01 + 5.5060000e+03 -2.7667949e-01 + 5.5064000e+03 -2.7667949e-01 + 5.5068000e+03 -8.1667949e-01 + 5.5072000e+03 -1.6966795e+00 + 5.5076000e+03 -1.7466795e+00 + 5.5080000e+03 -1.7766795e+00 + 5.5084000e+03 -1.4566795e+00 + 5.5088000e+03 -7.2667949e-01 + 5.5092000e+03 -6.1667949e-01 + 5.5096000e+03 -6.1667949e-01 + 5.5100000e+03 -6.0667949e-01 + 5.5104000e+03 -6.0667949e-01 + 5.5108000e+03 4.2332051e-01 + 5.5112000e+03 8.0332051e-01 + 5.5116000e+03 1.8332051e-01 + 5.5120000e+03 -2.9667949e-01 + 5.5124000e+03 -8.4667949e-01 + 5.5128000e+03 -1.1066795e+00 + 5.5132000e+03 -1.1166795e+00 + 5.5136000e+03 -1.1166795e+00 + 5.5140000e+03 -1.1166795e+00 + 5.5144000e+03 -1.1166795e+00 + 5.5148000e+03 -1.1166795e+00 + 5.5152000e+03 -1.1166795e+00 + 5.5156000e+03 -1.1166795e+00 + 5.5160000e+03 -1.1166795e+00 + 5.5164000e+03 -2.3566795e+00 + 5.5168000e+03 -2.1366795e+00 + 5.5172000e+03 -1.1666795e+00 + 5.5176000e+03 -2.4667949e-01 + 5.5180000e+03 5.3320513e-02 + 5.5184000e+03 7.3320513e-02 + 5.5188000e+03 7.3320513e-02 + 5.5192000e+03 7.3320513e-02 + 5.5196000e+03 2.5833205e+00 + 5.5200000e+03 3.4533205e+00 + 5.5204000e+03 3.4133205e+00 + 5.5208000e+03 3.1433205e+00 + 5.5212000e+03 2.9433205e+00 + 5.5216000e+03 2.4633205e+00 + 5.5220000e+03 2.2133205e+00 + 5.5224000e+03 2.2033205e+00 + 5.5228000e+03 2.2033205e+00 + 5.5232000e+03 2.2033205e+00 + 5.5236000e+03 2.2033205e+00 + 5.5240000e+03 2.1933205e+00 + 5.5244000e+03 2.2033205e+00 + 5.5248000e+03 -1.3066795e+00 + 5.5252000e+03 -2.3766795e+00 + 5.5256000e+03 -2.3966795e+00 + 5.5260000e+03 -3.4266795e+00 + 5.5264000e+03 -3.6366795e+00 + 5.5268000e+03 -3.3666795e+00 + 5.5272000e+03 -3.1666795e+00 + 5.5276000e+03 -3.1066795e+00 + 5.5280000e+03 -1.7166795e+00 + 5.5284000e+03 -1.1966795e+00 + 5.5288000e+03 -8.0667949e-01 + 5.5292000e+03 -7.1667949e-01 + 5.5296000e+03 4.4332051e-01 + 5.5300000e+03 5.7332051e-01 + 5.5304000e+03 8.4332051e-01 + 5.5308000e+03 1.0033205e+00 + 5.5312000e+03 1.4133205e+00 + 5.5316000e+03 1.6733205e+00 + 5.5320000e+03 1.5733205e+00 + 5.5324000e+03 1.1633205e+00 + 5.5328000e+03 5.2332051e-01 + 5.5332000e+03 -6.6794872e-03 + 5.5336000e+03 -8.6679487e-02 + 5.5340000e+03 -8.6679487e-02 + 5.5344000e+03 -8.6679487e-02 + 5.5348000e+03 -8.6679487e-02 + 5.5352000e+03 -8.6679487e-02 + 5.5356000e+03 -8.6679487e-02 + 5.5360000e+03 -8.6679487e-02 + 5.5364000e+03 -8.6679487e-02 + 5.5368000e+03 -4.0667949e-01 + 5.5372000e+03 -1.3366795e+00 + 5.5376000e+03 -5.6667949e-01 + 5.5380000e+03 -2.0667949e-01 + 5.5384000e+03 -1.9667949e-01 + 5.5388000e+03 2.6833205e+00 + 5.5392000e+03 3.9933205e+00 + 5.5396000e+03 2.3233205e+00 + 5.5400000e+03 1.2133205e+00 + 5.5404000e+03 6.2332051e-01 + 5.5408000e+03 6.9332051e-01 + 5.5412000e+03 1.0733205e+00 + 5.5416000e+03 1.7633205e+00 + 5.5420000e+03 2.3733205e+00 + 5.5424000e+03 2.7333205e+00 + 5.5428000e+03 2.4733205e+00 + 5.5432000e+03 2.1833205e+00 + 5.5436000e+03 2.0033205e+00 + 5.5440000e+03 2.0033205e+00 + 5.5444000e+03 1.9333205e+00 + 5.5448000e+03 -5.5667949e-01 + 5.5452000e+03 -7.7667949e-01 + 5.5456000e+03 -7.7667949e-01 + 5.5460000e+03 -7.7667949e-01 + 5.5464000e+03 -1.3266795e+00 + 5.5468000e+03 -3.9666795e+00 + 5.5472000e+03 -3.8666795e+00 + 5.5476000e+03 -3.4566795e+00 + 5.5480000e+03 -3.4166795e+00 + 5.5484000e+03 -3.4166795e+00 + 5.5488000e+03 2.3332051e-01 + 5.5492000e+03 5.5332051e-01 + 5.5496000e+03 3.3332051e-01 + 5.5500000e+03 3.3332051e-01 + 5.5504000e+03 4.4332051e-01 + 5.5508000e+03 5.5332051e-01 + 5.5512000e+03 8.6332051e-01 + 5.5516000e+03 7.3332051e-01 + 5.5520000e+03 8.6332051e-01 + 5.5524000e+03 1.0933205e+00 + 5.5528000e+03 1.0433205e+00 + 5.5532000e+03 7.0332051e-01 + 5.5536000e+03 3.0332051e-01 + 5.5540000e+03 2.8332051e-01 + 5.5544000e+03 2.8332051e-01 + 5.5548000e+03 1.3332051e-01 + 5.5552000e+03 -1.5066795e+00 + 5.5556000e+03 -1.3066795e+00 + 5.5560000e+03 -8.2667949e-01 + 5.5564000e+03 -2.8667949e-01 + 5.5568000e+03 2.6332051e-01 + 5.5572000e+03 5.3320513e-02 + 5.5576000e+03 2.4332051e-01 + 5.5580000e+03 3.7332051e-01 + 5.5584000e+03 4.7332051e-01 + 5.5588000e+03 3.3332051e-01 + 5.5592000e+03 1.4332051e-01 + 5.5596000e+03 -7.6679487e-02 + 5.5600000e+03 -2.1667949e-01 + 5.5604000e+03 -1.2667949e-01 + 5.5608000e+03 5.8332051e-01 + 5.5612000e+03 1.1833205e+00 + 5.5616000e+03 1.2933205e+00 + 5.5620000e+03 1.0533205e+00 + 5.5624000e+03 8.4332051e-01 + 5.5628000e+03 3.3205128e-03 + 5.5632000e+03 -5.1667949e-01 + 5.5636000e+03 -5.9667949e-01 + 5.5640000e+03 -8.1667949e-01 + 5.5644000e+03 -9.0667949e-01 + 5.5648000e+03 -1.1366795e+00 + 5.5652000e+03 -1.3066795e+00 + 5.5656000e+03 -1.3166795e+00 + 5.5660000e+03 -1.4466795e+00 + 5.5664000e+03 -1.5066795e+00 + 5.5668000e+03 -1.7566795e+00 + 5.5672000e+03 -2.0066795e+00 + 5.5676000e+03 -2.0766795e+00 + 5.5680000e+03 -1.7966795e+00 + 5.5684000e+03 -1.4466795e+00 + 5.5688000e+03 -1.1566795e+00 + 5.5692000e+03 -1.1366795e+00 + 5.5696000e+03 -1.1266795e+00 + 5.5700000e+03 -6.1667949e-01 + 5.5704000e+03 -3.3667949e-01 + 5.5708000e+03 4.5332051e-01 + 5.5712000e+03 1.3433205e+00 + 5.5716000e+03 2.0133205e+00 + 5.5720000e+03 2.1033205e+00 + 5.5724000e+03 2.1233205e+00 + 5.5728000e+03 2.1733205e+00 + 5.5732000e+03 1.8433205e+00 + 5.5736000e+03 1.2233205e+00 + 5.5740000e+03 1.1733205e+00 + 5.5744000e+03 7.9332051e-01 + 5.5748000e+03 -1.6966795e+00 + 5.5752000e+03 -1.9766795e+00 + 5.5756000e+03 -1.9766795e+00 + 5.5760000e+03 -1.7266795e+00 + 5.5764000e+03 -1.0766795e+00 + 5.5768000e+03 -3.6667949e-01 + 5.5772000e+03 -3.3667949e-01 + 5.5776000e+03 -4.4667949e-01 + 5.5780000e+03 -1.0566795e+00 + 5.5784000e+03 -1.0566795e+00 + 5.5788000e+03 -6.6667949e-01 + 5.5792000e+03 -4.8667949e-01 + 5.5796000e+03 -4.8667949e-01 + 5.5800000e+03 -3.6667949e-01 + 5.5804000e+03 -8.0667949e-01 + 5.5808000e+03 -1.0366795e+00 + 5.5812000e+03 -9.8667949e-01 + 5.5816000e+03 -6.9667949e-01 + 5.5820000e+03 -4.8667949e-01 + 5.5824000e+03 -5.0667949e-01 + 5.5828000e+03 -1.3667949e-01 + 5.5832000e+03 3.7332051e-01 + 5.5836000e+03 7.2332051e-01 + 5.5840000e+03 1.0533205e+00 + 5.5844000e+03 1.3033205e+00 + 5.5848000e+03 1.3433205e+00 + 5.5852000e+03 1.5333205e+00 + 5.5856000e+03 1.2833205e+00 + 5.5860000e+03 1.0833205e+00 + 5.5864000e+03 1.0833205e+00 + 5.5868000e+03 1.0833205e+00 + 5.5872000e+03 1.0433205e+00 + 5.5876000e+03 -1.7666795e+00 + 5.5880000e+03 -2.5466795e+00 + 5.5884000e+03 -2.2966795e+00 + 5.5888000e+03 -1.8766795e+00 + 5.5892000e+03 -1.6366795e+00 + 5.5896000e+03 -7.9667949e-01 + 5.5900000e+03 -3.6667949e-01 + 5.5904000e+03 -1.9667949e-01 + 5.5908000e+03 -3.6679487e-02 + 5.5912000e+03 3.0332051e-01 + 5.5916000e+03 3.9332051e-01 + 5.5920000e+03 4.9332051e-01 + 5.5924000e+03 8.3332051e-01 + 5.5928000e+03 1.0533205e+00 + 5.5932000e+03 9.4332051e-01 + 5.5936000e+03 7.2332051e-01 + 5.5940000e+03 7.6332051e-01 + 5.5944000e+03 8.9332051e-01 + 5.5948000e+03 8.0332051e-01 + 5.5952000e+03 7.3332051e-01 + 5.5956000e+03 7.3332051e-01 + 5.5960000e+03 7.2332051e-01 + 5.5964000e+03 7.2332051e-01 + 5.5968000e+03 -7.5667949e-01 + 5.5972000e+03 -1.5566795e+00 + 5.5976000e+03 -1.5966795e+00 + 5.5980000e+03 -1.5966795e+00 + 5.5984000e+03 -1.5966795e+00 + 5.5988000e+03 -1.9266795e+00 + 5.5992000e+03 -2.0666795e+00 + 5.5996000e+03 -2.0066795e+00 + 5.6000000e+03 -1.8266795e+00 + 5.6004000e+03 -1.5166795e+00 + 5.6008000e+03 -1.0466795e+00 + 5.6012000e+03 -1.0066795e+00 + 5.6016000e+03 -1.0066795e+00 + 5.6020000e+03 -1.0066795e+00 + 5.6024000e+03 -1.0066795e+00 + 5.6028000e+03 2.6332051e-01 + 5.6032000e+03 8.5332051e-01 + 5.6036000e+03 8.0332051e-01 + 5.6040000e+03 9.9332051e-01 + 5.6044000e+03 1.2133205e+00 + 5.6048000e+03 1.7133205e+00 + 5.6052000e+03 2.1033205e+00 + 5.6056000e+03 2.2733205e+00 + 5.6060000e+03 1.9933205e+00 + 5.6064000e+03 1.6933205e+00 + 5.6068000e+03 1.6633205e+00 + 5.6072000e+03 1.6533205e+00 + 5.6076000e+03 1.6533205e+00 + 5.6080000e+03 -9.4667949e-01 + 5.6084000e+03 -1.9766795e+00 + 5.6088000e+03 -2.3366795e+00 + 5.6092000e+03 -2.2266795e+00 + 5.6096000e+03 -1.9066795e+00 + 5.6100000e+03 -1.8766795e+00 + 5.6104000e+03 -1.8766795e+00 + 5.6108000e+03 -1.8666795e+00 + 5.6112000e+03 -1.8766795e+00 + 5.6116000e+03 -1.4966795e+00 + 5.6120000e+03 -1.6667949e-01 + 5.6124000e+03 -5.3667949e-01 + 5.6128000e+03 -8.2667949e-01 + 5.6132000e+03 -1.0466795e+00 + 5.6136000e+03 -1.0466795e+00 + 5.6140000e+03 -9.7667949e-01 + 5.6144000e+03 -6.1667949e-01 + 5.6148000e+03 -3.7667949e-01 + 5.6152000e+03 -4.4667949e-01 + 5.6156000e+03 -3.9667949e-01 + 5.6160000e+03 -3.3667949e-01 + 5.6164000e+03 -8.6679487e-02 + 5.6168000e+03 1.4332051e-01 + 5.6172000e+03 3.5332051e-01 + 5.6176000e+03 2.7332051e-01 + 5.6180000e+03 -1.7667949e-01 + 5.6184000e+03 -4.6667949e-01 + 5.6188000e+03 -5.4667949e-01 + 5.6192000e+03 -5.4667949e-01 + 5.6196000e+03 -5.4667949e-01 + 5.6200000e+03 -5.5667949e-01 + 5.6204000e+03 -6.5667949e-01 + 5.6208000e+03 -7.9667949e-01 + 5.6212000e+03 -8.9667949e-01 + 5.6216000e+03 -8.6667949e-01 + 5.6220000e+03 -8.8667949e-01 + 5.6224000e+03 -8.4667949e-01 + 5.6228000e+03 -8.3667949e-01 + 5.6232000e+03 -7.9667949e-01 + 5.6236000e+03 -8.0667949e-01 + 5.6240000e+03 -6.9667949e-01 + 5.6244000e+03 -6.4667949e-01 + 5.6248000e+03 -5.0667949e-01 + 5.6252000e+03 -4.7667949e-01 + 5.6256000e+03 -4.7667949e-01 + 5.6260000e+03 -4.8667949e-01 + 5.6264000e+03 9.3320513e-02 + 5.6268000e+03 6.9332051e-01 + 5.6272000e+03 2.4733205e+00 + 5.6276000e+03 3.7133205e+00 + 5.6280000e+03 4.0433205e+00 + 5.6284000e+03 3.7333205e+00 + 5.6288000e+03 3.5233205e+00 + 5.6292000e+03 3.5133205e+00 + 5.6296000e+03 3.5133205e+00 + 5.6300000e+03 3.5133205e+00 + 5.6304000e+03 2.3332051e-01 + 5.6308000e+03 -8.6667949e-01 + 5.6312000e+03 -8.9667949e-01 + 5.6316000e+03 -8.9667949e-01 + 5.6320000e+03 -8.8667949e-01 + 5.6324000e+03 -8.8667949e-01 + 5.6328000e+03 -8.8667949e-01 + 5.6332000e+03 -8.8667949e-01 + 5.6336000e+03 -1.7566795e+00 + 5.6340000e+03 -3.2566795e+00 + 5.6344000e+03 -2.9266795e+00 + 5.6348000e+03 -2.6966795e+00 + 5.6352000e+03 -1.6566795e+00 + 5.6356000e+03 -1.4866795e+00 + 5.6360000e+03 -1.4766795e+00 + 5.6364000e+03 -1.2066795e+00 + 5.6368000e+03 2.6333205e+00 + 5.6372000e+03 2.6933205e+00 + 5.6376000e+03 2.6633205e+00 + 5.6380000e+03 2.5733205e+00 + 5.6384000e+03 2.3033205e+00 + 5.6388000e+03 1.5033205e+00 + 5.6392000e+03 1.2033205e+00 + 5.6396000e+03 1.1933205e+00 + 5.6400000e+03 1.1933205e+00 + 5.6404000e+03 1.1933205e+00 + 5.6408000e+03 1.1933205e+00 + 5.6412000e+03 1.1933205e+00 + 5.6416000e+03 1.1933205e+00 + 5.6420000e+03 1.1933205e+00 + 5.6424000e+03 1.1833205e+00 + 5.6428000e+03 1.1833205e+00 + 5.6432000e+03 1.0533205e+00 + 5.6436000e+03 -1.8766795e+00 + 5.6440000e+03 -1.3266795e+00 + 5.6444000e+03 -1.2366795e+00 + 5.6448000e+03 -1.2266795e+00 + 5.6452000e+03 -1.2266795e+00 + 5.6456000e+03 -1.2266795e+00 + 5.6460000e+03 -1.2266795e+00 + 5.6464000e+03 -1.2266795e+00 + 5.6468000e+03 -1.2266795e+00 + 5.6472000e+03 -1.2266795e+00 + 5.6476000e+03 -4.9667949e-01 + 5.6480000e+03 2.8033205e+00 + 5.6484000e+03 2.0133205e+00 + 5.6488000e+03 1.1833205e+00 + 5.6492000e+03 -3.0667949e-01 + 5.6496000e+03 -1.2766795e+00 + 5.6500000e+03 -1.8066795e+00 + 5.6504000e+03 -2.0466795e+00 + 5.6508000e+03 -2.2366795e+00 + 5.6512000e+03 -2.4066795e+00 + 5.6516000e+03 -2.7066795e+00 + 5.6520000e+03 -2.7866795e+00 + 5.6524000e+03 -2.7166795e+00 + 5.6528000e+03 -2.4766795e+00 + 5.6532000e+03 -2.4166795e+00 + 5.6536000e+03 -2.6666795e+00 + 5.6540000e+03 -2.9066795e+00 + 5.6544000e+03 -2.9466795e+00 + 5.6548000e+03 -2.7366795e+00 + 5.6552000e+03 -2.4066795e+00 + 5.6556000e+03 -1.9666795e+00 + 5.6560000e+03 -1.6166795e+00 + 5.6564000e+03 -1.5866795e+00 + 5.6568000e+03 -1.5866795e+00 + 5.6572000e+03 -1.5866795e+00 + 5.6576000e+03 -1.5866795e+00 + 5.6580000e+03 1.1533205e+00 + 5.6584000e+03 2.6033205e+00 + 5.6588000e+03 1.5533205e+00 + 5.6592000e+03 1.1433205e+00 + 5.6596000e+03 1.1233205e+00 + 5.6600000e+03 -2.2667949e-01 + 5.6604000e+03 -6.0667949e-01 + 5.6608000e+03 -2.8667949e-01 + 5.6612000e+03 2.1332051e-01 + 5.6616000e+03 6.6332051e-01 + 5.6620000e+03 7.9332051e-01 + 5.6624000e+03 1.0533205e+00 + 5.6628000e+03 1.2233205e+00 + 5.6632000e+03 1.4333205e+00 + 5.6636000e+03 1.6333205e+00 + 5.6640000e+03 1.7033205e+00 + 5.6644000e+03 1.7133205e+00 + 5.6648000e+03 1.1833205e+00 + 5.6652000e+03 4.6332051e-01 + 5.6656000e+03 -1.0667949e-01 + 5.6660000e+03 -1.0566795e+00 + 5.6664000e+03 -1.3166795e+00 + 5.6668000e+03 -1.3366795e+00 + 5.6672000e+03 -1.7066795e+00 + 5.6676000e+03 -1.8966795e+00 + 5.6680000e+03 -1.7866795e+00 + 5.6684000e+03 -1.4866795e+00 + 5.6688000e+03 -1.0566795e+00 + 5.6692000e+03 -4.8667949e-01 + 5.6696000e+03 6.2332051e-01 + 5.6700000e+03 7.4332051e-01 + 5.6704000e+03 8.3332051e-01 + 5.6708000e+03 6.7332051e-01 + 5.6712000e+03 3.8332051e-01 + 5.6716000e+03 -1.3667949e-01 + 5.6720000e+03 -5.8667949e-01 + 5.6724000e+03 -1.1766795e+00 + 5.6728000e+03 -1.4466795e+00 + 5.6732000e+03 -1.8266795e+00 + 5.6736000e+03 -2.0666795e+00 + 5.6740000e+03 -2.0766795e+00 + 5.6744000e+03 -2.0766795e+00 + 5.6748000e+03 -2.0766795e+00 + 5.6752000e+03 -2.7166795e+00 + 5.6756000e+03 -3.3266795e+00 + 5.6760000e+03 -2.6966795e+00 + 5.6764000e+03 -2.4666795e+00 + 5.6768000e+03 -2.4666795e+00 + 5.6772000e+03 -2.4566795e+00 + 5.6776000e+03 -2.4566795e+00 + 5.6780000e+03 -2.4566795e+00 + 5.6784000e+03 -2.4566795e+00 + 5.6788000e+03 -2.3166795e+00 + 5.6792000e+03 3.2433205e+00 + 5.6796000e+03 2.9933205e+00 + 5.6800000e+03 2.5933205e+00 + 5.6804000e+03 2.1433205e+00 + 5.6808000e+03 1.3633205e+00 + 5.6812000e+03 2.1332051e-01 + 5.6816000e+03 -4.4667949e-01 + 5.6820000e+03 -7.3667949e-01 + 5.6824000e+03 -9.7667949e-01 + 5.6828000e+03 -1.2966795e+00 + 5.6832000e+03 -1.4166795e+00 + 5.6836000e+03 -1.4166795e+00 + 5.6840000e+03 -1.4166795e+00 + 5.6844000e+03 -1.4166795e+00 + 5.6848000e+03 -1.6266795e+00 + 5.6852000e+03 -1.6566795e+00 + 5.6856000e+03 -1.2866795e+00 + 5.6860000e+03 -1.2266795e+00 + 5.6864000e+03 -1.2266795e+00 + 5.6868000e+03 -1.2266795e+00 + 5.6872000e+03 -8.2667949e-01 + 5.6876000e+03 2.3533205e+00 + 5.6880000e+03 2.7433205e+00 + 5.6884000e+03 2.4633205e+00 + 5.6888000e+03 1.8033205e+00 + 5.6892000e+03 9.9332051e-01 + 5.6896000e+03 2.6332051e-01 + 5.6900000e+03 2.3332051e-01 + 5.6904000e+03 2.3332051e-01 + 5.6908000e+03 2.3332051e-01 + 5.6912000e+03 2.3332051e-01 + 5.6916000e+03 2.3332051e-01 + 5.6920000e+03 2.3332051e-01 + 5.6924000e+03 2.3332051e-01 + 5.6928000e+03 2.3332051e-01 + 5.6932000e+03 2.3332051e-01 + 5.6936000e+03 -2.5766795e+00 + 5.6940000e+03 -3.1066795e+00 + 5.6944000e+03 -2.4266795e+00 + 5.6948000e+03 -2.3266795e+00 + 5.6952000e+03 -2.3266795e+00 + 5.6956000e+03 -2.3166795e+00 + 5.6960000e+03 -2.3266795e+00 + 5.6964000e+03 -2.3266795e+00 + 5.6968000e+03 -2.3166795e+00 + 5.6972000e+03 -2.3166795e+00 + 5.6976000e+03 2.0333205e+00 + 5.6980000e+03 3.1933205e+00 + 5.6984000e+03 2.8633205e+00 + 5.6988000e+03 2.8233205e+00 + 5.6992000e+03 2.8033205e+00 + 5.6996000e+03 2.8033205e+00 + 5.7000000e+03 1.8433205e+00 + 5.7004000e+03 -3.6667949e-01 + 5.7008000e+03 -6.7667949e-01 + 5.7012000e+03 -9.8667949e-01 + 5.7016000e+03 -1.4266795e+00 + 5.7020000e+03 -1.7366795e+00 + 5.7024000e+03 -1.6066795e+00 + 5.7028000e+03 -1.6166795e+00 + 5.7032000e+03 -1.6266795e+00 + 5.7036000e+03 -1.7466795e+00 + 5.7040000e+03 -1.9766795e+00 + 5.7044000e+03 -2.2166795e+00 + 5.7048000e+03 -2.0566795e+00 + 5.7052000e+03 -1.5466795e+00 + 5.7056000e+03 -1.4466795e+00 + 5.7060000e+03 -1.4466795e+00 + 5.7064000e+03 -1.4466795e+00 + 5.7068000e+03 -1.4466795e+00 + 5.7072000e+03 -1.4466795e+00 + 5.7076000e+03 -1.4466795e+00 + 5.7080000e+03 5.2733205e+00 + 5.7084000e+03 5.4233205e+00 + 5.7088000e+03 5.3833205e+00 + 5.7092000e+03 5.3833205e+00 + 5.7096000e+03 5.3733205e+00 + 5.7100000e+03 5.3633205e+00 + 5.7104000e+03 5.3633205e+00 + 5.7108000e+03 5.3633205e+00 + 5.7112000e+03 5.3533205e+00 + 5.7116000e+03 5.3533205e+00 + 5.7120000e+03 5.3533205e+00 + 5.7124000e+03 5.3533205e+00 + 5.7128000e+03 5.3433205e+00 + 5.7132000e+03 5.0533205e+00 + 5.7136000e+03 -2.6266795e+00 + 5.7140000e+03 -2.3166795e+00 + 5.7144000e+03 -1.0666795e+00 + 5.7148000e+03 4.6332051e-01 + 5.7152000e+03 1.8433205e+00 + 5.7156000e+03 3.4833205e+00 + 5.7160000e+03 3.5033205e+00 + 5.7164000e+03 2.8433205e+00 + 5.7168000e+03 2.3833205e+00 + 5.7172000e+03 2.1933205e+00 + 5.7176000e+03 2.1033205e+00 + 5.7180000e+03 2.1733205e+00 + 5.7184000e+03 2.1633205e+00 + 5.7188000e+03 2.1433205e+00 + 5.7192000e+03 2.0933205e+00 + 5.7196000e+03 1.5833205e+00 + 5.7200000e+03 1.2533205e+00 + 5.7204000e+03 1.0733205e+00 + 5.7208000e+03 1.0733205e+00 + 5.7212000e+03 1.0733205e+00 + 5.7216000e+03 1.0733205e+00 + 5.7220000e+03 1.0733205e+00 + 5.7224000e+03 1.0733205e+00 + 5.7228000e+03 -2.8266795e+00 + 5.7232000e+03 -3.8866795e+00 + 5.7236000e+03 -3.6366795e+00 + 5.7240000e+03 -3.2266795e+00 + 5.7244000e+03 -2.6466795e+00 + 5.7248000e+03 -1.8666795e+00 + 5.7252000e+03 -1.7966795e+00 + 5.7256000e+03 3.2332051e-01 + 5.7260000e+03 1.3433205e+00 + 5.7264000e+03 1.4133205e+00 + 5.7268000e+03 1.4833205e+00 + 5.7272000e+03 1.7633205e+00 + 5.7276000e+03 2.0933205e+00 + 5.7280000e+03 2.3633205e+00 + 5.7284000e+03 2.0533205e+00 + 5.7288000e+03 1.5833205e+00 + 5.7292000e+03 1.3333205e+00 + 5.7296000e+03 5.8332051e-01 + 5.7300000e+03 2.5332051e-01 + 5.7304000e+03 -1.7667949e-01 + 5.7308000e+03 -6.4667949e-01 + 5.7312000e+03 -7.4667949e-01 + 5.7316000e+03 -7.4667949e-01 + 5.7320000e+03 -7.4667949e-01 + 5.7324000e+03 -7.4667949e-01 + 5.7328000e+03 -7.4667949e-01 + 5.7332000e+03 -1.2866795e+00 + 5.7336000e+03 -2.1566795e+00 + 5.7340000e+03 -1.8466795e+00 + 5.7344000e+03 -1.4766795e+00 + 5.7348000e+03 -1.1166795e+00 + 5.7352000e+03 -1.0666795e+00 + 5.7356000e+03 1.5332051e-01 + 5.7360000e+03 -6.6794872e-03 + 5.7364000e+03 -2.6679487e-02 + 5.7368000e+03 -6.3667949e-01 + 5.7372000e+03 -1.6667949e-01 + 5.7376000e+03 9.5332051e-01 + 5.7380000e+03 2.4233205e+00 + 5.7384000e+03 3.0333205e+00 + 5.7388000e+03 2.9833205e+00 + 5.7392000e+03 2.3733205e+00 + 5.7396000e+03 1.5533205e+00 + 5.7400000e+03 7.1332051e-01 + 5.7404000e+03 2.9332051e-01 + 5.7408000e+03 3.5332051e-01 + 5.7412000e+03 2.4332051e-01 + 5.7416000e+03 2.3320513e-02 + 5.7420000e+03 -1.2667949e-01 + 5.7424000e+03 -4.9667949e-01 + 5.7428000e+03 -7.1667949e-01 + 5.7432000e+03 -9.1667949e-01 + 5.7436000e+03 -1.3266795e+00 + 5.7440000e+03 -1.7066795e+00 + 5.7444000e+03 -1.9166795e+00 + 5.7448000e+03 -2.3166795e+00 + 5.7452000e+03 -2.6766795e+00 + 5.7456000e+03 -2.6766795e+00 + 5.7460000e+03 -2.3566795e+00 + 5.7464000e+03 -1.9666795e+00 + 5.7468000e+03 -1.8566795e+00 + 5.7472000e+03 -1.4866795e+00 + 5.7476000e+03 -1.4666795e+00 + 5.7480000e+03 -1.4966795e+00 + 5.7484000e+03 -1.0566795e+00 + 5.7488000e+03 -6.2667949e-01 + 5.7492000e+03 -6.0667949e-01 + 5.7496000e+03 -6.0667949e-01 + 5.7500000e+03 -6.0667949e-01 + 5.7504000e+03 1.5033205e+00 + 5.7508000e+03 2.5233205e+00 + 5.7512000e+03 2.3733205e+00 + 5.7516000e+03 2.0533205e+00 + 5.7520000e+03 1.7133205e+00 + 5.7524000e+03 1.3733205e+00 + 5.7528000e+03 1.4133205e+00 + 5.7532000e+03 3.3332051e-01 + 5.7536000e+03 -9.6679487e-02 + 5.7540000e+03 -8.4667949e-01 + 5.7544000e+03 -1.1166795e+00 + 5.7548000e+03 -1.6966795e+00 + 5.7552000e+03 -1.8366795e+00 + 5.7556000e+03 -1.8066795e+00 + 5.7560000e+03 -1.8566795e+00 + 5.7564000e+03 -2.1966795e+00 + 5.7568000e+03 -2.4666795e+00 + 5.7572000e+03 -2.5066795e+00 + 5.7576000e+03 -2.4666795e+00 + 5.7580000e+03 -2.2466795e+00 + 5.7584000e+03 -1.7766795e+00 + 5.7588000e+03 -1.2266795e+00 + 5.7592000e+03 -1.0566795e+00 + 5.7596000e+03 -1.0466795e+00 + 5.7600000e+03 -1.6667949e-01 + 5.7604000e+03 3.7633205e+00 + 5.7608000e+03 3.1633205e+00 + 5.7612000e+03 2.0333205e+00 + 5.7616000e+03 1.0833205e+00 + 5.7620000e+03 3.0332051e-01 + 5.7624000e+03 -1.6679487e-02 + 5.7628000e+03 -6.6679487e-02 + 5.7632000e+03 -3.6679487e-02 + 5.7636000e+03 1.8332051e-01 + 5.7640000e+03 5.3320513e-02 + 5.7644000e+03 5.3320513e-02 + 5.7648000e+03 -4.6679487e-02 + 5.7652000e+03 -2.7667949e-01 + 5.7656000e+03 -1.1966795e+00 + 5.7660000e+03 -1.7166795e+00 + 5.7664000e+03 -2.1966795e+00 + 5.7668000e+03 -2.2866795e+00 + 5.7672000e+03 -2.2066795e+00 + 5.7676000e+03 -2.1466795e+00 + 5.7680000e+03 -2.4166795e+00 + 5.7684000e+03 -2.5166795e+00 + 5.7688000e+03 -2.1566795e+00 + 5.7692000e+03 -1.3966795e+00 + 5.7696000e+03 -6.0667949e-01 + 5.7700000e+03 -1.9667949e-01 + 5.7704000e+03 1.4332051e-01 + 5.7708000e+03 1.7332051e-01 + 5.7712000e+03 1.2033205e+00 + 5.7716000e+03 1.5833205e+00 + 5.7720000e+03 1.8333205e+00 + 5.7724000e+03 2.2033205e+00 + 5.7728000e+03 2.6133205e+00 + 5.7732000e+03 3.0733205e+00 + 5.7736000e+03 2.5733205e+00 + 5.7740000e+03 2.4933205e+00 + 5.7744000e+03 2.4833205e+00 + 5.7748000e+03 2.4833205e+00 + 5.7752000e+03 2.4833205e+00 + 5.7756000e+03 2.4833205e+00 + 5.7760000e+03 2.4733205e+00 + 5.7764000e+03 2.4733205e+00 + 5.7768000e+03 2.4733205e+00 + 5.7772000e+03 7.7332051e-01 + 5.7776000e+03 -2.9066795e+00 + 5.7780000e+03 -2.7166795e+00 + 5.7784000e+03 -2.3266795e+00 + 5.7788000e+03 -1.8666795e+00 + 5.7792000e+03 -1.3066795e+00 + 5.7796000e+03 -5.4667949e-01 + 5.7800000e+03 -3.5667949e-01 + 5.7804000e+03 -6.6679487e-02 + 5.7808000e+03 1.7332051e-01 + 5.7812000e+03 -4.6679487e-02 + 5.7816000e+03 -5.6679487e-02 + 5.7820000e+03 -6.6679487e-02 + 5.7824000e+03 -3.3667949e-01 + 5.7828000e+03 -3.8667949e-01 + 5.7832000e+03 -3.8667949e-01 + 5.7836000e+03 -3.4667949e-01 + 5.7840000e+03 -5.2667949e-01 + 5.7844000e+03 -5.3667949e-01 + 5.7848000e+03 -2.4667949e-01 + 5.7852000e+03 2.7332051e-01 + 5.7856000e+03 3.5332051e-01 + 5.7860000e+03 3.6332051e-01 + 5.7864000e+03 3.6332051e-01 + 5.7868000e+03 8.2332051e-01 + 5.7872000e+03 6.3332051e-01 + 5.7876000e+03 2.0332051e-01 + 5.7880000e+03 1.7332051e-01 + 5.7884000e+03 1.6332051e-01 + 5.7888000e+03 1.7332051e-01 + 5.7892000e+03 1.7332051e-01 + 5.7896000e+03 -6.6794872e-03 + 5.7900000e+03 -1.5866795e+00 + 5.7904000e+03 -1.6166795e+00 + 5.7908000e+03 -6.2667949e-01 + 5.7912000e+03 -5.2667949e-01 + 5.7916000e+03 -6.9667949e-01 + 5.7920000e+03 -7.5667949e-01 + 5.7924000e+03 -5.8667949e-01 + 5.7928000e+03 -9.6679487e-02 + 5.7932000e+03 5.3320513e-02 + 5.7936000e+03 5.3320513e-02 + 5.7940000e+03 5.3320513e-02 + 5.7944000e+03 5.3320513e-02 + 5.7948000e+03 9.2332051e-01 + 5.7952000e+03 1.6433205e+00 + 5.7956000e+03 1.4633205e+00 + 5.7960000e+03 8.2332051e-01 + 5.7964000e+03 2.3332051e-01 + 5.7968000e+03 -3.4667949e-01 + 5.7972000e+03 -8.7667949e-01 + 5.7976000e+03 -1.1966795e+00 + 5.7980000e+03 -1.1566795e+00 + 5.7984000e+03 -1.0866795e+00 + 5.7988000e+03 -1.2666795e+00 + 5.7992000e+03 -1.7266795e+00 + 5.7996000e+03 -2.0366795e+00 + 5.8000000e+03 -2.0566795e+00 + 5.8004000e+03 -2.0466795e+00 + 5.8008000e+03 -2.0466795e+00 + 5.8012000e+03 -2.1466795e+00 + 5.8016000e+03 -2.2266795e+00 + 5.8020000e+03 -2.0966795e+00 + 5.8024000e+03 -1.7066795e+00 + 5.8028000e+03 -1.0466795e+00 + 5.8032000e+03 -9.4667949e-01 + 5.8036000e+03 -9.4667949e-01 + 5.8040000e+03 -9.5667949e-01 + 5.8044000e+03 -9.4667949e-01 + 5.8048000e+03 -1.1667949e-01 + 5.8052000e+03 2.7133205e+00 + 5.8056000e+03 2.6633205e+00 + 5.8060000e+03 2.5533205e+00 + 5.8064000e+03 2.1133205e+00 + 5.8068000e+03 2.0533205e+00 + 5.8072000e+03 2.0533205e+00 + 5.8076000e+03 -6.6679487e-02 + 5.8080000e+03 -1.2866795e+00 + 5.8084000e+03 -1.3366795e+00 + 5.8088000e+03 -2.6766795e+00 + 5.8092000e+03 -2.6666795e+00 + 5.8096000e+03 -2.4666795e+00 + 5.8100000e+03 -2.4466795e+00 + 5.8104000e+03 -2.6166795e+00 + 5.8108000e+03 -2.7466795e+00 + 5.8112000e+03 -2.3466795e+00 + 5.8116000e+03 -1.7766795e+00 + 5.8120000e+03 -1.4466795e+00 + 5.8124000e+03 -1.4166795e+00 + 5.8128000e+03 9.3320513e-02 + 5.8132000e+03 2.0833205e+00 + 5.8136000e+03 2.3033205e+00 + 5.8140000e+03 2.6933205e+00 + 5.8144000e+03 2.9933205e+00 + 5.8148000e+03 3.2733205e+00 + 5.8152000e+03 3.5433205e+00 + 5.8156000e+03 3.7533205e+00 + 5.8160000e+03 4.0033205e+00 + 5.8164000e+03 3.8833205e+00 + 5.8168000e+03 3.8633205e+00 + 5.8172000e+03 3.8633205e+00 + 5.8176000e+03 3.8633205e+00 + 5.8180000e+03 3.8633205e+00 + 5.8184000e+03 3.8633205e+00 + 5.8188000e+03 3.8633205e+00 + 5.8192000e+03 3.8533205e+00 + 5.8196000e+03 3.8633205e+00 + 5.8200000e+03 1.3333205e+00 + 5.8204000e+03 -2.5066795e+00 + 5.8208000e+03 -2.0166795e+00 + 5.8212000e+03 -1.8366795e+00 + 5.8216000e+03 -1.7466795e+00 + 5.8220000e+03 -1.3366795e+00 + 5.8224000e+03 -6.9667949e-01 + 5.8228000e+03 4.3320513e-02 + 5.8232000e+03 1.0233205e+00 + 5.8236000e+03 1.9733205e+00 + 5.8240000e+03 3.3433205e+00 + 5.8244000e+03 4.6033205e+00 + 5.8248000e+03 4.7533205e+00 + 5.8252000e+03 4.0133205e+00 + 5.8256000e+03 3.0133205e+00 + 5.8260000e+03 1.4533205e+00 + 5.8264000e+03 7.7332051e-01 + 5.8268000e+03 5.4332051e-01 + 5.8272000e+03 -1.2366795e+00 + 5.8276000e+03 -1.4566795e+00 + 5.8280000e+03 -1.3866795e+00 + 5.8284000e+03 -1.5266795e+00 + 5.8288000e+03 -1.5966795e+00 + 5.8292000e+03 -1.3366795e+00 + 5.8296000e+03 -1.0866795e+00 + 5.8300000e+03 -1.0366795e+00 + 5.8304000e+03 -1.0166795e+00 + 5.8308000e+03 -1.2666795e+00 + 5.8312000e+03 -1.3066795e+00 + 5.8316000e+03 -8.3667949e-01 + 5.8320000e+03 -2.0667949e-01 + 5.8324000e+03 6.1332051e-01 + 5.8328000e+03 1.5533205e+00 + 5.8332000e+03 2.0333205e+00 + 5.8336000e+03 2.2333205e+00 + 5.8340000e+03 2.2933205e+00 + 5.8344000e+03 1.8033205e+00 + 5.8348000e+03 1.1333205e+00 + 5.8352000e+03 1.0533205e+00 + 5.8356000e+03 1.0533205e+00 + 5.8360000e+03 3.4332051e-01 + 5.8364000e+03 -1.8766795e+00 + 5.8368000e+03 -2.0166795e+00 + 5.8372000e+03 -1.6766795e+00 + 5.8376000e+03 -1.2766795e+00 + 5.8380000e+03 -1.2366795e+00 + 5.8384000e+03 -1.1966795e+00 + 5.8388000e+03 -1.4466795e+00 + 5.8392000e+03 -1.8066795e+00 + 5.8396000e+03 -1.6466795e+00 + 5.8400000e+03 -1.1966795e+00 + 5.8404000e+03 -9.7667949e-01 + 5.8408000e+03 -6.2667949e-01 + 5.8412000e+03 -3.5667949e-01 + 5.8416000e+03 2.8332051e-01 + 5.8420000e+03 -7.6679487e-02 + 5.8424000e+03 -4.6667949e-01 + 5.8428000e+03 -4.7667949e-01 + 5.8432000e+03 -6.7667949e-01 + 5.8436000e+03 -1.0466795e+00 + 5.8440000e+03 -1.1766795e+00 + 5.8444000e+03 -1.0066795e+00 + 5.8448000e+03 -6.3667949e-01 + 5.8452000e+03 -1.0667949e-01 + 5.8456000e+03 2.3332051e-01 + 5.8460000e+03 5.1332051e-01 + 5.8464000e+03 7.2332051e-01 + 5.8468000e+03 1.0133205e+00 + 5.8472000e+03 1.3033205e+00 + 5.8476000e+03 1.5333205e+00 + 5.8480000e+03 1.4333205e+00 + 5.8484000e+03 1.4333205e+00 + 5.8488000e+03 1.4733205e+00 + 5.8492000e+03 1.2133205e+00 + 5.8496000e+03 8.7332051e-01 + 5.8500000e+03 1.9332051e-01 + 5.8504000e+03 3.3205128e-03 + 5.8508000e+03 -1.0667949e-01 + 5.8512000e+03 -3.9667949e-01 + 5.8516000e+03 -4.4667949e-01 + 5.8520000e+03 -3.5667949e-01 + 5.8524000e+03 -4.8667949e-01 + 5.8528000e+03 -5.6667949e-01 + 5.8532000e+03 -6.0667949e-01 + 5.8536000e+03 -7.3667949e-01 + 5.8540000e+03 -8.4667949e-01 + 5.8544000e+03 -1.0166795e+00 + 5.8548000e+03 -1.3466795e+00 + 5.8552000e+03 -1.1466795e+00 + 5.8556000e+03 -8.8667949e-01 + 5.8560000e+03 -8.3667949e-01 + 5.8564000e+03 -9.1667949e-01 + 5.8568000e+03 -8.2667949e-01 + 5.8572000e+03 -5.0667949e-01 + 5.8576000e+03 -3.4667949e-01 + 5.8580000e+03 -3.7667949e-01 + 5.8584000e+03 -5.7667949e-01 + 5.8588000e+03 -9.4667949e-01 + 5.8592000e+03 -1.0766795e+00 + 5.8596000e+03 -1.0966795e+00 + 5.8600000e+03 -1.1266795e+00 + 5.8604000e+03 -1.8966795e+00 + 5.8608000e+03 -2.0566795e+00 + 5.8612000e+03 -2.0366795e+00 + 5.8616000e+03 -1.8166795e+00 + 5.8620000e+03 -1.3766795e+00 + 5.8624000e+03 -7.5667949e-01 + 5.8628000e+03 -1.5667949e-01 + 5.8632000e+03 -1.1667949e-01 + 5.8636000e+03 -1.1667949e-01 + 5.8640000e+03 -1.1667949e-01 + 5.8644000e+03 3.0332051e-01 + 5.8648000e+03 1.2333205e+00 + 5.8652000e+03 6.9332051e-01 + 5.8656000e+03 5.8332051e-01 + 5.8660000e+03 -3.4667949e-01 + 5.8664000e+03 -3.5667949e-01 + 5.8668000e+03 -1.5667949e-01 + 5.8672000e+03 -1.3667949e-01 + 5.8676000e+03 2.6332051e-01 + 5.8680000e+03 1.4833205e+00 + 5.8684000e+03 1.6133205e+00 + 5.8688000e+03 8.7332051e-01 + 5.8692000e+03 3.4332051e-01 + 5.8696000e+03 2.3320513e-02 + 5.8700000e+03 -5.6679487e-02 + 5.8704000e+03 2.7332051e-01 + 5.8708000e+03 5.7332051e-01 + 5.8712000e+03 5.8332051e-01 + 5.8716000e+03 5.8332051e-01 + 5.8720000e+03 5.8332051e-01 + 5.8724000e+03 2.9332051e-01 + 5.8728000e+03 -4.6667949e-01 + 5.8732000e+03 -5.6667949e-01 + 5.8736000e+03 -5.6667949e-01 + 5.8740000e+03 -5.6667949e-01 + 5.8744000e+03 -7.0667949e-01 + 5.8748000e+03 -1.6766795e+00 + 5.8752000e+03 -1.8566795e+00 + 5.8756000e+03 -2.0766795e+00 + 5.8760000e+03 -2.2066795e+00 + 5.8764000e+03 -2.2766795e+00 + 5.8768000e+03 -2.2766795e+00 + 5.8772000e+03 -2.2866795e+00 + 5.8776000e+03 -2.2766795e+00 + 5.8780000e+03 -1.5566795e+00 + 5.8784000e+03 -1.3566795e+00 + 5.8788000e+03 -1.3466795e+00 + 5.8792000e+03 -1.3366795e+00 + 5.8796000e+03 -3.5667949e-01 + 5.8800000e+03 -2.3667949e-01 + 5.8804000e+03 5.1332051e-01 + 5.8808000e+03 8.2332051e-01 + 5.8812000e+03 7.5332051e-01 + 5.8816000e+03 3.8332051e-01 + 5.8820000e+03 1.5332051e-01 + 5.8824000e+03 -4.8667949e-01 + 5.8828000e+03 -8.3667949e-01 + 5.8832000e+03 -7.0667949e-01 + 5.8836000e+03 -1.2667949e-01 + 5.8840000e+03 2.3332051e-01 + 5.8844000e+03 1.7033205e+00 + 5.8848000e+03 2.1533205e+00 + 5.8852000e+03 1.9533205e+00 + 5.8856000e+03 1.0533205e+00 + 5.8860000e+03 7.7332051e-01 + 5.8864000e+03 4.0332051e-01 + 5.8868000e+03 -5.1667949e-01 + 5.8872000e+03 -6.7667949e-01 + 5.8876000e+03 -5.2667949e-01 + 5.8880000e+03 -2.1667949e-01 + 5.8884000e+03 4.3320513e-02 + 5.8888000e+03 2.2332051e-01 + 5.8892000e+03 3.0332051e-01 + 5.8896000e+03 7.1332051e-01 + 5.8900000e+03 7.2332051e-01 + 5.8904000e+03 8.0332051e-01 + 5.8908000e+03 8.6332051e-01 + 5.8912000e+03 3.5332051e-01 + 5.8916000e+03 1.1332051e-01 + 5.8920000e+03 8.3320513e-02 + 5.8924000e+03 -6.7667949e-01 + 5.8928000e+03 -1.4866795e+00 + 5.8932000e+03 -2.0566795e+00 + 5.8936000e+03 -2.1666795e+00 + 5.8940000e+03 -2.1366795e+00 + 5.8944000e+03 -1.6266795e+00 + 5.8948000e+03 -1.4566795e+00 + 5.8952000e+03 -1.4266795e+00 + 5.8956000e+03 -1.2766795e+00 + 5.8960000e+03 -1.4166795e+00 + 5.8964000e+03 -1.7166795e+00 + 5.8968000e+03 -1.9866795e+00 + 5.8972000e+03 -1.8766795e+00 + 5.8976000e+03 -1.3766795e+00 + 5.8980000e+03 -9.4667949e-01 + 5.8984000e+03 -6.3667949e-01 + 5.8988000e+03 -3.9667949e-01 + 5.8992000e+03 -3.9667949e-01 + 5.8996000e+03 -3.9667949e-01 + 5.9000000e+03 -3.9667949e-01 + 5.9004000e+03 -3.9667949e-01 + 5.9008000e+03 -3.9667949e-01 + 5.9012000e+03 -3.9667949e-01 + 5.9016000e+03 7.3320513e-02 + 5.9020000e+03 1.1333205e+00 + 5.9024000e+03 8.9332051e-01 + 5.9028000e+03 8.8332051e-01 + 5.9032000e+03 8.3332051e-01 + 5.9036000e+03 -1.0667949e-01 + 5.9040000e+03 -3.6667949e-01 + 5.9044000e+03 -3.7667949e-01 + 5.9048000e+03 -3.7667949e-01 + 5.9052000e+03 -3.7667949e-01 + 5.9056000e+03 -3.7667949e-01 + 5.9060000e+03 -1.6166795e+00 + 5.9064000e+03 -2.0966795e+00 + 5.9068000e+03 -2.0966795e+00 + 5.9072000e+03 -2.0966795e+00 + 5.9076000e+03 -2.0966795e+00 + 5.9080000e+03 -2.0966795e+00 + 5.9084000e+03 -2.0966795e+00 + 5.9088000e+03 7.7332051e-01 + 5.9092000e+03 1.9733205e+00 + 5.9096000e+03 1.6233205e+00 + 5.9100000e+03 1.5933205e+00 + 5.9104000e+03 1.5933205e+00 + 5.9108000e+03 1.1633205e+00 + 5.9112000e+03 -6.6667949e-01 + 5.9116000e+03 -8.8667949e-01 + 5.9120000e+03 -8.9667949e-01 + 5.9124000e+03 -1.0266795e+00 + 5.9128000e+03 -1.2066795e+00 + 5.9132000e+03 -1.4766795e+00 + 5.9136000e+03 -1.7466795e+00 + 5.9140000e+03 -1.6466795e+00 + 5.9144000e+03 -1.4066795e+00 + 5.9148000e+03 -1.1466795e+00 + 5.9152000e+03 -1.0666795e+00 + 5.9156000e+03 -8.6667949e-01 + 5.9160000e+03 -1.2066795e+00 + 5.9164000e+03 -1.4966795e+00 + 5.9168000e+03 -1.5466795e+00 + 5.9172000e+03 -1.3166795e+00 + 5.9176000e+03 -8.2667949e-01 + 5.9180000e+03 -4.8667949e-01 + 5.9184000e+03 -3.6667949e-01 + 5.9188000e+03 -3.8667949e-01 + 5.9192000e+03 -5.0667949e-01 + 5.9196000e+03 -4.7667949e-01 + 5.9200000e+03 -3.7667949e-01 + 5.9204000e+03 -4.4667949e-01 + 5.9208000e+03 -7.6679487e-02 + 5.9212000e+03 5.1332051e-01 + 5.9216000e+03 1.0533205e+00 + 5.9220000e+03 1.3833205e+00 + 5.9224000e+03 1.3233205e+00 + 5.9228000e+03 1.2633205e+00 + 5.9232000e+03 1.0733205e+00 + 5.9236000e+03 7.9332051e-01 + 5.9240000e+03 6.7332051e-01 + 5.9244000e+03 6.7332051e-01 + 5.9248000e+03 6.7332051e-01 + 5.9252000e+03 6.6332051e-01 + 5.9256000e+03 6.7332051e-01 + 5.9260000e+03 6.6332051e-01 + 5.9264000e+03 6.6332051e-01 + 5.9268000e+03 6.7332051e-01 + 5.9272000e+03 6.6332051e-01 + 5.9276000e+03 6.4332051e-01 + 5.9280000e+03 -1.2366795e+00 + 5.9284000e+03 -8.7667949e-01 + 5.9288000e+03 -5.6667949e-01 + 5.9292000e+03 -5.4667949e-01 + 5.9296000e+03 -5.4667949e-01 + 5.9300000e+03 -1.9667949e-01 + 5.9304000e+03 1.5133205e+00 + 5.9308000e+03 1.9833205e+00 + 5.9312000e+03 1.9433205e+00 + 5.9316000e+03 1.9333205e+00 + 5.9320000e+03 1.7533205e+00 + 5.9324000e+03 3.0332051e-01 + 5.9328000e+03 2.0332051e-01 + 5.9332000e+03 -1.6667949e-01 + 5.9336000e+03 -2.0667949e-01 + 5.9340000e+03 -2.0667949e-01 + 5.9344000e+03 -7.3667949e-01 + 5.9348000e+03 -9.8667949e-01 + 5.9352000e+03 -1.0166795e+00 + 5.9356000e+03 -1.4866795e+00 + 5.9360000e+03 -1.5566795e+00 + 5.9364000e+03 -1.5166795e+00 + 5.9368000e+03 -1.5766795e+00 + 5.9372000e+03 -1.9966795e+00 + 5.9376000e+03 -1.9466795e+00 + 5.9380000e+03 -1.6266795e+00 + 5.9384000e+03 -1.5966795e+00 + 5.9388000e+03 -1.3366795e+00 + 5.9392000e+03 -4.9667949e-01 + 5.9396000e+03 -3.6667949e-01 + 5.9400000e+03 2.3320513e-02 + 5.9404000e+03 4.8332051e-01 + 5.9408000e+03 1.0733205e+00 + 5.9412000e+03 1.6733205e+00 + 5.9416000e+03 1.8033205e+00 + 5.9420000e+03 2.0733205e+00 + 5.9424000e+03 1.7233205e+00 + 5.9428000e+03 1.4433205e+00 + 5.9432000e+03 1.4333205e+00 + 5.9436000e+03 1.4233205e+00 + 5.9440000e+03 1.4233205e+00 + 5.9444000e+03 1.4233205e+00 + 5.9448000e+03 1.4233205e+00 + 5.9452000e+03 1.4233205e+00 + 5.9456000e+03 1.4233205e+00 + 5.9460000e+03 1.4233205e+00 + 5.9464000e+03 4.3332051e-01 + 5.9468000e+03 -1.7266795e+00 + 5.9472000e+03 -1.2066795e+00 + 5.9476000e+03 -6.9667949e-01 + 5.9480000e+03 -6.5667949e-01 + 5.9484000e+03 -6.5667949e-01 + 5.9488000e+03 -6.5667949e-01 + 5.9492000e+03 1.8033205e+00 + 5.9496000e+03 2.5433205e+00 + 5.9500000e+03 1.9733205e+00 + 5.9504000e+03 1.8433205e+00 + 5.9508000e+03 1.6933205e+00 + 5.9512000e+03 1.5233205e+00 + 5.9516000e+03 1.2033205e+00 + 5.9520000e+03 6.5332051e-01 + 5.9524000e+03 2.3332051e-01 + 5.9528000e+03 -4.9667949e-01 + 5.9532000e+03 -1.1066795e+00 + 5.9536000e+03 -1.1366795e+00 + 5.9540000e+03 -1.1366795e+00 + 5.9544000e+03 -1.1366795e+00 + 5.9548000e+03 -1.1266795e+00 + 5.9552000e+03 -1.1266795e+00 + 5.9556000e+03 -1.1366795e+00 + 5.9560000e+03 -1.1266795e+00 + 5.9564000e+03 -1.9066795e+00 + 5.9568000e+03 -1.4566795e+00 + 5.9572000e+03 -9.7667949e-01 + 5.9576000e+03 -9.5667949e-01 + 5.9580000e+03 -9.5667949e-01 + 5.9584000e+03 -9.4667949e-01 + 5.9588000e+03 -9.4667949e-01 + 5.9592000e+03 -9.4667949e-01 + 5.9596000e+03 -9.4667949e-01 + 5.9600000e+03 -1.6667949e-01 + 5.9604000e+03 1.6733205e+00 + 5.9608000e+03 2.2433205e+00 + 5.9612000e+03 4.2133205e+00 + 5.9616000e+03 3.5333205e+00 + 5.9620000e+03 -8.2667949e-01 + 5.9624000e+03 -1.2466795e+00 + 5.9628000e+03 -2.1766795e+00 + 5.9632000e+03 -2.9866795e+00 + 5.9636000e+03 -3.4766795e+00 + 5.9640000e+03 -3.5666795e+00 + 5.9644000e+03 -3.3266795e+00 + 5.9648000e+03 -3.0766795e+00 + 5.9652000e+03 -2.8366795e+00 + 5.9656000e+03 -2.1366795e+00 + 5.9660000e+03 -1.2266795e+00 + 5.9664000e+03 -5.2667949e-01 + 5.9668000e+03 -6.6794872e-03 + 5.9672000e+03 5.3320513e-02 + 5.9676000e+03 1.5332051e-01 + 5.9680000e+03 2.2332051e-01 + 5.9684000e+03 6.2332051e-01 + 5.9688000e+03 1.0733205e+00 + 5.9692000e+03 1.3733205e+00 + 5.9696000e+03 1.7233205e+00 + 5.9700000e+03 2.8633205e+00 + 5.9704000e+03 2.8533205e+00 + 5.9708000e+03 2.4233205e+00 + 5.9712000e+03 1.8733205e+00 + 5.9716000e+03 1.7133205e+00 + 5.9720000e+03 3.7332051e-01 + 5.9724000e+03 7.3320513e-02 + 5.9728000e+03 -6.6794872e-03 + 5.9732000e+03 2.3320513e-02 + 5.9736000e+03 2.8332051e-01 + 5.9740000e+03 -5.6679487e-02 + 5.9744000e+03 -5.3667949e-01 + 5.9748000e+03 -8.4667949e-01 + 5.9752000e+03 -9.5667949e-01 + 5.9756000e+03 -8.4667949e-01 + 5.9760000e+03 -6.6667949e-01 + 5.9764000e+03 -6.9667949e-01 + 5.9768000e+03 -8.1667949e-01 + 5.9772000e+03 -1.1666795e+00 + 5.9776000e+03 -1.5866795e+00 + 5.9780000e+03 -2.1266795e+00 + 5.9784000e+03 -2.2366795e+00 + 5.9788000e+03 -2.2066795e+00 + 5.9792000e+03 -2.0466795e+00 + 5.9796000e+03 -1.4766795e+00 + 5.9800000e+03 -7.3667949e-01 + 5.9804000e+03 -3.7667949e-01 + 5.9808000e+03 -2.0667949e-01 + 5.9812000e+03 -1.0667949e-01 + 5.9816000e+03 1.0332051e-01 + 5.9820000e+03 2.0332051e-01 + 5.9824000e+03 1.7332051e-01 + 5.9828000e+03 -6.6794872e-03 + 5.9832000e+03 -2.4667949e-01 + 5.9836000e+03 -5.3667949e-01 + 5.9840000e+03 -6.9667949e-01 + 5.9844000e+03 -8.8667949e-01 + 5.9848000e+03 -1.0566795e+00 + 5.9852000e+03 -8.8667949e-01 + 5.9856000e+03 -7.2667949e-01 + 5.9860000e+03 -4.2667949e-01 + 5.9864000e+03 1.5332051e-01 + 5.9868000e+03 2.4332051e-01 + 5.9872000e+03 2.5332051e-01 + 5.9876000e+03 9.2332051e-01 + 5.9880000e+03 5.5332051e-01 + 5.9884000e+03 2.1332051e-01 + 5.9888000e+03 1.1332051e-01 + 5.9892000e+03 1.9332051e-01 + 5.9896000e+03 2.3332051e-01 + 5.9900000e+03 2.3332051e-01 + 5.9904000e+03 -6.6679487e-02 + 5.9908000e+03 -1.2667949e-01 + 5.9912000e+03 -1.6667949e-01 + 5.9916000e+03 -1.4066795e+00 + 5.9920000e+03 -1.2366795e+00 + 5.9924000e+03 -8.8667949e-01 + 5.9928000e+03 -7.3667949e-01 + 5.9932000e+03 -7.3667949e-01 + 5.9936000e+03 -1.3667949e-01 + 5.9940000e+03 1.2133205e+00 + 5.9944000e+03 6.3332051e-01 + 5.9948000e+03 3.0332051e-01 + 5.9952000e+03 1.1332051e-01 + 5.9956000e+03 1.6332051e-01 + 5.9960000e+03 5.5332051e-01 + 5.9964000e+03 1.2833205e+00 + 5.9968000e+03 1.9033205e+00 + 5.9972000e+03 1.4633205e+00 + 5.9976000e+03 6.3332051e-01 + 5.9980000e+03 -2.5667949e-01 + 5.9984000e+03 -1.0566795e+00 + 5.9988000e+03 -1.1166795e+00 + 5.9992000e+03 -1.1166795e+00 + 5.9996000e+03 2.7553321e+01 + 6.0000000e+03 -1.1166795e+00 + 6.0004000e+03 -1.1366795e+00 + 6.0008000e+03 -2.8866795e+00 + 6.0012000e+03 -3.0366795e+00 + 6.0016000e+03 -3.0366795e+00 + 6.0020000e+03 -2.9566795e+00 + 6.0024000e+03 -2.7466795e+00 + 6.0028000e+03 -2.3166795e+00 + 6.0032000e+03 -1.4166795e+00 + 6.0036000e+03 -5.5667949e-01 + 6.0040000e+03 1.2332051e-01 + 6.0044000e+03 8.3332051e-01 + 6.0048000e+03 1.2133205e+00 + 6.0052000e+03 1.7733205e+00 + 6.0056000e+03 2.8233205e+00 + 6.0060000e+03 3.4733205e+00 + 6.0064000e+03 3.2633205e+00 + 6.0068000e+03 2.5533205e+00 + 6.0072000e+03 1.8033205e+00 + 6.0076000e+03 1.6533205e+00 + 6.0080000e+03 1.6333205e+00 + 6.0084000e+03 1.6033205e+00 + 6.0088000e+03 1.6033205e+00 + 6.0092000e+03 1.6033205e+00 + 6.0096000e+03 1.6033205e+00 + 6.0100000e+03 1.6033205e+00 + 6.0104000e+03 1.6033205e+00 + 6.0108000e+03 1.5033205e+00 + 6.0112000e+03 -1.9466795e+00 + 6.0116000e+03 -1.7366795e+00 + 6.0120000e+03 -1.6666795e+00 + 6.0124000e+03 -1.6666795e+00 + 6.0128000e+03 -1.6666795e+00 + 6.0132000e+03 -1.6666795e+00 + 6.0136000e+03 -1.6566795e+00 + 6.0140000e+03 -1.6566795e+00 + 6.0144000e+03 -1.6466795e+00 + 6.0148000e+03 1.4333205e+00 + 6.0152000e+03 1.6033205e+00 + 6.0156000e+03 1.4533205e+00 + 6.0160000e+03 1.3333205e+00 + 6.0164000e+03 1.3233205e+00 + 6.0168000e+03 -3.3667949e-01 + 6.0172000e+03 -2.1566795e+00 + 6.0176000e+03 -2.4566795e+00 + 6.0180000e+03 -2.4566795e+00 + 6.0184000e+03 -2.4566795e+00 + 6.0188000e+03 -2.5966795e+00 + 6.0192000e+03 -2.9566795e+00 + 6.0196000e+03 -2.7166795e+00 + 6.0200000e+03 -2.5066795e+00 + 6.0204000e+03 -2.4266795e+00 + 6.0208000e+03 -1.6666795e+00 + 6.0212000e+03 -1.1966795e+00 + 6.0216000e+03 -1.0966795e+00 + 6.0220000e+03 -1.0966795e+00 + 6.0224000e+03 -1.0966795e+00 + 6.0228000e+03 -1.0966795e+00 + 6.0232000e+03 -1.0966795e+00 + 6.0236000e+03 -1.0566795e+00 + 6.0240000e+03 2.1332051e-01 + 6.0244000e+03 1.9133205e+00 + 6.0248000e+03 1.3033205e+00 + 6.0252000e+03 6.3332051e-01 + 6.0256000e+03 -1.6679487e-02 + 6.0260000e+03 -4.1667949e-01 + 6.0264000e+03 -2.3667949e-01 + 6.0268000e+03 2.3332051e-01 + 6.0272000e+03 4.2332051e-01 + 6.0276000e+03 4.3332051e-01 + 6.0280000e+03 1.5933205e+00 + 6.0284000e+03 1.5933205e+00 + 6.0288000e+03 9.8332051e-01 + 6.0292000e+03 7.5332051e-01 + 6.0296000e+03 7.4332051e-01 + 6.0300000e+03 7.4332051e-01 + 6.0304000e+03 7.4332051e-01 + 6.0308000e+03 7.4332051e-01 + 6.0312000e+03 7.4332051e-01 + 6.0316000e+03 -1.5966795e+00 + 6.0320000e+03 -2.2166795e+00 + 6.0324000e+03 -2.1366795e+00 + 6.0328000e+03 -2.1266795e+00 + 6.0332000e+03 -1.9066795e+00 + 6.0336000e+03 -1.4566795e+00 + 6.0340000e+03 -1.4266795e+00 + 6.0344000e+03 -1.4266795e+00 + 6.0348000e+03 -1.4266795e+00 + 6.0352000e+03 -1.4266795e+00 + 6.0356000e+03 -1.4266795e+00 + 6.0360000e+03 -1.4166795e+00 + 6.0364000e+03 2.4433205e+00 + 6.0368000e+03 1.2433205e+00 + 6.0372000e+03 -3.9667949e-01 + 6.0376000e+03 -1.5266795e+00 + 6.0380000e+03 -2.1966795e+00 + 6.0384000e+03 -2.5966795e+00 + 6.0388000e+03 -3.1266795e+00 + 6.0392000e+03 -3.1966795e+00 + 6.0396000e+03 -3.2666795e+00 + 6.0400000e+03 -3.1366795e+00 + 6.0404000e+03 -2.9866795e+00 + 6.0408000e+03 -2.6666795e+00 + 6.0412000e+03 -2.2566795e+00 + 6.0416000e+03 -1.6466795e+00 + 6.0420000e+03 -8.0667949e-01 + 6.0424000e+03 -7.6679487e-02 + 6.0428000e+03 4.2332051e-01 + 6.0432000e+03 8.6332051e-01 + 6.0436000e+03 1.3633205e+00 + 6.0440000e+03 1.6633205e+00 + 6.0444000e+03 1.9133205e+00 + 6.0448000e+03 2.0533205e+00 + 6.0452000e+03 2.3833205e+00 + 6.0456000e+03 2.7333205e+00 + 6.0460000e+03 2.8433205e+00 + 6.0464000e+03 2.8533205e+00 + 6.0468000e+03 2.4933205e+00 + 6.0472000e+03 2.1933205e+00 + 6.0476000e+03 2.1733205e+00 + 6.0480000e+03 1.3733205e+00 + 6.0484000e+03 -4.5667949e-01 + 6.0488000e+03 -5.3667949e-01 + 6.0492000e+03 -5.3667949e-01 + 6.0496000e+03 -5.3667949e-01 + 6.0500000e+03 -1.1366795e+00 + 6.0504000e+03 -1.3266795e+00 + 6.0508000e+03 -1.0866795e+00 + 6.0512000e+03 -8.2667949e-01 + 6.0516000e+03 -7.8667949e-01 + 6.0520000e+03 -1.0166795e+00 + 6.0524000e+03 -1.2366795e+00 + 6.0528000e+03 -1.3566795e+00 + 6.0532000e+03 -1.4566795e+00 + 6.0536000e+03 -1.8566795e+00 + 6.0540000e+03 -1.9966795e+00 + 6.0544000e+03 -1.9266795e+00 + 6.0548000e+03 -1.8266795e+00 + 6.0552000e+03 -1.6966795e+00 + 6.0556000e+03 -1.2566795e+00 + 6.0560000e+03 -1.0066795e+00 + 6.0564000e+03 -9.9667949e-01 + 6.0568000e+03 -9.9667949e-01 + 6.0572000e+03 -9.9667949e-01 + 6.0576000e+03 -9.6667949e-01 + 6.0580000e+03 2.1733205e+00 + 6.0584000e+03 2.0933205e+00 + 6.0588000e+03 1.3033205e+00 + 6.0592000e+03 4.8332051e-01 + 6.0596000e+03 1.4332051e-01 + 6.0600000e+03 1.0332051e-01 + 6.0604000e+03 3.3205128e-03 + 6.0608000e+03 -3.6667949e-01 + 6.0612000e+03 -7.1667949e-01 + 6.0616000e+03 -1.4566795e+00 + 6.0620000e+03 -2.1766795e+00 + 6.0624000e+03 -2.2466795e+00 + 6.0628000e+03 -1.7266795e+00 + 6.0632000e+03 -1.2066795e+00 + 6.0636000e+03 -1.0066795e+00 + 6.0640000e+03 -2.6667949e-01 + 6.0644000e+03 9.3320513e-02 + 6.0648000e+03 4.3332051e-01 + 6.0652000e+03 7.1332051e-01 + 6.0656000e+03 7.3332051e-01 + 6.0660000e+03 8.8332051e-01 + 6.0664000e+03 7.8332051e-01 + 6.0668000e+03 7.2332051e-01 + 6.0672000e+03 7.2332051e-01 + 6.0676000e+03 8.9332051e-01 + 6.0680000e+03 1.1333205e+00 + 6.0684000e+03 1.5233205e+00 + 6.0688000e+03 1.1033205e+00 + 6.0692000e+03 5.7332051e-01 + 6.0696000e+03 4.0332051e-01 + 6.0700000e+03 -7.6667949e-01 + 6.0704000e+03 -1.1466795e+00 + 6.0708000e+03 -1.2166795e+00 + 6.0712000e+03 -1.2566795e+00 + 6.0716000e+03 -1.2566795e+00 + 6.0720000e+03 -1.2566795e+00 + 6.0724000e+03 -1.2566795e+00 + 6.0728000e+03 -1.2566795e+00 + 6.0732000e+03 -1.2566795e+00 + 6.0736000e+03 -1.2566795e+00 + 6.0740000e+03 -1.9866795e+00 + 6.0744000e+03 -2.4066795e+00 + 6.0748000e+03 -1.6566795e+00 + 6.0752000e+03 -1.5666795e+00 + 6.0756000e+03 -1.5666795e+00 + 6.0760000e+03 -1.5666795e+00 + 6.0764000e+03 -1.5666795e+00 + 6.0768000e+03 -1.5666795e+00 + 6.0772000e+03 1.3320513e-02 + 6.0776000e+03 2.0133205e+00 + 6.0780000e+03 2.3033205e+00 + 6.0784000e+03 2.1833205e+00 + 6.0788000e+03 1.7233205e+00 + 6.0792000e+03 1.5833205e+00 + 6.0796000e+03 4.0332051e-01 + 6.0800000e+03 1.0332051e-01 + 6.0804000e+03 -6.9667949e-01 + 6.0808000e+03 -1.8266795e+00 + 6.0812000e+03 -1.9966795e+00 + 6.0816000e+03 -1.9566795e+00 + 6.0820000e+03 -1.9666795e+00 + 6.0824000e+03 -1.9466795e+00 + 6.0828000e+03 -1.9566795e+00 + 6.0832000e+03 -2.1366795e+00 + 6.0836000e+03 -2.1766795e+00 + 6.0840000e+03 -1.8066795e+00 + 6.0844000e+03 -1.3966795e+00 + 6.0848000e+03 -6.5667949e-01 + 6.0852000e+03 -3.7667949e-01 + 6.0856000e+03 -3.6667949e-01 + 6.0860000e+03 -3.4667949e-01 + 6.0864000e+03 3.8033205e+00 + 6.0868000e+03 4.7133205e+00 + 6.0872000e+03 3.8033205e+00 + 6.0876000e+03 2.9833205e+00 + 6.0880000e+03 2.4733205e+00 + 6.0884000e+03 2.4233205e+00 + 6.0888000e+03 1.8733205e+00 + 6.0892000e+03 1.8033205e+00 + 6.0896000e+03 1.8033205e+00 + 6.0900000e+03 1.8033205e+00 + 6.0904000e+03 1.8033205e+00 + 6.0908000e+03 1.5233205e+00 + 6.0912000e+03 -4.3466795e+00 + 6.0916000e+03 -4.5966795e+00 + 6.0920000e+03 -4.2466795e+00 + 6.0924000e+03 -4.0366795e+00 + 6.0928000e+03 -3.9966795e+00 + 6.0932000e+03 -3.9166795e+00 + 6.0936000e+03 -2.4066795e+00 + 6.0940000e+03 -2.2366795e+00 + 6.0944000e+03 -2.2366795e+00 + 6.0948000e+03 -2.2366795e+00 + 6.0952000e+03 -2.2366795e+00 + 6.0956000e+03 -2.2366795e+00 + 6.0960000e+03 -1.7066795e+00 + 6.0964000e+03 6.5433205e+00 + 6.0968000e+03 6.6433205e+00 + 6.0972000e+03 6.6333205e+00 + 6.0976000e+03 6.6233205e+00 + 6.0980000e+03 6.6133205e+00 + 6.0984000e+03 6.6033205e+00 + 6.0988000e+03 6.6033205e+00 + 6.0992000e+03 6.6033205e+00 + 6.0996000e+03 6.5933205e+00 + 6.1000000e+03 6.5933205e+00 + 6.1004000e+03 6.5933205e+00 + 6.1008000e+03 6.5933205e+00 + 6.1012000e+03 6.5833205e+00 + 6.1016000e+03 6.5833205e+00 + 6.1020000e+03 6.5833205e+00 + 6.1024000e+03 6.5833205e+00 + 6.1028000e+03 6.5833205e+00 + 6.1032000e+03 6.5833205e+00 + 6.1036000e+03 2.4133205e+00 + 6.1040000e+03 1.6933205e+00 + 6.1044000e+03 2.1533205e+00 + 6.1048000e+03 2.4433205e+00 + 6.1052000e+03 3.1633205e+00 + 6.1056000e+03 3.1533205e+00 + 6.1060000e+03 2.9633205e+00 + 6.1064000e+03 1.8333205e+00 + 6.1068000e+03 1.3533205e+00 + 6.1072000e+03 1.3433205e+00 + 6.1076000e+03 1.3433205e+00 + 6.1080000e+03 -2.0366795e+00 + 6.1084000e+03 -3.1766795e+00 + 6.1088000e+03 -3.5466795e+00 + 6.1092000e+03 -3.4066795e+00 + 6.1096000e+03 -2.8366795e+00 + 6.1100000e+03 -2.2566795e+00 + 6.1104000e+03 -1.7366795e+00 + 6.1108000e+03 -1.1366795e+00 + 6.1112000e+03 -9.8667949e-01 + 6.1116000e+03 -8.5667949e-01 + 6.1120000e+03 -4.7667949e-01 + 6.1124000e+03 -3.8667949e-01 + 6.1128000e+03 -3.6667949e-01 + 6.1132000e+03 -2.8667949e-01 + 6.1136000e+03 -2.4667949e-01 + 6.1140000e+03 1.3320513e-02 + 6.1144000e+03 -1.6679487e-02 + 6.1148000e+03 -2.0667949e-01 + 6.1152000e+03 -3.1667949e-01 + 6.1156000e+03 -2.1667949e-01 + 6.1160000e+03 -1.0667949e-01 + 6.1164000e+03 2.4332051e-01 + 6.1168000e+03 5.5332051e-01 + 6.1172000e+03 4.6332051e-01 + 6.1176000e+03 3.3205128e-03 + 6.1180000e+03 -5.0667949e-01 + 6.1184000e+03 -3.0667949e-01 + 6.1188000e+03 -3.2667949e-01 + 6.1192000e+03 9.3320513e-02 + 6.1196000e+03 4.4332051e-01 + 6.1200000e+03 6.8332051e-01 + 6.1204000e+03 6.8332051e-01 + 6.1208000e+03 5.4332051e-01 + 6.1212000e+03 4.3332051e-01 + 6.1216000e+03 5.0332051e-01 + 6.1220000e+03 4.7332051e-01 + 6.1224000e+03 6.0332051e-01 + 6.1228000e+03 9.4332051e-01 + 6.1232000e+03 1.0233205e+00 + 6.1236000e+03 1.4033205e+00 + 6.1240000e+03 9.9332051e-01 + 6.1244000e+03 2.6332051e-01 + 6.1248000e+03 -2.9667949e-01 + 6.1252000e+03 -3.2667949e-01 + 6.1256000e+03 -1.8066795e+00 + 6.1260000e+03 -2.1266795e+00 + 6.1264000e+03 -1.8966795e+00 + 6.1268000e+03 -1.3466795e+00 + 6.1272000e+03 -1.3766795e+00 + 6.1276000e+03 -1.7166795e+00 + 6.1280000e+03 -1.8166795e+00 + 6.1284000e+03 -1.4466795e+00 + 6.1288000e+03 -5.2667949e-01 + 6.1292000e+03 7.4332051e-01 + 6.1296000e+03 1.1933205e+00 + 6.1300000e+03 1.2733205e+00 + 6.1304000e+03 5.1332051e-01 + 6.1308000e+03 -6.6794872e-03 + 6.1312000e+03 -4.6679487e-02 + 6.1316000e+03 -6.6667949e-01 + 6.1320000e+03 -9.1667949e-01 + 6.1324000e+03 -7.5667949e-01 + 6.1328000e+03 -3.3667949e-01 + 6.1332000e+03 -8.6679487e-02 + 6.1336000e+03 1.0332051e-01 + 6.1340000e+03 -7.5667949e-01 + 6.1344000e+03 -1.6366795e+00 + 6.1348000e+03 -1.9666795e+00 + 6.1352000e+03 -2.0466795e+00 + 6.1356000e+03 -1.9266795e+00 + 6.1360000e+03 -1.8366795e+00 + 6.1364000e+03 -1.3166795e+00 + 6.1368000e+03 -9.2667949e-01 + 6.1372000e+03 -8.3667949e-01 + 6.1376000e+03 -8.1667949e-01 + 6.1380000e+03 4.9332051e-01 + 6.1384000e+03 1.2433205e+00 + 6.1388000e+03 2.1533205e+00 + 6.1392000e+03 3.1033205e+00 + 6.1396000e+03 3.5233205e+00 + 6.1400000e+03 3.2933205e+00 + 6.1404000e+03 2.9733205e+00 + 6.1408000e+03 2.3633205e+00 + 6.1412000e+03 1.8533205e+00 + 6.1416000e+03 1.0333205e+00 + 6.1420000e+03 3.7332051e-01 + 6.1424000e+03 -2.6667949e-01 + 6.1428000e+03 -3.2667949e-01 + 6.1432000e+03 -4.1667949e-01 + 6.1436000e+03 -3.3667949e-01 + 6.1440000e+03 -1.3667949e-01 + 6.1444000e+03 4.6332051e-01 + 6.1448000e+03 3.5332051e-01 + 6.1452000e+03 -4.0667949e-01 + 6.1456000e+03 -4.9667949e-01 + 6.1460000e+03 -4.9667949e-01 + 6.1464000e+03 -4.9667949e-01 + 6.1468000e+03 -4.9667949e-01 + 6.1472000e+03 -4.9667949e-01 + 6.1476000e+03 -2.8566795e+00 + 6.1480000e+03 -2.8766795e+00 + 6.1484000e+03 -2.4566795e+00 + 6.1488000e+03 -2.3966795e+00 + 6.1492000e+03 -2.3866795e+00 + 6.1496000e+03 -6.4667949e-01 + 6.1500000e+03 7.4332051e-01 + 6.1504000e+03 1.2733205e+00 + 6.1508000e+03 1.2233205e+00 + 6.1512000e+03 8.7332051e-01 + 6.1516000e+03 8.2332051e-01 + 6.1520000e+03 8.2332051e-01 + 6.1524000e+03 8.2332051e-01 + 6.1528000e+03 8.0332051e-01 + 6.1532000e+03 8.0332051e-01 + 6.1536000e+03 -5.8667949e-01 + 6.1540000e+03 -8.7667949e-01 + 6.1544000e+03 -3.0667949e-01 + 6.1548000e+03 1.7332051e-01 + 6.1552000e+03 3.6332051e-01 + 6.1556000e+03 4.8332051e-01 + 6.1560000e+03 6.4332051e-01 + 6.1564000e+03 1.2133205e+00 + 6.1568000e+03 1.8533205e+00 + 6.1572000e+03 1.8633205e+00 + 6.1576000e+03 1.7433205e+00 + 6.1580000e+03 1.3333205e+00 + 6.1584000e+03 1.0133205e+00 + 6.1588000e+03 8.5332051e-01 + 6.1592000e+03 9.4332051e-01 + 6.1596000e+03 1.0533205e+00 + 6.1600000e+03 1.1233205e+00 + 6.1604000e+03 9.9332051e-01 + 6.1608000e+03 7.4332051e-01 + 6.1612000e+03 6.1332051e-01 + 6.1616000e+03 6.1332051e-01 + 6.1620000e+03 6.1332051e-01 + 6.1624000e+03 6.1332051e-01 + 6.1628000e+03 6.1332051e-01 + 6.1632000e+03 6.1332051e-01 + 6.1636000e+03 -2.0667949e-01 + 6.1640000e+03 -1.0666795e+00 + 6.1644000e+03 -1.0166795e+00 + 6.1648000e+03 -9.6667949e-01 + 6.1652000e+03 -9.7667949e-01 + 6.1656000e+03 -9.7667949e-01 + 6.1660000e+03 -1.1166795e+00 + 6.1664000e+03 -1.9166795e+00 + 6.1668000e+03 -1.9966795e+00 + 6.1672000e+03 -2.0066795e+00 + 6.1676000e+03 -1.4466795e+00 + 6.1680000e+03 -7.4667949e-01 + 6.1684000e+03 -2.9667949e-01 + 6.1688000e+03 -2.5667949e-01 + 6.1692000e+03 -2.5667949e-01 + 6.1696000e+03 -2.6667949e-01 + 6.1700000e+03 -2.5667949e-01 + 6.1704000e+03 -2.6679487e-02 + 6.1708000e+03 -4.4667949e-01 + 6.1712000e+03 -5.1667949e-01 + 6.1716000e+03 -5.1667949e-01 + 6.1720000e+03 -5.1667949e-01 + 6.1724000e+03 -6.1667949e-01 + 6.1728000e+03 -1.7966795e+00 + 6.1732000e+03 -1.7166795e+00 + 6.1736000e+03 -1.2866795e+00 + 6.1740000e+03 -1.0466795e+00 + 6.1744000e+03 -1.0466795e+00 + 6.1748000e+03 4.5332051e-01 + 6.1752000e+03 7.0332051e-01 + 6.1756000e+03 6.3332051e-01 + 6.1760000e+03 9.9332051e-01 + 6.1764000e+03 1.1133205e+00 + 6.1768000e+03 1.1233205e+00 + 6.1772000e+03 1.4433205e+00 + 6.1776000e+03 2.1233205e+00 + 6.1780000e+03 1.8033205e+00 + 6.1784000e+03 1.6033205e+00 + 6.1788000e+03 1.1733205e+00 + 6.1792000e+03 1.0233205e+00 + 6.1796000e+03 8.7332051e-01 + 6.1800000e+03 7.3332051e-01 + 6.1804000e+03 5.7332051e-01 + 6.1808000e+03 4.0332051e-01 + 6.1812000e+03 3.5332051e-01 + 6.1816000e+03 3.5332051e-01 + 6.1820000e+03 3.5332051e-01 + 6.1824000e+03 3.5332051e-01 + 6.1828000e+03 3.5332051e-01 + 6.1832000e+03 3.6332051e-01 + 6.1836000e+03 3.5332051e-01 + 6.1840000e+03 3.5332051e-01 + 6.1844000e+03 -4.1667949e-01 + 6.1848000e+03 -1.5966795e+00 + 6.1852000e+03 -1.3466795e+00 + 6.1856000e+03 -9.1667949e-01 + 6.1860000e+03 -8.6667949e-01 + 6.1864000e+03 -4.2667949e-01 + 6.1868000e+03 5.5332051e-01 + 6.1872000e+03 7.9332051e-01 + 6.1876000e+03 5.4332051e-01 + 6.1880000e+03 2.2332051e-01 + 6.1884000e+03 7.3320513e-02 + 6.1888000e+03 -2.6667949e-01 + 6.1892000e+03 -6.5667949e-01 + 6.1896000e+03 -7.0667949e-01 + 6.1900000e+03 -8.1667949e-01 + 6.1904000e+03 -8.6667949e-01 + 6.1908000e+03 -8.6667949e-01 + 6.1912000e+03 -8.8667949e-01 + 6.1916000e+03 -7.6667949e-01 + 6.1920000e+03 -5.9667949e-01 + 6.1924000e+03 -5.2667949e-01 + 6.1928000e+03 1.3332051e-01 + 6.1932000e+03 -6.6794872e-03 + 6.1936000e+03 1.3320513e-02 + 6.1940000e+03 5.3332051e-01 + 6.1944000e+03 7.3332051e-01 + 6.1948000e+03 7.4332051e-01 + 6.1952000e+03 8.0332051e-01 + 6.1956000e+03 1.7433205e+00 + 6.1960000e+03 1.8633205e+00 + 6.1964000e+03 1.8333205e+00 + 6.1968000e+03 1.7833205e+00 + 6.1972000e+03 7.0332051e-01 + 6.1976000e+03 -5.6667949e-01 + 6.1980000e+03 -9.4667949e-01 + 6.1984000e+03 -1.9466795e+00 + 6.1988000e+03 -1.9466795e+00 + 6.1992000e+03 -1.8366795e+00 + 6.1996000e+03 -1.4966795e+00 + 6.2000000e+03 -1.2266795e+00 + 6.2004000e+03 -1.0566795e+00 + 6.2008000e+03 -8.3667949e-01 + 6.2012000e+03 -6.9667949e-01 + 6.2016000e+03 -6.9667949e-01 + 6.2020000e+03 -5.5667949e-01 + 6.2024000e+03 -3.3667949e-01 + 6.2028000e+03 -2.7667949e-01 + 6.2032000e+03 1.4332051e-01 + 6.2036000e+03 5.5332051e-01 + 6.2040000e+03 6.1332051e-01 + 6.2044000e+03 2.1332051e-01 + 6.2048000e+03 -2.6667949e-01 + 6.2052000e+03 -3.4667949e-01 + 6.2056000e+03 -1.2466795e+00 + 6.2060000e+03 -1.3466795e+00 + 6.2064000e+03 -1.0566795e+00 + 6.2068000e+03 -6.4667949e-01 + 6.2072000e+03 -3.9667949e-01 + 6.2076000e+03 -3.7667949e-01 + 6.2080000e+03 -3.4667949e-01 + 6.2084000e+03 8.5332051e-01 + 6.2088000e+03 9.4332051e-01 + 6.2092000e+03 6.2332051e-01 + 6.2096000e+03 3.9332051e-01 + 6.2100000e+03 -2.4667949e-01 + 6.2104000e+03 -2.8667949e-01 + 6.2108000e+03 -2.8667949e-01 + 6.2112000e+03 -2.8667949e-01 + 6.2116000e+03 -2.8667949e-01 + 6.2120000e+03 -2.8667949e-01 + 6.2124000e+03 -1.1066795e+00 + 6.2128000e+03 -5.9667949e-01 + 6.2132000e+03 5.5332051e-01 + 6.2136000e+03 1.1033205e+00 + 6.2140000e+03 1.4933205e+00 + 6.2144000e+03 1.5333205e+00 + 6.2148000e+03 1.5033205e+00 + 6.2152000e+03 1.4133205e+00 + 6.2156000e+03 1.2733205e+00 + 6.2160000e+03 9.2332051e-01 + 6.2164000e+03 6.1332051e-01 + 6.2168000e+03 5.9332051e-01 + 6.2172000e+03 5.9332051e-01 + 6.2176000e+03 4.7332051e-01 + 6.2180000e+03 -2.8667949e-01 + 6.2184000e+03 -5.7667949e-01 + 6.2188000e+03 -6.0667949e-01 + 6.2192000e+03 -1.1366795e+00 + 6.2196000e+03 -1.2166795e+00 + 6.2200000e+03 -1.1966795e+00 + 6.2204000e+03 -1.2766795e+00 + 6.2208000e+03 -1.2566795e+00 + 6.2212000e+03 -8.3667949e-01 + 6.2216000e+03 -5.2667949e-01 + 6.2220000e+03 -1.0667949e-01 + 6.2224000e+03 -5.6679487e-02 + 6.2228000e+03 4.3320513e-02 + 6.2232000e+03 1.9332051e-01 + 6.2236000e+03 4.9332051e-01 + 6.2240000e+03 5.2332051e-01 + 6.2244000e+03 5.1332051e-01 + 6.2248000e+03 5.5332051e-01 + 6.2252000e+03 5.8332051e-01 + 6.2256000e+03 5.1332051e-01 + 6.2260000e+03 4.4332051e-01 + 6.2264000e+03 4.3332051e-01 + 6.2268000e+03 4.2332051e-01 + 6.2272000e+03 4.2332051e-01 + 6.2276000e+03 4.3332051e-01 + 6.2280000e+03 4.3332051e-01 + 6.2284000e+03 -2.4667949e-01 + 6.2288000e+03 -2.3466795e+00 + 6.2292000e+03 -1.6266795e+00 + 6.2296000e+03 -1.5266795e+00 + 6.2300000e+03 -1.5266795e+00 + 6.2304000e+03 -1.5166795e+00 + 6.2308000e+03 -1.5166795e+00 + 6.2312000e+03 -1.5166795e+00 + 6.2316000e+03 -1.5166795e+00 + 6.2320000e+03 -4.8667949e-01 + 6.2324000e+03 -3.1667949e-01 + 6.2328000e+03 -4.0667949e-01 + 6.2332000e+03 -7.0667949e-01 + 6.2336000e+03 -6.5667949e-01 + 6.2340000e+03 -6.6667949e-01 + 6.2344000e+03 -6.1667949e-01 + 6.2348000e+03 -4.5667949e-01 + 6.2352000e+03 -5.9667949e-01 + 6.2356000e+03 -4.9667949e-01 + 6.2360000e+03 -8.6679487e-02 + 6.2364000e+03 3.2332051e-01 + 6.2368000e+03 6.1332051e-01 + 6.2372000e+03 8.3332051e-01 + 6.2376000e+03 1.5433205e+00 + 6.2380000e+03 1.0833205e+00 + 6.2384000e+03 1.0133205e+00 + 6.2388000e+03 1.0133205e+00 + 6.2392000e+03 6.0332051e-01 + 6.2396000e+03 2.6332051e-01 + 6.2400000e+03 -7.6679487e-02 + 6.2404000e+03 -5.7667949e-01 + 6.2408000e+03 -6.7667949e-01 + 6.2412000e+03 -7.2667949e-01 + 6.2416000e+03 -7.1667949e-01 + 6.2420000e+03 -2.5667949e-01 + 6.2424000e+03 2.4332051e-01 + 6.2428000e+03 9.2332051e-01 + 6.2432000e+03 1.1533205e+00 + 6.2436000e+03 1.3833205e+00 + 6.2440000e+03 1.6033205e+00 + 6.2444000e+03 1.7933205e+00 + 6.2448000e+03 1.6633205e+00 + 6.2452000e+03 1.0133205e+00 + 6.2456000e+03 9.6332051e-01 + 6.2460000e+03 8.7332051e-01 + 6.2464000e+03 -2.3766795e+00 + 6.2468000e+03 -2.8866795e+00 + 6.2472000e+03 -3.1066795e+00 + 6.2476000e+03 -3.1666795e+00 + 6.2480000e+03 -2.7566795e+00 + 6.2484000e+03 -2.3466795e+00 + 6.2488000e+03 -1.9866795e+00 + 6.2492000e+03 -1.4466795e+00 + 6.2496000e+03 -1.0666795e+00 + 6.2500000e+03 -5.3667949e-01 + 6.2504000e+03 -2.4667949e-01 + 6.2508000e+03 2.8332051e-01 + 6.2512000e+03 8.9332051e-01 + 6.2516000e+03 5.5332051e-01 + 6.2520000e+03 -2.6667949e-01 + 6.2524000e+03 -4.8667949e-01 + 6.2528000e+03 -7.6679487e-02 + 6.2532000e+03 4.6332051e-01 + 6.2536000e+03 9.5332051e-01 + 6.2540000e+03 1.4333205e+00 + 6.2544000e+03 2.0333205e+00 + 6.2548000e+03 2.2433205e+00 + 6.2552000e+03 1.8933205e+00 + 6.2556000e+03 1.2833205e+00 + 6.2560000e+03 5.4332051e-01 + 6.2564000e+03 -1.6667949e-01 + 6.2568000e+03 -6.4667949e-01 + 6.2572000e+03 -7.5667949e-01 + 6.2576000e+03 -7.8667949e-01 + 6.2580000e+03 -5.5667949e-01 + 6.2584000e+03 -2.2667949e-01 + 6.2588000e+03 3.3205128e-03 + 6.2592000e+03 -1.2667949e-01 + 6.2596000e+03 -3.7667949e-01 + 6.2600000e+03 -6.4667949e-01 + 6.2604000e+03 -8.8667949e-01 + 6.2608000e+03 -8.2667949e-01 + 6.2612000e+03 -5.1667949e-01 + 6.2616000e+03 -4.5667949e-01 + 6.2620000e+03 -4.4667949e-01 + 6.2624000e+03 -1.5667949e-01 + 6.2628000e+03 -2.0667949e-01 + 6.2632000e+03 -4.6679487e-02 + 6.2636000e+03 3.3320513e-02 + 6.2640000e+03 5.3320513e-02 + 6.2644000e+03 -8.6679487e-02 + 6.2648000e+03 -1.3667949e-01 + 6.2652000e+03 -3.0667949e-01 + 6.2656000e+03 -4.9667949e-01 + 6.2660000e+03 -4.4667949e-01 + 6.2664000e+03 -4.4667949e-01 + 6.2668000e+03 -6.5667949e-01 + 6.2672000e+03 -9.5667949e-01 + 6.2676000e+03 -1.0666795e+00 + 6.2680000e+03 -1.3166795e+00 + 6.2684000e+03 -1.4666795e+00 + 6.2688000e+03 -1.4766795e+00 + 6.2692000e+03 -1.7166795e+00 + 6.2696000e+03 -1.9166795e+00 + 6.2700000e+03 -1.6166795e+00 + 6.2704000e+03 -1.3666795e+00 + 6.2708000e+03 -1.3366795e+00 + 6.2712000e+03 -7.2667949e-01 + 6.2716000e+03 1.9332051e-01 + 6.2720000e+03 3.7332051e-01 + 6.2724000e+03 3.0332051e-01 + 6.2728000e+03 -2.2667949e-01 + 6.2732000e+03 -4.5667949e-01 + 6.2736000e+03 -5.2667949e-01 + 6.2740000e+03 -2.8667949e-01 + 6.2744000e+03 -7.6679487e-02 + 6.2748000e+03 2.7332051e-01 + 6.2752000e+03 1.5833205e+00 + 6.2756000e+03 1.8533205e+00 + 6.2760000e+03 2.1233205e+00 + 6.2764000e+03 2.2833205e+00 + 6.2768000e+03 2.4133205e+00 + 6.2772000e+03 2.2833205e+00 + 6.2776000e+03 1.6933205e+00 + 6.2780000e+03 1.2933205e+00 + 6.2784000e+03 1.2733205e+00 + 6.2788000e+03 -4.7667949e-01 + 6.2792000e+03 -9.8667949e-01 + 6.2796000e+03 -1.0666795e+00 + 6.2800000e+03 -1.2166795e+00 + 6.2804000e+03 -1.3866795e+00 + 6.2808000e+03 -1.3066795e+00 + 6.2812000e+03 -1.4266795e+00 + 6.2816000e+03 -1.5266795e+00 + 6.2820000e+03 -1.8466795e+00 + 6.2824000e+03 -1.8966795e+00 + 6.2828000e+03 -1.6666795e+00 + 6.2832000e+03 -1.6166795e+00 + 6.2836000e+03 -1.6366795e+00 + 6.2840000e+03 -1.3666795e+00 + 6.2844000e+03 -7.8667949e-01 + 6.2848000e+03 -3.7667949e-01 + 6.2852000e+03 -1.5667949e-01 + 6.2856000e+03 4.3320513e-02 + 6.2860000e+03 1.9332051e-01 + 6.2864000e+03 4.3332051e-01 + 6.2868000e+03 6.9332051e-01 + 6.2872000e+03 3.2332051e-01 + 6.2876000e+03 2.3320513e-02 + 6.2880000e+03 3.3205128e-03 + 6.2884000e+03 1.3320513e-02 + 6.2888000e+03 -5.6667949e-01 + 6.2892000e+03 -8.7667949e-01 + 6.2896000e+03 -8.9667949e-01 + 6.2900000e+03 -9.4667949e-01 + 6.2904000e+03 -9.4667949e-01 + 6.2908000e+03 -9.8667949e-01 + 6.2912000e+03 -1.0766795e+00 + 6.2916000e+03 -7.6667949e-01 + 6.2920000e+03 -3.4667949e-01 + 6.2924000e+03 -2.9667949e-01 + 6.2928000e+03 -2.0667949e-01 + 6.2932000e+03 1.9332051e-01 + 6.2936000e+03 4.6332051e-01 + 6.2940000e+03 1.2133205e+00 + 6.2944000e+03 1.4233205e+00 + 6.2948000e+03 1.4933205e+00 + 6.2952000e+03 1.9533205e+00 + 6.2956000e+03 1.8033205e+00 + 6.2960000e+03 1.6033205e+00 + 6.2964000e+03 1.4833205e+00 + 6.2968000e+03 1.4833205e+00 + 6.2972000e+03 1.4733205e+00 + 6.2976000e+03 1.3332051e-01 + 6.2980000e+03 2.3320513e-02 + 6.2984000e+03 -6.6679487e-02 + 6.2988000e+03 -2.8667949e-01 + 6.2992000e+03 -6.2667949e-01 + 6.2996000e+03 -7.0667949e-01 + 6.3000000e+03 -7.1667949e-01 + 6.3004000e+03 -7.1667949e-01 + 6.3008000e+03 -2.3566795e+00 + 6.3012000e+03 -2.6766795e+00 + 6.3016000e+03 -2.6766795e+00 + 6.3020000e+03 -2.4866795e+00 + 6.3024000e+03 -2.2366795e+00 + 6.3028000e+03 -1.7266795e+00 + 6.3032000e+03 -1.4466795e+00 + 6.3036000e+03 -1.0966795e+00 + 6.3040000e+03 -1.0466795e+00 + 6.3044000e+03 -1.0466795e+00 + 6.3048000e+03 -1.0466795e+00 + 6.3052000e+03 7.3320513e-02 + 6.3056000e+03 1.7733205e+00 + 6.3060000e+03 1.6533205e+00 + 6.3064000e+03 7.8332051e-01 + 6.3068000e+03 1.8332051e-01 + 6.3072000e+03 1.6332051e-01 + 6.3076000e+03 -1.0666795e+00 + 6.3080000e+03 -1.6666795e+00 + 6.3084000e+03 -1.6166795e+00 + 6.3088000e+03 -1.3766795e+00 + 6.3092000e+03 -7.3667949e-01 + 6.3096000e+03 -1.6679487e-02 + 6.3100000e+03 4.3332051e-01 + 6.3104000e+03 8.0332051e-01 + 6.3108000e+03 4.9332051e-01 + 6.3112000e+03 3.3332051e-01 + 6.3116000e+03 2.6332051e-01 + 6.3120000e+03 4.7332051e-01 + 6.3124000e+03 8.5332051e-01 + 6.3128000e+03 1.0233205e+00 + 6.3132000e+03 1.2833205e+00 + 6.3136000e+03 7.3332051e-01 + 6.3140000e+03 1.0332051e-01 + 6.3144000e+03 -2.6667949e-01 + 6.3148000e+03 -4.8667949e-01 + 6.3152000e+03 -4.9667949e-01 + 6.3156000e+03 -4.8667949e-01 + 6.3160000e+03 -5.6667949e-01 + 6.3164000e+03 -6.5667949e-01 + 6.3168000e+03 -6.4667949e-01 + 6.3172000e+03 -3.8667949e-01 + 6.3176000e+03 5.3320513e-02 + 6.3180000e+03 2.6332051e-01 + 6.3184000e+03 2.7332051e-01 + 6.3188000e+03 2.7332051e-01 + 6.3192000e+03 3.8332051e-01 + 6.3196000e+03 5.7332051e-01 + 6.3200000e+03 4.5332051e-01 + 6.3204000e+03 -4.4667949e-01 + 6.3208000e+03 -1.8166795e+00 + 6.3212000e+03 -1.8866795e+00 + 6.3216000e+03 -1.9466795e+00 + 6.3220000e+03 -1.9866795e+00 + 6.3224000e+03 -2.0566795e+00 + 6.3228000e+03 -2.0066795e+00 + 6.3232000e+03 -2.0366795e+00 + 6.3236000e+03 -2.0866795e+00 + 6.3240000e+03 -1.7666795e+00 + 6.3244000e+03 -1.2166795e+00 + 6.3248000e+03 -1.1366795e+00 + 6.3252000e+03 2.0332051e-01 + 6.3256000e+03 9.6332051e-01 + 6.3260000e+03 1.2133205e+00 + 6.3264000e+03 2.4833205e+00 + 6.3268000e+03 2.2333205e+00 + 6.3272000e+03 1.7433205e+00 + 6.3276000e+03 1.6633205e+00 + 6.3280000e+03 5.7332051e-01 + 6.3284000e+03 -2.5667949e-01 + 6.3288000e+03 -7.1667949e-01 + 6.3292000e+03 -7.2667949e-01 + 6.3296000e+03 -1.1566795e+00 + 6.3300000e+03 -1.2966795e+00 + 6.3304000e+03 -9.7667949e-01 + 6.3308000e+03 -5.9667949e-01 + 6.3312000e+03 -5.5667949e-01 + 6.3316000e+03 -5.5667949e-01 + 6.3320000e+03 -5.4667949e-01 + 6.3324000e+03 2.5332051e-01 + 6.3328000e+03 -3.9667949e-01 + 6.3332000e+03 -1.0966795e+00 + 6.3336000e+03 -1.4866795e+00 + 6.3340000e+03 -1.4066795e+00 + 6.3344000e+03 -9.4667949e-01 + 6.3348000e+03 -4.9667949e-01 + 6.3352000e+03 -1.4667949e-01 + 6.3356000e+03 1.9332051e-01 + 6.3360000e+03 5.9332051e-01 + 6.3364000e+03 7.0332051e-01 + 6.3368000e+03 1.9933205e+00 + 6.3372000e+03 2.4333205e+00 + 6.3376000e+03 2.1233205e+00 + 6.3380000e+03 2.3533205e+00 + 6.3384000e+03 2.8633205e+00 + 6.3388000e+03 2.8533205e+00 + 6.3392000e+03 1.7633205e+00 + 6.3396000e+03 3.3320513e-02 + 6.3400000e+03 -2.2667949e-01 + 6.3404000e+03 -3.1667949e-01 + 6.3408000e+03 -3.2966795e+00 + 6.3412000e+03 -3.7966795e+00 + 6.3416000e+03 -3.7866795e+00 + 6.3420000e+03 -3.4266795e+00 + 6.3424000e+03 -2.8866795e+00 + 6.3428000e+03 -2.4466795e+00 + 6.3432000e+03 -1.9866795e+00 + 6.3436000e+03 -1.6366795e+00 + 6.3440000e+03 -1.3266795e+00 + 6.3444000e+03 -9.5667949e-01 + 6.3448000e+03 -5.1667949e-01 + 6.3452000e+03 -1.6679487e-02 + 6.3456000e+03 3.8332051e-01 + 6.3460000e+03 8.4332051e-01 + 6.3464000e+03 7.8332051e-01 + 6.3468000e+03 1.0533205e+00 + 6.3472000e+03 1.3033205e+00 + 6.3476000e+03 1.2633205e+00 + 6.3480000e+03 1.0133205e+00 + 6.3484000e+03 5.7332051e-01 + 6.3488000e+03 1.4332051e-01 + 6.3492000e+03 -1.4667949e-01 + 6.3496000e+03 -5.1667949e-01 + 6.3500000e+03 -6.0667949e-01 + 6.3504000e+03 -4.5667949e-01 + 6.3508000e+03 -8.6679487e-02 + 6.3512000e+03 4.5332051e-01 + 6.3516000e+03 6.1332051e-01 + 6.3520000e+03 6.1332051e-01 + 6.3524000e+03 1.2533205e+00 + 6.3528000e+03 1.2633205e+00 + 6.3532000e+03 8.9332051e-01 + 6.3536000e+03 8.6332051e-01 + 6.3540000e+03 8.6332051e-01 + 6.3544000e+03 4.6332051e-01 + 6.3548000e+03 -9.0667949e-01 + 6.3552000e+03 -2.5166795e+00 + 6.3556000e+03 -2.6766795e+00 + 6.3560000e+03 -2.4166795e+00 + 6.3564000e+03 -1.7266795e+00 + 6.3568000e+03 -1.1466795e+00 + 6.3572000e+03 -5.0667949e-01 + 6.3576000e+03 -4.0667949e-01 + 6.3580000e+03 -4.0667949e-01 + 6.3584000e+03 -4.0667949e-01 + 6.3588000e+03 1.9633205e+00 + 6.3592000e+03 2.2333205e+00 + 6.3596000e+03 1.5933205e+00 + 6.3600000e+03 1.2733205e+00 + 6.3604000e+03 1.2533205e+00 + 6.3608000e+03 1.2533205e+00 + 6.3612000e+03 1.2533205e+00 + 6.3616000e+03 1.2533205e+00 + 6.3620000e+03 1.2533205e+00 + 6.3624000e+03 1.2533205e+00 + 6.3628000e+03 1.2433205e+00 + 6.3632000e+03 1.2533205e+00 + 6.3636000e+03 3.5332051e-01 + 6.3640000e+03 -2.4466795e+00 + 6.3644000e+03 -2.4666795e+00 + 6.3648000e+03 -2.3266795e+00 + 6.3652000e+03 -2.1366795e+00 + 6.3656000e+03 -1.6666795e+00 + 6.3660000e+03 -1.4666795e+00 + 6.3664000e+03 -9.4667949e-01 + 6.3668000e+03 -4.4667949e-01 + 6.3672000e+03 -3.1667949e-01 + 6.3676000e+03 -1.9667949e-01 + 6.3680000e+03 -1.7667949e-01 + 6.3684000e+03 -4.6679487e-02 + 6.3688000e+03 1.5332051e-01 + 6.3692000e+03 3.2332051e-01 + 6.3696000e+03 2.4332051e-01 + 6.3700000e+03 2.8332051e-01 + 6.3704000e+03 6.0332051e-01 + 6.3708000e+03 1.3633205e+00 + 6.3712000e+03 1.9333205e+00 + 6.3716000e+03 2.1033205e+00 + 6.3720000e+03 2.8633205e+00 + 6.3724000e+03 2.7633205e+00 + 6.3728000e+03 2.7333205e+00 + 6.3732000e+03 2.7333205e+00 + 6.3736000e+03 2.7333205e+00 + 6.3740000e+03 2.7333205e+00 + 6.3744000e+03 2.7333205e+00 + 6.3748000e+03 2.5333205e+00 + 6.3752000e+03 -2.0266795e+00 + 6.3756000e+03 -2.4666795e+00 + 6.3760000e+03 -2.4766795e+00 + 6.3764000e+03 -2.4766795e+00 + 6.3768000e+03 -2.3966795e+00 + 6.3772000e+03 -1.9566795e+00 + 6.3776000e+03 -8.1667949e-01 + 6.3780000e+03 1.0332051e-01 + 6.3784000e+03 3.6332051e-01 + 6.3788000e+03 4.6332051e-01 + 6.3792000e+03 7.1332051e-01 + 6.3796000e+03 1.1733205e+00 + 6.3800000e+03 1.6233205e+00 + 6.3804000e+03 2.0833205e+00 + 6.3808000e+03 2.2633205e+00 + 6.3812000e+03 2.0133205e+00 + 6.3816000e+03 1.5533205e+00 + 6.3820000e+03 5.1332051e-01 + 6.3824000e+03 -7.2667949e-01 + 6.3828000e+03 -1.6766795e+00 + 6.3832000e+03 -1.7666795e+00 + 6.3836000e+03 -2.4966795e+00 + 6.3840000e+03 -2.9466795e+00 + 6.3844000e+03 -2.8966795e+00 + 6.3848000e+03 -2.4066795e+00 + 6.3852000e+03 -2.1566795e+00 + 6.3856000e+03 -2.0266795e+00 + 6.3860000e+03 -1.0266795e+00 + 6.3864000e+03 -3.8667949e-01 + 6.3868000e+03 3.5332051e-01 + 6.3872000e+03 7.9332051e-01 + 6.3876000e+03 8.0332051e-01 + 6.3880000e+03 8.0332051e-01 + 6.3884000e+03 1.4233205e+00 + 6.3888000e+03 1.5033205e+00 + 6.3892000e+03 1.4033205e+00 + 6.3896000e+03 6.7332051e-01 + 6.3900000e+03 -7.6679487e-02 + 6.3904000e+03 -6.6679487e-02 + 6.3908000e+03 9.3320513e-02 + 6.3912000e+03 1.2332051e-01 + 6.3916000e+03 -1.0667949e-01 + 6.3920000e+03 -1.4667949e-01 + 6.3924000e+03 -1.2667949e-01 + 6.3928000e+03 -8.6679487e-02 + 6.3932000e+03 -5.6679487e-02 + 6.3936000e+03 -1.9667949e-01 + 6.3940000e+03 -5.2667949e-01 + 6.3944000e+03 -6.9667949e-01 + 6.3948000e+03 -6.9667949e-01 + 6.3952000e+03 -6.9667949e-01 + 6.3956000e+03 -1.5666795e+00 + 6.3960000e+03 -1.6066795e+00 + 6.3964000e+03 -1.7266795e+00 + 6.3968000e+03 -1.5266795e+00 + 6.3972000e+03 -9.6667949e-01 + 6.3976000e+03 -7.1667949e-01 + 6.3980000e+03 -3.1667949e-01 + 6.3984000e+03 -2.6667949e-01 + 6.3988000e+03 -2.6667949e-01 + 6.3992000e+03 -2.6667949e-01 + 6.3996000e+03 1.9332051e-01 + 6.4000000e+03 7.2332051e-01 + 6.4004000e+03 1.0333205e+00 + 6.4008000e+03 1.0433205e+00 + 6.4012000e+03 1.0833205e+00 + 6.4016000e+03 1.1433205e+00 + 6.4020000e+03 1.9332051e-01 + 6.4024000e+03 -7.5667949e-01 + 6.4028000e+03 -1.2366795e+00 + 6.4032000e+03 -1.6166795e+00 + 6.4036000e+03 -1.8766795e+00 + 6.4040000e+03 -1.9466795e+00 + 6.4044000e+03 -1.9566795e+00 + 6.4048000e+03 -2.6766795e+00 + 6.4052000e+03 -2.7666795e+00 + 6.4056000e+03 -2.5166795e+00 + 6.4060000e+03 -1.9766795e+00 + 6.4064000e+03 -1.7166795e+00 + 6.4068000e+03 -1.6266795e+00 + 6.4072000e+03 7.5332051e-01 + 6.4076000e+03 1.6733205e+00 + 6.4080000e+03 1.9033205e+00 + 6.4084000e+03 1.9033205e+00 + 6.4088000e+03 2.0033205e+00 + 6.4092000e+03 1.8033205e+00 + 6.4096000e+03 1.5733205e+00 + 6.4100000e+03 1.2133205e+00 + 6.4104000e+03 1.0133205e+00 + 6.4108000e+03 6.8332051e-01 + 6.4112000e+03 6.2332051e-01 + 6.4116000e+03 -3.5667949e-01 + 6.4120000e+03 -1.2766795e+00 + 6.4124000e+03 -1.1966795e+00 + 6.4128000e+03 -9.1667949e-01 + 6.4132000e+03 -3.3667949e-01 + 6.4136000e+03 -2.0667949e-01 + 6.4140000e+03 -4.0667949e-01 + 6.4144000e+03 -7.8667949e-01 + 6.4148000e+03 -1.4766795e+00 + 6.4152000e+03 -2.0166795e+00 + 6.4156000e+03 -1.7266795e+00 + 6.4160000e+03 -1.4666795e+00 + 6.4164000e+03 -1.1966795e+00 + 6.4168000e+03 -1.9667949e-01 + 6.4172000e+03 3.8332051e-01 + 6.4176000e+03 8.2332051e-01 + 6.4180000e+03 1.3033205e+00 + 6.4184000e+03 1.6533205e+00 + 6.4188000e+03 1.7733205e+00 + 6.4192000e+03 1.9733205e+00 + 6.4196000e+03 4.7332051e-01 + 6.4200000e+03 -2.0667949e-01 + 6.4204000e+03 -1.5666795e+00 + 6.4208000e+03 -2.2566795e+00 + 6.4212000e+03 -2.1766795e+00 + 6.4216000e+03 -1.7666795e+00 + 6.4220000e+03 -1.0866795e+00 + 6.4224000e+03 -7.6679487e-02 + 6.4228000e+03 3.2332051e-01 + 6.4232000e+03 3.7332051e-01 + 6.4236000e+03 1.5332051e-01 + 6.4240000e+03 -2.8667949e-01 + 6.4244000e+03 -5.3667949e-01 + 6.4248000e+03 -1.2566795e+00 + 6.4252000e+03 -1.3066795e+00 + 6.4256000e+03 -5.9667949e-01 + 6.4260000e+03 1.4332051e-01 + 6.4264000e+03 8.6332051e-01 + 6.4268000e+03 1.4433205e+00 + 6.4272000e+03 1.8333205e+00 + 6.4276000e+03 2.1433205e+00 + 6.4280000e+03 1.9833205e+00 + 6.4284000e+03 1.5933205e+00 + 6.4288000e+03 1.3533205e+00 + 6.4292000e+03 1.0333205e+00 + 6.4296000e+03 3.0332051e-01 + 6.4300000e+03 -1.4667949e-01 + 6.4304000e+03 -6.3667949e-01 + 6.4308000e+03 -6.6667949e-01 + 6.4312000e+03 -6.9667949e-01 + 6.4316000e+03 -2.2366795e+00 + 6.4320000e+03 -2.2066795e+00 + 6.4324000e+03 -2.3766795e+00 + 6.4328000e+03 -2.5566795e+00 + 6.4332000e+03 -2.4766795e+00 + 6.4336000e+03 -1.9966795e+00 + 6.4340000e+03 -1.9466795e+00 + 6.4344000e+03 -1.9466795e+00 + 6.4348000e+03 -1.9466795e+00 + 6.4352000e+03 -1.9466795e+00 + 6.4356000e+03 4.9332051e-01 + 6.4360000e+03 1.4233205e+00 + 6.4364000e+03 5.5332051e-01 + 6.4368000e+03 -2.6679487e-02 + 6.4372000e+03 -3.5667949e-01 + 6.4376000e+03 -5.4667949e-01 + 6.4380000e+03 -6.1667949e-01 + 6.4384000e+03 -5.5667949e-01 + 6.4388000e+03 -2.4667949e-01 + 6.4392000e+03 1.7332051e-01 + 6.4396000e+03 5.1332051e-01 + 6.4400000e+03 7.9332051e-01 + 6.4404000e+03 8.2332051e-01 + 6.4408000e+03 5.5332051e-01 + 6.4412000e+03 -5.6679487e-02 + 6.4416000e+03 -3.7667949e-01 + 6.4420000e+03 -4.0667949e-01 + 6.4424000e+03 -3.9667949e-01 + 6.4428000e+03 -1.7566795e+00 + 6.4432000e+03 -2.3466795e+00 + 6.4436000e+03 -2.2166795e+00 + 6.4440000e+03 -1.5566795e+00 + 6.4444000e+03 -1.4966795e+00 + 6.4448000e+03 -1.4866795e+00 + 6.4452000e+03 -1.4866795e+00 + 6.4456000e+03 -1.4866795e+00 + 6.4460000e+03 -1.4866795e+00 + 6.4464000e+03 -1.1066795e+00 + 6.4468000e+03 -7.8667949e-01 + 6.4472000e+03 -5.9667949e-01 + 6.4476000e+03 -5.0667949e-01 + 6.4480000e+03 -5.9667949e-01 + 6.4484000e+03 -6.9667949e-01 + 6.4488000e+03 -4.4667949e-01 + 6.4492000e+03 -5.2667949e-01 + 6.4496000e+03 -4.2667949e-01 + 6.4500000e+03 -1.6679487e-02 + 6.4504000e+03 5.3332051e-01 + 6.4508000e+03 1.0433205e+00 + 6.4512000e+03 1.5733205e+00 + 6.4516000e+03 2.2833205e+00 + 6.4520000e+03 2.5433205e+00 + 6.4524000e+03 2.2433205e+00 + 6.4528000e+03 1.8033205e+00 + 6.4532000e+03 1.6633205e+00 + 6.4536000e+03 1.6533205e+00 + 6.4540000e+03 4.2332051e-01 + 6.4544000e+03 -2.1667949e-01 + 6.4548000e+03 -1.6667949e-01 + 6.4552000e+03 -2.1667949e-01 + 6.4556000e+03 -2.2667949e-01 + 6.4560000e+03 -2.1667949e-01 + 6.4564000e+03 -2.1667949e-01 + 6.4568000e+03 -2.1667949e-01 + 6.4572000e+03 -2.1667949e-01 + 6.4576000e+03 -4.4667949e-01 + 6.4580000e+03 -3.0866795e+00 + 6.4584000e+03 -2.7566795e+00 + 6.4588000e+03 -1.8166795e+00 + 6.4592000e+03 -9.8667949e-01 + 6.4596000e+03 -8.3667949e-01 + 6.4600000e+03 -8.2667949e-01 + 6.4604000e+03 -8.2667949e-01 + 6.4608000e+03 6.9332051e-01 + 6.4612000e+03 2.0833205e+00 + 6.4616000e+03 1.9733205e+00 + 6.4620000e+03 1.6033205e+00 + 6.4624000e+03 1.3033205e+00 + 6.4628000e+03 1.1833205e+00 + 6.4632000e+03 8.3332051e-01 + 6.4636000e+03 -3.0667949e-01 + 6.4640000e+03 -8.0667949e-01 + 6.4644000e+03 -9.8667949e-01 + 6.4648000e+03 -1.1466795e+00 + 6.4652000e+03 -1.3466795e+00 + 6.4656000e+03 -1.6466795e+00 + 6.4660000e+03 -1.6966795e+00 + 6.4664000e+03 -1.6966795e+00 + 6.4668000e+03 -1.6966795e+00 + 6.4672000e+03 -2.3066795e+00 + 6.4676000e+03 -2.2766795e+00 + 6.4680000e+03 -1.7866795e+00 + 6.4684000e+03 -1.1466795e+00 + 6.4688000e+03 -5.1667949e-01 + 6.4692000e+03 1.1332051e-01 + 6.4696000e+03 5.1332051e-01 + 6.4700000e+03 1.1133205e+00 + 6.4704000e+03 1.5933205e+00 + 6.4708000e+03 2.3333205e+00 + 6.4712000e+03 2.7133205e+00 + 6.4716000e+03 2.7533205e+00 + 6.4720000e+03 4.4033205e+00 + 6.4724000e+03 4.5433205e+00 + 6.4728000e+03 3.8633205e+00 + 6.4732000e+03 3.6033205e+00 + 6.4736000e+03 2.0533205e+00 + 6.4740000e+03 6.5332051e-01 + 6.4744000e+03 3.8332051e-01 + 6.4748000e+03 3.8332051e-01 + 6.4752000e+03 3.8332051e-01 + 6.4756000e+03 3.8332051e-01 + 6.4760000e+03 3.8332051e-01 + 6.4764000e+03 3.8332051e-01 + 6.4768000e+03 3.8332051e-01 + 6.4772000e+03 3.8332051e-01 + 6.4776000e+03 -1.0566795e+00 + 6.4780000e+03 -2.9866795e+00 + 6.4784000e+03 -2.4866795e+00 + 6.4788000e+03 -2.6066795e+00 + 6.4792000e+03 -2.6566795e+00 + 6.4796000e+03 -2.2566795e+00 + 6.4800000e+03 -1.7666795e+00 + 6.4804000e+03 -6.6667949e-01 + 6.4808000e+03 8.2332051e-01 + 6.4812000e+03 2.1333205e+00 + 6.4816000e+03 3.2233205e+00 + 6.4820000e+03 4.5833205e+00 + 6.4824000e+03 5.3433205e+00 + 6.4828000e+03 5.5833205e+00 + 6.4832000e+03 5.6733205e+00 + 6.4836000e+03 5.4933205e+00 + 6.4840000e+03 3.4133205e+00 + 6.4844000e+03 -1.8366795e+00 + 6.4848000e+03 -2.7866795e+00 + 6.4852000e+03 -3.2866795e+00 + 6.4856000e+03 -3.2566795e+00 + 6.4860000e+03 -2.6766795e+00 + 6.4864000e+03 -2.6066795e+00 + 6.4868000e+03 -2.7766795e+00 + 6.4872000e+03 -2.8066795e+00 + 6.4876000e+03 -2.4766795e+00 + 6.4880000e+03 -1.9166795e+00 + 6.4884000e+03 -1.3766795e+00 + 6.4888000e+03 -1.2966795e+00 + 6.4892000e+03 -1.2966795e+00 + 6.4896000e+03 1.8033205e+00 + 6.4900000e+03 3.2433205e+00 + 6.4904000e+03 3.3833205e+00 + 6.4908000e+03 3.6133205e+00 + 6.4912000e+03 3.3833205e+00 + 6.4916000e+03 3.3533205e+00 + 6.4920000e+03 3.6833205e+00 + 6.4924000e+03 3.6333205e+00 + 6.4928000e+03 2.8733205e+00 + 6.4932000e+03 1.7233205e+00 + 6.4936000e+03 3.9332051e-01 + 6.4940000e+03 -7.5667949e-01 + 6.4944000e+03 -1.2566795e+00 + 6.4948000e+03 -1.3866795e+00 + 6.4952000e+03 -1.4866795e+00 + 6.4956000e+03 -1.6266795e+00 + 6.4960000e+03 -1.8266795e+00 + 6.4964000e+03 -2.2066795e+00 + 6.4968000e+03 -2.7266795e+00 + 6.4972000e+03 -3.1166795e+00 + 6.4976000e+03 -3.4266795e+00 + 6.4980000e+03 -3.5166795e+00 + 6.4984000e+03 -3.1466795e+00 + 6.4988000e+03 -2.5666795e+00 + 6.4992000e+03 -1.7366795e+00 + 6.4996000e+03 -1.8766795e+00 + 6.5000000e+03 -1.8466795e+00 + 6.5004000e+03 -1.2566795e+00 + 6.5008000e+03 -1.4667949e-01 + 6.5012000e+03 3.0332051e-01 + 6.5016000e+03 6.1332051e-01 + 6.5020000e+03 5.5332051e-01 + 6.5024000e+03 2.4332051e-01 + 6.5028000e+03 -1.9667949e-01 + 6.5032000e+03 -5.2667949e-01 + 6.5036000e+03 -7.0667949e-01 + 6.5040000e+03 -5.1667949e-01 + 6.5044000e+03 -6.6679487e-02 + 6.5048000e+03 2.1332051e-01 + 6.5052000e+03 3.5332051e-01 + 6.5056000e+03 5.2332051e-01 + 6.5060000e+03 4.1332051e-01 + 6.5064000e+03 1.9332051e-01 + 6.5068000e+03 2.1332051e-01 + 6.5072000e+03 4.2332051e-01 + 6.5076000e+03 4.8332051e-01 + 6.5080000e+03 4.9332051e-01 + 6.5084000e+03 4.8332051e-01 + 6.5088000e+03 4.0332051e-01 + 6.5092000e+03 6.6332051e-01 + 6.5096000e+03 7.8332051e-01 + 6.5100000e+03 1.1133205e+00 + 6.5104000e+03 1.2833205e+00 + 6.5108000e+03 1.9833205e+00 + 6.5112000e+03 1.8633205e+00 + 6.5116000e+03 1.5033205e+00 + 6.5120000e+03 1.0433205e+00 + 6.5124000e+03 7.1332051e-01 + 6.5128000e+03 5.5332051e-01 + 6.5132000e+03 2.0332051e-01 + 6.5136000e+03 -5.6679487e-02 + 6.5140000e+03 -2.9667949e-01 + 6.5144000e+03 -6.4667949e-01 + 6.5148000e+03 -1.1966795e+00 + 6.5152000e+03 -1.4166795e+00 + 6.5156000e+03 -2.2866795e+00 + 6.5160000e+03 -3.2066795e+00 + 6.5164000e+03 -3.4766795e+00 + 6.5168000e+03 -3.4466795e+00 + 6.5172000e+03 -2.9966795e+00 + 6.5176000e+03 -2.6766795e+00 + 6.5180000e+03 -2.2366795e+00 + 6.5184000e+03 -1.8766795e+00 + 6.5188000e+03 -1.8766795e+00 + 6.5192000e+03 -1.5366795e+00 + 6.5196000e+03 -6.3667949e-01 + 6.5200000e+03 -6.6667949e-01 + 6.5204000e+03 -8.3667949e-01 + 6.5208000e+03 -9.4667949e-01 + 6.5212000e+03 -1.1966795e+00 + 6.5216000e+03 -1.3266795e+00 + 6.5220000e+03 -1.0166795e+00 + 6.5224000e+03 -9.6679487e-02 + 6.5228000e+03 8.3332051e-01 + 6.5232000e+03 1.5433205e+00 + 6.5236000e+03 1.9033205e+00 + 6.5240000e+03 1.7033205e+00 + 6.5244000e+03 1.2633205e+00 + 6.5248000e+03 1.1733205e+00 + 6.5252000e+03 8.6332051e-01 + 6.5256000e+03 5.0332051e-01 + 6.5260000e+03 1.3332051e-01 + 6.5264000e+03 -6.6794872e-03 + 6.5268000e+03 3.3332051e-01 + 6.5272000e+03 8.6332051e-01 + 6.5276000e+03 8.9332051e-01 + 6.5280000e+03 1.1133205e+00 + 6.5284000e+03 1.4433205e+00 + 6.5288000e+03 1.5833205e+00 + 6.5292000e+03 1.6733205e+00 + 6.5296000e+03 1.7833205e+00 + 6.5300000e+03 1.6233205e+00 + 6.5304000e+03 1.4033205e+00 + 6.5308000e+03 1.0133205e+00 + 6.5312000e+03 6.4332051e-01 + 6.5316000e+03 -2.0667949e-01 + 6.5320000e+03 -5.7667949e-01 + 6.5324000e+03 -7.0667949e-01 + 6.5328000e+03 -1.0866795e+00 + 6.5332000e+03 -1.3166795e+00 + 6.5336000e+03 -1.6666795e+00 + 6.5340000e+03 -1.8666795e+00 + 6.5344000e+03 -1.9466795e+00 + 6.5348000e+03 -1.8966795e+00 + 6.5352000e+03 -1.9566795e+00 + 6.5356000e+03 -1.6166795e+00 + 6.5360000e+03 -1.1266795e+00 + 6.5364000e+03 -6.2667949e-01 + 6.5368000e+03 -4.9667949e-01 + 6.5372000e+03 -6.3667949e-01 + 6.5376000e+03 -1.0366795e+00 + 6.5380000e+03 -1.5566795e+00 + 6.5384000e+03 -1.8666795e+00 + 6.5388000e+03 -1.8866795e+00 + 6.5392000e+03 -3.4766795e+00 + 6.5396000e+03 -3.2866795e+00 + 6.5400000e+03 -2.7966795e+00 + 6.5404000e+03 -2.1166795e+00 + 6.5408000e+03 -1.3866795e+00 + 6.5412000e+03 -4.7667949e-01 + 6.5416000e+03 4.1332051e-01 + 6.5420000e+03 6.5332051e-01 + 6.5424000e+03 1.0033205e+00 + 6.5428000e+03 1.4733205e+00 + 6.5432000e+03 1.8033205e+00 + 6.5436000e+03 1.9933205e+00 + 6.5440000e+03 2.1433205e+00 + 6.5444000e+03 2.1133205e+00 + 6.5448000e+03 2.0433205e+00 + 6.5452000e+03 2.0533205e+00 + 6.5456000e+03 2.1433205e+00 + 6.5460000e+03 2.2333205e+00 + 6.5464000e+03 1.9533205e+00 + 6.5468000e+03 1.6333205e+00 + 6.5472000e+03 1.3633205e+00 + 6.5476000e+03 1.0733205e+00 + 6.5480000e+03 6.7332051e-01 + 6.5484000e+03 2.1332051e-01 + 6.5488000e+03 7.3320513e-02 + 6.5492000e+03 1.0332051e-01 + 6.5496000e+03 2.3332051e-01 + 6.5500000e+03 9.9332051e-01 + 6.5504000e+03 1.6233205e+00 + 6.5508000e+03 1.3033205e+00 + 6.5512000e+03 4.9332051e-01 + 6.5516000e+03 -4.2667949e-01 + 6.5520000e+03 -1.2166795e+00 + 6.5524000e+03 -2.0366795e+00 + 6.5528000e+03 -2.4966795e+00 + 6.5532000e+03 -2.5966795e+00 + 6.5536000e+03 -3.1566795e+00 + 6.5540000e+03 -3.5066795e+00 + 6.5544000e+03 -3.5666795e+00 + 6.5548000e+03 -3.5966795e+00 + 6.5552000e+03 -3.6066795e+00 + 6.5556000e+03 -3.3266795e+00 + 6.5560000e+03 -2.9166795e+00 + 6.5564000e+03 -2.8066795e+00 + 6.5568000e+03 -2.7966795e+00 + 6.5572000e+03 -2.7966795e+00 + 6.5576000e+03 -2.3466795e+00 + 6.5580000e+03 1.2133205e+00 + 6.5584000e+03 1.3633205e+00 + 6.5588000e+03 7.0332051e-01 + 6.5592000e+03 4.9332051e-01 + 6.5596000e+03 -5.7667949e-01 + 6.5600000e+03 -1.1966795e+00 + 6.5604000e+03 -1.2066795e+00 + 6.5608000e+03 -1.4266795e+00 + 6.5612000e+03 -1.4766795e+00 + 6.5616000e+03 -1.0166795e+00 + 6.5620000e+03 -5.0667949e-01 + 6.5624000e+03 1.0332051e-01 + 6.5628000e+03 5.7332051e-01 + 6.5632000e+03 8.9332051e-01 + 6.5636000e+03 9.6332051e-01 + 6.5640000e+03 1.1133205e+00 + 6.5644000e+03 1.3033205e+00 + 6.5648000e+03 1.4033205e+00 + 6.5652000e+03 1.9833205e+00 + 6.5656000e+03 2.1733205e+00 + 6.5660000e+03 1.9233205e+00 + 6.5664000e+03 1.7033205e+00 + 6.5668000e+03 1.3033205e+00 + 6.5672000e+03 1.2333205e+00 + 6.5676000e+03 1.5233205e+00 + 6.5680000e+03 1.6233205e+00 + 6.5684000e+03 1.5733205e+00 + 6.5688000e+03 1.2833205e+00 + 6.5692000e+03 7.1332051e-01 + 6.5696000e+03 3.0332051e-01 + 6.5700000e+03 -1.9667949e-01 + 6.5704000e+03 -5.9667949e-01 + 6.5708000e+03 -8.1667949e-01 + 6.5712000e+03 -1.0666795e+00 + 6.5716000e+03 -2.0766795e+00 + 6.5720000e+03 -2.0266795e+00 + 6.5724000e+03 -1.3966795e+00 + 6.5728000e+03 -1.0666795e+00 + 6.5732000e+03 -1.0666795e+00 + 6.5736000e+03 -1.1266795e+00 + 6.5740000e+03 -1.2466795e+00 + 6.5744000e+03 -1.2466795e+00 + 6.5748000e+03 -2.4166795e+00 + 6.5752000e+03 -2.7166795e+00 + 6.5756000e+03 -2.3766795e+00 + 6.5760000e+03 -1.7566795e+00 + 6.5764000e+03 -1.4866795e+00 + 6.5768000e+03 -1.3266795e+00 + 6.5772000e+03 -9.5667949e-01 + 6.5776000e+03 -6.7667949e-01 + 6.5780000e+03 2.3332051e-01 + 6.5784000e+03 8.0332051e-01 + 6.5788000e+03 1.1833205e+00 + 6.5792000e+03 1.1433205e+00 + 6.5796000e+03 1.2033205e+00 + 6.5800000e+03 1.2333205e+00 + 6.5804000e+03 9.9332051e-01 + 6.5808000e+03 7.6332051e-01 + 6.5812000e+03 5.8332051e-01 + 6.5816000e+03 -2.1667949e-01 + 6.5820000e+03 -1.2667949e-01 + 6.5824000e+03 -2.3667949e-01 + 6.5828000e+03 -6.7667949e-01 + 6.5832000e+03 -9.8667949e-01 + 6.5836000e+03 -1.1566795e+00 + 6.5840000e+03 -1.2866795e+00 + 6.5844000e+03 -1.2066795e+00 + 6.5848000e+03 -7.9667949e-01 + 6.5852000e+03 -4.6667949e-01 + 6.5856000e+03 -1.1667949e-01 + 6.5860000e+03 5.5332051e-01 + 6.5864000e+03 1.1933205e+00 + 6.5868000e+03 2.1033205e+00 + 6.5872000e+03 2.2333205e+00 + 6.5876000e+03 2.2333205e+00 + 6.5880000e+03 2.2333205e+00 + 6.5884000e+03 3.4433205e+00 + 6.5888000e+03 2.1633205e+00 + 6.5892000e+03 1.2933205e+00 + 6.5896000e+03 1.2333205e+00 + 6.5900000e+03 1.2333205e+00 + 6.5904000e+03 1.2333205e+00 + 6.5908000e+03 1.2333205e+00 + 6.5912000e+03 1.2333205e+00 + 6.5916000e+03 1.2333205e+00 + 6.5920000e+03 1.2333205e+00 + 6.5924000e+03 1.2333205e+00 + 6.5928000e+03 -2.5366795e+00 + 6.5932000e+03 -3.8766795e+00 + 6.5936000e+03 -3.3166795e+00 + 6.5940000e+03 -2.3466795e+00 + 6.5944000e+03 -1.6966795e+00 + 6.5948000e+03 -1.4866795e+00 + 6.5952000e+03 -1.0366795e+00 + 6.5956000e+03 1.0332051e-01 + 6.5960000e+03 7.9332051e-01 + 6.5964000e+03 1.1533205e+00 + 6.5968000e+03 1.4933205e+00 + 6.5972000e+03 1.9333205e+00 + 6.5976000e+03 2.4833205e+00 + 6.5980000e+03 2.1533205e+00 + 6.5984000e+03 1.9633205e+00 + 6.5988000e+03 1.7133205e+00 + 6.5992000e+03 -3.3667949e-01 + 6.5996000e+03 -7.3667949e-01 + 6.6000000e+03 -8.1667949e-01 + 6.6004000e+03 -7.8667949e-01 + 6.6008000e+03 -6.5667949e-01 + 6.6012000e+03 -6.4667949e-01 + 6.6016000e+03 -7.1667949e-01 + 6.6020000e+03 -1.2666795e+00 + 6.6024000e+03 -1.4866795e+00 + 6.6028000e+03 -1.5366795e+00 + 6.6032000e+03 -1.5266795e+00 + 6.6036000e+03 -1.5866795e+00 + 6.6040000e+03 -2.1566795e+00 + 6.6044000e+03 -1.9566795e+00 + 6.6048000e+03 -1.4866795e+00 + 6.6052000e+03 -1.4166795e+00 + 6.6056000e+03 -1.4166795e+00 + 6.6060000e+03 -1.4166795e+00 + 6.6064000e+03 -5.9667949e-01 + 6.6068000e+03 2.3533205e+00 + 6.6072000e+03 2.4633205e+00 + 6.6076000e+03 2.5233205e+00 + 6.6080000e+03 2.5733205e+00 + 6.6084000e+03 2.6533205e+00 + 6.6088000e+03 2.8533205e+00 + 6.6092000e+03 2.8833205e+00 + 6.6096000e+03 2.3233205e+00 + 6.6100000e+03 2.1133205e+00 + 6.6104000e+03 2.0933205e+00 + 6.6108000e+03 -5.3667949e-01 + 6.6112000e+03 -9.5667949e-01 + 6.6116000e+03 -1.7966795e+00 + 6.6120000e+03 -2.1966795e+00 + 6.6124000e+03 -2.1966795e+00 + 6.6128000e+03 -2.5766795e+00 + 6.6132000e+03 -2.6766795e+00 + 6.6136000e+03 -2.5866795e+00 + 6.6140000e+03 -2.5466795e+00 + 6.6144000e+03 -2.5366795e+00 + 6.6148000e+03 -2.3366795e+00 + 6.6152000e+03 -2.1366795e+00 + 6.6156000e+03 -2.0966795e+00 + 6.6160000e+03 -1.7266795e+00 + 6.6164000e+03 -1.5466795e+00 + 6.6168000e+03 -7.2667949e-01 + 6.6172000e+03 -2.6679487e-02 + 6.6176000e+03 1.1633205e+00 + 6.6180000e+03 1.8333205e+00 + 6.6184000e+03 2.4533205e+00 + 6.6188000e+03 2.6733205e+00 + 6.6192000e+03 2.3033205e+00 + 6.6196000e+03 1.7333205e+00 + 6.6200000e+03 1.5333205e+00 + 6.6204000e+03 1.4433205e+00 + 6.6208000e+03 1.3633205e+00 + 6.6212000e+03 1.3533205e+00 + 6.6216000e+03 1.3633205e+00 + 6.6220000e+03 6.7332051e-01 + 6.6224000e+03 -1.4466795e+00 + 6.6228000e+03 -1.5366795e+00 + 6.6232000e+03 -1.5366795e+00 + 6.6236000e+03 -3.4466795e+00 + 6.6240000e+03 -3.9666795e+00 + 6.6244000e+03 -3.4166795e+00 + 6.6248000e+03 -3.2166795e+00 + 6.6252000e+03 -3.2166795e+00 + 6.6256000e+03 -3.2066795e+00 + 6.6260000e+03 -3.2066795e+00 + 6.6264000e+03 -3.2066795e+00 + 6.6268000e+03 -3.2066795e+00 + 6.6272000e+03 -3.2066795e+00 + 6.6276000e+03 -3.2066795e+00 + 6.6280000e+03 2.3033205e+00 + 6.6284000e+03 3.3733205e+00 + 6.6288000e+03 3.0933205e+00 + 6.6292000e+03 3.0533205e+00 + 6.6296000e+03 3.0533205e+00 + 6.6300000e+03 3.0533205e+00 + 6.6304000e+03 3.0533205e+00 + 6.6308000e+03 3.0533205e+00 + 6.6312000e+03 3.0533205e+00 + 6.6316000e+03 3.0533205e+00 + 6.6320000e+03 3.0433205e+00 + 6.6324000e+03 6.7332051e-01 + 6.6328000e+03 -1.0966795e+00 + 6.6332000e+03 -7.9667949e-01 + 6.6336000e+03 -7.0667949e-01 + 6.6340000e+03 -1.0666795e+00 + 6.6344000e+03 -1.3166795e+00 + 6.6348000e+03 -1.5266795e+00 + 6.6352000e+03 -1.3466795e+00 + 6.6356000e+03 -1.6366795e+00 + 6.6360000e+03 -1.9266795e+00 + 6.6364000e+03 -2.3366795e+00 + 6.6368000e+03 -2.3566795e+00 + 6.6372000e+03 -1.8266795e+00 + 6.6376000e+03 -1.0666795e+00 + 6.6380000e+03 -4.7667949e-01 + 6.6384000e+03 -4.4667949e-01 + 6.6388000e+03 -4.4667949e-01 + 6.6392000e+03 1.0733205e+00 + 6.6396000e+03 1.5233205e+00 + 6.6400000e+03 1.5333205e+00 + 6.6404000e+03 1.5533205e+00 + 6.6408000e+03 1.4533205e+00 + 6.6412000e+03 9.3332051e-01 + 6.6416000e+03 9.0332051e-01 + 6.6420000e+03 -1.4667949e-01 + 6.6424000e+03 -4.8667949e-01 + 6.6428000e+03 -7.8667949e-01 + 6.6432000e+03 -9.4667949e-01 + 6.6436000e+03 -9.4667949e-01 + 6.6440000e+03 -9.4667949e-01 + 6.6444000e+03 -9.4667949e-01 + 6.6448000e+03 -2.4866795e+00 + 6.6452000e+03 -2.6766795e+00 + 6.6456000e+03 -2.2466795e+00 + 6.6460000e+03 -2.0266795e+00 + 6.6464000e+03 -2.0266795e+00 + 6.6468000e+03 -2.0166795e+00 + 6.6472000e+03 -1.6266795e+00 + 6.6476000e+03 1.2033205e+00 + 6.6480000e+03 1.5033205e+00 + 6.6484000e+03 1.6033205e+00 + 6.6488000e+03 2.4633205e+00 + 6.6492000e+03 5.1133205e+00 + 6.6496000e+03 3.8333205e+00 + 6.6500000e+03 2.9033205e+00 + 6.6504000e+03 2.0833205e+00 + 6.6508000e+03 1.3633205e+00 + 6.6512000e+03 7.3332051e-01 + 6.6516000e+03 -1.7667949e-01 + 6.6520000e+03 -8.0667949e-01 + 6.6524000e+03 -1.3166795e+00 + 6.6528000e+03 -1.9066795e+00 + 6.6532000e+03 -2.5766795e+00 + 6.6536000e+03 -2.9866795e+00 + 6.6540000e+03 -3.0566795e+00 + 6.6544000e+03 -2.9266795e+00 + 6.6548000e+03 -2.7766795e+00 + 6.6552000e+03 -2.4766795e+00 + 6.6556000e+03 -2.3166795e+00 + 6.6560000e+03 -1.9666795e+00 + 6.6564000e+03 -1.3466795e+00 + 6.6568000e+03 -1.2066795e+00 + 6.6572000e+03 -1.2066795e+00 + 6.6576000e+03 -1.2066795e+00 + 6.6580000e+03 -1.1266795e+00 + 6.6584000e+03 4.0332051e-01 + 6.6588000e+03 1.9332051e-01 + 6.6592000e+03 2.3320513e-02 + 6.6596000e+03 -1.5667949e-01 + 6.6600000e+03 -2.5667949e-01 + 6.6604000e+03 -3.7667949e-01 + 6.6608000e+03 -4.9667949e-01 + 6.6612000e+03 -3.5667949e-01 + 6.6616000e+03 -7.6679487e-02 + 6.6620000e+03 1.3332051e-01 + 6.6624000e+03 1.7332051e-01 + 6.6628000e+03 9.3320513e-02 + 6.6632000e+03 -2.6679487e-02 + 6.6636000e+03 3.5332051e-01 + 6.6640000e+03 2.9332051e-01 + 6.6644000e+03 7.3320513e-02 + 6.6648000e+03 -5.4667949e-01 + 6.6652000e+03 -8.4667949e-01 + 6.6656000e+03 -2.7667949e-01 + 6.6660000e+03 2.4332051e-01 + 6.6664000e+03 2.6332051e-01 + 6.6668000e+03 2.9433205e+00 + 6.6672000e+03 4.0033205e+00 + 6.6676000e+03 3.6133205e+00 + 6.6680000e+03 2.8933205e+00 + 6.6684000e+03 1.6933205e+00 + 6.6688000e+03 5.2332051e-01 + 6.6692000e+03 3.0332051e-01 + 6.6696000e+03 -4.2667949e-01 + 6.6700000e+03 -1.6566795e+00 + 6.6704000e+03 -1.8866795e+00 + 6.6708000e+03 -1.9266795e+00 + 6.6712000e+03 -1.9866795e+00 + 6.6716000e+03 -2.1266795e+00 + 6.6720000e+03 -1.9866795e+00 + 6.6724000e+03 -1.3966795e+00 + 6.6728000e+03 -7.7667949e-01 + 6.6732000e+03 -9.1667949e-01 + 6.6736000e+03 -1.5566795e+00 + 6.6740000e+03 -2.1366795e+00 + 6.6744000e+03 -2.0866795e+00 + 6.6748000e+03 -1.8366795e+00 + 6.6752000e+03 -1.6966795e+00 + 6.6756000e+03 -1.6566795e+00 + 6.6760000e+03 -1.2066795e+00 + 6.6764000e+03 -1.2667949e-01 + 6.6768000e+03 5.3320513e-02 + 6.6772000e+03 6.8332051e-01 + 6.6776000e+03 8.8332051e-01 + 6.6780000e+03 3.5332051e-01 + 6.6784000e+03 -3.2667949e-01 + 6.6788000e+03 -8.7667949e-01 + 6.6792000e+03 -1.3466795e+00 + 6.6796000e+03 -1.2966795e+00 + 6.6800000e+03 -1.1566795e+00 + 6.6804000e+03 -1.0366795e+00 + 6.6808000e+03 -7.0667949e-01 + 6.6812000e+03 -2.1667949e-01 + 6.6816000e+03 1.3320513e-02 + 6.6820000e+03 3.5332051e-01 + 6.6824000e+03 7.4332051e-01 + 6.6828000e+03 1.9533205e+00 + 6.6832000e+03 2.1233205e+00 + 6.6836000e+03 1.6333205e+00 + 6.6840000e+03 1.5733205e+00 + 6.6844000e+03 1.8033205e+00 + 6.6848000e+03 1.8033205e+00 + 6.6852000e+03 1.8533205e+00 + 6.6856000e+03 1.4733205e+00 + 6.6860000e+03 1.1533205e+00 + 6.6864000e+03 8.5332051e-01 + 6.6868000e+03 5.5332051e-01 + 6.6872000e+03 3.0332051e-01 + 6.6876000e+03 7.3320513e-02 + 6.6880000e+03 -5.6667949e-01 + 6.6884000e+03 -1.1366795e+00 + 6.6888000e+03 -1.4066795e+00 + 6.6892000e+03 -1.5466795e+00 + 6.6896000e+03 -1.7666795e+00 + 6.6900000e+03 -1.9766795e+00 + 6.6904000e+03 -2.0666795e+00 + 6.6908000e+03 -2.1966795e+00 + 6.6912000e+03 -2.2066795e+00 + 6.6916000e+03 -1.9466795e+00 + 6.6920000e+03 -1.5666795e+00 + 6.6924000e+03 -1.2166795e+00 + 6.6928000e+03 -8.1667949e-01 + 6.6932000e+03 -4.8667949e-01 + 6.6936000e+03 -9.6679487e-02 + 6.6940000e+03 2.5332051e-01 + 6.6944000e+03 4.3320513e-02 + 6.6948000e+03 -2.0667949e-01 + 6.6952000e+03 -3.5667949e-01 + 6.6956000e+03 -1.2966795e+00 + 6.6960000e+03 -1.4966795e+00 + 6.6964000e+03 -1.5066795e+00 + 6.6968000e+03 -1.9766795e+00 + 6.6972000e+03 -1.7166795e+00 + 6.6976000e+03 -1.2466795e+00 + 6.6980000e+03 -3.2667949e-01 + 6.6984000e+03 4.8332051e-01 + 6.6988000e+03 6.7332051e-01 + 6.6992000e+03 6.8332051e-01 + 6.6996000e+03 1.8333205e+00 + 6.7000000e+03 1.5233205e+00 + 6.7004000e+03 1.2433205e+00 + 6.7008000e+03 8.6332051e-01 + 6.7012000e+03 9.0332051e-01 + 6.7016000e+03 1.3533205e+00 + 6.7020000e+03 1.4333205e+00 + 6.7024000e+03 1.8033205e+00 + 6.7028000e+03 1.8033205e+00 + 6.7032000e+03 1.6833205e+00 + 6.7036000e+03 1.4333205e+00 + 6.7040000e+03 1.1333205e+00 + 6.7044000e+03 9.1332051e-01 + 6.7048000e+03 7.5332051e-01 + 6.7052000e+03 7.4332051e-01 + 6.7056000e+03 7.4332051e-01 + 6.7060000e+03 7.4332051e-01 + 6.7064000e+03 7.4332051e-01 + 6.7068000e+03 7.4332051e-01 + 6.7072000e+03 7.4332051e-01 + 6.7076000e+03 7.4332051e-01 + 6.7080000e+03 7.4332051e-01 + 6.7084000e+03 -1.9667949e-01 + 6.7088000e+03 -2.6066795e+00 + 6.7092000e+03 -2.1266795e+00 + 6.7096000e+03 -1.5366795e+00 + 6.7100000e+03 -1.3466795e+00 + 6.7104000e+03 -1.1466795e+00 + 6.7108000e+03 -9.8667949e-01 + 6.7112000e+03 -9.4667949e-01 + 6.7116000e+03 -8.6667949e-01 + 6.7120000e+03 -4.4667949e-01 + 6.7124000e+03 -1.6667949e-01 + 6.7128000e+03 2.7332051e-01 + 6.7132000e+03 6.8332051e-01 + 6.7136000e+03 7.5332051e-01 + 6.7140000e+03 7.2332051e-01 + 6.7144000e+03 5.5332051e-01 + 6.7148000e+03 2.5332051e-01 + 6.7152000e+03 3.3205128e-03 + 6.7156000e+03 -1.1667949e-01 + 6.7160000e+03 -1.2667949e-01 + 6.7164000e+03 -6.2667949e-01 + 6.7168000e+03 -8.2667949e-01 + 6.7172000e+03 -8.9667949e-01 + 6.7176000e+03 -7.3667949e-01 + 6.7180000e+03 -5.8667949e-01 + 6.7184000e+03 -6.6667949e-01 + 6.7188000e+03 -5.2667949e-01 + 6.7192000e+03 -5.6679487e-02 + 6.7196000e+03 2.3320513e-02 + 6.7200000e+03 3.3320513e-02 + 6.7204000e+03 3.3320513e-02 + 6.7208000e+03 3.3320513e-02 + 6.7212000e+03 9.3320513e-02 + 6.7216000e+03 1.3733205e+00 + 6.7220000e+03 8.8332051e-01 + 6.7224000e+03 8.3332051e-01 + 6.7228000e+03 7.6332051e-01 + 6.7232000e+03 4.7332051e-01 + 6.7236000e+03 4.6332051e-01 + 6.7240000e+03 3.6332051e-01 + 6.7244000e+03 -1.2667949e-01 + 6.7248000e+03 -4.0667949e-01 + 6.7252000e+03 -7.2667949e-01 + 6.7256000e+03 -1.3066795e+00 + 6.7260000e+03 -1.5966795e+00 + 6.7264000e+03 -1.6566795e+00 + 6.7268000e+03 -1.5866795e+00 + 6.7272000e+03 -1.4166795e+00 + 6.7276000e+03 -1.0766795e+00 + 6.7280000e+03 -5.5667949e-01 + 6.7284000e+03 -4.7667949e-01 + 6.7288000e+03 -7.6667949e-01 + 6.7292000e+03 -8.4667949e-01 + 6.7296000e+03 -1.1066795e+00 + 6.7300000e+03 -1.2066795e+00 + 6.7304000e+03 -4.2667949e-01 + 6.7308000e+03 -6.6794872e-03 + 6.7312000e+03 9.3320513e-02 + 6.7316000e+03 3.8332051e-01 + 6.7320000e+03 5.3320513e-02 + 6.7324000e+03 -9.6679487e-02 + 6.7328000e+03 -1.0667949e-01 + 6.7332000e+03 -3.3667949e-01 + 6.7336000e+03 -9.4667949e-01 + 6.7340000e+03 -1.0266795e+00 + 6.7344000e+03 -1.0266795e+00 + 6.7348000e+03 -7.8667949e-01 + 6.7352000e+03 -7.6667949e-01 + 6.7356000e+03 -8.4667949e-01 + 6.7360000e+03 -5.5667949e-01 + 6.7364000e+03 -1.1667949e-01 + 6.7368000e+03 -7.6679487e-02 + 6.7372000e+03 -7.6679487e-02 + 6.7376000e+03 -7.6679487e-02 + 6.7380000e+03 -7.6679487e-02 + 6.7384000e+03 1.0533205e+00 + 6.7388000e+03 1.3733205e+00 + 6.7392000e+03 1.0733205e+00 + 6.7396000e+03 8.5332051e-01 + 6.7400000e+03 8.9332051e-01 + 6.7404000e+03 8.0332051e-01 + 6.7408000e+03 6.4332051e-01 + 6.7412000e+03 4.3332051e-01 + 6.7416000e+03 2.0332051e-01 + 6.7420000e+03 1.5332051e-01 + 6.7424000e+03 3.4332051e-01 + 6.7428000e+03 5.2332051e-01 + 6.7432000e+03 5.1332051e-01 + 6.7436000e+03 5.1332051e-01 + 6.7440000e+03 -1.7166795e+00 + 6.7444000e+03 -2.3766795e+00 + 6.7448000e+03 -2.2166795e+00 + 6.7452000e+03 -2.2066795e+00 + 6.7456000e+03 -2.1466795e+00 + 6.7460000e+03 -2.5667949e-01 + 6.7464000e+03 5.3320513e-02 + 6.7468000e+03 1.2332051e-01 + 6.7472000e+03 -2.0667949e-01 + 6.7476000e+03 -3.1667949e-01 + 6.7480000e+03 1.1332051e-01 + 6.7484000e+03 2.3332051e-01 + 6.7488000e+03 5.3320513e-02 + 6.7492000e+03 -1.9667949e-01 + 6.7496000e+03 -1.3667949e-01 + 6.7500000e+03 -3.1667949e-01 + 6.7504000e+03 -4.4667949e-01 + 6.7508000e+03 -8.6667949e-01 + 6.7512000e+03 -1.8166795e+00 + 6.7516000e+03 -2.7466795e+00 + 6.7520000e+03 -3.2866795e+00 + 6.7524000e+03 -3.2166795e+00 + 6.7528000e+03 -2.6266795e+00 + 6.7532000e+03 -2.2766795e+00 + 6.7536000e+03 -2.2166795e+00 + 6.7540000e+03 -1.7166795e+00 + 6.7544000e+03 1.1833205e+00 + 6.7548000e+03 1.3533205e+00 + 6.7552000e+03 1.4033205e+00 + 6.7556000e+03 1.5933205e+00 + 6.7560000e+03 1.9533205e+00 + 6.7564000e+03 2.2033205e+00 + 6.7568000e+03 2.4433205e+00 + 6.7572000e+03 2.8233205e+00 + 6.7576000e+03 3.3933205e+00 + 6.7580000e+03 3.1833205e+00 + 6.7584000e+03 2.7833205e+00 + 6.7588000e+03 2.7633205e+00 + 6.7592000e+03 2.7633205e+00 + 6.7596000e+03 2.7633205e+00 + 6.7600000e+03 2.7633205e+00 + 6.7604000e+03 2.7633205e+00 + 6.7608000e+03 2.7533205e+00 + 6.7612000e+03 2.7633205e+00 + 6.7616000e+03 2.7633205e+00 + 6.7620000e+03 2.0033205e+00 + 6.7624000e+03 -1.7566795e+00 + 6.7628000e+03 -2.5066795e+00 + 6.7632000e+03 -2.5666795e+00 + 6.7636000e+03 -2.8166795e+00 + 6.7640000e+03 -3.0266795e+00 + 6.7644000e+03 -2.9866795e+00 + 6.7648000e+03 -2.9766795e+00 + 6.7652000e+03 -1.2366795e+00 + 6.7656000e+03 1.2833205e+00 + 6.7660000e+03 1.6633205e+00 + 6.7664000e+03 1.7733205e+00 + 6.7668000e+03 1.7533205e+00 + 6.7672000e+03 1.4933205e+00 + 6.7676000e+03 1.1833205e+00 + 6.7680000e+03 1.1633205e+00 + 6.7684000e+03 -1.0667949e-01 + 6.7688000e+03 -1.0366795e+00 + 6.7692000e+03 -1.1966795e+00 + 6.7696000e+03 -1.4466795e+00 + 6.7700000e+03 -1.5966795e+00 + 6.7704000e+03 -1.5966795e+00 + 6.7708000e+03 -1.4666795e+00 + 6.7712000e+03 -1.2766795e+00 + 6.7716000e+03 -1.1066795e+00 + 6.7720000e+03 -1.0166795e+00 + 6.7724000e+03 -9.4667949e-01 + 6.7728000e+03 -8.5667949e-01 + 6.7732000e+03 -7.8667949e-01 + 6.7736000e+03 -4.2667949e-01 + 6.7740000e+03 -1.9667949e-01 + 6.7744000e+03 3.3320513e-02 + 6.7748000e+03 1.9332051e-01 + 6.7752000e+03 5.8332051e-01 + 6.7756000e+03 1.2233205e+00 + 6.7760000e+03 1.6133205e+00 + 6.7764000e+03 1.4333205e+00 + 6.7768000e+03 1.0233205e+00 + 6.7772000e+03 7.2332051e-01 + 6.7776000e+03 7.2332051e-01 + 6.7780000e+03 8.0332051e-01 + 6.7784000e+03 7.6332051e-01 + 6.7788000e+03 8.4332051e-01 + 6.7792000e+03 1.1133205e+00 + 6.7796000e+03 1.2933205e+00 + 6.7800000e+03 1.4833205e+00 + 6.7804000e+03 1.7133205e+00 + 6.7808000e+03 1.2333205e+00 + 6.7812000e+03 8.2332051e-01 + 6.7816000e+03 -1.3666795e+00 + 6.7820000e+03 -2.1666795e+00 + 6.7824000e+03 -2.2766795e+00 + 6.7828000e+03 -1.9066795e+00 + 6.7832000e+03 -1.3766795e+00 + 6.7836000e+03 -6.6667949e-01 + 6.7840000e+03 -8.2667949e-01 + 6.7844000e+03 -1.1366795e+00 + 6.7848000e+03 -1.5566795e+00 + 6.7852000e+03 -1.6466795e+00 + 6.7856000e+03 -1.5766795e+00 + 6.7860000e+03 -1.3666795e+00 + 6.7864000e+03 -1.3666795e+00 + 6.7868000e+03 -1.1566795e+00 + 6.7872000e+03 -9.7667949e-01 + 6.7876000e+03 -9.4667949e-01 + 6.7880000e+03 -7.0667949e-01 + 6.7884000e+03 -3.5667949e-01 + 6.7888000e+03 -5.6679487e-02 + 6.7892000e+03 4.3320513e-02 + 6.7896000e+03 5.1332051e-01 + 6.7900000e+03 6.8332051e-01 + 6.7904000e+03 5.1332051e-01 + 6.7908000e+03 4.8332051e-01 + 6.7912000e+03 5.0332051e-01 + 6.7916000e+03 1.9332051e-01 + 6.7920000e+03 -3.6679487e-02 + 6.7924000e+03 -1.6667949e-01 + 6.7928000e+03 -1.7667949e-01 + 6.7932000e+03 -1.9667949e-01 + 6.7936000e+03 -2.2667949e-01 + 6.7940000e+03 -4.0667949e-01 + 6.7944000e+03 -6.2667949e-01 + 6.7948000e+03 -3.9667949e-01 + 6.7952000e+03 -9.6679487e-02 + 6.7956000e+03 4.1332051e-01 + 6.7960000e+03 1.0733205e+00 + 6.7964000e+03 1.9533205e+00 + 6.7968000e+03 1.3933205e+00 + 6.7972000e+03 4.7332051e-01 + 6.7976000e+03 -4.6679487e-02 + 6.7980000e+03 -5.4667949e-01 + 6.7984000e+03 -7.9667949e-01 + 6.7988000e+03 -8.0667949e-01 + 6.7992000e+03 -2.6679487e-02 + 6.7996000e+03 -6.6794872e-03 + 6.8000000e+03 -6.6794872e-03 + 6.8004000e+03 -8.6679487e-02 + 6.8008000e+03 -1.3066795e+00 + 6.8012000e+03 -1.2266795e+00 + 6.8016000e+03 -1.0066795e+00 + 6.8020000e+03 -7.8667949e-01 + 6.8024000e+03 -7.3667949e-01 + 6.8028000e+03 -5.0667949e-01 + 6.8032000e+03 -3.6679487e-02 + 6.8036000e+03 1.2332051e-01 + 6.8040000e+03 3.6332051e-01 + 6.8044000e+03 3.2332051e-01 + 6.8048000e+03 4.8332051e-01 + 6.8052000e+03 8.0332051e-01 + 6.8056000e+03 1.1433205e+00 + 6.8060000e+03 1.4133205e+00 + 6.8064000e+03 1.8333205e+00 + 6.8068000e+03 1.9433205e+00 + 6.8072000e+03 1.8233205e+00 + 6.8076000e+03 1.8033205e+00 + 6.8080000e+03 1.8033205e+00 + 6.8084000e+03 1.8033205e+00 + 6.8088000e+03 1.8033205e+00 + 6.8092000e+03 1.8033205e+00 + 6.8096000e+03 1.8033205e+00 + 6.8100000e+03 1.8033205e+00 + 6.8104000e+03 1.8033205e+00 + 6.8108000e+03 1.7133205e+00 + 6.8112000e+03 -1.2066795e+00 + 6.8116000e+03 -1.0366795e+00 + 6.8120000e+03 -5.5667949e-01 + 6.8124000e+03 -3.3667949e-01 + 6.8128000e+03 -3.3667949e-01 + 6.8132000e+03 -3.3667949e-01 + 6.8136000e+03 -3.2667949e-01 + 6.8140000e+03 -3.2667949e-01 + 6.8144000e+03 1.4533205e+00 + 6.8148000e+03 5.0933205e+00 + 6.8152000e+03 4.4833205e+00 + 6.8156000e+03 3.8233205e+00 + 6.8160000e+03 3.7833205e+00 + 6.8164000e+03 3.7833205e+00 + 6.8168000e+03 3.7733205e+00 + 6.8172000e+03 3.7733205e+00 + 6.8176000e+03 3.7733205e+00 + 6.8180000e+03 3.7733205e+00 + 6.8184000e+03 3.7733205e+00 + 6.8188000e+03 3.7733205e+00 + 6.8192000e+03 3.7733205e+00 + 6.8196000e+03 3.7733205e+00 + 6.8200000e+03 1.5933205e+00 + 6.8204000e+03 -3.2166795e+00 + 6.8208000e+03 -2.2866795e+00 + 6.8212000e+03 -2.0066795e+00 + 6.8216000e+03 -1.9966795e+00 + 6.8220000e+03 -1.9966795e+00 + 6.8224000e+03 -1.9866795e+00 + 6.8228000e+03 -1.9866795e+00 + 6.8232000e+03 -1.9866795e+00 + 6.8236000e+03 -1.6166795e+00 + 6.8240000e+03 3.2633205e+00 + 6.8244000e+03 3.4433205e+00 + 6.8248000e+03 3.0233205e+00 + 6.8252000e+03 2.7233205e+00 + 6.8256000e+03 2.7033205e+00 + 6.8260000e+03 2.7033205e+00 + 6.8264000e+03 2.7033205e+00 + 6.8268000e+03 2.7033205e+00 + 6.8272000e+03 2.7033205e+00 + 6.8276000e+03 2.7033205e+00 + 6.8280000e+03 2.7033205e+00 + 6.8284000e+03 2.7033205e+00 + 6.8288000e+03 2.7033205e+00 + 6.8292000e+03 2.7033205e+00 + 6.8296000e+03 2.7033205e+00 + 6.8300000e+03 1.5733205e+00 + 6.8304000e+03 -1.8066795e+00 + 6.8308000e+03 -2.5066795e+00 + 6.8312000e+03 -2.4466795e+00 + 6.8316000e+03 -1.7666795e+00 + 6.8320000e+03 -1.1466795e+00 + 6.8324000e+03 -1.0466795e+00 + 6.8328000e+03 -1.0466795e+00 + 6.8332000e+03 -1.0466795e+00 + 6.8336000e+03 -1.0466795e+00 + 6.8340000e+03 -1.0466795e+00 + 6.8344000e+03 -1.0366795e+00 + 6.8348000e+03 -1.0366795e+00 + 6.8352000e+03 -1.0366795e+00 + 6.8356000e+03 4.7332051e-01 + 6.8360000e+03 1.4133205e+00 + 6.8364000e+03 1.1633205e+00 + 6.8368000e+03 9.9332051e-01 + 6.8372000e+03 9.1332051e-01 + 6.8376000e+03 9.1332051e-01 + 6.8380000e+03 9.1332051e-01 + 6.8384000e+03 9.1332051e-01 + 6.8388000e+03 9.0332051e-01 + 6.8392000e+03 9.0332051e-01 + 6.8396000e+03 -2.2666795e+00 + 6.8400000e+03 -3.7766795e+00 + 6.8404000e+03 -3.5766795e+00 + 6.8408000e+03 -3.0966795e+00 + 6.8412000e+03 -3.0066795e+00 + 6.8416000e+03 -2.9966795e+00 + 6.8420000e+03 -2.9966795e+00 + 6.8424000e+03 -2.9966795e+00 + 6.8428000e+03 -2.9966795e+00 + 6.8432000e+03 -2.9866795e+00 + 6.8436000e+03 -2.9866795e+00 + 6.8440000e+03 4.2332051e-01 + 6.8444000e+03 6.8332051e-01 + 6.8448000e+03 3.5332051e-01 + 6.8452000e+03 1.8332051e-01 + 6.8456000e+03 2.9332051e-01 + 6.8460000e+03 6.4332051e-01 + 6.8464000e+03 1.4133205e+00 + 6.8468000e+03 1.4733205e+00 + 6.8472000e+03 1.2333205e+00 + 6.8476000e+03 7.0332051e-01 + 6.8480000e+03 3.5332051e-01 + 6.8484000e+03 5.3320513e-02 + 6.8488000e+03 -2.8667949e-01 + 6.8492000e+03 -5.0667949e-01 + 6.8496000e+03 -7.2667949e-01 + 6.8500000e+03 -8.5667949e-01 + 6.8504000e+03 -1.0766795e+00 + 6.8508000e+03 -1.1766795e+00 + 6.8512000e+03 -2.2966795e+00 + 6.8516000e+03 -2.6666795e+00 + 6.8520000e+03 -2.6966795e+00 + 6.8524000e+03 -2.6966795e+00 + 6.8528000e+03 -2.6966795e+00 + 6.8532000e+03 -2.6966795e+00 + 6.8536000e+03 -2.6966795e+00 + 6.8540000e+03 -2.6366795e+00 + 6.8544000e+03 -2.2266795e+00 + 6.8548000e+03 -2.2066795e+00 + 6.8552000e+03 -2.1766795e+00 + 6.8556000e+03 1.7233205e+00 + 6.8560000e+03 2.1633205e+00 + 6.8564000e+03 2.2533205e+00 + 6.8568000e+03 2.1533205e+00 + 6.8572000e+03 1.9533205e+00 + 6.8576000e+03 1.4633205e+00 + 6.8580000e+03 1.1833205e+00 + 6.8584000e+03 1.1533205e+00 + 6.8588000e+03 1.1533205e+00 + 6.8592000e+03 -1.3667949e-01 + 6.8596000e+03 -7.5667949e-01 + 6.8600000e+03 -1.4966795e+00 + 6.8604000e+03 -1.7266795e+00 + 6.8608000e+03 -1.7366795e+00 + 6.8612000e+03 -1.5266795e+00 + 6.8616000e+03 -1.3666795e+00 + 6.8620000e+03 -1.3966795e+00 + 6.8624000e+03 -1.4066795e+00 + 6.8628000e+03 -1.2766795e+00 + 6.8632000e+03 -1.1966795e+00 + 6.8636000e+03 -1.1666795e+00 + 6.8640000e+03 -9.4667949e-01 + 6.8644000e+03 -7.2667949e-01 + 6.8648000e+03 -6.4667949e-01 + 6.8652000e+03 -2.4667949e-01 + 6.8656000e+03 1.3332051e-01 + 6.8660000e+03 4.8332051e-01 + 6.8664000e+03 9.5332051e-01 + 6.8668000e+03 1.1733205e+00 + 6.8672000e+03 1.1933205e+00 + 6.8676000e+03 1.3433205e+00 + 6.8680000e+03 1.3833205e+00 + 6.8684000e+03 9.6332051e-01 + 6.8688000e+03 6.9332051e-01 + 6.8692000e+03 6.8332051e-01 + 6.8696000e+03 6.8332051e-01 + 6.8700000e+03 6.7332051e-01 + 6.8704000e+03 6.8332051e-01 + 6.8708000e+03 6.7332051e-01 + 6.8712000e+03 -9.4667949e-01 + 6.8716000e+03 -3.7166795e+00 + 6.8720000e+03 -3.8966795e+00 + 6.8724000e+03 -3.7266795e+00 + 6.8728000e+03 -3.6166795e+00 + 6.8732000e+03 -3.4066795e+00 + 6.8736000e+03 -3.3066795e+00 + 6.8740000e+03 -3.2966795e+00 + 6.8744000e+03 -3.2966795e+00 + 6.8748000e+03 -3.2966795e+00 + 6.8752000e+03 -3.2966795e+00 + 6.8756000e+03 -3.2966795e+00 + 6.8760000e+03 -3.2966795e+00 + 6.8764000e+03 -2.5466795e+00 + 6.8768000e+03 4.1533205e+00 + 6.8772000e+03 4.7933205e+00 + 6.8776000e+03 4.7033205e+00 + 6.8780000e+03 4.3533205e+00 + 6.8784000e+03 4.1833205e+00 + 6.8788000e+03 2.8033205e+00 + 6.8792000e+03 1.7333205e+00 + 6.8796000e+03 1.0333205e+00 + 6.8800000e+03 8.2332051e-01 + 6.8804000e+03 -3.0667949e-01 + 6.8808000e+03 -5.2667949e-01 + 6.8812000e+03 -7.0667949e-01 + 6.8816000e+03 -7.5667949e-01 + 6.8820000e+03 -7.6667949e-01 + 6.8824000e+03 -7.6667949e-01 + 6.8828000e+03 -7.5667949e-01 + 6.8832000e+03 -7.5667949e-01 + 6.8836000e+03 -7.5667949e-01 + 6.8840000e+03 -7.5667949e-01 + 6.8844000e+03 -7.5667949e-01 + 6.8848000e+03 -1.7966795e+00 + 6.8852000e+03 -2.6366795e+00 + 6.8856000e+03 -2.4166795e+00 + 6.8860000e+03 -1.6066795e+00 + 6.8864000e+03 -6.1667949e-01 + 6.8868000e+03 -1.7667949e-01 + 6.8872000e+03 -1.4667949e-01 + 6.8876000e+03 -1.4667949e-01 + 6.8880000e+03 -1.4667949e-01 + 6.8884000e+03 1.0933205e+00 + 6.8888000e+03 2.3033205e+00 + 6.8892000e+03 1.5533205e+00 + 6.8896000e+03 3.4332051e-01 + 6.8900000e+03 -4.2667949e-01 + 6.8904000e+03 -8.4667949e-01 + 6.8908000e+03 -5.4667949e-01 + 6.8912000e+03 -2.3667949e-01 + 6.8916000e+03 -5.5667949e-01 + 6.8920000e+03 -1.0766795e+00 + 6.8924000e+03 -1.6266795e+00 + 6.8928000e+03 -1.6966795e+00 + 6.8932000e+03 -1.6966795e+00 + 6.8936000e+03 -1.7866795e+00 + 6.8940000e+03 -2.2066795e+00 + 6.8944000e+03 -2.1466795e+00 + 6.8948000e+03 -2.0566795e+00 + 6.8952000e+03 -1.7566795e+00 + 6.8956000e+03 -1.6466795e+00 + 6.8960000e+03 -1.6466795e+00 + 6.8964000e+03 -1.6466795e+00 + 6.8968000e+03 -1.6466795e+00 + 6.8972000e+03 -1.6466795e+00 + 6.8976000e+03 -1.6466795e+00 + 6.8980000e+03 -1.6466795e+00 + 6.8984000e+03 -1.6466795e+00 + 6.8988000e+03 1.1533205e+00 + 6.8992000e+03 5.2433205e+00 + 6.8996000e+03 5.1533205e+00 + 6.9000000e+03 5.1433205e+00 + 6.9004000e+03 5.1333205e+00 + 6.9008000e+03 5.1333205e+00 + 6.9012000e+03 5.1333205e+00 + 6.9016000e+03 5.1333205e+00 + 6.9020000e+03 5.1233205e+00 + 6.9024000e+03 5.1233205e+00 + 6.9028000e+03 5.1133205e+00 + 6.9032000e+03 5.1233205e+00 + 6.9036000e+03 5.1133205e+00 + 6.9040000e+03 5.1133205e+00 + 6.9044000e+03 5.0733205e+00 + 6.9048000e+03 -1.8866795e+00 + 6.9052000e+03 -2.4066795e+00 + 6.9056000e+03 -1.9766795e+00 + 6.9060000e+03 -4.4667949e-01 + 6.9064000e+03 1.9332051e-01 + 6.9068000e+03 6.4332051e-01 + 6.9072000e+03 6.9332051e-01 + 6.9076000e+03 1.4633205e+00 + 6.9080000e+03 1.5333205e+00 + 6.9084000e+03 1.5433205e+00 + 6.9088000e+03 1.5433205e+00 + 6.9092000e+03 1.3933205e+00 + 6.9096000e+03 8.8332051e-01 + 6.9100000e+03 2.7332051e-01 + 6.9104000e+03 -1.9667949e-01 + 6.9108000e+03 -1.1166795e+00 + 6.9112000e+03 -1.5266795e+00 + 6.9116000e+03 -1.5366795e+00 + 6.9120000e+03 -1.5166795e+00 + 6.9124000e+03 -1.5566795e+00 + 6.9128000e+03 -1.6266795e+00 + 6.9132000e+03 -1.9266795e+00 + 6.9136000e+03 -1.9166795e+00 + 6.9140000e+03 -1.4166795e+00 + 6.9144000e+03 -1.1166795e+00 + 6.9148000e+03 -1.1066795e+00 + 6.9152000e+03 -1.1066795e+00 + 6.9156000e+03 -1.1066795e+00 + 6.9160000e+03 5.4332051e-01 + 6.9164000e+03 2.0233205e+00 + 6.9168000e+03 1.6833205e+00 + 6.9172000e+03 1.6433205e+00 + 6.9176000e+03 1.5533205e+00 + 6.9180000e+03 1.0233205e+00 + 6.9184000e+03 3.3332051e-01 + 6.9188000e+03 -8.6679487e-02 + 6.9192000e+03 -1.0667949e-01 + 6.9196000e+03 -3.4667949e-01 + 6.9200000e+03 -1.3066795e+00 + 6.9204000e+03 -1.3966795e+00 + 6.9208000e+03 -1.2866795e+00 + 6.9212000e+03 -1.1066795e+00 + 6.9216000e+03 -5.7667949e-01 + 6.9220000e+03 -3.6667949e-01 + 6.9224000e+03 -4.4667949e-01 + 6.9228000e+03 -2.2667949e-01 + 6.9232000e+03 1.9332051e-01 + 6.9236000e+03 7.4332051e-01 + 6.9240000e+03 8.4332051e-01 + 6.9244000e+03 7.1332051e-01 + 6.9248000e+03 5.8332051e-01 + 6.9252000e+03 4.7332051e-01 + 6.9256000e+03 3.3332051e-01 + 6.9260000e+03 1.6332051e-01 + 6.9264000e+03 2.3320513e-02 + 6.9268000e+03 1.3320513e-02 + 6.9272000e+03 -6.6794872e-03 + 6.9276000e+03 -2.2667949e-01 + 6.9280000e+03 -5.8667949e-01 + 6.9284000e+03 -7.5667949e-01 + 6.9288000e+03 -1.1366795e+00 + 6.9292000e+03 -1.2166795e+00 + 6.9296000e+03 -1.2166795e+00 + 6.9300000e+03 -1.2166795e+00 + 6.9304000e+03 -1.2166795e+00 + 6.9308000e+03 -1.9466795e+00 + 6.9312000e+03 -2.2266795e+00 + 6.9316000e+03 -2.1366795e+00 + 6.9320000e+03 -1.7866795e+00 + 6.9324000e+03 -8.2667949e-01 + 6.9328000e+03 -3.4667949e-01 + 6.9332000e+03 -2.6679487e-02 + 6.9336000e+03 3.0332051e-01 + 6.9340000e+03 3.5332051e-01 + 6.9344000e+03 4.1332051e-01 + 6.9348000e+03 5.5332051e-01 + 6.9352000e+03 9.1332051e-01 + 6.9356000e+03 1.7533205e+00 + 6.9360000e+03 1.9933205e+00 + 6.9364000e+03 2.1933205e+00 + 6.9368000e+03 1.2233205e+00 + 6.9372000e+03 3.7332051e-01 + 6.9376000e+03 -1.1667949e-01 + 6.9380000e+03 -3.2667949e-01 + 6.9384000e+03 -3.9667949e-01 + 6.9388000e+03 -2.3667949e-01 + 6.9392000e+03 -1.9667949e-01 + 6.9396000e+03 -3.0667949e-01 + 6.9400000e+03 -2.3667949e-01 + 6.9404000e+03 2.3332051e-01 + 6.9408000e+03 4.9332051e-01 + 6.9412000e+03 1.2332051e-01 + 6.9416000e+03 -3.6679487e-02 + 6.9420000e+03 -8.6679487e-02 + 6.9424000e+03 -6.9667949e-01 + 6.9428000e+03 -6.6679487e-02 + 6.9432000e+03 1.0033205e+00 + 6.9436000e+03 1.8033205e+00 + 6.9440000e+03 2.3433205e+00 + 6.9444000e+03 2.7533205e+00 + 6.9448000e+03 2.1033205e+00 + 6.9452000e+03 2.8332051e-01 + 6.9456000e+03 -1.1766795e+00 + 6.9460000e+03 -2.0366795e+00 + 6.9464000e+03 -2.0266795e+00 + 6.9468000e+03 -1.3566795e+00 + 6.9472000e+03 -1.0366795e+00 + 6.9476000e+03 -6.4667949e-01 + 6.9480000e+03 -2.4667949e-01 + 6.9484000e+03 -4.6679487e-02 + 6.9488000e+03 -6.6794872e-03 + 6.9492000e+03 -1.7667949e-01 + 6.9496000e+03 -6.6667949e-01 + 6.9500000e+03 -1.2066795e+00 + 6.9504000e+03 -1.6266795e+00 + 6.9508000e+03 -1.7966795e+00 + 6.9512000e+03 -2.2166795e+00 + 6.9516000e+03 -2.4166795e+00 + 6.9520000e+03 -2.1266795e+00 + 6.9524000e+03 -1.8066795e+00 + 6.9528000e+03 -1.5366795e+00 + 6.9532000e+03 -1.1266795e+00 + 6.9536000e+03 -8.5667949e-01 + 6.9540000e+03 -7.3667949e-01 + 6.9544000e+03 -7.1667949e-01 + 6.9548000e+03 -5.2667949e-01 + 6.9552000e+03 -2.6667949e-01 + 6.9556000e+03 -1.4667949e-01 + 6.9560000e+03 1.3320513e-02 + 6.9564000e+03 3.9332051e-01 + 6.9568000e+03 1.7332051e-01 + 6.9572000e+03 1.7332051e-01 + 6.9576000e+03 4.2332051e-01 + 6.9580000e+03 9.0332051e-01 + 6.9584000e+03 1.1133205e+00 + 6.9588000e+03 1.4033205e+00 + 6.9592000e+03 1.7733205e+00 + 6.9596000e+03 1.8333205e+00 + 6.9600000e+03 1.9133205e+00 + 6.9604000e+03 3.0533205e+00 + 6.9608000e+03 3.2833205e+00 + 6.9612000e+03 3.1633205e+00 + 6.9616000e+03 2.9033205e+00 + 6.9620000e+03 2.5533205e+00 + 6.9624000e+03 2.1733205e+00 + 6.9628000e+03 1.0933205e+00 + 6.9632000e+03 -2.5667949e-01 + 6.9636000e+03 -5.2667949e-01 + 6.9640000e+03 -2.3266795e+00 + 6.9644000e+03 -3.2066795e+00 + 6.9648000e+03 -3.7166795e+00 + 6.9652000e+03 -3.8666795e+00 + 6.9656000e+03 -3.7066795e+00 + 6.9660000e+03 -3.0566795e+00 + 6.9664000e+03 -2.1766795e+00 + 6.9668000e+03 -1.5666795e+00 + 6.9672000e+03 -1.2166795e+00 + 6.9676000e+03 -1.2166795e+00 + 6.9680000e+03 -1.6966795e+00 + 6.9684000e+03 -2.0066795e+00 + 6.9688000e+03 -2.0566795e+00 + 6.9692000e+03 -2.0766795e+00 + 6.9696000e+03 -1.6766795e+00 + 6.9700000e+03 -7.3667949e-01 + 6.9704000e+03 -3.1667949e-01 + 6.9708000e+03 2.1733205e+00 + 6.9712000e+03 3.0733205e+00 + 6.9716000e+03 4.5533205e+00 + 6.9720000e+03 4.6433205e+00 + 6.9724000e+03 4.5733205e+00 + 6.9728000e+03 4.5533205e+00 + 6.9732000e+03 4.5533205e+00 + 6.9736000e+03 4.5533205e+00 + 6.9740000e+03 4.5533205e+00 + 6.9744000e+03 4.5533205e+00 + 6.9748000e+03 4.5533205e+00 + 6.9752000e+03 4.5533205e+00 + 6.9756000e+03 4.5533205e+00 + 6.9760000e+03 4.5433205e+00 + 6.9764000e+03 4.5433205e+00 + 6.9768000e+03 4.5433205e+00 + 6.9772000e+03 1.1633205e+00 + 6.9776000e+03 8.4332051e-01 + 6.9780000e+03 1.2433205e+00 + 6.9784000e+03 1.2833205e+00 + 6.9788000e+03 1.2833205e+00 + 6.9792000e+03 1.2933205e+00 + 6.9796000e+03 1.2933205e+00 + 6.9800000e+03 4.4633205e+00 + 6.9804000e+03 4.7733205e+00 + 6.9808000e+03 4.1233205e+00 + 6.9812000e+03 3.5033205e+00 + 6.9816000e+03 1.8033205e+00 + 6.9820000e+03 1.0332051e-01 + 6.9824000e+03 -1.0166795e+00 + 6.9828000e+03 -1.5466795e+00 + 6.9832000e+03 -1.7566795e+00 + 6.9836000e+03 -2.0466795e+00 + 6.9840000e+03 -2.3566795e+00 + 6.9844000e+03 -2.5266795e+00 + 6.9848000e+03 -2.5966795e+00 + 6.9852000e+03 -2.7466795e+00 + 6.9856000e+03 -2.8566795e+00 + 6.9860000e+03 -2.8866795e+00 + 6.9864000e+03 -3.0866795e+00 + 6.9868000e+03 -3.2366795e+00 + 6.9872000e+03 -3.2666795e+00 + 6.9876000e+03 -3.2366795e+00 + 6.9880000e+03 -3.1266795e+00 + 6.9884000e+03 -2.8166795e+00 + 6.9888000e+03 -2.3366795e+00 + 6.9892000e+03 -1.9966795e+00 + 6.9896000e+03 -1.9766795e+00 + 6.9900000e+03 -1.9766795e+00 + 6.9904000e+03 -1.9766795e+00 + 6.9908000e+03 -1.9766795e+00 + 6.9912000e+03 -1.9766795e+00 + 6.9916000e+03 -1.9766795e+00 + 6.9920000e+03 3.8033205e+00 + 6.9924000e+03 4.2033205e+00 + 6.9928000e+03 3.6433205e+00 + 6.9932000e+03 2.1133205e+00 + 6.9936000e+03 8.0332051e-01 + 6.9940000e+03 7.6332051e-01 + 6.9944000e+03 7.6332051e-01 + 6.9948000e+03 7.6332051e-01 + 6.9952000e+03 7.6332051e-01 + 6.9956000e+03 7.6332051e-01 + 6.9960000e+03 7.6332051e-01 + 6.9964000e+03 7.6332051e-01 + 6.9968000e+03 6.0332051e-01 + 6.9972000e+03 -2.2966795e+00 + 6.9976000e+03 -1.9466795e+00 + 6.9980000e+03 -1.4466795e+00 + 6.9984000e+03 -1.0666795e+00 + 6.9988000e+03 -8.0667949e-01 + 6.9992000e+03 -2.2667949e-01 + 6.9996000e+03 5.5332051e-01 + 7.0000000e+03 1.5533205e+00 + 7.0004000e+03 2.1633205e+00 + 7.0008000e+03 2.5433205e+00 + 7.0012000e+03 2.6433205e+00 + 7.0016000e+03 2.5433205e+00 + 7.0020000e+03 2.1733205e+00 + 7.0024000e+03 1.7833205e+00 + 7.0028000e+03 1.6233205e+00 + 7.0032000e+03 1.3033205e+00 + 7.0036000e+03 1.2833205e+00 + 7.0040000e+03 1.2933205e+00 + 7.0044000e+03 1.2933205e+00 + 7.0048000e+03 1.2033205e+00 + 7.0052000e+03 -1.0866795e+00 + 7.0056000e+03 -1.4766795e+00 + 7.0060000e+03 -3.3266795e+00 + 7.0064000e+03 -4.7966795e+00 + 7.0068000e+03 -4.7366795e+00 + 7.0072000e+03 -4.5666795e+00 + 7.0076000e+03 -4.2166795e+00 + 7.0080000e+03 -3.5266795e+00 + 7.0084000e+03 -3.0466795e+00 + 7.0088000e+03 -2.6366795e+00 + 7.0092000e+03 -2.5866795e+00 + 7.0096000e+03 -2.5866795e+00 + 7.0100000e+03 -2.5866795e+00 + 7.0104000e+03 -2.5866795e+00 + 7.0108000e+03 -2.5866795e+00 + 7.0112000e+03 -2.5866795e+00 + 7.0116000e+03 -3.8667949e-01 + 7.0120000e+03 5.7633205e+00 + 7.0124000e+03 4.7733205e+00 + 7.0128000e+03 3.2833205e+00 + 7.0132000e+03 2.0733205e+00 + 7.0136000e+03 1.3833205e+00 + 7.0140000e+03 7.0332051e-01 + 7.0144000e+03 3.9332051e-01 + 7.0148000e+03 -5.6679487e-02 + 7.0152000e+03 -7.5667949e-01 + 7.0156000e+03 -1.5466795e+00 + 7.0160000e+03 -2.4666795e+00 + 7.0164000e+03 -3.1266795e+00 + 7.0168000e+03 -3.1966795e+00 + 7.0172000e+03 -3.0566795e+00 + 7.0176000e+03 -2.8166795e+00 + 7.0180000e+03 -2.7366795e+00 + 7.0184000e+03 -2.4666795e+00 + 7.0188000e+03 -1.8266795e+00 + 7.0192000e+03 -1.4766795e+00 + 7.0196000e+03 -7.7667949e-01 + 7.0200000e+03 -6.6679487e-02 + 7.0204000e+03 6.5332051e-01 + 7.0208000e+03 1.5033205e+00 + 7.0212000e+03 2.3933205e+00 + 7.0216000e+03 2.7733205e+00 + 7.0220000e+03 2.7433205e+00 + 7.0224000e+03 2.6933205e+00 + 7.0228000e+03 2.3633205e+00 + 7.0232000e+03 1.5733205e+00 + 7.0236000e+03 7.2332051e-01 + 7.0240000e+03 5.5332051e-01 + 7.0244000e+03 5.5332051e-01 + 7.0248000e+03 5.5332051e-01 + 7.0252000e+03 5.5332051e-01 + 7.0256000e+03 5.5332051e-01 + 7.0260000e+03 5.5332051e-01 + 7.0264000e+03 5.5332051e-01 + 7.0268000e+03 5.5332051e-01 + 7.0272000e+03 -5.6667949e-01 + 7.0276000e+03 -2.8266795e+00 + 7.0280000e+03 -2.7866795e+00 + 7.0284000e+03 -2.3966795e+00 + 7.0288000e+03 -1.7766795e+00 + 7.0292000e+03 -1.0366795e+00 + 7.0296000e+03 -1.3667949e-01 + 7.0300000e+03 9.4332051e-01 + 7.0304000e+03 1.6333205e+00 + 7.0308000e+03 1.7433205e+00 + 7.0312000e+03 2.2133205e+00 + 7.0316000e+03 3.0933205e+00 + 7.0320000e+03 2.8633205e+00 + 7.0324000e+03 2.9333205e+00 + 7.0328000e+03 1.8533205e+00 + 7.0332000e+03 8.7332051e-01 + 7.0336000e+03 2.6332051e-01 + 7.0340000e+03 -1.9667949e-01 + 7.0344000e+03 -6.0667949e-01 + 7.0348000e+03 -7.9667949e-01 + 7.0352000e+03 -1.0566795e+00 + 7.0356000e+03 -1.2466795e+00 + 7.0360000e+03 -1.2866795e+00 + 7.0364000e+03 -1.2966795e+00 + 7.0368000e+03 -1.4066795e+00 + 7.0372000e+03 -1.2766795e+00 + 7.0376000e+03 -1.1366795e+00 + 7.0380000e+03 -1.1766795e+00 + 7.0384000e+03 -1.3266795e+00 + 7.0388000e+03 -1.4666795e+00 + 7.0392000e+03 -1.4666795e+00 + 7.0396000e+03 -1.3166795e+00 + 7.0400000e+03 -9.4667949e-01 + 7.0404000e+03 -6.9667949e-01 + 7.0408000e+03 -3.9667949e-01 + 7.0412000e+03 -3.9667949e-01 + 7.0416000e+03 -7.5667949e-01 + 7.0420000e+03 -6.2667949e-01 + 7.0424000e+03 -6.0667949e-01 + 7.0428000e+03 -6.2667949e-01 + 7.0432000e+03 -6.9667949e-01 + 7.0436000e+03 -7.5667949e-01 + 7.0440000e+03 -7.8667949e-01 + 7.0444000e+03 -7.9667949e-01 + 7.0448000e+03 -6.0667949e-01 + 7.0452000e+03 -4.7667949e-01 + 7.0456000e+03 -3.0667949e-01 + 7.0460000e+03 -6.6679487e-02 + 7.0464000e+03 2.8332051e-01 + 7.0468000e+03 5.9332051e-01 + 7.0472000e+03 9.1332051e-01 + 7.0476000e+03 1.7633205e+00 + 7.0480000e+03 2.2533205e+00 + 7.0484000e+03 2.2633205e+00 + 7.0488000e+03 2.0733205e+00 + 7.0492000e+03 1.6133205e+00 + 7.0496000e+03 1.0733205e+00 + 7.0500000e+03 8.8332051e-01 + 7.0504000e+03 1.4332051e-01 + 7.0508000e+03 -5.1667949e-01 + 7.0512000e+03 -9.0667949e-01 + 7.0516000e+03 -8.6667949e-01 + 7.0520000e+03 -6.7667949e-01 + 7.0524000e+03 -6.9667949e-01 + 7.0528000e+03 -9.9667949e-01 + 7.0532000e+03 -1.1366795e+00 + 7.0536000e+03 -1.1166795e+00 + 7.0540000e+03 -9.2667949e-01 + 7.0544000e+03 -6.6667949e-01 + 7.0548000e+03 -2.1667949e-01 + 7.0552000e+03 7.3320513e-02 + 7.0556000e+03 4.0332051e-01 + 7.0560000e+03 5.4332051e-01 + 7.0564000e+03 4.9332051e-01 + 7.0568000e+03 1.0332051e-01 + 7.0572000e+03 -9.6679487e-02 + 7.0576000e+03 -9.6679487e-02 + 7.0580000e+03 -9.6679487e-02 + 7.0584000e+03 -1.0667949e-01 + 7.0588000e+03 -9.6679487e-02 + 7.0592000e+03 -2.6667949e-01 + 7.0596000e+03 -1.9066795e+00 + 7.0600000e+03 -1.3966795e+00 + 7.0604000e+03 -9.5667949e-01 + 7.0608000e+03 -9.2667949e-01 + 7.0612000e+03 -9.4667949e-01 + 7.0616000e+03 -9.2667949e-01 + 7.0620000e+03 -3.6679487e-02 + 7.0624000e+03 6.7332051e-01 + 7.0628000e+03 4.3320513e-02 + 7.0632000e+03 -4.5667949e-01 + 7.0636000e+03 -4.8667949e-01 + 7.0640000e+03 -5.0667949e-01 + 7.0644000e+03 -7.2667949e-01 + 7.0648000e+03 -4.9667949e-01 + 7.0652000e+03 -2.6679487e-02 + 7.0656000e+03 1.6332051e-01 + 7.0660000e+03 1.7332051e-01 + 7.0664000e+03 1.7332051e-01 + 7.0668000e+03 1.7332051e-01 + 7.0672000e+03 3.4332051e-01 + 7.0676000e+03 7.8332051e-01 + 7.0680000e+03 4.5332051e-01 + 7.0684000e+03 3.8332051e-01 + 7.0688000e+03 1.7332051e-01 + 7.0692000e+03 -4.6679487e-02 + 7.0696000e+03 -1.9667949e-01 + 7.0700000e+03 -2.5667949e-01 + 7.0704000e+03 -1.9667949e-01 + 7.0708000e+03 1.8332051e-01 + 7.0712000e+03 -4.6679487e-02 + 7.0716000e+03 -2.6667949e-01 + 7.0720000e+03 -3.6667949e-01 + 7.0724000e+03 -5.5667949e-01 + 7.0728000e+03 -6.3667949e-01 + 7.0732000e+03 -6.3667949e-01 + 7.0736000e+03 -6.3667949e-01 + 7.0740000e+03 -1.3766795e+00 + 7.0744000e+03 -1.7366795e+00 + 7.0748000e+03 -1.4866795e+00 + 7.0752000e+03 -1.4966795e+00 + 7.0756000e+03 -1.5166795e+00 + 7.0760000e+03 -1.5266795e+00 + 7.0764000e+03 -1.5266795e+00 + 7.0768000e+03 -1.5266795e+00 + 7.0772000e+03 -1.5466795e+00 + 7.0776000e+03 -1.5066795e+00 + 7.0780000e+03 -1.0566795e+00 + 7.0784000e+03 -5.1667949e-01 + 7.0788000e+03 2.5332051e-01 + 7.0792000e+03 5.3332051e-01 + 7.0796000e+03 1.4033205e+00 + 7.0800000e+03 1.5233205e+00 + 7.0804000e+03 1.8033205e+00 + 7.0808000e+03 1.3533205e+00 + 7.0812000e+03 1.0833205e+00 + 7.0816000e+03 9.4332051e-01 + 7.0820000e+03 6.4332051e-01 + 7.0824000e+03 4.0332051e-01 + 7.0828000e+03 3.0332051e-01 + 7.0832000e+03 -1.7667949e-01 + 7.0836000e+03 -2.0667949e-01 + 7.0840000e+03 2.3320513e-02 + 7.0844000e+03 4.3320513e-02 + 7.0848000e+03 -2.5667949e-01 + 7.0852000e+03 -3.5667949e-01 + 7.0856000e+03 -3.5667949e-01 + 7.0860000e+03 -3.5667949e-01 + 7.0864000e+03 -1.2066795e+00 + 7.0868000e+03 -2.2966795e+00 + 7.0872000e+03 -2.5666795e+00 + 7.0876000e+03 -2.7266795e+00 + 7.0880000e+03 -2.6166795e+00 + 7.0884000e+03 -2.1566795e+00 + 7.0888000e+03 -8.7667949e-01 + 7.0892000e+03 -2.8667949e-01 + 7.0896000e+03 -2.5667949e-01 + 7.0900000e+03 -2.5667949e-01 + 7.0904000e+03 2.3733205e+00 + 7.0908000e+03 4.0133205e+00 + 7.0912000e+03 3.8633205e+00 + 7.0916000e+03 3.1733205e+00 + 7.0920000e+03 2.4133205e+00 + 7.0924000e+03 1.7533205e+00 + 7.0928000e+03 1.1533205e+00 + 7.0932000e+03 -2.9667949e-01 + 7.0936000e+03 -2.2366795e+00 + 7.0940000e+03 -3.6266795e+00 + 7.0944000e+03 -4.3366795e+00 + 7.0948000e+03 -4.5466795e+00 + 7.0952000e+03 -4.3666795e+00 + 7.0956000e+03 -3.7766795e+00 + 7.0960000e+03 -2.9466795e+00 + 7.0964000e+03 -2.1266795e+00 + 7.0968000e+03 -1.5866795e+00 + 7.0972000e+03 -9.5667949e-01 + 7.0976000e+03 -4.1667949e-01 + 7.0980000e+03 2.3332051e-01 + 7.0984000e+03 1.0833205e+00 + 7.0988000e+03 1.9533205e+00 + 7.0992000e+03 2.5333205e+00 + 7.0996000e+03 2.4333205e+00 + 7.1000000e+03 2.2133205e+00 + 7.1004000e+03 2.0933205e+00 + 7.1008000e+03 2.3333205e+00 + 7.1012000e+03 2.5733205e+00 + 7.1016000e+03 2.2733205e+00 + 7.1020000e+03 1.9533205e+00 + 7.1024000e+03 1.3233205e+00 + 7.1028000e+03 9.7332051e-01 + 7.1032000e+03 5.9332051e-01 + 7.1036000e+03 -3.3667949e-01 + 7.1040000e+03 -1.3866795e+00 + 7.1044000e+03 -1.9766795e+00 + 7.1048000e+03 -1.8166795e+00 + 7.1052000e+03 -1.6266795e+00 + 7.1056000e+03 -1.6266795e+00 + 7.1060000e+03 -1.7366795e+00 + 7.1064000e+03 -2.0866795e+00 + 7.1068000e+03 -2.3566795e+00 + 7.1072000e+03 -2.1966795e+00 + 7.1076000e+03 -2.0666795e+00 + 7.1080000e+03 -1.5166795e+00 + 7.1084000e+03 -1.2366795e+00 + 7.1088000e+03 -1.2266795e+00 + 7.1092000e+03 -1.2266795e+00 + 7.1096000e+03 -1.9667949e-01 + 7.1100000e+03 5.3320513e-02 + 7.1104000e+03 1.4332051e-01 + 7.1108000e+03 2.8332051e-01 + 7.1112000e+03 3.4332051e-01 + 7.1116000e+03 2.2332051e-01 + 7.1120000e+03 1.5332051e-01 + 7.1124000e+03 3.7332051e-01 + 7.1128000e+03 8.8332051e-01 + 7.1132000e+03 1.5033205e+00 + 7.1136000e+03 1.6433205e+00 + 7.1140000e+03 1.7933205e+00 + 7.1144000e+03 1.4333205e+00 + 7.1148000e+03 1.1733205e+00 + 7.1152000e+03 1.5332051e-01 + 7.1156000e+03 -7.4667949e-01 + 7.1160000e+03 -7.7667949e-01 + 7.1164000e+03 -7.7667949e-01 + 7.1168000e+03 -7.7667949e-01 + 7.1172000e+03 -7.6667949e-01 + 7.1176000e+03 -7.6667949e-01 + 7.1180000e+03 -1.7166795e+00 + 7.1184000e+03 -1.3366795e+00 + 7.1188000e+03 -6.4667949e-01 + 7.1192000e+03 -4.7667949e-01 + 7.1196000e+03 -4.6667949e-01 + 7.1200000e+03 1.8933205e+00 + 7.1204000e+03 2.7133205e+00 + 7.1208000e+03 3.3033205e+00 + 7.1212000e+03 3.8933205e+00 + 7.1216000e+03 3.5433205e+00 + 7.1220000e+03 2.7433205e+00 + 7.1224000e+03 1.8033205e+00 + 7.1228000e+03 8.2332051e-01 + 7.1232000e+03 2.2332051e-01 + 7.1236000e+03 -4.2667949e-01 + 7.1240000e+03 -4.8667949e-01 + 7.1244000e+03 -4.8667949e-01 + 7.1248000e+03 -4.8667949e-01 + 7.1252000e+03 -4.9667949e-01 + 7.1256000e+03 -2.5866795e+00 + 7.1260000e+03 -2.6466795e+00 + 7.1264000e+03 -2.4166795e+00 + 7.1268000e+03 -1.7266795e+00 + 7.1272000e+03 -1.3066795e+00 + 7.1276000e+03 -9.9667949e-01 + 7.1280000e+03 -8.4667949e-01 + 7.1284000e+03 -4.7667949e-01 + 7.1288000e+03 -1.2667949e-01 + 7.1292000e+03 -2.6679487e-02 + 7.1296000e+03 -3.8667949e-01 + 7.1300000e+03 -6.0667949e-01 + 7.1304000e+03 -7.0667949e-01 + 7.1308000e+03 -1.1666795e+00 + 7.1312000e+03 -8.2667949e-01 + 7.1316000e+03 -8.9667949e-01 + 7.1320000e+03 -5.0667949e-01 + 7.1324000e+03 1.0533205e+00 + 7.1328000e+03 1.3333205e+00 + 7.1332000e+03 1.3533205e+00 + 7.1336000e+03 1.2733205e+00 + 7.1340000e+03 1.1633205e+00 + 7.1344000e+03 9.6332051e-01 + 7.1348000e+03 7.9332051e-01 + 7.1352000e+03 4.6332051e-01 + 7.1356000e+03 4.4332051e-01 + 7.1360000e+03 4.3332051e-01 + 7.1364000e+03 1.2332051e-01 + 7.1368000e+03 -6.6679487e-02 + 7.1372000e+03 -9.6679487e-02 + 7.1376000e+03 -3.7667949e-01 + 7.1380000e+03 -8.3667949e-01 + 7.1384000e+03 -1.0366795e+00 + 7.1388000e+03 -1.1466795e+00 + 7.1392000e+03 -1.1166795e+00 + 7.1396000e+03 -1.1666795e+00 + 7.1400000e+03 -1.1566795e+00 + 7.1404000e+03 -1.1266795e+00 + 7.1408000e+03 -1.1366795e+00 + 7.1412000e+03 -1.1766795e+00 + 7.1416000e+03 -4.6667949e-01 + 7.1420000e+03 3.0332051e-01 + 7.1424000e+03 5.3332051e-01 + 7.1428000e+03 5.3332051e-01 + 7.1432000e+03 7.2332051e-01 + 7.1436000e+03 1.5333205e+00 + 7.1440000e+03 9.6332051e-01 + 7.1444000e+03 6.9332051e-01 + 7.1448000e+03 6.8332051e-01 + 7.1452000e+03 6.8332051e-01 + 7.1456000e+03 6.8332051e-01 + 7.1460000e+03 6.8332051e-01 + 7.1464000e+03 -2.1667949e-01 + 7.1468000e+03 -4.7667949e-01 + 7.1472000e+03 -3.3667949e-01 + 7.1476000e+03 -3.7667949e-01 + 7.1480000e+03 -8.4667949e-01 + 7.1484000e+03 -1.2466795e+00 + 7.1488000e+03 -1.5966795e+00 + 7.1492000e+03 -2.3866795e+00 + 7.1496000e+03 -2.4066795e+00 + 7.1500000e+03 -1.7766795e+00 + 7.1504000e+03 -1.3266795e+00 + 7.1508000e+03 -1.5466795e+00 + 7.1512000e+03 -1.4466795e+00 + 7.1516000e+03 -1.0066795e+00 + 7.1520000e+03 -3.8667949e-01 + 7.1524000e+03 1.1332051e-01 + 7.1528000e+03 4.5332051e-01 + 7.1532000e+03 5.7332051e-01 + 7.1536000e+03 6.8332051e-01 + 7.1540000e+03 8.9332051e-01 + 7.1544000e+03 9.6332051e-01 + 7.1548000e+03 1.3033205e+00 + 7.1552000e+03 1.7333205e+00 + 7.1556000e+03 2.0033205e+00 + 7.1560000e+03 1.9933205e+00 + 7.1564000e+03 1.9433205e+00 + 7.1568000e+03 1.5233205e+00 + 7.1572000e+03 1.4233205e+00 + 7.1576000e+03 8.0332051e-01 + 7.1580000e+03 -5.6679487e-02 + 7.1584000e+03 -8.6679487e-02 + 7.1588000e+03 -2.5667949e-01 + 7.1592000e+03 -2.1666795e+00 + 7.1596000e+03 -2.3066795e+00 + 7.1600000e+03 -1.9566795e+00 + 7.1604000e+03 -1.9166795e+00 + 7.1608000e+03 -1.6566795e+00 + 7.1612000e+03 -1.1366795e+00 + 7.1616000e+03 -1.0066795e+00 + 7.1620000e+03 -3.1667949e-01 + 7.1624000e+03 -6.6794872e-03 + 7.1628000e+03 4.3320513e-02 + 7.1632000e+03 2.3332051e-01 + 7.1636000e+03 7.7332051e-01 + 7.1640000e+03 8.6332051e-01 + 7.1644000e+03 1.0433205e+00 + 7.1648000e+03 1.1733205e+00 + 7.1652000e+03 1.6633205e+00 + 7.1656000e+03 1.9033205e+00 + 7.1660000e+03 2.0133205e+00 + 7.1664000e+03 1.6933205e+00 + 7.1668000e+03 1.2233205e+00 + 7.1672000e+03 -8.8667949e-01 + 7.1676000e+03 -1.6766795e+00 + 7.1680000e+03 -1.7366795e+00 + 7.1684000e+03 -1.7366795e+00 + 7.1688000e+03 -1.7266795e+00 + 7.1692000e+03 -2.7866795e+00 + 7.1696000e+03 -3.2966795e+00 + 7.1700000e+03 -3.1566795e+00 + 7.1704000e+03 -3.0466795e+00 + 7.1708000e+03 -2.7966795e+00 + 7.1712000e+03 -2.1766795e+00 + 7.1716000e+03 -1.2166795e+00 + 7.1720000e+03 -1.0366795e+00 + 7.1724000e+03 -1.0266795e+00 + 7.1728000e+03 1.6833205e+00 + 7.1732000e+03 3.7433205e+00 + 7.1736000e+03 4.2933205e+00 + 7.1740000e+03 5.0533205e+00 + 7.1744000e+03 4.3033205e+00 + 7.1748000e+03 2.8433205e+00 + 7.1752000e+03 1.9933205e+00 + 7.1756000e+03 1.9533205e+00 + 7.1760000e+03 1.9533205e+00 + 7.1764000e+03 1.9533205e+00 + 7.1768000e+03 1.9533205e+00 + 7.1772000e+03 1.9533205e+00 + 7.1776000e+03 1.9533205e+00 + 7.1780000e+03 1.9533205e+00 + 7.1784000e+03 1.9533205e+00 + 7.1788000e+03 -3.6667949e-01 + 7.1792000e+03 -3.8866795e+00 + 7.1796000e+03 -3.2566795e+00 + 7.1800000e+03 -2.4666795e+00 + 7.1804000e+03 -2.3966795e+00 + 7.1808000e+03 -2.3066795e+00 + 7.1812000e+03 2.1133205e+00 + 7.1816000e+03 1.9133205e+00 + 7.1820000e+03 1.3433205e+00 + 7.1824000e+03 1.1333205e+00 + 7.1828000e+03 1.2633205e+00 + 7.1832000e+03 1.6133205e+00 + 7.1836000e+03 1.9133205e+00 + 7.1840000e+03 1.9933205e+00 + 7.1844000e+03 2.0133205e+00 + 7.1848000e+03 2.0133205e+00 + 7.1852000e+03 2.4633205e+00 + 7.1856000e+03 2.7833205e+00 + 7.1860000e+03 2.3433205e+00 + 7.1864000e+03 1.7733205e+00 + 7.1868000e+03 1.6733205e+00 + 7.1872000e+03 1.6733205e+00 + 7.1876000e+03 1.6733205e+00 + 7.1880000e+03 1.6733205e+00 + 7.1884000e+03 1.6733205e+00 + 7.1888000e+03 1.6733205e+00 + 7.1892000e+03 1.6733205e+00 + 7.1896000e+03 1.6733205e+00 + 7.1900000e+03 1.6733205e+00 + 7.1904000e+03 1.6733205e+00 + 7.1908000e+03 -1.2966795e+00 + 7.1912000e+03 -2.1966795e+00 + 7.1916000e+03 -1.9466795e+00 + 7.1920000e+03 -1.9166795e+00 + 7.1924000e+03 -1.9166795e+00 + 7.1928000e+03 -1.9166795e+00 + 7.1932000e+03 -1.9066795e+00 + 7.1936000e+03 2.2333205e+00 + 7.1940000e+03 3.3733205e+00 + 7.1944000e+03 3.0833205e+00 + 7.1948000e+03 2.9533205e+00 + 7.1952000e+03 2.6533205e+00 + 7.1956000e+03 1.9233205e+00 + 7.1960000e+03 1.7533205e+00 + 7.1964000e+03 1.7533205e+00 + 7.1968000e+03 1.7533205e+00 + 7.1972000e+03 1.7533205e+00 + 7.1976000e+03 2.3332051e-01 + 7.1980000e+03 -2.7766795e+00 + 7.1984000e+03 -2.8466795e+00 + 7.1988000e+03 -2.2666795e+00 + 7.1992000e+03 -2.0266795e+00 + 7.1996000e+03 -2.0066795e+00 + 7.2000000e+03 -2.2166795e+00 + 7.2004000e+03 -2.2066795e+00 + 7.2008000e+03 -1.7566795e+00 + 7.2012000e+03 -1.0466795e+00 + 7.2016000e+03 -4.0667949e-01 + 7.2020000e+03 -2.1667949e-01 + 7.2024000e+03 -2.0667949e-01 + 7.2028000e+03 -1.4667949e-01 + 7.2032000e+03 1.0733205e+00 + 7.2036000e+03 1.5333205e+00 + 7.2040000e+03 1.7133205e+00 + 7.2044000e+03 1.8733205e+00 + 7.2048000e+03 2.3033205e+00 + 7.2052000e+03 2.5533205e+00 + 7.2056000e+03 2.3433205e+00 + 7.2060000e+03 2.4633205e+00 + 7.2064000e+03 2.6233205e+00 + 7.2068000e+03 2.3433205e+00 + 7.2072000e+03 2.2633205e+00 + 7.2076000e+03 2.2633205e+00 + 7.2080000e+03 2.2533205e+00 + 7.2084000e+03 2.2533205e+00 + 7.2088000e+03 -1.8166795e+00 + 7.2092000e+03 -3.2566795e+00 + 7.2096000e+03 -3.1266795e+00 + 7.2100000e+03 -2.7466795e+00 + 7.2104000e+03 -2.3266795e+00 + 7.2108000e+03 -1.6666795e+00 + 7.2112000e+03 -1.7366795e+00 + 7.2116000e+03 -1.6466795e+00 + 7.2120000e+03 -1.5966795e+00 + 7.2124000e+03 -1.1966795e+00 + 7.2128000e+03 -9.8667949e-01 + 7.2132000e+03 -7.4667949e-01 + 7.2136000e+03 -5.1667949e-01 + 7.2140000e+03 -1.0667949e-01 + 7.2144000e+03 3.5332051e-01 + 7.2148000e+03 6.0332051e-01 + 7.2152000e+03 7.7332051e-01 + 7.2156000e+03 8.6332051e-01 + 7.2160000e+03 1.1033205e+00 + 7.2164000e+03 1.3933205e+00 + 7.2168000e+03 1.6533205e+00 + 7.2172000e+03 1.3633205e+00 + 7.2176000e+03 9.0332051e-01 + 7.2180000e+03 5.9332051e-01 + 7.2184000e+03 -5.0667949e-01 + 7.2188000e+03 -8.9667949e-01 + 7.2192000e+03 -9.2667949e-01 + 7.2196000e+03 -7.2667949e-01 + 7.2200000e+03 -4.0667949e-01 + 7.2204000e+03 -1.5667949e-01 + 7.2208000e+03 2.3332051e-01 + 7.2212000e+03 9.1332051e-01 + 7.2216000e+03 1.0333205e+00 + 7.2220000e+03 6.3332051e-01 + 7.2224000e+03 2.0332051e-01 + 7.2228000e+03 -4.2667949e-01 + 7.2232000e+03 -8.8667949e-01 + 7.2236000e+03 -1.1466795e+00 + 7.2240000e+03 -1.1766795e+00 + 7.2244000e+03 -1.3766795e+00 + 7.2248000e+03 -1.1966795e+00 + 7.2252000e+03 -1.0266795e+00 + 7.2256000e+03 -1.0466795e+00 + 7.2260000e+03 -7.1667949e-01 + 7.2264000e+03 -1.5667949e-01 + 7.2268000e+03 4.5332051e-01 + 7.2272000e+03 1.0533205e+00 + 7.2276000e+03 1.3533205e+00 + 7.2280000e+03 1.9533205e+00 + 7.2284000e+03 1.7233205e+00 + 7.2288000e+03 1.4433205e+00 + 7.2292000e+03 1.8332051e-01 + 7.2296000e+03 -4.4667949e-01 + 7.2300000e+03 -6.4667949e-01 + 7.2304000e+03 -9.1667949e-01 + 7.2308000e+03 -1.1266795e+00 + 7.2312000e+03 -1.4766795e+00 + 7.2316000e+03 -1.1766795e+00 + 7.2320000e+03 -6.3667949e-01 + 7.2324000e+03 -8.6679487e-02 + 7.2328000e+03 1.1332051e-01 + 7.2332000e+03 1.2332051e-01 + 7.2336000e+03 -2.3667949e-01 + 7.2340000e+03 -8.7667949e-01 + 7.2344000e+03 -1.0166795e+00 + 7.2348000e+03 -1.0166795e+00 + 7.2352000e+03 -1.0766795e+00 + 7.2356000e+03 -1.6966795e+00 + 7.2360000e+03 -1.1566795e+00 + 7.2364000e+03 -5.9667949e-01 + 7.2368000e+03 -3.6679487e-02 + 7.2372000e+03 6.7332051e-01 + 7.2376000e+03 1.2333205e+00 + 7.2380000e+03 2.4433205e+00 + 7.2384000e+03 3.1133205e+00 + 7.2388000e+03 2.9133205e+00 + 7.2392000e+03 2.5433205e+00 + 7.2396000e+03 2.1933205e+00 + 7.2400000e+03 1.3033205e+00 + 7.2404000e+03 5.2332051e-01 + 7.2408000e+03 3.3320513e-02 + 7.2412000e+03 -2.4667949e-01 + 7.2416000e+03 -4.1667949e-01 + 7.2420000e+03 -3.6667949e-01 + 7.2424000e+03 -1.9667949e-01 + 7.2428000e+03 -5.0667949e-01 + 7.2432000e+03 -8.5667949e-01 + 7.2436000e+03 -1.0066795e+00 + 7.2440000e+03 -1.0166795e+00 + 7.2444000e+03 -1.0166795e+00 + 7.2448000e+03 -1.0166795e+00 + 7.2452000e+03 -2.2066795e+00 + 7.2456000e+03 -2.9466795e+00 + 7.2460000e+03 -2.9466795e+00 + 7.2464000e+03 -2.7666795e+00 + 7.2468000e+03 -2.1066795e+00 + 7.2472000e+03 -2.0466795e+00 + 7.2476000e+03 -2.0466795e+00 + 7.2480000e+03 -2.0366795e+00 + 7.2484000e+03 -2.0366795e+00 + 7.2488000e+03 -1.9966795e+00 + 7.2492000e+03 1.3033205e+00 + 7.2496000e+03 1.5733205e+00 + 7.2500000e+03 1.3633205e+00 + 7.2504000e+03 1.2233205e+00 + 7.2508000e+03 1.1133205e+00 + 7.2512000e+03 8.9332051e-01 + 7.2516000e+03 7.3332051e-01 + 7.2520000e+03 6.8332051e-01 + 7.2524000e+03 1.3320513e-02 + 7.2528000e+03 -8.6679487e-02 + 7.2532000e+03 -1.2066795e+00 + 7.2536000e+03 -1.8566795e+00 + 7.2540000e+03 -1.9966795e+00 + 7.2544000e+03 -2.0466795e+00 + 7.2548000e+03 -1.8166795e+00 + 7.2552000e+03 -1.2666795e+00 + 7.2556000e+03 -6.7667949e-01 + 7.2560000e+03 -2.0667949e-01 + 7.2564000e+03 5.3320513e-02 + 7.2568000e+03 8.0332051e-01 + 7.2572000e+03 5.3332051e-01 + 7.2576000e+03 4.8332051e-01 + 7.2580000e+03 4.8332051e-01 + 7.2584000e+03 4.1332051e-01 + 7.2588000e+03 6.8332051e-01 + 7.2592000e+03 1.0733205e+00 + 7.2596000e+03 9.1332051e-01 + 7.2600000e+03 1.1733205e+00 + 7.2604000e+03 1.5733205e+00 + 7.2608000e+03 1.6133205e+00 + 7.2612000e+03 1.6033205e+00 + 7.2616000e+03 1.3433205e+00 + 7.2620000e+03 9.8332051e-01 + 7.2624000e+03 4.5332051e-01 + 7.2628000e+03 3.0332051e-01 + 7.2632000e+03 -3.6679487e-02 + 7.2636000e+03 -2.4667949e-01 + 7.2640000e+03 -5.0667949e-01 + 7.2644000e+03 -2.0466795e+00 + 7.2648000e+03 -3.1466795e+00 + 7.2652000e+03 -3.6366795e+00 + 7.2656000e+03 -3.6366795e+00 + 7.2660000e+03 -3.5466795e+00 + 7.2664000e+03 -3.3466795e+00 + 7.2668000e+03 -2.5366795e+00 + 7.2672000e+03 -2.4266795e+00 + 7.2676000e+03 -2.4266795e+00 + 7.2680000e+03 -1.8266795e+00 + 7.2684000e+03 2.8332051e-01 + 7.2688000e+03 7.7332051e-01 + 7.2692000e+03 1.1733205e+00 + 7.2696000e+03 1.4233205e+00 + 7.2700000e+03 1.5433205e+00 + 7.2704000e+03 1.5533205e+00 + 7.2708000e+03 1.3633205e+00 + 7.2712000e+03 1.1133205e+00 + 7.2716000e+03 5.5332051e-01 + 7.2720000e+03 3.7332051e-01 + 7.2724000e+03 7.6332051e-01 + 7.2728000e+03 1.3733205e+00 + 7.2732000e+03 1.3733205e+00 + 7.2736000e+03 1.0333205e+00 + 7.2740000e+03 7.8332051e-01 + 7.2744000e+03 4.0332051e-01 + 7.2748000e+03 -1.3667949e-01 + 7.2752000e+03 -7.5667949e-01 + 7.2756000e+03 -1.1666795e+00 + 7.2760000e+03 -1.4066795e+00 + 7.2764000e+03 -1.3866795e+00 + 7.2768000e+03 -1.3766795e+00 + 7.2772000e+03 -1.4166795e+00 + 7.2776000e+03 -1.4466795e+00 + 7.2780000e+03 -1.1566795e+00 + 7.2784000e+03 -7.8667949e-01 + 7.2788000e+03 -8.3667949e-01 + 7.2792000e+03 -9.9667949e-01 + 7.2796000e+03 -6.0667949e-01 + 7.2800000e+03 -1.2667949e-01 + 7.2804000e+03 3.8332051e-01 + 7.2808000e+03 8.0332051e-01 + 7.2812000e+03 9.8332051e-01 + 7.2816000e+03 1.0433205e+00 + 7.2820000e+03 1.3833205e+00 + 7.2824000e+03 1.1633205e+00 + 7.2828000e+03 7.3332051e-01 + 7.2832000e+03 2.5332051e-01 + 7.2836000e+03 4.3332051e-01 + 7.2840000e+03 7.7332051e-01 + 7.2844000e+03 1.2733205e+00 + 7.2848000e+03 1.3433205e+00 + 7.2852000e+03 9.1332051e-01 + 7.2856000e+03 1.0332051e-01 + 7.2860000e+03 -1.0666795e+00 + 7.2864000e+03 -1.9166795e+00 + 7.2868000e+03 -2.8466795e+00 + 7.2872000e+03 -2.8766795e+00 + 7.2876000e+03 -2.8766795e+00 + 7.2880000e+03 -2.8766795e+00 + 7.2884000e+03 -3.0566795e+00 + 7.2888000e+03 -3.2166795e+00 + 7.2892000e+03 -2.8466795e+00 + 7.2896000e+03 -2.0366795e+00 + 7.2900000e+03 -7.2667949e-01 + 7.2904000e+03 2.3332051e-01 + 7.2908000e+03 5.7332051e-01 + 7.2912000e+03 8.8332051e-01 + 7.2916000e+03 1.5833205e+00 + 7.2920000e+03 2.1733205e+00 + 7.2924000e+03 2.9133205e+00 + 7.2928000e+03 3.9433205e+00 + 7.2932000e+03 4.1633205e+00 + 7.2936000e+03 4.0433205e+00 + 7.2940000e+03 3.7433205e+00 + 7.2944000e+03 3.0033205e+00 + 7.2948000e+03 2.1333205e+00 + 7.2952000e+03 1.7233205e+00 + 7.2956000e+03 1.7033205e+00 + 7.2960000e+03 1.7033205e+00 + 7.2964000e+03 1.0033205e+00 + 7.2968000e+03 -2.5466795e+00 + 7.2972000e+03 -2.8066795e+00 + 7.2976000e+03 -2.7366795e+00 + 7.2980000e+03 -2.7766795e+00 + 7.2984000e+03 -2.7266795e+00 + 7.2988000e+03 -2.5466795e+00 + 7.2992000e+03 -2.1966795e+00 + 7.2996000e+03 -1.5866795e+00 + 7.3000000e+03 -1.3266795e+00 + 7.3004000e+03 -1.3166795e+00 + 7.3008000e+03 -1.3266795e+00 + 7.3012000e+03 -1.3166795e+00 + 7.3016000e+03 -1.3166795e+00 + 7.3020000e+03 -3.6667949e-01 + 7.3024000e+03 1.0433205e+00 + 7.3028000e+03 1.1833205e+00 + 7.3032000e+03 8.0332051e-01 + 7.3036000e+03 6.8332051e-01 + 7.3040000e+03 6.7332051e-01 + 7.3044000e+03 6.7332051e-01 + 7.3048000e+03 -1.5866795e+00 + 7.3052000e+03 -2.2066795e+00 + 7.3056000e+03 -2.1566795e+00 + 7.3060000e+03 -2.0766795e+00 + 7.3064000e+03 -1.7766795e+00 + 7.3068000e+03 -1.1366795e+00 + 7.3072000e+03 -1.0266795e+00 + 7.3076000e+03 -1.0266795e+00 + 7.3080000e+03 -1.0266795e+00 + 7.3084000e+03 -1.0266795e+00 + 7.3088000e+03 -9.6667949e-01 + 7.3092000e+03 -7.2667949e-01 + 7.3096000e+03 -5.0667949e-01 + 7.3100000e+03 -3.7667949e-01 + 7.3104000e+03 3.3332051e-01 + 7.3108000e+03 4.9332051e-01 + 7.3112000e+03 7.0332051e-01 + 7.3116000e+03 8.8332051e-01 + 7.3120000e+03 6.4332051e-01 + 7.3124000e+03 6.2332051e-01 + 7.3128000e+03 4.2332051e-01 + 7.3132000e+03 4.1332051e-01 + 7.3136000e+03 6.7332051e-01 + 7.3140000e+03 6.6332051e-01 + 7.3144000e+03 8.3332051e-01 + 7.3148000e+03 7.7332051e-01 + 7.3152000e+03 9.5332051e-01 + 7.3156000e+03 1.2233205e+00 + 7.3160000e+03 1.3533205e+00 + 7.3164000e+03 1.1133205e+00 + 7.3168000e+03 8.4332051e-01 + 7.3172000e+03 7.9332051e-01 + 7.3176000e+03 7.9332051e-01 + 7.3180000e+03 7.9332051e-01 + 7.3184000e+03 7.9332051e-01 + 7.3188000e+03 7.8332051e-01 + 7.3192000e+03 7.9332051e-01 + 7.3196000e+03 2.3332051e-01 + 7.3200000e+03 -1.4866795e+00 + 7.3204000e+03 -1.3266795e+00 + 7.3208000e+03 -1.3166795e+00 + 7.3212000e+03 -1.2366795e+00 + 7.3216000e+03 2.4332051e-01 + 7.3220000e+03 5.1332051e-01 + 7.3224000e+03 1.2133205e+00 + 7.3228000e+03 1.3333205e+00 + 7.3232000e+03 1.6733205e+00 + 7.3236000e+03 1.5533205e+00 + 7.3240000e+03 1.5433205e+00 + 7.3244000e+03 1.5433205e+00 + 7.3248000e+03 1.5433205e+00 + 7.3252000e+03 1.5433205e+00 + 7.3256000e+03 1.5433205e+00 + 7.3260000e+03 1.5433205e+00 + 7.3264000e+03 -2.5466795e+00 + 7.3268000e+03 -3.1066795e+00 + 7.3272000e+03 -2.8766795e+00 + 7.3276000e+03 -2.5266795e+00 + 7.3280000e+03 -2.4066795e+00 + 7.3284000e+03 -1.8266795e+00 + 7.3288000e+03 -7.7667949e-01 + 7.3292000e+03 -2.5667949e-01 + 7.3296000e+03 -1.4667949e-01 + 7.3300000e+03 -1.3667949e-01 + 7.3304000e+03 -1.2667949e-01 + 7.3308000e+03 1.4933205e+00 + 7.3312000e+03 1.3633205e+00 + 7.3316000e+03 1.1133205e+00 + 7.3320000e+03 1.3633205e+00 + 7.3324000e+03 1.5133205e+00 + 7.3328000e+03 1.7033205e+00 + 7.3332000e+03 1.6933205e+00 + 7.3336000e+03 1.4633205e+00 + 7.3340000e+03 1.3233205e+00 + 7.3344000e+03 1.1233205e+00 + 7.3348000e+03 1.4033205e+00 + 7.3352000e+03 1.7833205e+00 + 7.3356000e+03 1.9633205e+00 + 7.3360000e+03 2.3433205e+00 + 7.3364000e+03 1.9533205e+00 + 7.3368000e+03 1.9333205e+00 + 7.3372000e+03 1.9333205e+00 + 7.3376000e+03 1.9333205e+00 + 7.3380000e+03 1.9233205e+00 + 7.3384000e+03 1.9233205e+00 + 7.3388000e+03 1.2333205e+00 + 7.3392000e+03 -2.6966795e+00 + 7.3396000e+03 -2.7666795e+00 + 7.3400000e+03 -2.3766795e+00 + 7.3404000e+03 -2.1366795e+00 + 7.3408000e+03 -2.1266795e+00 + 7.3412000e+03 -2.1266795e+00 + 7.3416000e+03 -2.1266795e+00 + 7.3420000e+03 -2.1266795e+00 + 7.3424000e+03 -2.1266795e+00 + 7.3428000e+03 -2.1266795e+00 + 7.3432000e+03 -2.1266795e+00 + 7.3436000e+03 -1.2066795e+00 + 7.3440000e+03 -6.5667949e-01 + 7.3444000e+03 -3.2667949e-01 + 7.3448000e+03 2.2332051e-01 + 7.3452000e+03 6.8332051e-01 + 7.3456000e+03 1.1533205e+00 + 7.3460000e+03 9.9332051e-01 + 7.3464000e+03 7.0332051e-01 + 7.3468000e+03 5.0332051e-01 + 7.3472000e+03 5.0332051e-01 + 7.3476000e+03 5.0332051e-01 + 7.3480000e+03 5.0332051e-01 + 7.3484000e+03 5.0332051e-01 + 7.3488000e+03 4.9332051e-01 + 7.3492000e+03 4.9332051e-01 + 7.3496000e+03 4.9332051e-01 + 7.3500000e+03 -1.5166795e+00 + 7.3504000e+03 -1.6366795e+00 + 7.3508000e+03 -1.4266795e+00 + 7.3512000e+03 -1.4166795e+00 + 7.3516000e+03 -1.4166795e+00 + 7.3520000e+03 -1.4166795e+00 + 7.3524000e+03 -1.4166795e+00 + 7.3528000e+03 -1.4066795e+00 + 7.3532000e+03 -1.4066795e+00 + 7.3536000e+03 -1.4066795e+00 + 7.3540000e+03 -1.4066795e+00 + 7.3544000e+03 -1.4066795e+00 + 7.3548000e+03 8.8332051e-01 + 7.3552000e+03 1.4333205e+00 + 7.3556000e+03 3.9332051e-01 + 7.3560000e+03 -4.0667949e-01 + 7.3564000e+03 -4.9667949e-01 + 7.3568000e+03 -5.7667949e-01 + 7.3572000e+03 -4.7667949e-01 + 7.3576000e+03 -2.3667949e-01 + 7.3580000e+03 -5.9667949e-01 + 7.3584000e+03 -1.0566795e+00 + 7.3588000e+03 -1.5166795e+00 + 7.3592000e+03 -1.5366795e+00 + 7.3596000e+03 -1.3066795e+00 + 7.3600000e+03 -9.4667949e-01 + 7.3604000e+03 -6.1667949e-01 + 7.3608000e+03 -4.8667949e-01 + 7.3612000e+03 -1.1667949e-01 + 7.3616000e+03 -3.6667949e-01 + 7.3620000e+03 -3.7667949e-01 + 7.3624000e+03 -2.0667949e-01 + 7.3628000e+03 1.5332051e-01 + 7.3632000e+03 2.6332051e-01 + 7.3636000e+03 2.6332051e-01 + 7.3640000e+03 2.6332051e-01 + 7.3644000e+03 2.2332051e-01 + 7.3648000e+03 -7.4667949e-01 + 7.3652000e+03 -1.9766795e+00 + 7.3656000e+03 -2.4966795e+00 + 7.3660000e+03 -2.4966795e+00 + 7.3664000e+03 -1.8466795e+00 + 7.3668000e+03 -1.2066795e+00 + 7.3672000e+03 -7.6667949e-01 + 7.3676000e+03 -7.4667949e-01 + 7.3680000e+03 -7.4667949e-01 + 7.3684000e+03 -2.7667949e-01 + 7.3688000e+03 -4.4667949e-01 + 7.3692000e+03 -8.2667949e-01 + 7.3696000e+03 -1.0266795e+00 + 7.3700000e+03 -1.0066795e+00 + 7.3704000e+03 -5.2667949e-01 + 7.3708000e+03 1.2332051e-01 + 7.3712000e+03 6.7332051e-01 + 7.3716000e+03 9.7332051e-01 + 7.3720000e+03 8.8332051e-01 + 7.3724000e+03 7.0332051e-01 + 7.3728000e+03 5.2332051e-01 + 7.3732000e+03 3.5332051e-01 + 7.3736000e+03 8.3320513e-02 + 7.3740000e+03 -7.6679487e-02 + 7.3744000e+03 -1.9667949e-01 + 7.3748000e+03 -1.7667949e-01 + 7.3752000e+03 1.6332051e-01 + 7.3756000e+03 5.8332051e-01 + 7.3760000e+03 7.1332051e-01 + 7.3764000e+03 7.5332051e-01 + 7.3768000e+03 9.0332051e-01 + 7.3772000e+03 1.0233205e+00 + 7.3776000e+03 1.3033205e+00 + 7.3780000e+03 5.7332051e-01 + 7.3784000e+03 -2.3667949e-01 + 7.3788000e+03 -7.4667949e-01 + 7.3792000e+03 -5.5667949e-01 + 7.3796000e+03 -7.6679487e-02 + 7.3800000e+03 -6.6679487e-02 + 7.3804000e+03 -4.4667949e-01 + 7.3808000e+03 -5.9667949e-01 + 7.3812000e+03 -6.2667949e-01 + 7.3816000e+03 -9.9667949e-01 + 7.3820000e+03 -1.6366795e+00 + 7.3824000e+03 -1.7466795e+00 + 7.3828000e+03 -1.8566795e+00 + 7.3832000e+03 -1.9666795e+00 + 7.3836000e+03 -1.8166795e+00 + 7.3840000e+03 -1.2466795e+00 + 7.3844000e+03 -9.9667949e-01 + 7.3848000e+03 1.0332051e-01 + 7.3852000e+03 4.4332051e-01 + 7.3856000e+03 6.3332051e-01 + 7.3860000e+03 1.0533205e+00 + 7.3864000e+03 1.1433205e+00 + 7.3868000e+03 1.1033205e+00 + 7.3872000e+03 1.2233205e+00 + 7.3876000e+03 8.2332051e-01 + 7.3880000e+03 6.3332051e-01 + 7.3884000e+03 -2.2667949e-01 + 7.3888000e+03 -8.6667949e-01 + 7.3892000e+03 -1.4466795e+00 + 7.3896000e+03 -1.7866795e+00 + 7.3900000e+03 -2.2466795e+00 + 7.3904000e+03 -2.4466795e+00 + 7.3908000e+03 -2.4466795e+00 + 7.3912000e+03 -2.4566795e+00 + 7.3916000e+03 -2.4466795e+00 + 7.3920000e+03 -2.1366795e+00 + 7.3924000e+03 -2.0966795e+00 + 7.3928000e+03 -2.0966795e+00 + 7.3932000e+03 -2.0866795e+00 + 7.3936000e+03 -1.9166795e+00 + 7.3940000e+03 3.2333205e+00 + 7.3944000e+03 3.2533205e+00 + 7.3948000e+03 3.2233205e+00 + 7.3952000e+03 3.1633205e+00 + 7.3956000e+03 1.0233205e+00 + 7.3960000e+03 7.7332051e-01 + 7.3964000e+03 7.3332051e-01 + 7.3968000e+03 5.4332051e-01 + 7.3972000e+03 4.9332051e-01 + 7.3976000e+03 4.8332051e-01 + 7.3980000e+03 4.9332051e-01 + 7.3984000e+03 -1.1766795e+00 + 7.3988000e+03 -1.2166795e+00 + 7.3992000e+03 -1.3366795e+00 + 7.3996000e+03 -7.3667949e-01 + 7.4000000e+03 2.4332051e-01 + 7.4004000e+03 7.5332051e-01 + 7.4008000e+03 9.9332051e-01 + 7.4012000e+03 1.0933205e+00 + 7.4016000e+03 9.0332051e-01 + 7.4020000e+03 4.7332051e-01 + 7.4024000e+03 3.5332051e-01 + 7.4028000e+03 2.9332051e-01 + 7.4032000e+03 2.9332051e-01 + 7.4036000e+03 -2.2667949e-01 + 7.4040000e+03 -8.2667949e-01 + 7.4044000e+03 -8.4667949e-01 + 7.4048000e+03 -8.4667949e-01 + 7.4052000e+03 -1.7366795e+00 + 7.4056000e+03 -1.8366795e+00 + 7.4060000e+03 -1.4466795e+00 + 7.4064000e+03 -1.3966795e+00 + 7.4068000e+03 -1.3966795e+00 + 7.4072000e+03 -1.3966795e+00 + 7.4076000e+03 2.3320513e-02 + 7.4080000e+03 3.0332051e-01 + 7.4084000e+03 5.8332051e-01 + 7.4088000e+03 6.7332051e-01 + 7.4092000e+03 2.7332051e-01 + 7.4096000e+03 -2.1667949e-01 + 7.4100000e+03 -4.0667949e-01 + 7.4104000e+03 -8.1667949e-01 + 7.4108000e+03 -1.2866795e+00 + 7.4112000e+03 -1.3066795e+00 + 7.4116000e+03 -1.3066795e+00 + 7.4120000e+03 -1.3066795e+00 + 7.4124000e+03 -1.3066795e+00 + 7.4128000e+03 -2.3166795e+00 + 7.4132000e+03 -2.2966795e+00 + 7.4136000e+03 -1.8066795e+00 + 7.4140000e+03 -1.1566795e+00 + 7.4144000e+03 -1.3667949e-01 + 7.4148000e+03 -1.6679487e-02 + 7.4152000e+03 -6.6794872e-03 + 7.4156000e+03 -6.6794872e-03 + 7.4160000e+03 2.7833205e+00 + 7.4164000e+03 4.0933205e+00 + 7.4168000e+03 3.3533205e+00 + 7.4172000e+03 3.1733205e+00 + 7.4176000e+03 2.7733205e+00 + 7.4180000e+03 5.3332051e-01 + 7.4184000e+03 2.0332051e-01 + 7.4188000e+03 3.3320513e-02 + 7.4192000e+03 -3.6679487e-02 + 7.4196000e+03 -2.6667949e-01 + 7.4200000e+03 -7.3667949e-01 + 7.4204000e+03 -1.2966795e+00 + 7.4208000e+03 -1.7666795e+00 + 7.4212000e+03 -2.1366795e+00 + 7.4216000e+03 -1.7466795e+00 + 7.4220000e+03 -9.1667949e-01 + 7.4224000e+03 -5.8667949e-01 + 7.4228000e+03 -5.9667949e-01 + 7.4232000e+03 -1.7667949e-01 + 7.4236000e+03 2.5332051e-01 + 7.4240000e+03 4.4332051e-01 + 7.4244000e+03 4.8332051e-01 + 7.4248000e+03 5.5332051e-01 + 7.4252000e+03 7.5332051e-01 + 7.4256000e+03 9.1332051e-01 + 7.4260000e+03 9.7332051e-01 + 7.4264000e+03 8.5332051e-01 + 7.4268000e+03 2.3320513e-02 + 7.4272000e+03 -1.2066795e+00 + 7.4276000e+03 -2.3666795e+00 + 7.4280000e+03 -3.2166795e+00 + 7.4284000e+03 -3.6966795e+00 + 7.4288000e+03 -3.8666795e+00 + 7.4292000e+03 -3.6966795e+00 + 7.4296000e+03 -3.2766795e+00 + 7.4300000e+03 -2.5766795e+00 + 7.4304000e+03 -2.0166795e+00 + 7.4308000e+03 -1.5166795e+00 + 7.4312000e+03 -8.1667949e-01 + 7.4316000e+03 2.3320513e-02 + 7.4320000e+03 8.3332051e-01 + 7.4324000e+03 1.6733205e+00 + 7.4328000e+03 2.2933205e+00 + 7.4332000e+03 2.6433205e+00 + 7.4336000e+03 2.6733205e+00 + 7.4340000e+03 2.7433205e+00 + 7.4344000e+03 2.6233205e+00 + 7.4348000e+03 2.5833205e+00 + 7.4352000e+03 2.5433205e+00 + 7.4356000e+03 2.4733205e+00 + 7.4360000e+03 2.6133205e+00 + 7.4364000e+03 2.2933205e+00 + 7.4368000e+03 1.7033205e+00 + 7.4372000e+03 8.0332051e-01 + 7.4376000e+03 2.2332051e-01 + 7.4380000e+03 -1.6667949e-01 + 7.4384000e+03 -4.2667949e-01 + 7.4388000e+03 -5.9667949e-01 + 7.4392000e+03 -5.6667949e-01 + 7.4396000e+03 -8.3667949e-01 + 7.4400000e+03 -1.1966795e+00 + 7.4404000e+03 -1.3866795e+00 + 7.4408000e+03 -1.4866795e+00 + 7.4412000e+03 -1.5766795e+00 + 7.4416000e+03 -1.5766795e+00 + 7.4420000e+03 -1.2166795e+00 + 7.4424000e+03 -1.1466795e+00 + 7.4428000e+03 -8.9667949e-01 + 7.4432000e+03 -8.0667949e-01 + 7.4436000e+03 -1.1166795e+00 + 7.4440000e+03 -1.1966795e+00 + 7.4444000e+03 -1.0366795e+00 + 7.4448000e+03 -3.4667949e-01 + 7.4452000e+03 8.3320513e-02 + 7.4456000e+03 3.0332051e-01 + 7.4460000e+03 1.2332051e-01 + 7.4464000e+03 -2.3667949e-01 + 7.4468000e+03 -4.5667949e-01 + 7.4472000e+03 -1.3667949e-01 + 7.4476000e+03 5.2332051e-01 + 7.4480000e+03 7.5332051e-01 + 7.4484000e+03 4.2332051e-01 + 7.4488000e+03 -1.5667949e-01 + 7.4492000e+03 -4.5667949e-01 + 7.4496000e+03 -4.6667949e-01 + 7.4500000e+03 -4.6667949e-01 + 7.4504000e+03 -9.9667949e-01 + 7.4508000e+03 -2.1666795e+00 + 7.4512000e+03 -1.9966795e+00 + 7.4516000e+03 -1.9866795e+00 + 7.4520000e+03 -1.9866795e+00 + 7.4524000e+03 -1.9866795e+00 + 7.4528000e+03 -1.3366795e+00 + 7.4532000e+03 -9.4667949e-01 + 7.4536000e+03 -7.1667949e-01 + 7.4540000e+03 -9.6679487e-02 + 7.4544000e+03 4.4332051e-01 + 7.4548000e+03 1.0333205e+00 + 7.4552000e+03 1.5133205e+00 + 7.4556000e+03 2.1533205e+00 + 7.4560000e+03 3.1833205e+00 + 7.4564000e+03 4.3433205e+00 + 7.4568000e+03 4.9733205e+00 + 7.4572000e+03 4.4733205e+00 + 7.4576000e+03 3.5733205e+00 + 7.4580000e+03 2.3033205e+00 + 7.4584000e+03 2.1833205e+00 + 7.4588000e+03 2.1933205e+00 + 7.4592000e+03 2.1833205e+00 + 7.4596000e+03 2.1833205e+00 + 7.4600000e+03 1.2033205e+00 + 7.4604000e+03 6.0332051e-01 + 7.4608000e+03 5.8332051e-01 + 7.4612000e+03 5.8332051e-01 + 7.4616000e+03 5.9332051e-01 + 7.4620000e+03 5.9332051e-01 + 7.4624000e+03 5.9332051e-01 + 7.4628000e+03 5.9332051e-01 + 7.4632000e+03 -1.0166795e+00 + 7.4636000e+03 -3.2666795e+00 + 7.4640000e+03 -3.1966795e+00 + 7.4644000e+03 -2.7866795e+00 + 7.4648000e+03 -2.1966795e+00 + 7.4652000e+03 -1.4866795e+00 + 7.4656000e+03 -7.7667949e-01 + 7.4660000e+03 -2.0667949e-01 + 7.4664000e+03 3.0332051e-01 + 7.4668000e+03 5.5332051e-01 + 7.4672000e+03 2.2833205e+00 + 7.4676000e+03 2.7533205e+00 + 7.4680000e+03 3.1233205e+00 + 7.4684000e+03 2.4633205e+00 + 7.4688000e+03 1.5533205e+00 + 7.4692000e+03 1.0433205e+00 + 7.4696000e+03 2.8332051e-01 + 7.4700000e+03 -3.6667949e-01 + 7.4704000e+03 -5.2667949e-01 + 7.4708000e+03 -5.4667949e-01 + 7.4712000e+03 -5.3667949e-01 + 7.4716000e+03 -5.3667949e-01 + 7.4720000e+03 -5.3667949e-01 + 7.4724000e+03 -9.2667949e-01 + 7.4728000e+03 -7.4667949e-01 + 7.4732000e+03 -2.8667949e-01 + 7.4736000e+03 -1.1667949e-01 + 7.4740000e+03 6.0332051e-01 + 7.4744000e+03 1.9332051e-01 + 7.4748000e+03 1.1332051e-01 + 7.4752000e+03 6.0332051e-01 + 7.4756000e+03 1.3333205e+00 + 7.4760000e+03 1.7533205e+00 + 7.4764000e+03 2.1933205e+00 + 7.4768000e+03 2.1633205e+00 + 7.4772000e+03 1.5533205e+00 + 7.4776000e+03 9.6332051e-01 + 7.4780000e+03 4.7332051e-01 + 7.4784000e+03 4.5332051e-01 + 7.4788000e+03 4.5332051e-01 + 7.4792000e+03 4.5332051e-01 + 7.4796000e+03 -6.0667949e-01 + 7.4800000e+03 -1.1966795e+00 + 7.4804000e+03 -1.4566795e+00 + 7.4808000e+03 -1.5366795e+00 + 7.4812000e+03 -1.2466795e+00 + 7.4816000e+03 -6.6667949e-01 + 7.4820000e+03 -3.2667949e-01 + 7.4824000e+03 -2.7667949e-01 + 7.4828000e+03 -5.3667949e-01 + 7.4832000e+03 -7.4667949e-01 + 7.4836000e+03 -1.1966795e+00 + 7.4840000e+03 -1.0866795e+00 + 7.4844000e+03 -6.2667949e-01 + 7.4848000e+03 -2.9667949e-01 + 7.4852000e+03 7.3320513e-02 + 7.4856000e+03 7.2332051e-01 + 7.4860000e+03 9.6332051e-01 + 7.4864000e+03 1.2533205e+00 + 7.4868000e+03 1.4033205e+00 + 7.4872000e+03 8.0332051e-01 + 7.4876000e+03 -2.4667949e-01 + 7.4880000e+03 -1.2566795e+00 + 7.4884000e+03 -1.8966795e+00 + 7.4888000e+03 -2.4466795e+00 + 7.4892000e+03 -2.5166795e+00 + 7.4896000e+03 -2.1466795e+00 + 7.4900000e+03 -1.8366795e+00 + 7.4904000e+03 -1.5766795e+00 + 7.4908000e+03 -1.3466795e+00 + 7.4912000e+03 -1.3166795e+00 + 7.4916000e+03 -7.8667949e-01 + 7.4920000e+03 1.4633205e+00 + 7.4924000e+03 1.1133205e+00 + 7.4928000e+03 8.2332051e-01 + 7.4932000e+03 6.9332051e-01 + 7.4936000e+03 8.3332051e-01 + 7.4940000e+03 9.6332051e-01 + 7.4944000e+03 1.2933205e+00 + 7.4948000e+03 1.7533205e+00 + 7.4952000e+03 2.0333205e+00 + 7.4956000e+03 1.8633205e+00 + 7.4960000e+03 1.4233205e+00 + 7.4964000e+03 1.0433205e+00 + 7.4968000e+03 5.2332051e-01 + 7.4972000e+03 1.2332051e-01 + 7.4976000e+03 -1.1667949e-01 + 7.4980000e+03 -8.8667949e-01 + 7.4984000e+03 -1.0966795e+00 + 7.4988000e+03 -1.7366795e+00 + 7.4992000e+03 -1.9866795e+00 + 7.4996000e+03 -2.2166795e+00 + 7.5000000e+03 -2.0766795e+00 + 7.5004000e+03 -1.9166795e+00 + 7.5008000e+03 -1.5066795e+00 + 7.5012000e+03 -7.4667949e-01 + 7.5016000e+03 -2.9667949e-01 + 7.5020000e+03 -3.6667949e-01 + 7.5024000e+03 -5.9667949e-01 + 7.5028000e+03 -4.6667949e-01 + 7.5032000e+03 -3.9667949e-01 + 7.5036000e+03 -4.6679487e-02 + 7.5040000e+03 3.5332051e-01 + 7.5044000e+03 1.1333205e+00 + 7.5048000e+03 1.6333205e+00 + 7.5052000e+03 1.9433205e+00 + 7.5056000e+03 1.4133205e+00 + 7.5060000e+03 1.1733205e+00 + 7.5064000e+03 1.1533205e+00 + 7.5068000e+03 1.1533205e+00 + 7.5072000e+03 1.1533205e+00 + 7.5076000e+03 1.1533205e+00 + 7.5080000e+03 -5.5667949e-01 + 7.5084000e+03 -6.5667949e-01 + 7.5088000e+03 -3.8667949e-01 + 7.5092000e+03 -1.9667949e-01 + 7.5096000e+03 -5.6667949e-01 + 7.5100000e+03 -7.3667949e-01 + 7.5104000e+03 -6.2667949e-01 + 7.5108000e+03 -1.0667949e-01 + 7.5112000e+03 1.4332051e-01 + 7.5116000e+03 3.4332051e-01 + 7.5120000e+03 1.7332051e-01 + 7.5124000e+03 2.0332051e-01 + 7.5128000e+03 1.6332051e-01 + 7.5132000e+03 3.3205128e-03 + 7.5136000e+03 -2.3667949e-01 + 7.5140000e+03 -2.3667949e-01 + 7.5144000e+03 -1.5667949e-01 + 7.5148000e+03 -2.4667949e-01 + 7.5152000e+03 -3.5667949e-01 + 7.5156000e+03 -6.6667949e-01 + 7.5160000e+03 -8.4667949e-01 + 7.5164000e+03 -1.0966795e+00 + 7.5168000e+03 -1.1666795e+00 + 7.5172000e+03 -1.0066795e+00 + 7.5176000e+03 -6.3667949e-01 + 7.5180000e+03 -2.7667949e-01 + 7.5184000e+03 -1.6679487e-02 + 7.5188000e+03 3.4332051e-01 + 7.5192000e+03 8.7332051e-01 + 7.5196000e+03 7.9332051e-01 + 7.5200000e+03 6.0332051e-01 + 7.5204000e+03 1.5332051e-01 + 7.5208000e+03 -1.0667949e-01 + 7.5212000e+03 1.4332051e-01 + 7.5216000e+03 6.0332051e-01 + 7.5220000e+03 1.0733205e+00 + 7.5224000e+03 1.1033205e+00 + 7.5228000e+03 7.0332051e-01 + 7.5232000e+03 3.5332051e-01 + 7.5236000e+03 -1.3667949e-01 + 7.5240000e+03 -5.4667949e-01 + 7.5244000e+03 -7.7667949e-01 + 7.5248000e+03 -9.0667949e-01 + 7.5252000e+03 -9.0667949e-01 + 7.5256000e+03 -9.4667949e-01 + 7.5260000e+03 -2.3966795e+00 + 7.5264000e+03 -2.0466795e+00 + 7.5268000e+03 -1.8266795e+00 + 7.5272000e+03 -1.8266795e+00 + 7.5276000e+03 -1.8166795e+00 + 7.5280000e+03 -2.6667949e-01 + 7.5284000e+03 7.6332051e-01 + 7.5288000e+03 1.8332051e-01 + 7.5292000e+03 2.3320513e-02 + 7.5296000e+03 2.1332051e-01 + 7.5300000e+03 6.3332051e-01 + 7.5304000e+03 1.5333205e+00 + 7.5308000e+03 2.4533205e+00 + 7.5312000e+03 2.9533205e+00 + 7.5316000e+03 2.6033205e+00 + 7.5320000e+03 2.1933205e+00 + 7.5324000e+03 2.1733205e+00 + 7.5328000e+03 2.1733205e+00 + 7.5332000e+03 2.1733205e+00 + 7.5336000e+03 2.1733205e+00 + 7.5340000e+03 2.1733205e+00 + 7.5344000e+03 2.1733205e+00 + 7.5348000e+03 2.1733205e+00 + 7.5352000e+03 2.1733205e+00 + 7.5356000e+03 -9.9667949e-01 + 7.5360000e+03 -6.6667949e-01 + 7.5364000e+03 -1.9667949e-01 + 7.5368000e+03 -6.6679487e-02 + 7.5372000e+03 -6.6679487e-02 + 7.5376000e+03 9.1332051e-01 + 7.5380000e+03 1.9333205e+00 + 7.5384000e+03 1.5833205e+00 + 7.5388000e+03 1.3833205e+00 + 7.5392000e+03 -2.6667949e-01 + 7.5396000e+03 -1.0166795e+00 + 7.5400000e+03 -1.0866795e+00 + 7.5404000e+03 -1.3866795e+00 + 7.5408000e+03 -1.2466795e+00 + 7.5412000e+03 -7.9667949e-01 + 7.5416000e+03 -4.4667949e-01 + 7.5420000e+03 -3.9667949e-01 + 7.5424000e+03 -3.8667949e-01 + 7.5428000e+03 -4.0667949e-01 + 7.5432000e+03 2.3332051e-01 + 7.5436000e+03 1.0533205e+00 + 7.5440000e+03 1.7833205e+00 + 7.5444000e+03 1.3033205e+00 + 7.5448000e+03 1.0933205e+00 + 7.5452000e+03 3.3332051e-01 + 7.5456000e+03 -2.5667949e-01 + 7.5460000e+03 -7.9667949e-01 + 7.5464000e+03 -1.3766795e+00 + 7.5468000e+03 -1.5866795e+00 + 7.5472000e+03 -1.5366795e+00 + 7.5476000e+03 -1.4966795e+00 + 7.5480000e+03 -1.2466795e+00 + 7.5484000e+03 -9.4667949e-01 + 7.5488000e+03 -5.9667949e-01 + 7.5492000e+03 5.3320513e-02 + 7.5496000e+03 6.4332051e-01 + 7.5500000e+03 1.1633205e+00 + 7.5504000e+03 1.6733205e+00 + 7.5508000e+03 1.9433205e+00 + 7.5512000e+03 2.0033205e+00 + 7.5516000e+03 2.0433205e+00 + 7.5520000e+03 1.6933205e+00 + 7.5524000e+03 1.1933205e+00 + 7.5528000e+03 3.6332051e-01 + 7.5532000e+03 -2.2667949e-01 + 7.5536000e+03 -2.7667949e-01 + 7.5540000e+03 -2.7667949e-01 + 7.5544000e+03 -2.7667949e-01 + 7.5548000e+03 -1.9266795e+00 + 7.5552000e+03 -2.5966795e+00 + 7.5556000e+03 -2.6166795e+00 + 7.5560000e+03 -2.5266795e+00 + 7.5564000e+03 -2.1366795e+00 + 7.5568000e+03 -1.9466795e+00 + 7.5572000e+03 -1.7066795e+00 + 7.5576000e+03 -1.4066795e+00 + 7.5580000e+03 -9.2667949e-01 + 7.5584000e+03 -8.9667949e-01 + 7.5588000e+03 -8.9667949e-01 + 7.5592000e+03 -8.9667949e-01 + 7.5596000e+03 -8.9667949e-01 + 7.5600000e+03 -8.9667949e-01 + 7.5604000e+03 -8.9667949e-01 + 7.5608000e+03 -8.9667949e-01 + 7.5612000e+03 1.2833205e+00 + 7.5616000e+03 1.6033205e+00 + 7.5620000e+03 1.4733205e+00 + 7.5624000e+03 1.0133205e+00 + 7.5628000e+03 9.6332051e-01 + 7.5632000e+03 9.6332051e-01 + 7.5636000e+03 2.0332051e-01 + 7.5640000e+03 -1.5566795e+00 + 7.5644000e+03 -1.1266795e+00 + 7.5648000e+03 -1.2066795e+00 + 7.5652000e+03 -1.2466795e+00 + 7.5656000e+03 -1.2466795e+00 + 7.5660000e+03 -1.2366795e+00 + 7.5664000e+03 -1.1766795e+00 + 7.5668000e+03 -1.0266795e+00 + 7.5672000e+03 -8.5667949e-01 + 7.5676000e+03 -2.7667949e-01 + 7.5680000e+03 3.3320513e-02 + 7.5684000e+03 6.8332051e-01 + 7.5688000e+03 1.6733205e+00 + 7.5692000e+03 2.2633205e+00 + 7.5696000e+03 2.1733205e+00 + 7.5700000e+03 1.9133205e+00 + 7.5704000e+03 1.7733205e+00 + 7.5708000e+03 3.0332051e-01 + 7.5712000e+03 -4.0667949e-01 + 7.5716000e+03 -5.8667949e-01 + 7.5720000e+03 -5.7667949e-01 + 7.5724000e+03 -5.5667949e-01 + 7.5728000e+03 -6.6667949e-01 + 7.5732000e+03 -5.8667949e-01 + 7.5736000e+03 -4.6667949e-01 + 7.5740000e+03 -3.8667949e-01 + 7.5744000e+03 -4.6667949e-01 + 7.5748000e+03 -6.7667949e-01 + 7.5752000e+03 -1.0066795e+00 + 7.5756000e+03 -1.3866795e+00 + 7.5760000e+03 -1.7666795e+00 + 7.5764000e+03 -1.8966795e+00 + 7.5768000e+03 -2.0166795e+00 + 7.5772000e+03 -2.0066795e+00 + 7.5776000e+03 -1.9466795e+00 + 7.5780000e+03 -1.6966795e+00 + 7.5784000e+03 -1.0266795e+00 + 7.5788000e+03 -2.6667949e-01 + 7.5792000e+03 -2.1667949e-01 + 7.5796000e+03 -3.3667949e-01 + 7.5800000e+03 2.2332051e-01 + 7.5804000e+03 8.4332051e-01 + 7.5808000e+03 1.2033205e+00 + 7.5812000e+03 1.6033205e+00 + 7.5816000e+03 2.2133205e+00 + 7.5820000e+03 2.0233205e+00 + 7.5824000e+03 1.4433205e+00 + 7.5828000e+03 7.9332051e-01 + 7.5832000e+03 2.3332051e-01 + 7.5836000e+03 -6.6679487e-02 + 7.5840000e+03 -2.7667949e-01 + 7.5844000e+03 -4.5667949e-01 + 7.5848000e+03 -4.2667949e-01 + 7.5852000e+03 -1.2667949e-01 + 7.5856000e+03 5.3320513e-02 + 7.5860000e+03 2.0332051e-01 + 7.5864000e+03 1.7332051e-01 + 7.5868000e+03 -5.6679487e-02 + 7.5872000e+03 -3.9667949e-01 + 7.5876000e+03 -5.3667949e-01 + 7.5880000e+03 -4.6667949e-01 + 7.5884000e+03 -3.3667949e-01 + 7.5888000e+03 2.3320513e-02 + 7.5892000e+03 2.5332051e-01 + 7.5896000e+03 4.3332051e-01 + 7.5900000e+03 6.9332051e-01 + 7.5904000e+03 3.6332051e-01 + 7.5908000e+03 7.3320513e-02 + 7.5912000e+03 -2.1667949e-01 + 7.5916000e+03 -5.0667949e-01 + 7.5920000e+03 -6.7667949e-01 + 7.5924000e+03 -7.0667949e-01 + 7.5928000e+03 -9.4667949e-01 + 7.5932000e+03 -1.0266795e+00 + 7.5936000e+03 -1.3166795e+00 + 7.5940000e+03 -9.7667949e-01 + 7.5944000e+03 -5.6667949e-01 + 7.5948000e+03 -7.3667949e-01 + 7.5952000e+03 -1.2266795e+00 + 7.5956000e+03 -1.3966795e+00 + 7.5960000e+03 -1.2266795e+00 + 7.5964000e+03 -5.1667949e-01 + 7.5968000e+03 -2.9667949e-01 + 7.5972000e+03 -2.8667949e-01 + 7.5976000e+03 -2.8667949e-01 + 7.5980000e+03 -2.6667949e-01 + 7.5984000e+03 3.0332051e-01 + 7.5988000e+03 7.3320513e-02 + 7.5992000e+03 -1.7667949e-01 + 7.5996000e+03 -2.3667949e-01 + 7.6000000e+03 -2.5667949e-01 + 7.6004000e+03 -6.6794872e-03 + 7.6008000e+03 2.0332051e-01 + 7.6012000e+03 3.3332051e-01 + 7.6016000e+03 1.8332051e-01 + 7.6020000e+03 3.3320513e-02 + 7.6024000e+03 -2.3667949e-01 + 7.6028000e+03 -6.1667949e-01 + 7.6032000e+03 -8.4667949e-01 + 7.6036000e+03 -7.7667949e-01 + 7.6040000e+03 -4.0667949e-01 + 7.6044000e+03 -9.6679487e-02 + 7.6048000e+03 -3.6679487e-02 + 7.6052000e+03 -3.6679487e-02 + 7.6056000e+03 -3.6679487e-02 + 7.6060000e+03 4.9332051e-01 + 7.6064000e+03 1.6332051e-01 + 7.6068000e+03 -1.3667949e-01 + 7.6072000e+03 -5.6679487e-02 + 7.6076000e+03 1.7332051e-01 + 7.6080000e+03 2.6332051e-01 + 7.6084000e+03 4.0332051e-01 + 7.6088000e+03 6.5332051e-01 + 7.6092000e+03 4.7332051e-01 + 7.6096000e+03 4.6332051e-01 + 7.6100000e+03 4.4332051e-01 + 7.6104000e+03 -2.2966795e+00 + 7.6108000e+03 -2.6766795e+00 + 7.6112000e+03 -2.4266795e+00 + 7.6116000e+03 -1.8166795e+00 + 7.6120000e+03 -1.7366795e+00 + 7.6124000e+03 -1.7366795e+00 + 7.6128000e+03 -1.7266795e+00 + 7.6132000e+03 -1.7266795e+00 + 7.6136000e+03 -1.4667949e-01 + 7.6140000e+03 9.3320513e-02 + 7.6144000e+03 1.6332051e-01 + 7.6148000e+03 4.2332051e-01 + 7.6152000e+03 7.3332051e-01 + 7.6156000e+03 8.4332051e-01 + 7.6160000e+03 1.0133205e+00 + 7.6164000e+03 8.4332051e-01 + 7.6168000e+03 5.9332051e-01 + 7.6172000e+03 2.1332051e-01 + 7.6176000e+03 -1.1667949e-01 + 7.6180000e+03 -5.3667949e-01 + 7.6184000e+03 -5.6667949e-01 + 7.6188000e+03 -5.5667949e-01 + 7.6192000e+03 -7.0667949e-01 + 7.6196000e+03 -1.0766795e+00 + 7.6200000e+03 -1.0766795e+00 + 7.6204000e+03 -8.0667949e-01 + 7.6208000e+03 -3.3667949e-01 + 7.6212000e+03 -1.1667949e-01 + 7.6216000e+03 -1.0667949e-01 + 7.6220000e+03 3.2332051e-01 + 7.6224000e+03 7.9332051e-01 + 7.6228000e+03 8.0332051e-01 + 7.6232000e+03 6.9332051e-01 + 7.6236000e+03 5.9332051e-01 + 7.6240000e+03 5.5332051e-01 + 7.6244000e+03 4.2332051e-01 + 7.6248000e+03 -4.6679487e-02 + 7.6252000e+03 -8.6679487e-02 + 7.6256000e+03 -2.0667949e-01 + 7.6260000e+03 -1.4666795e+00 + 7.6264000e+03 -1.0166795e+00 + 7.6268000e+03 -5.4667949e-01 + 7.6272000e+03 -5.1667949e-01 + 7.6276000e+03 -5.1667949e-01 + 7.6280000e+03 9.0332051e-01 + 7.6284000e+03 1.0333205e+00 + 7.6288000e+03 9.3332051e-01 + 7.6292000e+03 9.2332051e-01 + 7.6296000e+03 9.2332051e-01 + 7.6300000e+03 9.2332051e-01 + 7.6304000e+03 9.2332051e-01 + 7.6308000e+03 9.2332051e-01 + 7.6312000e+03 8.9332051e-01 + 7.6316000e+03 -2.0566795e+00 + 7.6320000e+03 -2.1066795e+00 + 7.6324000e+03 -1.4966795e+00 + 7.6328000e+03 -3.7667949e-01 + 7.6332000e+03 3.0332051e-01 + 7.6336000e+03 3.5332051e-01 + 7.6340000e+03 3.5332051e-01 + 7.6344000e+03 3.5332051e-01 + 7.6348000e+03 3.4332051e-01 + 7.6352000e+03 1.6433205e+00 + 7.6356000e+03 1.8033205e+00 + 7.6360000e+03 1.3033205e+00 + 7.6364000e+03 7.5332051e-01 + 7.6368000e+03 4.7332051e-01 + 7.6372000e+03 1.3320513e-02 + 7.6376000e+03 -2.6679487e-02 + 7.6380000e+03 -1.4667949e-01 + 7.6384000e+03 -1.9466795e+00 + 7.6388000e+03 -2.5166795e+00 + 7.6392000e+03 -2.6166795e+00 + 7.6396000e+03 -2.5266795e+00 + 7.6400000e+03 -2.1366795e+00 + 7.6404000e+03 -2.0266795e+00 + 7.6408000e+03 -2.0166795e+00 + 7.6412000e+03 -2.0166795e+00 + 7.6416000e+03 -3.9667949e-01 + 7.6420000e+03 1.9133205e+00 + 7.6424000e+03 1.8233205e+00 + 7.6428000e+03 1.6633205e+00 + 7.6432000e+03 1.5833205e+00 + 7.6436000e+03 1.5133205e+00 + 7.6440000e+03 1.0033205e+00 + 7.6444000e+03 6.3332051e-01 + 7.6448000e+03 3.0332051e-01 + 7.6452000e+03 2.1332051e-01 + 7.6456000e+03 2.1332051e-01 + 7.6460000e+03 2.1332051e-01 + 7.6464000e+03 2.0332051e-01 + 7.6468000e+03 -3.2366795e+00 + 7.6472000e+03 -3.6666795e+00 + 7.6476000e+03 -3.1466795e+00 + 7.6480000e+03 -2.6166795e+00 + 7.6484000e+03 -2.0266795e+00 + 7.6488000e+03 -1.1066795e+00 + 7.6492000e+03 -8.9667949e-01 + 7.6496000e+03 -4.8667949e-01 + 7.6500000e+03 -1.4667949e-01 + 7.6504000e+03 -1.3667949e-01 + 7.6508000e+03 -1.2667949e-01 + 7.6512000e+03 1.5433205e+00 + 7.6516000e+03 1.6133205e+00 + 7.6520000e+03 1.5833205e+00 + 7.6524000e+03 1.0333205e+00 + 7.6528000e+03 8.2332051e-01 + 7.6532000e+03 7.7332051e-01 + 7.6536000e+03 7.9332051e-01 + 7.6540000e+03 6.4332051e-01 + 7.6544000e+03 4.8332051e-01 + 7.6548000e+03 5.4332051e-01 + 7.6552000e+03 4.2332051e-01 + 7.6556000e+03 5.1332051e-01 + 7.6560000e+03 7.2332051e-01 + 7.6564000e+03 8.2332051e-01 + 7.6568000e+03 5.0332051e-01 + 7.6572000e+03 -4.6679487e-02 + 7.6576000e+03 -4.2667949e-01 + 7.6580000e+03 -4.8667949e-01 + 7.6584000e+03 -3.6667949e-01 + 7.6588000e+03 -3.6667949e-01 + 7.6592000e+03 -6.7667949e-01 + 7.6596000e+03 -7.6667949e-01 + 7.6600000e+03 -1.0466795e+00 + 7.6604000e+03 -2.6666795e+00 + 7.6608000e+03 -2.6966795e+00 + 7.6612000e+03 -2.1066795e+00 + 7.6616000e+03 -2.0066795e+00 + 7.6620000e+03 -1.9466795e+00 + 7.6624000e+03 -6.4667949e-01 + 7.6628000e+03 -5.3667949e-01 + 7.6632000e+03 -5.3667949e-01 + 7.6636000e+03 -5.3667949e-01 + 7.6640000e+03 6.1332051e-01 + 7.6644000e+03 2.2433205e+00 + 7.6648000e+03 1.3333205e+00 + 7.6652000e+03 5.1332051e-01 + 7.6656000e+03 1.0332051e-01 + 7.6660000e+03 -2.2667949e-01 + 7.6664000e+03 -7.1667949e-01 + 7.6668000e+03 -1.0166795e+00 + 7.6672000e+03 -1.7966795e+00 + 7.6676000e+03 -2.7066795e+00 + 7.6680000e+03 -2.9666795e+00 + 7.6684000e+03 -2.9266795e+00 + 7.6688000e+03 -2.7066795e+00 + 7.6692000e+03 -2.2366795e+00 + 7.6696000e+03 -2.0166795e+00 + 7.6700000e+03 -2.0166795e+00 + 7.6704000e+03 -1.7166795e+00 + 7.6708000e+03 -1.6166795e+00 + 7.6712000e+03 -7.4667949e-01 + 7.6716000e+03 -6.3667949e-01 + 7.6720000e+03 -6.3667949e-01 + 7.6724000e+03 -6.2667949e-01 + 7.6728000e+03 -6.3667949e-01 + 7.6732000e+03 -5.5667949e-01 + 7.6736000e+03 1.9533205e+00 + 7.6740000e+03 2.3533205e+00 + 7.6744000e+03 2.3033205e+00 + 7.6748000e+03 2.0933205e+00 + 7.6752000e+03 2.0733205e+00 + 7.6756000e+03 1.9733205e+00 + 7.6760000e+03 1.8233205e+00 + 7.6764000e+03 1.5333205e+00 + 7.6768000e+03 1.2133205e+00 + 7.6772000e+03 -5.4667949e-01 + 7.6776000e+03 -6.5667949e-01 + 7.6780000e+03 -2.3366795e+00 + 7.6784000e+03 -2.7866795e+00 + 7.6788000e+03 -2.6966795e+00 + 7.6792000e+03 -1.9166795e+00 + 7.6796000e+03 -1.8466795e+00 + 7.6800000e+03 -1.8466795e+00 + 7.6804000e+03 -4.4667949e-01 + 7.6808000e+03 -4.6679487e-02 + 7.6812000e+03 6.4332051e-01 + 7.6816000e+03 1.7332051e-01 + 7.6820000e+03 -4.1667949e-01 + 7.6824000e+03 -9.2667949e-01 + 7.6828000e+03 -1.2666795e+00 + 7.6832000e+03 -1.2966795e+00 + 7.6836000e+03 -7.2667949e-01 + 7.6840000e+03 -4.9667949e-01 + 7.6844000e+03 -3.9667949e-01 + 7.6848000e+03 -6.3667949e-01 + 7.6852000e+03 -9.7667949e-01 + 7.6856000e+03 -1.2266795e+00 + 7.6860000e+03 -1.7366795e+00 + 7.6864000e+03 -2.1266795e+00 + 7.6868000e+03 -2.2466795e+00 + 7.6872000e+03 -2.4166795e+00 + 7.6876000e+03 -2.2666795e+00 + 7.6880000e+03 -1.9966795e+00 + 7.6884000e+03 -1.6266795e+00 + 7.6888000e+03 -1.2266795e+00 + 7.6892000e+03 -1.1966795e+00 + 7.6896000e+03 -2.7667949e-01 + 7.6900000e+03 2.1833205e+00 + 7.6904000e+03 2.4333205e+00 + 7.6908000e+03 2.8433205e+00 + 7.6912000e+03 3.2233205e+00 + 7.6916000e+03 3.3833205e+00 + 7.6920000e+03 3.7933205e+00 + 7.6924000e+03 4.1633205e+00 + 7.6928000e+03 4.3733205e+00 + 7.6932000e+03 4.1833205e+00 + 7.6936000e+03 4.1733205e+00 + 7.6940000e+03 4.1733205e+00 + 7.6944000e+03 4.1733205e+00 + 7.6948000e+03 4.1733205e+00 + 7.6952000e+03 4.1733205e+00 + 7.6956000e+03 4.1733205e+00 + 7.6960000e+03 4.1633205e+00 + 7.6964000e+03 4.1633205e+00 + 7.6968000e+03 6.2332051e-01 + 7.6972000e+03 -1.4966795e+00 + 7.6976000e+03 -1.5066795e+00 + 7.6980000e+03 -1.3166795e+00 + 7.6984000e+03 -1.5766795e+00 + 7.6988000e+03 -1.7266795e+00 + 7.6992000e+03 -1.3366795e+00 + 7.6996000e+03 -3.0667949e-01 + 7.7000000e+03 1.1332051e-01 + 7.7004000e+03 1.2332051e-01 + 7.7008000e+03 1.0033205e+00 + 7.7012000e+03 1.6433205e+00 + 7.7016000e+03 1.3833205e+00 + 7.7020000e+03 1.4433205e+00 + 7.7024000e+03 6.8332051e-01 + 7.7028000e+03 5.7332051e-01 + 7.7032000e+03 5.5332051e-01 + 7.7036000e+03 5.5332051e-01 + 7.7040000e+03 5.7332051e-01 + 7.7044000e+03 -9.1667949e-01 + 7.7048000e+03 -3.5466795e+00 + 7.7052000e+03 -3.7266795e+00 + 7.7056000e+03 -3.2566795e+00 + 7.7060000e+03 -2.6466795e+00 + 7.7064000e+03 -2.2266795e+00 + 7.7068000e+03 -5.4667949e-01 + 7.7072000e+03 4.0332051e-01 + 7.7076000e+03 6.3332051e-01 + 7.7080000e+03 1.2433205e+00 + 7.7084000e+03 1.7333205e+00 + 7.7088000e+03 2.7333205e+00 + 7.7092000e+03 3.4733205e+00 + 7.7096000e+03 3.9033205e+00 + 7.7100000e+03 3.9033205e+00 + 7.7104000e+03 3.2533205e+00 + 7.7108000e+03 2.2333205e+00 + 7.7112000e+03 1.2333205e+00 + 7.7116000e+03 4.3332051e-01 + 7.7120000e+03 1.1332051e-01 + 7.7124000e+03 1.0332051e-01 + 7.7128000e+03 1.0332051e-01 + 7.7132000e+03 1.0332051e-01 + 7.7136000e+03 1.1332051e-01 + 7.7140000e+03 1.1332051e-01 + 7.7144000e+03 1.1332051e-01 + 7.7148000e+03 -5.8667949e-01 + 7.7152000e+03 -1.2666795e+00 + 7.7156000e+03 -8.5667949e-01 + 7.7160000e+03 -5.3667949e-01 + 7.7164000e+03 -3.7667949e-01 + 7.7168000e+03 -2.6667949e-01 + 7.7172000e+03 -2.0667949e-01 + 7.7176000e+03 8.3320513e-02 + 7.7180000e+03 4.5332051e-01 + 7.7184000e+03 8.6332051e-01 + 7.7188000e+03 1.1433205e+00 + 7.7192000e+03 1.4333205e+00 + 7.7196000e+03 2.1533205e+00 + 7.7200000e+03 1.4433205e+00 + 7.7204000e+03 1.3533205e+00 + 7.7208000e+03 1.3433205e+00 + 7.7212000e+03 1.3433205e+00 + 7.7216000e+03 -1.6966795e+00 + 7.7220000e+03 -2.4166795e+00 + 7.7224000e+03 -2.3066795e+00 + 7.7228000e+03 -1.8966795e+00 + 7.7232000e+03 -1.6766795e+00 + 7.7236000e+03 -1.5866795e+00 + 7.7240000e+03 -1.6266795e+00 + 7.7244000e+03 -1.6966795e+00 + 7.7248000e+03 -1.6166795e+00 + 7.7252000e+03 -1.4466795e+00 + 7.7256000e+03 -9.2667949e-01 + 7.7260000e+03 -3.2667949e-01 + 7.7264000e+03 -2.3667949e-01 + 7.7268000e+03 -2.3667949e-01 + 7.7272000e+03 -2.3667949e-01 + 7.7276000e+03 -2.3667949e-01 + 7.7280000e+03 1.3733205e+00 + 7.7284000e+03 1.7633205e+00 + 7.7288000e+03 1.9333205e+00 + 7.7292000e+03 2.5733205e+00 + 7.7296000e+03 2.8933205e+00 + 7.7300000e+03 2.8233205e+00 + 7.7304000e+03 2.2433205e+00 + 7.7308000e+03 1.6533205e+00 + 7.7312000e+03 5.2332051e-01 + 7.7316000e+03 -2.1667949e-01 + 7.7320000e+03 -5.5667949e-01 + 7.7324000e+03 -1.3166795e+00 + 7.7328000e+03 -1.9166795e+00 + 7.7332000e+03 -2.3566795e+00 + 7.7336000e+03 -3.3466795e+00 + 7.7340000e+03 -3.9466795e+00 + 7.7344000e+03 -3.9866795e+00 + 7.7348000e+03 -3.9866795e+00 + 7.7352000e+03 -3.5966795e+00 + 7.7356000e+03 -2.9066795e+00 + 7.7360000e+03 -2.8466795e+00 + 7.7364000e+03 -2.8466795e+00 + 7.7368000e+03 -2.8466795e+00 + 7.7372000e+03 -2.8466795e+00 + 7.7376000e+03 6.5332051e-01 + 7.7380000e+03 3.4133205e+00 + 7.7384000e+03 4.0433205e+00 + 7.7388000e+03 3.8433205e+00 + 7.7392000e+03 3.5933205e+00 + 7.7396000e+03 3.3733205e+00 + 7.7400000e+03 3.1833205e+00 + 7.7404000e+03 2.6733205e+00 + 7.7408000e+03 2.5133205e+00 + 7.7412000e+03 1.0933205e+00 + 7.7416000e+03 3.5332051e-01 + 7.7420000e+03 -2.2666795e+00 + 7.7424000e+03 -3.0666795e+00 + 7.7428000e+03 -3.3166795e+00 + 7.7432000e+03 -3.3466795e+00 + 7.7436000e+03 -4.5566795e+00 + 7.7440000e+03 -4.8266795e+00 + 7.7444000e+03 -3.9566795e+00 + 7.7448000e+03 -2.7966795e+00 + 7.7452000e+03 -2.0566795e+00 + 7.7456000e+03 -1.4666795e+00 + 7.7460000e+03 -4.5667949e-01 + 7.7464000e+03 7.1332051e-01 + 7.7468000e+03 9.3332051e-01 + 7.7472000e+03 2.7233205e+00 + 7.7476000e+03 3.5733205e+00 + 7.7480000e+03 3.6233205e+00 + 7.7484000e+03 3.2733205e+00 + 7.7488000e+03 2.8633205e+00 + 7.7492000e+03 3.0233205e+00 + 7.7496000e+03 2.7933205e+00 + 7.7500000e+03 2.4933205e+00 + 7.7504000e+03 1.3033205e+00 + 7.7508000e+03 -1.5667949e-01 + 7.7512000e+03 -1.5266795e+00 + 7.7516000e+03 -2.4866795e+00 + 7.7520000e+03 -3.2766795e+00 + 7.7524000e+03 -3.6066795e+00 + 7.7528000e+03 -3.2566795e+00 + 7.7532000e+03 -2.6666795e+00 + 7.7536000e+03 -1.8766795e+00 + 7.7540000e+03 -1.1066795e+00 + 7.7544000e+03 -7.0667949e-01 + 7.7548000e+03 -4.8667949e-01 + 7.7552000e+03 -3.4667949e-01 + 7.7556000e+03 -9.6679487e-02 + 7.7560000e+03 4.4332051e-01 + 7.7564000e+03 9.0332051e-01 + 7.7568000e+03 1.3533205e+00 + 7.7572000e+03 1.8033205e+00 + 7.7576000e+03 2.2133205e+00 + 7.7580000e+03 2.7433205e+00 + 7.7584000e+03 2.8933205e+00 + 7.7588000e+03 2.8533205e+00 + 7.7592000e+03 2.0933205e+00 + 7.7596000e+03 1.1733205e+00 + 7.7600000e+03 5.0332051e-01 + 7.7604000e+03 -1.2667949e-01 + 7.7608000e+03 -4.4667949e-01 + 7.7612000e+03 -5.5667949e-01 + 7.7616000e+03 -5.5667949e-01 + 7.7620000e+03 -5.3667949e-01 + 7.7624000e+03 -6.2667949e-01 + 7.7628000e+03 -1.3966795e+00 + 7.7632000e+03 -2.0066795e+00 + 7.7636000e+03 -2.2166795e+00 + 7.7640000e+03 -2.1666795e+00 + 7.7644000e+03 -1.8466795e+00 + 7.7648000e+03 -1.3066795e+00 + 7.7652000e+03 -6.4667949e-01 + 7.7656000e+03 1.0332051e-01 + 7.7660000e+03 5.9332051e-01 + 7.7664000e+03 8.6332051e-01 + 7.7668000e+03 1.2833205e+00 + 7.7672000e+03 1.7333205e+00 + 7.7676000e+03 1.8733205e+00 + 7.7680000e+03 1.5033205e+00 + 7.7684000e+03 7.1332051e-01 + 7.7688000e+03 -3.6667949e-01 + 7.7692000e+03 -1.0766795e+00 + 7.7696000e+03 -1.5366795e+00 + 7.7700000e+03 -1.6266795e+00 + 7.7704000e+03 -1.0966795e+00 + 7.7708000e+03 -8.6679487e-02 + 7.7712000e+03 6.6332051e-01 + 7.7716000e+03 1.0733205e+00 + 7.7720000e+03 9.7332051e-01 + 7.7724000e+03 4.0332051e-01 + 7.7728000e+03 4.3320513e-02 + 7.7732000e+03 -2.6679487e-02 + 7.7736000e+03 2.2332051e-01 + 7.7740000e+03 6.9332051e-01 + 7.7744000e+03 1.0933205e+00 + 7.7748000e+03 1.2633205e+00 + 7.7752000e+03 1.1633205e+00 + 7.7756000e+03 8.3332051e-01 + 7.7760000e+03 5.7332051e-01 + 7.7764000e+03 6.1332051e-01 + 7.7768000e+03 7.8332051e-01 + 7.7772000e+03 4.6332051e-01 + 7.7776000e+03 1.7332051e-01 + 7.7780000e+03 -7.6679487e-02 + 7.7784000e+03 -4.7667949e-01 + 7.7788000e+03 -4.8667949e-01 + 7.7792000e+03 -3.0667949e-01 + 7.7796000e+03 1.4332051e-01 + 7.7800000e+03 1.1333205e+00 + 7.7804000e+03 1.3033205e+00 + 7.7808000e+03 1.0533205e+00 + 7.7812000e+03 1.0533205e+00 + 7.7816000e+03 5.0332051e-01 + 7.7820000e+03 -1.2366795e+00 + 7.7824000e+03 -1.5666795e+00 + 7.7828000e+03 -1.6566795e+00 + 7.7832000e+03 -1.5166795e+00 + 7.7836000e+03 -1.9766795e+00 + 7.7840000e+03 -2.1766795e+00 + 7.7844000e+03 -2.1666795e+00 + 7.7848000e+03 -1.8366795e+00 + 7.7852000e+03 -1.2766795e+00 + 7.7856000e+03 -4.6667949e-01 + 7.7860000e+03 2.4332051e-01 + 7.7864000e+03 6.3332051e-01 + 7.7868000e+03 9.9332051e-01 + 7.7872000e+03 8.5332051e-01 + 7.7876000e+03 7.1332051e-01 + 7.7880000e+03 5.4332051e-01 + 7.7884000e+03 2.7332051e-01 + 7.7888000e+03 2.6332051e-01 + 7.7892000e+03 5.7332051e-01 + 7.7896000e+03 1.2433205e+00 + 7.7900000e+03 2.2233205e+00 + 7.7904000e+03 2.7833205e+00 + 7.7908000e+03 2.8733205e+00 + 7.7912000e+03 2.3033205e+00 + 7.7916000e+03 1.6133205e+00 + 7.7920000e+03 1.1133205e+00 + 7.7924000e+03 6.8332051e-01 + 7.7928000e+03 2.9332051e-01 + 7.7932000e+03 9.3320513e-02 + 7.7936000e+03 -1.6667949e-01 + 7.7940000e+03 -2.1667949e-01 + 7.7944000e+03 -2.2667949e-01 + 7.7948000e+03 -2.2667949e-01 + 7.7952000e+03 -1.5566795e+00 + 7.7956000e+03 -2.6566795e+00 + 7.7960000e+03 -2.4966795e+00 + 7.7964000e+03 -2.0266795e+00 + 7.7968000e+03 -1.2566795e+00 + 7.7972000e+03 -7.1667949e-01 + 7.7976000e+03 1.4332051e-01 + 7.7980000e+03 5.4332051e-01 + 7.7984000e+03 1.2633205e+00 + 7.7988000e+03 1.4933205e+00 + 7.7992000e+03 1.1433205e+00 + 7.7996000e+03 7.2332051e-01 + 7.8000000e+03 5.3332051e-01 + 7.8004000e+03 1.0133205e+00 + 7.8008000e+03 1.2833205e+00 + 7.8012000e+03 1.0933205e+00 + 7.8016000e+03 6.5332051e-01 + 7.8020000e+03 -1.2667949e-01 + 7.8024000e+03 -9.8667949e-01 + 7.8028000e+03 -1.6566795e+00 + 7.8032000e+03 -2.3766795e+00 + 7.8036000e+03 -2.7966795e+00 + 7.8040000e+03 -2.4066795e+00 + 7.8044000e+03 -1.7266795e+00 + 7.8048000e+03 -1.5466795e+00 + 7.8052000e+03 -1.0366795e+00 + 7.8056000e+03 -9.8667949e-01 + 7.8060000e+03 -1.3566795e+00 + 7.8064000e+03 -1.4466795e+00 + 7.8068000e+03 -1.0766795e+00 + 7.8072000e+03 -3.4667949e-01 + 7.8076000e+03 1.0332051e-01 + 7.8080000e+03 9.2332051e-01 + 7.8084000e+03 2.2133205e+00 + 7.8088000e+03 3.6033205e+00 + 7.8092000e+03 4.3733205e+00 + 7.8096000e+03 4.0933205e+00 + 7.8100000e+03 3.6633205e+00 + 7.8104000e+03 2.6333205e+00 + 7.8108000e+03 1.5033205e+00 + 7.8112000e+03 7.4332051e-01 + 7.8116000e+03 5.3320513e-02 + 7.8120000e+03 -4.0667949e-01 + 7.8124000e+03 -6.3667949e-01 + 7.8128000e+03 -1.0966795e+00 + 7.8132000e+03 -1.9066795e+00 + 7.8136000e+03 -2.3766795e+00 + 7.8140000e+03 -2.3466795e+00 + 7.8144000e+03 -1.8366795e+00 + 7.8148000e+03 -1.3966795e+00 + 7.8152000e+03 -1.4166795e+00 + 7.8156000e+03 -1.1966795e+00 + 7.8160000e+03 -4.4667949e-01 + 7.8164000e+03 1.1533205e+00 + 7.8168000e+03 2.2033205e+00 + 7.8172000e+03 3.0933205e+00 + 7.8176000e+03 2.4433205e+00 + 7.8180000e+03 1.7233205e+00 + 7.8184000e+03 1.4733205e+00 + 7.8188000e+03 1.4633205e+00 + 7.8192000e+03 1.4633205e+00 + 7.8196000e+03 1.2533205e+00 + 7.8200000e+03 -2.6266795e+00 + 7.8204000e+03 -3.3666795e+00 + 7.8208000e+03 -3.5166795e+00 + 7.8212000e+03 -3.4166795e+00 + 7.8216000e+03 -3.0366795e+00 + 7.8220000e+03 -2.5566795e+00 + 7.8224000e+03 -1.6266795e+00 + 7.8228000e+03 -1.0366795e+00 + 7.8232000e+03 -7.2667949e-01 + 7.8236000e+03 -3.4667949e-01 + 7.8240000e+03 4.3320513e-02 + 7.8244000e+03 9.0332051e-01 + 7.8248000e+03 1.8433205e+00 + 7.8252000e+03 2.5533205e+00 + 7.8256000e+03 2.9933205e+00 + 7.8260000e+03 3.0433205e+00 + 7.8264000e+03 2.4633205e+00 + 7.8268000e+03 1.6833205e+00 + 7.8272000e+03 1.1933205e+00 + 7.8276000e+03 1.2733205e+00 + 7.8280000e+03 1.0033205e+00 + 7.8284000e+03 9.1332051e-01 + 7.8288000e+03 6.1332051e-01 + 7.8292000e+03 3.7332051e-01 + 7.8296000e+03 -1.1667949e-01 + 7.8300000e+03 -4.5667949e-01 + 7.8304000e+03 -6.1667949e-01 + 7.8308000e+03 -1.0866795e+00 + 7.8312000e+03 -1.1966795e+00 + 7.8316000e+03 -1.0066795e+00 + 7.8320000e+03 -4.5667949e-01 + 7.8324000e+03 3.3205128e-03 + 7.8328000e+03 1.0332051e-01 + 7.8332000e+03 -2.1667949e-01 + 7.8336000e+03 -6.2667949e-01 + 7.8340000e+03 -7.1667949e-01 + 7.8344000e+03 -6.6667949e-01 + 7.8348000e+03 -5.0667949e-01 + 7.8352000e+03 -3.1667949e-01 + 7.8356000e+03 -1.2667949e-01 + 7.8360000e+03 1.7332051e-01 + 7.8364000e+03 1.5332051e-01 + 7.8368000e+03 2.4332051e-01 + 7.8372000e+03 2.4332051e-01 + 7.8376000e+03 5.5332051e-01 + 7.8380000e+03 7.7332051e-01 + 7.8384000e+03 5.5332051e-01 + 7.8388000e+03 4.2332051e-01 + 7.8392000e+03 -4.4667949e-01 + 7.8396000e+03 -5.4667949e-01 + 7.8400000e+03 -8.8667949e-01 + 7.8404000e+03 -2.5566795e+00 + 7.8408000e+03 -2.7266795e+00 + 7.8412000e+03 -2.4466795e+00 + 7.8416000e+03 -1.9666795e+00 + 7.8420000e+03 -1.4466795e+00 + 7.8424000e+03 -9.8667949e-01 + 7.8428000e+03 -6.3667949e-01 + 7.8432000e+03 -3.4667949e-01 + 7.8436000e+03 5.3320513e-02 + 7.8440000e+03 5.2332051e-01 + 7.8444000e+03 8.2332051e-01 + 7.8448000e+03 6.9332051e-01 + 7.8452000e+03 6.0332051e-01 + 7.8456000e+03 5.7332051e-01 + 7.8460000e+03 4.0332051e-01 + 7.8464000e+03 3.2332051e-01 + 7.8468000e+03 2.6332051e-01 + 7.8472000e+03 2.6332051e-01 + 7.8476000e+03 2.6332051e-01 + 7.8480000e+03 3.3332051e-01 + 7.8484000e+03 2.2332051e-01 + 7.8488000e+03 2.3332051e-01 + 7.8492000e+03 1.2332051e-01 + 7.8496000e+03 9.3320513e-02 + 7.8500000e+03 2.0332051e-01 + 7.8504000e+03 4.4332051e-01 + 7.8508000e+03 8.7332051e-01 + 7.8512000e+03 1.0033205e+00 + 7.8516000e+03 1.1133205e+00 + 7.8520000e+03 1.2433205e+00 + 7.8524000e+03 1.3533205e+00 + 7.8528000e+03 1.3833205e+00 + 7.8532000e+03 9.9332051e-01 + 7.8536000e+03 7.3332051e-01 + 7.8540000e+03 1.8332051e-01 + 7.8544000e+03 -6.2667949e-01 + 7.8548000e+03 -1.1966795e+00 + 7.8552000e+03 -1.3566795e+00 + 7.8556000e+03 -1.2466795e+00 + 7.8560000e+03 -1.1166795e+00 + 7.8564000e+03 -1.2666795e+00 + 7.8568000e+03 -1.4466795e+00 + 7.8572000e+03 -1.5766795e+00 + 7.8576000e+03 -1.4266795e+00 + 7.8580000e+03 -1.1766795e+00 + 7.8584000e+03 -1.0666795e+00 + 7.8588000e+03 -9.4667949e-01 + 7.8592000e+03 -1.2566795e+00 + 7.8596000e+03 -1.5166795e+00 + 7.8600000e+03 -2.3966795e+00 + 7.8604000e+03 -2.3566795e+00 + 7.8608000e+03 -1.7966795e+00 + 7.8612000e+03 -9.8667949e-01 + 7.8616000e+03 -7.2667949e-01 + 7.8620000e+03 4.8332051e-01 + 7.8624000e+03 1.1833205e+00 + 7.8628000e+03 1.8033205e+00 + 7.8632000e+03 2.0233205e+00 + 7.8636000e+03 1.9133205e+00 + 7.8640000e+03 1.4233205e+00 + 7.8644000e+03 1.2233205e+00 + 7.8648000e+03 1.2933205e+00 + 7.8652000e+03 1.0733205e+00 + 7.8656000e+03 7.9332051e-01 + 7.8660000e+03 4.0332051e-01 + 7.8664000e+03 1.0332051e-01 + 7.8668000e+03 5.3320513e-02 + 7.8672000e+03 5.3320513e-02 + 7.8676000e+03 -1.5466795e+00 + 7.8680000e+03 -1.9866795e+00 + 7.8684000e+03 -1.8966795e+00 + 7.8688000e+03 -1.7566795e+00 + 7.8692000e+03 -1.6166795e+00 + 7.8696000e+03 -1.3766795e+00 + 7.8700000e+03 -1.0966795e+00 + 7.8704000e+03 -7.8667949e-01 + 7.8708000e+03 -2.8667949e-01 + 7.8712000e+03 2.1332051e-01 + 7.8716000e+03 8.0332051e-01 + 7.8720000e+03 9.0332051e-01 + 7.8724000e+03 1.3433205e+00 + 7.8728000e+03 3.3833205e+00 + 7.8732000e+03 3.3633205e+00 + 7.8736000e+03 3.3533205e+00 + 7.8740000e+03 3.3533205e+00 + 7.8744000e+03 3.3533205e+00 + 7.8748000e+03 3.3433205e+00 + 7.8752000e+03 6.8332051e-01 + 7.8756000e+03 -5.6679487e-02 + 7.8760000e+03 -9.6679487e-02 + 7.8764000e+03 -1.1667949e-01 + 7.8768000e+03 -4.4667949e-01 + 7.8772000e+03 -8.5667949e-01 + 7.8776000e+03 -1.0766795e+00 + 7.8780000e+03 -1.0866795e+00 + 7.8784000e+03 -1.2566795e+00 + 7.8788000e+03 -2.6766795e+00 + 7.8792000e+03 -3.6466795e+00 + 7.8796000e+03 -3.9866795e+00 + 7.8800000e+03 -4.3766795e+00 + 7.8804000e+03 -4.0666795e+00 + 7.8808000e+03 -3.4566795e+00 + 7.8812000e+03 -2.7266795e+00 + 7.8816000e+03 -1.8766795e+00 + 7.8820000e+03 -6.9667949e-01 + 7.8824000e+03 -1.9667949e-01 + 7.8828000e+03 -1.6667949e-01 + 7.8832000e+03 3.2933205e+00 + 7.8836000e+03 3.9533205e+00 + 7.8840000e+03 4.0533205e+00 + 7.8844000e+03 3.6533205e+00 + 7.8848000e+03 2.9433205e+00 + 7.8852000e+03 2.0733205e+00 + 7.8856000e+03 1.8633205e+00 + 7.8860000e+03 1.8633205e+00 + 7.8864000e+03 1.7233205e+00 + 7.8868000e+03 -1.2366795e+00 + 7.8872000e+03 -1.8666795e+00 + 7.8876000e+03 -2.0066795e+00 + 7.8880000e+03 -1.9666795e+00 + 7.8884000e+03 -1.8366795e+00 + 7.8888000e+03 -1.6566795e+00 + 7.8892000e+03 -1.3366795e+00 + 7.8896000e+03 -1.1366795e+00 + 7.8900000e+03 -1.0766795e+00 + 7.8904000e+03 -8.6667949e-01 + 7.8908000e+03 -4.6667949e-01 + 7.8912000e+03 1.7332051e-01 + 7.8916000e+03 8.7332051e-01 + 7.8920000e+03 1.2633205e+00 + 7.8924000e+03 1.4133205e+00 + 7.8928000e+03 1.4733205e+00 + 7.8932000e+03 1.5033205e+00 + 7.8936000e+03 1.7733205e+00 + 7.8940000e+03 1.7433205e+00 + 7.8944000e+03 1.5133205e+00 + 7.8948000e+03 1.3833205e+00 + 7.8952000e+03 9.8332051e-01 + 7.8956000e+03 2.6332051e-01 + 7.8960000e+03 -5.6679487e-02 + 7.8964000e+03 -1.4667949e-01 + 7.8968000e+03 -6.6679487e-02 + 7.8972000e+03 2.6332051e-01 + 7.8976000e+03 2.0332051e-01 + 7.8980000e+03 1.8332051e-01 + 7.8984000e+03 1.6332051e-01 + 7.8988000e+03 3.3320513e-02 + 7.8992000e+03 -2.7667949e-01 + 7.8996000e+03 -3.0667949e-01 + 7.9000000e+03 -3.1667949e-01 + 7.9004000e+03 -2.5766795e+00 + 7.9008000e+03 -3.2466795e+00 + 7.9012000e+03 -3.4466795e+00 + 7.9016000e+03 -3.0366795e+00 + 7.9020000e+03 -2.2166795e+00 + 7.9024000e+03 -1.6466795e+00 + 7.9028000e+03 -1.6066795e+00 + 7.9032000e+03 -5.3667949e-01 + 7.9036000e+03 -2.9667949e-01 + 7.9040000e+03 -3.8667949e-01 + 7.9044000e+03 -3.1667949e-01 + 7.9048000e+03 -2.7667949e-01 + 7.9052000e+03 5.3320513e-02 + 7.9056000e+03 3.3332051e-01 + 7.9060000e+03 7.5332051e-01 + 7.9064000e+03 1.0333205e+00 + 7.9068000e+03 1.0333205e+00 + 7.9072000e+03 7.2332051e-01 + 7.9076000e+03 4.7332051e-01 + 7.9080000e+03 3.6332051e-01 + 7.9084000e+03 2.6332051e-01 + 7.9088000e+03 7.3320513e-02 + 7.9092000e+03 1.3332051e-01 + 7.9096000e+03 2.9332051e-01 + 7.9100000e+03 3.7332051e-01 + 7.9104000e+03 1.9332051e-01 + 7.9108000e+03 -2.6679487e-02 + 7.9112000e+03 -1.5667949e-01 + 7.9116000e+03 -2.6679487e-02 + 7.9120000e+03 5.3320513e-02 + 7.9124000e+03 1.6332051e-01 + 7.9128000e+03 -1.6679487e-02 + 7.9132000e+03 -1.5667949e-01 + 7.9136000e+03 -1.6679487e-02 + 7.9140000e+03 8.3320513e-02 + 7.9144000e+03 8.3320513e-02 + 7.9148000e+03 2.0332051e-01 + 7.9152000e+03 3.7332051e-01 + 7.9156000e+03 5.5332051e-01 + 7.9160000e+03 7.3332051e-01 + 7.9164000e+03 6.5332051e-01 + 7.9168000e+03 6.0332051e-01 + 7.9172000e+03 8.4332051e-01 + 7.9176000e+03 7.6332051e-01 + 7.9180000e+03 8.0332051e-01 + 7.9184000e+03 8.3332051e-01 + 7.9188000e+03 9.5332051e-01 + 7.9192000e+03 8.2332051e-01 + 7.9196000e+03 5.2332051e-01 + 7.9200000e+03 5.0332051e-01 + 7.9204000e+03 5.0332051e-01 + 7.9208000e+03 5.0332051e-01 + 7.9212000e+03 5.0332051e-01 + 7.9216000e+03 5.0332051e-01 + 7.9220000e+03 5.0332051e-01 + 7.9224000e+03 5.0332051e-01 + 7.9228000e+03 5.1332051e-01 + 7.9232000e+03 5.0332051e-01 + 7.9236000e+03 4.3320513e-02 + 7.9240000e+03 -8.2667949e-01 + 7.9244000e+03 -5.7667949e-01 + 7.9248000e+03 -5.6667949e-01 + 7.9252000e+03 -1.0667949e-01 + 7.9256000e+03 -2.6679487e-02 + 7.9260000e+03 -2.7667949e-01 + 7.9264000e+03 1.1332051e-01 + 7.9268000e+03 1.0933205e+00 + 7.9272000e+03 2.4833205e+00 + 7.9276000e+03 2.9533205e+00 + 7.9280000e+03 2.9433205e+00 + 7.9284000e+03 2.4733205e+00 + 7.9288000e+03 1.6533205e+00 + 7.9292000e+03 4.2332051e-01 + 7.9296000e+03 -5.0667949e-01 + 7.9300000e+03 -1.0866795e+00 + 7.9304000e+03 -1.3066795e+00 + 7.9308000e+03 -1.4066795e+00 + 7.9312000e+03 -1.4166795e+00 + 7.9316000e+03 -1.2066795e+00 + 7.9320000e+03 -1.1466795e+00 + 7.9324000e+03 -1.2366795e+00 + 7.9328000e+03 -1.0666795e+00 + 7.9332000e+03 -9.7667949e-01 + 7.9336000e+03 -5.5667949e-01 + 7.9340000e+03 1.8332051e-01 + 7.9344000e+03 4.9332051e-01 + 7.9348000e+03 2.1533205e+00 + 7.9352000e+03 2.7433205e+00 + 7.9356000e+03 2.7233205e+00 + 7.9360000e+03 2.6333205e+00 + 7.9364000e+03 2.4733205e+00 + 7.9368000e+03 1.8333205e+00 + 7.9372000e+03 1.1733205e+00 + 7.9376000e+03 5.2332051e-01 + 7.9380000e+03 -4.6679487e-02 + 7.9384000e+03 -6.7667949e-01 + 7.9388000e+03 -8.4667949e-01 + 7.9392000e+03 -8.9667949e-01 + 7.9396000e+03 -1.2866795e+00 + 7.9400000e+03 -1.6466795e+00 + 7.9404000e+03 -1.9466795e+00 + 7.9408000e+03 -1.9166795e+00 + 7.9412000e+03 -2.0866795e+00 + 7.9416000e+03 -2.0966795e+00 + 7.9420000e+03 -2.0966795e+00 + 7.9424000e+03 -2.0166795e+00 + 7.9428000e+03 -2.0266795e+00 + 7.9432000e+03 -2.0866795e+00 + 7.9436000e+03 -2.0366795e+00 + 7.9440000e+03 -1.5866795e+00 + 7.9444000e+03 -1.1666795e+00 + 7.9448000e+03 -6.9667949e-01 + 7.9452000e+03 -6.2667949e-01 + 7.9456000e+03 -1.6667949e-01 + 7.9460000e+03 3.6332051e-01 + 7.9464000e+03 9.1332051e-01 + 7.9468000e+03 1.8333205e+00 + 7.9472000e+03 2.0533205e+00 + 7.9476000e+03 2.0933205e+00 + 7.9480000e+03 2.0333205e+00 + 7.9484000e+03 1.6433205e+00 + 7.9488000e+03 1.0233205e+00 + 7.9492000e+03 7.5332051e-01 + 7.9496000e+03 7.3332051e-01 + 7.9500000e+03 7.3332051e-01 + 7.9504000e+03 7.3332051e-01 + 7.9508000e+03 7.3332051e-01 + 7.9512000e+03 7.3332051e-01 + 7.9516000e+03 -1.2566795e+00 + 7.9520000e+03 -1.3866795e+00 + 7.9524000e+03 -1.3066795e+00 + 7.9528000e+03 -1.0466795e+00 + 7.9532000e+03 -8.3667949e-01 + 7.9536000e+03 -6.4667949e-01 + 7.9540000e+03 -3.4667949e-01 + 7.9544000e+03 -1.6679487e-02 + 7.9548000e+03 1.9332051e-01 + 7.9552000e+03 1.9332051e-01 + 7.9556000e+03 2.0332051e-01 + 7.9560000e+03 1.9533205e+00 + 7.9564000e+03 2.2533205e+00 + 7.9568000e+03 2.2633205e+00 + 7.9572000e+03 2.1333205e+00 + 7.9576000e+03 1.8433205e+00 + 7.9580000e+03 1.1833205e+00 + 7.9584000e+03 1.0533205e+00 + 7.9588000e+03 1.0533205e+00 + 7.9592000e+03 -7.8667949e-01 + 7.9596000e+03 -1.4566795e+00 + 7.9600000e+03 -1.6166795e+00 + 7.9604000e+03 -1.6766795e+00 + 7.9608000e+03 -1.8666795e+00 + 7.9612000e+03 -2.4966795e+00 + 7.9616000e+03 -2.8666795e+00 + 7.9620000e+03 -2.7666795e+00 + 7.9624000e+03 -2.5466795e+00 + 7.9628000e+03 -1.9466795e+00 + 7.9632000e+03 -1.7766795e+00 + 7.9636000e+03 -1.7666795e+00 + 7.9640000e+03 -1.7666795e+00 + 7.9644000e+03 -1.7666795e+00 + 7.9648000e+03 -1.7666795e+00 + 7.9652000e+03 -1.7666795e+00 + 7.9656000e+03 -1.7666795e+00 + 7.9660000e+03 -1.7666795e+00 + 7.9664000e+03 -1.9667949e-01 + 7.9668000e+03 7.0332051e-01 + 7.9672000e+03 9.3320513e-02 + 7.9676000e+03 -2.6679487e-02 + 7.9680000e+03 -8.1667949e-01 + 7.9684000e+03 -8.7667949e-01 + 7.9688000e+03 -7.6667949e-01 + 7.9692000e+03 -7.6667949e-01 + 7.9696000e+03 -3.0667949e-01 + 7.9700000e+03 1.2332051e-01 + 7.9704000e+03 1.0332051e-01 + 7.9708000e+03 -6.6794872e-03 + 7.9712000e+03 -2.6679487e-02 + 7.9716000e+03 5.3320513e-02 + 7.9720000e+03 1.2332051e-01 + 7.9724000e+03 1.7332051e-01 + 7.9728000e+03 1.8332051e-01 + 7.9732000e+03 1.3332051e-01 + 7.9736000e+03 -1.0667949e-01 + 7.9740000e+03 -3.6667949e-01 + 7.9744000e+03 -6.7667949e-01 + 7.9748000e+03 -8.5667949e-01 + 7.9752000e+03 -7.8667949e-01 + 7.9756000e+03 -4.0667949e-01 + 7.9760000e+03 -1.9667949e-01 + 7.9764000e+03 2.3320513e-02 + 7.9768000e+03 3.4332051e-01 + 7.9772000e+03 5.3320513e-02 + 7.9776000e+03 2.3320513e-02 + 7.9780000e+03 -5.6667949e-01 + 7.9784000e+03 -3.7667949e-01 + 7.9788000e+03 1.3332051e-01 + 7.9792000e+03 4.2332051e-01 + 7.9796000e+03 7.5332051e-01 + 7.9800000e+03 1.2733205e+00 + 7.9804000e+03 1.5733205e+00 + 7.9808000e+03 1.5233205e+00 + 7.9812000e+03 1.2033205e+00 + 7.9816000e+03 9.0332051e-01 + 7.9820000e+03 8.0332051e-01 + 7.9824000e+03 7.9332051e-01 + 7.9828000e+03 4.5332051e-01 + 7.9832000e+03 -1.1166795e+00 + 7.9836000e+03 -1.2966795e+00 + 7.9840000e+03 -1.3066795e+00 + 7.9844000e+03 -1.3066795e+00 + 7.9848000e+03 -1.2966795e+00 + 7.9852000e+03 -1.2966795e+00 + 7.9856000e+03 -1.2966795e+00 + 7.9860000e+03 -1.2966795e+00 + 7.9864000e+03 -1.2966795e+00 + 7.9868000e+03 -1.2966795e+00 + 7.9872000e+03 -8.6667949e-01 + 7.9876000e+03 -7.6667949e-01 + 7.9880000e+03 -7.6667949e-01 + 7.9884000e+03 -7.6667949e-01 + 7.9888000e+03 -7.6667949e-01 + 7.9892000e+03 -5.8667949e-01 + 7.9896000e+03 2.4533205e+00 + 7.9900000e+03 2.9833205e+00 + 7.9904000e+03 2.8833205e+00 + 7.9908000e+03 2.0933205e+00 + 7.9912000e+03 1.1933205e+00 + 7.9916000e+03 6.4332051e-01 + 7.9920000e+03 -9.6679487e-02 + 7.9924000e+03 -5.3667949e-01 + 7.9928000e+03 -1.1566795e+00 + 7.9932000e+03 -1.7866795e+00 + 7.9936000e+03 -1.9866795e+00 + 7.9940000e+03 -1.9066795e+00 + 7.9944000e+03 -2.0366795e+00 + 7.9948000e+03 -1.8366795e+00 + 7.9952000e+03 -1.2266795e+00 + 7.9956000e+03 -6.1667949e-01 + 7.9960000e+03 -1.9667949e-01 + 7.9964000e+03 -2.9667949e-01 + 7.9968000e+03 -5.0667949e-01 + 7.9972000e+03 -4.4667949e-01 + 7.9976000e+03 -4.8667949e-01 + 7.9980000e+03 -6.0667949e-01 + 7.9984000e+03 -5.3667949e-01 + 7.9988000e+03 -2.2667949e-01 + 7.9992000e+03 1.5332051e-01 + 7.9996000e+03 5.5332051e-01 + 8.0000000e+03 1.0433205e+00 + 8.0004000e+03 1.4233205e+00 + 8.0008000e+03 1.7733205e+00 + 8.0012000e+03 1.9033205e+00 + 8.0016000e+03 2.1133205e+00 + 8.0020000e+03 1.7833205e+00 + 8.0024000e+03 1.3933205e+00 + 8.0028000e+03 1.0533205e+00 + 8.0032000e+03 8.3332051e-01 + 8.0036000e+03 7.2332051e-01 + 8.0040000e+03 7.2332051e-01 + 8.0044000e+03 7.2332051e-01 + 8.0048000e+03 7.2332051e-01 + 8.0052000e+03 -2.2266795e+00 + 8.0056000e+03 -2.9966795e+00 + 8.0060000e+03 -2.8666795e+00 + 8.0064000e+03 -2.4966795e+00 + 8.0068000e+03 -1.9666795e+00 + 8.0072000e+03 -1.8166795e+00 + 8.0076000e+03 -1.4666795e+00 + 8.0080000e+03 -1.1966795e+00 + 8.0084000e+03 -9.1667949e-01 + 8.0088000e+03 -6.5667949e-01 + 8.0092000e+03 -6.3667949e-01 + 8.0096000e+03 -6.2667949e-01 + 8.0100000e+03 -2.5667949e-01 + 8.0104000e+03 2.2833205e+00 + 8.0108000e+03 2.4933205e+00 + 8.0112000e+03 2.2833205e+00 + 8.0116000e+03 1.8533205e+00 + 8.0120000e+03 1.7633205e+00 + 8.0124000e+03 1.7533205e+00 + 8.0128000e+03 1.7533205e+00 + 8.0132000e+03 1.7533205e+00 + 8.0136000e+03 1.1833205e+00 + 8.0140000e+03 -1.5866795e+00 + 8.0144000e+03 -2.0666795e+00 + 8.0148000e+03 -2.2766795e+00 + 8.0152000e+03 -2.2766795e+00 + 8.0156000e+03 -2.1166795e+00 + 8.0160000e+03 -1.5166795e+00 + 8.0164000e+03 -1.1066795e+00 + 8.0168000e+03 -6.9667949e-01 + 8.0172000e+03 -3.0667949e-01 + 8.0176000e+03 -2.3667949e-01 + 8.0180000e+03 -2.6679487e-02 + 8.0184000e+03 1.0332051e-01 + 8.0188000e+03 4.9332051e-01 + 8.0192000e+03 9.8332051e-01 + 8.0196000e+03 1.0033205e+00 + 8.0200000e+03 1.2333205e+00 + 8.0204000e+03 1.0333205e+00 + 8.0208000e+03 8.4332051e-01 + 8.0212000e+03 6.8332051e-01 + 8.0216000e+03 7.0332051e-01 + 8.0220000e+03 5.4332051e-01 + 8.0224000e+03 5.5332051e-01 + 8.0228000e+03 9.2332051e-01 + 8.0232000e+03 5.9332051e-01 + 8.0236000e+03 4.7332051e-01 + 8.0240000e+03 4.7332051e-01 + 8.0244000e+03 1.8332051e-01 + 8.0248000e+03 -9.0667949e-01 + 8.0252000e+03 -9.6667949e-01 + 8.0256000e+03 -9.6667949e-01 + 8.0260000e+03 -1.8366795e+00 + 8.0264000e+03 -2.1366795e+00 + 8.0268000e+03 -1.9466795e+00 + 8.0272000e+03 -1.9166795e+00 + 8.0276000e+03 -1.9166795e+00 + 8.0280000e+03 -1.9166795e+00 + 8.0284000e+03 -1.9166795e+00 + 8.0288000e+03 -1.9166795e+00 + 8.0292000e+03 -1.2766795e+00 + 8.0296000e+03 -8.7667949e-01 + 8.0300000e+03 -1.7166795e+00 + 8.0304000e+03 -1.8766795e+00 + 8.0308000e+03 -1.4966795e+00 + 8.0312000e+03 -7.9667949e-01 + 8.0316000e+03 -3.0667949e-01 + 8.0320000e+03 -2.0667949e-01 + 8.0324000e+03 -1.6667949e-01 + 8.0328000e+03 9.3320513e-02 + 8.0332000e+03 4.1332051e-01 + 8.0336000e+03 6.8332051e-01 + 8.0340000e+03 1.3333205e+00 + 8.0344000e+03 1.5033205e+00 + 8.0348000e+03 1.5933205e+00 + 8.0352000e+03 1.8533205e+00 + 8.0356000e+03 1.7033205e+00 + 8.0360000e+03 1.0533205e+00 + 8.0364000e+03 8.2332051e-01 + 8.0368000e+03 5.9332051e-01 + 8.0372000e+03 -3.3667949e-01 + 8.0376000e+03 -1.0366795e+00 + 8.0380000e+03 -1.8066795e+00 + 8.0384000e+03 -2.0766795e+00 + 8.0388000e+03 -1.7366795e+00 + 8.0392000e+03 -1.2966795e+00 + 8.0396000e+03 -1.0766795e+00 + 8.0400000e+03 -7.8667949e-01 + 8.0404000e+03 -5.9667949e-01 + 8.0408000e+03 -7.1667949e-01 + 8.0412000e+03 -8.4667949e-01 + 8.0416000e+03 -8.1667949e-01 + 8.0420000e+03 -4.8667949e-01 + 8.0424000e+03 3.5332051e-01 + 8.0428000e+03 1.5133205e+00 + 8.0432000e+03 1.9333205e+00 + 8.0436000e+03 1.9433205e+00 + 8.0440000e+03 1.9433205e+00 + 8.0444000e+03 2.5233205e+00 + 8.0448000e+03 1.7933205e+00 + 8.0452000e+03 7.7332051e-01 + 8.0456000e+03 1.8332051e-01 + 8.0460000e+03 -4.4667949e-01 + 8.0464000e+03 -8.4667949e-01 + 8.0468000e+03 -9.0667949e-01 + 8.0472000e+03 -9.0667949e-01 + 8.0476000e+03 -9.0667949e-01 + 8.0480000e+03 -9.0667949e-01 + 8.0484000e+03 -9.0667949e-01 + 8.0488000e+03 -9.1667949e-01 + 8.0492000e+03 -2.4466795e+00 + 8.0496000e+03 -2.5566795e+00 + 8.0500000e+03 -2.2566795e+00 + 8.0504000e+03 -2.0966795e+00 + 8.0508000e+03 -1.7766795e+00 + 8.0512000e+03 -9.7667949e-01 + 8.0516000e+03 -1.7667949e-01 + 8.0520000e+03 -7.6679487e-02 + 8.0524000e+03 5.2332051e-01 + 8.0528000e+03 1.8233205e+00 + 8.0532000e+03 1.0133205e+00 + 8.0536000e+03 8.4332051e-01 + 8.0540000e+03 8.3332051e-01 + 8.0544000e+03 6.2332051e-01 + 8.0548000e+03 6.7332051e-01 + 8.0552000e+03 1.2033205e+00 + 8.0556000e+03 1.2333205e+00 + 8.0560000e+03 1.2633205e+00 + 8.0564000e+03 2.7233205e+00 + 8.0568000e+03 2.6833205e+00 + 8.0572000e+03 2.4133205e+00 + 8.0576000e+03 2.0933205e+00 + 8.0580000e+03 1.6233205e+00 + 8.0584000e+03 1.5333205e+00 + 8.0588000e+03 1.3033205e+00 + 8.0592000e+03 -4.4667949e-01 + 8.0596000e+03 -6.1667949e-01 + 8.0600000e+03 -6.1667949e-01 + 8.0604000e+03 -6.1667949e-01 + 8.0608000e+03 -6.1667949e-01 + 8.0612000e+03 -6.1667949e-01 + 8.0616000e+03 -6.0667949e-01 + 8.0620000e+03 -6.0667949e-01 + 8.0624000e+03 -1.4466795e+00 + 8.0628000e+03 -8.3667949e-01 + 8.0632000e+03 -6.4667949e-01 + 8.0636000e+03 -6.4667949e-01 + 8.0640000e+03 -6.4667949e-01 + 8.0644000e+03 -4.6679487e-02 + 8.0648000e+03 2.2233205e+00 + 8.0652000e+03 9.2332051e-01 + 8.0656000e+03 -2.6667949e-01 + 8.0660000e+03 -8.4667949e-01 + 8.0664000e+03 -1.1166795e+00 + 8.0668000e+03 -1.1266795e+00 + 8.0672000e+03 -9.4667949e-01 + 8.0676000e+03 -1.0766795e+00 + 8.0680000e+03 -1.4266795e+00 + 8.0684000e+03 -1.5966795e+00 + 8.0688000e+03 -1.8166795e+00 + 8.0692000e+03 -1.6066795e+00 + 8.0696000e+03 -1.1166795e+00 + 8.0700000e+03 -9.8667949e-01 + 8.0704000e+03 -9.8667949e-01 + 8.0708000e+03 -9.8667949e-01 + 8.0712000e+03 -9.8667949e-01 + 8.0716000e+03 -9.7667949e-01 + 8.0720000e+03 -8.9667949e-01 + 8.0724000e+03 -9.2667949e-01 + 8.0728000e+03 -8.6667949e-01 + 8.0732000e+03 -6.9667949e-01 + 8.0736000e+03 -5.9667949e-01 + 8.0740000e+03 -5.9667949e-01 + 8.0744000e+03 -5.9667949e-01 + 8.0748000e+03 -5.9667949e-01 + 8.0752000e+03 -5.9667949e-01 + 8.0756000e+03 -5.9667949e-01 + 8.0760000e+03 -5.9667949e-01 + 8.0764000e+03 -5.9667949e-01 + 8.0768000e+03 -5.6679487e-02 + 8.0772000e+03 -5.9667949e-01 + 8.0776000e+03 -7.0667949e-01 + 8.0780000e+03 -7.0667949e-01 + 8.0784000e+03 -7.0667949e-01 + 8.0788000e+03 -7.3667949e-01 + 8.0792000e+03 -1.0166795e+00 + 8.0796000e+03 -6.9667949e-01 + 8.0800000e+03 -5.9667949e-01 + 8.0804000e+03 -4.2667949e-01 + 8.0808000e+03 -3.2667949e-01 + 8.0812000e+03 -6.6794872e-03 + 8.0816000e+03 3.3205128e-03 + 8.0820000e+03 3.3205128e-03 + 8.0824000e+03 3.3205128e-03 + 8.0828000e+03 1.5433205e+00 + 8.0832000e+03 1.4333205e+00 + 8.0836000e+03 1.1233205e+00 + 8.0840000e+03 1.0333205e+00 + 8.0844000e+03 9.4332051e-01 + 8.0848000e+03 7.1332051e-01 + 8.0852000e+03 6.9332051e-01 + 8.0856000e+03 6.8332051e-01 + 8.0860000e+03 6.9332051e-01 + 8.0864000e+03 -2.5266795e+00 + 8.0868000e+03 -4.1966795e+00 + 8.0872000e+03 -4.3366795e+00 + 8.0876000e+03 -4.4466795e+00 + 8.0880000e+03 -3.7566795e+00 + 8.0884000e+03 -3.4466795e+00 + 8.0888000e+03 -3.3366795e+00 + 8.0892000e+03 -1.5866795e+00 + 8.0896000e+03 -7.2667949e-01 + 8.0900000e+03 -4.0667949e-01 + 8.0904000e+03 -3.9667949e-01 + 8.0908000e+03 -3.9667949e-01 + 8.0912000e+03 -3.9667949e-01 + 8.0916000e+03 -3.9667949e-01 + 8.0920000e+03 1.6533205e+00 + 8.0924000e+03 3.0933205e+00 + 8.0928000e+03 3.2833205e+00 + 8.0932000e+03 3.0133205e+00 + 8.0936000e+03 2.5133205e+00 + 8.0940000e+03 2.1333205e+00 + 8.0944000e+03 1.8933205e+00 + 8.0948000e+03 1.4433205e+00 + 8.0952000e+03 6.4332051e-01 + 8.0956000e+03 -8.9667949e-01 + 8.0960000e+03 -2.1166795e+00 + 8.0964000e+03 -2.3966795e+00 + 8.0968000e+03 -2.2366795e+00 + 8.0972000e+03 -2.2466795e+00 + 8.0976000e+03 -2.4866795e+00 + 8.0980000e+03 -2.5066795e+00 + 8.0984000e+03 -2.1466795e+00 + 8.0988000e+03 -1.7866795e+00 + 8.0992000e+03 -1.3366795e+00 + 8.0996000e+03 -4.4667949e-01 + 8.1000000e+03 5.0332051e-01 + 8.1004000e+03 1.3633205e+00 + 8.1008000e+03 2.8033205e+00 + 8.1012000e+03 2.9733205e+00 + 8.1016000e+03 3.1133205e+00 + 8.1020000e+03 2.7233205e+00 + 8.1024000e+03 2.4433205e+00 + 8.1028000e+03 1.7833205e+00 + 8.1032000e+03 1.1733205e+00 + 8.1036000e+03 8.5332051e-01 + 8.1040000e+03 7.4332051e-01 + 8.1044000e+03 7.3332051e-01 + 8.1048000e+03 7.3332051e-01 + 8.1052000e+03 7.3332051e-01 + 8.1056000e+03 7.3332051e-01 + 8.1060000e+03 7.3332051e-01 + 8.1064000e+03 7.3332051e-01 + 8.1068000e+03 7.3332051e-01 + 8.1072000e+03 7.3332051e-01 + 8.1076000e+03 7.3332051e-01 + 8.1080000e+03 7.3332051e-01 + 8.1084000e+03 4.3320513e-02 + 8.1088000e+03 -2.2566795e+00 + 8.1092000e+03 -2.3566795e+00 + 8.1096000e+03 -2.3566795e+00 + 8.1100000e+03 -2.3566795e+00 + 8.1104000e+03 -2.3466795e+00 + 8.1108000e+03 -2.3466795e+00 + 8.1112000e+03 -2.3466795e+00 + 8.1116000e+03 -2.1966795e+00 + 8.1120000e+03 2.3233205e+00 + 8.1124000e+03 2.4833205e+00 + 8.1128000e+03 2.3833205e+00 + 8.1132000e+03 2.3733205e+00 + 8.1136000e+03 1.3433205e+00 + 8.1140000e+03 2.8332051e-01 + 8.1144000e+03 8.3320513e-02 + 8.1148000e+03 2.3320513e-02 + 8.1152000e+03 -6.6679487e-02 + 8.1156000e+03 -4.9667949e-01 + 8.1160000e+03 -7.9667949e-01 + 8.1164000e+03 -7.7667949e-01 + 8.1168000e+03 -6.4667949e-01 + 8.1172000e+03 -1.5667949e-01 + 8.1176000e+03 5.9332051e-01 + 8.1180000e+03 1.1433205e+00 + 8.1184000e+03 1.0033205e+00 + 8.1188000e+03 8.0332051e-01 + 8.1192000e+03 6.7332051e-01 + 8.1196000e+03 6.2332051e-01 + 8.1200000e+03 7.5332051e-01 + 8.1204000e+03 5.9332051e-01 + 8.1208000e+03 -2.3667949e-01 + 8.1212000e+03 -8.9667949e-01 + 8.1216000e+03 -1.2666795e+00 + 8.1220000e+03 -1.1266795e+00 + 8.1224000e+03 -8.0667949e-01 + 8.1228000e+03 -4.4667949e-01 + 8.1232000e+03 -1.6679487e-02 + 8.1236000e+03 2.1332051e-01 + 8.1240000e+03 -9.6679487e-02 + 8.1244000e+03 -2.5667949e-01 + 8.1248000e+03 -3.4667949e-01 + 8.1252000e+03 -1.6667949e-01 + 8.1256000e+03 -8.6679487e-02 + 8.1260000e+03 -3.1667949e-01 + 8.1264000e+03 -1.0566795e+00 + 8.1268000e+03 -1.6266795e+00 + 8.1272000e+03 -2.3966795e+00 + 8.1276000e+03 -2.6766795e+00 + 8.1280000e+03 -2.5366795e+00 + 8.1284000e+03 -2.3266795e+00 + 8.1288000e+03 -2.0866795e+00 + 8.1292000e+03 -1.7166795e+00 + 8.1296000e+03 -1.1966795e+00 + 8.1300000e+03 -7.2667949e-01 + 8.1304000e+03 -6.9667949e-01 + 8.1308000e+03 -6.9667949e-01 + 8.1312000e+03 -3.1667949e-01 + 8.1316000e+03 1.9233205e+00 + 8.1320000e+03 2.2833205e+00 + 8.1324000e+03 2.5333205e+00 + 8.1328000e+03 2.1533205e+00 + 8.1332000e+03 1.1433205e+00 + 8.1336000e+03 2.4332051e-01 + 8.1340000e+03 -3.6679487e-02 + 8.1344000e+03 1.5332051e-01 + 8.1348000e+03 7.1332051e-01 + 8.1352000e+03 1.3033205e+00 + 8.1356000e+03 1.4233205e+00 + 8.1360000e+03 1.4233205e+00 + 8.1364000e+03 1.4333205e+00 + 8.1368000e+03 1.7033205e+00 + 8.1372000e+03 1.2033205e+00 + 8.1376000e+03 1.8332051e-01 + 8.1380000e+03 -2.0667949e-01 + 8.1384000e+03 -7.7667949e-01 + 8.1388000e+03 -1.9466795e+00 + 8.1392000e+03 -1.9066795e+00 + 8.1396000e+03 -1.5666795e+00 + 8.1400000e+03 -1.4166795e+00 + 8.1404000e+03 -1.3866795e+00 + 8.1408000e+03 -1.2966795e+00 + 8.1412000e+03 -1.2966795e+00 + 8.1416000e+03 -1.2966795e+00 + 8.1420000e+03 -8.3667949e-01 + 8.1424000e+03 -6.4667949e-01 + 8.1428000e+03 -7.6667949e-01 + 8.1432000e+03 -4.1667949e-01 + 8.1436000e+03 -4.4667949e-01 + 8.1440000e+03 -6.6667949e-01 + 8.1444000e+03 -7.9667949e-01 + 8.1448000e+03 -8.9667949e-01 + 8.1452000e+03 -1.7766795e+00 + 8.1456000e+03 -1.6966795e+00 + 8.1460000e+03 -1.4566795e+00 + 8.1464000e+03 -1.0066795e+00 + 8.1468000e+03 -3.9667949e-01 + 8.1472000e+03 -3.1667949e-01 + 8.1476000e+03 -3.1667949e-01 + 8.1480000e+03 1.9332051e-01 + 8.1484000e+03 1.8332051e-01 + 8.1488000e+03 -1.2667949e-01 + 8.1492000e+03 -2.4667949e-01 + 8.1496000e+03 -3.5667949e-01 + 8.1500000e+03 -4.4667949e-01 + 8.1504000e+03 -4.9667949e-01 + 8.1508000e+03 -2.6679487e-02 + 8.1512000e+03 4.4332051e-01 + 8.1516000e+03 6.1332051e-01 + 8.1520000e+03 4.2332051e-01 + 8.1524000e+03 3.6332051e-01 + 8.1528000e+03 2.3332051e-01 + 8.1532000e+03 1.5332051e-01 + 8.1536000e+03 1.3332051e-01 + 8.1540000e+03 1.3332051e-01 + 8.1544000e+03 1.1332051e-01 + 8.1548000e+03 -1.0667949e-01 + 8.1552000e+03 -2.6667949e-01 + 8.1556000e+03 -4.4667949e-01 + 8.1560000e+03 -6.6679487e-02 + 8.1564000e+03 6.7332051e-01 + 8.1568000e+03 1.2333205e+00 + 8.1572000e+03 1.2733205e+00 + 8.1576000e+03 1.2733205e+00 + 8.1580000e+03 1.2733205e+00 + 8.1584000e+03 1.2733205e+00 + 8.1588000e+03 1.2833205e+00 + 8.1592000e+03 5.5332051e-01 + 8.1596000e+03 3.0332051e-01 + 8.1600000e+03 -4.4667949e-01 + 8.1604000e+03 -8.0667949e-01 + 8.1608000e+03 -5.6667949e-01 + 8.1612000e+03 -2.8667949e-01 + 8.1616000e+03 -1.2667949e-01 + 8.1620000e+03 -4.6679487e-02 + 8.1624000e+03 -1.1667949e-01 + 8.1628000e+03 -5.1667949e-01 + 8.1632000e+03 -8.6667949e-01 + 8.1636000e+03 -1.2766795e+00 + 8.1640000e+03 -1.4466795e+00 + 8.1644000e+03 -1.4866795e+00 + 8.1648000e+03 -1.6566795e+00 + 8.1652000e+03 -1.7366795e+00 + 8.1656000e+03 -1.7366795e+00 + 8.1660000e+03 -1.8966795e+00 + 8.1664000e+03 -1.7766795e+00 + 8.1668000e+03 -1.7766795e+00 + 8.1672000e+03 -1.6266795e+00 + 8.1676000e+03 -1.2266795e+00 + 8.1680000e+03 -1.0166795e+00 + 8.1684000e+03 -8.7667949e-01 + 8.1688000e+03 -8.6667949e-01 + 8.1692000e+03 -4.9667949e-01 + 8.1696000e+03 1.9332051e-01 + 8.1700000e+03 7.7332051e-01 + 8.1704000e+03 1.0333205e+00 + 8.1708000e+03 1.0833205e+00 + 8.1712000e+03 8.9332051e-01 + 8.1716000e+03 1.1933205e+00 + 8.1720000e+03 1.4733205e+00 + 8.1724000e+03 1.9333205e+00 + 8.1728000e+03 1.5233205e+00 + 8.1732000e+03 8.9332051e-01 + 8.1736000e+03 3.7332051e-01 + 8.1740000e+03 5.3320513e-02 + 8.1744000e+03 -2.5667949e-01 + 8.1748000e+03 -2.7667949e-01 + 8.1752000e+03 -1.5667949e-01 + 8.1756000e+03 -2.4667949e-01 + 8.1760000e+03 -5.2667949e-01 + 8.1764000e+03 -5.8667949e-01 + 8.1768000e+03 -5.8667949e-01 + 8.1772000e+03 -5.8667949e-01 + 8.1776000e+03 -7.9667949e-01 + 8.1780000e+03 -5.5667949e-01 + 8.1784000e+03 -8.6679487e-02 + 8.1788000e+03 -1.6679487e-02 + 8.1792000e+03 -1.6679487e-02 + 8.1796000e+03 -1.6679487e-02 + 8.1800000e+03 1.5933205e+00 + 8.1804000e+03 2.3033205e+00 + 8.1808000e+03 2.1533205e+00 + 8.1812000e+03 1.7733205e+00 + 8.1816000e+03 1.6333205e+00 + 8.1820000e+03 1.2933205e+00 + 8.1824000e+03 6.3332051e-01 + 8.1828000e+03 2.5332051e-01 + 8.1832000e+03 2.3332051e-01 + 8.1836000e+03 2.3332051e-01 + 8.1840000e+03 2.3332051e-01 + 8.1844000e+03 2.3332051e-01 + 8.1848000e+03 2.3332051e-01 + 8.1852000e+03 2.3332051e-01 + 8.1856000e+03 2.3332051e-01 + 8.1860000e+03 2.4332051e-01 + 8.1864000e+03 2.3332051e-01 + 8.1868000e+03 2.3332051e-01 + 8.1872000e+03 -1.3667949e-01 + 8.1876000e+03 -1.3066795e+00 + 8.1880000e+03 -9.2667949e-01 + 8.1884000e+03 -4.5667949e-01 + 8.1888000e+03 3.7332051e-01 + 8.1892000e+03 4.3332051e-01 + 8.1896000e+03 4.7332051e-01 + 8.1900000e+03 3.0332051e-01 + 8.1904000e+03 5.3320513e-02 + 8.1908000e+03 -1.6679487e-02 + 8.1912000e+03 1.4332051e-01 + 8.1916000e+03 1.2332051e-01 + 8.1920000e+03 5.3320513e-02 + 8.1924000e+03 -3.6679487e-02 + 8.1928000e+03 -3.6679487e-02 + 8.1932000e+03 -6.3667949e-01 + 8.1936000e+03 -5.0667949e-01 + 8.1940000e+03 -1.6679487e-02 + 8.1944000e+03 4.3320513e-02 + 8.1948000e+03 8.5332051e-01 + 8.1952000e+03 1.4833205e+00 + 8.1956000e+03 1.6333205e+00 + 8.1960000e+03 1.6933205e+00 + 8.1964000e+03 1.6833205e+00 + 8.1968000e+03 1.8833205e+00 + 8.1972000e+03 2.0833205e+00 + 8.1976000e+03 2.0233205e+00 + 8.1980000e+03 2.0533205e+00 + 8.1984000e+03 2.1733205e+00 + 8.1988000e+03 2.1233205e+00 + 8.1992000e+03 1.7333205e+00 + 8.1996000e+03 1.4133205e+00 + 8.2000000e+03 6.0332051e-01 + 8.2004000e+03 2.9332051e-01 + 8.2008000e+03 -7.5667949e-01 + 8.2012000e+03 -9.0667949e-01 + 8.2016000e+03 -9.1667949e-01 + 8.2020000e+03 -9.0667949e-01 + 8.2024000e+03 -9.0667949e-01 + 8.2028000e+03 -9.0667949e-01 + 8.2032000e+03 -3.0166795e+00 + 8.2036000e+03 -3.0466795e+00 + 8.2040000e+03 -2.6966795e+00 + 8.2044000e+03 -2.3066795e+00 + 8.2048000e+03 -2.0666795e+00 + 8.2052000e+03 -1.6966795e+00 + 8.2056000e+03 -1.5266795e+00 + 8.2060000e+03 -1.2166795e+00 + 8.2064000e+03 -8.5667949e-01 + 8.2068000e+03 -3.9667949e-01 + 8.2072000e+03 -1.6679487e-02 + 8.2076000e+03 2.2332051e-01 + 8.2080000e+03 2.3332051e-01 + 8.2084000e+03 1.2633205e+00 + 8.2088000e+03 1.3233205e+00 + 8.2092000e+03 9.6332051e-01 + 8.2096000e+03 8.8332051e-01 + 8.2100000e+03 8.8332051e-01 + 8.2104000e+03 8.8332051e-01 + 8.2108000e+03 8.8332051e-01 + 8.2112000e+03 8.8332051e-01 + 8.2116000e+03 2.2332051e-01 + 8.2120000e+03 -1.8166795e+00 + 8.2124000e+03 -1.5866795e+00 + 8.2128000e+03 -1.0366795e+00 + 8.2132000e+03 -8.4667949e-01 + 8.2136000e+03 -8.3667949e-01 + 8.2140000e+03 -8.3667949e-01 + 8.2144000e+03 -8.3667949e-01 + 8.2148000e+03 -8.3667949e-01 + 8.2152000e+03 -8.3667949e-01 + 8.2156000e+03 -8.3667949e-01 + 8.2160000e+03 -8.3667949e-01 + 8.2164000e+03 5.7332051e-01 + 8.2168000e+03 1.9633205e+00 + 8.2172000e+03 1.6133205e+00 + 8.2176000e+03 1.5733205e+00 + 8.2180000e+03 1.3933205e+00 + 8.2184000e+03 1.3433205e+00 + 8.2188000e+03 9.3332051e-01 + 8.2192000e+03 2.2332051e-01 + 8.2196000e+03 -6.4667949e-01 + 8.2200000e+03 -1.3066795e+00 + 8.2204000e+03 -1.5566795e+00 + 8.2208000e+03 -1.3266795e+00 + 8.2212000e+03 -1.2166795e+00 + 8.2216000e+03 -6.4667949e-01 + 8.2220000e+03 -5.5667949e-01 + 8.2224000e+03 -8.4667949e-01 + 8.2228000e+03 -1.3466795e+00 + 8.2232000e+03 -1.5466795e+00 + 8.2236000e+03 -1.3566795e+00 + 8.2240000e+03 -1.7266795e+00 + 8.2244000e+03 -1.9566795e+00 + 8.2248000e+03 -1.9466795e+00 + 8.2252000e+03 -1.5966795e+00 + 8.2256000e+03 -2.0266795e+00 + 8.2260000e+03 -2.4466795e+00 + 8.2264000e+03 -2.5966795e+00 + 8.2268000e+03 -2.0766795e+00 + 8.2272000e+03 -1.7366795e+00 + 8.2276000e+03 -1.0966795e+00 + 8.2280000e+03 5.5332051e-01 + 8.2284000e+03 7.8332051e-01 + 8.2288000e+03 8.0332051e-01 + 8.2292000e+03 8.6332051e-01 + 8.2296000e+03 1.1433205e+00 + 8.2300000e+03 1.1833205e+00 + 8.2304000e+03 1.4433205e+00 + 8.2308000e+03 2.1633205e+00 + 8.2312000e+03 1.8933205e+00 + 8.2316000e+03 1.8733205e+00 + 8.2320000e+03 1.8733205e+00 + 8.2324000e+03 9.0332051e-01 + 8.2328000e+03 -1.1966795e+00 + 8.2332000e+03 -7.5667949e-01 + 8.2336000e+03 -3.4667949e-01 + 8.2340000e+03 -1.6667949e-01 + 8.2344000e+03 -3.3667949e-01 + 8.2348000e+03 -4.7667949e-01 + 8.2352000e+03 -4.1667949e-01 + 8.2356000e+03 -1.1667949e-01 + 8.2360000e+03 3.0332051e-01 + 8.2364000e+03 8.4332051e-01 + 8.2368000e+03 1.2333205e+00 + 8.2372000e+03 1.4533205e+00 + 8.2376000e+03 1.9533205e+00 + 8.2380000e+03 2.0233205e+00 + 8.2384000e+03 1.9633205e+00 + 8.2388000e+03 1.8933205e+00 + 8.2392000e+03 1.7633205e+00 + 8.2396000e+03 1.3033205e+00 + 8.2400000e+03 1.1233205e+00 + 8.2404000e+03 -3.6667949e-01 + 8.2408000e+03 -2.0466795e+00 + 8.2412000e+03 -3.1566795e+00 + 8.2416000e+03 -3.4866795e+00 + 8.2420000e+03 -3.4066795e+00 + 8.2424000e+03 -3.2666795e+00 + 8.2428000e+03 -2.9766795e+00 + 8.2432000e+03 -2.3666795e+00 + 8.2436000e+03 -1.6166795e+00 + 8.2440000e+03 -1.0166795e+00 + 8.2444000e+03 -6.5667949e-01 + 8.2448000e+03 1.8332051e-01 + 8.2452000e+03 7.3332051e-01 + 8.2456000e+03 3.0332051e-01 + 8.2460000e+03 8.3320513e-02 + 8.2464000e+03 -1.6667949e-01 + 8.2468000e+03 -2.1667949e-01 + 8.2472000e+03 -6.6679487e-02 + 8.2476000e+03 5.0332051e-01 + 8.2480000e+03 1.2933205e+00 + 8.2484000e+03 2.0833205e+00 + 8.2488000e+03 2.5333205e+00 + 8.2492000e+03 2.3033205e+00 + 8.2496000e+03 1.6533205e+00 + 8.2500000e+03 9.3332051e-01 + 8.2504000e+03 1.8332051e-01 + 8.2508000e+03 -3.0667949e-01 + 8.2512000e+03 -6.4667949e-01 + 8.2516000e+03 -8.8667949e-01 + 8.2520000e+03 -1.2366795e+00 + 8.2524000e+03 -1.6666795e+00 + 8.2528000e+03 -1.8766795e+00 + 8.2532000e+03 -1.6266795e+00 + 8.2536000e+03 -1.2866795e+00 + 8.2540000e+03 -9.2667949e-01 + 8.2544000e+03 -5.4667949e-01 + 8.2548000e+03 -1.1667949e-01 + 8.2552000e+03 6.1332051e-01 + 8.2556000e+03 1.4433205e+00 + 8.2560000e+03 1.0233205e+00 + 8.2564000e+03 8.5332051e-01 + 8.2568000e+03 5.5332051e-01 + 8.2572000e+03 3.9332051e-01 + 8.2576000e+03 4.4332051e-01 + 8.2580000e+03 9.0332051e-01 + 8.2584000e+03 3.9332051e-01 + 8.2588000e+03 2.3332051e-01 + 8.2592000e+03 1.6332051e-01 + 8.2596000e+03 -1.7667949e-01 + 8.2600000e+03 -3.6667949e-01 + 8.2604000e+03 -5.9667949e-01 + 8.2608000e+03 -9.5667949e-01 + 8.2612000e+03 -1.1966795e+00 + 8.2616000e+03 -1.0166795e+00 + 8.2620000e+03 -6.4667949e-01 + 8.2624000e+03 -5.9667949e-01 + 8.2628000e+03 -6.3667949e-01 + 8.2632000e+03 -6.9667949e-01 + 8.2636000e+03 -7.2667949e-01 + 8.2640000e+03 -6.4667949e-01 + 8.2644000e+03 -2.1667949e-01 + 8.2648000e+03 1.3320513e-02 + 8.2652000e+03 9.3320513e-02 + 8.2656000e+03 3.3320513e-02 + 8.2660000e+03 -5.1667949e-01 + 8.2664000e+03 -6.6667949e-01 + 8.2668000e+03 -5.8667949e-01 + 8.2672000e+03 -1.3667949e-01 + 8.2676000e+03 1.2332051e-01 + 8.2680000e+03 3.2332051e-01 + 8.2684000e+03 6.5332051e-01 + 8.2688000e+03 5.8332051e-01 + 8.2692000e+03 3.0332051e-01 + 8.2696000e+03 -2.7667949e-01 + 8.2700000e+03 -3.0667949e-01 + 8.2704000e+03 -2.1667949e-01 + 8.2708000e+03 -2.0667949e-01 + 8.2712000e+03 -2.1667949e-01 + 8.2716000e+03 -4.0667949e-01 + 8.2720000e+03 -6.9667949e-01 + 8.2724000e+03 -3.4667949e-01 + 8.2728000e+03 1.6332051e-01 + 8.2732000e+03 1.0133205e+00 + 8.2736000e+03 1.5133205e+00 + 8.2740000e+03 1.4433205e+00 + 8.2744000e+03 7.9332051e-01 + 8.2748000e+03 2.1332051e-01 + 8.2752000e+03 1.8332051e-01 + 8.2756000e+03 1.3332051e-01 + 8.2760000e+03 -8.2667949e-01 + 8.2764000e+03 -1.1466795e+00 + 8.2768000e+03 -1.2466795e+00 + 8.2772000e+03 -1.4266795e+00 + 8.2776000e+03 -1.4766795e+00 + 8.2780000e+03 -1.4666795e+00 + 8.2784000e+03 -1.4766795e+00 + 8.2788000e+03 -8.7667949e-01 + 8.2792000e+03 -2.3667949e-01 + 8.2796000e+03 4.3332051e-01 + 8.2800000e+03 1.1633205e+00 + 8.2804000e+03 1.3833205e+00 + 8.2808000e+03 8.3332051e-01 + 8.2812000e+03 2.7332051e-01 + 8.2816000e+03 2.2332051e-01 + 8.2820000e+03 2.9332051e-01 + 8.2824000e+03 2.8332051e-01 + 8.2828000e+03 7.3320513e-02 + 8.2832000e+03 -3.8667949e-01 + 8.2836000e+03 -8.7667949e-01 + 8.2840000e+03 -5.5667949e-01 + 8.2844000e+03 4.3332051e-01 + 8.2848000e+03 1.1733205e+00 + 8.2852000e+03 2.1433205e+00 + 8.2856000e+03 1.9733205e+00 + 8.2860000e+03 1.0233205e+00 + 8.2864000e+03 1.0332051e-01 + 8.2868000e+03 -2.7667949e-01 + 8.2872000e+03 -3.1667949e-01 + 8.2876000e+03 -2.2667949e-01 + 8.2880000e+03 -3.0667949e-01 + 8.2884000e+03 -2.3667949e-01 + 8.2888000e+03 -1.3667949e-01 + 8.2892000e+03 -4.6667949e-01 + 8.2896000e+03 -7.8667949e-01 + 8.2900000e+03 -1.0466795e+00 + 8.2904000e+03 -1.4766795e+00 + 8.2908000e+03 -1.5666795e+00 + 8.2912000e+03 -1.3366795e+00 + 8.2916000e+03 -7.0667949e-01 + 8.2920000e+03 -1.6667949e-01 + 8.2924000e+03 2.5332051e-01 + 8.2928000e+03 7.8332051e-01 + 8.2932000e+03 1.0733205e+00 + 8.2936000e+03 9.1332051e-01 + 8.2940000e+03 5.3332051e-01 + 8.2944000e+03 3.2332051e-01 + 8.2948000e+03 4.3320513e-02 + 8.2952000e+03 1.9332051e-01 + 8.2956000e+03 -3.5667949e-01 + 8.2960000e+03 -1.0966795e+00 + 8.2964000e+03 -1.1666795e+00 + 8.2968000e+03 -1.5566795e+00 + 8.2972000e+03 -1.9666795e+00 + 8.2976000e+03 -1.3266795e+00 + 8.2980000e+03 -9.9667949e-01 + 8.2984000e+03 -8.8667949e-01 + 8.2988000e+03 -4.6667949e-01 + 8.2992000e+03 -5.6679487e-02 + 8.2996000e+03 4.6332051e-01 + 8.3000000e+03 6.2332051e-01 + 8.3004000e+03 7.7332051e-01 + 8.3008000e+03 1.1133205e+00 + 8.3012000e+03 1.4333205e+00 + 8.3016000e+03 1.0333205e+00 + 8.3020000e+03 1.0033205e+00 + 8.3024000e+03 1.0033205e+00 + 8.3028000e+03 1.0033205e+00 + 8.3032000e+03 1.0033205e+00 + 8.3036000e+03 -6.6679487e-02 + 8.3040000e+03 5.3320513e-02 + 8.3044000e+03 4.9332051e-01 + 8.3048000e+03 9.9332051e-01 + 8.3052000e+03 1.4333205e+00 + 8.3056000e+03 2.3033205e+00 + 8.3060000e+03 2.2233205e+00 + 8.3064000e+03 1.7433205e+00 + 8.3068000e+03 1.6433205e+00 + 8.3072000e+03 1.5233205e+00 + 8.3076000e+03 -9.6667949e-01 + 8.3080000e+03 -1.5666795e+00 + 8.3084000e+03 -1.6966795e+00 + 8.3088000e+03 -1.4566795e+00 + 8.3092000e+03 -1.0066795e+00 + 8.3096000e+03 -9.6667949e-01 + 8.3100000e+03 -9.5667949e-01 + 8.3104000e+03 -8.6667949e-01 + 8.3108000e+03 -8.0667949e-01 + 8.3112000e+03 -8.7667949e-01 + 8.3116000e+03 -9.7667949e-01 + 8.3120000e+03 -6.4667949e-01 + 8.3124000e+03 -3.8667949e-01 + 8.3128000e+03 -3.7667949e-01 + 8.3132000e+03 -6.6667949e-01 + 8.3136000e+03 -1.1266795e+00 + 8.3140000e+03 -1.2666795e+00 + 8.3144000e+03 -1.6466795e+00 + 8.3148000e+03 -1.8066795e+00 + 8.3152000e+03 -1.3666795e+00 + 8.3156000e+03 -2.8667949e-01 + 8.3160000e+03 5.5332051e-01 + 8.3164000e+03 9.3332051e-01 + 8.3168000e+03 1.1333205e+00 + 8.3172000e+03 1.0333205e+00 + 8.3176000e+03 1.0133205e+00 + 8.3180000e+03 1.4333205e+00 + 8.3184000e+03 1.7033205e+00 + 8.3188000e+03 1.0533205e+00 + 8.3192000e+03 5.8332051e-01 + 8.3196000e+03 5.8332051e-01 + 8.3200000e+03 6.4332051e-01 + 8.3204000e+03 1.4433205e+00 + 8.3208000e+03 1.4433205e+00 + 8.3212000e+03 7.1332051e-01 + 8.3216000e+03 -9.6679487e-02 + 8.3220000e+03 -7.3667949e-01 + 8.3224000e+03 -1.3466795e+00 + 8.3228000e+03 -1.8566795e+00 + 8.3232000e+03 -2.0766795e+00 + 8.3236000e+03 -2.0866795e+00 + 8.3240000e+03 -1.9866795e+00 + 8.3244000e+03 -2.0866795e+00 + 8.3248000e+03 -1.9066795e+00 + 8.3252000e+03 -1.5266795e+00 + 8.3256000e+03 -1.1266795e+00 + 8.3260000e+03 -2.7667949e-01 + 8.3264000e+03 5.2332051e-01 + 8.3268000e+03 1.3333205e+00 + 8.3272000e+03 1.9833205e+00 + 8.3276000e+03 2.4833205e+00 + 8.3280000e+03 2.8633205e+00 + 8.3284000e+03 3.2133205e+00 + 8.3288000e+03 2.9233205e+00 + 8.3292000e+03 2.2133205e+00 + 8.3296000e+03 1.8933205e+00 + 8.3300000e+03 4.1332051e-01 + 8.3304000e+03 -2.5667949e-01 + 8.3308000e+03 -1.5366795e+00 + 8.3312000e+03 -2.0066795e+00 + 8.3316000e+03 -1.9966795e+00 + 8.3320000e+03 -2.0266795e+00 + 8.3324000e+03 -1.3166795e+00 + 8.3328000e+03 -1.1366795e+00 + 8.3332000e+03 -1.5666795e+00 + 8.3336000e+03 -1.8666795e+00 + 8.3340000e+03 -2.0066795e+00 + 8.3344000e+03 -1.9966795e+00 + 8.3348000e+03 -1.8566795e+00 + 8.3352000e+03 -1.5066795e+00 + 8.3356000e+03 -1.1166795e+00 + 8.3360000e+03 -9.2667949e-01 + 8.3364000e+03 -6.6679487e-02 + 8.3368000e+03 2.3332051e-01 + 8.3372000e+03 1.3233205e+00 + 8.3376000e+03 1.3233205e+00 + 8.3380000e+03 1.2333205e+00 + 8.3384000e+03 1.1833205e+00 + 8.3388000e+03 1.0133205e+00 + 8.3392000e+03 1.0833205e+00 + 8.3396000e+03 1.3233205e+00 + 8.3400000e+03 1.5233205e+00 + 8.3404000e+03 1.4633205e+00 + 8.3408000e+03 1.0833205e+00 + 8.3412000e+03 7.2332051e-01 + 8.3416000e+03 2.7332051e-01 + 8.3420000e+03 2.1332051e-01 + 8.3424000e+03 2.1332051e-01 + 8.3428000e+03 2.1332051e-01 + 8.3432000e+03 2.2332051e-01 + 8.3436000e+03 2.2332051e-01 + 8.3440000e+03 2.2332051e-01 + 8.3444000e+03 2.2332051e-01 + 8.3448000e+03 -1.6679487e-02 + 8.3452000e+03 -5.2667949e-01 + 8.3456000e+03 -5.5667949e-01 + 8.3460000e+03 -5.1667949e-01 + 8.3464000e+03 -5.1667949e-01 + 8.3468000e+03 -7.5667949e-01 + 8.3472000e+03 -9.7667949e-01 + 8.3476000e+03 -6.7667949e-01 + 8.3480000e+03 -2.2667949e-01 + 8.3484000e+03 1.7332051e-01 + 8.3488000e+03 1.5033205e+00 + 8.3492000e+03 1.1533205e+00 + 8.3496000e+03 1.0133205e+00 + 8.3500000e+03 1.0033205e+00 + 8.3504000e+03 2.1332051e-01 + 8.3508000e+03 -7.6667949e-01 + 8.3512000e+03 -8.7667949e-01 + 8.3516000e+03 -1.0466795e+00 + 8.3520000e+03 -1.2266795e+00 + 8.3524000e+03 -1.0266795e+00 + 8.3528000e+03 -8.1667949e-01 + 8.3532000e+03 -7.4667949e-01 + 8.3536000e+03 -5.8667949e-01 + 8.3540000e+03 -1.9667949e-01 + 8.3544000e+03 2.0332051e-01 + 8.3548000e+03 4.2332051e-01 + 8.3552000e+03 5.5332051e-01 + 8.3556000e+03 5.8332051e-01 + 8.3560000e+03 5.9332051e-01 + 8.3564000e+03 8.0332051e-01 + 8.3568000e+03 1.1233205e+00 + 8.3572000e+03 2.1233205e+00 + 8.3576000e+03 2.7233205e+00 + 8.3580000e+03 2.9733205e+00 + 8.3584000e+03 2.8333205e+00 + 8.3588000e+03 2.0433205e+00 + 8.3592000e+03 4.2332051e-01 + 8.3596000e+03 -1.1166795e+00 + 8.3600000e+03 -1.1966795e+00 + 8.3604000e+03 -1.1966795e+00 + 8.3608000e+03 -1.1966795e+00 + 8.3612000e+03 -1.1966795e+00 + 8.3616000e+03 -1.1966795e+00 + 8.3620000e+03 -1.1966795e+00 + 8.3624000e+03 -1.1966795e+00 + 8.3628000e+03 -1.1966795e+00 + 8.3632000e+03 -2.2866795e+00 + 8.3636000e+03 -2.3666795e+00 + 8.3640000e+03 -1.4466795e+00 + 8.3644000e+03 -1.2466795e+00 + 8.3648000e+03 -1.2366795e+00 + 8.3652000e+03 -1.2366795e+00 + 8.3656000e+03 -1.2366795e+00 + 8.3660000e+03 -1.2366795e+00 + 8.3664000e+03 7.5332051e-01 + 8.3668000e+03 2.8833205e+00 + 8.3672000e+03 3.1033205e+00 + 8.3676000e+03 3.2333205e+00 + 8.3680000e+03 2.6233205e+00 + 8.3684000e+03 2.1033205e+00 + 8.3688000e+03 6.7332051e-01 + 8.3692000e+03 -6.9667949e-01 + 8.3696000e+03 -1.4766795e+00 + 8.3700000e+03 -1.7166795e+00 + 8.3704000e+03 -1.7066795e+00 + 8.3708000e+03 -1.7966795e+00 + 8.3712000e+03 -2.2666795e+00 + 8.3716000e+03 -2.5066795e+00 + 8.3720000e+03 -2.3366795e+00 + 8.3724000e+03 -2.0166795e+00 + 8.3728000e+03 -1.8166795e+00 + 8.3732000e+03 -1.6266795e+00 + 8.3736000e+03 -1.3266795e+00 + 8.3740000e+03 -8.8667949e-01 + 8.3744000e+03 -5.2667949e-01 + 8.3748000e+03 -1.1667949e-01 + 8.3752000e+03 1.8332051e-01 + 8.3756000e+03 1.9332051e-01 + 8.3760000e+03 1.9332051e-01 + 8.3764000e+03 1.9332051e-01 + 8.3768000e+03 7.9332051e-01 + 8.3772000e+03 1.4633205e+00 + 8.3776000e+03 1.6433205e+00 + 8.3780000e+03 1.9233205e+00 + 8.3784000e+03 1.3433205e+00 + 8.3788000e+03 8.4332051e-01 + 8.3792000e+03 4.0332051e-01 + 8.3796000e+03 -2.6679487e-02 + 8.3800000e+03 -8.6679487e-02 + 8.3804000e+03 -8.6679487e-02 + 8.3808000e+03 -3.7667949e-01 + 8.3812000e+03 -1.4466795e+00 + 8.3816000e+03 -1.7666795e+00 + 8.3820000e+03 -1.9766795e+00 + 8.3824000e+03 -1.7966795e+00 + 8.3828000e+03 -1.7866795e+00 + 8.3832000e+03 -1.5166795e+00 + 8.3836000e+03 -1.3566795e+00 + 8.3840000e+03 -9.5667949e-01 + 8.3844000e+03 -7.5667949e-01 + 8.3848000e+03 -6.4667949e-01 + 8.3852000e+03 -4.7667949e-01 + 8.3856000e+03 4.2332051e-01 + 8.3860000e+03 1.2833205e+00 + 8.3864000e+03 1.9833205e+00 + 8.3868000e+03 1.8733205e+00 + 8.3872000e+03 1.7533205e+00 + 8.3876000e+03 1.4533205e+00 + 8.3880000e+03 1.1333205e+00 + 8.3884000e+03 9.7332051e-01 + 8.3888000e+03 8.0332051e-01 + 8.3892000e+03 7.0332051e-01 + 8.3896000e+03 6.1332051e-01 + 8.3900000e+03 3.9332051e-01 + 8.3904000e+03 -3.8667949e-01 + 8.3908000e+03 -8.8667949e-01 + 8.3912000e+03 -8.9667949e-01 + 8.3916000e+03 -3.5667949e-01 + 8.3920000e+03 -1.6667949e-01 + 8.3924000e+03 -5.7667949e-01 + 8.3928000e+03 -9.1667949e-01 + 8.3932000e+03 -1.0566795e+00 + 8.3936000e+03 -1.2166795e+00 + 8.3940000e+03 -1.4466795e+00 + 8.3944000e+03 -1.5066795e+00 + 8.3948000e+03 -1.4066795e+00 + 8.3952000e+03 -1.3666795e+00 + 8.3956000e+03 -1.3666795e+00 + 8.3960000e+03 -1.4966795e+00 + 8.3964000e+03 -1.3766795e+00 + 8.3968000e+03 -1.1066795e+00 + 8.3972000e+03 -8.6667949e-01 + 8.3976000e+03 -6.4667949e-01 + 8.3980000e+03 -2.1667949e-01 + 8.3984000e+03 3.3205128e-03 + 8.3988000e+03 5.3320513e-02 + 8.3992000e+03 6.4332051e-01 + 8.3996000e+03 1.4433205e+00 + 8.4000000e+03 1.6133205e+00 + 8.4004000e+03 1.5833205e+00 + 8.4008000e+03 1.0333205e+00 + 8.4012000e+03 2.4332051e-01 + 8.4016000e+03 -1.0667949e-01 + 8.4020000e+03 -2.0667949e-01 + 8.4024000e+03 -2.2667949e-01 + 8.4028000e+03 -2.2667949e-01 + 8.4032000e+03 -2.8667949e-01 + 8.4036000e+03 3.3205128e-03 + 8.4040000e+03 7.4332051e-01 + 8.4044000e+03 1.3433205e+00 + 8.4048000e+03 1.3833205e+00 + 8.4052000e+03 1.3833205e+00 + 8.4056000e+03 2.2433205e+00 + 8.4060000e+03 2.4133205e+00 + 8.4064000e+03 1.5233205e+00 + 8.4068000e+03 1.0033205e+00 + 8.4072000e+03 9.8332051e-01 + 8.4076000e+03 9.8332051e-01 + 8.4080000e+03 9.8332051e-01 + 8.4084000e+03 9.8332051e-01 + 8.4088000e+03 9.8332051e-01 + 8.4092000e+03 9.8332051e-01 + 8.4096000e+03 9.3332051e-01 + 8.4100000e+03 -4.4667949e-01 + 8.4104000e+03 -9.7667949e-01 + 8.4108000e+03 -9.8667949e-01 + 8.4112000e+03 -1.3166795e+00 + 8.4116000e+03 -1.9166795e+00 + 8.4120000e+03 -1.9466795e+00 + 8.4124000e+03 -2.3966795e+00 + 8.4128000e+03 -2.1466795e+00 + 8.4132000e+03 -1.5266795e+00 + 8.4136000e+03 -1.2866795e+00 + 8.4140000e+03 -1.2766795e+00 + 8.4144000e+03 -1.2766795e+00 + 8.4148000e+03 -1.2766795e+00 + 8.4152000e+03 3.3205128e-03 + 8.4156000e+03 2.3320513e-02 + 8.4160000e+03 -3.5667949e-01 + 8.4164000e+03 -5.3667949e-01 + 8.4168000e+03 -5.3667949e-01 + 8.4172000e+03 -5.1667949e-01 + 8.4176000e+03 -7.6679487e-02 + 8.4180000e+03 3.6332051e-01 + 8.4184000e+03 4.9332051e-01 + 8.4188000e+03 5.1332051e-01 + 8.4192000e+03 5.8332051e-01 + 8.4196000e+03 6.2332051e-01 + 8.4200000e+03 9.4332051e-01 + 8.4204000e+03 1.1433205e+00 + 8.4208000e+03 1.1233205e+00 + 8.4212000e+03 1.2533205e+00 + 8.4216000e+03 1.1833205e+00 + 8.4220000e+03 9.7332051e-01 + 8.4224000e+03 7.3332051e-01 + 8.4228000e+03 5.9332051e-01 + 8.4232000e+03 6.1332051e-01 + 8.4236000e+03 6.9332051e-01 + 8.4240000e+03 1.2433205e+00 + 8.4244000e+03 6.7332051e-01 + 8.4248000e+03 5.4332051e-01 + 8.4252000e+03 5.0332051e-01 + 8.4256000e+03 4.4332051e-01 + 8.4260000e+03 4.8332051e-01 + 8.4264000e+03 4.7332051e-01 + 8.4268000e+03 4.4332051e-01 + 8.4272000e+03 7.5332051e-01 + 8.4276000e+03 1.8332051e-01 + 8.4280000e+03 -4.5667949e-01 + 8.4284000e+03 -6.9667949e-01 + 8.4288000e+03 -9.2667949e-01 + 8.4292000e+03 -1.3966795e+00 + 8.4296000e+03 -1.9566795e+00 + 8.4300000e+03 -2.3466795e+00 + 8.4304000e+03 -2.7966795e+00 + 8.4308000e+03 -3.1366795e+00 + 8.4312000e+03 -3.2666795e+00 + 8.4316000e+03 -3.1966795e+00 + 8.4320000e+03 -1.9566795e+00 + 8.4324000e+03 -1.4766795e+00 + 8.4328000e+03 -1.6166795e+00 + 8.4332000e+03 -1.7666795e+00 + 8.4336000e+03 -1.7066795e+00 + 8.4340000e+03 -1.5266795e+00 + 8.4344000e+03 -1.4566795e+00 + 8.4348000e+03 -1.4066795e+00 + 8.4352000e+03 -1.0366795e+00 + 8.4356000e+03 -4.1667949e-01 + 8.4360000e+03 2.5332051e-01 + 8.4364000e+03 3.9332051e-01 + 8.4368000e+03 3.9332051e-01 + 8.4372000e+03 1.1533205e+00 + 8.4376000e+03 2.2233205e+00 + 8.4380000e+03 2.2933205e+00 + 8.4384000e+03 2.1033205e+00 + 8.4388000e+03 2.1733205e+00 + 8.4392000e+03 2.2633205e+00 + 8.4396000e+03 2.5833205e+00 + 8.4400000e+03 3.0733205e+00 + 8.4404000e+03 3.4733205e+00 + 8.4408000e+03 3.3933205e+00 + 8.4412000e+03 3.3933205e+00 + 8.4416000e+03 2.3333205e+00 + 8.4420000e+03 9.3320513e-02 + 8.4424000e+03 -9.7667949e-01 + 8.4428000e+03 -1.5666795e+00 + 8.4432000e+03 -1.6966795e+00 + 8.4436000e+03 -1.4966795e+00 + 8.4440000e+03 -1.2366795e+00 + 8.4444000e+03 -9.5667949e-01 + 8.4448000e+03 -7.7667949e-01 + 8.4452000e+03 -6.0667949e-01 + 8.4456000e+03 -4.8667949e-01 + 8.4460000e+03 -7.8667949e-01 + 8.4464000e+03 -1.1466795e+00 + 8.4468000e+03 -1.3666795e+00 + 8.4472000e+03 -1.4566795e+00 + 8.4476000e+03 -1.0366795e+00 + 8.4480000e+03 -6.6667949e-01 + 8.4484000e+03 -6.4667949e-01 + 8.4488000e+03 -6.4667949e-01 + 8.4492000e+03 5.4332051e-01 + 8.4496000e+03 8.8332051e-01 + 8.4500000e+03 2.1332051e-01 + 8.4504000e+03 -6.5667949e-01 + 8.4508000e+03 -1.1566795e+00 + 8.4512000e+03 -1.6166795e+00 + 8.4516000e+03 -1.9466795e+00 + 8.4520000e+03 -1.9966795e+00 + 8.4524000e+03 -1.9966795e+00 + 8.4528000e+03 -2.0066795e+00 + 8.4532000e+03 -2.2466795e+00 + 8.4536000e+03 -2.1066795e+00 + 8.4540000e+03 -1.7666795e+00 + 8.4544000e+03 -1.6766795e+00 + 8.4548000e+03 -1.2466795e+00 + 8.4552000e+03 -5.7667949e-01 + 8.4556000e+03 -3.9667949e-01 + 8.4560000e+03 6.1332051e-01 + 8.4564000e+03 7.2332051e-01 + 8.4568000e+03 1.2633205e+00 + 8.4572000e+03 1.2033205e+00 + 8.4576000e+03 3.7332051e-01 + 8.4580000e+03 -2.8667949e-01 + 8.4584000e+03 -5.9667949e-01 + 8.4588000e+03 -4.4667949e-01 + 8.4592000e+03 2.2332051e-01 + 8.4596000e+03 5.7332051e-01 + 8.4600000e+03 5.9332051e-01 + 8.4604000e+03 5.9332051e-01 + 8.4608000e+03 5.9332051e-01 + 8.4612000e+03 9.2332051e-01 + 8.4616000e+03 3.1033205e+00 + 8.4620000e+03 3.6633205e+00 + 8.4624000e+03 3.4633205e+00 + 8.4628000e+03 3.3433205e+00 + 8.4632000e+03 3.3833205e+00 + 8.4636000e+03 2.8733205e+00 + 8.4640000e+03 2.3033205e+00 + 8.4644000e+03 2.2833205e+00 + 8.4648000e+03 1.0733205e+00 + 8.4652000e+03 -1.5266795e+00 + 8.4656000e+03 -1.6666795e+00 + 8.4660000e+03 -1.6666795e+00 + 8.4664000e+03 -1.6566795e+00 + 8.4668000e+03 -1.6566795e+00 + 8.4672000e+03 -1.6566795e+00 + 8.4676000e+03 -1.6566795e+00 + 8.4680000e+03 -2.5766795e+00 + 8.4684000e+03 -4.2566795e+00 + 8.4688000e+03 -4.1166795e+00 + 8.4692000e+03 -4.1066795e+00 + 8.4696000e+03 -4.0966795e+00 + 8.4700000e+03 -4.0966795e+00 + 8.4704000e+03 -3.9866795e+00 + 8.4708000e+03 2.7733205e+00 + 8.4712000e+03 4.4433205e+00 + 8.4716000e+03 4.5133205e+00 + 8.4720000e+03 3.9833205e+00 + 8.4724000e+03 2.8033205e+00 + 8.4728000e+03 1.8533205e+00 + 8.4732000e+03 1.1433205e+00 + 8.4736000e+03 6.9332051e-01 + 8.4740000e+03 5.3320513e-02 + 8.4744000e+03 -5.6667949e-01 + 8.4748000e+03 -1.3966795e+00 + 8.4752000e+03 -2.0666795e+00 + 8.4756000e+03 -2.7266795e+00 + 8.4760000e+03 -3.4166795e+00 + 8.4764000e+03 -3.7566795e+00 + 8.4768000e+03 -3.9466795e+00 + 8.4772000e+03 -3.9966795e+00 + 8.4776000e+03 -4.0066795e+00 + 8.4780000e+03 -3.5766795e+00 + 8.4784000e+03 -3.0366795e+00 + 8.4788000e+03 -2.0966795e+00 + 8.4792000e+03 -1.2266795e+00 + 8.4796000e+03 1.1733205e+00 + 8.4800000e+03 5.3333205e+00 + 8.4804000e+03 7.4433205e+00 + 8.4808000e+03 6.6633205e+00 + 8.4812000e+03 5.8933205e+00 + 8.4816000e+03 4.9833205e+00 + 8.4820000e+03 4.0233205e+00 + 8.4824000e+03 2.8633205e+00 + 8.4828000e+03 1.4433205e+00 + 8.4832000e+03 3.7332051e-01 + 8.4836000e+03 -4.6667949e-01 + 8.4840000e+03 -6.3667949e-01 + 8.4844000e+03 -6.3667949e-01 + 8.4848000e+03 -9.4667949e-01 + 8.4852000e+03 -1.4766795e+00 + 8.4856000e+03 -1.6066795e+00 + 8.4860000e+03 -1.7066795e+00 + 8.4864000e+03 -2.2766795e+00 + 8.4868000e+03 -2.4266795e+00 + 8.4872000e+03 -2.5966795e+00 + 8.4876000e+03 -2.9566795e+00 + 8.4880000e+03 -3.3166795e+00 + 8.4884000e+03 -3.0466795e+00 + 8.4888000e+03 -2.3166795e+00 + 8.4892000e+03 -1.5266795e+00 + 8.4896000e+03 -1.4566795e+00 + 8.4900000e+03 -1.4566795e+00 + 8.4904000e+03 -1.4566795e+00 + 8.4908000e+03 -1.1667949e-01 + 8.4912000e+03 1.2333205e+00 + 8.4916000e+03 1.6533205e+00 + 8.4920000e+03 2.0433205e+00 + 8.4924000e+03 1.9633205e+00 + 8.4928000e+03 1.7133205e+00 + 8.4932000e+03 1.4633205e+00 + 8.4936000e+03 1.3733205e+00 + 8.4940000e+03 1.6333205e+00 + 8.4944000e+03 2.0433205e+00 + 8.4948000e+03 2.2233205e+00 + 8.4952000e+03 3.3833205e+00 + 8.4956000e+03 3.0533205e+00 + 8.4960000e+03 7.3332051e-01 + 8.4964000e+03 -8.0667949e-01 + 8.4968000e+03 -1.5066795e+00 + 8.4972000e+03 -2.8666795e+00 + 8.4976000e+03 -3.2766795e+00 + 8.4980000e+03 -2.9666795e+00 + 8.4984000e+03 -2.0466795e+00 + 8.4988000e+03 -1.4466795e+00 + 8.4992000e+03 -7.2667949e-01 + 8.4996000e+03 2.6332051e-01 + 8.5000000e+03 9.1332051e-01 + 8.5004000e+03 1.2733205e+00 + 8.5008000e+03 1.7233205e+00 + 8.5012000e+03 2.5533205e+00 + 8.5016000e+03 2.1633205e+00 + 8.5020000e+03 7.8332051e-01 + 8.5024000e+03 -3.2667949e-01 + 8.5028000e+03 -1.3966795e+00 + 8.5032000e+03 -1.4966795e+00 + 8.5036000e+03 -1.3166795e+00 + 8.5040000e+03 -9.2667949e-01 + 8.5044000e+03 -6.3667949e-01 + 8.5048000e+03 -2.8667949e-01 + 8.5052000e+03 1.3332051e-01 + 8.5056000e+03 6.2332051e-01 + 8.5060000e+03 8.2332051e-01 + 8.5064000e+03 9.1332051e-01 + 8.5068000e+03 9.5332051e-01 + 8.5072000e+03 1.0133205e+00 + 8.5076000e+03 1.0033205e+00 + 8.5080000e+03 7.0332051e-01 + 8.5084000e+03 3.2332051e-01 + 8.5088000e+03 1.4332051e-01 + 8.5092000e+03 3.0332051e-01 + 8.5096000e+03 5.2332051e-01 + 8.5100000e+03 5.7332051e-01 + 8.5104000e+03 6.2332051e-01 + 8.5108000e+03 7.4332051e-01 + 8.5112000e+03 5.8332051e-01 + 8.5116000e+03 3.3332051e-01 + 8.5120000e+03 -2.6667949e-01 + 8.5124000e+03 -1.0466795e+00 + 8.5128000e+03 -1.6766795e+00 + 8.5132000e+03 -1.9566795e+00 + 8.5136000e+03 -1.9066795e+00 + 8.5140000e+03 -1.4466795e+00 + 8.5144000e+03 -9.9667949e-01 + 8.5148000e+03 -5.3667949e-01 + 8.5152000e+03 -3.7667949e-01 + 8.5156000e+03 -1.9667949e-01 + 8.5160000e+03 2.9332051e-01 + 8.5164000e+03 1.1933205e+00 + 8.5168000e+03 1.4233205e+00 + 8.5172000e+03 1.3533205e+00 + 8.5176000e+03 1.1433205e+00 + 8.5180000e+03 8.9332051e-01 + 8.5184000e+03 3.3332051e-01 + 8.5188000e+03 1.1332051e-01 + 8.5192000e+03 -2.4667949e-01 + 8.5196000e+03 -8.8667949e-01 + 8.5200000e+03 -1.2566795e+00 + 8.5204000e+03 -1.6066795e+00 + 8.5208000e+03 -1.6466795e+00 + 8.5212000e+03 -1.3266795e+00 + 8.5216000e+03 -7.6667949e-01 + 8.5220000e+03 -4.4667949e-01 + 8.5224000e+03 -1.9667949e-01 + 8.5228000e+03 -4.6679487e-02 + 8.5232000e+03 -1.9667949e-01 + 8.5236000e+03 -4.1667949e-01 + 8.5240000e+03 -4.2667949e-01 + 8.5244000e+03 -6.7667949e-01 + 8.5248000e+03 -6.9667949e-01 + 8.5252000e+03 -4.4667949e-01 + 8.5256000e+03 -2.6667949e-01 + 8.5260000e+03 -1.6679487e-02 + 8.5264000e+03 1.5332051e-01 + 8.5268000e+03 4.9332051e-01 + 8.5272000e+03 9.1332051e-01 + 8.5276000e+03 1.3533205e+00 + 8.5280000e+03 1.5333205e+00 + 8.5284000e+03 1.5533205e+00 + 8.5288000e+03 1.2833205e+00 + 8.5292000e+03 9.6332051e-01 + 8.5296000e+03 7.4332051e-01 + 8.5300000e+03 5.8332051e-01 + 8.5304000e+03 5.9332051e-01 + 8.5308000e+03 7.3332051e-01 + 8.5312000e+03 1.5533205e+00 + 8.5316000e+03 1.6333205e+00 + 8.5320000e+03 1.1433205e+00 + 8.5324000e+03 1.7332051e-01 + 8.5328000e+03 -1.2667949e-01 + 8.5332000e+03 -1.3667949e-01 + 8.5336000e+03 -1.3667949e-01 + 8.5340000e+03 -1.3667949e-01 + 8.5344000e+03 -1.3667949e-01 + 8.5348000e+03 -4.1667949e-01 + 8.5352000e+03 -2.3666795e+00 + 8.5356000e+03 -1.8466795e+00 + 8.5360000e+03 -1.5066795e+00 + 8.5364000e+03 -1.4866795e+00 + 8.5368000e+03 -1.4666795e+00 + 8.5372000e+03 -5.3667949e-01 + 8.5376000e+03 -3.0667949e-01 + 8.5380000e+03 4.3320513e-02 + 8.5384000e+03 5.5332051e-01 + 8.5388000e+03 9.7332051e-01 + 8.5392000e+03 1.2433205e+00 + 8.5396000e+03 1.1833205e+00 + 8.5400000e+03 1.1433205e+00 + 8.5404000e+03 1.2733205e+00 + 8.5408000e+03 1.2733205e+00 + 8.5412000e+03 1.1933205e+00 + 8.5416000e+03 1.0533205e+00 + 8.5420000e+03 4.3332051e-01 + 8.5424000e+03 3.3332051e-01 + 8.5428000e+03 3.3332051e-01 + 8.5432000e+03 3.3332051e-01 + 8.5436000e+03 3.3332051e-01 + 8.5440000e+03 2.4332051e-01 + 8.5444000e+03 -1.8566795e+00 + 8.5448000e+03 -1.5966795e+00 + 8.5452000e+03 -1.2566795e+00 + 8.5456000e+03 -3.8667949e-01 + 8.5460000e+03 3.3205128e-03 + 8.5464000e+03 3.0332051e-01 + 8.5468000e+03 1.2633205e+00 + 8.5472000e+03 2.1833205e+00 + 8.5476000e+03 2.7533205e+00 + 8.5480000e+03 2.3233205e+00 + 8.5484000e+03 1.8833205e+00 + 8.5488000e+03 1.5933205e+00 + 8.5492000e+03 1.2333205e+00 + 8.5496000e+03 1.1433205e+00 + 8.5500000e+03 5.5332051e-01 + 8.5504000e+03 -2.8667949e-01 + 8.5508000e+03 -4.2667949e-01 + 8.5512000e+03 -3.8667949e-01 + 8.5516000e+03 1.6332051e-01 + 8.5520000e+03 6.3332051e-01 + 8.5524000e+03 1.6332051e-01 + 8.5528000e+03 -2.2667949e-01 + 8.5532000e+03 -2.4667949e-01 + 8.5536000e+03 -2.4667949e-01 + 8.5540000e+03 -2.4667949e-01 + 8.5544000e+03 -1.9166795e+00 + 8.5548000e+03 -2.8766795e+00 + 8.5552000e+03 -2.6166795e+00 + 8.5556000e+03 -2.3566795e+00 + 8.5560000e+03 -2.0866795e+00 + 8.5564000e+03 -2.0566795e+00 + 8.5568000e+03 -2.0566795e+00 + 8.5572000e+03 -2.0366795e+00 + 8.5576000e+03 -6.1667949e-01 + 8.5580000e+03 1.1033205e+00 + 8.5584000e+03 1.1533205e+00 + 8.5588000e+03 1.3333205e+00 + 8.5592000e+03 1.6533205e+00 + 8.5596000e+03 2.0833205e+00 + 8.5600000e+03 2.2933205e+00 + 8.5604000e+03 2.2433205e+00 + 8.5608000e+03 2.2433205e+00 + 8.5612000e+03 1.1633205e+00 + 8.5616000e+03 4.6332051e-01 + 8.5620000e+03 5.7332051e-01 + 8.5624000e+03 4.7332051e-01 + 8.5628000e+03 -6.6679487e-02 + 8.5632000e+03 -4.9667949e-01 + 8.5636000e+03 -7.8667949e-01 + 8.5640000e+03 -1.1966795e+00 + 8.5644000e+03 -1.6566795e+00 + 8.5648000e+03 -2.1766795e+00 + 8.5652000e+03 -2.1366795e+00 + 8.5656000e+03 -1.7266795e+00 + 8.5660000e+03 -1.6566795e+00 + 8.5664000e+03 -6.5667949e-01 + 8.5668000e+03 8.3320513e-02 + 8.5672000e+03 -1.6679487e-02 + 8.5676000e+03 3.5332051e-01 + 8.5680000e+03 9.7332051e-01 + 8.5684000e+03 1.1633205e+00 + 8.5688000e+03 1.2733205e+00 + 8.5692000e+03 1.3333205e+00 + 8.5696000e+03 1.5233205e+00 + 8.5700000e+03 1.7433205e+00 + 8.5704000e+03 2.0133205e+00 + 8.5708000e+03 1.5533205e+00 + 8.5712000e+03 8.0332051e-01 + 8.5716000e+03 1.0332051e-01 + 8.5720000e+03 -6.2667949e-01 + 8.5724000e+03 -1.0166795e+00 + 8.5728000e+03 -1.2666795e+00 + 8.5732000e+03 -2.0366795e+00 + 8.5736000e+03 -2.1266795e+00 + 8.5740000e+03 -2.0166795e+00 + 8.5744000e+03 -1.5566795e+00 + 8.5748000e+03 -1.3666795e+00 + 8.5752000e+03 -1.0466795e+00 + 8.5756000e+03 -1.0866795e+00 + 8.5760000e+03 -1.3666795e+00 + 8.5764000e+03 -1.4466795e+00 + 8.5768000e+03 -1.4766795e+00 + 8.5772000e+03 -1.8966795e+00 + 8.5776000e+03 -1.6566795e+00 + 8.5780000e+03 -1.3966795e+00 + 8.5784000e+03 -1.3866795e+00 + 8.5788000e+03 2.3320513e-02 + 8.5792000e+03 6.3332051e-01 + 8.5796000e+03 6.7332051e-01 + 8.5800000e+03 6.7332051e-01 + 8.5804000e+03 9.9332051e-01 + 8.5808000e+03 4.0733205e+00 + 8.5812000e+03 4.7433205e+00 + 8.5816000e+03 5.2133205e+00 + 8.5820000e+03 3.2133205e+00 + 8.5824000e+03 1.3733205e+00 + 8.5828000e+03 4.3320513e-02 + 8.5832000e+03 -1.2766795e+00 + 8.5836000e+03 -2.3466795e+00 + 8.5840000e+03 -3.0066795e+00 + 8.5844000e+03 -3.9266795e+00 + 8.5848000e+03 -4.2766795e+00 + 8.5852000e+03 -3.9266795e+00 + 8.5856000e+03 -3.4566795e+00 + 8.5860000e+03 -3.2666795e+00 + 8.5864000e+03 -3.1966795e+00 + 8.5868000e+03 -3.1966795e+00 + 8.5872000e+03 -2.2066795e+00 + 8.5876000e+03 -1.8766795e+00 + 8.5880000e+03 -6.3667949e-01 + 8.5884000e+03 1.6533205e+00 + 8.5888000e+03 2.5933205e+00 + 8.5892000e+03 3.1633205e+00 + 8.5896000e+03 3.5733205e+00 + 8.5900000e+03 3.5133205e+00 + 8.5904000e+03 3.2533205e+00 + 8.5908000e+03 2.8033205e+00 + 8.5912000e+03 1.7933205e+00 + 8.5916000e+03 8.7332051e-01 + 8.5920000e+03 2.4332051e-01 + 8.5924000e+03 -3.6679487e-02 + 8.5928000e+03 -3.6667949e-01 + 8.5932000e+03 -5.3667949e-01 + 8.5936000e+03 -9.7667949e-01 + 8.5940000e+03 -1.7466795e+00 + 8.5944000e+03 -2.6466795e+00 + 8.5948000e+03 -2.7966795e+00 + 8.5952000e+03 -2.7966795e+00 + 8.5956000e+03 -2.7966795e+00 + 8.5960000e+03 -3.9766795e+00 + 8.5964000e+03 -3.4666795e+00 + 8.5968000e+03 -2.2866795e+00 + 8.5972000e+03 -1.8566795e+00 + 8.5976000e+03 -1.8466795e+00 + 8.5980000e+03 -1.8466795e+00 + 8.5984000e+03 -1.8466795e+00 + 8.5988000e+03 1.5333205e+00 + 8.5992000e+03 2.7633205e+00 + 8.5996000e+03 3.4333205e+00 + 8.6000000e+03 3.7333205e+00 + 8.6004000e+03 3.9433205e+00 + 8.6008000e+03 3.5533205e+00 + 8.6012000e+03 2.6633205e+00 + 8.6016000e+03 1.8833205e+00 + 8.6020000e+03 1.0433205e+00 + 8.6024000e+03 5.4332051e-01 + 8.6028000e+03 1.6332051e-01 + 8.6032000e+03 1.3332051e-01 + 8.6036000e+03 2.5332051e-01 + 8.6040000e+03 1.0332051e-01 + 8.6044000e+03 -9.8667949e-01 + 8.6048000e+03 -1.3466795e+00 + 8.6052000e+03 -1.3466795e+00 + 8.6056000e+03 -1.5466795e+00 + 8.6060000e+03 -4.6966795e+00 + 8.6064000e+03 -4.0966795e+00 + 8.6068000e+03 -2.9766795e+00 + 8.6072000e+03 -1.8266795e+00 + 8.6076000e+03 -1.6466795e+00 + 8.6080000e+03 -1.6066795e+00 + 8.6084000e+03 1.4733205e+00 + 8.6088000e+03 2.3833205e+00 + 8.6092000e+03 2.6733205e+00 + 8.6096000e+03 3.3633205e+00 + 8.6100000e+03 3.1633205e+00 + 8.6104000e+03 3.1233205e+00 + 8.6108000e+03 2.4133205e+00 + 8.6112000e+03 1.4833205e+00 + 8.6116000e+03 8.0332051e-01 + 8.6120000e+03 -1.6679487e-02 + 8.6124000e+03 -8.8667949e-01 + 8.6128000e+03 -1.3266795e+00 + 8.6132000e+03 -1.4066795e+00 + 8.6136000e+03 -1.5466795e+00 + 8.6140000e+03 -1.6966795e+00 + 8.6144000e+03 -1.5666795e+00 + 8.6148000e+03 -1.5666795e+00 + 8.6152000e+03 -1.7866795e+00 + 8.6156000e+03 -1.8066795e+00 + 8.6160000e+03 -1.7366795e+00 + 8.6164000e+03 -1.7366795e+00 + 8.6168000e+03 -1.5566795e+00 + 8.6172000e+03 -1.2066795e+00 + 8.6176000e+03 -8.8667949e-01 + 8.6180000e+03 -4.1667949e-01 + 8.6184000e+03 -7.6679487e-02 + 8.6188000e+03 7.7332051e-01 + 8.6192000e+03 1.4133205e+00 + 8.6196000e+03 2.7233205e+00 + 8.6200000e+03 3.8033205e+00 + 8.6204000e+03 3.8833205e+00 + 8.6208000e+03 4.1633205e+00 + 8.6212000e+03 3.4233205e+00 + 8.6216000e+03 2.2433205e+00 + 8.6220000e+03 1.1733205e+00 + 8.6224000e+03 2.4332051e-01 + 8.6228000e+03 -4.2667949e-01 + 8.6232000e+03 -6.2667949e-01 + 8.6236000e+03 -5.0667949e-01 + 8.6240000e+03 -9.4667949e-01 + 8.6244000e+03 -1.0166795e+00 + 8.6248000e+03 -1.2566795e+00 + 8.6252000e+03 -1.6366795e+00 + 8.6256000e+03 -2.0066795e+00 + 8.6260000e+03 -2.2766795e+00 + 8.6264000e+03 -2.2166795e+00 + 8.6268000e+03 -1.7266795e+00 + 8.6272000e+03 -1.3366795e+00 + 8.6276000e+03 -1.3066795e+00 + 8.6280000e+03 -1.2666795e+00 + 8.6284000e+03 -1.1566795e+00 + 8.6288000e+03 -1.0866795e+00 + 8.6292000e+03 -1.2666795e+00 + 8.6296000e+03 -1.1066795e+00 + 8.6300000e+03 -4.8667949e-01 + 8.6304000e+03 -1.6667949e-01 + 8.6308000e+03 5.3320513e-02 + 8.6312000e+03 1.5332051e-01 + 8.6316000e+03 5.3320513e-02 + 8.6320000e+03 -1.0667949e-01 + 8.6324000e+03 1.3320513e-02 + 8.6328000e+03 3.7332051e-01 + 8.6332000e+03 6.8332051e-01 + 8.6336000e+03 1.1533205e+00 + 8.6340000e+03 1.2333205e+00 + 8.6344000e+03 9.2332051e-01 + 8.6348000e+03 7.3332051e-01 + 8.6352000e+03 6.5332051e-01 + 8.6356000e+03 8.0332051e-01 + 8.6360000e+03 9.1332051e-01 + 8.6364000e+03 1.3833205e+00 + 8.6368000e+03 1.3233205e+00 + 8.6372000e+03 1.4233205e+00 + 8.6376000e+03 1.1433205e+00 + 8.6380000e+03 8.0332051e-01 + 8.6384000e+03 3.8332051e-01 + 8.6388000e+03 -6.6679487e-02 + 8.6392000e+03 -3.9667949e-01 + 8.6396000e+03 -4.4667949e-01 + 8.6400000e+03 -4.4667949e-01 + 8.6404000e+03 -4.4667949e-01 + 8.6408000e+03 -8.3667949e-01 + 8.6412000e+03 -6.4667949e-01 + 8.6416000e+03 -3.3667949e-01 + 8.6420000e+03 1.1332051e-01 + 8.6424000e+03 1.3733205e+00 + 8.6428000e+03 1.7833205e+00 + 8.6432000e+03 2.2033205e+00 + 8.6436000e+03 2.1533205e+00 + 8.6440000e+03 1.6833205e+00 + 8.6444000e+03 1.0533205e+00 + 8.6448000e+03 4.1332051e-01 + 8.6452000e+03 -4.8667949e-01 + 8.6456000e+03 -1.2166795e+00 + 8.6460000e+03 -1.8166795e+00 + 8.6464000e+03 -2.1766795e+00 + 8.6468000e+03 -2.5366795e+00 + 8.6472000e+03 -2.5966795e+00 + 8.6476000e+03 -2.1566795e+00 + 8.6480000e+03 -1.9066795e+00 + 8.6484000e+03 -1.7966795e+00 + 8.6488000e+03 -1.8966795e+00 + 8.6492000e+03 -2.1766795e+00 + 8.6496000e+03 -2.2566795e+00 + 8.6500000e+03 -2.0866795e+00 + 8.6504000e+03 -1.6366795e+00 + 8.6508000e+03 -1.4766795e+00 + 8.6512000e+03 -1.4566795e+00 + 8.6516000e+03 -6.9667949e-01 + 8.6520000e+03 -1.9667949e-01 + 8.6524000e+03 2.3320513e-02 + 8.6528000e+03 3.2332051e-01 + 8.6532000e+03 6.1332051e-01 + 8.6536000e+03 9.4332051e-01 + 8.6540000e+03 1.3933205e+00 + 8.6544000e+03 1.7233205e+00 + 8.6548000e+03 2.1033205e+00 + 8.6552000e+03 2.1333205e+00 + 8.6556000e+03 2.2433205e+00 + 8.6560000e+03 1.6233205e+00 + 8.6564000e+03 1.3233205e+00 + 8.6568000e+03 9.0332051e-01 + 8.6572000e+03 8.3332051e-01 + 8.6576000e+03 7.6332051e-01 + 8.6580000e+03 6.8332051e-01 + 8.6584000e+03 4.7332051e-01 + 8.6588000e+03 9.0332051e-01 + 8.6592000e+03 1.0533205e+00 + 8.6596000e+03 1.1633205e+00 + 8.6600000e+03 1.1733205e+00 + 8.6604000e+03 1.1733205e+00 + 8.6608000e+03 1.0033205e+00 + 8.6612000e+03 6.3332051e-01 + 8.6616000e+03 2.6332051e-01 + 8.6620000e+03 1.2332051e-01 + 8.6624000e+03 -1.6667949e-01 + 8.6628000e+03 -6.6667949e-01 + 8.6632000e+03 -7.3667949e-01 + 8.6636000e+03 -7.4667949e-01 + 8.6640000e+03 -7.3667949e-01 + 8.6644000e+03 -7.3667949e-01 + 8.6648000e+03 -7.3667949e-01 + 8.6652000e+03 -1.6666795e+00 + 8.6656000e+03 -3.7666795e+00 + 8.6660000e+03 -3.6366795e+00 + 8.6664000e+03 -3.2566795e+00 + 8.6668000e+03 -2.8866795e+00 + 8.6672000e+03 -2.1266795e+00 + 8.6676000e+03 -1.4466795e+00 + 8.6680000e+03 -8.5667949e-01 + 8.6684000e+03 -8.2667949e-01 + 8.6688000e+03 -8.2667949e-01 + 8.6692000e+03 -8.3667949e-01 + 8.6696000e+03 4.8332051e-01 + 8.6700000e+03 9.6332051e-01 + 8.6704000e+03 4.1332051e-01 + 8.6708000e+03 2.2332051e-01 + 8.6712000e+03 1.9332051e-01 + 8.6716000e+03 1.4332051e-01 + 8.6720000e+03 -1.9667949e-01 + 8.6724000e+03 -2.2667949e-01 + 8.6728000e+03 -1.5667949e-01 + 8.6732000e+03 3.2332051e-01 + 8.6736000e+03 4.7332051e-01 + 8.6740000e+03 7.3332051e-01 + 8.6744000e+03 7.8332051e-01 + 8.6748000e+03 1.0433205e+00 + 8.6752000e+03 1.1433205e+00 + 8.6756000e+03 1.2333205e+00 + 8.6760000e+03 1.2333205e+00 + 8.6764000e+03 1.2133205e+00 + 8.6768000e+03 8.5332051e-01 + 8.6772000e+03 3.4332051e-01 + 8.6776000e+03 1.4332051e-01 + 8.6780000e+03 4.9332051e-01 + 8.6784000e+03 8.9332051e-01 + 8.6788000e+03 9.4332051e-01 + 8.6792000e+03 9.4332051e-01 + 8.6796000e+03 1.2333205e+00 + 8.6800000e+03 9.7332051e-01 + 8.6804000e+03 7.0332051e-01 + 8.6808000e+03 5.7332051e-01 + 8.6812000e+03 5.5332051e-01 + 8.6816000e+03 5.5332051e-01 + 8.6820000e+03 5.5332051e-01 + 8.6824000e+03 5.5332051e-01 + 8.6828000e+03 5.5332051e-01 + 8.6832000e+03 5.5332051e-01 + 8.6836000e+03 5.5332051e-01 + 8.6840000e+03 5.5332051e-01 + 8.6844000e+03 -1.6266795e+00 + 8.6848000e+03 -2.3666795e+00 + 8.6852000e+03 -1.8466795e+00 + 8.6856000e+03 -1.6366795e+00 + 8.6860000e+03 -1.6266795e+00 + 8.6864000e+03 -1.6266795e+00 + 8.6868000e+03 -1.6266795e+00 + 8.6872000e+03 -1.6066795e+00 + 8.6876000e+03 9.0332051e-01 + 8.6880000e+03 1.1733205e+00 + 8.6884000e+03 7.9332051e-01 + 8.6888000e+03 6.5332051e-01 + 8.6892000e+03 4.9332051e-01 + 8.6896000e+03 4.6332051e-01 + 8.6900000e+03 4.6332051e-01 + 8.6904000e+03 4.6332051e-01 + 8.6908000e+03 4.6332051e-01 + 8.6912000e+03 4.5332051e-01 + 8.6916000e+03 -5.1667949e-01 + 8.6920000e+03 -4.2667949e-01 + 8.6924000e+03 3.3205128e-03 + 8.6928000e+03 1.3332051e-01 + 8.6932000e+03 1.4332051e-01 + 8.6936000e+03 1.2833205e+00 + 8.6940000e+03 1.4633205e+00 + 8.6944000e+03 1.3633205e+00 + 8.6948000e+03 1.1233205e+00 + 8.6952000e+03 6.4332051e-01 + 8.6956000e+03 6.4332051e-01 + 8.6960000e+03 6.6332051e-01 + 8.6964000e+03 1.0433205e+00 + 8.6968000e+03 1.2833205e+00 + 8.6972000e+03 1.2333205e+00 + 8.6976000e+03 9.8332051e-01 + 8.6980000e+03 7.0332051e-01 + 8.6984000e+03 4.7332051e-01 + 8.6988000e+03 4.4332051e-01 + 8.6992000e+03 4.4332051e-01 + 8.6996000e+03 4.4332051e-01 + 8.7000000e+03 4.5332051e-01 + 8.7004000e+03 4.4332051e-01 + 8.7008000e+03 4.4332051e-01 + 8.7012000e+03 4.4332051e-01 + 8.7016000e+03 -1.4966795e+00 + 8.7020000e+03 -1.7366795e+00 + 8.7024000e+03 -1.3166795e+00 + 8.7028000e+03 -1.2766795e+00 + 8.7032000e+03 -1.1966795e+00 + 8.7036000e+03 -1.4766795e+00 + 8.7040000e+03 -1.5566795e+00 + 8.7044000e+03 -1.4266795e+00 + 8.7048000e+03 -1.2266795e+00 + 8.7052000e+03 -1.0766795e+00 + 8.7056000e+03 -1.0066795e+00 + 8.7060000e+03 -1.0066795e+00 + 8.7064000e+03 -9.2667949e-01 + 8.7068000e+03 -8.0667949e-01 + 8.7072000e+03 -4.1667949e-01 + 8.7076000e+03 -2.6679487e-02 + 8.7080000e+03 2.5332051e-01 + 8.7084000e+03 2.9332051e-01 + 8.7088000e+03 3.0332051e-01 + 8.7092000e+03 2.2733205e+00 + 8.7096000e+03 2.6733205e+00 + 8.7100000e+03 2.2333205e+00 + 8.7104000e+03 2.1533205e+00 + 8.7108000e+03 2.1133205e+00 + 8.7112000e+03 -9.1667949e-01 + 8.7116000e+03 -1.6266795e+00 + 8.7120000e+03 -1.7966795e+00 + 8.7124000e+03 -1.5666795e+00 + 8.7128000e+03 -1.2766795e+00 + 8.7132000e+03 -8.4667949e-01 + 8.7136000e+03 -2.6667949e-01 + 8.7140000e+03 5.3320513e-02 + 8.7144000e+03 2.9332051e-01 + 8.7148000e+03 9.9332051e-01 + 8.7152000e+03 1.1633205e+00 + 8.7156000e+03 1.3233205e+00 + 8.7160000e+03 9.3332051e-01 + 8.7164000e+03 6.4332051e-01 + 8.7168000e+03 7.0332051e-01 + 8.7172000e+03 8.9332051e-01 + 8.7176000e+03 7.6332051e-01 + 8.7180000e+03 3.5332051e-01 + 8.7184000e+03 1.9332051e-01 + 8.7188000e+03 1.9332051e-01 + 8.7192000e+03 1.9332051e-01 + 8.7196000e+03 1.9332051e-01 + 8.7200000e+03 -2.3667949e-01 + 8.7204000e+03 -1.6966795e+00 + 8.7208000e+03 -1.6066795e+00 + 8.7212000e+03 -1.1966795e+00 + 8.7216000e+03 -1.0366795e+00 + 8.7220000e+03 -1.2066795e+00 + 8.7224000e+03 -1.1066795e+00 + 8.7228000e+03 -8.9667949e-01 + 8.7232000e+03 -4.9667949e-01 + 8.7236000e+03 -1.3667949e-01 + 8.7240000e+03 2.7332051e-01 + 8.7244000e+03 4.9332051e-01 + 8.7248000e+03 5.5332051e-01 + 8.7252000e+03 7.3332051e-01 + 8.7256000e+03 8.0332051e-01 + 8.7260000e+03 5.5332051e-01 + 8.7264000e+03 2.8332051e-01 + 8.7268000e+03 -3.6679487e-02 + 8.7272000e+03 -3.6667949e-01 + 8.7276000e+03 -1.7667949e-01 + 8.7280000e+03 1.2332051e-01 + 8.7284000e+03 2.5332051e-01 + 8.7288000e+03 4.0332051e-01 + 8.7292000e+03 2.0332051e-01 + 8.7296000e+03 -1.6667949e-01 + 8.7300000e+03 -1.9667949e-01 + 8.7304000e+03 -1.9667949e-01 + 8.7308000e+03 -6.5667949e-01 + 8.7312000e+03 -8.3667949e-01 + 8.7316000e+03 -6.6667949e-01 + 8.7320000e+03 -3.7667949e-01 + 8.7324000e+03 2.3320513e-02 + 8.7328000e+03 2.4332051e-01 + 8.7332000e+03 4.3332051e-01 + 8.7336000e+03 4.7332051e-01 + 8.7340000e+03 6.0332051e-01 + 8.7344000e+03 9.0332051e-01 + 8.7348000e+03 1.3333205e+00 + 8.7352000e+03 1.2933205e+00 + 8.7356000e+03 9.4332051e-01 + 8.7360000e+03 2.0332051e-01 + 8.7364000e+03 -1.6679487e-02 + 8.7368000e+03 -1.6679487e-02 + 8.7372000e+03 -1.6679487e-02 + 8.7376000e+03 -2.6679487e-02 + 8.7380000e+03 -1.9866795e+00 + 8.7384000e+03 -1.7566795e+00 + 8.7388000e+03 -1.1566795e+00 + 8.7392000e+03 3.7332051e-01 + 8.7396000e+03 1.5033205e+00 + 8.7400000e+03 1.7133205e+00 + 8.7404000e+03 1.6533205e+00 + 8.7408000e+03 9.6332051e-01 + 8.7412000e+03 7.0332051e-01 + 8.7416000e+03 6.9332051e-01 + 8.7420000e+03 -4.4667949e-01 + 8.7424000e+03 -1.0166795e+00 + 8.7428000e+03 -1.0766795e+00 + 8.7432000e+03 -6.7667949e-01 + 8.7436000e+03 -2.7667949e-01 + 8.7440000e+03 2.1332051e-01 + 8.7444000e+03 4.0332051e-01 + 8.7448000e+03 4.1332051e-01 + 8.7452000e+03 4.1332051e-01 + 8.7456000e+03 4.1332051e-01 + 8.7460000e+03 4.3332051e-01 + 8.7464000e+03 8.0332051e-01 + 8.7468000e+03 4.9332051e-01 + 8.7472000e+03 4.7332051e-01 + 8.7476000e+03 4.7332051e-01 + 8.7480000e+03 -9.5667949e-01 + 8.7484000e+03 -1.4766795e+00 + 8.7488000e+03 -1.7166795e+00 + 8.7492000e+03 -1.9966795e+00 + 8.7496000e+03 -1.9266795e+00 + 8.7500000e+03 -1.4666795e+00 + 8.7504000e+03 -1.4066795e+00 + 8.7508000e+03 -1.4066795e+00 + 8.7512000e+03 -1.4066795e+00 + 8.7516000e+03 -2.5667949e-01 + 8.7520000e+03 5.2332051e-01 + 8.7524000e+03 4.8332051e-01 + 8.7528000e+03 3.2332051e-01 + 8.7532000e+03 1.0332051e-01 + 8.7536000e+03 -2.1667949e-01 + 8.7540000e+03 -8.9667949e-01 + 8.7544000e+03 -1.3966795e+00 + 8.7548000e+03 -1.4566795e+00 + 8.7552000e+03 -1.4566795e+00 + 8.7556000e+03 -1.4566795e+00 + 8.7560000e+03 -1.4466795e+00 + 8.7564000e+03 -1.4466795e+00 + 8.7568000e+03 -1.0667949e-01 + 8.7572000e+03 -6.6679487e-02 + 8.7576000e+03 3.3205128e-03 + 8.7580000e+03 2.7332051e-01 + 8.7584000e+03 3.0332051e-01 + 8.7588000e+03 1.4933205e+00 + 8.7592000e+03 1.8833205e+00 + 8.7596000e+03 1.9233205e+00 + 8.7600000e+03 1.7733205e+00 + 8.7604000e+03 1.7733205e+00 + 8.7608000e+03 1.5533205e+00 + 8.7612000e+03 1.2233205e+00 + 8.7616000e+03 1.1333205e+00 + 8.7620000e+03 1.1333205e+00 + 8.7624000e+03 1.1333205e+00 + 8.7628000e+03 5.0332051e-01 + 8.7632000e+03 -1.3667949e-01 + 8.7636000e+03 -1.6667949e-01 + 8.7640000e+03 -1.6667949e-01 + 8.7644000e+03 -1.6667949e-01 + 8.7648000e+03 -1.5667949e-01 + 8.7652000e+03 -5.9667949e-01 + 8.7656000e+03 -1.7166795e+00 + 8.7660000e+03 -1.6366795e+00 + 8.7664000e+03 -1.5866795e+00 + 8.7668000e+03 -8.2667949e-01 + 8.7672000e+03 -4.1667949e-01 + 8.7676000e+03 -3.5667949e-01 + 8.7680000e+03 -4.6667949e-01 + 8.7684000e+03 -4.9667949e-01 + 8.7688000e+03 -5.1667949e-01 + 8.7692000e+03 -2.2667949e-01 + 8.7696000e+03 1.5332051e-01 + 8.7700000e+03 7.6332051e-01 + 8.7704000e+03 1.4033205e+00 + 8.7708000e+03 1.5533205e+00 + 8.7712000e+03 1.4033205e+00 + 8.7716000e+03 1.0833205e+00 + 8.7720000e+03 1.0333205e+00 + 8.7724000e+03 1.0333205e+00 + 8.7728000e+03 1.0333205e+00 + 8.7732000e+03 -3.6679487e-02 + 8.7736000e+03 -5.4667949e-01 + 8.7740000e+03 -9.1667949e-01 + 8.7744000e+03 -9.2667949e-01 + 8.7748000e+03 -9.4667949e-01 + 8.7752000e+03 -1.7466795e+00 + 8.7756000e+03 -1.6966795e+00 + 8.7760000e+03 -1.3266795e+00 + 8.7764000e+03 -7.4667949e-01 + 8.7768000e+03 -7.0667949e-01 + 8.7772000e+03 -7.9667949e-01 + 8.7776000e+03 -7.6667949e-01 + 8.7780000e+03 -5.3667949e-01 + 8.7784000e+03 -4.5667949e-01 + 8.7788000e+03 9.2332051e-01 + 8.7792000e+03 1.6033205e+00 + 8.7796000e+03 1.9933205e+00 + 8.7800000e+03 2.0033205e+00 + 8.7804000e+03 3.6333205e+00 + 8.7808000e+03 4.1833205e+00 + 8.7812000e+03 2.9833205e+00 + 8.7816000e+03 1.9633205e+00 + 8.7820000e+03 2.1332051e-01 + 8.7824000e+03 -7.6667949e-01 + 8.7828000e+03 -1.1966795e+00 + 8.7832000e+03 -1.4466795e+00 + 8.7836000e+03 -1.5066795e+00 + 8.7840000e+03 -1.5166795e+00 + 8.7844000e+03 -1.4266795e+00 + 8.7848000e+03 -7.9667949e-01 + 8.7852000e+03 -6.6667949e-01 + 8.7856000e+03 -7.8667949e-01 + 8.7860000e+03 -7.4667949e-01 + 8.7864000e+03 -3.8667949e-01 + 8.7868000e+03 -6.6679487e-02 + 8.7872000e+03 2.7332051e-01 + 8.7876000e+03 1.5332051e-01 + 8.7880000e+03 1.4332051e-01 + 8.7884000e+03 1.4332051e-01 + 8.7888000e+03 1.4332051e-01 + 8.7892000e+03 -6.6679487e-02 + 8.7896000e+03 -2.1966795e+00 + 8.7900000e+03 -2.1566795e+00 + 8.7904000e+03 -1.6066795e+00 + 8.7908000e+03 -1.0866795e+00 + 8.7912000e+03 -1.0166795e+00 + 8.7916000e+03 -1.0166795e+00 + 8.7920000e+03 -1.0166795e+00 + 8.7924000e+03 -1.0166795e+00 + 8.7928000e+03 -1.0166795e+00 + 8.7932000e+03 -1.0166795e+00 + 8.7936000e+03 1.1533205e+00 + 8.7940000e+03 2.2333205e+00 + 8.7944000e+03 1.0833205e+00 + 8.7948000e+03 4.3320513e-02 + 8.7952000e+03 -3.6679487e-02 + 8.7956000e+03 -1.4266795e+00 + 8.7960000e+03 -1.5166795e+00 + 8.7964000e+03 -1.2666795e+00 + 8.7968000e+03 -9.8667949e-01 + 8.7972000e+03 -7.7667949e-01 + 8.7976000e+03 -5.2667949e-01 + 8.7980000e+03 -2.5667949e-01 + 8.7984000e+03 -3.0667949e-01 + 8.7988000e+03 -4.0667949e-01 + 8.7992000e+03 -4.2667949e-01 + 8.7996000e+03 -4.4667949e-01 + 8.8000000e+03 -4.1667949e-01 + 8.8004000e+03 -2.1667949e-01 + 8.8008000e+03 5.3320513e-02 + 8.8012000e+03 4.6332051e-01 + 8.8016000e+03 5.3332051e-01 + 8.8020000e+03 5.4332051e-01 + 8.8024000e+03 5.3332051e-01 + 8.8028000e+03 5.4332051e-01 + 8.8032000e+03 5.3332051e-01 + 8.8036000e+03 8.3332051e-01 + 8.8040000e+03 1.1533205e+00 + 8.8044000e+03 6.8332051e-01 + 8.8048000e+03 6.6332051e-01 + 8.8052000e+03 6.6332051e-01 + 8.8056000e+03 6.6332051e-01 + 8.8060000e+03 -1.1066795e+00 + 8.8064000e+03 -1.7866795e+00 + 8.8068000e+03 -1.8066795e+00 + 8.8072000e+03 -1.8266795e+00 + 8.8076000e+03 -2.0566795e+00 + 8.8080000e+03 -1.3566795e+00 + 8.8084000e+03 -9.0667949e-01 + 8.8088000e+03 -8.3667949e-01 + 8.8092000e+03 -8.3667949e-01 + 8.8096000e+03 -8.3667949e-01 + 8.8100000e+03 1.1733205e+00 + 8.8104000e+03 1.2633205e+00 + 8.8108000e+03 1.1333205e+00 + 8.8112000e+03 1.4233205e+00 + 8.8116000e+03 1.8433205e+00 + 8.8120000e+03 1.7133205e+00 + 8.8124000e+03 1.2033205e+00 + 8.8128000e+03 1.0733205e+00 + 8.8132000e+03 1.0733205e+00 + 8.8136000e+03 1.0533205e+00 + 8.8140000e+03 1.0733205e+00 + 8.8144000e+03 1.0533205e+00 + 8.8148000e+03 1.0533205e+00 + 8.8152000e+03 -7.5667949e-01 + 8.8156000e+03 -2.2666795e+00 + 8.8160000e+03 -1.9866795e+00 + 8.8164000e+03 -1.5666795e+00 + 8.8168000e+03 -1.5466795e+00 + 8.8172000e+03 -1.5466795e+00 + 8.8176000e+03 -1.5466795e+00 + 8.8180000e+03 -1.5466795e+00 + 8.8184000e+03 -6.3667949e-01 + 8.8188000e+03 -2.2667949e-01 + 8.8192000e+03 -5.1667949e-01 + 8.8196000e+03 -4.8667949e-01 + 8.8200000e+03 -1.6667949e-01 + 8.8204000e+03 4.5332051e-01 + 8.8208000e+03 9.8332051e-01 + 8.8212000e+03 2.1533205e+00 + 8.8216000e+03 2.4033205e+00 + 8.8220000e+03 2.5833205e+00 + 8.8224000e+03 2.3333205e+00 + 8.8228000e+03 1.9533205e+00 + 8.8232000e+03 1.5933205e+00 + 8.8236000e+03 1.3333205e+00 + 8.8240000e+03 1.0533205e+00 + 8.8244000e+03 3.7332051e-01 + 8.8248000e+03 5.3320513e-02 + 8.8252000e+03 -2.1667949e-01 + 8.8256000e+03 -4.4667949e-01 + 8.8260000e+03 -4.9667949e-01 + 8.8264000e+03 -4.8667949e-01 + 8.8268000e+03 -4.8667949e-01 + 8.8272000e+03 -4.8667949e-01 + 8.8276000e+03 -4.8667949e-01 + 8.8280000e+03 -4.9667949e-01 + 8.8284000e+03 -1.6766795e+00 + 8.8288000e+03 -1.3666795e+00 + 8.8292000e+03 -9.5667949e-01 + 8.8296000e+03 -8.2667949e-01 + 8.8300000e+03 -7.8667949e-01 + 8.8304000e+03 -1.2667949e-01 + 8.8308000e+03 5.1332051e-01 + 8.8312000e+03 1.0033205e+00 + 8.8316000e+03 1.7033205e+00 + 8.8320000e+03 2.5533205e+00 + 8.8324000e+03 3.4433205e+00 + 8.8328000e+03 3.7333205e+00 + 8.8332000e+03 3.2833205e+00 + 8.8336000e+03 2.5533205e+00 + 8.8340000e+03 2.4233205e+00 + 8.8344000e+03 1.0733205e+00 + 8.8348000e+03 -3.7667949e-01 + 8.8352000e+03 -6.0667949e-01 + 8.8356000e+03 -6.0667949e-01 + 8.8360000e+03 -2.7566795e+00 + 8.8364000e+03 -4.2066795e+00 + 8.8368000e+03 -3.7866795e+00 + 8.8372000e+03 -2.9266795e+00 + 8.8376000e+03 -1.7366795e+00 + 8.8380000e+03 -7.1667949e-01 + 8.8384000e+03 3.2332051e-01 + 8.8388000e+03 1.6933205e+00 + 8.8392000e+03 1.8533205e+00 + 8.8396000e+03 1.5333205e+00 + 8.8400000e+03 1.3733205e+00 + 8.8404000e+03 9.8332051e-01 + 8.8408000e+03 6.0332051e-01 + 8.8412000e+03 5.3320513e-02 + 8.8416000e+03 -2.7667949e-01 + 8.8420000e+03 -4.4667949e-01 + 8.8424000e+03 -4.1667949e-01 + 8.8428000e+03 -1.9667949e-01 + 8.8432000e+03 2.3320513e-02 + 8.8436000e+03 3.5332051e-01 + 8.8440000e+03 3.7332051e-01 + 8.8444000e+03 7.0332051e-01 + 8.8448000e+03 7.2332051e-01 + 8.8452000e+03 5.0332051e-01 + 8.8456000e+03 6.8332051e-01 + 8.8460000e+03 6.7332051e-01 + 8.8464000e+03 6.2332051e-01 + 8.8468000e+03 2.9332051e-01 + 8.8472000e+03 1.5332051e-01 + 8.8476000e+03 1.4332051e-01 + 8.8480000e+03 1.4332051e-01 + 8.8484000e+03 1.5332051e-01 + 8.8488000e+03 -1.5667949e-01 + 8.8492000e+03 -1.2066795e+00 + 8.8496000e+03 -1.1266795e+00 + 8.8500000e+03 -9.1667949e-01 + 8.8504000e+03 -4.5667949e-01 + 8.8508000e+03 8.3320513e-02 + 8.8512000e+03 5.5332051e-01 + 8.8516000e+03 6.3332051e-01 + 8.8520000e+03 2.1133205e+00 + 8.8524000e+03 1.6533205e+00 + 8.8528000e+03 1.6233205e+00 + 8.8532000e+03 1.6233205e+00 + 8.8536000e+03 1.6233205e+00 + 8.8540000e+03 -7.8667949e-01 + 8.8544000e+03 -1.1566795e+00 + 8.8548000e+03 -8.1667949e-01 + 8.8552000e+03 -3.2667949e-01 + 8.8556000e+03 1.2332051e-01 + 8.8560000e+03 4.1332051e-01 + 8.8564000e+03 5.0332051e-01 + 8.8568000e+03 5.5332051e-01 + 8.8572000e+03 5.8332051e-01 + 8.8576000e+03 1.4233205e+00 + 8.8580000e+03 1.2933205e+00 + 8.8584000e+03 1.1433205e+00 + 8.8588000e+03 1.1333205e+00 + 8.8592000e+03 1.1333205e+00 + 8.8596000e+03 1.1333205e+00 + 8.8600000e+03 1.1333205e+00 + 8.8604000e+03 1.1333205e+00 + 8.8608000e+03 1.1333205e+00 + 8.8612000e+03 -1.0066795e+00 + 8.8616000e+03 -1.3766795e+00 + 8.8620000e+03 -9.1667949e-01 + 8.8624000e+03 -4.4667949e-01 + 8.8628000e+03 -3.6679487e-02 + 8.8632000e+03 1.5332051e-01 + 8.8636000e+03 1.8332051e-01 + 8.8640000e+03 1.6332051e-01 + 8.8644000e+03 1.1332051e-01 + 8.8648000e+03 4.6332051e-01 + 8.8652000e+03 8.2332051e-01 + 8.8656000e+03 9.2332051e-01 + 8.8660000e+03 1.1833205e+00 + 8.8664000e+03 1.1933205e+00 + 8.8668000e+03 6.9332051e-01 + 8.8672000e+03 5.3320513e-02 + 8.8676000e+03 -2.2667949e-01 + 8.8680000e+03 -2.4667949e-01 + 8.8684000e+03 -2.4667949e-01 + 8.8688000e+03 -8.2667949e-01 + 8.8692000e+03 -1.1066795e+00 + 8.8696000e+03 -9.4667949e-01 + 8.8700000e+03 -7.6667949e-01 + 8.8704000e+03 -8.1667949e-01 + 8.8708000e+03 -7.7667949e-01 + 8.8712000e+03 -2.1667949e-01 + 8.8716000e+03 6.2332051e-01 + 8.8720000e+03 1.4733205e+00 + 8.8724000e+03 2.3633205e+00 + 8.8728000e+03 2.8333205e+00 + 8.8732000e+03 2.6633205e+00 + 8.8736000e+03 2.2333205e+00 + 8.8740000e+03 2.1833205e+00 + 8.8744000e+03 2.0533205e+00 + 8.8748000e+03 -9.6679487e-02 + 8.8752000e+03 -5.1667949e-01 + 8.8756000e+03 -2.1667949e-01 + 8.8760000e+03 3.6332051e-01 + 8.8764000e+03 5.4332051e-01 + 8.8768000e+03 1.8332051e-01 + 8.8772000e+03 -4.8667949e-01 + 8.8776000e+03 -8.1667949e-01 + 8.8780000e+03 -1.4766795e+00 + 8.8784000e+03 -2.3366795e+00 + 8.8788000e+03 -2.2866795e+00 + 8.8792000e+03 -2.2466795e+00 + 8.8796000e+03 -1.9266795e+00 + 8.8800000e+03 -1.4666795e+00 + 8.8804000e+03 -1.3566795e+00 + 8.8808000e+03 -1.3566795e+00 + 8.8812000e+03 -1.3466795e+00 + 8.8816000e+03 1.2333205e+00 + 8.8820000e+03 1.3333205e+00 + 8.8824000e+03 6.0332051e-01 + 8.8828000e+03 5.4332051e-01 + 8.8832000e+03 7.3320513e-02 + 8.8836000e+03 2.9332051e-01 + 8.8840000e+03 5.1332051e-01 + 8.8844000e+03 5.2332051e-01 + 8.8848000e+03 2.4332051e-01 + 8.8852000e+03 -6.6679487e-02 + 8.8856000e+03 -5.3667949e-01 + 8.8860000e+03 -9.9667949e-01 + 8.8864000e+03 -9.2667949e-01 + 8.8868000e+03 -7.1667949e-01 + 8.8872000e+03 -6.7667949e-01 + 8.8876000e+03 -7.4667949e-01 + 8.8880000e+03 -8.6667949e-01 + 8.8884000e+03 -1.0266795e+00 + 8.8888000e+03 -9.6667949e-01 + 8.8892000e+03 -4.4667949e-01 + 8.8896000e+03 -9.6679487e-02 + 8.8900000e+03 2.0332051e-01 + 8.8904000e+03 4.2332051e-01 + 8.8908000e+03 6.3332051e-01 + 8.8912000e+03 1.5033205e+00 + 8.8916000e+03 2.2833205e+00 + 8.8920000e+03 2.4933205e+00 + 8.8924000e+03 2.5033205e+00 + 8.8928000e+03 3.0933205e+00 + 8.8932000e+03 2.6933205e+00 + 8.8936000e+03 2.1033205e+00 + 8.8940000e+03 2.0433205e+00 + 8.8944000e+03 2.0433205e+00 + 8.8948000e+03 2.0433205e+00 + 8.8952000e+03 3.7332051e-01 + 8.8956000e+03 -1.0866795e+00 + 8.8960000e+03 -1.1666795e+00 + 8.8964000e+03 -2.2566795e+00 + 8.8968000e+03 -2.2666795e+00 + 8.8972000e+03 -2.2066795e+00 + 8.8976000e+03 -2.1366795e+00 + 8.8980000e+03 -2.1266795e+00 + 8.8984000e+03 -2.1666795e+00 + 8.8988000e+03 -2.1266795e+00 + 8.8992000e+03 -1.9866795e+00 + 8.8996000e+03 -1.6466795e+00 + 8.9000000e+03 -1.2766795e+00 + 8.9004000e+03 -1.2466795e+00 + 8.9008000e+03 -1.2466795e+00 + 8.9012000e+03 -1.1566795e+00 + 8.9016000e+03 2.9733205e+00 + 8.9020000e+03 2.8833205e+00 + 8.9024000e+03 1.8833205e+00 + 8.9028000e+03 1.1133205e+00 + 8.9032000e+03 7.9332051e-01 + 8.9036000e+03 -2.1667949e-01 + 8.9040000e+03 -9.1667949e-01 + 8.9044000e+03 -1.3566795e+00 + 8.9048000e+03 -1.5066795e+00 + 8.9052000e+03 -1.3266795e+00 + 8.9056000e+03 -1.1266795e+00 + 8.9060000e+03 -9.1667949e-01 + 8.9064000e+03 -7.4667949e-01 + 8.9068000e+03 -5.6667949e-01 + 8.9072000e+03 -1.7667949e-01 + 8.9076000e+03 3.5332051e-01 + 8.9080000e+03 1.0033205e+00 + 8.9084000e+03 1.6733205e+00 + 8.9088000e+03 1.9033205e+00 + 8.9092000e+03 1.9333205e+00 + 8.9096000e+03 1.9133205e+00 + 8.9100000e+03 1.2533205e+00 + 8.9104000e+03 8.0332051e-01 + 8.9108000e+03 7.0332051e-01 + 8.9112000e+03 7.5332051e-01 + 8.9116000e+03 7.8332051e-01 + 8.9120000e+03 6.7332051e-01 + 8.9124000e+03 3.0332051e-01 + 8.9128000e+03 -1.6667949e-01 + 8.9132000e+03 -1.9667949e-01 + 8.9136000e+03 -1.9667949e-01 + 8.9140000e+03 -1.9667949e-01 + 8.9144000e+03 -2.6667949e-01 + 8.9148000e+03 -1.1966795e+00 + 8.9152000e+03 -1.4166795e+00 + 8.9156000e+03 -1.4466795e+00 + 8.9160000e+03 -1.4466795e+00 + 8.9164000e+03 -1.4266795e+00 + 8.9168000e+03 -1.3366795e+00 + 8.9172000e+03 -1.2166795e+00 + 8.9176000e+03 -1.1966795e+00 + 8.9180000e+03 -5.0667949e-01 + 8.9184000e+03 -1.9667949e-01 + 8.9188000e+03 -1.7667949e-01 + 8.9192000e+03 -1.9667949e-01 + 8.9196000e+03 1.9333205e+00 + 8.9200000e+03 2.0033205e+00 + 8.9204000e+03 1.4233205e+00 + 8.9208000e+03 -9.6679487e-02 + 8.9212000e+03 -9.5667949e-01 + 8.9216000e+03 -1.4766795e+00 + 8.9220000e+03 -1.4466795e+00 + 8.9224000e+03 -1.1566795e+00 + 8.9228000e+03 -8.8667949e-01 + 8.9232000e+03 -4.4667949e-01 + 8.9236000e+03 -2.1667949e-01 + 8.9240000e+03 -2.0667949e-01 + 8.9244000e+03 -1.9667949e-01 + 8.9248000e+03 -1.2667949e-01 + 8.9252000e+03 -2.4667949e-01 + 8.9256000e+03 8.3320513e-02 + 8.9260000e+03 6.4332051e-01 + 8.9264000e+03 1.0333205e+00 + 8.9268000e+03 1.0533205e+00 + 8.9272000e+03 1.6833205e+00 + 8.9276000e+03 2.8533205e+00 + 8.9280000e+03 1.7433205e+00 + 8.9284000e+03 1.1233205e+00 + 8.9288000e+03 -1.0667949e-01 + 8.9292000e+03 -5.1667949e-01 + 8.9296000e+03 -5.2667949e-01 + 8.9300000e+03 -5.2667949e-01 + 8.9304000e+03 -5.2667949e-01 + 8.9308000e+03 -5.2667949e-01 + 8.9312000e+03 -5.2667949e-01 + 8.9316000e+03 -5.2667949e-01 + 8.9320000e+03 -5.2667949e-01 + 8.9324000e+03 -5.2667949e-01 + 8.9328000e+03 -7.1667949e-01 + 8.9332000e+03 -1.8966795e+00 + 8.9336000e+03 -1.2166795e+00 + 8.9340000e+03 -2.7667949e-01 + 8.9344000e+03 1.3332051e-01 + 8.9348000e+03 1.5332051e-01 + 8.9352000e+03 1.6533205e+00 + 8.9356000e+03 2.4433205e+00 + 8.9360000e+03 3.1133205e+00 + 8.9364000e+03 3.4133205e+00 + 8.9368000e+03 3.0433205e+00 + 8.9372000e+03 2.6033205e+00 + 8.9376000e+03 1.9733205e+00 + 8.9380000e+03 1.5533205e+00 + 8.9384000e+03 1.4833205e+00 + 8.9388000e+03 1.4733205e+00 + 8.9392000e+03 1.3533205e+00 + 8.9396000e+03 1.2133205e+00 + 8.9400000e+03 -1.9667949e-01 + 8.9404000e+03 -1.6966795e+00 + 8.9408000e+03 -2.9666795e+00 + 8.9412000e+03 -3.9966795e+00 + 8.9416000e+03 -4.2766795e+00 + 8.9420000e+03 -4.1966795e+00 + 8.9424000e+03 -4.1966795e+00 + 8.9428000e+03 -4.1966795e+00 + 8.9432000e+03 -4.1966795e+00 + 8.9436000e+03 -4.1966795e+00 + 8.9440000e+03 -4.1766795e+00 + 8.9444000e+03 -4.1966795e+00 + 8.9448000e+03 -3.9667949e-01 + 8.9452000e+03 9.3332051e-01 + 8.9456000e+03 1.1933205e+00 + 8.9460000e+03 1.1933205e+00 + 8.9464000e+03 1.8433205e+00 + 8.9468000e+03 4.4633205e+00 + 8.9472000e+03 4.5433205e+00 + 8.9476000e+03 4.2033205e+00 + 8.9480000e+03 3.3833205e+00 + 8.9484000e+03 1.8033205e+00 + 8.9488000e+03 4.0332051e-01 + 8.9492000e+03 -1.2066795e+00 + 8.9496000e+03 -2.3766795e+00 + 8.9500000e+03 -2.8766795e+00 + 8.9504000e+03 -2.9466795e+00 + 8.9508000e+03 -2.9766795e+00 + 8.9512000e+03 -3.4666795e+00 + 8.9516000e+03 -4.0366795e+00 + 8.9520000e+03 -4.0266795e+00 + 8.9524000e+03 -3.3766795e+00 + 8.9528000e+03 -3.2866795e+00 + 8.9532000e+03 -2.1566795e+00 + 8.9536000e+03 -1.0166795e+00 + 8.9540000e+03 -9.2667949e-01 + 8.9544000e+03 3.2332051e-01 + 8.9548000e+03 7.8332051e-01 + 8.9552000e+03 8.8332051e-01 + 8.9556000e+03 3.2533205e+00 + 8.9560000e+03 4.1733205e+00 + 8.9564000e+03 4.7433205e+00 + 8.9568000e+03 4.5333205e+00 + 8.9572000e+03 4.0333205e+00 + 8.9576000e+03 3.2733205e+00 + 8.9580000e+03 2.5533205e+00 + 8.9584000e+03 2.3733205e+00 + 8.9588000e+03 9.7332051e-01 + 8.9592000e+03 -5.6667949e-01 + 8.9596000e+03 -1.7166795e+00 + 8.9600000e+03 -2.5266795e+00 + 8.9604000e+03 -3.0366795e+00 + 8.9608000e+03 -3.5766795e+00 + 8.9612000e+03 -4.1266795e+00 + 8.9616000e+03 -4.5366795e+00 + 8.9620000e+03 -4.3966795e+00 + 8.9624000e+03 -3.9566795e+00 + 8.9628000e+03 -3.6766795e+00 + 8.9632000e+03 -3.0566795e+00 + 8.9636000e+03 -2.8766795e+00 + 8.9640000e+03 -2.8666795e+00 + 8.9644000e+03 -6.1667949e-01 + 8.9648000e+03 5.3320513e-02 + 8.9652000e+03 7.3320513e-02 + 8.9656000e+03 3.5332051e-01 + 8.9660000e+03 2.3933205e+00 + 8.9664000e+03 2.6233205e+00 + 8.9668000e+03 2.5133205e+00 + 8.9672000e+03 2.2433205e+00 + 8.9676000e+03 2.0733205e+00 + 8.9680000e+03 1.8533205e+00 + 8.9684000e+03 1.6233205e+00 + 8.9688000e+03 1.1633205e+00 + 8.9692000e+03 3.7332051e-01 + 8.9696000e+03 -3.0667949e-01 + 8.9700000e+03 -7.9667949e-01 + 8.9704000e+03 -1.0366795e+00 + 8.9708000e+03 -1.0566795e+00 + 8.9712000e+03 -9.2667949e-01 + 8.9716000e+03 -8.9667949e-01 + 8.9720000e+03 -9.9667949e-01 + 8.9724000e+03 -1.1966795e+00 + 8.9728000e+03 -1.3066795e+00 + 8.9732000e+03 -1.1666795e+00 + 8.9736000e+03 -9.0667949e-01 + 8.9740000e+03 -4.8667949e-01 + 8.9744000e+03 2.3320513e-02 + 8.9748000e+03 3.4332051e-01 + 8.9752000e+03 5.1332051e-01 + 8.9756000e+03 7.5332051e-01 + 8.9760000e+03 1.2733205e+00 + 8.9764000e+03 1.6833205e+00 + 8.9768000e+03 1.7033205e+00 + 8.9772000e+03 1.2733205e+00 + 8.9776000e+03 7.5332051e-01 + 8.9780000e+03 3.6332051e-01 + 8.9784000e+03 4.1332051e-01 + 8.9788000e+03 4.9332051e-01 + 8.9792000e+03 5.4332051e-01 + 8.9796000e+03 7.9332051e-01 + 8.9800000e+03 8.0332051e-01 + 8.9804000e+03 5.7332051e-01 + 8.9808000e+03 2.2332051e-01 + 8.9812000e+03 -1.0667949e-01 + 8.9816000e+03 -1.3667949e-01 + 8.9820000e+03 -1.3667949e-01 + 8.9824000e+03 -1.3667949e-01 + 8.9828000e+03 -1.3667949e-01 + 8.9832000e+03 -1.3667949e-01 + 8.9836000e+03 -1.3667949e-01 + 8.9840000e+03 -1.3667949e-01 + 8.9844000e+03 -3.9667949e-01 + 8.9848000e+03 -1.4266795e+00 + 8.9852000e+03 -1.0266795e+00 + 8.9856000e+03 -9.9667949e-01 + 8.9860000e+03 -9.9667949e-01 + 8.9864000e+03 -8.7667949e-01 + 8.9868000e+03 1.7733205e+00 + 8.9872000e+03 2.4933205e+00 + 8.9876000e+03 2.5333205e+00 + 8.9880000e+03 2.3433205e+00 + 8.9884000e+03 2.0333205e+00 + 8.9888000e+03 1.6133205e+00 + 8.9892000e+03 1.4533205e+00 + 8.9896000e+03 1.3833205e+00 + 8.9900000e+03 1.1233205e+00 + 8.9904000e+03 7.8332051e-01 + 8.9908000e+03 5.5332051e-01 + 8.9912000e+03 4.4332051e-01 + 8.9916000e+03 4.3332051e-01 + 8.9920000e+03 4.3332051e-01 + 8.9924000e+03 4.3332051e-01 + 8.9928000e+03 -4.6667949e-01 + 8.9932000e+03 -6.9667949e-01 + 8.9936000e+03 -6.9667949e-01 + 8.9940000e+03 -7.3667949e-01 + 8.9944000e+03 -7.1667949e-01 + 8.9948000e+03 -9.0667949e-01 + 8.9952000e+03 -1.1166795e+00 + 8.9956000e+03 -1.1766795e+00 + 8.9960000e+03 -9.9667949e-01 + 8.9964000e+03 -5.2667949e-01 + 8.9968000e+03 7.3320513e-02 + 8.9972000e+03 8.0332051e-01 + 8.9976000e+03 1.6933205e+00 + 8.9980000e+03 1.8833205e+00 + 8.9984000e+03 1.7833205e+00 + 8.9988000e+03 1.2233205e+00 + 8.9992000e+03 7.7332051e-01 + 8.9996000e+03 2.5332051e-01 + 9.0000000e+03 -2.9667949e-01 + 9.0004000e+03 -3.3667949e-01 + 9.0008000e+03 -3.3667949e-01 + 9.0012000e+03 -3.3667949e-01 + 9.0016000e+03 -3.3667949e-01 + 9.0020000e+03 -3.3667949e-01 + 9.0024000e+03 -3.3667949e-01 + 9.0028000e+03 -3.4667949e-01 + 9.0032000e+03 -1.5066795e+00 + 9.0036000e+03 -1.2466795e+00 + 9.0040000e+03 -6.7667949e-01 + 9.0044000e+03 -3.5667949e-01 + 9.0048000e+03 -3.4667949e-01 + 9.0052000e+03 -3.1667949e-01 + 9.0056000e+03 2.1033205e+00 + 9.0060000e+03 1.7233205e+00 + 9.0064000e+03 1.0933205e+00 + 9.0068000e+03 6.0332051e-01 + 9.0072000e+03 2.9332051e-01 + 9.0076000e+03 2.4332051e-01 + 9.0080000e+03 2.4332051e-01 + 9.0084000e+03 -5.4667949e-01 + 9.0088000e+03 -1.1366795e+00 + 9.0092000e+03 -8.8667949e-01 + 9.0096000e+03 -6.2667949e-01 + 9.0100000e+03 -2.5667949e-01 + 9.0104000e+03 -2.4667949e-01 + 9.0108000e+03 -2.3667949e-01 + 9.0112000e+03 -2.2667949e-01 + 9.0116000e+03 1.4332051e-01 + 9.0120000e+03 1.7332051e-01 + 9.0124000e+03 1.7332051e-01 + 9.0128000e+03 2.4332051e-01 + 9.0132000e+03 9.3320513e-02 + 9.0136000e+03 -7.6679487e-02 + 9.0140000e+03 1.3320513e-02 + 9.0144000e+03 3.8332051e-01 + 9.0148000e+03 6.0332051e-01 + 9.0152000e+03 7.5332051e-01 + 9.0156000e+03 8.8332051e-01 + 9.0160000e+03 9.8332051e-01 + 9.0164000e+03 8.7332051e-01 + 9.0168000e+03 5.2332051e-01 + 9.0172000e+03 1.2332051e-01 + 9.0176000e+03 5.3320513e-02 + 9.0180000e+03 5.3320513e-02 + 9.0184000e+03 5.3320513e-02 + 9.0188000e+03 5.3320513e-02 + 9.0192000e+03 -4.4667949e-01 + 9.0196000e+03 -1.5466795e+00 + 9.0200000e+03 -1.1066795e+00 + 9.0204000e+03 -8.6667949e-01 + 9.0208000e+03 -8.3667949e-01 + 9.0212000e+03 -7.1667949e-01 + 9.0216000e+03 -6.0667949e-01 + 9.0220000e+03 -5.8667949e-01 + 9.0224000e+03 -7.7667949e-01 + 9.0228000e+03 -1.2266795e+00 + 9.0232000e+03 -1.4466795e+00 + 9.0236000e+03 -1.5166795e+00 + 9.0240000e+03 -1.7966795e+00 + 9.0244000e+03 -1.3366795e+00 + 9.0248000e+03 -7.4667949e-01 + 9.0252000e+03 -3.4667949e-01 + 9.0256000e+03 2.2332051e-01 + 9.0260000e+03 4.2332051e-01 + 9.0264000e+03 6.7332051e-01 + 9.0268000e+03 9.5332051e-01 + 9.0272000e+03 1.1933205e+00 + 9.0276000e+03 1.6433205e+00 + 9.0280000e+03 1.9533205e+00 + 9.0284000e+03 1.8633205e+00 + 9.0288000e+03 1.7933205e+00 + 9.0292000e+03 1.8033205e+00 + 9.0296000e+03 1.7733205e+00 + 9.0300000e+03 1.8833205e+00 + 9.0304000e+03 2.1133205e+00 + 9.0308000e+03 2.2833205e+00 + 9.0312000e+03 1.8933205e+00 + 9.0316000e+03 1.8533205e+00 + 9.0320000e+03 1.8533205e+00 + 9.0324000e+03 1.8433205e+00 + 9.0328000e+03 1.8433205e+00 + 9.0332000e+03 1.8433205e+00 + 9.0336000e+03 1.8433205e+00 + 9.0340000e+03 1.8433205e+00 + 9.0344000e+03 1.8433205e+00 + 9.0348000e+03 -1.8266795e+00 + 9.0352000e+03 -2.8166795e+00 + 9.0356000e+03 -2.5966795e+00 + 9.0360000e+03 -2.5766795e+00 + 9.0364000e+03 -2.5766795e+00 + 9.0368000e+03 -2.5766795e+00 + 9.0372000e+03 -2.5666795e+00 + 9.0376000e+03 -4.1667949e-01 + 9.0380000e+03 9.0332051e-01 + 9.0384000e+03 1.5133205e+00 + 9.0388000e+03 1.8233205e+00 + 9.0392000e+03 2.2233205e+00 + 9.0396000e+03 2.3033205e+00 + 9.0400000e+03 2.5433205e+00 + 9.0404000e+03 2.5533205e+00 + 9.0408000e+03 2.2733205e+00 + 9.0412000e+03 1.3633205e+00 + 9.0416000e+03 1.0933205e+00 + 9.0420000e+03 1.0833205e+00 + 9.0424000e+03 1.0833205e+00 + 9.0428000e+03 1.0833205e+00 + 9.0432000e+03 1.0833205e+00 + 9.0436000e+03 1.0333205e+00 + 9.0440000e+03 -3.5366795e+00 + 9.0444000e+03 -3.4766795e+00 + 9.0448000e+03 -2.5866795e+00 + 9.0452000e+03 -2.0466795e+00 + 9.0456000e+03 -2.0066795e+00 + 9.0460000e+03 -1.6679487e-02 + 9.0464000e+03 4.6332051e-01 + 9.0468000e+03 4.7332051e-01 + 9.0472000e+03 4.7332051e-01 + 9.0476000e+03 4.7332051e-01 + 9.0480000e+03 4.7332051e-01 + 9.0484000e+03 9.6332051e-01 + 9.0488000e+03 2.7633205e+00 + 9.0492000e+03 2.7133205e+00 + 9.0496000e+03 2.6133205e+00 + 9.0500000e+03 2.2533205e+00 + 9.0504000e+03 2.2133205e+00 + 9.0508000e+03 2.1433205e+00 + 9.0512000e+03 2.1433205e+00 + 9.0516000e+03 2.1433205e+00 + 9.0520000e+03 2.1433205e+00 + 9.0524000e+03 2.1433205e+00 + 9.0528000e+03 2.1433205e+00 + 9.0532000e+03 2.1433205e+00 + 9.0536000e+03 2.1433205e+00 + 9.0540000e+03 -1.5366795e+00 + 9.0544000e+03 -2.1666795e+00 + 9.0548000e+03 -1.8366795e+00 + 9.0552000e+03 -1.0366795e+00 + 9.0556000e+03 -8.0667949e-01 + 9.0560000e+03 -7.9667949e-01 + 9.0564000e+03 -7.8667949e-01 + 9.0568000e+03 -4.6679487e-02 + 9.0572000e+03 1.9133205e+00 + 9.0576000e+03 1.3833205e+00 + 9.0580000e+03 9.8332051e-01 + 9.0584000e+03 9.7332051e-01 + 9.0588000e+03 9.7332051e-01 + 9.0592000e+03 9.6332051e-01 + 9.0596000e+03 9.6332051e-01 + 9.0600000e+03 9.6332051e-01 + 9.0604000e+03 4.9332051e-01 + 9.0608000e+03 -5.0667949e-01 + 9.0612000e+03 -2.8667949e-01 + 9.0616000e+03 -2.1667949e-01 + 9.0620000e+03 -4.4667949e-01 + 9.0624000e+03 -7.3667949e-01 + 9.0628000e+03 -7.9667949e-01 + 9.0632000e+03 -5.1667949e-01 + 9.0636000e+03 -3.9667949e-01 + 9.0640000e+03 -2.3667949e-01 + 9.0644000e+03 -1.6679487e-02 + 9.0648000e+03 4.6332051e-01 + 9.0652000e+03 1.1133205e+00 + 9.0656000e+03 1.2033205e+00 + 9.0660000e+03 1.2033205e+00 + 9.0664000e+03 1.1933205e+00 + 9.0668000e+03 1.9433205e+00 + 9.0672000e+03 1.6533205e+00 + 9.0676000e+03 1.1133205e+00 + 9.0680000e+03 7.3332051e-01 + 9.0684000e+03 3.9332051e-01 + 9.0688000e+03 -1.5667949e-01 + 9.0692000e+03 -3.4667949e-01 + 9.0696000e+03 -3.4667949e-01 + 9.0700000e+03 -3.4667949e-01 + 9.0704000e+03 -3.4667949e-01 + 9.0708000e+03 -3.8667949e-01 + 9.0712000e+03 -3.9667949e-01 + 9.0716000e+03 -3.9667949e-01 + 9.0720000e+03 -3.9667949e-01 + 9.0724000e+03 -3.9667949e-01 + 9.0728000e+03 -3.9667949e-01 + 9.0732000e+03 -6.9667949e-01 + 9.0736000e+03 -2.8667949e-01 + 9.0740000e+03 -5.6679487e-02 + 9.0744000e+03 -3.6679487e-02 + 9.0748000e+03 6.7332051e-01 + 9.0752000e+03 7.3332051e-01 + 9.0756000e+03 7.9332051e-01 + 9.0760000e+03 7.6332051e-01 + 9.0764000e+03 6.7332051e-01 + 9.0768000e+03 6.5332051e-01 + 9.0772000e+03 5.5332051e-01 + 9.0776000e+03 2.7332051e-01 + 9.0780000e+03 4.3320513e-02 + 9.0784000e+03 -3.9667949e-01 + 9.0788000e+03 -6.4667949e-01 + 9.0792000e+03 -6.3667949e-01 + 9.0796000e+03 -6.0667949e-01 + 9.0800000e+03 -7.8667949e-01 + 9.0804000e+03 -8.9667949e-01 + 9.0808000e+03 -1.1166795e+00 + 9.0812000e+03 -1.4566795e+00 + 9.0816000e+03 -1.5766795e+00 + 9.0820000e+03 -1.4966795e+00 + 9.0824000e+03 -1.1466795e+00 + 9.0828000e+03 -8.1667949e-01 + 9.0832000e+03 -5.2667949e-01 + 9.0836000e+03 -6.0667949e-01 + 9.0840000e+03 -4.8667949e-01 + 9.0844000e+03 -2.7667949e-01 + 9.0848000e+03 8.3320513e-02 + 9.0852000e+03 5.9332051e-01 + 9.0856000e+03 1.0033205e+00 + 9.0860000e+03 1.4433205e+00 + 9.0864000e+03 1.9033205e+00 + 9.0868000e+03 2.4633205e+00 + 9.0872000e+03 2.8433205e+00 + 9.0876000e+03 3.1933205e+00 + 9.0880000e+03 3.3733205e+00 + 9.0884000e+03 2.6833205e+00 + 9.0888000e+03 2.2033205e+00 + 9.0892000e+03 2.1533205e+00 + 9.0896000e+03 1.7233205e+00 + 9.0900000e+03 -1.4466795e+00 + 9.0904000e+03 -1.8766795e+00 + 9.0908000e+03 -2.0066795e+00 + 9.0912000e+03 -2.2866795e+00 + 9.0916000e+03 -2.5966795e+00 + 9.0920000e+03 -2.7266795e+00 + 9.0924000e+03 -2.2766795e+00 + 9.0928000e+03 -1.5866795e+00 + 9.0932000e+03 -1.0866795e+00 + 9.0936000e+03 -7.8667949e-01 + 9.0940000e+03 -5.5667949e-01 + 9.0944000e+03 -1.9667949e-01 + 9.0948000e+03 2.0332051e-01 + 9.0952000e+03 2.3320513e-02 + 9.0956000e+03 1.7332051e-01 + 9.0960000e+03 3.7332051e-01 + 9.0964000e+03 3.7332051e-01 + 9.0968000e+03 5.1332051e-01 + 9.0972000e+03 7.4332051e-01 + 9.0976000e+03 -1.6679487e-02 + 9.0980000e+03 -4.4667949e-01 + 9.0984000e+03 -4.6667949e-01 + 9.0988000e+03 -1.3667949e-01 + 9.0992000e+03 -4.6679487e-02 + 9.0996000e+03 1.6332051e-01 + 9.1000000e+03 6.1332051e-01 + 9.1004000e+03 7.3332051e-01 + 9.1008000e+03 6.7332051e-01 + 9.1012000e+03 4.4332051e-01 + 9.1016000e+03 3.9332051e-01 + 9.1020000e+03 2.3332051e-01 + 9.1024000e+03 7.3320513e-02 + 9.1028000e+03 -3.6679487e-02 + 9.1032000e+03 1.3320513e-02 + 9.1036000e+03 -5.6679487e-02 + 9.1040000e+03 2.3320513e-02 + 9.1044000e+03 1.6332051e-01 + 9.1048000e+03 7.3320513e-02 + 9.1052000e+03 -2.6667949e-01 + 9.1056000e+03 -4.6667949e-01 + 9.1060000e+03 -5.1667949e-01 + 9.1064000e+03 -9.6667949e-01 + 9.1068000e+03 -1.1966795e+00 + 9.1072000e+03 -9.7667949e-01 + 9.1076000e+03 -3.0667949e-01 + 9.1080000e+03 -1.6679487e-02 + 9.1084000e+03 -6.6794872e-03 + 9.1088000e+03 3.3205128e-03 + 9.1092000e+03 3.3205128e-03 + 9.1096000e+03 -6.6794872e-03 + 9.1100000e+03 1.3332051e-01 + 9.1104000e+03 1.8233205e+00 + 9.1108000e+03 1.6233205e+00 + 9.1112000e+03 1.1933205e+00 + 9.1116000e+03 9.7332051e-01 + 9.1120000e+03 9.6332051e-01 + 9.1124000e+03 9.6332051e-01 + 9.1128000e+03 9.6332051e-01 + 9.1132000e+03 3.0332051e-01 + 9.1136000e+03 -2.9866795e+00 + 9.1140000e+03 -3.4466795e+00 + 9.1144000e+03 -3.4966795e+00 + 9.1148000e+03 -3.3766795e+00 + 9.1152000e+03 -3.2566795e+00 + 9.1156000e+03 -3.1166795e+00 + 9.1160000e+03 -3.0166795e+00 + 9.1164000e+03 -1.7566795e+00 + 9.1168000e+03 -1.1966795e+00 + 9.1172000e+03 -8.4667949e-01 + 9.1176000e+03 5.5332051e-01 + 9.1180000e+03 1.8633205e+00 + 9.1184000e+03 2.7933205e+00 + 9.1188000e+03 3.3233205e+00 + 9.1192000e+03 3.0833205e+00 + 9.1196000e+03 2.7333205e+00 + 9.1200000e+03 2.4733205e+00 + 9.1204000e+03 1.5933205e+00 + 9.1208000e+03 1.1233205e+00 + 9.1212000e+03 7.9332051e-01 + 9.1216000e+03 7.4332051e-01 + 9.1220000e+03 6.1332051e-01 + 9.1224000e+03 3.0332051e-01 + 9.1228000e+03 1.4332051e-01 + 9.1232000e+03 -3.6667949e-01 + 9.1236000e+03 -9.0667949e-01 + 9.1240000e+03 -1.0366795e+00 + 9.1244000e+03 -1.0866795e+00 + 9.1248000e+03 -1.0866795e+00 + 9.1252000e+03 -1.1466795e+00 + 9.1256000e+03 -1.3466795e+00 + 9.1260000e+03 -1.1466795e+00 + 9.1264000e+03 -7.6667949e-01 + 9.1268000e+03 -7.0667949e-01 + 9.1272000e+03 -7.0667949e-01 + 9.1276000e+03 8.5332051e-01 + 9.1280000e+03 1.5333205e+00 + 9.1284000e+03 1.6333205e+00 + 9.1288000e+03 1.5533205e+00 + 9.1292000e+03 1.2133205e+00 + 9.1296000e+03 6.4332051e-01 + 9.1300000e+03 5.0332051e-01 + 9.1304000e+03 5.0332051e-01 + 9.1308000e+03 4.8332051e-01 + 9.1312000e+03 -1.8566795e+00 + 9.1316000e+03 -2.1166795e+00 + 9.1320000e+03 -1.8466795e+00 + 9.1324000e+03 -1.2766795e+00 + 9.1328000e+03 -7.2667949e-01 + 9.1332000e+03 -2.0667949e-01 + 9.1336000e+03 5.0332051e-01 + 9.1340000e+03 9.1332051e-01 + 9.1344000e+03 9.3332051e-01 + 9.1348000e+03 2.1332051e-01 + 9.1352000e+03 1.1332051e-01 + 9.1356000e+03 -1.5066795e+00 + 9.1360000e+03 -2.0066795e+00 + 9.1364000e+03 -1.9966795e+00 + 9.1368000e+03 -1.9966795e+00 + 9.1372000e+03 -1.9166795e+00 + 9.1376000e+03 -1.5666795e+00 + 9.1380000e+03 -1.5466795e+00 + 9.1384000e+03 -1.5466795e+00 + 9.1388000e+03 -1.5166795e+00 + 9.1392000e+03 5.8332051e-01 + 9.1396000e+03 7.3332051e-01 + 9.1400000e+03 8.4332051e-01 + 9.1404000e+03 8.0332051e-01 + 9.1408000e+03 8.4332051e-01 + 9.1412000e+03 1.1533205e+00 + 9.1416000e+03 1.0333205e+00 + 9.1420000e+03 8.5332051e-01 + 9.1424000e+03 8.7332051e-01 + 9.1428000e+03 1.2933205e+00 + 9.1432000e+03 1.6233205e+00 + 9.1436000e+03 1.5933205e+00 + 9.1440000e+03 1.2133205e+00 + 9.1444000e+03 8.8332051e-01 + 9.1448000e+03 5.9332051e-01 + 9.1452000e+03 3.3205128e-03 + 9.1456000e+03 -3.1667949e-01 + 9.1460000e+03 -5.7667949e-01 + 9.1464000e+03 -7.3667949e-01 + 9.1468000e+03 -7.2667949e-01 + 9.1472000e+03 -6.9667949e-01 + 9.1476000e+03 -1.0166795e+00 + 9.1480000e+03 -1.3766795e+00 + 9.1484000e+03 -1.7066795e+00 + 9.1488000e+03 -1.5366795e+00 + 9.1492000e+03 -1.1466795e+00 + 9.1496000e+03 -6.4667949e-01 + 9.1500000e+03 -3.6667949e-01 + 9.1504000e+03 -3.8667949e-01 + 9.1508000e+03 -3.9667949e-01 + 9.1512000e+03 -7.3667949e-01 + 9.1516000e+03 -1.4066795e+00 + 9.1520000e+03 -1.6966795e+00 + 9.1524000e+03 -1.5266795e+00 + 9.1528000e+03 -1.2666795e+00 + 9.1532000e+03 -7.4667949e-01 + 9.1536000e+03 -2.6667949e-01 + 9.1540000e+03 5.1332051e-01 + 9.1544000e+03 5.5332051e-01 + 9.1548000e+03 6.6332051e-01 + 9.1552000e+03 1.0433205e+00 + 9.1556000e+03 9.4332051e-01 + 9.1560000e+03 8.2332051e-01 + 9.1564000e+03 5.4332051e-01 + 9.1568000e+03 3.9332051e-01 + 9.1572000e+03 1.3332051e-01 + 9.1576000e+03 3.3205128e-03 + 9.1580000e+03 -8.6679487e-02 + 9.1584000e+03 -1.3667949e-01 + 9.1588000e+03 -1.9667949e-01 + 9.1592000e+03 1.3320513e-02 + 9.1596000e+03 5.3320513e-02 + 9.1600000e+03 2.8332051e-01 + 9.1604000e+03 4.9332051e-01 + 9.1608000e+03 5.5332051e-01 + 9.1612000e+03 8.6332051e-01 + 9.1616000e+03 1.0533205e+00 + 9.1620000e+03 1.2133205e+00 + 9.1624000e+03 1.3833205e+00 + 9.1628000e+03 1.5333205e+00 + 9.1632000e+03 1.0033205e+00 + 9.1636000e+03 5.4332051e-01 + 9.1640000e+03 1.1332051e-01 + 9.1644000e+03 2.3320513e-02 + 9.1648000e+03 -3.2667949e-01 + 9.1652000e+03 -7.1667949e-01 + 9.1656000e+03 -8.3667949e-01 + 9.1660000e+03 -7.7667949e-01 + 9.1664000e+03 -6.6667949e-01 + 9.1668000e+03 -5.8667949e-01 + 9.1672000e+03 -5.6667949e-01 + 9.1676000e+03 -3.4667949e-01 + 9.1680000e+03 -2.8667949e-01 + 9.1684000e+03 -5.0667949e-01 + 9.1688000e+03 -9.5667949e-01 + 9.1692000e+03 -1.0366795e+00 + 9.1696000e+03 -9.4667949e-01 + 9.1700000e+03 -1.3166795e+00 + 9.1704000e+03 -1.8266795e+00 + 9.1708000e+03 -2.0366795e+00 + 9.1712000e+03 -2.1066795e+00 + 9.1716000e+03 -2.0166795e+00 + 9.1720000e+03 -1.6966795e+00 + 9.1724000e+03 -1.2566795e+00 + 9.1728000e+03 -1.2266795e+00 + 9.1732000e+03 -1.2266795e+00 + 9.1736000e+03 -1.2266795e+00 + 9.1740000e+03 -1.2266795e+00 + 9.1744000e+03 -1.2166795e+00 + 9.1748000e+03 4.7332051e-01 + 9.1752000e+03 8.5332051e-01 + 9.1756000e+03 6.0332051e-01 + 9.1760000e+03 4.6332051e-01 + 9.1764000e+03 4.3332051e-01 + 9.1768000e+03 1.8332051e-01 + 9.1772000e+03 -1.4667949e-01 + 9.1776000e+03 1.6332051e-01 + 9.1780000e+03 6.3332051e-01 + 9.1784000e+03 1.0533205e+00 + 9.1788000e+03 1.1533205e+00 + 9.1792000e+03 1.1533205e+00 + 9.1796000e+03 1.6133205e+00 + 9.1800000e+03 1.8533205e+00 + 9.1804000e+03 1.9733205e+00 + 9.1808000e+03 1.6133205e+00 + 9.1812000e+03 1.1733205e+00 + 9.1816000e+03 5.1332051e-01 + 9.1820000e+03 -7.6679487e-02 + 9.1824000e+03 -5.6667949e-01 + 9.1828000e+03 -7.9667949e-01 + 9.1832000e+03 -5.7667949e-01 + 9.1836000e+03 -7.6679487e-02 + 9.1840000e+03 2.4332051e-01 + 9.1844000e+03 4.8332051e-01 + 9.1848000e+03 2.6332051e-01 + 9.1852000e+03 -7.6667949e-01 + 9.1856000e+03 -1.8366795e+00 + 9.1860000e+03 -2.3966795e+00 + 9.1864000e+03 -2.1966795e+00 + 9.1868000e+03 -1.4466795e+00 + 9.1872000e+03 -1.3866795e+00 + 9.1876000e+03 -1.4866795e+00 + 9.1880000e+03 -1.8366795e+00 + 9.1884000e+03 -1.8966795e+00 + 9.1888000e+03 -1.8966795e+00 + 9.1892000e+03 -2.5466795e+00 + 9.1896000e+03 -2.5366795e+00 + 9.1900000e+03 -2.0966795e+00 + 9.1904000e+03 -1.6366795e+00 + 9.1908000e+03 -1.4466795e+00 + 9.1912000e+03 -1.4466795e+00 + 9.1916000e+03 -1.4466795e+00 + 9.1920000e+03 -1.4466795e+00 + 9.1924000e+03 -1.4466795e+00 + 9.1928000e+03 -1.4466795e+00 + 9.1932000e+03 -1.4266795e+00 + 9.1936000e+03 9.4332051e-01 + 9.1940000e+03 3.5533205e+00 + 9.1944000e+03 3.2733205e+00 + 9.1948000e+03 2.3633205e+00 + 9.1952000e+03 1.5133205e+00 + 9.1956000e+03 8.0332051e-01 + 9.1960000e+03 -5.6679487e-02 + 9.1964000e+03 -6.2667949e-01 + 9.1968000e+03 -8.9667949e-01 + 9.1972000e+03 -1.5966795e+00 + 9.1976000e+03 -1.8266795e+00 + 9.1980000e+03 -1.5966795e+00 + 9.1984000e+03 -1.1366795e+00 + 9.1988000e+03 -8.8667949e-01 + 9.1992000e+03 -8.7667949e-01 + 9.1996000e+03 -8.7667949e-01 + 9.2000000e+03 -8.7667949e-01 + 9.2004000e+03 -8.7667949e-01 + 9.2008000e+03 -8.7667949e-01 + 9.2012000e+03 -2.4667949e-01 + 9.2016000e+03 1.0533205e+00 + 9.2020000e+03 7.5332051e-01 + 9.2024000e+03 7.3332051e-01 + 9.2028000e+03 7.3332051e-01 + 9.2032000e+03 -1.1466795e+00 + 9.2036000e+03 -1.8666795e+00 + 9.2040000e+03 -2.0966795e+00 + 9.2044000e+03 -2.1666795e+00 + 9.2048000e+03 -2.1066795e+00 + 9.2052000e+03 -2.0166795e+00 + 9.2056000e+03 -1.9466795e+00 + 9.2060000e+03 -1.9166795e+00 + 9.2064000e+03 -1.7866795e+00 + 9.2068000e+03 -1.7266795e+00 + 9.2072000e+03 -1.7466795e+00 + 9.2076000e+03 -1.7466795e+00 + 9.2080000e+03 -1.4266795e+00 + 9.2084000e+03 -1.3366795e+00 + 9.2088000e+03 -1.3366795e+00 + 9.2092000e+03 -9.2667949e-01 + 9.2096000e+03 -4.9667949e-01 + 9.2100000e+03 -3.6667949e-01 + 9.2104000e+03 -3.8667949e-01 + 9.2108000e+03 -3.6667949e-01 + 9.2112000e+03 1.0233205e+00 + 9.2116000e+03 2.0533205e+00 + 9.2120000e+03 2.8533205e+00 + 9.2124000e+03 2.9833205e+00 + 9.2128000e+03 3.0233205e+00 + 9.2132000e+03 4.1433205e+00 + 9.2136000e+03 3.8833205e+00 + 9.2140000e+03 3.7533205e+00 + 9.2144000e+03 3.7433205e+00 + 9.2148000e+03 3.7433205e+00 + 9.2152000e+03 3.7433205e+00 + 9.2156000e+03 3.7433205e+00 + 9.2160000e+03 3.7433205e+00 + 9.2164000e+03 3.7433205e+00 + 9.2168000e+03 3.7333205e+00 + 9.2172000e+03 3.7333205e+00 + 9.2176000e+03 1.1533205e+00 + 9.2180000e+03 -2.3766795e+00 + 9.2184000e+03 -2.5066795e+00 + 9.2188000e+03 -2.0966795e+00 + 9.2192000e+03 -1.6666795e+00 + 9.2196000e+03 -1.6366795e+00 + 9.2200000e+03 -1.6366795e+00 + 9.2204000e+03 -1.6366795e+00 + 9.2208000e+03 -1.6266795e+00 + 9.2212000e+03 -1.6266795e+00 + 9.2216000e+03 -1.6266795e+00 + 9.2220000e+03 -4.2667949e-01 + 9.2224000e+03 8.5332051e-01 + 9.2228000e+03 1.2833205e+00 + 9.2232000e+03 1.3033205e+00 + 9.2236000e+03 1.3033205e+00 + 9.2240000e+03 1.3033205e+00 + 9.2244000e+03 1.3033205e+00 + 9.2248000e+03 2.8332051e-01 + 9.2252000e+03 -2.9566795e+00 + 9.2256000e+03 -3.5466795e+00 + 9.2260000e+03 -3.6366795e+00 + 9.2264000e+03 -3.3766795e+00 + 9.2268000e+03 -2.9466795e+00 + 9.2272000e+03 -2.3166795e+00 + 9.2276000e+03 -1.7466795e+00 + 9.2280000e+03 -1.6566795e+00 + 9.2284000e+03 -1.4666795e+00 + 9.2288000e+03 -2.8667949e-01 + 9.2292000e+03 1.3332051e-01 + 9.2296000e+03 6.3332051e-01 + 9.2300000e+03 1.2633205e+00 + 9.2304000e+03 1.5133205e+00 + 9.2308000e+03 1.5233205e+00 + 9.2312000e+03 1.5233205e+00 + 9.2316000e+03 1.5233205e+00 + 9.2320000e+03 2.2133205e+00 + 9.2324000e+03 3.3533205e+00 + 9.2328000e+03 2.8233205e+00 + 9.2332000e+03 2.3033205e+00 + 9.2336000e+03 1.8033205e+00 + 9.2340000e+03 1.6433205e+00 + 9.2344000e+03 1.6633205e+00 + 9.2348000e+03 1.9233205e+00 + 9.2352000e+03 1.7833205e+00 + 9.2356000e+03 1.6533205e+00 + 9.2360000e+03 1.0133205e+00 + 9.2364000e+03 -1.4667949e-01 + 9.2368000e+03 -4.6667949e-01 + 9.2372000e+03 -4.6667949e-01 + 9.2376000e+03 -6.3667949e-01 + 9.2380000e+03 -3.0266795e+00 + 9.2384000e+03 -3.2166795e+00 + 9.2388000e+03 -2.9166795e+00 + 9.2392000e+03 -2.6666795e+00 + 9.2396000e+03 -2.4866795e+00 + 9.2400000e+03 -2.2966795e+00 + 9.2404000e+03 -1.7466795e+00 + 9.2408000e+03 -1.1766795e+00 + 9.2412000e+03 -8.7667949e-01 + 9.2416000e+03 -5.1667949e-01 + 9.2420000e+03 4.3320513e-02 + 9.2424000e+03 1.4332051e-01 + 9.2428000e+03 3.3332051e-01 + 9.2432000e+03 8.6332051e-01 + 9.2436000e+03 6.6332051e-01 + 9.2440000e+03 4.4332051e-01 + 9.2444000e+03 5.7332051e-01 + 9.2448000e+03 5.5332051e-01 + 9.2452000e+03 8.6332051e-01 + 9.2456000e+03 1.0933205e+00 + 9.2460000e+03 1.2533205e+00 + 9.2464000e+03 7.6332051e-01 + 9.2468000e+03 5.1332051e-01 + 9.2472000e+03 5.1332051e-01 + 9.2476000e+03 -5.0667949e-01 + 9.2480000e+03 -1.9466795e+00 + 9.2484000e+03 -1.6666795e+00 + 9.2488000e+03 -1.1566795e+00 + 9.2492000e+03 -4.9667949e-01 + 9.2496000e+03 -1.1667949e-01 + 9.2500000e+03 -7.6679487e-02 + 9.2504000e+03 -1.7667949e-01 + 9.2508000e+03 -1.6667949e-01 + 9.2512000e+03 3.3320513e-02 + 9.2516000e+03 3.0332051e-01 + 9.2520000e+03 6.5332051e-01 + 9.2524000e+03 9.1332051e-01 + 9.2528000e+03 1.2233205e+00 + 9.2532000e+03 1.6333205e+00 + 9.2536000e+03 1.9533205e+00 + 9.2540000e+03 2.2333205e+00 + 9.2544000e+03 2.8033205e+00 + 9.2548000e+03 3.2033205e+00 + 9.2552000e+03 3.1333205e+00 + 9.2556000e+03 2.7033205e+00 + 9.2560000e+03 1.9833205e+00 + 9.2564000e+03 1.3533205e+00 + 9.2568000e+03 -3.8667949e-01 + 9.2572000e+03 -1.0666795e+00 + 9.2576000e+03 -1.2866795e+00 + 9.2580000e+03 -1.2766795e+00 + 9.2584000e+03 -1.3066795e+00 + 9.2588000e+03 -2.3066795e+00 + 9.2592000e+03 -2.5466795e+00 + 9.2596000e+03 -2.5766795e+00 + 9.2600000e+03 -2.5366795e+00 + 9.2604000e+03 -2.3166795e+00 + 9.2608000e+03 -2.2066795e+00 + 9.2612000e+03 -1.9466795e+00 + 9.2616000e+03 -1.3466795e+00 + 9.2620000e+03 -1.1766795e+00 + 9.2624000e+03 -1.1766795e+00 + 9.2628000e+03 -1.1566795e+00 + 9.2632000e+03 6.3332051e-01 + 9.2636000e+03 1.2033205e+00 + 9.2640000e+03 1.4433205e+00 + 9.2644000e+03 1.5533205e+00 + 9.2648000e+03 1.7833205e+00 + 9.2652000e+03 1.7833205e+00 + 9.2656000e+03 1.5533205e+00 + 9.2660000e+03 1.3833205e+00 + 9.2664000e+03 1.1133205e+00 + 9.2668000e+03 1.0433205e+00 + 9.2672000e+03 1.0233205e+00 + 9.2676000e+03 -1.0766795e+00 + 9.2680000e+03 -1.1966795e+00 + 9.2684000e+03 -9.0667949e-01 + 9.2688000e+03 -5.5667949e-01 + 9.2692000e+03 -4.4667949e-01 + 9.2696000e+03 -4.4667949e-01 + 9.2700000e+03 -3.9667949e-01 + 9.2704000e+03 -3.5667949e-01 + 9.2708000e+03 2.0332051e-01 + 9.2712000e+03 1.3320513e-02 + 9.2716000e+03 -3.1667949e-01 + 9.2720000e+03 -4.6667949e-01 + 9.2724000e+03 -4.7667949e-01 + 9.2728000e+03 -5.3667949e-01 + 9.2732000e+03 -5.9667949e-01 + 9.2736000e+03 -6.1667949e-01 + 9.2740000e+03 -2.8667949e-01 + 9.2744000e+03 1.6332051e-01 + 9.2748000e+03 4.1332051e-01 + 9.2752000e+03 9.4332051e-01 + 9.2756000e+03 1.1033205e+00 + 9.2760000e+03 1.4433205e+00 + 9.2764000e+03 2.2333205e+00 + 9.2768000e+03 2.5933205e+00 + 9.2772000e+03 4.2833205e+00 + 9.2776000e+03 3.7233205e+00 + 9.2780000e+03 3.5233205e+00 + 9.2784000e+03 3.5133205e+00 + 9.2788000e+03 3.5033205e+00 + 9.2792000e+03 3.3205128e-03 + 9.2796000e+03 -2.9266795e+00 + 9.2800000e+03 -3.2266795e+00 + 9.2804000e+03 -3.1266795e+00 + 9.2808000e+03 -2.8166795e+00 + 9.2812000e+03 -2.6466795e+00 + 9.2816000e+03 -2.6266795e+00 + 9.2820000e+03 -1.5166795e+00 + 9.2824000e+03 -6.2667949e-01 + 9.2828000e+03 -2.5667949e-01 + 9.2832000e+03 2.8332051e-01 + 9.2836000e+03 6.1332051e-01 + 9.2840000e+03 1.0433205e+00 + 9.2844000e+03 1.3433205e+00 + 9.2848000e+03 1.7033205e+00 + 9.2852000e+03 1.2833205e+00 + 9.2856000e+03 1.1633205e+00 + 9.2860000e+03 1.1633205e+00 + 9.2864000e+03 1.1633205e+00 + 9.2868000e+03 1.1633205e+00 + 9.2872000e+03 1.1633205e+00 + 9.2876000e+03 6.8332051e-01 + 9.2880000e+03 -6.6667949e-01 + 9.2884000e+03 -6.5667949e-01 + 9.2888000e+03 -8.5667949e-01 + 9.2892000e+03 -1.0666795e+00 + 9.2896000e+03 -8.4667949e-01 + 9.2900000e+03 -1.2667949e-01 + 9.2904000e+03 4.6332051e-01 + 9.2908000e+03 4.8332051e-01 + 9.2912000e+03 5.1332051e-01 + 9.2916000e+03 3.7332051e-01 + 9.2920000e+03 3.7332051e-01 + 9.2924000e+03 4.2332051e-01 + 9.2928000e+03 3.7332051e-01 + 9.2932000e+03 3.0332051e-01 + 9.2936000e+03 3.5332051e-01 + 9.2940000e+03 2.5332051e-01 + 9.2944000e+03 2.2332051e-01 + 9.2948000e+03 1.3332051e-01 + 9.2952000e+03 2.5332051e-01 + 9.2956000e+03 3.2332051e-01 + 9.2960000e+03 5.3332051e-01 + 9.2964000e+03 6.8332051e-01 + 9.2968000e+03 6.6332051e-01 + 9.2972000e+03 6.8332051e-01 + 9.2976000e+03 7.4332051e-01 + 9.2980000e+03 7.6332051e-01 + 9.2984000e+03 3.9332051e-01 + 9.2988000e+03 5.3320513e-02 + 9.2992000e+03 -2.9667949e-01 + 9.2996000e+03 -6.3667949e-01 + 9.3000000e+03 -6.7667949e-01 + 9.3004000e+03 -5.4667949e-01 + 9.3008000e+03 -2.3667949e-01 + 9.3012000e+03 1.1332051e-01 + 9.3016000e+03 -9.6679487e-02 + 9.3020000e+03 -1.6667949e-01 + 9.3024000e+03 -1.7667949e-01 + 9.3028000e+03 -1.7667949e-01 + 9.3032000e+03 -1.7667949e-01 + 9.3036000e+03 -1.6667949e-01 + 9.3040000e+03 -1.7667949e-01 + 9.3044000e+03 -1.6266795e+00 + 9.3048000e+03 -1.6666795e+00 + 9.3052000e+03 -1.0966795e+00 + 9.3056000e+03 -6.1667949e-01 + 9.3060000e+03 -5.8667949e-01 + 9.3064000e+03 -5.8667949e-01 + 9.3068000e+03 -5.8667949e-01 + 9.3072000e+03 2.6133205e+00 + 9.3076000e+03 3.2833205e+00 + 9.3080000e+03 2.8533205e+00 + 9.3084000e+03 2.5533205e+00 + 9.3088000e+03 1.9333205e+00 + 9.3092000e+03 1.5833205e+00 + 9.3096000e+03 1.2233205e+00 + 9.3100000e+03 7.9332051e-01 + 9.3104000e+03 6.1332051e-01 + 9.3108000e+03 3.9332051e-01 + 9.3112000e+03 3.7332051e-01 + 9.3116000e+03 -1.0366795e+00 + 9.3120000e+03 -1.8066795e+00 + 9.3124000e+03 -1.9066795e+00 + 9.3128000e+03 -2.3566795e+00 + 9.3132000e+03 -2.6266795e+00 + 9.3136000e+03 -2.3166795e+00 + 9.3140000e+03 -2.0066795e+00 + 9.3144000e+03 -1.4766795e+00 + 9.3148000e+03 -1.4066795e+00 + 9.3152000e+03 -1.3966795e+00 + 9.3156000e+03 1.6533205e+00 + 9.3160000e+03 1.8233205e+00 + 9.3164000e+03 1.7733205e+00 + 9.3168000e+03 1.4333205e+00 + 9.3172000e+03 1.3033205e+00 + 9.3176000e+03 1.3733205e+00 + 9.3180000e+03 1.3033205e+00 + 9.3184000e+03 1.1533205e+00 + 9.3188000e+03 1.0533205e+00 + 9.3192000e+03 1.0433205e+00 + 9.3196000e+03 1.0433205e+00 + 9.3200000e+03 1.0433205e+00 + 9.3204000e+03 -4.5667949e-01 + 9.3208000e+03 -1.5366795e+00 + 9.3212000e+03 -1.8466795e+00 + 9.3216000e+03 -2.0066795e+00 + 9.3220000e+03 -2.0066795e+00 + 9.3224000e+03 -1.7066795e+00 + 9.3228000e+03 -1.4466795e+00 + 9.3232000e+03 -1.4066795e+00 + 9.3236000e+03 -1.3366795e+00 + 9.3240000e+03 -8.3667949e-01 + 9.3244000e+03 -6.7667949e-01 + 9.3248000e+03 -1.6679487e-02 + 9.3252000e+03 6.7332051e-01 + 9.3256000e+03 1.0033205e+00 + 9.3260000e+03 1.7633205e+00 + 9.3264000e+03 2.0833205e+00 + 9.3268000e+03 2.2733205e+00 + 9.3272000e+03 3.6833205e+00 + 9.3276000e+03 3.8633205e+00 + 9.3280000e+03 3.4233205e+00 + 9.3284000e+03 3.3833205e+00 + 9.3288000e+03 1.8033205e+00 + 9.3292000e+03 1.9332051e-01 + 9.3296000e+03 -1.1667949e-01 + 9.3300000e+03 -2.5667949e-01 + 9.3304000e+03 -2.9667949e-01 + 9.3308000e+03 -3.9667949e-01 + 9.3312000e+03 -3.3667949e-01 + 9.3316000e+03 -2.4667949e-01 + 9.3320000e+03 1.3320513e-02 + 9.3324000e+03 -6.2667949e-01 + 9.3328000e+03 -1.1066795e+00 + 9.3332000e+03 -1.4466795e+00 + 9.3336000e+03 -1.6066795e+00 + 9.3340000e+03 -1.4566795e+00 + 9.3344000e+03 -1.1766795e+00 + 9.3348000e+03 -1.0866795e+00 + 9.3352000e+03 -1.2066795e+00 + 9.3356000e+03 -1.3566795e+00 + 9.3360000e+03 -1.4566795e+00 + 9.3364000e+03 -1.3666795e+00 + 9.3368000e+03 -1.0166795e+00 + 9.3372000e+03 -6.7667949e-01 + 9.3376000e+03 -5.4667949e-01 + 9.3380000e+03 -5.3667949e-01 + 9.3384000e+03 -5.3667949e-01 + 9.3388000e+03 -5.3667949e-01 + 9.3392000e+03 7.7332051e-01 + 9.3396000e+03 1.6733205e+00 + 9.3400000e+03 1.1333205e+00 + 9.3404000e+03 9.5332051e-01 + 9.3408000e+03 9.4332051e-01 + 9.3412000e+03 9.4332051e-01 + 9.3416000e+03 9.4332051e-01 + 9.3420000e+03 9.4332051e-01 + 9.3424000e+03 8.0332051e-01 + 9.3428000e+03 -1.1966795e+00 + 9.3432000e+03 -1.2466795e+00 + 9.3436000e+03 -1.0066795e+00 + 9.3440000e+03 -5.2667949e-01 + 9.3444000e+03 -3.3667949e-01 + 9.3448000e+03 -4.6679487e-02 + 9.3452000e+03 -5.6679487e-02 + 9.3456000e+03 -9.6679487e-02 + 9.3460000e+03 1.6332051e-01 + 9.3464000e+03 5.3332051e-01 + 9.3468000e+03 7.6332051e-01 + 9.3472000e+03 1.1633205e+00 + 9.3476000e+03 1.5033205e+00 + 9.3480000e+03 1.6833205e+00 + 9.3484000e+03 1.9033205e+00 + 9.3488000e+03 1.7733205e+00 + 9.3492000e+03 1.8233205e+00 + 9.3496000e+03 1.8733205e+00 + 9.3500000e+03 1.8033205e+00 + 9.3504000e+03 1.6933205e+00 + 9.3508000e+03 1.5433205e+00 + 9.3512000e+03 1.4833205e+00 + 9.3516000e+03 1.2233205e+00 + 9.3520000e+03 1.0233205e+00 + 9.3524000e+03 1.0033205e+00 + 9.3528000e+03 1.0033205e+00 + 9.3532000e+03 1.0133205e+00 + 9.3536000e+03 1.0133205e+00 + 9.3540000e+03 1.0133205e+00 + 9.3544000e+03 1.0133205e+00 + 9.3548000e+03 1.0133205e+00 + 9.3552000e+03 8.0332051e-01 + 9.3556000e+03 -1.7266795e+00 + 9.3560000e+03 -1.5066795e+00 + 9.3564000e+03 -1.5966795e+00 + 9.3568000e+03 -1.5266795e+00 + 9.3572000e+03 -1.6166795e+00 + 9.3576000e+03 -1.4566795e+00 + 9.3580000e+03 -9.5667949e-01 + 9.3584000e+03 -7.7667949e-01 + 9.3588000e+03 -7.6667949e-01 + 9.3592000e+03 -7.1667949e-01 + 9.3596000e+03 2.9533205e+00 + 9.3600000e+03 3.4533205e+00 + 9.3604000e+03 2.8933205e+00 + 9.3608000e+03 2.0933205e+00 + 9.3612000e+03 1.5433205e+00 + 9.3616000e+03 9.6332051e-01 + 9.3620000e+03 6.9332051e-01 + 9.3624000e+03 6.8332051e-01 + 9.3628000e+03 7.6332051e-01 + 9.3632000e+03 6.3332051e-01 + 9.3636000e+03 4.0332051e-01 + 9.3640000e+03 3.3205128e-03 + 9.3644000e+03 -2.9667949e-01 + 9.3648000e+03 -3.9667949e-01 + 9.3652000e+03 -3.8667949e-01 + 9.3656000e+03 -8.4667949e-01 + 9.3660000e+03 -9.6667949e-01 + 9.3664000e+03 -1.1466795e+00 + 9.3668000e+03 -1.0366795e+00 + 9.3672000e+03 -8.5667949e-01 + 9.3676000e+03 -4.6679487e-02 + 9.3680000e+03 5.4332051e-01 + 9.3684000e+03 9.0332051e-01 + 9.3688000e+03 1.1533205e+00 + 9.3692000e+03 1.1533205e+00 + 9.3696000e+03 1.0033205e+00 + 9.3700000e+03 7.6332051e-01 + 9.3704000e+03 6.4332051e-01 + 9.3708000e+03 9.0332051e-01 + 9.3712000e+03 7.9332051e-01 + 9.3716000e+03 4.2332051e-01 + 9.3720000e+03 3.4332051e-01 + 9.3724000e+03 3.4332051e-01 + 9.3728000e+03 3.4332051e-01 + 9.3732000e+03 3.4332051e-01 + 9.3736000e+03 3.3320513e-02 + 9.3740000e+03 -6.6667949e-01 + 9.3744000e+03 -6.3667949e-01 + 9.3748000e+03 -1.5667949e-01 + 9.3752000e+03 4.7332051e-01 + 9.3756000e+03 6.7332051e-01 + 9.3760000e+03 1.0533205e+00 + 9.3764000e+03 8.5332051e-01 + 9.3768000e+03 6.2332051e-01 + 9.3772000e+03 4.1332051e-01 + 9.3776000e+03 4.0332051e-01 + 9.3780000e+03 3.8332051e-01 + 9.3784000e+03 3.8332051e-01 + 9.3788000e+03 3.8332051e-01 + 9.3792000e+03 3.8332051e-01 + 9.3796000e+03 -1.8766795e+00 + 9.3800000e+03 -2.7766795e+00 + 9.3804000e+03 -2.1566795e+00 + 9.3808000e+03 -1.5566795e+00 + 9.3812000e+03 -1.4966795e+00 + 9.3816000e+03 -1.4966795e+00 + 9.3820000e+03 6.4332051e-01 + 9.3824000e+03 1.4333205e+00 + 9.3828000e+03 1.7033205e+00 + 9.3832000e+03 2.0833205e+00 + 9.3836000e+03 2.6433205e+00 + 9.3840000e+03 3.7233205e+00 + 9.3844000e+03 3.7333205e+00 + 9.3848000e+03 2.9833205e+00 + 9.3852000e+03 2.3533205e+00 + 9.3856000e+03 1.7533205e+00 + 9.3860000e+03 1.5433205e+00 + 9.3864000e+03 9.0332051e-01 + 9.3868000e+03 -3.2667949e-01 + 9.3872000e+03 -8.3667949e-01 + 9.3876000e+03 -9.8667949e-01 + 9.3880000e+03 -9.8667949e-01 + 9.3884000e+03 -9.8667949e-01 + 9.3888000e+03 -9.8667949e-01 + 9.3892000e+03 -9.8667949e-01 + 9.3896000e+03 -1.0666795e+00 + 9.3900000e+03 -2.4166795e+00 + 9.3904000e+03 -2.0466795e+00 + 9.3908000e+03 -1.6366795e+00 + 9.3912000e+03 -1.4566795e+00 + 9.3916000e+03 -1.4466795e+00 + 9.3920000e+03 -1.0466795e+00 + 9.3924000e+03 5.9332051e-01 + 9.3928000e+03 1.2033205e+00 + 9.3932000e+03 1.9733205e+00 + 9.3936000e+03 2.7633205e+00 + 9.3940000e+03 3.4133205e+00 + 9.3944000e+03 3.6933205e+00 + 9.3948000e+03 4.0333205e+00 + 9.3952000e+03 4.2533205e+00 + 9.3956000e+03 3.2133205e+00 + 9.3960000e+03 1.6333205e+00 + 9.3964000e+03 2.4332051e-01 + 9.3968000e+03 -8.9667949e-01 + 9.3972000e+03 -1.5466795e+00 + 9.3976000e+03 -1.8266795e+00 + 9.3980000e+03 -1.7266795e+00 + 9.3984000e+03 -1.6466795e+00 + 9.3988000e+03 -1.7866795e+00 + 9.3992000e+03 -2.0166795e+00 + 9.3996000e+03 -2.4766795e+00 + 9.4000000e+03 -3.0466795e+00 + 9.4004000e+03 -3.0566795e+00 + 9.4008000e+03 -2.7166795e+00 + 9.4012000e+03 -1.9866795e+00 + 9.4016000e+03 -1.7366795e+00 + 9.4020000e+03 -1.7266795e+00 + 9.4024000e+03 -1.7266795e+00 + 9.4028000e+03 -1.7266795e+00 + 9.4032000e+03 -1.4766795e+00 + 9.4036000e+03 1.1333205e+00 + 9.4040000e+03 1.7533205e+00 + 9.4044000e+03 2.0833205e+00 + 9.4048000e+03 2.2333205e+00 + 9.4052000e+03 2.3233205e+00 + 9.4056000e+03 1.7033205e+00 + 9.4060000e+03 1.5533205e+00 + 9.4064000e+03 4.9332051e-01 + 9.4068000e+03 2.6332051e-01 + 9.4072000e+03 2.9332051e-01 + 9.4076000e+03 -1.6667949e-01 + 9.4080000e+03 -2.5667949e-01 + 9.4084000e+03 -6.6679487e-02 + 9.4088000e+03 -4.2667949e-01 + 9.4092000e+03 -4.7667949e-01 + 9.4096000e+03 -4.8667949e-01 + 9.4100000e+03 -1.8366795e+00 + 9.4104000e+03 -2.2666795e+00 + 9.4108000e+03 -2.0966795e+00 + 9.4112000e+03 -1.7066795e+00 + 9.4116000e+03 -1.3666795e+00 + 9.4120000e+03 -9.7667949e-01 + 9.4124000e+03 1.9833205e+00 + 9.4128000e+03 2.6833205e+00 + 9.4132000e+03 2.8633205e+00 + 9.4136000e+03 3.6733205e+00 + 9.4140000e+03 3.9333205e+00 + 9.4144000e+03 3.2733205e+00 + 9.4148000e+03 2.6833205e+00 + 9.4152000e+03 2.6533205e+00 + 9.4156000e+03 2.6533205e+00 + 9.4160000e+03 2.6533205e+00 + 9.4164000e+03 2.6533205e+00 + 9.4168000e+03 2.6533205e+00 + 9.4172000e+03 1.5833205e+00 + 9.4176000e+03 -1.0466795e+00 + 9.4180000e+03 -1.2266795e+00 + 9.4184000e+03 -1.5666795e+00 + 9.4188000e+03 -1.6766795e+00 + 9.4192000e+03 -2.5666795e+00 + 9.4196000e+03 -3.3266795e+00 + 9.4200000e+03 -3.7066795e+00 + 9.4204000e+03 -3.1966795e+00 + 9.4208000e+03 -2.3666795e+00 + 9.4212000e+03 -1.2966795e+00 + 9.4216000e+03 -6.6794872e-03 + 9.4220000e+03 1.1833205e+00 + 9.4224000e+03 1.9633205e+00 + 9.4228000e+03 2.5333205e+00 + 9.4232000e+03 3.3233205e+00 + 9.4236000e+03 3.3433205e+00 + 9.4240000e+03 3.3333205e+00 + 9.4244000e+03 3.0433205e+00 + 9.4248000e+03 2.0833205e+00 + 9.4252000e+03 9.1332051e-01 + 9.4256000e+03 -2.0667949e-01 + 9.4260000e+03 -1.0066795e+00 + 9.4264000e+03 -1.2366795e+00 + 9.4268000e+03 -1.6366795e+00 + 9.4272000e+03 -1.7866795e+00 + 9.4276000e+03 -1.6566795e+00 + 9.4280000e+03 -1.7366795e+00 + 9.4284000e+03 -2.0866795e+00 + 9.4288000e+03 -2.5366795e+00 + 9.4292000e+03 -2.7566795e+00 + 9.4296000e+03 -2.3866795e+00 + 9.4300000e+03 -1.4666795e+00 + 9.4304000e+03 -4.0667949e-01 + 9.4308000e+03 -1.6679487e-02 + 9.4312000e+03 5.3320513e-02 + 9.4316000e+03 1.0333205e+00 + 9.4320000e+03 2.9833205e+00 + 9.4324000e+03 3.1033205e+00 + 9.4328000e+03 3.1533205e+00 + 9.4332000e+03 3.3033205e+00 + 9.4336000e+03 3.4433205e+00 + 9.4340000e+03 3.9333205e+00 + 9.4344000e+03 4.5533205e+00 + 9.4348000e+03 4.6733205e+00 + 9.4352000e+03 3.7233205e+00 + 9.4356000e+03 2.1933205e+00 + 9.4360000e+03 9.2332051e-01 + 9.4364000e+03 -2.2667949e-01 + 9.4368000e+03 -9.7667949e-01 + 9.4372000e+03 -2.1466795e+00 + 9.4376000e+03 -2.7066795e+00 + 9.4380000e+03 -3.2366795e+00 + 9.4384000e+03 -3.5766795e+00 + 9.4388000e+03 -4.1466795e+00 + 9.4392000e+03 -4.4766795e+00 + 9.4396000e+03 -4.7466795e+00 + 9.4400000e+03 -4.2966795e+00 + 9.4404000e+03 -3.3866795e+00 + 9.4408000e+03 -2.3466795e+00 + 9.4412000e+03 -2.1966795e+00 + 9.4416000e+03 -2.1966795e+00 + 9.4420000e+03 -2.1966795e+00 + 9.4424000e+03 -2.1966795e+00 + 9.4428000e+03 -2.1966795e+00 + 9.4432000e+03 -2.1966795e+00 + 9.4436000e+03 -2.1966795e+00 + 9.4440000e+03 3.7333205e+00 + 9.4444000e+03 3.6533205e+00 + 9.4448000e+03 3.5733205e+00 + 9.4452000e+03 3.5533205e+00 + 9.4456000e+03 3.5533205e+00 + 9.4460000e+03 3.5533205e+00 + 9.4464000e+03 3.5533205e+00 + 9.4468000e+03 3.5533205e+00 + 9.4472000e+03 3.5433205e+00 + 9.4476000e+03 3.5433205e+00 + 9.4480000e+03 1.7332051e-01 + 9.4484000e+03 -2.4466795e+00 + 9.4488000e+03 -2.6366795e+00 + 9.4492000e+03 -2.4066795e+00 + 9.4496000e+03 -1.8466795e+00 + 9.4500000e+03 -1.1066795e+00 + 9.4504000e+03 -2.6667949e-01 + 9.4508000e+03 9.0332051e-01 + 9.4512000e+03 2.0533205e+00 + 9.4516000e+03 2.9133205e+00 + 9.4520000e+03 3.1933205e+00 + 9.4524000e+03 3.7233205e+00 + 9.4528000e+03 3.7033205e+00 + 9.4532000e+03 3.4433205e+00 + 9.4536000e+03 2.8633205e+00 + 9.4540000e+03 2.7033205e+00 + 9.4544000e+03 2.3733205e+00 + 9.4548000e+03 1.6333205e+00 + 9.4552000e+03 1.2433205e+00 + 9.4556000e+03 1.1033205e+00 + 9.4560000e+03 5.7332051e-01 + 9.4564000e+03 1.1332051e-01 + 9.4568000e+03 2.3320513e-02 + 9.4572000e+03 -1.4667949e-01 + 9.4576000e+03 -4.5667949e-01 + 9.4580000e+03 -6.2667949e-01 + 9.4584000e+03 -1.6966795e+00 + 9.4588000e+03 -2.4566795e+00 + 9.4592000e+03 -2.7566795e+00 + 9.4596000e+03 -2.9066795e+00 + 9.4600000e+03 -2.8966795e+00 + 9.4604000e+03 -2.3966795e+00 + 9.4608000e+03 -1.8066795e+00 + 9.4612000e+03 -1.1266795e+00 + 9.4616000e+03 -4.0667949e-01 + 9.4620000e+03 -6.2667949e-01 + 9.4624000e+03 -7.4667949e-01 + 9.4628000e+03 -5.2667949e-01 + 9.4632000e+03 -6.6794872e-03 + 9.4636000e+03 5.7332051e-01 + 9.4640000e+03 1.8333205e+00 + 9.4644000e+03 2.8433205e+00 + 9.4648000e+03 3.3033205e+00 + 9.4652000e+03 3.6833205e+00 + 9.4656000e+03 3.8233205e+00 + 9.4660000e+03 2.9833205e+00 + 9.4664000e+03 2.4633205e+00 + 9.4668000e+03 1.8533205e+00 + 9.4672000e+03 -3.1667949e-01 + 9.4676000e+03 -8.4667949e-01 + 9.4680000e+03 -1.0866795e+00 + 9.4684000e+03 -1.2466795e+00 + 9.4688000e+03 -1.3166795e+00 + 9.4692000e+03 -1.3666795e+00 + 9.4696000e+03 -1.2266795e+00 + 9.4700000e+03 -1.1166795e+00 + 9.4704000e+03 -1.3066795e+00 + 9.4708000e+03 -1.6766795e+00 + 9.4712000e+03 -1.6566795e+00 + 9.4716000e+03 -1.5866795e+00 + 9.4720000e+03 -1.1966795e+00 + 9.4724000e+03 -4.0667949e-01 + 9.4728000e+03 6.3332051e-01 + 9.4732000e+03 1.2133205e+00 + 9.4736000e+03 1.8433205e+00 + 9.4740000e+03 2.2333205e+00 + 9.4744000e+03 2.6433205e+00 + 9.4748000e+03 2.6333205e+00 + 9.4752000e+03 2.3533205e+00 + 9.4756000e+03 2.0433205e+00 + 9.4760000e+03 1.5833205e+00 + 9.4764000e+03 1.4533205e+00 + 9.4768000e+03 9.2332051e-01 + 9.4772000e+03 6.0332051e-01 + 9.4776000e+03 6.5332051e-01 + 9.4780000e+03 3.8332051e-01 + 9.4784000e+03 1.3332051e-01 + 9.4788000e+03 -1.1667949e-01 + 9.4792000e+03 -2.4667949e-01 + 9.4796000e+03 -3.5667949e-01 + 9.4800000e+03 -5.4667949e-01 + 9.4804000e+03 -6.2667949e-01 + 9.4808000e+03 -7.3667949e-01 + 9.4812000e+03 -8.7667949e-01 + 9.4816000e+03 -1.2866795e+00 + 9.4820000e+03 -1.9166795e+00 + 9.4824000e+03 -1.9966795e+00 + 9.4828000e+03 -1.9966795e+00 + 9.4832000e+03 -1.9266795e+00 + 9.4836000e+03 -2.0066795e+00 + 9.4840000e+03 -1.9966795e+00 + 9.4844000e+03 -1.4766795e+00 + 9.4848000e+03 -9.1667949e-01 + 9.4852000e+03 -1.4667949e-01 + 9.4856000e+03 2.9332051e-01 + 9.4860000e+03 1.6333205e+00 + 9.4864000e+03 2.0333205e+00 + 9.4868000e+03 2.0533205e+00 + 9.4872000e+03 1.8233205e+00 + 9.4876000e+03 1.4833205e+00 + 9.4880000e+03 6.3332051e-01 + 9.4884000e+03 4.4332051e-01 + 9.4888000e+03 3.0332051e-01 + 9.4892000e+03 1.1332051e-01 + 9.4896000e+03 -2.5667949e-01 + 9.4900000e+03 -3.4667949e-01 + 9.4904000e+03 -6.1667949e-01 + 9.4908000e+03 -6.6667949e-01 + 9.4912000e+03 -7.2667949e-01 + 9.4916000e+03 -8.8667949e-01 + 9.4920000e+03 -1.0766795e+00 + 9.4924000e+03 -1.1666795e+00 + 9.4928000e+03 -8.5667949e-01 + 9.4932000e+03 -3.2667949e-01 + 9.4936000e+03 1.1332051e-01 + 9.4940000e+03 9.1332051e-01 + 9.4944000e+03 2.2833205e+00 + 9.4948000e+03 2.3033205e+00 + 9.4952000e+03 2.1033205e+00 + 9.4956000e+03 1.4833205e+00 + 9.4960000e+03 1.2733205e+00 + 9.4964000e+03 1.2133205e+00 + 9.4968000e+03 7.0332051e-01 + 9.4972000e+03 5.3320513e-02 + 9.4976000e+03 -6.6794872e-03 + 9.4980000e+03 2.3332051e-01 + 9.4984000e+03 5.3332051e-01 + 9.4988000e+03 7.7332051e-01 + 9.4992000e+03 5.7332051e-01 + 9.4996000e+03 -1.0667949e-01 + 9.5000000e+03 -7.1667949e-01 + 9.5004000e+03 -9.7667949e-01 + 9.5008000e+03 -8.2667949e-01 + 9.5012000e+03 -5.1667949e-01 + 9.5016000e+03 -1.6679487e-02 + 9.5020000e+03 5.3320513e-02 + 9.5024000e+03 1.5332051e-01 + 9.5028000e+03 -1.2667949e-01 + 9.5032000e+03 -6.1667949e-01 + 9.5036000e+03 -7.6667949e-01 + 9.5040000e+03 -1.4866795e+00 + 9.5044000e+03 -1.8466795e+00 + 9.5048000e+03 -1.8366795e+00 + 9.5052000e+03 -1.7366795e+00 + 9.5056000e+03 -1.7866795e+00 + 9.5060000e+03 -1.5766795e+00 + 9.5064000e+03 -1.1566795e+00 + 9.5068000e+03 -8.9667949e-01 + 9.5072000e+03 -5.8667949e-01 + 9.5076000e+03 -3.0667949e-01 + 9.5080000e+03 -1.6667949e-01 + 9.5084000e+03 1.8332051e-01 + 9.5088000e+03 7.8332051e-01 + 9.5092000e+03 1.4433205e+00 + 9.5096000e+03 1.9633205e+00 + 9.5100000e+03 1.9933205e+00 + 9.5104000e+03 1.3933205e+00 + 9.5108000e+03 1.0933205e+00 + 9.5112000e+03 3.0332051e-01 + 9.5116000e+03 -1.2667949e-01 + 9.5120000e+03 -4.4667949e-01 + 9.5124000e+03 -6.3667949e-01 + 9.5128000e+03 -3.8667949e-01 + 9.5132000e+03 -4.6679487e-02 + 9.5136000e+03 -6.6794872e-03 + 9.5140000e+03 5.2332051e-01 + 9.5144000e+03 1.4233205e+00 + 9.5148000e+03 1.0933205e+00 + 9.5152000e+03 9.3332051e-01 + 9.5156000e+03 8.0332051e-01 + 9.5160000e+03 5.0332051e-01 + 9.5164000e+03 3.0332051e-01 + 9.5168000e+03 2.7332051e-01 + 9.5172000e+03 5.5332051e-01 + 9.5176000e+03 8.4332051e-01 + 9.5180000e+03 1.0133205e+00 + 9.5184000e+03 1.4533205e+00 + 9.5188000e+03 2.9933205e+00 + 9.5192000e+03 2.5233205e+00 + 9.5196000e+03 1.4833205e+00 + 9.5200000e+03 1.3033205e+00 + 9.5204000e+03 1.3033205e+00 + 9.5208000e+03 6.5332051e-01 + 9.5212000e+03 -2.1766795e+00 + 9.5216000e+03 -2.8166795e+00 + 9.5220000e+03 -3.0966795e+00 + 9.5224000e+03 -2.7866795e+00 + 9.5228000e+03 -2.0066795e+00 + 9.5232000e+03 -1.2566795e+00 + 9.5236000e+03 -7.6667949e-01 + 9.5240000e+03 -3.1667949e-01 + 9.5244000e+03 4.3320513e-02 + 9.5248000e+03 5.3320513e-02 + 9.5252000e+03 9.3320513e-02 + 9.5256000e+03 3.3320513e-02 + 9.5260000e+03 -9.6679487e-02 + 9.5264000e+03 -2.7667949e-01 + 9.5268000e+03 -3.4667949e-01 + 9.5272000e+03 -3.5667949e-01 + 9.5276000e+03 -3.5667949e-01 + 9.5280000e+03 -4.2667949e-01 + 9.5284000e+03 -4.8667949e-01 + 9.5288000e+03 -3.5667949e-01 + 9.5292000e+03 -2.6667949e-01 + 9.5296000e+03 3.3320513e-02 + 9.5300000e+03 5.8332051e-01 + 9.5304000e+03 1.5333205e+00 + 9.5308000e+03 1.9233205e+00 + 9.5312000e+03 1.7733205e+00 + 9.5316000e+03 1.7433205e+00 + 9.5320000e+03 1.7433205e+00 + 9.5324000e+03 1.7433205e+00 + 9.5328000e+03 1.7433205e+00 + 9.5332000e+03 1.7333205e+00 + 9.5336000e+03 -5.9667949e-01 + 9.5340000e+03 -1.0266795e+00 + 9.5344000e+03 -9.8667949e-01 + 9.5348000e+03 -1.0366795e+00 + 9.5352000e+03 -8.2667949e-01 + 9.5356000e+03 1.6332051e-01 + 9.5360000e+03 8.9332051e-01 + 9.5364000e+03 1.4733205e+00 + 9.5368000e+03 1.9333205e+00 + 9.5372000e+03 2.3033205e+00 + 9.5376000e+03 2.3933205e+00 + 9.5380000e+03 2.2733205e+00 + 9.5384000e+03 1.8733205e+00 + 9.5388000e+03 1.5333205e+00 + 9.5392000e+03 6.4332051e-01 + 9.5396000e+03 -2.2667949e-01 + 9.5400000e+03 -3.7667949e-01 + 9.5404000e+03 -6.0667949e-01 + 9.5408000e+03 -4.4667949e-01 + 9.5412000e+03 -2.7667949e-01 + 9.5416000e+03 5.3320513e-02 + 9.5420000e+03 2.3332051e-01 + 9.5424000e+03 6.6332051e-01 + 9.5428000e+03 7.3332051e-01 + 9.5432000e+03 6.3332051e-01 + 9.5436000e+03 3.3205128e-03 + 9.5440000e+03 -2.0667949e-01 + 9.5444000e+03 -2.1667949e-01 + 9.5448000e+03 -2.1667949e-01 + 9.5452000e+03 -2.0667949e-01 + 9.5456000e+03 -2.1667949e-01 + 9.5460000e+03 -2.0667949e-01 + 9.5464000e+03 -2.1667949e-01 + 9.5468000e+03 -1.4666795e+00 + 9.5472000e+03 -1.2166795e+00 + 9.5476000e+03 -1.0966795e+00 + 9.5480000e+03 -1.0966795e+00 + 9.5484000e+03 -1.0966795e+00 + 9.5488000e+03 -1.0966795e+00 + 9.5492000e+03 -4.0667949e-01 + 9.5496000e+03 3.9133205e+00 + 9.5500000e+03 4.0233205e+00 + 9.5504000e+03 3.3033205e+00 + 9.5508000e+03 3.1033205e+00 + 9.5512000e+03 3.0933205e+00 + 9.5516000e+03 3.0933205e+00 + 9.5520000e+03 3.0833205e+00 + 9.5524000e+03 3.0833205e+00 + 9.5528000e+03 3.0933205e+00 + 9.5532000e+03 2.0433205e+00 + 9.5536000e+03 5.3332051e-01 + 9.5540000e+03 -4.6679487e-02 + 9.5544000e+03 8.3320513e-02 + 9.5548000e+03 4.9332051e-01 + 9.5552000e+03 9.6332051e-01 + 9.5556000e+03 1.3233205e+00 + 9.5560000e+03 1.3833205e+00 + 9.5564000e+03 1.1533205e+00 + 9.5568000e+03 7.6332051e-01 + 9.5572000e+03 2.9332051e-01 + 9.5576000e+03 -1.0667949e-01 + 9.5580000e+03 -2.9667949e-01 + 9.5584000e+03 -7.6679487e-02 + 9.5588000e+03 6.8332051e-01 + 9.5592000e+03 9.7332051e-01 + 9.5596000e+03 9.8332051e-01 + 9.5600000e+03 9.9332051e-01 + 9.5604000e+03 9.8332051e-01 + 9.5608000e+03 4.0332051e-01 + 9.5612000e+03 -1.5667949e-01 + 9.5616000e+03 -9.4667949e-01 + 9.5620000e+03 -1.3466795e+00 + 9.5624000e+03 -1.3566795e+00 + 9.5628000e+03 -1.3566795e+00 + 9.5632000e+03 -1.3666795e+00 + 9.5636000e+03 -1.8966795e+00 + 9.5640000e+03 -2.6766795e+00 + 9.5644000e+03 -3.0866795e+00 + 9.5648000e+03 -2.2366795e+00 + 9.5652000e+03 -1.5166795e+00 + 9.5656000e+03 -1.4266795e+00 + 9.5660000e+03 -1.4266795e+00 + 9.5664000e+03 -1.4266795e+00 + 9.5668000e+03 -1.4266795e+00 + 9.5672000e+03 -1.4266795e+00 + 9.5676000e+03 1.0133205e+00 + 9.5680000e+03 1.6633205e+00 + 9.5684000e+03 1.2433205e+00 + 9.5688000e+03 1.1733205e+00 + 9.5692000e+03 8.7332051e-01 + 9.5696000e+03 5.8332051e-01 + 9.5700000e+03 3.5332051e-01 + 9.5704000e+03 2.3320513e-02 + 9.5708000e+03 -4.8667949e-01 + 9.5712000e+03 -8.8667949e-01 + 9.5716000e+03 -8.5667949e-01 + 9.5720000e+03 -4.7667949e-01 + 9.5724000e+03 -9.6679487e-02 + 9.5728000e+03 1.3332051e-01 + 9.5732000e+03 -5.6679487e-02 + 9.5736000e+03 5.3320513e-02 + 9.5740000e+03 2.7332051e-01 + 9.5744000e+03 5.0332051e-01 + 9.5748000e+03 7.4332051e-01 + 9.5752000e+03 9.3332051e-01 + 9.5756000e+03 1.4233205e+00 + 9.5760000e+03 1.8633205e+00 + 9.5764000e+03 2.3833205e+00 + 9.5768000e+03 2.3733205e+00 + 9.5772000e+03 2.5333205e+00 + 9.5776000e+03 2.9833205e+00 + 9.5780000e+03 2.2433205e+00 + 9.5784000e+03 1.8033205e+00 + 9.5788000e+03 1.5433205e+00 + 9.5792000e+03 7.5332051e-01 + 9.5796000e+03 -4.7667949e-01 + 9.5800000e+03 -1.1666795e+00 + 9.5804000e+03 -1.9466795e+00 + 9.5808000e+03 -2.0266795e+00 + 9.5812000e+03 -2.6766795e+00 + 9.5816000e+03 -2.5866795e+00 + 9.5820000e+03 -2.8566795e+00 + 9.5824000e+03 -3.0966795e+00 + 9.5828000e+03 -3.1966795e+00 + 9.5832000e+03 -2.7666795e+00 + 9.5836000e+03 -2.3966795e+00 + 9.5840000e+03 -2.2266795e+00 + 9.5844000e+03 -8.7667949e-01 + 9.5848000e+03 -6.2667949e-01 + 9.5852000e+03 -6.2667949e-01 + 9.5856000e+03 -6.2667949e-01 + 9.5860000e+03 6.8332051e-01 + 9.5864000e+03 2.2433205e+00 + 9.5868000e+03 2.3733205e+00 + 9.5872000e+03 2.6333205e+00 + 9.5876000e+03 3.6433205e+00 + 9.5880000e+03 3.0833205e+00 + 9.5884000e+03 1.8433205e+00 + 9.5888000e+03 6.5332051e-01 + 9.5892000e+03 -8.6679487e-02 + 9.5896000e+03 -2.0667949e-01 + 9.5900000e+03 -2.1667949e-01 + 9.5904000e+03 -7.1667949e-01 + 9.5908000e+03 -7.4667949e-01 + 9.5912000e+03 -1.0066795e+00 + 9.5916000e+03 -1.3766795e+00 + 9.5920000e+03 -1.8566795e+00 + 9.5924000e+03 -1.9066795e+00 + 9.5928000e+03 -1.6766795e+00 + 9.5932000e+03 -9.1667949e-01 + 9.5936000e+03 -2.4667949e-01 + 9.5940000e+03 -1.3667949e-01 + 9.5944000e+03 -1.3667949e-01 + 9.5948000e+03 5.7332051e-01 + 9.5952000e+03 9.7332051e-01 + 9.5956000e+03 1.6933205e+00 + 9.5960000e+03 2.0033205e+00 + 9.5964000e+03 2.1133205e+00 + 9.5968000e+03 1.7233205e+00 + 9.5972000e+03 1.5033205e+00 + 9.5976000e+03 1.0233205e+00 + 9.5980000e+03 7.4332051e-01 + 9.5984000e+03 4.0332051e-01 + 9.5988000e+03 2.1332051e-01 + 9.5992000e+03 2.7553321e+01 + 9.5996000e+03 2.7553321e+01 + 9.6000000e+03 9.3320513e-02 + 9.6004000e+03 5.3320513e-02 + 9.6008000e+03 5.3320513e-02 + 9.6012000e+03 5.3320513e-02 + 9.6016000e+03 5.3320513e-02 + 9.6020000e+03 -1.4667949e-01 + 9.6024000e+03 -1.9667949e-01 + 9.6028000e+03 -2.7667949e-01 + 9.6032000e+03 -7.5667949e-01 + 9.6036000e+03 -1.1766795e+00 + 9.6040000e+03 -1.2966795e+00 + 9.6044000e+03 -2.1366795e+00 + 9.6048000e+03 -1.8566795e+00 + 9.6052000e+03 -1.9566795e+00 + 9.6056000e+03 -2.0266795e+00 + 9.6060000e+03 -1.8066795e+00 + 9.6064000e+03 -1.4766795e+00 + 9.6068000e+03 -5.3667949e-01 + 9.6072000e+03 1.0332051e-01 + 9.6076000e+03 1.4332051e-01 + 9.6080000e+03 1.4332051e-01 + 9.6084000e+03 1.4332051e-01 + 9.6088000e+03 8.7332051e-01 + 9.6092000e+03 2.8833205e+00 + 9.6096000e+03 3.1833205e+00 + 9.6100000e+03 2.7633205e+00 + 9.6104000e+03 2.1833205e+00 + 9.6108000e+03 1.6533205e+00 + 9.6112000e+03 1.3333205e+00 + 9.6116000e+03 1.2033205e+00 + 9.6120000e+03 1.2933205e+00 + 9.6124000e+03 1.4533205e+00 + 9.6128000e+03 1.1333205e+00 + 9.6132000e+03 6.5332051e-01 + 9.6136000e+03 -6.3667949e-01 + 9.6140000e+03 -2.0766795e+00 + 9.6144000e+03 -3.1966795e+00 + 9.6148000e+03 -3.8666795e+00 + 9.6152000e+03 -4.0166795e+00 + 9.6156000e+03 -3.7266795e+00 + 9.6160000e+03 -3.6266795e+00 + 9.6164000e+03 -3.6966795e+00 + 9.6168000e+03 -3.5866795e+00 + 9.6172000e+03 -3.0366795e+00 + 9.6176000e+03 -1.9466795e+00 + 9.6180000e+03 -1.6266795e+00 + 9.6184000e+03 -1.6166795e+00 + 9.6188000e+03 -1.6166795e+00 + 9.6192000e+03 -5.1667949e-01 + 9.6196000e+03 7.8433205e+00 + 9.6200000e+03 9.0933205e+00 + 9.6204000e+03 6.6233205e+00 + 9.6208000e+03 3.9333205e+00 + 9.6212000e+03 3.2133205e+00 + 9.6216000e+03 4.6332051e-01 + 9.6220000e+03 -1.1966795e+00 + 9.6224000e+03 -1.9466795e+00 + 9.6228000e+03 -2.7066795e+00 + 9.6232000e+03 -2.7766795e+00 + 9.6236000e+03 -2.5266795e+00 + 9.6240000e+03 -2.2266795e+00 + 9.6244000e+03 -2.4166795e+00 + 9.6248000e+03 -2.8266795e+00 + 9.6252000e+03 -2.8066795e+00 + 9.6256000e+03 -2.3466795e+00 + 9.6260000e+03 -1.3166795e+00 + 9.6264000e+03 -2.4667949e-01 + 9.6268000e+03 7.8332051e-01 + 9.6272000e+03 1.3433205e+00 + 9.6276000e+03 1.4333205e+00 + 9.6280000e+03 1.6633205e+00 + 9.6284000e+03 2.0533205e+00 + 9.6288000e+03 2.4333205e+00 + 9.6292000e+03 2.4933205e+00 + 9.6296000e+03 2.6333205e+00 + 9.6300000e+03 3.1933205e+00 + 9.6304000e+03 3.6533205e+00 + 9.6308000e+03 3.7933205e+00 + 9.6312000e+03 3.6933205e+00 + 9.6316000e+03 3.2933205e+00 + 9.6320000e+03 3.0433205e+00 + 9.6324000e+03 3.0333205e+00 + 9.6328000e+03 3.0333205e+00 + 9.6332000e+03 3.0333205e+00 + 9.6336000e+03 3.0333205e+00 + 9.6340000e+03 3.0333205e+00 + 9.6344000e+03 3.0333205e+00 + 9.6348000e+03 3.0333205e+00 + 9.6352000e+03 3.0333205e+00 + 9.6356000e+03 2.6733205e+00 + 9.6360000e+03 -2.5766795e+00 + 9.6364000e+03 -1.9966795e+00 + 9.6368000e+03 -2.0366795e+00 + 9.6372000e+03 -2.4866795e+00 + 9.6376000e+03 -2.2966795e+00 + 9.6380000e+03 -1.8066795e+00 + 9.6384000e+03 -6.9667949e-01 + 9.6388000e+03 6.4332051e-01 + 9.6392000e+03 1.8033205e+00 + 9.6396000e+03 1.8633205e+00 + 9.6400000e+03 1.7933205e+00 + 9.6404000e+03 1.8533205e+00 + 9.6408000e+03 1.8333205e+00 + 9.6412000e+03 2.1133205e+00 + 9.6416000e+03 1.8333205e+00 + 9.6420000e+03 1.4633205e+00 + 9.6424000e+03 1.3033205e+00 + 9.6428000e+03 1.4033205e+00 + 9.6432000e+03 1.4533205e+00 + 9.6436000e+03 1.5033205e+00 + 9.6440000e+03 1.3633205e+00 + 9.6444000e+03 9.9332051e-01 + 9.6448000e+03 7.8332051e-01 + 9.6452000e+03 7.7332051e-01 + 9.6456000e+03 2.7332051e-01 + 9.6460000e+03 -3.7667949e-01 + 9.6464000e+03 -6.5667949e-01 + 9.6468000e+03 -6.5667949e-01 + 9.6472000e+03 -6.2667949e-01 + 9.6476000e+03 -4.6667949e-01 + 9.6480000e+03 -4.8667949e-01 + 9.6484000e+03 -3.8667949e-01 + 9.6488000e+03 -6.9667949e-01 + 9.6492000e+03 -7.1667949e-01 + 9.6496000e+03 -1.3466795e+00 + 9.6500000e+03 -1.6566795e+00 + 9.6504000e+03 -1.3466795e+00 + 9.6508000e+03 -1.2366795e+00 + 9.6512000e+03 -1.1366795e+00 + 9.6516000e+03 -9.4667949e-01 + 9.6520000e+03 -5.3667949e-01 + 9.6524000e+03 -2.5667949e-01 + 9.6528000e+03 -1.1667949e-01 + 9.6532000e+03 -1.0667949e-01 + 9.6536000e+03 5.8332051e-01 + 9.6540000e+03 1.2833205e+00 + 9.6544000e+03 1.3033205e+00 + 9.6548000e+03 1.4633205e+00 + 9.6552000e+03 1.4433205e+00 + 9.6556000e+03 1.0533205e+00 + 9.6560000e+03 8.4332051e-01 + 9.6564000e+03 -3.5667949e-01 + 9.6568000e+03 -5.6667949e-01 + 9.6572000e+03 -5.9667949e-01 + 9.6576000e+03 -5.9667949e-01 + 9.6580000e+03 -2.1466795e+00 + 9.6584000e+03 -2.3866795e+00 + 9.6588000e+03 -2.1666795e+00 + 9.6592000e+03 -1.8166795e+00 + 9.6596000e+03 -1.6966795e+00 + 9.6600000e+03 -1.6966795e+00 + 9.6604000e+03 -1.6966795e+00 + 9.6608000e+03 -1.3766795e+00 + 9.6612000e+03 -7.6667949e-01 + 9.6616000e+03 -6.4667949e-01 + 9.6620000e+03 4.4332051e-01 + 9.6624000e+03 6.7332051e-01 + 9.6628000e+03 7.0332051e-01 + 9.6632000e+03 7.1332051e-01 + 9.6636000e+03 7.0332051e-01 + 9.6640000e+03 7.0332051e-01 + 9.6644000e+03 7.0332051e-01 + 9.6648000e+03 2.2633205e+00 + 9.6652000e+03 3.6933205e+00 + 9.6656000e+03 3.1633205e+00 + 9.6660000e+03 2.3733205e+00 + 9.6664000e+03 1.7233205e+00 + 9.6668000e+03 1.0433205e+00 + 9.6672000e+03 3.5332051e-01 + 9.6676000e+03 -1.9667949e-01 + 9.6680000e+03 -9.4667949e-01 + 9.6684000e+03 -1.9566795e+00 + 9.6688000e+03 -2.0966795e+00 + 9.6692000e+03 -2.1366795e+00 + 9.6696000e+03 -4.1266795e+00 + 9.6700000e+03 -4.3066795e+00 + 9.6704000e+03 -4.1166795e+00 + 9.6708000e+03 -3.9566795e+00 + 9.6712000e+03 -3.9466795e+00 + 9.6716000e+03 -3.0766795e+00 + 9.6720000e+03 -2.3566795e+00 + 9.6724000e+03 -1.9066795e+00 + 9.6728000e+03 -9.8667949e-01 + 9.6732000e+03 -2.3667949e-01 + 9.6736000e+03 -1.4667949e-01 + 9.6740000e+03 -1.4667949e-01 + 9.6744000e+03 -1.4667949e-01 + 9.6748000e+03 -1.4667949e-01 + 9.6752000e+03 2.3733205e+00 + 9.6756000e+03 2.3833205e+00 + 9.6760000e+03 2.2233205e+00 + 9.6764000e+03 2.1033205e+00 + 9.6768000e+03 1.8433205e+00 + 9.6772000e+03 1.9133205e+00 + 9.6776000e+03 2.1433205e+00 + 9.6780000e+03 1.9633205e+00 + 9.6784000e+03 2.0133205e+00 + 9.6788000e+03 1.7833205e+00 + 9.6792000e+03 1.3233205e+00 + 9.6796000e+03 1.2433205e+00 + 9.6800000e+03 1.2333205e+00 + 9.6804000e+03 1.2333205e+00 + 9.6808000e+03 9.6332051e-01 + 9.6812000e+03 -1.8066795e+00 + 9.6816000e+03 -1.7366795e+00 + 9.6820000e+03 -1.4266795e+00 + 9.6824000e+03 -1.3066795e+00 + 9.6828000e+03 -1.1766795e+00 + 9.6832000e+03 -1.6679487e-02 + 9.6836000e+03 5.3320513e-02 + 9.6840000e+03 -4.6679487e-02 + 9.6844000e+03 -2.7667949e-01 + 9.6848000e+03 -2.8667949e-01 + 9.6852000e+03 3.3332051e-01 + 9.6856000e+03 1.0733205e+00 + 9.6860000e+03 1.9033205e+00 + 9.6864000e+03 2.1733205e+00 + 9.6868000e+03 2.2333205e+00 + 9.6872000e+03 1.7833205e+00 + 9.6876000e+03 1.2533205e+00 + 9.6880000e+03 8.6332051e-01 + 9.6884000e+03 6.3332051e-01 + 9.6888000e+03 9.3332051e-01 + 9.6892000e+03 9.2332051e-01 + 9.6896000e+03 4.2332051e-01 + 9.6900000e+03 -1.6667949e-01 + 9.6904000e+03 -3.8667949e-01 + 9.6908000e+03 -8.8667949e-01 + 9.6912000e+03 -2.3666795e+00 + 9.6916000e+03 -3.1566795e+00 + 9.6920000e+03 -3.6466795e+00 + 9.6924000e+03 -3.5266795e+00 + 9.6928000e+03 -3.3366795e+00 + 9.6932000e+03 -3.0266795e+00 + 9.6936000e+03 -2.2866795e+00 + 9.6940000e+03 -1.0366795e+00 + 9.6944000e+03 -4.4667949e-01 + 9.6948000e+03 -4.1667949e-01 + 9.6952000e+03 3.9332051e-01 + 9.6956000e+03 1.3833205e+00 + 9.6960000e+03 1.3733205e+00 + 9.6964000e+03 1.0533205e+00 + 9.6968000e+03 1.2733205e+00 + 9.6972000e+03 1.7833205e+00 + 9.6976000e+03 2.3833205e+00 + 9.6980000e+03 2.7333205e+00 + 9.6984000e+03 2.9433205e+00 + 9.6988000e+03 2.8733205e+00 + 9.6992000e+03 2.8333205e+00 + 9.6996000e+03 2.5333205e+00 + 9.7000000e+03 2.6133205e+00 + 9.7004000e+03 2.7133205e+00 + 9.7008000e+03 2.3933205e+00 + 9.7012000e+03 1.4933205e+00 + 9.7016000e+03 2.7332051e-01 + 9.7020000e+03 -5.6667949e-01 + 9.7024000e+03 -1.2666795e+00 + 9.7028000e+03 -1.6166795e+00 + 9.7032000e+03 -1.3466795e+00 + 9.7036000e+03 -1.1766795e+00 + 9.7040000e+03 -1.0966795e+00 + 9.7044000e+03 -1.2366795e+00 + 9.7048000e+03 -1.3266795e+00 + 9.7052000e+03 -1.3166795e+00 + 9.7056000e+03 -1.2966795e+00 + 9.7060000e+03 -9.7667949e-01 + 9.7064000e+03 -8.0667949e-01 + 9.7068000e+03 -6.1667949e-01 + 9.7072000e+03 -5.4667949e-01 + 9.7076000e+03 -6.5667949e-01 + 9.7080000e+03 -7.6667949e-01 + 9.7084000e+03 -4.6667949e-01 + 9.7088000e+03 -1.9667949e-01 + 9.7092000e+03 -4.6679487e-02 + 9.7096000e+03 9.3320513e-02 + 9.7100000e+03 1.5332051e-01 + 9.7104000e+03 2.2332051e-01 + 9.7108000e+03 -6.6794872e-03 + 9.7112000e+03 3.3332051e-01 + 9.7116000e+03 8.0332051e-01 + 9.7120000e+03 1.2633205e+00 + 9.7124000e+03 1.3733205e+00 + 9.7128000e+03 1.3933205e+00 + 9.7132000e+03 1.1433205e+00 + 9.7136000e+03 6.2332051e-01 + 9.7140000e+03 3.3205128e-03 + 9.7144000e+03 -5.0667949e-01 + 9.7148000e+03 -5.6667949e-01 + 9.7152000e+03 -5.6667949e-01 + 9.7156000e+03 -5.6667949e-01 + 9.7160000e+03 -5.6667949e-01 + 9.7164000e+03 -5.6667949e-01 + 9.7168000e+03 -1.3466795e+00 + 9.7172000e+03 -1.8466795e+00 + 9.7176000e+03 -1.5766795e+00 + 9.7180000e+03 -6.9667949e-01 + 9.7184000e+03 -1.2667949e-01 + 9.7188000e+03 -8.6679487e-02 + 9.7192000e+03 -9.6679487e-02 + 9.7196000e+03 -9.6679487e-02 + 9.7200000e+03 3.4333205e+00 + 9.7204000e+03 3.8533205e+00 + 9.7208000e+03 3.7133205e+00 + 9.7212000e+03 3.5033205e+00 + 9.7216000e+03 3.2533205e+00 + 9.7220000e+03 2.6733205e+00 + 9.7224000e+03 2.6433205e+00 + 9.7228000e+03 2.6433205e+00 + 9.7232000e+03 2.6433205e+00 + 9.7236000e+03 2.6433205e+00 + 9.7240000e+03 -6.1667949e-01 + 9.7244000e+03 -2.0166795e+00 + 9.7248000e+03 -1.9466795e+00 + 9.7252000e+03 -1.5266795e+00 + 9.7256000e+03 -1.2866795e+00 + 9.7260000e+03 -1.0166795e+00 + 9.7264000e+03 -9.7667949e-01 + 9.7268000e+03 -9.4667949e-01 + 9.7272000e+03 -6.3667949e-01 + 9.7276000e+03 8.3320513e-02 + 9.7280000e+03 6.9332051e-01 + 9.7284000e+03 9.9332051e-01 + 9.7288000e+03 1.3233205e+00 + 9.7292000e+03 1.6833205e+00 + 9.7296000e+03 1.7633205e+00 + 9.7300000e+03 1.6233205e+00 + 9.7304000e+03 1.3033205e+00 + 9.7308000e+03 8.5332051e-01 + 9.7312000e+03 4.7332051e-01 + 9.7316000e+03 -1.3866795e+00 + 9.7320000e+03 -2.5266795e+00 + 9.7324000e+03 -2.7666795e+00 + 9.7328000e+03 -2.6466795e+00 + 9.7332000e+03 -2.5066795e+00 + 9.7336000e+03 -2.4566795e+00 + 9.7340000e+03 -2.3566795e+00 + 9.7344000e+03 -2.3666795e+00 + 9.7348000e+03 -2.2966795e+00 + 9.7352000e+03 -1.6166795e+00 + 9.7356000e+03 -1.2966795e+00 + 9.7360000e+03 -6.9667949e-01 + 9.7364000e+03 3.0332051e-01 + 9.7368000e+03 1.1433205e+00 + 9.7372000e+03 1.2333205e+00 + 9.7376000e+03 1.2233205e+00 + 9.7380000e+03 1.2233205e+00 + 9.7384000e+03 1.2233205e+00 + 9.7388000e+03 1.6433205e+00 + 9.7392000e+03 1.9633205e+00 + 9.7396000e+03 1.7433205e+00 + 9.7400000e+03 1.6633205e+00 + 9.7404000e+03 1.2933205e+00 + 9.7408000e+03 5.3332051e-01 + 9.7412000e+03 -3.9667949e-01 + 9.7416000e+03 -5.6667949e-01 + 9.7420000e+03 -1.6667949e-01 + 9.7424000e+03 4.0332051e-01 + 9.7428000e+03 8.0332051e-01 + 9.7432000e+03 1.3733205e+00 + 9.7436000e+03 1.5533205e+00 + 9.7440000e+03 1.4433205e+00 + 9.7444000e+03 1.2133205e+00 + 9.7448000e+03 8.4332051e-01 + 9.7452000e+03 7.4332051e-01 + 9.7456000e+03 -6.7667949e-01 + 9.7460000e+03 -1.0966795e+00 + 9.7464000e+03 -7.9667949e-01 + 9.7468000e+03 -3.5667949e-01 + 9.7472000e+03 -1.2667949e-01 + 9.7476000e+03 -1.3667949e-01 + 9.7480000e+03 -3.3667949e-01 + 9.7484000e+03 -5.7667949e-01 + 9.7488000e+03 -3.2667949e-01 + 9.7492000e+03 -1.2667949e-01 + 9.7496000e+03 2.3320513e-02 + 9.7500000e+03 -2.6679487e-02 + 9.7504000e+03 -6.6794872e-03 + 9.7508000e+03 -1.6679487e-02 + 9.7512000e+03 -3.4667949e-01 + 9.7516000e+03 -5.5667949e-01 + 9.7520000e+03 -2.0166795e+00 + 9.7524000e+03 -2.3366795e+00 + 9.7528000e+03 -2.3766795e+00 + 9.7532000e+03 -2.3666795e+00 + 9.7536000e+03 -2.1666795e+00 + 9.7540000e+03 -1.2966795e+00 + 9.7544000e+03 -7.5667949e-01 + 9.7548000e+03 -6.6794872e-03 + 9.7552000e+03 5.8332051e-01 + 9.7556000e+03 8.8332051e-01 + 9.7560000e+03 8.2332051e-01 + 9.7564000e+03 8.7332051e-01 + 9.7568000e+03 9.1332051e-01 + 9.7572000e+03 9.5332051e-01 + 9.7576000e+03 8.5332051e-01 + 9.7580000e+03 6.3332051e-01 + 9.7584000e+03 6.6332051e-01 + 9.7588000e+03 8.4332051e-01 + 9.7592000e+03 1.0933205e+00 + 9.7596000e+03 1.3633205e+00 + 9.7600000e+03 1.6733205e+00 + 9.7604000e+03 1.7633205e+00 + 9.7608000e+03 1.7333205e+00 + 9.7612000e+03 1.6833205e+00 + 9.7616000e+03 1.4833205e+00 + 9.7620000e+03 1.4633205e+00 + 9.7624000e+03 1.2433205e+00 + 9.7628000e+03 9.7332051e-01 + 9.7632000e+03 8.6332051e-01 + 9.7636000e+03 6.0332051e-01 + 9.7640000e+03 2.8332051e-01 + 9.7644000e+03 -2.1667949e-01 + 9.7648000e+03 -1.2667949e-01 + 9.7652000e+03 -2.0667949e-01 + 9.7656000e+03 -4.4667949e-01 + 9.7660000e+03 -6.7667949e-01 + 9.7664000e+03 -7.0667949e-01 + 9.7668000e+03 -7.3667949e-01 + 9.7672000e+03 -8.5667949e-01 + 9.7676000e+03 -9.0667949e-01 + 9.7680000e+03 -1.1966795e+00 + 9.7684000e+03 -9.6667949e-01 + 9.7688000e+03 -9.7667949e-01 + 9.7692000e+03 -8.8667949e-01 + 9.7696000e+03 -8.3667949e-01 + 9.7700000e+03 -1.1466795e+00 + 9.7704000e+03 -1.1366795e+00 + 9.7708000e+03 -1.0966795e+00 + 9.7712000e+03 -9.2667949e-01 + 9.7716000e+03 -8.1667949e-01 + 9.7720000e+03 -9.2667949e-01 + 9.7724000e+03 -5.9667949e-01 + 9.7728000e+03 -2.1667949e-01 + 9.7732000e+03 1.5933205e+00 + 9.7736000e+03 1.6733205e+00 + 9.7740000e+03 1.5433205e+00 + 9.7744000e+03 1.3033205e+00 + 9.7748000e+03 9.5332051e-01 + 9.7752000e+03 6.8332051e-01 + 9.7756000e+03 7.6332051e-01 + 9.7760000e+03 1.0033205e+00 + 9.7764000e+03 1.2233205e+00 + 9.7768000e+03 7.5332051e-01 + 9.7772000e+03 -3.3667949e-01 + 9.7776000e+03 -9.7667949e-01 + 9.7780000e+03 -1.5666795e+00 + 9.7784000e+03 -1.9866795e+00 + 9.7788000e+03 -1.9966795e+00 + 9.7792000e+03 -1.6366795e+00 + 9.7796000e+03 -1.2866795e+00 + 9.7800000e+03 -9.2667949e-01 + 9.7804000e+03 -5.1667949e-01 + 9.7808000e+03 7.3320513e-02 + 9.7812000e+03 2.6332051e-01 + 9.7816000e+03 2.6332051e-01 + 9.7820000e+03 2.0933205e+00 + 9.7824000e+03 2.8533205e+00 + 9.7828000e+03 2.6233205e+00 + 9.7832000e+03 2.5133205e+00 + 9.7836000e+03 2.5933205e+00 + 9.7840000e+03 2.6633205e+00 + 9.7844000e+03 1.7033205e+00 + 9.7848000e+03 1.5133205e+00 + 9.7852000e+03 1.5133205e+00 + 9.7856000e+03 1.5133205e+00 + 9.7860000e+03 1.5133205e+00 + 9.7864000e+03 9.2332051e-01 + 9.7868000e+03 -1.2566795e+00 + 9.7872000e+03 -1.5866795e+00 + 9.7876000e+03 -1.5666795e+00 + 9.7880000e+03 -1.4166795e+00 + 9.7884000e+03 -1.0366795e+00 + 9.7888000e+03 -9.1667949e-01 + 9.7892000e+03 -8.4667949e-01 + 9.7896000e+03 -8.8667949e-01 + 9.7900000e+03 -9.7667949e-01 + 9.7904000e+03 -1.2466795e+00 + 9.7908000e+03 -1.1966795e+00 + 9.7912000e+03 -1.1966795e+00 + 9.7916000e+03 -5.8667949e-01 + 9.7920000e+03 5.3320513e-02 + 9.7924000e+03 1.0332051e-01 + 9.7928000e+03 9.3320513e-02 + 9.7932000e+03 9.3320513e-02 + 9.7936000e+03 6.1332051e-01 + 9.7940000e+03 3.5133205e+00 + 9.7944000e+03 3.4933205e+00 + 9.7948000e+03 3.4833205e+00 + 9.7952000e+03 3.4833205e+00 + 9.7956000e+03 3.4733205e+00 + 9.7960000e+03 3.4733205e+00 + 9.7964000e+03 3.4733205e+00 + 9.7968000e+03 3.4733205e+00 + 9.7972000e+03 3.4733205e+00 + 9.7976000e+03 9.6332051e-01 + 9.7980000e+03 -9.6667949e-01 + 9.7984000e+03 -2.7667949e-01 + 9.7988000e+03 -1.4667949e-01 + 9.7992000e+03 -1.0667949e-01 + 9.7996000e+03 1.3320513e-02 + 9.8000000e+03 1.6332051e-01 + 9.8004000e+03 1.0332051e-01 + 9.8008000e+03 -2.4667949e-01 + 9.8012000e+03 -9.0667949e-01 + 9.8016000e+03 -7.7667949e-01 + 9.8020000e+03 -4.0667949e-01 + 9.8024000e+03 -1.3667949e-01 + 9.8028000e+03 -9.6679487e-02 + 9.8032000e+03 3.4332051e-01 + 9.8036000e+03 1.0033205e+00 + 9.8040000e+03 1.3233205e+00 + 9.8044000e+03 1.3433205e+00 + 9.8048000e+03 1.3433205e+00 + 9.8052000e+03 1.3333205e+00 + 9.8056000e+03 1.4333205e+00 + 9.8060000e+03 1.1333205e+00 + 9.8064000e+03 9.7332051e-01 + 9.8068000e+03 6.8332051e-01 + 9.8072000e+03 5.2332051e-01 + 9.8076000e+03 4.5332051e-01 + 9.8080000e+03 1.5332051e-01 + 9.8084000e+03 1.2332051e-01 + 9.8088000e+03 -2.6679487e-02 + 9.8092000e+03 -3.6679487e-02 + 9.8096000e+03 -2.6667949e-01 + 9.8100000e+03 -4.8667949e-01 + 9.8104000e+03 -5.1667949e-01 + 9.8108000e+03 -4.4667949e-01 + 9.8112000e+03 -6.3667949e-01 + 9.8116000e+03 -6.4667949e-01 + 9.8120000e+03 -8.6667949e-01 + 9.8124000e+03 -6.9667949e-01 + 9.8128000e+03 -4.4667949e-01 + 9.8132000e+03 -5.2667949e-01 + 9.8136000e+03 -4.0667949e-01 + 9.8140000e+03 -6.3667949e-01 + 9.8144000e+03 -8.1667949e-01 + 9.8148000e+03 -8.4667949e-01 + 9.8152000e+03 -8.1667949e-01 + 9.8156000e+03 -5.5667949e-01 + 9.8160000e+03 -1.3667949e-01 + 9.8164000e+03 4.3320513e-02 + 9.8168000e+03 -3.6679487e-02 + 9.8172000e+03 2.9332051e-01 + 9.8176000e+03 7.6332051e-01 + 9.8180000e+03 7.9332051e-01 + 9.8184000e+03 1.0533205e+00 + 9.8188000e+03 1.1033205e+00 + 9.8192000e+03 8.4332051e-01 + 9.8196000e+03 4.0332051e-01 + 9.8200000e+03 2.7332051e-01 + 9.8204000e+03 1.9332051e-01 + 9.8208000e+03 -2.2667949e-01 + 9.8212000e+03 -1.1667949e-01 + 9.8216000e+03 1.5332051e-01 + 9.8220000e+03 8.0332051e-01 + 9.8224000e+03 1.5433205e+00 + 9.8228000e+03 1.3033205e+00 + 9.8232000e+03 9.7332051e-01 + 9.8236000e+03 9.5332051e-01 + 9.8240000e+03 9.4332051e-01 + 9.8244000e+03 9.4332051e-01 + 9.8248000e+03 5.1332051e-01 + 9.8252000e+03 -3.3667949e-01 + 9.8256000e+03 -5.6679487e-02 + 9.8260000e+03 3.3332051e-01 + 9.8264000e+03 1.0133205e+00 + 9.8268000e+03 1.8533205e+00 + 9.8272000e+03 2.6833205e+00 + 9.8276000e+03 3.0533205e+00 + 9.8280000e+03 3.1033205e+00 + 9.8284000e+03 2.6333205e+00 + 9.8288000e+03 2.1733205e+00 + 9.8292000e+03 1.4933205e+00 + 9.8296000e+03 1.5033205e+00 + 9.8300000e+03 1.5133205e+00 + 9.8304000e+03 1.5133205e+00 + 9.8308000e+03 1.5133205e+00 + 9.8312000e+03 -1.0966795e+00 + 9.8316000e+03 -2.8866795e+00 + 9.8320000e+03 -2.9766795e+00 + 9.8324000e+03 -2.8666795e+00 + 9.8328000e+03 -2.6366795e+00 + 9.8332000e+03 -2.0966795e+00 + 9.8336000e+03 -2.0366795e+00 + 9.8340000e+03 -2.0366795e+00 + 9.8344000e+03 -2.0366795e+00 + 9.8348000e+03 -2.0266795e+00 + 9.8352000e+03 -2.0366795e+00 + 9.8356000e+03 -2.0266795e+00 + 9.8360000e+03 -1.9466795e+00 + 9.8364000e+03 5.5332051e-01 + 9.8368000e+03 9.4332051e-01 + 9.8372000e+03 1.0933205e+00 + 9.8376000e+03 1.0533205e+00 + 9.8380000e+03 1.0033205e+00 + 9.8384000e+03 8.6332051e-01 + 9.8388000e+03 1.1533205e+00 + 9.8392000e+03 1.3533205e+00 + 9.8396000e+03 1.3433205e+00 + 9.8400000e+03 1.3533205e+00 + 9.8404000e+03 1.3433205e+00 + 9.8408000e+03 1.4233205e+00 + 9.8412000e+03 1.3933205e+00 + 9.8416000e+03 8.5332051e-01 + 9.8420000e+03 2.8332051e-01 + 9.8424000e+03 -1.0667949e-01 + 9.8428000e+03 -6.6667949e-01 + 9.8432000e+03 -5.1667949e-01 + 9.8436000e+03 -1.3667949e-01 + 9.8440000e+03 2.3332051e-01 + 9.8444000e+03 4.2332051e-01 + 9.8448000e+03 2.3332051e-01 + 9.8452000e+03 -1.9667949e-01 + 9.8456000e+03 -4.2667949e-01 + 9.8460000e+03 -3.0667949e-01 + 9.8464000e+03 -6.1667949e-01 + 9.8468000e+03 -6.4667949e-01 + 9.8472000e+03 -6.9667949e-01 + 9.8476000e+03 -8.3667949e-01 + 9.8480000e+03 -9.2667949e-01 + 9.8484000e+03 -1.1066795e+00 + 9.8488000e+03 -1.1066795e+00 + 9.8492000e+03 -6.9667949e-01 + 9.8496000e+03 -7.8667949e-01 + 9.8500000e+03 -7.8667949e-01 + 9.8504000e+03 -8.5667949e-01 + 9.8508000e+03 -8.5667949e-01 + 9.8512000e+03 -5.1667949e-01 + 9.8516000e+03 -1.9667949e-01 + 9.8520000e+03 5.3320513e-02 + 9.8524000e+03 5.0332051e-01 + 9.8528000e+03 5.7332051e-01 + 9.8532000e+03 4.8332051e-01 + 9.8536000e+03 4.3332051e-01 + 9.8540000e+03 2.4332051e-01 + 9.8544000e+03 2.4332051e-01 + 9.8548000e+03 3.5332051e-01 + 9.8552000e+03 4.3332051e-01 + 9.8556000e+03 4.6332051e-01 + 9.8560000e+03 5.8332051e-01 + 9.8564000e+03 5.5332051e-01 + 9.8568000e+03 4.1332051e-01 + 9.8572000e+03 2.3332051e-01 + 9.8576000e+03 2.3332051e-01 + 9.8580000e+03 -2.1667949e-01 + 9.8584000e+03 -5.0667949e-01 + 9.8588000e+03 -7.6679487e-02 + 9.8592000e+03 -4.6679487e-02 + 9.8596000e+03 -1.4667949e-01 + 9.8600000e+03 7.3320513e-02 + 9.8604000e+03 3.2332051e-01 + 9.8608000e+03 4.6332051e-01 + 9.8612000e+03 4.8332051e-01 + 9.8616000e+03 1.1033205e+00 + 9.8620000e+03 1.1533205e+00 + 9.8624000e+03 1.1133205e+00 + 9.8628000e+03 1.0433205e+00 + 9.8632000e+03 1.3033205e+00 + 9.8636000e+03 1.2833205e+00 + 9.8640000e+03 1.1733205e+00 + 9.8644000e+03 8.4332051e-01 + 9.8648000e+03 4.9332051e-01 + 9.8652000e+03 3.5332051e-01 + 9.8656000e+03 7.3320513e-02 + 9.8660000e+03 5.3320513e-02 + 9.8664000e+03 5.3320513e-02 + 9.8668000e+03 5.3320513e-02 + 9.8672000e+03 5.3320513e-02 + 9.8676000e+03 5.3320513e-02 + 9.8680000e+03 5.3320513e-02 + 9.8684000e+03 7.3320513e-02 + 9.8688000e+03 -1.2066795e+00 + 9.8692000e+03 -2.0566795e+00 + 9.8696000e+03 -2.4666795e+00 + 9.8700000e+03 -2.4966795e+00 + 9.8704000e+03 -2.3666795e+00 + 9.8708000e+03 -2.0166795e+00 + 9.8712000e+03 -1.6766795e+00 + 9.8716000e+03 -1.4566795e+00 + 9.8720000e+03 -1.4066795e+00 + 9.8724000e+03 -2.3667949e-01 + 9.8728000e+03 1.3320513e-02 + 9.8732000e+03 1.3433205e+00 + 9.8736000e+03 2.1733205e+00 + 9.8740000e+03 2.2033205e+00 + 9.8744000e+03 2.1933205e+00 + 9.8748000e+03 2.1933205e+00 + 9.8752000e+03 2.1933205e+00 + 9.8756000e+03 2.1833205e+00 + 9.8760000e+03 3.5533205e+00 + 9.8764000e+03 2.4633205e+00 + 9.8768000e+03 5.9332051e-01 + 9.8772000e+03 -6.7667949e-01 + 9.8776000e+03 -8.0667949e-01 + 9.8780000e+03 -2.5066795e+00 + 9.8784000e+03 -3.1666795e+00 + 9.8788000e+03 -3.6566795e+00 + 9.8792000e+03 -3.8766795e+00 + 9.8796000e+03 -3.4766795e+00 + 9.8800000e+03 -2.4766795e+00 + 9.8804000e+03 -2.1566795e+00 + 9.8808000e+03 -2.1466795e+00 + 9.8812000e+03 -2.1266795e+00 + 9.8816000e+03 2.2033205e+00 + 9.8820000e+03 2.7833205e+00 + 9.8824000e+03 2.7233205e+00 + 9.8828000e+03 2.5133205e+00 + 9.8832000e+03 2.0233205e+00 + 9.8836000e+03 1.5733205e+00 + 9.8840000e+03 1.3233205e+00 + 9.8844000e+03 1.3233205e+00 + 9.8848000e+03 1.0533205e+00 + 9.8852000e+03 7.6332051e-01 + 9.8856000e+03 2.0332051e-01 + 9.8860000e+03 -5.4667949e-01 + 9.8864000e+03 -7.4667949e-01 + 9.8868000e+03 -7.4667949e-01 + 9.8872000e+03 -7.4667949e-01 + 9.8876000e+03 -8.9667949e-01 + 9.8880000e+03 -1.9766795e+00 + 9.8884000e+03 -1.9266795e+00 + 9.8888000e+03 -1.5566795e+00 + 9.8892000e+03 -1.2566795e+00 + 9.8896000e+03 -1.1166795e+00 + 9.8900000e+03 -9.4667949e-01 + 9.8904000e+03 -5.8667949e-01 + 9.8908000e+03 -5.8667949e-01 + 9.8912000e+03 -2.4667949e-01 + 9.8916000e+03 3.5332051e-01 + 9.8920000e+03 6.3332051e-01 + 9.8924000e+03 8.9332051e-01 + 9.8928000e+03 1.0333205e+00 + 9.8932000e+03 7.5332051e-01 + 9.8936000e+03 6.8332051e-01 + 9.8940000e+03 8.0332051e-01 + 9.8944000e+03 1.0333205e+00 + 9.8948000e+03 1.3833205e+00 + 9.8952000e+03 1.4533205e+00 + 9.8956000e+03 1.2933205e+00 + 9.8960000e+03 1.1833205e+00 + 9.8964000e+03 1.3633205e+00 + 9.8968000e+03 1.7133205e+00 + 9.8972000e+03 2.1233205e+00 + 9.8976000e+03 2.4133205e+00 + 9.8980000e+03 2.0733205e+00 + 9.8984000e+03 1.5333205e+00 + 9.8988000e+03 1.2833205e+00 + 9.8992000e+03 1.2733205e+00 + 9.8996000e+03 1.2733205e+00 + 9.9000000e+03 1.2733205e+00 + 9.9004000e+03 1.2733205e+00 + 9.9008000e+03 1.2733205e+00 + 9.9012000e+03 1.2733205e+00 + 9.9016000e+03 1.2533205e+00 + 9.9020000e+03 -1.2667949e-01 + 9.9024000e+03 -5.5667949e-01 + 9.9028000e+03 -8.6679487e-02 + 9.9032000e+03 1.0332051e-01 + 9.9036000e+03 1.7332051e-01 + 9.9040000e+03 6.7332051e-01 + 9.9044000e+03 2.3332051e-01 + 9.9048000e+03 -5.6679487e-02 + 9.9052000e+03 -4.5667949e-01 + 9.9056000e+03 -6.9667949e-01 + 9.9060000e+03 -3.1667949e-01 + 9.9064000e+03 -1.9667949e-01 + 9.9068000e+03 -5.3667949e-01 + 9.9072000e+03 -5.9667949e-01 + 9.9076000e+03 -6.1667949e-01 + 9.9080000e+03 -5.6667949e-01 + 9.9084000e+03 -4.6667949e-01 + 9.9088000e+03 -1.9667949e-01 + 9.9092000e+03 8.0332051e-01 + 9.9096000e+03 1.4633205e+00 + 9.9100000e+03 1.8033205e+00 + 9.9104000e+03 1.7233205e+00 + 9.9108000e+03 1.4833205e+00 + 9.9112000e+03 1.1633205e+00 + 9.9116000e+03 8.0332051e-01 + 9.9120000e+03 6.1332051e-01 + 9.9124000e+03 2.3332051e-01 + 9.9128000e+03 -2.6679487e-02 + 9.9132000e+03 -8.6679487e-02 + 9.9136000e+03 2.2332051e-01 + 9.9140000e+03 6.4332051e-01 + 9.9144000e+03 7.8332051e-01 + 9.9148000e+03 4.5332051e-01 + 9.9152000e+03 1.5332051e-01 + 9.9156000e+03 2.1332051e-01 + 9.9160000e+03 2.0332051e-01 + 9.9164000e+03 2.0332051e-01 + 9.9168000e+03 2.7332051e-01 + 9.9172000e+03 3.7332051e-01 + 9.9176000e+03 1.5332051e-01 + 9.9180000e+03 -1.5667949e-01 + 9.9184000e+03 -8.8667949e-01 + 9.9188000e+03 -1.1666795e+00 + 9.9192000e+03 -1.1766795e+00 + 9.9196000e+03 -7.4667949e-01 + 9.9200000e+03 -2.0667949e-01 + 9.9204000e+03 -7.6679487e-02 + 9.9208000e+03 3.7332051e-01 + 9.9212000e+03 1.9233205e+00 + 9.9216000e+03 1.8733205e+00 + 9.9220000e+03 1.8633205e+00 + 9.9224000e+03 1.8633205e+00 + 9.9228000e+03 1.6833205e+00 + 9.9232000e+03 -1.2366795e+00 + 9.9236000e+03 -1.5166795e+00 + 9.9240000e+03 -1.2566795e+00 + 9.9244000e+03 -8.1667949e-01 + 9.9248000e+03 -6.9667949e-01 + 9.9252000e+03 -2.2667949e-01 + 9.9256000e+03 5.0332051e-01 + 9.9260000e+03 3.6332051e-01 + 9.9264000e+03 4.1332051e-01 + 9.9268000e+03 2.5332051e-01 + 9.9272000e+03 -1.2066795e+00 + 9.9276000e+03 -1.5366795e+00 + 9.9280000e+03 -1.6966795e+00 + 9.9284000e+03 -1.6366795e+00 + 9.9288000e+03 -1.1166795e+00 + 9.9292000e+03 -7.9667949e-01 + 9.9296000e+03 -7.8667949e-01 + 9.9300000e+03 -7.7667949e-01 + 9.9304000e+03 -7.8667949e-01 + 9.9308000e+03 -7.7667949e-01 + 9.9312000e+03 1.1333205e+00 + 9.9316000e+03 3.6533205e+00 + 9.9320000e+03 3.2333205e+00 + 9.9324000e+03 2.8033205e+00 + 9.9328000e+03 2.2633205e+00 + 9.9332000e+03 1.7833205e+00 + 9.9336000e+03 1.6533205e+00 + 9.9340000e+03 1.6533205e+00 + 9.9344000e+03 1.6533205e+00 + 9.9348000e+03 1.6433205e+00 + 9.9352000e+03 1.6533205e+00 + 9.9356000e+03 1.6533205e+00 + 9.9360000e+03 1.6433205e+00 + 9.9364000e+03 -2.8667949e-01 + 9.9368000e+03 -2.7666795e+00 + 9.9372000e+03 -2.3066795e+00 + 9.9376000e+03 -1.4566795e+00 + 9.9380000e+03 -8.3667949e-01 + 9.9384000e+03 -3.5667949e-01 + 9.9388000e+03 7.3320513e-02 + 9.9392000e+03 3.9332051e-01 + 9.9396000e+03 4.7332051e-01 + 9.9400000e+03 4.7332051e-01 + 9.9404000e+03 1.9933205e+00 + 9.9408000e+03 2.4733205e+00 + 9.9412000e+03 2.6333205e+00 + 9.9416000e+03 2.7633205e+00 + 9.9420000e+03 2.6333205e+00 + 9.9424000e+03 2.2633205e+00 + 9.9428000e+03 2.2633205e+00 + 9.9432000e+03 2.2633205e+00 + 9.9436000e+03 2.2633205e+00 + 9.9440000e+03 2.2633205e+00 + 9.9444000e+03 2.2633205e+00 + 9.9448000e+03 1.9133205e+00 + 9.9452000e+03 -7.0667949e-01 + 9.9456000e+03 -1.0966795e+00 + 9.9460000e+03 -1.0866795e+00 + 9.9464000e+03 -1.1266795e+00 + 9.9468000e+03 -1.2066795e+00 + 9.9472000e+03 -1.3666795e+00 + 9.9476000e+03 -1.6266795e+00 + 9.9480000e+03 -1.8066795e+00 + 9.9484000e+03 -1.9466795e+00 + 9.9488000e+03 -1.7266795e+00 + 9.9492000e+03 -1.1566795e+00 + 9.9496000e+03 -6.3667949e-01 + 9.9500000e+03 -2.1667949e-01 + 9.9504000e+03 -1.6667949e-01 + 9.9508000e+03 -1.5667949e-01 + 9.9512000e+03 -1.5667949e-01 + 9.9516000e+03 -1.6667949e-01 + 9.9520000e+03 -1.5667949e-01 + 9.9524000e+03 -1.3667949e-01 + 9.9528000e+03 2.2833205e+00 + 9.9532000e+03 2.1233205e+00 + 9.9536000e+03 1.8233205e+00 + 9.9540000e+03 8.5332051e-01 + 9.9544000e+03 3.2332051e-01 + 9.9548000e+03 1.5332051e-01 + 9.9552000e+03 -1.6679487e-02 + 9.9556000e+03 -2.0667949e-01 + 9.9560000e+03 -1.0066795e+00 + 9.9564000e+03 -1.6966795e+00 + 9.9568000e+03 -1.8266795e+00 + 9.9572000e+03 -2.2566795e+00 + 9.9576000e+03 -2.2466795e+00 + 9.9580000e+03 -2.1766795e+00 + 9.9584000e+03 -1.6766795e+00 + 9.9588000e+03 -1.4466795e+00 + 9.9592000e+03 -1.4066795e+00 + 9.9596000e+03 5.9332051e-01 + 9.9600000e+03 3.7332051e-01 + 9.9604000e+03 1.2332051e-01 + 9.9608000e+03 2.1332051e-01 + 9.9612000e+03 6.5332051e-01 + 9.9616000e+03 1.4233205e+00 + 9.9620000e+03 2.2933205e+00 + 9.9624000e+03 2.8533205e+00 + 9.9628000e+03 3.1233205e+00 + 9.9632000e+03 2.8233205e+00 + 9.9636000e+03 2.8033205e+00 + 9.9640000e+03 2.8033205e+00 + 9.9644000e+03 4.9332051e-01 + 9.9648000e+03 -3.5667949e-01 + 9.9652000e+03 -3.3667949e-01 + 9.9656000e+03 -3.4667949e-01 + 9.9660000e+03 -2.6667949e-01 + 9.9664000e+03 3.3320513e-02 + 9.9668000e+03 4.0332051e-01 + 9.9672000e+03 5.0332051e-01 + 9.9676000e+03 5.0332051e-01 + 9.9680000e+03 5.4332051e-01 + 9.9684000e+03 1.9332051e-01 + 9.9688000e+03 1.1332051e-01 + 9.9692000e+03 -9.5667949e-01 + 9.9696000e+03 -2.6166795e+00 + 9.9700000e+03 -2.5266795e+00 + 9.9704000e+03 -2.2866795e+00 + 9.9708000e+03 -1.9166795e+00 + 9.9712000e+03 -1.6566795e+00 + 9.9716000e+03 -1.5766795e+00 + 9.9720000e+03 -1.3566795e+00 + 9.9724000e+03 -1.2766795e+00 + 9.9728000e+03 -1.2766795e+00 + 9.9732000e+03 9.3320513e-02 + 9.9736000e+03 7.7332051e-01 + 9.9740000e+03 1.1033205e+00 + 9.9744000e+03 1.1733205e+00 + 9.9748000e+03 2.7333205e+00 + 9.9752000e+03 1.8833205e+00 + 9.9756000e+03 1.2533205e+00 + 9.9760000e+03 5.8332051e-01 + 9.9764000e+03 4.1332051e-01 + 9.9768000e+03 5.4332051e-01 + 9.9772000e+03 7.0332051e-01 + 9.9776000e+03 9.4332051e-01 + 9.9780000e+03 1.3833205e+00 + 9.9784000e+03 1.6833205e+00 + 9.9788000e+03 1.5933205e+00 + 9.9792000e+03 1.1733205e+00 + 9.9796000e+03 5.8332051e-01 + 9.9800000e+03 -6.6679487e-02 + 9.9804000e+03 -4.4667949e-01 + 9.9808000e+03 -7.2667949e-01 + 9.9812000e+03 -6.9667949e-01 + 9.9816000e+03 -5.8667949e-01 + 9.9820000e+03 -4.9667949e-01 + 9.9824000e+03 -4.6667949e-01 + 9.9828000e+03 -5.8667949e-01 + 9.9832000e+03 -3.7667949e-01 + 9.9836000e+03 -6.6794872e-03 + 9.9840000e+03 -1.9667949e-01 + 9.9844000e+03 -1.9667949e-01 + 9.9848000e+03 -1.4667949e-01 + 9.9852000e+03 -3.2667949e-01 + 9.9856000e+03 -4.9667949e-01 + 9.9860000e+03 -6.9667949e-01 + 9.9864000e+03 -9.7667949e-01 + 9.9868000e+03 -6.5667949e-01 + 9.9872000e+03 -1.2667949e-01 + 9.9876000e+03 3.0332051e-01 + 9.9880000e+03 3.3332051e-01 + 9.9884000e+03 2.0033205e+00 + 9.9888000e+03 2.0033205e+00 + 9.9892000e+03 1.6033205e+00 + 9.9896000e+03 1.5733205e+00 + 9.9900000e+03 1.1633205e+00 + 9.9904000e+03 -5.2667949e-01 + 9.9908000e+03 -8.9667949e-01 + 9.9912000e+03 -7.5667949e-01 + 9.9916000e+03 -2.8667949e-01 + 9.9920000e+03 2.3320513e-02 + 9.9924000e+03 -9.6679487e-02 + 9.9928000e+03 -6.3667949e-01 + 9.9932000e+03 -1.0766795e+00 + 9.9936000e+03 -1.1566795e+00 + 9.9940000e+03 -8.4667949e-01 + 9.9944000e+03 -5.6667949e-01 + 9.9948000e+03 -5.0667949e-01 + 9.9952000e+03 -2.5667949e-01 + 9.9956000e+03 -2.1667949e-01 + 9.9960000e+03 5.3332051e-01 + 9.9964000e+03 1.6733205e+00 + 9.9968000e+03 1.5833205e+00 + 9.9972000e+03 1.3533205e+00 + 9.9976000e+03 1.1033205e+00 + 9.9980000e+03 1.0933205e+00 + 9.9984000e+03 1.0833205e+00 + 9.9988000e+03 2.2332051e-01 + 9.9992000e+03 -4.8667949e-01 + 9.9996000e+03 -6.6667949e-01 + 1.0000000e+04 -6.7667949e-01 + 1.0000400e+04 -6.7667949e-01 + 1.0000800e+04 -7.6667949e-01 + 1.0001200e+04 -4.1667949e-01 + 1.0001600e+04 -1.6667949e-01 + 1.0002000e+04 2.6332051e-01 + 1.0002400e+04 5.5332051e-01 + 1.0002800e+04 7.2332051e-01 + 1.0003200e+04 7.3332051e-01 + 1.0003600e+04 1.2133205e+00 + 1.0004000e+04 1.1033205e+00 + 1.0004400e+04 7.8332051e-01 + 1.0004800e+04 7.3320513e-02 + 1.0005200e+04 -3.2667949e-01 + 1.0005600e+04 -5.2667949e-01 + 1.0006000e+04 -3.2667949e-01 + 1.0006400e+04 -1.9667949e-01 + 1.0006800e+04 -3.7667949e-01 + 1.0007200e+04 -2.8667949e-01 + 1.0007600e+04 -1.6667949e-01 + 1.0008000e+04 5.3320513e-02 + 1.0008400e+04 3.0332051e-01 + 1.0008800e+04 1.1332051e-01 + 1.0009200e+04 -2.3667949e-01 + 1.0009600e+04 -7.5667949e-01 + 1.0010000e+04 -9.7667949e-01 + 1.0010400e+04 -6.6667949e-01 + 1.0010800e+04 1.2332051e-01 + 1.0011200e+04 1.0133205e+00 + 1.0011600e+04 1.3933205e+00 + 1.0012000e+04 1.4033205e+00 + 1.0012400e+04 1.3333205e+00 + 1.0012800e+04 1.0233205e+00 + 1.0013200e+04 7.2332051e-01 + 1.0013600e+04 2.2332051e-01 + 1.0014000e+04 1.3320513e-02 + 1.0014400e+04 -4.1667949e-01 + 1.0014800e+04 -6.4667949e-01 + 1.0015200e+04 -7.3667949e-01 + 1.0015600e+04 -8.3667949e-01 + 1.0016000e+04 -1.9266795e+00 + 1.0016400e+04 -1.9566795e+00 + 1.0016800e+04 -1.9466795e+00 + 1.0017200e+04 -1.6066795e+00 + 1.0017600e+04 -1.3666795e+00 + 1.0018000e+04 -9.7667949e-01 + 1.0018400e+04 -8.3667949e-01 + 1.0018800e+04 1.3320513e-02 + 1.0019200e+04 4.8332051e-01 + 1.0019600e+04 8.9332051e-01 + 1.0020000e+04 1.7833205e+00 + 1.0020400e+04 2.4033205e+00 + 1.0020800e+04 2.7133205e+00 + 1.0021200e+04 2.9833205e+00 + 1.0021600e+04 2.9333205e+00 + 1.0022000e+04 2.4633205e+00 + 1.0022400e+04 1.9533205e+00 + 1.0022800e+04 1.4233205e+00 + 1.0023200e+04 2.2332051e-01 + 1.0023600e+04 -2.2667949e-01 + 1.0024000e+04 -5.9667949e-01 + 1.0024400e+04 -7.2667949e-01 + 1.0024800e+04 -9.0667949e-01 + 1.0025200e+04 -6.4667949e-01 + 1.0025600e+04 -2.2667949e-01 + 1.0026000e+04 -2.1667949e-01 + 1.0026400e+04 -3.6667949e-01 + 1.0026800e+04 -5.5667949e-01 + 1.0027200e+04 -6.7667949e-01 + 1.0027600e+04 -7.9667949e-01 + 1.0028000e+04 -6.0667949e-01 + 1.0028400e+04 -1.9667949e-01 + 1.0028800e+04 1.0332051e-01 + 1.0029200e+04 5.3320513e-02 + 1.0029600e+04 -2.6679487e-02 + 1.0030000e+04 -2.6679487e-02 + 1.0030400e+04 -3.5667949e-01 + 1.0030800e+04 -6.9667949e-01 + 1.0031200e+04 -5.0667949e-01 + 1.0031600e+04 -2.7667949e-01 + 1.0032000e+04 -2.1667949e-01 + 1.0032400e+04 3.2332051e-01 + 1.0032800e+04 7.9332051e-01 + 1.0033200e+04 1.0233205e+00 + 1.0033600e+04 1.1633205e+00 + 1.0034000e+04 8.6332051e-01 + 1.0034400e+04 7.8332051e-01 + 1.0034800e+04 7.8332051e-01 + 1.0035200e+04 7.8332051e-01 + 1.0035600e+04 7.7332051e-01 + 1.0036000e+04 -1.1066795e+00 + 1.0036400e+04 -1.4866795e+00 + 1.0036800e+04 -9.1667949e-01 + 1.0037200e+04 -5.2667949e-01 + 1.0037600e+04 -3.1667949e-01 + 1.0038000e+04 -2.6667949e-01 + 1.0038400e+04 -9.6679487e-02 + 1.0038800e+04 -2.0667949e-01 + 1.0039200e+04 -2.4667949e-01 + 1.0039600e+04 -1.6679487e-02 + 1.0040000e+04 2.8332051e-01 + 1.0040400e+04 6.5332051e-01 + 1.0040800e+04 4.0332051e-01 + 1.0041200e+04 1.9332051e-01 + 1.0041600e+04 -1.6679487e-02 + 1.0042000e+04 -6.6794872e-03 + 1.0042400e+04 -1.6679487e-02 + 1.0042800e+04 -6.6794872e-03 + 1.0043200e+04 1.7332051e-01 + 1.0043600e+04 3.2332051e-01 + 1.0044000e+04 3.3332051e-01 + 1.0044400e+04 5.0332051e-01 + 1.0044800e+04 1.0933205e+00 + 1.0045200e+04 8.5332051e-01 + 1.0045600e+04 9.9332051e-01 + 1.0046000e+04 1.4533205e+00 + 1.0046400e+04 1.5533205e+00 + 1.0046800e+04 1.6133205e+00 + 1.0047200e+04 1.4733205e+00 + 1.0047600e+04 1.4933205e+00 + 1.0048000e+04 1.3433205e+00 + 1.0048400e+04 1.2933205e+00 + 1.0048800e+04 1.0533205e+00 + 1.0049200e+04 7.6332051e-01 + 1.0049600e+04 2.0332051e-01 + 1.0050000e+04 -4.4667949e-01 + 1.0050400e+04 -1.0666795e+00 + 1.0050800e+04 -1.9066795e+00 + 1.0051200e+04 -2.5466795e+00 + 1.0051600e+04 -2.7366795e+00 + 1.0052000e+04 -2.6466795e+00 + 1.0052400e+04 -2.6966795e+00 + 1.0052800e+04 -2.6366795e+00 + 1.0053200e+04 -2.8266795e+00 + 1.0053600e+04 -2.7666795e+00 + 1.0054000e+04 -2.5966795e+00 + 1.0054400e+04 -2.1466795e+00 + 1.0054800e+04 -1.4766795e+00 + 1.0055200e+04 -1.0166795e+00 + 1.0055600e+04 -4.9667949e-01 + 1.0056000e+04 1.2233205e+00 + 1.0056400e+04 2.0133205e+00 + 1.0056800e+04 2.4933205e+00 + 1.0057200e+04 3.0933205e+00 + 1.0057600e+04 3.6233205e+00 + 1.0058000e+04 3.4333205e+00 + 1.0058400e+04 2.9633205e+00 + 1.0058800e+04 2.2633205e+00 + 1.0059200e+04 1.6933205e+00 + 1.0059600e+04 1.6333205e+00 + 1.0060000e+04 1.1933205e+00 + 1.0060400e+04 8.3332051e-01 + 1.0060800e+04 6.8332051e-01 + 1.0061200e+04 3.0332051e-01 + 1.0061600e+04 2.8332051e-01 + 1.0062000e+04 2.5332051e-01 + 1.0062400e+04 -8.2667949e-01 + 1.0062800e+04 -9.8667949e-01 + 1.0063200e+04 -9.8667949e-01 + 1.0063600e+04 -1.0966795e+00 + 1.0064000e+04 -1.1666795e+00 + 1.0064400e+04 -7.3667949e-01 + 1.0064800e+04 -5.0667949e-01 + 1.0065200e+04 -4.7667949e-01 + 1.0065600e+04 -2.6667949e-01 + 1.0066000e+04 -6.6679487e-02 + 1.0066400e+04 3.3205128e-03 + 1.0066800e+04 8.3320513e-02 + 1.0067200e+04 8.5332051e-01 + 1.0067600e+04 1.4533205e+00 + 1.0068000e+04 1.6533205e+00 + 1.0068400e+04 1.9933205e+00 + 1.0068800e+04 2.0833205e+00 + 1.0069200e+04 2.1033205e+00 + 1.0069600e+04 2.2533205e+00 + 1.0070000e+04 2.0233205e+00 + 1.0070400e+04 1.3833205e+00 + 1.0070800e+04 1.1733205e+00 + 1.0071200e+04 1.1733205e+00 + 1.0071600e+04 1.1733205e+00 + 1.0072000e+04 1.1733205e+00 + 1.0072400e+04 4.9332051e-01 + 1.0072800e+04 -2.8166795e+00 + 1.0073200e+04 -3.1766795e+00 + 1.0073600e+04 -2.9266795e+00 + 1.0074000e+04 -2.4266795e+00 + 1.0074400e+04 -2.2866795e+00 + 1.0074800e+04 -2.1466795e+00 + 1.0075200e+04 -2.0066795e+00 + 1.0075600e+04 -1.7366795e+00 + 1.0076000e+04 -1.3866795e+00 + 1.0076400e+04 -9.6667949e-01 + 1.0076800e+04 -7.6667949e-01 + 1.0077200e+04 1.1332051e-01 + 1.0077600e+04 8.0332051e-01 + 1.0078000e+04 9.4332051e-01 + 1.0078400e+04 2.0833205e+00 + 1.0078800e+04 2.6333205e+00 + 1.0079200e+04 2.8933205e+00 + 1.0079600e+04 2.9933205e+00 + 1.0080000e+04 2.7633205e+00 + 1.0080400e+04 2.5133205e+00 + 1.0080800e+04 2.3233205e+00 + 1.0081200e+04 2.3933205e+00 + 1.0081600e+04 2.1733205e+00 + 1.0082000e+04 2.1733205e+00 + 1.0082400e+04 2.2133205e+00 + 1.0082800e+04 1.6733205e+00 + 1.0083200e+04 9.3332051e-01 + 1.0083600e+04 -6.3667949e-01 + 1.0084000e+04 -1.6466795e+00 + 1.0084400e+04 -1.8266795e+00 + 1.0084800e+04 -1.9066795e+00 + 1.0085200e+04 -1.8766795e+00 + 1.0085600e+04 -1.9466795e+00 + 1.0086000e+04 -1.7566795e+00 + 1.0086400e+04 -1.1766795e+00 + 1.0086800e+04 -6.2667949e-01 + 1.0087200e+04 -7.6667949e-01 + 1.0087600e+04 -1.3266795e+00 + 1.0088000e+04 -1.5666795e+00 + 1.0088400e+04 -1.4466795e+00 + 1.0088800e+04 -5.4667949e-01 + 1.0089200e+04 1.2332051e-01 + 1.0089600e+04 1.8332051e-01 + 1.0090000e+04 4.8332051e-01 + 1.0090400e+04 1.9633205e+00 + 1.0090800e+04 2.3033205e+00 + 1.0091200e+04 2.7633205e+00 + 1.0091600e+04 3.1033205e+00 + 1.0092000e+04 2.7733205e+00 + 1.0092400e+04 2.3833205e+00 + 1.0092800e+04 1.5433205e+00 + 1.0093200e+04 7.9332051e-01 + 1.0093600e+04 7.4332051e-01 + 1.0094000e+04 7.4332051e-01 + 1.0094400e+04 7.2332051e-01 + 1.0094800e+04 -3.2166795e+00 + 1.0095200e+04 -3.7766795e+00 + 1.0095600e+04 -3.4066795e+00 + 1.0096000e+04 -2.9666795e+00 + 1.0096400e+04 -1.7766795e+00 + 1.0096800e+04 -4.9667949e-01 + 1.0097200e+04 4.3332051e-01 + 1.0097600e+04 1.0733205e+00 + 1.0098000e+04 1.4333205e+00 + 1.0098400e+04 1.6033205e+00 + 1.0098800e+04 1.7633205e+00 + 1.0099200e+04 1.7633205e+00 + 1.0099600e+04 1.6933205e+00 + 1.0100000e+04 1.5933205e+00 + 1.0100400e+04 1.6133205e+00 + 1.0100800e+04 1.4933205e+00 + 1.0101200e+04 1.1833205e+00 + 1.0101600e+04 9.9332051e-01 + 1.0102000e+04 1.0533205e+00 + 1.0102400e+04 1.3933205e+00 + 1.0102800e+04 1.9433205e+00 + 1.0103200e+04 2.7033205e+00 + 1.0103600e+04 2.1133205e+00 + 1.0104000e+04 1.0333205e+00 + 1.0104400e+04 1.9332051e-01 + 1.0104800e+04 -4.4667949e-01 + 1.0105200e+04 -1.0866795e+00 + 1.0105600e+04 -1.7066795e+00 + 1.0106000e+04 -1.8666795e+00 + 1.0106400e+04 -2.0266795e+00 + 1.0106800e+04 -1.7566795e+00 + 1.0107200e+04 -1.5066795e+00 + 1.0107600e+04 -1.0366795e+00 + 1.0108000e+04 -9.1667949e-01 + 1.0108400e+04 -5.0667949e-01 + 1.0108800e+04 -9.6679487e-02 + 1.0109200e+04 -4.6679487e-02 + 1.0109600e+04 -4.6679487e-02 + 1.0110000e+04 1.8033205e+00 + 1.0110400e+04 1.4333205e+00 + 1.0110800e+04 7.3332051e-01 + 1.0111200e+04 1.8332051e-01 + 1.0111600e+04 -2.5667949e-01 + 1.0112000e+04 -6.2667949e-01 + 1.0112400e+04 -8.8667949e-01 + 1.0112800e+04 -1.0966795e+00 + 1.0113200e+04 -1.0766795e+00 + 1.0113600e+04 -1.2266795e+00 + 1.0114000e+04 -1.4566795e+00 + 1.0114400e+04 -1.5066795e+00 + 1.0114800e+04 -1.7666795e+00 + 1.0115200e+04 -2.1966795e+00 + 1.0115600e+04 -2.2266795e+00 + 1.0116000e+04 -1.8866795e+00 + 1.0116400e+04 -1.5866795e+00 + 1.0116800e+04 -9.1667949e-01 + 1.0117200e+04 -8.6679487e-02 + 1.0117600e+04 1.0332051e-01 + 1.0118000e+04 1.8332051e-01 + 1.0118400e+04 3.5933205e+00 + 1.0118800e+04 4.0733205e+00 + 1.0119200e+04 3.8533205e+00 + 1.0119600e+04 3.4633205e+00 + 1.0120000e+04 3.1233205e+00 + 1.0120400e+04 2.3633205e+00 + 1.0120800e+04 1.7333205e+00 + 1.0121200e+04 1.3033205e+00 + 1.0121600e+04 1.0333205e+00 + 1.0122000e+04 1.3033205e+00 + 1.0122400e+04 8.5332051e-01 + 1.0122800e+04 1.4332051e-01 + 1.0123200e+04 -6.9667949e-01 + 1.0123600e+04 -1.2766795e+00 + 1.0124000e+04 -1.6566795e+00 + 1.0124400e+04 -1.9566795e+00 + 1.0124800e+04 -2.1666795e+00 + 1.0125200e+04 -2.4166795e+00 + 1.0125600e+04 -2.4566795e+00 + 1.0126000e+04 -2.5566795e+00 + 1.0126400e+04 -2.1966795e+00 + 1.0126800e+04 -1.7366795e+00 + 1.0127200e+04 -6.1667949e-01 + 1.0127600e+04 4.8332051e-01 + 1.0128000e+04 6.3332051e-01 + 1.0128400e+04 2.4233205e+00 + 1.0128800e+04 2.9733205e+00 + 1.0129200e+04 3.0433205e+00 + 1.0129600e+04 2.7733205e+00 + 1.0130000e+04 2.1933205e+00 + 1.0130400e+04 1.6333205e+00 + 1.0130800e+04 1.3233205e+00 + 1.0131200e+04 3.7332051e-01 + 1.0131600e+04 -6.9667949e-01 + 1.0132000e+04 -1.4466795e+00 + 1.0132400e+04 -1.8766795e+00 + 1.0132800e+04 -2.0966795e+00 + 1.0133200e+04 -1.8466795e+00 + 1.0133600e+04 -1.9466795e+00 + 1.0134000e+04 -1.8066795e+00 + 1.0134400e+04 -1.3866795e+00 + 1.0134800e+04 -9.6667949e-01 + 1.0135200e+04 -8.3667949e-01 + 1.0135600e+04 -6.7667949e-01 + 1.0136000e+04 -6.4667949e-01 + 1.0136400e+04 -7.1667949e-01 + 1.0136800e+04 -6.6667949e-01 + 1.0137200e+04 -3.8667949e-01 + 1.0137600e+04 2.4332051e-01 + 1.0138000e+04 1.2033205e+00 + 1.0138400e+04 2.0433205e+00 + 1.0138800e+04 2.5233205e+00 + 1.0139200e+04 2.8533205e+00 + 1.0139600e+04 2.8433205e+00 + 1.0140000e+04 2.7333205e+00 + 1.0140400e+04 2.3433205e+00 + 1.0140800e+04 1.9033205e+00 + 1.0141200e+04 1.3033205e+00 + 1.0141600e+04 9.0332051e-01 + 1.0142000e+04 5.8332051e-01 + 1.0142400e+04 4.2332051e-01 + 1.0142800e+04 5.7332051e-01 + 1.0143200e+04 3.4332051e-01 + 1.0143600e+04 -2.5667949e-01 + 1.0144000e+04 -8.1667949e-01 + 1.0144400e+04 -1.3766795e+00 + 1.0144800e+04 -1.6666795e+00 + 1.0145200e+04 -1.6366795e+00 + 1.0145600e+04 -1.2466795e+00 + 1.0146000e+04 -8.7667949e-01 + 1.0146400e+04 -4.0667949e-01 + 1.0146800e+04 1.7332051e-01 + 1.0147200e+04 5.3320513e-02 + 1.0147600e+04 -1.9667949e-01 + 1.0148000e+04 -6.1667949e-01 + 1.0148400e+04 -3.4667949e-01 + 1.0148800e+04 -1.1667949e-01 + 1.0149200e+04 3.6332051e-01 + 1.0149600e+04 9.7332051e-01 + 1.0150000e+04 1.0433205e+00 + 1.0150400e+04 1.0433205e+00 + 1.0150800e+04 9.0332051e-01 + 1.0151200e+04 9.3332051e-01 + 1.0151600e+04 5.9332051e-01 + 1.0152000e+04 -8.6679487e-02 + 1.0152400e+04 -3.1667949e-01 + 1.0152800e+04 -3.2667949e-01 + 1.0153200e+04 -1.9667949e-01 + 1.0153600e+04 -2.1667949e-01 + 1.0154000e+04 -3.4667949e-01 + 1.0154400e+04 -4.7667949e-01 + 1.0154800e+04 -7.0667949e-01 + 1.0155200e+04 -9.4667949e-01 + 1.0155600e+04 -8.6667949e-01 + 1.0156000e+04 -5.8667949e-01 + 1.0156400e+04 -7.4667949e-01 + 1.0156800e+04 -1.0166795e+00 + 1.0157200e+04 -1.2966795e+00 + 1.0157600e+04 -1.1566795e+00 + 1.0158000e+04 -1.0066795e+00 + 1.0158400e+04 -5.2667949e-01 + 1.0158800e+04 -1.0667949e-01 + 1.0159200e+04 -2.1667949e-01 + 1.0159600e+04 -1.9667949e-01 + 1.0160000e+04 3.5332051e-01 + 1.0160400e+04 1.0533205e+00 + 1.0160800e+04 1.7533205e+00 + 1.0161200e+04 2.1133205e+00 + 1.0161600e+04 3.4733205e+00 + 1.0162000e+04 3.3533205e+00 + 1.0162400e+04 2.8633205e+00 + 1.0162800e+04 2.4033205e+00 + 1.0163200e+04 1.6233205e+00 + 1.0163600e+04 9.6332051e-01 + 1.0164000e+04 7.2332051e-01 + 1.0164400e+04 6.2332051e-01 + 1.0164800e+04 7.1332051e-01 + 1.0165200e+04 9.0332051e-01 + 1.0165600e+04 6.0332051e-01 + 1.0166000e+04 2.2332051e-01 + 1.0166400e+04 -1.4667949e-01 + 1.0166800e+04 -7.0667949e-01 + 1.0167200e+04 -8.6667949e-01 + 1.0167600e+04 -9.6667949e-01 + 1.0168000e+04 -1.1366795e+00 + 1.0168400e+04 -2.0566795e+00 + 1.0168800e+04 -2.6466795e+00 + 1.0169200e+04 -2.6166795e+00 + 1.0169600e+04 -2.3166795e+00 + 1.0170000e+04 -1.7866795e+00 + 1.0170400e+04 -1.4866795e+00 + 1.0170800e+04 -9.7667949e-01 + 1.0171200e+04 -2.1667949e-01 + 1.0171600e+04 1.6332051e-01 + 1.0172000e+04 1.9332051e-01 + 1.0172400e+04 1.9332051e-01 + 1.0172800e+04 1.4533205e+00 + 1.0173200e+04 1.7133205e+00 + 1.0173600e+04 1.4333205e+00 + 1.0174000e+04 8.9332051e-01 + 1.0174400e+04 1.5332051e-01 + 1.0174800e+04 -6.7667949e-01 + 1.0175200e+04 -1.1166795e+00 + 1.0175600e+04 -1.8166795e+00 + 1.0176000e+04 -2.4966795e+00 + 1.0176400e+04 -2.8166795e+00 + 1.0176800e+04 -2.8666795e+00 + 1.0177200e+04 -2.8766795e+00 + 1.0177600e+04 -2.4966795e+00 + 1.0178000e+04 -2.3066795e+00 + 1.0178400e+04 -1.6666795e+00 + 1.0178800e+04 -1.4466795e+00 + 1.0179200e+04 1.1332051e-01 + 1.0179600e+04 1.5833205e+00 + 1.0180000e+04 2.4133205e+00 + 1.0180400e+04 2.9333205e+00 + 1.0180800e+04 3.2633205e+00 + 1.0181200e+04 3.8333205e+00 + 1.0181600e+04 4.2333205e+00 + 1.0182000e+04 4.2033205e+00 + 1.0182400e+04 4.0133205e+00 + 1.0182800e+04 3.6333205e+00 + 1.0183200e+04 2.9033205e+00 + 1.0183600e+04 2.3633205e+00 + 1.0184000e+04 2.1733205e+00 + 1.0184400e+04 2.1533205e+00 + 1.0184800e+04 2.1533205e+00 + 1.0185200e+04 1.0833205e+00 + 1.0185600e+04 -2.6679487e-02 + 1.0186000e+04 -5.4667949e-01 + 1.0186400e+04 -1.8766795e+00 + 1.0186800e+04 -3.3066795e+00 + 1.0187200e+04 -4.2066795e+00 + 1.0187600e+04 -4.3366795e+00 + 1.0188000e+04 -4.4466795e+00 + 1.0188400e+04 -4.7766795e+00 + 1.0188800e+04 -4.9466795e+00 + 1.0189200e+04 -4.2866795e+00 + 1.0189600e+04 -3.3166795e+00 + 1.0190000e+04 -2.0366795e+00 + 1.0190400e+04 -8.6667949e-01 + 1.0190800e+04 -1.1667949e-01 + 1.0191200e+04 3.9332051e-01 + 1.0191600e+04 1.2433205e+00 + 1.0192000e+04 1.7833205e+00 + 1.0192400e+04 1.9933205e+00 + 1.0192800e+04 2.0033205e+00 + 1.0193200e+04 1.8333205e+00 + 1.0193600e+04 1.5333205e+00 + 1.0194000e+04 5.8332051e-01 + 1.0194400e+04 1.9332051e-01 + 1.0194800e+04 1.1332051e-01 + 1.0195200e+04 4.1332051e-01 + 1.0195600e+04 6.2332051e-01 + 1.0196000e+04 4.6332051e-01 + 1.0196400e+04 1.8332051e-01 + 1.0196800e+04 1.4332051e-01 + 1.0197200e+04 2.3332051e-01 + 1.0197600e+04 5.5332051e-01 + 1.0198000e+04 1.4833205e+00 + 1.0198400e+04 1.8333205e+00 + 1.0198800e+04 1.8633205e+00 + 1.0199200e+04 1.4933205e+00 + 1.0199600e+04 1.3533205e+00 + 1.0200000e+04 9.5332051e-01 + 1.0200400e+04 9.9332051e-01 + 1.0200800e+04 1.4433205e+00 + 1.0201200e+04 1.5733205e+00 + 1.0201600e+04 2.0733205e+00 + 1.0202000e+04 1.9133205e+00 + 1.0202400e+04 1.4333205e+00 + 1.0202800e+04 7.1332051e-01 + 1.0203200e+04 7.3320513e-02 + 1.0203600e+04 -2.4667949e-01 + 1.0204000e+04 -3.6667949e-01 + 1.0204400e+04 -1.6667949e-01 + 1.0204800e+04 -6.6794872e-03 + 1.0205200e+04 1.0332051e-01 + 1.0205600e+04 2.6332051e-01 + 1.0206000e+04 -1.1667949e-01 + 1.0206400e+04 -3.4667949e-01 + 1.0206800e+04 -9.2667949e-01 + 1.0207200e+04 -1.7366795e+00 + 1.0207600e+04 -2.2666795e+00 + 1.0208000e+04 -2.6666795e+00 + 1.0208400e+04 -2.6666795e+00 + 1.0208800e+04 -2.5266795e+00 + 1.0209200e+04 -2.1066795e+00 + 1.0209600e+04 -1.7466795e+00 + 1.0210000e+04 -1.8666795e+00 + 1.0210400e+04 -1.7766795e+00 + 1.0210800e+04 -1.8866795e+00 + 1.0211200e+04 -1.6466795e+00 + 1.0211600e+04 -9.2667949e-01 + 1.0212000e+04 -2.3667949e-01 + 1.0212400e+04 2.0332051e-01 + 1.0212800e+04 5.5332051e-01 + 1.0213200e+04 8.2332051e-01 + 1.0213600e+04 1.0533205e+00 + 1.0214000e+04 1.1233205e+00 + 1.0214400e+04 8.7332051e-01 + 1.0214800e+04 8.6332051e-01 + 1.0215200e+04 8.5332051e-01 + 1.0215600e+04 6.7332051e-01 + 1.0216000e+04 6.6332051e-01 + 1.0216400e+04 8.8332051e-01 + 1.0216800e+04 1.4333205e+00 + 1.0217200e+04 2.0433205e+00 + 1.0217600e+04 3.6533205e+00 + 1.0218000e+04 4.0533205e+00 + 1.0218400e+04 3.7133205e+00 + 1.0218800e+04 3.4733205e+00 + 1.0219200e+04 3.1133205e+00 + 1.0219600e+04 2.3233205e+00 + 1.0220000e+04 1.9033205e+00 + 1.0220400e+04 1.5533205e+00 + 1.0220800e+04 1.2833205e+00 + 1.0221200e+04 8.5332051e-01 + 1.0221600e+04 5.1332051e-01 + 1.0222000e+04 2.7332051e-01 + 1.0222400e+04 -1.9667949e-01 + 1.0222800e+04 -3.8667949e-01 + 1.0223200e+04 -1.6666795e+00 + 1.0223600e+04 -2.3466795e+00 + 1.0224000e+04 -2.9066795e+00 + 1.0224400e+04 -3.1766795e+00 + 1.0224800e+04 -3.0566795e+00 + 1.0225200e+04 -2.7166795e+00 + 1.0225600e+04 -2.2566795e+00 + 1.0226000e+04 -1.9666795e+00 + 1.0226400e+04 -1.2466795e+00 + 1.0226800e+04 -1.3667949e-01 + 1.0227200e+04 9.8332051e-01 + 1.0227600e+04 1.6033205e+00 + 1.0228000e+04 1.7933205e+00 + 1.0228400e+04 2.0033205e+00 + 1.0228800e+04 1.4633205e+00 + 1.0229200e+04 6.5332051e-01 + 1.0229600e+04 -5.6679487e-02 + 1.0230000e+04 -2.2667949e-01 + 1.0230400e+04 -3.6667949e-01 + 1.0230800e+04 -4.0667949e-01 + 1.0231200e+04 -4.0667949e-01 + 1.0231600e+04 -6.6667949e-01 + 1.0232000e+04 -1.4166795e+00 + 1.0232400e+04 -1.4566795e+00 + 1.0232800e+04 -1.2066795e+00 + 1.0233200e+04 -9.4667949e-01 + 1.0233600e+04 -7.8667949e-01 + 1.0234000e+04 5.3332051e-01 + 1.0234400e+04 6.0332051e-01 + 1.0234800e+04 6.8332051e-01 + 1.0235200e+04 8.4332051e-01 + 1.0235600e+04 8.9332051e-01 + 1.0236000e+04 1.2233205e+00 + 1.0236400e+04 1.6433205e+00 + 1.0236800e+04 2.0333205e+00 + 1.0237200e+04 2.7333205e+00 + 1.0237600e+04 3.5833205e+00 + 1.0238000e+04 3.9633205e+00 + 1.0238400e+04 3.3433205e+00 + 1.0238800e+04 3.2633205e+00 + 1.0239200e+04 3.0133205e+00 + 1.0239600e+04 6.6332051e-01 + 1.0240000e+04 -9.6679487e-02 + 1.0240400e+04 -5.1667949e-01 + 1.0240800e+04 -2.8667949e-01 + 1.0241200e+04 -1.3667949e-01 + 1.0241600e+04 -1.5667949e-01 + 1.0242000e+04 1.3332051e-01 + 1.0242400e+04 2.7332051e-01 + 1.0242800e+04 -1.9667949e-01 + 1.0243200e+04 -4.7667949e-01 + 1.0243600e+04 -3.8667949e-01 + 1.0244000e+04 -1.5667949e-01 + 1.0244400e+04 -4.8667949e-01 + 1.0244800e+04 -1.1666795e+00 + 1.0245200e+04 -1.4466795e+00 + 1.0245600e+04 -2.3666795e+00 + 1.0246000e+04 -2.2166795e+00 + 1.0246400e+04 -1.4766795e+00 + 1.0246800e+04 -6.4667949e-01 + 1.0247200e+04 9.3320513e-02 + 1.0247600e+04 5.1332051e-01 + 1.0248000e+04 5.2332051e-01 + 1.0248400e+04 2.7332051e-01 + 1.0248800e+04 -3.4667949e-01 + 1.0249200e+04 -6.4667949e-01 + 1.0249600e+04 -5.2667949e-01 + 1.0250000e+04 -1.7667949e-01 + 1.0250400e+04 3.4332051e-01 + 1.0250800e+04 9.5332051e-01 + 1.0251200e+04 1.5733205e+00 + 1.0251600e+04 1.8033205e+00 + 1.0252000e+04 1.4933205e+00 + 1.0252400e+04 9.3332051e-01 + 1.0252800e+04 5.8332051e-01 + 1.0253200e+04 1.1332051e-01 + 1.0253600e+04 -4.2667949e-01 + 1.0254000e+04 -8.4667949e-01 + 1.0254400e+04 -9.5667949e-01 + 1.0254800e+04 -8.5667949e-01 + 1.0255200e+04 -1.1266795e+00 + 1.0255600e+04 -1.2966795e+00 + 1.0256000e+04 -1.1966795e+00 + 1.0256400e+04 -1.0566795e+00 + 1.0256800e+04 -7.0667949e-01 + 1.0257200e+04 -1.3667949e-01 + 1.0257600e+04 6.7332051e-01 + 1.0258000e+04 1.6833205e+00 + 1.0258400e+04 2.1233205e+00 + 1.0258800e+04 2.4233205e+00 + 1.0259200e+04 2.9633205e+00 + 1.0259600e+04 2.8633205e+00 + 1.0260000e+04 2.4633205e+00 + 1.0260400e+04 1.8033205e+00 + 1.0260800e+04 1.5933205e+00 + 1.0261200e+04 7.1332051e-01 + 1.0261600e+04 1.9332051e-01 + 1.0262000e+04 1.3332051e-01 + 1.0262400e+04 2.3332051e-01 + 1.0262800e+04 4.5332051e-01 + 1.0263200e+04 6.3332051e-01 + 1.0263600e+04 8.3332051e-01 + 1.0264000e+04 8.4332051e-01 + 1.0264400e+04 6.7332051e-01 + 1.0264800e+04 6.1332051e-01 + 1.0265200e+04 5.5332051e-01 + 1.0265600e+04 2.6332051e-01 + 1.0266000e+04 1.4332051e-01 + 1.0266400e+04 -2.6667949e-01 + 1.0266800e+04 -4.2667949e-01 + 1.0267200e+04 -1.3166795e+00 + 1.0267600e+04 -1.6066795e+00 + 1.0268000e+04 -1.3566795e+00 + 1.0268400e+04 -7.2667949e-01 + 1.0268800e+04 -5.9667949e-01 + 1.0269200e+04 -7.8667949e-01 + 1.0269600e+04 -1.2166795e+00 + 1.0270000e+04 -2.0466795e+00 + 1.0270400e+04 -2.3166795e+00 + 1.0270800e+04 -2.4066795e+00 + 1.0271200e+04 -2.7466795e+00 + 1.0271600e+04 -2.9166795e+00 + 1.0272000e+04 -2.6466795e+00 + 1.0272400e+04 -2.1066795e+00 + 1.0272800e+04 -1.8266795e+00 + 1.0273200e+04 -3.6679487e-02 + 1.0273600e+04 1.2033205e+00 + 1.0274000e+04 1.6633205e+00 + 1.0274400e+04 3.4033205e+00 + 1.0274800e+04 3.5833205e+00 + 1.0275200e+04 3.5833205e+00 + 1.0275600e+04 3.3733205e+00 + 1.0276000e+04 3.5533205e+00 + 1.0276400e+04 3.8033205e+00 + 1.0276800e+04 3.5433205e+00 + 1.0277200e+04 2.8433205e+00 + 1.0277600e+04 2.5733205e+00 + 1.0278000e+04 2.5533205e+00 + 1.0278400e+04 5.1332051e-01 + 1.0278800e+04 -1.2066795e+00 + 1.0279200e+04 -1.3766795e+00 + 1.0279600e+04 -1.1966795e+00 + 1.0280000e+04 -7.9667949e-01 + 1.0280400e+04 -3.6667949e-01 + 1.0280800e+04 -2.3667949e-01 + 1.0281200e+04 3.0332051e-01 + 1.0281600e+04 2.0332051e-01 + 1.0282000e+04 -8.6679487e-02 + 1.0282400e+04 -1.5667949e-01 + 1.0282800e+04 1.3332051e-01 + 1.0283200e+04 3.0332051e-01 + 1.0283600e+04 6.4332051e-01 + 1.0284000e+04 1.1133205e+00 + 1.0284400e+04 1.2733205e+00 + 1.0284800e+04 9.7332051e-01 + 1.0285200e+04 6.7332051e-01 + 1.0285600e+04 2.3320513e-02 + 1.0286000e+04 -1.9667949e-01 + 1.0286400e+04 -1.6667949e-01 + 1.0286800e+04 3.3205128e-03 + 1.0287200e+04 2.6332051e-01 + 1.0287600e+04 2.9332051e-01 + 1.0288000e+04 -1.7667949e-01 + 1.0288400e+04 -7.0667949e-01 + 1.0288800e+04 -8.7667949e-01 + 1.0289200e+04 -9.4667949e-01 + 1.0289600e+04 -9.4667949e-01 + 1.0290000e+04 -1.6966795e+00 + 1.0290400e+04 -1.8766795e+00 + 1.0290800e+04 -1.8766795e+00 + 1.0291200e+04 -2.1466795e+00 + 1.0291600e+04 -3.1166795e+00 + 1.0292000e+04 -2.7366795e+00 + 1.0292400e+04 -2.6766795e+00 + 1.0292800e+04 -2.6666795e+00 + 1.0293200e+04 -2.6666795e+00 + 1.0293600e+04 -2.6666795e+00 + 1.0294000e+04 -2.6666795e+00 + 1.0294400e+04 -2.6666795e+00 + 1.0294800e+04 3.3205128e-03 + 1.0295200e+04 1.5833205e+00 + 1.0295600e+04 1.7933205e+00 + 1.0296000e+04 2.7133205e+00 + 1.0296400e+04 3.1533205e+00 + 1.0296800e+04 3.5733205e+00 + 1.0297200e+04 3.1733205e+00 + 1.0297600e+04 2.9833205e+00 + 1.0298000e+04 2.9233205e+00 + 1.0298400e+04 2.9033205e+00 + 1.0298800e+04 2.5833205e+00 + 1.0299200e+04 2.1233205e+00 + 1.0299600e+04 1.9733205e+00 + 1.0300000e+04 1.9733205e+00 + 1.0300400e+04 1.0533205e+00 + 1.0300800e+04 4.0332051e-01 + 1.0301200e+04 3.6332051e-01 + 1.0301600e+04 5.7332051e-01 + 1.0302000e+04 9.1332051e-01 + 1.0302400e+04 1.1233205e+00 + 1.0302800e+04 7.1332051e-01 + 1.0303200e+04 1.3320513e-02 + 1.0303600e+04 -1.0666795e+00 + 1.0304000e+04 -2.2266795e+00 + 1.0304400e+04 -2.6766795e+00 + 1.0304800e+04 -2.7366795e+00 + 1.0305200e+04 -2.6566795e+00 + 1.0305600e+04 -2.8066795e+00 + 1.0306000e+04 -2.9466795e+00 + 1.0306400e+04 -3.1066795e+00 + 1.0306800e+04 -3.0266795e+00 + 1.0307200e+04 -2.9066795e+00 + 1.0307600e+04 -2.5766795e+00 + 1.0308000e+04 -2.4266795e+00 + 1.0308400e+04 -2.0766795e+00 + 1.0308800e+04 -1.6266795e+00 + 1.0309200e+04 -8.4667949e-01 + 1.0309600e+04 -9.6679487e-02 + 1.0310000e+04 8.0332051e-01 + 1.0310400e+04 1.1933205e+00 + 1.0310800e+04 3.0133205e+00 + 1.0311200e+04 3.4133205e+00 + 1.0311600e+04 2.7733205e+00 + 1.0312000e+04 2.5533205e+00 + 1.0312400e+04 2.5533205e+00 + 1.0312800e+04 2.5533205e+00 + 1.0313200e+04 9.3332051e-01 + 1.0313600e+04 4.1332051e-01 + 1.0314000e+04 2.3332051e-01 + 1.0314400e+04 1.1332051e-01 + 1.0314800e+04 3.0332051e-01 + 1.0315200e+04 5.2332051e-01 + 1.0315600e+04 7.6332051e-01 + 1.0316000e+04 7.7332051e-01 + 1.0316400e+04 1.0733205e+00 + 1.0316800e+04 1.3333205e+00 + 1.0317200e+04 1.5733205e+00 + 1.0317600e+04 1.6333205e+00 + 1.0318000e+04 2.2933205e+00 + 1.0318400e+04 2.5333205e+00 + 1.0318800e+04 2.6633205e+00 + 1.0319200e+04 2.3733205e+00 + 1.0319600e+04 1.4633205e+00 + 1.0320000e+04 6.5332051e-01 + 1.0320400e+04 4.2332051e-01 + 1.0320800e+04 4.1332051e-01 + 1.0321200e+04 1.9332051e-01 + 1.0321600e+04 8.3320513e-02 + 1.0322000e+04 -1.6667949e-01 + 1.0322400e+04 -3.0667949e-01 + 1.0322800e+04 -3.1667949e-01 + 1.0323200e+04 -3.1667949e-01 + 1.0323600e+04 -1.2866795e+00 + 1.0324000e+04 -2.8066795e+00 + 1.0324400e+04 -2.6166795e+00 + 1.0324800e+04 -2.4566795e+00 + 1.0325200e+04 -2.8866795e+00 + 1.0325600e+04 -3.2666795e+00 + 1.0326000e+04 -3.8566795e+00 + 1.0326400e+04 -3.9066795e+00 + 1.0326800e+04 -3.5466795e+00 + 1.0327200e+04 -3.4066795e+00 + 1.0327600e+04 -3.3666795e+00 + 1.0328000e+04 -9.2667949e-01 + 1.0328400e+04 -6.3667949e-01 + 1.0328800e+04 -6.2667949e-01 + 1.0329200e+04 -6.2667949e-01 + 1.0329600e+04 -6.2667949e-01 + 1.0330000e+04 3.2633205e+00 + 1.0330400e+04 3.8433205e+00 + 1.0330800e+04 3.2533205e+00 + 1.0331200e+04 2.9333205e+00 + 1.0331600e+04 2.7433205e+00 + 1.0332000e+04 2.5133205e+00 + 1.0332400e+04 2.1733205e+00 + 1.0332800e+04 1.4233205e+00 + 1.0333200e+04 1.1633205e+00 + 1.0333600e+04 -3.6667949e-01 + 1.0334000e+04 -1.2666795e+00 + 1.0334400e+04 -1.3066795e+00 + 1.0334800e+04 -1.6166795e+00 + 1.0335200e+04 -2.0066795e+00 + 1.0335600e+04 -2.0666795e+00 + 1.0336000e+04 -1.7166795e+00 + 1.0336400e+04 -1.4166795e+00 + 1.0336800e+04 -1.4066795e+00 + 1.0337200e+04 -1.4066795e+00 + 1.0337600e+04 -1.4066795e+00 + 1.0338000e+04 -1.4066795e+00 + 1.0338400e+04 -1.4066795e+00 + 1.0338800e+04 -1.4066795e+00 + 1.0339200e+04 -4.0667949e-01 + 1.0339600e+04 3.8533205e+00 + 1.0340000e+04 3.9433205e+00 + 1.0340400e+04 4.5133205e+00 + 1.0340800e+04 4.0833205e+00 + 1.0341200e+04 1.9833205e+00 + 1.0341600e+04 1.2433205e+00 + 1.0342000e+04 1.2133205e+00 + 1.0342400e+04 1.2133205e+00 + 1.0342800e+04 1.2133205e+00 + 1.0343200e+04 1.2133205e+00 + 1.0343600e+04 1.2133205e+00 + 1.0344000e+04 1.2133205e+00 + 1.0344400e+04 1.2133205e+00 + 1.0344800e+04 1.2133205e+00 + 1.0345200e+04 -2.4466795e+00 + 1.0345600e+04 -3.9466795e+00 + 1.0346000e+04 -3.5566795e+00 + 1.0346400e+04 -3.5166795e+00 + 1.0346800e+04 -3.5166795e+00 + 1.0347200e+04 -3.5066795e+00 + 1.0347600e+04 1.5733205e+00 + 1.0348000e+04 3.1133205e+00 + 1.0348400e+04 3.6433205e+00 + 1.0348800e+04 5.1133205e+00 + 1.0349200e+04 5.2233205e+00 + 1.0349600e+04 6.5233205e+00 + 1.0350000e+04 6.1133205e+00 + 1.0350400e+04 4.8433205e+00 + 1.0350800e+04 3.5533205e+00 + 1.0351200e+04 2.9233205e+00 + 1.0351600e+04 2.4733205e+00 + 1.0352000e+04 4.3320513e-02 + 1.0352400e+04 -2.4667949e-01 + 1.0352800e+04 -5.9667949e-01 + 1.0353200e+04 -1.1966795e+00 + 1.0353600e+04 -1.9466795e+00 + 1.0354000e+04 -2.4666795e+00 + 1.0354400e+04 -2.6566795e+00 + 1.0354800e+04 -2.5366795e+00 + 1.0355200e+04 -2.0366795e+00 + 1.0355600e+04 -1.7166795e+00 + 1.0356000e+04 -1.4266795e+00 + 1.0356400e+04 -1.1366795e+00 + 1.0356800e+04 -1.1066795e+00 + 1.0357200e+04 -3.0667949e-01 + 1.0357600e+04 9.2332051e-01 + 1.0358000e+04 9.5332051e-01 + 1.0358400e+04 1.2933205e+00 + 1.0358800e+04 1.5533205e+00 + 1.0359200e+04 1.9933205e+00 + 1.0359600e+04 2.0133205e+00 + 1.0360000e+04 1.6433205e+00 + 1.0360400e+04 1.3033205e+00 + 1.0360800e+04 7.1332051e-01 + 1.0361200e+04 2.7332051e-01 + 1.0361600e+04 -5.5667949e-01 + 1.0362000e+04 -1.5366795e+00 + 1.0362400e+04 -2.4066795e+00 + 1.0362800e+04 -2.7966795e+00 + 1.0363200e+04 -2.6066795e+00 + 1.0363600e+04 -2.4466795e+00 + 1.0364000e+04 -2.8266795e+00 + 1.0364400e+04 -2.8366795e+00 + 1.0364800e+04 -2.7666795e+00 + 1.0365200e+04 -2.3066795e+00 + 1.0365600e+04 -1.8566795e+00 + 1.0366000e+04 -1.1566795e+00 + 1.0366400e+04 -3.9667949e-01 + 1.0366800e+04 2.3320513e-02 + 1.0367200e+04 5.0332051e-01 + 1.0367600e+04 8.0332051e-01 + 1.0368000e+04 9.3332051e-01 + 1.0368400e+04 1.3833205e+00 + 1.0368800e+04 2.0233205e+00 + 1.0369200e+04 2.5933205e+00 + 1.0369600e+04 3.0833205e+00 + 1.0370000e+04 3.4633205e+00 + 1.0370400e+04 3.7533205e+00 + 1.0370800e+04 4.0233205e+00 + 1.0371200e+04 3.9233205e+00 + 1.0371600e+04 4.0133205e+00 + 1.0372000e+04 3.3633205e+00 + 1.0372400e+04 2.5133205e+00 + 1.0372800e+04 1.6133205e+00 + 1.0373200e+04 7.4332051e-01 + 1.0373600e+04 4.0332051e-01 + 1.0374000e+04 3.3320513e-02 + 1.0374400e+04 -6.6667949e-01 + 1.0374800e+04 -1.4866795e+00 + 1.0375200e+04 -1.6266795e+00 + 1.0375600e+04 -3.5566795e+00 + 1.0376000e+04 -3.7966795e+00 + 1.0376400e+04 -3.2866795e+00 + 1.0376800e+04 -2.8066795e+00 + 1.0377200e+04 -2.2366795e+00 + 1.0377600e+04 -1.8466795e+00 + 1.0378000e+04 -1.7966795e+00 + 1.0378400e+04 -1.6766795e+00 + 1.0378800e+04 -1.4766795e+00 + 1.0379200e+04 -1.1566795e+00 + 1.0379600e+04 -8.1667949e-01 + 1.0380000e+04 -1.2667949e-01 + 1.0380400e+04 5.3332051e-01 + 1.0380800e+04 1.2633205e+00 + 1.0381200e+04 1.8033205e+00 + 1.0381600e+04 2.0933205e+00 + 1.0382000e+04 1.8733205e+00 + 1.0382400e+04 1.7933205e+00 + 1.0382800e+04 1.7533205e+00 + 1.0383200e+04 1.7633205e+00 + 1.0383600e+04 1.4833205e+00 + 1.0384000e+04 1.2733205e+00 + 1.0384400e+04 1.0833205e+00 + 1.0384800e+04 7.8332051e-01 + 1.0385200e+04 4.4332051e-01 + 1.0385600e+04 3.5332051e-01 + 1.0386000e+04 -9.6679487e-02 + 1.0386400e+04 -9.8667949e-01 + 1.0386800e+04 -1.5666795e+00 + 1.0387200e+04 -2.0266795e+00 + 1.0387600e+04 -2.0866795e+00 + 1.0388000e+04 -1.9766795e+00 + 1.0388400e+04 -1.7766795e+00 + 1.0388800e+04 -9.6667949e-01 + 1.0389200e+04 1.0332051e-01 + 1.0389600e+04 1.0233205e+00 + 1.0390000e+04 1.4833205e+00 + 1.0390400e+04 1.3033205e+00 + 1.0390800e+04 1.0533205e+00 + 1.0391200e+04 7.9332051e-01 + 1.0391600e+04 7.5332051e-01 + 1.0392000e+04 1.0933205e+00 + 1.0392400e+04 1.5033205e+00 + 1.0392800e+04 1.9133205e+00 + 1.0393200e+04 2.2433205e+00 + 1.0393600e+04 2.5533205e+00 + 1.0394000e+04 2.7133205e+00 + 1.0394400e+04 2.5033205e+00 + 1.0394800e+04 2.1533205e+00 + 1.0395200e+04 1.9733205e+00 + 1.0395600e+04 1.1033205e+00 + 1.0396000e+04 2.4332051e-01 + 1.0396400e+04 -1.5667949e-01 + 1.0396800e+04 -2.7667949e-01 + 1.0397200e+04 -3.1667949e-01 + 1.0397600e+04 -3.1667949e-01 + 1.0398000e+04 -3.1667949e-01 + 1.0398400e+04 -3.1667949e-01 + 1.0398800e+04 -2.0566795e+00 + 1.0399200e+04 -2.6766795e+00 + 1.0399600e+04 -2.7866795e+00 + 1.0400000e+04 -3.0066795e+00 + 1.0400400e+04 -2.6266795e+00 + 1.0400800e+04 -2.4466795e+00 + 1.0401200e+04 -2.4466795e+00 + 1.0401600e+04 -2.3866795e+00 + 1.0402000e+04 -7.1667949e-01 + 1.0402400e+04 5.3320513e-02 + 1.0402800e+04 7.8332051e-01 + 1.0403200e+04 2.1833205e+00 + 1.0403600e+04 2.9933205e+00 + 1.0404000e+04 3.3433205e+00 + 1.0404400e+04 3.3833205e+00 + 1.0404800e+04 3.3033205e+00 + 1.0405200e+04 2.7033205e+00 + 1.0405600e+04 1.9733205e+00 + 1.0406000e+04 1.3033205e+00 + 1.0406400e+04 8.3332051e-01 + 1.0406800e+04 5.5332051e-01 + 1.0407200e+04 4.6332051e-01 + 1.0407600e+04 3.7332051e-01 + 1.0408000e+04 -1.1166795e+00 + 1.0408400e+04 -1.3166795e+00 + 1.0408800e+04 -1.6266795e+00 + 1.0409200e+04 -2.0966795e+00 + 1.0409600e+04 -2.0666795e+00 + 1.0410000e+04 -1.3666795e+00 + 1.0410400e+04 -6.5667949e-01 + 1.0410800e+04 -4.2667949e-01 + 1.0411200e+04 -4.1667949e-01 + 1.0411600e+04 -3.9667949e-01 + 1.0412000e+04 1.2733205e+00 + 1.0412400e+04 1.3433205e+00 + 1.0412800e+04 1.3033205e+00 + 1.0413200e+04 1.2133205e+00 + 1.0413600e+04 1.1733205e+00 + 1.0414000e+04 1.2133205e+00 + 1.0414400e+04 1.3633205e+00 + 1.0414800e+04 1.3633205e+00 + 1.0415200e+04 1.3233205e+00 + 1.0415600e+04 1.2333205e+00 + 1.0416000e+04 4.1332051e-01 + 1.0416400e+04 -5.0667949e-01 + 1.0416800e+04 -5.4667949e-01 + 1.0417200e+04 -7.5667949e-01 + 1.0417600e+04 -2.2366795e+00 + 1.0418000e+04 -2.0966795e+00 + 1.0418400e+04 -1.8966795e+00 + 1.0418800e+04 -1.4466795e+00 + 1.0419200e+04 -1.3566795e+00 + 1.0419600e+04 -8.1667949e-01 + 1.0420000e+04 -4.0667949e-01 + 1.0420400e+04 -6.6679487e-02 + 1.0420800e+04 2.7332051e-01 + 1.0421200e+04 1.1133205e+00 + 1.0421600e+04 1.4433205e+00 + 1.0422000e+04 2.1633205e+00 + 1.0422400e+04 2.5933205e+00 + 1.0422800e+04 2.4533205e+00 + 1.0423200e+04 2.0233205e+00 + 1.0423600e+04 1.4833205e+00 + 1.0424000e+04 9.2332051e-01 + 1.0424400e+04 -1.6679487e-02 + 1.0424800e+04 -8.0667949e-01 + 1.0425200e+04 -1.1466795e+00 + 1.0425600e+04 -1.1066795e+00 + 1.0426000e+04 -1.3266795e+00 + 1.0426400e+04 -1.4466795e+00 + 1.0426800e+04 -1.4066795e+00 + 1.0427200e+04 -1.3166795e+00 + 1.0427600e+04 -1.1166795e+00 + 1.0428000e+04 -1.0566795e+00 + 1.0428400e+04 -9.5667949e-01 + 1.0428800e+04 -7.1667949e-01 + 1.0429200e+04 -6.6679487e-02 + 1.0429600e+04 7.9332051e-01 + 1.0430000e+04 1.3833205e+00 + 1.0430400e+04 1.4033205e+00 + 1.0430800e+04 1.4033205e+00 + 1.0431200e+04 1.4833205e+00 + 1.0431600e+04 1.4233205e+00 + 1.0432000e+04 9.8332051e-01 + 1.0432400e+04 4.3332051e-01 + 1.0432800e+04 -4.6679487e-02 + 1.0433200e+04 -1.3667949e-01 + 1.0433600e+04 1.5332051e-01 + 1.0434000e+04 2.3332051e-01 + 1.0434400e+04 3.3332051e-01 + 1.0434800e+04 2.2332051e-01 + 1.0435200e+04 -1.3667949e-01 + 1.0435600e+04 -5.5667949e-01 + 1.0436000e+04 -7.7667949e-01 + 1.0436400e+04 -1.4466795e+00 + 1.0436800e+04 -1.6966795e+00 + 1.0437200e+04 -2.0166795e+00 + 1.0437600e+04 -1.6266795e+00 + 1.0438000e+04 -8.9667949e-01 + 1.0438400e+04 -4.5667949e-01 + 1.0438800e+04 7.3320513e-02 + 1.0439200e+04 7.0332051e-01 + 1.0439600e+04 1.1533205e+00 + 1.0440000e+04 1.5933205e+00 + 1.0440400e+04 2.3033205e+00 + 1.0440800e+04 2.6833205e+00 + 1.0441200e+04 2.5033205e+00 + 1.0441600e+04 1.8633205e+00 + 1.0442000e+04 1.2533205e+00 + 1.0442400e+04 9.0332051e-01 + 1.0442800e+04 -2.6679487e-02 + 1.0443200e+04 -6.6667949e-01 + 1.0443600e+04 -8.5667949e-01 + 1.0444000e+04 -1.1366795e+00 + 1.0444400e+04 -1.3666795e+00 + 1.0444800e+04 -1.3566795e+00 + 1.0445200e+04 -1.0366795e+00 + 1.0445600e+04 -9.1667949e-01 + 1.0446000e+04 -8.2667949e-01 + 1.0446400e+04 -4.6679487e-02 + 1.0446800e+04 -2.0667949e-01 + 1.0447200e+04 -5.8667949e-01 + 1.0447600e+04 -6.9667949e-01 + 1.0448000e+04 -9.0667949e-01 + 1.0448400e+04 -1.1766795e+00 + 1.0448800e+04 -1.2266795e+00 + 1.0449200e+04 -1.3066795e+00 + 1.0449600e+04 -9.8667949e-01 + 1.0450000e+04 -1.2667949e-01 + 1.0450400e+04 5.8332051e-01 + 1.0450800e+04 1.0133205e+00 + 1.0451200e+04 1.0333205e+00 + 1.0451600e+04 1.0433205e+00 + 1.0452000e+04 1.3633205e+00 + 1.0452400e+04 8.0332051e-01 + 1.0452800e+04 3.9332051e-01 + 1.0453200e+04 1.5332051e-01 + 1.0453600e+04 -2.6679487e-02 + 1.0454000e+04 5.3320513e-02 + 1.0454400e+04 2.6332051e-01 + 1.0454800e+04 3.5332051e-01 + 1.0455200e+04 5.1332051e-01 + 1.0455600e+04 7.2332051e-01 + 1.0456000e+04 7.8332051e-01 + 1.0456400e+04 8.8332051e-01 + 1.0456800e+04 1.0533205e+00 + 1.0457200e+04 1.1933205e+00 + 1.0457600e+04 1.0533205e+00 + 1.0458000e+04 1.1833205e+00 + 1.0458400e+04 1.2133205e+00 + 1.0458800e+04 9.1332051e-01 + 1.0459200e+04 2.9332051e-01 + 1.0459600e+04 -9.6679487e-02 + 1.0460000e+04 -3.2667949e-01 + 1.0460400e+04 -6.9667949e-01 + 1.0460800e+04 -8.9667949e-01 + 1.0461200e+04 -1.2366795e+00 + 1.0461600e+04 -1.5366795e+00 + 1.0462000e+04 -1.5966795e+00 + 1.0462400e+04 -2.1966795e+00 + 1.0462800e+04 -2.1066795e+00 + 1.0463200e+04 -1.5566795e+00 + 1.0463600e+04 -1.0466795e+00 + 1.0464000e+04 -5.8667949e-01 + 1.0464400e+04 -2.0667949e-01 + 1.0464800e+04 2.2332051e-01 + 1.0465200e+04 6.5332051e-01 + 1.0465600e+04 1.0833205e+00 + 1.0466000e+04 7.5332051e-01 + 1.0466400e+04 5.1332051e-01 + 1.0466800e+04 4.9332051e-01 + 1.0467200e+04 -3.0667949e-01 + 1.0467600e+04 -3.7667949e-01 + 1.0468000e+04 -4.2667949e-01 + 1.0468400e+04 -2.7667949e-01 + 1.0468800e+04 -3.6667949e-01 + 1.0469200e+04 -5.3667949e-01 + 1.0469600e+04 -5.0667949e-01 + 1.0470000e+04 -2.9667949e-01 + 1.0470400e+04 1.7332051e-01 + 1.0470800e+04 1.1733205e+00 + 1.0471200e+04 1.6833205e+00 + 1.0471600e+04 2.0433205e+00 + 1.0472000e+04 2.2033205e+00 + 1.0472400e+04 1.9133205e+00 + 1.0472800e+04 1.6933205e+00 + 1.0473200e+04 1.3733205e+00 + 1.0473600e+04 1.1733205e+00 + 1.0474000e+04 6.2332051e-01 + 1.0474400e+04 3.6332051e-01 + 1.0474800e+04 8.3320513e-02 + 1.0475200e+04 -1.2667949e-01 + 1.0475600e+04 -1.6667949e-01 + 1.0476000e+04 -8.6679487e-02 + 1.0476400e+04 3.3205128e-03 + 1.0476800e+04 5.3320513e-02 + 1.0477200e+04 -1.1667949e-01 + 1.0477600e+04 -6.6679487e-02 + 1.0478000e+04 6.0332051e-01 + 1.0478400e+04 1.2333205e+00 + 1.0478800e+04 1.8533205e+00 + 1.0479200e+04 2.0933205e+00 + 1.0479600e+04 1.7533205e+00 + 1.0480000e+04 1.0933205e+00 + 1.0480400e+04 8.0332051e-01 + 1.0480800e+04 7.9332051e-01 + 1.0481200e+04 7.9332051e-01 + 1.0481600e+04 7.9332051e-01 + 1.0482000e+04 7.9332051e-01 + 1.0482400e+04 7.9332051e-01 + 1.0482800e+04 7.9332051e-01 + 1.0483200e+04 -1.3667949e-01 + 1.0483600e+04 -4.1166795e+00 + 1.0484000e+04 -3.5966795e+00 + 1.0484400e+04 -3.0966795e+00 + 1.0484800e+04 -2.8966795e+00 + 1.0485200e+04 -2.8866795e+00 + 1.0485600e+04 -2.8866795e+00 + 1.0486000e+04 -2.8766795e+00 + 1.0486400e+04 -2.8766795e+00 + 1.0486800e+04 -2.7166795e+00 + 1.0487200e+04 1.8833205e+00 + 1.0487600e+04 2.2533205e+00 + 1.0488000e+04 2.0533205e+00 + 1.0488400e+04 2.1233205e+00 + 1.0488800e+04 2.2033205e+00 + 1.0489200e+04 2.2133205e+00 + 1.0489600e+04 1.9633205e+00 + 1.0490000e+04 1.7933205e+00 + 1.0490400e+04 1.8733205e+00 + 1.0490800e+04 2.1633205e+00 + 1.0491200e+04 2.3233205e+00 + 1.0491600e+04 2.5733205e+00 + 1.0492000e+04 2.5133205e+00 + 1.0492400e+04 2.1833205e+00 + 1.0492800e+04 1.8333205e+00 + 1.0493200e+04 1.5333205e+00 + 1.0493600e+04 9.6332051e-01 + 1.0494000e+04 9.3332051e-01 + 1.0494400e+04 9.3332051e-01 + 1.0494800e+04 9.3332051e-01 + 1.0495200e+04 -1.2566795e+00 + 1.0495600e+04 -2.3766795e+00 + 1.0496000e+04 -2.2466795e+00 + 1.0496400e+04 -1.8366795e+00 + 1.0496800e+04 -1.2566795e+00 + 1.0497200e+04 -3.1667949e-01 + 1.0497600e+04 3.3332051e-01 + 1.0498000e+04 4.3332051e-01 + 1.0498400e+04 4.3332051e-01 + 1.0498800e+04 1.0533205e+00 + 1.0499200e+04 8.0332051e-01 + 1.0499600e+04 2.6332051e-01 + 1.0500000e+04 1.2332051e-01 + 1.0500400e+04 1.1332051e-01 + 1.0500800e+04 1.2332051e-01 + 1.0501200e+04 1.2332051e-01 + 1.0501600e+04 8.3320513e-02 + 1.0502000e+04 -2.7366795e+00 + 1.0502400e+04 -2.8466795e+00 + 1.0502800e+04 -2.5766795e+00 + 1.0503200e+04 -2.2966795e+00 + 1.0503600e+04 -1.8366795e+00 + 1.0504000e+04 -1.6466795e+00 + 1.0504400e+04 -7.6679487e-02 + 1.0504800e+04 7.9332051e-01 + 1.0505200e+04 1.5133205e+00 + 1.0505600e+04 1.9633205e+00 + 1.0506000e+04 2.2533205e+00 + 1.0506400e+04 3.0933205e+00 + 1.0506800e+04 3.6133205e+00 + 1.0507200e+04 4.0933205e+00 + 1.0507600e+04 4.7133205e+00 + 1.0508000e+04 4.3233205e+00 + 1.0508400e+04 3.8633205e+00 + 1.0508800e+04 2.7033205e+00 + 1.0509200e+04 1.6633205e+00 + 1.0509600e+04 9.1332051e-01 + 1.0510000e+04 4.8332051e-01 + 1.0510400e+04 3.0332051e-01 + 1.0510800e+04 2.6332051e-01 + 1.0511200e+04 8.3320513e-02 + 1.0511600e+04 -6.6679487e-02 + 1.0512000e+04 -3.7667949e-01 + 1.0512400e+04 -5.7667949e-01 + 1.0512800e+04 -4.4667949e-01 + 1.0513200e+04 -2.7667949e-01 + 1.0513600e+04 -2.0667949e-01 + 1.0514000e+04 -6.9667949e-01 + 1.0514400e+04 -1.1966795e+00 + 1.0514800e+04 -1.5066795e+00 + 1.0515200e+04 -1.3466795e+00 + 1.0515600e+04 -7.8667949e-01 + 1.0516000e+04 -3.0667949e-01 + 1.0516400e+04 5.3320513e-02 + 1.0516800e+04 2.5332051e-01 + 1.0517200e+04 5.1332051e-01 + 1.0517600e+04 3.0332051e-01 + 1.0518000e+04 -2.3667949e-01 + 1.0518400e+04 -6.9667949e-01 + 1.0518800e+04 -1.4266795e+00 + 1.0519200e+04 -1.8666795e+00 + 1.0519600e+04 -2.0966795e+00 + 1.0520000e+04 -3.0766795e+00 + 1.0520400e+04 -3.1166795e+00 + 1.0520800e+04 -3.1066795e+00 + 1.0521200e+04 -3.1066795e+00 + 1.0521600e+04 -2.6166795e+00 + 1.0522000e+04 -2.1266795e+00 + 1.0522400e+04 -1.8766795e+00 + 1.0522800e+04 -1.8666795e+00 + 1.0523200e+04 -3.0667949e-01 + 1.0523600e+04 3.2332051e-01 + 1.0524000e+04 8.3332051e-01 + 1.0524400e+04 1.1533205e+00 + 1.0524800e+04 1.8633205e+00 + 1.0525200e+04 2.5033205e+00 + 1.0525600e+04 3.4333205e+00 + 1.0526000e+04 4.2833205e+00 + 1.0526400e+04 4.6233205e+00 + 1.0526800e+04 5.0133205e+00 + 1.0527200e+04 4.8533205e+00 + 1.0527600e+04 4.2833205e+00 + 1.0528000e+04 3.7033205e+00 + 1.0528400e+04 2.9233205e+00 + 1.0528800e+04 2.2533205e+00 + 1.0529200e+04 1.3733205e+00 + 1.0529600e+04 7.1332051e-01 + 1.0530000e+04 4.3332051e-01 + 1.0530400e+04 4.5332051e-01 + 1.0530800e+04 2.2332051e-01 + 1.0531200e+04 -6.6794872e-03 + 1.0531600e+04 -3.9667949e-01 + 1.0532000e+04 -6.6667949e-01 + 1.0532400e+04 -7.8667949e-01 + 1.0532800e+04 -7.8667949e-01 + 1.0533200e+04 -7.8667949e-01 + 1.0533600e+04 -7.8667949e-01 + 1.0534000e+04 -8.1667949e-01 + 1.0534400e+04 -3.1266795e+00 + 1.0534800e+04 -3.5166795e+00 + 1.0535200e+04 -3.0766795e+00 + 1.0535600e+04 -2.7166795e+00 + 1.0536000e+04 -1.7766795e+00 + 1.0536400e+04 -1.5666795e+00 + 1.0536800e+04 -9.8667949e-01 + 1.0537200e+04 -5.8667949e-01 + 1.0537600e+04 -4.6667949e-01 + 1.0538000e+04 -3.3667949e-01 + 1.0538400e+04 -1.1667949e-01 + 1.0538800e+04 2.3320513e-02 + 1.0539200e+04 -3.6679487e-02 + 1.0539600e+04 -3.6667949e-01 + 1.0540000e+04 -3.1667949e-01 + 1.0540400e+04 7.3320513e-02 + 1.0540800e+04 8.7332051e-01 + 1.0541200e+04 9.1332051e-01 + 1.0541600e+04 5.1332051e-01 + 1.0542000e+04 3.0332051e-01 + 1.0542400e+04 2.4332051e-01 + 1.0542800e+04 1.6332051e-01 + 1.0543200e+04 1.5332051e-01 + 1.0543600e+04 6.8332051e-01 + 1.0544000e+04 1.3033205e+00 + 1.0544400e+04 2.1233205e+00 + 1.0544800e+04 2.8733205e+00 + 1.0545200e+04 2.6733205e+00 + 1.0545600e+04 2.4333205e+00 + 1.0546000e+04 1.8033205e+00 + 1.0546400e+04 1.4933205e+00 + 1.0546800e+04 1.1533205e+00 + 1.0547200e+04 1.4533205e+00 + 1.0547600e+04 1.8033205e+00 + 1.0548000e+04 1.8833205e+00 + 1.0548400e+04 1.7633205e+00 + 1.0548800e+04 1.5533205e+00 + 1.0549200e+04 9.9332051e-01 + 1.0549600e+04 7.3332051e-01 + 1.0550000e+04 8.9332051e-01 + 1.0550400e+04 1.3033205e+00 + 1.0550800e+04 1.4033205e+00 + 1.0551200e+04 1.1533205e+00 + 1.0551600e+04 5.8332051e-01 + 1.0552000e+04 2.7332051e-01 + 1.0552400e+04 -1.3566795e+00 + 1.0552800e+04 -2.7166795e+00 + 1.0553200e+04 -3.5166795e+00 + 1.0553600e+04 -3.3066795e+00 + 1.0554000e+04 -3.2766795e+00 + 1.0554400e+04 -3.5766795e+00 + 1.0554800e+04 -3.6766795e+00 + 1.0555200e+04 -3.4966795e+00 + 1.0555600e+04 -3.0266795e+00 + 1.0556000e+04 -2.4466795e+00 + 1.0556400e+04 -1.0066795e+00 + 1.0556800e+04 3.4332051e-01 + 1.0557200e+04 1.4333205e+00 + 1.0557600e+04 2.2133205e+00 + 1.0558000e+04 3.0233205e+00 + 1.0558400e+04 2.6933205e+00 + 1.0558800e+04 2.1533205e+00 + 1.0559200e+04 1.8233205e+00 + 1.0559600e+04 1.5133205e+00 + 1.0560000e+04 2.3320513e-02 + 1.0560400e+04 -6.3667949e-01 + 1.0560800e+04 -7.4667949e-01 + 1.0561200e+04 -7.6667949e-01 + 1.0561600e+04 -8.9667949e-01 + 1.0562000e+04 -1.1466795e+00 + 1.0562400e+04 -1.0366795e+00 + 1.0562800e+04 -7.0667949e-01 + 1.0563200e+04 -3.8667949e-01 + 1.0563600e+04 3.0332051e-01 + 1.0564000e+04 4.4332051e-01 + 1.0564400e+04 7.6332051e-01 + 1.0564800e+04 1.1833205e+00 + 1.0565200e+04 2.5133205e+00 + 1.0565600e+04 2.6133205e+00 + 1.0566000e+04 2.8833205e+00 + 1.0566400e+04 3.1633205e+00 + 1.0566800e+04 3.0233205e+00 + 1.0567200e+04 2.7433205e+00 + 1.0567600e+04 2.5233205e+00 + 1.0568000e+04 2.5133205e+00 + 1.0568400e+04 1.6133205e+00 + 1.0568800e+04 9.6332051e-01 + 1.0569200e+04 6.4332051e-01 + 1.0569600e+04 2.7332051e-01 + 1.0570000e+04 -1.1667949e-01 + 1.0570400e+04 -2.4667949e-01 + 1.0570800e+04 -5.8667949e-01 + 1.0571200e+04 -9.6667949e-01 + 1.0571600e+04 -1.2766795e+00 + 1.0572000e+04 -1.3766795e+00 + 1.0572400e+04 -1.3366795e+00 + 1.0572800e+04 -1.3366795e+00 + 1.0573200e+04 -2.1366795e+00 + 1.0573600e+04 -2.9666795e+00 + 1.0574000e+04 -3.5166795e+00 + 1.0574400e+04 -3.6966795e+00 + 1.0574800e+04 -3.3766795e+00 + 1.0575200e+04 -2.7966795e+00 + 1.0575600e+04 -2.1366795e+00 + 1.0576000e+04 -1.4166795e+00 + 1.0576400e+04 -4.4667949e-01 + 1.0576800e+04 3.7332051e-01 + 1.0577200e+04 7.7332051e-01 + 1.0577600e+04 7.9332051e-01 + 1.0578000e+04 7.9332051e-01 + 1.0578400e+04 1.6733205e+00 + 1.0578800e+04 1.8733205e+00 + 1.0579200e+04 1.2833205e+00 + 1.0579600e+04 7.1332051e-01 + 1.0580000e+04 5.8332051e-01 + 1.0580400e+04 5.8332051e-01 + 1.0580800e+04 4.6332051e-01 + 1.0581200e+04 3.2332051e-01 + 1.0581600e+04 1.3320513e-02 + 1.0582000e+04 -1.7667949e-01 + 1.0582400e+04 -5.7667949e-01 + 1.0582800e+04 -6.1667949e-01 + 1.0583200e+04 -2.6667949e-01 + 1.0583600e+04 3.9332051e-01 + 1.0584000e+04 1.0233205e+00 + 1.0584400e+04 1.5133205e+00 + 1.0584800e+04 2.0233205e+00 + 1.0585200e+04 2.2133205e+00 + 1.0585600e+04 1.9233205e+00 + 1.0586000e+04 1.5533205e+00 + 1.0586400e+04 1.3333205e+00 + 1.0586800e+04 8.4332051e-01 + 1.0587200e+04 5.7332051e-01 + 1.0587600e+04 5.1332051e-01 + 1.0588000e+04 6.4332051e-01 + 1.0588400e+04 6.8332051e-01 + 1.0588800e+04 4.7332051e-01 + 1.0589200e+04 2.6332051e-01 + 1.0589600e+04 -6.6794872e-03 + 1.0590000e+04 -8.6679487e-02 + 1.0590400e+04 -4.0667949e-01 + 1.0590800e+04 -8.3667949e-01 + 1.0591200e+04 -1.2366795e+00 + 1.0591600e+04 -1.6466795e+00 + 1.0592000e+04 -1.6566795e+00 + 1.0592400e+04 -1.8766795e+00 + 1.0592800e+04 -1.7266795e+00 + 1.0593200e+04 -1.1966795e+00 + 1.0593600e+04 -9.5667949e-01 + 1.0594000e+04 -1.1566795e+00 + 1.0594400e+04 -1.1366795e+00 + 1.0594800e+04 -9.6667949e-01 + 1.0595200e+04 -7.3667949e-01 + 1.0595600e+04 -7.2667949e-01 + 1.0596000e+04 -1.0366795e+00 + 1.0596400e+04 -1.1666795e+00 + 1.0596800e+04 -1.1366795e+00 + 1.0597200e+04 -5.3667949e-01 + 1.0597600e+04 1.2332051e-01 + 1.0598000e+04 4.8332051e-01 + 1.0598400e+04 8.9332051e-01 + 1.0598800e+04 1.3833205e+00 + 1.0599200e+04 1.8433205e+00 + 1.0599600e+04 2.2033205e+00 + 1.0600000e+04 2.1933205e+00 + 1.0600400e+04 1.9333205e+00 + 1.0600800e+04 1.9333205e+00 + 1.0601200e+04 1.8233205e+00 + 1.0601600e+04 1.2633205e+00 + 1.0602000e+04 9.5332051e-01 + 1.0602400e+04 9.3332051e-01 + 1.0602800e+04 -1.7667949e-01 + 1.0603200e+04 -9.9667949e-01 + 1.0603600e+04 -9.4667949e-01 + 1.0604000e+04 -6.9667949e-01 + 1.0604400e+04 -5.7667949e-01 + 1.0604800e+04 -6.1667949e-01 + 1.0605200e+04 -7.9667949e-01 + 1.0605600e+04 -9.4667949e-01 + 1.0606000e+04 -7.4667949e-01 + 1.0606400e+04 -2.0667949e-01 + 1.0606800e+04 5.0332051e-01 + 1.0607200e+04 9.3332051e-01 + 1.0607600e+04 7.5332051e-01 + 1.0608000e+04 7.4332051e-01 + 1.0608400e+04 1.0833205e+00 + 1.0608800e+04 1.4233205e+00 + 1.0609200e+04 1.5233205e+00 + 1.0609600e+04 1.5233205e+00 + 1.0610000e+04 2.4033205e+00 + 1.0610400e+04 2.1533205e+00 + 1.0610800e+04 1.6133205e+00 + 1.0611200e+04 1.4133205e+00 + 1.0611600e+04 1.0433205e+00 + 1.0612000e+04 -2.2667949e-01 + 1.0612400e+04 -4.9667949e-01 + 1.0612800e+04 -5.0667949e-01 + 1.0613200e+04 -8.8667949e-01 + 1.0613600e+04 -2.5066795e+00 + 1.0614000e+04 -2.5066795e+00 + 1.0614400e+04 -2.3166795e+00 + 1.0614800e+04 -2.4466795e+00 + 1.0615200e+04 -2.5366795e+00 + 1.0615600e+04 -2.4466795e+00 + 1.0616000e+04 -2.1566795e+00 + 1.0616400e+04 -1.5766795e+00 + 1.0616800e+04 -1.0066795e+00 + 1.0617200e+04 -3.1667949e-01 + 1.0617600e+04 -6.6794872e-03 + 1.0618000e+04 1.1533205e+00 + 1.0618400e+04 1.9633205e+00 + 1.0618800e+04 2.5433205e+00 + 1.0619200e+04 2.7733205e+00 + 1.0619600e+04 2.7333205e+00 + 1.0620000e+04 2.5333205e+00 + 1.0620400e+04 2.3933205e+00 + 1.0620800e+04 2.0933205e+00 + 1.0621200e+04 1.0533205e+00 + 1.0621600e+04 5.4332051e-01 + 1.0622000e+04 3.2332051e-01 + 1.0622400e+04 3.9332051e-01 + 1.0622800e+04 7.8332051e-01 + 1.0623200e+04 9.7332051e-01 + 1.0623600e+04 6.9332051e-01 + 1.0624000e+04 -6.6679487e-02 + 1.0624400e+04 -8.6667949e-01 + 1.0624800e+04 -1.1266795e+00 + 1.0625200e+04 -1.1466795e+00 + 1.0625600e+04 -1.7966795e+00 + 1.0626000e+04 -2.1966795e+00 + 1.0626400e+04 -1.8166795e+00 + 1.0626800e+04 -1.2766795e+00 + 1.0627200e+04 -3.8667949e-01 + 1.0627600e+04 -6.6679487e-02 + 1.0628000e+04 4.1332051e-01 + 1.0628400e+04 7.9332051e-01 + 1.0628800e+04 7.6332051e-01 + 1.0629200e+04 8.0332051e-01 + 1.0629600e+04 7.1332051e-01 + 1.0630000e+04 5.3332051e-01 + 1.0630400e+04 5.0332051e-01 + 1.0630800e+04 7.9332051e-01 + 1.0631200e+04 1.0733205e+00 + 1.0631600e+04 1.0533205e+00 + 1.0632000e+04 9.1332051e-01 + 1.0632400e+04 8.8332051e-01 + 1.0632800e+04 7.2332051e-01 + 1.0633200e+04 7.1332051e-01 + 1.0633600e+04 6.3332051e-01 + 1.0634000e+04 5.8332051e-01 + 1.0634400e+04 4.9332051e-01 + 1.0634800e+04 5.4332051e-01 + 1.0635200e+04 6.2332051e-01 + 1.0635600e+04 6.2332051e-01 + 1.0636000e+04 7.2332051e-01 + 1.0636400e+04 6.9332051e-01 + 1.0636800e+04 5.5332051e-01 + 1.0637200e+04 5.0332051e-01 + 1.0637600e+04 4.9332051e-01 + 1.0638000e+04 4.9332051e-01 + 1.0638400e+04 4.9332051e-01 + 1.0638800e+04 -1.7966795e+00 + 1.0639200e+04 -1.7366795e+00 + 1.0639600e+04 -1.2666795e+00 + 1.0640000e+04 -1.0066795e+00 + 1.0640400e+04 -9.8667949e-01 + 1.0640800e+04 -9.4667949e-01 + 1.0641200e+04 -9.0667949e-01 + 1.0641600e+04 -6.9667949e-01 + 1.0642000e+04 -4.2667949e-01 + 1.0642400e+04 -9.6679487e-02 + 1.0642800e+04 5.3332051e-01 + 1.0643200e+04 1.1033205e+00 + 1.0643600e+04 1.6833205e+00 + 1.0644000e+04 2.3733205e+00 + 1.0644400e+04 2.9833205e+00 + 1.0644800e+04 3.1633205e+00 + 1.0645200e+04 2.8033205e+00 + 1.0645600e+04 2.3033205e+00 + 1.0646000e+04 1.6933205e+00 + 1.0646400e+04 7.6332051e-01 + 1.0646800e+04 -4.0667949e-01 + 1.0647200e+04 -1.7366795e+00 + 1.0647600e+04 -2.4466795e+00 + 1.0648000e+04 -2.7966795e+00 + 1.0648400e+04 -2.9966795e+00 + 1.0648800e+04 -3.2266795e+00 + 1.0649200e+04 -2.8366795e+00 + 1.0649600e+04 -2.2566795e+00 + 1.0650000e+04 -1.6966795e+00 + 1.0650400e+04 -9.8667949e-01 + 1.0650800e+04 1.2332051e-01 + 1.0651200e+04 1.2633205e+00 + 1.0651600e+04 2.3533205e+00 + 1.0652000e+04 3.1833205e+00 + 1.0652400e+04 3.3933205e+00 + 1.0652800e+04 2.9233205e+00 + 1.0653200e+04 2.5733205e+00 + 1.0653600e+04 2.0433205e+00 + 1.0654000e+04 1.6133205e+00 + 1.0654400e+04 1.2733205e+00 + 1.0654800e+04 1.0533205e+00 + 1.0655200e+04 7.4332051e-01 + 1.0655600e+04 6.8332051e-01 + 1.0656000e+04 6.0332051e-01 + 1.0656400e+04 6.1332051e-01 + 1.0656800e+04 2.9332051e-01 + 1.0657200e+04 -1.6679487e-02 + 1.0657600e+04 -2.4667949e-01 + 1.0658000e+04 -7.1667949e-01 + 1.0658400e+04 -1.1466795e+00 + 1.0658800e+04 -1.3666795e+00 + 1.0659200e+04 -1.5766795e+00 + 1.0659600e+04 -1.5066795e+00 + 1.0660000e+04 -1.2266795e+00 + 1.0660400e+04 -5.8667949e-01 + 1.0660800e+04 -4.0667949e-01 + 1.0661200e+04 -6.4667949e-01 + 1.0661600e+04 -7.7667949e-01 + 1.0662000e+04 -8.4667949e-01 + 1.0662400e+04 -9.0667949e-01 + 1.0662800e+04 -8.2667949e-01 + 1.0663200e+04 -5.4667949e-01 + 1.0663600e+04 -3.2667949e-01 + 1.0664000e+04 -2.6679487e-02 + 1.0664400e+04 4.5332051e-01 + 1.0664800e+04 4.9332051e-01 + 1.0665200e+04 4.5332051e-01 + 1.0665600e+04 3.3320513e-02 + 1.0666000e+04 -2.2667949e-01 + 1.0666400e+04 -3.7667949e-01 + 1.0666800e+04 -2.8667949e-01 + 1.0667200e+04 -6.6794872e-03 + 1.0667600e+04 1.9332051e-01 + 1.0668000e+04 4.5332051e-01 + 1.0668400e+04 4.8332051e-01 + 1.0668800e+04 3.2332051e-01 + 1.0669200e+04 -6.6794872e-03 + 1.0669600e+04 -1.2667949e-01 + 1.0670000e+04 -4.8667949e-01 + 1.0670400e+04 -7.2667949e-01 + 1.0670800e+04 -1.6667949e-01 + 1.0671200e+04 5.3320513e-02 + 1.0671600e+04 3.3332051e-01 + 1.0672000e+04 1.0233205e+00 + 1.0672400e+04 1.5233205e+00 + 1.0672800e+04 2.1133205e+00 + 1.0673200e+04 2.2233205e+00 + 1.0673600e+04 2.2633205e+00 + 1.0674000e+04 1.9033205e+00 + 1.0674400e+04 1.8333205e+00 + 1.0674800e+04 1.7633205e+00 + 1.0675200e+04 1.7633205e+00 + 1.0675600e+04 6.6332051e-01 + 1.0676000e+04 -5.6679487e-02 + 1.0676400e+04 -5.6679487e-02 + 1.0676800e+04 7.1332051e-01 + 1.0677200e+04 1.0533205e+00 + 1.0677600e+04 6.2332051e-01 + 1.0678000e+04 9.3320513e-02 + 1.0678400e+04 -4.0667949e-01 + 1.0678800e+04 -8.7667949e-01 + 1.0679200e+04 -1.0266795e+00 + 1.0679600e+04 -1.1466795e+00 + 1.0680000e+04 -1.1366795e+00 + 1.0680400e+04 -2.0266795e+00 + 1.0680800e+04 -2.5766795e+00 + 1.0681200e+04 -2.4966795e+00 + 1.0681600e+04 -2.2066795e+00 + 1.0682000e+04 -1.7966795e+00 + 1.0682400e+04 -1.2766795e+00 + 1.0682800e+04 -1.1266795e+00 + 1.0683200e+04 -9.0667949e-01 + 1.0683600e+04 -2.5667949e-01 + 1.0684000e+04 4.2332051e-01 + 1.0684400e+04 1.1233205e+00 + 1.0684800e+04 1.8833205e+00 + 1.0685200e+04 2.7033205e+00 + 1.0685600e+04 2.4733205e+00 + 1.0686000e+04 2.2033205e+00 + 1.0686400e+04 1.8833205e+00 + 1.0686800e+04 1.5333205e+00 + 1.0687200e+04 1.1533205e+00 + 1.0687600e+04 6.0332051e-01 + 1.0688000e+04 2.4332051e-01 + 1.0688400e+04 1.0332051e-01 + 1.0688800e+04 -1.6667949e-01 + 1.0689200e+04 -9.0667949e-01 + 1.0689600e+04 -1.1766795e+00 + 1.0690000e+04 -1.2666795e+00 + 1.0690400e+04 -1.2766795e+00 + 1.0690800e+04 -1.3966795e+00 + 1.0691200e+04 -1.5866795e+00 + 1.0691600e+04 -1.8366795e+00 + 1.0692000e+04 -1.7766795e+00 + 1.0692400e+04 -1.1766795e+00 + 1.0692800e+04 -2.9667949e-01 + 1.0693200e+04 1.0233205e+00 + 1.0693600e+04 2.4333205e+00 + 1.0694000e+04 3.9833205e+00 + 1.0694400e+04 5.5533205e+00 + 1.0694800e+04 5.4633205e+00 + 1.0695200e+04 4.9333205e+00 + 1.0695600e+04 4.2033205e+00 + 1.0696000e+04 2.7433205e+00 + 1.0696400e+04 2.2233205e+00 + 1.0696800e+04 2.2133205e+00 + 1.0697200e+04 2.2133205e+00 + 1.0697600e+04 2.2133205e+00 + 1.0698000e+04 2.2133205e+00 + 1.0698400e+04 2.2133205e+00 + 1.0698800e+04 -9.4667949e-01 + 1.0699200e+04 -2.1666795e+00 + 1.0699600e+04 -2.6966795e+00 + 1.0700000e+04 -3.0366795e+00 + 1.0700400e+04 -3.1966795e+00 + 1.0700800e+04 -3.3966795e+00 + 1.0701200e+04 -2.9966795e+00 + 1.0701600e+04 -2.9566795e+00 + 1.0702000e+04 -2.9566795e+00 + 1.0702400e+04 -2.9566795e+00 + 1.0702800e+04 -2.9566795e+00 + 1.0703200e+04 -2.9566795e+00 + 1.0703600e+04 -2.9466795e+00 + 1.0704000e+04 -2.9466795e+00 + 1.0704400e+04 3.5833205e+00 + 1.0704800e+04 4.7633205e+00 + 1.0705200e+04 4.2133205e+00 + 1.0705600e+04 3.1733205e+00 + 1.0706000e+04 2.1833205e+00 + 1.0706400e+04 1.6533205e+00 + 1.0706800e+04 1.6333205e+00 + 1.0707200e+04 1.2633205e+00 + 1.0707600e+04 -6.9667949e-01 + 1.0708000e+04 -8.7667949e-01 + 1.0708400e+04 -1.0366795e+00 + 1.0708800e+04 -1.3166795e+00 + 1.0709200e+04 -2.1166795e+00 + 1.0709600e+04 -2.0466795e+00 + 1.0710000e+04 -2.1966795e+00 + 1.0710400e+04 -2.7266795e+00 + 1.0710800e+04 -2.6266795e+00 + 1.0711200e+04 -2.0866795e+00 + 1.0711600e+04 -9.4667949e-01 + 1.0712000e+04 -6.6679487e-02 + 1.0712400e+04 6.1332051e-01 + 1.0712800e+04 6.0332051e-01 + 1.0713200e+04 2.9332051e-01 + 1.0713600e+04 1.2332051e-01 + 1.0714000e+04 3.0332051e-01 + 1.0714400e+04 8.2332051e-01 + 1.0714800e+04 1.2933205e+00 + 1.0715200e+04 1.8533205e+00 + 1.0715600e+04 1.8633205e+00 + 1.0716000e+04 1.9633205e+00 + 1.0716400e+04 2.0533205e+00 + 1.0716800e+04 2.1433205e+00 + 1.0717200e+04 1.9033205e+00 + 1.0717600e+04 1.7233205e+00 + 1.0718000e+04 1.3533205e+00 + 1.0718400e+04 9.8332051e-01 + 1.0718800e+04 4.1332051e-01 + 1.0719200e+04 3.3320513e-02 + 1.0719600e+04 -1.2667949e-01 + 1.0720000e+04 -5.2667949e-01 + 1.0720400e+04 -7.2667949e-01 + 1.0720800e+04 -1.0866795e+00 + 1.0721200e+04 -1.2566795e+00 + 1.0721600e+04 -1.0966795e+00 + 1.0722000e+04 -1.0866795e+00 + 1.0722400e+04 -1.2466795e+00 + 1.0722800e+04 -1.4866795e+00 + 1.0723200e+04 -1.2266795e+00 + 1.0723600e+04 -1.0166795e+00 + 1.0724000e+04 -6.0667949e-01 + 1.0724400e+04 -5.5667949e-01 + 1.0724800e+04 -9.6679487e-02 + 1.0725200e+04 2.8332051e-01 + 1.0725600e+04 1.1833205e+00 + 1.0726000e+04 1.2733205e+00 + 1.0726400e+04 1.3733205e+00 + 1.0726800e+04 1.6133205e+00 + 1.0727200e+04 1.7733205e+00 + 1.0727600e+04 1.5233205e+00 + 1.0728000e+04 1.2133205e+00 + 1.0728400e+04 1.0133205e+00 + 1.0728800e+04 7.7332051e-01 + 1.0729200e+04 7.5332051e-01 + 1.0729600e+04 3.0332051e-01 + 1.0730000e+04 -7.6679487e-02 + 1.0730400e+04 -4.8667949e-01 + 1.0730800e+04 -7.4667949e-01 + 1.0731200e+04 -1.2066795e+00 + 1.0731600e+04 -1.4666795e+00 + 1.0732000e+04 -1.6166795e+00 + 1.0732400e+04 -1.7766795e+00 + 1.0732800e+04 -1.8966795e+00 + 1.0733200e+04 -2.0666795e+00 + 1.0733600e+04 -1.6966795e+00 + 1.0734000e+04 -1.5066795e+00 + 1.0734400e+04 -7.9667949e-01 + 1.0734800e+04 1.8332051e-01 + 1.0735200e+04 1.1933205e+00 + 1.0735600e+04 1.1833205e+00 + 1.0736000e+04 1.0533205e+00 + 1.0736400e+04 9.0332051e-01 + 1.0736800e+04 9.1332051e-01 + 1.0737200e+04 6.7332051e-01 + 1.0737600e+04 8.3332051e-01 + 1.0738000e+04 1.0133205e+00 + 1.0738400e+04 1.3433205e+00 + 1.0738800e+04 1.5333205e+00 + 1.0739200e+04 1.4833205e+00 + 1.0739600e+04 1.5033205e+00 + 1.0740000e+04 1.5133205e+00 + 1.0740400e+04 1.4633205e+00 + 1.0740800e+04 1.0733205e+00 + 1.0741200e+04 6.3332051e-01 + 1.0741600e+04 5.8332051e-01 + 1.0742000e+04 5.8332051e-01 + 1.0742400e+04 -5.4667949e-01 + 1.0742800e+04 -5.9667949e-01 + 1.0743200e+04 -3.1667949e-01 + 1.0743600e+04 3.3205128e-03 + 1.0744000e+04 3.7332051e-01 + 1.0744400e+04 1.1333205e+00 + 1.0744800e+04 1.4033205e+00 + 1.0745200e+04 9.1332051e-01 + 1.0745600e+04 5.1332051e-01 + 1.0746000e+04 4.2332051e-01 + 1.0746400e+04 4.7332051e-01 + 1.0746800e+04 7.6332051e-01 + 1.0747200e+04 1.0533205e+00 + 1.0747600e+04 5.5332051e-01 + 1.0748000e+04 -1.9667949e-01 + 1.0748400e+04 -9.9667949e-01 + 1.0748800e+04 -1.6066795e+00 + 1.0749200e+04 -2.1066795e+00 + 1.0749600e+04 -2.0866795e+00 + 1.0750000e+04 -2.1066795e+00 + 1.0750400e+04 -2.0466795e+00 + 1.0750800e+04 -1.8666795e+00 + 1.0751200e+04 -1.3166795e+00 + 1.0751600e+04 -7.2667949e-01 + 1.0752000e+04 -6.6667949e-01 + 1.0752400e+04 -3.8667949e-01 + 1.0752800e+04 3.1933205e+00 + 1.0753200e+04 2.8033205e+00 + 1.0753600e+04 2.0033205e+00 + 1.0754000e+04 1.2433205e+00 + 1.0754400e+04 7.8332051e-01 + 1.0754800e+04 -2.3667949e-01 + 1.0755200e+04 -4.5667949e-01 + 1.0755600e+04 -1.4266795e+00 + 1.0756000e+04 -1.8266795e+00 + 1.0756400e+04 -2.1266795e+00 + 1.0756800e+04 -1.9766795e+00 + 1.0757200e+04 -1.5866795e+00 + 1.0757600e+04 -1.2766795e+00 + 1.0758000e+04 -1.1066795e+00 + 1.0758400e+04 -9.9667949e-01 + 1.0758800e+04 -9.7667949e-01 + 1.0759200e+04 -6.1667949e-01 + 1.0759600e+04 1.5332051e-01 + 1.0760000e+04 4.8332051e-01 + 1.0760400e+04 2.9533205e+00 + 1.0760800e+04 3.2133205e+00 + 1.0761200e+04 3.1433205e+00 + 1.0761600e+04 3.1533205e+00 + 1.0762000e+04 2.9533205e+00 + 1.0762400e+04 2.7533205e+00 + 1.0762800e+04 2.3433205e+00 + 1.0763200e+04 1.5433205e+00 + 1.0763600e+04 9.9332051e-01 + 1.0764000e+04 5.8332051e-01 + 1.0764400e+04 3.3332051e-01 + 1.0764800e+04 1.3320513e-02 + 1.0765200e+04 -7.5667949e-01 + 1.0765600e+04 -6.1667949e-01 + 1.0766000e+04 -6.0667949e-01 + 1.0766400e+04 -8.6667949e-01 + 1.0766800e+04 -9.0667949e-01 + 1.0767200e+04 -1.5466795e+00 + 1.0767600e+04 -1.7666795e+00 + 1.0768000e+04 -1.7166795e+00 + 1.0768400e+04 -1.4866795e+00 + 1.0768800e+04 -1.4766795e+00 + 1.0769200e+04 -1.7666795e+00 + 1.0769600e+04 -1.8966795e+00 + 1.0770000e+04 -1.9866795e+00 + 1.0770400e+04 -1.2766795e+00 + 1.0770800e+04 1.3320513e-02 + 1.0771200e+04 1.5933205e+00 + 1.0771600e+04 2.1433205e+00 + 1.0772000e+04 4.1933205e+00 + 1.0772400e+04 4.2533205e+00 + 1.0772800e+04 4.5833205e+00 + 1.0773200e+04 3.4733205e+00 + 1.0773600e+04 1.3533205e+00 + 1.0774000e+04 -2.8667949e-01 + 1.0774400e+04 -1.1466795e+00 + 1.0774800e+04 -1.5166795e+00 + 1.0775200e+04 -1.6666795e+00 + 1.0775600e+04 -1.6966795e+00 + 1.0776000e+04 -1.9566795e+00 + 1.0776400e+04 -1.8166795e+00 + 1.0776800e+04 -1.5866795e+00 + 1.0777200e+04 -1.0366795e+00 + 1.0777600e+04 -4.9667949e-01 + 1.0778000e+04 -3.9667949e-01 + 1.0778400e+04 -5.5667949e-01 + 1.0778800e+04 -5.8667949e-01 + 1.0779200e+04 -1.6667949e-01 + 1.0779600e+04 4.3332051e-01 + 1.0780000e+04 9.8332051e-01 + 1.0780400e+04 1.4333205e+00 + 1.0780800e+04 1.8833205e+00 + 1.0781200e+04 2.5233205e+00 + 1.0781600e+04 2.9033205e+00 + 1.0782000e+04 3.1433205e+00 + 1.0782400e+04 2.9333205e+00 + 1.0782800e+04 2.6033205e+00 + 1.0783200e+04 2.0233205e+00 + 1.0783600e+04 1.5233205e+00 + 1.0784000e+04 1.0533205e+00 + 1.0784400e+04 4.4332051e-01 + 1.0784800e+04 -3.4667949e-01 + 1.0785200e+04 -8.8667949e-01 + 1.0785600e+04 -1.6966795e+00 + 1.0786000e+04 -1.7766795e+00 + 1.0786400e+04 -1.7366795e+00 + 1.0786800e+04 -1.7766795e+00 + 1.0787200e+04 -1.6166795e+00 + 1.0787600e+04 -8.9667949e-01 + 1.0788000e+04 -8.5667949e-01 + 1.0788400e+04 -5.6667949e-01 + 1.0788800e+04 -2.8667949e-01 + 1.0789200e+04 3.3205128e-03 + 1.0789600e+04 4.1332051e-01 + 1.0790000e+04 8.9332051e-01 + 1.0790400e+04 1.1433205e+00 + 1.0790800e+04 1.2933205e+00 + 1.0791200e+04 1.5933205e+00 + 1.0791600e+04 1.0733205e+00 + 1.0792000e+04 2.1332051e-01 + 1.0792400e+04 -4.7667949e-01 + 1.0792800e+04 -1.1566795e+00 + 1.0793200e+04 -1.5466795e+00 + 1.0793600e+04 -1.5566795e+00 + 1.0794000e+04 -1.6366795e+00 + 1.0794400e+04 -1.4566795e+00 + 1.0794800e+04 -1.1166795e+00 + 1.0795200e+04 -6.2667949e-01 + 1.0795600e+04 -2.6667949e-01 + 1.0796000e+04 -1.5667949e-01 + 1.0796400e+04 9.3320513e-02 + 1.0796800e+04 1.6332051e-01 + 1.0797200e+04 3.0332051e-01 + 1.0797600e+04 3.0332051e-01 + 1.0798000e+04 3.0332051e-01 + 1.0798400e+04 5.5332051e-01 + 1.0798800e+04 7.8332051e-01 + 1.0799200e+04 9.3332051e-01 + 1.0799600e+04 9.9332051e-01 + 1.0800000e+04 NaN + 1.0800400e+04 NaN + 1.0800800e+04 NaN + 1.0801200e+04 NaN + 1.0801600e+04 NaN + 1.0802000e+04 NaN + 1.0802400e+04 NaN + 1.0802800e+04 NaN + 1.0803200e+04 NaN + 1.0803600e+04 NaN + 1.0804000e+04 NaN + 1.0804400e+04 NaN + 1.0804800e+04 NaN + 1.0805200e+04 NaN + 1.0805600e+04 NaN + 1.0806000e+04 NaN + 1.0806400e+04 NaN + 1.0806800e+04 NaN + 1.0807200e+04 NaN + 1.0807600e+04 NaN + 1.0808000e+04 NaN + 1.0808400e+04 NaN + 1.0808800e+04 NaN + 1.0809200e+04 NaN + 1.0809600e+04 NaN + 1.0810000e+04 NaN + 1.0810400e+04 NaN + 1.0810800e+04 NaN + 1.0811200e+04 NaN + 1.0811600e+04 NaN + 1.0812000e+04 NaN + 1.0812400e+04 NaN + 1.0812800e+04 NaN + 1.0813200e+04 NaN + 1.0813600e+04 NaN + 1.0814000e+04 NaN + 1.0814400e+04 NaN + 1.0814800e+04 NaN + 1.0815200e+04 NaN + 1.0815600e+04 NaN + 1.0816000e+04 NaN + 1.0816400e+04 NaN + 1.0816800e+04 NaN + 1.0817200e+04 NaN + 1.0817600e+04 NaN + 1.0818000e+04 NaN + 1.0818400e+04 NaN + 1.0818800e+04 NaN + 1.0819200e+04 NaN + 1.0819600e+04 NaN + 1.0820000e+04 NaN + 1.0820400e+04 NaN + 1.0820800e+04 NaN + 1.0821200e+04 NaN + 1.0821600e+04 NaN + 1.0822000e+04 NaN + 1.0822400e+04 NaN + 1.0822800e+04 NaN + 1.0823200e+04 NaN + 1.0823600e+04 NaN + 1.0824000e+04 NaN + 1.0824400e+04 NaN + 1.0824800e+04 NaN + 1.0825200e+04 NaN + 1.0825600e+04 NaN + 1.0826000e+04 NaN + 1.0826400e+04 NaN + 1.0826800e+04 NaN + 1.0827200e+04 NaN + 1.0827600e+04 NaN + 1.0828000e+04 NaN + 1.0828400e+04 NaN + 1.0828800e+04 NaN + 1.0829200e+04 NaN + 1.0829600e+04 NaN + 1.0830000e+04 NaN + 1.0830400e+04 NaN + 1.0830800e+04 NaN + 1.0831200e+04 NaN + 1.0831600e+04 NaN + 1.0832000e+04 NaN + 1.0832400e+04 NaN + 1.0832800e+04 NaN + 1.0833200e+04 NaN + 1.0833600e+04 NaN + 1.0834000e+04 NaN + 1.0834400e+04 NaN + 1.0834800e+04 NaN + 1.0835200e+04 NaN + 1.0835600e+04 NaN + 1.0836000e+04 NaN + 1.0836400e+04 NaN + 1.0836800e+04 NaN + 1.0837200e+04 NaN + 1.0837600e+04 NaN + 1.0838000e+04 NaN + 1.0838400e+04 NaN + 1.0838800e+04 NaN + 1.0839200e+04 NaN + 1.0839600e+04 NaN + 1.0840000e+04 NaN + 1.0840400e+04 NaN + 1.0840800e+04 NaN + 1.0841200e+04 NaN + 1.0841600e+04 NaN + 1.0842000e+04 NaN + 1.0842400e+04 NaN + 1.0842800e+04 NaN + 1.0843200e+04 NaN + 1.0843600e+04 NaN + 1.0844000e+04 NaN + 1.0844400e+04 NaN + 1.0844800e+04 NaN + 1.0845200e+04 NaN + 1.0845600e+04 NaN + 1.0846000e+04 NaN + 1.0846400e+04 NaN + 1.0846800e+04 NaN + 1.0847200e+04 NaN + 1.0847600e+04 NaN + 1.0848000e+04 NaN + 1.0848400e+04 NaN + 1.0848800e+04 NaN + 1.0849200e+04 NaN + 1.0849600e+04 NaN + 1.0850000e+04 NaN + 1.0850400e+04 NaN + 1.0850800e+04 NaN + 1.0851200e+04 NaN + 1.0851600e+04 NaN + 1.0852000e+04 NaN + 1.0852400e+04 NaN + 1.0852800e+04 NaN + 1.0853200e+04 NaN + 1.0853600e+04 NaN + 1.0854000e+04 NaN + 1.0854400e+04 NaN + 1.0854800e+04 NaN + 1.0855200e+04 NaN + 1.0855600e+04 NaN + 1.0856000e+04 NaN + 1.0856400e+04 NaN + 1.0856800e+04 NaN + 1.0857200e+04 NaN + 1.0857600e+04 NaN + 1.0858000e+04 NaN + 1.0858400e+04 NaN + 1.0858800e+04 NaN + 1.0859200e+04 NaN + 1.0859600e+04 NaN + 1.0860000e+04 NaN + 1.0860400e+04 NaN + 1.0860800e+04 NaN + 1.0861200e+04 NaN + 1.0861600e+04 NaN + 1.0862000e+04 NaN + 1.0862400e+04 NaN + 1.0862800e+04 NaN + 1.0863200e+04 NaN + 1.0863600e+04 NaN + 1.0864000e+04 NaN + 1.0864400e+04 NaN + 1.0864800e+04 NaN + 1.0865200e+04 NaN + 1.0865600e+04 NaN + 1.0866000e+04 NaN + 1.0866400e+04 NaN + 1.0866800e+04 NaN + 1.0867200e+04 NaN + 1.0867600e+04 NaN + 1.0868000e+04 NaN + 1.0868400e+04 NaN + 1.0868800e+04 NaN + 1.0869200e+04 NaN + 1.0869600e+04 NaN + 1.0870000e+04 NaN + 1.0870400e+04 NaN + 1.0870800e+04 NaN + 1.0871200e+04 NaN + 1.0871600e+04 NaN + 1.0872000e+04 NaN + 1.0872400e+04 NaN + 1.0872800e+04 NaN + 1.0873200e+04 NaN + 1.0873600e+04 NaN + 1.0874000e+04 NaN + 1.0874400e+04 NaN + 1.0874800e+04 NaN + 1.0875200e+04 NaN + 1.0875600e+04 NaN + 1.0876000e+04 NaN + 1.0876400e+04 NaN + 1.0876800e+04 NaN + 1.0877200e+04 NaN + 1.0877600e+04 NaN + 1.0878000e+04 NaN + 1.0878400e+04 NaN + 1.0878800e+04 NaN + 1.0879200e+04 NaN + 1.0879600e+04 NaN + 1.0880000e+04 NaN + 1.0880400e+04 NaN + 1.0880800e+04 NaN + 1.0881200e+04 NaN + 1.0881600e+04 NaN + 1.0882000e+04 NaN + 1.0882400e+04 NaN + 1.0882800e+04 NaN + 1.0883200e+04 NaN + 1.0883600e+04 NaN + 1.0884000e+04 NaN + 1.0884400e+04 NaN + 1.0884800e+04 NaN + 1.0885200e+04 NaN + 1.0885600e+04 NaN + 1.0886000e+04 NaN + 1.0886400e+04 NaN + 1.0886800e+04 NaN + 1.0887200e+04 NaN + 1.0887600e+04 NaN + 1.0888000e+04 NaN + 1.0888400e+04 NaN + 1.0888800e+04 NaN + 1.0889200e+04 NaN + 1.0889600e+04 NaN + 1.0890000e+04 NaN + 1.0890400e+04 NaN + 1.0890800e+04 NaN + 1.0891200e+04 NaN + 1.0891600e+04 NaN + 1.0892000e+04 NaN + 1.0892400e+04 NaN + 1.0892800e+04 NaN + 1.0893200e+04 NaN + 1.0893600e+04 NaN + 1.0894000e+04 NaN + 1.0894400e+04 NaN + 1.0894800e+04 NaN + 1.0895200e+04 NaN + 1.0895600e+04 NaN + 1.0896000e+04 NaN + 1.0896400e+04 NaN + 1.0896800e+04 NaN + 1.0897200e+04 NaN + 1.0897600e+04 NaN + 1.0898000e+04 NaN + 1.0898400e+04 NaN + 1.0898800e+04 NaN + 1.0899200e+04 NaN + 1.0899600e+04 NaN + 1.0900000e+04 NaN + 1.0900400e+04 NaN + 1.0900800e+04 NaN + 1.0901200e+04 NaN + 1.0901600e+04 NaN + 1.0902000e+04 NaN + 1.0902400e+04 NaN + 1.0902800e+04 NaN + 1.0903200e+04 NaN + 1.0903600e+04 NaN + 1.0904000e+04 NaN + 1.0904400e+04 NaN + 1.0904800e+04 NaN + 1.0905200e+04 NaN + 1.0905600e+04 NaN + 1.0906000e+04 NaN + 1.0906400e+04 NaN + 1.0906800e+04 NaN + 1.0907200e+04 NaN + 1.0907600e+04 NaN + 1.0908000e+04 NaN + 1.0908400e+04 NaN + 1.0908800e+04 NaN + 1.0909200e+04 NaN + 1.0909600e+04 NaN + 1.0910000e+04 NaN + 1.0910400e+04 NaN + 1.0910800e+04 NaN + 1.0911200e+04 NaN + 1.0911600e+04 NaN + 1.0912000e+04 NaN + 1.0912400e+04 NaN + 1.0912800e+04 NaN + 1.0913200e+04 NaN + 1.0913600e+04 NaN + 1.0914000e+04 NaN + 1.0914400e+04 NaN + 1.0914800e+04 NaN + 1.0915200e+04 NaN + 1.0915600e+04 NaN + 1.0916000e+04 NaN + 1.0916400e+04 NaN + 1.0916800e+04 NaN + 1.0917200e+04 NaN + 1.0917600e+04 NaN + 1.0918000e+04 NaN + 1.0918400e+04 NaN + 1.0918800e+04 NaN + 1.0919200e+04 NaN + 1.0919600e+04 NaN + 1.0920000e+04 NaN + 1.0920400e+04 NaN + 1.0920800e+04 NaN + 1.0921200e+04 NaN + 1.0921600e+04 NaN + 1.0922000e+04 NaN + 1.0922400e+04 NaN + 1.0922800e+04 NaN + 1.0923200e+04 NaN + 1.0923600e+04 NaN + 1.0924000e+04 NaN + 1.0924400e+04 NaN + 1.0924800e+04 NaN + 1.0925200e+04 NaN + 1.0925600e+04 NaN + 1.0926000e+04 NaN + 1.0926400e+04 NaN + 1.0926800e+04 NaN + 1.0927200e+04 NaN + 1.0927600e+04 NaN + 1.0928000e+04 NaN + 1.0928400e+04 NaN + 1.0928800e+04 NaN + 1.0929200e+04 NaN + 1.0929600e+04 NaN + 1.0930000e+04 NaN + 1.0930400e+04 NaN + 1.0930800e+04 NaN + 1.0931200e+04 NaN + 1.0931600e+04 NaN + 1.0932000e+04 NaN + 1.0932400e+04 NaN + 1.0932800e+04 NaN + 1.0933200e+04 NaN + 1.0933600e+04 NaN + 1.0934000e+04 NaN + 1.0934400e+04 NaN + 1.0934800e+04 NaN + 1.0935200e+04 NaN + 1.0935600e+04 NaN + 1.0936000e+04 NaN + 1.0936400e+04 NaN + 1.0936800e+04 NaN + 1.0937200e+04 NaN + 1.0937600e+04 NaN + 1.0938000e+04 NaN + 1.0938400e+04 NaN + 1.0938800e+04 NaN + 1.0939200e+04 NaN + 1.0939600e+04 NaN + 1.0940000e+04 NaN + 1.0940400e+04 NaN + 1.0940800e+04 NaN + 1.0941200e+04 NaN + 1.0941600e+04 NaN + 1.0942000e+04 NaN + 1.0942400e+04 NaN + 1.0942800e+04 NaN + 1.0943200e+04 NaN + 1.0943600e+04 NaN + 1.0944000e+04 NaN + 1.0944400e+04 NaN + 1.0944800e+04 NaN + 1.0945200e+04 NaN + 1.0945600e+04 NaN + 1.0946000e+04 NaN + 1.0946400e+04 NaN + 1.0946800e+04 NaN + 1.0947200e+04 NaN + 1.0947600e+04 NaN + 1.0948000e+04 NaN + 1.0948400e+04 NaN + 1.0948800e+04 NaN + 1.0949200e+04 NaN + 1.0949600e+04 NaN + 1.0950000e+04 NaN + 1.0950400e+04 NaN + 1.0950800e+04 NaN + 1.0951200e+04 NaN + 1.0951600e+04 NaN + 1.0952000e+04 NaN + 1.0952400e+04 NaN + 1.0952800e+04 NaN + 1.0953200e+04 NaN + 1.0953600e+04 NaN + 1.0954000e+04 NaN + 1.0954400e+04 NaN + 1.0954800e+04 NaN + 1.0955200e+04 NaN + 1.0955600e+04 NaN + 1.0956000e+04 NaN + 1.0956400e+04 NaN + 1.0956800e+04 NaN + 1.0957200e+04 NaN + 1.0957600e+04 NaN + 1.0958000e+04 NaN + 1.0958400e+04 NaN + 1.0958800e+04 NaN + 1.0959200e+04 NaN + 1.0959600e+04 NaN + 1.0960000e+04 NaN + 1.0960400e+04 NaN + 1.0960800e+04 NaN + 1.0961200e+04 NaN + 1.0961600e+04 NaN + 1.0962000e+04 NaN + 1.0962400e+04 NaN + 1.0962800e+04 NaN + 1.0963200e+04 NaN + 1.0963600e+04 NaN + 1.0964000e+04 NaN + 1.0964400e+04 NaN + 1.0964800e+04 NaN + 1.0965200e+04 NaN + 1.0965600e+04 NaN + 1.0966000e+04 NaN + 1.0966400e+04 NaN + 1.0966800e+04 NaN + 1.0967200e+04 NaN + 1.0967600e+04 NaN + 1.0968000e+04 NaN + 1.0968400e+04 NaN + 1.0968800e+04 NaN + 1.0969200e+04 NaN + 1.0969600e+04 NaN + 1.0970000e+04 NaN + 1.0970400e+04 NaN + 1.0970800e+04 NaN + 1.0971200e+04 NaN + 1.0971600e+04 NaN + 1.0972000e+04 NaN + 1.0972400e+04 NaN + 1.0972800e+04 NaN + 1.0973200e+04 NaN + 1.0973600e+04 NaN + 1.0974000e+04 NaN + 1.0974400e+04 NaN + 1.0974800e+04 NaN + 1.0975200e+04 NaN + 1.0975600e+04 NaN + 1.0976000e+04 NaN + 1.0976400e+04 NaN + 1.0976800e+04 NaN + 1.0977200e+04 NaN + 1.0977600e+04 NaN + 1.0978000e+04 NaN + 1.0978400e+04 NaN + 1.0978800e+04 NaN + 1.0979200e+04 NaN + 1.0979600e+04 NaN + 1.0980000e+04 NaN + 1.0980400e+04 NaN + 1.0980800e+04 NaN + 1.0981200e+04 NaN + 1.0981600e+04 NaN + 1.0982000e+04 NaN + 1.0982400e+04 NaN + 1.0982800e+04 NaN + 1.0983200e+04 NaN + 1.0983600e+04 NaN + 1.0984000e+04 NaN + 1.0984400e+04 NaN + 1.0984800e+04 NaN + 1.0985200e+04 NaN + 1.0985600e+04 NaN + 1.0986000e+04 NaN + 1.0986400e+04 NaN + 1.0986800e+04 NaN + 1.0987200e+04 NaN + 1.0987600e+04 NaN + 1.0988000e+04 NaN + 1.0988400e+04 NaN + 1.0988800e+04 NaN + 1.0989200e+04 NaN + 1.0989600e+04 NaN + 1.0990000e+04 NaN + 1.0990400e+04 NaN + 1.0990800e+04 NaN + 1.0991200e+04 NaN + 1.0991600e+04 NaN + 1.0992000e+04 NaN + 1.0992400e+04 NaN + 1.0992800e+04 NaN + 1.0993200e+04 NaN + 1.0993600e+04 NaN + 1.0994000e+04 NaN + 1.0994400e+04 NaN + 1.0994800e+04 NaN + 1.0995200e+04 NaN + 1.0995600e+04 NaN + 1.0996000e+04 NaN + 1.0996400e+04 NaN + 1.0996800e+04 NaN + 1.0997200e+04 NaN + 1.0997600e+04 NaN + 1.0998000e+04 NaN + 1.0998400e+04 NaN + 1.0998800e+04 NaN + 1.0999200e+04 NaN + 1.0999600e+04 NaN + 1.1000000e+04 NaN + 1.1000400e+04 NaN + 1.1000800e+04 NaN + 1.1001200e+04 NaN + 1.1001600e+04 NaN + 1.1002000e+04 NaN + 1.1002400e+04 NaN + 1.1002800e+04 NaN + 1.1003200e+04 NaN + 1.1003600e+04 NaN + 1.1004000e+04 NaN + 1.1004400e+04 NaN + 1.1004800e+04 NaN + 1.1005200e+04 NaN + 1.1005600e+04 NaN + 1.1006000e+04 NaN + 1.1006400e+04 NaN + 1.1006800e+04 NaN + 1.1007200e+04 NaN + 1.1007600e+04 NaN + 1.1008000e+04 NaN + 1.1008400e+04 NaN + 1.1008800e+04 NaN + 1.1009200e+04 NaN + 1.1009600e+04 NaN + 1.1010000e+04 NaN + 1.1010400e+04 NaN + 1.1010800e+04 NaN + 1.1011200e+04 NaN + 1.1011600e+04 NaN + 1.1012000e+04 NaN + 1.1012400e+04 NaN + 1.1012800e+04 NaN + 1.1013200e+04 NaN + 1.1013600e+04 NaN + 1.1014000e+04 NaN + 1.1014400e+04 NaN + 1.1014800e+04 NaN + 1.1015200e+04 NaN + 1.1015600e+04 NaN + 1.1016000e+04 NaN + 1.1016400e+04 NaN + 1.1016800e+04 NaN + 1.1017200e+04 NaN + 1.1017600e+04 NaN + 1.1018000e+04 NaN + 1.1018400e+04 NaN + 1.1018800e+04 NaN + 1.1019200e+04 NaN + 1.1019600e+04 NaN + 1.1020000e+04 NaN + 1.1020400e+04 NaN + 1.1020800e+04 NaN + 1.1021200e+04 NaN + 1.1021600e+04 NaN + 1.1022000e+04 NaN + 1.1022400e+04 NaN + 1.1022800e+04 NaN + 1.1023200e+04 NaN + 1.1023600e+04 NaN + 1.1024000e+04 NaN + 1.1024400e+04 NaN + 1.1024800e+04 NaN + 1.1025200e+04 NaN + 1.1025600e+04 NaN + 1.1026000e+04 NaN + 1.1026400e+04 NaN + 1.1026800e+04 NaN + 1.1027200e+04 NaN + 1.1027600e+04 NaN + 1.1028000e+04 NaN + 1.1028400e+04 NaN + 1.1028800e+04 NaN + 1.1029200e+04 NaN + 1.1029600e+04 NaN + 1.1030000e+04 NaN + 1.1030400e+04 NaN + 1.1030800e+04 NaN + 1.1031200e+04 NaN + 1.1031600e+04 NaN + 1.1032000e+04 NaN + 1.1032400e+04 NaN + 1.1032800e+04 NaN + 1.1033200e+04 NaN + 1.1033600e+04 NaN + 1.1034000e+04 NaN + 1.1034400e+04 NaN + 1.1034800e+04 NaN + 1.1035200e+04 NaN + 1.1035600e+04 NaN + 1.1036000e+04 NaN + 1.1036400e+04 NaN + 1.1036800e+04 NaN + 1.1037200e+04 NaN + 1.1037600e+04 NaN + 1.1038000e+04 NaN + 1.1038400e+04 NaN + 1.1038800e+04 NaN + 1.1039200e+04 NaN + 1.1039600e+04 NaN + 1.1040000e+04 NaN + 1.1040400e+04 NaN + 1.1040800e+04 NaN + 1.1041200e+04 NaN + 1.1041600e+04 NaN + 1.1042000e+04 NaN + 1.1042400e+04 NaN + 1.1042800e+04 NaN + 1.1043200e+04 NaN + 1.1043600e+04 NaN + 1.1044000e+04 NaN + 1.1044400e+04 NaN + 1.1044800e+04 NaN + 1.1045200e+04 NaN + 1.1045600e+04 NaN + 1.1046000e+04 NaN + 1.1046400e+04 NaN + 1.1046800e+04 NaN + 1.1047200e+04 NaN + 1.1047600e+04 NaN + 1.1048000e+04 NaN + 1.1048400e+04 NaN + 1.1048800e+04 NaN + 1.1049200e+04 NaN + 1.1049600e+04 NaN + 1.1050000e+04 NaN + 1.1050400e+04 NaN + 1.1050800e+04 NaN + 1.1051200e+04 NaN + 1.1051600e+04 NaN + 1.1052000e+04 NaN + 1.1052400e+04 NaN + 1.1052800e+04 NaN + 1.1053200e+04 NaN + 1.1053600e+04 NaN + 1.1054000e+04 NaN + 1.1054400e+04 NaN + 1.1054800e+04 NaN + 1.1055200e+04 NaN + 1.1055600e+04 NaN + 1.1056000e+04 NaN + 1.1056400e+04 NaN + 1.1056800e+04 NaN + 1.1057200e+04 NaN + 1.1057600e+04 NaN + 1.1058000e+04 NaN + 1.1058400e+04 NaN + 1.1058800e+04 NaN + 1.1059200e+04 NaN + 1.1059600e+04 NaN + 1.1060000e+04 NaN + 1.1060400e+04 NaN + 1.1060800e+04 NaN + 1.1061200e+04 NaN + 1.1061600e+04 NaN + 1.1062000e+04 NaN + 1.1062400e+04 NaN + 1.1062800e+04 NaN + 1.1063200e+04 NaN + 1.1063600e+04 NaN + 1.1064000e+04 NaN + 1.1064400e+04 NaN + 1.1064800e+04 NaN + 1.1065200e+04 NaN + 1.1065600e+04 NaN + 1.1066000e+04 NaN + 1.1066400e+04 NaN + 1.1066800e+04 NaN + 1.1067200e+04 NaN + 1.1067600e+04 NaN + 1.1068000e+04 NaN + 1.1068400e+04 NaN + 1.1068800e+04 NaN + 1.1069200e+04 NaN + 1.1069600e+04 NaN + 1.1070000e+04 NaN + 1.1070400e+04 NaN + 1.1070800e+04 NaN + 1.1071200e+04 NaN + 1.1071600e+04 NaN + 1.1072000e+04 NaN + 1.1072400e+04 NaN + 1.1072800e+04 NaN + 1.1073200e+04 NaN + 1.1073600e+04 NaN + 1.1074000e+04 NaN + 1.1074400e+04 NaN + 1.1074800e+04 NaN + 1.1075200e+04 NaN + 1.1075600e+04 NaN + 1.1076000e+04 NaN + 1.1076400e+04 NaN + 1.1076800e+04 NaN + 1.1077200e+04 NaN + 1.1077600e+04 NaN + 1.1078000e+04 NaN + 1.1078400e+04 NaN + 1.1078800e+04 NaN + 1.1079200e+04 NaN + 1.1079600e+04 NaN + 1.1080000e+04 NaN + 1.1080400e+04 NaN + 1.1080800e+04 NaN + 1.1081200e+04 NaN + 1.1081600e+04 NaN + 1.1082000e+04 NaN + 1.1082400e+04 NaN + 1.1082800e+04 NaN + 1.1083200e+04 NaN + 1.1083600e+04 NaN + 1.1084000e+04 NaN + 1.1084400e+04 NaN + 1.1084800e+04 NaN + 1.1085200e+04 NaN + 1.1085600e+04 NaN + 1.1086000e+04 NaN + 1.1086400e+04 NaN + 1.1086800e+04 NaN + 1.1087200e+04 NaN + 1.1087600e+04 NaN + 1.1088000e+04 NaN + 1.1088400e+04 NaN + 1.1088800e+04 NaN + 1.1089200e+04 NaN + 1.1089600e+04 NaN + 1.1090000e+04 NaN + 1.1090400e+04 NaN + 1.1090800e+04 NaN + 1.1091200e+04 NaN + 1.1091600e+04 NaN + 1.1092000e+04 NaN + 1.1092400e+04 NaN + 1.1092800e+04 NaN + 1.1093200e+04 NaN + 1.1093600e+04 NaN + 1.1094000e+04 NaN + 1.1094400e+04 NaN + 1.1094800e+04 NaN + 1.1095200e+04 NaN + 1.1095600e+04 NaN + 1.1096000e+04 NaN + 1.1096400e+04 NaN + 1.1096800e+04 NaN + 1.1097200e+04 NaN + 1.1097600e+04 NaN + 1.1098000e+04 NaN + 1.1098400e+04 NaN + 1.1098800e+04 NaN + 1.1099200e+04 NaN + 1.1099600e+04 NaN + 1.1100000e+04 NaN + 1.1100400e+04 NaN + 1.1100800e+04 NaN + 1.1101200e+04 NaN + 1.1101600e+04 NaN + 1.1102000e+04 NaN + 1.1102400e+04 NaN + 1.1102800e+04 NaN + 1.1103200e+04 NaN + 1.1103600e+04 NaN + 1.1104000e+04 NaN + 1.1104400e+04 NaN + 1.1104800e+04 NaN + 1.1105200e+04 NaN + 1.1105600e+04 NaN + 1.1106000e+04 NaN + 1.1106400e+04 NaN + 1.1106800e+04 NaN + 1.1107200e+04 NaN + 1.1107600e+04 NaN + 1.1108000e+04 NaN + 1.1108400e+04 NaN + 1.1108800e+04 NaN + 1.1109200e+04 NaN + 1.1109600e+04 NaN + 1.1110000e+04 NaN + 1.1110400e+04 NaN + 1.1110800e+04 NaN + 1.1111200e+04 NaN + 1.1111600e+04 NaN + 1.1112000e+04 NaN + 1.1112400e+04 NaN + 1.1112800e+04 NaN + 1.1113200e+04 NaN + 1.1113600e+04 NaN + 1.1114000e+04 NaN + 1.1114400e+04 NaN + 1.1114800e+04 NaN + 1.1115200e+04 NaN + 1.1115600e+04 NaN + 1.1116000e+04 NaN + 1.1116400e+04 NaN + 1.1116800e+04 NaN + 1.1117200e+04 NaN + 1.1117600e+04 NaN + 1.1118000e+04 NaN + 1.1118400e+04 NaN + 1.1118800e+04 NaN + 1.1119200e+04 NaN + 1.1119600e+04 NaN + 1.1120000e+04 NaN + 1.1120400e+04 NaN + 1.1120800e+04 NaN + 1.1121200e+04 NaN + 1.1121600e+04 NaN + 1.1122000e+04 NaN + 1.1122400e+04 NaN + 1.1122800e+04 NaN + 1.1123200e+04 NaN + 1.1123600e+04 NaN + 1.1124000e+04 NaN + 1.1124400e+04 NaN + 1.1124800e+04 NaN + 1.1125200e+04 NaN + 1.1125600e+04 NaN + 1.1126000e+04 NaN + 1.1126400e+04 NaN + 1.1126800e+04 NaN + 1.1127200e+04 NaN + 1.1127600e+04 NaN + 1.1128000e+04 NaN + 1.1128400e+04 NaN + 1.1128800e+04 NaN + 1.1129200e+04 NaN + 1.1129600e+04 NaN + 1.1130000e+04 NaN + 1.1130400e+04 NaN + 1.1130800e+04 NaN + 1.1131200e+04 NaN + 1.1131600e+04 NaN + 1.1132000e+04 NaN + 1.1132400e+04 NaN + 1.1132800e+04 NaN + 1.1133200e+04 NaN + 1.1133600e+04 NaN + 1.1134000e+04 NaN + 1.1134400e+04 NaN + 1.1134800e+04 NaN + 1.1135200e+04 NaN + 1.1135600e+04 NaN + 1.1136000e+04 NaN + 1.1136400e+04 NaN + 1.1136800e+04 NaN + 1.1137200e+04 NaN + 1.1137600e+04 NaN + 1.1138000e+04 NaN + 1.1138400e+04 NaN + 1.1138800e+04 NaN + 1.1139200e+04 NaN + 1.1139600e+04 NaN + 1.1140000e+04 NaN + 1.1140400e+04 NaN + 1.1140800e+04 NaN + 1.1141200e+04 NaN + 1.1141600e+04 NaN + 1.1142000e+04 NaN + 1.1142400e+04 NaN + 1.1142800e+04 NaN + 1.1143200e+04 NaN + 1.1143600e+04 NaN + 1.1144000e+04 NaN + 1.1144400e+04 NaN + 1.1144800e+04 NaN + 1.1145200e+04 NaN + 1.1145600e+04 NaN + 1.1146000e+04 NaN + 1.1146400e+04 NaN + 1.1146800e+04 NaN + 1.1147200e+04 NaN + 1.1147600e+04 NaN + 1.1148000e+04 NaN + 1.1148400e+04 NaN + 1.1148800e+04 NaN + 1.1149200e+04 NaN + 1.1149600e+04 NaN + 1.1150000e+04 NaN + 1.1150400e+04 NaN + 1.1150800e+04 NaN + 1.1151200e+04 NaN + 1.1151600e+04 NaN + 1.1152000e+04 NaN + 1.1152400e+04 NaN + 1.1152800e+04 NaN + 1.1153200e+04 NaN + 1.1153600e+04 NaN + 1.1154000e+04 NaN + 1.1154400e+04 NaN + 1.1154800e+04 NaN + 1.1155200e+04 NaN + 1.1155600e+04 NaN + 1.1156000e+04 NaN + 1.1156400e+04 NaN + 1.1156800e+04 NaN + 1.1157200e+04 NaN + 1.1157600e+04 NaN + 1.1158000e+04 NaN + 1.1158400e+04 NaN + 1.1158800e+04 NaN + 1.1159200e+04 NaN + 1.1159600e+04 NaN + 1.1160000e+04 NaN + 1.1160400e+04 NaN + 1.1160800e+04 NaN + 1.1161200e+04 NaN + 1.1161600e+04 NaN + 1.1162000e+04 NaN + 1.1162400e+04 NaN + 1.1162800e+04 NaN + 1.1163200e+04 NaN + 1.1163600e+04 NaN + 1.1164000e+04 NaN + 1.1164400e+04 NaN + 1.1164800e+04 NaN + 1.1165200e+04 NaN + 1.1165600e+04 NaN + 1.1166000e+04 NaN + 1.1166400e+04 NaN + 1.1166800e+04 NaN + 1.1167200e+04 NaN + 1.1167600e+04 NaN + 1.1168000e+04 NaN + 1.1168400e+04 NaN + 1.1168800e+04 NaN + 1.1169200e+04 NaN + 1.1169600e+04 NaN + 1.1170000e+04 NaN + 1.1170400e+04 NaN + 1.1170800e+04 NaN + 1.1171200e+04 NaN + 1.1171600e+04 NaN + 1.1172000e+04 NaN + 1.1172400e+04 NaN + 1.1172800e+04 NaN + 1.1173200e+04 NaN + 1.1173600e+04 NaN + 1.1174000e+04 NaN + 1.1174400e+04 NaN + 1.1174800e+04 NaN + 1.1175200e+04 NaN + 1.1175600e+04 NaN + 1.1176000e+04 NaN + 1.1176400e+04 NaN + 1.1176800e+04 NaN + 1.1177200e+04 NaN + 1.1177600e+04 NaN + 1.1178000e+04 NaN + 1.1178400e+04 NaN + 1.1178800e+04 NaN + 1.1179200e+04 NaN + 1.1179600e+04 NaN + 1.1180000e+04 NaN + 1.1180400e+04 NaN + 1.1180800e+04 NaN + 1.1181200e+04 NaN + 1.1181600e+04 NaN + 1.1182000e+04 NaN + 1.1182400e+04 NaN + 1.1182800e+04 NaN + 1.1183200e+04 NaN + 1.1183600e+04 NaN + 1.1184000e+04 NaN + 1.1184400e+04 NaN + 1.1184800e+04 NaN + 1.1185200e+04 NaN + 1.1185600e+04 NaN + 1.1186000e+04 NaN + 1.1186400e+04 NaN + 1.1186800e+04 NaN + 1.1187200e+04 NaN + 1.1187600e+04 NaN + 1.1188000e+04 NaN + 1.1188400e+04 NaN + 1.1188800e+04 NaN + 1.1189200e+04 NaN + 1.1189600e+04 NaN + 1.1190000e+04 NaN + 1.1190400e+04 NaN + 1.1190800e+04 NaN + 1.1191200e+04 NaN + 1.1191600e+04 NaN + 1.1192000e+04 NaN + 1.1192400e+04 NaN + 1.1192800e+04 NaN + 1.1193200e+04 NaN + 1.1193600e+04 NaN + 1.1194000e+04 NaN + 1.1194400e+04 NaN + 1.1194800e+04 NaN + 1.1195200e+04 NaN + 1.1195600e+04 NaN + 1.1196000e+04 NaN + 1.1196400e+04 NaN + 1.1196800e+04 NaN + 1.1197200e+04 NaN + 1.1197600e+04 NaN + 1.1198000e+04 NaN + 1.1198400e+04 NaN + 1.1198800e+04 NaN + 1.1199200e+04 NaN + 1.1199600e+04 NaN + 1.1200000e+04 NaN + 1.1200400e+04 NaN + 1.1200800e+04 NaN + 1.1201200e+04 NaN + 1.1201600e+04 NaN + 1.1202000e+04 NaN + 1.1202400e+04 NaN + 1.1202800e+04 NaN + 1.1203200e+04 NaN + 1.1203600e+04 NaN + 1.1204000e+04 NaN + 1.1204400e+04 NaN + 1.1204800e+04 NaN + 1.1205200e+04 NaN + 1.1205600e+04 NaN + 1.1206000e+04 NaN + 1.1206400e+04 NaN + 1.1206800e+04 NaN + 1.1207200e+04 NaN + 1.1207600e+04 NaN + 1.1208000e+04 NaN + 1.1208400e+04 NaN + 1.1208800e+04 NaN + 1.1209200e+04 NaN + 1.1209600e+04 NaN + 1.1210000e+04 NaN + 1.1210400e+04 NaN + 1.1210800e+04 NaN + 1.1211200e+04 NaN + 1.1211600e+04 NaN + 1.1212000e+04 NaN + 1.1212400e+04 NaN + 1.1212800e+04 NaN + 1.1213200e+04 NaN + 1.1213600e+04 NaN + 1.1214000e+04 NaN + 1.1214400e+04 NaN + 1.1214800e+04 NaN + 1.1215200e+04 NaN + 1.1215600e+04 NaN + 1.1216000e+04 NaN + 1.1216400e+04 NaN + 1.1216800e+04 NaN + 1.1217200e+04 NaN + 1.1217600e+04 NaN + 1.1218000e+04 NaN + 1.1218400e+04 NaN + 1.1218800e+04 NaN + 1.1219200e+04 NaN + 1.1219600e+04 NaN + 1.1220000e+04 NaN + 1.1220400e+04 NaN + 1.1220800e+04 NaN + 1.1221200e+04 NaN + 1.1221600e+04 NaN + 1.1222000e+04 NaN + 1.1222400e+04 NaN + 1.1222800e+04 NaN + 1.1223200e+04 NaN + 1.1223600e+04 NaN + 1.1224000e+04 NaN + 1.1224400e+04 NaN + 1.1224800e+04 NaN + 1.1225200e+04 NaN + 1.1225600e+04 NaN + 1.1226000e+04 NaN + 1.1226400e+04 NaN + 1.1226800e+04 NaN + 1.1227200e+04 NaN + 1.1227600e+04 NaN + 1.1228000e+04 NaN + 1.1228400e+04 NaN + 1.1228800e+04 NaN + 1.1229200e+04 NaN + 1.1229600e+04 NaN + 1.1230000e+04 NaN + 1.1230400e+04 NaN + 1.1230800e+04 NaN + 1.1231200e+04 NaN + 1.1231600e+04 NaN + 1.1232000e+04 NaN + 1.1232400e+04 NaN + 1.1232800e+04 NaN + 1.1233200e+04 NaN + 1.1233600e+04 NaN + 1.1234000e+04 NaN + 1.1234400e+04 NaN + 1.1234800e+04 NaN + 1.1235200e+04 NaN + 1.1235600e+04 NaN + 1.1236000e+04 NaN + 1.1236400e+04 NaN + 1.1236800e+04 NaN + 1.1237200e+04 NaN + 1.1237600e+04 NaN + 1.1238000e+04 NaN + 1.1238400e+04 NaN + 1.1238800e+04 NaN + 1.1239200e+04 NaN + 1.1239600e+04 NaN + 1.1240000e+04 NaN + 1.1240400e+04 NaN + 1.1240800e+04 NaN + 1.1241200e+04 NaN + 1.1241600e+04 NaN + 1.1242000e+04 NaN + 1.1242400e+04 NaN + 1.1242800e+04 NaN + 1.1243200e+04 NaN + 1.1243600e+04 NaN + 1.1244000e+04 NaN + 1.1244400e+04 NaN + 1.1244800e+04 NaN + 1.1245200e+04 NaN + 1.1245600e+04 NaN + 1.1246000e+04 NaN + 1.1246400e+04 NaN + 1.1246800e+04 NaN + 1.1247200e+04 NaN + 1.1247600e+04 NaN + 1.1248000e+04 NaN + 1.1248400e+04 NaN + 1.1248800e+04 NaN + 1.1249200e+04 NaN + 1.1249600e+04 NaN + 1.1250000e+04 NaN + 1.1250400e+04 NaN + 1.1250800e+04 NaN + 1.1251200e+04 NaN + 1.1251600e+04 NaN + 1.1252000e+04 NaN + 1.1252400e+04 NaN + 1.1252800e+04 NaN + 1.1253200e+04 NaN + 1.1253600e+04 NaN + 1.1254000e+04 NaN + 1.1254400e+04 NaN + 1.1254800e+04 NaN + 1.1255200e+04 NaN + 1.1255600e+04 NaN + 1.1256000e+04 NaN + 1.1256400e+04 NaN + 1.1256800e+04 NaN + 1.1257200e+04 NaN + 1.1257600e+04 NaN + 1.1258000e+04 NaN + 1.1258400e+04 NaN + 1.1258800e+04 NaN + 1.1259200e+04 NaN + 1.1259600e+04 NaN + 1.1260000e+04 NaN + 1.1260400e+04 NaN + 1.1260800e+04 NaN + 1.1261200e+04 NaN + 1.1261600e+04 NaN + 1.1262000e+04 NaN + 1.1262400e+04 NaN + 1.1262800e+04 NaN + 1.1263200e+04 NaN + 1.1263600e+04 NaN + 1.1264000e+04 NaN + 1.1264400e+04 NaN + 1.1264800e+04 NaN + 1.1265200e+04 NaN + 1.1265600e+04 NaN + 1.1266000e+04 NaN + 1.1266400e+04 NaN + 1.1266800e+04 NaN + 1.1267200e+04 NaN + 1.1267600e+04 NaN + 1.1268000e+04 NaN + 1.1268400e+04 NaN + 1.1268800e+04 NaN + 1.1269200e+04 NaN + 1.1269600e+04 NaN + 1.1270000e+04 NaN + 1.1270400e+04 NaN + 1.1270800e+04 NaN + 1.1271200e+04 NaN + 1.1271600e+04 NaN + 1.1272000e+04 NaN + 1.1272400e+04 NaN + 1.1272800e+04 NaN + 1.1273200e+04 NaN + 1.1273600e+04 NaN + 1.1274000e+04 NaN + 1.1274400e+04 NaN + 1.1274800e+04 NaN + 1.1275200e+04 NaN + 1.1275600e+04 NaN + 1.1276000e+04 NaN + 1.1276400e+04 NaN + 1.1276800e+04 NaN + 1.1277200e+04 NaN + 1.1277600e+04 NaN + 1.1278000e+04 NaN + 1.1278400e+04 NaN + 1.1278800e+04 NaN + 1.1279200e+04 NaN + 1.1279600e+04 NaN + 1.1280000e+04 NaN + 1.1280400e+04 NaN + 1.1280800e+04 NaN + 1.1281200e+04 NaN + 1.1281600e+04 NaN + 1.1282000e+04 NaN + 1.1282400e+04 NaN + 1.1282800e+04 NaN + 1.1283200e+04 NaN + 1.1283600e+04 NaN + 1.1284000e+04 NaN + 1.1284400e+04 NaN + 1.1284800e+04 NaN + 1.1285200e+04 NaN + 1.1285600e+04 NaN + 1.1286000e+04 NaN + 1.1286400e+04 NaN + 1.1286800e+04 NaN + 1.1287200e+04 NaN + 1.1287600e+04 NaN + 1.1288000e+04 NaN + 1.1288400e+04 NaN + 1.1288800e+04 NaN + 1.1289200e+04 NaN + 1.1289600e+04 NaN + 1.1290000e+04 NaN + 1.1290400e+04 NaN + 1.1290800e+04 NaN + 1.1291200e+04 NaN + 1.1291600e+04 NaN + 1.1292000e+04 NaN + 1.1292400e+04 NaN + 1.1292800e+04 NaN + 1.1293200e+04 NaN + 1.1293600e+04 NaN + 1.1294000e+04 NaN + 1.1294400e+04 NaN + 1.1294800e+04 NaN + 1.1295200e+04 NaN + 1.1295600e+04 NaN + 1.1296000e+04 NaN + 1.1296400e+04 NaN + 1.1296800e+04 NaN + 1.1297200e+04 NaN + 1.1297600e+04 NaN + 1.1298000e+04 NaN + 1.1298400e+04 NaN + 1.1298800e+04 NaN + 1.1299200e+04 NaN + 1.1299600e+04 NaN + 1.1300000e+04 NaN + 1.1300400e+04 NaN + 1.1300800e+04 NaN + 1.1301200e+04 NaN + 1.1301600e+04 NaN + 1.1302000e+04 NaN + 1.1302400e+04 NaN + 1.1302800e+04 NaN + 1.1303200e+04 NaN + 1.1303600e+04 NaN + 1.1304000e+04 NaN + 1.1304400e+04 NaN + 1.1304800e+04 NaN + 1.1305200e+04 NaN + 1.1305600e+04 NaN + 1.1306000e+04 NaN + 1.1306400e+04 NaN + 1.1306800e+04 NaN + 1.1307200e+04 NaN + 1.1307600e+04 NaN + 1.1308000e+04 NaN + 1.1308400e+04 NaN + 1.1308800e+04 NaN + 1.1309200e+04 NaN + 1.1309600e+04 NaN + 1.1310000e+04 NaN + 1.1310400e+04 NaN + 1.1310800e+04 NaN + 1.1311200e+04 NaN + 1.1311600e+04 NaN + 1.1312000e+04 NaN + 1.1312400e+04 NaN + 1.1312800e+04 NaN + 1.1313200e+04 NaN + 1.1313600e+04 NaN + 1.1314000e+04 NaN + 1.1314400e+04 NaN + 1.1314800e+04 NaN + 1.1315200e+04 NaN + 1.1315600e+04 NaN + 1.1316000e+04 NaN + 1.1316400e+04 NaN + 1.1316800e+04 NaN + 1.1317200e+04 NaN + 1.1317600e+04 NaN + 1.1318000e+04 NaN + 1.1318400e+04 NaN + 1.1318800e+04 NaN + 1.1319200e+04 NaN + 1.1319600e+04 NaN + 1.1320000e+04 NaN + 1.1320400e+04 NaN + 1.1320800e+04 NaN + 1.1321200e+04 NaN + 1.1321600e+04 NaN + 1.1322000e+04 NaN + 1.1322400e+04 NaN + 1.1322800e+04 NaN + 1.1323200e+04 NaN + 1.1323600e+04 NaN + 1.1324000e+04 NaN + 1.1324400e+04 NaN + 1.1324800e+04 NaN + 1.1325200e+04 NaN + 1.1325600e+04 NaN + 1.1326000e+04 NaN + 1.1326400e+04 NaN + 1.1326800e+04 NaN + 1.1327200e+04 NaN + 1.1327600e+04 NaN + 1.1328000e+04 NaN + 1.1328400e+04 NaN + 1.1328800e+04 NaN + 1.1329200e+04 NaN + 1.1329600e+04 NaN + 1.1330000e+04 NaN + 1.1330400e+04 NaN + 1.1330800e+04 NaN + 1.1331200e+04 NaN + 1.1331600e+04 NaN + 1.1332000e+04 NaN + 1.1332400e+04 NaN + 1.1332800e+04 NaN + 1.1333200e+04 NaN + 1.1333600e+04 NaN + 1.1334000e+04 NaN + 1.1334400e+04 NaN + 1.1334800e+04 NaN + 1.1335200e+04 NaN + 1.1335600e+04 NaN + 1.1336000e+04 NaN + 1.1336400e+04 NaN + 1.1336800e+04 NaN + 1.1337200e+04 NaN + 1.1337600e+04 NaN + 1.1338000e+04 NaN + 1.1338400e+04 NaN + 1.1338800e+04 NaN + 1.1339200e+04 NaN + 1.1339600e+04 NaN + 1.1340000e+04 NaN + 1.1340400e+04 NaN + 1.1340800e+04 NaN + 1.1341200e+04 NaN + 1.1341600e+04 NaN + 1.1342000e+04 NaN + 1.1342400e+04 NaN + 1.1342800e+04 NaN + 1.1343200e+04 NaN + 1.1343600e+04 NaN + 1.1344000e+04 NaN + 1.1344400e+04 NaN + 1.1344800e+04 NaN + 1.1345200e+04 NaN + 1.1345600e+04 NaN + 1.1346000e+04 NaN + 1.1346400e+04 NaN + 1.1346800e+04 NaN + 1.1347200e+04 NaN + 1.1347600e+04 NaN + 1.1348000e+04 NaN + 1.1348400e+04 NaN + 1.1348800e+04 NaN + 1.1349200e+04 NaN + 1.1349600e+04 NaN + 1.1350000e+04 NaN + 1.1350400e+04 NaN + 1.1350800e+04 NaN + 1.1351200e+04 NaN + 1.1351600e+04 NaN + 1.1352000e+04 NaN + 1.1352400e+04 NaN + 1.1352800e+04 NaN + 1.1353200e+04 NaN + 1.1353600e+04 NaN + 1.1354000e+04 NaN + 1.1354400e+04 NaN + 1.1354800e+04 NaN + 1.1355200e+04 NaN + 1.1355600e+04 NaN + 1.1356000e+04 NaN + 1.1356400e+04 NaN + 1.1356800e+04 NaN + 1.1357200e+04 NaN + 1.1357600e+04 NaN + 1.1358000e+04 NaN + 1.1358400e+04 NaN + 1.1358800e+04 NaN + 1.1359200e+04 NaN + 1.1359600e+04 NaN + 1.1360000e+04 NaN + 1.1360400e+04 NaN + 1.1360800e+04 NaN + 1.1361200e+04 NaN + 1.1361600e+04 NaN + 1.1362000e+04 NaN + 1.1362400e+04 NaN + 1.1362800e+04 NaN + 1.1363200e+04 NaN + 1.1363600e+04 NaN + 1.1364000e+04 NaN + 1.1364400e+04 NaN + 1.1364800e+04 NaN + 1.1365200e+04 NaN + 1.1365600e+04 NaN + 1.1366000e+04 NaN + 1.1366400e+04 NaN + 1.1366800e+04 NaN + 1.1367200e+04 NaN + 1.1367600e+04 NaN + 1.1368000e+04 NaN + 1.1368400e+04 NaN + 1.1368800e+04 NaN + 1.1369200e+04 NaN + 1.1369600e+04 NaN + 1.1370000e+04 NaN + 1.1370400e+04 NaN + 1.1370800e+04 NaN + 1.1371200e+04 NaN + 1.1371600e+04 NaN + 1.1372000e+04 NaN + 1.1372400e+04 NaN + 1.1372800e+04 NaN + 1.1373200e+04 NaN + 1.1373600e+04 NaN + 1.1374000e+04 NaN + 1.1374400e+04 NaN + 1.1374800e+04 NaN + 1.1375200e+04 NaN + 1.1375600e+04 NaN + 1.1376000e+04 NaN + 1.1376400e+04 NaN + 1.1376800e+04 NaN + 1.1377200e+04 NaN + 1.1377600e+04 NaN + 1.1378000e+04 NaN + 1.1378400e+04 NaN + 1.1378800e+04 NaN + 1.1379200e+04 NaN + 1.1379600e+04 NaN + 1.1380000e+04 NaN + 1.1380400e+04 NaN + 1.1380800e+04 NaN + 1.1381200e+04 NaN + 1.1381600e+04 NaN + 1.1382000e+04 NaN + 1.1382400e+04 NaN + 1.1382800e+04 NaN + 1.1383200e+04 NaN + 1.1383600e+04 NaN + 1.1384000e+04 NaN + 1.1384400e+04 NaN + 1.1384800e+04 NaN + 1.1385200e+04 NaN + 1.1385600e+04 NaN + 1.1386000e+04 NaN + 1.1386400e+04 NaN + 1.1386800e+04 NaN + 1.1387200e+04 NaN + 1.1387600e+04 NaN + 1.1388000e+04 NaN + 1.1388400e+04 NaN + 1.1388800e+04 NaN + 1.1389200e+04 NaN + 1.1389600e+04 NaN + 1.1390000e+04 NaN + 1.1390400e+04 NaN + 1.1390800e+04 NaN + 1.1391200e+04 NaN + 1.1391600e+04 NaN + 1.1392000e+04 NaN + 1.1392400e+04 NaN + 1.1392800e+04 NaN + 1.1393200e+04 NaN + 1.1393600e+04 NaN + 1.1394000e+04 NaN + 1.1394400e+04 NaN + 1.1394800e+04 NaN + 1.1395200e+04 NaN + 1.1395600e+04 NaN + 1.1396000e+04 NaN + 1.1396400e+04 NaN + 1.1396800e+04 NaN + 1.1397200e+04 NaN + 1.1397600e+04 NaN + 1.1398000e+04 NaN + 1.1398400e+04 NaN + 1.1398800e+04 NaN + 1.1399200e+04 NaN + 1.1399600e+04 NaN + 1.1400000e+04 NaN + 1.1400400e+04 NaN + 1.1400800e+04 NaN + 1.1401200e+04 NaN + 1.1401600e+04 NaN + 1.1402000e+04 NaN + 1.1402400e+04 NaN + 1.1402800e+04 NaN + 1.1403200e+04 NaN + 1.1403600e+04 NaN + 1.1404000e+04 NaN + 1.1404400e+04 NaN + 1.1404800e+04 NaN + 1.1405200e+04 NaN + 1.1405600e+04 NaN + 1.1406000e+04 NaN + 1.1406400e+04 NaN + 1.1406800e+04 NaN + 1.1407200e+04 NaN + 1.1407600e+04 NaN + 1.1408000e+04 NaN + 1.1408400e+04 NaN + 1.1408800e+04 NaN + 1.1409200e+04 NaN + 1.1409600e+04 NaN + 1.1410000e+04 NaN + 1.1410400e+04 NaN + 1.1410800e+04 NaN + 1.1411200e+04 NaN + 1.1411600e+04 NaN + 1.1412000e+04 NaN + 1.1412400e+04 NaN + 1.1412800e+04 NaN + 1.1413200e+04 NaN + 1.1413600e+04 NaN + 1.1414000e+04 NaN + 1.1414400e+04 NaN + 1.1414800e+04 NaN + 1.1415200e+04 NaN + 1.1415600e+04 NaN + 1.1416000e+04 NaN + 1.1416400e+04 NaN + 1.1416800e+04 NaN + 1.1417200e+04 NaN + 1.1417600e+04 NaN + 1.1418000e+04 NaN + 1.1418400e+04 NaN + 1.1418800e+04 NaN + 1.1419200e+04 NaN + 1.1419600e+04 NaN + 1.1420000e+04 NaN + 1.1420400e+04 NaN + 1.1420800e+04 NaN + 1.1421200e+04 NaN + 1.1421600e+04 NaN + 1.1422000e+04 NaN + 1.1422400e+04 NaN + 1.1422800e+04 NaN + 1.1423200e+04 NaN + 1.1423600e+04 NaN + 1.1424000e+04 NaN + 1.1424400e+04 NaN + 1.1424800e+04 NaN + 1.1425200e+04 NaN + 1.1425600e+04 NaN + 1.1426000e+04 NaN + 1.1426400e+04 NaN + 1.1426800e+04 NaN + 1.1427200e+04 NaN + 1.1427600e+04 NaN + 1.1428000e+04 NaN + 1.1428400e+04 NaN + 1.1428800e+04 NaN + 1.1429200e+04 NaN + 1.1429600e+04 NaN + 1.1430000e+04 NaN + 1.1430400e+04 NaN + 1.1430800e+04 NaN + 1.1431200e+04 NaN + 1.1431600e+04 NaN + 1.1432000e+04 NaN + 1.1432400e+04 NaN + 1.1432800e+04 NaN + 1.1433200e+04 NaN + 1.1433600e+04 NaN + 1.1434000e+04 NaN + 1.1434400e+04 NaN + 1.1434800e+04 NaN + 1.1435200e+04 NaN + 1.1435600e+04 NaN + 1.1436000e+04 NaN + 1.1436400e+04 NaN + 1.1436800e+04 NaN + 1.1437200e+04 NaN + 1.1437600e+04 NaN + 1.1438000e+04 NaN + 1.1438400e+04 NaN + 1.1438800e+04 NaN + 1.1439200e+04 NaN + 1.1439600e+04 NaN + 1.1440000e+04 NaN + 1.1440400e+04 NaN + 1.1440800e+04 NaN + 1.1441200e+04 NaN + 1.1441600e+04 NaN + 1.1442000e+04 NaN + 1.1442400e+04 NaN + 1.1442800e+04 NaN + 1.1443200e+04 NaN + 1.1443600e+04 NaN + 1.1444000e+04 NaN + 1.1444400e+04 NaN + 1.1444800e+04 NaN + 1.1445200e+04 NaN + 1.1445600e+04 NaN + 1.1446000e+04 NaN + 1.1446400e+04 NaN + 1.1446800e+04 NaN + 1.1447200e+04 NaN + 1.1447600e+04 NaN + 1.1448000e+04 NaN + 1.1448400e+04 NaN + 1.1448800e+04 NaN + 1.1449200e+04 NaN + 1.1449600e+04 NaN + 1.1450000e+04 NaN + 1.1450400e+04 NaN + 1.1450800e+04 NaN + 1.1451200e+04 NaN + 1.1451600e+04 NaN + 1.1452000e+04 NaN + 1.1452400e+04 NaN + 1.1452800e+04 NaN + 1.1453200e+04 NaN + 1.1453600e+04 NaN + 1.1454000e+04 NaN + 1.1454400e+04 NaN + 1.1454800e+04 NaN + 1.1455200e+04 NaN + 1.1455600e+04 NaN + 1.1456000e+04 NaN + 1.1456400e+04 NaN + 1.1456800e+04 NaN + 1.1457200e+04 NaN + 1.1457600e+04 NaN + 1.1458000e+04 NaN + 1.1458400e+04 NaN + 1.1458800e+04 NaN + 1.1459200e+04 NaN + 1.1459600e+04 NaN + 1.1460000e+04 NaN + 1.1460400e+04 NaN + 1.1460800e+04 NaN + 1.1461200e+04 NaN + 1.1461600e+04 NaN + 1.1462000e+04 NaN + 1.1462400e+04 NaN + 1.1462800e+04 NaN + 1.1463200e+04 NaN + 1.1463600e+04 NaN + 1.1464000e+04 NaN + 1.1464400e+04 NaN + 1.1464800e+04 NaN + 1.1465200e+04 NaN + 1.1465600e+04 NaN + 1.1466000e+04 NaN + 1.1466400e+04 NaN + 1.1466800e+04 NaN + 1.1467200e+04 NaN + 1.1467600e+04 NaN + 1.1468000e+04 NaN + 1.1468400e+04 NaN + 1.1468800e+04 NaN + 1.1469200e+04 NaN + 1.1469600e+04 NaN + 1.1470000e+04 NaN + 1.1470400e+04 NaN + 1.1470800e+04 NaN + 1.1471200e+04 NaN + 1.1471600e+04 NaN + 1.1472000e+04 NaN + 1.1472400e+04 NaN + 1.1472800e+04 NaN + 1.1473200e+04 NaN + 1.1473600e+04 NaN + 1.1474000e+04 NaN + 1.1474400e+04 NaN + 1.1474800e+04 NaN + 1.1475200e+04 NaN + 1.1475600e+04 NaN + 1.1476000e+04 NaN + 1.1476400e+04 NaN + 1.1476800e+04 NaN + 1.1477200e+04 NaN + 1.1477600e+04 NaN + 1.1478000e+04 NaN + 1.1478400e+04 NaN + 1.1478800e+04 NaN + 1.1479200e+04 NaN + 1.1479600e+04 NaN + 1.1480000e+04 NaN + 1.1480400e+04 NaN + 1.1480800e+04 NaN + 1.1481200e+04 NaN + 1.1481600e+04 NaN + 1.1482000e+04 NaN + 1.1482400e+04 NaN + 1.1482800e+04 NaN + 1.1483200e+04 NaN + 1.1483600e+04 NaN + 1.1484000e+04 NaN + 1.1484400e+04 NaN + 1.1484800e+04 NaN + 1.1485200e+04 NaN + 1.1485600e+04 NaN + 1.1486000e+04 NaN + 1.1486400e+04 NaN + 1.1486800e+04 NaN + 1.1487200e+04 NaN + 1.1487600e+04 NaN + 1.1488000e+04 NaN + 1.1488400e+04 NaN + 1.1488800e+04 NaN + 1.1489200e+04 NaN + 1.1489600e+04 NaN + 1.1490000e+04 NaN + 1.1490400e+04 NaN + 1.1490800e+04 NaN + 1.1491200e+04 NaN + 1.1491600e+04 NaN + 1.1492000e+04 NaN + 1.1492400e+04 NaN + 1.1492800e+04 NaN + 1.1493200e+04 NaN + 1.1493600e+04 NaN + 1.1494000e+04 NaN + 1.1494400e+04 NaN + 1.1494800e+04 NaN + 1.1495200e+04 NaN + 1.1495600e+04 NaN + 1.1496000e+04 NaN + 1.1496400e+04 NaN + 1.1496800e+04 NaN + 1.1497200e+04 NaN + 1.1497600e+04 NaN + 1.1498000e+04 NaN + 1.1498400e+04 NaN + 1.1498800e+04 NaN + 1.1499200e+04 NaN + 1.1499600e+04 NaN + 1.1500000e+04 NaN + 1.1500400e+04 NaN + 1.1500800e+04 NaN + 1.1501200e+04 NaN + 1.1501600e+04 NaN + 1.1502000e+04 NaN + 1.1502400e+04 NaN + 1.1502800e+04 NaN + 1.1503200e+04 NaN + 1.1503600e+04 NaN + 1.1504000e+04 NaN + 1.1504400e+04 NaN + 1.1504800e+04 NaN + 1.1505200e+04 NaN + 1.1505600e+04 NaN + 1.1506000e+04 NaN + 1.1506400e+04 NaN + 1.1506800e+04 NaN + 1.1507200e+04 NaN + 1.1507600e+04 NaN + 1.1508000e+04 NaN + 1.1508400e+04 NaN + 1.1508800e+04 NaN + 1.1509200e+04 NaN + 1.1509600e+04 NaN + 1.1510000e+04 NaN + 1.1510400e+04 NaN + 1.1510800e+04 NaN + 1.1511200e+04 NaN + 1.1511600e+04 NaN + 1.1512000e+04 NaN + 1.1512400e+04 NaN + 1.1512800e+04 NaN + 1.1513200e+04 NaN + 1.1513600e+04 NaN + 1.1514000e+04 NaN + 1.1514400e+04 NaN + 1.1514800e+04 NaN + 1.1515200e+04 NaN + 1.1515600e+04 NaN + 1.1516000e+04 NaN + 1.1516400e+04 NaN + 1.1516800e+04 NaN + 1.1517200e+04 NaN + 1.1517600e+04 NaN + 1.1518000e+04 NaN + 1.1518400e+04 NaN + 1.1518800e+04 NaN + 1.1519200e+04 NaN + 1.1519600e+04 NaN + 1.1520000e+04 NaN + 1.1520400e+04 NaN + 1.1520800e+04 NaN + 1.1521200e+04 NaN + 1.1521600e+04 NaN + 1.1522000e+04 NaN + 1.1522400e+04 NaN + 1.1522800e+04 NaN + 1.1523200e+04 NaN + 1.1523600e+04 NaN + 1.1524000e+04 NaN + 1.1524400e+04 NaN + 1.1524800e+04 NaN + 1.1525200e+04 NaN + 1.1525600e+04 NaN + 1.1526000e+04 NaN + 1.1526400e+04 NaN + 1.1526800e+04 NaN + 1.1527200e+04 NaN + 1.1527600e+04 NaN + 1.1528000e+04 NaN + 1.1528400e+04 NaN + 1.1528800e+04 NaN + 1.1529200e+04 NaN + 1.1529600e+04 NaN + 1.1530000e+04 NaN + 1.1530400e+04 NaN + 1.1530800e+04 NaN + 1.1531200e+04 NaN + 1.1531600e+04 NaN + 1.1532000e+04 NaN + 1.1532400e+04 NaN + 1.1532800e+04 NaN + 1.1533200e+04 NaN + 1.1533600e+04 NaN + 1.1534000e+04 NaN + 1.1534400e+04 NaN + 1.1534800e+04 NaN + 1.1535200e+04 NaN + 1.1535600e+04 NaN + 1.1536000e+04 NaN + 1.1536400e+04 NaN + 1.1536800e+04 NaN + 1.1537200e+04 NaN + 1.1537600e+04 NaN + 1.1538000e+04 NaN + 1.1538400e+04 NaN + 1.1538800e+04 NaN + 1.1539200e+04 NaN + 1.1539600e+04 NaN + 1.1540000e+04 NaN + 1.1540400e+04 NaN + 1.1540800e+04 NaN + 1.1541200e+04 NaN + 1.1541600e+04 NaN + 1.1542000e+04 NaN + 1.1542400e+04 NaN + 1.1542800e+04 NaN + 1.1543200e+04 NaN + 1.1543600e+04 NaN + 1.1544000e+04 NaN + 1.1544400e+04 NaN + 1.1544800e+04 NaN + 1.1545200e+04 NaN + 1.1545600e+04 NaN + 1.1546000e+04 NaN + 1.1546400e+04 NaN + 1.1546800e+04 NaN + 1.1547200e+04 NaN + 1.1547600e+04 NaN + 1.1548000e+04 NaN + 1.1548400e+04 NaN + 1.1548800e+04 NaN + 1.1549200e+04 NaN + 1.1549600e+04 NaN + 1.1550000e+04 NaN + 1.1550400e+04 NaN + 1.1550800e+04 NaN + 1.1551200e+04 NaN + 1.1551600e+04 NaN + 1.1552000e+04 NaN + 1.1552400e+04 NaN + 1.1552800e+04 NaN + 1.1553200e+04 NaN + 1.1553600e+04 NaN + 1.1554000e+04 NaN + 1.1554400e+04 NaN + 1.1554800e+04 NaN + 1.1555200e+04 NaN + 1.1555600e+04 NaN + 1.1556000e+04 NaN + 1.1556400e+04 NaN + 1.1556800e+04 NaN + 1.1557200e+04 NaN + 1.1557600e+04 NaN + 1.1558000e+04 NaN + 1.1558400e+04 NaN + 1.1558800e+04 NaN + 1.1559200e+04 NaN + 1.1559600e+04 NaN + 1.1560000e+04 NaN + 1.1560400e+04 NaN + 1.1560800e+04 NaN + 1.1561200e+04 NaN + 1.1561600e+04 NaN + 1.1562000e+04 NaN + 1.1562400e+04 NaN + 1.1562800e+04 NaN + 1.1563200e+04 NaN + 1.1563600e+04 NaN + 1.1564000e+04 NaN + 1.1564400e+04 NaN + 1.1564800e+04 NaN + 1.1565200e+04 NaN + 1.1565600e+04 NaN + 1.1566000e+04 NaN + 1.1566400e+04 NaN + 1.1566800e+04 NaN + 1.1567200e+04 NaN + 1.1567600e+04 NaN + 1.1568000e+04 NaN + 1.1568400e+04 NaN + 1.1568800e+04 NaN + 1.1569200e+04 NaN + 1.1569600e+04 NaN + 1.1570000e+04 NaN + 1.1570400e+04 NaN + 1.1570800e+04 NaN + 1.1571200e+04 NaN + 1.1571600e+04 NaN + 1.1572000e+04 NaN + 1.1572400e+04 NaN + 1.1572800e+04 NaN + 1.1573200e+04 NaN + 1.1573600e+04 NaN + 1.1574000e+04 NaN + 1.1574400e+04 NaN + 1.1574800e+04 NaN + 1.1575200e+04 NaN + 1.1575600e+04 NaN + 1.1576000e+04 NaN + 1.1576400e+04 NaN + 1.1576800e+04 NaN + 1.1577200e+04 NaN + 1.1577600e+04 NaN + 1.1578000e+04 NaN + 1.1578400e+04 NaN + 1.1578800e+04 NaN + 1.1579200e+04 NaN + 1.1579600e+04 NaN + 1.1580000e+04 NaN + 1.1580400e+04 NaN + 1.1580800e+04 NaN + 1.1581200e+04 NaN + 1.1581600e+04 NaN + 1.1582000e+04 NaN + 1.1582400e+04 NaN + 1.1582800e+04 NaN + 1.1583200e+04 NaN + 1.1583600e+04 NaN + 1.1584000e+04 NaN + 1.1584400e+04 NaN + 1.1584800e+04 NaN + 1.1585200e+04 NaN + 1.1585600e+04 NaN + 1.1586000e+04 NaN + 1.1586400e+04 NaN + 1.1586800e+04 NaN + 1.1587200e+04 NaN + 1.1587600e+04 NaN + 1.1588000e+04 NaN + 1.1588400e+04 NaN + 1.1588800e+04 NaN + 1.1589200e+04 NaN + 1.1589600e+04 NaN + 1.1590000e+04 NaN + 1.1590400e+04 NaN + 1.1590800e+04 NaN + 1.1591200e+04 NaN + 1.1591600e+04 NaN + 1.1592000e+04 NaN + 1.1592400e+04 NaN + 1.1592800e+04 NaN + 1.1593200e+04 NaN + 1.1593600e+04 NaN + 1.1594000e+04 NaN + 1.1594400e+04 NaN + 1.1594800e+04 NaN + 1.1595200e+04 NaN + 1.1595600e+04 NaN + 1.1596000e+04 NaN + 1.1596400e+04 NaN + 1.1596800e+04 NaN + 1.1597200e+04 NaN + 1.1597600e+04 NaN + 1.1598000e+04 NaN + 1.1598400e+04 NaN + 1.1598800e+04 NaN + 1.1599200e+04 NaN + 1.1599600e+04 NaN + 1.1600000e+04 NaN + 1.1600400e+04 NaN + 1.1600800e+04 NaN + 1.1601200e+04 NaN + 1.1601600e+04 NaN + 1.1602000e+04 NaN + 1.1602400e+04 NaN + 1.1602800e+04 NaN + 1.1603200e+04 NaN + 1.1603600e+04 NaN + 1.1604000e+04 NaN + 1.1604400e+04 NaN + 1.1604800e+04 NaN + 1.1605200e+04 NaN + 1.1605600e+04 NaN + 1.1606000e+04 NaN + 1.1606400e+04 NaN + 1.1606800e+04 NaN + 1.1607200e+04 NaN + 1.1607600e+04 NaN + 1.1608000e+04 NaN + 1.1608400e+04 NaN + 1.1608800e+04 NaN + 1.1609200e+04 NaN + 1.1609600e+04 NaN + 1.1610000e+04 NaN + 1.1610400e+04 NaN + 1.1610800e+04 NaN + 1.1611200e+04 NaN + 1.1611600e+04 NaN + 1.1612000e+04 NaN + 1.1612400e+04 NaN + 1.1612800e+04 NaN + 1.1613200e+04 NaN + 1.1613600e+04 NaN + 1.1614000e+04 NaN + 1.1614400e+04 NaN + 1.1614800e+04 NaN + 1.1615200e+04 NaN + 1.1615600e+04 NaN + 1.1616000e+04 NaN + 1.1616400e+04 NaN + 1.1616800e+04 NaN + 1.1617200e+04 NaN + 1.1617600e+04 NaN + 1.1618000e+04 NaN + 1.1618400e+04 NaN + 1.1618800e+04 NaN + 1.1619200e+04 NaN + 1.1619600e+04 NaN + 1.1620000e+04 NaN + 1.1620400e+04 NaN + 1.1620800e+04 NaN + 1.1621200e+04 NaN + 1.1621600e+04 NaN + 1.1622000e+04 NaN + 1.1622400e+04 NaN + 1.1622800e+04 NaN + 1.1623200e+04 NaN + 1.1623600e+04 NaN + 1.1624000e+04 NaN + 1.1624400e+04 NaN + 1.1624800e+04 NaN + 1.1625200e+04 NaN + 1.1625600e+04 NaN + 1.1626000e+04 NaN + 1.1626400e+04 NaN + 1.1626800e+04 NaN + 1.1627200e+04 NaN + 1.1627600e+04 NaN + 1.1628000e+04 NaN + 1.1628400e+04 NaN + 1.1628800e+04 NaN + 1.1629200e+04 NaN + 1.1629600e+04 NaN + 1.1630000e+04 NaN + 1.1630400e+04 NaN + 1.1630800e+04 NaN + 1.1631200e+04 NaN + 1.1631600e+04 NaN + 1.1632000e+04 NaN + 1.1632400e+04 NaN + 1.1632800e+04 NaN + 1.1633200e+04 NaN + 1.1633600e+04 NaN + 1.1634000e+04 NaN + 1.1634400e+04 NaN + 1.1634800e+04 NaN + 1.1635200e+04 NaN + 1.1635600e+04 NaN + 1.1636000e+04 NaN + 1.1636400e+04 NaN + 1.1636800e+04 NaN + 1.1637200e+04 NaN + 1.1637600e+04 NaN + 1.1638000e+04 NaN + 1.1638400e+04 NaN + 1.1638800e+04 NaN + 1.1639200e+04 NaN + 1.1639600e+04 NaN + 1.1640000e+04 NaN + 1.1640400e+04 NaN + 1.1640800e+04 NaN + 1.1641200e+04 NaN + 1.1641600e+04 NaN + 1.1642000e+04 NaN + 1.1642400e+04 NaN + 1.1642800e+04 NaN + 1.1643200e+04 NaN + 1.1643600e+04 NaN + 1.1644000e+04 NaN + 1.1644400e+04 NaN + 1.1644800e+04 NaN + 1.1645200e+04 NaN + 1.1645600e+04 NaN + 1.1646000e+04 NaN + 1.1646400e+04 NaN + 1.1646800e+04 NaN + 1.1647200e+04 NaN + 1.1647600e+04 NaN + 1.1648000e+04 NaN + 1.1648400e+04 NaN + 1.1648800e+04 NaN + 1.1649200e+04 NaN + 1.1649600e+04 NaN + 1.1650000e+04 NaN + 1.1650400e+04 NaN + 1.1650800e+04 NaN + 1.1651200e+04 NaN + 1.1651600e+04 NaN + 1.1652000e+04 NaN + 1.1652400e+04 NaN + 1.1652800e+04 NaN + 1.1653200e+04 NaN + 1.1653600e+04 NaN + 1.1654000e+04 NaN + 1.1654400e+04 NaN + 1.1654800e+04 NaN + 1.1655200e+04 NaN + 1.1655600e+04 NaN + 1.1656000e+04 NaN + 1.1656400e+04 NaN + 1.1656800e+04 NaN + 1.1657200e+04 NaN + 1.1657600e+04 NaN + 1.1658000e+04 NaN + 1.1658400e+04 NaN + 1.1658800e+04 NaN + 1.1659200e+04 NaN + 1.1659600e+04 NaN + 1.1660000e+04 NaN + 1.1660400e+04 NaN + 1.1660800e+04 NaN + 1.1661200e+04 NaN + 1.1661600e+04 NaN + 1.1662000e+04 NaN + 1.1662400e+04 NaN + 1.1662800e+04 NaN + 1.1663200e+04 NaN + 1.1663600e+04 NaN + 1.1664000e+04 NaN + 1.1664400e+04 NaN + 1.1664800e+04 NaN + 1.1665200e+04 NaN + 1.1665600e+04 NaN + 1.1666000e+04 NaN + 1.1666400e+04 NaN + 1.1666800e+04 NaN + 1.1667200e+04 NaN + 1.1667600e+04 NaN + 1.1668000e+04 NaN + 1.1668400e+04 NaN + 1.1668800e+04 NaN + 1.1669200e+04 NaN + 1.1669600e+04 NaN + 1.1670000e+04 NaN + 1.1670400e+04 NaN + 1.1670800e+04 NaN + 1.1671200e+04 NaN + 1.1671600e+04 NaN + 1.1672000e+04 NaN + 1.1672400e+04 NaN + 1.1672800e+04 NaN + 1.1673200e+04 NaN + 1.1673600e+04 NaN + 1.1674000e+04 NaN + 1.1674400e+04 NaN + 1.1674800e+04 NaN + 1.1675200e+04 NaN + 1.1675600e+04 NaN + 1.1676000e+04 NaN + 1.1676400e+04 NaN + 1.1676800e+04 NaN + 1.1677200e+04 NaN + 1.1677600e+04 NaN + 1.1678000e+04 NaN + 1.1678400e+04 NaN + 1.1678800e+04 NaN + 1.1679200e+04 NaN + 1.1679600e+04 NaN + 1.1680000e+04 NaN + 1.1680400e+04 NaN + 1.1680800e+04 NaN + 1.1681200e+04 NaN + 1.1681600e+04 NaN + 1.1682000e+04 NaN + 1.1682400e+04 NaN + 1.1682800e+04 NaN + 1.1683200e+04 NaN + 1.1683600e+04 NaN + 1.1684000e+04 NaN + 1.1684400e+04 NaN + 1.1684800e+04 NaN + 1.1685200e+04 NaN + 1.1685600e+04 NaN + 1.1686000e+04 NaN + 1.1686400e+04 NaN + 1.1686800e+04 NaN + 1.1687200e+04 NaN + 1.1687600e+04 NaN + 1.1688000e+04 NaN + 1.1688400e+04 NaN + 1.1688800e+04 NaN + 1.1689200e+04 NaN + 1.1689600e+04 NaN + 1.1690000e+04 NaN + 1.1690400e+04 NaN + 1.1690800e+04 NaN + 1.1691200e+04 NaN + 1.1691600e+04 NaN + 1.1692000e+04 NaN + 1.1692400e+04 NaN + 1.1692800e+04 NaN + 1.1693200e+04 NaN + 1.1693600e+04 NaN + 1.1694000e+04 NaN + 1.1694400e+04 NaN + 1.1694800e+04 NaN + 1.1695200e+04 NaN + 1.1695600e+04 NaN + 1.1696000e+04 NaN + 1.1696400e+04 NaN + 1.1696800e+04 NaN + 1.1697200e+04 NaN + 1.1697600e+04 NaN + 1.1698000e+04 NaN + 1.1698400e+04 NaN + 1.1698800e+04 NaN + 1.1699200e+04 NaN + 1.1699600e+04 NaN + 1.1700000e+04 NaN + 1.1700400e+04 NaN + 1.1700800e+04 NaN + 1.1701200e+04 NaN + 1.1701600e+04 NaN + 1.1702000e+04 NaN + 1.1702400e+04 NaN + 1.1702800e+04 NaN + 1.1703200e+04 NaN + 1.1703600e+04 NaN + 1.1704000e+04 NaN + 1.1704400e+04 NaN + 1.1704800e+04 NaN + 1.1705200e+04 NaN + 1.1705600e+04 NaN + 1.1706000e+04 NaN + 1.1706400e+04 NaN + 1.1706800e+04 NaN + 1.1707200e+04 NaN + 1.1707600e+04 NaN + 1.1708000e+04 NaN + 1.1708400e+04 NaN + 1.1708800e+04 NaN + 1.1709200e+04 NaN + 1.1709600e+04 NaN + 1.1710000e+04 NaN + 1.1710400e+04 NaN + 1.1710800e+04 NaN + 1.1711200e+04 NaN + 1.1711600e+04 NaN + 1.1712000e+04 NaN + 1.1712400e+04 NaN + 1.1712800e+04 NaN + 1.1713200e+04 NaN + 1.1713600e+04 NaN + 1.1714000e+04 NaN + 1.1714400e+04 NaN + 1.1714800e+04 NaN + 1.1715200e+04 NaN + 1.1715600e+04 NaN + 1.1716000e+04 NaN + 1.1716400e+04 NaN + 1.1716800e+04 NaN + 1.1717200e+04 NaN + 1.1717600e+04 NaN + 1.1718000e+04 NaN + 1.1718400e+04 NaN + 1.1718800e+04 NaN + 1.1719200e+04 NaN + 1.1719600e+04 NaN + 1.1720000e+04 NaN + 1.1720400e+04 NaN + 1.1720800e+04 NaN + 1.1721200e+04 NaN + 1.1721600e+04 NaN + 1.1722000e+04 NaN + 1.1722400e+04 NaN + 1.1722800e+04 NaN + 1.1723200e+04 NaN + 1.1723600e+04 NaN + 1.1724000e+04 NaN + 1.1724400e+04 NaN + 1.1724800e+04 NaN + 1.1725200e+04 NaN + 1.1725600e+04 NaN + 1.1726000e+04 NaN + 1.1726400e+04 NaN + 1.1726800e+04 NaN + 1.1727200e+04 NaN + 1.1727600e+04 NaN + 1.1728000e+04 NaN + 1.1728400e+04 NaN + 1.1728800e+04 NaN + 1.1729200e+04 NaN + 1.1729600e+04 NaN + 1.1730000e+04 NaN + 1.1730400e+04 NaN + 1.1730800e+04 NaN + 1.1731200e+04 NaN + 1.1731600e+04 NaN + 1.1732000e+04 NaN + 1.1732400e+04 NaN + 1.1732800e+04 NaN + 1.1733200e+04 NaN + 1.1733600e+04 NaN + 1.1734000e+04 NaN + 1.1734400e+04 NaN + 1.1734800e+04 NaN + 1.1735200e+04 NaN + 1.1735600e+04 NaN + 1.1736000e+04 NaN + 1.1736400e+04 NaN + 1.1736800e+04 NaN + 1.1737200e+04 NaN + 1.1737600e+04 NaN + 1.1738000e+04 NaN + 1.1738400e+04 NaN + 1.1738800e+04 NaN + 1.1739200e+04 NaN + 1.1739600e+04 NaN + 1.1740000e+04 NaN + 1.1740400e+04 NaN + 1.1740800e+04 NaN + 1.1741200e+04 NaN + 1.1741600e+04 NaN + 1.1742000e+04 NaN + 1.1742400e+04 NaN + 1.1742800e+04 NaN + 1.1743200e+04 NaN + 1.1743600e+04 NaN + 1.1744000e+04 NaN + 1.1744400e+04 NaN + 1.1744800e+04 NaN + 1.1745200e+04 NaN + 1.1745600e+04 NaN + 1.1746000e+04 NaN + 1.1746400e+04 NaN + 1.1746800e+04 NaN + 1.1747200e+04 NaN + 1.1747600e+04 NaN + 1.1748000e+04 NaN + 1.1748400e+04 NaN + 1.1748800e+04 NaN + 1.1749200e+04 NaN + 1.1749600e+04 NaN + 1.1750000e+04 NaN + 1.1750400e+04 NaN + 1.1750800e+04 NaN + 1.1751200e+04 NaN + 1.1751600e+04 NaN + 1.1752000e+04 NaN + 1.1752400e+04 NaN + 1.1752800e+04 NaN + 1.1753200e+04 NaN + 1.1753600e+04 NaN + 1.1754000e+04 NaN + 1.1754400e+04 NaN + 1.1754800e+04 NaN + 1.1755200e+04 NaN + 1.1755600e+04 NaN + 1.1756000e+04 NaN + 1.1756400e+04 NaN + 1.1756800e+04 NaN + 1.1757200e+04 NaN + 1.1757600e+04 NaN + 1.1758000e+04 NaN + 1.1758400e+04 NaN + 1.1758800e+04 NaN + 1.1759200e+04 NaN + 1.1759600e+04 NaN + 1.1760000e+04 NaN + 1.1760400e+04 NaN + 1.1760800e+04 NaN + 1.1761200e+04 NaN + 1.1761600e+04 NaN + 1.1762000e+04 NaN + 1.1762400e+04 NaN + 1.1762800e+04 NaN + 1.1763200e+04 NaN + 1.1763600e+04 NaN + 1.1764000e+04 NaN + 1.1764400e+04 NaN + 1.1764800e+04 NaN + 1.1765200e+04 NaN + 1.1765600e+04 NaN + 1.1766000e+04 NaN + 1.1766400e+04 NaN + 1.1766800e+04 NaN + 1.1767200e+04 NaN + 1.1767600e+04 NaN + 1.1768000e+04 NaN + 1.1768400e+04 NaN + 1.1768800e+04 NaN + 1.1769200e+04 NaN + 1.1769600e+04 NaN + 1.1770000e+04 NaN + 1.1770400e+04 NaN + 1.1770800e+04 NaN + 1.1771200e+04 NaN + 1.1771600e+04 NaN + 1.1772000e+04 NaN + 1.1772400e+04 NaN + 1.1772800e+04 NaN + 1.1773200e+04 NaN + 1.1773600e+04 NaN + 1.1774000e+04 NaN + 1.1774400e+04 NaN + 1.1774800e+04 NaN + 1.1775200e+04 NaN + 1.1775600e+04 NaN + 1.1776000e+04 NaN + 1.1776400e+04 NaN + 1.1776800e+04 NaN + 1.1777200e+04 NaN + 1.1777600e+04 NaN + 1.1778000e+04 NaN + 1.1778400e+04 NaN + 1.1778800e+04 NaN + 1.1779200e+04 NaN + 1.1779600e+04 NaN + 1.1780000e+04 NaN + 1.1780400e+04 NaN + 1.1780800e+04 NaN + 1.1781200e+04 NaN + 1.1781600e+04 NaN + 1.1782000e+04 NaN + 1.1782400e+04 NaN + 1.1782800e+04 NaN + 1.1783200e+04 NaN + 1.1783600e+04 NaN + 1.1784000e+04 NaN + 1.1784400e+04 NaN + 1.1784800e+04 NaN + 1.1785200e+04 NaN + 1.1785600e+04 NaN + 1.1786000e+04 NaN + 1.1786400e+04 NaN + 1.1786800e+04 NaN + 1.1787200e+04 NaN + 1.1787600e+04 NaN + 1.1788000e+04 NaN + 1.1788400e+04 NaN + 1.1788800e+04 NaN + 1.1789200e+04 NaN + 1.1789600e+04 NaN + 1.1790000e+04 NaN + 1.1790400e+04 NaN + 1.1790800e+04 NaN + 1.1791200e+04 NaN + 1.1791600e+04 NaN + 1.1792000e+04 NaN + 1.1792400e+04 NaN + 1.1792800e+04 NaN + 1.1793200e+04 NaN + 1.1793600e+04 NaN + 1.1794000e+04 NaN + 1.1794400e+04 NaN + 1.1794800e+04 NaN + 1.1795200e+04 NaN + 1.1795600e+04 NaN + 1.1796000e+04 NaN + 1.1796400e+04 NaN + 1.1796800e+04 NaN + 1.1797200e+04 NaN + 1.1797600e+04 NaN + 1.1798000e+04 NaN + 1.1798400e+04 NaN + 1.1798800e+04 NaN + 1.1799200e+04 NaN + 1.1799600e+04 NaN + 1.1800000e+04 NaN + 1.1800400e+04 NaN + 1.1800800e+04 NaN + 1.1801200e+04 NaN + 1.1801600e+04 NaN + 1.1802000e+04 NaN + 1.1802400e+04 NaN + 1.1802800e+04 NaN + 1.1803200e+04 NaN + 1.1803600e+04 NaN + 1.1804000e+04 NaN + 1.1804400e+04 NaN + 1.1804800e+04 NaN + 1.1805200e+04 NaN + 1.1805600e+04 NaN + 1.1806000e+04 NaN + 1.1806400e+04 NaN + 1.1806800e+04 NaN + 1.1807200e+04 NaN + 1.1807600e+04 NaN + 1.1808000e+04 NaN + 1.1808400e+04 NaN + 1.1808800e+04 NaN + 1.1809200e+04 NaN + 1.1809600e+04 NaN + 1.1810000e+04 NaN + 1.1810400e+04 NaN + 1.1810800e+04 NaN + 1.1811200e+04 NaN + 1.1811600e+04 NaN + 1.1812000e+04 NaN + 1.1812400e+04 NaN + 1.1812800e+04 NaN + 1.1813200e+04 NaN + 1.1813600e+04 NaN + 1.1814000e+04 NaN + 1.1814400e+04 NaN + 1.1814800e+04 NaN + 1.1815200e+04 NaN + 1.1815600e+04 NaN + 1.1816000e+04 NaN + 1.1816400e+04 NaN + 1.1816800e+04 NaN + 1.1817200e+04 NaN + 1.1817600e+04 NaN + 1.1818000e+04 NaN + 1.1818400e+04 NaN + 1.1818800e+04 NaN + 1.1819200e+04 NaN + 1.1819600e+04 NaN + 1.1820000e+04 NaN + 1.1820400e+04 NaN + 1.1820800e+04 NaN + 1.1821200e+04 NaN + 1.1821600e+04 NaN + 1.1822000e+04 NaN + 1.1822400e+04 NaN + 1.1822800e+04 NaN + 1.1823200e+04 NaN + 1.1823600e+04 NaN + 1.1824000e+04 NaN + 1.1824400e+04 NaN + 1.1824800e+04 NaN + 1.1825200e+04 NaN + 1.1825600e+04 NaN + 1.1826000e+04 NaN + 1.1826400e+04 NaN + 1.1826800e+04 NaN + 1.1827200e+04 NaN + 1.1827600e+04 NaN + 1.1828000e+04 NaN + 1.1828400e+04 NaN + 1.1828800e+04 NaN + 1.1829200e+04 NaN + 1.1829600e+04 NaN + 1.1830000e+04 NaN + 1.1830400e+04 NaN + 1.1830800e+04 NaN + 1.1831200e+04 NaN + 1.1831600e+04 NaN + 1.1832000e+04 NaN + 1.1832400e+04 NaN + 1.1832800e+04 NaN + 1.1833200e+04 NaN + 1.1833600e+04 NaN + 1.1834000e+04 NaN + 1.1834400e+04 NaN + 1.1834800e+04 NaN + 1.1835200e+04 NaN + 1.1835600e+04 NaN + 1.1836000e+04 NaN + 1.1836400e+04 NaN + 1.1836800e+04 NaN + 1.1837200e+04 NaN + 1.1837600e+04 NaN + 1.1838000e+04 NaN + 1.1838400e+04 NaN + 1.1838800e+04 NaN + 1.1839200e+04 NaN + 1.1839600e+04 NaN + 1.1840000e+04 NaN + 1.1840400e+04 NaN + 1.1840800e+04 NaN + 1.1841200e+04 NaN + 1.1841600e+04 NaN + 1.1842000e+04 NaN + 1.1842400e+04 NaN + 1.1842800e+04 NaN + 1.1843200e+04 NaN + 1.1843600e+04 NaN + 1.1844000e+04 NaN + 1.1844400e+04 NaN + 1.1844800e+04 NaN + 1.1845200e+04 NaN + 1.1845600e+04 NaN + 1.1846000e+04 NaN + 1.1846400e+04 NaN + 1.1846800e+04 NaN + 1.1847200e+04 NaN + 1.1847600e+04 NaN + 1.1848000e+04 NaN + 1.1848400e+04 NaN + 1.1848800e+04 NaN + 1.1849200e+04 NaN + 1.1849600e+04 NaN + 1.1850000e+04 NaN + 1.1850400e+04 NaN + 1.1850800e+04 NaN + 1.1851200e+04 NaN + 1.1851600e+04 NaN + 1.1852000e+04 NaN + 1.1852400e+04 NaN + 1.1852800e+04 NaN + 1.1853200e+04 NaN + 1.1853600e+04 NaN + 1.1854000e+04 NaN + 1.1854400e+04 NaN + 1.1854800e+04 NaN + 1.1855200e+04 NaN + 1.1855600e+04 NaN + 1.1856000e+04 NaN + 1.1856400e+04 NaN + 1.1856800e+04 NaN + 1.1857200e+04 NaN + 1.1857600e+04 NaN + 1.1858000e+04 NaN + 1.1858400e+04 NaN + 1.1858800e+04 NaN + 1.1859200e+04 NaN + 1.1859600e+04 NaN + 1.1860000e+04 NaN + 1.1860400e+04 NaN + 1.1860800e+04 NaN + 1.1861200e+04 NaN + 1.1861600e+04 NaN + 1.1862000e+04 NaN + 1.1862400e+04 NaN + 1.1862800e+04 NaN + 1.1863200e+04 NaN + 1.1863600e+04 NaN + 1.1864000e+04 NaN + 1.1864400e+04 NaN + 1.1864800e+04 NaN + 1.1865200e+04 NaN + 1.1865600e+04 NaN + 1.1866000e+04 NaN + 1.1866400e+04 NaN + 1.1866800e+04 NaN + 1.1867200e+04 NaN + 1.1867600e+04 NaN + 1.1868000e+04 NaN + 1.1868400e+04 NaN + 1.1868800e+04 NaN + 1.1869200e+04 NaN + 1.1869600e+04 NaN + 1.1870000e+04 NaN + 1.1870400e+04 NaN + 1.1870800e+04 NaN + 1.1871200e+04 NaN + 1.1871600e+04 NaN + 1.1872000e+04 NaN + 1.1872400e+04 NaN + 1.1872800e+04 NaN + 1.1873200e+04 NaN + 1.1873600e+04 NaN + 1.1874000e+04 NaN + 1.1874400e+04 NaN + 1.1874800e+04 NaN + 1.1875200e+04 NaN + 1.1875600e+04 NaN + 1.1876000e+04 NaN + 1.1876400e+04 NaN + 1.1876800e+04 NaN + 1.1877200e+04 NaN + 1.1877600e+04 NaN + 1.1878000e+04 NaN + 1.1878400e+04 NaN + 1.1878800e+04 NaN + 1.1879200e+04 NaN + 1.1879600e+04 NaN + 1.1880000e+04 NaN + 1.1880400e+04 NaN + 1.1880800e+04 NaN + 1.1881200e+04 NaN + 1.1881600e+04 NaN + 1.1882000e+04 NaN + 1.1882400e+04 NaN + 1.1882800e+04 NaN + 1.1883200e+04 NaN + 1.1883600e+04 NaN + 1.1884000e+04 NaN + 1.1884400e+04 NaN + 1.1884800e+04 NaN + 1.1885200e+04 NaN + 1.1885600e+04 NaN + 1.1886000e+04 NaN + 1.1886400e+04 NaN + 1.1886800e+04 NaN + 1.1887200e+04 NaN + 1.1887600e+04 NaN + 1.1888000e+04 NaN + 1.1888400e+04 NaN + 1.1888800e+04 NaN + 1.1889200e+04 NaN + 1.1889600e+04 NaN + 1.1890000e+04 NaN + 1.1890400e+04 NaN + 1.1890800e+04 NaN + 1.1891200e+04 NaN + 1.1891600e+04 NaN + 1.1892000e+04 NaN + 1.1892400e+04 NaN + 1.1892800e+04 NaN + 1.1893200e+04 NaN + 1.1893600e+04 NaN + 1.1894000e+04 NaN + 1.1894400e+04 NaN + 1.1894800e+04 NaN + 1.1895200e+04 NaN + 1.1895600e+04 NaN + 1.1896000e+04 NaN + 1.1896400e+04 NaN + 1.1896800e+04 NaN + 1.1897200e+04 NaN + 1.1897600e+04 NaN + 1.1898000e+04 NaN + 1.1898400e+04 NaN + 1.1898800e+04 NaN + 1.1899200e+04 NaN + 1.1899600e+04 NaN + 1.1900000e+04 NaN + 1.1900400e+04 NaN + 1.1900800e+04 NaN + 1.1901200e+04 NaN + 1.1901600e+04 NaN + 1.1902000e+04 NaN + 1.1902400e+04 NaN + 1.1902800e+04 NaN + 1.1903200e+04 NaN + 1.1903600e+04 NaN + 1.1904000e+04 NaN + 1.1904400e+04 NaN + 1.1904800e+04 NaN + 1.1905200e+04 NaN + 1.1905600e+04 NaN + 1.1906000e+04 NaN + 1.1906400e+04 NaN + 1.1906800e+04 NaN + 1.1907200e+04 NaN + 1.1907600e+04 NaN + 1.1908000e+04 NaN + 1.1908400e+04 NaN + 1.1908800e+04 NaN + 1.1909200e+04 NaN + 1.1909600e+04 NaN + 1.1910000e+04 NaN + 1.1910400e+04 NaN + 1.1910800e+04 NaN + 1.1911200e+04 NaN + 1.1911600e+04 NaN + 1.1912000e+04 NaN + 1.1912400e+04 NaN + 1.1912800e+04 NaN + 1.1913200e+04 NaN + 1.1913600e+04 NaN + 1.1914000e+04 NaN + 1.1914400e+04 NaN + 1.1914800e+04 NaN + 1.1915200e+04 NaN + 1.1915600e+04 NaN + 1.1916000e+04 NaN + 1.1916400e+04 NaN + 1.1916800e+04 NaN + 1.1917200e+04 NaN + 1.1917600e+04 NaN + 1.1918000e+04 NaN + 1.1918400e+04 NaN + 1.1918800e+04 NaN + 1.1919200e+04 NaN + 1.1919600e+04 NaN + 1.1920000e+04 NaN + 1.1920400e+04 NaN + 1.1920800e+04 NaN + 1.1921200e+04 NaN + 1.1921600e+04 NaN + 1.1922000e+04 NaN + 1.1922400e+04 NaN + 1.1922800e+04 NaN + 1.1923200e+04 NaN + 1.1923600e+04 NaN + 1.1924000e+04 NaN + 1.1924400e+04 NaN + 1.1924800e+04 NaN + 1.1925200e+04 NaN + 1.1925600e+04 NaN + 1.1926000e+04 NaN + 1.1926400e+04 NaN + 1.1926800e+04 NaN + 1.1927200e+04 NaN + 1.1927600e+04 NaN + 1.1928000e+04 NaN + 1.1928400e+04 NaN + 1.1928800e+04 NaN + 1.1929200e+04 NaN + 1.1929600e+04 NaN + 1.1930000e+04 NaN + 1.1930400e+04 NaN + 1.1930800e+04 NaN + 1.1931200e+04 NaN + 1.1931600e+04 NaN + 1.1932000e+04 NaN + 1.1932400e+04 NaN + 1.1932800e+04 NaN + 1.1933200e+04 NaN + 1.1933600e+04 NaN + 1.1934000e+04 NaN + 1.1934400e+04 NaN + 1.1934800e+04 NaN + 1.1935200e+04 NaN + 1.1935600e+04 NaN + 1.1936000e+04 NaN + 1.1936400e+04 NaN + 1.1936800e+04 NaN + 1.1937200e+04 NaN + 1.1937600e+04 NaN + 1.1938000e+04 NaN + 1.1938400e+04 NaN + 1.1938800e+04 NaN + 1.1939200e+04 NaN + 1.1939600e+04 NaN + 1.1940000e+04 NaN + 1.1940400e+04 NaN + 1.1940800e+04 NaN + 1.1941200e+04 NaN + 1.1941600e+04 NaN + 1.1942000e+04 NaN + 1.1942400e+04 NaN + 1.1942800e+04 NaN + 1.1943200e+04 NaN + 1.1943600e+04 NaN + 1.1944000e+04 NaN + 1.1944400e+04 NaN + 1.1944800e+04 NaN + 1.1945200e+04 NaN + 1.1945600e+04 NaN + 1.1946000e+04 NaN + 1.1946400e+04 NaN + 1.1946800e+04 NaN + 1.1947200e+04 NaN + 1.1947600e+04 NaN + 1.1948000e+04 NaN + 1.1948400e+04 NaN + 1.1948800e+04 NaN + 1.1949200e+04 NaN + 1.1949600e+04 NaN + 1.1950000e+04 NaN + 1.1950400e+04 NaN + 1.1950800e+04 NaN + 1.1951200e+04 NaN + 1.1951600e+04 NaN + 1.1952000e+04 NaN + 1.1952400e+04 NaN + 1.1952800e+04 NaN + 1.1953200e+04 NaN + 1.1953600e+04 NaN + 1.1954000e+04 NaN + 1.1954400e+04 NaN + 1.1954800e+04 NaN + 1.1955200e+04 NaN + 1.1955600e+04 NaN + 1.1956000e+04 NaN + 1.1956400e+04 NaN + 1.1956800e+04 NaN + 1.1957200e+04 NaN + 1.1957600e+04 NaN + 1.1958000e+04 NaN + 1.1958400e+04 NaN + 1.1958800e+04 NaN + 1.1959200e+04 NaN + 1.1959600e+04 NaN + 1.1960000e+04 NaN + 1.1960400e+04 NaN + 1.1960800e+04 NaN + 1.1961200e+04 NaN + 1.1961600e+04 NaN + 1.1962000e+04 NaN + 1.1962400e+04 NaN + 1.1962800e+04 NaN + 1.1963200e+04 NaN + 1.1963600e+04 NaN + 1.1964000e+04 NaN + 1.1964400e+04 NaN + 1.1964800e+04 NaN + 1.1965200e+04 NaN + 1.1965600e+04 NaN + 1.1966000e+04 NaN + 1.1966400e+04 NaN + 1.1966800e+04 NaN + 1.1967200e+04 NaN + 1.1967600e+04 NaN + 1.1968000e+04 NaN + 1.1968400e+04 NaN + 1.1968800e+04 NaN + 1.1969200e+04 NaN + 1.1969600e+04 NaN + 1.1970000e+04 NaN + 1.1970400e+04 NaN + 1.1970800e+04 NaN + 1.1971200e+04 NaN + 1.1971600e+04 NaN + 1.1972000e+04 NaN + 1.1972400e+04 NaN + 1.1972800e+04 NaN + 1.1973200e+04 NaN + 1.1973600e+04 NaN + 1.1974000e+04 NaN + 1.1974400e+04 NaN + 1.1974800e+04 NaN + 1.1975200e+04 NaN + 1.1975600e+04 NaN + 1.1976000e+04 NaN + 1.1976400e+04 NaN + 1.1976800e+04 NaN + 1.1977200e+04 NaN + 1.1977600e+04 NaN + 1.1978000e+04 NaN + 1.1978400e+04 NaN + 1.1978800e+04 NaN + 1.1979200e+04 NaN + 1.1979600e+04 NaN + 1.1980000e+04 NaN + 1.1980400e+04 NaN + 1.1980800e+04 NaN + 1.1981200e+04 NaN + 1.1981600e+04 NaN + 1.1982000e+04 NaN + 1.1982400e+04 NaN + 1.1982800e+04 NaN + 1.1983200e+04 NaN + 1.1983600e+04 NaN + 1.1984000e+04 NaN + 1.1984400e+04 NaN + 1.1984800e+04 NaN + 1.1985200e+04 NaN + 1.1985600e+04 NaN + 1.1986000e+04 NaN + 1.1986400e+04 NaN + 1.1986800e+04 NaN + 1.1987200e+04 NaN + 1.1987600e+04 NaN + 1.1988000e+04 NaN + 1.1988400e+04 NaN + 1.1988800e+04 NaN + 1.1989200e+04 NaN + 1.1989600e+04 NaN + 1.1990000e+04 NaN + 1.1990400e+04 NaN + 1.1990800e+04 NaN + 1.1991200e+04 NaN + 1.1991600e+04 NaN + 1.1992000e+04 NaN + 1.1992400e+04 NaN + 1.1992800e+04 NaN + 1.1993200e+04 NaN + 1.1993600e+04 NaN + 1.1994000e+04 NaN + 1.1994400e+04 NaN + 1.1994800e+04 NaN + 1.1995200e+04 NaN + 1.1995600e+04 NaN + 1.1996000e+04 NaN + 1.1996400e+04 NaN + 1.1996800e+04 NaN + 1.1997200e+04 NaN + 1.1997600e+04 NaN + 1.1998000e+04 NaN + 1.1998400e+04 NaN + 1.1998800e+04 NaN + 1.1999200e+04 NaN + 1.1999600e+04 NaN + 1.2000000e+04 -2.5667949e-01 + 1.2000400e+04 -4.5667949e-01 + 1.2000800e+04 -8.8667949e-01 + 1.2001200e+04 -1.1166795e+00 + 1.2001600e+04 -1.4966795e+00 + 1.2002000e+04 -1.5766795e+00 + 1.2002400e+04 -1.5666795e+00 + 1.2002800e+04 -1.1066795e+00 + 1.2003200e+04 -6.5667949e-01 + 1.2003600e+04 -5.3667949e-01 + 1.2004000e+04 -2.7667949e-01 + 1.2004400e+04 2.0332051e-01 + 1.2004800e+04 5.3332051e-01 + 1.2005200e+04 9.5332051e-01 + 1.2005600e+04 1.4933205e+00 + 1.2006000e+04 1.3633205e+00 + 1.2006400e+04 1.0933205e+00 + 1.2006800e+04 7.6332051e-01 + 1.2007200e+04 5.4332051e-01 + 1.2007600e+04 4.3332051e-01 + 1.2008000e+04 3.5332051e-01 + 1.2008400e+04 7.3320513e-02 + 1.2008800e+04 -9.6679487e-02 + 1.2009200e+04 -6.6794872e-03 + 1.2009600e+04 2.3332051e-01 + 1.2010000e+04 4.7332051e-01 + 1.2010400e+04 5.5332051e-01 + 1.2010800e+04 8.3332051e-01 + 1.2011200e+04 1.2233205e+00 + 1.2011600e+04 1.2833205e+00 + 1.2012000e+04 1.2133205e+00 + 1.2012400e+04 1.1633205e+00 + 1.2012800e+04 -6.6679487e-02 + 1.2013200e+04 -2.4667949e-01 + 1.2013600e+04 -5.2667949e-01 + 1.2014000e+04 -6.6667949e-01 + 1.2014400e+04 -6.2667949e-01 + 1.2014800e+04 -7.1667949e-01 + 1.2015200e+04 -5.6667949e-01 + 1.2015600e+04 -2.1667949e-01 + 1.2016000e+04 9.3320513e-02 + 1.2016400e+04 5.1332051e-01 + 1.2016800e+04 1.0733205e+00 + 1.2017200e+04 1.4433205e+00 + 1.2017600e+04 1.9033205e+00 + 1.2018000e+04 1.9333205e+00 + 1.2018400e+04 1.8533205e+00 + 1.2018800e+04 1.7233205e+00 + 1.2019200e+04 1.5133205e+00 + 1.2019600e+04 1.5033205e+00 + 1.2020000e+04 1.5033205e+00 + 1.2020400e+04 1.5033205e+00 + 1.2020800e+04 1.5033205e+00 + 1.2021200e+04 1.5033205e+00 + 1.2021600e+04 9.8332051e-01 + 1.2022000e+04 -1.9166795e+00 + 1.2022400e+04 -2.1266795e+00 + 1.2022800e+04 -1.8066795e+00 + 1.2023200e+04 -1.2866795e+00 + 1.2023600e+04 -6.9667949e-01 + 1.2024000e+04 2.6332051e-01 + 1.2024400e+04 1.6033205e+00 + 1.2024800e+04 1.8733205e+00 + 1.2025200e+04 1.6233205e+00 + 1.2025600e+04 1.2333205e+00 + 1.2026000e+04 1.0233205e+00 + 1.2026400e+04 9.6332051e-01 + 1.2026800e+04 4.5332051e-01 + 1.2027200e+04 8.3320513e-02 + 1.2027600e+04 -2.8667949e-01 + 1.2028000e+04 -5.1667949e-01 + 1.2028400e+04 -8.5667949e-01 + 1.2028800e+04 -9.4667949e-01 + 1.2029200e+04 -7.5667949e-01 + 1.2029600e+04 -2.0667949e-01 + 1.2030000e+04 2.9332051e-01 + 1.2030400e+04 1.2633205e+00 + 1.2030800e+04 1.7133205e+00 + 1.2031200e+04 1.5233205e+00 + 1.2031600e+04 1.0933205e+00 + 1.2032000e+04 5.5332051e-01 + 1.2032400e+04 3.4332051e-01 + 1.2032800e+04 2.6332051e-01 + 1.2033200e+04 2.2332051e-01 + 1.2033600e+04 9.3320513e-02 + 1.2034000e+04 3.3205128e-03 + 1.2034400e+04 -5.6679487e-02 + 1.2034800e+04 -6.6679487e-02 + 1.2035200e+04 -1.7667949e-01 + 1.2035600e+04 2.4332051e-01 + 1.2036000e+04 8.5332051e-01 + 1.2036400e+04 1.5533205e+00 + 1.2036800e+04 1.9833205e+00 + 1.2037200e+04 1.5733205e+00 + 1.2037600e+04 1.2333205e+00 + 1.2038000e+04 9.8332051e-01 + 1.2038400e+04 7.2332051e-01 + 1.2038800e+04 5.5332051e-01 + 1.2039200e+04 4.0332051e-01 + 1.2039600e+04 1.9332051e-01 + 1.2040000e+04 -6.6794872e-03 + 1.2040400e+04 -1.7667949e-01 + 1.2040800e+04 -4.7667949e-01 + 1.2041200e+04 -4.9667949e-01 + 1.2041600e+04 -6.6667949e-01 + 1.2042000e+04 -8.3667949e-01 + 1.2042400e+04 -1.2166795e+00 + 1.2042800e+04 -1.4766795e+00 + 1.2043200e+04 -1.8566795e+00 + 1.2043600e+04 -1.9466795e+00 + 1.2044000e+04 -1.6666795e+00 + 1.2044400e+04 -1.1566795e+00 + 1.2044800e+04 -8.2667949e-01 + 1.2045200e+04 -7.8667949e-01 + 1.2045600e+04 -2.5667949e-01 + 1.2046000e+04 -7.9667949e-01 + 1.2046400e+04 -1.3966795e+00 + 1.2046800e+04 -1.5566795e+00 + 1.2047200e+04 -9.2667949e-01 + 1.2047600e+04 7.3320513e-02 + 1.2048000e+04 1.2433205e+00 + 1.2048400e+04 1.6533205e+00 + 1.2048800e+04 2.0233205e+00 + 1.2049200e+04 2.6933205e+00 + 1.2049600e+04 3.0233205e+00 + 1.2050000e+04 3.3933205e+00 + 1.2050400e+04 3.6033205e+00 + 1.2050800e+04 3.2733205e+00 + 1.2051200e+04 2.8433205e+00 + 1.2051600e+04 2.5733205e+00 + 1.2052000e+04 1.5033205e+00 + 1.2052400e+04 6.5332051e-01 + 1.2052800e+04 7.3320513e-02 + 1.2053200e+04 -6.3667949e-01 + 1.2053600e+04 -8.0667949e-01 + 1.2054000e+04 -8.1667949e-01 + 1.2054400e+04 -9.0667949e-01 + 1.2054800e+04 -7.8667949e-01 + 1.2055200e+04 -7.3667949e-01 + 1.2055600e+04 -7.8667949e-01 + 1.2056000e+04 -6.9667949e-01 + 1.2056400e+04 -3.9667949e-01 + 1.2056800e+04 8.3320513e-02 + 1.2057200e+04 9.3320513e-02 + 1.2057600e+04 -8.6679487e-02 + 1.2058000e+04 -1.6667949e-01 + 1.2058400e+04 -1.9667949e-01 + 1.2058800e+04 3.3205128e-03 + 1.2059200e+04 2.0332051e-01 + 1.2059600e+04 3.9332051e-01 + 1.2060000e+04 7.4332051e-01 + 1.2060400e+04 6.1332051e-01 + 1.2060800e+04 5.5332051e-01 + 1.2061200e+04 3.3332051e-01 + 1.2061600e+04 -1.6667949e-01 + 1.2062000e+04 -9.9667949e-01 + 1.2062400e+04 -1.2166795e+00 + 1.2062800e+04 -1.0166795e+00 + 1.2063200e+04 -9.0667949e-01 + 1.2063600e+04 -7.3667949e-01 + 1.2064000e+04 -2.5667949e-01 + 1.2064400e+04 -6.6679487e-02 + 1.2064800e+04 -1.4667949e-01 + 1.2065200e+04 -4.8667949e-01 + 1.2065600e+04 -5.2667949e-01 + 1.2066000e+04 -2.4667949e-01 + 1.2066400e+04 1.3320513e-02 + 1.2066800e+04 3.0332051e-01 + 1.2067200e+04 9.3332051e-01 + 1.2067600e+04 1.2933205e+00 + 1.2068000e+04 1.1933205e+00 + 1.2068400e+04 9.5332051e-01 + 1.2068800e+04 7.9332051e-01 + 1.2069200e+04 9.3332051e-01 + 1.2069600e+04 1.4033205e+00 + 1.2070000e+04 1.6733205e+00 + 1.2070400e+04 1.5133205e+00 + 1.2070800e+04 1.4833205e+00 + 1.2071200e+04 1.3533205e+00 + 1.2071600e+04 1.3033205e+00 + 1.2072000e+04 1.0433205e+00 + 1.2072400e+04 9.6332051e-01 + 1.2072800e+04 6.3332051e-01 + 1.2073200e+04 -1.2667949e-01 + 1.2073600e+04 -9.0667949e-01 + 1.2074000e+04 -1.2866795e+00 + 1.2074400e+04 -1.5866795e+00 + 1.2074800e+04 -1.8066795e+00 + 1.2075200e+04 -1.2766795e+00 + 1.2075600e+04 -3.8667949e-01 + 1.2076000e+04 8.9332051e-01 + 1.2076400e+04 1.9233205e+00 + 1.2076800e+04 1.3733205e+00 + 1.2077200e+04 9.0332051e-01 + 1.2077600e+04 7.6332051e-01 + 1.2078000e+04 5.5332051e-01 + 1.2078400e+04 2.2332051e-01 + 1.2078800e+04 -3.6679487e-02 + 1.2079200e+04 -4.5667949e-01 + 1.2079600e+04 -5.5667949e-01 + 1.2080000e+04 -4.4667949e-01 + 1.2080400e+04 -3.2667949e-01 + 1.2080800e+04 -3.6667949e-01 + 1.2081200e+04 -2.8667949e-01 + 1.2081600e+04 -7.6679487e-02 + 1.2082000e+04 9.3320513e-02 + 1.2082400e+04 3.0332051e-01 + 1.2082800e+04 8.8332051e-01 + 1.2083200e+04 1.1133205e+00 + 1.2083600e+04 5.3332051e-01 + 1.2084000e+04 5.0332051e-01 + 1.2084400e+04 5.0332051e-01 + 1.2084800e+04 -3.6679487e-02 + 1.2085200e+04 -6.2667949e-01 + 1.2085600e+04 -6.9667949e-01 + 1.2086000e+04 -6.6667949e-01 + 1.2086400e+04 -5.9667949e-01 + 1.2086800e+04 -2.0667949e-01 + 1.2087200e+04 -2.4667949e-01 + 1.2087600e+04 -2.5667949e-01 + 1.2088000e+04 2.8332051e-01 + 1.2088400e+04 7.9332051e-01 + 1.2088800e+04 1.1233205e+00 + 1.2089200e+04 1.4433205e+00 + 1.2089600e+04 5.5333205e+00 + 1.2090000e+04 5.2433205e+00 + 1.2090400e+04 4.9333205e+00 + 1.2090800e+04 4.9133205e+00 + 1.2091200e+04 4.9133205e+00 + 1.2091600e+04 4.9133205e+00 + 1.2092000e+04 1.3320513e-02 + 1.2092400e+04 -1.4566795e+00 + 1.2092800e+04 -1.2066795e+00 + 1.2093200e+04 -9.7667949e-01 + 1.2093600e+04 -6.4667949e-01 + 1.2094000e+04 -3.7667949e-01 + 1.2094400e+04 -6.3667949e-01 + 1.2094800e+04 -1.1466795e+00 + 1.2095200e+04 -1.6366795e+00 + 1.2095600e+04 -1.7466795e+00 + 1.2096000e+04 -1.6066795e+00 + 1.2096400e+04 -1.2166795e+00 + 1.2096800e+04 -8.9667949e-01 + 1.2097200e+04 -8.7667949e-01 + 1.2097600e+04 -2.5667949e-01 + 1.2098000e+04 1.3332051e-01 + 1.2098400e+04 1.0332051e-01 + 1.2098800e+04 1.6332051e-01 + 1.2099200e+04 4.1332051e-01 + 1.2099600e+04 8.7332051e-01 + 1.2100000e+04 1.4333205e+00 + 1.2100400e+04 2.0033205e+00 + 1.2100800e+04 2.2533205e+00 + 1.2101200e+04 2.2133205e+00 + 1.2101600e+04 1.8033205e+00 + 1.2102000e+04 1.3033205e+00 + 1.2102400e+04 6.3332051e-01 + 1.2102800e+04 2.4332051e-01 + 1.2103200e+04 -3.6679487e-02 + 1.2103600e+04 -1.2667949e-01 + 1.2104000e+04 -4.8667949e-01 + 1.2104400e+04 -6.2667949e-01 + 1.2104800e+04 -9.5667949e-01 + 1.2105200e+04 -1.1366795e+00 + 1.2105600e+04 -6.0667949e-01 + 1.2106000e+04 -1.9667949e-01 + 1.2106400e+04 3.7332051e-01 + 1.2106800e+04 7.2332051e-01 + 1.2107200e+04 8.6332051e-01 + 1.2107600e+04 5.8332051e-01 + 1.2108000e+04 3.7332051e-01 + 1.2108400e+04 2.7332051e-01 + 1.2108800e+04 4.5332051e-01 + 1.2109200e+04 4.9332051e-01 + 1.2109600e+04 4.8332051e-01 + 1.2110000e+04 7.0332051e-01 + 1.2110400e+04 1.2533205e+00 + 1.2110800e+04 1.8033205e+00 + 1.2111200e+04 2.0833205e+00 + 1.2111600e+04 2.2733205e+00 + 1.2112000e+04 2.2033205e+00 + 1.2112400e+04 1.7533205e+00 + 1.2112800e+04 1.2633205e+00 + 1.2113200e+04 9.2332051e-01 + 1.2113600e+04 4.9332051e-01 + 1.2114000e+04 4.5332051e-01 + 1.2114400e+04 4.6332051e-01 + 1.2114800e+04 4.6332051e-01 + 1.2115200e+04 4.6332051e-01 + 1.2115600e+04 4.6332051e-01 + 1.2116000e+04 -6.0667949e-01 + 1.2116400e+04 -3.0666795e+00 + 1.2116800e+04 -2.5366795e+00 + 1.2117200e+04 -2.3266795e+00 + 1.2117600e+04 -1.2966795e+00 + 1.2118000e+04 -3.7667949e-01 + 1.2118400e+04 1.3320513e-02 + 1.2118800e+04 2.5332051e-01 + 1.2119200e+04 8.7332051e-01 + 1.2119600e+04 1.6533205e+00 + 1.2120000e+04 1.8333205e+00 + 1.2120400e+04 2.1333205e+00 + 1.2120800e+04 2.3633205e+00 + 1.2121200e+04 2.4033205e+00 + 1.2121600e+04 2.5133205e+00 + 1.2122000e+04 2.6833205e+00 + 1.2122400e+04 2.9433205e+00 + 1.2122800e+04 3.2233205e+00 + 1.2123200e+04 3.0533205e+00 + 1.2123600e+04 2.7033205e+00 + 1.2124000e+04 1.7033205e+00 + 1.2124400e+04 1.2633205e+00 + 1.2124800e+04 9.3320513e-02 + 1.2125200e+04 -2.3667949e-01 + 1.2125600e+04 -1.5667949e-01 + 1.2126000e+04 -5.3667949e-01 + 1.2126400e+04 -8.0667949e-01 + 1.2126800e+04 -8.0667949e-01 + 1.2127200e+04 -8.8667949e-01 + 1.2127600e+04 -1.2966795e+00 + 1.2128000e+04 -1.1566795e+00 + 1.2128400e+04 -1.2866795e+00 + 1.2128800e+04 -1.5266795e+00 + 1.2129200e+04 -1.6966795e+00 + 1.2129600e+04 -1.8466795e+00 + 1.2130000e+04 -1.7166795e+00 + 1.2130400e+04 -1.6566795e+00 + 1.2130800e+04 -1.6066795e+00 + 1.2131200e+04 -1.4566795e+00 + 1.2131600e+04 -1.0166795e+00 + 1.2132000e+04 -2.8667949e-01 + 1.2132400e+04 5.0332051e-01 + 1.2132800e+04 1.4633205e+00 + 1.2133200e+04 2.3933205e+00 + 1.2133600e+04 2.8433205e+00 + 1.2134000e+04 2.9333205e+00 + 1.2134400e+04 2.7133205e+00 + 1.2134800e+04 2.1833205e+00 + 1.2135200e+04 2.0733205e+00 + 1.2135600e+04 6.3332051e-01 + 1.2136000e+04 3.0332051e-01 + 1.2136400e+04 -9.0667949e-01 + 1.2136800e+04 -1.5266795e+00 + 1.2137200e+04 -1.8066795e+00 + 1.2137600e+04 -1.8266795e+00 + 1.2138000e+04 -1.8166795e+00 + 1.2138400e+04 -1.9066795e+00 + 1.2138800e+04 -1.5966795e+00 + 1.2139200e+04 -1.2766795e+00 + 1.2139600e+04 -7.7667949e-01 + 1.2140000e+04 4.0332051e-01 + 1.2140400e+04 1.2433205e+00 + 1.2140800e+04 1.6733205e+00 + 1.2141200e+04 2.1733205e+00 + 1.2141600e+04 2.4733205e+00 + 1.2142000e+04 2.8433205e+00 + 1.2142400e+04 3.0833205e+00 + 1.2142800e+04 3.8833205e+00 + 1.2143200e+04 3.5433205e+00 + 1.2143600e+04 2.4333205e+00 + 1.2144000e+04 1.5233205e+00 + 1.2144400e+04 1.3333205e+00 + 1.2144800e+04 1.3733205e+00 + 1.2145200e+04 1.8033205e+00 + 1.2145600e+04 2.0133205e+00 + 1.2146000e+04 1.5133205e+00 + 1.2146400e+04 8.7332051e-01 + 1.2146800e+04 2.1332051e-01 + 1.2147200e+04 -6.6679487e-02 + 1.2147600e+04 -1.5666795e+00 + 1.2148000e+04 -1.9666795e+00 + 1.2148400e+04 -2.0766795e+00 + 1.2148800e+04 -3.0266795e+00 + 1.2149200e+04 -3.8666795e+00 + 1.2149600e+04 -3.6966795e+00 + 1.2150000e+04 -3.1566795e+00 + 1.2150400e+04 -2.3166795e+00 + 1.2150800e+04 -1.4666795e+00 + 1.2151200e+04 4.3320513e-02 + 1.2151600e+04 1.4433205e+00 + 1.2152000e+04 1.6933205e+00 + 1.2152400e+04 2.2433205e+00 + 1.2152800e+04 2.5533205e+00 + 1.2153200e+04 2.0933205e+00 + 1.2153600e+04 1.5833205e+00 + 1.2154000e+04 1.3233205e+00 + 1.2154400e+04 8.9332051e-01 + 1.2154800e+04 -2.6667949e-01 + 1.2155200e+04 -6.9667949e-01 + 1.2155600e+04 -7.1667949e-01 + 1.2156000e+04 -1.2666795e+00 + 1.2156400e+04 -1.5666795e+00 + 1.2156800e+04 -1.5466795e+00 + 1.2157200e+04 -9.8667949e-01 + 1.2157600e+04 -1.6667949e-01 + 1.2158000e+04 6.8332051e-01 + 1.2158400e+04 1.4133205e+00 + 1.2158800e+04 1.8833205e+00 + 1.2159200e+04 2.2633205e+00 + 1.2159600e+04 2.4633205e+00 + 1.2160000e+04 2.7233205e+00 + 1.2160400e+04 3.1533205e+00 + 1.2160800e+04 3.7433205e+00 + 1.2161200e+04 3.8733205e+00 + 1.2161600e+04 3.3833205e+00 + 1.2162000e+04 2.4233205e+00 + 1.2162400e+04 1.3733205e+00 + 1.2162800e+04 7.9332051e-01 + 1.2163200e+04 6.6332051e-01 + 1.2163600e+04 9.0332051e-01 + 1.2164000e+04 7.1332051e-01 + 1.2164400e+04 5.9332051e-01 + 1.2164800e+04 2.2332051e-01 + 1.2165200e+04 2.0332051e-01 + 1.2165600e+04 -8.7667949e-01 + 1.2166000e+04 -2.6266795e+00 + 1.2166400e+04 -2.8866795e+00 + 1.2166800e+04 -2.8066795e+00 + 1.2167200e+04 -2.4866795e+00 + 1.2167600e+04 -1.5366795e+00 + 1.2168000e+04 -2.1667949e-01 + 1.2168400e+04 8.5332051e-01 + 1.2168800e+04 9.7332051e-01 + 1.2169200e+04 4.3332051e-01 + 1.2169600e+04 -4.5667949e-01 + 1.2170000e+04 -1.0666795e+00 + 1.2170400e+04 -1.3666795e+00 + 1.2170800e+04 -1.1266795e+00 + 1.2171200e+04 -6.4667949e-01 + 1.2171600e+04 -2.4667949e-01 + 1.2172000e+04 1.3332051e-01 + 1.2172400e+04 4.3332051e-01 + 1.2172800e+04 5.0332051e-01 + 1.2173200e+04 7.3332051e-01 + 1.2173600e+04 6.6332051e-01 + 1.2174000e+04 5.8332051e-01 + 1.2174400e+04 2.5332051e-01 + 1.2174800e+04 -2.0667949e-01 + 1.2175200e+04 -4.2667949e-01 + 1.2175600e+04 -2.8667949e-01 + 1.2176000e+04 5.3320513e-02 + 1.2176400e+04 7.7332051e-01 + 1.2176800e+04 1.3433205e+00 + 1.2177200e+04 1.5833205e+00 + 1.2177600e+04 1.6233205e+00 + 1.2178000e+04 1.3933205e+00 + 1.2178400e+04 1.5033205e+00 + 1.2178800e+04 1.7433205e+00 + 1.2179200e+04 1.9733205e+00 + 1.2179600e+04 2.2733205e+00 + 1.2180000e+04 2.4533205e+00 + 1.2180400e+04 2.7533205e+00 + 1.2180800e+04 2.7333205e+00 + 1.2181200e+04 2.9033205e+00 + 1.2181600e+04 2.3533205e+00 + 1.2182000e+04 1.5733205e+00 + 1.2182400e+04 9.6332051e-01 + 1.2182800e+04 3.4332051e-01 + 1.2183200e+04 1.3332051e-01 + 1.2183600e+04 9.3320513e-02 + 1.2184000e+04 -6.6679487e-02 + 1.2184400e+04 -4.1667949e-01 + 1.2184800e+04 -7.8667949e-01 + 1.2185200e+04 -1.4266795e+00 + 1.2185600e+04 -2.1466795e+00 + 1.2186000e+04 -2.7766795e+00 + 1.2186400e+04 -3.0766795e+00 + 1.2186800e+04 -3.0966795e+00 + 1.2187200e+04 -3.0766795e+00 + 1.2187600e+04 -2.7866795e+00 + 1.2188000e+04 -2.3966795e+00 + 1.2188400e+04 -1.7666795e+00 + 1.2188800e+04 -9.4667949e-01 + 1.2189200e+04 -1.6667949e-01 + 1.2189600e+04 1.9332051e-01 + 1.2190000e+04 1.5133205e+00 + 1.2190400e+04 1.6033205e+00 + 1.2190800e+04 1.6733205e+00 + 1.2191200e+04 1.7833205e+00 + 1.2191600e+04 1.8433205e+00 + 1.2192000e+04 9.9332051e-01 + 1.2192400e+04 3.6332051e-01 + 1.2192800e+04 -4.6679487e-02 + 1.2193200e+04 -5.5667949e-01 + 1.2193600e+04 -8.3667949e-01 + 1.2194000e+04 -8.7667949e-01 + 1.2194400e+04 -6.4667949e-01 + 1.2194800e+04 -3.1667949e-01 + 1.2195200e+04 -2.7667949e-01 + 1.2195600e+04 -2.1667949e-01 + 1.2196000e+04 8.3320513e-02 + 1.2196400e+04 5.2332051e-01 + 1.2196800e+04 1.2433205e+00 + 1.2197200e+04 2.3033205e+00 + 1.2197600e+04 2.9933205e+00 + 1.2198000e+04 3.1233205e+00 + 1.2198400e+04 3.0033205e+00 + 1.2198800e+04 2.9033205e+00 + 1.2199200e+04 2.7533205e+00 + 1.2199600e+04 2.6033205e+00 + 1.2200000e+04 2.4933205e+00 + 1.2200400e+04 2.0433205e+00 + 1.2200800e+04 1.5333205e+00 + 1.2201200e+04 1.1533205e+00 + 1.2201600e+04 9.9332051e-01 + 1.2202000e+04 6.6332051e-01 + 1.2202400e+04 1.5332051e-01 + 1.2202800e+04 -2.4667949e-01 + 1.2203200e+04 -5.1667949e-01 + 1.2203600e+04 -6.9667949e-01 + 1.2204000e+04 -6.3667949e-01 + 1.2204400e+04 -6.1667949e-01 + 1.2204800e+04 -6.2667949e-01 + 1.2205200e+04 -9.9667949e-01 + 1.2205600e+04 -1.2966795e+00 + 1.2206000e+04 -1.1766795e+00 + 1.2206400e+04 -8.6667949e-01 + 1.2206800e+04 -2.1966795e+00 + 1.2207200e+04 -3.1966795e+00 + 1.2207600e+04 -3.5166795e+00 + 1.2208000e+04 -3.3966795e+00 + 1.2208400e+04 -2.8266795e+00 + 1.2208800e+04 -1.8766795e+00 + 1.2209200e+04 -8.1667949e-01 + 1.2209600e+04 1.1332051e-01 + 1.2210000e+04 7.3332051e-01 + 1.2210400e+04 1.3633205e+00 + 1.2210800e+04 2.0533205e+00 + 1.2211200e+04 2.5933205e+00 + 1.2211600e+04 2.8333205e+00 + 1.2212000e+04 2.2933205e+00 + 1.2212400e+04 1.7033205e+00 + 1.2212800e+04 1.1233205e+00 + 1.2213200e+04 4.5332051e-01 + 1.2213600e+04 -6.6679487e-02 + 1.2214000e+04 -2.7667949e-01 + 1.2214400e+04 -2.5667949e-01 + 1.2214800e+04 5.3320513e-02 + 1.2215200e+04 7.8332051e-01 + 1.2215600e+04 1.4733205e+00 + 1.2216000e+04 2.1833205e+00 + 1.2216400e+04 2.3533205e+00 + 1.2216800e+04 2.1033205e+00 + 1.2217200e+04 1.8633205e+00 + 1.2217600e+04 1.7933205e+00 + 1.2218000e+04 1.5833205e+00 + 1.2218400e+04 1.2533205e+00 + 1.2218800e+04 7.0332051e-01 + 1.2219200e+04 3.8332051e-01 + 1.2219600e+04 1.4332051e-01 + 1.2220000e+04 2.8332051e-01 + 1.2220400e+04 1.9332051e-01 + 1.2220800e+04 1.4332051e-01 + 1.2221200e+04 1.9332051e-01 + 1.2221600e+04 4.9332051e-01 + 1.2222000e+04 7.1332051e-01 + 1.2222400e+04 5.5332051e-01 + 1.2222800e+04 2.7332051e-01 + 1.2223200e+04 -4.6679487e-02 + 1.2223600e+04 -3.0667949e-01 + 1.2224000e+04 -5.5667949e-01 + 1.2224400e+04 -7.3667949e-01 + 1.2224800e+04 -6.1667949e-01 + 1.2225200e+04 -3.3667949e-01 + 1.2225600e+04 -2.8667949e-01 + 1.2226000e+04 -1.9667949e-01 + 1.2226400e+04 -4.2667949e-01 + 1.2226800e+04 -5.9667949e-01 + 1.2227200e+04 -6.4667949e-01 + 1.2227600e+04 -4.5667949e-01 + 1.2228000e+04 -2.9667949e-01 + 1.2228400e+04 -6.0667949e-01 + 1.2228800e+04 -7.3667949e-01 + 1.2229200e+04 -7.4667949e-01 + 1.2229600e+04 -1.1766795e+00 + 1.2230000e+04 -2.0866795e+00 + 1.2230400e+04 -2.1166795e+00 + 1.2230800e+04 -1.9266795e+00 + 1.2231200e+04 -1.8266795e+00 + 1.2231600e+04 -1.3966795e+00 + 1.2232000e+04 -5.4667949e-01 + 1.2232400e+04 1.8332051e-01 + 1.2232800e+04 7.9332051e-01 + 1.2233200e+04 1.2033205e+00 + 1.2233600e+04 2.3533205e+00 + 1.2234000e+04 3.3033205e+00 + 1.2234400e+04 3.8933205e+00 + 1.2234800e+04 4.3333205e+00 + 1.2235200e+04 4.2733205e+00 + 1.2235600e+04 3.9733205e+00 + 1.2236000e+04 3.1833205e+00 + 1.2236400e+04 2.6733205e+00 + 1.2236800e+04 1.9933205e+00 + 1.2237200e+04 1.8033205e+00 + 1.2237600e+04 1.6033205e+00 + 1.2238000e+04 1.1233205e+00 + 1.2238400e+04 6.6332051e-01 + 1.2238800e+04 6.5332051e-01 + 1.2239200e+04 -4.0667949e-01 + 1.2239600e+04 -9.5667949e-01 + 1.2240000e+04 -7.3667949e-01 + 1.2240400e+04 -3.7667949e-01 + 1.2240800e+04 -1.9667949e-01 + 1.2241200e+04 -1.4667949e-01 + 1.2241600e+04 -2.7667949e-01 + 1.2242000e+04 -3.3667949e-01 + 1.2242400e+04 -3.5667949e-01 + 1.2242800e+04 -3.5667949e-01 + 1.2243200e+04 -4.0667949e-01 + 1.2243600e+04 -7.0667949e-01 + 1.2244000e+04 -1.1166795e+00 + 1.2244400e+04 -1.4166795e+00 + 1.2244800e+04 -1.5166795e+00 + 1.2245200e+04 -1.4166795e+00 + 1.2245600e+04 -1.2866795e+00 + 1.2246000e+04 -1.1966795e+00 + 1.2246400e+04 -1.0866795e+00 + 1.2246800e+04 -1.0266795e+00 + 1.2247200e+04 -8.6667949e-01 + 1.2247600e+04 -6.9667949e-01 + 1.2248000e+04 -4.6667949e-01 + 1.2248400e+04 2.2332051e-01 + 1.2248800e+04 9.1332051e-01 + 1.2249200e+04 1.0333205e+00 + 1.2249600e+04 8.7332051e-01 + 1.2250000e+04 3.9332051e-01 + 1.2250400e+04 1.8332051e-01 + 1.2250800e+04 -3.6679487e-02 + 1.2251200e+04 -6.6794872e-03 + 1.2251600e+04 2.4332051e-01 + 1.2252000e+04 3.0332051e-01 + 1.2252400e+04 3.3332051e-01 + 1.2252800e+04 3.0332051e-01 + 1.2253200e+04 4.3332051e-01 + 1.2253600e+04 8.2332051e-01 + 1.2254000e+04 1.1033205e+00 + 1.2254400e+04 1.3633205e+00 + 1.2254800e+04 1.2933205e+00 + 1.2255200e+04 1.1033205e+00 + 1.2255600e+04 7.9332051e-01 + 1.2256000e+04 4.0332051e-01 + 1.2256400e+04 5.3332051e-01 + 1.2256800e+04 7.9332051e-01 + 1.2257200e+04 1.2633205e+00 + 1.2257600e+04 1.2633205e+00 + 1.2258000e+04 1.3233205e+00 + 1.2258400e+04 1.1733205e+00 + 1.2258800e+04 1.3933205e+00 + 1.2259200e+04 1.4833205e+00 + 1.2259600e+04 1.6933205e+00 + 1.2260000e+04 1.6533205e+00 + 1.2260400e+04 1.2133205e+00 + 1.2260800e+04 1.0133205e+00 + 1.2261200e+04 8.2332051e-01 + 1.2261600e+04 5.1332051e-01 + 1.2262000e+04 2.4332051e-01 + 1.2262400e+04 -4.0667949e-01 + 1.2262800e+04 -1.2766795e+00 + 1.2263200e+04 -2.5766795e+00 + 1.2263600e+04 -2.9266795e+00 + 1.2264000e+04 -2.6966795e+00 + 1.2264400e+04 -2.4066795e+00 + 1.2264800e+04 -2.0666795e+00 + 1.2265200e+04 -1.4066795e+00 + 1.2265600e+04 -9.2667949e-01 + 1.2266000e+04 -5.5667949e-01 + 1.2266400e+04 3.3320513e-02 + 1.2266800e+04 1.8332051e-01 + 1.2267200e+04 1.5332051e-01 + 1.2267600e+04 1.5332051e-01 + 1.2268000e+04 5.3320513e-02 + 1.2268400e+04 -2.5667949e-01 + 1.2268800e+04 -5.7667949e-01 + 1.2269200e+04 -9.0667949e-01 + 1.2269600e+04 -1.3166795e+00 + 1.2270000e+04 -1.1066795e+00 + 1.2270400e+04 -8.6667949e-01 + 1.2270800e+04 -5.4667949e-01 + 1.2271200e+04 4.6332051e-01 + 1.2271600e+04 1.2733205e+00 + 1.2272000e+04 1.5833205e+00 + 1.2272400e+04 2.5733205e+00 + 1.2272800e+04 3.3733205e+00 + 1.2273200e+04 3.8033205e+00 + 1.2273600e+04 4.0933205e+00 + 1.2274000e+04 3.7833205e+00 + 1.2274400e+04 3.2533205e+00 + 1.2274800e+04 2.6433205e+00 + 1.2275200e+04 2.0933205e+00 + 1.2275600e+04 1.4333205e+00 + 1.2276000e+04 -1.5667949e-01 + 1.2276400e+04 -7.8667949e-01 + 1.2276800e+04 -1.2866795e+00 + 1.2277200e+04 -1.6366795e+00 + 1.2277600e+04 -1.8466795e+00 + 1.2278000e+04 -1.9666795e+00 + 1.2278400e+04 -1.8066795e+00 + 1.2278800e+04 -1.4566795e+00 + 1.2279200e+04 -1.1166795e+00 + 1.2279600e+04 -1.0866795e+00 + 1.2280000e+04 -1.0866795e+00 + 1.2280400e+04 -1.0566795e+00 + 1.2280800e+04 4.2332051e-01 + 1.2281200e+04 6.9332051e-01 + 1.2281600e+04 9.1332051e-01 + 1.2282000e+04 1.1733205e+00 + 1.2282400e+04 1.0233205e+00 + 1.2282800e+04 1.3033205e+00 + 1.2283200e+04 1.5233205e+00 + 1.2283600e+04 1.4433205e+00 + 1.2284000e+04 1.3233205e+00 + 1.2284400e+04 1.0933205e+00 + 1.2284800e+04 7.4332051e-01 + 1.2285200e+04 5.2332051e-01 + 1.2285600e+04 4.3332051e-01 + 1.2286000e+04 2.6332051e-01 + 1.2286400e+04 2.5332051e-01 + 1.2286800e+04 2.5332051e-01 + 1.2287200e+04 2.5332051e-01 + 1.2287600e+04 2.5332051e-01 + 1.2288000e+04 -2.4566795e+00 + 1.2288400e+04 -3.0466795e+00 + 1.2288800e+04 -2.8366795e+00 + 1.2289200e+04 -2.6266795e+00 + 1.2289600e+04 -2.4566795e+00 + 1.2290000e+04 -1.9666795e+00 + 1.2290400e+04 -1.6266795e+00 + 1.2290800e+04 -1.5866795e+00 + 1.2291200e+04 -1.5866795e+00 + 1.2291600e+04 -1.5866795e+00 + 1.2292000e+04 1.0533205e+00 + 1.2292400e+04 2.7733205e+00 + 1.2292800e+04 3.2333205e+00 + 1.2293200e+04 4.1233205e+00 + 1.2293600e+04 4.0733205e+00 + 1.2294000e+04 3.7433205e+00 + 1.2294400e+04 3.4533205e+00 + 1.2294800e+04 2.1533205e+00 + 1.2295200e+04 1.6933205e+00 + 1.2295600e+04 1.4333205e+00 + 1.2296000e+04 8.2332051e-01 + 1.2296400e+04 3.0332051e-01 + 1.2296800e+04 -3.2667949e-01 + 1.2297200e+04 -6.0667949e-01 + 1.2297600e+04 -1.3266795e+00 + 1.2298000e+04 -2.2766795e+00 + 1.2298400e+04 -2.7166795e+00 + 1.2298800e+04 -2.3466795e+00 + 1.2299200e+04 -1.6366795e+00 + 1.2299600e+04 -6.6667949e-01 + 1.2300000e+04 -1.6679487e-02 + 1.2300400e+04 3.5332051e-01 + 1.2300800e+04 7.3332051e-01 + 1.2301200e+04 1.4333205e+00 + 1.2301600e+04 2.3033205e+00 + 1.2302000e+04 3.2933205e+00 + 1.2302400e+04 3.3333205e+00 + 1.2302800e+04 2.8433205e+00 + 1.2303200e+04 2.2733205e+00 + 1.2303600e+04 2.0733205e+00 + 1.2304000e+04 1.1133205e+00 + 1.2304400e+04 -4.4667949e-01 + 1.2304800e+04 -5.6667949e-01 + 1.2305200e+04 -5.6667949e-01 + 1.2305600e+04 -1.9266795e+00 + 1.2306000e+04 -2.9166795e+00 + 1.2306400e+04 -2.3766795e+00 + 1.2306800e+04 -1.7166795e+00 + 1.2307200e+04 -3.3667949e-01 + 1.2307600e+04 -7.6679487e-02 + 1.2308000e+04 -6.7667949e-01 + 1.2308400e+04 -1.0166795e+00 + 1.2308800e+04 -1.1966795e+00 + 1.2309200e+04 -8.2667949e-01 + 1.2309600e+04 -4.0667949e-01 + 1.2310000e+04 1.0332051e-01 + 1.2310400e+04 3.6332051e-01 + 1.2310800e+04 1.3033205e+00 + 1.2311200e+04 1.6333205e+00 + 1.2311600e+04 1.3333205e+00 + 1.2312000e+04 1.3033205e+00 + 1.2312400e+04 1.5233205e+00 + 1.2312800e+04 1.7733205e+00 + 1.2313200e+04 2.0033205e+00 + 1.2313600e+04 1.9233205e+00 + 1.2314000e+04 1.2533205e+00 + 1.2314400e+04 8.5332051e-01 + 1.2314800e+04 5.5332051e-01 + 1.2315200e+04 2.4332051e-01 + 1.2315600e+04 4.5332051e-01 + 1.2316000e+04 1.1033205e+00 + 1.2316400e+04 1.5833205e+00 + 1.2316800e+04 1.7333205e+00 + 1.2317200e+04 1.6633205e+00 + 1.2317600e+04 1.4133205e+00 + 1.2318000e+04 7.1332051e-01 + 1.2318400e+04 -1.2667949e-01 + 1.2318800e+04 -4.9667949e-01 + 1.2319200e+04 -5.5667949e-01 + 1.2319600e+04 -1.6667949e-01 + 1.2320000e+04 -7.6679487e-02 + 1.2320400e+04 -1.2667949e-01 + 1.2320800e+04 -1.1667949e-01 + 1.2321200e+04 4.3320513e-02 + 1.2321600e+04 6.8332051e-01 + 1.2322000e+04 6.5332051e-01 + 1.2322400e+04 2.2332051e-01 + 1.2322800e+04 -1.9667949e-01 + 1.2323200e+04 -5.9667949e-01 + 1.2323600e+04 -6.9667949e-01 + 1.2324000e+04 -5.5667949e-01 + 1.2324400e+04 -1.5667949e-01 + 1.2324800e+04 -1.9667949e-01 + 1.2325200e+04 -4.7667949e-01 + 1.2325600e+04 -7.6667949e-01 + 1.2326000e+04 -1.0666795e+00 + 1.2326400e+04 -1.0066795e+00 + 1.2326800e+04 -1.1066795e+00 + 1.2327200e+04 -1.3166795e+00 + 1.2327600e+04 -1.0966795e+00 + 1.2328000e+04 -8.9667949e-01 + 1.2328400e+04 -1.0066795e+00 + 1.2328800e+04 -9.7667949e-01 + 1.2329200e+04 -8.5667949e-01 + 1.2329600e+04 -5.5667949e-01 + 1.2330000e+04 -1.7667949e-01 + 1.2330400e+04 3.3205128e-03 + 1.2330800e+04 3.5332051e-01 + 1.2331200e+04 7.6332051e-01 + 1.2331600e+04 1.4133205e+00 + 1.2332000e+04 1.8433205e+00 + 1.2332400e+04 2.0533205e+00 + 1.2332800e+04 2.0933205e+00 + 1.2333200e+04 2.1433205e+00 + 1.2333600e+04 2.1933205e+00 + 1.2334000e+04 2.2833205e+00 + 1.2334400e+04 2.5433205e+00 + 1.2334800e+04 2.7933205e+00 + 1.2335200e+04 2.7433205e+00 + 1.2335600e+04 2.7533205e+00 + 1.2336000e+04 2.4933205e+00 + 1.2336400e+04 1.8533205e+00 + 1.2336800e+04 1.2733205e+00 + 1.2337200e+04 9.9332051e-01 + 1.2337600e+04 -3.8667949e-01 + 1.2338000e+04 -1.0566795e+00 + 1.2338400e+04 -1.0666795e+00 + 1.2338800e+04 -1.2966795e+00 + 1.2339200e+04 -1.7166795e+00 + 1.2339600e+04 -1.7166795e+00 + 1.2340000e+04 -1.5366795e+00 + 1.2340400e+04 -1.3566795e+00 + 1.2340800e+04 -9.9667949e-01 + 1.2341200e+04 -7.8667949e-01 + 1.2341600e+04 -4.5667949e-01 + 1.2342000e+04 4.3320513e-02 + 1.2342400e+04 5.7332051e-01 + 1.2342800e+04 1.0533205e+00 + 1.2343200e+04 1.1433205e+00 + 1.2343600e+04 1.1533205e+00 + 1.2344000e+04 6.8332051e-01 + 1.2344400e+04 9.3320513e-02 + 1.2344800e+04 -3.2667949e-01 + 1.2345200e+04 -7.8667949e-01 + 1.2345600e+04 -1.1766795e+00 + 1.2346000e+04 -1.5666795e+00 + 1.2346400e+04 -2.4066795e+00 + 1.2346800e+04 -2.3566795e+00 + 1.2347200e+04 -1.7166795e+00 + 1.2347600e+04 -1.2966795e+00 + 1.2348000e+04 -8.8667949e-01 + 1.2348400e+04 -4.5667949e-01 + 1.2348800e+04 -3.8667949e-01 + 1.2349200e+04 -3.4667949e-01 + 1.2349600e+04 -1.9667949e-01 + 1.2350000e+04 1.1332051e-01 + 1.2350400e+04 2.9332051e-01 + 1.2350800e+04 7.5332051e-01 + 1.2351200e+04 1.6733205e+00 + 1.2351600e+04 2.7033205e+00 + 1.2352000e+04 3.8733205e+00 + 1.2352400e+04 4.5733205e+00 + 1.2352800e+04 4.9833205e+00 + 1.2353200e+04 4.3733205e+00 + 1.2353600e+04 3.9433205e+00 + 1.2354000e+04 3.8633205e+00 + 1.2354400e+04 3.4733205e+00 + 1.2354800e+04 2.2433205e+00 + 1.2355200e+04 7.5332051e-01 + 1.2355600e+04 -3.3667949e-01 + 1.2356000e+04 -7.1667949e-01 + 1.2356400e+04 -1.1166795e+00 + 1.2356800e+04 -1.2666795e+00 + 1.2357200e+04 -1.1366795e+00 + 1.2357600e+04 -1.1066795e+00 + 1.2358000e+04 -7.7667949e-01 + 1.2358400e+04 -5.6667949e-01 + 1.2358800e+04 -5.5667949e-01 + 1.2359200e+04 -6.6667949e-01 + 1.2359600e+04 -7.1667949e-01 + 1.2360000e+04 -6.7667949e-01 + 1.2360400e+04 -4.2667949e-01 + 1.2360800e+04 -5.6679487e-02 + 1.2361200e+04 2.5332051e-01 + 1.2361600e+04 -1.4667949e-01 + 1.2362000e+04 -3.8667949e-01 + 1.2362400e+04 -4.5667949e-01 + 1.2362800e+04 -6.7667949e-01 + 1.2363200e+04 -7.3667949e-01 + 1.2363600e+04 -7.7667949e-01 + 1.2364000e+04 -8.3667949e-01 + 1.2364400e+04 -8.4667949e-01 + 1.2364800e+04 -8.4667949e-01 + 1.2365200e+04 -2.0266795e+00 + 1.2365600e+04 -2.3366795e+00 + 1.2366000e+04 -2.2866795e+00 + 1.2366400e+04 -2.2866795e+00 + 1.2366800e+04 -2.0667949e-01 + 1.2367200e+04 6.8332051e-01 + 1.2367600e+04 1.0833205e+00 + 1.2368000e+04 1.6333205e+00 + 1.2368400e+04 2.5733205e+00 + 1.2368800e+04 3.2233205e+00 + 1.2369200e+04 3.3033205e+00 + 1.2369600e+04 2.9133205e+00 + 1.2370000e+04 2.7533205e+00 + 1.2370400e+04 2.2033205e+00 + 1.2370800e+04 1.3933205e+00 + 1.2371200e+04 7.9332051e-01 + 1.2371600e+04 7.0332051e-01 + 1.2372000e+04 6.9332051e-01 + 1.2372400e+04 -2.5667949e-01 + 1.2372800e+04 -1.0066795e+00 + 1.2373200e+04 -6.0667949e-01 + 1.2373600e+04 -2.6667949e-01 + 1.2374000e+04 3.0332051e-01 + 1.2374400e+04 8.0332051e-01 + 1.2374800e+04 9.8332051e-01 + 1.2375200e+04 1.3933205e+00 + 1.2375600e+04 1.5333205e+00 + 1.2376000e+04 1.7333205e+00 + 1.2376400e+04 1.8233205e+00 + 1.2376800e+04 1.7033205e+00 + 1.2377200e+04 1.4533205e+00 + 1.2377600e+04 8.9332051e-01 + 1.2378000e+04 -1.0667949e-01 + 1.2378400e+04 -3.9667949e-01 + 1.2378800e+04 -7.9667949e-01 + 1.2379200e+04 -9.2667949e-01 + 1.2379600e+04 -9.5667949e-01 + 1.2380000e+04 -9.9667949e-01 + 1.2380400e+04 -9.9667949e-01 + 1.2380800e+04 -9.9667949e-01 + 1.2381200e+04 -1.9466795e+00 + 1.2381600e+04 -1.8366795e+00 + 1.2382000e+04 -1.4166795e+00 + 1.2382400e+04 -1.4466795e+00 + 1.2382800e+04 -1.4266795e+00 + 1.2383200e+04 -1.1966795e+00 + 1.2383600e+04 -7.9667949e-01 + 1.2384000e+04 -7.1667949e-01 + 1.2384400e+04 -2.8667949e-01 + 1.2384800e+04 9.1332051e-01 + 1.2385200e+04 1.4433205e+00 + 1.2385600e+04 1.5933205e+00 + 1.2386000e+04 1.8233205e+00 + 1.2386400e+04 1.7233205e+00 + 1.2386800e+04 1.5233205e+00 + 1.2387200e+04 1.3633205e+00 + 1.2387600e+04 1.2233205e+00 + 1.2388000e+04 8.6332051e-01 + 1.2388400e+04 8.5332051e-01 + 1.2388800e+04 1.0533205e+00 + 1.2389200e+04 1.2933205e+00 + 1.2389600e+04 8.6332051e-01 + 1.2390000e+04 3.4332051e-01 + 1.2390400e+04 -6.6679487e-02 + 1.2390800e+04 -3.0667949e-01 + 1.2391200e+04 -1.3667949e-01 + 1.2391600e+04 -1.6679487e-02 + 1.2392000e+04 -9.6679487e-02 + 1.2392400e+04 3.0332051e-01 + 1.2392800e+04 9.4332051e-01 + 1.2393200e+04 1.4233205e+00 + 1.2393600e+04 2.3833205e+00 + 1.2394000e+04 3.2733205e+00 + 1.2394400e+04 2.9433205e+00 + 1.2394800e+04 2.6533205e+00 + 1.2395200e+04 2.5033205e+00 + 1.2395600e+04 2.7332051e-01 + 1.2396000e+04 -3.6667949e-01 + 1.2396400e+04 -6.1667949e-01 + 1.2396800e+04 -1.0866795e+00 + 1.2397200e+04 -1.8066795e+00 + 1.2397600e+04 -2.2666795e+00 + 1.2398000e+04 -2.0866795e+00 + 1.2398400e+04 -1.8966795e+00 + 1.2398800e+04 -1.7966795e+00 + 1.2399200e+04 -1.8266795e+00 + 1.2399600e+04 -1.7666795e+00 + 1.2400000e+04 -1.6666795e+00 + 1.2400400e+04 -1.1466795e+00 + 1.2400800e+04 -7.0667949e-01 + 1.2401200e+04 -6.3667949e-01 + 1.2401600e+04 -4.7667949e-01 + 1.2402000e+04 -2.3667949e-01 + 1.2402400e+04 2.3320513e-02 + 1.2402800e+04 5.9332051e-01 + 1.2403200e+04 1.0933205e+00 + 1.2403600e+04 1.3633205e+00 + 1.2404000e+04 1.5033205e+00 + 1.2404400e+04 2.5933205e+00 + 1.2404800e+04 2.9633205e+00 + 1.2405200e+04 3.3033205e+00 + 1.2405600e+04 3.4533205e+00 + 1.2406000e+04 4.0133205e+00 + 1.2406400e+04 3.0733205e+00 + 1.2406800e+04 1.7833205e+00 + 1.2407200e+04 1.3433205e+00 + 1.2407600e+04 -6.6667949e-01 + 1.2408000e+04 -2.5566795e+00 + 1.2408400e+04 -3.3666795e+00 + 1.2408800e+04 -3.5166795e+00 + 1.2409200e+04 -3.4666795e+00 + 1.2409600e+04 -3.3866795e+00 + 1.2410000e+04 -3.1066795e+00 + 1.2410400e+04 -2.4566795e+00 + 1.2410800e+04 -1.7466795e+00 + 1.2411200e+04 -9.7667949e-01 + 1.2411600e+04 -5.6679487e-02 + 1.2412000e+04 8.8332051e-01 + 1.2412400e+04 1.5833205e+00 + 1.2412800e+04 1.6733205e+00 + 1.2413200e+04 2.2333205e+00 + 1.2413600e+04 4.2933205e+00 + 1.2414000e+04 3.4433205e+00 + 1.2414400e+04 2.3233205e+00 + 1.2414800e+04 1.6033205e+00 + 1.2415200e+04 1.2933205e+00 + 1.2415600e+04 1.4833205e+00 + 1.2416000e+04 1.0833205e+00 + 1.2416400e+04 1.0332051e-01 + 1.2416800e+04 -3.5667949e-01 + 1.2417200e+04 -1.8766795e+00 + 1.2417600e+04 -3.0966795e+00 + 1.2418000e+04 -3.7466795e+00 + 1.2418400e+04 -4.3166795e+00 + 1.2418800e+04 -4.0066795e+00 + 1.2419200e+04 -3.2566795e+00 + 1.2419600e+04 -2.5466795e+00 + 1.2420000e+04 -8.4667949e-01 + 1.2420400e+04 -2.2667949e-01 + 1.2420800e+04 -1.4667949e-01 + 1.2421200e+04 1.3320513e-02 + 1.2421600e+04 2.9332051e-01 + 1.2422000e+04 1.0333205e+00 + 1.2422400e+04 1.5433205e+00 + 1.2422800e+04 2.1333205e+00 + 1.2423200e+04 2.8433205e+00 + 1.2423600e+04 4.1233205e+00 + 1.2424000e+04 6.1333205e+00 + 1.2424400e+04 7.0533205e+00 + 1.2424800e+04 7.3333205e+00 + 1.2425200e+04 6.7933205e+00 + 1.2425600e+04 4.6533205e+00 + 1.2426000e+04 2.5333205e+00 + 1.2426400e+04 5.2332051e-01 + 1.2426800e+04 -7.7667949e-01 + 1.2427200e+04 -1.4666795e+00 + 1.2427600e+04 -1.8266795e+00 + 1.2428000e+04 -2.2866795e+00 + 1.2428400e+04 -2.9666795e+00 + 1.2428800e+04 -3.6766795e+00 + 1.2429200e+04 -3.7666795e+00 + 1.2429600e+04 -3.5666795e+00 + 1.2430000e+04 -2.8266795e+00 + 1.2430400e+04 -3.0266795e+00 + 1.2430800e+04 -2.9766795e+00 + 1.2431200e+04 -3.2066795e+00 + 1.2431600e+04 -2.9766795e+00 + 1.2432000e+04 -2.4466795e+00 + 1.2432400e+04 -8.8667949e-01 + 1.2432800e+04 4.0332051e-01 + 1.2433200e+04 1.3233205e+00 + 1.2433600e+04 1.9433205e+00 + 1.2434000e+04 2.5133205e+00 + 1.2434400e+04 2.5433205e+00 + 1.2434800e+04 3.7233205e+00 + 1.2435200e+04 3.5833205e+00 + 1.2435600e+04 2.9833205e+00 + 1.2436000e+04 2.3033205e+00 + 1.2436400e+04 1.9333205e+00 + 1.2436800e+04 1.6533205e+00 + 1.2437200e+04 1.2133205e+00 + 1.2437600e+04 9.9332051e-01 + 1.2438000e+04 5.4332051e-01 + 1.2438400e+04 -8.6679487e-02 + 1.2438800e+04 -8.3667949e-01 + 1.2439200e+04 -1.7066795e+00 + 1.2439600e+04 -1.9566795e+00 + 1.2440000e+04 -2.6066795e+00 + 1.2440400e+04 -2.6966795e+00 + 1.2440800e+04 -2.4466795e+00 + 1.2441200e+04 -1.6566795e+00 + 1.2441600e+04 -7.1667949e-01 + 1.2442000e+04 -5.0667949e-01 + 1.2442400e+04 -3.0667949e-01 + 1.2442800e+04 -8.6679487e-02 + 1.2443200e+04 3.3332051e-01 + 1.2443600e+04 7.9332051e-01 + 1.2444000e+04 1.0433205e+00 + 1.2444400e+04 1.2833205e+00 + 1.2444800e+04 1.4433205e+00 + 1.2445200e+04 2.1333205e+00 + 1.2445600e+04 2.4533205e+00 + 1.2446000e+04 2.1333205e+00 + 1.2446400e+04 1.8533205e+00 + 1.2446800e+04 1.7233205e+00 + 1.2447200e+04 1.6033205e+00 + 1.2447600e+04 1.3833205e+00 + 1.2448000e+04 8.6332051e-01 + 1.2448400e+04 3.0332051e-01 + 1.2448800e+04 -2.4667949e-01 + 1.2449200e+04 -5.5667949e-01 + 1.2449600e+04 -9.4667949e-01 + 1.2450000e+04 -1.2966795e+00 + 1.2450400e+04 -1.5066795e+00 + 1.2450800e+04 -1.6766795e+00 + 1.2451200e+04 -1.5866795e+00 + 1.2451600e+04 -1.6266795e+00 + 1.2452000e+04 -1.9666795e+00 + 1.2452400e+04 -1.7266795e+00 + 1.2452800e+04 -1.0466795e+00 + 1.2453200e+04 1.4332051e-01 + 1.2453600e+04 1.1333205e+00 + 1.2454000e+04 1.6533205e+00 + 1.2454400e+04 1.5233205e+00 + 1.2454800e+04 1.3033205e+00 + 1.2455200e+04 1.2833205e+00 + 1.2455600e+04 7.9332051e-01 + 1.2456000e+04 4.8332051e-01 + 1.2456400e+04 8.2332051e-01 + 1.2456800e+04 1.3933205e+00 + 1.2457200e+04 1.5733205e+00 + 1.2457600e+04 1.3833205e+00 + 1.2458000e+04 1.0133205e+00 + 1.2458400e+04 3.9332051e-01 + 1.2458800e+04 5.3320513e-02 + 1.2459200e+04 -1.2667949e-01 + 1.2459600e+04 -4.5667949e-01 + 1.2460000e+04 -7.8667949e-01 + 1.2460400e+04 -1.0266795e+00 + 1.2460800e+04 -1.3266795e+00 + 1.2461200e+04 -1.2866795e+00 + 1.2461600e+04 -1.1266795e+00 + 1.2462000e+04 -7.2667949e-01 + 1.2462400e+04 -2.9667949e-01 + 1.2462800e+04 1.7332051e-01 + 1.2463200e+04 6.2332051e-01 + 1.2463600e+04 7.7332051e-01 + 1.2464000e+04 9.1332051e-01 + 1.2464400e+04 5.5332051e-01 + 1.2464800e+04 6.3332051e-01 + 1.2465200e+04 8.5332051e-01 + 1.2465600e+04 9.7332051e-01 + 1.2466000e+04 8.3332051e-01 + 1.2466400e+04 6.5332051e-01 + 1.2466800e+04 8.7332051e-01 + 1.2467200e+04 1.1033205e+00 + 1.2467600e+04 1.1833205e+00 + 1.2468000e+04 1.0033205e+00 + 1.2468400e+04 6.0332051e-01 + 1.2468800e+04 1.5332051e-01 + 1.2469200e+04 -1.2667949e-01 + 1.2469600e+04 -5.5667949e-01 + 1.2470000e+04 -1.0966795e+00 + 1.2470400e+04 -9.7667949e-01 + 1.2470800e+04 -5.6667949e-01 + 1.2471200e+04 -2.1667949e-01 + 1.2471600e+04 5.3320513e-02 + 1.2472000e+04 2.8332051e-01 + 1.2472400e+04 7.2332051e-01 + 1.2472800e+04 1.1233205e+00 + 1.2473200e+04 1.3933205e+00 + 1.2473600e+04 1.4833205e+00 + 1.2474000e+04 1.4433205e+00 + 1.2474400e+04 1.3333205e+00 + 1.2474800e+04 8.7332051e-01 + 1.2475200e+04 4.4332051e-01 + 1.2475600e+04 -2.4667949e-01 + 1.2476000e+04 -4.1667949e-01 + 1.2476400e+04 -4.5667949e-01 + 1.2476800e+04 -2.6667949e-01 + 1.2477200e+04 -1.4667949e-01 + 1.2477600e+04 -1.7667949e-01 + 1.2478000e+04 -3.1667949e-01 + 1.2478400e+04 -1.3566795e+00 + 1.2478800e+04 -1.3566795e+00 + 1.2479200e+04 -5.1667949e-01 + 1.2479600e+04 -2.3667949e-01 + 1.2480000e+04 7.3320513e-02 + 1.2480400e+04 3.4332051e-01 + 1.2480800e+04 9.1332051e-01 + 1.2481200e+04 1.3533205e+00 + 1.2481600e+04 1.8233205e+00 + 1.2482000e+04 2.0233205e+00 + 1.2482400e+04 2.0433205e+00 + 1.2482800e+04 9.5332051e-01 + 1.2483200e+04 -4.1667949e-01 + 1.2483600e+04 -1.3566795e+00 + 1.2484000e+04 -1.7266795e+00 + 1.2484400e+04 -1.6066795e+00 + 1.2484800e+04 -1.7566795e+00 + 1.2485200e+04 -1.5466795e+00 + 1.2485600e+04 -1.1966795e+00 + 1.2486000e+04 -8.4667949e-01 + 1.2486400e+04 1.5332051e-01 + 1.2486800e+04 4.7332051e-01 + 1.2487200e+04 9.9332051e-01 + 1.2487600e+04 1.8933205e+00 + 1.2488000e+04 2.9933205e+00 + 1.2488400e+04 3.4233205e+00 + 1.2488800e+04 3.4633205e+00 + 1.2489200e+04 3.5733205e+00 + 1.2489600e+04 3.4633205e+00 + 1.2490000e+04 3.0833205e+00 + 1.2490400e+04 2.5333205e+00 + 1.2490800e+04 1.9033205e+00 + 1.2491200e+04 1.0933205e+00 + 1.2491600e+04 1.5332051e-01 + 1.2492000e+04 -6.0667949e-01 + 1.2492400e+04 -7.8667949e-01 + 1.2492800e+04 -7.9667949e-01 + 1.2493200e+04 -1.7366795e+00 + 1.2493600e+04 -2.6366795e+00 + 1.2494000e+04 -2.9466795e+00 + 1.2494400e+04 -2.7466795e+00 + 1.2494800e+04 -2.6466795e+00 + 1.2495200e+04 -2.7566795e+00 + 1.2495600e+04 -2.9666795e+00 + 1.2496000e+04 -2.6766795e+00 + 1.2496400e+04 -2.0466795e+00 + 1.2496800e+04 -1.8266795e+00 + 1.2497200e+04 -1.6766795e+00 + 1.2497600e+04 9.9332051e-01 + 1.2498000e+04 1.7533205e+00 + 1.2498400e+04 1.8433205e+00 + 1.2498800e+04 2.0533205e+00 + 1.2499200e+04 1.7833205e+00 + 1.2499600e+04 1.5933205e+00 + 1.2500000e+04 1.0833205e+00 + 1.2500400e+04 7.9332051e-01 + 1.2500800e+04 6.9332051e-01 + 1.2501200e+04 9.7332051e-01 + 1.2501600e+04 1.1833205e+00 + 1.2502000e+04 1.3733205e+00 + 1.2502400e+04 1.3633205e+00 + 1.2502800e+04 1.3733205e+00 + 1.2503200e+04 1.4133205e+00 + 1.2503600e+04 8.3332051e-01 + 1.2504000e+04 1.6332051e-01 + 1.2504400e+04 -2.8667949e-01 + 1.2504800e+04 -3.8667949e-01 + 1.2505200e+04 -2.8667949e-01 + 1.2505600e+04 -3.7667949e-01 + 1.2506000e+04 -1.9667949e-01 + 1.2506400e+04 5.3320513e-02 + 1.2506800e+04 4.4332051e-01 + 1.2507200e+04 9.0332051e-01 + 1.2507600e+04 6.8332051e-01 + 1.2508000e+04 4.1332051e-01 + 1.2508400e+04 -8.6679487e-02 + 1.2508800e+04 -1.1667949e-01 + 1.2509200e+04 2.5332051e-01 + 1.2509600e+04 7.4332051e-01 + 1.2510000e+04 1.4233205e+00 + 1.2510400e+04 2.0933205e+00 + 1.2510800e+04 2.0333205e+00 + 1.2511200e+04 1.6133205e+00 + 1.2511600e+04 1.3033205e+00 + 1.2512000e+04 5.7332051e-01 + 1.2512400e+04 -2.6679487e-02 + 1.2512800e+04 -3.3667949e-01 + 1.2513200e+04 -4.6667949e-01 + 1.2513600e+04 -1.5266795e+00 + 1.2514000e+04 -2.0066795e+00 + 1.2514400e+04 -2.3666795e+00 + 1.2514800e+04 -2.4766795e+00 + 1.2515200e+04 -2.1266795e+00 + 1.2515600e+04 -1.9566795e+00 + 1.2516000e+04 -1.4066795e+00 + 1.2516400e+04 -8.4667949e-01 + 1.2516800e+04 -8.1667949e-01 + 1.2517200e+04 -5.0667949e-01 + 1.2517600e+04 -4.6679487e-02 + 1.2518000e+04 1.6332051e-01 + 1.2518400e+04 1.6332051e-01 + 1.2518800e+04 9.0332051e-01 + 1.2519200e+04 1.0533205e+00 + 1.2519600e+04 1.2533205e+00 + 1.2520000e+04 1.6433205e+00 + 1.2520400e+04 2.0333205e+00 + 1.2520800e+04 2.4833205e+00 + 1.2521200e+04 2.6433205e+00 + 1.2521600e+04 2.7033205e+00 + 1.2522000e+04 2.3633205e+00 + 1.2522400e+04 1.8933205e+00 + 1.2522800e+04 1.5433205e+00 + 1.2523200e+04 1.4933205e+00 + 1.2523600e+04 1.7033205e+00 + 1.2524000e+04 1.5133205e+00 + 1.2524400e+04 1.1633205e+00 + 1.2524800e+04 8.5332051e-01 + 1.2525200e+04 3.5332051e-01 + 1.2525600e+04 -2.8667949e-01 + 1.2526000e+04 -5.4667949e-01 + 1.2526400e+04 -6.2667949e-01 + 1.2526800e+04 -9.5667949e-01 + 1.2527200e+04 -1.1066795e+00 + 1.2527600e+04 -1.4066795e+00 + 1.2528000e+04 -1.4166795e+00 + 1.2528400e+04 -1.8366795e+00 + 1.2528800e+04 -1.8466795e+00 + 1.2529200e+04 -1.9466795e+00 + 1.2529600e+04 -1.5966795e+00 + 1.2530000e+04 -1.0066795e+00 + 1.2530400e+04 -6.9667949e-01 + 1.2530800e+04 -5.2667949e-01 + 1.2531200e+04 -3.0667949e-01 + 1.2531600e+04 2.6332051e-01 + 1.2532000e+04 5.4332051e-01 + 1.2532400e+04 6.5332051e-01 + 1.2532800e+04 8.9332051e-01 + 1.2533200e+04 1.0133205e+00 + 1.2533600e+04 9.2332051e-01 + 1.2534000e+04 5.8332051e-01 + 1.2534400e+04 3.3332051e-01 + 1.2534800e+04 2.1332051e-01 + 1.2535200e+04 2.6332051e-01 + 1.2535600e+04 3.6332051e-01 + 1.2536000e+04 1.6332051e-01 + 1.2536400e+04 -1.6679487e-02 + 1.2536800e+04 1.8332051e-01 + 1.2537200e+04 1.7332051e-01 + 1.2537600e+04 1.6332051e-01 + 1.2538000e+04 1.7332051e-01 + 1.2538400e+04 1.8332051e-01 + 1.2538800e+04 4.4332051e-01 + 1.2539200e+04 1.0033205e+00 + 1.2539600e+04 1.5533205e+00 + 1.2540000e+04 1.6733205e+00 + 1.2540400e+04 1.6933205e+00 + 1.2540800e+04 1.3333205e+00 + 1.2541200e+04 7.1332051e-01 + 1.2541600e+04 1.3320513e-02 + 1.2542000e+04 -2.1667949e-01 + 1.2542400e+04 -2.9667949e-01 + 1.2542800e+04 -4.8667949e-01 + 1.2543200e+04 -5.8667949e-01 + 1.2543600e+04 -6.6667949e-01 + 1.2544000e+04 -6.7667949e-01 + 1.2544400e+04 -3.2667949e-01 + 1.2544800e+04 1.3332051e-01 + 1.2545200e+04 4.8332051e-01 + 1.2545600e+04 1.2133205e+00 + 1.2546000e+04 1.7933205e+00 + 1.2546400e+04 2.0533205e+00 + 1.2546800e+04 2.3233205e+00 + 1.2547200e+04 1.7333205e+00 + 1.2547600e+04 1.6533205e+00 + 1.2548000e+04 -1.1667949e-01 + 1.2548400e+04 -8.8667949e-01 + 1.2548800e+04 -1.0966795e+00 + 1.2549200e+04 -1.2166795e+00 + 1.2549600e+04 -1.2666795e+00 + 1.2550000e+04 -1.2666795e+00 + 1.2550400e+04 -1.2066795e+00 + 1.2550800e+04 -1.2466795e+00 + 1.2551200e+04 -1.4466795e+00 + 1.2551600e+04 -1.4466795e+00 + 1.2552000e+04 -1.2266795e+00 + 1.2552400e+04 -9.4667949e-01 + 1.2552800e+04 -6.6667949e-01 + 1.2553200e+04 -4.2667949e-01 + 1.2553600e+04 -1.9667949e-01 + 1.2554000e+04 1.1332051e-01 + 1.2554400e+04 3.3332051e-01 + 1.2554800e+04 4.5332051e-01 + 1.2555200e+04 4.5332051e-01 + 1.2555600e+04 8.2332051e-01 + 1.2556000e+04 1.2733205e+00 + 1.2556400e+04 1.7033205e+00 + 1.2556800e+04 2.1433205e+00 + 1.2557200e+04 2.2833205e+00 + 1.2557600e+04 2.3933205e+00 + 1.2558000e+04 2.4133205e+00 + 1.2558400e+04 2.3333205e+00 + 1.2558800e+04 2.0733205e+00 + 1.2559200e+04 1.6933205e+00 + 1.2559600e+04 1.6133205e+00 + 1.2560000e+04 1.4033205e+00 + 1.2560400e+04 1.2133205e+00 + 1.2560800e+04 1.0433205e+00 + 1.2561200e+04 1.0333205e+00 + 1.2561600e+04 8.4332051e-01 + 1.2562000e+04 -1.2066795e+00 + 1.2562400e+04 -2.0366795e+00 + 1.2562800e+04 -2.9066795e+00 + 1.2563200e+04 -3.1066795e+00 + 1.2563600e+04 -2.7866795e+00 + 1.2564000e+04 -2.4666795e+00 + 1.2564400e+04 -1.4166795e+00 + 1.2564800e+04 -7.9667949e-01 + 1.2565200e+04 -6.6794872e-03 + 1.2565600e+04 7.3332051e-01 + 1.2566000e+04 1.3533205e+00 + 1.2566400e+04 1.8333205e+00 + 1.2566800e+04 2.2933205e+00 + 1.2567200e+04 3.0533205e+00 + 1.2567600e+04 3.3433205e+00 + 1.2568000e+04 3.9133205e+00 + 1.2568400e+04 3.7833205e+00 + 1.2568800e+04 3.3333205e+00 + 1.2569200e+04 2.4733205e+00 + 1.2569600e+04 6.4332051e-01 + 1.2570000e+04 4.9332051e-01 + 1.2570400e+04 4.8332051e-01 + 1.2570800e+04 4.9332051e-01 + 1.2571200e+04 4.9332051e-01 + 1.2571600e+04 -2.0466795e+00 + 1.2572000e+04 -2.6466795e+00 + 1.2572400e+04 -2.2366795e+00 + 1.2572800e+04 -2.0866795e+00 + 1.2573200e+04 -2.2266795e+00 + 1.2573600e+04 -2.0266795e+00 + 1.2574000e+04 -1.9066795e+00 + 1.2574400e+04 -1.6766795e+00 + 1.2574800e+04 -1.2966795e+00 + 1.2575200e+04 -8.2667949e-01 + 1.2575600e+04 -3.0667949e-01 + 1.2576000e+04 5.8332051e-01 + 1.2576400e+04 1.3033205e+00 + 1.2576800e+04 1.3633205e+00 + 1.2577200e+04 1.3633205e+00 + 1.2577600e+04 2.2533205e+00 + 1.2578000e+04 4.0833205e+00 + 1.2578400e+04 3.9833205e+00 + 1.2578800e+04 3.5033205e+00 + 1.2579200e+04 2.2533205e+00 + 1.2579600e+04 1.3533205e+00 + 1.2580000e+04 9.6332051e-01 + 1.2580400e+04 7.4332051e-01 + 1.2580800e+04 4.9332051e-01 + 1.2581200e+04 -1.5667949e-01 + 1.2581600e+04 -1.0566795e+00 + 1.2582000e+04 -1.7466795e+00 + 1.2582400e+04 -2.0666795e+00 + 1.2582800e+04 -2.3666795e+00 + 1.2583200e+04 -2.4066795e+00 + 1.2583600e+04 -2.1366795e+00 + 1.2584000e+04 -1.8366795e+00 + 1.2584400e+04 -1.3266795e+00 + 1.2584800e+04 -1.1466795e+00 + 1.2585200e+04 -8.9667949e-01 + 1.2585600e+04 -4.7667949e-01 + 1.2586000e+04 1.9332051e-01 + 1.2586400e+04 1.1533205e+00 + 1.2586800e+04 1.5533205e+00 + 1.2587200e+04 9.4332051e-01 + 1.2587600e+04 8.6332051e-01 + 1.2588000e+04 1.3833205e+00 + 1.2588400e+04 2.0233205e+00 + 1.2588800e+04 2.2233205e+00 + 1.2589200e+04 2.3833205e+00 + 1.2589600e+04 2.3033205e+00 + 1.2590000e+04 1.9533205e+00 + 1.2590400e+04 8.3320513e-02 + 1.2590800e+04 -4.6667949e-01 + 1.2591200e+04 -1.3366795e+00 + 1.2591600e+04 -1.5966795e+00 + 1.2592000e+04 -1.5966795e+00 + 1.2592400e+04 -1.3866795e+00 + 1.2592800e+04 -1.2066795e+00 + 1.2593200e+04 -8.5667949e-01 + 1.2593600e+04 -6.0667949e-01 + 1.2594000e+04 -3.7667949e-01 + 1.2594400e+04 1.0332051e-01 + 1.2594800e+04 9.1332051e-01 + 1.2595200e+04 1.7933205e+00 + 1.2595600e+04 2.2133205e+00 + 1.2596000e+04 1.6333205e+00 + 1.2596400e+04 1.1433205e+00 + 1.2596800e+04 8.0332051e-01 + 1.2597200e+04 7.1332051e-01 + 1.2597600e+04 7.2332051e-01 + 1.2598000e+04 9.3332051e-01 + 1.2598400e+04 1.1733205e+00 + 1.2598800e+04 1.3333205e+00 + 1.2599200e+04 1.2133205e+00 + 1.2599600e+04 1.0133205e+00 + 1.2600000e+04 3.8332051e-01 + 1.2600400e+04 -2.6679487e-02 + 1.2600800e+04 8.3320513e-02 + 1.2601200e+04 2.5332051e-01 + 1.2601600e+04 2.8332051e-01 + 1.2602000e+04 3.0332051e-01 + 1.2602400e+04 8.2332051e-01 + 1.2602800e+04 5.2332051e-01 + 1.2603200e+04 3.6332051e-01 + 1.2603600e+04 -1.6667949e-01 + 1.2604000e+04 -5.5667949e-01 + 1.2604400e+04 -8.5667949e-01 + 1.2604800e+04 -9.2667949e-01 + 1.2605200e+04 -9.1667949e-01 + 1.2605600e+04 -8.4667949e-01 + 1.2606000e+04 -8.2667949e-01 + 1.2606400e+04 -6.7667949e-01 + 1.2606800e+04 -4.0667949e-01 + 1.2607200e+04 -1.6667949e-01 + 1.2607600e+04 -1.7667949e-01 + 1.2608000e+04 4.3320513e-02 + 1.2608400e+04 3.0332051e-01 + 1.2608800e+04 5.9332051e-01 + 1.2609200e+04 1.1833205e+00 + 1.2609600e+04 1.5333205e+00 + 1.2610000e+04 1.8033205e+00 + 1.2610400e+04 1.8833205e+00 + 1.2610800e+04 1.9333205e+00 + 1.2611200e+04 1.8233205e+00 + 1.2611600e+04 1.2233205e+00 + 1.2612000e+04 1.8332051e-01 + 1.2612400e+04 -1.0966795e+00 + 1.2612800e+04 -1.9866795e+00 + 1.2613200e+04 -2.2766795e+00 + 1.2613600e+04 -2.1366795e+00 + 1.2614000e+04 -1.3466795e+00 + 1.2614400e+04 -6.2667949e-01 + 1.2614800e+04 3.2332051e-01 + 1.2615200e+04 1.0233205e+00 + 1.2615600e+04 1.6533205e+00 + 1.2616000e+04 1.8833205e+00 + 1.2616400e+04 1.9833205e+00 + 1.2616800e+04 1.7833205e+00 + 1.2617200e+04 1.2833205e+00 + 1.2617600e+04 6.9332051e-01 + 1.2618000e+04 4.3332051e-01 + 1.2618400e+04 4.3320513e-02 + 1.2618800e+04 -2.5667949e-01 + 1.2619200e+04 -3.4667949e-01 + 1.2619600e+04 -4.9667949e-01 + 1.2620000e+04 -6.7667949e-01 + 1.2620400e+04 -1.0166795e+00 + 1.2620800e+04 -7.2667949e-01 + 1.2621200e+04 -2.8667949e-01 + 1.2621600e+04 -3.1667949e-01 + 1.2622000e+04 -3.6667949e-01 + 1.2622400e+04 -4.2667949e-01 + 1.2622800e+04 -3.2667949e-01 + 1.2623200e+04 -5.5667949e-01 + 1.2623600e+04 -8.6667949e-01 + 1.2624000e+04 -5.5667949e-01 + 1.2624400e+04 -1.6667949e-01 + 1.2624800e+04 4.5332051e-01 + 1.2625200e+04 1.2533205e+00 + 1.2625600e+04 1.6533205e+00 + 1.2626000e+04 1.3533205e+00 + 1.2626400e+04 7.9332051e-01 + 1.2626800e+04 2.5332051e-01 + 1.2627200e+04 8.3320513e-02 + 1.2627600e+04 4.8332051e-01 + 1.2628000e+04 1.1833205e+00 + 1.2628400e+04 1.8433205e+00 + 1.2628800e+04 2.2833205e+00 + 1.2629200e+04 2.2133205e+00 + 1.2629600e+04 1.7933205e+00 + 1.2630000e+04 1.1733205e+00 + 1.2630400e+04 9.8332051e-01 + 1.2630800e+04 -9.8667949e-01 + 1.2631200e+04 -1.3566795e+00 + 1.2631600e+04 -1.5766795e+00 + 1.2632000e+04 -1.6166795e+00 + 1.2632400e+04 -1.3966795e+00 + 1.2632800e+04 -1.1566795e+00 + 1.2633200e+04 -7.2667949e-01 + 1.2633600e+04 -3.2667949e-01 + 1.2634000e+04 5.3320513e-02 + 1.2634400e+04 7.0332051e-01 + 1.2634800e+04 1.4733205e+00 + 1.2635200e+04 2.0933205e+00 + 1.2635600e+04 2.1133205e+00 + 1.2636000e+04 1.7933205e+00 + 1.2636400e+04 1.3533205e+00 + 1.2636800e+04 9.1332051e-01 + 1.2637200e+04 6.3332051e-01 + 1.2637600e+04 5.3332051e-01 + 1.2638000e+04 5.3332051e-01 + 1.2638400e+04 2.5332051e-01 + 1.2638800e+04 -2.1667949e-01 + 1.2639200e+04 -1.2966795e+00 + 1.2639600e+04 -1.6266795e+00 + 1.2640000e+04 -1.6066795e+00 + 1.2640400e+04 -1.2966795e+00 + 1.2640800e+04 -1.1766795e+00 + 1.2641200e+04 -8.0667949e-01 + 1.2641600e+04 -8.0667949e-01 + 1.2642000e+04 -1.0866795e+00 + 1.2642400e+04 -8.6667949e-01 + 1.2642800e+04 -7.2667949e-01 + 1.2643200e+04 -5.1667949e-01 + 1.2643600e+04 -3.9667949e-01 + 1.2644000e+04 -9.6679487e-02 + 1.2644400e+04 2.6332051e-01 + 1.2644800e+04 8.3332051e-01 + 1.2645200e+04 1.5733205e+00 + 1.2645600e+04 2.1933205e+00 + 1.2646000e+04 2.4833205e+00 + 1.2646400e+04 2.5533205e+00 + 1.2646800e+04 2.3633205e+00 + 1.2647200e+04 2.1233205e+00 + 1.2647600e+04 1.9333205e+00 + 1.2648000e+04 8.0332051e-01 + 1.2648400e+04 6.3332051e-01 + 1.2648800e+04 1.2332051e-01 + 1.2649200e+04 -8.6679487e-02 + 1.2649600e+04 1.7332051e-01 + 1.2650000e+04 6.7332051e-01 + 1.2650400e+04 8.0332051e-01 + 1.2650800e+04 8.3332051e-01 + 1.2651200e+04 7.3332051e-01 + 1.2651600e+04 6.9332051e-01 + 1.2652000e+04 3.8332051e-01 + 1.2652400e+04 -1.0566795e+00 + 1.2652800e+04 -1.2266795e+00 + 1.2653200e+04 -1.1266795e+00 + 1.2653600e+04 -9.8667949e-01 + 1.2654000e+04 -4.4667949e-01 + 1.2654400e+04 -3.2667949e-01 + 1.2654800e+04 -3.2667949e-01 + 1.2655200e+04 -3.5667949e-01 + 1.2655600e+04 -4.1667949e-01 + 1.2656000e+04 -2.7667949e-01 + 1.2656400e+04 -3.6667949e-01 + 1.2656800e+04 -9.4667949e-01 + 1.2657200e+04 -6.9667949e-01 + 1.2657600e+04 -4.6667949e-01 + 1.2658000e+04 -4.1667949e-01 + 1.2658400e+04 -4.0667949e-01 + 1.2658800e+04 -3.1667949e-01 + 1.2659200e+04 2.6233205e+00 + 1.2659600e+04 2.1033205e+00 + 1.2660000e+04 1.2433205e+00 + 1.2660400e+04 6.0332051e-01 + 1.2660800e+04 3.3320513e-02 + 1.2661200e+04 -4.0667949e-01 + 1.2661600e+04 -7.1667949e-01 + 1.2662000e+04 -9.6667949e-01 + 1.2662400e+04 -1.2966795e+00 + 1.2662800e+04 -1.4266795e+00 + 1.2663200e+04 -1.4966795e+00 + 1.2663600e+04 -1.8866795e+00 + 1.2664000e+04 -2.2666795e+00 + 1.2664400e+04 -2.1266795e+00 + 1.2664800e+04 -1.7166795e+00 + 1.2665200e+04 -1.3166795e+00 + 1.2665600e+04 -5.7667949e-01 + 1.2666000e+04 6.1332051e-01 + 1.2666400e+04 1.4333205e+00 + 1.2666800e+04 2.8633205e+00 + 1.2667200e+04 2.6633205e+00 + 1.2667600e+04 2.2533205e+00 + 1.2668000e+04 2.0833205e+00 + 1.2668400e+04 1.8033205e+00 + 1.2668800e+04 1.6033205e+00 + 1.2669200e+04 1.3333205e+00 + 1.2669600e+04 1.3233205e+00 + 1.2670000e+04 1.3633205e+00 + 1.2670400e+04 1.4833205e+00 + 1.2670800e+04 1.4033205e+00 + 1.2671200e+04 1.3533205e+00 + 1.2671600e+04 1.3033205e+00 + 1.2672000e+04 1.3533205e+00 + 1.2672400e+04 1.1833205e+00 + 1.2672800e+04 8.4332051e-01 + 1.2673200e+04 3.3205128e-03 + 1.2673600e+04 -7.4667949e-01 + 1.2674000e+04 -1.1766795e+00 + 1.2674400e+04 -1.5766795e+00 + 1.2674800e+04 -1.6966795e+00 + 1.2675200e+04 -1.8166795e+00 + 1.2675600e+04 -1.5966795e+00 + 1.2676000e+04 -1.3966795e+00 + 1.2676400e+04 -1.3166795e+00 + 1.2676800e+04 -1.2366795e+00 + 1.2677200e+04 -1.4566795e+00 + 1.2677600e+04 -1.4966795e+00 + 1.2678000e+04 -1.3566795e+00 + 1.2678400e+04 -8.3667949e-01 + 1.2678800e+04 -2.9667949e-01 + 1.2679200e+04 1.9332051e-01 + 1.2679600e+04 8.8332051e-01 + 1.2680000e+04 1.9633205e+00 + 1.2680400e+04 2.3233205e+00 + 1.2680800e+04 4.1933205e+00 + 1.2681200e+04 4.0133205e+00 + 1.2681600e+04 3.1533205e+00 + 1.2682000e+04 2.1433205e+00 + 1.2682400e+04 1.3533205e+00 + 1.2682800e+04 8.8332051e-01 + 1.2683200e+04 3.7332051e-01 + 1.2683600e+04 -8.2667949e-01 + 1.2684000e+04 -1.8466795e+00 + 1.2684400e+04 -2.7966795e+00 + 1.2684800e+04 -3.3066795e+00 + 1.2685200e+04 -3.5066795e+00 + 1.2685600e+04 -3.1966795e+00 + 1.2686000e+04 -2.5066795e+00 + 1.2686400e+04 -1.3366795e+00 + 1.2686800e+04 -2.0667949e-01 + 1.2687200e+04 4.0332051e-01 + 1.2687600e+04 6.0332051e-01 + 1.2688000e+04 7.5332051e-01 + 1.2688400e+04 9.3332051e-01 + 1.2688800e+04 9.6332051e-01 + 1.2689200e+04 1.1133205e+00 + 1.2689600e+04 1.6133205e+00 + 1.2690000e+04 2.2933205e+00 + 1.2690400e+04 3.1133205e+00 + 1.2690800e+04 3.7633205e+00 + 1.2691200e+04 4.0833205e+00 + 1.2691600e+04 4.3033205e+00 + 1.2692000e+04 4.0933205e+00 + 1.2692400e+04 3.4333205e+00 + 1.2692800e+04 3.1833205e+00 + 1.2693200e+04 2.9833205e+00 + 1.2693600e+04 2.5033205e+00 + 1.2694000e+04 1.5433205e+00 + 1.2694400e+04 2.1332051e-01 + 1.2694800e+04 -1.3266795e+00 + 1.2695200e+04 -2.6666795e+00 + 1.2695600e+04 -3.5566795e+00 + 1.2696000e+04 -4.0666795e+00 + 1.2696400e+04 -4.1266795e+00 + 1.2696800e+04 -4.0566795e+00 + 1.2697200e+04 -3.9666795e+00 + 1.2697600e+04 -3.8966795e+00 + 1.2698000e+04 -3.5566795e+00 + 1.2698400e+04 -2.8266795e+00 + 1.2698800e+04 -1.7166795e+00 + 1.2699200e+04 -5.5667949e-01 + 1.2699600e+04 4.0332051e-01 + 1.2700000e+04 9.9332051e-01 + 1.2700400e+04 1.7733205e+00 + 1.2700800e+04 3.0533205e+00 + 1.2701200e+04 3.9233205e+00 + 1.2701600e+04 4.3033205e+00 + 1.2702000e+04 4.2133205e+00 + 1.2702400e+04 3.5933205e+00 + 1.2702800e+04 2.7833205e+00 + 1.2703200e+04 2.3033205e+00 + 1.2703600e+04 1.5733205e+00 + 1.2704000e+04 1.2433205e+00 + 1.2704400e+04 9.3332051e-01 + 1.2704800e+04 8.0332051e-01 + 1.2705200e+04 6.7332051e-01 + 1.2705600e+04 3.3332051e-01 + 1.2706000e+04 -4.6679487e-02 + 1.2706400e+04 -6.9667949e-01 + 1.2706800e+04 -1.6766795e+00 + 1.2707200e+04 -1.7666795e+00 + 1.2707600e+04 -1.7666795e+00 + 1.2708000e+04 -2.4066795e+00 + 1.2708400e+04 -3.3266795e+00 + 1.2708800e+04 -2.9666795e+00 + 1.2709200e+04 -2.2166795e+00 + 1.2709600e+04 -1.3366795e+00 + 1.2710000e+04 -4.6667949e-01 + 1.2710400e+04 -6.6679487e-02 + 1.2710800e+04 1.3332051e-01 + 1.2711200e+04 1.4332051e-01 + 1.2711600e+04 1.4332051e-01 + 1.2712000e+04 1.4332051e-01 + 1.2712400e+04 1.3733205e+00 + 1.2712800e+04 3.4533205e+00 + 1.2713200e+04 2.7033205e+00 + 1.2713600e+04 2.1533205e+00 + 1.2714000e+04 1.7533205e+00 + 1.2714400e+04 1.2533205e+00 + 1.2714800e+04 8.3332051e-01 + 1.2715200e+04 8.0332051e-01 + 1.2715600e+04 -9.6679487e-02 + 1.2716000e+04 -1.0766795e+00 + 1.2716400e+04 -1.4666795e+00 + 1.2716800e+04 -2.1466795e+00 + 1.2717200e+04 -2.2766795e+00 + 1.2717600e+04 -2.1466795e+00 + 1.2718000e+04 -1.5466795e+00 + 1.2718400e+04 -1.4066795e+00 + 1.2718800e+04 -1.5566795e+00 + 1.2719200e+04 -1.4666795e+00 + 1.2719600e+04 -1.3666795e+00 + 1.2720000e+04 -1.2266795e+00 + 1.2720400e+04 -1.0566795e+00 + 1.2720800e+04 -6.4667949e-01 + 1.2721200e+04 -7.6679487e-02 + 1.2721600e+04 4.5332051e-01 + 1.2722000e+04 1.1533205e+00 + 1.2722400e+04 1.4733205e+00 + 1.2722800e+04 1.6333205e+00 + 1.2723200e+04 1.9833205e+00 + 1.2723600e+04 2.1733205e+00 + 1.2724000e+04 2.2633205e+00 + 1.2724400e+04 1.9633205e+00 + 1.2724800e+04 1.5333205e+00 + 1.2725200e+04 8.0332051e-01 + 1.2725600e+04 3.4332051e-01 + 1.2726000e+04 2.3320513e-02 + 1.2726400e+04 -6.6679487e-02 + 1.2726800e+04 -2.1667949e-01 + 1.2727200e+04 -3.2667949e-01 + 1.2727600e+04 -2.9667949e-01 + 1.2728000e+04 -8.6679487e-02 + 1.2728400e+04 2.3320513e-02 + 1.2728800e+04 2.3320513e-02 + 1.2729200e+04 -1.5667949e-01 + 1.2729600e+04 2.3320513e-02 + 1.2730000e+04 3.6332051e-01 + 1.2730400e+04 2.1332051e-01 + 1.2730800e+04 1.6332051e-01 + 1.2731200e+04 2.8332051e-01 + 1.2731600e+04 5.5332051e-01 + 1.2732000e+04 5.9332051e-01 + 1.2732400e+04 5.3320513e-02 + 1.2732800e+04 -3.8667949e-01 + 1.2733200e+04 -9.7667949e-01 + 1.2733600e+04 -2.1266795e+00 + 1.2734000e+04 -2.3666795e+00 + 1.2734400e+04 -1.9766795e+00 + 1.2734800e+04 -1.2466795e+00 + 1.2735200e+04 -5.2667949e-01 + 1.2735600e+04 8.8332051e-01 + 1.2736000e+04 1.2533205e+00 + 1.2736400e+04 1.3733205e+00 + 1.2736800e+04 1.9133205e+00 + 1.2737200e+04 2.5133205e+00 + 1.2737600e+04 2.9433205e+00 + 1.2738000e+04 3.2833205e+00 + 1.2738400e+04 2.9933205e+00 + 1.2738800e+04 2.8033205e+00 + 1.2739200e+04 1.9433205e+00 + 1.2739600e+04 1.2133205e+00 + 1.2740000e+04 1.1733205e+00 + 1.2740400e+04 -8.2667949e-01 + 1.2740800e+04 -1.7266795e+00 + 1.2741200e+04 -1.9866795e+00 + 1.2741600e+04 -1.8466795e+00 + 1.2742000e+04 -1.6766795e+00 + 1.2742400e+04 -1.6166795e+00 + 1.2742800e+04 -1.7566795e+00 + 1.2743200e+04 -1.8766795e+00 + 1.2743600e+04 -1.7766795e+00 + 1.2744000e+04 -1.4066795e+00 + 1.2744400e+04 -9.0667949e-01 + 1.2744800e+04 -9.6679487e-02 + 1.2745200e+04 4.9332051e-01 + 1.2745600e+04 9.2332051e-01 + 1.2746000e+04 1.2433205e+00 + 1.2746400e+04 1.5233205e+00 + 1.2746800e+04 2.0533205e+00 + 1.2747200e+04 2.4833205e+00 + 1.2747600e+04 3.0033205e+00 + 1.2748000e+04 3.4933205e+00 + 1.2748400e+04 3.6433205e+00 + 1.2748800e+04 3.2233205e+00 + 1.2749200e+04 2.3533205e+00 + 1.2749600e+04 2.1133205e+00 + 1.2750000e+04 2.0033205e+00 + 1.2750400e+04 3.9332051e-01 + 1.2750800e+04 -4.6667949e-01 + 1.2751200e+04 -9.1667949e-01 + 1.2751600e+04 -1.1066795e+00 + 1.2752000e+04 -1.6566795e+00 + 1.2752400e+04 -2.1066795e+00 + 1.2752800e+04 -2.1366795e+00 + 1.2753200e+04 -2.1366795e+00 + 1.2753600e+04 -2.1566795e+00 + 1.2754000e+04 -3.0666795e+00 + 1.2754400e+04 -3.0666795e+00 + 1.2754800e+04 -2.3766795e+00 + 1.2755200e+04 -1.5966795e+00 + 1.2755600e+04 -7.4667949e-01 + 1.2756000e+04 -1.6679487e-02 + 1.2756400e+04 1.1733205e+00 + 1.2756800e+04 4.3533205e+00 + 1.2757200e+04 4.2033205e+00 + 1.2757600e+04 3.8833205e+00 + 1.2758000e+04 3.5133205e+00 + 1.2758400e+04 2.9433205e+00 + 1.2758800e+04 2.2533205e+00 + 1.2759200e+04 1.1033205e+00 + 1.2759600e+04 -1.2667949e-01 + 1.2760000e+04 -6.0667949e-01 + 1.2760400e+04 -1.0066795e+00 + 1.2760800e+04 -1.3166795e+00 + 1.2761200e+04 -1.8966795e+00 + 1.2761600e+04 -2.4666795e+00 + 1.2762000e+04 -2.6966795e+00 + 1.2762400e+04 -2.2466795e+00 + 1.2762800e+04 -1.5666795e+00 + 1.2763200e+04 -1.2666795e+00 + 1.2763600e+04 -1.2266795e+00 + 1.2764000e+04 6.1332051e-01 + 1.2764400e+04 9.5332051e-01 + 1.2764800e+04 9.8332051e-01 + 1.2765200e+04 1.4233205e+00 + 1.2765600e+04 1.3733205e+00 + 1.2766000e+04 1.1833205e+00 + 1.2766400e+04 1.1933205e+00 + 1.2766800e+04 1.5133205e+00 + 1.2767200e+04 1.9033205e+00 + 1.2767600e+04 2.4933205e+00 + 1.2768000e+04 3.2833205e+00 + 1.2768400e+04 3.1533205e+00 + 1.2768800e+04 2.3233205e+00 + 1.2769200e+04 1.0833205e+00 + 1.2769600e+04 3.0332051e-01 + 1.2770000e+04 -7.0667949e-01 + 1.2770400e+04 -9.8667949e-01 + 1.2770800e+04 -1.2566795e+00 + 1.2771200e+04 -1.7666795e+00 + 1.2771600e+04 -1.8166795e+00 + 1.2772000e+04 -1.8266795e+00 + 1.2772400e+04 -1.7966795e+00 + 1.2772800e+04 -1.7966795e+00 + 1.2773200e+04 -1.7466795e+00 + 1.2773600e+04 -1.3366795e+00 + 1.2774000e+04 -1.0066795e+00 + 1.2774400e+04 -8.3667949e-01 + 1.2774800e+04 -5.3667949e-01 + 1.2775200e+04 -2.5667949e-01 + 1.2775600e+04 9.3320513e-02 + 1.2776000e+04 4.4332051e-01 + 1.2776400e+04 9.1332051e-01 + 1.2776800e+04 1.2033205e+00 + 1.2777200e+04 1.3833205e+00 + 1.2777600e+04 1.0833205e+00 + 1.2778000e+04 1.2333205e+00 + 1.2778400e+04 1.6433205e+00 + 1.2778800e+04 1.9633205e+00 + 1.2779200e+04 2.5233205e+00 + 1.2779600e+04 2.7833205e+00 + 1.2780000e+04 2.6733205e+00 + 1.2780400e+04 1.9433205e+00 + 1.2780800e+04 1.0533205e+00 + 1.2781200e+04 5.3320513e-02 + 1.2781600e+04 -1.1466795e+00 + 1.2782000e+04 -1.6366795e+00 + 1.2782400e+04 -2.9066795e+00 + 1.2782800e+04 -3.0466795e+00 + 1.2783200e+04 -2.8566795e+00 + 1.2783600e+04 -2.4466795e+00 + 1.2784000e+04 -2.2166795e+00 + 1.2784400e+04 -2.2066795e+00 + 1.2784800e+04 -5.2667949e-01 + 1.2785200e+04 -1.0667949e-01 + 1.2785600e+04 -9.6679487e-02 + 1.2786000e+04 -9.6679487e-02 + 1.2786400e+04 -8.6679487e-02 + 1.2786800e+04 3.5533205e+00 + 1.2787200e+04 3.4933205e+00 + 1.2787600e+04 2.8333205e+00 + 1.2788000e+04 2.2833205e+00 + 1.2788400e+04 1.4333205e+00 + 1.2788800e+04 7.3332051e-01 + 1.2789200e+04 1.4332051e-01 + 1.2789600e+04 -3.8667949e-01 + 1.2790000e+04 -6.9667949e-01 + 1.2790400e+04 -1.1566795e+00 + 1.2790800e+04 -1.9166795e+00 + 1.2791200e+04 -2.6566795e+00 + 1.2791600e+04 -3.0366795e+00 + 1.2792000e+04 -3.1366795e+00 + 1.2792400e+04 -2.6966795e+00 + 1.2792800e+04 -2.1966795e+00 + 1.2793200e+04 -1.9266795e+00 + 1.2793600e+04 -1.3766795e+00 + 1.2794000e+04 -5.7667949e-01 + 1.2794400e+04 -3.2667949e-01 + 1.2794800e+04 3.3205128e-03 + 1.2795200e+04 3.0332051e-01 + 1.2795600e+04 -2.6679487e-02 + 1.2796000e+04 -2.7667949e-01 + 1.2796400e+04 -4.5667949e-01 + 1.2796800e+04 -3.3667949e-01 + 1.2797200e+04 -5.6679487e-02 + 1.2797600e+04 2.8332051e-01 + 1.2798000e+04 6.0332051e-01 + 1.2798400e+04 7.2332051e-01 + 1.2798800e+04 7.6332051e-01 + 1.2799200e+04 6.9332051e-01 + 1.2799600e+04 7.9332051e-01 + 1.2800000e+04 1.0133205e+00 + 1.2800400e+04 1.2133205e+00 + 1.2800800e+04 1.7733205e+00 + 1.2801200e+04 2.6233205e+00 + 1.2801600e+04 2.8733205e+00 + 1.2802000e+04 3.8433205e+00 + 1.2802400e+04 3.6733205e+00 + 1.2802800e+04 3.2933205e+00 + 1.2803200e+04 2.0733205e+00 + 1.2803600e+04 1.2333205e+00 + 1.2804000e+04 5.8332051e-01 + 1.2804400e+04 5.3320513e-02 + 1.2804800e+04 -5.4667949e-01 + 1.2805200e+04 -1.0866795e+00 + 1.2805600e+04 -1.2766795e+00 + 1.2806000e+04 -1.0166795e+00 + 1.2806400e+04 -1.0466795e+00 + 1.2806800e+04 -1.3166795e+00 + 1.2807200e+04 -1.8466795e+00 + 1.2807600e+04 -2.8966795e+00 + 1.2808000e+04 -2.9466795e+00 + 1.2808400e+04 -2.6966795e+00 + 1.2808800e+04 -2.0866795e+00 + 1.2809200e+04 -1.1766795e+00 + 1.2809600e+04 -1.0566795e+00 + 1.2810000e+04 1.9533205e+00 + 1.2810400e+04 2.5233205e+00 + 1.2810800e+04 2.7533205e+00 + 1.2811200e+04 2.7533205e+00 + 1.2811600e+04 1.9833205e+00 + 1.2812000e+04 9.4332051e-01 + 1.2812400e+04 1.0332051e-01 + 1.2812800e+04 -2.2667949e-01 + 1.2813200e+04 -2.8667949e-01 + 1.2813600e+04 -1.0366795e+00 + 1.2814000e+04 -3.0667949e-01 + 1.2814400e+04 2.9332051e-01 + 1.2814800e+04 1.8833205e+00 + 1.2815200e+04 1.9533205e+00 + 1.2815600e+04 1.2133205e+00 + 1.2816000e+04 1.1332051e-01 + 1.2816400e+04 -1.9667949e-01 + 1.2816800e+04 -1.9667949e-01 + 1.2817200e+04 -1.0466795e+00 + 1.2817600e+04 -2.2466795e+00 + 1.2818000e+04 -2.1666795e+00 + 1.2818400e+04 -1.6966795e+00 + 1.2818800e+04 -1.1666795e+00 + 1.2819200e+04 -3.0667949e-01 + 1.2819600e+04 5.7332051e-01 + 1.2820000e+04 1.6133205e+00 + 1.2820400e+04 2.1733205e+00 + 1.2820800e+04 2.6333205e+00 + 1.2821200e+04 2.9833205e+00 + 1.2821600e+04 3.2133205e+00 + 1.2822000e+04 3.5433205e+00 + 1.2822400e+04 4.0333205e+00 + 1.2822800e+04 4.4433205e+00 + 1.2823200e+04 4.3733205e+00 + 1.2823600e+04 3.8733205e+00 + 1.2824000e+04 3.1933205e+00 + 1.2824400e+04 2.5133205e+00 + 1.2824800e+04 1.8033205e+00 + 1.2825200e+04 1.1633205e+00 + 1.2825600e+04 4.9332051e-01 + 1.2826000e+04 -2.6679487e-02 + 1.2826400e+04 -1.9667949e-01 + 1.2826800e+04 -2.2667949e-01 + 1.2827200e+04 -2.4667949e-01 + 1.2827600e+04 -4.0466795e+00 + 1.2828000e+04 -4.6766795e+00 + 1.2828400e+04 -4.8666795e+00 + 1.2828800e+04 -4.5566795e+00 + 1.2829200e+04 -3.7766795e+00 + 1.2829600e+04 -2.8566795e+00 + 1.2830000e+04 -1.7266795e+00 + 1.2830400e+04 -8.3667949e-01 + 1.2830800e+04 -8.8667949e-01 + 1.2831200e+04 -5.8667949e-01 + 1.2831600e+04 -1.0667949e-01 + 1.2832000e+04 8.7332051e-01 + 1.2832400e+04 2.0033205e+00 + 1.2832800e+04 2.5133205e+00 + 1.2833200e+04 3.1833205e+00 + 1.2833600e+04 3.6833205e+00 + 1.2834000e+04 4.0833205e+00 + 1.2834400e+04 3.7933205e+00 + 1.2834800e+04 3.1633205e+00 + 1.2835200e+04 2.4633205e+00 + 1.2835600e+04 1.4033205e+00 + 1.2836000e+04 7.4332051e-01 + 1.2836400e+04 3.3332051e-01 + 1.2836800e+04 5.3320513e-02 + 1.2837200e+04 -3.3667949e-01 + 1.2837600e+04 -2.5667949e-01 + 1.2838000e+04 -1.3667949e-01 + 1.2838400e+04 5.3320513e-02 + 1.2838800e+04 3.2332051e-01 + 1.2839200e+04 5.9332051e-01 + 1.2839600e+04 2.3320513e-02 + 1.2840000e+04 -4.9667949e-01 + 1.2840400e+04 -1.2266795e+00 + 1.2840800e+04 -1.7866795e+00 + 1.2841200e+04 -1.8566795e+00 + 1.2841600e+04 -1.6966795e+00 + 1.2842000e+04 -1.4266795e+00 + 1.2842400e+04 -1.0366795e+00 + 1.2842800e+04 -5.5667949e-01 + 1.2843200e+04 -3.2667949e-01 + 1.2843600e+04 -3.1667949e-01 + 1.2844000e+04 1.2633205e+00 + 1.2844400e+04 2.8833205e+00 + 1.2844800e+04 3.6633205e+00 + 1.2845200e+04 4.2733205e+00 + 1.2845600e+04 3.8633205e+00 + 1.2846000e+04 3.2833205e+00 + 1.2846400e+04 3.0333205e+00 + 1.2846800e+04 1.8333205e+00 + 1.2847200e+04 1.5933205e+00 + 1.2847600e+04 1.5833205e+00 + 1.2848000e+04 1.5833205e+00 + 1.2848400e+04 1.5833205e+00 + 1.2848800e+04 1.5833205e+00 + 1.2849200e+04 1.2333205e+00 + 1.2849600e+04 -3.4866795e+00 + 1.2850000e+04 -4.2366795e+00 + 1.2850400e+04 -3.7666795e+00 + 1.2850800e+04 -3.6366795e+00 + 1.2851200e+04 -3.6366795e+00 + 1.2851600e+04 -3.6266795e+00 + 1.2852000e+04 -3.6266795e+00 + 1.2852400e+04 -3.6266795e+00 + 1.2852800e+04 -3.6166795e+00 + 1.2853200e+04 -3.6166795e+00 + 1.2853600e+04 -2.7166795e+00 + 1.2854000e+04 2.6333205e+00 + 1.2854400e+04 3.4833205e+00 + 1.2854800e+04 3.8733205e+00 + 1.2855200e+04 3.8633205e+00 + 1.2855600e+04 3.6233205e+00 + 1.2856000e+04 3.5233205e+00 + 1.2856400e+04 3.2233205e+00 + 1.2856800e+04 2.7033205e+00 + 1.2857200e+04 2.0333205e+00 + 1.2857600e+04 1.3233205e+00 + 1.2858000e+04 8.3332051e-01 + 1.2858400e+04 6.7332051e-01 + 1.2858800e+04 1.4332051e-01 + 1.2859200e+04 -5.3667949e-01 + 1.2859600e+04 -1.0666795e+00 + 1.2860000e+04 -1.5966795e+00 + 1.2860400e+04 -1.7466795e+00 + 1.2860800e+04 -1.7566795e+00 + 1.2861200e+04 -1.7566795e+00 + 1.2861600e+04 -1.7466795e+00 + 1.2862000e+04 -1.7466795e+00 + 1.2862400e+04 -2.0266795e+00 + 1.2862800e+04 -2.5266795e+00 + 1.2863200e+04 -2.4466795e+00 + 1.2863600e+04 -2.0466795e+00 + 1.2864000e+04 -9.4667949e-01 + 1.2864400e+04 1.3320513e-02 + 1.2864800e+04 1.0233205e+00 + 1.2865200e+04 1.9633205e+00 + 1.2865600e+04 3.0533205e+00 + 1.2866000e+04 3.4133205e+00 + 1.2866400e+04 4.3033205e+00 + 1.2866800e+04 3.9233205e+00 + 1.2867200e+04 3.5233205e+00 + 1.2867600e+04 2.9733205e+00 + 1.2868000e+04 2.4833205e+00 + 1.2868400e+04 2.4233205e+00 + 1.2868800e+04 2.4233205e+00 + 1.2869200e+04 2.4233205e+00 + 1.2869600e+04 1.2233205e+00 + 1.2870000e+04 -1.2566795e+00 + 1.2870400e+04 -1.1566795e+00 + 1.2870800e+04 -9.6667949e-01 + 1.2871200e+04 -8.6667949e-01 + 1.2871600e+04 -9.4667949e-01 + 1.2872000e+04 -9.0667949e-01 + 1.2872400e+04 -8.3667949e-01 + 1.2872800e+04 -7.0667949e-01 + 1.2873200e+04 -3.3667949e-01 + 1.2873600e+04 -6.6794872e-03 + 1.2874000e+04 9.6332051e-01 + 1.2874400e+04 8.7332051e-01 + 1.2874800e+04 7.6332051e-01 + 1.2875200e+04 8.7332051e-01 + 1.2875600e+04 1.1833205e+00 + 1.2876000e+04 1.4633205e+00 + 1.2876400e+04 1.7333205e+00 + 1.2876800e+04 1.7333205e+00 + 1.2877200e+04 1.6833205e+00 + 1.2877600e+04 1.4233205e+00 + 1.2878000e+04 1.0533205e+00 + 1.2878400e+04 7.0332051e-01 + 1.2878800e+04 9.3320513e-02 + 1.2879200e+04 -7.3667949e-01 + 1.2879600e+04 -7.6667949e-01 + 1.2880000e+04 -1.4966795e+00 + 1.2880400e+04 -1.7166795e+00 + 1.2880800e+04 -1.8766795e+00 + 1.2881200e+04 -1.9066795e+00 + 1.2881600e+04 -1.9566795e+00 + 1.2882000e+04 -1.5866795e+00 + 1.2882400e+04 -1.1066795e+00 + 1.2882800e+04 -1.0766795e+00 + 1.2883200e+04 5.3320513e-02 + 1.2883600e+04 6.1332051e-01 + 1.2884000e+04 9.6332051e-01 + 1.2884400e+04 1.3533205e+00 + 1.2884800e+04 2.0433205e+00 + 1.2885200e+04 2.5033205e+00 + 1.2885600e+04 3.0133205e+00 + 1.2886000e+04 3.3033205e+00 + 1.2886400e+04 3.0333205e+00 + 1.2886800e+04 2.7433205e+00 + 1.2887200e+04 2.7233205e+00 + 1.2887600e+04 2.0933205e+00 + 1.2888000e+04 1.9833205e+00 + 1.2888400e+04 1.9733205e+00 + 1.2888800e+04 8.3332051e-01 + 1.2889200e+04 4.9332051e-01 + 1.2889600e+04 -2.3667949e-01 + 1.2890000e+04 -7.7667949e-01 + 1.2890400e+04 -8.7667949e-01 + 1.2890800e+04 -9.4667949e-01 + 1.2891200e+04 -1.0266795e+00 + 1.2891600e+04 -1.7966795e+00 + 1.2892000e+04 -2.1966795e+00 + 1.2892400e+04 -2.1166795e+00 + 1.2892800e+04 -1.6966795e+00 + 1.2893200e+04 -1.2466795e+00 + 1.2893600e+04 -1.1266795e+00 + 1.2894000e+04 -3.7667949e-01 + 1.2894400e+04 6.9332051e-01 + 1.2894800e+04 1.4633205e+00 + 1.2895200e+04 1.7833205e+00 + 1.2895600e+04 1.7933205e+00 + 1.2896000e+04 3.0233205e+00 + 1.2896400e+04 3.5233205e+00 + 1.2896800e+04 3.0833205e+00 + 1.2897200e+04 1.4633205e+00 + 1.2897600e+04 -1.7667949e-01 + 1.2898000e+04 -1.2966795e+00 + 1.2898400e+04 -2.1166795e+00 + 1.2898800e+04 -2.7166795e+00 + 1.2899200e+04 -2.8466795e+00 + 1.2899600e+04 -2.6966795e+00 + 1.2900000e+04 -2.4466795e+00 + 1.2900400e+04 -2.0966795e+00 + 1.2900800e+04 -1.6266795e+00 + 1.2901200e+04 -1.2666795e+00 + 1.2901600e+04 -8.9667949e-01 + 1.2902000e+04 -6.0667949e-01 + 1.2902400e+04 -1.9667949e-01 + 1.2902800e+04 3.0332051e-01 + 1.2903200e+04 8.9332051e-01 + 1.2903600e+04 1.4633205e+00 + 1.2904000e+04 2.2033205e+00 + 1.2904400e+04 2.9733205e+00 + 1.2904800e+04 4.0033205e+00 + 1.2905200e+04 4.6433205e+00 + 1.2905600e+04 5.1533205e+00 + 1.2906000e+04 4.8833205e+00 + 1.2906400e+04 4.4133205e+00 + 1.2906800e+04 3.2833205e+00 + 1.2907200e+04 2.5933205e+00 + 1.2907600e+04 1.6933205e+00 + 1.2908000e+04 6.6332051e-01 + 1.2908400e+04 -4.6679487e-02 + 1.2908800e+04 -3.2667949e-01 + 1.2909200e+04 -7.4667949e-01 + 1.2909600e+04 -1.3766795e+00 + 1.2910000e+04 -1.9966795e+00 + 1.2910400e+04 -2.4966795e+00 + 1.2910800e+04 -2.8966795e+00 + 1.2911200e+04 -2.7566795e+00 + 1.2911600e+04 -2.2566795e+00 + 1.2912000e+04 -1.8566795e+00 + 1.2912400e+04 -1.0666795e+00 + 1.2912800e+04 -7.8667949e-01 + 1.2913200e+04 -4.7667949e-01 + 1.2913600e+04 -3.4667949e-01 + 1.2914000e+04 -9.6679487e-02 + 1.2914400e+04 2.4332051e-01 + 1.2914800e+04 3.0332051e-01 + 1.2915200e+04 5.4332051e-01 + 1.2915600e+04 6.9332051e-01 + 1.2916000e+04 9.6332051e-01 + 1.2916400e+04 1.0433205e+00 + 1.2916800e+04 7.9332051e-01 + 1.2917200e+04 5.5332051e-01 + 1.2917600e+04 6.1332051e-01 + 1.2918000e+04 2.7332051e-01 + 1.2918400e+04 5.3320513e-02 + 1.2918800e+04 -6.6679487e-02 + 1.2919200e+04 -2.5667949e-01 + 1.2919600e+04 -3.1667949e-01 + 1.2920000e+04 3.3205128e-03 + 1.2920400e+04 1.8332051e-01 + 1.2920800e+04 4.3320513e-02 + 1.2921200e+04 1.3332051e-01 + 1.2921600e+04 2.3332051e-01 + 1.2922000e+04 6.2332051e-01 + 1.2922400e+04 9.2332051e-01 + 1.2922800e+04 8.8332051e-01 + 1.2923200e+04 6.4332051e-01 + 1.2923600e+04 5.0332051e-01 + 1.2924000e+04 4.6332051e-01 + 1.2924400e+04 4.7332051e-01 + 1.2924800e+04 4.5332051e-01 + 1.2925200e+04 3.2332051e-01 + 1.2925600e+04 3.3332051e-01 + 1.2926000e+04 5.1332051e-01 + 1.2926400e+04 7.3332051e-01 + 1.2926800e+04 8.7332051e-01 + 1.2927200e+04 1.2033205e+00 + 1.2927600e+04 1.5933205e+00 + 1.2928000e+04 2.0933205e+00 + 1.2928400e+04 2.0833205e+00 + 1.2928800e+04 1.8233205e+00 + 1.2929200e+04 1.4333205e+00 + 1.2929600e+04 1.1633205e+00 + 1.2930000e+04 9.3332051e-01 + 1.2930400e+04 5.7332051e-01 + 1.2930800e+04 1.1332051e-01 + 1.2931200e+04 -1.2667949e-01 + 1.2931600e+04 -9.6667949e-01 + 1.2932000e+04 -1.7466795e+00 + 1.2932400e+04 -1.7666795e+00 + 1.2932800e+04 -1.8766795e+00 + 1.2933200e+04 -1.9966795e+00 + 1.2933600e+04 -2.2166795e+00 + 1.2934000e+04 -1.9866795e+00 + 1.2934400e+04 -1.7766795e+00 + 1.2934800e+04 3.3205128e-03 + 1.2935200e+04 4.4332051e-01 + 1.2935600e+04 2.7332051e-01 + 1.2936000e+04 2.3320513e-02 + 1.2936400e+04 -2.4667949e-01 + 1.2936800e+04 -2.4667949e-01 + 1.2937200e+04 1.5332051e-01 + 1.2937600e+04 3.7332051e-01 + 1.2938000e+04 6.5332051e-01 + 1.2938400e+04 9.7332051e-01 + 1.2938800e+04 6.7332051e-01 + 1.2939200e+04 4.3332051e-01 + 1.2939600e+04 2.6332051e-01 + 1.2940000e+04 1.6332051e-01 + 1.2940400e+04 1.6332051e-01 + 1.2940800e+04 1.3320513e-02 + 1.2941200e+04 -6.6794872e-03 + 1.2941600e+04 8.3320513e-02 + 1.2942000e+04 2.2332051e-01 + 1.2942400e+04 3.7332051e-01 + 1.2942800e+04 3.4332051e-01 + 1.2943200e+04 3.3320513e-02 + 1.2943600e+04 -6.6794872e-03 + 1.2944000e+04 2.2332051e-01 + 1.2944400e+04 5.2332051e-01 + 1.2944800e+04 7.1332051e-01 + 1.2945200e+04 1.0533205e+00 + 1.2945600e+04 1.6933205e+00 + 1.2946000e+04 2.2333205e+00 + 1.2946400e+04 2.1633205e+00 + 1.2946800e+04 2.0933205e+00 + 1.2947200e+04 2.1533205e+00 + 1.2947600e+04 1.9133205e+00 + 1.2948000e+04 1.7333205e+00 + 1.2948400e+04 2.0733205e+00 + 1.2948800e+04 2.7933205e+00 + 1.2949200e+04 3.3233205e+00 + 1.2949600e+04 2.9333205e+00 + 1.2950000e+04 2.8633205e+00 + 1.2950400e+04 2.8533205e+00 + 1.2950800e+04 2.8533205e+00 + 1.2951200e+04 2.8633205e+00 + 1.2951600e+04 2.8533205e+00 + 1.2952000e+04 2.8633205e+00 + 1.2952400e+04 2.8533205e+00 + 1.2952800e+04 -1.3266795e+00 + 1.2953200e+04 -4.3366795e+00 + 1.2953600e+04 -4.2166795e+00 + 1.2954000e+04 -3.6766795e+00 + 1.2954400e+04 -3.2466795e+00 + 1.2954800e+04 -3.1766795e+00 + 1.2955200e+04 -2.7666795e+00 + 1.2955600e+04 1.0133205e+00 + 1.2956000e+04 1.6233205e+00 + 1.2956400e+04 3.2833205e+00 + 1.2956800e+04 3.4333205e+00 + 1.2957200e+04 3.4933205e+00 + 1.2957600e+04 3.4933205e+00 + 1.2958000e+04 3.1533205e+00 + 1.2958400e+04 2.7533205e+00 + 1.2958800e+04 2.2733205e+00 + 1.2959200e+04 1.8433205e+00 + 1.2959600e+04 3.5332051e-01 + 1.2960000e+04 -4.4667949e-01 + 1.2960400e+04 -8.1667949e-01 + 1.2960800e+04 -9.0667949e-01 + 1.2961200e+04 -9.1667949e-01 + 1.2961600e+04 -7.5667949e-01 + 1.2962000e+04 -6.0667949e-01 + 1.2962400e+04 -5.7667949e-01 + 1.2962800e+04 -5.5667949e-01 + 1.2963200e+04 -3.9667949e-01 + 1.2963600e+04 -9.6679487e-02 + 1.2964000e+04 1.8332051e-01 + 1.2964400e+04 4.1332051e-01 + 1.2964800e+04 5.5332051e-01 + 1.2965200e+04 7.3332051e-01 + 1.2965600e+04 9.2332051e-01 + 1.2966000e+04 1.0533205e+00 + 1.2966400e+04 1.0033205e+00 + 1.2966800e+04 1.2333205e+00 + 1.2967200e+04 1.7433205e+00 + 1.2967600e+04 2.1433205e+00 + 1.2968000e+04 1.8033205e+00 + 1.2968400e+04 1.3333205e+00 + 1.2968800e+04 1.2333205e+00 + 1.2969200e+04 1.3933205e+00 + 1.2969600e+04 1.4633205e+00 + 1.2970000e+04 1.4133205e+00 + 1.2970400e+04 1.1433205e+00 + 1.2970800e+04 1.1433205e+00 + 1.2971200e+04 6.4332051e-01 + 1.2971600e+04 7.3320513e-02 + 1.2972000e+04 -1.3366795e+00 + 1.2972400e+04 -2.2666795e+00 + 1.2972800e+04 -2.8766795e+00 + 1.2973200e+04 -3.0666795e+00 + 1.2973600e+04 -3.1366795e+00 + 1.2974000e+04 -3.0466795e+00 + 1.2974400e+04 -2.6166795e+00 + 1.2974800e+04 -2.2966795e+00 + 1.2975200e+04 -1.9266795e+00 + 1.2975600e+04 -1.2266795e+00 + 1.2976000e+04 -1.9667949e-01 + 1.2976400e+04 3.5332051e-01 + 1.2976800e+04 6.0332051e-01 + 1.2977200e+04 9.8332051e-01 + 1.2977600e+04 1.3733205e+00 + 1.2978000e+04 1.6233205e+00 + 1.2978400e+04 1.7733205e+00 + 1.2978800e+04 1.9733205e+00 + 1.2979200e+04 1.8633205e+00 + 1.2979600e+04 1.7933205e+00 + 1.2980000e+04 2.0133205e+00 + 1.2980400e+04 1.9433205e+00 + 1.2980800e+04 1.8733205e+00 + 1.2981200e+04 1.8033205e+00 + 1.2981600e+04 1.5733205e+00 + 1.2982000e+04 1.3433205e+00 + 1.2982400e+04 1.2333205e+00 + 1.2982800e+04 1.0233205e+00 + 1.2983200e+04 9.5332051e-01 + 1.2983600e+04 7.9332051e-01 + 1.2984000e+04 1.0533205e+00 + 1.2984400e+04 9.8332051e-01 + 1.2984800e+04 6.1332051e-01 + 1.2985200e+04 4.1332051e-01 + 1.2985600e+04 -1.4667949e-01 + 1.2986000e+04 -7.3667949e-01 + 1.2986400e+04 -1.3366795e+00 + 1.2986800e+04 -1.5566795e+00 + 1.2987200e+04 -1.2566795e+00 + 1.2987600e+04 -9.4667949e-01 + 1.2988000e+04 -5.0667949e-01 + 1.2988400e+04 -7.6679487e-02 + 1.2988800e+04 8.3320513e-02 + 1.2989200e+04 1.1332051e-01 + 1.2989600e+04 -6.6679487e-02 + 1.2990000e+04 -2.1667949e-01 + 1.2990400e+04 -3.4667949e-01 + 1.2990800e+04 -4.1667949e-01 + 1.2991200e+04 -5.1667949e-01 + 1.2991600e+04 -5.2667949e-01 + 1.2992000e+04 -3.7667949e-01 + 1.2992400e+04 -1.5667949e-01 + 1.2992800e+04 -8.6679487e-02 + 1.2993200e+04 2.8332051e-01 + 1.2993600e+04 4.2332051e-01 + 1.2994000e+04 5.1332051e-01 + 1.2994400e+04 8.7332051e-01 + 1.2994800e+04 1.3633205e+00 + 1.2995200e+04 1.3033205e+00 + 1.2995600e+04 1.2433205e+00 + 1.2996000e+04 5.0332051e-01 + 1.2996400e+04 -1.1667949e-01 + 1.2996800e+04 -4.2667949e-01 + 1.2997200e+04 -7.3667949e-01 + 1.2997600e+04 -1.0066795e+00 + 1.2998000e+04 -1.0966795e+00 + 1.2998400e+04 -1.2166795e+00 + 1.2998800e+04 -1.1566795e+00 + 1.2999200e+04 -1.1466795e+00 + 1.2999600e+04 -6.7667949e-01 + 1.3000000e+04 4.3320513e-02 + 1.3000400e+04 9.8332051e-01 + 1.3000800e+04 1.5733205e+00 + 1.3001200e+04 1.9833205e+00 + 1.3001600e+04 2.6333205e+00 + 1.3002000e+04 3.1733205e+00 + 1.3002400e+04 3.7833205e+00 + 1.3002800e+04 3.5533205e+00 + 1.3003200e+04 3.3233205e+00 + 1.3003600e+04 3.3033205e+00 + 1.3004000e+04 1.9733205e+00 + 1.3004400e+04 6.2332051e-01 + 1.3004800e+04 -6.5667949e-01 + 1.3005200e+04 -1.3566795e+00 + 1.3005600e+04 -1.4166795e+00 + 1.3006000e+04 -1.3266795e+00 + 1.3006400e+04 -1.0666795e+00 + 1.3006800e+04 -1.0566795e+00 + 1.3007200e+04 -1.0166795e+00 + 1.3007600e+04 -9.4667949e-01 + 1.3008000e+04 -7.3667949e-01 + 1.3008400e+04 -4.9667949e-01 + 1.3008800e+04 -1.7667949e-01 + 1.3009200e+04 -1.6679487e-02 + 1.3009600e+04 -8.6679487e-02 + 1.3010000e+04 -1.0667949e-01 + 1.3010400e+04 -8.6679487e-02 + 1.3010800e+04 -2.1667949e-01 + 1.3011200e+04 -6.6679487e-02 + 1.3011600e+04 -4.6667949e-01 + 1.3012000e+04 -7.4667949e-01 + 1.3012400e+04 -9.4667949e-01 + 1.3012800e+04 -7.4667949e-01 + 1.3013200e+04 -5.9667949e-01 + 1.3013600e+04 -4.9667949e-01 + 1.3014000e+04 -1.4667949e-01 + 1.3014400e+04 -4.6679487e-02 + 1.3014800e+04 2.1332051e-01 + 1.3015200e+04 2.6332051e-01 + 1.3015600e+04 2.2332051e-01 + 1.3016000e+04 3.6332051e-01 + 1.3016400e+04 6.9332051e-01 + 1.3016800e+04 1.4433205e+00 + 1.3017200e+04 2.0433205e+00 + 1.3017600e+04 2.3233205e+00 + 1.3018000e+04 2.4233205e+00 + 1.3018400e+04 2.5833205e+00 + 1.3018800e+04 2.4333205e+00 + 1.3019200e+04 1.8233205e+00 + 1.3019600e+04 1.3633205e+00 + 1.3020000e+04 6.1332051e-01 + 1.3020400e+04 1.5332051e-01 + 1.3020800e+04 -2.2667949e-01 + 1.3021200e+04 -1.1266795e+00 + 1.3021600e+04 -1.2766795e+00 + 1.3022000e+04 -1.3466795e+00 + 1.3022400e+04 -1.3166795e+00 + 1.3022800e+04 -8.6667949e-01 + 1.3023200e+04 -3.4667949e-01 + 1.3023600e+04 2.5332051e-01 + 1.3024000e+04 1.3233205e+00 + 1.3024400e+04 1.2433205e+00 + 1.3024800e+04 1.3033205e+00 + 1.3025200e+04 1.5733205e+00 + 1.3025600e+04 1.8033205e+00 + 1.3026000e+04 1.5933205e+00 + 1.3026400e+04 1.1733205e+00 + 1.3026800e+04 6.4332051e-01 + 1.3027200e+04 3.2332051e-01 + 1.3027600e+04 2.0332051e-01 + 1.3028000e+04 1.6332051e-01 + 1.3028400e+04 2.7332051e-01 + 1.3028800e+04 3.6332051e-01 + 1.3029200e+04 1.3332051e-01 + 1.3029600e+04 -4.5667949e-01 + 1.3030000e+04 -1.0266795e+00 + 1.3030400e+04 -1.4666795e+00 + 1.3030800e+04 -1.7266795e+00 + 1.3031200e+04 -1.4266795e+00 + 1.3031600e+04 -1.0266795e+00 + 1.3032000e+04 -5.2667949e-01 + 1.3032400e+04 1.6332051e-01 + 1.3032800e+04 6.4332051e-01 + 1.3033200e+04 7.9332051e-01 + 1.3033600e+04 6.9332051e-01 + 1.3034000e+04 9.0332051e-01 + 1.3034400e+04 1.0333205e+00 + 1.3034800e+04 1.3333205e+00 + 1.3035200e+04 1.7833205e+00 + 1.3035600e+04 2.1333205e+00 + 1.3036000e+04 2.3533205e+00 + 1.3036400e+04 2.0933205e+00 + 1.3036800e+04 1.3033205e+00 + 1.3037200e+04 2.1332051e-01 + 1.3037600e+04 -5.3667949e-01 + 1.3038000e+04 -1.0766795e+00 + 1.3038400e+04 -1.7166795e+00 + 1.3038800e+04 -1.8766795e+00 + 1.3039200e+04 -1.6766795e+00 + 1.3039600e+04 -1.2966795e+00 + 1.3040000e+04 -7.6667949e-01 + 1.3040400e+04 -4.4667949e-01 + 1.3040800e+04 -3.9667949e-01 + 1.3041200e+04 -4.0667949e-01 + 1.3041600e+04 -3.8667949e-01 + 1.3042000e+04 -1.2667949e-01 + 1.3042400e+04 1.7332051e-01 + 1.3042800e+04 1.0833205e+00 + 1.3043200e+04 1.9033205e+00 + 1.3043600e+04 2.6033205e+00 + 1.3044000e+04 3.2333205e+00 + 1.3044400e+04 3.7533205e+00 + 1.3044800e+04 3.3833205e+00 + 1.3045200e+04 3.4533205e+00 + 1.3045600e+04 1.8933205e+00 + 1.3046000e+04 6.5332051e-01 + 1.3046400e+04 -2.9667949e-01 + 1.3046800e+04 -6.9667949e-01 + 1.3047200e+04 -6.9667949e-01 + 1.3047600e+04 -8.1667949e-01 + 1.3048000e+04 -1.0766795e+00 + 1.3048400e+04 -1.0666795e+00 + 1.3048800e+04 -1.1666795e+00 + 1.3049200e+04 -9.2667949e-01 + 1.3049600e+04 -3.7667949e-01 + 1.3050000e+04 2.7332051e-01 + 1.3050400e+04 5.1332051e-01 + 1.3050800e+04 2.9332051e-01 + 1.3051200e+04 1.3320513e-02 + 1.3051600e+04 -2.0667949e-01 + 1.3052000e+04 -2.9667949e-01 + 1.3052400e+04 -3.1667949e-01 + 1.3052800e+04 -4.6679487e-02 + 1.3053200e+04 1.3332051e-01 + 1.3053600e+04 -6.6794872e-03 + 1.3054000e+04 -1.4667949e-01 + 1.3054400e+04 -1.1667949e-01 + 1.3054800e+04 1.9332051e-01 + 1.3055200e+04 8.0332051e-01 + 1.3055600e+04 1.3433205e+00 + 1.3056000e+04 1.5533205e+00 + 1.3056400e+04 1.5133205e+00 + 1.3056800e+04 1.4633205e+00 + 1.3057200e+04 1.4033205e+00 + 1.3057600e+04 1.5733205e+00 + 1.3058000e+04 1.3033205e+00 + 1.3058400e+04 7.7332051e-01 + 1.3058800e+04 2.9332051e-01 + 1.3059200e+04 -2.1667949e-01 + 1.3059600e+04 -5.6667949e-01 + 1.3060000e+04 -9.6667949e-01 + 1.3060400e+04 -9.4667949e-01 + 1.3060800e+04 -8.1667949e-01 + 1.3061200e+04 -6.1667949e-01 + 1.3061600e+04 -8.7667949e-01 + 1.3062000e+04 -1.0866795e+00 + 1.3062400e+04 -9.5667949e-01 + 1.3062800e+04 -8.8667949e-01 + 1.3063200e+04 -5.2667949e-01 + 1.3063600e+04 -2.0667949e-01 + 1.3064000e+04 1.3332051e-01 + 1.3064400e+04 4.9332051e-01 + 1.3064800e+04 9.7332051e-01 + 1.3065200e+04 1.6633205e+00 + 1.3065600e+04 2.4133205e+00 + 1.3066000e+04 3.3333205e+00 + 1.3066400e+04 4.2033205e+00 + 1.3066800e+04 4.5033205e+00 + 1.3067200e+04 3.8833205e+00 + 1.3067600e+04 2.9933205e+00 + 1.3068000e+04 2.2333205e+00 + 1.3068400e+04 1.5233205e+00 + 1.3068800e+04 1.0733205e+00 + 1.3069200e+04 4.4332051e-01 + 1.3069600e+04 -3.1667949e-01 + 1.3070000e+04 -1.0966795e+00 + 1.3070400e+04 -1.7266795e+00 + 1.3070800e+04 -2.3466795e+00 + 1.3071200e+04 -2.8866795e+00 + 1.3071600e+04 -3.0766795e+00 + 1.3072000e+04 -2.7666795e+00 + 1.3072400e+04 -2.6666795e+00 + 1.3072800e+04 -2.3466795e+00 + 1.3073200e+04 -1.5566795e+00 + 1.3073600e+04 -6.3667949e-01 + 1.3074000e+04 -3.0667949e-01 + 1.3074400e+04 -6.1667949e-01 + 1.3074800e+04 -5.6667949e-01 + 1.3075200e+04 -1.9667949e-01 + 1.3075600e+04 3.2332051e-01 + 1.3076000e+04 1.4933205e+00 + 1.3076400e+04 2.4033205e+00 + 1.3076800e+04 3.0733205e+00 + 1.3077200e+04 3.4333205e+00 + 1.3077600e+04 3.0433205e+00 + 1.3078000e+04 2.3833205e+00 + 1.3078400e+04 2.0333205e+00 + 1.3078800e+04 1.7933205e+00 + 1.3079200e+04 1.7133205e+00 + 1.3079600e+04 1.3533205e+00 + 1.3080000e+04 9.5332051e-01 + 1.3080400e+04 5.3332051e-01 + 1.3080800e+04 3.4332051e-01 + 1.3081200e+04 -2.6667949e-01 + 1.3081600e+04 -6.4667949e-01 + 1.3082000e+04 -1.1966795e+00 + 1.3082400e+04 -1.5266795e+00 + 1.3082800e+04 -1.7866795e+00 + 1.3083200e+04 -1.9766795e+00 + 1.3083600e+04 -2.0066795e+00 + 1.3084000e+04 -1.6366795e+00 + 1.3084400e+04 -1.2666795e+00 + 1.3084800e+04 -7.2667949e-01 + 1.3085200e+04 -4.4667949e-01 + 1.3085600e+04 -6.6794872e-03 + 1.3086000e+04 8.8332051e-01 + 1.3086400e+04 1.6833205e+00 + 1.3086800e+04 2.5233205e+00 + 1.3087200e+04 2.8233205e+00 + 1.3087600e+04 2.5133205e+00 + 1.3088000e+04 2.1933205e+00 + 1.3088400e+04 1.9533205e+00 + 1.3088800e+04 1.8233205e+00 + 1.3089200e+04 1.8333205e+00 + 1.3089600e+04 1.9933205e+00 + 1.3090000e+04 2.1233205e+00 + 1.3090400e+04 1.8533205e+00 + 1.3090800e+04 1.2733205e+00 + 1.3091200e+04 3.7332051e-01 + 1.3091600e+04 -7.5667949e-01 + 1.3092000e+04 -1.6666795e+00 + 1.3092400e+04 -2.4066795e+00 + 1.3092800e+04 -2.6566795e+00 + 1.3093200e+04 -2.7766795e+00 + 1.3093600e+04 -2.8966795e+00 + 1.3094000e+04 -2.8066795e+00 + 1.3094400e+04 -2.7966795e+00 + 1.3094800e+04 -2.4666795e+00 + 1.3095200e+04 -1.8566795e+00 + 1.3095600e+04 -1.7566795e+00 + 1.3096000e+04 -1.3166795e+00 + 1.3096400e+04 3.5332051e-01 + 1.3096800e+04 6.4332051e-01 + 1.3097200e+04 6.6332051e-01 + 1.3097600e+04 1.1233205e+00 + 1.3098000e+04 1.2933205e+00 + 1.3098400e+04 1.5533205e+00 + 1.3098800e+04 1.9733205e+00 + 1.3099200e+04 2.5033205e+00 + 1.3099600e+04 2.6733205e+00 + 1.3100000e+04 3.7533205e+00 + 1.3100400e+04 3.7533205e+00 + 1.3100800e+04 3.0933205e+00 + 1.3101200e+04 2.1333205e+00 + 1.3101600e+04 1.4633205e+00 + 1.3102000e+04 1.0333205e+00 + 1.3102400e+04 8.0332051e-01 + 1.3102800e+04 -4.1667949e-01 + 1.3103200e+04 -8.0667949e-01 + 1.3103600e+04 -8.9667949e-01 + 1.3104000e+04 -1.3466795e+00 + 1.3104400e+04 -1.6266795e+00 + 1.3104800e+04 -1.9766795e+00 + 1.3105200e+04 -2.0166795e+00 + 1.3105600e+04 -1.7366795e+00 + 1.3106000e+04 -1.6166795e+00 + 1.3106400e+04 -1.6066795e+00 + 1.3106800e+04 -1.1266795e+00 + 1.3107200e+04 -4.0667949e-01 + 1.3107600e+04 -3.0667949e-01 + 1.3108000e+04 -2.9667949e-01 + 1.3108400e+04 1.5433205e+00 + 1.3108800e+04 2.8933205e+00 + 1.3109200e+04 3.1333205e+00 + 1.3109600e+04 2.5233205e+00 + 1.3110000e+04 2.0133205e+00 + 1.3110400e+04 1.7633205e+00 + 1.3110800e+04 1.7433205e+00 + 1.3111200e+04 -5.3667949e-01 + 1.3111600e+04 -1.3966795e+00 + 1.3112000e+04 -1.5366795e+00 + 1.3112400e+04 -1.4166795e+00 + 1.3112800e+04 -1.2966795e+00 + 1.3113200e+04 -1.3066795e+00 + 1.3113600e+04 -1.2466795e+00 + 1.3114000e+04 -1.1466795e+00 + 1.3114400e+04 -9.7667949e-01 + 1.3114800e+04 -8.6667949e-01 + 1.3115200e+04 -5.8667949e-01 + 1.3115600e+04 -6.6794872e-03 + 1.3116000e+04 2.5332051e-01 + 1.3116400e+04 5.3332051e-01 + 1.3116800e+04 7.7332051e-01 + 1.3117200e+04 7.6332051e-01 + 1.3117600e+04 9.0332051e-01 + 1.3118000e+04 1.2233205e+00 + 1.3118400e+04 1.3733205e+00 + 1.3118800e+04 1.6333205e+00 + 1.3119200e+04 1.9133205e+00 + 1.3119600e+04 1.7933205e+00 + 1.3120000e+04 1.6033205e+00 + 1.3120400e+04 1.2933205e+00 + 1.3120800e+04 1.1833205e+00 + 1.3121200e+04 1.0033205e+00 + 1.3121600e+04 8.0332051e-01 + 1.3122000e+04 6.0332051e-01 + 1.3122400e+04 2.5332051e-01 + 1.3122800e+04 -1.7667949e-01 + 1.3123200e+04 -3.7667949e-01 + 1.3123600e+04 -3.9667949e-01 + 1.3124000e+04 -3.5667949e-01 + 1.3124400e+04 -4.1667949e-01 + 1.3124800e+04 -8.6679487e-02 + 1.3125200e+04 2.8332051e-01 + 1.3125600e+04 4.6332051e-01 + 1.3126000e+04 7.6332051e-01 + 1.3126400e+04 9.1332051e-01 + 1.3126800e+04 8.4332051e-01 + 1.3127200e+04 5.8332051e-01 + 1.3127600e+04 4.5332051e-01 + 1.3128000e+04 -9.2667949e-01 + 1.3128400e+04 -1.4466795e+00 + 1.3128800e+04 -1.4466795e+00 + 1.3129200e+04 -1.1366795e+00 + 1.3129600e+04 -6.1667949e-01 + 1.3130000e+04 -4.6667949e-01 + 1.3130400e+04 3.4332051e-01 + 1.3130800e+04 6.7332051e-01 + 1.3131200e+04 2.0332051e-01 + 1.3131600e+04 -1.0667949e-01 + 1.3132000e+04 -3.4667949e-01 + 1.3132400e+04 -3.5667949e-01 + 1.3132800e+04 -2.9667949e-01 + 1.3133200e+04 -6.6794872e-03 + 1.3133600e+04 5.0332051e-01 + 1.3134000e+04 8.0332051e-01 + 1.3134400e+04 1.0933205e+00 + 1.3134800e+04 1.2933205e+00 + 1.3135200e+04 1.6533205e+00 + 1.3135600e+04 1.8633205e+00 + 1.3136000e+04 1.7133205e+00 + 1.3136400e+04 1.5433205e+00 + 1.3136800e+04 7.7332051e-01 + 1.3137200e+04 -1.9667949e-01 + 1.3137600e+04 -7.2667949e-01 + 1.3138000e+04 -9.4667949e-01 + 1.3138400e+04 -8.1667949e-01 + 1.3138800e+04 -7.0667949e-01 + 1.3139200e+04 -4.7667949e-01 + 1.3139600e+04 -2.1667949e-01 + 1.3140000e+04 -6.6794872e-03 + 1.3140400e+04 -6.6794872e-03 + 1.3140800e+04 1.5332051e-01 + 1.3141200e+04 2.8332051e-01 + 1.3141600e+04 5.0332051e-01 + 1.3142000e+04 4.3332051e-01 + 1.3142400e+04 9.4332051e-01 + 1.3142800e+04 1.5333205e+00 + 1.3143200e+04 1.4433205e+00 + 1.3143600e+04 1.1433205e+00 + 1.3144000e+04 1.0533205e+00 + 1.3144400e+04 1.7433205e+00 + 1.3144800e+04 1.4533205e+00 + 1.3145200e+04 8.4332051e-01 + 1.3145600e+04 5.9332051e-01 + 1.3146000e+04 2.2332051e-01 + 1.3146400e+04 -4.2667949e-01 + 1.3146800e+04 -1.0966795e+00 + 1.3147200e+04 -1.0066795e+00 + 1.3147600e+04 -9.9667949e-01 + 1.3148000e+04 -9.8667949e-01 + 1.3148400e+04 -7.7667949e-01 + 1.3148800e+04 -5.0667949e-01 + 1.3149200e+04 -7.1667949e-01 + 1.3149600e+04 -8.8667949e-01 + 1.3150000e+04 -9.8667949e-01 + 1.3150400e+04 -1.0266795e+00 + 1.3150800e+04 -1.0166795e+00 + 1.3151200e+04 -8.5667949e-01 + 1.3151600e+04 -4.7667949e-01 + 1.3152000e+04 -1.4667949e-01 + 1.3152400e+04 2.2332051e-01 + 1.3152800e+04 4.9332051e-01 + 1.3153200e+04 6.8332051e-01 + 1.3153600e+04 1.0433205e+00 + 1.3154000e+04 1.2733205e+00 + 1.3154400e+04 1.2833205e+00 + 1.3154800e+04 1.2833205e+00 + 1.3155200e+04 1.3433205e+00 + 1.3155600e+04 1.6633205e+00 + 1.3156000e+04 2.2033205e+00 + 1.3156400e+04 2.4433205e+00 + 1.3156800e+04 2.4133205e+00 + 1.3157200e+04 2.1933205e+00 + 1.3157600e+04 1.6733205e+00 + 1.3158000e+04 6.4332051e-01 + 1.3158400e+04 -3.1667949e-01 + 1.3158800e+04 -9.1667949e-01 + 1.3159200e+04 -1.0366795e+00 + 1.3159600e+04 -8.3667949e-01 + 1.3160000e+04 -7.6667949e-01 + 1.3160400e+04 -8.7667949e-01 + 1.3160800e+04 -1.3766795e+00 + 1.3161200e+04 -1.6766795e+00 + 1.3161600e+04 -1.6466795e+00 + 1.3162000e+04 -1.3766795e+00 + 1.3162400e+04 -8.9667949e-01 + 1.3162800e+04 -5.1667949e-01 + 1.3163200e+04 -1.9667949e-01 + 1.3163600e+04 4.3320513e-02 + 1.3164000e+04 2.3320513e-02 + 1.3164400e+04 3.0332051e-01 + 1.3164800e+04 8.6332051e-01 + 1.3165200e+04 1.5533205e+00 + 1.3165600e+04 1.9433205e+00 + 1.3166000e+04 3.8833205e+00 + 1.3166400e+04 4.3533205e+00 + 1.3166800e+04 4.3533205e+00 + 1.3167200e+04 4.3433205e+00 + 1.3167600e+04 4.3433205e+00 + 1.3168000e+04 2.1833205e+00 + 1.3168400e+04 2.9332051e-01 + 1.3168800e+04 4.3320513e-02 + 1.3169200e+04 -5.6679487e-02 + 1.3169600e+04 -2.2667949e-01 + 1.3170000e+04 -2.1667949e-01 + 1.3170400e+04 -5.3667949e-01 + 1.3170800e+04 -1.1666795e+00 + 1.3171200e+04 -1.3866795e+00 + 1.3171600e+04 -1.4266795e+00 + 1.3172000e+04 -1.4266795e+00 + 1.3172400e+04 -1.4266795e+00 + 1.3172800e+04 -2.1366795e+00 + 1.3173200e+04 -2.6766795e+00 + 1.3173600e+04 -2.2366795e+00 + 1.3174000e+04 -2.0966795e+00 + 1.3174400e+04 -1.9266795e+00 + 1.3174800e+04 5.1332051e-01 + 1.3175200e+04 1.1833205e+00 + 1.3175600e+04 3.4133205e+00 + 1.3176000e+04 4.3333205e+00 + 1.3176400e+04 4.9733205e+00 + 1.3176800e+04 5.1033205e+00 + 1.3177200e+04 5.1433205e+00 + 1.3177600e+04 4.9433205e+00 + 1.3178000e+04 4.5033205e+00 + 1.3178400e+04 4.4733205e+00 + 1.3178800e+04 4.4733205e+00 + 1.3179200e+04 4.4733205e+00 + 1.3179600e+04 4.4733205e+00 + 1.3180000e+04 4.4733205e+00 + 1.3180400e+04 4.4733205e+00 + 1.3180800e+04 4.4633205e+00 + 1.3181200e+04 4.4633205e+00 + 1.3181600e+04 -3.1766795e+00 + 1.3182000e+04 -4.0466795e+00 + 1.3182400e+04 -3.9166795e+00 + 1.3182800e+04 -3.8366795e+00 + 1.3183200e+04 -3.8266795e+00 + 1.3183600e+04 -3.8266795e+00 + 1.3184000e+04 -3.8166795e+00 + 1.3184400e+04 -3.8066795e+00 + 1.3184800e+04 1.7332051e-01 + 1.3185200e+04 1.7133205e+00 + 1.3185600e+04 2.9333205e+00 + 1.3186000e+04 4.2533205e+00 + 1.3186400e+04 4.8733205e+00 + 1.3186800e+04 5.4733205e+00 + 1.3187200e+04 5.2833205e+00 + 1.3187600e+04 4.4733205e+00 + 1.3188000e+04 3.2633205e+00 + 1.3188400e+04 1.8233205e+00 + 1.3188800e+04 3.0332051e-01 + 1.3189200e+04 -6.0667949e-01 + 1.3189600e+04 -8.8667949e-01 + 1.3190000e+04 -9.4667949e-01 + 1.3190400e+04 -9.9667949e-01 + 1.3190800e+04 -1.0266795e+00 + 1.3191200e+04 -9.0667949e-01 + 1.3191600e+04 -1.0466795e+00 + 1.3192000e+04 -1.1166795e+00 + 1.3192400e+04 -9.8667949e-01 + 1.3192800e+04 -1.1566795e+00 + 1.3193200e+04 -1.1566795e+00 + 1.3193600e+04 -1.2366795e+00 + 1.3194000e+04 -1.2066795e+00 + 1.3194400e+04 -1.1066795e+00 + 1.3194800e+04 -7.5667949e-01 + 1.3195200e+04 -3.5667949e-01 + 1.3195600e+04 9.3320513e-02 + 1.3196000e+04 7.5332051e-01 + 1.3196400e+04 1.6133205e+00 + 1.3196800e+04 2.2333205e+00 + 1.3197200e+04 2.4733205e+00 + 1.3197600e+04 2.7133205e+00 + 1.3198000e+04 2.3633205e+00 + 1.3198400e+04 2.0033205e+00 + 1.3198800e+04 9.7332051e-01 + 1.3199200e+04 5.1332051e-01 + 1.3199600e+04 1.7332051e-01 + 1.3200000e+04 -1.7667949e-01 + 1.3200400e+04 -4.2667949e-01 + 1.3200800e+04 -3.5667949e-01 + 1.3201200e+04 3.3205128e-03 + 1.3201600e+04 7.3320513e-02 + 1.3202000e+04 -2.6679487e-02 + 1.3202400e+04 -5.0667949e-01 + 1.3202800e+04 -1.0466795e+00 + 1.3203200e+04 -1.1466795e+00 + 1.3203600e+04 -7.7667949e-01 + 1.3204000e+04 -9.6679487e-02 + 1.3204400e+04 7.2332051e-01 + 1.3204800e+04 1.3033205e+00 + 1.3205200e+04 2.0933205e+00 + 1.3205600e+04 1.2933205e+00 + 1.3206000e+04 2.2332051e-01 + 1.3206400e+04 -4.5667949e-01 + 1.3206800e+04 -8.2667949e-01 + 1.3207200e+04 -6.3667949e-01 + 1.3207600e+04 -4.8667949e-01 + 1.3208000e+04 -2.4667949e-01 + 1.3208400e+04 2.2332051e-01 + 1.3208800e+04 7.9332051e-01 + 1.3209200e+04 1.4133205e+00 + 1.3209600e+04 1.7633205e+00 + 1.3210000e+04 1.4833205e+00 + 1.3210400e+04 8.6332051e-01 + 1.3210800e+04 5.9332051e-01 + 1.3211200e+04 2.9332051e-01 + 1.3211600e+04 3.3320513e-02 + 1.3212000e+04 3.5332051e-01 + 1.3212400e+04 1.0933205e+00 + 1.3212800e+04 2.1133205e+00 + 1.3213200e+04 2.7033205e+00 + 1.3213600e+04 2.3333205e+00 + 1.3214000e+04 1.9933205e+00 + 1.3214400e+04 1.2033205e+00 + 1.3214800e+04 6.0332051e-01 + 1.3215200e+04 -6.6794872e-03 + 1.3215600e+04 -2.9667949e-01 + 1.3216000e+04 -4.4667949e-01 + 1.3216400e+04 -5.7667949e-01 + 1.3216800e+04 -5.5667949e-01 + 1.3217200e+04 -8.6667949e-01 + 1.3217600e+04 -1.4666795e+00 + 1.3218000e+04 -1.5166795e+00 + 1.3218400e+04 -1.4466795e+00 + 1.3218800e+04 -1.4566795e+00 + 1.3219200e+04 -1.3966795e+00 + 1.3219600e+04 -1.1266795e+00 + 1.3220000e+04 -6.4667949e-01 + 1.3220400e+04 -6.6667949e-01 + 1.3220800e+04 -9.2667949e-01 + 1.3221200e+04 -9.7667949e-01 + 1.3221600e+04 -7.9667949e-01 + 1.3222000e+04 -2.3667949e-01 + 1.3222400e+04 4.2332051e-01 + 1.3222800e+04 8.0332051e-01 + 1.3223200e+04 1.1733205e+00 + 1.3223600e+04 1.9133205e+00 + 1.3224000e+04 1.7633205e+00 + 1.3224400e+04 1.5533205e+00 + 1.3224800e+04 1.5733205e+00 + 1.3225200e+04 2.0933205e+00 + 1.3225600e+04 2.3233205e+00 + 1.3226000e+04 2.1733205e+00 + 1.3226400e+04 1.8233205e+00 + 1.3226800e+04 1.6733205e+00 + 1.3227200e+04 1.6133205e+00 + 1.3227600e+04 1.7533205e+00 + 1.3228000e+04 1.9433205e+00 + 1.3228400e+04 1.7733205e+00 + 1.3228800e+04 1.3033205e+00 + 1.3229200e+04 8.4332051e-01 + 1.3229600e+04 8.0332051e-01 + 1.3230000e+04 8.0332051e-01 + 1.3230400e+04 -7.8667949e-01 + 1.3230800e+04 -2.1566795e+00 + 1.3231200e+04 -2.4466795e+00 + 1.3231600e+04 -2.4466795e+00 + 1.3232000e+04 -1.8966795e+00 + 1.3232400e+04 -1.2466795e+00 + 1.3232800e+04 -1.0166795e+00 + 1.3233200e+04 -1.6667949e-01 + 1.3233600e+04 5.1332051e-01 + 1.3234000e+04 1.0333205e+00 + 1.3234400e+04 1.1933205e+00 + 1.3234800e+04 1.1333205e+00 + 1.3235200e+04 1.0133205e+00 + 1.3235600e+04 5.7332051e-01 + 1.3236000e+04 2.7332051e-01 + 1.3236400e+04 -4.4667949e-01 + 1.3236800e+04 -8.2667949e-01 + 1.3237200e+04 -7.7667949e-01 + 1.3237600e+04 -5.4667949e-01 + 1.3238000e+04 -3.6667949e-01 + 1.3238400e+04 -1.0667949e-01 + 1.3238800e+04 1.7332051e-01 + 1.3239200e+04 2.5332051e-01 + 1.3239600e+04 6.0332051e-01 + 1.3240000e+04 9.7332051e-01 + 1.3240400e+04 1.0933205e+00 + 1.3240800e+04 9.5332051e-01 + 1.3241200e+04 9.5332051e-01 + 1.3241600e+04 9.8332051e-01 + 1.3242000e+04 8.0332051e-01 + 1.3242400e+04 7.2332051e-01 + 1.3242800e+04 4.4332051e-01 + 1.3243200e+04 1.5332051e-01 + 1.3243600e+04 -2.6667949e-01 + 1.3244000e+04 -4.4667949e-01 + 1.3244400e+04 -6.1667949e-01 + 1.3244800e+04 -4.6667949e-01 + 1.3245200e+04 -3.6679487e-02 + 1.3245600e+04 3.5332051e-01 + 1.3246000e+04 7.0332051e-01 + 1.3246400e+04 9.1332051e-01 + 1.3246800e+04 1.1633205e+00 + 1.3247200e+04 1.1533205e+00 + 1.3247600e+04 1.1533205e+00 + 1.3248000e+04 1.2933205e+00 + 1.3248400e+04 1.7133205e+00 + 1.3248800e+04 1.6833205e+00 + 1.3249200e+04 1.6733205e+00 + 1.3249600e+04 2.0333205e+00 + 1.3250000e+04 2.1933205e+00 + 1.3250400e+04 1.8633205e+00 + 1.3250800e+04 1.4633205e+00 + 1.3251200e+04 1.4133205e+00 + 1.3251600e+04 1.4133205e+00 + 1.3252000e+04 -1.4166795e+00 + 1.3252400e+04 -2.3166795e+00 + 1.3252800e+04 -2.5266795e+00 + 1.3253200e+04 -3.0766795e+00 + 1.3253600e+04 -3.0966795e+00 + 1.3254000e+04 -2.9966795e+00 + 1.3254400e+04 -2.5366795e+00 + 1.3254800e+04 -2.3966795e+00 + 1.3255200e+04 -2.0466795e+00 + 1.3255600e+04 1.4733205e+00 + 1.3256000e+04 1.9533205e+00 + 1.3256400e+04 2.5033205e+00 + 1.3256800e+04 2.4133205e+00 + 1.3257200e+04 1.8533205e+00 + 1.3257600e+04 1.7733205e+00 + 1.3258000e+04 1.3233205e+00 + 1.3258400e+04 -6.6667949e-01 + 1.3258800e+04 -1.6266795e+00 + 1.3259200e+04 -1.6966795e+00 + 1.3259600e+04 -1.5966795e+00 + 1.3260000e+04 -1.3466795e+00 + 1.3260400e+04 -6.3667949e-01 + 1.3260800e+04 2.2332051e-01 + 1.3261200e+04 1.2633205e+00 + 1.3261600e+04 2.0933205e+00 + 1.3262000e+04 3.4233205e+00 + 1.3262400e+04 4.3733205e+00 + 1.3262800e+04 4.3233205e+00 + 1.3263200e+04 3.7233205e+00 + 1.3263600e+04 2.9733205e+00 + 1.3264000e+04 2.6633205e+00 + 1.3264400e+04 1.3533205e+00 + 1.3264800e+04 4.4332051e-01 + 1.3265200e+04 3.3205128e-03 + 1.3265600e+04 1.9332051e-01 + 1.3266000e+04 5.0332051e-01 + 1.3266400e+04 1.1332051e-01 + 1.3266800e+04 -4.4667949e-01 + 1.3267200e+04 -1.1066795e+00 + 1.3267600e+04 -1.3766795e+00 + 1.3268000e+04 -1.1466795e+00 + 1.3268400e+04 -6.2667949e-01 + 1.3268800e+04 3.3320513e-02 + 1.3269200e+04 2.7332051e-01 + 1.3269600e+04 -2.2667949e-01 + 1.3270000e+04 -6.9667949e-01 + 1.3270400e+04 -1.4766795e+00 + 1.3270800e+04 -1.8566795e+00 + 1.3271200e+04 -1.9266795e+00 + 1.3271600e+04 -1.8466795e+00 + 1.3272000e+04 -1.4166795e+00 + 1.3272400e+04 -6.2667949e-01 + 1.3272800e+04 4.6332051e-01 + 1.3273200e+04 1.3633205e+00 + 1.3273600e+04 1.5333205e+00 + 1.3274000e+04 1.5933205e+00 + 1.3274400e+04 1.6433205e+00 + 1.3274800e+04 1.4633205e+00 + 1.3275200e+04 1.6833205e+00 + 1.3275600e+04 1.9433205e+00 + 1.3276000e+04 2.3933205e+00 + 1.3276400e+04 2.2733205e+00 + 1.3276800e+04 2.2833205e+00 + 1.3277200e+04 1.6333205e+00 + 1.3277600e+04 9.7332051e-01 + 1.3278000e+04 3.3332051e-01 + 1.3278400e+04 -1.0667949e-01 + 1.3278800e+04 -6.0667949e-01 + 1.3279200e+04 -1.1466795e+00 + 1.3279600e+04 -1.0566795e+00 + 1.3280000e+04 -8.5667949e-01 + 1.3280400e+04 -5.7667949e-01 + 1.3280800e+04 -6.4667949e-01 + 1.3281200e+04 -7.1667949e-01 + 1.3281600e+04 -4.5667949e-01 + 1.3282000e+04 -2.1667949e-01 + 1.3282400e+04 3.3320513e-02 + 1.3282800e+04 3.0332051e-01 + 1.3283200e+04 7.5332051e-01 + 1.3283600e+04 1.3033205e+00 + 1.3284000e+04 1.8233205e+00 + 1.3284400e+04 2.2333205e+00 + 1.3284800e+04 3.1433205e+00 + 1.3285200e+04 3.9233205e+00 + 1.3285600e+04 3.1133205e+00 + 1.3286000e+04 2.4633205e+00 + 1.3286400e+04 2.3333205e+00 + 1.3286800e+04 2.3233205e+00 + 1.3287200e+04 2.3233205e+00 + 1.3287600e+04 4.6332051e-01 + 1.3288000e+04 -2.1466795e+00 + 1.3288400e+04 -2.9166795e+00 + 1.3288800e+04 -3.1566795e+00 + 1.3289200e+04 -2.9766795e+00 + 1.3289600e+04 -2.8066795e+00 + 1.3290000e+04 -2.6266795e+00 + 1.3290400e+04 -2.3966795e+00 + 1.3290800e+04 -2.0166795e+00 + 1.3291200e+04 -1.6066795e+00 + 1.3291600e+04 -9.4667949e-01 + 1.3292000e+04 -6.6679487e-02 + 1.3292400e+04 1.0233205e+00 + 1.3292800e+04 1.9033205e+00 + 1.3293200e+04 2.9033205e+00 + 1.3293600e+04 3.3933205e+00 + 1.3294000e+04 3.5233205e+00 + 1.3294400e+04 3.3033205e+00 + 1.3294800e+04 2.7933205e+00 + 1.3295200e+04 2.2233205e+00 + 1.3295600e+04 2.1233205e+00 + 1.3296000e+04 2.1533205e+00 + 1.3296400e+04 2.2733205e+00 + 1.3296800e+04 1.9833205e+00 + 1.3297200e+04 1.4933205e+00 + 1.3297600e+04 1.2233205e+00 + 1.3298000e+04 9.5332051e-01 + 1.3298400e+04 6.2332051e-01 + 1.3298800e+04 -2.4667949e-01 + 1.3299200e+04 -1.0966795e+00 + 1.3299600e+04 -1.3866795e+00 + 1.3300000e+04 -1.6966795e+00 + 1.3300400e+04 -1.7766795e+00 + 1.3300800e+04 -2.1966795e+00 + 1.3301200e+04 -2.0966795e+00 + 1.3301600e+04 -1.7766795e+00 + 1.3302000e+04 -1.1066795e+00 + 1.3302400e+04 -3.1667949e-01 + 1.3302800e+04 -1.6667949e-01 + 1.3303200e+04 5.4332051e-01 + 1.3303600e+04 1.1033205e+00 + 1.3304000e+04 1.2733205e+00 + 1.3304400e+04 1.7033205e+00 + 1.3304800e+04 1.8733205e+00 + 1.3305200e+04 1.3533205e+00 + 1.3305600e+04 9.3332051e-01 + 1.3306000e+04 5.0332051e-01 + 1.3306400e+04 -8.6679487e-02 + 1.3306800e+04 -8.4667949e-01 + 1.3307200e+04 -1.3566795e+00 + 1.3307600e+04 -1.5566795e+00 + 1.3308000e+04 -1.3766795e+00 + 1.3308400e+04 -9.2667949e-01 + 1.3308800e+04 -5.1667949e-01 + 1.3309200e+04 3.6332051e-01 + 1.3309600e+04 8.7332051e-01 + 1.3310000e+04 1.4533205e+00 + 1.3310400e+04 2.4533205e+00 + 1.3310800e+04 2.3233205e+00 + 1.3311200e+04 2.2233205e+00 + 1.3311600e+04 2.1833205e+00 + 1.3312000e+04 1.5433205e+00 + 1.3312400e+04 9.6332051e-01 + 1.3312800e+04 3.3332051e-01 + 1.3313200e+04 -3.6667949e-01 + 1.3313600e+04 -9.4667949e-01 + 1.3314000e+04 -9.9667949e-01 + 1.3314400e+04 -8.7667949e-01 + 1.3314800e+04 -9.0667949e-01 + 1.3315200e+04 -9.0667949e-01 + 1.3315600e+04 -9.2667949e-01 + 1.3316000e+04 -7.4667949e-01 + 1.3316400e+04 -2.9667949e-01 + 1.3316800e+04 3.4332051e-01 + 1.3317200e+04 7.6332051e-01 + 1.3317600e+04 1.1733205e+00 + 1.3318000e+04 1.8433205e+00 + 1.3318400e+04 2.4633205e+00 + 1.3318800e+04 2.8933205e+00 + 1.3319200e+04 3.3833205e+00 + 1.3319600e+04 2.6133205e+00 + 1.3320000e+04 1.3933205e+00 + 1.3320400e+04 4.0332051e-01 + 1.3320800e+04 -9.6679487e-02 + 1.3321200e+04 -3.2667949e-01 + 1.3321600e+04 -1.5667949e-01 + 1.3322000e+04 -4.6679487e-02 + 1.3322400e+04 -1.4667949e-01 + 1.3322800e+04 -4.4667949e-01 + 1.3323200e+04 -8.1667949e-01 + 1.3323600e+04 -1.0266795e+00 + 1.3324000e+04 -9.0667949e-01 + 1.3324400e+04 -9.2667949e-01 + 1.3324800e+04 -9.9667949e-01 + 1.3325200e+04 -1.1166795e+00 + 1.3325600e+04 -1.1466795e+00 + 1.3326000e+04 -9.7667949e-01 + 1.3326400e+04 -7.2667949e-01 + 1.3326800e+04 -4.8667949e-01 + 1.3327200e+04 -1.3667949e-01 + 1.3327600e+04 1.7332051e-01 + 1.3328000e+04 4.7332051e-01 + 1.3328400e+04 1.0533205e+00 + 1.3328800e+04 1.2233205e+00 + 1.3329200e+04 1.5033205e+00 + 1.3329600e+04 1.5333205e+00 + 1.3330000e+04 1.7533205e+00 + 1.3330400e+04 2.2733205e+00 + 1.3330800e+04 2.2933205e+00 + 1.3331200e+04 2.3633205e+00 + 1.3331600e+04 2.2433205e+00 + 1.3332000e+04 1.8233205e+00 + 1.3332400e+04 1.4233205e+00 + 1.3332800e+04 1.2333205e+00 + 1.3333200e+04 9.3332051e-01 + 1.3333600e+04 6.0332051e-01 + 1.3334000e+04 5.7332051e-01 + 1.3334400e+04 -3.6667949e-01 + 1.3334800e+04 -1.6066795e+00 + 1.3335200e+04 -1.5666795e+00 + 1.3335600e+04 -1.6266795e+00 + 1.3336000e+04 -1.0066795e+00 + 1.3336400e+04 -3.7667949e-01 + 1.3336800e+04 -2.9667949e-01 + 1.3337200e+04 -2.9667949e-01 + 1.3337600e+04 1.7133205e+00 + 1.3338000e+04 1.6833205e+00 + 1.3338400e+04 1.4933205e+00 + 1.3338800e+04 1.0133205e+00 + 1.3339200e+04 1.0332051e-01 + 1.3339600e+04 1.6332051e-01 + 1.3340000e+04 3.0332051e-01 + 1.3340400e+04 3.9332051e-01 + 1.3340800e+04 2.8332051e-01 + 1.3341200e+04 9.3320513e-02 + 1.3341600e+04 -2.0667949e-01 + 1.3342000e+04 -6.4667949e-01 + 1.3342400e+04 -1.0666795e+00 + 1.3342800e+04 -1.1066795e+00 + 1.3343200e+04 -8.1667949e-01 + 1.3343600e+04 -2.7667949e-01 + 1.3344000e+04 1.3332051e-01 + 1.3344400e+04 6.1332051e-01 + 1.3344800e+04 9.4332051e-01 + 1.3345200e+04 7.5332051e-01 + 1.3345600e+04 4.8332051e-01 + 1.3346000e+04 4.6332051e-01 + 1.3346400e+04 6.0332051e-01 + 1.3346800e+04 9.9332051e-01 + 1.3347200e+04 1.1533205e+00 + 1.3347600e+04 1.0433205e+00 + 1.3348000e+04 6.6332051e-01 + 1.3348400e+04 3.7332051e-01 + 1.3348800e+04 4.3320513e-02 + 1.3349200e+04 -2.5667949e-01 + 1.3349600e+04 -6.6667949e-01 + 1.3350000e+04 -7.2667949e-01 + 1.3350400e+04 -5.7667949e-01 + 1.3350800e+04 -2.7667949e-01 + 1.3351200e+04 1.3332051e-01 + 1.3351600e+04 4.8332051e-01 + 1.3352000e+04 4.3332051e-01 + 1.3352400e+04 4.4332051e-01 + 1.3352800e+04 6.5332051e-01 + 1.3353200e+04 1.0533205e+00 + 1.3353600e+04 1.3933205e+00 + 1.3354000e+04 1.4833205e+00 + 1.3354400e+04 1.5533205e+00 + 1.3354800e+04 1.4933205e+00 + 1.3355200e+04 1.1533205e+00 + 1.3355600e+04 8.3332051e-01 + 1.3356000e+04 4.5332051e-01 + 1.3356400e+04 1.3332051e-01 + 1.3356800e+04 -1.9667949e-01 + 1.3357200e+04 -1.6667949e-01 + 1.3357600e+04 -1.6667949e-01 + 1.3358000e+04 -9.6679487e-02 + 1.3358400e+04 -2.4667949e-01 + 1.3358800e+04 -4.4667949e-01 + 1.3359200e+04 -7.9667949e-01 + 1.3359600e+04 -1.6266795e+00 + 1.3360000e+04 -1.7066795e+00 + 1.3360400e+04 -1.5466795e+00 + 1.3360800e+04 -1.1966795e+00 + 1.3361200e+04 -1.1466795e+00 + 1.3361600e+04 -1.1466795e+00 + 1.3362000e+04 5.1332051e-01 + 1.3362400e+04 1.1033205e+00 + 1.3362800e+04 1.0133205e+00 + 1.3363200e+04 1.0433205e+00 + 1.3363600e+04 1.1433205e+00 + 1.3364000e+04 1.5733205e+00 + 1.3364400e+04 1.5033205e+00 + 1.3364800e+04 1.4533205e+00 + 1.3365200e+04 1.3333205e+00 + 1.3365600e+04 1.0533205e+00 + 1.3366000e+04 1.0033205e+00 + 1.3366400e+04 1.1233205e+00 + 1.3366800e+04 4.2332051e-01 + 1.3367200e+04 2.8332051e-01 + 1.3367600e+04 -2.4667949e-01 + 1.3368000e+04 -1.5666795e+00 + 1.3368400e+04 -1.8266795e+00 + 1.3368800e+04 -1.7366795e+00 + 1.3369200e+04 -1.5566795e+00 + 1.3369600e+04 -1.4966795e+00 + 1.3370000e+04 -1.2566795e+00 + 1.3370400e+04 -8.3667949e-01 + 1.3370800e+04 -4.4667949e-01 + 1.3371200e+04 -1.9667949e-01 + 1.3371600e+04 3.9332051e-01 + 1.3372000e+04 6.8332051e-01 + 1.3372400e+04 1.1833205e+00 + 1.3372800e+04 1.3833205e+00 + 1.3373200e+04 1.4233205e+00 + 1.3373600e+04 1.4233205e+00 + 1.3374000e+04 2.3333205e+00 + 1.3374400e+04 3.5133205e+00 + 1.3374800e+04 2.2933205e+00 + 1.3375200e+04 1.1633205e+00 + 1.3375600e+04 2.8332051e-01 + 1.3376000e+04 -1.5667949e-01 + 1.3376400e+04 -4.1667949e-01 + 1.3376800e+04 -6.7667949e-01 + 1.3377200e+04 -9.0667949e-01 + 1.3377600e+04 -1.2666795e+00 + 1.3378000e+04 -1.6066795e+00 + 1.3378400e+04 -1.7166795e+00 + 1.3378800e+04 -1.7166795e+00 + 1.3379200e+04 -1.1966795e+00 + 1.3379600e+04 -5.6667949e-01 + 1.3380000e+04 -4.4667949e-01 + 1.3380400e+04 -2.7667949e-01 + 1.3380800e+04 -2.8667949e-01 + 1.3381200e+04 -5.6679487e-02 + 1.3381600e+04 2.3332051e-01 + 1.3382000e+04 3.6332051e-01 + 1.3382400e+04 5.1332051e-01 + 1.3382800e+04 5.5332051e-01 + 1.3383200e+04 8.2332051e-01 + 1.3383600e+04 1.4233205e+00 + 1.3384000e+04 1.8933205e+00 + 1.3384400e+04 2.1533205e+00 + 1.3384800e+04 2.4833205e+00 + 1.3385200e+04 2.5533205e+00 + 1.3385600e+04 2.5233205e+00 + 1.3386000e+04 2.2733205e+00 + 1.3386400e+04 1.9733205e+00 + 1.3386800e+04 1.7633205e+00 + 1.3387200e+04 1.7533205e+00 + 1.3387600e+04 1.7533205e+00 + 1.3388000e+04 1.7533205e+00 + 1.3388400e+04 1.7533205e+00 + 1.3388800e+04 -2.4466795e+00 + 1.3389200e+04 -2.9666795e+00 + 1.3389600e+04 -2.6266795e+00 + 1.3390000e+04 -1.9566795e+00 + 1.3390400e+04 -9.9667949e-01 + 1.3390800e+04 1.4332051e-01 + 1.3391200e+04 1.4133205e+00 + 1.3391600e+04 2.1333205e+00 + 1.3392000e+04 2.1933205e+00 + 1.3392400e+04 2.1333205e+00 + 1.3392800e+04 1.6533205e+00 + 1.3393200e+04 1.2033205e+00 + 1.3393600e+04 9.6332051e-01 + 1.3394000e+04 9.4332051e-01 + 1.3394400e+04 1.1433205e+00 + 1.3394800e+04 1.5933205e+00 + 1.3395200e+04 1.6633205e+00 + 1.3395600e+04 1.5033205e+00 + 1.3396000e+04 1.0333205e+00 + 1.3396400e+04 2.5332051e-01 + 1.3396800e+04 -3.7667949e-01 + 1.3397200e+04 -9.0667949e-01 + 1.3397600e+04 -1.3166795e+00 + 1.3398000e+04 -1.5866795e+00 + 1.3398400e+04 -1.5266795e+00 + 1.3398800e+04 -1.2366795e+00 + 1.3399200e+04 -1.0666795e+00 + 1.3399600e+04 -8.2667949e-01 + 1.3400000e+04 -4.4667949e-01 + 1.3400400e+04 -4.6679487e-02 + 1.3400800e+04 2.7332051e-01 + 1.3401200e+04 4.6332051e-01 + 1.3401600e+04 4.6332051e-01 + 1.3402000e+04 6.1332051e-01 + 1.3402400e+04 4.9332051e-01 + 1.3402800e+04 1.3332051e-01 + 1.3403200e+04 5.3320513e-02 + 1.3403600e+04 1.2332051e-01 + 1.3404000e+04 8.0332051e-01 + 1.3404400e+04 1.0833205e+00 + 1.3404800e+04 1.2233205e+00 + 1.3405200e+04 1.5033205e+00 + 1.3405600e+04 1.2733205e+00 + 1.3406000e+04 8.6332051e-01 + 1.3406400e+04 6.1332051e-01 + 1.3406800e+04 7.4332051e-01 + 1.3407200e+04 9.9332051e-01 + 1.3407600e+04 8.8332051e-01 + 1.3408000e+04 6.2332051e-01 + 1.3408400e+04 4.6332051e-01 + 1.3408800e+04 1.5332051e-01 + 1.3409200e+04 1.6332051e-01 + 1.3409600e+04 2.6332051e-01 + 1.3410000e+04 2.2332051e-01 + 1.3410400e+04 -1.1667949e-01 + 1.3410800e+04 -4.8667949e-01 + 1.3411200e+04 -1.3266795e+00 + 1.3411600e+04 -2.0166795e+00 + 1.3412000e+04 -2.4266795e+00 + 1.3412400e+04 -2.2566795e+00 + 1.3412800e+04 -1.6266795e+00 + 1.3413200e+04 -8.2667949e-01 + 1.3413600e+04 5.3320513e-02 + 1.3414000e+04 1.0233205e+00 + 1.3414400e+04 1.7933205e+00 + 1.3414800e+04 2.2233205e+00 + 1.3415200e+04 2.5933205e+00 + 1.3415600e+04 2.8233205e+00 + 1.3416000e+04 2.9833205e+00 + 1.3416400e+04 3.0533205e+00 + 1.3416800e+04 2.9833205e+00 + 1.3417200e+04 2.4133205e+00 + 1.3417600e+04 1.7833205e+00 + 1.3418000e+04 1.1133205e+00 + 1.3418400e+04 5.2332051e-01 + 1.3418800e+04 -1.0667949e-01 + 1.3419200e+04 -6.9667949e-01 + 1.3419600e+04 -1.0066795e+00 + 1.3420000e+04 -1.2866795e+00 + 1.3420400e+04 -1.2066795e+00 + 1.3420800e+04 -1.0966795e+00 + 1.3421200e+04 -7.3667949e-01 + 1.3421600e+04 -3.2667949e-01 + 1.3422000e+04 -1.0667949e-01 + 1.3422400e+04 3.3205128e-03 + 1.3422800e+04 2.4332051e-01 + 1.3423200e+04 3.4332051e-01 + 1.3423600e+04 4.3332051e-01 + 1.3424000e+04 2.3332051e-01 + 1.3424400e+04 5.3320513e-02 + 1.3424800e+04 2.7332051e-01 + 1.3425200e+04 3.9332051e-01 + 1.3425600e+04 3.8332051e-01 + 1.3426000e+04 1.2332051e-01 + 1.3426400e+04 -1.9667949e-01 + 1.3426800e+04 -2.3667949e-01 + 1.3427200e+04 -3.2667949e-01 + 1.3427600e+04 -3.7667949e-01 + 1.3428000e+04 -5.2667949e-01 + 1.3428400e+04 -3.7667949e-01 + 1.3428800e+04 -4.1667949e-01 + 1.3429200e+04 -2.5667949e-01 + 1.3429600e+04 1.2332051e-01 + 1.3430000e+04 8.6332051e-01 + 1.3430400e+04 1.1133205e+00 + 1.3430800e+04 1.3033205e+00 + 1.3431200e+04 1.1533205e+00 + 1.3431600e+04 9.5332051e-01 + 1.3432000e+04 8.4332051e-01 + 1.3432400e+04 7.0332051e-01 + 1.3432800e+04 6.2332051e-01 + 1.3433200e+04 3.9332051e-01 + 1.3433600e+04 3.0332051e-01 + 1.3434000e+04 5.7332051e-01 + 1.3434400e+04 1.1433205e+00 + 1.3434800e+04 2.0133205e+00 + 1.3435200e+04 2.9033205e+00 + 1.3435600e+04 3.1333205e+00 + 1.3436000e+04 2.8033205e+00 + 1.3436400e+04 2.5333205e+00 + 1.3436800e+04 1.9733205e+00 + 1.3437200e+04 8.8332051e-01 + 1.3437600e+04 2.5332051e-01 + 1.3438000e+04 -4.7667949e-01 + 1.3438400e+04 -1.1766795e+00 + 1.3438800e+04 -1.6366795e+00 + 1.3439200e+04 -1.7766795e+00 + 1.3439600e+04 -1.6266795e+00 + 1.3440000e+04 -1.3266795e+00 + 1.3440400e+04 -8.7667949e-01 + 1.3440800e+04 -6.2667949e-01 + 1.3441200e+04 -7.7667949e-01 + 1.3441600e+04 -1.1966795e+00 + 1.3442000e+04 -1.3266795e+00 + 1.3442400e+04 -1.1966795e+00 + 1.3442800e+04 -1.0766795e+00 + 1.3443200e+04 -8.2667949e-01 + 1.3443600e+04 -7.1667949e-01 + 1.3444000e+04 -4.9667949e-01 + 1.3444400e+04 -5.6679487e-02 + 1.3444800e+04 4.2332051e-01 + 1.3445200e+04 9.1332051e-01 + 1.3445600e+04 8.3332051e-01 + 1.3446000e+04 7.9332051e-01 + 1.3446400e+04 9.4332051e-01 + 1.3446800e+04 1.0033205e+00 + 1.3447200e+04 1.1533205e+00 + 1.3447600e+04 1.2933205e+00 + 1.3448000e+04 1.0933205e+00 + 1.3448400e+04 9.3332051e-01 + 1.3448800e+04 7.6332051e-01 + 1.3449200e+04 6.9332051e-01 + 1.3449600e+04 5.0332051e-01 + 1.3450000e+04 2.3332051e-01 + 1.3450400e+04 -3.6679487e-02 + 1.3450800e+04 -1.0667949e-01 + 1.3451200e+04 8.3320513e-02 + 1.3451600e+04 1.4332051e-01 + 1.3452000e+04 3.0332051e-01 + 1.3452400e+04 6.4332051e-01 + 1.3452800e+04 9.9332051e-01 + 1.3453200e+04 1.3033205e+00 + 1.3453600e+04 1.6233205e+00 + 1.3454000e+04 1.7533205e+00 + 1.3454400e+04 1.4933205e+00 + 1.3454800e+04 1.2833205e+00 + 1.3455200e+04 1.0533205e+00 + 1.3455600e+04 7.7332051e-01 + 1.3456000e+04 1.5332051e-01 + 1.3456400e+04 2.5332051e-01 + 1.3456800e+04 2.4332051e-01 + 1.3457200e+04 1.2332051e-01 + 1.3457600e+04 1.1332051e-01 + 1.3458000e+04 -8.6679487e-02 + 1.3458400e+04 -3.1667949e-01 + 1.3458800e+04 -7.1667949e-01 + 1.3459200e+04 -1.0866795e+00 + 1.3459600e+04 -1.1166795e+00 + 1.3460000e+04 -6.7667949e-01 + 1.3460400e+04 -9.5667949e-01 + 1.3460800e+04 -1.1466795e+00 + 1.3461200e+04 -1.4666795e+00 + 1.3461600e+04 -1.7466795e+00 + 1.3462000e+04 -1.9766795e+00 + 1.3462400e+04 -2.0366795e+00 + 1.3462800e+04 -1.9766795e+00 + 1.3463200e+04 -1.6466795e+00 + 1.3463600e+04 -1.5166795e+00 + 1.3464000e+04 -9.6667949e-01 + 1.3464400e+04 -1.4667949e-01 + 1.3464800e+04 7.8332051e-01 + 1.3465200e+04 1.9133205e+00 + 1.3465600e+04 2.9333205e+00 + 1.3466000e+04 3.5533205e+00 + 1.3466400e+04 3.7633205e+00 + 1.3466800e+04 3.4333205e+00 + 1.3467200e+04 2.8333205e+00 + 1.3467600e+04 2.2333205e+00 + 1.3468000e+04 1.7033205e+00 + 1.3468400e+04 1.2733205e+00 + 1.3468800e+04 8.4332051e-01 + 1.3469200e+04 6.5332051e-01 + 1.3469600e+04 4.3332051e-01 + 1.3470000e+04 8.3320513e-02 + 1.3470400e+04 -5.6679487e-02 + 1.3470800e+04 -1.2667949e-01 + 1.3471200e+04 -6.4667949e-01 + 1.3471600e+04 -1.0466795e+00 + 1.3472000e+04 -6.9667949e-01 + 1.3472400e+04 -1.9667949e-01 + 1.3472800e+04 -3.6679487e-02 + 1.3473200e+04 7.0332051e-01 + 1.3473600e+04 1.0533205e+00 + 1.3474000e+04 1.2833205e+00 + 1.3474400e+04 1.3533205e+00 + 1.3474800e+04 1.5533205e+00 + 1.3475200e+04 1.7133205e+00 + 1.3475600e+04 1.7433205e+00 + 1.3476000e+04 1.5933205e+00 + 1.3476400e+04 1.4333205e+00 + 1.3476800e+04 1.6233205e+00 + 1.3477200e+04 8.0332051e-01 + 1.3477600e+04 -1.5266795e+00 + 1.3478000e+04 -2.8566795e+00 + 1.3478400e+04 -3.4466795e+00 + 1.3478800e+04 -4.2266795e+00 + 1.3479200e+04 -4.3366795e+00 + 1.3479600e+04 -3.5566795e+00 + 1.3480000e+04 -2.9166795e+00 + 1.3480400e+04 -2.2766795e+00 + 1.3480800e+04 -1.5966795e+00 + 1.3481200e+04 -1.1066795e+00 + 1.3481600e+04 -7.9667949e-01 + 1.3482000e+04 -3.2667949e-01 + 1.3482400e+04 4.2332051e-01 + 1.3482800e+04 1.4633205e+00 + 1.3483200e+04 2.5733205e+00 + 1.3483600e+04 3.3933205e+00 + 1.3484000e+04 4.0533205e+00 + 1.3484400e+04 4.8733205e+00 + 1.3484800e+04 5.2433205e+00 + 1.3485200e+04 5.5533205e+00 + 1.3485600e+04 4.9833205e+00 + 1.3486000e+04 3.6533205e+00 + 1.3486400e+04 2.0933205e+00 + 1.3486800e+04 9.1332051e-01 + 1.3487200e+04 8.3320513e-02 + 1.3487600e+04 -4.0667949e-01 + 1.3488000e+04 -4.0667949e-01 + 1.3488400e+04 -4.7667949e-01 + 1.3488800e+04 -1.6766795e+00 + 1.3489200e+04 -3.2266795e+00 + 1.3489600e+04 -3.3766795e+00 + 1.3490000e+04 -3.2066795e+00 + 1.3490400e+04 -2.6966795e+00 + 1.3490800e+04 -2.1966795e+00 + 1.3491200e+04 -1.7266795e+00 + 1.3491600e+04 -8.1667949e-01 + 1.3492000e+04 -9.6679487e-02 + 1.3492400e+04 6.2332051e-01 + 1.3492800e+04 1.1933205e+00 + 1.3493200e+04 1.3633205e+00 + 1.3493600e+04 1.3033205e+00 + 1.3494000e+04 1.2933205e+00 + 1.3494400e+04 1.8233205e+00 + 1.3494800e+04 2.4733205e+00 + 1.3495200e+04 3.0833205e+00 + 1.3495600e+04 3.4333205e+00 + 1.3496000e+04 3.4233205e+00 + 1.3496400e+04 2.3933205e+00 + 1.3496800e+04 6.1332051e-01 + 1.3497200e+04 -4.0667949e-01 + 1.3497600e+04 -1.3266795e+00 + 1.3498000e+04 -1.9866795e+00 + 1.3498400e+04 -2.2766795e+00 + 1.3498800e+04 -2.1166795e+00 + 1.3499200e+04 -1.7266795e+00 + 1.3499600e+04 -1.6566795e+00 + 1.3500000e+04 -1.6566795e+00 + 1.3500400e+04 -1.6566795e+00 + 1.3500800e+04 -1.7266795e+00 + 1.3501200e+04 -1.3266795e+00 + 1.3501600e+04 -7.9667949e-01 + 1.3502000e+04 -6.6679487e-02 + 1.3502400e+04 9.1332051e-01 + 1.3502800e+04 1.7933205e+00 + 1.3503200e+04 2.1733205e+00 + 1.3503600e+04 2.2833205e+00 + 1.3504000e+04 2.4633205e+00 + 1.3504400e+04 2.5833205e+00 + 1.3504800e+04 2.7233205e+00 + 1.3505200e+04 2.7333205e+00 + 1.3505600e+04 2.8833205e+00 + 1.3506000e+04 2.7433205e+00 + 1.3506400e+04 2.0833205e+00 + 1.3506800e+04 1.6133205e+00 + 1.3507200e+04 1.4333205e+00 + 1.3507600e+04 9.8332051e-01 + 1.3508000e+04 8.8332051e-01 + 1.3508400e+04 6.5332051e-01 + 1.3508800e+04 6.9332051e-01 + 1.3509200e+04 4.4332051e-01 + 1.3509600e+04 -3.8667949e-01 + 1.3510000e+04 -1.0866795e+00 + 1.3510400e+04 -1.4066795e+00 + 1.3510800e+04 -1.6066795e+00 + 1.3511200e+04 -3.4266795e+00 + 1.3511600e+04 -3.1766795e+00 + 1.3512000e+04 -2.2466795e+00 + 1.3512400e+04 -1.4166795e+00 + 1.3512800e+04 -3.4667949e-01 + 1.3513200e+04 4.7332051e-01 + 1.3513600e+04 1.0033205e+00 + 1.3514000e+04 1.5933205e+00 + 1.3514400e+04 1.9733205e+00 + 1.3514800e+04 2.0333205e+00 + 1.3515200e+04 1.9433205e+00 + 1.3515600e+04 1.5533205e+00 + 1.3516000e+04 1.2933205e+00 + 1.3516400e+04 4.6332051e-01 + 1.3516800e+04 -5.6679487e-02 + 1.3517200e+04 -9.0667949e-01 + 1.3517600e+04 -8.6667949e-01 + 1.3518000e+04 -5.9667949e-01 + 1.3518400e+04 -1.1667949e-01 + 1.3518800e+04 1.3332051e-01 + 1.3519200e+04 4.1332051e-01 + 1.3519600e+04 6.5332051e-01 + 1.3520000e+04 1.2433205e+00 + 1.3520400e+04 2.1233205e+00 + 1.3520800e+04 2.6033205e+00 + 1.3521200e+04 3.1533205e+00 + 1.3521600e+04 3.1433205e+00 + 1.3522000e+04 2.4433205e+00 + 1.3522400e+04 1.3533205e+00 + 1.3522800e+04 6.3332051e-01 + 1.3523200e+04 -8.6679487e-02 + 1.3523600e+04 -3.6667949e-01 + 1.3524000e+04 -5.2667949e-01 + 1.3524400e+04 -9.1667949e-01 + 1.3524800e+04 -1.3666795e+00 + 1.3525200e+04 -1.4166795e+00 + 1.3525600e+04 -1.6366795e+00 + 1.3526000e+04 -1.0466795e+00 + 1.3526400e+04 -2.7667949e-01 + 1.3526800e+04 1.6332051e-01 + 1.3527200e+04 2.1333205e+00 + 1.3527600e+04 2.9633205e+00 + 1.3528000e+04 2.7233205e+00 + 1.3528400e+04 2.3733205e+00 + 1.3528800e+04 2.4133205e+00 + 1.3529200e+04 1.9233205e+00 + 1.3529600e+04 9.3332051e-01 + 1.3530000e+04 6.2332051e-01 + 1.3530400e+04 -3.7667949e-01 + 1.3530800e+04 -7.3667949e-01 + 1.3531200e+04 -7.4667949e-01 + 1.3531600e+04 -1.5966795e+00 + 1.3532000e+04 -2.8666795e+00 + 1.3532400e+04 -2.8666795e+00 + 1.3532800e+04 -2.4966795e+00 + 1.3533200e+04 -2.1766795e+00 + 1.3533600e+04 -1.5766795e+00 + 1.3534000e+04 -1.0366795e+00 + 1.3534400e+04 -5.2667949e-01 + 1.3534800e+04 1.0332051e-01 + 1.3535200e+04 9.3332051e-01 + 1.3535600e+04 1.6633205e+00 + 1.3536000e+04 1.8333205e+00 + 1.3536400e+04 1.8533205e+00 + 1.3536800e+04 1.5933205e+00 + 1.3537200e+04 1.5033205e+00 + 1.3537600e+04 1.4333205e+00 + 1.3538000e+04 1.5033205e+00 + 1.3538400e+04 1.6033205e+00 + 1.3538800e+04 1.6433205e+00 + 1.3539200e+04 1.0533205e+00 + 1.3539600e+04 6.7332051e-01 + 1.3540000e+04 4.6332051e-01 + 1.3540400e+04 4.8332051e-01 + 1.3540800e+04 5.8332051e-01 + 1.3541200e+04 7.9332051e-01 + 1.3541600e+04 1.2233205e+00 + 1.3542000e+04 1.6733205e+00 + 1.3542400e+04 1.4933205e+00 + 1.3542800e+04 1.2133205e+00 + 1.3543200e+04 7.5332051e-01 + 1.3543600e+04 4.8332051e-01 + 1.3544000e+04 4.6332051e-01 + 1.3544400e+04 3.3332051e-01 + 1.3544800e+04 7.3320513e-02 + 1.3545200e+04 -4.2667949e-01 + 1.3545600e+04 -1.1066795e+00 + 1.3546000e+04 -1.1666795e+00 + 1.3546400e+04 -7.0667949e-01 + 1.3546800e+04 2.3320513e-02 + 1.3547200e+04 1.0133205e+00 + 1.3547600e+04 1.6133205e+00 + 1.3548000e+04 2.0233205e+00 + 1.3548400e+04 1.6433205e+00 + 1.3548800e+04 9.7332051e-01 + 1.3549200e+04 4.5332051e-01 + 1.3549600e+04 -1.6667949e-01 + 1.3550000e+04 -6.7667949e-01 + 1.3550400e+04 -1.3166795e+00 + 1.3550800e+04 -1.9066795e+00 + 1.3551200e+04 -2.3066795e+00 + 1.3551600e+04 -2.3666795e+00 + 1.3552000e+04 -2.5266795e+00 + 1.3552400e+04 -3.1666795e+00 + 1.3552800e+04 -3.0366795e+00 + 1.3553200e+04 -2.3266795e+00 + 1.3553600e+04 -1.2266795e+00 + 1.3554000e+04 4.3320513e-02 + 1.3554400e+04 1.3833205e+00 + 1.3554800e+04 2.0433205e+00 + 1.3555200e+04 2.4333205e+00 + 1.3555600e+04 2.8433205e+00 + 1.3556000e+04 2.8733205e+00 + 1.3556400e+04 2.7133205e+00 + 1.3556800e+04 3.0033205e+00 + 1.3557200e+04 3.4133205e+00 + 1.3557600e+04 4.0133205e+00 + 1.3558000e+04 4.4033205e+00 + 1.3558400e+04 4.0733205e+00 + 1.3558800e+04 3.0333205e+00 + 1.3559200e+04 1.8233205e+00 + 1.3559600e+04 5.1332051e-01 + 1.3560000e+04 -5.6679487e-02 + 1.3560400e+04 -3.4667949e-01 + 1.3560800e+04 -1.0166795e+00 + 1.3561200e+04 -1.2166795e+00 + 1.3561600e+04 -1.2166795e+00 + 1.3562000e+04 -1.0966795e+00 + 1.3562400e+04 -9.8667949e-01 + 1.3562800e+04 -9.0667949e-01 + 1.3563200e+04 -5.0667949e-01 + 1.3563600e+04 1.4332051e-01 + 1.3564000e+04 3.6332051e-01 + 1.3564400e+04 4.3320513e-02 + 1.3564800e+04 -4.0667949e-01 + 1.3565200e+04 -7.1667949e-01 + 1.3565600e+04 -6.5667949e-01 + 1.3566000e+04 -7.2667949e-01 + 1.3566400e+04 -1.1066795e+00 + 1.3566800e+04 -1.5366795e+00 + 1.3567200e+04 -1.7266795e+00 + 1.3567600e+04 -1.7466795e+00 + 1.3568000e+04 -1.3266795e+00 + 1.3568400e+04 -5.0667949e-01 + 1.3568800e+04 6.1332051e-01 + 1.3569200e+04 1.8433205e+00 + 1.3569600e+04 2.5933205e+00 + 1.3570000e+04 3.7033205e+00 + 1.3570400e+04 3.5033205e+00 + 1.3570800e+04 2.9533205e+00 + 1.3571200e+04 2.5833205e+00 + 1.3571600e+04 1.9333205e+00 + 1.3572000e+04 1.3233205e+00 + 1.3572400e+04 1.1233205e+00 + 1.3572800e+04 1.0533205e+00 + 1.3573200e+04 -3.0667949e-01 + 1.3573600e+04 -1.0466795e+00 + 1.3574000e+04 -1.1766795e+00 + 1.3574400e+04 -1.2566795e+00 + 1.3574800e+04 -1.1266795e+00 + 1.3575200e+04 -9.7667949e-01 + 1.3575600e+04 -6.1667949e-01 + 1.3576000e+04 -2.3667949e-01 + 1.3576400e+04 1.7332051e-01 + 1.3576800e+04 8.0332051e-01 + 1.3577200e+04 1.0333205e+00 + 1.3577600e+04 8.0332051e-01 + 1.3578000e+04 9.7332051e-01 + 1.3578400e+04 1.2633205e+00 + 1.3578800e+04 1.7633205e+00 + 1.3579200e+04 2.4233205e+00 + 1.3579600e+04 3.0333205e+00 + 1.3580000e+04 3.4433205e+00 + 1.3580400e+04 3.9333205e+00 + 1.3580800e+04 3.9533205e+00 + 1.3581200e+04 2.6633205e+00 + 1.3581600e+04 2.4233205e+00 + 1.3582000e+04 2.4233205e+00 + 1.3582400e+04 2.4033205e+00 + 1.3582800e+04 -1.6366795e+00 + 1.3583200e+04 -2.8866795e+00 + 1.3583600e+04 -3.2166795e+00 + 1.3584000e+04 -2.9866795e+00 + 1.3584400e+04 -2.5066795e+00 + 1.3584800e+04 -2.0366795e+00 + 1.3585200e+04 -1.6066795e+00 + 1.3585600e+04 -1.3766795e+00 + 1.3586000e+04 -1.0166795e+00 + 1.3586400e+04 -5.7667949e-01 + 1.3586800e+04 -3.2667949e-01 + 1.3587200e+04 -2.2667949e-01 + 1.3587600e+04 -4.6667949e-01 + 1.3588000e+04 -5.3667949e-01 + 1.3588400e+04 -2.2667949e-01 + 1.3588800e+04 1.0332051e-01 + 1.3589200e+04 1.5332051e-01 + 1.3589600e+04 1.5332051e-01 + 1.3590000e+04 1.5332051e-01 + 1.3590400e+04 1.6833205e+00 + 1.3590800e+04 2.4233205e+00 + 1.3591200e+04 2.6833205e+00 + 1.3591600e+04 2.8333205e+00 + 1.3592000e+04 2.7033205e+00 + 1.3592400e+04 1.9533205e+00 + 1.3592800e+04 1.3633205e+00 + 1.3593200e+04 7.6332051e-01 + 1.3593600e+04 3.5332051e-01 + 1.3594000e+04 2.2332051e-01 + 1.3594400e+04 1.0332051e-01 + 1.3594800e+04 2.2332051e-01 + 1.3595200e+04 3.7332051e-01 + 1.3595600e+04 6.0332051e-01 + 1.3596000e+04 9.5332051e-01 + 1.3596400e+04 1.2933205e+00 + 1.3596800e+04 1.4533205e+00 + 1.3597200e+04 1.2733205e+00 + 1.3597600e+04 1.0533205e+00 + 1.3598000e+04 4.8332051e-01 + 1.3598400e+04 -2.6667949e-01 + 1.3598800e+04 -1.2766795e+00 + 1.3599200e+04 -2.0866795e+00 + 1.3599600e+04 -2.2466795e+00 + 1.3600000e+04 -1.9166795e+00 + 1.3600400e+04 -1.7366795e+00 + 1.3600800e+04 -1.4966795e+00 + 1.3601200e+04 -9.4667949e-01 + 1.3601600e+04 -4.4667949e-01 + 1.3602000e+04 1.9332051e-01 + 1.3602400e+04 6.6332051e-01 + 1.3602800e+04 1.0933205e+00 + 1.3603200e+04 1.4033205e+00 + 1.3603600e+04 1.5333205e+00 + 1.3604000e+04 1.5233205e+00 + 1.3604400e+04 1.1533205e+00 + 1.3604800e+04 9.1332051e-01 + 1.3605200e+04 3.8332051e-01 + 1.3605600e+04 5.3320513e-02 + 1.3606000e+04 -3.1667949e-01 + 1.3606400e+04 -6.4667949e-01 + 1.3606800e+04 -1.1566795e+00 + 1.3607200e+04 -1.5366795e+00 + 1.3607600e+04 -9.9667949e-01 + 1.3608000e+04 -5.0667949e-01 + 1.3608400e+04 5.3320513e-02 + 1.3608800e+04 6.0332051e-01 + 1.3609200e+04 9.7332051e-01 + 1.3609600e+04 1.2033205e+00 + 1.3610000e+04 1.4133205e+00 + 1.3610400e+04 1.2633205e+00 + 1.3610800e+04 1.2933205e+00 + 1.3611200e+04 1.4733205e+00 + 1.3611600e+04 1.3633205e+00 + 1.3612000e+04 1.0533205e+00 + 1.3612400e+04 9.2332051e-01 + 1.3612800e+04 9.3332051e-01 + 1.3613200e+04 1.2233205e+00 + 1.3613600e+04 1.3233205e+00 + 1.3614000e+04 1.6533205e+00 + 1.3614400e+04 1.8833205e+00 + 1.3614800e+04 2.0433205e+00 + 1.3615200e+04 2.1633205e+00 + 1.3615600e+04 2.0433205e+00 + 1.3616000e+04 1.6233205e+00 + 1.3616400e+04 1.1033205e+00 + 1.3616800e+04 7.7332051e-01 + 1.3617200e+04 3.7332051e-01 + 1.3617600e+04 -2.6679487e-02 + 1.3618000e+04 -5.9667949e-01 + 1.3618400e+04 -1.3266795e+00 + 1.3618800e+04 -1.9466795e+00 + 1.3619200e+04 -2.3266795e+00 + 1.3619600e+04 -2.8466795e+00 + 1.3620000e+04 -3.0466795e+00 + 1.3620400e+04 -3.1966795e+00 + 1.3620800e+04 -2.9266795e+00 + 1.3621200e+04 -2.4866795e+00 + 1.3621600e+04 -2.2866795e+00 + 1.3622000e+04 -1.9466795e+00 + 1.3622400e+04 -1.1366795e+00 + 1.3622800e+04 1.7332051e-01 + 1.3623200e+04 1.4033205e+00 + 1.3623600e+04 2.3033205e+00 + 1.3624000e+04 2.9233205e+00 + 1.3624400e+04 3.3933205e+00 + 1.3624800e+04 3.6533205e+00 + 1.3625200e+04 3.5333205e+00 + 1.3625600e+04 3.0933205e+00 + 1.3626000e+04 2.4833205e+00 + 1.3626400e+04 1.8233205e+00 + 1.3626800e+04 1.3933205e+00 + 1.3627200e+04 6.7332051e-01 + 1.3627600e+04 1.6332051e-01 + 1.3628000e+04 -5.5667949e-01 + 1.3628400e+04 -8.7667949e-01 + 1.3628800e+04 -1.1566795e+00 + 1.3629200e+04 -9.9667949e-01 + 1.3629600e+04 -7.9667949e-01 + 1.3630000e+04 -7.2667949e-01 + 1.3630400e+04 -5.6667949e-01 + 1.3630800e+04 -4.2667949e-01 + 1.3631200e+04 -2.6667949e-01 + 1.3631600e+04 3.3205128e-03 + 1.3632000e+04 4.4332051e-01 + 1.3632400e+04 1.0033205e+00 + 1.3632800e+04 1.3833205e+00 + 1.3633200e+04 1.4333205e+00 + 1.3633600e+04 1.2333205e+00 + 1.3634000e+04 1.4433205e+00 + 1.3634400e+04 1.7733205e+00 + 1.3634800e+04 2.0533205e+00 + 1.3635200e+04 2.0533205e+00 + 1.3635600e+04 1.6933205e+00 + 1.3636000e+04 1.7033205e+00 + 1.3636400e+04 1.4433205e+00 + 1.3636800e+04 9.7332051e-01 + 1.3637200e+04 8.9332051e-01 + 1.3637600e+04 3.6332051e-01 + 1.3638000e+04 -1.5966795e+00 + 1.3638400e+04 -1.7566795e+00 + 1.3638800e+04 -1.1966795e+00 + 1.3639200e+04 -7.9667949e-01 + 1.3639600e+04 -2.5667949e-01 + 1.3640000e+04 -3.0667949e-01 + 1.3640400e+04 -6.7667949e-01 + 1.3640800e+04 -9.1667949e-01 + 1.3641200e+04 -1.0366795e+00 + 1.3641600e+04 -9.7667949e-01 + 1.3642000e+04 -1.3566795e+00 + 1.3642400e+04 -1.6966795e+00 + 1.3642800e+04 -1.7866795e+00 + 1.3643200e+04 -1.4166795e+00 + 1.3643600e+04 -6.1667949e-01 + 1.3644000e+04 3.0332051e-01 + 1.3644400e+04 1.0933205e+00 + 1.3644800e+04 1.8633205e+00 + 1.3645200e+04 2.4033205e+00 + 1.3645600e+04 3.5033205e+00 + 1.3646000e+04 3.8033205e+00 + 1.3646400e+04 3.6733205e+00 + 1.3646800e+04 3.5333205e+00 + 1.3647200e+04 3.2833205e+00 + 1.3647600e+04 2.6833205e+00 + 1.3648000e+04 2.3833205e+00 + 1.3648400e+04 1.3933205e+00 + 1.3648800e+04 5.5332051e-01 + 1.3649200e+04 -8.6679487e-02 + 1.3649600e+04 -4.4667949e-01 + 1.3650000e+04 -8.0667949e-01 + 1.3650400e+04 -1.0066795e+00 + 1.3650800e+04 -1.2666795e+00 + 1.3651200e+04 -1.5966795e+00 + 1.3651600e+04 -1.6966795e+00 + 1.3652000e+04 -1.9166795e+00 + 1.3652400e+04 -1.9466795e+00 + 1.3652800e+04 -1.7166795e+00 + 1.3653200e+04 -1.6566795e+00 + 1.3653600e+04 -1.3466795e+00 + 1.3654000e+04 -6.2667949e-01 + 1.3654400e+04 5.8332051e-01 + 1.3654800e+04 1.8433205e+00 + 1.3655200e+04 3.0433205e+00 + 1.3655600e+04 3.5433205e+00 + 1.3656000e+04 3.0333205e+00 + 1.3656400e+04 2.2833205e+00 + 1.3656800e+04 1.4233205e+00 + 1.3657200e+04 8.0332051e-01 + 1.3657600e+04 4.4332051e-01 + 1.3658000e+04 2.1332051e-01 + 1.3658400e+04 -1.6679487e-02 + 1.3658800e+04 -2.7667949e-01 + 1.3659200e+04 -5.9667949e-01 + 1.3659600e+04 -8.9667949e-01 + 1.3660000e+04 -1.1666795e+00 + 1.3660400e+04 -1.3566795e+00 + 1.3660800e+04 -1.0966795e+00 + 1.3661200e+04 -8.7667949e-01 + 1.3661600e+04 -6.4667949e-01 + 1.3662000e+04 -4.4667949e-01 + 1.3662400e+04 -2.3667949e-01 + 1.3662800e+04 4.4332051e-01 + 1.3663200e+04 8.6332051e-01 + 1.3663600e+04 1.4633205e+00 + 1.3664000e+04 2.5033205e+00 + 1.3664400e+04 2.9833205e+00 + 1.3664800e+04 2.5533205e+00 + 1.3665200e+04 2.0533205e+00 + 1.3665600e+04 1.2533205e+00 + 1.3666000e+04 4.0332051e-01 + 1.3666400e+04 -1.4667949e-01 + 1.3666800e+04 -7.9667949e-01 + 1.3667200e+04 -1.2166795e+00 + 1.3667600e+04 -1.0166795e+00 + 1.3668000e+04 -8.1667949e-01 + 1.3668400e+04 -7.1667949e-01 + 1.3668800e+04 -6.2667949e-01 + 1.3669200e+04 -4.7667949e-01 + 1.3669600e+04 -2.8667949e-01 + 1.3670000e+04 2.5332051e-01 + 1.3670400e+04 9.8332051e-01 + 1.3670800e+04 1.1433205e+00 + 1.3671200e+04 1.1433205e+00 + 1.3671600e+04 1.3033205e+00 + 1.3672000e+04 1.4033205e+00 + 1.3672400e+04 1.2533205e+00 + 1.3672800e+04 1.3033205e+00 + 1.3673200e+04 1.2033205e+00 + 1.3673600e+04 5.9332051e-01 + 1.3674000e+04 1.0332051e-01 + 1.3674400e+04 -5.6679487e-02 + 1.3674800e+04 -2.0667949e-01 + 1.3675200e+04 -2.1667949e-01 + 1.3675600e+04 -1.6667949e-01 + 1.3676000e+04 -1.4667949e-01 + 1.3676400e+04 -7.6679487e-02 + 1.3676800e+04 2.0332051e-01 + 1.3677200e+04 6.1332051e-01 + 1.3677600e+04 6.4332051e-01 + 1.3678000e+04 3.3332051e-01 + 1.3678400e+04 -3.3667949e-01 + 1.3678800e+04 -4.9667949e-01 + 1.3679200e+04 -4.1667949e-01 + 1.3679600e+04 -5.9667949e-01 + 1.3680000e+04 -8.6667949e-01 + 1.3680400e+04 -9.8667949e-01 + 1.3680800e+04 -1.0366795e+00 + 1.3681200e+04 -6.9667949e-01 + 1.3681600e+04 -6.0667949e-01 + 1.3682000e+04 -3.0667949e-01 + 1.3682400e+04 -9.6679487e-02 + 1.3682800e+04 3.3332051e-01 + 1.3683200e+04 5.7332051e-01 + 1.3683600e+04 9.5332051e-01 + 1.3684000e+04 1.0433205e+00 + 1.3684400e+04 1.0333205e+00 + 1.3684800e+04 1.4433205e+00 + 1.3685200e+04 1.4933205e+00 + 1.3685600e+04 1.6833205e+00 + 1.3686000e+04 1.4133205e+00 + 1.3686400e+04 1.3533205e+00 + 1.3686800e+04 9.5332051e-01 + 1.3687200e+04 6.2332051e-01 + 1.3687600e+04 4.1332051e-01 + 1.3688000e+04 -1.7667949e-01 + 1.3688400e+04 -7.1667949e-01 + 1.3688800e+04 -1.0866795e+00 + 1.3689200e+04 -1.3466795e+00 + 1.3689600e+04 -1.3666795e+00 + 1.3690000e+04 -1.1266795e+00 + 1.3690400e+04 -8.5667949e-01 + 1.3690800e+04 -5.3667949e-01 + 1.3691200e+04 5.5332051e-01 + 1.3691600e+04 1.4233205e+00 + 1.3692000e+04 2.1133205e+00 + 1.3692400e+04 1.9933205e+00 + 1.3692800e+04 1.6133205e+00 + 1.3693200e+04 1.2033205e+00 + 1.3693600e+04 8.2332051e-01 + 1.3694000e+04 5.8332051e-01 + 1.3694400e+04 5.5332051e-01 + 1.3694800e+04 1.0333205e+00 + 1.3695200e+04 1.4733205e+00 + 1.3695600e+04 1.6133205e+00 + 1.3696000e+04 1.6033205e+00 + 1.3696400e+04 1.6933205e+00 + 1.3696800e+04 1.5533205e+00 + 1.3697200e+04 1.2433205e+00 + 1.3697600e+04 5.7332051e-01 + 1.3698000e+04 3.4332051e-01 + 1.3698400e+04 -1.9667949e-01 + 1.3698800e+04 -4.5667949e-01 + 1.3699200e+04 -6.9667949e-01 + 1.3699600e+04 -9.4667949e-01 + 1.3700000e+04 -1.3266795e+00 + 1.3700400e+04 -1.9066795e+00 + 1.3700800e+04 -1.8766795e+00 + 1.3701200e+04 -1.8266795e+00 + 1.3701600e+04 -1.9866795e+00 + 1.3702000e+04 -1.8166795e+00 + 1.3702400e+04 -1.7566795e+00 + 1.3702800e+04 -1.1366795e+00 + 1.3703200e+04 -4.8667949e-01 + 1.3703600e+04 -1.5667949e-01 + 1.3704000e+04 -1.6667949e-01 + 1.3704400e+04 -1.3667949e-01 + 1.3704800e+04 2.6332051e-01 + 1.3705200e+04 9.9332051e-01 + 1.3705600e+04 1.5133205e+00 + 1.3706000e+04 1.6533205e+00 + 1.3706400e+04 1.7133205e+00 + 1.3706800e+04 1.4833205e+00 + 1.3707200e+04 1.3033205e+00 + 1.3707600e+04 1.3533205e+00 + 1.3708000e+04 1.7033205e+00 + 1.3708400e+04 1.7433205e+00 + 1.3708800e+04 1.7633205e+00 + 1.3709200e+04 1.7833205e+00 + 1.3709600e+04 1.6433205e+00 + 1.3710000e+04 1.2433205e+00 + 1.3710400e+04 5.5332051e-01 + 1.3710800e+04 4.4332051e-01 + 1.3711200e+04 -1.5667949e-01 + 1.3711600e+04 -3.7667949e-01 + 1.3712000e+04 -5.5667949e-01 + 1.3712400e+04 -3.2667949e-01 + 1.3712800e+04 2.3320513e-02 + 1.3713200e+04 6.7332051e-01 + 1.3713600e+04 1.6933205e+00 + 1.3714000e+04 2.5233205e+00 + 1.3714400e+04 2.0733205e+00 + 1.3714800e+04 1.9133205e+00 + 1.3715200e+04 1.4833205e+00 + 1.3715600e+04 1.3533205e+00 + 1.3716000e+04 1.1933205e+00 + 1.3716400e+04 8.4332051e-01 + 1.3716800e+04 8.2332051e-01 + 1.3717200e+04 8.2332051e-01 + 1.3717600e+04 8.2332051e-01 + 1.3718000e+04 -3.9667949e-01 + 1.3718400e+04 -1.3166795e+00 + 1.3718800e+04 -1.3066795e+00 + 1.3719200e+04 -1.3966795e+00 + 1.3719600e+04 -1.1966795e+00 + 1.3720000e+04 -1.0566795e+00 + 1.3720400e+04 -5.9667949e-01 + 1.3720800e+04 -4.6667949e-01 + 1.3721200e+04 -1.4667949e-01 + 1.3721600e+04 1.2332051e-01 + 1.3722000e+04 1.6332051e-01 + 1.3722400e+04 1.3320513e-02 + 1.3722800e+04 -1.2667949e-01 + 1.3723200e+04 -4.0667949e-01 + 1.3723600e+04 -5.6667949e-01 + 1.3724000e+04 -8.6667949e-01 + 1.3724400e+04 -1.2866795e+00 + 1.3724800e+04 -1.2166795e+00 + 1.3725200e+04 -7.1667949e-01 + 1.3725600e+04 -3.2667949e-01 + 1.3726000e+04 8.5332051e-01 + 1.3726400e+04 1.3033205e+00 + 1.3726800e+04 1.5533205e+00 + 1.3727200e+04 1.7233205e+00 + 1.3727600e+04 2.0433205e+00 + 1.3728000e+04 1.9533205e+00 + 1.3728400e+04 1.8633205e+00 + 1.3728800e+04 1.7033205e+00 + 1.3729200e+04 1.3833205e+00 + 1.3729600e+04 8.5332051e-01 + 1.3730000e+04 5.0332051e-01 + 1.3730400e+04 8.6332051e-01 + 1.3730800e+04 1.4933205e+00 + 1.3731200e+04 1.8433205e+00 + 1.3731600e+04 1.8433205e+00 + 1.3732000e+04 1.7633205e+00 + 1.3732400e+04 1.6633205e+00 + 1.3732800e+04 1.3833205e+00 + 1.3733200e+04 1.1533205e+00 + 1.3733600e+04 8.9332051e-01 + 1.3734000e+04 4.7332051e-01 + 1.3734400e+04 8.3320513e-02 + 1.3734800e+04 -4.6679487e-02 + 1.3735200e+04 -6.0667949e-01 + 1.3735600e+04 -7.7667949e-01 + 1.3736000e+04 -8.7667949e-01 + 1.3736400e+04 -1.3166795e+00 + 1.3736800e+04 -1.6166795e+00 + 1.3737200e+04 -1.3266795e+00 + 1.3737600e+04 -5.0667949e-01 + 1.3738000e+04 3.5332051e-01 + 1.3738400e+04 1.8333205e+00 + 1.3738800e+04 1.1233205e+00 + 1.3739200e+04 3.2332051e-01 + 1.3739600e+04 -5.6679487e-02 + 1.3740000e+04 -4.2667949e-01 + 1.3740400e+04 -5.6667949e-01 + 1.3740800e+04 -3.6667949e-01 + 1.3741200e+04 -3.6679487e-02 + 1.3741600e+04 1.1332051e-01 + 1.3742000e+04 1.5332051e-01 + 1.3742400e+04 2.2332051e-01 + 1.3742800e+04 1.0332051e-01 + 1.3743200e+04 -1.2667949e-01 + 1.3743600e+04 -4.2667949e-01 + 1.3744000e+04 -7.6667949e-01 + 1.3744400e+04 -1.3966795e+00 + 1.3744800e+04 -1.4166795e+00 + 1.3745200e+04 -1.2466795e+00 + 1.3745600e+04 -1.0566795e+00 + 1.3746000e+04 -6.0667949e-01 + 1.3746400e+04 3.3205128e-03 + 1.3746800e+04 4.6332051e-01 + 1.3747200e+04 1.0533205e+00 + 1.3747600e+04 1.5833205e+00 + 1.3748000e+04 2.1133205e+00 + 1.3748400e+04 2.2333205e+00 + 1.3748800e+04 2.4833205e+00 + 1.3749200e+04 2.8033205e+00 + 1.3749600e+04 2.9033205e+00 + 1.3750000e+04 2.8633205e+00 + 1.3750400e+04 2.4933205e+00 + 1.3750800e+04 2.3833205e+00 + 1.3751200e+04 1.9633205e+00 + 1.3751600e+04 8.5332051e-01 + 1.3752000e+04 5.0332051e-01 + 1.3752400e+04 5.3320513e-02 + 1.3752800e+04 -4.4667949e-01 + 1.3753200e+04 -4.6667949e-01 + 1.3753600e+04 -5.6667949e-01 + 1.3754000e+04 -1.0766795e+00 + 1.3754400e+04 -1.3466795e+00 + 1.3754800e+04 -1.5266795e+00 + 1.3755200e+04 -1.6966795e+00 + 1.3755600e+04 -1.7566795e+00 + 1.3756000e+04 -1.4466795e+00 + 1.3756400e+04 -6.5667949e-01 + 1.3756800e+04 3.0332051e-01 + 1.3757200e+04 1.1033205e+00 + 1.3757600e+04 1.4833205e+00 + 1.3758000e+04 2.5033205e+00 + 1.3758400e+04 2.7433205e+00 + 1.3758800e+04 2.7533205e+00 + 1.3759200e+04 2.1733205e+00 + 1.3759600e+04 1.5933205e+00 + 1.3760000e+04 8.4332051e-01 + 1.3760400e+04 3.7332051e-01 + 1.3760800e+04 4.3320513e-02 + 1.3761200e+04 -4.5667949e-01 + 1.3761600e+04 -8.5667949e-01 + 1.3762000e+04 -1.2266795e+00 + 1.3762400e+04 -1.7466795e+00 + 1.3762800e+04 -2.4966795e+00 + 1.3763200e+04 -3.1266795e+00 + 1.3763600e+04 -3.0566795e+00 + 1.3764000e+04 -2.4566795e+00 + 1.3764400e+04 -1.8866795e+00 + 1.3764800e+04 -1.6966795e+00 + 1.3765200e+04 -1.2066795e+00 + 1.3765600e+04 -8.8667949e-01 + 1.3766000e+04 -4.2667949e-01 + 1.3766400e+04 -6.6679487e-02 + 1.3766800e+04 1.0133205e+00 + 1.3767200e+04 1.2233205e+00 + 1.3767600e+04 3.3233205e+00 + 1.3768000e+04 3.5433205e+00 + 1.3768400e+04 3.5233205e+00 + 1.3768800e+04 3.2133205e+00 + 1.3769200e+04 2.6433205e+00 + 1.3769600e+04 1.4533205e+00 + 1.3770000e+04 7.5332051e-01 + 1.3770400e+04 1.0333205e+00 + 1.3770800e+04 1.8233205e+00 + 1.3771200e+04 2.2533205e+00 + 1.3771600e+04 1.9933205e+00 + 1.3772000e+04 1.9533205e+00 + 1.3772400e+04 1.3033205e+00 + 1.3772800e+04 4.2332051e-01 + 1.3773200e+04 -4.7667949e-01 + 1.3773600e+04 -7.0667949e-01 + 1.3774000e+04 -9.2667949e-01 + 1.3774400e+04 -1.0966795e+00 + 1.3774800e+04 -1.0766795e+00 + 1.3775200e+04 -1.2366795e+00 + 1.3775600e+04 -1.2066795e+00 + 1.3776000e+04 -9.1667949e-01 + 1.3776400e+04 -3.2667949e-01 + 1.3776800e+04 3.6332051e-01 + 1.3777200e+04 9.5332051e-01 + 1.3777600e+04 1.4233205e+00 + 1.3778000e+04 2.1933205e+00 + 1.3778400e+04 3.0433205e+00 + 1.3778800e+04 2.8833205e+00 + 1.3779200e+04 2.6933205e+00 + 1.3779600e+04 2.6833205e+00 + 1.3780000e+04 -5.6667949e-01 + 1.3780400e+04 -1.7666795e+00 + 1.3780800e+04 -1.9566795e+00 + 1.3781200e+04 -1.5766795e+00 + 1.3781600e+04 -1.2066795e+00 + 1.3782000e+04 -9.0667949e-01 + 1.3782400e+04 -4.1667949e-01 + 1.3782800e+04 8.3320513e-02 + 1.3783200e+04 5.3332051e-01 + 1.3783600e+04 8.7332051e-01 + 1.3784000e+04 3.4332051e-01 + 1.3784400e+04 -4.5667949e-01 + 1.3784800e+04 -1.2666795e+00 + 1.3785200e+04 -1.4466795e+00 + 1.3785600e+04 -1.1766795e+00 + 1.3786000e+04 -9.0667949e-01 + 1.3786400e+04 -4.7667949e-01 + 1.3786800e+04 1.4332051e-01 + 1.3787200e+04 7.3332051e-01 + 1.3787600e+04 1.6233205e+00 + 1.3788000e+04 1.8933205e+00 + 1.3788400e+04 2.0433205e+00 + 1.3788800e+04 2.4033205e+00 + 1.3789200e+04 2.5133205e+00 + 1.3789600e+04 2.5733205e+00 + 1.3790000e+04 2.0533205e+00 + 1.3790400e+04 1.5533205e+00 + 1.3790800e+04 5.5332051e-01 + 1.3791200e+04 9.3320513e-02 + 1.3791600e+04 -7.6679487e-02 + 1.3792000e+04 -3.6679487e-02 + 1.3792400e+04 2.8332051e-01 + 1.3792800e+04 8.4332051e-01 + 1.3793200e+04 1.4633205e+00 + 1.3793600e+04 1.9733205e+00 + 1.3794000e+04 2.1433205e+00 + 1.3794400e+04 2.4733205e+00 + 1.3794800e+04 2.7233205e+00 + 1.3795200e+04 2.9433205e+00 + 1.3795600e+04 2.6633205e+00 + 1.3796000e+04 1.8733205e+00 + 1.3796400e+04 9.4332051e-01 + 1.3796800e+04 3.7332051e-01 + 1.3797200e+04 3.3320513e-02 + 1.3797600e+04 -1.7466795e+00 + 1.3798000e+04 -2.1266795e+00 + 1.3798400e+04 -2.1266795e+00 + 1.3798800e+04 -2.1966795e+00 + 1.3799200e+04 -2.4166795e+00 + 1.3799600e+04 -2.5366795e+00 + 1.3800000e+04 -2.3666795e+00 + 1.3800400e+04 -2.0266795e+00 + 1.3800800e+04 -1.8466795e+00 + 1.3801200e+04 -1.4166795e+00 + 1.3801600e+04 -6.9667949e-01 + 1.3802000e+04 5.3320513e-02 + 1.3802400e+04 3.9332051e-01 + 1.3802800e+04 9.8332051e-01 + 1.3803200e+04 9.9332051e-01 + 1.3803600e+04 6.3332051e-01 + 1.3804000e+04 4.6332051e-01 + 1.3804400e+04 5.0332051e-01 + 1.3804800e+04 3.3332051e-01 + 1.3805200e+04 3.3332051e-01 + 1.3805600e+04 3.7332051e-01 + 1.3806000e+04 4.1332051e-01 + 1.3806400e+04 8.2332051e-01 + 1.3806800e+04 1.4633205e+00 + 1.3807200e+04 2.0533205e+00 + 1.3807600e+04 1.9233205e+00 + 1.3808000e+04 1.9833205e+00 + 1.3808400e+04 1.8233205e+00 + 1.3808800e+04 1.5433205e+00 + 1.3809200e+04 1.1333205e+00 + 1.3809600e+04 9.9332051e-01 + 1.3810000e+04 8.0332051e-01 + 1.3810400e+04 -1.0667949e-01 + 1.3810800e+04 -5.9667949e-01 + 1.3811200e+04 -7.2667949e-01 + 1.3811600e+04 -5.5667949e-01 + 1.3812000e+04 -3.8667949e-01 + 1.3812400e+04 -2.1667949e-01 + 1.3812800e+04 9.3320513e-02 + 1.3813200e+04 2.3332051e-01 + 1.3813600e+04 8.9332051e-01 + 1.3814000e+04 9.3332051e-01 + 1.3814400e+04 1.0933205e+00 + 1.3814800e+04 1.4633205e+00 + 1.3815200e+04 1.6533205e+00 + 1.3815600e+04 1.8533205e+00 + 1.3816000e+04 2.0533205e+00 + 1.3816400e+04 2.2933205e+00 + 1.3816800e+04 2.2733205e+00 + 1.3817200e+04 1.9833205e+00 + 1.3817600e+04 6.8332051e-01 + 1.3818000e+04 -5.6667949e-01 + 1.3818400e+04 -1.3466795e+00 + 1.3818800e+04 -1.7366795e+00 + 1.3819200e+04 -2.1066795e+00 + 1.3819600e+04 -2.3766795e+00 + 1.3820000e+04 -2.4466795e+00 + 1.3820400e+04 -2.4466795e+00 + 1.3820800e+04 -2.6566795e+00 + 1.3821200e+04 -2.7366795e+00 + 1.3821600e+04 -2.3366795e+00 + 1.3822000e+04 -1.6466795e+00 + 1.3822400e+04 -9.4667949e-01 + 1.3822800e+04 -3.3667949e-01 + 1.3823200e+04 2.3332051e-01 + 1.3823600e+04 1.0033205e+00 + 1.3824000e+04 1.6533205e+00 + 1.3824400e+04 2.1733205e+00 + 1.3824800e+04 2.8033205e+00 + 1.3825200e+04 2.6133205e+00 + 1.3825600e+04 2.5533205e+00 + 1.3826000e+04 2.0033205e+00 + 1.3826400e+04 1.8033205e+00 + 1.3826800e+04 1.4833205e+00 + 1.3827200e+04 1.3333205e+00 + 1.3827600e+04 1.2033205e+00 + 1.3828000e+04 9.8332051e-01 + 1.3828400e+04 6.8332051e-01 + 1.3828800e+04 4.2332051e-01 + 1.3829200e+04 1.6332051e-01 + 1.3829600e+04 3.3205128e-03 + 1.3830000e+04 -4.6679487e-02 + 1.3830400e+04 1.0332051e-01 + 1.3830800e+04 4.5332051e-01 + 1.3831200e+04 1.1433205e+00 + 1.3831600e+04 1.3633205e+00 + 1.3832000e+04 8.6332051e-01 + 1.3832400e+04 4.1332051e-01 + 1.3832800e+04 -2.7667949e-01 + 1.3833200e+04 -2.9667949e-01 + 1.3833600e+04 -2.7667949e-01 + 1.3834000e+04 -2.7667949e-01 + 1.3834400e+04 -2.2667949e-01 + 1.3834800e+04 -1.0667949e-01 + 1.3835200e+04 2.6332051e-01 + 1.3835600e+04 5.5332051e-01 + 1.3836000e+04 8.7332051e-01 + 1.3836400e+04 1.1333205e+00 + 1.3836800e+04 1.0733205e+00 + 1.3837200e+04 1.1133205e+00 + 1.3837600e+04 1.0533205e+00 + 1.3838000e+04 9.9332051e-01 + 1.3838400e+04 8.5332051e-01 + 1.3838800e+04 7.2332051e-01 + 1.3839200e+04 7.2332051e-01 + 1.3839600e+04 -7.7667949e-01 + 1.3840000e+04 -1.9166795e+00 + 1.3840400e+04 -1.7266795e+00 + 1.3840800e+04 -1.5766795e+00 + 1.3841200e+04 -1.4466795e+00 + 1.3841600e+04 -1.2166795e+00 + 1.3842000e+04 -7.1667949e-01 + 1.3842400e+04 -1.9667949e-01 + 1.3842800e+04 2.0332051e-01 + 1.3843200e+04 7.8332051e-01 + 1.3843600e+04 7.9332051e-01 + 1.3844000e+04 8.8332051e-01 + 1.3844400e+04 1.2233205e+00 + 1.3844800e+04 1.3433205e+00 + 1.3845200e+04 1.4833205e+00 + 1.3845600e+04 1.4733205e+00 + 1.3846000e+04 1.3933205e+00 + 1.3846400e+04 1.2533205e+00 + 1.3846800e+04 9.7332051e-01 + 1.3847200e+04 1.0333205e+00 + 1.3847600e+04 7.6332051e-01 + 1.3848000e+04 1.7332051e-01 + 1.3848400e+04 -1.2667949e-01 + 1.3848800e+04 -6.0667949e-01 + 1.3849200e+04 -1.0666795e+00 + 1.3849600e+04 -1.3066795e+00 + 1.3850000e+04 -1.0866795e+00 + 1.3850400e+04 -4.9667949e-01 + 1.3850800e+04 -9.6679487e-02 + 1.3851200e+04 1.6332051e-01 + 1.3851600e+04 3.9332051e-01 + 1.3852000e+04 6.6332051e-01 + 1.3852400e+04 1.0533205e+00 + 1.3852800e+04 1.6833205e+00 + 1.3853200e+04 2.0733205e+00 + 1.3853600e+04 2.1733205e+00 + 1.3854000e+04 2.5533205e+00 + 1.3854400e+04 3.4533205e+00 + 1.3854800e+04 4.1133205e+00 + 1.3855200e+04 3.7033205e+00 + 1.3855600e+04 3.0733205e+00 + 1.3856000e+04 2.0333205e+00 + 1.3856400e+04 8.7332051e-01 + 1.3856800e+04 2.8332051e-01 + 1.3857200e+04 1.8332051e-01 + 1.3857600e+04 -1.6667949e-01 + 1.3858000e+04 -2.9166795e+00 + 1.3858400e+04 -3.1966795e+00 + 1.3858800e+04 -3.8966795e+00 + 1.3859200e+04 -4.1266795e+00 + 1.3859600e+04 -4.0266795e+00 + 1.3860000e+04 -3.3766795e+00 + 1.3860400e+04 -2.7766795e+00 + 1.3860800e+04 -2.5766795e+00 + 1.3861200e+04 -4.5667949e-01 + 1.3861600e+04 3.9332051e-01 + 1.3862000e+04 6.1332051e-01 + 1.3862400e+04 9.9332051e-01 + 1.3862800e+04 1.2433205e+00 + 1.3863200e+04 1.5433205e+00 + 1.3863600e+04 1.6733205e+00 + 1.3864000e+04 1.8033205e+00 + 1.3864400e+04 1.8333205e+00 + 1.3864800e+04 1.8933205e+00 + 1.3865200e+04 2.2333205e+00 + 1.3865600e+04 2.4333205e+00 + 1.3866000e+04 2.5933205e+00 + 1.3866400e+04 2.7833205e+00 + 1.3866800e+04 2.7633205e+00 + 1.3867200e+04 2.2333205e+00 + 1.3867600e+04 1.6333205e+00 + 1.3868000e+04 1.1333205e+00 + 1.3868400e+04 8.5332051e-01 + 1.3868800e+04 5.2332051e-01 + 1.3869200e+04 1.4332051e-01 + 1.3869600e+04 -2.1667949e-01 + 1.3870000e+04 -1.3166795e+00 + 1.3870400e+04 -2.0566795e+00 + 1.3870800e+04 -2.2066795e+00 + 1.3871200e+04 -2.1566795e+00 + 1.3871600e+04 -1.9666795e+00 + 1.3872000e+04 -1.2966795e+00 + 1.3872400e+04 -8.0667949e-01 + 1.3872800e+04 -3.4667949e-01 + 1.3873200e+04 3.5332051e-01 + 1.3873600e+04 8.2332051e-01 + 1.3874000e+04 1.3033205e+00 + 1.3874400e+04 1.6933205e+00 + 1.3874800e+04 2.0833205e+00 + 1.3875200e+04 1.7333205e+00 + 1.3875600e+04 1.5433205e+00 + 1.3876000e+04 1.6633205e+00 + 1.3876400e+04 1.7533205e+00 + 1.3876800e+04 1.5433205e+00 + 1.3877200e+04 8.6332051e-01 + 1.3877600e+04 3.0332051e-01 + 1.3878000e+04 -1.4667949e-01 + 1.3878400e+04 -6.1667949e-01 + 1.3878800e+04 -8.0667949e-01 + 1.3879200e+04 -1.1966795e+00 + 1.3879600e+04 -1.6466795e+00 + 1.3880000e+04 -1.8166795e+00 + 1.3880400e+04 -1.8666795e+00 + 1.3880800e+04 -2.1166795e+00 + 1.3881200e+04 -2.3966795e+00 + 1.3881600e+04 -2.5366795e+00 + 1.3882000e+04 -2.1166795e+00 + 1.3882400e+04 -1.7566795e+00 + 1.3882800e+04 -1.2266795e+00 + 1.3883200e+04 -1.1966795e+00 + 1.3883600e+04 -1.1766795e+00 + 1.3884000e+04 -1.1766795e+00 + 1.3884400e+04 -7.9667949e-01 + 1.3884800e+04 2.4933205e+00 + 1.3885200e+04 3.1333205e+00 + 1.3885600e+04 3.3233205e+00 + 1.3886000e+04 3.3633205e+00 + 1.3886400e+04 2.9833205e+00 + 1.3886800e+04 3.8633205e+00 + 1.3887200e+04 4.1133205e+00 + 1.3887600e+04 3.0333205e+00 + 1.3888000e+04 2.1433205e+00 + 1.3888400e+04 1.1933205e+00 + 1.3888800e+04 9.3320513e-02 + 1.3889200e+04 -1.0866795e+00 + 1.3889600e+04 -2.0966795e+00 + 1.3890000e+04 -2.8366795e+00 + 1.3890400e+04 -3.4966795e+00 + 1.3890800e+04 -3.6666795e+00 + 1.3891200e+04 -3.4166795e+00 + 1.3891600e+04 -2.8266795e+00 + 1.3892000e+04 -1.8566795e+00 + 1.3892400e+04 -1.2866795e+00 + 1.3892800e+04 -9.5667949e-01 + 1.3893200e+04 -4.6667949e-01 + 1.3893600e+04 4.4332051e-01 + 1.3894000e+04 9.6332051e-01 + 1.3894400e+04 1.2033205e+00 + 1.3894800e+04 1.5333205e+00 + 1.3895200e+04 1.8833205e+00 + 1.3895600e+04 2.1033205e+00 + 1.3896000e+04 1.9433205e+00 + 1.3896400e+04 1.9633205e+00 + 1.3896800e+04 1.2833205e+00 + 1.3897200e+04 4.8332051e-01 + 1.3897600e+04 5.3320513e-02 + 1.3898000e+04 -2.1667949e-01 + 1.3898400e+04 -1.1667949e-01 + 1.3898800e+04 -1.4667949e-01 + 1.3899200e+04 -6.6667949e-01 + 1.3899600e+04 -6.9667949e-01 + 1.3900000e+04 -9.0667949e-01 + 1.3900400e+04 -4.7667949e-01 + 1.3900800e+04 -1.0667949e-01 + 1.3901200e+04 1.6332051e-01 + 1.3901600e+04 3.0332051e-01 + 1.3902000e+04 7.5332051e-01 + 1.3902400e+04 1.3833205e+00 + 1.3902800e+04 1.7833205e+00 + 1.3903200e+04 2.0333205e+00 + 1.3903600e+04 1.7333205e+00 + 1.3904000e+04 1.0433205e+00 + 1.3904400e+04 6.3332051e-01 + 1.3904800e+04 2.4332051e-01 + 1.3905200e+04 -1.5667949e-01 + 1.3905600e+04 -2.5667949e-01 + 1.3906000e+04 -3.1667949e-01 + 1.3906400e+04 -2.4667949e-01 + 1.3906800e+04 3.3332051e-01 + 1.3907200e+04 1.1733205e+00 + 1.3907600e+04 1.3533205e+00 + 1.3908000e+04 1.0333205e+00 + 1.3908400e+04 9.0332051e-01 + 1.3908800e+04 6.0332051e-01 + 1.3909200e+04 3.2332051e-01 + 1.3909600e+04 1.3320513e-02 + 1.3910000e+04 -2.9667949e-01 + 1.3910400e+04 -7.9667949e-01 + 1.3910800e+04 -1.2266795e+00 + 1.3911200e+04 -1.2366795e+00 + 1.3911600e+04 -1.1666795e+00 + 1.3912000e+04 -1.0066795e+00 + 1.3912400e+04 -9.4667949e-01 + 1.3912800e+04 -2.5667949e-01 + 1.3913200e+04 4.9332051e-01 + 1.3913600e+04 8.6332051e-01 + 1.3914000e+04 1.0333205e+00 + 1.3914400e+04 7.7332051e-01 + 1.3914800e+04 3.0332051e-01 + 1.3915200e+04 -7.0667949e-01 + 1.3915600e+04 -1.2566795e+00 + 1.3916000e+04 -1.3366795e+00 + 1.3916400e+04 -1.0366795e+00 + 1.3916800e+04 -7.4667949e-01 + 1.3917200e+04 -3.6679487e-02 + 1.3917600e+04 8.0332051e-01 + 1.3918000e+04 1.4433205e+00 + 1.3918400e+04 2.1933205e+00 + 1.3918800e+04 2.3833205e+00 + 1.3919200e+04 2.3733205e+00 + 1.3919600e+04 2.2033205e+00 + 1.3920000e+04 2.1933205e+00 + 1.3920400e+04 2.3833205e+00 + 1.3920800e+04 2.2533205e+00 + 1.3921200e+04 2.3033205e+00 + 1.3921600e+04 1.7833205e+00 + 1.3922000e+04 1.2033205e+00 + 1.3922400e+04 6.8332051e-01 + 1.3922800e+04 1.9332051e-01 + 1.3923200e+04 -7.6679487e-02 + 1.3923600e+04 -1.5667949e-01 + 1.3924000e+04 -6.9667949e-01 + 1.3924400e+04 -1.0166795e+00 + 1.3924800e+04 -1.2366795e+00 + 1.3925200e+04 -1.4066795e+00 + 1.3925600e+04 -1.3166795e+00 + 1.3926000e+04 -1.0566795e+00 + 1.3926400e+04 -5.4667949e-01 + 1.3926800e+04 -3.3667949e-01 + 1.3927200e+04 -1.5667949e-01 + 1.3927600e+04 1.7332051e-01 + 1.3928000e+04 4.7332051e-01 + 1.3928400e+04 6.3332051e-01 + 1.3928800e+04 4.7332051e-01 + 1.3929200e+04 -7.6679487e-02 + 1.3929600e+04 -3.6667949e-01 + 1.3930000e+04 -5.0667949e-01 + 1.3930400e+04 -4.6667949e-01 + 1.3930800e+04 -7.0667949e-01 + 1.3931200e+04 -7.4667949e-01 + 1.3931600e+04 -1.9667949e-01 + 1.3932000e+04 8.2332051e-01 + 1.3932400e+04 1.6733205e+00 + 1.3932800e+04 2.0233205e+00 + 1.3933200e+04 2.0033205e+00 + 1.3933600e+04 1.6933205e+00 + 1.3934000e+04 1.3333205e+00 + 1.3934400e+04 1.0533205e+00 + 1.3934800e+04 1.1633205e+00 + 1.3935200e+04 1.1133205e+00 + 1.3935600e+04 9.2332051e-01 + 1.3936000e+04 5.5332051e-01 + 1.3936400e+04 2.4332051e-01 + 1.3936800e+04 -1.1667949e-01 + 1.3937200e+04 -1.1066795e+00 + 1.3937600e+04 -1.5866795e+00 + 1.3938000e+04 -1.7466795e+00 + 1.3938400e+04 -1.7466795e+00 + 1.3938800e+04 -1.8366795e+00 + 1.3939200e+04 -1.4766795e+00 + 1.3939600e+04 -3.0667949e-01 + 1.3940000e+04 9.7332051e-01 + 1.3940400e+04 2.1633205e+00 + 1.3940800e+04 2.6033205e+00 + 1.3941200e+04 2.7833205e+00 + 1.3941600e+04 2.8833205e+00 + 1.3942000e+04 3.1433205e+00 + 1.3942400e+04 3.1733205e+00 + 1.3942800e+04 3.0333205e+00 + 1.3943200e+04 2.5933205e+00 + 1.3943600e+04 2.0233205e+00 + 1.3944000e+04 1.0033205e+00 + 1.3944400e+04 -1.4667949e-01 + 1.3944800e+04 -8.7667949e-01 + 1.3945200e+04 -9.5667949e-01 + 1.3945600e+04 -8.6667949e-01 + 1.3946000e+04 -1.0666795e+00 + 1.3946400e+04 -1.5266795e+00 + 1.3946800e+04 -1.9966795e+00 + 1.3947200e+04 -2.5766795e+00 + 1.3947600e+04 -2.7866795e+00 + 1.3948000e+04 -2.6566795e+00 + 1.3948400e+04 -2.2866795e+00 + 1.3948800e+04 -1.6266795e+00 + 1.3949200e+04 -8.5667949e-01 + 1.3949600e+04 1.7332051e-01 + 1.3950000e+04 1.2033205e+00 + 1.3950400e+04 1.7333205e+00 + 1.3950800e+04 2.1333205e+00 + 1.3951200e+04 2.1133205e+00 + 1.3951600e+04 1.8633205e+00 + 1.3952000e+04 1.6333205e+00 + 1.3952400e+04 1.2733205e+00 + 1.3952800e+04 6.7332051e-01 + 1.3953200e+04 4.2332051e-01 + 1.3953600e+04 3.2332051e-01 + 1.3954000e+04 5.4332051e-01 + 1.3954400e+04 1.1133205e+00 + 1.3954800e+04 1.4933205e+00 + 1.3955200e+04 1.7633205e+00 + 1.3955600e+04 1.4333205e+00 + 1.3956000e+04 1.1533205e+00 + 1.3956400e+04 9.9332051e-01 + 1.3956800e+04 -1.0667949e-01 + 1.3957200e+04 -4.2667949e-01 + 1.3957600e+04 -1.1766795e+00 + 1.3958000e+04 -1.2466795e+00 + 1.3958400e+04 -1.3966795e+00 + 1.3958800e+04 -1.3566795e+00 + 1.3959200e+04 -1.1266795e+00 + 1.3959600e+04 -7.7667949e-01 + 1.3960000e+04 -6.0667949e-01 + 1.3960400e+04 -1.7667949e-01 + 1.3960800e+04 1.0332051e-01 + 1.3961200e+04 4.7332051e-01 + 1.3961600e+04 8.5332051e-01 + 1.3962000e+04 1.0833205e+00 + 1.3962400e+04 1.2833205e+00 + 1.3962800e+04 1.5733205e+00 + 1.3963200e+04 1.8833205e+00 + 1.3963600e+04 2.1733205e+00 + 1.3964000e+04 2.7133205e+00 + 1.3964400e+04 3.0933205e+00 + 1.3964800e+04 2.9633205e+00 + 1.3965200e+04 2.6733205e+00 + 1.3965600e+04 2.1633205e+00 + 1.3966000e+04 2.1233205e+00 + 1.3966400e+04 3.6332051e-01 + 1.3966800e+04 -1.8666795e+00 + 1.3967200e+04 -2.0566795e+00 + 1.3967600e+04 -2.3066795e+00 + 1.3968000e+04 -2.3266795e+00 + 1.3968400e+04 -2.2366795e+00 + 1.3968800e+04 -1.6366795e+00 + 1.3969200e+04 -8.0667949e-01 + 1.3969600e+04 -2.6679487e-02 + 1.3970000e+04 5.5332051e-01 + 1.3970400e+04 9.5332051e-01 + 1.3970800e+04 1.4333205e+00 + 1.3971200e+04 1.2333205e+00 + 1.3971600e+04 1.0433205e+00 + 1.3972000e+04 7.9332051e-01 + 1.3972400e+04 5.5332051e-01 + 1.3972800e+04 3.3332051e-01 + 1.3973200e+04 5.5332051e-01 + 1.3973600e+04 7.8332051e-01 + 1.3974000e+04 3.4332051e-01 + 1.3974400e+04 -6.6679487e-02 + 1.3974800e+04 -2.5667949e-01 + 1.3975200e+04 -4.2667949e-01 + 1.3975600e+04 -5.1667949e-01 + 1.3976000e+04 -4.7667949e-01 + 1.3976400e+04 -4.4667949e-01 + 1.3976800e+04 -7.2667949e-01 + 1.3977200e+04 -9.4667949e-01 + 1.3977600e+04 -1.1666795e+00 + 1.3978000e+04 -1.1966795e+00 + 1.3978400e+04 -7.5667949e-01 + 1.3978800e+04 -4.7667949e-01 + 1.3979200e+04 4.3320513e-02 + 1.3979600e+04 1.1333205e+00 + 1.3980000e+04 2.2133205e+00 + 1.3980400e+04 2.6333205e+00 + 1.3980800e+04 3.3433205e+00 + 1.3981200e+04 3.1333205e+00 + 1.3981600e+04 2.4333205e+00 + 1.3982000e+04 1.8633205e+00 + 1.3982400e+04 1.6033205e+00 + 1.3982800e+04 1.3833205e+00 + 1.3983200e+04 1.2533205e+00 + 1.3983600e+04 1.2733205e+00 + 1.3984000e+04 1.3533205e+00 + 1.3984400e+04 1.4833205e+00 + 1.3984800e+04 1.5533205e+00 + 1.3985200e+04 1.1633205e+00 + 1.3985600e+04 6.8332051e-01 + 1.3986000e+04 6.1332051e-01 + 1.3986400e+04 -5.2667949e-01 + 1.3986800e+04 -2.2866795e+00 + 1.3987200e+04 -2.5866795e+00 + 1.3987600e+04 -2.3666795e+00 + 1.3988000e+04 -1.9166795e+00 + 1.3988400e+04 -1.5266795e+00 + 1.3988800e+04 -1.1266795e+00 + 1.3989200e+04 -8.8667949e-01 + 1.3989600e+04 -8.6667949e-01 + 1.3990000e+04 -6.6667949e-01 + 1.3990400e+04 5.3320513e-02 + 1.3990800e+04 1.0433205e+00 + 1.3991200e+04 1.4533205e+00 + 1.3991600e+04 1.4833205e+00 + 1.3992000e+04 1.6733205e+00 + 1.3992400e+04 2.2133205e+00 + 1.3992800e+04 2.4433205e+00 + 1.3993200e+04 1.9933205e+00 + 1.3993600e+04 1.5533205e+00 + 1.3994000e+04 1.0833205e+00 + 1.3994400e+04 6.6332051e-01 + 1.3994800e+04 2.2332051e-01 + 1.3995200e+04 1.4332051e-01 + 1.3995600e+04 5.3320513e-02 + 1.3996000e+04 -6.9667949e-01 + 1.3996400e+04 -1.4466795e+00 + 1.3996800e+04 -1.8266795e+00 + 1.3997200e+04 -2.0166795e+00 + 1.3997600e+04 -1.6566795e+00 + 1.3998000e+04 -1.4466795e+00 + 1.3998400e+04 -1.5266795e+00 + 1.3998800e+04 -1.3766795e+00 + 1.3999200e+04 -9.1667949e-01 + 1.3999600e+04 1.4332051e-01 + 1.4000000e+04 1.5333205e+00 + 1.4000400e+04 2.7433205e+00 + 1.4000800e+04 4.0733205e+00 + 1.4001200e+04 3.6733205e+00 + 1.4001600e+04 2.9733205e+00 + 1.4002000e+04 2.3233205e+00 + 1.4002400e+04 1.5933205e+00 + 1.4002800e+04 1.4833205e+00 + 1.4003200e+04 1.5733205e+00 + 1.4003600e+04 2.1433205e+00 + 1.4004000e+04 2.4733205e+00 + 1.4004400e+04 2.4833205e+00 + 1.4004800e+04 2.4633205e+00 + 1.4005200e+04 2.1033205e+00 + 1.4005600e+04 1.5733205e+00 + 1.4006000e+04 8.9332051e-01 + 1.4006400e+04 9.3320513e-02 + 1.4006800e+04 -8.6667949e-01 + 1.4007200e+04 -1.2566795e+00 + 1.4007600e+04 -1.4066795e+00 + 1.4008000e+04 -2.5566795e+00 + 1.4008400e+04 -3.8266795e+00 + 1.4008800e+04 -4.0366795e+00 + 1.4009200e+04 -3.6066795e+00 + 1.4009600e+04 -2.9066795e+00 + 1.4010000e+04 -2.2866795e+00 + 1.4010400e+04 -2.1766795e+00 + 1.4010800e+04 -6.1667949e-01 + 1.4011200e+04 -5.6679487e-02 + 1.4011600e+04 3.4332051e-01 + 1.4012000e+04 7.6332051e-01 + 1.4012400e+04 9.5332051e-01 + 1.4012800e+04 1.3333205e+00 + 1.4013200e+04 1.6933205e+00 + 1.4013600e+04 1.9033205e+00 + 1.4014000e+04 2.2633205e+00 + 1.4014400e+04 2.9833205e+00 + 1.4014800e+04 3.9433205e+00 + 1.4015200e+04 4.5733205e+00 + 1.4015600e+04 4.0933205e+00 + 1.4016000e+04 4.0333205e+00 + 1.4016400e+04 1.4333205e+00 + 1.4016800e+04 -2.8667949e-01 + 1.4017200e+04 -1.2566795e+00 + 1.4017600e+04 -2.1266795e+00 + 1.4018000e+04 -2.3966795e+00 + 1.4018400e+04 -2.4866795e+00 + 1.4018800e+04 -2.2966795e+00 + 1.4019200e+04 -1.8666795e+00 + 1.4019600e+04 -1.8566795e+00 + 1.4020000e+04 -1.9066795e+00 + 1.4020400e+04 -1.3966795e+00 + 1.4020800e+04 -9.7667949e-01 + 1.4021200e+04 -2.1667949e-01 + 1.4021600e+04 7.4332051e-01 + 1.4022000e+04 2.1133205e+00 + 1.4022400e+04 3.0933205e+00 + 1.4022800e+04 3.9133205e+00 + 1.4023200e+04 4.4433205e+00 + 1.4023600e+04 3.7933205e+00 + 1.4024000e+04 2.9433205e+00 + 1.4024400e+04 2.7233205e+00 + 1.4024800e+04 2.3733205e+00 + 1.4025200e+04 1.9733205e+00 + 1.4025600e+04 1.9533205e+00 + 1.4026000e+04 1.4933205e+00 + 1.4026400e+04 1.4533205e+00 + 1.4026800e+04 -4.6679487e-02 + 1.4027200e+04 -8.6667949e-01 + 1.4027600e+04 -7.6667949e-01 + 1.4028000e+04 -8.5667949e-01 + 1.4028400e+04 -1.1666795e+00 + 1.4028800e+04 -1.3866795e+00 + 1.4029200e+04 -1.5566795e+00 + 1.4029600e+04 -2.3166795e+00 + 1.4030000e+04 -2.7366795e+00 + 1.4030400e+04 -2.6966795e+00 + 1.4030800e+04 -2.5066795e+00 + 1.4031200e+04 -1.9866795e+00 + 1.4031600e+04 -1.4466795e+00 + 1.4032000e+04 -1.4466795e+00 + 1.4032400e+04 -1.1166795e+00 + 1.4032800e+04 -5.7667949e-01 + 1.4033200e+04 8.3320513e-02 + 1.4033600e+04 7.4332051e-01 + 1.4034000e+04 9.6332051e-01 + 1.4034400e+04 1.1433205e+00 + 1.4034800e+04 1.8833205e+00 + 1.4035200e+04 2.2633205e+00 + 1.4035600e+04 2.0733205e+00 + 1.4036000e+04 2.2933205e+00 + 1.4036400e+04 2.6933205e+00 + 1.4036800e+04 2.8533205e+00 + 1.4037200e+04 2.9333205e+00 + 1.4037600e+04 2.8033205e+00 + 1.4038000e+04 2.6433205e+00 + 1.4038400e+04 2.1233205e+00 + 1.4038800e+04 1.4033205e+00 + 1.4039200e+04 1.1133205e+00 + 1.4039600e+04 9.1332051e-01 + 1.4040000e+04 6.0332051e-01 + 1.4040400e+04 2.8332051e-01 + 1.4040800e+04 -6.6794872e-03 + 1.4041200e+04 -5.6679487e-02 + 1.4041600e+04 -2.4667949e-01 + 1.4042000e+04 -7.0667949e-01 + 1.4042400e+04 -9.7667949e-01 + 1.4042800e+04 -1.1366795e+00 + 1.4043200e+04 -1.3966795e+00 + 1.4043600e+04 -1.4266795e+00 + 1.4044000e+04 -1.2066795e+00 + 1.4044400e+04 -1.1266795e+00 + 1.4044800e+04 -9.8667949e-01 + 1.4045200e+04 -6.9667949e-01 + 1.4045600e+04 3.3320513e-02 + 1.4046000e+04 5.8332051e-01 + 1.4046400e+04 1.5133205e+00 + 1.4046800e+04 2.2533205e+00 + 1.4047200e+04 2.8033205e+00 + 1.4047600e+04 3.2033205e+00 + 1.4048000e+04 3.4233205e+00 + 1.4048400e+04 3.8433205e+00 + 1.4048800e+04 3.1433205e+00 + 1.4049200e+04 2.1433205e+00 + 1.4049600e+04 1.2833205e+00 + 1.4050000e+04 7.9332051e-01 + 1.4050400e+04 -2.1667949e-01 + 1.4050800e+04 -6.0667949e-01 + 1.4051200e+04 -2.0466795e+00 + 1.4051600e+04 -2.9966795e+00 + 1.4052000e+04 -4.9566795e+00 + 1.4052400e+04 -5.6566795e+00 + 1.4052800e+04 -5.6666795e+00 + 1.4053200e+04 -5.3966795e+00 + 1.4053600e+04 -4.9866795e+00 + 1.4054000e+04 -4.8766795e+00 + 1.4054400e+04 -4.8766795e+00 + 1.4054800e+04 -4.8666795e+00 + 1.4055200e+04 -4.8666795e+00 + 1.4055600e+04 -4.8666795e+00 + 1.4056000e+04 -4.7766795e+00 + 1.4056400e+04 3.1433205e+00 + 1.4056800e+04 4.6833205e+00 + 1.4057200e+04 5.5533205e+00 + 1.4057600e+04 6.1633205e+00 + 1.4058000e+04 6.4333205e+00 + 1.4058400e+04 6.6033205e+00 + 1.4058800e+04 6.5733205e+00 + 1.4059200e+04 6.0433205e+00 + 1.4059600e+04 4.9433205e+00 + 1.4060000e+04 3.2433205e+00 + 1.4060400e+04 1.4233205e+00 + 1.4060800e+04 2.4332051e-01 + 1.4061200e+04 -6.3667949e-01 + 1.4061600e+04 -1.1966795e+00 + 1.4062000e+04 -2.3966795e+00 + 1.4062400e+04 -3.8766795e+00 + 1.4062800e+04 -4.6266795e+00 + 1.4063200e+04 -4.6666795e+00 + 1.4063600e+04 -3.9966795e+00 + 1.4064000e+04 -3.4466795e+00 + 1.4064400e+04 -2.6766795e+00 + 1.4064800e+04 -1.9466795e+00 + 1.4065200e+04 -8.5667949e-01 + 1.4065600e+04 3.3320513e-02 + 1.4066000e+04 3.2332051e-01 + 1.4066400e+04 6.6332051e-01 + 1.4066800e+04 7.6332051e-01 + 1.4067200e+04 1.2133205e+00 + 1.4067600e+04 1.7533205e+00 + 1.4068000e+04 2.6733205e+00 + 1.4068400e+04 3.5433205e+00 + 1.4068800e+04 2.9133205e+00 + 1.4069200e+04 2.0833205e+00 + 1.4069600e+04 1.3933205e+00 + 1.4070000e+04 1.1533205e+00 + 1.4070400e+04 1.2433205e+00 + 1.4070800e+04 1.6233205e+00 + 1.4071200e+04 1.4233205e+00 + 1.4071600e+04 8.0332051e-01 + 1.4072000e+04 -1.1667949e-01 + 1.4072400e+04 -1.6066795e+00 + 1.4072800e+04 -3.0266795e+00 + 1.4073200e+04 -4.4166795e+00 + 1.4073600e+04 -5.1966795e+00 + 1.4074000e+04 -5.2666795e+00 + 1.4074400e+04 -5.0466795e+00 + 1.4074800e+04 -4.4066795e+00 + 1.4075200e+04 -3.3266795e+00 + 1.4075600e+04 -1.7066795e+00 + 1.4076000e+04 -7.2667949e-01 + 1.4076400e+04 2.5133205e+00 + 1.4076800e+04 4.1033205e+00 + 1.4077200e+04 5.3633205e+00 + 1.4077600e+04 5.9933205e+00 + 1.4078000e+04 6.8333205e+00 + 1.4078400e+04 7.1033205e+00 + 1.4078800e+04 6.6133205e+00 + 1.4079200e+04 5.6733205e+00 + 1.4079600e+04 4.5733205e+00 + 1.4080000e+04 3.7733205e+00 + 1.4080400e+04 3.3933205e+00 + 1.4080800e+04 2.8333205e+00 + 1.4081200e+04 2.0533205e+00 + 1.4081600e+04 9.6332051e-01 + 1.4082000e+04 -1.7667949e-01 + 1.4082400e+04 -1.1966795e+00 + 1.4082800e+04 -2.1966795e+00 + 1.4083200e+04 -3.3466795e+00 + 1.4083600e+04 -4.1166795e+00 + 1.4084000e+04 -4.4466795e+00 + 1.4084400e+04 -4.2966795e+00 + 1.4084800e+04 -3.8766795e+00 + 1.4085200e+04 -3.6066795e+00 + 1.4085600e+04 -3.5466795e+00 + 1.4086000e+04 -3.2266795e+00 + 1.4086400e+04 -2.6666795e+00 + 1.4086800e+04 -2.6366795e+00 + 1.4087200e+04 -2.0166795e+00 + 1.4087600e+04 -1.7667949e-01 + 1.4088000e+04 1.3320513e-02 + 1.4088400e+04 1.3033205e+00 + 1.4088800e+04 2.0733205e+00 + 1.4089200e+04 2.9933205e+00 + 1.4089600e+04 2.8633205e+00 + 1.4090000e+04 2.2033205e+00 + 1.4090400e+04 1.2833205e+00 + 1.4090800e+04 3.8332051e-01 + 1.4091200e+04 -2.9667949e-01 + 1.4091600e+04 -3.5667949e-01 + 1.4092000e+04 -2.5667949e-01 + 1.4092400e+04 -3.3667949e-01 + 1.4092800e+04 -5.3667949e-01 + 1.4093200e+04 -4.4667949e-01 + 1.4093600e+04 -2.5667949e-01 + 1.4094000e+04 -5.5667949e-01 + 1.4094400e+04 -6.6667949e-01 + 1.4094800e+04 -8.9667949e-01 + 1.4095200e+04 -4.5667949e-01 + 1.4095600e+04 3.6332051e-01 + 1.4096000e+04 1.5233205e+00 + 1.4096400e+04 1.5733205e+00 + 1.4096800e+04 1.5333205e+00 + 1.4097200e+04 1.5933205e+00 + 1.4097600e+04 2.1533205e+00 + 1.4098000e+04 2.2133205e+00 + 1.4098400e+04 1.5833205e+00 + 1.4098800e+04 1.2633205e+00 + 1.4099200e+04 1.2833205e+00 + 1.4099600e+04 1.2733205e+00 + 1.4100000e+04 1.3633205e+00 + 1.4100400e+04 1.4433205e+00 + 1.4100800e+04 1.1733205e+00 + 1.4101200e+04 1.1533205e+00 + 1.4101600e+04 1.2733205e+00 + 1.4102000e+04 1.5033205e+00 + 1.4102400e+04 1.9633205e+00 + 1.4102800e+04 2.3933205e+00 + 1.4103200e+04 2.1333205e+00 + 1.4103600e+04 9.4332051e-01 + 1.4104000e+04 -2.4667949e-01 + 1.4104400e+04 -1.2066795e+00 + 1.4104800e+04 -1.9266795e+00 + 1.4105200e+04 -2.4866795e+00 + 1.4105600e+04 -2.5766795e+00 + 1.4106000e+04 -2.9466795e+00 + 1.4106400e+04 -3.0466795e+00 + 1.4106800e+04 -2.5566795e+00 + 1.4107200e+04 -1.9766795e+00 + 1.4107600e+04 -1.6466795e+00 + 1.4108000e+04 -1.0266795e+00 + 1.4108400e+04 -4.4667949e-01 + 1.4108800e+04 -1.2667949e-01 + 1.4109200e+04 1.8332051e-01 + 1.4109600e+04 5.5332051e-01 + 1.4110000e+04 1.0433205e+00 + 1.4110400e+04 1.0533205e+00 + 1.4110800e+04 8.0332051e-01 + 1.4111200e+04 7.7332051e-01 + 1.4111600e+04 -1.6667949e-01 + 1.4112000e+04 -2.6679487e-02 + 1.4112400e+04 5.4332051e-01 + 1.4112800e+04 1.2233205e+00 + 1.4113200e+04 1.7333205e+00 + 1.4113600e+04 1.9133205e+00 + 1.4114000e+04 1.5933205e+00 + 1.4114400e+04 1.2633205e+00 + 1.4114800e+04 1.0933205e+00 + 1.4115200e+04 8.8332051e-01 + 1.4115600e+04 5.4332051e-01 + 1.4116000e+04 2.5332051e-01 + 1.4116400e+04 2.5332051e-01 + 1.4116800e+04 6.8332051e-01 + 1.4117200e+04 1.0733205e+00 + 1.4117600e+04 1.3833205e+00 + 1.4118000e+04 2.0133205e+00 + 1.4118400e+04 2.3033205e+00 + 1.4118800e+04 2.3333205e+00 + 1.4119200e+04 2.5733205e+00 + 1.4119600e+04 2.7033205e+00 + 1.4120000e+04 2.8533205e+00 + 1.4120400e+04 2.8633205e+00 + 1.4120800e+04 2.6933205e+00 + 1.4121200e+04 2.3233205e+00 + 1.4121600e+04 1.5133205e+00 + 1.4122000e+04 1.3332051e-01 + 1.4122400e+04 -4.1667949e-01 + 1.4122800e+04 -4.4667949e-01 + 1.4123200e+04 -2.1066795e+00 + 1.4123600e+04 -3.2666795e+00 + 1.4124000e+04 -3.4566795e+00 + 1.4124400e+04 -3.5166795e+00 + 1.4124800e+04 -3.2466795e+00 + 1.4125200e+04 -2.5766795e+00 + 1.4125600e+04 -1.3566795e+00 + 1.4126000e+04 -4.4667949e-01 + 1.4126400e+04 -2.2667949e-01 + 1.4126800e+04 5.3320513e-02 + 1.4127200e+04 2.2332051e-01 + 1.4127600e+04 3.2332051e-01 + 1.4128000e+04 6.8332051e-01 + 1.4128400e+04 1.0533205e+00 + 1.4128800e+04 1.4633205e+00 + 1.4129200e+04 1.5433205e+00 + 1.4129600e+04 1.4033205e+00 + 1.4130000e+04 1.1133205e+00 + 1.4130400e+04 9.4332051e-01 + 1.4130800e+04 6.3332051e-01 + 1.4131200e+04 1.7332051e-01 + 1.4131600e+04 -1.2667949e-01 + 1.4132000e+04 -3.6667949e-01 + 1.4132400e+04 -1.0966795e+00 + 1.4132800e+04 -1.9866795e+00 + 1.4133200e+04 -2.0566795e+00 + 1.4133600e+04 -1.4466795e+00 + 1.4134000e+04 -5.3667949e-01 + 1.4134400e+04 -1.6679487e-02 + 1.4134800e+04 1.9333205e+00 + 1.4135200e+04 2.2933205e+00 + 1.4135600e+04 2.3633205e+00 + 1.4136000e+04 3.4033205e+00 + 1.4136400e+04 3.2833205e+00 + 1.4136800e+04 3.1233205e+00 + 1.4137200e+04 3.1133205e+00 + 1.4137600e+04 3.1433205e+00 + 1.4138000e+04 3.0133205e+00 + 1.4138400e+04 2.5233205e+00 + 1.4138800e+04 1.3533205e+00 + 1.4139200e+04 2.9332051e-01 + 1.4139600e+04 -4.0667949e-01 + 1.4140000e+04 -1.0466795e+00 + 1.4140400e+04 -1.2566795e+00 + 1.4140800e+04 -1.6066795e+00 + 1.4141200e+04 -2.0066795e+00 + 1.4141600e+04 -2.1166795e+00 + 1.4142000e+04 -2.1566795e+00 + 1.4142400e+04 -1.8466795e+00 + 1.4142800e+04 -1.5766795e+00 + 1.4143200e+04 -9.8667949e-01 + 1.4143600e+04 -7.6679487e-02 + 1.4144000e+04 3.2332051e-01 + 1.4144400e+04 5.0332051e-01 + 1.4144800e+04 5.5332051e-01 + 1.4145200e+04 6.2332051e-01 + 1.4145600e+04 4.6332051e-01 + 1.4146000e+04 2.7332051e-01 + 1.4146400e+04 1.4332051e-01 + 1.4146800e+04 2.7332051e-01 + 1.4147200e+04 2.2332051e-01 + 1.4147600e+04 1.8332051e-01 + 1.4148000e+04 -2.9667949e-01 + 1.4148400e+04 -6.5667949e-01 + 1.4148800e+04 -1.0766795e+00 + 1.4149200e+04 -1.3466795e+00 + 1.4149600e+04 -1.4866795e+00 + 1.4150000e+04 -1.2966795e+00 + 1.4150400e+04 -7.9667949e-01 + 1.4150800e+04 -1.9667949e-01 + 1.4151200e+04 1.2332051e-01 + 1.4151600e+04 5.8332051e-01 + 1.4152000e+04 6.7332051e-01 + 1.4152400e+04 1.3332051e-01 + 1.4152800e+04 5.3320513e-02 + 1.4153200e+04 5.9332051e-01 + 1.4153600e+04 1.5033205e+00 + 1.4154000e+04 2.6833205e+00 + 1.4154400e+04 3.4333205e+00 + 1.4154800e+04 4.7033205e+00 + 1.4155200e+04 3.5533205e+00 + 1.4155600e+04 3.3233205e+00 + 1.4156000e+04 3.1233205e+00 + 1.4156400e+04 1.0733205e+00 + 1.4156800e+04 8.0332051e-01 + 1.4157200e+04 9.7332051e-01 + 1.4157600e+04 1.2233205e+00 + 1.4158000e+04 1.1733205e+00 + 1.4158400e+04 6.0332051e-01 + 1.4158800e+04 1.7332051e-01 + 1.4159200e+04 -2.9667949e-01 + 1.4159600e+04 -4.1667949e-01 + 1.4160000e+04 -5.1667949e-01 + 1.4160400e+04 -5.2667949e-01 + 1.4160800e+04 -1.0366795e+00 + 1.4161200e+04 -1.2366795e+00 + 1.4161600e+04 -1.2866795e+00 + 1.4162000e+04 -9.6667949e-01 + 1.4162400e+04 -5.1667949e-01 + 1.4162800e+04 -4.6679487e-02 + 1.4163200e+04 6.4332051e-01 + 1.4163600e+04 1.3933205e+00 + 1.4164000e+04 1.7633205e+00 + 1.4164400e+04 1.8233205e+00 + 1.4164800e+04 1.7033205e+00 + 1.4165200e+04 1.3833205e+00 + 1.4165600e+04 6.8332051e-01 + 1.4166000e+04 -8.6679487e-02 + 1.4166400e+04 -8.2667949e-01 + 1.4166800e+04 -1.5166795e+00 + 1.4167200e+04 -1.8366795e+00 + 1.4167600e+04 -2.1066795e+00 + 1.4168000e+04 -2.3466795e+00 + 1.4168400e+04 -2.6266795e+00 + 1.4168800e+04 -2.6966795e+00 + 1.4169200e+04 -2.5766795e+00 + 1.4169600e+04 -2.3266795e+00 + 1.4170000e+04 -2.1966795e+00 + 1.4170400e+04 -1.5066795e+00 + 1.4170800e+04 -1.1766795e+00 + 1.4171200e+04 -7.1667949e-01 + 1.4171600e+04 -1.0667949e-01 + 1.4172000e+04 6.7332051e-01 + 1.4172400e+04 1.3033205e+00 + 1.4172800e+04 1.3633205e+00 + 1.4173200e+04 3.1533205e+00 + 1.4173600e+04 3.6033205e+00 + 1.4174000e+04 3.6033205e+00 + 1.4174400e+04 3.8033205e+00 + 1.4174800e+04 3.8033205e+00 + 1.4175200e+04 3.6233205e+00 + 1.4175600e+04 3.3933205e+00 + 1.4176000e+04 2.0533205e+00 + 1.4176400e+04 1.2133205e+00 + 1.4176800e+04 7.7332051e-01 + 1.4177200e+04 7.5332051e-01 + 1.4177600e+04 6.8332051e-01 + 1.4178000e+04 5.3332051e-01 + 1.4178400e+04 7.1332051e-01 + 1.4178800e+04 9.6332051e-01 + 1.4179200e+04 1.0033205e+00 + 1.4179600e+04 2.8332051e-01 + 1.4180000e+04 -4.2667949e-01 + 1.4180400e+04 -9.6667949e-01 + 1.4180800e+04 -1.4566795e+00 + 1.4181200e+04 -1.7466795e+00 + 1.4181600e+04 -1.8266795e+00 + 1.4182000e+04 -1.7266795e+00 + 1.4182400e+04 -1.2666795e+00 + 1.4182800e+04 -5.1667949e-01 + 1.4183200e+04 2.3320513e-02 + 1.4183600e+04 2.8332051e-01 + 1.4184000e+04 3.2332051e-01 + 1.4184400e+04 3.5332051e-01 + 1.4184800e+04 4.9332051e-01 + 1.4185200e+04 8.7332051e-01 + 1.4185600e+04 1.2933205e+00 + 1.4186000e+04 1.3333205e+00 + 1.4186400e+04 8.7332051e-01 + 1.4186800e+04 4.3332051e-01 + 1.4187200e+04 -1.0667949e-01 + 1.4187600e+04 -7.2667949e-01 + 1.4188000e+04 -1.3166795e+00 + 1.4188400e+04 -1.7166795e+00 + 1.4188800e+04 -1.7966795e+00 + 1.4189200e+04 -2.0666795e+00 + 1.4189600e+04 -2.8566795e+00 + 1.4190000e+04 -3.2166795e+00 + 1.4190400e+04 -2.9966795e+00 + 1.4190800e+04 -2.3566795e+00 + 1.4191200e+04 -1.4166795e+00 + 1.4191600e+04 -6.7667949e-01 + 1.4192000e+04 -1.9667949e-01 + 1.4192400e+04 8.2332051e-01 + 1.4192800e+04 1.5733205e+00 + 1.4193200e+04 2.3733205e+00 + 1.4193600e+04 3.1133205e+00 + 1.4194000e+04 3.3333205e+00 + 1.4194400e+04 3.4433205e+00 + 1.4194800e+04 3.6433205e+00 + 1.4195200e+04 4.1533205e+00 + 1.4195600e+04 4.9533205e+00 + 1.4196000e+04 5.7833205e+00 + 1.4196400e+04 6.7733205e+00 + 1.4196800e+04 7.0533205e+00 + 1.4197200e+04 8.0333205e+00 + 1.4197600e+04 6.6433205e+00 + 1.4198000e+04 2.6733205e+00 + 1.4198400e+04 7.3320513e-02 + 1.4198800e+04 -1.7266795e+00 + 1.4199200e+04 -3.1366795e+00 + 1.4199600e+04 -4.1766795e+00 + 1.4200000e+04 -4.5066795e+00 + 1.4200400e+04 -4.2266795e+00 + 1.4200800e+04 -3.6166795e+00 + 1.4201200e+04 -3.3766795e+00 + 1.4201600e+04 -3.5166795e+00 + 1.4202000e+04 -3.6166795e+00 + 1.4202400e+04 -3.1966795e+00 + 1.4202800e+04 -2.6366795e+00 + 1.4203200e+04 -2.0666795e+00 + 1.4203600e+04 -1.0666795e+00 + 1.4204000e+04 2.1332051e-01 + 1.4204400e+04 1.4833205e+00 + 1.4204800e+04 2.5533205e+00 + 1.4205200e+04 3.3433205e+00 + 1.4205600e+04 3.8533205e+00 + 1.4206000e+04 4.2933205e+00 + 1.4206400e+04 4.0933205e+00 + 1.4206800e+04 2.7633205e+00 + 1.4207200e+04 1.5533205e+00 + 1.4207600e+04 6.5332051e-01 + 1.4208000e+04 7.3320513e-02 + 1.4208400e+04 -6.6667949e-01 + 1.4208800e+04 -1.1966795e+00 + 1.4209200e+04 -1.2066795e+00 + 1.4209600e+04 -1.6966795e+00 + 1.4210000e+04 -2.3666795e+00 + 1.4210400e+04 -2.9066795e+00 + 1.4210800e+04 -3.2566795e+00 + 1.4211200e+04 -3.3566795e+00 + 1.4211600e+04 -2.9166795e+00 + 1.4212000e+04 -2.4166795e+00 + 1.4212400e+04 -1.9666795e+00 + 1.4212800e+04 -9.1667949e-01 + 1.4213200e+04 1.9332051e-01 + 1.4213600e+04 2.8332051e-01 + 1.4214000e+04 2.3933205e+00 + 1.4214400e+04 5.2933205e+00 + 1.4214800e+04 5.5333205e+00 + 1.4215200e+04 3.9533205e+00 + 1.4215600e+04 3.3233205e+00 + 1.4216000e+04 3.8033205e+00 + 1.4216400e+04 4.2933205e+00 + 1.4216800e+04 5.1633205e+00 + 1.4217200e+04 5.6733205e+00 + 1.4217600e+04 5.4433205e+00 + 1.4218000e+04 4.8933205e+00 + 1.4218400e+04 4.2533205e+00 + 1.4218800e+04 3.3633205e+00 + 1.4219200e+04 2.5533205e+00 + 1.4219600e+04 5.1332051e-01 + 1.4220000e+04 -6.5667949e-01 + 1.4220400e+04 -1.6266795e+00 + 1.4220800e+04 -2.6966795e+00 + 1.4221200e+04 -3.6266795e+00 + 1.4221600e+04 -4.4666795e+00 + 1.4222000e+04 -4.9466795e+00 + 1.4222400e+04 -5.1966795e+00 + 1.4222800e+04 -4.8966795e+00 + 1.4223200e+04 -3.8766795e+00 + 1.4223600e+04 -2.0366795e+00 + 1.4224000e+04 -1.4166795e+00 + 1.4224400e+04 -1.1266795e+00 + 1.4224800e+04 -1.0266795e+00 + 1.4225200e+04 -1.0266795e+00 + 1.4225600e+04 -2.4667949e-01 + 1.4226000e+04 7.2332051e-01 + 1.4226400e+04 1.1933205e+00 + 1.4226800e+04 1.6833205e+00 + 1.4227200e+04 1.8033205e+00 + 1.4227600e+04 1.9133205e+00 + 1.4228000e+04 2.2033205e+00 + 1.4228400e+04 2.3833205e+00 + 1.4228800e+04 2.3033205e+00 + 1.4229200e+04 2.1433205e+00 + 1.4229600e+04 1.8033205e+00 + 1.4230000e+04 1.4133205e+00 + 1.4230400e+04 1.2133205e+00 + 1.4230800e+04 1.0133205e+00 + 1.4231200e+04 7.0332051e-01 + 1.4231600e+04 3.6332051e-01 + 1.4232000e+04 -3.6679487e-02 + 1.4232400e+04 -3.7667949e-01 + 1.4232800e+04 -5.8667949e-01 + 1.4233200e+04 -5.2667949e-01 + 1.4233600e+04 -2.1667949e-01 + 1.4234000e+04 1.6332051e-01 + 1.4234400e+04 4.6332051e-01 + 1.4234800e+04 1.7332051e-01 + 1.4235200e+04 8.3320513e-02 + 1.4235600e+04 1.8332051e-01 + 1.4236000e+04 1.8332051e-01 + 1.4236400e+04 9.3320513e-02 + 1.4236800e+04 3.0332051e-01 + 1.4237200e+04 8.4332051e-01 + 1.4237600e+04 1.5333205e+00 + 1.4238000e+04 2.2533205e+00 + 1.4238400e+04 2.8333205e+00 + 1.4238800e+04 3.1333205e+00 + 1.4239200e+04 3.2533205e+00 + 1.4239600e+04 3.2233205e+00 + 1.4240000e+04 2.8933205e+00 + 1.4240400e+04 2.3933205e+00 + 1.4240800e+04 1.6633205e+00 + 1.4241200e+04 8.5332051e-01 + 1.4241600e+04 3.4332051e-01 + 1.4242000e+04 -1.1366795e+00 + 1.4242400e+04 -2.1466795e+00 + 1.4242800e+04 -2.7766795e+00 + 1.4243200e+04 -3.5766795e+00 + 1.4243600e+04 -3.6966795e+00 + 1.4244000e+04 -3.2966795e+00 + 1.4244400e+04 -3.0366795e+00 + 1.4244800e+04 -2.9066795e+00 + 1.4245200e+04 -2.3566795e+00 + 1.4245600e+04 -1.5566795e+00 + 1.4246000e+04 -5.6667949e-01 + 1.4246400e+04 6.7332051e-01 + 1.4246800e+04 2.0733205e+00 + 1.4247200e+04 3.0333205e+00 + 1.4247600e+04 3.5933205e+00 + 1.4248000e+04 3.8233205e+00 + 1.4248400e+04 3.4333205e+00 + 1.4248800e+04 2.8333205e+00 + 1.4249200e+04 2.0733205e+00 + 1.4249600e+04 1.4033205e+00 + 1.4250000e+04 9.2332051e-01 + 1.4250400e+04 7.8332051e-01 + 1.4250800e+04 7.5332051e-01 + 1.4251200e+04 -2.0667949e-01 + 1.4251600e+04 -1.0966795e+00 + 1.4252000e+04 -1.5066795e+00 + 1.4252400e+04 -1.4466795e+00 + 1.4252800e+04 -1.3966795e+00 + 1.4253200e+04 -1.2566795e+00 + 1.4253600e+04 -1.0666795e+00 + 1.4254000e+04 -8.3667949e-01 + 1.4254400e+04 -6.2667949e-01 + 1.4254800e+04 -2.9667949e-01 + 1.4255200e+04 -3.6679487e-02 + 1.4255600e+04 3.0332051e-01 + 1.4256000e+04 8.9332051e-01 + 1.4256400e+04 1.4033205e+00 + 1.4256800e+04 1.8933205e+00 + 1.4257200e+04 2.3633205e+00 + 1.4257600e+04 2.5733205e+00 + 1.4258000e+04 2.5033205e+00 + 1.4258400e+04 2.3033205e+00 + 1.4258800e+04 1.9633205e+00 + 1.4259200e+04 1.5333205e+00 + 1.4259600e+04 1.1733205e+00 + 1.4260000e+04 7.5332051e-01 + 1.4260400e+04 2.9332051e-01 + 1.4260800e+04 -1.5667949e-01 + 1.4261200e+04 -4.7667949e-01 + 1.4261600e+04 -8.4667949e-01 + 1.4262000e+04 -1.2666795e+00 + 1.4262400e+04 -1.5166795e+00 + 1.4262800e+04 -1.3066795e+00 + 1.4263200e+04 -8.0667949e-01 + 1.4263600e+04 -3.5667949e-01 + 1.4264000e+04 -1.2667949e-01 + 1.4264400e+04 -3.6679487e-02 + 1.4264800e+04 3.3205128e-03 + 1.4265200e+04 4.2332051e-01 + 1.4265600e+04 9.9332051e-01 + 1.4266000e+04 1.4933205e+00 + 1.4266400e+04 1.5333205e+00 + 1.4266800e+04 1.6733205e+00 + 1.4267200e+04 1.6433205e+00 + 1.4267600e+04 1.5233205e+00 + 1.4268000e+04 1.3933205e+00 + 1.4268400e+04 9.2332051e-01 + 1.4268800e+04 4.9332051e-01 + 1.4269200e+04 1.3320513e-02 + 1.4269600e+04 -5.0667949e-01 + 1.4270000e+04 -9.6667949e-01 + 1.4270400e+04 -1.1166795e+00 + 1.4270800e+04 -1.2466795e+00 + 1.4271200e+04 -1.7766795e+00 + 1.4271600e+04 -1.9166795e+00 + 1.4272000e+04 -1.8566795e+00 + 1.4272400e+04 -1.8066795e+00 + 1.4272800e+04 -1.0466795e+00 + 1.4273200e+04 -6.6667949e-01 + 1.4273600e+04 -5.2667949e-01 + 1.4274000e+04 -4.6667949e-01 + 1.4274400e+04 -2.7667949e-01 + 1.4274800e+04 -1.1667949e-01 + 1.4275200e+04 1.1332051e-01 + 1.4275600e+04 4.9332051e-01 + 1.4276000e+04 4.0332051e-01 + 1.4276400e+04 3.3332051e-01 + 1.4276800e+04 8.2332051e-01 + 1.4277200e+04 1.1733205e+00 + 1.4277600e+04 1.8933205e+00 + 1.4278000e+04 2.6433205e+00 + 1.4278400e+04 3.0333205e+00 + 1.4278800e+04 3.1433205e+00 + 1.4279200e+04 2.8833205e+00 + 1.4279600e+04 2.4333205e+00 + 1.4280000e+04 1.9633205e+00 + 1.4280400e+04 1.6033205e+00 + 1.4280800e+04 1.2633205e+00 + 1.4281200e+04 1.0933205e+00 + 1.4281600e+04 1.1433205e+00 + 1.4282000e+04 1.1433205e+00 + 1.4282400e+04 8.9332051e-01 + 1.4282800e+04 6.5332051e-01 + 1.4283200e+04 -1.5667949e-01 + 1.4283600e+04 -1.6566795e+00 + 1.4284000e+04 -2.1366795e+00 + 1.4284400e+04 -2.0466795e+00 + 1.4284800e+04 -1.7466795e+00 + 1.4285200e+04 -1.1566795e+00 + 1.4285600e+04 -5.7667949e-01 + 1.4286000e+04 -3.4667949e-01 + 1.4286400e+04 -1.4667949e-01 + 1.4286800e+04 1.4332051e-01 + 1.4287200e+04 3.3332051e-01 + 1.4287600e+04 5.0332051e-01 + 1.4288000e+04 2.1332051e-01 + 1.4288400e+04 1.6332051e-01 + 1.4288800e+04 1.7332051e-01 + 1.4289200e+04 5.1332051e-01 + 1.4289600e+04 8.7332051e-01 + 1.4290000e+04 9.8332051e-01 + 1.4290400e+04 8.4332051e-01 + 1.4290800e+04 6.5332051e-01 + 1.4291200e+04 1.3332051e-01 + 1.4291600e+04 -1.9667949e-01 + 1.4292000e+04 -1.1366795e+00 + 1.4292400e+04 -1.3166795e+00 + 1.4292800e+04 -1.2566795e+00 + 1.4293200e+04 -1.2066795e+00 + 1.4293600e+04 -1.0566795e+00 + 1.4294000e+04 -1.1966795e+00 + 1.4294400e+04 -1.1766795e+00 + 1.4294800e+04 -7.3667949e-01 + 1.4295200e+04 -3.0667949e-01 + 1.4295600e+04 3.3205128e-03 + 1.4296000e+04 5.3320513e-02 + 1.4296400e+04 1.0033205e+00 + 1.4296800e+04 1.3733205e+00 + 1.4297200e+04 1.8633205e+00 + 1.4297600e+04 2.1233205e+00 + 1.4298000e+04 2.4433205e+00 + 1.4298400e+04 2.5233205e+00 + 1.4298800e+04 2.0933205e+00 + 1.4299200e+04 1.6933205e+00 + 1.4299600e+04 1.6433205e+00 + 1.4300000e+04 1.9133205e+00 + 1.4300400e+04 2.1233205e+00 + 1.4300800e+04 1.7033205e+00 + 1.4301200e+04 9.4332051e-01 + 1.4301600e+04 5.3320513e-02 + 1.4302000e+04 -4.9667949e-01 + 1.4302400e+04 -3.5667949e-01 + 1.4302800e+04 1.3320513e-02 + 1.4303200e+04 2.3332051e-01 + 1.4303600e+04 1.2332051e-01 + 1.4304000e+04 3.3320513e-02 + 1.4304400e+04 1.3320513e-02 + 1.4304800e+04 -2.2667949e-01 + 1.4305200e+04 -1.9667949e-01 + 1.4305600e+04 1.1332051e-01 + 1.4306000e+04 4.6332051e-01 + 1.4306400e+04 1.1733205e+00 + 1.4306800e+04 1.3733205e+00 + 1.4307200e+04 1.0933205e+00 + 1.4307600e+04 5.3320513e-02 + 1.4308000e+04 -7.1667949e-01 + 1.4308400e+04 -1.9466795e+00 + 1.4308800e+04 -2.2866795e+00 + 1.4309200e+04 -2.5866795e+00 + 1.4309600e+04 -2.7666795e+00 + 1.4310000e+04 -2.6366795e+00 + 1.4310400e+04 -2.4566795e+00 + 1.4310800e+04 -2.0066795e+00 + 1.4311200e+04 -1.4466795e+00 + 1.4311600e+04 -9.5667949e-01 + 1.4312000e+04 -9.6679487e-02 + 1.4312400e+04 9.6332051e-01 + 1.4312800e+04 1.8033205e+00 + 1.4313200e+04 2.2533205e+00 + 1.4313600e+04 2.5033205e+00 + 1.4314000e+04 2.6733205e+00 + 1.4314400e+04 2.6133205e+00 + 1.4314800e+04 2.4433205e+00 + 1.4315200e+04 2.1033205e+00 + 1.4315600e+04 2.2033205e+00 + 1.4316000e+04 2.6733205e+00 + 1.4316400e+04 3.1733205e+00 + 1.4316800e+04 2.9133205e+00 + 1.4317200e+04 2.2833205e+00 + 1.4317600e+04 1.4033205e+00 + 1.4318000e+04 4.4332051e-01 + 1.4318400e+04 -4.2667949e-01 + 1.4318800e+04 -9.6667949e-01 + 1.4319200e+04 -1.2966795e+00 + 1.4319600e+04 -1.3566795e+00 + 1.4320000e+04 -1.3466795e+00 + 1.4320400e+04 -1.5166795e+00 + 1.4320800e+04 -1.6266795e+00 + 1.4321200e+04 -1.4966795e+00 + 1.4321600e+04 -1.4466795e+00 + 1.4322000e+04 -1.2066795e+00 + 1.4322400e+04 -9.2667949e-01 + 1.4322800e+04 -6.9667949e-01 + 1.4323200e+04 -6.2667949e-01 + 1.4323600e+04 2.4332051e-01 + 1.4324000e+04 7.4332051e-01 + 1.4324400e+04 1.5533205e+00 + 1.4324800e+04 1.9933205e+00 + 1.4325200e+04 2.0733205e+00 + 1.4325600e+04 2.2633205e+00 + 1.4326000e+04 2.3033205e+00 + 1.4326400e+04 1.7233205e+00 + 1.4326800e+04 1.1233205e+00 + 1.4327200e+04 6.5332051e-01 + 1.4327600e+04 1.5332051e-01 + 1.4328000e+04 -2.7667949e-01 + 1.4328400e+04 -3.1667949e-01 + 1.4328800e+04 -1.7667949e-01 + 1.4329200e+04 -6.6679487e-02 + 1.4329600e+04 -3.5667949e-01 + 1.4330000e+04 -8.2667949e-01 + 1.4330400e+04 -9.7667949e-01 + 1.4330800e+04 -1.1366795e+00 + 1.4331200e+04 -1.1466795e+00 + 1.4331600e+04 -8.3667949e-01 + 1.4332000e+04 -6.1667949e-01 + 1.4332400e+04 -4.2667949e-01 + 1.4332800e+04 -8.4667949e-01 + 1.4333200e+04 -9.0667949e-01 + 1.4333600e+04 -9.5667949e-01 + 1.4334000e+04 -6.9667949e-01 + 1.4334400e+04 -1.2667949e-01 + 1.4334800e+04 7.4332051e-01 + 1.4335200e+04 1.4133205e+00 + 1.4335600e+04 1.5433205e+00 + 1.4336000e+04 1.6433205e+00 + 1.4336400e+04 1.7633205e+00 + 1.4336800e+04 1.5933205e+00 + 1.4337200e+04 1.0833205e+00 + 1.4337600e+04 3.5332051e-01 + 1.4338000e+04 1.6332051e-01 + 1.4338400e+04 2.9332051e-01 + 1.4338800e+04 4.6332051e-01 + 1.4339200e+04 5.5332051e-01 + 1.4339600e+04 7.0332051e-01 + 1.4340000e+04 8.5332051e-01 + 1.4340400e+04 2.8332051e-01 + 1.4340800e+04 2.4332051e-01 + 1.4341200e+04 5.1332051e-01 + 1.4341600e+04 9.7332051e-01 + 1.4342000e+04 1.3733205e+00 + 1.4342400e+04 1.4833205e+00 + 1.4342800e+04 1.0833205e+00 + 1.4343200e+04 1.0133205e+00 + 1.4343600e+04 9.7332051e-01 + 1.4344000e+04 -5.3667949e-01 + 1.4344400e+04 -1.0966795e+00 + 1.4344800e+04 -1.2166795e+00 + 1.4345200e+04 -1.2566795e+00 + 1.4345600e+04 -1.2166795e+00 + 1.4346000e+04 -1.0866795e+00 + 1.4346400e+04 -8.1667949e-01 + 1.4346800e+04 -3.5667949e-01 + 1.4347200e+04 -2.8667949e-01 + 1.4347600e+04 4.4332051e-01 + 1.4348000e+04 6.2332051e-01 + 1.4348400e+04 8.3332051e-01 + 1.4348800e+04 1.0233205e+00 + 1.4349200e+04 1.2933205e+00 + 1.4349600e+04 1.9633205e+00 + 1.4350000e+04 1.9133205e+00 + 1.4350400e+04 1.5933205e+00 + 1.4350800e+04 1.3833205e+00 + 1.4351200e+04 1.0133205e+00 + 1.4351600e+04 9.5332051e-01 + 1.4352000e+04 4.5332051e-01 + 1.4352400e+04 -3.2667949e-01 + 1.4352800e+04 -1.0366795e+00 + 1.4353200e+04 -1.9266795e+00 + 1.4353600e+04 -2.3266795e+00 + 1.4354000e+04 -2.4866795e+00 + 1.4354400e+04 -2.2466795e+00 + 1.4354800e+04 -1.4066795e+00 + 1.4355200e+04 -4.2667949e-01 + 1.4355600e+04 2.6332051e-01 + 1.4356000e+04 1.6733205e+00 + 1.4356400e+04 1.2833205e+00 + 1.4356800e+04 1.1633205e+00 + 1.4357200e+04 1.2533205e+00 + 1.4357600e+04 1.6733205e+00 + 1.4358000e+04 2.0433205e+00 + 1.4358400e+04 2.3333205e+00 + 1.4358800e+04 2.8033205e+00 + 1.4359200e+04 2.5133205e+00 + 1.4359600e+04 2.1733205e+00 + 1.4360000e+04 3.4633205e+00 + 1.4360400e+04 3.5833205e+00 + 1.4360800e+04 3.5833205e+00 + 1.4361200e+04 3.5833205e+00 + 1.4361600e+04 -1.0966795e+00 + 1.4362000e+04 -1.5666795e+00 + 1.4362400e+04 -1.1466795e+00 + 1.4362800e+04 -1.3366795e+00 + 1.4363200e+04 -1.2166795e+00 + 1.4363600e+04 -6.6667949e-01 + 1.4364000e+04 2.8332051e-01 + 1.4364400e+04 1.4633205e+00 + 1.4364800e+04 2.8033205e+00 + 1.4365200e+04 3.9833205e+00 + 1.4365600e+04 4.5833205e+00 + 1.4366000e+04 4.0233205e+00 + 1.4366400e+04 3.6033205e+00 + 1.4366800e+04 3.2533205e+00 + 1.4367200e+04 2.4533205e+00 + 1.4367600e+04 1.8533205e+00 + 1.4368000e+04 1.5033205e+00 + 1.4368400e+04 -4.7667949e-01 + 1.4368800e+04 -1.1166795e+00 + 1.4369200e+04 -1.4566795e+00 + 1.4369600e+04 -1.9066795e+00 + 1.4370000e+04 -2.2866795e+00 + 1.4370400e+04 -2.4766795e+00 + 1.4370800e+04 -2.6266795e+00 + 1.4371200e+04 -2.7466795e+00 + 1.4371600e+04 -2.9466795e+00 + 1.4372000e+04 -2.7266795e+00 + 1.4372400e+04 -2.3166795e+00 + 1.4372800e+04 -1.6166795e+00 + 1.4373200e+04 -3.8667949e-01 + 1.4373600e+04 7.6332051e-01 + 1.4374000e+04 1.8433205e+00 + 1.4374400e+04 3.1433205e+00 + 1.4374800e+04 3.0333205e+00 + 1.4375200e+04 2.8033205e+00 + 1.4375600e+04 2.4533205e+00 + 1.4376000e+04 2.1933205e+00 + 1.4376400e+04 1.9633205e+00 + 1.4376800e+04 1.8033205e+00 + 1.4377200e+04 1.2433205e+00 + 1.4377600e+04 4.6332051e-01 + 1.4378000e+04 -1.0667949e-01 + 1.4378400e+04 -3.6679487e-02 + 1.4378800e+04 8.3320513e-02 + 1.4379200e+04 1.1332051e-01 + 1.4379600e+04 1.8332051e-01 + 1.4380000e+04 2.9332051e-01 + 1.4380400e+04 3.5332051e-01 + 1.4380800e+04 4.2332051e-01 + 1.4381200e+04 3.0332051e-01 + 1.4381600e+04 9.3320513e-02 + 1.4382000e+04 3.3205128e-03 + 1.4382400e+04 9.3320513e-02 + 1.4382800e+04 5.3332051e-01 + 1.4383200e+04 8.0332051e-01 + 1.4383600e+04 1.0733205e+00 + 1.4384000e+04 7.0332051e-01 + 1.4384400e+04 1.6332051e-01 + 1.4384800e+04 5.3320513e-02 + 1.4385200e+04 5.3320513e-02 + 1.4385600e+04 -6.2667949e-01 + 1.4386000e+04 -2.5266795e+00 + 1.4386400e+04 -2.4766795e+00 + 1.4386800e+04 -1.6766795e+00 + 1.4387200e+04 -8.6667949e-01 + 1.4387600e+04 1.8332051e-01 + 1.4388000e+04 1.3733205e+00 + 1.4388400e+04 2.3733205e+00 + 1.4388800e+04 3.1533205e+00 + 1.4389200e+04 3.6033205e+00 + 1.4389600e+04 3.5433205e+00 + 1.4390000e+04 3.2133205e+00 + 1.4390400e+04 2.3833205e+00 + 1.4390800e+04 1.7233205e+00 + 1.4391200e+04 1.3533205e+00 + 1.4391600e+04 9.0332051e-01 + 1.4392000e+04 5.9332051e-01 + 1.4392400e+04 2.1332051e-01 + 1.4392800e+04 -1.2667949e-01 + 1.4393200e+04 -2.3667949e-01 + 1.4393600e+04 -3.5667949e-01 + 1.4394000e+04 -1.4166795e+00 + 1.4394400e+04 -1.9866795e+00 + 1.4394800e+04 -2.1566795e+00 + 1.4395200e+04 -2.1266795e+00 + 1.4395600e+04 -2.3166795e+00 + 1.4396000e+04 -2.4666795e+00 + 1.4396400e+04 -2.2566795e+00 + 1.4396800e+04 -1.7966795e+00 + 1.4397200e+04 -1.0966795e+00 + 1.4397600e+04 -8.6679487e-02 + 1.4398000e+04 5.2332051e-01 + 1.4398400e+04 1.3833205e+00 + 1.4398800e+04 3.1133205e+00 + 1.4399200e+04 3.8533205e+00 + 1.4399600e+04 2.7553321e+01 + 1.4400000e+04 4.5833205e+00 + 1.4400400e+04 4.1033205e+00 + 1.4400800e+04 3.3833205e+00 + 1.4401200e+04 2.7033205e+00 + 1.4401600e+04 2.5933205e+00 + 1.4402000e+04 1.9033205e+00 + 1.4402400e+04 9.1332051e-01 + 1.4402800e+04 2.6332051e-01 + 1.4403200e+04 -3.6667949e-01 + 1.4403600e+04 -1.3066795e+00 + 1.4404000e+04 -1.8966795e+00 + 1.4404400e+04 -2.3466795e+00 + 1.4404800e+04 -2.4066795e+00 + 1.4405200e+04 -2.2466795e+00 + 1.4405600e+04 -2.0666795e+00 + 1.4406000e+04 -2.1366795e+00 + 1.4406400e+04 -2.1266795e+00 + 1.4406800e+04 -2.1966795e+00 + 1.4407200e+04 -1.9066795e+00 + 1.4407600e+04 -1.3466795e+00 + 1.4408000e+04 -6.4667949e-01 + 1.4408400e+04 3.3332051e-01 + 1.4408800e+04 8.3332051e-01 + 1.4409200e+04 1.1733205e+00 + 1.4409600e+04 2.5533205e+00 + 1.4410000e+04 3.5533205e+00 + 1.4410400e+04 4.6133205e+00 + 1.4410800e+04 4.8033205e+00 + 1.4411200e+04 4.3233205e+00 + 1.4411600e+04 3.1333205e+00 + 1.4412000e+04 1.7633205e+00 + 1.4412400e+04 3.6332051e-01 + 1.4412800e+04 -7.4667949e-01 + 1.4413200e+04 -1.4866795e+00 + 1.4413600e+04 -2.0166795e+00 + 1.4414000e+04 -2.1466795e+00 + 1.4414400e+04 -2.1766795e+00 + 1.4414800e+04 -2.3866795e+00 + 1.4415200e+04 -2.4266795e+00 + 1.4415600e+04 -2.1266795e+00 + 1.4416000e+04 -1.4766795e+00 + 1.4416400e+04 -1.0366795e+00 + 1.4416800e+04 -3.9667949e-01 + 1.4417200e+04 3.2332051e-01 + 1.4417600e+04 9.0332051e-01 + 1.4418000e+04 1.1633205e+00 + 1.4418400e+04 1.2933205e+00 + 1.4418800e+04 1.5733205e+00 + 1.4419200e+04 2.0433205e+00 + 1.4419600e+04 2.5333205e+00 + 1.4420000e+04 2.9433205e+00 + 1.4420400e+04 2.8633205e+00 + 1.4420800e+04 2.7933205e+00 + 1.4421200e+04 2.9733205e+00 + 1.4421600e+04 2.1833205e+00 + 1.4422000e+04 8.0332051e-01 + 1.4422400e+04 -3.6667949e-01 + 1.4422800e+04 -1.0466795e+00 + 1.4423200e+04 -1.2766795e+00 + 1.4423600e+04 -1.2766795e+00 + 1.4424000e+04 -1.1166795e+00 + 1.4424400e+04 -1.2066795e+00 + 1.4424800e+04 -1.4166795e+00 + 1.4425200e+04 -1.3766795e+00 + 1.4425600e+04 -1.3366795e+00 + 1.4426000e+04 -1.1466795e+00 + 1.4426400e+04 -7.7667949e-01 + 1.4426800e+04 -1.3667949e-01 + 1.4427200e+04 2.2332051e-01 + 1.4427600e+04 5.9332051e-01 + 1.4428000e+04 6.1332051e-01 + 1.4428400e+04 8.3320513e-02 + 1.4428800e+04 -6.6679487e-02 + 1.4429200e+04 -1.6679487e-02 + 1.4429600e+04 1.9332051e-01 + 1.4430000e+04 4.7332051e-01 + 1.4430400e+04 5.5332051e-01 + 1.4430800e+04 5.1332051e-01 + 1.4431200e+04 6.3332051e-01 + 1.4431600e+04 9.3332051e-01 + 1.4432000e+04 1.1133205e+00 + 1.4432400e+04 1.1533205e+00 + 1.4432800e+04 1.1733205e+00 + 1.4433200e+04 1.4433205e+00 + 1.4433600e+04 1.7633205e+00 + 1.4434000e+04 1.8633205e+00 + 1.4434400e+04 1.8033205e+00 + 1.4434800e+04 1.9633205e+00 + 1.4435200e+04 1.1433205e+00 + 1.4435600e+04 8.3332051e-01 + 1.4436000e+04 8.0332051e-01 + 1.4436400e+04 -1.7667949e-01 + 1.4436800e+04 -5.0667949e-01 + 1.4437200e+04 -8.1667949e-01 + 1.4437600e+04 -9.2667949e-01 + 1.4438000e+04 -1.1566795e+00 + 1.4438400e+04 -1.2866795e+00 + 1.4438800e+04 -1.0666795e+00 + 1.4439200e+04 -7.0667949e-01 + 1.4439600e+04 -2.9667949e-01 + 1.4440000e+04 1.8332051e-01 + 1.4440400e+04 9.3332051e-01 + 1.4440800e+04 1.6533205e+00 + 1.4441200e+04 2.1733205e+00 + 1.4441600e+04 2.4633205e+00 + 1.4442000e+04 2.1733205e+00 + 1.4442400e+04 1.6133205e+00 + 1.4442800e+04 9.8332051e-01 + 1.4443200e+04 6.8332051e-01 + 1.4443600e+04 5.5332051e-01 + 1.4444000e+04 2.8332051e-01 + 1.4444400e+04 -1.5667949e-01 + 1.4444800e+04 -5.3667949e-01 + 1.4445200e+04 -7.1667949e-01 + 1.4445600e+04 -1.0466795e+00 + 1.4446000e+04 -1.3266795e+00 + 1.4446400e+04 -1.5666795e+00 + 1.4446800e+04 -1.8266795e+00 + 1.4447200e+04 -1.5866795e+00 + 1.4447600e+04 -1.3966795e+00 + 1.4448000e+04 -1.4266795e+00 + 1.4448400e+04 -1.4866795e+00 + 1.4448800e+04 -1.3966795e+00 + 1.4449200e+04 -1.1166795e+00 + 1.4449600e+04 -5.5667949e-01 + 1.4450000e+04 3.3205128e-03 + 1.4450400e+04 1.2633205e+00 + 1.4450800e+04 2.3233205e+00 + 1.4451200e+04 3.1533205e+00 + 1.4451600e+04 3.4233205e+00 + 1.4452000e+04 2.7333205e+00 + 1.4452400e+04 2.0033205e+00 + 1.4452800e+04 1.6433205e+00 + 1.4453200e+04 1.2333205e+00 + 1.4453600e+04 9.0332051e-01 + 1.4454000e+04 8.2332051e-01 + 1.4454400e+04 7.6332051e-01 + 1.4454800e+04 3.6332051e-01 + 1.4455200e+04 5.3320513e-02 + 1.4455600e+04 -1.3667949e-01 + 1.4456000e+04 1.4332051e-01 + 1.4456400e+04 3.4332051e-01 + 1.4456800e+04 1.0233205e+00 + 1.4457200e+04 1.0233205e+00 + 1.4457600e+04 5.1332051e-01 + 1.4458000e+04 8.3320513e-02 + 1.4458400e+04 -3.6679487e-02 + 1.4458800e+04 -1.6679487e-02 + 1.4459200e+04 -1.4667949e-01 + 1.4459600e+04 -2.4667949e-01 + 1.4460000e+04 -2.3667949e-01 + 1.4460400e+04 1.3320513e-02 + 1.4460800e+04 3.8332051e-01 + 1.4461200e+04 1.9332051e-01 + 1.4461600e+04 2.4332051e-01 + 1.4462000e+04 3.8332051e-01 + 1.4462400e+04 9.3320513e-02 + 1.4462800e+04 -1.0667949e-01 + 1.4463200e+04 -1.7667949e-01 + 1.4463600e+04 -1.3966795e+00 + 1.4464000e+04 -1.9066795e+00 + 1.4464400e+04 -1.7266795e+00 + 1.4464800e+04 -1.4466795e+00 + 1.4465200e+04 -8.9667949e-01 + 1.4465600e+04 -5.1667949e-01 + 1.4466000e+04 -1.7667949e-01 + 1.4466400e+04 2.8332051e-01 + 1.4466800e+04 4.3332051e-01 + 1.4467200e+04 1.0233205e+00 + 1.4467600e+04 1.1833205e+00 + 1.4468000e+04 1.0533205e+00 + 1.4468400e+04 1.0933205e+00 + 1.4468800e+04 9.8332051e-01 + 1.4469200e+04 5.7332051e-01 + 1.4469600e+04 2.1332051e-01 + 1.4470000e+04 8.3320513e-02 + 1.4470400e+04 3.7332051e-01 + 1.4470800e+04 6.0332051e-01 + 1.4471200e+04 7.3332051e-01 + 1.4471600e+04 7.7332051e-01 + 1.4472000e+04 1.0533205e+00 + 1.4472400e+04 1.1533205e+00 + 1.4472800e+04 1.4033205e+00 + 1.4473200e+04 1.5933205e+00 + 1.4473600e+04 1.5533205e+00 + 1.4474000e+04 1.2333205e+00 + 1.4474400e+04 1.1733205e+00 + 1.4474800e+04 6.4332051e-01 + 1.4475200e+04 1.9332051e-01 + 1.4475600e+04 -7.6679487e-02 + 1.4476000e+04 -1.6667949e-01 + 1.4476400e+04 -1.9667949e-01 + 1.4476800e+04 -4.4667949e-01 + 1.4477200e+04 -5.8667949e-01 + 1.4477600e+04 -3.9667949e-01 + 1.4478000e+04 -8.6679487e-02 + 1.4478400e+04 9.3320513e-02 + 1.4478800e+04 -3.6679487e-02 + 1.4479200e+04 -1.3667949e-01 + 1.4479600e+04 -1.6667949e-01 + 1.4480000e+04 9.3320513e-02 + 1.4480400e+04 6.5332051e-01 + 1.4480800e+04 9.5332051e-01 + 1.4481200e+04 5.1332051e-01 + 1.4481600e+04 2.2332051e-01 + 1.4482000e+04 -9.6679487e-02 + 1.4482400e+04 7.3320513e-02 + 1.4482800e+04 -6.6679487e-02 + 1.4483200e+04 -8.6679487e-02 + 1.4483600e+04 -1.1066795e+00 + 1.4484000e+04 -1.4066795e+00 + 1.4484400e+04 -1.4566795e+00 + 1.4484800e+04 -1.6966795e+00 + 1.4485200e+04 -1.5966795e+00 + 1.4485600e+04 -1.5966795e+00 + 1.4486000e+04 -1.3466795e+00 + 1.4486400e+04 -5.1667949e-01 + 1.4486800e+04 4.1332051e-01 + 1.4487200e+04 1.8333205e+00 + 1.4487600e+04 2.5433205e+00 + 1.4488000e+04 3.8233205e+00 + 1.4488400e+04 5.2033205e+00 + 1.4488800e+04 4.5333205e+00 + 1.4489200e+04 3.4733205e+00 + 1.4489600e+04 2.4233205e+00 + 1.4490000e+04 1.4433205e+00 + 1.4490400e+04 9.8332051e-01 + 1.4490800e+04 9.6332051e-01 + 1.4491200e+04 -7.6679487e-02 + 1.4491600e+04 -7.9667949e-01 + 1.4492000e+04 -1.3466795e+00 + 1.4492400e+04 -1.5966795e+00 + 1.4492800e+04 -1.6166795e+00 + 1.4493200e+04 -1.3466795e+00 + 1.4493600e+04 -1.1766795e+00 + 1.4494000e+04 -9.9667949e-01 + 1.4494400e+04 -7.7667949e-01 + 1.4494800e+04 -6.9667949e-01 + 1.4495200e+04 -6.2667949e-01 + 1.4495600e+04 -6.3667949e-01 + 1.4496000e+04 -4.0667949e-01 + 1.4496400e+04 -1.0667949e-01 + 1.4496800e+04 -1.1667949e-01 + 1.4497200e+04 -8.6679487e-02 + 1.4497600e+04 1.5332051e-01 + 1.4498000e+04 6.9332051e-01 + 1.4498400e+04 1.2233205e+00 + 1.4498800e+04 1.7033205e+00 + 1.4499200e+04 1.9833205e+00 + 1.4499600e+04 2.2133205e+00 + 1.4500000e+04 2.2933205e+00 + 1.4500400e+04 2.0533205e+00 + 1.4500800e+04 2.0433205e+00 + 1.4501200e+04 1.8933205e+00 + 1.4501600e+04 -2.6679487e-02 + 1.4502000e+04 -2.5667949e-01 + 1.4502400e+04 -1.0366795e+00 + 1.4502800e+04 -9.9667949e-01 + 1.4503200e+04 -6.3667949e-01 + 1.4503600e+04 3.4332051e-01 + 1.4504000e+04 1.0433205e+00 + 1.4504400e+04 9.0332051e-01 + 1.4504800e+04 5.1332051e-01 + 1.4505200e+04 -1.6679487e-02 + 1.4505600e+04 -4.4667949e-01 + 1.4506000e+04 -7.0667949e-01 + 1.4506400e+04 -8.5667949e-01 + 1.4506800e+04 -7.7667949e-01 + 1.4507200e+04 -4.1667949e-01 + 1.4507600e+04 1.3320513e-02 + 1.4508000e+04 4.7332051e-01 + 1.4508400e+04 9.2332051e-01 + 1.4508800e+04 9.3332051e-01 + 1.4509200e+04 1.0933205e+00 + 1.4509600e+04 1.5933205e+00 + 1.4510000e+04 1.2833205e+00 + 1.4510400e+04 5.7332051e-01 + 1.4510800e+04 2.2332051e-01 + 1.4511200e+04 1.3320513e-02 + 1.4511600e+04 2.8332051e-01 + 1.4512000e+04 5.5332051e-01 + 1.4512400e+04 6.9332051e-01 + 1.4512800e+04 8.9332051e-01 + 1.4513200e+04 5.8332051e-01 + 1.4513600e+04 -8.6679487e-02 + 1.4514000e+04 -7.5667949e-01 + 1.4514400e+04 -1.1166795e+00 + 1.4514800e+04 -1.2566795e+00 + 1.4515200e+04 -9.4667949e-01 + 1.4515600e+04 -9.4667949e-01 + 1.4516000e+04 -1.1366795e+00 + 1.4516400e+04 -1.0166795e+00 + 1.4516800e+04 -4.5667949e-01 + 1.4517200e+04 4.9332051e-01 + 1.4517600e+04 9.1332051e-01 + 1.4518000e+04 1.1933205e+00 + 1.4518400e+04 1.3533205e+00 + 1.4518800e+04 1.4833205e+00 + 1.4519200e+04 1.7633205e+00 + 1.4519600e+04 2.2033205e+00 + 1.4520000e+04 2.2433205e+00 + 1.4520400e+04 2.1833205e+00 + 1.4520800e+04 2.3333205e+00 + 1.4521200e+04 1.9733205e+00 + 1.4521600e+04 1.4733205e+00 + 1.4522000e+04 6.8332051e-01 + 1.4522400e+04 -3.0667949e-01 + 1.4522800e+04 -1.1966795e+00 + 1.4523200e+04 -1.9066795e+00 + 1.4523600e+04 -2.3366795e+00 + 1.4524000e+04 -2.4966795e+00 + 1.4524400e+04 -2.4866795e+00 + 1.4524800e+04 -2.1366795e+00 + 1.4525200e+04 -1.6666795e+00 + 1.4525600e+04 -1.3466795e+00 + 1.4526000e+04 -7.8667949e-01 + 1.4526400e+04 -2.7667949e-01 + 1.4526800e+04 4.8332051e-01 + 1.4527200e+04 1.0733205e+00 + 1.4527600e+04 1.6033205e+00 + 1.4528000e+04 1.8033205e+00 + 1.4528400e+04 1.8333205e+00 + 1.4528800e+04 1.4933205e+00 + 1.4529200e+04 1.2633205e+00 + 1.4529600e+04 1.0833205e+00 + 1.4530000e+04 9.2332051e-01 + 1.4530400e+04 7.3332051e-01 + 1.4530800e+04 1.4332051e-01 + 1.4531200e+04 -7.7667949e-01 + 1.4531600e+04 -1.6166795e+00 + 1.4532000e+04 -1.4766795e+00 + 1.4532400e+04 -6.4667949e-01 + 1.4532800e+04 3.3205128e-03 + 1.4533200e+04 2.3332051e-01 + 1.4533600e+04 3.5332051e-01 + 1.4534000e+04 4.1332051e-01 + 1.4534400e+04 1.2332051e-01 + 1.4534800e+04 -1.9667949e-01 + 1.4535200e+04 -2.3667949e-01 + 1.4535600e+04 -4.6679487e-02 + 1.4536000e+04 2.4332051e-01 + 1.4536400e+04 6.4332051e-01 + 1.4536800e+04 1.0933205e+00 + 1.4537200e+04 1.1033205e+00 + 1.4537600e+04 1.0533205e+00 + 1.4538000e+04 1.4733205e+00 + 1.4538400e+04 8.0332051e-01 + 1.4538800e+04 2.7332051e-01 + 1.4539200e+04 3.0332051e-01 + 1.4539600e+04 7.0332051e-01 + 1.4540000e+04 1.1033205e+00 + 1.4540400e+04 1.6233205e+00 + 1.4540800e+04 1.4633205e+00 + 1.4541200e+04 1.1033205e+00 + 1.4541600e+04 1.0033205e+00 + 1.4542000e+04 8.5332051e-01 + 1.4542400e+04 7.0332051e-01 + 1.4542800e+04 4.2332051e-01 + 1.4543200e+04 5.3320513e-02 + 1.4543600e+04 -3.2667949e-01 + 1.4544000e+04 -6.7667949e-01 + 1.4544400e+04 -1.0766795e+00 + 1.4544800e+04 -1.7566795e+00 + 1.4545200e+04 -2.0266795e+00 + 1.4545600e+04 -1.9466795e+00 + 1.4546000e+04 -1.4766795e+00 + 1.4546400e+04 -7.7667949e-01 + 1.4546800e+04 -5.3667949e-01 + 1.4547200e+04 -2.9667949e-01 + 1.4547600e+04 1.8332051e-01 + 1.4548000e+04 6.9332051e-01 + 1.4548400e+04 7.7332051e-01 + 1.4548800e+04 5.3332051e-01 + 1.4549200e+04 4.4332051e-01 + 1.4549600e+04 2.4332051e-01 + 1.4550000e+04 1.1332051e-01 + 1.4550400e+04 1.7332051e-01 + 1.4550800e+04 1.3332051e-01 + 1.4551200e+04 3.9332051e-01 + 1.4551600e+04 7.7332051e-01 + 1.4552000e+04 1.3033205e+00 + 1.4552400e+04 1.6833205e+00 + 1.4552800e+04 1.8033205e+00 + 1.4553200e+04 1.9333205e+00 + 1.4553600e+04 1.8033205e+00 + 1.4554000e+04 1.2333205e+00 + 1.4554400e+04 8.2332051e-01 + 1.4554800e+04 6.5332051e-01 + 1.4555200e+04 7.4332051e-01 + 1.4555600e+04 8.7332051e-01 + 1.4556000e+04 6.6332051e-01 + 1.4556400e+04 6.5332051e-01 + 1.4556800e+04 -8.2667949e-01 + 1.4557200e+04 -1.0466795e+00 + 1.4557600e+04 -9.5667949e-01 + 1.4558000e+04 -4.5667949e-01 + 1.4558400e+04 1.2332051e-01 + 1.4558800e+04 6.2332051e-01 + 1.4559200e+04 5.1332051e-01 + 1.4559600e+04 3.3320513e-02 + 1.4560000e+04 -4.0667949e-01 + 1.4560400e+04 -5.6667949e-01 + 1.4560800e+04 -5.1667949e-01 + 1.4561200e+04 -1.2667949e-01 + 1.4561600e+04 1.2332051e-01 + 1.4562000e+04 4.7332051e-01 + 1.4562400e+04 4.6332051e-01 + 1.4562800e+04 2.8332051e-01 + 1.4563200e+04 3.7332051e-01 + 1.4563600e+04 5.8332051e-01 + 1.4564000e+04 8.0332051e-01 + 1.4564400e+04 1.3033205e+00 + 1.4564800e+04 1.6133205e+00 + 1.4565200e+04 1.6633205e+00 + 1.4565600e+04 1.4933205e+00 + 1.4566000e+04 1.0933205e+00 + 1.4566400e+04 7.5332051e-01 + 1.4566800e+04 4.1332051e-01 + 1.4567200e+04 9.3320513e-02 + 1.4567600e+04 -1.9667949e-01 + 1.4568000e+04 -2.4667949e-01 + 1.4568400e+04 -1.1667949e-01 + 1.4568800e+04 -1.1667949e-01 + 1.4569200e+04 -4.6679487e-02 + 1.4569600e+04 -4.5667949e-01 + 1.4570000e+04 -8.0667949e-01 + 1.4570400e+04 -1.5866795e+00 + 1.4570800e+04 -1.9566795e+00 + 1.4571200e+04 -1.8866795e+00 + 1.4571600e+04 -1.3766795e+00 + 1.4572000e+04 -8.5667949e-01 + 1.4572400e+04 -3.0667949e-01 + 1.4572800e+04 2.9332051e-01 + 1.4573200e+04 6.5332051e-01 + 1.4573600e+04 1.1533205e+00 + 1.4574000e+04 1.8033205e+00 + 1.4574400e+04 2.0733205e+00 + 1.4574800e+04 2.0133205e+00 + 1.4575200e+04 2.0133205e+00 + 1.4575600e+04 2.1333205e+00 + 1.4576000e+04 1.8233205e+00 + 1.4576400e+04 1.5033205e+00 + 1.4576800e+04 1.4733205e+00 + 1.4577200e+04 1.4433205e+00 + 1.4577600e+04 1.0333205e+00 + 1.4578000e+04 7.1332051e-01 + 1.4578400e+04 -7.6667949e-01 + 1.4578800e+04 -1.5066795e+00 + 1.4579200e+04 -1.8666795e+00 + 1.4579600e+04 -2.2666795e+00 + 1.4580000e+04 -1.9466795e+00 + 1.4580400e+04 -1.4466795e+00 + 1.4580800e+04 -1.0666795e+00 + 1.4581200e+04 -8.7667949e-01 + 1.4581600e+04 -3.5667949e-01 + 1.4582000e+04 -1.3667949e-01 + 1.4582400e+04 -9.6679487e-02 + 1.4582800e+04 1.8332051e-01 + 1.4583200e+04 5.0332051e-01 + 1.4583600e+04 7.2332051e-01 + 1.4584000e+04 1.1133205e+00 + 1.4584400e+04 1.7433205e+00 + 1.4584800e+04 1.8633205e+00 + 1.4585200e+04 2.3033205e+00 + 1.4585600e+04 3.0033205e+00 + 1.4586000e+04 2.1933205e+00 + 1.4586400e+04 1.2233205e+00 + 1.4586800e+04 1.0133205e+00 + 1.4587200e+04 -3.6679487e-02 + 1.4587600e+04 -1.4667949e-01 + 1.4588000e+04 2.0332051e-01 + 1.4588400e+04 6.9332051e-01 + 1.4588800e+04 1.2833205e+00 + 1.4589200e+04 1.6133205e+00 + 1.4589600e+04 1.5533205e+00 + 1.4590000e+04 1.0333205e+00 + 1.4590400e+04 1.7332051e-01 + 1.4590800e+04 -7.7667949e-01 + 1.4591200e+04 -1.5966795e+00 + 1.4591600e+04 -1.9666795e+00 + 1.4592000e+04 -1.8766795e+00 + 1.4592400e+04 -1.4066795e+00 + 1.4592800e+04 -9.9667949e-01 + 1.4593200e+04 -8.5667949e-01 + 1.4593600e+04 -8.1667949e-01 + 1.4594000e+04 -5.8667949e-01 + 1.4594400e+04 -3.1667949e-01 + 1.4594800e+04 -2.8667949e-01 + 1.4595200e+04 -1.1667949e-01 + 1.4595600e+04 2.1332051e-01 + 1.4596000e+04 1.0833205e+00 + 1.4596400e+04 1.6633205e+00 + 1.4596800e+04 1.9833205e+00 + 1.4597200e+04 1.9733205e+00 + 1.4597600e+04 1.8033205e+00 + 1.4598000e+04 1.7333205e+00 + 1.4598400e+04 1.4933205e+00 + 1.4598800e+04 1.1333205e+00 + 1.4599200e+04 8.5332051e-01 + 1.4599600e+04 8.0332051e-01 + 1.4600000e+04 1.0333205e+00 + 1.4600400e+04 1.0533205e+00 + 1.4600800e+04 8.2332051e-01 + 1.4601200e+04 5.0332051e-01 + 1.4601600e+04 -8.2667949e-01 + 1.4602000e+04 -1.1666795e+00 + 1.4602400e+04 -1.1666795e+00 + 1.4602800e+04 -1.3066795e+00 + 1.4603200e+04 -1.6266795e+00 + 1.4603600e+04 -1.0466795e+00 + 1.4604000e+04 -4.8667949e-01 + 1.4604400e+04 3.3205128e-03 + 1.4604800e+04 5.7332051e-01 + 1.4605200e+04 1.1833205e+00 + 1.4605600e+04 1.7933205e+00 + 1.4606000e+04 2.1133205e+00 + 1.4606400e+04 2.1833205e+00 + 1.4606800e+04 2.3233205e+00 + 1.4607200e+04 2.5433205e+00 + 1.4607600e+04 2.3433205e+00 + 1.4608000e+04 2.0033205e+00 + 1.4608400e+04 1.4833205e+00 + 1.4608800e+04 6.6332051e-01 + 1.4609200e+04 5.3320513e-02 + 1.4609600e+04 -5.5667949e-01 + 1.4610000e+04 -9.4667949e-01 + 1.4610400e+04 -9.2667949e-01 + 1.4610800e+04 -9.1667949e-01 + 1.4611200e+04 -1.0666795e+00 + 1.4611600e+04 -1.2066795e+00 + 1.4612000e+04 -1.2666795e+00 + 1.4612400e+04 -1.6966795e+00 + 1.4612800e+04 -1.3066795e+00 + 1.4613200e+04 -9.6667949e-01 + 1.4613600e+04 -3.9667949e-01 + 1.4614000e+04 1.5332051e-01 + 1.4614400e+04 9.2332051e-01 + 1.4614800e+04 1.4133205e+00 + 1.4615200e+04 1.1733205e+00 + 1.4615600e+04 9.6332051e-01 + 1.4616000e+04 8.2332051e-01 + 1.4616400e+04 6.0332051e-01 + 1.4616800e+04 2.9332051e-01 + 1.4617200e+04 7.3320513e-02 + 1.4617600e+04 3.8332051e-01 + 1.4618000e+04 3.9332051e-01 + 1.4618400e+04 4.0332051e-01 + 1.4618800e+04 4.0332051e-01 + 1.4619200e+04 5.1332051e-01 + 1.4619600e+04 4.8332051e-01 + 1.4620000e+04 4.0332051e-01 + 1.4620400e+04 -2.6679487e-02 + 1.4620800e+04 -4.0667949e-01 + 1.4621200e+04 -6.3667949e-01 + 1.4621600e+04 -5.9667949e-01 + 1.4622000e+04 -2.9667949e-01 + 1.4622400e+04 -3.4667949e-01 + 1.4622800e+04 -3.4667949e-01 + 1.4623200e+04 -6.6679487e-02 + 1.4623600e+04 5.4332051e-01 + 1.4624000e+04 1.3533205e+00 + 1.4624400e+04 1.6833205e+00 + 1.4624800e+04 1.8933205e+00 + 1.4625200e+04 2.1433205e+00 + 1.4625600e+04 2.6233205e+00 + 1.4626000e+04 2.6333205e+00 + 1.4626400e+04 2.1433205e+00 + 1.4626800e+04 2.0333205e+00 + 1.4627200e+04 2.0233205e+00 + 1.4627600e+04 2.0233205e+00 + 1.4628000e+04 1.9133205e+00 + 1.4628400e+04 -9.9667949e-01 + 1.4628800e+04 -1.2066795e+00 + 1.4629200e+04 -1.2366795e+00 + 1.4629600e+04 -1.0466795e+00 + 1.4630000e+04 -8.3667949e-01 + 1.4630400e+04 -6.7667949e-01 + 1.4630800e+04 -6.4667949e-01 + 1.4631200e+04 -4.4667949e-01 + 1.4631600e+04 4.3320513e-02 + 1.4632000e+04 6.7332051e-01 + 1.4632400e+04 1.0333205e+00 + 1.4632800e+04 8.9332051e-01 + 1.4633200e+04 5.9332051e-01 + 1.4633600e+04 2.3332051e-01 + 1.4634000e+04 -1.1667949e-01 + 1.4634400e+04 -3.2667949e-01 + 1.4634800e+04 -3.4667949e-01 + 1.4635200e+04 -3.7667949e-01 + 1.4635600e+04 -3.0667949e-01 + 1.4636000e+04 -4.4667949e-01 + 1.4636400e+04 -4.6667949e-01 + 1.4636800e+04 -1.2667949e-01 + 1.4637200e+04 2.6332051e-01 + 1.4637600e+04 9.5332051e-01 + 1.4638000e+04 1.2633205e+00 + 1.4638400e+04 1.0533205e+00 + 1.4638800e+04 7.9332051e-01 + 1.4639200e+04 4.4332051e-01 + 1.4639600e+04 9.3320513e-02 + 1.4640000e+04 -1.9667949e-01 + 1.4640400e+04 -1.9667949e-01 + 1.4640800e+04 -6.6794872e-03 + 1.4641200e+04 -6.6794872e-03 + 1.4641600e+04 1.5332051e-01 + 1.4642000e+04 3.2332051e-01 + 1.4642400e+04 7.0332051e-01 + 1.4642800e+04 1.1533205e+00 + 1.4643200e+04 1.4933205e+00 + 1.4643600e+04 1.7133205e+00 + 1.4644000e+04 2.0733205e+00 + 1.4644400e+04 2.3933205e+00 + 1.4644800e+04 2.4533205e+00 + 1.4645200e+04 2.1833205e+00 + 1.4645600e+04 1.3033205e+00 + 1.4646000e+04 9.4332051e-01 + 1.4646400e+04 9.1332051e-01 + 1.4646800e+04 9.1332051e-01 + 1.4647200e+04 9.1332051e-01 + 1.4647600e+04 9.1332051e-01 + 1.4648000e+04 9.1332051e-01 + 1.4648400e+04 9.1332051e-01 + 1.4648800e+04 9.1332051e-01 + 1.4649200e+04 -1.7667949e-01 + 1.4649600e+04 -1.9066795e+00 + 1.4650000e+04 -1.7566795e+00 + 1.4650400e+04 -1.2266795e+00 + 1.4650800e+04 -9.0667949e-01 + 1.4651200e+04 -6.3667949e-01 + 1.4651600e+04 -5.5667949e-01 + 1.4652000e+04 -8.5667949e-01 + 1.4652400e+04 -9.8667949e-01 + 1.4652800e+04 -5.5667949e-01 + 1.4653200e+04 2.0332051e-01 + 1.4653600e+04 3.7332051e-01 + 1.4654000e+04 7.1332051e-01 + 1.4654400e+04 1.1633205e+00 + 1.4654800e+04 1.7833205e+00 + 1.4655200e+04 1.9433205e+00 + 1.4655600e+04 1.6133205e+00 + 1.4656000e+04 1.3833205e+00 + 1.4656400e+04 1.5133205e+00 + 1.4656800e+04 1.6333205e+00 + 1.4657200e+04 1.3533205e+00 + 1.4657600e+04 8.4332051e-01 + 1.4658000e+04 3.7332051e-01 + 1.4658400e+04 2.2332051e-01 + 1.4658800e+04 4.1332051e-01 + 1.4659200e+04 4.9332051e-01 + 1.4659600e+04 3.8332051e-01 + 1.4660000e+04 1.7332051e-01 + 1.4660400e+04 -2.4667949e-01 + 1.4660800e+04 -5.3667949e-01 + 1.4661200e+04 -1.1366795e+00 + 1.4661600e+04 -1.5266795e+00 + 1.4662000e+04 -1.7866795e+00 + 1.4662400e+04 -1.7666795e+00 + 1.4662800e+04 -1.6266795e+00 + 1.4663200e+04 -1.1666795e+00 + 1.4663600e+04 -1.3667949e-01 + 1.4664000e+04 5.5332051e-01 + 1.4664400e+04 6.0332051e-01 + 1.4664800e+04 2.1233205e+00 + 1.4665200e+04 2.8033205e+00 + 1.4665600e+04 3.1533205e+00 + 1.4666000e+04 3.1833205e+00 + 1.4666400e+04 2.9733205e+00 + 1.4666800e+04 2.2733205e+00 + 1.4667200e+04 1.5133205e+00 + 1.4667600e+04 1.4333205e+00 + 1.4668000e+04 9.5332051e-01 + 1.4668400e+04 -1.3966795e+00 + 1.4668800e+04 -1.9466795e+00 + 1.4669200e+04 -2.5566795e+00 + 1.4669600e+04 -2.5466795e+00 + 1.4670000e+04 -2.2466795e+00 + 1.4670400e+04 -1.6666795e+00 + 1.4670800e+04 -8.3667949e-01 + 1.4671200e+04 -1.0667949e-01 + 1.4671600e+04 -1.6679487e-02 + 1.4672000e+04 8.5332051e-01 + 1.4672400e+04 1.2433205e+00 + 1.4672800e+04 1.6433205e+00 + 1.4673200e+04 1.4233205e+00 + 1.4673600e+04 1.2333205e+00 + 1.4674000e+04 4.8332051e-01 + 1.4674400e+04 -1.9667949e-01 + 1.4674800e+04 -2.8667949e-01 + 1.4675200e+04 -4.0667949e-01 + 1.4675600e+04 -1.4066795e+00 + 1.4676000e+04 -1.1466795e+00 + 1.4676400e+04 -3.7667949e-01 + 1.4676800e+04 5.7332051e-01 + 1.4677200e+04 1.3033205e+00 + 1.4677600e+04 1.8233205e+00 + 1.4678000e+04 1.8033205e+00 + 1.4678400e+04 1.5833205e+00 + 1.4678800e+04 1.5733205e+00 + 1.4679200e+04 1.4033205e+00 + 1.4679600e+04 1.6333205e+00 + 1.4680000e+04 1.7833205e+00 + 1.4680400e+04 2.0133205e+00 + 1.4680800e+04 1.9433205e+00 + 1.4681200e+04 1.3533205e+00 + 1.4681600e+04 1.0233205e+00 + 1.4682000e+04 -2.3667949e-01 + 1.4682400e+04 -8.8667949e-01 + 1.4682800e+04 -9.4667949e-01 + 1.4683200e+04 -9.4667949e-01 + 1.4683600e+04 -9.4667949e-01 + 1.4684000e+04 -1.3066795e+00 + 1.4684400e+04 -2.1166795e+00 + 1.4684800e+04 -2.7566795e+00 + 1.4685200e+04 -2.7066795e+00 + 1.4685600e+04 -2.0866795e+00 + 1.4686000e+04 -1.3666795e+00 + 1.4686400e+04 -8.6667949e-01 + 1.4686800e+04 -3.6679487e-02 + 1.4687200e+04 1.6833205e+00 + 1.4687600e+04 3.1533205e+00 + 1.4688000e+04 3.8633205e+00 + 1.4688400e+04 4.1333205e+00 + 1.4688800e+04 4.0433205e+00 + 1.4689200e+04 3.9433205e+00 + 1.4689600e+04 3.2933205e+00 + 1.4690000e+04 3.0533205e+00 + 1.4690400e+04 2.7633205e+00 + 1.4690800e+04 7.4332051e-01 + 1.4691200e+04 5.7332051e-01 + 1.4691600e+04 2.2332051e-01 + 1.4692000e+04 -1.8366795e+00 + 1.4692400e+04 -2.0666795e+00 + 1.4692800e+04 -2.0766795e+00 + 1.4693200e+04 -2.0766795e+00 + 1.4693600e+04 -2.5766795e+00 + 1.4694000e+04 -2.4666795e+00 + 1.4694400e+04 -1.8866795e+00 + 1.4694800e+04 -1.0966795e+00 + 1.4695200e+04 -1.1667949e-01 + 1.4695600e+04 5.3332051e-01 + 1.4696000e+04 5.7332051e-01 + 1.4696400e+04 5.8332051e-01 + 1.4696800e+04 1.6733205e+00 + 1.4697200e+04 1.6933205e+00 + 1.4697600e+04 1.7333205e+00 + 1.4698000e+04 1.6133205e+00 + 1.4698400e+04 1.4733205e+00 + 1.4698800e+04 1.1633205e+00 + 1.4699200e+04 1.1533205e+00 + 1.4699600e+04 9.2332051e-01 + 1.4700000e+04 8.0332051e-01 + 1.4700400e+04 7.9332051e-01 + 1.4700800e+04 -2.4667949e-01 + 1.4701200e+04 -1.1266795e+00 + 1.4701600e+04 -1.4066795e+00 + 1.4702000e+04 -1.5466795e+00 + 1.4702400e+04 -1.3166795e+00 + 1.4702800e+04 -1.0366795e+00 + 1.4703200e+04 -9.5667949e-01 + 1.4703600e+04 -8.7667949e-01 + 1.4704000e+04 -9.4667949e-01 + 1.4704400e+04 -8.6667949e-01 + 1.4704800e+04 -6.4667949e-01 + 1.4705200e+04 -3.6667949e-01 + 1.4705600e+04 -6.6794872e-03 + 1.4706000e+04 8.4332051e-01 + 1.4706400e+04 1.7333205e+00 + 1.4706800e+04 2.5933205e+00 + 1.4707200e+04 3.2733205e+00 + 1.4707600e+04 3.5733205e+00 + 1.4708000e+04 3.2233205e+00 + 1.4708400e+04 2.9533205e+00 + 1.4708800e+04 2.6733205e+00 + 1.4709200e+04 2.4333205e+00 + 1.4709600e+04 2.0233205e+00 + 1.4710000e+04 1.4233205e+00 + 1.4710400e+04 8.3332051e-01 + 1.4710800e+04 2.3332051e-01 + 1.4711200e+04 -1.9667949e-01 + 1.4711600e+04 -3.0667949e-01 + 1.4712000e+04 -4.2667949e-01 + 1.4712400e+04 -4.0667949e-01 + 1.4712800e+04 -5.6667949e-01 + 1.4713200e+04 -8.0667949e-01 + 1.4713600e+04 -1.0566795e+00 + 1.4714000e+04 -2.3066795e+00 + 1.4714400e+04 -2.7166795e+00 + 1.4714800e+04 -2.8866795e+00 + 1.4715200e+04 -2.6166795e+00 + 1.4715600e+04 -2.2766795e+00 + 1.4716000e+04 -1.3066795e+00 + 1.4716400e+04 2.1332051e-01 + 1.4716800e+04 1.3933205e+00 + 1.4717200e+04 1.2333205e+00 + 1.4717600e+04 8.6332051e-01 + 1.4718000e+04 7.0332051e-01 + 1.4718400e+04 7.9332051e-01 + 1.4718800e+04 1.1533205e+00 + 1.4719200e+04 1.3333205e+00 + 1.4719600e+04 1.3033205e+00 + 1.4720000e+04 1.0533205e+00 + 1.4720400e+04 4.2332051e-01 + 1.4720800e+04 -2.5667949e-01 + 1.4721200e+04 -7.0667949e-01 + 1.4721600e+04 -9.4667949e-01 + 1.4722000e+04 -1.0966795e+00 + 1.4722400e+04 -1.0466795e+00 + 1.4722800e+04 -9.6667949e-01 + 1.4723200e+04 -1.0866795e+00 + 1.4723600e+04 -1.1766795e+00 + 1.4724000e+04 -1.0466795e+00 + 1.4724400e+04 -4.6667949e-01 + 1.4724800e+04 4.4332051e-01 + 1.4725200e+04 1.1533205e+00 + 1.4725600e+04 1.6933205e+00 + 1.4726000e+04 2.8833205e+00 + 1.4726400e+04 2.8033205e+00 + 1.4726800e+04 2.5833205e+00 + 1.4727200e+04 2.3233205e+00 + 1.4727600e+04 2.2733205e+00 + 1.4728000e+04 2.4133205e+00 + 1.4728400e+04 2.6633205e+00 + 1.4728800e+04 2.7633205e+00 + 1.4729200e+04 2.4133205e+00 + 1.4729600e+04 2.0033205e+00 + 1.4730000e+04 1.6133205e+00 + 1.4730400e+04 1.1533205e+00 + 1.4730800e+04 7.6332051e-01 + 1.4731200e+04 3.6332051e-01 + 1.4731600e+04 3.3205128e-03 + 1.4732000e+04 -1.2667949e-01 + 1.4732400e+04 -2.6667949e-01 + 1.4732800e+04 -6.1667949e-01 + 1.4733200e+04 -1.0766795e+00 + 1.4733600e+04 -1.6766795e+00 + 1.4734000e+04 -1.9966795e+00 + 1.4734400e+04 -2.8366795e+00 + 1.4734800e+04 -3.0466795e+00 + 1.4735200e+04 -3.1966795e+00 + 1.4735600e+04 -3.0166795e+00 + 1.4736000e+04 -2.4066795e+00 + 1.4736400e+04 -2.1366795e+00 + 1.4736800e+04 -1.8566795e+00 + 1.4737200e+04 -1.2066795e+00 + 1.4737600e+04 -8.7667949e-01 + 1.4738000e+04 -8.6679487e-02 + 1.4738400e+04 9.3320513e-02 + 1.4738800e+04 5.1332051e-01 + 1.4739200e+04 7.5332051e-01 + 1.4739600e+04 1.0533205e+00 + 1.4740000e+04 1.6533205e+00 + 1.4740400e+04 1.4433205e+00 + 1.4740800e+04 1.4233205e+00 + 1.4741200e+04 1.4333205e+00 + 1.4741600e+04 1.4433205e+00 + 1.4742000e+04 1.5233205e+00 + 1.4742400e+04 1.3733205e+00 + 1.4742800e+04 1.1933205e+00 + 1.4743200e+04 1.1833205e+00 + 1.4743600e+04 1.1833205e+00 + 1.4744000e+04 -2.0667949e-01 + 1.4744400e+04 -8.5667949e-01 + 1.4744800e+04 -4.8667949e-01 + 1.4745200e+04 1.1332051e-01 + 1.4745600e+04 5.5332051e-01 + 1.4746000e+04 8.4332051e-01 + 1.4746400e+04 1.0333205e+00 + 1.4746800e+04 1.3433205e+00 + 1.4747200e+04 1.7433205e+00 + 1.4747600e+04 2.3733205e+00 + 1.4748000e+04 2.8733205e+00 + 1.4748400e+04 3.8033205e+00 + 1.4748800e+04 3.7333205e+00 + 1.4749200e+04 2.4733205e+00 + 1.4749600e+04 1.7733205e+00 + 1.4750000e+04 7.5332051e-01 + 1.4750400e+04 4.4332051e-01 + 1.4750800e+04 3.3332051e-01 + 1.4751200e+04 2.2332051e-01 + 1.4751600e+04 1.0332051e-01 + 1.4752000e+04 -3.7667949e-01 + 1.4752400e+04 -7.5667949e-01 + 1.4752800e+04 -8.0667949e-01 + 1.4753200e+04 -1.4166795e+00 + 1.4753600e+04 -1.7466795e+00 + 1.4754000e+04 -1.8666795e+00 + 1.4754400e+04 -1.8066795e+00 + 1.4754800e+04 -1.6266795e+00 + 1.4755200e+04 -1.4766795e+00 + 1.4755600e+04 -1.4466795e+00 + 1.4756000e+04 -1.0966795e+00 + 1.4756400e+04 -1.0266795e+00 + 1.4756800e+04 -1.1966795e+00 + 1.4757200e+04 -1.5766795e+00 + 1.4757600e+04 -1.7866795e+00 + 1.4758000e+04 -1.6766795e+00 + 1.4758400e+04 -1.5166795e+00 + 1.4758800e+04 -1.0866795e+00 + 1.4759200e+04 -1.0566795e+00 + 1.4759600e+04 -7.0667949e-01 + 1.4760000e+04 -4.6679487e-02 + 1.4760400e+04 2.7332051e-01 + 1.4760800e+04 1.1433205e+00 + 1.4761200e+04 1.7133205e+00 + 1.4761600e+04 2.1733205e+00 + 1.4762000e+04 2.4533205e+00 + 1.4762400e+04 2.6333205e+00 + 1.4762800e+04 2.9333205e+00 + 1.4763200e+04 3.2633205e+00 + 1.4763600e+04 3.1633205e+00 + 1.4764000e+04 3.0833205e+00 + 1.4764400e+04 2.6733205e+00 + 1.4764800e+04 2.5033205e+00 + 1.4765200e+04 2.4933205e+00 + 1.4765600e+04 1.0833205e+00 + 1.4766000e+04 -1.9667949e-01 + 1.4766400e+04 -8.5667949e-01 + 1.4766800e+04 -9.1667949e-01 + 1.4767200e+04 -6.9667949e-01 + 1.4767600e+04 -4.6667949e-01 + 1.4768000e+04 -3.8667949e-01 + 1.4768400e+04 -2.9667949e-01 + 1.4768800e+04 2.1332051e-01 + 1.4769200e+04 6.4332051e-01 + 1.4769600e+04 7.3332051e-01 + 1.4770000e+04 8.3332051e-01 + 1.4770400e+04 9.5332051e-01 + 1.4770800e+04 1.1633205e+00 + 1.4771200e+04 1.5933205e+00 + 1.4771600e+04 2.0733205e+00 + 1.4772000e+04 2.6633205e+00 + 1.4772400e+04 2.5833205e+00 + 1.4772800e+04 2.0733205e+00 + 1.4773200e+04 1.2633205e+00 + 1.4773600e+04 6.4332051e-01 + 1.4774000e+04 5.3332051e-01 + 1.4774400e+04 5.3332051e-01 + 1.4774800e+04 5.3332051e-01 + 1.4775200e+04 5.3332051e-01 + 1.4775600e+04 5.3332051e-01 + 1.4776000e+04 5.3332051e-01 + 1.4776400e+04 -2.6679487e-02 + 1.4776800e+04 -2.6166795e+00 + 1.4777200e+04 -2.6966795e+00 + 1.4777600e+04 -2.6366795e+00 + 1.4778000e+04 -2.7066795e+00 + 1.4778400e+04 -2.8766795e+00 + 1.4778800e+04 -2.7066795e+00 + 1.4779200e+04 -2.3566795e+00 + 1.4779600e+04 -2.2266795e+00 + 1.4780000e+04 -1.6966795e+00 + 1.4780400e+04 2.8332051e-01 + 1.4780800e+04 1.3633205e+00 + 1.4781200e+04 2.1933205e+00 + 1.4781600e+04 3.0533205e+00 + 1.4782000e+04 3.9133205e+00 + 1.4782400e+04 4.6833205e+00 + 1.4782800e+04 5.2033205e+00 + 1.4783200e+04 4.9733205e+00 + 1.4783600e+04 4.7433205e+00 + 1.4784000e+04 4.1533205e+00 + 1.4784400e+04 3.4333205e+00 + 1.4784800e+04 2.6933205e+00 + 1.4785200e+04 2.1933205e+00 + 1.4785600e+04 1.6533205e+00 + 1.4786000e+04 1.5933205e+00 + 1.4786400e+04 1.6033205e+00 + 1.4786800e+04 6.3332051e-01 + 1.4787200e+04 -5.6667949e-01 + 1.4787600e+04 -6.7667949e-01 + 1.4788000e+04 -8.5667949e-01 + 1.4788400e+04 -1.3266795e+00 + 1.4788800e+04 -1.3866795e+00 + 1.4789200e+04 -1.4066795e+00 + 1.4789600e+04 -1.3966795e+00 + 1.4790000e+04 -1.3566795e+00 + 1.4790400e+04 -1.3666795e+00 + 1.4790800e+04 -1.1666795e+00 + 1.4791200e+04 -7.4667949e-01 + 1.4791600e+04 -4.2667949e-01 + 1.4792000e+04 -3.4667949e-01 + 1.4792400e+04 1.6733205e+00 + 1.4792800e+04 1.4233205e+00 + 1.4793200e+04 1.0333205e+00 + 1.4793600e+04 7.2332051e-01 + 1.4794000e+04 3.5332051e-01 + 1.4794400e+04 -2.6679487e-02 + 1.4794800e+04 -1.9667949e-01 + 1.4795200e+04 -3.0667949e-01 + 1.4795600e+04 -2.1667949e-01 + 1.4796000e+04 -2.9667949e-01 + 1.4796400e+04 -6.2667949e-01 + 1.4796800e+04 -1.0166795e+00 + 1.4797200e+04 -1.2466795e+00 + 1.4797600e+04 -1.6066795e+00 + 1.4798000e+04 -1.9266795e+00 + 1.4798400e+04 -1.8566795e+00 + 1.4798800e+04 -1.6366795e+00 + 1.4799200e+04 -1.7566795e+00 + 1.4799600e+04 -1.7966795e+00 + 1.4800000e+04 -1.7466795e+00 + 1.4800400e+04 -1.6566795e+00 + 1.4800800e+04 -1.0366795e+00 + 1.4801200e+04 -2.4667949e-01 + 1.4801600e+04 4.4332051e-01 + 1.4802000e+04 1.0033205e+00 + 1.4802400e+04 1.9033205e+00 + 1.4802800e+04 3.0133205e+00 + 1.4803200e+04 4.1033205e+00 + 1.4803600e+04 4.2433205e+00 + 1.4804000e+04 4.0333205e+00 + 1.4804400e+04 3.6533205e+00 + 1.4804800e+04 2.9433205e+00 + 1.4805200e+04 2.2233205e+00 + 1.4805600e+04 1.6133205e+00 + 1.4806000e+04 1.5733205e+00 + 1.4806400e+04 1.5533205e+00 + 1.4806800e+04 3.3205128e-03 + 1.4807200e+04 -2.5667949e-01 + 1.4807600e+04 -1.2667949e-01 + 1.4808000e+04 8.3320513e-02 + 1.4808400e+04 5.1332051e-01 + 1.4808800e+04 1.1133205e+00 + 1.4809200e+04 1.4633205e+00 + 1.4809600e+04 1.4033205e+00 + 1.4810000e+04 9.7332051e-01 + 1.4810400e+04 5.0332051e-01 + 1.4810800e+04 2.1332051e-01 + 1.4811200e+04 -8.6679487e-02 + 1.4811600e+04 -3.2667949e-01 + 1.4812000e+04 -5.5667949e-01 + 1.4812400e+04 -8.0667949e-01 + 1.4812800e+04 -9.4667949e-01 + 1.4813200e+04 -1.3866795e+00 + 1.4813600e+04 -1.6566795e+00 + 1.4814000e+04 -1.8866795e+00 + 1.4814400e+04 -1.9466795e+00 + 1.4814800e+04 -1.7066795e+00 + 1.4815200e+04 -1.2066795e+00 + 1.4815600e+04 -7.8667949e-01 + 1.4816000e+04 -7.9667949e-01 + 1.4816400e+04 -1.1266795e+00 + 1.4816800e+04 -1.2566795e+00 + 1.4817200e+04 -1.2266795e+00 + 1.4817600e+04 -1.0066795e+00 + 1.4818000e+04 -8.1667949e-01 + 1.4818400e+04 -3.1667949e-01 + 1.4818800e+04 3.0332051e-01 + 1.4819200e+04 7.5332051e-01 + 1.4819600e+04 1.2633205e+00 + 1.4820000e+04 2.5133205e+00 + 1.4820400e+04 2.5933205e+00 + 1.4820800e+04 2.5533205e+00 + 1.4821200e+04 2.0933205e+00 + 1.4821600e+04 1.5533205e+00 + 1.4822000e+04 1.2933205e+00 + 1.4822400e+04 1.2733205e+00 + 1.4822800e+04 1.2233205e+00 + 1.4823200e+04 -1.1966795e+00 + 1.4823600e+04 -1.5866795e+00 + 1.4824000e+04 -1.2266795e+00 + 1.4824400e+04 -1.6667949e-01 + 1.4824800e+04 8.5332051e-01 + 1.4825200e+04 1.7333205e+00 + 1.4825600e+04 2.4133205e+00 + 1.4826000e+04 3.0333205e+00 + 1.4826400e+04 2.3833205e+00 + 1.4826800e+04 1.4733205e+00 + 1.4827200e+04 8.9332051e-01 + 1.4827600e+04 6.3332051e-01 + 1.4828000e+04 6.3332051e-01 + 1.4828400e+04 6.3332051e-01 + 1.4828800e+04 3.5332051e-01 + 1.4829200e+04 2.3332051e-01 + 1.4829600e+04 5.3320513e-02 + 1.4830000e+04 -2.3667949e-01 + 1.4830400e+04 -3.2667949e-01 + 1.4830800e+04 -2.3667949e-01 + 1.4831200e+04 -1.9667949e-01 + 1.4831600e+04 4.0332051e-01 + 1.4832000e+04 1.0433205e+00 + 1.4832400e+04 1.7133205e+00 + 1.4832800e+04 2.3033205e+00 + 1.4833200e+04 2.0533205e+00 + 1.4833600e+04 1.9633205e+00 + 1.4834000e+04 1.9633205e+00 + 1.4834400e+04 1.9633205e+00 + 1.4834800e+04 -4.5667949e-01 + 1.4835200e+04 -1.6066795e+00 + 1.4835600e+04 -1.7866795e+00 + 1.4836000e+04 -1.8166795e+00 + 1.4836400e+04 -1.8766795e+00 + 1.4836800e+04 -2.0266795e+00 + 1.4837200e+04 -1.8866795e+00 + 1.4837600e+04 -1.6166795e+00 + 1.4838000e+04 -1.3366795e+00 + 1.4838400e+04 -7.9667949e-01 + 1.4838800e+04 -4.4667949e-01 + 1.4839200e+04 6.5332051e-01 + 1.4839600e+04 1.1233205e+00 + 1.4840000e+04 1.5433205e+00 + 1.4840400e+04 1.8833205e+00 + 1.4840800e+04 1.4933205e+00 + 1.4841200e+04 8.9332051e-01 + 1.4841600e+04 6.8332051e-01 + 1.4842000e+04 1.0933205e+00 + 1.4842400e+04 1.3933205e+00 + 1.4842800e+04 1.5533205e+00 + 1.4843200e+04 1.2133205e+00 + 1.4843600e+04 7.6332051e-01 + 1.4844000e+04 2.9332051e-01 + 1.4844400e+04 -5.6679487e-02 + 1.4844800e+04 -1.4667949e-01 + 1.4845200e+04 -4.6679487e-02 + 1.4845600e+04 -7.6679487e-02 + 1.4846000e+04 -1.7667949e-01 + 1.4846400e+04 -2.1667949e-01 + 1.4846800e+04 2.5332051e-01 + 1.4847200e+04 7.2332051e-01 + 1.4847600e+04 1.1533205e+00 + 1.4848000e+04 1.4833205e+00 + 1.4848400e+04 1.6433205e+00 + 1.4848800e+04 1.8033205e+00 + 1.4849200e+04 2.0533205e+00 + 1.4849600e+04 2.1433205e+00 + 1.4850000e+04 1.9833205e+00 + 1.4850400e+04 1.1333205e+00 + 1.4850800e+04 7.0332051e-01 + 1.4851200e+04 -8.1667949e-01 + 1.4851600e+04 -1.5066795e+00 + 1.4852000e+04 -1.7566795e+00 + 1.4852400e+04 -1.7866795e+00 + 1.4852800e+04 -1.3166795e+00 + 1.4853200e+04 -7.6667949e-01 + 1.4853600e+04 -5.6679487e-02 + 1.4854000e+04 3.8332051e-01 + 1.4854400e+04 6.5332051e-01 + 1.4854800e+04 6.5332051e-01 + 1.4855200e+04 5.5332051e-01 + 1.4855600e+04 9.3320513e-02 + 1.4856000e+04 -4.1667949e-01 + 1.4856400e+04 -6.9667949e-01 + 1.4856800e+04 -9.9667949e-01 + 1.4857200e+04 -1.3466795e+00 + 1.4857600e+04 -1.6566795e+00 + 1.4858000e+04 -1.7066795e+00 + 1.4858400e+04 -1.5066795e+00 + 1.4858800e+04 -1.0266795e+00 + 1.4859200e+04 -9.4667949e-01 + 1.4859600e+04 -9.4667949e-01 + 1.4860000e+04 -1.6667949e-01 + 1.4860400e+04 8.0332051e-01 + 1.4860800e+04 4.3332051e-01 + 1.4861200e+04 1.6332051e-01 + 1.4861600e+04 1.5332051e-01 + 1.4862000e+04 -1.6679487e-02 + 1.4862400e+04 7.3320513e-02 + 1.4862800e+04 5.0332051e-01 + 1.4863200e+04 9.7332051e-01 + 1.4863600e+04 1.4533205e+00 + 1.4864000e+04 2.0033205e+00 + 1.4864400e+04 2.3233205e+00 + 1.4864800e+04 1.8933205e+00 + 1.4865200e+04 1.2333205e+00 + 1.4865600e+04 1.0533205e+00 + 1.4866000e+04 1.2733205e+00 + 1.4866400e+04 1.6533205e+00 + 1.4866800e+04 2.5733205e+00 + 1.4867200e+04 3.4633205e+00 + 1.4867600e+04 5.5433205e+00 + 1.4868000e+04 4.1533205e+00 + 1.4868400e+04 3.9533205e+00 + 1.4868800e+04 3.9433205e+00 + 1.4869200e+04 1.9633205e+00 + 1.4869600e+04 1.6533205e+00 + 1.4870000e+04 1.6433205e+00 + 1.4870400e+04 1.6433205e+00 + 1.4870800e+04 -2.0666795e+00 + 1.4871200e+04 -2.7966795e+00 + 1.4871600e+04 -2.1666795e+00 + 1.4872000e+04 -1.5766795e+00 + 1.4872400e+04 -1.0666795e+00 + 1.4872800e+04 -7.2667949e-01 + 1.4873200e+04 -2.5667949e-01 + 1.4873600e+04 6.0332051e-01 + 1.4874000e+04 1.4033205e+00 + 1.4874400e+04 1.6733205e+00 + 1.4874800e+04 1.5433205e+00 + 1.4875200e+04 1.1833205e+00 + 1.4875600e+04 9.7332051e-01 + 1.4876000e+04 7.7332051e-01 + 1.4876400e+04 2.4332051e-01 + 1.4876800e+04 2.1332051e-01 + 1.4877200e+04 4.4332051e-01 + 1.4877600e+04 8.2332051e-01 + 1.4878000e+04 1.0533205e+00 + 1.4878400e+04 1.4533205e+00 + 1.4878800e+04 1.3333205e+00 + 1.4879200e+04 1.3533205e+00 + 1.4879600e+04 1.0433205e+00 + 1.4880000e+04 7.3332051e-01 + 1.4880400e+04 7.1332051e-01 + 1.4880800e+04 4.1332051e-01 + 1.4881200e+04 2.9332051e-01 + 1.4881600e+04 3.7332051e-01 + 1.4882000e+04 5.9332051e-01 + 1.4882400e+04 5.1332051e-01 + 1.4882800e+04 5.5332051e-01 + 1.4883200e+04 5.8332051e-01 + 1.4883600e+04 7.3332051e-01 + 1.4884000e+04 7.1332051e-01 + 1.4884400e+04 2.9332051e-01 + 1.4884800e+04 -1.3667949e-01 + 1.4885200e+04 -5.5667949e-01 + 1.4885600e+04 -7.2667949e-01 + 1.4886000e+04 -8.6667949e-01 + 1.4886400e+04 -5.6667949e-01 + 1.4886800e+04 -9.6679487e-02 + 1.4887200e+04 3.2332051e-01 + 1.4887600e+04 5.7332051e-01 + 1.4888000e+04 6.0332051e-01 + 1.4888400e+04 3.5332051e-01 + 1.4888800e+04 3.3205128e-03 + 1.4889200e+04 -5.7667949e-01 + 1.4889600e+04 -1.0066795e+00 + 1.4890000e+04 -1.6066795e+00 + 1.4890400e+04 -1.5266795e+00 + 1.4890800e+04 -1.1366795e+00 + 1.4891200e+04 -8.6667949e-01 + 1.4891600e+04 -5.4667949e-01 + 1.4892000e+04 -6.6679487e-02 + 1.4892400e+04 5.3320513e-02 + 1.4892800e+04 3.0332051e-01 + 1.4893200e+04 6.5332051e-01 + 1.4893600e+04 1.0433205e+00 + 1.4894000e+04 1.3033205e+00 + 1.4894400e+04 1.4333205e+00 + 1.4894800e+04 1.6133205e+00 + 1.4895200e+04 1.9733205e+00 + 1.4895600e+04 2.4833205e+00 + 1.4896000e+04 2.8533205e+00 + 1.4896400e+04 3.0833205e+00 + 1.4896800e+04 2.7833205e+00 + 1.4897200e+04 2.2233205e+00 + 1.4897600e+04 1.0233205e+00 + 1.4898000e+04 1.4332051e-01 + 1.4898400e+04 -8.1667949e-01 + 1.4898800e+04 -1.4466795e+00 + 1.4899200e+04 -2.0666795e+00 + 1.4899600e+04 -2.4466795e+00 + 1.4900000e+04 -2.2466795e+00 + 1.4900400e+04 -1.6466795e+00 + 1.4900800e+04 -9.4667949e-01 + 1.4901200e+04 -2.7667949e-01 + 1.4901600e+04 -2.2667949e-01 + 1.4902000e+04 -3.9667949e-01 + 1.4902400e+04 -2.6667949e-01 + 1.4902800e+04 2.2332051e-01 + 1.4903200e+04 8.4332051e-01 + 1.4903600e+04 1.4533205e+00 + 1.4904000e+04 1.9033205e+00 + 1.4904400e+04 2.3433205e+00 + 1.4904800e+04 2.3933205e+00 + 1.4905200e+04 1.8633205e+00 + 1.4905600e+04 9.8332051e-01 + 1.4906000e+04 1.2332051e-01 + 1.4906400e+04 -4.4667949e-01 + 1.4906800e+04 -4.4667949e-01 + 1.4907200e+04 -3.1667949e-01 + 1.4907600e+04 1.4332051e-01 + 1.4908000e+04 2.4332051e-01 + 1.4908400e+04 2.8332051e-01 + 1.4908800e+04 4.3320513e-02 + 1.4909200e+04 -5.4667949e-01 + 1.4909600e+04 -7.6667949e-01 + 1.4910000e+04 -9.0667949e-01 + 1.4910400e+04 -1.2666795e+00 + 1.4910800e+04 -1.4566795e+00 + 1.4911200e+04 -1.6966795e+00 + 1.4911600e+04 -1.4866795e+00 + 1.4912000e+04 -1.0366795e+00 + 1.4912400e+04 -8.8667949e-01 + 1.4912800e+04 -5.9667949e-01 + 1.4913200e+04 -4.6679487e-02 + 1.4913600e+04 7.2332051e-01 + 1.4914000e+04 1.4533205e+00 + 1.4914400e+04 1.9633205e+00 + 1.4914800e+04 2.3033205e+00 + 1.4915200e+04 2.6233205e+00 + 1.4915600e+04 2.6233205e+00 + 1.4916000e+04 2.6233205e+00 + 1.4916400e+04 2.3933205e+00 + 1.4916800e+04 2.0933205e+00 + 1.4917200e+04 1.6333205e+00 + 1.4917600e+04 8.9332051e-01 + 1.4918000e+04 6.1332051e-01 + 1.4918400e+04 7.1332051e-01 + 1.4918800e+04 1.2033205e+00 + 1.4919200e+04 1.5533205e+00 + 1.4919600e+04 1.9533205e+00 + 1.4920000e+04 1.9433205e+00 + 1.4920400e+04 1.3533205e+00 + 1.4920800e+04 4.9332051e-01 + 1.4921200e+04 -2.0667949e-01 + 1.4921600e+04 -7.1667949e-01 + 1.4922000e+04 -7.9667949e-01 + 1.4922400e+04 -7.8667949e-01 + 1.4922800e+04 -1.8766795e+00 + 1.4923200e+04 -2.8766795e+00 + 1.4923600e+04 -2.8766795e+00 + 1.4924000e+04 -2.6666795e+00 + 1.4924400e+04 -2.2466795e+00 + 1.4924800e+04 -1.3966795e+00 + 1.4925200e+04 -1.2166795e+00 + 1.4925600e+04 -9.5667949e-01 + 1.4926000e+04 -6.2667949e-01 + 1.4926400e+04 -8.6679487e-02 + 1.4926800e+04 5.4332051e-01 + 1.4927200e+04 1.1133205e+00 + 1.4927600e+04 1.6933205e+00 + 1.4928000e+04 2.3033205e+00 + 1.4928400e+04 2.4733205e+00 + 1.4928800e+04 2.5133205e+00 + 1.4929200e+04 2.6533205e+00 + 1.4929600e+04 2.3833205e+00 + 1.4930000e+04 2.0933205e+00 + 1.4930400e+04 1.8833205e+00 + 1.4930800e+04 2.0533205e+00 + 1.4931200e+04 1.8733205e+00 + 1.4931600e+04 1.3833205e+00 + 1.4932000e+04 5.2332051e-01 + 1.4932400e+04 -9.6679487e-02 + 1.4932800e+04 -6.6667949e-01 + 1.4933200e+04 -1.2766795e+00 + 1.4933600e+04 -1.5066795e+00 + 1.4934000e+04 -1.7366795e+00 + 1.4934400e+04 -1.7866795e+00 + 1.4934800e+04 -1.5966795e+00 + 1.4935200e+04 -1.4566795e+00 + 1.4935600e+04 -1.1666795e+00 + 1.4936000e+04 -1.2466795e+00 + 1.4936400e+04 -1.1066795e+00 + 1.4936800e+04 -6.0667949e-01 + 1.4937200e+04 -2.3667949e-01 + 1.4937600e+04 -4.8667949e-01 + 1.4938000e+04 -4.4667949e-01 + 1.4938400e+04 5.2332051e-01 + 1.4938800e+04 1.3933205e+00 + 1.4939200e+04 1.9033205e+00 + 1.4939600e+04 2.0033205e+00 + 1.4940000e+04 2.1133205e+00 + 1.4940400e+04 1.9733205e+00 + 1.4940800e+04 1.6333205e+00 + 1.4941200e+04 1.5133205e+00 + 1.4941600e+04 1.7333205e+00 + 1.4942000e+04 2.3033205e+00 + 1.4942400e+04 2.8633205e+00 + 1.4942800e+04 3.0733205e+00 + 1.4943200e+04 2.3233205e+00 + 1.4943600e+04 1.5933205e+00 + 1.4944000e+04 1.5433205e+00 + 1.4944400e+04 -7.3667949e-01 + 1.4944800e+04 -2.3366795e+00 + 1.4945200e+04 -2.9166795e+00 + 1.4945600e+04 -2.6966795e+00 + 1.4946000e+04 -2.4966795e+00 + 1.4946400e+04 -2.1966795e+00 + 1.4946800e+04 -1.8666795e+00 + 1.4947200e+04 -1.9466795e+00 + 1.4947600e+04 -1.4766795e+00 + 1.4948000e+04 -9.7667949e-01 + 1.4948400e+04 -3.7667949e-01 + 1.4948800e+04 1.9332051e-01 + 1.4949200e+04 1.2633205e+00 + 1.4949600e+04 2.1333205e+00 + 1.4950000e+04 2.4533205e+00 + 1.4950400e+04 3.4333205e+00 + 1.4950800e+04 2.9633205e+00 + 1.4951200e+04 2.1533205e+00 + 1.4951600e+04 1.3033205e+00 + 1.4952000e+04 9.0332051e-01 + 1.4952400e+04 9.6332051e-01 + 1.4952800e+04 6.1332051e-01 + 1.4953200e+04 7.8332051e-01 + 1.4953600e+04 8.5332051e-01 + 1.4954000e+04 9.2332051e-01 + 1.4954400e+04 8.8332051e-01 + 1.4954800e+04 5.5332051e-01 + 1.4955200e+04 5.3332051e-01 + 1.4955600e+04 5.4332051e-01 + 1.4956000e+04 1.5332051e-01 + 1.4956400e+04 -5.6667949e-01 + 1.4956800e+04 -1.3066795e+00 + 1.4957200e+04 -1.7266795e+00 + 1.4957600e+04 -1.8466795e+00 + 1.4958000e+04 -2.0466795e+00 + 1.4958400e+04 -2.5066795e+00 + 1.4958800e+04 -2.7866795e+00 + 1.4959200e+04 -2.6466795e+00 + 1.4959600e+04 -2.6266795e+00 + 1.4960000e+04 -2.3066795e+00 + 1.4960400e+04 -2.8667949e-01 + 1.4960800e+04 4.7332051e-01 + 1.4961200e+04 8.0332051e-01 + 1.4961600e+04 2.0233205e+00 + 1.4962000e+04 2.9333205e+00 + 1.4962400e+04 3.5933205e+00 + 1.4962800e+04 4.3433205e+00 + 1.4963200e+04 4.8533205e+00 + 1.4963600e+04 4.6733205e+00 + 1.4964000e+04 4.2433205e+00 + 1.4964400e+04 3.2633205e+00 + 1.4964800e+04 2.2333205e+00 + 1.4965200e+04 1.6833205e+00 + 1.4965600e+04 1.0733205e+00 + 1.4966000e+04 7.5332051e-01 + 1.4966400e+04 1.4332051e-01 + 1.4966800e+04 -6.3667949e-01 + 1.4967200e+04 -1.2966795e+00 + 1.4967600e+04 -1.7666795e+00 + 1.4968000e+04 -2.2166795e+00 + 1.4968400e+04 -2.7166795e+00 + 1.4968800e+04 -2.9466795e+00 + 1.4969200e+04 -3.0066795e+00 + 1.4969600e+04 -2.8766795e+00 + 1.4970000e+04 -2.9066795e+00 + 1.4970400e+04 -2.9466795e+00 + 1.4970800e+04 -2.5166795e+00 + 1.4971200e+04 -1.8566795e+00 + 1.4971600e+04 -7.4667949e-01 + 1.4972000e+04 6.5332051e-01 + 1.4972400e+04 2.3233205e+00 + 1.4972800e+04 2.9833205e+00 + 1.4973200e+04 2.7133205e+00 + 1.4973600e+04 2.5233205e+00 + 1.4974000e+04 2.3833205e+00 + 1.4974400e+04 2.1533205e+00 + 1.4974800e+04 1.7633205e+00 + 1.4975200e+04 1.5133205e+00 + 1.4975600e+04 1.0533205e+00 + 1.4976000e+04 5.9332051e-01 + 1.4976400e+04 4.3320513e-02 + 1.4976800e+04 -5.2667949e-01 + 1.4977200e+04 -7.6667949e-01 + 1.4977600e+04 -5.2667949e-01 + 1.4978000e+04 -1.7667949e-01 + 1.4978400e+04 5.8332051e-01 + 1.4978800e+04 7.4332051e-01 + 1.4979200e+04 6.8332051e-01 + 1.4979600e+04 7.2332051e-01 + 1.4980000e+04 7.7332051e-01 + 1.4980400e+04 5.4332051e-01 + 1.4980800e+04 4.9332051e-01 + 1.4981200e+04 4.4332051e-01 + 1.4981600e+04 7.1332051e-01 + 1.4982000e+04 6.2332051e-01 + 1.4982400e+04 6.2332051e-01 + 1.4982800e+04 6.6332051e-01 + 1.4983200e+04 8.9332051e-01 + 1.4983600e+04 1.2233205e+00 + 1.4984000e+04 1.6233205e+00 + 1.4984400e+04 2.0133205e+00 + 1.4984800e+04 2.0533205e+00 + 1.4985200e+04 1.9133205e+00 + 1.4985600e+04 1.4933205e+00 + 1.4986000e+04 1.0533205e+00 + 1.4986400e+04 3.7332051e-01 + 1.4986800e+04 -2.2667949e-01 + 1.4987200e+04 -7.4667949e-01 + 1.4987600e+04 -1.2666795e+00 + 1.4988000e+04 -1.7066795e+00 + 1.4988400e+04 -2.0266795e+00 + 1.4988800e+04 -2.2766795e+00 + 1.4989200e+04 -2.3366795e+00 + 1.4989600e+04 -1.7166795e+00 + 1.4990000e+04 -1.5566795e+00 + 1.4990400e+04 -1.4466795e+00 + 1.4990800e+04 -1.0766795e+00 + 1.4991200e+04 -5.9667949e-01 + 1.4991600e+04 -4.2667949e-01 + 1.4992000e+04 -4.7667949e-01 + 1.4992400e+04 -2.3667949e-01 + 1.4992800e+04 2.4332051e-01 + 1.4993200e+04 8.8332051e-01 + 1.4993600e+04 1.5833205e+00 + 1.4994000e+04 2.1733205e+00 + 1.4994400e+04 2.3033205e+00 + 1.4994800e+04 2.1633205e+00 + 1.4995200e+04 1.8633205e+00 + 1.4995600e+04 1.5133205e+00 + 1.4996000e+04 1.3233205e+00 + 1.4996400e+04 1.2533205e+00 + 1.4996800e+04 1.2933205e+00 + 1.4997200e+04 1.3033205e+00 + 1.4997600e+04 1.0533205e+00 + 1.4998000e+04 8.2332051e-01 + 1.4998400e+04 2.6332051e-01 + 1.4998800e+04 -4.6667949e-01 + 1.4999200e+04 -8.1667949e-01 + 1.4999600e+04 -7.2667949e-01 + 1.5000000e+04 -1.7667949e-01 + 1.5000400e+04 4.1332051e-01 + 1.5000800e+04 7.1332051e-01 + 1.5001200e+04 8.2332051e-01 + 1.5001600e+04 1.5333205e+00 + 1.5002000e+04 1.6033205e+00 + 1.5002400e+04 1.5333205e+00 + 1.5002800e+04 1.2933205e+00 + 1.5003200e+04 1.0433205e+00 + 1.5003600e+04 5.5332051e-01 + 1.5004000e+04 -4.6679487e-02 + 1.5004400e+04 -4.7667949e-01 + 1.5004800e+04 -2.8667949e-01 + 1.5005200e+04 8.3320513e-02 + 1.5005600e+04 -7.6679487e-02 + 1.5006000e+04 -4.9667949e-01 + 1.5006400e+04 -7.0667949e-01 + 1.5006800e+04 -1.0466795e+00 + 1.5007200e+04 -2.0966795e+00 + 1.5007600e+04 -2.9066795e+00 + 1.5008000e+04 -3.3266795e+00 + 1.5008400e+04 -3.0566795e+00 + 1.5008800e+04 -2.3466795e+00 + 1.5009200e+04 -8.8667949e-01 + 1.5009600e+04 1.2332051e-01 + 1.5010000e+04 7.1332051e-01 + 1.5010400e+04 1.6033205e+00 + 1.5010800e+04 2.4533205e+00 + 1.5011200e+04 2.9733205e+00 + 1.5011600e+04 4.0233205e+00 + 1.5012000e+04 4.1833205e+00 + 1.5012400e+04 3.6733205e+00 + 1.5012800e+04 2.2333205e+00 + 1.5013200e+04 1.0233205e+00 + 1.5013600e+04 8.6332051e-01 + 1.5014000e+04 -2.3667949e-01 + 1.5014400e+04 -7.2667949e-01 + 1.5014800e+04 -8.8667949e-01 + 1.5015200e+04 -5.2667949e-01 + 1.5015600e+04 1.8332051e-01 + 1.5016000e+04 9.0332051e-01 + 1.5016400e+04 7.6332051e-01 + 1.5016800e+04 4.0332051e-01 + 1.5017200e+04 6.7332051e-01 + 1.5017600e+04 6.7332051e-01 + 1.5018000e+04 5.3332051e-01 + 1.5018400e+04 5.2332051e-01 + 1.5018800e+04 -3.0667949e-01 + 1.5019200e+04 -3.3667949e-01 + 1.5019600e+04 1.0332051e-01 + 1.5020000e+04 5.2332051e-01 + 1.5020400e+04 1.9332051e-01 + 1.5020800e+04 -4.9667949e-01 + 1.5021200e+04 -8.1667949e-01 + 1.5021600e+04 -7.2667949e-01 + 1.5022000e+04 8.3320513e-02 + 1.5022400e+04 9.7332051e-01 + 1.5022800e+04 8.8332051e-01 + 1.5023200e+04 8.5332051e-01 + 1.5023600e+04 4.0333205e+00 + 1.5024000e+04 3.2833205e+00 + 1.5024400e+04 3.0332051e-01 + 1.5024800e+04 -7.5667949e-01 + 1.5025200e+04 -1.2566795e+00 + 1.5025600e+04 -1.1066795e+00 + 1.5026000e+04 -8.4667949e-01 + 1.5026400e+04 -5.6667949e-01 + 1.5026800e+04 -3.6667949e-01 + 1.5027200e+04 2.3320513e-02 + 1.5027600e+04 9.0332051e-01 + 1.5028000e+04 1.3033205e+00 + 1.5028400e+04 1.1233205e+00 + 1.5028800e+04 8.6332051e-01 + 1.5029200e+04 5.4332051e-01 + 1.5029600e+04 6.5332051e-01 + 1.5030000e+04 9.6332051e-01 + 1.5030400e+04 1.2733205e+00 + 1.5030800e+04 1.5933205e+00 + 1.5031200e+04 1.6333205e+00 + 1.5031600e+04 1.7333205e+00 + 1.5032000e+04 1.6033205e+00 + 1.5032400e+04 1.1333205e+00 + 1.5032800e+04 8.9332051e-01 + 1.5033200e+04 4.2332051e-01 + 1.5033600e+04 -4.8667949e-01 + 1.5034000e+04 -9.6667949e-01 + 1.5034400e+04 -1.1766795e+00 + 1.5034800e+04 -1.1066795e+00 + 1.5035200e+04 -8.8667949e-01 + 1.5035600e+04 -1.9667949e-01 + 1.5036000e+04 7.3320513e-02 + 1.5036400e+04 6.8332051e-01 + 1.5036800e+04 1.1433205e+00 + 1.5037200e+04 1.0533205e+00 + 1.5037600e+04 6.6332051e-01 + 1.5038000e+04 1.3332051e-01 + 1.5038400e+04 -6.6679487e-02 + 1.5038800e+04 -4.6667949e-01 + 1.5039200e+04 -1.0566795e+00 + 1.5039600e+04 -1.0066795e+00 + 1.5040000e+04 -5.2667949e-01 + 1.5040400e+04 2.7332051e-01 + 1.5040800e+04 5.4332051e-01 + 1.5041200e+04 5.5332051e-01 + 1.5041600e+04 -6.6679487e-02 + 1.5042000e+04 -4.5667949e-01 + 1.5042400e+04 -3.0667949e-01 + 1.5042800e+04 -6.6794872e-03 + 1.5043200e+04 3.0332051e-01 + 1.5043600e+04 4.9332051e-01 + 1.5044000e+04 4.9332051e-01 + 1.5044400e+04 5.2332051e-01 + 1.5044800e+04 5.1332051e-01 + 1.5045200e+04 8.2332051e-01 + 1.5045600e+04 1.1233205e+00 + 1.5046000e+04 1.2533205e+00 + 1.5046400e+04 1.1733205e+00 + 1.5046800e+04 8.2332051e-01 + 1.5047200e+04 6.0332051e-01 + 1.5047600e+04 7.8332051e-01 + 1.5048000e+04 9.5332051e-01 + 1.5048400e+04 1.0833205e+00 + 1.5048800e+04 9.9332051e-01 + 1.5049200e+04 1.0833205e+00 + 1.5049600e+04 1.1733205e+00 + 1.5050000e+04 1.2133205e+00 + 1.5050400e+04 7.7332051e-01 + 1.5050800e+04 3.8332051e-01 + 1.5051200e+04 1.6332051e-01 + 1.5051600e+04 -3.2667949e-01 + 1.5052000e+04 -1.0366795e+00 + 1.5052400e+04 -5.3667949e-01 + 1.5052800e+04 1.6332051e-01 + 1.5053200e+04 3.7332051e-01 + 1.5053600e+04 5.5332051e-01 + 1.5054000e+04 2.6332051e-01 + 1.5054400e+04 -1.6679487e-02 + 1.5054800e+04 -1.6667949e-01 + 1.5055200e+04 -4.8667949e-01 + 1.5055600e+04 -1.3266795e+00 + 1.5056000e+04 -1.7566795e+00 + 1.5056400e+04 -1.6666795e+00 + 1.5056800e+04 -1.1666795e+00 + 1.5057200e+04 -5.8667949e-01 + 1.5057600e+04 1.7332051e-01 + 1.5058000e+04 8.9332051e-01 + 1.5058400e+04 1.2933205e+00 + 1.5058800e+04 1.3733205e+00 + 1.5059200e+04 8.8332051e-01 + 1.5059600e+04 4.7332051e-01 + 1.5060000e+04 1.3332051e-01 + 1.5060400e+04 1.8332051e-01 + 1.5060800e+04 9.3320513e-02 + 1.5061200e+04 2.0332051e-01 + 1.5061600e+04 -1.6679487e-02 + 1.5062000e+04 -2.2667949e-01 + 1.5062400e+04 -8.6679487e-02 + 1.5062800e+04 2.7332051e-01 + 1.5063200e+04 4.7332051e-01 + 1.5063600e+04 6.5332051e-01 + 1.5064000e+04 8.2332051e-01 + 1.5064400e+04 1.4833205e+00 + 1.5064800e+04 2.1733205e+00 + 1.5065200e+04 2.7333205e+00 + 1.5065600e+04 3.0833205e+00 + 1.5066000e+04 3.0033205e+00 + 1.5066400e+04 2.5033205e+00 + 1.5066800e+04 2.2233205e+00 + 1.5067200e+04 1.3733205e+00 + 1.5067600e+04 3.3205128e-03 + 1.5068000e+04 -7.4667949e-01 + 1.5068400e+04 -9.7667949e-01 + 1.5068800e+04 -7.7667949e-01 + 1.5069200e+04 -6.9667949e-01 + 1.5069600e+04 -4.9667949e-01 + 1.5070000e+04 -3.3667949e-01 + 1.5070400e+04 1.8332051e-01 + 1.5070800e+04 4.0332051e-01 + 1.5071200e+04 3.7332051e-01 + 1.5071600e+04 1.0332051e-01 + 1.5072000e+04 -2.8667949e-01 + 1.5072400e+04 -4.4667949e-01 + 1.5072800e+04 -1.0266795e+00 + 1.5073200e+04 -1.5566795e+00 + 1.5073600e+04 -1.4466795e+00 + 1.5074000e+04 -1.0266795e+00 + 1.5074400e+04 -7.3667949e-01 + 1.5074800e+04 -1.9667949e-01 + 1.5075200e+04 2.1332051e-01 + 1.5075600e+04 4.5332051e-01 + 1.5076000e+04 5.3332051e-01 + 1.5076400e+04 3.8332051e-01 + 1.5076800e+04 4.3320513e-02 + 1.5077200e+04 -3.6667949e-01 + 1.5077600e+04 -5.6667949e-01 + 1.5078000e+04 -6.3667949e-01 + 1.5078400e+04 -5.4667949e-01 + 1.5078800e+04 -9.4667949e-01 + 1.5079200e+04 -1.2566795e+00 + 1.5079600e+04 -1.1966795e+00 + 1.5080000e+04 -8.4667949e-01 + 1.5080400e+04 -5.8667949e-01 + 1.5080800e+04 9.4332051e-01 + 1.5081200e+04 1.6633205e+00 + 1.5081600e+04 1.8433205e+00 + 1.5082000e+04 2.1433205e+00 + 1.5082400e+04 2.3933205e+00 + 1.5082800e+04 2.8433205e+00 + 1.5083200e+04 2.9833205e+00 + 1.5083600e+04 2.9133205e+00 + 1.5084000e+04 2.8033205e+00 + 1.5084400e+04 2.4333205e+00 + 1.5084800e+04 1.6433205e+00 + 1.5085200e+04 1.0433205e+00 + 1.5085600e+04 9.3332051e-01 + 1.5086000e+04 5.3332051e-01 + 1.5086400e+04 1.9332051e-01 + 1.5086800e+04 1.8332051e-01 + 1.5087200e+04 -2.6679487e-02 + 1.5087600e+04 -3.6679487e-02 + 1.5088000e+04 -2.5667949e-01 + 1.5088400e+04 -7.6679487e-02 + 1.5088800e+04 -3.2667949e-01 + 1.5089200e+04 -8.0667949e-01 + 1.5089600e+04 -1.2566795e+00 + 1.5090000e+04 -1.3866795e+00 + 1.5090400e+04 -1.1066795e+00 + 1.5090800e+04 -1.0366795e+00 + 1.5091200e+04 -7.7667949e-01 + 1.5091600e+04 -6.9667949e-01 + 1.5092000e+04 -7.6667949e-01 + 1.5092400e+04 -1.0666795e+00 + 1.5092800e+04 -1.3266795e+00 + 1.5093200e+04 -1.7366795e+00 + 1.5093600e+04 -1.7766795e+00 + 1.5094000e+04 -1.4466795e+00 + 1.5094400e+04 -8.1667949e-01 + 1.5094800e+04 -2.5667949e-01 + 1.5095200e+04 3.7332051e-01 + 1.5095600e+04 7.7332051e-01 + 1.5096000e+04 1.0533205e+00 + 1.5096400e+04 1.1233205e+00 + 1.5096800e+04 1.3633205e+00 + 1.5097200e+04 1.6533205e+00 + 1.5097600e+04 1.7933205e+00 + 1.5098000e+04 1.6733205e+00 + 1.5098400e+04 1.7333205e+00 + 1.5098800e+04 1.9233205e+00 + 1.5099200e+04 2.2733205e+00 + 1.5099600e+04 2.3733205e+00 + 1.5100000e+04 2.0833205e+00 + 1.5100400e+04 1.8733205e+00 + 1.5100800e+04 1.4133205e+00 + 1.5101200e+04 -6.6794872e-03 + 1.5101600e+04 -5.1667949e-01 + 1.5102000e+04 -4.5667949e-01 + 1.5102400e+04 3.3320513e-02 + 1.5102800e+04 5.8332051e-01 + 1.5103200e+04 8.6332051e-01 + 1.5103600e+04 1.2233205e+00 + 1.5104000e+04 1.4433205e+00 + 1.5104400e+04 1.4333205e+00 + 1.5104800e+04 1.1033205e+00 + 1.5105200e+04 5.5332051e-01 + 1.5105600e+04 3.3205128e-03 + 1.5106000e+04 -3.4667949e-01 + 1.5106400e+04 -6.0667949e-01 + 1.5106800e+04 -7.0667949e-01 + 1.5107200e+04 -7.4667949e-01 + 1.5107600e+04 -4.4667949e-01 + 1.5108000e+04 2.0332051e-01 + 1.5108400e+04 4.3332051e-01 + 1.5108800e+04 7.7332051e-01 + 1.5109200e+04 5.9332051e-01 + 1.5109600e+04 2.2332051e-01 + 1.5110000e+04 -1.7667949e-01 + 1.5110400e+04 -5.4667949e-01 + 1.5110800e+04 -8.5667949e-01 + 1.5111200e+04 -1.5266795e+00 + 1.5111600e+04 -1.7566795e+00 + 1.5112000e+04 -1.9466795e+00 + 1.5112400e+04 -1.9666795e+00 + 1.5112800e+04 -1.7666795e+00 + 1.5113200e+04 -1.5866795e+00 + 1.5113600e+04 -1.6966795e+00 + 1.5114000e+04 -1.5466795e+00 + 1.5114400e+04 -1.1266795e+00 + 1.5114800e+04 -4.0667949e-01 + 1.5115200e+04 1.1332051e-01 + 1.5115600e+04 7.1332051e-01 + 1.5116000e+04 1.8433205e+00 + 1.5116400e+04 2.1433205e+00 + 1.5116800e+04 2.3033205e+00 + 1.5117200e+04 2.2533205e+00 + 1.5117600e+04 2.6033205e+00 + 1.5118000e+04 3.2233205e+00 + 1.5118400e+04 3.7033205e+00 + 1.5118800e+04 3.9333205e+00 + 1.5119200e+04 3.4433205e+00 + 1.5119600e+04 2.9933205e+00 + 1.5120000e+04 2.6033205e+00 + 1.5120400e+04 2.4033205e+00 + 1.5120800e+04 2.3933205e+00 + 1.5121200e+04 2.3933205e+00 + 1.5121600e+04 1.0533205e+00 + 1.5122000e+04 -1.0566795e+00 + 1.5122400e+04 -1.9066795e+00 + 1.5122800e+04 -2.0466795e+00 + 1.5123200e+04 -2.0466795e+00 + 1.5123600e+04 -2.0466795e+00 + 1.5124000e+04 -2.1966795e+00 + 1.5124400e+04 -1.7966795e+00 + 1.5124800e+04 -1.5666795e+00 + 1.5125200e+04 -1.5566795e+00 + 1.5125600e+04 -1.9667949e-01 + 1.5126000e+04 5.2332051e-01 + 1.5126400e+04 7.9332051e-01 + 1.5126800e+04 1.5033205e+00 + 1.5127200e+04 1.5033205e+00 + 1.5127600e+04 1.3433205e+00 + 1.5128000e+04 1.3933205e+00 + 1.5128400e+04 1.4433205e+00 + 1.5128800e+04 1.2933205e+00 + 1.5129200e+04 1.2133205e+00 + 1.5129600e+04 1.0033205e+00 + 1.5130000e+04 6.2332051e-01 + 1.5130400e+04 5.3332051e-01 + 1.5130800e+04 2.1332051e-01 + 1.5131200e+04 -7.7667949e-01 + 1.5131600e+04 -8.6667949e-01 + 1.5132000e+04 -1.0166795e+00 + 1.5132400e+04 -1.1966795e+00 + 1.5132800e+04 -1.4566795e+00 + 1.5133200e+04 -1.4766795e+00 + 1.5133600e+04 -1.3166795e+00 + 1.5134000e+04 -1.0166795e+00 + 1.5134400e+04 -7.1667949e-01 + 1.5134800e+04 -1.2667949e-01 + 1.5135200e+04 7.3320513e-02 + 1.5135600e+04 1.5332051e-01 + 1.5136000e+04 5.8332051e-01 + 1.5136400e+04 8.6332051e-01 + 1.5136800e+04 6.9332051e-01 + 1.5137200e+04 1.0333205e+00 + 1.5137600e+04 1.7133205e+00 + 1.5138000e+04 2.4933205e+00 + 1.5138400e+04 3.2633205e+00 + 1.5138800e+04 3.6233205e+00 + 1.5139200e+04 3.5833205e+00 + 1.5139600e+04 3.2333205e+00 + 1.5140000e+04 2.5033205e+00 + 1.5140400e+04 2.1233205e+00 + 1.5140800e+04 7.9332051e-01 + 1.5141200e+04 4.3320513e-02 + 1.5141600e+04 -3.5667949e-01 + 1.5142000e+04 -8.9667949e-01 + 1.5142400e+04 -1.2666795e+00 + 1.5142800e+04 -1.7166795e+00 + 1.5143200e+04 -2.0466795e+00 + 1.5143600e+04 -2.0466795e+00 + 1.5144000e+04 -1.8666795e+00 + 1.5144400e+04 -1.4666795e+00 + 1.5144800e+04 -1.2466795e+00 + 1.5145200e+04 -8.7667949e-01 + 1.5145600e+04 -1.2667949e-01 + 1.5146000e+04 3.4332051e-01 + 1.5146400e+04 4.5332051e-01 + 1.5146800e+04 5.4332051e-01 + 1.5147200e+04 6.5332051e-01 + 1.5147600e+04 6.4332051e-01 + 1.5148000e+04 6.4332051e-01 + 1.5148400e+04 4.0332051e-01 + 1.5148800e+04 6.5332051e-01 + 1.5149200e+04 7.4332051e-01 + 1.5149600e+04 7.3332051e-01 + 1.5150000e+04 7.1332051e-01 + 1.5150400e+04 8.3332051e-01 + 1.5150800e+04 9.9332051e-01 + 1.5151200e+04 1.0833205e+00 + 1.5151600e+04 6.9332051e-01 + 1.5152000e+04 2.3320513e-02 + 1.5152400e+04 -5.8667949e-01 + 1.5152800e+04 -1.8266795e+00 + 1.5153200e+04 -2.2866795e+00 + 1.5153600e+04 -2.3866795e+00 + 1.5154000e+04 -1.7666795e+00 + 1.5154400e+04 -8.1667949e-01 + 1.5154800e+04 2.3320513e-02 + 1.5155200e+04 4.9332051e-01 + 1.5155600e+04 1.6633205e+00 + 1.5156000e+04 1.9233205e+00 + 1.5156400e+04 1.7733205e+00 + 1.5156800e+04 1.8333205e+00 + 1.5157200e+04 1.7833205e+00 + 1.5157600e+04 1.9933205e+00 + 1.5158000e+04 2.3533205e+00 + 1.5158400e+04 2.4833205e+00 + 1.5158800e+04 2.7133205e+00 + 1.5159200e+04 2.3333205e+00 + 1.5159600e+04 1.8433205e+00 + 1.5160000e+04 1.0733205e+00 + 1.5160400e+04 4.2332051e-01 + 1.5160800e+04 -1.9667949e-01 + 1.5161200e+04 -9.0667949e-01 + 1.5161600e+04 -1.1466795e+00 + 1.5162000e+04 -1.5566795e+00 + 1.5162400e+04 -2.3366795e+00 + 1.5162800e+04 -2.2366795e+00 + 1.5163200e+04 -1.4466795e+00 + 1.5163600e+04 -6.9667949e-01 + 1.5164000e+04 2.9332051e-01 + 1.5164400e+04 1.6933205e+00 + 1.5164800e+04 2.4733205e+00 + 1.5165200e+04 3.3833205e+00 + 1.5165600e+04 3.5933205e+00 + 1.5166000e+04 2.8933205e+00 + 1.5166400e+04 2.2733205e+00 + 1.5166800e+04 7.3332051e-01 + 1.5167200e+04 -5.3667949e-01 + 1.5167600e+04 -1.5466795e+00 + 1.5168000e+04 -2.1666795e+00 + 1.5168400e+04 -2.2566795e+00 + 1.5168800e+04 -2.2966795e+00 + 1.5169200e+04 -3.0166795e+00 + 1.5169600e+04 -2.8966795e+00 + 1.5170000e+04 -2.2866795e+00 + 1.5170400e+04 -1.4666795e+00 + 1.5170800e+04 -7.0667949e-01 + 1.5171200e+04 1.4332051e-01 + 1.5171600e+04 6.6332051e-01 + 1.5172000e+04 1.3333205e+00 + 1.5172400e+04 1.9533205e+00 + 1.5172800e+04 2.6433205e+00 + 1.5173200e+04 2.7633205e+00 + 1.5173600e+04 2.8533205e+00 + 1.5174000e+04 2.6933205e+00 + 1.5174400e+04 2.2233205e+00 + 1.5174800e+04 2.0033205e+00 + 1.5175200e+04 2.5233205e+00 + 1.5175600e+04 1.7833205e+00 + 1.5176000e+04 7.3332051e-01 + 1.5176400e+04 -2.6679487e-02 + 1.5176800e+04 -8.4667949e-01 + 1.5177200e+04 -9.0667949e-01 + 1.5177600e+04 -7.7667949e-01 + 1.5178000e+04 -5.8667949e-01 + 1.5178400e+04 -2.0667949e-01 + 1.5178800e+04 7.3320513e-02 + 1.5179200e+04 -1.2667949e-01 + 1.5179600e+04 -3.8667949e-01 + 1.5180000e+04 -7.2667949e-01 + 1.5180400e+04 -9.4667949e-01 + 1.5180800e+04 -8.6667949e-01 + 1.5181200e+04 -4.8667949e-01 + 1.5181600e+04 3.0332051e-01 + 1.5182000e+04 1.4033205e+00 + 1.5182400e+04 1.9433205e+00 + 1.5182800e+04 1.9133205e+00 + 1.5183200e+04 1.5933205e+00 + 1.5183600e+04 1.1133205e+00 + 1.5184000e+04 6.4332051e-01 + 1.5184400e+04 2.3320513e-02 + 1.5184800e+04 -6.6794872e-03 + 1.5185200e+04 -7.6679487e-02 + 1.5185600e+04 -2.8667949e-01 + 1.5186000e+04 -2.8667949e-01 + 1.5186400e+04 -2.0667949e-01 + 1.5186800e+04 -6.6794872e-03 + 1.5187200e+04 3.2332051e-01 + 1.5187600e+04 6.5332051e-01 + 1.5188000e+04 1.2433205e+00 + 1.5188400e+04 1.6733205e+00 + 1.5188800e+04 1.4333205e+00 + 1.5189200e+04 8.5332051e-01 + 1.5189600e+04 5.3320513e-02 + 1.5190000e+04 -7.4667949e-01 + 1.5190400e+04 -1.3366795e+00 + 1.5190800e+04 -1.3266795e+00 + 1.5191200e+04 -1.3566795e+00 + 1.5191600e+04 -8.0667949e-01 + 1.5192000e+04 -6.3667949e-01 + 1.5192400e+04 -4.9667949e-01 + 1.5192800e+04 -1.0667949e-01 + 1.5193200e+04 3.0332051e-01 + 1.5193600e+04 1.0533205e+00 + 1.5194000e+04 1.4533205e+00 + 1.5194400e+04 1.5333205e+00 + 1.5194800e+04 1.2333205e+00 + 1.5195200e+04 1.1133205e+00 + 1.5195600e+04 1.1133205e+00 + 1.5196000e+04 1.3733205e+00 + 1.5196400e+04 1.6433205e+00 + 1.5196800e+04 1.5033205e+00 + 1.5197200e+04 1.0933205e+00 + 1.5197600e+04 5.0332051e-01 + 1.5198000e+04 1.0332051e-01 + 1.5198400e+04 -1.4667949e-01 + 1.5198800e+04 -1.2667949e-01 + 1.5199200e+04 7.3320513e-02 + 1.5199600e+04 -1.6679487e-02 + 1.5200000e+04 -1.1667949e-01 + 1.5200400e+04 -1.5667949e-01 + 1.5200800e+04 -1.6667949e-01 + 1.5201200e+04 -4.9667949e-01 + 1.5201600e+04 -6.0667949e-01 + 1.5202000e+04 -4.0667949e-01 + 1.5202400e+04 -1.9667949e-01 + 1.5202800e+04 2.0332051e-01 + 1.5203200e+04 8.0332051e-01 + 1.5203600e+04 1.2033205e+00 + 1.5204000e+04 1.7233205e+00 + 1.5204400e+04 1.4333205e+00 + 1.5204800e+04 1.1833205e+00 + 1.5205200e+04 9.6332051e-01 + 1.5205600e+04 8.3332051e-01 + 1.5206000e+04 8.2332051e-01 + 1.5206400e+04 8.2332051e-01 + 1.5206800e+04 8.2332051e-01 + 1.5207200e+04 -8.1667949e-01 + 1.5207600e+04 -1.1566795e+00 + 1.5208000e+04 -1.0166795e+00 + 1.5208400e+04 -6.1667949e-01 + 1.5208800e+04 -7.6679487e-02 + 1.5209200e+04 4.2332051e-01 + 1.5209600e+04 5.1332051e-01 + 1.5210000e+04 3.3320513e-02 + 1.5210400e+04 -2.6667949e-01 + 1.5210800e+04 -4.2667949e-01 + 1.5211200e+04 -2.5667949e-01 + 1.5211600e+04 1.3332051e-01 + 1.5212000e+04 1.1333205e+00 + 1.5212400e+04 2.1833205e+00 + 1.5212800e+04 2.4133205e+00 + 1.5213200e+04 2.4533205e+00 + 1.5213600e+04 2.5533205e+00 + 1.5214000e+04 2.0733205e+00 + 1.5214400e+04 1.7033205e+00 + 1.5214800e+04 1.2933205e+00 + 1.5215200e+04 8.8332051e-01 + 1.5215600e+04 5.4332051e-01 + 1.5216000e+04 5.9332051e-01 + 1.5216400e+04 7.2332051e-01 + 1.5216800e+04 3.9332051e-01 + 1.5217200e+04 -2.2667949e-01 + 1.5217600e+04 -1.0466795e+00 + 1.5218000e+04 -1.5466795e+00 + 1.5218400e+04 -2.1966795e+00 + 1.5218800e+04 -2.3966795e+00 + 1.5219200e+04 -2.3866795e+00 + 1.5219600e+04 -2.1966795e+00 + 1.5220000e+04 -1.9066795e+00 + 1.5220400e+04 -1.4066795e+00 + 1.5220800e+04 -7.6667949e-01 + 1.5221200e+04 1.6332051e-01 + 1.5221600e+04 7.6332051e-01 + 1.5222000e+04 8.9332051e-01 + 1.5222400e+04 2.6233205e+00 + 1.5222800e+04 3.0933205e+00 + 1.5223200e+04 3.5433205e+00 + 1.5223600e+04 3.4733205e+00 + 1.5224000e+04 3.2933205e+00 + 1.5224400e+04 3.1533205e+00 + 1.5224800e+04 1.9333205e+00 + 1.5225200e+04 1.2833205e+00 + 1.5225600e+04 5.4332051e-01 + 1.5226000e+04 1.7332051e-01 + 1.5226400e+04 1.1332051e-01 + 1.5226800e+04 1.1332051e-01 + 1.5227200e+04 -6.3667949e-01 + 1.5227600e+04 -1.9466795e+00 + 1.5228000e+04 -2.4266795e+00 + 1.5228400e+04 -2.2666795e+00 + 1.5228800e+04 -1.8566795e+00 + 1.5229200e+04 -1.6966795e+00 + 1.5229600e+04 -1.2966795e+00 + 1.5230000e+04 -8.8667949e-01 + 1.5230400e+04 -3.0667949e-01 + 1.5230800e+04 9.3320513e-02 + 1.5231200e+04 5.1332051e-01 + 1.5231600e+04 6.9332051e-01 + 1.5232000e+04 7.8332051e-01 + 1.5232400e+04 8.5332051e-01 + 1.5232800e+04 1.2433205e+00 + 1.5233200e+04 1.5533205e+00 + 1.5233600e+04 1.1933205e+00 + 1.5234000e+04 1.2733205e+00 + 1.5234400e+04 1.7533205e+00 + 1.5234800e+04 2.5433205e+00 + 1.5235200e+04 3.0733205e+00 + 1.5235600e+04 2.7833205e+00 + 1.5236000e+04 2.1733205e+00 + 1.5236400e+04 9.3332051e-01 + 1.5236800e+04 1.3320513e-02 + 1.5237200e+04 -7.3667949e-01 + 1.5237600e+04 -1.2666795e+00 + 1.5238000e+04 -1.5766795e+00 + 1.5238400e+04 -1.8666795e+00 + 1.5238800e+04 -1.9466795e+00 + 1.5239200e+04 -1.9766795e+00 + 1.5239600e+04 -1.4166795e+00 + 1.5240000e+04 -8.6667949e-01 + 1.5240400e+04 -2.8667949e-01 + 1.5240800e+04 3.2332051e-01 + 1.5241200e+04 9.3332051e-01 + 1.5241600e+04 1.6033205e+00 + 1.5242000e+04 2.1933205e+00 + 1.5242400e+04 2.5833205e+00 + 1.5242800e+04 2.3333205e+00 + 1.5243200e+04 1.5833205e+00 + 1.5243600e+04 1.0333205e+00 + 1.5244000e+04 7.5332051e-01 + 1.5244400e+04 7.4332051e-01 + 1.5244800e+04 6.0332051e-01 + 1.5245200e+04 2.3332051e-01 + 1.5245600e+04 -2.4667949e-01 + 1.5246000e+04 -5.4667949e-01 + 1.5246400e+04 -7.3667949e-01 + 1.5246800e+04 -9.2667949e-01 + 1.5247200e+04 -8.2667949e-01 + 1.5247600e+04 -4.0667949e-01 + 1.5248000e+04 2.3320513e-02 + 1.5248400e+04 2.9332051e-01 + 1.5248800e+04 4.1332051e-01 + 1.5249200e+04 3.3320513e-02 + 1.5249600e+04 -6.6679487e-02 + 1.5250000e+04 -9.7667949e-01 + 1.5250400e+04 -9.2667949e-01 + 1.5250800e+04 -2.7667949e-01 + 1.5251200e+04 4.0332051e-01 + 1.5251600e+04 9.2332051e-01 + 1.5252000e+04 1.1133205e+00 + 1.5252400e+04 1.3633205e+00 + 1.5252800e+04 1.8233205e+00 + 1.5253200e+04 1.8433205e+00 + 1.5253600e+04 1.7833205e+00 + 1.5254000e+04 1.7733205e+00 + 1.5254400e+04 1.5133205e+00 + 1.5254800e+04 7.6332051e-01 + 1.5255200e+04 1.7332051e-01 + 1.5255600e+04 -5.6679487e-02 + 1.5256000e+04 1.9332051e-01 + 1.5256400e+04 4.3332051e-01 + 1.5256800e+04 5.7332051e-01 + 1.5257200e+04 5.0332051e-01 + 1.5257600e+04 1.9332051e-01 + 1.5258000e+04 1.2332051e-01 + 1.5258400e+04 -9.8667949e-01 + 1.5258800e+04 -1.2066795e+00 + 1.5259200e+04 -8.9667949e-01 + 1.5259600e+04 -5.3667949e-01 + 1.5260000e+04 -3.7667949e-01 + 1.5260400e+04 -3.6667949e-01 + 1.5260800e+04 -4.5667949e-01 + 1.5261200e+04 -3.3667949e-01 + 1.5261600e+04 -1.9667949e-01 + 1.5262000e+04 -1.9667949e-01 + 1.5262400e+04 -1.6667949e-01 + 1.5262800e+04 -1.3667949e-01 + 1.5263200e+04 1.8332051e-01 + 1.5263600e+04 2.7332051e-01 + 1.5264000e+04 4.2332051e-01 + 1.5264400e+04 8.2332051e-01 + 1.5264800e+04 1.2833205e+00 + 1.5265200e+04 1.4933205e+00 + 1.5265600e+04 1.4233205e+00 + 1.5266000e+04 1.0433205e+00 + 1.5266400e+04 5.0332051e-01 + 1.5266800e+04 1.1332051e-01 + 1.5267200e+04 -5.5667949e-01 + 1.5267600e+04 -7.3667949e-01 + 1.5268000e+04 -1.3266795e+00 + 1.5268400e+04 -8.9667949e-01 + 1.5268800e+04 -4.5667949e-01 + 1.5269200e+04 -4.6667949e-01 + 1.5269600e+04 -3.5667949e-01 + 1.5270000e+04 -2.0667949e-01 + 1.5270400e+04 -1.0667949e-01 + 1.5270800e+04 3.2332051e-01 + 1.5271200e+04 1.1633205e+00 + 1.5271600e+04 1.9133205e+00 + 1.5272000e+04 2.8233205e+00 + 1.5272400e+04 3.6433205e+00 + 1.5272800e+04 3.9533205e+00 + 1.5273200e+04 3.4233205e+00 + 1.5273600e+04 2.8733205e+00 + 1.5274000e+04 1.7033205e+00 + 1.5274400e+04 5.7332051e-01 + 1.5274800e+04 -3.6667949e-01 + 1.5275200e+04 -6.4667949e-01 + 1.5275600e+04 -6.5667949e-01 + 1.5276000e+04 -7.0667949e-01 + 1.5276400e+04 -1.6966795e+00 + 1.5276800e+04 -1.8566795e+00 + 1.5277200e+04 -1.6366795e+00 + 1.5277600e+04 -1.1466795e+00 + 1.5278000e+04 -6.6667949e-01 + 1.5278400e+04 -5.8667949e-01 + 1.5278800e+04 -6.5667949e-01 + 1.5279200e+04 -5.7667949e-01 + 1.5279600e+04 -4.5667949e-01 + 1.5280000e+04 -3.5667949e-01 + 1.5280400e+04 1.7332051e-01 + 1.5280800e+04 2.1332051e-01 + 1.5281200e+04 2.5332051e-01 + 1.5281600e+04 2.9332051e-01 + 1.5282000e+04 5.1332051e-01 + 1.5282400e+04 1.0133205e+00 + 1.5282800e+04 1.3033205e+00 + 1.5283200e+04 1.1233205e+00 + 1.5283600e+04 9.8332051e-01 + 1.5284000e+04 8.6332051e-01 + 1.5284400e+04 6.3332051e-01 + 1.5284800e+04 4.4332051e-01 + 1.5285200e+04 3.8332051e-01 + 1.5285600e+04 8.7332051e-01 + 1.5286000e+04 2.7332051e-01 + 1.5286400e+04 1.7332051e-01 + 1.5286800e+04 1.7332051e-01 + 1.5287200e+04 -3.6667949e-01 + 1.5287600e+04 -9.4667949e-01 + 1.5288000e+04 -1.1966795e+00 + 1.5288400e+04 -1.0466795e+00 + 1.5288800e+04 -7.2667949e-01 + 1.5289200e+04 -7.0667949e-01 + 1.5289600e+04 8.8332051e-01 + 1.5290000e+04 2.8333205e+00 + 1.5290400e+04 2.9233205e+00 + 1.5290800e+04 2.4633205e+00 + 1.5291200e+04 2.1233205e+00 + 1.5291600e+04 2.0533205e+00 + 1.5292000e+04 1.9533205e+00 + 1.5292400e+04 1.7333205e+00 + 1.5292800e+04 1.5333205e+00 + 1.5293200e+04 1.2333205e+00 + 1.5293600e+04 3.8332051e-01 + 1.5294000e+04 -4.0667949e-01 + 1.5294400e+04 -9.1667949e-01 + 1.5294800e+04 -1.2966795e+00 + 1.5295200e+04 -1.8166795e+00 + 1.5295600e+04 -2.2766795e+00 + 1.5296000e+04 -2.3866795e+00 + 1.5296400e+04 -2.3966795e+00 + 1.5296800e+04 -2.5966795e+00 + 1.5297200e+04 -2.3466795e+00 + 1.5297600e+04 -1.9066795e+00 + 1.5298000e+04 -1.3166795e+00 + 1.5298400e+04 -5.2667949e-01 + 1.5298800e+04 1.3332051e-01 + 1.5299200e+04 7.6332051e-01 + 1.5299600e+04 8.7332051e-01 + 1.5300000e+04 9.1332051e-01 + 1.5300400e+04 6.6332051e-01 + 1.5300800e+04 6.2332051e-01 + 1.5301200e+04 9.3332051e-01 + 1.5301600e+04 1.4633205e+00 + 1.5302000e+04 1.8033205e+00 + 1.5302400e+04 1.8733205e+00 + 1.5302800e+04 1.4933205e+00 + 1.5303200e+04 8.6332051e-01 + 1.5303600e+04 3.4332051e-01 + 1.5304000e+04 2.2332051e-01 + 1.5304400e+04 5.7332051e-01 + 1.5304800e+04 7.6332051e-01 + 1.5305200e+04 1.0033205e+00 + 1.5305600e+04 1.3933205e+00 + 1.5306000e+04 1.6333205e+00 + 1.5306400e+04 1.4433205e+00 + 1.5306800e+04 1.0533205e+00 + 1.5307200e+04 6.6332051e-01 + 1.5307600e+04 3.2332051e-01 + 1.5308000e+04 -1.4667949e-01 + 1.5308400e+04 -2.3667949e-01 + 1.5308800e+04 -2.5667949e-01 + 1.5309200e+04 -2.3667949e-01 + 1.5309600e+04 -3.6679487e-02 + 1.5310000e+04 2.0332051e-01 + 1.5310400e+04 6.0332051e-01 + 1.5310800e+04 1.1133205e+00 + 1.5311200e+04 1.5333205e+00 + 1.5311600e+04 1.8633205e+00 + 1.5312000e+04 1.8033205e+00 + 1.5312400e+04 1.2333205e+00 + 1.5312800e+04 2.2332051e-01 + 1.5313200e+04 -3.4667949e-01 + 1.5313600e+04 -1.2866795e+00 + 1.5314000e+04 -2.0766795e+00 + 1.5314400e+04 -2.0866795e+00 + 1.5314800e+04 -1.6166795e+00 + 1.5315200e+04 -1.3666795e+00 + 1.5315600e+04 -5.7667949e-01 + 1.5316000e+04 -4.9667949e-01 + 1.5316400e+04 -2.2667949e-01 + 1.5316800e+04 2.5332051e-01 + 1.5317200e+04 -1.3667949e-01 + 1.5317600e+04 -4.5667949e-01 + 1.5318000e+04 -5.4667949e-01 + 1.5318400e+04 -6.3667949e-01 + 1.5318800e+04 -6.9667949e-01 + 1.5319200e+04 -6.5667949e-01 + 1.5319600e+04 -5.2667949e-01 + 1.5320000e+04 -3.5667949e-01 + 1.5320400e+04 8.3320513e-02 + 1.5320800e+04 4.1332051e-01 + 1.5321200e+04 7.3332051e-01 + 1.5321600e+04 1.0233205e+00 + 1.5322000e+04 1.3733205e+00 + 1.5322400e+04 1.9533205e+00 + 1.5322800e+04 2.2833205e+00 + 1.5323200e+04 2.3533205e+00 + 1.5323600e+04 1.9833205e+00 + 1.5324000e+04 1.6633205e+00 + 1.5324400e+04 1.5033205e+00 + 1.5324800e+04 1.5033205e+00 + 1.5325200e+04 1.5333205e+00 + 1.5325600e+04 1.6733205e+00 + 1.5326000e+04 1.9833205e+00 + 1.5326400e+04 1.8033205e+00 + 1.5326800e+04 1.6433205e+00 + 1.5327200e+04 1.5933205e+00 + 1.5327600e+04 5.3332051e-01 + 1.5328000e+04 -2.3667949e-01 + 1.5328400e+04 -3.4667949e-01 + 1.5328800e+04 -3.4667949e-01 + 1.5329200e+04 -1.5966795e+00 + 1.5329600e+04 -1.9466795e+00 + 1.5330000e+04 -1.8766795e+00 + 1.5330400e+04 -1.9866795e+00 + 1.5330800e+04 -2.1666795e+00 + 1.5331200e+04 -2.4266795e+00 + 1.5331600e+04 -2.7666795e+00 + 1.5332000e+04 -2.7066795e+00 + 1.5332400e+04 -2.6366795e+00 + 1.5332800e+04 -2.1666795e+00 + 1.5333200e+04 -1.2966795e+00 + 1.5333600e+04 -7.0667949e-01 + 1.5334000e+04 -6.5667949e-01 + 1.5334400e+04 -6.5667949e-01 + 1.5334800e+04 2.4333205e+00 + 1.5335200e+04 3.5533205e+00 + 1.5335600e+04 3.8533205e+00 + 1.5336000e+04 4.1533205e+00 + 1.5336400e+04 4.6433205e+00 + 1.5336800e+04 4.4533205e+00 + 1.5337200e+04 3.4733205e+00 + 1.5337600e+04 2.0033205e+00 + 1.5338000e+04 7.7332051e-01 + 1.5338400e+04 -2.2667949e-01 + 1.5338800e+04 -5.1667949e-01 + 1.5339200e+04 -1.1966795e+00 + 1.5339600e+04 -2.3566795e+00 + 1.5340000e+04 -3.0366795e+00 + 1.5340400e+04 -3.1966795e+00 + 1.5340800e+04 -2.9566795e+00 + 1.5341200e+04 -2.4966795e+00 + 1.5341600e+04 -1.7166795e+00 + 1.5342000e+04 -6.7667949e-01 + 1.5342400e+04 4.7332051e-01 + 1.5342800e+04 1.3033205e+00 + 1.5343200e+04 1.6433205e+00 + 1.5343600e+04 2.1133205e+00 + 1.5344000e+04 1.8833205e+00 + 1.5344400e+04 1.8433205e+00 + 1.5344800e+04 1.9633205e+00 + 1.5345200e+04 1.8833205e+00 + 1.5345600e+04 1.6533205e+00 + 1.5346000e+04 1.4233205e+00 + 1.5346400e+04 1.2133205e+00 + 1.5346800e+04 5.1332051e-01 + 1.5347200e+04 -3.4667949e-01 + 1.5347600e+04 -6.0667949e-01 + 1.5348000e+04 -1.9566795e+00 + 1.5348400e+04 -2.5666795e+00 + 1.5348800e+04 -2.5066795e+00 + 1.5349200e+04 -2.0366795e+00 + 1.5349600e+04 -1.4966795e+00 + 1.5350000e+04 -6.4667949e-01 + 1.5350400e+04 2.1332051e-01 + 1.5350800e+04 7.5332051e-01 + 1.5351200e+04 1.1333205e+00 + 1.5351600e+04 1.4533205e+00 + 1.5352000e+04 1.9933205e+00 + 1.5352400e+04 2.3933205e+00 + 1.5352800e+04 2.7133205e+00 + 1.5353200e+04 2.3233205e+00 + 1.5353600e+04 2.0333205e+00 + 1.5354000e+04 2.1833205e+00 + 1.5354400e+04 2.2233205e+00 + 1.5354800e+04 2.1133205e+00 + 1.5355200e+04 1.7133205e+00 + 1.5355600e+04 1.0233205e+00 + 1.5356000e+04 8.5332051e-01 + 1.5356400e+04 7.8332051e-01 + 1.5356800e+04 -1.7766795e+00 + 1.5357200e+04 -2.2766795e+00 + 1.5357600e+04 -2.2466795e+00 + 1.5358000e+04 -1.9166795e+00 + 1.5358400e+04 -1.5066795e+00 + 1.5358800e+04 -1.0166795e+00 + 1.5359200e+04 -5.5667949e-01 + 1.5359600e+04 -4.4667949e-01 + 1.5360000e+04 6.0332051e-01 + 1.5360400e+04 1.6833205e+00 + 1.5360800e+04 1.8533205e+00 + 1.5361200e+04 1.9433205e+00 + 1.5361600e+04 1.6033205e+00 + 1.5362000e+04 1.1633205e+00 + 1.5362400e+04 7.7332051e-01 + 1.5362800e+04 3.9332051e-01 + 1.5363200e+04 1.1332051e-01 + 1.5363600e+04 2.3320513e-02 + 1.5364000e+04 5.3320513e-02 + 1.5364400e+04 -3.6679487e-02 + 1.5364800e+04 -4.1667949e-01 + 1.5365200e+04 -5.9667949e-01 + 1.5365600e+04 -5.7667949e-01 + 1.5366000e+04 -6.2667949e-01 + 1.5366400e+04 -6.6667949e-01 + 1.5366800e+04 -7.4667949e-01 + 1.5367200e+04 -1.0466795e+00 + 1.5367600e+04 -7.1667949e-01 + 1.5368000e+04 -3.6667949e-01 + 1.5368400e+04 -2.9667949e-01 + 1.5368800e+04 -5.6679487e-02 + 1.5369200e+04 -1.3667949e-01 + 1.5369600e+04 -3.8667949e-01 + 1.5370000e+04 -3.2667949e-01 + 1.5370400e+04 -1.2667949e-01 + 1.5370800e+04 1.8332051e-01 + 1.5371200e+04 6.8332051e-01 + 1.5371600e+04 1.0433205e+00 + 1.5372000e+04 1.0533205e+00 + 1.5372400e+04 1.7933205e+00 + 1.5372800e+04 2.0733205e+00 + 1.5373200e+04 1.9933205e+00 + 1.5373600e+04 1.8233205e+00 + 1.5374000e+04 1.8033205e+00 + 1.5374400e+04 2.0133205e+00 + 1.5374800e+04 2.3433205e+00 + 1.5375200e+04 2.2133205e+00 + 1.5375600e+04 1.8233205e+00 + 1.5376000e+04 1.3733205e+00 + 1.5376400e+04 8.4332051e-01 + 1.5376800e+04 -9.6679487e-02 + 1.5377200e+04 -6.9667949e-01 + 1.5377600e+04 -1.0466795e+00 + 1.5378000e+04 -1.2666795e+00 + 1.5378400e+04 -1.0066795e+00 + 1.5378800e+04 -5.9667949e-01 + 1.5379200e+04 -3.3667949e-01 + 1.5379600e+04 -3.3667949e-01 + 1.5380000e+04 -6.2667949e-01 + 1.5380400e+04 -1.0366795e+00 + 1.5380800e+04 -1.3366795e+00 + 1.5381200e+04 -1.8466795e+00 + 1.5381600e+04 -2.3066795e+00 + 1.5382000e+04 -2.1266795e+00 + 1.5382400e+04 -1.9866795e+00 + 1.5382800e+04 -2.1266795e+00 + 1.5383200e+04 -2.6166795e+00 + 1.5383600e+04 -2.7266795e+00 + 1.5384000e+04 -2.2966795e+00 + 1.5384400e+04 -1.6266795e+00 + 1.5384800e+04 -8.9667949e-01 + 1.5385200e+04 -3.5667949e-01 + 1.5385600e+04 1.8933205e+00 + 1.5386000e+04 3.5033205e+00 + 1.5386400e+04 4.7633205e+00 + 1.5386800e+04 5.3533205e+00 + 1.5387200e+04 5.6233205e+00 + 1.5387600e+04 5.1633205e+00 + 1.5388000e+04 4.0433205e+00 + 1.5388400e+04 2.6633205e+00 + 1.5388800e+04 1.4433205e+00 + 1.5389200e+04 5.8332051e-01 + 1.5389600e+04 -8.6679487e-02 + 1.5390000e+04 -3.9667949e-01 + 1.5390400e+04 -2.4667949e-01 + 1.5390800e+04 3.0332051e-01 + 1.5391200e+04 2.2332051e-01 + 1.5391600e+04 -1.5667949e-01 + 1.5392000e+04 -3.9667949e-01 + 1.5392400e+04 -4.4667949e-01 + 1.5392800e+04 -4.7667949e-01 + 1.5393200e+04 -7.3667949e-01 + 1.5393600e+04 -7.1667949e-01 + 1.5394000e+04 -3.8667949e-01 + 1.5394400e+04 9.3320513e-02 + 1.5394800e+04 1.6332051e-01 + 1.5395200e+04 -5.6679487e-02 + 1.5395600e+04 2.3320513e-02 + 1.5396000e+04 -3.6679487e-02 + 1.5396400e+04 -2.9667949e-01 + 1.5396800e+04 -5.1667949e-01 + 1.5397200e+04 -8.8667949e-01 + 1.5397600e+04 -1.3666795e+00 + 1.5398000e+04 -1.6066795e+00 + 1.5398400e+04 -1.6366795e+00 + 1.5398800e+04 -1.3866795e+00 + 1.5399200e+04 -9.6667949e-01 + 1.5399600e+04 -2.9667949e-01 + 1.5400000e+04 4.6332051e-01 + 1.5400400e+04 4.8332051e-01 + 1.5400800e+04 2.3332051e-01 + 1.5401200e+04 -2.9667949e-01 + 1.5401600e+04 -7.0667949e-01 + 1.5402000e+04 -4.5667949e-01 + 1.5402400e+04 -2.2667949e-01 + 1.5402800e+04 3.3205128e-03 + 1.5403200e+04 4.2332051e-01 + 1.5403600e+04 8.0332051e-01 + 1.5404000e+04 1.2233205e+00 + 1.5404400e+04 1.7033205e+00 + 1.5404800e+04 1.7933205e+00 + 1.5405200e+04 1.7633205e+00 + 1.5405600e+04 1.7233205e+00 + 1.5406000e+04 1.4533205e+00 + 1.5406400e+04 1.0433205e+00 + 1.5406800e+04 7.9332051e-01 + 1.5407200e+04 3.4332051e-01 + 1.5407600e+04 1.3332051e-01 + 1.5408000e+04 -1.1667949e-01 + 1.5408400e+04 -2.9667949e-01 + 1.5408800e+04 -1.9667949e-01 + 1.5409200e+04 -6.6679487e-02 + 1.5409600e+04 3.9332051e-01 + 1.5410000e+04 9.2332051e-01 + 1.5410400e+04 1.6033205e+00 + 1.5410800e+04 2.1133205e+00 + 1.5411200e+04 1.8733205e+00 + 1.5411600e+04 2.4033205e+00 + 1.5412000e+04 2.0433205e+00 + 1.5412400e+04 1.9733205e+00 + 1.5412800e+04 1.7733205e+00 + 1.5413200e+04 3.9332051e-01 + 1.5413600e+04 4.6332051e-01 + 1.5414000e+04 7.9332051e-01 + 1.5414400e+04 8.5332051e-01 + 1.5414800e+04 4.3332051e-01 + 1.5415200e+04 -9.6679487e-02 + 1.5415600e+04 -1.0666795e+00 + 1.5416000e+04 -1.7566795e+00 + 1.5416400e+04 -2.0766795e+00 + 1.5416800e+04 -1.8166795e+00 + 1.5417200e+04 -1.6466795e+00 + 1.5417600e+04 -1.8266795e+00 + 1.5418000e+04 -2.2066795e+00 + 1.5418400e+04 -2.4466795e+00 + 1.5418800e+04 -2.6166795e+00 + 1.5419200e+04 -2.4166795e+00 + 1.5419600e+04 -1.7866795e+00 + 1.5420000e+04 -1.2466795e+00 + 1.5420400e+04 -7.9667949e-01 + 1.5420800e+04 2.3320513e-02 + 1.5421200e+04 7.5332051e-01 + 1.5421600e+04 1.0533205e+00 + 1.5422000e+04 1.8733205e+00 + 1.5422400e+04 2.5033205e+00 + 1.5422800e+04 2.9533205e+00 + 1.5423200e+04 3.0733205e+00 + 1.5423600e+04 3.1333205e+00 + 1.5424000e+04 2.7233205e+00 + 1.5424400e+04 2.2033205e+00 + 1.5424800e+04 1.9433205e+00 + 1.5425200e+04 1.7533205e+00 + 1.5425600e+04 1.2733205e+00 + 1.5426000e+04 1.0333205e+00 + 1.5426400e+04 5.1332051e-01 + 1.5426800e+04 -7.6679487e-02 + 1.5427200e+04 -5.6667949e-01 + 1.5427600e+04 -8.8667949e-01 + 1.5428000e+04 -4.9667949e-01 + 1.5428400e+04 -6.6679487e-02 + 1.5428800e+04 -6.6679487e-02 + 1.5429200e+04 -2.0667949e-01 + 1.5429600e+04 -3.7667949e-01 + 1.5430000e+04 -3.7667949e-01 + 1.5430400e+04 -1.7667949e-01 + 1.5430800e+04 -2.4667949e-01 + 1.5431200e+04 1.3320513e-02 + 1.5431600e+04 3.4332051e-01 + 1.5432000e+04 4.8332051e-01 + 1.5432400e+04 6.5332051e-01 + 1.5432800e+04 8.6332051e-01 + 1.5433200e+04 9.2332051e-01 + 1.5433600e+04 8.8332051e-01 + 1.5434000e+04 7.7332051e-01 + 1.5434400e+04 6.7332051e-01 + 1.5434800e+04 5.8332051e-01 + 1.5435200e+04 2.4332051e-01 + 1.5435600e+04 -3.7667949e-01 + 1.5436000e+04 -7.6667949e-01 + 1.5436400e+04 -9.6667949e-01 + 1.5436800e+04 -1.3266795e+00 + 1.5437200e+04 -9.6667949e-01 + 1.5437600e+04 -6.0667949e-01 + 1.5438000e+04 -2.3667949e-01 + 1.5438400e+04 1.0332051e-01 + 1.5438800e+04 1.6332051e-01 + 1.5439200e+04 8.3320513e-02 + 1.5439600e+04 -3.2667949e-01 + 1.5440000e+04 -5.5667949e-01 + 1.5440400e+04 -7.9667949e-01 + 1.5440800e+04 -8.1667949e-01 + 1.5441200e+04 -1.0766795e+00 + 1.5441600e+04 -1.1466795e+00 + 1.5442000e+04 -1.1066795e+00 + 1.5442400e+04 -8.4667949e-01 + 1.5442800e+04 -5.2667949e-01 + 1.5443200e+04 -4.2667949e-01 + 1.5443600e+04 -1.6679487e-02 + 1.5444000e+04 5.7332051e-01 + 1.5444400e+04 1.3033205e+00 + 1.5444800e+04 1.7933205e+00 + 1.5445200e+04 1.7633205e+00 + 1.5445600e+04 1.7233205e+00 + 1.5446000e+04 1.6133205e+00 + 1.5446400e+04 1.5933205e+00 + 1.5446800e+04 1.2633205e+00 + 1.5447200e+04 1.2133205e+00 + 1.5447600e+04 1.1933205e+00 + 1.5448000e+04 1.2633205e+00 + 1.5448400e+04 1.3633205e+00 + 1.5448800e+04 1.4233205e+00 + 1.5449200e+04 1.3633205e+00 + 1.5449600e+04 1.2333205e+00 + 1.5450000e+04 1.0433205e+00 + 1.5450400e+04 8.8332051e-01 + 1.5450800e+04 1.2733205e+00 + 1.5451200e+04 1.7933205e+00 + 1.5451600e+04 1.8733205e+00 + 1.5452000e+04 1.6533205e+00 + 1.5452400e+04 1.5833205e+00 + 1.5452800e+04 8.5332051e-01 + 1.5453200e+04 -1.6679487e-02 + 1.5453600e+04 -6.1667949e-01 + 1.5454000e+04 -9.5667949e-01 + 1.5454400e+04 -1.3666795e+00 + 1.5454800e+04 -1.7866795e+00 + 1.5455200e+04 -2.0966795e+00 + 1.5455600e+04 -2.2866795e+00 + 1.5456000e+04 -2.6066795e+00 + 1.5456400e+04 -3.0166795e+00 + 1.5456800e+04 -3.3166795e+00 + 1.5457200e+04 -2.9966795e+00 + 1.5457600e+04 -2.0466795e+00 + 1.5458000e+04 -8.1667949e-01 + 1.5458400e+04 6.2332051e-01 + 1.5458800e+04 1.5233205e+00 + 1.5459200e+04 3.0133205e+00 + 1.5459600e+04 2.8733205e+00 + 1.5460000e+04 1.9233205e+00 + 1.5460400e+04 1.0533205e+00 + 1.5460800e+04 4.6332051e-01 + 1.5461200e+04 1.1332051e-01 + 1.5461600e+04 3.2332051e-01 + 1.5462000e+04 7.8332051e-01 + 1.5462400e+04 1.0333205e+00 + 1.5462800e+04 1.4433205e+00 + 1.5463200e+04 1.6233205e+00 + 1.5463600e+04 1.6033205e+00 + 1.5464000e+04 1.6333205e+00 + 1.5464400e+04 1.5933205e+00 + 1.5464800e+04 1.7333205e+00 + 1.5465200e+04 1.8033205e+00 + 1.5465600e+04 1.6733205e+00 + 1.5466000e+04 7.8332051e-01 + 1.5466400e+04 -7.6679487e-02 + 1.5466800e+04 -3.4667949e-01 + 1.5467200e+04 -7.6667949e-01 + 1.5467600e+04 -1.2766795e+00 + 1.5468000e+04 -1.4066795e+00 + 1.5468400e+04 -7.9667949e-01 + 1.5468800e+04 -2.6667949e-01 + 1.5469200e+04 -5.6679487e-02 + 1.5469600e+04 5.5332051e-01 + 1.5470000e+04 1.6633205e+00 + 1.5470400e+04 2.0333205e+00 + 1.5470800e+04 2.1633205e+00 + 1.5471200e+04 2.1433205e+00 + 1.5471600e+04 2.1833205e+00 + 1.5472000e+04 2.0533205e+00 + 1.5472400e+04 2.0033205e+00 + 1.5472800e+04 1.9233205e+00 + 1.5473200e+04 1.8333205e+00 + 1.5473600e+04 1.5533205e+00 + 1.5474000e+04 1.0333205e+00 + 1.5474400e+04 1.1332051e-01 + 1.5474800e+04 -5.7667949e-01 + 1.5475200e+04 -1.3966795e+00 + 1.5475600e+04 -2.0166795e+00 + 1.5476000e+04 -2.3766795e+00 + 1.5476400e+04 -2.5766795e+00 + 1.5476800e+04 -2.3866795e+00 + 1.5477200e+04 -2.2566795e+00 + 1.5477600e+04 -1.9466795e+00 + 1.5478000e+04 -1.9266795e+00 + 1.5478400e+04 -1.8766795e+00 + 1.5478800e+04 -1.7966795e+00 + 1.5479200e+04 -1.8266795e+00 + 1.5479600e+04 -1.7966795e+00 + 1.5480000e+04 -1.3566795e+00 + 1.5480400e+04 -4.2667949e-01 + 1.5480800e+04 6.0332051e-01 + 1.5481200e+04 1.6833205e+00 + 1.5481600e+04 2.3533205e+00 + 1.5482000e+04 2.7433205e+00 + 1.5482400e+04 2.7233205e+00 + 1.5482800e+04 2.3333205e+00 + 1.5483200e+04 2.0433205e+00 + 1.5483600e+04 1.5933205e+00 + 1.5484000e+04 1.6533205e+00 + 1.5484400e+04 1.8633205e+00 + 1.5484800e+04 2.2633205e+00 + 1.5485200e+04 2.0333205e+00 + 1.5485600e+04 1.8333205e+00 + 1.5486000e+04 1.8033205e+00 + 1.5486400e+04 1.4933205e+00 + 1.5486800e+04 1.1633205e+00 + 1.5487200e+04 9.3332051e-01 + 1.5487600e+04 6.0332051e-01 + 1.5488000e+04 4.0332051e-01 + 1.5488400e+04 5.4332051e-01 + 1.5488800e+04 6.4332051e-01 + 1.5489200e+04 5.0332051e-01 + 1.5489600e+04 4.5332051e-01 + 1.5490000e+04 4.3320513e-02 + 1.5490400e+04 -9.6679487e-02 + 1.5490800e+04 -4.4667949e-01 + 1.5491200e+04 -4.8667949e-01 + 1.5491600e+04 -8.2667949e-01 + 1.5492000e+04 -1.4566795e+00 + 1.5492400e+04 -1.6966795e+00 + 1.5492800e+04 -2.0466795e+00 + 1.5493200e+04 -1.7266795e+00 + 1.5493600e+04 -5.7667949e-01 + 1.5494000e+04 5.2332051e-01 + 1.5494400e+04 1.0733205e+00 + 1.5494800e+04 1.5133205e+00 + 1.5495200e+04 1.6933205e+00 + 1.5495600e+04 1.1133205e+00 + 1.5496000e+04 3.8332051e-01 + 1.5496400e+04 -1.2667949e-01 + 1.5496800e+04 -1.4667949e-01 + 1.5497200e+04 -5.6679487e-02 + 1.5497600e+04 -6.6794872e-03 + 1.5498000e+04 -1.6667949e-01 + 1.5498400e+04 3.3205128e-03 + 1.5498800e+04 -5.6679487e-02 + 1.5499200e+04 -3.0667949e-01 + 1.5499600e+04 -5.0667949e-01 + 1.5500000e+04 -4.2667949e-01 + 1.5500400e+04 -4.7667949e-01 + 1.5500800e+04 -4.4667949e-01 + 1.5501200e+04 -4.0667949e-01 + 1.5501600e+04 -1.6667949e-01 + 1.5502000e+04 -8.6679487e-02 + 1.5502400e+04 -2.2667949e-01 + 1.5502800e+04 -6.6679487e-02 + 1.5503200e+04 3.7332051e-01 + 1.5503600e+04 8.9332051e-01 + 1.5504000e+04 1.1233205e+00 + 1.5504400e+04 1.5233205e+00 + 1.5504800e+04 1.8933205e+00 + 1.5505200e+04 2.4133205e+00 + 1.5505600e+04 2.1833205e+00 + 1.5506000e+04 1.8033205e+00 + 1.5506400e+04 1.3433205e+00 + 1.5506800e+04 8.7332051e-01 + 1.5507200e+04 2.3332051e-01 + 1.5507600e+04 -3.9667949e-01 + 1.5508000e+04 -7.1667949e-01 + 1.5508400e+04 -1.0966795e+00 + 1.5508800e+04 -9.8667949e-01 + 1.5509200e+04 -8.5667949e-01 + 1.5509600e+04 -1.7667949e-01 + 1.5510000e+04 2.5332051e-01 + 1.5510400e+04 9.7332051e-01 + 1.5510800e+04 1.8533205e+00 + 1.5511200e+04 2.6433205e+00 + 1.5511600e+04 2.7833205e+00 + 1.5512000e+04 3.0533205e+00 + 1.5512400e+04 2.9333205e+00 + 1.5512800e+04 1.6933205e+00 + 1.5513200e+04 4.2332051e-01 + 1.5513600e+04 -3.5667949e-01 + 1.5514000e+04 -7.0667949e-01 + 1.5514400e+04 -6.9667949e-01 + 1.5514800e+04 -5.9667949e-01 + 1.5515200e+04 -3.6667949e-01 + 1.5515600e+04 -2.2667949e-01 + 1.5516000e+04 -2.3667949e-01 + 1.5516400e+04 -3.6667949e-01 + 1.5516800e+04 -6.9667949e-01 + 1.5517200e+04 -1.0166795e+00 + 1.5517600e+04 -1.0866795e+00 + 1.5518000e+04 -1.2766795e+00 + 1.5518400e+04 -1.3066795e+00 + 1.5518800e+04 -1.4266795e+00 + 1.5519200e+04 -1.4566795e+00 + 1.5519600e+04 -1.3266795e+00 + 1.5520000e+04 -1.1266795e+00 + 1.5520400e+04 -1.0566795e+00 + 1.5520800e+04 -6.9667949e-01 + 1.5521200e+04 -1.9667949e-01 + 1.5521600e+04 4.0332051e-01 + 1.5522000e+04 8.2332051e-01 + 1.5522400e+04 9.2332051e-01 + 1.5522800e+04 1.1733205e+00 + 1.5523200e+04 1.5333205e+00 + 1.5523600e+04 1.8033205e+00 + 1.5524000e+04 1.7933205e+00 + 1.5524400e+04 1.2133205e+00 + 1.5524800e+04 8.0332051e-01 + 1.5525200e+04 6.8332051e-01 + 1.5525600e+04 4.7332051e-01 + 1.5526000e+04 4.3332051e-01 + 1.5526400e+04 6.8332051e-01 + 1.5526800e+04 5.8332051e-01 + 1.5527200e+04 1.7332051e-01 + 1.5527600e+04 -6.6679487e-02 + 1.5528000e+04 -5.6679487e-02 + 1.5528400e+04 3.0332051e-01 + 1.5528800e+04 6.9332051e-01 + 1.5529200e+04 9.8332051e-01 + 1.5529600e+04 1.0333205e+00 + 1.5530000e+04 8.2332051e-01 + 1.5530400e+04 5.2332051e-01 + 1.5530800e+04 3.2332051e-01 + 1.5531200e+04 -6.6794872e-03 + 1.5531600e+04 -7.6679487e-02 + 1.5532000e+04 2.9332051e-01 + 1.5532400e+04 8.0332051e-01 + 1.5532800e+04 1.8633205e+00 + 1.5533200e+04 1.9633205e+00 + 1.5533600e+04 1.4633205e+00 + 1.5534000e+04 1.3233205e+00 + 1.5534400e+04 1.3733205e+00 + 1.5534800e+04 1.4933205e+00 + 1.5535200e+04 1.4033205e+00 + 1.5535600e+04 6.6332051e-01 + 1.5536000e+04 1.3332051e-01 + 1.5536400e+04 -5.0667949e-01 + 1.5536800e+04 -1.2466795e+00 + 1.5537200e+04 -2.0466795e+00 + 1.5537600e+04 -2.6166795e+00 + 1.5538000e+04 -2.7066795e+00 + 1.5538400e+04 -2.3266795e+00 + 1.5538800e+04 -1.5966795e+00 + 1.5539200e+04 -1.2466795e+00 + 1.5539600e+04 -1.0866795e+00 + 1.5540000e+04 -1.4666795e+00 + 1.5540400e+04 -1.7866795e+00 + 1.5540800e+04 -1.5966795e+00 + 1.5541200e+04 -1.1966795e+00 + 1.5541600e+04 -4.4667949e-01 + 1.5542000e+04 1.6332051e-01 + 1.5542400e+04 3.7332051e-01 + 1.5542800e+04 5.9332051e-01 + 1.5543200e+04 6.3332051e-01 + 1.5543600e+04 9.4332051e-01 + 1.5544000e+04 1.1833205e+00 + 1.5544400e+04 1.0533205e+00 + 1.5544800e+04 1.1433205e+00 + 1.5545200e+04 1.4333205e+00 + 1.5545600e+04 1.8033205e+00 + 1.5546000e+04 2.2633205e+00 + 1.5546400e+04 2.5433205e+00 + 1.5546800e+04 2.5733205e+00 + 1.5547200e+04 2.7633205e+00 + 1.5547600e+04 2.8033205e+00 + 1.5548000e+04 3.3233205e+00 + 1.5548400e+04 2.9333205e+00 + 1.5548800e+04 2.4633205e+00 + 1.5549200e+04 1.8633205e+00 + 1.5549600e+04 9.1332051e-01 + 1.5550000e+04 1.7332051e-01 + 1.5550400e+04 -3.2667949e-01 + 1.5550800e+04 -4.8667949e-01 + 1.5551200e+04 -5.0667949e-01 + 1.5551600e+04 -5.0667949e-01 + 1.5552000e+04 -1.4766795e+00 + 1.5552400e+04 -1.7066795e+00 + 1.5552800e+04 -1.4866795e+00 + 1.5553200e+04 -1.3866795e+00 + 1.5553600e+04 -1.2466795e+00 + 1.5554000e+04 -1.4466795e+00 + 1.5554400e+04 -1.3266795e+00 + 1.5554800e+04 -5.0667949e-01 + 1.5555200e+04 -2.5667949e-01 + 1.5555600e+04 -1.6667949e-01 + 1.5556000e+04 8.3320513e-02 + 1.5556400e+04 3.9332051e-01 + 1.5556800e+04 9.3332051e-01 + 1.5557200e+04 1.2233205e+00 + 1.5557600e+04 1.3533205e+00 + 1.5558000e+04 1.9033205e+00 + 1.5558400e+04 2.0233205e+00 + 1.5558800e+04 2.1333205e+00 + 1.5559200e+04 2.0433205e+00 + 1.5559600e+04 1.8933205e+00 + 1.5560000e+04 1.2333205e+00 + 1.5560400e+04 1.1333205e+00 + 1.5560800e+04 9.8332051e-01 + 1.5561200e+04 9.6332051e-01 + 1.5561600e+04 -3.8667949e-01 + 1.5562000e+04 -3.2766795e+00 + 1.5562400e+04 -3.4466795e+00 + 1.5562800e+04 -3.2366795e+00 + 1.5563200e+04 -2.7166795e+00 + 1.5563600e+04 -2.0066795e+00 + 1.5564000e+04 -1.1966795e+00 + 1.5564400e+04 -3.8667949e-01 + 1.5564800e+04 5.3332051e-01 + 1.5565200e+04 1.6533205e+00 + 1.5565600e+04 3.3733205e+00 + 1.5566000e+04 4.2333205e+00 + 1.5566400e+04 4.6633205e+00 + 1.5566800e+04 4.8033205e+00 + 1.5567200e+04 4.9133205e+00 + 1.5567600e+04 3.9633205e+00 + 1.5568000e+04 2.9633205e+00 + 1.5568400e+04 1.9233205e+00 + 1.5568800e+04 8.7332051e-01 + 1.5569200e+04 2.4332051e-01 + 1.5569600e+04 -8.6679487e-02 + 1.5570000e+04 -4.0667949e-01 + 1.5570400e+04 -7.1667949e-01 + 1.5570800e+04 -1.0366795e+00 + 1.5571200e+04 -1.2766795e+00 + 1.5571600e+04 -1.1466795e+00 + 1.5572000e+04 -8.9667949e-01 + 1.5572400e+04 -6.2667949e-01 + 1.5572800e+04 -4.0667949e-01 + 1.5573200e+04 -4.4667949e-01 + 1.5573600e+04 -5.6667949e-01 + 1.5574000e+04 -4.8667949e-01 + 1.5574400e+04 -2.4667949e-01 + 1.5574800e+04 5.3320513e-02 + 1.5575200e+04 1.3332051e-01 + 1.5575600e+04 3.6332051e-01 + 1.5576000e+04 7.2332051e-01 + 1.5576400e+04 1.1133205e+00 + 1.5576800e+04 1.4733205e+00 + 1.5577200e+04 1.1133205e+00 + 1.5577600e+04 6.4332051e-01 + 1.5578000e+04 -4.1667949e-01 + 1.5578400e+04 -6.5667949e-01 + 1.5578800e+04 -5.8667949e-01 + 1.5579200e+04 -7.1667949e-01 + 1.5579600e+04 -5.6667949e-01 + 1.5580000e+04 -1.9667949e-01 + 1.5580400e+04 7.5332051e-01 + 1.5580800e+04 9.4332051e-01 + 1.5581200e+04 1.0533205e+00 + 1.5581600e+04 9.9332051e-01 + 1.5582000e+04 5.2332051e-01 + 1.5582400e+04 2.3320513e-02 + 1.5582800e+04 -1.4667949e-01 + 1.5583200e+04 -1.3667949e-01 + 1.5583600e+04 3.3320513e-02 + 1.5584000e+04 3.3320513e-02 + 1.5584400e+04 5.3320513e-02 + 1.5584800e+04 3.8332051e-01 + 1.5585200e+04 5.2332051e-01 + 1.5585600e+04 8.9332051e-01 + 1.5586000e+04 1.0933205e+00 + 1.5586400e+04 9.5332051e-01 + 1.5586800e+04 4.3332051e-01 + 1.5587200e+04 1.0332051e-01 + 1.5587600e+04 -6.6679487e-02 + 1.5588000e+04 -3.9667949e-01 + 1.5588400e+04 -4.6679487e-02 + 1.5588800e+04 5.3320513e-02 + 1.5589200e+04 -4.5667949e-01 + 1.5589600e+04 -8.0667949e-01 + 1.5590000e+04 -9.7667949e-01 + 1.5590400e+04 -1.0366795e+00 + 1.5590800e+04 -4.4667949e-01 + 1.5591200e+04 2.9332051e-01 + 1.5591600e+04 1.0333205e+00 + 1.5592000e+04 2.3633205e+00 + 1.5592400e+04 3.4233205e+00 + 1.5592800e+04 4.4333205e+00 + 1.5593200e+04 3.8033205e+00 + 1.5593600e+04 3.2733205e+00 + 1.5594000e+04 3.2433205e+00 + 1.5594400e+04 1.1133205e+00 + 1.5594800e+04 -5.6679487e-02 + 1.5595200e+04 -8.3667949e-01 + 1.5595600e+04 -2.0766795e+00 + 1.5596000e+04 -2.5866795e+00 + 1.5596400e+04 -2.7666795e+00 + 1.5596800e+04 -2.4466795e+00 + 1.5597200e+04 -1.9466795e+00 + 1.5597600e+04 -1.1566795e+00 + 1.5598000e+04 3.3205128e-03 + 1.5598400e+04 8.0332051e-01 + 1.5598800e+04 1.3033205e+00 + 1.5599200e+04 2.0033205e+00 + 1.5599600e+04 2.7553321e+01 diff --git a/wafo/data/gfaksr89.dat b/wafo/data/gfaksr89.dat new file mode 100755 index 0000000..f5b1ac7 --- /dev/null +++ b/wafo/data/gfaksr89.dat @@ -0,0 +1,39000 @@ + 0.0000000e+00 2.0523904e-01 + 4.0000000e-01 -6.4751144e-02 + 8.0000000e-01 1.5246936e-02 + 1.2000000e+00 3.8525105e-01 + 1.6000000e+00 6.5521402e-01 + 2.0000000e+00 1.0352041e+00 + 2.4000000e+00 8.2521242e-01 + 2.8000000e+00 3.1526218e-01 + 3.2000000e+00 -1.0472737e-01 + 3.6000000e+00 -5.2476069e-01 + 4.0000000e+00 -9.5476348e-01 + 4.4000000e+00 -1.5147914e+00 + 4.8000000e+00 -1.6247986e+00 + 5.2000000e+00 -1.8348192e+00 + 5.6000000e+00 -1.8848165e+00 + 6.0000000e+00 -9.4477155e-01 + 6.4000000e+00 -8.1475669e-01 + 6.8000000e+00 -5.8477550e-01 + 7.2000000e+00 -3.7473774e-01 + 7.6000000e+00 -2.5454856e-01 + 8.0000000e+00 -1.3474859e-01 + 8.4000000e+00 2.0523904e-01 + 8.8000000e+00 5.2405032e-03 + 9.2000000e+00 -2.1476579e-01 + 9.6000000e+00 -2.9442276e-01 + 1.0000000e+01 -2.5454856e-01 + 1.0400000e+01 -2.0472105e-01 + 1.0800000e+01 2.5290396e-02 + 1.1200000e+01 2.8527011e-01 + 1.1600000e+01 6.7447601e-02 + 1.2000000e+01 -3.2128449e-01 + 1.2400000e+01 -8.0969410e-01 + 1.2800000e+01 -1.0580468e+00 + 1.3200000e+01 -1.4317120e+00 + 1.3600000e+01 -1.6109727e+00 + 1.4000000e+01 -1.4301171e+00 + 1.4400000e+01 -4.9473720e-01 + 1.4800000e+01 3.5524183e-01 + 1.5200000e+01 7.0522638e-01 + 1.5600000e+01 7.7521835e-01 + 1.6000000e+01 9.5520902e-01 + 1.6400000e+01 1.3552144e+00 + 1.6800000e+01 2.0052422e+00 + 1.7200000e+01 2.5101588e+00 + 1.7600000e+01 3.1185433e+00 + 1.8000000e+01 3.4205648e+00 + 1.8400000e+01 3.2960214e+00 + 1.8800000e+01 2.5182186e+00 + 1.9200000e+01 1.8078304e+00 + 1.9600000e+01 9.7866139e-01 + 2.0000000e+01 -5.8075163e-02 + 2.0400000e+01 -8.4313650e-01 + 2.0800000e+01 -9.7477864e-01 + 2.1200000e+01 -1.0047909e+00 + 2.1600000e+01 -1.1147457e+00 + 2.2000000e+01 -1.3847868e+00 + 2.2400000e+01 -1.6648102e+00 + 2.2800000e+01 -2.2136636e+00 + 2.3200000e+01 -2.6660970e+00 + 2.3600000e+01 -3.2744636e+00 + 2.4000000e+01 -3.4558640e+00 + 2.4400000e+01 -3.1048015e+00 + 2.4800000e+01 -2.3948131e+00 + 2.5200000e+01 -2.1148043e+00 + 2.5600000e+01 -6.9517335e-01 + 2.6000000e+01 7.0522638e-01 + 2.6400000e+01 1.4611557e+00 + 2.6800000e+01 2.1053231e+00 + 2.7200000e+01 2.4552328e+00 + 2.7600000e+01 1.9393855e+00 + 2.8000000e+01 1.1135975e+00 + 2.8400000e+01 4.1562288e-01 + 2.8800000e+01 -3.8901229e-01 + 2.9200000e+01 -1.2747764e+00 + 2.9600000e+01 -1.4217229e+00 + 3.0000000e+01 -1.4873003e+00 + 3.0400000e+01 -1.4828601e+00 + 3.0800000e+01 -1.5303568e+00 + 3.1200000e+01 -1.5147914e+00 + 3.1600000e+01 -1.4747839e+00 + 3.2000000e+01 -1.4247897e+00 + 3.2400000e+01 -1.1047792e+00 + 3.2800000e+01 -9.6804083e-01 + 3.3200000e+01 -6.6078902e-01 + 3.3600000e+01 -4.3887624e-01 + 3.4000000e+01 -2.6585956e-01 + 3.4400000e+01 3.4813961e-01 + 3.4800000e+01 1.3971468e+00 + 3.5200000e+01 2.1865474e+00 + 3.5600000e+01 2.3552217e+00 + 3.6000000e+01 2.2752491e+00 + 3.6400000e+01 2.3452375e+00 + 3.6800000e+01 2.7752336e+00 + 3.7200000e+01 3.2252568e+00 + 3.7600000e+01 3.2852524e+00 + 3.8000000e+01 3.1652366e+00 + 3.8400000e+01 2.5531211e+00 + 3.8800000e+01 1.4049746e+00 + 3.9200000e+01 -6.7103175e-02 + 3.9600000e+01 -1.2823099e+00 + 4.0000000e+01 -1.9348222e+00 + 4.0400000e+01 -1.8548144e+00 + 4.0800000e+01 -1.8948217e+00 + 4.1200000e+01 -2.0713061e+00 + 4.1600000e+01 -1.9623384e+00 + 4.2000000e+01 -1.9029581e+00 + 4.2400000e+01 -2.0350198e+00 + 4.2800000e+01 -1.7648020e+00 + 4.3200000e+01 -1.5447935e+00 + 4.3600000e+01 -1.1847532e+00 + 4.4000000e+01 -1.0148021e+00 + 4.4400000e+01 -7.9475100e-01 + 4.4800000e+01 -6.5773638e-01 + 4.5200000e+01 -6.5527254e-01 + 4.5600000e+01 -5.8620339e-01 + 4.6000000e+01 -5.7406343e-01 + 4.6400000e+01 -6.9517335e-01 + 4.6800000e+01 -8.0477681e-01 + 4.7200000e+01 -5.2476069e-01 + 4.7600000e+01 -2.9442276e-01 + 4.8000000e+01 -1.1475546e-01 + 4.8400000e+01 -2.4762901e-02 + 4.8800000e+01 2.0523904e-01 + 4.9200000e+01 2.6522939e-01 + 4.9600000e+01 9.5261217e-02 + 5.0000000e+01 1.7524280e-01 + 5.0400000e+01 -2.3473589e-01 + 5.0800000e+01 -5.0476284e-01 + 5.1200000e+01 -4.6472633e-01 + 5.1600000e+01 -5.4476856e-01 + 5.2000000e+01 -6.7482029e-01 + 5.2400000e+01 -5.2476069e-01 + 5.2800000e+01 -4.0472669e-01 + 5.3200000e+01 -1.9476201e-01 + 5.3600000e+01 4.5523080e-01 + 5.4000000e+01 8.6521571e-01 + 5.4400000e+01 1.1452065e+00 + 5.4800000e+01 1.2852140e+00 + 5.5200000e+01 1.4352194e+00 + 5.5600000e+01 1.7752393e+00 + 5.6000000e+01 1.9552607e+00 + 5.6400000e+01 2.1252419e+00 + 5.6800000e+01 2.3111680e+00 + 5.7200000e+01 1.9151051e+00 + 5.7600000e+01 1.7002867e+00 + 5.8000000e+01 1.5357936e+00 + 5.8400000e+01 1.1652042e+00 + 5.8800000e+01 3.5524183e-01 + 5.9200000e+01 -9.4760491e-02 + 5.9600000e+01 -3.6470753e-01 + 6.0000000e+01 -7.1488715e-01 + 6.0400000e+01 -5.0732216e-01 + 6.0800000e+01 -6.1894440e-01 + 6.1200000e+01 -9.2472308e-01 + 6.1600000e+01 -1.8257945e+00 + 6.2000000e+01 -2.7475093e+00 + 6.2400000e+01 -3.6857732e+00 + 6.2800000e+01 -4.1247953e+00 + 6.3200000e+01 -3.9247956e+00 + 6.3600000e+01 -3.1991054e+00 + 6.4000000e+01 -2.1578533e+00 + 6.4400000e+01 -1.0901435e+00 + 6.4800000e+01 -2.6121329e-01 + 6.5200000e+01 2.1290370e-01 + 6.5600000e+01 6.4523157e-01 + 6.6000000e+01 8.4520985e-01 + 6.6400000e+01 1.1552082e+00 + 6.6800000e+01 1.0552085e+00 + 6.7200000e+01 7.8520917e-01 + 6.7600000e+01 2.9523227e-01 + 6.8000000e+01 -1.5477088e-01 + 6.8400000e+01 -8.9009148e-01 + 6.8800000e+01 -1.1173602e+00 + 6.9200000e+01 -1.2985476e+00 + 6.9600000e+01 -1.3321129e+00 + 7.0000000e+01 -1.2247814e+00 + 7.0400000e+01 -9.1476220e-01 + 7.0800000e+01 -3.9471337e-01 + 7.1200000e+01 1.0523309e-01 + 7.1600000e+01 6.0878349e-01 + 7.2000000e+01 1.2391196e+00 + 7.2400000e+01 1.2222986e+00 + 7.2800000e+01 9.2169909e-01 + 7.3200000e+01 8.4520985e-01 + 7.3600000e+01 9.9521028e-01 + 7.4000000e+01 1.0652060e+00 + 7.4400000e+01 1.2352055e+00 + 7.4800000e+01 1.4052165e+00 + 7.5200000e+01 1.6352178e+00 + 7.5600000e+01 1.4252209e+00 + 7.6000000e+01 1.1252085e+00 + 7.6400000e+01 1.2052061e+00 + 7.6800000e+01 1.4450956e+00 + 7.7200000e+01 1.4832968e+00 + 7.7600000e+01 1.3514515e+00 + 7.8000000e+01 1.2761412e+00 + 7.8400000e+01 1.1452065e+00 + 7.8800000e+01 4.8523528e-01 + 7.9200000e+01 -1.1147457e+00 + 7.9600000e+01 -1.4947957e+00 + 8.0000000e+01 -1.9603171e+00 + 8.0400000e+01 -2.8132471e+00 + 8.0800000e+01 -2.9440878e+00 + 8.1200000e+01 -2.8255589e+00 + 8.1600000e+01 -2.7648047e+00 + 8.2000000e+01 -2.7348054e+00 + 8.2400000e+01 -2.6948003e+00 + 8.2800000e+01 -2.2720516e+00 + 8.3200000e+01 -1.7923192e+00 + 8.3600000e+01 -9.6694275e-01 + 8.4000000e+01 -4.1634297e-01 + 8.4400000e+01 6.0701963e-03 + 8.4800000e+01 6.3701479e-01 + 8.5200000e+01 8.7521045e-01 + 8.5600000e+01 9.5520902e-01 + 8.6000000e+01 7.0522638e-01 + 8.6400000e+01 -1.4743130e-02 + 8.6800000e+01 -6.1477866e-01 + 8.7200000e+01 -9.3477764e-01 + 8.7600000e+01 -1.0947634e+00 + 8.8000000e+01 -1.3124759e+00 + 8.8400000e+01 -1.2658174e+00 + 8.8800000e+01 -1.2035636e+00 + 8.9200000e+01 -1.1061649e+00 + 8.9600000e+01 -9.8476857e-01 + 9.0000000e+01 -7.9475100e-01 + 9.0400000e+01 -5.2476069e-01 + 9.0800000e+01 1.6524003e-01 + 9.1200000e+01 6.5521402e-01 + 9.1600000e+01 9.7128607e-01 + 9.2000000e+01 1.2631232e+00 + 9.2400000e+01 1.7886751e+00 + 9.2800000e+01 2.1428267e+00 + 9.3200000e+01 2.5152250e+00 + 9.3600000e+01 2.5552431e+00 + 9.4000000e+01 2.1952394e+00 + 9.4400000e+01 2.0352296e+00 + 9.4800000e+01 1.4851146e+00 + 9.5200000e+01 1.2252118e+00 + 9.5600000e+01 8.3521732e-01 + 9.6000000e+01 2.9523227e-01 + 9.6400000e+01 -5.4763895e-02 + 9.6800000e+01 -1.0845622e-01 + 9.7200000e+01 -6.0628530e-01 + 9.7600000e+01 -1.3476357e+00 + 9.8000000e+01 -1.5987092e+00 + 9.8400000e+01 -1.7000836e+00 + 9.8800000e+01 -1.9603057e+00 + 9.9200000e+01 -2.4018223e+00 + 9.9600000e+01 -2.5429753e+00 + 1.0000000e+02 -2.2048109e+00 + 1.0040000e+02 -2.1548282e+00 + 1.0080000e+02 -2.0048016e+00 + 1.0120000e+02 -1.4047889e+00 + 1.0160000e+02 -8.0477681e-01 + 1.0200000e+02 -3.1475450e-01 + 1.0240000e+02 3.2523794e-01 + 1.0280000e+02 1.1052030e+00 + 1.0320000e+02 1.3652089e+00 + 1.0360000e+02 1.1052030e+00 + 1.0400000e+02 9.9521028e-01 + 1.0440000e+02 9.4520705e-01 + 1.0480000e+02 9.7520560e-01 + 1.0520000e+02 8.5521107e-01 + 1.0560000e+02 6.6522413e-01 + 1.0600000e+02 5.2521870e-01 + 1.0640000e+02 -2.3473589e-01 + 1.0680000e+02 -4.3469191e-01 + 1.0720000e+02 -6.6473335e-01 + 1.0760000e+02 -1.3747848e+00 + 1.0800000e+02 -1.6187143e+00 + 1.0840000e+02 -1.7945428e+00 + 1.0880000e+02 -2.1551116e+00 + 1.0920000e+02 -2.7270564e+00 + 1.0960000e+02 -2.8060308e+00 + 1.1000000e+02 -2.5448116e+00 + 1.1040000e+02 -2.0948284e+00 + 1.1080000e+02 -7.9859668e-01 + 1.1120000e+02 7.2997214e-01 + 1.1160000e+02 2.4427980e+00 + 1.1200000e+02 3.7034101e+00 + 1.1240000e+02 4.3637374e+00 + 1.1280000e+02 4.6241884e+00 + 1.1320000e+02 4.6252225e+00 + 1.1360000e+02 4.4252510e+00 + 1.1400000e+02 4.1652541e+00 + 1.1440000e+02 3.3152351e+00 + 1.1480000e+02 1.9552607e+00 + 1.1520000e+02 4.9522020e-01 + 1.1560000e+02 -6.7482029e-01 + 1.1600000e+02 -1.7747980e+00 + 1.1640000e+02 -2.7548021e+00 + 1.1680000e+02 -3.4447943e+00 + 1.1720000e+02 -3.6647953e+00 + 1.1760000e+02 -3.5947959e+00 + 1.1800000e+02 -3.1648005e+00 + 1.1840000e+02 -2.8947979e+00 + 1.1880000e+02 -2.6248081e+00 + 1.1920000e+02 -2.1248293e+00 + 1.1960000e+02 -1.8448053e+00 + 1.2000000e+02 -1.5547953e+00 + 1.2040000e+02 -9.8476857e-01 + 1.2080000e+02 -5.2829806e-02 + 1.2120000e+02 7.7521835e-01 + 1.2160000e+02 1.5552472e+00 + 1.2200000e+02 2.4052508e+00 + 1.2240000e+02 3.0752394e+00 + 1.2280000e+02 3.1222235e+00 + 1.2320000e+02 2.6598680e+00 + 1.2360000e+02 1.7891187e+00 + 1.2400000e+02 9.4095428e-01 + 1.2440000e+02 1.5528760e-01 + 1.2480000e+02 -3.1475450e-01 + 1.2520000e+02 -4.8475520e-01 + 1.2560000e+02 -7.9566785e-01 + 1.2600000e+02 -9.0344185e-01 + 1.2640000e+02 -9.9474851e-01 + 1.2680000e+02 -1.6085434e+00 + 1.2720000e+02 -2.2718529e+00 + 1.2760000e+02 -2.3948131e+00 + 1.2800000e+02 -2.4248199e+00 + 1.2840000e+02 -2.0148084e+00 + 1.2880000e+02 -1.3447803e+00 + 1.2920000e+02 -9.1476220e-01 + 1.2960000e+02 -2.5454856e-01 + 1.3000000e+02 5.7523700e-01 + 1.3040000e+02 1.5752181e+00 + 1.3080000e+02 2.3552217e+00 + 1.3120000e+02 2.6002448e+00 + 1.3160000e+02 2.4629064e+00 + 1.3200000e+02 2.0976318e+00 + 1.3240000e+02 2.1449590e+00 + 1.3280000e+02 2.1852482e+00 + 1.3320000e+02 2.0852613e+00 + 1.3360000e+02 1.0352041e+00 + 1.3400000e+02 5.8522299e-01 + 1.3440000e+02 7.7445021e-02 + 1.3480000e+02 -6.9496102e-01 + 1.3520000e+02 -1.3092477e+00 + 1.3560000e+02 -1.8025444e+00 + 1.3600000e+02 -1.9248176e+00 + 1.3640000e+02 -1.7648020e+00 + 1.3680000e+02 -1.4547901e+00 + 1.3720000e+02 -1.0647683e+00 + 1.3760000e+02 -8.3477976e-01 + 1.3800000e+02 -6.7482029e-01 + 1.3840000e+02 -1.9476201e-01 + 1.3880000e+02 7.9521589e-01 + 1.3920000e+02 1.6952305e+00 + 1.3960000e+02 2.1052553e+00 + 1.4000000e+02 2.3967733e+00 + 1.4040000e+02 1.8918549e+00 + 1.4080000e+02 1.1609273e+00 + 1.4120000e+02 4.5242360e-01 + 1.4160000e+02 6.9833634e-03 + 1.4200000e+02 -1.8476750e-01 + 1.4240000e+02 -3.5477869e-01 + 1.4280000e+02 -1.0448398e+00 + 1.4320000e+02 -1.1347823e+00 + 1.4360000e+02 -1.6448075e+00 + 1.4400000e+02 -1.9748066e+00 + 1.4440000e+02 -1.6548003e+00 + 1.4480000e+02 -1.5047867e+00 + 1.4520000e+02 -1.4647939e+00 + 1.4560000e+02 -1.2412488e+00 + 1.4600000e+02 -9.7209211e-01 + 1.4640000e+02 -7.6558782e-01 + 1.4680000e+02 -5.6135425e-01 + 1.4720000e+02 -3.3452652e-02 + 1.4760000e+02 5.2521870e-01 + 1.4800000e+02 8.0521810e-01 + 1.4840000e+02 6.0523208e-01 + 1.4880000e+02 2.8527011e-01 + 1.4920000e+02 -1.0472737e-01 + 1.4960000e+02 -7.4476596e-01 + 1.5000000e+02 -8.7477157e-01 + 1.5040000e+02 -6.6473335e-01 + 1.5080000e+02 -1.9997893e-01 + 1.5120000e+02 2.4117401e-01 + 1.5160000e+02 9.2962848e-01 + 1.5200000e+02 1.5015612e+00 + 1.5240000e+02 1.7214380e+00 + 1.5280000e+02 1.7694731e+00 + 1.5320000e+02 1.2352055e+00 + 1.5360000e+02 4.5523080e-01 + 1.5400000e+02 -2.4762901e-02 + 1.5440000e+02 -4.5474210e-01 + 1.5480000e+02 -6.4477674e-01 + 1.5520000e+02 -8.2473961e-01 + 1.5560000e+02 -1.0148021e+00 + 1.5600000e+02 -1.4847908e+00 + 1.5640000e+02 -1.7947988e+00 + 1.5680000e+02 -1.5747966e+00 + 1.5720000e+02 -1.2147552e+00 + 1.5760000e+02 -8.1475669e-01 + 1.5800000e+02 4.3522604e-01 + 1.5840000e+02 6.4523157e-01 + 1.5880000e+02 4.4525051e-01 + 1.5920000e+02 7.5235346e-02 + 1.5960000e+02 -4.7244088e-03 + 1.6000000e+02 1.5528760e-01 + 1.6040000e+02 6.6522413e-01 + 1.6080000e+02 1.5652257e+00 + 1.6120000e+02 2.5852349e+00 + 1.6160000e+02 3.4526989e+00 + 1.6200000e+02 3.1052255e+00 + 1.6240000e+02 1.8052361e+00 + 1.6280000e+02 7.0060741e-01 + 1.6320000e+02 -4.8464608e-01 + 1.6360000e+02 -1.4203023e+00 + 1.6400000e+02 -2.0310159e+00 + 1.6440000e+02 -2.6292014e+00 + 1.6480000e+02 -2.6748108e+00 + 1.6520000e+02 -2.5848192e+00 + 1.6560000e+02 -2.1248293e+00 + 1.6600000e+02 -2.0748097e+00 + 1.6640000e+02 -2.0448079e+00 + 1.6680000e+02 -1.8948217e+00 + 1.6720000e+02 -1.7147981e+00 + 1.6760000e+02 -1.4147852e+00 + 1.6800000e+02 -9.9477214e-01 + 1.6840000e+02 -5.4476856e-01 + 1.6880000e+02 -1.5477088e-01 + 1.6920000e+02 3.3522913e-01 + 1.6960000e+02 9.0520943e-01 + 1.7000000e+02 1.2852140e+00 + 1.7040000e+02 1.3652089e+00 + 1.7080000e+02 1.8452489e+00 + 1.7120000e+02 2.2652346e+00 + 1.7160000e+02 1.9952415e+00 + 1.7200000e+02 1.6652230e+00 + 1.7240000e+02 1.0652060e+00 + 1.7280000e+02 8.1520873e-01 + 1.7320000e+02 6.7523383e-01 + 1.7360000e+02 4.1525697e-01 + 1.7400000e+02 -4.7244088e-03 + 1.7440000e+02 -5.4476856e-01 + 1.7480000e+02 -9.5476348e-01 + 1.7520000e+02 -1.3847868e+00 + 1.7560000e+02 -1.4847908e+00 + 1.7600000e+02 -1.2747764e+00 + 1.7640000e+02 -7.9475100e-01 + 1.7680000e+02 -4.6472633e-01 + 1.7720000e+02 -3.1475450e-01 + 1.7760000e+02 -1.4474837e-01 + 1.7800000e+02 -1.1475546e-01 + 1.7840000e+02 2.2524948e-01 + 1.7880000e+02 4.0523191e-01 + 1.7920000e+02 8.5521107e-01 + 1.7960000e+02 6.2521104e-01 + 1.8000000e+02 3.8525105e-01 + 1.8040000e+02 1.1526421e-01 + 1.8080000e+02 -1.1475546e-01 + 1.8120000e+02 5.5294605e-02 + 1.8160000e+02 1.8528591e-01 + 1.8200000e+02 7.6522042e-01 + 1.8240000e+02 8.8520963e-01 + 1.8280000e+02 4.8523528e-01 + 1.8320000e+02 -1.5477088e-01 + 1.8360000e+02 -6.4477674e-01 + 1.8400000e+02 -9.2477073e-01 + 1.8440000e+02 -1.0747787e+00 + 1.8480000e+02 -1.4747839e+00 + 1.8520000e+02 -1.6448075e+00 + 1.8560000e+02 -1.7947988e+00 + 1.8600000e+02 -1.7648020e+00 + 1.8640000e+02 -1.6148015e+00 + 1.8680000e+02 -1.2647892e+00 + 1.8720000e+02 -9.0477633e-01 + 1.8760000e+02 -6.6473335e-01 + 1.8800000e+02 -2.9442276e-01 + 1.8840000e+02 4.5523080e-01 + 1.8880000e+02 5.7523700e-01 + 1.8920000e+02 6.8521428e-01 + 1.8960000e+02 8.1520873e-01 + 1.9000000e+02 6.4523157e-01 + 1.9040000e+02 5.3522797e-01 + 1.9080000e+02 6.7372999e-01 + 1.9120000e+02 4.8511900e-01 + 1.9160000e+02 2.6334469e-01 + 1.9200000e+02 3.6946435e-01 + 1.9240000e+02 9.3521009e-01 + 1.9280000e+02 1.3052078e+00 + 1.9320000e+02 1.6052176e+00 + 1.9360000e+02 1.7352319e+00 + 1.9400000e+02 1.2803034e+00 + 1.9440000e+02 6.4404411e-01 + 1.9480000e+02 -2.2625788e-01 + 1.9520000e+02 -1.0883723e+00 + 1.9560000e+02 -1.4294085e+00 + 1.9600000e+02 -1.1147457e+00 + 1.9640000e+02 -6.9517335e-01 + 1.9680000e+02 -5.0476284e-01 + 1.9720000e+02 -5.4763895e-02 + 1.9760000e+02 3.5245111e-02 + 1.9800000e+02 -4.4729989e-02 + 1.9840000e+02 1.7524280e-01 + 1.9880000e+02 6.8047891e-01 + 1.9920000e+02 1.0221801e+00 + 1.9960000e+02 1.1370354e+00 + 2.0000000e+02 1.3008668e+00 + 2.0040000e+02 1.1252085e+00 + 2.0080000e+02 9.2521073e-01 + 2.0120000e+02 6.5521402e-01 + 2.0160000e+02 1.5528760e-01 + 2.0200000e+02 -2.0472105e-01 + 2.0240000e+02 -9.4477155e-01 + 2.0280000e+02 -1.1047792e+00 + 2.0320000e+02 -1.5847970e+00 + 2.0360000e+02 -2.2348093e+00 + 2.0400000e+02 -1.8648234e+00 + 2.0440000e+02 -1.4447826e+00 + 2.0480000e+02 -1.1247599e+00 + 2.0520000e+02 -9.0477633e-01 + 2.0560000e+02 -6.6473335e-01 + 2.0600000e+02 -5.1476440e-01 + 2.0640000e+02 2.5290396e-02 + 2.0680000e+02 5.7523700e-01 + 2.0720000e+02 8.0521810e-01 + 2.0760000e+02 6.3523011e-01 + 2.0800000e+02 9.2521073e-01 + 2.0840000e+02 1.2852140e+00 + 2.0880000e+02 1.1252085e+00 + 2.0920000e+02 1.0152070e+00 + 2.0960000e+02 8.9521268e-01 + 2.1000000e+02 9.5520902e-01 + 2.1040000e+02 5.2625020e-01 + 2.1080000e+02 -4.0558436e-01 + 2.1120000e+02 -7.9554547e-01 + 2.1160000e+02 -1.3483129e+00 + 2.1200000e+02 -1.4724976e+00 + 2.1240000e+02 -1.0747787e+00 + 2.1280000e+02 -7.4476596e-01 + 2.1320000e+02 -4.5474210e-01 + 2.1360000e+02 -5.4763895e-02 + 2.1400000e+02 1.1526421e-01 + 2.1440000e+02 1.6524003e-01 + 2.1480000e+02 2.4525327e-01 + 2.1520000e+02 3.5245111e-02 + 2.1560000e+02 8.5279286e-02 + 2.1600000e+02 3.3522913e-01 + 2.1640000e+02 1.0552085e+00 + 2.1680000e+02 1.3247039e+00 + 2.1720000e+02 1.6210182e+00 + 2.1760000e+02 1.7746149e+00 + 2.1800000e+02 1.5100472e+00 + 2.1840000e+02 9.3530851e-01 + 2.1880000e+02 1.4089546e-01 + 2.1920000e+02 -5.7766157e-01 + 2.1960000e+02 -1.1075909e+00 + 2.2000000e+02 -1.2447682e+00 + 2.2040000e+02 -1.1947795e+00 + 2.2080000e+02 -1.0047909e+00 + 2.2120000e+02 -8.0477681e-01 + 2.2160000e+02 -5.7476668e-01 + 2.2200000e+02 -3.0441826e-01 + 2.2240000e+02 -8.4761480e-02 + 2.2280000e+02 -2.7445703e-01 + 2.2320000e+02 -4.6156142e-01 + 2.2360000e+02 -6.3951486e-01 + 2.2400000e+02 -8.1737675e-01 + 2.2440000e+02 -6.3311810e-01 + 2.2480000e+02 -3.8478451e-01 + 2.2520000e+02 2.5290396e-02 + 2.2560000e+02 4.2522620e-01 + 2.2600000e+02 1.2952115e+00 + 2.2640000e+02 9.4520705e-01 + 2.2680000e+02 3.4525036e-01 + 2.2720000e+02 -1.5477088e-01 + 2.2760000e+02 -4.9473720e-01 + 2.2800000e+02 -8.8474565e-01 + 2.2840000e+02 -1.0847386e+00 + 2.2880000e+02 -8.7477157e-01 + 2.2920000e+02 -5.9472936e-01 + 2.2960000e+02 6.5252085e-02 + 2.3000000e+02 9.8520790e-01 + 2.3040000e+02 1.3052078e+00 + 2.3080000e+02 1.4552244e+00 + 2.3120000e+02 1.5152159e+00 + 2.3160000e+02 1.3152140e+00 + 2.3200000e+02 8.4520985e-01 + 2.3240000e+02 4.2522620e-01 + 2.3280000e+02 9.5261217e-02 + 2.3320000e+02 -1.4474837e-01 + 2.3360000e+02 -1.9476201e-01 + 2.3400000e+02 -4.0472669e-01 + 2.3440000e+02 -6.8508583e-01 + 2.3480000e+02 -9.4477155e-01 + 2.3520000e+02 -1.5447935e+00 + 2.3560000e+02 -1.8948217e+00 + 2.3600000e+02 -2.0048016e+00 + 2.3640000e+02 -1.7147981e+00 + 2.3680000e+02 -1.2947905e+00 + 2.3720000e+02 -6.9517335e-01 + 2.3760000e+02 -1.5477088e-01 + 2.3800000e+02 5.6522010e-01 + 2.3840000e+02 1.0552085e+00 + 2.3880000e+02 1.2352055e+00 + 2.3920000e+02 1.0352041e+00 + 2.3960000e+02 5.5522101e-01 + 2.4000000e+02 5.2405032e-03 + 2.4040000e+02 -7.4718498e-02 + 2.4080000e+02 -9.4477155e-01 + 2.4120000e+02 -1.3247906e+00 + 2.4160000e+02 -1.4547901e+00 + 2.4200000e+02 -1.1147457e+00 + 2.4240000e+02 -2.0472105e-01 + 2.4280000e+02 5.7523700e-01 + 2.4320000e+02 3.5524183e-01 + 2.4360000e+02 4.7518844e-01 + 2.4400000e+02 7.7730293e-01 + 2.4440000e+02 7.1198266e-01 + 2.4480000e+02 8.1538264e-01 + 2.4520000e+02 5.4524217e-01 + 2.4560000e+02 4.3266932e-01 + 2.4600000e+02 4.2540947e-01 + 2.4640000e+02 5.5431191e-01 + 2.4680000e+02 8.2235894e-01 + 2.4720000e+02 1.3252143e+00 + 2.4760000e+02 1.7052337e+00 + 2.4800000e+02 1.8028225e+00 + 2.4840000e+02 1.4531956e+00 + 2.4880000e+02 1.1115161e+00 + 2.4920000e+02 8.6835761e-01 + 2.4960000e+02 6.1468957e-01 + 2.5000000e+02 6.1779771e-02 + 2.5040000e+02 -8.3016462e-01 + 2.5080000e+02 -1.2455103e+00 + 2.5120000e+02 -1.5225534e+00 + 2.5160000e+02 -1.4927142e+00 + 2.5200000e+02 -9.0477633e-01 + 2.5240000e+02 -2.4762901e-02 + 2.5280000e+02 3.8925479e-01 + 2.5320000e+02 3.2082554e-01 + 2.5360000e+02 4.5241185e-02 + 2.5400000e+02 -4.8566941e-01 + 2.5440000e+02 -1.1441127e+00 + 2.5480000e+02 -1.9322175e+00 + 2.5520000e+02 -2.3007536e+00 + 2.5560000e+02 -2.2502458e+00 + 2.5600000e+02 -1.7060243e+00 + 2.5640000e+02 -1.1047792e+00 + 2.5680000e+02 -5.0476284e-01 + 2.5720000e+02 -4.4729989e-02 + 2.5760000e+02 2.2524948e-01 + 2.5800000e+02 7.1381362e-01 + 2.5840000e+02 1.4248755e+00 + 2.5880000e+02 1.6204167e+00 + 2.5920000e+02 1.5244753e+00 + 2.5960000e+02 1.1280638e+00 + 2.6000000e+02 5.4251333e-01 + 2.6040000e+02 2.9587134e-02 + 2.6080000e+02 -8.1021964e-01 + 2.6120000e+02 -1.1833339e+00 + 2.6160000e+02 -1.3147782e+00 + 2.6200000e+02 -1.1347823e+00 + 2.6240000e+02 -8.8474565e-01 + 2.6280000e+02 -5.6473778e-01 + 2.6320000e+02 -2.9442276e-01 + 2.6360000e+02 -1.4474837e-01 + 2.6400000e+02 -2.3473589e-01 + 2.6440000e+02 -2.6423242e-01 + 2.6480000e+02 -1.0472737e-01 + 2.6520000e+02 1.9524680e-01 + 2.6560000e+02 5.8522299e-01 + 2.6600000e+02 1.2852140e+00 + 2.6640000e+02 1.2052061e+00 + 2.6680000e+02 8.5521107e-01 + 2.6720000e+02 4.5523080e-01 + 2.6760000e+02 3.8525105e-01 + 2.6800000e+02 -1.7473525e-01 + 2.6840000e+02 2.5290396e-02 + 2.6880000e+02 5.1524139e-01 + 2.6920000e+02 6.1522751e-01 + 2.6960000e+02 1.2252118e+00 + 2.7000000e+02 1.5252270e+00 + 2.7040000e+02 1.4452177e+00 + 2.7080000e+02 1.2352055e+00 + 2.7120000e+02 5.9521389e-01 + 2.7160000e+02 -5.4763895e-02 + 2.7200000e+02 -2.0472105e-01 + 2.7240000e+02 -9.1476220e-01 + 2.7280000e+02 -1.4947957e+00 + 2.7320000e+02 -1.7947988e+00 + 2.7360000e+02 -1.3647895e+00 + 2.7400000e+02 -7.9475100e-01 + 2.7440000e+02 -6.7482029e-01 + 2.7480000e+02 -5.7476668e-01 + 2.7520000e+02 -2.6423242e-01 + 2.7560000e+02 2.4525327e-01 + 2.7600000e+02 3.4525036e-01 + 2.7640000e+02 6.4523157e-01 + 2.7680000e+02 1.0452058e+00 + 2.7720000e+02 1.1252085e+00 + 2.7760000e+02 7.6522042e-01 + 2.7800000e+02 6.6522413e-01 + 2.7840000e+02 1.9824328e-01 + 2.7880000e+02 -4.2928032e-01 + 2.7920000e+02 -8.3646816e-01 + 2.7960000e+02 -1.2570844e+00 + 2.8000000e+02 -1.2535467e+00 + 2.8040000e+02 -1.1052512e+00 + 2.8080000e+02 -9.7477864e-01 + 2.8120000e+02 -4.2465692e-01 + 2.8160000e+02 -2.5454856e-01 + 2.8200000e+02 -5.4763895e-02 + 2.8240000e+02 1.4524959e-01 + 2.8280000e+02 4.4525051e-01 + 2.8320000e+02 7.9521589e-01 + 2.8360000e+02 3.1526218e-01 + 2.8400000e+02 1.6524003e-01 + 2.8440000e+02 -1.8476750e-01 + 2.8480000e+02 -8.7477157e-01 + 2.8520000e+02 -5.4476856e-01 + 2.8560000e+02 5.5294605e-02 + 2.8600000e+02 8.9521268e-01 + 2.8640000e+02 1.3152140e+00 + 2.8680000e+02 1.4152186e+00 + 2.8720000e+02 1.3310591e+00 + 2.8760000e+02 1.1136246e+00 + 2.8800000e+02 9.5146980e-01 + 2.8840000e+02 9.8802627e-01 + 2.8880000e+02 6.7523383e-01 + 2.8920000e+02 2.0523904e-01 + 2.8960000e+02 -5.0476284e-01 + 2.9000000e+02 -1.1648149e+00 + 2.9040000e+02 -1.7548043e+00 + 2.9080000e+02 -1.6648102e+00 + 2.9120000e+02 -1.1047792e+00 + 2.9160000e+02 -3.9471337e-01 + 2.9200000e+02 3.5524183e-01 + 2.9240000e+02 6.8521428e-01 + 2.9280000e+02 7.6522042e-01 + 2.9320000e+02 1.1752066e+00 + 2.9360000e+02 1.4751887e+00 + 2.9400000e+02 1.7752393e+00 + 2.9440000e+02 2.1352433e+00 + 2.9480000e+02 2.3652385e+00 + 2.9520000e+02 1.8952456e+00 + 2.9560000e+02 1.3952145e+00 + 2.9600000e+02 1.0015057e+00 + 2.9640000e+02 6.2533701e-01 + 2.9680000e+02 5.6605543e-01 + 2.9720000e+02 1.5450355e-01 + 2.9760000e+02 -2.6342344e-01 + 2.9800000e+02 -1.2110850e+00 + 2.9840000e+02 -2.0398392e+00 + 2.9880000e+02 -2.6052000e+00 + 2.9920000e+02 -3.0325310e+00 + 2.9960000e+02 -2.9847994e+00 + 3.0000000e+02 -2.7248009e+00 + 3.0040000e+02 -2.0048016e+00 + 3.0080000e+02 -1.5647922e+00 + 3.0120000e+02 -9.4760491e-02 + 3.0160000e+02 4.3522604e-01 + 3.0200000e+02 8.2521242e-01 + 3.0240000e+02 1.1652042e+00 + 3.0280000e+02 1.3752140e+00 + 3.0320000e+02 1.6252384e+00 + 3.0360000e+02 1.8552540e+00 + 3.0400000e+02 1.9252524e+00 + 3.0440000e+02 1.2852140e+00 + 3.0480000e+02 6.4523157e-01 + 3.0520000e+02 5.2405032e-03 + 3.0560000e+02 -2.3473589e-01 + 3.0600000e+02 -5.0476284e-01 + 3.0640000e+02 -8.8474565e-01 + 3.0680000e+02 -1.3031098e+00 + 3.0720000e+02 -1.3688228e+00 + 3.0760000e+02 -1.1285358e+00 + 3.0800000e+02 -6.5775300e-01 + 3.0840000e+02 -6.0608057e-01 + 3.0880000e+02 -4.5992133e-01 + 3.0920000e+02 -5.9472936e-01 + 3.0960000e+02 -4.9473720e-01 + 3.1000000e+02 -6.3474937e-01 + 3.1040000e+02 -5.0476284e-01 + 3.1080000e+02 -3.4474598e-01 + 3.1120000e+02 1.6524003e-01 + 3.1160000e+02 5.3522797e-01 + 3.1200000e+02 1.0452058e+00 + 3.1240000e+02 1.8252460e+00 + 3.1280000e+02 2.4852301e+00 + 3.1320000e+02 2.7952540e+00 + 3.1360000e+02 2.6552451e+00 + 3.1400000e+02 2.0452760e+00 + 3.1440000e+02 1.7947855e+00 + 3.1480000e+02 1.9100478e+00 + 3.1520000e+02 2.0127833e+00 + 3.1560000e+02 1.9276525e+00 + 3.1600000e+02 1.2852140e+00 + 3.1640000e+02 6.4225630e-01 + 3.1680000e+02 -1.6475931e-01 + 3.1720000e+02 -8.1475669e-01 + 3.1760000e+02 -1.4347912e+00 + 3.1800000e+02 -1.5047867e+00 + 3.1840000e+02 -2.1348217e+00 + 3.1880000e+02 -2.5548130e+00 + 3.1920000e+02 -3.1447977e+00 + 3.1960000e+02 -3.4747947e+00 + 3.2000000e+02 -3.5847949e+00 + 3.2040000e+02 -2.8548049e+00 + 3.2080000e+02 -2.3248195e+00 + 3.2120000e+02 -2.1448105e+00 + 3.2160000e+02 -1.9748066e+00 + 3.2200000e+02 -1.3547898e+00 + 3.2240000e+02 -1.0347839e+00 + 3.2280000e+02 -6.0265026e-01 + 3.2320000e+02 -4.0101711e-02 + 3.2360000e+02 1.7426492e-01 + 3.2400000e+02 1.2527508e-01 + 3.2440000e+02 3.8525105e-01 + 3.2480000e+02 9.8520790e-01 + 3.2520000e+02 1.7852593e+00 + 3.2560000e+02 2.1952394e+00 + 3.2600000e+02 2.4052508e+00 + 3.2640000e+02 2.9051848e+00 + 3.2680000e+02 2.4552328e+00 + 3.2720000e+02 2.2252354e+00 + 3.2760000e+02 1.7052337e+00 + 3.2800000e+02 1.2252118e+00 + 3.2840000e+02 8.8520963e-01 + 3.2880000e+02 7.7521835e-01 + 3.2920000e+02 5.3522797e-01 + 3.2960000e+02 2.4525327e-01 + 3.3000000e+02 -7.4292171e-02 + 3.3040000e+02 -2.9007667e-01 + 3.3080000e+02 -3.4371073e-01 + 3.3120000e+02 -2.0757170e-01 + 3.3160000e+02 -2.4598095e-01 + 3.3200000e+02 -4.0010611e-01 + 3.3240000e+02 -4.5582403e-01 + 3.3280000e+02 -1.3201189e-01 + 3.3320000e+02 5.5949350e-01 + 3.3360000e+02 1.5119430e+00 + 3.3400000e+02 2.1410583e+00 + 3.3440000e+02 2.1805682e+00 + 3.3480000e+02 2.2452477e+00 + 3.3520000e+02 1.8252460e+00 + 3.3560000e+02 1.1452065e+00 + 3.3600000e+02 6.8521428e-01 + 3.3640000e+02 5.7523700e-01 + 3.3680000e+02 5.3522797e-01 + 3.3720000e+02 4.5523080e-01 + 3.3760000e+02 4.5238831e-02 + 3.3800000e+02 1.5246936e-02 + 3.3840000e+02 -8.3477976e-01 + 3.3880000e+02 -1.5447935e+00 + 3.3920000e+02 -1.7947988e+00 + 3.3960000e+02 -1.8948217e+00 + 3.4000000e+02 -2.0848027e+00 + 3.4040000e+02 -2.0448079e+00 + 3.4080000e+02 -2.1248293e+00 + 3.4120000e+02 -2.2948152e+00 + 3.4160000e+02 -2.6048055e+00 + 3.4200000e+02 -2.6448138e+00 + 3.4240000e+02 -2.8947979e+00 + 3.4280000e+02 -2.5448116e+00 + 3.4320000e+02 -1.6847997e+00 + 3.4360000e+02 -7.5472166e-01 + 3.4400000e+02 -1.4474837e-01 + 3.4440000e+02 2.7523679e-01 + 3.4480000e+02 3.9522339e-01 + 3.4520000e+02 4.4525051e-01 + 3.4560000e+02 2.7523679e-01 + 3.4600000e+02 1.2527508e-01 + 3.4640000e+02 6.9521537e-01 + 3.4680000e+02 1.5252270e+00 + 3.4720000e+02 2.6852358e+00 + 3.4760000e+02 4.0152299e+00 + 3.4800000e+02 4.5363162e+00 + 3.4840000e+02 4.9752261e+00 + 3.4880000e+02 4.3552439e+00 + 3.4920000e+02 3.0952454e+00 + 3.4960000e+02 2.2452477e+00 + 3.5000000e+02 1.3252143e+00 + 3.5040000e+02 4.4525051e-01 + 3.5080000e+02 -6.3474937e-01 + 3.5120000e+02 -1.5647922e+00 + 3.5160000e+02 -2.2948152e+00 + 3.5200000e+02 -2.6928462e+00 + 3.5240000e+02 -2.5576786e+00 + 3.5280000e+02 -2.0629051e+00 + 3.5320000e+02 -1.8909076e+00 + 3.5360000e+02 -1.9648251e+00 + 3.5400000e+02 -1.9348222e+00 + 3.5440000e+02 -1.5147914e+00 + 3.5480000e+02 -1.0947634e+00 + 3.5520000e+02 -2.4762901e-02 + 3.5560000e+02 1.3652089e+00 + 3.5600000e+02 2.1452684e+00 + 3.5640000e+02 3.1652366e+00 + 3.5680000e+02 3.2052279e+00 + 3.5720000e+02 2.3352398e+00 + 3.5760000e+02 1.5152159e+00 + 3.5800000e+02 1.0252095e+00 + 3.5840000e+02 4.5523080e-01 + 3.5880000e+02 9.5261217e-02 + 3.5920000e+02 -2.3473589e-01 + 3.5960000e+02 -8.3477976e-01 + 3.6000000e+02 -1.4947957e+00 + 3.6040000e+02 -2.0748097e+00 + 3.6080000e+02 -2.5148181e+00 + 3.6120000e+02 -2.6748108e+00 + 3.6160000e+02 -2.9347994e+00 + 3.6200000e+02 -3.1447977e+00 + 3.6240000e+02 -3.3347951e+00 + 3.6280000e+02 -3.2247993e+00 + 3.6320000e+02 -2.8848034e+00 + 3.6360000e+02 -2.4348150e+00 + 3.6400000e+02 -1.8948217e+00 + 3.6440000e+02 -1.5747966e+00 + 3.6480000e+02 -1.4947957e+00 + 3.6520000e+02 -8.4476676e-01 + 3.6560000e+02 6.3523011e-01 + 3.6600000e+02 2.2792524e+00 + 3.6640000e+02 3.6623639e+00 + 3.6680000e+02 4.8053086e+00 + 3.6720000e+02 5.3600735e+00 + 3.6760000e+02 5.4601111e+00 + 3.6800000e+02 4.6852391e+00 + 3.6840000e+02 3.2652388e+00 + 3.6880000e+02 2.6752410e+00 + 3.6920000e+02 1.8552540e+00 + 3.6960000e+02 1.1880794e+00 + 3.7000000e+02 8.3763521e-01 + 3.7040000e+02 2.5304551e-01 + 3.7080000e+02 -9.5758516e-02 + 3.7120000e+02 -4.8594008e-01 + 3.7160000e+02 -7.5610768e-01 + 3.7200000e+02 -1.1272492e+00 + 3.7240000e+02 -1.2094186e+00 + 3.7280000e+02 -1.5647922e+00 + 3.7320000e+02 -1.7648020e+00 + 3.7360000e+02 -1.6648102e+00 + 3.7400000e+02 -1.3647895e+00 + 3.7440000e+02 -1.1347823e+00 + 3.7480000e+02 -8.8474565e-01 + 3.7520000e+02 -5.8477550e-01 + 3.7560000e+02 -2.7445703e-01 + 3.7600000e+02 1.8528591e-01 + 3.7640000e+02 -2.0472105e-01 + 3.7680000e+02 -7.4476596e-01 + 3.7720000e+02 -1.0247805e+00 + 3.7760000e+02 -1.0647683e+00 + 3.7800000e+02 -9.9477214e-01 + 3.7840000e+02 -6.7482029e-01 + 3.7880000e+02 -2.2707351e-01 + 3.7920000e+02 -1.8168506e-01 + 3.7960000e+02 -2.0422772e-01 + 3.8000000e+02 8.4416087e-02 + 3.8040000e+02 9.5261217e-02 + 3.8080000e+02 -1.9476201e-01 + 3.8120000e+02 -2.9442276e-01 + 3.8160000e+02 -3.2665396e-01 + 3.8200000e+02 -6.8424515e-01 + 3.8240000e+02 -1.0051827e+00 + 3.8280000e+02 -1.1482368e+00 + 3.8320000e+02 -1.4847908e+00 + 3.8360000e+02 -1.4447826e+00 + 3.8400000e+02 -1.0647683e+00 + 3.8440000e+02 -1.1847532e+00 + 3.8480000e+02 -1.3547898e+00 + 3.8520000e+02 -1.4247897e+00 + 3.8560000e+02 -1.1447549e+00 + 3.8600000e+02 -8.6477524e-01 + 3.8640000e+02 -3.8624093e-01 + 3.8680000e+02 1.0943780e-01 + 3.8720000e+02 1.0679978e+00 + 3.8760000e+02 1.7435777e+00 + 3.8800000e+02 2.4361189e+00 + 3.8840000e+02 2.6852358e+00 + 3.8880000e+02 2.8452230e+00 + 3.8920000e+02 2.5852349e+00 + 3.8960000e+02 2.2452477e+00 + 3.9000000e+02 2.1152627e+00 + 3.9040000e+02 1.9752529e+00 + 3.9080000e+02 1.6952305e+00 + 3.9120000e+02 1.0952086e+00 + 3.9160000e+02 6.1522751e-01 + 3.9200000e+02 1.2527508e-01 + 3.9240000e+02 -2.4475234e-01 + 3.9280000e+02 -6.8508583e-01 + 3.9320000e+02 -9.3477764e-01 + 3.9360000e+02 -1.5282907e+00 + 3.9400000e+02 -2.4508078e+00 + 3.9440000e+02 -3.1447977e+00 + 3.9480000e+02 -3.2947948e+00 + 3.9520000e+02 -3.1348012e+00 + 3.9560000e+02 -2.2783257e+00 + 3.9600000e+02 -1.0977972e+00 + 3.9640000e+02 1.1304527e-01 + 3.9680000e+02 1.2439351e+00 + 3.9720000e+02 1.9422391e+00 + 3.9760000e+02 1.9288169e+00 + 3.9800000e+02 2.0552559e+00 + 3.9840000e+02 1.7952410e+00 + 3.9880000e+02 1.0652060e+00 + 3.9920000e+02 3.9522339e-01 + 3.9960000e+02 1.9524680e-01 + 4.0000000e+02 -4.4729989e-02 + 4.0040000e+02 -3.4474598e-01 + 4.0080000e+02 -7.1488715e-01 + 4.0120000e+02 -1.2647892e+00 + 4.0160000e+02 -1.5447935e+00 + 4.0200000e+02 -1.6148015e+00 + 4.0240000e+02 -1.6548003e+00 + 4.0280000e+02 -1.6847997e+00 + 4.0320000e+02 -1.5647922e+00 + 4.0360000e+02 -1.7147981e+00 + 4.0400000e+02 -2.1848241e+00 + 4.0440000e+02 -2.2748088e+00 + 4.0480000e+02 -1.6648102e+00 + 4.0520000e+02 -1.0448398e+00 + 4.0560000e+02 -2.4029689e-01 + 4.0600000e+02 5.9409176e-01 + 4.0640000e+02 1.9094173e+00 + 4.0680000e+02 3.0452487e+00 + 4.0720000e+02 4.1736775e+00 + 4.0760000e+02 4.8776793e+00 + 4.0800000e+02 5.2834787e+00 + 4.0840000e+02 4.8702468e+00 + 4.0880000e+02 4.0885831e+00 + 4.0920000e+02 2.8651975e+00 + 4.0960000e+02 1.9052362e+00 + 4.1000000e+02 8.4160314e-01 + 4.1040000e+02 -1.0268533e-01 + 4.1080000e+02 -7.7199599e-01 + 4.1120000e+02 -1.7231980e+00 + 4.1160000e+02 -2.4204297e+00 + 4.1200000e+02 -2.6269443e+00 + 4.1240000e+02 -2.9647979e+00 + 4.1280000e+02 -3.1048015e+00 + 4.1320000e+02 -3.0148000e+00 + 4.1360000e+02 -2.6548089e+00 + 4.1400000e+02 -2.4748059e+00 + 4.1440000e+02 -2.2648117e+00 + 4.1480000e+02 -1.7348109e+00 + 4.1520000e+02 -6.8508583e-01 + 4.1560000e+02 4.3522604e-01 + 4.1600000e+02 7.2521106e-01 + 4.1640000e+02 1.4499048e+00 + 4.1680000e+02 2.3820907e+00 + 4.1720000e+02 2.8851421e+00 + 4.1760000e+02 2.4452290e+00 + 4.1800000e+02 2.0652336e+00 + 4.1840000e+02 1.5152159e+00 + 4.1880000e+02 1.1189619e+00 + 4.1920000e+02 7.0999870e-01 + 4.1960000e+02 1.9475088e-01 + 4.2000000e+02 -4.0905958e-01 + 4.2040000e+02 -1.0046795e+00 + 4.2080000e+02 -1.5196809e+00 + 4.2120000e+02 -1.7289798e+00 + 4.2160000e+02 -1.6606340e+00 + 4.2200000e+02 -1.7112175e+00 + 4.2240000e+02 -1.5747966e+00 + 4.2280000e+02 -1.2347770e+00 + 4.2320000e+02 -1.1247599e+00 + 4.2360000e+02 -1.1847532e+00 + 4.2400000e+02 -8.9477262e-01 + 4.2440000e+02 -5.8477550e-01 + 4.2480000e+02 -2.6423242e-01 + 4.2520000e+02 -1.3474859e-01 + 4.2560000e+02 8.1520873e-01 + 4.2600000e+02 1.8152566e+00 + 4.2640000e+02 2.2052449e+00 + 4.2680000e+02 3.1852621e+00 + 4.2720000e+02 3.1452423e+00 + 4.2760000e+02 2.6552451e+00 + 4.2800000e+02 1.9852704e+00 + 4.2840000e+02 1.3752140e+00 + 4.2880000e+02 7.5520990e-01 + 4.2920000e+02 -5.8477550e-01 + 4.2960000e+02 -1.5619272e+00 + 4.3000000e+02 -2.0472678e+00 + 4.3040000e+02 -2.3360252e+00 + 4.3080000e+02 -2.5019399e+00 + 4.3120000e+02 -2.6145834e+00 + 4.3160000e+02 -2.7747521e+00 + 4.3200000e+02 -2.6514873e+00 + 4.3240000e+02 -2.3048075e+00 + 4.3280000e+02 -1.6619228e+00 + 4.3320000e+02 -9.3682765e-01 + 4.3360000e+02 -2.3382236e-01 + 4.3400000e+02 8.4671894e-01 + 4.3440000e+02 2.0050849e+00 + 4.3480000e+02 3.0027340e+00 + 4.3520000e+02 3.0640491e+00 + 4.3560000e+02 2.6591686e+00 + 4.3600000e+02 2.0999640e+00 + 4.3640000e+02 8.3667662e-01 + 4.3680000e+02 -6.9071295e-02 + 4.3720000e+02 -2.5454856e-01 + 4.3760000e+02 4.5238831e-02 + 4.3800000e+02 3.0523039e-01 + 4.3840000e+02 1.2252118e+00 + 4.3880000e+02 1.7052337e+00 + 4.3920000e+02 1.5652257e+00 + 4.3960000e+02 1.0945900e+00 + 4.4000000e+02 3.4285546e-01 + 4.4040000e+02 -4.3023885e-01 + 4.4080000e+02 -8.4104162e-01 + 4.4120000e+02 -1.0725046e+00 + 4.4160000e+02 -1.5221343e+00 + 4.4200000e+02 -1.9601705e+00 + 4.4240000e+02 -1.9512729e+00 + 4.4280000e+02 -1.8848165e+00 + 4.4320000e+02 -1.4426275e+00 + 4.4360000e+02 -8.5861724e-01 + 4.4400000e+02 -3.6848982e-01 + 4.4440000e+02 1.8086971e-01 + 4.4480000e+02 3.9672750e-01 + 4.4520000e+02 4.3190644e-01 + 4.4560000e+02 3.8744075e-01 + 4.4600000e+02 4.8079212e-01 + 4.4640000e+02 3.4325715e-01 + 4.4680000e+02 3.7523819e-01 + 4.4720000e+02 2.9523227e-01 + 4.4760000e+02 2.4525327e-01 + 4.4800000e+02 4.8523528e-01 + 4.4840000e+02 8.5547632e-01 + 4.4880000e+02 1.3176313e+00 + 4.4920000e+02 1.3207138e+00 + 4.4960000e+02 9.7803232e-01 + 4.5000000e+02 1.1526421e-01 + 4.5040000e+02 -6.4477674e-01 + 4.5080000e+02 -1.2947905e+00 + 4.5120000e+02 -1.3847868e+00 + 4.5160000e+02 -1.9548148e+00 + 4.5200000e+02 -2.2248275e+00 + 4.5240000e+02 -2.0618606e+00 + 4.5280000e+02 -1.7366453e+00 + 4.5320000e+02 -1.8983080e+00 + 4.5360000e+02 -1.8504049e+00 + 4.5400000e+02 -1.7548043e+00 + 4.5440000e+02 -1.7248101e+00 + 4.5480000e+02 -1.2264617e+00 + 4.5520000e+02 5.7878782e-02 + 4.5560000e+02 1.4552244e+00 + 4.5600000e+02 1.8352314e+00 + 4.5640000e+02 2.4852301e+00 + 4.5680000e+02 3.0952454e+00 + 4.5720000e+02 3.4852442e+00 + 4.5760000e+02 3.3552335e+00 + 4.5800000e+02 2.9552436e+00 + 4.5840000e+02 2.4752382e+00 + 4.5880000e+02 2.2652346e+00 + 4.5920000e+02 1.7052337e+00 + 4.5960000e+02 4.9522020e-01 + 4.6000000e+02 -6.3826985e-01 + 4.6040000e+02 -1.6148015e+00 + 4.6080000e+02 -3.0448006e+00 + 4.6120000e+02 -3.8847956e+00 + 4.6160000e+02 -4.0847966e+00 + 4.6200000e+02 -3.5551700e+00 + 4.6240000e+02 -2.4184751e+00 + 4.6280000e+02 -1.4354983e+00 + 4.6320000e+02 -7.7926490e-01 + 4.6360000e+02 -2.1476579e-01 + 4.6400000e+02 3.6522564e-01 + 4.6440000e+02 7.3522444e-01 + 4.6480000e+02 2.8527011e-01 + 4.6520000e+02 1.9940880e-01 + 4.6560000e+02 6.8019492e-02 + 4.6600000e+02 4.5278014e-02 + 4.6640000e+02 2.8821996e-01 + 4.6680000e+02 7.3522444e-01 + 4.6720000e+02 9.4451997e-01 + 4.6760000e+02 1.2966279e+00 + 4.6800000e+02 1.2664672e+00 + 4.6840000e+02 8.5603168e-01 + 4.6880000e+02 3.1526218e-01 + 4.6920000e+02 3.5245111e-02 + 4.6960000e+02 -8.4761480e-02 + 4.7000000e+02 -1.1475546e-01 + 4.7040000e+02 2.0523904e-01 + 4.7080000e+02 9.7520560e-01 + 4.7120000e+02 5.6522010e-01 + 4.7160000e+02 -1.9476201e-01 + 4.7200000e+02 -2.2476875e-01 + 4.7240000e+02 -9.1476220e-01 + 4.7280000e+02 -1.2747764e+00 + 4.7320000e+02 -1.3080077e+00 + 4.7360000e+02 -9.2423738e-01 + 4.7400000e+02 -3.8932659e-01 + 4.7440000e+02 4.2421406e-02 + 4.7480000e+02 1.4524959e-01 + 4.7520000e+02 3.1526218e-01 + 4.7560000e+02 3.0196078e-01 + 4.7600000e+02 3.0214079e-01 + 4.7640000e+02 4.8331217e-01 + 4.7680000e+02 4.6664895e-01 + 4.7720000e+02 5.4524217e-01 + 4.7760000e+02 5.1524139e-01 + 4.7800000e+02 8.2521242e-01 + 4.7840000e+02 1.1152072e+00 + 4.7880000e+02 1.6652230e+00 + 4.7920000e+02 1.9510404e+00 + 4.7960000e+02 1.7223490e+00 + 4.8000000e+02 1.2085758e+00 + 4.8040000e+02 4.5065351e-01 + 4.8080000e+02 -3.0784725e-01 + 4.8120000e+02 -7.4275888e-01 + 4.8160000e+02 -1.1092969e+00 + 4.8200000e+02 -1.2943343e+00 + 4.8240000e+02 -1.3135326e+00 + 4.8280000e+02 -1.4517547e+00 + 4.8320000e+02 -1.5415436e+00 + 4.8360000e+02 -1.5965963e+00 + 4.8400000e+02 -1.8335369e+00 + 4.8440000e+02 -2.0904471e+00 + 4.8480000e+02 -1.8582272e+00 + 4.8520000e+02 -1.6936161e+00 + 4.8560000e+02 -1.3776118e+00 + 4.8600000e+02 -1.3834487e+00 + 4.8640000e+02 -1.1372565e+00 + 4.8680000e+02 -6.4909836e-01 + 4.8720000e+02 -1.5477088e-01 + 4.8760000e+02 5.9492656e-01 + 4.8800000e+02 1.4751887e+00 + 4.8840000e+02 2.1652407e+00 + 4.8880000e+02 2.2652346e+00 + 4.8920000e+02 2.0852613e+00 + 4.8960000e+02 1.7852593e+00 + 4.9000000e+02 1.3452134e+00 + 4.9040000e+02 7.4521644e-01 + 4.9080000e+02 4.1525697e-01 + 4.9120000e+02 3.8525105e-01 + 4.9160000e+02 5.5522101e-01 + 4.9200000e+02 8.0521810e-01 + 4.9240000e+02 5.3522797e-01 + 4.9280000e+02 6.5252085e-02 + 4.9320000e+02 -5.1476440e-01 + 4.9360000e+02 -8.6477524e-01 + 4.9400000e+02 -1.1547561e+00 + 4.9440000e+02 -1.3247906e+00 + 4.9480000e+02 -1.4747839e+00 + 4.9520000e+02 -1.5047867e+00 + 4.9560000e+02 -8.5473734e-01 + 4.9600000e+02 -1.9476201e-01 + 4.9640000e+02 7.7521835e-01 + 4.9680000e+02 1.3652089e+00 + 4.9720000e+02 1.4951020e+00 + 4.9760000e+02 1.2252118e+00 + 4.9800000e+02 8.1520873e-01 + 4.9840000e+02 3.7523819e-01 + 4.9880000e+02 -9.4760491e-02 + 4.9920000e+02 -3.6470753e-01 + 4.9960000e+02 -6.7482029e-01 + 5.0000000e+02 -9.3477764e-01 + 5.0040000e+02 -1.1047792e+00 + 5.0080000e+02 -1.2747764e+00 + 5.0120000e+02 -1.1947795e+00 + 5.0160000e+02 -1.1648149e+00 + 5.0200000e+02 -1.2947905e+00 + 5.0240000e+02 -1.2647892e+00 + 5.0280000e+02 -1.1247599e+00 + 5.0320000e+02 -7.3476275e-01 + 5.0360000e+02 -4.8475520e-01 + 5.0400000e+02 -2.1476579e-01 + 5.0440000e+02 -5.0288501e-01 + 5.0480000e+02 -1.1213233e+00 + 5.0520000e+02 -1.5401713e+00 + 5.0560000e+02 -1.4488538e+00 + 5.0600000e+02 -1.1131730e+00 + 5.0640000e+02 -9.2477073e-01 + 5.0680000e+02 -7.9475100e-01 + 5.0720000e+02 -3.7473774e-01 + 5.0760000e+02 -4.7244088e-03 + 5.0800000e+02 3.5245111e-02 + 5.0840000e+02 6.1522751e-01 + 5.0880000e+02 1.3252143e+00 + 5.0920000e+02 1.9952415e+00 + 5.0960000e+02 2.3952336e+00 + 5.1000000e+02 3.1010649e+00 + 5.1040000e+02 3.3452370e+00 + 5.1080000e+02 2.5452246e+00 + 5.1120000e+02 1.8852660e+00 + 5.1160000e+02 1.1252085e+00 + 5.1200000e+02 2.5563590e-02 + 5.1240000e+02 -8.3178252e-01 + 5.1280000e+02 -9.7910210e-01 + 5.1320000e+02 -1.3447439e+00 + 5.1360000e+02 -1.6541114e+00 + 5.1400000e+02 -2.1112870e+00 + 5.1440000e+02 -1.9180792e+00 + 5.1480000e+02 -1.6977535e+00 + 5.1520000e+02 -1.4675892e+00 + 5.1560000e+02 -1.0018069e+00 + 5.1600000e+02 -2.9442276e-01 + 5.1640000e+02 7.4521644e-01 + 5.1680000e+02 1.9527221e+00 + 5.1720000e+02 2.7421840e+00 + 5.1760000e+02 2.7552374e+00 + 5.1800000e+02 2.4152247e+00 + 5.1840000e+02 1.9752529e+00 + 5.1880000e+02 1.2052061e+00 + 5.1920000e+02 3.5524183e-01 + 5.1960000e+02 -4.5474210e-01 + 5.2000000e+02 -8.9477262e-01 + 5.2040000e+02 -9.5476348e-01 + 5.2080000e+02 -9.9477214e-01 + 5.2120000e+02 -9.1476220e-01 + 5.2160000e+02 -1.0747787e+00 + 5.2200000e+02 -1.3347869e+00 + 5.2240000e+02 -1.3747848e+00 + 5.2280000e+02 -2.1648255e+00 + 5.2320000e+02 -2.3448126e+00 + 5.2360000e+02 -2.4873118e+00 + 5.2400000e+02 -2.5362599e+00 + 5.2440000e+02 -2.6649192e+00 + 5.2480000e+02 -2.2797857e+00 + 5.2520000e+02 -1.9448115e+00 + 5.2560000e+02 -1.2947905e+00 + 5.2600000e+02 -5.4476856e-01 + 5.2640000e+02 1.3523430e-01 + 5.2680000e+02 3.2523794e-01 + 5.2720000e+02 6.2516729e-01 + 5.2760000e+02 1.4059532e+00 + 5.2800000e+02 2.0796866e+00 + 5.2840000e+02 2.6300843e+00 + 5.2880000e+02 2.3087000e+00 + 5.2920000e+02 2.0952383e+00 + 5.2960000e+02 1.9552607e+00 + 5.3000000e+02 2.0652336e+00 + 5.3040000e+02 2.1852482e+00 + 5.3080000e+02 2.0552559e+00 + 5.3120000e+02 1.6952305e+00 + 5.3160000e+02 1.3452134e+00 + 5.3200000e+02 9.9521028e-01 + 5.3240000e+02 8.5059185e-01 + 5.3280000e+02 1.0273028e-01 + 5.3320000e+02 -6.2588718e-01 + 5.3360000e+02 -1.1974183e+00 + 5.3400000e+02 -1.7747980e+00 + 5.3440000e+02 -2.0748097e+00 + 5.3480000e+02 -2.1248293e+00 + 5.3520000e+02 -2.0548036e+00 + 5.3560000e+02 -2.1048156e+00 + 5.3600000e+02 -2.3048075e+00 + 5.3640000e+02 -2.2448108e+00 + 5.3680000e+02 -1.7348109e+00 + 5.3720000e+02 -9.9477214e-01 + 5.3760000e+02 -4.4729989e-02 + 5.3800000e+02 1.0052052e+00 + 5.3840000e+02 1.3352072e+00 + 5.3880000e+02 2.1152627e+00 + 5.3920000e+02 2.3152389e+00 + 5.3960000e+02 1.8452489e+00 + 5.4000000e+02 1.2452083e+00 + 5.4040000e+02 7.7521835e-01 + 5.4080000e+02 2.9736599e-01 + 5.4120000e+02 -4.0119396e-01 + 5.4160000e+02 -1.2116904e+00 + 5.4200000e+02 -1.7144592e+00 + 5.4240000e+02 -1.9750503e+00 + 5.4280000e+02 -1.9848160e+00 + 5.4320000e+02 -1.6448075e+00 + 5.4360000e+02 -1.3747848e+00 + 5.4400000e+02 -1.0247805e+00 + 5.4440000e+02 -9.9773347e-01 + 5.4480000e+02 -1.1993857e+00 + 5.4520000e+02 -9.8413111e-01 + 5.4560000e+02 -6.1377158e-01 + 5.4600000e+02 2.3523429e-01 + 5.4640000e+02 1.3152140e+00 + 5.4680000e+02 1.3265122e+00 + 5.4720000e+02 7.4521644e-01 + 5.4760000e+02 1.7524280e-01 + 5.4800000e+02 1.4524959e-01 + 5.4840000e+02 -5.9472936e-01 + 5.4880000e+02 -7.6476258e-01 + 5.4920000e+02 -1.1475546e-01 + 5.4960000e+02 4.0523191e-01 + 5.5000000e+02 7.6522042e-01 + 5.5040000e+02 1.5301215e+00 + 5.5080000e+02 1.9365576e+00 + 5.5120000e+02 2.1012094e+00 + 5.5160000e+02 1.9628578e+00 + 5.5200000e+02 1.9452617e+00 + 5.5240000e+02 2.3352398e+00 + 5.5280000e+02 2.9252381e+00 + 5.5320000e+02 3.0952454e+00 + 5.5360000e+02 2.4552328e+00 + 5.5400000e+02 1.9352293e+00 + 5.5440000e+02 8.1878587e-01 + 5.5480000e+02 -2.8721033e-01 + 5.5520000e+02 -1.3590796e+00 + 5.5560000e+02 -2.2781474e+00 + 5.5600000e+02 -3.1398342e+00 + 5.5640000e+02 -3.3952928e+00 + 5.5680000e+02 -3.4955265e+00 + 5.5720000e+02 -3.2545719e+00 + 5.5760000e+02 -2.8660342e+00 + 5.5800000e+02 -2.6431910e+00 + 5.5840000e+02 -2.6148177e+00 + 5.5880000e+02 -2.3948131e+00 + 5.5920000e+02 -1.7348109e+00 + 5.5960000e+02 -5.9472936e-01 + 5.6000000e+02 3.0523039e-01 + 5.6040000e+02 1.3952145e+00 + 5.6080000e+02 2.1652407e+00 + 5.6120000e+02 1.7452453e+00 + 5.6160000e+02 1.6852577e+00 + 5.6200000e+02 1.4052165e+00 + 5.6240000e+02 1.0652060e+00 + 5.6280000e+02 1.1852084e+00 + 5.6320000e+02 1.3452134e+00 + 5.6360000e+02 1.2452083e+00 + 5.6400000e+02 5.7523700e-01 + 5.6440000e+02 -1.0092852e-01 + 5.6480000e+02 -9.8567951e-01 + 5.6520000e+02 -1.5534319e+00 + 5.6560000e+02 -1.5063015e+00 + 5.6600000e+02 -1.4085324e+00 + 5.6640000e+02 -1.4138388e+00 + 5.6680000e+02 -1.2147552e+00 + 5.6720000e+02 -9.4477155e-01 + 5.6760000e+02 -8.3477976e-01 + 5.6800000e+02 -4.1476957e-01 + 5.6840000e+02 3.5245111e-02 + 5.6880000e+02 6.3523011e-01 + 5.6920000e+02 1.2852140e+00 + 5.6960000e+02 1.7352319e+00 + 5.7000000e+02 1.8752409e+00 + 5.7040000e+02 1.9877796e+00 + 5.7080000e+02 1.8819161e+00 + 5.7120000e+02 1.8998676e+00 + 5.7160000e+02 1.8058357e+00 + 5.7200000e+02 2.0552559e+00 + 5.7240000e+02 2.1652407e+00 + 5.7280000e+02 1.8290987e+00 + 5.7320000e+02 1.5410784e+00 + 5.7360000e+02 9.6241765e-01 + 5.7400000e+02 4.7946202e-01 + 5.7440000e+02 1.9415038e-01 + 5.7480000e+02 -5.3699211e-01 + 5.7520000e+02 -1.3637092e+00 + 5.7560000e+02 -1.9400459e+00 + 5.7600000e+02 -2.3635331e+00 + 5.7640000e+02 -2.5231994e+00 + 5.7680000e+02 -2.5915641e+00 + 5.7720000e+02 -2.6061899e+00 + 5.7760000e+02 -2.4732617e+00 + 5.7800000e+02 -2.4019921e+00 + 5.7840000e+02 -2.0310567e+00 + 5.7880000e+02 -1.6297878e+00 + 5.7920000e+02 -9.6477671e-01 + 5.7960000e+02 3.0523039e-01 + 5.8000000e+02 1.3952145e+00 + 5.8040000e+02 1.7752393e+00 + 5.8080000e+02 1.6252384e+00 + 5.8120000e+02 1.1852084e+00 + 5.8160000e+02 6.2521104e-01 + 5.8200000e+02 3.8525105e-01 + 5.8240000e+02 1.3523430e-01 + 5.8280000e+02 -1.6475931e-01 + 5.8320000e+02 -4.2465692e-01 + 5.8360000e+02 -8.7560555e-01 + 5.8400000e+02 -1.5149066e+00 + 5.8440000e+02 -1.8603502e+00 + 5.8480000e+02 -1.9002206e+00 + 5.8520000e+02 -1.4947957e+00 + 5.8560000e+02 -7.0478781e-01 + 5.8600000e+02 -7.4718498e-02 + 5.8640000e+02 5.8522299e-01 + 5.8680000e+02 6.7523383e-01 + 5.8720000e+02 8.1520873e-01 + 5.8760000e+02 1.1852084e+00 + 5.8800000e+02 1.4452177e+00 + 5.8840000e+02 1.5052174e+00 + 5.8880000e+02 1.6752348e+00 + 5.8920000e+02 2.0852613e+00 + 5.8960000e+02 1.9752529e+00 + 5.9000000e+02 1.5452187e+00 + 5.9040000e+02 1.1952086e+00 + 5.9080000e+02 8.9723834e-01 + 5.9120000e+02 2.6974994e-01 + 5.9160000e+02 -6.4116886e-03 + 5.9200000e+02 -5.5120964e-01 + 5.9240000e+02 -9.9575958e-01 + 5.9280000e+02 -1.4718827e+00 + 5.9320000e+02 -1.8985385e+00 + 5.9360000e+02 -1.9173884e+00 + 5.9400000e+02 -1.7175745e+00 + 5.9440000e+02 -1.2947905e+00 + 5.9480000e+02 -1.0148021e+00 + 5.9520000e+02 -6.1477866e-01 + 5.9560000e+02 -3.4474598e-01 + 5.9600000e+02 1.5246936e-02 + 5.9640000e+02 1.3523430e-01 + 5.9680000e+02 3.7523819e-01 + 5.9720000e+02 1.8528591e-01 + 5.9760000e+02 3.2523794e-01 + 5.9800000e+02 9.1520825e-01 + 5.9840000e+02 1.3352072e+00 + 5.9880000e+02 1.2473357e+00 + 5.9920000e+02 7.0065871e-01 + 5.9960000e+02 -2.6764034e-01 + 6.0000000e+02 -1.2810307e+00 + 6.0040000e+02 -2.1890075e+00 + 6.0080000e+02 -2.6226171e+00 + 6.0120000e+02 -2.9865691e+00 + 6.0160000e+02 -2.6435163e+00 + 6.0200000e+02 -2.0127601e+00 + 6.0240000e+02 -1.8218158e+00 + 6.0280000e+02 -1.2709608e+00 + 6.0320000e+02 4.1979889e-01 + 6.0360000e+02 1.1003906e+00 + 6.0400000e+02 1.6209320e+00 + 6.0440000e+02 2.1112870e+00 + 6.0480000e+02 2.0115609e+00 + 6.0520000e+02 1.9016586e+00 + 6.0560000e+02 1.8116837e+00 + 6.0600000e+02 1.7118949e+00 + 6.0640000e+02 2.0019646e+00 + 6.0680000e+02 2.2817854e+00 + 6.0720000e+02 2.3413210e+00 + 6.0760000e+02 2.0306039e+00 + 6.0800000e+02 1.2898393e+00 + 6.0840000e+02 5.1778132e-01 + 6.0880000e+02 -2.5792233e-01 + 6.0920000e+02 -7.8187686e-01 + 6.0960000e+02 -1.0443067e+00 + 6.1000000e+02 -1.1047960e+00 + 6.1040000e+02 -1.2248450e+00 + 6.1080000e+02 -8.1444485e-01 + 6.1120000e+02 -1.1382000e-01 + 6.1160000e+02 4.5683228e-01 + 6.1200000e+02 1.0175201e+00 + 6.1240000e+02 6.8829415e-01 + 6.1280000e+02 3.9160172e-02 + 6.1320000e+02 -4.1002202e-01 + 6.1360000e+02 -1.1793039e+00 + 6.1400000e+02 -1.7687787e+00 + 6.1440000e+02 -1.2583185e+00 + 6.1480000e+02 -1.5796625e-01 + 6.1520000e+02 4.1234685e-01 + 6.1560000e+02 3.2240040e-01 + 6.1600000e+02 3.0455463e-01 + 6.1640000e+02 1.3240805e-01 + 6.1680000e+02 -1.6103292e-01 + 6.1720000e+02 -4.3299771e-01 + 6.1760000e+02 -6.0593978e-01 + 6.1800000e+02 -9.1291194e-01 + 6.1840000e+02 -1.0785478e+00 + 6.1880000e+02 -1.1589772e+00 + 6.1920000e+02 -1.0996029e+00 + 6.1960000e+02 -9.2012097e-01 + 6.2000000e+02 -1.0604064e+00 + 6.2040000e+02 -8.9039074e-01 + 6.2080000e+02 -5.4018575e-01 + 6.2120000e+02 -4.2343350e-01 + 6.2160000e+02 -4.9720829e-01 + 6.2200000e+02 -7.8241278e-01 + 6.2240000e+02 -9.9872204e-01 + 6.2280000e+02 -8.0731595e-01 + 6.2320000e+02 -4.2705925e-01 + 6.2360000e+02 -9.7142995e-02 + 6.2400000e+02 2.9272730e-01 + 6.2440000e+02 3.6234244e-01 + 6.2480000e+02 3.9198680e-01 + 6.2520000e+02 4.8143751e-01 + 6.2560000e+02 5.4092592e-01 + 6.2600000e+02 7.8054482e-01 + 6.2640000e+02 6.6035570e-01 + 6.2680000e+02 7.1030244e-01 + 6.2720000e+02 1.0402846e+00 + 6.2760000e+02 1.6501798e+00 + 6.2800000e+02 2.5498550e+00 + 6.2840000e+02 2.9094023e+00 + 6.2880000e+02 2.6789023e+00 + 6.2920000e+02 1.9388608e+00 + 6.2960000e+02 1.2943618e+00 + 6.3000000e+02 6.0588579e-01 + 6.3040000e+02 2.5448931e-01 + 6.3080000e+02 -4.9204375e-02 + 6.3120000e+02 -2.8047557e-02 + 6.3160000e+02 2.0021096e-01 + 6.3200000e+02 4.6865624e-01 + 6.3240000e+02 3.1789275e-01 + 6.3280000e+02 6.4055575e-01 + 6.3320000e+02 2.5081944e-01 + 6.3360000e+02 -4.3332821e-01 + 6.3400000e+02 -9.2307382e-01 + 6.3440000e+02 -9.8262853e-01 + 6.3480000e+02 -7.4203926e-01 + 6.3520000e+02 -2.9115721e-01 + 6.3560000e+02 -4.1082254e-01 + 6.3600000e+02 -6.5040773e-01 + 6.3640000e+02 -5.6006629e-01 + 6.3680000e+02 -4.1962840e-01 + 6.3720000e+02 -8.6915375e-01 + 6.3760000e+02 -1.2985543e+00 + 6.3800000e+02 -1.2378747e+00 + 6.3840000e+02 -1.0683100e+00 + 6.3880000e+02 -6.7921455e-01 + 6.3920000e+02 -5.7619882e-01 + 6.3960000e+02 -7.7597005e-01 + 6.4000000e+02 -1.1078817e+00 + 6.4040000e+02 -1.6175122e+00 + 6.4080000e+02 -1.8158759e+00 + 6.4120000e+02 -1.6649143e+00 + 6.4160000e+02 -1.3863684e+00 + 6.4200000e+02 -9.0837071e-01 + 6.4240000e+02 -6.9839336e-01 + 6.4280000e+02 -3.5802596e-01 + 6.4320000e+02 -8.7939036e-02 + 6.4360000e+02 2.1198621e-01 + 6.4400000e+02 7.1169319e-01 + 6.4440000e+02 8.6136614e-01 + 6.4480000e+02 1.8442566e+00 + 6.4520000e+02 2.6544792e+00 + 6.4560000e+02 3.1694348e+00 + 6.4600000e+02 2.4188164e+00 + 6.4640000e+02 1.4481377e+00 + 6.4680000e+02 8.0748289e-01 + 6.4720000e+02 5.1938547e-01 + 6.4760000e+02 2.4667503e-01 + 6.4800000e+02 1.5333983e-01 + 6.4840000e+02 9.2465868e-02 + 6.4880000e+02 -1.7523567e-01 + 6.4920000e+02 -1.8298564e-01 + 6.4960000e+02 -2.2695129e-02 + 6.5000000e+02 3.0764852e-01 + 6.5040000e+02 4.3786232e-01 + 6.5080000e+02 5.2798354e-01 + 6.5120000e+02 5.5811949e-01 + 6.5160000e+02 4.9821515e-01 + 6.5200000e+02 5.7824013e-01 + 6.5240000e+02 9.7818525e-01 + 6.5280000e+02 1.6799322e+00 + 6.5320000e+02 2.5769014e+00 + 6.5360000e+02 2.7341651e+00 + 6.5400000e+02 2.4318341e+00 + 6.5440000e+02 1.5145263e+00 + 6.5480000e+02 8.7478189e-02 + 6.5520000e+02 -1.0428094e+00 + 6.5560000e+02 -1.5585985e+00 + 6.5600000e+02 -2.1523622e+00 + 6.5640000e+02 -2.3116404e+00 + 6.5680000e+02 -1.9560758e+00 + 6.5720000e+02 -1.7004286e+00 + 6.5760000e+02 -1.5996943e+00 + 6.5800000e+02 -1.5350310e+00 + 6.5840000e+02 -1.6717664e+00 + 6.5880000e+02 -1.6302775e+00 + 6.5920000e+02 -1.5402311e+00 + 6.5960000e+02 -1.5310181e+00 + 6.6000000e+02 -1.4660787e+00 + 6.6040000e+02 -1.2735008e+00 + 6.6080000e+02 -8.2634562e-01 + 6.6120000e+02 -2.6978841e-01 + 6.6160000e+02 4.9314640e-02 + 6.6200000e+02 6.2874677e-01 + 6.6240000e+02 1.4180121e+00 + 6.6280000e+02 2.2769491e+00 + 6.6320000e+02 2.3958115e+00 + 6.6360000e+02 2.0749988e+00 + 6.6400000e+02 1.6742527e+00 + 6.6440000e+02 1.3870811e+00 + 6.6480000e+02 1.1711098e+00 + 6.6520000e+02 7.2139683e-01 + 6.6560000e+02 4.0820169e-01 + 6.6600000e+02 2.5830820e-01 + 6.6640000e+02 5.0179004e-01 + 6.6680000e+02 3.3886165e-01 + 6.6720000e+02 3.9287547e-02 + 6.6760000e+02 -4.9180787e-01 + 6.6800000e+02 -6.2980755e-01 + 6.6840000e+02 -6.5006421e-01 + 6.6880000e+02 -4.9023485e-01 + 6.6920000e+02 -1.5040127e-01 + 6.6960000e+02 8.9477553e-02 + 6.7000000e+02 2.1926357e-01 + 6.7040000e+02 4.7922887e-01 + 6.7080000e+02 7.4934129e-01 + 6.7120000e+02 8.0963854e-01 + 6.7160000e+02 9.8996809e-01 + 6.7200000e+02 1.2803251e+00 + 6.7240000e+02 1.7707525e+00 + 6.7280000e+02 2.4011891e+00 + 6.7320000e+02 2.0740644e+00 + 6.7360000e+02 8.8226571e-01 + 6.7400000e+02 -1.6714137e-01 + 6.7440000e+02 -1.1166435e+00 + 6.7480000e+02 -1.7763324e+00 + 6.7520000e+02 -2.3260167e+00 + 6.7560000e+02 -2.6759042e+00 + 6.7600000e+02 -2.8957627e+00 + 6.7640000e+02 -3.0555585e+00 + 6.7680000e+02 -3.2353592e+00 + 6.7720000e+02 -3.0951363e+00 + 6.7760000e+02 -2.8448975e+00 + 6.7800000e+02 -2.7875234e+00 + 6.7840000e+02 -2.4432624e+00 + 6.7880000e+02 -1.8404359e+00 + 6.7920000e+02 -1.0447939e+00 + 6.7960000e+02 -3.8919740e-01 + 6.8000000e+02 2.0797740e-01 + 6.8040000e+02 6.1590161e-01 + 6.8080000e+02 9.9976550e-01 + 6.8120000e+02 1.4317416e+00 + 6.8160000e+02 2.1709750e+00 + 6.8200000e+02 2.6300745e+00 + 6.8240000e+02 2.9991958e+00 + 6.8280000e+02 3.6486456e+00 + 6.8320000e+02 4.2844768e+00 + 6.8360000e+02 4.4994112e+00 + 6.8400000e+02 3.9280149e+00 + 6.8440000e+02 2.7998347e+00 + 6.8480000e+02 1.4634698e+00 + 6.8520000e+02 1.3496395e-01 + 6.8560000e+02 -1.0153477e+00 + 6.8600000e+02 -1.7874454e+00 + 6.8640000e+02 -2.2679747e+00 + 6.8680000e+02 -2.3901246e+00 + 6.8720000e+02 -2.3910674e+00 + 6.8760000e+02 -2.0218155e+00 + 6.8800000e+02 -1.6526329e+00 + 6.8840000e+02 -1.0934692e+00 + 6.8880000e+02 -3.0403100e-01 + 6.8920000e+02 4.6345450e-03 + 6.8960000e+02 3.6358009e-01 + 6.9000000e+02 5.5255793e-01 + 6.9040000e+02 1.6018317e+00 + 6.9080000e+02 2.0715693e+00 + 6.9120000e+02 1.6216226e+00 + 6.9160000e+02 1.1319135e+00 + 6.9200000e+02 1.0725015e+00 + 6.9240000e+02 8.2331255e-01 + 6.9280000e+02 5.1433116e-01 + 6.9320000e+02 3.9545551e-01 + 6.9360000e+02 1.7663321e-01 + 6.9400000e+02 -7.2250284e-01 + 6.9440000e+02 -9.3144489e-01 + 6.9480000e+02 -1.6408029e+00 + 6.9520000e+02 -2.4037146e+00 + 6.9560000e+02 -3.1496063e+00 + 6.9600000e+02 -3.8932673e+00 + 6.9640000e+02 -3.9105215e+00 + 6.9680000e+02 -3.8146723e+00 + 6.9720000e+02 -3.6080789e+00 + 6.9760000e+02 -3.2522595e+00 + 6.9800000e+02 -2.8030323e+00 + 6.9840000e+02 -1.9498719e+00 + 6.9880000e+02 -1.3676954e+00 + 6.9920000e+02 -9.8997598e-01 + 6.9960000e+02 -1.9324845e-01 + 7.0000000e+02 4.2796366e-01 + 7.0040000e+02 7.3290711e-01 + 7.0080000e+02 8.2989648e-01 + 7.0120000e+02 1.2235839e+00 + 7.0160000e+02 1.1936286e+00 + 7.0200000e+02 1.4136016e+00 + 7.0240000e+02 1.8136746e+00 + 7.0280000e+02 1.6338829e+00 + 7.0320000e+02 1.6041100e+00 + 7.0360000e+02 1.9143297e+00 + 7.0400000e+02 2.4151121e+00 + 7.0440000e+02 2.8501946e+00 + 7.0480000e+02 3.0997897e+00 + 7.0520000e+02 2.6757900e+00 + 7.0560000e+02 1.4412696e+00 + 7.0600000e+02 8.4488962e-01 + 7.0640000e+02 9.3474108e-01 + 7.0680000e+02 5.1453480e-01 + 7.0720000e+02 -1.9583151e-01 + 7.0760000e+02 -4.8652591e-01 + 7.0800000e+02 -9.9749199e-01 + 7.0840000e+02 -1.3187340e+00 + 7.0880000e+02 -1.0000298e+00 + 7.0920000e+02 -6.8141823e-01 + 7.0960000e+02 -7.1237387e-01 + 7.1000000e+02 -6.7337031e-01 + 7.1040000e+02 -8.1401178e-01 + 7.1080000e+02 -1.1143719e+00 + 7.1120000e+02 -1.6445177e+00 + 7.1160000e+02 -2.0641809e+00 + 7.1200000e+02 -2.1032449e+00 + 7.1240000e+02 -1.9219245e+00 + 7.1280000e+02 -1.5399258e+00 + 7.1320000e+02 -1.0176301e+00 + 7.1360000e+02 -2.6488561e-01 + 7.1400000e+02 1.1662611e-01 + 7.1440000e+02 2.1834000e-01 + 7.1480000e+02 4.9550172e-02 + 7.1520000e+02 -1.1969992e-01 + 7.1560000e+02 -3.4950205e-01 + 7.1600000e+02 -9.6671843e-03 + 7.1640000e+02 4.4966856e-01 + 7.1680000e+02 6.1186256e-01 + 7.1720000e+02 6.5615337e-01 + 7.1760000e+02 8.2851957e-02 + 7.1800000e+02 -5.8707348e-01 + 7.1840000e+02 -6.9710401e-01 + 7.1880000e+02 -8.9829076e-01 + 7.1920000e+02 -1.7595216e+00 + 7.1960000e+02 -1.8205117e+00 + 7.2000000e+02 -1.3212763e+00 + 7.2040000e+02 -9.3363339e-01 + 7.2080000e+02 -7.3987166e-01 + 7.2120000e+02 -6.4768238e-01 + 7.2160000e+02 -4.7964596e-01 + 7.2200000e+02 -2.6514848e-01 + 7.2240000e+02 5.3002619e-01 + 7.2280000e+02 1.4408735e+00 + 7.2320000e+02 2.3219039e+00 + 7.2360000e+02 3.2828063e+00 + 7.2400000e+02 4.0833966e+00 + 7.2440000e+02 4.5436700e+00 + 7.2480000e+02 4.4137271e+00 + 7.2520000e+02 4.1837435e+00 + 7.2560000e+02 3.5636408e+00 + 7.2600000e+02 2.8532513e+00 + 7.2640000e+02 2.5527276e+00 + 7.2680000e+02 1.6018325e+00 + 7.2720000e+02 7.9068056e-01 + 7.2760000e+02 1.2354126e-01 + 7.2800000e+02 -8.9971842e-01 + 7.2840000e+02 -1.6073160e+00 + 7.2880000e+02 -2.1736723e+00 + 7.2920000e+02 -2.4382022e+00 + 7.2960000e+02 -2.4795614e+00 + 7.3000000e+02 -2.6815987e+00 + 7.3040000e+02 -2.8073878e+00 + 7.3080000e+02 -3.0255108e+00 + 7.3120000e+02 -2.9245312e+00 + 7.3160000e+02 -2.9271862e+00 + 7.3200000e+02 -2.3284815e+00 + 7.3240000e+02 -1.6203189e+00 + 7.3280000e+02 -1.0329838e+00 + 7.3320000e+02 -4.7735601e-01 + 7.3360000e+02 1.1226016e-01 + 7.3400000e+02 4.0842287e-01 + 7.3440000e+02 8.6149958e-01 + 7.3480000e+02 1.1036411e+00 + 7.3520000e+02 1.0038305e+00 + 7.3560000e+02 5.9124585e-01 + 7.3600000e+02 3.1486618e-01 + 7.3640000e+02 1.9268667e-01 + 7.3680000e+02 2.0170073e-01 + 7.3720000e+02 5.1859182e-02 + 7.3760000e+02 -1.6895318e-01 + 7.3800000e+02 -5.5995781e-01 + 7.3840000e+02 -6.9295714e-01 + 7.3880000e+02 -6.5194475e-01 + 7.3920000e+02 -4.8843073e-01 + 7.3960000e+02 -3.0941082e-01 + 7.4000000e+02 -8.3688905e-02 + 7.4040000e+02 9.6224117e-02 + 7.4080000e+02 4.3623387e-01 + 7.4120000e+02 3.3640283e-01 + 7.4160000e+02 2.7667975e-01 + 7.4200000e+02 7.7699970e-01 + 7.4240000e+02 1.1375043e+00 + 7.4280000e+02 1.7780176e+00 + 7.4320000e+02 2.0184773e+00 + 7.4360000e+02 1.8186247e+00 + 7.4400000e+02 1.6585571e+00 + 7.4440000e+02 1.2484854e+00 + 7.4480000e+02 8.5830517e-01 + 7.4520000e+02 4.0804694e-01 + 7.4560000e+02 3.7763434e-01 + 7.4600000e+02 3.2711652e-01 + 7.4640000e+02 8.1655068e-01 + 7.4680000e+02 1.2959833e+00 + 7.4720000e+02 1.6154424e+00 + 7.4760000e+02 1.9247055e+00 + 7.4800000e+02 2.3139264e+00 + 7.4840000e+02 1.7630646e+00 + 7.4880000e+02 1.0218889e+00 + 7.4920000e+02 3.1092387e-01 + 7.4960000e+02 -5.0974208e-01 + 7.5000000e+02 -1.5529731e+00 + 7.5040000e+02 -2.4808020e+00 + 7.5080000e+02 -3.3902470e+00 + 7.5120000e+02 -3.9532278e+00 + 7.5160000e+02 -4.3329533e+00 + 7.5200000e+02 -4.6424045e+00 + 7.5240000e+02 -4.3516023e+00 + 7.5280000e+02 -3.8406015e+00 + 7.5320000e+02 -2.9194663e+00 + 7.5360000e+02 -2.4184199e+00 + 7.5400000e+02 -1.4246446e+00 + 7.5440000e+02 -1.9072904e-01 + 7.5480000e+02 1.4548816e+00 + 7.5520000e+02 2.3461079e+00 + 7.5560000e+02 3.1673687e+00 + 7.5600000e+02 3.6082468e+00 + 7.5640000e+02 3.5086178e+00 + 7.5680000e+02 3.2085897e+00 + 7.5720000e+02 2.3582697e+00 + 7.5760000e+02 1.6013173e+00 + 7.5800000e+02 8.8423370e-01 + 7.5840000e+02 6.1144651e-01 + 7.5880000e+02 2.9865182e-01 + 7.5920000e+02 -4.2488573e-01 + 7.5960000e+02 -1.0535338e+00 + 7.6000000e+02 -1.5546561e+00 + 7.6040000e+02 -2.0921501e+00 + 7.6080000e+02 -2.1093861e+00 + 7.6120000e+02 -2.0186037e+00 + 7.6160000e+02 -1.7176664e+00 + 7.6200000e+02 -1.2211943e+00 + 7.6240000e+02 -5.3258066e-01 + 7.6280000e+02 9.2487771e-02 + 7.6320000e+02 7.8089954e-01 + 7.6360000e+02 9.8768499e-01 + 7.6400000e+02 1.0202518e+00 + 7.6440000e+02 1.0430936e+00 + 7.6480000e+02 1.5298176e+00 + 7.6520000e+02 1.9760895e+00 + 7.6560000e+02 1.9135897e+00 + 7.6600000e+02 2.0026763e+00 + 7.6640000e+02 1.8017330e+00 + 7.6680000e+02 1.2307391e+00 + 7.6720000e+02 2.3980317e-01 + 7.6760000e+02 -4.0124101e-01 + 7.6800000e+02 -3.5981998e-01 + 7.6840000e+02 -3.6236124e-01 + 7.6880000e+02 -3.5107396e-01 + 7.6920000e+02 -4.3053154e-01 + 7.6960000e+02 -7.6345641e-01 + 7.7000000e+02 -1.2770516e+00 + 7.7040000e+02 -1.7474634e+00 + 7.7080000e+02 -2.0459250e+00 + 7.7120000e+02 -2.0347065e+00 + 7.7160000e+02 -1.8239507e+00 + 7.7200000e+02 -1.5131344e+00 + 7.7240000e+02 -1.3223637e+00 + 7.7280000e+02 -1.0459106e+00 + 7.7320000e+02 -9.3222367e-01 + 7.7360000e+02 -6.2979518e-01 + 7.7400000e+02 -1.0380822e-01 + 7.7440000e+02 6.8229831e-01 + 7.7480000e+02 1.5632932e+00 + 7.7520000e+02 1.8340969e+00 + 7.7560000e+02 1.1146737e+00 + 7.7600000e+02 9.9516747e-01 + 7.7640000e+02 6.3562194e-01 + 7.7680000e+02 4.1610338e-01 + 7.7720000e+02 6.5637488e-01 + 7.7760000e+02 1.0764605e+00 + 7.7800000e+02 1.2832886e+00 + 7.7840000e+02 1.5265499e+00 + 7.7880000e+02 1.4622826e+00 + 7.7920000e+02 5.1844804e-01 + 7.7960000e+02 -6.4442969e-01 + 7.8000000e+02 -2.1048022e+00 + 7.8040000e+02 -2.9550827e+00 + 7.8080000e+02 -2.8754942e+00 + 7.8120000e+02 -1.9859139e+00 + 7.8160000e+02 -1.1265156e+00 + 7.8200000e+02 -8.6739605e-01 + 7.8240000e+02 1.0160083e-01 + 7.8280000e+02 5.6052199e-01 + 7.8320000e+02 9.2952351e-01 + 7.8360000e+02 6.7866965e-01 + 7.8400000e+02 4.1794458e-01 + 7.8440000e+02 4.7732953e-01 + 7.8480000e+02 4.2670037e-01 + 7.8520000e+02 2.0616295e-01 + 7.8560000e+02 -4.4328903e-02 + 7.8600000e+02 -2.5461977e-01 + 7.8640000e+02 1.4793101e-02 + 7.8680000e+02 6.9511957e-01 + 7.8720000e+02 1.3101866e+00 + 7.8760000e+02 1.7760797e+00 + 7.8800000e+02 1.7269398e+00 + 7.8840000e+02 1.2652677e+00 + 7.8880000e+02 1.0243797e+00 + 7.8920000e+02 5.4455806e-01 + 7.8960000e+02 -8.4595021e-02 + 7.9000000e+02 -7.2935050e-01 + 7.9040000e+02 -1.1635296e+00 + 7.9080000e+02 -1.8936503e+00 + 7.9120000e+02 -2.7032594e+00 + 7.9160000e+02 -3.0248103e+00 + 7.9200000e+02 -2.8751976e+00 + 7.9240000e+02 -2.6037845e+00 + 7.9280000e+02 -1.9639172e+00 + 7.9320000e+02 -9.5399087e-01 + 7.9360000e+02 -5.4537437e-02 + 7.9400000e+02 6.4697387e-01 + 7.9440000e+02 1.4596996e+00 + 7.9480000e+02 2.0534424e+00 + 7.9520000e+02 2.8012622e+00 + 7.9560000e+02 2.9779239e+00 + 7.9600000e+02 3.0945289e+00 + 7.9640000e+02 2.9328242e+00 + 7.9680000e+02 2.6537035e+00 + 7.9720000e+02 2.1801269e+00 + 7.9760000e+02 1.8345116e+00 + 7.9800000e+02 1.7449407e+00 + 7.9840000e+02 1.2217335e+00 + 7.9880000e+02 1.8538031e-01 + 7.9920000e+02 -6.8628533e-01 + 7.9960000e+02 -1.3456553e+00 + 8.0000000e+02 -1.9695518e+00 + 8.0040000e+02 -2.3967835e+00 + 8.0080000e+02 -2.4141373e+00 + 8.0120000e+02 -2.0743067e+00 + 8.0160000e+02 -1.8948010e+00 + 8.0200000e+02 -1.6255207e+00 + 8.0240000e+02 -1.4164820e+00 + 8.0280000e+02 -1.1374738e+00 + 8.0320000e+02 -1.0985609e+00 + 8.0360000e+02 -7.5975762e-01 + 8.0400000e+02 7.4905670e-01 + 8.0440000e+02 1.2781293e+00 + 8.0480000e+02 1.7474047e+00 + 8.0520000e+02 1.9567687e+00 + 8.0560000e+02 1.6763942e+00 + 8.0600000e+02 1.3160808e+00 + 8.0640000e+02 1.0860680e+00 + 8.0680000e+02 9.7634665e-01 + 8.0720000e+02 7.4678368e-01 + 8.0760000e+02 2.8725306e-01 + 8.0800000e+02 -1.9224009e-01 + 8.0840000e+02 -5.0180427e-01 + 8.0880000e+02 -7.9161252e-01 + 8.0920000e+02 -1.1116020e+00 + 8.0960000e+02 -1.3715777e+00 + 8.1000000e+02 -1.4414164e+00 + 8.1040000e+02 -1.0712681e+00 + 8.1080000e+02 -1.1911848e+00 + 8.1120000e+02 -1.5212676e+00 + 8.1160000e+02 -1.5813144e+00 + 8.1200000e+02 -1.1414148e+00 + 8.1240000e+02 -5.3853006e-01 + 8.1280000e+02 4.1892093e-01 + 8.1320000e+02 1.1855348e+00 + 8.1360000e+02 1.9001620e+00 + 8.1400000e+02 2.1139242e+00 + 8.1440000e+02 2.1633502e+00 + 8.1480000e+02 1.7837747e+00 + 8.1520000e+02 1.0709960e+00 + 8.1560000e+02 4.7195142e-01 + 8.1600000e+02 1.2300436e-01 + 8.1640000e+02 1.3004724e-02 + 8.1680000e+02 -1.0650154e-01 + 8.1720000e+02 -2.7058982e-01 + 8.1760000e+02 -1.8008389e-01 + 8.1800000e+02 2.7679415e-01 + 8.1840000e+02 5.8706054e-01 + 8.1880000e+02 8.4421397e-01 + 8.1920000e+02 8.0886144e-01 + 8.1960000e+02 3.3042792e-01 + 8.2000000e+02 1.3228887e-02 + 8.2040000e+02 -4.0833886e-01 + 8.2080000e+02 -1.0763085e+00 + 8.2120000e+02 -1.9236843e+00 + 8.2160000e+02 -2.5193295e+00 + 8.2200000e+02 -2.2429667e+00 + 8.2240000e+02 -1.8851590e+00 + 8.2280000e+02 -1.4009545e+00 + 8.2320000e+02 -6.5692560e-01 + 8.2360000e+02 -1.3284594e-01 + 8.2400000e+02 1.9843696e-01 + 8.2440000e+02 3.2438837e-01 + 8.2480000e+02 8.7695988e-01 + 8.2520000e+02 1.7302748e+00 + 8.2560000e+02 1.8689535e+00 + 8.2600000e+02 1.8703652e+00 + 8.2640000e+02 1.7005261e+00 + 8.2680000e+02 1.2703274e+00 + 8.2720000e+02 8.7990022e-01 + 8.2760000e+02 5.8940402e-01 + 8.2800000e+02 -1.8109756e-01 + 8.2840000e+02 -6.2157737e-01 + 8.2880000e+02 -9.5182666e-01 + 8.2920000e+02 -1.1819181e+00 + 8.2960000e+02 -1.2818024e+00 + 8.3000000e+02 -1.3914133e+00 + 8.3040000e+02 -1.4709036e+00 + 8.3080000e+02 -1.2703218e+00 + 8.3120000e+02 -6.6968280e-01 + 8.3160000e+02 -1.0751089e-01 + 8.3200000e+02 2.9022162e-01 + 8.3240000e+02 2.7317994e-01 + 8.3280000e+02 5.7579186e-01 + 8.3320000e+02 7.3690313e-01 + 8.3360000e+02 9.1731131e-01 + 8.3400000e+02 8.3144217e-01 + 8.3440000e+02 7.9168398e-01 + 8.3480000e+02 8.8190181e-01 + 8.3520000e+02 1.0018510e+00 + 8.3560000e+02 1.1815323e+00 + 8.3600000e+02 1.1410371e+00 + 8.3640000e+02 1.0905229e+00 + 8.3680000e+02 9.2010624e-01 + 8.3720000e+02 8.5082840e-01 + 8.3760000e+02 5.9854681e-01 + 8.3800000e+02 4.6451040e-02 + 8.3840000e+02 -3.2593943e-01 + 8.3880000e+02 7.0763797e-02 + 8.3920000e+02 1.0083196e+00 + 8.3960000e+02 1.3505490e+00 + 8.4000000e+02 6.8038187e-01 + 8.4040000e+02 -5.4979803e-01 + 8.4080000e+02 -1.9703125e+00 + 8.4120000e+02 -3.0710396e+00 + 8.4160000e+02 -3.7519179e+00 + 8.4200000e+02 -3.9927904e+00 + 8.4240000e+02 -3.4953825e+00 + 8.4280000e+02 -2.4768302e+00 + 8.4320000e+02 -1.2331213e+00 + 8.4360000e+02 -1.8822054e-01 + 8.4400000e+02 5.7303089e-01 + 8.4440000e+02 1.1841472e+00 + 8.4480000e+02 1.4955238e+00 + 8.4520000e+02 1.5507794e+00 + 8.4560000e+02 1.6560527e+00 + 8.4600000e+02 1.4347175e+00 + 8.4640000e+02 1.2964649e+00 + 8.4680000e+02 1.0298715e+00 + 8.4720000e+02 9.3322509e-01 + 8.4760000e+02 4.8363698e-01 + 8.4800000e+02 4.1368338e-01 + 8.4840000e+02 -4.7654736e-01 + 8.4880000e+02 -1.7659873e+00 + 8.4920000e+02 -2.6174996e+00 + 8.4960000e+02 -2.7780938e+00 + 8.5000000e+02 -2.6387191e+00 + 8.5040000e+02 -1.8593277e+00 + 8.5080000e+02 -9.6498209e-01 + 8.5120000e+02 -1.2567440e-01 + 8.5160000e+02 5.5589824e-01 + 8.5200000e+02 5.1450338e-01 + 8.5240000e+02 5.8084100e-01 + 8.5280000e+02 9.6159362e-01 + 8.5320000e+02 1.3724156e+00 + 8.5360000e+02 1.9732736e+00 + 8.5400000e+02 2.5941003e+00 + 8.5440000e+02 2.9347584e+00 + 8.5480000e+02 2.8253503e+00 + 8.5520000e+02 2.3457932e+00 + 8.5560000e+02 1.7359386e+00 + 8.5600000e+02 4.2578188e-01 + 8.5640000e+02 -1.8466984e-01 + 8.5680000e+02 -3.7513605e-01 + 8.5720000e+02 -8.4572375e-01 + 8.5760000e+02 -6.6638504e-01 + 8.5800000e+02 -1.5723315e-01 + 8.5840000e+02 -9.8146022e-02 + 8.5880000e+02 -3.8911295e-01 + 8.5920000e+02 -6.6997492e-01 + 8.5960000e+02 -8.2055370e-01 + 8.6000000e+02 -6.9475990e-01 + 8.6040000e+02 -8.0806583e-01 + 8.6080000e+02 -1.2280343e+00 + 8.6120000e+02 -1.2572499e+00 + 8.6160000e+02 -1.1923386e+00 + 8.6200000e+02 -1.2623178e+00 + 8.6240000e+02 -9.6201342e-01 + 8.6280000e+02 -1.0714681e+00 + 8.6320000e+02 -1.1710518e+00 + 8.6360000e+02 -1.1006128e+00 + 8.6400000e+02 -1.0504357e+00 + 8.6440000e+02 -1.0802144e+00 + 8.6480000e+02 -1.1500274e+00 + 8.6520000e+02 -7.0988508e-01 + 8.6560000e+02 -3.9442897e-02 + 8.6600000e+02 7.8188354e-01 + 8.6640000e+02 1.5407133e+00 + 8.6680000e+02 1.3837842e+00 + 8.6720000e+02 6.6272962e-01 + 8.6760000e+02 -4.6930686e-01 + 8.6800000e+02 -1.2094743e+00 + 8.6840000e+02 -1.5895221e+00 + 8.6880000e+02 -1.6693551e+00 + 8.6920000e+02 -1.5290785e+00 + 8.6960000e+02 -1.2986313e+00 + 8.7000000e+02 -8.9813341e-01 + 8.7040000e+02 -3.3761702e-01 + 8.7080000e+02 9.2721982e-02 + 8.7120000e+02 3.2277298e-01 + 8.7160000e+02 1.2625466e+00 + 8.7200000e+02 1.7219958e+00 + 8.7240000e+02 1.7809716e+00 + 8.7280000e+02 2.4097702e+00 + 8.7320000e+02 2.5504445e+00 + 8.7360000e+02 1.8283121e+00 + 8.7400000e+02 8.4804787e-01 + 8.7440000e+02 9.7718943e-02 + 8.7480000e+02 -2.8354384e-01 + 8.7520000e+02 -8.1490894e-02 + 8.7560000e+02 1.7351604e-01 + 8.7600000e+02 1.4947662e-01 + 8.7640000e+02 2.9958004e-01 + 8.7680000e+02 5.0976431e-01 + 8.7720000e+02 5.7992908e-01 + 8.7760000e+02 4.5000539e-01 + 8.7800000e+02 3.4008335e-01 + 8.7840000e+02 -2.9749386e-02 + 8.7880000e+02 -3.7956381e-01 + 8.7920000e+02 -5.9937420e-01 + 8.7960000e+02 -7.5925176e-01 + 8.8000000e+02 -9.1936808e-01 + 8.8040000e+02 -1.0696880e+00 + 8.8080000e+02 -1.1603466e+00 + 8.8120000e+02 -1.0711356e+00 + 8.8160000e+02 -1.1319499e+00 + 8.8200000e+02 -1.3226555e+00 + 8.8240000e+02 -1.4732162e+00 + 8.8280000e+02 -1.3335767e+00 + 8.8320000e+02 -7.8368490e-01 + 8.8360000e+02 6.0398966e-03 + 8.8400000e+02 7.4583354e-01 + 8.8440000e+02 1.2055717e+00 + 8.8480000e+02 1.0553236e+00 + 8.8520000e+02 8.3563765e-01 + 8.8560000e+02 6.9620814e-01 + 8.8600000e+02 5.8712439e-01 + 8.8640000e+02 -1.7177448e-01 + 8.8680000e+02 -1.2007763e+00 + 8.8720000e+02 -1.6998540e+00 + 8.8760000e+02 -2.4890141e+00 + 8.8800000e+02 -2.3482806e+00 + 8.8840000e+02 -2.0277105e+00 + 8.8880000e+02 -1.8472978e+00 + 8.8920000e+02 -1.3971712e+00 + 8.8960000e+02 -9.4743482e-01 + 8.9000000e+02 -3.1810859e-01 + 8.9040000e+02 2.1085593e-01 + 8.9080000e+02 3.5961199e-01 + 8.9120000e+02 5.5835024e-01 + 8.9160000e+02 1.0071480e+00 + 8.9200000e+02 1.6560870e+00 + 8.9240000e+02 2.6653460e+00 + 8.9280000e+02 3.4248408e+00 + 8.9320000e+02 3.9047296e+00 + 8.9360000e+02 4.2148147e+00 + 8.9400000e+02 4.4851662e+00 + 8.9440000e+02 4.2157626e+00 + 8.9480000e+02 2.7528382e+00 + 8.9520000e+02 1.5485224e+00 + 8.9560000e+02 3.3224753e-01 + 8.9600000e+02 -8.8485514e-01 + 8.9640000e+02 -1.5035133e+00 + 8.9680000e+02 -1.9404514e+00 + 8.9720000e+02 -1.8175819e+00 + 8.9760000e+02 -1.4502488e+00 + 8.9800000e+02 -1.1604067e+00 + 8.9840000e+02 -9.1074827e-01 + 8.9880000e+02 -1.1213310e+00 + 8.9920000e+02 -1.4821934e+00 + 8.9960000e+02 -1.9432617e+00 + 9.0000000e+02 -2.2543200e+00 + 9.0040000e+02 -2.0051899e+00 + 9.0080000e+02 -1.2159469e+00 + 9.0120000e+02 -5.9627497e-01 + 9.0160000e+02 -1.2650237e-01 + 9.0200000e+02 9.4345123e-01 + 9.0240000e+02 1.2836155e+00 + 9.0280000e+02 1.2439215e+00 + 9.0320000e+02 9.0443171e-01 + 9.0360000e+02 3.7500627e-01 + 9.0400000e+02 -1.8444085e-01 + 9.0440000e+02 -5.7408398e-01 + 9.0480000e+02 -4.9388471e-01 + 9.0520000e+02 -1.9389116e-01 + 9.0560000e+02 3.9610959e-01 + 9.0600000e+02 5.6610168e-01 + 9.0640000e+02 1.4608974e-01 + 9.0680000e+02 -2.6334264e-01 + 9.0720000e+02 -6.9942365e-01 + 9.0760000e+02 -1.3325217e+00 + 9.0800000e+02 -1.5777383e+00 + 9.0840000e+02 -1.6416584e+00 + 9.0880000e+02 -1.5954516e+00 + 9.0920000e+02 -1.2939539e+00 + 9.0960000e+02 -6.6025702e-01 + 9.1000000e+02 -2.4201917e-01 + 9.1040000e+02 -1.1215758e-01 + 9.1080000e+02 2.5768460e-01 + 9.1120000e+02 7.9748740e-01 + 9.1160000e+02 9.8720880e-01 + 9.1200000e+02 1.2468500e+00 + 9.1240000e+02 1.6665452e+00 + 9.1280000e+02 2.4864325e+00 + 9.1320000e+02 2.3364439e+00 + 9.1360000e+02 1.8265008e+00 + 9.1400000e+02 1.4564358e+00 + 9.1440000e+02 1.2765079e+00 + 9.1480000e+02 1.1067259e+00 + 9.1520000e+02 1.0189125e+00 + 9.1560000e+02 1.0638811e+00 + 9.1600000e+02 9.8207230e-01 + 9.1640000e+02 7.1082679e-01 + 9.1680000e+02 3.5372816e-01 + 9.1720000e+02 -2.0879565e-01 + 9.1760000e+02 -1.0298943e+00 + 9.1800000e+02 -1.8480557e+00 + 9.1840000e+02 -2.4900669e+00 + 9.1880000e+02 -2.5403784e+00 + 9.1920000e+02 -2.3809395e+00 + 9.1960000e+02 -2.4817589e+00 + 9.2000000e+02 -2.4127839e+00 + 9.2040000e+02 -1.9937473e+00 + 9.2080000e+02 -1.4246569e+00 + 9.2120000e+02 -6.7570260e-01 + 9.2160000e+02 1.4914513e-01 + 9.2200000e+02 2.9825270e-01 + 9.2240000e+02 4.9371272e-01 + 9.2280000e+02 1.2103509e+00 + 9.2320000e+02 1.4914376e+00 + 9.2360000e+02 1.3812805e+00 + 9.2400000e+02 1.2109527e+00 + 9.2440000e+02 9.0073589e-01 + 9.2480000e+02 6.9086339e-01 + 9.2520000e+02 8.9142286e-01 + 9.2560000e+02 6.0227401e-01 + 9.2600000e+02 -8.6692658e-02 + 9.2640000e+02 -6.1855705e-01 + 9.2680000e+02 -9.0064114e-01 + 9.2720000e+02 -1.0335081e+00 + 9.2760000e+02 -8.6266336e-01 + 9.2800000e+02 4.1320628e-02 + 9.2840000e+02 9.2763750e-01 + 9.2880000e+02 1.4452209e+00 + 9.2920000e+02 1.8230823e+00 + 9.2960000e+02 2.0445772e+00 + 9.3000000e+02 2.0316739e+00 + 9.3040000e+02 1.8515063e+00 + 9.3080000e+02 1.3810477e+00 + 9.3120000e+02 1.0304161e+00 + 9.3160000e+02 9.9992062e-01 + 9.3200000e+02 1.2096934e+00 + 9.3240000e+02 1.4595409e+00 + 9.3280000e+02 1.5194521e+00 + 9.3320000e+02 1.3494291e+00 + 9.3360000e+02 7.9950042e-01 + 9.3400000e+02 1.7973211e-01 + 9.3440000e+02 -7.1029328e-01 + 9.3480000e+02 -1.2799976e+00 + 9.3520000e+02 -1.7897971e+00 + 9.3560000e+02 -2.1196336e+00 + 9.3600000e+02 -2.5294821e+00 + 9.3640000e+02 -2.7892339e+00 + 9.3680000e+02 -2.9989743e+00 + 9.3720000e+02 -2.9487941e+00 + 9.3760000e+02 -2.4888013e+00 + 9.3800000e+02 -1.8387487e+00 + 9.3840000e+02 -1.1097653e+00 + 9.3880000e+02 -3.4982187e-01 + 9.3920000e+02 -2.8946123e-01 + 9.3960000e+02 -4.2271140e-01 + 9.4000000e+02 -6.2101586e-01 + 9.4040000e+02 -9.7177211e-01 + 9.4080000e+02 -1.3724554e+00 + 9.4120000e+02 -1.4631313e+00 + 9.4160000e+02 -8.5382522e-01 + 9.4200000e+02 1.8380455e-01 + 9.4240000e+02 1.3337061e+00 + 9.4280000e+02 2.0820715e+00 + 9.4320000e+02 2.2973850e+00 + 9.4360000e+02 1.9439982e+00 + 9.4400000e+02 1.3833480e+00 + 9.4440000e+02 8.3364937e-01 + 9.4480000e+02 8.4084528e-02 + 9.4520000e+02 -5.3553427e-01 + 9.4560000e+02 -9.3524904e-01 + 9.4600000e+02 -7.8508242e-01 + 9.4640000e+02 -1.9496151e-01 + 9.4680000e+02 6.5542967e-01 + 9.4720000e+02 1.3159878e+00 + 9.4760000e+02 2.4268753e+00 + 9.4800000e+02 2.6578204e+00 + 9.4840000e+02 3.1256211e+00 + 9.4880000e+02 3.2900969e+00 + 9.4920000e+02 2.7209035e+00 + 9.4960000e+02 2.0815326e+00 + 9.5000000e+02 1.7319639e+00 + 9.5040000e+02 1.6821705e+00 + 9.5080000e+02 1.1320597e+00 + 9.5120000e+02 3.5617258e-01 + 9.5160000e+02 -4.5273150e-01 + 9.5200000e+02 -1.0156725e+00 + 9.5240000e+02 -1.3782921e+00 + 9.5280000e+02 -1.2178006e+00 + 9.5320000e+02 -9.1190813e-01 + 9.5360000e+02 -3.7209501e-01 + 9.5400000e+02 5.6769732e-01 + 9.5440000e+02 4.2758947e-01 + 9.5480000e+02 -7.9251839e-01 + 9.5520000e+02 -1.9383751e+00 + 9.5560000e+02 -2.8226155e+00 + 9.5600000e+02 -3.4019365e+00 + 9.5640000e+02 -3.4609903e+00 + 9.5680000e+02 -3.4999180e+00 + 9.5720000e+02 -3.0690122e+00 + 9.5760000e+02 -2.6682285e+00 + 9.5800000e+02 -2.6374333e+00 + 9.5840000e+02 -1.7732581e+00 + 9.5880000e+02 -5.9879335e-01 + 9.5920000e+02 1.1421242e-01 + 9.5960000e+02 -2.1570949e-01 + 9.6000000e+02 -3.5596930e-01 + 9.6040000e+02 -6.0401906e-01 + 9.6080000e+02 -1.0248105e+00 + 9.6120000e+02 -1.0591725e+00 + 9.6160000e+02 -8.1232608e-01 + 9.6200000e+02 -5.8067613e-01 + 9.6240000e+02 -4.1204674e-01 + 9.6280000e+02 6.6648245e-03 + 9.6320000e+02 4.9552809e-01 + 9.6360000e+02 1.0846250e+00 + 9.6400000e+02 1.7940409e+00 + 9.6440000e+02 2.3036375e+00 + 9.6480000e+02 2.5733839e+00 + 9.6520000e+02 2.7133642e+00 + 9.6560000e+02 2.6638520e+00 + 9.6600000e+02 2.2444489e+00 + 9.6640000e+02 2.3851979e+00 + 9.6680000e+02 2.6243780e+00 + 9.6720000e+02 2.6565283e+00 + 9.6760000e+02 2.4744836e+00 + 9.6800000e+02 2.2058656e+00 + 9.6840000e+02 1.7868026e+00 + 9.6880000e+02 1.3312865e+00 + 9.6920000e+02 1.0617492e+00 + 9.6960000e+02 8.9216993e-01 + 9.7000000e+02 7.1259080e-01 + 9.7040000e+02 6.2283588e-01 + 9.7080000e+02 -2.1709826e-01 + 9.7120000e+02 -1.0473026e+00 + 9.7160000e+02 -2.4525034e+00 + 9.7200000e+02 -3.4414451e+00 + 9.7240000e+02 -3.8583046e+00 + 9.7280000e+02 -3.3887269e+00 + 9.7320000e+02 -2.6297318e+00 + 9.7360000e+02 -1.6907018e+00 + 9.7400000e+02 -5.6834890e-01 + 9.7440000e+02 1.3874895e-01 + 9.7480000e+02 2.8665941e-01 + 9.7520000e+02 2.4733186e-01 + 9.7560000e+02 -1.2966192e-01 + 9.7600000e+02 -8.7210518e-01 + 9.7640000e+02 -1.4321191e+00 + 9.7680000e+02 -1.8103904e+00 + 9.7720000e+02 -1.9320380e+00 + 9.7760000e+02 -1.9992829e+00 + 9.7800000e+02 -1.7600828e+00 + 9.7840000e+02 -1.2228910e+00 + 9.7880000e+02 -7.4805026e-01 + 9.7920000e+02 -7.3378104e-01 + 9.7960000e+02 -1.0380604e+00 + 9.8000000e+02 -1.0904346e+00 + 9.8040000e+02 -1.4239565e+00 + 9.8080000e+02 -1.6282710e+00 + 9.8120000e+02 -1.6514178e+00 + 9.8160000e+02 -1.4475098e+00 + 9.8200000e+02 -1.3477988e+00 + 9.8240000e+02 -1.1182191e+00 + 9.8280000e+02 -6.8929741e-01 + 9.8320000e+02 2.2037001e-01 + 9.8360000e+02 1.0594515e+00 + 9.8400000e+02 1.9487468e+00 + 9.8440000e+02 2.8577692e+00 + 9.8480000e+02 3.7869002e+00 + 9.8520000e+02 4.0159384e+00 + 9.8560000e+02 4.1441381e+00 + 9.8600000e+02 4.3057380e+00 + 9.8640000e+02 4.2162439e+00 + 9.8680000e+02 4.1392706e+00 + 9.8720000e+02 3.7635512e+00 + 9.8760000e+02 2.9756799e+00 + 9.8800000e+02 2.1715427e+00 + 9.8840000e+02 1.6275132e+00 + 9.8880000e+02 1.0840767e+00 + 9.8920000e+02 3.0784619e-01 + 9.8960000e+02 -1.5158311e-01 + 9.9000000e+02 -7.0530601e-02 + 9.9040000e+02 -1.3337164e-01 + 9.9080000e+02 -6.9567655e-01 + 9.9120000e+02 -1.5655323e+00 + 9.9160000e+02 -2.5516640e+00 + 9.9200000e+02 -3.3916183e+00 + 9.9240000e+02 -4.0029578e+00 + 9.9280000e+02 -4.0868365e+00 + 9.9320000e+02 -4.1671786e+00 + 9.9360000e+02 -3.8229609e+00 + 9.9400000e+02 -3.0185553e+00 + 9.9440000e+02 -1.9442657e+00 + 9.9480000e+02 -8.4204937e-01 + 9.9520000e+02 1.6250382e-01 + 9.9560000e+02 1.2036491e+00 + 9.9600000e+02 2.2606354e+00 + 9.9640000e+02 2.9978985e+00 + 9.9680000e+02 2.6629158e+00 + 9.9720000e+02 2.2632858e+00 + 9.9760000e+02 1.4839200e+00 + 9.9800000e+02 9.7500833e-01 + 9.9840000e+02 8.9606320e-01 + 9.9880000e+02 6.1702631e-01 + 9.9920000e+02 1.9520183e-01 + 9.9960000e+02 -6.6598252e-01 + 1.0000000e+03 -1.7816599e+00 + 1.0004000e+03 -2.3318689e+00 + 1.0008000e+03 -2.5952295e+00 + 1.0012000e+03 -2.4694311e+00 + 1.0016000e+03 -2.3897788e+00 + 1.0020000e+03 -1.8503488e+00 + 1.0024000e+03 -1.3011225e+00 + 1.0028000e+03 -9.9212116e-01 + 1.0032000e+03 -8.0335667e-01 + 1.0036000e+03 4.5149881e-02 + 1.0040000e+03 1.4330221e-01 + 1.0044000e+03 6.1123536e-01 + 1.0048000e+03 1.2697751e+00 + 1.0052000e+03 1.6687062e+00 + 1.0056000e+03 2.4081431e+00 + 1.0060000e+03 2.7980729e+00 + 1.0064000e+03 3.3861712e+00 + 1.0068000e+03 3.6646241e+00 + 1.0072000e+03 3.6661791e+00 + 1.0076000e+03 3.6003252e+00 + 1.0080000e+03 3.1135894e+00 + 1.0084000e+03 2.0935381e+00 + 1.0088000e+03 1.8446262e+00 + 1.0092000e+03 1.4255478e+00 + 1.0096000e+03 1.0526064e+00 + 1.0100000e+03 7.2208924e-01 + 1.0104000e+03 5.1105407e-01 + 1.0108000e+03 -1.9298432e-01 + 1.0112000e+03 -7.3709283e-01 + 1.0116000e+03 -1.4829694e+00 + 1.0120000e+03 -2.4782426e+00 + 1.0124000e+03 -3.3206413e+00 + 1.0128000e+03 -4.1402065e+00 + 1.0132000e+03 -4.4881347e+00 + 1.0136000e+03 -4.0987006e+00 + 1.0140000e+03 -3.5292356e+00 + 1.0144000e+03 -2.5480057e+00 + 1.0148000e+03 -1.4099993e+00 + 1.0152000e+03 -3.6987536e-01 + 1.0156000e+03 4.4051479e-01 + 1.0160000e+03 1.1510439e+00 + 1.0164000e+03 1.7719514e+00 + 1.0168000e+03 1.9531166e+00 + 1.0172000e+03 1.5344208e+00 + 1.0176000e+03 1.1154819e+00 + 1.0180000e+03 1.3462515e+00 + 1.0184000e+03 1.2066909e+00 + 1.0188000e+03 1.1568711e+00 + 1.0192000e+03 1.1968075e+00 + 1.0196000e+03 1.0264482e+00 + 1.0200000e+03 5.9580287e-01 + 1.0204000e+03 1.9496515e-01 + 1.0208000e+03 -1.4585515e-01 + 1.0212000e+03 -6.3667493e-01 + 1.0216000e+03 -1.0274756e+00 + 1.0220000e+03 -1.0782112e+00 + 1.0224000e+03 -1.9389363e+00 + 1.0228000e+03 -2.1193899e+00 + 1.0232000e+03 -2.0397083e+00 + 1.0236000e+03 -1.7799455e+00 + 1.0240000e+03 -1.0200092e+00 + 1.0244000e+03 -6.3991419e-01 + 1.0248000e+03 1.5032019e-01 + 1.0252000e+03 7.6042838e-01 + 1.0256000e+03 1.2707376e+00 + 1.0260000e+03 1.4112770e+00 + 1.0264000e+03 2.2118339e+00 + 1.0268000e+03 2.1225726e+00 + 1.0272000e+03 1.7331811e+00 + 1.0276000e+03 9.0351645e-01 + 1.0280000e+03 4.2363216e-01 + 1.0284000e+03 1.0345814e-01 + 1.0288000e+03 -7.0725558e-02 + 1.0292000e+03 -2.3353576e-01 + 1.0296000e+03 1.8670642e-02 + 1.0300000e+03 2.4744063e-01 + 1.0304000e+03 5.6984793e-01 + 1.0308000e+03 8.9912513e-01 + 1.0312000e+03 1.2983865e+00 + 1.0316000e+03 8.8769539e-01 + 1.0320000e+03 7.7143452e-01 + 1.0324000e+03 3.7394938e-01 + 1.0328000e+03 -5.9488154e-02 + 1.0332000e+03 -5.9331069e-01 + 1.0336000e+03 -9.7807066e-01 + 1.0340000e+03 -1.3118780e+00 + 1.0344000e+03 -1.5910438e+00 + 1.0348000e+03 -1.7200918e+00 + 1.0352000e+03 -1.8090166e+00 + 1.0356000e+03 -1.8778875e+00 + 1.0360000e+03 -1.6967529e+00 + 1.0364000e+03 -1.4859160e+00 + 1.0368000e+03 -8.9543423e-01 + 1.0372000e+03 -1.8534834e-01 + 1.0376000e+03 1.3456874e-01 + 1.0380000e+03 1.9434645e-01 + 1.0384000e+03 9.5417615e-01 + 1.0388000e+03 1.6940687e+00 + 1.0392000e+03 1.9637729e+00 + 1.0396000e+03 2.0414301e+00 + 1.0400000e+03 2.2694952e+00 + 1.0404000e+03 1.9147711e+00 + 1.0408000e+03 1.8440684e+00 + 1.0412000e+03 1.5601689e+00 + 1.0416000e+03 4.8926271e-01 + 1.0420000e+03 -1.5157337e-01 + 1.0424000e+03 -1.2723666e+00 + 1.0428000e+03 -1.5130638e+00 + 1.0432000e+03 -1.7972779e+00 + 1.0436000e+03 -1.9788582e+00 + 1.0440000e+03 -2.0396745e+00 + 1.0444000e+03 -1.9267299e+00 + 1.0448000e+03 -1.9126618e+00 + 1.0452000e+03 -2.0921017e+00 + 1.0456000e+03 -1.9714153e+00 + 1.0460000e+03 -1.7607283e+00 + 1.0464000e+03 -1.5301382e+00 + 1.0468000e+03 -1.3298299e+00 + 1.0472000e+03 -1.0197747e+00 + 1.0476000e+03 -7.3002266e-01 + 1.0480000e+03 -2.1030412e-01 + 1.0484000e+03 1.9917947e-01 + 1.0488000e+03 7.2853035e-01 + 1.0492000e+03 1.0676923e+00 + 1.0496000e+03 2.0968412e+00 + 1.0500000e+03 2.4757655e+00 + 1.0504000e+03 3.1545510e+00 + 1.0508000e+03 3.3534084e+00 + 1.0512000e+03 3.3226287e+00 + 1.0516000e+03 2.4719646e+00 + 1.0520000e+03 1.3614285e+00 + 1.0524000e+03 1.1311612e+00 + 1.0528000e+03 -8.8820768e-02 + 1.0532000e+03 -9.7009779e-01 + 1.0536000e+03 -1.2600895e+00 + 1.0540000e+03 -1.5083909e+00 + 1.0544000e+03 -1.6884593e+00 + 1.0548000e+03 -1.6764406e+00 + 1.0552000e+03 -1.8355866e+00 + 1.0556000e+03 -1.9346265e+00 + 1.0560000e+03 -1.9938554e+00 + 1.0564000e+03 -1.6932967e+00 + 1.0568000e+03 -1.2228022e+00 + 1.0572000e+03 -7.8222504e-01 + 1.0576000e+03 -5.8182818e-01 + 1.0580000e+03 -3.4151278e-01 + 1.0584000e+03 -3.1140869e-01 + 1.0588000e+03 -4.0128436e-01 + 1.0592000e+03 -4.8138846e-01 + 1.0596000e+03 -3.3168513e-01 + 1.0600000e+03 8.7779379e-02 + 1.0604000e+03 5.2694877e-01 + 1.0608000e+03 2.3588184e-01 + 1.0612000e+03 3.2466313e-01 + 1.0616000e+03 7.0347776e-01 + 1.0620000e+03 1.0926220e+00 + 1.0624000e+03 1.0321235e+00 + 1.0628000e+03 5.5196930e-01 + 1.0632000e+03 1.2080280e-02 + 1.0636000e+03 -6.7774422e-01 + 1.0640000e+03 -1.0871614e+00 + 1.0644000e+03 -1.5167776e+00 + 1.0648000e+03 -1.8366721e+00 + 1.0652000e+03 -1.9766304e+00 + 1.0656000e+03 -1.7967283e+00 + 1.0660000e+03 -1.4169862e+00 + 1.0664000e+03 -1.1374156e+00 + 1.0668000e+03 -8.8801803e-01 + 1.0672000e+03 -6.5603682e-01 + 1.0676000e+03 -2.7406650e-01 + 1.0680000e+03 1.0947951e-01 + 1.0684000e+03 3.5565499e-01 + 1.0688000e+03 4.6278943e-01 + 1.0692000e+03 7.1714756e-01 + 1.0696000e+03 9.8408922e-01 + 1.0700000e+03 1.3752317e+00 + 1.0704000e+03 1.4157206e+00 + 1.0708000e+03 1.3067699e+00 + 1.0712000e+03 1.3229170e+00 + 1.0716000e+03 1.2454403e+00 + 1.0720000e+03 1.2401317e+00 + 1.0724000e+03 9.8328711e-01 + 1.0728000e+03 5.7392114e-01 + 1.0732000e+03 4.8440843e-01 + 1.0736000e+03 1.5719832e-01 + 1.0740000e+03 -9.6311312e-02 + 1.0744000e+03 -7.5103280e-01 + 1.0748000e+03 -1.0421094e+00 + 1.0752000e+03 -1.1660204e+00 + 1.0756000e+03 -1.1644355e+00 + 1.0760000e+03 -8.5454745e-01 + 1.0764000e+03 -4.5496361e-01 + 1.0768000e+03 -8.5468067e-02 + 1.0772000e+03 1.0138587e-01 + 1.0776000e+03 8.5754153e-02 + 1.0780000e+03 -2.2262181e-01 + 1.0784000e+03 7.0857995e-02 + 1.0788000e+03 2.2286830e-01 + 1.0792000e+03 2.5304701e-01 + 1.0796000e+03 1.6317173e-01 + 1.0800000e+03 7.3235625e-02 + 1.0804000e+03 -2.6588738e-02 + 1.0808000e+03 -5.3813657e-01 + 1.0812000e+03 -9.0144651e-01 + 1.0816000e+03 -1.3165374e+00 + 1.0820000e+03 -1.6658190e+00 + 1.0824000e+03 -1.6611244e+00 + 1.0828000e+03 -1.2549925e+00 + 1.0832000e+03 -5.5495409e-01 + 1.0836000e+03 6.4842685e-02 + 1.0840000e+03 6.1865531e-01 + 1.0844000e+03 8.4411131e-01 + 1.0848000e+03 4.5653162e-01 + 1.0852000e+03 -2.1383666e-01 + 1.0856000e+03 -4.5862857e-01 + 1.0860000e+03 -5.6743430e-01 + 1.0864000e+03 -3.7814516e-01 + 1.0868000e+03 -2.9741109e-01 + 1.0872000e+03 -1.2664155e-01 + 1.0876000e+03 1.9312189e-01 + 1.0880000e+03 3.3280570e-01 + 1.0884000e+03 5.0248725e-01 + 1.0888000e+03 5.9102445e-01 + 1.0892000e+03 6.1212911e-01 + 1.0896000e+03 8.8232558e-01 + 1.0900000e+03 1.1329632e+00 + 1.0904000e+03 1.1095365e+00 + 1.0908000e+03 1.1893885e+00 + 1.0912000e+03 5.2979191e-01 + 1.0916000e+03 -2.9493961e-02 + 1.0920000e+03 -4.9859332e-01 + 1.0924000e+03 -7.9777280e-01 + 1.0928000e+03 -7.0704094e-01 + 1.0932000e+03 -4.1629813e-01 + 1.0936000e+03 -1.8573071e-01 + 1.0940000e+03 -2.5508126e-01 + 1.0944000e+03 -8.5049662e-02 + 1.0948000e+03 2.7513290e-01 + 1.0952000e+03 1.5526435e-01 + 1.0956000e+03 -1.8457439e-01 + 1.0960000e+03 -3.1422126e-01 + 1.0964000e+03 -3.5090855e-01 + 1.0968000e+03 -4.7377183e-01 + 1.0972000e+03 -7.6485034e-01 + 1.0976000e+03 -8.9980807e-01 + 1.0980000e+03 -9.3287722e-01 + 1.0984000e+03 -1.3134383e+00 + 1.0988000e+03 -1.5145024e+00 + 1.0992000e+03 -1.2656032e+00 + 1.0996000e+03 -6.6638798e-01 + 1.1000000e+03 -2.4685864e-01 + 1.1004000e+03 3.4654741e-01 + 1.1008000e+03 3.0135051e-01 + 1.1012000e+03 4.0464578e-01 + 1.1016000e+03 4.3001106e-01 + 1.1020000e+03 2.4161358e-01 + 1.1024000e+03 3.9123791e-01 + 1.1028000e+03 4.7961612e-01 + 1.1032000e+03 2.5943816e-01 + 1.1036000e+03 1.4010232e-01 + 1.1040000e+03 -8.1267335e-02 + 1.1044000e+03 -9.8871673e-02 + 1.1048000e+03 -1.8843742e-01 + 1.1052000e+03 -2.2795185e-01 + 1.1056000e+03 -5.8745846e-01 + 1.1060000e+03 -6.9720865e-01 + 1.1064000e+03 -6.3640774e-01 + 1.1068000e+03 -8.3586365e-01 + 1.1072000e+03 -1.0254617e+00 + 1.1076000e+03 -1.2151880e+00 + 1.1080000e+03 -1.3554429e+00 + 1.1084000e+03 -1.2357420e+00 + 1.1088000e+03 -6.8633799e-01 + 1.1092000e+03 -1.6281858e-02 + 1.1096000e+03 1.5331420e-01 + 1.1100000e+03 2.3287371e-01 + 1.1104000e+03 5.7266747e-01 + 1.1108000e+03 8.4232153e-01 + 1.1112000e+03 1.4119258e+00 + 1.1116000e+03 1.6516248e+00 + 1.1120000e+03 1.9714631e+00 + 1.1124000e+03 2.0866598e+00 + 1.1128000e+03 1.5313754e+00 + 1.1132000e+03 4.6148328e-01 + 1.1136000e+03 -2.6760580e-01 + 1.1140000e+03 -3.1796310e-01 + 1.1144000e+03 -9.2776266e-01 + 1.1148000e+03 -1.0975162e+00 + 1.1152000e+03 -6.5708936e-01 + 1.1156000e+03 -3.3646800e-01 + 1.1160000e+03 -2.9540730e-01 + 1.1164000e+03 -5.3468313e-01 + 1.1168000e+03 -7.5349429e-01 + 1.1172000e+03 -6.0231437e-01 + 1.1176000e+03 -2.9083269e-01 + 1.1180000e+03 -1.1011301e-01 + 1.1184000e+03 -2.7953179e-01 + 1.1188000e+03 -5.5482681e-01 + 1.1192000e+03 -6.0050872e-01 + 1.1196000e+03 -4.3525119e-01 + 1.1200000e+03 -4.7444240e-01 + 1.1204000e+03 -3.4248875e-01 + 1.1208000e+03 -2.3355104e-01 + 1.1212000e+03 7.5497563e-02 + 1.1216000e+03 4.5909156e-01 + 1.1220000e+03 7.2417367e-01 + 1.1224000e+03 4.9725416e-01 + 1.1228000e+03 8.9202368e-02 + 1.1232000e+03 -1.6565027e-01 + 1.1236000e+03 -2.1877092e-01 + 1.1240000e+03 5.0894674e-02 + 1.1244000e+03 6.0062071e-01 + 1.1248000e+03 5.1023824e-01 + 1.1252000e+03 2.2982127e-01 + 1.1256000e+03 2.1066525e-03 + 1.1260000e+03 -4.5702926e-01 + 1.1264000e+03 -9.5886361e-01 + 1.1268000e+03 -1.2094625e+00 + 1.1272000e+03 -1.6402330e+00 + 1.1276000e+03 -1.7585796e+00 + 1.1280000e+03 -1.7377560e+00 + 1.1284000e+03 -1.2869752e+00 + 1.1288000e+03 -8.1633576e-01 + 1.1292000e+03 -4.4591051e-01 + 1.1296000e+03 2.4260275e-02 + 1.1300000e+03 7.4257031e-02 + 1.1304000e+03 3.5429910e-01 + 1.1308000e+03 1.0842459e+00 + 1.1312000e+03 1.4840530e+00 + 1.1316000e+03 1.8240129e+00 + 1.1320000e+03 2.0438130e+00 + 1.1324000e+03 2.3234827e+00 + 1.1328000e+03 2.4731280e+00 + 1.1332000e+03 2.2326138e+00 + 1.1336000e+03 1.6301086e+00 + 1.1340000e+03 1.0687693e+00 + 1.1344000e+03 4.5162095e-01 + 1.1348000e+03 -5.2260227e-01 + 1.1352000e+03 -1.0302422e+00 + 1.1356000e+03 -8.5050155e-01 + 1.1360000e+03 -8.1072976e-01 + 1.1364000e+03 -4.7426963e-01 + 1.1368000e+03 -3.4701847e-01 + 1.1372000e+03 -3.8193586e-01 + 1.1376000e+03 -5.7477122e-01 + 1.1380000e+03 -4.2872510e-01 + 1.1384000e+03 -4.8772607e-01 + 1.1388000e+03 -6.4658784e-01 + 1.1392000e+03 -1.0355943e+00 + 1.1396000e+03 -1.3482849e+00 + 1.1400000e+03 -1.5991170e+00 + 1.1404000e+03 -1.5541432e+00 + 1.1408000e+03 -1.4876947e+00 + 1.1412000e+03 -1.1042690e+00 + 1.1416000e+03 -8.1425890e-01 + 1.1420000e+03 -3.6441775e-01 + 1.1424000e+03 -1.8485273e-01 + 1.1428000e+03 1.0046681e+00 + 1.1432000e+03 1.2942633e+00 + 1.1436000e+03 1.2712746e+00 + 1.1440000e+03 9.6392434e-01 + 1.1444000e+03 7.2389686e-01 + 1.1448000e+03 5.3374380e-01 + 1.1452000e+03 6.8344081e-01 + 1.1456000e+03 4.0307657e-01 + 1.1460000e+03 -5.0730895e-01 + 1.1464000e+03 -8.0743693e-01 + 1.1468000e+03 -9.1770479e-01 + 1.1472000e+03 -1.2081097e+00 + 1.1476000e+03 -1.1485832e+00 + 1.1480000e+03 -1.0089471e+00 + 1.1484000e+03 -8.8921462e-01 + 1.1488000e+03 -1.0791597e+00 + 1.1492000e+03 -1.2678382e+00 + 1.1496000e+03 -1.3952184e+00 + 1.1500000e+03 -1.7979896e+00 + 1.1504000e+03 -1.9890372e+00 + 1.1508000e+03 -1.6685817e+00 + 1.1512000e+03 -1.1678922e+00 + 1.1516000e+03 -4.2687530e-01 + 1.1520000e+03 2.4389428e-01 + 1.1524000e+03 8.5030953e-01 + 1.1528000e+03 1.7559223e+00 + 1.1532000e+03 2.9464111e+00 + 1.1536000e+03 3.9656306e+00 + 1.1540000e+03 4.1890187e+00 + 1.1544000e+03 3.5995783e+00 + 1.1548000e+03 2.8797849e+00 + 1.1552000e+03 1.7497133e+00 + 1.1556000e+03 1.4592695e+00 + 1.1560000e+03 6.1858160e-01 + 1.1564000e+03 -3.3224722e-01 + 1.1568000e+03 -9.7337520e-01 + 1.1572000e+03 -1.4144559e+00 + 1.1576000e+03 -1.4954666e+00 + 1.1580000e+03 -1.5363390e+00 + 1.1584000e+03 -1.6771595e+00 + 1.1588000e+03 -1.8777632e+00 + 1.1592000e+03 -2.0980255e+00 + 1.1596000e+03 -2.3377166e+00 + 1.1600000e+03 -2.2369727e+00 + 1.1604000e+03 -1.6657341e+00 + 1.1608000e+03 -9.1420679e-01 + 1.1612000e+03 4.7110812e-02 + 1.1616000e+03 2.0834173e-01 + 1.1620000e+03 3.8943769e-01 + 1.1624000e+03 6.2032190e-01 + 1.1628000e+03 8.5108095e-01 + 1.1632000e+03 9.5171290e-01 + 1.1636000e+03 8.9212122e-01 + 1.1640000e+03 8.4180283e-01 + 1.1644000e+03 5.1700369e-01 + 1.1648000e+03 2.9111419e-01 + 1.1652000e+03 3.1299901e-01 + 1.1656000e+03 1.2437737e-01 + 1.1660000e+03 1.4873031e-01 + 1.1664000e+03 4.7695943e-01 + 1.1668000e+03 4.4566924e-01 + 1.1672000e+03 2.1450372e-01 + 1.1676000e+03 -2.8636785e-01 + 1.1680000e+03 -7.6735230e-01 + 1.1684000e+03 -1.3000263e+00 + 1.1688000e+03 -2.1487129e+00 + 1.1692000e+03 -2.6214710e+00 + 1.1696000e+03 -2.8664529e+00 + 1.1700000e+03 -2.7956376e+00 + 1.1704000e+03 -2.4043893e+00 + 1.1708000e+03 -2.0329465e+00 + 1.1712000e+03 -1.7114372e+00 + 1.1716000e+03 -1.2599524e+00 + 1.1720000e+03 -7.4859098e-01 + 1.1724000e+03 -6.5736861e-01 + 1.1728000e+03 -3.3796932e-02 + 1.1732000e+03 8.8058277e-01 + 1.1736000e+03 1.8781207e+00 + 1.1740000e+03 2.7637205e+00 + 1.1744000e+03 3.2247149e+00 + 1.1748000e+03 3.1712000e+00 + 1.1752000e+03 2.5830463e+00 + 1.1756000e+03 1.8621887e+00 + 1.1760000e+03 1.3413070e+00 + 1.1764000e+03 9.6065601e-01 + 1.1768000e+03 9.2007772e-01 + 1.1772000e+03 7.1994389e-01 + 1.1776000e+03 4.7993970e-01 + 1.1780000e+03 -1.3005610e-01 + 1.1784000e+03 -4.1118649e-02 + 1.1788000e+03 6.1210827e-02 + 1.1792000e+03 -1.0693144e-01 + 1.1796000e+03 -6.7082173e-01 + 1.1800000e+03 -1.1760627e+00 + 1.1804000e+03 -1.3827786e+00 + 1.1808000e+03 -1.4956319e+00 + 1.1812000e+03 -1.8245875e+00 + 1.1816000e+03 -1.8938183e+00 + 1.1820000e+03 -1.9233445e+00 + 1.1824000e+03 -1.6131800e+00 + 1.1828000e+03 -1.1433317e+00 + 1.1832000e+03 -8.5386650e-01 + 1.1836000e+03 -4.7478337e-01 + 1.1840000e+03 -3.6590692e-01 + 1.1844000e+03 4.7255704e-01 + 1.1848000e+03 7.3119758e-01 + 1.1852000e+03 8.7999590e-01 + 1.1856000e+03 6.6921417e-01 + 1.1860000e+03 3.1882357e-01 + 1.1864000e+03 2.8688689e-02 + 1.1868000e+03 -2.4130537e-01 + 1.1872000e+03 -5.8115512e-01 + 1.1876000e+03 -5.5069155e-01 + 1.1880000e+03 -7.9946235e-02 + 1.1884000e+03 1.9093969e-01 + 1.1888000e+03 2.2200231e-01 + 1.1892000e+03 7.3014310e-02 + 1.1896000e+03 -3.2615511e-01 + 1.1900000e+03 -4.4568870e-01 + 1.1904000e+03 -6.8577666e-01 + 1.1908000e+03 -9.3521051e-01 + 1.1912000e+03 -9.9500001e-01 + 1.1916000e+03 -5.4479863e-01 + 1.1920000e+03 -5.1465622e-01 + 1.1924000e+03 -9.1451751e-01 + 1.1928000e+03 -1.0744460e+00 + 1.1932000e+03 -1.2245281e+00 + 1.1936000e+03 -1.0847246e+00 + 1.1940000e+03 -7.6500877e-01 + 1.1944000e+03 -3.7522450e-01 + 1.1948000e+03 7.4623673e-02 + 1.1952000e+03 2.9467719e-01 + 1.1956000e+03 4.8484195e-01 + 1.1960000e+03 1.0550548e+00 + 1.1964000e+03 1.9453721e+00 + 1.1968000e+03 2.5156156e+00 + 1.1972000e+03 2.8556617e+00 + 1.1976000e+03 2.9558126e+00 + 1.1980000e+03 3.5959506e+00 + 1.1984000e+03 3.1762913e+00 + 1.1988000e+03 2.3160229e+00 + 1.1992000e+03 1.3120483e+00 + 1.1996000e+03 3.0322649e-01 + 1.2000000e+03 -2.6746301e-01 + 1.2004000e+03 -8.0357370e-01 + 1.2008000e+03 -6.4407956e-01 + 1.2012000e+03 -4.8469357e-01 + 1.2016000e+03 -8.0546843e-01 + 1.2020000e+03 -1.2559824e+00 + 1.2024000e+03 -2.0264153e+00 + 1.2028000e+03 -2.4850582e+00 + 1.2032000e+03 -2.3875696e+00 + 1.2036000e+03 -2.4806119e+00 + 1.2040000e+03 -2.2960696e+00 + 1.2044000e+03 -2.5546657e+00 + 1.2048000e+03 -2.4641067e+00 + 1.2052000e+03 -2.2935905e+00 + 1.2056000e+03 -1.9330821e+00 + 1.2060000e+03 -1.6125092e+00 + 1.2064000e+03 -1.1018588e+00 + 1.2068000e+03 1.2815789e-02 + 1.2072000e+03 1.5759062e+00 + 1.2076000e+03 3.0945253e+00 + 1.2080000e+03 4.1268720e+00 + 1.2084000e+03 4.5514170e+00 + 1.2088000e+03 3.8879652e+00 + 1.2092000e+03 3.0276825e+00 + 1.2096000e+03 2.4270609e+00 + 1.2100000e+03 1.3668597e+00 + 1.2104000e+03 -9.3096039e-02 + 1.2108000e+03 -1.1328695e+00 + 1.2112000e+03 -1.6023445e+00 + 1.2116000e+03 -1.8416056e+00 + 1.2120000e+03 -2.0707375e+00 + 1.2124000e+03 -2.4000940e+00 + 1.2128000e+03 -2.7797973e+00 + 1.2132000e+03 -2.8398017e+00 + 1.2136000e+03 -2.7501850e+00 + 1.2140000e+03 -2.1708812e+00 + 1.2144000e+03 -1.8614821e+00 + 1.2148000e+03 -6.9218149e-01 + 1.2152000e+03 -1.8182869e-01 + 1.2156000e+03 9.2345892e-01 + 1.2160000e+03 1.8526944e+00 + 1.2164000e+03 2.4783789e+00 + 1.2168000e+03 2.8491518e+00 + 1.2172000e+03 2.6780318e+00 + 1.2176000e+03 2.2381414e+00 + 1.2180000e+03 2.0383348e+00 + 1.2184000e+03 2.4984385e+00 + 1.2188000e+03 2.6984641e+00 + 1.2192000e+03 3.0082871e+00 + 1.2196000e+03 2.2080412e+00 + 1.2200000e+03 9.0757085e-01 + 1.2204000e+03 -4.7302334e-01 + 1.2208000e+03 -1.6637491e+00 + 1.2212000e+03 -2.6142726e+00 + 1.2216000e+03 -3.3446458e+00 + 1.2220000e+03 -3.6649986e+00 + 1.2224000e+03 -3.3253665e+00 + 1.2228000e+03 -2.9056974e+00 + 1.2232000e+03 -2.6258149e+00 + 1.2236000e+03 -2.5157289e+00 + 1.2240000e+03 -2.4353922e+00 + 1.2244000e+03 -2.0249318e+00 + 1.2248000e+03 -1.3443382e+00 + 1.2252000e+03 -4.3354826e-01 + 1.2256000e+03 7.6712501e-01 + 1.2260000e+03 1.7680791e+00 + 1.2264000e+03 2.0188708e+00 + 1.2268000e+03 2.2895837e+00 + 1.2272000e+03 2.4303942e+00 + 1.2276000e+03 2.4011200e+00 + 1.2280000e+03 2.2020876e+00 + 1.2284000e+03 1.7427100e+00 + 1.2288000e+03 1.1827373e+00 + 1.2292000e+03 5.4216429e-01 + 1.2296000e+03 9.1441778e-02 + 1.2300000e+03 -1.9577202e-02 + 1.2304000e+03 1.3948201e-01 + 1.2308000e+03 3.1866792e-01 + 1.2312000e+03 -5.2042363e-02 + 1.2316000e+03 -5.0251632e-01 + 1.2320000e+03 -1.3628526e+00 + 1.2324000e+03 -1.8229735e+00 + 1.2328000e+03 -1.7829205e+00 + 1.2332000e+03 -1.4327412e+00 + 1.2336000e+03 -9.6246677e-01 + 1.2340000e+03 -5.7226326e-01 + 1.2344000e+03 -4.3193543e-01 + 1.2348000e+03 -2.9144993e-01 + 1.2352000e+03 5.8814174e-02 + 1.2356000e+03 1.0152101e+00 + 1.2360000e+03 1.5192456e+00 + 1.2364000e+03 1.9947732e+00 + 1.2368000e+03 2.2550866e+00 + 1.2372000e+03 2.0788654e+00 + 1.2376000e+03 1.5436169e+00 + 1.2380000e+03 1.1474063e+00 + 1.2384000e+03 6.7635483e-01 + 1.2388000e+03 1.3522136e-01 + 1.2392000e+03 -2.5908938e-02 + 1.2396000e+03 4.7982169e-02 + 1.2400000e+03 -2.8991991e-01 + 1.2404000e+03 -6.5505470e-01 + 1.2408000e+03 -1.0458370e+00 + 1.2412000e+03 -1.4595120e+00 + 1.2416000e+03 -2.2793635e+00 + 1.2420000e+03 -2.4988621e+00 + 1.2424000e+03 -2.3679603e+00 + 1.2428000e+03 -2.3069253e+00 + 1.2432000e+03 -1.8358339e+00 + 1.2436000e+03 -9.4453239e-01 + 1.2440000e+03 -2.5290818e-01 + 1.2444000e+03 1.1836690e-01 + 1.2448000e+03 1.0796897e+00 + 1.2452000e+03 1.4809828e+00 + 1.2456000e+03 1.6823558e+00 + 1.2460000e+03 1.2929928e+00 + 1.2464000e+03 1.0228546e+00 + 1.2468000e+03 7.5246885e-01 + 1.2472000e+03 6.0581593e-01 + 1.2476000e+03 3.1323573e-01 + 1.2480000e+03 1.6891826e-01 + 1.2484000e+03 -1.2453413e-02 + 1.2488000e+03 -3.0335934e-01 + 1.2492000e+03 -5.2487815e-01 + 1.2496000e+03 -8.2571082e-01 + 1.2500000e+03 -8.7624290e-01 + 1.2504000e+03 -1.0999122e+00 + 1.2508000e+03 -1.1730203e+00 + 1.2512000e+03 -1.0429276e+00 + 1.2516000e+03 -9.9432567e-01 + 1.2520000e+03 -8.2845224e-01 + 1.2524000e+03 -5.6336401e-01 + 1.2528000e+03 -2.0411019e-01 + 1.2532000e+03 2.0668429e-01 + 1.2536000e+03 8.1748965e-01 + 1.2540000e+03 1.0682283e+00 + 1.2544000e+03 1.6488691e+00 + 1.2548000e+03 1.8390521e+00 + 1.2552000e+03 1.8787909e+00 + 1.2556000e+03 1.9283417e+00 + 1.2560000e+03 1.5476980e+00 + 1.2564000e+03 1.2469253e+00 + 1.2568000e+03 8.6615482e-01 + 1.2572000e+03 3.3534283e-01 + 1.2576000e+03 1.4450304e-01 + 1.2580000e+03 6.9361707e-01 + 1.2584000e+03 7.2216806e-01 + 1.2588000e+03 4.4183520e-01 + 1.2592000e+03 -1.0153407e-01 + 1.2596000e+03 -7.2492340e-01 + 1.2600000e+03 -1.0370131e+00 + 1.2604000e+03 -1.4525344e+00 + 1.2608000e+03 -2.0687968e+00 + 1.2612000e+03 -2.3765482e+00 + 1.2616000e+03 -1.9854792e+00 + 1.2620000e+03 -1.5943243e+00 + 1.2624000e+03 -1.3684240e+00 + 1.2628000e+03 -8.8749922e-01 + 1.2632000e+03 -5.7679032e-01 + 1.2636000e+03 -4.7625422e-01 + 1.2640000e+03 7.3913039e-02 + 1.2644000e+03 3.9821276e-01 + 1.2648000e+03 7.4915359e-01 + 1.2652000e+03 1.0053963e+00 + 1.2656000e+03 1.5771633e+00 + 1.2660000e+03 2.2222852e+00 + 1.2664000e+03 2.7433863e+00 + 1.2668000e+03 2.5055774e+00 + 1.2672000e+03 1.9259254e+00 + 1.2676000e+03 1.3863125e+00 + 1.2680000e+03 6.7678218e-01 + 1.2684000e+03 3.5718714e-01 + 1.2688000e+03 3.7544047e-02 + 1.2692000e+03 -3.0160151e-01 + 1.2696000e+03 -4.8190656e-01 + 1.2700000e+03 -6.5210751e-01 + 1.2704000e+03 -9.3259440e-01 + 1.2708000e+03 -1.1093331e+00 + 1.2712000e+03 -1.4134739e+00 + 1.2716000e+03 -1.3995891e+00 + 1.2720000e+03 -1.0416095e+00 + 1.2724000e+03 -7.4541657e-01 + 1.2728000e+03 -6.3530913e-01 + 1.2732000e+03 -7.5510178e-01 + 1.2736000e+03 -8.2490554e-01 + 1.2740000e+03 -6.3488178e-01 + 1.2744000e+03 -2.4498801e-01 + 1.2748000e+03 2.6469280e-01 + 1.2752000e+03 6.0404638e-01 + 1.2756000e+03 1.0633135e+00 + 1.2760000e+03 7.1268426e-01 + 1.2764000e+03 5.6224534e-01 + 1.2768000e+03 6.6202145e-01 + 1.2772000e+03 7.3980973e-01 + 1.2776000e+03 5.6458980e-01 + 1.2780000e+03 3.7935461e-01 + 1.2784000e+03 1.7931533e-01 + 1.2788000e+03 -2.9951440e-01 + 1.2792000e+03 -6.6503041e-01 + 1.2796000e+03 -9.9107329e-01 + 1.2800000e+03 -9.2146497e-01 + 1.2804000e+03 -4.9279150e-01 + 1.2808000e+03 -1.6939563e-01 + 1.2812000e+03 -4.5953461e-01 + 1.2816000e+03 -1.7962748e-01 + 1.2820000e+03 -2.9575366e-02 + 1.2824000e+03 -2.0941695e-01 + 1.2828000e+03 -2.4904980e-01 + 1.2832000e+03 -2.1886470e-01 + 1.2836000e+03 -5.8796465e-02 + 1.2840000e+03 7.1306492e-02 + 1.2844000e+03 1.6154385e-01 + 1.2848000e+03 2.6185182e-01 + 1.2852000e+03 7.2147674e-02 + 1.2856000e+03 -2.9713337e-01 + 1.2860000e+03 -4.1732756e-01 + 1.2864000e+03 -5.0708566e-01 + 1.2868000e+03 -3.6674253e-01 + 1.2872000e+03 2.1340269e-01 + 1.2876000e+03 1.1435586e+00 + 1.2880000e+03 2.3279419e+00 + 1.2884000e+03 3.0520879e+00 + 1.2888000e+03 3.1081324e+00 + 1.2892000e+03 2.8920903e+00 + 1.2896000e+03 2.6491935e+00 + 1.2900000e+03 2.2451905e+00 + 1.2904000e+03 1.8876288e+00 + 1.2908000e+03 1.2541892e+00 + 1.2912000e+03 7.5486135e-01 + 1.2916000e+03 -1.4433578e-01 + 1.2920000e+03 -9.9364446e-01 + 1.2924000e+03 -1.9200477e+00 + 1.2928000e+03 -2.7416025e+00 + 1.2932000e+03 -3.4638071e+00 + 1.2936000e+03 -3.5695475e+00 + 1.2940000e+03 -3.1615675e+00 + 1.2944000e+03 -2.4678704e+00 + 1.2948000e+03 -1.5815450e+00 + 1.2952000e+03 -8.9165747e-01 + 1.2956000e+03 -1.9047168e-02 + 1.2960000e+03 7.8693802e-01 + 1.2964000e+03 1.3176469e+00 + 1.2968000e+03 1.7458074e+00 + 1.2972000e+03 1.7624231e+00 + 1.2976000e+03 1.5802413e+00 + 1.2980000e+03 1.0096473e+00 + 1.2984000e+03 7.3929197e-01 + 1.2988000e+03 4.9905700e-01 + 1.2992000e+03 -8.1080929e-01 + 1.2996000e+03 -1.1006131e+00 + 1.3000000e+03 -1.2203092e+00 + 1.3004000e+03 -1.2599444e+00 + 1.3008000e+03 -9.9949074e-01 + 1.3012000e+03 -1.0389815e+00 + 1.3016000e+03 -9.7858051e-01 + 1.3020000e+03 -2.2829986e-01 + 1.3024000e+03 1.6198819e-01 + 1.3028000e+03 3.7208954e-01 + 1.3032000e+03 6.4216376e-01 + 1.3036000e+03 5.3232453e-01 + 1.3040000e+03 4.4254980e-01 + 1.3044000e+03 5.4282501e-01 + 1.3048000e+03 9.2306480e-01 + 1.3052000e+03 5.6339990e-01 + 1.3056000e+03 2.8384647e-01 + 1.3060000e+03 1.9429182e-01 + 1.3064000e+03 1.5503463e-01 + 1.3068000e+03 2.6574751e-01 + 1.3072000e+03 4.0649671e-01 + 1.3076000e+03 7.0707085e-01 + 1.3080000e+03 1.1272621e+00 + 1.3084000e+03 1.7271048e+00 + 1.3088000e+03 1.6767559e+00 + 1.3092000e+03 1.1162410e+00 + 1.3096000e+03 7.0576343e-01 + 1.3100000e+03 6.7527055e-01 + 1.3104000e+03 -1.2541300e-01 + 1.3108000e+03 9.3769487e-02 + 1.3112000e+03 3.7289459e-01 + 1.3116000e+03 2.4220492e-01 + 1.3120000e+03 -4.5811748e-01 + 1.3124000e+03 -6.5833708e-01 + 1.3128000e+03 -1.8684983e+00 + 1.3132000e+03 -2.2980350e+00 + 1.3136000e+03 -2.5174910e+00 + 1.3140000e+03 -2.5507502e+00 + 1.3144000e+03 -2.6242672e+00 + 1.3148000e+03 -2.3207605e+00 + 1.3152000e+03 -1.8363520e+00 + 1.3156000e+03 -1.3068370e+00 + 1.3160000e+03 -1.1673433e+00 + 1.3164000e+03 -9.0788551e-01 + 1.3168000e+03 -6.1860536e-01 + 1.3172000e+03 -1.5924473e-01 + 1.3176000e+03 4.9013025e-01 + 1.3180000e+03 1.1994478e+00 + 1.3184000e+03 1.5990820e+00 + 1.3188000e+03 1.6887642e+00 + 1.3192000e+03 1.4683523e+00 + 1.3196000e+03 1.0980786e+00 + 1.3200000e+03 7.3813566e-01 + 1.3204000e+03 2.6824981e-01 + 1.3208000e+03 8.8468346e-02 + 1.3212000e+03 2.5864324e-01 + 1.3216000e+03 7.6891837e-01 + 1.3220000e+03 7.3915934e-01 + 1.3224000e+03 4.8950481e-01 + 1.3228000e+03 2.9008011e-01 + 1.3232000e+03 -6.6920015e-01 + 1.3236000e+03 -9.6830160e-01 + 1.3240000e+03 -9.0712838e-01 + 1.3244000e+03 -7.1598434e-01 + 1.3248000e+03 -4.8472513e-01 + 1.3252000e+03 -6.0366981e-01 + 1.3256000e+03 -5.7273331e-01 + 1.3260000e+03 -3.3190886e-01 + 1.3264000e+03 -1.5227341e-01 + 1.3268000e+03 2.0154801e-01 + 1.3272000e+03 7.7771904e-01 + 1.3276000e+03 1.3807908e+00 + 1.3280000e+03 2.0579766e+00 + 1.3284000e+03 2.4168994e+00 + 1.3288000e+03 3.0606251e+00 + 1.3292000e+03 3.3133899e+00 + 1.3296000e+03 3.4933107e+00 + 1.3300000e+03 3.6531791e+00 + 1.3304000e+03 3.2599818e+00 + 1.3308000e+03 2.2084260e+00 + 1.3312000e+03 1.0525468e+00 + 1.3316000e+03 -2.9285476e-02 + 1.3320000e+03 -1.1950700e+00 + 1.3324000e+03 -2.4492661e+00 + 1.3328000e+03 -3.6485691e+00 + 1.3332000e+03 -4.8992865e+00 + 1.3336000e+03 -5.8222829e+00 + 1.3340000e+03 -5.9362699e+00 + 1.3344000e+03 -5.9440117e+00 + 1.3348000e+03 -5.5761057e+00 + 1.3352000e+03 -4.4302506e+00 + 1.3356000e+03 -3.0705515e+00 + 1.3360000e+03 -1.9077767e+00 + 1.3364000e+03 -9.4304267e-01 + 1.3368000e+03 2.4735448e-01 + 1.3372000e+03 1.5185697e+00 + 1.3376000e+03 2.6315762e+00 + 1.3380000e+03 3.2825706e+00 + 1.3384000e+03 3.8162748e+00 + 1.3388000e+03 4.2336926e+00 + 1.3392000e+03 4.2028156e+00 + 1.3396000e+03 3.9809939e+00 + 1.3400000e+03 3.3336205e+00 + 1.3404000e+03 2.5453703e+00 + 1.3408000e+03 1.6467825e+00 + 1.3412000e+03 8.3282144e-01 + 1.3416000e+03 -4.1128914e-01 + 1.3420000e+03 -1.4185299e+00 + 1.3424000e+03 -2.2359643e+00 + 1.3428000e+03 -2.5147381e+00 + 1.3432000e+03 -2.4635755e+00 + 1.3436000e+03 -2.1525378e+00 + 1.3440000e+03 -1.8416357e+00 + 1.3444000e+03 -1.5709825e+00 + 1.3448000e+03 -9.8060744e-01 + 1.3452000e+03 -6.3052172e-01 + 1.3456000e+03 1.4932030e-01 + 1.3460000e+03 6.9889314e-01 + 1.3464000e+03 1.1784850e+00 + 1.3468000e+03 1.5780908e+00 + 1.3472000e+03 1.9277790e+00 + 1.3476000e+03 2.7674975e+00 + 1.3480000e+03 3.0373240e+00 + 1.3484000e+03 3.1770963e+00 + 1.3488000e+03 2.9967844e+00 + 1.3492000e+03 3.1763545e+00 + 1.3496000e+03 3.2559155e+00 + 1.3500000e+03 2.8354072e+00 + 1.3504000e+03 2.1448999e+00 + 1.3508000e+03 1.5142714e+00 + 1.3512000e+03 8.4361819e-01 + 1.3516000e+03 -2.6898089e-02 + 1.3520000e+03 -5.3745436e-01 + 1.3524000e+03 -1.0355976e+00 + 1.3528000e+03 -1.7127737e+00 + 1.3532000e+03 -2.5994217e+00 + 1.3536000e+03 -3.5832463e+00 + 1.3540000e+03 -4.7090780e+00 + 1.3544000e+03 -5.3341900e+00 + 1.3548000e+03 -5.4501489e+00 + 1.3552000e+03 -5.3302930e+00 + 1.3556000e+03 -4.8042542e+00 + 1.3560000e+03 -4.1133996e+00 + 1.3564000e+03 -2.9327068e+00 + 1.3568000e+03 -1.5678158e+00 + 1.3572000e+03 -3.8487198e-01 + 1.3576000e+03 9.8673229e-01 + 1.3580000e+03 2.6034945e+00 + 1.3584000e+03 4.3083541e+00 + 1.3588000e+03 5.1240288e+00 + 1.3592000e+03 5.3024194e+00 + 1.3596000e+03 4.6363254e+00 + 1.3600000e+03 3.3959195e+00 + 1.3604000e+03 2.1055221e+00 + 1.3608000e+03 1.1550670e+00 + 1.3612000e+03 5.9469947e-01 + 1.3616000e+03 9.4520827e-02 + 1.3620000e+03 -1.9560976e-01 + 1.3624000e+03 -3.4554778e-01 + 1.3628000e+03 -6.1539655e-01 + 1.3632000e+03 -1.0151031e+00 + 1.3636000e+03 -1.4647164e+00 + 1.3640000e+03 -1.6342684e+00 + 1.3644000e+03 -1.4737139e+00 + 1.3648000e+03 -1.1831004e+00 + 1.3652000e+03 -7.3262995e-01 + 1.3656000e+03 7.7305634e-03 + 1.3660000e+03 5.3793126e-01 + 1.3664000e+03 1.0065471e+00 + 1.3668000e+03 1.2220231e+00 + 1.3672000e+03 1.3004888e+00 + 1.3676000e+03 1.2944027e+00 + 1.3680000e+03 1.3038452e+00 + 1.3684000e+03 1.5450744e+00 + 1.3688000e+03 2.0148387e+00 + 1.3692000e+03 2.7846605e+00 + 1.3696000e+03 3.1548980e+00 + 1.3700000e+03 2.4551374e+00 + 1.3704000e+03 1.7953476e+00 + 1.3708000e+03 1.1154563e+00 + 1.3712000e+03 4.4557895e-01 + 1.3716000e+03 -3.0392658e-01 + 1.3720000e+03 -7.6407327e-01 + 1.3724000e+03 -1.2738463e+00 + 1.3728000e+03 -1.3735914e+00 + 1.3732000e+03 -2.1133382e+00 + 1.3736000e+03 -2.7230971e+00 + 1.3740000e+03 -2.8928702e+00 + 1.3744000e+03 -3.6326751e+00 + 1.3748000e+03 -3.9423193e+00 + 1.3752000e+03 -3.8319781e+00 + 1.3756000e+03 -3.3219579e+00 + 1.3760000e+03 -2.7820401e+00 + 1.3764000e+03 -2.1323238e+00 + 1.3768000e+03 -1.8426632e+00 + 1.3772000e+03 -1.2629176e+00 + 1.3776000e+03 -4.5296374e-01 + 1.3780000e+03 -4.2971977e-02 + 1.3784000e+03 4.9700410e-01 + 1.3788000e+03 1.0670578e+00 + 1.3792000e+03 1.4471115e+00 + 1.3796000e+03 1.5871491e+00 + 1.3800000e+03 1.3567874e+00 + 1.3804000e+03 9.8630296e-01 + 1.3808000e+03 1.0759638e+00 + 1.3812000e+03 1.2658562e+00 + 1.3816000e+03 2.0959545e+00 + 1.3820000e+03 3.3359826e+00 + 1.3824000e+03 3.9062150e+00 + 1.3828000e+03 3.6463930e+00 + 1.3832000e+03 2.5980768e+00 + 1.3836000e+03 1.4949079e+00 + 1.3840000e+03 6.6813677e-01 + 1.3844000e+03 -8.7510653e-02 + 1.3848000e+03 -7.8192029e-01 + 1.3852000e+03 -1.0844275e+00 + 1.3856000e+03 -1.0990475e+00 + 1.3860000e+03 -7.8721634e-01 + 1.3864000e+03 -7.6901376e-01 + 1.3868000e+03 -5.2772062e-01 + 1.3872000e+03 -5.7791927e-01 + 1.3876000e+03 -4.2771630e-01 + 1.3880000e+03 6.2445506e-02 + 1.3884000e+03 2.0280122e-01 + 1.3888000e+03 1.0314538e-01 + 1.3892000e+03 2.2334107e-01 + 1.3896000e+03 1.0133263e+00 + 1.3900000e+03 9.2363248e-01 + 1.3904000e+03 4.6394356e-01 + 1.3908000e+03 -1.3576001e-01 + 1.3912000e+03 -8.5624814e-02 + 1.3916000e+03 -2.1556947e-01 + 1.3920000e+03 -5.9534956e-01 + 1.3924000e+03 -5.9775589e-01 + 1.3928000e+03 -6.3039826e-01 + 1.3932000e+03 -7.3706398e-01 + 1.3936000e+03 -1.1852692e+00 + 1.3940000e+03 -1.6244239e+00 + 1.3944000e+03 -1.8463454e+00 + 1.3948000e+03 -2.0964383e+00 + 1.3952000e+03 -2.5163025e+00 + 1.3956000e+03 -2.4559545e+00 + 1.3960000e+03 -2.2553543e+00 + 1.3964000e+03 -1.9243287e+00 + 1.3968000e+03 -1.5930695e+00 + 1.3972000e+03 -1.5317513e+00 + 1.3976000e+03 -1.1805515e+00 + 1.3980000e+03 -6.3966401e-01 + 1.3984000e+03 -6.9118422e-02 + 1.3988000e+03 -3.8898673e-02 + 1.3992000e+03 -1.2902286e-01 + 1.3996000e+03 -3.1927676e-01 + 1.4000000e+03 -1.4974512e-01 + 1.4004000e+03 3.1949137e-01 + 1.4008000e+03 5.2839864e-01 + 1.4012000e+03 1.2828540e+00 + 1.4016000e+03 1.6831052e+00 + 1.4020000e+03 1.9953798e+00 + 1.4024000e+03 1.9445445e+00 + 1.4028000e+03 1.8637609e+00 + 1.4032000e+03 1.6629572e+00 + 1.4036000e+03 1.6606925e+00 + 1.4040000e+03 1.8554537e+00 + 1.4044000e+03 1.8194960e+00 + 1.4048000e+03 1.5857838e+00 + 1.4052000e+03 1.0014913e+00 + 1.4056000e+03 3.5174174e-01 + 1.4060000e+03 3.2192824e-01 + 1.4064000e+03 1.5777032e-01 + 1.4068000e+03 -2.0203494e-01 + 1.4072000e+03 -6.4506974e-01 + 1.4076000e+03 -1.0827659e+00 + 1.4080000e+03 -7.1684395e-01 + 1.4084000e+03 3.5138214e-03 + 1.4088000e+03 6.2369900e-01 + 1.4092000e+03 8.2387582e-01 + 1.4096000e+03 7.0403227e-01 + 1.4100000e+03 4.4409628e-01 + 1.4104000e+03 2.3398332e-01 + 1.4108000e+03 1.2378069e-01 + 1.4112000e+03 1.6326255e-01 + 1.4116000e+03 -2.8714985e-01 + 1.4120000e+03 -3.8779440e-01 + 1.4124000e+03 -3.2460264e-01 + 1.4128000e+03 -2.2113038e-01 + 1.4132000e+03 -4.4881623e-01 + 1.4136000e+03 -6.8291575e-01 + 1.4140000e+03 -9.7756738e-01 + 1.4144000e+03 -1.5967822e+00 + 1.4148000e+03 -2.3359361e+00 + 1.4152000e+03 -2.6951631e+00 + 1.4156000e+03 -2.7447511e+00 + 1.4160000e+03 -2.6545456e+00 + 1.4164000e+03 -2.5743268e+00 + 1.4168000e+03 -2.3740660e+00 + 1.4172000e+03 -2.2451721e+00 + 1.4176000e+03 -1.9933000e+00 + 1.4180000e+03 -1.5959512e+00 + 1.4184000e+03 -6.8403409e-01 + 1.4188000e+03 5.1108569e-01 + 1.4192000e+03 1.4453845e+00 + 1.4196000e+03 1.9979849e+00 + 1.4200000e+03 2.1168164e+00 + 1.4204000e+03 1.8809814e+00 + 1.4208000e+03 1.7793367e+00 + 1.4212000e+03 1.7391265e+00 + 1.4216000e+03 1.2887473e+00 + 1.4220000e+03 8.5824943e-01 + 1.4224000e+03 8.0766396e-01 + 1.4228000e+03 5.9700330e-01 + 1.4232000e+03 5.4620745e-01 + 1.4236000e+03 2.7533994e-01 + 1.4240000e+03 2.5424730e-01 + 1.4244000e+03 2.6090508e-01 + 1.4248000e+03 1.3460784e-01 + 1.4252000e+03 -9.8747333e-02 + 1.4256000e+03 -2.5788934e-01 + 1.4260000e+03 2.1490296e-03 + 1.4264000e+03 4.1250493e-01 + 1.4268000e+03 8.6300060e-01 + 1.4272000e+03 1.1034882e+00 + 1.4276000e+03 9.8390985e-01 + 1.4280000e+03 6.6422082e-01 + 1.4284000e+03 3.2460163e-01 + 1.4288000e+03 -2.0492583e-01 + 1.4292000e+03 -3.0420232e-01 + 1.4296000e+03 -3.5427800e-01 + 1.4300000e+03 -3.8424479e-01 + 1.4304000e+03 -4.4265692e-01 + 1.4308000e+03 -6.5532005e-01 + 1.4312000e+03 -6.8244491e-01 + 1.4316000e+03 -3.7341273e-01 + 1.4320000e+03 9.6678262e-02 + 1.4324000e+03 4.0678560e-01 + 1.4328000e+03 2.5693658e-01 + 1.4332000e+03 -2.4291702e-01 + 1.4336000e+03 -7.9278462e-01 + 1.4340000e+03 -1.1028637e+00 + 1.4344000e+03 -1.4530460e+00 + 1.4348000e+03 -1.6131331e+00 + 1.4352000e+03 -1.4330496e+00 + 1.4356000e+03 -9.7279648e-01 + 1.4360000e+03 -5.4250556e-01 + 1.4364000e+03 -2.0215392e-01 + 1.4368000e+03 -7.1819323e-02 + 1.4372000e+03 -3.4144637e-01 + 1.4376000e+03 -4.5108314e-01 + 1.4380000e+03 -2.3070671e-01 + 1.4384000e+03 1.7968840e-01 + 1.4388000e+03 8.2000847e-01 + 1.4392000e+03 1.1806445e+00 + 1.4396000e+03 9.5152563e-01 + 1.4400000e+03 5.3222929e-01 + 1.4404000e+03 4.3237213e-01 + 1.4408000e+03 4.6188782e-01 + 1.4412000e+03 8.7088573e-01 + 1.4416000e+03 1.1695252e+00 + 1.4420000e+03 1.4779273e+00 + 1.4424000e+03 6.9661607e-01 + 1.4428000e+03 1.0548817e-01 + 1.4432000e+03 -3.4541075e-01 + 1.4436000e+03 -7.1625421e-01 + 1.4440000e+03 -1.0966229e+00 + 1.4444000e+03 -1.6369838e+00 + 1.4448000e+03 -1.7871312e+00 + 1.4452000e+03 -1.6971500e+00 + 1.4456000e+03 -1.4068742e+00 + 1.4460000e+03 -1.2763122e+00 + 1.4464000e+03 -1.1056190e+00 + 1.4468000e+03 -7.7490024e-01 + 1.4472000e+03 -1.7433197e-01 + 1.4476000e+03 5.4588465e-01 + 1.4480000e+03 1.3559777e+00 + 1.4484000e+03 1.9229386e+00 + 1.4488000e+03 2.5065244e+00 + 1.4492000e+03 2.9290194e+00 + 1.4496000e+03 2.9354767e+00 + 1.4500000e+03 2.4263330e+00 + 1.4504000e+03 1.7415735e+00 + 1.4508000e+03 4.9084449e-01 + 1.4512000e+03 -5.5416183e-01 + 1.4516000e+03 -1.0849249e+00 + 1.4520000e+03 -1.7947685e+00 + 1.4524000e+03 -2.0399581e+00 + 1.4528000e+03 -2.4193371e+00 + 1.4532000e+03 -2.5187254e+00 + 1.4536000e+03 -2.5778358e+00 + 1.4540000e+03 -2.6165864e+00 + 1.4544000e+03 -2.3849345e+00 + 1.4548000e+03 -2.1032193e+00 + 1.4552000e+03 -1.8814703e+00 + 1.4556000e+03 -1.1673013e+00 + 1.4560000e+03 -4.2361697e-01 + 1.4564000e+03 2.5440432e-01 + 1.4568000e+03 1.2084848e+00 + 1.4572000e+03 1.8070038e+00 + 1.4576000e+03 2.2729230e+00 + 1.4580000e+03 2.8726877e+00 + 1.4584000e+03 3.3622846e+00 + 1.4588000e+03 3.4615097e+00 + 1.4592000e+03 3.1205032e+00 + 1.4596000e+03 2.1792983e+00 + 1.4600000e+03 1.4345147e+00 + 1.4604000e+03 8.2142038e-01 + 1.4608000e+03 9.5822096e-02 + 1.4612000e+03 -5.7636783e-01 + 1.4616000e+03 -1.2859246e+00 + 1.4620000e+03 -1.7943243e+00 + 1.4624000e+03 -2.0918990e+00 + 1.4628000e+03 -2.2499184e+00 + 1.4632000e+03 -1.7100562e+00 + 1.4636000e+03 -1.3599053e+00 + 1.4640000e+03 -9.6955191e-01 + 1.4644000e+03 -7.2912417e-01 + 1.4648000e+03 -6.4858418e-01 + 1.4652000e+03 -5.7810041e-01 + 1.4656000e+03 -3.9751281e-01 + 1.4660000e+03 3.0291810e-01 + 1.4664000e+03 9.9316960e-01 + 1.4668000e+03 1.0533258e+00 + 1.4672000e+03 7.4338571e-01 + 1.4676000e+03 4.2325427e-01 + 1.4680000e+03 2.6276984e-01 + 1.4684000e+03 3.1989362e-02 + 1.4688000e+03 -7.9056068e-02 + 1.4692000e+03 -1.8033142e-01 + 1.4696000e+03 -1.4162410e-01 + 1.4700000e+03 -7.3793941e-01 + 1.4704000e+03 -7.4589433e-01 + 1.4708000e+03 -4.8324647e-01 + 1.4712000e+03 -2.9737776e-01 + 1.4716000e+03 4.8338191e-01 + 1.4720000e+03 1.5332465e+00 + 1.4724000e+03 2.1134753e+00 + 1.4728000e+03 2.0043901e+00 + 1.4732000e+03 1.1455297e+00 + 1.4736000e+03 3.7002978e-02 + 1.4740000e+03 -1.4151211e-01 + 1.4744000e+03 -9.6983771e-01 + 1.4748000e+03 -1.6279022e+00 + 1.4752000e+03 -1.3859949e+00 + 1.4756000e+03 -8.5412517e-01 + 1.4760000e+03 -3.4243281e-01 + 1.4764000e+03 1.6910392e-01 + 1.4768000e+03 5.1044802e-01 + 1.4772000e+03 6.0137156e-01 + 1.4776000e+03 5.4175520e-01 + 1.4780000e+03 3.6149201e-01 + 1.4784000e+03 -7.9186490e-02 + 1.4788000e+03 -4.4061521e-01 + 1.4792000e+03 -5.9253710e-01 + 1.4796000e+03 -6.3469904e-01 + 1.4800000e+03 -4.3691690e-01 + 1.4804000e+03 6.0793472e-02 + 1.4808000e+03 9.1850320e-01 + 1.4812000e+03 1.9466827e+00 + 1.4816000e+03 2.1448696e+00 + 1.4820000e+03 1.9935973e+00 + 1.4824000e+03 2.0914412e+00 + 1.4828000e+03 1.8006913e+00 + 1.4832000e+03 1.5172714e+00 + 1.4836000e+03 8.7829960e-01 + 1.4840000e+03 6.8550121e-01 + 1.4844000e+03 5.2706781e-01 + 1.4848000e+03 -1.6155242e-01 + 1.4852000e+03 -1.4903805e+00 + 1.4856000e+03 -2.3721649e+00 + 1.4860000e+03 -2.9342516e+00 + 1.4864000e+03 -3.6755068e+00 + 1.4868000e+03 -3.9481724e+00 + 1.4872000e+03 -3.8416044e+00 + 1.4876000e+03 -3.5718343e+00 + 1.4880000e+03 -3.3348639e+00 + 1.4884000e+03 -3.0146821e+00 + 1.4888000e+03 -2.0849899e+00 + 1.4892000e+03 -8.8286881e-01 + 1.4896000e+03 1.3899405e-01 + 1.4900000e+03 1.4074829e+00 + 1.4904000e+03 2.4731514e+00 + 1.4908000e+03 3.1470199e+00 + 1.4912000e+03 3.8084287e+00 + 1.4916000e+03 3.9513988e+00 + 1.4920000e+03 3.6252003e+00 + 1.4924000e+03 2.9163640e+00 + 1.4928000e+03 2.1077665e+00 + 1.4932000e+03 1.2369331e+00 + 1.4936000e+03 6.6087805e-01 + 1.4940000e+03 8.1276522e-02 + 1.4944000e+03 -1.1592842e-01 + 1.4948000e+03 -2.3158504e-01 + 1.4952000e+03 -5.6806096e-01 + 1.4956000e+03 -1.0562303e+00 + 1.4960000e+03 -1.1731516e+00 + 1.4964000e+03 -7.8896687e-01 + 1.4968000e+03 -5.3765621e-01 + 1.4972000e+03 -6.7653084e-01 + 1.4976000e+03 -8.6614876e-01 + 1.4980000e+03 -9.3667236e-01 + 1.4984000e+03 -1.3325727e+00 + 1.4988000e+03 -1.1549967e+00 + 1.4992000e+03 -8.4005804e-01 + 1.4996000e+03 -4.2026831e-01 + 1.5000000e+03 4.4570535e-01 + 1.5004000e+03 1.4501176e+00 + 1.5008000e+03 2.2640316e+00 + 1.5012000e+03 2.6937111e+00 + 1.5016000e+03 3.1383645e+00 + 1.5020000e+03 2.5881579e+00 + 1.5024000e+03 1.5835063e+00 + 1.5028000e+03 5.3782365e-01 + 1.5032000e+03 6.8839364e-02 + 1.5036000e+03 -2.3926865e-01 + 1.5040000e+03 -3.1370626e-01 + 1.5044000e+03 -2.9089851e-01 + 1.5048000e+03 -4.8148895e-01 + 1.5052000e+03 -6.6531201e-01 + 1.5056000e+03 -1.3722579e+00 + 1.5060000e+03 -2.0698907e+00 + 1.5064000e+03 -2.7682163e+00 + 1.5068000e+03 -2.9131251e+00 + 1.5072000e+03 -2.7160168e+00 + 1.5076000e+03 -2.1896772e+00 + 1.5080000e+03 -1.7072157e+00 + 1.5084000e+03 -1.3669533e+00 + 1.5088000e+03 -1.5368308e+00 + 1.5092000e+03 -1.4567947e+00 + 1.5096000e+03 -1.1467819e+00 + 1.5100000e+03 -6.7680367e-01 + 1.5104000e+03 -1.3654608e-01 + 1.5108000e+03 6.3511829e-02 + 1.5112000e+03 6.2351785e-01 + 1.5116000e+03 1.3134852e+00 + 1.5120000e+03 2.0934784e+00 + 1.5124000e+03 2.7436636e+00 + 1.5128000e+03 2.8342258e+00 + 1.5132000e+03 2.8711869e+00 + 1.5136000e+03 2.9299958e+00 + 1.5140000e+03 2.8093728e+00 + 1.5144000e+03 2.6497960e+00 + 1.5148000e+03 2.1670561e+00 + 1.5152000e+03 1.3675794e+00 + 1.5156000e+03 4.8870253e-01 + 1.5160000e+03 -7.1146840e-01 + 1.5164000e+03 -1.7412395e+00 + 1.5168000e+03 -1.8812298e+00 + 1.5172000e+03 -1.8485802e+00 + 1.5176000e+03 -1.9083765e+00 + 1.5180000e+03 -2.0368501e+00 + 1.5184000e+03 -1.8847612e+00 + 1.5188000e+03 -1.6034758e+00 + 1.5192000e+03 -1.4943212e+00 + 1.5196000e+03 -1.0752853e+00 + 1.5200000e+03 -5.0633396e-01 + 1.5204000e+03 -1.7373807e-02 + 1.5208000e+03 4.4150617e-01 + 1.5212000e+03 7.9036865e-01 + 1.5216000e+03 9.9912814e-01 + 1.5220000e+03 9.3784118e-01 + 1.5224000e+03 4.9695660e-01 + 1.5228000e+03 2.9646388e-01 + 1.5232000e+03 4.0642510e-01 + 1.5236000e+03 8.2669860e-01 + 1.5240000e+03 1.0472994e+00 + 1.5244000e+03 1.0081770e+00 + 1.5248000e+03 5.6938510e-01 + 1.5252000e+03 7.0998171e-02 + 1.5256000e+03 -3.3735425e-01 + 1.5260000e+03 -6.9634168e-01 + 1.5264000e+03 -1.1046846e+00 + 1.5268000e+03 -1.2534373e+00 + 1.5272000e+03 -1.3324107e+00 + 1.5276000e+03 -1.5016154e+00 + 1.5280000e+03 -1.6410674e+00 + 1.5284000e+03 -1.6106845e+00 + 1.5288000e+03 -1.5404447e+00 + 1.5292000e+03 -1.2403018e+00 + 1.5296000e+03 -1.0102717e+00 + 1.5300000e+03 -3.5022643e-01 + 1.5304000e+03 1.3960438e-01 + 1.5308000e+03 6.2917091e-01 + 1.5312000e+03 1.2484687e+00 + 1.5316000e+03 9.5770160e-01 + 1.5320000e+03 3.0715674e-01 + 1.5324000e+03 -5.6493906e-02 + 1.5328000e+03 -8.1230358e-02 + 1.5332000e+03 -9.1921890e-02 + 1.5336000e+03 1.0656518e-01 + 1.5340000e+03 8.7905882e-01 + 1.5344000e+03 1.6395159e+00 + 1.5348000e+03 1.5698467e+00 + 1.5352000e+03 1.1099042e+00 + 1.5356000e+03 5.8970516e-01 + 1.5360000e+03 2.0920991e-01 + 1.5364000e+03 -1.8154473e-01 + 1.5368000e+03 -2.5234806e-01 + 1.5372000e+03 -1.2344650e-01 + 1.5376000e+03 -3.4524041e-02 + 1.5380000e+03 -1.4566992e-01 + 1.5384000e+03 -5.0685713e-01 + 1.5388000e+03 -7.5831580e-01 + 1.5392000e+03 -5.3970798e-01 + 1.5396000e+03 -8.0851004e-02 + 1.5400000e+03 5.2796930e-01 + 1.5404000e+03 1.2680080e-01 + 1.5408000e+03 -1.3434245e-01 + 1.5412000e+03 -3.3526859e-01 + 1.5416000e+03 -3.9604241e-01 + 1.5420000e+03 -3.5279425e-01 + 1.5424000e+03 -5.4991089e-01 + 1.5428000e+03 -9.4387574e-01 + 1.5432000e+03 -1.4787428e+00 + 1.5436000e+03 -1.7081176e+00 + 1.5440000e+03 -1.6431946e+00 + 1.5444000e+03 -1.1808289e+00 + 1.5448000e+03 -8.5949904e-01 + 1.5452000e+03 -8.2676746e-01 + 1.5456000e+03 -6.6591029e-01 + 1.5460000e+03 -2.6472191e-01 + 1.5464000e+03 2.0533412e-01 + 1.5468000e+03 2.5580583e-01 + 1.5472000e+03 9.7592725e-01 + 1.5476000e+03 1.5604379e+00 + 1.5480000e+03 1.7858764e+00 + 1.5484000e+03 1.3956916e+00 + 1.5488000e+03 1.0254559e+00 + 1.5492000e+03 6.0508320e-01 + 1.5496000e+03 4.2468953e-01 + 1.5500000e+03 -1.0542942e-01 + 1.5504000e+03 -1.4527946e-01 + 1.5508000e+03 -4.7505755e-01 + 1.5512000e+03 -2.9439188e-01 + 1.5516000e+03 -3.4340594e-02 + 1.5520000e+03 1.2604454e-01 + 1.5524000e+03 -5.3567151e-02 + 1.5528000e+03 -2.5294236e-01 + 1.5532000e+03 -7.6264909e-01 + 1.5536000e+03 -1.2921510e+00 + 1.5540000e+03 -1.5113372e+00 + 1.5544000e+03 -1.2106627e+00 + 1.5548000e+03 -6.4057618e-01 + 1.5552000e+03 4.2903908e-01 + 1.5556000e+03 1.0093484e+00 + 1.5560000e+03 8.3788957e-01 + 1.5564000e+03 7.3505944e-01 + 1.5568000e+03 4.6436221e-01 + 1.5572000e+03 -2.6963635e-01 + 1.5576000e+03 -9.1711902e-01 + 1.5580000e+03 -1.4039932e+00 + 1.5584000e+03 -1.5862504e+00 + 1.5588000e+03 -1.5382583e+00 + 1.5592000e+03 -1.4599587e+00 + 1.5596000e+03 -1.1910297e+00 + 1.5600000e+03 -7.8140291e-01 + 1.5604000e+03 -5.9112237e-01 + 1.5608000e+03 -2.5013812e-01 + 1.5612000e+03 1.5084028e-01 + 1.5616000e+03 4.8168757e-01 + 1.5620000e+03 7.7241260e-01 + 1.5624000e+03 1.1908554e+00 + 1.5628000e+03 1.7096611e+00 + 1.5632000e+03 1.7294631e+00 + 1.5636000e+03 1.2367900e+00 + 1.5640000e+03 6.5142005e-01 + 1.5644000e+03 -1.3027988e-02 + 1.5648000e+03 -7.4760418e-01 + 1.5652000e+03 -8.3578926e-01 + 1.5656000e+03 -7.7417571e-01 + 1.5660000e+03 -3.3304906e-01 + 1.5664000e+03 7.7463399e-02 + 1.5668000e+03 1.5760145e-01 + 1.5672000e+03 3.4729977e-01 + 1.5676000e+03 6.6664733e-01 + 1.5680000e+03 7.8562526e-01 + 1.5684000e+03 9.4435776e-01 + 1.5688000e+03 7.3287414e-01 + 1.5692000e+03 4.1158788e-01 + 1.5696000e+03 1.3051999e-01 + 1.5700000e+03 -1.8027701e-01 + 1.5704000e+03 -1.5081163e-01 + 1.5708000e+03 8.6393343e-03 + 1.5712000e+03 1.9804931e-01 + 1.5716000e+03 2.6731486e-01 + 1.5720000e+03 1.6644091e-01 + 1.5724000e+03 -1.6461076e-01 + 1.5728000e+03 -3.3537677e-01 + 1.5732000e+03 -4.2587987e-01 + 1.5736000e+03 -3.8023669e-01 + 1.5740000e+03 -2.2633078e-01 + 1.5744000e+03 -6.0407631e-01 + 1.5748000e+03 -9.6447614e-01 + 1.5752000e+03 -1.1658627e+00 + 1.5756000e+03 -1.2956580e+00 + 1.5760000e+03 -1.2155407e+00 + 1.5764000e+03 -1.1356738e+00 + 1.5768000e+03 -8.7600054e-01 + 1.5772000e+03 -5.6659251e-01 + 1.5776000e+03 -2.2001893e-01 + 1.5780000e+03 -4.4073114e-01 + 1.5784000e+03 -9.1442801e-01 + 1.5788000e+03 -1.1935248e+00 + 1.5792000e+03 -1.3616309e+00 + 1.5796000e+03 -1.2632171e+00 + 1.5800000e+03 -1.1148107e+00 + 1.5804000e+03 -8.5127166e-01 + 1.5808000e+03 -6.1103179e-01 + 1.5812000e+03 -3.3208311e-01 + 1.5816000e+03 -2.0556976e-01 + 1.5820000e+03 1.2236797e-01 + 1.5824000e+03 3.5313581e-01 + 1.5828000e+03 7.7031691e-01 + 1.5832000e+03 1.1549361e+00 + 1.5836000e+03 1.7922749e+00 + 1.5840000e+03 1.9307315e+00 + 1.5844000e+03 1.7290785e+00 + 1.5848000e+03 1.5210701e+00 + 1.5852000e+03 1.3336784e+00 + 1.5856000e+03 1.2466061e+00 + 1.5860000e+03 8.7925044e-01 + 1.5864000e+03 9.7817176e-01 + 1.5868000e+03 1.0825535e+00 + 1.5872000e+03 9.7138214e-01 + 1.5876000e+03 7.5507089e-01 + 1.5880000e+03 4.6505023e-01 + 1.5884000e+03 2.4450614e-01 + 1.5888000e+03 -2.0792599e-01 + 1.5892000e+03 -6.2313607e-01 + 1.5896000e+03 -9.3201219e-01 + 1.5900000e+03 -1.0579641e+00 + 1.5904000e+03 -1.0606627e+00 + 1.5908000e+03 -1.2113857e+00 + 1.5912000e+03 -1.2361879e+00 + 1.5916000e+03 -1.5937295e+00 + 1.5920000e+03 -1.5154371e+00 + 1.5924000e+03 -1.1134080e+00 + 1.5928000e+03 -5.9066876e-01 + 1.5932000e+03 4.8024460e-02 + 1.5936000e+03 8.8698760e-01 + 1.5940000e+03 1.5763216e+00 + 1.5944000e+03 1.8562385e+00 + 1.5948000e+03 1.8965603e+00 + 1.5952000e+03 1.9572946e+00 + 1.5956000e+03 1.7920500e+00 + 1.5960000e+03 1.2527163e+00 + 1.5964000e+03 7.3388522e-01 + 1.5968000e+03 2.5529169e-03 + 1.5972000e+03 -7.5037478e-01 + 1.5976000e+03 -1.7416016e+00 + 1.5980000e+03 -2.6421932e+00 + 1.5984000e+03 -3.1023059e+00 + 1.5988000e+03 -3.2767573e+00 + 1.5992000e+03 -3.3653043e+00 + 1.5996000e+03 -3.2640244e+00 + 1.6000000e+03 -2.7572799e+00 + 1.6004000e+03 -1.9859288e+00 + 1.6008000e+03 -1.1797434e+00 + 1.6012000e+03 -4.5089988e-01 + 1.6016000e+03 4.6016822e-01 + 1.6020000e+03 1.8161586e+00 + 1.6024000e+03 3.2554792e+00 + 1.6028000e+03 4.6415803e+00 + 1.6032000e+03 5.1518673e+00 + 1.6036000e+03 5.2573139e+00 + 1.6040000e+03 4.9143579e+00 + 1.6044000e+03 3.8594222e+00 + 1.6048000e+03 2.5906098e+00 + 1.6052000e+03 9.4548676e-01 + 1.6056000e+03 -4.2269453e-01 + 1.6060000e+03 -1.1796844e+00 + 1.6064000e+03 -1.3335021e+00 + 1.6068000e+03 -1.6160591e+00 + 1.6072000e+03 -1.5808943e+00 + 1.6076000e+03 -1.4194317e+00 + 1.6080000e+03 -1.3549259e+00 + 1.6084000e+03 -1.1157931e+00 + 1.6088000e+03 -2.4956819e-01 + 1.6092000e+03 2.5983916e-01 + 1.6096000e+03 7.0565219e-01 + 1.6100000e+03 1.2150646e+00 + 1.6104000e+03 1.4092957e+00 + 1.6108000e+03 1.0336084e+00 + 1.6112000e+03 6.1689564e-01 + 1.6116000e+03 3.7588940e-01 + 1.6120000e+03 -1.2532585e-01 + 1.6124000e+03 -7.9675662e-01 + 1.6128000e+03 -8.6840522e-01 + 1.6132000e+03 -1.1302570e+00 + 1.6136000e+03 -1.5340512e+00 + 1.6140000e+03 -1.5929960e+00 + 1.6144000e+03 -1.5533614e+00 + 1.6148000e+03 -1.7499388e+00 + 1.6152000e+03 -1.5077103e+00 + 1.6156000e+03 -1.2537199e+00 + 1.6160000e+03 -1.2159959e+00 + 1.6164000e+03 -1.0733973e+00 + 1.6168000e+03 -1.1522946e+00 + 1.6172000e+03 -1.2316696e+00 + 1.6176000e+03 -8.2112967e-01 + 1.6180000e+03 -2.6998346e-01 + 1.6184000e+03 1.3001656e-01 + 1.6188000e+03 5.8064508e-01 + 1.6192000e+03 9.6126993e-01 + 1.6196000e+03 1.4418116e+00 + 1.6200000e+03 1.9122907e+00 + 1.6204000e+03 2.1627349e+00 + 1.6208000e+03 1.6531770e+00 + 1.6212000e+03 1.2734512e+00 + 1.6216000e+03 9.1356277e-01 + 1.6220000e+03 7.0359915e-01 + 1.6224000e+03 3.3883482e-01 + 1.6228000e+03 -8.0014246e-02 + 1.6232000e+03 -2.8281276e-01 + 1.6236000e+03 -4.4552485e-01 + 1.6240000e+03 -6.3537189e-01 + 1.6244000e+03 -7.0559829e-01 + 1.6248000e+03 -8.9820957e-01 + 1.6252000e+03 -6.7789952e-01 + 1.6256000e+03 -1.7719638e-01 + 1.6260000e+03 1.8335270e-01 + 1.6264000e+03 6.0403856e-01 + 1.6268000e+03 9.1467489e-01 + 1.6272000e+03 1.2251586e+00 + 1.6276000e+03 1.5451997e+00 + 1.6280000e+03 1.6550650e+00 + 1.6284000e+03 1.8646920e+00 + 1.6288000e+03 1.9543389e+00 + 1.6292000e+03 2.0240161e+00 + 1.6296000e+03 1.7038117e+00 + 1.6300000e+03 1.2737179e+00 + 1.6304000e+03 9.9374389e-01 + 1.6308000e+03 7.4395735e-01 + 1.6312000e+03 5.7435845e-01 + 1.6316000e+03 1.5470281e-01 + 1.6320000e+03 3.4873627e-02 + 1.6324000e+03 -7.3402240e-01 + 1.6328000e+03 -1.7344310e+00 + 1.6332000e+03 -2.6746802e+00 + 1.6336000e+03 -2.8446542e+00 + 1.6340000e+03 -2.9949968e+00 + 1.6344000e+03 -2.9288236e+00 + 1.6348000e+03 -2.6727151e+00 + 1.6352000e+03 -2.6245890e+00 + 1.6356000e+03 -2.7839280e+00 + 1.6360000e+03 -3.1097834e+00 + 1.6364000e+03 -3.2357470e+00 + 1.6368000e+03 -2.6958339e+00 + 1.6372000e+03 -1.3560232e+00 + 1.6376000e+03 2.2474381e-02 + 1.6380000e+03 1.0383818e+00 + 1.6384000e+03 1.6133145e+00 + 1.6388000e+03 2.0790984e+00 + 1.6392000e+03 2.1463730e+00 + 1.6396000e+03 1.9764293e+00 + 1.6400000e+03 2.2409207e+00 + 1.6404000e+03 2.5189790e+00 + 1.6408000e+03 2.5352842e+00 + 1.6412000e+03 2.3659248e+00 + 1.6416000e+03 1.8362929e+00 + 1.6420000e+03 1.0079804e+00 + 1.6424000e+03 1.0360278e-01 + 1.6428000e+03 -4.2599200e-01 + 1.6432000e+03 -6.1339873e-01 + 1.6436000e+03 -6.7335203e-01 + 1.6440000e+03 -6.7433693e-01 + 1.6444000e+03 -5.8186588e-01 + 1.6448000e+03 -8.2529498e-01 + 1.6452000e+03 -1.1724233e+00 + 1.6456000e+03 -1.4336329e+00 + 1.6460000e+03 -1.5179118e+00 + 1.6464000e+03 -1.2490973e+00 + 1.6468000e+03 -7.4149244e-01 + 1.6472000e+03 1.1430046e-01 + 1.6476000e+03 1.6339025e+00 + 1.6480000e+03 2.6886116e+00 + 1.6484000e+03 3.0878614e+00 + 1.6488000e+03 3.2746680e+00 + 1.6492000e+03 3.1583608e+00 + 1.6496000e+03 3.0790855e+00 + 1.6500000e+03 3.2801966e+00 + 1.6504000e+03 3.0616672e+00 + 1.6508000e+03 2.3915395e+00 + 1.6512000e+03 9.3449859e-01 + 1.6516000e+03 -6.2558927e-01 + 1.6520000e+03 -1.4133731e+00 + 1.6524000e+03 -2.2175260e+00 + 1.6528000e+03 -3.1633926e+00 + 1.6532000e+03 -3.9305297e+00 + 1.6536000e+03 -4.2814423e+00 + 1.6540000e+03 -4.0518291e+00 + 1.6544000e+03 -3.5235745e+00 + 1.6548000e+03 -2.8942203e+00 + 1.6552000e+03 -2.2550058e+00 + 1.6556000e+03 -1.4759584e+00 + 1.6560000e+03 -4.9698467e-01 + 1.6564000e+03 7.8195332e-01 + 1.6568000e+03 1.6610427e+00 + 1.6572000e+03 1.8103039e+00 + 1.6576000e+03 2.0947224e+00 + 1.6580000e+03 2.2572306e+00 + 1.6584000e+03 2.5842622e+00 + 1.6588000e+03 2.4996906e+00 + 1.6592000e+03 2.2816407e+00 + 1.6596000e+03 2.1953771e+00 + 1.6600000e+03 1.4790401e+00 + 1.6604000e+03 5.1862113e-01 + 1.6608000e+03 -5.2190800e-01 + 1.6612000e+03 -1.3642886e+00 + 1.6616000e+03 -2.1978764e+00 + 1.6620000e+03 -2.7064420e+00 + 1.6624000e+03 -3.1796420e+00 + 1.6628000e+03 -3.4563255e+00 + 1.6632000e+03 -2.8673645e+00 + 1.6636000e+03 -1.8434189e+00 + 1.6640000e+03 -5.9396186e-01 + 1.6644000e+03 4.5305961e-01 + 1.6648000e+03 1.3471318e+00 + 1.6652000e+03 1.9736173e+00 + 1.6656000e+03 2.8079712e+00 + 1.6660000e+03 3.3596168e+00 + 1.6664000e+03 3.6206535e+00 + 1.6668000e+03 4.0029324e+00 + 1.6672000e+03 4.1890482e+00 + 1.6676000e+03 4.1293016e+00 + 1.6680000e+03 3.5703907e+00 + 1.6684000e+03 3.2499844e+00 + 1.6688000e+03 2.4295375e+00 + 1.6692000e+03 1.6048259e+00 + 1.6696000e+03 5.0848416e-01 + 1.6700000e+03 -1.3721489e+00 + 1.6704000e+03 -2.1328732e+00 + 1.6708000e+03 -2.3933474e+00 + 1.6712000e+03 -2.8636842e+00 + 1.6716000e+03 -3.3436971e+00 + 1.6720000e+03 -3.5434168e+00 + 1.6724000e+03 -3.4829143e+00 + 1.6728000e+03 -3.1622800e+00 + 1.6732000e+03 -2.4174782e+00 + 1.6736000e+03 -1.8007441e+00 + 1.6740000e+03 -1.2379746e+00 + 1.6744000e+03 -8.1262021e-01 + 1.6748000e+03 -4.0747660e-01 + 1.6752000e+03 -2.2687487e-01 + 1.6756000e+03 2.8362104e-01 + 1.6760000e+03 9.9379770e-01 + 1.6764000e+03 1.7238674e+00 + 1.6768000e+03 1.9336506e+00 + 1.6772000e+03 2.2231259e+00 + 1.6776000e+03 2.3922799e+00 + 1.6780000e+03 2.2011772e+00 + 1.6784000e+03 1.6398166e+00 + 1.6788000e+03 1.0583026e+00 + 1.6792000e+03 8.8701421e-01 + 1.6796000e+03 6.4596038e-01 + 1.6800000e+03 5.3518546e-01 + 1.6804000e+03 -6.5223250e-02 + 1.6808000e+03 -2.9796274e-01 + 1.6812000e+03 -8.3967063e-01 + 1.6816000e+03 -1.4615171e+00 + 1.6820000e+03 -1.8689209e+00 + 1.6824000e+03 -1.9538247e+00 + 1.6828000e+03 -1.7732733e+00 + 1.6832000e+03 -1.2424386e+00 + 1.6836000e+03 -5.4139691e-01 + 1.6840000e+03 -1.9024046e-01 + 1.6844000e+03 -2.2897277e-01 + 1.6848000e+03 -2.9742053e-01 + 1.6852000e+03 -7.7704047e-01 + 1.6856000e+03 -1.0865067e+00 + 1.6860000e+03 -9.6647289e-01 + 1.6864000e+03 -3.7665990e-01 + 1.6868000e+03 2.0283920e-01 + 1.6872000e+03 5.3217920e-01 + 1.6876000e+03 1.3915467e+00 + 1.6880000e+03 2.2910375e+00 + 1.6884000e+03 3.0905340e+00 + 1.6888000e+03 3.6598695e+00 + 1.6892000e+03 4.4491879e+00 + 1.6896000e+03 4.1886593e+00 + 1.6900000e+03 2.9282468e+00 + 1.6904000e+03 1.5580259e+00 + 1.6908000e+03 7.9805102e-01 + 1.6912000e+03 -8.1189703e-01 + 1.6916000e+03 -1.5518801e+00 + 1.6920000e+03 -1.8918017e+00 + 1.6924000e+03 -2.0916027e+00 + 1.6928000e+03 -2.3212101e+00 + 1.6932000e+03 -2.5905245e+00 + 1.6936000e+03 -2.6796891e+00 + 1.6940000e+03 -2.4288309e+00 + 1.6944000e+03 -2.1479526e+00 + 1.6948000e+03 -2.0870102e+00 + 1.6952000e+03 -1.7664011e+00 + 1.6956000e+03 -1.5560702e+00 + 1.6960000e+03 -1.2661105e+00 + 1.6964000e+03 -9.7648951e-01 + 1.6968000e+03 -4.4718755e-01 + 1.6972000e+03 3.4189459e-01 + 1.6976000e+03 1.0107031e+00 + 1.6980000e+03 1.4394302e+00 + 1.6984000e+03 2.0280806e+00 + 1.6988000e+03 2.9965744e+00 + 1.6992000e+03 2.8950819e+00 + 1.6996000e+03 1.7841833e+00 + 1.7000000e+03 3.4353979e-01 + 1.7004000e+03 -2.5646165e-01 + 1.7008000e+03 -4.5663235e-01 + 1.7012000e+03 -4.1627445e-01 + 1.7016000e+03 -3.4561195e-01 + 1.7020000e+03 -2.1027507e-01 + 1.7024000e+03 1.4931492e-01 + 1.7028000e+03 2.7702853e-01 + 1.7032000e+03 1.1649037e-01 + 1.7036000e+03 -3.7056285e-01 + 1.7040000e+03 -7.5995859e-01 + 1.7044000e+03 -1.0596258e+00 + 1.7048000e+03 -1.8194465e+00 + 1.7052000e+03 -2.5384703e+00 + 1.7056000e+03 -2.9278961e+00 + 1.7060000e+03 -3.2103604e+00 + 1.7064000e+03 -3.2351029e+00 + 1.7068000e+03 -2.5606373e+00 + 1.7072000e+03 -1.6211069e+00 + 1.7076000e+03 -8.0154398e-01 + 1.7080000e+03 6.4799153e-01 + 1.7084000e+03 1.5075181e+00 + 1.7088000e+03 2.0472101e+00 + 1.7092000e+03 2.8669166e+00 + 1.7096000e+03 3.6869243e+00 + 1.7100000e+03 4.0169320e+00 + 1.7104000e+03 3.9071218e+00 + 1.7108000e+03 3.4774029e+00 + 1.7112000e+03 3.0478911e+00 + 1.7116000e+03 2.0684652e+00 + 1.7120000e+03 8.8914678e-01 + 1.7124000e+03 -1.5302247e-04 + 1.7128000e+03 -3.7962479e-01 + 1.7132000e+03 -9.7464286e-01 + 1.7136000e+03 -1.8096518e+00 + 1.7140000e+03 -2.1798931e+00 + 1.7144000e+03 -1.9004539e+00 + 1.7148000e+03 -1.9310209e+00 + 1.7152000e+03 -2.2114024e+00 + 1.7156000e+03 -2.4917627e+00 + 1.7160000e+03 -2.6022831e+00 + 1.7164000e+03 -2.5630284e+00 + 1.7168000e+03 -2.0704820e+00 + 1.7172000e+03 -1.3895920e+00 + 1.7176000e+03 -7.0773462e-01 + 1.7180000e+03 2.7875021e-01 + 1.7184000e+03 1.2609740e+00 + 1.7188000e+03 1.7301534e+00 + 1.7192000e+03 2.2126770e+00 + 1.7196000e+03 2.5512911e+00 + 1.7200000e+03 2.6199997e+00 + 1.7204000e+03 2.3353320e+00 + 1.7208000e+03 2.1131269e+00 + 1.7212000e+03 1.5391195e+00 + 1.7216000e+03 9.1456473e-01 + 1.7220000e+03 7.4932698e-02 + 1.7224000e+03 -5.3998667e-01 + 1.7228000e+03 -1.0916316e+00 + 1.7232000e+03 -1.5522074e+00 + 1.7236000e+03 -1.9800652e+00 + 1.7240000e+03 -1.8120673e+00 + 1.7244000e+03 -1.4313279e+00 + 1.7248000e+03 -8.8099587e-01 + 1.7252000e+03 -7.4093445e-01 + 1.7256000e+03 -5.9104327e-01 + 1.7260000e+03 -3.9984510e-01 + 1.7264000e+03 -4.6473369e-01 + 1.7268000e+03 -6.5385856e-01 + 1.7272000e+03 -7.8873706e-01 + 1.7276000e+03 -7.6372923e-01 + 1.7280000e+03 -8.7444266e-01 + 1.7284000e+03 -3.9490348e-01 + 1.7288000e+03 2.1498375e-01 + 1.7292000e+03 6.7523841e-01 + 1.7296000e+03 1.5959276e+00 + 1.7300000e+03 1.8564853e+00 + 1.7304000e+03 2.0469791e+00 + 1.7308000e+03 2.0127693e+00 + 1.7312000e+03 2.1266914e+00 + 1.7316000e+03 2.0305734e+00 + 1.7320000e+03 2.1738247e+00 + 1.7324000e+03 2.1892834e+00 + 1.7328000e+03 1.6810694e+00 + 1.7332000e+03 1.4748567e+00 + 1.7336000e+03 9.3940111e-01 + 1.7340000e+03 1.6034874e-01 + 1.7344000e+03 -3.2049244e-01 + 1.7348000e+03 -5.1161330e-01 + 1.7352000e+03 -5.5297852e-01 + 1.7356000e+03 -1.2542001e+00 + 1.7360000e+03 -1.7553001e+00 + 1.7364000e+03 -1.8461127e+00 + 1.7368000e+03 -1.8766016e+00 + 1.7372000e+03 -2.0267460e+00 + 1.7376000e+03 -2.0766146e+00 + 1.7380000e+03 -2.1264267e+00 + 1.7384000e+03 -1.9861523e+00 + 1.7388000e+03 -1.4458991e+00 + 1.7392000e+03 -8.0578166e-01 + 1.7396000e+03 -3.1562056e-01 + 1.7400000e+03 2.3450433e-01 + 1.7404000e+03 4.4460778e-01 + 1.7408000e+03 2.2464810e-01 + 1.7412000e+03 -1.3550650e-01 + 1.7416000e+03 -9.5745452e-02 + 1.7420000e+03 7.4121354e-02 + 1.7424000e+03 1.3402730e-01 + 1.7428000e+03 4.1619898e-03 + 1.7432000e+03 -4.6573997e-01 + 1.7436000e+03 -7.1576489e-01 + 1.7440000e+03 -7.8536764e-01 + 1.7444000e+03 -7.3525497e-01 + 1.7448000e+03 -1.8512655e-01 + 1.7452000e+03 4.3510534e-01 + 1.7456000e+03 9.8529741e-01 + 1.7460000e+03 1.3453135e+00 + 1.7464000e+03 1.6252450e+00 + 1.7468000e+03 1.8450570e+00 + 1.7472000e+03 1.9048446e+00 + 1.7476000e+03 1.6046982e+00 + 1.7480000e+03 1.0046451e+00 + 1.7484000e+03 3.3470332e-01 + 1.7488000e+03 2.9820994e-01 + 1.7492000e+03 4.0754805e-01 + 1.7496000e+03 1.5158685e-01 + 1.7500000e+03 -1.8304963e-01 + 1.7504000e+03 -9.6211332e-02 + 1.7508000e+03 -1.9641238e-01 + 1.7512000e+03 -7.1645175e-01 + 1.7516000e+03 -9.6601639e-01 + 1.7520000e+03 -7.2571701e-01 + 1.7524000e+03 -5.0527645e-01 + 1.7528000e+03 -4.1515735e-01 + 1.7532000e+03 -5.5513215e-01 + 1.7536000e+03 -7.5493863e-01 + 1.7540000e+03 -6.7469622e-01 + 1.7544000e+03 -5.0456640e-01 + 1.7548000e+03 -7.4527412e-02 + 1.7552000e+03 3.8015718e-01 + 1.7556000e+03 1.0025578e+00 + 1.7560000e+03 1.1698179e+00 + 1.7564000e+03 1.2916937e+00 + 1.7568000e+03 1.4452113e+00 + 1.7572000e+03 1.1947519e+00 + 1.7576000e+03 6.9428427e-01 + 1.7580000e+03 1.0382546e-01 + 1.7584000e+03 -3.8860819e-01 + 1.7588000e+03 -1.0860688e+00 + 1.7592000e+03 -1.4109669e+00 + 1.7596000e+03 -1.7272414e+00 + 1.7600000e+03 -2.1797738e+00 + 1.7604000e+03 -2.3903466e+00 + 1.7608000e+03 -2.3304902e+00 + 1.7612000e+03 -2.2402923e+00 + 1.7616000e+03 -2.0799903e+00 + 1.7620000e+03 -1.9496251e+00 + 1.7624000e+03 -1.6992154e+00 + 1.7628000e+03 -9.8741976e-01 + 1.7632000e+03 -1.8234507e-01 + 1.7636000e+03 6.7397994e-01 + 1.7640000e+03 1.1969182e+00 + 1.7644000e+03 1.4327894e+00 + 1.7648000e+03 1.8150972e+00 + 1.7652000e+03 1.9059232e+00 + 1.7656000e+03 1.8904803e+00 + 1.7660000e+03 1.9939481e+00 + 1.7664000e+03 2.1065635e+00 + 1.7668000e+03 2.3823478e+00 + 1.7672000e+03 2.5369803e+00 + 1.7676000e+03 2.1165486e+00 + 1.7680000e+03 2.0060245e+00 + 1.7684000e+03 1.9921038e+00 + 1.7688000e+03 1.5850927e+00 + 1.7692000e+03 1.0156262e+00 + 1.7696000e+03 1.5377969e-01 + 1.7700000e+03 -6.9679219e-01 + 1.7704000e+03 -1.5871390e+00 + 1.7708000e+03 -2.3774870e+00 + 1.7712000e+03 -2.5179200e+00 + 1.7716000e+03 -2.3882747e+00 + 1.7720000e+03 -1.9785913e+00 + 1.7724000e+03 -1.5089726e+00 + 1.7728000e+03 -1.1892420e+00 + 1.7732000e+03 -8.4940281e-01 + 1.7736000e+03 -3.0916374e-01 + 1.7740000e+03 2.4331237e-01 + 1.7744000e+03 7.4578274e-01 + 1.7748000e+03 1.5915660e+00 + 1.7752000e+03 1.8638456e+00 + 1.7756000e+03 1.7942673e+00 + 1.7760000e+03 1.5446306e+00 + 1.7764000e+03 8.5482207e-01 + 1.7768000e+03 5.7491614e-01 + 1.7772000e+03 -7.6521780e-01 + 1.7776000e+03 -9.9562542e-01 + 1.7780000e+03 -1.1964232e+00 + 1.7784000e+03 -1.1959504e+00 + 1.7788000e+03 -1.3196022e+00 + 1.7792000e+03 -1.3926910e+00 + 1.7796000e+03 -1.4000644e+00 + 1.7800000e+03 -1.6473166e+00 + 1.7804000e+03 -1.8207420e+00 + 1.7808000e+03 -2.1127789e+00 + 1.7812000e+03 -2.0436437e+00 + 1.7816000e+03 -1.7845159e+00 + 1.7820000e+03 -1.4291854e+00 + 1.7824000e+03 -9.4778317e-01 + 1.7828000e+03 -3.0299063e-01 + 1.7832000e+03 6.9177357e-01 + 1.7836000e+03 1.9367771e+00 + 1.7840000e+03 2.8001256e+00 + 1.7844000e+03 3.1940460e+00 + 1.7848000e+03 2.5947943e+00 + 1.7852000e+03 2.0156078e+00 + 1.7856000e+03 1.6462741e+00 + 1.7860000e+03 1.1367703e+00 + 1.7864000e+03 9.5711594e-01 + 1.7868000e+03 7.5830454e-01 + 1.7872000e+03 4.2167549e-01 + 1.7876000e+03 4.5993988e-02 + 1.7880000e+03 -4.8539379e-01 + 1.7884000e+03 -1.1933307e+00 + 1.7888000e+03 -1.5635974e+00 + 1.7892000e+03 -1.1239533e+00 + 1.7896000e+03 -5.6449908e-01 + 1.7900000e+03 5.4934183e-02 + 1.7904000e+03 4.1427202e-01 + 1.7908000e+03 1.1386790e-01 + 1.7912000e+03 -4.6465922e-02 + 1.7916000e+03 -2.5637156e-01 + 1.7920000e+03 -3.2671664e-01 + 1.7924000e+03 -5.8689504e-01 + 1.7928000e+03 -6.8740790e-01 + 1.7932000e+03 -4.5710362e-01 + 1.7936000e+03 -2.6646022e-01 + 1.7940000e+03 -4.0681947e-01 + 1.7944000e+03 -6.3642459e-01 + 1.7948000e+03 -7.0611915e-01 + 1.7952000e+03 -8.3588723e-01 + 1.7956000e+03 -8.8566553e-01 + 1.7960000e+03 -7.7534660e-01 + 1.7964000e+03 -7.1487763e-01 + 1.7968000e+03 -5.2409007e-01 + 1.7972000e+03 -2.4334116e-01 + 1.7976000e+03 9.7354682e-02 + 1.7980000e+03 4.3813485e-01 + 1.7984000e+03 2.1857623e-01 + 1.7988000e+03 -1.2154692e-01 + 1.7992000e+03 -2.9178417e-01 + 1.7996000e+03 -1.4647307e-03 + 1.8000000e+03 3.5874034e-01 + 1.8004000e+03 4.1788309e-01 + 1.8008000e+03 -7.2775729e-02 + 1.8012000e+03 -3.6274180e-01 + 1.8016000e+03 -6.1721775e-01 + 1.8020000e+03 -6.4927556e-01 + 1.8024000e+03 -6.1708038e-01 + 1.8028000e+03 -7.5861062e-01 + 1.8032000e+03 -6.0887265e-01 + 1.8036000e+03 -2.2906776e-01 + 1.8040000e+03 -6.8938787e-02 + 1.8044000e+03 4.1226839e-02 + 1.8048000e+03 2.5149369e-01 + 1.8052000e+03 2.8162447e-01 + 1.8056000e+03 1.9183564e-01 + 1.8060000e+03 -7.8752305e-03 + 1.8064000e+03 5.2388443e-02 + 1.8068000e+03 2.1281470e-01 + 1.8072000e+03 6.3347714e-01 + 1.8076000e+03 1.1340523e+00 + 1.8080000e+03 2.2247782e+00 + 1.8084000e+03 2.4423340e+00 + 1.8088000e+03 1.9562630e+00 + 1.8092000e+03 1.1468810e+00 + 1.8096000e+03 7.5727363e-01 + 1.8100000e+03 -6.5266457e-01 + 1.8104000e+03 -1.3229067e+00 + 1.8108000e+03 -1.6134913e+00 + 1.8112000e+03 -1.8042062e+00 + 1.8116000e+03 -1.8549981e+00 + 1.8120000e+03 -1.6658750e+00 + 1.8124000e+03 -1.3068132e+00 + 1.8128000e+03 -8.8791028e-01 + 1.8132000e+03 -4.5902374e-01 + 1.8136000e+03 -8.3583518e-02 + 1.8140000e+03 4.3883910e-02 + 1.8144000e+03 4.2249147e-01 + 1.8148000e+03 5.1797166e-01 + 1.8152000e+03 6.9999131e-01 + 1.8156000e+03 5.2052237e-01 + 1.8160000e+03 3.8120908e-01 + 1.8164000e+03 2.2200678e-01 + 1.8168000e+03 2.6255144e-01 + 1.8172000e+03 -6.6967228e-02 + 1.8176000e+03 -7.1697168e-01 + 1.8180000e+03 -1.2969240e+00 + 1.8184000e+03 -1.4070471e+00 + 1.8188000e+03 -1.2870758e+00 + 1.8192000e+03 -7.2717827e-01 + 1.8196000e+03 -2.0724771e-01 + 1.8200000e+03 1.7221220e-01 + 1.8204000e+03 9.9278644e-01 + 1.8208000e+03 1.4602974e+00 + 1.8212000e+03 9.5908815e-01 + 1.8216000e+03 5.4786874e-01 + 1.8220000e+03 3.3669216e-01 + 1.8224000e+03 2.8585199e-01 + 1.8228000e+03 1.7173486e-01 + 1.8232000e+03 -2.4639929e-01 + 1.8236000e+03 -7.0662097e-01 + 1.8240000e+03 -1.2063698e+00 + 1.8244000e+03 -1.6525901e+00 + 1.8248000e+03 -1.9397135e+00 + 1.8252000e+03 -2.3006477e+00 + 1.8256000e+03 -2.5710125e+00 + 1.8260000e+03 -2.1124672e+00 + 1.8264000e+03 -1.6717131e+00 + 1.8268000e+03 -1.6109363e+00 + 1.8272000e+03 -1.4202188e+00 + 1.8276000e+03 -6.0956872e-01 + 1.8280000e+03 -4.5899902e-01 + 1.8284000e+03 7.6789467e-01 + 1.8288000e+03 2.5201432e+00 + 1.8292000e+03 3.9113191e+00 + 1.8296000e+03 3.9408239e+00 + 1.8300000e+03 4.0302043e+00 + 1.8304000e+03 3.6397858e+00 + 1.8308000e+03 3.0496395e+00 + 1.8312000e+03 2.3133234e+00 + 1.8316000e+03 1.7834679e+00 + 1.8320000e+03 1.5676693e+00 + 1.8324000e+03 1.2551043e+00 + 1.8328000e+03 6.2926837e-01 + 1.8332000e+03 -1.5505548e-01 + 1.8336000e+03 -6.1362136e-01 + 1.8340000e+03 -1.0421317e+00 + 1.8344000e+03 -1.2636963e+00 + 1.8348000e+03 -1.1754910e+00 + 1.8352000e+03 -1.2435902e+00 + 1.8356000e+03 -1.5621796e+00 + 1.8360000e+03 -1.5176209e+00 + 1.8364000e+03 -1.1976715e+00 + 1.8368000e+03 -7.2254901e-01 + 1.8372000e+03 -2.7421534e-01 + 1.8376000e+03 4.8828164e-01 + 1.8380000e+03 1.4128513e+00 + 1.8384000e+03 2.0948634e+00 + 1.8388000e+03 2.6088962e+00 + 1.8392000e+03 3.0670919e+00 + 1.8396000e+03 2.9182155e+00 + 1.8400000e+03 2.6541557e+00 + 1.8404000e+03 1.9168508e+00 + 1.8408000e+03 3.2741796e-01 + 1.8412000e+03 -1.2307549e+00 + 1.8416000e+03 -2.5020314e+00 + 1.8420000e+03 -3.2939321e+00 + 1.8424000e+03 -3.4969160e+00 + 1.8428000e+03 -3.5372296e+00 + 1.8432000e+03 -3.4672860e+00 + 1.8436000e+03 -3.6368964e+00 + 1.8440000e+03 -3.7263206e+00 + 1.8444000e+03 -3.3756808e+00 + 1.8448000e+03 -2.5264581e+00 + 1.8452000e+03 -1.5625580e+00 + 1.8456000e+03 -4.7853435e-01 + 1.8460000e+03 9.5220501e-01 + 1.8464000e+03 1.9007653e+00 + 1.8468000e+03 2.8018098e+00 + 1.8472000e+03 3.4789687e+00 + 1.8476000e+03 3.8386317e+00 + 1.8480000e+03 4.0980442e+00 + 1.8484000e+03 4.1976231e+00 + 1.8488000e+03 3.9089138e+00 + 1.8492000e+03 3.1617496e+00 + 1.8496000e+03 2.3279134e+00 + 1.8500000e+03 1.6882208e+00 + 1.8504000e+03 9.3353955e-01 + 1.8508000e+03 2.3492909e-01 + 1.8512000e+03 -3.5376121e-01 + 1.8516000e+03 -9.7354032e-01 + 1.8520000e+03 -1.4620544e+00 + 1.8524000e+03 -1.7410979e+00 + 1.8528000e+03 -2.0479667e+00 + 1.8532000e+03 -2.5540172e+00 + 1.8536000e+03 -2.3179379e+00 + 1.8540000e+03 -2.1265281e+00 + 1.8544000e+03 -1.4814611e+00 + 1.8548000e+03 -5.7107495e-01 + 1.8552000e+03 -2.8075064e-01 + 1.8556000e+03 1.3955585e-01 + 1.8560000e+03 5.7985202e-01 + 1.8564000e+03 9.2010761e-01 + 1.8568000e+03 1.3065529e+00 + 1.8572000e+03 1.5576831e+00 + 1.8576000e+03 1.6009430e+00 + 1.8580000e+03 1.2010574e+00 + 1.8584000e+03 8.6009451e-01 + 1.8588000e+03 4.4980338e-01 + 1.8592000e+03 9.9147245e-02 + 1.8596000e+03 2.9847032e-01 + 1.8600000e+03 3.7805156e-01 + 1.8604000e+03 -1.2208084e-02 + 1.8608000e+03 -3.2475639e-02 + 1.8612000e+03 -2.4271146e-01 + 1.8616000e+03 -7.9410363e-01 + 1.8620000e+03 -1.2032470e+00 + 1.8624000e+03 -8.6350161e-01 + 1.8628000e+03 -4.3361899e-01 + 1.8632000e+03 1.0621076e-01 + 1.8636000e+03 3.8616120e-01 + 1.8640000e+03 1.1262453e+00 + 1.8644000e+03 1.2465129e+00 + 1.8648000e+03 8.0692079e-01 + 1.8652000e+03 1.7760943e-01 + 1.8656000e+03 -6.1166310e-01 + 1.8660000e+03 -8.9091776e-01 + 1.8664000e+03 -9.8032948e-01 + 1.8668000e+03 -1.2498118e+00 + 1.8672000e+03 -1.4896254e+00 + 1.8676000e+03 -1.8696629e+00 + 1.8680000e+03 -2.0498629e+00 + 1.8684000e+03 -1.9200134e+00 + 1.8688000e+03 -1.6200847e+00 + 1.8692000e+03 -1.2500892e+00 + 1.8696000e+03 -5.8002801e-01 + 1.8700000e+03 7.8003958e-01 + 1.8704000e+03 1.8201562e+00 + 1.8708000e+03 2.4702987e+00 + 1.8712000e+03 3.1805611e+00 + 1.8716000e+03 2.9309194e+00 + 1.8720000e+03 2.6914118e+00 + 1.8724000e+03 2.5418136e+00 + 1.8728000e+03 2.0621824e+00 + 1.8732000e+03 1.1425376e+00 + 1.8736000e+03 1.7291982e-01 + 1.8740000e+03 -3.2674639e-01 + 1.8744000e+03 -8.6653935e-01 + 1.8748000e+03 -9.3639595e-01 + 1.8752000e+03 -4.3630424e-01 + 1.8756000e+03 -6.0638668e-01 + 1.8760000e+03 -1.0367296e+00 + 1.8764000e+03 -1.8071844e+00 + 1.8768000e+03 -2.6176879e+00 + 1.8772000e+03 -3.1681401e+00 + 1.8776000e+03 -3.4385255e+00 + 1.8780000e+03 -3.1387037e+00 + 1.8784000e+03 -2.5787730e+00 + 1.8788000e+03 -1.1988007e+00 + 1.8792000e+03 3.1146851e-02 + 1.8796000e+03 1.0710120e+00 + 1.8800000e+03 2.0010094e+00 + 1.8804000e+03 2.5710828e+00 + 1.8808000e+03 2.3412368e+00 + 1.8812000e+03 2.1814056e+00 + 1.8816000e+03 1.8241227e+00 + 1.8820000e+03 2.0674495e+00 + 1.8824000e+03 2.1247783e+00 + 1.8828000e+03 2.1498046e+00 + 1.8832000e+03 2.4341767e+00 + 1.8836000e+03 2.4746906e+00 + 1.8840000e+03 1.6450679e+00 + 1.8844000e+03 6.3539410e-01 + 1.8848000e+03 -3.0386646e-01 + 1.8852000e+03 -8.8413145e-01 + 1.8856000e+03 -1.4742607e+00 + 1.8860000e+03 -1.7846198e+00 + 1.8864000e+03 -2.5051928e+00 + 1.8868000e+03 -2.9358707e+00 + 1.8872000e+03 -3.0165161e+00 + 1.8876000e+03 -2.7069710e+00 + 1.8880000e+03 -2.2973969e+00 + 1.8884000e+03 -2.1777431e+00 + 1.8888000e+03 -1.2376719e+00 + 1.8892000e+03 -8.9728685e-01 + 1.8896000e+03 -5.8651305e-01 + 1.8900000e+03 -1.5547551e-02 + 1.8904000e+03 5.7519353e-01 + 1.8908000e+03 1.3558170e+00 + 1.8912000e+03 2.1638968e+00 + 1.8916000e+03 2.6148247e+00 + 1.8920000e+03 2.7901555e+00 + 1.8924000e+03 2.3176498e+00 + 1.8928000e+03 1.6178979e+00 + 1.8932000e+03 8.6811241e-01 + 1.8936000e+03 3.3832789e-01 + 1.8940000e+03 5.8542581e-02 + 1.8944000e+03 -1.7138618e-01 + 1.8948000e+03 -5.3136468e-01 + 1.8952000e+03 -7.2155914e-01 + 1.8956000e+03 -1.0214979e+00 + 1.8960000e+03 -1.2916400e+00 + 1.8964000e+03 -1.4218489e+00 + 1.8968000e+03 -1.4721471e+00 + 1.8972000e+03 -1.5825691e+00 + 1.8976000e+03 -1.4630594e+00 + 1.8980000e+03 -1.1436485e+00 + 1.8984000e+03 -1.0342740e+00 + 1.8988000e+03 -7.2486331e-01 + 1.8992000e+03 -1.1654502e+00 + 1.8996000e+03 -1.4218519e+00 + 1.9000000e+03 -1.5589562e+00 + 1.9004000e+03 -1.4185741e+00 + 1.9008000e+03 -1.1878855e+00 + 1.9012000e+03 -4.7749788e-01 + 1.9016000e+03 2.6640244e-01 + 1.9020000e+03 1.0150089e+00 + 1.9024000e+03 1.5982022e+00 + 1.9028000e+03 2.0697774e+00 + 1.9032000e+03 2.0363375e+00 + 1.9036000e+03 1.7151875e+00 + 1.9040000e+03 1.2332845e+00 + 1.9044000e+03 9.9350573e-01 + 1.9048000e+03 8.3383552e-01 + 1.9052000e+03 7.7863212e-01 + 1.9056000e+03 2.9343574e-01 + 1.9060000e+03 -5.7944910e-01 + 1.9064000e+03 -1.3099270e+00 + 1.9068000e+03 -1.8736353e+00 + 1.9072000e+03 -2.4756898e+00 + 1.9076000e+03 -2.2753864e+00 + 1.9080000e+03 -1.6849031e+00 + 1.9084000e+03 -7.7587745e-01 + 1.9088000e+03 5.2913617e-02 + 1.9092000e+03 7.2656526e-01 + 1.9096000e+03 7.4671810e-01 + 1.9100000e+03 7.8690589e-01 + 1.9104000e+03 1.3202101e+00 + 1.9108000e+03 1.4270325e+00 + 1.9112000e+03 8.2728293e-01 + 1.9116000e+03 -1.2403109e-02 + 1.9120000e+03 -1.1024268e+00 + 1.9124000e+03 -1.2925096e+00 + 1.9128000e+03 -1.3730462e+00 + 1.9132000e+03 -2.4037407e+00 + 1.9136000e+03 -2.7011298e+00 + 1.9140000e+03 -2.3046487e+00 + 1.9144000e+03 -1.2449987e+00 + 1.9148000e+03 -1.3539944e-01 + 1.9152000e+03 6.9406693e-01 + 1.9156000e+03 1.1637306e+00 + 1.9160000e+03 1.3334583e+00 + 1.9164000e+03 2.1633345e+00 + 1.9168000e+03 2.4733300e+00 + 1.9172000e+03 2.0535791e+00 + 1.9176000e+03 1.7740539e+00 + 1.9180000e+03 1.5848644e+00 + 1.9184000e+03 4.1574187e-01 + 1.9188000e+03 8.6460466e-02 + 1.9192000e+03 -6.5306394e-01 + 1.9196000e+03 -1.1027679e+00 + 1.9200000e+03 -1.4727283e+00 + 1.9204000e+03 -1.5530259e+00 + 1.9208000e+03 -1.4435719e+00 + 1.9212000e+03 -1.4142692e+00 + 1.9216000e+03 -1.3749452e+00 + 1.9220000e+03 -7.6554127e-01 + 1.9224000e+03 -5.3611154e-01 + 1.9228000e+03 -2.6600297e-01 + 1.9232000e+03 1.1277720e-01 + 1.9236000e+03 4.5219144e-01 + 1.9240000e+03 5.3177611e-01 + 1.9244000e+03 6.9158776e-01 + 1.9248000e+03 1.0016432e+00 + 1.9252000e+03 9.5181489e-01 + 1.9256000e+03 6.9212116e-01 + 1.9260000e+03 4.7263039e-01 + 1.9264000e+03 2.8310240e-01 + 1.9268000e+03 3.8348788e-01 + 1.9272000e+03 5.3396387e-01 + 1.9276000e+03 1.3545660e+00 + 1.9280000e+03 1.9952637e+00 + 1.9284000e+03 2.1060260e+00 + 1.9288000e+03 1.9167632e+00 + 1.9292000e+03 1.4573984e+00 + 1.9296000e+03 7.2803414e-01 + 1.9300000e+03 8.5629950e-03 + 1.9304000e+03 -7.9112691e-01 + 1.9308000e+03 -1.4612490e+00 + 1.9312000e+03 -1.9715993e+00 + 1.9316000e+03 -2.2019354e+00 + 1.9320000e+03 -2.2522174e+00 + 1.9324000e+03 -3.2624532e+00 + 1.9328000e+03 -3.3928181e+00 + 1.9332000e+03 -2.7132818e+00 + 1.9336000e+03 -2.1037668e+00 + 1.9340000e+03 -1.4841956e+00 + 1.9344000e+03 -1.0346059e+00 + 1.9348000e+03 -6.0565562e-01 + 1.9352000e+03 -4.3246341e-01 + 1.9356000e+03 -5.2069437e-02 + 1.9360000e+03 2.8200112e-01 + 1.9364000e+03 8.7420323e-01 + 1.9368000e+03 1.6436924e+00 + 1.9372000e+03 1.7691740e+00 + 1.9376000e+03 1.6138415e+00 + 1.9380000e+03 1.7530001e+00 + 1.9384000e+03 1.6334027e+00 + 1.9388000e+03 1.4306152e+00 + 1.9392000e+03 1.4185868e+00 + 1.9396000e+03 1.2207056e+00 + 1.9400000e+03 9.3127569e-01 + 1.9404000e+03 4.4147501e-01 + 1.9408000e+03 -3.9896437e-01 + 1.9412000e+03 -1.1845458e+00 + 1.9416000e+03 -1.6877632e+00 + 1.9420000e+03 -1.8320511e+00 + 1.9424000e+03 -1.9216722e+00 + 1.9428000e+03 -1.7158214e+00 + 1.9432000e+03 -1.4998505e+00 + 1.9436000e+03 -1.0328148e+00 + 1.9440000e+03 -5.5455941e-01 + 1.9444000e+03 -5.2740619e-01 + 1.9448000e+03 -8.7360509e-01 + 1.9452000e+03 -9.1487961e-01 + 1.9456000e+03 -4.6855586e-01 + 1.9460000e+03 4.4314765e-01 + 1.9464000e+03 1.6733296e+00 + 1.9468000e+03 2.4847370e+00 + 1.9472000e+03 2.5860698e+00 + 1.9476000e+03 2.7675504e+00 + 1.9480000e+03 2.6988829e+00 + 1.9484000e+03 2.4299988e+00 + 1.9488000e+03 2.0408980e+00 + 1.9492000e+03 1.7016953e+00 + 1.9496000e+03 1.1886631e+00 + 1.9500000e+03 7.6407398e-01 + 1.9504000e+03 -8.1155905e-03 + 1.9508000e+03 -9.9366253e-01 + 1.9512000e+03 -2.0330130e+00 + 1.9516000e+03 -2.7169442e+00 + 1.9520000e+03 -3.0173746e+00 + 1.9524000e+03 -3.2679921e+00 + 1.9528000e+03 -3.5287474e+00 + 1.9532000e+03 -3.6196002e+00 + 1.9536000e+03 -3.3629010e+00 + 1.9540000e+03 -2.8121463e+00 + 1.9544000e+03 -1.7086900e+00 + 1.9548000e+03 -4.7384485e-01 + 1.9552000e+03 7.1048616e-01 + 1.9556000e+03 1.4952298e+00 + 1.9560000e+03 2.2124082e+00 + 1.9564000e+03 2.6438442e+00 + 1.9568000e+03 2.7082559e+00 + 1.9572000e+03 2.2845037e+00 + 1.9576000e+03 1.7334887e+00 + 1.9580000e+03 1.9243349e+00 + 1.9584000e+03 2.2353403e+00 + 1.9588000e+03 1.7365279e+00 + 1.9592000e+03 1.1077456e+00 + 1.9596000e+03 5.5218902e-01 + 1.9600000e+03 2.1479996e-02 + 1.9604000e+03 -4.6707005e-01 + 1.9608000e+03 -5.9032557e-01 + 1.9612000e+03 -9.3121225e-01 + 1.9616000e+03 -1.2415824e+00 + 1.9620000e+03 -1.4049169e+00 + 1.9624000e+03 -1.5669362e+00 + 1.9628000e+03 -1.4572252e+00 + 1.9632000e+03 -1.0353938e+00 + 1.9636000e+03 -7.9625477e-01 + 1.9640000e+03 -6.0704102e-01 + 1.9644000e+03 -4.5756171e-01 + 1.9648000e+03 -2.5757256e-01 + 1.9652000e+03 2.8214114e-01 + 1.9656000e+03 7.6243828e-01 + 1.9660000e+03 1.5303780e+00 + 1.9664000e+03 2.3581211e+00 + 1.9668000e+03 2.7502687e+00 + 1.9672000e+03 2.4429298e+00 + 1.9676000e+03 2.2237462e+00 + 1.9680000e+03 1.7973503e+00 + 1.9684000e+03 1.1878554e+00 + 1.9688000e+03 2.6843965e-01 + 1.9692000e+03 -5.5068619e-01 + 1.9696000e+03 -1.8296773e+00 + 1.9700000e+03 -2.3289347e+00 + 1.9704000e+03 -2.3786364e+00 + 1.9708000e+03 -2.5477067e+00 + 1.9712000e+03 -2.4550583e+00 + 1.9716000e+03 -2.4954321e+00 + 1.9720000e+03 -2.4375723e+00 + 1.9724000e+03 -2.1013285e+00 + 1.9728000e+03 -1.7020767e+00 + 1.9732000e+03 -1.3528192e+00 + 1.9736000e+03 -9.4789266e-01 + 1.9740000e+03 -4.3122732e-01 + 1.9744000e+03 1.3341331e-01 + 1.9748000e+03 3.3890759e-01 + 1.9752000e+03 7.5467756e-01 + 1.9756000e+03 9.1201759e-01 + 1.9760000e+03 1.1693877e+00 + 1.9764000e+03 1.5132163e+00 + 1.9768000e+03 1.8286811e+00 + 1.9772000e+03 1.5961995e+00 + 1.9776000e+03 1.0250387e+00 + 1.9780000e+03 1.0492834e+00 + 1.9784000e+03 1.0967306e+00 + 1.9788000e+03 1.3367307e+00 + 1.9792000e+03 1.3051971e+00 + 1.9796000e+03 5.0071453e-01 + 1.9800000e+03 -4.7546804e-01 + 1.9804000e+03 -1.3438451e+00 + 1.9808000e+03 -1.9079769e+00 + 1.9812000e+03 -2.1808443e+00 + 1.9816000e+03 -2.2288548e+00 + 1.9820000e+03 -1.7039732e+00 + 1.9824000e+03 -1.1291213e+00 + 1.9828000e+03 -5.5840798e-01 + 1.9832000e+03 2.0460581e-01 + 1.9836000e+03 9.6536457e-01 + 1.9840000e+03 1.4753066e+00 + 1.9844000e+03 1.6451549e+00 + 1.9848000e+03 1.8048444e+00 + 1.9852000e+03 1.7245141e+00 + 1.9856000e+03 1.8943526e+00 + 1.9860000e+03 1.9342463e+00 + 1.9864000e+03 1.8545679e+00 + 1.9868000e+03 1.5651834e+00 + 1.9872000e+03 1.1961229e+00 + 1.9876000e+03 6.6733426e-01 + 1.9880000e+03 3.6862907e-01 + 1.9884000e+03 -8.0191010e-02 + 1.9888000e+03 -3.9255121e-02 + 1.9892000e+03 1.1322930e-02 + 1.9896000e+03 -2.0818009e-01 + 1.9900000e+03 -1.6384181e+00 + 1.9904000e+03 -2.2892366e+00 + 1.9908000e+03 -2.8104239e+00 + 1.9912000e+03 -3.0415840e+00 + 1.9916000e+03 -3.2426811e+00 + 1.9920000e+03 -3.1737823e+00 + 1.9924000e+03 -2.4346492e+00 + 1.9928000e+03 -1.5152366e+00 + 1.9932000e+03 -5.0564880e-01 + 1.9936000e+03 5.3402735e-01 + 1.9940000e+03 1.1836618e+00 + 1.9944000e+03 1.3771675e+00 + 1.9948000e+03 1.6469634e+00 + 1.9952000e+03 1.6338205e+00 + 1.9956000e+03 1.5873470e+00 + 1.9960000e+03 8.2111554e-01 + 1.9964000e+03 -1.6949114e-01 + 1.9968000e+03 -1.1502031e+00 + 1.9972000e+03 -1.7910518e+00 + 1.9976000e+03 -1.8618400e+00 + 1.9980000e+03 -1.4724042e+00 + 1.9984000e+03 -9.1274968e-01 + 1.9988000e+03 -5.2298527e-01 + 1.9992000e+03 -2.1309891e-01 + 1.9996000e+03 -2.8304128e-01 + 2.0000000e+03 -1.4302591e-01 + 2.0004000e+03 2.8716065e-01 + 2.0008000e+03 6.9735931e-01 + 2.0012000e+03 1.1277744e+00 + 2.0016000e+03 1.5534473e+00 + 2.0020000e+03 1.7991182e+00 + 2.0024000e+03 1.4123205e+00 + 2.0028000e+03 1.3689036e+00 + 2.0032000e+03 1.2314532e+00 + 2.0036000e+03 1.5021461e+00 + 2.0040000e+03 1.8928317e+00 + 2.0044000e+03 2.1433255e+00 + 2.0048000e+03 1.9836642e+00 + 2.0052000e+03 1.6037613e+00 + 2.0056000e+03 1.0536449e+00 + 2.0060000e+03 7.8841513e-01 + 2.0064000e+03 5.0302476e-01 + 2.0068000e+03 2.5804274e-01 + 2.0072000e+03 -5.4633119e-01 + 2.0076000e+03 -1.0628498e+00 + 2.0080000e+03 -1.2502796e+00 + 2.0084000e+03 -1.6368166e+00 + 2.0088000e+03 -1.9389687e+00 + 2.0092000e+03 -1.8163291e+00 + 2.0096000e+03 -1.8250035e+00 + 2.0100000e+03 -1.6048915e+00 + 2.0104000e+03 -8.1476021e-01 + 2.0108000e+03 -1.5507385e-01 + 2.0112000e+03 1.7701072e-01 + 2.0116000e+03 2.8985214e-01 + 2.0120000e+03 3.4903831e-01 + 2.0124000e+03 4.6116616e-01 + 2.0128000e+03 5.8531522e-01 + 2.0132000e+03 1.7350042e-01 + 2.0136000e+03 -2.0682542e-01 + 2.0140000e+03 -1.0472142e+00 + 2.0144000e+03 -1.3976097e+00 + 2.0148000e+03 -1.5080321e+00 + 2.0152000e+03 -1.2585273e+00 + 2.0156000e+03 -8.2911309e-01 + 2.0160000e+03 -5.7493744e-01 + 2.0164000e+03 -1.4459779e-01 + 2.0168000e+03 -1.4372222e-01 + 2.0172000e+03 -3.3417692e-01 + 2.0176000e+03 -6.3261942e-01 + 2.0180000e+03 -8.7296847e-01 + 2.0184000e+03 -8.1302259e-01 + 2.0188000e+03 -9.1291279e-01 + 2.0192000e+03 -1.1527743e+00 + 2.0196000e+03 -1.4627681e+00 + 2.0200000e+03 -1.5326913e+00 + 2.0204000e+03 -1.3625792e+00 + 2.0208000e+03 -1.1444171e+00 + 2.0212000e+03 -7.2155155e-01 + 2.0216000e+03 -2.8330313e-01 + 2.0220000e+03 8.3761859e-02 + 2.0224000e+03 6.1387435e-01 + 2.0228000e+03 1.3491502e+00 + 2.0232000e+03 2.1195734e+00 + 2.0236000e+03 2.5099129e+00 + 2.0240000e+03 2.8602567e+00 + 2.0244000e+03 3.3361348e+00 + 2.0248000e+03 3.8507631e+00 + 2.0252000e+03 3.1909086e+00 + 2.0256000e+03 1.8009315e+00 + 2.0260000e+03 8.0112081e-01 + 2.0264000e+03 6.1151720e-01 + 2.0268000e+03 -3.7788987e-01 + 2.0272000e+03 -6.5726782e-01 + 2.0276000e+03 -6.9700650e-01 + 2.0280000e+03 -1.1062821e+00 + 2.0284000e+03 -1.7460795e+00 + 2.0288000e+03 -2.2861114e+00 + 2.0292000e+03 -2.4362099e+00 + 2.0296000e+03 -2.2163447e+00 + 2.0300000e+03 -2.0764627e+00 + 2.0304000e+03 -1.8865532e+00 + 2.0308000e+03 -1.6766315e+00 + 2.0312000e+03 -1.2966986e+00 + 2.0316000e+03 -1.0267753e+00 + 2.0320000e+03 -6.9697983e-01 + 2.0324000e+03 -5.6648844e-01 + 2.0328000e+03 -3.7633994e-01 + 2.0332000e+03 -1.2637416e-01 + 2.0336000e+03 2.1346177e-01 + 2.0340000e+03 8.7314465e-01 + 2.0344000e+03 1.2725954e+00 + 2.0348000e+03 1.0618492e+00 + 2.0352000e+03 7.4110420e-01 + 2.0356000e+03 4.2008237e-01 + 2.0360000e+03 2.5906726e-01 + 2.0364000e+03 2.8460771e-01 + 2.0368000e+03 4.9221597e-01 + 2.0372000e+03 4.0881936e-01 + 2.0376000e+03 4.0850179e-01 + 2.0380000e+03 4.6579472e-01 + 2.0384000e+03 -2.0051478e-02 + 2.0388000e+03 -3.4339509e-01 + 2.0392000e+03 -5.7463745e-01 + 2.0396000e+03 -1.0500828e+00 + 2.0400000e+03 -1.4199349e+00 + 2.0404000e+03 -1.3604947e+00 + 2.0408000e+03 -1.1614192e+00 + 2.0412000e+03 -1.0160710e+00 + 2.0416000e+03 -4.3985480e-01 + 2.0420000e+03 1.1292802e-01 + 2.0424000e+03 2.4945844e-01 + 2.0428000e+03 3.5276800e-01 + 2.0432000e+03 3.0765818e-01 + 2.0436000e+03 5.9634035e-01 + 2.0440000e+03 1.1387966e+00 + 2.0444000e+03 1.6118626e+00 + 2.0448000e+03 1.8012814e+00 + 2.0452000e+03 1.3905094e+00 + 2.0456000e+03 8.2904580e-01 + 2.0460000e+03 -5.2244855e-02 + 2.0464000e+03 -6.6331987e-01 + 2.0468000e+03 -9.4423939e-01 + 2.0472000e+03 -7.1488982e-01 + 2.0476000e+03 -2.8479561e-01 + 2.0480000e+03 -4.6016484e-03 + 2.0484000e+03 1.1596977e-01 + 2.0488000e+03 -1.1321678e-01 + 2.0492000e+03 -1.5219948e-01 + 2.0496000e+03 1.1900164e-01 + 2.0500000e+03 4.9014368e-01 + 2.0504000e+03 9.4020558e-01 + 2.0508000e+03 1.3821956e+00 + 2.0512000e+03 1.0490134e+00 + 2.0516000e+03 8.7627332e-01 + 2.0520000e+03 6.8941079e-01 + 2.0524000e+03 -1.2603077e-01 + 2.0528000e+03 -6.1633537e-01 + 2.0532000e+03 -5.2687941e-01 + 2.0536000e+03 -6.9798202e-01 + 2.0540000e+03 -1.2289414e+00 + 2.0544000e+03 -2.0303361e+00 + 2.0548000e+03 -2.4018266e+00 + 2.0552000e+03 -2.9198131e+00 + 2.0556000e+03 -3.3799314e+00 + 2.0560000e+03 -3.6352682e+00 + 2.0564000e+03 -2.9457353e+00 + 2.0568000e+03 -2.0259340e+00 + 2.0572000e+03 -1.0558662e+00 + 2.0576000e+03 -2.5528928e-01 + 2.0580000e+03 4.2507484e-01 + 2.0584000e+03 1.1259493e+00 + 2.0588000e+03 1.8570406e+00 + 2.0592000e+03 2.4480822e+00 + 2.0596000e+03 2.7390218e+00 + 2.0600000e+03 2.8098366e+00 + 2.0604000e+03 3.1206849e+00 + 2.0608000e+03 3.0913884e+00 + 2.0612000e+03 2.9419063e+00 + 2.0616000e+03 2.5422277e+00 + 2.0620000e+03 2.2023037e+00 + 2.0624000e+03 1.4421099e+00 + 2.0628000e+03 9.2160097e-01 + 2.0632000e+03 -7.4871342e-01 + 2.0636000e+03 -1.5590085e+00 + 2.0640000e+03 -2.1191351e+00 + 2.0644000e+03 -2.6091916e+00 + 2.0648000e+03 -2.5693090e+00 + 2.0652000e+03 -2.2194874e+00 + 2.0656000e+03 -1.6196296e+00 + 2.0660000e+03 -1.4196248e+00 + 2.0664000e+03 -6.2935101e-01 + 2.0668000e+03 -3.9912096e-01 + 2.0672000e+03 -3.2916559e-01 + 2.0676000e+03 -7.9324532e-02 + 2.0680000e+03 2.1038906e-01 + 2.0684000e+03 7.7999134e-01 + 2.0688000e+03 1.4496099e+00 + 2.0692000e+03 2.2092145e+00 + 2.0696000e+03 2.6089129e+00 + 2.0700000e+03 3.1277068e+00 + 2.0704000e+03 3.2920435e+00 + 2.0708000e+03 3.4643457e+00 + 2.0712000e+03 3.2437543e+00 + 2.0716000e+03 2.6591279e+00 + 2.0720000e+03 2.0298397e+00 + 2.0724000e+03 1.1708284e+00 + 2.0728000e+03 -4.2797155e-01 + 2.0732000e+03 -1.8783835e+00 + 2.0736000e+03 -3.0278045e+00 + 2.0740000e+03 -4.0386286e+00 + 2.0744000e+03 -4.8710595e+00 + 2.0748000e+03 -5.2558269e+00 + 2.0752000e+03 -5.2259069e+00 + 2.0756000e+03 -5.1259569e+00 + 2.0760000e+03 -4.9560535e+00 + 2.0764000e+03 -4.4460452e+00 + 2.0768000e+03 -3.5260042e+00 + 2.0772000e+03 -2.2960400e+00 + 2.0776000e+03 -6.9645414e-01 + 2.0780000e+03 1.0634956e+00 + 2.0784000e+03 2.0828699e+00 + 2.0788000e+03 3.8018201e+00 + 2.0792000e+03 5.1904640e+00 + 2.0796000e+03 5.6592634e+00 + 2.0800000e+03 5.7882692e+00 + 2.0804000e+03 5.7375982e+00 + 2.0808000e+03 5.4773706e+00 + 2.0812000e+03 4.5176096e+00 + 2.0816000e+03 4.2580234e+00 + 2.0820000e+03 2.7244556e+00 + 2.0824000e+03 6.6904490e-01 + 2.0828000e+03 -9.8045312e-01 + 2.0832000e+03 -2.1699977e+00 + 2.0836000e+03 -2.9095556e+00 + 2.0840000e+03 -3.4491561e+00 + 2.0844000e+03 -3.5187231e+00 + 2.0848000e+03 -3.0782415e+00 + 2.0852000e+03 -2.8957421e+00 + 2.0856000e+03 -2.7961921e+00 + 2.0860000e+03 -2.4498381e+00 + 2.0864000e+03 -1.8822438e+00 + 2.0868000e+03 -1.2387505e+00 + 2.0872000e+03 -2.6824062e-01 + 2.0876000e+03 1.1409127e+00 + 2.0880000e+03 1.5408846e+00 + 2.0884000e+03 1.9108282e+00 + 2.0888000e+03 2.1007033e+00 + 2.0892000e+03 1.8806355e+00 + 2.0896000e+03 1.4104806e+00 + 2.0900000e+03 9.2041937e-01 + 2.0904000e+03 4.9043565e-01 + 2.0908000e+03 -3.4908753e-01 + 2.0912000e+03 -9.3922587e-01 + 2.0916000e+03 -9.9432024e-01 + 2.0920000e+03 -1.0546451e+00 + 2.0924000e+03 -9.0725206e-01 + 2.0928000e+03 -6.9703140e-01 + 2.0932000e+03 -3.5614838e-01 + 2.0936000e+03 4.6260803e-03 + 2.0940000e+03 9.5582864e-02 + 2.0944000e+03 5.6603364e-02 + 2.0948000e+03 2.7515243e-02 + 2.0952000e+03 -4.0155523e-01 + 2.0956000e+03 -1.1108901e+00 + 2.0960000e+03 -1.7503090e+00 + 2.0964000e+03 -1.9401237e+00 + 2.0968000e+03 -1.9899777e+00 + 2.0972000e+03 -2.3499961e+00 + 2.0976000e+03 -2.4102602e+00 + 2.0980000e+03 -1.9606788e+00 + 2.0984000e+03 -1.1415413e+00 + 2.0988000e+03 -6.0268951e-01 + 2.0992000e+03 -5.3381503e-01 + 2.0996000e+03 3.2664460e-01 + 2.1000000e+03 1.2745634e+00 + 2.1004000e+03 1.7841414e+00 + 2.1008000e+03 2.5937541e+00 + 2.1012000e+03 3.9133567e+00 + 2.1016000e+03 4.0730262e+00 + 2.1020000e+03 3.5872702e+00 + 2.1024000e+03 3.5085944e+00 + 2.1028000e+03 2.7986462e+00 + 2.1032000e+03 1.8160136e+00 + 2.1036000e+03 8.6549563e-01 + 2.1040000e+03 -3.1240512e-01 + 2.1044000e+03 -1.0598552e+00 + 2.1048000e+03 -1.6454916e+00 + 2.1052000e+03 -1.9678687e+00 + 2.1056000e+03 -1.8578876e+00 + 2.1060000e+03 -1.9434450e+00 + 2.1064000e+03 -2.2935022e+00 + 2.1068000e+03 -2.5537384e+00 + 2.1072000e+03 -2.3341073e+00 + 2.1076000e+03 -1.9647793e+00 + 2.1080000e+03 -1.2125091e+00 + 2.1084000e+03 -7.2341716e-01 + 2.1088000e+03 -2.7165196e-02 + 2.1092000e+03 -4.6808205e-02 + 2.1096000e+03 -3.1745480e-01 + 2.1100000e+03 -5.8726899e-01 + 2.1104000e+03 -5.1677141e-01 + 2.1108000e+03 5.3867421e-02 + 2.1112000e+03 6.0447804e-01 + 2.1116000e+03 1.0552409e+00 + 2.1120000e+03 1.3161069e+00 + 2.1124000e+03 1.0769450e+00 + 2.1128000e+03 8.0762442e-01 + 2.1132000e+03 4.1814075e-01 + 2.1136000e+03 -1.9152590e-01 + 2.1140000e+03 -4.3113873e-01 + 2.1144000e+03 -8.5097604e-01 + 2.1148000e+03 -7.6069542e-01 + 2.1152000e+03 -5.8047112e-01 + 2.1156000e+03 -4.2454701e-01 + 2.1160000e+03 4.9419287e-02 + 2.1164000e+03 4.1457872e-03 + 2.1168000e+03 -2.7269193e-01 + 2.1172000e+03 -2.1059138e-01 + 2.1176000e+03 -2.7044414e-01 + 2.1180000e+03 -5.0147186e-01 + 2.1184000e+03 -5.5211425e-01 + 2.1188000e+03 -3.0242803e-01 + 2.1192000e+03 1.3620548e-01 + 2.1196000e+03 4.3536971e-01 + 2.1200000e+03 7.3454392e-01 + 2.1204000e+03 1.1336384e+00 + 2.1208000e+03 1.5630597e+00 + 2.1212000e+03 2.6225240e+00 + 2.1216000e+03 3.6034350e+00 + 2.1220000e+03 4.1821549e+00 + 2.1224000e+03 3.9770031e+00 + 2.1228000e+03 3.2173352e+00 + 2.1232000e+03 2.4418897e+00 + 2.1236000e+03 1.2763621e+00 + 2.1240000e+03 -5.5134445e-01 + 2.1244000e+03 -1.9683122e+00 + 2.1248000e+03 -3.1590274e+00 + 2.1252000e+03 -3.9649587e+00 + 2.1256000e+03 -4.2046827e+00 + 2.1260000e+03 -4.3144793e+00 + 2.1264000e+03 -4.2243189e+00 + 2.1268000e+03 -3.9841631e+00 + 2.1272000e+03 -3.2340569e+00 + 2.1276000e+03 -2.3399023e+00 + 2.1280000e+03 -1.3998545e+00 + 2.1284000e+03 -1.1746733e-01 + 2.1288000e+03 8.6740590e-01 + 2.1292000e+03 1.5145792e+00 + 2.1296000e+03 1.9344369e+00 + 2.1300000e+03 2.2605988e+00 + 2.1304000e+03 2.3456907e+00 + 2.1308000e+03 2.5836602e+00 + 2.1312000e+03 3.0842329e+00 + 2.1316000e+03 3.2647692e+00 + 2.1320000e+03 2.8850275e+00 + 2.1324000e+03 2.1255552e+00 + 2.1328000e+03 9.2572573e-01 + 2.1332000e+03 -2.9391224e-01 + 2.1336000e+03 -1.3542094e+00 + 2.1340000e+03 -2.0339176e+00 + 2.1344000e+03 -2.0832860e+00 + 2.1348000e+03 -2.3226893e+00 + 2.1352000e+03 -2.0322287e+00 + 2.1356000e+03 -1.5119918e+00 + 2.1360000e+03 -1.0119687e+00 + 2.1364000e+03 -5.5209906e-01 + 2.1368000e+03 -2.0232002e-01 + 2.1372000e+03 -1.3265257e-01 + 2.1376000e+03 7.9700267e-01 + 2.1380000e+03 1.5366218e+00 + 2.1384000e+03 2.1461270e+00 + 2.1388000e+03 3.6154419e+00 + 2.1392000e+03 3.5661841e+00 + 2.1396000e+03 2.9142682e+00 + 2.1400000e+03 2.7839900e+00 + 2.1404000e+03 2.6436227e+00 + 2.1408000e+03 1.9732053e+00 + 2.1412000e+03 1.4427534e+00 + 2.1416000e+03 1.4123662e+00 + 2.1420000e+03 1.2720491e+00 + 2.1424000e+03 3.7522530e-01 + 2.1428000e+03 -9.7829078e-01 + 2.1432000e+03 -2.7779922e+00 + 2.1436000e+03 -4.2630475e+00 + 2.1440000e+03 -4.7781557e+00 + 2.1444000e+03 -4.7079591e+00 + 2.1448000e+03 -4.4277065e+00 + 2.1452000e+03 -4.0174877e+00 + 2.1456000e+03 -3.4872500e+00 + 2.1460000e+03 -2.8168643e+00 + 2.1464000e+03 -2.0363307e+00 + 2.1468000e+03 -7.2595715e-01 + 2.1472000e+03 7.6487762e-01 + 2.1476000e+03 2.3356176e+00 + 2.1480000e+03 2.9962655e+00 + 2.1484000e+03 3.4266563e+00 + 2.1488000e+03 3.9368483e+00 + 2.1492000e+03 3.8767301e+00 + 2.1496000e+03 3.2164287e+00 + 2.1500000e+03 2.2058659e+00 + 2.1504000e+03 1.1151636e+00 + 2.1508000e+03 3.4436475e-01 + 2.1512000e+03 -2.0619023e-01 + 2.1516000e+03 -7.3648642e-01 + 2.1520000e+03 -1.1865141e+00 + 2.1524000e+03 -1.7465974e+00 + 2.1528000e+03 -2.1366845e+00 + 2.1532000e+03 -2.2469627e+00 + 2.1536000e+03 -2.0475274e+00 + 2.1540000e+03 -1.9082554e+00 + 2.1544000e+03 -1.4452572e+00 + 2.1548000e+03 -1.0403712e+00 + 2.1552000e+03 -6.5216925e-01 + 2.1556000e+03 -8.5960014e-02 + 2.1560000e+03 3.1479866e-01 + 2.1564000e+03 8.9719876e-01 + 2.1568000e+03 1.6686773e+00 + 2.1572000e+03 3.0522932e+00 + 2.1576000e+03 4.3097988e+00 + 2.1580000e+03 5.3863867e+00 + 2.1584000e+03 6.3721279e+00 + 2.1588000e+03 6.4410235e+00 + 2.1592000e+03 5.1609696e+00 + 2.1596000e+03 3.0133010e+00 + 2.1600000e+03 4.2519643e-01 + 2.1604000e+03 -1.7850350e+00 + 2.1608000e+03 -3.2902589e+00 + 2.1612000e+03 -3.5808036e+00 + 2.1616000e+03 -3.2513097e+00 + 2.1620000e+03 -2.8917387e+00 + 2.1624000e+03 -2.7720799e+00 + 2.1628000e+03 -2.7024011e+00 + 2.1632000e+03 -3.2428309e+00 + 2.1636000e+03 -3.7668714e+00 + 2.1640000e+03 -3.9071905e+00 + 2.1644000e+03 -3.4532532e+00 + 2.1648000e+03 -3.0872579e+00 + 2.1652000e+03 -2.8331351e+00 + 2.1656000e+03 -2.1827729e+00 + 2.1660000e+03 -9.8208734e-01 + 2.1664000e+03 6.3878911e-01 + 2.1668000e+03 1.8597418e+00 + 2.1672000e+03 2.8906084e+00 + 2.1676000e+03 3.7317225e+00 + 2.1680000e+03 4.7124429e+00 + 2.1684000e+03 5.4340013e+00 + 2.1688000e+03 5.7925963e+00 + 2.1692000e+03 5.6124588e+00 + 2.1696000e+03 5.1489643e+00 + 2.1700000e+03 3.7388965e+00 + 2.1704000e+03 2.1121646e+00 + 2.1708000e+03 6.1736704e-01 + 2.1712000e+03 -4.7341724e-01 + 2.1716000e+03 -1.4775508e+00 + 2.1720000e+03 -1.6971808e+00 + 2.1724000e+03 -1.4397156e+00 + 2.1728000e+03 -9.4793904e-01 + 2.1732000e+03 -1.0186307e+00 + 2.1736000e+03 -9.6901956e-01 + 2.1740000e+03 -9.3916444e-01 + 2.1744000e+03 -1.0544018e+00 + 2.1748000e+03 -8.2109378e-01 + 2.1752000e+03 -2.7303105e-01 + 2.1756000e+03 3.1303223e-01 + 2.1760000e+03 6.9822247e-01 + 2.1764000e+03 9.3654173e-01 + 2.1768000e+03 5.9255854e-01 + 2.1772000e+03 4.6539353e-01 + 2.1776000e+03 6.3362724e-01 + 2.1780000e+03 8.7386887e-01 + 2.1784000e+03 1.2639032e+00 + 2.1788000e+03 2.2237095e+00 + 2.1792000e+03 2.9232290e+00 + 2.1796000e+03 3.8426146e+00 + 2.1800000e+03 4.3410047e+00 + 2.1804000e+03 3.6510115e+00 + 2.1808000e+03 2.0101526e+00 + 2.1812000e+03 3.5920316e-01 + 2.1816000e+03 -1.3317278e+00 + 2.1820000e+03 -2.7825129e+00 + 2.1824000e+03 -3.6231008e+00 + 2.1828000e+03 -3.9633992e+00 + 2.1832000e+03 -4.1333996e+00 + 2.1836000e+03 -5.0131067e+00 + 2.1840000e+03 -5.3725274e+00 + 2.1844000e+03 -4.8916952e+00 + 2.1848000e+03 -4.3306644e+00 + 2.1852000e+03 -4.2694772e+00 + 2.1856000e+03 -3.1825725e+00 + 2.1860000e+03 -1.6274897e+00 + 2.1864000e+03 -4.3643091e-01 + 2.1868000e+03 1.9433903e-01 + 2.1872000e+03 1.0749934e+00 + 2.1876000e+03 1.5755151e+00 + 2.1880000e+03 1.8914057e+00 + 2.1884000e+03 1.9225479e+00 + 2.1888000e+03 1.8091310e+00 + 2.1892000e+03 2.2943946e+00 + 2.1896000e+03 2.7833865e+00 + 2.1900000e+03 3.1222209e+00 + 2.1904000e+03 3.4465096e+00 + 2.1908000e+03 4.1423085e+00 + 2.1912000e+03 4.4690064e+00 + 2.1916000e+03 4.0242855e+00 + 2.1920000e+03 3.1059870e+00 + 2.1924000e+03 1.8756305e+00 + 2.1928000e+03 3.3573187e-01 + 2.1932000e+03 -3.1391852e-01 + 2.1936000e+03 -3.4327997e-01 + 2.1940000e+03 -4.3235190e-01 + 2.1944000e+03 -1.1214878e+00 + 2.1948000e+03 -1.6974464e+00 + 2.1952000e+03 -1.9594068e+00 + 2.1956000e+03 -1.1882103e+00 + 2.1960000e+03 -2.3712517e-01 + 2.1964000e+03 5.5158012e-01 + 2.1968000e+03 4.8131485e-01 + 2.1972000e+03 5.8242352e-01 + 2.1976000e+03 3.5756131e-01 + 2.1980000e+03 2.7505455e-01 + 2.1984000e+03 -6.5135976e-02 + 2.1988000e+03 -6.4557299e-01 + 2.1992000e+03 -9.5610392e-01 + 2.1996000e+03 -9.8670298e-01 + 2.2000000e+03 -6.7757944e-01 + 2.2004000e+03 -5.5809186e-01 + 2.2008000e+03 -4.1857366e-01 + 2.2012000e+03 -1.8888726e-01 + 2.2016000e+03 3.8118845e-01 + 2.2020000e+03 9.9149376e-01 + 2.2024000e+03 1.2021972e+00 + 2.2028000e+03 4.3305908e-01 + 2.2032000e+03 -2.6538120e-01 + 2.2036000e+03 -9.5487258e-01 + 2.2040000e+03 -1.5537713e+00 + 2.2044000e+03 -2.0625619e+00 + 2.2048000e+03 -2.2618300e+00 + 2.2052000e+03 -2.3213923e+00 + 2.2056000e+03 -2.2611595e+00 + 2.2060000e+03 -1.8911496e+00 + 2.2064000e+03 -1.1212741e+00 + 2.2068000e+03 -7.1594435e-02 + 2.2072000e+03 1.0978423e+00 + 2.2076000e+03 1.9673267e+00 + 2.2080000e+03 2.0397706e+00 + 2.2084000e+03 1.8162138e+00 + 2.2088000e+03 1.0758925e+00 + 2.2092000e+03 5.7561332e-01 + 2.2096000e+03 5.2533851e-01 + 2.2100000e+03 6.7505309e-01 + 2.2104000e+03 1.0847507e+00 + 2.2108000e+03 1.2244908e+00 + 2.2112000e+03 1.1242235e+00 + 2.2116000e+03 9.4389180e-01 + 2.2120000e+03 8.4357296e-01 + 2.2124000e+03 8.8329484e-01 + 2.2128000e+03 9.2302862e-01 + 2.2132000e+03 1.0327434e+00 + 2.2136000e+03 1.3028645e+00 + 2.2140000e+03 1.1232310e+00 + 2.2144000e+03 7.3365873e-01 + 2.2148000e+03 6.4085656e-02 + 2.2152000e+03 -4.8560260e-01 + 2.2156000e+03 -8.9534873e-01 + 2.2160000e+03 -1.0051238e+00 + 2.2164000e+03 -8.4489202e-01 + 2.2168000e+03 -5.4953275e-01 + 2.2172000e+03 -2.1798351e-01 + 2.2176000e+03 -1.3135005e-01 + 2.2180000e+03 -2.6225439e-01 + 2.2184000e+03 -5.4527788e-01 + 2.2188000e+03 -8.4557646e-01 + 2.2192000e+03 -7.9573748e-01 + 2.2196000e+03 -5.9573593e-01 + 2.2200000e+03 -7.9546869e-01 + 2.2204000e+03 -1.1845963e+00 + 2.2208000e+03 -1.5036517e+00 + 2.2212000e+03 -1.6127101e+00 + 2.2216000e+03 -1.3918339e+00 + 2.2220000e+03 -1.1910491e+00 + 2.2224000e+03 -7.3052999e-01 + 2.2228000e+03 -5.6010507e-01 + 2.2232000e+03 -4.6198250e-01 + 2.2236000e+03 -4.0431098e-01 + 2.2240000e+03 -6.3008844e-01 + 2.2244000e+03 -8.6654030e-01 + 2.2248000e+03 -8.2103410e-01 + 2.2252000e+03 -5.8148529e-01 + 2.2256000e+03 -3.8188526e-01 + 2.2260000e+03 -2.1228935e-01 + 2.2264000e+03 -2.2787337e-02 + 2.2268000e+03 1.2670511e-01 + 2.2272000e+03 2.2615530e-01 + 2.2276000e+03 7.8572419e-01 + 2.2280000e+03 8.7561630e-01 + 2.2284000e+03 1.1658466e+00 + 2.2288000e+03 1.3063298e+00 + 2.2292000e+03 1.2470002e+00 + 2.2296000e+03 9.0771379e-01 + 2.2300000e+03 9.9130411e-01 + 2.2304000e+03 1.1988355e+00 + 2.2308000e+03 1.0930136e+00 + 2.2312000e+03 9.2100140e-01 + 2.2316000e+03 6.9934787e-01 + 2.2320000e+03 1.2817908e-01 + 2.2324000e+03 -3.4012731e-01 + 2.2328000e+03 -9.2091043e-01 + 2.2332000e+03 -1.3722152e+00 + 2.2336000e+03 -1.1433429e+00 + 2.2340000e+03 -2.8444430e-01 + 2.2344000e+03 9.1423422e-01 + 2.2348000e+03 1.1630723e+00 + 2.2352000e+03 1.3619194e+00 + 2.2356000e+03 1.3008052e+00 + 2.2360000e+03 7.2985729e-01 + 2.2364000e+03 4.7926357e-01 + 2.2368000e+03 6.0916682e-01 + 2.2372000e+03 7.9962602e-01 + 2.2376000e+03 1.0005907e+00 + 2.2380000e+03 4.7186409e-01 + 2.2384000e+03 -6.5672347e-01 + 2.2388000e+03 -1.2752706e+00 + 2.2392000e+03 -1.4738729e+00 + 2.2396000e+03 -1.3625078e+00 + 2.2400000e+03 -1.2611136e+00 + 2.2404000e+03 -1.1698815e+00 + 2.2408000e+03 -9.2874884e-01 + 2.2412000e+03 -4.3779171e-01 + 2.2416000e+03 -6.7737283e-01 + 2.2420000e+03 -1.2670094e+00 + 2.2424000e+03 -1.6269991e+00 + 2.2428000e+03 -1.5771929e+00 + 2.2432000e+03 -1.3592579e+00 + 2.2436000e+03 -9.4695244e-01 + 2.2440000e+03 -5.9626847e-01 + 2.2444000e+03 -5.3669640e-01 + 2.2448000e+03 -3.2105885e-01 + 2.2452000e+03 3.5754369e-01 + 2.2456000e+03 9.3604216e-01 + 2.2460000e+03 1.9044550e+00 + 2.2464000e+03 2.0729837e+00 + 2.2468000e+03 1.6618088e+00 + 2.2472000e+03 1.1710124e+00 + 2.2476000e+03 6.7064124e-01 + 2.2480000e+03 5.7062453e-01 + 2.2484000e+03 6.9090962e-01 + 2.2488000e+03 7.7151709e-01 + 2.2492000e+03 5.9255351e-01 + 2.2496000e+03 -1.2624712e-01 + 2.2500000e+03 -9.1483867e-01 + 2.2504000e+03 -1.2733972e+00 + 2.2508000e+03 -1.2321980e+00 + 2.2512000e+03 -7.6122714e-01 + 2.2516000e+03 -5.7054009e-01 + 2.2520000e+03 -4.8000973e-01 + 2.2524000e+03 -6.5960783e-01 + 2.2528000e+03 -9.9949312e-01 + 2.2532000e+03 -9.1984323e-01 + 2.2536000e+03 -6.4079708e-01 + 2.2540000e+03 -3.0160777e-01 + 2.2544000e+03 6.5015950e-03 + 2.2548000e+03 2.2500848e-01 + 2.2552000e+03 4.1344823e-01 + 2.2556000e+03 1.0118404e+00 + 2.2560000e+03 1.2108086e+00 + 2.2564000e+03 1.2903591e+00 + 2.2568000e+03 1.5305699e+00 + 2.2572000e+03 1.4112054e+00 + 2.2576000e+03 1.0823055e+00 + 2.2580000e+03 6.7395253e-01 + 2.2584000e+03 3.5575360e-01 + 2.2588000e+03 -2.8238562e-01 + 2.2592000e+03 -7.3084956e-01 + 2.2596000e+03 -9.9507428e-01 + 2.2600000e+03 -9.7003453e-01 + 2.2604000e+03 -6.4774403e-01 + 2.2608000e+03 -5.3809937e-01 + 2.2612000e+03 -4.1468708e-01 + 2.2616000e+03 -7.7598814e-01 + 2.2620000e+03 -1.0454552e+00 + 2.2624000e+03 -1.2591551e+00 + 2.2628000e+03 -1.5036732e+00 + 2.2632000e+03 -1.9175618e+00 + 2.2636000e+03 -1.8077761e+00 + 2.2640000e+03 -1.4505157e+00 + 2.2644000e+03 -1.1828564e+00 + 2.2648000e+03 -1.0236796e+00 + 2.2652000e+03 -8.6434090e-01 + 2.2656000e+03 -7.9484637e-01 + 2.2660000e+03 -5.2522173e-01 + 2.2664000e+03 -1.8545769e-01 + 2.2668000e+03 2.7446785e-01 + 2.2672000e+03 6.3450350e-01 + 2.2676000e+03 9.2474425e-01 + 2.2680000e+03 1.2751644e+00 + 2.2684000e+03 1.6156213e+00 + 2.2688000e+03 1.8859713e+00 + 2.2692000e+03 2.2861487e+00 + 2.2696000e+03 2.4362361e+00 + 2.2700000e+03 2.9358235e+00 + 2.2704000e+03 3.2554371e+00 + 2.2708000e+03 2.7451196e+00 + 2.2712000e+03 2.3149014e+00 + 2.2716000e+03 1.4384307e+00 + 2.2720000e+03 2.4473136e-01 + 2.2724000e+03 -8.0557281e-01 + 2.2728000e+03 -1.5069052e+00 + 2.2732000e+03 -2.0658788e+00 + 2.2736000e+03 -3.1260116e+00 + 2.2740000e+03 -3.7161072e+00 + 2.2744000e+03 -3.3361556e+00 + 2.2748000e+03 -3.0761581e+00 + 2.2752000e+03 -2.9162004e+00 + 2.2756000e+03 -2.5761561e+00 + 2.2760000e+03 -2.0375337e+00 + 2.2764000e+03 -1.5169581e+00 + 2.2768000e+03 -4.5454910e-01 + 2.2772000e+03 7.7782979e-01 + 2.2776000e+03 2.4271258e+00 + 2.2780000e+03 3.8103005e+00 + 2.2784000e+03 4.7700487e+00 + 2.2788000e+03 4.6664527e+00 + 2.2792000e+03 4.0715940e+00 + 2.2796000e+03 3.0300482e+00 + 2.2800000e+03 1.8701926e+00 + 2.2804000e+03 9.4856193e-01 + 2.2808000e+03 4.4567760e-03 + 2.2812000e+03 -1.0259274e+00 + 2.2816000e+03 -1.7961393e+00 + 2.2820000e+03 -2.4562761e+00 + 2.2824000e+03 -2.7762589e+00 + 2.2828000e+03 -2.9060398e+00 + 2.2832000e+03 -3.1903960e+00 + 2.2836000e+03 -3.3572628e+00 + 2.2840000e+03 -3.4771068e+00 + 2.2844000e+03 -3.3534481e+00 + 2.2848000e+03 -2.7431233e+00 + 2.2852000e+03 -2.0333112e+00 + 2.2856000e+03 -1.3239114e+00 + 2.2860000e+03 -1.7476762e-01 + 2.2864000e+03 5.7416077e-01 + 2.2868000e+03 1.3329767e+00 + 2.2872000e+03 1.7919355e+00 + 2.2876000e+03 2.0311883e+00 + 2.2880000e+03 1.8807067e+00 + 2.2884000e+03 2.0604600e+00 + 2.2888000e+03 2.5005985e+00 + 2.2892000e+03 2.7211691e+00 + 2.2896000e+03 2.4319139e+00 + 2.2900000e+03 2.2024476e+00 + 2.2904000e+03 1.7827549e+00 + 2.2908000e+03 9.9297081e-01 + 2.2912000e+03 3.9212297e-01 + 2.2916000e+03 -6.6351450e-02 + 2.2920000e+03 -7.6678492e-01 + 2.2924000e+03 -1.3340874e+00 + 2.2928000e+03 -1.9375194e+00 + 2.2932000e+03 -2.4876379e+00 + 2.2936000e+03 -2.7277523e+00 + 2.2940000e+03 -2.8778643e+00 + 2.2944000e+03 -2.7279593e+00 + 2.2948000e+03 -2.5581727e+00 + 2.2952000e+03 -1.7084119e+00 + 2.2956000e+03 -1.1887155e+00 + 2.2960000e+03 -4.4743662e-01 + 2.2964000e+03 7.5753841e-01 + 2.2968000e+03 1.7298495e+00 + 2.2972000e+03 2.2994479e+00 + 2.2976000e+03 2.8091062e+00 + 2.2980000e+03 2.8788124e+00 + 2.2984000e+03 2.7886944e+00 + 2.2988000e+03 2.8987858e+00 + 2.2992000e+03 2.9490261e+00 + 2.2996000e+03 2.7386246e+00 + 2.3000000e+03 1.8873811e+00 + 2.3004000e+03 5.8252678e-01 + 2.3008000e+03 -6.6795410e-01 + 2.3012000e+03 -1.4398024e+00 + 2.3016000e+03 -2.1156592e+00 + 2.3020000e+03 -2.5614055e+00 + 2.3024000e+03 -3.2026326e+00 + 2.3028000e+03 -3.4800953e+00 + 2.3032000e+03 -3.1680145e+00 + 2.3036000e+03 -2.4602334e+00 + 2.3040000e+03 -1.3315810e+00 + 2.3044000e+03 -3.8561457e-01 + 2.3048000e+03 5.3649102e-01 + 2.3052000e+03 1.3621502e+00 + 2.3056000e+03 1.3512607e+00 + 2.3060000e+03 1.1805142e+00 + 2.3064000e+03 8.3345608e-01 + 2.3068000e+03 6.0093447e-01 + 2.3072000e+03 3.7642936e-01 + 2.3076000e+03 1.2533936e-01 + 2.3080000e+03 4.5061784e-03 + 2.3084000e+03 1.2400556e-01 + 2.3088000e+03 3.4360543e-01 + 2.3092000e+03 5.8357134e-01 + 2.3096000e+03 2.1394485e-01 + 2.3100000e+03 -1.2191486e-01 + 2.3104000e+03 -7.1714884e-01 + 2.3108000e+03 -1.1298916e+00 + 2.3112000e+03 -1.3654198e+00 + 2.3116000e+03 -1.2225100e+00 + 2.3120000e+03 -9.9268428e-01 + 2.3124000e+03 -9.2268638e-01 + 2.3128000e+03 -7.6159518e-01 + 2.3132000e+03 -3.6236685e-01 + 2.3136000e+03 8.5433715e-02 + 2.3140000e+03 3.4774292e-01 + 2.3144000e+03 6.7769998e-01 + 2.3148000e+03 5.6767529e-01 + 2.3152000e+03 4.9751461e-01 + 2.3156000e+03 6.7717451e-01 + 2.3160000e+03 1.2766720e+00 + 2.3164000e+03 1.6561031e+00 + 2.3168000e+03 1.6254962e+00 + 2.3172000e+03 1.6034443e+00 + 2.3176000e+03 1.3759837e+00 + 2.3180000e+03 9.5877481e-01 + 2.3184000e+03 8.0590184e-03 + 2.3188000e+03 -7.5166532e-01 + 2.3192000e+03 -1.1078256e+00 + 2.3196000e+03 -1.1382821e+00 + 2.3200000e+03 -5.3865224e-01 + 2.3204000e+03 6.1356519e-02 + 2.3208000e+03 3.1528764e-02 + 2.3212000e+03 -7.0828343e-01 + 2.3216000e+03 -1.2379794e+00 + 2.3220000e+03 -1.5178001e+00 + 2.3224000e+03 -1.3376211e+00 + 2.3228000e+03 -1.4474709e+00 + 2.3232000e+03 -1.2758933e+00 + 2.3236000e+03 -1.1516378e+00 + 2.3240000e+03 -1.0502738e+00 + 2.3244000e+03 -6.2515998e-01 + 2.3248000e+03 -3.9640561e-01 + 2.3252000e+03 -3.4730673e-01 + 2.3256000e+03 -9.4223638e-02 + 2.3260000e+03 9.7948006e-02 + 2.3264000e+03 3.9228239e-01 + 2.3268000e+03 5.2519689e-01 + 2.3272000e+03 2.8514643e-01 + 2.3276000e+03 2.3341322e-01 + 2.3280000e+03 3.0440689e-01 + 2.3284000e+03 2.5400475e-01 + 2.3288000e+03 -5.9637962e-01 + 2.3292000e+03 -1.5737013e+00 + 2.3296000e+03 -2.0770083e+00 + 2.3300000e+03 -1.5671738e+00 + 2.3304000e+03 -1.1373307e+00 + 2.3308000e+03 -6.4745988e-01 + 2.3312000e+03 -2.7742263e-01 + 2.3316000e+03 2.3421153e-03 + 2.3320000e+03 8.2159409e-02 + 2.3324000e+03 2.5199967e-01 + 2.3328000e+03 7.0184609e-01 + 2.3332000e+03 1.1718508e+00 + 2.3336000e+03 1.6220061e+00 + 2.3340000e+03 2.1922885e+00 + 2.3344000e+03 2.5926689e+00 + 2.3348000e+03 2.9231838e+00 + 2.3352000e+03 3.0139229e+00 + 2.3356000e+03 2.7442518e+00 + 2.3360000e+03 2.3944311e+00 + 2.3364000e+03 1.7147285e+00 + 2.3368000e+03 8.3503021e-01 + 2.3372000e+03 -1.0468573e-01 + 2.3376000e+03 -8.7467991e-01 + 2.3380000e+03 -1.6850871e+00 + 2.3384000e+03 -2.1881697e+00 + 2.3388000e+03 -2.2680075e+00 + 2.3392000e+03 -2.3048651e+00 + 2.3396000e+03 -2.1171996e+00 + 2.3400000e+03 -1.6702695e+00 + 2.3404000e+03 -1.4230100e+00 + 2.3408000e+03 -1.1381840e+00 + 2.3412000e+03 -6.7953121e-01 + 2.3416000e+03 -1.8070765e-01 + 2.3420000e+03 -7.2113519e-02 + 2.3424000e+03 7.6547836e-02 + 2.3428000e+03 5.8544092e-01 + 2.3432000e+03 1.0343281e+00 + 2.3436000e+03 6.9316811e-01 + 2.3440000e+03 2.3244254e-01 + 2.3444000e+03 -5.1736342e-02 + 2.3448000e+03 -3.9346963e-01 + 2.3452000e+03 -5.5595203e-01 + 2.3456000e+03 -6.1803006e-01 + 2.3460000e+03 -5.9383327e-01 + 2.3464000e+03 -5.5234152e-01 + 2.3468000e+03 -3.9079963e-01 + 2.3472000e+03 -6.4941877e-01 + 2.3476000e+03 -7.8819836e-01 + 2.3480000e+03 -9.1744246e-01 + 2.3484000e+03 -1.0471281e+00 + 2.3488000e+03 -1.0169342e+00 + 2.3492000e+03 -9.3502159e-01 + 2.3496000e+03 -6.0726681e-01 + 2.3500000e+03 -5.6682615e-01 + 2.3504000e+03 -8.6325141e-01 + 2.3508000e+03 -1.1292478e+00 + 2.3512000e+03 -1.5103132e+00 + 2.3516000e+03 -1.4114722e+00 + 2.3520000e+03 -1.1524870e+00 + 2.3524000e+03 8.6650455e-02 + 2.3528000e+03 1.3358146e+00 + 2.3532000e+03 2.5551999e+00 + 2.3536000e+03 3.0446720e+00 + 2.3540000e+03 3.0943696e+00 + 2.3544000e+03 3.3242953e+00 + 2.3548000e+03 2.8445714e+00 + 2.3552000e+03 2.1551884e+00 + 2.3556000e+03 8.8600934e-01 + 2.3560000e+03 -2.8390196e-03 + 2.3564000e+03 -4.0132443e-01 + 2.3568000e+03 -4.8961917e-01 + 2.3572000e+03 -4.7117655e-01 + 2.3576000e+03 -3.5614886e-01 + 2.3580000e+03 -1.5762054e-01 + 2.3584000e+03 1.2280205e-01 + 2.3588000e+03 3.0277874e-01 + 2.3592000e+03 2.1250452e-01 + 2.3596000e+03 -8.1254966e-03 + 2.3600000e+03 -1.0921144e-01 + 2.3604000e+03 -2.6031347e-01 + 2.3608000e+03 -5.1233273e-01 + 2.3612000e+03 -6.0410044e-01 + 2.3616000e+03 -7.4568112e-01 + 2.3620000e+03 -7.8720141e-01 + 2.3624000e+03 -6.6884756e-01 + 2.3628000e+03 -7.4025335e-01 + 2.3632000e+03 -1.1813462e+00 + 2.3636000e+03 -1.4220230e+00 + 2.3640000e+03 -1.4721822e+00 + 2.3644000e+03 -1.4318207e+00 + 2.3648000e+03 -1.2110824e+00 + 2.3652000e+03 -7.5018696e-01 + 2.3656000e+03 -6.3924342e-01 + 2.3660000e+03 -6.9836744e-01 + 2.3664000e+03 -3.2690611e-01 + 2.3668000e+03 3.6451850e-01 + 2.3672000e+03 8.4612349e-01 + 2.3676000e+03 9.6763552e-01 + 2.3680000e+03 7.8440192e-01 + 2.3684000e+03 1.8719030e-01 + 2.3688000e+03 -3.5279941e-01 + 2.3692000e+03 -6.3152524e-01 + 2.3696000e+03 -1.0189012e+00 + 2.3700000e+03 -1.2195651e+00 + 2.3704000e+03 -1.1005059e+00 + 2.3708000e+03 -9.0375668e-01 + 2.3712000e+03 -6.9397445e-01 + 2.3716000e+03 -1.9699643e-01 + 2.3720000e+03 5.6371712e-01 + 2.3724000e+03 9.7492106e-01 + 2.3728000e+03 1.4401970e+00 + 2.3732000e+03 1.1805772e+00 + 2.3736000e+03 6.3997916e-01 + 2.3740000e+03 -1.6627957e-02 + 2.3744000e+03 -4.0698095e-01 + 2.3748000e+03 -8.9266152e-01 + 2.3752000e+03 -1.2564301e+00 + 2.3756000e+03 -1.0335060e+00 + 2.3760000e+03 -4.0328784e-01 + 2.3764000e+03 3.0781712e-01 + 2.3768000e+03 8.4497900e-01 + 2.3772000e+03 1.3811572e+00 + 2.3776000e+03 1.9142907e+00 + 2.3780000e+03 2.2888683e+00 + 2.3784000e+03 2.8191597e+00 + 2.3788000e+03 2.5589445e+00 + 2.3792000e+03 2.2184361e+00 + 2.3796000e+03 1.9977955e+00 + 2.3800000e+03 1.6370574e+00 + 2.3804000e+03 1.0662487e+00 + 2.3808000e+03 8.3495260e-01 + 2.3812000e+03 8.4257308e-01 + 2.3816000e+03 1.1736224e+00 + 2.3820000e+03 1.2115446e+00 + 2.3824000e+03 8.6214928e-01 + 2.3828000e+03 2.5165007e-01 + 2.3832000e+03 -4.2677261e-01 + 2.3836000e+03 -1.1838017e+00 + 2.3840000e+03 -1.6724226e+00 + 2.3844000e+03 -1.9111003e+00 + 2.3848000e+03 -1.9554653e+00 + 2.3852000e+03 -1.9857420e+00 + 2.3856000e+03 -1.9089865e+00 + 2.3860000e+03 -2.0641203e+00 + 2.3864000e+03 -2.1930649e+00 + 2.3868000e+03 -2.2542163e+00 + 2.3872000e+03 -2.1302514e+00 + 2.3876000e+03 -1.7609746e+00 + 2.3880000e+03 -7.3288725e-01 + 2.3884000e+03 1.6584245e-01 + 2.3888000e+03 8.6896509e-01 + 2.3892000e+03 1.2465249e+00 + 2.3896000e+03 1.3707111e+00 + 2.3900000e+03 1.2824851e+00 + 2.3904000e+03 1.1326684e+00 + 2.3908000e+03 2.0295641e-01 + 2.3912000e+03 -2.6683942e-02 + 2.3916000e+03 -3.1616904e-01 + 2.3920000e+03 -4.1894033e-01 + 2.3924000e+03 -4.2967677e-01 + 2.3928000e+03 -5.8110245e-01 + 2.3932000e+03 -9.3781217e-01 + 2.3936000e+03 -1.4913431e+00 + 2.3940000e+03 -1.7451638e+00 + 2.3944000e+03 -1.6663820e+00 + 2.3948000e+03 -1.0568295e+00 + 2.3952000e+03 -3.8739373e-01 + 2.3956000e+03 -1.3791579e-01 + 2.3960000e+03 -3.8259295e-02 + 2.3964000e+03 1.1153017e-01 + 2.3968000e+03 4.7161287e-01 + 2.3972000e+03 5.9182157e-01 + 2.3976000e+03 7.9219041e-01 + 2.3980000e+03 1.1326893e+00 + 2.3984000e+03 1.9431641e+00 + 2.3988000e+03 2.6334961e+00 + 2.3992000e+03 3.0736193e+00 + 2.3996000e+03 3.0436548e+00 + 2.4000000e+03 2.8036173e+00 + 2.4004000e+03 2.5834409e+00 + 2.4008000e+03 2.2019380e+00 + 2.4012000e+03 1.6607993e+00 + 2.4016000e+03 8.4325227e-01 + 2.4020000e+03 1.8638217e-01 + 2.4024000e+03 -7.9463191e-01 + 2.4028000e+03 -1.3385759e+00 + 2.4032000e+03 -1.8187124e+00 + 2.4036000e+03 -1.8987781e+00 + 2.4040000e+03 -2.8388341e+00 + 2.4044000e+03 -3.2189828e+00 + 2.4048000e+03 -3.1889130e+00 + 2.4052000e+03 -2.7988151e+00 + 2.4056000e+03 -2.6386624e+00 + 2.4060000e+03 -2.4486335e+00 + 2.4064000e+03 -1.9986864e+00 + 2.4068000e+03 -1.4287966e+00 + 2.4072000e+03 -1.1887769e+00 + 2.4076000e+03 -1.8581307e-02 + 2.4080000e+03 3.6196950e-01 + 2.4084000e+03 6.7254636e-01 + 2.4088000e+03 8.4299099e-01 + 2.4092000e+03 9.2312530e-01 + 2.4096000e+03 1.1930705e+00 + 2.4100000e+03 1.2224806e+00 + 2.4104000e+03 4.7165144e-01 + 2.4108000e+03 -1.6016414e-01 + 2.4112000e+03 -6.4335244e-01 + 2.4116000e+03 -5.4786818e-01 + 2.4120000e+03 -6.0736124e-02 + 2.4124000e+03 4.3803456e-01 + 2.4128000e+03 5.5782238e-01 + 2.4132000e+03 4.4782916e-01 + 2.4136000e+03 -6.1188039e-01 + 2.4140000e+03 -1.4424030e+00 + 2.4144000e+03 -1.7172813e+00 + 2.4148000e+03 -1.6912451e+00 + 2.4152000e+03 -1.4682363e+00 + 2.4156000e+03 -1.0794333e+00 + 2.4160000e+03 -6.9884168e-01 + 2.4164000e+03 -5.0786982e-01 + 2.4168000e+03 6.0291055e-01 + 2.4172000e+03 1.2434697e+00 + 2.4176000e+03 1.7136504e+00 + 2.4180000e+03 2.1633950e+00 + 2.4184000e+03 2.8130205e+00 + 2.4188000e+03 2.7225135e+00 + 2.4192000e+03 2.9020248e+00 + 2.4196000e+03 2.8617972e+00 + 2.4200000e+03 2.3618743e+00 + 2.4204000e+03 1.9922856e+00 + 2.4208000e+03 1.7869829e+00 + 2.4212000e+03 1.3516223e+00 + 2.4216000e+03 7.6860789e-01 + 2.4220000e+03 1.3684860e-01 + 2.4224000e+03 -5.9653100e-01 + 2.4228000e+03 -1.2093847e+00 + 2.4232000e+03 -1.8042606e+00 + 2.4236000e+03 -2.0175184e+00 + 2.4240000e+03 -2.4281886e+00 + 2.4244000e+03 -2.3889670e+00 + 2.4248000e+03 -2.1997236e+00 + 2.4252000e+03 -2.4704064e+00 + 2.4256000e+03 -2.0710219e+00 + 2.4260000e+03 -1.0515502e+00 + 2.4264000e+03 -3.5170563e-01 + 2.4268000e+03 -7.1724132e-02 + 2.4272000e+03 1.7150488e-01 + 2.4276000e+03 1.4123517e-02 + 2.4280000e+03 1.0407453e-02 + 2.4284000e+03 9.2933005e-02 + 2.4288000e+03 5.6977426e-01 + 2.4292000e+03 1.0808593e+00 + 2.4296000e+03 1.5018515e+00 + 2.4300000e+03 1.7228723e+00 + 2.4304000e+03 1.3235726e+00 + 2.4308000e+03 7.7407259e-01 + 2.4312000e+03 3.4433319e-01 + 2.4316000e+03 -4.6556224e-01 + 2.4320000e+03 -1.3592874e+00 + 2.4324000e+03 -1.9043523e+00 + 2.4328000e+03 -2.4441795e+00 + 2.4332000e+03 -3.0044408e+00 + 2.4336000e+03 -2.9245662e+00 + 2.4340000e+03 -2.6669809e+00 + 2.4344000e+03 -2.1875594e+00 + 2.4348000e+03 -1.7880473e+00 + 2.4352000e+03 -1.3084867e+00 + 2.4356000e+03 -5.1884029e-01 + 2.4360000e+03 1.7091158e-01 + 2.4364000e+03 1.4807442e+00 + 2.4368000e+03 2.8810429e+00 + 2.4372000e+03 4.2976773e+00 + 2.4376000e+03 4.6923663e+00 + 2.4380000e+03 4.1334554e+00 + 2.4384000e+03 3.3647609e+00 + 2.4388000e+03 2.8161539e+00 + 2.4392000e+03 2.3174088e+00 + 2.4396000e+03 1.5584102e+00 + 2.4400000e+03 9.0916277e-01 + 2.4404000e+03 1.7949450e-01 + 2.4408000e+03 -4.8087871e-01 + 2.4412000e+03 -8.2158597e-01 + 2.4416000e+03 -9.9268655e-01 + 2.4420000e+03 -1.0539821e+00 + 2.4424000e+03 -1.1654887e+00 + 2.4428000e+03 -1.4269151e+00 + 2.4432000e+03 -1.7282879e+00 + 2.4436000e+03 -2.1796209e+00 + 2.4440000e+03 -1.9636512e+00 + 2.4444000e+03 -1.8639852e+00 + 2.4448000e+03 -1.7497845e+00 + 2.4452000e+03 -1.5745108e+00 + 2.4456000e+03 -1.5787710e+00 + 2.4460000e+03 -1.4324567e+00 + 2.4464000e+03 -6.4162594e-01 + 2.4468000e+03 4.2948367e-01 + 2.4472000e+03 1.0607718e+00 + 2.4476000e+03 1.5580566e+00 + 2.4480000e+03 1.8234101e+00 + 2.4484000e+03 1.1945677e+00 + 2.4488000e+03 9.1547500e-01 + 2.4492000e+03 1.9652062e-01 + 2.4496000e+03 -5.6348504e-01 + 2.4500000e+03 -1.0435481e+00 + 2.4504000e+03 -1.1436318e+00 + 2.4508000e+03 -1.0740302e+00 + 2.4512000e+03 -1.0045909e+00 + 2.4516000e+03 -7.3526125e-01 + 2.4520000e+03 -3.8601181e-01 + 2.4524000e+03 -3.5656516e-01 + 2.4528000e+03 -7.0717147e-01 + 2.4532000e+03 -9.1766624e-01 + 2.4536000e+03 -7.2827369e-01 + 2.4540000e+03 -2.8838246e-01 + 2.4544000e+03 2.4112822e-01 + 2.4548000e+03 7.0121400e-01 + 2.4552000e+03 9.2145582e-01 + 2.4556000e+03 8.4190930e-01 + 2.4560000e+03 5.9253702e-01 + 2.4564000e+03 3.3308678e-01 + 2.4568000e+03 2.0354670e-01 + 2.4572000e+03 -6.0369635e-03 + 2.4576000e+03 2.1419710e-01 + 2.4580000e+03 7.9430243e-01 + 2.4584000e+03 9.7437224e-01 + 2.4588000e+03 1.0342972e+00 + 2.4592000e+03 1.6743587e+00 + 2.4596000e+03 1.3445919e+00 + 2.4600000e+03 4.6524478e-01 + 2.4604000e+03 -2.4424572e-01 + 2.4608000e+03 -7.6387431e-01 + 2.4612000e+03 -9.9640879e-01 + 2.4616000e+03 -9.6385308e-01 + 2.4620000e+03 -8.7059404e-01 + 2.4624000e+03 -6.7427247e-01 + 2.4628000e+03 -3.1464610e-01 + 2.4632000e+03 4.5311021e-01 + 2.4636000e+03 7.7091349e-01 + 2.4640000e+03 4.8969130e-01 + 2.4644000e+03 1.6980073e-01 + 2.4648000e+03 -3.8400210e-01 + 2.4652000e+03 -7.3359454e-01 + 2.4656000e+03 -5.9339068e-01 + 2.4660000e+03 -1.8331606e-01 + 2.4664000e+03 4.2689408e-01 + 2.4668000e+03 9.2711123e-01 + 2.4672000e+03 1.2269999e+00 + 2.4676000e+03 1.3664338e+00 + 2.4680000e+03 1.2654332e+00 + 2.4684000e+03 7.0438439e-01 + 2.4688000e+03 2.4338401e-01 + 2.4692000e+03 -2.6690116e-01 + 2.4696000e+03 -7.4822820e-01 + 2.4700000e+03 -9.5847554e-01 + 2.4704000e+03 -1.2183174e+00 + 2.4708000e+03 -1.3578389e+00 + 2.4712000e+03 -1.6970469e+00 + 2.4716000e+03 -1.9763504e+00 + 2.4720000e+03 -2.1757572e+00 + 2.4724000e+03 -2.0751124e+00 + 2.4728000e+03 -1.7945040e+00 + 2.4732000e+03 -1.9741266e+00 + 2.4736000e+03 -1.9339962e+00 + 2.4740000e+03 -1.6939313e+00 + 2.4744000e+03 -1.1134159e+00 + 2.4748000e+03 -1.2558296e-01 + 2.4752000e+03 1.5281215e+00 + 2.4756000e+03 2.7265932e+00 + 2.4760000e+03 3.6031743e+00 + 2.4764000e+03 3.6310294e+00 + 2.4768000e+03 3.1336311e+00 + 2.4772000e+03 2.4691194e+00 + 2.4776000e+03 1.8031895e+00 + 2.4780000e+03 1.1120296e+00 + 2.4784000e+03 6.9096942e-01 + 2.4788000e+03 5.8029405e-01 + 2.4792000e+03 5.8247857e-01 + 2.4796000e+03 6.2353595e-01 + 2.4800000e+03 2.8901306e-01 + 2.4804000e+03 -2.2775994e-01 + 2.4808000e+03 -7.2911504e-01 + 2.4812000e+03 -1.2812794e+00 + 2.4816000e+03 -1.5267768e+00 + 2.4820000e+03 -2.0099412e+00 + 2.4824000e+03 -2.4545047e+00 + 2.4828000e+03 -2.7646324e+00 + 2.4832000e+03 -2.4829611e+00 + 2.4836000e+03 -1.7111148e+00 + 2.4840000e+03 -1.0996574e+00 + 2.4844000e+03 -8.9868439e-01 + 2.4848000e+03 -8.3814572e-01 + 2.4852000e+03 -2.6725528e-01 + 2.4856000e+03 -7.7948266e-02 + 2.4860000e+03 3.5124562e-01 + 2.4864000e+03 4.7623338e-01 + 2.4868000e+03 8.4966219e-01 + 2.4872000e+03 1.4838543e+00 + 2.4876000e+03 2.3585835e+00 + 2.4880000e+03 2.6077126e+00 + 2.4884000e+03 2.5165586e+00 + 2.4888000e+03 1.8695292e+00 + 2.4892000e+03 8.7454556e-01 + 2.4896000e+03 -3.0635286e-01 + 2.4900000e+03 -6.1751447e-01 + 2.4904000e+03 -7.2825382e-01 + 2.4908000e+03 -9.9840568e-01 + 2.4912000e+03 -1.1983492e+00 + 2.4916000e+03 -1.5561970e+00 + 2.4920000e+03 -2.0267218e+00 + 2.4924000e+03 -2.1057901e+00 + 2.4928000e+03 -2.2746943e+00 + 2.4932000e+03 -2.2827482e+00 + 2.4936000e+03 -2.3045067e+00 + 2.4940000e+03 -1.6272573e+00 + 2.4944000e+03 -1.1093913e+00 + 2.4948000e+03 -4.8128263e-02 + 2.4952000e+03 1.1197263e+00 + 2.4956000e+03 1.6092702e+00 + 2.4960000e+03 1.9582437e+00 + 2.4964000e+03 2.1888050e+00 + 2.4968000e+03 2.6454542e+00 + 2.4972000e+03 2.8518828e+00 + 2.4976000e+03 3.0074725e+00 + 2.4980000e+03 2.8371531e+00 + 2.4984000e+03 2.4366162e+00 + 2.4988000e+03 1.8258295e+00 + 2.4992000e+03 1.2348331e+00 + 2.4996000e+03 3.6365614e-01 + 2.5000000e+03 -6.7421588e-02 + 2.5004000e+03 -1.4843556e-01 + 2.5008000e+03 1.0906006e-02 + 2.5012000e+03 2.1043073e-01 + 2.5016000e+03 -9.6439330e-03 + 2.5020000e+03 -8.0962869e-01 + 2.5024000e+03 -1.3466645e+00 + 2.5028000e+03 -1.6444406e+00 + 2.5032000e+03 -1.8260110e+00 + 2.5036000e+03 -1.7631556e+00 + 2.5040000e+03 -1.8394068e+00 + 2.5044000e+03 -1.3549598e+00 + 2.5048000e+03 -7.4212788e-01 + 2.5052000e+03 -5.1565302e-01 + 2.5056000e+03 -2.7016506e-01 + 2.5060000e+03 -2.9281466e-02 + 2.5064000e+03 9.8244885e-02 + 2.5068000e+03 -4.2472776e-02 + 2.5072000e+03 -1.3369710e-01 + 2.5076000e+03 -2.7478108e-01 + 2.5080000e+03 -3.5648028e-01 + 2.5084000e+03 -2.6716935e-01 + 2.5088000e+03 4.0914350e-02 + 2.5092000e+03 1.6974522e-01 + 2.5096000e+03 2.0872976e-01 + 2.5100000e+03 1.7943753e-02 + 2.5104000e+03 -1.5252436e-01 + 2.5108000e+03 -3.5265305e-01 + 2.5112000e+03 -4.8270786e-01 + 2.5116000e+03 -5.7282578e-01 + 2.5120000e+03 -6.1308921e-01 + 2.5124000e+03 -5.0315405e-01 + 2.5128000e+03 -3.1307248e-01 + 2.5132000e+03 -3.6311485e-01 + 2.5136000e+03 -5.6302009e-01 + 2.5140000e+03 -9.0279732e-01 + 2.5144000e+03 -8.5073971e-01 + 2.5148000e+03 -5.6738880e-01 + 2.5152000e+03 -3.8617532e-01 + 2.5156000e+03 1.3139690e-01 + 2.5160000e+03 3.2050169e-01 + 2.5164000e+03 9.0145025e-02 + 2.5168000e+03 -4.4684878e-01 + 2.5172000e+03 -8.8559180e-01 + 2.5176000e+03 -1.0755101e+00 + 2.5180000e+03 -1.2656243e+00 + 2.5184000e+03 -1.0462654e+00 + 2.5188000e+03 -4.2681890e-01 + 2.5192000e+03 -1.5778417e-01 + 2.5196000e+03 8.1424007e-02 + 2.5200000e+03 5.4070252e-01 + 2.5204000e+03 1.0702164e+00 + 2.5208000e+03 1.6693697e+00 + 2.5212000e+03 2.2997794e+00 + 2.5216000e+03 2.7405410e+00 + 2.5220000e+03 2.5310154e+00 + 2.5224000e+03 2.0857650e+00 + 2.5228000e+03 1.6615387e+00 + 2.5232000e+03 1.0012247e+00 + 2.5236000e+03 3.5237727e-01 + 2.5240000e+03 -8.1237355e-01 + 2.5244000e+03 -1.5631570e+00 + 2.5248000e+03 -2.0440465e+00 + 2.5252000e+03 -2.2291728e+00 + 2.5256000e+03 -2.3329625e+00 + 2.5260000e+03 -1.8471729e+00 + 2.5264000e+03 -1.2675108e+00 + 2.5268000e+03 -5.9789977e-01 + 2.5272000e+03 -4.4838250e-01 + 2.5276000e+03 -2.4862971e-01 + 2.5280000e+03 -1.8713188e-02 + 2.5284000e+03 1.0130658e-01 + 2.5288000e+03 1.7137038e-01 + 2.5292000e+03 1.4144376e-01 + 2.5296000e+03 -2.8551224e-02 + 2.5300000e+03 5.1419079e-02 + 2.5304000e+03 4.1127029e-01 + 2.5308000e+03 7.8088659e-01 + 2.5312000e+03 1.1403745e+00 + 2.5316000e+03 6.0986846e-01 + 2.5320000e+03 -7.0678764e-02 + 2.5324000e+03 -5.9159580e-01 + 2.5328000e+03 -1.2789662e+00 + 2.5332000e+03 -1.4539727e+00 + 2.5336000e+03 -1.4127188e+00 + 2.5340000e+03 -1.2577810e+00 + 2.5344000e+03 -1.2033356e+00 + 2.5348000e+03 -9.1274602e-01 + 2.5352000e+03 -3.7177051e-01 + 2.5356000e+03 -1.6070088e-01 + 2.5360000e+03 -8.2334795e-02 + 2.5364000e+03 1.2777795e-02 + 2.5368000e+03 -2.9511482e-01 + 2.5372000e+03 -6.4049117e-01 + 2.5376000e+03 -7.7741221e-01 + 2.5380000e+03 -7.3440286e-01 + 2.5384000e+03 -3.6483172e-01 + 2.5388000e+03 3.4364969e-01 + 2.5392000e+03 1.1780839e+00 + 2.5396000e+03 1.7239559e+00 + 2.5400000e+03 2.0795205e+00 + 2.5404000e+03 2.0810430e+00 + 2.5408000e+03 2.1208104e+00 + 2.5412000e+03 2.2241284e+00 + 2.5416000e+03 2.6633573e+00 + 2.5420000e+03 3.1824160e+00 + 2.5424000e+03 3.2583346e+00 + 2.5428000e+03 2.9302789e+00 + 2.5432000e+03 2.3505818e+00 + 2.5436000e+03 1.4275606e+00 + 2.5440000e+03 5.8881962e-01 + 2.5444000e+03 -4.9257051e-01 + 2.5448000e+03 -1.1418568e+00 + 2.5452000e+03 -1.9454324e+00 + 2.5456000e+03 -2.4296234e+00 + 2.5460000e+03 -2.6450697e+00 + 2.5464000e+03 -2.4396776e+00 + 2.5468000e+03 -2.2683927e+00 + 2.5472000e+03 -2.1171090e+00 + 2.5476000e+03 -1.6758321e+00 + 2.5480000e+03 -9.9463196e-01 + 2.5484000e+03 -2.8365489e-01 + 2.5488000e+03 2.5680066e-01 + 2.5492000e+03 6.3696605e-01 + 2.5496000e+03 1.2466986e+00 + 2.5500000e+03 1.3660457e+00 + 2.5504000e+03 1.0150542e+00 + 2.5508000e+03 6.6399222e-01 + 2.5512000e+03 7.8275300e-01 + 2.5516000e+03 9.5140386e-01 + 2.5520000e+03 7.1011483e-01 + 2.5524000e+03 3.4387093e-01 + 2.5528000e+03 -1.9234093e-01 + 2.5532000e+03 -2.1448790e-01 + 2.5536000e+03 -1.2726375e-01 + 2.5540000e+03 -3.2423390e-01 + 2.5544000e+03 -7.3409515e-01 + 2.5548000e+03 -9.8363948e-01 + 2.5552000e+03 -1.0928821e+00 + 2.5556000e+03 -1.3419509e+00 + 2.5560000e+03 -1.5108444e+00 + 2.5564000e+03 -1.5396692e+00 + 2.5568000e+03 -1.8436159e+00 + 2.5572000e+03 -2.3056013e+00 + 2.5576000e+03 -2.3416004e+00 + 2.5580000e+03 -1.7503810e+00 + 2.5584000e+03 -7.7468768e-01 + 2.5588000e+03 3.5257666e-01 + 2.5592000e+03 1.3081925e+00 + 2.5596000e+03 2.1165938e+00 + 2.5600000e+03 2.7126661e+00 + 2.5604000e+03 3.2564779e+00 + 2.5608000e+03 3.3149725e+00 + 2.5612000e+03 2.8745451e+00 + 2.5616000e+03 2.5151536e+00 + 2.5620000e+03 2.0934313e+00 + 2.5624000e+03 1.9423195e+00 + 2.5628000e+03 1.7818450e+00 + 2.5632000e+03 1.7018118e+00 + 2.5636000e+03 1.7287459e+00 + 2.5640000e+03 1.2284414e+00 + 2.5644000e+03 3.4980267e-01 + 2.5648000e+03 -5.3672353e-01 + 2.5652000e+03 -1.5319971e+00 + 2.5656000e+03 -2.4260701e+00 + 2.5660000e+03 -2.8457192e+00 + 2.5664000e+03 -2.8473572e+00 + 2.5668000e+03 -2.7073934e+00 + 2.5672000e+03 -2.5349144e+00 + 2.5676000e+03 -2.0908826e+00 + 2.5680000e+03 -1.2364211e+00 + 2.5684000e+03 -1.3592356e-01 + 2.5688000e+03 2.6409645e-01 + 2.5692000e+03 9.3846844e-02 + 2.5696000e+03 -3.6893811e-02 + 2.5700000e+03 1.7210911e-01 + 2.5704000e+03 8.3099899e-01 + 2.5708000e+03 1.1598091e+00 + 2.5712000e+03 1.3285911e+00 + 2.5716000e+03 1.4372720e+00 + 2.5720000e+03 1.5059056e+00 + 2.5724000e+03 1.4745657e+00 + 2.5728000e+03 8.2351604e-01 + 2.5732000e+03 1.2274797e-01 + 2.5736000e+03 -5.0295541e-01 + 2.5740000e+03 -7.5406573e-01 + 2.5744000e+03 -7.7096211e-01 + 2.5748000e+03 -5.3690177e-01 + 2.5752000e+03 -2.0550212e-01 + 2.5756000e+03 -1.4396046e-02 + 2.5760000e+03 -1.2309753e-01 + 2.5764000e+03 -3.7131064e-01 + 2.5768000e+03 -6.5130610e-01 + 2.5772000e+03 -1.2709061e+00 + 2.5776000e+03 -1.7721403e+00 + 2.5780000e+03 -1.7275740e+00 + 2.5784000e+03 -1.5182767e+00 + 2.5788000e+03 -1.1420807e+00 + 2.5792000e+03 -5.8024815e-01 + 2.5796000e+03 2.7451183e-01 + 2.5800000e+03 1.0352850e+00 + 2.5804000e+03 1.4525800e+00 + 2.5808000e+03 1.5935824e+00 + 2.5812000e+03 1.3361749e+00 + 2.5816000e+03 1.2252925e+00 + 2.5820000e+03 9.0501385e-01 + 2.5824000e+03 7.5629562e-01 + 2.5828000e+03 1.0201815e+00 + 2.5832000e+03 1.2968189e+00 + 2.5836000e+03 1.2526476e+00 + 2.5840000e+03 1.0883002e+00 + 2.5844000e+03 1.2260636e+00 + 2.5848000e+03 1.1626583e+00 + 2.5852000e+03 9.3362072e-01 + 2.5856000e+03 1.7472485e-01 + 2.5860000e+03 -1.9416082e-01 + 2.5864000e+03 -1.4330801e+00 + 2.5868000e+03 -2.5520936e+00 + 2.5872000e+03 -3.5112001e+00 + 2.5876000e+03 -4.0805384e+00 + 2.5880000e+03 -3.8699875e+00 + 2.5884000e+03 -3.3196250e+00 + 2.5888000e+03 -2.6793101e+00 + 2.5892000e+03 -1.7489918e+00 + 2.5896000e+03 -4.1870396e-01 + 2.5900000e+03 1.3409205e+00 + 2.5904000e+03 2.8203763e+00 + 2.5908000e+03 3.4196097e+00 + 2.5912000e+03 3.3385353e+00 + 2.5916000e+03 3.0272269e+00 + 2.5920000e+03 2.6357115e+00 + 2.5924000e+03 1.9341702e+00 + 2.5928000e+03 1.1226875e+00 + 2.5932000e+03 4.4162812e-01 + 2.5936000e+03 -1.8904722e-01 + 2.5940000e+03 -6.1379131e-01 + 2.5944000e+03 -1.0054489e+00 + 2.5948000e+03 -1.2004483e+00 + 2.5952000e+03 -1.2561368e+00 + 2.5956000e+03 -9.5001967e-01 + 2.5960000e+03 -5.6993638e-01 + 2.5964000e+03 -2.9892688e-02 + 2.5968000e+03 4.7002337e-01 + 2.5972000e+03 7.5980643e-01 + 2.5976000e+03 1.0395247e+00 + 2.5980000e+03 1.0692042e+00 + 2.5984000e+03 9.4888690e-01 + 2.5988000e+03 5.8864626e-01 + 2.5992000e+03 1.4860996e-01 + 2.5996000e+03 -3.4141097e-01 + 2.6000000e+03 -4.4126104e-01 + 2.6004000e+03 -3.9434787e-01 + 2.6008000e+03 -1.7512622e-01 + 2.6012000e+03 -4.4209671e-02 + 2.6016000e+03 -6.3916380e-02 + 2.6020000e+03 -4.7828547e-01 + 2.6024000e+03 -5.0810025e-01 + 2.6028000e+03 -4.3812994e-01 + 2.6032000e+03 -5.9819885e-01 + 2.6036000e+03 -6.9836521e-01 + 2.6040000e+03 -4.9777516e-01 + 2.6044000e+03 -2.2733337e-01 + 2.6048000e+03 1.0319674e-01 + 2.6052000e+03 4.5371401e-01 + 2.6056000e+03 6.0417977e-01 + 2.6060000e+03 6.7467241e-01 + 2.6064000e+03 2.5521716e-01 + 2.6068000e+03 -1.1425973e-01 + 2.6072000e+03 -4.3361517e-01 + 2.6076000e+03 -8.4312057e-01 + 2.6080000e+03 -1.1125512e+00 + 2.6084000e+03 -1.1522254e+00 + 2.6088000e+03 -1.0024430e+00 + 2.6092000e+03 -5.7297078e-01 + 2.6096000e+03 -1.6367240e-01 + 2.6100000e+03 5.5801967e-02 + 2.6104000e+03 -9.4613765e-02 + 2.6108000e+03 -2.8480513e-01 + 2.6112000e+03 -1.5517189e-01 + 2.6116000e+03 9.4538660e-02 + 2.6120000e+03 5.2398347e-01 + 2.6124000e+03 9.6326831e-01 + 2.6128000e+03 1.1322957e+00 + 2.6132000e+03 9.6111550e-01 + 2.6136000e+03 3.6988763e-01 + 2.6140000e+03 -2.1152174e-01 + 2.6144000e+03 -3.4264775e-01 + 2.6148000e+03 -1.1334498e+00 + 2.6152000e+03 -1.2938201e+00 + 2.6156000e+03 -1.0038307e+00 + 2.6160000e+03 -6.0370251e-01 + 2.6164000e+03 -3.7366320e-01 + 2.6168000e+03 3.6188232e-02 + 2.6172000e+03 3.0602442e-01 + 2.6176000e+03 4.2591749e-01 + 2.6180000e+03 3.9581901e-01 + 2.6184000e+03 1.8590262e-01 + 2.6188000e+03 9.6038134e-02 + 2.6192000e+03 4.5602934e-01 + 2.6196000e+03 9.6574211e-01 + 2.6200000e+03 1.1853513e+00 + 2.6204000e+03 1.2749290e+00 + 2.6208000e+03 9.9463579e-01 + 2.6212000e+03 6.5458526e-01 + 2.6216000e+03 4.4478589e-01 + 2.6220000e+03 -6.4732721e-02 + 2.6224000e+03 -4.3471943e-01 + 2.6228000e+03 -7.8217294e-01 + 2.6232000e+03 -8.4494383e-01 + 2.6236000e+03 -1.1644638e+00 + 2.6240000e+03 -1.2003139e+00 + 2.6244000e+03 -9.7897302e-01 + 2.6248000e+03 -8.3731147e-01 + 2.6252000e+03 -6.6566279e-01 + 2.6256000e+03 -4.7437140e-01 + 2.6260000e+03 -6.7324887e-01 + 2.6264000e+03 -7.9222654e-01 + 2.6268000e+03 -9.4173572e-01 + 2.6272000e+03 -7.9130510e-01 + 2.6276000e+03 -8.1119117e-01 + 2.6280000e+03 -7.4142328e-01 + 2.6284000e+03 -4.2194677e-01 + 2.6288000e+03 -2.3303871e-01 + 2.6292000e+03 -6.4285822e-02 + 2.6296000e+03 -4.5586739e-02 + 2.6300000e+03 5.3060878e-02 + 2.6304000e+03 -7.8342181e-02 + 2.6308000e+03 -2.5682608e-01 + 2.6312000e+03 -2.7760028e-01 + 2.6316000e+03 -3.2761473e-02 + 2.6320000e+03 6.5361192e-02 + 2.6324000e+03 6.5419771e-02 + 2.6328000e+03 1.2396612e-01 + 2.6332000e+03 -1.0065864e-01 + 2.6336000e+03 -4.1610217e-01 + 2.6340000e+03 -3.7504170e-01 + 2.6344000e+03 9.5447437e-02 + 2.6348000e+03 5.4587544e-01 + 2.6352000e+03 7.6623898e-01 + 2.6356000e+03 2.0666067e+00 + 2.6360000e+03 2.4369275e+00 + 2.6364000e+03 2.0272219e+00 + 2.6368000e+03 1.5174892e+00 + 2.6372000e+03 1.1676381e+00 + 2.6376000e+03 8.1171233e-01 + 2.6380000e+03 2.0707014e-01 + 2.6384000e+03 -4.8732703e-01 + 2.6388000e+03 -1.1152733e+00 + 2.6392000e+03 -1.8478022e+00 + 2.6396000e+03 -2.4899822e+00 + 2.6400000e+03 -2.7750860e+00 + 2.6404000e+03 -2.8354572e+00 + 2.6408000e+03 -2.7757950e+00 + 2.6412000e+03 -2.2559915e+00 + 2.6416000e+03 -1.8859962e+00 + 2.6420000e+03 -1.4057099e+00 + 2.6424000e+03 -9.0538564e-01 + 2.6428000e+03 1.4972959e-02 + 2.6432000e+03 -2.4648045e-02 + 2.6436000e+03 1.5579467e-01 + 2.6440000e+03 5.4618502e-01 + 2.6444000e+03 1.3866334e+00 + 2.6448000e+03 2.5972692e+00 + 2.6452000e+03 2.9579187e+00 + 2.6456000e+03 2.8983976e+00 + 2.6460000e+03 2.4341985e+00 + 2.6464000e+03 1.6659610e+00 + 2.6468000e+03 8.8170588e-01 + 2.6472000e+03 2.5711489e-01 + 2.6476000e+03 -3.8619406e-01 + 2.6480000e+03 -8.9135078e-01 + 2.6484000e+03 -7.8833321e-01 + 2.6488000e+03 -6.3495589e-01 + 2.6492000e+03 -6.8117234e-01 + 2.6496000e+03 -1.0461011e+00 + 2.6500000e+03 -1.4599478e+00 + 2.6504000e+03 -1.8327571e+00 + 2.6508000e+03 -2.1326804e+00 + 2.6512000e+03 -2.3668049e+00 + 2.6516000e+03 -2.5969710e+00 + 2.6520000e+03 -2.9217927e+00 + 2.6524000e+03 -2.3518512e+00 + 2.6528000e+03 -1.2044664e+00 + 2.6532000e+03 7.7804339e-03 + 2.6536000e+03 1.6163652e+00 + 2.6540000e+03 2.5796802e+00 + 2.6544000e+03 3.1286311e+00 + 2.6548000e+03 3.1508230e+00 + 2.6552000e+03 2.8185672e+00 + 2.6556000e+03 2.1976217e+00 + 2.6560000e+03 1.5367254e+00 + 2.6564000e+03 1.6214398e+00 + 2.6568000e+03 1.8475289e+00 + 2.6572000e+03 1.7145924e+00 + 2.6576000e+03 1.6140537e+00 + 2.6580000e+03 1.4896330e+00 + 2.6584000e+03 8.9851994e-01 + 2.6588000e+03 4.0673928e-01 + 2.6592000e+03 -5.3768522e-02 + 2.6596000e+03 -6.5926218e-01 + 2.6600000e+03 -9.4881520e-01 + 2.6604000e+03 -1.4785012e+00 + 2.6608000e+03 -1.7183319e+00 + 2.6612000e+03 -1.7682449e+00 + 2.6616000e+03 -1.7083660e+00 + 2.6620000e+03 -1.5583777e+00 + 2.6624000e+03 -1.3484896e+00 + 2.6628000e+03 -8.2851761e-01 + 2.6632000e+03 -7.2898343e-01 + 2.6636000e+03 -6.7954534e-01 + 2.6640000e+03 -7.2013910e-01 + 2.6644000e+03 -6.3079423e-01 + 2.6648000e+03 -3.7155452e-01 + 2.6652000e+03 -1.9216406e-01 + 2.6656000e+03 2.7630506e-02 + 2.6660000e+03 2.3748393e-01 + 2.6664000e+03 2.6774284e-01 + 2.6668000e+03 3.7817686e-01 + 2.6672000e+03 6.3492099e-01 + 2.6676000e+03 7.0381799e-01 + 2.6680000e+03 6.0102075e-01 + 2.6684000e+03 8.1757568e-01 + 2.6688000e+03 1.0113326e+00 + 2.6692000e+03 1.0421210e+00 + 2.6696000e+03 6.2288874e-01 + 2.6700000e+03 2.7436019e-01 + 2.6704000e+03 1.2816577e-01 + 2.6708000e+03 -6.0235284e-02 + 2.6712000e+03 -3.7548194e-01 + 2.6716000e+03 -8.2872459e-01 + 2.6720000e+03 -1.4714856e+00 + 2.6724000e+03 -2.1369756e+00 + 2.6728000e+03 -2.5920885e+00 + 2.6732000e+03 -2.5185627e+00 + 2.6736000e+03 -2.2862532e+00 + 2.6740000e+03 -2.1828566e+00 + 2.6744000e+03 -2.0210653e+00 + 2.6748000e+03 -1.5827645e+00 + 2.6752000e+03 -1.2343184e+00 + 2.6756000e+03 -7.9573758e-01 + 2.6760000e+03 -1.4704450e-01 + 2.6764000e+03 5.7185187e-01 + 2.6768000e+03 1.0070985e+00 + 2.6772000e+03 9.5610255e-01 + 2.6776000e+03 9.1766067e-01 + 2.6780000e+03 1.3013080e+00 + 2.6784000e+03 1.8921661e+00 + 2.6788000e+03 2.8126847e+00 + 2.6792000e+03 3.2449384e+00 + 2.6796000e+03 3.1669443e+00 + 2.6800000e+03 2.7300919e+00 + 2.6804000e+03 1.9231953e+00 + 2.6808000e+03 1.0822555e+00 + 2.6812000e+03 4.1284127e-01 + 2.6816000e+03 -9.5369679e-02 + 2.6820000e+03 -2.9507490e-01 + 2.6824000e+03 -2.6918037e-01 + 2.6828000e+03 -1.8440098e-01 + 2.6832000e+03 -3.1076484e-01 + 2.6836000e+03 -3.5156696e-01 + 2.6840000e+03 -5.6234412e-01 + 2.6844000e+03 -8.5311517e-01 + 2.6848000e+03 -1.7037615e+00 + 2.6852000e+03 -1.8441901e+00 + 2.6856000e+03 -1.5645324e+00 + 2.6860000e+03 -1.2802092e+00 + 2.6864000e+03 -1.0580559e+00 + 2.6868000e+03 -8.4203808e-01 + 2.6872000e+03 -9.8211676e-01 + 2.6876000e+03 -1.1855138e+00 + 2.6880000e+03 -1.2153466e+00 + 2.6884000e+03 -7.6490412e-01 + 2.6888000e+03 -3.2442864e-01 + 2.6892000e+03 1.5843829e-02 + 2.6896000e+03 5.6581064e-01 + 2.6900000e+03 9.0555209e-01 + 2.6904000e+03 1.0603567e+00 + 2.6908000e+03 1.0332965e+00 + 2.6912000e+03 1.1473966e+00 + 2.6916000e+03 1.1859237e+00 + 2.6920000e+03 1.3243794e+00 + 2.6924000e+03 1.0843257e+00 + 2.6928000e+03 5.2442790e-01 + 2.6932000e+03 -3.1532102e-01 + 2.6936000e+03 -1.2749455e+00 + 2.6940000e+03 -2.2045306e+00 + 2.6944000e+03 -2.7240404e+00 + 2.6948000e+03 -2.9736400e+00 + 2.6952000e+03 -3.2334829e+00 + 2.6956000e+03 -2.9338274e+00 + 2.6960000e+03 -2.8246336e+00 + 2.6964000e+03 -1.6757035e+00 + 2.6968000e+03 -1.5566217e+00 + 2.6972000e+03 -1.0574998e+00 + 2.6976000e+03 -2.1833668e-01 + 2.6980000e+03 3.3101763e-01 + 2.6984000e+03 2.0506694e+00 + 2.6988000e+03 2.9803505e+00 + 2.6992000e+03 3.1600160e+00 + 2.6996000e+03 2.8298671e+00 + 2.7000000e+03 2.2300722e+00 + 2.7004000e+03 1.9606037e+00 + 2.7008000e+03 1.8814824e+00 + 2.7012000e+03 1.9931645e+00 + 2.7016000e+03 1.7950125e+00 + 2.7020000e+03 1.2466785e+00 + 2.7024000e+03 4.4811152e-01 + 2.7028000e+03 -3.8079701e-01 + 2.7032000e+03 -9.3991113e-01 + 2.7036000e+03 -1.4492379e+00 + 2.7040000e+03 -1.7987642e+00 + 2.7044000e+03 -1.8684837e+00 + 2.7048000e+03 -1.5283070e+00 + 2.7052000e+03 -1.2782536e+00 + 2.7056000e+03 -1.1584133e+00 + 2.7060000e+03 -1.1188325e+00 + 2.7064000e+03 -7.0973896e-01 + 2.7068000e+03 -4.3063990e-01 + 2.7072000e+03 -2.6156065e-01 + 2.7076000e+03 3.6649425e-01 + 2.7080000e+03 9.3490513e-01 + 2.7084000e+03 5.8328976e-01 + 2.7088000e+03 1.0170321e-01 + 2.7092000e+03 -2.8932303e-01 + 2.7096000e+03 -7.9023252e-01 + 2.7100000e+03 -1.3606311e+00 + 2.7104000e+03 -1.7004182e+00 + 2.7108000e+03 -1.7794824e+00 + 2.7112000e+03 -1.4780616e+00 + 2.7116000e+03 -1.1364328e+00 + 2.7120000e+03 -5.7490940e-01 + 2.7124000e+03 1.1634143e-01 + 2.7128000e+03 7.5719856e-01 + 2.7132000e+03 1.1877819e+00 + 2.7136000e+03 1.3380070e+00 + 2.7140000e+03 1.2379764e+00 + 2.7144000e+03 9.0765651e-01 + 2.7148000e+03 4.0726280e-01 + 2.7152000e+03 -2.7280172e-01 + 2.7156000e+03 -8.3382111e-01 + 2.7160000e+03 -1.3144706e+00 + 2.7164000e+03 -1.5253111e+00 + 2.7168000e+03 -1.4360633e+00 + 2.7172000e+03 -1.1164000e+00 + 2.7176000e+03 -6.9705943e-01 + 2.7180000e+03 -3.0691181e-01 + 2.7184000e+03 1.1263075e-01 + 2.7188000e+03 6.6248945e-01 + 2.7192000e+03 1.1026244e+00 + 2.7196000e+03 1.3330086e+00 + 2.7200000e+03 1.8636412e+00 + 2.7204000e+03 2.5644878e+00 + 2.7208000e+03 2.5156113e+00 + 2.7212000e+03 2.0268181e+00 + 2.7216000e+03 1.4381744e+00 + 2.7220000e+03 1.3596891e+00 + 2.7224000e+03 6.6090001e-01 + 2.7228000e+03 -2.8222439e-02 + 2.7232000e+03 -2.0777849e-01 + 2.7236000e+03 -4.2772078e-01 + 2.7240000e+03 -8.1825554e-01 + 2.7244000e+03 -9.9907764e-01 + 2.7248000e+03 -1.4102046e+00 + 2.7252000e+03 -1.3716551e+00 + 2.7256000e+03 -1.2531100e+00 + 2.7260000e+03 -1.3945143e+00 + 2.7264000e+03 -1.6757306e+00 + 2.7268000e+03 -1.8167447e+00 + 2.7272000e+03 -1.7475272e+00 + 2.7276000e+03 -1.5272115e+00 + 2.7280000e+03 -8.2324583e-01 + 2.7284000e+03 -2.8529359e-01 + 2.7288000e+03 3.5975319e-01 + 2.7292000e+03 2.7701306e-01 + 2.7296000e+03 6.5738023e-02 + 2.7300000e+03 -1.2123895e-01 + 2.7304000e+03 -3.5887269e-02 + 2.7308000e+03 -1.3537437e-01 + 2.7312000e+03 -4.7465126e-01 + 2.7316000e+03 -7.8372883e-01 + 2.7320000e+03 -8.5292471e-01 + 2.7324000e+03 -9.7237444e-01 + 2.7328000e+03 -2.9186382e-01 + 2.7332000e+03 4.4773073e-01 + 2.7336000e+03 5.1723746e-01 + 2.7340000e+03 -1.3343294e-01 + 2.7344000e+03 -3.4410722e-01 + 2.7348000e+03 -3.7487543e-01 + 2.7352000e+03 -3.9677947e-01 + 2.7356000e+03 -1.2563940e-01 + 2.7360000e+03 3.7942377e-02 + 2.7364000e+03 3.3939632e-01 + 2.7368000e+03 6.1562881e-01 + 2.7372000e+03 7.2315452e-01 + 2.7376000e+03 3.7431382e-01 + 2.7380000e+03 2.9029192e-01 + 2.7384000e+03 2.6213566e-01 + 2.7388000e+03 6.9049853e-01 + 2.7392000e+03 1.2876330e+00 + 2.7396000e+03 1.3787773e+00 + 2.7400000e+03 1.3587805e+00 + 2.7404000e+03 1.2939823e+00 + 2.7408000e+03 1.0116671e+00 + 2.7412000e+03 3.9625243e-01 + 2.7416000e+03 4.3121377e-01 + 2.7420000e+03 1.9620114e-01 + 2.7424000e+03 -1.3506027e-02 + 2.7428000e+03 -2.5039839e-01 + 2.7432000e+03 -3.8389862e-01 + 2.7436000e+03 -6.2742957e-01 + 2.7440000e+03 -1.2098338e+00 + 2.7444000e+03 -1.5648924e+00 + 2.7448000e+03 -1.6245477e+00 + 2.7452000e+03 -1.5763571e+00 + 2.7456000e+03 -1.4678993e+00 + 2.7460000e+03 -1.5491323e+00 + 2.7464000e+03 -1.5000030e+00 + 2.7468000e+03 -1.3403334e+00 + 2.7472000e+03 -1.1700983e+00 + 2.7476000e+03 -8.6915097e-01 + 2.7480000e+03 -2.7782127e-01 + 2.7484000e+03 1.1355893e-01 + 2.7488000e+03 4.4517127e-01 + 2.7492000e+03 8.8674282e-01 + 2.7496000e+03 1.2381552e+00 + 2.7500000e+03 1.4692493e+00 + 2.7504000e+03 1.7699937e+00 + 2.7508000e+03 1.9604849e+00 + 2.7512000e+03 1.3705928e+00 + 2.7516000e+03 6.5044968e-01 + 2.7520000e+03 1.4002992e-01 + 2.7524000e+03 -1.0636359e-02 + 2.7528000e+03 -1.3158702e-01 + 2.7532000e+03 -1.2555131e-02 + 2.7536000e+03 3.3648900e-01 + 2.7540000e+03 5.5567487e-01 + 2.7544000e+03 5.7576079e-01 + 2.7548000e+03 2.5032481e-01 + 2.7552000e+03 -1.9655210e-01 + 2.7556000e+03 -9.0958818e-01 + 2.7560000e+03 -1.3237093e+00 + 2.7564000e+03 -1.6899472e+00 + 2.7568000e+03 -1.7211249e+00 + 2.7572000e+03 -1.2827037e+00 + 2.7576000e+03 -5.3125431e-01 + 2.7580000e+03 -1.9588655e-02 + 2.7584000e+03 -6.7450204e-02 + 2.7588000e+03 -2.3523921e-01 + 2.7592000e+03 -6.5305053e-01 + 2.7596000e+03 -8.7152940e-01 + 2.7600000e+03 -2.3070133e-01 + 2.7604000e+03 3.4946054e-01 + 2.7608000e+03 1.3487231e+00 + 2.7612000e+03 1.7276920e+00 + 2.7616000e+03 1.9264917e+00 + 2.7620000e+03 1.9851720e+00 + 2.7624000e+03 1.6836433e+00 + 2.7628000e+03 1.5219347e+00 + 2.7632000e+03 1.6799310e+00 + 2.7636000e+03 1.4241037e+00 + 2.7640000e+03 2.9187510e-01 + 2.7644000e+03 -7.0631553e-01 + 2.7648000e+03 -1.6344686e+00 + 2.7652000e+03 -2.3750811e+00 + 2.7656000e+03 -2.9855870e+00 + 2.7660000e+03 -3.0733795e+00 + 2.7664000e+03 -2.9192207e+00 + 2.7668000e+03 -2.7648796e+00 + 2.7672000e+03 -2.7166052e+00 + 2.7676000e+03 -2.4245017e+00 + 2.7680000e+03 -1.5021259e+00 + 2.7684000e+03 -1.8968076e-01 + 2.7688000e+03 1.1727521e+00 + 2.7692000e+03 2.4448073e+00 + 2.7696000e+03 3.4364270e+00 + 2.7700000e+03 3.7475672e+00 + 2.7704000e+03 3.9883185e+00 + 2.7708000e+03 4.0786776e+00 + 2.7712000e+03 3.4887256e+00 + 2.7716000e+03 2.8484328e+00 + 2.7720000e+03 2.5680027e+00 + 2.7724000e+03 2.4373236e+00 + 2.7728000e+03 2.2965573e+00 + 2.7732000e+03 2.0748516e+00 + 2.7736000e+03 1.5394765e+00 + 2.7740000e+03 4.7206161e-01 + 2.7744000e+03 -4.0630544e-01 + 2.7748000e+03 -1.2736612e+00 + 2.7752000e+03 -2.3866511e+00 + 2.7756000e+03 -3.4956424e+00 + 2.7760000e+03 -4.0723189e+00 + 2.7764000e+03 -4.5370723e+00 + 2.7768000e+03 -4.5538498e+00 + 2.7772000e+03 -4.2758212e+00 + 2.7776000e+03 -3.6694921e+00 + 2.7780000e+03 -2.8622342e+00 + 2.7784000e+03 -1.9538574e+00 + 2.7788000e+03 -6.5572238e-01 + 2.7792000e+03 6.8403251e-01 + 2.7796000e+03 2.0566450e+00 + 2.7800000e+03 2.8462358e+00 + 2.7804000e+03 3.4051680e+00 + 2.7808000e+03 3.5988299e+00 + 2.7812000e+03 3.0826768e+00 + 2.7816000e+03 2.5704591e+00 + 2.7820000e+03 2.3790703e+00 + 2.7824000e+03 2.0873587e+00 + 2.7828000e+03 1.2141157e+00 + 2.7832000e+03 2.8351739e-01 + 2.7836000e+03 -7.0696883e-01 + 2.7840000e+03 -1.2187141e+00 + 2.7844000e+03 -1.5894930e+00 + 2.7848000e+03 -2.0042736e+00 + 2.7852000e+03 -2.1927815e+00 + 2.7856000e+03 -1.9834024e+00 + 2.7860000e+03 -1.6337317e+00 + 2.7864000e+03 -1.4638211e+00 + 2.7868000e+03 -1.3637968e+00 + 2.7872000e+03 -1.2334950e+00 + 2.7876000e+03 -8.8289822e-01 + 2.7880000e+03 -2.5208177e-01 + 2.7884000e+03 5.6652041e-01 + 2.7888000e+03 1.4705550e+00 + 2.7892000e+03 2.7381443e+00 + 2.7896000e+03 3.6664312e+00 + 2.7900000e+03 4.8969966e+00 + 2.7904000e+03 5.2164534e+00 + 2.7908000e+03 4.9609534e+00 + 2.7912000e+03 3.7928311e+00 + 2.7916000e+03 2.5689114e+00 + 2.7920000e+03 1.0372586e+00 + 2.7924000e+03 -4.0492045e-01 + 2.7928000e+03 -9.7873295e-01 + 2.7932000e+03 -1.0580193e+00 + 2.7936000e+03 -7.3498967e-01 + 2.7940000e+03 -5.8787474e-01 + 2.7944000e+03 -8.0013373e-01 + 2.7948000e+03 -1.0743963e+00 + 2.7952000e+03 -1.4711686e+00 + 2.7956000e+03 -1.9016398e+00 + 2.7960000e+03 -1.9618248e+00 + 2.7964000e+03 -1.8120644e+00 + 2.7968000e+03 -1.6022558e+00 + 2.7972000e+03 -1.5724825e+00 + 2.7976000e+03 -1.5528610e+00 + 2.7980000e+03 -1.3432900e+00 + 2.7984000e+03 -1.1699826e+00 + 2.7988000e+03 -1.2198341e+00 + 2.7992000e+03 -1.1277301e+00 + 2.7996000e+03 -7.7739553e-01 + 2.8000000e+03 -6.1825417e-01 + 2.8004000e+03 -4.1884478e-01 + 2.8008000e+03 -2.7932661e-01 + 2.8012000e+03 -4.7953008e-01 + 2.8016000e+03 -7.4933854e-01 + 2.8020000e+03 -1.0787974e+00 + 2.8024000e+03 -1.4980350e+00 + 2.8028000e+03 -1.2573290e+00 + 2.8032000e+03 -9.3670116e-01 + 2.8036000e+03 -5.5628687e-01 + 2.8040000e+03 -1.3612029e-01 + 2.8044000e+03 1.1377623e-01 + 2.8048000e+03 3.1355984e-01 + 2.8052000e+03 7.7315770e-01 + 2.8056000e+03 9.2256281e-01 + 2.8060000e+03 1.1718871e+00 + 2.8064000e+03 1.5012309e+00 + 2.8068000e+03 1.6310949e+00 + 2.8072000e+03 1.8314424e+00 + 2.8076000e+03 1.7821638e+00 + 2.8080000e+03 1.6929467e+00 + 2.8084000e+03 1.6137213e+00 + 2.8088000e+03 6.9421729e-01 + 2.8092000e+03 8.4454708e-01 + 2.8096000e+03 7.7478599e-01 + 2.8100000e+03 1.0350194e+00 + 2.8104000e+03 1.1455089e+00 + 2.8108000e+03 1.2461366e+00 + 2.8112000e+03 1.3467810e+00 + 2.8116000e+03 1.3075295e+00 + 2.8120000e+03 7.6824133e-01 + 2.8124000e+03 -2.1112976e-02 + 2.8128000e+03 -1.3056364e-01 + 2.8132000e+03 -3.7006233e-01 + 2.8136000e+03 -1.3996807e+00 + 2.8140000e+03 -2.0793784e+00 + 2.8144000e+03 -2.1893004e+00 + 2.8148000e+03 -2.0894494e+00 + 2.8152000e+03 -2.0286626e+00 + 2.8156000e+03 -1.6084459e+00 + 2.8160000e+03 -1.4869410e+00 + 2.8164000e+03 -1.6143269e+00 + 2.8168000e+03 -1.7621502e+00 + 2.8172000e+03 -1.0925717e+00 + 2.8176000e+03 -4.1312769e-01 + 2.8180000e+03 1.6371289e-02 + 2.8184000e+03 9.0051397e-01 + 2.8188000e+03 1.4252350e+00 + 2.8192000e+03 1.3747205e+00 + 2.8196000e+03 1.4643358e+00 + 2.8200000e+03 9.5386300e-01 + 2.8204000e+03 -5.0670107e-01 + 2.8208000e+03 -1.3574072e+00 + 2.8212000e+03 -1.6681395e+00 + 2.8216000e+03 -1.7487310e+00 + 2.8220000e+03 -1.6792305e+00 + 2.8224000e+03 -1.3671761e+00 + 2.8228000e+03 -1.2656150e+00 + 2.8232000e+03 -8.7738053e-01 + 2.8236000e+03 -5.6915216e-01 + 2.8240000e+03 -1.7818217e-01 + 2.8244000e+03 1.8959610e-01 + 2.8248000e+03 2.4950811e-01 + 2.8252000e+03 4.8961878e-01 + 2.8256000e+03 9.6998228e-01 + 2.8260000e+03 1.3703860e+00 + 2.8264000e+03 2.0008838e+00 + 2.8268000e+03 2.4515377e+00 + 2.8272000e+03 2.7423798e+00 + 2.8276000e+03 2.6634144e+00 + 2.8280000e+03 1.8943399e+00 + 2.8284000e+03 1.0852168e+00 + 2.8288000e+03 4.5610926e-01 + 2.8292000e+03 -5.3087927e-02 + 2.8296000e+03 -5.1239354e-01 + 2.8300000e+03 -7.6173428e-01 + 2.8304000e+03 -1.0511370e+00 + 2.8308000e+03 -8.7463456e-01 + 2.8312000e+03 -8.6258557e-01 + 2.8316000e+03 -5.8693982e-01 + 2.8320000e+03 -1.3123116e-01 + 2.8324000e+03 1.3721909e-02 + 2.8328000e+03 4.7896748e-01 + 2.8332000e+03 1.0876282e+00 + 2.8336000e+03 5.5620433e-01 + 2.8340000e+03 6.1260943e-01 + 2.8344000e+03 6.2064428e-01 + 2.8348000e+03 7.4978473e-01 + 2.8352000e+03 4.0724168e-01 + 2.8356000e+03 1.6509521e-01 + 2.8360000e+03 -3.0420966e-01 + 2.8364000e+03 -4.4430734e-01 + 2.8368000e+03 -1.2091387e+00 + 2.8372000e+03 -2.0436445e+00 + 2.8376000e+03 -2.7232356e+00 + 2.8380000e+03 -2.8130659e+00 + 2.8384000e+03 -2.6633387e+00 + 2.8388000e+03 -2.4738395e+00 + 2.8392000e+03 -1.8645807e+00 + 2.8396000e+03 -1.5451895e+00 + 2.8400000e+03 -1.5157842e+00 + 2.8404000e+03 -1.2739965e+00 + 2.8408000e+03 -1.0781444e+00 + 2.8412000e+03 -8.4783821e-01 + 2.8416000e+03 -3.4954280e-01 + 2.8420000e+03 4.2222844e-01 + 2.8424000e+03 8.8339244e-01 + 2.8428000e+03 8.4895595e-01 + 2.8432000e+03 7.0851307e-01 + 2.8436000e+03 8.8388336e-01 + 2.8440000e+03 1.0184582e+00 + 2.8444000e+03 1.4979670e+00 + 2.8448000e+03 2.0878116e+00 + 2.8452000e+03 2.5078220e+00 + 2.8456000e+03 2.7081691e+00 + 2.8460000e+03 3.2689130e+00 + 2.8464000e+03 3.1798468e+00 + 2.8468000e+03 3.0922273e+00 + 2.8472000e+03 2.5311104e+00 + 2.8476000e+03 1.9411837e+00 + 2.8480000e+03 1.6756867e+00 + 2.8484000e+03 1.1735851e+00 + 2.8488000e+03 7.6440588e-01 + 2.8492000e+03 -4.7620519e-03 + 2.8496000e+03 -4.7824398e-01 + 2.8500000e+03 -8.6088713e-01 + 2.8504000e+03 -1.4306552e+00 + 2.8508000e+03 -1.8348711e+00 + 2.8512000e+03 -2.4577807e+00 + 2.8516000e+03 -3.2860933e+00 + 2.8520000e+03 -3.7579624e+00 + 2.8524000e+03 -3.5176381e+00 + 2.8528000e+03 -2.6568225e+00 + 2.8532000e+03 -1.5978022e+00 + 2.8536000e+03 -3.2874036e-01 + 2.8540000e+03 5.1034680e-01 + 2.8544000e+03 5.6970962e-01 + 2.8548000e+03 1.4833648e+00 + 2.8552000e+03 2.5599509e+00 + 2.8556000e+03 3.1294494e+00 + 2.8560000e+03 2.5298851e+00 + 2.8564000e+03 2.0604426e+00 + 2.8568000e+03 1.1941694e+00 + 2.8572000e+03 -1.7811925e-01 + 2.8576000e+03 -1.3775266e+00 + 2.8580000e+03 -2.8670730e+00 + 2.8584000e+03 -3.3667664e+00 + 2.8588000e+03 -3.4567193e+00 + 2.8592000e+03 -3.2171484e+00 + 2.8596000e+03 -2.5678886e+00 + 2.8600000e+03 -2.3089634e+00 + 2.8604000e+03 -1.5598706e+00 + 2.8608000e+03 -6.0061998e-01 + 2.8612000e+03 5.8579800e-02 + 2.8616000e+03 4.0750805e-01 + 2.8620000e+03 6.2629361e-01 + 2.8624000e+03 7.0517498e-01 + 2.8628000e+03 6.5417228e-01 + 2.8632000e+03 7.7333231e-01 + 2.8636000e+03 9.8264793e-01 + 2.8640000e+03 1.2921735e+00 + 2.8644000e+03 1.8018905e+00 + 2.8648000e+03 2.1518271e+00 + 2.8652000e+03 2.3188004e+00 + 2.8656000e+03 2.2236310e+00 + 2.8660000e+03 1.9957380e+00 + 2.8664000e+03 2.2981783e+00 + 2.8668000e+03 2.7542072e+00 + 2.8672000e+03 2.9152514e+00 + 2.8676000e+03 2.5864084e+00 + 2.8680000e+03 2.2274513e+00 + 2.8684000e+03 1.9183800e+00 + 2.8688000e+03 1.4907054e+00 + 2.8692000e+03 1.1895662e+00 + 2.8696000e+03 3.7565898e-01 + 2.8700000e+03 -1.4143714e-01 + 2.8704000e+03 -8.4577727e-01 + 2.8708000e+03 -1.7335108e+00 + 2.8712000e+03 -2.3464490e+00 + 2.8716000e+03 -3.0990112e+00 + 2.8720000e+03 -3.5491610e+00 + 2.8724000e+03 -3.7459152e+00 + 2.8728000e+03 -3.4023136e+00 + 2.8732000e+03 -2.9198780e+00 + 2.8736000e+03 -2.0748518e+00 + 2.8740000e+03 -1.2540418e+00 + 2.8744000e+03 -2.8342072e-01 + 2.8748000e+03 2.7288726e-01 + 2.8752000e+03 4.1475083e-01 + 2.8756000e+03 4.3098592e-02 + 2.8760000e+03 -2.1382614e-01 + 2.8764000e+03 -3.1066483e-01 + 2.8768000e+03 -1.8111658e-01 + 2.8772000e+03 -1.1546098e-01 + 2.8776000e+03 3.6568399e-01 + 2.8780000e+03 1.1369251e+00 + 2.8784000e+03 1.8382572e+00 + 2.8788000e+03 2.2595979e+00 + 2.8792000e+03 2.5406890e+00 + 2.8796000e+03 2.1514988e+00 + 2.8800000e+03 1.5982052e+00 + 2.8804000e+03 8.2605200e-01 + 2.8808000e+03 2.6141724e-01 + 2.8812000e+03 -4.3743264e-01 + 2.8816000e+03 -9.1920251e-01 + 2.8820000e+03 -1.4113650e+00 + 2.8824000e+03 -1.8122580e+00 + 2.8828000e+03 -2.2901838e+00 + 2.8832000e+03 -2.8983960e+00 + 2.8836000e+03 -3.0496586e+00 + 2.8840000e+03 -2.6007726e+00 + 2.8844000e+03 -1.9616760e+00 + 2.8848000e+03 -1.1203214e+00 + 2.8852000e+03 9.0178050e-02 + 2.8856000e+03 1.6871981e+00 + 2.8860000e+03 2.6801196e+00 + 2.8864000e+03 3.0230899e+00 + 2.8868000e+03 3.5999478e+00 + 2.8872000e+03 3.6811638e+00 + 2.8876000e+03 3.5425277e+00 + 2.8880000e+03 3.6938262e+00 + 2.8884000e+03 3.7452080e+00 + 2.8888000e+03 3.6316455e+00 + 2.8892000e+03 3.1166986e+00 + 2.8896000e+03 2.1113291e+00 + 2.8900000e+03 1.1726643e+00 + 2.8904000e+03 -1.2745833e-03 + 2.8908000e+03 -8.8817509e-01 + 2.8912000e+03 -1.7380451e+00 + 2.8916000e+03 -2.5912887e+00 + 2.8920000e+03 -3.2412463e+00 + 2.8924000e+03 -3.6679704e+00 + 2.8928000e+03 -3.5721769e+00 + 2.8932000e+03 -3.2739123e+00 + 2.8936000e+03 -3.0459333e+00 + 2.8940000e+03 -2.8970718e+00 + 2.8944000e+03 -2.4950624e+00 + 2.8948000e+03 -2.1566265e+00 + 2.8952000e+03 -1.6926704e+00 + 2.8956000e+03 -9.5452136e-01 + 2.8960000e+03 -2.9231232e-01 + 2.8964000e+03 3.1494706e-01 + 2.8968000e+03 4.9942929e-01 + 2.8972000e+03 9.7499007e-01 + 2.8976000e+03 1.5639280e+00 + 2.8980000e+03 1.8467937e+00 + 2.8984000e+03 1.8036431e+00 + 2.8988000e+03 1.8698396e+00 + 2.8992000e+03 1.9021943e+00 + 2.8996000e+03 2.3295014e+00 + 2.9000000e+03 2.3758139e+00 + 2.9004000e+03 2.5351731e+00 + 2.9008000e+03 2.9279101e+00 + 2.9012000e+03 2.6541246e+00 + 2.9016000e+03 2.0520474e+00 + 2.9020000e+03 1.3046617e+00 + 2.9024000e+03 3.8972885e-01 + 2.9028000e+03 -8.5245261e-01 + 2.9032000e+03 -1.9026310e+00 + 2.9036000e+03 -2.9065433e+00 + 2.9040000e+03 -3.6890287e+00 + 2.9044000e+03 -4.0942251e+00 + 2.9048000e+03 -3.8657930e+00 + 2.9052000e+03 -3.0521455e+00 + 2.9056000e+03 -1.6759347e+00 + 2.9060000e+03 -1.2440177e-01 + 2.9064000e+03 1.1269110e+00 + 2.9068000e+03 1.3670353e+00 + 2.9072000e+03 1.8573495e+00 + 2.9076000e+03 2.4976825e+00 + 2.9080000e+03 2.9680728e+00 + 2.9084000e+03 3.0587336e+00 + 2.9088000e+03 3.1031328e+00 + 2.9092000e+03 3.1969212e+00 + 2.9096000e+03 3.2045495e+00 + 2.9100000e+03 2.7430474e+00 + 2.9104000e+03 1.8406232e+00 + 2.9108000e+03 3.5291248e-01 + 2.9112000e+03 -6.7178376e-01 + 2.9116000e+03 -1.6831591e+00 + 2.9120000e+03 -2.2479980e+00 + 2.9124000e+03 -2.3439840e+00 + 2.9128000e+03 -2.6901868e+00 + 2.9132000e+03 -2.9905451e+00 + 2.9136000e+03 -2.9176773e+00 + 2.9140000e+03 -2.9820265e+00 + 2.9144000e+03 -2.7427468e+00 + 2.9148000e+03 -2.4642526e+00 + 2.9152000e+03 -2.4715950e+00 + 2.9156000e+03 -1.9827927e+00 + 2.9160000e+03 -1.3722766e+00 + 2.9164000e+03 -6.4784691e-01 + 2.9168000e+03 -5.9852460e-02 + 2.9172000e+03 7.4073563e-01 + 2.9176000e+03 1.4327442e+00 + 2.9180000e+03 2.2230514e+00 + 2.9184000e+03 3.1076116e+00 + 2.9188000e+03 3.7596538e+00 + 2.9192000e+03 3.9361072e+00 + 2.9196000e+03 3.7012011e+00 + 2.9200000e+03 3.1171505e+00 + 2.9204000e+03 2.3874045e+00 + 2.9208000e+03 1.5075370e+00 + 2.9212000e+03 9.1728226e-01 + 2.9216000e+03 3.7372815e-01 + 2.9220000e+03 1.1754101e-02 + 2.9224000e+03 -3.2806011e-01 + 2.9228000e+03 -9.8471323e-01 + 2.9232000e+03 -1.3661706e+00 + 2.9236000e+03 -1.6111752e+00 + 2.9240000e+03 -1.8045170e+00 + 2.9244000e+03 -2.0704600e+00 + 2.9248000e+03 -1.9908756e+00 + 2.9252000e+03 -1.8611725e+00 + 2.9256000e+03 -1.9013535e+00 + 2.9260000e+03 -2.0514563e+00 + 2.9264000e+03 -1.7616684e+00 + 2.9268000e+03 -1.4717442e+00 + 2.9272000e+03 -6.3177401e-01 + 2.9276000e+03 5.4058652e-01 + 2.9280000e+03 1.4817958e+00 + 2.9284000e+03 2.2099358e+00 + 2.9288000e+03 2.7537678e+00 + 2.9292000e+03 2.7253142e+00 + 2.9296000e+03 2.7093366e+00 + 2.9300000e+03 2.8633966e+00 + 2.9304000e+03 2.4754433e+00 + 2.9308000e+03 2.3750737e+00 + 2.9312000e+03 2.1548365e+00 + 2.9316000e+03 2.1246830e+00 + 2.9320000e+03 2.0746024e+00 + 2.9324000e+03 1.8246005e+00 + 2.9328000e+03 1.4086469e+00 + 2.9332000e+03 4.2245802e-01 + 2.9336000e+03 -9.4702001e-01 + 2.9340000e+03 -2.2023987e+00 + 2.9344000e+03 -3.1191297e+00 + 2.9348000e+03 -3.2600279e+00 + 2.9352000e+03 -2.8280084e+00 + 2.9356000e+03 -2.3164213e+00 + 2.9360000e+03 -2.3750557e+00 + 2.9364000e+03 -2.7738879e+00 + 2.9368000e+03 -2.9729805e+00 + 2.9372000e+03 -2.7523686e+00 + 2.9376000e+03 -2.2921243e+00 + 2.9380000e+03 -1.5048270e+00 + 2.9384000e+03 -4.6705623e-01 + 2.9388000e+03 2.7476439e-01 + 2.9392000e+03 8.3889114e-01 + 2.9396000e+03 9.8536927e-01 + 2.9400000e+03 1.0742854e+00 + 2.9404000e+03 1.6919249e+00 + 2.9408000e+03 2.3278813e+00 + 2.9412000e+03 3.2856356e+00 + 2.9416000e+03 4.0968004e+00 + 2.9420000e+03 4.3207421e+00 + 2.9424000e+03 3.9405870e+00 + 2.9428000e+03 3.2306642e+00 + 2.9432000e+03 2.7409596e+00 + 2.9436000e+03 2.7011676e+00 + 2.9440000e+03 2.0415160e+00 + 2.9444000e+03 5.9479537e-01 + 2.9448000e+03 -1.1089562e+00 + 2.9452000e+03 -2.4991782e+00 + 2.9456000e+03 -2.9195149e+00 + 2.9460000e+03 -3.1700248e+00 + 2.9464000e+03 -3.3077391e+00 + 2.9468000e+03 -2.8118450e+00 + 2.9472000e+03 -2.2090562e+00 + 2.9476000e+03 -1.5529613e+00 + 2.9480000e+03 -6.9551634e-01 + 2.9484000e+03 1.8402496e-01 + 2.9488000e+03 1.2725861e+00 + 2.9492000e+03 2.0486267e+00 + 2.9496000e+03 2.2998001e+00 + 2.9500000e+03 2.2864346e+00 + 2.9504000e+03 2.4128914e+00 + 2.9508000e+03 2.0667061e+00 + 2.9512000e+03 1.7538575e+00 + 2.9516000e+03 1.3818078e+00 + 2.9520000e+03 1.5416199e+00 + 2.9524000e+03 1.5405556e+00 + 2.9528000e+03 1.2039064e+00 + 2.9532000e+03 4.1548936e-01 + 2.9536000e+03 -6.6787851e-01 + 2.9540000e+03 -1.6139819e+00 + 2.9544000e+03 -2.3922343e+00 + 2.9548000e+03 -3.1408316e+00 + 2.9552000e+03 -3.6593252e+00 + 2.9556000e+03 -3.9717964e+00 + 2.9560000e+03 -4.4346566e+00 + 2.9564000e+03 -4.6438262e+00 + 2.9568000e+03 -4.6086992e+00 + 2.9572000e+03 -4.2023577e+00 + 2.9576000e+03 -3.3805292e+00 + 2.9580000e+03 -2.2090857e+00 + 2.9584000e+03 -6.9046926e-01 + 2.9588000e+03 1.1445534e+00 + 2.9592000e+03 2.9636318e+00 + 2.9596000e+03 4.4202031e+00 + 2.9600000e+03 5.2072469e+00 + 2.9604000e+03 4.7513189e+00 + 2.9608000e+03 3.6861094e+00 + 2.9612000e+03 3.0043719e+00 + 2.9616000e+03 2.5739194e+00 + 2.9620000e+03 2.6735603e+00 + 2.9624000e+03 3.0733288e+00 + 2.9628000e+03 2.9131771e+00 + 2.9632000e+03 2.6129813e+00 + 2.9636000e+03 2.0077594e+00 + 2.9640000e+03 9.4249235e-01 + 2.9644000e+03 -1.2770121e-01 + 2.9648000e+03 -6.9809955e-01 + 2.9652000e+03 -8.1794682e-01 + 2.9656000e+03 -7.1825410e-01 + 2.9660000e+03 -8.2839878e-01 + 2.9664000e+03 -1.2587087e+00 + 2.9668000e+03 -1.7689030e+00 + 2.9672000e+03 -2.3989616e+00 + 2.9676000e+03 -2.5289991e+00 + 2.9680000e+03 -3.0591965e+00 + 2.9684000e+03 -2.6197683e+00 + 2.9688000e+03 -1.4905728e+00 + 2.9692000e+03 -4.6144316e-01 + 2.9696000e+03 1.7751237e-01 + 2.9700000e+03 6.7655153e-01 + 2.9704000e+03 8.4577177e-01 + 2.9708000e+03 1.1252368e+00 + 2.9712000e+03 1.5650010e+00 + 2.9716000e+03 2.0950125e+00 + 2.9720000e+03 2.6052905e+00 + 2.9724000e+03 2.0658144e+00 + 2.9728000e+03 1.6535238e+00 + 2.9732000e+03 1.3201362e+00 + 2.9736000e+03 9.4451475e-01 + 2.9740000e+03 1.0745952e+00 + 2.9744000e+03 5.9008865e-01 + 2.9748000e+03 -1.7920249e-01 + 2.9752000e+03 -9.2865371e-01 + 2.9756000e+03 -2.2382030e+00 + 2.9760000e+03 -3.3878229e+00 + 2.9764000e+03 -3.9875682e+00 + 2.9768000e+03 -4.1774524e+00 + 2.9772000e+03 -3.8974708e+00 + 2.9776000e+03 -3.1276081e+00 + 2.9780000e+03 -2.1979370e+00 + 2.9784000e+03 -1.4280766e+00 + 2.9788000e+03 -7.3820486e-01 + 2.9792000e+03 -8.8560784e-02 + 2.9796000e+03 1.4096562e-01 + 2.9800000e+03 2.3028436e-01 + 2.9804000e+03 3.1943489e-01 + 2.9808000e+03 2.1853397e-01 + 2.9812000e+03 3.6807262e-01 + 2.9816000e+03 8.5827215e-01 + 2.9820000e+03 1.3886597e+00 + 2.9824000e+03 1.6992153e+00 + 2.9828000e+03 1.9796569e+00 + 2.9832000e+03 2.1698746e+00 + 2.9836000e+03 2.3700041e+00 + 2.9840000e+03 2.5000071e+00 + 2.9844000e+03 1.9999134e+00 + 2.9848000e+03 1.6498370e+00 + 2.9852000e+03 1.1397004e+00 + 2.9856000e+03 5.6965559e-01 + 2.9860000e+03 -1.8034201e-01 + 2.9864000e+03 -6.4034756e-01 + 2.9868000e+03 -6.0027648e-01 + 2.9872000e+03 -6.9057833e-01 + 2.9876000e+03 -6.2007554e-01 + 2.9880000e+03 -1.6010251e-01 + 2.9884000e+03 -9.0193503e-02 + 2.9888000e+03 -4.0029110e-01 + 2.9892000e+03 -4.4049213e-01 + 2.9896000e+03 -1.0047244e-01 + 2.9900000e+03 1.1960007e-01 + 2.9904000e+03 -2.3035420e-01 + 2.9908000e+03 -7.4058902e-01 + 2.9912000e+03 -1.1808576e+00 + 2.9916000e+03 -1.4511605e+00 + 2.9920000e+03 -1.2713918e+00 + 2.9924000e+03 -1.0781648e+00 + 2.9928000e+03 -9.3986213e-01 + 2.9932000e+03 -5.2520315e-01 + 2.9936000e+03 -4.1634722e-01 + 2.9940000e+03 -2.5149720e-01 + 2.9944000e+03 1.1829454e-01 + 2.9948000e+03 6.5828605e-01 + 2.9952000e+03 8.1858876e-01 + 2.9956000e+03 7.1903160e-01 + 2.9960000e+03 1.9955669e-01 + 2.9964000e+03 -2.5947955e-01 + 2.9968000e+03 -8.7921220e-01 + 2.9972000e+03 -1.1020329e+00 + 2.9976000e+03 -1.2312686e+00 + 2.9980000e+03 -1.3430020e+00 + 2.9984000e+03 -1.2805991e+00 + 2.9988000e+03 -1.1471091e+00 + 2.9992000e+03 -8.4644518e-01 + 2.9996000e+03 -4.0577160e-01 + 3.0000000e+03 -1.5522564e-01 + 3.0004000e+03 1.9533162e-01 + 3.0008000e+03 6.9565502e-01 + 3.0012000e+03 9.7580409e-01 + 3.0016000e+03 1.0057237e+00 + 3.0020000e+03 4.1541333e-01 + 3.0024000e+03 -1.0519315e-01 + 3.0028000e+03 -3.9614331e-01 + 3.0032000e+03 -3.1710361e-01 + 3.0036000e+03 -1.7779545e-01 + 3.0040000e+03 1.0135503e-01 + 3.0044000e+03 4.3058820e-01 + 3.0048000e+03 -2.9976844e-02 + 3.0052000e+03 -1.1030152e-01 + 3.0056000e+03 -3.3053136e-01 + 3.0060000e+03 -1.9095003e-01 + 3.0064000e+03 1.2860595e-01 + 3.0068000e+03 5.3803258e-01 + 3.0072000e+03 5.6741036e-01 + 3.0076000e+03 4.9708649e-01 + 3.0080000e+03 4.4678187e-01 + 3.0084000e+03 3.7637795e-01 + 3.0088000e+03 4.8617839e-01 + 3.0092000e+03 6.2874339e-01 + 3.0096000e+03 7.3489635e-01 + 3.0100000e+03 6.6582027e-01 + 3.0104000e+03 1.1347281e+00 + 3.0108000e+03 1.2372706e+00 + 3.0112000e+03 8.0743063e-01 + 3.0116000e+03 3.4759902e-01 + 3.0120000e+03 6.7542875e-02 + 3.0124000e+03 -2.3270296e-01 + 3.0128000e+03 -3.8304690e-01 + 3.0132000e+03 -4.3310679e-01 + 3.0136000e+03 -1.1435248e+00 + 3.0140000e+03 -1.2151133e+00 + 3.0144000e+03 -8.6403210e-01 + 3.0148000e+03 -7.9412055e-01 + 3.0152000e+03 -8.7909690e-01 + 3.0156000e+03 -1.1638944e+00 + 3.0160000e+03 -2.0037737e+00 + 3.0164000e+03 -2.2537319e+00 + 3.0168000e+03 -2.1834994e+00 + 3.0172000e+03 -1.8831716e+00 + 3.0176000e+03 -1.2027872e+00 + 3.0180000e+03 -6.3241778e-01 + 3.0184000e+03 -3.8206572e-01 + 3.0188000e+03 1.7823927e-01 + 3.0192000e+03 4.5875065e-01 + 3.0196000e+03 4.1946149e-01 + 3.0200000e+03 4.0168336e-02 + 3.0204000e+03 -3.6900487e-01 + 3.0208000e+03 -4.3827596e-01 + 3.0212000e+03 -3.3749369e-01 + 3.0216000e+03 -4.6800450e-02 + 3.0220000e+03 3.3861717e-02 + 3.0224000e+03 2.6420156e-01 + 3.0228000e+03 1.1345388e+00 + 3.0232000e+03 1.7768911e+00 + 3.0236000e+03 2.1106613e+00 + 3.0240000e+03 1.7852277e+00 + 3.0244000e+03 1.2114237e+00 + 3.0248000e+03 1.8361173e-01 + 3.0252000e+03 -7.7279952e-01 + 3.0256000e+03 -1.4021753e+00 + 3.0260000e+03 -1.7370741e+00 + 3.0264000e+03 -2.0468318e+00 + 3.0268000e+03 -2.1617775e+00 + 3.0272000e+03 -1.8239739e+00 + 3.0276000e+03 -1.2539989e+00 + 3.0280000e+03 -8.0384867e-01 + 3.0284000e+03 -3.5351715e-01 + 3.0288000e+03 1.6698452e-01 + 3.0292000e+03 4.3875604e-01 + 3.0296000e+03 8.1377955e-01 + 3.0300000e+03 1.1738421e+00 + 3.0304000e+03 1.4582400e+00 + 3.0308000e+03 1.5449413e+00 + 3.0312000e+03 1.5396449e+00 + 3.0316000e+03 1.2595336e+00 + 3.0320000e+03 5.2933608e-01 + 3.0324000e+03 1.0901158e-01 + 3.0328000e+03 -1.4912959e-03 + 3.0332000e+03 -4.2123674e-02 + 3.0336000e+03 2.8745158e-01 + 3.0340000e+03 4.4053403e-01 + 3.0344000e+03 5.5585805e-01 + 3.0348000e+03 3.0137854e-01 + 3.0352000e+03 3.1500621e-01 + 3.0356000e+03 1.4011996e-01 + 3.0360000e+03 -1.6885457e-01 + 3.0364000e+03 -9.5342673e-02 + 3.0368000e+03 -1.6676779e-01 + 3.0372000e+03 -4.3880410e-01 + 3.0376000e+03 -1.0970007e+00 + 3.0380000e+03 -1.6591308e+00 + 3.0384000e+03 -2.0181461e+00 + 3.0388000e+03 -1.8972336e+00 + 3.0392000e+03 -1.4361283e+00 + 3.0396000e+03 -8.0495112e-01 + 3.0400000e+03 -5.6384267e-01 + 3.0404000e+03 3.1700879e-01 + 3.0408000e+03 1.5374906e+00 + 3.0412000e+03 1.7677941e+00 + 3.0416000e+03 1.6979454e+00 + 3.0420000e+03 1.2079536e+00 + 3.0424000e+03 5.1188070e-01 + 3.0428000e+03 -6.5726981e-02 + 3.0432000e+03 -3.9574131e-01 + 3.0436000e+03 -5.0684382e-01 + 3.0440000e+03 -5.7784029e-01 + 3.0444000e+03 -7.7879800e-01 + 3.0448000e+03 -8.6215783e-01 + 3.0452000e+03 -5.5883914e-01 + 3.0456000e+03 -8.9771267e-01 + 3.0460000e+03 -1.0986981e+00 + 3.0464000e+03 -1.1394494e+00 + 3.0468000e+03 -9.9987100e-01 + 3.0472000e+03 -5.1004178e-01 + 3.0476000e+03 -1.5002841e-01 + 3.0480000e+03 1.8013215e-01 + 3.0484000e+03 5.1013945e-01 + 3.0488000e+03 8.7011511e-01 + 3.0492000e+03 9.1997665e-01 + 3.0496000e+03 1.5497109e+00 + 3.0500000e+03 1.8424910e+00 + 3.0504000e+03 2.0036198e+00 + 3.0508000e+03 1.7914276e+00 + 3.0512000e+03 1.8649826e+00 + 3.0516000e+03 1.5691552e+00 + 3.0520000e+03 1.2695946e+00 + 3.0524000e+03 4.0018642e-01 + 3.0528000e+03 -2.5975206e-01 + 3.0532000e+03 -5.9016039e-01 + 3.0536000e+03 -7.3643436e-01 + 3.0540000e+03 -6.3886793e-01 + 3.0544000e+03 -7.0566420e-01 + 3.0548000e+03 -7.7774671e-01 + 3.0552000e+03 -1.1922406e+00 + 3.0556000e+03 -1.4109334e+00 + 3.0560000e+03 -1.3784515e+00 + 3.0564000e+03 -7.5817370e-01 + 3.0568000e+03 -2.4710604e-01 + 3.0572000e+03 7.0668105e-01 + 3.0576000e+03 8.8161685e-01 + 3.0580000e+03 1.0962737e+00 + 3.0584000e+03 1.0778252e+00 + 3.0588000e+03 5.9573669e-01 + 3.0592000e+03 -7.3238992e-02 + 3.0596000e+03 -5.2248675e-01 + 3.0600000e+03 -1.6020514e+00 + 3.0604000e+03 -1.5318346e+00 + 3.0608000e+03 -1.4917331e+00 + 3.0612000e+03 -1.4616936e+00 + 3.0616000e+03 -6.5164602e-01 + 3.0620000e+03 -2.4161096e-01 + 3.0624000e+03 3.6834392e-01 + 3.0628000e+03 7.7840157e-01 + 3.0632000e+03 8.9828660e-01 + 3.0636000e+03 7.5792379e-01 + 3.0640000e+03 4.1731982e-01 + 3.0644000e+03 -1.0346750e-01 + 3.0648000e+03 -6.0433479e-01 + 3.0652000e+03 -1.0252799e+00 + 3.0656000e+03 -1.2159372e+00 + 3.0660000e+03 -1.2764305e+00 + 3.0664000e+03 -1.8039790e+00 + 3.0668000e+03 -2.0269185e+00 + 3.0672000e+03 -1.2169176e+00 + 3.0676000e+03 -2.2686854e-01 + 3.0680000e+03 8.8318643e-01 + 3.0684000e+03 1.5892623e+00 + 3.0688000e+03 2.0789921e+00 + 3.0692000e+03 2.1840773e+00 + 3.0696000e+03 1.8738114e+00 + 3.0700000e+03 1.6767790e+00 + 3.0704000e+03 1.2913016e+00 + 3.0708000e+03 8.9084144e-01 + 3.0712000e+03 6.7035291e-01 + 3.0716000e+03 7.7981125e-01 + 3.0720000e+03 8.1930684e-01 + 3.0724000e+03 5.4895640e-01 + 3.0728000e+03 1.9888863e-01 + 3.0732000e+03 -4.0064402e-02 + 3.0736000e+03 -2.4138181e-01 + 3.0740000e+03 -3.4539739e-01 + 3.0744000e+03 -3.6541034e-01 + 3.0748000e+03 -3.2364453e-01 + 3.0752000e+03 -5.9530270e-03 + 3.0756000e+03 4.0793867e-01 + 3.0760000e+03 3.6518968e-01 + 3.0764000e+03 -3.0327108e-02 + 3.0768000e+03 -4.0101327e-01 + 3.0772000e+03 -5.1521493e-01 + 3.0776000e+03 -5.3064845e-01 + 3.0780000e+03 -3.1373714e-01 + 3.0784000e+03 -8.1794901e-02 + 3.0788000e+03 1.9844357e-01 + 3.0792000e+03 3.1388994e-01 + 3.0796000e+03 4.2409876e-01 + 3.0800000e+03 7.6887179e-01 + 3.0804000e+03 8.0698346e-01 + 3.0808000e+03 5.9198852e-01 + 3.0812000e+03 4.4563815e-01 + 3.0816000e+03 -1.8749392e-01 + 3.0820000e+03 -1.1163304e+00 + 3.0824000e+03 -1.6077664e+00 + 3.0828000e+03 -2.1253614e+00 + 3.0832000e+03 -2.5439566e+00 + 3.0836000e+03 -3.0765281e+00 + 3.0840000e+03 -3.0636615e+00 + 3.0844000e+03 -2.9399543e+00 + 3.0848000e+03 -2.4594529e+00 + 3.0852000e+03 -1.7370222e+00 + 3.0856000e+03 -1.0637133e+00 + 3.0860000e+03 -7.7942243e-01 + 3.0864000e+03 -8.6428237e-01 + 3.0868000e+03 -6.2045716e-01 + 3.0872000e+03 -3.8901984e-01 + 3.0876000e+03 -3.4869407e-01 + 3.0880000e+03 2.8532478e-01 + 3.0884000e+03 1.1521808e+00 + 3.0888000e+03 1.6424082e+00 + 3.0892000e+03 2.2723912e+00 + 3.0896000e+03 2.6221455e+00 + 3.0900000e+03 2.6619720e+00 + 3.0904000e+03 2.4418328e+00 + 3.0908000e+03 2.0117103e+00 + 3.0912000e+03 1.5314420e+00 + 3.0916000e+03 8.2116365e-01 + 3.0920000e+03 6.5010073e-01 + 3.0924000e+03 4.7986540e-01 + 3.0928000e+03 6.5430061e-01 + 3.0932000e+03 7.6393139e-01 + 3.0936000e+03 9.6909909e-01 + 3.0940000e+03 7.3928789e-01 + 3.0944000e+03 -1.2487288e-01 + 3.0948000e+03 -9.0166163e-01 + 3.0952000e+03 -1.5840007e+00 + 3.0956000e+03 -2.2921850e+00 + 3.0960000e+03 -2.5893284e+00 + 3.0964000e+03 -2.5585600e+00 + 3.0968000e+03 -2.1475634e+00 + 3.0972000e+03 -1.3763123e+00 + 3.0976000e+03 -1.0549098e+00 + 3.0980000e+03 -5.5595622e-01 + 3.0984000e+03 5.5741435e-01 + 3.0988000e+03 1.5681416e+00 + 3.0992000e+03 1.6285649e+00 + 3.0996000e+03 2.6785756e+00 + 3.1000000e+03 3.0387285e+00 + 3.1004000e+03 2.4677569e+00 + 3.1008000e+03 1.4671090e+00 + 3.1012000e+03 3.0776763e-01 + 3.1016000e+03 -9.0310697e-01 + 3.1020000e+03 -1.9351596e+00 + 3.1024000e+03 -2.2968918e+00 + 3.1028000e+03 -2.6458896e+00 + 3.1032000e+03 -3.0672377e+00 + 3.1036000e+03 -3.2164657e+00 + 3.1040000e+03 -3.2137852e+00 + 3.1044000e+03 -3.2791849e+00 + 3.1048000e+03 -2.5142768e+00 + 3.1052000e+03 -1.8441157e+00 + 3.1056000e+03 -7.1927562e-01 + 3.1060000e+03 4.2698672e-02 + 3.1064000e+03 4.8185160e-01 + 3.1068000e+03 7.3702891e-01 + 3.1072000e+03 1.0475939e+00 + 3.1076000e+03 1.2515985e+00 + 3.1080000e+03 1.7223319e+00 + 3.1084000e+03 2.7415055e+00 + 3.1088000e+03 3.7111489e+00 + 3.1092000e+03 4.1747865e+00 + 3.1096000e+03 4.0687436e+00 + 3.1100000e+03 3.4256827e+00 + 3.1104000e+03 2.6432535e+00 + 3.1108000e+03 2.3059126e+00 + 3.1112000e+03 2.1345562e+00 + 3.1116000e+03 1.7203783e+00 + 3.1120000e+03 1.1783397e+00 + 3.1124000e+03 3.1304054e-01 + 3.1128000e+03 -1.0681650e+00 + 3.1132000e+03 -2.5672295e+00 + 3.1136000e+03 -3.9513610e+00 + 3.1140000e+03 -4.8536508e+00 + 3.1144000e+03 -4.6318844e+00 + 3.1148000e+03 -3.7102495e+00 + 3.1152000e+03 -2.8017688e+00 + 3.1156000e+03 -1.9430744e+00 + 3.1160000e+03 -1.1896724e+00 + 3.1164000e+03 -6.3936471e-01 + 3.1168000e+03 1.9819273e-01 + 3.1172000e+03 1.6414172e+00 + 3.1176000e+03 2.6881019e+00 + 3.1180000e+03 3.1567700e+00 + 3.1184000e+03 2.9487628e+00 + 3.1188000e+03 2.2153797e+00 + 3.1192000e+03 1.0831775e+00 + 3.1196000e+03 -2.3404988e-01 + 3.1200000e+03 -1.3291244e+00 + 3.1204000e+03 -1.6076756e+00 + 3.1208000e+03 -1.7553061e+00 + 3.1212000e+03 -2.0144022e+00 + 3.1216000e+03 -2.1338769e+00 + 3.1220000e+03 -2.2334545e+00 + 3.1224000e+03 -1.9631944e+00 + 3.1228000e+03 -1.3529947e+00 + 3.1232000e+03 -1.1028617e+00 + 3.1236000e+03 -4.4167431e-01 + 3.1240000e+03 2.2349605e-01 + 3.1244000e+03 7.6104751e-01 + 3.1248000e+03 8.2393929e-01 + 3.1252000e+03 9.3695921e-01 + 3.1256000e+03 8.5682220e-01 + 3.1260000e+03 1.0466860e+00 + 3.1264000e+03 1.2868301e+00 + 3.1268000e+03 1.6370723e+00 + 3.1272000e+03 1.8273319e+00 + 3.1276000e+03 2.1272414e+00 + 3.1280000e+03 2.0970993e+00 + 3.1284000e+03 1.9668869e+00 + 3.1288000e+03 1.9675250e+00 + 3.1292000e+03 1.1921152e+00 + 3.1296000e+03 4.0322946e-01 + 3.1300000e+03 -2.5558057e-01 + 3.1304000e+03 -4.7468284e-01 + 3.1308000e+03 -5.0454748e-01 + 3.1312000e+03 -5.3422321e-01 + 3.1316000e+03 -6.5400561e-01 + 3.1320000e+03 -7.0892010e-01 + 3.1324000e+03 -7.7250053e-01 + 3.1328000e+03 -1.0107697e+00 + 3.1332000e+03 -1.1712559e+00 + 3.1336000e+03 -1.3285568e+00 + 3.1340000e+03 -1.4042753e+00 + 3.1344000e+03 -1.7595596e+00 + 3.1348000e+03 -2.3181606e+00 + 3.1352000e+03 -2.8959620e+00 + 3.1356000e+03 -2.9558637e+00 + 3.1360000e+03 -2.9258466e+00 + 3.1364000e+03 -2.5560295e+00 + 3.1368000e+03 -2.0965010e+00 + 3.1372000e+03 -1.4304440e+00 + 3.1376000e+03 -7.5780550e-01 + 3.1380000e+03 -3.4685906e-02 + 3.1384000e+03 5.3601080e-01 + 3.1388000e+03 9.9292837e-01 + 3.1392000e+03 1.1732364e+00 + 3.1396000e+03 1.7137408e+00 + 3.1400000e+03 1.9243401e+00 + 3.1404000e+03 1.8150865e+00 + 3.1408000e+03 1.4759194e+00 + 3.1412000e+03 1.2570058e+00 + 3.1416000e+03 1.3182229e+00 + 3.1420000e+03 1.4094696e+00 + 3.1424000e+03 1.6804371e+00 + 3.1428000e+03 1.8310951e+00 + 3.1432000e+03 1.8914914e+00 + 3.1436000e+03 1.8956928e+00 + 3.1440000e+03 1.2020018e+00 + 3.1444000e+03 1.7813992e-01 + 3.1448000e+03 -7.8806902e-01 + 3.1452000e+03 -1.1162896e+00 + 3.1456000e+03 -1.4848563e+00 + 3.1460000e+03 -1.4234743e+00 + 3.1464000e+03 -8.2299947e-01 + 3.1468000e+03 -6.8279476e-01 + 3.1472000e+03 -7.0603470e-01 + 3.1476000e+03 -9.5740792e-01 + 3.1480000e+03 -8.6421345e-01 + 3.1484000e+03 -5.1234996e-01 + 3.1488000e+03 4.7907702e-01 + 3.1492000e+03 1.2266805e+00 + 3.1496000e+03 1.6627466e+00 + 3.1500000e+03 2.1873281e+00 + 3.1504000e+03 2.3676422e+00 + 3.1508000e+03 1.8578276e+00 + 3.1512000e+03 1.4383300e+00 + 3.1516000e+03 9.4939886e-01 + 3.1520000e+03 3.2129215e-01 + 3.1524000e+03 -5.2920552e-01 + 3.1528000e+03 -1.1216507e+00 + 3.1532000e+03 -1.5860439e+00 + 3.1536000e+03 -1.7510889e+00 + 3.1540000e+03 -1.9218607e+00 + 3.1544000e+03 -1.9493686e+00 + 3.1548000e+03 -1.9234556e+00 + 3.1552000e+03 -2.3143258e+00 + 3.1556000e+03 -2.6325799e+00 + 3.1560000e+03 -2.9372756e+00 + 3.1564000e+03 -2.9102549e+00 + 3.1568000e+03 -2.5653511e+00 + 3.1572000e+03 -1.7617379e+00 + 3.1576000e+03 -1.0725135e+00 + 3.1580000e+03 -3.2968946e-01 + 3.1584000e+03 3.5029869e-01 + 3.1588000e+03 7.6568336e-01 + 3.1592000e+03 1.3857853e+00 + 3.1596000e+03 2.2279884e+00 + 3.1600000e+03 3.0591713e+00 + 3.1604000e+03 4.0095468e+00 + 3.1608000e+03 5.4203434e+00 + 3.1612000e+03 6.2732459e+00 + 3.1616000e+03 5.8026748e+00 + 3.1620000e+03 4.1164906e+00 + 3.1624000e+03 2.1546140e+00 + 3.1628000e+03 2.7531927e-01 + 3.1632000e+03 -1.0740056e+00 + 3.1636000e+03 -1.7136394e+00 + 3.1640000e+03 -2.2135630e+00 + 3.1644000e+03 -2.2637451e+00 + 3.1648000e+03 -2.7741545e+00 + 3.1652000e+03 -2.8347487e+00 + 3.1656000e+03 -2.4554908e+00 + 3.1660000e+03 -2.2963007e+00 + 3.1664000e+03 -2.6471794e+00 + 3.1668000e+03 -2.2680613e+00 + 3.1672000e+03 -1.9189065e+00 + 3.1676000e+03 -1.5095623e+00 + 3.1680000e+03 -9.2003624e-01 + 3.1684000e+03 -2.6946398e-01 + 3.1688000e+03 4.0115697e-02 + 3.1692000e+03 2.7036357e-01 + 3.1696000e+03 3.2070416e-01 + 3.1700000e+03 4.8116981e-01 + 3.1704000e+03 8.2188750e-01 + 3.1708000e+03 1.1226936e+00 + 3.1712000e+03 1.3134733e+00 + 3.1716000e+03 1.6542012e+00 + 3.1720000e+03 1.8347563e+00 + 3.1724000e+03 1.7852329e+00 + 3.1728000e+03 1.4452965e+00 + 3.1732000e+03 1.1251488e+00 + 3.1736000e+03 -2.5478079e-01 + 3.1740000e+03 -1.1794096e+00 + 3.1744000e+03 -1.6714946e+00 + 3.1748000e+03 -2.1750102e+00 + 3.1752000e+03 -2.4191157e+00 + 3.1756000e+03 -2.6714216e+00 + 3.1760000e+03 -2.9584452e+00 + 3.1764000e+03 -3.1985862e+00 + 3.1768000e+03 -2.9687051e+00 + 3.1772000e+03 -2.4187851e+00 + 3.1776000e+03 -1.3788078e+00 + 3.1780000e+03 -2.5629782e-02 + 3.1784000e+03 1.8111021e+00 + 3.1788000e+03 3.3555419e+00 + 3.1792000e+03 4.4553908e+00 + 3.1796000e+03 4.7843269e+00 + 3.1800000e+03 4.3343508e+00 + 3.1804000e+03 3.4657549e+00 + 3.1808000e+03 2.9673338e+00 + 3.1812000e+03 2.4687706e+00 + 3.1816000e+03 1.9199203e+00 + 3.1820000e+03 1.3814655e+00 + 3.1824000e+03 1.0077089e+00 + 3.1828000e+03 4.7949328e-01 + 3.1832000e+03 -3.5713711e-01 + 3.1836000e+03 -1.0773444e+00 + 3.1840000e+03 -1.4858647e+00 + 3.1844000e+03 -1.9745716e+00 + 3.1848000e+03 -2.0120216e+00 + 3.1852000e+03 -2.0307820e+00 + 3.1856000e+03 -2.3415880e+00 + 3.1860000e+03 -2.3456116e+00 + 3.1864000e+03 -2.1456123e+00 + 3.1868000e+03 -1.6693430e+00 + 3.1872000e+03 -1.4445277e+00 + 3.1876000e+03 -1.3877154e+00 + 3.1880000e+03 -1.1883812e+00 + 3.1884000e+03 -1.2805528e+00 + 3.1888000e+03 -1.5349125e+00 + 3.1892000e+03 -1.7473038e+00 + 3.1896000e+03 -1.8350374e+00 + 3.1900000e+03 -1.5922063e+00 + 3.1904000e+03 -9.7926159e-01 + 3.1908000e+03 -5.5713987e-01 + 3.1912000e+03 1.1478837e-01 + 3.1916000e+03 6.5629430e-01 + 3.1920000e+03 1.3775050e+00 + 3.1924000e+03 2.0382478e+00 + 3.1928000e+03 2.8084872e+00 + 3.1932000e+03 2.7183695e+00 + 3.1936000e+03 2.4679600e+00 + 3.1940000e+03 2.3173943e+00 + 3.1944000e+03 2.0568517e+00 + 3.1948000e+03 1.8762597e+00 + 3.1952000e+03 1.6557759e+00 + 3.1956000e+03 1.3853390e+00 + 3.1960000e+03 5.6519287e-01 + 3.1964000e+03 -3.3453686e-01 + 3.1968000e+03 -1.0041272e+00 + 3.1972000e+03 -1.2433684e+00 + 3.1976000e+03 -1.1024179e+00 + 3.1980000e+03 -5.7149843e-01 + 3.1984000e+03 1.9305206e-02 + 3.1988000e+03 1.7991152e-01 + 3.1992000e+03 -2.9666369e-02 + 3.1996000e+03 -2.5911114e-01 + 3.2000000e+03 -7.3934385e-01 + 3.2004000e+03 -9.7927138e-01 + 3.2008000e+03 -1.1991917e+00 + 3.2012000e+03 -1.2892521e+00 + 3.2016000e+03 -9.5949638e-01 + 3.2020000e+03 -3.6985321e-01 + 3.2024000e+03 5.0954654e-01 + 3.2028000e+03 1.2488505e+00 + 3.2032000e+03 1.3779831e+00 + 3.2036000e+03 1.2670583e+00 + 3.2040000e+03 7.7635137e-01 + 3.2044000e+03 6.3585199e-01 + 3.2048000e+03 2.1486380e-01 + 3.2052000e+03 -5.7936576e-01 + 3.2056000e+03 -1.3485567e+00 + 3.2060000e+03 -2.0028327e+00 + 3.2064000e+03 -2.3035947e+00 + 3.2068000e+03 -2.2893914e+00 + 3.2072000e+03 -2.5969368e+00 + 3.2076000e+03 -2.7712943e+00 + 3.2080000e+03 -2.6042746e+00 + 3.2084000e+03 -2.1945779e+00 + 3.2088000e+03 -1.0048212e+00 + 3.2092000e+03 -7.4930641e-02 + 3.2096000e+03 2.1493478e-01 + 3.2100000e+03 7.4811686e-02 + 3.2104000e+03 2.1441429e-01 + 3.2108000e+03 4.0370642e-01 + 3.2112000e+03 5.4306377e-01 + 3.2116000e+03 1.0325818e+00 + 3.2120000e+03 1.7024584e+00 + 3.2124000e+03 2.4227105e+00 + 3.2128000e+03 3.1833110e+00 + 3.2132000e+03 3.6839553e+00 + 3.2136000e+03 3.9451470e+00 + 3.2140000e+03 3.1852758e+00 + 3.2144000e+03 1.9358308e+00 + 3.2148000e+03 7.2606926e-01 + 3.2152000e+03 -2.2372253e-01 + 3.2156000e+03 -8.5345805e-01 + 3.2160000e+03 -8.8313377e-01 + 3.2164000e+03 -4.8284441e-01 + 3.2168000e+03 -2.2523041e-02 + 3.2172000e+03 -1.0214922e-01 + 3.2176000e+03 -3.6185324e-01 + 3.2180000e+03 -6.2165420e-01 + 3.2184000e+03 -9.4154338e-01 + 3.2188000e+03 -1.4414573e+00 + 3.2192000e+03 -1.2711312e+00 + 3.2196000e+03 -7.3062599e-01 + 3.2200000e+03 -1.7525806e-01 + 3.2204000e+03 5.7777563e-02 + 3.2208000e+03 4.8784315e-02 + 3.2212000e+03 -3.3657010e-02 + 3.2216000e+03 -5.0976148e-01 + 3.2220000e+03 -9.3997433e-01 + 3.2224000e+03 -1.1603260e+00 + 3.2228000e+03 -9.5086685e-01 + 3.2232000e+03 -7.9161713e-01 + 3.2236000e+03 -4.7265430e-01 + 3.2240000e+03 -4.2354453e-01 + 3.2244000e+03 -6.3447286e-01 + 3.2248000e+03 -1.1852910e+00 + 3.2252000e+03 -1.6859229e+00 + 3.2256000e+03 -2.2462407e+00 + 3.2260000e+03 -2.6463575e+00 + 3.2264000e+03 -2.3361277e+00 + 3.2268000e+03 -2.0659384e+00 + 3.2272000e+03 -1.8256800e+00 + 3.2276000e+03 -1.2554359e+00 + 3.2280000e+03 -4.7524041e-01 + 3.2284000e+03 4.5019668e-02 + 3.2288000e+03 7.1517806e-01 + 3.2292000e+03 1.2352133e+00 + 3.2296000e+03 1.6852663e+00 + 3.2300000e+03 1.9551397e+00 + 3.2304000e+03 2.2346387e+00 + 3.2308000e+03 2.3040478e+00 + 3.2312000e+03 2.3731146e+00 + 3.2316000e+03 2.5420230e+00 + 3.2320000e+03 2.5814239e+00 + 3.2324000e+03 1.9813721e+00 + 3.2328000e+03 1.9515665e+00 + 3.2332000e+03 1.0419566e+00 + 3.2336000e+03 1.3422971e-01 + 3.2340000e+03 -2.9723175e-01 + 3.2344000e+03 -2.2744452e-01 + 3.2348000e+03 -3.6704372e-01 + 3.2352000e+03 -4.7684262e-01 + 3.2356000e+03 -6.6611191e-01 + 3.2360000e+03 -7.0533848e-01 + 3.2364000e+03 -8.6459307e-01 + 3.2368000e+03 -1.0540352e+00 + 3.2372000e+03 -8.4354530e-01 + 3.2376000e+03 -7.0333833e-01 + 3.2380000e+03 -1.2318011e-01 + 3.2384000e+03 3.1690463e-01 + 3.2388000e+03 2.3561973e-01 + 3.2392000e+03 -6.1799452e-02 + 3.2396000e+03 -1.2147365e-01 + 3.2400000e+03 -1.0537603e-01 + 3.2404000e+03 6.4354464e-02 + 3.2408000e+03 3.8341584e-01 + 3.2412000e+03 3.3236185e-01 + 3.2416000e+03 2.6128051e-01 + 3.2420000e+03 -1.9984959e-01 + 3.2424000e+03 -7.2814061e-01 + 3.2428000e+03 -8.4425656e-01 + 3.2432000e+03 -5.0174163e-01 + 3.2436000e+03 -1.5686429e-01 + 3.2440000e+03 1.1798902e-01 + 3.2444000e+03 5.8418735e-02 + 3.2448000e+03 -3.2100585e-01 + 3.2452000e+03 -6.7037637e-01 + 3.2456000e+03 -9.1978348e-01 + 3.2460000e+03 -1.1092528e+00 + 3.2464000e+03 -1.4888124e+00 + 3.2468000e+03 -1.9883947e+00 + 3.2472000e+03 -2.1680188e+00 + 3.2476000e+03 -2.4976833e+00 + 3.2480000e+03 -2.3174104e+00 + 3.2484000e+03 -1.6671685e+00 + 3.2488000e+03 -1.0169513e+00 + 3.2492000e+03 -8.8674360e-01 + 3.2496000e+03 -1.6668270e-02 + 3.2500000e+03 1.2945378e+00 + 3.2504000e+03 2.1629134e+00 + 3.2508000e+03 2.0723770e+00 + 3.2512000e+03 2.2316362e+00 + 3.2516000e+03 2.3307981e+00 + 3.2520000e+03 2.6098892e+00 + 3.2524000e+03 2.9289103e+00 + 3.2528000e+03 3.2481496e+00 + 3.2532000e+03 4.2675754e+00 + 3.2536000e+03 4.1972168e+00 + 3.2540000e+03 3.8971221e+00 + 3.2544000e+03 2.7626747e+00 + 3.2548000e+03 1.1427064e+00 + 3.2552000e+03 -3.6300788e-01 + 3.2556000e+03 -1.2326600e+00 + 3.2560000e+03 -1.9383133e+00 + 3.2564000e+03 -2.6262309e+00 + 3.2568000e+03 -2.9661585e+00 + 3.2572000e+03 -3.5224365e+00 + 3.2576000e+03 -3.9509031e+00 + 3.2580000e+03 -3.9171285e+00 + 3.2584000e+03 -3.4284055e+00 + 3.2588000e+03 -2.5854136e+00 + 3.2592000e+03 -1.4818836e+00 + 3.2596000e+03 -2.3494091e-01 + 3.2600000e+03 1.1779329e+00 + 3.2604000e+03 2.0755270e+00 + 3.2608000e+03 2.4759644e+00 + 3.2612000e+03 2.6261167e+00 + 3.2616000e+03 2.8358882e+00 + 3.2620000e+03 2.2153063e+00 + 3.2624000e+03 1.7543490e+00 + 3.2628000e+03 1.0032500e+00 + 3.2632000e+03 3.3183215e-01 + 3.2636000e+03 -2.2993265e-01 + 3.2640000e+03 -2.9161326e-01 + 3.2644000e+03 -1.7366078e-01 + 3.2648000e+03 -3.0501888e-01 + 3.2652000e+03 -4.3746059e-01 + 3.2656000e+03 -4.1940375e-01 + 3.2660000e+03 -5.6694841e-01 + 3.2664000e+03 -1.0701601e+00 + 3.2668000e+03 -1.6994406e+00 + 3.2672000e+03 -1.9590107e+00 + 3.2676000e+03 -2.0082571e+00 + 3.2680000e+03 -1.7772774e+00 + 3.2684000e+03 -1.3761465e+00 + 3.2688000e+03 -7.7496888e-01 + 3.2692000e+03 -2.2381560e-01 + 3.2696000e+03 2.8716005e-01 + 3.2700000e+03 3.5789288e-01 + 3.2704000e+03 1.4408082e-01 + 3.2708000e+03 4.2765959e-01 + 3.2712000e+03 1.0089053e+00 + 3.2716000e+03 1.6237627e+00 + 3.2720000e+03 1.9211829e+00 + 3.2724000e+03 2.3265232e+00 + 3.2728000e+03 2.3295261e+00 + 3.2732000e+03 2.2850973e+00 + 3.2736000e+03 2.1965170e+00 + 3.2740000e+03 1.9361937e+00 + 3.2744000e+03 1.3120313e+00 + 3.2748000e+03 5.6787306e-01 + 3.2752000e+03 -4.5085446e-01 + 3.2756000e+03 -1.4852786e+00 + 3.2760000e+03 -2.3775589e+00 + 3.2764000e+03 -2.4098619e+00 + 3.2768000e+03 -2.4058759e+00 + 3.2772000e+03 -2.3363393e+00 + 3.2776000e+03 -2.3112529e+00 + 3.2780000e+03 -2.2098134e+00 + 3.2784000e+03 -1.7417066e+00 + 3.2788000e+03 -1.0081173e+00 + 3.2792000e+03 -3.5450962e-01 + 3.2796000e+03 4.5381500e-01 + 3.2800000e+03 1.2725817e+00 + 3.2804000e+03 2.1096086e+00 + 3.2808000e+03 2.8022778e+00 + 3.2812000e+03 2.8912501e+00 + 3.2816000e+03 2.6400239e+00 + 3.2820000e+03 2.3283555e+00 + 3.2824000e+03 1.6465773e+00 + 3.2828000e+03 9.6445874e-01 + 3.2832000e+03 -1.7760417e-01 + 3.2836000e+03 -1.1389506e+00 + 3.2840000e+03 -1.9711549e+00 + 3.2844000e+03 -2.1417351e+00 + 3.2848000e+03 -2.0727989e+00 + 3.2852000e+03 -1.5705590e+00 + 3.2856000e+03 -1.4903005e+00 + 3.2860000e+03 -1.3898705e+00 + 3.2864000e+03 -1.0792961e+00 + 3.2868000e+03 -4.7877320e-01 + 3.2872000e+03 4.4170927e-01 + 3.2876000e+03 8.9206716e-01 + 3.2880000e+03 9.7234810e-01 + 3.2884000e+03 4.9270223e-01 + 3.2888000e+03 5.6315073e-01 + 3.2892000e+03 1.0636591e+00 + 3.2896000e+03 1.3639791e+00 + 3.2900000e+03 1.6040774e+00 + 3.2904000e+03 1.4241015e+00 + 3.2908000e+03 1.0539947e+00 + 3.2912000e+03 9.6381787e-01 + 3.2916000e+03 3.2357712e-01 + 3.2920000e+03 -1.8673813e-01 + 3.2924000e+03 -8.3700466e-01 + 3.2928000e+03 -1.2798524e+00 + 3.2932000e+03 -1.3509263e+00 + 3.2936000e+03 -1.5734687e+00 + 3.2940000e+03 -1.6119744e+00 + 3.2944000e+03 -1.4486004e+00 + 3.2948000e+03 -1.2487484e+00 + 3.2952000e+03 -9.3891421e-01 + 3.2956000e+03 -1.1442998e-01 + 3.2960000e+03 5.7126923e-01 + 3.2964000e+03 1.1817368e+00 + 3.2968000e+03 7.3226413e-01 + 3.2972000e+03 2.8292127e-01 + 3.2976000e+03 3.6857785e-03 + 3.2980000e+03 -8.5732088e-02 + 3.2984000e+03 -3.4919627e-02 + 3.2988000e+03 1.7586871e-01 + 3.2992000e+03 4.5666642e-01 + 3.2996000e+03 7.0724701e-01 + 3.3000000e+03 5.6747522e-01 + 3.3004000e+03 1.6744789e-01 + 3.3008000e+03 -8.2840233e-02 + 3.3012000e+03 -1.2133491e+00 + 3.3016000e+03 -1.5641194e+00 + 3.3020000e+03 -1.4951512e+00 + 3.3024000e+03 -1.0865164e+00 + 3.3028000e+03 -5.7343830e-01 + 3.3032000e+03 4.5320108e-02 + 3.3036000e+03 5.8497576e-02 + 3.3040000e+03 -2.8370990e-01 + 3.3044000e+03 -7.9206387e-01 + 3.3048000e+03 -1.0518375e+00 + 3.3052000e+03 -1.2016884e+00 + 3.3056000e+03 -1.1414143e+00 + 3.3060000e+03 -6.4111212e-01 + 3.3064000e+03 3.9339514e-02 + 3.3068000e+03 6.3985660e-01 + 3.3072000e+03 1.3203674e+00 + 3.3076000e+03 2.4810307e+00 + 3.3080000e+03 3.0317871e+00 + 3.3084000e+03 3.6322452e+00 + 3.3088000e+03 3.8523586e+00 + 3.3092000e+03 3.0923591e+00 + 3.3096000e+03 1.8520981e+00 + 3.3100000e+03 3.0135051e-01 + 3.3104000e+03 -1.2994325e+00 + 3.3108000e+03 -2.7801718e+00 + 3.3112000e+03 -3.6906668e+00 + 3.3116000e+03 -3.9008764e+00 + 3.3120000e+03 -3.2907204e+00 + 3.3124000e+03 -2.2636028e+00 + 3.3128000e+03 -1.1862572e+00 + 3.3132000e+03 6.5122273e-02 + 3.3136000e+03 7.6500988e-01 + 3.3140000e+03 7.8657789e-01 + 3.3144000e+03 6.8590552e-01 + 3.3148000e+03 4.4227604e-01 + 3.3152000e+03 5.4653786e-01 + 3.3156000e+03 7.7141048e-01 + 3.3160000e+03 1.3040921e+00 + 3.3164000e+03 1.8836515e+00 + 3.3168000e+03 1.8131180e+00 + 3.3172000e+03 8.7259467e-01 + 3.3176000e+03 -2.0214947e-01 + 3.3180000e+03 -8.9237655e-01 + 3.3184000e+03 -1.0488767e+00 + 3.3188000e+03 -1.0641590e+00 + 3.3192000e+03 -1.0815530e+00 + 3.3196000e+03 -1.2872034e+00 + 3.3200000e+03 -1.5859078e+00 + 3.3204000e+03 -1.8767115e+00 + 3.3208000e+03 -1.6767517e+00 + 3.3212000e+03 -9.5628033e-01 + 3.3216000e+03 -3.2530081e-01 + 3.3220000e+03 2.5298010e-01 + 3.3224000e+03 6.4260510e-01 + 3.3228000e+03 7.9966593e-01 + 3.3232000e+03 7.3756493e-01 + 3.3236000e+03 7.3924278e-01 + 3.3240000e+03 6.3350412e-01 + 3.3244000e+03 5.0287749e-01 + 3.3248000e+03 4.2197812e-01 + 3.3252000e+03 3.0097264e-01 + 3.3256000e+03 1.0998061e-01 + 3.3260000e+03 -2.1104079e-01 + 3.3264000e+03 -7.1197333e-01 + 3.3268000e+03 -9.9237111e-01 + 3.3272000e+03 -9.6257146e-01 + 3.3276000e+03 -1.1972778e+00 + 3.3280000e+03 -1.3830373e+00 + 3.3284000e+03 -1.4453568e+00 + 3.3288000e+03 -1.3682607e+00 + 3.3292000e+03 -8.3948336e-01 + 3.3296000e+03 -5.8491951e-02 + 3.3300000e+03 6.0245813e-01 + 3.3304000e+03 7.3345566e-01 + 3.3308000e+03 9.4449947e-01 + 3.3312000e+03 1.1216272e+00 + 3.3316000e+03 1.1052088e+00 + 3.3320000e+03 1.2081222e+00 + 3.3324000e+03 1.0851992e+00 + 3.3328000e+03 8.8670389e-01 + 3.3332000e+03 3.3581754e-01 + 3.3336000e+03 2.0308126e-01 + 3.3340000e+03 1.4759220e-01 + 3.3344000e+03 -1.3403966e-01 + 3.3348000e+03 -2.6510482e-01 + 3.3352000e+03 -1.8434368e-01 + 3.3356000e+03 4.0394005e-01 + 3.3360000e+03 2.9526459e-01 + 3.3364000e+03 1.0261127e-01 + 3.3368000e+03 -1.8770031e-01 + 3.3372000e+03 -7.5460439e-01 + 3.3376000e+03 -1.2029608e+00 + 3.3380000e+03 -1.4043416e+00 + 3.3384000e+03 -1.0112947e+00 + 3.3388000e+03 -6.6285486e-01 + 3.3392000e+03 -6.1709865e-01 + 3.3396000e+03 -5.8671432e-01 + 3.3400000e+03 -4.8636484e-01 + 3.3404000e+03 -6.0603299e-01 + 3.3408000e+03 -8.4568581e-01 + 3.3412000e+03 -9.2535612e-01 + 3.3416000e+03 -9.9503646e-01 + 3.3420000e+03 -8.8474099e-01 + 3.3424000e+03 -7.6458913e-01 + 3.3428000e+03 -6.4470092e-01 + 3.3432000e+03 6.0498701e-01 + 3.3436000e+03 6.9449977e-01 + 3.3440000e+03 1.3239301e+00 + 3.3444000e+03 1.9634389e+00 + 3.3448000e+03 1.4828611e+00 + 3.3452000e+03 5.1855275e-01 + 3.3456000e+03 1.9412552e-01 + 3.3460000e+03 1.2748486e-02 + 3.3464000e+03 -1.4687379e-01 + 3.3468000e+03 -4.2837453e-01 + 3.3472000e+03 -6.3049583e-01 + 3.3476000e+03 -6.5331608e-01 + 3.3480000e+03 -8.4386143e-01 + 3.3484000e+03 -1.0275333e+00 + 3.3488000e+03 -9.7717390e-01 + 3.3492000e+03 -9.1217411e-01 + 3.3496000e+03 -1.2356070e+00 + 3.3500000e+03 -1.5253915e+00 + 3.3504000e+03 -1.2951251e+00 + 3.3508000e+03 -1.1432421e+00 + 3.3512000e+03 -7.2274467e-01 + 3.3516000e+03 1.7899346e-01 + 3.3520000e+03 1.4501199e+00 + 3.3524000e+03 2.1029441e+00 + 3.3528000e+03 2.1715358e+00 + 3.3532000e+03 1.9556105e+00 + 3.3536000e+03 1.0107950e+00 + 3.3540000e+03 6.5356524e-01 + 3.3544000e+03 1.9942998e-01 + 3.3548000e+03 -1.9075880e-01 + 3.3552000e+03 -3.0055114e-01 + 3.3556000e+03 1.5809474e-01 + 3.3560000e+03 1.7567723e-01 + 3.3564000e+03 2.8666414e-01 + 3.3568000e+03 2.2877834e-01 + 3.3572000e+03 1.2588749e-01 + 3.3576000e+03 -2.5443416e-01 + 3.3580000e+03 -4.8515721e-01 + 3.3584000e+03 -1.2457435e+00 + 3.3588000e+03 -1.8708059e+00 + 3.3592000e+03 -2.0576481e+00 + 3.3596000e+03 -2.1000931e+00 + 3.3600000e+03 -1.8192227e+00 + 3.3604000e+03 -1.7485968e+00 + 3.3608000e+03 -1.2984053e+00 + 3.3612000e+03 -5.3244441e-01 + 3.3616000e+03 3.4258732e-01 + 3.3620000e+03 1.0102710e+00 + 3.3624000e+03 1.7860263e+00 + 3.3628000e+03 2.5924988e+00 + 3.3632000e+03 3.1001601e+00 + 3.3636000e+03 3.1262920e+00 + 3.3640000e+03 2.6968657e+00 + 3.3644000e+03 1.9972082e+00 + 3.3648000e+03 1.1773556e+00 + 3.3652000e+03 5.0465275e-01 + 3.3656000e+03 1.4914804e-02 + 3.3660000e+03 -3.9694816e-01 + 3.3664000e+03 -1.2206429e+00 + 3.3668000e+03 -1.9786934e+00 + 3.3672000e+03 -2.5200673e+00 + 3.3676000e+03 -2.6858920e+00 + 3.3680000e+03 -2.3965099e+00 + 3.3684000e+03 -1.8223314e+00 + 3.3688000e+03 -1.2949844e+00 + 3.3692000e+03 -9.5277022e-01 + 3.3696000e+03 -6.8363308e-01 + 3.3700000e+03 -1.4176056e-01 + 3.3704000e+03 9.5976021e-01 + 3.3708000e+03 1.7439262e+00 + 3.3712000e+03 2.1260191e+00 + 3.3716000e+03 2.3847300e+00 + 3.3720000e+03 2.4475839e+00 + 3.3724000e+03 2.1145799e+00 + 3.3728000e+03 1.2496563e+00 + 3.3732000e+03 5.2049232e-01 + 3.3736000e+03 2.6110677e-01 + 3.3740000e+03 -1.0185465e+00 + 3.3744000e+03 -1.1984047e+00 + 3.3748000e+03 -9.8849826e-01 + 3.3752000e+03 -4.3882004e-01 + 3.3756000e+03 -1.6938709e-01 + 3.3760000e+03 4.9837907e-02 + 3.3764000e+03 1.5894331e-01 + 3.3768000e+03 5.0793470e-01 + 3.3772000e+03 6.6687645e-01 + 3.3776000e+03 5.7581573e-01 + 3.3780000e+03 5.8014262e-01 + 3.3784000e+03 6.1585690e-01 + 3.3788000e+03 4.8494855e-01 + 3.3792000e+03 3.8760603e-01 + 3.3796000e+03 5.1597814e-02 + 3.3800000e+03 -2.4834914e-01 + 3.3804000e+03 -3.6800129e-01 + 3.3808000e+03 -3.2751363e-01 + 3.3812000e+03 4.9321643e-01 + 3.3816000e+03 1.0041044e+00 + 3.3820000e+03 1.2550419e+00 + 3.3824000e+03 1.5459565e+00 + 3.3828000e+03 1.0767034e+00 + 3.3832000e+03 1.9733023e-01 + 3.3836000e+03 -4.2216549e-01 + 3.3840000e+03 -7.3611694e-01 + 3.3844000e+03 -1.0824755e+00 + 3.3848000e+03 -1.2421097e+00 + 3.3852000e+03 -1.1878984e+00 + 3.3856000e+03 -1.0027423e+00 + 3.3860000e+03 -7.1315390e-01 + 3.3864000e+03 -1.9339314e-01 + 3.3868000e+03 7.6156009e-02 + 3.3872000e+03 1.4564413e-01 + 3.3876000e+03 -1.8486510e-01 + 3.3880000e+03 -2.3517365e-01 + 3.3884000e+03 -6.5302809e-02 + 3.3888000e+03 1.1482494e-01 + 3.3892000e+03 -1.3478006e-01 + 3.3896000e+03 -6.0415062e-01 + 3.3900000e+03 -7.8331402e-01 + 3.3904000e+03 -1.2823659e+00 + 3.3908000e+03 -1.4312741e+00 + 3.3912000e+03 -1.8700564e+00 + 3.3916000e+03 -1.7588897e+00 + 3.3920000e+03 -1.1481334e+00 + 3.3924000e+03 -5.9786779e-01 + 3.3928000e+03 -2.5778266e-01 + 3.3932000e+03 1.7165575e-01 + 3.3936000e+03 4.8589277e-01 + 3.3940000e+03 6.7662921e-01 + 3.3944000e+03 9.0818545e-01 + 3.3948000e+03 6.4455583e-01 + 3.3952000e+03 3.1920863e-01 + 3.3956000e+03 6.8240011e-02 + 3.3960000e+03 2.6724703e-01 + 3.3964000e+03 6.7648488e-01 + 3.3968000e+03 6.4582549e-01 + 3.3972000e+03 8.4520311e-01 + 3.3976000e+03 1.3246384e+00 + 3.3980000e+03 1.6842406e+00 + 3.3984000e+03 2.5339240e+00 + 3.3988000e+03 2.8636518e+00 + 3.3992000e+03 2.0635607e+00 + 3.3996000e+03 1.8735162e+00 + 3.4000000e+03 1.8236681e+00 + 3.4004000e+03 1.4848244e+00 + 3.4008000e+03 1.1063446e+00 + 3.4012000e+03 6.0768122e-01 + 3.4016000e+03 -8.7495720e-02 + 3.4020000e+03 -8.0131726e-01 + 3.4024000e+03 -1.4049846e+00 + 3.4028000e+03 -1.8472937e+00 + 3.4032000e+03 -2.1763695e+00 + 3.4036000e+03 -2.2166765e+00 + 3.4040000e+03 -2.0567957e+00 + 3.4044000e+03 -1.8468400e+00 + 3.4048000e+03 -1.6568273e+00 + 3.4052000e+03 -1.2967413e+00 + 3.4056000e+03 -5.6660856e-01 + 3.4060000e+03 7.3571619e-02 + 3.4064000e+03 6.9390215e-01 + 3.4068000e+03 4.2432787e-01 + 3.4072000e+03 4.4842815e-02 + 3.4076000e+03 -2.4462691e-01 + 3.4080000e+03 -4.8409180e-01 + 3.4084000e+03 -5.8356570e-01 + 3.4088000e+03 -5.2326774e-01 + 3.4092000e+03 -4.8288515e-01 + 3.4096000e+03 -2.4247644e-01 + 3.4100000e+03 -1.2199325e-01 + 3.4104000e+03 -4.2135488e-01 + 3.4108000e+03 -7.1092414e-01 + 3.4112000e+03 -8.5026426e-01 + 3.4116000e+03 -1.3698718e+00 + 3.4120000e+03 -1.3297359e+00 + 3.4124000e+03 -1.0599346e+00 + 3.4128000e+03 -7.5030357e-01 + 3.4132000e+03 -3.8075184e-01 + 3.4136000e+03 1.6888353e-02 + 3.4140000e+03 2.8156019e-01 + 3.4144000e+03 7.1896004e-01 + 3.4148000e+03 7.5916263e-01 + 3.4152000e+03 7.4605191e-01 + 3.4156000e+03 7.0553917e-01 + 3.4160000e+03 8.2493496e-01 + 3.4164000e+03 8.6432125e-01 + 3.4168000e+03 8.0367754e-01 + 3.4172000e+03 8.5321777e-01 + 3.4176000e+03 1.1229707e+00 + 3.4180000e+03 1.1290949e+00 + 3.4184000e+03 1.0774413e+00 + 3.4188000e+03 8.9862211e-01 + 3.4192000e+03 8.0095277e-01 + 3.4196000e+03 5.3495601e-01 + 3.4200000e+03 2.9447016e-01 + 3.4204000e+03 3.7803673e-01 + 3.4208000e+03 4.4834940e-01 + 3.4212000e+03 5.9091703e-01 + 3.4216000e+03 4.7988347e-01 + 3.4220000e+03 3.2993830e-01 + 3.4224000e+03 -1.2627879e-02 + 3.4228000e+03 -6.6549573e-02 + 3.4232000e+03 -1.7036201e-02 + 3.4236000e+03 1.6266829e-01 + 3.4240000e+03 2.7524679e-02 + 3.4244000e+03 -7.0702640e-02 + 3.4248000e+03 -7.3035694e-01 + 3.4252000e+03 -1.4270733e+00 + 3.4256000e+03 -1.6163448e+00 + 3.4260000e+03 -1.4659863e+00 + 3.4264000e+03 -1.5155529e+00 + 3.4268000e+03 -1.9349394e+00 + 3.4272000e+03 -2.2941313e+00 + 3.4276000e+03 -2.3232906e+00 + 3.4280000e+03 -1.9926728e+00 + 3.4284000e+03 -1.3630768e+00 + 3.4288000e+03 -9.0531359e-01 + 3.4292000e+03 -7.4669232e-01 + 3.4296000e+03 -8.3094406e-01 + 3.4300000e+03 -1.2738400e+00 + 3.4304000e+03 -1.7044261e+00 + 3.4308000e+03 -1.7648131e+00 + 3.4312000e+03 -1.1750611e+00 + 3.4316000e+03 -7.7505478e-01 + 3.4320000e+03 -4.0147725e-01 + 3.4324000e+03 5.6693904e-01 + 3.4328000e+03 1.4661371e+00 + 3.4332000e+03 2.4669005e+00 + 3.4336000e+03 3.1173684e+00 + 3.4340000e+03 3.1112719e+00 + 3.4344000e+03 2.7041708e+00 + 3.4348000e+03 2.1082725e+00 + 3.4352000e+03 1.2535869e+00 + 3.4356000e+03 3.8234768e-01 + 3.4360000e+03 -3.5183368e-01 + 3.4364000e+03 -7.1136528e-01 + 3.4368000e+03 -4.7495482e-01 + 3.4372000e+03 -1.9266058e-01 + 3.4376000e+03 -1.3068682e-01 + 3.4380000e+03 -1.1543846e-01 + 3.4384000e+03 1.1361997e-01 + 3.4388000e+03 1.6280187e-01 + 3.4392000e+03 6.2221875e-01 + 3.4396000e+03 4.9186330e-01 + 3.4400000e+03 4.6162862e-01 + 3.4404000e+03 3.4159145e-01 + 3.4408000e+03 3.1171400e-01 + 3.4412000e+03 2.7202045e-01 + 3.4416000e+03 2.0230050e-01 + 3.4420000e+03 9.2511305e-02 + 3.4424000e+03 5.1236545e-01 + 3.4428000e+03 1.0421300e+00 + 3.4432000e+03 1.4827018e+00 + 3.4436000e+03 1.8926335e+00 + 3.4440000e+03 1.9129214e+00 + 3.4444000e+03 1.7881306e+00 + 3.4448000e+03 1.5941064e+00 + 3.4452000e+03 8.6388938e-01 + 3.4456000e+03 2.6282897e-01 + 3.4460000e+03 -3.9509626e-01 + 3.4464000e+03 -1.1275022e+00 + 3.4468000e+03 -1.9556856e+00 + 3.4472000e+03 -2.3304380e+00 + 3.4476000e+03 -2.3456028e+00 + 3.4480000e+03 -1.9426065e+00 + 3.4484000e+03 -1.8409230e+00 + 3.4488000e+03 -2.0034884e+00 + 3.4492000e+03 -2.1008676e+00 + 3.4496000e+03 -1.9888304e+00 + 3.4500000e+03 -1.7499878e+00 + 3.4504000e+03 -1.2603651e+00 + 3.4508000e+03 -8.7094182e-01 + 3.4512000e+03 3.8311856e-02 + 3.4516000e+03 3.2736137e-01 + 3.4520000e+03 6.8855411e-01 + 3.4524000e+03 1.0006131e+00 + 3.4528000e+03 1.1470124e+00 + 3.4532000e+03 1.4707188e+00 + 3.4536000e+03 2.2620921e+00 + 3.4540000e+03 2.3218238e+00 + 3.4544000e+03 1.6509065e+00 + 3.4548000e+03 4.8854689e-01 + 3.4552000e+03 -2.5184497e-01 + 3.4556000e+03 -6.7260203e-01 + 3.4560000e+03 -1.3459637e+00 + 3.4564000e+03 -1.6533872e+00 + 3.4568000e+03 -1.7820497e+00 + 3.4572000e+03 -1.6610292e+00 + 3.4576000e+03 -1.2332237e+00 + 3.4580000e+03 -7.1823849e-01 + 3.4584000e+03 -6.1180845e-01 + 3.4588000e+03 -4.8198682e-01 + 3.4592000e+03 6.6033969e-01 + 3.4596000e+03 1.9461068e+00 + 3.4600000e+03 2.5367537e+00 + 3.4604000e+03 2.1562773e+00 + 3.4608000e+03 1.7259270e+00 + 3.4612000e+03 1.7556479e+00 + 3.4616000e+03 2.1053131e+00 + 3.4620000e+03 2.4649158e+00 + 3.4624000e+03 2.0544634e+00 + 3.4628000e+03 1.8507149e+00 + 3.4632000e+03 1.7609403e+00 + 3.4636000e+03 1.0790600e+00 + 3.4640000e+03 3.1607289e-01 + 3.4644000e+03 -4.6566674e-01 + 3.4648000e+03 -1.1413026e+00 + 3.4652000e+03 -1.9655416e+00 + 3.4656000e+03 -2.4219594e+00 + 3.4660000e+03 -2.9288745e+00 + 3.4664000e+03 -3.4691383e+00 + 3.4668000e+03 -3.6033834e+00 + 3.4672000e+03 -3.4173198e+00 + 3.4676000e+03 -2.5697908e+00 + 3.4680000e+03 -1.8886883e+00 + 3.4684000e+03 -1.1478140e+00 + 3.4688000e+03 -8.1721996e-01 + 3.4692000e+03 -5.6742716e-02 + 3.4696000e+03 7.0352859e-01 + 3.4700000e+03 1.3135358e+00 + 3.4704000e+03 1.7533088e+00 + 3.4708000e+03 2.1027386e+00 + 3.4712000e+03 2.1918919e+00 + 3.4716000e+03 2.0707714e+00 + 3.4720000e+03 2.0294193e+00 + 3.4724000e+03 2.1482565e+00 + 3.4728000e+03 2.0164509e+00 + 3.4732000e+03 1.5811800e+00 + 3.4736000e+03 9.0100068e-01 + 3.4740000e+03 -1.0152240e-01 + 3.4744000e+03 -1.1583648e+00 + 3.4748000e+03 -1.7921079e+00 + 3.4752000e+03 -2.2078531e+00 + 3.4756000e+03 -2.4039352e+00 + 3.4760000e+03 -2.2868873e+00 + 3.4764000e+03 -1.9342359e+00 + 3.4768000e+03 -1.7082260e+00 + 3.4772000e+03 -1.4318673e+00 + 3.4776000e+03 -1.0610744e+00 + 3.4780000e+03 -4.0414580e-01 + 3.4784000e+03 1.8832526e-01 + 3.4788000e+03 6.1949052e-01 + 3.4792000e+03 7.8069067e-01 + 3.4796000e+03 9.0168650e-01 + 3.4800000e+03 1.5625161e+00 + 3.4804000e+03 2.2131097e+00 + 3.4808000e+03 2.3134000e+00 + 3.4812000e+03 2.9134226e+00 + 3.4816000e+03 2.8831334e+00 + 3.4820000e+03 2.4526294e+00 + 3.4824000e+03 2.0018105e+00 + 3.4828000e+03 1.4207467e+00 + 3.4832000e+03 8.8216442e-01 + 3.4836000e+03 2.2368378e-01 + 3.4840000e+03 -5.0169722e-01 + 3.4844000e+03 -9.6273969e-01 + 3.4848000e+03 -9.9519072e-01 + 3.4852000e+03 -1.1058043e+00 + 3.4856000e+03 -1.7860009e+00 + 3.4860000e+03 -2.2594062e+00 + 3.4864000e+03 -2.3459994e+00 + 3.4868000e+03 -2.3843908e+00 + 3.4872000e+03 -2.5172846e+00 + 3.4876000e+03 -2.6025108e+00 + 3.4880000e+03 -3.0568885e+00 + 3.4884000e+03 -2.9121362e+00 + 3.4888000e+03 -2.1983835e+00 + 3.4892000e+03 -1.3384790e+00 + 3.4896000e+03 -2.7909539e-01 + 3.4900000e+03 7.8800830e-01 + 3.4904000e+03 1.4903190e+00 + 3.4908000e+03 2.1956899e+00 + 3.4912000e+03 2.2407388e+00 + 3.4916000e+03 2.6051634e+00 + 3.4920000e+03 2.5749162e+00 + 3.4924000e+03 2.1148943e+00 + 3.4928000e+03 2.1840129e+00 + 3.4932000e+03 2.3331104e+00 + 3.4936000e+03 2.0821724e+00 + 3.4940000e+03 1.6311868e+00 + 3.4944000e+03 1.3802429e+00 + 3.4948000e+03 1.2994870e+00 + 3.4952000e+03 9.0752773e-01 + 3.4956000e+03 2.4562583e-01 + 3.4960000e+03 -1.0464507e+00 + 3.4964000e+03 -2.2127053e+00 + 3.4968000e+03 -2.7413867e+00 + 3.4972000e+03 -3.0308411e+00 + 3.4976000e+03 -2.8200927e+00 + 3.4980000e+03 -2.4191669e+00 + 3.4984000e+03 -2.2798796e+00 + 3.4988000e+03 -2.3504724e+00 + 3.4992000e+03 -2.2787319e+00 + 3.4996000e+03 -2.3591415e+00 + 3.5000000e+03 -2.1733061e+00 + 3.5004000e+03 -1.7423803e+00 + 3.5008000e+03 -1.7117714e+00 + 3.5012000e+03 -5.0734236e-01 + 3.5016000e+03 1.2373176e+00 + 3.5020000e+03 2.5881707e+00 + 3.5024000e+03 3.3875195e+00 + 3.5028000e+03 4.0266416e+00 + 3.5032000e+03 4.2155291e+00 + 3.5036000e+03 3.8142512e+00 + 3.5040000e+03 3.3647080e+00 + 3.5044000e+03 3.1631194e+00 + 3.5048000e+03 2.8838707e+00 + 3.5052000e+03 2.7489544e+00 + 3.5056000e+03 2.2147025e+00 + 3.5060000e+03 1.2272270e+00 + 3.5064000e+03 8.9587362e-01 + 3.5068000e+03 6.2440621e-01 + 3.5072000e+03 2.4359958e-01 + 3.5076000e+03 -1.3484354e-01 + 3.5080000e+03 -6.8521562e-01 + 3.5084000e+03 -1.3908428e+00 + 3.5088000e+03 -1.6218327e+00 + 3.5092000e+03 -2.2503259e+00 + 3.5096000e+03 -2.8641209e+00 + 3.5100000e+03 -2.7932480e+00 + 3.5104000e+03 -2.6625474e+00 + 3.5108000e+03 -2.3920300e+00 + 3.5112000e+03 -2.2016898e+00 + 3.5116000e+03 -2.1715098e+00 + 3.5120000e+03 -1.3930268e+00 + 3.5124000e+03 1.3039106e-01 + 3.5128000e+03 1.2479180e+00 + 3.5132000e+03 1.7674908e+00 + 3.5136000e+03 1.7799193e+00 + 3.5140000e+03 1.1101954e+00 + 3.5144000e+03 7.4473663e-01 + 3.5148000e+03 9.5153364e-01 + 3.5152000e+03 9.3487822e-01 + 3.5156000e+03 8.1529107e-01 + 3.5160000e+03 6.3950200e-01 + 3.5164000e+03 2.2007927e-01 + 3.5168000e+03 -5.0709004e-01 + 3.5172000e+03 -1.3494286e+00 + 3.5176000e+03 -1.9487739e+00 + 3.5180000e+03 -2.5311071e+00 + 3.5184000e+03 -3.1109524e+00 + 3.5188000e+03 -3.1020299e+00 + 3.5192000e+03 -2.5780040e+00 + 3.5196000e+03 -1.7618668e+00 + 3.5200000e+03 -1.0753754e+00 + 3.5204000e+03 -1.1497339e-01 + 3.5208000e+03 9.7604872e-01 + 3.5212000e+03 2.0013443e+00 + 3.5216000e+03 3.0108776e+00 + 3.5220000e+03 3.9416522e+00 + 3.5224000e+03 4.0737798e+00 + 3.5228000e+03 3.9199952e+00 + 3.5232000e+03 3.4318839e+00 + 3.5236000e+03 2.9290834e+00 + 3.5240000e+03 2.2884401e+00 + 3.5244000e+03 1.1376191e+00 + 3.5248000e+03 8.2681286e-01 + 3.5252000e+03 7.6597327e-01 + 3.5256000e+03 7.1500374e-01 + 3.5260000e+03 7.6398784e-01 + 3.5264000e+03 1.1230512e+00 + 3.5268000e+03 7.5222851e-01 + 3.5272000e+03 4.8173212e-01 + 3.5276000e+03 -4.1003178e-02 + 3.5280000e+03 -9.2005142e-01 + 3.5284000e+03 -1.4130516e+00 + 3.5288000e+03 -1.5871792e+00 + 3.5292000e+03 -1.5408947e+00 + 3.5296000e+03 -1.2771960e+00 + 3.5300000e+03 -1.1619096e+00 + 3.5304000e+03 -9.7810001e-01 + 3.5308000e+03 -6.3796863e-01 + 3.5312000e+03 -6.2631928e-01 + 3.5316000e+03 -3.2452082e-01 + 3.5320000e+03 -5.9121270e-02 + 3.5324000e+03 -9.2201998e-02 + 3.5328000e+03 -8.8020519e-02 + 3.5332000e+03 -3.4783313e-01 + 3.5336000e+03 -9.3773461e-01 + 3.5340000e+03 -1.2077188e+00 + 3.5344000e+03 -1.4779343e+00 + 3.5348000e+03 -2.1583478e+00 + 3.5352000e+03 -2.1188408e+00 + 3.5356000e+03 -2.0791747e+00 + 3.5360000e+03 -1.7195587e+00 + 3.5364000e+03 -1.8100330e+00 + 3.5368000e+03 -1.9105579e+00 + 3.5372000e+03 -1.9809462e+00 + 3.5376000e+03 -1.7112246e+00 + 3.5380000e+03 -1.2513016e+00 + 3.5384000e+03 -3.3977217e-01 + 3.5388000e+03 6.4895199e-01 + 3.5392000e+03 1.5699315e+00 + 3.5396000e+03 2.2330680e+00 + 3.5400000e+03 2.4651756e+00 + 3.5404000e+03 2.0491071e+00 + 3.5408000e+03 1.6491592e+00 + 3.5412000e+03 1.4496300e+00 + 3.5416000e+03 1.1304913e+00 + 3.5420000e+03 8.8167061e-01 + 3.5424000e+03 5.5279660e-01 + 3.5428000e+03 3.4378187e-01 + 3.5432000e+03 1.3469309e-01 + 3.5436000e+03 8.5761856e-02 + 3.5440000e+03 1.7643312e-01 + 3.5444000e+03 2.7668898e-01 + 3.5448000e+03 3.1653544e-01 + 3.5452000e+03 4.5580890e-01 + 3.5456000e+03 7.2492169e-01 + 3.5460000e+03 9.2393613e-01 + 3.5464000e+03 8.9300291e-01 + 3.5468000e+03 1.4022529e+00 + 3.5472000e+03 1.7816736e+00 + 3.5476000e+03 2.0012031e+00 + 3.5480000e+03 2.3108496e+00 + 3.5484000e+03 2.7206744e+00 + 3.5488000e+03 2.5206929e+00 + 3.5492000e+03 1.9908657e+00 + 3.5496000e+03 1.1085950e+00 + 3.5500000e+03 -2.6308903e-01 + 3.5504000e+03 -1.1110747e+00 + 3.5508000e+03 -1.2428794e+00 + 3.5512000e+03 -1.4722120e+00 + 3.5516000e+03 -1.7169361e+00 + 3.5520000e+03 -1.8535536e+00 + 3.5524000e+03 -1.9044763e+00 + 3.5528000e+03 -2.3646228e+00 + 3.5532000e+03 -3.1637396e+00 + 3.5536000e+03 -3.9077630e+00 + 3.5540000e+03 -4.1823035e+00 + 3.5544000e+03 -3.9143450e+00 + 3.5548000e+03 -3.4162256e+00 + 3.5552000e+03 -2.6763205e+00 + 3.5556000e+03 -1.6527728e+00 + 3.5560000e+03 -7.0670686e-01 + 3.5564000e+03 -1.4689695e-02 + 3.5568000e+03 9.8775582e-01 + 3.5572000e+03 1.8259183e+00 + 3.5576000e+03 2.4593187e+00 + 3.5580000e+03 2.5320555e+00 + 3.5584000e+03 2.2586648e+00 + 3.5588000e+03 2.2439534e+00 + 3.5592000e+03 2.2800377e+00 + 3.5596000e+03 2.2199321e+00 + 3.5600000e+03 2.0501110e+00 + 3.5604000e+03 1.8105113e+00 + 3.5608000e+03 1.5511737e+00 + 3.5612000e+03 1.0620364e+00 + 3.5616000e+03 5.9563442e-01 + 3.5620000e+03 -8.7125421e-02 + 3.5624000e+03 -3.9720465e-01 + 3.5628000e+03 -7.4306938e-01 + 3.5632000e+03 -1.1077547e+00 + 3.5636000e+03 -1.3733617e+00 + 3.5640000e+03 -1.5492296e+00 + 3.5644000e+03 -1.4768373e+00 + 3.5648000e+03 -1.4564077e+00 + 3.5652000e+03 -1.3249856e+00 + 3.5656000e+03 -1.0256838e+00 + 3.5660000e+03 -2.7394424e-01 + 3.5664000e+03 6.4410175e-01 + 3.5668000e+03 8.8710561e-01 + 3.5672000e+03 9.6604152e-01 + 3.5676000e+03 1.0748573e+00 + 3.5680000e+03 1.3133728e+00 + 3.5684000e+03 1.9619762e+00 + 3.5688000e+03 2.3408548e+00 + 3.5692000e+03 2.8619114e+00 + 3.5696000e+03 3.2152514e+00 + 3.5700000e+03 2.7723434e+00 + 3.5704000e+03 1.7707831e+00 + 3.5708000e+03 1.1322571e+00 + 3.5712000e+03 9.9270823e-01 + 3.5716000e+03 4.8493042e-01 + 3.5720000e+03 1.2964650e-01 + 3.5724000e+03 -5.4268676e-01 + 3.5728000e+03 -1.1485890e+00 + 3.5732000e+03 -1.9581283e+00 + 3.5736000e+03 -3.0385895e+00 + 3.5740000e+03 -3.9565081e+00 + 3.5744000e+03 -4.5901581e+00 + 3.5748000e+03 -4.8546929e+00 + 3.5752000e+03 -4.9614205e+00 + 3.5756000e+03 -4.2575475e+00 + 3.5760000e+03 -3.1083227e+00 + 3.5764000e+03 -1.7853104e+00 + 3.5768000e+03 -4.6224572e-01 + 3.5772000e+03 8.0716924e-01 + 3.5776000e+03 1.9976502e+00 + 3.5780000e+03 3.0868814e+00 + 3.5784000e+03 3.2864948e+00 + 3.5788000e+03 2.9664451e+00 + 3.5792000e+03 3.3167837e+00 + 3.5796000e+03 3.3572411e+00 + 3.5800000e+03 3.6375807e+00 + 3.5804000e+03 4.1525469e+00 + 3.5808000e+03 3.5480408e+00 + 3.5812000e+03 1.9281882e+00 + 3.5816000e+03 8.4552269e-03 + 3.5820000e+03 -1.0670883e+00 + 3.5824000e+03 -1.5134883e+00 + 3.5828000e+03 -1.6246677e+00 + 3.5832000e+03 -1.4850804e+00 + 3.5836000e+03 -1.2192787e+00 + 3.5840000e+03 -1.1787697e+00 + 3.5844000e+03 -1.2483897e+00 + 3.5848000e+03 -9.7485104e-01 + 3.5852000e+03 -1.0620251e+00 + 3.5856000e+03 -1.1495499e+00 + 3.5860000e+03 -1.2993657e+00 + 3.5864000e+03 -1.1200679e+00 + 3.5868000e+03 -9.2060183e-01 + 3.5872000e+03 -8.7104757e-01 + 3.5876000e+03 -3.7228149e-01 + 3.5880000e+03 3.9318835e-01 + 3.5884000e+03 1.0454883e+00 + 3.5888000e+03 1.3379701e+00 + 3.5892000e+03 1.5591794e+00 + 3.5896000e+03 1.2895634e+00 + 3.5900000e+03 1.1401406e+00 + 3.5904000e+03 8.2065862e-01 + 3.5908000e+03 6.7932664e-01 + 3.5912000e+03 4.1645525e-01 + 3.5916000e+03 3.9941842e-01 + 3.5920000e+03 -1.4240356e-02 + 3.5924000e+03 -1.1977281e-01 + 3.5928000e+03 -4.4040230e-01 + 3.5932000e+03 -1.4611156e+00 + 3.5936000e+03 -1.3816836e+00 + 3.5940000e+03 -9.9222703e-01 + 3.5944000e+03 -1.2925921e+00 + 3.5948000e+03 -1.5329468e+00 + 3.5952000e+03 -1.7434149e+00 + 3.5956000e+03 -2.0878207e+00 + 3.5960000e+03 -1.9249140e+00 + 3.5964000e+03 -1.7036702e+00 + 3.5968000e+03 -1.4139964e+00 + 3.5972000e+03 -9.2397389e-01 + 3.5976000e+03 -1.6753656e-01 + 3.5980000e+03 3.2589571e-01 + 3.5984000e+03 4.7765465e-01 + 3.5988000e+03 4.1857361e-01 + 3.5992000e+03 4.3492174e-01 + 3.5996000e+03 5.7904717e-01 + 3.6000000e+03 8.3569647e-01 + 3.6004000e+03 9.2937433e-01 + 3.6008000e+03 1.2208880e+00 + 3.6012000e+03 1.5404921e+00 + 3.6016000e+03 1.4375978e+00 + 3.6020000e+03 1.2841158e+00 + 3.6024000e+03 1.3199459e+00 + 3.6028000e+03 1.5389768e+00 + 3.6032000e+03 1.3301056e+00 + 3.6036000e+03 8.7133544e-01 + 3.6040000e+03 1.3351713e-01 + 3.6044000e+03 -9.1655278e-01 + 3.6048000e+03 -1.5853856e+00 + 3.6052000e+03 -1.9622454e+00 + 3.6056000e+03 -1.9769757e+00 + 3.6060000e+03 -1.3374105e+00 + 3.6064000e+03 -6.2742934e-01 + 3.6068000e+03 2.0286591e-01 + 3.6072000e+03 6.3335455e-01 + 3.6076000e+03 9.2389543e-01 + 3.6080000e+03 1.3245091e+00 + 3.6084000e+03 1.8351764e+00 + 3.6088000e+03 1.7119389e+00 + 3.6092000e+03 8.9680009e-01 + 3.6096000e+03 1.1788804e-01 + 3.6100000e+03 -6.3471271e-01 + 3.6104000e+03 -9.9343877e-01 + 3.6108000e+03 -9.6476473e-01 + 3.6112000e+03 -5.2333727e-01 + 3.6116000e+03 7.2498262e-02 + 3.6120000e+03 6.1247379e-01 + 3.6124000e+03 1.1621093e+00 + 3.6128000e+03 1.4815822e+00 + 3.6132000e+03 9.3007189e-01 + 3.6136000e+03 1.3299770e-01 + 3.6140000e+03 -8.6141237e-01 + 3.6144000e+03 -1.8622485e+00 + 3.6148000e+03 -2.1847258e+00 + 3.6152000e+03 -2.0758632e+00 + 3.6156000e+03 -1.5832872e+00 + 3.6160000e+03 -1.0544239e+00 + 3.6164000e+03 -7.2568500e-01 + 3.6168000e+03 -1.1661393e-01 + 3.6172000e+03 2.4257452e-01 + 3.6176000e+03 6.7224770e-01 + 3.6180000e+03 1.1022218e+00 + 3.6184000e+03 1.6223777e+00 + 3.6188000e+03 1.8326730e+00 + 3.6192000e+03 1.2830577e+00 + 3.6196000e+03 4.7826159e-01 + 3.6200000e+03 -2.6625123e-01 + 3.6204000e+03 -1.1275534e+00 + 3.6208000e+03 -1.7633696e+00 + 3.6212000e+03 -2.0393275e+00 + 3.6216000e+03 -2.1822691e+00 + 3.6220000e+03 -2.2647392e+00 + 3.6224000e+03 -1.8743125e+00 + 3.6228000e+03 -1.1138184e+00 + 3.6232000e+03 -2.0963789e-01 + 3.6236000e+03 1.0025885e+00 + 3.6240000e+03 2.1497576e+00 + 3.6244000e+03 2.6355074e+00 + 3.6248000e+03 2.5744230e+00 + 3.6252000e+03 2.5716108e+00 + 3.6256000e+03 2.7052384e+00 + 3.6260000e+03 2.1708471e+00 + 3.6264000e+03 1.4866371e+00 + 3.6268000e+03 8.3452400e-01 + 3.6272000e+03 6.4461371e-01 + 3.6276000e+03 2.7077547e-01 + 3.6280000e+03 -2.7709460e-01 + 3.6284000e+03 -5.7035966e-01 + 3.6288000e+03 -9.1909620e-01 + 3.6292000e+03 -6.8998174e-01 + 3.6296000e+03 -4.2941395e-01 + 3.6300000e+03 -1.2895040e-01 + 3.6304000e+03 -2.7885206e-02 + 3.6308000e+03 -1.1885938e-02 + 3.6312000e+03 -1.7135397e-02 + 3.6316000e+03 -6.1540798e-02 + 3.6320000e+03 -2.0886627e-01 + 3.6324000e+03 -3.0065705e-01 + 3.6328000e+03 -1.6046738e-01 + 3.6332000e+03 2.2694061e-01 + 3.6336000e+03 3.7138184e-01 + 3.6340000e+03 1.8862360e-01 + 3.6344000e+03 -1.1441552e-01 + 3.6348000e+03 -7.2840697e-01 + 3.6352000e+03 -9.4845942e-01 + 3.6356000e+03 -1.2127068e+00 + 3.6360000e+03 -1.2398413e+00 + 3.6364000e+03 -1.0336763e+00 + 3.6368000e+03 -4.4109295e-01 + 3.6372000e+03 -9.2264854e-02 + 3.6376000e+03 3.0653673e-01 + 3.6380000e+03 4.9526118e-01 + 3.6384000e+03 3.7378059e-01 + 3.6388000e+03 -1.7734922e-02 + 3.6392000e+03 -9.2916446e-01 + 3.6396000e+03 -1.9703012e+00 + 3.6400000e+03 -2.3210693e+00 + 3.6404000e+03 -2.4212566e+00 + 3.6408000e+03 -2.1207179e+00 + 3.6412000e+03 -1.7197925e+00 + 3.6416000e+03 -1.5085900e+00 + 3.6420000e+03 -1.0320212e+00 + 3.6424000e+03 -6.4854265e-01 + 3.6428000e+03 -3.9790373e-01 + 3.6432000e+03 -4.4234880e-01 + 3.6436000e+03 -4.6681539e-01 + 3.6440000e+03 -2.0802409e-02 + 3.6444000e+03 8.2212589e-01 + 3.6448000e+03 1.9748996e+00 + 3.6452000e+03 3.1493546e+00 + 3.6456000e+03 3.8216998e+00 + 3.6460000e+03 4.0943042e+00 + 3.6464000e+03 3.6077125e+00 + 3.6468000e+03 3.0294474e+00 + 3.6472000e+03 1.9320524e+00 + 3.6476000e+03 1.2158215e+00 + 3.6480000e+03 1.1018483e+00 + 3.6484000e+03 8.1548369e-01 + 3.6488000e+03 6.2888711e-01 + 3.6492000e+03 4.2126544e-01 + 3.6496000e+03 -7.9474493e-03 + 3.6500000e+03 -4.2009291e-01 + 3.6504000e+03 -1.2601163e+00 + 3.6508000e+03 -1.7312109e+00 + 3.6512000e+03 -2.1082237e+00 + 3.6516000e+03 -2.2301939e+00 + 3.6520000e+03 -2.1443577e+00 + 3.6524000e+03 -2.0913870e+00 + 3.6528000e+03 -1.8001538e+00 + 3.6532000e+03 -1.4648131e+00 + 3.6536000e+03 -1.0151029e+00 + 3.6540000e+03 -5.4787151e-01 + 3.6544000e+03 1.0233607e-01 + 3.6548000e+03 1.1754495e+00 + 3.6552000e+03 1.7542582e+00 + 3.6556000e+03 1.8744504e+00 + 3.6560000e+03 1.4063797e+00 + 3.6564000e+03 3.9027193e-01 + 3.6568000e+03 -6.1699515e-01 + 3.6572000e+03 -1.2601013e+00 + 3.6576000e+03 -1.7816899e+00 + 3.6580000e+03 -1.8332789e+00 + 3.6584000e+03 -1.7245338e+00 + 3.6588000e+03 -1.5653513e+00 + 3.6592000e+03 -1.2359879e+00 + 3.6596000e+03 -7.2270165e-01 + 3.6600000e+03 -5.2963113e-01 + 3.6604000e+03 -5.1494347e-01 + 3.6608000e+03 -3.6391674e-01 + 3.6612000e+03 -7.0357863e-01 + 3.6616000e+03 -1.0170127e+00 + 3.6620000e+03 -9.7959764e-01 + 3.6624000e+03 -8.3194487e-01 + 3.6628000e+03 -5.5438597e-01 + 3.6632000e+03 -7.3203630e-02 + 3.6636000e+03 7.6304501e-01 + 3.6640000e+03 1.5584634e+00 + 3.6644000e+03 1.9890823e+00 + 3.6648000e+03 2.1094366e+00 + 3.6652000e+03 2.0094993e+00 + 3.6656000e+03 1.4192552e+00 + 3.6660000e+03 1.2186031e+00 + 3.6664000e+03 1.2875004e+00 + 3.6668000e+03 1.3662950e+00 + 3.6672000e+03 1.3354407e+00 + 3.6676000e+03 1.1649321e+00 + 3.6680000e+03 1.4062702e+00 + 3.6684000e+03 1.6948630e+00 + 3.6688000e+03 1.7321013e+00 + 3.6692000e+03 1.3954076e+00 + 3.6696000e+03 1.1919807e+00 + 3.6700000e+03 1.1096093e+00 + 3.6704000e+03 9.7112750e-01 + 3.6708000e+03 7.7170238e-01 + 3.6712000e+03 6.6286553e-01 + 3.6716000e+03 2.7931653e-02 + 3.6720000e+03 -5.2028567e-01 + 3.6724000e+03 -9.9445680e-01 + 3.6728000e+03 -1.6139361e+00 + 3.6732000e+03 -2.0431945e+00 + 3.6736000e+03 -2.4425182e+00 + 3.6740000e+03 -2.1719473e+00 + 3.6744000e+03 -1.7714750e+00 + 3.6748000e+03 -1.2011986e+00 + 3.6752000e+03 -8.3909602e-01 + 3.6756000e+03 -5.8319903e-01 + 3.6760000e+03 -4.6192320e-01 + 3.6764000e+03 -8.1131387e-01 + 3.6768000e+03 -1.2586817e+00 + 3.6772000e+03 -1.4144858e+00 + 3.6776000e+03 -1.1856883e+00 + 3.6780000e+03 -8.0703693e-01 + 3.6784000e+03 -4.8148808e-02 + 3.6788000e+03 5.3088833e-01 + 3.6792000e+03 6.5021134e-01 + 3.6796000e+03 4.8978409e-01 + 3.6800000e+03 -3.9294030e-04 + 3.6804000e+03 -7.3127747e-01 + 3.6808000e+03 -1.1531796e+00 + 3.6812000e+03 -1.3961830e+00 + 3.6816000e+03 -1.4106355e+00 + 3.6820000e+03 -1.0688222e+00 + 3.6824000e+03 -7.2825996e-01 + 3.6828000e+03 -4.9742276e-01 + 3.6832000e+03 -1.7675237e-01 + 3.6836000e+03 5.7968615e-02 + 3.6840000e+03 6.6413263e-01 + 3.6844000e+03 1.5629945e+00 + 3.6848000e+03 2.1093097e+00 + 3.6852000e+03 2.2165585e+00 + 3.6856000e+03 2.2780051e+00 + 3.6860000e+03 1.9585284e+00 + 3.6864000e+03 1.5829321e+00 + 3.6868000e+03 1.4212201e+00 + 3.6872000e+03 1.0746134e+00 + 3.6876000e+03 1.0554077e+00 + 3.6880000e+03 6.5425437e-01 + 3.6884000e+03 5.9762306e-01 + 3.6888000e+03 8.1633187e-01 + 3.6892000e+03 7.2375382e-01 + 3.6896000e+03 4.3229043e-01 + 3.6900000e+03 -7.6900947e-02 + 3.6904000e+03 -4.4623914e-01 + 3.6908000e+03 -3.8570888e-01 + 3.6912000e+03 -6.7209419e-01 + 3.6916000e+03 -7.2521725e-01 + 3.6920000e+03 -8.5363473e-01 + 3.6924000e+03 -9.6381083e-01 + 3.6928000e+03 -1.0234935e+00 + 3.6932000e+03 -5.5402461e-01 + 3.6936000e+03 -2.4831106e-01 + 3.6940000e+03 -6.6066304e-02 + 3.6944000e+03 1.1328749e-01 + 3.6948000e+03 2.7322649e-01 + 3.6952000e+03 8.9246024e-02 + 3.6956000e+03 -2.7738280e-01 + 3.6960000e+03 -6.8895107e-01 + 3.6964000e+03 -7.7935835e-01 + 3.6968000e+03 -1.0892719e+00 + 3.6972000e+03 -1.2002566e+00 + 3.6976000e+03 -1.3106882e+00 + 3.6980000e+03 -1.4776979e+00 + 3.6984000e+03 -1.4989633e+00 + 3.6988000e+03 -1.2859905e+00 + 3.6992000e+03 -8.3922996e-01 + 3.6996000e+03 -1.8399454e-01 + 3.7000000e+03 7.0602900e-01 + 3.7004000e+03 1.5063537e+00 + 3.7008000e+03 1.8065927e+00 + 3.7012000e+03 1.5095813e+00 + 3.7016000e+03 9.2511928e-01 + 3.7020000e+03 2.5444533e-02 + 3.7024000e+03 -5.4623583e-01 + 3.7028000e+03 -8.0036103e-01 + 3.7032000e+03 -1.2565314e+00 + 3.7036000e+03 -1.1501714e+00 + 3.7040000e+03 -9.5079367e-01 + 3.7044000e+03 -7.8030489e-01 + 3.7048000e+03 -5.6974415e-01 + 3.7052000e+03 -4.9886627e-01 + 3.7056000e+03 2.7168456e-01 + 3.7060000e+03 3.8210993e-01 + 3.7064000e+03 4.2354155e-01 + 3.7068000e+03 3.0453153e-01 + 3.7072000e+03 4.6522843e-01 + 3.7076000e+03 4.4107626e-01 + 3.7080000e+03 5.2252563e-01 + 3.7084000e+03 1.8285955e-01 + 3.7088000e+03 -3.1669301e-01 + 3.7092000e+03 -4.0034032e-01 + 3.7096000e+03 -4.0142008e-01 + 3.7100000e+03 -3.9101989e-01 + 3.7104000e+03 -1.6569299e-01 + 3.7108000e+03 2.6742119e-01 + 3.7112000e+03 3.3851820e-01 + 3.7116000e+03 1.4891259e+00 + 3.7120000e+03 2.2796430e+00 + 3.7124000e+03 2.6796896e+00 + 3.7128000e+03 2.3994836e+00 + 3.7132000e+03 1.6190748e+00 + 3.7136000e+03 7.4842818e-01 + 3.7140000e+03 -2.0244646e-01 + 3.7144000e+03 -9.9342777e-01 + 3.7148000e+03 -2.0347039e+00 + 3.7152000e+03 -2.8858692e+00 + 3.7156000e+03 -3.5469544e+00 + 3.7160000e+03 -3.7579872e+00 + 3.7164000e+03 -3.8589967e+00 + 3.7168000e+03 -3.5900297e+00 + 3.7172000e+03 -2.8185451e+00 + 3.7176000e+03 -1.8975974e+00 + 3.7180000e+03 -7.6177974e-01 + 3.7184000e+03 3.0491686e-01 + 3.7188000e+03 1.0064541e+00 + 3.7192000e+03 1.2947286e+00 + 3.7196000e+03 1.3582651e+00 + 3.7200000e+03 1.2135404e+00 + 3.7204000e+03 8.6052958e-01 + 3.7208000e+03 7.9811571e-01 + 3.7212000e+03 1.0376042e+00 + 3.7216000e+03 1.0771796e+00 + 3.7220000e+03 1.2668603e+00 + 3.7224000e+03 1.3067878e+00 + 3.7228000e+03 1.1569337e+00 + 3.7232000e+03 7.7737339e-01 + 3.7236000e+03 4.5815386e-01 + 3.7240000e+03 5.9946246e-02 + 3.7244000e+03 -1.9419073e-01 + 3.7248000e+03 -7.4044931e-01 + 3.7252000e+03 -1.2190115e+00 + 3.7256000e+03 -1.3923688e+00 + 3.7260000e+03 -1.7691946e+00 + 3.7264000e+03 -1.7042557e+00 + 3.7268000e+03 -1.3335794e+00 + 3.7272000e+03 -1.1730518e+00 + 3.7276000e+03 -1.2425830e-02 + 3.7280000e+03 6.6985039e-01 + 3.7284000e+03 1.3352034e+00 + 3.7288000e+03 1.4454438e+00 + 3.7292000e+03 1.4326224e+00 + 3.7296000e+03 1.3578358e+00 + 3.7300000e+03 1.1372697e+00 + 3.7304000e+03 6.2654506e-01 + 3.7308000e+03 3.9578043e-01 + 3.7312000e+03 1.6486763e-01 + 3.7316000e+03 -7.6175979e-02 + 3.7320000e+03 -2.4734764e-01 + 3.7324000e+03 -1.1843873e-01 + 3.7328000e+03 7.0619964e-02 + 3.7332000e+03 1.1991993e-01 + 3.7336000e+03 1.5921383e-01 + 3.7340000e+03 -1.1255318e-02 + 3.7344000e+03 -2.9615667e-01 + 3.7348000e+03 -2.9338549e-01 + 3.7352000e+03 -4.1786291e-01 + 3.7356000e+03 -6.2211991e-01 + 3.7360000e+03 -4.0358643e-01 + 3.7364000e+03 -2.4210635e-02 + 3.7368000e+03 6.6533197e-01 + 3.7372000e+03 5.6494551e-01 + 3.7376000e+03 -5.5355739e-02 + 3.7380000e+03 -4.2554165e-01 + 3.7384000e+03 -4.3065355e-01 + 3.7388000e+03 -7.6965467e-01 + 3.7392000e+03 -1.2448400e+00 + 3.7396000e+03 -1.6498098e+00 + 3.7400000e+03 -1.9588535e+00 + 3.7404000e+03 -1.9150071e+00 + 3.7408000e+03 -1.8059542e+00 + 3.7412000e+03 -1.3757254e+00 + 3.7416000e+03 -1.0229077e+00 + 3.7420000e+03 -5.8244511e-01 + 3.7424000e+03 -7.1863613e-02 + 3.7428000e+03 5.5962698e-01 + 3.7432000e+03 9.2732216e-01 + 3.7436000e+03 1.3636985e+00 + 3.7440000e+03 1.4390109e+00 + 3.7444000e+03 1.2695202e+00 + 3.7448000e+03 1.1694218e+00 + 3.7452000e+03 6.4928659e-01 + 3.7456000e+03 3.0908921e-01 + 3.7460000e+03 6.8833739e-02 + 3.7464000e+03 1.1745445e-01 + 3.7468000e+03 1.2223829e-01 + 3.7472000e+03 -2.5601854e-01 + 3.7476000e+03 -4.0839995e-01 + 3.7480000e+03 -6.5336569e-01 + 3.7484000e+03 -5.9392335e-01 + 3.7488000e+03 -4.3423823e-01 + 3.7492000e+03 -2.8418341e-01 + 3.7496000e+03 -1.7395460e-01 + 3.7500000e+03 -5.3484526e-02 + 3.7504000e+03 -2.8707379e-03 + 3.7508000e+03 1.2754215e-01 + 3.7512000e+03 2.3784694e-01 + 3.7516000e+03 7.4800672e-01 + 3.7520000e+03 1.0206150e+00 + 3.7524000e+03 1.2659342e+00 + 3.7528000e+03 1.1027075e+00 + 3.7532000e+03 7.4027409e-01 + 3.7536000e+03 -3.0916668e-02 + 3.7540000e+03 -5.4001620e-01 + 3.7544000e+03 -1.1341290e+00 + 3.7548000e+03 -1.3277161e+00 + 3.7552000e+03 -1.0789688e+00 + 3.7556000e+03 -7.3005642e-01 + 3.7560000e+03 -4.1093444e-01 + 3.7564000e+03 -3.4172614e-01 + 3.7568000e+03 6.7566480e-02 + 3.7572000e+03 -1.0295724e-01 + 3.7576000e+03 -3.7329939e-01 + 3.7580000e+03 -5.5785241e-01 + 3.7584000e+03 -9.6648587e-01 + 3.7588000e+03 -1.4057190e+00 + 3.7592000e+03 -1.4884627e+00 + 3.7596000e+03 -1.4412021e+00 + 3.7600000e+03 -1.1499187e+00 + 3.7604000e+03 -8.7843929e-01 + 3.7608000e+03 -7.6664135e-01 + 3.7612000e+03 -9.0458668e-01 + 3.7616000e+03 -9.5237253e-01 + 3.7620000e+03 -9.9071523e-01 + 3.7624000e+03 -6.7987804e-01 + 3.7628000e+03 -4.3925334e-01 + 3.7632000e+03 -3.7935852e-01 + 3.7636000e+03 -2.7366552e-01 + 3.7640000e+03 1.7208729e-01 + 3.7644000e+03 7.4104175e-01 + 3.7648000e+03 9.9023239e-01 + 3.7652000e+03 1.0479178e+00 + 3.7656000e+03 1.0260540e+00 + 3.7660000e+03 1.3950551e+00 + 3.7664000e+03 1.7736984e+00 + 3.7668000e+03 2.2074191e+00 + 3.7672000e+03 2.2596218e+00 + 3.7676000e+03 2.0365290e+00 + 3.7680000e+03 1.3204215e+00 + 3.7684000e+03 6.9433571e-01 + 3.7688000e+03 6.4942884e-02 + 3.7692000e+03 -4.2563601e-01 + 3.7696000e+03 -1.1613916e+00 + 3.7700000e+03 -1.4857345e+00 + 3.7704000e+03 -1.5033660e+00 + 3.7708000e+03 -1.4316502e+00 + 3.7712000e+03 -1.1173461e+00 + 3.7716000e+03 -3.8984094e-01 + 3.7720000e+03 -1.1783550e-01 + 3.7724000e+03 1.0047102e-01 + 3.7728000e+03 4.7124812e-01 + 3.7732000e+03 5.0185318e-01 + 3.7736000e+03 6.0191274e-01 + 3.7740000e+03 7.4170965e-01 + 3.7744000e+03 1.1912288e+00 + 3.7748000e+03 1.4404736e+00 + 3.7752000e+03 2.3394444e+00 + 3.7756000e+03 2.1680866e+00 + 3.7760000e+03 1.4064139e+00 + 3.7764000e+03 2.8458665e-01 + 3.7768000e+03 -5.2720473e-01 + 3.7772000e+03 -1.0587043e+00 + 3.7776000e+03 -1.3897908e+00 + 3.7780000e+03 -1.7804489e+00 + 3.7784000e+03 -2.2542238e+00 + 3.7788000e+03 -2.7660832e+00 + 3.7792000e+03 -3.4288621e+00 + 3.7796000e+03 -3.8587056e+00 + 3.7800000e+03 -4.1370483e+00 + 3.7804000e+03 -4.1649921e+00 + 3.7808000e+03 -3.7937548e+00 + 3.7812000e+03 -2.8706675e+00 + 3.7816000e+03 -1.3811830e+00 + 3.7820000e+03 -7.8838236e-02 + 3.7824000e+03 1.4906134e+00 + 3.7828000e+03 2.7199220e+00 + 3.7832000e+03 3.6889601e+00 + 3.7836000e+03 4.1174397e+00 + 3.7840000e+03 3.7967721e+00 + 3.7844000e+03 3.4189285e+00 + 3.7848000e+03 3.0459532e+00 + 3.7852000e+03 2.6468768e+00 + 3.7856000e+03 2.8756227e+00 + 3.7860000e+03 2.7737943e+00 + 3.7864000e+03 2.4998275e+00 + 3.7868000e+03 1.9579156e+00 + 3.7872000e+03 1.8072144e+00 + 3.7876000e+03 1.1616002e+00 + 3.7880000e+03 2.5614025e-01 + 3.7884000e+03 -3.0394481e-01 + 3.7888000e+03 -6.1479431e-01 + 3.7892000e+03 -6.8551057e-01 + 3.7896000e+03 -8.3554397e-01 + 3.7900000e+03 -8.5577242e-01 + 3.7904000e+03 -1.4962295e+00 + 3.7908000e+03 -2.2561872e+00 + 3.7912000e+03 -2.4361220e+00 + 3.7916000e+03 -1.6558235e+00 + 3.7920000e+03 -1.0552603e+00 + 3.7924000e+03 -2.4444783e-01 + 3.7928000e+03 3.4655417e-01 + 3.7932000e+03 7.7742594e-01 + 3.7936000e+03 1.0681945e+00 + 3.7940000e+03 1.1488853e+00 + 3.7944000e+03 1.0594335e+00 + 3.7948000e+03 8.5988015e-01 + 3.7952000e+03 5.4022677e-01 + 3.7956000e+03 2.9559944e-01 + 3.7960000e+03 -1.2392115e-01 + 3.7964000e+03 -9.0227708e-01 + 3.7968000e+03 -1.3655829e+00 + 3.7972000e+03 -1.8547348e+00 + 3.7976000e+03 -1.8720901e+00 + 3.7980000e+03 -1.6625178e+00 + 3.7984000e+03 -1.4127053e+00 + 3.7988000e+03 -1.2425125e+00 + 3.7992000e+03 -1.1580880e+00 + 3.7996000e+03 -1.1538174e+00 + 3.8000000e+03 -8.2563537e-01 + 3.8004000e+03 -6.0387071e-01 + 3.8008000e+03 -5.2427706e-01 + 3.8012000e+03 -1.4466566e-01 + 3.8016000e+03 4.0504804e-01 + 3.8020000e+03 7.5497819e-01 + 3.8024000e+03 1.0852383e+00 + 3.8028000e+03 1.5258001e+00 + 3.8032000e+03 1.9864594e+00 + 3.8036000e+03 2.0370858e+00 + 3.8040000e+03 1.6176379e+00 + 3.8044000e+03 1.2481744e+00 + 3.8048000e+03 8.1872448e-01 + 3.8052000e+03 4.8062768e-01 + 3.8056000e+03 5.3179101e-01 + 3.8060000e+03 7.7908152e-01 + 3.8064000e+03 7.9850549e-01 + 3.8068000e+03 2.7242671e-01 + 3.8072000e+03 -2.5129401e-01 + 3.8076000e+03 -6.4347706e-01 + 3.8080000e+03 -6.6330688e-01 + 3.8084000e+03 -6.8105491e-01 + 3.8088000e+03 -4.6280020e-01 + 3.8092000e+03 -2.2362432e-01 + 3.8096000e+03 1.3515098e-01 + 3.8100000e+03 2.7546105e-01 + 3.8104000e+03 1.1555839e+00 + 3.8108000e+03 1.7057279e+00 + 3.8112000e+03 1.7657644e+00 + 3.8116000e+03 1.3958202e+00 + 3.8120000e+03 9.1603529e-01 + 3.8124000e+03 1.4008302e-01 + 3.8128000e+03 -6.3285127e-01 + 3.8132000e+03 -1.0819227e+00 + 3.8136000e+03 -1.7010346e+00 + 3.8140000e+03 -2.0701024e+00 + 3.8144000e+03 -2.1295774e+00 + 3.8148000e+03 -1.9294518e+00 + 3.8152000e+03 -1.8897468e+00 + 3.8156000e+03 -1.7204171e+00 + 3.8160000e+03 -1.6310703e+00 + 3.8164000e+03 -1.3624753e+00 + 3.8168000e+03 -1.1150765e+00 + 3.8172000e+03 -6.8866305e-01 + 3.8176000e+03 -2.2364819e-01 + 3.8180000e+03 -5.4771523e-02 + 3.8184000e+03 -1.0032921e-02 + 3.8188000e+03 -2.2369821e-01 + 3.8192000e+03 -5.4425671e-01 + 3.8196000e+03 -6.6459176e-01 + 3.8200000e+03 -3.4477750e-01 + 3.8204000e+03 1.3520231e-01 + 3.8208000e+03 6.7526228e-01 + 3.8212000e+03 8.1531565e-01 + 3.8216000e+03 6.5532555e-01 + 3.8220000e+03 5.2518238e-01 + 3.8224000e+03 7.5494937e-01 + 3.8228000e+03 1.2347747e+00 + 3.8232000e+03 1.7246900e+00 + 3.8236000e+03 1.9846853e+00 + 3.8240000e+03 1.7846481e+00 + 3.8244000e+03 1.4943971e+00 + 3.8248000e+03 1.5642613e+00 + 3.8252000e+03 1.0537985e+00 + 3.8256000e+03 3.9318589e-01 + 3.8260000e+03 -3.7768608e-01 + 3.8264000e+03 -1.5085644e+00 + 3.8268000e+03 -2.4878818e+00 + 3.8272000e+03 -2.6637934e+00 + 3.8276000e+03 -2.3974769e+00 + 3.8280000e+03 -1.6712607e+00 + 3.8284000e+03 -1.2198523e+00 + 3.8288000e+03 -7.8911476e-01 + 3.8292000e+03 -2.4835899e-01 + 3.8296000e+03 -1.0749721e-01 + 3.8300000e+03 4.3307456e-01 + 3.8304000e+03 1.2837025e+00 + 3.8308000e+03 1.6142510e+00 + 3.8312000e+03 2.6146663e+00 + 3.8316000e+03 3.0550658e+00 + 3.8320000e+03 2.0785904e+00 + 3.8324000e+03 6.5234005e-02 + 3.8328000e+03 -1.3314548e+00 + 3.8332000e+03 -1.7155109e+00 + 3.8336000e+03 -1.1861477e+00 + 3.8340000e+03 -6.2657624e-01 + 3.8344000e+03 -5.7689918e-01 + 3.8348000e+03 -4.6719034e-01 + 3.8352000e+03 -1.1719174e-01 + 3.8356000e+03 -4.7129813e-02 + 3.8360000e+03 -9.7105685e-02 + 3.8364000e+03 -1.6718404e-01 + 3.8368000e+03 -3.2737704e-01 + 3.8372000e+03 -1.9749854e-01 + 3.8376000e+03 9.2488372e-02 + 3.8380000e+03 3.9147911e-01 + 3.8384000e+03 3.3795104e-01 + 3.8388000e+03 4.2184060e-02 + 3.8392000e+03 -5.0571030e-01 + 3.8396000e+03 -9.1362595e-01 + 3.8400000e+03 -7.2375180e-01 + 3.8404000e+03 -3.0480781e-01 + 3.8408000e+03 3.5228336e-02 + 3.8412000e+03 7.6557151e-01 + 3.8416000e+03 1.3560079e+00 + 3.8420000e+03 2.0062625e+00 + 3.8424000e+03 2.1564692e+00 + 3.8428000e+03 2.0167356e+00 + 3.8432000e+03 1.5669930e+00 + 3.8436000e+03 6.8738272e-01 + 3.8440000e+03 -2.1222428e-01 + 3.8444000e+03 9.8107894e-02 + 3.8448000e+03 6.4824751e-01 + 3.8452000e+03 1.0882633e+00 + 3.8456000e+03 1.3944011e+00 + 3.8460000e+03 1.0336792e+00 + 3.8464000e+03 8.9932693e-02 + 3.8468000e+03 -1.0433717e+00 + 3.8472000e+03 -2.0990479e+00 + 3.8476000e+03 -2.9815252e+00 + 3.8480000e+03 -3.4896870e+00 + 3.8484000e+03 -3.1813395e+00 + 3.8488000e+03 -2.2418625e+00 + 3.8492000e+03 -1.7288336e+00 + 3.8496000e+03 -1.5680669e+00 + 3.8500000e+03 -1.3582677e+00 + 3.8504000e+03 -9.3809662e-01 + 3.8508000e+03 -4.6796189e-01 + 3.8512000e+03 -9.7835486e-02 + 3.8516000e+03 1.6314339e-01 + 3.8520000e+03 5.6356074e-01 + 3.8524000e+03 7.0823302e-01 + 3.8528000e+03 8.2346720e-01 + 3.8532000e+03 8.0480034e-01 + 3.8536000e+03 1.0458989e+00 + 3.8540000e+03 1.0867057e+00 + 3.8544000e+03 1.3071875e+00 + 3.8548000e+03 1.5973695e+00 + 3.8552000e+03 1.4572474e+00 + 3.8556000e+03 1.0971276e+00 + 3.8560000e+03 8.1717838e-01 + 3.8564000e+03 6.6737847e-01 + 3.8568000e+03 2.4735795e-01 + 3.8572000e+03 -8.2786067e-02 + 3.8576000e+03 -6.2308761e-01 + 3.8580000e+03 -1.0334203e+00 + 3.8584000e+03 -1.3700333e+00 + 3.8588000e+03 -1.7224479e+00 + 3.8592000e+03 -2.3101644e+00 + 3.8596000e+03 -2.9306673e+00 + 3.8600000e+03 -3.4334079e+00 + 3.8604000e+03 -3.7528942e+00 + 3.8608000e+03 -3.1521700e+00 + 3.8612000e+03 -2.1513808e+00 + 3.8616000e+03 -1.1103909e+00 + 3.8620000e+03 1.9058304e-01 + 3.8624000e+03 1.5313049e+00 + 3.8628000e+03 2.3118209e+00 + 3.8632000e+03 3.2245590e+00 + 3.8636000e+03 4.6221449e+00 + 3.8640000e+03 5.1022012e+00 + 3.8644000e+03 4.8223362e+00 + 3.8648000e+03 4.4924905e+00 + 3.8652000e+03 4.5925340e+00 + 3.8656000e+03 3.9325883e+00 + 3.8660000e+03 2.5927089e+00 + 3.8664000e+03 1.2051544e+00 + 3.8668000e+03 1.3025618e-01 + 3.8672000e+03 -9.8427472e-01 + 3.8676000e+03 -1.7691867e+00 + 3.8680000e+03 -2.4136946e+00 + 3.8684000e+03 -3.0024355e+00 + 3.8688000e+03 -3.3654690e+00 + 3.8692000e+03 -3.5023426e+00 + 3.8696000e+03 -3.7898322e+00 + 3.8700000e+03 -3.8909088e+00 + 3.8704000e+03 -3.5816298e+00 + 3.8708000e+03 -2.8623851e+00 + 3.8712000e+03 -1.8744736e+00 + 3.8716000e+03 -4.6683183e-01 + 3.8720000e+03 7.1711933e-01 + 3.8724000e+03 1.7967134e+00 + 3.8728000e+03 2.7087157e+00 + 3.8732000e+03 2.9434126e+00 + 3.8736000e+03 2.8040970e+00 + 3.8740000e+03 2.9190483e+00 + 3.8744000e+03 2.5961661e+00 + 3.8748000e+03 2.2978289e+00 + 3.8752000e+03 1.2079005e+00 + 3.8756000e+03 -2.0193247e-01 + 3.8760000e+03 -1.8745198e+00 + 3.8764000e+03 -3.6666989e+00 + 3.8768000e+03 -4.9515771e+00 + 3.8772000e+03 -5.5322444e+00 + 3.8776000e+03 -5.3524104e+00 + 3.8780000e+03 -4.3524810e+00 + 3.8784000e+03 -3.3224546e+00 + 3.8788000e+03 -2.2618026e+00 + 3.8792000e+03 -6.3072887e-01 + 3.8796000e+03 3.8895116e-01 + 3.8800000e+03 1.1999172e+00 + 3.8804000e+03 2.0899997e+00 + 3.8808000e+03 3.0316288e+00 + 3.8812000e+03 3.8828875e+00 + 3.8816000e+03 4.8640412e+00 + 3.8820000e+03 5.4050431e+00 + 3.8824000e+03 5.4956103e+00 + 3.8828000e+03 6.1057547e+00 + 3.8832000e+03 6.0153849e+00 + 3.8836000e+03 4.1923841e+00 + 3.8840000e+03 1.8222046e+00 + 3.8844000e+03 -3.3081875e-01 + 3.8848000e+03 -1.5174452e+00 + 3.8852000e+03 -1.9081986e+00 + 3.8856000e+03 -2.3588540e+00 + 3.8860000e+03 -2.7695158e+00 + 3.8864000e+03 -2.9698897e+00 + 3.8868000e+03 -2.9764641e+00 + 3.8872000e+03 -2.8345749e+00 + 3.8876000e+03 -2.5970643e+00 + 3.8880000e+03 -2.1850748e+00 + 3.8884000e+03 -1.7978777e+00 + 3.8888000e+03 -1.6774310e+00 + 3.8892000e+03 -1.5670465e+00 + 3.8896000e+03 -3.9672719e-01 + 3.8900000e+03 6.2341682e-01 + 3.8904000e+03 1.2034642e+00 + 3.8908000e+03 1.7534038e+00 + 3.8912000e+03 2.0732318e+00 + 3.8916000e+03 2.3027828e+00 + 3.8920000e+03 2.2122012e+00 + 3.8924000e+03 1.8514061e+00 + 3.8928000e+03 1.2605281e+00 + 3.8932000e+03 6.5971925e-01 + 3.8936000e+03 -1.5103225e-01 + 3.8940000e+03 -1.1117592e+00 + 3.8944000e+03 -1.9624858e+00 + 3.8948000e+03 -2.4929644e+00 + 3.8952000e+03 -2.7732004e+00 + 3.8956000e+03 -3.1630624e+00 + 3.8960000e+03 -3.4097245e+00 + 3.8964000e+03 -3.5575211e+00 + 3.8968000e+03 -3.5136410e+00 + 3.8972000e+03 -3.1817904e+00 + 3.8976000e+03 -2.5793933e+00 + 3.8980000e+03 -1.4389207e+00 + 3.8984000e+03 -3.4861377e-01 + 3.8988000e+03 5.4164957e-01 + 3.8992000e+03 7.3189665e-01 + 3.8996000e+03 1.0721464e+00 + 3.9000000e+03 1.5323168e+00 + 3.9004000e+03 2.0523210e+00 + 3.9008000e+03 2.7821716e+00 + 3.9012000e+03 3.4917018e+00 + 3.9016000e+03 3.9911616e+00 + 3.9020000e+03 4.3207666e+00 + 3.9024000e+03 4.6805787e+00 + 3.9028000e+03 4.0503689e+00 + 3.9032000e+03 3.0100965e+00 + 3.9036000e+03 1.7262813e+00 + 3.9040000e+03 5.2716140e-01 + 3.9044000e+03 -5.3116878e-01 + 3.9048000e+03 -1.1819400e+00 + 3.9052000e+03 -1.5627671e+00 + 3.9056000e+03 -1.9835365e+00 + 3.9060000e+03 -2.1931453e+00 + 3.9064000e+03 -2.0000878e+00 + 3.9068000e+03 -1.9975213e+00 + 3.9072000e+03 -2.0698663e+00 + 3.9076000e+03 -1.7470885e+00 + 3.9080000e+03 -1.3500462e+00 + 3.9084000e+03 -7.5815748e-01 + 3.9088000e+03 -2.8621582e-01 + 3.9092000e+03 -1.7513027e-01 + 3.9096000e+03 -1.4558051e-02 + 3.9100000e+03 7.7507050e-01 + 3.9104000e+03 1.5956284e+00 + 3.9108000e+03 2.2740216e+00 + 3.9112000e+03 2.0850918e+00 + 3.9116000e+03 1.4361154e+00 + 3.9120000e+03 1.4776390e-01 + 3.9124000e+03 -1.0620249e+00 + 3.9128000e+03 -2.1898438e+00 + 3.9132000e+03 -2.7950822e+00 + 3.9136000e+03 -3.1182865e+00 + 3.9140000e+03 -2.8339365e+00 + 3.9144000e+03 -2.5266004e+00 + 3.9148000e+03 -2.2164680e+00 + 3.9152000e+03 -1.7266207e+00 + 3.9156000e+03 -1.3717937e+00 + 3.9160000e+03 -8.9000222e-01 + 3.9164000e+03 -4.9059811e-01 + 3.9168000e+03 9.4177015e-02 + 3.9172000e+03 7.6190828e-01 + 3.9176000e+03 1.2653586e+00 + 3.9180000e+03 1.5322965e+00 + 3.9184000e+03 1.6344580e+00 + 3.9188000e+03 1.3961406e+00 + 3.9192000e+03 1.0694955e+00 + 3.9196000e+03 8.5943625e-01 + 3.9200000e+03 6.0901535e-01 + 3.9204000e+03 6.7842433e-01 + 3.9208000e+03 7.6766866e-01 + 3.9212000e+03 7.1699968e-01 + 3.9216000e+03 4.1457328e-01 + 3.9220000e+03 4.3891769e-01 + 3.9224000e+03 3.4631285e-01 + 3.9228000e+03 1.9802633e-01 + 3.9232000e+03 1.8449609e-02 + 3.9236000e+03 9.4521010e-02 + 3.9240000e+03 7.7421997e-01 + 3.9244000e+03 1.4742563e+00 + 3.9248000e+03 1.9924488e+00 + 3.9252000e+03 2.3530687e+00 + 3.9256000e+03 2.2242793e+00 + 3.9260000e+03 1.7036672e+00 + 3.9264000e+03 7.3362654e-01 + 3.9268000e+03 -3.4643506e-01 + 3.9272000e+03 -1.1864855e+00 + 3.9276000e+03 -1.6664412e+00 + 3.9280000e+03 -2.1163046e+00 + 3.9284000e+03 -2.3960822e+00 + 3.9288000e+03 -2.6559279e+00 + 3.9292000e+03 -2.7859360e+00 + 3.9296000e+03 -2.7160910e+00 + 3.9300000e+03 -2.7662641e+00 + 3.9304000e+03 -3.0764337e+00 + 3.9308000e+03 -3.3365145e+00 + 3.9312000e+03 -3.1967834e+00 + 3.9316000e+03 -2.8071668e+00 + 3.9320000e+03 -2.2675373e+00 + 3.9324000e+03 -1.3814308e+00 + 3.9328000e+03 -4.5524284e-01 + 3.9332000e+03 4.6084364e-01 + 3.9336000e+03 9.4400235e-01 + 3.9340000e+03 1.3332125e+00 + 3.9344000e+03 2.0747608e+00 + 3.9348000e+03 2.3143464e+00 + 3.9352000e+03 2.1308740e+00 + 3.9356000e+03 1.9010290e+00 + 3.9360000e+03 1.7613009e+00 + 3.9364000e+03 9.9625329e-01 + 3.9368000e+03 4.2583684e-01 + 3.9372000e+03 3.9989833e-01 + 3.9376000e+03 2.1144052e-01 + 3.9380000e+03 2.6566602e-01 + 3.9384000e+03 4.7453004e-01 + 3.9388000e+03 1.7886694e-01 + 3.9392000e+03 -4.7996586e-02 + 3.9396000e+03 2.1171109e-01 + 3.9400000e+03 3.0149531e-01 + 3.9404000e+03 1.2643317e-01 + 3.9408000e+03 3.6077258e-02 + 3.9412000e+03 -1.5023950e-01 + 3.9416000e+03 -2.0723005e-01 + 3.9420000e+03 -3.5977640e-01 + 3.9424000e+03 -3.1981661e-01 + 3.9428000e+03 1.8025859e-01 + 3.9432000e+03 5.8071301e-01 + 3.9436000e+03 6.8129026e-01 + 3.9440000e+03 6.4212161e-01 + 3.9444000e+03 1.9314206e-01 + 3.9448000e+03 -2.3614362e-01 + 3.9452000e+03 -5.0573307e-01 + 3.9456000e+03 -6.1553415e-01 + 3.9460000e+03 -6.6542471e-01 + 3.9464000e+03 -1.1855796e+00 + 3.9468000e+03 -1.6857842e+00 + 3.9472000e+03 -1.3859293e+00 + 3.9476000e+03 -1.0061437e+00 + 3.9480000e+03 -7.0622102e-01 + 3.9484000e+03 -5.7631589e-01 + 3.9488000e+03 -6.6649739e-01 + 3.9492000e+03 -7.7684394e-01 + 3.9496000e+03 -9.0712979e-01 + 3.9500000e+03 -9.5742235e-01 + 3.9504000e+03 -9.8773806e-01 + 3.9508000e+03 -9.0813084e-01 + 3.9512000e+03 -6.3845671e-01 + 3.9516000e+03 -4.5875680e-01 + 3.9520000e+03 -7.7920630e-01 + 3.9524000e+03 -1.3304557e+00 + 3.9528000e+03 -1.4462556e+00 + 3.9532000e+03 -1.3430950e+00 + 3.9536000e+03 -9.9092850e-01 + 3.9540000e+03 -4.0165269e-01 + 3.9544000e+03 1.0753440e-01 + 3.9548000e+03 6.1681598e-01 + 3.9552000e+03 7.4620533e-01 + 3.9556000e+03 9.9578661e-01 + 3.9560000e+03 1.1455728e+00 + 3.9564000e+03 1.0555300e+00 + 3.9568000e+03 5.4568326e-01 + 3.9572000e+03 4.8589565e-01 + 3.9576000e+03 9.1607937e-01 + 3.9580000e+03 1.5363389e+00 + 3.9584000e+03 2.3973105e+00 + 3.9588000e+03 3.4459797e+00 + 3.9592000e+03 3.8661143e+00 + 3.9596000e+03 3.8597634e+00 + 3.9600000e+03 3.3515182e+00 + 3.9604000e+03 2.2569106e+00 + 3.9608000e+03 8.5779306e-01 + 3.9612000e+03 -2.2414218e-01 + 3.9616000e+03 -1.2760526e+00 + 3.9620000e+03 -1.8341399e+00 + 3.9624000e+03 -2.4238744e+00 + 3.9628000e+03 -2.7600110e+00 + 3.9632000e+03 -2.4134391e+00 + 3.9636000e+03 -1.9811849e+00 + 3.9640000e+03 -1.5503381e+00 + 3.9644000e+03 -1.4073854e+00 + 3.9648000e+03 -1.4012469e+00 + 3.9652000e+03 -1.4347288e+00 + 3.9656000e+03 -1.7074371e+00 + 3.9660000e+03 -1.5553969e+00 + 3.9664000e+03 -1.2257919e+00 + 3.9668000e+03 -7.5618756e-01 + 3.9672000e+03 -6.3671441e-01 + 3.9676000e+03 2.1274903e-01 + 3.9680000e+03 3.0238682e-01 + 3.9684000e+03 5.2223729e-01 + 3.9688000e+03 1.6022510e+00 + 3.9692000e+03 2.0524657e+00 + 3.9696000e+03 2.3026993e+00 + 3.9700000e+03 2.2630431e+00 + 3.9704000e+03 2.3234231e+00 + 3.9708000e+03 2.2582827e+00 + 3.9712000e+03 1.6474341e+00 + 3.9716000e+03 9.7415420e-01 + 3.9720000e+03 8.8129975e-02 + 3.9724000e+03 -1.0722090e+00 + 3.9728000e+03 -1.9390163e+00 + 3.9732000e+03 -2.3400808e+00 + 3.9736000e+03 -2.3795327e+00 + 3.9740000e+03 -2.5512808e+00 + 3.9744000e+03 -2.7062910e+00 + 3.9748000e+03 -2.1809028e+00 + 3.9752000e+03 -1.2681201e+00 + 3.9756000e+03 -5.6526322e-01 + 3.9760000e+03 -7.0312339e-02 + 3.9764000e+03 2.3327207e-01 + 3.9768000e+03 3.1774865e-01 + 3.9772000e+03 8.9692099e-01 + 3.9776000e+03 1.4044223e+00 + 3.9780000e+03 2.1394518e+00 + 3.9784000e+03 2.3347356e+00 + 3.9788000e+03 2.3789846e+00 + 3.9792000e+03 2.0792572e+00 + 3.9796000e+03 1.8994748e+00 + 3.9800000e+03 8.6968124e-01 + 3.9804000e+03 6.1993071e-01 + 3.9808000e+03 4.1761482e-01 + 3.9812000e+03 3.3037914e-01 + 3.9816000e+03 5.1322427e-01 + 3.9820000e+03 9.6198558e-01 + 3.9824000e+03 1.0443075e+00 + 3.9828000e+03 4.0986391e-01 + 3.9832000e+03 -3.8821571e-01 + 3.9836000e+03 -9.1584911e-01 + 3.9840000e+03 -1.4857050e+00 + 3.9844000e+03 -1.7567915e+00 + 3.9848000e+03 -1.4752829e+00 + 3.9852000e+03 -1.2556692e+00 + 3.9856000e+03 -1.0760911e+00 + 3.9860000e+03 -6.9703740e-01 + 3.9864000e+03 -4.4756795e-01 + 3.9868000e+03 3.4614715e-03 + 3.9872000e+03 4.8609972e-01 + 3.9876000e+03 8.0076029e-01 + 3.9880000e+03 7.5507367e-01 + 3.9884000e+03 7.3926064e-01 + 3.9888000e+03 7.0963137e-01 + 3.9892000e+03 4.5007684e-01 + 3.9896000e+03 2.2046556e-01 + 3.9900000e+03 5.0852137e-02 + 3.9904000e+03 -1.6885957e-01 + 3.9908000e+03 -4.0857748e-01 + 3.9912000e+03 -8.6842630e-01 + 3.9916000e+03 -9.2819376e-01 + 3.9920000e+03 -8.2368024e-01 + 3.9924000e+03 -6.6364880e-01 + 3.9928000e+03 -4.2644550e-01 + 3.9932000e+03 -2.0380626e-01 + 3.9936000e+03 -2.4582200e-01 + 3.9940000e+03 -5.9613044e-03 + 3.9944000e+03 2.9608337e-01 + 3.9948000e+03 1.0027804e+00 + 3.9952000e+03 1.2136857e+00 + 3.9956000e+03 1.3556366e+00 + 3.9960000e+03 9.1695916e-01 + 3.9964000e+03 4.4567954e-01 + 3.9968000e+03 3.1445280e-01 + 3.9972000e+03 1.7361795e-01 + 3.9976000e+03 1.0312849e-01 + 3.9980000e+03 1.4297831e-01 + 3.9984000e+03 7.3328447e-02 + 3.9988000e+03 -1.2596712e-01 + 3.9992000e+03 -2.9492582e-01 + 3.9996000e+03 -6.7445465e-01 + 4.0000000e+03 -1.0932937e+00 + 4.0004000e+03 -1.3621499e+00 + 4.0008000e+03 -1.5608929e+00 + 4.0012000e+03 -1.5995872e+00 + 4.0016000e+03 -1.1982365e+00 + 4.0020000e+03 -8.7693712e-01 + 4.0024000e+03 -6.7112517e-01 + 4.0028000e+03 -1.3588998e-01 + 4.0032000e+03 3.0459186e-01 + 4.0036000e+03 2.9562741e-01 + 4.0040000e+03 2.4564943e-01 + 4.0044000e+03 2.0530972e-01 + 4.0048000e+03 2.4468643e-01 + 4.0052000e+03 5.1383492e-01 + 4.0056000e+03 6.1294834e-01 + 4.0060000e+03 5.2209208e-01 + 4.0064000e+03 4.2134608e-01 + 4.0068000e+03 7.7503790e-01 + 4.0072000e+03 9.6615983e-01 + 4.0076000e+03 8.9386738e-01 + 4.0080000e+03 8.4348214e-01 + 4.0084000e+03 4.9680911e-01 + 4.0088000e+03 -1.3558728e-01 + 4.0092000e+03 -4.7756630e-01 + 4.0096000e+03 -8.6571967e-01 + 4.0100000e+03 -5.8976147e-01 + 4.0104000e+03 -5.2974340e-01 + 4.0108000e+03 -6.0144213e-01 + 4.0112000e+03 -9.9320072e-02 + 4.0116000e+03 5.0120708e-01 + 4.0120000e+03 8.7625504e-01 + 4.0124000e+03 9.7947642e-01 + 4.0128000e+03 9.8094473e-01 + 4.0132000e+03 8.6111685e-01 + 4.0136000e+03 6.3105744e-01 + 4.0140000e+03 5.7074253e-01 + 4.0144000e+03 -5.3987992e-01 + 4.0148000e+03 -5.9082664e-01 + 4.0152000e+03 -6.6819706e-01 + 4.0156000e+03 -4.2526506e-01 + 4.0160000e+03 1.1804728e-01 + 4.0164000e+03 3.5489192e-01 + 4.0168000e+03 2.5634974e-01 + 4.0172000e+03 3.5633069e-01 + 4.0176000e+03 2.6155621e-01 + 4.0180000e+03 2.1167271e-01 + 4.0184000e+03 1.3204329e-01 + 4.0188000e+03 -2.0730868e-01 + 4.0192000e+03 -5.5650175e-01 + 4.0196000e+03 -7.0572623e-01 + 4.0200000e+03 -8.5475199e-01 + 4.0204000e+03 -9.3223801e-01 + 4.0208000e+03 -8.2586591e-01 + 4.0212000e+03 -8.3050364e-01 + 4.0216000e+03 -7.3230293e-01 + 4.0220000e+03 -5.3921733e-01 + 4.0224000e+03 -4.5804400e-01 + 4.0228000e+03 4.3281778e-01 + 4.0232000e+03 7.1341705e-01 + 4.0236000e+03 4.8359283e-01 + 4.0240000e+03 -3.1644828e-01 + 4.0244000e+03 -4.4669846e-01 + 4.0248000e+03 -3.7729426e-01 + 4.0252000e+03 -2.5801794e-01 + 4.0256000e+03 -6.9699983e-02 + 4.0260000e+03 2.7880975e-01 + 4.0264000e+03 6.5732964e-01 + 4.0268000e+03 4.7594415e-01 + 4.0272000e+03 2.8466779e-01 + 4.0276000e+03 7.3715619e-02 + 4.0280000e+03 2.3179273e-02 + 4.0284000e+03 1.8265465e-01 + 4.0288000e+03 5.3215156e-01 + 4.0292000e+03 9.5159255e-01 + 4.0296000e+03 1.0411437e+00 + 4.0300000e+03 8.2205624e-01 + 4.0304000e+03 1.0823931e+00 + 4.0308000e+03 9.2744131e-01 + 4.0312000e+03 2.2484534e-01 + 4.0316000e+03 -5.4494324e-01 + 4.0320000e+03 -1.0593914e+00 + 4.0324000e+03 -1.2099661e+00 + 4.0328000e+03 -1.4169577e+00 + 4.0332000e+03 -1.4950766e+00 + 4.0336000e+03 -1.4343315e+00 + 4.0340000e+03 -1.4606058e+00 + 4.0344000e+03 -1.2292942e+00 + 4.0348000e+03 -7.5396740e-01 + 4.0352000e+03 -2.9882464e-01 + 4.0356000e+03 2.6659966e-01 + 4.0360000e+03 5.9226508e-01 + 4.0364000e+03 4.0045245e-01 + 4.0368000e+03 5.5033491e-01 + 4.0372000e+03 5.5423527e-01 + 4.0376000e+03 1.5623661e-01 + 4.0380000e+03 3.5252201e-01 + 4.0384000e+03 1.1204397e-01 + 4.0388000e+03 -8.8160162e-02 + 4.0392000e+03 -2.5769639e-01 + 4.0396000e+03 -5.1768452e-01 + 4.0400000e+03 -8.5718571e-01 + 4.0404000e+03 -1.0467164e+00 + 4.0408000e+03 -1.2059826e+00 + 4.0412000e+03 -1.4553125e+00 + 4.0416000e+03 -8.5457947e-01 + 4.0420000e+03 -1.1397983e-01 + 4.0424000e+03 8.4664669e-01 + 4.0428000e+03 1.1873530e+00 + 4.0432000e+03 2.0179638e+00 + 4.0436000e+03 1.6582548e+00 + 4.0440000e+03 1.4382523e+00 + 4.0444000e+03 1.1481131e+00 + 4.0448000e+03 1.0478141e+00 + 4.0452000e+03 2.9726076e-01 + 4.0456000e+03 -1.9415106e-01 + 4.0460000e+03 -3.5146426e-01 + 4.0464000e+03 -4.2471729e-01 + 4.0468000e+03 -6.0079562e-02 + 4.0472000e+03 -1.5035700e-01 + 4.0476000e+03 -2.9253516e-01 + 4.0480000e+03 -7.9513214e-02 + 4.0484000e+03 -1.1027931e-01 + 4.0488000e+03 1.4472300e-02 + 4.0492000e+03 -2.7428485e-01 + 4.0496000e+03 -4.2578611e-01 + 4.0500000e+03 -4.8348878e-01 + 4.0504000e+03 -2.6218878e-01 + 4.0508000e+03 3.7759456e-02 + 4.0512000e+03 3.3915489e-01 + 4.0516000e+03 8.6525663e-02 + 4.0520000e+03 -4.4582005e-02 + 4.0524000e+03 1.9180371e-01 + 4.0528000e+03 5.9264948e-01 + 4.0532000e+03 8.2599191e-01 + 4.0536000e+03 1.2919545e+00 + 4.0540000e+03 1.3861761e+00 + 4.0544000e+03 1.2021364e+00 + 4.0548000e+03 7.9131020e-01 + 4.0552000e+03 3.3611309e-01 + 4.0556000e+03 -3.9001792e-01 + 4.0560000e+03 -1.1508660e+00 + 4.0564000e+03 -2.1042958e+00 + 4.0568000e+03 -2.5637950e+00 + 4.0572000e+03 -3.1402807e+00 + 4.0576000e+03 -3.6354372e+00 + 4.0580000e+03 -3.7267980e+00 + 4.0584000e+03 -3.5971838e+00 + 4.0588000e+03 -2.8833747e+00 + 4.0592000e+03 -1.8816368e+00 + 4.0596000e+03 -1.0924537e+00 + 4.0600000e+03 -9.8273341e-02 + 4.0604000e+03 8.1023067e-01 + 4.0608000e+03 1.6674291e+00 + 4.0612000e+03 2.0317741e+00 + 4.0616000e+03 2.0646837e+00 + 4.0620000e+03 2.0475594e+00 + 4.0624000e+03 2.0467516e+00 + 4.0628000e+03 1.9072835e+00 + 4.0632000e+03 1.6977373e+00 + 4.0636000e+03 1.6181023e+00 + 4.0640000e+03 1.7983184e+00 + 4.0644000e+03 1.8784443e+00 + 4.0648000e+03 1.9209441e+00 + 4.0652000e+03 1.7252026e+00 + 4.0656000e+03 9.6388751e-01 + 4.0660000e+03 8.6845899e-02 + 4.0664000e+03 -9.6213609e-01 + 4.0668000e+03 -1.4142767e+00 + 4.0672000e+03 -1.6115629e+00 + 4.0676000e+03 -1.5667546e+00 + 4.0680000e+03 -1.1574890e+00 + 4.0684000e+03 -5.3797716e-01 + 4.0688000e+03 -4.7837127e-01 + 4.0692000e+03 -7.0855204e-01 + 4.0696000e+03 -6.3828505e-01 + 4.0700000e+03 -4.1781338e-01 + 4.0704000e+03 -1.4717215e-01 + 4.0708000e+03 2.3699153e-02 + 4.0712000e+03 1.1758056e-02 + 4.0716000e+03 4.8274743e-02 + 4.0720000e+03 2.6618322e-01 + 4.0724000e+03 4.6639680e-01 + 4.0728000e+03 3.9770600e-01 + 4.0732000e+03 9.9348815e-02 + 4.0736000e+03 -1.3997148e-01 + 4.0740000e+03 -2.5921446e-01 + 4.0744000e+03 -3.4940210e-01 + 4.0748000e+03 -4.0952242e-01 + 4.0752000e+03 -2.2982366e-01 + 4.0756000e+03 -2.0054803e-01 + 4.0760000e+03 -3.3844172e-01 + 4.0764000e+03 -4.8193315e-01 + 4.0768000e+03 -4.8815982e-01 + 4.0772000e+03 -6.2286844e-01 + 4.0776000e+03 -1.1091878e+00 + 4.0780000e+03 -1.6721688e+00 + 4.0784000e+03 -1.5920926e+00 + 4.0788000e+03 -1.4592284e+00 + 4.0792000e+03 -1.1287151e+00 + 4.0796000e+03 -8.9793920e-01 + 4.0800000e+03 -8.5687966e-01 + 4.0804000e+03 -8.0576535e-01 + 4.0808000e+03 -6.1478803e-01 + 4.0812000e+03 -4.1363222e-01 + 4.0816000e+03 2.1116011e-01 + 4.0820000e+03 7.8085839e-01 + 4.0824000e+03 1.1709848e+00 + 4.0828000e+03 1.3732653e+00 + 4.0832000e+03 1.8128823e+00 + 4.0836000e+03 2.1170554e+00 + 4.0840000e+03 2.0200966e+00 + 4.0844000e+03 2.0700714e+00 + 4.0848000e+03 1.8169673e+00 + 4.0852000e+03 1.5104374e+00 + 4.0856000e+03 1.1698534e+00 + 4.0860000e+03 8.8924446e-01 + 4.0864000e+03 6.5864194e-01 + 4.0868000e+03 4.1809515e-01 + 4.0872000e+03 4.6751973e-01 + 4.0876000e+03 4.9702537e-01 + 4.0880000e+03 4.2645281e-01 + 4.0884000e+03 -1.1415799e-01 + 4.0888000e+03 -6.1489895e-01 + 4.0892000e+03 -8.2904120e-01 + 4.0896000e+03 -4.4191781e-01 + 4.0900000e+03 -2.7254741e-01 + 4.0904000e+03 -3.4531032e-01 + 4.0908000e+03 -7.3593785e-01 + 4.0912000e+03 -1.5154925e+00 + 4.0916000e+03 -1.4048387e+00 + 4.0920000e+03 -1.0240108e+00 + 4.0924000e+03 -6.4306756e-01 + 4.0928000e+03 -3.4205500e-01 + 4.0932000e+03 2.8884291e-01 + 4.0936000e+03 5.3941057e-01 + 4.0940000e+03 6.0974514e-01 + 4.0944000e+03 8.3995713e-01 + 4.0948000e+03 6.7020833e-01 + 4.0952000e+03 5.7130523e-01 + 4.0956000e+03 6.1434742e-01 + 4.0960000e+03 9.1244132e-01 + 4.0964000e+03 9.0795376e-01 + 4.0968000e+03 5.7297335e-01 + 4.0972000e+03 1.3012374e-01 + 4.0976000e+03 -5.0143195e-01 + 4.0980000e+03 -9.8200010e-01 + 4.0984000e+03 -1.4464474e+00 + 4.0988000e+03 -1.7744478e+00 + 4.0992000e+03 -1.9908507e+00 + 4.0996000e+03 -2.0786442e+00 + 4.1000000e+03 -1.7676454e+00 + 4.1004000e+03 -1.3787806e+00 + 4.1008000e+03 -5.6215601e-01 + 4.1012000e+03 4.3875799e-01 + 4.1016000e+03 1.1705433e+00 + 4.1020000e+03 1.7058632e+00 + 4.1024000e+03 1.9379318e+00 + 4.1028000e+03 1.8364953e+00 + 4.1032000e+03 1.7531014e+00 + 4.1036000e+03 1.7631838e+00 + 4.1040000e+03 1.6528923e+00 + 4.1044000e+03 1.5077564e+00 + 4.1048000e+03 1.6586909e+00 + 4.1052000e+03 1.6239914e+00 + 4.1056000e+03 1.2272750e+00 + 4.1060000e+03 5.6596768e-01 + 4.1064000e+03 4.8024921e-02 + 4.1068000e+03 -4.5310835e-01 + 4.1072000e+03 -8.8198006e-01 + 4.1076000e+03 -1.1870784e+00 + 4.1080000e+03 -1.3546519e+00 + 4.1084000e+03 -1.6693859e+00 + 4.1088000e+03 -1.5701037e+00 + 4.1092000e+03 -8.9103232e-01 + 4.1096000e+03 -3.3593508e-01 + 4.1100000e+03 -2.5043812e-01 + 4.1104000e+03 -1.7523934e-02 + 4.1108000e+03 1.0103585e-01 + 4.1112000e+03 8.3002307e-02 + 4.1116000e+03 -2.4752127e-01 + 4.1120000e+03 -1.4782839e-01 + 4.1124000e+03 -1.3125961e-01 + 4.1128000e+03 -4.2181958e-01 + 4.1132000e+03 -7.7466442e-01 + 4.1136000e+03 -1.1515928e+00 + 4.1140000e+03 -1.5470001e+00 + 4.1144000e+03 -1.7080941e+00 + 4.1148000e+03 -1.4489847e+00 + 4.1152000e+03 -1.2316217e+00 + 4.1156000e+03 -1.0710175e+00 + 4.1160000e+03 -1.0005985e+00 + 4.1164000e+03 -1.0403802e+00 + 4.1168000e+03 -1.1201591e+00 + 4.1172000e+03 -1.0401853e+00 + 4.1176000e+03 -8.0018576e-01 + 4.1180000e+03 -3.8034114e-01 + 4.1184000e+03 4.9456104e-02 + 4.1188000e+03 1.0909340e-01 + 4.1192000e+03 7.9870218e-01 + 4.1196000e+03 9.9828856e-01 + 4.1200000e+03 1.0777985e+00 + 4.1204000e+03 9.1736588e-01 + 4.1208000e+03 1.1469873e+00 + 4.1212000e+03 1.4138592e+00 + 4.1216000e+03 1.6408975e+00 + 4.1220000e+03 1.7774392e+00 + 4.1224000e+03 1.8489765e+00 + 4.1228000e+03 1.6380453e+00 + 4.1232000e+03 1.2273809e+00 + 4.1236000e+03 7.4305910e-01 + 4.1240000e+03 4.3820405e-01 + 4.1244000e+03 4.8460641e-01 + 4.1248000e+03 3.9663460e-01 + 4.1252000e+03 6.4621303e-01 + 4.1256000e+03 9.9601521e-01 + 4.1260000e+03 1.5659164e+00 + 4.1264000e+03 2.2088551e+00 + 4.1268000e+03 2.7659868e+00 + 4.1272000e+03 1.9707644e+00 + 4.1276000e+03 9.1927180e-01 + 4.1280000e+03 -2.7958038e-01 + 4.1284000e+03 -8.7846604e-01 + 4.1288000e+03 -1.4774414e+00 + 4.1292000e+03 -1.6764964e+00 + 4.1296000e+03 -1.2756057e+00 + 4.1300000e+03 -1.3248973e+00 + 4.1304000e+03 -1.5343531e+00 + 4.1308000e+03 -1.5788191e+00 + 4.1312000e+03 -1.3843987e+00 + 4.1316000e+03 -1.2041445e+00 + 4.1320000e+03 -1.0133928e+00 + 4.1324000e+03 -6.0448040e-01 + 4.1328000e+03 2.9461762e-01 + 4.1332000e+03 9.3737941e-02 + 4.1336000e+03 -3.3721455e-01 + 4.1340000e+03 -7.9814077e-01 + 4.1344000e+03 -9.6894562e-01 + 4.1348000e+03 -1.1497385e+00 + 4.1352000e+03 -1.2803866e+00 + 4.1356000e+03 -1.3408112e+00 + 4.1360000e+03 -1.2508999e+00 + 4.1364000e+03 -1.3908743e+00 + 4.1368000e+03 -1.4709203e+00 + 4.1372000e+03 -1.6010536e+00 + 4.1376000e+03 -1.4711633e+00 + 4.1380000e+03 -1.3211917e+00 + 4.1384000e+03 -1.1411282e+00 + 4.1388000e+03 -8.4102873e-01 + 4.1392000e+03 -3.8081445e-01 + 4.1396000e+03 5.2701281e-01 + 4.1400000e+03 1.4497800e+00 + 4.1404000e+03 2.2101548e+00 + 4.1408000e+03 2.3301666e+00 + 4.1412000e+03 1.7899492e+00 + 4.1416000e+03 1.2795544e+00 + 4.1420000e+03 7.8916263e-01 + 4.1424000e+03 2.6596108e-01 + 4.1428000e+03 -7.3360416e-02 + 4.1432000e+03 -5.6901521e-01 + 4.1436000e+03 -8.6551173e-01 + 4.1440000e+03 -8.0273420e-01 + 4.1444000e+03 -5.1566477e-01 + 4.1448000e+03 -3.1961458e-01 + 4.1452000e+03 -6.3145829e-02 + 4.1456000e+03 1.7798979e-01 + 4.1460000e+03 -1.7325120e-02 + 4.1464000e+03 -2.8411727e-01 + 4.1468000e+03 -5.0394092e-01 + 4.1472000e+03 -6.0334827e-01 + 4.1476000e+03 -6.3244605e-01 + 4.1480000e+03 -4.5124907e-01 + 4.1484000e+03 -3.8967126e-01 + 4.1488000e+03 -4.4800509e-01 + 4.1492000e+03 -1.7933475e-01 + 4.1496000e+03 4.4666940e-01 + 4.1500000e+03 7.5549268e-01 + 4.1504000e+03 8.6954834e-01 + 4.1508000e+03 1.6665459e+00 + 4.1512000e+03 2.0678656e+00 + 4.1516000e+03 1.6719848e+00 + 4.1520000e+03 1.1444077e+00 + 4.1524000e+03 4.7002383e-01 + 4.1528000e+03 -4.8991972e-01 + 4.1532000e+03 -1.1099954e+00 + 4.1536000e+03 -1.3571279e+00 + 4.1540000e+03 -1.4624927e+00 + 4.1544000e+03 -1.2164205e+00 + 4.1548000e+03 -1.1728565e+00 + 4.1552000e+03 -1.0541264e+00 + 4.1556000e+03 -7.4530382e-01 + 4.1560000e+03 -3.1631647e-01 + 4.1564000e+03 5.2960061e-02 + 4.1568000e+03 6.9246991e-01 + 4.1572000e+03 1.1111713e+00 + 4.1576000e+03 9.8844296e-01 + 4.1580000e+03 7.7369486e-01 + 4.1584000e+03 5.4810885e-01 + 4.1588000e+03 3.0354979e-01 + 4.1592000e+03 3.8006502e-01 + 4.1596000e+03 5.3916827e-01 + 4.1600000e+03 5.4729840e-01 + 4.1604000e+03 7.1711692e-01 + 4.1608000e+03 5.1608184e-01 + 4.1612000e+03 -1.4312635e-01 + 4.1616000e+03 -7.1050375e-01 + 4.1620000e+03 -9.6780782e-01 + 4.1624000e+03 -1.2884522e+00 + 4.1628000e+03 -1.1949397e+00 + 4.1632000e+03 -9.6229164e-01 + 4.1636000e+03 -7.9256833e-01 + 4.1640000e+03 -8.5475943e-01 + 4.1644000e+03 -7.9287841e-01 + 4.1648000e+03 -8.4550388e-01 + 4.1652000e+03 -7.5566182e-01 + 4.1656000e+03 -6.9625816e-01 + 4.1660000e+03 -3.1607406e-01 + 4.1664000e+03 1.7867165e-01 + 4.1668000e+03 9.2161480e-01 + 4.1672000e+03 2.0031264e+00 + 4.1676000e+03 3.1022935e+00 + 4.1680000e+03 3.7537596e+00 + 4.1684000e+03 3.7955378e+00 + 4.1688000e+03 3.2537049e+00 + 4.1692000e+03 1.9386519e+00 + 4.1696000e+03 3.8022250e-01 + 4.1700000e+03 -7.1528330e-01 + 4.1704000e+03 -1.5123344e+00 + 4.1708000e+03 -1.6618646e+00 + 4.1712000e+03 -1.9175042e+00 + 4.1716000e+03 -1.8358102e+00 + 4.1720000e+03 -1.8579840e+00 + 4.1724000e+03 -1.8508281e+00 + 4.1728000e+03 -1.5647466e+00 + 4.1732000e+03 -1.4160263e+00 + 4.1736000e+03 -1.1364964e+00 + 4.1740000e+03 -9.4385490e-01 + 4.1744000e+03 -6.4311715e-01 + 4.1748000e+03 -1.3162282e-01 + 4.1752000e+03 6.0168254e-01 + 4.1756000e+03 1.3404978e+00 + 4.1760000e+03 1.7292931e+00 + 4.1764000e+03 1.9282386e+00 + 4.1768000e+03 1.7061560e+00 + 4.1772000e+03 7.6154562e-01 + 4.1776000e+03 -1.2531643e-01 + 4.1780000e+03 -5.6006437e-01 + 4.1784000e+03 -9.4450035e-01 + 4.1788000e+03 -1.1885370e+00 + 4.1792000e+03 -1.3010395e+00 + 4.1796000e+03 -1.2802047e+00 + 4.1800000e+03 -7.8938307e-01 + 4.1804000e+03 -6.2860243e-01 + 4.1808000e+03 -1.3783425e-01 + 4.1812000e+03 1.7729950e-01 + 4.1816000e+03 6.6019678e-01 + 4.1820000e+03 7.9716030e-01 + 4.1824000e+03 1.0708518e+00 + 4.1828000e+03 1.0050126e+00 + 4.1832000e+03 8.7060470e-01 + 4.1836000e+03 8.3033782e-01 + 4.1840000e+03 9.1017878e-01 + 4.1844000e+03 1.1707804e+00 + 4.1848000e+03 1.1983113e+00 + 4.1852000e+03 1.2194497e+00 + 4.1856000e+03 1.2664559e+00 + 4.1860000e+03 1.6507145e+00 + 4.1864000e+03 1.5909635e+00 + 4.1868000e+03 9.6112725e-01 + 4.1872000e+03 2.9963788e-01 + 4.1876000e+03 -2.9697924e-02 + 4.1880000e+03 -5.3126880e-01 + 4.1884000e+03 -5.5816711e-01 + 4.1888000e+03 -7.6729476e-01 + 4.1892000e+03 -1.2890204e+00 + 4.1896000e+03 -2.0820687e+00 + 4.1900000e+03 -2.2604815e+00 + 4.1904000e+03 -2.2498270e+00 + 4.1908000e+03 -2.2700484e+00 + 4.1912000e+03 -1.7957706e+00 + 4.1916000e+03 -7.2585955e-01 + 4.1920000e+03 -6.5713931e-02 + 4.1924000e+03 1.3408532e-01 + 4.1928000e+03 1.2138059e+00 + 4.1932000e+03 1.5532866e+00 + 4.1936000e+03 1.3927892e+00 + 4.1940000e+03 1.4224943e+00 + 4.1944000e+03 1.1421279e+00 + 4.1948000e+03 6.9493453e-01 + 4.1952000e+03 4.3984443e-01 + 4.1956000e+03 5.4183477e-01 + 4.1960000e+03 6.1301539e-01 + 4.1964000e+03 5.7967337e-01 + 4.1968000e+03 1.7884218e-01 + 4.1972000e+03 -2.7143665e-01 + 4.1976000e+03 -7.4253881e-01 + 4.1980000e+03 -1.1730788e+00 + 4.1984000e+03 -1.7433903e+00 + 4.1988000e+03 -2.3835157e+00 + 4.1992000e+03 -2.8333990e+00 + 4.1996000e+03 -2.8931888e+00 + 4.2000000e+03 -2.7430049e+00 + 4.2004000e+03 -2.2629702e+00 + 4.2008000e+03 -1.5730171e+00 + 4.2012000e+03 -7.4307035e-01 + 4.2016000e+03 -1.1328568e-01 + 4.2020000e+03 1.4263392e+00 + 4.2024000e+03 2.1959268e+00 + 4.2028000e+03 2.6709495e+00 + 4.2032000e+03 3.2832205e+00 + 4.2036000e+03 3.5910986e+00 + 4.2040000e+03 3.9445024e+00 + 4.2044000e+03 3.8268657e+00 + 4.2048000e+03 3.3902896e+00 + 4.2052000e+03 2.7879972e+00 + 4.2056000e+03 2.0634518e+00 + 4.2060000e+03 1.1764533e+00 + 4.2064000e+03 3.4692103e-01 + 4.2068000e+03 -4.8240736e-01 + 4.2072000e+03 -9.4159116e-01 + 4.2076000e+03 -1.3080156e+00 + 4.2080000e+03 -1.8283101e+00 + 4.2084000e+03 -2.0071370e+00 + 4.2088000e+03 -1.9338985e+00 + 4.2092000e+03 -2.1148546e+00 + 4.2096000e+03 -2.4383517e+00 + 4.2100000e+03 -2.3273028e+00 + 4.2104000e+03 -2.3676443e+00 + 4.2108000e+03 -2.0582623e+00 + 4.2112000e+03 -1.5889962e+00 + 4.2116000e+03 -1.0898624e+00 + 4.2120000e+03 1.4926461e-01 + 4.2124000e+03 7.6836342e-01 + 4.2128000e+03 9.8786237e-01 + 4.2132000e+03 1.2159809e+00 + 4.2136000e+03 1.1788075e+00 + 4.2140000e+03 1.0163882e+00 + 4.2144000e+03 9.3948727e-01 + 4.2148000e+03 9.7631921e-01 + 4.2152000e+03 1.2460609e+00 + 4.2156000e+03 1.4857014e+00 + 4.2160000e+03 1.3557330e+00 + 4.2164000e+03 1.1556921e+00 + 4.2168000e+03 1.1157425e+00 + 4.2172000e+03 5.2578352e-01 + 4.2176000e+03 -2.4422537e-01 + 4.2180000e+03 -6.4398432e-01 + 4.2184000e+03 -8.5954037e-01 + 4.2188000e+03 -8.7702547e-01 + 4.2192000e+03 -1.0457046e+00 + 4.2196000e+03 -1.0336649e+00 + 4.2200000e+03 -9.5292446e-01 + 4.2204000e+03 -1.1287444e+00 + 4.2208000e+03 -1.0804808e+00 + 4.2212000e+03 -1.1898143e+00 + 4.2216000e+03 -1.2700938e+00 + 4.2220000e+03 -1.2785952e+00 + 4.2224000e+03 -1.2263982e+00 + 4.2228000e+03 -1.1923588e+00 + 4.2232000e+03 -1.0773703e+00 + 4.2236000e+03 -8.1355529e-01 + 4.2240000e+03 -5.1682032e-02 + 4.2244000e+03 5.1670826e-01 + 4.2248000e+03 4.7758424e-01 + 4.2252000e+03 6.9273270e-01 + 4.2256000e+03 6.6178885e-01 + 4.2260000e+03 1.9304170e-01 + 4.2264000e+03 2.5436747e-01 + 4.2268000e+03 7.9557913e-01 + 4.2272000e+03 1.3568009e+00 + 4.2276000e+03 1.8878694e+00 + 4.2280000e+03 2.1484791e+00 + 4.2284000e+03 2.9486890e+00 + 4.2288000e+03 2.8785038e+00 + 4.2292000e+03 2.3421047e+00 + 4.2296000e+03 1.1342626e+00 + 4.2300000e+03 -4.0474074e-01 + 4.2304000e+03 -1.9205566e+00 + 4.2308000e+03 -3.0239013e+00 + 4.2312000e+03 -3.4045520e+00 + 4.2316000e+03 -3.3252196e+00 + 4.2320000e+03 -2.9857659e+00 + 4.2324000e+03 -2.4862923e+00 + 4.2328000e+03 -2.1967128e+00 + 4.2332000e+03 -1.9823668e+00 + 4.2336000e+03 -1.9445267e+00 + 4.2340000e+03 -1.7564217e+00 + 4.2344000e+03 -1.3762361e+00 + 4.2348000e+03 -9.5816652e-01 + 4.2352000e+03 -5.7817960e-01 + 4.2356000e+03 -1.2803051e-01 + 4.2360000e+03 9.0219654e-01 + 4.2364000e+03 1.7725734e+00 + 4.2368000e+03 2.1229978e+00 + 4.2372000e+03 2.2035695e+00 + 4.2376000e+03 2.0443945e+00 + 4.2380000e+03 2.1350919e+00 + 4.2384000e+03 2.4456744e+00 + 4.2388000e+03 2.6560082e+00 + 4.2392000e+03 2.7758239e+00 + 4.2396000e+03 2.4752418e+00 + 4.2400000e+03 1.7790972e+00 + 4.2404000e+03 7.0060184e-01 + 4.2408000e+03 -3.8422752e-01 + 4.2412000e+03 -1.3657522e+00 + 4.2416000e+03 -2.2352225e+00 + 4.2420000e+03 -2.7120174e+00 + 4.2424000e+03 -3.0229652e+00 + 4.2428000e+03 -3.1336120e+00 + 4.2432000e+03 -3.2739568e+00 + 4.2436000e+03 -3.7040179e+00 + 4.2440000e+03 -3.8938188e+00 + 4.2444000e+03 -3.2988516e+00 + 4.2448000e+03 -2.3016995e+00 + 4.2452000e+03 -1.0796331e+00 + 4.2456000e+03 4.4283434e-01 + 4.2460000e+03 1.9220954e+00 + 4.2464000e+03 2.8692519e+00 + 4.2468000e+03 3.4336516e+00 + 4.2472000e+03 3.5000873e+00 + 4.2476000e+03 3.2840199e+00 + 4.2480000e+03 2.7822754e+00 + 4.2484000e+03 2.0637506e+00 + 4.2488000e+03 1.5516907e+00 + 4.2492000e+03 1.4312928e+00 + 4.2496000e+03 1.3808610e+00 + 4.2500000e+03 1.0504953e+00 + 4.2504000e+03 8.8031501e-01 + 4.2508000e+03 8.5017945e-01 + 4.2512000e+03 9.4998012e-01 + 4.2516000e+03 3.7801838e-02 + 4.2520000e+03 -1.2885490e+00 + 4.2524000e+03 -2.5010882e+00 + 4.2528000e+03 -3.5311833e+00 + 4.2532000e+03 -3.9310275e+00 + 4.2536000e+03 -3.8006587e+00 + 4.2540000e+03 -3.4001630e+00 + 4.2544000e+03 -2.9496365e+00 + 4.2548000e+03 -2.2190884e+00 + 4.2552000e+03 -1.3571604e+00 + 4.2556000e+03 -5.5178973e-01 + 4.2560000e+03 3.7373962e-01 + 4.2564000e+03 1.5983451e+00 + 4.2568000e+03 3.0424258e+00 + 4.2572000e+03 3.9920078e+00 + 4.2576000e+03 4.9213595e+00 + 4.2580000e+03 5.1006838e+00 + 4.2584000e+03 4.3601020e+00 + 4.2588000e+03 3.0695844e+00 + 4.2592000e+03 1.8592926e+00 + 4.2596000e+03 5.8895030e-01 + 4.2600000e+03 -1.6136042e-01 + 4.2604000e+03 -8.0698125e-01 + 4.2608000e+03 -1.3951353e+00 + 4.2612000e+03 -1.5999418e+00 + 4.2616000e+03 -2.0792726e+00 + 4.2620000e+03 -2.6949293e+00 + 4.2624000e+03 -2.8578202e+00 + 4.2628000e+03 -2.6240894e+00 + 4.2632000e+03 -2.5242817e+00 + 4.2636000e+03 -2.2041285e+00 + 4.2640000e+03 -1.8135973e+00 + 4.2644000e+03 -1.9229645e+00 + 4.2648000e+03 -1.7223323e+00 + 4.2652000e+03 -1.2417917e+00 + 4.2656000e+03 -6.2150568e-01 + 4.2660000e+03 6.1864323e-01 + 4.2664000e+03 1.5988137e+00 + 4.2668000e+03 1.5689659e+00 + 4.2672000e+03 1.3190611e+00 + 4.2676000e+03 1.2590568e+00 + 4.2680000e+03 1.4689578e+00 + 4.2684000e+03 1.5688328e+00 + 4.2688000e+03 1.4488744e+00 + 4.2692000e+03 1.2690850e+00 + 4.2696000e+03 1.2972828e+00 + 4.2700000e+03 1.1360673e+00 + 4.2704000e+03 1.2329408e+00 + 4.2708000e+03 1.3874665e+00 + 4.2712000e+03 1.5788787e+00 + 4.2716000e+03 1.4058950e+00 + 4.2720000e+03 5.8985375e-01 + 4.2724000e+03 -6.3566381e-01 + 4.2728000e+03 -1.7642581e+00 + 4.2732000e+03 -2.3512064e+00 + 4.2736000e+03 -2.3817099e+00 + 4.2740000e+03 -2.3119907e+00 + 4.2744000e+03 -2.1320277e+00 + 4.2748000e+03 -1.5514106e+00 + 4.2752000e+03 -7.4248036e-01 + 4.2756000e+03 1.5514118e-01 + 4.2760000e+03 8.3600490e-01 + 4.2764000e+03 1.5102535e+00 + 4.2768000e+03 2.1954488e+00 + 4.2772000e+03 2.9533650e+00 + 4.2776000e+03 3.7231135e+00 + 4.2780000e+03 4.1480521e+00 + 4.2784000e+03 3.9577810e+00 + 4.2788000e+03 3.6193258e+00 + 4.2792000e+03 3.1702906e+00 + 4.2796000e+03 1.9746315e+00 + 4.2800000e+03 5.0569940e-01 + 4.2804000e+03 -5.2178989e-01 + 4.2808000e+03 -1.2532472e+00 + 4.2812000e+03 -2.0405703e+00 + 4.2816000e+03 -2.8389814e+00 + 4.2820000e+03 -3.7097889e+00 + 4.2824000e+03 -4.4421868e+00 + 4.2828000e+03 -4.6260705e+00 + 4.2832000e+03 -4.4546907e+00 + 4.2836000e+03 -3.8499288e+00 + 4.2840000e+03 -3.0711364e+00 + 4.2844000e+03 -2.5110149e+00 + 4.2848000e+03 -1.9837494e+00 + 4.2852000e+03 -1.3396979e+00 + 4.2856000e+03 -4.3831416e-01 + 4.2860000e+03 3.1080081e-01 + 4.2864000e+03 7.5654063e-01 + 4.2868000e+03 1.5258526e+00 + 4.2872000e+03 2.2185056e+00 + 4.2876000e+03 2.2999553e+00 + 4.2880000e+03 1.8558378e+00 + 4.2884000e+03 1.4606739e+00 + 4.2888000e+03 1.1379188e+00 + 4.2892000e+03 3.9830041e-01 + 4.2896000e+03 2.8414832e-01 + 4.2900000e+03 6.5458564e-01 + 4.2904000e+03 9.6370766e-01 + 4.2908000e+03 6.9188789e-01 + 4.2912000e+03 5.3032989e-01 + 4.2916000e+03 5.5512451e-01 + 4.2920000e+03 7.3434013e-01 + 4.2924000e+03 7.3665884e-01 + 4.2928000e+03 4.8210149e-01 + 4.2932000e+03 -1.8441569e-01 + 4.2936000e+03 -2.0851344e-01 + 4.2940000e+03 -1.7036715e-01 + 4.2944000e+03 -4.0589045e-01 + 4.2948000e+03 -6.2026871e-01 + 4.2952000e+03 -5.6429706e-01 + 4.2956000e+03 -3.9474241e-01 + 4.2960000e+03 2.6517514e-01 + 4.2964000e+03 1.4253073e+00 + 4.2968000e+03 1.5054488e+00 + 4.2972000e+03 1.7842769e+00 + 4.2976000e+03 2.1007680e+00 + 4.2980000e+03 2.3932513e+00 + 4.2984000e+03 3.0195571e+00 + 4.2988000e+03 3.7372961e+00 + 4.2992000e+03 4.1003999e+00 + 4.2996000e+03 3.9781494e+00 + 4.3000000e+03 3.6213079e+00 + 4.3004000e+03 2.9385222e+00 + 4.3008000e+03 1.8162182e+00 + 4.3012000e+03 5.6295709e-01 + 4.3016000e+03 -1.0178979e+00 + 4.3020000e+03 -2.5341549e+00 + 4.3024000e+03 -3.8016069e+00 + 4.3028000e+03 -4.9935236e+00 + 4.3032000e+03 -6.0389120e+00 + 4.3036000e+03 -6.2172127e+00 + 4.3040000e+03 -6.2622493e+00 + 4.3044000e+03 -6.0716686e+00 + 4.3048000e+03 -5.2449925e+00 + 4.3052000e+03 -4.4343523e+00 + 4.3056000e+03 -3.4092171e+00 + 4.3060000e+03 -2.2593569e+00 + 4.3064000e+03 -8.7373249e-01 + 4.3068000e+03 9.2238554e-01 + 4.3072000e+03 2.7514235e+00 + 4.3076000e+03 4.3493306e+00 + 4.3080000e+03 5.3884734e+00 + 4.3084000e+03 5.9820145e+00 + 4.3088000e+03 5.8216102e+00 + 4.3092000e+03 4.6969049e+00 + 4.3096000e+03 2.8945227e+00 + 4.3100000e+03 7.6835868e-01 + 4.3104000e+03 -1.0262548e+00 + 4.3108000e+03 -2.0592545e+00 + 4.3112000e+03 -2.3229668e+00 + 4.3116000e+03 -2.0232253e+00 + 4.3120000e+03 -1.5931164e+00 + 4.3124000e+03 -1.2227230e+00 + 4.3128000e+03 -6.1035764e-01 + 4.3132000e+03 -3.0452667e-01 + 4.3136000e+03 -2.7940228e-01 + 4.3140000e+03 -2.9902272e-01 + 4.3144000e+03 7.6937533e-02 + 4.3148000e+03 6.9427892e-01 + 4.3152000e+03 1.2226984e+00 + 4.3156000e+03 1.9818277e+00 + 4.3160000e+03 2.8865288e+00 + 4.3164000e+03 3.9693889e+00 + 4.3168000e+03 4.4793506e+00 + 4.3172000e+03 4.6365190e+00 + 4.3176000e+03 4.3536328e+00 + 4.3180000e+03 3.5433969e+00 + 4.3184000e+03 2.2132115e+00 + 4.3188000e+03 1.4129922e+00 + 4.3192000e+03 9.7271808e-01 + 4.3196000e+03 -1.7631958e-02 + 4.3200000e+03 -7.6861530e-01 + 4.3204000e+03 -1.2291168e+00 + 4.3208000e+03 -1.6259668e+00 + 4.3212000e+03 -1.9112277e+00 + 4.3216000e+03 -1.8824159e+00 + 4.3220000e+03 -1.9207174e+00 + 4.3224000e+03 -1.7799017e+00 + 4.3228000e+03 -1.8294857e+00 + 4.3232000e+03 -2.4252076e+00 + 4.3236000e+03 -3.1710257e+00 + 4.3240000e+03 -3.8284199e+00 + 4.3244000e+03 -3.9881425e+00 + 4.3248000e+03 -3.6678938e+00 + 4.3252000e+03 -2.5986043e+00 + 4.3256000e+03 -1.4127100e+00 + 4.3260000e+03 -4.7897713e-01 + 4.3264000e+03 7.7165417e-02 + 4.3268000e+03 -3.6572579e-02 + 4.3272000e+03 4.5208706e-02 + 4.3276000e+03 2.0482511e-01 + 4.3280000e+03 5.9686561e-01 + 4.3284000e+03 1.0651790e+00 + 4.3288000e+03 1.6000023e+00 + 4.3292000e+03 1.5381164e+00 + 4.3296000e+03 1.5256420e+00 + 4.3300000e+03 1.7626598e+00 + 4.3304000e+03 1.6925659e+00 + 4.3308000e+03 1.7924403e+00 + 4.3312000e+03 2.2021712e+00 + 4.3316000e+03 2.5817907e+00 + 4.3320000e+03 2.7413714e+00 + 4.3324000e+03 2.6309832e+00 + 4.3328000e+03 2.0605916e+00 + 4.3332000e+03 1.3802092e+00 + 4.3336000e+03 8.9982103e-01 + 4.3340000e+03 1.9539114e-02 + 4.3344000e+03 -7.5076054e-01 + 4.3348000e+03 -1.2610342e+00 + 4.3352000e+03 -1.6412355e+00 + 4.3356000e+03 -1.5113094e+00 + 4.3360000e+03 -1.0113245e+00 + 4.3364000e+03 -8.4110215e-01 + 4.3368000e+03 -8.0062506e-01 + 4.3372000e+03 -1.7644630e-01 + 4.3376000e+03 4.9218954e-01 + 4.3380000e+03 7.5036303e-01 + 4.3384000e+03 5.9386664e-01 + 4.3388000e+03 5.9280577e-02 + 4.3392000e+03 -4.2312756e-01 + 4.3396000e+03 -7.4013525e-01 + 4.3400000e+03 -1.0972637e+00 + 4.3404000e+03 -1.6150372e+00 + 4.3408000e+03 -1.6082079e+00 + 4.3412000e+03 -1.5247291e+00 + 4.3416000e+03 -1.5293051e+00 + 4.3420000e+03 -1.1559854e+00 + 4.3424000e+03 -4.5220803e-01 + 4.3428000e+03 1.2719038e-01 + 4.3432000e+03 2.1308316e-01 + 4.3436000e+03 4.4803478e-01 + 4.3440000e+03 2.1782614e-01 + 4.3444000e+03 -8.2292431e-02 + 4.3448000e+03 -2.6182801e-01 + 4.3452000e+03 -4.6229235e-01 + 4.3456000e+03 -5.7248382e-01 + 4.3460000e+03 -6.1271740e-01 + 4.3464000e+03 -7.4286012e-01 + 4.3468000e+03 -5.9288350e-01 + 4.3472000e+03 -1.2277058e-01 + 4.3476000e+03 4.5735062e-01 + 4.3480000e+03 1.1875065e+00 + 4.3484000e+03 1.4376930e+00 + 4.3488000e+03 1.4078511e+00 + 4.3492000e+03 9.2796714e-01 + 4.3496000e+03 4.4125868e-01 + 4.3500000e+03 3.7743498e-01 + 4.3504000e+03 1.2206004e-01 + 4.3508000e+03 2.4628632e-01 + 4.3512000e+03 5.5859686e-01 + 4.3516000e+03 6.6901299e-01 + 4.3520000e+03 8.2559962e-01 + 4.3524000e+03 9.0568683e-01 + 4.3528000e+03 1.0624644e+00 + 4.3532000e+03 1.2172216e+00 + 4.3536000e+03 1.4290684e+00 + 4.3540000e+03 1.6884835e+00 + 4.3544000e+03 1.9077237e+00 + 4.3548000e+03 1.8768585e+00 + 4.3552000e+03 1.4060909e+00 + 4.3556000e+03 5.6559975e-01 + 4.3560000e+03 -2.1879553e-01 + 4.3564000e+03 -8.6529895e-01 + 4.3568000e+03 -1.5768926e+00 + 4.3572000e+03 -1.9459393e+00 + 4.3576000e+03 -2.0638982e+00 + 4.3580000e+03 -1.8416779e+00 + 4.3584000e+03 -1.6623381e+00 + 4.3588000e+03 -1.5199125e+00 + 4.3592000e+03 -1.2318117e+00 + 4.3596000e+03 -1.3920854e+00 + 4.3600000e+03 -1.7701859e+00 + 4.3604000e+03 -1.9117081e+00 + 4.3608000e+03 -1.9644685e+00 + 4.3612000e+03 -1.8762622e+00 + 4.3616000e+03 -1.5657730e+00 + 4.3620000e+03 -1.3835099e+00 + 4.3624000e+03 -1.1593494e+00 + 4.3628000e+03 -1.0023408e+00 + 4.3632000e+03 -8.6190147e-01 + 4.3636000e+03 -7.7159687e-01 + 4.3640000e+03 -3.8594838e-01 + 4.3644000e+03 6.6138537e-02 + 4.3648000e+03 2.0276270e-01 + 4.3652000e+03 5.2397019e-01 + 4.3656000e+03 1.1378167e+00 + 4.3660000e+03 1.2967555e+00 + 4.3664000e+03 1.5050384e+00 + 4.3668000e+03 1.8527499e+00 + 4.3672000e+03 2.5683061e+00 + 4.3676000e+03 2.6256518e+00 + 4.3680000e+03 2.3948886e+00 + 4.3684000e+03 2.6235732e+00 + 4.3688000e+03 2.6219056e+00 + 4.3692000e+03 1.8830108e+00 + 4.3696000e+03 1.3397947e+00 + 4.3700000e+03 1.1706433e+00 + 4.3704000e+03 5.2528320e-01 + 4.3708000e+03 -1.4205994e-01 + 4.3712000e+03 -6.3439452e-01 + 4.3716000e+03 -1.5807350e+00 + 4.3720000e+03 -2.2300709e+00 + 4.3724000e+03 -2.4618065e+00 + 4.3728000e+03 -2.6014045e+00 + 4.3732000e+03 -2.0048202e+00 + 4.3736000e+03 -1.6512411e+00 + 4.3740000e+03 -1.1913515e+00 + 4.3744000e+03 -4.8763210e-01 + 4.3748000e+03 5.4987536e-02 + 4.3752000e+03 6.8454958e-01 + 4.3756000e+03 1.2645848e+00 + 4.3760000e+03 1.7640408e+00 + 4.3764000e+03 2.3969736e+00 + 4.3768000e+03 2.3153876e+00 + 4.3772000e+03 1.9837245e+00 + 4.3776000e+03 1.7912324e+00 + 4.3780000e+03 1.8877722e+00 + 4.3784000e+03 1.6258292e+00 + 4.3788000e+03 1.0233991e+00 + 4.3792000e+03 1.7491968e-01 + 4.3796000e+03 -6.9804812e-01 + 4.3800000e+03 -1.6206645e+00 + 4.3804000e+03 -2.2028287e+00 + 4.3808000e+03 -2.5288062e+00 + 4.3812000e+03 -2.6484483e+00 + 4.3816000e+03 -2.7052612e+00 + 4.3820000e+03 -2.5649233e+00 + 4.3824000e+03 -2.1944429e+00 + 4.3828000e+03 -2.1438356e+00 + 4.3832000e+03 -1.3231955e+00 + 4.3836000e+03 -6.5590845e-01 + 4.3840000e+03 -3.8234757e-02 + 4.3844000e+03 7.7673314e-01 + 4.3848000e+03 1.4137578e+00 + 4.3852000e+03 1.8357657e+00 + 4.3856000e+03 1.6984823e+00 + 4.3860000e+03 1.3583514e+00 + 4.3864000e+03 1.0582274e+00 + 4.3868000e+03 9.6813617e-01 + 4.3872000e+03 5.2814916e-01 + 4.3876000e+03 4.5804470e-01 + 4.3880000e+03 -3.2108543e-02 + 4.3884000e+03 1.7711393e-02 + 4.3888000e+03 2.2760602e-01 + 4.3892000e+03 1.5770281e-01 + 4.3896000e+03 2.3230659e-01 + 4.3900000e+03 6.0628723e-03 + 4.3904000e+03 -1.2915307e-01 + 4.3908000e+03 -2.4543210e-01 + 4.3912000e+03 -2.9780029e-01 + 4.3916000e+03 -2.6127440e-01 + 4.3920000e+03 -3.7151180e-01 + 4.3924000e+03 -5.6695056e-01 + 4.3928000e+03 -6.1071834e-01 + 4.3932000e+03 -4.9798441e-01 + 4.3936000e+03 -2.6569186e-01 + 4.3940000e+03 6.3099974e-02 + 4.3944000e+03 -2.5226089e-01 + 4.3948000e+03 -4.3342913e-01 + 4.3952000e+03 -5.4979338e-01 + 4.3956000e+03 -4.7041575e-01 + 4.3960000e+03 -1.5086373e-01 + 4.3964000e+03 4.0066298e-01 + 4.3968000e+03 8.1361194e-01 + 4.3972000e+03 1.3859787e+00 + 4.3976000e+03 1.7143325e+00 + 4.3980000e+03 1.9294645e+00 + 4.3984000e+03 1.7958408e+00 + 4.3988000e+03 1.9513870e+00 + 4.3992000e+03 2.1248926e+00 + 4.3996000e+03 2.0210253e+00 + 4.4000000e+03 1.7955006e+00 + 4.4004000e+03 1.4025360e+00 + 4.4008000e+03 5.9399900e-01 + 4.4012000e+03 -1.5943868e-01 + 4.4016000e+03 -7.8799886e-01 + 4.4020000e+03 -9.2921545e-01 + 4.4024000e+03 -1.0210085e+00 + 4.4028000e+03 -1.0322488e+00 + 4.4032000e+03 -1.2515160e+00 + 4.4036000e+03 -1.4202089e+00 + 4.4040000e+03 -1.3797454e+00 + 4.4044000e+03 -1.5054184e+00 + 4.4048000e+03 -1.3546805e+00 + 4.4052000e+03 -7.9119408e-01 + 4.4056000e+03 -3.5727336e-01 + 4.4060000e+03 -1.8892188e-01 + 4.4064000e+03 -3.6763000e-01 + 4.4068000e+03 -8.8037121e-01 + 4.4072000e+03 -1.2888600e+00 + 4.4076000e+03 -1.8212946e+00 + 4.4080000e+03 -2.0536496e+00 + 4.4084000e+03 -1.8782242e+00 + 4.4088000e+03 -1.7888830e+00 + 4.4092000e+03 -1.4804800e+00 + 4.4096000e+03 -1.2082013e+00 + 4.4100000e+03 -9.2604702e-01 + 4.4104000e+03 -2.9460774e-01 + 4.4108000e+03 6.8285129e-01 + 4.4112000e+03 1.2739092e+00 + 4.4116000e+03 1.5261709e+00 + 4.4120000e+03 1.4971606e+00 + 4.4124000e+03 1.2478085e+00 + 4.4128000e+03 1.2084808e+00 + 4.4132000e+03 9.0088261e-01 + 4.4136000e+03 6.5135434e-01 + 4.4140000e+03 3.9441143e-01 + 4.4144000e+03 2.2096275e-01 + 4.4148000e+03 3.2934344e-01 + 4.4152000e+03 6.0785474e-01 + 4.4156000e+03 1.1364725e+00 + 4.4160000e+03 1.0052414e+00 + 4.4164000e+03 8.9441141e-01 + 4.4168000e+03 7.2387288e-01 + 4.4172000e+03 3.1365253e-01 + 4.4176000e+03 2.2363523e-01 + 4.4180000e+03 3.6379620e-01 + 4.4184000e+03 5.0417908e-01 + 4.4188000e+03 4.7471407e-01 + 4.4192000e+03 3.4527917e-01 + 4.4196000e+03 2.9587131e-01 + 4.4200000e+03 -3.1851732e-01 + 4.4204000e+03 -4.6039840e-01 + 4.4208000e+03 -5.0683603e-01 + 4.4212000e+03 -5.9110494e-01 + 4.4216000e+03 -5.9069544e-01 + 4.4220000e+03 -4.4570558e-01 + 4.4224000e+03 -1.9104924e-01 + 4.4228000e+03 -1.5795191e-01 + 4.4232000e+03 -4.0362300e-01 + 4.4236000e+03 -9.0238788e-01 + 4.4240000e+03 -8.2284356e-01 + 4.4244000e+03 -7.6342290e-01 + 4.4248000e+03 -7.3309001e-01 + 4.4252000e+03 -7.1151740e-01 + 4.4256000e+03 -4.0620275e-01 + 4.4260000e+03 -4.5830655e-02 + 4.4264000e+03 1.5417168e-01 + 4.4268000e+03 -6.0559700e-03 + 4.4272000e+03 -9.6385895e-02 + 4.4276000e+03 -3.3672100e-01 + 4.4280000e+03 -6.3713974e-01 + 4.4284000e+03 -8.9751201e-01 + 4.4288000e+03 -1.3777775e+00 + 4.4292000e+03 -1.1878924e+00 + 4.4296000e+03 -8.9814964e-01 + 4.4300000e+03 2.1764803e-02 + 4.4304000e+03 2.3186348e-01 + 4.4308000e+03 2.1909346e-01 + 4.4312000e+03 4.7086889e-01 + 4.4316000e+03 7.7455083e-01 + 4.4320000e+03 1.6073872e+00 + 4.4324000e+03 2.3015751e+00 + 4.4328000e+03 2.5061675e+00 + 4.4332000e+03 2.5115948e+00 + 4.4336000e+03 2.3409059e+00 + 4.4340000e+03 1.0003828e+00 + 4.4344000e+03 5.6995630e-01 + 4.4348000e+03 5.3959804e-01 + 4.4352000e+03 -6.0056243e-01 + 4.4356000e+03 -8.8060962e-01 + 4.4360000e+03 -8.4060375e-01 + 4.4364000e+03 -7.1060282e-01 + 4.4368000e+03 -8.5232890e-01 + 4.4372000e+03 -1.1409717e+00 + 4.4376000e+03 -1.1596878e+00 + 4.4380000e+03 -1.0417535e+00 + 4.4384000e+03 -9.7967157e-01 + 4.4388000e+03 -1.0497014e+00 + 4.4392000e+03 -1.2096883e+00 + 4.4396000e+03 -9.7980054e-01 + 4.4400000e+03 -7.3280806e-01 + 4.4404000e+03 -5.1662710e-01 + 4.4408000e+03 -1.0305853e+00 + 4.4412000e+03 -1.2009705e+00 + 4.4416000e+03 -1.1273841e+00 + 4.4420000e+03 -1.1995270e+00 + 4.4424000e+03 -1.1604324e+00 + 4.4428000e+03 -8.7445309e-01 + 4.4432000e+03 -7.8279152e-01 + 4.4436000e+03 -1.0506508e+00 + 4.4440000e+03 -1.0099222e+00 + 4.4444000e+03 -9.7937936e-01 + 4.4448000e+03 -8.7892593e-01 + 4.4452000e+03 -8.5808690e-01 + 4.4456000e+03 -5.8686404e-01 + 4.4460000e+03 -3.8015800e-01 + 4.4464000e+03 -3.7955248e-01 + 4.4468000e+03 -6.5057354e-01 + 4.4472000e+03 -3.9162737e-01 + 4.4476000e+03 -2.2277856e-01 + 4.4480000e+03 1.1632754e-01 + 4.4484000e+03 9.8542441e-01 + 4.4488000e+03 1.4945512e+00 + 4.4492000e+03 1.3201251e+00 + 4.4496000e+03 1.2636111e+00 + 4.4500000e+03 1.3852343e+00 + 4.4504000e+03 1.3814841e+00 + 4.4508000e+03 1.6536708e+00 + 4.4512000e+03 1.7936917e+00 + 4.4516000e+03 1.6541956e+00 + 4.4520000e+03 1.5146234e+00 + 4.4524000e+03 1.4849170e+00 + 4.4528000e+03 1.3253690e+00 + 4.4532000e+03 1.2308329e+00 + 4.4536000e+03 9.1048334e-01 + 4.4540000e+03 4.7858101e-01 + 4.4544000e+03 2.2680339e-01 + 4.4548000e+03 4.6661602e-01 + 4.4552000e+03 4.3672623e-01 + 4.4556000e+03 -2.9300711e-01 + 4.4560000e+03 -1.2858400e+00 + 4.4564000e+03 -2.0935458e+00 + 4.4568000e+03 -1.6436459e+00 + 4.4572000e+03 -1.5337560e+00 + 4.4576000e+03 -9.3395983e-01 + 4.4580000e+03 -8.0422150e-01 + 4.4584000e+03 -5.2453993e-01 + 4.4588000e+03 -1.1497184e-01 + 4.4592000e+03 -3.5464825e-02 + 4.4596000e+03 9.8576406e-02 + 4.4600000e+03 3.3383363e-01 + 4.4604000e+03 5.3495680e-01 + 4.4608000e+03 2.6882031e-01 + 4.4612000e+03 3.0925401e-01 + 4.4616000e+03 -2.8084396e-02 + 4.4620000e+03 -6.9774992e-01 + 4.4624000e+03 -9.2492373e-01 + 4.4628000e+03 -9.7555738e-01 + 4.4632000e+03 -9.4490910e-01 + 4.4636000e+03 -1.0680561e+00 + 4.4640000e+03 -8.2806994e-01 + 4.4644000e+03 -7.9307844e-01 + 4.4648000e+03 -7.3029706e-01 + 4.4652000e+03 -1.0284406e+00 + 4.4656000e+03 -1.2731337e+00 + 4.4660000e+03 -1.5414315e+00 + 4.4664000e+03 -1.4603111e+00 + 4.4668000e+03 -1.2571049e+00 + 4.4672000e+03 -4.9724289e-01 + 4.4676000e+03 -1.1759808e-01 + 4.4680000e+03 2.0200252e-01 + 4.4684000e+03 5.9156911e-01 + 4.4688000e+03 8.8116406e-01 + 4.4692000e+03 1.2105752e+00 + 4.4696000e+03 1.4099050e+00 + 4.4700000e+03 1.5793353e+00 + 4.4704000e+03 2.0244805e+00 + 4.4708000e+03 2.2704659e+00 + 4.4712000e+03 2.4977293e+00 + 4.4716000e+03 2.6719509e+00 + 4.4720000e+03 2.6059347e+00 + 4.4724000e+03 1.9757684e+00 + 4.4728000e+03 1.3509459e+00 + 4.4732000e+03 7.7390322e-01 + 4.4736000e+03 3.6664986e-02 + 4.4740000e+03 -6.2727829e-01 + 4.4744000e+03 -1.3474307e+00 + 4.4748000e+03 -1.9224461e+00 + 4.4752000e+03 -2.2277525e+00 + 4.4756000e+03 -2.0585228e+00 + 4.4760000e+03 -1.5399324e+00 + 4.4764000e+03 -1.0299610e+00 + 4.4768000e+03 -9.2022964e-01 + 4.4772000e+03 -7.0105095e-01 + 4.4776000e+03 -5.5177394e-01 + 4.4780000e+03 -5.7240381e-01 + 4.4784000e+03 -5.3291143e-01 + 4.4788000e+03 -3.5341560e-01 + 4.4792000e+03 -6.8410145e-01 + 4.4796000e+03 -8.8408995e-01 + 4.4800000e+03 -1.0328808e+00 + 4.4804000e+03 -9.6593242e-01 + 4.4808000e+03 -1.0374377e+00 + 4.4812000e+03 -9.5190013e-01 + 4.4816000e+03 -9.3297187e-01 + 4.4820000e+03 -7.3208669e-01 + 4.4824000e+03 -1.3093736e-01 + 4.4828000e+03 4.8062575e-01 + 4.4832000e+03 8.9236520e-01 + 4.4836000e+03 1.0137543e+00 + 4.4840000e+03 1.1346957e+00 + 4.4844000e+03 1.0651737e+00 + 4.4848000e+03 6.9519204e-01 + 4.4852000e+03 5.9512785e-01 + 4.4856000e+03 4.6493022e-01 + 4.4860000e+03 5.6438982e-01 + 4.4864000e+03 2.3664626e-02 + 4.4868000e+03 -2.7723320e-01 + 4.4872000e+03 -5.8854217e-01 + 4.4876000e+03 -7.6983427e-01 + 4.4880000e+03 -1.1012137e+00 + 4.4884000e+03 -1.1925164e+00 + 4.4888000e+03 -8.4380971e-01 + 4.4892000e+03 -9.5332639e-02 + 4.4896000e+03 6.2345086e-01 + 4.4900000e+03 8.7258319e-01 + 4.4904000e+03 1.2018160e+00 + 4.4908000e+03 1.2248263e+00 + 4.4912000e+03 1.4544080e+00 + 4.4916000e+03 1.5710371e+00 + 4.4920000e+03 1.4606452e+00 + 4.4924000e+03 1.5194807e+00 + 4.4928000e+03 1.6673733e+00 + 4.4932000e+03 1.5908904e+00 + 4.4936000e+03 1.2817641e+00 + 4.4940000e+03 8.6899014e-01 + 4.4944000e+03 5.7067468e-01 + 4.4948000e+03 -7.8187388e-02 + 4.4952000e+03 -9.7806682e-01 + 4.4956000e+03 -1.6622534e+00 + 4.4960000e+03 -2.0311940e+00 + 4.4964000e+03 -2.2307789e+00 + 4.4968000e+03 -2.1484656e+00 + 4.4972000e+03 -2.1587703e+00 + 4.4976000e+03 -1.9791498e+00 + 4.4980000e+03 -1.4794281e+00 + 4.4984000e+03 -9.3961378e-01 + 4.4988000e+03 -3.1869178e-01 + 4.4992000e+03 8.5876671e-02 + 4.4996000e+03 2.5384504e-01 + 4.5000000e+03 3.1444532e-01 + 4.5004000e+03 2.2925589e-01 + 4.5008000e+03 1.9955976e-01 + 4.5012000e+03 1.3019721e-01 + 4.5016000e+03 2.1116174e-02 + 4.5020000e+03 -3.5785529e-01 + 4.5024000e+03 -5.6652966e-01 + 4.5028000e+03 -4.0530821e-01 + 4.5032000e+03 -1.0432287e-01 + 4.5036000e+03 1.6293035e-02 + 4.5040000e+03 2.6660216e-01 + 4.5044000e+03 6.6662924e-01 + 4.5048000e+03 1.1764816e+00 + 4.5052000e+03 1.1262171e+00 + 4.5056000e+03 1.0757717e+00 + 4.5060000e+03 6.7522763e-01 + 4.5064000e+03 6.1437486e-01 + 4.5068000e+03 -6.4670460e-01 + 4.5072000e+03 -1.7775946e+00 + 4.5076000e+03 -2.4433172e+00 + 4.5080000e+03 -2.7170647e+00 + 4.5084000e+03 -2.5452542e+00 + 4.5088000e+03 -1.7617500e+00 + 4.5092000e+03 -5.7234266e-01 + 4.5096000e+03 5.7216776e-02 + 4.5100000e+03 1.2369638e+00 + 4.5104000e+03 1.7368311e+00 + 4.5108000e+03 3.0666608e+00 + 4.5112000e+03 3.8564337e+00 + 4.5116000e+03 4.7460850e+00 + 4.5120000e+03 4.5455974e+00 + 4.5124000e+03 4.0748472e+00 + 4.5128000e+03 2.5640134e+00 + 4.5132000e+03 1.2632161e+00 + 4.5136000e+03 3.6264930e-01 + 4.5140000e+03 -1.0768462e-01 + 4.5144000e+03 -1.9795166e-01 + 4.5148000e+03 -6.7818748e-01 + 4.5152000e+03 -1.2379816e+00 + 4.5156000e+03 -1.7276123e+00 + 4.5160000e+03 -1.9203533e+00 + 4.5164000e+03 -2.3281345e+00 + 4.5168000e+03 -2.9789396e+00 + 4.5172000e+03 -3.2618649e+00 + 4.5176000e+03 -3.0868144e+00 + 4.5180000e+03 -3.4154867e+00 + 4.5184000e+03 -3.0537936e+00 + 4.5188000e+03 -2.3331702e+00 + 4.5192000e+03 -1.4825751e+00 + 4.5196000e+03 -6.1211909e-01 + 4.5200000e+03 1.2822599e-01 + 4.5204000e+03 2.5852425e-01 + 4.5208000e+03 5.1881557e-01 + 4.5212000e+03 9.8903756e-01 + 4.5216000e+03 1.1891298e+00 + 4.5220000e+03 8.1895118e-01 + 4.5224000e+03 6.2851884e-01 + 4.5228000e+03 1.0678141e+00 + 4.5232000e+03 1.3769286e+00 + 4.5236000e+03 1.5759961e+00 + 4.5240000e+03 1.6452588e+00 + 4.5244000e+03 1.5548550e+00 + 4.5248000e+03 1.0047599e+00 + 4.5252000e+03 3.3508229e-01 + 4.5256000e+03 -2.0426739e-01 + 4.5260000e+03 -4.6348711e-01 + 4.5264000e+03 -6.9336841e-01 + 4.5268000e+03 -7.8266992e-01 + 4.5272000e+03 -8.6293578e-01 + 4.5276000e+03 -1.2134439e+00 + 4.5280000e+03 -1.2842497e+00 + 4.5284000e+03 -1.6051297e+00 + 4.5288000e+03 -1.3559572e+00 + 4.5292000e+03 -8.5665702e-01 + 4.5296000e+03 3.3264703e-01 + 4.5300000e+03 1.0718685e+00 + 4.5304000e+03 1.1909218e+00 + 4.5308000e+03 1.1397891e+00 + 4.5312000e+03 1.4686438e+00 + 4.5316000e+03 1.6176059e+00 + 4.5320000e+03 1.4266651e+00 + 4.5324000e+03 1.3104612e+00 + 4.5328000e+03 1.1041385e+00 + 4.5332000e+03 7.7880339e-01 + 4.5336000e+03 3.1005319e-01 + 4.5340000e+03 3.5611184e-01 + 4.5344000e+03 3.2675756e-01 + 4.5348000e+03 2.2433435e-01 + 4.5352000e+03 -2.3975034e-01 + 4.5356000e+03 -5.8389417e-01 + 4.5360000e+03 -1.1528650e+00 + 4.5364000e+03 -1.3655666e+00 + 4.5368000e+03 -1.2475503e+00 + 4.5372000e+03 -1.1169513e+00 + 4.5376000e+03 -9.2658554e-01 + 4.5380000e+03 -5.6633126e-01 + 4.5384000e+03 -1.8634713e-01 + 4.5388000e+03 -2.9403783e-02 + 4.5392000e+03 -1.5952223e-01 + 4.5396000e+03 -1.0986943e-01 + 4.5400000e+03 -6.0541866e-02 + 4.5404000e+03 3.2164408e-02 + 4.5408000e+03 -8.2161582e-03 + 4.5412000e+03 -3.8641837e-02 + 4.5416000e+03 -1.5911546e-01 + 4.5420000e+03 -4.9954508e-01 + 4.5424000e+03 -8.0002029e-01 + 4.5428000e+03 -8.5027291e-01 + 4.5432000e+03 -8.9052734e-01 + 4.5436000e+03 -1.1307527e+00 + 4.5440000e+03 -1.2207920e+00 + 4.5444000e+03 -1.0908035e+00 + 4.5448000e+03 -6.6077220e-01 + 4.5452000e+03 -8.0744183e-02 + 4.5456000e+03 3.9937332e-01 + 4.5460000e+03 5.2959703e-01 + 4.5464000e+03 8.6972134e-01 + 4.5468000e+03 6.3967308e-01 + 4.5472000e+03 2.7954338e-01 + 4.5476000e+03 1.0943258e-01 + 4.5480000e+03 -6.2077165e-01 + 4.5484000e+03 -6.8124220e-01 + 4.5488000e+03 -4.1138802e-01 + 4.5492000e+03 -1.5188278e-01 + 4.5496000e+03 -3.0207242e-01 + 4.5500000e+03 -9.4420391e-02 + 4.5504000e+03 2.7672456e-01 + 4.5508000e+03 3.7512519e-01 + 4.5512000e+03 5.4102094e-01 + 4.5516000e+03 5.8432960e-01 + 4.5520000e+03 6.2427510e-01 + 4.5524000e+03 1.0842181e+00 + 4.5528000e+03 1.6041950e+00 + 4.5532000e+03 2.0042069e+00 + 4.5536000e+03 2.9242263e+00 + 4.5540000e+03 2.7545393e+00 + 4.5544000e+03 2.3550879e+00 + 4.5548000e+03 1.8859475e+00 + 4.5552000e+03 1.5940467e+00 + 4.5556000e+03 9.8800375e-01 + 4.5560000e+03 1.7602953e-01 + 4.5564000e+03 -4.7459976e-01 + 4.5568000e+03 -7.9430800e-01 + 4.5572000e+03 -1.2245980e+00 + 4.5576000e+03 -1.7466952e+00 + 4.5580000e+03 -2.2334831e+00 + 4.5584000e+03 -2.8469481e+00 + 4.5588000e+03 -2.9767951e+00 + 4.5592000e+03 -2.9819241e+00 + 4.5596000e+03 -2.9890160e+00 + 4.5600000e+03 -2.5569956e+00 + 4.5604000e+03 -2.1826594e+00 + 4.5608000e+03 -1.8935098e+00 + 4.5612000e+03 -1.4742116e+00 + 4.5616000e+03 -8.3739122e-01 + 4.5620000e+03 -3.6809836e-01 + 4.5624000e+03 2.2223336e-01 + 4.5628000e+03 1.2959802e+00 + 4.5632000e+03 2.4738280e+00 + 4.5636000e+03 3.8335695e+00 + 4.5640000e+03 4.8835016e+00 + 4.5644000e+03 5.2388448e+00 + 4.5648000e+03 4.9853036e+00 + 4.5652000e+03 4.6250595e+00 + 4.5656000e+03 3.9780499e+00 + 4.5660000e+03 2.9836679e+00 + 4.5664000e+03 1.7049163e+00 + 4.5668000e+03 4.4425641e-01 + 4.5672000e+03 -5.0571609e-01 + 4.5676000e+03 -1.4757575e+00 + 4.5680000e+03 -2.2765568e+00 + 4.5684000e+03 -3.3468956e+00 + 4.5688000e+03 -3.7078455e+00 + 4.5692000e+03 -3.6497075e+00 + 4.5696000e+03 -3.4746280e+00 + 4.5700000e+03 -2.7554961e+00 + 4.5704000e+03 -1.6348982e+00 + 4.5708000e+03 -1.1224948e+00 + 4.5712000e+03 -1.1259256e+00 + 4.5716000e+03 -1.0186446e+00 + 4.5720000e+03 -7.4911499e-01 + 4.5724000e+03 -3.8968043e-01 + 4.5728000e+03 1.0179263e-01 + 4.5732000e+03 4.9456516e-01 + 4.5736000e+03 7.3449054e-01 + 4.5740000e+03 1.0269716e+00 + 4.5744000e+03 1.3073399e+00 + 4.5748000e+03 1.7132018e+00 + 4.5752000e+03 2.1956184e+00 + 4.5756000e+03 2.4384911e+00 + 4.5760000e+03 2.3599129e+00 + 4.5764000e+03 2.3542409e+00 + 4.5768000e+03 2.0270755e+00 + 4.5772000e+03 2.0711646e+00 + 4.5776000e+03 1.7536801e+00 + 4.5780000e+03 1.4017766e+00 + 4.5784000e+03 9.1027251e-01 + 4.5788000e+03 4.9666649e-01 + 4.5792000e+03 1.0039494e-01 + 4.5796000e+03 -4.8341117e-01 + 4.5800000e+03 -7.7288625e-01 + 4.5804000e+03 -1.0378359e+00 + 4.5808000e+03 -1.2050248e+00 + 4.5812000e+03 -1.4777722e+00 + 4.5816000e+03 -1.7843701e+00 + 4.5820000e+03 -2.0914420e+00 + 4.5824000e+03 -2.0981850e+00 + 4.5828000e+03 -1.6943047e+00 + 4.5832000e+03 -1.3026634e+00 + 4.5836000e+03 -1.1442466e+00 + 4.5840000e+03 -1.0735690e+00 + 4.5844000e+03 -8.2279962e-01 + 4.5848000e+03 -4.0215406e-01 + 4.5852000e+03 1.6843898e-01 + 4.5856000e+03 2.2907025e-01 + 4.5860000e+03 9.6987141e-01 + 4.5864000e+03 2.1766369e+00 + 4.5868000e+03 2.9507863e+00 + 4.5872000e+03 2.9110796e+00 + 4.5876000e+03 2.5112468e+00 + 4.5880000e+03 9.0131140e-01 + 4.5884000e+03 -3.5874002e-01 + 4.5888000e+03 -1.0490446e+00 + 4.5892000e+03 -1.4594021e+00 + 4.5896000e+03 -1.7699276e+00 + 4.5900000e+03 -2.0405117e+00 + 4.5904000e+03 -2.0452839e+00 + 4.5908000e+03 -2.3039500e+00 + 4.5912000e+03 -2.4936548e+00 + 4.5916000e+03 -2.5849370e+00 + 4.5920000e+03 -2.4723510e+00 + 4.5924000e+03 -2.5022659e+00 + 4.5928000e+03 -2.2421817e+00 + 4.5932000e+03 -1.3920680e+00 + 4.5936000e+03 -5.1187643e-01 + 4.5940000e+03 9.2446700e-01 + 4.5944000e+03 2.6555224e+00 + 4.5948000e+03 4.2409338e+00 + 4.5952000e+03 5.6975988e+00 + 4.5956000e+03 6.1397206e+00 + 4.5960000e+03 5.1298884e+00 + 4.5964000e+03 4.5997485e+00 + 4.5968000e+03 4.2794990e+00 + 4.5972000e+03 3.1992393e+00 + 4.5976000e+03 2.5313860e+00 + 4.5980000e+03 2.0743315e+00 + 4.5984000e+03 1.5332909e+00 + 4.5988000e+03 1.0300603e+00 + 4.5992000e+03 3.8595987e-01 + 4.5996000e+03 -7.7750284e-01 + 4.6000000e+03 -2.0814976e+00 + 4.6004000e+03 -2.9800962e+00 + 4.6008000e+03 -3.8201151e+00 + 4.6012000e+03 -4.2416277e+00 + 4.6016000e+03 -4.6641343e+00 + 4.6020000e+03 -4.7286897e+00 + 4.6024000e+03 -4.4383259e+00 + 4.6028000e+03 -4.1078236e+00 + 4.6032000e+03 -3.6372416e+00 + 4.6036000e+03 -3.0966353e+00 + 4.6040000e+03 -2.1361333e+00 + 4.6044000e+03 -9.1913586e-01 + 4.6048000e+03 6.0625399e-01 + 4.6052000e+03 1.9838814e+00 + 4.6056000e+03 3.2379145e+00 + 4.6060000e+03 4.3504149e+00 + 4.6064000e+03 5.1407248e+00 + 4.6068000e+03 4.9551362e+00 + 4.6072000e+03 4.4756275e+00 + 4.6076000e+03 3.8992359e+00 + 4.6080000e+03 2.9431256e+00 + 4.6084000e+03 1.6217251e+00 + 4.6088000e+03 3.2674077e-01 + 4.6092000e+03 -6.3714083e-01 + 4.6096000e+03 -1.6814635e+00 + 4.6100000e+03 -2.2357979e+00 + 4.6104000e+03 -2.6134554e+00 + 4.6108000e+03 -2.9333891e+00 + 4.6112000e+03 -3.1584133e+00 + 4.6116000e+03 -3.1392710e+00 + 4.6120000e+03 -2.9690103e+00 + 4.6124000e+03 -2.3566203e+00 + 4.6128000e+03 -1.3912725e+00 + 4.6132000e+03 -1.3125860e-01 + 4.6136000e+03 9.9727799e-01 + 4.6140000e+03 2.0881565e+00 + 4.6144000e+03 3.2431353e+00 + 4.6148000e+03 4.4223072e+00 + 4.6152000e+03 5.1653752e+00 + 4.6156000e+03 5.4948616e+00 + 4.6160000e+03 5.4349914e+00 + 4.6164000e+03 4.6795229e+00 + 4.6168000e+03 4.0252742e+00 + 4.6172000e+03 2.3954532e+00 + 4.6176000e+03 6.9849216e-01 + 4.6180000e+03 -6.6837466e-01 + 4.6184000e+03 -1.5952383e+00 + 4.6188000e+03 -1.8987107e+00 + 4.6192000e+03 -1.9345680e+00 + 4.6196000e+03 -1.9747482e+00 + 4.6200000e+03 -2.2850818e+00 + 4.6204000e+03 -2.4346904e+00 + 4.6208000e+03 -2.5690934e+00 + 4.6212000e+03 -2.8857760e+00 + 4.6216000e+03 -3.2945001e+00 + 4.6220000e+03 -3.3348524e+00 + 4.6224000e+03 -3.4079898e+00 + 4.6228000e+03 -2.8379555e+00 + 4.6232000e+03 -1.8977559e+00 + 4.6236000e+03 -3.6738158e-01 + 4.6240000e+03 6.2638991e-02 + 4.6244000e+03 4.2267568e-01 + 4.6248000e+03 1.1527967e+00 + 4.6252000e+03 1.9330516e+00 + 4.6256000e+03 2.5033911e+00 + 4.6260000e+03 2.8637652e+00 + 4.6264000e+03 2.7543664e+00 + 4.6268000e+03 2.2547185e+00 + 4.6272000e+03 1.5448371e+00 + 4.6276000e+03 3.3473331e-01 + 4.6280000e+03 -2.7532084e-01 + 4.6284000e+03 -2.1599693e-01 + 4.6288000e+03 -6.6438710e-02 + 4.6292000e+03 3.4318674e-01 + 4.6296000e+03 5.8940710e-01 + 4.6300000e+03 4.1733775e-01 + 4.6304000e+03 6.3484262e-01 + 4.6308000e+03 7.1990453e-01 + 4.6312000e+03 1.0357044e+00 + 4.6316000e+03 6.8046542e-01 + 4.6320000e+03 -1.5476602e-01 + 4.6324000e+03 -9.7520551e-01 + 4.6328000e+03 -1.6327102e+00 + 4.6332000e+03 -2.0476814e+00 + 4.6336000e+03 -1.7676341e+00 + 4.6340000e+03 -1.1575339e+00 + 4.6344000e+03 -5.2737808e-01 + 4.6348000e+03 1.4273569e-01 + 4.6352000e+03 8.7623869e-01 + 4.6356000e+03 1.5084610e+00 + 4.6360000e+03 1.9416388e+00 + 4.6364000e+03 2.3056983e+00 + 4.6368000e+03 2.7864632e+00 + 4.6372000e+03 3.0232101e+00 + 4.6376000e+03 2.5331025e+00 + 4.6380000e+03 2.1829170e+00 + 4.6384000e+03 1.4009211e+00 + 4.6388000e+03 6.6670696e-01 + 4.6392000e+03 -1.5412481e-01 + 4.6396000e+03 -8.1528188e-01 + 4.6400000e+03 -1.5208600e+00 + 4.6404000e+03 -1.9938116e+00 + 4.6408000e+03 -2.7523687e+00 + 4.6412000e+03 -2.8814785e+00 + 4.6416000e+03 -2.6721108e+00 + 4.6420000e+03 -2.3622067e+00 + 4.6424000e+03 -1.9869507e+00 + 4.6428000e+03 -1.5518711e+00 + 4.6432000e+03 -6.8797726e-01 + 4.6436000e+03 3.3486094e-01 + 4.6440000e+03 7.5378792e-01 + 4.6444000e+03 9.9446196e-01 + 4.6448000e+03 1.2750259e+00 + 4.6452000e+03 1.8352741e+00 + 4.6456000e+03 2.4353665e+00 + 4.6460000e+03 2.8951794e+00 + 4.6464000e+03 3.0050368e+00 + 4.6468000e+03 2.6247447e+00 + 4.6472000e+03 2.0916479e+00 + 4.6476000e+03 1.5043165e+00 + 4.6480000e+03 7.3568433e-01 + 4.6484000e+03 3.1707794e-01 + 4.6488000e+03 -4.9494378e-02 + 4.6492000e+03 -2.8508816e-01 + 4.6496000e+03 -2.7633423e-01 + 4.6500000e+03 -7.1763820e-01 + 4.6504000e+03 -1.2026285e+00 + 4.6508000e+03 -1.6652421e+00 + 4.6512000e+03 -2.4975395e+00 + 4.6516000e+03 -2.5772931e+00 + 4.6520000e+03 -2.2568983e+00 + 4.6524000e+03 -2.0348091e+00 + 4.6528000e+03 -2.0832207e+00 + 4.6532000e+03 -1.6818912e+00 + 4.6536000e+03 -1.2824160e+00 + 4.6540000e+03 -6.9098847e-01 + 4.6544000e+03 2.0822665e-03 + 4.6548000e+03 7.0323969e-01 + 4.6552000e+03 1.2300155e+00 + 4.6556000e+03 1.3451040e+00 + 4.6560000e+03 1.2393640e+00 + 4.6564000e+03 9.4877045e-01 + 4.6568000e+03 6.2888253e-01 + 4.6572000e+03 7.7044891e-03 + 4.6576000e+03 -7.3807524e-02 + 4.6580000e+03 3.4427162e-01 + 4.6584000e+03 5.5586842e-01 + 4.6588000e+03 1.0828829e+00 + 4.6592000e+03 1.3591647e+00 + 4.6596000e+03 1.1022135e+00 + 4.6600000e+03 6.4510742e-01 + 4.6604000e+03 5.9730417e-01 + 4.6608000e+03 3.7232529e-01 + 4.6612000e+03 3.9114224e-01 + 4.6616000e+03 3.8203536e-01 + 4.6620000e+03 9.3923968e-02 + 4.6624000e+03 -5.5395183e-02 + 4.6628000e+03 -1.3452881e-01 + 4.6632000e+03 -1.0351298e-01 + 4.6636000e+03 -3.4147864e-01 + 4.6640000e+03 -6.2452352e-01 + 4.6644000e+03 -7.5408240e-01 + 4.6648000e+03 -1.1363400e+00 + 4.6652000e+03 -1.1570555e+00 + 4.6656000e+03 -1.0560243e+00 + 4.6660000e+03 -4.9520947e-01 + 4.6664000e+03 8.0520513e-01 + 4.6668000e+03 1.1154893e+00 + 4.6672000e+03 8.0544247e-01 + 4.6676000e+03 3.1516109e-01 + 4.6680000e+03 -7.7508221e-02 + 4.6684000e+03 -2.1726128e-01 + 4.6688000e+03 -2.0316895e-02 + 4.6692000e+03 3.1566290e-01 + 4.6696000e+03 4.1305099e-01 + 4.6700000e+03 6.0943581e-01 + 4.6704000e+03 5.4764484e-01 + 4.6708000e+03 2.8501966e-01 + 4.6712000e+03 -2.6912003e-01 + 4.6716000e+03 -5.7218073e-01 + 4.6720000e+03 -7.2073635e-01 + 4.6724000e+03 -9.1585154e-01 + 4.6728000e+03 -1.3793457e+00 + 4.6732000e+03 -1.5318937e+00 + 4.6736000e+03 -1.4032016e+00 + 4.6740000e+03 -1.2157043e+00 + 4.6744000e+03 -8.8571027e-01 + 4.6748000e+03 -4.4572184e-01 + 4.6752000e+03 -3.7558300e-01 + 4.6756000e+03 6.3452090e-01 + 4.6760000e+03 2.3445478e+00 + 4.6764000e+03 3.0643906e+00 + 4.6768000e+03 3.4240444e+00 + 4.6772000e+03 3.5036372e+00 + 4.6776000e+03 2.7105894e+00 + 4.6780000e+03 1.7908568e+00 + 4.6784000e+03 8.5633536e-01 + 4.6788000e+03 3.0679430e-02 + 4.6792000e+03 -8.3543490e-01 + 4.6796000e+03 -1.5197578e+00 + 4.6800000e+03 -1.5801441e+00 + 4.6804000e+03 -1.3305131e+00 + 4.6808000e+03 -7.2107230e-01 + 4.6812000e+03 -3.5573017e-01 + 4.6816000e+03 1.3432607e-01 + 4.6820000e+03 1.2768586e-01 + 4.6824000e+03 -1.8135315e-01 + 4.6828000e+03 -7.1202418e-01 + 4.6832000e+03 -9.5166080e-01 + 4.6836000e+03 -8.0127766e-01 + 4.6840000e+03 -5.8063945e-01 + 4.6844000e+03 -2.2990924e-01 + 4.6848000e+03 6.0835373e-02 + 4.6852000e+03 3.1156686e-01 + 4.6856000e+03 -1.1774829e-01 + 4.6860000e+03 -5.9371776e-01 + 4.6864000e+03 -9.4682561e-01 + 4.6868000e+03 -1.0488551e+00 + 4.6872000e+03 -1.0560493e+00 + 4.6876000e+03 -6.3389762e-01 + 4.6880000e+03 -4.7317715e-01 + 4.6884000e+03 -3.4278364e-01 + 4.6888000e+03 -1.5273511e-01 + 4.6892000e+03 2.5718174e-01 + 4.6896000e+03 3.0716805e-01 + 4.6900000e+03 2.4731391e-01 + 4.6904000e+03 -2.4427526e-02 + 4.6908000e+03 -1.8365474e-01 + 4.6912000e+03 -3.6354172e-01 + 4.6916000e+03 -5.7099082e-01 + 4.6920000e+03 -8.5553376e-01 + 4.6924000e+03 -9.9193397e-01 + 4.6928000e+03 -8.2429777e-01 + 4.6932000e+03 -4.5456147e-01 + 4.6936000e+03 2.3513977e-01 + 4.6940000e+03 5.6481485e-01 + 4.6944000e+03 6.0450287e-01 + 4.6948000e+03 5.0407505e-01 + 4.6952000e+03 7.0357503e-01 + 4.6956000e+03 8.8303595e-01 + 4.6960000e+03 8.0253498e-01 + 4.6964000e+03 6.1207794e-01 + 4.6968000e+03 1.8289176e-01 + 4.6972000e+03 -3.9022777e-01 + 4.6976000e+03 -7.4043142e-01 + 4.6980000e+03 -1.0134182e+00 + 4.6984000e+03 -1.1597428e+00 + 4.6988000e+03 -9.9990652e-01 + 4.6992000e+03 -6.8017271e-01 + 4.6996000e+03 -3.7996057e-01 + 4.7000000e+03 -2.1983033e-01 + 4.7004000e+03 -3.5961521e-01 + 4.7008000e+03 -1.9931793e-01 + 4.7012000e+03 2.3103453e-01 + 4.7016000e+03 4.5148362e-01 + 4.7020000e+03 6.3198978e-01 + 4.7024000e+03 1.0725696e+00 + 4.7028000e+03 1.3832623e+00 + 4.7032000e+03 1.0240050e+00 + 4.7036000e+03 4.1474430e-01 + 4.7040000e+03 -3.3418087e-01 + 4.7044000e+03 -8.8740583e-01 + 4.7048000e+03 -9.9162957e-01 + 4.7052000e+03 -8.5294973e-01 + 4.7056000e+03 -8.5803694e-01 + 4.7060000e+03 -9.0160744e-01 + 4.7064000e+03 -8.3278035e-01 + 4.7068000e+03 -8.0256250e-01 + 4.7072000e+03 -8.4222644e-01 + 4.7076000e+03 -7.9203516e-01 + 4.7080000e+03 -7.0216708e-01 + 4.7084000e+03 -3.0193033e-01 + 4.7088000e+03 6.8378152e-02 + 4.7092000e+03 3.4495629e-01 + 4.7096000e+03 7.1666879e-01 + 4.7100000e+03 1.0310121e+00 + 4.7104000e+03 1.0073450e+00 + 4.7108000e+03 8.4758371e-01 + 4.7112000e+03 5.7787277e-01 + 4.7116000e+03 4.8150566e-02 + 4.7120000e+03 -9.1543523e-02 + 4.7124000e+03 -3.0084062e-01 + 4.7128000e+03 -9.2120081e-01 + 4.7132000e+03 -1.2085276e+00 + 4.7136000e+03 -1.2233616e+00 + 4.7140000e+03 -1.1620739e+00 + 4.7144000e+03 -1.1933756e+00 + 4.7148000e+03 -1.3739420e+00 + 4.7152000e+03 -1.2449991e+00 + 4.7156000e+03 -9.9368920e-01 + 4.7160000e+03 -9.5043370e-01 + 4.7164000e+03 -1.0051025e+00 + 4.7168000e+03 -1.0769746e+00 + 4.7172000e+03 -1.1405783e+00 + 4.7176000e+03 -1.1013871e+00 + 4.7180000e+03 -1.0319190e+00 + 4.7184000e+03 -9.6215349e-01 + 4.7188000e+03 -6.8250859e-01 + 4.7192000e+03 -5.3200030e-01 + 4.7196000e+03 -2.7110745e-01 + 4.7200000e+03 2.2890291e-01 + 4.7204000e+03 3.8946914e-01 + 4.7208000e+03 6.1021108e-01 + 4.7212000e+03 1.0209799e+00 + 4.7216000e+03 8.9182157e-01 + 4.7220000e+03 5.0273862e-01 + 4.7224000e+03 8.9352198e-01 + 4.7228000e+03 1.4442707e+00 + 4.7232000e+03 1.9290344e+00 + 4.7236000e+03 2.5033392e+00 + 4.7240000e+03 2.8678426e+00 + 4.7244000e+03 3.0668264e+00 + 4.7248000e+03 2.7067281e+00 + 4.7252000e+03 1.9683861e+00 + 4.7256000e+03 1.1589549e+00 + 4.7260000e+03 -5.3547298e-04 + 4.7264000e+03 -5.1016071e-01 + 4.7268000e+03 -1.0298394e+00 + 4.7272000e+03 -2.2395653e+00 + 4.7276000e+03 -2.9292762e+00 + 4.7280000e+03 -3.2193961e+00 + 4.7284000e+03 -3.2796772e+00 + 4.7288000e+03 -3.0500998e+00 + 4.7292000e+03 -2.7705378e+00 + 4.7296000e+03 -2.3607605e+00 + 4.7300000e+03 -2.0110009e+00 + 4.7304000e+03 -1.5712381e+00 + 4.7308000e+03 -1.1914579e+00 + 4.7312000e+03 -9.1764399e-02 + 4.7316000e+03 -2.2155480e-02 + 4.7320000e+03 8.8738571e-01 + 4.7324000e+03 2.6869052e+00 + 4.7328000e+03 3.8602429e+00 + 4.7332000e+03 4.0132979e+00 + 4.7336000e+03 3.0674901e+00 + 4.7340000e+03 1.7045330e+00 + 4.7344000e+03 6.4172962e-01 + 4.7348000e+03 -2.0748637e-01 + 4.7352000e+03 -1.0763808e+00 + 4.7356000e+03 -1.7277981e+00 + 4.7360000e+03 -1.9187990e+00 + 4.7364000e+03 -2.0241463e+00 + 4.7368000e+03 -1.8538328e+00 + 4.7372000e+03 -1.6937215e+00 + 4.7376000e+03 -1.4337957e+00 + 4.7380000e+03 -1.2440702e+00 + 4.7384000e+03 -6.8485574e-01 + 4.7388000e+03 -1.8509653e-01 + 4.7392000e+03 1.6433926e-01 + 4.7396000e+03 4.4396875e-01 + 4.7400000e+03 7.5375687e-01 + 4.7404000e+03 9.2377921e-01 + 4.7408000e+03 1.4937427e+00 + 4.7412000e+03 2.0638493e+00 + 4.7416000e+03 2.1038683e+00 + 4.7420000e+03 1.9641026e+00 + 4.7424000e+03 1.9343225e+00 + 4.7428000e+03 1.3748356e+00 + 4.7432000e+03 9.1531012e-01 + 4.7436000e+03 1.1455076e+00 + 4.7440000e+03 1.5713229e+00 + 4.7444000e+03 1.7046207e+00 + 4.7448000e+03 1.8178410e+00 + 4.7452000e+03 1.6242853e+00 + 4.7456000e+03 1.3369148e+00 + 4.7460000e+03 1.0875424e+00 + 4.7464000e+03 1.0282630e+00 + 4.7468000e+03 6.6101475e-01 + 4.7472000e+03 -3.6213373e-01 + 4.7476000e+03 -1.0267761e+00 + 4.7480000e+03 -1.7420961e+00 + 4.7484000e+03 -2.0788892e+00 + 4.7488000e+03 -2.6190741e+00 + 4.7492000e+03 -2.8594383e+00 + 4.7496000e+03 -3.5999855e+00 + 4.7500000e+03 -3.6606880e+00 + 4.7504000e+03 -4.6114788e+00 + 4.7508000e+03 -4.4921738e+00 + 4.7512000e+03 -3.9725516e+00 + 4.7516000e+03 -3.5827069e+00 + 4.7520000e+03 -2.4563580e+00 + 4.7524000e+03 -1.0223355e+00 + 4.7528000e+03 1.6704350e-01 + 4.7532000e+03 7.0697756e-01 + 4.7536000e+03 1.0069167e+00 + 4.7540000e+03 1.3768936e+00 + 4.7544000e+03 1.7469164e+00 + 4.7548000e+03 2.4353870e+00 + 4.7552000e+03 3.0097725e+00 + 4.7556000e+03 2.8052288e+00 + 4.7560000e+03 2.1928037e+00 + 4.7564000e+03 1.5276480e+00 + 4.7568000e+03 9.7806189e-01 + 4.7572000e+03 5.7842808e-01 + 4.7576000e+03 3.6862968e-01 + 4.7580000e+03 4.5867641e-01 + 4.7584000e+03 8.0853881e-01 + 4.7588000e+03 8.3822867e-01 + 4.7592000e+03 5.9772840e-01 + 4.7596000e+03 2.8708662e-01 + 4.7600000e+03 9.6238903e-02 + 4.7604000e+03 3.5573090e-02 + 4.7608000e+03 5.0389186e-03 + 4.7612000e+03 1.0463183e-01 + 4.7616000e+03 5.3435909e-01 + 4.7620000e+03 7.4445524e-01 + 4.7624000e+03 7.4178250e-01 + 4.7628000e+03 4.4189971e-01 + 4.7632000e+03 4.0673471e-02 + 4.7636000e+03 -4.0533676e-01 + 4.7640000e+03 -8.4824916e-01 + 4.7644000e+03 -9.7321321e-01 + 4.7648000e+03 -4.9294004e-01 + 4.7652000e+03 2.7455136e-02 + 4.7656000e+03 3.1781664e-01 + 4.7660000e+03 5.0819084e-01 + 4.7664000e+03 7.5856788e-01 + 4.7668000e+03 7.8907002e-01 + 4.7672000e+03 4.9965053e-01 + 4.7676000e+03 1.9026705e-01 + 4.7680000e+03 -7.9914010e-01 + 4.7684000e+03 -1.3686089e+00 + 4.7688000e+03 -1.4881243e+00 + 4.7692000e+03 -2.1277115e+00 + 4.7696000e+03 -2.7478359e+00 + 4.7700000e+03 -3.1491234e+00 + 4.7704000e+03 -3.4789004e+00 + 4.7708000e+03 -3.4556612e+00 + 4.7712000e+03 -3.3450639e+00 + 4.7716000e+03 -2.8693538e+00 + 4.7720000e+03 -2.0395277e+00 + 4.7724000e+03 -1.0396626e+00 + 4.7728000e+03 -8.1964408e-01 + 4.7732000e+03 -4.1965887e-01 + 4.7736000e+03 -2.5936986e-01 + 4.7740000e+03 -3.7971294e-01 + 4.7744000e+03 -1.5959177e-01 + 4.7748000e+03 4.2062788e-01 + 4.7752000e+03 1.0508441e+00 + 4.7756000e+03 1.9513385e+00 + 4.7760000e+03 2.5817438e+00 + 4.7764000e+03 2.6622263e+00 + 4.7768000e+03 2.2524451e+00 + 4.7772000e+03 1.6276502e+00 + 4.7776000e+03 1.3128112e+00 + 4.7780000e+03 9.1470698e-01 + 4.7784000e+03 8.8525421e-01 + 4.7788000e+03 1.2236227e+00 + 4.7792000e+03 1.5592747e+00 + 4.7796000e+03 1.9740641e+00 + 4.7800000e+03 2.1889763e+00 + 4.7804000e+03 1.9025954e+00 + 4.7808000e+03 1.2552740e+00 + 4.7812000e+03 1.1287723e+00 + 4.7816000e+03 1.1464555e+00 + 4.7820000e+03 1.0556609e+00 + 4.7824000e+03 1.0443023e+00 + 4.7828000e+03 5.7236307e-01 + 4.7832000e+03 2.4241090e-01 + 4.7836000e+03 -1.7027250e-01 + 4.7840000e+03 -3.8690711e-01 + 4.7844000e+03 -7.9055988e-01 + 4.7848000e+03 -1.2481360e+00 + 4.7852000e+03 -1.7797899e+00 + 4.7856000e+03 -2.0133969e+00 + 4.7860000e+03 -2.3026236e+00 + 4.7864000e+03 -2.5513960e+00 + 4.7868000e+03 -2.3682524e+00 + 4.7872000e+03 -1.9985839e+00 + 4.7876000e+03 -1.4224407e+00 + 4.7880000e+03 -1.2178982e+00 + 4.7884000e+03 -8.2322302e-01 + 4.7888000e+03 -5.2233338e-01 + 4.7892000e+03 -1.3437486e-01 + 4.7896000e+03 9.9009648e-02 + 4.7900000e+03 1.6772209e-01 + 4.7904000e+03 3.4645431e-01 + 4.7908000e+03 3.6524090e-01 + 4.7912000e+03 4.0413474e-01 + 4.7916000e+03 4.4346108e-01 + 4.7920000e+03 1.1058571e-01 + 4.7924000e+03 -5.6576978e-02 + 4.7928000e+03 -8.4007263e-02 + 4.7932000e+03 -3.3461483e-02 + 4.7936000e+03 3.8829213e-02 + 4.7940000e+03 -1.2948014e-01 + 4.7944000e+03 -4.8731602e-01 + 4.7948000e+03 -5.7296466e-01 + 4.7952000e+03 -4.2458637e-01 + 4.7956000e+03 -1.5442383e-01 + 4.7960000e+03 1.2574423e-01 + 4.7964000e+03 5.7562263e-01 + 4.7968000e+03 1.0455047e+00 + 4.7972000e+03 1.3854068e+00 + 4.7976000e+03 1.4552541e+00 + 4.7980000e+03 1.6350272e+00 + 4.7984000e+03 1.5846921e+00 + 4.7988000e+03 1.1640978e+00 + 4.7992000e+03 6.1343916e-01 + 4.7996000e+03 3.6265846e-01 + 4.8000000e+03 3.9178463e-01 + 4.8004000e+03 7.1095071e-01 + 4.8008000e+03 1.2201364e+00 + 4.8012000e+03 1.3194500e+00 + 4.8016000e+03 1.8114177e+00 + 4.8020000e+03 2.3957739e+00 + 4.8024000e+03 2.5589143e+00 + 4.8028000e+03 1.8754853e+00 + 4.8032000e+03 6.0639522e-01 + 4.8036000e+03 -6.0897324e-01 + 4.8040000e+03 -1.8962193e+00 + 4.8044000e+03 -2.5849366e+00 + 4.8048000e+03 -3.1801774e+00 + 4.8052000e+03 -3.1670835e+00 + 4.8056000e+03 -2.6947949e+00 + 4.8060000e+03 -2.1605834e+00 + 4.8064000e+03 -1.4379925e+00 + 4.8068000e+03 -1.1186163e+00 + 4.8072000e+03 -1.4667225e+00 + 4.8076000e+03 -1.8096856e+00 + 4.8080000e+03 -1.7297608e+00 + 4.8084000e+03 -1.6200707e+00 + 4.8088000e+03 -9.8061714e-01 + 4.8092000e+03 -8.4143682e-01 + 4.8096000e+03 -2.8241386e-01 + 4.8100000e+03 2.6626164e-01 + 4.8104000e+03 8.8483939e-01 + 4.8108000e+03 1.7234667e+00 + 4.8112000e+03 2.1221227e+00 + 4.8116000e+03 2.7208600e+00 + 4.8120000e+03 3.3430507e+00 + 4.8124000e+03 3.6296096e+00 + 4.8128000e+03 3.0924431e+00 + 4.8132000e+03 1.9321318e+00 + 4.8136000e+03 5.5772556e-01 + 4.8140000e+03 -1.7010669e-01 + 4.8144000e+03 -6.3513226e-01 + 4.8148000e+03 -8.7572629e-01 + 4.8152000e+03 -1.0492320e+00 + 4.8156000e+03 -9.6323759e-01 + 4.8160000e+03 -6.7590946e-01 + 4.8164000e+03 -2.6132447e-01 + 4.8168000e+03 1.3137898e-01 + 4.8172000e+03 4.8624531e-01 + 4.8176000e+03 7.0501212e-01 + 4.8180000e+03 2.3492575e-01 + 4.8184000e+03 -4.6397798e-02 + 4.8188000e+03 -3.3527856e-01 + 4.8192000e+03 1.6073805e-03 + 4.8196000e+03 7.7686876e-01 + 4.8200000e+03 1.4843192e+00 + 4.8204000e+03 1.6143185e+00 + 4.8208000e+03 1.8841078e+00 + 4.8212000e+03 1.9539297e+00 + 4.8216000e+03 1.5837992e+00 + 4.8220000e+03 1.0937122e+00 + 4.8224000e+03 7.5367896e-01 + 4.8228000e+03 5.4159417e-01 + 4.8232000e+03 2.5279059e-01 + 4.8236000e+03 1.4093817e-01 + 4.8240000e+03 2.6789121e-03 + 4.8244000e+03 -2.6625093e-01 + 4.8248000e+03 -6.2690199e-01 + 4.8252000e+03 -1.9370110e+00 + 4.8256000e+03 -2.8558817e+00 + 4.8260000e+03 -3.0111266e+00 + 4.8264000e+03 -2.9966171e+00 + 4.8268000e+03 -3.0908201e+00 + 4.8272000e+03 -2.7360172e+00 + 4.8276000e+03 -2.5649413e+00 + 4.8280000e+03 -2.3344961e+00 + 4.8284000e+03 -1.4029307e+00 + 4.8288000e+03 -3.2211539e-01 + 4.8292000e+03 1.5031743e-01 + 4.8296000e+03 7.8921463e-01 + 4.8300000e+03 1.3680424e+00 + 4.8304000e+03 1.6512841e+00 + 4.8308000e+03 1.6103842e+00 + 4.8312000e+03 1.7690812e+00 + 4.8316000e+03 1.7372728e+00 + 4.8320000e+03 1.3051722e+00 + 4.8324000e+03 1.1230655e+00 + 4.8328000e+03 1.0409877e+00 + 4.8332000e+03 9.5906584e-01 + 4.8336000e+03 9.5168970e-01 + 4.8340000e+03 8.8687027e-01 + 4.8344000e+03 9.3087259e-01 + 4.8348000e+03 9.5467885e-01 + 4.8352000e+03 5.0813157e-01 + 4.8356000e+03 1.1673668e-01 + 4.8360000e+03 -8.8404929e-02 + 4.8364000e+03 -6.6608034e-01 + 4.8368000e+03 -1.4386992e+00 + 4.8372000e+03 -2.2425047e+00 + 4.8376000e+03 -2.1617800e+00 + 4.8380000e+03 -1.7398985e+00 + 4.8384000e+03 -1.5177919e+00 + 4.8388000e+03 -1.0800068e+00 + 4.8392000e+03 -4.8389277e-01 + 4.8396000e+03 -3.1235533e-01 + 4.8400000e+03 6.8708703e-02 + 4.8404000e+03 7.3928317e-01 + 4.8408000e+03 1.3493672e+00 + 4.8412000e+03 2.5190052e+00 + 4.8416000e+03 2.8181965e+00 + 4.8420000e+03 2.5370208e+00 + 4.8424000e+03 1.9356020e+00 + 4.8428000e+03 1.3686797e+00 + 4.8432000e+03 3.7230693e-01 + 4.8436000e+03 -4.8005968e-01 + 4.8440000e+03 -1.1915669e+00 + 4.8444000e+03 -1.7035563e+00 + 4.8448000e+03 -1.6828660e+00 + 4.8452000e+03 -1.4332777e+00 + 4.8456000e+03 -1.1233426e+00 + 4.8460000e+03 -6.7373552e-01 + 4.8464000e+03 -4.0741567e-01 + 4.8468000e+03 -7.4032733e-02 + 4.8472000e+03 1.6465270e-01 + 4.8476000e+03 4.7027403e-01 + 4.8480000e+03 1.0712918e+00 + 4.8484000e+03 1.5021486e+00 + 4.8488000e+03 1.5727968e+00 + 4.8492000e+03 1.6532728e+00 + 4.8496000e+03 1.4635114e+00 + 4.8500000e+03 9.6350543e-01 + 4.8504000e+03 1.3339054e-01 + 4.8508000e+03 -3.4682886e-01 + 4.8512000e+03 -5.2661823e-01 + 4.8516000e+03 -5.7664984e-01 + 4.8520000e+03 -7.1715220e-01 + 4.8524000e+03 -1.0378686e+00 + 4.8528000e+03 -1.5589724e+00 + 4.8532000e+03 -1.8402726e+00 + 4.8536000e+03 -1.9916192e+00 + 4.8540000e+03 -1.9228565e+00 + 4.8544000e+03 -1.7139933e+00 + 4.8548000e+03 -1.6449633e+00 + 4.8552000e+03 -1.4655959e+00 + 4.8556000e+03 -1.3358835e+00 + 4.8560000e+03 -1.2257748e+00 + 4.8564000e+03 -9.4521771e-01 + 4.8568000e+03 -3.8414924e-01 + 4.8572000e+03 4.9797816e-02 + 4.8576000e+03 3.3624270e-01 + 4.8580000e+03 5.5630796e-01 + 4.8584000e+03 2.0482719e-01 + 4.8588000e+03 -7.7601819e-02 + 4.8592000e+03 -3.2354585e-01 + 4.8596000e+03 -2.4282357e-01 + 4.8600000e+03 -2.2861664e-02 + 4.8604000e+03 -3.0264678e-02 + 4.8608000e+03 2.2081127e-01 + 4.8612000e+03 3.9658729e-01 + 4.8616000e+03 6.5623219e-01 + 4.8620000e+03 6.2836423e-01 + 4.8624000e+03 4.7636785e-01 + 4.8628000e+03 4.5370417e-01 + 4.8632000e+03 4.1284819e-01 + 4.8636000e+03 1.8200758e-01 + 4.8640000e+03 -7.8640396e-02 + 4.8644000e+03 -3.9324423e-02 + 4.8648000e+03 1.6998795e-01 + 4.8652000e+03 3.9949293e-01 + 4.8656000e+03 5.3920623e-01 + 4.8660000e+03 5.7721168e-01 + 4.8664000e+03 5.7513482e-01 + 4.8668000e+03 7.8030054e-01 + 4.8672000e+03 1.0741422e+00 + 4.8676000e+03 1.1014630e+00 + 4.8680000e+03 1.2520091e+00 + 4.8684000e+03 1.1624963e+00 + 4.8688000e+03 5.4289949e-01 + 4.8692000e+03 -1.0684328e-01 + 4.8696000e+03 -2.7665160e-01 + 4.8700000e+03 -4.7350220e-01 + 4.8704000e+03 -6.7905619e-01 + 4.8708000e+03 -9.0155248e-01 + 4.8712000e+03 -8.9826211e-01 + 4.8716000e+03 -8.8820543e-01 + 4.8720000e+03 -6.8907904e-01 + 4.8724000e+03 -6.1898682e-01 + 4.8728000e+03 -5.6945019e-01 + 4.8732000e+03 -6.0011544e-01 + 4.8736000e+03 -9.9073442e-01 + 4.8740000e+03 -1.4412742e+00 + 4.8744000e+03 -1.7817112e+00 + 4.8748000e+03 -1.8768141e+00 + 4.8752000e+03 -1.9423821e+00 + 4.8756000e+03 -1.8573779e+00 + 4.8760000e+03 -1.7525439e+00 + 4.8764000e+03 -1.7111735e+00 + 4.8768000e+03 -1.3804830e+00 + 4.8772000e+03 -5.9957568e-01 + 4.8776000e+03 1.1143353e-01 + 4.8780000e+03 3.9258594e-01 + 4.8784000e+03 7.2360630e-01 + 4.8788000e+03 9.3449281e-01 + 4.8792000e+03 8.8530978e-01 + 4.8796000e+03 4.9599848e-01 + 4.8800000e+03 2.0649723e-01 + 4.8804000e+03 -3.1924269e-03 + 4.8808000e+03 -3.3220697e-02 + 4.8812000e+03 -1.2349476e-01 + 4.8816000e+03 -2.1394323e-01 + 4.8820000e+03 1.9535924e-01 + 4.8824000e+03 3.2240813e-01 + 4.8828000e+03 6.7802593e-01 + 4.8832000e+03 6.7174091e-01 + 4.8836000e+03 5.5065101e-01 + 4.8840000e+03 4.2549133e-01 + 4.8844000e+03 6.1821263e-01 + 4.8848000e+03 8.8780506e-01 + 4.8852000e+03 9.8461297e-01 + 4.8856000e+03 1.2307932e+00 + 4.8860000e+03 9.5091685e-01 + 4.8864000e+03 4.4083874e-01 + 4.8868000e+03 1.4053373e-01 + 4.8872000e+03 -5.9840502e-02 + 4.8876000e+03 -3.1018741e-01 + 4.8880000e+03 -4.3029188e-01 + 4.8884000e+03 -6.0044315e-01 + 4.8888000e+03 -8.5048534e-01 + 4.8892000e+03 -4.6071941e-01 + 4.8896000e+03 -3.9089857e-01 + 4.8900000e+03 -8.0104526e-01 + 4.8904000e+03 -1.0810793e+00 + 4.8908000e+03 -1.8211499e+00 + 4.8912000e+03 -1.8656411e+00 + 4.8916000e+03 -1.5616755e+00 + 4.8920000e+03 -1.0876282e+00 + 4.8924000e+03 -3.6200857e-01 + 4.8928000e+03 5.5554406e-01 + 4.8932000e+03 1.4313930e+00 + 4.8936000e+03 1.8909229e+00 + 4.8940000e+03 2.1035550e+00 + 4.8944000e+03 2.1218157e+00 + 4.8948000e+03 1.6962093e+00 + 4.8952000e+03 6.8714338e-01 + 4.8956000e+03 -1.7483452e-01 + 4.8960000e+03 -1.0864393e+00 + 4.8964000e+03 -1.5710328e+00 + 4.8968000e+03 -1.6905500e+00 + 4.8972000e+03 -1.7599056e+00 + 4.8976000e+03 -2.0091537e+00 + 4.8980000e+03 -2.2483285e+00 + 4.8984000e+03 -2.3174192e+00 + 4.8988000e+03 -2.1265195e+00 + 4.8992000e+03 -1.2457286e+00 + 4.8996000e+03 -2.8462302e-01 + 4.9000000e+03 1.0031864e+00 + 4.9004000e+03 2.0984761e+00 + 4.9008000e+03 2.5820303e+00 + 4.9012000e+03 3.0027568e+00 + 4.9016000e+03 2.8518156e+00 + 4.9020000e+03 2.5029598e+00 + 4.9024000e+03 2.0918360e+00 + 4.9028000e+03 1.8749146e+00 + 4.9032000e+03 1.4702533e+00 + 4.9036000e+03 1.1094211e+00 + 4.9040000e+03 1.3790054e-01 + 4.9044000e+03 -5.7283449e-01 + 4.9048000e+03 -8.2868516e-01 + 4.9052000e+03 -1.1807967e+00 + 4.9056000e+03 -1.5905174e+00 + 4.9060000e+03 -1.8822323e+00 + 4.9064000e+03 -2.1337847e+00 + 4.9068000e+03 -2.2687094e+00 + 4.9072000e+03 -2.4543672e+00 + 4.9076000e+03 -1.9802522e+00 + 4.9080000e+03 -1.4954439e+00 + 4.9084000e+03 -1.1385612e+00 + 4.9088000e+03 -9.3058363e-01 + 4.9092000e+03 -6.3422400e-01 + 4.9096000e+03 -2.2450444e-01 + 4.9100000e+03 3.7428142e-01 + 4.9104000e+03 1.1637081e+00 + 4.9108000e+03 1.4046836e+00 + 4.9112000e+03 1.7277671e+00 + 4.9116000e+03 2.2369539e+00 + 4.9120000e+03 1.8964482e+00 + 4.9124000e+03 1.4760035e+00 + 4.9128000e+03 1.5572027e+00 + 4.9132000e+03 1.3564739e+00 + 4.9136000e+03 1.1808807e+00 + 4.9140000e+03 7.9123038e-01 + 4.9144000e+03 2.6013391e-01 + 4.9148000e+03 -4.6625350e-01 + 4.9152000e+03 -8.4797563e-01 + 4.9156000e+03 -1.0788898e+00 + 4.9160000e+03 -1.6336894e+00 + 4.9164000e+03 -1.7239691e+00 + 4.9168000e+03 -1.5565510e+00 + 4.9172000e+03 -1.3930646e+00 + 4.9176000e+03 -1.3412959e+00 + 4.9180000e+03 -1.2211889e+00 + 4.9184000e+03 -1.0661644e+00 + 4.9188000e+03 -4.4519515e-01 + 4.9192000e+03 6.4522403e-01 + 4.9196000e+03 1.7549103e+00 + 4.9200000e+03 2.7080467e+00 + 4.9204000e+03 3.1824088e+00 + 4.9208000e+03 2.5311938e+00 + 4.9212000e+03 1.8499527e+00 + 4.9216000e+03 1.8187161e+00 + 4.9220000e+03 1.4973470e+00 + 4.9224000e+03 -1.3761551e-02 + 4.9228000e+03 -5.1639494e-01 + 4.9232000e+03 -7.9797667e-01 + 4.9236000e+03 -6.8611945e-01 + 4.9240000e+03 -8.2675039e-01 + 4.9244000e+03 -1.3356989e+00 + 4.9248000e+03 -1.6607805e+00 + 4.9252000e+03 -1.8531076e+00 + 4.9256000e+03 -2.0034654e+00 + 4.9260000e+03 -2.1791071e+00 + 4.9264000e+03 -2.0687881e+00 + 4.9268000e+03 -1.9178634e+00 + 4.9272000e+03 -1.3768175e+00 + 4.9276000e+03 -8.1589705e-01 + 4.9280000e+03 3.5486444e-01 + 4.9284000e+03 4.7554743e-01 + 4.9288000e+03 1.3661451e+00 + 4.9292000e+03 1.7570829e+00 + 4.9296000e+03 1.7471762e+00 + 4.9300000e+03 1.1974409e+00 + 4.9304000e+03 8.3765418e-01 + 4.9308000e+03 7.0784829e-01 + 4.9312000e+03 8.7801652e-01 + 4.9316000e+03 1.1288805e+00 + 4.9320000e+03 1.3316703e+00 + 4.9324000e+03 1.1690397e+00 + 4.9328000e+03 9.1508145e-01 + 4.9332000e+03 1.1197075e+00 + 4.9336000e+03 1.2399823e+00 + 4.9340000e+03 1.2041500e+00 + 4.9344000e+03 1.0238673e+00 + 4.9348000e+03 4.1427984e-01 + 4.9352000e+03 8.5251290e-02 + 4.9356000e+03 -4.1565522e-01 + 4.9360000e+03 -7.1811058e-01 + 4.9364000e+03 -1.1079944e+00 + 4.9368000e+03 -1.5292653e+00 + 4.9372000e+03 -2.1096124e+00 + 4.9376000e+03 -2.2789680e+00 + 4.9380000e+03 -2.3710004e+00 + 4.9384000e+03 -2.4113338e+00 + 4.9388000e+03 -2.3613984e+00 + 4.9392000e+03 -2.1594375e+00 + 4.9396000e+03 -1.7838620e+00 + 4.9400000e+03 -1.5849935e+00 + 4.9404000e+03 -1.3598585e+00 + 4.9408000e+03 -8.9195221e-01 + 4.9412000e+03 -2.4234232e-01 + 4.9416000e+03 3.2696369e-01 + 4.9420000e+03 1.2760708e+00 + 4.9424000e+03 1.4051057e+00 + 4.9428000e+03 1.4542553e+00 + 4.9432000e+03 1.6336701e+00 + 4.9436000e+03 1.8434078e+00 + 4.9440000e+03 1.6932669e+00 + 4.9444000e+03 1.4632505e+00 + 4.9448000e+03 9.9336771e-01 + 4.9452000e+03 7.5363409e-01 + 4.9456000e+03 7.1403979e-01 + 4.9460000e+03 6.5462457e-01 + 4.9464000e+03 2.8538586e-01 + 4.9468000e+03 -9.3743069e-02 + 4.9472000e+03 -8.2255125e-01 + 4.9476000e+03 -9.9141910e-01 + 4.9480000e+03 -1.2402373e+00 + 4.9484000e+03 -1.1891824e+00 + 4.9488000e+03 -6.8854772e-01 + 4.9492000e+03 -3.0966046e-01 + 4.9496000e+03 -1.2748432e-01 + 4.9500000e+03 5.2078785e-02 + 4.9504000e+03 -1.1743166e-01 + 4.9508000e+03 -5.1751603e-01 + 4.9512000e+03 -6.5766687e-01 + 4.9516000e+03 -5.2777832e-01 + 4.9520000e+03 -6.8831334e-01 + 4.9524000e+03 -2.6742616e-01 + 4.9528000e+03 4.1183211e-01 + 4.9532000e+03 1.0918062e+00 + 4.9536000e+03 1.8596281e+00 + 4.9540000e+03 1.9979153e+00 + 4.9544000e+03 1.9433555e+00 + 4.9548000e+03 1.3517201e+00 + 4.9552000e+03 6.4255801e-01 + 4.9556000e+03 9.3374727e-02 + 4.9560000e+03 -3.2057921e-01 + 4.9564000e+03 -6.5048978e-01 + 4.9568000e+03 -7.9456164e-01 + 4.9572000e+03 -5.4464267e-01 + 4.9576000e+03 -4.5476686e-01 + 4.9580000e+03 -3.9494607e-01 + 4.9584000e+03 -1.6525181e-01 + 4.9588000e+03 -3.2550916e-01 + 4.9592000e+03 -7.4570484e-01 + 4.9596000e+03 -1.1659110e+00 + 4.9600000e+03 -1.6660481e+00 + 4.9604000e+03 -1.8862656e+00 + 4.9608000e+03 -1.9267562e+00 + 4.9612000e+03 -2.2774814e+00 + 4.9616000e+03 -2.3992264e+00 + 4.9620000e+03 -2.3635238e+00 + 4.9624000e+03 -2.2983906e+00 + 4.9628000e+03 -2.2254344e+00 + 4.9632000e+03 -1.7203147e+00 + 4.9636000e+03 -9.9040947e-01 + 4.9640000e+03 -2.0037644e-01 + 4.9644000e+03 6.7099655e-01 + 4.9648000e+03 1.4299379e+00 + 4.9652000e+03 1.7602979e+00 + 4.9656000e+03 1.8107820e+00 + 4.9660000e+03 2.0714006e+00 + 4.9664000e+03 2.4621791e+00 + 4.9668000e+03 2.7631359e+00 + 4.9672000e+03 2.8442274e+00 + 4.9676000e+03 3.0354568e+00 + 4.9680000e+03 2.9066616e+00 + 4.9684000e+03 3.0879824e+00 + 4.9688000e+03 2.2292006e+00 + 4.9692000e+03 6.1014034e-01 + 4.9696000e+03 -6.1521719e-01 + 4.9700000e+03 -1.4010766e+00 + 4.9704000e+03 -1.8308872e+00 + 4.9708000e+03 -1.7982261e+00 + 4.9712000e+03 -1.9302578e+00 + 4.9716000e+03 -2.3838471e+00 + 4.9720000e+03 -2.6659918e+00 + 4.9724000e+03 -2.9345671e+00 + 4.9728000e+03 -2.8037481e+00 + 4.9732000e+03 -2.3747006e+00 + 4.9736000e+03 -1.9153558e+00 + 4.9740000e+03 -1.8658790e+00 + 4.9744000e+03 -1.1613141e+00 + 4.9748000e+03 1.3398606e-01 + 4.9752000e+03 1.7343274e+00 + 4.9756000e+03 2.3449602e+00 + 4.9760000e+03 2.3758339e+00 + 4.9764000e+03 3.2469241e+00 + 4.9768000e+03 4.1777302e+00 + 4.9772000e+03 3.9984211e+00 + 4.9776000e+03 3.7691035e+00 + 4.9780000e+03 3.4944558e+00 + 4.9784000e+03 2.8344000e+00 + 4.9788000e+03 1.7343981e+00 + 4.9792000e+03 5.4992014e-01 + 4.9796000e+03 -5.3833639e-02 + 4.9800000e+03 -5.0832610e-01 + 4.9804000e+03 -1.3982011e+00 + 4.9808000e+03 -2.3894310e+00 + 4.9812000e+03 -3.2827251e+00 + 4.9816000e+03 -3.6459873e+00 + 4.9820000e+03 -3.6341882e+00 + 4.9824000e+03 -3.4112964e+00 + 4.9828000e+03 -2.6595051e+00 + 4.9832000e+03 -1.8947790e+00 + 4.9836000e+03 -8.0035512e-01 + 4.9840000e+03 1.7290023e-01 + 4.9844000e+03 6.2853942e-01 + 4.9848000e+03 1.6660244e+00 + 4.9852000e+03 2.3443843e+00 + 4.9856000e+03 2.6145524e+00 + 4.9860000e+03 2.4580155e+00 + 4.9864000e+03 2.2233186e+00 + 4.9868000e+03 1.6184891e+00 + 4.9872000e+03 9.7575781e-01 + 4.9876000e+03 7.9504735e-02 + 4.9880000e+03 -7.2151528e-01 + 4.9884000e+03 -1.1599687e+00 + 4.9888000e+03 -1.3550401e+00 + 4.9892000e+03 -1.5323440e+00 + 4.9896000e+03 -1.9185209e+00 + 4.9900000e+03 -1.9490044e+00 + 4.9904000e+03 -1.9490139e+00 + 4.9908000e+03 -1.9320432e+00 + 4.9912000e+03 -1.9337262e+00 + 4.9916000e+03 -1.6728783e+00 + 4.9920000e+03 -1.3388328e+00 + 4.9924000e+03 -9.1191672e-01 + 4.9928000e+03 -1.9257714e-01 + 4.9932000e+03 8.8365890e-01 + 4.9936000e+03 2.1856104e+00 + 4.9940000e+03 3.2687157e+00 + 4.9944000e+03 3.9706120e+00 + 4.9948000e+03 4.4764865e+00 + 4.9952000e+03 4.9863646e+00 + 4.9956000e+03 4.5163232e+00 + 4.9960000e+03 3.3364023e+00 + 4.9964000e+03 2.3966095e+00 + 4.9968000e+03 2.3069041e+00 + 4.9972000e+03 1.4946067e+00 + 4.9976000e+03 6.1806953e-01 + 4.9980000e+03 -2.6119944e-01 + 4.9984000e+03 -1.0609686e+00 + 4.9988000e+03 -1.8942753e+00 + 4.9992000e+03 -2.7027954e+00 + 4.9996000e+03 -3.2089940e+00 + 5.0000000e+03 -3.4812759e+00 + 5.0004000e+03 -3.3182171e+00 + 5.0008000e+03 -3.1210909e+00 + 5.0012000e+03 -2.7556004e+00 + 5.0016000e+03 -2.4537900e+00 + 5.0020000e+03 -1.9974580e+00 + 5.0024000e+03 -1.5276955e+00 + 5.0028000e+03 -1.4480957e+00 + 5.0032000e+03 -1.0885775e+00 + 5.0036000e+03 -4.3173043e-01 + 5.0040000e+03 8.3322021e-01 + 5.0044000e+03 2.1745101e+00 + 5.0048000e+03 3.1661513e+00 + 5.0052000e+03 3.5782354e+00 + 5.0056000e+03 3.4494361e+00 + 5.0060000e+03 2.8949778e+00 + 5.0064000e+03 2.1044681e+00 + 5.0068000e+03 1.3239537e+00 + 5.0072000e+03 7.3961595e-01 + 5.0076000e+03 -1.1062205e-01 + 5.0080000e+03 -7.9956187e-01 + 5.0084000e+03 -1.6071857e+00 + 5.0088000e+03 -2.2957421e+00 + 5.0092000e+03 -2.4509319e+00 + 5.0096000e+03 -2.5836810e+00 + 5.0100000e+03 -2.4235537e+00 + 5.0104000e+03 -2.1533259e+00 + 5.0108000e+03 -1.7430535e+00 + 5.0112000e+03 -1.3948982e+00 + 5.0116000e+03 -1.0260482e+00 + 5.0120000e+03 -3.5528003e-01 + 5.0124000e+03 8.5610777e-01 + 5.0128000e+03 1.5693309e+00 + 5.0132000e+03 2.4070421e+00 + 5.0136000e+03 2.9751588e+00 + 5.0140000e+03 3.2298141e+00 + 5.0144000e+03 3.3200169e+00 + 5.0148000e+03 2.7501821e+00 + 5.0152000e+03 2.5404646e+00 + 5.0156000e+03 2.3008997e+00 + 5.0160000e+03 2.0213048e+00 + 5.0164000e+03 1.1314974e+00 + 5.0168000e+03 5.8165415e-01 + 5.0172000e+03 8.0059684e-02 + 5.0176000e+03 -7.4093363e-01 + 5.0180000e+03 -1.3898994e+00 + 5.0184000e+03 -1.8897240e+00 + 5.0188000e+03 -2.3370363e+00 + 5.0192000e+03 -2.6807870e+00 + 5.0196000e+03 -2.5579446e+00 + 5.0200000e+03 -2.3678668e+00 + 5.0204000e+03 -2.1377959e+00 + 5.0208000e+03 -1.6677198e+00 + 5.0212000e+03 -1.3976657e+00 + 5.0216000e+03 -9.5636544e-01 + 5.0220000e+03 -5.0381993e-01 + 5.0224000e+03 1.0297943e-01 + 5.0228000e+03 2.6043718e-01 + 5.0232000e+03 2.0247749e-01 + 5.0236000e+03 5.5253195e-01 + 5.0240000e+03 4.2258019e-01 + 5.0244000e+03 1.7257516e-01 + 5.0248000e+03 -3.7431306e-02 + 5.0252000e+03 -6.9782496e-01 + 5.0256000e+03 -1.2477424e+00 + 5.0260000e+03 -1.5278706e+00 + 5.0264000e+03 -1.4779898e+00 + 5.0268000e+03 -9.3828917e-01 + 5.0272000e+03 -7.4919582e-01 + 5.0276000e+03 -4.3052567e-01 + 5.0280000e+03 -2.8220093e-01 + 5.0284000e+03 -2.1377761e-01 + 5.0288000e+03 -4.5138974e-02 + 5.0292000e+03 9.3810223e-02 + 5.0296000e+03 5.7307782e-01 + 5.0300000e+03 8.3290071e-01 + 5.0304000e+03 7.6304346e-01 + 5.0308000e+03 8.9353136e-01 + 5.0312000e+03 1.0343394e+00 + 5.0316000e+03 1.0211470e+00 + 5.0320000e+03 1.3083196e+00 + 5.0324000e+03 1.6807596e+00 + 5.0328000e+03 1.4091788e+00 + 5.0332000e+03 9.2195152e-01 + 5.0336000e+03 4.5570977e-01 + 5.0340000e+03 4.2833870e-01 + 5.0344000e+03 4.7882808e-01 + 5.0348000e+03 5.4730257e-01 + 5.0352000e+03 4.0752196e-01 + 5.0356000e+03 2.7551541e-02 + 5.0360000e+03 -2.2282258e-01 + 5.0364000e+03 -4.3333719e-01 + 5.0368000e+03 -5.2428795e-01 + 5.0372000e+03 -5.6541903e-01 + 5.0376000e+03 -6.1662696e-01 + 5.0380000e+03 -1.1378120e+00 + 5.0384000e+03 -9.0897026e-01 + 5.0388000e+03 -4.1114130e-01 + 5.0392000e+03 -8.9250521e-02 + 5.0396000e+03 6.8814621e-02 + 5.0400000e+03 6.6234427e-02 + 5.0404000e+03 -9.4211590e-02 + 5.0408000e+03 -9.3252874e-01 + 5.0412000e+03 -1.8226223e+00 + 5.0416000e+03 -2.3326854e+00 + 5.0420000e+03 -2.5626050e+00 + 5.0424000e+03 -2.7592881e+00 + 5.0428000e+03 -2.8125804e+00 + 5.0432000e+03 -3.0057604e+00 + 5.0436000e+03 -2.8691036e+00 + 5.0440000e+03 -2.3523346e+00 + 5.0444000e+03 -1.5125405e+00 + 5.0448000e+03 -3.9722617e-01 + 5.0452000e+03 8.2922534e-01 + 5.0456000e+03 1.8873654e+00 + 5.0460000e+03 3.0126118e+00 + 5.0464000e+03 3.3758143e+00 + 5.0468000e+03 3.3334514e+00 + 5.0472000e+03 3.3825177e+00 + 5.0476000e+03 3.1715418e+00 + 5.0480000e+03 2.3107319e+00 + 5.0484000e+03 1.4673258e+00 + 5.0488000e+03 8.2534028e-01 + 5.0492000e+03 5.0491265e-01 + 5.0496000e+03 -9.2487120e-02 + 5.0500000e+03 -5.2623683e-01 + 5.0504000e+03 -9.3317323e-01 + 5.0508000e+03 -1.4712023e+00 + 5.0512000e+03 -1.4834719e+00 + 5.0516000e+03 -1.4120863e+00 + 5.0520000e+03 -1.1206914e+00 + 5.0524000e+03 -7.2945877e-01 + 5.0528000e+03 -4.3086272e-01 + 5.0532000e+03 1.0083603e-01 + 5.0536000e+03 5.8098849e-01 + 5.0540000e+03 1.1880829e+00 + 5.0544000e+03 1.6940619e+00 + 5.0548000e+03 1.7976890e+00 + 5.0552000e+03 1.9106442e+00 + 5.0556000e+03 1.7079743e+00 + 5.0560000e+03 1.1984140e+00 + 5.0564000e+03 7.4780613e-01 + 5.0568000e+03 1.2725614e-01 + 5.0572000e+03 -3.3587076e-01 + 5.0576000e+03 -7.2234909e-01 + 5.0580000e+03 -1.3188325e+00 + 5.0584000e+03 -1.5220710e+00 + 5.0588000e+03 -1.8734476e+00 + 5.0592000e+03 -2.2909294e+00 + 5.0596000e+03 -2.3882999e+00 + 5.0600000e+03 -2.4735109e+00 + 5.0604000e+03 -2.4624321e+00 + 5.0608000e+03 -2.8223028e+00 + 5.0612000e+03 -2.7643711e+00 + 5.0616000e+03 -2.2171570e+00 + 5.0620000e+03 -1.6066190e+00 + 5.0624000e+03 -7.4720546e-01 + 5.0628000e+03 -1.7868792e-02 + 5.0632000e+03 1.0113774e+00 + 5.0636000e+03 8.2072980e-01 + 5.0640000e+03 8.7012906e-01 + 5.0644000e+03 1.0995525e+00 + 5.0648000e+03 1.2390280e+00 + 5.0652000e+03 9.8850772e-01 + 5.0656000e+03 6.5631160e-01 + 5.0660000e+03 7.0478253e-01 + 5.0664000e+03 8.7729970e-01 + 5.0668000e+03 1.1864103e+00 + 5.0672000e+03 9.3082183e-01 + 5.0676000e+03 5.3642806e-01 + 5.0680000e+03 -2.4716014e-01 + 5.0684000e+03 -1.1704818e+00 + 5.0688000e+03 -1.3598969e+00 + 5.0692000e+03 -7.4936861e-01 + 5.0696000e+03 -2.2919218e-01 + 5.0700000e+03 -1.5899582e-01 + 5.0704000e+03 8.2182228e-01 + 5.0708000e+03 1.8482237e+00 + 5.0712000e+03 2.6421828e+00 + 5.0716000e+03 2.4429513e+00 + 5.0720000e+03 2.2939536e+00 + 5.0724000e+03 2.3449203e+00 + 5.0728000e+03 2.2358593e+00 + 5.0732000e+03 2.0067054e+00 + 5.0736000e+03 1.6674191e+00 + 5.0740000e+03 1.0780316e+00 + 5.0744000e+03 1.3518230e-01 + 5.0748000e+03 -5.9698245e-01 + 5.0752000e+03 -1.3362959e+00 + 5.0756000e+03 -1.9732185e+00 + 5.0760000e+03 -2.8429054e+00 + 5.0764000e+03 -3.3814772e+00 + 5.0768000e+03 -3.5915663e+00 + 5.0772000e+03 -3.2418895e+00 + 5.0776000e+03 -3.1323375e+00 + 5.0780000e+03 -2.8428449e+00 + 5.0784000e+03 -2.2990985e+00 + 5.0788000e+03 -1.5994879e+00 + 5.0792000e+03 -1.0249994e+00 + 5.0796000e+03 4.9450544e-02 + 5.0800000e+03 8.8925154e-01 + 5.0804000e+03 1.4914354e+00 + 5.0808000e+03 1.9702675e+00 + 5.0812000e+03 2.6293604e+00 + 5.0816000e+03 2.9590997e+00 + 5.0820000e+03 2.6990515e+00 + 5.0824000e+03 2.0275675e+00 + 5.0828000e+03 9.8086184e-01 + 5.0832000e+03 -1.4323590e-01 + 5.0836000e+03 -1.5789986e+00 + 5.0840000e+03 -2.4909307e+00 + 5.0844000e+03 -2.9919050e+00 + 5.0848000e+03 -2.8612130e+00 + 5.0852000e+03 -2.4859653e+00 + 5.0856000e+03 -1.7849563e+00 + 5.0860000e+03 -1.2046241e+00 + 5.0864000e+03 -6.4472839e-01 + 5.0868000e+03 -2.5695830e-02 + 5.0872000e+03 8.2405894e-01 + 5.0876000e+03 1.4330162e+00 + 5.0880000e+03 1.9716693e+00 + 5.0884000e+03 2.0703837e+00 + 5.0888000e+03 2.1694253e+00 + 5.0892000e+03 2.9989689e+00 + 5.0896000e+03 3.1189202e+00 + 5.0900000e+03 3.1490172e+00 + 5.0904000e+03 3.4393310e+00 + 5.0908000e+03 3.7198051e+00 + 5.0912000e+03 3.8904766e+00 + 5.0916000e+03 3.8313557e+00 + 5.0920000e+03 3.3023162e+00 + 5.0924000e+03 2.3039593e+00 + 5.0928000e+03 1.1318902e+00 + 5.0932000e+03 -1.6653704e-01 + 5.0936000e+03 -1.2801282e+00 + 5.0940000e+03 -2.2401961e+00 + 5.0944000e+03 -3.3415114e+00 + 5.0948000e+03 -3.9148429e+00 + 5.0952000e+03 -4.1699728e+00 + 5.0956000e+03 -3.9701365e+00 + 5.0960000e+03 -3.8306738e+00 + 5.0964000e+03 -3.4715609e+00 + 5.0968000e+03 -2.9727597e+00 + 5.0972000e+03 -2.2042090e+00 + 5.0976000e+03 -1.3556623e+00 + 5.0980000e+03 -2.0572099e-01 + 5.0984000e+03 1.1307575e+00 + 5.0988000e+03 1.9269258e+00 + 5.0992000e+03 2.5206013e+00 + 5.0996000e+03 2.7158758e+00 + 5.1000000e+03 2.5392486e+00 + 5.1004000e+03 1.9292523e+00 + 5.1008000e+03 1.3152915e+00 + 5.1012000e+03 3.9076322e-01 + 5.1016000e+03 -2.3982963e-01 + 5.1020000e+03 -4.2323001e-01 + 5.1024000e+03 -1.3584934e-01 + 5.1028000e+03 -3.3328493e-01 + 5.1032000e+03 -7.4438802e-01 + 5.1036000e+03 -9.9810553e-01 + 5.1040000e+03 -1.2798318e+00 + 5.1044000e+03 -1.4524410e+00 + 5.1048000e+03 -1.2420144e+00 + 5.1052000e+03 -1.1290534e+00 + 5.1056000e+03 -9.2094031e-01 + 5.1060000e+03 -4.0351262e-01 + 5.1064000e+03 4.4639193e-01 + 5.1068000e+03 1.1457029e+00 + 5.1072000e+03 1.2247737e+00 + 5.1076000e+03 1.5236354e+00 + 5.1080000e+03 2.1723666e+00 + 5.1084000e+03 2.1110935e+00 + 5.1088000e+03 1.9098801e+00 + 5.1092000e+03 1.7259547e+00 + 5.1096000e+03 1.3773935e+00 + 5.1100000e+03 8.0157646e-01 + 5.1104000e+03 5.4773588e-01 + 5.1108000e+03 -9.7670380e-02 + 5.1112000e+03 -3.7477025e-01 + 5.1116000e+03 -8.7210619e-02 + 5.1120000e+03 3.4663814e-01 + 5.1124000e+03 5.7869587e-01 + 5.1128000e+03 4.1036723e-01 + 5.1132000e+03 3.4162604e-01 + 5.1136000e+03 1.2941579e-01 + 5.1140000e+03 -2.1196076e-01 + 5.1144000e+03 -4.9737363e-01 + 5.1148000e+03 -7.7135337e-01 + 5.1152000e+03 -7.6813243e-01 + 5.1156000e+03 -8.1991293e-01 + 5.1160000e+03 -7.1741000e-01 + 5.1164000e+03 -9.5645002e-01 + 5.1168000e+03 -1.4779228e+00 + 5.1172000e+03 -1.8169000e+00 + 5.1176000e+03 -1.8362625e+00 + 5.1180000e+03 -1.7946187e+00 + 5.1184000e+03 -1.6873633e+00 + 5.1188000e+03 -1.4751141e+00 + 5.1192000e+03 -1.0495012e+00 + 5.1196000e+03 -5.9893793e-01 + 5.1200000e+03 -4.5678686e-01 + 5.1204000e+03 -3.7840984e-01 + 5.1208000e+03 -1.9351384e-01 + 5.1212000e+03 -9.2911163e-02 + 5.1216000e+03 2.8797301e-01 + 5.1220000e+03 9.6882880e-01 + 5.1224000e+03 1.5998630e+00 + 5.1228000e+03 2.2911782e+00 + 5.1232000e+03 2.8126947e+00 + 5.1236000e+03 2.8643157e+00 + 5.1240000e+03 2.7359308e+00 + 5.1244000e+03 2.6347868e+00 + 5.1248000e+03 2.5036995e+00 + 5.1252000e+03 1.6600462e+00 + 5.1256000e+03 2.6762668e-01 + 5.1260000e+03 -8.7746411e-01 + 5.1264000e+03 -1.2532702e+00 + 5.1268000e+03 -9.4408889e-01 + 5.1272000e+03 -4.9499399e-01 + 5.1276000e+03 -1.5620801e-01 + 5.1280000e+03 2.0250696e-01 + 5.1284000e+03 1.3122818e-01 + 5.1288000e+03 -1.7981190e-01 + 5.1292000e+03 -5.7061578e-01 + 5.1296000e+03 -7.8076851e-01 + 5.1300000e+03 -5.5058819e-01 + 5.1304000e+03 -4.2745418e-01 + 5.1308000e+03 7.4481557e-03 + 5.1312000e+03 -3.0744193e-01 + 5.1316000e+03 -2.2471666e-01 + 5.1320000e+03 -3.3045670e-01 + 5.1324000e+03 -4.4564793e-01 + 5.1328000e+03 -5.2853919e-01 + 5.1332000e+03 -6.3545703e-01 + 5.1336000e+03 -7.6889714e-01 + 5.1340000e+03 -8.0524695e-01 + 5.1344000e+03 -1.0666077e+00 + 5.1348000e+03 -1.2270952e+00 + 5.1352000e+03 -1.3456479e+00 + 5.1356000e+03 -1.4333225e+00 + 5.1360000e+03 -1.5221924e+00 + 5.1364000e+03 -1.1223429e+00 + 5.1368000e+03 -6.8961323e-01 + 5.1372000e+03 -4.2977037e-01 + 5.1376000e+03 -3.2033872e-01 + 5.1380000e+03 -8.5853756e-03 + 5.1384000e+03 6.0630861e-01 + 5.1388000e+03 8.5289334e-01 + 5.1392000e+03 1.2420376e+00 + 5.1396000e+03 1.4314870e+00 + 5.1400000e+03 1.0911756e+00 + 5.1404000e+03 1.0410242e+00 + 5.1408000e+03 1.1808297e+00 + 5.1412000e+03 1.0206657e+00 + 5.1416000e+03 9.4054420e-01 + 5.1420000e+03 1.0003434e+00 + 5.1424000e+03 9.5017377e-01 + 5.1428000e+03 9.9005989e-01 + 5.1432000e+03 1.2700063e+00 + 5.1436000e+03 1.2400004e+00 + 5.1440000e+03 1.1973121e+00 + 5.1444000e+03 7.2040250e-01 + 5.1448000e+03 -9.4483561e-02 + 5.1452000e+03 -5.6734566e-01 + 5.1456000e+03 -1.0370671e+00 + 5.1460000e+03 -1.4798087e+00 + 5.1464000e+03 -1.6262815e+00 + 5.1468000e+03 -1.5155891e+00 + 5.1472000e+03 -9.7514259e-01 + 5.1476000e+03 -7.6489543e-01 + 5.1480000e+03 -1.2505265e-01 + 5.1484000e+03 1.0461684e-01 + 5.1488000e+03 3.9424338e-01 + 5.1492000e+03 7.1379675e-01 + 5.1496000e+03 1.0431476e+00 + 5.1500000e+03 1.3623669e+00 + 5.1504000e+03 1.4615021e+00 + 5.1508000e+03 1.1205465e+00 + 5.1512000e+03 6.5976986e-01 + 5.1516000e+03 5.4924000e-01 + 5.1520000e+03 -3.5120595e-01 + 5.1524000e+03 -1.0079738e+00 + 5.1528000e+03 -1.4898445e+00 + 5.1532000e+03 -1.7060064e+00 + 5.1536000e+03 -1.7268896e+00 + 5.1540000e+03 -1.4584444e+00 + 5.1544000e+03 -1.7279638e+00 + 5.1548000e+03 -2.3308868e+00 + 5.1552000e+03 -2.4420827e+00 + 5.1556000e+03 -2.1102998e+00 + 5.1560000e+03 -2.2439631e+00 + 5.1564000e+03 -1.9932280e+00 + 5.1568000e+03 -8.0250202e-01 + 5.1572000e+03 -2.9165102e-01 + 5.1576000e+03 5.0851659e-01 + 5.1580000e+03 1.4687498e+00 + 5.1584000e+03 1.7187715e+00 + 5.1588000e+03 2.2612254e+00 + 5.1592000e+03 3.3911039e+00 + 5.1596000e+03 3.9864936e+00 + 5.1600000e+03 3.5250675e+00 + 5.1604000e+03 3.4534140e+00 + 5.1608000e+03 3.2716576e+00 + 5.1612000e+03 2.2647030e+00 + 5.1616000e+03 1.8967738e+00 + 5.1620000e+03 1.4612617e+00 + 5.1624000e+03 1.1145831e+00 + 5.1628000e+03 9.8035629e-01 + 5.1632000e+03 1.5999703e-01 + 5.1636000e+03 -6.9909517e-01 + 5.1640000e+03 -1.5248752e+00 + 5.1644000e+03 -2.0663250e+00 + 5.1648000e+03 -2.1038991e+00 + 5.1652000e+03 -2.2219798e+00 + 5.1656000e+03 -2.4111727e+00 + 5.1660000e+03 -2.2926427e+00 + 5.1664000e+03 -2.1824663e+00 + 5.1668000e+03 -2.0399816e+00 + 5.1672000e+03 -1.7995535e+00 + 5.1676000e+03 -1.3692671e+00 + 5.1680000e+03 -1.2690102e+00 + 5.1684000e+03 -9.6878778e-01 + 5.1688000e+03 -3.7871417e-01 + 5.1692000e+03 1.6715629e-01 + 5.1696000e+03 9.0880320e-01 + 5.1700000e+03 1.6140912e+00 + 5.1704000e+03 1.8574848e+00 + 5.1708000e+03 2.0667045e+00 + 5.1712000e+03 2.1883646e+00 + 5.1716000e+03 1.7276283e+00 + 5.1720000e+03 1.0469153e+00 + 5.1724000e+03 3.1699897e-01 + 5.1728000e+03 -3.4969947e-01 + 5.1732000e+03 -7.5011008e-01 + 5.1736000e+03 -7.8949646e-01 + 5.1740000e+03 -8.7735081e-01 + 5.1744000e+03 -1.4220772e+00 + 5.1748000e+03 -2.0042798e+00 + 5.1752000e+03 -2.2648288e+00 + 5.1756000e+03 -2.0441157e+00 + 5.1760000e+03 -1.6332898e+00 + 5.1764000e+03 -9.7235331e-01 + 5.1768000e+03 -7.6133334e-01 + 5.1772000e+03 6.4961761e-01 + 5.1776000e+03 1.3105950e+00 + 5.1780000e+03 1.6415684e+00 + 5.1784000e+03 1.9723055e+00 + 5.1788000e+03 2.4727712e+00 + 5.1792000e+03 2.6329836e+00 + 5.1796000e+03 2.9228024e+00 + 5.1800000e+03 3.1425243e+00 + 5.1804000e+03 2.9720793e+00 + 5.1808000e+03 2.8815656e+00 + 5.1812000e+03 2.7610475e+00 + 5.1816000e+03 2.1904099e+00 + 5.1820000e+03 1.5597597e+00 + 5.1824000e+03 1.6909167e-01 + 5.1828000e+03 -1.6116029e+00 + 5.1832000e+03 -2.8522588e+00 + 5.1836000e+03 -3.3928961e+00 + 5.1840000e+03 -3.4535214e+00 + 5.1844000e+03 -3.6140588e+00 + 5.1848000e+03 -3.3644466e+00 + 5.1852000e+03 -3.2546416e+00 + 5.1856000e+03 -2.9748039e+00 + 5.1860000e+03 -2.6246426e+00 + 5.1864000e+03 -2.3041584e+00 + 5.1868000e+03 -1.4934193e+00 + 5.1872000e+03 -6.9318810e-01 + 5.1876000e+03 8.8079958e-02 + 5.1880000e+03 4.9834393e-01 + 5.1884000e+03 9.6836821e-01 + 5.1888000e+03 1.4747118e+00 + 5.1892000e+03 2.0423599e+00 + 5.1896000e+03 2.3329131e+00 + 5.1900000e+03 2.0989656e+00 + 5.1904000e+03 2.0455127e+00 + 5.1908000e+03 1.4966066e+00 + 5.1912000e+03 7.3619663e-01 + 5.1916000e+03 -1.8446425e-01 + 5.1920000e+03 -1.0850766e+00 + 5.1924000e+03 -8.8578381e-01 + 5.1928000e+03 -7.3660004e-01 + 5.1932000e+03 -6.3725826e-01 + 5.1936000e+03 -4.2160017e-01 + 5.1940000e+03 -4.1235788e-01 + 5.1944000e+03 -4.8817812e-01 + 5.1948000e+03 -5.8549929e-01 + 5.1952000e+03 -2.9598856e-01 + 5.1956000e+03 2.5173623e-02 + 5.1960000e+03 4.2647778e-01 + 5.1964000e+03 8.5784231e-01 + 5.1968000e+03 1.0693082e+00 + 5.1972000e+03 1.0005972e+00 + 5.1976000e+03 1.1618339e+00 + 5.1980000e+03 1.5028418e+00 + 5.1984000e+03 1.9436572e+00 + 5.1988000e+03 2.3142191e+00 + 5.1992000e+03 3.0146023e+00 + 5.1996000e+03 2.9247544e+00 + 5.2000000e+03 2.2547233e+00 + 5.2004000e+03 1.9645085e+00 + 5.2008000e+03 7.7406791e-01 + 5.2012000e+03 -2.5818563e-01 + 5.2016000e+03 -1.1172130e+00 + 5.2020000e+03 -1.8347492e+00 + 5.2024000e+03 -2.5568285e+00 + 5.2028000e+03 -2.6494790e+00 + 5.2032000e+03 -2.5753132e+00 + 5.2036000e+03 -2.4120550e+00 + 5.2040000e+03 -1.8465796e+00 + 5.2044000e+03 -1.0164196e+00 + 5.2048000e+03 -3.9166566e-01 + 5.2052000e+03 5.2072315e-01 + 5.2056000e+03 1.1352138e+00 + 5.2060000e+03 1.0429462e+00 + 5.2064000e+03 5.6318952e-01 + 5.2068000e+03 7.3705299e-02 + 5.2072000e+03 1.3443980e-01 + 5.2076000e+03 5.9428460e-02 + 5.2080000e+03 -1.6641947e-02 + 5.2084000e+03 4.2846565e-02 + 5.2088000e+03 1.8522570e-01 + 5.2092000e+03 3.4852238e-01 + 5.2096000e+03 6.4892026e-01 + 5.2100000e+03 9.1920016e-01 + 5.2104000e+03 1.1793389e+00 + 5.2108000e+03 1.5293491e+00 + 5.2112000e+03 1.2490947e+00 + 5.2116000e+03 8.6861783e-01 + 5.2120000e+03 2.7808045e-01 + 5.2124000e+03 -1.2544597e-02 + 5.2128000e+03 -6.8355140e-01 + 5.2132000e+03 -7.5401027e-01 + 5.2136000e+03 -1.5449143e+00 + 5.2140000e+03 -2.1155471e+00 + 5.2144000e+03 -1.7958852e+00 + 5.2148000e+03 -1.0617333e+00 + 5.2152000e+03 -2.7326175e-01 + 5.2156000e+03 7.8615747e-02 + 5.2160000e+03 1.4794499e-01 + 5.2164000e+03 5.2902302e-02 + 5.2168000e+03 -2.3480411e-01 + 5.2172000e+03 -3.3175061e-01 + 5.2176000e+03 -3.8111069e-01 + 5.2180000e+03 -1.5048748e-01 + 5.2184000e+03 7.9999940e-02 + 5.2188000e+03 2.0033311e-01 + 5.2192000e+03 -7.9487567e-02 + 5.2196000e+03 -1.2932980e-01 + 5.2200000e+03 9.0754088e-02 + 5.2204000e+03 4.4057571e-01 + 5.2208000e+03 8.4022964e-01 + 5.2212000e+03 1.1697613e+00 + 5.2216000e+03 1.0092011e+00 + 5.2220000e+03 8.6844304e-01 + 5.2224000e+03 6.1749172e-01 + 5.2228000e+03 9.2604114e-02 + 5.2232000e+03 -3.1133963e-01 + 5.2236000e+03 -8.3213599e-01 + 5.2240000e+03 -1.3599834e+00 + 5.2244000e+03 -1.4398226e+00 + 5.2248000e+03 -1.6412532e+00 + 5.2252000e+03 -1.6339174e+00 + 5.2256000e+03 -1.5664590e+00 + 5.2260000e+03 -1.2789996e+00 + 5.2264000e+03 -1.0393579e+00 + 5.2268000e+03 -8.2620759e-01 + 5.2272000e+03 -3.4098458e-01 + 5.2276000e+03 3.3974038e-01 + 5.2280000e+03 9.4470356e-01 + 5.2284000e+03 1.4233216e+00 + 5.2288000e+03 1.9138031e+00 + 5.2292000e+03 2.0242991e+00 + 5.2296000e+03 1.8889299e+00 + 5.2300000e+03 1.6350840e+00 + 5.2304000e+03 1.2703367e+00 + 5.2308000e+03 6.9214199e-01 + 5.2312000e+03 3.5253773e-01 + 5.2316000e+03 4.1454062e-02 + 5.2320000e+03 -5.2520383e-01 + 5.2324000e+03 -9.9661041e-01 + 5.2328000e+03 -1.1378630e+00 + 5.2332000e+03 -1.2492783e+00 + 5.2336000e+03 -1.0407417e+00 + 5.2340000e+03 -8.6189066e-01 + 5.2344000e+03 -8.6042903e-01 + 5.2348000e+03 -7.4187971e-01 + 5.2352000e+03 -5.7942861e-01 + 5.2356000e+03 -3.1193438e-01 + 5.2360000e+03 -1.2292052e-01 + 5.2364000e+03 1.2187641e-02 + 5.2368000e+03 9.0735622e-02 + 5.2372000e+03 3.8220404e-01 + 5.2376000e+03 6.3844248e-01 + 5.2380000e+03 9.5614045e-01 + 5.2384000e+03 1.2941270e+00 + 5.2388000e+03 1.4689197e+00 + 5.2392000e+03 1.1569166e+00 + 5.2396000e+03 8.0337639e-01 + 5.2400000e+03 3.5336196e-01 + 5.2404000e+03 -9.3448597e-02 + 5.2408000e+03 -2.3386644e-01 + 5.2412000e+03 -2.6394517e-01 + 5.2416000e+03 -3.6520515e-01 + 5.2420000e+03 -6.2596375e-01 + 5.2424000e+03 -6.1545883e-01 + 5.2428000e+03 -4.6132605e-01 + 5.2432000e+03 -3.1735001e-01 + 5.2436000e+03 -8.0865130e-01 + 5.2440000e+03 -1.0061643e+00 + 5.2444000e+03 -9.1552605e-01 + 5.2448000e+03 -6.3076809e-01 + 5.2452000e+03 -4.9886578e-01 + 5.2456000e+03 -2.5366269e-01 + 5.2460000e+03 1.0691486e-01 + 5.2464000e+03 5.0608780e-01 + 5.2468000e+03 6.5815691e-01 + 5.2472000e+03 5.6837330e-01 + 5.2476000e+03 2.7843014e-01 + 5.2480000e+03 1.6827401e-01 + 5.2484000e+03 -1.2202144e-01 + 5.2488000e+03 -3.7244337e-01 + 5.2492000e+03 -9.3066511e-02 + 5.2496000e+03 2.7629508e-01 + 5.2500000e+03 2.7723159e-01 + 5.2504000e+03 -4.5582341e-02 + 5.2508000e+03 -1.4227809e-01 + 5.2512000e+03 -3.4407098e-01 + 5.2516000e+03 -8.7907230e-01 + 5.2520000e+03 -1.3323931e+00 + 5.2524000e+03 -1.5211751e+00 + 5.2528000e+03 -1.6827506e+00 + 5.2532000e+03 -1.8575537e+00 + 5.2536000e+03 -1.8308158e+00 + 5.2540000e+03 -1.5790501e+00 + 5.2544000e+03 -1.5793782e+00 + 5.2548000e+03 -1.7998793e+00 + 5.2552000e+03 -1.7336596e+00 + 5.2556000e+03 -1.4566379e+00 + 5.2560000e+03 -1.0561099e+00 + 5.2564000e+03 -2.3554026e-01 + 5.2568000e+03 7.2481700e-01 + 5.2572000e+03 1.7267846e+00 + 5.2576000e+03 2.5800151e+00 + 5.2580000e+03 3.1673526e+00 + 5.2584000e+03 3.8718848e+00 + 5.2588000e+03 4.3828092e+00 + 5.2592000e+03 4.1670954e+00 + 5.2596000e+03 4.0263535e+00 + 5.2600000e+03 3.1636500e+00 + 5.2604000e+03 2.1741069e+00 + 5.2608000e+03 1.4083033e+00 + 5.2612000e+03 8.3742782e-01 + 5.2616000e+03 3.6761207e-01 + 5.2620000e+03 -1.7738762e-01 + 5.2624000e+03 -3.2356425e-01 + 5.2628000e+03 -5.4841913e-01 + 5.2632000e+03 -7.8213557e-01 + 5.2636000e+03 -1.3752089e+00 + 5.2640000e+03 -2.0474772e+00 + 5.2644000e+03 -2.6637806e+00 + 5.2648000e+03 -2.9226181e+00 + 5.2652000e+03 -2.7933052e+00 + 5.2656000e+03 -2.6039850e+00 + 5.2660000e+03 -2.2245344e+00 + 5.2664000e+03 -1.8546388e+00 + 5.2668000e+03 -1.8146662e+00 + 5.2672000e+03 -1.3064634e+00 + 5.2676000e+03 -6.3611053e-01 + 5.2680000e+03 5.0361605e-02 + 5.2684000e+03 3.7480765e-01 + 5.2688000e+03 7.4867189e-01 + 5.2692000e+03 6.2880491e-01 + 5.2696000e+03 6.1935848e-01 + 5.2700000e+03 3.8778866e-01 + 5.2704000e+03 3.5889323e-03 + 5.2708000e+03 -3.4706642e-01 + 5.2712000e+03 -3.9722632e-01 + 5.2716000e+03 -8.2754101e-01 + 5.2720000e+03 -5.8782571e-01 + 5.2724000e+03 -4.0868131e-01 + 5.2728000e+03 -9.2926308e-02 + 5.2732000e+03 1.4295568e-02 + 5.2736000e+03 6.8988861e-02 + 5.2740000e+03 -9.8821504e-02 + 5.2744000e+03 -3.1874502e-01 + 5.2748000e+03 -5.1839672e-01 + 5.2752000e+03 -5.7797850e-01 + 5.2756000e+03 -6.0713394e-01 + 5.2760000e+03 -3.2582696e-01 + 5.2764000e+03 1.5569633e-01 + 5.2768000e+03 5.1715307e-01 + 5.2772000e+03 8.4309080e-01 + 5.2776000e+03 7.9134902e-01 + 5.2780000e+03 7.0160663e-01 + 5.2784000e+03 6.4764852e-01 + 5.2788000e+03 6.1103881e-01 + 5.2792000e+03 3.5088513e-01 + 5.2796000e+03 2.4039034e-01 + 5.2800000e+03 2.7989808e-01 + 5.2804000e+03 3.1922608e-01 + 5.2808000e+03 6.6860747e-01 + 5.2812000e+03 8.1807591e-01 + 5.2816000e+03 7.6768303e-01 + 5.2820000e+03 6.5736825e-01 + 5.2824000e+03 7.4724008e-01 + 5.2828000e+03 5.7723406e-01 + 5.2832000e+03 2.7136985e-02 + 5.2836000e+03 -1.4317571e-01 + 5.2840000e+03 -6.8382875e-01 + 5.2844000e+03 -7.9422806e-01 + 5.2848000e+03 -6.5499260e-01 + 5.2852000e+03 -1.8618424e-01 + 5.2856000e+03 -4.5036248e-02 + 5.2860000e+03 -5.1215771e-01 + 5.2864000e+03 -1.1427712e+00 + 5.2868000e+03 -1.9975864e+00 + 5.2872000e+03 -2.5853447e+00 + 5.2876000e+03 -2.3567363e+00 + 5.2880000e+03 -1.8568871e+00 + 5.2884000e+03 -1.2270532e+00 + 5.2888000e+03 -8.1721195e-01 + 5.2892000e+03 -5.0735208e-01 + 5.2896000e+03 -8.1750519e-01 + 5.2900000e+03 -1.1577839e+00 + 5.2904000e+03 -1.1880992e+00 + 5.2908000e+03 -9.7850854e-01 + 5.2912000e+03 -5.2874744e-01 + 5.2916000e+03 -4.1898948e-01 + 5.2920000e+03 1.6066575e-01 + 5.2924000e+03 5.5794705e-01 + 5.2928000e+03 8.4591828e-01 + 5.2932000e+03 1.3243661e+00 + 5.2936000e+03 1.5746437e+00 + 5.2940000e+03 1.8383729e+00 + 5.2944000e+03 2.2696813e+00 + 5.2948000e+03 2.3317321e+00 + 5.2952000e+03 2.3935311e+00 + 5.2956000e+03 2.1353063e+00 + 5.2960000e+03 2.1391880e+00 + 5.2964000e+03 1.8961050e+00 + 5.2968000e+03 1.4614557e+00 + 5.2972000e+03 1.3176276e+00 + 5.2976000e+03 9.4303365e-01 + 5.2980000e+03 2.4303083e-01 + 5.2984000e+03 -4.5920110e-01 + 5.2988000e+03 -1.1016028e+00 + 5.2992000e+03 -1.6184957e+00 + 5.2996000e+03 -1.9900040e+00 + 5.3000000e+03 -2.1835398e+00 + 5.3004000e+03 -1.9739235e+00 + 5.3008000e+03 -1.8742949e+00 + 5.3012000e+03 -1.6345146e+00 + 5.3016000e+03 -1.4315879e+00 + 5.3020000e+03 -1.4429714e+00 + 5.3024000e+03 -1.4453118e+00 + 5.3028000e+03 -1.5206509e+00 + 5.3032000e+03 -1.0740790e+00 + 5.3036000e+03 -7.0405925e-01 + 5.3040000e+03 -2.6702164e-01 + 5.3044000e+03 3.2778727e-01 + 5.3048000e+03 9.3468706e-01 + 5.3052000e+03 8.6305053e-01 + 5.3056000e+03 5.9229879e-01 + 5.3060000e+03 2.7507951e-01 + 5.3064000e+03 -1.0521366e-01 + 5.3068000e+03 -5.1561024e-01 + 5.3072000e+03 -1.3060046e+00 + 5.3076000e+03 -1.2463770e+00 + 5.3080000e+03 -1.0067967e+00 + 5.3084000e+03 -9.5703989e-01 + 5.3088000e+03 -6.9750519e-01 + 5.3092000e+03 -4.7738629e-01 + 5.3096000e+03 -6.1741683e-01 + 5.3100000e+03 -5.3171371e-01 + 5.3104000e+03 -6.8850088e-01 + 5.3108000e+03 -7.0810044e-01 + 5.3112000e+03 -8.6953541e-01 + 5.3116000e+03 -1.1001852e+00 + 5.3120000e+03 -1.0969336e+00 + 5.3124000e+03 -6.0683290e-01 + 5.3128000e+03 -5.6678457e-01 + 5.3132000e+03 1.0334118e-01 + 5.3136000e+03 1.0935508e+00 + 5.3140000e+03 1.3537289e+00 + 5.3144000e+03 1.4836803e+00 + 5.3148000e+03 1.6536664e+00 + 5.3152000e+03 1.9735279e+00 + 5.3156000e+03 2.4833747e+00 + 5.3160000e+03 2.5634135e+00 + 5.3164000e+03 2.3934985e+00 + 5.3168000e+03 2.1036240e+00 + 5.3172000e+03 1.7936173e+00 + 5.3176000e+03 1.5634467e+00 + 5.3180000e+03 1.1727141e+00 + 5.3184000e+03 1.1362396e+00 + 5.3188000e+03 1.0441504e+00 + 5.3192000e+03 8.2515280e-01 + 5.3196000e+03 5.0793855e-01 + 5.3200000e+03 2.2755999e-01 + 5.3204000e+03 -2.7269439e-01 + 5.3208000e+03 -9.2928592e-01 + 5.3212000e+03 -1.5552683e+00 + 5.3216000e+03 -2.1128006e+00 + 5.3220000e+03 -2.0970539e+00 + 5.3224000e+03 -2.0072396e+00 + 5.3228000e+03 -1.9272610e+00 + 5.3232000e+03 -1.9770760e+00 + 5.3236000e+03 -1.9367473e+00 + 5.3240000e+03 -1.8162543e+00 + 5.3244000e+03 -1.8656992e+00 + 5.3248000e+03 -1.6550447e+00 + 5.3252000e+03 -1.5050831e+00 + 5.3256000e+03 -1.3543247e+00 + 5.3260000e+03 -1.0203621e+00 + 5.3264000e+03 -7.0215452e-01 + 5.3268000e+03 -3.0921497e-01 + 5.3272000e+03 3.2272370e-01 + 5.3276000e+03 6.3174113e-01 + 5.3280000e+03 3.9662017e-01 + 5.3284000e+03 1.0062558e-01 + 5.3288000e+03 2.3620982e-02 + 5.3292000e+03 -5.5178673e-01 + 5.3296000e+03 -6.4017367e-01 + 5.3300000e+03 -2.6057091e-01 + 5.3304000e+03 7.8322941e-02 + 5.3308000e+03 2.6768784e-01 + 5.3312000e+03 6.6486911e-01 + 5.3316000e+03 1.1580643e+00 + 5.3320000e+03 1.0841895e+00 + 5.3324000e+03 1.0835315e+00 + 5.3328000e+03 8.3857715e-01 + 5.3332000e+03 7.4926257e-01 + 5.3336000e+03 4.8988089e-01 + 5.3340000e+03 -8.9624454e-02 + 5.3344000e+03 -6.9935552e-01 + 5.3348000e+03 -9.7888311e-01 + 5.3352000e+03 -1.0087472e+00 + 5.3356000e+03 -1.1185724e+00 + 5.3360000e+03 -1.5086664e+00 + 5.3364000e+03 -2.0889221e+00 + 5.3368000e+03 -2.4590985e+00 + 5.3372000e+03 -1.9490594e+00 + 5.3376000e+03 -9.9928531e-01 + 5.3380000e+03 3.3439640e-01 + 5.3384000e+03 1.7558093e+00 + 5.3388000e+03 2.9298375e+00 + 5.3392000e+03 3.7652799e+00 + 5.3396000e+03 3.8925572e+00 + 5.3400000e+03 3.7121588e+00 + 5.3404000e+03 3.2099981e+00 + 5.3408000e+03 2.7797095e+00 + 5.3412000e+03 1.8924818e+00 + 5.3416000e+03 1.2424631e+00 + 5.3420000e+03 2.2441742e-02 + 5.3424000e+03 -1.3752360e-01 + 5.3428000e+03 -1.3275431e+00 + 5.3432000e+03 -1.5174788e+00 + 5.3436000e+03 -1.0371815e+00 + 5.3440000e+03 -1.0066703e+00 + 5.3444000e+03 -1.1483454e+00 + 5.3448000e+03 -1.5769006e+00 + 5.3452000e+03 -2.1264083e+00 + 5.3456000e+03 -2.5807115e+00 + 5.3460000e+03 -3.1362447e+00 + 5.3464000e+03 -3.6354819e+00 + 5.3468000e+03 -3.8195166e+00 + 5.3472000e+03 -3.5769780e+00 + 5.3476000e+03 -2.9910445e+00 + 5.3480000e+03 -1.8114570e+00 + 5.3484000e+03 -6.1109585e-01 + 5.3488000e+03 8.2580224e-01 + 5.3492000e+03 1.8474181e+00 + 5.3496000e+03 2.4350970e+00 + 5.3500000e+03 2.7738294e+00 + 5.3504000e+03 2.6992938e+00 + 5.3508000e+03 2.4371543e+00 + 5.3512000e+03 1.4452189e+00 + 5.3516000e+03 6.8355667e-01 + 5.3520000e+03 4.0337285e-01 + 5.3524000e+03 4.4871445e-01 + 5.3528000e+03 3.9312428e-01 + 5.3532000e+03 2.0020653e-01 + 5.3536000e+03 -2.6304787e-01 + 5.3540000e+03 -9.9105006e-01 + 5.3544000e+03 -1.4473485e+00 + 5.3548000e+03 -1.8582524e+00 + 5.3552000e+03 -2.3897088e+00 + 5.3556000e+03 -2.6281487e+00 + 5.3560000e+03 -2.5777789e+00 + 5.3564000e+03 -2.2771972e+00 + 5.3568000e+03 -1.5784653e+00 + 5.3572000e+03 -3.3614507e-01 + 5.3576000e+03 9.5102377e-01 + 5.3580000e+03 2.1636971e+00 + 5.3584000e+03 3.3171364e+00 + 5.3588000e+03 4.2058927e+00 + 5.3592000e+03 4.3585766e+00 + 5.3596000e+03 4.0147304e+00 + 5.3600000e+03 3.1699054e+00 + 5.3604000e+03 2.5194158e+00 + 5.3608000e+03 2.0190376e+00 + 5.3612000e+03 1.4387191e+00 + 5.3616000e+03 9.3876782e-01 + 5.3620000e+03 -3.9084002e-01 + 5.3624000e+03 -9.3031078e-01 + 5.3628000e+03 -1.4794840e+00 + 5.3632000e+03 -2.0129358e+00 + 5.3636000e+03 -2.2990219e+00 + 5.3640000e+03 -2.1493251e+00 + 5.3644000e+03 -2.0758478e+00 + 5.3648000e+03 -2.1860102e+00 + 5.3652000e+03 -2.2082812e+00 + 5.3656000e+03 -1.8328070e+00 + 5.3660000e+03 -1.5522776e+00 + 5.3664000e+03 -1.1918952e+00 + 5.3668000e+03 -1.1317039e+00 + 5.3672000e+03 -9.8161852e-01 + 5.3676000e+03 -7.3168634e-01 + 5.3680000e+03 -5.2206858e-01 + 5.3684000e+03 -2.7700269e-03 + 5.3688000e+03 3.0626486e-01 + 5.3692000e+03 5.2502380e-01 + 5.3696000e+03 8.2349918e-01 + 5.3700000e+03 9.4196882e-01 + 5.3704000e+03 8.0035564e-01 + 5.3708000e+03 4.9870889e-01 + 5.3712000e+03 1.0708494e-01 + 5.3716000e+03 -1.9450441e-01 + 5.3720000e+03 -3.8540033e-01 + 5.3724000e+03 -5.2581281e-01 + 5.3728000e+03 -5.9612198e-01 + 5.3732000e+03 -5.6635452e-01 + 5.3736000e+03 -4.8661357e-01 + 5.3740000e+03 -4.1678529e-01 + 5.3744000e+03 -4.8673346e-01 + 5.3748000e+03 -4.2628695e-01 + 5.3752000e+03 -1.9578814e-01 + 5.3756000e+03 -6.9678906e-03 + 5.3760000e+03 3.7965238e-01 + 5.3764000e+03 3.7016766e-01 + 5.3768000e+03 6.2021338e-01 + 5.3772000e+03 1.2205954e+00 + 5.3776000e+03 1.3674703e+00 + 5.3780000e+03 1.5013102e+00 + 5.3784000e+03 2.1926100e+00 + 5.3788000e+03 2.0838244e+00 + 5.3792000e+03 1.0248998e+00 + 5.3796000e+03 4.0581476e-01 + 5.3800000e+03 -1.3356615e-01 + 5.3804000e+03 -4.7314252e-01 + 5.3808000e+03 -6.2272971e-01 + 5.3812000e+03 -8.7241873e-01 + 5.3816000e+03 -9.7223691e-01 + 5.3820000e+03 -7.9210975e-01 + 5.3824000e+03 -6.6212850e-01 + 5.3828000e+03 -3.4220485e-01 + 5.3832000e+03 -4.8228907e-01 + 5.3836000e+03 -4.2198150e-01 + 5.3840000e+03 -2.6040532e-01 + 5.3844000e+03 -3.0394259e-01 + 5.3848000e+03 -6.9565251e-01 + 5.3852000e+03 -1.6117874e+00 + 5.3856000e+03 -2.7645083e+00 + 5.3860000e+03 -3.2942795e+00 + 5.3864000e+03 -3.2249544e+00 + 5.3868000e+03 -3.0155986e+00 + 5.3872000e+03 -2.0847730e+00 + 5.3876000e+03 -1.1300231e+00 + 5.3880000e+03 -4.6587841e-01 + 5.3884000e+03 1.2806732e-01 + 5.3888000e+03 9.7956192e-01 + 5.3892000e+03 1.6522806e+00 + 5.3896000e+03 1.8622320e+00 + 5.3900000e+03 2.1522034e+00 + 5.3904000e+03 2.0822566e+00 + 5.3908000e+03 1.7223400e+00 + 5.3912000e+03 1.4922761e+00 + 5.3916000e+03 1.3127339e+00 + 5.3920000e+03 8.4939743e-01 + 5.3924000e+03 7.4357750e-01 + 5.3928000e+03 4.7204691e-01 + 5.3932000e+03 3.2995308e-01 + 5.3936000e+03 1.0811463e-01 + 5.3940000e+03 4.7499825e-02 + 5.3944000e+03 -5.8559548e-02 + 5.3948000e+03 -2.1235024e-01 + 5.3952000e+03 -2.6699582e-02 + 5.3956000e+03 6.2795971e-01 + 5.3960000e+03 8.8710967e-01 + 5.3964000e+03 8.1196722e-01 + 5.3968000e+03 2.6218972e-01 + 5.3972000e+03 -1.4611338e-01 + 5.3976000e+03 -2.7530816e-01 + 5.3980000e+03 -4.5012224e-01 + 5.3984000e+03 -7.0468480e-01 + 5.3988000e+03 -7.7168213e-01 + 5.3992000e+03 -8.0584960e-01 + 5.3996000e+03 -6.0527211e-01 + 5.4000000e+03 -1.3457257e-01 + 5.4004000e+03 1.7627383e-01 + 5.4008000e+03 8.0737783e-01 + 5.4012000e+03 1.2985969e+00 + 5.4016000e+03 1.7100822e+00 + 5.4020000e+03 1.9517222e+00 + 5.4024000e+03 1.4862289e+00 + 5.4028000e+03 8.0586061e-01 + 5.4032000e+03 6.9210431e-01 + 5.4036000e+03 6.4244827e-01 + 5.4040000e+03 -1.1934890e-01 + 5.4044000e+03 -6.9138183e-01 + 5.4048000e+03 -8.3860248e-01 + 5.4052000e+03 -1.2400037e+00 + 5.4056000e+03 -1.5603118e+00 + 5.4060000e+03 -2.2190624e+00 + 5.4064000e+03 -2.7601083e+00 + 5.4068000e+03 -2.6651796e+00 + 5.4072000e+03 -2.3765422e+00 + 5.4076000e+03 -1.7540355e+00 + 5.4080000e+03 -7.7860999e-01 + 5.4084000e+03 1.2669903e-01 + 5.4088000e+03 7.5609178e-01 + 5.4092000e+03 1.3135048e+00 + 5.4096000e+03 1.6963860e+00 + 5.4100000e+03 1.8833193e+00 + 5.4104000e+03 1.9616873e+00 + 5.4108000e+03 2.0438922e+00 + 5.4112000e+03 2.4454679e+00 + 5.4116000e+03 2.5948092e+00 + 5.4120000e+03 2.4961151e+00 + 5.4124000e+03 1.9220649e+00 + 5.4128000e+03 1.1430275e+00 + 5.4132000e+03 5.4190890e-01 + 5.4136000e+03 1.0261280e-01 + 5.4140000e+03 -4.1404276e-01 + 5.4144000e+03 -9.1138568e-01 + 5.4148000e+03 -9.8207105e-01 + 5.4152000e+03 -7.8287294e-01 + 5.4156000e+03 -6.9422109e-01 + 5.4160000e+03 -7.6453249e-01 + 5.4164000e+03 -7.1638924e-01 + 5.4168000e+03 -8.0227339e-01 + 5.4172000e+03 -6.4396831e-01 + 5.4176000e+03 -4.4791988e-01 + 5.4180000e+03 -4.0468883e-01 + 5.4184000e+03 -3.2409923e-01 + 5.4188000e+03 -3.3183418e-02 + 5.4192000e+03 -5.1206570e-01 + 5.4196000e+03 -8.1088150e-01 + 5.4200000e+03 -9.9963192e-01 + 5.4204000e+03 -6.4834344e-01 + 5.4208000e+03 -3.7721644e-01 + 5.4212000e+03 -6.3619501e-01 + 5.4216000e+03 -9.6545783e-01 + 5.4220000e+03 -1.1449593e+00 + 5.4224000e+03 -9.4470634e-01 + 5.4228000e+03 -5.1452251e-01 + 5.4232000e+03 -2.5423895e-01 + 5.4236000e+03 1.3555494e-01 + 5.4240000e+03 3.2545950e-01 + 5.4244000e+03 4.7501702e-01 + 5.4248000e+03 6.4429140e-01 + 5.4252000e+03 1.0536294e+00 + 5.4256000e+03 1.0355239e+00 + 5.4260000e+03 7.1883666e-01 + 5.4264000e+03 2.4783771e-01 + 5.4268000e+03 -1.2983618e-01 + 5.4272000e+03 -7.5079858e-01 + 5.4276000e+03 -1.3617492e+00 + 5.4280000e+03 -1.6823877e+00 + 5.4284000e+03 -1.6527234e+00 + 5.4288000e+03 -1.3116761e+00 + 5.4292000e+03 -1.2995026e+00 + 5.4296000e+03 -1.4735700e+00 + 5.4300000e+03 -1.5980181e+00 + 5.4304000e+03 -1.1306128e+00 + 5.4308000e+03 -4.2975307e-01 + 5.4312000e+03 5.1090252e-01 + 5.4316000e+03 2.0816244e+00 + 5.4320000e+03 3.2120879e+00 + 5.4324000e+03 3.8124287e+00 + 5.4328000e+03 4.0126256e+00 + 5.4332000e+03 3.8327416e+00 + 5.4336000e+03 3.8626413e+00 + 5.4340000e+03 3.5993343e+00 + 5.4344000e+03 3.4995778e+00 + 5.4348000e+03 3.3959225e+00 + 5.4352000e+03 2.7574469e+00 + 5.4356000e+03 2.0425023e+00 + 5.4360000e+03 9.4862267e-01 + 5.4364000e+03 -7.5268887e-01 + 5.4368000e+03 -1.9213309e+00 + 5.4372000e+03 -3.2266083e+00 + 5.4376000e+03 -3.9532884e+00 + 5.4380000e+03 -4.1563097e+00 + 5.4384000e+03 -3.8940924e+00 + 5.4388000e+03 -3.3468305e+00 + 5.4392000e+03 -2.3268842e+00 + 5.4396000e+03 -1.4085318e+00 + 5.4400000e+03 -8.4322701e-01 + 5.4404000e+03 -3.6490621e-01 + 5.4408000e+03 -2.1279414e-01 + 5.4412000e+03 -2.5313787e-01 + 5.4416000e+03 -7.1622318e-02 + 5.4420000e+03 2.2982226e-01 + 5.4424000e+03 4.3193653e-01 + 5.4428000e+03 9.4474681e-01 + 5.4432000e+03 1.0543658e+00 + 5.4436000e+03 8.2451196e-01 + 5.4440000e+03 9.2514671e-01 + 5.4444000e+03 9.0089359e-01 + 5.4448000e+03 3.0287061e-01 + 5.4452000e+03 3.1234892e-02 + 5.4456000e+03 -3.9883410e-02 + 5.4460000e+03 -2.5078486e-01 + 5.4464000e+03 -3.1161803e-01 + 5.4468000e+03 -7.0215523e-01 + 5.4472000e+03 -1.1024812e+00 + 5.4476000e+03 -1.4325612e+00 + 5.4480000e+03 -1.0723218e+00 + 5.4484000e+03 -3.6198871e-01 + 5.4488000e+03 3.1747271e-01 + 5.4492000e+03 1.0687828e+00 + 5.4496000e+03 1.7333551e+00 + 5.4500000e+03 2.2398478e+00 + 5.4504000e+03 2.1572801e+00 + 5.4508000e+03 1.5013218e+00 + 5.4512000e+03 3.2142335e-01 + 5.4516000e+03 -1.2858479e-01 + 5.4520000e+03 -2.3851643e-01 + 5.4524000e+03 -1.1855863e-01 + 5.4528000e+03 -1.5870278e-01 + 5.4532000e+03 -9.8877077e-02 + 5.4536000e+03 2.2102456e-01 + 5.4540000e+03 2.7093848e-01 + 5.4544000e+03 5.1095385e-01 + 5.4548000e+03 9.3522220e-01 + 5.4552000e+03 8.9258217e-01 + 5.4556000e+03 5.7134070e-01 + 5.4560000e+03 4.4233705e-01 + 5.4564000e+03 3.2009405e-01 + 5.4568000e+03 -2.4029441e-01 + 5.4572000e+03 -8.4082745e-01 + 5.4576000e+03 -1.1213649e+00 + 5.4580000e+03 -1.2020466e+00 + 5.4584000e+03 -1.7628408e+00 + 5.4588000e+03 -1.8834005e+00 + 5.4592000e+03 -1.8237298e+00 + 5.4596000e+03 -1.4839140e+00 + 5.4600000e+03 -9.2401440e-01 + 5.4604000e+03 -4.8404534e-01 + 5.4608000e+03 -2.0388384e-01 + 5.4612000e+03 1.1636750e-01 + 5.4616000e+03 -6.3120480e-02 + 5.4620000e+03 -1.9235318e-01 + 5.4624000e+03 -9.1525862e-02 + 5.4628000e+03 2.9160712e-02 + 5.4632000e+03 9.9602337e-02 + 5.4636000e+03 3.0992274e-01 + 5.4640000e+03 1.2992535e-01 + 5.4644000e+03 1.4653274e-01 + 5.4648000e+03 5.8517407e-01 + 5.4652000e+03 8.3555286e-01 + 5.4656000e+03 5.4720821e-01 + 5.4660000e+03 2.6905451e-01 + 5.4664000e+03 7.8762887e-02 + 5.4668000e+03 -2.2153918e-01 + 5.4672000e+03 -4.2169411e-01 + 5.4676000e+03 -7.4734950e-01 + 5.4680000e+03 -6.7995412e-01 + 5.4684000e+03 -4.0580714e-01 + 5.4688000e+03 7.3217626e-02 + 5.4692000e+03 6.3681424e-01 + 5.4696000e+03 1.5007457e+00 + 5.4700000e+03 2.2466688e+00 + 5.4704000e+03 2.6197123e+00 + 5.4708000e+03 2.7267532e+00 + 5.4712000e+03 2.3979636e+00 + 5.4716000e+03 1.3883741e+00 + 5.4720000e+03 3.1947163e-01 + 5.4724000e+03 -6.8724331e-01 + 5.4728000e+03 -1.4922376e+00 + 5.4732000e+03 -2.1370901e+00 + 5.4736000e+03 -2.0734084e+00 + 5.4740000e+03 -1.8511503e+00 + 5.4744000e+03 -1.6152189e+00 + 5.4748000e+03 -1.3444362e+00 + 5.4752000e+03 -9.9276122e-01 + 5.4756000e+03 -6.7518795e-01 + 5.4760000e+03 -5.4929381e-02 + 5.4764000e+03 7.1118497e-01 + 5.4768000e+03 9.5179687e-01 + 5.4772000e+03 1.0950782e+00 + 5.4776000e+03 1.4720589e+00 + 5.4780000e+03 1.5778119e+00 + 5.4784000e+03 1.2391802e+00 + 5.4788000e+03 9.1455807e-01 + 5.4792000e+03 6.0426424e-01 + 5.4796000e+03 4.3422961e-01 + 5.4800000e+03 3.4421077e-01 + 5.4804000e+03 2.7435422e-01 + 5.4808000e+03 3.7488978e-01 + 5.4812000e+03 3.0543289e-01 + 5.4816000e+03 1.2606241e-01 + 5.4820000e+03 1.6789166e-02 + 5.4824000e+03 -2.9651067e-01 + 5.4828000e+03 -4.6827312e-01 + 5.4832000e+03 -1.0462207e+00 + 5.4836000e+03 -1.6466259e+00 + 5.4840000e+03 -2.0590025e+00 + 5.4844000e+03 -2.0282907e+00 + 5.4848000e+03 -1.6978026e+00 + 5.4852000e+03 -1.2675461e+00 + 5.4856000e+03 -9.9757873e-01 + 5.4860000e+03 -5.7800037e-01 + 5.4864000e+03 7.1113925e-01 + 5.4868000e+03 1.7200447e+00 + 5.4872000e+03 2.3586582e+00 + 5.4876000e+03 2.5275198e+00 + 5.4880000e+03 2.0964763e+00 + 5.4884000e+03 1.5953890e+00 + 5.4888000e+03 1.2445053e+00 + 5.4892000e+03 1.1140632e+00 + 5.4896000e+03 8.8128084e-01 + 5.4900000e+03 4.0109139e-01 + 5.4904000e+03 -4.6061897e-02 + 5.4908000e+03 -3.8277233e-01 + 5.4912000e+03 -8.4674651e-01 + 5.4916000e+03 -9.7359969e-01 + 5.4920000e+03 -1.0906934e+00 + 5.4924000e+03 -1.0907257e+00 + 5.4928000e+03 -9.2932301e-01 + 5.4932000e+03 -1.0083171e+00 + 5.4936000e+03 -1.3910772e+00 + 5.4940000e+03 -1.5771092e+00 + 5.4944000e+03 -1.7659902e+00 + 5.4948000e+03 -1.7629224e+00 + 5.4952000e+03 -1.7385466e+00 + 5.4956000e+03 -1.5236378e+00 + 5.4960000e+03 -1.2158051e+00 + 5.4964000e+03 -6.5245586e-01 + 5.4968000e+03 -2.8166499e-01 + 5.4972000e+03 3.2603292e-01 + 5.4976000e+03 7.4906400e-01 + 5.4980000e+03 9.9420739e-01 + 5.4984000e+03 1.4319052e+00 + 5.4988000e+03 1.7586355e+00 + 5.4992000e+03 2.2000527e+00 + 5.4996000e+03 2.3322119e+00 + 5.5000000e+03 2.2135152e+00 + 5.5004000e+03 1.8594303e+00 + 5.5008000e+03 1.4452758e+00 + 5.5012000e+03 1.1360319e+00 + 5.5016000e+03 1.0768376e+00 + 5.5020000e+03 9.9758639e-01 + 5.5024000e+03 7.1825152e-01 + 5.5028000e+03 3.9874861e-01 + 5.5032000e+03 -2.3732367e-01 + 5.5036000e+03 -5.6383217e-01 + 5.5040000e+03 -7.3388244e-01 + 5.5044000e+03 -1.0569798e+00 + 5.5048000e+03 -8.9562941e-01 + 5.5052000e+03 -6.8996093e-01 + 5.5056000e+03 -5.0894240e-01 + 5.5060000e+03 -5.6985360e-01 + 5.5064000e+03 -7.0867748e-01 + 5.5068000e+03 -1.2784543e+00 + 5.5072000e+03 -1.4778206e+00 + 5.5076000e+03 -1.5277437e+00 + 5.5080000e+03 -1.5573005e+00 + 5.5084000e+03 -1.2364513e+00 + 5.5088000e+03 -9.3684389e-01 + 5.5092000e+03 -4.0331434e-01 + 5.5096000e+03 3.9064908e-01 + 5.5100000e+03 1.1690058e+00 + 5.5104000e+03 1.3851380e+00 + 5.5108000e+03 1.4002526e+00 + 5.5112000e+03 1.0302822e+00 + 5.5116000e+03 4.1129432e-01 + 5.5120000e+03 -6.7916189e-02 + 5.5124000e+03 -7.5192082e-02 + 5.5128000e+03 3.6394241e-02 + 5.5132000e+03 -3.7060148e-01 + 5.5136000e+03 -9.0084986e-01 + 5.5140000e+03 -1.2902136e+00 + 5.5144000e+03 -1.6964319e+00 + 5.5148000e+03 -2.0801225e+00 + 5.5152000e+03 -2.5392671e+00 + 5.5156000e+03 -3.0803160e+00 + 5.5160000e+03 -3.1434903e+00 + 5.5164000e+03 -2.7596285e+00 + 5.5168000e+03 -1.9106948e+00 + 5.5172000e+03 -9.4129524e-01 + 5.5176000e+03 2.0318294e-01 + 5.5180000e+03 1.2712201e+00 + 5.5184000e+03 2.0637306e+00 + 5.5188000e+03 3.0068471e+00 + 5.5192000e+03 3.4256408e+00 + 5.5196000e+03 3.7472793e+00 + 5.5200000e+03 3.6794210e+00 + 5.5204000e+03 3.6402825e+00 + 5.5208000e+03 3.3709068e+00 + 5.5212000e+03 3.1713055e+00 + 5.5216000e+03 2.7023442e+00 + 5.5220000e+03 2.5686241e+00 + 5.5224000e+03 2.6075840e+00 + 5.5228000e+03 2.4971086e+00 + 5.5232000e+03 1.8979112e+00 + 5.5236000e+03 1.3337026e+00 + 5.5240000e+03 6.3213431e-01 + 5.5244000e+03 -5.6315522e-01 + 5.5248000e+03 -1.7323643e+00 + 5.5252000e+03 -2.7336183e+00 + 5.5256000e+03 -3.3670398e+00 + 5.5260000e+03 -3.7298549e+00 + 5.5264000e+03 -3.4120690e+00 + 5.5268000e+03 -3.1423286e+00 + 5.5272000e+03 -2.9423980e+00 + 5.5276000e+03 -2.3601626e+00 + 5.5280000e+03 -1.4915033e+00 + 5.5284000e+03 -9.7091318e-01 + 5.5288000e+03 -5.8034193e-01 + 5.5292000e+03 -4.9009406e-01 + 5.5296000e+03 6.6998671e-01 + 5.5300000e+03 7.9987927e-01 + 5.5304000e+03 1.0699126e+00 + 5.5308000e+03 1.2300854e+00 + 5.5312000e+03 1.6403486e+00 + 5.5316000e+03 1.9008289e+00 + 5.5320000e+03 1.8014021e+00 + 5.5324000e+03 1.3919115e+00 + 5.5328000e+03 7.5231574e-01 + 5.5332000e+03 -6.6532686e-02 + 5.5336000e+03 -1.0291487e+00 + 5.5340000e+03 -1.6445798e+00 + 5.5344000e+03 -2.4389278e+00 + 5.5348000e+03 -2.8596931e+00 + 5.5352000e+03 -2.7687517e+00 + 5.5356000e+03 -2.3952081e+00 + 5.5360000e+03 -2.0430895e+00 + 5.5364000e+03 -1.7082975e+00 + 5.5368000e+03 -1.3829681e+00 + 5.5372000e+03 -8.8176397e-01 + 5.5376000e+03 -1.1712694e-01 + 5.5380000e+03 1.0477726e+00 + 5.5384000e+03 1.9416905e+00 + 5.5388000e+03 2.6447464e+00 + 5.5392000e+03 3.0432907e+00 + 5.5396000e+03 2.5499597e+00 + 5.5400000e+03 1.4384132e+00 + 5.5404000e+03 8.4700794e-01 + 5.5408000e+03 9.1585445e-01 + 5.5412000e+03 1.2950850e+00 + 5.5416000e+03 1.9848411e+00 + 5.5420000e+03 2.5950647e+00 + 5.5424000e+03 2.9555353e+00 + 5.5428000e+03 2.6960857e+00 + 5.5432000e+03 2.1516761e+00 + 5.5436000e+03 1.3641026e+00 + 5.5440000e+03 4.5020184e-01 + 5.5444000e+03 -2.5339260e-01 + 5.5448000e+03 -9.2268852e-01 + 5.5452000e+03 -1.1692703e+00 + 5.5456000e+03 -1.7323160e+00 + 5.5460000e+03 -2.2250588e+00 + 5.5464000e+03 -2.9488134e+00 + 5.5468000e+03 -3.3760194e+00 + 5.5472000e+03 -3.6401311e+00 + 5.5476000e+03 -3.3429717e+00 + 5.5480000e+03 -2.3792299e+00 + 5.5484000e+03 -1.1351150e+00 + 5.5488000e+03 4.8186328e-02 + 5.5492000e+03 4.8233292e-01 + 5.5496000e+03 7.2345255e-01 + 5.5500000e+03 8.7760207e-01 + 5.5504000e+03 7.8157544e-01 + 5.5508000e+03 7.7673339e-01 + 5.5512000e+03 1.0861850e+00 + 5.5516000e+03 9.5585827e-01 + 5.5520000e+03 1.0856344e+00 + 5.5524000e+03 1.3156753e+00 + 5.5528000e+03 1.2660211e+00 + 5.5532000e+03 1.2800097e+00 + 5.5536000e+03 1.2426651e+00 + 5.5540000e+03 7.4635872e-01 + 5.5544000e+03 -3.0218062e-01 + 5.5548000e+03 -8.7246651e-01 + 5.5552000e+03 -1.2295259e+00 + 5.5556000e+03 -1.0810198e+00 + 5.5560000e+03 -6.0120765e-01 + 5.5564000e+03 -6.1573440e-02 + 5.5568000e+03 4.8780126e-01 + 5.5572000e+03 2.7722314e-01 + 5.5576000e+03 4.6660687e-01 + 5.5580000e+03 5.9595096e-01 + 5.5584000e+03 6.9548278e-01 + 5.5588000e+03 5.5503517e-01 + 5.5592000e+03 3.6440225e-01 + 5.5596000e+03 1.4359866e-01 + 5.5600000e+03 2.6122318e-03 + 5.5604000e+03 9.1622671e-02 + 5.5608000e+03 8.0057589e-01 + 5.5612000e+03 1.3995734e+00 + 5.5616000e+03 1.5087060e+00 + 5.5620000e+03 1.2679632e+00 + 5.5624000e+03 1.0573278e+00 + 5.5628000e+03 2.1688578e-01 + 5.5632000e+03 -3.0313755e-01 + 5.5636000e+03 -3.8368176e-01 + 5.5640000e+03 -6.0342927e-01 + 5.5644000e+03 -6.9347370e-01 + 5.5648000e+03 -6.1337032e-01 + 5.5652000e+03 -3.0783864e-01 + 5.5656000e+03 -4.0218563e-01 + 5.5660000e+03 -7.0824482e-01 + 5.5664000e+03 -1.2892668e+00 + 5.5668000e+03 -1.5382976e+00 + 5.5672000e+03 -1.7872738e+00 + 5.5676000e+03 -1.8561495e+00 + 5.5680000e+03 -1.5749881e+00 + 5.5684000e+03 -1.2610475e+00 + 5.5688000e+03 -1.2373325e+00 + 5.5692000e+03 -1.3904524e+00 + 5.5696000e+03 -1.4609763e+00 + 5.5700000e+03 -8.8631077e-01 + 5.5704000e+03 -1.1382553e-01 + 5.5708000e+03 6.7560443e-01 + 5.5712000e+03 1.5649745e+00 + 5.5716000e+03 2.1384546e+00 + 5.5720000e+03 2.4660664e+00 + 5.5724000e+03 2.7790042e+00 + 5.5728000e+03 2.6502474e+00 + 5.5732000e+03 2.0622612e+00 + 5.5736000e+03 1.4419601e+00 + 5.5740000e+03 1.3915523e+00 + 5.5744000e+03 8.9873575e-01 + 5.5748000e+03 4.3408700e-01 + 5.5752000e+03 -5.4172376e-01 + 5.5756000e+03 -1.1526877e+00 + 5.5760000e+03 -1.1935088e+00 + 5.5764000e+03 -8.5693813e-01 + 5.5768000e+03 -1.4614681e-01 + 5.5772000e+03 -1.1551200e-01 + 5.5776000e+03 -3.0937107e-01 + 5.5780000e+03 -4.6571696e-01 + 5.5784000e+03 -6.9613717e-01 + 5.5788000e+03 -3.6367528e-01 + 5.5792000e+03 1.8571595e-02 + 5.5796000e+03 3.7931956e-02 + 5.5800000e+03 -1.1247366e-01 + 5.5804000e+03 -5.8754730e-01 + 5.5808000e+03 -8.1839008e-01 + 5.5812000e+03 -7.6925069e-01 + 5.5816000e+03 -6.0479013e-01 + 5.5820000e+03 -4.5019979e-01 + 5.5824000e+03 -1.8348183e-01 + 5.5828000e+03 2.6323581e-01 + 5.5832000e+03 5.8854732e-01 + 5.5836000e+03 9.3869549e-01 + 5.5840000e+03 1.2691096e+00 + 5.5844000e+03 1.5197896e+00 + 5.5848000e+03 1.5607173e+00 + 5.5852000e+03 1.7518939e+00 + 5.5856000e+03 1.8199777e+00 + 5.5860000e+03 1.2687035e+00 + 5.5864000e+03 1.7054871e-01 + 5.5868000e+03 -1.0983604e+00 + 5.5872000e+03 -1.8127088e+00 + 5.5876000e+03 -2.1892833e+00 + 5.5880000e+03 -2.3240789e+00 + 5.5884000e+03 -2.0741029e+00 + 5.5888000e+03 -1.6542048e+00 + 5.5892000e+03 -1.4143532e+00 + 5.5896000e+03 -5.7463805e-01 + 5.5900000e+03 -1.4504350e-01 + 5.5904000e+03 2.4481599e-02 + 5.5908000e+03 1.8389475e-01 + 5.5912000e+03 5.2329734e-01 + 5.5916000e+03 6.1281599e-01 + 5.5920000e+03 7.1241803e-01 + 5.5924000e+03 1.0521612e+00 + 5.5928000e+03 1.2720555e+00 + 5.5932000e+03 1.1620980e+00 + 5.5936000e+03 9.4235324e-01 + 5.5940000e+03 9.8283420e-01 + 5.5944000e+03 1.1135891e+00 + 5.5948000e+03 1.0479762e+00 + 5.5952000e+03 7.0290973e-01 + 5.5956000e+03 2.8214087e-01 + 5.5960000e+03 -1.7571046e-02 + 5.5964000e+03 -3.3462399e-01 + 5.5968000e+03 -5.1565060e-01 + 5.5972000e+03 -9.6894000e-01 + 5.5976000e+03 -1.2330198e+00 + 5.5980000e+03 -1.6444977e+00 + 5.5984000e+03 -2.0870691e+00 + 5.5988000e+03 -1.8942304e+00 + 5.5992000e+03 -1.8427351e+00 + 5.5996000e+03 -1.7829730e+00 + 5.6000000e+03 -1.6033720e+00 + 5.6004000e+03 -1.2938506e+00 + 5.6008000e+03 -5.0320436e-01 + 5.6012000e+03 1.8619847e-01 + 5.6016000e+03 5.9350586e-01 + 5.6020000e+03 8.7213303e-01 + 5.6024000e+03 9.1573355e-01 + 5.6028000e+03 1.1415450e+00 + 5.6032000e+03 1.0724931e+00 + 5.6036000e+03 1.0222659e+00 + 5.6040000e+03 1.2122643e+00 + 5.6044000e+03 1.4326423e+00 + 5.6048000e+03 1.9333672e+00 + 5.6052000e+03 2.3242485e+00 + 5.6056000e+03 2.4955428e+00 + 5.6060000e+03 2.2168712e+00 + 5.6064000e+03 1.6286370e+00 + 5.6068000e+03 9.8085961e-01 + 5.6072000e+03 -5.2473200e-02 + 5.6076000e+03 -8.7840183e-01 + 5.6080000e+03 -1.4026479e+00 + 5.6084000e+03 -1.7524740e+00 + 5.6088000e+03 -2.1134434e+00 + 5.6092000e+03 -2.0044630e+00 + 5.6096000e+03 -1.7924008e+00 + 5.6100000e+03 -1.8719452e+00 + 5.6104000e+03 -1.5558687e+00 + 5.6108000e+03 -1.2571481e+00 + 5.6112000e+03 -1.0517417e+00 + 5.6116000e+03 -9.7558888e-01 + 5.6120000e+03 -8.9288671e-01 + 5.6124000e+03 -3.1703080e-01 + 5.6128000e+03 -9.8483711e-03 + 5.6132000e+03 -2.1054341e-01 + 5.6136000e+03 -4.0775966e-01 + 5.6140000e+03 -6.0315889e-01 + 5.6144000e+03 -3.9440710e-01 + 5.6148000e+03 -1.5411810e-01 + 5.6152000e+03 -2.2381763e-01 + 5.6156000e+03 -1.7350470e-01 + 5.6160000e+03 -1.1325880e-01 + 5.6164000e+03 1.3679144e-01 + 5.6168000e+03 3.6677220e-01 + 5.6172000e+03 5.7666056e-01 + 5.6176000e+03 4.9644449e-01 + 5.6180000e+03 4.6163314e-02 + 5.6184000e+03 -5.2877109e-01 + 5.6188000e+03 -1.1716359e+00 + 5.6192000e+03 -1.4119705e+00 + 5.6196000e+03 -1.2497411e+00 + 5.6200000e+03 -1.0360589e+00 + 5.6204000e+03 -8.1423321e-01 + 5.6208000e+03 -5.7753370e-01 + 5.6212000e+03 -5.4113586e-03 + 5.6216000e+03 5.0563083e-01 + 5.6220000e+03 8.6932015e-01 + 5.6224000e+03 1.0585310e+00 + 5.6228000e+03 1.1187023e+00 + 5.6232000e+03 1.3289092e+00 + 5.6236000e+03 1.2483410e+00 + 5.6240000e+03 4.6226252e-01 + 5.6244000e+03 -4.2864397e-01 + 5.6248000e+03 -1.0376039e+00 + 5.6252000e+03 -1.4649581e+00 + 5.6256000e+03 -1.4962931e+00 + 5.6260000e+03 -1.1784888e+00 + 5.6264000e+03 -5.0135000e-01 + 5.6268000e+03 9.0818104e-01 + 5.6272000e+03 2.6879317e+00 + 5.6276000e+03 3.9277776e+00 + 5.6280000e+03 4.2576965e+00 + 5.6284000e+03 3.9180855e+00 + 5.6288000e+03 2.8606531e+00 + 5.6292000e+03 1.3636786e+00 + 5.6296000e+03 1.4199262e-01 + 5.6300000e+03 -8.8397362e-01 + 5.6304000e+03 -1.5619018e+00 + 5.6308000e+03 -2.0052030e+00 + 5.6312000e+03 -1.9108139e+00 + 5.6316000e+03 -1.9530846e+00 + 5.6320000e+03 -2.0209638e+00 + 5.6324000e+03 -2.2292494e+00 + 5.6328000e+03 -2.5827327e+00 + 5.6332000e+03 -2.9645570e+00 + 5.6336000e+03 -3.0293811e+00 + 5.6340000e+03 -2.8662020e+00 + 5.6344000e+03 -2.7079470e+00 + 5.6348000e+03 -2.4776687e+00 + 5.6352000e+03 -1.8454053e+00 + 5.6356000e+03 -1.2997174e+00 + 5.6360000e+03 -1.9813282e-01 + 5.6364000e+03 1.0817469e+00 + 5.6368000e+03 2.2963739e+00 + 5.6372000e+03 2.9112624e+00 + 5.6376000e+03 2.8804896e+00 + 5.6380000e+03 2.7896518e+00 + 5.6384000e+03 2.5189607e+00 + 5.6388000e+03 2.1430495e+00 + 5.6392000e+03 1.4429926e+00 + 5.6396000e+03 6.4086514e-01 + 5.6400000e+03 6.4947018e-02 + 5.6404000e+03 -5.9969575e-01 + 5.6408000e+03 -1.2845755e+00 + 5.6412000e+03 -1.7639340e+00 + 5.6416000e+03 -2.4341707e+00 + 5.6420000e+03 -2.7034321e+00 + 5.6424000e+03 -2.5074519e+00 + 5.6428000e+03 -2.1250610e+00 + 5.6432000e+03 -1.4282626e+00 + 5.6436000e+03 -5.4529518e-01 + 5.6440000e+03 4.9491737e-01 + 5.6444000e+03 1.6065181e+00 + 5.6448000e+03 2.3845583e+00 + 5.6452000e+03 3.0543065e+00 + 5.6456000e+03 3.3366596e+00 + 5.6460000e+03 3.2620939e+00 + 5.6464000e+03 3.2619432e+00 + 5.6468000e+03 3.2687399e+00 + 5.6472000e+03 3.2041334e+00 + 5.6476000e+03 3.0242342e+00 + 5.6480000e+03 2.8028638e+00 + 5.6484000e+03 2.2277087e+00 + 5.6488000e+03 1.3986651e+00 + 5.6492000e+03 -9.0693401e-02 + 5.6496000e+03 -1.0603641e+00 + 5.6500000e+03 -1.5904050e+00 + 5.6504000e+03 -1.8306775e+00 + 5.6508000e+03 -2.0212292e+00 + 5.6512000e+03 -2.1921250e+00 + 5.6516000e+03 -2.4928318e+00 + 5.6520000e+03 -2.5731794e+00 + 5.6524000e+03 -2.5033302e+00 + 5.6528000e+03 -2.2635324e+00 + 5.6532000e+03 -2.2038082e+00 + 5.6536000e+03 -2.4541719e+00 + 5.6540000e+03 -2.6945675e+00 + 5.6544000e+03 -2.7351033e+00 + 5.6548000e+03 -2.5256245e+00 + 5.6552000e+03 -2.1959731e+00 + 5.6556000e+03 -1.7560649e+00 + 5.6560000e+03 -1.0152601e+00 + 5.6564000e+03 1.4543035e-01 + 5.6568000e+03 1.1890582e+00 + 5.6572000e+03 2.0525999e+00 + 5.6576000e+03 2.5566104e+00 + 5.6580000e+03 2.7303726e+00 + 5.6584000e+03 2.4466662e+00 + 5.6588000e+03 1.6771706e+00 + 5.6592000e+03 8.3480628e-01 + 5.6596000e+03 -1.2732565e-01 + 5.6600000e+03 -4.7120381e-01 + 5.6604000e+03 -3.9670791e-01 + 5.6608000e+03 -7.7066378e-02 + 5.6612000e+03 4.2246884e-01 + 5.6616000e+03 8.7195628e-01 + 5.6620000e+03 1.0014467e+00 + 5.6624000e+03 1.2612067e+00 + 5.6628000e+03 1.4312051e+00 + 5.6632000e+03 1.6414899e+00 + 5.6636000e+03 1.8377261e+00 + 5.6640000e+03 1.8145569e+00 + 5.6644000e+03 1.7299040e+00 + 5.6648000e+03 1.3282801e+00 + 5.6652000e+03 6.7290773e-01 + 5.6656000e+03 1.0321480e-01 + 5.6660000e+03 -1.5512991e-01 + 5.6664000e+03 -4.2612761e-01 + 5.6668000e+03 -7.2467697e-01 + 5.6672000e+03 -1.1811350e+00 + 5.6676000e+03 -1.6857899e+00 + 5.6680000e+03 -1.5757533e+00 + 5.6684000e+03 -1.2757262e+00 + 5.6688000e+03 -8.4573570e-01 + 5.6692000e+03 -2.7523706e-01 + 5.6696000e+03 8.3497125e-01 + 5.6700000e+03 9.5537570e-01 + 5.6704000e+03 1.0460371e+00 + 5.6708000e+03 8.8698959e-01 + 5.6712000e+03 5.9804785e-01 + 5.6716000e+03 7.8747227e-02 + 5.6720000e+03 -3.7063938e-01 + 5.6724000e+03 -9.6008751e-01 + 5.6728000e+03 -1.2293518e+00 + 5.6732000e+03 -1.1406034e+00 + 5.6736000e+03 -1.0273954e+00 + 5.6740000e+03 -8.1385524e-01 + 5.6744000e+03 -7.2605965e-01 + 5.6748000e+03 -5.0874742e-01 + 5.6752000e+03 -3.0401335e-01 + 5.6756000e+03 -5.8341770e-01 + 5.6760000e+03 -9.1354274e-01 + 5.6764000e+03 -1.0472877e+00 + 5.6768000e+03 -8.9392828e-01 + 5.6772000e+03 -5.0701861e-01 + 5.6776000e+03 3.3884591e-01 + 5.6780000e+03 1.2680340e+00 + 5.6784000e+03 2.1492371e+00 + 5.6788000e+03 2.8403275e+00 + 5.6792000e+03 3.1659660e+00 + 5.6796000e+03 3.1990954e+00 + 5.6800000e+03 2.7997642e+00 + 5.6804000e+03 2.3506577e+00 + 5.6808000e+03 1.5717404e+00 + 5.6812000e+03 4.2303577e-01 + 5.6816000e+03 -2.3550331e-01 + 5.6820000e+03 -5.2409437e-01 + 5.6824000e+03 -7.6282999e-01 + 5.6828000e+03 -8.4863845e-01 + 5.6832000e+03 -6.5112963e-01 + 5.6836000e+03 -6.7537472e-01 + 5.6840000e+03 -6.9816742e-01 + 5.6844000e+03 -1.0729996e+00 + 5.6848000e+03 -1.3970070e+00 + 5.6852000e+03 -1.4422454e+00 + 5.6856000e+03 -1.7198676e+00 + 5.6860000e+03 -1.7002869e+00 + 5.6864000e+03 -1.1327664e+00 + 5.6868000e+03 -3.5367493e-01 + 5.6872000e+03 1.1807070e+00 + 5.6876000e+03 2.2143379e+00 + 5.6880000e+03 2.9565520e+00 + 5.6884000e+03 2.6771717e+00 + 5.6888000e+03 2.0179207e+00 + 5.6892000e+03 1.2089377e+00 + 5.6896000e+03 5.4675180e-01 + 5.6900000e+03 -1.8446864e-01 + 5.6904000e+03 -3.3818538e-01 + 5.6908000e+03 -5.8627445e-01 + 5.6912000e+03 -4.0353594e-01 + 5.6916000e+03 -5.6192669e-01 + 5.6920000e+03 -1.2236744e+00 + 5.6924000e+03 -2.0010131e+00 + 5.6928000e+03 -2.8830424e+00 + 5.6932000e+03 -3.3136254e+00 + 5.6936000e+03 -3.4241238e+00 + 5.6940000e+03 -2.8819763e+00 + 5.6944000e+03 -2.1547962e+00 + 5.6948000e+03 -1.1940087e+00 + 5.6952000e+03 2.3126548e-01 + 5.6956000e+03 1.7410337e+00 + 5.6960000e+03 2.9139278e+00 + 5.6964000e+03 3.8656847e+00 + 5.6968000e+03 4.2053559e+00 + 5.6972000e+03 4.1067467e+00 + 5.6976000e+03 3.7061002e+00 + 5.6980000e+03 2.9744035e+00 + 5.6984000e+03 1.9120394e+00 + 5.6988000e+03 1.1199539e+00 + 5.6992000e+03 5.7953683e-01 + 5.6996000e+03 2.7384110e-01 + 5.7000000e+03 -1.2330526e-01 + 5.7004000e+03 -2.5695398e-01 + 5.7008000e+03 -4.6119073e-01 + 5.7012000e+03 -7.7022513e-01 + 5.7016000e+03 -1.2092298e+00 + 5.7020000e+03 -1.3466465e+00 + 5.7024000e+03 -1.5224175e+00 + 5.7028000e+03 -1.7397299e+00 + 5.7032000e+03 -1.7489521e+00 + 5.7036000e+03 -1.6066321e+00 + 5.7040000e+03 -1.7563247e+00 + 5.7044000e+03 -1.9966784e+00 + 5.7048000e+03 -1.8372281e+00 + 5.7052000e+03 -1.2353971e+00 + 5.7056000e+03 -8.3562980e-01 + 5.7060000e+03 -2.9984852e-01 + 5.7064000e+03 1.8008698e-01 + 5.7068000e+03 5.5511217e-01 + 5.7072000e+03 8.0133839e-01 + 5.7076000e+03 1.0316814e+00 + 5.7080000e+03 1.5071755e+00 + 5.7084000e+03 1.8486367e+00 + 5.7088000e+03 2.4522247e+00 + 5.7092000e+03 2.6405416e+00 + 5.7096000e+03 2.2594406e+00 + 5.7100000e+03 1.8111877e+00 + 5.7104000e+03 9.0808074e-01 + 5.7108000e+03 -3.5890048e-01 + 5.7112000e+03 -1.2272309e+00 + 5.7116000e+03 -2.2188308e+00 + 5.7120000e+03 -2.9454596e+00 + 5.7124000e+03 -3.1995280e+00 + 5.7128000e+03 -3.3579321e+00 + 5.7132000e+03 -3.3479835e+00 + 5.7136000e+03 -2.7578785e+00 + 5.7140000e+03 -2.0949284e+00 + 5.7144000e+03 -8.4505361e-01 + 5.7148000e+03 6.8468590e-01 + 5.7152000e+03 2.0861246e+00 + 5.7156000e+03 2.8206894e+00 + 5.7160000e+03 3.1996161e+00 + 5.7164000e+03 3.1366069e+00 + 5.7168000e+03 2.6020274e+00 + 5.7172000e+03 2.4111911e+00 + 5.7176000e+03 2.7947174e+00 + 5.7180000e+03 3.2839816e+00 + 5.7184000e+03 3.3327700e+00 + 5.7188000e+03 2.9842616e+00 + 5.7192000e+03 2.6327068e+00 + 5.7196000e+03 1.7973580e+00 + 5.7200000e+03 5.5108488e-01 + 5.7204000e+03 -3.3238828e-01 + 5.7208000e+03 -9.8495083e-01 + 5.7212000e+03 -1.7629928e+00 + 5.7216000e+03 -2.2317477e+00 + 5.7220000e+03 -2.4813613e+00 + 5.7224000e+03 -2.7645009e+00 + 5.7228000e+03 -3.0208203e+00 + 5.7232000e+03 -3.2469308e+00 + 5.7236000e+03 -3.4150577e+00 + 5.7240000e+03 -3.0036340e+00 + 5.7244000e+03 -2.4226331e+00 + 5.7248000e+03 -1.6420656e+00 + 5.7252000e+03 -2.4461463e-01 + 5.7256000e+03 8.1427079e-01 + 5.7260000e+03 1.5669107e+00 + 5.7264000e+03 1.6358135e+00 + 5.7268000e+03 1.7046936e+00 + 5.7272000e+03 1.9839115e+00 + 5.7276000e+03 2.3131888e+00 + 5.7280000e+03 2.5829980e+00 + 5.7284000e+03 2.2728758e+00 + 5.7288000e+03 1.8027691e+00 + 5.7292000e+03 1.5526754e+00 + 5.7296000e+03 8.0260948e-01 + 5.7300000e+03 4.7280473e-01 + 5.7304000e+03 4.2964265e-02 + 5.7308000e+03 -4.8041118e-01 + 5.7312000e+03 -1.0651568e+00 + 5.7316000e+03 -1.5374965e+00 + 5.7320000e+03 -2.0303296e+00 + 5.7324000e+03 -2.2824150e+00 + 5.7328000e+03 -2.0836166e+00 + 5.7332000e+03 -1.9635542e+00 + 5.7336000e+03 -1.9348609e+00 + 5.7340000e+03 -1.6245014e+00 + 5.7344000e+03 -1.2543960e+00 + 5.7348000e+03 -8.9454874e-01 + 5.7352000e+03 -8.4492895e-01 + 5.7356000e+03 -8.8723097e-01 + 5.7360000e+03 -1.0933884e+00 + 5.7364000e+03 -1.0327895e+00 + 5.7368000e+03 -7.7307821e-01 + 5.7372000e+03 5.0921144e-02 + 5.7376000e+03 1.1699786e+00 + 5.7380000e+03 2.6393182e+00 + 5.7384000e+03 3.2488768e+00 + 5.7388000e+03 3.1987114e+00 + 5.7392000e+03 2.5888144e+00 + 5.7396000e+03 1.7691208e+00 + 5.7400000e+03 9.2946093e-01 + 5.7404000e+03 5.0999390e-01 + 5.7408000e+03 5.7066770e-01 + 5.7412000e+03 4.6146480e-01 + 5.7416000e+03 2.4240449e-01 + 5.7420000e+03 9.3541853e-02 + 5.7424000e+03 -2.7502472e-01 + 5.7428000e+03 -4.9418858e-01 + 5.7432000e+03 -6.9371068e-01 + 5.7436000e+03 -1.1023387e+00 + 5.7440000e+03 -1.4817298e+00 + 5.7444000e+03 -1.6914228e+00 + 5.7448000e+03 -1.6196715e+00 + 5.7452000e+03 -1.5541912e+00 + 5.7456000e+03 -1.7454652e+00 + 5.7460000e+03 -1.5691087e+00 + 5.7464000e+03 -1.7439676e+00 + 5.7468000e+03 -1.5760843e+00 + 5.7472000e+03 -1.4240258e+00 + 5.7476000e+03 -1.0783787e+00 + 5.7480000e+03 -9.7830456e-01 + 5.7484000e+03 -5.3833085e-01 + 5.7488000e+03 4.9810166e-01 + 5.7492000e+03 1.6014710e+00 + 5.7496000e+03 2.4823787e+00 + 5.7500000e+03 2.9980720e+00 + 5.7504000e+03 3.1009503e+00 + 5.7508000e+03 2.7450264e+00 + 5.7512000e+03 2.5951891e+00 + 5.7516000e+03 2.2752578e+00 + 5.7520000e+03 1.9350465e+00 + 5.7524000e+03 1.5948253e+00 + 5.7528000e+03 1.6345471e+00 + 5.7532000e+03 5.5424731e-01 + 5.7536000e+03 1.2396077e-01 + 5.7540000e+03 -6.2644895e-01 + 5.7544000e+03 -8.9689878e-01 + 5.7548000e+03 -1.4772965e+00 + 5.7552000e+03 -1.6174825e+00 + 5.7556000e+03 -1.5874006e+00 + 5.7560000e+03 -1.6374309e+00 + 5.7564000e+03 -1.9775929e+00 + 5.7568000e+03 -2.2475586e+00 + 5.7572000e+03 -2.2875717e+00 + 5.7576000e+03 -2.2474842e+00 + 5.7580000e+03 -2.0272602e+00 + 5.7584000e+03 -1.5571357e+00 + 5.7588000e+03 -7.1532056e-01 + 5.7592000e+03 6.5562758e-01 + 5.7596000e+03 2.1243547e+00 + 5.7600000e+03 3.3033546e+00 + 5.7604000e+03 3.8044937e+00 + 5.7608000e+03 3.3856651e+00 + 5.7612000e+03 2.2562277e+00 + 5.7616000e+03 1.3066779e+00 + 5.7620000e+03 5.2706857e-01 + 5.7624000e+03 2.0736243e-01 + 5.7628000e+03 1.5759413e-01 + 5.7632000e+03 1.8772373e-01 + 5.7636000e+03 3.4175886e-01 + 5.7640000e+03 7.4870736e-01 + 5.7644000e+03 7.3296497e-01 + 5.7648000e+03 5.5676637e-01 + 5.7652000e+03 -5.2342775e-02 + 5.7656000e+03 -9.7259352e-01 + 5.7660000e+03 -1.4929369e+00 + 5.7664000e+03 -1.9734276e+00 + 5.7668000e+03 -2.0640389e+00 + 5.7672000e+03 -1.9845995e+00 + 5.7676000e+03 -1.9250739e+00 + 5.7680000e+03 -2.1955496e+00 + 5.7684000e+03 -2.2959508e+00 + 5.7688000e+03 -1.9362110e+00 + 5.7692000e+03 -1.1762693e+00 + 5.7696000e+03 -3.8605975e-01 + 5.7700000e+03 2.4366176e-02 + 5.7704000e+03 3.6467471e-01 + 5.7708000e+03 3.9486507e-01 + 5.7712000e+03 1.4248654e+00 + 5.7716000e+03 1.8046824e+00 + 5.7720000e+03 2.0540286e+00 + 5.7724000e+03 2.4233874e+00 + 5.7728000e+03 2.8328716e+00 + 5.7732000e+03 3.2924078e+00 + 5.7736000e+03 3.2898670e+00 + 5.7740000e+03 2.5655485e+00 + 5.7744000e+03 1.3333370e+00 + 5.7748000e+03 5.5569446e-02 + 5.7752000e+03 -8.5561781e-01 + 5.7756000e+03 -1.2974159e+00 + 5.7760000e+03 -1.5574620e+00 + 5.7764000e+03 -1.7491380e+00 + 5.7768000e+03 -2.1544826e+00 + 5.7772000e+03 -2.5785645e+00 + 5.7776000e+03 -2.6712562e+00 + 5.7780000e+03 -2.4967565e+00 + 5.7784000e+03 -2.1062957e+00 + 5.7788000e+03 -1.6456972e+00 + 5.7792000e+03 -1.0850664e+00 + 5.7796000e+03 -3.2459672e-01 + 5.7800000e+03 -1.3413219e-01 + 5.7804000e+03 1.5611152e-01 + 5.7808000e+03 1.2216010e-01 + 5.7812000e+03 2.0639979e-01 + 5.7816000e+03 2.7936029e-01 + 5.7820000e+03 6.4159050e-01 + 5.7824000e+03 1.2338762e+00 + 5.7828000e+03 1.6867277e+00 + 5.7832000e+03 1.7779756e+00 + 5.7836000e+03 1.8233291e+00 + 5.7840000e+03 1.7223574e+00 + 5.7844000e+03 1.3863991e+00 + 5.7848000e+03 1.2076613e+00 + 5.7852000e+03 1.0651707e+00 + 5.7856000e+03 1.0306222e+00 + 5.7860000e+03 1.0521149e+00 + 5.7864000e+03 9.2451692e-01 + 5.7868000e+03 9.6103435e-01 + 5.7872000e+03 8.5204138e-01 + 5.7876000e+03 6.8257131e-01 + 5.7880000e+03 -2.3923671e-02 + 5.7884000e+03 -1.3589387e+00 + 5.7888000e+03 -2.4200985e+00 + 5.7892000e+03 -3.0246062e+00 + 5.7896000e+03 -2.7927354e+00 + 5.7900000e+03 -2.1044069e+00 + 5.7904000e+03 -1.3982622e+00 + 5.7908000e+03 -4.0805025e-01 + 5.7912000e+03 -3.0779418e-01 + 5.7916000e+03 -4.7812097e-01 + 5.7920000e+03 -5.3857995e-01 + 5.7924000e+03 -3.6892298e-01 + 5.7928000e+03 -3.6593368e-01 + 5.7932000e+03 2.4896758e-01 + 5.7936000e+03 1.1219711e+00 + 5.7940000e+03 1.6654438e+00 + 5.7944000e+03 1.8494595e+00 + 5.7948000e+03 1.9395066e+00 + 5.7952000e+03 1.8603159e+00 + 5.7956000e+03 1.6807427e+00 + 5.7960000e+03 1.0413074e+00 + 5.7964000e+03 4.5212932e-01 + 5.7968000e+03 -1.2708948e-01 + 5.7972000e+03 -6.5648540e-01 + 5.7976000e+03 -9.7597527e-01 + 5.7980000e+03 -9.3548786e-01 + 5.7984000e+03 -8.6500403e-01 + 5.7988000e+03 -1.0445929e+00 + 5.7992000e+03 -1.1458581e+00 + 5.7996000e+03 -1.2165609e+00 + 5.8000000e+03 -1.5650297e+00 + 5.8004000e+03 -1.6903349e+00 + 5.8008000e+03 -1.8302861e+00 + 5.8012000e+03 -1.9859863e+00 + 5.8016000e+03 -2.0049990e+00 + 5.8020000e+03 -1.8756280e+00 + 5.8024000e+03 -1.4859638e+00 + 5.8028000e+03 -7.7879967e-01 + 5.8032000e+03 2.1188833e-01 + 5.8036000e+03 9.9350432e-01 + 5.8040000e+03 1.5082373e+00 + 5.8044000e+03 2.0148664e+00 + 5.8048000e+03 2.5020086e+00 + 5.8052000e+03 2.8198397e+00 + 5.8056000e+03 2.8864531e+00 + 5.8060000e+03 2.7774999e+00 + 5.8064000e+03 2.3407737e+00 + 5.8068000e+03 1.4861131e+00 + 5.8072000e+03 6.7103225e-01 + 5.8076000e+03 -2.0663348e-01 + 5.8080000e+03 -1.0619124e+00 + 5.8084000e+03 -1.9522724e+00 + 5.8088000e+03 -2.4169476e+00 + 5.8092000e+03 -2.3954269e+00 + 5.8096000e+03 -2.5194954e+00 + 5.8100000e+03 -2.4513099e+00 + 5.8104000e+03 -2.4321193e+00 + 5.8108000e+03 -2.5238131e+00 + 5.8112000e+03 -2.1236853e+00 + 5.8116000e+03 -1.5533262e+00 + 5.8120000e+03 -1.2228625e+00 + 5.8124000e+03 -5.4784648e-01 + 5.8128000e+03 3.1750413e-01 + 5.8132000e+03 1.4016010e+00 + 5.8136000e+03 2.5267547e+00 + 5.8140000e+03 2.9160857e+00 + 5.8144000e+03 3.2157059e+00 + 5.8148000e+03 3.4956088e+00 + 5.8152000e+03 3.7658953e+00 + 5.8156000e+03 3.9761472e+00 + 5.8160000e+03 3.6549663e+00 + 5.8164000e+03 2.7387363e+00 + 5.8168000e+03 1.2021971e+00 + 5.8172000e+03 -1.9330129e-01 + 5.8176000e+03 -1.2183499e+00 + 5.8180000e+03 -1.8113757e+00 + 5.8184000e+03 -2.6150799e+00 + 5.8188000e+03 -3.2304912e+00 + 5.8192000e+03 -3.5924660e+00 + 5.8196000e+03 -3.6209585e+00 + 5.8200000e+03 -3.0542594e+00 + 5.8204000e+03 -2.1532352e+00 + 5.8208000e+03 -1.7952890e+00 + 5.8212000e+03 -1.6142537e+00 + 5.8216000e+03 -1.5233980e+00 + 5.8220000e+03 -1.1127780e+00 + 5.8224000e+03 -4.7264311e-01 + 5.8228000e+03 2.6727646e-01 + 5.8232000e+03 1.2470588e+00 + 5.8236000e+03 2.1968814e+00 + 5.8240000e+03 3.5667143e+00 + 5.8244000e+03 4.8265741e+00 + 5.8248000e+03 4.9766502e+00 + 5.8252000e+03 4.2367034e+00 + 5.8256000e+03 3.2364671e+00 + 5.8260000e+03 1.6759911e+00 + 5.8264000e+03 9.9525429e-01 + 5.8268000e+03 2.0676963e-01 + 5.8272000e+03 -8.2134322e-01 + 5.8276000e+03 -1.2368611e+00 + 5.8280000e+03 -1.1673271e+00 + 5.8284000e+03 -1.3074155e+00 + 5.8288000e+03 -1.3773037e+00 + 5.8292000e+03 -1.1170061e+00 + 5.8296000e+03 -1.3941785e+00 + 5.8300000e+03 -1.3378332e+00 + 5.8304000e+03 -1.3919030e+00 + 5.8308000e+03 -1.2533006e+00 + 5.8312000e+03 -1.0851299e+00 + 5.8316000e+03 -6.1480068e-01 + 5.8320000e+03 1.5661851e-02 + 5.8324000e+03 8.3601619e-01 + 5.8328000e+03 1.7764425e+00 + 5.8332000e+03 2.2567763e+00 + 5.8336000e+03 2.4569828e+00 + 5.8340000e+03 2.5170686e+00 + 5.8344000e+03 2.0270341e+00 + 5.8348000e+03 1.0267638e+00 + 5.8352000e+03 6.9898024e-02 + 5.8356000e+03 -8.2602072e-01 + 5.8360000e+03 -1.5139541e+00 + 5.8364000e+03 -1.7243071e+00 + 5.8368000e+03 -1.7943863e+00 + 5.8372000e+03 -1.4542044e+00 + 5.8376000e+03 -1.0539108e+00 + 5.8380000e+03 -1.0134853e+00 + 5.8384000e+03 -9.7303683e-01 + 5.8388000e+03 -1.2227125e+00 + 5.8392000e+03 -1.5825907e+00 + 5.8396000e+03 -1.4226304e+00 + 5.8400000e+03 -9.7286539e-01 + 5.8404000e+03 -7.5319875e-01 + 5.8408000e+03 -4.0352162e-01 + 5.8412000e+03 -1.3368956e-01 + 5.8416000e+03 5.0621930e-01 + 5.8420000e+03 7.1385579e-01 + 5.8424000e+03 5.7773734e-01 + 5.8428000e+03 3.2972176e-01 + 5.8432000e+03 -4.1702487e-01 + 5.8436000e+03 -8.2253387e-01 + 5.8440000e+03 -9.5238286e-01 + 5.8444000e+03 -7.8228759e-01 + 5.8448000e+03 -4.1227481e-01 + 5.8452000e+03 1.1784742e-01 + 5.8456000e+03 4.5793788e-01 + 5.8460000e+03 7.3814100e-01 + 5.8464000e+03 9.4844120e-01 + 5.8468000e+03 1.2388445e+00 + 5.8472000e+03 1.5291738e+00 + 5.8476000e+03 1.1663371e+00 + 5.8480000e+03 1.0668944e+00 + 5.8484000e+03 1.1956614e+00 + 5.8488000e+03 1.3521282e+00 + 5.8492000e+03 1.4396714e+00 + 5.8496000e+03 1.0998126e+00 + 5.8500000e+03 4.1989870e-01 + 5.8504000e+03 2.2976065e-01 + 5.8508000e+03 1.1947135e-01 + 5.8512000e+03 -1.7112337e-01 + 5.8516000e+03 -2.2205443e-01 + 5.8520000e+03 -1.3308117e-01 + 5.8524000e+03 -2.6362874e-01 + 5.8528000e+03 -3.4510468e-01 + 5.8532000e+03 -3.8601070e-01 + 5.8536000e+03 -5.1676959e-01 + 5.8540000e+03 -6.2739073e-01 + 5.8544000e+03 -7.9797141e-01 + 5.8548000e+03 -1.1284035e+00 + 5.8552000e+03 -9.2870822e-01 + 5.8556000e+03 -6.6881954e-01 + 5.8560000e+03 -6.1874773e-01 + 5.8564000e+03 -6.9848518e-01 + 5.8568000e+03 -6.0744123e-01 + 5.8572000e+03 -2.8620806e-01 + 5.8576000e+03 -1.2506560e-01 + 5.8580000e+03 -1.5359658e-01 + 5.8584000e+03 -3.5195694e-01 + 5.8588000e+03 -3.8484476e-01 + 5.8592000e+03 -3.1378317e-01 + 5.8596000e+03 -3.4937825e-01 + 5.8600000e+03 -6.4805113e-01 + 5.8604000e+03 -1.0962001e+00 + 5.8608000e+03 -1.6398934e+00 + 5.8612000e+03 -1.8401862e+00 + 5.8616000e+03 -1.6144855e+00 + 5.8620000e+03 -1.1469072e+00 + 5.8624000e+03 -5.2745748e-01 + 5.8628000e+03 -1.5913950e-01 + 5.8632000e+03 5.3626602e-01 + 5.8636000e+03 9.2690881e-01 + 5.8640000e+03 1.3434008e+00 + 5.8644000e+03 1.4743275e+00 + 5.8648000e+03 1.2074632e+00 + 5.8652000e+03 9.1827079e-01 + 5.8656000e+03 7.1336965e-01 + 5.8660000e+03 6.0107645e-01 + 5.8664000e+03 8.0193046e-01 + 5.8668000e+03 1.0616937e+00 + 5.8672000e+03 1.2159179e+00 + 5.8676000e+03 1.2444761e+00 + 5.8680000e+03 1.7092030e+00 + 5.8684000e+03 1.8396352e+00 + 5.8688000e+03 1.0998968e+00 + 5.8692000e+03 5.7004871e-01 + 5.8696000e+03 2.5005719e-01 + 5.8700000e+03 1.6971400e-01 + 5.8704000e+03 5.0617344e-01 + 5.8708000e+03 9.3549862e-01 + 5.8712000e+03 9.1233809e-01 + 5.8716000e+03 5.5356962e-01 + 5.8720000e+03 -8.4161689e-02 + 5.8724000e+03 -9.5273024e-02 + 5.8728000e+03 -1.5184153e-01 + 5.8732000e+03 -6.6903023e-01 + 5.8736000e+03 -5.8231719e-01 + 5.8740000e+03 -7.5302463e-01 + 5.8744000e+03 -1.0960752e+00 + 5.8748000e+03 -1.4620427e+00 + 5.8752000e+03 -1.6419154e+00 + 5.8756000e+03 -1.8615724e+00 + 5.8760000e+03 -1.7338605e+00 + 5.8764000e+03 -1.6556763e+00 + 5.8768000e+03 -1.2992136e+00 + 5.8772000e+03 -9.8751202e-01 + 5.8776000e+03 -1.1647647e+00 + 5.8780000e+03 -1.6034745e+00 + 5.8784000e+03 -2.0516577e+00 + 5.8788000e+03 -1.9670911e+00 + 5.8792000e+03 -1.6241599e+00 + 5.8796000e+03 -9.2495310e-01 + 5.8800000e+03 -1.1206210e-02 + 5.8804000e+03 7.3898461e-01 + 5.8808000e+03 1.0488512e+00 + 5.8812000e+03 9.7833885e-01 + 5.8816000e+03 6.0746118e-01 + 5.8820000e+03 3.7609588e-01 + 5.8824000e+03 -2.6495742e-01 + 5.8828000e+03 -6.1727303e-01 + 5.8832000e+03 -4.8920168e-01 + 5.8836000e+03 8.9589576e-02 + 5.8840000e+03 4.4886200e-01 + 5.8844000e+03 1.9188525e+00 + 5.8848000e+03 2.3694547e+00 + 5.8852000e+03 2.1702109e+00 + 5.8856000e+03 1.2708843e+00 + 5.8860000e+03 9.9132331e-01 + 5.8864000e+03 6.2166339e-01 + 5.8868000e+03 -2.9761752e-01 + 5.8872000e+03 -4.5785068e-01 + 5.8876000e+03 -3.0777152e-01 + 5.8880000e+03 2.0472308e-03 + 5.8884000e+03 2.6194843e-01 + 5.8888000e+03 4.4172980e-01 + 5.8892000e+03 4.8108140e-01 + 5.8896000e+03 7.7889749e-01 + 5.8900000e+03 9.6477259e-01 + 5.8904000e+03 1.2240995e+00 + 5.8908000e+03 1.0759416e+00 + 5.8912000e+03 5.6458056e-01 + 5.8916000e+03 3.2327893e-01 + 5.8920000e+03 2.9202932e-01 + 5.8924000e+03 -4.6909908e-01 + 5.8928000e+03 -1.2798955e+00 + 5.8932000e+03 -1.8502322e+00 + 5.8936000e+03 -1.9600116e+00 + 5.8940000e+03 -1.9293213e+00 + 5.8944000e+03 -1.4183516e+00 + 5.8948000e+03 -1.2472910e+00 + 5.8952000e+03 -1.2161737e+00 + 5.8956000e+03 -1.0650061e+00 + 5.8960000e+03 -1.2038214e+00 + 5.8964000e+03 -1.5026150e+00 + 5.8968000e+03 -1.7713209e+00 + 5.8972000e+03 -1.6600088e+00 + 5.8976000e+03 -1.1586875e+00 + 5.8980000e+03 -7.2759824e-01 + 5.8984000e+03 -5.5203910e-01 + 5.8988000e+03 -3.8483153e-01 + 5.8992000e+03 -4.8717609e-01 + 5.8996000e+03 -6.0225293e-01 + 5.9000000e+03 -4.1630979e-01 + 5.9004000e+03 1.4217774e-01 + 5.9008000e+03 7.5893837e-01 + 5.9012000e+03 1.4714072e+00 + 5.9016000e+03 2.0913255e+00 + 5.9020000e+03 2.5927067e+00 + 5.9024000e+03 2.4342710e+00 + 5.9028000e+03 2.0315507e+00 + 5.9032000e+03 1.6066367e+00 + 5.9036000e+03 1.3447774e+00 + 5.9040000e+03 1.1912487e+00 + 5.9044000e+03 7.0818835e-01 + 5.9048000e+03 5.1383472e-01 + 5.9052000e+03 4.7012142e-01 + 5.9056000e+03 3.4051040e-01 + 5.9060000e+03 1.5648429e-01 + 5.9064000e+03 -3.6499264e-01 + 5.9068000e+03 -5.1430059e-01 + 5.9072000e+03 -5.3101854e-01 + 5.9076000e+03 -5.2804671e-01 + 5.9080000e+03 -3.9279511e-01 + 5.9084000e+03 -1.0491747e-01 + 5.9088000e+03 1.3191403e-01 + 5.9092000e+03 2.7702645e-01 + 5.9096000e+03 5.5260761e-01 + 5.9100000e+03 6.2259426e-01 + 5.9104000e+03 9.6494817e-01 + 5.9108000e+03 1.0934840e+00 + 5.9112000e+03 7.7440520e-01 + 5.9116000e+03 1.4599371e-01 + 5.9120000e+03 -2.0581268e-01 + 5.9124000e+03 -4.0930463e-01 + 5.9128000e+03 -1.0009983e+00 + 5.9132000e+03 -1.2711049e+00 + 5.9136000e+03 -1.5408044e+00 + 5.9140000e+03 -1.4403236e+00 + 5.9144000e+03 -1.1996737e+00 + 5.9148000e+03 -9.3879693e-01 + 5.9152000e+03 -8.5771213e-01 + 5.9156000e+03 -6.5619546e-01 + 5.9160000e+03 -9.9437107e-01 + 5.9164000e+03 -1.2824928e+00 + 5.9168000e+03 -1.3307340e+00 + 5.9172000e+03 -1.0991971e+00 + 5.9176000e+03 -6.0784994e-01 + 5.9180000e+03 -3.1905002e-01 + 5.9184000e+03 -2.3425952e-01 + 5.9188000e+03 -2.0405927e-01 + 5.9192000e+03 -6.0887230e-02 + 5.9196000e+03 -2.5500377e-01 + 5.9200000e+03 -1.5526265e-01 + 5.9204000e+03 -2.2532505e-01 + 5.9208000e+03 1.4454864e-01 + 5.9212000e+03 7.3436827e-01 + 5.9216000e+03 1.2741430e+00 + 5.9220000e+03 1.6037194e+00 + 5.9224000e+03 1.5430046e+00 + 5.9228000e+03 1.4819307e+00 + 5.9232000e+03 1.2907615e+00 + 5.9236000e+03 1.0419752e+00 + 5.9240000e+03 7.7006313e-01 + 5.9244000e+03 9.0345702e-02 + 5.9248000e+03 -3.5571550e-01 + 5.9252000e+03 -5.4621428e-01 + 5.9256000e+03 -7.2546125e-01 + 5.9260000e+03 -9.0485799e-01 + 5.9264000e+03 -1.2222410e+00 + 5.9268000e+03 -1.5411963e+00 + 5.9272000e+03 -1.7646651e+00 + 5.9276000e+03 -1.2167555e+00 + 5.9280000e+03 -6.1419031e-01 + 5.9284000e+03 -1.3852316e-01 + 5.9288000e+03 3.0430335e-01 + 5.9292000e+03 9.0688097e-01 + 5.9296000e+03 1.5699735e+00 + 5.9300000e+03 1.9730643e+00 + 5.9304000e+03 2.3392426e+00 + 5.9308000e+03 2.2854438e+00 + 5.9312000e+03 1.9641428e+00 + 5.9316000e+03 1.6540065e+00 + 5.9320000e+03 1.3419848e+00 + 5.9324000e+03 8.4536506e-01 + 5.9328000e+03 4.1015899e-01 + 5.9332000e+03 3.9587550e-01 + 5.9336000e+03 -1.4802853e-02 + 5.9340000e+03 -2.8779600e-01 + 5.9344000e+03 -6.3776705e-01 + 5.9348000e+03 -7.7749840e-01 + 5.9352000e+03 -8.0726653e-01 + 5.9356000e+03 -1.2771699e+00 + 5.9360000e+03 -1.3473774e+00 + 5.9364000e+03 -1.3079345e+00 + 5.9368000e+03 -1.3686694e+00 + 5.9372000e+03 -1.7891896e+00 + 5.9376000e+03 -1.7393286e+00 + 5.9380000e+03 -1.4190871e+00 + 5.9384000e+03 -1.3884798e+00 + 5.9388000e+03 -1.1275021e+00 + 5.9392000e+03 -2.8606921e-01 + 5.9396000e+03 -1.5463913e-01 + 5.9400000e+03 2.3687003e-01 + 5.9404000e+03 6.9819036e-01 + 5.9408000e+03 1.2892539e+00 + 5.9412000e+03 1.8900262e+00 + 5.9416000e+03 2.0202304e+00 + 5.9420000e+03 2.2899140e+00 + 5.9424000e+03 2.1794340e+00 + 5.9428000e+03 1.9850258e+00 + 5.9432000e+03 1.4084035e+00 + 5.9436000e+03 3.7189712e-01 + 5.9440000e+03 -6.4240059e-01 + 5.9444000e+03 -1.8405321e+00 + 5.9448000e+03 -2.7326116e+00 + 5.9452000e+03 -3.2763914e+00 + 5.9456000e+03 -3.4501633e+00 + 5.9460000e+03 -3.2274217e+00 + 5.9464000e+03 -2.6781748e+00 + 5.9468000e+03 -1.8435380e+00 + 5.9472000e+03 -1.0061692e+00 + 5.9476000e+03 -3.7615760e-01 + 5.9480000e+03 4.3853506e-01 + 5.9484000e+03 1.7162331e+00 + 5.9488000e+03 2.3833532e+00 + 5.9492000e+03 2.5881781e+00 + 5.9496000e+03 2.4008130e+00 + 5.9500000e+03 2.1719905e+00 + 5.9504000e+03 2.0422954e+00 + 5.9508000e+03 1.8925838e+00 + 5.9512000e+03 1.7228239e+00 + 5.9516000e+03 1.4030961e+00 + 5.9520000e+03 8.5356020e-01 + 5.9524000e+03 4.3423742e-01 + 5.9528000e+03 -2.9468569e-01 + 5.9532000e+03 -9.8694283e-01 + 5.9536000e+03 -1.5097427e+00 + 5.9540000e+03 -1.6905290e+00 + 5.9544000e+03 -1.7143784e+00 + 5.9548000e+03 -1.5953574e+00 + 5.9552000e+03 -1.3513275e+00 + 5.9556000e+03 -1.0869189e+00 + 5.9560000e+03 -5.9842339e-01 + 5.9564000e+03 -1.4602160e-01 + 5.9568000e+03 5.5213348e-02 + 5.9572000e+03 3.7069917e-01 + 5.9576000e+03 9.0771616e-01 + 5.9580000e+03 1.1118941e+00 + 5.9584000e+03 1.2667361e+00 + 5.9588000e+03 1.4090814e+00 + 5.9592000e+03 1.6316651e+00 + 5.9596000e+03 1.9049598e+00 + 5.9600000e+03 2.2395768e+00 + 5.9604000e+03 2.3364041e+00 + 5.9608000e+03 2.1015271e+00 + 5.9612000e+03 1.7062354e+00 + 5.9616000e+03 1.0056061e+00 + 5.9620000e+03 -4.1012778e-03 + 5.9624000e+03 -1.0372000e+00 + 5.9628000e+03 -1.9679578e+00 + 5.9632000e+03 -2.7788837e+00 + 5.9636000e+03 -3.2698717e+00 + 5.9640000e+03 -3.3609453e+00 + 5.9644000e+03 -3.1221013e+00 + 5.9648000e+03 -2.8733077e+00 + 5.9652000e+03 -2.6346830e+00 + 5.9656000e+03 -1.9361082e+00 + 5.9660000e+03 -1.0272974e+00 + 5.9664000e+03 -3.2831287e-01 + 5.9668000e+03 1.9081606e-01 + 5.9672000e+03 2.5001384e-01 + 5.9676000e+03 3.4917943e-01 + 5.9680000e+03 4.1836873e-01 + 5.9684000e+03 8.1773876e-01 + 5.9688000e+03 1.2673331e+00 + 5.9692000e+03 1.5672124e+00 + 5.9696000e+03 1.7931370e+00 + 5.9700000e+03 1.8274034e+00 + 5.9704000e+03 1.8854592e+00 + 5.9708000e+03 2.0782219e+00 + 5.9712000e+03 2.0687164e+00 + 5.9716000e+03 1.9092782e+00 + 5.9720000e+03 5.6973619e-01 + 5.9724000e+03 2.7015115e-01 + 5.9728000e+03 1.9055425e-01 + 5.9732000e+03 2.2091775e-01 + 5.9736000e+03 4.8128576e-01 + 5.9740000e+03 1.4173491e-01 + 5.9744000e+03 -3.3769804e-01 + 5.9748000e+03 -6.4714320e-01 + 5.9752000e+03 -7.5631683e-01 + 5.9756000e+03 -6.4564245e-01 + 5.9760000e+03 -4.6497945e-01 + 5.9764000e+03 -4.9437949e-01 + 5.9768000e+03 -6.1379214e-01 + 5.9772000e+03 -9.6321353e-01 + 5.9776000e+03 -1.3826415e+00 + 5.9780000e+03 -1.9223261e+00 + 5.9784000e+03 -2.0319240e+00 + 5.9788000e+03 -2.0016968e+00 + 5.9792000e+03 -1.8418125e+00 + 5.9796000e+03 -1.2721223e+00 + 5.9800000e+03 -5.3261942e-01 + 5.9804000e+03 -1.7315893e-01 + 5.9808000e+03 -3.7016921e-03 + 5.9812000e+03 9.5727585e-02 + 5.9816000e+03 3.0537338e-01 + 5.9820000e+03 4.0508431e-01 + 5.9824000e+03 3.7487163e-01 + 5.9828000e+03 1.9490929e-01 + 5.9832000e+03 -4.4976806e-02 + 5.9836000e+03 -3.3483840e-01 + 5.9840000e+03 -4.9481139e-01 + 5.9844000e+03 -6.8524029e-01 + 5.9848000e+03 -8.5523154e-01 + 5.9852000e+03 -6.8624318e-01 + 5.9856000e+03 -5.2681146e-01 + 5.9860000e+03 -2.2818378e-01 + 5.9864000e+03 5.3767254e-01 + 5.9868000e+03 1.0925118e+00 + 5.9872000e+03 9.8825857e-01 + 5.9876000e+03 8.7790310e-01 + 5.9880000e+03 7.4505687e-01 + 5.9884000e+03 4.0433026e-01 + 5.9888000e+03 3.0384365e-01 + 5.9892000e+03 1.3312362e-01 + 5.9896000e+03 -6.1069648e-02 + 5.9900000e+03 -1.7542583e-01 + 5.9904000e+03 -1.6739998e-01 + 5.9908000e+03 6.5692130e-02 + 5.9912000e+03 2.6537685e-02 + 5.9916000e+03 -6.5692638e-01 + 5.9920000e+03 -1.0416369e+00 + 5.9924000e+03 -6.0607705e-01 + 5.9928000e+03 -6.8979354e-02 + 5.9932000e+03 6.0530534e-01 + 5.9936000e+03 1.0501549e+00 + 5.9940000e+03 8.1134921e-01 + 5.9944000e+03 8.3412462e-01 + 5.9948000e+03 5.0457678e-01 + 5.9952000e+03 3.1491714e-01 + 5.9956000e+03 3.6487608e-01 + 5.9960000e+03 7.5470110e-01 + 5.9964000e+03 1.4844222e+00 + 5.9968000e+03 2.1041130e+00 + 5.9972000e+03 1.6633797e+00 + 5.9976000e+03 8.3236292e-01 + 5.9980000e+03 -5.8572087e-02 + 5.9984000e+03 -1.0837749e+00 + 5.9988000e+03 -1.7397334e+00 + 5.9992000e+03 -1.8967949e+00 + 5.9996000e+03 -2.3113880e+00 + 6.0000000e+03 -2.4894180e+00 + 6.0004000e+03 -2.6743708e+00 + 6.0008000e+03 -2.8237331e+00 + 6.0012000e+03 -2.9787315e+00 + 6.0016000e+03 -2.8602595e+00 + 6.0020000e+03 -2.7395698e+00 + 6.0024000e+03 -2.5462934e+00 + 6.0028000e+03 -2.1154191e+00 + 6.0032000e+03 -1.2146083e+00 + 6.0036000e+03 -3.5400102e-01 + 6.0040000e+03 3.2651125e-01 + 6.0044000e+03 1.0367643e+00 + 6.0048000e+03 1.4167859e+00 + 6.0052000e+03 1.9765294e+00 + 6.0056000e+03 3.0258996e+00 + 6.0060000e+03 3.6749105e+00 + 6.0064000e+03 3.4636301e+00 + 6.0068000e+03 2.7520722e+00 + 6.0072000e+03 2.0004418e+00 + 6.0076000e+03 1.8489635e+00 + 6.0080000e+03 1.6921839e+00 + 6.0084000e+03 1.5428648e+00 + 6.0088000e+03 1.1521413e+00 + 6.0092000e+03 1.2095867e+00 + 6.0096000e+03 9.1172015e-01 + 6.0100000e+03 2.3439394e-01 + 6.0104000e+03 -2.8508767e-01 + 6.0108000e+03 -7.0184059e-01 + 6.0112000e+03 -9.3173241e-01 + 6.0116000e+03 -9.2290156e-01 + 6.0120000e+03 -1.0422527e+00 + 6.0124000e+03 -1.2794881e+00 + 6.0128000e+03 -1.2120829e+00 + 6.0132000e+03 -1.1599903e+00 + 6.0136000e+03 -9.2343228e-01 + 6.0140000e+03 -2.9995089e-01 + 6.0144000e+03 8.9020312e-02 + 6.0148000e+03 7.9239086e-01 + 6.0152000e+03 1.8049415e+00 + 6.0156000e+03 2.2596564e+00 + 6.0160000e+03 2.3253893e+00 + 6.0164000e+03 1.8278466e+00 + 6.0168000e+03 8.2111635e-01 + 6.0172000e+03 -2.2359079e-02 + 6.0176000e+03 -1.0143098e+00 + 6.0180000e+03 -1.6090625e+00 + 6.0184000e+03 -2.1238464e+00 + 6.0188000e+03 -2.6323468e+00 + 6.0192000e+03 -2.7589603e+00 + 6.0196000e+03 -2.5199046e+00 + 6.0200000e+03 -2.3108171e+00 + 6.0204000e+03 -2.2314980e+00 + 6.0208000e+03 -1.4719142e+00 + 6.0212000e+03 -5.7171034e-01 + 6.0216000e+03 -1.0083107e-01 + 6.0220000e+03 1.2985565e-01 + 6.0224000e+03 -9.4649693e-02 + 6.0228000e+03 -1.9650020e-01 + 6.0232000e+03 -3.2061378e-01 + 6.0236000e+03 -2.7522534e-02 + 6.0240000e+03 4.1121581e-01 + 6.0244000e+03 1.1093921e+00 + 6.0248000e+03 1.5034766e+00 + 6.0252000e+03 8.3433157e-01 + 6.0256000e+03 1.8500369e-01 + 6.0260000e+03 -2.1468501e-01 + 6.0264000e+03 -3.4572734e-02 + 6.0268000e+03 5.6851810e-01 + 6.0272000e+03 1.1451408e+00 + 6.0276000e+03 1.8607588e+00 + 6.0280000e+03 2.4431216e+00 + 6.0284000e+03 2.6501083e+00 + 6.0288000e+03 2.0226525e+00 + 6.0292000e+03 1.1392840e+00 + 6.0296000e+03 2.1055306e-01 + 6.0300000e+03 -6.6216934e-01 + 6.0304000e+03 -1.1832811e+00 + 6.0308000e+03 -1.7451398e+00 + 6.0312000e+03 -2.0409089e+00 + 6.0316000e+03 -2.2795547e+00 + 6.0320000e+03 -2.3475400e+00 + 6.0324000e+03 -2.1083551e+00 + 6.0328000e+03 -1.7760336e+00 + 6.0332000e+03 -1.2173368e+00 + 6.0336000e+03 -2.4320430e-01 + 6.0340000e+03 7.1653470e-01 + 6.0344000e+03 1.8312603e+00 + 6.0348000e+03 2.8387177e+00 + 6.0352000e+03 3.4911122e+00 + 6.0356000e+03 3.9290224e+00 + 6.0360000e+03 3.5419652e+00 + 6.0364000e+03 2.9035344e+00 + 6.0368000e+03 1.4473366e+00 + 6.0372000e+03 -1.9304800e-01 + 6.0376000e+03 -1.3237475e+00 + 6.0380000e+03 -1.9947995e+00 + 6.0384000e+03 -2.3961375e+00 + 6.0388000e+03 -2.9274449e+00 + 6.0392000e+03 -2.9986993e+00 + 6.0396000e+03 -3.0698317e+00 + 6.0400000e+03 -2.9407851e+00 + 6.0404000e+03 -2.7915836e+00 + 6.0408000e+03 -2.4721656e+00 + 6.0412000e+03 -2.0625251e+00 + 6.0416000e+03 -1.4526981e+00 + 6.0420000e+03 -6.1241877e-01 + 6.0424000e+03 1.1809097e-01 + 6.0428000e+03 6.1867947e-01 + 6.0432000e+03 1.0594378e+00 + 6.0436000e+03 1.5603323e+00 + 6.0440000e+03 1.8612640e+00 + 6.0444000e+03 2.1122200e+00 + 6.0448000e+03 2.2530806e+00 + 6.0452000e+03 2.5839058e+00 + 6.0456000e+03 3.0913052e+00 + 6.0460000e+03 3.3413082e+00 + 6.0464000e+03 3.2363410e+00 + 6.0468000e+03 2.6108261e+00 + 6.0472000e+03 2.0446791e+00 + 6.0476000e+03 1.3951688e+00 + 6.0480000e+03 8.6679097e-01 + 6.0484000e+03 -2.2108841e-01 + 6.0488000e+03 -7.7821513e-01 + 6.0492000e+03 -1.0167972e+00 + 6.0496000e+03 -1.3122743e+00 + 6.0500000e+03 -1.3592999e+00 + 6.0504000e+03 -1.1327788e+00 + 6.0508000e+03 -8.9278884e-01 + 6.0512000e+03 -6.3298345e-01 + 6.0516000e+03 -5.9303118e-01 + 6.0520000e+03 -8.2291814e-01 + 6.0524000e+03 -1.0426980e+00 + 6.0528000e+03 -1.1621600e+00 + 6.0532000e+03 -1.2613948e+00 + 6.0536000e+03 -1.6604172e+00 + 6.0540000e+03 -1.7993814e+00 + 6.0544000e+03 -1.7283203e+00 + 6.0548000e+03 -1.6272486e+00 + 6.0552000e+03 -1.4962593e+00 + 6.0556000e+03 -8.7181556e-01 + 6.0560000e+03 -1.7739526e-01 + 6.0564000e+03 6.9963492e-01 + 6.0568000e+03 1.3738600e+00 + 6.0572000e+03 1.9851026e+00 + 6.0576000e+03 2.7585031e+00 + 6.0580000e+03 2.9984406e+00 + 6.0584000e+03 2.2941267e+00 + 6.0588000e+03 1.5033338e+00 + 6.0592000e+03 6.8265882e-01 + 6.0596000e+03 3.4216655e-01 + 6.0600000e+03 3.0185945e-01 + 6.0604000e+03 2.0174763e-01 + 6.0608000e+03 -1.6820749e-01 + 6.0612000e+03 -5.1813521e-01 + 6.0616000e+03 -1.2582334e+00 + 6.0620000e+03 -1.9784370e+00 + 6.0624000e+03 -2.0485963e+00 + 6.0628000e+03 -1.5286817e+00 + 6.0632000e+03 -1.0087205e+00 + 6.0636000e+03 -8.0878827e-01 + 6.0640000e+03 -6.8876729e-02 + 6.0644000e+03 2.9104897e-01 + 6.0648000e+03 6.6886020e-01 + 6.0652000e+03 1.2790566e+00 + 6.0656000e+03 1.5646667e+00 + 6.0660000e+03 1.2064802e+00 + 6.0664000e+03 9.9089918e-01 + 6.0668000e+03 7.3357367e-01 + 6.0672000e+03 5.5958194e-01 + 6.0676000e+03 7.3722502e-01 + 6.0680000e+03 1.3264096e+00 + 6.0684000e+03 1.7158364e+00 + 6.0688000e+03 1.2956567e+00 + 6.0692000e+03 7.6568275e-01 + 6.0696000e+03 5.9605738e-01 + 6.0700000e+03 -5.7301446e-01 + 6.0704000e+03 -9.5189534e-01 + 6.0708000e+03 -8.9468360e-01 + 6.0712000e+03 -1.0610696e+00 + 6.0716000e+03 -1.2088734e+00 + 6.0720000e+03 -1.6502910e+00 + 6.0724000e+03 -2.2993823e+00 + 6.0728000e+03 -2.9897382e+00 + 6.0732000e+03 -3.3555343e+00 + 6.0736000e+03 -3.3858952e+00 + 6.0740000e+03 -2.8816345e+00 + 6.0744000e+03 -2.2055663e+00 + 6.0748000e+03 -1.4243520e+00 + 6.0752000e+03 -5.6578972e-01 + 6.0756000e+03 3.1763500e-01 + 6.0760000e+03 1.1641853e+00 + 6.0764000e+03 1.4068332e+00 + 6.0768000e+03 1.7658045e+00 + 6.0772000e+03 2.0337474e+00 + 6.0776000e+03 2.2826610e+00 + 6.0780000e+03 2.5045661e+00 + 6.0784000e+03 2.3848393e+00 + 6.0788000e+03 1.9253947e+00 + 6.0792000e+03 1.7859780e+00 + 6.0796000e+03 6.0645450e-01 + 6.0800000e+03 3.0688548e-01 + 6.0804000e+03 -4.9272734e-01 + 6.0808000e+03 -1.6224997e+00 + 6.0812000e+03 -2.1048323e+00 + 6.0816000e+03 -2.0168361e+00 + 6.0820000e+03 -1.9584955e+00 + 6.0824000e+03 -1.9874513e+00 + 6.0828000e+03 -2.0052404e+00 + 6.0832000e+03 -2.1584234e+00 + 6.0836000e+03 -1.9764448e+00 + 6.0840000e+03 -1.6077379e+00 + 6.0844000e+03 -1.1989700e+00 + 6.0848000e+03 -3.4476306e-01 + 6.0852000e+03 1.2356777e+00 + 6.0856000e+03 2.6712103e+00 + 6.0860000e+03 3.6983618e+00 + 6.0864000e+03 4.0574562e+00 + 6.0868000e+03 4.3482646e+00 + 6.0872000e+03 3.9981241e+00 + 6.0876000e+03 3.1788860e+00 + 6.0880000e+03 2.6697133e+00 + 6.0884000e+03 2.6205436e+00 + 6.0888000e+03 2.3488839e+00 + 6.0892000e+03 1.6515549e+00 + 6.0896000e+03 5.8551165e-01 + 6.0900000e+03 -5.9137303e-01 + 6.0904000e+03 -1.8965888e+00 + 6.0908000e+03 -3.1977347e+00 + 6.0912000e+03 -4.1052490e+00 + 6.0916000e+03 -4.3942852e+00 + 6.0920000e+03 -4.0441168e+00 + 6.0924000e+03 -3.8341508e+00 + 6.0928000e+03 -3.7942646e+00 + 6.0932000e+03 -3.5959543e+00 + 6.0936000e+03 -2.9494819e+00 + 6.0940000e+03 -2.4143833e+00 + 6.0944000e+03 -1.8765589e+00 + 6.0948000e+03 -7.6506190e-01 + 6.0952000e+03 6.5079795e-01 + 6.0956000e+03 2.0163298e+00 + 6.0960000e+03 3.1017532e+00 + 6.0964000e+03 3.5990463e+00 + 6.0968000e+03 3.4207920e+00 + 6.0972000e+03 3.0693606e+00 + 6.0976000e+03 2.7930044e+00 + 6.0980000e+03 2.2841573e+00 + 6.0984000e+03 2.3646836e+00 + 6.0988000e+03 2.5176897e+00 + 6.0992000e+03 1.7933204e+00 + 6.0996000e+03 7.4053230e-01 + 6.1000000e+03 -4.2255861e-01 + 6.1004000e+03 -1.3664064e+00 + 6.1008000e+03 -2.1700600e+00 + 6.1012000e+03 -2.2526073e+00 + 6.1016000e+03 -2.0204569e+00 + 6.1020000e+03 -1.2349564e+00 + 6.1024000e+03 -4.0633463e-01 + 6.1028000e+03 1.0403659e-01 + 6.1032000e+03 6.5816553e-01 + 6.1036000e+03 1.4436224e+00 + 6.1040000e+03 1.8936102e+00 + 6.1044000e+03 2.3530821e+00 + 6.1048000e+03 2.1645141e+00 + 6.1052000e+03 2.1007464e+00 + 6.1056000e+03 2.1351197e+00 + 6.1060000e+03 1.9185410e+00 + 6.1064000e+03 1.4827269e+00 + 6.1068000e+03 4.4897148e-01 + 6.1072000e+03 -5.0317733e-01 + 6.1076000e+03 -1.5701813e+00 + 6.1080000e+03 -2.4883404e+00 + 6.1084000e+03 -2.9792215e+00 + 6.1088000e+03 -3.3488393e+00 + 6.1092000e+03 -3.2082109e+00 + 6.1096000e+03 -2.6376184e+00 + 6.1100000e+03 -2.0569516e+00 + 6.1104000e+03 -1.5362665e+00 + 6.1108000e+03 -9.3561899e-01 + 6.1112000e+03 -7.8499201e-01 + 6.1116000e+03 -6.5466288e-01 + 6.1120000e+03 -4.9566454e-01 + 6.1124000e+03 -1.8658966e-01 + 6.1128000e+03 -1.7669405e-02 + 6.1132000e+03 -3.1295299e-01 + 6.1136000e+03 -4.5710630e-02 + 6.1140000e+03 2.1374522e-01 + 6.1144000e+03 1.8318977e-01 + 6.1148000e+03 -7.3551549e-03 + 6.1152000e+03 -1.1796224e-01 + 6.1156000e+03 -1.8549653e-02 + 6.1160000e+03 9.0939600e-02 + 6.1164000e+03 4.4038409e-01 + 6.1168000e+03 7.4992166e-01 + 6.1172000e+03 6.5983927e-01 + 6.1176000e+03 1.9987901e-01 + 6.1180000e+03 -1.4990279e-01 + 6.1184000e+03 -6.1721393e-02 + 6.1188000e+03 5.1700480e-01 + 6.1192000e+03 1.2761739e+00 + 6.1196000e+03 1.3246734e+00 + 6.1200000e+03 1.3981911e+00 + 6.1204000e+03 1.0733395e+00 + 6.1208000e+03 6.7507461e-01 + 6.1212000e+03 6.3617110e-01 + 6.1216000e+03 7.0671007e-01 + 6.1220000e+03 6.7714414e-01 + 6.1224000e+03 8.0741625e-01 + 6.1228000e+03 1.1475264e+00 + 6.1232000e+03 1.2274954e+00 + 6.1236000e+03 1.6073512e+00 + 6.1240000e+03 1.1970592e+00 + 6.1244000e+03 4.6673341e-01 + 6.1248000e+03 -9.3697841e-02 + 6.1252000e+03 -9.1384851e-01 + 6.1256000e+03 -1.6047574e+00 + 6.1260000e+03 -1.9253254e+00 + 6.1264000e+03 -1.6959769e+00 + 6.1268000e+03 -1.1465083e+00 + 6.1272000e+03 -1.1771434e+00 + 6.1276000e+03 -1.5175801e+00 + 6.1280000e+03 -1.6179721e+00 + 6.1284000e+03 -1.2481753e+00 + 6.1288000e+03 -3.2817869e-01 + 6.1292000e+03 9.4182652e-01 + 6.1296000e+03 1.3923502e+00 + 6.1300000e+03 1.4729347e+00 + 6.1304000e+03 7.1336631e-01 + 6.1308000e+03 1.9373587e-01 + 6.1312000e+03 1.5421573e-01 + 6.1316000e+03 -4.6537140e-01 + 6.1320000e+03 -7.1509530e-01 + 6.1324000e+03 -5.5463192e-01 + 6.1328000e+03 -1.3445826e-01 + 6.1332000e+03 1.1564503e-01 + 6.1336000e+03 3.0563495e-01 + 6.1340000e+03 -5.5442297e-01 + 6.1344000e+03 -1.4345841e+00 + 6.1348000e+03 -1.7647965e+00 + 6.1352000e+03 -1.8450466e+00 + 6.1356000e+03 -1.7253254e+00 + 6.1360000e+03 -1.6356044e+00 + 6.1364000e+03 -1.1158696e+00 + 6.1368000e+03 -4.6939437e-01 + 6.1372000e+03 2.7682254e-01 + 6.1376000e+03 7.1172564e-01 + 6.1380000e+03 1.0838228e+00 + 6.1384000e+03 1.4424937e+00 + 6.1388000e+03 2.3524343e+00 + 6.1392000e+03 3.3026752e+00 + 6.1396000e+03 3.7231616e+00 + 6.1400000e+03 3.4932645e+00 + 6.1404000e+03 3.1732071e+00 + 6.1408000e+03 2.5632679e+00 + 6.1412000e+03 2.0534754e+00 + 6.1416000e+03 1.2339407e+00 + 6.1420000e+03 5.7470918e-01 + 6.1424000e+03 -6.4305238e-02 + 6.1428000e+03 -1.2334746e-01 + 6.1432000e+03 -2.1252490e-01 + 6.1436000e+03 -1.3191864e-01 + 6.1440000e+03 6.8464222e-02 + 6.1444000e+03 6.6860115e-01 + 6.1448000e+03 5.5849777e-01 + 6.1452000e+03 3.6734810e-01 + 6.1456000e+03 -1.0149266e-01 + 6.1460000e+03 -7.4704840e-01 + 6.1464000e+03 -1.1785666e+00 + 6.1468000e+03 -1.4990241e+00 + 6.1472000e+03 -1.8130165e+00 + 6.1476000e+03 -2.3209025e+00 + 6.1480000e+03 -2.3391019e+00 + 6.1484000e+03 -2.0845596e+00 + 6.1488000e+03 -1.7497988e+00 + 6.1492000e+03 -9.9936059e-01 + 6.1496000e+03 -2.7874764e-02 + 6.1500000e+03 9.4002817e-01 + 6.1504000e+03 1.4703126e+00 + 6.1508000e+03 1.4207831e+00 + 6.1512000e+03 8.1535129e-01 + 6.1516000e+03 2.9131139e-01 + 6.1520000e+03 -3.9769696e-01 + 6.1524000e+03 -8.9636764e-01 + 6.1528000e+03 -1.0229064e+00 + 6.1532000e+03 -1.3111725e+00 + 6.1536000e+03 -1.3042852e+00 + 6.1540000e+03 -6.7071269e-01 + 6.1544000e+03 -1.0080047e-01 + 6.1548000e+03 3.7853235e-01 + 6.1552000e+03 5.6769135e-01 + 6.1556000e+03 6.8670931e-01 + 6.1560000e+03 8.4577877e-01 + 6.1564000e+03 1.2090338e+00 + 6.1568000e+03 1.5565656e+00 + 6.1572000e+03 1.9268692e+00 + 6.1576000e+03 1.8338685e+00 + 6.1580000e+03 1.5313851e+00 + 6.1584000e+03 1.2106718e+00 + 6.1588000e+03 1.0501017e+00 + 6.1592000e+03 1.1396552e+00 + 6.1596000e+03 1.2493178e+00 + 6.1600000e+03 1.3191010e+00 + 6.1604000e+03 1.1890744e+00 + 6.1608000e+03 8.0303974e-01 + 6.1612000e+03 4.5713970e-01 + 6.1616000e+03 5.1825423e-01 + 6.1620000e+03 3.5175654e-01 + 6.1624000e+03 2.5212074e-01 + 6.1628000e+03 1.4628163e-01 + 6.1632000e+03 -1.3700063e-01 + 6.1636000e+03 -7.3900877e-01 + 6.1640000e+03 -8.6421716e-01 + 6.1644000e+03 -6.5848390e-01 + 6.1648000e+03 -6.2787058e-01 + 6.1652000e+03 -8.4587796e-01 + 6.1656000e+03 -9.2889212e-01 + 6.1660000e+03 -1.0724368e+00 + 6.1664000e+03 -9.7081189e-01 + 6.1668000e+03 -8.2539270e-01 + 6.1672000e+03 -7.8450575e-01 + 6.1676000e+03 -6.8508521e-01 + 6.1680000e+03 -5.4891720e-01 + 6.1684000e+03 -7.0809313e-02 + 6.1688000e+03 2.3594114e-01 + 6.1692000e+03 7.9959891e-01 + 6.1696000e+03 1.0456907e+00 + 6.1700000e+03 1.0457322e+00 + 6.1704000e+03 9.2763017e-01 + 6.1708000e+03 7.0683741e-01 + 6.1712000e+03 4.0299612e-01 + 6.1716000e+03 1.2170348e-02 + 6.1720000e+03 -3.6287368e-01 + 6.1724000e+03 -7.9224093e-01 + 6.1728000e+03 -1.4282336e+00 + 6.1732000e+03 -1.5129946e+00 + 6.1736000e+03 -8.8898752e-01 + 6.1740000e+03 -1.9429184e-01 + 6.1744000e+03 4.2019030e-01 + 6.1748000e+03 9.8501564e-01 + 6.1752000e+03 9.0806048e-01 + 6.1756000e+03 8.3748648e-01 + 6.1760000e+03 8.0784910e-01 + 6.1764000e+03 9.5765526e-01 + 6.1768000e+03 1.2438985e+00 + 6.1772000e+03 1.8000676e+00 + 6.1776000e+03 2.3243218e+00 + 6.1780000e+03 2.0038614e+00 + 6.1784000e+03 1.8033816e+00 + 6.1788000e+03 1.3728239e+00 + 6.1792000e+03 1.2221902e+00 + 6.1796000e+03 1.0714948e+00 + 6.1800000e+03 9.3073286e-01 + 6.1804000e+03 7.6990219e-01 + 6.1808000e+03 3.1915933e-01 + 6.1812000e+03 -1.3653728e-01 + 6.1816000e+03 -8.1520407e-01 + 6.1820000e+03 -1.0646198e+00 + 6.1824000e+03 -1.0420757e+00 + 6.1828000e+03 -9.2585834e-01 + 6.1832000e+03 -1.2351472e+00 + 6.1836000e+03 -1.3955568e+00 + 6.1840000e+03 -1.4765407e+00 + 6.1844000e+03 -1.3256964e+00 + 6.1848000e+03 -1.3214505e+00 + 6.1852000e+03 -1.1445120e+00 + 6.1856000e+03 -7.1383512e-01 + 6.1860000e+03 -6.6314331e-01 + 6.1864000e+03 -2.2292063e-01 + 6.1868000e+03 7.5709016e-01 + 6.1872000e+03 9.9690366e-01 + 6.1876000e+03 7.4654065e-01 + 6.1880000e+03 4.2593984e-01 + 6.1884000e+03 2.7530430e-01 + 6.1888000e+03 -6.5283032e-02 + 6.1892000e+03 -4.5583242e-01 + 6.1896000e+03 -5.0630233e-01 + 6.1900000e+03 -5.9294085e-01 + 6.1904000e+03 -7.8295871e-01 + 6.1908000e+03 -7.6553824e-01 + 6.1912000e+03 -7.3727197e-01 + 6.1916000e+03 -6.0124800e-01 + 6.1920000e+03 -3.9700666e-01 + 6.1924000e+03 -3.2683102e-01 + 6.1928000e+03 1.5771829e-01 + 6.1932000e+03 6.2150556e-01 + 6.1936000e+03 1.3034648e+00 + 6.1940000e+03 1.7580519e+00 + 6.1944000e+03 2.0662732e+00 + 6.1948000e+03 2.0582914e+00 + 6.1952000e+03 1.9882044e+00 + 6.1956000e+03 1.9459085e+00 + 6.1960000e+03 2.0656272e+00 + 6.1964000e+03 2.0352083e+00 + 6.1968000e+03 1.9846896e+00 + 6.1972000e+03 9.0425843e-01 + 6.1976000e+03 -3.6595154e-01 + 6.1980000e+03 -1.2183981e+00 + 6.1984000e+03 -1.6561610e+00 + 6.1988000e+03 -1.8460157e+00 + 6.1992000e+03 -1.7225322e+00 + 6.1996000e+03 -1.2982842e+00 + 6.2000000e+03 -1.0285910e+00 + 6.2004000e+03 -8.5872949e-01 + 6.2008000e+03 -5.8527237e-01 + 6.2012000e+03 -5.6286870e-01 + 6.2016000e+03 -6.8134113e-01 + 6.2020000e+03 -3.0772349e-01 + 6.2024000e+03 -1.3791308e-01 + 6.2028000e+03 -7.7558084e-02 + 6.2032000e+03 3.4271573e-01 + 6.2036000e+03 7.5291116e-01 + 6.2040000e+03 8.1311944e-01 + 6.2044000e+03 4.1346232e-01 + 6.2048000e+03 -6.6129124e-02 + 6.2052000e+03 -1.4569850e-01 + 6.2056000e+03 -1.0454168e+00 + 6.2060000e+03 -1.1451362e+00 + 6.2064000e+03 -8.5526075e-01 + 6.2068000e+03 -4.1431489e-01 + 6.2072000e+03 -2.0920927e-01 + 6.2076000e+03 2.8049764e-01 + 6.2080000e+03 6.9244983e-01 + 6.2084000e+03 1.0532276e+00 + 6.2088000e+03 1.1428255e+00 + 6.2092000e+03 8.2257867e-01 + 6.2096000e+03 5.9252211e-01 + 6.2100000e+03 -1.5998177e-01 + 6.2104000e+03 -8.8830320e-01 + 6.2108000e+03 -1.6155352e+00 + 6.2112000e+03 -2.1114795e+00 + 6.2116000e+03 -2.4304092e+00 + 6.2120000e+03 -2.3932618e+00 + 6.2124000e+03 -1.3893669e+00 + 6.2128000e+03 -3.9676651e-01 + 6.2132000e+03 7.5272975e-01 + 6.2136000e+03 1.3020793e+00 + 6.2140000e+03 1.6911900e+00 + 6.2144000e+03 1.7299481e+00 + 6.2148000e+03 1.6985410e+00 + 6.2152000e+03 1.6068910e+00 + 6.2156000e+03 1.4655124e+00 + 6.2160000e+03 1.3926633e+00 + 6.2164000e+03 1.4932609e+00 + 6.2168000e+03 1.4577751e+00 + 6.2172000e+03 1.0203115e+00 + 6.2176000e+03 3.0141553e-01 + 6.2180000e+03 -9.6079506e-02 + 6.2184000e+03 -3.8561994e-01 + 6.2188000e+03 -4.1495659e-01 + 6.2192000e+03 -5.9709801e-01 + 6.2196000e+03 -7.3637657e-01 + 6.2200000e+03 -9.7800894e-01 + 6.2204000e+03 -1.2572571e+00 + 6.2208000e+03 -1.3094390e+00 + 6.2212000e+03 -9.8213946e-01 + 6.2216000e+03 -3.3039753e-01 + 6.2220000e+03 8.9758242e-02 + 6.2224000e+03 1.3959660e-01 + 6.2228000e+03 2.3925762e-01 + 6.2232000e+03 3.8863315e-01 + 6.2236000e+03 2.6164481e-01 + 6.2240000e+03 2.2801365e-01 + 6.2244000e+03 4.3546073e-01 + 6.2248000e+03 5.6323779e-01 + 6.2252000e+03 7.7299701e-01 + 6.2256000e+03 8.4930030e-01 + 6.2260000e+03 8.0134690e-01 + 6.2264000e+03 5.9135565e-01 + 6.2268000e+03 -8.9242117e-02 + 6.2272000e+03 -5.0627545e-01 + 6.2276000e+03 -1.0165574e+00 + 6.2280000e+03 -1.3532493e+00 + 6.2284000e+03 -1.7423505e+00 + 6.2288000e+03 -1.7049074e+00 + 6.2292000e+03 -1.6290467e+00 + 6.2296000e+03 -1.6447524e+00 + 6.2300000e+03 -1.5470451e+00 + 6.2304000e+03 -1.0838697e+00 + 6.2308000e+03 -8.9704221e-01 + 6.2312000e+03 -4.7155881e-01 + 6.2316000e+03 -4.1804718e-01 + 6.2320000e+03 -3.5308338e-01 + 6.2324000e+03 -1.1968843e-01 + 6.2328000e+03 -2.1072481e-01 + 6.2332000e+03 -3.7140083e-01 + 6.2336000e+03 -3.1786389e-01 + 6.2340000e+03 -9.7382560e-02 + 6.2344000e+03 -8.0989703e-02 + 6.2348000e+03 -2.6745353e-01 + 6.2352000e+03 -4.0937899e-01 + 6.2356000e+03 -3.1029420e-01 + 6.2360000e+03 9.9195209e-02 + 6.2364000e+03 5.0910740e-01 + 6.2368000e+03 7.9935927e-01 + 6.2372000e+03 1.0200009e+00 + 6.2376000e+03 1.7307921e+00 + 6.2380000e+03 2.0010475e+00 + 6.2384000e+03 1.7889947e+00 + 6.2388000e+03 1.4496751e+00 + 6.2392000e+03 1.1245922e+00 + 6.2396000e+03 4.5576094e-01 + 6.2400000e+03 1.1693274e-01 + 6.2404000e+03 -3.8194799e-01 + 6.2408000e+03 -7.5322108e-01 + 6.2412000e+03 -1.0165505e+00 + 6.2416000e+03 -7.3247211e-01 + 6.2420000e+03 -2.7294611e-01 + 6.2424000e+03 4.3938369e-01 + 6.2428000e+03 1.1189685e+00 + 6.2432000e+03 1.3484876e+00 + 6.2436000e+03 1.5779664e+00 + 6.2440000e+03 1.7974894e+00 + 6.2444000e+03 1.9871067e+00 + 6.2448000e+03 1.8569532e+00 + 6.2452000e+03 1.2069694e+00 + 6.2456000e+03 1.1571457e+00 + 6.2460000e+03 -1.8194203e-01 + 6.2464000e+03 -1.5355002e+00 + 6.2468000e+03 -2.6923533e+00 + 6.2472000e+03 -2.9120075e+00 + 6.2476000e+03 -2.9714291e+00 + 6.2480000e+03 -2.5607758e+00 + 6.2484000e+03 -2.1501250e+00 + 6.2488000e+03 -1.7896196e+00 + 6.2492000e+03 -1.2495247e+00 + 6.2496000e+03 -8.6972060e-01 + 6.2500000e+03 -3.3998716e-01 + 6.2504000e+03 -5.0341673e-02 + 6.2508000e+03 4.7931388e-01 + 6.2512000e+03 1.0892349e+00 + 6.2516000e+03 7.4909866e-01 + 6.2520000e+03 -7.1061383e-02 + 6.2524000e+03 -2.9111506e-01 + 6.2528000e+03 1.1834663e-01 + 6.2532000e+03 6.5786491e-01 + 6.2536000e+03 1.1472037e+00 + 6.2540000e+03 1.6263486e+00 + 6.2544000e+03 2.2252870e+00 + 6.2548000e+03 2.4341339e+00 + 6.2552000e+03 2.0829167e+00 + 6.2556000e+03 1.4716426e+00 + 6.2560000e+03 7.3053131e-01 + 6.2564000e+03 1.9687070e-02 + 6.2568000e+03 -4.6098994e-01 + 6.2572000e+03 -5.7148737e-01 + 6.2576000e+03 -6.0170899e-01 + 6.2580000e+03 -3.7177417e-01 + 6.2584000e+03 -4.1720560e-02 + 6.2588000e+03 1.8842475e-01 + 6.2592000e+03 5.8663183e-02 + 6.2596000e+03 -1.9112336e-01 + 6.2600000e+03 -4.6085179e-01 + 6.2604000e+03 -7.0073747e-01 + 6.2608000e+03 -6.4032262e-01 + 6.2612000e+03 -4.6956004e-03 + 6.2616000e+03 4.4012546e-01 + 6.2620000e+03 4.6195627e-01 + 6.2624000e+03 2.6724077e-01 + 6.2628000e+03 -1.6496818e-02 + 6.2632000e+03 -2.6022485e-01 + 6.2636000e+03 -9.3511242e-02 + 6.2640000e+03 1.2935011e-01 + 6.2644000e+03 3.9926945e-01 + 6.2648000e+03 5.6842775e-02 + 6.2652000e+03 -1.1296747e-01 + 6.2656000e+03 -1.7944932e-01 + 6.2660000e+03 -2.1166129e-01 + 6.2664000e+03 -3.4531664e-01 + 6.2668000e+03 -5.2211650e-01 + 6.2672000e+03 -7.6579835e-01 + 6.2676000e+03 -8.7691853e-01 + 6.2680000e+03 -9.2032686e-01 + 6.2684000e+03 -8.8847044e-01 + 6.2688000e+03 -1.1475942e+00 + 6.2692000e+03 -1.4820504e+00 + 6.2696000e+03 -1.7297783e+00 + 6.2700000e+03 -1.4293371e+00 + 6.2704000e+03 -1.1786737e+00 + 6.2708000e+03 -1.1477958e+00 + 6.2712000e+03 -5.3683674e-01 + 6.2716000e+03 3.8421821e-01 + 6.2720000e+03 5.6528777e-01 + 6.2724000e+03 4.9614243e-01 + 6.2728000e+03 -3.3101054e-02 + 6.2732000e+03 -2.6216202e-01 + 6.2736000e+03 -3.3228935e-01 + 6.2740000e+03 -9.2269590e-02 + 6.2744000e+03 1.1758911e-01 + 6.2748000e+03 4.6716123e-01 + 6.2752000e+03 1.7765764e+00 + 6.2756000e+03 2.0458013e+00 + 6.2760000e+03 2.3147415e+00 + 6.2764000e+03 2.4735120e+00 + 6.2768000e+03 2.6021153e+00 + 6.2772000e+03 2.4705300e+00 + 6.2776000e+03 2.0092568e+00 + 6.2780000e+03 1.2457600e+00 + 6.2784000e+03 3.8378647e-01 + 6.2788000e+03 -3.6834264e-01 + 6.2792000e+03 -8.0278748e-01 + 6.2796000e+03 -8.8210784e-01 + 6.2800000e+03 -1.0315561e+00 + 6.2804000e+03 -1.2007233e+00 + 6.2808000e+03 -1.1200672e+00 + 6.2812000e+03 -1.2396941e+00 + 6.2816000e+03 -1.3394008e+00 + 6.2820000e+03 -1.6591229e+00 + 6.2824000e+03 -1.7088174e+00 + 6.2828000e+03 -1.6362455e+00 + 6.2832000e+03 -1.3063862e+00 + 6.2836000e+03 -9.1129338e-01 + 6.2840000e+03 -7.7569493e-01 + 6.2844000e+03 -5.9766381e-01 + 6.2848000e+03 -1.8745494e-01 + 6.2852000e+03 3.2901359e-02 + 6.2856000e+03 2.3329874e-01 + 6.2860000e+03 3.8367230e-01 + 6.2864000e+03 6.2386235e-01 + 6.2868000e+03 8.8405060e-01 + 6.2872000e+03 8.5544472e-01 + 6.2876000e+03 7.0611440e-01 + 6.2880000e+03 4.7407078e-01 + 6.2884000e+03 6.1911948e-02 + 6.2888000e+03 -1.5385287e-02 + 6.2892000e+03 -4.9465607e-01 + 6.2896000e+03 -1.0059207e+00 + 6.2900000e+03 -1.3928075e+00 + 6.2904000e+03 -1.5554765e+00 + 6.2908000e+03 -1.1816020e+00 + 6.2912000e+03 -8.8455639e-01 + 6.2916000e+03 -5.7480179e-01 + 6.2920000e+03 -1.5498617e-01 + 6.2924000e+03 -1.0514488e-01 + 6.2928000e+03 -1.5414527e-02 + 6.2932000e+03 3.8430860e-01 + 6.2936000e+03 6.5397195e-01 + 6.2940000e+03 1.4036682e+00 + 6.2944000e+03 1.6135720e+00 + 6.2948000e+03 1.6836779e+00 + 6.2952000e+03 2.1438170e+00 + 6.2956000e+03 1.9939832e+00 + 6.2960000e+03 1.7745671e+00 + 6.2964000e+03 1.5779196e+00 + 6.2968000e+03 1.4612845e+00 + 6.2972000e+03 1.1693202e+00 + 6.2976000e+03 7.1259069e-01 + 6.2980000e+03 2.1496646e-01 + 6.2984000e+03 1.2503577e-01 + 6.2988000e+03 -9.5000136e-02 + 6.2992000e+03 -3.7459000e-01 + 6.2996000e+03 -3.1823990e-01 + 6.3000000e+03 -4.2112312e-01 + 6.3004000e+03 -7.1769769e-01 + 6.3008000e+03 -1.3944499e+00 + 6.3012000e+03 -1.8686201e+00 + 6.3016000e+03 -2.3122055e+00 + 6.3020000e+03 -2.4068690e+00 + 6.3024000e+03 -2.0476743e+00 + 6.3028000e+03 -1.5378080e+00 + 6.3032000e+03 -1.2578797e+00 + 6.3036000e+03 -9.2447446e-01 + 6.3040000e+03 -2.5327587e-01 + 6.3044000e+03 4.7283913e-01 + 6.3048000e+03 1.3844485e+00 + 6.3052000e+03 1.8917787e+00 + 6.3056000e+03 2.0639152e+00 + 6.3060000e+03 1.8432627e+00 + 6.3064000e+03 1.1113807e+00 + 6.3068000e+03 4.3979137e-01 + 6.3072000e+03 -1.8750269e-01 + 6.3076000e+03 -1.0411363e+00 + 6.3080000e+03 -1.4756123e+00 + 6.3084000e+03 -1.4253501e+00 + 6.3088000e+03 -1.1851250e+00 + 6.3092000e+03 -5.4503906e-01 + 6.3096000e+03 1.7496001e-01 + 6.3100000e+03 6.2498290e-01 + 6.3104000e+03 9.9498252e-01 + 6.3108000e+03 6.8493840e-01 + 6.3112000e+03 5.2479319e-01 + 6.3116000e+03 4.5454700e-01 + 6.3120000e+03 6.6418431e-01 + 6.3124000e+03 1.0437496e+00 + 6.3128000e+03 1.2132429e+00 + 6.3132000e+03 1.4726759e+00 + 6.3136000e+03 9.2209752e-01 + 6.3140000e+03 2.9160255e-01 + 6.3144000e+03 -5.8941803e-02 + 6.3148000e+03 -5.5109298e-01 + 6.3152000e+03 -5.2054658e-01 + 6.3156000e+03 -2.4403117e-02 + 6.3160000e+03 6.4858801e-01 + 6.3164000e+03 7.7318288e-01 + 6.3168000e+03 9.4385686e-01 + 6.3172000e+03 9.7931986e-01 + 6.3176000e+03 1.0333378e+00 + 6.3180000e+03 6.7359153e-01 + 6.3184000e+03 6.5478906e-01 + 6.3188000e+03 6.4688780e-01 + 6.3192000e+03 8.5301483e-01 + 6.3196000e+03 7.6629976e-01 + 6.3200000e+03 6.4706423e-01 + 6.3204000e+03 -2.5222791e-01 + 6.3208000e+03 -1.1900359e+00 + 6.3212000e+03 -1.6920914e+00 + 6.3216000e+03 -1.7524294e+00 + 6.3220000e+03 -1.7930109e+00 + 6.3224000e+03 -1.8637667e+00 + 6.3228000e+03 -1.8146888e+00 + 6.3232000e+03 -1.8458904e+00 + 6.3236000e+03 -1.8973709e+00 + 6.3240000e+03 -1.5787012e+00 + 6.3244000e+03 -1.0298012e+00 + 6.3248000e+03 -4.0584640e-01 + 6.3252000e+03 3.8899450e-01 + 6.3256000e+03 1.1489420e+00 + 6.3260000e+03 1.3992690e+00 + 6.3264000e+03 2.1929206e+00 + 6.3268000e+03 2.4200248e+00 + 6.3272000e+03 1.9306249e+00 + 6.3276000e+03 1.8514128e+00 + 6.3280000e+03 7.6234557e-01 + 6.3284000e+03 1.7214921e-01 + 6.3288000e+03 -5.7121041e-01 + 6.3292000e+03 -8.1302581e-01 + 6.3296000e+03 -1.1092515e+00 + 6.3300000e+03 -1.1037873e+00 + 6.3304000e+03 -7.8320323e-01 + 6.3308000e+03 -3.3376647e-01 + 6.3312000e+03 -1.2227489e-01 + 6.3316000e+03 1.0389629e-01 + 6.3320000e+03 3.4406951e-01 + 6.3324000e+03 3.7457545e-01 + 6.3328000e+03 -2.0223808e-01 + 6.3332000e+03 -9.0294380e-01 + 6.3336000e+03 -1.2937741e+00 + 6.3340000e+03 -1.2144708e+00 + 6.3344000e+03 -7.5506722e-01 + 6.3348000e+03 -3.0538089e-01 + 6.3352000e+03 4.3663524e-02 + 6.3356000e+03 3.8281679e-01 + 6.3360000e+03 7.8185669e-01 + 6.3364000e+03 8.9089899e-01 + 6.3368000e+03 2.1803914e+00 + 6.3372000e+03 2.6202182e+00 + 6.3376000e+03 2.3105541e+00 + 6.3380000e+03 1.8551598e+00 + 6.3384000e+03 1.8258522e+00 + 6.3388000e+03 1.5775863e+00 + 6.3392000e+03 1.3282030e+00 + 6.3396000e+03 7.3300162e-01 + 6.3400000e+03 -3.4486052e-02 + 6.3404000e+03 -7.4306871e-01 + 6.3408000e+03 -1.2643569e+00 + 6.3412000e+03 -1.8900377e+00 + 6.3416000e+03 -2.3954892e+00 + 6.3420000e+03 -2.6586974e+00 + 6.3424000e+03 -2.6946544e+00 + 6.3428000e+03 -2.2548924e+00 + 6.3432000e+03 -1.7955068e+00 + 6.3436000e+03 -1.4465355e+00 + 6.3440000e+03 -1.1378791e+00 + 6.3444000e+03 -7.6942940e-01 + 6.3448000e+03 -3.3075559e-01 + 6.3452000e+03 1.6840828e-01 + 6.3456000e+03 5.6774166e-01 + 6.3460000e+03 1.0272089e+00 + 6.3464000e+03 9.6680951e-01 + 6.3468000e+03 1.2365634e+00 + 6.3472000e+03 1.4863956e+00 + 6.3476000e+03 1.4464571e+00 + 6.3480000e+03 1.1964101e+00 + 6.3484000e+03 7.5645372e-01 + 6.3488000e+03 3.2665704e-01 + 6.3492000e+03 3.7037131e-02 + 6.3496000e+03 -3.3222209e-01 + 6.3500000e+03 -4.2118327e-01 + 6.3504000e+03 -2.6935275e-01 + 6.3508000e+03 1.0145905e-01 + 6.3512000e+03 2.8715181e-01 + 6.3516000e+03 5.2985230e-01 + 6.3520000e+03 9.7131216e-01 + 6.3524000e+03 1.4241449e+00 + 6.3528000e+03 1.7994820e+00 + 6.3532000e+03 1.8537238e+00 + 6.3536000e+03 1.8339170e+00 + 6.3540000e+03 1.3768154e+00 + 6.3544000e+03 3.7742079e-01 + 6.3548000e+03 -7.1231379e-01 + 6.3552000e+03 -1.7766018e+00 + 6.3556000e+03 -2.4833433e+00 + 6.3560000e+03 -2.2239742e+00 + 6.3564000e+03 -1.5347200e+00 + 6.3568000e+03 -9.5561981e-01 + 6.3572000e+03 -3.2841746e-01 + 6.3576000e+03 4.4038073e-01 + 6.3580000e+03 1.0912850e+00 + 6.3584000e+03 1.9699192e+00 + 6.3588000e+03 2.3440376e+00 + 6.3592000e+03 2.4189539e+00 + 6.3596000e+03 2.4009085e+00 + 6.3600000e+03 2.4060464e+00 + 6.3604000e+03 2.1824111e+00 + 6.3608000e+03 1.8079723e+00 + 6.3612000e+03 6.9207602e-01 + 6.3616000e+03 -2.9571234e-01 + 6.3620000e+03 -8.8291540e-01 + 6.3624000e+03 -1.3376739e+00 + 6.3628000e+03 -1.3512211e+00 + 6.3632000e+03 -1.4262231e+00 + 6.3636000e+03 -1.7088484e+00 + 6.3640000e+03 -1.9862292e+00 + 6.3644000e+03 -2.1446741e+00 + 6.3648000e+03 -2.1723383e+00 + 6.3652000e+03 -1.9495718e+00 + 6.3656000e+03 -1.4787050e+00 + 6.3660000e+03 -1.2782438e+00 + 6.3664000e+03 -7.5818742e-01 + 6.3668000e+03 -2.5807110e-01 + 6.3672000e+03 2.8485966e-01 + 6.3676000e+03 5.4730347e-01 + 6.3680000e+03 6.0694018e-01 + 6.3684000e+03 3.6964771e-01 + 6.3688000e+03 3.3958374e-01 + 6.3692000e+03 5.0936247e-01 + 6.3696000e+03 4.2940137e-01 + 6.3700000e+03 4.6958119e-01 + 6.3704000e+03 7.8942090e-01 + 6.3708000e+03 1.5488837e+00 + 6.3712000e+03 2.1182911e+00 + 6.3716000e+03 2.2879014e+00 + 6.3720000e+03 3.0478483e+00 + 6.3724000e+03 3.3702262e+00 + 6.3728000e+03 3.4636562e+00 + 6.3732000e+03 3.1584718e+00 + 6.3736000e+03 2.3752292e+00 + 6.3740000e+03 1.2909881e+00 + 6.3744000e+03 2.8761965e-02 + 6.3748000e+03 -1.2537109e+00 + 6.3752000e+03 -2.1958369e+00 + 6.3756000e+03 -3.0991436e+00 + 6.3760000e+03 -3.7677097e+00 + 6.3764000e+03 -3.5944514e+00 + 6.3768000e+03 -2.7469202e+00 + 6.3772000e+03 -1.7664911e+00 + 6.3776000e+03 -6.2752848e-01 + 6.3780000e+03 2.9110589e-01 + 6.3784000e+03 5.4971860e-01 + 6.3788000e+03 6.4831008e-01 + 6.3792000e+03 8.9685957e-01 + 6.3796000e+03 1.3554700e+00 + 6.3800000e+03 1.8039551e+00 + 6.3804000e+03 2.2623458e+00 + 6.3808000e+03 2.4409934e+00 + 6.3812000e+03 2.1898944e+00 + 6.3816000e+03 1.7293784e+00 + 6.3820000e+03 6.8945447e-01 + 6.3824000e+03 -5.5002909e-01 + 6.3828000e+03 -1.4993517e+00 + 6.3832000e+03 -1.5885794e+00 + 6.3836000e+03 -2.3177188e+00 + 6.3840000e+03 -2.7667245e+00 + 6.3844000e+03 -2.7156884e+00 + 6.3848000e+03 -2.2246561e+00 + 6.3852000e+03 -1.9735441e+00 + 6.3856000e+03 -1.8424229e+00 + 6.3860000e+03 -8.4126041e-01 + 6.3864000e+03 -2.0002325e-01 + 6.3868000e+03 4.9032375e-01 + 6.3872000e+03 9.4210992e-01 + 6.3876000e+03 1.3290912e+00 + 6.3880000e+03 1.7652845e+00 + 6.3884000e+03 2.0116081e+00 + 6.3888000e+03 1.6955654e+00 + 6.3892000e+03 1.5954226e+00 + 6.3896000e+03 1.3720843e+00 + 6.3900000e+03 6.9541118e-01 + 6.3904000e+03 -1.0436391e-02 + 6.3908000e+03 -1.2263763e-01 + 6.3912000e+03 3.1075377e-01 + 6.3916000e+03 3.1830037e-01 + 6.3920000e+03 1.9525070e-01 + 6.3924000e+03 1.5241653e-01 + 6.3928000e+03 1.7173633e-01 + 6.3932000e+03 1.2435521e-01 + 6.3936000e+03 -1.5827666e-02 + 6.3940000e+03 -5.0347679e-01 + 6.3944000e+03 -9.9756657e-01 + 6.3948000e+03 -1.2834726e+00 + 6.3952000e+03 -1.2972435e+00 + 6.3956000e+03 -1.3874761e+00 + 6.3960000e+03 -1.4215527e+00 + 6.3964000e+03 -1.5407807e+00 + 6.3968000e+03 -1.3401613e+00 + 6.3972000e+03 -7.7972479e-01 + 6.3976000e+03 -5.2945044e-01 + 6.3980000e+03 -1.8612910e-03 + 6.3984000e+03 6.6016847e-01 + 6.3988000e+03 1.0054293e+00 + 6.3992000e+03 1.4219275e+00 + 6.3996000e+03 2.2338601e+00 + 6.4000000e+03 2.3864161e+00 + 6.4004000e+03 2.5962554e+00 + 6.4008000e+03 2.6363750e+00 + 6.4012000e+03 2.1523485e+00 + 6.4016000e+03 1.3222865e+00 + 6.4020000e+03 3.7088216e-01 + 6.4024000e+03 -5.8028257e-01 + 6.4028000e+03 -1.0610600e+00 + 6.4032000e+03 -1.4414460e+00 + 6.4036000e+03 -1.8644665e+00 + 6.4040000e+03 -2.5249967e+00 + 6.4044000e+03 -2.6525906e+00 + 6.4048000e+03 -2.5886156e+00 + 6.4052000e+03 -2.5872103e+00 + 6.4056000e+03 -2.3354319e+00 + 6.4060000e+03 -1.7934576e+00 + 6.4064000e+03 -1.5314209e+00 + 6.4068000e+03 -1.1359649e+00 + 6.4072000e+03 -3.8730808e-01 + 6.4076000e+03 3.1732366e-01 + 6.4080000e+03 9.7126575e-01 + 6.4084000e+03 1.3985431e+00 + 6.4088000e+03 2.0084800e+00 + 6.4092000e+03 1.9944199e+00 + 6.4096000e+03 1.7636105e+00 + 6.4100000e+03 1.4023731e+00 + 6.4104000e+03 1.2007892e+00 + 6.4108000e+03 8.6893072e-01 + 6.4112000e+03 8.0692513e-01 + 6.4116000e+03 -1.7506040e-01 + 6.4120000e+03 -1.0971466e+00 + 6.4124000e+03 -1.0189819e+00 + 6.4128000e+03 -7.4003407e-01 + 6.4132000e+03 -1.6032611e-01 + 6.4136000e+03 -3.0003092e-02 + 6.4140000e+03 -2.2935095e-01 + 6.4144000e+03 -6.0848459e-01 + 6.4148000e+03 -1.2973986e+00 + 6.4152000e+03 -1.8359957e+00 + 6.4156000e+03 -1.5442051e+00 + 6.4160000e+03 -1.2824005e+00 + 6.4164000e+03 -1.0107449e+00 + 6.4168000e+03 -9.2650864e-03 + 6.4172000e+03 5.7171456e-01 + 6.4176000e+03 1.0124051e+00 + 6.4180000e+03 1.4927320e+00 + 6.4184000e+03 1.8430897e+00 + 6.4188000e+03 1.9629413e+00 + 6.4192000e+03 1.5563830e+00 + 6.4196000e+03 6.6189985e-01 + 6.4200000e+03 -1.8925516e-02 + 6.4204000e+03 -1.3799481e+00 + 6.4208000e+03 -2.0711553e+00 + 6.4212000e+03 -1.9925621e+00 + 6.4216000e+03 -1.5840542e+00 + 6.4220000e+03 -9.0538875e-01 + 6.4224000e+03 1.0348306e-01 + 6.4228000e+03 5.0271059e-01 + 6.4232000e+03 5.5252601e-01 + 6.4236000e+03 3.3281852e-01 + 6.4240000e+03 -1.0619469e-01 + 6.4244000e+03 -3.5473957e-01 + 6.4248000e+03 -1.0729905e+00 + 6.4252000e+03 -1.1212894e+00 + 6.4256000e+03 -4.0981759e-01 + 6.4260000e+03 3.3126914e-01 + 6.4264000e+03 1.0522170e+00 + 6.4268000e+03 1.6330211e+00 + 6.4272000e+03 2.0236635e+00 + 6.4276000e+03 2.3340753e+00 + 6.4280000e+03 2.1745567e+00 + 6.4284000e+03 1.7848483e+00 + 6.4288000e+03 1.5448693e+00 + 6.4292000e+03 1.2247595e+00 + 6.4296000e+03 4.9433559e-01 + 6.4300000e+03 4.3516630e-02 + 6.4304000e+03 -4.4752589e-01 + 6.4308000e+03 -4.7858729e-01 + 6.4312000e+03 -8.3640660e-01 + 6.4316000e+03 -1.3963944e+00 + 6.4320000e+03 -2.0221248e+00 + 6.4324000e+03 -2.1929292e+00 + 6.4328000e+03 -2.3730064e+00 + 6.4332000e+03 -2.2926284e+00 + 6.4336000e+03 -2.0022252e+00 + 6.4340000e+03 -1.4813311e+00 + 6.4344000e+03 -7.5104845e-01 + 6.4348000e+03 2.0802018e-02 + 6.4352000e+03 1.0282186e+00 + 6.4356000e+03 1.2089839e+00 + 6.4360000e+03 9.0054941e-01 + 6.4364000e+03 7.4161567e-01 + 6.4368000e+03 1.6138898e-01 + 6.4372000e+03 -1.6872961e-01 + 6.4376000e+03 -3.5879457e-01 + 6.4380000e+03 -4.2871774e-01 + 6.4384000e+03 -3.6880852e-01 + 6.4388000e+03 -5.9018412e-02 + 6.4392000e+03 3.6068599e-01 + 6.4396000e+03 7.0042986e-01 + 6.4400000e+03 9.8033950e-01 + 6.4404000e+03 1.0102349e+00 + 6.4408000e+03 7.4017580e-01 + 6.4412000e+03 1.3015865e-01 + 6.4416000e+03 -2.7621736e-01 + 6.4420000e+03 -8.3542702e-01 + 6.4424000e+03 -1.2225734e+00 + 6.4428000e+03 -1.7953350e+00 + 6.4432000e+03 -2.1598955e+00 + 6.4436000e+03 -2.0301226e+00 + 6.4440000e+03 -1.5798246e+00 + 6.4444000e+03 -9.4900826e-01 + 6.4448000e+03 -2.7265709e-01 + 6.4452000e+03 3.2805375e-01 + 6.4456000e+03 2.4927477e-01 + 6.4460000e+03 -5.0898607e-03 + 6.4464000e+03 -3.6196318e-01 + 6.4468000e+03 -5.9978710e-01 + 6.4472000e+03 -4.0967899e-01 + 6.4476000e+03 -3.1958617e-01 + 6.4480000e+03 -4.0950639e-01 + 6.4484000e+03 -5.0948427e-01 + 6.4488000e+03 -2.5916989e-01 + 6.4492000e+03 -3.3962590e-01 + 6.4496000e+03 -2.3968666e-01 + 6.4500000e+03 1.7003513e-01 + 6.4504000e+03 7.1997515e-01 + 6.4508000e+03 1.2301028e+00 + 6.4512000e+03 1.7603074e+00 + 6.4516000e+03 2.4705116e+00 + 6.4520000e+03 2.7307454e+00 + 6.4524000e+03 2.4309105e+00 + 6.4528000e+03 1.9010118e+00 + 6.4532000e+03 1.0086516e+00 + 6.4536000e+03 3.8095203e-01 + 6.4540000e+03 2.2386226e-01 + 6.4544000e+03 -2.8892923e-02 + 6.4548000e+03 -4.3889314e-01 + 6.4552000e+03 -7.6160821e-01 + 6.4556000e+03 -1.3087248e+00 + 6.4560000e+03 -1.8423244e+00 + 6.4564000e+03 -2.2413823e+00 + 6.4568000e+03 -2.5375043e+00 + 6.4572000e+03 -2.9912383e+00 + 6.4576000e+03 -2.7820871e+00 + 6.4580000e+03 -2.8217263e+00 + 6.4584000e+03 -2.5721401e+00 + 6.4588000e+03 -1.6321277e+00 + 6.4592000e+03 -4.4804692e-01 + 6.4596000e+03 9.6359124e-01 + 6.4600000e+03 2.4681259e+00 + 6.4604000e+03 3.2304923e+00 + 6.4608000e+03 3.1883247e+00 + 6.4612000e+03 2.9054031e+00 + 6.4616000e+03 2.1584659e+00 + 6.4620000e+03 1.7881282e+00 + 6.4624000e+03 1.4877716e+00 + 6.4628000e+03 1.3676830e+00 + 6.4632000e+03 1.0175718e+00 + 6.4636000e+03 -1.2240187e-01 + 6.4640000e+03 -6.2229128e-01 + 6.4644000e+03 -8.0210617e-01 + 6.4648000e+03 -9.6178161e-01 + 6.4652000e+03 -1.1614735e+00 + 6.4656000e+03 -1.4497260e+00 + 6.4660000e+03 -1.5726800e+00 + 6.4664000e+03 -1.7037745e+00 + 6.4668000e+03 -2.2179391e+00 + 6.4672000e+03 -2.4656967e+00 + 6.4676000e+03 -2.0901173e+00 + 6.4680000e+03 -1.5997650e+00 + 6.4684000e+03 -9.5932618e-01 + 6.4688000e+03 -3.2906731e-01 + 6.4692000e+03 3.0103550e-01 + 6.4696000e+03 7.0109668e-01 + 6.4700000e+03 1.3011566e+00 + 6.4704000e+03 1.7812361e+00 + 6.4708000e+03 2.5211191e+00 + 6.4712000e+03 2.9009856e+00 + 6.4716000e+03 3.6616438e+00 + 6.4720000e+03 4.6193054e+00 + 6.4724000e+03 4.7310176e+00 + 6.4728000e+03 4.0509490e+00 + 6.4732000e+03 3.2194387e+00 + 6.4736000e+03 2.2407044e+00 + 6.4740000e+03 9.4845784e-01 + 6.4744000e+03 2.6421024e-01 + 6.4748000e+03 -9.8588988e-01 + 6.4752000e+03 -2.0844448e+00 + 6.4756000e+03 -3.0934461e+00 + 6.4760000e+03 -3.9354658e+00 + 6.4764000e+03 -4.3957892e+00 + 6.4768000e+03 -4.1391600e+00 + 6.4772000e+03 -3.6592526e+00 + 6.4776000e+03 -3.2742942e+00 + 6.4780000e+03 -2.7643168e+00 + 6.4784000e+03 -2.3002579e+00 + 6.4788000e+03 -2.4205162e+00 + 6.4792000e+03 -2.4708176e+00 + 6.4796000e+03 -2.0714039e+00 + 6.4800000e+03 -1.5819749e+00 + 6.4804000e+03 -4.8236676e-01 + 6.4808000e+03 1.0074283e+00 + 6.4812000e+03 2.3173341e+00 + 6.4816000e+03 3.4071671e+00 + 6.4820000e+03 4.7669810e+00 + 6.4824000e+03 5.5266687e+00 + 6.4828000e+03 5.7662875e+00 + 6.4832000e+03 5.8561106e+00 + 6.4836000e+03 4.2638719e+00 + 6.4840000e+03 1.6756787e+00 + 6.4844000e+03 -9.2309489e-01 + 6.4848000e+03 -2.6015374e+00 + 6.4852000e+03 -3.1003915e+00 + 6.4856000e+03 -3.0694691e+00 + 6.4860000e+03 -2.4885934e+00 + 6.4864000e+03 -2.4177355e+00 + 6.4868000e+03 -2.5871526e+00 + 6.4872000e+03 -2.6165274e+00 + 6.4876000e+03 -2.2857908e+00 + 6.4880000e+03 -1.7249800e+00 + 6.4884000e+03 -9.0156525e-01 + 6.4888000e+03 9.2607473e-02 + 6.4892000e+03 1.1956835e+00 + 6.4896000e+03 2.2721972e+00 + 6.4900000e+03 3.0785565e+00 + 6.4904000e+03 3.5749267e+00 + 6.4908000e+03 3.8040507e+00 + 6.4912000e+03 3.5728656e+00 + 6.4916000e+03 3.5418550e+00 + 6.4920000e+03 3.8710859e+00 + 6.4924000e+03 3.8202273e+00 + 6.4928000e+03 3.0593842e+00 + 6.4932000e+03 1.9087819e+00 + 6.4936000e+03 5.7880828e-01 + 6.4940000e+03 -5.7068940e-01 + 6.4944000e+03 -1.0698106e+00 + 6.4948000e+03 -1.1987779e+00 + 6.4952000e+03 -1.2978116e+00 + 6.4956000e+03 -1.4369787e+00 + 6.4960000e+03 -1.6364888e+00 + 6.4964000e+03 -2.0163496e+00 + 6.4968000e+03 -2.5364795e+00 + 6.4972000e+03 -2.9267817e+00 + 6.4976000e+03 -3.2370973e+00 + 6.4980000e+03 -3.3274912e+00 + 6.4984000e+03 -2.9580400e+00 + 6.4988000e+03 -2.3787657e+00 + 6.4992000e+03 -1.5495788e+00 + 6.4996000e+03 -1.6902911e+00 + 6.5000000e+03 -1.6608645e+00 + 6.5004000e+03 -1.0713293e+00 + 6.5008000e+03 3.8141991e-02 + 6.5012000e+03 4.8752463e-01 + 6.5016000e+03 7.9696355e-01 + 6.5020000e+03 7.3651475e-01 + 6.5024000e+03 4.2624303e-01 + 6.5028000e+03 -1.3929313e-02 + 6.5032000e+03 -3.4405632e-01 + 6.5036000e+03 -5.2390598e-01 + 6.5040000e+03 -3.3336359e-01 + 6.5044000e+03 1.1726284e-01 + 6.5048000e+03 3.9791536e-01 + 6.5052000e+03 5.3860973e-01 + 6.5056000e+03 7.0928406e-01 + 6.5060000e+03 7.5931451e-01 + 6.5064000e+03 8.1077924e-01 + 6.5068000e+03 8.4530630e-01 + 6.5072000e+03 8.2033402e-01 + 6.5076000e+03 7.6308687e-01 + 6.5080000e+03 9.3205984e-01 + 6.5084000e+03 6.8598464e-01 + 6.5088000e+03 6.5080076e-01 + 6.5092000e+03 8.5478165e-01 + 6.5096000e+03 9.7499044e-01 + 6.5100000e+03 1.3051199e+00 + 6.5104000e+03 1.4751804e+00 + 6.5108000e+03 2.1752349e+00 + 6.5112000e+03 2.0551494e+00 + 6.5116000e+03 1.6949966e+00 + 6.5120000e+03 1.2347716e+00 + 6.5124000e+03 9.0438293e-01 + 6.5128000e+03 7.4369713e-01 + 6.5132000e+03 3.9272041e-01 + 6.5136000e+03 1.3159623e-01 + 6.5140000e+03 -1.0951135e-01 + 6.5144000e+03 -4.6046598e-01 + 6.5148000e+03 -1.0113114e+00 + 6.5152000e+03 -1.2316943e+00 + 6.5156000e+03 -2.1018476e+00 + 6.5160000e+03 -3.0218646e+00 + 6.5164000e+03 -3.2918528e+00 + 6.5168000e+03 -3.2617907e+00 + 6.5172000e+03 -2.8116285e+00 + 6.5176000e+03 -2.4913214e+00 + 6.5180000e+03 -2.2772715e+00 + 6.5184000e+03 -1.4672860e+00 + 6.5188000e+03 -9.4424028e-01 + 6.5192000e+03 -7.0880279e-01 + 6.5196000e+03 -4.5120202e-01 + 6.5200000e+03 -4.8190582e-01 + 6.5204000e+03 -6.5295054e-01 + 6.5208000e+03 -7.6408151e-01 + 6.5212000e+03 -1.0152495e+00 + 6.5216000e+03 -1.1460308e+00 + 6.5220000e+03 -8.3651256e-01 + 6.5224000e+03 8.3371248e-02 + 6.5228000e+03 1.0134587e+00 + 6.5232000e+03 1.7237887e+00 + 6.5236000e+03 2.0841570e+00 + 6.5240000e+03 1.8845677e+00 + 6.5244000e+03 1.4449735e+00 + 6.5248000e+03 1.3554926e+00 + 6.5252000e+03 1.0460867e+00 + 6.5256000e+03 6.8676477e-01 + 6.5260000e+03 3.1753888e-01 + 6.5264000e+03 1.7811276e-01 + 6.5268000e+03 5.1846333e-01 + 6.5272000e+03 1.0486346e+00 + 6.5276000e+03 1.0787500e+00 + 6.5280000e+03 1.2988389e+00 + 6.5284000e+03 1.6288545e+00 + 6.5288000e+03 1.7687752e+00 + 6.5292000e+03 1.8587400e+00 + 6.5296000e+03 1.9688357e+00 + 6.5300000e+03 1.8091022e+00 + 6.5304000e+03 1.5894640e+00 + 6.5308000e+03 1.1999721e+00 + 6.5312000e+03 8.3043862e-01 + 6.5316000e+03 -1.9046501e-02 + 6.5320000e+03 -3.8869634e-01 + 6.5324000e+03 -5.1855324e-01 + 6.5328000e+03 -8.9861527e-01 + 6.5332000e+03 -1.1288264e+00 + 6.5336000e+03 -1.4792092e+00 + 6.5340000e+03 -1.6797335e+00 + 6.5344000e+03 -1.7602623e+00 + 6.5348000e+03 -1.7108920e+00 + 6.5352000e+03 -1.7714905e+00 + 6.5356000e+03 -1.4321854e+00 + 6.5360000e+03 -9.4282770e-01 + 6.5364000e+03 -4.4340703e-01 + 6.5368000e+03 -3.1389211e-01 + 6.5372000e+03 -4.5450589e-01 + 6.5376000e+03 -8.5502474e-01 + 6.5380000e+03 -1.6513797e+00 + 6.5384000e+03 -2.3930591e+00 + 6.5388000e+03 -2.8395595e+00 + 6.5392000e+03 -3.2716794e+00 + 6.5396000e+03 -3.1052860e+00 + 6.5400000e+03 -2.6150686e+00 + 6.5404000e+03 -1.9347142e+00 + 6.5408000e+03 -1.2041192e+00 + 6.5412000e+03 -2.9308737e-01 + 6.5416000e+03 5.9734223e-01 + 6.5420000e+03 8.3810583e-01 + 6.5424000e+03 1.1886201e+00 + 6.5428000e+03 1.6589335e+00 + 6.5432000e+03 1.9889995e+00 + 6.5436000e+03 2.1788115e+00 + 6.5440000e+03 2.3284586e+00 + 6.5444000e+03 2.4484275e+00 + 6.5448000e+03 2.3026372e+00 + 6.5452000e+03 2.3938721e+00 + 6.5456000e+03 2.6067765e+00 + 6.5460000e+03 2.4156825e+00 + 6.5464000e+03 2.1352659e+00 + 6.5468000e+03 1.8149658e+00 + 6.5472000e+03 1.5446377e+00 + 6.5476000e+03 1.2544809e+00 + 6.5480000e+03 8.5463245e-01 + 6.5484000e+03 3.9510196e-01 + 6.5488000e+03 2.5579509e-01 + 6.5492000e+03 2.8663614e-01 + 6.5496000e+03 4.1760114e-01 + 6.5500000e+03 1.1786496e+00 + 6.5504000e+03 1.8097383e+00 + 6.5508000e+03 1.4906600e+00 + 6.5512000e+03 6.8179600e-01 + 6.5516000e+03 -2.3740890e-01 + 6.5520000e+03 -1.0271238e+00 + 6.5524000e+03 -1.8471105e+00 + 6.5528000e+03 -2.3074345e+00 + 6.5532000e+03 -2.4078990e+00 + 6.5536000e+03 -2.9684888e+00 + 6.5540000e+03 -3.3192315e+00 + 6.5544000e+03 -3.3194729e+00 + 6.5548000e+03 -3.0559616e+00 + 6.5552000e+03 -2.8213975e+00 + 6.5556000e+03 -2.3023391e+00 + 6.5560000e+03 -1.5999746e+00 + 6.5564000e+03 -8.0051710e-01 + 6.5568000e+03 2.6772445e-01 + 6.5572000e+03 1.0413002e+00 + 6.5576000e+03 1.6247164e+00 + 6.5580000e+03 1.9200658e+00 + 6.5584000e+03 1.5436603e+00 + 6.5588000e+03 8.8427701e-01 + 6.5592000e+03 6.7524923e-01 + 6.5596000e+03 8.2443443e-02 + 6.5600000e+03 -5.4204769e-01 + 6.5604000e+03 -9.6756894e-01 + 6.5608000e+03 -1.3618641e+00 + 6.5612000e+03 -1.2898653e+00 + 6.5616000e+03 -8.2945339e-01 + 6.5620000e+03 -3.1951482e-01 + 6.5624000e+03 2.9009704e-01 + 6.5628000e+03 7.5931148e-01 + 6.5632000e+03 1.0782374e+00 + 6.5636000e+03 1.1468190e+00 + 6.5640000e+03 1.2953511e+00 + 6.5644000e+03 1.4838053e+00 + 6.5648000e+03 1.5825041e+00 + 6.5652000e+03 2.1610096e+00 + 6.5656000e+03 2.3496448e+00 + 6.5660000e+03 2.0985737e+00 + 6.5664000e+03 1.8778513e+00 + 6.5668000e+03 1.4774151e+00 + 6.5672000e+03 1.4073507e+00 + 6.5676000e+03 1.6975206e+00 + 6.5680000e+03 1.7979510e+00 + 6.5684000e+03 1.7487438e+00 + 6.5688000e+03 1.4598547e+00 + 6.5692000e+03 8.9123888e-01 + 6.5696000e+03 4.8289960e-01 + 6.5700000e+03 -1.5482801e-02 + 6.5704000e+03 -4.1388696e-01 + 6.5708000e+03 -6.3227329e-01 + 6.5712000e+03 -8.8093969e-01 + 6.5716000e+03 -1.8900213e+00 + 6.5720000e+03 -1.8398171e+00 + 6.5724000e+03 -1.1822739e+00 + 6.5728000e+03 -7.3037736e-01 + 6.5732000e+03 -6.0665958e-01 + 6.5736000e+03 -7.9685289e-01 + 6.5740000e+03 -1.4227778e+00 + 6.5744000e+03 -1.9560425e+00 + 6.5748000e+03 -2.4703951e+00 + 6.5752000e+03 -2.5385626e+00 + 6.5756000e+03 -2.1993967e+00 + 6.5760000e+03 -1.5799281e+00 + 6.5764000e+03 -1.3102516e+00 + 6.5768000e+03 -1.1503760e+00 + 6.5772000e+03 -7.8045131e-01 + 6.5776000e+03 -5.0043523e-01 + 6.5780000e+03 4.0956024e-01 + 6.5784000e+03 9.7965041e-01 + 6.5788000e+03 1.3598994e+00 + 6.5792000e+03 1.3202661e+00 + 6.5796000e+03 1.3808613e+00 + 6.5800000e+03 1.4114398e+00 + 6.5804000e+03 1.1721006e+00 + 6.5808000e+03 9.4237901e-01 + 6.5812000e+03 7.6221961e-01 + 6.5816000e+03 -3.8321996e-02 + 6.5820000e+03 5.1290650e-02 + 6.5824000e+03 -5.9053006e-02 + 6.5828000e+03 -4.9945358e-01 + 6.5832000e+03 -8.1011144e-01 + 6.5836000e+03 -9.8097723e-01 + 6.5840000e+03 -1.1119683e+00 + 6.5844000e+03 -1.0331680e+00 + 6.5848000e+03 -6.2438845e-01 + 6.5852000e+03 -2.9528445e-01 + 6.5856000e+03 5.3224399e-02 + 6.5860000e+03 7.2223816e-01 + 6.5864000e+03 1.3616734e+00 + 6.5868000e+03 1.8358867e+00 + 6.5872000e+03 2.2510030e+00 + 6.5876000e+03 2.3851767e+00 + 6.5880000e+03 2.8875442e+00 + 6.5884000e+03 2.9805994e+00 + 6.5888000e+03 2.3342351e+00 + 6.5892000e+03 1.7078982e+00 + 6.5896000e+03 1.0338660e+00 + 6.5900000e+03 2.8883267e-01 + 6.5904000e+03 -4.0591067e-01 + 6.5908000e+03 -8.4252517e-01 + 6.5912000e+03 -1.5757282e+00 + 6.5916000e+03 -2.0353645e+00 + 6.5920000e+03 -2.4435948e+00 + 6.5924000e+03 -2.8262680e+00 + 6.5928000e+03 -3.4134844e+00 + 6.5932000e+03 -3.5831035e+00 + 6.5936000e+03 -3.1426980e+00 + 6.5940000e+03 -2.1734885e+00 + 6.5944000e+03 -1.5242902e+00 + 6.5948000e+03 -1.3151572e+00 + 6.5952000e+03 -8.6600279e-01 + 6.5956000e+03 2.7332947e-01 + 6.5960000e+03 9.6294699e-01 + 6.5964000e+03 1.3230557e+00 + 6.5968000e+03 1.6636175e+00 + 6.5972000e+03 2.1043096e+00 + 6.5976000e+03 2.6549617e+00 + 6.5980000e+03 2.3255658e+00 + 6.5984000e+03 2.1363094e+00 + 6.5988000e+03 1.4753768e+00 + 6.5992000e+03 2.4903249e-01 + 6.5996000e+03 -5.6224847e-01 + 6.6000000e+03 -6.4217192e-01 + 6.6004000e+03 -6.1954257e-01 + 6.6008000e+03 -6.8539054e-01 + 6.6012000e+03 -6.5460718e-01 + 6.6016000e+03 -9.2853955e-01 + 6.6020000e+03 -1.0946180e+00 + 6.6024000e+03 -1.2721676e+00 + 6.6028000e+03 -1.2211534e+00 + 6.6032000e+03 -1.4775402e+00 + 6.6036000e+03 -1.7028360e+00 + 6.6040000e+03 -1.9887145e+00 + 6.6044000e+03 -1.7890457e+00 + 6.6048000e+03 -1.5822119e+00 + 6.6052000e+03 -1.2144751e+00 + 6.6056000e+03 -6.7613341e-01 + 6.6060000e+03 2.5643546e-01 + 6.6064000e+03 1.3364750e+00 + 6.6068000e+03 2.0699018e+00 + 6.6072000e+03 2.6315472e+00 + 6.6076000e+03 2.6919640e+00 + 6.6080000e+03 2.7424170e+00 + 6.6084000e+03 2.8229158e+00 + 6.6088000e+03 3.0235263e+00 + 6.6092000e+03 3.0541644e+00 + 6.6096000e+03 2.6359475e+00 + 6.6100000e+03 2.1694740e+00 + 6.6104000e+03 1.5415624e+00 + 6.6108000e+03 3.1041450e-01 + 6.6112000e+03 -7.8416001e-01 + 6.6116000e+03 -1.2743025e+00 + 6.6120000e+03 -1.7129418e+00 + 6.6124000e+03 -1.9424354e+00 + 6.6128000e+03 -2.3355066e+00 + 6.6132000e+03 -2.5031421e+00 + 6.6136000e+03 -2.4729796e+00 + 6.6140000e+03 -2.4243524e+00 + 6.6144000e+03 -2.6514850e+00 + 6.6148000e+03 -2.3289134e+00 + 6.6152000e+03 -1.9616592e+00 + 6.6156000e+03 -1.9214505e+00 + 6.6160000e+03 -1.5513833e+00 + 6.6164000e+03 -1.3715326e+00 + 6.6168000e+03 -5.5191274e-01 + 6.6172000e+03 1.4764276e-01 + 6.6176000e+03 1.3370983e+00 + 6.6180000e+03 2.0065405e+00 + 6.6184000e+03 2.6261167e+00 + 6.6188000e+03 2.8455848e+00 + 6.6192000e+03 2.4749156e+00 + 6.6196000e+03 1.9042559e+00 + 6.6200000e+03 1.7035520e+00 + 6.6204000e+03 1.6648407e+00 + 6.6208000e+03 1.5579736e+00 + 6.6212000e+03 1.2789466e+00 + 6.6216000e+03 3.7378985e-01 + 6.6220000e+03 -5.0114650e-01 + 6.6224000e+03 -1.4259731e+00 + 6.6228000e+03 -2.1558115e+00 + 6.6232000e+03 -3.0492295e+00 + 6.6236000e+03 -3.5192946e+00 + 6.6240000e+03 -3.7984652e+00 + 6.6244000e+03 -3.2718710e+00 + 6.6248000e+03 -2.5144692e+00 + 6.6252000e+03 -1.6904432e+00 + 6.6256000e+03 -1.0767754e+00 + 6.6260000e+03 -1.3296281e-01 + 6.6264000e+03 8.3445130e-01 + 6.6268000e+03 1.6899638e+00 + 6.6272000e+03 2.1704374e+00 + 6.6276000e+03 2.9584160e+00 + 6.6280000e+03 2.9334315e+00 + 6.6284000e+03 2.8149182e+00 + 6.6288000e+03 2.5134483e+00 + 6.6292000e+03 2.1436630e+00 + 6.6296000e+03 1.4392150e+00 + 6.6300000e+03 7.9193962e-01 + 6.6304000e+03 2.2268656e-01 + 6.6308000e+03 -5.6782688e-01 + 6.6312000e+03 -1.0409423e+00 + 6.6316000e+03 -1.2188845e+00 + 6.6320000e+03 -1.2489702e+00 + 6.6324000e+03 -9.7483981e-01 + 6.6328000e+03 -7.4409985e-01 + 6.6332000e+03 -6.2782035e-01 + 6.6336000e+03 -5.3721490e-01 + 6.6340000e+03 -8.9644759e-01 + 6.6344000e+03 -1.1455180e+00 + 6.6348000e+03 -1.3545479e+00 + 6.6352000e+03 -1.1735136e+00 + 6.6356000e+03 -1.4623554e+00 + 6.6360000e+03 -1.6469582e+00 + 6.6364000e+03 -1.4637328e+00 + 6.6368000e+03 -1.3753542e+00 + 6.6372000e+03 -1.0849275e+00 + 6.6376000e+03 -8.9150067e-01 + 6.6380000e+03 -5.8274632e-01 + 6.6384000e+03 -1.5732799e-01 + 6.6388000e+03 5.9746981e-01 + 6.6392000e+03 1.2610306e+00 + 6.6396000e+03 1.2165536e+00 + 6.6400000e+03 9.8578422e-01 + 6.6404000e+03 9.7601762e-01 + 6.6408000e+03 9.3199374e-01 + 6.6412000e+03 1.0950479e+00 + 6.6416000e+03 1.0646379e+00 + 6.6420000e+03 1.4525524e-02 + 6.6424000e+03 -3.2543892e-01 + 6.6428000e+03 -3.7682345e-01 + 6.6432000e+03 -7.5597480e-01 + 6.6436000e+03 -1.2230729e+00 + 6.6440000e+03 -1.4843812e+00 + 6.6444000e+03 -1.7615745e+00 + 6.6448000e+03 -2.1745918e+00 + 6.6452000e+03 -2.5091595e+00 + 6.6456000e+03 -2.1554037e+00 + 6.6460000e+03 -1.6539476e+00 + 6.6464000e+03 -9.3277400e-01 + 6.6468000e+03 -9.9761384e-02 + 6.6472000e+03 6.7106231e-01 + 6.6476000e+03 1.2221071e+00 + 6.6480000e+03 1.6749689e+00 + 6.6484000e+03 1.7747037e+00 + 6.6488000e+03 2.7696476e+00 + 6.6492000e+03 3.8360868e+00 + 6.6496000e+03 4.0027231e+00 + 6.6500000e+03 3.0718835e+00 + 6.6504000e+03 2.2510470e+00 + 6.6508000e+03 1.5303005e+00 + 6.6512000e+03 8.9970904e-01 + 6.6516000e+03 -1.0721729e-02 + 6.6520000e+03 -6.4133342e-01 + 6.6524000e+03 -1.1517294e+00 + 6.6528000e+03 -1.7422051e+00 + 6.6532000e+03 -2.4122966e+00 + 6.6536000e+03 -2.8222968e+00 + 6.6540000e+03 -2.8922912e+00 + 6.6544000e+03 -2.7622549e+00 + 6.6548000e+03 -2.6122666e+00 + 6.6552000e+03 -2.3124143e+00 + 6.6556000e+03 -2.1525490e+00 + 6.6560000e+03 -1.8026298e+00 + 6.6564000e+03 -1.0612354e+00 + 6.6568000e+03 -4.5960393e-01 + 6.6572000e+03 1.0730479e-01 + 6.6576000e+03 8.1477385e-01 + 6.6580000e+03 8.9213128e-01 + 6.6584000e+03 6.9599792e-01 + 6.6588000e+03 3.5882015e-01 + 6.6592000e+03 1.8866775e-01 + 6.6596000e+03 8.3683746e-03 + 6.6600000e+03 -9.1974125e-02 + 6.6604000e+03 -2.1239333e-01 + 6.6608000e+03 -3.3290799e-01 + 6.6612000e+03 -1.9363276e-01 + 6.6616000e+03 8.5523714e-02 + 6.6620000e+03 2.9443196e-01 + 6.6624000e+03 3.3352855e-01 + 6.6628000e+03 2.5289463e-01 + 6.6632000e+03 1.3246663e-01 + 6.6636000e+03 5.1221933e-01 + 6.6640000e+03 4.5250377e-01 + 6.6644000e+03 2.3320918e-01 + 6.6648000e+03 -3.8591064e-01 + 6.6652000e+03 -6.8511047e-01 + 6.6656000e+03 -4.3821198e-01 + 6.6660000e+03 5.5453452e-01 + 6.6664000e+03 1.9693415e+00 + 6.6668000e+03 3.1222145e+00 + 6.6672000e+03 3.7681447e+00 + 6.6676000e+03 3.7828967e+00 + 6.6680000e+03 3.0634629e+00 + 6.6684000e+03 1.8639132e+00 + 6.6688000e+03 6.9399778e-01 + 6.6692000e+03 4.7382399e-01 + 6.6696000e+03 -2.5622796e-01 + 6.6700000e+03 -1.4872565e+00 + 6.6704000e+03 -1.7181147e+00 + 6.6708000e+03 -1.7590404e+00 + 6.6712000e+03 -1.8200264e+00 + 6.6716000e+03 -1.9609376e+00 + 6.6720000e+03 -1.8218276e+00 + 6.6724000e+03 -1.2328295e+00 + 6.6728000e+03 -6.1393316e-01 + 6.6732000e+03 -7.5504961e-01 + 6.6736000e+03 -1.3962996e+00 + 6.6740000e+03 -1.9774394e+00 + 6.6744000e+03 -1.9283889e+00 + 6.6748000e+03 -1.6788990e+00 + 6.6752000e+03 -1.5389654e+00 + 6.6756000e+03 -1.4987439e+00 + 6.6760000e+03 -1.0482708e+00 + 6.6764000e+03 3.2590893e-02 + 6.6768000e+03 2.1357543e-01 + 6.6772000e+03 8.4467549e-01 + 6.6776000e+03 1.0458933e+00 + 6.6780000e+03 5.1707269e-01 + 6.6784000e+03 -1.6193056e-01 + 6.6788000e+03 -7.1117285e-01 + 6.6792000e+03 -1.1802319e+00 + 6.6796000e+03 -1.1298997e+00 + 6.6800000e+03 -9.8980841e-01 + 6.6804000e+03 -8.7018621e-01 + 6.6808000e+03 -5.4104859e-01 + 6.6812000e+03 -5.2044689e-02 + 6.6816000e+03 1.7688511e-01 + 6.6820000e+03 5.1567057e-01 + 6.6824000e+03 9.0448887e-01 + 6.6828000e+03 2.1135370e+00 + 6.6832000e+03 2.2826724e+00 + 6.6836000e+03 1.7918164e+00 + 6.6840000e+03 1.7606516e+00 + 6.6844000e+03 2.0386402e+00 + 6.6848000e+03 2.0602915e+00 + 6.6852000e+03 1.9518411e+00 + 6.6856000e+03 1.6295616e+00 + 6.6860000e+03 1.3105732e+00 + 6.6864000e+03 1.0121339e+00 + 6.6868000e+03 7.1403931e-01 + 6.6872000e+03 4.6621633e-01 + 6.6876000e+03 2.3818617e-01 + 6.6880000e+03 -3.9988733e-01 + 6.6884000e+03 -9.6808619e-01 + 6.6888000e+03 -1.2365052e+00 + 6.6892000e+03 -1.3753499e+00 + 6.6896000e+03 -1.5947740e+00 + 6.6900000e+03 -1.8049464e+00 + 6.6904000e+03 -2.0055684e+00 + 6.6908000e+03 -2.0349692e+00 + 6.6912000e+03 -2.1279137e+00 + 6.6916000e+03 -1.7813224e+00 + 6.6920000e+03 -1.4027061e+00 + 6.6924000e+03 -1.0550368e+00 + 6.6928000e+03 -6.5761001e-01 + 6.6932000e+03 -3.3003948e-01 + 6.6936000e+03 5.7869370e-02 + 6.6940000e+03 4.0607729e-01 + 6.6944000e+03 1.9487747e-01 + 6.6948000e+03 -5.5824727e-02 + 6.6952000e+03 -2.0595436e-01 + 6.6956000e+03 -6.3055439e-01 + 6.6960000e+03 -1.0871165e+00 + 6.6964000e+03 -1.2382621e+00 + 6.6968000e+03 -1.6128724e+00 + 6.6972000e+03 -1.5613566e+00 + 6.6976000e+03 -1.0899747e+00 + 6.6980000e+03 -1.6870720e-01 + 6.6984000e+03 5.8729354e-01 + 6.6988000e+03 1.1007542e+00 + 6.6992000e+03 1.6049968e+00 + 6.6996000e+03 1.7151548e+00 + 6.7000000e+03 1.6843169e+00 + 6.7004000e+03 1.4039924e+00 + 6.7008000e+03 1.0234593e+00 + 6.7012000e+03 1.0627969e+00 + 6.7016000e+03 1.5120946e+00 + 6.7020000e+03 1.8019692e+00 + 6.7024000e+03 1.9564891e+00 + 6.7028000e+03 2.1511624e+00 + 6.7032000e+03 2.0118319e+00 + 6.7036000e+03 1.5905952e+00 + 6.7040000e+03 1.2911259e+00 + 6.7044000e+03 1.2338324e+00 + 6.7048000e+03 1.3026873e+00 + 6.7052000e+03 6.7217688e-01 + 6.7056000e+03 -4.1920562e-01 + 6.7060000e+03 -1.2949189e+00 + 6.7064000e+03 -2.1306884e+00 + 6.7068000e+03 -2.7369285e+00 + 6.7072000e+03 -3.2751503e+00 + 6.7076000e+03 -3.2002903e+00 + 6.7080000e+03 -3.0267772e+00 + 6.7084000e+03 -2.4041540e+00 + 6.7088000e+03 -2.1766661e+00 + 6.7092000e+03 -1.9641550e+00 + 6.7096000e+03 -1.3748877e+00 + 6.7100000e+03 -1.1854863e+00 + 6.7104000e+03 -9.8617792e-01 + 6.7108000e+03 -8.2671883e-01 + 6.7112000e+03 -7.8724682e-01 + 6.7116000e+03 -7.0794792e-01 + 6.7120000e+03 -2.8826576e-01 + 6.7124000e+03 -8.9744966e-03 + 6.7128000e+03 4.3042254e-01 + 6.7132000e+03 8.3989854e-01 + 6.7136000e+03 9.0942807e-01 + 6.7140000e+03 8.7909765e-01 + 6.7144000e+03 7.0880890e-01 + 6.7148000e+03 4.0849796e-01 + 6.7152000e+03 8.4108008e-02 + 6.7156000e+03 1.9954914e-01 + 6.7160000e+03 1.4895185e-01 + 6.7164000e+03 -2.5025907e-01 + 6.7168000e+03 -6.7317167e-01 + 6.7172000e+03 -7.4296923e-01 + 6.7176000e+03 -5.8277065e-01 + 6.7180000e+03 -4.3235818e-01 + 6.7184000e+03 -5.1208705e-01 + 6.7188000e+03 -3.7161963e-01 + 6.7192000e+03 -5.2883131e-02 + 6.7196000e+03 1.9772298e-01 + 6.7200000e+03 8.2423097e-01 + 6.7204000e+03 1.2959911e+00 + 6.7208000e+03 1.2249777e+00 + 6.7212000e+03 1.3931602e+00 + 6.7216000e+03 1.3810851e+00 + 6.7220000e+03 1.0406277e+00 + 6.7224000e+03 9.9042016e-01 + 6.7228000e+03 7.7078514e-01 + 6.7232000e+03 3.8009811e-01 + 6.7236000e+03 6.8356520e-02 + 6.7240000e+03 9.3020148e-02 + 6.7244000e+03 3.0632319e-02 + 6.7248000e+03 -2.4936955e-01 + 6.7252000e+03 -5.6955299e-01 + 6.7256000e+03 -1.1497178e+00 + 6.7260000e+03 -1.4398423e+00 + 6.7264000e+03 -1.4996508e+00 + 6.7268000e+03 -1.4290637e+00 + 6.7272000e+03 -1.2585593e+00 + 6.7276000e+03 -9.1825676e-01 + 6.7280000e+03 -3.9800542e-01 + 6.7284000e+03 -3.1794669e-01 + 6.7288000e+03 -6.0786399e-01 + 6.7292000e+03 -6.8785208e-01 + 6.7296000e+03 -9.4706223e-01 + 6.7300000e+03 -1.0468146e+00 + 6.7304000e+03 -2.6617534e-01 + 6.7308000e+03 1.5293063e-01 + 6.7312000e+03 2.5245218e-01 + 6.7316000e+03 5.4181406e-01 + 6.7320000e+03 1.1244300e-01 + 6.7324000e+03 3.4697651e-02 + 6.7328000e+03 3.6682194e-01 + 6.7332000e+03 1.7756117e-01 + 6.7336000e+03 -3.4998428e-01 + 6.7340000e+03 -1.0872471e+00 + 6.7344000e+03 -1.3759589e+00 + 6.7348000e+03 -1.4949954e+00 + 6.7352000e+03 -1.2103817e+00 + 6.7356000e+03 -9.3524105e-01 + 6.7360000e+03 -4.0751687e-01 + 6.7364000e+03 -1.0128354e-02 + 6.7368000e+03 4.6893644e-01 + 6.7372000e+03 1.1772005e+00 + 6.7376000e+03 1.9166080e+00 + 6.7380000e+03 2.0540687e+00 + 6.7384000e+03 1.8132276e+00 + 6.7388000e+03 1.5240184e+00 + 6.7392000e+03 1.2258123e+00 + 6.7396000e+03 1.0079102e+00 + 6.7400000e+03 1.0497877e+00 + 6.7404000e+03 9.6141470e-01 + 6.7408000e+03 8.0270538e-01 + 6.7412000e+03 5.9369796e-01 + 6.7416000e+03 3.6433291e-01 + 6.7420000e+03 3.1469692e-01 + 6.7424000e+03 -2.8384658e-01 + 6.7428000e+03 -8.6009993e-01 + 6.7432000e+03 -1.3088961e+00 + 6.7436000e+03 -1.7001976e+00 + 6.7440000e+03 -1.9709072e+00 + 6.7444000e+03 -1.8205636e+00 + 6.7448000e+03 -1.9192968e+00 + 6.7452000e+03 -1.4346050e+00 + 6.7456000e+03 -7.3945557e-01 + 6.7460000e+03 -1.3261366e-02 + 6.7464000e+03 2.1339805e-01 + 6.7468000e+03 2.8294471e-01 + 6.7472000e+03 -4.7417087e-02 + 6.7476000e+03 -1.5767748e-01 + 6.7480000e+03 2.7221041e-01 + 6.7484000e+03 3.9223108e-01 + 6.7488000e+03 2.1237623e-01 + 6.7492000e+03 -3.7359890e-02 + 6.7496000e+03 2.3006203e-02 + 6.7500000e+03 -1.5662021e-01 + 6.7504000e+03 -2.8590795e-01 + 6.7508000e+03 -7.0561068e-01 + 6.7512000e+03 -1.6553662e+00 + 6.7516000e+03 -2.5853799e+00 + 6.7520000e+03 -3.1255735e+00 + 6.7524000e+03 -3.0559746e+00 + 6.7528000e+03 -2.4665269e+00 + 6.7532000e+03 -2.1171460e+00 + 6.7536000e+03 -2.0577919e+00 + 6.7540000e+03 -1.0036192e+00 + 6.7544000e+03 3.2267868e-01 + 6.7548000e+03 1.5109637e+00 + 6.7552000e+03 1.5608926e+00 + 6.7556000e+03 1.7509382e+00 + 6.7560000e+03 2.1112993e+00 + 6.7564000e+03 2.3616552e+00 + 6.7568000e+03 2.6021508e+00 + 6.7572000e+03 2.9826285e+00 + 6.7576000e+03 3.5530959e+00 + 6.7580000e+03 3.5500323e+00 + 6.7584000e+03 3.5343215e+00 + 6.7588000e+03 3.2995745e+00 + 6.7592000e+03 2.7807926e+00 + 6.7596000e+03 2.5278562e+00 + 6.7600000e+03 2.2731546e+00 + 6.7604000e+03 1.3471883e+00 + 6.7608000e+03 3.3809354e-01 + 6.7612000e+03 -6.2701723e-01 + 6.7616000e+03 -1.5450469e+00 + 6.7620000e+03 -2.0302217e+00 + 6.7624000e+03 -2.2189639e+00 + 6.7628000e+03 -2.3416172e+00 + 6.7632000e+03 -2.4017251e+00 + 6.7636000e+03 -2.6518785e+00 + 6.7640000e+03 -2.6987893e+00 + 6.7644000e+03 -2.4941232e+00 + 6.7648000e+03 -2.0143296e+00 + 6.7652000e+03 -1.6437800e+00 + 6.7656000e+03 -8.2702822e-01 + 6.7660000e+03 6.4823105e-01 + 6.7664000e+03 1.7707257e+00 + 6.7668000e+03 2.1003345e+00 + 6.7672000e+03 2.0642552e+00 + 6.7676000e+03 1.3119943e+00 + 6.7680000e+03 4.0749885e-01 + 6.7684000e+03 -2.7600229e-01 + 6.7688000e+03 -8.7253302e-01 + 6.7692000e+03 -1.0324402e+00 + 6.7696000e+03 -1.0897811e+00 + 6.7700000e+03 -1.1426199e+00 + 6.7704000e+03 -1.3863881e+00 + 6.7708000e+03 -1.1206332e+00 + 6.7712000e+03 -1.1126364e+00 + 6.7716000e+03 -9.4317249e-01 + 6.7720000e+03 -8.5372541e-01 + 6.7724000e+03 -7.8434858e-01 + 6.7728000e+03 -6.9543260e-01 + 6.7732000e+03 -6.2569733e-01 + 6.7736000e+03 -2.6561427e-01 + 6.7740000e+03 -3.6458934e-02 + 6.7744000e+03 1.9338438e-01 + 6.7748000e+03 3.5338740e-01 + 6.7752000e+03 7.4346052e-01 + 6.7756000e+03 1.3834728e+00 + 6.7760000e+03 1.7735696e+00 + 6.7764000e+03 1.5937213e+00 + 6.7768000e+03 1.5212987e+00 + 6.7772000e+03 9.8442413e-01 + 6.7776000e+03 6.8464939e-01 + 6.7780000e+03 6.9651310e-01 + 6.7784000e+03 9.2547402e-01 + 6.7788000e+03 1.0061139e+00 + 6.7792000e+03 1.2767247e+00 + 6.7796000e+03 1.4572748e+00 + 6.7800000e+03 1.6477591e+00 + 6.7804000e+03 1.8781449e+00 + 6.7808000e+03 1.3983762e+00 + 6.7812000e+03 2.3429373e-02 + 6.7816000e+03 -1.3140435e+00 + 6.7820000e+03 -2.0009839e+00 + 6.7824000e+03 -2.1106871e+00 + 6.7828000e+03 -1.7403975e+00 + 6.7832000e+03 -1.2100691e+00 + 6.7836000e+03 -4.9982163e-01 + 6.7840000e+03 -6.5979858e-01 + 6.7844000e+03 -9.6993138e-01 + 6.7848000e+03 -1.3903960e+00 + 6.7852000e+03 -1.4809899e+00 + 6.7856000e+03 -1.4562609e+00 + 6.7860000e+03 -1.1721026e+00 + 6.7864000e+03 -1.1079613e+00 + 6.7868000e+03 -7.5460626e-01 + 6.7872000e+03 -8.1297391e-01 + 6.7876000e+03 -7.8304603e-01 + 6.7880000e+03 -5.4320640e-01 + 6.7884000e+03 -1.9309750e-01 + 6.7888000e+03 1.0708967e-01 + 6.7892000e+03 2.0735973e-01 + 6.7896000e+03 6.7770930e-01 + 6.7900000e+03 8.4798035e-01 + 6.7904000e+03 5.4314950e-01 + 6.7908000e+03 6.4881171e-02 + 6.7912000e+03 5.8651119e-02 + 6.7916000e+03 3.1801820e-01 + 6.7920000e+03 3.3817546e-01 + 6.7924000e+03 5.7422592e-01 + 6.7928000e+03 6.0403170e-01 + 6.7932000e+03 5.0164640e-01 + 6.7936000e+03 1.5397023e-01 + 6.7940000e+03 -2.4174376e-01 + 6.7944000e+03 -4.6161516e-01 + 6.7948000e+03 -2.3145876e-01 + 6.7952000e+03 6.8784352e-02 + 6.7956000e+03 5.7909836e-01 + 6.7960000e+03 1.2394368e+00 + 6.7964000e+03 1.7191017e+00 + 6.7968000e+03 1.5602554e+00 + 6.7972000e+03 6.4039814e-01 + 6.7976000e+03 1.2029194e-01 + 6.7980000e+03 -3.2278855e-01 + 6.7984000e+03 -4.4789126e-01 + 6.7988000e+03 -5.1202751e-01 + 6.7992000e+03 -7.2326744e-01 + 6.7996000e+03 -9.9494242e-01 + 6.8000000e+03 -1.2165630e+00 + 6.8004000e+03 -1.1666181e+00 + 6.8008000e+03 -1.1351042e+00 + 6.8012000e+03 -1.0624085e+00 + 6.8016000e+03 -8.4289598e-01 + 6.8020000e+03 -6.2317231e-01 + 6.8024000e+03 -5.7335847e-01 + 6.8028000e+03 -3.4338440e-01 + 6.8032000e+03 1.2682042e-01 + 6.8036000e+03 2.8723454e-01 + 6.8040000e+03 5.2771308e-01 + 6.8044000e+03 4.8818592e-01 + 6.8048000e+03 6.4856921e-01 + 6.8052000e+03 9.6898373e-01 + 6.8056000e+03 1.3091894e+00 + 6.8060000e+03 1.5792402e+00 + 6.8064000e+03 1.9992428e+00 + 6.8068000e+03 1.6501229e+00 + 6.8072000e+03 6.0789542e-01 + 6.8076000e+03 -3.5093377e-01 + 6.8080000e+03 -1.0341127e+00 + 6.8084000e+03 -1.6590306e+00 + 6.8088000e+03 -2.0867804e+00 + 6.8092000e+03 -2.3942131e+00 + 6.8096000e+03 -2.2427932e+00 + 6.8100000e+03 -1.8891348e+00 + 6.8104000e+03 -1.6269647e+00 + 6.8108000e+03 -1.6742051e+00 + 6.8112000e+03 -1.6045415e+00 + 6.8116000e+03 -8.7001071e-01 + 6.8120000e+03 -9.4311286e-02 + 6.8124000e+03 5.5852846e-01 + 6.8128000e+03 1.4111058e+00 + 6.8132000e+03 1.9123363e+00 + 6.8136000e+03 2.3508123e+00 + 6.8140000e+03 3.4368431e+00 + 6.8144000e+03 4.3394505e+00 + 6.8148000e+03 4.7100514e+00 + 6.8152000e+03 4.6537810e+00 + 6.8156000e+03 4.3554384e+00 + 6.8160000e+03 3.9300504e+00 + 6.8164000e+03 3.3978329e+00 + 6.8168000e+03 2.4887215e+00 + 6.8172000e+03 1.3197804e+00 + 6.8176000e+03 -7.5417887e-03 + 6.8180000e+03 -1.3056270e+00 + 6.8184000e+03 -2.2698856e+00 + 6.8188000e+03 -2.9669209e+00 + 6.8192000e+03 -3.4699256e+00 + 6.8196000e+03 -3.6416362e+00 + 6.8200000e+03 -4.0270735e+00 + 6.8204000e+03 -4.3268098e+00 + 6.8208000e+03 -4.3739293e+00 + 6.8212000e+03 -4.2813905e+00 + 6.8216000e+03 -3.8495754e+00 + 6.8220000e+03 -2.9192842e+00 + 6.8224000e+03 -1.4778327e+00 + 6.8228000e+03 3.9632368e-02 + 6.8232000e+03 1.6804863e+00 + 6.8236000e+03 3.0702118e+00 + 6.8240000e+03 3.5674101e+00 + 6.8244000e+03 3.6110106e+00 + 6.8248000e+03 3.1910034e+00 + 6.8252000e+03 2.6562864e+00 + 6.8256000e+03 2.0277138e+00 + 6.8260000e+03 1.6530519e+00 + 6.8264000e+03 1.2518987e+00 + 6.8268000e+03 1.1330437e+00 + 6.8272000e+03 7.6601803e-01 + 6.8276000e+03 2.9939099e-01 + 6.8280000e+03 -2.7753524e-01 + 6.8284000e+03 -6.3812516e-01 + 6.8288000e+03 -1.0583289e+00 + 6.8292000e+03 -1.3116562e+00 + 6.8296000e+03 -1.6923275e+00 + 6.8300000e+03 -2.0567060e+00 + 6.8304000e+03 -2.2065724e+00 + 6.8308000e+03 -2.3316984e+00 + 6.8312000e+03 -2.2715286e+00 + 6.8316000e+03 -1.5916219e+00 + 6.8320000e+03 -1.0594341e+00 + 6.8324000e+03 -4.5190754e-01 + 6.8328000e+03 4.6633241e-02 + 6.8332000e+03 4.9476407e-01 + 6.8336000e+03 1.3230161e+00 + 6.8340000e+03 2.3697683e+00 + 6.8344000e+03 2.9515277e+00 + 6.8348000e+03 3.1866074e+00 + 6.8352000e+03 3.0228637e+00 + 6.8356000e+03 2.2925706e+00 + 6.8360000e+03 1.5785515e+00 + 6.8364000e+03 1.3278773e+00 + 6.8368000e+03 1.1244397e+00 + 6.8372000e+03 5.8026290e-01 + 6.8376000e+03 -2.3232969e-01 + 6.8380000e+03 -1.0089825e+00 + 6.8384000e+03 -1.8404177e+00 + 6.8388000e+03 -2.9880444e+00 + 6.8392000e+03 -3.6504278e+00 + 6.8396000e+03 -4.1949449e+00 + 6.8400000e+03 -4.0498215e+00 + 6.8404000e+03 -3.4093768e+00 + 6.8408000e+03 -2.5397975e+00 + 6.8412000e+03 -1.3145431e+00 + 6.8416000e+03 -4.1118259e-01 + 6.8420000e+03 2.0289223e-01 + 6.8424000e+03 8.8482345e-01 + 6.8428000e+03 1.0706010e+00 + 6.8432000e+03 1.2452462e+00 + 6.8436000e+03 1.2492541e+00 + 6.8440000e+03 1.2506310e+00 + 6.8444000e+03 8.5634053e-01 + 6.8448000e+03 5.2701816e-01 + 6.8452000e+03 3.5734798e-01 + 6.8456000e+03 4.6755787e-01 + 6.8460000e+03 8.1737531e-01 + 6.8464000e+03 1.5869500e+00 + 6.8468000e+03 1.6461341e+00 + 6.8472000e+03 1.4051168e+00 + 6.8476000e+03 8.7387800e-01 + 6.8480000e+03 5.2272434e-01 + 6.8484000e+03 2.2184655e-01 + 6.8488000e+03 -1.1889127e-01 + 6.8492000e+03 -3.3928802e-01 + 6.8496000e+03 -5.5951649e-01 + 6.8500000e+03 -6.8990445e-01 + 6.8504000e+03 -9.0926201e-01 + 6.8508000e+03 -1.0088408e+00 + 6.8512000e+03 -2.1281821e+00 + 6.8516000e+03 -3.1233238e+00 + 6.8520000e+03 -3.6550620e+00 + 6.8524000e+03 -3.6067339e+00 + 6.8528000e+03 -2.8028671e+00 + 6.8532000e+03 -1.6112126e+00 + 6.8536000e+03 -2.2178518e-01 + 6.8540000e+03 1.4863912e+00 + 6.8544000e+03 2.5023949e+00 + 6.8548000e+03 3.0164353e+00 + 6.8552000e+03 2.9668630e+00 + 6.8556000e+03 2.5686915e+00 + 6.8560000e+03 2.3349355e+00 + 6.8564000e+03 2.4234261e+00 + 6.8568000e+03 2.3215497e+00 + 6.8572000e+03 2.1198387e+00 + 6.8576000e+03 1.6283644e+00 + 6.8580000e+03 1.2183453e+00 + 6.8584000e+03 7.4394027e-01 + 6.8588000e+03 2.7138344e-01 + 6.8592000e+03 -3.2980141e-01 + 6.8596000e+03 -5.9451482e-01 + 6.8600000e+03 -1.0113327e+00 + 6.8604000e+03 -1.2474436e+00 + 6.8608000e+03 -1.5532933e+00 + 6.8612000e+03 -1.7566268e+00 + 6.8616000e+03 -1.6073421e+00 + 6.8620000e+03 -1.1728150e+00 + 6.8624000e+03 -1.0358659e+00 + 6.8628000e+03 -1.0454386e+00 + 6.8632000e+03 -1.0303418e+00 + 6.8636000e+03 -9.9927929e-01 + 6.8640000e+03 -7.7817272e-01 + 6.8644000e+03 -5.5723630e-01 + 6.8648000e+03 -4.7656850e-01 + 6.8652000e+03 -7.6120542e-02 + 6.8656000e+03 3.0399780e-01 + 6.8660000e+03 6.5394101e-01 + 6.8664000e+03 1.0445879e+00 + 6.8668000e+03 1.5316800e+00 + 6.8672000e+03 1.6595395e+00 + 6.8676000e+03 1.4630156e+00 + 6.8680000e+03 1.5493692e+00 + 6.8684000e+03 1.6360533e+00 + 6.8688000e+03 1.5935310e+00 + 6.8692000e+03 1.5702304e+00 + 6.8696000e+03 8.4908224e-01 + 6.8700000e+03 -3.0716528e-01 + 6.8704000e+03 -1.3560969e+00 + 6.8708000e+03 -2.4926244e+00 + 6.8712000e+03 -3.4807523e+00 + 6.8716000e+03 -3.8430281e+00 + 6.8720000e+03 -3.7342584e+00 + 6.8724000e+03 -3.5638181e+00 + 6.8728000e+03 -3.4536435e+00 + 6.8732000e+03 -3.4065249e+00 + 6.8736000e+03 -2.9107639e+00 + 6.8740000e+03 -2.4403052e+00 + 6.8744000e+03 -1.7649288e+00 + 6.8748000e+03 -6.0558636e-01 + 6.8752000e+03 7.3507364e-01 + 6.8756000e+03 2.0433193e+00 + 6.8760000e+03 3.4190329e+00 + 6.8764000e+03 4.2850454e+00 + 6.8768000e+03 4.6911369e+00 + 6.8772000e+03 4.9568268e+00 + 6.8776000e+03 4.8670673e+00 + 6.8780000e+03 4.5172083e+00 + 6.8784000e+03 4.3472558e+00 + 6.8788000e+03 2.9671686e+00 + 6.8792000e+03 1.8970381e+00 + 6.8796000e+03 1.1969280e+00 + 6.8800000e+03 9.8692724e-01 + 6.8804000e+03 -1.4299750e-01 + 6.8808000e+03 -3.6290183e-01 + 6.8812000e+03 -4.6161231e-01 + 6.8816000e+03 -6.9939040e-01 + 6.8820000e+03 -1.2848041e+00 + 6.8824000e+03 -1.8281731e+00 + 6.8828000e+03 -2.2152365e+00 + 6.8832000e+03 -2.3168448e+00 + 6.8836000e+03 -2.5771994e+00 + 6.8840000e+03 -2.6377628e+00 + 6.8844000e+03 -2.7607859e+00 + 6.8848000e+03 -2.6016802e+00 + 6.8852000e+03 -2.4751068e+00 + 6.8856000e+03 -2.2553545e+00 + 6.8860000e+03 -1.4455696e+00 + 6.8864000e+03 -4.5579661e-01 + 6.8868000e+03 6.1633897e-01 + 6.8872000e+03 1.4844084e+00 + 6.8876000e+03 2.3897737e+00 + 6.8880000e+03 3.2884184e+00 + 6.8884000e+03 3.5164141e+00 + 6.8888000e+03 2.9732380e+00 + 6.8892000e+03 1.7167044e+00 + 6.8896000e+03 5.0717485e-01 + 6.8900000e+03 -2.6204910e-01 + 6.8904000e+03 -6.8257308e-01 + 6.8908000e+03 -3.8224975e-01 + 6.8912000e+03 -7.2115077e-02 + 6.8916000e+03 -3.9220988e-01 + 6.8920000e+03 -9.1245747e-01 + 6.8924000e+03 -1.3597882e+00 + 6.8928000e+03 -1.9035448e+00 + 6.8932000e+03 -2.0698059e+00 + 6.8936000e+03 -2.2408842e+00 + 6.8940000e+03 -2.0435231e+00 + 6.8944000e+03 -1.9834821e+00 + 6.8948000e+03 -1.8935806e+00 + 6.8952000e+03 -1.6867891e+00 + 6.8956000e+03 -1.0883760e+00 + 6.8960000e+03 -2.4182242e-01 + 6.8964000e+03 1.0901043e+00 + 6.8968000e+03 2.1076597e+00 + 6.8972000e+03 3.4690603e+00 + 6.8976000e+03 4.4137628e+00 + 6.8980000e+03 5.0163292e+00 + 6.8984000e+03 4.7368508e+00 + 6.8988000e+03 3.7379532e+00 + 6.8992000e+03 2.8063730e+00 + 6.8996000e+03 1.5874954e+00 + 6.9000000e+03 7.5837617e-01 + 6.9004000e+03 1.1779215e-01 + 6.9008000e+03 -6.0278173e-01 + 6.9012000e+03 -1.3543898e+00 + 6.9016000e+03 -1.7201549e+00 + 6.9020000e+03 -1.9503938e+00 + 6.9024000e+03 -2.1240218e+00 + 6.9028000e+03 -2.1071248e+00 + 6.9032000e+03 -2.1545572e+00 + 6.9036000e+03 -2.2856568e+00 + 6.9040000e+03 -2.3849212e+00 + 6.9044000e+03 -2.5228634e+00 + 6.9048000e+03 -2.5508256e+00 + 6.9052000e+03 -2.2444242e+00 + 6.9056000e+03 -1.8144675e+00 + 6.9060000e+03 -2.8414780e-01 + 6.9064000e+03 3.5588009e-01 + 6.9068000e+03 8.0588774e-01 + 6.9072000e+03 8.5580326e-01 + 6.9076000e+03 1.1372964e+00 + 6.9080000e+03 1.5885889e+00 + 6.9084000e+03 2.0786103e+00 + 6.9088000e+03 2.0064798e+00 + 6.9092000e+03 1.5493324e+00 + 6.9096000e+03 1.0445521e+00 + 6.9100000e+03 4.3496654e-01 + 6.9104000e+03 -3.4524466e-02 + 6.9108000e+03 -3.7138791e-01 + 6.9112000e+03 -5.4919005e-01 + 6.9116000e+03 -6.7188539e-01 + 6.9120000e+03 -1.0282256e+00 + 6.9124000e+03 -1.2939978e+00 + 6.9128000e+03 -1.5589561e+00 + 6.9132000e+03 -1.5313066e+00 + 6.9136000e+03 -1.3953573e+00 + 6.9140000e+03 -1.1556890e+00 + 6.9144000e+03 -7.0256243e-01 + 6.9148000e+03 -1.2778835e-01 + 6.9152000e+03 5.9067844e-01 + 6.9156000e+03 1.0359505e+00 + 6.9160000e+03 1.3839199e+00 + 6.9164000e+03 1.6888209e+00 + 6.9168000e+03 1.8488369e+00 + 6.9172000e+03 1.8093276e+00 + 6.9176000e+03 1.7197265e+00 + 6.9180000e+03 1.1899534e+00 + 6.9184000e+03 3.4863563e-01 + 6.9188000e+03 -3.7999799e-01 + 6.9192000e+03 -8.7426527e-01 + 6.9196000e+03 -1.1259760e+00 + 6.9200000e+03 -1.1399541e+00 + 6.9204000e+03 -1.2301643e+00 + 6.9208000e+03 -1.1204879e+00 + 6.9212000e+03 -9.4118784e-01 + 6.9216000e+03 -4.1204553e-01 + 6.9220000e+03 -2.0301338e-01 + 6.9224000e+03 -2.8399912e-01 + 6.9228000e+03 -6.4985638e-02 + 6.9232000e+03 3.5420814e-01 + 6.9236000e+03 9.0351795e-01 + 6.9240000e+03 1.0031084e+00 + 6.9244000e+03 8.7293839e-01 + 6.9248000e+03 7.4304024e-01 + 6.9252000e+03 6.3339118e-01 + 6.9256000e+03 4.9400452e-01 + 6.9260000e+03 8.8106129e-01 + 6.9264000e+03 1.1487772e+00 + 6.9268000e+03 9.6555622e-01 + 6.9272000e+03 6.3310159e-01 + 6.9276000e+03 1.9199223e-01 + 6.9280000e+03 -4.2155809e-01 + 6.9284000e+03 -5.9151078e-01 + 6.9288000e+03 -9.0019493e-01 + 6.9292000e+03 -1.3054068e+00 + 6.9296000e+03 -1.7069406e+00 + 6.9300000e+03 -1.7581259e+00 + 6.9304000e+03 -1.9815513e+00 + 6.9308000e+03 -2.0611689e+00 + 6.9312000e+03 -2.0660558e+00 + 6.9316000e+03 -1.9770340e+00 + 6.9320000e+03 -1.6277505e+00 + 6.9324000e+03 -6.6817109e-01 + 6.9328000e+03 -1.8845748e-01 + 6.9332000e+03 1.3120725e-01 + 6.9336000e+03 4.6083931e-01 + 6.9340000e+03 5.1061311e-01 + 6.9344000e+03 5.7057778e-01 + 6.9348000e+03 7.1073258e-01 + 6.9352000e+03 1.0709908e+00 + 6.9356000e+03 1.9113831e+00 + 6.9360000e+03 2.1518038e+00 + 6.9364000e+03 2.3521735e+00 + 6.9368000e+03 1.3829109e+00 + 6.9372000e+03 5.3367597e-01 + 6.9376000e+03 4.4157951e-02 + 6.9380000e+03 -1.6557056e-01 + 6.9384000e+03 -2.3557286e-01 + 6.9388000e+03 -7.5404505e-02 + 6.9392000e+03 -3.5088469e-02 + 6.9396000e+03 -1.4468132e-01 + 6.9400000e+03 -7.4364105e-02 + 6.9404000e+03 3.9582487e-01 + 6.9408000e+03 6.5586072e-01 + 6.9412000e+03 2.8564534e-01 + 6.9416000e+03 1.2509831e-01 + 6.9420000e+03 7.4218896e-02 + 6.9424000e+03 -2.0083040e-01 + 6.9428000e+03 9.2226140e-02 + 6.9432000e+03 1.1612154e+00 + 6.9436000e+03 1.9603720e+00 + 6.9440000e+03 2.4993401e+00 + 6.9444000e+03 2.9085193e+00 + 6.9448000e+03 2.2580274e+00 + 6.9452000e+03 4.3790565e-01 + 6.9456000e+03 -7.8123741e-01 + 6.9460000e+03 -1.3484755e+00 + 6.9464000e+03 -1.6341524e+00 + 6.9468000e+03 -1.3675461e+00 + 6.9472000e+03 -8.7877931e-01 + 6.9476000e+03 -4.8785219e-01 + 6.9480000e+03 -8.7110115e-02 + 6.9484000e+03 1.1340315e-01 + 6.9488000e+03 1.5369265e-01 + 6.9492000e+03 -1.6417125e-02 + 6.9496000e+03 -5.0681712e-01 + 6.9500000e+03 -1.0474721e+00 + 6.9504000e+03 -1.4681389e+00 + 6.9508000e+03 -1.6388365e+00 + 6.9512000e+03 -2.0594950e+00 + 6.9516000e+03 -2.2601726e+00 + 6.9520000e+03 -1.9707111e+00 + 6.9524000e+03 -1.6511061e+00 + 6.9528000e+03 -1.3812413e+00 + 6.9532000e+03 -9.7130976e-01 + 6.9536000e+03 -4.5930908e-01 + 6.9540000e+03 -2.2171835e-01 + 6.9544000e+03 3.8963844e-01 + 6.9548000e+03 3.5527313e-01 + 6.9552000e+03 -1.1015137e-01 + 6.9556000e+03 9.7806124e-03 + 6.9560000e+03 1.6982232e-01 + 6.9564000e+03 1.4546358e-01 + 6.9568000e+03 1.9741299e-01 + 6.9572000e+03 6.4166777e-02 + 6.9576000e+03 3.7801939e-01 + 6.9580000e+03 1.0615923e+00 + 6.9584000e+03 1.2721356e+00 + 6.9588000e+03 1.5627249e+00 + 6.9592000e+03 1.9333271e+00 + 6.9596000e+03 1.9937461e+00 + 6.9600000e+03 2.0739718e+00 + 6.9604000e+03 3.2139814e+00 + 6.9608000e+03 3.4438572e+00 + 6.9612000e+03 3.3235545e+00 + 6.9616000e+03 3.0631761e+00 + 6.9620000e+03 2.7127274e+00 + 6.9624000e+03 2.3322702e+00 + 6.9628000e+03 1.2518176e+00 + 6.9632000e+03 -9.8506482e-02 + 6.9636000e+03 -1.1781978e+00 + 6.9640000e+03 -2.1691759e+00 + 6.9644000e+03 -3.0493949e+00 + 6.9648000e+03 -3.5596324e+00 + 6.9652000e+03 -3.7098965e+00 + 6.9656000e+03 -3.5500060e+00 + 6.9660000e+03 -2.9000670e+00 + 6.9664000e+03 -2.0199914e+00 + 6.9668000e+03 -1.2097979e+00 + 6.9672000e+03 -9.5242070e-01 + 6.9676000e+03 -8.8372413e-01 + 6.9680000e+03 -9.3869366e-01 + 6.9684000e+03 -1.1323789e+00 + 6.9688000e+03 -1.4218548e+00 + 6.9692000e+03 -1.5477814e+00 + 6.9696000e+03 -1.3908089e+00 + 6.9700000e+03 -5.8216269e-01 + 6.9704000e+03 9.8699025e-01 + 6.9708000e+03 2.4077316e+00 + 6.9712000e+03 3.2286294e+00 + 6.9716000e+03 3.6543442e+00 + 6.9720000e+03 3.3491699e+00 + 6.9724000e+03 2.7202512e+00 + 6.9728000e+03 1.8151006e+00 + 6.9732000e+03 1.0002238e+00 + 6.9736000e+03 2.8572894e-01 + 6.9740000e+03 -1.3173617e-01 + 6.9744000e+03 -8.0387911e-01 + 6.9748000e+03 -1.3377731e+00 + 6.9752000e+03 -1.9169061e+00 + 6.9756000e+03 -2.4411273e+00 + 6.9760000e+03 -2.5116316e+00 + 6.9764000e+03 -2.2201725e+00 + 6.9768000e+03 -1.4248169e+00 + 6.9772000e+03 -3.0822490e-01 + 6.9776000e+03 1.0012992e+00 + 6.9780000e+03 2.1319774e+00 + 6.9784000e+03 2.9512735e+00 + 6.9788000e+03 3.4776926e+00 + 6.9792000e+03 3.6892640e+00 + 6.9796000e+03 4.3367503e+00 + 6.9800000e+03 4.5951616e+00 + 6.9804000e+03 4.9343145e+00 + 6.9808000e+03 4.2846756e+00 + 6.9812000e+03 3.6648198e+00 + 6.9816000e+03 1.9646076e+00 + 6.9820000e+03 2.6409386e-01 + 6.9824000e+03 -8.5659469e-01 + 6.9828000e+03 -1.3874729e+00 + 6.9832000e+03 -1.5981474e+00 + 6.9836000e+03 -1.8889774e+00 + 6.9840000e+03 -2.1998668e+00 + 6.9844000e+03 -2.3706779e+00 + 6.9848000e+03 -2.4413269e+00 + 6.9852000e+03 -2.5920115e+00 + 6.9856000e+03 -2.7026984e+00 + 6.9860000e+03 -2.7331078e+00 + 6.9864000e+03 -2.9332881e+00 + 6.9868000e+03 -3.0832791e+00 + 6.9872000e+03 -3.1130420e+00 + 6.9876000e+03 -3.0826642e+00 + 6.9880000e+03 -2.9722013e+00 + 6.9884000e+03 -2.6616888e+00 + 6.9888000e+03 -1.9758267e+00 + 6.9892000e+03 -6.9535832e-01 + 6.9896000e+03 5.4822061e-01 + 6.9900000e+03 1.9693647e+00 + 6.9904000e+03 3.3412129e+00 + 6.9908000e+03 4.5331382e+00 + 6.9912000e+03 5.1485507e+00 + 6.9916000e+03 5.4446539e+00 + 6.9920000e+03 4.8897140e+00 + 6.9924000e+03 4.3607659e+00 + 6.9928000e+03 3.8011154e+00 + 6.9932000e+03 2.2714147e+00 + 6.9936000e+03 8.5155380e-01 + 6.9940000e+03 -4.3156137e-01 + 6.9944000e+03 -1.2530022e+00 + 6.9948000e+03 -1.5983109e+00 + 6.9952000e+03 -1.7671064e+00 + 6.9956000e+03 -1.5512932e+00 + 6.9960000e+03 -1.5028883e+00 + 6.9964000e+03 -1.3953998e+00 + 6.9968000e+03 -1.7129814e+00 + 6.9972000e+03 -1.9772828e+00 + 6.9976000e+03 -1.7894762e+00 + 6.9980000e+03 -1.2895053e+00 + 6.9984000e+03 -9.0940629e-01 + 6.9988000e+03 -6.4921101e-01 + 6.9992000e+03 -6.8905094e-02 + 6.9996000e+03 7.1139188e-01 + 7.0000000e+03 1.7118022e+00 + 7.0004000e+03 2.3222021e+00 + 7.0008000e+03 2.7026840e+00 + 7.0012000e+03 2.8030333e+00 + 7.0016000e+03 2.7033626e+00 + 7.0020000e+03 2.3334011e+00 + 7.0024000e+03 1.9432408e+00 + 7.0028000e+03 1.3726208e+00 + 7.0032000e+03 1.0903894e+00 + 7.0036000e+03 8.0091440e-01 + 7.0040000e+03 6.3193902e-01 + 7.0044000e+03 4.1426155e-01 + 7.0048000e+03 -1.0667569e-01 + 7.0052000e+03 -1.2396901e+00 + 7.0056000e+03 -2.3553035e+00 + 7.0060000e+03 -3.1723068e+00 + 7.0064000e+03 -3.9442709e+00 + 7.0068000e+03 -4.5832067e+00 + 7.0072000e+03 -4.4132862e+00 + 7.0076000e+03 -4.0632286e+00 + 7.0080000e+03 -3.3730119e+00 + 7.0084000e+03 -2.8927032e+00 + 7.0088000e+03 -2.2212911e+00 + 7.0092000e+03 -1.4787106e+00 + 7.0096000e+03 -5.2493252e-01 + 7.0100000e+03 8.7320053e-01 + 7.0104000e+03 2.0030532e+00 + 7.0108000e+03 3.0861782e+00 + 7.0112000e+03 4.5720174e+00 + 7.0116000e+03 5.5916338e+00 + 7.0120000e+03 5.6235128e+00 + 7.0124000e+03 4.9342741e+00 + 7.0128000e+03 3.4442928e+00 + 7.0132000e+03 2.2343218e+00 + 7.0136000e+03 1.5442974e+00 + 7.0140000e+03 8.6411626e-01 + 7.0144000e+03 5.5382159e-01 + 7.0148000e+03 1.0318910e-01 + 7.0152000e+03 -5.9768860e-01 + 7.0156000e+03 -1.3886008e+00 + 7.0160000e+03 -2.3094526e+00 + 7.0164000e+03 -2.9701170e+00 + 7.0168000e+03 -3.0403826e+00 + 7.0172000e+03 -2.9003238e+00 + 7.0176000e+03 -2.6600202e+00 + 7.0180000e+03 -2.5795062e+00 + 7.0184000e+03 -2.3088366e+00 + 7.0188000e+03 -1.6680966e+00 + 7.0192000e+03 -1.3174804e+00 + 7.0196000e+03 -6.1711303e-01 + 7.0200000e+03 9.3079834e-02 + 7.0204000e+03 8.1269949e-01 + 7.0208000e+03 1.6621464e+00 + 7.0212000e+03 2.5515667e+00 + 7.0216000e+03 2.9310525e+00 + 7.0220000e+03 2.9006720e+00 + 7.0224000e+03 2.8506402e+00 + 7.0228000e+03 2.5207282e+00 + 7.0232000e+03 1.7306950e+00 + 7.0236000e+03 1.0537663e+00 + 7.0240000e+03 4.5499294e-01 + 7.0244000e+03 3.9225313e-01 + 7.0248000e+03 9.1678717e-02 + 7.0252000e+03 -3.2702269e-01 + 7.0256000e+03 -6.6263675e-01 + 7.0260000e+03 -9.6405296e-01 + 7.0264000e+03 -1.3369768e+00 + 7.0268000e+03 -1.7938384e+00 + 7.0272000e+03 -2.1346598e+00 + 7.0276000e+03 -2.3959361e+00 + 7.0280000e+03 -2.6265002e+00 + 7.0284000e+03 -2.2356704e+00 + 7.0288000e+03 -1.6148876e+00 + 7.0292000e+03 -8.7416211e-01 + 7.0296000e+03 2.6385156e-02 + 7.0300000e+03 1.1066839e+00 + 7.0304000e+03 1.7969798e+00 + 7.0308000e+03 1.9072891e+00 + 7.0312000e+03 2.3774930e+00 + 7.0316000e+03 3.2576299e+00 + 7.0320000e+03 3.0275926e+00 + 7.0324000e+03 3.0972940e+00 + 7.0328000e+03 2.0165961e+00 + 7.0332000e+03 1.0356190e+00 + 7.0336000e+03 4.2474984e-01 + 7.0340000e+03 -3.6062178e-02 + 7.0344000e+03 -4.4687327e-01 + 7.0348000e+03 -6.3753886e-01 + 7.0352000e+03 -8.9814980e-01 + 7.0356000e+03 -1.3978147e+00 + 7.0360000e+03 -1.2950196e+00 + 7.0364000e+03 -1.3690479e+00 + 7.0368000e+03 -1.3413101e+00 + 7.0372000e+03 -1.1192126e+00 + 7.0376000e+03 -9.7942067e-01 + 7.0380000e+03 -1.0193353e+00 + 7.0384000e+03 -1.0823383e+00 + 7.0388000e+03 -6.6075575e-01 + 7.0392000e+03 -3.3498046e-01 + 7.0396000e+03 -5.5406959e-01 + 7.0400000e+03 -7.8529197e-01 + 7.0404000e+03 -1.1916604e+00 + 7.0408000e+03 -1.3977444e+00 + 7.0412000e+03 -1.3389325e+00 + 7.0416000e+03 -1.0041395e+00 + 7.0420000e+03 -4.5475936e-01 + 7.0424000e+03 5.5156084e-03 + 7.0428000e+03 5.0709299e-01 + 7.0432000e+03 7.8621779e-01 + 7.0436000e+03 7.0088841e-01 + 7.0440000e+03 3.3495789e-01 + 7.0444000e+03 -3.5715382e-01 + 7.0448000e+03 -4.0192340e-01 + 7.0452000e+03 -3.2218248e-01 + 7.0456000e+03 -1.5206859e-01 + 7.0460000e+03 8.8336167e-02 + 7.0464000e+03 4.3884743e-01 + 7.0468000e+03 7.4958731e-01 + 7.0472000e+03 1.0705970e+00 + 7.0476000e+03 1.3607047e+00 + 7.0480000e+03 1.6589745e+00 + 7.0484000e+03 1.9255629e+00 + 7.0488000e+03 2.1727739e+00 + 7.0492000e+03 1.7729751e+00 + 7.0496000e+03 1.2329978e+00 + 7.0500000e+03 1.0430851e+00 + 7.0504000e+03 3.0325114e-01 + 7.0508000e+03 -3.5661007e-01 + 7.0512000e+03 -7.4645207e-01 + 7.0516000e+03 -9.1612551e-01 + 7.0520000e+03 -9.3298515e-01 + 7.0524000e+03 -1.0614769e+00 + 7.0528000e+03 -1.1485875e+00 + 7.0532000e+03 -1.1137088e+00 + 7.0536000e+03 -9.7350865e-01 + 7.0540000e+03 -8.7972853e-01 + 7.0544000e+03 -5.0543492e-01 + 7.0548000e+03 -5.5814447e-02 + 7.0552000e+03 2.3372265e-01 + 7.0556000e+03 5.6312150e-01 + 7.0560000e+03 7.0235838e-01 + 7.0564000e+03 6.5148700e-01 + 7.0568000e+03 3.0030544e-01 + 7.0572000e+03 -2.6899407e-01 + 7.0576000e+03 -5.3478738e-01 + 7.0580000e+03 -7.3567594e-01 + 7.0584000e+03 -8.4614482e-01 + 7.0588000e+03 -9.5505271e-01 + 7.0592000e+03 -1.4567252e+00 + 7.0596000e+03 -1.4270658e+00 + 7.0600000e+03 -1.2420987e+00 + 7.0604000e+03 -1.1214929e+00 + 7.0608000e+03 -6.8800545e-01 + 7.0612000e+03 -3.9620031e-01 + 7.0616000e+03 -2.7180692e-01 + 7.0620000e+03 -3.2408524e-02 + 7.0624000e+03 1.4557909e-01 + 7.0628000e+03 2.0495690e-01 + 7.0632000e+03 8.1457530e-02 + 7.0636000e+03 9.3890565e-02 + 7.0640000e+03 3.6133462e-03 + 7.0644000e+03 -1.2640512e-01 + 7.0648000e+03 -3.3749733e-01 + 7.0652000e+03 -3.3299006e-01 + 7.0656000e+03 -5.3966704e-02 + 7.0660000e+03 3.3005808e-01 + 7.0664000e+03 9.9309886e-01 + 7.0668000e+03 1.6159657e+00 + 7.0672000e+03 1.4370536e+00 + 7.0676000e+03 9.3966170e-01 + 7.0680000e+03 6.1007899e-01 + 7.0684000e+03 5.4066836e-01 + 7.0688000e+03 3.3140071e-01 + 7.0692000e+03 1.1223831e-01 + 7.0696000e+03 -3.6841238e-02 + 7.0700000e+03 -9.5841437e-02 + 7.0704000e+03 -3.4706261e-02 + 7.0708000e+03 3.4660374e-01 + 7.0712000e+03 1.1781495e-01 + 7.0716000e+03 -1.0098035e-01 + 7.0720000e+03 -1.9979984e-01 + 7.0724000e+03 5.0897601e-02 + 7.0728000e+03 4.8466122e-01 + 7.0732000e+03 5.3276931e-01 + 7.0736000e+03 4.2755431e-01 + 7.0740000e+03 2.1371509e-01 + 7.0744000e+03 4.2742248e-02 + 7.0748000e+03 -6.6811468e-01 + 7.0752000e+03 -1.5106935e+00 + 7.0756000e+03 -1.9644485e+00 + 7.0760000e+03 -2.2460177e+00 + 7.0764000e+03 -2.3684788e+00 + 7.0768000e+03 -2.2309348e+00 + 7.0772000e+03 -1.8560079e+00 + 7.0776000e+03 -1.3476594e+00 + 7.0780000e+03 -8.9787955e-01 + 7.0784000e+03 -3.5776408e-01 + 7.0788000e+03 4.1228080e-01 + 7.0792000e+03 6.9210444e-01 + 7.0796000e+03 1.5619494e+00 + 7.0800000e+03 1.6817483e+00 + 7.0804000e+03 1.9617089e+00 + 7.0808000e+03 1.5119604e+00 + 7.0812000e+03 1.2424541e+00 + 7.0816000e+03 1.1034648e+00 + 7.0820000e+03 8.0513962e-01 + 7.0824000e+03 5.6724395e-01 + 7.0828000e+03 4.6953443e-01 + 7.0832000e+03 -8.0904778e-03 + 7.0836000e+03 -2.1569320e-01 + 7.0840000e+03 -3.3703166e-01 + 7.0844000e+03 -3.3087703e-01 + 7.0848000e+03 -5.8916866e-01 + 7.0852000e+03 -1.0746796e+00 + 7.0856000e+03 -1.3964206e+00 + 7.0860000e+03 -1.6391554e+00 + 7.0864000e+03 -1.8372634e+00 + 7.0868000e+03 -2.1292850e+00 + 7.0872000e+03 -2.3993896e+00 + 7.0876000e+03 -2.5594551e+00 + 7.0880000e+03 -2.4494324e+00 + 7.0884000e+03 -1.9892859e+00 + 7.0888000e+03 -7.0902438e-01 + 7.0892000e+03 9.3275946e-01 + 7.0896000e+03 2.0641634e+00 + 7.0900000e+03 3.3554027e+00 + 7.0904000e+03 4.5457724e+00 + 7.0908000e+03 4.6517455e+00 + 7.0912000e+03 4.0332241e+00 + 7.0916000e+03 3.3432264e+00 + 7.0920000e+03 2.5831803e+00 + 7.0924000e+03 1.9230355e+00 + 7.0928000e+03 1.3228152e+00 + 7.0932000e+03 -1.2744523e-01 + 7.0936000e+03 -2.0679511e+00 + 7.0940000e+03 -3.4585039e+00 + 7.0944000e+03 -4.1690321e+00 + 7.0948000e+03 -4.3794175e+00 + 7.0952000e+03 -4.1996759e+00 + 7.0956000e+03 -3.6098594e+00 + 7.0960000e+03 -2.7800311e+00 + 7.0964000e+03 -1.9602700e+00 + 7.0968000e+03 -1.4205951e+00 + 7.0972000e+03 -7.9099679e-01 + 7.0976000e+03 -2.5151063e-01 + 7.0980000e+03 3.9773852e-01 + 7.0984000e+03 1.2471911e+00 + 7.0988000e+03 2.1169582e+00 + 7.0992000e+03 2.6968404e+00 + 7.0996000e+03 2.5964330e+00 + 7.1000000e+03 2.3757579e+00 + 7.1004000e+03 2.2551091e+00 + 7.1008000e+03 2.4946727e+00 + 7.1012000e+03 2.7342305e+00 + 7.1016000e+03 2.4339651e+00 + 7.1020000e+03 2.1136789e+00 + 7.1024000e+03 1.4833454e+00 + 7.1028000e+03 1.1333039e+00 + 7.1032000e+03 7.5331810e-01 + 7.1036000e+03 -1.7646245e-01 + 7.1040000e+03 -1.2260269e+00 + 7.1044000e+03 -1.8151931e+00 + 7.1048000e+03 -1.8981038e+00 + 7.1052000e+03 -1.7509695e+00 + 7.1056000e+03 -1.8603238e+00 + 7.1060000e+03 -1.9039438e+00 + 7.1064000e+03 -1.9198401e+00 + 7.1068000e+03 -2.1896365e+00 + 7.1072000e+03 -2.0297180e+00 + 7.1076000e+03 -1.8998970e+00 + 7.1080000e+03 -1.8684153e+00 + 7.1084000e+03 -1.4748420e+00 + 7.1088000e+03 -1.0202894e+00 + 7.1092000e+03 -5.3954627e-01 + 7.1096000e+03 -9.6098445e-02 + 7.1100000e+03 2.1675610e-01 + 7.1104000e+03 3.0631698e-01 + 7.1108000e+03 4.4625142e-01 + 7.1112000e+03 5.0644545e-01 + 7.1116000e+03 3.8668601e-01 + 7.1120000e+03 3.1693428e-01 + 7.1124000e+03 5.3714026e-01 + 7.1128000e+03 1.0474056e+00 + 7.1132000e+03 1.6677037e+00 + 7.1136000e+03 1.8080152e+00 + 7.1140000e+03 1.9583105e+00 + 7.1144000e+03 1.5984980e+00 + 7.1148000e+03 1.3385245e+00 + 7.1152000e+03 3.1853117e-01 + 7.1156000e+03 -5.4118006e-01 + 7.1160000e+03 -1.4074395e+00 + 7.1164000e+03 -2.1556473e+00 + 7.1168000e+03 -2.5451031e+00 + 7.1172000e+03 -2.3278696e+00 + 7.1176000e+03 -2.0423180e+00 + 7.1180000e+03 -1.8928306e+00 + 7.1184000e+03 -1.1785634e+00 + 7.1188000e+03 -7.3228483e-01 + 7.1192000e+03 -2.1966422e-01 + 7.1196000e+03 7.6682670e-01 + 7.1200000e+03 2.1075647e+00 + 7.1204000e+03 2.8682265e+00 + 7.1208000e+03 3.4580104e+00 + 7.1212000e+03 4.0479353e+00 + 7.1216000e+03 3.6980675e+00 + 7.1220000e+03 2.8984512e+00 + 7.1224000e+03 1.9592922e+00 + 7.1228000e+03 9.8015337e-01 + 7.1232000e+03 3.8127534e-01 + 7.1236000e+03 -1.8181638e-01 + 7.1240000e+03 -4.0115851e-01 + 7.1244000e+03 -1.1770241e+00 + 7.1248000e+03 -1.8507661e+00 + 7.1252000e+03 -2.2043575e+00 + 7.1256000e+03 -2.3941596e+00 + 7.1260000e+03 -2.4831639e+00 + 7.1264000e+03 -2.2531635e+00 + 7.1268000e+03 -1.5631745e+00 + 7.1272000e+03 -1.1431479e+00 + 7.1276000e+03 -8.3327989e-01 + 7.1280000e+03 -6.8367562e-01 + 7.1284000e+03 -3.1349270e-01 + 7.1288000e+03 3.6393890e-02 + 7.1292000e+03 1.3607493e-01 + 7.1296000e+03 -2.2428593e-01 + 7.1300000e+03 -4.4470416e-01 + 7.1304000e+03 -5.4496861e-01 + 7.1308000e+03 -1.0052066e+00 + 7.1312000e+03 -6.6510948e-01 + 7.1316000e+03 -7.3513790e-01 + 7.1320000e+03 -3.4513125e-01 + 7.1324000e+03 -2.2897737e-02 + 7.1328000e+03 4.2037044e-01 + 7.1332000e+03 6.7206276e-01 + 7.1336000e+03 1.2317318e+00 + 7.1340000e+03 1.3266824e+00 + 7.1344000e+03 1.1270378e+00 + 7.1348000e+03 1.1837883e+00 + 7.1352000e+03 1.0044809e+00 + 7.1356000e+03 6.8827559e-01 + 7.1360000e+03 6.9612465e-01 + 7.1364000e+03 4.1542029e-01 + 7.1368000e+03 9.6595675e-02 + 7.1372000e+03 6.5830448e-02 + 7.1376000e+03 -2.1538551e-01 + 7.1380000e+03 -6.7706804e-01 + 7.1384000e+03 -8.7888962e-01 + 7.1388000e+03 -9.9093337e-01 + 7.1392000e+03 -1.0738110e+00 + 7.1396000e+03 -1.0531202e+00 + 7.1400000e+03 -8.0685580e-01 + 7.1404000e+03 -6.7141591e-01 + 7.1408000e+03 -5.4828868e-01 + 7.1412000e+03 -3.9040656e-01 + 7.1416000e+03 -3.2021134e-01 + 7.1420000e+03 -2.4113456e-01 + 7.1424000e+03 2.3167933e-02 + 7.1428000e+03 6.5318032e-01 + 7.1432000e+03 1.1932796e+00 + 7.1436000e+03 1.7476879e+00 + 7.1440000e+03 1.6784095e+00 + 7.1444000e+03 1.4303728e+00 + 7.1448000e+03 8.5136198e-01 + 7.1452000e+03 1.2847038e-01 + 7.1456000e+03 -3.9240534e-01 + 7.1460000e+03 -8.7873899e-01 + 7.1464000e+03 -8.2028407e-01 + 7.1468000e+03 -3.1275508e-01 + 7.1472000e+03 -1.7317837e-01 + 7.1476000e+03 -2.1404643e-01 + 7.1480000e+03 -6.8535801e-01 + 7.1484000e+03 -1.0860308e+00 + 7.1488000e+03 -1.2817186e+00 + 7.1492000e+03 -1.1179813e+00 + 7.1496000e+03 -1.0757693e+00 + 7.1500000e+03 -8.7859604e-01 + 7.1504000e+03 -1.1692586e+00 + 7.1508000e+03 -1.3887392e+00 + 7.1512000e+03 -1.2880615e+00 + 7.1516000e+03 -8.4734985e-01 + 7.1520000e+03 -2.2666599e-01 + 7.1524000e+03 2.7385027e-01 + 7.1528000e+03 6.1410126e-01 + 7.1532000e+03 7.3410858e-01 + 7.1536000e+03 8.4368159e-01 + 7.1540000e+03 1.0528747e+00 + 7.1544000e+03 1.1220905e+00 + 7.1548000e+03 1.4614169e+00 + 7.1552000e+03 1.5745273e+00 + 7.1556000e+03 1.6187340e+00 + 7.1560000e+03 1.7926018e+00 + 7.1564000e+03 1.5722487e+00 + 7.1568000e+03 1.6789457e+00 + 7.1572000e+03 1.5784383e+00 + 7.1576000e+03 9.5793002e-01 + 7.1580000e+03 9.7415645e-02 + 7.1584000e+03 6.6901589e-02 + 7.1588000e+03 -7.5900539e-01 + 7.1592000e+03 -1.5855249e+00 + 7.1596000e+03 -2.1548071e+00 + 7.1600000e+03 -1.8051127e+00 + 7.1604000e+03 -1.7653569e+00 + 7.1608000e+03 -1.5055893e+00 + 7.1612000e+03 -9.8578880e-01 + 7.1616000e+03 -8.5577081e-01 + 7.1620000e+03 -1.6556938e-01 + 7.1624000e+03 1.4488838e-01 + 7.1628000e+03 1.9555206e-01 + 7.1632000e+03 3.8652635e-01 + 7.1636000e+03 9.2753786e-01 + 7.1640000e+03 1.0186287e+00 + 7.1644000e+03 1.1996807e+00 + 7.1648000e+03 1.3305889e+00 + 7.1652000e+03 1.8215074e+00 + 7.1656000e+03 2.0621906e+00 + 7.1660000e+03 2.1726373e+00 + 7.1664000e+03 1.8529242e+00 + 7.1668000e+03 1.5894547e+00 + 7.1672000e+03 8.2268105e-01 + 7.1676000e+03 -2.1311006e-02 + 7.1680000e+03 -1.3742437e+00 + 7.1684000e+03 -2.2404455e+00 + 7.1688000e+03 -2.9049675e+00 + 7.1692000e+03 -3.1715357e+00 + 7.1696000e+03 -3.1353243e+00 + 7.1700000e+03 -2.9948450e+00 + 7.1704000e+03 -2.8846842e+00 + 7.1708000e+03 -2.6349277e+00 + 7.1712000e+03 -2.0155068e+00 + 7.1716000e+03 -1.3532575e+00 + 7.1720000e+03 -1.5162001e-01 + 7.1724000e+03 1.2503799e+00 + 7.1728000e+03 2.6581936e+00 + 7.1732000e+03 3.7669741e+00 + 7.1736000e+03 4.4497305e+00 + 7.1740000e+03 4.7193735e+00 + 7.1744000e+03 4.4577334e+00 + 7.1748000e+03 2.9964669e+00 + 7.1752000e+03 1.6089396e+00 + 7.1756000e+03 5.0805448e-01 + 7.1760000e+03 -5.7006823e-01 + 7.1764000e+03 -1.4459745e+00 + 7.1768000e+03 -1.9602261e+00 + 7.1772000e+03 -2.4013407e+00 + 7.1776000e+03 -2.9775068e+00 + 7.1780000e+03 -3.1193976e+00 + 7.1784000e+03 -3.3545635e+00 + 7.1788000e+03 -3.5855140e+00 + 7.1792000e+03 -3.6906739e+00 + 7.1796000e+03 -3.1074236e+00 + 7.1800000e+03 -2.3174067e+00 + 7.1804000e+03 -2.2473305e+00 + 7.1808000e+03 -7.9406801e-01 + 7.1812000e+03 1.0990604e+00 + 7.1816000e+03 2.0632472e+00 + 7.1820000e+03 1.4934315e+00 + 7.1824000e+03 1.2840000e+00 + 7.1828000e+03 1.4143315e+00 + 7.1832000e+03 1.7645360e+00 + 7.1836000e+03 2.1844221e+00 + 7.1840000e+03 2.7762963e+00 + 7.1844000e+03 3.1736620e+00 + 7.1848000e+03 3.1646272e+00 + 7.1852000e+03 2.7853550e+00 + 7.1856000e+03 2.9354498e+00 + 7.1860000e+03 2.4955873e+00 + 7.1864000e+03 1.6398574e+00 + 7.1868000e+03 6.9645095e-01 + 7.1872000e+03 -7.0888390e-01 + 7.1876000e+03 -1.5988169e+00 + 7.1880000e+03 -1.7237310e+00 + 7.1884000e+03 -1.6104872e+00 + 7.1888000e+03 -1.5205955e+00 + 7.1892000e+03 -1.4914088e+00 + 7.1896000e+03 -1.5291856e+00 + 7.1900000e+03 -1.9165735e+00 + 7.1904000e+03 -2.1043279e+00 + 7.1908000e+03 -2.1508433e+00 + 7.1912000e+03 -2.0454666e+00 + 7.1916000e+03 -1.5631732e+00 + 7.1920000e+03 -7.8028022e-01 + 7.1924000e+03 1.5638561e-01 + 7.1928000e+03 9.2433698e-01 + 7.1932000e+03 1.6984202e+00 + 7.1936000e+03 1.8312473e+00 + 7.1940000e+03 2.4084258e+00 + 7.1944000e+03 3.2275077e+00 + 7.1948000e+03 3.0975940e+00 + 7.1952000e+03 2.7979468e+00 + 7.1956000e+03 2.3543882e+00 + 7.1960000e+03 1.7827990e+00 + 7.1964000e+03 1.1168173e+00 + 7.1968000e+03 2.7731042e-01 + 7.1972000e+03 -6.6936281e-01 + 7.1976000e+03 -1.3868704e+00 + 7.1980000e+03 -2.1751863e+00 + 7.1984000e+03 -2.6957883e+00 + 7.1988000e+03 -3.2410771e+00 + 7.1992000e+03 -2.7915361e+00 + 7.1996000e+03 -2.2030453e+00 + 7.2000000e+03 -1.8792743e+00 + 7.2004000e+03 -1.4776315e+00 + 7.2008000e+03 -1.1312808e+00 + 7.2012000e+03 -8.9920358e-01 + 7.2016000e+03 -5.6105565e-01 + 7.2020000e+03 -3.3843706e-01 + 7.2024000e+03 7.5103083e-02 + 7.2028000e+03 5.4985115e-01 + 7.2032000e+03 1.2197072e+00 + 7.2036000e+03 1.6799667e+00 + 7.2040000e+03 1.8600605e+00 + 7.2044000e+03 2.0199986e+00 + 7.2048000e+03 2.4499628e+00 + 7.2052000e+03 2.7000276e+00 + 7.2056000e+03 2.4902182e+00 + 7.2060000e+03 2.6107998e+00 + 7.2064000e+03 2.7716446e+00 + 7.2068000e+03 2.6705195e+00 + 7.2072000e+03 1.9085641e+00 + 7.2076000e+03 8.5826340e-01 + 7.2080000e+03 -3.5236787e-01 + 7.2084000e+03 -1.3824111e+00 + 7.2088000e+03 -2.2447891e+00 + 7.2092000e+03 -2.9727213e+00 + 7.2096000e+03 -2.9763625e+00 + 7.2100000e+03 -2.5970938e+00 + 7.2104000e+03 -2.1777618e+00 + 7.2108000e+03 -1.5183046e+00 + 7.2112000e+03 -1.5888720e+00 + 7.2116000e+03 -1.4993281e+00 + 7.2120000e+03 -1.4497557e+00 + 7.2124000e+03 -1.0502713e+00 + 7.2128000e+03 -8.4063918e-01 + 7.2132000e+03 -6.0086065e-01 + 7.2136000e+03 -3.7091749e-01 + 7.2140000e+03 3.8973859e-02 + 7.2144000e+03 4.9884998e-01 + 7.2148000e+03 7.4866920e-01 + 7.2152000e+03 9.1839861e-01 + 7.2156000e+03 1.0079956e+00 + 7.2160000e+03 1.2475717e+00 + 7.2164000e+03 1.5366822e+00 + 7.2168000e+03 1.7957300e+00 + 7.2172000e+03 1.5048845e+00 + 7.2176000e+03 1.0444456e+00 + 7.2180000e+03 7.3446328e-01 + 7.2184000e+03 -3.6502534e-01 + 7.2188000e+03 -7.5427701e-01 + 7.2192000e+03 -7.8335334e-01 + 7.2196000e+03 -5.8232358e-01 + 7.2200000e+03 -2.6060067e-01 + 7.2204000e+03 -9.4392332e-03 + 7.2208000e+03 3.8195566e-01 + 7.2212000e+03 1.0631057e+00 + 7.2216000e+03 1.1840001e+00 + 7.2220000e+03 7.8454371e-01 + 7.2224000e+03 3.5460704e-01 + 7.2228000e+03 -2.7556634e-01 + 7.2232000e+03 -7.3652243e-01 + 7.2236000e+03 -9.9755936e-01 + 7.2240000e+03 -1.0288926e+00 + 7.2244000e+03 -1.2303458e+00 + 7.2248000e+03 -1.0519554e+00 + 7.2252000e+03 -8.8344739e-01 + 7.2256000e+03 -9.0497442e-01 + 7.2260000e+03 -5.7628263e-01 + 7.2264000e+03 -1.7204522e-02 + 7.2268000e+03 5.9229190e-01 + 7.2272000e+03 1.1921517e+00 + 7.2276000e+03 1.4920040e+00 + 7.2280000e+03 2.0923805e+00 + 7.2284000e+03 1.8626817e+00 + 7.2288000e+03 1.5831334e+00 + 7.2292000e+03 3.2367993e-01 + 7.2296000e+03 -3.0536290e-01 + 7.2300000e+03 -5.0493498e-01 + 7.2304000e+03 -7.7426243e-01 + 7.2308000e+03 -9.8353520e-01 + 7.2312000e+03 -1.3329070e+00 + 7.2316000e+03 -1.0324683e+00 + 7.2320000e+03 -4.9229416e-01 + 7.2324000e+03 -2.0411511e-02 + 7.2328000e+03 4.3495937e-01 + 7.2332000e+03 9.9883761e-02 + 7.2336000e+03 -2.9834305e-01 + 7.2340000e+03 -8.4210315e-01 + 7.2344000e+03 -1.4574394e+00 + 7.2348000e+03 -1.7854497e+00 + 7.2352000e+03 -1.6676361e+00 + 7.2356000e+03 -1.5544742e+00 + 7.2360000e+03 -1.0150798e+00 + 7.2364000e+03 -4.5565601e-01 + 7.2368000e+03 1.0364189e-01 + 7.2372000e+03 8.1298677e-01 + 7.2376000e+03 1.3723766e+00 + 7.2380000e+03 2.5819459e+00 + 7.2384000e+03 3.2517560e+00 + 7.2388000e+03 3.0517392e+00 + 7.2392000e+03 2.6821094e+00 + 7.2396000e+03 2.3326168e+00 + 7.2400000e+03 1.4434283e+00 + 7.2404000e+03 6.6453903e-01 + 7.2408000e+03 1.7583747e-01 + 7.2412000e+03 -1.0300564e-01 + 7.2416000e+03 -2.7158710e-01 + 7.2420000e+03 -2.2165599e-01 + 7.2424000e+03 -5.1476671e-02 + 7.2428000e+03 -3.6152833e-01 + 7.2432000e+03 -8.1137425e-01 + 7.2436000e+03 -1.2667638e+00 + 7.2440000e+03 -1.5543476e+00 + 7.2444000e+03 -1.8810046e+00 + 7.2448000e+03 -2.0670650e+00 + 7.2452000e+03 -2.2140192e+00 + 7.2456000e+03 -2.1191317e+00 + 7.2460000e+03 -1.8354900e+00 + 7.2464000e+03 -1.9172432e+00 + 7.2468000e+03 -1.8626072e+00 + 7.2472000e+03 -1.6867942e+00 + 7.2476000e+03 -1.0575950e+00 + 7.2480000e+03 -3.0393927e-01 + 7.2484000e+03 1.6783334e-01 + 7.2488000e+03 8.3212329e-01 + 7.2492000e+03 1.5254341e+00 + 7.2496000e+03 1.7159616e+00 + 7.2500000e+03 1.5068190e+00 + 7.2504000e+03 1.3673567e+00 + 7.2508000e+03 1.2575231e+00 + 7.2512000e+03 1.0374268e+00 + 7.2516000e+03 8.7699962e-01 + 7.2520000e+03 8.2632041e-01 + 7.2524000e+03 1.5550488e-01 + 7.2528000e+03 5.4408199e-02 + 7.2532000e+03 -1.0668379e+00 + 7.2536000e+03 -1.7181077e+00 + 7.2540000e+03 -1.8592003e+00 + 7.2544000e+03 -1.9099669e+00 + 7.2548000e+03 -1.6804811e+00 + 7.2552000e+03 -1.1308305e+00 + 7.2556000e+03 -5.4117433e-01 + 7.2560000e+03 -7.1420334e-02 + 7.2564000e+03 1.8854531e-01 + 7.2568000e+03 9.3866643e-01 + 7.2572000e+03 1.1298127e+00 + 7.2576000e+03 1.1660330e+00 + 7.2580000e+03 1.2284167e+00 + 7.2584000e+03 9.9070371e-01 + 7.2588000e+03 8.2080967e-01 + 7.2592000e+03 1.2112317e+00 + 7.2596000e+03 1.0516843e+00 + 7.2600000e+03 1.3124047e+00 + 7.2604000e+03 1.4420531e+00 + 7.2608000e+03 1.6122990e+00 + 7.2612000e+03 1.5829037e+00 + 7.2616000e+03 1.4485625e+00 + 7.2620000e+03 1.1237995e+00 + 7.2624000e+03 5.9347317e-01 + 7.2628000e+03 4.4293555e-01 + 7.2632000e+03 1.0223547e-01 + 7.2636000e+03 -1.0823424e-01 + 7.2640000e+03 -7.3957406e-01 + 7.2644000e+03 -1.9090901e+00 + 7.2648000e+03 -3.2239764e+00 + 7.2652000e+03 -3.8113792e+00 + 7.2656000e+03 -4.2484918e+00 + 7.2660000e+03 -3.9081231e+00 + 7.2664000e+03 -3.2102352e+00 + 7.2668000e+03 -2.5789047e+00 + 7.2672000e+03 -1.8810941e+00 + 7.2676000e+03 -7.8546164e-01 + 7.2680000e+03 -1.7945849e-01 + 7.2684000e+03 1.7315619e-01 + 7.2688000e+03 9.1739016e-01 + 7.2692000e+03 1.3180349e+00 + 7.2696000e+03 1.8163144e+00 + 7.2700000e+03 2.0277183e+00 + 7.2704000e+03 2.0877709e+00 + 7.2708000e+03 1.5634224e+00 + 7.2712000e+03 1.2565175e+00 + 7.2716000e+03 6.9554588e-01 + 7.2720000e+03 5.1461174e-01 + 7.2724000e+03 5.5818486e-01 + 7.2728000e+03 4.2832462e-01 + 7.2732000e+03 6.2295928e-01 + 7.2736000e+03 1.0881279e+00 + 7.2740000e+03 9.1953940e-01 + 7.2744000e+03 5.3836901e-01 + 7.2748000e+03 -2.5652352e-03 + 7.2752000e+03 -6.2332310e-01 + 7.2756000e+03 -1.0084949e+00 + 7.2760000e+03 -1.0996308e+00 + 7.2764000e+03 -1.0283435e+00 + 7.2768000e+03 -9.3466840e-01 + 7.2772000e+03 -1.1817776e+00 + 7.2776000e+03 -1.3128919e+00 + 7.2780000e+03 -1.0222223e+00 + 7.2784000e+03 -6.5157896e-01 + 7.2788000e+03 -7.0102067e-01 + 7.2792000e+03 -8.6021734e-01 + 7.2796000e+03 -4.6931626e-01 + 7.2800000e+03 1.1745075e-02 + 7.2804000e+03 5.2274454e-01 + 7.2808000e+03 9.4364606e-01 + 7.2812000e+03 1.1244813e+00 + 7.2816000e+03 1.1851117e+00 + 7.2820000e+03 1.5254866e+00 + 7.2824000e+03 1.3057753e+00 + 7.2828000e+03 8.7600859e-01 + 7.2832000e+03 3.9584697e-01 + 7.2836000e+03 5.7508815e-01 + 7.2840000e+03 9.1424461e-01 + 7.2844000e+03 1.4135435e+00 + 7.2848000e+03 1.4829787e+00 + 7.2852000e+03 1.0528514e+00 + 7.2856000e+03 2.4292936e-01 + 7.2860000e+03 -9.2686747e-01 + 7.2864000e+03 -1.7764812e+00 + 7.2868000e+03 -2.3690364e+00 + 7.2872000e+03 -2.6292073e+00 + 7.2876000e+03 -2.8285971e+00 + 7.2880000e+03 -3.2160404e+00 + 7.2884000e+03 -3.4805361e+00 + 7.2888000e+03 -3.0737171e+00 + 7.2892000e+03 -2.7037930e+00 + 7.2896000e+03 -1.8940162e+00 + 7.2900000e+03 -5.8426709e-01 + 7.2904000e+03 3.7541189e-01 + 7.2908000e+03 7.1493411e-01 + 7.2912000e+03 1.0243076e+00 + 7.2916000e+03 1.7235237e+00 + 7.2920000e+03 2.3125638e+00 + 7.2924000e+03 3.0517144e+00 + 7.2928000e+03 4.0809210e+00 + 7.2932000e+03 4.3002508e+00 + 7.2936000e+03 4.1796302e+00 + 7.2940000e+03 3.8791536e+00 + 7.2944000e+03 3.1386462e+00 + 7.2948000e+03 2.2681222e+00 + 7.2952000e+03 1.5859487e+00 + 7.2956000e+03 7.9785698e-01 + 7.2960000e+03 -1.5135552e-01 + 7.2964000e+03 -1.1449970e+00 + 7.2968000e+03 -2.0975857e+00 + 7.2972000e+03 -2.6743460e+00 + 7.2976000e+03 -2.6046732e+00 + 7.2980000e+03 -2.6446437e+00 + 7.2984000e+03 -2.5944245e+00 + 7.2988000e+03 -2.4139892e+00 + 7.2992000e+03 -2.0633314e+00 + 7.2996000e+03 -1.3404866e+00 + 7.3000000e+03 -8.1345825e-01 + 7.3004000e+03 -3.1191871e-01 + 7.3008000e+03 1.7134134e-01 + 7.3012000e+03 8.0782204e-01 + 7.3016000e+03 1.4352018e+00 + 7.3020000e+03 1.7650518e+00 + 7.3024000e+03 1.6186874e+00 + 7.3028000e+03 1.3276338e+00 + 7.3032000e+03 1.0473297e+00 + 7.3036000e+03 4.1656719e-01 + 7.3040000e+03 -2.7163146e-01 + 7.3044000e+03 -7.5477532e-01 + 7.3048000e+03 -1.5008915e+00 + 7.3052000e+03 -2.0599231e+00 + 7.3056000e+03 -2.0100584e+00 + 7.3060000e+03 -1.9303591e+00 + 7.3064000e+03 -1.6307439e+00 + 7.3068000e+03 -1.2121840e+00 + 7.3072000e+03 -8.3482189e-01 + 7.3076000e+03 -3.4006294e-01 + 7.3080000e+03 -3.7631941e-01 + 7.3084000e+03 -5.2236204e-01 + 7.3088000e+03 -7.1680092e-01 + 7.3092000e+03 -5.8512331e-01 + 7.3096000e+03 -3.6566102e-01 + 7.3100000e+03 -2.3625479e-01 + 7.3104000e+03 4.7326412e-01 + 7.3108000e+03 6.3292712e-01 + 7.3112000e+03 8.4264623e-01 + 7.3116000e+03 1.3952942e+00 + 7.3120000e+03 2.0153747e+00 + 7.3124000e+03 2.2087603e+00 + 7.3128000e+03 2.1247999e+00 + 7.3132000e+03 1.7104624e+00 + 7.3136000e+03 1.2907726e+00 + 7.3140000e+03 1.0004955e+00 + 7.3144000e+03 7.3844068e-01 + 7.3148000e+03 9.1326730e-01 + 7.3152000e+03 1.0931517e+00 + 7.3156000e+03 1.3629061e+00 + 7.3160000e+03 1.4923809e+00 + 7.3164000e+03 1.2520913e+00 + 7.3168000e+03 8.6087956e-01 + 7.3172000e+03 5.3618689e-01 + 7.3176000e+03 8.4373194e-02 + 7.3180000e+03 -2.3836963e-02 + 7.3184000e+03 -8.7847903e-02 + 7.3188000e+03 -3.2240972e-01 + 7.3192000e+03 -3.4873947e-01 + 7.3196000e+03 -5.2592953e-01 + 7.3200000e+03 -5.9490607e-01 + 7.3204000e+03 -7.0183201e-01 + 7.3208000e+03 -6.1101319e-01 + 7.3212000e+03 -1.3716078e-01 + 7.3216000e+03 3.8224790e-01 + 7.3220000e+03 6.5310486e-01 + 7.3224000e+03 1.3539918e+00 + 7.3228000e+03 1.4748322e+00 + 7.3232000e+03 1.0639014e+00 + 7.3236000e+03 1.8282696e-01 + 7.3240000e+03 -4.9834621e-01 + 7.3244000e+03 -1.0875653e+00 + 7.3248000e+03 -1.6142666e+00 + 7.3252000e+03 -2.2410328e+00 + 7.3256000e+03 -2.7000699e+00 + 7.3260000e+03 -2.8716941e+00 + 7.3264000e+03 -3.0707191e+00 + 7.3268000e+03 -2.9654791e+00 + 7.3272000e+03 -2.7364217e+00 + 7.3276000e+03 -2.3873523e+00 + 7.3280000e+03 -2.2681575e+00 + 7.3284000e+03 -1.6889151e+00 + 7.3288000e+03 -6.3967666e-01 + 7.3292000e+03 5.7398157e-01 + 7.3296000e+03 1.7285729e+00 + 7.3300000e+03 1.8987373e+00 + 7.3304000e+03 1.8294642e+00 + 7.3308000e+03 1.7252189e+00 + 7.3312000e+03 1.5006817e+00 + 7.3316000e+03 1.2512442e+00 + 7.3320000e+03 1.5016810e+00 + 7.3324000e+03 1.5540295e+00 + 7.3328000e+03 1.3755131e+00 + 7.3332000e+03 1.3089407e+00 + 7.3336000e+03 1.5714863e+00 + 7.3340000e+03 1.4628088e+00 + 7.3344000e+03 1.2624482e+00 + 7.3348000e+03 1.5419306e+00 + 7.3352000e+03 1.9212704e+00 + 7.3356000e+03 2.1003864e+00 + 7.3360000e+03 1.8814872e+00 + 7.3364000e+03 1.7600180e+00 + 7.3368000e+03 1.6013266e+00 + 7.3372000e+03 1.5148704e+00 + 7.3376000e+03 9.7646652e-01 + 7.3380000e+03 -7.9889076e-02 + 7.3384000e+03 -1.0448133e+00 + 7.3388000e+03 -1.8647851e+00 + 7.3392000e+03 -2.5343497e+00 + 7.3396000e+03 -2.6294483e+00 + 7.3400000e+03 -2.5919201e+00 + 7.3404000e+03 -2.2359707e+00 + 7.3408000e+03 -1.8041092e+00 + 7.3412000e+03 -1.2281401e+00 + 7.3416000e+03 -4.8586366e-01 + 7.3420000e+03 -2.1167355e-01 + 7.3424000e+03 -1.5420115e-01 + 7.3428000e+03 -3.1541748e-01 + 7.3432000e+03 -8.3802693e-01 + 7.3436000e+03 -8.4342740e-01 + 7.3440000e+03 -5.1224827e-01 + 7.3444000e+03 -1.8209886e-01 + 7.3448000e+03 3.6790189e-01 + 7.3452000e+03 8.2792903e-01 + 7.3456000e+03 1.2978851e+00 + 7.3460000e+03 1.1377209e+00 + 7.3464000e+03 7.2447326e-01 + 7.3468000e+03 -1.0483801e-01 + 7.3472000e+03 -4.8765279e-01 + 7.3476000e+03 -9.0655100e-01 + 7.3480000e+03 -1.0579338e+00 + 7.3484000e+03 -1.1725751e+00 + 7.3488000e+03 -8.1848595e-01 + 7.3492000e+03 -3.5778656e-01 + 7.3496000e+03 -5.5064048e-01 + 7.3500000e+03 -8.2761883e-01 + 7.3504000e+03 -9.6558499e-01 + 7.3508000e+03 -8.2478663e-01 + 7.3512000e+03 -4.0444460e-01 + 7.3516000e+03 4.8853390e-01 + 7.3520000e+03 1.1452088e+00 + 7.3524000e+03 1.4435917e+00 + 7.3528000e+03 1.4831636e+00 + 7.3532000e+03 1.6609722e+00 + 7.3536000e+03 1.6662358e+00 + 7.3540000e+03 1.8043647e+00 + 7.3544000e+03 1.7491317e+00 + 7.3548000e+03 1.7663065e+00 + 7.3552000e+03 1.3611904e+00 + 7.3556000e+03 5.3057235e-01 + 7.3560000e+03 -2.6858242e-01 + 7.3564000e+03 -3.5906857e-01 + 7.3568000e+03 -4.3886870e-01 + 7.3572000e+03 -3.3853638e-01 + 7.3576000e+03 -9.8051614e-02 + 7.3580000e+03 -4.5747083e-01 + 7.3584000e+03 -7.2753567e-01 + 7.3588000e+03 -7.6789052e-01 + 7.3592000e+03 -8.1457451e-01 + 7.3596000e+03 -9.2646928e-01 + 7.3600000e+03 -8.0393893e-01 + 7.3604000e+03 -4.7339750e-01 + 7.3608000e+03 -3.4292463e-01 + 7.3612000e+03 -4.7535311e-01 + 7.3616000e+03 -7.6571826e-01 + 7.3620000e+03 -9.8987060e-01 + 7.3624000e+03 -1.2067142e+00 + 7.3628000e+03 -1.2775311e+00 + 7.3632000e+03 -1.4954662e+00 + 7.3636000e+03 -1.4728441e+00 + 7.3640000e+03 -1.3493345e+00 + 7.3644000e+03 -9.6647542e-01 + 7.3648000e+03 -6.0426058e-01 + 7.3652000e+03 2.1861458e-01 + 7.3656000e+03 7.4547607e-01 + 7.3660000e+03 1.1984597e+00 + 7.3664000e+03 1.6804704e+00 + 7.3668000e+03 1.5832776e+00 + 7.3672000e+03 1.1196140e+00 + 7.3676000e+03 8.1014543e-01 + 7.3680000e+03 4.7616116e-02 + 7.3684000e+03 -8.5136535e-02 + 7.3688000e+03 -3.0400797e-01 + 7.3692000e+03 -3.5090807e-01 + 7.3696000e+03 -3.1768784e-01 + 7.3700000e+03 -1.7418256e-01 + 7.3704000e+03 4.7527898e-02 + 7.3708000e+03 2.6359955e-01 + 7.3712000e+03 8.1310749e-01 + 7.3716000e+03 1.1127014e+00 + 7.3720000e+03 1.0223461e+00 + 7.3724000e+03 8.4202921e-01 + 7.3728000e+03 6.6176168e-01 + 7.3732000e+03 4.9151978e-01 + 7.3736000e+03 2.2146222e-01 + 7.3740000e+03 4.0120597e-01 + 7.3744000e+03 5.6944478e-01 + 7.3748000e+03 5.9331469e-01 + 7.3752000e+03 4.9590427e-01 + 7.3756000e+03 7.2304542e-01 + 7.3760000e+03 8.5364674e-01 + 7.3764000e+03 8.9411602e-01 + 7.3768000e+03 1.0444339e+00 + 7.3772000e+03 1.1647978e+00 + 7.3776000e+03 1.4451360e+00 + 7.3780000e+03 7.1561435e-01 + 7.3784000e+03 -9.3976296e-02 + 7.3788000e+03 -6.0373352e-01 + 7.3792000e+03 -1.0476867e+00 + 7.3796000e+03 -1.1346699e+00 + 7.3800000e+03 -7.7453483e-01 + 7.3804000e+03 -6.4163883e-01 + 7.3808000e+03 -4.5329686e-01 + 7.3812000e+03 -4.8368775e-01 + 7.3816000e+03 -8.5426846e-01 + 7.3820000e+03 -1.4951289e+00 + 7.3824000e+03 -1.6058302e+00 + 7.3828000e+03 -1.7162664e+00 + 7.3832000e+03 -1.8264215e+00 + 7.3836000e+03 -1.6762384e+00 + 7.3840000e+03 -1.1059965e+00 + 7.3844000e+03 -8.5579522e-01 + 7.3848000e+03 2.4422998e-01 + 7.3852000e+03 5.8421368e-01 + 7.3856000e+03 7.7426207e-01 + 7.3860000e+03 1.1943279e+00 + 7.3864000e+03 1.2843861e+00 + 7.3868000e+03 1.2443557e+00 + 7.3872000e+03 1.3642185e+00 + 7.3876000e+03 9.6394980e-01 + 7.3880000e+03 7.7361548e-01 + 7.3884000e+03 -8.6748106e-02 + 7.3888000e+03 -7.2736127e-01 + 7.3892000e+03 -1.3078865e+00 + 7.3896000e+03 -1.6485855e+00 + 7.3900000e+03 -1.8045373e+00 + 7.3904000e+03 -1.4773421e+00 + 7.3908000e+03 -1.0208258e+00 + 7.3912000e+03 -3.9398860e-01 + 7.3916000e+03 7.1164617e-02 + 7.3920000e+03 5.7455062e-01 + 7.3924000e+03 6.8484151e-01 + 7.3928000e+03 8.2150604e-01 + 7.3932000e+03 1.4241056e+00 + 7.3936000e+03 1.7979048e+00 + 7.3940000e+03 2.0830586e+00 + 7.3944000e+03 2.2694485e+00 + 7.3948000e+03 2.0659406e+00 + 7.3952000e+03 1.6864613e+00 + 7.3956000e+03 1.2280309e+00 + 7.3960000e+03 9.1348970e-01 + 7.3964000e+03 8.7401687e-01 + 7.3968000e+03 8.6877683e-01 + 7.3972000e+03 5.1401042e-01 + 7.3976000e+03 -3.0869016e-01 + 7.3980000e+03 -9.4113618e-01 + 7.3984000e+03 -1.2334273e+00 + 7.3988000e+03 -1.0747216e+00 + 7.3992000e+03 -1.1949448e+00 + 7.3996000e+03 -5.9530403e-01 + 7.4000000e+03 3.8404899e-01 + 7.4004000e+03 8.9318003e-01 + 7.4008000e+03 1.1321981e+00 + 7.4012000e+03 1.2311606e+00 + 7.4016000e+03 1.0401213e+00 + 7.4020000e+03 6.0929177e-01 + 7.4024000e+03 1.8513841e-01 + 7.4028000e+03 -3.6993449e-01 + 7.4032000e+03 -9.2846316e-01 + 7.4036000e+03 -1.3728448e+00 + 7.4040000e+03 -1.4867275e+00 + 7.4044000e+03 -1.6674815e+00 + 7.4048000e+03 -1.7134097e+00 + 7.4052000e+03 -1.6234632e+00 + 7.4056000e+03 -1.6977489e+00 + 7.4060000e+03 -1.4255257e+00 + 7.4064000e+03 -9.8012185e-01 + 7.4068000e+03 -5.4368728e-01 + 7.4072000e+03 -3.2121352e-01 + 7.4076000e+03 1.3206965e-01 + 7.4080000e+03 4.4805562e-01 + 7.4084000e+03 7.2798908e-01 + 7.4088000e+03 8.1764240e-01 + 7.4092000e+03 4.1705179e-01 + 7.4096000e+03 -7.3836104e-02 + 7.4100000e+03 -2.6447522e-01 + 7.4104000e+03 -2.8794890e-01 + 7.4108000e+03 -4.2403159e-01 + 7.4112000e+03 -2.4488476e-01 + 7.4116000e+03 -2.7025368e-02 + 7.4120000e+03 1.6349149e-02 + 7.4124000e+03 -2.6584835e-01 + 7.4128000e+03 -5.2827057e-01 + 7.4132000e+03 -1.0644365e+00 + 7.4136000e+03 -1.1618623e+00 + 7.4140000e+03 -1.0192242e+00 + 7.4144000e+03 -6.3246579e-01 + 7.4148000e+03 -1.6971159e-01 + 7.4152000e+03 7.0627618e-01 + 7.4156000e+03 1.6909033e+00 + 7.4160000e+03 2.6897001e+00 + 7.4164000e+03 3.2988719e+00 + 7.4168000e+03 3.5007916e+00 + 7.4172000e+03 3.3210143e+00 + 7.4176000e+03 2.3711506e+00 + 7.4180000e+03 1.2769679e+00 + 7.4184000e+03 3.5008893e-01 + 7.4188000e+03 1.7927521e-01 + 7.4192000e+03 1.0827692e-01 + 7.4196000e+03 -1.2284507e-01 + 7.4200000e+03 -5.9404468e-01 + 7.4204000e+03 -1.1553472e+00 + 7.4208000e+03 -1.6265996e+00 + 7.4212000e+03 -1.9977204e+00 + 7.4216000e+03 -1.6086463e+00 + 7.4220000e+03 -6.5834155e-01 + 7.4224000e+03 1.4566434e-01 + 7.4228000e+03 3.5120506e-01 + 7.4232000e+03 4.5581313e-01 + 7.4236000e+03 3.9052393e-01 + 7.4240000e+03 5.8135583e-01 + 7.4244000e+03 6.2251959e-01 + 7.4248000e+03 6.9366183e-01 + 7.4252000e+03 8.9485505e-01 + 7.4256000e+03 1.0560726e+00 + 7.4260000e+03 1.1173011e+00 + 7.4264000e+03 9.9853969e-01 + 7.4268000e+03 1.6956155e-01 + 7.4272000e+03 -1.0596777e+00 + 7.4276000e+03 -2.2192336e+00 + 7.4280000e+03 -3.0689218e+00 + 7.4284000e+03 -3.5488067e+00 + 7.4288000e+03 -3.7188440e+00 + 7.4292000e+03 -3.5489728e+00 + 7.4296000e+03 -3.1291498e+00 + 7.4300000e+03 -2.4293623e+00 + 7.4304000e+03 -1.8695561e+00 + 7.4308000e+03 -1.3698584e+00 + 7.4312000e+03 -6.7037393e-01 + 7.4316000e+03 1.6912083e-01 + 7.4320000e+03 9.7877735e-01 + 7.4324000e+03 1.8187116e+00 + 7.4328000e+03 2.4386999e+00 + 7.4332000e+03 2.7887564e+00 + 7.4336000e+03 2.8189004e+00 + 7.4340000e+03 2.8888543e+00 + 7.4344000e+03 2.7690790e+00 + 7.4348000e+03 2.7291995e+00 + 7.4352000e+03 2.6892033e+00 + 7.4356000e+03 2.6192079e+00 + 7.4360000e+03 2.7593305e+00 + 7.4364000e+03 2.4394433e+00 + 7.4368000e+03 1.8495916e+00 + 7.4372000e+03 9.4989661e-01 + 7.4376000e+03 3.7039678e-01 + 7.4380000e+03 -1.9007273e-02 + 7.4384000e+03 -2.7844019e-01 + 7.4388000e+03 -4.4829060e-01 + 7.4392000e+03 -4.1840203e-01 + 7.4396000e+03 -6.8929210e-01 + 7.4400000e+03 -1.0496932e+00 + 7.4404000e+03 -1.2406252e+00 + 7.4408000e+03 -1.3837706e+00 + 7.4412000e+03 -1.5714272e+00 + 7.4416000e+03 -1.4242223e+00 + 7.4420000e+03 -1.2334312e+00 + 7.4424000e+03 -1.0029073e+00 + 7.4428000e+03 -7.5322268e-01 + 7.4432000e+03 -6.6358381e-01 + 7.4436000e+03 -9.7400759e-01 + 7.4440000e+03 -1.0544096e+00 + 7.4444000e+03 -8.9475244e-01 + 7.4448000e+03 -2.0517739e-01 + 7.4452000e+03 2.2459700e-01 + 7.4456000e+03 4.4463493e-01 + 7.4460000e+03 2.6497071e-01 + 7.4464000e+03 -9.4310074e-02 + 7.4468000e+03 -3.1351639e-01 + 7.4472000e+03 7.2671730e-03 + 7.4476000e+03 6.6795674e-01 + 7.4480000e+03 8.9861333e-01 + 7.4484000e+03 5.6929930e-01 + 7.4488000e+03 3.0553959e-01 + 7.4492000e+03 3.2576341e-01 + 7.4496000e+03 1.5235993e-01 + 7.4500000e+03 -3.8311752e-01 + 7.4504000e+03 -1.1255733e+00 + 7.4508000e+03 -1.8942804e+00 + 7.4512000e+03 -2.0147087e+00 + 7.4516000e+03 -2.2422310e+00 + 7.4520000e+03 -2.1421426e+00 + 7.4524000e+03 -1.6782228e+00 + 7.4528000e+03 -1.1328546e+00 + 7.4532000e+03 -8.0164607e-01 + 7.4536000e+03 -5.7200757e-01 + 7.4540000e+03 4.7753931e-02 + 7.4544000e+03 5.8762251e-01 + 7.4548000e+03 1.1776377e+00 + 7.4552000e+03 1.6577028e+00 + 7.4556000e+03 2.2978560e+00 + 7.4560000e+03 3.3280084e+00 + 7.4564000e+03 4.4880370e+00 + 7.4568000e+03 5.1178342e+00 + 7.4572000e+03 4.6177005e+00 + 7.4576000e+03 3.7174861e+00 + 7.4580000e+03 3.2191158e+00 + 7.4584000e+03 2.6180162e+00 + 7.4588000e+03 2.0735704e+00 + 7.4592000e+03 1.5400323e+00 + 7.4596000e+03 7.1550190e-01 + 7.4600000e+03 -9.7816872e-02 + 7.4604000e+03 -8.4590665e-01 + 7.4608000e+03 -1.7223970e+00 + 7.4612000e+03 -2.4379947e+00 + 7.4616000e+03 -2.9055380e+00 + 7.4620000e+03 -3.2408944e+00 + 7.4624000e+03 -3.5976710e+00 + 7.4628000e+03 -3.7195168e+00 + 7.4632000e+03 -3.7241805e+00 + 7.4636000e+03 -3.4360008e+00 + 7.4640000e+03 -3.0561902e+00 + 7.4644000e+03 -2.6466879e+00 + 7.4648000e+03 -2.0571686e+00 + 7.4652000e+03 -1.3475358e+00 + 7.4656000e+03 -6.3737049e-01 + 7.4660000e+03 -6.7075888e-02 + 7.4664000e+03 4.4340568e-01 + 7.4668000e+03 9.4099328e-01 + 7.4672000e+03 1.8061117e+00 + 7.4676000e+03 2.8955503e+00 + 7.4680000e+03 3.2665694e+00 + 7.4684000e+03 2.6075392e+00 + 7.4688000e+03 1.6984438e+00 + 7.4692000e+03 1.1891529e+00 + 7.4696000e+03 4.2965603e-01 + 7.4700000e+03 -2.2012652e-01 + 7.4704000e+03 -6.3650564e-01 + 7.4708000e+03 -9.5131606e-01 + 7.4712000e+03 -1.1278271e+00 + 7.4716000e+03 -1.0107372e+00 + 7.4720000e+03 -7.0524555e-01 + 7.4724000e+03 -7.5637551e-01 + 7.4728000e+03 -6.0475625e-01 + 7.4732000e+03 -1.4568411e-01 + 7.4736000e+03 2.3427220e-02 + 7.4740000e+03 7.4249961e-01 + 7.4744000e+03 3.3178215e-01 + 7.4748000e+03 2.5130538e-01 + 7.4752000e+03 7.4096631e-01 + 7.4756000e+03 1.4709975e+00 + 7.4760000e+03 1.8914310e+00 + 7.4764000e+03 2.3322040e+00 + 7.4768000e+03 2.3033913e+00 + 7.4772000e+03 1.6949887e+00 + 7.4776000e+03 1.1066188e+00 + 7.4780000e+03 7.5975569e-01 + 7.4784000e+03 4.9463237e-01 + 7.4788000e+03 -1.8739343e-01 + 7.4792000e+03 -5.8664075e-01 + 7.4796000e+03 -8.9461017e-01 + 7.4800000e+03 -1.0469528e+00 + 7.4804000e+03 -1.3068556e+00 + 7.4808000e+03 -1.3870524e+00 + 7.4812000e+03 -1.0975211e+00 + 7.4816000e+03 -5.1825792e-01 + 7.4820000e+03 -1.7918249e-01 + 7.4824000e+03 -1.3030327e-01 + 7.4828000e+03 -3.9147047e-01 + 7.4832000e+03 -6.0270844e-01 + 7.4836000e+03 -1.0539339e+00 + 7.4840000e+03 -9.4504176e-01 + 7.4844000e+03 -4.8608139e-01 + 7.4848000e+03 -1.5701990e-01 + 7.4852000e+03 2.1226262e-01 + 7.4856000e+03 8.6178373e-01 + 7.4860000e+03 1.1018616e+00 + 7.4864000e+03 1.3925824e+00 + 7.4868000e+03 1.5438272e+00 + 7.4872000e+03 9.4555266e-01 + 7.4876000e+03 -1.0245830e-01 + 7.4880000e+03 -1.1106579e+00 + 7.4884000e+03 -1.7489210e+00 + 7.4888000e+03 -2.2974863e+00 + 7.4892000e+03 -2.3664439e+00 + 7.4896000e+03 -1.9960125e+00 + 7.4900000e+03 -1.6860394e+00 + 7.4904000e+03 -1.4264220e+00 + 7.4908000e+03 -1.1969077e+00 + 7.4912000e+03 -1.1675459e+00 + 7.4916000e+03 -4.2265410e-01 + 7.4920000e+03 5.3213025e-01 + 7.4924000e+03 1.2588752e+00 + 7.4928000e+03 9.6722347e-01 + 7.4932000e+03 8.3560720e-01 + 7.4936000e+03 9.7407651e-01 + 7.4940000e+03 1.1026251e+00 + 7.4944000e+03 1.4312991e+00 + 7.4948000e+03 1.8901722e+00 + 7.4952000e+03 2.1694477e+00 + 7.4956000e+03 1.9994532e+00 + 7.4960000e+03 1.5600868e+00 + 7.4964000e+03 1.1810093e+00 + 7.4968000e+03 6.6222561e-01 + 7.4972000e+03 2.6358425e-01 + 7.4976000e+03 2.5076964e-02 + 7.4980000e+03 -7.4352067e-01 + 7.4984000e+03 -9.5209864e-01 + 7.4988000e+03 -1.5908133e+00 + 7.4992000e+03 -1.8397176e+00 + 7.4996000e+03 -2.0689872e+00 + 7.5000000e+03 -1.9286764e+00 + 7.5004000e+03 -1.7687536e+00 + 7.5008000e+03 -1.3592718e+00 + 7.5012000e+03 -6.0015093e-01 + 7.5016000e+03 -1.5129061e-01 + 7.5020000e+03 -2.2244489e-01 + 7.5024000e+03 -4.5359270e-01 + 7.5028000e+03 -3.2469700e-01 + 7.5032000e+03 -2.5541358e-01 + 7.5036000e+03 9.3511720e-02 + 7.5040000e+03 4.9270135e-01 + 7.5044000e+03 1.2720320e+00 + 7.5048000e+03 1.7715374e+00 + 7.5052000e+03 2.0812013e+00 + 7.5056000e+03 1.9387494e+00 + 7.5060000e+03 1.7260454e+00 + 7.5064000e+03 1.0175158e+00 + 7.5068000e+03 5.7347126e-03 + 7.5072000e+03 -5.7954964e-01 + 7.5076000e+03 -7.7755684e-01 + 7.5080000e+03 -6.7259438e-01 + 7.5084000e+03 -5.1317896e-01 + 7.5088000e+03 -2.4241470e-01 + 7.5092000e+03 -5.1855222e-02 + 7.5096000e+03 -4.2135795e-01 + 7.5100000e+03 -5.9132350e-01 + 7.5104000e+03 -4.8151355e-01 + 7.5108000e+03 3.8105615e-02 + 7.5112000e+03 2.8760237e-01 + 7.5116000e+03 4.8693961e-01 + 7.5120000e+03 3.1628464e-01 + 7.5124000e+03 3.4556471e-01 + 7.5128000e+03 3.0485926e-01 + 7.5132000e+03 -7.6705722e-02 + 7.5136000e+03 -4.5723724e-01 + 7.5140000e+03 -4.8112894e-01 + 7.5144000e+03 -2.9059568e-01 + 7.5148000e+03 -1.0670794e-01 + 7.5152000e+03 -2.1666915e-01 + 7.5156000e+03 -5.2629705e-01 + 7.5160000e+03 -7.0575061e-01 + 7.5164000e+03 -9.5500718e-01 + 7.5168000e+03 -1.0242454e+00 + 7.5172000e+03 -8.6364078e-01 + 7.5176000e+03 -4.9328702e-01 + 7.5180000e+03 -1.3333926e-01 + 7.5184000e+03 1.2653510e-01 + 7.5188000e+03 4.8626998e-01 + 7.5192000e+03 1.0158842e+00 + 7.5196000e+03 9.3539389e-01 + 7.5200000e+03 7.4471295e-01 + 7.5204000e+03 2.9407153e-01 + 7.5208000e+03 3.3736907e-02 + 7.5212000e+03 2.8368915e-01 + 7.5216000e+03 7.4386049e-01 + 7.5220000e+03 1.2141062e+00 + 7.5224000e+03 1.2442262e+00 + 7.5228000e+03 8.4430075e-01 + 7.5232000e+03 4.9438316e-01 + 7.5236000e+03 4.5826793e-03 + 7.5240000e+03 -4.0508156e-01 + 7.5244000e+03 -6.2396312e-01 + 7.5248000e+03 -6.1103794e-01 + 7.5252000e+03 -9.2296478e-01 + 7.5256000e+03 -1.0254329e+00 + 7.5260000e+03 -9.7939967e-01 + 7.5264000e+03 -8.5971643e-01 + 7.5268000e+03 -6.5303603e-01 + 7.5272000e+03 -3.6038269e-01 + 7.5276000e+03 -1.7543423e-01 + 7.5280000e+03 -1.0195814e-01 + 7.5284000e+03 1.6158630e-01 + 7.5288000e+03 3.3039524e-01 + 7.5292000e+03 1.7058736e-01 + 7.5296000e+03 3.6053599e-01 + 7.5300000e+03 7.8022200e-01 + 7.5304000e+03 1.6797000e+00 + 7.5308000e+03 2.5988950e+00 + 7.5312000e+03 3.0977904e+00 + 7.5316000e+03 2.6974625e+00 + 7.5320000e+03 2.2478949e+00 + 7.5324000e+03 1.5367466e+00 + 7.5328000e+03 1.2816828e-01 + 7.5332000e+03 -1.2321932e+00 + 7.5336000e+03 -2.0600917e+00 + 7.5340000e+03 -2.5100378e+00 + 7.5344000e+03 -2.6749805e+00 + 7.5348000e+03 -2.5033220e+00 + 7.5352000e+03 -2.2501918e+00 + 7.5356000e+03 -1.4615863e+00 + 7.5360000e+03 -5.2635469e-01 + 7.5364000e+03 5.8473810e-01 + 7.5368000e+03 1.4116946e+00 + 7.5372000e+03 1.9507723e+00 + 7.5376000e+03 2.4872339e+00 + 7.5380000e+03 2.1853074e+00 + 7.5384000e+03 1.7237660e+00 + 7.5388000e+03 9.0550924e-01 + 7.5392000e+03 -1.2510773e-01 + 7.5396000e+03 -8.7469161e-01 + 7.5400000e+03 -9.4429950e-01 + 7.5404000e+03 -1.2438849e+00 + 7.5408000e+03 -1.1034801e+00 + 7.5412000e+03 -6.5321150e-01 + 7.5416000e+03 -2.0485904e-01 + 7.5420000e+03 -1.1511450e-01 + 7.5424000e+03 -2.5848587e-02 + 7.5428000e+03 -6.6704886e-02 + 7.5432000e+03 2.9636010e-01 + 7.5436000e+03 1.1987125e+00 + 7.5440000e+03 1.9297536e+00 + 7.5444000e+03 1.4509119e+00 + 7.5448000e+03 1.2418967e+00 + 7.5452000e+03 4.8262861e-01 + 7.5456000e+03 -1.0681117e-01 + 7.5460000e+03 -6.4656916e-01 + 7.5464000e+03 -1.2264905e+00 + 7.5468000e+03 -1.4365499e+00 + 7.5472000e+03 -1.3867164e+00 + 7.5476000e+03 -1.3467888e+00 + 7.5480000e+03 -1.0967592e+00 + 7.5484000e+03 -7.9668946e-01 + 7.5488000e+03 -4.4663049e-01 + 7.5492000e+03 2.0340223e-01 + 7.5496000e+03 7.9327580e-01 + 7.5500000e+03 1.3130252e+00 + 7.5504000e+03 1.8226938e+00 + 7.5508000e+03 2.0921022e+00 + 7.5512000e+03 2.1512169e+00 + 7.5516000e+03 2.1901972e+00 + 7.5520000e+03 1.8393347e+00 + 7.5524000e+03 1.3385849e+00 + 7.5528000e+03 5.0802887e-01 + 7.5532000e+03 -9.0590571e-02 + 7.5536000e+03 -5.6452731e-01 + 7.5540000e+03 -1.0058757e+00 + 7.5544000e+03 -1.6670431e+00 + 7.5548000e+03 -2.1631590e+00 + 7.5552000e+03 -2.4532105e+00 + 7.5556000e+03 -2.4730899e+00 + 7.5560000e+03 -2.3830667e+00 + 7.5564000e+03 -1.9932438e+00 + 7.5568000e+03 -1.8033719e+00 + 7.5572000e+03 -1.5634566e+00 + 7.5576000e+03 -1.2634687e+00 + 7.5580000e+03 -7.6346705e-01 + 7.5584000e+03 -1.7540665e-02 + 7.5588000e+03 6.5886990e-01 + 7.5592000e+03 9.7305140e-01 + 7.5596000e+03 1.0758340e+00 + 7.5600000e+03 1.1242348e+00 + 7.5604000e+03 1.6964028e+00 + 7.5608000e+03 2.0930991e+00 + 7.5612000e+03 2.0165033e+00 + 7.5616000e+03 1.7535759e+00 + 7.5620000e+03 1.6244317e+00 + 7.5624000e+03 1.1405891e+00 + 7.5628000e+03 7.4314688e-01 + 7.5632000e+03 1.2212590e-01 + 7.5636000e+03 -5.0392578e-01 + 7.5640000e+03 -7.7053777e-01 + 7.5644000e+03 -9.7496807e-01 + 7.5648000e+03 -1.3710341e+00 + 7.5652000e+03 -1.6623411e+00 + 7.5656000e+03 -1.8156680e+00 + 7.5660000e+03 -1.6842388e+00 + 7.5664000e+03 -1.2975989e+00 + 7.5668000e+03 -8.7847018e-01 + 7.5672000e+03 -7.0864029e-01 + 7.5676000e+03 -1.2858790e-01 + 7.5680000e+03 1.8141730e-01 + 7.5684000e+03 8.3134228e-01 + 7.5688000e+03 1.8212963e+00 + 7.5692000e+03 2.4110662e+00 + 7.5696000e+03 2.3207491e+00 + 7.5700000e+03 2.0602738e+00 + 7.5704000e+03 1.0852653e+00 + 7.5708000e+03 4.5037076e-01 + 7.5712000e+03 -2.1981161e-01 + 7.5716000e+03 -6.1163787e-01 + 7.5720000e+03 -8.4900383e-01 + 7.5724000e+03 -8.3994049e-01 + 7.5728000e+03 -6.0748228e-01 + 7.5732000e+03 -4.3901742e-01 + 7.5736000e+03 -3.1935925e-01 + 7.5740000e+03 -2.3968429e-01 + 7.5744000e+03 -3.2019304e-01 + 7.5748000e+03 -5.3065611e-01 + 7.5752000e+03 -8.6119267e-01 + 7.5756000e+03 -1.2416884e+00 + 7.5760000e+03 -1.6220668e+00 + 7.5764000e+03 -1.6650707e+00 + 7.5768000e+03 -1.8153561e+00 + 7.5772000e+03 -1.9180274e+00 + 7.5776000e+03 -1.7864942e+00 + 7.5780000e+03 -1.5508184e+00 + 7.5784000e+03 -8.8010677e-01 + 7.5788000e+03 -1.1940378e-01 + 7.5792000e+03 -6.8630236e-02 + 7.5796000e+03 -1.8788045e-01 + 7.5800000e+03 3.7295225e-01 + 7.5804000e+03 9.9374665e-01 + 7.5808000e+03 1.3544099e+00 + 7.5812000e+03 1.7550270e+00 + 7.5816000e+03 2.3650678e+00 + 7.5820000e+03 2.1746847e+00 + 7.5824000e+03 1.5940926e+00 + 7.5828000e+03 9.4347788e-01 + 7.5832000e+03 3.8304729e-01 + 7.5836000e+03 8.2588752e-02 + 7.5840000e+03 -1.2788145e-01 + 7.5844000e+03 -3.0818110e-01 + 7.5848000e+03 -2.7864848e-01 + 7.5852000e+03 2.0941426e-02 + 7.5856000e+03 2.0045165e-01 + 7.5860000e+03 3.5003075e-01 + 7.5864000e+03 3.1946725e-01 + 7.5868000e+03 8.8853366e-02 + 7.5872000e+03 -2.5175314e-01 + 7.5876000e+03 -3.9255346e-01 + 7.5880000e+03 -3.2333873e-01 + 7.5884000e+03 -1.9411097e-01 + 7.5888000e+03 1.6513944e-01 + 7.5892000e+03 3.9467447e-01 + 7.5896000e+03 5.7454224e-01 + 7.5900000e+03 8.3472674e-01 + 7.5904000e+03 5.0530332e-01 + 7.5908000e+03 2.1616087e-01 + 7.5912000e+03 -7.2756589e-02 + 7.5916000e+03 -3.6144734e-01 + 7.5920000e+03 -5.2997073e-01 + 7.5924000e+03 -5.5840380e-01 + 7.5928000e+03 -7.9700798e-01 + 7.5932000e+03 -8.7610633e-01 + 7.5936000e+03 -1.1655425e+00 + 7.5940000e+03 -8.2527461e-01 + 7.5944000e+03 -4.1534283e-01 + 7.5948000e+03 -5.8584137e-01 + 7.5952000e+03 -1.0767019e+00 + 7.5956000e+03 -1.2476819e+00 + 7.5960000e+03 -1.0788080e+00 + 7.5964000e+03 -7.4647134e-01 + 7.5968000e+03 -4.2844142e-01 + 7.5972000e+03 5.7074966e-02 + 7.5976000e+03 4.2997146e-01 + 7.5980000e+03 1.6189153e-01 + 7.5984000e+03 4.0055456e-01 + 7.5988000e+03 2.1270179e-01 + 7.5992000e+03 -1.4715237e-01 + 7.5996000e+03 -3.0525022e-01 + 7.6000000e+03 -2.8168625e-01 + 7.6004000e+03 -4.6110767e-02 + 7.6008000e+03 3.4359486e-01 + 7.6012000e+03 4.7466276e-01 + 7.6016000e+03 3.2582870e-01 + 7.6020000e+03 1.7701575e-01 + 7.6024000e+03 -9.1766559e-02 + 7.6028000e+03 -4.7049894e-01 + 7.6032000e+03 -6.9937582e-01 + 7.6036000e+03 -6.2798622e-01 + 7.6040000e+03 -2.5684867e-01 + 7.6044000e+03 6.3901285e-01 + 7.6048000e+03 1.6225474e+00 + 7.6052000e+03 2.1591147e+00 + 7.6056000e+03 1.8448242e+00 + 7.6060000e+03 1.1308828e+00 + 7.6064000e+03 3.1142306e-01 + 7.6068000e+03 9.9575407e-03 + 7.6072000e+03 8.8464583e-02 + 7.6076000e+03 3.1685525e-01 + 7.6080000e+03 4.0534231e-01 + 7.6084000e+03 5.4394292e-01 + 7.6088000e+03 5.2344622e-01 + 7.6092000e+03 3.8583251e-01 + 7.6096000e+03 -2.9225596e-01 + 7.6100000e+03 -1.4682141e+00 + 7.6104000e+03 -2.3434198e+00 + 7.6108000e+03 -2.5365046e+00 + 7.6112000e+03 -2.2850957e+00 + 7.6116000e+03 -1.5910699e+00 + 7.6120000e+03 -1.0464764e+00 + 7.6124000e+03 -7.5659505e-01 + 7.6128000e+03 -4.7665130e-01 + 7.6132000e+03 -2.9328223e-01 + 7.6136000e+03 -1.8903093e-02 + 7.6140000e+03 2.4450719e-01 + 7.6144000e+03 3.1467429e-01 + 7.6148000e+03 5.7453345e-01 + 7.6152000e+03 8.8404697e-01 + 7.6156000e+03 9.9321890e-01 + 7.6160000e+03 1.1619968e+00 + 7.6164000e+03 9.9048494e-01 + 7.6168000e+03 7.3892461e-01 + 7.6172000e+03 3.5738493e-01 + 7.6176000e+03 2.5966219e-02 + 7.6180000e+03 -3.8046159e-01 + 7.6184000e+03 -6.6807737e-01 + 7.6188000e+03 -6.9986526e-01 + 7.6192000e+03 -5.1399458e-01 + 7.6196000e+03 -5.4011418e-01 + 7.6200000e+03 -7.2169065e-01 + 7.6204000e+03 -5.9666581e-01 + 7.6208000e+03 -3.4576386e-01 + 7.6212000e+03 1.3708474e-03 + 7.6216000e+03 4.4797931e-01 + 7.6220000e+03 8.7039503e-01 + 7.6224000e+03 9.6145962e-01 + 7.6228000e+03 8.6236806e-01 + 7.6232000e+03 8.6200352e-01 + 7.6236000e+03 7.4153805e-01 + 7.6240000e+03 7.0217193e-01 + 7.6244000e+03 5.7263967e-01 + 7.6248000e+03 1.0296257e-01 + 7.6252000e+03 6.3241006e-02 + 7.6256000e+03 -5.6588212e-02 + 7.6260000e+03 -3.6256414e-01 + 7.6264000e+03 -8.6624990e-01 + 7.6268000e+03 -1.2928656e+00 + 7.6272000e+03 -1.3331879e+00 + 7.6276000e+03 -1.1222162e+00 + 7.6280000e+03 -9.3914432e-01 + 7.6284000e+03 -4.9165036e-01 + 7.6288000e+03 -2.2545430e-01 + 7.6292000e+03 -4.5134338e-01 + 7.6296000e+03 -7.2865059e-01 + 7.6300000e+03 -1.2171642e+00 + 7.6304000e+03 -1.3981139e+00 + 7.6308000e+03 -1.7746350e+00 + 7.6312000e+03 -2.1118045e+00 + 7.6316000e+03 -2.1334101e+00 + 7.6320000e+03 -1.9581526e+00 + 7.6324000e+03 -1.3469900e+00 + 7.6328000e+03 -2.2614370e-01 + 7.6332000e+03 1.0042475e+00 + 7.6336000e+03 1.9059899e+00 + 7.6340000e+03 2.3361183e+00 + 7.6344000e+03 2.6765675e+00 + 7.6348000e+03 2.8092112e+00 + 7.6352000e+03 2.2252170e+00 + 7.6356000e+03 1.9538844e+00 + 7.6360000e+03 1.4533340e+00 + 7.6364000e+03 9.0262690e-01 + 7.6368000e+03 6.2180628e-01 + 7.6372000e+03 1.6092943e-01 + 7.6376000e+03 1.1993655e-01 + 7.6380000e+03 -5.6018533e-01 + 7.6384000e+03 -1.5369263e+00 + 7.6388000e+03 -2.3731957e+00 + 7.6392000e+03 -2.4740888e+00 + 7.6396000e+03 -2.3848349e+00 + 7.6400000e+03 -1.6584014e+00 + 7.6404000e+03 -1.0386782e+00 + 7.6408000e+03 -2.8256241e-01 + 7.6412000e+03 6.6724077e-01 + 7.6416000e+03 1.2924378e+00 + 7.6420000e+03 1.6774494e+00 + 7.6424000e+03 1.9694385e+00 + 7.6428000e+03 1.8104063e+00 + 7.6432000e+03 1.7311271e+00 + 7.6436000e+03 1.6615767e+00 + 7.6440000e+03 1.1517624e+00 + 7.6444000e+03 7.8184702e-01 + 7.6448000e+03 1.2717274e-01 + 7.6452000e+03 -4.9153021e-01 + 7.6456000e+03 -1.0858495e+00 + 7.6460000e+03 -1.9016350e+00 + 7.6464000e+03 -2.5437551e+00 + 7.6468000e+03 -3.4572561e+00 + 7.6472000e+03 -3.5182894e+00 + 7.6476000e+03 -2.9981309e+00 + 7.6480000e+03 -2.4682016e+00 + 7.6484000e+03 -1.8784804e+00 + 7.6488000e+03 -9.5880882e-01 + 7.6492000e+03 -7.4902353e-01 + 7.6496000e+03 -5.3917809e-01 + 7.6500000e+03 -7.4036012e-02 + 7.6504000e+03 3.2053105e-01 + 7.6508000e+03 8.3398177e-01 + 7.6512000e+03 1.4488353e+00 + 7.6516000e+03 1.7605504e+00 + 7.6520000e+03 1.7306088e+00 + 7.6524000e+03 1.1807902e+00 + 7.6528000e+03 7.5820512e-01 + 7.6532000e+03 5.1986043e-01 + 7.6536000e+03 4.5023159e-01 + 7.6540000e+03 5.6077146e-01 + 7.6544000e+03 6.3143569e-01 + 7.6548000e+03 6.9139218e-01 + 7.6552000e+03 5.7123462e-01 + 7.6556000e+03 6.6106108e-01 + 7.6560000e+03 8.7089893e-01 + 7.6564000e+03 9.7077460e-01 + 7.6568000e+03 6.5073996e-01 + 7.6572000e+03 1.0071666e-01 + 7.6576000e+03 -2.7937926e-01 + 7.6580000e+03 -1.5642723e-01 + 7.6584000e+03 1.1090106e-01 + 7.6588000e+03 1.7088023e-01 + 7.6592000e+03 -1.7954742e-01 + 7.6596000e+03 -6.2081573e-01 + 7.6600000e+03 -1.5110265e+00 + 7.6604000e+03 -2.2843803e+00 + 7.6608000e+03 -2.5514596e+00 + 7.6612000e+03 -1.9613378e+00 + 7.6616000e+03 -1.8611884e+00 + 7.6620000e+03 -1.0350017e+00 + 7.6624000e+03 1.4239329e-01 + 7.6628000e+03 1.2614925e+00 + 7.6632000e+03 2.0228153e+00 + 7.6636000e+03 2.3017640e+00 + 7.6640000e+03 2.4709478e+00 + 7.6644000e+03 2.2126667e+00 + 7.6648000e+03 1.4795406e+00 + 7.6652000e+03 6.5946372e-01 + 7.6656000e+03 2.4947130e-01 + 7.6660000e+03 -8.0349918e-02 + 7.6664000e+03 -5.7003724e-01 + 7.6668000e+03 -8.6970643e-01 + 7.6672000e+03 -1.6494712e+00 + 7.6676000e+03 -2.5592561e+00 + 7.6680000e+03 -2.8192094e+00 + 7.6684000e+03 -2.7792988e+00 + 7.6688000e+03 -2.5594392e+00 + 7.6692000e+03 -2.0063740e+00 + 7.6696000e+03 -1.7088778e+00 + 7.6700000e+03 -1.7915495e+00 + 7.6704000e+03 -1.9136442e+00 + 7.6708000e+03 -1.4691457e+00 + 7.6712000e+03 -5.4710836e-01 + 7.6716000e+03 7.7474967e-01 + 7.6720000e+03 1.9840400e+00 + 7.6724000e+03 3.3176717e+00 + 7.6728000e+03 4.3773768e+00 + 7.6732000e+03 4.0192611e+00 + 7.6736000e+03 3.2178383e+00 + 7.6740000e+03 2.4992667e+00 + 7.6744000e+03 1.9283221e+00 + 7.6748000e+03 1.9258236e+00 + 7.6752000e+03 2.0862666e+00 + 7.6756000e+03 2.1892257e+00 + 7.6760000e+03 1.9673411e+00 + 7.6764000e+03 1.6772753e+00 + 7.6768000e+03 9.1069806e-01 + 7.6772000e+03 -3.7303003e-01 + 7.6776000e+03 -1.4904389e+00 + 7.6780000e+03 -2.2280620e+00 + 7.6784000e+03 -2.6430159e+00 + 7.6788000e+03 -2.5527409e+00 + 7.6792000e+03 -2.2206221e+00 + 7.6796000e+03 -1.8801821e+00 + 7.6800000e+03 -1.2985909e+00 + 7.6804000e+03 -6.3791948e-01 + 7.6808000e+03 9.8334451e-02 + 7.6812000e+03 7.8856800e-01 + 7.6816000e+03 3.1891430e-01 + 7.6820000e+03 -2.7032917e-01 + 7.6824000e+03 -7.8072555e-01 + 7.6828000e+03 -1.1205355e+00 + 7.6832000e+03 -1.1504588e+00 + 7.6836000e+03 -5.8032910e-01 + 7.6840000e+03 -3.5035918e-01 + 7.6844000e+03 -2.5070853e-01 + 7.6848000e+03 -4.9156644e-01 + 7.6852000e+03 -8.3280224e-01 + 7.6856000e+03 -1.0839909e+00 + 7.6860000e+03 -1.5950303e+00 + 7.6864000e+03 -1.9857891e+00 + 7.6868000e+03 -2.1064621e+00 + 7.6872000e+03 -2.2772113e+00 + 7.6876000e+03 -2.1280742e+00 + 7.6880000e+03 -1.8588166e+00 + 7.6884000e+03 -1.4894383e+00 + 7.6888000e+03 -1.0896414e+00 + 7.6892000e+03 -1.0594415e+00 + 7.6896000e+03 -1.4874147e-01 + 7.6900000e+03 1.1611681e+00 + 7.6904000e+03 2.5737680e+00 + 7.6908000e+03 2.9854595e+00 + 7.6912000e+03 3.3671704e+00 + 7.6916000e+03 3.5284648e+00 + 7.6920000e+03 3.9393440e+00 + 7.6924000e+03 4.3098246e+00 + 7.6928000e+03 4.3653627e+00 + 7.6932000e+03 4.0171754e+00 + 7.6936000e+03 3.4225004e+00 + 7.6940000e+03 2.6886975e+00 + 7.6944000e+03 1.9104748e+00 + 7.6948000e+03 1.0735365e+00 + 7.6952000e+03 3.9047405e-01 + 7.6956000e+03 -3.7252869e-01 + 7.6960000e+03 -9.8086974e-01 + 7.6964000e+03 -1.5071714e+00 + 7.6968000e+03 -1.7976305e+00 + 7.6972000e+03 -1.7789412e+00 + 7.6976000e+03 -1.6193690e+00 + 7.6980000e+03 -1.5097282e+00 + 7.6984000e+03 -1.4379416e+00 + 7.6988000e+03 -1.5871438e+00 + 7.6992000e+03 -1.1962645e+00 + 7.6996000e+03 -4.1632089e-01 + 7.7000000e+03 3.3373233e-01 + 7.7004000e+03 1.0417697e+00 + 7.7008000e+03 1.6844730e+00 + 7.7012000e+03 1.7861913e+00 + 7.7016000e+03 1.5265550e+00 + 7.7020000e+03 1.5869771e+00 + 7.7024000e+03 1.0122614e+00 + 7.7028000e+03 -6.9314876e-02 + 7.7032000e+03 -1.0339452e+00 + 7.7036000e+03 -2.0223342e+00 + 7.7040000e+03 -2.7524012e+00 + 7.7044000e+03 -3.4573262e+00 + 7.7048000e+03 -3.6861008e+00 + 7.7052000e+03 -3.5859847e+00 + 7.7056000e+03 -3.1174618e+00 + 7.7060000e+03 -2.5089189e+00 + 7.7064000e+03 -1.6427898e+00 + 7.7068000e+03 -4.1149734e-01 + 7.7072000e+03 5.3761638e-01 + 7.7076000e+03 7.6709006e-01 + 7.7080000e+03 1.3770631e+00 + 7.7084000e+03 1.8672476e+00 + 7.7088000e+03 2.8674244e+00 + 7.7092000e+03 3.7975128e+00 + 7.7096000e+03 4.0887019e+00 + 7.7100000e+03 3.6854276e+00 + 7.7104000e+03 3.1365887e+00 + 7.7108000e+03 2.3689012e+00 + 7.7112000e+03 1.3692819e+00 + 7.7116000e+03 4.4734825e-01 + 7.7120000e+03 3.2146274e-01 + 7.7124000e+03 4.2686630e-01 + 7.7128000e+03 2.8994039e-01 + 7.7132000e+03 -1.8728867e-01 + 7.7136000e+03 -9.2894452e-01 + 7.7140000e+03 -1.1590903e+00 + 7.7144000e+03 -1.2573533e+00 + 7.7148000e+03 -1.3724056e+00 + 7.7152000e+03 -1.1235492e+00 + 7.7156000e+03 -7.1375960e-01 + 7.7160000e+03 -3.9414195e-01 + 7.7164000e+03 -2.3497448e-01 + 7.7168000e+03 -1.2597107e-01 + 7.7172000e+03 -6.6990331e-02 + 7.7176000e+03 2.2194358e-01 + 7.7180000e+03 5.9081637e-01 + 7.7184000e+03 9.9978679e-01 + 7.7188000e+03 1.2790109e+00 + 7.7192000e+03 1.5685177e+00 + 7.7196000e+03 1.5246193e+00 + 7.7200000e+03 1.5626433e+00 + 7.7204000e+03 8.0238171e-01 + 7.7208000e+03 -2.7696932e-01 + 7.7212000e+03 -1.0786186e+00 + 7.7216000e+03 -1.6026652e+00 + 7.7220000e+03 -2.2763864e+00 + 7.7224000e+03 -2.1653486e+00 + 7.7228000e+03 -1.7545225e+00 + 7.7232000e+03 -1.5338312e+00 + 7.7236000e+03 -1.4432452e+00 + 7.7240000e+03 -1.4827883e+00 + 7.7244000e+03 -1.5524502e+00 + 7.7248000e+03 -1.4722969e+00 + 7.7252000e+03 -1.3024290e+00 + 7.7256000e+03 -7.8279035e-01 + 7.7260000e+03 -2.7186579e-01 + 7.7264000e+03 -4.9628879e-02 + 7.7268000e+03 2.7536023e-01 + 7.7272000e+03 6.7256179e-01 + 7.7276000e+03 1.3795940e+00 + 7.7280000e+03 1.8406776e+00 + 7.7284000e+03 1.8996779e+00 + 7.7288000e+03 2.0686633e+00 + 7.7292000e+03 2.7079279e+00 + 7.7296000e+03 3.0271730e+00 + 7.7300000e+03 2.9568291e+00 + 7.7304000e+03 2.3766571e+00 + 7.7308000e+03 1.7864985e+00 + 7.7312000e+03 6.5649697e-01 + 7.7316000e+03 -8.3430640e-02 + 7.7320000e+03 -4.2310345e-01 + 7.7324000e+03 -1.1827710e+00 + 7.7328000e+03 -1.7823209e+00 + 7.7332000e+03 -2.2215882e+00 + 7.7336000e+03 -3.2106866e+00 + 7.7340000e+03 -3.7213566e+00 + 7.7344000e+03 -3.8193207e+00 + 7.7348000e+03 -3.4689368e+00 + 7.7352000e+03 -2.8436234e+00 + 7.7356000e+03 -1.9352128e+00 + 7.7360000e+03 -9.8643719e-01 + 7.7364000e+03 1.0727155e-01 + 7.7368000e+03 1.0430743e+00 + 7.7372000e+03 1.9124484e+00 + 7.7376000e+03 2.8470861e+00 + 7.7380000e+03 3.6131783e+00 + 7.7384000e+03 4.1816207e+00 + 7.7388000e+03 3.9809123e+00 + 7.7392000e+03 3.7302254e+00 + 7.7396000e+03 3.5095279e+00 + 7.7400000e+03 3.3187810e+00 + 7.7404000e+03 2.8080874e+00 + 7.7408000e+03 2.2955344e+00 + 7.7412000e+03 1.2271108e+00 + 7.7416000e+03 -4.6066117e-01 + 7.7420000e+03 -1.8542685e+00 + 7.7424000e+03 -2.9331348e+00 + 7.7428000e+03 -3.1829109e+00 + 7.7432000e+03 -3.2125834e+00 + 7.7436000e+03 -4.4221918e+00 + 7.7440000e+03 -4.6917737e+00 + 7.7444000e+03 -3.8213554e+00 + 7.7448000e+03 -2.6609826e+00 + 7.7452000e+03 -1.9206753e+00 + 7.7456000e+03 -1.3303988e+00 + 7.7460000e+03 -3.2019091e-01 + 7.7464000e+03 8.4993749e-01 + 7.7468000e+03 1.9434910e+00 + 7.7472000e+03 2.8602201e+00 + 7.7476000e+03 3.7103769e+00 + 7.7480000e+03 3.7601806e+00 + 7.7484000e+03 3.4097261e+00 + 7.7488000e+03 2.9991519e+00 + 7.7492000e+03 3.1586551e+00 + 7.7496000e+03 2.9281519e+00 + 7.7500000e+03 2.6278080e+00 + 7.7504000e+03 1.4374656e+00 + 7.7508000e+03 -2.2779235e-02 + 7.7512000e+03 -1.3929921e+00 + 7.7516000e+03 -2.3530072e+00 + 7.7520000e+03 -3.1427097e+00 + 7.7524000e+03 -3.4723260e+00 + 7.7528000e+03 -3.1219018e+00 + 7.7532000e+03 -2.5314730e+00 + 7.7536000e+03 -1.7410405e+00 + 7.7540000e+03 -9.7065781e-01 + 7.7544000e+03 -5.7038396e-01 + 7.7548000e+03 -3.5010151e-01 + 7.7552000e+03 -2.0975663e-01 + 7.7556000e+03 4.0535798e-02 + 7.7560000e+03 5.8084447e-01 + 7.7564000e+03 1.0410654e+00 + 7.7568000e+03 1.4910687e+00 + 7.7572000e+03 1.9410062e+00 + 7.7576000e+03 2.3503407e+00 + 7.7580000e+03 2.8793279e+00 + 7.7584000e+03 3.0283844e+00 + 7.7588000e+03 2.9873869e+00 + 7.7592000e+03 2.2266680e+00 + 7.7596000e+03 1.3059038e+00 + 7.7600000e+03 6.3546482e-01 + 7.7604000e+03 5.1688013e-03 + 7.7608000e+03 -1.2404465e-01 + 7.7612000e+03 -1.2174956e-01 + 7.7616000e+03 -5.0406111e-02 + 7.7620000e+03 -2.1582882e-01 + 7.7624000e+03 -5.7909811e-01 + 7.7628000e+03 -1.2623811e+00 + 7.7632000e+03 -1.8715221e+00 + 7.7636000e+03 -2.0804635e+00 + 7.7640000e+03 -2.0296090e+00 + 7.7644000e+03 -1.7088959e+00 + 7.7648000e+03 -1.1683968e+00 + 7.7652000e+03 -5.0790098e-01 + 7.7656000e+03 2.4240854e-01 + 7.7660000e+03 7.3251477e-01 + 7.7664000e+03 1.0023151e+00 + 7.7668000e+03 1.4217896e+00 + 7.7672000e+03 1.8708968e+00 + 7.7676000e+03 2.0097437e+00 + 7.7680000e+03 1.6384828e+00 + 7.7684000e+03 8.4719909e-01 + 7.7688000e+03 -2.3375749e-01 + 7.7692000e+03 -9.4449952e-01 + 7.7696000e+03 -1.4052753e+00 + 7.7700000e+03 -1.4958774e+00 + 7.7704000e+03 -9.6632632e-01 + 7.7708000e+03 4.3394145e-02 + 7.7712000e+03 7.9341284e-01 + 7.7716000e+03 1.2038278e+00 + 7.7720000e+03 1.1045290e+00 + 7.7724000e+03 5.3553019e-01 + 7.7728000e+03 1.7682404e-01 + 7.7732000e+03 1.0843746e-01 + 7.7736000e+03 3.6030616e-01 + 7.7740000e+03 8.3204133e-01 + 7.7744000e+03 1.2336399e+00 + 7.7748000e+03 1.4046173e+00 + 7.7752000e+03 1.3052403e+00 + 7.7756000e+03 9.7553260e-01 + 7.7760000e+03 7.1551529e-01 + 7.7764000e+03 7.5521478e-01 + 7.7768000e+03 9.2463274e-01 + 7.7772000e+03 6.0384060e-01 + 7.7776000e+03 3.1278681e-01 + 7.7780000e+03 -2.8813721e-01 + 7.7784000e+03 -5.0680209e-01 + 7.7788000e+03 -5.0640481e-01 + 7.7792000e+03 -3.8019693e-01 + 7.7796000e+03 2.7655546e-01 + 7.7800000e+03 1.2658036e+00 + 7.7804000e+03 1.6180621e+00 + 7.7808000e+03 1.4944536e+00 + 7.7812000e+03 8.4355905e-01 + 7.7816000e+03 -4.1892193e-02 + 7.7820000e+03 -9.0510140e-01 + 7.7824000e+03 -1.4309240e+00 + 7.7828000e+03 -1.5199644e+00 + 7.7832000e+03 -1.3789099e+00 + 7.7836000e+03 -1.6478709e+00 + 7.7840000e+03 -1.9129715e+00 + 7.7844000e+03 -2.0483809e+00 + 7.7848000e+03 -1.6575453e+00 + 7.7852000e+03 -1.1333274e+00 + 7.7856000e+03 -3.2253642e-01 + 7.7860000e+03 3.8784015e-01 + 7.7864000e+03 7.7766007e-01 + 7.7868000e+03 1.1372565e+00 + 7.7872000e+03 9.9664672e-01 + 7.7876000e+03 8.5589883e-01 + 7.7880000e+03 5.0739915e-01 + 7.7884000e+03 4.6288792e-01 + 7.7888000e+03 7.1205611e-01 + 7.7892000e+03 8.6352949e-01 + 7.7896000e+03 1.3808305e+00 + 7.7900000e+03 2.3597897e+00 + 7.7904000e+03 2.9188397e+00 + 7.7908000e+03 3.0079929e+00 + 7.7912000e+03 2.4373005e+00 + 7.7916000e+03 1.7468353e+00 + 7.7920000e+03 1.2465845e+00 + 7.7924000e+03 8.1677468e-01 + 7.7928000e+03 4.2733808e-01 + 7.7932000e+03 2.2819252e-01 + 7.7936000e+03 -7.4103162e-02 + 7.7940000e+03 -6.7820959e-01 + 7.7944000e+03 -1.0637537e+00 + 7.7948000e+03 -1.5701243e+00 + 7.7952000e+03 -2.0615928e+00 + 7.7956000e+03 -2.5435640e+00 + 7.7960000e+03 -2.3528368e+00 + 7.7964000e+03 -1.8820540e+00 + 7.7968000e+03 -1.1115410e+00 + 7.7972000e+03 -5.7142877e-01 + 7.7976000e+03 2.8835296e-01 + 7.7980000e+03 6.8766935e-01 + 7.7984000e+03 1.4067245e+00 + 7.7988000e+03 1.6357657e+00 + 7.7992000e+03 1.2846462e+00 + 7.7996000e+03 8.6333762e-01 + 7.8000000e+03 6.7209545e-01 + 7.8004000e+03 1.1509242e+00 + 7.8008000e+03 1.4201042e+00 + 7.8012000e+03 1.2296564e+00 + 7.8016000e+03 7.8947001e-01 + 7.8020000e+03 9.5011977e-03 + 7.8024000e+03 -8.5028565e-01 + 7.8028000e+03 -1.5200150e+00 + 7.8032000e+03 -2.2396013e+00 + 7.8036000e+03 -2.6590927e+00 + 7.8040000e+03 -2.2687681e+00 + 7.8044000e+03 -1.5884438e+00 + 7.8048000e+03 -1.4080823e+00 + 7.8052000e+03 -8.9776633e-01 + 7.8056000e+03 -8.4762165e-01 + 7.8060000e+03 -1.2176127e+00 + 7.8064000e+03 -1.3074120e+00 + 7.8068000e+03 -9.3729107e-01 + 7.8072000e+03 -2.0723139e-01 + 7.8076000e+03 2.4261549e-01 + 7.8080000e+03 1.0623087e+00 + 7.8084000e+03 2.3519000e+00 + 7.8088000e+03 3.7413515e+00 + 7.8092000e+03 4.5106301e+00 + 7.8096000e+03 4.2298464e+00 + 7.8100000e+03 3.7992659e+00 + 7.8104000e+03 2.7688990e+00 + 7.8108000e+03 1.6387914e+00 + 7.8112000e+03 8.7875615e-01 + 7.8116000e+03 1.8891246e-01 + 7.8120000e+03 -2.7045143e-01 + 7.8124000e+03 -5.0059001e-01 + 7.8128000e+03 -9.6023381e-01 + 7.8132000e+03 -1.7698982e+00 + 7.8136000e+03 -2.2395808e+00 + 7.8140000e+03 -2.2092478e+00 + 7.8144000e+03 -2.3456588e+00 + 7.8148000e+03 -2.3220554e+00 + 7.8152000e+03 -2.2039535e+00 + 7.8156000e+03 -1.6044821e+00 + 7.8160000e+03 -3.0723802e-01 + 7.8164000e+03 1.2929507e+00 + 7.8168000e+03 2.3434154e+00 + 7.8172000e+03 2.7816389e+00 + 7.8176000e+03 2.5839156e+00 + 7.8180000e+03 2.1308802e+00 + 7.8184000e+03 1.4721941e+00 + 7.8188000e+03 7.3945576e-01 + 7.8192000e+03 -3.5845255e-01 + 7.8196000e+03 -1.7936494e+00 + 7.8200000e+03 -2.7936879e+00 + 7.8204000e+03 -3.2283497e+00 + 7.8208000e+03 -3.3785319e+00 + 7.8212000e+03 -3.2785445e+00 + 7.8216000e+03 -2.8985958e+00 + 7.8220000e+03 -2.4187238e+00 + 7.8224000e+03 -1.4889275e+00 + 7.8228000e+03 -8.9935655e-01 + 7.8232000e+03 -5.8994251e-01 + 7.8236000e+03 -2.1067024e-01 + 7.8240000e+03 1.7850817e-01 + 7.8244000e+03 1.0377827e+00 + 7.8248000e+03 1.9772661e+00 + 7.8252000e+03 2.6867272e+00 + 7.8256000e+03 3.1261988e+00 + 7.8260000e+03 3.1756648e+00 + 7.8264000e+03 2.5953619e+00 + 7.8268000e+03 1.8152075e+00 + 7.8272000e+03 1.3252610e+00 + 7.8276000e+03 1.4056600e+00 + 7.8280000e+03 1.1364481e+00 + 7.8284000e+03 1.0472586e+00 + 7.8288000e+03 7.4805427e-01 + 7.8292000e+03 5.0860671e-01 + 7.8296000e+03 1.9131926e-02 + 7.8300000e+03 -3.2033387e-01 + 7.8304000e+03 -4.7970407e-01 + 7.8308000e+03 -9.4903459e-01 + 7.8312000e+03 -1.0584298e+00 + 7.8316000e+03 -8.6777683e-01 + 7.8320000e+03 -3.1732181e-01 + 7.8324000e+03 1.4294281e-01 + 7.8328000e+03 2.4323759e-01 + 7.8332000e+03 -7.6458577e-02 + 7.8336000e+03 -4.8629590e-01 + 7.8340000e+03 -5.7622276e-01 + 7.8344000e+03 -5.2621246e-01 + 7.8348000e+03 -3.6621911e-01 + 7.8352000e+03 -1.7646656e-01 + 7.8356000e+03 -2.8714050e-01 + 7.8360000e+03 -1.1188696e-01 + 7.8364000e+03 -1.1599628e-01 + 7.8368000e+03 2.3642404e-02 + 7.8372000e+03 2.4683409e-01 + 7.8376000e+03 6.1383655e-01 + 7.8380000e+03 9.1117486e-01 + 7.8384000e+03 6.9151671e-01 + 7.8388000e+03 5.6177076e-01 + 7.8392000e+03 -3.0798707e-01 + 7.8396000e+03 -4.0824068e-01 + 7.8400000e+03 -8.5504186e-01 + 7.8404000e+03 -1.8382054e+00 + 7.8408000e+03 -2.5901980e+00 + 7.8412000e+03 -2.3107353e+00 + 7.8416000e+03 -1.8311029e+00 + 7.8420000e+03 -1.3112165e+00 + 7.8424000e+03 -8.5092593e-01 + 7.8428000e+03 -5.0057385e-01 + 7.8432000e+03 -2.1027085e-01 + 7.8436000e+03 1.8986753e-01 + 7.8440000e+03 6.5978032e-01 + 7.8444000e+03 9.5959593e-01 + 7.8448000e+03 8.2935008e-01 + 7.8452000e+03 7.3904699e-01 + 7.8456000e+03 7.0873841e-01 + 7.8460000e+03 5.3860077e-01 + 7.8464000e+03 4.7262168e-01 + 7.8468000e+03 2.7052276e-01 + 7.8472000e+03 1.2918735e-01 + 7.8476000e+03 1.2011296e-01 + 7.8480000e+03 7.0667341e-02 + 7.8484000e+03 1.0013930e-01 + 7.8488000e+03 -2.0225671e-02 + 7.8492000e+03 -5.4245148e-02 + 7.8496000e+03 2.3045788e-01 + 7.8500000e+03 3.4085130e-01 + 7.8504000e+03 5.8146397e-01 + 7.8508000e+03 1.0121968e+00 + 7.8512000e+03 1.1430329e+00 + 7.8516000e+03 1.2538045e+00 + 7.8520000e+03 1.3845525e+00 + 7.8524000e+03 1.4949812e+00 + 7.8528000e+03 1.5256598e+00 + 7.8532000e+03 1.1358627e+00 + 7.8536000e+03 8.7595265e-01 + 7.8540000e+03 3.2590621e-01 + 7.8544000e+03 -4.8420854e-01 + 7.8548000e+03 -1.0544546e+00 + 7.8552000e+03 -1.2146299e+00 + 7.8556000e+03 -1.1047488e+00 + 7.8560000e+03 -9.7501841e-01 + 7.8564000e+03 -1.1252264e+00 + 7.8568000e+03 -1.3053976e+00 + 7.8572000e+03 -1.4355609e+00 + 7.8576000e+03 -1.2854401e+00 + 7.8580000e+03 -1.0351186e+00 + 7.8584000e+03 -9.2465610e-01 + 7.8588000e+03 -8.0429001e-01 + 7.8592000e+03 -1.1138761e+00 + 7.8596000e+03 -1.3737375e+00 + 7.8600000e+03 -2.2536722e+00 + 7.8604000e+03 -2.2137065e+00 + 7.8608000e+03 -1.6539006e+00 + 7.8612000e+03 -8.4427134e-01 + 7.8616000e+03 -5.8490599e-01 + 7.8620000e+03 6.2418891e-01 + 7.8624000e+03 1.3231844e+00 + 7.8628000e+03 1.9422072e+00 + 7.8632000e+03 2.1610573e+00 + 7.8636000e+03 2.0502807e+00 + 7.8640000e+03 1.5595025e+00 + 7.8644000e+03 1.3587676e+00 + 7.8648000e+03 1.4282877e+00 + 7.8652000e+03 1.2079215e+00 + 7.8656000e+03 9.2769522e-01 + 7.8660000e+03 5.3759267e-01 + 7.8664000e+03 -3.2909947e-01 + 7.8668000e+03 -9.6276896e-01 + 7.8672000e+03 -1.3939758e+00 + 7.8676000e+03 -1.7442346e+00 + 7.8680000e+03 -1.8505536e+00 + 7.8684000e+03 -1.7597815e+00 + 7.8688000e+03 -1.6190287e+00 + 7.8692000e+03 -1.4783852e+00 + 7.8696000e+03 -1.2379659e+00 + 7.8700000e+03 -9.5782489e-01 + 7.8704000e+03 -6.4800794e-01 + 7.8708000e+03 -1.4855648e-01 + 7.8712000e+03 3.5054661e-01 + 7.8716000e+03 9.3916518e-01 + 7.8720000e+03 1.0379606e+00 + 7.8724000e+03 1.3556360e+00 + 7.8728000e+03 1.3878561e+00 + 7.8732000e+03 1.4471496e+00 + 7.8736000e+03 1.4623021e+00 + 7.8740000e+03 1.6595303e+00 + 7.8744000e+03 1.6435189e+00 + 7.8748000e+03 1.2916772e+00 + 7.8752000e+03 5.6393690e-01 + 7.8756000e+03 7.8814196e-02 + 7.8760000e+03 3.9587890e-02 + 7.8764000e+03 2.0466162e-02 + 7.8768000e+03 -3.0867325e-01 + 7.8772000e+03 -4.9064978e-01 + 7.8776000e+03 -5.3476002e-01 + 7.8780000e+03 -7.9968301e-01 + 7.8784000e+03 -1.4993172e+00 + 7.8788000e+03 -2.5354157e+00 + 7.8792000e+03 -3.5055712e+00 + 7.8796000e+03 -3.8462169e+00 + 7.8800000e+03 -4.2373623e+00 + 7.8804000e+03 -3.9289337e+00 + 7.8808000e+03 -3.3208863e+00 + 7.8812000e+03 -2.5925379e+00 + 7.8816000e+03 -1.7438376e+00 + 7.8820000e+03 -5.6465421e-01 + 7.8824000e+03 -6.5230460e-02 + 7.8828000e+03 1.4045012e+00 + 7.8832000e+03 3.0441915e+00 + 7.8836000e+03 4.0845999e+00 + 7.8840000e+03 4.1849657e+00 + 7.8844000e+03 3.7856268e+00 + 7.8848000e+03 3.0764484e+00 + 7.8852000e+03 1.8822554e+00 + 7.8856000e+03 8.9647105e-01 + 7.8860000e+03 -8.7521236e-02 + 7.8864000e+03 -9.7082358e-01 + 7.8868000e+03 -1.2441223e+00 + 7.8872000e+03 -1.7319145e+00 + 7.8876000e+03 -1.8719054e+00 + 7.8880000e+03 -1.8318305e+00 + 7.8884000e+03 -1.7018930e+00 + 7.8888000e+03 -1.5221741e+00 + 7.8892000e+03 -1.2025801e+00 + 7.8896000e+03 -1.0030105e+00 + 7.8900000e+03 -9.4318936e-01 + 7.8904000e+03 -7.3323176e-01 + 7.8908000e+03 -3.3326748e-01 + 7.8912000e+03 3.0655523e-01 + 7.8916000e+03 1.0065026e+00 + 7.8920000e+03 1.3965544e+00 + 7.8924000e+03 1.5468820e+00 + 7.8928000e+03 1.6076225e+00 + 7.8932000e+03 1.6385233e+00 + 7.8936000e+03 1.9094391e+00 + 7.8940000e+03 1.8801525e+00 + 7.8944000e+03 1.6504665e+00 + 7.8948000e+03 1.5204091e+00 + 7.8952000e+03 1.1202122e+00 + 7.8956000e+03 3.9992235e-01 + 7.8960000e+03 7.9480943e-02 + 7.8964000e+03 -1.0682847e-02 + 7.8968000e+03 6.9061075e-02 + 7.8972000e+03 3.8676867e-01 + 7.8976000e+03 7.2392467e-01 + 7.8980000e+03 5.9541816e-01 + 7.8984000e+03 1.0499851e-01 + 7.8988000e+03 -3.7056343e-01 + 7.8992000e+03 -4.5892233e-01 + 7.8996000e+03 -1.1534691e+00 + 7.9000000e+03 -1.6590983e+00 + 7.9004000e+03 -2.5073219e+00 + 7.9008000e+03 -3.1138061e+00 + 7.9012000e+03 -3.3143359e+00 + 7.9016000e+03 -2.9046427e+00 + 7.9020000e+03 -2.0844352e+00 + 7.9024000e+03 -1.5138531e+00 + 7.9028000e+03 -1.4729895e+00 + 7.9032000e+03 -4.0209691e-01 + 7.9036000e+03 -1.6152432e-01 + 7.9040000e+03 -2.5110784e-01 + 7.9044000e+03 -1.8122171e-01 + 7.9048000e+03 -1.4158383e-01 + 7.9052000e+03 1.8764994e-01 + 7.9056000e+03 4.6667283e-01 + 7.9060000e+03 6.0330624e-01 + 7.9064000e+03 4.8923565e-01 + 7.9068000e+03 6.7454872e-01 + 7.9072000e+03 7.0880782e-01 + 7.9076000e+03 6.0260661e-01 + 7.9080000e+03 4.9202920e-01 + 7.9084000e+03 3.9153433e-01 + 7.9088000e+03 2.0115705e-01 + 7.9092000e+03 2.6082124e-01 + 7.9096000e+03 4.2047723e-01 + 7.9100000e+03 5.0014746e-01 + 7.9104000e+03 3.2008055e-01 + 7.9108000e+03 9.9979007e-02 + 7.9112000e+03 -2.9970799e-02 + 7.9116000e+03 1.0021830e-01 + 7.9120000e+03 1.8068928e-01 + 7.9124000e+03 2.9142965e-01 + 7.9128000e+03 1.1240927e-01 + 7.9132000e+03 -2.6515498e-02 + 7.9136000e+03 1.5793304e-02 + 7.9140000e+03 -8.2591025e-02 + 7.9144000e+03 -1.4940770e-01 + 7.9148000e+03 7.3332624e-02 + 7.9152000e+03 5.0682366e-01 + 7.9156000e+03 6.8727581e-01 + 7.9160000e+03 8.6761935e-01 + 7.9164000e+03 7.8759977e-01 + 7.9168000e+03 7.3728447e-01 + 7.9172000e+03 9.7678618e-01 + 7.9176000e+03 8.9620203e-01 + 7.9180000e+03 9.3558683e-01 + 7.9184000e+03 9.6508927e-01 + 7.9188000e+03 1.0846397e+00 + 7.9192000e+03 5.3194385e-01 + 7.9196000e+03 -8.4825952e-02 + 7.9200000e+03 -9.8628557e-01 + 7.9204000e+03 -1.9101765e+00 + 7.9208000e+03 -2.7001818e+00 + 7.9212000e+03 -3.0661579e+00 + 7.9216000e+03 -2.9654051e+00 + 7.9220000e+03 -2.7989304e+00 + 7.9224000e+03 -2.8066430e+00 + 7.9228000e+03 -2.1807442e+00 + 7.9232000e+03 -1.5063038e+00 + 7.9236000e+03 -8.2893855e-01 + 7.9240000e+03 -2.3172701e-01 + 7.9244000e+03 2.7640398e-01 + 7.9248000e+03 3.0203107e-01 + 7.9252000e+03 3.0668120e-01 + 7.9256000e+03 1.0784814e-01 + 7.9260000e+03 -1.4274464e-01 + 7.9264000e+03 2.4636856e-01 + 7.9268000e+03 1.2251177e+00 + 7.9272000e+03 2.3630312e+00 + 7.9276000e+03 3.2633501e+00 + 7.9280000e+03 3.6225260e+00 + 7.9284000e+03 2.8018729e+00 + 7.9288000e+03 1.7801588e+00 + 7.9292000e+03 5.4968215e-01 + 7.9296000e+03 -3.8067210e-01 + 7.9300000e+03 -9.6092192e-01 + 7.9304000e+03 -1.1653114e+00 + 7.9308000e+03 -1.3328282e+00 + 7.9312000e+03 -1.3875994e+00 + 7.9316000e+03 -1.1100911e+00 + 7.9320000e+03 -1.0214071e+00 + 7.9324000e+03 -1.1111081e+00 + 7.9328000e+03 -9.4065447e-01 + 7.9332000e+03 -8.4998464e-01 + 7.9336000e+03 -4.2914566e-01 + 7.9340000e+03 3.1161806e-01 + 7.9344000e+03 1.3504009e+00 + 7.9348000e+03 2.2388686e+00 + 7.9352000e+03 3.0375477e+00 + 7.9356000e+03 3.5558540e+00 + 7.9360000e+03 3.2926172e+00 + 7.9364000e+03 2.6074001e+00 + 7.9368000e+03 1.9678450e+00 + 7.9372000e+03 1.3080215e+00 + 7.9376000e+03 6.5796358e-01 + 7.9380000e+03 8.7705467e-02 + 7.9384000e+03 -5.4301203e-01 + 7.9388000e+03 -7.1408517e-01 + 7.9392000e+03 -7.6516976e-01 + 7.9396000e+03 -1.1564884e+00 + 7.9400000e+03 -1.5176850e+00 + 7.9404000e+03 -1.8187137e+00 + 7.9408000e+03 -1.9687394e+00 + 7.9412000e+03 -2.0235323e+00 + 7.9416000e+03 -1.9825930e+00 + 7.9420000e+03 -1.5848124e+00 + 7.9424000e+03 -1.5251718e+00 + 7.9428000e+03 -1.8222403e+00 + 7.9432000e+03 -2.0286079e+00 + 7.9436000e+03 -1.9111738e+00 + 7.9440000e+03 -1.4608734e+00 + 7.9444000e+03 -1.0404718e+00 + 7.9448000e+03 -5.6979211e-01 + 7.9452000e+03 -4.9912112e-01 + 7.9456000e+03 -3.8599602e-02 + 7.9460000e+03 4.9168093e-01 + 7.9464000e+03 1.0417780e+00 + 7.9468000e+03 1.9615057e+00 + 7.9472000e+03 2.1807777e+00 + 7.9476000e+03 2.2197649e+00 + 7.9480000e+03 2.1588471e+00 + 7.9484000e+03 1.7680188e+00 + 7.9488000e+03 1.1221556e+00 + 7.9492000e+03 5.1251300e-01 + 7.9496000e+03 2.0736612e-01 + 7.9500000e+03 2.5199497e-01 + 7.9504000e+03 1.0102965e-01 + 7.9508000e+03 -1.7166791e-01 + 7.9512000e+03 -5.3581539e-01 + 7.9516000e+03 -9.4537897e-01 + 7.9520000e+03 -1.2642749e+00 + 7.9524000e+03 -1.1840935e+00 + 7.9528000e+03 -9.2373715e-01 + 7.9532000e+03 -7.1326121e-01 + 7.9536000e+03 -5.2234979e-01 + 7.9540000e+03 -2.2138769e-01 + 7.9544000e+03 1.9079955e-01 + 7.9548000e+03 7.4272444e-01 + 7.9552000e+03 1.0807645e+00 + 7.9556000e+03 1.6680848e+00 + 7.9560000e+03 2.3903751e+00 + 7.9564000e+03 3.0815978e+00 + 7.9568000e+03 3.2691113e+00 + 7.9572000e+03 3.0098285e+00 + 7.9576000e+03 1.9734412e+00 + 7.9580000e+03 1.1881376e+00 + 7.9584000e+03 3.1565759e-01 + 7.9588000e+03 -3.9684526e-01 + 7.9592000e+03 -8.7677520e-01 + 7.9596000e+03 -1.3302333e+00 + 7.9600000e+03 -1.4911968e+00 + 7.9604000e+03 -1.5519464e+00 + 7.9608000e+03 -1.7425250e+00 + 7.9612000e+03 -2.3729631e+00 + 7.9616000e+03 -2.7432347e+00 + 7.9620000e+03 -2.6435508e+00 + 7.9624000e+03 -2.4238387e+00 + 7.9628000e+03 -1.9453277e+00 + 7.9632000e+03 -1.2738949e+00 + 7.9636000e+03 -4.5072296e-01 + 7.9640000e+03 3.2488094e-01 + 7.9644000e+03 7.6103150e-01 + 7.9648000e+03 1.4858300e+00 + 7.9652000e+03 1.8107063e+00 + 7.9656000e+03 1.6019156e+00 + 7.9660000e+03 1.4496247e+00 + 7.9664000e+03 9.6439947e-01 + 7.9668000e+03 3.2757279e-01 + 7.9672000e+03 2.1867212e-01 + 7.9676000e+03 9.8429736e-02 + 7.9680000e+03 -6.9248062e-01 + 7.9684000e+03 -8.0037401e-01 + 7.9688000e+03 -6.2922165e-01 + 7.9692000e+03 -3.1186664e-01 + 7.9696000e+03 -1.1100077e-01 + 7.9700000e+03 -6.1249318e-02 + 7.9704000e+03 -3.2229621e-01 + 7.9708000e+03 -6.6747483e-01 + 7.9712000e+03 -5.2173565e-01 + 7.9716000e+03 -1.3358700e-01 + 7.9720000e+03 2.5461014e-01 + 7.9724000e+03 6.3466590e-01 + 7.9728000e+03 7.1088348e-01 + 7.9732000e+03 4.5629633e-01 + 7.9736000e+03 1.7354213e-02 + 7.9740000e+03 -2.4194727e-01 + 7.9744000e+03 -5.5143844e-01 + 7.9748000e+03 -7.3094571e-01 + 7.9752000e+03 -6.6038016e-01 + 7.9756000e+03 -2.7985552e-01 + 7.9760000e+03 -6.9147265e-02 + 7.9764000e+03 1.5159797e-01 + 7.9768000e+03 4.7234665e-01 + 7.9772000e+03 1.8335894e-01 + 7.9776000e+03 1.5423046e-01 + 7.9780000e+03 -4.3538208e-01 + 7.9784000e+03 -2.4559114e-01 + 7.9788000e+03 2.6377544e-01 + 7.9792000e+03 5.5287199e-01 + 7.9796000e+03 8.8172509e-01 + 7.9800000e+03 1.4003907e+00 + 7.9804000e+03 1.6988919e+00 + 7.9808000e+03 1.6472120e+00 + 7.9812000e+03 1.3253920e+00 + 7.9816000e+03 7.9428717e-01 + 7.9820000e+03 3.9011292e-01 + 7.9824000e+03 1.2637098e-01 + 7.9828000e+03 -3.2660362e-02 + 7.9832000e+03 -4.6416931e-01 + 7.9836000e+03 -1.0864665e+00 + 7.9840000e+03 -1.7693101e+00 + 7.9844000e+03 -2.3356813e+00 + 7.9848000e+03 -2.7426797e+00 + 7.9852000e+03 -2.8068111e+00 + 7.9856000e+03 -2.4147982e+00 + 7.9860000e+03 -1.7709921e+00 + 7.9864000e+03 -1.0282846e+00 + 7.9868000e+03 -4.2566954e-01 + 7.9872000e+03 -8.6254458e-02 + 7.9876000e+03 3.6462778e-01 + 7.9880000e+03 6.9924368e-01 + 7.9884000e+03 1.1505330e+00 + 7.9888000e+03 1.7318586e+00 + 7.9892000e+03 2.3238683e+00 + 7.9896000e+03 2.7670911e+00 + 7.9900000e+03 3.1061072e+00 + 7.9904000e+03 3.0045695e+00 + 7.9908000e+03 2.2132853e+00 + 7.9912000e+03 1.3123737e+00 + 7.9916000e+03 7.6187447e-01 + 7.9920000e+03 2.1729629e-02 + 7.9924000e+03 -4.1834381e-01 + 7.9928000e+03 -1.0383268e+00 + 7.9932000e+03 -1.6680930e+00 + 7.9936000e+03 -1.8676792e+00 + 7.9940000e+03 -1.7869204e+00 + 7.9944000e+03 -1.9160026e+00 + 7.9948000e+03 -1.7148665e+00 + 7.9952000e+03 -1.1035807e+00 + 7.9956000e+03 -4.9217437e-01 + 7.9960000e+03 -7.0745524e-02 + 7.9964000e+03 -1.6935521e-01 + 7.9968000e+03 -3.7830934e-01 + 7.9972000e+03 -3.1762077e-01 + 7.9976000e+03 -3.5734305e-01 + 7.9980000e+03 -4.7754400e-01 + 7.9984000e+03 -4.0815854e-01 + 7.9988000e+03 -9.9198885e-02 + 7.9992000e+03 2.7942750e-01 + 7.9996000e+03 6.7801549e-01 + 8.0000000e+03 1.1668281e+00 + 8.0004000e+03 1.5457773e+00 + 8.0008000e+03 1.8949637e+00 + 8.0012000e+03 2.0244465e+00 + 8.0016000e+03 2.2340939e+00 + 8.0020000e+03 1.9039032e+00 + 8.0024000e+03 1.5137539e+00 + 8.0028000e+03 1.1736456e+00 + 8.0032000e+03 7.2717328e-01 + 8.0036000e+03 2.6533297e-01 + 8.0040000e+03 -1.3450531e-01 + 8.0044000e+03 -7.0543286e-01 + 8.0048000e+03 -1.5406110e+00 + 8.0052000e+03 -2.3944712e+00 + 8.0056000e+03 -2.8762847e+00 + 8.0060000e+03 -2.7454871e+00 + 8.0064000e+03 -2.3744733e+00 + 8.0068000e+03 -1.8436960e+00 + 8.0072000e+03 -1.6931909e+00 + 8.0076000e+03 -1.3426108e+00 + 8.0080000e+03 -1.0723971e+00 + 8.0084000e+03 -1.3579106e+00 + 8.0088000e+03 -1.0525695e+00 + 8.0092000e+03 -3.8361894e-02 + 8.0096000e+03 1.0765975e+00 + 8.0100000e+03 1.8564595e+00 + 8.0104000e+03 2.4084687e+00 + 8.0108000e+03 2.6115256e+00 + 8.0112000e+03 2.4008124e+00 + 8.0116000e+03 1.9695695e+00 + 8.0120000e+03 1.7929367e+00 + 8.0124000e+03 1.5733349e+00 + 8.0128000e+03 1.3195370e+00 + 8.0132000e+03 5.5695864e-01 + 8.0136000e+03 -2.3348646e-01 + 8.0140000e+03 -1.0463680e+00 + 8.0144000e+03 -1.6650657e+00 + 8.0148000e+03 -2.0242084e+00 + 8.0152000e+03 -2.0139926e+00 + 8.0156000e+03 -1.8119009e+00 + 8.0160000e+03 -1.3953321e+00 + 8.0164000e+03 -9.8384951e-01 + 8.0168000e+03 -5.7224490e-01 + 8.0172000e+03 -1.8078138e-01 + 8.0176000e+03 -1.0973886e-01 + 8.0180000e+03 1.0074571e-01 + 8.0184000e+03 2.3084003e-01 + 8.0188000e+03 6.1553830e-01 + 8.0192000e+03 5.8463892e-01 + 8.0196000e+03 4.5042727e-01 + 8.0200000e+03 6.8181339e-01 + 8.0204000e+03 1.1558414e+00 + 8.0208000e+03 1.2116720e+00 + 8.0212000e+03 1.2560688e+00 + 8.0216000e+03 1.2503911e+00 + 8.0220000e+03 1.4578785e+00 + 8.0224000e+03 1.6718559e+00 + 8.0228000e+03 1.7726149e+00 + 8.0232000e+03 1.6865941e+00 + 8.0236000e+03 1.4662116e+00 + 8.0240000e+03 1.3423335e+00 + 8.0244000e+03 1.1338648e+00 + 8.0248000e+03 8.0715741e-01 + 8.0252000e+03 -2.7879519e-01 + 8.0256000e+03 -1.1281851e+00 + 8.0260000e+03 -1.8915024e+00 + 8.0264000e+03 -2.0146654e+00 + 8.0268000e+03 -1.7177527e+00 + 8.0272000e+03 -1.1681308e+00 + 8.0276000e+03 -8.2613914e-01 + 8.0280000e+03 -4.0105723e-01 + 8.0284000e+03 -3.7260093e-01 + 8.0288000e+03 -6.2502104e-01 + 8.0292000e+03 -9.9700154e-01 + 8.0296000e+03 -1.4084855e+00 + 8.0300000e+03 -1.5990332e+00 + 8.0304000e+03 -1.7596544e+00 + 8.0308000e+03 -1.3801560e+00 + 8.0312000e+03 -6.8067592e-01 + 8.0316000e+03 -1.9048129e-01 + 8.0320000e+03 -9.0154107e-02 + 8.0324000e+03 -4.9596741e-02 + 8.0328000e+03 2.1104005e-01 + 8.0332000e+03 5.3166908e-01 + 8.0336000e+03 8.0217163e-01 + 8.0340000e+03 1.4526810e+00 + 8.0344000e+03 1.6232756e+00 + 8.0348000e+03 1.7138922e+00 + 8.0352000e+03 1.9745180e+00 + 8.0356000e+03 1.8250831e+00 + 8.0360000e+03 1.1756048e+00 + 8.0364000e+03 9.4591107e-01 + 8.0368000e+03 7.1604512e-01 + 8.0372000e+03 -2.1414617e-01 + 8.0376000e+03 -9.1445074e-01 + 8.0380000e+03 -1.6848101e+00 + 8.0384000e+03 -1.9550946e+00 + 8.0388000e+03 -1.6152588e+00 + 8.0392000e+03 -1.1753653e+00 + 8.0396000e+03 -9.5543336e-01 + 8.0400000e+03 -6.6561387e-01 + 8.0404000e+03 -4.7591755e-01 + 8.0408000e+03 -5.9609600e-01 + 8.0412000e+03 -7.2653736e-01 + 8.0416000e+03 -6.9700169e-01 + 8.0420000e+03 -3.6709208e-01 + 8.0424000e+03 4.7199273e-01 + 8.0428000e+03 1.6189630e+00 + 8.0432000e+03 2.7460163e+00 + 8.0436000e+03 3.3368379e+00 + 8.0440000e+03 3.4386281e+00 + 8.0444000e+03 2.8519549e+00 + 8.0448000e+03 1.9071003e+00 + 8.0452000e+03 8.8726234e-01 + 8.0456000e+03 2.9778973e-01 + 8.0460000e+03 -3.3150823e-01 + 8.0464000e+03 -5.7339465e-01 + 8.0468000e+03 -5.6162506e-01 + 8.0472000e+03 -8.8739645e-01 + 8.0476000e+03 -1.2878808e+00 + 8.0480000e+03 -1.5422708e+00 + 8.0484000e+03 -1.7542357e+00 + 8.0488000e+03 -2.0846605e+00 + 8.0492000e+03 -2.4136119e+00 + 8.0496000e+03 -2.4349740e+00 + 8.0500000e+03 -2.1345158e+00 + 8.0504000e+03 -1.9742550e+00 + 8.0508000e+03 -1.6542031e+00 + 8.0512000e+03 -8.5427830e-01 + 8.0516000e+03 -5.4585515e-02 + 8.0520000e+03 4.5033107e-02 + 8.0524000e+03 6.4459447e-01 + 8.0528000e+03 8.9425969e-01 + 8.0532000e+03 6.8742429e-01 + 8.0536000e+03 3.6243453e-01 + 8.0540000e+03 5.1067400e-01 + 8.0544000e+03 6.3080975e-01 + 8.0548000e+03 7.9171389e-01 + 8.0552000e+03 1.3215106e+00 + 8.0556000e+03 1.3514807e+00 + 8.0560000e+03 1.8605770e+00 + 8.0564000e+03 2.6082478e+00 + 8.0568000e+03 2.8043887e+00 + 8.0572000e+03 2.5356240e+00 + 8.0576000e+03 2.2165385e+00 + 8.0580000e+03 1.7472609e+00 + 8.0584000e+03 1.6577980e+00 + 8.0588000e+03 1.1677960e+00 + 8.0592000e+03 3.6061961e-02 + 8.0596000e+03 -9.3979491e-01 + 8.0600000e+03 -1.9594924e+00 + 8.0604000e+03 -2.3446237e+00 + 8.0608000e+03 -2.6171903e+00 + 8.0612000e+03 -2.7613015e+00 + 8.0616000e+03 -2.5138013e+00 + 8.0620000e+03 -1.9797154e+00 + 8.0624000e+03 -1.1504916e+00 + 8.0628000e+03 -3.0524505e-02 + 8.0632000e+03 1.7462448e+00 + 8.0636000e+03 2.6736534e+00 + 8.0640000e+03 2.8113634e+00 + 8.0644000e+03 2.6717706e+00 + 8.0648000e+03 2.1523269e+00 + 8.0652000e+03 1.0393839e+00 + 8.0656000e+03 -1.4984227e-01 + 8.0660000e+03 -9.2005626e-01 + 8.0664000e+03 -1.2452365e+00 + 8.0668000e+03 -1.2591931e+00 + 8.0672000e+03 -1.0473347e+00 + 8.0676000e+03 -9.5337540e-01 + 8.0680000e+03 -1.3020677e+00 + 8.0684000e+03 -1.4711316e+00 + 8.0688000e+03 -1.6906722e+00 + 8.0692000e+03 -1.4804773e+00 + 8.0696000e+03 -1.1911309e+00 + 8.0700000e+03 -9.3450239e-01 + 8.0704000e+03 -5.7726322e-01 + 8.0708000e+03 -4.9638850e-02 + 8.0712000e+03 1.3917526e-01 + 8.0716000e+03 -2.4850599e-01 + 8.0720000e+03 -5.3161335e-01 + 8.0724000e+03 -8.0330306e-01 + 8.0728000e+03 -7.4348997e-01 + 8.0732000e+03 -2.0406842e-01 + 8.0736000e+03 6.0581903e-01 + 8.0740000e+03 1.0457805e+00 + 8.0744000e+03 1.4756048e+00 + 8.0748000e+03 1.9199861e+00 + 8.0752000e+03 2.4910557e+00 + 8.0756000e+03 2.6018006e+00 + 8.0760000e+03 2.2895813e+00 + 8.0764000e+03 1.8361561e+00 + 8.0768000e+03 1.6620513e+00 + 8.0772000e+03 1.1972503e+00 + 8.0776000e+03 5.9403816e-01 + 8.0780000e+03 -1.1127619e-01 + 8.0784000e+03 -6.1708433e-01 + 8.0788000e+03 -9.5482398e-01 + 8.0792000e+03 -8.9307623e-01 + 8.0796000e+03 -5.7368112e-01 + 8.0800000e+03 -4.7442135e-01 + 8.0804000e+03 -3.0477625e-01 + 8.0808000e+03 -4.4136573e-01 + 8.0812000e+03 -2.1015983e-01 + 8.0816000e+03 3.6520972e-01 + 8.0820000e+03 7.9301480e-01 + 8.0824000e+03 1.2805763e+00 + 8.0828000e+03 1.6595526e+00 + 8.0832000e+03 1.5546243e+00 + 8.0836000e+03 1.2446555e+00 + 8.0840000e+03 1.1547674e+00 + 8.0844000e+03 1.0124010e+00 + 8.0848000e+03 7.3637454e-01 + 8.0852000e+03 3.1521058e-01 + 8.0856000e+03 -2.9146088e-01 + 8.0860000e+03 -1.3025838e+00 + 8.0864000e+03 -2.4215198e+00 + 8.0868000e+03 -3.4386000e+00 + 8.0872000e+03 -4.2119530e+00 + 8.0876000e+03 -4.3222908e+00 + 8.0880000e+03 -3.6331008e+00 + 8.0884000e+03 -3.3239961e+00 + 8.0888000e+03 -2.4686997e+00 + 8.0892000e+03 -1.4659950e+00 + 8.0896000e+03 -5.3988894e-01 + 8.0900000e+03 5.2873103e-01 + 8.0904000e+03 1.4592078e+00 + 8.0908000e+03 2.4536493e+00 + 8.0912000e+03 2.8919177e+00 + 8.0916000e+03 3.2561443e+00 + 8.0920000e+03 3.4411361e+00 + 8.0924000e+03 3.5357446e+00 + 8.0928000e+03 3.4025459e+00 + 8.0932000e+03 3.1326124e+00 + 8.0936000e+03 2.6325976e+00 + 8.0940000e+03 2.2523999e+00 + 8.0944000e+03 2.0124134e+00 + 8.0948000e+03 1.5625650e+00 + 8.0952000e+03 7.6285516e-01 + 8.0956000e+03 -7.7684213e-01 + 8.0960000e+03 -1.9967789e+00 + 8.0964000e+03 -2.8755979e+00 + 8.0968000e+03 -3.1291843e+00 + 8.0972000e+03 -3.1644569e+00 + 8.0976000e+03 -2.8719805e+00 + 8.0980000e+03 -2.4215104e+00 + 8.0984000e+03 -2.0849123e+00 + 8.0988000e+03 -1.6695754e+00 + 8.0992000e+03 -1.2202485e+00 + 8.0996000e+03 -3.3092559e-01 + 8.1000000e+03 6.1841682e-01 + 8.1004000e+03 1.4778962e+00 + 8.1008000e+03 2.1809658e+00 + 8.1012000e+03 3.0879137e+00 + 8.1016000e+03 3.2282891e+00 + 8.1020000e+03 2.8387304e+00 + 8.1024000e+03 2.5589954e+00 + 8.1028000e+03 1.8992491e+00 + 8.1032000e+03 1.2894899e+00 + 8.1036000e+03 5.4524344e-01 + 8.1040000e+03 -3.1226148e-01 + 8.1044000e+03 -6.9047791e-01 + 8.1048000e+03 -1.3237020e+00 + 8.1052000e+03 -1.8649222e+00 + 8.1056000e+03 -1.8586905e+00 + 8.1060000e+03 -1.6742289e+00 + 8.1064000e+03 -1.4903187e+00 + 8.1068000e+03 -1.3302939e+00 + 8.1072000e+03 -1.4664064e+00 + 8.1076000e+03 -1.6903414e+00 + 8.1080000e+03 -1.7722844e+00 + 8.1084000e+03 -1.5956326e+00 + 8.1088000e+03 -1.1768435e+00 + 8.1092000e+03 -1.8857180e-01 + 8.1096000e+03 6.0961773e-01 + 8.1100000e+03 1.2695587e+00 + 8.1104000e+03 1.7691886e+00 + 8.1108000e+03 1.7192569e+00 + 8.1112000e+03 1.3498680e+00 + 8.1116000e+03 1.2185392e+00 + 8.1120000e+03 1.2671694e+00 + 8.1124000e+03 1.1835579e+00 + 8.1128000e+03 1.0003326e+00 + 8.1132000e+03 6.2078378e-01 + 8.1136000e+03 4.7319095e-01 + 8.1140000e+03 4.0305955e-01 + 8.1144000e+03 2.0295277e-01 + 8.1148000e+03 1.4254012e-01 + 8.1152000e+03 5.2069183e-02 + 8.1156000e+03 -3.7862538e-01 + 8.1160000e+03 -6.7940128e-01 + 8.1164000e+03 -6.5975546e-01 + 8.1168000e+03 -5.3039829e-01 + 8.1172000e+03 -4.1006625e-02 + 8.1176000e+03 7.0846731e-01 + 8.1180000e+03 1.2581673e+00 + 8.1184000e+03 1.1180459e+00 + 8.1188000e+03 9.1814342e-01 + 8.1192000e+03 7.8851144e-01 + 8.1196000e+03 7.3899025e-01 + 8.1200000e+03 8.6950787e-01 + 8.1204000e+03 7.1000404e-01 + 8.1208000e+03 -1.1948033e-01 + 8.1212000e+03 -7.7903412e-01 + 8.1216000e+03 -1.1484708e+00 + 8.1220000e+03 -1.0077688e+00 + 8.1224000e+03 -6.8736945e-01 + 8.1228000e+03 -3.2646129e-01 + 8.1232000e+03 1.0381074e-01 + 8.1236000e+03 3.3381470e-01 + 8.1240000e+03 2.3603093e-02 + 8.1244000e+03 -1.3681355e-01 + 8.1248000e+03 -2.2729422e-01 + 8.1252000e+03 -4.7798229e-02 + 8.1256000e+03 3.1650797e-02 + 8.1260000e+03 -1.9882963e-01 + 8.1264000e+03 -9.3922771e-01 + 8.1268000e+03 -1.5094818e+00 + 8.1272000e+03 -2.2796042e+00 + 8.1276000e+03 -2.5596899e+00 + 8.1280000e+03 -2.4198225e+00 + 8.1284000e+03 -2.2099132e+00 + 8.1288000e+03 -1.9699918e+00 + 8.1292000e+03 -1.6000348e+00 + 8.1296000e+03 -1.0798892e+00 + 8.1300000e+03 -5.0612260e-01 + 8.1304000e+03 5.2823556e-02 + 8.1308000e+03 3.3785452e-01 + 8.1312000e+03 1.0375269e+00 + 8.1316000e+03 1.8735322e+00 + 8.1320000e+03 2.4051479e+00 + 8.1324000e+03 2.6554747e+00 + 8.1328000e+03 2.2755053e+00 + 8.1332000e+03 1.2653146e+00 + 8.1336000e+03 3.6503852e-01 + 8.1340000e+03 8.4644339e-02 + 8.1344000e+03 2.7400942e-01 + 8.1348000e+03 8.3322200e-01 + 8.1352000e+03 1.4904450e+00 + 8.1356000e+03 2.0423164e+00 + 8.1360000e+03 2.5700033e+00 + 8.1364000e+03 2.4349634e+00 + 8.1368000e+03 2.2831975e+00 + 8.1372000e+03 1.3216952e+00 + 8.1376000e+03 3.0234721e-01 + 8.1380000e+03 -8.6728923e-02 + 8.1384000e+03 -6.5559705e-01 + 8.1388000e+03 -1.8250568e+00 + 8.1392000e+03 -1.7852611e+00 + 8.1396000e+03 -1.4460867e+00 + 8.1400000e+03 -1.2970252e+00 + 8.1404000e+03 -1.1181759e+00 + 8.1408000e+03 -1.0119288e+00 + 8.1412000e+03 -9.8899038e-01 + 8.1416000e+03 -7.4771780e-01 + 8.1420000e+03 -6.3689744e-01 + 8.1424000e+03 -5.2872097e-01 + 8.1428000e+03 -6.4821117e-01 + 8.1432000e+03 -2.9727687e-01 + 8.1436000e+03 -3.2725564e-01 + 8.1440000e+03 -5.4666059e-01 + 8.1444000e+03 -6.7637162e-01 + 8.1448000e+03 -7.7598613e-01 + 8.1452000e+03 -1.6559960e+00 + 8.1456000e+03 -1.5761681e+00 + 8.1460000e+03 -1.3364869e+00 + 8.1464000e+03 -8.8692490e-01 + 8.1468000e+03 -6.5474284e-01 + 8.1472000e+03 -5.3916013e-01 + 8.1476000e+03 -4.3274497e-01 + 8.1480000e+03 -1.0379602e-01 + 8.1484000e+03 2.7402929e-01 + 8.1488000e+03 9.1849828e-02 + 8.1492000e+03 -1.2692166e-01 + 8.1496000e+03 -2.3601653e-01 + 8.1500000e+03 -3.2524006e-01 + 8.1504000e+03 -3.7439665e-01 + 8.1508000e+03 9.6334085e-02 + 8.1512000e+03 5.6692844e-01 + 8.1516000e+03 7.3748223e-01 + 8.1520000e+03 5.4789306e-01 + 8.1524000e+03 4.8812681e-01 + 8.1528000e+03 3.5814611e-01 + 8.1532000e+03 -3.1105047e-01 + 8.1536000e+03 -5.9956822e-01 + 8.1540000e+03 -4.6151706e-01 + 8.1544000e+03 -2.5391378e-01 + 8.1548000e+03 -1.7191042e-01 + 8.1552000e+03 -1.4308033e-01 + 8.1556000e+03 -3.2376091e-01 + 8.1560000e+03 5.5654138e-02 + 8.1564000e+03 7.9499556e-01 + 8.1568000e+03 1.4395291e+00 + 8.1572000e+03 1.9260524e+00 + 8.1576000e+03 2.0940440e+00 + 8.1580000e+03 2.0864722e+00 + 8.1584000e+03 2.1731702e+00 + 8.1588000e+03 1.9506675e+00 + 8.1592000e+03 1.1895179e+00 + 8.1596000e+03 4.2147909e-01 + 8.1600000e+03 -3.2869188e-01 + 8.1604000e+03 -6.8914042e-01 + 8.1608000e+03 -4.4864760e-01 + 8.1612000e+03 -1.6843664e-01 + 8.1616000e+03 -8.1397455e-03 + 8.1620000e+03 7.2108949e-02 + 8.1624000e+03 2.4248299e-03 + 8.1628000e+03 -3.9726070e-01 + 8.1632000e+03 -7.4711124e-01 + 8.1636000e+03 -1.1569798e+00 + 8.1640000e+03 -1.3269167e+00 + 8.1644000e+03 -1.3668922e+00 + 8.1648000e+03 -1.5728769e+00 + 8.1652000e+03 -2.0658054e+00 + 8.1656000e+03 -2.0415750e+00 + 8.1660000e+03 -1.9598820e+00 + 8.1664000e+03 -2.0195246e+00 + 8.1668000e+03 -2.0622119e+00 + 8.1672000e+03 -1.6920362e+00 + 8.1676000e+03 -1.1065778e+00 + 8.1680000e+03 -7.4994293e-01 + 8.1684000e+03 -6.4990973e-01 + 8.1688000e+03 -3.8007806e-01 + 8.1692000e+03 -4.8072508e-02 + 8.1696000e+03 3.1589020e-01 + 8.1700000e+03 8.9621481e-01 + 8.1704000e+03 1.1561112e+00 + 8.1708000e+03 1.2057004e+00 + 8.1712000e+03 1.0152906e+00 + 8.1716000e+03 1.3149617e+00 + 8.1720000e+03 1.5947390e+00 + 8.1724000e+03 2.0545894e+00 + 8.1728000e+03 1.6444439e+00 + 8.1732000e+03 1.0143548e+00 + 8.1736000e+03 4.9445772e-01 + 8.1740000e+03 2.2818565e-01 + 8.1744000e+03 2.8832735e-02 + 8.1748000e+03 3.0698928e-02 + 8.1752000e+03 -6.6664076e-02 + 8.1756000e+03 -1.2446854e-01 + 8.1760000e+03 -4.2371739e-02 + 8.1764000e+03 4.8342387e-02 + 8.1768000e+03 -1.2287645e-03 + 8.1772000e+03 -1.7143280e-01 + 8.1776000e+03 -3.0480127e-01 + 8.1780000e+03 -4.3642561e-01 + 8.1784000e+03 -5.8029914e-01 + 8.1788000e+03 -4.9170907e-01 + 8.1792000e+03 -8.1776573e-02 + 8.1796000e+03 8.1059592e-01 + 8.1800000e+03 1.8561892e+00 + 8.1804000e+03 2.4203406e+00 + 8.1808000e+03 2.2698107e+00 + 8.1812000e+03 1.8893882e+00 + 8.1816000e+03 1.7494563e+00 + 8.1820000e+03 1.4100202e+00 + 8.1824000e+03 7.3776745e-01 + 8.1828000e+03 1.1312463e-01 + 8.1832000e+03 -6.8670098e-01 + 8.1836000e+03 -1.4228642e+00 + 8.1840000e+03 -1.8471535e+00 + 8.1844000e+03 -1.9487881e+00 + 8.1848000e+03 -1.7355022e+00 + 8.1852000e+03 -1.5341154e+00 + 8.1856000e+03 -1.0371777e+00 + 8.1860000e+03 -7.1318097e-01 + 8.1864000e+03 -8.5954562e-01 + 8.1868000e+03 -8.7760084e-01 + 8.1872000e+03 -7.4188198e-01 + 8.1876000e+03 -7.8151784e-01 + 8.1880000e+03 -8.0655882e-01 + 8.1884000e+03 -3.3639042e-01 + 8.1888000e+03 4.9385073e-01 + 8.1892000e+03 5.5438023e-01 + 8.1896000e+03 5.9508731e-01 + 8.1900000e+03 4.2605348e-01 + 8.1904000e+03 1.7671427e-01 + 8.1908000e+03 -3.3067385e-01 + 8.1912000e+03 -9.2441610e-01 + 8.1916000e+03 -1.4715249e+00 + 8.1920000e+03 -1.1994042e+00 + 8.1924000e+03 -1.0547955e+00 + 8.1928000e+03 -1.1915478e+00 + 8.1932000e+03 -9.3169639e-01 + 8.1936000e+03 -3.8622422e-01 + 8.1940000e+03 1.0305816e-01 + 8.1944000e+03 1.6252659e-01 + 8.1948000e+03 9.7222877e-01 + 8.1952000e+03 1.6020033e+00 + 8.1956000e+03 1.8206098e+00 + 8.1960000e+03 2.1307039e+00 + 8.1964000e+03 2.1875671e+00 + 8.1968000e+03 2.3049732e+00 + 8.1972000e+03 2.2023799e+00 + 8.1976000e+03 2.1425085e+00 + 8.1980000e+03 2.1725625e+00 + 8.1984000e+03 2.2926259e+00 + 8.1988000e+03 2.2427142e+00 + 8.1992000e+03 1.8528487e+00 + 8.1996000e+03 1.5329470e+00 + 8.2000000e+03 7.2307818e-01 + 8.2004000e+03 4.1328331e-01 + 8.2008000e+03 2.1881184e-01 + 8.2012000e+03 -7.3453584e-02 + 8.2016000e+03 -6.7410636e-01 + 8.2020000e+03 -1.1941216e+00 + 8.2024000e+03 -1.6706338e+00 + 8.2028000e+03 -2.1946667e+00 + 8.2032000e+03 -2.7432879e+00 + 8.2036000e+03 -2.9290165e+00 + 8.2040000e+03 -2.5793051e+00 + 8.2044000e+03 -2.1894408e+00 + 8.2048000e+03 -1.9493661e+00 + 8.2052000e+03 -1.5791459e+00 + 8.2056000e+03 -1.4088120e+00 + 8.2060000e+03 -1.0984085e+00 + 8.2064000e+03 -7.3796351e-01 + 8.2068000e+03 -2.7743761e-01 + 8.2072000e+03 -1.3325053e-01 + 8.2076000e+03 4.1457927e-01 + 8.2080000e+03 8.3547903e-01 + 8.2084000e+03 1.2835827e+00 + 8.2088000e+03 1.4447057e+00 + 8.2092000e+03 1.1130620e+00 + 8.2096000e+03 4.6437904e-01 + 8.2100000e+03 2.3589568e-01 + 8.2104000e+03 -3.1462938e-01 + 8.2108000e+03 -7.0982943e-01 + 8.2112000e+03 -1.2227491e+00 + 8.2116000e+03 -1.5203036e+00 + 8.2120000e+03 -1.7133312e+00 + 8.2124000e+03 -1.4735327e+00 + 8.2128000e+03 -1.3483573e+00 + 8.2132000e+03 -1.1130485e+00 + 8.2136000e+03 -6.2102325e-01 + 8.2140000e+03 3.0116955e-01 + 8.2144000e+03 1.4146362e+00 + 8.2148000e+03 2.3215858e+00 + 8.2152000e+03 2.6656404e+00 + 8.2156000e+03 2.6500571e+00 + 8.2160000e+03 2.3266736e+00 + 8.2164000e+03 1.8207631e+00 + 8.2168000e+03 1.6616705e+00 + 8.2172000e+03 1.7289525e+00 + 8.2176000e+03 1.6893104e+00 + 8.2180000e+03 1.5094837e+00 + 8.2184000e+03 1.4595701e+00 + 8.2188000e+03 1.0494702e+00 + 8.2192000e+03 3.3949026e-01 + 8.2196000e+03 -5.3052216e-01 + 8.2200000e+03 -1.1907122e+00 + 8.2204000e+03 -1.4410769e+00 + 8.2208000e+03 -1.2115610e+00 + 8.2212000e+03 -1.1024412e+00 + 8.2216000e+03 -5.3330146e-01 + 8.2220000e+03 -4.4423703e-01 + 8.2224000e+03 -7.3496919e-01 + 8.2228000e+03 -1.2355518e+00 + 8.2232000e+03 -1.4359415e+00 + 8.2236000e+03 -1.2461632e+00 + 8.2240000e+03 -9.0784149e-01 + 8.2244000e+03 -8.2097837e-01 + 8.2248000e+03 -8.3546895e-01 + 8.2252000e+03 -1.4387151e+00 + 8.2256000e+03 -1.9161979e+00 + 8.2260000e+03 -2.3360472e+00 + 8.2264000e+03 -2.4859504e+00 + 8.2268000e+03 -1.9657373e+00 + 8.2272000e+03 -1.6254452e+00 + 8.2276000e+03 -9.8511328e-01 + 8.2280000e+03 -1.3492687e-01 + 8.2284000e+03 5.5322371e-01 + 8.2288000e+03 9.3783164e-01 + 8.2292000e+03 1.2917879e+00 + 8.2296000e+03 1.2553502e+00 + 8.2300000e+03 1.2951886e+00 + 8.2304000e+03 1.5547971e+00 + 8.2308000e+03 1.6897638e+00 + 8.2312000e+03 1.4001768e+00 + 8.2316000e+03 8.9864892e-01 + 8.2320000e+03 1.8360233e-01 + 8.2324000e+03 -2.6788183e-01 + 8.2328000e+03 -7.0051679e-01 + 8.2332000e+03 -6.5363522e-01 + 8.2336000e+03 -2.4421222e-01 + 8.2340000e+03 -6.4620313e-02 + 8.2344000e+03 -2.3447396e-01 + 8.2348000e+03 -3.7394398e-01 + 8.2352000e+03 -3.1309244e-01 + 8.2356000e+03 -1.1882099e-02 + 8.2360000e+03 4.0939020e-01 + 8.2364000e+03 9.5068321e-01 + 8.2368000e+03 1.3421070e+00 + 8.2372000e+03 1.5631052e+00 + 8.2376000e+03 2.0636810e+00 + 8.2380000e+03 2.1336294e+00 + 8.2384000e+03 2.0729618e+00 + 8.2388000e+03 2.0015285e+00 + 8.2392000e+03 1.8700472e+00 + 8.2396000e+03 1.4086793e+00 + 8.2400000e+03 9.4965265e-01 + 8.2404000e+03 -2.6267887e-01 + 8.2408000e+03 -1.9436171e+00 + 8.2412000e+03 -3.0536045e+00 + 8.2416000e+03 -3.3832782e+00 + 8.2420000e+03 -3.3027032e+00 + 8.2424000e+03 -3.1619623e+00 + 8.2428000e+03 -2.8713439e+00 + 8.2432000e+03 -2.2608501e+00 + 8.2436000e+03 -1.5103958e+00 + 8.2440000e+03 -9.1019039e-01 + 8.2444000e+03 -5.5018427e-01 + 8.2448000e+03 2.8963708e-01 + 8.2452000e+03 8.3926851e-01 + 8.2456000e+03 4.0885979e-01 + 8.2460000e+03 1.8828794e-01 + 8.2464000e+03 -6.2523584e-02 + 8.2468000e+03 -1.1346133e-01 + 8.2472000e+03 3.5435544e-02 + 8.2476000e+03 6.0453878e-01 + 8.2480000e+03 1.3938736e+00 + 8.2484000e+03 2.1834988e+00 + 8.2488000e+03 2.6334909e+00 + 8.2492000e+03 2.4035677e+00 + 8.2496000e+03 1.7537482e+00 + 8.2500000e+03 1.0339109e+00 + 8.2504000e+03 2.8416975e-01 + 8.2508000e+03 -2.0564998e-01 + 8.2512000e+03 -5.4550030e-01 + 8.2516000e+03 -7.8511980e-01 + 8.2520000e+03 -1.1348140e+00 + 8.2524000e+03 -1.5646013e+00 + 8.2528000e+03 -1.7743466e+00 + 8.2532000e+03 -1.5240276e+00 + 8.2536000e+03 -1.1835762e+00 + 8.2540000e+03 -8.2307640e-01 + 8.2544000e+03 -4.4257317e-01 + 8.2548000e+03 -1.2073645e-02 + 8.2552000e+03 7.1812089e-01 + 8.2556000e+03 1.1680931e+00 + 8.2560000e+03 1.1283446e+00 + 8.2564000e+03 9.5845634e-01 + 8.2568000e+03 6.5844718e-01 + 8.2572000e+03 4.9824885e-01 + 8.2576000e+03 5.4763997e-01 + 8.2580000e+03 1.0070607e+00 + 8.2584000e+03 4.9662801e-01 + 8.2588000e+03 3.3630876e-01 + 8.2592000e+03 2.6610067e-01 + 8.2596000e+03 -7.3989255e-02 + 8.2600000e+03 -2.6379134e-01 + 8.2604000e+03 -4.9467521e-01 + 8.2608000e+03 -8.5520957e-01 + 8.2612000e+03 -1.0955146e+00 + 8.2616000e+03 -9.1571687e-01 + 8.2620000e+03 -5.4585629e-01 + 8.2624000e+03 -4.9589060e-01 + 8.2628000e+03 -5.3594407e-01 + 8.2632000e+03 -5.9582146e-01 + 8.2636000e+03 -6.2561662e-01 + 8.2640000e+03 -5.4536356e-01 + 8.2644000e+03 -1.1504407e-01 + 8.2648000e+03 1.1525874e-01 + 8.2652000e+03 1.9514331e-01 + 8.2656000e+03 1.3495105e-01 + 8.2660000e+03 -4.1526582e-01 + 8.2664000e+03 -5.6553810e-01 + 8.2668000e+03 -4.8585917e-01 + 8.2672000e+03 -3.6328672e-02 + 8.2676000e+03 2.2294232e-01 + 8.2680000e+03 4.2218012e-01 + 8.2684000e+03 7.5150137e-01 + 8.2688000e+03 6.8096097e-01 + 8.2692000e+03 4.0054959e-01 + 8.2696000e+03 -1.7983586e-01 + 8.2700000e+03 -8.4572179e-01 + 8.2704000e+03 -1.2972297e+00 + 8.2708000e+03 -1.1681312e+00 + 8.2712000e+03 -1.0326602e+00 + 8.2716000e+03 -7.9128142e-01 + 8.2720000e+03 -6.0162280e-01 + 8.2724000e+03 -2.5190987e-01 + 8.2728000e+03 2.5756116e-01 + 8.2732000e+03 1.1072815e+00 + 8.2736000e+03 1.6072936e+00 + 8.2740000e+03 1.5373466e+00 + 8.2744000e+03 8.8775215e-01 + 8.2748000e+03 3.0848048e-01 + 8.2752000e+03 2.7942866e-01 + 8.2756000e+03 2.3019080e-01 + 8.2760000e+03 -7.2940214e-01 + 8.2764000e+03 -1.0490611e+00 + 8.2768000e+03 -1.1488471e+00 + 8.2772000e+03 -1.0890386e+00 + 8.2776000e+03 -1.2240476e+00 + 8.2780000e+03 -1.1130703e+00 + 8.2784000e+03 -7.2492490e-01 + 8.2788000e+03 -5.5258723e-01 + 8.2792000e+03 -1.3947217e-01 + 8.2796000e+03 5.3054187e-01 + 8.2800000e+03 1.2605876e+00 + 8.2804000e+03 1.4805963e+00 + 8.2808000e+03 9.3066628e-01 + 8.2812000e+03 3.7075058e-01 + 8.2816000e+03 2.5236935e-01 + 8.2820000e+03 -2.8947488e-02 + 8.2824000e+03 -2.0964544e-01 + 8.2828000e+03 -8.8244020e-02 + 8.2832000e+03 -2.9139926e-01 + 8.2836000e+03 -7.8193893e-01 + 8.2840000e+03 -4.6217078e-01 + 8.2844000e+03 5.2757690e-01 + 8.2848000e+03 1.2673039e+00 + 8.2852000e+03 2.2370265e+00 + 8.2856000e+03 2.0668023e+00 + 8.2860000e+03 1.1165212e+00 + 8.2864000e+03 1.9616210e-01 + 8.2868000e+03 -1.8436344e-01 + 8.2872000e+03 -2.2494028e-01 + 8.2876000e+03 -1.3541918e-01 + 8.2880000e+03 -2.1583062e-01 + 8.2884000e+03 -1.4600516e-01 + 8.2888000e+03 -4.6082237e-02 + 8.2892000e+03 -3.7634443e-01 + 8.2896000e+03 -6.9666103e-01 + 8.2900000e+03 -9.5604788e-01 + 8.2904000e+03 -1.3854014e+00 + 8.2908000e+03 -1.4746624e+00 + 8.2912000e+03 -1.2440758e+00 + 8.2916000e+03 -6.1355448e-01 + 8.2920000e+03 -7.2943966e-02 + 8.2924000e+03 3.4761913e-01 + 8.2928000e+03 8.7784186e-01 + 8.2932000e+03 1.1677970e+00 + 8.2936000e+03 1.0076640e+00 + 8.2940000e+03 6.2746717e-01 + 8.2944000e+03 4.1727132e-01 + 8.2948000e+03 1.3701544e-01 + 8.2952000e+03 2.8681224e-01 + 8.2956000e+03 -2.6294668e-01 + 8.2960000e+03 -1.0036612e+00 + 8.2964000e+03 -1.0738049e+00 + 8.2968000e+03 -1.4639249e+00 + 8.2972000e+03 -1.8739858e+00 + 8.2976000e+03 -1.2339336e+00 + 8.2980000e+03 -9.0384891e-01 + 8.2984000e+03 -7.9366049e-01 + 8.2988000e+03 -3.7352283e-01 + 8.2992000e+03 3.6669108e-02 + 8.2996000e+03 5.5698652e-01 + 8.3000000e+03 7.1727641e-01 + 8.3004000e+03 8.6751420e-01 + 8.3008000e+03 1.2076471e+00 + 8.3012000e+03 1.5276575e+00 + 8.3016000e+03 1.6252736e+00 + 8.3020000e+03 1.4093121e+00 + 8.3024000e+03 1.0115905e+00 + 8.3028000e+03 8.2100181e-01 + 8.3032000e+03 5.9340054e-01 + 8.3036000e+03 2.1130760e-01 + 8.3040000e+03 1.4509571e-01 + 8.3044000e+03 5.8466326e-01 + 8.3048000e+03 1.0840632e+00 + 8.3052000e+03 1.5232897e+00 + 8.3056000e+03 2.3925792e+00 + 8.3060000e+03 2.3120030e+00 + 8.3064000e+03 1.8317350e+00 + 8.3068000e+03 1.7317322e+00 + 8.3072000e+03 7.3216890e-01 + 8.3076000e+03 -6.1795747e-01 + 8.3080000e+03 -1.4779252e+00 + 8.3084000e+03 -1.6079247e+00 + 8.3088000e+03 -1.3675119e+00 + 8.3092000e+03 -1.0589900e+00 + 8.3096000e+03 -9.8297797e-01 + 8.3100000e+03 -8.6090623e-01 + 8.3104000e+03 -7.5133470e-01 + 8.3108000e+03 -7.1494694e-01 + 8.3112000e+03 -7.8462981e-01 + 8.3116000e+03 -8.8463780e-01 + 8.3120000e+03 -7.3717945e-01 + 8.3124000e+03 -8.3506754e-01 + 8.3128000e+03 -7.9791728e-01 + 8.3132000e+03 -8.3988446e-01 + 8.3136000e+03 -1.0352065e+00 + 8.3140000e+03 -1.1753189e+00 + 8.3144000e+03 -1.5553791e+00 + 8.3148000e+03 -1.7154263e+00 + 8.3152000e+03 -1.2754554e+00 + 8.3156000e+03 -1.9540084e-01 + 8.3160000e+03 6.4465277e-01 + 8.3164000e+03 1.0246521e+00 + 8.3168000e+03 1.4110256e+00 + 8.3172000e+03 1.5343518e+00 + 8.3176000e+03 1.8262737e+00 + 8.3180000e+03 1.9989725e+00 + 8.3184000e+03 1.7942848e+00 + 8.3188000e+03 1.5076907e+00 + 8.3192000e+03 1.2744964e+00 + 8.3196000e+03 1.1435951e+00 + 8.3200000e+03 1.0515749e+00 + 8.3204000e+03 6.9246754e-01 + 8.3208000e+03 7.3140001e-01 + 8.3212000e+03 5.3154876e-01 + 8.3216000e+03 -6.7757839e-03 + 8.3220000e+03 -6.4716034e-01 + 8.3224000e+03 -1.2575539e+00 + 8.3228000e+03 -1.7055310e+00 + 8.3232000e+03 -1.8737624e+00 + 8.3236000e+03 -1.6837551e+00 + 8.3240000e+03 -1.8823263e+00 + 8.3244000e+03 -1.9990627e+00 + 8.3248000e+03 -1.8194252e+00 + 8.3252000e+03 -1.4398132e+00 + 8.3256000e+03 -1.0401930e+00 + 8.3260000e+03 -1.9046411e-01 + 8.3264000e+03 6.0924285e-01 + 8.3268000e+03 1.4189576e+00 + 8.3272000e+03 2.0687614e+00 + 8.3276000e+03 2.5686344e+00 + 8.3280000e+03 2.9485251e+00 + 8.3284000e+03 3.2987366e+00 + 8.3288000e+03 3.0091294e+00 + 8.3292000e+03 2.2998612e+00 + 8.3296000e+03 1.9808928e+00 + 8.3300000e+03 5.0195109e-01 + 8.3304000e+03 -1.6696762e-01 + 8.3308000e+03 -6.4592149e-01 + 8.3312000e+03 -7.4784619e-01 + 8.3316000e+03 -1.0614102e+00 + 8.3320000e+03 -1.2430369e+00 + 8.3324000e+03 -1.2240787e+00 + 8.3328000e+03 -1.0441493e+00 + 8.3332000e+03 -1.4743498e+00 + 8.3336000e+03 -1.6070586e+00 + 8.3340000e+03 -1.6000014e+00 + 8.3344000e+03 -1.7591771e+00 + 8.3348000e+03 -1.7461254e+00 + 8.3352000e+03 -1.4195190e+00 + 8.3356000e+03 -1.0308206e+00 + 8.3360000e+03 -8.4211443e-01 + 8.3364000e+03 1.6759570e-02 + 8.3368000e+03 1.7327204e-01 + 8.3372000e+03 3.6737302e-01 + 8.3376000e+03 8.5447927e-01 + 8.3380000e+03 1.2265853e+00 + 8.3384000e+03 1.2672744e+00 + 8.3388000e+03 1.0981800e+00 + 8.3392000e+03 1.1691304e+00 + 8.3396000e+03 1.4101600e+00 + 8.3400000e+03 1.6112968e+00 + 8.3404000e+03 1.5527672e+00 + 8.3408000e+03 1.1743766e+00 + 8.3412000e+03 8.1607856e-01 + 8.3416000e+03 2.0880273e-01 + 8.3420000e+03 -7.1421593e-02 + 8.3424000e+03 -3.7797048e-01 + 8.3428000e+03 -4.7571523e-01 + 8.3432000e+03 -3.7199918e-01 + 8.3436000e+03 -1.7858878e-01 + 8.3440000e+03 -3.2958469e-01 + 8.3444000e+03 -4.1926015e-01 + 8.3448000e+03 -5.8168164e-01 + 8.3452000e+03 -4.3854911e-01 + 8.3456000e+03 -3.1809098e-01 + 8.3460000e+03 -4.9465444e-01 + 8.3464000e+03 -7.1995782e-01 + 8.3468000e+03 -7.9290719e-01 + 8.3472000e+03 -8.9369148e-01 + 8.3476000e+03 -5.9386433e-01 + 8.3480000e+03 -1.4378723e-01 + 8.3484000e+03 2.5669758e-01 + 8.3488000e+03 3.1959301e-01 + 8.3492000e+03 4.9295125e-01 + 8.3496000e+03 2.0038283e-01 + 8.3500000e+03 -1.6633967e-01 + 8.3504000e+03 -6.3695788e-01 + 8.3508000e+03 -6.7530379e-01 + 8.3512000e+03 -7.8464631e-01 + 8.3516000e+03 -9.5438041e-01 + 8.3520000e+03 -1.1343228e+00 + 8.3524000e+03 -9.3437727e-01 + 8.3528000e+03 -7.2451293e-01 + 8.3532000e+03 -6.5450519e-01 + 8.3536000e+03 -4.9478279e-01 + 8.3540000e+03 -1.0482862e-01 + 8.3544000e+03 2.9478943e-01 + 8.3548000e+03 5.1437190e-01 + 8.3552000e+03 7.5917896e-01 + 8.3556000e+03 6.5728489e-01 + 8.3560000e+03 4.2282072e-01 + 8.3564000e+03 5.6040311e-01 + 8.3568000e+03 1.2088805e+00 + 8.3572000e+03 2.2081774e+00 + 8.3576000e+03 2.8078076e+00 + 8.3580000e+03 3.0579001e+00 + 8.3584000e+03 2.9180425e+00 + 8.3588000e+03 2.1286850e+00 + 8.3592000e+03 5.0956995e-01 + 8.3596000e+03 -6.2358733e-01 + 8.3600000e+03 -1.2270221e+00 + 8.3604000e+03 -1.5787384e+00 + 8.3608000e+03 -2.0149670e+00 + 8.3612000e+03 -2.3188552e+00 + 8.3616000e+03 -2.7696646e+00 + 8.3620000e+03 -3.3686633e+00 + 8.3624000e+03 -3.5602163e+00 + 8.3628000e+03 -3.5948361e+00 + 8.3632000e+03 -3.1557630e+00 + 8.3636000e+03 -2.2713900e+00 + 8.3640000e+03 -1.1729640e+00 + 8.3644000e+03 -2.5172799e-01 + 8.3648000e+03 1.0161881e+00 + 8.3652000e+03 2.4446405e+00 + 8.3656000e+03 3.0332219e+00 + 8.3660000e+03 3.1237839e+00 + 8.3664000e+03 3.0740235e+00 + 8.3668000e+03 3.2887382e+00 + 8.3672000e+03 3.1938420e+00 + 8.3676000e+03 3.3237612e+00 + 8.3680000e+03 2.7136498e+00 + 8.3684000e+03 2.1933522e+00 + 8.3688000e+03 7.6280876e-01 + 8.3692000e+03 -6.0765048e-01 + 8.3696000e+03 -1.5503437e+00 + 8.3700000e+03 -1.9299803e+00 + 8.3704000e+03 -2.1654818e+00 + 8.3708000e+03 -2.2243938e+00 + 8.3712000e+03 -2.1777099e+00 + 8.3716000e+03 -2.4170484e+00 + 8.3720000e+03 -2.2463989e+00 + 8.3724000e+03 -1.9258697e+00 + 8.3728000e+03 -1.7254107e+00 + 8.3732000e+03 -1.5350126e+00 + 8.3736000e+03 -1.2346236e+00 + 8.3740000e+03 -7.9420017e-01 + 8.3744000e+03 -4.3377875e-01 + 8.3748000e+03 7.4901557e-02 + 8.3752000e+03 6.1167511e-01 + 8.3756000e+03 1.0622730e+00 + 8.3760000e+03 1.1791565e+00 + 8.3764000e+03 1.0358127e+00 + 8.3768000e+03 1.2335507e+00 + 8.3772000e+03 1.5563694e+00 + 8.3776000e+03 1.7361732e+00 + 8.3780000e+03 2.0161100e+00 + 8.3784000e+03 1.4359147e+00 + 8.3788000e+03 9.3572950e-01 + 8.3792000e+03 4.9563741e-01 + 8.3796000e+03 -3.2598220e-01 + 8.3800000e+03 -6.8692561e-01 + 8.3804000e+03 -7.3013540e-01 + 8.3808000e+03 -8.9072488e-01 + 8.3812000e+03 -1.3539219e+00 + 8.3816000e+03 -1.6739473e+00 + 8.3820000e+03 -2.0582991e+00 + 8.3824000e+03 -2.1361100e+00 + 8.3828000e+03 -2.1234465e+00 + 8.3832000e+03 -1.7502937e+00 + 8.3836000e+03 -1.2639206e+00 + 8.3840000e+03 -8.6389813e-01 + 8.3844000e+03 -6.6390312e-01 + 8.3848000e+03 -5.5407523e-01 + 8.3852000e+03 -3.8429356e-01 + 8.3856000e+03 5.1564516e-01 + 8.3860000e+03 1.3755705e+00 + 8.3864000e+03 2.0754773e+00 + 8.3868000e+03 1.9652045e+00 + 8.3872000e+03 1.8446565e+00 + 8.3876000e+03 1.5440227e+00 + 8.3880000e+03 1.2234700e+00 + 8.3884000e+03 1.0630288e+00 + 8.3888000e+03 8.9276741e-01 + 8.3892000e+03 7.9262008e-01 + 8.3896000e+03 7.0258544e-01 + 8.3900000e+03 4.8297919e-01 + 8.3904000e+03 4.3839936e-01 + 8.3908000e+03 2.6159841e-01 + 8.3912000e+03 1.1907702e-01 + 8.3916000e+03 1.9851762e-01 + 8.3920000e+03 -7.3494436e-02 + 8.3924000e+03 -4.8304275e-01 + 8.3928000e+03 -8.2260315e-01 + 8.3932000e+03 -9.6226079e-01 + 8.3936000e+03 -1.1220188e+00 + 8.3940000e+03 -1.3519871e+00 + 8.3944000e+03 -1.4120514e+00 + 8.3948000e+03 -1.1111934e+00 + 8.3952000e+03 -1.1376573e+00 + 8.3956000e+03 -1.3162309e+00 + 8.3960000e+03 -1.2825000e+00 + 8.3964000e+03 -1.2839560e+00 + 8.3968000e+03 -1.0144228e+00 + 8.3972000e+03 -7.7489898e-01 + 8.3976000e+03 -5.5541204e-01 + 8.3980000e+03 -1.2585980e-01 + 8.3984000e+03 9.4004307e-02 + 8.3988000e+03 1.4406150e-01 + 8.3992000e+03 7.3416346e-01 + 8.3996000e+03 1.5343282e+00 + 8.4000000e+03 1.7045372e+00 + 8.4004000e+03 1.6749749e+00 + 8.4008000e+03 1.1255588e+00 + 8.4012000e+03 3.3621638e-01 + 8.4016000e+03 -2.0613557e-01 + 8.4020000e+03 -6.2767584e-01 + 8.4024000e+03 -6.5429927e-01 + 8.4028000e+03 -5.1402154e-01 + 8.4032000e+03 -2.4082311e-01 + 8.4036000e+03 9.6187751e-02 + 8.4040000e+03 8.3559578e-01 + 8.4044000e+03 1.4768183e+00 + 8.4048000e+03 1.9388976e+00 + 8.4052000e+03 1.9493386e+00 + 8.4056000e+03 2.0079482e+00 + 8.4060000e+03 2.5020529e+00 + 8.4064000e+03 3.0243743e+00 + 8.4068000e+03 2.5740451e+00 + 8.4072000e+03 2.0193473e+00 + 8.4076000e+03 1.1496543e+00 + 8.4080000e+03 3.0046337e-01 + 8.4084000e+03 -7.2012060e-01 + 8.4088000e+03 -1.5958513e+00 + 8.4092000e+03 -2.3267035e+00 + 8.4096000e+03 -2.4036705e+00 + 8.4100000e+03 -2.0585038e+00 + 8.4104000e+03 -1.6245027e+00 + 8.4108000e+03 -1.4822680e+00 + 8.4112000e+03 -1.5599968e+00 + 8.4116000e+03 -1.8199789e+00 + 8.4120000e+03 -1.8500904e+00 + 8.4124000e+03 -2.3002938e+00 + 8.4128000e+03 -2.0506576e+00 + 8.4132000e+03 -1.7860519e+00 + 8.4136000e+03 -1.9010552e+00 + 8.4140000e+03 -1.7838345e+00 + 8.4144000e+03 -1.2858648e+00 + 8.4148000e+03 -5.7310541e-01 + 8.4152000e+03 1.5000551e-01 + 8.4156000e+03 7.7209352e-01 + 8.4160000e+03 1.3301817e+00 + 8.4164000e+03 1.5204311e+00 + 8.4168000e+03 1.0808604e+00 + 8.4172000e+03 2.0359755e-01 + 8.4176000e+03 -6.1153134e-01 + 8.4180000e+03 -1.2727428e+00 + 8.4184000e+03 -1.1059891e+00 + 8.4188000e+03 -6.9601091e-01 + 8.4192000e+03 -2.5687900e-01 + 8.4196000e+03 7.1669990e-01 + 8.4200000e+03 1.4536741e+00 + 8.4204000e+03 1.4866460e+00 + 8.4208000e+03 1.4076065e+00 + 8.4212000e+03 1.4023906e+00 + 8.4216000e+03 1.2729482e+00 + 8.4220000e+03 1.0624118e+00 + 8.4224000e+03 1.1083017e+00 + 8.4228000e+03 1.0994245e+00 + 8.4232000e+03 1.3662590e+00 + 8.4236000e+03 1.5156911e+00 + 8.4240000e+03 1.3335407e+00 + 8.4244000e+03 7.6428855e-01 + 8.4248000e+03 6.3516169e-01 + 8.4252000e+03 5.9612399e-01 + 8.4256000e+03 6.2083285e-01 + 8.4260000e+03 7.1725078e-01 + 8.4264000e+03 1.0572457e+00 + 8.4268000e+03 1.0093211e+00 + 8.4272000e+03 8.4875465e-01 + 8.4276000e+03 2.7866636e-01 + 8.4280000e+03 -3.6162514e-01 + 8.4284000e+03 -6.0196313e-01 + 8.4288000e+03 -8.3238080e-01 + 8.4292000e+03 -1.3028348e+00 + 8.4296000e+03 -1.8635001e+00 + 8.4300000e+03 -2.2542795e+00 + 8.4304000e+03 -2.7051768e+00 + 8.4308000e+03 -3.0462920e+00 + 8.4312000e+03 -3.1772014e+00 + 8.4316000e+03 -3.1078199e+00 + 8.4320000e+03 -1.8680480e+00 + 8.4324000e+03 -1.3878627e+00 + 8.4328000e+03 -1.5275393e+00 + 8.4332000e+03 -1.6772114e+00 + 8.4336000e+03 -1.6169109e+00 + 8.4340000e+03 -1.4365801e+00 + 8.4344000e+03 -1.3662220e+00 + 8.4348000e+03 -1.3158180e+00 + 8.4352000e+03 -9.4539623e-01 + 8.4356000e+03 -3.2496559e-01 + 8.4360000e+03 2.9090779e-01 + 8.4364000e+03 1.0023196e+00 + 8.4368000e+03 1.6015922e+00 + 8.4372000e+03 2.0814006e+00 + 8.4376000e+03 2.3163116e+00 + 8.4380000e+03 2.3862608e+00 + 8.4384000e+03 2.1959633e+00 + 8.4388000e+03 2.2654868e+00 + 8.4392000e+03 2.3545826e+00 + 8.4396000e+03 2.6737351e+00 + 8.4400000e+03 3.1626885e+00 + 8.4404000e+03 3.3802494e+00 + 8.4408000e+03 3.1958953e+00 + 8.4412000e+03 2.5030421e+00 + 8.4416000e+03 1.2507433e+00 + 8.4420000e+03 1.7840800e-01 + 8.4424000e+03 -8.9154442e-01 + 8.4428000e+03 -1.4812308e+00 + 8.4432000e+03 -1.6106206e+00 + 8.4436000e+03 -1.4096683e+00 + 8.4440000e+03 -1.1484036e+00 + 8.4444000e+03 -8.6700906e-01 + 8.4448000e+03 -6.8624854e-01 + 8.4452000e+03 -5.1501708e-01 + 8.4456000e+03 -3.9430483e-01 + 8.4460000e+03 -6.9442327e-01 + 8.4464000e+03 -1.0538360e+00 + 8.4468000e+03 -1.2738406e+00 + 8.4472000e+03 -1.3641149e+00 + 8.4476000e+03 -1.1429725e+00 + 8.4480000e+03 -4.3601730e-01 + 8.4484000e+03 2.7062745e-01 + 8.4488000e+03 8.7909125e-01 + 8.4492000e+03 1.2768203e+00 + 8.4496000e+03 9.7139989e-01 + 8.4500000e+03 3.0073951e-01 + 8.4504000e+03 -5.6972180e-01 + 8.4508000e+03 -1.0699395e+00 + 8.4512000e+03 -1.5299460e+00 + 8.4516000e+03 -1.8627284e+00 + 8.4520000e+03 -2.0172410e+00 + 8.4524000e+03 -1.8907662e+00 + 8.4528000e+03 -1.9345389e+00 + 8.4532000e+03 -1.9965389e+00 + 8.4536000e+03 -2.0164524e+00 + 8.4540000e+03 -1.6757467e+00 + 8.4544000e+03 -1.5852205e+00 + 8.4548000e+03 -1.1549685e+00 + 8.4552000e+03 -4.8492696e-01 + 8.4556000e+03 -3.0465690e-01 + 8.4560000e+03 7.0485837e-01 + 8.4564000e+03 8.1455963e-01 + 8.4568000e+03 1.3541034e+00 + 8.4572000e+03 1.2935264e+00 + 8.4576000e+03 4.6295079e-01 + 8.4580000e+03 -1.9757095e-01 + 8.4584000e+03 -5.0810272e-01 + 8.4588000e+03 -3.5854227e-01 + 8.4592000e+03 1.3871950e-01 + 8.4596000e+03 7.8101379e-01 + 8.4600000e+03 1.3000177e+00 + 8.4604000e+03 2.1363059e+00 + 8.4608000e+03 2.9114592e+00 + 8.4612000e+03 3.1639588e+00 + 8.4616000e+03 3.4679953e+00 + 8.4620000e+03 3.7484251e+00 + 8.4624000e+03 3.5491062e+00 + 8.4628000e+03 3.4299413e+00 + 8.4632000e+03 3.4708037e+00 + 8.4636000e+03 2.9213306e+00 + 8.4640000e+03 1.4074635e+00 + 8.4644000e+03 5.5303496e-02 + 8.4648000e+03 -1.1807293e+00 + 8.4652000e+03 -2.0868304e+00 + 8.4656000e+03 -2.8737002e+00 + 8.4660000e+03 -3.4032521e+00 + 8.4664000e+03 -3.6588722e+00 + 8.4668000e+03 -3.7436738e+00 + 8.4672000e+03 -3.6559089e+00 + 8.4676000e+03 -3.6071754e+00 + 8.4680000e+03 -3.5636128e+00 + 8.4684000e+03 -3.0420207e+00 + 8.4688000e+03 -2.2532723e+00 + 8.4692000e+03 -8.3818014e-01 + 8.4696000e+03 8.2762652e-01 + 8.4700000e+03 2.2393208e+00 + 8.4704000e+03 3.5965335e+00 + 8.4708000e+03 4.5419518e+00 + 8.4712000e+03 4.8038618e+00 + 8.4716000e+03 4.5970898e+00 + 8.4720000e+03 4.0676986e+00 + 8.4724000e+03 2.8882700e+00 + 8.4728000e+03 1.9391525e+00 + 8.4732000e+03 1.2298977e+00 + 8.4736000e+03 7.8065509e-01 + 8.4740000e+03 1.4130495e-01 + 8.4744000e+03 -4.7825467e-01 + 8.4748000e+03 -1.3080515e+00 + 8.4752000e+03 -1.9781447e+00 + 8.4756000e+03 -2.6384220e+00 + 8.4760000e+03 -3.3287091e+00 + 8.4764000e+03 -3.6689980e+00 + 8.4768000e+03 -3.9492663e+00 + 8.4772000e+03 -4.0113303e+00 + 8.4776000e+03 -4.1318903e+00 + 8.4780000e+03 -3.6100187e+00 + 8.4784000e+03 -2.9515776e+00 + 8.4788000e+03 -2.0124048e+00 + 8.4792000e+03 -1.1913933e-01 + 8.4796000e+03 2.4156498e+00 + 8.4800000e+03 4.7921652e+00 + 8.4804000e+03 6.5079708e+00 + 8.4808000e+03 6.7423590e+00 + 8.4812000e+03 5.9719359e+00 + 8.4816000e+03 5.0618480e+00 + 8.4820000e+03 4.1021417e+00 + 8.4824000e+03 2.9424404e+00 + 8.4828000e+03 1.5231360e+00 + 8.4832000e+03 4.5420220e-01 + 8.4836000e+03 3.7965068e-02 + 8.4840000e+03 -5.2802074e-01 + 8.4844000e+03 -8.7046466e-01 + 8.4848000e+03 -1.1334725e+00 + 8.4852000e+03 -1.3900136e+00 + 8.4856000e+03 -1.5199085e+00 + 8.4860000e+03 -1.6202307e+00 + 8.4864000e+03 -2.1910237e+00 + 8.4868000e+03 -2.3422103e+00 + 8.4872000e+03 -2.5137782e+00 + 8.4876000e+03 -2.8755002e+00 + 8.4880000e+03 -3.2372699e+00 + 8.4884000e+03 -2.9687799e+00 + 8.4888000e+03 -2.2400734e+00 + 8.4892000e+03 -1.3787296e+00 + 8.4896000e+03 -7.0169747e-01 + 8.4900000e+03 -9.1298583e-02 + 8.4904000e+03 3.4931808e-01 + 8.4908000e+03 6.3477543e-01 + 8.4912000e+03 1.3097114e+00 + 8.4916000e+03 1.7308891e+00 + 8.4920000e+03 2.1222435e+00 + 8.4924000e+03 2.0434802e+00 + 8.4928000e+03 1.7944846e+00 + 8.4932000e+03 1.5453165e+00 + 8.4936000e+03 1.4561760e+00 + 8.4940000e+03 1.7169760e+00 + 8.4944000e+03 2.1275336e+00 + 8.4948000e+03 2.3079140e+00 + 8.4952000e+03 2.4145265e+00 + 8.4956000e+03 1.8555174e+00 + 8.4960000e+03 8.1813601e-01 + 8.4964000e+03 -7.2218083e-01 + 8.4968000e+03 -1.4222774e+00 + 8.4972000e+03 -2.7825863e+00 + 8.4976000e+03 -3.1928685e+00 + 8.4980000e+03 -2.8831635e+00 + 8.4984000e+03 -1.9634915e+00 + 8.4988000e+03 -1.3637980e+00 + 8.4992000e+03 -6.4419465e-01 + 8.4996000e+03 3.4523295e-01 + 8.5000000e+03 9.9426560e-01 + 8.5004000e+03 1.3531318e+00 + 8.5008000e+03 1.8018427e+00 + 8.5012000e+03 2.6305807e+00 + 8.5016000e+03 2.2394070e+00 + 8.5020000e+03 8.5856734e-01 + 8.5024000e+03 -2.5184629e-01 + 8.5028000e+03 -1.3225284e+00 + 8.5032000e+03 -1.4227102e+00 + 8.5036000e+03 -1.2427755e+00 + 8.5040000e+03 -8.5288039e-01 + 8.5044000e+03 -5.6302933e-01 + 8.5048000e+03 -2.1316718e-01 + 8.5052000e+03 2.0692832e-01 + 8.5056000e+03 6.9717678e-01 + 8.5060000e+03 8.9750832e-01 + 8.5064000e+03 9.8802786e-01 + 8.5068000e+03 1.0397336e+00 + 8.5072000e+03 8.4212287e-01 + 8.5076000e+03 7.9497561e-01 + 8.5080000e+03 5.8777484e-01 + 8.5084000e+03 3.9944246e-01 + 8.5088000e+03 2.1917308e-01 + 8.5092000e+03 3.7873378e-01 + 8.5096000e+03 5.9824822e-01 + 8.5100000e+03 6.4778745e-01 + 8.5104000e+03 6.9726735e-01 + 8.5108000e+03 8.1670866e-01 + 8.5112000e+03 6.5625916e-01 + 8.5116000e+03 4.0604656e-01 + 8.5120000e+03 -1.9397734e-01 + 8.5124000e+03 -9.7376795e-01 + 8.5128000e+03 -1.6033934e+00 + 8.5132000e+03 -1.8828025e+00 + 8.5136000e+03 -1.8319497e+00 + 8.5140000e+03 -1.3708142e+00 + 8.5144000e+03 -9.1962214e-01 + 8.5148000e+03 -4.5841784e-01 + 8.5152000e+03 -2.9682362e-01 + 8.5156000e+03 -1.1600340e-01 + 8.5160000e+03 3.7524278e-01 + 8.5164000e+03 1.2760097e+00 + 8.5168000e+03 1.5066181e+00 + 8.5172000e+03 1.4371836e+00 + 8.5176000e+03 1.2272440e+00 + 8.5180000e+03 9.7689073e-01 + 8.5184000e+03 4.1629351e-01 + 8.5188000e+03 1.9548669e-01 + 8.5192000e+03 -1.6539367e-01 + 8.5196000e+03 -8.0634636e-01 + 8.5200000e+03 -1.1773757e+00 + 8.5204000e+03 -1.5282315e+00 + 8.5208000e+03 -1.5690500e+00 + 8.5212000e+03 -1.2498203e+00 + 8.5216000e+03 -6.9109342e-01 + 8.5220000e+03 -3.7141796e-01 + 8.5224000e+03 -1.2217267e-01 + 8.5228000e+03 2.7223622e-02 + 8.5232000e+03 4.7631340e-02 + 8.5236000e+03 -2.0351758e-01 + 8.5240000e+03 -5.8897003e-01 + 8.5244000e+03 -6.8838471e-01 + 8.5248000e+03 -7.1959074e-01 + 8.5252000e+03 -5.0296882e-01 + 8.5256000e+03 -1.9224367e-01 + 8.5260000e+03 5.8098851e-02 + 8.5264000e+03 2.2831557e-01 + 8.5268000e+03 5.6872242e-01 + 8.5272000e+03 9.8901598e-01 + 8.5276000e+03 1.1273253e+00 + 8.5280000e+03 8.9657434e-01 + 8.5284000e+03 9.4872752e-01 + 8.5288000e+03 1.1195414e+00 + 8.5292000e+03 1.0391882e+00 + 8.5296000e+03 9.3254098e-01 + 8.5300000e+03 1.1850583e+00 + 8.5304000e+03 1.6130418e+00 + 8.5308000e+03 1.6689647e+00 + 8.5312000e+03 1.6281967e+00 + 8.5316000e+03 1.7085167e+00 + 8.5320000e+03 1.2187179e+00 + 8.5324000e+03 9.1165719e-01 + 8.5328000e+03 7.7467586e-01 + 8.5332000e+03 -2.6179613e-01 + 8.5336000e+03 -1.0441428e+00 + 8.5340000e+03 -1.6422455e+00 + 8.5344000e+03 -2.3599058e+00 + 8.5348000e+03 -2.5213715e+00 + 8.5352000e+03 -2.4328138e+00 + 8.5356000e+03 -2.2884572e+00 + 8.5360000e+03 -2.0771077e+00 + 8.5364000e+03 -1.7083867e+00 + 8.5368000e+03 -1.2354533e+00 + 8.5372000e+03 -6.8870772e-01 + 8.5376000e+03 -2.2547505e-01 + 8.5380000e+03 1.2458160e-01 + 8.5384000e+03 6.3425827e-01 + 8.5388000e+03 1.0538501e+00 + 8.5392000e+03 1.3233818e+00 + 8.5396000e+03 1.2627075e+00 + 8.5400000e+03 9.6678201e-01 + 8.5404000e+03 1.1334247e+00 + 8.5408000e+03 1.2574950e+00 + 8.5412000e+03 1.1523433e+00 + 8.5416000e+03 1.1279399e+00 + 8.5420000e+03 5.8389068e-01 + 8.5424000e+03 1.8938439e-01 + 8.5428000e+03 -2.5561214e-01 + 8.5432000e+03 -6.4675985e-01 + 8.5436000e+03 -1.0985159e+00 + 8.5440000e+03 -1.8528625e+00 + 8.5444000e+03 -1.6929211e+00 + 8.5448000e+03 -1.5298767e+00 + 8.5452000e+03 -1.1900685e+00 + 8.5456000e+03 -3.2001129e-01 + 8.5460000e+03 7.0258984e-02 + 8.5464000e+03 3.7075884e-01 + 8.5468000e+03 1.3315577e+00 + 8.5472000e+03 2.2525369e+00 + 8.5476000e+03 2.8235710e+00 + 8.5480000e+03 2.3947146e+00 + 8.5484000e+03 1.9558589e+00 + 8.5488000e+03 1.6667136e+00 + 8.5492000e+03 1.3072968e+00 + 8.5496000e+03 1.2176902e+00 + 8.5500000e+03 6.2793275e-01 + 8.5504000e+03 -2.1191058e-01 + 8.5508000e+03 -3.5188784e-01 + 8.5512000e+03 -3.1184371e-01 + 8.5516000e+03 2.3815607e-01 + 8.5520000e+03 7.0824844e-01 + 8.5524000e+03 7.2722331e-01 + 8.5528000e+03 5.7819033e-01 + 8.5532000e+03 -2.5957112e-01 + 8.5536000e+03 -1.0861816e+00 + 8.5540000e+03 -1.7056171e+00 + 8.5544000e+03 -2.3546981e+00 + 8.5548000e+03 -2.8023330e+00 + 8.5552000e+03 -2.5424137e+00 + 8.5556000e+03 -2.2823514e+00 + 8.5560000e+03 -1.6825121e+00 + 8.5564000e+03 -1.1530955e+00 + 8.5568000e+03 -5.6183948e-01 + 8.5572000e+03 -2.9139479e-01 + 8.5576000e+03 4.8497311e-01 + 8.5580000e+03 1.1032348e+00 + 8.5584000e+03 1.2306947e+00 + 8.5588000e+03 1.4107471e+00 + 8.5592000e+03 1.7304958e+00 + 8.5596000e+03 2.1600015e+00 + 8.5600000e+03 2.2743169e+00 + 8.5604000e+03 1.9158921e+00 + 8.5608000e+03 1.2697516e+00 + 8.5612000e+03 8.9512528e-01 + 8.5616000e+03 5.3540521e-01 + 8.5620000e+03 6.4407283e-01 + 8.5624000e+03 5.4277270e-01 + 8.5628000e+03 1.6254140e-03 + 8.5632000e+03 -4.2908276e-01 + 8.5636000e+03 -7.1979832e-01 + 8.5640000e+03 -1.1298396e+00 + 8.5644000e+03 -1.5898761e+00 + 8.5648000e+03 -2.1096875e+00 + 8.5652000e+03 -2.0692959e+00 + 8.5656000e+03 -1.6588001e+00 + 8.5660000e+03 -1.5883278e+00 + 8.5664000e+03 -5.8789324e-01 + 8.5668000e+03 1.5245093e-01 + 8.5672000e+03 5.2583011e-02 + 8.5676000e+03 4.2262935e-01 + 8.5680000e+03 1.0424257e+00 + 8.5684000e+03 1.2324023e+00 + 8.5688000e+03 1.3426028e+00 + 8.5692000e+03 1.4028918e+00 + 8.5696000e+03 1.5932289e+00 + 8.5700000e+03 1.8137234e+00 + 8.5704000e+03 2.0843826e+00 + 8.5708000e+03 1.6250860e+00 + 8.5712000e+03 8.7580376e-01 + 8.5716000e+03 1.7654202e-01 + 8.5720000e+03 -5.5288573e-01 + 8.5724000e+03 -9.4249637e-01 + 8.5728000e+03 -1.1922752e+00 + 8.5732000e+03 -1.9622452e+00 + 8.5736000e+03 -2.0522880e+00 + 8.5740000e+03 -1.9425492e+00 + 8.5744000e+03 -1.4829538e+00 + 8.5748000e+03 -1.2934881e+00 + 8.5752000e+03 -9.7402078e-01 + 8.5756000e+03 -1.0143831e+00 + 8.5760000e+03 -1.2945918e+00 + 8.5764000e+03 -1.3747214e+00 + 8.5768000e+03 -1.4046721e+00 + 8.5772000e+03 -1.8246245e+00 + 8.5776000e+03 -1.8400505e+00 + 8.5780000e+03 -1.2242624e+00 + 8.5784000e+03 -1.7443256e-01 + 8.5788000e+03 1.1286389e+00 + 8.5792000e+03 2.1803602e+00 + 8.5796000e+03 2.8781132e+00 + 8.5800000e+03 3.6148241e+00 + 8.5804000e+03 4.1190414e+00 + 8.5808000e+03 4.2693011e+00 + 8.5812000e+03 4.8134253e+00 + 8.5816000e+03 4.4012969e+00 + 8.5820000e+03 3.2836321e+00 + 8.5824000e+03 1.4437313e+00 + 8.5828000e+03 1.1382980e-01 + 8.5832000e+03 -1.2063006e+00 + 8.5836000e+03 -2.2767296e+00 + 8.5840000e+03 -2.9372865e+00 + 8.5844000e+03 -3.8579816e+00 + 8.5848000e+03 -4.2086293e+00 + 8.5852000e+03 -3.8589323e+00 + 8.5856000e+03 -3.3888497e+00 + 8.5860000e+03 -3.0374269e+00 + 8.5864000e+03 -2.6746438e+00 + 8.5868000e+03 -2.7436031e+00 + 8.5872000e+03 -2.6710692e+00 + 8.5876000e+03 -1.8073070e+00 + 8.5880000e+03 -5.6666958e-01 + 8.5884000e+03 1.3518654e+00 + 8.5888000e+03 2.6649286e+00 + 8.5892000e+03 3.2358766e+00 + 8.5896000e+03 3.6469903e+00 + 8.5900000e+03 3.5881744e+00 + 8.5904000e+03 3.3292239e+00 + 8.5908000e+03 2.8799337e+00 + 8.5912000e+03 1.8702885e+00 + 8.5916000e+03 9.5033271e-01 + 8.5920000e+03 3.2010298e-01 + 8.5924000e+03 3.9519487e-02 + 8.5928000e+03 -2.9109907e-01 + 8.5932000e+03 -4.6256238e-01 + 8.5936000e+03 -9.0407877e-01 + 8.5940000e+03 -1.6756946e+00 + 8.5944000e+03 -2.4790178e+00 + 8.5948000e+03 -3.3113404e+00 + 8.5952000e+03 -3.6774882e+00 + 8.5956000e+03 -3.8244057e+00 + 8.5960000e+03 -3.7329390e+00 + 8.5964000e+03 -3.4001714e+00 + 8.5968000e+03 -2.8343530e+00 + 8.5972000e+03 -1.9550053e+00 + 8.5976000e+03 -7.1239738e-01 + 8.5980000e+03 6.5476390e-01 + 8.5984000e+03 1.4405158e+00 + 8.5988000e+03 1.9949825e+00 + 8.5992000e+03 2.8317285e+00 + 8.5996000e+03 3.5018831e+00 + 8.6000000e+03 3.8021115e+00 + 8.6004000e+03 4.0123336e+00 + 8.6008000e+03 3.6226712e+00 + 8.6012000e+03 2.7330440e+00 + 8.6016000e+03 1.9535166e+00 + 8.6020000e+03 1.1138875e+00 + 8.6024000e+03 6.1434613e-01 + 8.6028000e+03 2.3486112e-01 + 8.6032000e+03 2.0538641e-01 + 8.6036000e+03 3.2594778e-01 + 8.6040000e+03 1.7639181e-01 + 8.6044000e+03 -3.8239578e-01 + 8.6048000e+03 -1.4429650e+00 + 8.6052000e+03 -2.4583310e+00 + 8.6056000e+03 -3.3422172e+00 + 8.6060000e+03 -4.0741999e+00 + 8.6064000e+03 -4.0244218e+00 + 8.6068000e+03 -2.9045000e+00 + 8.6072000e+03 -1.7545621e+00 + 8.6076000e+03 -1.5745531e+00 + 8.6080000e+03 -2.9471217e-01 + 8.6084000e+03 1.3444107e+00 + 8.6088000e+03 2.4557988e+00 + 8.6092000e+03 2.7460590e+00 + 8.6096000e+03 3.4363745e+00 + 8.6100000e+03 3.2367310e+00 + 8.6104000e+03 3.1971353e+00 + 8.6108000e+03 2.4875214e+00 + 8.6112000e+03 1.5577278e+00 + 8.6116000e+03 8.7763758e-01 + 8.6120000e+03 5.7255152e-02 + 8.6124000e+03 -8.1346886e-01 + 8.6128000e+03 -1.2543266e+00 + 8.6132000e+03 -1.3351968e+00 + 8.6136000e+03 -1.4760501e+00 + 8.6140000e+03 -1.5085890e+00 + 8.6144000e+03 -1.5645760e+00 + 8.6148000e+03 -1.8814788e+00 + 8.6152000e+03 -2.5401022e+00 + 8.6156000e+03 -3.0200772e+00 + 8.6160000e+03 -3.1920811e+00 + 8.6164000e+03 -2.9344889e+00 + 8.6168000e+03 -2.0972608e+00 + 8.6172000e+03 -1.1387205e+00 + 8.6176000e+03 -8.1805267e-01 + 8.6180000e+03 -3.4728153e-01 + 8.6184000e+03 -6.3751865e-03 + 8.6188000e+03 8.4433715e-01 + 8.6192000e+03 1.4849092e+00 + 8.6196000e+03 2.7955695e+00 + 8.6200000e+03 3.8759818e+00 + 8.6204000e+03 3.9562485e+00 + 8.6208000e+03 4.2364116e+00 + 8.6212000e+03 3.4964185e+00 + 8.6216000e+03 2.3163662e+00 + 8.6220000e+03 1.2462416e+00 + 8.6224000e+03 3.1619509e-01 + 8.6228000e+03 -3.5394040e-01 + 8.6232000e+03 -5.5395981e-01 + 8.6236000e+03 -4.3382054e-01 + 8.6240000e+03 -8.7375660e-01 + 8.6244000e+03 -9.4345279e-01 + 8.6248000e+03 -1.1829685e+00 + 8.6252000e+03 -1.5623947e+00 + 8.6256000e+03 -1.9316667e+00 + 8.6260000e+03 -2.2010059e+00 + 8.6264000e+03 -2.1405882e+00 + 8.6268000e+03 -1.6502373e+00 + 8.6272000e+03 -1.2600184e+00 + 8.6276000e+03 -1.2299342e+00 + 8.6280000e+03 -1.1898264e+00 + 8.6284000e+03 -1.0797595e+00 + 8.6288000e+03 -1.0101397e+00 + 8.6292000e+03 -1.1906205e+00 + 8.6296000e+03 -1.0313534e+00 + 8.6300000e+03 -4.1225367e-01 + 8.6304000e+03 -9.3290311e-02 + 8.6308000e+03 1.2570711e-01 + 8.6312000e+03 2.2479100e-01 + 8.6316000e+03 1.2398742e-01 + 8.6320000e+03 -3.6915556e-02 + 8.6324000e+03 8.2127869e-02 + 8.6328000e+03 4.4120811e-01 + 8.6332000e+03 7.5054994e-01 + 8.6336000e+03 1.2200452e+00 + 8.6340000e+03 1.2998086e+00 + 8.6344000e+03 9.8966195e-01 + 8.6348000e+03 7.9956545e-01 + 8.6352000e+03 7.1959353e-01 + 8.6356000e+03 8.6960217e-01 + 8.6360000e+03 9.7961664e-01 + 8.6364000e+03 1.4498504e+00 + 8.6368000e+03 1.3902524e+00 + 8.6372000e+03 1.4904785e+00 + 8.6376000e+03 1.2109719e+00 + 8.6380000e+03 8.7127144e-01 + 8.6384000e+03 4.5168304e-01 + 8.6388000e+03 2.0868535e-03 + 8.6392000e+03 -2.3840464e-01 + 8.6396000e+03 -3.0648220e-01 + 8.6400000e+03 -3.3061692e-01 + 8.6404000e+03 -2.6366052e-01 + 8.6408000e+03 -4.2432760e-01 + 8.6412000e+03 -5.7595313e-01 + 8.6416000e+03 -2.6547474e-01 + 8.6420000e+03 1.8381702e-01 + 8.6424000e+03 1.4438265e+00 + 8.6428000e+03 1.8540244e+00 + 8.6432000e+03 2.2741155e+00 + 8.6436000e+03 2.2244090e+00 + 8.6440000e+03 1.7547169e+00 + 8.6444000e+03 1.1249691e+00 + 8.6448000e+03 4.8525688e-01 + 8.6452000e+03 -4.1485410e-01 + 8.6456000e+03 -1.1451407e+00 + 8.6460000e+03 -1.7457515e+00 + 8.6464000e+03 -2.1062104e+00 + 8.6468000e+03 -2.4665181e+00 + 8.6472000e+03 -2.5266948e+00 + 8.6476000e+03 -2.0867679e+00 + 8.6480000e+03 -1.8368398e+00 + 8.6484000e+03 -1.7269262e+00 + 8.6488000e+03 -1.8272678e+00 + 8.6492000e+03 -2.1078964e+00 + 8.6496000e+03 -2.1887345e+00 + 8.6500000e+03 -2.0193892e+00 + 8.6504000e+03 -1.6300785e+00 + 8.6508000e+03 -1.2471192e+00 + 8.6512000e+03 -8.5753168e-01 + 8.6516000e+03 -3.3721065e-01 + 8.6520000e+03 -1.3121385e-01 + 8.6524000e+03 8.8702392e-02 + 8.6528000e+03 3.8839874e-01 + 8.6532000e+03 6.7798670e-01 + 8.6536000e+03 1.0074621e+00 + 8.6540000e+03 1.4568862e+00 + 8.6544000e+03 1.7861675e+00 + 8.6548000e+03 2.1653157e+00 + 8.6552000e+03 2.1946684e+00 + 8.6556000e+03 2.3041707e+00 + 8.6560000e+03 1.6840962e+00 + 8.6564000e+03 1.3843339e+00 + 8.6568000e+03 9.6534659e-01 + 8.6572000e+03 8.9645772e-01 + 8.6576000e+03 8.2762203e-01 + 8.6580000e+03 7.4876009e-01 + 8.6584000e+03 5.3996861e-01 + 8.6588000e+03 9.7098027e-01 + 8.6592000e+03 1.2524330e+00 + 8.6596000e+03 1.2599814e+00 + 8.6600000e+03 1.3622904e+00 + 8.6604000e+03 1.2531553e+00 + 8.6608000e+03 1.1215101e+00 + 8.6612000e+03 7.0442501e-01 + 8.6616000e+03 3.3458492e-01 + 8.6620000e+03 1.9460952e-01 + 8.6624000e+03 -9.5500186e-02 + 8.6628000e+03 -4.4601392e-01 + 8.6632000e+03 -2.0696597e-01 + 8.6636000e+03 -5.1024264e-01 + 8.6640000e+03 -1.1873455e+00 + 8.6644000e+03 -1.9831873e+00 + 8.6648000e+03 -2.5552949e+00 + 8.6652000e+03 -3.2902503e+00 + 8.6656000e+03 -3.6384450e+00 + 8.6660000e+03 -3.5687834e+00 + 8.6664000e+03 -3.1892865e+00 + 8.6668000e+03 -2.8196597e+00 + 8.6672000e+03 -2.0598808e+00 + 8.6676000e+03 -1.3799751e+00 + 8.6680000e+03 -3.4106663e-01 + 8.6684000e+03 4.6139215e-01 + 8.6688000e+03 1.1089846e+00 + 8.6692000e+03 1.3793213e+00 + 8.6696000e+03 1.5514306e+00 + 8.6700000e+03 1.0286621e+00 + 8.6704000e+03 4.7849422e-01 + 8.6708000e+03 2.8815177e-01 + 8.6712000e+03 2.5787786e-01 + 8.6716000e+03 2.0762310e-01 + 8.6720000e+03 -1.3259383e-01 + 8.6724000e+03 -1.6280769e-01 + 8.6728000e+03 -9.2947685e-02 + 8.6732000e+03 3.8714833e-01 + 8.6736000e+03 5.3739459e-01 + 8.6740000e+03 7.9765624e-01 + 8.6744000e+03 8.4788486e-01 + 8.6748000e+03 1.1080599e+00 + 8.6752000e+03 1.6476123e+00 + 8.6756000e+03 2.0170219e+00 + 8.6760000e+03 2.1445064e+00 + 8.6764000e+03 1.8795297e+00 + 8.6768000e+03 1.2732159e+00 + 8.6772000e+03 4.0626355e-01 + 8.6776000e+03 2.0593748e-01 + 8.6780000e+03 5.5574151e-01 + 8.6784000e+03 1.1189138e+00 + 8.6788000e+03 1.5738314e+00 + 8.6792000e+03 1.7570639e+00 + 8.6796000e+03 1.6073020e+00 + 8.6800000e+03 1.0376604e+00 + 8.6804000e+03 3.0279277e-01 + 8.6808000e+03 -4.5697520e-01 + 8.6812000e+03 -1.1508976e+00 + 8.6816000e+03 -1.5056091e+00 + 8.6820000e+03 -1.8172368e+00 + 8.6824000e+03 -1.9813658e+00 + 8.6828000e+03 -2.0903145e+00 + 8.6832000e+03 -2.3821966e+00 + 8.6836000e+03 -2.4417048e+00 + 8.6840000e+03 -2.2081403e+00 + 8.6844000e+03 -1.9222152e+00 + 8.6848000e+03 -1.7447962e+00 + 8.6852000e+03 -1.2800863e+00 + 8.6856000e+03 -8.1918704e-01 + 8.6860000e+03 -3.1138730e-01 + 8.6864000e+03 3.6477984e-01 + 8.6868000e+03 7.9837817e-01 + 8.6872000e+03 1.1228059e+00 + 8.6876000e+03 1.1717936e+00 + 8.6880000e+03 1.2331170e+00 + 8.6884000e+03 8.5213274e-01 + 8.6888000e+03 7.1156899e-01 + 8.6892000e+03 3.9717734e-01 + 8.6896000e+03 -1.7486853e-01 + 8.6900000e+03 -6.9669775e-01 + 8.6904000e+03 -9.9819656e-01 + 8.6908000e+03 -1.0290365e+00 + 8.6912000e+03 -9.8005676e-01 + 8.6916000e+03 -8.0290553e-01 + 8.6920000e+03 -3.6507029e-01 + 8.6924000e+03 2.8276351e-01 + 8.6928000e+03 8.9930537e-01 + 8.6932000e+03 1.4098491e+00 + 8.6936000e+03 1.3376234e+00 + 8.6940000e+03 1.5290511e+00 + 8.6944000e+03 1.4296043e+00 + 8.6948000e+03 1.2322128e+00 + 8.6952000e+03 1.0772175e+00 + 8.6956000e+03 1.1791722e+00 + 8.6960000e+03 1.2852880e+00 + 8.6964000e+03 1.2935820e+00 + 8.6968000e+03 1.3470459e+00 + 8.6972000e+03 1.2960858e+00 + 8.6976000e+03 1.0451744e+00 + 8.6980000e+03 7.6432549e-01 + 8.6984000e+03 4.3974819e-01 + 8.6988000e+03 -2.5706538e-02 + 8.6992000e+03 -7.3056398e-02 + 8.6996000e+03 1.9897698e-01 + 8.7000000e+03 1.5669413e-03 + 8.7004000e+03 -5.6587732e-01 + 8.7008000e+03 -8.4612864e-01 + 8.7012000e+03 -1.3845396e+00 + 8.7016000e+03 -1.7640567e+00 + 8.7020000e+03 -1.6723868e+00 + 8.7024000e+03 -1.2512671e+00 + 8.7028000e+03 -1.2103093e+00 + 8.7032000e+03 -1.1295199e+00 + 8.7036000e+03 -1.4088376e+00 + 8.7040000e+03 -1.4882939e+00 + 8.7044000e+03 -1.3578799e+00 + 8.7048000e+03 -1.1576008e+00 + 8.7052000e+03 -1.0962727e+00 + 8.7056000e+03 -9.6648100e-01 + 8.7060000e+03 -9.5193463e-01 + 8.7064000e+03 -1.0268657e+00 + 8.7068000e+03 -7.4134760e-01 + 8.7072000e+03 -3.5296114e-01 + 8.7076000e+03 3.5302146e-02 + 8.7080000e+03 7.7883915e-01 + 8.7084000e+03 1.7945490e+00 + 8.7088000e+03 2.5944421e+00 + 8.7092000e+03 2.9275361e+00 + 8.7096000e+03 2.7300786e+00 + 8.7100000e+03 2.2897760e+00 + 8.7104000e+03 2.2098331e+00 + 8.7108000e+03 1.1576299e+00 + 8.7112000e+03 -3.4507312e-01 + 8.7116000e+03 -1.5685103e+00 + 8.7120000e+03 -1.7375769e+00 + 8.7124000e+03 -1.5065811e+00 + 8.7128000e+03 -1.2154613e+00 + 8.7132000e+03 -7.8431607e-01 + 8.7136000e+03 -2.0336678e-01 + 8.7140000e+03 1.1738821e-01 + 8.7144000e+03 3.5782420e-01 + 8.7148000e+03 1.0579759e+00 + 8.7152000e+03 1.2278644e+00 + 8.7156000e+03 1.3873438e+00 + 8.7160000e+03 9.9645816e-01 + 8.7164000e+03 7.0562605e-01 + 8.7168000e+03 7.6492477e-01 + 8.7172000e+03 9.5443298e-01 + 8.7176000e+03 8.2417663e-01 + 8.7180000e+03 4.3659513e-01 + 8.7184000e+03 -6.1446983e-02 + 8.7188000e+03 -7.5026886e-02 + 8.7192000e+03 -4.0114087e-02 + 8.7196000e+03 -7.0026202e-01 + 8.7200000e+03 -1.1204152e+00 + 8.7204000e+03 -1.5126583e+00 + 8.7208000e+03 -1.5439955e+00 + 8.7212000e+03 -1.1337296e+00 + 8.7216000e+03 -9.7358361e-01 + 8.7220000e+03 -1.1433801e+00 + 8.7224000e+03 -1.0431957e+00 + 8.7228000e+03 -8.3280588e-01 + 8.7232000e+03 -4.3223104e-01 + 8.7236000e+03 -7.1774823e-02 + 8.7240000e+03 3.3843576e-01 + 8.7244000e+03 5.5856070e-01 + 8.7248000e+03 6.1845150e-01 + 8.7252000e+03 7.9815854e-01 + 8.7256000e+03 8.6779221e-01 + 8.7260000e+03 6.1711719e-01 + 8.7264000e+03 3.4610171e-01 + 8.7268000e+03 2.4835047e-02 + 8.7272000e+03 -3.0684738e-01 + 8.7276000e+03 -1.1922227e-01 + 8.7280000e+03 1.7879907e-01 + 8.7284000e+03 3.0711318e-01 + 8.7288000e+03 4.5582118e-01 + 8.7292000e+03 2.5502474e-01 + 8.7296000e+03 5.6352142e-02 + 8.7300000e+03 -3.1523942e-01 + 8.7304000e+03 -4.3903405e-01 + 8.7308000e+03 -6.3254217e-01 + 8.7312000e+03 -7.8470828e-01 + 8.7316000e+03 -6.1411675e-01 + 8.7320000e+03 -3.2335800e-01 + 8.7324000e+03 7.7703561e-02 + 8.7328000e+03 2.9878843e-01 + 8.7332000e+03 4.8965385e-01 + 8.7336000e+03 5.3025802e-01 + 8.7340000e+03 6.6072466e-01 + 8.7344000e+03 9.6115734e-01 + 8.7348000e+03 1.3917709e+00 + 8.7352000e+03 1.3524432e+00 + 8.7356000e+03 1.0031896e+00 + 8.7360000e+03 3.6965434e-01 + 8.7364000e+03 -2.0476929e-01 + 8.7368000e+03 -9.2420949e-01 + 8.7372000e+03 -1.5159030e+00 + 8.7376000e+03 -1.9278725e+00 + 8.7380000e+03 -2.0746940e+00 + 8.7384000e+03 -1.6945620e+00 + 8.7388000e+03 -1.0954612e+00 + 8.7392000e+03 4.3357852e-01 + 8.7396000e+03 1.5627364e+00 + 8.7400000e+03 1.7719695e+00 + 8.7404000e+03 1.7113834e+00 + 8.7408000e+03 1.4227164e+00 + 8.7412000e+03 5.3712302e-01 + 8.7416000e+03 -2.6254153e-01 + 8.7420000e+03 -6.6880862e-01 + 8.7424000e+03 -9.5949314e-01 + 8.7428000e+03 -1.0194127e+00 + 8.7432000e+03 -6.1912312e-01 + 8.7436000e+03 -2.1894648e-01 + 8.7440000e+03 2.5059392e-01 + 8.7444000e+03 9.6463065e-01 + 8.7448000e+03 1.5444172e+00 + 8.7452000e+03 1.6142540e+00 + 8.7456000e+03 1.5445951e+00 + 8.7460000e+03 8.9666041e-01 + 8.7464000e+03 -8.0110613e-02 + 8.7468000e+03 -6.1995795e-01 + 8.7472000e+03 -6.0512108e-01 + 8.7476000e+03 -8.1146947e-01 + 8.7480000e+03 -1.1082084e+00 + 8.7484000e+03 -1.4243986e+00 + 8.7488000e+03 -1.6650813e+00 + 8.7492000e+03 -1.9457749e+00 + 8.7496000e+03 -1.8765157e+00 + 8.7500000e+03 -1.6740345e+00 + 8.7504000e+03 -1.0549477e+00 + 8.7508000e+03 -4.2369751e-01 + 8.7512000e+03 -1.2289143e-02 + 8.7516000e+03 3.7563226e-01 + 8.7520000e+03 5.7104670e-01 + 8.7524000e+03 5.3116321e-01 + 8.7528000e+03 3.7141072e-01 + 8.7532000e+03 1.5179938e-01 + 8.7536000e+03 -1.6782047e-01 + 8.7540000e+03 -8.4734717e-01 + 8.7544000e+03 -1.0610833e+00 + 8.7548000e+03 -1.1461069e+00 + 8.7552000e+03 -1.1908871e+00 + 8.7556000e+03 -1.0963770e+00 + 8.7560000e+03 -5.1871786e-01 + 8.7564000e+03 2.3194282e-01 + 8.7568000e+03 -2.1666283e-02 + 8.7572000e+03 -1.2698046e-02 + 8.7576000e+03 5.8045548e-02 + 8.7580000e+03 3.2846210e-01 + 8.7584000e+03 3.5870350e-01 + 8.7588000e+03 1.5486155e+00 + 8.7592000e+03 1.9381906e+00 + 8.7596000e+03 2.0370735e+00 + 8.7600000e+03 1.8421639e+00 + 8.7604000e+03 1.6487297e+00 + 8.7608000e+03 1.4343525e+00 + 8.7612000e+03 1.2516662e+00 + 8.7616000e+03 1.1128187e+00 + 8.7620000e+03 7.8327709e-01 + 8.7624000e+03 5.0436250e-01 + 8.7628000e+03 5.3518326e-01 + 8.7632000e+03 1.7955630e-02 + 8.7636000e+03 -3.5381060e-01 + 8.7640000e+03 -4.2405464e-01 + 8.7644000e+03 -7.4939923e-01 + 8.7648000e+03 -1.1333255e+00 + 8.7652000e+03 -1.5659171e+00 + 8.7656000e+03 -1.6707364e+00 + 8.7660000e+03 -1.5908105e+00 + 8.7664000e+03 -1.5408419e+00 + 8.7668000e+03 -7.8088007e-01 + 8.7672000e+03 -3.7097139e-01 + 8.7676000e+03 -3.1139634e-01 + 8.7680000e+03 -3.9620364e-01 + 8.7684000e+03 -3.5276043e-01 + 8.7688000e+03 -4.6026061e-01 + 8.7692000e+03 -5.2539424e-01 + 8.7696000e+03 1.9677652e-01 + 8.7700000e+03 8.0675236e-01 + 8.7704000e+03 1.4468876e+00 + 8.7708000e+03 1.5969564e+00 + 8.7712000e+03 1.4469810e+00 + 8.7716000e+03 7.6229232e-01 + 8.7720000e+03 -3.4579959e-03 + 8.7724000e+03 -6.2982450e-01 + 8.7728000e+03 -1.1745902e+00 + 8.7732000e+03 -1.5833213e+00 + 8.7736000e+03 -1.7376873e+00 + 8.7740000e+03 -1.6754144e+00 + 8.7744000e+03 -1.7202912e+00 + 8.7748000e+03 -1.6277049e+00 + 8.7752000e+03 -1.7117873e+00 + 8.7756000e+03 -1.6508316e+00 + 8.7760000e+03 -1.2813052e+00 + 8.7764000e+03 -7.0176704e-01 + 8.7768000e+03 -6.6214456e-01 + 8.7772000e+03 -7.5246185e-01 + 8.7776000e+03 -7.2279909e-01 + 8.7780000e+03 -4.9261577e-01 + 8.7784000e+03 1.5390746e-02 + 8.7788000e+03 9.6804869e-01 + 8.7792000e+03 1.7407825e+00 + 8.7796000e+03 2.2037061e+00 + 8.7800000e+03 2.7683967e+00 + 8.7804000e+03 3.5751777e+00 + 8.7808000e+03 3.5461021e+00 + 8.7812000e+03 3.0347297e+00 + 8.7816000e+03 2.0153703e+00 + 8.7820000e+03 2.6553917e-01 + 8.7824000e+03 -7.1481526e-01 + 8.7828000e+03 -1.1451738e+00 + 8.7832000e+03 -1.1984986e+00 + 8.7836000e+03 -1.5287453e+00 + 8.7840000e+03 -1.4678289e+00 + 8.7844000e+03 -1.1073393e+00 + 8.7848000e+03 -7.5057453e-01 + 8.7852000e+03 -6.2187132e-01 + 8.7856000e+03 -7.4298086e-01 + 8.7860000e+03 -7.0400379e-01 + 8.7864000e+03 -3.4474540e-01 + 8.7868000e+03 -2.5092985e-02 + 8.7872000e+03 -1.3609560e-01 + 8.7876000e+03 -4.8354060e-01 + 8.7880000e+03 -9.2988671e-01 + 8.7884000e+03 -1.7027479e+00 + 8.7888000e+03 -1.9964964e+00 + 8.7892000e+03 -2.3788206e+00 + 8.7896000e+03 -2.5834347e+00 + 8.7900000e+03 -2.1113900e+00 + 8.7904000e+03 -1.5606763e+00 + 8.7908000e+03 -1.1897954e+00 + 8.7912000e+03 -4.8293094e-01 + 8.7916000e+03 4.8059487e-01 + 8.7920000e+03 1.2364462e+00 + 8.7924000e+03 1.7013823e+00 + 8.7928000e+03 1.9982102e+00 + 8.7932000e+03 2.6204435e+00 + 8.7936000e+03 2.6890806e+00 + 8.7940000e+03 2.1612684e+00 + 8.7944000e+03 1.1248728e+00 + 8.7948000e+03 8.3872847e-02 + 8.7952000e+03 -7.0936232e-01 + 8.7956000e+03 -1.2965339e+00 + 8.7960000e+03 -1.4775446e+00 + 8.7964000e+03 -1.2270835e+00 + 8.7968000e+03 -9.4617511e-01 + 8.7972000e+03 -7.3495656e-01 + 8.7976000e+03 -4.8367099e-01 + 8.7980000e+03 -2.1239754e-01 + 8.7984000e+03 -2.8042891e-01 + 8.7988000e+03 -4.3562890e-01 + 8.7992000e+03 -3.6285481e-01 + 8.7996000e+03 -2.6227580e-01 + 8.8000000e+03 -3.0213454e-01 + 8.8004000e+03 -1.6591010e-01 + 8.8008000e+03 1.0450411e-01 + 8.8012000e+03 5.1214063e-01 + 8.8016000e+03 1.3856803e+00 + 8.8020000e+03 1.6883331e+00 + 8.8024000e+03 1.6233061e+00 + 8.8028000e+03 1.4480794e+00 + 8.8032000e+03 1.3686292e+00 + 8.8036000e+03 9.5002738e-01 + 8.8040000e+03 3.0394312e-01 + 8.8044000e+03 -2.9930161e-01 + 8.8048000e+03 -8.3159985e-01 + 8.8052000e+03 -1.1654971e+00 + 8.8056000e+03 -1.2853753e+00 + 8.8060000e+03 -1.4629865e+00 + 8.8064000e+03 -1.9014192e+00 + 8.8068000e+03 -1.9920291e+00 + 8.8072000e+03 -1.8617831e+00 + 8.8076000e+03 -1.6816164e+00 + 8.8080000e+03 -1.3180638e+00 + 8.8084000e+03 -8.5448427e-01 + 8.8088000e+03 -4.8374444e-01 + 8.8092000e+03 8.5943644e-02 + 8.8096000e+03 6.9870529e-01 + 8.8100000e+03 1.1714045e+00 + 8.8104000e+03 1.3064729e+00 + 8.8108000e+03 1.1771072e+00 + 8.8112000e+03 1.4674939e+00 + 8.8116000e+03 1.8876801e+00 + 8.8120000e+03 1.7572639e+00 + 8.8124000e+03 1.3261306e+00 + 8.8128000e+03 6.4822583e-01 + 8.8132000e+03 3.7038946e-01 + 8.8136000e+03 3.4053703e-01 + 8.8140000e+03 3.3674703e-01 + 8.8144000e+03 2.2677377e-01 + 8.8148000e+03 -6.4510760e-02 + 8.8152000e+03 -4.5503889e-01 + 8.8156000e+03 -7.7160491e-01 + 8.8160000e+03 -1.2689664e+00 + 8.8164000e+03 -1.7501664e+00 + 8.8168000e+03 -1.3890470e+00 + 8.8172000e+03 -9.8556775e-01 + 8.8176000e+03 -6.6086773e-01 + 8.8180000e+03 -3.7239724e-01 + 8.8184000e+03 -2.1564014e-01 + 8.8188000e+03 -1.8705981e-01 + 8.8192000e+03 -4.7614252e-01 + 8.8196000e+03 -4.4524830e-01 + 8.8200000e+03 -1.2443400e-01 + 8.8204000e+03 4.9610069e-01 + 8.8208000e+03 1.0264295e+00 + 8.8212000e+03 2.1964887e+00 + 8.8216000e+03 2.4462613e+00 + 8.8220000e+03 2.6257144e+00 + 8.8224000e+03 2.3747565e+00 + 8.8228000e+03 1.9935368e+00 + 8.8232000e+03 1.6321344e+00 + 8.8236000e+03 1.3707655e+00 + 8.8240000e+03 1.0894036e+00 + 8.8244000e+03 4.0814697e-01 + 8.8248000e+03 8.7009042e-02 + 8.8252000e+03 -1.8392570e-01 + 8.8256000e+03 -1.4140930e-01 + 8.8260000e+03 -3.4504271e-01 + 8.8264000e+03 -8.3206033e-01 + 8.8268000e+03 -1.2921535e+00 + 8.8272000e+03 -1.8201351e+00 + 8.8276000e+03 -2.1429468e+00 + 8.8280000e+03 -2.1560865e+00 + 8.8284000e+03 -1.8680176e+00 + 8.8288000e+03 -1.3332034e+00 + 8.8292000e+03 -9.2194975e-01 + 8.8296000e+03 -7.9072569e-01 + 8.8300000e+03 -7.4987486e-01 + 8.8304000e+03 -8.9269040e-02 + 8.8308000e+03 5.5108342e-01 + 8.8312000e+03 1.0412807e+00 + 8.8316000e+03 1.7410801e+00 + 8.8320000e+03 2.5903800e+00 + 8.8324000e+03 3.4792014e+00 + 8.8328000e+03 3.7679261e+00 + 8.8332000e+03 3.3165656e+00 + 8.8336000e+03 2.5852963e+00 + 8.8340000e+03 2.4539288e+00 + 8.8344000e+03 1.1022680e+00 + 8.8348000e+03 -5.7216378e-01 + 8.8352000e+03 -1.8416984e+00 + 8.8356000e+03 -2.9900318e+00 + 8.8360000e+03 -3.6876612e+00 + 8.8364000e+03 -3.9674437e+00 + 8.8368000e+03 -3.7607093e+00 + 8.8372000e+03 -2.8995124e+00 + 8.8376000e+03 -1.7079669e+00 + 8.8380000e+03 -6.8652384e-01 + 8.8384000e+03 3.5568150e-01 + 8.8388000e+03 1.7276843e+00 + 8.8392000e+03 1.8897918e+00 + 8.8396000e+03 1.5717666e+00 + 8.8400000e+03 1.4133650e+00 + 8.8404000e+03 1.0243593e+00 + 8.8408000e+03 6.4444323e-01 + 8.8412000e+03 9.3805904e-02 + 8.8416000e+03 -2.3731077e-01 + 8.8420000e+03 -4.0874206e-01 + 8.8424000e+03 -3.8036672e-01 + 8.8428000e+03 -1.6208242e-01 + 8.8432000e+03 -2.8878983e-02 + 8.8436000e+03 4.4200932e-02 + 8.8440000e+03 1.6286629e-01 + 8.8444000e+03 5.6814466e-01 + 8.8448000e+03 7.5166339e-01 + 8.8452000e+03 7.4378957e-01 + 8.8456000e+03 5.7939802e-01 + 8.8460000e+03 4.9375448e-01 + 8.8464000e+03 1.1097251e-01 + 8.8468000e+03 -1.9212646e-01 + 8.8472000e+03 -4.9266653e-01 + 8.8476000e+03 -5.1213805e-01 + 8.8480000e+03 -8.2713676e-01 + 8.8484000e+03 -1.0789202e+00 + 8.8488000e+03 -1.1341887e+00 + 8.8492000e+03 -1.1713684e+00 + 8.8496000e+03 -1.0901368e+00 + 8.8500000e+03 -8.7945887e-01 + 8.8504000e+03 -4.1926533e-01 + 8.8508000e+03 1.2033514e-01 + 8.8512000e+03 5.8936401e-01 + 8.8516000e+03 6.6262992e-01 + 8.8520000e+03 3.6869557e-01 + 8.8524000e+03 -1.6173078e-01 + 8.8528000e+03 -6.1589726e-01 + 8.8532000e+03 -1.0271845e+00 + 8.8536000e+03 -1.3274567e+00 + 8.8540000e+03 -1.3658851e+00 + 8.8544000e+03 -1.1322907e+00 + 8.8548000e+03 -7.9281566e-01 + 8.8552000e+03 -3.0260723e-01 + 8.8556000e+03 1.4687272e-01 + 8.8560000e+03 4.3700148e-01 + 8.8564000e+03 5.2724071e-01 + 8.8568000e+03 5.7743366e-01 + 8.8572000e+03 6.0760514e-01 + 8.8576000e+03 1.4478914e+00 + 8.8580000e+03 2.1739424e+00 + 8.8584000e+03 2.2763153e+00 + 8.8588000e+03 2.3183796e+00 + 8.8592000e+03 1.6127114e+00 + 8.8596000e+03 3.5443282e-01 + 8.8600000e+03 -6.1719789e-01 + 8.8604000e+03 -1.3278283e+00 + 8.8608000e+03 -1.8760141e+00 + 8.8612000e+03 -1.7470030e+00 + 8.8616000e+03 -1.3469545e+00 + 8.8620000e+03 -8.8692516e-01 + 8.8624000e+03 -4.1687651e-01 + 8.8628000e+03 -6.8867653e-03 + 8.8632000e+03 1.4276982e-01 + 8.8636000e+03 2.1353122e-01 + 8.8640000e+03 3.4025423e-01 + 8.8644000e+03 3.9541756e-01 + 8.8648000e+03 4.8946012e-01 + 8.8652000e+03 8.4824285e-01 + 8.8656000e+03 7.9247189e-01 + 8.8660000e+03 4.8156826e-01 + 8.8664000e+03 1.0214659e-01 + 8.8668000e+03 -2.3482564e-01 + 8.8672000e+03 -6.4510602e-01 + 8.8676000e+03 -9.6679758e-01 + 8.8680000e+03 -8.8608686e-01 + 8.8684000e+03 -1.2693274e+00 + 8.8688000e+03 -1.4113963e+00 + 8.8692000e+03 -1.0832686e+00 + 8.8696000e+03 -9.2297622e-01 + 8.8700000e+03 -7.4273817e-01 + 8.8704000e+03 -7.9242678e-01 + 8.8708000e+03 -7.5217537e-01 + 8.8712000e+03 -1.9194087e-01 + 8.8716000e+03 6.4827482e-01 + 8.8720000e+03 1.4983602e+00 + 8.8724000e+03 2.3884613e+00 + 8.8728000e+03 2.8582326e+00 + 8.8732000e+03 2.6882559e+00 + 8.8736000e+03 2.2581306e+00 + 8.8740000e+03 2.2079824e+00 + 8.8744000e+03 1.3274388e+00 + 8.8748000e+03 2.0200050e-01 + 8.8752000e+03 -4.9362458e-01 + 8.8756000e+03 -1.9428455e-01 + 8.8760000e+03 3.8493603e-01 + 8.8764000e+03 5.6402521e-01 + 8.8768000e+03 2.0331953e-01 + 8.8772000e+03 -4.6726391e-01 + 8.8776000e+03 -7.9786965e-01 + 8.8780000e+03 -1.4583475e+00 + 8.8784000e+03 -2.3186905e+00 + 8.8788000e+03 -2.2688338e+00 + 8.8792000e+03 -2.2288466e+00 + 8.8796000e+03 -1.9085774e+00 + 8.8800000e+03 -1.0145042e+00 + 8.8804000e+03 1.7214536e-01 + 8.8808000e+03 8.8531327e-01 + 8.8812000e+03 1.4454214e+00 + 8.8816000e+03 1.7127246e+00 + 8.8820000e+03 1.3544681e+00 + 8.8824000e+03 6.2484963e-01 + 8.8828000e+03 5.6515926e-01 + 8.8832000e+03 9.5424617e-02 + 8.8836000e+03 4.4758821e-02 + 8.8840000e+03 1.9351490e-01 + 8.8844000e+03 2.7491921e-01 + 8.8848000e+03 1.5473773e-01 + 8.8852000e+03 -4.2439573e-02 + 8.8856000e+03 -5.1192583e-01 + 8.8860000e+03 -9.7182767e-01 + 8.8864000e+03 -9.0215191e-01 + 8.8868000e+03 -6.9313717e-01 + 8.8872000e+03 -6.5322370e-01 + 8.8876000e+03 -7.2395922e-01 + 8.8880000e+03 -8.4411950e-01 + 8.8884000e+03 -1.0043700e+00 + 8.8888000e+03 -9.4449881e-01 + 8.8892000e+03 -4.2457178e-01 + 8.8896000e+03 -7.4813622e-02 + 8.8900000e+03 2.2492814e-01 + 8.8904000e+03 4.4463602e-01 + 8.8908000e+03 6.5430215e-01 + 8.8912000e+03 1.5241134e+00 + 8.8916000e+03 2.2120535e+00 + 8.8920000e+03 3.0522769e+00 + 8.8924000e+03 3.3942976e+00 + 8.8928000e+03 3.4520735e+00 + 8.8932000e+03 2.7159643e+00 + 8.8936000e+03 1.8430867e+00 + 8.8940000e+03 1.2701516e+00 + 8.8944000e+03 7.6334332e-01 + 8.8948000e+03 2.9338329e-01 + 8.8952000e+03 -1.5572959e-01 + 8.8956000e+03 -5.4072365e-01 + 8.8960000e+03 -1.4365094e+00 + 8.8964000e+03 -1.9581370e+00 + 8.8968000e+03 -2.3520591e+00 + 8.8972000e+03 -2.6595052e+00 + 8.8976000e+03 -2.5701456e+00 + 8.8980000e+03 -2.5634946e+00 + 8.8984000e+03 -2.3224486e+00 + 8.8988000e+03 -2.1099243e+00 + 8.8992000e+03 -1.9701393e+00 + 8.8996000e+03 -1.6299376e+00 + 8.9000000e+03 -1.1493579e+00 + 8.9004000e+03 -1.4804820e-01 + 8.9008000e+03 1.2559564e+00 + 8.9012000e+03 2.0741208e+00 + 8.9016000e+03 2.8978471e+00 + 8.9020000e+03 2.9029600e+00 + 8.9024000e+03 1.9031107e+00 + 8.9028000e+03 1.1331772e+00 + 8.9032000e+03 8.1341662e-01 + 8.9036000e+03 -1.9628912e-01 + 8.9040000e+03 -8.9597110e-01 + 8.9044000e+03 -1.3354344e+00 + 8.9048000e+03 -1.4846522e+00 + 8.9052000e+03 -1.3036416e+00 + 8.9056000e+03 -1.1022774e+00 + 8.9060000e+03 -8.9098711e-01 + 8.9064000e+03 -7.2016981e-01 + 8.9068000e+03 -5.3918491e-01 + 8.9072000e+03 -1.4881409e-01 + 8.9076000e+03 3.8112408e-01 + 8.9080000e+03 1.0305985e+00 + 8.9084000e+03 1.7000043e+00 + 8.9088000e+03 1.9035167e+00 + 8.9092000e+03 1.6268102e+00 + 8.9096000e+03 1.3932609e+00 + 8.9100000e+03 1.1162904e+00 + 8.9104000e+03 8.2577232e-01 + 8.9108000e+03 7.2513923e-01 + 8.9112000e+03 7.7475658e-01 + 8.9116000e+03 8.0447007e-01 + 8.9120000e+03 6.9430421e-01 + 8.9124000e+03 3.2423696e-01 + 8.9128000e+03 -3.0725390e-01 + 8.9132000e+03 -9.4073155e-01 + 8.9136000e+03 -1.3740997e+00 + 8.9140000e+03 -1.6533671e+00 + 8.9144000e+03 -1.5358745e+00 + 8.9148000e+03 -1.1790634e+00 + 8.9152000e+03 -6.9920996e-01 + 8.9156000e+03 -1.6295454e-01 + 8.9160000e+03 1.3290912e-01 + 8.9164000e+03 2.7628209e-02 + 8.9168000e+03 -8.7011893e-02 + 8.9172000e+03 -3.8724153e-01 + 8.9176000e+03 -7.2926950e-01 + 8.9180000e+03 -7.0031539e-01 + 8.9184000e+03 -1.2294319e-01 + 8.9188000e+03 7.0364934e-01 + 8.9192000e+03 1.2868014e+00 + 8.9196000e+03 1.9394727e+00 + 8.9200000e+03 2.0205285e+00 + 8.9204000e+03 1.4407558e+00 + 8.9208000e+03 -7.8678226e-02 + 8.9212000e+03 -9.3800022e-01 + 8.9216000e+03 -1.4571078e+00 + 8.9220000e+03 -1.4263197e+00 + 8.9224000e+03 -1.1358348e+00 + 8.9228000e+03 -8.6569241e-01 + 8.9232000e+03 -7.0870115e-01 + 8.9236000e+03 -4.4745587e-01 + 8.9240000e+03 -3.8425280e-01 + 8.9244000e+03 -3.6482735e-01 + 8.9248000e+03 -2.7794946e-01 + 8.9252000e+03 -2.2839110e-01 + 8.9256000e+03 1.0122554e-01 + 8.9260000e+03 4.9286409e-01 + 8.9264000e+03 1.1261922e+00 + 8.9268000e+03 1.8828405e+00 + 8.9272000e+03 2.3790925e+00 + 8.9276000e+03 2.3387918e+00 + 8.9280000e+03 1.7644578e+00 + 8.9284000e+03 1.1456476e+00 + 8.9288000e+03 4.8979324e-01 + 8.9292000e+03 -2.4936223e-02 + 8.9296000e+03 -6.1426279e-01 + 8.9300000e+03 -1.1687930e+00 + 8.9304000e+03 -1.8496548e+00 + 8.9308000e+03 -2.5699389e+00 + 8.9312000e+03 -3.0280840e+00 + 8.9316000e+03 -3.2173209e+00 + 8.9320000e+03 -3.4328131e+00 + 8.9324000e+03 -3.3672942e+00 + 8.9328000e+03 -2.9877452e+00 + 8.9332000e+03 -2.1716728e+00 + 8.9336000e+03 -1.1972639e+00 + 8.9340000e+03 -2.5716664e-01 + 8.9344000e+03 1.5237539e-01 + 8.9348000e+03 7.3194826e-01 + 8.9352000e+03 1.6719010e+00 + 8.9356000e+03 2.4614924e+00 + 8.9360000e+03 3.1308800e+00 + 8.9364000e+03 3.4303534e+00 + 8.9368000e+03 3.0598472e+00 + 8.9372000e+03 2.6193070e+00 + 8.9376000e+03 1.9888585e+00 + 8.9380000e+03 1.5115577e+00 + 8.9384000e+03 1.6578550e+00 + 8.9388000e+03 2.1263254e+00 + 8.9392000e+03 2.0823601e+00 + 8.9396000e+03 1.2120904e+00 + 8.9400000e+03 -1.8065919e-01 + 8.9404000e+03 -1.6800246e+00 + 8.9408000e+03 -2.9495119e+00 + 8.9412000e+03 -3.9791744e+00 + 8.9416000e+03 -4.5611289e+00 + 8.9420000e+03 -4.7547351e+00 + 8.9424000e+03 -4.3414934e+00 + 8.9428000e+03 -3.6702666e+00 + 8.9432000e+03 -2.7379762e+00 + 8.9436000e+03 -1.5312421e+00 + 8.9440000e+03 -3.3224550e-01 + 8.9444000e+03 1.0489184e+00 + 8.9448000e+03 2.5455510e+00 + 8.9452000e+03 3.3649672e+00 + 8.9456000e+03 3.8770019e+00 + 8.9460000e+03 4.0393107e+00 + 8.9464000e+03 4.2670414e+00 + 8.9468000e+03 4.5229962e+00 + 8.9472000e+03 4.5614148e+00 + 8.9476000e+03 4.2213958e+00 + 8.9480000e+03 3.4013654e+00 + 8.9484000e+03 1.8212982e+00 + 8.9488000e+03 4.2096538e-01 + 8.9492000e+03 -1.1896749e+00 + 8.9496000e+03 -2.3607055e+00 + 8.9500000e+03 -2.8621027e+00 + 8.9504000e+03 -2.9333397e+00 + 8.9508000e+03 -2.9644371e+00 + 8.9512000e+03 -3.3320415e+00 + 8.9516000e+03 -3.6886196e+00 + 8.9520000e+03 -3.8295766e+00 + 8.9524000e+03 -3.6328342e+00 + 8.9528000e+03 -3.2777597e+00 + 8.9532000e+03 -2.1481787e+00 + 8.9536000e+03 -1.0085380e+00 + 8.9540000e+03 -9.1854820e-01 + 8.9544000e+03 3.3147975e-01 + 8.9548000e+03 7.9143873e-01 + 8.9552000e+03 1.9145770e+00 + 8.9556000e+03 3.2434949e+00 + 8.9560000e+03 4.1808048e+00 + 8.9564000e+03 4.7507247e+00 + 8.9568000e+03 4.5408370e+00 + 8.9572000e+03 4.0414361e+00 + 8.9576000e+03 3.2824011e+00 + 8.9580000e+03 2.5635125e+00 + 8.9584000e+03 2.3844407e+00 + 8.9588000e+03 9.8506431e-01 + 8.9592000e+03 -5.5486744e-01 + 8.9596000e+03 -1.7050554e+00 + 8.9600000e+03 -2.5153664e+00 + 8.9604000e+03 -3.0257493e+00 + 8.9608000e+03 -3.5661995e+00 + 8.9612000e+03 -4.1166823e+00 + 8.9616000e+03 -4.5271764e+00 + 8.9620000e+03 -4.3876434e+00 + 8.9624000e+03 -3.9480614e+00 + 8.9628000e+03 -3.6683831e+00 + 8.9632000e+03 -2.9297194e+00 + 8.9636000e+03 -1.7653729e+00 + 8.9640000e+03 -5.9686698e-01 + 8.9644000e+03 7.7810663e-01 + 8.9648000e+03 1.7926038e+00 + 8.9652000e+03 2.6224903e+00 + 8.9656000e+03 3.0020774e+00 + 8.9660000e+03 2.9375832e+00 + 8.9664000e+03 2.6353907e+00 + 8.9668000e+03 2.5260237e+00 + 8.9672000e+03 2.2566543e+00 + 8.9676000e+03 2.0872724e+00 + 8.9680000e+03 1.8675607e+00 + 8.9684000e+03 1.6378349e+00 + 8.9688000e+03 1.1776552e+00 + 8.9692000e+03 3.8717427e-01 + 8.9696000e+03 -2.9307188e-01 + 8.9700000e+03 -7.8892323e-01 + 8.9704000e+03 -1.2123629e+00 + 8.9708000e+03 -1.2164449e+00 + 8.9712000e+03 -9.1323451e-01 + 8.9716000e+03 -8.8598226e-01 + 8.9720000e+03 -9.8661776e-01 + 8.9724000e+03 -1.1872604e+00 + 8.9728000e+03 -1.2979373e+00 + 8.9732000e+03 -1.1584512e+00 + 8.9736000e+03 -8.9891186e-01 + 8.9740000e+03 -4.7928608e-01 + 8.9744000e+03 3.0401563e-02 + 8.9748000e+03 3.5014088e-01 + 8.9752000e+03 5.1991103e-01 + 8.9756000e+03 7.5967019e-01 + 8.9760000e+03 1.2428932e+00 + 8.9764000e+03 1.5315924e+00 + 8.9768000e+03 1.3147693e+00 + 8.9772000e+03 1.0587802e+00 + 8.9776000e+03 7.5783427e-01 + 8.9780000e+03 3.6775126e-01 + 8.9784000e+03 4.1760998e-01 + 8.9788000e+03 4.9735674e-01 + 8.9792000e+03 5.5425268e-01 + 8.9796000e+03 6.0662775e-01 + 8.9800000e+03 7.8537831e-01 + 8.9804000e+03 8.8919106e-01 + 8.9808000e+03 2.2843883e-01 + 8.9812000e+03 -4.6540684e-01 + 8.9816000e+03 -1.1969687e+00 + 8.9820000e+03 -2.2319358e+00 + 8.9824000e+03 -3.1454143e+00 + 8.9828000e+03 -3.3818111e+00 + 8.9832000e+03 -3.2557530e+00 + 8.9836000e+03 -2.8137511e+00 + 8.9840000e+03 -2.2685504e+00 + 8.9844000e+03 -1.5971763e+00 + 8.9848000e+03 -7.2402165e-01 + 8.9852000e+03 6.3116690e-02 + 8.9856000e+03 9.7548917e-01 + 8.9860000e+03 1.7658332e+00 + 8.9864000e+03 2.2092268e+00 + 8.9868000e+03 2.5278463e+00 + 8.9872000e+03 2.5013221e+00 + 8.9876000e+03 2.5408072e+00 + 8.9880000e+03 2.3501294e+00 + 8.9884000e+03 2.0398733e+00 + 8.9888000e+03 1.6199250e+00 + 8.9892000e+03 1.4600329e+00 + 8.9896000e+03 1.3902525e+00 + 8.9900000e+03 1.1304530e+00 + 8.9904000e+03 7.9069273e-01 + 8.9908000e+03 1.3561716e-01 + 8.9912000e+03 -3.8328140e-01 + 8.9916000e+03 -5.4172505e-01 + 8.9920000e+03 -1.0808942e+00 + 8.9924000e+03 -1.3454381e+00 + 8.9928000e+03 -1.1658378e+00 + 8.9932000e+03 -6.8862345e-01 + 8.9936000e+03 -7.8858287e-01 + 8.9940000e+03 -8.6956969e-01 + 8.9944000e+03 -9.1360331e-01 + 8.9948000e+03 -1.0449161e+00 + 8.9952000e+03 -1.1095974e+00 + 8.9956000e+03 -1.1706743e+00 + 8.9960000e+03 -9.9173691e-01 + 8.9964000e+03 -5.2289962e-01 + 8.9968000e+03 7.6156310e-02 + 8.9972000e+03 8.0534476e-01 + 8.9976000e+03 1.6948096e+00 + 8.9980000e+03 1.8845246e+00 + 8.9984000e+03 1.7843830e+00 + 8.9988000e+03 1.2243010e+00 + 8.9992000e+03 7.7454489e-01 + 8.9996000e+03 2.5515639e-01 + 9.0000000e+03 -6.9134516e-02 + 9.0004000e+03 -2.9537421e-01 + 9.0008000e+03 -6.2904018e-01 + 9.0012000e+03 -1.3312202e+00 + 9.0016000e+03 -2.0657505e+00 + 9.0020000e+03 -2.4092932e+00 + 9.0024000e+03 -2.4407627e+00 + 9.0028000e+03 -2.3929718e+00 + 9.0032000e+03 -1.9637437e+00 + 9.0036000e+03 -1.2420232e+00 + 9.0040000e+03 1.6857032e-01 + 9.0044000e+03 1.4467220e+00 + 9.0048000e+03 2.3136477e+00 + 9.0052000e+03 2.2471292e+00 + 9.0056000e+03 2.0718737e+00 + 9.0060000e+03 1.7346506e+00 + 9.0064000e+03 1.1057761e+00 + 9.0068000e+03 6.1649086e-01 + 9.0072000e+03 5.7896612e-04 + 9.0076000e+03 -3.4068044e-01 + 9.0080000e+03 -6.6204896e-01 + 9.0084000e+03 -9.9991111e-01 + 9.0088000e+03 -1.1249396e+00 + 9.0092000e+03 -8.7606486e-01 + 9.0096000e+03 -6.1509600e-01 + 9.0100000e+03 -4.2805922e-01 + 9.0104000e+03 -5.7280922e-02 + 9.0108000e+03 3.4147004e-01 + 9.0112000e+03 4.7927601e-01 + 9.0116000e+03 6.4860979e-01 + 9.0120000e+03 9.1075516e-01 + 9.0124000e+03 8.2361554e-01 + 9.0128000e+03 2.6577327e-01 + 9.0132000e+03 9.2947496e-02 + 9.0136000e+03 -7.7343511e-02 + 9.0140000e+03 1.2935995e-02 + 9.0144000e+03 3.8375709e-01 + 9.0148000e+03 6.0482780e-01 + 9.0152000e+03 7.5605580e-01 + 9.0156000e+03 8.8726664e-01 + 9.0160000e+03 9.8850229e-01 + 9.0164000e+03 8.7981013e-01 + 9.0168000e+03 5.3112265e-01 + 9.0172000e+03 2.0860780e-01 + 9.0176000e+03 1.0219141e-02 + 9.0180000e+03 -4.0048675e-01 + 9.0184000e+03 -5.8477648e-01 + 9.0188000e+03 -5.2198215e-01 + 9.0192000e+03 -6.8168221e-01 + 9.0196000e+03 -9.7574155e-01 + 9.0200000e+03 -1.0993251e+00 + 9.0204000e+03 -8.5997804e-01 + 9.0208000e+03 -8.3045699e-01 + 9.0212000e+03 -7.1802107e-01 + 9.0216000e+03 -7.5473531e-01 + 9.0220000e+03 -7.5505840e-01 + 9.0224000e+03 -7.6398084e-01 + 9.0228000e+03 -1.2175092e+00 + 9.0232000e+03 -1.4362903e+00 + 9.0236000e+03 -1.5050849e+00 + 9.0240000e+03 -1.7839393e+00 + 9.0244000e+03 -1.3229892e+00 + 9.0248000e+03 -7.3208213e-01 + 9.0252000e+03 -3.3119022e-01 + 9.0256000e+03 2.3954676e-01 + 9.0260000e+03 4.4025597e-01 + 9.0264000e+03 6.9060396e-01 + 9.0268000e+03 9.7062933e-01 + 9.0272000e+03 1.2104312e+00 + 9.0276000e+03 1.6600534e+00 + 9.0280000e+03 1.9693331e+00 + 9.0284000e+03 1.9358812e+00 + 9.0288000e+03 1.4842130e+00 + 9.0292000e+03 1.3592572e+00 + 9.0296000e+03 1.6398554e+00 + 9.0300000e+03 1.8926522e+00 + 9.0304000e+03 2.1205015e+00 + 9.0308000e+03 2.2881637e+00 + 9.0312000e+03 2.1999230e+00 + 9.0316000e+03 1.7063764e+00 + 9.0320000e+03 1.1331004e+00 + 9.0324000e+03 6.7606825e-01 + 9.0328000e+03 -1.5313666e-01 + 9.0332000e+03 -7.9074222e-01 + 9.0336000e+03 -1.8492177e+00 + 9.0340000e+03 -2.4659871e+00 + 9.0344000e+03 -2.9297281e+00 + 9.0348000e+03 -3.2370060e+00 + 9.0352000e+03 -3.2288972e+00 + 9.0356000e+03 -2.9138231e+00 + 9.0360000e+03 -2.2069561e+00 + 9.0364000e+03 -1.5451231e+00 + 9.0368000e+03 -9.6051584e-01 + 9.0372000e+03 -2.5911940e-01 + 9.0376000e+03 3.3969788e-01 + 9.0380000e+03 9.0984136e-01 + 9.0384000e+03 1.5207983e+00 + 9.0388000e+03 1.8313161e+00 + 9.0392000e+03 2.2314620e+00 + 9.0396000e+03 2.5861193e+00 + 9.0400000e+03 2.8918651e+00 + 9.0404000e+03 2.4867793e+00 + 9.0408000e+03 1.8593654e+00 + 9.0412000e+03 1.1332085e+00 + 9.0416000e+03 3.6476355e-01 + 9.0420000e+03 -5.7128473e-01 + 9.0424000e+03 -1.5396929e+00 + 9.0428000e+03 -2.6239540e+00 + 9.0432000e+03 -3.1774215e+00 + 9.0436000e+03 -3.3747645e+00 + 9.0440000e+03 -3.7209036e+00 + 9.0444000e+03 -3.4738037e+00 + 9.0448000e+03 -2.5843169e+00 + 9.0452000e+03 -2.0446401e+00 + 9.0456000e+03 -1.3391076e+00 + 9.0460000e+03 -6.6039706e-01 + 9.0464000e+03 -2.0100955e-01 + 9.0468000e+03 2.6474450e-01 + 9.0472000e+03 8.4169597e-01 + 9.0476000e+03 1.2994949e+00 + 9.0480000e+03 2.0520733e+00 + 9.0484000e+03 2.5762870e+00 + 9.0488000e+03 2.8656416e+00 + 9.0492000e+03 2.7158807e+00 + 9.0496000e+03 2.6166777e+00 + 9.0500000e+03 2.2572982e+00 + 9.0504000e+03 1.9324828e+00 + 9.0508000e+03 1.5689923e+00 + 9.0512000e+03 1.4483745e+00 + 9.0516000e+03 9.5739141e-01 + 9.0520000e+03 5.0787333e-01 + 9.0524000e+03 -9.7331807e-02 + 9.0528000e+03 -8.0319321e-01 + 9.0532000e+03 -1.3183699e+00 + 9.0536000e+03 -1.6100986e+00 + 9.0540000e+03 -2.1295114e+00 + 9.0544000e+03 -2.1684892e+00 + 9.0548000e+03 -1.8394134e+00 + 9.0552000e+03 -1.1006599e+00 + 9.0556000e+03 -2.9085892e-01 + 9.0560000e+03 2.5573348e-01 + 9.0564000e+03 2.3806359e-01 + 9.0568000e+03 -2.7522098e-01 + 9.0572000e+03 -7.3558469e-01 + 9.0576000e+03 -1.0666557e+00 + 9.0580000e+03 -8.0374677e-01 + 9.0584000e+03 -7.5703957e-01 + 9.0588000e+03 -7.1541597e-01 + 9.0592000e+03 -5.5368852e-01 + 9.0596000e+03 -5.5917331e-01 + 9.0600000e+03 -4.3688602e-01 + 9.0604000e+03 -4.3164884e-01 + 9.0608000e+03 -5.0228349e-01 + 9.0612000e+03 -2.8115242e-01 + 9.0616000e+03 -2.0993829e-01 + 9.0620000e+03 -4.3886864e-01 + 9.0624000e+03 -7.2816891e-01 + 9.0628000e+03 -7.8741347e-01 + 9.0632000e+03 -5.0702574e-01 + 9.0636000e+03 -3.8712106e-01 + 9.0640000e+03 -2.2768488e-01 + 9.0644000e+03 -8.6427497e-03 + 9.0648000e+03 4.6993539e-01 + 9.0652000e+03 1.5356969e+00 + 9.0656000e+03 2.4928553e+00 + 9.0660000e+03 2.7360919e+00 + 9.0664000e+03 2.5971199e+00 + 9.0668000e+03 2.0256275e+00 + 9.0672000e+03 1.6505641e+00 + 9.0676000e+03 1.1095682e+00 + 9.0680000e+03 7.2899239e-01 + 9.0684000e+03 3.8896567e-01 + 9.0688000e+03 3.7564850e-01 + 9.0692000e+03 4.7047775e-02 + 9.0696000e+03 -2.5982458e-01 + 9.0700000e+03 -3.9408648e-01 + 9.0704000e+03 -7.0435669e-01 + 9.0708000e+03 -8.4930392e-01 + 9.0712000e+03 -8.0183103e-01 + 9.0716000e+03 -1.0166414e+00 + 9.0720000e+03 -1.3842612e+00 + 9.0724000e+03 -1.7621079e+00 + 9.0728000e+03 -1.9631582e+00 + 9.0732000e+03 -1.6829363e+00 + 9.0736000e+03 -1.2596774e+00 + 9.0740000e+03 -5.1703492e-01 + 9.0744000e+03 -1.6067194e-02 + 9.0748000e+03 4.5973041e-01 + 9.0752000e+03 7.4442260e-01 + 9.0756000e+03 8.0290435e-01 + 9.0760000e+03 8.1363308e-01 + 9.0764000e+03 1.1399491e+00 + 9.0768000e+03 1.2467834e+00 + 9.0772000e+03 6.9391032e-01 + 9.0776000e+03 2.7350258e-01 + 9.0780000e+03 4.1717866e-02 + 9.0784000e+03 2.7186327e-01 + 9.0788000e+03 1.9808962e-01 + 9.0792000e+03 2.1306867e-02 + 9.0796000e+03 -4.7307682e-01 + 9.0800000e+03 -7.9014459e-01 + 9.0804000e+03 -8.9823037e-01 + 9.0808000e+03 -1.1155525e+00 + 9.0812000e+03 -1.4531324e+00 + 9.0816000e+03 -1.5708996e+00 + 9.0820000e+03 -1.4890831e+00 + 9.0824000e+03 -1.1376739e+00 + 9.0828000e+03 -8.0680005e-01 + 9.0832000e+03 -5.1666330e-01 + 9.0836000e+03 -5.9663267e-01 + 9.0840000e+03 -4.7687431e-01 + 9.0844000e+03 -2.6660480e-01 + 9.0848000e+03 9.2292122e-02 + 9.0852000e+03 6.0148652e-01 + 9.0856000e+03 1.0105705e+00 + 9.0860000e+03 1.4493851e+00 + 9.0864000e+03 1.9079246e+00 + 9.0868000e+03 2.4663948e+00 + 9.0872000e+03 2.8448927e+00 + 9.0876000e+03 3.1935106e+00 + 9.0880000e+03 3.3721023e+00 + 9.0884000e+03 2.6808721e+00 + 9.0888000e+03 2.1999425e+00 + 9.0892000e+03 2.1493588e+00 + 9.0896000e+03 8.4458055e-01 + 9.0900000e+03 -9.2556488e-01 + 9.0904000e+03 -1.8807269e+00 + 9.0908000e+03 -2.0101425e+00 + 9.0912000e+03 -2.2889608e+00 + 9.0916000e+03 -2.5973400e+00 + 9.0920000e+03 -2.7254410e+00 + 9.0924000e+03 -2.2736183e+00 + 9.0928000e+03 -1.5819248e+00 + 9.0932000e+03 -1.0803822e+00 + 9.0936000e+03 -7.7916506e-01 + 9.0940000e+03 -5.4829505e-01 + 9.0944000e+03 -1.8746142e-01 + 9.0948000e+03 2.1345133e-01 + 9.0952000e+03 3.4036249e-02 + 9.0956000e+03 -6.8725054e-02 + 9.0960000e+03 3.6478414e-01 + 9.0964000e+03 4.6844348e-01 + 9.0968000e+03 7.4316675e-01 + 9.0972000e+03 7.5138338e-01 + 9.0976000e+03 5.4816965e-01 + 9.0980000e+03 1.1178162e-01 + 9.0984000e+03 -1.4321199e-02 + 9.0988000e+03 -8.6816156e-02 + 9.0992000e+03 -4.6646086e-02 + 9.0996000e+03 1.6258837e-01 + 9.1000000e+03 6.1200702e-01 + 9.1004000e+03 7.3150798e-01 + 9.1008000e+03 6.7129691e-01 + 9.1012000e+03 4.4166366e-01 + 9.1016000e+03 3.9228969e-01 + 9.1020000e+03 2.3274124e-01 + 9.1024000e+03 7.3045905e-02 + 9.1028000e+03 -3.6841079e-02 + 9.1032000e+03 1.3071126e-02 + 9.1036000e+03 -5.6968428e-02 + 9.1040000e+03 2.3139309e-02 + 9.1044000e+03 1.6322587e-01 + 9.1048000e+03 7.3439684e-02 + 9.1052000e+03 -2.6561289e-01 + 9.1056000e+03 -4.6566137e-01 + 9.1060000e+03 -5.1514161e-01 + 9.1064000e+03 -9.6458318e-01 + 9.1068000e+03 -1.1941280e+00 + 9.1072000e+03 -9.7374856e-01 + 9.1076000e+03 -4.8956911e-01 + 9.1080000e+03 1.7335761e-01 + 9.1084000e+03 1.1108923e+00 + 9.1088000e+03 1.6603667e+00 + 9.1092000e+03 2.2196263e+00 + 9.1096000e+03 2.1389190e+00 + 9.1100000e+03 2.0304577e+00 + 9.1104000e+03 1.7203754e+00 + 9.1108000e+03 1.6281710e+00 + 9.1112000e+03 1.7192243e+00 + 9.1116000e+03 1.5771628e+00 + 9.1120000e+03 1.4718219e+00 + 9.1124000e+03 4.9786459e-01 + 9.1128000e+03 -7.8830668e-01 + 9.1132000e+03 -1.8827277e+00 + 9.1136000e+03 -2.8949129e+00 + 9.1140000e+03 -3.4458744e+00 + 9.1144000e+03 -3.4960335e+00 + 9.1148000e+03 -3.3758835e+00 + 9.1152000e+03 -3.2555515e+00 + 9.1156000e+03 -3.1150736e+00 + 9.1160000e+03 -3.0143803e+00 + 9.1164000e+03 -1.7533445e+00 + 9.1168000e+03 -1.1921977e+00 + 9.1172000e+03 -8.4112820e-01 + 9.1176000e+03 5.5976948e-01 + 9.1180000e+03 1.8703127e+00 + 9.1184000e+03 2.8004232e+00 + 9.1188000e+03 3.3301572e+00 + 9.1192000e+03 3.0895508e+00 + 9.1196000e+03 2.7384242e+00 + 9.1200000e+03 2.4769384e+00 + 9.1204000e+03 1.5951245e+00 + 9.1208000e+03 1.1233082e+00 + 9.1212000e+03 7.9170859e-01 + 9.1216000e+03 7.4037402e-01 + 9.1220000e+03 6.0945182e-01 + 9.1224000e+03 2.9888314e-01 + 9.1228000e+03 1.3863681e-01 + 9.1232000e+03 -3.7134606e-01 + 9.1236000e+03 -9.1122410e-01 + 9.1240000e+03 -1.1172068e+00 + 9.1244000e+03 -9.5785732e-01 + 9.1248000e+03 -9.7325832e-01 + 9.1252000e+03 -9.6070432e-01 + 9.1256000e+03 -1.3492058e+00 + 9.1260000e+03 -1.1488277e+00 + 9.1264000e+03 -9.1696239e-01 + 9.1268000e+03 -6.5741633e-01 + 9.1272000e+03 -8.7795362e-02 + 9.1276000e+03 9.4536069e-01 + 9.1280000e+03 1.5328628e+00 + 9.1284000e+03 1.6328414e+00 + 9.1288000e+03 1.5527179e+00 + 9.1292000e+03 1.2124487e+00 + 9.1296000e+03 3.7824614e-01 + 9.1300000e+03 -1.7967220e-01 + 9.1304000e+03 -6.8889289e-01 + 9.1308000e+03 -1.2806928e+00 + 9.1312000e+03 -1.8857014e+00 + 9.1316000e+03 -2.1162481e+00 + 9.1320000e+03 -1.8450251e+00 + 9.1324000e+03 -1.2739006e+00 + 9.1328000e+03 -7.2317805e-01 + 9.1332000e+03 -2.0233495e-01 + 9.1336000e+03 2.9092517e-01 + 9.1340000e+03 5.4476805e-01 + 9.1344000e+03 1.8382535e-01 + 9.1348000e+03 -4.8359601e-01 + 9.1352000e+03 -7.7763172e-01 + 9.1356000e+03 -7.7340485e-01 + 9.1360000e+03 -8.9238162e-01 + 9.1364000e+03 -1.3052329e+00 + 9.1368000e+03 -1.3393316e+00 + 9.1372000e+03 -1.4577312e+00 + 9.1376000e+03 -1.3684820e+00 + 9.1380000e+03 -9.9862956e-01 + 9.1384000e+03 -3.6225317e-01 + 9.1388000e+03 -1.3067901e-01 + 9.1392000e+03 3.0695768e-01 + 9.1396000e+03 7.3445856e-01 + 9.1400000e+03 8.4428794e-01 + 9.1404000e+03 8.0424465e-01 + 9.1408000e+03 8.4445142e-01 + 9.1412000e+03 1.1549542e+00 + 9.1416000e+03 1.6393812e+00 + 9.1420000e+03 1.9043474e+00 + 9.1424000e+03 1.8388227e+00 + 9.1428000e+03 1.6945306e+00 + 9.1432000e+03 1.6244570e+00 + 9.1436000e+03 1.5935337e+00 + 9.1440000e+03 1.2125275e+00 + 9.1444000e+03 8.8158150e-01 + 9.1448000e+03 5.9077861e-01 + 9.1452000e+03 3.7620550e-04 + 9.1456000e+03 -3.1954477e-01 + 9.1460000e+03 -3.8506346e-01 + 9.1464000e+03 -3.7610850e-01 + 9.1468000e+03 -6.1223055e-01 + 9.1472000e+03 -7.0250613e-01 + 9.1476000e+03 -1.0161873e+00 + 9.1480000e+03 -1.3752170e+00 + 9.1484000e+03 -1.7044286e+00 + 9.1488000e+03 -1.5337641e+00 + 9.1492000e+03 -1.1432770e+00 + 9.1496000e+03 -9.7847893e-01 + 9.1500000e+03 -7.3484834e-01 + 9.1504000e+03 -7.8246702e-01 + 9.1508000e+03 -6.8852073e-01 + 9.1512000e+03 -1.1450985e+00 + 9.1516000e+03 -1.4014301e+00 + 9.1520000e+03 -1.6905646e+00 + 9.1524000e+03 -1.5198684e+00 + 9.1528000e+03 -1.2593841e+00 + 9.1532000e+03 -7.3911846e-01 + 9.1536000e+03 -2.5876427e-01 + 9.1540000e+03 5.2066437e-01 + 9.1544000e+03 5.6009776e-01 + 9.1548000e+03 6.6914937e-01 + 9.1552000e+03 1.0480622e+00 + 9.1556000e+03 9.4698461e-01 + 9.1560000e+03 8.2611810e-01 + 9.1564000e+03 5.4544695e-01 + 9.1568000e+03 3.9490725e-01 + 9.1572000e+03 1.3454600e-01 + 9.1576000e+03 4.3838069e-03 + 9.1580000e+03 -8.5577906e-02 + 9.1584000e+03 -1.3539229e-01 + 9.1588000e+03 -1.9524219e-01 + 9.1592000e+03 1.4938386e-02 + 9.1596000e+03 5.5231234e-02 + 9.1600000e+03 2.8529572e-01 + 9.1604000e+03 4.9520723e-01 + 9.1608000e+03 5.5504306e-01 + 9.1612000e+03 8.6482136e-01 + 9.1616000e+03 1.0545625e+00 + 9.1620000e+03 1.2143850e+00 + 9.1624000e+03 1.3842106e+00 + 9.1628000e+03 1.5338670e+00 + 9.1632000e+03 1.0033946e+00 + 9.1636000e+03 5.4296345e-01 + 9.1640000e+03 1.1248012e-01 + 9.1644000e+03 2.2037747e-02 + 9.1648000e+03 -3.2866919e-01 + 9.1652000e+03 -7.1947323e-01 + 9.1656000e+03 -8.3977371e-01 + 9.1660000e+03 -7.8007415e-01 + 9.1664000e+03 -5.4840404e-01 + 9.1668000e+03 5.4885751e-02 + 9.1672000e+03 9.1696362e-02 + 9.1676000e+03 -1.4545204e-01 + 9.1680000e+03 -2.8826125e-01 + 9.1684000e+03 -5.0774799e-01 + 9.1688000e+03 -9.5698123e-01 + 9.1692000e+03 -1.0362342e+00 + 9.1696000e+03 -9.4534085e-01 + 9.1700000e+03 -1.3144209e+00 + 9.1704000e+03 -1.8234490e+00 + 9.1708000e+03 -2.0326181e+00 + 9.1712000e+03 -2.1020574e+00 + 9.1716000e+03 -2.0117349e+00 + 9.1720000e+03 -1.6916351e+00 + 9.1724000e+03 -1.0047169e+00 + 9.1728000e+03 -1.2690608e-01 + 9.1732000e+03 4.6701026e-01 + 9.1736000e+03 1.3387898e+00 + 9.1740000e+03 1.8452000e+00 + 9.1744000e+03 1.6709069e+00 + 9.1748000e+03 1.2142912e+00 + 9.1752000e+03 8.5202503e-01 + 9.1756000e+03 6.0141796e-01 + 9.1760000e+03 4.6063733e-01 + 9.1764000e+03 4.2974952e-01 + 9.1768000e+03 1.7902343e-01 + 9.1772000e+03 -1.5150915e-01 + 9.1776000e+03 1.5842257e-01 + 9.1780000e+03 6.2860085e-01 + 9.1784000e+03 9.1576359e-01 + 9.1788000e+03 1.0478678e+00 + 9.1792000e+03 1.2433649e+00 + 9.1796000e+03 1.4105492e+00 + 9.1800000e+03 1.8538700e+00 + 9.1804000e+03 1.9753655e+00 + 9.1808000e+03 1.6168564e+00 + 9.1812000e+03 1.1781799e+00 + 9.1816000e+03 5.1910154e-01 + 9.1820000e+03 -7.0490143e-02 + 9.1824000e+03 -5.6099106e-01 + 9.1828000e+03 -7.9182798e-01 + 9.1832000e+03 -5.7313637e-01 + 9.1836000e+03 -7.4739381e-02 + 9.1840000e+03 2.4333565e-01 + 9.1844000e+03 4.8134213e-01 + 9.1848000e+03 2.5942413e-01 + 9.1852000e+03 -7.7220564e-01 + 9.1856000e+03 -1.8435197e+00 + 9.1860000e+03 -2.4045638e+00 + 9.1864000e+03 -2.2053804e+00 + 9.1868000e+03 -1.4559838e+00 + 9.1872000e+03 -1.3964391e+00 + 9.1876000e+03 -1.4967226e+00 + 9.1880000e+03 -1.9676481e+00 + 9.1884000e+03 -2.5734104e+00 + 9.1888000e+03 -3.1802401e+00 + 9.1892000e+03 -3.1747749e+00 + 9.1896000e+03 -2.5177182e+00 + 9.1900000e+03 -1.6799118e+00 + 9.1904000e+03 -7.2711450e-01 + 9.1908000e+03 5.8638663e-01 + 9.1912000e+03 1.6071406e+00 + 9.1916000e+03 2.3849301e+00 + 9.1920000e+03 2.8139930e+00 + 9.1924000e+03 2.9733853e+00 + 9.1928000e+03 3.0314435e+00 + 9.1932000e+03 3.3832411e+00 + 9.1936000e+03 3.8511997e+00 + 9.1940000e+03 3.7047818e+00 + 9.1944000e+03 3.2705792e+00 + 9.1948000e+03 2.3595247e+00 + 9.1952000e+03 1.5083559e+00 + 9.1956000e+03 7.9713173e-01 + 9.1960000e+03 -6.4061003e-02 + 9.1964000e+03 -6.3524236e-01 + 9.1968000e+03 -9.0616691e-01 + 9.1972000e+03 -1.6067693e+00 + 9.1976000e+03 -1.8370204e+00 + 9.1980000e+03 -1.6068959e+00 + 9.1984000e+03 -1.2164660e+00 + 9.1988000e+03 -5.6001709e-01 + 9.1992000e+03 5.2751028e-01 + 9.1996000e+03 1.2494016e+00 + 9.2000000e+03 1.4589322e+00 + 9.2004000e+03 1.5313769e+00 + 9.2008000e+03 1.3319549e+00 + 9.2012000e+03 8.2357509e-01 + 9.2016000e+03 4.5438542e-01 + 9.2020000e+03 -1.6909058e-02 + 9.2024000e+03 -6.2293540e-01 + 9.2028000e+03 -1.1402292e+00 + 9.2032000e+03 -1.4620655e+00 + 9.2036000e+03 -1.8672581e+00 + 9.2040000e+03 -2.0974851e+00 + 9.2044000e+03 -2.1680845e+00 + 9.2048000e+03 -2.1090325e+00 + 9.2052000e+03 -2.0203137e+00 + 9.2056000e+03 -1.9518626e+00 + 9.2060000e+03 -1.9235274e+00 + 9.2064000e+03 -1.5505527e+00 + 9.2068000e+03 -1.0723192e+00 + 9.2072000e+03 -6.1601302e-01 + 9.2076000e+03 -3.7304178e-01 + 9.2080000e+03 -3.0432317e-01 + 9.2084000e+03 -3.1027791e-01 + 9.2088000e+03 -4.4869889e-01 + 9.2092000e+03 -4.5993134e-01 + 9.2096000e+03 -2.7558424e-01 + 9.2100000e+03 2.9140463e-03 + 9.2104000e+03 7.4125930e-01 + 9.2108000e+03 1.2683851e+00 + 9.2112000e+03 1.5711117e+00 + 9.2116000e+03 2.0499909e+00 + 9.2120000e+03 2.8501473e+00 + 9.2124000e+03 2.9801338e+00 + 9.2128000e+03 3.0198607e+00 + 9.2132000e+03 3.1618108e+00 + 9.2136000e+03 2.9773755e+00 + 9.2140000e+03 2.7125310e+00 + 9.2144000e+03 2.3620722e+00 + 9.2148000e+03 1.5366789e+00 + 9.2152000e+03 4.8073155e-01 + 9.2156000e+03 -3.5481225e-01 + 9.2160000e+03 -1.2826833e+00 + 9.2164000e+03 -2.3203342e+00 + 9.2168000e+03 -3.0219079e+00 + 9.2172000e+03 -3.2553037e+00 + 9.2176000e+03 -3.2940771e+00 + 9.2180000e+03 -2.8929915e+00 + 9.2184000e+03 -2.5159667e+00 + 9.2188000e+03 -2.1060713e+00 + 9.2192000e+03 -1.2904992e+00 + 9.2196000e+03 -2.5276038e-01 + 9.2200000e+03 9.6748862e-01 + 9.2204000e+03 1.4979303e+00 + 9.2208000e+03 2.3991845e+00 + 9.2212000e+03 3.1621909e+00 + 9.2216000e+03 3.7427999e+00 + 9.2220000e+03 3.7888594e+00 + 9.2224000e+03 3.0098793e+00 + 9.2228000e+03 1.8423901e+00 + 9.2232000e+03 8.7390343e-01 + 9.2236000e+03 -2.2078485e-01 + 9.2240000e+03 -1.3293961e+00 + 9.2244000e+03 -2.2002294e+00 + 9.2248000e+03 -2.8885426e+00 + 9.2252000e+03 -3.4195171e+00 + 9.2256000e+03 -3.5527352e+00 + 9.2260000e+03 -3.6436058e+00 + 9.2264000e+03 -3.3846804e+00 + 9.2268000e+03 -2.9558783e+00 + 9.2272000e+03 -2.3272282e+00 + 9.2276000e+03 -1.7586731e+00 + 9.2280000e+03 -1.6701435e+00 + 9.2284000e+03 -1.4813753e+00 + 9.2288000e+03 -3.0185865e-01 + 9.2292000e+03 1.1684293e-01 + 9.2296000e+03 6.1624170e-01 + 9.2300000e+03 1.3365868e+00 + 9.2304000e+03 1.8602634e+00 + 9.2308000e+03 1.9417273e+00 + 9.2312000e+03 2.3234773e+00 + 9.2316000e+03 3.0170593e+00 + 9.2320000e+03 3.2704206e+00 + 9.2324000e+03 3.3538769e+00 + 9.2328000e+03 2.8111384e+00 + 9.2332000e+03 2.2920995e+00 + 9.2336000e+03 1.7572805e+00 + 9.2340000e+03 1.7709465e+00 + 9.2344000e+03 1.6701248e+00 + 9.2348000e+03 1.5362465e+00 + 9.2352000e+03 1.7752803e+00 + 9.2356000e+03 1.6455041e+00 + 9.2360000e+03 1.0056324e+00 + 9.2364000e+03 1.9112015e-01 + 9.2368000e+03 -9.0190269e-01 + 9.2372000e+03 -2.0794712e+00 + 9.2376000e+03 -2.8940022e+00 + 9.2380000e+03 -3.2400243e+00 + 9.2384000e+03 -3.2241104e+00 + 9.2388000e+03 -2.9244429e+00 + 9.2392000e+03 -2.6748859e+00 + 9.2396000e+03 -2.4953934e+00 + 9.2400000e+03 -2.3059531e+00 + 9.2404000e+03 -1.7565675e+00 + 9.2408000e+03 -1.1871947e+00 + 9.2412000e+03 -8.8785316e-01 + 9.2416000e+03 -5.2825549e-01 + 9.2420000e+03 3.1690098e-02 + 9.2424000e+03 1.3216782e-01 + 9.2428000e+03 3.2299456e-01 + 9.2432000e+03 8.5385376e-01 + 9.2436000e+03 6.5462969e-01 + 9.2440000e+03 3.1591556e-01 + 9.2444000e+03 2.7763602e-01 + 9.2448000e+03 6.2374408e-01 + 9.2452000e+03 7.3143923e-01 + 9.2456000e+03 1.0850066e+00 + 9.2460000e+03 1.2445082e+00 + 9.2464000e+03 8.2986354e-01 + 9.2468000e+03 -1.3459366e-02 + 9.2472000e+03 -1.0075555e+00 + 9.2476000e+03 -1.4114504e+00 + 9.2480000e+03 -1.7306410e+00 + 9.2484000e+03 -1.6784742e+00 + 9.2488000e+03 -1.1689076e+00 + 9.2492000e+03 -5.0938404e-01 + 9.2496000e+03 -1.2994993e-01 + 9.2500000e+03 2.0910146e-01 + 9.2504000e+03 1.9125262e-01 + 9.2508000e+03 2.7932196e-01 + 9.2512000e+03 4.1241620e-01 + 9.2516000e+03 2.8864186e-01 + 9.2520000e+03 6.3852567e-01 + 9.2524000e+03 8.9834380e-01 + 9.2528000e+03 1.2082578e+00 + 9.2532000e+03 1.6183465e+00 + 9.2536000e+03 1.9385182e+00 + 9.2540000e+03 2.2188782e+00 + 9.2544000e+03 2.7893449e+00 + 9.2548000e+03 3.1899576e+00 + 9.2552000e+03 3.1205271e+00 + 9.2556000e+03 2.6911101e+00 + 9.2560000e+03 1.9714426e+00 + 9.2564000e+03 1.3416728e+00 + 9.2568000e+03 -3.9800293e-01 + 9.2572000e+03 -1.6980240e+00 + 9.2576000e+03 -2.5167874e+00 + 9.2580000e+03 -2.6667985e+00 + 9.2584000e+03 -2.5930498e+00 + 9.2588000e+03 -2.3164320e+00 + 9.2592000e+03 -2.5561471e+00 + 9.2596000e+03 -2.5858552e+00 + 9.2600000e+03 -2.5456199e+00 + 9.2604000e+03 -2.3254405e+00 + 9.2608000e+03 -2.2153262e+00 + 9.2612000e+03 -1.9553057e+00 + 9.2616000e+03 -1.6060530e+00 + 9.2620000e+03 -1.2558002e+00 + 9.2624000e+03 -7.2033204e-01 + 9.2628000e+03 1.1332886e-01 + 9.2632000e+03 6.8082536e-01 + 9.2636000e+03 1.1922704e+00 + 9.2640000e+03 1.4316828e+00 + 9.2644000e+03 1.6014762e+00 + 9.2648000e+03 1.7107402e+00 + 9.2652000e+03 1.5519145e+00 + 9.2656000e+03 1.5355057e+00 + 9.2660000e+03 1.3669217e+00 + 9.2664000e+03 8.8422542e-01 + 9.2668000e+03 -3.8043638e-02 + 9.2672000e+03 -9.1821674e-01 + 9.2676000e+03 -1.2667197e+00 + 9.2680000e+03 -1.2155420e+00 + 9.2684000e+03 -9.2517739e-01 + 9.2688000e+03 -6.8401922e-01 + 9.2692000e+03 -7.4790452e-01 + 9.2696000e+03 -8.6121596e-01 + 9.2700000e+03 -8.5888187e-01 + 9.2704000e+03 -3.7045552e-01 + 9.2708000e+03 1.9027227e-01 + 9.2712000e+03 8.7080989e-04 + 9.2716000e+03 -6.8461820e-02 + 9.2720000e+03 1.3858720e-01 + 9.2724000e+03 1.1095371e-01 + 9.2728000e+03 -8.9151223e-02 + 9.2732000e+03 -6.0860427e-01 + 9.2736000e+03 -6.2908991e-01 + 9.2740000e+03 -2.9925734e-01 + 9.2744000e+03 1.4952899e-01 + 9.2748000e+03 3.9876517e-01 + 9.2752000e+03 9.2793251e-01 + 9.2756000e+03 1.0871046e+00 + 9.2760000e+03 1.4263643e+00 + 9.2764000e+03 2.2157297e+00 + 9.2768000e+03 2.7038669e+00 + 9.2772000e+03 2.1297988e+00 + 9.2776000e+03 1.2064710e+00 + 9.2780000e+03 2.9073105e-01 + 9.2784000e+03 -4.6566016e-01 + 9.2788000e+03 -1.0801820e+00 + 9.2792000e+03 -1.9564142e+00 + 9.2796000e+03 -2.7004491e+00 + 9.2800000e+03 -3.2354468e+00 + 9.2804000e+03 -3.1347161e+00 + 9.2808000e+03 -2.7488631e+00 + 9.2812000e+03 -1.9893500e+00 + 9.2816000e+03 -1.3666185e+00 + 9.2820000e+03 -9.7104996e-01 + 9.2824000e+03 -6.3778621e-01 + 9.2828000e+03 -2.6834129e-01 + 9.2832000e+03 2.6985465e-01 + 9.2836000e+03 5.9876220e-01 + 9.2840000e+03 1.0277122e+00 + 9.2844000e+03 1.3267765e+00 + 9.2848000e+03 1.6860131e+00 + 9.2852000e+03 1.5843892e+00 + 9.2856000e+03 1.5326651e+00 + 9.2860000e+03 1.2785963e+00 + 9.2864000e+03 1.1271080e+00 + 9.2868000e+03 7.2842537e-01 + 9.2872000e+03 3.3774935e-01 + 9.2876000e+03 -3.6161815e-01 + 9.2880000e+03 -7.4997989e-01 + 9.2884000e+03 -1.1945480e+00 + 9.2888000e+03 -1.2949552e+00 + 9.2892000e+03 -1.0801623e+00 + 9.2896000e+03 -8.5974448e-01 + 9.2900000e+03 -4.8035642e-01 + 9.2904000e+03 2.1172963e-01 + 9.2908000e+03 6.8088246e-01 + 9.2912000e+03 8.2822281e-01 + 9.2916000e+03 5.4351881e-01 + 9.2920000e+03 2.0526190e-01 + 9.2924000e+03 2.7140943e-01 + 9.2928000e+03 3.5925237e-01 + 9.2932000e+03 2.8918718e-01 + 9.2936000e+03 3.3925543e-01 + 9.2940000e+03 2.3947357e-01 + 9.2944000e+03 2.0958695e-01 + 9.2948000e+03 1.1958190e-01 + 9.2952000e+03 2.3940239e-01 + 9.2956000e+03 3.0931753e-01 + 9.2960000e+03 3.5631182e-01 + 9.2964000e+03 -8.8248948e-02 + 9.2968000e+03 -7.1515413e-02 + 9.2972000e+03 -5.3600485e-02 + 9.2976000e+03 -2.4237454e-01 + 9.2980000e+03 -2.8653177e-01 + 9.2984000e+03 8.9517058e-03 + 9.2988000e+03 3.7521004e-02 + 9.2992000e+03 -3.1240797e-01 + 9.2996000e+03 -6.5228489e-01 + 9.3000000e+03 -6.9263108e-01 + 9.3004000e+03 -5.6202676e-01 + 9.3008000e+03 -2.5191688e-01 + 9.3012000e+03 9.7876332e-02 + 9.3016000e+03 3.8427447e-01 + 9.3020000e+03 4.3060376e-01 + 9.3024000e+03 9.5184848e-02 + 9.3028000e+03 -6.1224842e-01 + 9.3032000e+03 -1.2381901e+00 + 9.3036000e+03 -1.9329858e+00 + 9.3040000e+03 -2.3386556e+00 + 9.3044000e+03 -2.0955332e+00 + 9.3048000e+03 -1.6860488e+00 + 9.3052000e+03 -1.1161715e+00 + 9.3056000e+03 -1.7519050e-01 + 9.3060000e+03 1.3046825e+00 + 9.3064000e+03 2.5019953e+00 + 9.3068000e+03 3.2133121e+00 + 9.3072000e+03 3.5149487e+00 + 9.3076000e+03 3.2635681e+00 + 9.3080000e+03 2.8339534e+00 + 9.3084000e+03 2.5345197e+00 + 9.3088000e+03 1.9151603e+00 + 9.3092000e+03 1.5655931e+00 + 9.3096000e+03 1.2059721e+00 + 9.3100000e+03 7.7612809e-01 + 9.3104000e+03 -1.0871159e-01 + 9.3108000e+03 -1.0405458e+00 + 9.3112000e+03 -1.5166892e+00 + 9.3116000e+03 -1.6912382e+00 + 9.3120000e+03 -1.8261630e+00 + 9.3124000e+03 -1.9267751e+00 + 9.3128000e+03 -2.3771830e+00 + 9.3132000e+03 -2.6474444e+00 + 9.3136000e+03 -2.3376021e+00 + 9.3140000e+03 -2.0277978e+00 + 9.3144000e+03 -1.1261502e+00 + 9.3148000e+03 2.7953879e-01 + 9.3152000e+03 1.2173900e+00 + 9.3156000e+03 1.6591644e+00 + 9.3160000e+03 1.8030544e+00 + 9.3164000e+03 1.7531680e+00 + 9.3168000e+03 1.4132294e+00 + 9.3172000e+03 1.2833976e+00 + 9.3176000e+03 1.3536024e+00 + 9.3180000e+03 1.2838451e+00 + 9.3184000e+03 1.1586874e+00 + 9.3188000e+03 6.4908979e-01 + 9.3192000e+03 -1.5017753e-02 + 9.3196000e+03 -6.9948352e-01 + 9.3200000e+03 -1.1202130e+00 + 9.3204000e+03 -1.4131090e+00 + 9.3208000e+03 -1.5574576e+00 + 9.3212000e+03 -1.3711025e+00 + 9.3216000e+03 -1.4338813e+00 + 9.3220000e+03 -1.5653335e+00 + 9.3224000e+03 -1.4784930e+00 + 9.3228000e+03 -1.4693078e+00 + 9.3232000e+03 -1.4291298e+00 + 9.3236000e+03 -1.3586719e+00 + 9.3240000e+03 -8.5811522e-01 + 9.3244000e+03 -6.9792566e-01 + 9.3248000e+03 -3.7249657e-02 + 9.3252000e+03 6.5301750e-01 + 9.3256000e+03 9.8310721e-01 + 9.3260000e+03 1.7432053e+00 + 9.3264000e+03 2.0631600e+00 + 9.3268000e+03 2.2532684e+00 + 9.3272000e+03 3.1100628e+00 + 9.3276000e+03 3.8440205e+00 + 9.3280000e+03 3.4046130e+00 + 9.3284000e+03 2.7909958e+00 + 9.3288000e+03 1.7857846e+00 + 9.3292000e+03 6.1914225e-01 + 9.3296000e+03 -1.3400065e-01 + 9.3300000e+03 -2.7399088e-01 + 9.3304000e+03 -3.1491136e-01 + 9.3308000e+03 -4.1575396e-01 + 9.3312000e+03 -3.5682122e-01 + 9.3316000e+03 -2.6732409e-01 + 9.3320000e+03 -9.1308560e-03 + 9.3324000e+03 -6.5010639e-01 + 9.3328000e+03 -1.1307912e+00 + 9.3332000e+03 -1.4711966e+00 + 9.3336000e+03 -1.6313764e+00 + 9.3340000e+03 -1.4812852e+00 + 9.3344000e+03 -1.2009034e+00 + 9.3348000e+03 -1.1102117e+00 + 9.3352000e+03 -1.2294048e+00 + 9.3356000e+03 -1.3785606e+00 + 9.3360000e+03 -1.4777414e+00 + 9.3364000e+03 -1.3869959e+00 + 9.3368000e+03 -1.0363647e+00 + 9.3372000e+03 -7.2064288e-01 + 9.3376000e+03 -1.6148920e-01 + 9.3380000e+03 5.1179827e-01 + 9.3384000e+03 9.0297309e-01 + 9.3388000e+03 1.1154014e+00 + 9.3392000e+03 1.2352444e+00 + 9.3396000e+03 1.2308273e+00 + 9.3400000e+03 1.0990059e+00 + 9.3404000e+03 1.1540094e+00 + 9.3408000e+03 7.2184987e-01 + 9.3412000e+03 2.6691286e-01 + 9.3416000e+03 -3.6064664e-01 + 9.3420000e+03 -9.0402675e-01 + 9.3424000e+03 -1.4150761e+00 + 9.3428000e+03 -1.3555538e+00 + 9.3432000e+03 -1.2722327e+00 + 9.3436000e+03 -1.0326326e+00 + 9.3440000e+03 -5.5278935e-01 + 9.3444000e+03 -5.2169511e-01 + 9.3448000e+03 -3.3570878e-01 + 9.3452000e+03 -2.0306750e-01 + 9.3456000e+03 -6.4690196e-02 + 9.3460000e+03 1.3845837e-01 + 9.3464000e+03 5.0886863e-01 + 9.3468000e+03 7.3920546e-01 + 9.3472000e+03 1.1395194e+00 + 9.3476000e+03 1.4797811e+00 + 9.3480000e+03 1.6601183e+00 + 9.3484000e+03 1.8802943e+00 + 9.3488000e+03 1.7503014e+00 + 9.3492000e+03 1.7999943e+00 + 9.3496000e+03 1.8495939e+00 + 9.3500000e+03 1.7791913e+00 + 9.3504000e+03 1.6687944e+00 + 9.3508000e+03 1.5184611e+00 + 9.3512000e+03 1.4581312e+00 + 9.3516000e+03 1.2358996e+00 + 9.3520000e+03 4.2935897e-01 + 9.3524000e+03 -6.7979880e-01 + 9.3528000e+03 -1.6371961e+00 + 9.3532000e+03 -2.6816397e+00 + 9.3536000e+03 -3.3504958e+00 + 9.3540000e+03 -3.4016225e+00 + 9.3544000e+03 -3.1957343e+00 + 9.3548000e+03 -2.9087443e+00 + 9.3552000e+03 -2.1102888e+00 + 9.3556000e+03 -1.6691436e+00 + 9.3560000e+03 -1.5367411e+00 + 9.3564000e+03 -1.6263236e+00 + 9.3568000e+03 -1.5557981e+00 + 9.3572000e+03 -1.6452294e+00 + 9.3576000e+03 -1.4846185e+00 + 9.3580000e+03 -1.2015344e+00 + 9.3584000e+03 -5.9057077e-01 + 9.3588000e+03 5.2014068e-01 + 9.3592000e+03 1.9933010e+00 + 9.3596000e+03 3.0486482e+00 + 9.3600000e+03 3.4297286e+00 + 9.3604000e+03 2.8701470e+00 + 9.3608000e+03 2.0705357e+00 + 9.3612000e+03 1.5206619e+00 + 9.3616000e+03 6.6434354e-01 + 9.3620000e+03 3.2878890e-01 + 9.3624000e+03 4.6144413e-01 + 9.3628000e+03 5.4869265e-01 + 9.3632000e+03 6.0730045e-01 + 9.3636000e+03 3.7655394e-01 + 9.3640000e+03 -2.4182307e-02 + 9.3644000e+03 -4.7533976e-01 + 9.3648000e+03 -5.7317318e-01 + 9.3652000e+03 -7.2277429e-01 + 9.3656000e+03 -1.0454065e+00 + 9.3660000e+03 -9.9744401e-01 + 9.3664000e+03 -1.1779971e+00 + 9.3668000e+03 -1.0682485e+00 + 9.3672000e+03 -8.8833343e-01 + 9.3676000e+03 -7.8461843e-02 + 9.3680000e+03 5.1139258e-01 + 9.3684000e+03 8.5390940e-01 + 9.3688000e+03 9.3916779e-01 + 9.3692000e+03 6.0298012e-01 + 9.3696000e+03 7.0895724e-01 + 9.3700000e+03 7.3319203e-01 + 9.3704000e+03 6.1443203e-01 + 9.3708000e+03 8.7557031e-01 + 9.3712000e+03 7.6659898e-01 + 9.3716000e+03 8.6813944e-01 + 9.3720000e+03 1.0459487e+00 + 9.3724000e+03 1.1162686e+00 + 9.3728000e+03 7.8665530e-01 + 9.3732000e+03 5.6757342e-02 + 9.3736000e+03 -4.8856218e-01 + 9.3740000e+03 -6.9347900e-01 + 9.3744000e+03 -6.6384989e-01 + 9.3748000e+03 -1.8494422e-01 + 9.3752000e+03 4.4389672e-01 + 9.3756000e+03 6.4289644e-01 + 9.3760000e+03 1.0222381e+00 + 9.3764000e+03 8.2185661e-01 + 9.3768000e+03 4.1668169e-01 + 9.3772000e+03 -2.9476125e-01 + 9.3776000e+03 -9.0020579e-01 + 9.3780000e+03 -1.5615968e+00 + 9.3784000e+03 -2.0046474e+00 + 9.3788000e+03 -2.4030981e+00 + 9.3792000e+03 -3.0654683e+00 + 9.3796000e+03 -3.3297121e+00 + 9.3800000e+03 -2.9369143e+00 + 9.3804000e+03 -2.1889097e+00 + 9.3808000e+03 -1.0931370e+00 + 9.3812000e+03 7.8870711e-02 + 9.3816000e+03 8.9556067e-01 + 9.3820000e+03 1.1882554e+00 + 9.3824000e+03 1.4045391e+00 + 9.3828000e+03 1.6743552e+00 + 9.3832000e+03 2.0541085e+00 + 9.3836000e+03 2.5130886e+00 + 9.3840000e+03 2.9741931e+00 + 9.3844000e+03 2.8652465e+00 + 9.3848000e+03 2.7731571e+00 + 9.3852000e+03 2.3230118e+00 + 9.3856000e+03 1.7229364e+00 + 9.3860000e+03 1.5128911e+00 + 9.3864000e+03 8.7307601e-01 + 9.3868000e+03 -3.5670146e-01 + 9.3872000e+03 -9.7325799e-01 + 9.3876000e+03 -1.3456310e+00 + 9.3880000e+03 -1.5211322e+00 + 9.3884000e+03 -1.5709081e+00 + 9.3888000e+03 -1.3211194e+00 + 9.3892000e+03 -1.2763013e+00 + 9.3896000e+03 -1.4619389e+00 + 9.3900000e+03 -1.8229646e+00 + 9.3904000e+03 -2.0819074e+00 + 9.3908000e+03 -2.0690877e+00 + 9.3912000e+03 -1.7164618e+00 + 9.3916000e+03 -1.0802419e+00 + 9.3920000e+03 -3.7896977e-01 + 9.3924000e+03 5.5879007e-01 + 9.3928000e+03 1.1693188e+00 + 9.3932000e+03 1.9401150e+00 + 9.3936000e+03 2.7309290e+00 + 9.3940000e+03 3.3816011e+00 + 9.3944000e+03 3.6621373e+00 + 9.3948000e+03 4.0023089e+00 + 9.3952000e+03 4.0136272e+00 + 9.3956000e+03 3.1819790e+00 + 9.3960000e+03 1.6012648e+00 + 9.3964000e+03 2.1051210e-01 + 9.3968000e+03 -9.3036819e-01 + 9.3972000e+03 -1.5811347e+00 + 9.3976000e+03 -1.8617476e+00 + 9.3980000e+03 -1.7621653e+00 + 9.3984000e+03 -1.6825089e+00 + 9.3988000e+03 -1.8227754e+00 + 9.3992000e+03 -2.0529582e+00 + 9.3996000e+03 -1.9916031e+00 + 9.4000000e+03 -1.9351687e+00 + 9.4004000e+03 -2.0321140e+00 + 9.4008000e+03 -2.2296960e+00 + 9.4012000e+03 -1.8322129e+00 + 9.4016000e+03 -1.3638369e+00 + 9.4020000e+03 -1.0212180e+00 + 9.4024000e+03 -6.4153398e-01 + 9.4028000e+03 -4.0305542e-01 + 9.4032000e+03 1.0932564e-01 + 9.4036000e+03 1.1113039e+00 + 9.4040000e+03 1.7176903e+00 + 9.4044000e+03 2.0474914e+00 + 9.4048000e+03 2.1973803e+00 + 9.4052000e+03 2.2873359e+00 + 9.4056000e+03 1.6672687e+00 + 9.4060000e+03 1.5170465e+00 + 9.4064000e+03 4.5674198e-01 + 9.4068000e+03 2.2643962e-01 + 9.4072000e+03 2.5607440e-01 + 9.4076000e+03 -2.0432471e-01 + 9.4080000e+03 -2.9449218e-01 + 9.4084000e+03 -1.0526829e-01 + 9.4088000e+03 -3.7170735e-01 + 9.4092000e+03 -9.1868951e-01 + 9.4096000e+03 -1.4893477e+00 + 9.4100000e+03 -1.8664324e+00 + 9.4104000e+03 -2.3041400e+00 + 9.4108000e+03 -2.1338227e+00 + 9.4112000e+03 -1.7434616e+00 + 9.4116000e+03 -1.4030750e+00 + 9.4120000e+03 -1.8308434e-01 + 9.4124000e+03 1.4721429e+00 + 9.4128000e+03 2.6475053e+00 + 9.4132000e+03 2.8275960e+00 + 9.4136000e+03 3.6377193e+00 + 9.4140000e+03 3.8978366e+00 + 9.4144000e+03 3.2379420e+00 + 9.4148000e+03 2.6965147e+00 + 9.4152000e+03 2.0494459e+00 + 9.4156000e+03 1.1737034e+00 + 9.4160000e+03 6.4998371e-01 + 9.4164000e+03 1.7069351e-01 + 9.4168000e+03 -3.8075485e-01 + 9.4172000e+03 -5.7206717e-01 + 9.4176000e+03 -8.5566375e-01 + 9.4180000e+03 -1.2619610e+00 + 9.4184000e+03 -1.6018853e+00 + 9.4188000e+03 -1.7119640e+00 + 9.4192000e+03 -2.6023058e+00 + 9.4196000e+03 -3.3627550e+00 + 9.4200000e+03 -3.7434063e+00 + 9.4204000e+03 -3.2340552e+00 + 9.4208000e+03 -2.4046479e+00 + 9.4212000e+03 -1.3348994e+00 + 9.4216000e+03 -4.5025395e-02 + 9.4220000e+03 1.1449591e+00 + 9.4224000e+03 1.9251324e+00 + 9.4228000e+03 2.3536226e+00 + 9.4232000e+03 3.0013359e+00 + 9.4236000e+03 3.3056000e+00 + 9.4240000e+03 3.2691545e+00 + 9.4244000e+03 2.8643530e+00 + 9.4248000e+03 2.0475369e+00 + 9.4252000e+03 8.7769891e-01 + 9.4256000e+03 -2.4220180e-01 + 9.4260000e+03 -1.0424093e+00 + 9.4264000e+03 -1.2725940e+00 + 9.4268000e+03 -1.6729759e+00 + 9.4272000e+03 -1.8233121e+00 + 9.4276000e+03 -1.6936399e+00 + 9.4280000e+03 -1.7739965e+00 + 9.4284000e+03 -2.1244759e+00 + 9.4288000e+03 -2.5749461e+00 + 9.4292000e+03 -2.7952723e+00 + 9.4296000e+03 -2.4255109e+00 + 9.4300000e+03 -1.5056177e+00 + 9.4304000e+03 -4.4548017e-01 + 9.4308000e+03 -5.5064022e-02 + 9.4312000e+03 1.5447436e-02 + 9.4316000e+03 9.9606884e-01 + 9.4320000e+03 2.0505927e+00 + 9.4324000e+03 3.0680465e+00 + 9.4328000e+03 3.1190716e+00 + 9.4332000e+03 3.2697893e+00 + 9.4336000e+03 3.4102746e+00 + 9.4340000e+03 3.9008355e+00 + 9.4344000e+03 4.5210516e+00 + 9.4348000e+03 4.6411156e+00 + 9.4352000e+03 3.6910185e+00 + 9.4356000e+03 2.1607300e+00 + 9.4360000e+03 8.9024029e-01 + 9.4364000e+03 -2.5993624e-01 + 9.4368000e+03 -1.0113187e+00 + 9.4372000e+03 -2.1821306e+00 + 9.4376000e+03 -2.7425947e+00 + 9.4380000e+03 -3.2727349e+00 + 9.4384000e+03 -3.6125936e+00 + 9.4388000e+03 -4.1819613e+00 + 9.4392000e+03 -4.5112605e+00 + 9.4396000e+03 -4.7807433e+00 + 9.4400000e+03 -4.3303803e+00 + 9.4404000e+03 -3.4202700e+00 + 9.4408000e+03 -2.1755501e+00 + 9.4412000e+03 -1.0722941e+00 + 9.4416000e+03 2.1522079e-01 + 9.4420000e+03 1.4757512e+00 + 9.4424000e+03 2.7087449e+00 + 9.4428000e+03 3.4528953e+00 + 9.4432000e+03 4.0735657e+00 + 9.4436000e+03 4.2364127e+00 + 9.4440000e+03 3.8025079e+00 + 9.4444000e+03 3.5053696e+00 + 9.4448000e+03 2.8478580e+00 + 9.4452000e+03 2.0682028e+00 + 9.4456000e+03 1.0295057e+00 + 9.4460000e+03 -1.9496173e-01 + 9.4464000e+03 -1.1524377e+00 + 9.4468000e+03 -2.0102413e+00 + 9.4472000e+03 -2.5622181e+00 + 9.4476000e+03 -2.6940329e+00 + 9.4480000e+03 -2.6342017e+00 + 9.4484000e+03 -2.7483175e+00 + 9.4488000e+03 -2.6762845e+00 + 9.4492000e+03 -2.4469336e+00 + 9.4496000e+03 -1.8873865e+00 + 9.4500000e+03 -1.1474713e+00 + 9.4504000e+03 -3.0710133e-01 + 9.4508000e+03 8.6334546e-01 + 9.4512000e+03 2.0144453e+00 + 9.4516000e+03 2.8754851e+00 + 9.4520000e+03 3.1565856e+00 + 9.4524000e+03 3.6875772e+00 + 9.4528000e+03 3.6685111e+00 + 9.4532000e+03 3.4094284e+00 + 9.4536000e+03 2.8301931e+00 + 9.4540000e+03 2.6707936e+00 + 9.4544000e+03 2.3411028e+00 + 9.4548000e+03 1.6013150e+00 + 9.4552000e+03 1.2115309e+00 + 9.4556000e+03 1.0717326e+00 + 9.4560000e+03 5.4148912e-01 + 9.4564000e+03 8.1004914e-02 + 9.4568000e+03 -9.6075161e-03 + 9.4572000e+03 -1.8047948e-01 + 9.4576000e+03 -4.9120267e-01 + 9.4580000e+03 -6.6196349e-01 + 9.4584000e+03 -1.7328028e+00 + 9.4588000e+03 -2.4934515e+00 + 9.4592000e+03 -3.0215961e+00 + 9.4596000e+03 -3.2627664e+00 + 9.4600000e+03 -3.0402303e+00 + 9.4604000e+03 -2.4776753e+00 + 9.4608000e+03 -1.8462990e+00 + 9.4612000e+03 -1.1666769e+00 + 9.4616000e+03 -4.4689839e-01 + 9.4620000e+03 -6.6685998e-01 + 9.4624000e+03 -7.8660380e-01 + 9.4628000e+03 -5.6621378e-01 + 9.4632000e+03 -4.5699576e-02 + 9.4636000e+03 5.3478050e-01 + 9.4640000e+03 1.7952993e+00 + 9.4644000e+03 2.8056659e+00 + 9.4648000e+03 3.2659846e+00 + 9.4652000e+03 3.6464266e+00 + 9.4656000e+03 3.7867057e+00 + 9.4660000e+03 2.9468827e+00 + 9.4664000e+03 2.4269576e+00 + 9.4668000e+03 1.4907552e+00 + 9.4672000e+03 1.1564268e-01 + 9.4676000e+03 -8.8414275e-01 + 9.4680000e+03 -1.1249650e+00 + 9.4684000e+03 -1.2859399e+00 + 9.4688000e+03 -1.3569782e+00 + 9.4692000e+03 -1.4080419e+00 + 9.4696000e+03 -1.2690568e+00 + 9.4700000e+03 -1.1599911e+00 + 9.4704000e+03 -1.2525846e+00 + 9.4708000e+03 -1.4424746e+00 + 9.4712000e+03 -1.6113203e+00 + 9.4716000e+03 -1.5290917e+00 + 9.4720000e+03 -1.2400421e+00 + 9.4724000e+03 -4.4858972e-01 + 9.4728000e+03 5.9320576e-01 + 9.4732000e+03 1.1751448e+00 + 9.4736000e+03 1.8069012e+00 + 9.4740000e+03 2.4658828e+00 + 9.4744000e+03 2.8895248e+00 + 9.4748000e+03 2.8708020e+00 + 9.4752000e+03 2.6562092e+00 + 9.4756000e+03 2.0114258e+00 + 9.4760000e+03 1.5519753e+00 + 9.4764000e+03 1.4224565e+00 + 9.4768000e+03 8.9276427e-01 + 9.4772000e+03 5.7258262e-01 + 9.4776000e+03 6.2203414e-01 + 9.4780000e+03 3.5126937e-01 + 9.4784000e+03 9.9779392e-02 + 9.4788000e+03 -1.5186866e-01 + 9.4792000e+03 -2.8349070e-01 + 9.4796000e+03 -3.9515925e-01 + 9.4800000e+03 -5.8659323e-01 + 9.4804000e+03 -6.6764295e-01 + 9.4808000e+03 -7.7846905e-01 + 9.4812000e+03 -9.1903197e-01 + 9.4816000e+03 -1.3294434e+00 + 9.4820000e+03 -1.6869717e+00 + 9.4824000e+03 -1.7537510e+00 + 9.4828000e+03 -1.9102435e+00 + 9.4832000e+03 -1.9624435e+00 + 9.4836000e+03 -1.9060866e+00 + 9.4840000e+03 -1.8800018e+00 + 9.4844000e+03 -1.6180605e+00 + 9.4848000e+03 -9.5851500e-01 + 9.4852000e+03 -1.8791545e-01 + 9.4856000e+03 2.5261083e-01 + 9.4860000e+03 6.8468976e-01 + 9.4864000e+03 1.0670939e+00 + 9.4868000e+03 1.3899280e+00 + 9.4872000e+03 1.6391238e+00 + 9.4876000e+03 1.4430811e+00 + 9.4880000e+03 5.9330915e-01 + 9.4884000e+03 4.0346351e-01 + 9.4888000e+03 2.6333055e-01 + 9.4892000e+03 7.3130740e-02 + 9.4896000e+03 -2.9654395e-01 + 9.4900000e+03 -3.8705068e-01 + 9.4904000e+03 -6.5753055e-01 + 9.4908000e+03 -7.0817927e-01 + 9.4912000e+03 -7.6854078e-01 + 9.4916000e+03 -9.2898932e-01 + 9.4920000e+03 -1.1191591e+00 + 9.4924000e+03 -1.2091695e+00 + 9.4928000e+03 -8.9884854e-01 + 9.4932000e+03 -3.6800527e-01 + 9.4936000e+03 7.2824270e-02 + 9.4940000e+03 4.6174491e-01 + 9.4944000e+03 8.6699668e-01 + 9.4948000e+03 1.2014146e+00 + 9.4952000e+03 1.3130407e+00 + 9.4956000e+03 1.4484668e+00 + 9.4960000e+03 1.2391915e+00 + 9.4964000e+03 1.1794272e+00 + 9.4968000e+03 6.6916011e-01 + 9.4972000e+03 1.8533673e-02 + 9.4976000e+03 -4.2380481e-02 + 9.4980000e+03 1.9648326e-01 + 9.4984000e+03 4.9528930e-01 + 9.4988000e+03 7.3405910e-01 + 9.4992000e+03 5.3288605e-01 + 9.4996000e+03 -1.4815165e-01 + 9.5000000e+03 -7.5888907e-01 + 9.5004000e+03 -1.0194806e+00 + 9.5008000e+03 -8.6963955e-01 + 9.5012000e+03 -5.5944954e-01 + 9.5016000e+03 -5.9023451e-02 + 9.5020000e+03 1.1573851e-02 + 9.5024000e+03 1.1174965e-01 + 9.5028000e+03 -1.6850888e-01 + 9.5032000e+03 -6.5891454e-01 + 9.5036000e+03 -8.0973716e-01 + 9.5040000e+03 -8.2731224e-01 + 9.5044000e+03 -8.8970691e-01 + 9.5048000e+03 -1.1042917e+00 + 9.5052000e+03 -1.5216631e+00 + 9.5056000e+03 -1.8311827e+00 + 9.5060000e+03 -1.6208526e+00 + 9.5064000e+03 -1.2004007e+00 + 9.5068000e+03 -9.4000507e-01 + 9.5072000e+03 -6.2951287e-01 + 9.5076000e+03 -3.4909288e-01 + 9.5080000e+03 -2.0841399e-01 + 9.5084000e+03 1.4227826e-01 + 9.5088000e+03 7.4274404e-01 + 9.5092000e+03 1.4029997e+00 + 9.5096000e+03 1.9230705e+00 + 9.5100000e+03 1.9529541e+00 + 9.5104000e+03 1.3526895e+00 + 9.5108000e+03 1.0526720e+00 + 9.5112000e+03 2.6289744e-01 + 9.5116000e+03 -1.6674384e-01 + 9.5120000e+03 -4.8631158e-01 + 9.5124000e+03 -6.7609934e-01 + 9.5128000e+03 -4.2563473e-01 + 9.5132000e+03 -8.5539936e-02 + 9.5136000e+03 -4.5323709e-02 + 9.5140000e+03 4.8485681e-01 + 9.5144000e+03 1.0695490e+00 + 9.5148000e+03 1.0551637e+00 + 9.5152000e+03 8.9552752e-01 + 9.5156000e+03 7.6595802e-01 + 9.5160000e+03 4.6635601e-01 + 9.5164000e+03 2.6673787e-01 + 9.5168000e+03 2.3698808e-01 + 9.5172000e+03 5.1706471e-01 + 9.5176000e+03 8.0715582e-01 + 9.5180000e+03 9.7692069e-01 + 9.5184000e+03 1.4163482e+00 + 9.5188000e+03 2.2025149e+00 + 9.5192000e+03 2.4846851e+00 + 9.5196000e+03 2.0770256e+00 + 9.5200000e+03 1.2375126e+00 + 9.5204000e+03 2.4446721e-01 + 9.5208000e+03 -9.8898515e-01 + 9.5212000e+03 -2.0902141e+00 + 9.5216000e+03 -2.8587726e+00 + 9.5220000e+03 -3.1396808e+00 + 9.5224000e+03 -2.8303579e+00 + 9.5228000e+03 -2.0506961e+00 + 9.5232000e+03 -1.3007397e+00 + 9.5236000e+03 -8.1057912e-01 + 9.5240000e+03 -6.1568162e-01 + 9.5244000e+03 -4.4979644e-01 + 9.5248000e+03 -1.9225841e-01 + 9.5252000e+03 -5.7191259e-02 + 9.5256000e+03 -7.6659456e-03 + 9.5260000e+03 -1.3666919e-01 + 9.5264000e+03 -4.7080159e-01 + 9.5268000e+03 -5.5583151e-01 + 9.5272000e+03 -4.4901363e-01 + 9.5276000e+03 -4.8548625e-01 + 9.5280000e+03 -3.7911880e-01 + 9.5284000e+03 -5.2382024e-01 + 9.5288000e+03 -3.9449696e-01 + 9.5292000e+03 -3.0514651e-01 + 9.5296000e+03 -6.3616675e-03 + 9.5300000e+03 5.4270144e-01 + 9.5304000e+03 1.4916892e+00 + 9.5308000e+03 1.8809995e+00 + 9.5312000e+03 1.9684621e+00 + 9.5316000e+03 1.4963184e+00 + 9.5320000e+03 4.3619552e-01 + 9.5324000e+03 -4.6176463e-01 + 9.5328000e+03 -1.1169131e+00 + 9.5332000e+03 -1.4026502e+00 + 9.5336000e+03 -1.2947637e+00 + 9.5340000e+03 -1.0693719e+00 + 9.5344000e+03 -1.0288626e+00 + 9.5348000e+03 -1.0782422e+00 + 9.5352000e+03 -8.6742859e-01 + 9.5356000e+03 1.2367789e-01 + 9.5360000e+03 8.5485293e-01 + 9.5364000e+03 1.4362427e+00 + 9.5368000e+03 1.8974998e+00 + 9.5372000e+03 2.2684851e+00 + 9.5376000e+03 2.3590617e+00 + 9.5380000e+03 2.2392263e+00 + 9.5384000e+03 1.8390206e+00 + 9.5388000e+03 1.4985471e+00 + 9.5392000e+03 6.0809825e-01 + 9.5396000e+03 -2.6211675e-01 + 9.5400000e+03 -4.1344710e-01 + 9.5404000e+03 -6.4479450e-01 + 9.5408000e+03 -4.8638661e-01 + 9.5412000e+03 -3.1817248e-01 + 9.5416000e+03 1.0181724e-02 + 9.5420000e+03 1.8878355e-01 + 9.5424000e+03 6.1745262e-01 + 9.5428000e+03 6.8628366e-01 + 9.5432000e+03 5.8540836e-01 + 9.5436000e+03 9.2223649e-02 + 9.5440000e+03 -5.9487119e-01 + 9.5444000e+03 -1.3385224e+00 + 9.5448000e+03 -2.1308947e+00 + 9.5452000e+03 -3.1595515e+00 + 9.5456000e+03 -3.9171452e+00 + 9.5460000e+03 -3.9405460e+00 + 9.5464000e+03 -3.7031403e+00 + 9.5468000e+03 -3.2402574e+00 + 9.5472000e+03 -2.8072648e+00 + 9.5476000e+03 -2.2852762e+00 + 9.5480000e+03 -1.5802151e+00 + 9.5484000e+03 -9.1288397e-01 + 9.5488000e+03 1.4221227e-01 + 9.5492000e+03 1.6394497e+00 + 9.5496000e+03 3.1039591e+00 + 9.5500000e+03 3.9853798e+00 + 9.5504000e+03 4.0532130e+00 + 9.5508000e+03 3.5737901e+00 + 9.5512000e+03 3.1733479e+00 + 9.5516000e+03 2.7430409e+00 + 9.5520000e+03 2.0600652e+00 + 9.5524000e+03 1.7163559e+00 + 9.5528000e+03 1.2991931e+00 + 9.5532000e+03 1.0515202e+00 + 9.5536000e+03 4.8564323e-01 + 9.5540000e+03 -9.4542414e-02 + 9.5544000e+03 3.5730205e-02 + 9.5548000e+03 4.4623994e-01 + 9.5552000e+03 9.1716250e-01 + 9.5556000e+03 1.2785162e+00 + 9.5560000e+03 1.3401081e+00 + 9.5564000e+03 1.1119317e+00 + 9.5568000e+03 7.2378393e-01 + 9.5572000e+03 2.5561379e-01 + 9.5576000e+03 -1.4291054e-01 + 9.5580000e+03 -3.3170054e-01 + 9.5584000e+03 -1.1075644e-01 + 9.5588000e+03 1.6995381e-01 + 9.5592000e+03 4.7630877e-01 + 9.5596000e+03 6.9921176e-01 + 9.5600000e+03 7.8756121e-01 + 9.5604000e+03 8.2470224e-01 + 9.5608000e+03 4.8456307e-01 + 9.5612000e+03 -1.9753414e-01 + 9.5616000e+03 -6.9403074e-01 + 9.5620000e+03 -1.1499493e+00 + 9.5624000e+03 -1.9197018e+00 + 9.5628000e+03 -2.2860270e+00 + 9.5632000e+03 -2.4635610e+00 + 9.5636000e+03 -2.7723893e+00 + 9.5640000e+03 -2.7298211e+00 + 9.5644000e+03 -2.6914856e+00 + 9.5648000e+03 -2.2900396e+00 + 9.5652000e+03 -1.9348098e+00 + 9.5656000e+03 -1.2712416e+00 + 9.5660000e+03 -4.1089070e-01 + 9.5664000e+03 4.4957899e-01 + 9.5668000e+03 1.1224546e+00 + 9.5672000e+03 1.5130703e+00 + 9.5676000e+03 1.6944308e+00 + 9.5680000e+03 1.6164541e+00 + 9.5684000e+03 1.1976395e+00 + 9.5688000e+03 1.1289057e+00 + 9.5692000e+03 8.2990887e-01 + 9.5696000e+03 5.4060227e-01 + 9.5700000e+03 3.1099558e-01 + 9.5704000e+03 -1.8799208e-02 + 9.5708000e+03 -5.2875484e-01 + 9.5712000e+03 -9.2903520e-01 + 9.5716000e+03 -8.9948905e-01 + 9.5720000e+03 -5.2014368e-01 + 9.5724000e+03 -1.4097598e-01 + 9.5728000e+03 8.8054950e-02 + 9.5732000e+03 -1.0293619e-01 + 9.5736000e+03 6.2573104e-03 + 9.5740000e+03 2.2581365e-01 + 9.5744000e+03 4.5575073e-01 + 9.5748000e+03 6.9607125e-01 + 9.5752000e+03 8.8660755e-01 + 9.5756000e+03 1.3774696e+00 + 9.5760000e+03 1.9165997e+00 + 9.5764000e+03 2.4269574e+00 + 9.5768000e+03 2.9779463e+00 + 9.5772000e+03 3.2507728e+00 + 9.5776000e+03 2.9430627e+00 + 9.5780000e+03 2.2039589e+00 + 9.5784000e+03 1.7646627e+00 + 9.5788000e+03 1.5050862e+00 + 9.5792000e+03 7.1517947e-01 + 9.5796000e+03 -5.1520104e-01 + 9.5800000e+03 -1.2058973e+00 + 9.5804000e+03 -1.9868339e+00 + 9.5808000e+03 -2.0678564e+00 + 9.5812000e+03 -2.7192024e+00 + 9.5816000e+03 -2.6308474e+00 + 9.5820000e+03 -2.9026049e+00 + 9.5824000e+03 -3.1444046e+00 + 9.5828000e+03 -3.2461433e+00 + 9.5832000e+03 -2.8176802e+00 + 9.5836000e+03 -2.4490897e+00 + 9.5840000e+03 -2.2803068e+00 + 9.5844000e+03 -1.6361250e+00 + 9.5848000e+03 -8.7211129e-01 + 9.5852000e+03 2.3962030e-01 + 9.5856000e+03 8.9456650e-01 + 9.5860000e+03 1.3431679e+00 + 9.5864000e+03 1.8938384e+00 + 9.5868000e+03 2.3205571e+00 + 9.5872000e+03 2.5828027e+00 + 9.5876000e+03 2.9901001e+00 + 9.5880000e+03 3.0373387e+00 + 9.5884000e+03 1.7996390e+00 + 9.5888000e+03 6.1181080e-01 + 9.5892000e+03 -2.5816945e-01 + 9.5896000e+03 -6.6479756e-01 + 9.5900000e+03 -8.0933492e-01 + 9.5904000e+03 -8.2408290e-01 + 9.5908000e+03 -7.8291794e-01 + 9.5912000e+03 -1.0431555e+00 + 9.5916000e+03 -1.4136223e+00 + 9.5920000e+03 -1.8943624e+00 + 9.5924000e+03 -1.9451961e+00 + 9.5928000e+03 -1.7161024e+00 + 9.5932000e+03 -9.5698792e-01 + 9.5936000e+03 -5.6915417e-01 + 9.5940000e+03 9.3814515e-03 + 9.5944000e+03 2.9421000e-01 + 9.5948000e+03 5.1214803e-01 + 9.5952000e+03 9.3016424e-01 + 9.5956000e+03 1.6496067e+00 + 9.5960000e+03 1.9591323e+00 + 9.5964000e+03 2.0688717e+00 + 9.5968000e+03 1.6788526e+00 + 9.5972000e+03 1.4590320e+00 + 9.5976000e+03 9.7939009e-01 + 9.5980000e+03 6.9953298e-01 + 9.5984000e+03 3.5953559e-01 + 9.5988000e+03 1.9067318e-01 + 9.5992000e+03 -1.0967416e-01 + 9.5996000e+03 -4.7689077e-01 + 9.6000000e+03 -6.9661455e-01 + 9.6004000e+03 -9.7315990e-01 + 9.6008000e+03 -9.3236666e-01 + 9.6012000e+03 -6.6462266e-01 + 9.6016000e+03 -3.3936798e-01 + 9.6020000e+03 -3.8932278e-01 + 9.6024000e+03 -2.4641228e-01 + 9.6028000e+03 -3.2708501e-01 + 9.6032000e+03 -8.0755187e-01 + 9.6036000e+03 -1.2278887e+00 + 9.6040000e+03 -1.3480249e+00 + 9.6044000e+03 -2.1881011e+00 + 9.6048000e+03 -1.9079633e+00 + 9.6052000e+03 -2.0076771e+00 + 9.6056000e+03 -2.0773128e+00 + 9.6060000e+03 -1.8567050e+00 + 9.6064000e+03 -1.5262063e+00 + 9.6068000e+03 -5.8568081e-01 + 9.6072000e+03 6.6725085e-01 + 9.6076000e+03 1.8486699e+00 + 9.6080000e+03 2.8413175e+00 + 9.6084000e+03 3.1680629e+00 + 9.6088000e+03 3.4335424e+00 + 9.6092000e+03 3.5334557e+00 + 9.6096000e+03 3.1376655e+00 + 9.6100000e+03 2.7181236e+00 + 9.6104000e+03 2.1386201e+00 + 9.6108000e+03 1.6091334e+00 + 9.6112000e+03 1.2895982e+00 + 9.6116000e+03 1.1598425e+00 + 9.6120000e+03 1.2498933e+00 + 9.6124000e+03 1.4098235e+00 + 9.6128000e+03 1.0896305e+00 + 9.6132000e+03 6.0941783e-01 + 9.6136000e+03 -6.8118183e-01 + 9.6140000e+03 -2.1212870e+00 + 9.6144000e+03 -3.2413713e+00 + 9.6148000e+03 -3.9113620e+00 + 9.6152000e+03 -4.0612883e+00 + 9.6156000e+03 -3.7711994e+00 + 9.6160000e+03 -3.6711106e+00 + 9.6164000e+03 -3.7411519e+00 + 9.6168000e+03 -3.6314535e+00 + 9.6172000e+03 -3.0819921e+00 + 9.6176000e+03 -2.1751741e+00 + 9.6180000e+03 -8.4686938e-01 + 9.6184000e+03 9.2236623e-01 + 9.6188000e+03 2.7747187e+00 + 9.6192000e+03 4.0292878e+00 + 9.6196000e+03 4.6349495e+00 + 9.6200000e+03 4.9298187e+00 + 9.6204000e+03 4.5326373e+00 + 9.6208000e+03 3.5936519e+00 + 9.6212000e+03 1.9710493e+00 + 9.6216000e+03 4.0742378e-01 + 9.6220000e+03 -1.2530139e+00 + 9.6224000e+03 -2.0033300e+00 + 9.6228000e+03 -2.7636118e+00 + 9.6232000e+03 -2.8335367e+00 + 9.6236000e+03 -2.5832754e+00 + 9.6240000e+03 -2.2829057e+00 + 9.6244000e+03 -2.2131812e+00 + 9.6248000e+03 -2.3896769e+00 + 9.6252000e+03 -2.3544189e+00 + 9.6256000e+03 -2.0775185e+00 + 9.6260000e+03 -1.3690790e+00 + 9.6264000e+03 -2.9796973e-01 + 9.6268000e+03 7.3192736e-01 + 9.6272000e+03 1.2919945e+00 + 9.6276000e+03 1.3820096e+00 + 9.6280000e+03 1.6120791e+00 + 9.6284000e+03 2.0020268e+00 + 9.6288000e+03 2.3821331e+00 + 9.6292000e+03 2.4424963e+00 + 9.6296000e+03 2.5831021e+00 + 9.6300000e+03 3.1438055e+00 + 9.6304000e+03 3.6046869e+00 + 9.6308000e+03 3.7456860e+00 + 9.6312000e+03 3.6465709e+00 + 9.6316000e+03 2.9487038e+00 + 9.6320000e+03 2.0354081e+00 + 9.6324000e+03 6.6083563e-01 + 9.6328000e+03 -5.8711545e-01 + 9.6332000e+03 -1.5898920e+00 + 9.6336000e+03 -2.2547240e+00 + 9.6340000e+03 -2.7490468e+00 + 9.6344000e+03 -2.9623840e+00 + 9.6348000e+03 -3.1079888e+00 + 9.6352000e+03 -2.9905724e+00 + 9.6356000e+03 -2.7270343e+00 + 9.6360000e+03 -2.2553940e+00 + 9.6364000e+03 -2.0472902e+00 + 9.6368000e+03 -2.0880607e+00 + 9.6372000e+03 -2.5389334e+00 + 9.6376000e+03 -2.3499614e+00 + 9.6380000e+03 -1.8609869e+00 + 9.6384000e+03 -7.5151759e-01 + 9.6388000e+03 5.8795887e-01 + 9.6392000e+03 1.7480592e+00 + 9.6396000e+03 1.8084181e+00 + 9.6400000e+03 1.7906354e+00 + 9.6404000e+03 1.7795332e+00 + 9.6408000e+03 1.6825583e+00 + 9.6412000e+03 1.6936756e+00 + 9.6416000e+03 1.7803460e+00 + 9.6420000e+03 1.4100504e+00 + 9.6424000e+03 1.2495719e+00 + 9.6428000e+03 1.3490893e+00 + 9.6432000e+03 1.3985066e+00 + 9.6436000e+03 1.4477284e+00 + 9.6440000e+03 1.3067173e+00 + 9.6444000e+03 9.1704253e-01 + 9.6448000e+03 4.9895817e-01 + 9.6452000e+03 -2.9845500e-02 + 9.6456000e+03 -3.2080612e-01 + 9.6460000e+03 -8.3810487e-01 + 9.6464000e+03 -1.1033761e+00 + 9.6468000e+03 -1.4933775e+00 + 9.6472000e+03 -1.7362172e+00 + 9.6476000e+03 -1.6678712e+00 + 9.6480000e+03 -1.4981368e+00 + 9.6484000e+03 -1.6087628e+00 + 9.6488000e+03 -1.8071642e+00 + 9.6492000e+03 -1.8434225e+00 + 9.6496000e+03 -1.8797564e+00 + 9.6500000e+03 -1.7067085e+00 + 9.6504000e+03 -1.3961756e+00 + 9.6508000e+03 -1.2860047e+00 + 9.6512000e+03 -1.1861748e+00 + 9.6516000e+03 -9.9663113e-01 + 9.6520000e+03 -5.8712073e-01 + 9.6524000e+03 -2.6292953e-01 + 9.6528000e+03 5.0179932e-01 + 9.6532000e+03 1.2923139e+00 + 9.6536000e+03 1.9428877e+00 + 9.6540000e+03 3.1448200e+00 + 9.6544000e+03 4.1047281e+00 + 9.6548000e+03 4.0372669e+00 + 9.6552000e+03 3.2995685e+00 + 9.6556000e+03 2.0658481e+00 + 9.6560000e+03 7.9007812e-01 + 9.6564000e+03 -4.0966249e-01 + 9.6568000e+03 -1.5380397e+00 + 9.6572000e+03 -2.1888109e+00 + 9.6576000e+03 -2.7804962e+00 + 9.6580000e+03 -2.9299573e+00 + 9.6584000e+03 -2.4404781e+00 + 9.6588000e+03 -2.2211675e+00 + 9.6592000e+03 -2.0186626e+00 + 9.6596000e+03 -1.8853980e+00 + 9.6600000e+03 -1.6622599e+00 + 9.6604000e+03 -1.2349912e+00 + 9.6608000e+03 -1.1117103e+00 + 9.6612000e+03 -8.2551211e-01 + 9.6616000e+03 -7.0570327e-01 + 9.6620000e+03 3.8416185e-01 + 9.6624000e+03 1.3801282e+00 + 9.6628000e+03 2.4848626e+00 + 9.6632000e+03 3.0363074e+00 + 9.6636000e+03 3.1821873e+00 + 9.6640000e+03 3.3274989e+00 + 9.6644000e+03 4.0907599e+00 + 9.6648000e+03 4.6060426e+00 + 9.6652000e+03 3.9866881e+00 + 9.6656000e+03 3.1025491e+00 + 9.6660000e+03 2.3128714e+00 + 9.6664000e+03 1.6633907e+00 + 9.6668000e+03 9.8401369e-01 + 9.6672000e+03 2.9502927e-01 + 9.6676000e+03 -2.5386529e-01 + 9.6680000e+03 -1.0033900e+00 + 9.6684000e+03 -2.0130334e+00 + 9.6688000e+03 -2.1527871e+00 + 9.6692000e+03 -2.7677030e+00 + 9.6696000e+03 -3.7216054e+00 + 9.6700000e+03 -4.3615737e+00 + 9.6704000e+03 -4.8106359e+00 + 9.6708000e+03 -4.6886824e+00 + 9.6712000e+03 -3.7674299e+00 + 9.6716000e+03 -2.9243647e+00 + 9.6720000e+03 -2.4084593e+00 + 9.6724000e+03 -1.9580299e+00 + 9.6728000e+03 -1.0379004e+00 + 9.6732000e+03 -4.6954489e-01 + 9.6736000e+03 -4.0274999e-01 + 9.6740000e+03 -4.8740385e-01 + 9.6744000e+03 -3.0793917e-01 + 9.6748000e+03 4.7754549e-01 + 9.6752000e+03 1.3174907e+00 + 9.6756000e+03 1.7772331e+00 + 9.6760000e+03 2.1685157e+00 + 9.6764000e+03 2.0460955e+00 + 9.6768000e+03 1.7851212e+00 + 9.6772000e+03 1.8544112e+00 + 9.6776000e+03 2.0839336e+00 + 9.6780000e+03 1.9036635e+00 + 9.6784000e+03 1.9537136e+00 + 9.6788000e+03 1.7238853e+00 + 9.6792000e+03 9.0007320e-01 + 9.6796000e+03 -1.9577710e-02 + 9.6800000e+03 -5.8344927e-01 + 9.6804000e+03 -1.2000116e+00 + 9.6808000e+03 -1.5988098e+00 + 9.6812000e+03 -1.7457253e+00 + 9.6816000e+03 -1.7972771e+00 + 9.6820000e+03 -1.4877418e+00 + 9.6824000e+03 -1.3680648e+00 + 9.6828000e+03 -1.2383609e+00 + 9.6832000e+03 -7.8610292e-02 + 9.6836000e+03 -9.0012795e-03 + 9.6840000e+03 -3.7960105e-02 + 9.6844000e+03 -1.1195433e-01 + 9.6848000e+03 -1.3910700e-01 + 9.6852000e+03 1.9194889e-01 + 9.6856000e+03 1.0098724e+00 + 9.6860000e+03 1.8404552e+00 + 9.6864000e+03 2.1111661e+00 + 9.6868000e+03 2.1719618e+00 + 9.6872000e+03 1.7228339e+00 + 9.6876000e+03 1.1937538e+00 + 9.6880000e+03 8.0494137e-01 + 9.6884000e+03 7.1060065e-01 + 9.6888000e+03 3.7866271e-01 + 9.6892000e+03 2.7607619e-01 + 9.6896000e+03 1.8392805e-03 + 9.6900000e+03 -2.2065964e-01 + 9.6904000e+03 -4.4075799e-01 + 9.6908000e+03 -9.4094431e-01 + 9.6912000e+03 -2.4212889e+00 + 9.6916000e+03 -3.2117070e+00 + 9.6920000e+03 -3.7022528e+00 + 9.6924000e+03 -3.5827318e+00 + 9.6928000e+03 -3.3930744e+00 + 9.6932000e+03 -3.0833501e+00 + 9.6936000e+03 -2.3436386e+00 + 9.6940000e+03 -1.0938840e+00 + 9.6944000e+03 -5.0414943e-01 + 9.6948000e+03 -4.7441067e-01 + 9.6952000e+03 -2.8613602e-01 + 9.6956000e+03 -4.1755948e-02 + 9.6960000e+03 1.1466149e-01 + 9.6964000e+03 3.8743025e-01 + 9.6968000e+03 1.2118850e+00 + 9.6972000e+03 1.7211248e+00 + 9.6976000e+03 2.3204339e+00 + 9.6980000e+03 2.6699155e+00 + 9.6984000e+03 2.8794173e+00 + 9.6988000e+03 2.8090161e+00 + 9.6992000e+03 2.7686755e+00 + 9.6996000e+03 2.4684780e+00 + 9.7000000e+03 2.5484148e+00 + 9.7004000e+03 2.6484920e+00 + 9.7008000e+03 2.3285874e+00 + 9.7012000e+03 1.4285978e+00 + 9.7016000e+03 2.0855793e-01 + 9.7020000e+03 -6.3164897e-01 + 9.7024000e+03 -1.3320477e+00 + 9.7028000e+03 -1.6823091e+00 + 9.7032000e+03 -1.4122918e+00 + 9.7036000e+03 -1.2419433e+00 + 9.7040000e+03 -1.1612228e+00 + 9.7044000e+03 -1.0871063e+00 + 9.7048000e+03 -1.2622215e+00 + 9.7052000e+03 -1.3253626e+00 + 9.7056000e+03 -1.4042700e+00 + 9.7060000e+03 -1.0722089e+00 + 9.7064000e+03 -8.6621666e-01 + 9.7068000e+03 -6.7567794e-01 + 9.7072000e+03 -6.0495320e-01 + 9.7076000e+03 -7.1436809e-01 + 9.7080000e+03 -8.2338035e-01 + 9.7084000e+03 -5.2251148e-01 + 9.7088000e+03 -2.5149983e-01 + 9.7092000e+03 -1.0085976e-01 + 9.7096000e+03 3.9692141e-02 + 9.7100000e+03 1.0002111e-01 + 9.7104000e+03 1.7000535e-01 + 9.7108000e+03 -6.0316228e-02 + 9.7112000e+03 2.7896597e-01 + 9.7116000e+03 7.4817519e-01 + 9.7120000e+03 9.6560114e-01 + 9.7124000e+03 1.0794736e+00 + 9.7128000e+03 1.0652509e+00 + 9.7132000e+03 8.2904208e-01 + 9.7136000e+03 5.6393715e-01 + 9.7140000e+03 -5.7274847e-02 + 9.7144000e+03 -7.3570098e-01 + 9.7148000e+03 -1.3233253e+00 + 9.7152000e+03 -1.7362126e+00 + 9.7156000e+03 -1.7750860e+00 + 9.7160000e+03 -1.9624020e+00 + 9.7164000e+03 -2.3307244e+00 + 9.7168000e+03 -2.1276352e+00 + 9.7172000e+03 -1.9156090e+00 + 9.7176000e+03 -1.6459592e+00 + 9.7180000e+03 -7.6606306e-01 + 9.7184000e+03 3.0966326e-01 + 9.7188000e+03 1.5859187e+00 + 9.7192000e+03 2.5413013e+00 + 9.7196000e+03 3.1979513e+00 + 9.7200000e+03 3.5377190e+00 + 9.7204000e+03 3.7854544e+00 + 9.7208000e+03 3.6455871e+00 + 9.7212000e+03 3.4356713e+00 + 9.7216000e+03 3.1859240e+00 + 9.7220000e+03 2.3260081e+00 + 9.7224000e+03 1.2508732e+00 + 9.7228000e+03 2.9307008e-01 + 9.7232000e+03 -6.4607713e-01 + 9.7236000e+03 -1.5194448e+00 + 9.7240000e+03 -1.9347940e+00 + 9.7244000e+03 -1.9792464e+00 + 9.7248000e+03 -2.0116968e+00 + 9.7252000e+03 -1.5911840e+00 + 9.7256000e+03 -1.3505349e+00 + 9.7260000e+03 -1.0796013e+00 + 9.7264000e+03 -1.0385952e+00 + 9.7268000e+03 -1.0074419e+00 + 9.7272000e+03 -6.9645333e-01 + 9.7276000e+03 2.5016214e-02 + 9.7280000e+03 6.3585883e-01 + 9.7284000e+03 9.3641259e-01 + 9.7288000e+03 1.2666211e+00 + 9.7292000e+03 1.6264220e+00 + 9.7296000e+03 1.7057272e+00 + 9.7300000e+03 1.5646346e+00 + 9.7304000e+03 1.2431960e+00 + 9.7308000e+03 7.9177569e-01 + 9.7312000e+03 -2.0851592e-01 + 9.7316000e+03 -1.4513470e+00 + 9.7320000e+03 -2.5928245e+00 + 9.7324000e+03 -2.8339645e+00 + 9.7328000e+03 -2.7146902e+00 + 9.7332000e+03 -2.5749243e+00 + 9.7336000e+03 -2.4166889e+00 + 9.7340000e+03 -2.1306307e+00 + 9.7344000e+03 -2.1611035e+00 + 9.7348000e+03 -1.8824551e+00 + 9.7352000e+03 -1.6835188e+00 + 9.7356000e+03 -1.3630258e+00 + 9.7360000e+03 -7.6254218e-01 + 9.7364000e+03 2.3778592e-01 + 9.7368000e+03 7.8792201e-01 + 9.7372000e+03 1.3826281e+00 + 9.7376000e+03 1.9712755e+00 + 9.7380000e+03 2.1712784e+00 + 9.7384000e+03 1.8973796e+00 + 9.7388000e+03 1.8314501e+00 + 9.7392000e+03 1.8959078e+00 + 9.7396000e+03 1.6749987e+00 + 9.7400000e+03 1.5939592e+00 + 9.7404000e+03 1.2226922e+00 + 9.7408000e+03 4.6183512e-01 + 9.7412000e+03 -4.6853578e-01 + 9.7416000e+03 -6.3854153e-01 + 9.7420000e+03 -2.3808116e-01 + 9.7424000e+03 3.3265451e-01 + 9.7428000e+03 7.3375430e-01 + 9.7432000e+03 1.3051749e+00 + 9.7436000e+03 1.4866828e+00 + 9.7440000e+03 1.3784375e+00 + 9.7444000e+03 1.1500278e+00 + 9.7448000e+03 7.8154185e-01 + 9.7452000e+03 1.2204636e-01 + 9.7456000e+03 -7.3620642e-01 + 9.7460000e+03 -1.1554723e+00 + 9.7464000e+03 -8.5503438e-01 + 9.7468000e+03 -4.7015035e-01 + 9.7472000e+03 -4.9819379e-01 + 9.7476000e+03 -6.6014799e-01 + 9.7480000e+03 -6.4464690e-01 + 9.7484000e+03 -6.3962182e-01 + 9.7488000e+03 -3.9159183e-01 + 9.7492000e+03 -1.9374747e-01 + 9.7496000e+03 -4.3555454e-02 + 9.7500000e+03 -4.0513663e-02 + 9.7504000e+03 6.3379529e-02 + 9.7508000e+03 -7.2548111e-03 + 9.7512000e+03 -5.7248844e-01 + 9.7516000e+03 -1.2001788e+00 + 9.7520000e+03 -2.0952019e+00 + 9.7524000e+03 -2.6379986e+00 + 9.7528000e+03 -2.8112162e+00 + 9.7532000e+03 -2.6003495e+00 + 9.7536000e+03 -2.1196145e+00 + 9.7540000e+03 -1.3741061e+00 + 9.7544000e+03 -8.3302582e-01 + 9.7548000e+03 -8.1942097e-02 + 9.7552000e+03 5.0908097e-01 + 9.7556000e+03 8.0994246e-01 + 9.7560000e+03 7.5069298e-01 + 9.7564000e+03 8.0125009e-01 + 9.7568000e+03 8.4174984e-01 + 9.7572000e+03 8.8189588e-01 + 9.7576000e+03 7.8159244e-01 + 9.7580000e+03 5.6124997e-01 + 9.7584000e+03 5.9077367e-01 + 9.7588000e+03 7.7016193e-01 + 9.7592000e+03 1.0195539e+00 + 9.7596000e+03 1.2889625e+00 + 9.7600000e+03 1.5985219e+00 + 9.7604000e+03 1.6882744e+00 + 9.7608000e+03 1.6582111e+00 + 9.7612000e+03 1.3661907e+00 + 9.7616000e+03 1.2907831e+00 + 9.7620000e+03 1.3040120e+00 + 9.7624000e+03 9.5674724e-01 + 9.7628000e+03 9.0252719e-01 + 9.7632000e+03 7.9373151e-01 + 9.7636000e+03 5.3477337e-01 + 9.7640000e+03 2.1567860e-01 + 9.7644000e+03 -2.8344369e-01 + 9.7648000e+03 -1.9283577e-01 + 9.7652000e+03 -2.7183617e-01 + 9.7656000e+03 -5.1196658e-01 + 9.7660000e+03 -7.4184881e-01 + 9.7664000e+03 -7.7192711e-01 + 9.7668000e+03 -8.0209854e-01 + 9.7672000e+03 -9.2236618e-01 + 9.7676000e+03 -9.7274594e-01 + 9.7680000e+03 -1.2985653e+00 + 9.7684000e+03 -1.4182452e+00 + 9.7688000e+03 -9.8051886e-01 + 9.7692000e+03 -5.5753999e-01 + 9.7696000e+03 -4.1257692e-01 + 9.7700000e+03 -4.8735476e-01 + 9.7704000e+03 -5.2506317e-01 + 9.7708000e+03 -7.4776760e-01 + 9.7712000e+03 -1.0048239e+00 + 9.7716000e+03 -8.9681205e-01 + 9.7720000e+03 -1.0085273e+00 + 9.7724000e+03 -6.7990775e-01 + 9.7728000e+03 6.4687781e-02 + 9.7732000e+03 1.0732100e+00 + 9.7736000e+03 1.5890825e+00 + 9.7740000e+03 1.4591798e+00 + 9.7744000e+03 1.2195819e+00 + 9.7748000e+03 8.7032652e-01 + 9.7752000e+03 6.0140429e-01 + 9.7756000e+03 6.8263966e-01 + 9.7760000e+03 9.2404622e-01 + 9.7764000e+03 1.1452840e+00 + 9.7768000e+03 6.7630863e-01 + 9.7772000e+03 -4.1301128e-01 + 9.7776000e+03 -1.0523914e+00 + 9.7780000e+03 -1.2775499e+00 + 9.7784000e+03 -1.4906697e+00 + 9.7788000e+03 -1.5225887e+00 + 9.7792000e+03 -1.5410042e+00 + 9.7796000e+03 -1.3583405e+00 + 9.7800000e+03 -9.9766790e-01 + 9.7804000e+03 -5.8718281e-01 + 9.7808000e+03 1.4426028e-01 + 9.7812000e+03 1.1841409e+00 + 9.7816000e+03 1.9477758e+00 + 9.7820000e+03 2.3334185e+00 + 9.7824000e+03 2.7807912e+00 + 9.7828000e+03 2.5499816e+00 + 9.7832000e+03 2.4393051e+00 + 9.7836000e+03 2.5187975e+00 + 9.7840000e+03 2.5884704e+00 + 9.7844000e+03 2.3616951e+00 + 9.7848000e+03 1.8112234e+00 + 9.7852000e+03 8.6226416e-01 + 9.7856000e+03 1.0339696e-01 + 9.7860000e+03 -6.4507533e-01 + 9.7864000e+03 -9.9141708e-01 + 9.7868000e+03 -1.0825624e+00 + 9.7872000e+03 -1.4243802e+00 + 9.7876000e+03 -1.5332962e+00 + 9.7880000e+03 -1.3363523e+00 + 9.7884000e+03 -1.1134297e+00 + 9.7888000e+03 -9.9352568e-01 + 9.7892000e+03 -9.2388251e-01 + 9.7896000e+03 -9.6449981e-01 + 9.7900000e+03 -1.0552008e+00 + 9.7904000e+03 -1.1044344e+00 + 9.7908000e+03 -1.3236626e+00 + 9.7912000e+03 -1.2927343e+00 + 9.7916000e+03 -6.1965627e-01 + 9.7920000e+03 4.7803100e-01 + 9.7924000e+03 1.5346385e+00 + 9.7928000e+03 1.8262566e+00 + 9.7932000e+03 1.7662642e+00 + 9.7936000e+03 1.4318981e+00 + 9.7940000e+03 1.0907849e+00 + 9.7944000e+03 7.0345501e-01 + 9.7948000e+03 3.4253340e-01 + 9.7952000e+03 -3.2237893e-02 + 9.7956000e+03 -1.3701590e-01 + 9.7960000e+03 -3.1639955e-01 + 9.7964000e+03 -3.1666478e-01 + 9.7968000e+03 -2.9466384e-01 + 9.7972000e+03 -2.4312673e-01 + 9.7976000e+03 -3.0566944e-01 + 9.7980000e+03 -4.5170435e-01 + 9.7984000e+03 -3.5691686e-01 + 9.7988000e+03 -2.2634981e-01 + 9.7992000e+03 -1.8556928e-01 + 9.7996000e+03 -6.4596950e-02 + 9.8000000e+03 8.6581057e-02 + 9.8004000e+03 2.7657052e-02 + 9.8008000e+03 -3.2142730e-01 + 9.8012000e+03 -9.8061184e-01 + 9.8016000e+03 -8.4995026e-01 + 9.8020000e+03 -4.7958059e-01 + 9.8024000e+03 -2.0954048e-01 + 9.8028000e+03 -1.6995770e-01 + 9.8032000e+03 2.6890034e-01 + 9.8036000e+03 7.3536143e-01 + 9.8040000e+03 1.1723751e+00 + 9.8044000e+03 1.3079525e+00 + 9.8048000e+03 1.3417791e+00 + 9.8052000e+03 1.3107398e+00 + 9.8056000e+03 1.1127645e+00 + 9.8060000e+03 1.0478388e+00 + 9.8064000e+03 8.8694924e-01 + 9.8068000e+03 5.9619160e-01 + 9.8072000e+03 4.3550831e-01 + 9.8076000e+03 3.6506891e-01 + 9.8080000e+03 6.4922221e-02 + 9.8084000e+03 -1.0700654e-01 + 9.8088000e+03 -3.9589609e-01 + 9.8092000e+03 -6.7241595e-01 + 9.8096000e+03 -6.8925599e-01 + 9.8100000e+03 -5.7273326e-01 + 9.8104000e+03 -6.0209018e-01 + 9.8108000e+03 -9.4013860e-01 + 9.8112000e+03 -9.5796539e-01 + 9.8116000e+03 -5.5992027e-01 + 9.8120000e+03 -4.8032083e-01 + 9.8124000e+03 -7.7912495e-01 + 9.8128000e+03 -5.2853466e-01 + 9.8132000e+03 -6.0808145e-01 + 9.8136000e+03 -4.8772571e-01 + 9.8140000e+03 -7.1773275e-01 + 9.8144000e+03 -8.9765461e-01 + 9.8148000e+03 -9.2790143e-01 + 9.8152000e+03 -8.9828875e-01 + 9.8156000e+03 -6.3878430e-01 + 9.8160000e+03 -2.1919036e-01 + 9.8164000e+03 -3.9358092e-02 + 9.8168000e+03 -1.1972654e-01 + 9.8172000e+03 2.1006378e-01 + 9.8176000e+03 6.7988636e-01 + 9.8180000e+03 7.0979221e-01 + 9.8184000e+03 9.6957254e-01 + 9.8188000e+03 1.0193546e+00 + 9.8192000e+03 7.5929910e-01 + 9.8196000e+03 3.1931114e-01 + 9.8200000e+03 1.8933682e-01 + 9.8204000e+03 1.0936659e-01 + 9.8208000e+03 -3.1049440e-01 + 9.8212000e+03 -2.0054155e-01 + 9.8216000e+03 6.9370442e-02 + 9.8220000e+03 7.1906408e-01 + 9.8224000e+03 1.4586440e+00 + 9.8228000e+03 1.2181636e+00 + 9.8232000e+03 8.9157092e-01 + 9.8236000e+03 3.0306250e-01 + 9.8240000e+03 -4.1999895e-01 + 9.8244000e+03 -4.8253292e-01 + 9.8248000e+03 -5.1679674e-01 + 9.8252000e+03 -4.2407399e-01 + 9.8256000e+03 -1.4498007e-01 + 9.8260000e+03 2.4425268e-01 + 9.8264000e+03 9.2356347e-01 + 9.8268000e+03 1.7630811e+00 + 9.8272000e+03 2.5927681e+00 + 9.8276000e+03 2.9625254e+00 + 9.8280000e+03 3.0123407e+00 + 9.8284000e+03 2.5421674e+00 + 9.8288000e+03 1.6838569e+00 + 9.8292000e+03 6.2566616e-01 + 9.8296000e+03 -2.2126297e-01 + 9.8300000e+03 -7.5159574e-01 + 9.8304000e+03 -1.3871109e+00 + 9.8308000e+03 -1.8952477e+00 + 9.8312000e+03 -2.5773369e+00 + 9.8316000e+03 -2.9787680e+00 + 9.8320000e+03 -3.0667480e+00 + 9.8324000e+03 -2.9560089e+00 + 9.8328000e+03 -2.7250550e+00 + 9.8332000e+03 -2.5684133e+00 + 9.8336000e+03 -2.5227406e+00 + 9.8340000e+03 -2.0492941e+00 + 9.8344000e+03 -1.2649297e+00 + 9.8348000e+03 -7.7539920e-01 + 9.8352000e+03 -2.5292349e-01 + 9.8356000e+03 1.5020310e-01 + 9.8360000e+03 4.8716251e-01 + 9.8364000e+03 6.1764871e-01 + 9.8368000e+03 8.6100195e-01 + 9.8372000e+03 1.0111927e+00 + 9.8376000e+03 9.7103012e-01 + 9.8380000e+03 9.2042546e-01 + 9.8384000e+03 7.7950974e-01 + 9.8388000e+03 6.9441264e-01 + 9.8392000e+03 1.5853125e+00 + 9.8396000e+03 2.2407010e+00 + 9.8400000e+03 2.3053322e+00 + 9.8404000e+03 2.3402004e+00 + 9.8408000e+03 2.0050060e+00 + 9.8412000e+03 1.3011174e+00 + 9.8416000e+03 7.6032902e-01 + 9.8420000e+03 1.8998248e-01 + 9.8424000e+03 -2.0028643e-01 + 9.8428000e+03 -7.6013629e-01 + 9.8432000e+03 -6.0968058e-01 + 9.8436000e+03 -2.2916777e-01 + 9.8440000e+03 1.4143146e-01 + 9.8444000e+03 3.3204544e-01 + 9.8448000e+03 1.4272736e-01 + 9.8452000e+03 -2.8642241e-01 + 9.8456000e+03 -5.1591016e-01 + 9.8460000e+03 -3.9516639e-01 + 9.8464000e+03 -7.0501909e-01 + 9.8468000e+03 -7.3491743e-01 + 9.8472000e+03 -7.8488648e-01 + 9.8476000e+03 -9.2507804e-01 + 9.8480000e+03 -6.4948015e-01 + 9.8484000e+03 -1.9495812e-01 + 9.8488000e+03 -4.6265735e-01 + 9.8492000e+03 -4.0647763e-01 + 9.8496000e+03 -6.7641175e-02 + 9.8500000e+03 -3.4490994e-01 + 9.8504000e+03 -4.6210642e-01 + 9.8508000e+03 -1.0673555e-01 + 9.8512000e+03 -4.2627134e-02 + 9.8516000e+03 -2.8540369e-01 + 9.8520000e+03 -3.5554972e-02 + 9.8524000e+03 4.1447854e-01 + 9.8528000e+03 4.8472862e-01 + 9.8532000e+03 3.9521396e-01 + 9.8536000e+03 4.8392246e-01 + 9.8540000e+03 2.1463239e-01 + 9.8544000e+03 8.3640467e-02 + 9.8548000e+03 5.8167426e-02 + 9.8552000e+03 3.4931595e-01 + 9.8556000e+03 3.7996935e-01 + 9.8560000e+03 5.0032906e-01 + 9.8564000e+03 4.7049314e-01 + 9.8568000e+03 2.5300301e-01 + 9.8572000e+03 -7.2841242e-02 + 9.8576000e+03 -5.4410339e-01 + 9.8580000e+03 -6.1768908e-01 + 9.8584000e+03 -5.9354151e-01 + 9.8588000e+03 -1.6463931e-01 + 9.8592000e+03 -1.3557284e-01 + 9.8596000e+03 -2.3637666e-01 + 9.8600000e+03 -1.7145866e-02 + 9.8604000e+03 2.0515727e-01 + 9.8608000e+03 6.4105193e-01 + 9.8612000e+03 1.1151457e+00 + 9.8616000e+03 1.2345490e+00 + 9.8620000e+03 1.0618714e+00 + 9.8624000e+03 1.0224923e+00 + 9.8628000e+03 8.6899248e-01 + 9.8632000e+03 5.5249201e-01 + 9.8636000e+03 6.3350741e-01 + 9.8640000e+03 7.3628674e-01 + 9.8644000e+03 7.5605905e-01 + 9.8648000e+03 4.0657922e-01 + 9.8652000e+03 -2.3952461e-01 + 9.8656000e+03 -6.8124307e-01 + 9.8660000e+03 -1.1735528e+00 + 9.8664000e+03 -1.4239023e+00 + 9.8668000e+03 -1.4404297e+00 + 9.8672000e+03 -1.3208351e+00 + 9.8676000e+03 -1.1918689e+00 + 9.8680000e+03 -1.0942362e+00 + 9.8684000e+03 -1.2399287e+00 + 9.8688000e+03 -1.6836878e+00 + 9.8692000e+03 -2.1434175e+00 + 9.8696000e+03 -2.5534769e+00 + 9.8700000e+03 -2.5835596e+00 + 9.8704000e+03 -2.4537450e+00 + 9.8708000e+03 -2.1040579e+00 + 9.8712000e+03 -1.7645989e+00 + 9.8716000e+03 -1.5452921e+00 + 9.8720000e+03 -1.4960737e+00 + 9.8724000e+03 -3.2678146e-01 + 9.8728000e+03 -7.7467400e-02 + 9.8732000e+03 1.2518206e+00 + 9.8736000e+03 3.0168658e+00 + 9.8740000e+03 4.8003137e+00 + 9.8744000e+03 5.5750203e+00 + 9.8748000e+03 5.7321218e+00 + 9.8752000e+03 5.1944664e+00 + 9.8756000e+03 4.6347479e+00 + 9.8760000e+03 3.8833953e+00 + 9.8764000e+03 2.3730293e+00 + 9.8768000e+03 5.0361013e-01 + 9.8772000e+03 -7.6591477e-01 + 9.8776000e+03 -1.6244519e+00 + 9.8780000e+03 -2.5958936e+00 + 9.8784000e+03 -3.2565027e+00 + 9.8788000e+03 -3.7475512e+00 + 9.8792000e+03 -3.9689086e+00 + 9.8796000e+03 -3.5703715e+00 + 9.8800000e+03 -2.4960836e+00 + 9.8804000e+03 -1.5401952e+00 + 9.8808000e+03 -3.4139145e-01 + 9.8812000e+03 1.0640365e+00 + 9.8816000e+03 2.1124641e+00 + 9.8820000e+03 2.6846990e+00 + 9.8824000e+03 2.6250127e+00 + 9.8828000e+03 2.4155829e+00 + 9.8832000e+03 1.9265871e+00 + 9.8836000e+03 1.6010403e+00 + 9.8840000e+03 1.1131410e+00 + 9.8844000e+03 6.7327820e-01 + 9.8848000e+03 6.8119678e-01 + 9.8852000e+03 6.7342003e-01 + 9.8856000e+03 1.1437352e-01 + 9.8860000e+03 -5.0266881e-01 + 9.8864000e+03 -7.0378705e-01 + 9.8868000e+03 -9.6374713e-01 + 9.8872000e+03 -1.3084395e+00 + 9.8876000e+03 -1.8383659e+00 + 9.8880000e+03 -2.0664254e+00 + 9.8884000e+03 -2.0172673e+00 + 9.8888000e+03 -1.6482031e+00 + 9.8892000e+03 -1.3491773e+00 + 9.8896000e+03 -1.2100571e+00 + 9.8900000e+03 -8.8027635e-01 + 9.8904000e+03 -7.6621660e-01 + 9.8908000e+03 -6.2164232e-01 + 9.8912000e+03 -1.4425221e-01 + 9.8916000e+03 2.5536765e-01 + 9.8920000e+03 5.3445333e-01 + 9.8924000e+03 7.9374895e-01 + 9.8928000e+03 9.3325610e-01 + 9.8932000e+03 6.5286245e-01 + 9.8936000e+03 5.8275621e-01 + 9.8940000e+03 7.0283648e-01 + 9.8944000e+03 9.3311424e-01 + 9.8948000e+03 1.2835689e+00 + 9.8952000e+03 1.3541888e+00 + 9.8956000e+03 1.1949506e+00 + 9.8960000e+03 1.0858089e+00 + 9.8964000e+03 1.2665244e+00 + 9.8968000e+03 1.6170819e+00 + 9.8972000e+03 2.0272619e+00 + 9.8976000e+03 2.3172830e+00 + 9.8980000e+03 1.9772350e+00 + 9.8984000e+03 1.1665903e+00 + 9.8988000e+03 4.4657083e-01 + 9.8992000e+03 -4.4603311e-01 + 9.8996000e+03 -1.2361370e+00 + 9.9000000e+03 -1.5540251e+00 + 9.9004000e+03 -1.5999584e+00 + 9.9008000e+03 -1.7777955e+00 + 9.9012000e+03 -1.4745762e+00 + 9.9016000e+03 -1.1313745e+00 + 9.9020000e+03 -8.5902381e-01 + 9.9024000e+03 -6.5147868e-01 + 9.9028000e+03 -1.8096508e-01 + 9.9032000e+03 9.3765633e-03 + 9.9036000e+03 7.9530389e-02 + 9.9040000e+03 5.7933141e-01 + 9.9044000e+03 1.3881510e-01 + 9.9048000e+03 -1.5200799e-01 + 9.9052000e+03 -5.5288144e-01 + 9.9056000e+03 -7.9362484e-01 + 9.9060000e+03 -4.1427722e-01 + 9.9064000e+03 -2.9454018e-01 + 9.9068000e+03 -6.3541553e-01 + 9.9072000e+03 -6.9622913e-01 + 9.9076000e+03 -7.1649979e-01 + 9.9080000e+03 -6.6683288e-01 + 9.9084000e+03 -5.6728028e-01 + 9.9088000e+03 -2.9712452e-01 + 9.9092000e+03 7.0240490e-01 + 9.9096000e+03 1.3625032e+00 + 9.9100000e+03 1.7026289e+00 + 9.9104000e+03 1.6226130e+00 + 9.9108000e+03 1.3823710e+00 + 9.9112000e+03 1.0620233e+00 + 9.9116000e+03 7.0160659e-01 + 9.9120000e+03 5.1115570e-01 + 9.9124000e+03 1.3072101e-01 + 9.9128000e+03 -1.2993063e-01 + 9.9132000e+03 -1.9072129e-01 + 9.9136000e+03 1.1862682e-01 + 9.9140000e+03 5.3814062e-01 + 9.9144000e+03 6.7809673e-01 + 9.9148000e+03 3.4845641e-01 + 9.9152000e+03 -6.1185189e-02 + 9.9156000e+03 -1.2499766e-02 + 9.9160000e+03 9.8022635e-02 + 9.9164000e+03 1.2637211e-01 + 9.9168000e+03 4.1293027e-01 + 9.9172000e+03 2.7152950e-01 + 9.9176000e+03 5.1922458e-02 + 9.9180000e+03 -2.5729614e-01 + 9.9184000e+03 -4.3518143e-01 + 9.9188000e+03 -7.5177712e-01 + 9.9192000e+03 -9.2445632e-01 + 9.9196000e+03 -7.3305700e-01 + 9.9200000e+03 -3.0411889e-01 + 9.9204000e+03 -1.7417527e-01 + 9.9208000e+03 2.7589296e-01 + 9.9212000e+03 6.0787611e-01 + 9.9216000e+03 5.3463547e-01 + 9.9220000e+03 -1.2766070e-01 + 9.9224000e+03 -6.8209094e-01 + 9.9228000e+03 -1.1816308e+00 + 9.9232000e+03 -1.4407990e+00 + 9.9236000e+03 -1.6156754e+00 + 9.9240000e+03 -1.3562210e+00 + 9.9244000e+03 -9.1679422e-01 + 9.9248000e+03 -7.9743318e-01 + 9.9252000e+03 -3.2802288e-01 + 9.9256000e+03 4.0114447e-01 + 9.9260000e+03 2.6032166e-01 + 9.9264000e+03 3.0946349e-01 + 9.9268000e+03 -3.2608616e-01 + 9.9272000e+03 -1.3120421e+00 + 9.9276000e+03 -1.6422225e+00 + 9.9280000e+03 -1.8023127e+00 + 9.9284000e+03 -1.7423822e+00 + 9.9288000e+03 -1.2419372e+00 + 9.9292000e+03 -2.8774202e-01 + 9.9296000e+03 8.6310294e-01 + 9.9300000e+03 1.8941549e+00 + 9.9304000e+03 2.9229681e+00 + 9.9308000e+03 3.5846314e+00 + 9.9312000e+03 3.6827099e+00 + 9.9316000e+03 3.5436874e+00 + 9.9320000e+03 3.1264592e+00 + 9.9324000e+03 2.6966183e+00 + 9.9328000e+03 2.1567086e+00 + 9.9332000e+03 1.6425364e+00 + 9.9336000e+03 8.3324696e-01 + 9.9340000e+03 1.1820141e-01 + 9.9344000e+03 -8.8559504e-01 + 9.9348000e+03 -1.7532174e+00 + 9.9352000e+03 -2.4848038e+00 + 9.9356000e+03 -3.1586148e+00 + 9.9360000e+03 -3.3930492e+00 + 9.9364000e+03 -3.1761254e+00 + 9.9368000e+03 -2.8764861e+00 + 9.9372000e+03 -2.4099359e+00 + 9.9376000e+03 -1.5597657e+00 + 9.9380000e+03 -9.3949276e-01 + 9.9384000e+03 -4.5916898e-01 + 9.9388000e+03 -2.8911363e-02 + 9.9392000e+03 5.0616333e-01 + 9.9396000e+03 1.0324147e+00 + 9.9400000e+03 1.6669775e+00 + 9.9404000e+03 2.0579182e+00 + 9.9408000e+03 2.3723718e+00 + 9.9412000e+03 2.5321688e+00 + 9.9416000e+03 2.6619641e+00 + 9.9420000e+03 2.6805285e+00 + 9.9424000e+03 2.0900340e+00 + 9.9428000e+03 1.8569458e+00 + 9.9432000e+03 1.3482086e+00 + 9.9436000e+03 9.7359993e-01 + 9.9440000e+03 9.4659417e-02 + 9.9444000e+03 -6.3738666e-01 + 9.9448000e+03 -1.0766005e+00 + 9.9452000e+03 -1.2817318e+00 + 9.9456000e+03 -1.4902058e+00 + 9.9460000e+03 -1.4006300e+00 + 9.9464000e+03 -1.3575372e+00 + 9.9468000e+03 -1.3156720e+00 + 9.9472000e+03 -1.4757742e+00 + 9.9476000e+03 -1.7359016e+00 + 9.9480000e+03 -1.9159741e+00 + 9.9484000e+03 -2.0559132e+00 + 9.9488000e+03 -1.8358562e+00 + 9.9492000e+03 -1.2655510e+00 + 9.9496000e+03 -7.4515043e-01 + 9.9500000e+03 -2.1011751e-01 + 9.9504000e+03 6.1109531e-01 + 9.9508000e+03 1.6627716e+00 + 9.9512000e+03 2.7828553e+00 + 9.9516000e+03 3.0315482e+00 + 9.9520000e+03 2.6722708e+00 + 9.9524000e+03 2.3458257e+00 + 9.9528000e+03 2.0417327e+00 + 9.9532000e+03 2.0179914e+00 + 9.9536000e+03 1.7187073e+00 + 9.9540000e+03 7.4930185e-01 + 9.9544000e+03 2.2003929e-01 + 9.9548000e+03 5.0696085e-02 + 9.9552000e+03 -1.1872052e-01 + 9.9556000e+03 -3.0813160e-01 + 9.9560000e+03 -1.1079471e+00 + 9.9564000e+03 -1.7981731e+00 + 9.9568000e+03 -2.0820616e+00 + 9.9572000e+03 -2.1580964e+00 + 9.9576000e+03 -2.1970383e+00 + 9.9580000e+03 -2.1305939e+00 + 9.9584000e+03 -1.7832371e+00 + 9.9588000e+03 -1.5536842e+00 + 9.9592000e+03 -7.9485809e-01 + 9.9596000e+03 -9.8207972e-02 + 9.9600000e+03 2.6784052e-01 + 9.9604000e+03 1.8911447e-02 + 9.9608000e+03 1.0977026e-01 + 9.9612000e+03 5.5055587e-01 + 9.9616000e+03 1.3212567e+00 + 9.9620000e+03 2.1920014e+00 + 9.9624000e+03 2.7526286e+00 + 9.9628000e+03 2.8617468e+00 + 9.9632000e+03 2.7265547e+00 + 9.9636000e+03 2.4935364e+00 + 9.9640000e+03 2.3380758e+00 + 9.9644000e+03 1.7917652e+00 + 9.9648000e+03 1.2738208e+00 + 9.9652000e+03 5.9697674e-01 + 9.9656000e+03 2.2248081e-01 + 9.9660000e+03 6.8653008e-03 + 9.9664000e+03 -7.2316374e-02 + 9.9668000e+03 -2.5702118e-01 + 9.9672000e+03 -3.5316933e-01 + 9.9676000e+03 -3.6868262e-01 + 9.9680000e+03 -1.1748878e-01 + 9.9684000e+03 8.3636831e-02 + 9.9688000e+03 3.5449450e-03 + 9.9692000e+03 -1.0664545e+00 + 9.9696000e+03 -2.0489727e+00 + 9.9700000e+03 -2.6360437e+00 + 9.9704000e+03 -2.3957556e+00 + 9.9708000e+03 -2.0252536e+00 + 9.9712000e+03 -1.7646612e+00 + 9.9716000e+03 -1.6840280e+00 + 9.9720000e+03 -1.4680800e+00 + 9.9724000e+03 -1.1156601e+00 + 9.9728000e+03 -6.1659208e-01 + 9.9732000e+03 -7.3985893e-02 + 9.9736000e+03 6.6968212e-01 + 9.9740000e+03 1.0006104e+00 + 9.9744000e+03 1.3677809e+00 + 9.9748000e+03 1.6840116e+00 + 9.9752000e+03 1.7838500e+00 + 9.9756000e+03 1.1547319e+00 + 9.9760000e+03 4.8558540e-01 + 9.9764000e+03 3.1604736e-01 + 9.9768000e+03 4.4614737e-01 + 9.9772000e+03 6.0593344e-01 + 9.9776000e+03 8.4544513e-01 + 9.9780000e+03 1.2847536e+00 + 9.9784000e+03 1.5838983e+00 + 9.9788000e+03 1.4926978e+00 + 9.9792000e+03 1.0718892e+00 + 9.9796000e+03 4.8097830e-01 + 9.9800000e+03 -1.6994445e-01 + 9.9804000e+03 -5.5087785e-01 + 9.9808000e+03 -8.3154431e-01 + 9.9812000e+03 -8.0195351e-01 + 9.9816000e+03 -6.9246471e-01 + 9.9820000e+03 -6.0170048e-01 + 9.9824000e+03 -5.7103717e-01 + 9.9828000e+03 -6.9070595e-01 + 9.9832000e+03 -4.7949070e-01 + 9.9836000e+03 -3.2841855e-01 + 9.9840000e+03 -9.7773440e-02 + 9.9844000e+03 7.2071814e-02 + 9.9848000e+03 -1.6914797e-02 + 9.9852000e+03 -4.2783178e-01 + 9.9856000e+03 -5.9797274e-01 + 9.9860000e+03 -7.9800492e-01 + 9.9864000e+03 -1.0781451e+00 + 9.9868000e+03 -7.5847173e-01 + 9.9872000e+03 -2.2896965e-01 + 9.9876000e+03 2.0047683e-01 + 9.9880000e+03 8.6199091e-01 + 9.9884000e+03 1.5656577e+00 + 9.9888000e+03 2.0264632e+00 + 9.9892000e+03 2.0818409e+00 + 9.9896000e+03 1.4666696e+00 + 9.9900000e+03 4.6792729e-01 + 9.9904000e+03 -4.9882312e-01 + 9.9908000e+03 -1.0048583e+00 + 9.9912000e+03 -8.6489502e-01 + 9.9916000e+03 -3.9462275e-01 + 9.9920000e+03 -8.4219785e-02 + 9.9924000e+03 -2.0345548e-01 + 9.9928000e+03 -7.4252912e-01 + 9.9932000e+03 -1.1814583e+00 + 9.9936000e+03 -1.2601833e+00 + 9.9940000e+03 -9.4864756e-01 + 9.9944000e+03 -6.6702598e-01 + 9.9948000e+03 -6.0532820e-01 + 9.9952000e+03 -3.5372816e-01 + 9.9956000e+03 -3.1225613e-01 + 9.9960000e+03 4.3867447e-01 + 9.9964000e+03 9.3395883e-01 + 9.9968000e+03 1.4890770e+00 + 9.9972000e+03 1.9844174e+00 + 9.9976000e+03 2.1391533e+00 + 9.9980000e+03 1.7558409e+00 + 9.9984000e+03 9.9005190e-01 + 9.9988000e+03 2.5047756e-01 + 9.9992000e+03 2.8211814e-01 + 9.9996000e+03 8.6609249e-02 + 1.0000000e+04 2.7730989e-02 + 1.0000400e+04 -2.2917976e-01 + 1.0000800e+04 -4.3051377e-01 + 1.0001200e+04 -5.2056579e-01 + 1.0001600e+04 -2.7043473e-01 + 1.0002000e+04 1.5889184e-01 + 1.0002400e+04 6.5283650e-01 + 1.0002800e+04 1.1048861e+00 + 1.0003200e+04 1.2519805e+00 + 1.0003600e+04 1.1373991e+00 + 1.0004000e+04 1.0017042e+00 + 1.0004400e+04 6.8260822e-01 + 1.0004800e+04 -2.6419450e-02 + 1.0005200e+04 -4.2527296e-01 + 1.0005600e+04 -6.2448116e-01 + 1.0006000e+04 -4.2362262e-01 + 1.0006400e+04 -2.9319209e-01 + 1.0006800e+04 -4.7359517e-01 + 1.0007200e+04 -3.8371446e-01 + 1.0007600e+04 -2.6351149e-01 + 1.0008000e+04 -4.4387305e-02 + 1.0008400e+04 2.0519527e-01 + 1.0008800e+04 1.4488472e-02 + 1.0009200e+04 -3.3642904e-01 + 1.0009600e+04 -8.5767632e-01 + 1.0010000e+04 -1.0790700e+00 + 1.0010400e+04 -7.7055265e-01 + 1.0010800e+04 1.8237282e-02 + 1.0011200e+04 6.6046828e-01 + 1.0011600e+04 1.1651534e+00 + 1.0012000e+04 1.3008577e+00 + 1.0012400e+04 1.2564464e+00 + 1.0012800e+04 9.1770487e-01 + 1.0013200e+04 6.1905170e-01 + 1.0013600e+04 1.2085905e-01 + 1.0014000e+04 -8.7241909e-02 + 1.0014400e+04 -5.1540767e-01 + 1.0014800e+04 -7.4363611e-01 + 1.0015200e+04 -8.3201772e-01 + 1.0015600e+04 -9.3061169e-01 + 1.0016000e+04 -1.1644001e+00 + 1.0016400e+04 -1.3149898e+00 + 1.0016800e+04 -1.3524127e+00 + 1.0017200e+04 -1.7759148e+00 + 1.0017600e+04 -1.4588057e+00 + 1.0018000e+04 -1.0695842e+00 + 1.0018400e+04 -9.3075840e-01 + 1.0018800e+04 -8.2145717e-02 + 1.0019200e+04 3.8608269e-01 + 1.0019600e+04 7.9402391e-01 + 1.0020000e+04 1.6819892e+00 + 1.0020400e+04 2.3001109e+00 + 1.0020800e+04 2.6086232e+00 + 1.0021200e+04 2.8778179e+00 + 1.0021600e+04 2.8276605e+00 + 1.0022000e+04 2.3579398e+00 + 1.0022400e+04 1.8484832e+00 + 1.0022800e+04 1.3189626e+00 + 1.0023200e+04 1.1957541e-01 + 1.0023600e+04 -3.2976618e-01 + 1.0024000e+04 -6.9902911e-01 + 1.0024400e+04 -8.2781644e-01 + 1.0024800e+04 -1.0067724e+00 + 1.0025200e+04 -1.2189088e+00 + 1.0025600e+04 -1.2601935e+00 + 1.0026000e+04 -1.2289349e+00 + 1.0026400e+04 -1.0407505e+00 + 1.0026800e+04 -6.5483460e-01 + 1.0027200e+04 -7.7532005e-01 + 1.0027600e+04 -8.9585688e-01 + 1.0028000e+04 -7.0660943e-01 + 1.0028400e+04 -2.9709621e-01 + 1.0028800e+04 1.3981831e-03 + 1.0029200e+04 -2.1397931e-01 + 1.0029600e+04 -2.4565727e-01 + 1.0030000e+04 -3.4837794e-01 + 1.0030400e+04 -6.0396934e-01 + 1.0030800e+04 -8.0197462e-01 + 1.0031200e+04 -6.1209876e-01 + 1.0031600e+04 -3.8189824e-01 + 1.0032000e+04 -3.2136046e-01 + 1.0032400e+04 2.1958356e-01 + 1.0032800e+04 6.9040896e-01 + 1.0033200e+04 9.2133236e-01 + 1.0033600e+04 1.0622936e+00 + 1.0034000e+04 9.6705224e-01 + 1.0034400e+04 -1.5994243e-01 + 1.0034800e+04 -1.1862089e+00 + 1.0035200e+04 -1.6272655e+00 + 1.0035600e+04 -1.8300570e+00 + 1.0036000e+04 -1.8605201e+00 + 1.0036400e+04 -1.5825831e+00 + 1.0036800e+04 -1.0130270e+00 + 1.0037200e+04 -6.2367020e-01 + 1.0037600e+04 -4.1445743e-01 + 1.0038000e+04 -3.6518917e-01 + 1.0038400e+04 -1.9605000e-01 + 1.0038800e+04 -3.0674151e-01 + 1.0039200e+04 -3.4786011e-01 + 1.0039600e+04 -1.1889849e-01 + 1.0040000e+04 1.8017920e-01 + 1.0040400e+04 5.4945800e-01 + 1.0040800e+04 2.9907215e-01 + 1.0041200e+04 7.3441048e-02 + 1.0041600e+04 -2.1607105e-01 + 1.0042000e+04 -3.9179596e-01 + 1.0042400e+04 2.8983058e-02 + 1.0042800e+04 5.2277992e-01 + 1.0043200e+04 1.0693393e+00 + 1.0043600e+04 1.1424603e+00 + 1.0044000e+04 1.3140579e+00 + 1.0044400e+04 1.3382863e+00 + 1.0044800e+04 9.9131841e-01 + 1.0045200e+04 7.5096354e-01 + 1.0045600e+04 8.9053923e-01 + 1.0046000e+04 1.3501065e+00 + 1.0046400e+04 1.4497607e+00 + 1.0046800e+04 1.5727829e+00 + 1.0047200e+04 1.1118261e+00 + 1.0047600e+04 9.8473291e-01 + 1.0048000e+04 1.1482870e+00 + 1.0048400e+04 1.1900655e+00 + 1.0048800e+04 9.5026651e-01 + 1.0049200e+04 6.6041605e-01 + 1.0049600e+04 1.0058227e-01 + 1.0050000e+04 -5.4923681e-01 + 1.0050400e+04 -1.1690479e+00 + 1.0050800e+04 -2.0087707e+00 + 1.0051200e+04 -2.6485235e+00 + 1.0051600e+04 -2.8383166e+00 + 1.0052000e+04 -2.7483182e+00 + 1.0052400e+04 -2.7982098e+00 + 1.0052800e+04 -2.7379509e+00 + 1.0053200e+04 -2.9276517e+00 + 1.0053600e+04 -2.8673787e+00 + 1.0054000e+04 -2.6970173e+00 + 1.0054400e+04 -2.2466643e+00 + 1.0054800e+04 -1.5764536e+00 + 1.0055200e+04 -1.1162284e+00 + 1.0055600e+04 -5.9604679e-01 + 1.0056000e+04 1.1239353e+00 + 1.0056400e+04 1.9139450e+00 + 1.0056800e+04 2.3938806e+00 + 1.0057200e+04 2.9938366e+00 + 1.0057600e+04 3.5237642e+00 + 1.0058000e+04 3.3337804e+00 + 1.0058400e+04 2.8635623e+00 + 1.0058800e+04 2.1632511e+00 + 1.0059200e+04 1.5929034e+00 + 1.0059600e+04 1.5325099e+00 + 1.0060000e+04 1.0920630e+00 + 1.0060400e+04 7.3154000e-01 + 1.0060800e+04 3.8900800e-01 + 1.0061200e+04 -1.3404673e-01 + 1.0061600e+04 -3.8328527e-01 + 1.0062000e+04 -1.1718314e+00 + 1.0062400e+04 -1.7822412e+00 + 1.0062800e+04 -1.9778789e+00 + 1.0063200e+04 -1.8986160e+00 + 1.0063600e+04 -1.6543190e+00 + 1.0064000e+04 -1.2676339e+00 + 1.0064400e+04 -8.3683531e-01 + 1.0064800e+04 -6.0588126e-01 + 1.0065200e+04 -5.7480449e-01 + 1.0065600e+04 -3.6348848e-01 + 1.0066000e+04 -1.6247085e-01 + 1.0066400e+04 -9.1523260e-02 + 1.0066800e+04 -1.0972405e-02 + 1.0067200e+04 7.5901058e-01 + 1.0067600e+04 1.3586624e+00 + 1.0068000e+04 1.5581802e+00 + 1.0068400e+04 1.7466356e+00 + 1.0068800e+04 1.8272712e+00 + 1.0069200e+04 1.7842316e+00 + 1.0069600e+04 2.1346307e+00 + 1.0070000e+04 1.9260380e+00 + 1.0070400e+04 1.8049969e+00 + 1.0070800e+04 1.2365815e+00 + 1.0071200e+04 2.7157244e-01 + 1.0071600e+04 -8.6693551e-01 + 1.0072000e+04 -1.8075922e+00 + 1.0072400e+04 -2.4711483e+00 + 1.0072800e+04 -2.9956766e+00 + 1.0073200e+04 -3.2778164e+00 + 1.0073600e+04 -3.0279543e+00 + 1.0074000e+04 -2.5279573e+00 + 1.0074400e+04 -2.3878704e+00 + 1.0074800e+04 -2.2477360e+00 + 1.0075200e+04 -2.1075581e+00 + 1.0075600e+04 -1.8373583e+00 + 1.0076000e+04 -1.4872595e+00 + 1.0076400e+04 -1.0671899e+00 + 1.0076800e+04 -8.6728260e-01 + 1.0077200e+04 1.2577718e-02 + 1.0077600e+04 7.0257408e-01 + 1.0078000e+04 8.4266443e-01 + 1.0078400e+04 1.9829084e+00 + 1.0078800e+04 2.5331529e+00 + 1.0079200e+04 2.7934828e+00 + 1.0079600e+04 2.8938221e+00 + 1.0080000e+04 2.6644323e+00 + 1.0080400e+04 2.4149621e+00 + 1.0080800e+04 2.2255981e+00 + 1.0081200e+04 2.1916841e+00 + 1.0081600e+04 2.0464878e+00 + 1.0082000e+04 2.0299476e+00 + 1.0082400e+04 1.9063290e+00 + 1.0082800e+04 1.5766125e+00 + 1.0083200e+04 8.3655001e-01 + 1.0083600e+04 -7.3368078e-01 + 1.0084000e+04 -1.7441916e+00 + 1.0084400e+04 -1.9249010e+00 + 1.0084800e+04 -2.0058183e+00 + 1.0085200e+04 -1.9767748e+00 + 1.0085600e+04 -2.0474973e+00 + 1.0086000e+04 -1.8580081e+00 + 1.0086400e+04 -1.2782334e+00 + 1.0086800e+04 -7.2841259e-01 + 1.0087200e+04 -8.6824053e-01 + 1.0087600e+04 -1.4279588e+00 + 1.0088000e+04 -1.6678508e+00 + 1.0088400e+04 -1.5477200e+00 + 1.0088800e+04 -6.4754394e-01 + 1.0089200e+04 2.2859006e-02 + 1.0089600e+04 8.3196077e-02 + 1.0090000e+04 3.8363059e-01 + 1.0090400e+04 1.8640002e+00 + 1.0090800e+04 2.2043559e+00 + 1.0091200e+04 2.6646683e+00 + 1.0091600e+04 3.0049445e+00 + 1.0092000e+04 2.6751991e+00 + 1.0092400e+04 2.2851915e+00 + 1.0092800e+04 1.4449964e+00 + 1.0093200e+04 4.0315397e-01 + 1.0093600e+04 -4.4787262e-01 + 1.0094000e+04 -1.5849181e+00 + 1.0094400e+04 -2.9462123e+00 + 1.0094800e+04 -3.7302784e+00 + 1.0095200e+04 -3.8815151e+00 + 1.0095600e+04 -3.5124211e+00 + 1.0096000e+04 -3.0731430e+00 + 1.0096400e+04 -1.8836097e+00 + 1.0096800e+04 -6.0391866e-01 + 1.0097200e+04 3.2576644e-01 + 1.0097600e+04 9.6564396e-01 + 1.0098000e+04 1.3258903e+00 + 1.0098400e+04 1.3842639e+00 + 1.0098800e+04 1.4206790e+00 + 1.0099200e+04 1.4963661e+00 + 1.0099600e+04 1.7783406e+00 + 1.0100000e+04 1.9879758e+00 + 1.0100400e+04 1.7318168e+00 + 1.0100800e+04 1.2974183e+00 + 1.0101200e+04 1.0822378e+00 + 1.0101600e+04 8.9305710e-01 + 1.0102000e+04 9.5369469e-01 + 1.0102400e+04 1.2941163e+00 + 1.0102800e+04 1.8442225e+00 + 1.0103200e+04 2.2461033e+00 + 1.0103600e+04 2.0131712e+00 + 1.0104000e+04 9.3203183e-01 + 1.0104400e+04 9.0700536e-02 + 1.0104800e+04 -5.5106590e-01 + 1.0105200e+04 -1.1929999e+00 + 1.0105600e+04 -1.8146770e+00 + 1.0106000e+04 -1.9759393e+00 + 1.0106400e+04 -2.1368830e+00 + 1.0106800e+04 -1.8677351e+00 + 1.0107200e+04 -1.6181829e+00 + 1.0107600e+04 -1.1482444e+00 + 1.0108000e+04 -1.0280401e+00 + 1.0108400e+04 -6.1763352e-01 + 1.0108800e+04 2.4171637e-01 + 1.0109200e+04 1.4076221e+00 + 1.0109600e+04 1.7811952e+00 + 1.0110000e+04 1.8847608e+00 + 1.0110400e+04 1.3283463e+00 + 1.0110800e+04 6.2958789e-01 + 1.0111200e+04 8.0416213e-02 + 1.0111600e+04 -3.5929815e-01 + 1.0112000e+04 -7.2931736e-01 + 1.0112400e+04 -1.0251076e+00 + 1.0112800e+04 -1.3130687e+00 + 1.0113200e+04 -1.5118347e+00 + 1.0113600e+04 -1.4223281e+00 + 1.0114000e+04 -1.5593356e+00 + 1.0114400e+04 -1.6093577e+00 + 1.0114800e+04 -1.8693952e+00 + 1.0115200e+04 -2.2995504e+00 + 1.0115600e+04 -2.3298538e+00 + 1.0116000e+04 -1.9903240e+00 + 1.0116400e+04 -1.6909016e+00 + 1.0116800e+04 -1.0215051e+00 + 1.0117200e+04 -1.9193908e-01 + 1.0117600e+04 -2.1951910e-03 + 1.0118000e+04 1.2624716e+00 + 1.0118400e+04 2.7826810e+00 + 1.0118800e+04 3.9683509e+00 + 1.0119200e+04 3.7491631e+00 + 1.0119600e+04 3.3598132e+00 + 1.0120000e+04 3.0203395e+00 + 1.0120400e+04 2.2605761e+00 + 1.0120800e+04 1.6306093e+00 + 1.0121200e+04 1.2003683e+00 + 1.0121600e+04 9.2988808e-01 + 1.0122000e+04 1.1993476e+00 + 1.0122400e+04 7.4893331e-01 + 1.0122800e+04 3.8781804e-02 + 1.0123200e+04 -8.0123757e-01 + 1.0123600e+04 -1.3811646e+00 + 1.0124000e+04 -1.7611570e+00 + 1.0124400e+04 -2.0610939e+00 + 1.0124800e+04 -2.2711285e+00 + 1.0125200e+04 -2.5212631e+00 + 1.0125600e+04 -2.5616360e+00 + 1.0126000e+04 -2.6620883e+00 + 1.0126400e+04 -2.3025613e+00 + 1.0126800e+04 -1.8431108e+00 + 1.0127200e+04 -7.2384955e-01 + 1.0127600e+04 3.7574926e-01 + 1.0128000e+04 1.3305768e+00 + 1.0128400e+04 2.1854015e+00 + 1.0128800e+04 2.8643281e+00 + 1.0129200e+04 2.9341172e+00 + 1.0129600e+04 2.6641113e+00 + 1.0130000e+04 2.0843246e+00 + 1.0130400e+04 1.5249730e+00 + 1.0130800e+04 1.2158353e+00 + 1.0131200e+04 2.6681131e-01 + 1.0131600e+04 -8.0228275e-01 + 1.0132000e+04 -1.5514971e+00 + 1.0132400e+04 -1.9807852e+00 + 1.0132800e+04 -2.2001622e+00 + 1.0133200e+04 -1.9495842e+00 + 1.0133600e+04 -2.0492332e+00 + 1.0134000e+04 -1.9090852e+00 + 1.0134400e+04 -1.4891285e+00 + 1.0134800e+04 -1.0693063e+00 + 1.0135200e+04 -9.3951583e-01 + 1.0135600e+04 -7.7947288e-01 + 1.0136000e+04 -7.4925788e-01 + 1.0136400e+04 -8.1890266e-01 + 1.0136800e+04 -7.6849158e-01 + 1.0137200e+04 -4.8794041e-01 + 1.0137600e+04 1.4256346e-01 + 1.0138000e+04 1.1029472e+00 + 1.0138400e+04 1.9431745e+00 + 1.0138800e+04 2.1495466e+00 + 1.0139200e+04 2.5450591e+00 + 1.0139600e+04 2.7314344e+00 + 1.0140000e+04 2.7401069e+00 + 1.0140400e+04 2.2418093e+00 + 1.0140800e+04 1.8013037e+00 + 1.0141200e+04 1.2009787e+00 + 1.0141600e+04 8.0094125e-01 + 1.0142000e+04 4.8111893e-01 + 1.0142400e+04 3.2149345e-01 + 1.0142800e+04 4.7191208e-01 + 1.0143200e+04 2.4223635e-01 + 1.0143600e+04 -3.5775339e-01 + 1.0144000e+04 -9.1806210e-01 + 1.0144400e+04 -1.4788092e+00 + 1.0144800e+04 -1.7697497e+00 + 1.0145200e+04 -1.7405785e+00 + 1.0145600e+04 -1.3512984e+00 + 1.0146000e+04 -9.8198451e-01 + 1.0146400e+04 -5.1264865e-01 + 1.0146800e+04 6.6670501e-02 + 1.0147200e+04 -5.4037468e-02 + 1.0147600e+04 -3.0404629e-01 + 1.0148000e+04 -7.2455587e-01 + 1.0148400e+04 -4.5388709e-01 + 1.0148800e+04 -2.2309753e-01 + 1.0149200e+04 2.5810600e-01 + 1.0149600e+04 4.3039314e-01 + 1.0150000e+04 6.4906072e-01 + 1.0150400e+04 8.4567219e-01 + 1.0150800e+04 1.0235019e+00 + 1.0151200e+04 8.3566930e-01 + 1.0151600e+04 4.9633126e-01 + 1.0152000e+04 -3.5265301e-01 + 1.0152400e+04 -8.9008537e-01 + 1.0152800e+04 -9.3303784e-01 + 1.0153200e+04 -6.3434062e-01 + 1.0153600e+04 -4.1065754e-01 + 1.0154000e+04 -4.0980030e-01 + 1.0154400e+04 -5.7547624e-01 + 1.0154800e+04 -8.0524659e-01 + 1.0155200e+04 -1.0448357e+00 + 1.0155600e+04 -9.6385228e-01 + 1.0156000e+04 -6.8304290e-01 + 1.0156400e+04 -8.4168466e-01 + 1.0156800e+04 -1.1107590e+00 + 1.0157200e+04 -1.3901651e+00 + 1.0157600e+04 -1.2497555e+00 + 1.0158000e+04 -1.0995084e+00 + 1.0158400e+04 -6.1925188e-01 + 1.0158800e+04 -6.0073483e-01 + 1.0159200e+04 -6.0145129e-01 + 1.0159600e+04 -3.6071983e-01 + 1.0160000e+04 3.4003060e-01 + 1.0160400e+04 9.6084217e-01 + 1.0160800e+04 1.6604114e+00 + 1.0161200e+04 2.0197574e+00 + 1.0161600e+04 2.8035759e+00 + 1.0162000e+04 3.2577533e+00 + 1.0162400e+04 2.7664942e+00 + 1.0162800e+04 2.3052184e+00 + 1.0163200e+04 1.5240851e+00 + 1.0163600e+04 8.6297896e-01 + 1.0164000e+04 6.2190749e-01 + 1.0164400e+04 5.2098187e-01 + 1.0164800e+04 6.1023401e-01 + 1.0165200e+04 7.9975453e-01 + 1.0165600e+04 4.9959269e-01 + 1.0166000e+04 1.1975137e-01 + 1.0166400e+04 -2.4988971e-01 + 1.0166800e+04 -8.0940542e-01 + 1.0167200e+04 -9.6850870e-01 + 1.0167600e+04 -1.0674266e+00 + 1.0168000e+04 -1.2362272e+00 + 1.0168400e+04 -2.1552193e+00 + 1.0168800e+04 -2.7441581e+00 + 1.0169200e+04 -2.7132301e+00 + 1.0169600e+04 -2.4123955e+00 + 1.0170000e+04 -1.8816255e+00 + 1.0170400e+04 -1.5811781e+00 + 1.0170800e+04 -1.0713260e+00 + 1.0171200e+04 -3.1212693e-01 + 1.0171600e+04 8.6172716e-01 + 1.0172000e+04 1.4429649e+00 + 1.0172400e+04 1.7419956e+00 + 1.0172800e+04 1.7000555e+00 + 1.0173200e+04 1.6119626e+00 + 1.0173600e+04 1.3315033e+00 + 1.0174000e+04 7.9168835e-01 + 1.0174400e+04 5.2300141e-02 + 1.0174800e+04 -7.7698413e-01 + 1.0175200e+04 -1.2161070e+00 + 1.0175600e+04 -1.9151275e+00 + 1.0176000e+04 -2.5938799e+00 + 1.0176400e+04 -2.9243464e+00 + 1.0176800e+04 -3.1793482e+00 + 1.0177200e+04 -3.1405662e+00 + 1.0177600e+04 -2.7116955e+00 + 1.0178000e+04 -2.3978467e+00 + 1.0178400e+04 -1.7570497e+00 + 1.0178800e+04 -1.0078351e+00 + 1.0179200e+04 2.4062317e-02 + 1.0179600e+04 1.4935536e+00 + 1.0180000e+04 2.3229729e+00 + 1.0180400e+04 2.8418535e+00 + 1.0180800e+04 3.1705463e+00 + 1.0181200e+04 3.7388296e+00 + 1.0181600e+04 4.1370049e+00 + 1.0182000e+04 4.1049941e+00 + 1.0182400e+04 3.9129927e+00 + 1.0182800e+04 3.5310405e+00 + 1.0183200e+04 2.7994677e+00 + 1.0183600e+04 2.1071469e+00 + 1.0184000e+04 1.6471666e+00 + 1.0184400e+04 1.1402997e+00 + 1.0184800e+04 7.9360221e-01 + 1.0185200e+04 4.1696785e-01 + 1.0185600e+04 -1.3263961e-01 + 1.0186000e+04 -6.5162307e-01 + 1.0186400e+04 -1.9804798e+00 + 1.0186800e+04 -3.4090866e+00 + 1.0187200e+04 -4.3076689e+00 + 1.0187600e+04 -4.4363925e+00 + 1.0188000e+04 -4.5450794e+00 + 1.0188400e+04 -4.8742759e+00 + 1.0188800e+04 -5.0439626e+00 + 1.0189200e+04 -4.3838669e+00 + 1.0189600e+04 -3.4140243e+00 + 1.0190000e+04 -2.1344413e+00 + 1.0190400e+04 -9.6493485e-01 + 1.0190800e+04 -2.1561146e-01 + 1.0191200e+04 2.9353681e-01 + 1.0191600e+04 1.1426852e+00 + 1.0192000e+04 1.9446978e+00 + 1.0192400e+04 2.3403408e+00 + 1.0192800e+04 2.3371437e+00 + 1.0193200e+04 2.0152783e+00 + 1.0193600e+04 1.4313876e+00 + 1.0194000e+04 4.8174221e-01 + 1.0194400e+04 9.2280901e-02 + 1.0194800e+04 1.2756974e-02 + 1.0195200e+04 3.1331244e-01 + 1.0195600e+04 5.2393802e-01 + 1.0196000e+04 3.6466606e-01 + 1.0196400e+04 8.5381204e-02 + 1.0196800e+04 4.5863854e-02 + 1.0197200e+04 1.3628309e-01 + 1.0197600e+04 4.5650148e-01 + 1.0198000e+04 1.3865755e+00 + 1.0198400e+04 1.7365167e+00 + 1.0198800e+04 1.7663007e+00 + 1.0199200e+04 1.3959464e+00 + 1.0199600e+04 1.2555549e+00 + 1.0200000e+04 8.5514010e-01 + 1.0200400e+04 8.9471599e-01 + 1.0200800e+04 1.3443279e+00 + 1.0201200e+04 1.4739557e+00 + 1.0201600e+04 1.9737113e+00 + 1.0202000e+04 1.8135173e+00 + 1.0202400e+04 1.3333515e+00 + 1.0202800e+04 6.1326504e-01 + 1.0203200e+04 -2.6948582e-02 + 1.0203600e+04 -3.4729025e-01 + 1.0204000e+04 -4.6762424e-01 + 1.0204400e+04 -2.6759188e-01 + 1.0204800e+04 -1.0873031e-01 + 1.0205200e+04 7.0457392e-04 + 1.0205600e+04 1.6013608e-01 + 1.0206000e+04 -2.2040776e-01 + 1.0206400e+04 -4.5079905e-01 + 1.0206800e+04 -1.0309488e+00 + 1.0207200e+04 -1.8409066e+00 + 1.0207600e+04 -2.5345958e+00 + 1.0208000e+04 -2.9655521e+00 + 1.0208400e+04 -3.2097244e+00 + 1.0208800e+04 -2.7178086e+00 + 1.0209200e+04 -2.2078290e+00 + 1.0209600e+04 -1.8467763e+00 + 1.0210000e+04 -1.9658825e+00 + 1.0210400e+04 -1.8751406e+00 + 1.0210800e+04 -1.9845735e+00 + 1.0211200e+04 -1.7440903e+00 + 1.0211600e+04 -1.0236358e+00 + 1.0212000e+04 -3.3307300e-01 + 1.0212400e+04 1.0741852e-01 + 1.0212800e+04 4.5786601e-01 + 1.0213200e+04 7.2815483e-01 + 1.0213600e+04 9.5802597e-01 + 1.0214000e+04 8.4630706e-01 + 1.0214400e+04 6.3744234e-01 + 1.0214800e+04 7.5291265e-01 + 1.0215200e+04 1.0558912e+00 + 1.0215600e+04 9.2896608e-01 + 1.0216000e+04 6.9865235e-01 + 1.0216400e+04 8.2123837e-01 + 1.0216800e+04 1.3291048e+00 + 1.0217200e+04 1.9380857e+00 + 1.0217600e+04 3.5474862e+00 + 1.0218000e+04 3.9472503e+00 + 1.0218400e+04 3.6074295e+00 + 1.0218800e+04 3.3678979e+00 + 1.0219200e+04 3.0086081e+00 + 1.0219600e+04 2.2194538e+00 + 1.0220000e+04 1.8003295e+00 + 1.0220400e+04 1.4511359e+00 + 1.0220800e+04 1.1818083e+00 + 1.0221200e+04 7.5225354e-01 + 1.0221600e+04 4.1242645e-01 + 1.0222000e+04 1.7200758e-01 + 1.0222400e+04 -2.9817620e-01 + 1.0222800e+04 -4.8949512e-01 + 1.0223200e+04 -1.7704468e+00 + 1.0223600e+04 -2.4512688e+00 + 1.0224000e+04 -3.0119461e+00 + 1.0224400e+04 -3.2826052e+00 + 1.0224800e+04 -3.1632521e+00 + 1.0225200e+04 -2.8238717e+00 + 1.0225600e+04 -2.3643996e+00 + 1.0226000e+04 -2.0747793e+00 + 1.0226400e+04 -1.3547894e+00 + 1.0226800e+04 -2.4444115e-01 + 1.0227200e+04 8.7600851e-01 + 1.0227600e+04 1.4964336e+00 + 1.0228000e+04 1.6871454e+00 + 1.0228400e+04 1.8978440e+00 + 1.0228800e+04 1.3586411e+00 + 1.0229200e+04 5.4951011e-01 + 1.0229600e+04 -1.5960767e-01 + 1.0230000e+04 -3.2850617e-01 + 1.0230400e+04 -5.7812996e-01 + 1.0230800e+04 -1.0406577e+00 + 1.0231200e+04 -1.2672065e+00 + 1.0231600e+04 -1.3047483e+00 + 1.0232000e+04 -1.5134109e+00 + 1.0232400e+04 -1.5531882e+00 + 1.0232800e+04 -1.3032064e+00 + 1.0233200e+04 -1.0435195e+00 + 1.0233600e+04 -8.8385775e-01 + 1.0234000e+04 -4.6162418e-01 + 1.0234400e+04 5.0483953e-01 + 1.0234800e+04 5.8407396e-01 + 1.0235200e+04 7.4327937e-01 + 1.0235600e+04 7.9252059e-01 + 1.0236000e+04 1.1218057e+00 + 1.0236400e+04 1.5411875e+00 + 1.0236800e+04 1.9305443e+00 + 1.0237200e+04 2.6297541e+00 + 1.0237600e+04 3.4790059e+00 + 1.0238000e+04 3.8583834e+00 + 1.0238400e+04 3.2381709e+00 + 1.0238800e+04 3.1584197e+00 + 1.0239200e+04 2.5613790e+00 + 1.0239600e+04 1.2960892e+00 + 1.0240000e+04 -1.9972976e-01 + 1.0240400e+04 -6.1917153e-01 + 1.0240800e+04 -3.4477500e-01 + 1.0241200e+04 1.3493415e-01 + 1.0241600e+04 2.4110837e-01 + 1.0242000e+04 2.6060705e-01 + 1.0242400e+04 1.7357477e-01 + 1.0242800e+04 -2.9556580e-01 + 1.0243200e+04 -5.7543711e-01 + 1.0243600e+04 -4.8489427e-01 + 1.0244000e+04 -2.5422666e-01 + 1.0244400e+04 -5.8407692e-01 + 1.0244800e+04 -1.2638360e+00 + 1.0245200e+04 -1.5436798e+00 + 1.0245600e+04 -2.4636311e+00 + 1.0246000e+04 -2.3136189e+00 + 1.0246400e+04 -1.5736555e+00 + 1.0246800e+04 -7.4374023e-01 + 1.0247200e+04 3.2852705e-02 + 1.0247600e+04 6.5804093e-01 + 1.0248000e+04 3.6648985e-01 + 1.0248400e+04 -4.5866885e-03 + 1.0248800e+04 -4.4508027e-01 + 1.0249200e+04 -7.4549639e-01 + 1.0249600e+04 -6.2594852e-01 + 1.0250000e+04 -2.7631845e-01 + 1.0250400e+04 2.4306794e-01 + 1.0250800e+04 8.5264590e-01 + 1.0251200e+04 1.4722913e+00 + 1.0251600e+04 1.7020134e+00 + 1.0252000e+04 1.3918380e+00 + 1.0252400e+04 8.3182893e-01 + 1.0252800e+04 4.8202738e-01 + 1.0253200e+04 1.2305940e-02 + 1.0253600e+04 -5.2727742e-01 + 1.0254000e+04 -9.4683084e-01 + 1.0254400e+04 -1.0563435e+00 + 1.0254800e+04 -9.5579358e-01 + 1.0255200e+04 -1.2253146e+00 + 1.0255600e+04 -1.3949065e+00 + 1.0256000e+04 -1.2946028e+00 + 1.0256400e+04 -1.1546645e+00 + 1.0256800e+04 -8.0490822e-01 + 1.0257200e+04 -2.3522960e-01 + 1.0257600e+04 5.7421326e-01 + 1.0258000e+04 1.5835870e+00 + 1.0258400e+04 2.0228274e+00 + 1.0258800e+04 2.3220991e+00 + 1.0259200e+04 2.8613997e+00 + 1.0259600e+04 2.7608937e+00 + 1.0260000e+04 2.3603797e+00 + 1.0260400e+04 1.6999404e+00 + 1.0260800e+04 1.4894448e+00 + 1.0261200e+04 6.0935731e-01 + 1.0261600e+04 8.9225847e-02 + 1.0262000e+04 2.9372795e-02 + 1.0262400e+04 1.2970197e-01 + 1.0262800e+04 3.5024916e-01 + 1.0263200e+04 7.6746144e-01 + 1.0263600e+04 6.8482191e-01 + 1.0264000e+04 6.5188444e-01 + 1.0264400e+04 7.6701263e-01 + 1.0264800e+04 5.1490110e-01 + 1.0265200e+04 4.5601083e-01 + 1.0265600e+04 1.6709081e-01 + 1.0266000e+04 4.7914063e-02 + 1.0266400e+04 -3.6146440e-01 + 1.0266800e+04 -5.2113090e-01 + 1.0267200e+04 -1.4110093e+00 + 1.0267600e+04 -1.7010862e+00 + 1.0268000e+04 -1.4513510e+00 + 1.0268400e+04 -8.2192787e-01 + 1.0268800e+04 -6.9312304e-01 + 1.0269200e+04 -8.8355455e-01 + 1.0269600e+04 -1.3147777e+00 + 1.0270000e+04 -2.1462219e+00 + 1.0270400e+04 -2.4175367e+00 + 1.0270800e+04 -2.5087267e+00 + 1.0271200e+04 -2.8497825e+00 + 1.0271600e+04 -3.0206826e+00 + 1.0272000e+04 -2.7514466e+00 + 1.0272400e+04 -2.2120714e+00 + 1.0272800e+04 -1.3035586e+00 + 1.0273200e+04 -1.4242294e-01 + 1.0273600e+04 1.0975704e+00 + 1.0274000e+04 1.6983027e+00 + 1.0274400e+04 2.3566007e+00 + 1.0274800e+04 2.7470746e+00 + 1.0275200e+04 3.0280854e+00 + 1.0275600e+04 3.4689535e+00 + 1.0276000e+04 3.4505050e+00 + 1.0276400e+04 3.7012134e+00 + 1.0276800e+04 3.4418689e+00 + 1.0277200e+04 2.9585146e+00 + 1.0277600e+04 1.4785133e+00 + 1.0278000e+04 -1.6586940e-01 + 1.0278400e+04 -9.5881887e-01 + 1.0278800e+04 -1.4376187e+00 + 1.0279200e+04 -1.4744312e+00 + 1.0279600e+04 -1.2943104e+00 + 1.0280000e+04 -8.9437802e-01 + 1.0280400e+04 -4.6460096e-01 + 1.0280800e+04 -3.3496297e-01 + 1.0281200e+04 2.0448897e-01 + 1.0281600e+04 1.0392678e-01 + 1.0282000e+04 -1.8653675e-01 + 1.0282400e+04 -2.5665776e-01 + 1.0282800e+04 3.2711612e-02 + 1.0283200e+04 2.0271103e-01 + 1.0283600e+04 5.4274731e-01 + 1.0284000e+04 1.0128210e+00 + 1.0284400e+04 1.1729701e+00 + 1.0284800e+04 8.7316607e-01 + 1.0285200e+04 5.7346771e-01 + 1.0285600e+04 -7.6105365e-02 + 1.0286000e+04 -2.9512492e-01 + 1.0286400e+04 -2.6420883e-01 + 1.0286800e+04 -9.3974979e-02 + 1.0287200e+04 1.6664257e-01 + 1.0287600e+04 1.9708689e-01 + 1.0288000e+04 -2.7215943e-01 + 1.0288400e+04 -8.0237939e-01 + 1.0288800e+04 -1.1598016e+00 + 1.0289200e+04 -1.2516650e+00 + 1.0289600e+04 -1.1685364e+00 + 1.0290000e+04 -1.3218438e+00 + 1.0290400e+04 -1.5435331e+00 + 1.0290800e+04 -1.7488299e+00 + 1.0291200e+04 -1.5532009e+00 + 1.0291600e+04 -1.4630407e+00 + 1.0292000e+04 -1.3407179e+00 + 1.0292400e+04 -1.1824383e+00 + 1.0292800e+04 -7.4397061e-01 + 1.0293200e+04 -2.4384181e-01 + 1.0293600e+04 4.9462964e-01 + 1.0294000e+04 9.8455053e-01 + 1.0294400e+04 1.0870189e+00 + 1.0294800e+04 8.7960741e-01 + 1.0295200e+04 1.0282020e+00 + 1.0295600e+04 1.6901089e+00 + 1.0296000e+04 2.6102869e+00 + 1.0296400e+04 3.0506314e+00 + 1.0296800e+04 3.4710615e+00 + 1.0297200e+04 3.0716604e+00 + 1.0297600e+04 2.9853492e+00 + 1.0298000e+04 2.5602447e+00 + 1.0298400e+04 1.7458694e+00 + 1.0298800e+04 9.6278344e-01 + 1.0299200e+04 6.2309772e-01 + 1.0299600e+04 4.8661659e-01 + 1.0300000e+04 5.7968586e-01 + 1.0300400e+04 3.9946854e-01 + 1.0300800e+04 3.0988417e-01 + 1.0301200e+04 2.7039400e-01 + 1.0301600e+04 4.8051765e-01 + 1.0302000e+04 8.2031598e-01 + 1.0302400e+04 1.0299063e+00 + 1.0302800e+04 6.1940865e-01 + 1.0303200e+04 -8.0989666e-02 + 1.0303600e+04 -1.1614089e+00 + 1.0304000e+04 -2.3217742e+00 + 1.0304400e+04 -2.7720761e+00 + 1.0304800e+04 -2.8323775e+00 + 1.0305200e+04 -2.7526636e+00 + 1.0305600e+04 -2.9029376e+00 + 1.0306000e+04 -3.0431954e+00 + 1.0306400e+04 -3.2034358e+00 + 1.0306800e+04 -3.1236176e+00 + 1.0307200e+04 -3.0037821e+00 + 1.0307600e+04 -2.6739888e+00 + 1.0308000e+04 -2.5242301e+00 + 1.0308400e+04 -2.1743571e+00 + 1.0308800e+04 -1.7243966e+00 + 1.0309200e+04 -9.4434972e-01 + 1.0309600e+04 -1.9429053e-01 + 1.0310000e+04 7.0576236e-01 + 1.0310400e+04 1.5530593e+00 + 1.0310800e+04 2.5188614e+00 + 1.0311200e+04 3.3160263e+00 + 1.0311600e+04 3.6233037e+00 + 1.0312000e+04 3.3006458e+00 + 1.0312400e+04 2.5436155e+00 + 1.0312800e+04 1.5402317e+00 + 1.0313200e+04 6.2904603e-01 + 1.0313600e+04 3.1763849e-01 + 1.0314000e+04 1.3763178e-01 + 1.0314400e+04 1.7498653e-02 + 1.0314800e+04 2.0717780e-01 + 1.0315200e+04 2.9302967e-01 + 1.0315600e+04 4.9875334e-01 + 1.0316000e+04 5.0914614e-01 + 1.0316400e+04 9.7252460e-01 + 1.0316800e+04 1.2343672e+00 + 1.0317200e+04 1.4737715e+00 + 1.0317600e+04 1.5332871e+00 + 1.0318000e+04 2.1930940e+00 + 1.0318400e+04 2.4331545e+00 + 1.0318800e+04 2.5634615e+00 + 1.0319200e+04 2.2740104e+00 + 1.0319600e+04 1.3648200e+00 + 1.0320000e+04 9.4441630e-01 + 1.0320400e+04 4.9985246e-01 + 1.0320800e+04 6.1430966e-02 + 1.0321200e+04 -5.2824526e-02 + 1.0321600e+04 -9.1671861e-03 + 1.0322000e+04 -4.4100867e-01 + 1.0322400e+04 -9.7104123e-01 + 1.0322800e+04 -1.7575713e+00 + 1.0323200e+04 -2.5244779e+00 + 1.0323600e+04 -2.7903444e+00 + 1.0324000e+04 -2.7107228e+00 + 1.0324400e+04 -2.7088198e+00 + 1.0324800e+04 -2.5494535e+00 + 1.0325200e+04 -2.9799235e+00 + 1.0325600e+04 -3.3603245e+00 + 1.0326000e+04 -3.9506412e+00 + 1.0326400e+04 -4.0009439e+00 + 1.0326800e+04 -3.6412376e+00 + 1.0327200e+04 -3.5014278e+00 + 1.0327600e+04 -2.8743190e+00 + 1.0328000e+04 -1.7455147e+00 + 1.0328400e+04 -3.3145293e-01 + 1.0328800e+04 1.6040890e+00 + 1.0329200e+04 3.3297502e+00 + 1.0329600e+04 4.1743658e+00 + 1.0330000e+04 4.4110826e+00 + 1.0330400e+04 3.7519200e+00 + 1.0330800e+04 3.1622558e+00 + 1.0331200e+04 2.8421662e+00 + 1.0331600e+04 2.6517336e+00 + 1.0332000e+04 2.4208995e+00 + 1.0332400e+04 2.0800426e+00 + 1.0332800e+04 1.3291253e+00 + 1.0333200e+04 3.5470919e-01 + 1.0333600e+04 -4.6234952e-01 + 1.0334000e+04 -1.3630726e+00 + 1.0334400e+04 -1.4036857e+00 + 1.0334800e+04 -1.7142608e+00 + 1.0335200e+04 -2.1047959e+00 + 1.0335600e+04 -2.1652157e+00 + 1.0336000e+04 -2.1821798e+00 + 1.0336400e+04 -2.1449636e+00 + 1.0336800e+04 -1.4735336e+00 + 1.0337200e+04 -4.8514695e-01 + 1.0337600e+04 6.1730860e-01 + 1.0338000e+04 1.8130433e+00 + 1.0338400e+04 2.7541056e+00 + 1.0338800e+04 3.4721648e+00 + 1.0339200e+04 3.5329088e+00 + 1.0339600e+04 3.4241713e+00 + 1.0340000e+04 3.8495483e+00 + 1.0340400e+04 4.4200187e+00 + 1.0340800e+04 4.2946137e+00 + 1.0341200e+04 3.6141969e+00 + 1.0341600e+04 2.1757914e+00 + 1.0342000e+04 2.8226215e-01 + 1.0342400e+04 -1.3255280e+00 + 1.0342800e+04 -2.8300298e+00 + 1.0343200e+04 -4.2871171e+00 + 1.0343600e+04 -5.3803400e+00 + 1.0344000e+04 -6.1894667e+00 + 1.0344400e+04 -6.3104076e+00 + 1.0344800e+04 -5.8050461e+00 + 1.0345200e+04 -5.2837248e+00 + 1.0345600e+04 -4.5534610e+00 + 1.0346000e+04 -3.5023672e+00 + 1.0346400e+04 -2.0642971e+00 + 1.0346800e+04 -7.0631815e-01 + 1.0347200e+04 5.4462951e-01 + 1.0347600e+04 1.8283142e+00 + 1.0348000e+04 3.0211757e+00 + 1.0348400e+04 3.5510105e+00 + 1.0348800e+04 4.3027584e+00 + 1.0349200e+04 5.1308631e+00 + 1.0349600e+04 5.7993555e+00 + 1.0350000e+04 6.0207221e+00 + 1.0350400e+04 4.7505837e+00 + 1.0350800e+04 3.4602908e+00 + 1.0351200e+04 2.8299302e+00 + 1.0351600e+04 1.3990829e+00 + 1.0352000e+04 1.5595615e-01 + 1.0352400e+04 -3.4183995e-01 + 1.0352800e+04 -6.9290784e-01 + 1.0353200e+04 -1.2929624e+00 + 1.0353600e+04 -2.0434449e+00 + 1.0354000e+04 -2.5638539e+00 + 1.0354400e+04 -2.7540792e+00 + 1.0354800e+04 -2.6340626e+00 + 1.0355200e+04 -2.1338667e+00 + 1.0355600e+04 -1.8135250e+00 + 1.0356000e+04 -1.5232251e+00 + 1.0356400e+04 -1.2328908e+00 + 1.0356800e+04 -1.2025550e+00 + 1.0357200e+04 -4.0215833e-01 + 1.0357600e+04 8.2806974e-01 + 1.0358000e+04 8.5830056e-01 + 1.0358400e+04 1.1985362e+00 + 1.0358800e+04 1.6800411e+00 + 1.0359200e+04 1.8314960e+00 + 1.0359600e+04 1.8029981e+00 + 1.0360000e+04 1.6746140e+00 + 1.0360400e+04 1.2108960e+00 + 1.0360800e+04 6.2150577e-01 + 1.0361200e+04 1.8206908e-01 + 1.0361600e+04 -6.4754046e-01 + 1.0362000e+04 -1.6271711e+00 + 1.0362400e+04 -2.4968201e+00 + 1.0362800e+04 -2.8864665e+00 + 1.0363200e+04 -2.6961528e+00 + 1.0363600e+04 -2.4935760e+00 + 1.0364000e+04 -2.3459883e+00 + 1.0364400e+04 -2.3493325e+00 + 1.0364800e+04 -2.5473291e+00 + 1.0365200e+04 -2.3959425e+00 + 1.0365600e+04 -1.9460703e+00 + 1.0366000e+04 -1.2462254e+00 + 1.0366400e+04 -4.8642603e-01 + 1.0366800e+04 -6.6642914e-02 + 1.0367200e+04 4.1309777e-01 + 1.0367600e+04 7.1277487e-01 + 1.0368000e+04 8.4247839e-01 + 1.0368400e+04 1.2921757e+00 + 1.0368800e+04 1.9318749e+00 + 1.0369200e+04 2.5015835e+00 + 1.0369600e+04 2.9912371e+00 + 1.0370000e+04 3.3708988e+00 + 1.0370400e+04 3.6605993e+00 + 1.0370800e+04 3.9303075e+00 + 1.0371200e+04 3.8300266e+00 + 1.0371600e+04 3.9197654e+00 + 1.0372000e+04 3.2694786e+00 + 1.0372400e+04 2.4192929e+00 + 1.0372800e+04 1.5193771e+00 + 1.0373200e+04 6.4969851e-01 + 1.0373600e+04 3.1030418e-01 + 1.0374000e+04 -5.9166292e-02 + 1.0374400e+04 -7.5865411e-01 + 1.0374800e+04 -1.5784091e+00 + 1.0375200e+04 -2.5788902e+00 + 1.0375600e+04 -3.6752059e+00 + 1.0376000e+04 -3.8875242e+00 + 1.0376400e+04 -3.3770941e+00 + 1.0376800e+04 -2.8968234e+00 + 1.0377200e+04 -2.3269264e+00 + 1.0377600e+04 -1.9372362e+00 + 1.0378000e+04 -1.8876295e+00 + 1.0378400e+04 -1.7680595e+00 + 1.0378800e+04 -1.5684986e+00 + 1.0379200e+04 -1.2489116e+00 + 1.0379600e+04 -9.0931419e-01 + 1.0380000e+04 -2.1961059e-01 + 1.0380400e+04 4.4025317e-01 + 1.0380800e+04 1.1702322e+00 + 1.0381200e+04 1.7105058e+00 + 1.0381600e+04 2.0009624e+00 + 1.0382000e+04 1.7817211e+00 + 1.0382400e+04 1.9285110e+00 + 1.0382800e+04 2.1168293e+00 + 1.0383200e+04 1.9947856e+00 + 1.0383600e+04 1.5741540e+00 + 1.0384000e+04 1.1861897e+00 + 1.0384400e+04 9.9689872e-01 + 1.0384800e+04 6.9742699e-01 + 1.0385200e+04 3.5776868e-01 + 1.0385600e+04 2.6790973e-01 + 1.0386000e+04 -1.8206725e-01 + 1.0386400e+04 -1.0722046e+00 + 1.0386800e+04 -1.6524367e+00 + 1.0387200e+04 -2.1127247e+00 + 1.0387600e+04 -2.1730561e+00 + 1.0388000e+04 -2.0633953e+00 + 1.0388400e+04 -1.8637274e+00 + 1.0388800e+04 -1.0540068e+00 + 1.0389200e+04 1.5798401e-02 + 1.0389600e+04 9.3548357e-01 + 1.0390000e+04 1.3951940e+00 + 1.0390400e+04 1.2149239e+00 + 1.0390800e+04 9.6472269e-01 + 1.0391200e+04 7.0460792e-01 + 1.0391600e+04 6.6454898e-01 + 1.0392000e+04 1.0045343e+00 + 1.0392400e+04 1.4146192e+00 + 1.0392800e+04 1.8247733e+00 + 1.0393200e+04 2.1549242e+00 + 1.0393600e+04 2.4651240e+00 + 1.0394000e+04 2.6253273e+00 + 1.0394400e+04 2.4154970e+00 + 1.0394800e+04 2.0656874e+00 + 1.0395200e+04 1.8858867e+00 + 1.0395600e+04 1.0159443e+00 + 1.0396000e+04 1.5611689e-01 + 1.0396400e+04 -2.4385959e-01 + 1.0396800e+04 -8.3105239e-01 + 1.0397200e+04 -1.4611704e+00 + 1.0397600e+04 -2.0154760e+00 + 1.0398000e+04 -2.2239958e+00 + 1.0398400e+04 -2.5089235e+00 + 1.0398800e+04 -2.7658201e+00 + 1.0399200e+04 -2.7641170e+00 + 1.0399600e+04 -2.8740918e+00 + 1.0400000e+04 -3.0940056e+00 + 1.0400400e+04 -3.0708962e+00 + 1.0400800e+04 -2.7127946e+00 + 1.0401200e+04 -2.2293084e+00 + 1.0401600e+04 -1.3810538e+00 + 1.0402000e+04 -8.0461619e-01 + 1.0402400e+04 -3.4607232e-02 + 1.0402800e+04 6.9533749e-01 + 1.0403200e+04 2.0954964e+00 + 1.0403600e+04 2.9056542e+00 + 1.0404000e+04 3.2560003e+00 + 1.0404400e+04 3.2963195e+00 + 1.0404800e+04 3.2167037e+00 + 1.0405200e+04 2.6170841e+00 + 1.0405600e+04 1.8875310e+00 + 1.0406000e+04 1.2178657e+00 + 1.0406400e+04 7.4821522e-01 + 1.0406800e+04 4.6848495e-01 + 1.0407200e+04 3.7871231e-01 + 1.0407600e+04 -2.1274112e-01 + 1.0408000e+04 -8.3474468e-01 + 1.0408400e+04 -1.4010546e+00 + 1.0408800e+04 -1.7110753e+00 + 1.0409200e+04 -2.1811475e+00 + 1.0409600e+04 -2.1512444e+00 + 1.0410000e+04 -1.4513564e+00 + 1.0410400e+04 -7.8628123e-01 + 1.0410800e+04 -2.2784829e-01 + 1.0411200e+04 3.9084211e-01 + 1.0411600e+04 9.7757520e-01 + 1.0412000e+04 1.4289137e+00 + 1.0412400e+04 1.2574840e+00 + 1.0412800e+04 1.2173522e+00 + 1.0413200e+04 1.1271964e+00 + 1.0413600e+04 1.0870833e+00 + 1.0414000e+04 1.5684441e+00 + 1.0414400e+04 1.8318387e+00 + 1.0414800e+04 1.8153185e+00 + 1.0415200e+04 1.5285191e+00 + 1.0415600e+04 1.1459696e+00 + 1.0416000e+04 3.2597524e-01 + 1.0416400e+04 -5.9395519e-01 + 1.0416800e+04 -6.3396043e-01 + 1.0417200e+04 -1.0757045e+00 + 1.0417600e+04 -1.9216397e+00 + 1.0418000e+04 -2.1833510e+00 + 1.0418400e+04 -1.9829675e+00 + 1.0418800e+04 -1.5325570e+00 + 1.0419200e+04 -1.4422475e+00 + 1.0419600e+04 -9.0208292e-01 + 1.0420000e+04 -4.9193701e-01 + 1.0420400e+04 -1.5187168e-01 + 1.0420800e+04 1.8812476e-01 + 1.0421200e+04 1.0280260e+00 + 1.0421600e+04 1.3581103e+00 + 1.0422000e+04 2.0784479e+00 + 1.0422400e+04 2.5089557e+00 + 1.0422800e+04 2.3694183e+00 + 1.0423200e+04 1.9396710e+00 + 1.0423600e+04 1.3997426e+00 + 1.0424000e+04 8.3969155e-01 + 1.0424400e+04 -1.0037384e-01 + 1.0424800e+04 -8.9049216e-01 + 1.0425200e+04 -1.2306091e+00 + 1.0425600e+04 -1.1906004e+00 + 1.0426000e+04 -1.4104780e+00 + 1.0426400e+04 -1.5301269e+00 + 1.0426800e+04 -1.4894907e+00 + 1.0427200e+04 -1.3985702e+00 + 1.0427600e+04 -1.1975165e+00 + 1.0428000e+04 -1.1364653e+00 + 1.0428400e+04 -1.0355947e+00 + 1.0428800e+04 -7.9486736e-01 + 1.0429200e+04 -1.4443382e-01 + 1.0429600e+04 7.1573770e-01 + 1.0430000e+04 1.1972720e+00 + 1.0430400e+04 1.4904697e+00 + 1.0430800e+04 1.6859056e+00 + 1.0431200e+04 1.6999627e+00 + 1.0431600e+04 1.3437391e+00 + 1.0432000e+04 9.0276691e-01 + 1.0432400e+04 3.5189224e-01 + 1.0432800e+04 -1.2899687e-01 + 1.0433200e+04 -2.1971915e-01 + 1.0433600e+04 6.9727873e-02 + 1.0434000e+04 1.4933784e-01 + 1.0434400e+04 2.4905332e-01 + 1.0434800e+04 1.3883873e-01 + 1.0435200e+04 -2.2121132e-01 + 1.0435600e+04 -6.4114457e-01 + 1.0436000e+04 -8.6096745e-01 + 1.0436400e+04 -1.5307399e+00 + 1.0436800e+04 -1.7804108e+00 + 1.0437200e+04 -2.1000530e+00 + 1.0437600e+04 -1.7096564e+00 + 1.0438000e+04 -9.7927834e-01 + 1.0438400e+04 -5.3895163e-01 + 1.0438800e+04 -8.5644805e-03 + 1.0439200e+04 6.2171456e-01 + 1.0439600e+04 1.0720759e+00 + 1.0440000e+04 1.5124842e+00 + 1.0440400e+04 2.2229410e+00 + 1.0440800e+04 2.6034206e+00 + 1.0441200e+04 2.4238862e+00 + 1.0441600e+04 1.7842151e+00 + 1.0442000e+04 1.1742817e+00 + 1.0442400e+04 8.2426909e-01 + 1.0442800e+04 -1.0586090e-01 + 1.0443200e+04 -7.4605406e-01 + 1.0443600e+04 -9.3609010e-01 + 1.0444000e+04 -1.2362231e+00 + 1.0444400e+04 -1.5029550e+00 + 1.0444800e+04 -1.3649654e+00 + 1.0445200e+04 -1.2093782e+00 + 1.0445600e+04 -9.9588853e-01 + 1.0446000e+04 -9.0596832e-01 + 1.0446400e+04 -1.2614715e-01 + 1.0446800e+04 -2.8618495e-01 + 1.0447200e+04 -6.6651745e-01 + 1.0447600e+04 -7.7680303e-01 + 1.0448000e+04 -9.8702342e-01 + 1.0448400e+04 -1.2572640e+00 + 1.0448800e+04 -1.3074514e+00 + 1.0449200e+04 -1.3876362e+00 + 1.0449600e+04 -1.0677821e+00 + 1.0450000e+04 -2.0787704e-01 + 1.0450400e+04 5.9401621e-01 + 1.0450800e+04 1.1318562e+00 + 1.0451200e+04 1.6743147e+00 + 1.0451600e+04 1.8985580e+00 + 1.0452000e+04 1.3209802e+00 + 1.0452400e+04 7.2190514e-01 + 1.0452800e+04 3.1216407e-01 + 1.0453200e+04 7.2317851e-02 + 1.0453600e+04 -1.0747696e-01 + 1.0454000e+04 -2.7388756e-02 + 1.0454400e+04 1.8276991e-01 + 1.0454800e+04 2.7285958e-01 + 1.0455200e+04 4.3302353e-01 + 1.0455600e+04 6.4320861e-01 + 1.0456000e+04 7.0341165e-01 + 1.0456400e+04 8.0361148e-01 + 1.0456800e+04 9.7370325e-01 + 1.0457200e+04 1.1136928e+00 + 1.0457600e+04 9.7361377e-01 + 1.0458000e+04 1.1034834e+00 + 1.0458400e+04 1.1333343e+00 + 1.0458800e+04 8.3333872e-01 + 1.0459200e+04 2.1339308e-01 + 1.0459600e+04 -1.7663116e-01 + 1.0460000e+04 -4.0658201e-01 + 1.0460400e+04 -7.7654336e-01 + 1.0460800e+04 -9.7642348e-01 + 1.0461200e+04 -1.3162050e+00 + 1.0461600e+04 -1.6159159e+00 + 1.0462000e+04 -1.6755196e+00 + 1.0462400e+04 -2.2751274e+00 + 1.0462800e+04 -2.1847511e+00 + 1.0463200e+04 -1.6343471e+00 + 1.0463600e+04 -1.1239313e+00 + 1.0464000e+04 -6.6356139e-01 + 1.0464400e+04 -2.8321156e-01 + 1.0464800e+04 1.4690256e-01 + 1.0465200e+04 5.7705995e-01 + 1.0465600e+04 1.0071577e+00 + 1.0466000e+04 1.0592957e+00 + 1.0466400e+04 1.0327348e+00 + 1.0466800e+04 5.1758859e-01 + 1.0467200e+04 -3.1964646e-01 + 1.0467600e+04 -4.5326330e-01 + 1.0468000e+04 -5.0365505e-01 + 1.0468400e+04 -3.5415933e-01 + 1.0468800e+04 -4.4473207e-01 + 1.0469200e+04 -6.1539614e-01 + 1.0469600e+04 -5.8618919e-01 + 1.0470000e+04 -3.7697103e-01 + 1.0470400e+04 9.2296591e-02 + 1.0470800e+04 1.0915652e+00 + 1.0471200e+04 1.6010474e+00 + 1.0471600e+04 1.9606155e+00 + 1.0472000e+04 2.1201659e+00 + 1.0472400e+04 1.8301087e+00 + 1.0472800e+04 1.6101076e+00 + 1.0473200e+04 1.2905670e+00 + 1.0473600e+04 1.0912683e+00 + 1.0474000e+04 5.4219030e-01 + 1.0474400e+04 2.8326047e-01 + 1.0474800e+04 4.3203973e-03 + 1.0475200e+04 -2.0450136e-01 + 1.0475600e+04 -2.4341651e-01 + 1.0476000e+04 -1.6243292e-01 + 1.0476400e+04 -7.1556125e-02 + 1.0476800e+04 -2.1378852e-02 + 1.0477200e+04 -1.9157833e-01 + 1.0477600e+04 -1.4205010e-01 + 1.0478000e+04 5.2708625e-01 + 1.0478400e+04 1.1560387e+00 + 1.0478800e+04 1.7748765e+00 + 1.0479200e+04 2.0136386e+00 + 1.0479600e+04 1.6724604e+00 + 1.0480000e+04 1.2107107e+00 + 1.0480400e+04 5.3650883e-01 + 1.0480800e+04 -2.2278222e-01 + 1.0481200e+04 -1.0532395e+00 + 1.0481600e+04 -1.8753516e+00 + 1.0482000e+04 -2.7651745e+00 + 1.0482400e+04 -3.0939256e+00 + 1.0482800e+04 -3.5067096e+00 + 1.0483200e+04 -3.7967776e+00 + 1.0483600e+04 -3.9617125e+00 + 1.0484000e+04 -3.6735681e+00 + 1.0484400e+04 -3.0443989e+00 + 1.0484800e+04 -2.2219774e+00 + 1.0485200e+04 -1.3367074e+00 + 1.0485600e+04 -3.6395919e-01 + 1.0486000e+04 4.9168096e-01 + 1.0486400e+04 1.1946294e+00 + 1.0486800e+04 1.7815731e+00 + 1.0487200e+04 2.2305430e+00 + 1.0487600e+04 2.1762419e+00 + 1.0488000e+04 1.9756051e+00 + 1.0488400e+04 1.9573572e+00 + 1.0488800e+04 1.9899114e+00 + 1.0489200e+04 1.8116443e+00 + 1.0489600e+04 1.7029526e+00 + 1.0490000e+04 1.7134499e+00 + 1.0490400e+04 1.7932428e+00 + 1.0490800e+04 2.0831366e+00 + 1.0491200e+04 2.2431265e+00 + 1.0491600e+04 2.4932720e+00 + 1.0492000e+04 2.4335071e+00 + 1.0492400e+04 2.1038192e+00 + 1.0492800e+04 1.7541979e+00 + 1.0493200e+04 1.4544395e+00 + 1.0493600e+04 8.5003185e-01 + 1.0494000e+04 4.8243590e-03 + 1.0494400e+04 -9.6237855e-01 + 1.0494800e+04 -1.6238852e+00 + 1.0495200e+04 -2.0145530e+00 + 1.0495600e+04 -2.3167548e+00 + 1.0496000e+04 -2.3228431e+00 + 1.0496400e+04 -1.9123589e+00 + 1.0496800e+04 -1.3317394e+00 + 1.0497200e+04 -3.9095466e-01 + 1.0497600e+04 8.9100579e-01 + 1.0498000e+04 1.3511096e+00 + 1.0498400e+04 1.7644473e+00 + 1.0498800e+04 1.4108416e+00 + 1.0499200e+04 7.3120790e-01 + 1.0499600e+04 -9.6448682e-02 + 1.0500000e+04 -1.0045341e+00 + 1.0500400e+04 -1.9606124e+00 + 1.0500800e+04 -2.3908436e+00 + 1.0501200e+04 -2.6948264e+00 + 1.0501600e+04 -3.1844208e+00 + 1.0502000e+04 -3.1222306e+00 + 1.0502400e+04 -2.9205622e+00 + 1.0502800e+04 -2.6505833e+00 + 1.0503200e+04 -2.3705218e+00 + 1.0503600e+04 -1.9104438e+00 + 1.0504000e+04 -1.2474808e+00 + 1.0504400e+04 -1.5004250e-01 + 1.0504800e+04 7.1993552e-01 + 1.0505200e+04 1.4398147e+00 + 1.0505600e+04 1.8896415e+00 + 1.0506000e+04 2.1795453e+00 + 1.0506400e+04 3.0195057e+00 + 1.0506800e+04 3.5393490e+00 + 1.0507200e+04 4.0191472e+00 + 1.0507600e+04 4.6389634e+00 + 1.0508000e+04 4.2487951e+00 + 1.0508400e+04 3.7886605e+00 + 1.0508800e+04 2.6286552e+00 + 1.0509200e+04 1.5889302e+00 + 1.0509600e+04 8.3940408e-01 + 1.0510000e+04 4.1006071e-01 + 1.0510400e+04 2.3065137e-01 + 1.0510800e+04 1.9119516e-01 + 1.0511200e+04 1.1565826e-02 + 1.0511600e+04 -1.3810281e-01 + 1.0512000e+04 -4.4791517e-01 + 1.0512400e+04 -6.4782145e-01 + 1.0512800e+04 -5.1779685e-01 + 1.0513200e+04 -3.4780377e-01 + 1.0513600e+04 -2.7759759e-01 + 1.0514000e+04 -7.6747631e-01 + 1.0514400e+04 -1.2672100e+00 + 1.0514800e+04 -1.5770480e+00 + 1.0515200e+04 -1.4168876e+00 + 1.0515600e+04 -8.5670399e-01 + 1.0516000e+04 -3.7659138e-01 + 1.0516400e+04 -1.6439860e-02 + 1.0516800e+04 1.8374236e-01 + 1.0517200e+04 4.4385696e-01 + 1.0517600e+04 2.3392206e-01 + 1.0518000e+04 -3.0584724e-01 + 1.0518400e+04 -7.6613041e-01 + 1.0518800e+04 -1.4961748e+00 + 1.0519200e+04 -1.9362232e+00 + 1.0519600e+04 -2.1662522e+00 + 1.0520000e+04 -2.2392681e+00 + 1.0520400e+04 -2.3826603e+00 + 1.0520800e+04 -2.3397268e+00 + 1.0521200e+04 -2.1216135e+00 + 1.0521600e+04 -1.8158343e+00 + 1.0522000e+04 -1.4616085e+00 + 1.0522400e+04 -1.0547850e+00 + 1.0522800e+04 -6.9810299e-01 + 1.0523200e+04 -1.1243509e-01 + 1.0523600e+04 2.5328792e-01 + 1.0524000e+04 7.6282495e-01 + 1.0524400e+04 1.0825724e+00 + 1.0524800e+04 1.7923995e+00 + 1.0525200e+04 2.4323586e+00 + 1.0525600e+04 3.3625146e+00 + 1.0526000e+04 4.2126630e+00 + 1.0526400e+04 4.5528085e+00 + 1.0526800e+04 4.9427145e+00 + 1.0527200e+04 4.7823284e+00 + 1.0527600e+04 4.2118470e+00 + 1.0528000e+04 3.6313048e+00 + 1.0528400e+04 2.8507352e+00 + 1.0528800e+04 2.1804393e+00 + 1.0529200e+04 1.3002319e+00 + 1.0529600e+04 4.5714748e-01 + 1.0530000e+04 4.4868862e-01 + 1.0530400e+04 5.7895342e-01 + 1.0530800e+04 2.9035764e-01 + 1.0531200e+04 -7.7647017e-02 + 1.0531600e+04 -4.6668325e-01 + 1.0532000e+04 -1.3207266e+00 + 1.0532400e+04 -2.1583066e+00 + 1.0532800e+04 -2.6033166e+00 + 1.0533200e+04 -2.7081268e+00 + 1.0533600e+04 -2.9514013e+00 + 1.0534000e+04 -3.5205642e+00 + 1.0534400e+04 -3.6327608e+00 + 1.0534800e+04 -3.5831153e+00 + 1.0535200e+04 -3.1434919e+00 + 1.0535600e+04 -2.7840077e+00 + 1.0536000e+04 -1.8446488e+00 + 1.0536400e+04 -1.6353768e+00 + 1.0536800e+04 -1.0561205e+00 + 1.0537200e+04 -6.5681830e-01 + 1.0537600e+04 -5.3730873e-01 + 1.0538000e+04 -4.0754870e-01 + 1.0538400e+04 -1.8767266e-01 + 1.0538800e+04 -4.7598623e-02 + 1.0539200e+04 -1.0742980e-01 + 1.0539600e+04 -4.3715736e-01 + 1.0540000e+04 -3.8675561e-01 + 1.0540400e+04 3.8970901e-03 + 1.0540800e+04 8.0470919e-01 + 1.0541200e+04 8.4560759e-01 + 1.0541600e+04 4.4659094e-01 + 1.0542000e+04 2.3741104e-01 + 1.0542400e+04 1.4170756e-01 + 1.0542800e+04 -8.3610703e-02 + 1.0543200e+04 -3.0261953e-02 + 1.0543600e+04 6.2348201e-01 + 1.0544000e+04 1.2396183e+00 + 1.0544400e+04 2.0597127e+00 + 1.0544800e+04 2.8096276e+00 + 1.0545200e+04 2.6094638e+00 + 1.0545600e+04 2.3692124e+00 + 1.0546000e+04 1.7388913e+00 + 1.0546400e+04 1.4285109e+00 + 1.0546800e+04 1.0881168e+00 + 1.0547200e+04 1.3876922e+00 + 1.0547600e+04 1.7371996e+00 + 1.0548000e+04 1.8166351e+00 + 1.0548400e+04 1.6959822e+00 + 1.0548800e+04 1.4853067e+00 + 1.0549200e+04 9.2503682e-01 + 1.0549600e+04 6.6486055e-01 + 1.0550000e+04 8.2482622e-01 + 1.0550400e+04 1.2349537e+00 + 1.0550800e+04 1.3352289e+00 + 1.0551200e+04 1.0856208e+00 + 1.0551600e+04 5.1615846e-01 + 1.0552000e+04 -3.3790666e-01 + 1.0552400e+04 -1.4225729e+00 + 1.0552800e+04 -2.7818537e+00 + 1.0553200e+04 -3.5811134e+00 + 1.0553600e+04 -3.3704857e+00 + 1.0554000e+04 -3.3401799e+00 + 1.0554400e+04 -3.6400480e+00 + 1.0554800e+04 -3.7399757e+00 + 1.0555200e+04 -3.5599586e+00 + 1.0555600e+04 -3.0900053e+00 + 1.0556000e+04 -2.5103329e+00 + 1.0556400e+04 -1.0708463e+00 + 1.0556800e+04 2.7861252e-01 + 1.0557200e+04 1.3679937e+00 + 1.0557600e+04 2.1474626e+00 + 1.0558000e+04 2.9569084e+00 + 1.0558400e+04 2.6263836e+00 + 1.0558800e+04 2.0859208e+00 + 1.0559200e+04 1.7556513e+00 + 1.0559600e+04 1.4455794e+00 + 1.0560000e+04 -4.4229456e-02 + 1.0560400e+04 -1.0116227e+00 + 1.0560800e+04 -1.3759245e+00 + 1.0561200e+04 -1.5900854e+00 + 1.0561600e+04 -1.4801306e+00 + 1.0562000e+04 -1.2125764e+00 + 1.0562400e+04 -1.1016266e+00 + 1.0562800e+04 -7.7076341e-01 + 1.0563200e+04 -4.5004169e-01 + 1.0563600e+04 2.4050677e-01 + 1.0564000e+04 3.8094428e-01 + 1.0564400e+04 7.0121760e-01 + 1.0564800e+04 1.1214324e+00 + 1.0565200e+04 1.8900215e+00 + 1.0565600e+04 2.5517175e+00 + 1.0566000e+04 2.8217772e+00 + 1.0566400e+04 3.1017982e+00 + 1.0566800e+04 2.9618226e+00 + 1.0567200e+04 2.7176103e+00 + 1.0567600e+04 2.2139301e+00 + 1.0568000e+04 1.9152008e+00 + 1.0568400e+04 1.3617299e+00 + 1.0568800e+04 9.0204469e-01 + 1.0569200e+04 5.8177251e-01 + 1.0569600e+04 2.1123144e-01 + 1.0570000e+04 -1.7958847e-01 + 1.0570400e+04 -3.1032594e-01 + 1.0570800e+04 -6.5095645e-01 + 1.0571200e+04 -1.0315136e+00 + 1.0571600e+04 -1.3420106e+00 + 1.0572000e+04 -1.6951586e+00 + 1.0572400e+04 -2.0615061e+00 + 1.0572800e+04 -2.2620436e+00 + 1.0573200e+04 -2.4987366e+00 + 1.0573600e+04 -3.0321941e+00 + 1.0574000e+04 -3.5818023e+00 + 1.0574400e+04 -3.7613072e+00 + 1.0574800e+04 -3.4407263e+00 + 1.0575200e+04 -2.8600861e+00 + 1.0575600e+04 -2.1996577e+00 + 1.0576000e+04 -1.4794095e+00 + 1.0576400e+04 -5.0923040e-01 + 1.0576800e+04 7.4290298e-01 + 1.0577200e+04 1.9168190e+00 + 1.0577600e+04 2.6245728e+00 + 1.0578000e+04 2.7972351e+00 + 1.0578400e+04 2.3700944e+00 + 1.0578800e+04 1.8132076e+00 + 1.0579200e+04 1.2235732e+00 + 1.0579600e+04 5.5723690e-01 + 1.0580000e+04 6.0141885e-02 + 1.0580400e+04 6.7286373e-02 + 1.0580800e+04 2.5176228e-01 + 1.0581200e+04 2.6325357e-01 + 1.0581600e+04 -4.6896870e-02 + 1.0582000e+04 -2.3701406e-01 + 1.0582400e+04 -6.3718335e-01 + 1.0582800e+04 -6.7749598e-01 + 1.0583200e+04 -3.2746000e-01 + 1.0583600e+04 3.3245680e-01 + 1.0584000e+04 9.6238290e-01 + 1.0584400e+04 1.4523675e+00 + 1.0584800e+04 1.9623331e+00 + 1.0585200e+04 2.1522524e+00 + 1.0585600e+04 1.8621064e+00 + 1.0586000e+04 1.4917208e+00 + 1.0586400e+04 1.2715565e+00 + 1.0586800e+04 7.8136308e-01 + 1.0587200e+04 5.1137052e-01 + 1.0587600e+04 4.5149439e-01 + 1.0588000e+04 5.8171805e-01 + 1.0588400e+04 6.2204553e-01 + 1.0588800e+04 4.1251434e-01 + 1.0589200e+04 2.0300133e-01 + 1.0589600e+04 -6.6437124e-02 + 1.0590000e+04 -1.4619452e-01 + 1.0590400e+04 -4.6620349e-01 + 1.0590800e+04 -8.9652394e-01 + 1.0591200e+04 -1.2555902e+00 + 1.0591600e+04 -2.0521844e+00 + 1.0592000e+04 -2.1928712e+00 + 1.0592400e+04 -2.0926877e+00 + 1.0592800e+04 -1.7870199e+00 + 1.0593200e+04 -1.2573454e+00 + 1.0593600e+04 -6.2855523e-01 + 1.0594000e+04 -2.9581036e-01 + 1.0594400e+04 -2.3465839e-01 + 1.0594800e+04 -2.9302479e-01 + 1.0595200e+04 -5.7788337e-01 + 1.0595600e+04 -6.4334265e-01 + 1.0596000e+04 -9.3528252e-01 + 1.0596400e+04 -1.2278156e+00 + 1.0596800e+04 -1.1972617e+00 + 1.0597200e+04 -5.9670929e-01 + 1.0597600e+04 6.3723507e-02 + 1.0598000e+04 4.2406529e-01 + 1.0598400e+04 8.3434344e-01 + 1.0598800e+04 1.3245775e+00 + 1.0599200e+04 1.5514762e+00 + 1.0599600e+04 1.4178816e+00 + 1.0600000e+04 1.1565801e+00 + 1.0600400e+04 9.6063753e-01 + 1.0600800e+04 8.0648565e-01 + 1.0601200e+04 3.8277318e-01 + 1.0601600e+04 1.5854751e-01 + 1.0602000e+04 -1.6422343e-01 + 1.0602400e+04 -6.5582960e-01 + 1.0602800e+04 -9.8667958e-01 + 1.0603200e+04 -1.0547200e+00 + 1.0603600e+04 -1.0043769e+00 + 1.0604000e+04 -7.5391881e-01 + 1.0604400e+04 -6.3365824e-01 + 1.0604800e+04 -6.7365519e-01 + 1.0605200e+04 -8.5369273e-01 + 1.0605600e+04 -1.0038966e+00 + 1.0606000e+04 -8.0396580e-01 + 1.0606400e+04 -2.6349487e-01 + 1.0606800e+04 4.4591448e-01 + 1.0607200e+04 1.1382222e+00 + 1.0607600e+04 1.4644079e+00 + 1.0608000e+04 1.3254105e+00 + 1.0608400e+04 1.3365253e+00 + 1.0608800e+04 1.3384515e+00 + 1.0609200e+04 1.3620743e+00 + 1.0609600e+04 1.7090628e+00 + 1.0610000e+04 2.0882084e+00 + 1.0610400e+04 2.0952246e+00 + 1.0610800e+04 1.5553014e+00 + 1.0611200e+04 1.3554298e+00 + 1.0611600e+04 9.8567728e-01 + 1.0612000e+04 3.6252918e-01 + 1.0612400e+04 -1.3252207e-01 + 1.0612800e+04 -4.7450408e-01 + 1.0613200e+04 -8.6071367e-01 + 1.0613600e+04 -1.3784358e+00 + 1.0614000e+04 -1.8268763e+00 + 1.0614400e+04 -2.2768798e+00 + 1.0614800e+04 -2.5032290e+00 + 1.0615200e+04 -2.5934559e+00 + 1.0615600e+04 -2.5037089e+00 + 1.0616000e+04 -2.2140475e+00 + 1.0616400e+04 -1.6344168e+00 + 1.0616800e+04 -1.0647984e+00 + 1.0617200e+04 -3.7520786e-01 + 1.0617600e+04 -6.5651395e-02 + 1.0618000e+04 1.0940003e+00 + 1.0618400e+04 1.9037694e+00 + 1.0618800e+04 2.4837905e+00 + 1.0619200e+04 2.7139854e+00 + 1.0619600e+04 2.6743092e+00 + 1.0620000e+04 2.4749253e+00 + 1.0620400e+04 2.3357477e+00 + 1.0620800e+04 2.0366645e+00 + 1.0621200e+04 9.9765445e-01 + 1.0621600e+04 4.8867517e-01 + 1.0622000e+04 2.6952099e-01 + 1.0622400e+04 3.4020495e-01 + 1.0622800e+04 7.3067651e-01 + 1.0623200e+04 9.2076384e-01 + 1.0623600e+04 6.4073741e-01 + 1.0624000e+04 -1.1943379e-01 + 1.0624400e+04 -1.0496994e+00 + 1.0624800e+04 -1.9303806e+00 + 1.0625200e+04 -2.5469704e+00 + 1.0625600e+04 -2.6765351e+00 + 1.0626000e+04 -2.2507282e+00 + 1.0626400e+04 -1.8709123e+00 + 1.0626800e+04 -1.3310482e+00 + 1.0627200e+04 -4.4122477e-01 + 1.0627600e+04 -1.2146884e-01 + 1.0628000e+04 3.5834739e-01 + 1.0628400e+04 7.3829148e-01 + 1.0628800e+04 7.0834855e-01 + 1.0629200e+04 7.4836888e-01 + 1.0629600e+04 6.5834341e-01 + 1.0630000e+04 4.7828251e-01 + 1.0630400e+04 4.4813431e-01 + 1.0630800e+04 5.2924347e-01 + 1.0631200e+04 4.9510699e-01 + 1.0631600e+04 8.4285983e-01 + 1.0632000e+04 1.0692955e+00 + 1.0632400e+04 1.4134291e+00 + 1.0632800e+04 1.5557269e+00 + 1.0633200e+04 1.1690199e+00 + 1.0633600e+04 7.7299784e-01 + 1.0634000e+04 5.2908469e-01 + 1.0634400e+04 4.3923963e-01 + 1.0634800e+04 3.0842157e-01 + 1.0635200e+04 3.3202240e-01 + 1.0635600e+04 4.5590944e-01 + 1.0636000e+04 5.8680524e-01 + 1.0636400e+04 6.3797107e-01 + 1.0636800e+04 3.3257864e-01 + 1.0637200e+04 -1.6449725e-01 + 1.0637600e+04 -7.3218634e-01 + 1.0638000e+04 -1.1977809e+00 + 1.0638400e+04 -1.5103791e+00 + 1.0638800e+04 -1.7756032e+00 + 1.0639200e+04 -1.7927605e+00 + 1.0639600e+04 -1.5491445e+00 + 1.0640000e+04 -1.3860872e+00 + 1.0640400e+04 -1.3118692e+00 + 1.0640800e+04 -1.2100373e+00 + 1.0641200e+04 -9.6209548e-01 + 1.0641600e+04 -7.5199360e-01 + 1.0642000e+04 -4.8199426e-01 + 1.0642400e+04 -1.5198155e-01 + 1.0642800e+04 4.7805137e-01 + 1.0643200e+04 1.0480514e+00 + 1.0643600e+04 1.6281872e+00 + 1.0644000e+04 2.3183578e+00 + 1.0644400e+04 2.9286336e+00 + 1.0644800e+04 3.1090288e+00 + 1.0645200e+04 2.7493298e+00 + 1.0645600e+04 2.2496860e+00 + 1.0646000e+04 1.6401827e+00 + 1.0646400e+04 7.1071703e-01 + 1.0646800e+04 -4.5868536e-01 + 1.0647200e+04 -1.7882083e+00 + 1.0647600e+04 -2.4977075e+00 + 1.0648000e+04 -2.8472118e+00 + 1.0648400e+04 -3.0467527e+00 + 1.0648800e+04 -3.2763757e+00 + 1.0649200e+04 -2.8861075e+00 + 1.0649600e+04 -2.3060232e+00 + 1.0650000e+04 -1.7461384e+00 + 1.0650400e+04 -1.0364852e+00 + 1.0650800e+04 7.2937849e-02 + 1.0651200e+04 1.2120931e+00 + 1.0651600e+04 2.3012340e+00 + 1.0652000e+04 3.1303813e+00 + 1.0652400e+04 3.3394922e+00 + 1.0652800e+04 2.8686029e+00 + 1.0653200e+04 2.5177140e+00 + 1.0653600e+04 1.9868550e+00 + 1.0654000e+04 1.5559929e+00 + 1.0654400e+04 1.2152558e+00 + 1.0654800e+04 9.9478403e-01 + 1.0655200e+04 6.8447634e-01 + 1.0655600e+04 6.1388827e-01 + 1.0656000e+04 2.7038677e-01 + 1.0656400e+04 8.3885416e-02 + 1.0656800e+04 1.5071545e-01 + 1.0657200e+04 -7.2580902e-02 + 1.0657600e+04 -3.0085190e-01 + 1.0658000e+04 -7.7022231e-01 + 1.0658400e+04 -1.1992207e+00 + 1.0658800e+04 -1.4184600e+00 + 1.0659200e+04 -1.6278869e+00 + 1.0659600e+04 -1.5573131e+00 + 1.0660000e+04 -1.2768733e+00 + 1.0660400e+04 -6.3655107e-01 + 1.0660800e+04 -4.5641423e-01 + 1.0661200e+04 -6.9678512e-01 + 1.0661600e+04 -8.2663986e-01 + 1.0662000e+04 -8.9694683e-01 + 1.0662400e+04 -9.5730324e-01 + 1.0662800e+04 -8.7770949e-01 + 1.0663200e+04 -5.9812131e-01 + 1.0663600e+04 -3.7855374e-01 + 1.0664000e+04 -7.8906922e-02 + 1.0664400e+04 4.0084080e-01 + 1.0664800e+04 4.4070710e-01 + 1.0665200e+04 4.0055716e-01 + 1.0665600e+04 -1.9511084e-02 + 1.0666000e+04 -2.7948819e-01 + 1.0666400e+04 -4.2937580e-01 + 1.0666800e+04 -3.3938568e-01 + 1.0667200e+04 -5.9120801e-02 + 1.0667600e+04 1.4137875e-01 + 1.0668000e+04 4.0194917e-01 + 1.0668400e+04 4.3260059e-01 + 1.0668800e+04 2.7330337e-01 + 1.0669200e+04 -5.5968935e-02 + 1.0669600e+04 -1.7521402e-01 + 1.0670000e+04 -5.3453778e-01 + 1.0670400e+04 -7.7404538e-01 + 1.0670800e+04 -2.1374472e-01 + 1.0671200e+04 6.3068185e-03 + 1.0671600e+04 2.8617049e-01 + 1.0672000e+04 9.7569939e-01 + 1.0672400e+04 1.4750386e+00 + 1.0672800e+04 2.0642404e+00 + 1.0673200e+04 2.1732115e+00 + 1.0673600e+04 2.2122581e+00 + 1.0674000e+04 1.8514933e+00 + 1.0674400e+04 1.7814210e+00 + 1.0674800e+04 1.7418201e+00 + 1.0675200e+04 1.4410577e+00 + 1.0675600e+04 1.4163406e+00 + 1.0676000e+04 1.2599020e+00 + 1.0676400e+04 1.1394644e+00 + 1.0676800e+04 1.0749558e+00 + 1.0677200e+04 9.9788282e-01 + 1.0677600e+04 5.6819571e-01 + 1.0678000e+04 3.8536558e-02 + 1.0678400e+04 -4.6070934e-01 + 1.0678800e+04 -9.2985687e-01 + 1.0679200e+04 -1.5334950e+00 + 1.0679600e+04 -1.8425673e+00 + 1.0680000e+04 -2.2156799e+00 + 1.0680400e+04 -2.5204682e+00 + 1.0680800e+04 -2.6252854e+00 + 1.0681200e+04 -2.5445324e+00 + 1.0681600e+04 -2.2538220e+00 + 1.0682000e+04 -1.8431038e+00 + 1.0682400e+04 -1.3224195e+00 + 1.0682800e+04 -1.1718741e+00 + 1.0683200e+04 -9.5148813e-01 + 1.0683600e+04 -3.0113378e-01 + 1.0684000e+04 3.7781911e-01 + 1.0684400e+04 1.0771832e+00 + 1.0684800e+04 1.8366016e+00 + 1.0685200e+04 2.6560105e+00 + 1.0685600e+04 2.4253706e+00 + 1.0686000e+04 2.1548194e+00 + 1.0686400e+04 1.8344375e+00 + 1.0686800e+04 1.4841375e+00 + 1.0687200e+04 1.1039882e+00 + 1.0687600e+04 5.5358487e-01 + 1.0688000e+04 1.9311826e-01 + 1.0688400e+04 5.2680379e-02 + 1.0688800e+04 -2.1752889e-01 + 1.0689200e+04 -9.5746325e-01 + 1.0689600e+04 -1.2646442e+00 + 1.0690000e+04 -1.4623602e+00 + 1.0690400e+04 -1.7085827e+00 + 1.0690800e+04 -1.6251370e+00 + 1.0691200e+04 -1.6348251e+00 + 1.0691600e+04 -1.8837798e+00 + 1.0692000e+04 -1.8228211e+00 + 1.0692400e+04 -1.2219728e+00 + 1.0692800e+04 -3.4139701e-01 + 1.0693200e+04 9.7871014e-01 + 1.0693600e+04 2.3885609e+00 + 1.0694000e+04 3.9380849e+00 + 1.0694400e+04 5.0845558e+00 + 1.0694800e+04 5.4162419e+00 + 1.0695200e+04 4.8850184e+00 + 1.0695600e+04 4.1539175e+00 + 1.0696000e+04 3.2235026e+00 + 1.0696400e+04 2.0003280e+00 + 1.0696800e+04 8.6310806e-01 + 1.0697200e+04 -6.5185756e-02 + 1.0697600e+04 -7.7222045e-01 + 1.0698000e+04 -1.1005195e+00 + 1.0698400e+04 -1.4127172e+00 + 1.0698800e+04 -1.6635558e+00 + 1.0699200e+04 -2.2151821e+00 + 1.0699600e+04 -2.7446333e+00 + 1.0700000e+04 -3.0840922e+00 + 1.0700400e+04 -3.2435789e+00 + 1.0700800e+04 -3.4431101e+00 + 1.0701200e+04 -3.3620579e+00 + 1.0701600e+04 -2.9988114e+00 + 1.0702000e+04 -2.3858204e+00 + 1.0702400e+04 -1.6532774e+00 + 1.0702800e+04 -7.8743762e-01 + 1.0703200e+04 7.9512771e-01 + 1.0703600e+04 2.2116589e+00 + 1.0704000e+04 3.7724781e+00 + 1.0704400e+04 4.4046232e+00 + 1.0704800e+04 4.5273772e+00 + 1.0705200e+04 4.1706487e+00 + 1.0705600e+04 3.1300991e+00 + 1.0706000e+04 2.1395044e+00 + 1.0706400e+04 1.6088241e+00 + 1.0706800e+04 1.5882889e+00 + 1.0707200e+04 1.0467855e+00 + 1.0707600e+04 -1.7986964e-01 + 1.0708000e+04 -9.2280527e-01 + 1.0708400e+04 -1.0829383e+00 + 1.0708800e+04 -1.3629331e+00 + 1.0709200e+04 -2.1627461e+00 + 1.0709600e+04 -2.0923434e+00 + 1.0710000e+04 -2.2418750e+00 + 1.0710400e+04 -2.7713722e+00 + 1.0710800e+04 -2.6711027e+00 + 1.0711200e+04 -2.1310507e+00 + 1.0711600e+04 -9.9104485e-01 + 1.0712000e+04 -3.4580402e-01 + 1.0712400e+04 -1.3228422e-01 + 1.0712800e+04 -7.2268600e-02 + 1.0713200e+04 5.3542201e-02 + 1.0713600e+04 7.7652397e-02 + 1.0714000e+04 2.5721474e-01 + 1.0714400e+04 7.7669352e-01 + 1.0714800e+04 1.1144563e+00 + 1.0715200e+04 1.2412536e+00 + 1.0715600e+04 1.5300822e+00 + 1.0716000e+04 1.7519875e+00 + 1.0716400e+04 2.0035981e+00 + 1.0716800e+04 2.0933285e+00 + 1.0717200e+04 1.8533402e+00 + 1.0717600e+04 1.6733599e+00 + 1.0718000e+04 1.3038415e+00 + 1.0718400e+04 9.3477565e-01 + 1.0718800e+04 3.6617414e-01 + 1.0719200e+04 -1.2481802e-02 + 1.0719600e+04 -1.7129188e-01 + 1.0720000e+04 -5.7026507e-01 + 1.0720400e+04 -7.6946566e-01 + 1.0720800e+04 -1.1288690e+00 + 1.0721200e+04 -1.3377070e+00 + 1.0721600e+04 -1.2573165e+00 + 1.0722000e+04 -1.4272920e+00 + 1.0722400e+04 -1.6320666e+00 + 1.0722800e+04 -1.5272362e+00 + 1.0723200e+04 -1.2674388e+00 + 1.0723600e+04 -1.0578187e+00 + 1.0724000e+04 -6.4835833e-01 + 1.0724400e+04 -5.9895801e-01 + 1.0724800e+04 -1.3963690e-01 + 1.0725200e+04 2.3953374e-01 + 1.0725600e+04 1.1387118e+00 + 1.0726000e+04 1.2278826e+00 + 1.0726400e+04 1.3271775e+00 + 1.0726800e+04 1.5666390e+00 + 1.0727200e+04 1.7264696e+00 + 1.0727600e+04 1.4765824e+00 + 1.0728000e+04 1.1671042e+00 + 1.0728400e+04 8.4135590e-01 + 1.0728800e+04 4.6440451e-01 + 1.0729200e+04 3.6782660e-01 + 1.0729600e+04 3.5152007e-01 + 1.0730000e+04 -1.1833716e-01 + 1.0730400e+04 -5.2775211e-01 + 1.0730800e+04 -7.8725868e-01 + 1.0731200e+04 -1.2471598e+00 + 1.0731600e+04 -1.5073934e+00 + 1.0732000e+04 -1.6578714e+00 + 1.0732400e+04 -1.8184708e+00 + 1.0732800e+04 -1.9391660e+00 + 1.0733200e+04 -2.1097503e+00 + 1.0733600e+04 -1.7403669e+00 + 1.0734000e+04 -1.5509469e+00 + 1.0734400e+04 -8.4136628e-01 + 1.0734800e+04 -3.3169526e-01 + 1.0735200e+04 1.4400219e-01 + 1.0735600e+04 5.0006591e-01 + 1.0736000e+04 6.0885463e-01 + 1.0736400e+04 4.9421425e-01 + 1.0736800e+04 7.4778573e-01 + 1.0737200e+04 7.6520262e-01 + 1.0737600e+04 7.8724461e-01 + 1.0738000e+04 9.6766454e-01 + 1.0738400e+04 1.2983752e+00 + 1.0738800e+04 1.2500757e+00 + 1.0739200e+04 7.7375668e-01 + 1.0739600e+04 6.3232888e-01 + 1.0740000e+04 7.5732920e-01 + 1.0740400e+04 9.9344390e-01 + 1.0740800e+04 1.0330109e+00 + 1.0741200e+04 7.5588347e-01 + 1.0741600e+04 4.0705722e-01 + 1.0742000e+04 -1.6896125e-01 + 1.0742400e+04 -6.2670239e-01 + 1.0742800e+04 -6.3556951e-01 + 1.0743200e+04 -3.5545837e-01 + 1.0743600e+04 -3.5484483e-02 + 1.0744000e+04 3.3423572e-01 + 1.0744400e+04 1.0937695e+00 + 1.0744800e+04 1.3632470e+00 + 1.0745200e+04 8.7271993e-01 + 1.0745600e+04 4.7235026e-01 + 1.0746000e+04 3.8211279e-01 + 1.0746400e+04 4.3196062e-01 + 1.0746800e+04 7.2202461e-01 + 1.0747200e+04 1.0120611e+00 + 1.0747600e+04 5.1205602e-01 + 1.0748000e+04 -2.3808679e-01 + 1.0748400e+04 -1.0382889e+00 + 1.0748800e+04 -1.6741507e+00 + 1.0749200e+04 -1.9563863e+00 + 1.0749600e+04 -2.1694055e+00 + 1.0750000e+04 -2.1219765e+00 + 1.0750400e+04 -2.2428848e+00 + 1.0750800e+04 -1.9071144e+00 + 1.0751200e+04 -1.3567565e+00 + 1.0751600e+04 -7.6651271e-01 + 1.0752000e+04 -7.0639978e-01 + 1.0752400e+04 6.5339176e-01 + 1.0752800e+04 2.2694709e+00 + 1.0753200e+04 2.7637472e+00 + 1.0753600e+04 1.9636794e+00 + 1.0754000e+04 1.2035412e+00 + 1.0754400e+04 7.4341408e-01 + 1.0754800e+04 -2.7660761e-01 + 1.0755200e+04 -4.9703609e-01 + 1.0755600e+04 -1.4673687e+00 + 1.0756000e+04 -1.8675769e+00 + 1.0756400e+04 -2.1677946e+00 + 1.0756800e+04 -2.0180990e+00 + 1.0757200e+04 -1.6285049e+00 + 1.0757600e+04 -1.3188523e+00 + 1.0758000e+04 -9.8046375e-01 + 1.0758400e+04 -6.7170211e-01 + 1.0758800e+04 -3.3141891e-01 + 1.0759200e+04 -1.4493846e-01 + 1.0759600e+04 1.1080260e-01 + 1.0760000e+04 4.0763986e-01 + 1.0760400e+04 2.4232892e-01 + 1.0760800e+04 8.1100666e-01 + 1.0761200e+04 1.6214895e+00 + 1.0761600e+04 2.2355292e+00 + 1.0762000e+04 2.7261678e+00 + 1.0762400e+04 2.7158143e+00 + 1.0762800e+04 2.3066356e+00 + 1.0763200e+04 1.5071889e+00 + 1.0763600e+04 9.5751190e-01 + 1.0764000e+04 5.4780905e-01 + 1.0764400e+04 2.9803748e-01 + 1.0764800e+04 -2.1711769e-02 + 1.0765200e+04 -1.7235710e-01 + 1.0765600e+04 -1.5823944e-01 + 1.0766000e+04 -1.6119488e-01 + 1.0766400e+04 -5.6966969e-01 + 1.0766800e+04 -9.4130911e-01 + 1.0767200e+04 -1.5816018e+00 + 1.0767600e+04 -1.8019098e+00 + 1.0768000e+04 -1.6177794e+00 + 1.0768400e+04 -1.2906848e+00 + 1.0768800e+04 -1.4681188e+00 + 1.0769200e+04 -1.7301361e+00 + 1.0769600e+04 -1.9354041e+00 + 1.0770000e+04 -2.0259639e+00 + 1.0770400e+04 -1.3164109e+00 + 1.0770800e+04 -2.6692782e-02 + 1.0771200e+04 1.5532576e+00 + 1.0771600e+04 2.7636796e+00 + 1.0772000e+04 3.8061871e+00 + 1.0772400e+04 4.2142771e+00 + 1.0772800e+04 3.4815739e+00 + 1.0773200e+04 2.5956588e+00 + 1.0773600e+04 1.3159297e+00 + 1.0774000e+04 -3.2373310e-01 + 1.0774400e+04 -1.1836353e+00 + 1.0774800e+04 -1.5538889e+00 + 1.0775200e+04 -1.7042564e+00 + 1.0775600e+04 -1.7348361e+00 + 1.0776000e+04 -1.9956510e+00 + 1.0776400e+04 -1.8564659e+00 + 1.0776800e+04 -1.6272888e+00 + 1.0777200e+04 -1.0780802e+00 + 1.0777600e+04 -5.3887097e-01 + 1.0778000e+04 -4.3960366e-01 + 1.0778400e+04 -6.0013037e-01 + 1.0778800e+04 -6.3037106e-01 + 1.0779200e+04 -2.1031850e-01 + 1.0779600e+04 3.9021032e-01 + 1.0780000e+04 9.4100454e-01 + 1.0780400e+04 1.3920128e+00 + 1.0780800e+04 1.8431470e+00 + 1.0781200e+04 2.4844327e+00 + 1.0781600e+04 2.8658222e+00 + 1.0782000e+04 3.1072897e+00 + 1.0782400e+04 2.8985761e+00 + 1.0782800e+04 2.5699131e+00 + 1.0783200e+04 1.9908955e+00 + 1.0783600e+04 1.4915728e+00 + 1.0784000e+04 1.0224184e+00 + 1.0784400e+04 4.1299797e-01 + 1.0784800e+04 -3.7662919e-01 + 1.0785200e+04 -9.1643382e-01 + 1.0785600e+04 -1.7264690e+00 + 1.0786000e+04 -1.8066248e+00 + 1.0786400e+04 -1.7672239e+00 + 1.0786800e+04 -1.8083070e+00 + 1.0787200e+04 -1.6496862e+00 + 1.0787600e+04 -9.3108521e-01 + 1.0788000e+04 -8.9253101e-01 + 1.0788400e+04 -6.0409706e-01 + 1.0788800e+04 -3.2572676e-01 + 1.0789200e+04 -3.7100670e-02 + 1.0789600e+04 3.7177980e-01 + 1.0790000e+04 8.5110143e-01 + 1.0790400e+04 1.1008268e+00 + 1.0790800e+04 1.2508168e+00 + 1.0791200e+04 1.5509957e+00 + 1.0791600e+04 1.0314001e+00 + 1.0792000e+04 1.7195581e-01 + 1.0792400e+04 -5.1744571e-01 + 1.0792800e+04 -1.2051936e+00 + 1.0793200e+04 -1.7110728e+00 + 1.0793600e+04 -1.8532350e+00 + 1.0794000e+04 -1.7767206e+00 + 1.0794400e+04 -1.4954263e+00 + 1.0794800e+04 -1.1553292e+00 + 1.0795200e+04 -6.6514412e-01 + 1.0795600e+04 -3.0460890e-01 + 1.0796000e+04 -1.9476475e-01 + 1.0796400e+04 5.5367637e-02 + 1.0796800e+04 -4.6717540e-02 + 1.0797200e+04 7.2698561e-02 + 1.0797600e+04 6.1814730e-01 + 1.0798000e+04 7.9716569e-01 + 1.0798400e+04 6.8544916e-01 + 1.0798800e+04 7.4746055e-01 + 1.0799200e+04 8.9797010e-01 + 1.0799600e+04 8.6678262e-01 + 1.0800000e+04 9.6579577e-01 + 1.0800400e+04 9.0254868e-01 + 1.0800800e+04 8.4185993e-01 + 1.0801200e+04 6.3664058e-01 + 1.0801600e+04 4.3939410e-01 + 1.0802000e+04 4.2884291e-01 + 1.0802400e+04 4.2605391e-01 + 1.0802800e+04 9.9495457e-02 + 1.0803200e+04 -2.9941721e-01 + 1.0803600e+04 -9.8407559e-01 + 1.0804000e+04 -1.4714314e+00 + 1.0804400e+04 -2.0544401e+00 + 1.0804800e+04 -2.1565675e+00 + 1.0805200e+04 -2.0083812e+00 + 1.0805600e+04 -1.4294276e+00 + 1.0806000e+04 -8.0169623e-01 + 1.0806400e+04 5.3517441e-02 + 1.0806800e+04 1.0282314e+00 + 1.0807200e+04 1.6858165e+00 + 1.0807600e+04 2.1525288e+00 + 1.0808000e+04 2.5611416e+00 + 1.0808400e+04 2.8964916e+00 + 1.0808800e+04 2.5916960e+00 + 1.0809200e+04 2.5126927e+00 + 1.0809600e+04 2.2140331e+00 + 1.0810000e+04 1.7482531e+00 + 1.0810400e+04 1.2747693e+00 + 1.0810800e+04 4.1575817e-01 + 1.0811200e+04 -4.4121491e-01 + 1.0811600e+04 -9.9574804e-01 + 1.0812000e+04 -1.5302796e+00 + 1.0812400e+04 -1.7204563e+00 + 1.0812800e+04 -1.5197470e+00 + 1.0813200e+04 -1.7081952e+00 + 1.0813600e+04 -1.8437654e+00 + 1.0814000e+04 -1.8962510e+00 + 1.0814400e+04 -1.6421517e+00 + 1.0814800e+04 -1.1613708e+00 + 1.0815200e+04 -5.6854756e-01 + 1.0815600e+04 -4.2785883e-01 + 1.0816000e+04 -2.6750889e-01 + 1.0816400e+04 -3.8096853e-01 + 1.0816800e+04 -3.7767816e-01 + 1.0817200e+04 -3.4328016e-01 + 1.0817600e+04 -2.2809753e-01 + 1.0818000e+04 -2.4432157e-01 + 1.0818400e+04 -2.7128115e-02 + 1.0818800e+04 -9.0571375e-02 + 1.0819200e+04 -2.5054830e-01 + 1.0819600e+04 -4.6683173e-01 + 1.0820000e+04 -2.4009314e-01 + 1.0820400e+04 2.5091777e-01 + 1.0820800e+04 7.6189109e-01 + 1.0821200e+04 1.2285849e+00 + 1.0821600e+04 1.6538471e+00 + 1.0822000e+04 2.0581986e+00 + 1.0822400e+04 2.0242221e+00 + 1.0822800e+04 1.8430148e+00 + 1.0823200e+04 1.1502327e+00 + 1.0823600e+04 6.4572777e-01 + 1.0824000e+04 3.1871602e-01 + 1.0824400e+04 5.3815235e-02 + 1.0824800e+04 -1.1506118e-01 + 1.0825200e+04 -1.5365024e-01 + 1.0825600e+04 -4.0286681e-01 + 1.0826000e+04 -8.4384022e-01 + 1.0826400e+04 -9.8461932e-01 + 1.0826800e+04 -9.5508162e-01 + 1.0827200e+04 -7.8442658e-01 + 1.0827600e+04 -3.0682950e-01 + 1.0828000e+04 1.6686530e-01 + 1.0828400e+04 6.8533932e-01 + 1.0828800e+04 8.7417654e-01 + 1.0829200e+04 6.8626684e-01 + 1.0829600e+04 3.8471010e-01 + 1.0830000e+04 1.3922969e-01 + 1.0830400e+04 7.6249048e-02 + 1.0830800e+04 1.6896301e-01 + 1.0831200e+04 2.4560961e-01 + 1.0831600e+04 3.7486390e-01 + 1.0832000e+04 6.5389968e-01 + 1.0832400e+04 5.8644237e-01 + 1.0832800e+04 3.0504402e-01 + 1.0833200e+04 2.5763642e-01 + 1.0833600e+04 2.3245752e-01 + 1.0834000e+04 1.4073591e-01 + 1.0834400e+04 3.7125210e-01 + 1.0834800e+04 6.5245336e-02 + 1.0835200e+04 -1.4940898e-02 + 1.0835600e+04 -5.0057658e-02 + 1.0836000e+04 -3.6099408e-01 + 1.0836400e+04 -7.8421337e-01 + 1.0836800e+04 -8.5997087e-01 + 1.0837200e+04 -1.0647697e+00 + 1.0837600e+04 -1.1402032e+00 + 1.0838000e+04 -1.2275476e+00 + 1.0838400e+04 -1.2932741e+00 + 1.0838800e+04 -1.1672007e+00 + 1.0839200e+04 -9.2847739e-01 + 1.0839600e+04 -5.0734811e-01 + 1.0840000e+04 -1.2612101e-01 + 1.0840400e+04 -1.4395468e-02 + 1.0840800e+04 -2.6164031e-01 + 1.0841200e+04 -7.4737476e-01 + 1.0841600e+04 -7.8345935e-01 + 1.0842000e+04 -6.0262470e-01 + 1.0842400e+04 -4.4362710e-02 + 1.0842800e+04 5.1894537e-01 + 1.0843200e+04 1.2733489e+00 + 1.0843600e+04 1.9000602e+00 + 1.0844000e+04 2.5263569e+00 + 1.0844400e+04 2.6810444e+00 + 1.0844800e+04 2.4179687e+00 + 1.0845200e+04 1.8786617e+00 + 1.0845600e+04 1.7445891e+00 + 1.0846000e+04 1.6230730e+00 + 1.0846400e+04 1.5642470e+00 + 1.0846800e+04 1.5311112e+00 + 1.0847200e+04 9.7753164e-01 + 1.0847600e+04 3.9793343e-01 + 1.0848000e+04 -5.3131488e-01 + 1.0848400e+04 -1.0399516e+00 + 1.0848800e+04 -1.3088351e+00 + 1.0849200e+04 -1.6092994e+00 + 1.0849600e+04 -1.9800084e+00 + 1.0850000e+04 -1.9586996e+00 + 1.0850400e+04 -1.8552079e+00 + 1.0850800e+04 -1.9304229e+00 + 1.0851200e+04 -1.9320705e+00 + 1.0851600e+04 -1.7525958e+00 + 1.0852000e+04 -1.1340035e+00 + 1.0852400e+04 -2.9902842e-01 + 1.0852800e+04 7.0542411e-01 + 1.0853200e+04 1.3897929e+00 + 1.0853600e+04 1.3449943e+00 + 1.0854000e+04 1.3942663e+00 + 1.0854400e+04 9.7907144e-01 + 1.0854800e+04 3.6020687e-01 + 1.0855200e+04 -3.5178153e-01 + 1.0855600e+04 -5.8172572e-01 + 1.0856000e+04 -8.8757378e-01 + 1.0856400e+04 -1.1210876e+00 + 1.0856800e+04 -1.2388994e+00 + 1.0857200e+04 -1.3183324e+00 + 1.0857600e+04 -1.2265674e+00 + 1.0858000e+04 -1.2536141e+00 + 1.0858400e+04 -1.1303608e+00 + 1.0858800e+04 -7.3407920e-01 + 1.0859200e+04 1.0515366e-01 + 1.0859600e+04 5.6567679e-01 + 1.0860000e+04 1.4232992e+00 + 1.0860400e+04 1.9777511e+00 + 1.0860800e+04 2.1462350e+00 + 1.0861200e+04 1.8645754e+00 + 1.0861600e+04 1.9434167e+00 + 1.0862000e+04 2.1263538e+00 + 1.0862400e+04 2.1128537e+00 + 1.0862800e+04 1.8903386e+00 + 1.0863200e+04 1.6577388e+00 + 1.0863600e+04 1.5288203e+00 + 1.0864000e+04 1.2962458e+00 + 1.0864400e+04 1.0872952e+00 + 1.0864800e+04 8.5379472e-01 + 1.0865200e+04 5.9633819e-01 + 1.0865600e+04 2.5740756e-01 + 1.0866000e+04 -9.6127120e-02 + 1.0866400e+04 -4.4877719e-01 + 1.0866800e+04 -7.2475886e-01 + 1.0867200e+04 -1.0418969e+00 + 1.0867600e+04 -1.2790750e+00 + 1.0868000e+04 -1.3938177e+00 + 1.0868400e+04 -1.6142023e+00 + 1.0868800e+04 -1.4553808e+00 + 1.0869200e+04 -1.3313567e+00 + 1.0869600e+04 -9.6098025e-01 + 1.0870000e+04 -4.9902842e-01 + 1.0870400e+04 -2.0736315e-01 + 1.0870800e+04 -2.4620374e-01 + 1.0871200e+04 -2.5127817e-01 + 1.0871600e+04 -1.6099579e-01 + 1.0872000e+04 -2.9446853e-01 + 1.0872400e+04 -8.0090656e-02 + 1.0872800e+04 1.8473950e-01 + 1.0873200e+04 3.2684979e-01 + 1.0873600e+04 2.4836898e-01 + 1.0874000e+04 1.8539526e-01 + 1.0874400e+04 6.2534425e-01 + 1.0874800e+04 7.3278957e-01 + 1.0875200e+04 5.7813215e-01 + 1.0875600e+04 2.2371299e-01 + 1.0876000e+04 -2.4927413e-01 + 1.0876400e+04 -9.4246304e-01 + 1.0876800e+04 -1.6013864e+00 + 1.0877200e+04 -2.2292395e+00 + 1.0877600e+04 -2.6824522e+00 + 1.0878000e+04 -2.5402902e+00 + 1.0878400e+04 -2.0931566e+00 + 1.0878800e+04 -1.2004464e+00 + 1.0879200e+04 -2.3577654e-01 + 1.0879600e+04 6.4506303e-01 + 1.0880000e+04 1.2976177e+00 + 1.0880400e+04 2.0462054e+00 + 1.0880800e+04 2.6058426e+00 + 1.0881200e+04 2.8934877e+00 + 1.0881600e+04 3.0131212e+00 + 1.0882000e+04 2.8514728e+00 + 1.0882400e+04 2.4987031e+00 + 1.0882800e+04 2.0693099e+00 + 1.0883200e+04 1.9060367e+00 + 1.0883600e+04 2.0391559e+00 + 1.0884000e+04 2.1904810e+00 + 1.0884400e+04 2.1063837e+00 + 1.0884800e+04 1.8111361e+00 + 1.0885200e+04 1.2643515e+00 + 1.0885600e+04 3.3174769e-01 + 1.0886000e+04 -3.9475643e-01 + 1.0886400e+04 -1.0467802e+00 + 1.0886800e+04 -1.7622366e+00 + 1.0887200e+04 -2.4644843e+00 + 1.0887600e+04 -2.9180668e+00 + 1.0888000e+04 -3.2263149e+00 + 1.0888400e+04 -3.2631385e+00 + 1.0888800e+04 -2.8112154e+00 + 1.0889200e+04 -2.3596080e+00 + 1.0889600e+04 -1.4718813e+00 + 1.0890000e+04 -7.2144555e-01 + 1.0890400e+04 -2.0428670e-01 + 1.0890800e+04 4.1437975e-01 + 1.0891200e+04 1.0993986e+00 + 1.0891600e+04 1.6830794e+00 + 1.0892000e+04 1.7890651e+00 + 1.0892400e+04 1.5428477e+00 + 1.0892800e+04 1.0645359e+00 + 1.0893200e+04 3.0455636e-01 + 1.0893600e+04 1.0236482e-01 + 1.0894000e+04 8.7500188e-02 + 1.0894400e+04 -1.4599331e-02 + 1.0894800e+04 -8.3428386e-02 + 1.0895200e+04 -2.6849274e-01 + 1.0895600e+04 -7.2064843e-01 + 1.0896000e+04 -5.9149497e-01 + 1.0896400e+04 -7.3952760e-02 + 1.0896800e+04 3.9208795e-01 + 1.0897200e+04 6.6336135e-01 + 1.0897600e+04 2.6886169e-01 + 1.0898000e+04 4.0310913e-02 + 1.0898400e+04 -1.5473811e-01 + 1.0898800e+04 -6.6699757e-01 + 1.0899200e+04 -1.1158336e+00 + 1.0899600e+04 -1.3827063e+00 + 1.0900000e+04 -1.3133813e+00 + 1.0900400e+04 -1.3638925e+00 + 1.0900800e+04 -1.3330801e+00 + 1.0901200e+04 -1.3485005e+00 + 1.0901600e+04 -1.2912915e+00 + 1.0902000e+04 -8.5950927e-01 + 1.0902400e+04 -3.9411327e-01 + 1.0902800e+04 3.6371369e-01 + 1.0903200e+04 1.2960615e+00 + 1.0903600e+04 1.4577247e+00 + 1.0904000e+04 1.4677663e+00 + 1.0904400e+04 1.6716104e+00 + 1.0904800e+04 1.7134848e+00 + 1.0905200e+04 1.3203080e+00 + 1.0905600e+04 7.3385065e-01 + 1.0906000e+04 4.2161684e-01 + 1.0906400e+04 1.6322726e-01 + 1.0906800e+04 2.6750258e-01 + 1.0907200e+04 3.6229216e-01 + 1.0907600e+04 7.7379694e-01 + 1.0908000e+04 9.0451330e-01 + 1.0908400e+04 9.8164452e-01 + 1.0908800e+04 8.9477521e-01 + 1.0909200e+04 8.8970268e-01 + 1.0909600e+04 7.7221533e-01 + 1.0910000e+04 7.5898303e-01 + 1.0910400e+04 5.4674341e-01 + 1.0910800e+04 6.1984223e-01 + 1.0911200e+04 8.8018698e-01 + 1.0911600e+04 9.0801773e-01 + 1.0912000e+04 4.0886640e-01 + 1.0912400e+04 -1.0623336e-01 + 1.0912800e+04 -1.7440086e-01 + 1.0913200e+04 -1.6826289e-01 + 1.0913600e+04 -1.6413365e-01 + 1.0914000e+04 -8.3057160e-02 + 1.0914400e+04 -1.8690672e-01 + 1.0914800e+04 -1.8338954e-01 + 1.0915200e+04 -4.5010034e-01 + 1.0915600e+04 -9.4963615e-01 + 1.0916000e+04 -1.8436611e+00 + 1.0916400e+04 -2.5932216e+00 + 1.0916800e+04 -2.7474657e+00 + 1.0917200e+04 -2.4599873e+00 + 1.0917600e+04 -2.2396328e+00 + 1.0918000e+04 -1.9701402e+00 + 1.0918400e+04 -1.6765186e+00 + 1.0918800e+04 -1.1937221e+00 + 1.0919200e+04 -9.4962483e-01 + 1.0919600e+04 -6.9414173e-01 + 1.0920000e+04 -3.9211147e-02 + 1.0920400e+04 5.3213147e-01 + 1.0920800e+04 8.0751147e-01 + 1.0921200e+04 7.4427113e-01 + 1.0921600e+04 2.9682145e-01 + 1.0922000e+04 -2.6448712e-01 + 1.0922400e+04 -7.2885594e-01 + 1.0922800e+04 -1.0752393e+00 + 1.0923200e+04 -9.7811446e-01 + 1.0923600e+04 -6.4879019e-02 + 1.0924000e+04 9.9609851e-01 + 1.0924400e+04 1.9482947e+00 + 1.0924800e+04 2.6667851e+00 + 1.0925200e+04 2.8677130e+00 + 1.0925600e+04 2.5441736e+00 + 1.0926000e+04 2.0540078e+00 + 1.0926400e+04 1.5816939e+00 + 1.0926800e+04 1.3849972e+00 + 1.0927200e+04 1.5952939e+00 + 1.0927600e+04 1.6581896e+00 + 1.0928000e+04 1.2645414e+00 + 1.0928400e+04 1.0534370e+00 + 1.0928800e+04 5.8179758e-01 + 1.0929200e+04 6.1838549e-02 + 1.0929600e+04 -5.3177745e-01 + 1.0930000e+04 -7.0372467e-01 + 1.0930400e+04 -7.6059211e-01 + 1.0930800e+04 -7.7014029e-01 + 1.0931200e+04 -8.8993571e-01 + 1.0931600e+04 -1.4902572e+00 + 1.0932000e+04 -1.8223902e+00 + 1.0932400e+04 -1.6134722e+00 + 1.0932800e+04 -1.4368562e+00 + 1.0933200e+04 -1.3699551e+00 + 1.0933600e+04 -1.1224774e+00 + 1.0934000e+04 -7.2640380e-01 + 1.0934400e+04 -3.1306186e-01 + 1.0934800e+04 -3.1198272e-01 + 1.0935200e+04 -1.3864056e-01 + 1.0935600e+04 1.8042281e-01 + 1.0936000e+04 5.1348150e-01 + 1.0936400e+04 6.5067590e-01 + 1.0936800e+04 7.2644877e-01 + 1.0937200e+04 7.2598116e-01 + 1.0937600e+04 2.9796159e-01 + 1.0938000e+04 -5.1300441e-01 + 1.0938400e+04 -1.3504131e+00 + 1.0938800e+04 -1.8606739e+00 + 1.0939200e+04 -1.8835478e+00 + 1.0939600e+04 -1.7528665e+00 + 1.0940000e+04 -1.4333029e+00 + 1.0940400e+04 -6.0840984e-01 + 1.0940800e+04 1.3493404e-01 + 1.0941200e+04 2.5562334e-01 + 1.0941600e+04 1.9221569e-01 + 1.0942000e+04 2.8777202e-01 + 1.0942400e+04 3.9930286e-01 + 1.0942800e+04 9.1644135e-01 + 1.0943200e+04 1.3449658e+00 + 1.0943600e+04 1.3920534e+00 + 1.0944000e+04 1.3270030e+00 + 1.0944400e+04 1.0346044e+00 + 1.0944800e+04 1.0819289e+00 + 1.0945200e+04 9.8046992e-01 + 1.0945600e+04 9.5568546e-01 + 1.0946000e+04 1.1253747e+00 + 1.0946400e+04 1.2710575e+00 + 1.0946800e+04 1.3436967e+00 + 1.0947200e+04 1.5278027e+00 + 1.0947600e+04 1.9442323e+00 + 1.0948000e+04 2.4515134e+00 + 1.0948400e+04 2.4814640e+00 + 1.0948800e+04 2.4899993e+00 + 1.0949200e+04 1.9743364e+00 + 1.0949600e+04 8.5120465e-01 + 1.0950000e+04 -5.4023099e-01 + 1.0950400e+04 -1.3563628e+00 + 1.0950800e+04 -1.7515082e+00 + 1.0951200e+04 -1.8844792e+00 + 1.0951600e+04 -1.8873968e+00 + 1.0952000e+04 -1.8109753e+00 + 1.0952400e+04 -1.5933650e+00 + 1.0952800e+04 -1.4998932e+00 + 1.0953200e+04 -1.4403040e+00 + 1.0953600e+04 -1.6060199e+00 + 1.0954000e+04 -1.8651672e+00 + 1.0954400e+04 -2.1769701e+00 + 1.0954800e+04 -2.3261752e+00 + 1.0955200e+04 -2.0526015e+00 + 1.0955600e+04 -1.2275957e+00 + 1.0956000e+04 -4.5815812e-01 + 1.0956400e+04 -8.5262079e-02 + 1.0956800e+04 3.1850400e-01 + 1.0957200e+04 4.4135149e-01 + 1.0957600e+04 1.0115351e+00 + 1.0958000e+04 1.1177277e+00 + 1.0958400e+04 7.9840046e-01 + 1.0958800e+04 4.1367724e-01 + 1.0959200e+04 -2.3027096e-01 + 1.0959600e+04 -4.7883022e-01 + 1.0960000e+04 -6.2630521e-01 + 1.0960400e+04 -8.2461494e-01 + 1.0960800e+04 -1.1202405e+00 + 1.0961200e+04 -1.1399376e+00 + 1.0961600e+04 -7.3182479e-01 + 1.0962000e+04 -4.5294789e-01 + 1.0962400e+04 -2.0905612e-01 + 1.0962800e+04 5.7184553e-01 + 1.0963200e+04 1.2913938e+00 + 1.0963600e+04 1.7684725e+00 + 1.0964000e+04 2.2824832e+00 + 1.0964400e+04 2.7891563e+00 + 1.0964800e+04 2.7754823e+00 + 1.0965200e+04 2.7962364e+00 + 1.0965600e+04 2.5282719e+00 + 1.0966000e+04 2.3114537e+00 + 1.0966400e+04 1.5910185e+00 + 1.0966800e+04 9.9153160e-01 + 1.0967200e+04 4.9383671e-01 + 1.0967600e+04 -2.2648152e-01 + 1.0968000e+04 -5.2244179e-01 + 1.0968400e+04 -3.6823317e-01 + 1.0968800e+04 -3.7116158e-01 + 1.0969200e+04 -6.6421027e-01 + 1.0969600e+04 -1.1166805e+00 + 1.0970000e+04 -1.6395973e+00 + 1.0970400e+04 -2.1061943e+00 + 1.0970800e+04 -2.3628386e+00 + 1.0971200e+04 -2.3504395e+00 + 1.0971600e+04 -1.9091571e+00 + 1.0972000e+04 -1.0871800e+00 + 1.0972400e+04 -4.1402961e-01 + 1.0972800e+04 -1.1509180e-01 + 1.0973200e+04 5.2510956e-01 + 1.0973600e+04 5.9576183e-01 + 1.0974000e+04 2.8931856e-01 + 1.0974400e+04 -6.6110432e-02 + 1.0974800e+04 -3.1444127e-01 + 1.0975200e+04 -7.0370398e-01 + 1.0975600e+04 -5.7980543e-01 + 1.0976000e+04 -1.4997054e-01 + 1.0976400e+04 1.7131019e-01 + 1.0976800e+04 1.8320437e-01 + 1.0977200e+04 -1.9684411e-01 + 1.0977600e+04 -4.2419461e-01 + 1.0978000e+04 -6.5722591e-01 + 1.0978400e+04 -7.2170377e-01 + 1.0978800e+04 -8.6129421e-01 + 1.0979200e+04 -1.2111153e+00 + 1.0979600e+04 -1.0826508e+00 + 1.0980000e+04 -1.0564380e+00 + 1.0980400e+04 -9.7834702e-01 + 1.0980800e+04 -5.7253195e-01 + 1.0981200e+04 1.3871791e-01 + 1.0981600e+04 6.2573798e-01 + 1.0982000e+04 1.2254173e+00 + 1.0982400e+04 1.4969768e+00 + 1.0982800e+04 1.6067247e+00 + 1.0983200e+04 1.4549061e+00 + 1.0983600e+04 1.5290879e+00 + 1.0984000e+04 1.6358937e+00 + 1.0984400e+04 1.5284668e+00 + 1.0984800e+04 1.4320273e+00 + 1.0985200e+04 1.2256872e+00 + 1.0985600e+04 1.3394204e+00 + 1.0986000e+04 1.4737551e+00 + 1.0986400e+04 1.5326674e+00 + 1.0986800e+04 1.4003127e+00 + 1.0987200e+04 1.1861419e+00 + 1.0987600e+04 6.6920743e-01 + 1.0988000e+04 -1.5538314e-01 + 1.0988400e+04 -7.6656361e-01 + 1.0988800e+04 -1.4159662e+00 + 1.0989200e+04 -1.7814170e+00 + 1.0989600e+04 -2.0940454e+00 + 1.0990000e+04 -1.8057027e+00 + 1.0990400e+04 -1.3556172e+00 + 1.0990800e+04 -7.3046640e-01 + 1.0991200e+04 2.4124407e-01 + 1.0991600e+04 8.3112483e-01 + 1.0992000e+04 6.0153337e-01 + 1.0992400e+04 -3.3235124e-02 + 1.0992800e+04 -6.2248672e-01 + 1.0993200e+04 -1.0326229e+00 + 1.0993600e+04 -1.1556462e+00 + 1.0994000e+04 -1.2657562e+00 + 1.0994400e+04 -1.5482120e+00 + 1.0994800e+04 -2.1879901e+00 + 1.0995200e+04 -2.8210072e+00 + 1.0995600e+04 -3.2601228e+00 + 1.0996000e+04 -3.3450056e+00 + 1.0996400e+04 -3.0557052e+00 + 1.0996800e+04 -2.3766160e+00 + 1.0997200e+04 -1.7087841e+00 + 1.0997600e+04 -1.1960544e+00 + 1.0998000e+04 -9.2885892e-01 + 1.0998400e+04 -2.1785997e-01 + 1.0998800e+04 8.5878700e-01 + 1.0999200e+04 1.9302289e+00 + 1.0999600e+04 2.8509348e+00 + 1.1000000e+04 3.5732619e+00 + 1.1000400e+04 3.3417036e+00 + 1.1000800e+04 3.0846555e+00 + 1.1001200e+04 2.7665386e+00 + 1.1001600e+04 2.5037324e+00 + 1.1002000e+04 2.1659353e+00 + 1.1002400e+04 1.8925683e+00 + 1.1002800e+04 1.2664747e+00 + 1.1003200e+04 4.0115622e-01 + 1.1003600e+04 -8.0750883e-01 + 1.1004000e+04 -1.6862042e+00 + 1.1004400e+04 -2.3618709e+00 + 1.1004800e+04 -2.7004850e+00 + 1.1005200e+04 -2.6662732e+00 + 1.1005600e+04 -2.2879470e+00 + 1.1006000e+04 -1.7199082e+00 + 1.1006400e+04 -1.0806926e+00 + 1.1006800e+04 -4.3659754e-01 + 1.1007200e+04 7.5128617e-02 + 1.1007600e+04 6.2731220e-01 + 1.1008000e+04 1.2668280e+00 + 1.1008400e+04 1.6749739e+00 + 1.1008800e+04 2.3172099e+00 + 1.1009200e+04 2.7087368e+00 + 1.1009600e+04 2.8911719e+00 + 1.1010000e+04 3.3293885e+00 + 1.1010400e+04 4.1682028e+00 + 1.1010800e+04 4.6577489e+00 + 1.1011200e+04 3.8551284e+00 + 1.1011600e+04 2.6626650e+00 + 1.1012000e+04 1.1936486e+00 + 1.1012400e+04 -7.6714064e-01 + 1.1012800e+04 -2.2553332e+00 + 1.1013200e+04 -3.2232928e+00 + 1.1013600e+04 -4.0346949e+00 + 1.1014000e+04 -4.4577572e+00 + 1.1014400e+04 -4.8451708e+00 + 1.1014800e+04 -4.9210986e+00 + 1.1015200e+04 -4.6803666e+00 + 1.1015600e+04 -4.4742738e+00 + 1.1016000e+04 -4.1692099e+00 + 1.1016400e+04 -3.4793587e+00 + 1.1016800e+04 -2.4188975e+00 + 1.1017200e+04 -9.9604154e-01 + 1.1017600e+04 5.6425072e-01 + 1.1018000e+04 1.7464476e+00 + 1.1018400e+04 2.6511275e+00 + 1.1018800e+04 3.4813676e+00 + 1.1019200e+04 4.1249468e+00 + 1.1019600e+04 4.7984405e+00 + 1.1020000e+04 5.1171516e+00 + 1.1020400e+04 4.7088624e+00 + 1.1020800e+04 3.7807923e+00 + 1.1021200e+04 2.6174912e+00 + 1.1021600e+04 1.4191881e+00 + 1.1022000e+04 2.9084461e-01 + 1.1022400e+04 -3.3528274e-01 + 1.1022800e+04 -1.0187838e+00 + 1.1023200e+04 -1.5695189e+00 + 1.1023600e+04 -1.6773841e+00 + 1.1024000e+04 -1.4505443e+00 + 1.1024400e+04 -1.4956378e+00 + 1.1024800e+04 -1.5402092e+00 + 1.1025200e+04 -1.5160104e+00 + 1.1025600e+04 -1.6256886e+00 + 1.1026000e+04 -1.6750270e+00 + 1.1026400e+04 -1.2436175e+00 + 1.1026800e+04 -9.7504304e-01 + 1.1027200e+04 -8.3283349e-01 + 1.1027600e+04 -5.4200045e-01 + 1.1028000e+04 -2.4156363e-01 + 1.1028400e+04 7.7520108e-01 + 1.1028800e+04 1.5486075e+00 + 1.1029200e+04 1.7607797e+00 + 1.1029600e+04 1.6087841e+00 + 1.1030000e+04 1.3915134e+00 + 1.1030400e+04 9.9085108e-01 + 1.1030800e+04 6.9496853e-01 + 1.1031200e+04 5.4302575e-01 + 1.1031600e+04 4.4056703e-01 + 1.1032000e+04 2.3168098e-01 + 1.1032400e+04 2.1541964e-01 + 1.1032800e+04 1.7708322e-01 + 1.1033200e+04 -5.2903856e-02 + 1.1033600e+04 -1.6554034e-01 + 1.1034000e+04 6.0987608e-02 + 1.1034400e+04 1.6698315e-01 + 1.1034800e+04 1.1301363e-01 + 1.1035200e+04 5.4017921e-02 + 1.1035600e+04 -1.3503461e-01 + 1.1036000e+04 -5.1170297e-01 + 1.1036400e+04 -6.9744694e-01 + 1.1036800e+04 -8.4752247e-01 + 1.1037200e+04 -1.2847769e+00 + 1.1037600e+04 -1.6089248e+00 + 1.1038000e+04 -1.7034488e+00 + 1.1038400e+04 -1.6742970e+00 + 1.1038800e+04 -1.1043251e+00 + 1.1039200e+04 -4.4663564e-01 + 1.1039600e+04 -2.3558022e-02 + 1.1040000e+04 6.1458690e-01 + 1.1040400e+04 1.1435078e+00 + 1.1040800e+04 1.5219103e+00 + 1.1041200e+04 1.7049812e+00 + 1.1041600e+04 2.0380330e+00 + 1.1042000e+04 2.3498595e+00 + 1.1042400e+04 2.3008577e+00 + 1.1042800e+04 1.7730263e+00 + 1.1043200e+04 1.2930224e+00 + 1.1043600e+04 6.5194657e-01 + 1.1044000e+04 1.4259407e-01 + 1.1044400e+04 -2.3768983e-01 + 1.1044800e+04 -7.0504775e-01 + 1.1045200e+04 -1.2081422e+00 + 1.1045600e+04 -1.6856279e+00 + 1.1046000e+04 -1.8050768e+00 + 1.1046400e+04 -2.1744289e+00 + 1.1046800e+04 -2.4630938e+00 + 1.1047200e+04 -2.1842168e+00 + 1.1047600e+04 -1.6587529e+00 + 1.1048000e+04 -1.2102001e+00 + 1.1048400e+04 -6.1123582e-01 + 1.1048800e+04 5.2991155e-02 + 1.1049200e+04 5.1018265e-01 + 1.1049600e+04 7.9813528e-01 + 1.1050000e+04 8.2083082e-01 + 1.1050400e+04 8.7445605e-01 + 1.1050800e+04 8.5292811e-01 + 1.1051200e+04 1.0346527e+00 + 1.1051600e+04 1.2059783e+00 + 1.1052000e+04 1.2599323e+00 + 1.1052400e+04 1.1841793e+00 + 1.1052800e+04 1.2406308e+00 + 1.1053200e+04 1.0455970e+00 + 1.1053600e+04 7.3309869e-01 + 1.1054000e+04 2.0675427e-01 + 1.1054400e+04 -6.0325674e-02 + 1.1054800e+04 1.0881001e-01 + 1.1055200e+04 8.4036322e-02 + 1.1055600e+04 3.2749490e-01 + 1.1056000e+04 1.5880196e-01 + 1.1056400e+04 -9.1801323e-02 + 1.1056800e+04 -8.1285042e-01 + 1.1057200e+04 -1.1117248e+00 + 1.1057600e+04 -1.2113232e+00 + 1.1058000e+04 -1.1947297e+00 + 1.1058400e+04 -1.3415472e+00 + 1.1058800e+04 -8.0670437e-01 + 1.1059200e+04 -3.7061153e-01 + 1.1059600e+04 -1.8480446e-01 + 1.1060000e+04 1.5877920e-01 + 1.1060400e+04 4.0884926e-02 + 1.1060800e+04 -8.0254776e-02 + 1.1061200e+04 4.1341889e-02 + 1.1061600e+04 2.5018795e-01 + 1.1062000e+04 2.0601663e-01 + 1.1062400e+04 2.5491367e-01 + 1.1062800e+04 2.5207513e-01 + 1.1063200e+04 2.1404566e-01 + 1.1063600e+04 2.6620439e-01 + 1.1064000e+04 -5.6454931e-02 + 1.1064400e+04 -5.4065821e-01 + 1.1064800e+04 -9.2335527e-01 + 1.1065200e+04 -1.0743639e+00 + 1.1065600e+04 -7.9419047e-01 + 1.1066000e+04 -2.9504589e-01 + 1.1066400e+04 2.3998710e-02 + 1.1066800e+04 -5.7987302e-02 + 1.1067200e+04 1.0391595e-01 + 1.1067600e+04 5.1222250e-01 + 1.1068000e+04 6.1206340e-01 + 1.1068400e+04 8.7066967e-01 + 1.1068800e+04 1.1404769e+00 + 1.1069200e+04 1.5787815e+00 + 1.1069600e+04 1.9552693e+00 + 1.1070000e+04 1.9742240e+00 + 1.1070400e+04 1.6501359e+00 + 1.1070800e+04 1.1416450e+00 + 1.1071200e+04 6.1668513e-01 + 1.1071600e+04 5.1557417e-01 + 1.1072000e+04 1.7955345e-01 + 1.1072400e+04 -1.7989681e-01 + 1.1072800e+04 -3.1760600e-01 + 1.1073200e+04 -4.1385330e-01 + 1.1073600e+04 -3.9048630e-01 + 1.1074000e+04 -4.6842716e-01 + 1.1074400e+04 -8.3784395e-01 + 1.1074800e+04 -9.0377526e-01 + 1.1075200e+04 -5.5846492e-01 + 1.1075600e+04 -2.0859090e-02 + 1.1076000e+04 5.7619226e-01 + 1.1076400e+04 9.6253630e-01 + 1.1076800e+04 1.2778133e+00 + 1.1077200e+04 1.0189287e+00 + 1.1077600e+04 1.4949923e-01 + 1.1078000e+04 -9.8231582e-01 + 1.1078400e+04 -1.8993584e+00 + 1.1078800e+04 -2.8348455e+00 + 1.1079200e+04 -3.4620249e+00 + 1.1079600e+04 -3.4806666e+00 + 1.1080000e+04 -3.6071466e+00 + 1.1080400e+04 -3.1958254e+00 + 1.1080800e+04 -2.6527754e+00 + 1.1081200e+04 -2.0363402e+00 + 1.1081600e+04 -1.3613031e+00 + 1.1082000e+04 -5.1498931e-01 + 1.1082400e+04 3.4890260e-01 + 1.1082800e+04 1.1831167e+00 + 1.1083200e+04 1.7099826e+00 + 1.1083600e+04 1.3012854e+00 + 1.1084000e+04 9.6950692e-01 + 1.1084400e+04 9.7704987e-01 + 1.1084800e+04 1.1608385e+00 + 1.1085200e+04 1.3231894e+00 + 1.1085600e+04 1.3255137e+00 + 1.1086000e+04 1.1948071e+00 + 1.1086400e+04 1.4358879e+00 + 1.1086800e+04 1.4810921e+00 + 1.1087200e+04 1.1812644e+00 + 1.1087600e+04 1.0466421e+00 + 1.1088000e+04 1.0516627e+00 + 1.1088400e+04 1.1530492e+00 + 1.1088800e+04 1.2926184e+00 + 1.1089200e+04 1.4798891e+00 + 1.1089600e+04 1.3930219e+00 + 1.1090000e+04 1.3007842e+00 + 1.1090400e+04 8.9009376e-01 + 1.1090800e+04 3.6491282e-01 + 1.1091200e+04 2.6384650e-01 + 1.1091600e+04 5.8487896e-02 + 1.1092000e+04 -1.7963786e-01 + 1.1092400e+04 -3.6844530e-01 + 1.1092800e+04 -4.6605964e-01 + 1.1093200e+04 -4.6821576e-01 + 1.1093600e+04 6.6742599e-02 + 1.1094000e+04 6.4209681e-01 + 1.1094400e+04 8.0267463e-01 + 1.1094800e+04 9.0986898e-01 + 1.1095200e+04 9.8621837e-01 + 1.1095600e+04 6.4788968e-01 + 1.1096000e+04 -2.2194390e-01 + 1.1096400e+04 -7.9969612e-01 + 1.1096800e+04 -9.7839071e-01 + 1.1097200e+04 -1.2282758e+00 + 1.1097600e+04 -9.9846788e-01 + 1.1098000e+04 -9.5301637e-01 + 1.1098400e+04 -8.4334660e-01 + 1.1098800e+04 -4.8003518e-01 + 1.1099200e+04 -1.0785023e-01 + 1.1099600e+04 -2.9843891e-01 + 1.1100000e+04 -1.1099391e+00 + 1.1100400e+04 -1.5418194e+00 + 1.1100800e+04 -2.1199084e+00 + 1.1101200e+04 -2.3872716e+00 + 1.1101600e+04 -2.2247260e+00 + 1.1102000e+04 -1.6157826e+00 + 1.1102400e+04 -8.9800144e-01 + 1.1102800e+04 -3.8720447e-01 + 1.1103200e+04 -2.5641820e-02 + 1.1103600e+04 5.2301944e-01 + 1.1104000e+04 8.6152788e-01 + 1.1104400e+04 1.3126793e+00 + 1.1104800e+04 1.5598694e+00 + 1.1105200e+04 1.8099381e+00 + 1.1105600e+04 1.4544392e+00 + 1.1106000e+04 1.1597226e+00 + 1.1106400e+04 9.9342137e-01 + 1.1106800e+04 9.8449683e-01 + 1.1107200e+04 1.2668663e+00 + 1.1107600e+04 1.2732622e+00 + 1.1108000e+04 8.8603614e-01 + 1.1108400e+04 4.3072386e-01 + 1.1108800e+04 -3.1906509e-01 + 1.1109200e+04 -9.0674073e-01 + 1.1109600e+04 -1.3327242e+00 + 1.1110000e+04 -1.4964251e+00 + 1.1110400e+04 -1.5425693e+00 + 1.1110800e+04 -1.1684449e+00 + 1.1111200e+04 -1.0523511e+00 + 1.1111600e+04 -9.7880863e-01 + 1.1112000e+04 -5.0679931e-01 + 1.1112400e+04 -1.2474303e-01 + 1.1112800e+04 -2.9804230e-02 + 1.1113200e+04 2.0418044e-01 + 1.1113600e+04 3.0014277e-01 + 1.1114000e+04 6.7395490e-01 + 1.1114400e+04 9.6854790e-01 + 1.1114800e+04 1.3737589e+00 + 1.1115200e+04 1.3942981e+00 + 1.1115600e+04 8.9111093e-01 + 1.1116000e+04 4.0072812e-01 + 1.1116400e+04 7.6807434e-02 + 1.1116800e+04 2.6677339e-01 + 1.1117200e+04 2.2198004e-01 + 1.1117600e+04 1.5906681e-01 + 1.1118000e+04 4.2969692e-01 + 1.1118400e+04 9.2968578e-01 + 1.1118800e+04 1.3076802e+00 + 1.1119200e+04 1.4414880e+00 + 1.1119600e+04 7.7166579e-01 + 1.1120000e+04 2.3145669e-01 + 1.1120400e+04 -3.5882221e-01 + 1.1120800e+04 -9.3862463e-01 + 1.1121200e+04 -1.5575559e+00 + 1.1121600e+04 -2.0710398e+00 + 1.1122000e+04 -2.4749798e+00 + 1.1122400e+04 -2.4111477e+00 + 1.1122800e+04 -2.0107135e+00 + 1.1123200e+04 -1.8798487e+00 + 1.1123600e+04 -1.2836619e+00 + 1.1124000e+04 -8.9151066e-01 + 1.1124400e+04 -5.2144400e-01 + 1.1124800e+04 -4.0015747e-02 + 1.1125200e+04 1.7496668e-01 + 1.1125600e+04 4.2070519e-01 + 1.1126000e+04 6.8411371e-01 + 1.1126400e+04 6.0885551e-01 + 1.1126800e+04 4.0566237e-01 + 1.1127200e+04 5.9883846e-01 + 1.1127600e+04 7.4107554e-01 + 1.1128000e+04 1.1328165e+00 + 1.1128400e+04 1.4944587e+00 + 1.1128800e+04 1.9222097e+00 + 1.1129200e+04 2.1535754e+00 + 1.1129600e+04 1.5496084e+00 + 1.1130000e+04 7.2197138e-01 + 1.1130400e+04 2.3720683e-01 + 1.1130800e+04 -1.5713460e-01 + 1.1131200e+04 -8.1423486e-01 + 1.1131600e+04 -9.6068207e-01 + 1.1132000e+04 -7.3266409e-01 + 1.1132400e+04 -8.4373056e-01 + 1.1132800e+04 -7.7061174e-01 + 1.1133200e+04 -8.8659166e-01 + 1.1133600e+04 -1.3341956e+00 + 1.1134000e+04 -1.6155126e+00 + 1.1134400e+04 -1.7704294e+00 + 1.1134800e+04 -1.9004514e+00 + 1.1135200e+04 -1.4598933e+00 + 1.1135600e+04 -9.2158708e-01 + 1.1136000e+04 -7.9973295e-01 + 1.1136400e+04 -6.4917918e-01 + 1.1136800e+04 -1.8614438e-01 + 1.1137200e+04 -1.1759741e-03 + 1.1137600e+04 3.3643302e-01 + 1.1138000e+04 6.3218283e-01 + 1.1138400e+04 6.8856074e-01 + 1.1138800e+04 9.2465766e-01 + 1.1139200e+04 1.6610812e+00 + 1.1139600e+04 1.8316282e+00 + 1.1140000e+04 1.7020097e+00 + 1.1140400e+04 1.6267911e+00 + 1.1140800e+04 1.7381750e+00 + 1.1141200e+04 1.8044710e+00 + 1.1141600e+04 1.4103543e+00 + 1.1142000e+04 9.4216967e-01 + 1.1142400e+04 6.5365973e-01 + 1.1142800e+04 -1.3942507e-01 + 1.1143200e+04 -6.1384611e-01 + 1.1143600e+04 -1.2814687e+00 + 1.1144000e+04 -1.6406369e+00 + 1.1144400e+04 -1.7160284e+00 + 1.1144800e+04 -1.8873389e+00 + 1.1145200e+04 -1.9601661e+00 + 1.1145600e+04 -1.8218355e+00 + 1.1146000e+04 -1.7616435e+00 + 1.1146400e+04 -1.3539526e+00 + 1.1146800e+04 -7.9572581e-01 + 1.1147200e+04 -1.7692119e-02 + 1.1147600e+04 1.0451600e+00 + 1.1148000e+04 1.6467838e+00 + 1.1148400e+04 1.8748270e+00 + 1.1148800e+04 1.7555197e+00 + 1.1149200e+04 1.1801566e+00 + 1.1149600e+04 9.4993103e-01 + 1.1150000e+04 9.2970583e-01 + 1.1150400e+04 7.2802476e-01 + 1.1150800e+04 7.9165388e-01 + 1.1151200e+04 6.6926109e-01 + 1.1151600e+04 3.2186919e-01 + 1.1152000e+04 -4.5945894e-02 + 1.1152400e+04 -6.7679684e-02 + 1.1152800e+04 -5.1409426e-01 + 1.1153200e+04 -8.0152768e-01 + 1.1153600e+04 -7.5538054e-01 + 1.1154000e+04 -5.8855765e-01 + 1.1154400e+04 -2.2903323e-01 + 1.1154800e+04 3.0006704e-01 + 1.1155200e+04 5.4634567e-01 + 1.1155600e+04 8.9750216e-01 + 1.1156000e+04 1.4214236e+00 + 1.1156400e+04 1.5921043e+00 + 1.1156800e+04 1.8859408e+00 + 1.1157200e+04 2.0841707e+00 + 1.1157600e+04 1.8702943e+00 + 1.1158000e+04 1.5374766e+00 + 1.1158400e+04 1.1813879e+00 + 1.1158800e+04 1.1766761e+00 + 1.1159200e+04 9.9214870e-01 + 1.1159600e+04 4.9731472e-01 + 1.1160000e+04 -1.6627202e-01 + 1.1160400e+04 -1.0324759e+00 + 1.1160800e+04 -1.4212546e+00 + 1.1161200e+04 -1.6884851e+00 + 1.1161600e+04 -1.9294601e+00 + 1.1162000e+04 -2.1560824e+00 + 1.1162400e+04 -2.0009026e+00 + 1.1162800e+04 -1.8428238e+00 + 1.1163200e+04 -1.8542421e+00 + 1.1163600e+04 -2.0803315e+00 + 1.1164000e+04 -1.8352163e+00 + 1.1164400e+04 -1.5986530e+00 + 1.1164800e+04 -9.6091145e-01 + 1.1165200e+04 -1.4722218e-01 + 1.1165600e+04 3.4830881e-01 + 1.1166000e+04 1.0470953e+00 + 1.1166400e+04 1.5682713e+00 + 1.1166800e+04 1.6294674e+00 + 1.1167200e+04 1.7042271e+00 + 1.1167600e+04 1.3638010e+00 + 1.1168000e+04 1.1281896e+00 + 1.1168400e+04 1.0488529e+00 + 1.1168800e+04 1.3646883e+00 + 1.1169200e+04 1.2688977e+00 + 1.1169600e+04 9.9948673e-01 + 1.1170000e+04 7.4335833e-01 + 1.1170400e+04 4.1976481e-01 + 1.1170800e+04 1.4977151e-01 + 1.1171200e+04 7.1018073e-02 + 1.1171600e+04 5.9928287e-01 + 1.1172000e+04 1.1866571e+00 + 1.1172400e+04 1.2317174e+00 + 1.1172800e+04 6.3761578e-01 + 1.1173200e+04 -1.8371496e-01 + 1.1173600e+04 -9.9823063e-01 + 1.1174000e+04 -1.6341018e+00 + 1.1174400e+04 -1.7832523e+00 + 1.1174800e+04 -1.8164920e+00 + 1.1175200e+04 -1.2805391e+00 + 1.1175600e+04 -4.9025901e-01 + 1.1176000e+04 3.7732996e-02 + 1.1176400e+04 5.9397887e-01 + 1.1176800e+04 7.3636679e-01 + 1.1177200e+04 9.2428683e-01 + 1.1177600e+04 9.8269352e-01 + 1.1178000e+04 7.7814880e-01 + 1.1178400e+04 5.3158038e-01 + 1.1178800e+04 7.6025149e-01 + 1.1179200e+04 8.5637683e-01 + 1.1179600e+04 6.9317060e-01 + 1.1180000e+04 -4.1055998e-02 + 1.1180400e+04 -5.2941361e-01 + 1.1180800e+04 -9.3698529e-01 + 1.1181200e+04 -1.0921767e+00 + 1.1181600e+04 -7.9668725e-01 + 1.1182000e+04 -3.6773092e-01 + 1.1182400e+04 -4.4754684e-02 + 1.1182800e+04 -1.0575068e-01 + 1.1183200e+04 -1.4087563e-01 + 1.1183600e+04 -4.2198893e-01 + 1.1184000e+04 -8.7529728e-01 + 1.1184400e+04 -1.2069270e+00 + 1.1184800e+04 -1.4809029e+00 + 1.1185200e+04 -1.5227056e+00 + 1.1185600e+04 -1.3833567e+00 + 1.1186000e+04 -1.0793307e+00 + 1.1186400e+04 -5.8067154e-01 + 1.1186800e+04 -1.4680723e-01 + 1.1187200e+04 3.9793811e-01 + 1.1187600e+04 6.0077840e-01 + 1.1188000e+04 3.7178684e-01 + 1.1188400e+04 3.7111148e-01 + 1.1188800e+04 2.0523681e-01 + 1.1189200e+04 4.7228217e-01 + 1.1189600e+04 5.6561609e-01 + 1.1190000e+04 1.0411891e+00 + 1.1190400e+04 1.3893078e+00 + 1.1190800e+04 1.8269907e+00 + 1.1191200e+04 1.9076185e+00 + 1.1191600e+04 1.8061635e+00 + 1.1192000e+04 1.6480147e+00 + 1.1192400e+04 1.0955837e+00 + 1.1192800e+04 2.7224360e-01 + 1.1193200e+04 -2.3279151e-01 + 1.1193600e+04 -6.2039927e-01 + 1.1194000e+04 -1.1967413e+00 + 1.1194400e+04 -1.7566062e+00 + 1.1194800e+04 -2.0032531e+00 + 1.1195200e+04 -1.7881508e+00 + 1.1195600e+04 -1.4507410e+00 + 1.1196000e+04 -1.2256556e+00 + 1.1196400e+04 -9.8546817e-01 + 1.1196800e+04 -7.8060731e-01 + 1.1197200e+04 -4.1185723e-01 + 1.1197600e+04 1.4345205e-01 + 1.1198000e+04 1.0488017e+00 + 1.1198400e+04 1.6845456e+00 + 1.1198800e+04 2.1351282e+00 + 1.1199200e+04 2.3070246e+00 + 1.1199600e+04 2.2224897e+00 + 1.1200000e+04 2.2520230e+00 + 1.1200400e+04 2.2024421e+00 + 1.1200800e+04 1.7586891e+00 + 1.1201200e+04 9.3881584e-01 + 1.1201600e+04 4.4942922e-01 + 1.1202000e+04 -3.2317177e-02 + 1.1202400e+04 -4.0932159e-01 + 1.1202800e+04 -5.0699493e-01 + 1.1203200e+04 -6.0603047e-01 + 1.1203600e+04 -9.0994550e-01 + 1.1204000e+04 -1.5434590e+00 + 1.1204400e+04 -2.0651136e+00 + 1.1204800e+04 -2.6104822e+00 + 1.1205200e+04 -3.4362433e+00 + 1.1205600e+04 -3.4509957e+00 + 1.1206000e+04 -2.9345444e+00 + 1.1206400e+04 -2.6834348e+00 + 1.1206800e+04 -2.1963992e+00 + 1.1207200e+04 -1.5862397e+00 + 1.1207600e+04 -9.0253825e-01 + 1.1208000e+04 -3.4912278e-01 + 1.1208400e+04 3.3270913e-01 + 1.1208800e+04 8.9411826e-01 + 1.1209200e+04 1.5716513e+00 + 1.1209600e+04 1.9643299e+00 + 1.1210000e+04 2.1409524e+00 + 1.1210400e+04 1.9917836e+00 + 1.1210800e+04 1.6159962e+00 + 1.1211200e+04 1.1033717e+00 + 1.1211600e+04 6.8856436e-01 + 1.1212000e+04 1.9373945e-01 + 1.1212400e+04 4.0940235e-01 + 1.1212800e+04 6.3074091e-01 + 1.1213200e+04 8.9089424e-01 + 1.1213600e+04 9.9810141e-01 + 1.1214000e+04 1.1518004e+00 + 1.1214400e+04 1.1696357e+00 + 1.1214800e+04 1.1138759e+00 + 1.1215200e+04 1.1118735e+00 + 1.1215600e+04 8.8534781e-01 + 1.1216000e+04 6.0932987e-01 + 1.1216400e+04 -1.1145335e-01 + 1.1216800e+04 -7.7906396e-01 + 1.1217200e+04 -1.1512421e+00 + 1.1217600e+04 -1.3467006e+00 + 1.1218000e+04 -1.3066788e+00 + 1.1218400e+04 -1.3542970e+00 + 1.1218800e+04 -1.2411620e+00 + 1.1219200e+04 -1.0501293e+00 + 1.1219600e+04 -1.0963638e+00 + 1.1220000e+04 -1.1553709e+00 + 1.1220400e+04 -1.0124367e+00 + 1.1220800e+04 -8.3093072e-01 + 1.1221200e+04 -5.9362724e-01 + 1.1221600e+04 -2.8831990e-01 + 1.1222000e+04 3.2646671e-01 + 1.1222400e+04 9.8144659e-01 + 1.1222800e+04 1.6718254e+00 + 1.1223200e+04 2.1428945e+00 + 1.1223600e+04 2.1564975e+00 + 1.1224000e+04 1.8207986e+00 + 1.1224400e+04 1.4970596e+00 + 1.1224800e+04 7.2335403e-01 + 1.1225200e+04 -3.2922869e-01 + 1.1225600e+04 -1.0275789e+00 + 1.1226000e+04 -1.3826539e+00 + 1.1226400e+04 -2.1025470e+00 + 1.1226800e+04 -3.2690024e+00 + 1.1227200e+04 -4.0286912e+00 + 1.1227600e+04 -4.6177057e+00 + 1.1228000e+04 -4.6821935e+00 + 1.1228400e+04 -4.0058146e+00 + 1.1228800e+04 -2.9267051e+00 + 1.1229200e+04 -1.5579242e+00 + 1.1229600e+04 1.9056415e-01 + 1.1230000e+04 1.8110516e+00 + 1.1230400e+04 2.5104295e+00 + 1.1230800e+04 2.6312665e+00 + 1.1231200e+04 2.6857773e+00 + 1.1231600e+04 2.9689727e+00 + 1.1232000e+04 3.2551557e+00 + 1.1232400e+04 3.1314405e+00 + 1.1232800e+04 2.8130791e+00 + 1.1233200e+04 1.9192167e+00 + 1.1233600e+04 1.1641274e+00 + 1.1234000e+04 5.8853849e-01 + 1.1234400e+04 4.6287753e-01 + 1.1234800e+04 3.2626961e-01 + 1.1235200e+04 -1.6116560e-01 + 1.1235600e+04 -4.7455292e-01 + 1.1236000e+04 -8.5011124e-01 + 1.1236400e+04 -9.1279193e-01 + 1.1236800e+04 -9.9256449e-01 + 1.1237200e+04 -7.4201566e-01 + 1.1237600e+04 -2.5886164e-01 + 1.1238000e+04 2.5616000e-02 + 1.1238400e+04 2.6330085e-01 + 1.1238800e+04 3.5230970e-01 + 1.1239200e+04 5.5623711e-01 + 1.1239600e+04 5.3025347e-01 + 1.1240000e+04 4.6105498e-01 + 1.1240400e+04 5.1864384e-01 + 1.1240800e+04 2.8351588e-01 + 1.1241200e+04 2.2572450e-03 + 1.1241600e+04 4.2988946e-03 + 1.1242000e+04 3.0628818e-01 + 1.1242400e+04 5.2900351e-01 + 1.1242800e+04 8.2973163e-01 + 1.1243200e+04 6.4393094e-01 + 1.1243600e+04 -3.8519332e-02 + 1.1244000e+04 -6.8268688e-01 + 1.1244400e+04 -9.9821900e-01 + 1.1244800e+04 -1.3478370e+00 + 1.1245200e+04 -1.4769437e+00 + 1.1245600e+04 -1.3937826e+00 + 1.1246000e+04 -1.3240683e+00 + 1.1246400e+04 -8.9904675e-01 + 1.1246800e+04 -1.2471321e-01 + 1.1247200e+04 1.5250184e-01 + 1.1247600e+04 2.5775239e-01 + 1.1248000e+04 -1.1140906e-01 + 1.1248400e+04 -3.2840556e-01 + 1.1248800e+04 -5.4870010e-01 + 1.1249200e+04 -3.4840231e-01 + 1.1249600e+04 -2.6990844e-02 + 1.1250000e+04 1.5473347e-01 + 1.1250400e+04 2.4244981e-01 + 1.1250800e+04 3.8701318e-01 + 1.1251200e+04 6.7725171e-01 + 1.1251600e+04 9.9138529e-01 + 1.1252000e+04 1.5182676e+00 + 1.1252400e+04 1.5583043e+00 + 1.1252800e+04 1.4948725e+00 + 1.1253200e+04 1.2503275e+00 + 1.1253600e+04 9.4101040e-01 + 1.1254000e+04 6.7343755e-01 + 1.1254400e+04 2.4894690e-01 + 1.1254800e+04 -2.9899743e-01 + 1.1255200e+04 -6.1775540e-01 + 1.1255600e+04 -5.6749803e-01 + 1.1256000e+04 -4.9390216e-01 + 1.1256400e+04 -1.8928742e-01 + 1.1256800e+04 -4.1090645e-02 + 1.1257200e+04 2.7349391e-01 + 1.1257600e+04 2.2399418e-01 + 1.1258000e+04 4.5503096e-02 + 1.1258400e+04 -6.8985195e-03 + 1.1258800e+04 -2.4680741e-01 + 1.1259200e+04 -1.7195113e-01 + 1.1259600e+04 -1.3499764e-01 + 1.1260000e+04 -4.5163525e-02 + 1.1260400e+04 -2.7080161e-01 + 1.1260800e+04 -3.6718447e-01 + 1.1261200e+04 -4.4189004e-01 + 1.1261600e+04 -5.5738524e-01 + 1.1262000e+04 -1.1843974e+00 + 1.1262400e+04 -1.4398170e+00 + 1.1262800e+04 -1.7835995e+00 + 1.1263200e+04 -1.6873153e+00 + 1.1263600e+04 -1.6345059e+00 + 1.1264000e+04 -1.3902702e+00 + 1.1264400e+04 -9.1140624e-01 + 1.1264800e+04 -6.6836565e-01 + 1.1265200e+04 -6.4499332e-01 + 1.1265600e+04 -3.5856274e-01 + 1.1266000e+04 1.3810759e-01 + 1.1266400e+04 6.6367357e-01 + 1.1266800e+04 1.2571567e+00 + 1.1267200e+04 1.5201603e+00 + 1.1267600e+04 1.5378455e+00 + 1.1268000e+04 1.5282318e+00 + 1.1268400e+04 1.3932683e+00 + 1.1268800e+04 8.5706726e-01 + 1.1269200e+04 7.0039041e-01 + 1.1269600e+04 7.6308641e-01 + 1.1270000e+04 1.0752167e+00 + 1.1270400e+04 5.4725152e-01 + 1.1270800e+04 4.0986215e-01 + 1.1271200e+04 6.5629482e-01 + 1.1271600e+04 6.7844740e-01 + 1.1272000e+04 7.6554663e-01 + 1.1272400e+04 7.1403069e-01 + 1.1272800e+04 6.7770017e-01 + 1.1273200e+04 9.5432492e-01 + 1.1273600e+04 1.1454312e+00 + 1.1274000e+04 7.9627945e-01 + 1.1274400e+04 3.4432543e-01 + 1.1274800e+04 -4.5599247e-01 + 1.1275200e+04 -1.0855900e+00 + 1.1275600e+04 -1.4747995e+00 + 1.1276000e+04 -1.5743661e+00 + 1.1276400e+04 -1.5800099e+00 + 1.1276800e+04 -1.4883096e+00 + 1.1277200e+04 -1.2041136e+00 + 1.1277600e+04 -9.4555391e-01 + 1.1278000e+04 -4.2436068e-01 + 1.1278400e+04 -6.0029641e-02 + 1.1278800e+04 6.2924114e-01 + 1.1279200e+04 1.4897607e+00 + 1.1279600e+04 1.8957154e+00 + 1.1280000e+04 2.1279249e+00 + 1.1280400e+04 1.8505338e+00 + 1.1280800e+04 1.3587740e+00 + 1.1281200e+04 6.3882704e-01 + 1.1281600e+04 4.1176906e-02 + 1.1282000e+04 -9.2106000e-01 + 1.1282400e+04 -1.5863639e+00 + 1.1282800e+04 -2.2054196e+00 + 1.1283200e+04 -2.3703608e+00 + 1.1283600e+04 -2.3708444e+00 + 1.1284000e+04 -2.3005455e+00 + 1.1284400e+04 -2.4009268e+00 + 1.1284800e+04 -2.4834679e+00 + 1.1285200e+04 -2.5097083e+00 + 1.1285600e+04 -2.3671496e+00 + 1.1286000e+04 -1.5854119e+00 + 1.1286400e+04 -6.7304306e-01 + 1.1286800e+04 3.6874884e-01 + 1.1287200e+04 1.2866487e+00 + 1.1287600e+04 2.0226348e+00 + 1.1288000e+04 2.6418409e+00 + 1.1288400e+04 3.0518859e+00 + 1.1288800e+04 3.1812115e+00 + 1.1289200e+04 3.1599046e+00 + 1.1289600e+04 3.5199420e+00 + 1.1290000e+04 3.7871647e+00 + 1.1290400e+04 3.8672764e+00 + 1.1290800e+04 3.3854196e+00 + 1.1291200e+04 3.0437105e+00 + 1.1291600e+04 2.3769863e+00 + 1.1292000e+04 1.6404855e+00 + 1.1292400e+04 1.3600551e+00 + 1.1292800e+04 3.5357179e-01 + 1.1293200e+04 -9.5402716e-01 + 1.1293600e+04 -1.7897836e+00 + 1.1294000e+04 -2.2645099e+00 + 1.1294400e+04 -2.7393000e+00 + 1.1294800e+04 -2.4745264e+00 + 1.1295200e+04 -2.2677245e+00 + 1.1295600e+04 -1.6838308e+00 + 1.1296000e+04 -1.0767092e+00 + 1.1296400e+04 -3.7297014e-01 + 1.1296800e+04 -2.1134751e-01 + 1.1297200e+04 1.4966040e-02 + 1.1297600e+04 6.8639938e-02 + 1.1298000e+04 1.2398932e-01 + 1.1298400e+04 1.4718418e-01 + 1.1298800e+04 2.6223507e-01 + 1.1299200e+04 6.4541636e-01 + 1.1299600e+04 4.3394979e-01 + 1.1300000e+04 2.3485200e-01 + 1.1300400e+04 2.1522366e-01 + 1.1300800e+04 -3.6681139e-02 + 1.1301200e+04 1.9428199e-02 + 1.1301600e+04 1.0212744e-01 + 1.1302000e+04 6.6699776e-01 + 1.1302400e+04 7.5198814e-01 + 1.1302800e+04 4.9942579e-01 + 1.1303200e+04 -6.0829471e-03 + 1.1303600e+04 -4.4618503e-01 + 1.1304000e+04 -3.9191436e-01 + 1.1304400e+04 -5.6060946e-01 + 1.1304800e+04 -3.3182474e-01 + 1.1305200e+04 -4.9766534e-01 + 1.1305600e+04 -9.3941238e-01 + 1.1306000e+04 -1.0102102e+00 + 1.1306400e+04 -9.0840116e-01 + 1.1306800e+04 -6.5321439e-01 + 1.1307200e+04 -5.4922420e-01 + 1.1307600e+04 -4.8541439e-01 + 1.1308000e+04 -3.4595700e-01 + 1.1308400e+04 -6.7250389e-01 + 1.1308800e+04 -5.1170047e-01 + 1.1309200e+04 9.1208038e-03 + 1.1309600e+04 6.4061367e-01 + 1.1310000e+04 1.1416392e+00 + 1.1310400e+04 1.4776736e+00 + 1.1310800e+04 1.4539577e+00 + 1.1311200e+04 1.3795552e+00 + 1.1311600e+04 7.4453842e-01 + 1.1312000e+04 3.2302964e-01 + 1.1312400e+04 2.2634553e-01 + 1.1312800e+04 -1.1668036e-01 + 1.1313200e+04 -4.4968358e-01 + 1.1313600e+04 -4.4543786e-01 + 1.1314000e+04 -2.6516127e-01 + 1.1314400e+04 -2.4172926e-01 + 1.1314800e+04 -2.0430301e-01 + 1.1315200e+04 -3.7244228e-01 + 1.1315600e+04 -6.4733582e-01 + 1.1316000e+04 -1.1024563e+00 + 1.1316400e+04 -1.2629344e+00 + 1.1316800e+04 -9.2580383e-01 + 1.1317200e+04 -6.2788969e-01 + 1.1317600e+04 -1.8087381e-01 + 1.1318000e+04 2.0944918e-01 + 1.1318400e+04 5.1663928e-01 + 1.1318800e+04 8.6772438e-01 + 1.1319200e+04 1.2663957e+00 + 1.1319600e+04 1.7832096e+00 + 1.1320000e+04 1.9778573e+00 + 1.1320400e+04 1.6848471e+00 + 1.1320800e+04 1.2029702e+00 + 1.1321200e+04 7.3043216e-01 + 1.1321600e+04 6.4200603e-01 + 1.1322000e+04 6.8510063e-01 + 1.1322400e+04 5.3689359e-01 + 1.1322800e+04 -2.4098009e-02 + 1.1323200e+04 -7.6083525e-01 + 1.1323600e+04 -1.1770199e+00 + 1.1324000e+04 -1.3252601e+00 + 1.1324400e+04 -9.3949606e-01 + 1.1324800e+04 -7.1674373e-01 + 1.1325200e+04 -6.1088466e-01 + 1.1325600e+04 -6.4262745e-01 + 1.1326000e+04 -6.8234513e-01 + 1.1326400e+04 -5.5138080e-01 + 1.1326800e+04 -2.9164407e-01 + 1.1327200e+04 1.5813405e-01 + 1.1327600e+04 7.6425512e-01 + 1.1328000e+04 1.0674133e+00 + 1.1328400e+04 1.2547572e+00 + 1.1328800e+04 9.6535310e-01 + 1.1329200e+04 8.5196956e-01 + 1.1329600e+04 7.2747384e-01 + 1.1330000e+04 7.4011307e-02 + 1.1330400e+04 -7.1380289e-01 + 1.1330800e+04 -1.2522589e+00 + 1.1331200e+04 -1.4946864e+00 + 1.1331600e+04 -1.5813818e+00 + 1.1332000e+04 -1.2133177e+00 + 1.1332400e+04 -5.8539022e-01 + 1.1332800e+04 1.4003221e-01 + 1.1333200e+04 9.7357949e-01 + 1.1333600e+04 1.2511562e+00 + 1.1334000e+04 1.2927131e+00 + 1.1334400e+04 8.8401460e-01 + 1.1334800e+04 2.5475394e-01 + 1.1335200e+04 -3.1258671e-01 + 1.1335600e+04 -4.0780106e-01 + 1.1336000e+04 -1.2299204e-01 + 1.1336400e+04 2.4444729e-03 + 1.1336800e+04 -1.7713899e-01 + 1.1337200e+04 -3.0744907e-01 + 1.1337600e+04 8.5678092e-05 + 1.1338000e+04 2.4513392e-01 + 1.1338400e+04 2.2042225e-01 + 1.1338800e+04 4.9791503e-02 + 1.1339200e+04 -1.7429610e-02 + 1.1339600e+04 4.1521202e-02 + 1.1340000e+04 3.1250398e-01 + 1.1340400e+04 3.5511296e-01 + 1.1340800e+04 1.4996639e-01 + 1.1341200e+04 -1.0378200e-02 + 1.1341600e+04 1.1359947e-01 + 1.1342000e+04 -1.3022524e-01 + 1.1342400e+04 -6.6416546e-01 + 1.1342800e+04 -7.8016349e-01 + 1.1343200e+04 -6.6957119e-01 + 1.1343600e+04 -6.2730413e-01 + 1.1344000e+04 -2.1847206e-01 + 1.1344400e+04 2.0404393e-01 + 1.1344800e+04 6.7150280e-01 + 1.1345200e+04 1.4708780e+00 + 1.1345600e+04 2.1239268e+00 + 1.1346000e+04 2.1428460e+00 + 1.1346400e+04 1.5890280e+00 + 1.1346800e+04 1.0324209e+00 + 1.1347200e+04 3.6755857e-01 + 1.1347600e+04 -1.4649609e-01 + 1.1348000e+04 -3.7314177e-01 + 1.1348400e+04 -4.7991575e-01 + 1.1348800e+04 -1.0546237e+00 + 1.1349200e+04 -1.4237045e+00 + 1.1349600e+04 -1.5218904e+00 + 1.1350000e+04 -1.8948534e+00 + 1.1350400e+04 -1.6980947e+00 + 1.1350800e+04 -1.2037250e+00 + 1.1351200e+04 -3.0053076e-01 + 1.1351600e+04 6.2964833e-01 + 1.1352000e+04 1.2019087e+00 + 1.1352400e+04 1.5565043e+00 + 1.1352800e+04 1.5672224e+00 + 1.1353200e+04 7.1832257e-01 + 1.1353600e+04 -1.8674233e-01 + 1.1354000e+04 -7.4953558e-01 + 1.1354400e+04 -1.0161459e+00 + 1.1354800e+04 -1.0499417e+00 + 1.1355200e+04 -1.1700812e+00 + 1.1355600e+04 -1.3888433e+00 + 1.1356000e+04 -1.5292471e+00 + 1.1356400e+04 -1.7105741e+00 + 1.1356800e+04 -1.6031055e+00 + 1.1357200e+04 -1.3009443e+00 + 1.1357600e+04 -9.8841630e-01 + 1.1358000e+04 -3.5396649e-01 + 1.1358400e+04 2.4416516e-01 + 1.1358800e+04 9.9824455e-01 + 1.1359200e+04 1.6096971e+00 + 1.1359600e+04 1.9651952e+00 + 1.1360000e+04 2.0422460e+00 + 1.1360400e+04 1.7644303e+00 + 1.1360800e+04 1.0697323e+00 + 1.1361200e+04 6.7826713e-01 + 1.1361600e+04 9.6072267e-01 + 1.1362000e+04 1.3065151e+00 + 1.1362400e+04 1.5777695e+00 + 1.1362800e+04 1.5715528e+00 + 1.1363200e+04 1.1075819e+00 + 1.1363600e+04 6.8362943e-01 + 1.1364000e+04 -1.9201503e-01 + 1.1364400e+04 -9.5029170e-01 + 1.1364800e+04 -1.5457343e+00 + 1.1365200e+04 -1.6964668e+00 + 1.1365600e+04 -1.7837576e+00 + 1.1366000e+04 -1.7705108e+00 + 1.1366400e+04 -1.4304335e+00 + 1.1366800e+04 -1.0989997e+00 + 1.1367200e+04 -6.7016165e-01 + 1.1367600e+04 -6.4069892e-01 + 1.1368000e+04 -7.5679221e-01 + 1.1368400e+04 -5.7223701e-01 + 1.1368800e+04 9.6172893e-03 + 1.1369200e+04 6.7112557e-01 + 1.1369600e+04 1.1919456e+00 + 1.1370000e+04 1.5248725e+00 + 1.1370400e+04 1.6070106e+00 + 1.1370800e+04 1.3616914e+00 + 1.1371200e+04 1.4056789e+00 + 1.1371600e+04 1.7879504e+00 + 1.1372000e+04 1.8146278e+00 + 1.1372400e+04 1.8847373e+00 + 1.1372800e+04 1.6346866e+00 + 1.1373200e+04 1.3130313e+00 + 1.1373600e+04 5.6671976e-01 + 1.1374000e+04 -1.4820331e-01 + 1.1374400e+04 -1.0027855e+00 + 1.1374800e+04 -1.7621336e+00 + 1.1375200e+04 -2.6800626e+00 + 1.1375600e+04 -3.0403971e+00 + 1.1376000e+04 -2.8455282e+00 + 1.1376400e+04 -2.2229740e+00 + 1.1376800e+04 -1.7675699e+00 + 1.1377200e+04 -1.4246431e+00 + 1.1377600e+04 -1.2601959e+00 + 1.1378000e+04 -1.2350805e+00 + 1.1378400e+04 -1.0384786e+00 + 1.1378800e+04 -6.4361330e-01 + 1.1379200e+04 -1.5633786e-01 + 1.1379600e+04 4.3763552e-01 + 1.1380000e+04 1.1031050e+00 + 1.1380400e+04 1.5479028e+00 + 1.1380800e+04 1.5022315e+00 + 1.1381200e+04 1.3195198e+00 + 1.1381600e+04 1.1081981e+00 + 1.1382000e+04 1.5103902e+00 + 1.1382400e+04 1.9395921e+00 + 1.1382800e+04 2.1142680e+00 + 1.1383200e+04 2.3232129e+00 + 1.1383600e+04 1.9842981e+00 + 1.1384000e+04 1.0848969e+00 + 1.1384400e+04 1.6354102e-01 + 1.1384800e+04 -8.5778727e-01 + 1.1385200e+04 -1.5084793e+00 + 1.1385600e+04 -1.8527442e+00 + 1.1386000e+04 -1.9720103e+00 + 1.1386400e+04 -2.0797854e+00 + 1.1386800e+04 -2.1414474e+00 + 1.1387200e+04 -1.8657715e+00 + 1.1387600e+04 -1.2874679e+00 + 1.1388000e+04 -5.0608413e-01 + 1.1388400e+04 -1.4217886e-01 + 1.1388800e+04 5.0523389e-01 + 1.1389200e+04 8.4586368e-01 + 1.1389600e+04 9.2677250e-01 + 1.1390000e+04 1.1581985e+00 + 1.1390400e+04 1.1621584e+00 + 1.1390800e+04 1.8543831e+00 + 1.1391200e+04 2.5781197e+00 + 1.1391600e+04 3.0676825e+00 + 1.1392000e+04 3.0374387e+00 + 1.1392400e+04 2.4927906e+00 + 1.1392800e+04 1.4069029e+00 + 1.1393200e+04 2.5017622e-01 + 1.1393600e+04 -7.0418348e-01 + 1.1394000e+04 -1.3701593e+00 + 1.1394400e+04 -1.8798621e+00 + 1.1394800e+04 -2.3251125e+00 + 1.1395200e+04 -2.4683427e+00 + 1.1395600e+04 -2.8002800e+00 + 1.1396000e+04 -2.8681935e+00 + 1.1396400e+04 -2.4003412e+00 + 1.1396800e+04 -2.1516258e+00 + 1.1397200e+04 -1.5432829e+00 + 1.1397600e+04 -1.1074573e+00 + 1.1398000e+04 -7.6563021e-01 + 1.1398400e+04 -1.3437151e-01 + 1.1398800e+04 3.9160782e-01 + 1.1399200e+04 4.0267737e-01 + 1.1399600e+04 8.4026114e-01 + 1.1400000e+04 1.5751737e+00 + 1.1400400e+04 1.9203955e+00 + 1.1400800e+04 1.9822133e+00 + 1.1401200e+04 1.9268263e+00 + 1.1401600e+04 1.7971292e+00 + 1.1402000e+04 1.6537366e+00 + 1.1402400e+04 1.5099471e+00 + 1.1402800e+04 9.8621592e-01 + 1.1403200e+04 2.9379673e-01 + 1.1403600e+04 -1.1702393e-01 + 1.1404000e+04 -5.0689600e-01 + 1.1404400e+04 -7.6139426e-01 + 1.1404800e+04 -6.0995411e-01 + 1.1405200e+04 -4.8678770e-01 + 1.1405600e+04 -6.5219605e-01 + 1.1406000e+04 -6.1810411e-01 + 1.1406400e+04 -3.1846266e-01 + 1.1406800e+04 -6.9878078e-02 + 1.1407200e+04 -3.3091205e-02 + 1.1407600e+04 -3.8513917e-02 + 1.1408000e+04 7.8681808e-02 + 1.1408400e+04 1.4813852e-01 + 1.1408800e+04 6.2137608e-03 + 1.1409200e+04 3.8201285e-01 + 1.1409600e+04 6.9993857e-01 + 1.1410000e+04 1.2271345e+00 + 1.1410400e+04 1.8085786e+00 + 1.1410800e+04 1.8596915e+00 + 1.1411200e+04 1.6570672e+00 + 1.1411600e+04 1.2017977e+00 + 1.1412000e+04 6.2402199e-01 + 1.1412400e+04 -7.5611311e-02 + 1.1412800e+04 -5.0289595e-01 + 1.1413200e+04 -4.4342110e-01 + 1.1413600e+04 -5.2729102e-01 + 1.1414000e+04 -7.4536558e-01 + 1.1414400e+04 -9.2170504e-01 + 1.1414800e+04 -9.3371575e-01 + 1.1415200e+04 -6.6940188e-01 + 1.1415600e+04 -6.7907623e-02 + 1.1416000e+04 4.5795562e-01 + 1.1416400e+04 2.8705976e-01 + 1.1416800e+04 -1.1022796e-01 + 1.1417200e+04 -3.6652902e-01 + 1.1417600e+04 -1.0250909e+00 + 1.1418000e+04 -1.4344889e+00 + 1.1418400e+04 -2.0789051e+00 + 1.1418800e+04 -2.3205794e+00 + 1.1419200e+04 -2.4625205e+00 + 1.1419600e+04 -2.2731697e+00 + 1.1420000e+04 -1.8968880e+00 + 1.1420400e+04 -1.7196484e+00 + 1.1420800e+04 -1.0818393e+00 + 1.1421200e+04 -3.0361756e-01 + 1.1421600e+04 3.4246646e-01 + 1.1422000e+04 6.5335895e-01 + 1.1422400e+04 6.6084928e-01 + 1.1422800e+04 4.9325612e-01 + 1.1423200e+04 5.7368681e-01 + 1.1423600e+04 7.3931385e-01 + 1.1424000e+04 9.5070338e-01 + 1.1424400e+04 1.4478866e+00 + 1.1424800e+04 1.9410073e+00 + 1.1425200e+04 1.8228051e+00 + 1.1425600e+04 1.2984935e+00 + 1.1426000e+04 7.4360570e-01 + 1.1426400e+04 -8.6987681e-02 + 1.1426800e+04 -7.7428594e-01 + 1.1427200e+04 -8.3580711e-01 + 1.1427600e+04 -7.3258004e-01 + 1.1428000e+04 -6.1172186e-01 + 1.1428400e+04 -1.2600315e-01 + 1.1428800e+04 1.5883208e-01 + 1.1429200e+04 3.3007537e-01 + 1.1429600e+04 8.0872710e-01 + 1.1430000e+04 8.9188161e-01 + 1.1430400e+04 6.8289195e-01 + 1.1430800e+04 8.5152753e-01 + 1.1431200e+04 1.2291499e+00 + 1.1431600e+04 1.4872848e+00 + 1.1432000e+04 1.7138007e+00 + 1.1432400e+04 1.5590590e+00 + 1.1432800e+04 8.7237516e-01 + 1.1433200e+04 4.3292089e-01 + 1.1433600e+04 -2.8217146e-01 + 1.1434000e+04 -7.1142171e-01 + 1.1434400e+04 -6.3144323e-01 + 1.1434800e+04 -3.9169680e-01 + 1.1435200e+04 -5.0422692e-01 + 1.1435600e+04 -3.8412931e-01 + 1.1436000e+04 -2.8766645e-01 + 1.1436400e+04 -4.7608322e-01 + 1.1436800e+04 -8.1437742e-01 + 1.1437200e+04 -9.5952717e-01 + 1.1437600e+04 -1.6232565e+00 + 1.1438000e+04 -2.2655022e+00 + 1.1438400e+04 -2.6258339e+00 + 1.1438800e+04 -3.0903332e+00 + 1.1439200e+04 -3.4233226e+00 + 1.1439600e+04 -2.9225016e+00 + 1.1440000e+04 -2.2695690e+00 + 1.1440400e+04 -1.7982138e+00 + 1.1440800e+04 -9.3898181e-01 + 1.1441200e+04 1.3926163e-01 + 1.1441600e+04 6.4492292e-01 + 1.1442000e+04 8.5181916e-01 + 1.1442400e+04 9.3646332e-01 + 1.1442800e+04 1.1242837e+00 + 1.1443200e+04 1.2468704e+00 + 1.1443600e+04 1.3618378e+00 + 1.1444000e+04 1.7001549e+00 + 1.1444400e+04 1.6832532e+00 + 1.1444800e+04 1.4200789e+00 + 1.1445200e+04 1.1099446e+00 + 1.1445600e+04 1.1126466e+00 + 1.1446000e+04 1.2040465e+00 + 1.1446400e+04 1.3910823e+00 + 1.1446800e+04 1.3598863e+00 + 1.1447200e+04 1.0728484e+00 + 1.1447600e+04 1.0721686e+00 + 1.1448000e+04 6.4243110e-01 + 1.1448400e+04 -1.0668721e-01 + 1.1448800e+04 -7.0031342e-01 + 1.1449200e+04 -1.2299573e+00 + 1.1449600e+04 -1.6710949e+00 + 1.1450000e+04 -1.9104797e+00 + 1.1450400e+04 -1.5933034e+00 + 1.1450800e+04 -1.2997655e+00 + 1.1451200e+04 -6.4158118e-01 + 1.1451600e+04 2.7609574e-02 + 1.1452000e+04 3.9730945e-01 + 1.1452400e+04 6.3231584e-01 + 1.1452800e+04 7.3340791e-01 + 1.1453200e+04 5.6029292e-01 + 1.1453600e+04 3.6658127e-01 + 1.1454000e+04 -5.1965830e-03 + 1.1454400e+04 -2.4823545e-01 + 1.1454800e+04 -3.4544314e-01 + 1.1455200e+04 -3.4924424e-01 + 1.1455600e+04 -4.0467473e-01 + 1.1456000e+04 -1.4161263e-01 + 1.1456400e+04 3.3518296e-01 + 1.1456800e+04 7.7355877e-01 + 1.1457200e+04 1.1277870e+00 + 1.1457600e+04 8.8901776e-01 + 1.1458000e+04 7.8806470e-01 + 1.1458400e+04 5.6135225e-01 + 1.1458800e+04 -1.1131682e-02 + 1.1459200e+04 -4.9674649e-01 + 1.1459600e+04 -1.3631044e+00 + 1.1460000e+04 -2.0491676e+00 + 1.1460400e+04 -2.6398014e+00 + 1.1460800e+04 -2.6395632e+00 + 1.1461200e+04 -2.4129716e+00 + 1.1461600e+04 -1.7630833e+00 + 1.1462000e+04 -1.1097463e+00 + 1.1462400e+04 -4.6314353e-01 + 1.1462800e+04 -5.3533470e-02 + 1.1463200e+04 7.2904809e-01 + 1.1463600e+04 1.1126389e+00 + 1.1464000e+04 1.8529715e+00 + 1.1464400e+04 2.9230328e+00 + 1.1464800e+04 3.4680436e+00 + 1.1465200e+04 3.2137211e+00 + 1.1465600e+04 2.5447611e+00 + 1.1466000e+04 1.7228161e+00 + 1.1466400e+04 1.0304981e+00 + 1.1466800e+04 4.1914835e-01 + 1.1467200e+04 2.8382578e-01 + 1.1467600e+04 1.3658764e-01 + 1.1468000e+04 2.3818743e-01 + 1.1468400e+04 1.9928672e-01 + 1.1468800e+04 -9.8371917e-02 + 1.1469200e+04 -4.7507750e-01 + 1.1469600e+04 -4.4821887e-01 + 1.1470000e+04 -3.4551789e-01 + 1.1470400e+04 -6.9651215e-01 + 1.1470800e+04 -7.9921465e-01 + 1.1471200e+04 -8.5097856e-01 + 1.1471600e+04 -9.0843932e-01 + 1.1472000e+04 -7.8948395e-01 + 1.1472400e+04 -8.6898495e-01 + 1.1472800e+04 -1.2148619e+00 + 1.1473200e+04 -1.2544612e+00 + 1.1473600e+04 -1.0910994e+00 + 1.1474000e+04 -6.6650535e-01 + 1.1474400e+04 -1.7745342e-01 + 1.1474800e+04 1.7037216e-01 + 1.1475200e+04 4.1586007e-01 + 1.1475600e+04 6.6041799e-01 + 1.1476000e+04 8.2444964e-01 + 1.1476400e+04 1.1210961e+00 + 1.1476800e+04 1.3483735e+00 + 1.1477200e+04 1.4781921e+00 + 1.1477600e+04 1.3076519e+00 + 1.1478000e+04 6.1501330e-01 + 1.1478400e+04 7.0770798e-02 + 1.1478800e+04 -5.4213968e-01 + 1.1479200e+04 -1.1547608e+00 + 1.1479600e+04 -1.7019256e+00 + 1.1480000e+04 -2.1131746e+00 + 1.1480400e+04 -2.2724645e+00 + 1.1480800e+04 -2.4282828e+00 + 1.1481200e+04 -2.4135508e+00 + 1.1481600e+04 -2.0960060e+00 + 1.1482000e+04 -1.1187336e+00 + 1.1482400e+04 -5.2649945e-01 + 1.1482800e+04 7.2335823e-02 + 1.1483200e+04 6.6908807e-01 + 1.1483600e+04 1.0550051e+00 + 1.1484000e+04 1.4105092e+00 + 1.1484400e+04 1.9638033e+00 + 1.1484800e+04 2.3193908e+00 + 1.1485200e+04 2.6727060e+00 + 1.1485600e+04 2.6850966e+00 + 1.1486000e+04 2.8309827e+00 + 1.1486400e+04 2.7594820e+00 + 1.1486800e+04 2.2812269e+00 + 1.1487200e+04 1.9314439e+00 + 1.1487600e+04 1.7054047e+00 + 1.1488000e+04 1.5915654e+00 + 1.1488400e+04 1.4071219e+00 + 1.1488800e+04 1.1842136e+00 + 1.1489200e+04 6.7883729e-01 + 1.1489600e+04 -7.4575139e-02 + 1.1490000e+04 -1.0157590e+00 + 1.1490400e+04 -1.6536756e+00 + 1.1490800e+04 -1.5691590e+00 + 1.1491200e+04 -1.2640520e+00 + 1.1491600e+04 -7.5904855e-01 + 1.1492000e+04 5.5793902e-03 + 1.1492400e+04 -6.9524240e-02 + 1.1492800e+04 -4.5646315e-01 + 1.1493200e+04 -1.0314974e+00 + 1.1493600e+04 -1.9697889e+00 + 1.1494000e+04 -2.4429253e+00 + 1.1494400e+04 -2.7466832e+00 + 1.1494800e+04 -2.7993483e+00 + 1.1495200e+04 -2.5338572e+00 + 1.1495600e+04 -1.7499445e+00 + 1.1496000e+04 -1.2817185e+00 + 1.1496400e+04 -8.6553506e-01 + 1.1496800e+04 -8.0298178e-01 + 1.1497200e+04 -7.2611388e-01 + 1.1497600e+04 -9.7841150e-01 + 1.1498000e+04 -1.4931934e+00 + 1.1498400e+04 -1.4307756e+00 + 1.1498800e+04 -1.0636168e+00 + 1.1499200e+04 -5.2118286e-01 + 1.1499600e+04 6.0869642e-02 + 1.1500000e+04 6.8354898e-01 + 1.1500400e+04 1.3036349e+00 + 1.1500800e+04 1.5440338e+00 + 1.1501200e+04 1.0731918e+00 + 1.1501600e+04 8.7365187e-01 + 1.1502000e+04 9.1038963e-01 + 1.1502400e+04 1.0088869e+00 + 1.1502800e+04 1.5654058e+00 + 1.1503200e+04 2.1019384e+00 + 1.1503600e+04 2.2199180e+00 + 1.1504000e+04 2.0171073e+00 + 1.1504400e+04 2.0701742e+00 + 1.1504800e+04 1.9417990e+00 + 1.1505200e+04 1.5232810e+00 + 1.1505600e+04 1.1615116e+00 + 1.1506000e+04 6.9222709e-01 + 1.1506400e+04 1.8657599e-01 + 1.1506800e+04 4.4852219e-02 + 1.1507200e+04 -3.1701181e-01 + 1.1507600e+04 -7.4263792e-01 + 1.1508000e+04 -1.0946498e+00 + 1.1508400e+04 -1.0929221e+00 + 1.1508800e+04 -1.4341299e+00 + 1.1509200e+04 -1.7625254e+00 + 1.1509600e+04 -1.7679583e+00 + 1.1510000e+04 -1.8034896e+00 + 1.1510400e+04 -1.1345686e+00 + 1.1510800e+04 -2.4269782e-01 + 1.1511200e+04 9.9702729e-01 + 1.1511600e+04 1.5129964e+00 + 1.1512000e+04 1.8428923e+00 + 1.1512400e+04 1.7525360e+00 + 1.1512800e+04 1.1105540e+00 + 1.1513200e+04 4.6304626e-01 + 1.1513600e+04 1.4732326e-02 + 1.1514000e+04 -4.3071939e-01 + 1.1514400e+04 -6.7723181e-01 + 1.1514800e+04 -7.8815401e-01 + 1.1515200e+04 -1.0681917e+00 + 1.1515600e+04 -1.4809620e+00 + 1.1516000e+04 -1.5944748e+00 + 1.1516400e+04 -1.3300039e+00 + 1.1516800e+04 -1.2819149e+00 + 1.1517200e+04 -1.2680481e+00 + 1.1517600e+04 -1.3926651e+00 + 1.1518000e+04 -1.5832339e+00 + 1.1518400e+04 -1.8154153e+00 + 1.1518800e+04 -1.7870558e+00 + 1.1519200e+04 -1.7674753e+00 + 1.1519600e+04 -1.3415617e+00 + 1.1520000e+04 -9.0063888e-01 + 1.1520400e+04 -3.7785020e-01 + 1.1520800e+04 4.8885178e-01 + 1.1521200e+04 1.3209569e+00 + 1.1521600e+04 1.7349318e+00 + 1.1522000e+04 2.1762926e+00 + 1.1522400e+04 2.4514672e+00 + 1.1522800e+04 2.1517532e+00 + 1.1523200e+04 1.9431567e+00 + 1.1523600e+04 1.8075640e+00 + 1.1524000e+04 1.6071286e+00 + 1.1524400e+04 1.2857776e+00 + 1.1524800e+04 9.4292993e-01 + 1.1525200e+04 9.0147734e-01 + 1.1525600e+04 1.1618229e+00 + 1.1526000e+04 1.3654685e+00 + 1.1526400e+04 1.1625837e+00 + 1.1526800e+04 4.7066987e-01 + 1.1527200e+04 -2.9975810e-01 + 1.1527600e+04 -8.3953695e-01 + 1.1528000e+04 -1.1163676e+00 + 1.1528400e+04 -1.1311500e+00 + 1.1528800e+04 -1.0611033e+00 + 1.1529200e+04 -8.7865521e-01 + 1.1529600e+04 -1.0170304e+00 + 1.1530000e+04 -8.9229484e-01 + 1.1530400e+04 -6.7391292e-01 + 1.1530800e+04 -7.2417444e-01 + 1.1531200e+04 -7.4481859e-01 + 1.1531600e+04 -6.9267990e-01 + 1.1532000e+04 -5.7561353e-01 + 1.1532400e+04 -1.1793362e-01 + 1.1532800e+04 -1.1271828e-01 + 1.1533200e+04 -2.3905012e-01 + 1.1533600e+04 2.2096162e-02 + 1.1534000e+04 -1.0400859e-01 + 1.1534400e+04 -3.0095300e-01 + 1.1534800e+04 -3.6312704e-01 + 1.1535200e+04 -3.1367188e-01 + 1.1535600e+04 -3.7502870e-01 + 1.1536000e+04 -6.2269886e-01 + 1.1536400e+04 -6.8979042e-01 + 1.1536800e+04 -5.4690768e-01 + 1.1537200e+04 -3.5445589e-01 + 1.1537600e+04 -3.6086962e-01 + 1.1538000e+04 -2.4490283e-01 + 1.1538400e+04 -2.3468507e-01 + 1.1538800e+04 -1.2208808e-01 + 1.1539200e+04 4.5321531e-01 + 1.1539600e+04 7.5951284e-01 + 1.1540000e+04 7.9909396e-01 + 1.1540400e+04 1.0202799e+00 + 1.1540800e+04 1.4954752e+00 + 1.1541200e+04 1.8317823e+00 + 1.1541600e+04 2.0362444e+00 + 1.1542000e+04 2.3064907e+00 + 1.1542400e+04 2.2886484e+00 + 1.1542800e+04 1.9258983e+00 + 1.1543200e+04 1.6629527e+00 + 1.1543600e+04 1.2060507e+00 + 1.1544000e+04 4.6836071e-01 + 1.1544400e+04 -3.7803586e-01 + 1.1544800e+04 -1.2192533e+00 + 1.1545200e+04 -1.8567025e+00 + 1.1545600e+04 -2.4990099e+00 + 1.1546000e+04 -2.8474521e+00 + 1.1546400e+04 -2.8022944e+00 + 1.1546800e+04 -2.7792189e+00 + 1.1547200e+04 -2.5154666e+00 + 1.1547600e+04 -1.6760228e+00 + 1.1548000e+04 -5.6627481e-01 + 1.1548400e+04 2.9409992e-01 + 1.1548800e+04 1.1201180e+00 + 1.1549200e+04 2.0463463e+00 + 1.1549600e+04 2.5801847e+00 + 1.1550000e+04 2.9349245e+00 + 1.1550400e+04 2.8944562e+00 + 1.1550800e+04 2.2895338e+00 + 1.1551200e+04 1.5489580e+00 + 1.1551600e+04 8.6716416e-01 + 1.1552000e+04 6.4985896e-01 + 1.1552400e+04 4.7179303e-01 + 1.1552800e+04 -9.9192114e-02 + 1.1553200e+04 -4.7398570e-01 + 1.1553600e+04 -6.7252861e-01 + 1.1554000e+04 -6.4727844e-01 + 1.1554400e+04 -3.5096923e-01 + 1.1554800e+04 6.3281213e-02 + 1.1555200e+04 1.8098501e-01 + 1.1555600e+04 -1.7721078e-01 + 1.1556000e+04 -7.4695312e-01 + 1.1556400e+04 -1.3524485e+00 + 1.1556800e+04 -1.9527196e+00 + 1.1557200e+04 -2.3816224e+00 + 1.1557600e+04 -2.6822626e+00 + 1.1558000e+04 -2.5841133e+00 + 1.1558400e+04 -2.1354529e+00 + 1.1558800e+04 -1.0660223e+00 + 1.1559200e+04 1.4440128e-01 + 1.1559600e+04 1.4129612e+00 + 1.1560000e+04 2.1717711e+00 + 1.1560400e+04 2.5225583e+00 + 1.1560800e+04 2.8016924e+00 + 1.1561200e+04 2.5365560e+00 + 1.1561600e+04 1.8015208e+00 + 1.1562000e+04 1.2671929e+00 + 1.1562400e+04 8.3593570e-01 + 1.1562800e+04 9.7655241e-01 + 1.1563200e+04 1.1906730e+00 + 1.1563600e+04 1.4630255e+00 + 1.1564000e+04 1.8953709e+00 + 1.1564400e+04 2.0027294e+00 + 1.1564800e+04 1.9264900e+00 + 1.1565200e+04 1.6001977e+00 + 1.1565600e+04 8.3257681e-01 + 1.1566000e+04 1.8571053e-03 + 1.1566400e+04 -7.6777625e-01 + 1.1566800e+04 -1.5237163e+00 + 1.1567200e+04 -2.1404431e+00 + 1.1567600e+04 -2.5747635e+00 + 1.1568000e+04 -2.5376773e+00 + 1.1568400e+04 -2.4445818e+00 + 1.1568800e+04 -2.4038315e+00 + 1.1569200e+04 -2.4141207e+00 + 1.1569600e+04 -2.3345690e+00 + 1.1570000e+04 -1.8478059e+00 + 1.1570400e+04 -1.4045313e+00 + 1.1570800e+04 -4.9556087e-01 + 1.1571200e+04 4.6997571e-01 + 1.1571600e+04 1.1613922e+00 + 1.1572000e+04 2.2082667e+00 + 1.1572400e+04 2.6016723e+00 + 1.1572800e+04 2.6806797e+00 + 1.1573200e+04 2.4177216e+00 + 1.1573600e+04 2.0327738e+00 + 1.1574000e+04 1.6187832e+00 + 1.1574400e+04 1.4834640e+00 + 1.1574800e+04 1.3045895e+00 + 1.1575200e+04 7.5256422e-01 + 1.1575600e+04 1.4475277e-01 + 1.1576000e+04 1.5257633e-01 + 1.1576400e+04 -2.8788773e-02 + 1.1576800e+04 -4.9183675e-01 + 1.1577200e+04 -1.0467118e+00 + 1.1577600e+04 -1.3405033e+00 + 1.1578000e+04 -1.3067785e+00 + 1.1578400e+04 -1.2391299e+00 + 1.1578800e+04 -1.3232741e+00 + 1.1579200e+04 -1.3006686e+00 + 1.1579600e+04 -1.0644993e+00 + 1.1580000e+04 -6.5411176e-01 + 1.1580400e+04 -5.4406036e-01 + 1.1580800e+04 -3.6178643e-01 + 1.1581200e+04 7.9972686e-02 + 1.1581600e+04 8.3612112e-01 + 1.1582000e+04 1.3704119e+00 + 1.1582400e+04 2.0996300e+00 + 1.1582800e+04 2.4719610e+00 + 1.1583200e+04 2.4729430e+00 + 1.1583600e+04 2.4009661e+00 + 1.1584000e+04 2.3307152e+00 + 1.1584400e+04 2.0638861e+00 + 1.1584800e+04 1.3680495e+00 + 1.1585200e+04 8.8363450e-01 + 1.1585600e+04 6.1783635e-01 + 1.1586000e+04 6.7969530e-01 + 1.1586400e+04 9.4033984e-01 + 1.1586800e+04 8.7806050e-01 + 1.1587200e+04 4.4297208e-01 + 1.1587600e+04 -2.1115629e-01 + 1.1588000e+04 -8.6172374e-01 + 1.1588400e+04 -1.3152092e+00 + 1.1588800e+04 -1.9183521e+00 + 1.1589200e+04 -2.5156202e+00 + 1.1589600e+04 -2.8643941e+00 + 1.1590000e+04 -2.8551624e+00 + 1.1590400e+04 -2.9452704e+00 + 1.1590800e+04 -3.0380658e+00 + 1.1591200e+04 -2.9815799e+00 + 1.1591600e+04 -2.6679104e+00 + 1.1592000e+04 -2.0552777e+00 + 1.1592400e+04 -1.2390339e+00 + 1.1592800e+04 -2.0858850e-02 + 1.1593200e+04 6.4880560e-01 + 1.1593600e+04 8.8701279e-01 + 1.1594000e+04 1.4237649e+00 + 1.1594400e+04 1.6914546e+00 + 1.1594800e+04 1.8422142e+00 + 1.1595200e+04 1.8432416e+00 + 1.1595600e+04 1.8559198e+00 + 1.1596000e+04 1.8508778e+00 + 1.1596400e+04 1.6609111e+00 + 1.1596800e+04 1.6833333e+00 + 1.1597200e+04 1.4532053e+00 + 1.1597600e+04 1.5904252e+00 + 1.1598000e+04 1.3825585e+00 + 1.1598400e+04 1.1037087e+00 + 1.1598800e+04 3.5264101e-01 + 1.1599200e+04 -2.2260529e-02 + 1.1599600e+04 -2.0125188e-03 + 1.1600000e+04 2.1392469e-01 + 1.1600400e+04 4.3832415e-01 + 1.1600800e+04 5.0803336e-01 + 1.1601200e+04 4.5425918e-01 + 1.1601600e+04 2.1914533e-01 + 1.1602000e+04 -7.3869195e-02 + 1.1602400e+04 -1.1250250e-01 + 1.1602800e+04 9.1323460e-02 + 1.1603200e+04 2.2046759e-01 + 1.1603600e+04 4.0565406e-01 + 1.1604000e+04 6.4435999e-01 + 1.1604400e+04 7.9168691e-01 + 1.1604800e+04 7.2536436e-01 + 1.1605200e+04 5.3923693e-01 + 1.1605600e+04 -1.1072283e-01 + 1.1606000e+04 -8.8400425e-01 + 1.1606400e+04 -1.4183919e+00 + 1.1606800e+04 -1.4519522e+00 + 1.1607200e+04 -1.0179515e+00 + 1.1607600e+04 -4.4169582e-01 + 1.1608000e+04 -1.0512686e-01 + 1.1608400e+04 1.0917622e-01 + 1.1608800e+04 1.6303352e-01 + 1.1609200e+04 2.6311353e-01 + 1.1609600e+04 6.1154734e-02 + 1.1610000e+04 1.5860100e-02 + 1.1610400e+04 -3.0633504e-01 + 1.1610800e+04 -1.9175492e-01 + 1.1611200e+04 -2.1076770e-02 + 1.1611600e+04 -1.5397570e-01 + 1.1612000e+04 -4.6475189e-01 + 1.1612400e+04 -7.8442186e-01 + 1.1612800e+04 -1.2931850e+00 + 1.1613200e+04 -1.7225773e+00 + 1.1613600e+04 -1.5262031e+00 + 1.1614000e+04 -1.3188351e+00 + 1.1614400e+04 -1.0616719e+00 + 1.1614800e+04 -7.5152581e-01 + 1.1615200e+04 -4.3031327e-01 + 1.1615600e+04 -1.6599048e-04 + 1.1616000e+04 4.7526185e-01 + 1.1616400e+04 7.4074849e-02 + 1.1616800e+04 -3.6657471e-01 + 1.1617200e+04 -9.3209906e-01 + 1.1617600e+04 -1.0097251e+00 + 1.1618000e+04 -8.9221964e-01 + 1.1618400e+04 -8.5194134e-01 + 1.1618800e+04 -6.6781405e-01 + 1.1619200e+04 -3.3468558e-01 + 1.1619600e+04 3.6087332e-01 + 1.1620000e+04 1.5953853e+00 + 1.1620400e+04 3.1034547e+00 + 1.1620800e+04 4.8306205e+00 + 1.1621200e+04 5.5111097e+00 + 1.1621600e+04 5.1500195e+00 + 1.1622000e+04 3.8915399e+00 + 1.1622400e+04 2.7011182e+00 + 1.1622800e+04 1.3327357e+00 + 1.1623200e+04 3.1203681e-02 + 1.1623600e+04 -9.8445628e-01 + 1.1624000e+04 -1.9072549e+00 + 1.1624400e+04 -2.5958591e+00 + 1.1624800e+04 -2.8340678e+00 + 1.1625200e+04 -2.7417994e+00 + 1.1625600e+04 -2.2431009e+00 + 1.1626000e+04 -1.8435919e+00 + 1.1626400e+04 -1.5250861e+00 + 1.1626800e+04 -8.5479904e-01 + 1.1627200e+04 -1.1618363e-01 + 1.1627600e+04 7.6345468e-01 + 1.1628000e+04 1.7279749e+00 + 1.1628400e+04 2.3551185e+00 + 1.1628800e+04 2.6868061e+00 + 1.1629200e+04 2.8899436e+00 + 1.1629600e+04 2.9562405e+00 + 1.1630000e+04 2.6453637e+00 + 1.1630400e+04 1.7471077e+00 + 1.1630800e+04 4.0218137e-01 + 1.1631200e+04 -1.1299410e+00 + 1.1631600e+04 -2.2017897e+00 + 1.1632000e+04 -3.5296890e+00 + 1.1632400e+04 -4.4849417e+00 + 1.1632800e+04 -4.7610134e+00 + 1.1633200e+04 -4.6948999e+00 + 1.1633600e+04 -3.9107971e+00 + 1.1634000e+04 -2.6423332e+00 + 1.1634400e+04 -1.3341200e+00 + 1.1634800e+04 -5.7588152e-02 + 1.1635200e+04 1.3292221e+00 + 1.1635600e+04 2.0429415e+00 + 1.1636000e+04 2.2311044e+00 + 1.1636400e+04 2.6824369e+00 + 1.1636800e+04 2.9472619e+00 + 1.1637200e+04 3.0979975e+00 + 1.1637600e+04 2.9423626e+00 + 1.1638000e+04 2.8517812e+00 + 1.1638400e+04 2.5334300e+00 + 1.1638800e+04 2.1546333e+00 + 1.1639200e+04 1.8113707e+00 + 1.1639600e+04 1.2850470e+00 + 1.1640000e+04 7.4949463e-01 + 1.1640400e+04 1.5122819e-01 + 1.1640800e+04 -2.8865914e-01 + 1.1641200e+04 -5.3914101e-01 + 1.1641600e+04 -7.4017613e-01 + 1.1642000e+04 -1.0764969e+00 + 1.1642400e+04 -1.2917403e+00 + 1.1642800e+04 -1.2018802e+00 + 1.1643200e+04 -8.0027193e-01 + 1.1643600e+04 -1.7510239e-01 + 1.1644000e+04 8.2238634e-03 + 1.1644400e+04 2.3366388e-01 + 1.1644800e+04 5.3839639e-01 + 1.1645200e+04 6.3468010e-01 + 1.1645600e+04 6.8517302e-01 + 1.1646000e+04 3.8994746e-01 + 1.1646400e+04 -2.1080772e-03 + 1.1646800e+04 -8.5752416e-02 + 1.1647200e+04 -2.8968186e-01 + 1.1647600e+04 -4.9660227e-01 + 1.1648000e+04 -1.0463792e+00 + 1.1648400e+04 -1.4451529e+00 + 1.1648800e+04 -1.3403494e+00 + 1.1649200e+04 -1.1072503e+00 + 1.1649600e+04 -7.3822339e-01 + 1.1650000e+04 -4.5810084e-01 + 1.1650400e+04 -3.3603429e-01 + 1.1650800e+04 2.4119389e-02 + 1.1651200e+04 -3.3761194e-01 + 1.1651600e+04 -7.3967499e-01 + 1.1652000e+04 -8.9241407e-01 + 1.1652400e+04 -1.1763477e+00 + 1.1652800e+04 -1.3404003e+00 + 1.1653200e+04 -1.4835075e+00 + 1.1653600e+04 -1.6735417e+00 + 1.1654000e+04 -1.7204805e+00 + 1.1654400e+04 -1.7270864e+00 + 1.1654800e+04 -1.2122922e+00 + 1.1655200e+04 -2.8839268e-01 + 1.1655600e+04 1.0011015e+00 + 1.1656000e+04 2.1836585e+00 + 1.1656400e+04 3.0525431e+00 + 1.1656800e+04 3.4621967e+00 + 1.1657200e+04 3.5523616e+00 + 1.1657600e+04 2.9530719e+00 + 1.1658000e+04 2.0576422e+00 + 1.1658400e+04 1.3835912e+00 + 1.1658800e+04 9.7107394e-01 + 1.1659200e+04 9.6120726e-01 + 1.1659600e+04 1.5026058e+00 + 1.1660000e+04 1.7582478e+00 + 1.1660400e+04 1.9797837e+00 + 1.1660800e+04 2.1063182e+00 + 1.1661200e+04 1.9458947e+00 + 1.1661600e+04 1.6338846e+00 + 1.1662000e+04 1.0085071e+00 + 1.1662400e+04 3.8025675e-01 + 1.1662800e+04 1.4029956e-02 + 1.1663200e+04 -7.7522981e-02 + 1.1663600e+04 -2.5481737e-01 + 1.1664000e+04 -3.8834333e-01 + 1.1664400e+04 -9.5430952e-01 + 1.1664800e+04 -1.9081462e+00 + 1.1665200e+04 -2.8325925e+00 + 1.1665600e+04 -3.4125077e+00 + 1.1666000e+04 -3.6331377e+00 + 1.1666400e+04 -3.3317673e+00 + 1.1666800e+04 -3.1740836e+00 + 1.1667200e+04 -2.5853416e+00 + 1.1667600e+04 -1.6344719e+00 + 1.1668000e+04 -6.2846916e-01 + 1.1668400e+04 -5.8116177e-02 + 1.1668800e+04 1.6921931e-01 + 1.1669200e+04 2.6147430e-01 + 1.1669600e+04 3.2883212e-01 + 1.1670000e+04 3.2988129e-01 + 1.1670400e+04 4.4607015e-01 + 1.1670800e+04 3.9443563e-01 + 1.1671200e+04 4.4084153e-01 + 1.1671600e+04 2.5978184e-01 + 1.1672000e+04 -1.5412338e-01 + 1.1672400e+04 -2.9852340e-01 + 1.1672800e+04 -3.3683700e-01 + 1.1673200e+04 -1.3901970e-02 + 1.1673600e+04 4.2679014e-01 + 1.1674000e+04 6.5169178e-01 + 1.1674400e+04 8.7928378e-01 + 1.1674800e+04 1.1128369e+00 + 1.1675200e+04 1.2453087e+00 + 1.1675600e+04 1.0405394e+00 + 1.1676000e+04 9.0262547e-01 + 1.1676400e+04 9.0670937e-01 + 1.1676800e+04 7.4590776e-01 + 1.1677200e+04 6.4813350e-01 + 1.1677600e+04 5.3808118e-01 + 1.1678000e+04 -3.9938024e-01 + 1.1678400e+04 -1.0834158e+00 + 1.1678800e+04 -1.3697292e+00 + 1.1679200e+04 -1.5819393e+00 + 1.1679600e+04 -1.6570237e+00 + 1.1680000e+04 -1.3763541e+00 + 1.1680400e+04 -9.6588465e-01 + 1.1680800e+04 -2.3551327e-01 + 1.1681200e+04 5.7479882e-01 + 1.1681600e+04 9.9226644e-01 + 1.1682000e+04 8.0695250e-01 + 1.1682400e+04 6.5694079e-01 + 1.1682800e+04 3.4125324e-01 + 1.1683200e+04 5.6105716e-01 + 1.1683600e+04 1.1901523e+00 + 1.1684000e+04 1.3856049e+00 + 1.1684400e+04 1.4281781e+00 + 1.1684800e+04 1.2134773e+00 + 1.1685200e+04 5.9523272e-01 + 1.1685600e+04 -2.2532634e-02 + 1.1686000e+04 -3.4955902e-01 + 1.1686400e+04 -5.4419580e-01 + 1.1686800e+04 -9.0479997e-01 + 1.1687200e+04 -1.1318553e+00 + 1.1687600e+04 -1.5160436e+00 + 1.1688000e+04 -2.2466202e+00 + 1.1688400e+04 -3.0289935e+00 + 1.1688800e+04 -3.0121643e+00 + 1.1689200e+04 -2.5910868e+00 + 1.1689600e+04 -1.7458982e+00 + 1.1690000e+04 -7.6932941e-01 + 1.1690400e+04 4.8459673e-01 + 1.1690800e+04 9.3567114e-01 + 1.1691200e+04 1.1165842e+00 + 1.1691600e+04 1.0465830e+00 + 1.1692000e+04 8.4961703e-01 + 1.1692400e+04 7.1012663e-01 + 1.1692800e+04 4.4084232e-01 + 1.1693200e+04 4.2647749e-01 + 1.1693600e+04 1.0828949e-01 + 1.1694000e+04 3.3864582e-02 + 1.1694400e+04 -4.3136607e-02 + 1.1694800e+04 -7.1396452e-03 + 1.1695200e+04 -1.9320242e-01 + 1.1695600e+04 1.2841984e-01 + 1.1696000e+04 3.4671891e-01 + 1.1696400e+04 6.9752199e-01 + 1.1696800e+04 9.9170645e-01 + 1.1697200e+04 1.1348061e+00 + 1.1697600e+04 8.4317756e-01 + 1.1698000e+04 8.5545713e-01 + 1.1698400e+04 2.5721017e-01 + 1.1698800e+04 -4.2378770e-01 + 1.1699200e+04 -8.0040614e-01 + 1.1699600e+04 -1.1624570e+00 + 1.1700000e+04 -1.2395125e+00 + 1.1700400e+04 -8.1487212e-01 + 1.1700800e+04 -5.9950842e-01 + 1.1701200e+04 -6.6599073e-01 + 1.1701600e+04 -8.4085998e-01 + 1.1702000e+04 -1.0612128e+00 + 1.1702400e+04 -1.2730051e+00 + 1.1702800e+04 -1.2490384e+00 + 1.1703200e+04 -1.0329679e+00 + 1.1703600e+04 -7.8324337e-01 + 1.1704000e+04 -5.9776085e-01 + 1.1704400e+04 -7.8206318e-01 + 1.1704800e+04 -4.8210536e-01 + 1.1705200e+04 -1.7371751e-01 + 1.1705600e+04 9.7865029e-02 + 1.1706000e+04 4.4166865e-01 + 1.1706400e+04 8.4545225e-01 + 1.1706800e+04 1.0056777e+00 + 1.1707200e+04 9.4421041e-01 + 1.1707600e+04 9.7544508e-01 + 1.1708000e+04 1.0323756e+00 + 1.1708400e+04 9.6232687e-01 + 1.1708800e+04 5.6332991e-01 + 1.1709200e+04 1.7997605e-01 + 1.1709600e+04 -3.5139339e-01 + 1.1710000e+04 -6.5251359e-01 + 1.1710400e+04 -2.9170270e-01 + 1.1710800e+04 -6.5652152e-02 + 1.1711200e+04 -9.9988168e-02 + 1.1711600e+04 -2.1132415e-01 + 1.1712000e+04 -4.1002267e-01 + 1.1712400e+04 -1.0833572e+00 + 1.1712800e+04 -1.5355308e+00 + 1.1713200e+04 -1.9608999e+00 + 1.1713600e+04 -1.8388558e+00 + 1.1714000e+04 -1.4843709e+00 + 1.1714400e+04 -9.0975863e-01 + 1.1714800e+04 -3.4429744e-02 + 1.1715200e+04 8.8693258e-01 + 1.1715600e+04 1.5669757e+00 + 1.1716000e+04 2.3271715e+00 + 1.1716400e+04 2.9138114e+00 + 1.1716800e+04 3.0452092e+00 + 1.1717200e+04 3.1238388e+00 + 1.1717600e+04 3.3780959e+00 + 1.1718000e+04 3.2047372e+00 + 1.1718400e+04 2.9243187e+00 + 1.1718800e+04 2.1147761e+00 + 1.1719200e+04 1.4075211e+00 + 1.1719600e+04 9.4264685e-01 + 1.1720000e+04 -1.8722571e-02 + 1.1720400e+04 -7.5000070e-01 + 1.1720800e+04 -1.7452541e+00 + 1.1721200e+04 -2.3671278e+00 + 1.1721600e+04 -2.7117606e+00 + 1.1722000e+04 -2.4607028e+00 + 1.1722400e+04 -2.0508003e+00 + 1.1722800e+04 -1.9557135e+00 + 1.1723200e+04 -2.0611271e+00 + 1.1723600e+04 -2.4578328e+00 + 1.1724000e+04 -2.9527742e+00 + 1.1724400e+04 -2.9947943e+00 + 1.1724800e+04 -2.5460528e+00 + 1.1725200e+04 -1.8905119e+00 + 1.1725600e+04 -8.0553533e-01 + 1.1726000e+04 3.0359744e-01 + 1.1726400e+04 1.0371049e+00 + 1.1726800e+04 1.5628371e+00 + 1.1727200e+04 1.9016110e+00 + 1.1727600e+04 2.0274354e+00 + 1.1728000e+04 1.9746572e+00 + 1.1728400e+04 2.0586614e+00 + 1.1728800e+04 1.9420398e+00 + 1.1729200e+04 1.7920652e+00 + 1.1729600e+04 1.7171041e+00 + 1.1730000e+04 1.4207324e+00 + 1.1730400e+04 1.1658997e+00 + 1.1730800e+04 1.0541700e+00 + 1.1731200e+04 5.6011020e-01 + 1.1731600e+04 -9.6680637e-02 + 1.1732000e+04 -3.8499179e-01 + 1.1732400e+04 -8.0273476e-01 + 1.1732800e+04 -1.2303904e+00 + 1.1733200e+04 -1.7158787e+00 + 1.1733600e+04 -2.1624922e+00 + 1.1734000e+04 -2.4155660e+00 + 1.1734400e+04 -2.5502513e+00 + 1.1734800e+04 -2.4553987e+00 + 1.1735200e+04 -1.9112157e+00 + 1.1735600e+04 -1.1924008e+00 + 1.1736000e+04 -3.5288569e-01 + 1.1736400e+04 1.1749862e+00 + 1.1736800e+04 2.6788973e+00 + 1.1737200e+04 3.5962531e+00 + 1.1737600e+04 3.6849312e+00 + 1.1738000e+04 3.1424089e+00 + 1.1738400e+04 2.4321101e+00 + 1.1738800e+04 1.7158907e+00 + 1.1739200e+04 1.2182797e+00 + 1.1739600e+04 8.2389091e-01 + 1.1740000e+04 4.7088474e-01 + 1.1740400e+04 -9.1862383e-02 + 1.1740800e+04 -7.9066727e-01 + 1.1741200e+04 -1.6203120e+00 + 1.1741600e+04 -2.1836546e+00 + 1.1742000e+04 -2.4785877e+00 + 1.1742400e+04 -2.5865111e+00 + 1.1742800e+04 -2.4318506e+00 + 1.1743200e+04 -1.9237048e+00 + 1.1743600e+04 -1.6554162e+00 + 1.1744000e+04 -1.3905485e+00 + 1.1744400e+04 -1.2797520e+00 + 1.1744800e+04 -1.0054058e+00 + 1.1745200e+04 -9.9160547e-01 + 1.1745600e+04 -5.3618340e-01 + 1.1746000e+04 2.4298040e-01 + 1.1746400e+04 9.4056548e-01 + 1.1746800e+04 1.8186240e+00 + 1.1747200e+04 2.5653248e+00 + 1.1747600e+04 2.8002847e+00 + 1.1748000e+04 3.0123078e+00 + 1.1748400e+04 2.8337525e+00 + 1.1748800e+04 2.6285230e+00 + 1.1749200e+04 2.3199918e+00 + 1.1749600e+04 1.4593579e+00 + 1.1750000e+04 4.3404391e-01 + 1.1750400e+04 -1.6756169e-01 + 1.1750800e+04 -4.7494445e-01 + 1.1751200e+04 -7.5386029e-01 + 1.1751600e+04 -6.6309624e-01 + 1.1752000e+04 -4.7338377e-01 + 1.1752400e+04 -3.8536293e-01 + 1.1752800e+04 -6.8731597e-01 + 1.1753200e+04 -1.2960987e+00 + 1.1753600e+04 -1.6161234e+00 + 1.1754000e+04 -2.0626429e+00 + 1.1754400e+04 -2.2799855e+00 + 1.1754800e+04 -2.0856878e+00 + 1.1755200e+04 -1.5394465e+00 + 1.1755600e+04 -1.2461654e+00 + 1.1756000e+04 -1.0264113e+00 + 1.1756400e+04 -7.3099986e-01 + 1.1756800e+04 -3.6067573e-01 + 1.1757200e+04 2.1777068e-02 + 1.1757600e+04 3.6539764e-01 + 1.1758000e+04 1.1091981e+00 + 1.1758400e+04 1.7379508e+00 + 1.1758800e+04 2.9113469e+00 + 1.1759200e+04 3.6763323e+00 + 1.1759600e+04 3.9550042e+00 + 1.1760000e+04 3.8184210e+00 + 1.1760400e+04 3.5409978e+00 + 1.1760800e+04 2.6068478e+00 + 1.1761200e+04 1.7577915e+00 + 1.1761600e+04 9.0892517e-01 + 1.1762000e+04 -3.4484011e-01 + 1.1762400e+04 -1.2575040e+00 + 1.1762800e+04 -1.4578744e+00 + 1.1763200e+04 -1.9363506e+00 + 1.1763600e+04 -2.2368621e+00 + 1.1764000e+04 -2.5137145e+00 + 1.1764400e+04 -2.7694789e+00 + 1.1764800e+04 -2.5822629e+00 + 1.1765200e+04 -2.2766980e+00 + 1.1765600e+04 -1.8307304e+00 + 1.1766000e+04 -1.3399896e+00 + 1.1766400e+04 -7.4825569e-01 + 1.1766800e+04 -7.5389116e-02 + 1.1767200e+04 6.4190118e-01 + 1.1767600e+04 9.9534135e-01 + 1.1768000e+04 1.5722727e+00 + 1.1768400e+04 2.1969420e+00 + 1.1768800e+04 2.5869435e+00 + 1.1769200e+04 2.4956391e+00 + 1.1769600e+04 2.0317575e+00 + 1.1770000e+04 1.1950115e+00 + 1.1770400e+04 4.2860292e-01 + 1.1770800e+04 -2.3884793e-01 + 1.1771200e+04 -9.1850737e-01 + 1.1771600e+04 -1.3418059e+00 + 1.1772000e+04 -1.9086095e+00 + 1.1772400e+04 -2.1284856e+00 + 1.1772800e+04 -2.0470536e+00 + 1.1773200e+04 -1.8403087e+00 + 1.1773600e+04 -1.6892086e+00 + 1.1774000e+04 -9.9538136e-01 + 1.1774400e+04 -2.7713482e-01 + 1.1774800e+04 4.2359096e-01 + 1.1775200e+04 1.1203281e+00 + 1.1775600e+04 1.3068517e+00 + 1.1776000e+04 1.2511354e+00 + 1.1776400e+04 1.7412135e+00 + 1.1776800e+04 1.7860453e+00 + 1.1777200e+04 1.6562229e+00 + 1.1777600e+04 1.5096916e+00 + 1.1778000e+04 1.4962892e+00 + 1.1778400e+04 1.1732467e+00 + 1.1778800e+04 5.9939859e-01 + 1.1779200e+04 3.3812601e-01 + 1.1779600e+04 2.6045861e-01 + 1.1780000e+04 1.3946836e-01 + 1.1780400e+04 -1.5633476e-01 + 1.1780800e+04 -5.1096157e-01 + 1.1781200e+04 -1.1498292e+00 + 1.1781600e+04 -1.3816448e+00 + 1.1782000e+04 -1.1182938e+00 + 1.1782400e+04 -5.5136911e-01 + 1.1782800e+04 -5.7649459e-03 + 1.1783200e+04 4.1690723e-01 + 1.1783600e+04 5.7141565e-01 + 1.1784000e+04 5.8057091e-01 + 1.1784400e+04 -1.3060758e-01 + 1.1784800e+04 -7.1073364e-01 + 1.1785200e+04 -1.2976307e+00 + 1.1785600e+04 -1.5499405e+00 + 1.1786000e+04 -1.3922237e+00 + 1.1786400e+04 -9.2617548e-01 + 1.1786800e+04 -5.8993819e-02 + 1.1787200e+04 8.0573983e-01 + 1.1787600e+04 1.3395131e+00 + 1.1788000e+04 1.4579203e+00 + 1.1788400e+04 1.4320909e+00 + 1.1788800e+04 1.2606805e+00 + 1.1789200e+04 9.2756886e-01 + 1.1789600e+04 3.1516104e-01 + 1.1790000e+04 -2.1735428e-01 + 1.1790400e+04 -5.5444344e-01 + 1.1790800e+04 -5.6624275e-01 + 1.1791200e+04 -6.0285625e-01 + 1.1791600e+04 -3.8314622e-01 + 1.1792000e+04 -2.7853932e-01 + 1.1792400e+04 -3.6108677e-01 + 1.1792800e+04 6.0241276e-02 + 1.1793200e+04 2.3826514e-01 + 1.1793600e+04 8.0961171e-01 + 1.1794000e+04 1.2904504e+00 + 1.1794400e+04 1.5931963e+00 + 1.1794800e+04 1.4827015e+00 + 1.1795200e+04 1.1902777e+00 + 1.1795600e+04 8.5231317e-01 + 1.1796000e+04 1.9233417e-02 + 1.1796400e+04 -3.4085473e-01 + 1.1796800e+04 -6.2393259e-01 + 1.1797200e+04 -7.3316802e-01 + 1.1797600e+04 -9.7147011e-01 + 1.1798000e+04 -6.6135339e-01 + 1.1798400e+04 -8.7487412e-01 + 1.1798800e+04 -1.0717490e+00 + 1.1799200e+04 -1.0129763e+00 + 1.1799600e+04 -6.1471656e-01 + 1.1800000e+04 -9.3303591e-02 + 1.1800400e+04 1.4980444e-01 + 1.1800800e+04 2.6341140e-01 + 1.1801200e+04 4.3505467e-01 + 1.1801600e+04 8.0045384e-01 + 1.1802000e+04 1.1949462e+00 + 1.1802400e+04 1.2228789e+00 + 1.1802800e+04 5.4741711e-01 + 1.1803200e+04 -1.8543949e-01 + 1.1803600e+04 -9.8369111e-01 + 1.1804000e+04 -1.7483720e+00 + 1.1804400e+04 -2.1506020e+00 + 1.1804800e+04 -2.0857537e+00 + 1.1805200e+04 -1.9411387e+00 + 1.1805600e+04 -1.1636603e+00 + 1.1806000e+04 -4.3950886e-01 + 1.1806400e+04 -4.5092515e-02 + 1.1806800e+04 1.8551082e-01 + 1.1807200e+04 1.1037518e-01 + 1.1807600e+04 1.0491186e-01 + 1.1808000e+04 5.1898600e-01 + 1.1808400e+04 1.1337051e+00 + 1.1808800e+04 1.4142704e+00 + 1.1809200e+04 1.6429383e+00 + 1.1809600e+04 2.1544860e+00 + 1.1810000e+04 1.9429768e+00 + 1.1810400e+04 1.1211184e+00 + 1.1810800e+04 4.4422200e-01 + 1.1811200e+04 2.9865719e-01 + 1.1811600e+04 2.3282090e-01 + 1.1812000e+04 2.7820555e-01 + 1.1812400e+04 4.5942980e-01 + 1.1812800e+04 6.4196099e-01 + 1.1813200e+04 6.1932954e-01 + 1.1813600e+04 4.0733842e-01 + 1.1814000e+04 -3.3111262e-02 + 1.1814400e+04 -3.9444475e-01 + 1.1814800e+04 -9.7975667e-01 + 1.1815200e+04 -1.4280921e+00 + 1.1815600e+04 -1.9172165e+00 + 1.1816000e+04 -2.2466707e+00 + 1.1816400e+04 -2.1029056e+00 + 1.1816800e+04 -2.1003796e+00 + 1.1817200e+04 -1.7399864e+00 + 1.1817600e+04 -1.0808743e+00 + 1.1818000e+04 -2.5352065e-01 + 1.1818400e+04 3.6158016e-01 + 1.1818800e+04 1.0996279e+00 + 1.1819200e+04 1.8150679e+00 + 1.1819600e+04 1.8080848e+00 + 1.1820000e+04 1.7922808e+00 + 1.1820400e+04 1.7041404e+00 + 1.1820800e+04 1.0076718e+00 + 1.1821200e+04 3.8822422e-01 + 1.1821600e+04 1.0316634e-01 + 1.1822000e+04 2.4064701e-01 + 1.1822400e+04 4.1579442e-01 + 1.1822800e+04 6.8645139e-01 + 1.1823200e+04 9.6237488e-01 + 1.1823600e+04 1.2514508e+00 + 1.1824000e+04 1.1426113e+00 + 1.1824400e+04 4.0506028e-01 + 1.1824800e+04 -2.3636685e-01 + 1.1825200e+04 -6.5196597e-01 + 1.1825600e+04 -1.4125817e+00 + 1.1826000e+04 -1.7970630e+00 + 1.1826400e+04 -1.9704745e+00 + 1.1826800e+04 -1.9698859e+00 + 1.1827200e+04 -1.4756003e+00 + 1.1827600e+04 -1.0108565e+00 + 1.1828000e+04 -5.8933855e-01 + 1.1828400e+04 -2.7584310e-01 + 1.1828800e+04 -5.2697978e-02 + 1.1829200e+04 1.3654087e-01 + 1.1829600e+04 5.0916996e-01 + 1.1830000e+04 5.0066269e-01 + 1.1830400e+04 6.2006437e-01 + 1.1830800e+04 6.0480617e-01 + 1.1831200e+04 8.7515567e-01 + 1.1831600e+04 8.0299085e-01 + 1.1832000e+04 7.6253644e-01 + 1.1832400e+04 8.2563794e-01 + 1.1832800e+04 1.2238760e+00 + 1.1833200e+04 1.8155072e+00 + 1.1833600e+04 2.5578067e+00 + 1.1834000e+04 3.2182282e+00 + 1.1834400e+04 3.0666355e+00 + 1.1834800e+04 2.1630567e+00 + 1.1835200e+04 9.0214604e-01 + 1.1835600e+04 -4.1932394e-01 + 1.1836000e+04 -1.4030759e+00 + 1.1836400e+04 -2.0634833e+00 + 1.1836800e+04 -2.6322329e+00 + 1.1837200e+04 -3.2483794e+00 + 1.1837600e+04 -3.4034565e+00 + 1.1838000e+04 -3.4426112e+00 + 1.1838400e+04 -3.3885534e+00 + 1.1838800e+04 -2.9125608e+00 + 1.1839200e+04 -2.0460811e+00 + 1.1839600e+04 -9.6411141e-01 + 1.1840000e+04 -4.0482121e-02 + 1.1840400e+04 9.1601318e-01 + 1.1840800e+04 1.7711597e+00 + 1.1841200e+04 2.4469353e+00 + 1.1841600e+04 2.7019060e+00 + 1.1842000e+04 2.6449649e+00 + 1.1842400e+04 2.3734253e+00 + 1.1842800e+04 2.1361157e+00 + 1.1843200e+04 1.9476876e+00 + 1.1843600e+04 1.4915404e+00 + 1.1844000e+04 1.1546645e+00 + 1.1844400e+04 8.0697202e-01 + 1.1844800e+04 4.1130224e-01 + 1.1845200e+04 2.5019833e-01 + 1.1845600e+04 2.9174566e-01 + 1.1846000e+04 -9.2106145e-02 + 1.1846400e+04 -2.7540278e-01 + 1.1846800e+04 -5.4831383e-01 + 1.1847200e+04 -9.1063481e-01 + 1.1847600e+04 -8.0952104e-01 + 1.1848000e+04 -7.7295158e-01 + 1.1848400e+04 -6.9656407e-01 + 1.1848800e+04 -1.0041370e+00 + 1.1849200e+04 -1.4874672e+00 + 1.1849600e+04 -1.6153180e+00 + 1.1850000e+04 -1.5856392e+00 + 1.1850400e+04 -1.9687529e+00 + 1.1850800e+04 -1.8859269e+00 + 1.1851200e+04 -1.5514527e+00 + 1.1851600e+04 -1.0266988e+00 + 1.1852000e+04 -7.0024766e-01 + 1.1852400e+04 -1.5983539e-01 + 1.1852800e+04 2.7517994e-01 + 1.1853200e+04 1.3205162e+00 + 1.1853600e+04 2.0537720e+00 + 1.1854000e+04 2.4994053e+00 + 1.1854400e+04 2.8924782e+00 + 1.1854800e+04 2.8978815e+00 + 1.1855200e+04 2.5152885e+00 + 1.1855600e+04 2.0418772e+00 + 1.1856000e+04 1.0558426e+00 + 1.1856400e+04 3.5218660e-01 + 1.1856800e+04 -3.5991084e-01 + 1.1857200e+04 -5.6848634e-01 + 1.1857600e+04 -7.3219927e-01 + 1.1858000e+04 -6.0326360e-01 + 1.1858400e+04 -6.5058888e-01 + 1.1858800e+04 -4.3712101e-01 + 1.1859200e+04 -2.3724795e-01 + 1.1859600e+04 -1.8290925e-01 + 1.1860000e+04 -4.1914826e-01 + 1.1860400e+04 -5.7947688e-01 + 1.1860800e+04 -5.6936630e-01 + 1.1861200e+04 -5.5847959e-01 + 1.1861600e+04 -6.3273280e-01 + 1.1862000e+04 -8.5469885e-01 + 1.1862400e+04 -8.0723893e-01 + 1.1862800e+04 -6.8143227e-01 + 1.1863200e+04 -5.4908428e-01 + 1.1863600e+04 -5.6365300e-01 + 1.1864000e+04 -7.2692404e-01 + 1.1864400e+04 -1.1790520e+00 + 1.1864800e+04 -1.4240647e+00 + 1.1865200e+04 -1.5102652e+00 + 1.1865600e+04 -1.7035087e+00 + 1.1866000e+04 -1.6057578e+00 + 1.1866400e+04 -1.1896368e+00 + 1.1866800e+04 -8.4388323e-01 + 1.1867200e+04 -5.3662852e-01 + 1.1867600e+04 -3.0596262e-01 + 1.1868000e+04 3.2413009e-01 + 1.1868400e+04 9.8156376e-01 + 1.1868800e+04 1.4051725e+00 + 1.1869200e+04 1.8371842e+00 + 1.1869600e+04 2.3271149e+00 + 1.1870000e+04 2.4441879e+00 + 1.1870400e+04 2.1435218e+00 + 1.1870800e+04 1.6193435e+00 + 1.1871200e+04 1.2683101e+00 + 1.1871600e+04 9.5883451e-01 + 1.1872000e+04 4.2942177e-01 + 1.1872400e+04 -3.7245446e-03 + 1.1872800e+04 -4.9710666e-01 + 1.1873200e+04 -1.0910306e+00 + 1.1873600e+04 -1.8642387e+00 + 1.1874000e+04 -2.0915594e+00 + 1.1874400e+04 -2.2664888e+00 + 1.1874800e+04 -2.1806585e+00 + 1.1875200e+04 -1.7250912e+00 + 1.1875600e+04 -9.8125268e-01 + 1.1876000e+04 -3.6414606e-01 + 1.1876400e+04 -2.1884502e-01 + 1.1876800e+04 1.1454886e-02 + 1.1877200e+04 3.3522511e-01 + 1.1877600e+04 4.6412909e-01 + 1.1878000e+04 3.7664547e-01 + 1.1878400e+04 5.9387456e-01 + 1.1878800e+04 6.3090379e-01 + 1.1879200e+04 8.2444289e-01 + 1.1879600e+04 1.0988745e+00 + 1.1880000e+04 1.2518267e+00 + 1.1880400e+04 1.6136732e+00 + 1.1880800e+04 1.5384680e+00 + 1.1881200e+04 1.0647620e+00 + 1.1881600e+04 2.1240059e-01 + 1.1882000e+04 -7.8952191e-01 + 1.1882400e+04 -1.7540827e+00 + 1.1882800e+04 -2.4899555e+00 + 1.1883200e+04 -3.1041547e+00 + 1.1883600e+04 -3.2323173e+00 + 1.1884000e+04 -2.7643868e+00 + 1.1884400e+04 -1.8480403e+00 + 1.1884800e+04 -7.9802379e-01 + 1.1885200e+04 7.5705811e-02 + 1.1885600e+04 8.6629157e-01 + 1.1886000e+04 1.4964952e+00 + 1.1886400e+04 2.1855501e+00 + 1.1886800e+04 2.7170856e+00 + 1.1887200e+04 3.2390050e+00 + 1.1887600e+04 2.7341613e+00 + 1.1888000e+04 2.4934815e+00 + 1.1888400e+04 1.7590465e+00 + 1.1888800e+04 8.8984843e-01 + 1.1889200e+04 4.9645852e-01 + 1.1889600e+04 3.2329431e-01 + 1.1890000e+04 -1.4868958e-02 + 1.1890400e+04 -1.8277095e-01 + 1.1890800e+04 -2.1450986e-02 + 1.1891200e+04 2.1157305e-02 + 1.1891600e+04 -2.1900809e-01 + 1.1892000e+04 -5.0255331e-01 + 1.1892400e+04 -9.1617462e-01 + 1.1892800e+04 -1.2393177e+00 + 1.1893200e+04 -1.4826423e+00 + 1.1893600e+04 -1.3933271e+00 + 1.1894000e+04 -1.1025765e+00 + 1.1894400e+04 -3.8099788e-01 + 1.1894800e+04 2.9192865e-01 + 1.1895200e+04 6.5732593e-01 + 1.1895600e+04 4.9355505e-01 + 1.1896000e+04 4.3203866e-01 + 1.1896400e+04 7.4086025e-01 + 1.1896800e+04 5.3499425e-01 + 1.1897200e+04 3.0965432e-01 + 1.1897600e+04 2.4958288e-01 + 1.1898000e+04 2.7297259e-01 + 1.1898400e+04 2.3476324e-01 + 1.1898800e+04 1.6071254e-01 + 1.1899200e+04 -1.9110300e-01 + 1.1899600e+04 -4.8120512e-01 + 1.1900000e+04 -4.7499152e-01 + 1.1900400e+04 -5.4291673e-01 + 1.1900800e+04 -6.6225220e-01 + 1.1901200e+04 -1.1173627e+00 + 1.1901600e+04 -1.4520748e+00 + 1.1902000e+04 -1.6434333e+00 + 1.1902400e+04 -1.6135327e+00 + 1.1902800e+04 -1.4377103e+00 + 1.1903200e+04 -1.1035508e+00 + 1.1903600e+04 -8.3919155e-01 + 1.1904000e+04 -3.1061313e-01 + 1.1904400e+04 8.0705089e-02 + 1.1904800e+04 5.8064215e-01 + 1.1905200e+04 1.2259183e+00 + 1.1905600e+04 1.7539246e+00 + 1.1906000e+04 2.3514504e+00 + 1.1906400e+04 2.4350511e+00 + 1.1906800e+04 2.2666890e+00 + 1.1907200e+04 1.5679044e+00 + 1.1907600e+04 9.8792919e-01 + 1.1908000e+04 7.5063730e-01 + 1.1908400e+04 2.3760857e-01 + 1.1908800e+04 -2.6868987e-01 + 1.1909200e+04 -5.2092924e-01 + 1.1909600e+04 -9.1124148e-01 + 1.1910000e+04 -8.7320744e-01 + 1.1910400e+04 -7.7976502e-01 + 1.1910800e+04 -6.6663155e-01 + 1.1911200e+04 -5.3233692e-01 + 1.1911600e+04 -5.4357078e-01 + 1.1912000e+04 -4.0627065e-01 + 1.1912400e+04 -8.7632378e-02 + 1.1912800e+04 2.8758044e-01 + 1.1913200e+04 4.4165639e-01 + 1.1913600e+04 3.2823213e-01 + 1.1914000e+04 -4.4462090e-01 + 1.1914400e+04 -9.4373445e-01 + 1.1914800e+04 -1.1504748e+00 + 1.1915200e+04 -1.2198555e+00 + 1.1915600e+04 -8.2524946e-01 + 1.1916000e+04 -1.0454315e-01 + 1.1916400e+04 7.0088944e-01 + 1.1916800e+04 1.1148576e+00 + 1.1917200e+04 1.4987003e+00 + 1.1917600e+04 2.0049196e+00 + 1.1918000e+04 2.1550307e+00 + 1.1918400e+04 2.2190315e+00 + 1.1918800e+04 2.1173740e+00 + 1.1919200e+04 1.8520311e+00 + 1.1919600e+04 1.4409084e+00 + 1.1920000e+04 1.3546768e+00 + 1.1920400e+04 1.1295428e+00 + 1.1920800e+04 8.7580732e-01 + 1.1921200e+04 5.6218210e-01 + 1.1921600e+04 4.5526877e-01 + 1.1922000e+04 2.0150949e-02 + 1.1922400e+04 -7.6304259e-01 + 1.1922800e+04 -1.5505603e+00 + 1.1923200e+04 -1.8867117e+00 + 1.1923600e+04 -2.0278832e+00 + 1.1924000e+04 -2.1544640e+00 + 1.1924400e+04 -2.1215782e+00 + 1.1924800e+04 -1.9727569e+00 + 1.1925200e+04 -1.8097058e+00 + 1.1925600e+04 -1.7454916e+00 + 1.1926000e+04 -1.6063568e+00 + 1.1926400e+04 -1.3524496e+00 + 1.1926800e+04 -1.2983653e+00 + 1.1927200e+04 -1.4321264e+00 + 1.1927600e+04 -1.4752576e+00 + 1.1928000e+04 -1.5158353e+00 + 1.1928400e+04 -1.3730891e+00 + 1.1928800e+04 -8.1674775e-01 + 1.1929200e+04 1.2346820e-01 + 1.1929600e+04 1.2012512e+00 + 1.1930000e+04 2.5801105e+00 + 1.1930400e+04 3.7992404e+00 + 1.1930800e+04 4.2916945e+00 + 1.1931200e+04 4.3383212e+00 + 1.1931600e+04 3.6162371e+00 + 1.1932000e+04 2.6447915e+00 + 1.1932400e+04 1.2738984e+00 + 1.1932800e+04 1.1377783e-01 + 1.1933200e+04 -6.9254973e-01 + 1.1933600e+04 -1.4116606e+00 + 1.1934000e+04 -1.8482563e+00 + 1.1934400e+04 -1.6703887e+00 + 1.1934800e+04 -1.2861660e+00 + 1.1935200e+04 -1.0328460e+00 + 1.1935600e+04 -8.6334629e-01 + 1.1936000e+04 -6.2572428e-01 + 1.1936400e+04 -2.2371239e-01 + 1.1936800e+04 2.0569543e-01 + 1.1937200e+04 4.6183693e-01 + 1.1937600e+04 4.1078749e-01 + 1.1938000e+04 3.3611994e-01 + 1.1938400e+04 4.9998142e-01 + 1.1938800e+04 9.3383263e-01 + 1.1939200e+04 1.1395036e+00 + 1.1939600e+04 1.4116807e+00 + 1.1940000e+04 1.3233576e+00 + 1.1940400e+04 1.3223932e+00 + 1.1940800e+04 1.5664758e+00 + 1.1941200e+04 1.4023985e+00 + 1.1941600e+04 1.1474572e+00 + 1.1942000e+04 5.4774552e-01 + 1.1942400e+04 -1.1229445e-01 + 1.1942800e+04 -7.2316965e-01 + 1.1943200e+04 -1.2955922e+00 + 1.1943600e+04 -1.8907978e+00 + 1.1944000e+04 -2.6356025e+00 + 1.1944400e+04 -3.1580637e+00 + 1.1944800e+04 -3.2584303e+00 + 1.1945200e+04 -3.0503599e+00 + 1.1945600e+04 -2.6187165e+00 + 1.1946000e+04 -1.9677121e+00 + 1.1946400e+04 -1.2998347e+00 + 1.1946800e+04 -4.3197655e-01 + 1.1947200e+04 3.1833834e-01 + 1.1947600e+04 6.8466664e-01 + 1.1948000e+04 1.1765039e+00 + 1.1948400e+04 1.3287103e+00 + 1.1948800e+04 8.7539765e-01 + 1.1949200e+04 5.0437545e-01 + 1.1949600e+04 1.4149384e-01 + 1.1950000e+04 -1.8278116e-02 + 1.1950400e+04 2.1519485e-01 + 1.1950800e+04 3.3738501e-01 + 1.1951200e+04 8.1243095e-01 + 1.1951600e+04 1.3569447e+00 + 1.1952000e+04 1.9161828e+00 + 1.1952400e+04 1.9339349e+00 + 1.1952800e+04 1.7807756e+00 + 1.1953200e+04 1.5342382e+00 + 1.1953600e+04 1.1465197e+00 + 1.1954000e+04 6.6963304e-01 + 1.1954400e+04 3.6486083e-01 + 1.1954800e+04 1.6718944e-01 + 1.1955200e+04 2.0178741e-01 + 1.1955600e+04 3.5591620e-01 + 1.1956000e+04 5.0825898e-01 + 1.1956400e+04 5.2314634e-01 + 1.1956800e+04 3.6039474e-01 + 1.1957200e+04 1.8086265e-01 + 1.1957600e+04 -2.7476136e-01 + 1.1958000e+04 -6.3883053e-01 + 1.1958400e+04 -6.5906845e-01 + 1.1958800e+04 -1.0416480e+00 + 1.1959200e+04 -1.6880967e+00 + 1.1959600e+04 -2.0695076e+00 + 1.1960000e+04 -2.3131197e+00 + 1.1960400e+04 -2.3837186e+00 + 1.1960800e+04 -2.3167453e+00 + 1.1961200e+04 -1.9260103e+00 + 1.1961600e+04 -1.4367592e+00 + 1.1962000e+04 -6.5472718e-01 + 1.1962400e+04 -1.5817215e-01 + 1.1962800e+04 4.4906841e-02 + 1.1963200e+04 -7.8496133e-02 + 1.1963600e+04 -5.1667615e-01 + 1.1964000e+04 -4.0120802e-01 + 1.1964400e+04 -1.1711505e-01 + 1.1964800e+04 8.1756859e-03 + 1.1965200e+04 3.2445888e-02 + 1.1965600e+04 -7.0580544e-02 + 1.1966000e+04 2.8726367e-01 + 1.1966400e+04 9.5546810e-01 + 1.1966800e+04 1.1599356e+00 + 1.1967200e+04 1.2693209e+00 + 1.1967600e+04 1.2196362e+00 + 1.1968000e+04 1.3574371e+00 + 1.1968400e+04 1.2516016e+00 + 1.1968800e+04 9.0146782e-01 + 1.1969200e+04 4.8803044e-01 + 1.1969600e+04 3.3332087e-01 + 1.1970000e+04 3.3288338e-01 + 1.1970400e+04 2.8530701e-01 + 1.1970800e+04 3.2250100e-01 + 1.1971200e+04 7.6188589e-01 + 1.1971600e+04 1.1970713e+00 + 1.1972000e+04 1.8159829e+00 + 1.1972400e+04 2.1725464e+00 + 1.1972800e+04 2.5025066e+00 + 1.1973200e+04 2.4259719e+00 + 1.1973600e+04 2.0773002e+00 + 1.1974000e+04 1.4898421e+00 + 1.1974400e+04 7.8098565e-01 + 1.1974800e+04 1.3143700e-01 + 1.1975200e+04 -6.7600127e-01 + 1.1975600e+04 -1.2856347e+00 + 1.1976000e+04 -1.5523369e+00 + 1.1976400e+04 -1.8088470e+00 + 1.1976800e+04 -1.8582324e+00 + 1.1977200e+04 -2.3756236e+00 + 1.1977600e+04 -2.7181084e+00 + 1.1978000e+04 -2.1763697e+00 + 1.1978400e+04 -1.7795987e+00 + 1.1978800e+04 -1.1268743e+00 + 1.1979200e+04 -4.5668827e-01 + 1.1979600e+04 -8.1443437e-02 + 1.1980000e+04 2.4488164e-01 + 1.1980400e+04 5.4670943e-02 + 1.1980800e+04 -3.2091962e-01 + 1.1981200e+04 -8.9367689e-01 + 1.1981600e+04 -1.2636975e+00 + 1.1982000e+04 -1.1916484e+00 + 1.1982400e+04 -1.1463566e+00 + 1.1982800e+04 -9.7898634e-01 + 1.1983200e+04 -5.3821577e-01 + 1.1983600e+04 -1.7872986e-01 + 1.1984000e+04 1.8705908e-01 + 1.1984400e+04 5.4441758e-01 + 1.1984800e+04 4.5896357e-01 + 1.1985200e+04 -1.1227664e-01 + 1.1985600e+04 -1.6586714e-01 + 1.1986000e+04 -8.5403349e-02 + 1.1986400e+04 -2.1040020e-01 + 1.1986800e+04 -9.2549251e-02 + 1.1987200e+04 -2.6928145e-02 + 1.1987600e+04 -5.1315660e-01 + 1.1988000e+04 -5.5160811e-01 + 1.1988400e+04 -2.0348810e-02 + 1.1988800e+04 5.8177841e-01 + 1.1989200e+04 1.4700819e+00 + 1.1989600e+04 2.4015543e+00 + 1.1990000e+04 2.9468724e+00 + 1.1990400e+04 3.2714356e+00 + 1.1990800e+04 3.5881547e+00 + 1.1991200e+04 3.5453774e+00 + 1.1991600e+04 2.7953402e+00 + 1.1992000e+04 1.9312186e+00 + 1.1992400e+04 1.3799167e+00 + 1.1992800e+04 9.9003951e-01 + 1.1993200e+04 9.7050066e-01 + 1.1993600e+04 8.7046487e-01 + 1.1994000e+04 4.0167103e-01 + 1.1994400e+04 -3.5779531e-01 + 1.1994800e+04 -1.1125181e+00 + 1.1995200e+04 -1.8152369e+00 + 1.1995600e+04 -2.1765580e+00 + 1.1996000e+04 -2.4879452e+00 + 1.1996400e+04 -2.4305127e+00 + 1.1996800e+04 -1.9559458e+00 + 1.1997200e+04 -1.7556282e+00 + 1.1997600e+04 -1.5601957e+00 + 1.1998000e+04 -1.4468603e+00 + 1.1998400e+04 -9.6519249e-01 + 1.1998800e+04 -5.9714655e-01 + 1.1999200e+04 5.4902083e-02 + 1.1999600e+04 1.9450317e-01 + 1.2000000e+04 -7.1993929e-02 + 1.2000400e+04 -5.5323483e-01 + 1.2000800e+04 -9.8329296e-01 + 1.2001200e+04 -1.2132963e+00 + 1.2001600e+04 -1.3501346e+00 + 1.2002000e+04 -1.2117213e+00 + 1.2002400e+04 -1.0602070e+00 + 1.2002800e+04 -1.0874720e+00 + 1.2003200e+04 -7.5383345e-01 + 1.2003600e+04 -6.3382453e-01 + 1.2004000e+04 -3.7365191e-01 + 1.2004400e+04 1.0652116e-01 + 1.2004800e+04 4.3671781e-01 + 1.2005200e+04 8.5686447e-01 + 1.2005600e+04 1.3970106e+00 + 1.2006000e+04 1.2671207e+00 + 1.2006400e+04 9.9719839e-01 + 1.2006800e+04 6.6726709e-01 + 1.2007200e+04 4.4730720e-01 + 1.2007600e+04 3.3727290e-01 + 1.2008000e+04 2.5721852e-01 + 1.2008400e+04 -2.2923621e-02 + 1.2008800e+04 -1.9314002e-01 + 1.2009200e+04 -1.0352730e-01 + 1.2009600e+04 1.3590939e-01 + 1.2010000e+04 3.7529236e-01 + 1.2010400e+04 4.5463672e-01 + 1.2010800e+04 7.3394875e-01 + 1.2011200e+04 1.1233073e+00 + 1.2011600e+04 1.1828853e+00 + 1.2012000e+04 1.1128003e+00 + 1.2012400e+04 1.0631371e+00 + 1.2012800e+04 -1.6617845e-01 + 1.2013200e+04 -3.4544179e-01 + 1.2013600e+04 -6.2473797e-01 + 1.2014000e+04 -7.6432993e-01 + 1.2014400e+04 -7.2430886e-01 + 1.2014800e+04 -8.1426452e-01 + 1.2015200e+04 -6.6460985e-01 + 1.2015600e+04 -3.1521154e-01 + 1.2016000e+04 -5.8214756e-03 + 1.2016400e+04 4.1347330e-01 + 1.2016800e+04 9.7280804e-01 + 1.2017200e+04 1.3423677e+00 + 1.2017600e+04 1.8021389e+00 + 1.2018000e+04 1.8319757e+00 + 1.2018400e+04 1.7519509e+00 + 1.2018800e+04 1.2802152e+00 + 1.2019200e+04 6.7845531e-01 + 1.2019600e+04 8.6415727e-02 + 1.2020000e+04 -5.2389103e-01 + 1.2020400e+04 -9.5069394e-01 + 1.2020800e+04 -1.5575085e+00 + 1.2021200e+04 -2.2448894e+00 + 1.2021600e+04 -2.4012211e+00 + 1.2022000e+04 -2.3517379e+00 + 1.2022400e+04 -2.2267147e+00 + 1.2022800e+04 -1.9066153e+00 + 1.2023200e+04 -1.3864246e+00 + 1.2023600e+04 -7.9613134e-01 + 1.2024000e+04 1.6404016e-01 + 1.2024400e+04 1.5040436e+00 + 1.2024800e+04 1.7739015e+00 + 1.2025200e+04 1.5234412e+00 + 1.2025600e+04 1.1328425e+00 + 1.2026000e+04 9.2237555e-01 + 1.2026400e+04 8.6208819e-01 + 1.2026800e+04 3.5203671e-01 + 1.2027200e+04 -1.8036152e-02 + 1.2027600e+04 -3.8821212e-01 + 1.2028000e+04 -6.1864399e-01 + 1.2028400e+04 -9.5928263e-01 + 1.2028800e+04 -1.0501266e+00 + 1.2029200e+04 -8.6081177e-01 + 1.2029600e+04 -3.1142355e-01 + 1.2030000e+04 1.8819912e-01 + 1.2030400e+04 1.1580198e+00 + 1.2030800e+04 1.6082264e+00 + 1.2031200e+04 1.4186452e+00 + 1.2031600e+04 9.8913478e-01 + 1.2032000e+04 4.4969929e-01 + 1.2032400e+04 2.4012722e-01 + 1.2032800e+04 1.6051215e-01 + 1.2033200e+04 1.2076558e-01 + 1.2033600e+04 -9.1529197e-03 + 1.2034000e+04 -1.3903044e-01 + 1.2034400e+04 -5.0094988e-01 + 1.2034800e+04 -6.7412657e-01 + 1.2035200e+04 -3.8856794e-01 + 1.2035600e+04 1.3936078e-01 + 1.2036000e+04 7.4888001e-01 + 1.2036400e+04 1.4484092e+00 + 1.2036800e+04 1.8781144e+00 + 1.2037200e+04 1.4678274e+00 + 1.2037600e+04 1.1276119e+00 + 1.2038000e+04 8.7751184e-01 + 1.2038400e+04 6.1749234e-01 + 1.2038800e+04 4.4757282e-01 + 1.2039200e+04 2.9767395e-01 + 1.2039600e+04 8.7927401e-02 + 1.2040000e+04 -1.1184679e-01 + 1.2040400e+04 -3.8292924e-01 + 1.2040800e+04 -5.2806999e-01 + 1.2041200e+04 -8.5634943e-01 + 1.2041600e+04 -9.0069793e-01 + 1.2042000e+04 -9.4020833e-01 + 1.2042400e+04 -1.3199554e+00 + 1.2042800e+04 -1.5797476e+00 + 1.2043200e+04 -1.9596174e+00 + 1.2043600e+04 -2.0494914e+00 + 1.2044000e+04 -1.7694781e+00 + 1.2044400e+04 -1.2595765e+00 + 1.2044800e+04 -9.2986837e-01 + 1.2045200e+04 -8.9038181e-01 + 1.2045600e+04 -3.6111331e-01 + 1.2046000e+04 -9.0201784e-01 + 1.2046400e+04 -1.5028983e+00 + 1.2046800e+04 -1.6637264e+00 + 1.2047200e+04 -1.0344520e+00 + 1.2047600e+04 -3.5050857e-02 + 1.2048000e+04 1.1345986e+00 + 1.2048400e+04 1.5443782e+00 + 1.2048800e+04 1.9143597e+00 + 1.2049200e+04 2.5843372e+00 + 1.2049600e+04 2.9142494e+00 + 1.2050000e+04 3.2840230e+00 + 1.2050400e+04 3.4937070e+00 + 1.2050800e+04 3.1634335e+00 + 1.2051200e+04 2.7331822e+00 + 1.2051600e+04 2.4629253e+00 + 1.2052000e+04 1.3927411e+00 + 1.2052400e+04 5.4289073e-01 + 1.2052800e+04 -3.6691478e-02 + 1.2053200e+04 -7.1219326e-01 + 1.2053600e+04 -1.0227446e+00 + 1.2054000e+04 -9.5498398e-01 + 1.2054400e+04 -8.7322850e-01 + 1.2054800e+04 -8.9536823e-01 + 1.2055200e+04 -8.4521264e-01 + 1.2055600e+04 -8.9509974e-01 + 1.2056000e+04 -8.0503879e-01 + 1.2056400e+04 -6.9997325e-01 + 1.2056800e+04 -4.4144866e-01 + 1.2057200e+04 -4.1584069e-01 + 1.2057600e+04 -3.9208077e-01 + 1.2058000e+04 -2.7420401e-01 + 1.2058400e+04 -3.0453842e-01 + 1.2058800e+04 -1.0535562e-01 + 1.2059200e+04 9.4013626e-02 + 1.2059600e+04 2.8328679e-01 + 1.2060000e+04 6.3279701e-01 + 1.2060400e+04 5.0258204e-01 + 1.2060800e+04 4.4256398e-01 + 1.2061200e+04 2.2270595e-01 + 1.2061600e+04 -2.7696101e-01 + 1.2062000e+04 -1.1068233e+00 + 1.2062400e+04 -1.3264304e+00 + 1.2062800e+04 -1.1259487e+00 + 1.2063200e+04 -1.0155087e+00 + 1.2063600e+04 -8.4486856e-01 + 1.2064000e+04 -3.6407235e-01 + 1.2064400e+04 -1.7340850e-01 + 1.2064800e+04 -2.5274185e-01 + 1.2065200e+04 -5.9245242e-01 + 1.2065600e+04 -6.3228866e-01 + 1.2066000e+04 -3.5255197e-01 + 1.2066400e+04 -9.3033712e-02 + 1.2066800e+04 1.9625967e-01 + 1.2067200e+04 8.2530837e-01 + 1.2067600e+04 1.1845326e+00 + 1.2068000e+04 1.0838155e+00 + 1.2068400e+04 8.4320194e-01 + 1.2068800e+04 6.8261074e-01 + 1.2069200e+04 8.2201160e-01 + 1.2069600e+04 1.2914498e+00 + 1.2070000e+04 1.5609323e+00 + 1.2070400e+04 1.4003968e+00 + 1.2070800e+04 1.3698975e+00 + 1.2071200e+04 1.2394170e+00 + 1.2071600e+04 1.1889601e+00 + 1.2072000e+04 9.2848686e-01 + 1.2072400e+04 8.4807208e-01 + 1.2072800e+04 5.1779540e-01 + 1.2073200e+04 -2.4219566e-01 + 1.2073600e+04 -1.0220175e+00 + 1.2074000e+04 -1.4016544e+00 + 1.2074400e+04 -1.7011767e+00 + 1.2074800e+04 -1.9206356e+00 + 1.2075200e+04 -1.3900245e+00 + 1.2075600e+04 -4.9945238e-01 + 1.2076000e+04 7.8093046e-01 + 1.2076400e+04 1.6055981e+00 + 1.2076800e+04 1.2617361e+00 + 1.2077200e+04 7.9219659e-01 + 1.2077600e+04 6.5268274e-01 + 1.2078000e+04 4.4314073e-01 + 1.2078400e+04 1.1339641e-01 + 1.2078800e+04 -1.4652381e-01 + 1.2079200e+04 -5.6660331e-01 + 1.2079600e+04 -6.6691466e-01 + 1.2080000e+04 -5.5760818e-01 + 1.2080400e+04 -4.3854087e-01 + 1.2080800e+04 -4.7977249e-01 + 1.2081200e+04 -4.0105373e-01 + 1.2081600e+04 -1.9220266e-01 + 1.2082000e+04 -2.2941195e-02 + 1.2082400e+04 1.8664908e-01 + 1.2082800e+04 7.6625545e-01 + 1.2083200e+04 9.9609805e-01 + 1.2083600e+04 6.0817672e-01 + 1.2084000e+04 8.5207932e-02 + 1.2084400e+04 -2.7479885e-01 + 1.2084800e+04 -5.1919151e-01 + 1.2085200e+04 -7.3989518e-01 + 1.2085600e+04 -8.0885387e-01 + 1.2086000e+04 -7.7802990e-01 + 1.2086400e+04 -7.0766615e-01 + 1.2086800e+04 -8.5747714e-01 + 1.2087200e+04 -6.4140752e-01 + 1.2087600e+04 -2.8822383e-01 + 1.2088000e+04 1.8298437e-01 + 1.2088400e+04 6.8144000e-01 + 1.2088800e+04 1.0110779e+00 + 1.2089200e+04 1.3468815e+00 + 1.2089600e+04 1.8804096e+00 + 1.2090000e+04 2.2931068e+00 + 1.2090400e+04 2.6531053e+00 + 1.2090800e+04 2.5465665e+00 + 1.2091200e+04 1.9960273e+00 + 1.2091600e+04 9.5588478e-01 + 1.2092000e+04 -1.7200647e-01 + 1.2092400e+04 -9.5771535e-01 + 1.2092800e+04 -1.3294614e+00 + 1.2093200e+04 -1.1004688e+00 + 1.2093600e+04 -7.7131622e-01 + 1.2094000e+04 -5.0183286e-01 + 1.2094400e+04 -7.6191103e-01 + 1.2094800e+04 -1.2715335e+00 + 1.2095200e+04 -1.7606911e+00 + 1.2095600e+04 -1.8695470e+00 + 1.2096000e+04 -1.7282025e+00 + 1.2096400e+04 -1.3254659e+00 + 1.2096800e+04 -9.2863645e-01 + 1.2097200e+04 -2.2024937e-01 + 1.2097600e+04 7.7761794e-02 + 1.2098000e+04 1.8287872e-02 + 1.2098400e+04 -1.0767304e-02 + 1.2098800e+04 4.9752493e-02 + 1.2099200e+04 2.9988777e-01 + 1.2099600e+04 7.5971503e-01 + 1.2100000e+04 1.3193652e+00 + 1.2100400e+04 1.8888079e+00 + 1.2100800e+04 2.1377423e+00 + 1.2101200e+04 2.0964046e+00 + 1.2101600e+04 1.6849758e+00 + 1.2102000e+04 1.1834954e+00 + 1.2102400e+04 5.1231436e-01 + 1.2102800e+04 1.2141669e-01 + 1.2103200e+04 -1.5944182e-01 + 1.2103600e+04 -2.4990788e-01 + 1.2104000e+04 -6.1042140e-01 + 1.2104400e+04 -7.5072755e-01 + 1.2104800e+04 -1.0810276e+00 + 1.2105200e+04 -1.2613071e+00 + 1.2105600e+04 -7.3144671e-01 + 1.2106000e+04 -3.2143226e-01 + 1.2106400e+04 2.4882112e-01 + 1.2106800e+04 5.9918640e-01 + 1.2107200e+04 7.3975991e-01 + 1.2107600e+04 4.6050913e-01 + 1.2108000e+04 2.5142214e-01 + 1.2108400e+04 1.5236312e-01 + 1.2108800e+04 3.4900512e-01 + 1.2109200e+04 7.1577862e-01 + 1.2109600e+04 8.8444298e-01 + 1.2110000e+04 9.3346869e-01 + 1.2110400e+04 1.1344043e+00 + 1.2110800e+04 1.6841379e+00 + 1.2111200e+04 1.9635997e+00 + 1.2111600e+04 2.1529239e+00 + 1.2112000e+04 2.0821253e+00 + 1.2112400e+04 1.6311928e+00 + 1.2112800e+04 1.1402318e+00 + 1.2113200e+04 7.9931925e-01 + 1.2113600e+04 -2.1268090e-01 + 1.2114000e+04 -1.1615610e+00 + 1.2114400e+04 -1.9359258e+00 + 1.2114800e+04 -2.4910812e+00 + 1.2115200e+04 -2.8035532e+00 + 1.2115600e+04 -3.0349600e+00 + 1.2116000e+04 -3.1767974e+00 + 1.2116400e+04 -3.0540122e+00 + 1.2116800e+04 -2.6615696e+00 + 1.2117200e+04 -2.4508457e+00 + 1.2117600e+04 -1.4201224e+00 + 1.2118000e+04 -4.9957375e-01 + 1.2118400e+04 -1.0911838e-01 + 1.2118800e+04 1.3134397e-01 + 1.2119200e+04 7.5177959e-01 + 1.2119600e+04 1.5322233e+00 + 1.2120000e+04 1.7126392e+00 + 1.2120400e+04 2.0129883e+00 + 1.2120800e+04 2.2431594e+00 + 1.2121200e+04 2.2831538e+00 + 1.2121600e+04 2.3929712e+00 + 1.2122000e+04 2.5625953e+00 + 1.2122400e+04 2.8220500e+00 + 1.2122800e+04 3.1014823e+00 + 1.2123200e+04 2.9307954e+00 + 1.2123600e+04 2.5800528e+00 + 1.2124000e+04 1.5792832e+00 + 1.2124400e+04 1.1385799e+00 + 1.2124800e+04 -3.1908257e-02 + 1.2125200e+04 -3.6216940e-01 + 1.2125600e+04 -2.8227989e-01 + 1.2126000e+04 -3.4794376e-01 + 1.2126400e+04 -6.7586670e-01 + 1.2126800e+04 -7.9984814e-01 + 1.2127200e+04 -1.0392923e+00 + 1.2127600e+04 -1.4221883e+00 + 1.2128000e+04 -1.2820994e+00 + 1.2128400e+04 -1.4120476e+00 + 1.2128800e+04 -1.6520280e+00 + 1.2129200e+04 -1.8220277e+00 + 1.2129600e+04 -1.9720658e+00 + 1.2130000e+04 -1.8422069e+00 + 1.2130400e+04 -1.7822888e+00 + 1.2130800e+04 -1.7323787e+00 + 1.2131200e+04 -1.5824824e+00 + 1.2131600e+04 -1.1426489e+00 + 1.2132000e+04 -4.1288717e-01 + 1.2132400e+04 3.7709909e-01 + 1.2132800e+04 1.3371646e+00 + 1.2133200e+04 2.2674985e+00 + 1.2133600e+04 2.7181786e+00 + 1.2134000e+04 2.8089445e+00 + 1.2134400e+04 2.5895994e+00 + 1.2134800e+04 2.0599876e+00 + 1.2135200e+04 1.2846803e+00 + 1.2135600e+04 5.0982064e-01 + 1.2136000e+04 1.7939720e-01 + 1.2136400e+04 -1.0311241e+00 + 1.2136800e+04 -1.6885723e+00 + 1.2137200e+04 -2.2413911e+00 + 1.2137600e+04 -2.4011597e+00 + 1.2138000e+04 -2.5179838e+00 + 1.2138400e+04 -2.1582717e+00 + 1.2138800e+04 -1.7267616e+00 + 1.2139200e+04 -1.4074085e+00 + 1.2139600e+04 -9.0781542e-01 + 1.2140000e+04 2.7211145e-01 + 1.2140400e+04 1.1123384e+00 + 1.2140800e+04 1.5429094e+00 + 1.2141200e+04 2.0435902e+00 + 1.2141600e+04 2.3441494e+00 + 1.2142000e+04 2.7146922e+00 + 1.2142400e+04 2.9552115e+00 + 1.2142800e+04 3.7557578e+00 + 1.2143200e+04 3.4163913e+00 + 1.2143600e+04 2.3069514e+00 + 1.2144000e+04 1.3973687e+00 + 1.2144400e+04 1.2076418e+00 + 1.2144800e+04 1.2476541e+00 + 1.2145200e+04 1.6775035e+00 + 1.2145600e+04 1.8871960e+00 + 1.2146000e+04 1.3867150e+00 + 1.2146400e+04 7.4617560e-01 + 1.2146800e+04 8.5534638e-02 + 1.2147200e+04 -1.9535437e-01 + 1.2147600e+04 -1.6964267e+00 + 1.2148000e+04 -2.0976320e+00 + 1.2148400e+04 -2.2088482e+00 + 1.2148800e+04 -3.1599332e+00 + 1.2149200e+04 -4.0007361e+00 + 1.2149600e+04 -3.8314640e+00 + 1.2150000e+04 -3.2918764e+00 + 1.2150400e+04 -2.4520545e+00 + 1.2150800e+04 -1.6018974e+00 + 1.2151200e+04 -9.1575450e-02 + 1.2151600e+04 1.3087449e+00 + 1.2152000e+04 1.5592998e+00 + 1.2152400e+04 2.1099578e+00 + 1.2152800e+04 2.4206463e+00 + 1.2153200e+04 1.9614272e+00 + 1.2153600e+04 1.4521561e+00 + 1.2154000e+04 1.1928580e+00 + 1.2154400e+04 7.6352575e-01 + 1.2154800e+04 -1.9145624e-01 + 1.2155200e+04 -1.2303102e+00 + 1.2155600e+04 -1.8429666e+00 + 1.2156000e+04 -1.8387366e+00 + 1.2156400e+04 -1.7902934e+00 + 1.2156800e+04 -1.6420181e+00 + 1.2157200e+04 -1.0522214e+00 + 1.2157600e+04 -2.9889593e-01 + 1.2158000e+04 5.4942902e-01 + 1.2158400e+04 1.2784068e+00 + 1.2158800e+04 1.7476730e+00 + 1.2159200e+04 2.1272696e+00 + 1.2159600e+04 2.3272894e+00 + 1.2160000e+04 2.5874705e+00 + 1.2160400e+04 3.0177966e+00 + 1.2160800e+04 3.6082048e+00 + 1.2161200e+04 3.7388140e+00 + 1.2161600e+04 3.2496191e+00 + 1.2162000e+04 2.2904806e+00 + 1.2162400e+04 1.2411830e+00 + 1.2162800e+04 6.6169256e-01 + 1.2163200e+04 5.3209825e-01 + 1.2163600e+04 7.7226540e-01 + 1.2164000e+04 5.8221831e-01 + 1.2164400e+04 4.6187884e-01 + 1.2164800e+04 9.1582849e-02 + 1.2165200e+04 7.1040385e-02 + 1.2165600e+04 -1.0095185e+00 + 1.2166000e+04 -2.3377916e+00 + 1.2166400e+04 -3.0206301e+00 + 1.2166800e+04 -2.9412323e+00 + 1.2167200e+04 -2.6219031e+00 + 1.2167600e+04 -1.6727536e+00 + 1.2168000e+04 -3.5383821e-01 + 1.2168400e+04 7.1508879e-01 + 1.2168800e+04 8.3428528e-01 + 1.2169200e+04 2.9393553e-01 + 1.2169600e+04 -5.9615788e-01 + 1.2170000e+04 -1.2059817e+00 + 1.2170400e+04 -1.5056971e+00 + 1.2170800e+04 -1.2653034e+00 + 1.2171200e+04 -7.8473258e-01 + 1.2171600e+04 -3.8419920e-01 + 1.2172000e+04 -3.4936129e-03 + 1.2172400e+04 2.9712665e-01 + 1.2172800e+04 3.6773946e-01 + 1.2173200e+04 5.9826095e-01 + 1.2173600e+04 5.2869206e-01 + 1.2174000e+04 4.4903438e-01 + 1.2174400e+04 1.1932375e-01 + 1.2174800e+04 -3.4053517e-01 + 1.2175200e+04 -5.6048243e-01 + 1.2175600e+04 -4.2048611e-01 + 1.2176000e+04 -8.0713343e-02 + 1.2176400e+04 6.3893558e-01 + 1.2176800e+04 1.2084965e+00 + 1.2177200e+04 1.4480247e+00 + 1.2177600e+04 1.4875166e+00 + 1.2178000e+04 1.2571963e+00 + 1.2178400e+04 1.3666310e+00 + 1.2178800e+04 1.6059698e+00 + 1.2179200e+04 1.8351196e+00 + 1.2179600e+04 2.1341665e+00 + 1.2180000e+04 2.6154909e+00 + 1.2180400e+04 3.0177531e+00 + 1.2180800e+04 3.1564604e+00 + 1.2181200e+04 2.7593543e+00 + 1.2181600e+04 2.2125398e+00 + 1.2182000e+04 1.4330455e+00 + 1.2182400e+04 8.2397093e-01 + 1.2182800e+04 2.0499326e-01 + 1.2183200e+04 -4.0393228e-03 + 1.2183600e+04 -4.3290810e-02 + 1.2184000e+04 -2.0277816e-01 + 1.2184400e+04 -5.5253266e-01 + 1.2184800e+04 -9.2246481e-01 + 1.2185200e+04 -1.5626741e+00 + 1.2185600e+04 -2.2830953e+00 + 1.2186000e+04 -2.7275516e+00 + 1.2186400e+04 -2.9903361e+00 + 1.2186800e+04 -2.9790897e+00 + 1.2187200e+04 -3.2353785e+00 + 1.2187600e+04 -2.9644732e+00 + 1.2188000e+04 -2.5385530e+00 + 1.2188400e+04 -1.9090627e+00 + 1.2188800e+04 -1.0892671e+00 + 1.2189200e+04 -3.0929289e-01 + 1.2189600e+04 5.0781261e-02 + 1.2190000e+04 8.9403644e-01 + 1.2190400e+04 1.4613282e+00 + 1.2190800e+04 1.5319418e+00 + 1.2191200e+04 1.6428093e+00 + 1.2191600e+04 1.7038062e+00 + 1.2192000e+04 8.5479543e-01 + 1.2192400e+04 2.2572026e-01 + 1.2192800e+04 -1.8359157e-01 + 1.2193200e+04 -6.9346539e-01 + 1.2193600e+04 -9.7254508e-01 + 1.2194000e+04 -1.0123980e+00 + 1.2194400e+04 -7.8225575e-01 + 1.2194800e+04 -4.5228031e-01 + 1.2195200e+04 -4.1243806e-01 + 1.2195600e+04 -3.5244852e-01 + 1.2196000e+04 -5.2370814e-02 + 1.2196400e+04 3.8777586e-01 + 1.2196800e+04 1.1078272e+00 + 1.2197200e+04 2.1678539e+00 + 1.2197600e+04 2.8576602e+00 + 1.2198000e+04 2.9875224e+00 + 1.2198400e+04 2.8672045e+00 + 1.2198800e+04 2.7669887e+00 + 1.2199200e+04 2.6167176e+00 + 1.2199600e+04 2.4664619e+00 + 1.2200000e+04 2.3560672e+00 + 1.2200400e+04 1.9056528e+00 + 1.2200800e+04 1.3950183e+00 + 1.2201200e+04 1.0141110e+00 + 1.2201600e+04 8.5313017e-01 + 1.2202000e+04 5.2184954e-01 + 1.2202400e+04 1.0601360e-02 + 1.2202800e+04 -3.9048728e-01 + 1.2203200e+04 -6.6117485e-01 + 1.2203600e+04 -1.0601072e+00 + 1.2204000e+04 -1.3567053e+00 + 1.2204400e+04 -1.8052078e+00 + 1.2204800e+04 -1.9559041e+00 + 1.2205200e+04 -1.6862643e+00 + 1.2205600e+04 -1.4410287e+00 + 1.2206000e+04 -1.3207096e+00 + 1.2206400e+04 -1.5824426e+00 + 1.2206800e+04 -2.3399982e+00 + 1.2207200e+04 -3.3393860e+00 + 1.2207600e+04 -3.6584431e+00 + 1.2208000e+04 -3.5374826e+00 + 1.2208400e+04 -2.9666092e+00 + 1.2208800e+04 -2.0159435e+00 + 1.2209200e+04 -9.5552663e-01 + 1.2209600e+04 -2.5315410e-02 + 1.2210000e+04 5.9471672e-01 + 1.2210400e+04 1.2246446e+00 + 1.2210800e+04 1.9145134e+00 + 1.2211200e+04 2.4542058e+00 + 1.2211600e+04 2.6939048e+00 + 1.2212000e+04 2.1535634e+00 + 1.2212400e+04 1.5634929e+00 + 1.2212800e+04 9.8351415e-01 + 1.2213200e+04 3.1364243e-01 + 1.2213600e+04 -5.0288562e-01 + 1.2214000e+04 -6.7112174e-01 + 1.2214400e+04 -2.8252500e-01 + 1.2214800e+04 2.6658950e-01 + 1.2215200e+04 6.4260219e-01 + 1.2215600e+04 1.3321566e+00 + 1.2216000e+04 2.0420443e+00 + 1.2216400e+04 2.2121389e+00 + 1.2216800e+04 1.9624915e+00 + 1.2217200e+04 1.7230079e+00 + 1.2217600e+04 1.6536438e+00 + 1.2218000e+04 1.4443141e+00 + 1.2218400e+04 1.1148432e+00 + 1.2218800e+04 5.6522140e-01 + 1.2219200e+04 2.4533282e-01 + 1.2219600e+04 5.1145293e-03 + 1.2220000e+04 1.4454995e-01 + 1.2220400e+04 5.3846394e-02 + 1.2220800e+04 2.9159346e-03 + 1.2221200e+04 5.1916404e-02 + 1.2221600e+04 3.5082691e-01 + 1.2222000e+04 5.6958059e-01 + 1.2222400e+04 4.0822989e-01 + 1.2222800e+04 1.2675569e-01 + 1.2223200e+04 -1.9475829e-01 + 1.2223600e+04 -4.5604722e-01 + 1.2224000e+04 -7.0721216e-01 + 1.2224400e+04 -8.8799321e-01 + 1.2224800e+04 -7.6864424e-01 + 1.2225200e+04 -4.8903610e-01 + 1.2225600e+04 -4.3921438e-01 + 1.2226000e+04 -3.4924773e-01 + 1.2226400e+04 -5.7893610e-01 + 1.2226800e+04 -7.4827072e-01 + 1.2227200e+04 -7.9730485e-01 + 1.2227600e+04 -6.0601991e-01 + 1.2228000e+04 -4.4449854e-01 + 1.2228400e+04 -6.1194815e-01 + 1.2228800e+04 -1.0347767e+00 + 1.2229200e+04 -1.5605991e+00 + 1.2229600e+04 -2.1712252e+00 + 1.2230000e+04 -2.2287271e+00 + 1.2230400e+04 -2.2584778e+00 + 1.2230800e+04 -2.0681934e+00 + 1.2231200e+04 -1.9680203e+00 + 1.2231600e+04 -1.5379777e+00 + 1.2232000e+04 -6.8866789e-01 + 1.2232400e+04 4.1035302e-02 + 1.2232800e+04 6.5017212e-01 + 1.2233200e+04 1.0590705e+00 + 1.2233600e+04 2.2078642e+00 + 1.2234000e+04 3.1564920e+00 + 1.2234400e+04 3.7451648e+00 + 1.2234800e+04 4.1840919e+00 + 1.2235200e+04 4.1232740e+00 + 1.2235600e+04 3.8227643e+00 + 1.2236000e+04 3.0324914e+00 + 1.2236400e+04 2.5223766e+00 + 1.2236800e+04 1.8423317e+00 + 1.2237200e+04 1.6524441e+00 + 1.2237600e+04 1.4524755e+00 + 1.2238000e+04 7.5858047e-01 + 1.2238400e+04 -2.5656295e-01 + 1.2238800e+04 -1.0247818e+00 + 1.2239200e+04 -1.1334823e+00 + 1.2239600e+04 -1.1079153e+00 + 1.2240000e+04 -8.8774264e-01 + 1.2240400e+04 -5.2736144e-01 + 1.2240800e+04 -3.4679589e-01 + 1.2241200e+04 -2.9583050e-01 + 1.2241600e+04 -2.7901476e-01 + 1.2242000e+04 -2.6227613e-01 + 1.2242400e+04 -2.8169579e-01 + 1.2242800e+04 -4.5195506e-01 + 1.2243200e+04 -6.3943446e-01 + 1.2243600e+04 -8.5530443e-01 + 1.2244000e+04 -1.2660475e+00 + 1.2244400e+04 -1.5670359e+00 + 1.2244800e+04 -1.6683019e+00 + 1.2245200e+04 -1.5697266e+00 + 1.2245600e+04 -1.4410285e+00 + 1.2246000e+04 -1.3521455e+00 + 1.2246400e+04 -1.2431616e+00 + 1.2246800e+04 -1.1838841e+00 + 1.2247200e+04 -1.0243793e+00 + 1.2247600e+04 -8.5451458e-01 + 1.2248000e+04 -6.2441104e-01 + 1.2248400e+04 6.5955638e-02 + 1.2248800e+04 7.5657598e-01 + 1.2249200e+04 8.7750068e-01 + 1.2249600e+04 7.1867751e-01 + 1.2250000e+04 2.4009402e-01 + 1.2250400e+04 3.1378520e-02 + 1.2250800e+04 -1.8755934e-01 + 1.2251200e+04 -1.5664513e-01 + 1.2251600e+04 9.4107140e-02 + 1.2252000e+04 1.5462734e-01 + 1.2252400e+04 1.8490650e-01 + 1.2252800e+04 1.5497677e-01 + 1.2253200e+04 2.8480039e-01 + 1.2253600e+04 6.7436557e-01 + 1.2254000e+04 9.5373478e-01 + 1.2254400e+04 1.2129387e+00 + 1.2254800e+04 1.1419742e+00 + 1.2255200e+04 9.5088809e-01 + 1.2255600e+04 6.3974491e-01 + 1.2256000e+04 2.4859131e-01 + 1.2256400e+04 3.7747556e-01 + 1.2256800e+04 7.7870001e-01 + 1.2257200e+04 8.9555146e-01 + 1.2257600e+04 7.9546842e-01 + 1.2258000e+04 7.4832337e-01 + 1.2258400e+04 1.0147971e+00 + 1.2258800e+04 1.2347268e+00 + 1.2259200e+04 1.3248914e+00 + 1.2259600e+04 1.5352299e+00 + 1.2260000e+04 1.4955993e+00 + 1.2260400e+04 1.0562852e+00 + 1.2260800e+04 8.5695938e-01 + 1.2261200e+04 6.6770550e-01 + 1.2261600e+04 3.5848362e-01 + 1.2262000e+04 8.9343162e-02 + 1.2262400e+04 -5.5987885e-01 + 1.2262800e+04 -1.4291035e+00 + 1.2263200e+04 -2.7283210e+00 + 1.2263600e+04 -3.0776594e+00 + 1.2264000e+04 -2.8473716e+00 + 1.2264400e+04 -2.5574027e+00 + 1.2264800e+04 -2.2177790e+00 + 1.2265200e+04 -1.5584231e+00 + 1.2265600e+04 -1.0794294e+00 + 1.2266000e+04 -7.1068331e-01 + 1.2266400e+04 -1.2186979e-01 + 1.2266800e+04 3.2155389e-01 + 1.2267200e+04 5.2271978e-01 + 1.2267600e+04 6.2169608e-01 + 1.2268000e+04 2.8351778e-01 + 1.2268400e+04 -4.1657753e-01 + 1.2268800e+04 -7.3682352e-01 + 1.2269200e+04 -1.0668268e+00 + 1.2269600e+04 -1.4766636e+00 + 1.2270000e+04 -1.2663714e+00 + 1.2270400e+04 -1.0260012e+00 + 1.2270800e+04 -7.0572782e-01 + 1.2271200e+04 3.0457895e-01 + 1.2271600e+04 1.1148432e+00 + 1.2272000e+04 1.4251394e+00 + 1.2272400e+04 2.4153959e+00 + 1.2272800e+04 3.2156326e+00 + 1.2273200e+04 3.6457157e+00 + 1.2273600e+04 3.9357037e+00 + 1.2274000e+04 3.6253544e+00 + 1.2274400e+04 3.0950521e+00 + 1.2274800e+04 2.4847518e+00 + 1.2275200e+04 1.9344375e+00 + 1.2275600e+04 1.2740047e+00 + 1.2276000e+04 -3.1643847e-01 + 1.2276400e+04 -9.4696246e-01 + 1.2276800e+04 -1.4475145e+00 + 1.2277200e+04 -1.7980467e+00 + 1.2277600e+04 -2.0085482e+00 + 1.2278000e+04 -2.1289572e+00 + 1.2278400e+04 -1.9691890e+00 + 1.2278800e+04 -1.6192259e+00 + 1.2279200e+04 -1.0805896e+00 + 1.2279600e+04 -7.0884170e-01 + 1.2280000e+04 -3.0196002e-01 + 1.2280400e+04 -5.7763649e-02 + 1.2280800e+04 2.6289613e-01 + 1.2281200e+04 5.3350253e-01 + 1.2281600e+04 7.5411505e-01 + 1.2282000e+04 1.0146168e+00 + 1.2282400e+04 8.6496557e-01 + 1.2282800e+04 1.1453003e+00 + 1.2283200e+04 1.3652628e+00 + 1.2283600e+04 1.2850433e+00 + 1.2284000e+04 1.1646855e+00 + 1.2284400e+04 9.3421447e-01 + 1.2284800e+04 5.8353401e-01 + 1.2285200e+04 3.6268273e-01 + 1.2285600e+04 6.4643407e-03 + 1.2286000e+04 -5.6505390e-01 + 1.2286400e+04 -1.0496095e+00 + 1.2286800e+04 -1.8363111e+00 + 1.2287200e+04 -2.5287068e+00 + 1.2287600e+04 -3.0343092e+00 + 1.2288000e+04 -3.1761150e+00 + 1.2288400e+04 -3.2138595e+00 + 1.2288800e+04 -3.0041639e+00 + 1.2289200e+04 -2.7943557e+00 + 1.2289600e+04 -2.6243067e+00 + 1.2290000e+04 -2.1340812e+00 + 1.2290400e+04 -1.5584443e+00 + 1.2290800e+04 -8.3725475e-01 + 1.2291200e+04 -3.5404399e-01 + 1.2291600e+04 1.6697692e-01 + 1.2292000e+04 1.1271437e+00 + 1.2292400e+04 2.0679928e+00 + 1.2292800e+04 3.0693570e+00 + 1.2293200e+04 3.9597601e+00 + 1.2293600e+04 3.9101333e+00 + 1.2294000e+04 3.5802438e+00 + 1.2294400e+04 3.2899802e+00 + 1.2294800e+04 1.9894913e+00 + 1.2295200e+04 1.5287093e+00 + 1.2295600e+04 1.2677217e+00 + 1.2296000e+04 6.5660837e-01 + 1.2296400e+04 1.3543136e-01 + 1.2296800e+04 -4.9558415e-01 + 1.2297200e+04 -7.7613384e-01 + 1.2297600e+04 -1.4961221e+00 + 1.2298000e+04 -2.4457213e+00 + 1.2298400e+04 -2.8850405e+00 + 1.2298800e+04 -2.5141670e+00 + 1.2299200e+04 -1.8032309e+00 + 1.2299600e+04 -8.3232419e-01 + 1.2300000e+04 -1.8151400e-01 + 1.2300400e+04 1.8919605e-01 + 1.2300800e+04 5.6966560e-01 + 1.2301200e+04 1.2700514e+00 + 1.2301600e+04 2.1403685e+00 + 1.2302000e+04 3.1305413e+00 + 1.2302400e+04 3.1705684e+00 + 1.2302800e+04 2.6804583e+00 + 1.2303200e+04 2.1101567e+00 + 1.2303600e+04 1.9096382e+00 + 1.2304000e+04 9.4884198e-01 + 1.2304400e+04 -1.4866148e-01 + 1.2304800e+04 -1.3861247e+00 + 1.2305200e+04 -2.3417147e+00 + 1.2305600e+04 -3.0510427e+00 + 1.2306000e+04 -2.9888423e+00 + 1.2306400e+04 -2.5500023e+00 + 1.2306800e+04 -1.8911210e+00 + 1.2307200e+04 -5.1195504e-01 + 1.2307600e+04 -2.5239471e-01 + 1.2308000e+04 -8.5275758e-01 + 1.2308400e+04 -1.1927993e+00 + 1.2308800e+04 -1.3727220e+00 + 1.2309200e+04 -1.0024979e+00 + 1.2309600e+04 -5.8204796e-01 + 1.2310000e+04 -7.1356531e-02 + 1.2310400e+04 1.8945888e-01 + 1.2310800e+04 1.1303244e+00 + 1.2311200e+04 1.4612496e+00 + 1.2311600e+04 1.1619524e+00 + 1.2312000e+04 1.1325471e+00 + 1.2312400e+04 1.3528886e+00 + 1.2312800e+04 1.6031449e+00 + 1.2313200e+04 1.8332975e+00 + 1.2313600e+04 1.7534015e+00 + 1.2314000e+04 1.0833651e+00 + 1.2314400e+04 6.8327540e-01 + 1.2314800e+04 3.8319763e-01 + 1.2315200e+04 7.2958433e-02 + 1.2315600e+04 2.8274585e-01 + 1.2316000e+04 9.3233849e-01 + 1.2316400e+04 1.4119835e+00 + 1.2316800e+04 1.5617161e+00 + 1.2317200e+04 1.4913465e+00 + 1.2317600e+04 1.2412567e+00 + 1.2318000e+04 5.4116449e-01 + 1.2318400e+04 -2.9840695e-01 + 1.2318800e+04 -6.6885781e-01 + 1.2319200e+04 -7.2889952e-01 + 1.2319600e+04 -3.3867742e-01 + 1.2320000e+04 -1.8012039e-01 + 1.2320400e+04 -1.8748810e-01 + 1.2320800e+04 9.1723538e-02 + 1.2321200e+04 2.9296105e-01 + 1.2321600e+04 5.1097353e-01 + 1.2322000e+04 4.8075136e-01 + 1.2322400e+04 5.0425447e-02 + 1.2322800e+04 -3.6985118e-01 + 1.2323200e+04 -7.7015298e-01 + 1.2323600e+04 -8.7037328e-01 + 1.2324000e+04 -7.3061718e-01 + 1.2324400e+04 -3.3074691e-01 + 1.2324800e+04 -3.7096760e-01 + 1.2325200e+04 -6.5125525e-01 + 1.2325600e+04 -9.4152001e-01 + 1.2326000e+04 -1.2417825e+00 + 1.2326400e+04 -1.1820308e+00 + 1.2326800e+04 -1.2823562e+00 + 1.2327200e+04 -1.4928067e+00 + 1.2327600e+04 -1.2732312e+00 + 1.2328000e+04 -1.0736959e+00 + 1.2328400e+04 -1.1841473e+00 + 1.2328800e+04 -1.1546374e+00 + 1.2329200e+04 -1.0351876e+00 + 1.2329600e+04 -7.3555983e-01 + 1.2330000e+04 -3.5590097e-01 + 1.2330400e+04 -1.7607756e-01 + 1.2330800e+04 1.7383806e-01 + 1.2331200e+04 5.8384877e-01 + 1.2331600e+04 1.2340188e+00 + 1.2332000e+04 1.6643664e+00 + 1.2332400e+04 1.8748128e+00 + 1.2332800e+04 1.9153972e+00 + 1.2333200e+04 1.9660112e+00 + 1.2333600e+04 2.0167591e+00 + 1.2334000e+04 2.1073869e+00 + 1.2334400e+04 2.3677609e+00 + 1.2334800e+04 2.5242446e+00 + 1.2335200e+04 2.7557995e+00 + 1.2335600e+04 2.7899170e+00 + 1.2336000e+04 2.2838847e+00 + 1.2336400e+04 1.6773366e+00 + 1.2336800e+04 1.0971849e+00 + 1.2337200e+04 8.1704942e-01 + 1.2337600e+04 -1.7550587e-02 + 1.2338000e+04 -6.7756908e-01 + 1.2338400e+04 -9.5061925e-01 + 1.2338800e+04 -1.1761125e+00 + 1.2339200e+04 -1.3591214e+00 + 1.2339600e+04 -1.7965293e+00 + 1.2340000e+04 -1.8172655e+00 + 1.2340400e+04 -1.5343511e+00 + 1.2340800e+04 -1.1744211e+00 + 1.2341200e+04 -9.6439515e-01 + 1.2341600e+04 -6.3442105e-01 + 1.2342000e+04 -1.3451959e-01 + 1.2342400e+04 3.9530403e-01 + 1.2342800e+04 9.7398818e-01 + 1.2343200e+04 1.1625711e+00 + 1.2343600e+04 7.7690844e-01 + 1.2344000e+04 2.4890748e-01 + 1.2344400e+04 -8.5167168e-02 + 1.2344800e+04 -5.0542140e-01 + 1.2345200e+04 -9.6580670e-01 + 1.2345600e+04 -1.3564069e+00 + 1.2346000e+04 -1.7471850e+00 + 1.2346400e+04 -2.5879453e+00 + 1.2346800e+04 -2.5386543e+00 + 1.2347200e+04 -1.8994145e+00 + 1.2347600e+04 -1.4800340e+00 + 1.2348000e+04 -1.0706280e+00 + 1.2348400e+04 -6.4132653e-01 + 1.2348800e+04 -5.7226750e-01 + 1.2349200e+04 -5.3338964e-01 + 1.2349600e+04 -3.8429544e-01 + 1.2350000e+04 -7.4810913e-02 + 1.2350400e+04 1.0486715e-01 + 1.2350800e+04 5.6487302e-01 + 1.2351200e+04 1.4850248e+00 + 1.2351600e+04 2.5156097e+00 + 1.2352000e+04 3.6863180e+00 + 1.2352400e+04 4.3872523e+00 + 1.2352800e+04 4.7983320e+00 + 1.2353200e+04 4.1895875e+00 + 1.2353600e+04 3.7609724e+00 + 1.2354000e+04 3.6821678e+00 + 1.2354400e+04 3.2932362e+00 + 1.2354800e+04 2.0642663e+00 + 1.2355200e+04 5.7477046e-01 + 1.2355600e+04 -5.1524317e-01 + 1.2356000e+04 -8.9581036e-01 + 1.2356400e+04 -1.2965763e+00 + 1.2356800e+04 -1.4474266e+00 + 1.2357200e+04 -1.3183383e+00 + 1.2357600e+04 -1.2892707e+00 + 1.2358000e+04 -1.0364328e+00 + 1.2358400e+04 -1.1954280e+00 + 1.2358800e+04 -1.2417003e+00 + 1.2359200e+04 -9.6242190e-01 + 1.2359600e+04 -9.0271647e-01 + 1.2360000e+04 -8.6258721e-01 + 1.2360400e+04 -6.1240705e-01 + 1.2360800e+04 -2.4214419e-01 + 1.2361200e+04 6.8064695e-02 + 1.2361600e+04 -3.3166027e-01 + 1.2362000e+04 -5.7144992e-01 + 1.2362400e+04 -6.4123419e-01 + 1.2362800e+04 -8.6104299e-01 + 1.2363200e+04 -9.2092249e-01 + 1.2363600e+04 -1.3130503e+00 + 1.2364000e+04 -1.5522015e+00 + 1.2364400e+04 -1.6885941e+00 + 1.2364800e+04 -1.4930224e+00 + 1.2365200e+04 -1.0537864e+00 + 1.2365600e+04 -7.1443282e-01 + 1.2366000e+04 -2.4917491e-01 + 1.2366400e+04 -2.1691089e-01 + 1.2366800e+04 3.9355198e-02 + 1.2367200e+04 4.9625787e-01 + 1.2367600e+04 8.9550583e-01 + 1.2368000e+04 1.4448949e+00 + 1.2368400e+04 2.3844312e+00 + 1.2368800e+04 3.0339946e+00 + 1.2369200e+04 3.1135389e+00 + 1.2369600e+04 2.7230234e+00 + 1.2370000e+04 2.5625974e+00 + 1.2370400e+04 2.0122294e+00 + 1.2370800e+04 1.2018829e+00 + 1.2371200e+04 1.3427003e-01 + 1.2371600e+04 -6.1081218e-01 + 1.2372000e+04 -1.1774626e+00 + 1.2372400e+04 -1.5102992e+00 + 1.2372800e+04 -1.1962240e+00 + 1.2373200e+04 -7.9519985e-01 + 1.2373600e+04 -4.5415919e-01 + 1.2374000e+04 1.1684770e-01 + 1.2374400e+04 6.1764248e-01 + 1.2374800e+04 7.9837953e-01 + 1.2375200e+04 1.2089922e+00 + 1.2375600e+04 1.3493867e+00 + 1.2376000e+04 1.5494502e+00 + 1.2376400e+04 1.6392973e+00 + 1.2376800e+04 1.5190812e+00 + 1.2377200e+04 1.2687111e+00 + 1.2377600e+04 7.0824451e-01 + 1.2378000e+04 -2.9202662e-01 + 1.2378400e+04 -5.8292670e-01 + 1.2378800e+04 -9.8360699e-01 + 1.2379200e+04 -1.1142224e+00 + 1.2379600e+04 -1.5197064e+00 + 1.2380000e+04 -1.9564937e+00 + 1.2380400e+04 -2.5576167e+00 + 1.2380800e+04 -2.7419057e+00 + 1.2381200e+04 -2.5748345e+00 + 1.2381600e+04 -2.0280842e+00 + 1.2382000e+04 -1.6782271e+00 + 1.2382400e+04 -1.4695872e+00 + 1.2382800e+04 -1.1838751e+00 + 1.2383200e+04 -1.0769143e+00 + 1.2383600e+04 -9.8992666e-01 + 1.2384000e+04 -9.1029652e-01 + 1.2384400e+04 -4.8064744e-01 + 1.2384800e+04 7.1909956e-01 + 1.2385200e+04 1.2489397e+00 + 1.2385600e+04 1.3989704e+00 + 1.2386000e+04 1.6292061e+00 + 1.2386400e+04 1.5296222e+00 + 1.2386800e+04 1.3301058e+00 + 1.2387200e+04 1.1704994e+00 + 1.2387600e+04 1.3178219e+00 + 1.2388000e+04 1.5964764e+00 + 1.2388400e+04 1.5898721e+00 + 1.2388800e+04 1.3360627e+00 + 1.2389200e+04 1.1008273e+00 + 1.2389600e+04 6.7085095e-01 + 1.2390000e+04 1.5095796e-01 + 1.2390400e+04 -2.5865253e-01 + 1.2390800e+04 -4.9887173e-01 + 1.2391200e+04 -3.2880517e-01 + 1.2391600e+04 -2.0872445e-01 + 1.2392000e+04 -2.8849640e-01 + 1.2392400e+04 1.1134141e-01 + 1.2392800e+04 7.5131513e-01 + 1.2393200e+04 1.2311918e+00 + 1.2393600e+04 2.1910640e+00 + 1.2394000e+04 3.0808864e+00 + 1.2394400e+04 2.7505472e+00 + 1.2394800e+04 2.4600801e+00 + 1.2395200e+04 1.4414729e+00 + 1.2395600e+04 3.6602337e-01 + 1.2396000e+04 -5.6098085e-01 + 1.2396400e+04 -8.1099153e-01 + 1.2396800e+04 -1.2808695e+00 + 1.2397200e+04 -2.0006898e+00 + 1.2397600e+04 -2.4603861e+00 + 1.2398000e+04 -2.2800390e+00 + 1.2398400e+04 -2.0897235e+00 + 1.2398800e+04 -1.9894691e+00 + 1.2399200e+04 -2.0192852e+00 + 1.2399600e+04 -1.9592216e+00 + 1.2400000e+04 -1.8592542e+00 + 1.2400400e+04 -1.3395695e+00 + 1.2400800e+04 -9.0011871e-01 + 1.2401200e+04 -8.3079182e-01 + 1.2401600e+04 -6.7168164e-01 + 1.2402000e+04 -4.3266488e-01 + 1.2402400e+04 -1.7401159e-01 + 1.2402800e+04 3.9485834e-01 + 1.2403200e+04 8.9393412e-01 + 1.2403600e+04 1.1632521e+00 + 1.2404000e+04 1.3028188e+00 + 1.2404400e+04 2.3926115e+00 + 1.2404800e+04 2.7628333e+00 + 1.2405200e+04 3.1032224e+00 + 1.2405600e+04 3.2537089e+00 + 1.2406000e+04 3.3295687e+00 + 1.2406400e+04 2.8745068e+00 + 1.2406800e+04 1.5849203e+00 + 1.2407200e+04 5.8834734e-01 + 1.2407600e+04 -8.6447019e-01 + 1.2408000e+04 -2.7542760e+00 + 1.2408400e+04 -3.5641258e+00 + 1.2408800e+04 -3.7140894e+00 + 1.2409200e+04 -3.6640901e+00 + 1.2409600e+04 -3.5841212e+00 + 1.2410000e+04 -3.3041717e+00 + 1.2410400e+04 -2.6542390e+00 + 1.2410800e+04 -1.9442738e+00 + 1.2411200e+04 -1.1742871e+00 + 1.2411600e+04 -2.5390245e-01 + 1.2412000e+04 6.8611414e-01 + 1.2412400e+04 1.3864112e+00 + 1.2412800e+04 1.4766023e+00 + 1.2413200e+04 2.5661057e+00 + 1.2413600e+04 3.3149570e+00 + 1.2414000e+04 3.2469982e+00 + 1.2414400e+04 2.1270018e+00 + 1.2414800e+04 1.4068874e+00 + 1.2415200e+04 1.0967567e+00 + 1.2415600e+04 1.2866744e+00 + 1.2416000e+04 8.8652669e-01 + 1.2416400e+04 -9.3693295e-02 + 1.2416800e+04 -5.5420154e-01 + 1.2417200e+04 -2.0749512e+00 + 1.2417600e+04 -3.2957334e+00 + 1.2418000e+04 -3.9465639e+00 + 1.2418400e+04 -4.5174463e+00 + 1.2418800e+04 -4.2082802e+00 + 1.2419200e+04 -3.4589084e+00 + 1.2419600e+04 -2.7493959e+00 + 1.2420000e+04 -1.0496449e+00 + 1.2420400e+04 -4.2954379e-01 + 1.2420800e+04 -3.4960542e-01 + 1.2421200e+04 -1.8925647e-01 + 1.2421600e+04 9.1210809e-02 + 1.2422000e+04 8.3155602e-01 + 1.2422400e+04 1.3419821e+00 + 1.2422800e+04 1.9322636e+00 + 1.2423200e+04 2.6423666e+00 + 1.2423600e+04 3.9222443e+00 + 1.2424000e+04 5.3716981e+00 + 1.2424400e+04 6.8513237e+00 + 1.2424800e+04 7.1308673e+00 + 1.2425200e+04 5.9021715e+00 + 1.2425600e+04 4.1094705e+00 + 1.2426000e+04 2.0909574e+00 + 1.2426400e+04 3.1879599e-01 + 1.2426800e+04 -9.8148315e-01 + 1.2427200e+04 -1.6716547e+00 + 1.2427600e+04 -2.0317377e+00 + 1.2428000e+04 -2.4918243e+00 + 1.2428400e+04 -3.1719174e+00 + 1.2428800e+04 -3.8820581e+00 + 1.2429200e+04 -3.9721242e+00 + 1.2429600e+04 -3.7719955e+00 + 1.2430000e+04 -3.0316761e+00 + 1.2430400e+04 -3.2312082e+00 + 1.2430800e+04 -3.1806548e+00 + 1.2431200e+04 -3.4102019e+00 + 1.2431600e+04 -3.1798811e+00 + 1.2432000e+04 -2.6497514e+00 + 1.2432400e+04 -1.0897614e+00 + 1.2432800e+04 1.9999219e-01 + 1.2433200e+04 1.1196721e+00 + 1.2433600e+04 1.7394624e+00 + 1.2434000e+04 2.3091250e+00 + 1.2434400e+04 2.3387622e+00 + 1.2434800e+04 2.7796773e+00 + 1.2435200e+04 3.3776925e+00 + 1.2435600e+04 2.7769467e+00 + 1.2436000e+04 2.0961405e+00 + 1.2436400e+04 1.7254293e+00 + 1.2436800e+04 1.4449455e+00 + 1.2437200e+04 1.0048429e+00 + 1.2437600e+04 7.8500077e-01 + 1.2438000e+04 3.3535715e-01 + 1.2438400e+04 -2.9376403e-01 + 1.2438800e+04 -1.0435539e+00 + 1.2439200e+04 -1.9129955e+00 + 1.2439600e+04 -2.1626055e+00 + 1.2440000e+04 -2.8123439e+00 + 1.2440400e+04 -2.9021247e+00 + 1.2440800e+04 -2.6519618e+00 + 1.2441200e+04 -1.8618107e+00 + 1.2441600e+04 -9.2163495e-01 + 1.2442000e+04 -7.1172536e-01 + 1.2442400e+04 -5.1171005e-01 + 1.2442800e+04 -2.9182051e-01 + 1.2443200e+04 1.2728823e-01 + 1.2443600e+04 5.8635212e-01 + 1.2444000e+04 8.3523952e-01 + 1.2444400e+04 1.0739649e+00 + 1.2444800e+04 1.2328174e+00 + 1.2445200e+04 1.9219627e+00 + 1.2445600e+04 2.2412910e+00 + 1.2446000e+04 1.9210723e+00 + 1.2446400e+04 1.6409386e+00 + 1.2446800e+04 1.5109513e+00 + 1.2447200e+04 1.3910882e+00 + 1.2447600e+04 1.1712713e+00 + 1.2448000e+04 6.5154897e-01 + 1.2448400e+04 9.1941377e-02 + 1.2448800e+04 -4.5775899e-01 + 1.2449200e+04 -7.6750849e-01 + 1.2449600e+04 -1.1574084e+00 + 1.2450000e+04 -1.5075322e+00 + 1.2450400e+04 -1.7177389e+00 + 1.2450800e+04 -1.8878749e+00 + 1.2451200e+04 -1.7978849e+00 + 1.2451600e+04 -1.8378779e+00 + 1.2452000e+04 -2.1778429e+00 + 1.2452400e+04 -1.9378349e+00 + 1.2452800e+04 -1.2578233e+00 + 1.2453200e+04 -6.7844106e-02 + 1.2453600e+04 9.2207904e-01 + 1.2454000e+04 1.4421178e+00 + 1.2454400e+04 1.0659905e+00 + 1.2454800e+04 8.6292699e-01 + 1.2455200e+04 6.8001390e-01 + 1.2455600e+04 5.5391473e-01 + 1.2456000e+04 2.7076100e-01 + 1.2456400e+04 6.1024089e-01 + 1.2456800e+04 1.1797014e+00 + 1.2457200e+04 1.3592236e+00 + 1.2457600e+04 1.1686681e+00 + 1.2458000e+04 7.9821632e-01 + 1.2458400e+04 1.7797130e-01 + 1.2458800e+04 -1.6216048e-01 + 1.2459200e+04 -3.4208233e-01 + 1.2459600e+04 -6.7197518e-01 + 1.2460000e+04 -1.0018100e+00 + 1.2460400e+04 -1.2416038e+00 + 1.2460800e+04 -1.5414172e+00 + 1.2461200e+04 -1.5012335e+00 + 1.2461600e+04 -1.3409558e+00 + 1.2462000e+04 -9.4060462e-01 + 1.2462400e+04 -5.1029832e-01 + 1.2462800e+04 -3.9977457e-02 + 1.2463200e+04 4.1014043e-01 + 1.2463600e+04 5.6015339e-01 + 1.2464000e+04 7.0008949e-01 + 1.2464400e+04 3.3992253e-01 + 1.2464800e+04 4.1958151e-01 + 1.2465200e+04 6.3899107e-01 + 1.2465600e+04 7.5814465e-01 + 1.2466000e+04 6.1702294e-01 + 1.2466400e+04 4.3561212e-01 + 1.2466800e+04 6.5407320e-01 + 1.2467200e+04 8.8274980e-01 + 1.2467600e+04 9.6172887e-01 + 1.2468000e+04 7.8096689e-01 + 1.2468400e+04 3.8048538e-01 + 1.2468800e+04 -6.9887911e-02 + 1.2469200e+04 -3.5008983e-01 + 1.2469600e+04 -7.7999635e-01 + 1.2470000e+04 -1.3196825e+00 + 1.2470400e+04 -1.1991192e+00 + 1.2470800e+04 -7.8829959e-01 + 1.2471200e+04 -4.3736913e-01 + 1.2471600e+04 -1.6639490e-01 + 1.2472000e+04 6.4515365e-02 + 1.2472400e+04 5.0536267e-01 + 1.2472800e+04 9.0609137e-01 + 1.2473200e+04 1.1765883e+00 + 1.2473600e+04 1.2667845e+00 + 1.2474000e+04 1.2268643e+00 + 1.2474400e+04 1.1170419e+00 + 1.2474800e+04 6.5721645e-01 + 1.2475200e+04 2.2728942e-01 + 1.2475600e+04 -4.6281046e-01 + 1.2476000e+04 -6.3334216e-01 + 1.2476400e+04 -6.7423142e-01 + 1.2476800e+04 -4.8522230e-01 + 1.2477200e+04 -3.6633539e-01 + 1.2477600e+04 -3.9737464e-01 + 1.2478000e+04 -6.0197347e-01 + 1.2478400e+04 -1.1168753e+00 + 1.2478800e+04 -1.2507131e+00 + 1.2479200e+04 -9.5760383e-01 + 1.2479600e+04 -4.6060400e-01 + 1.2480000e+04 -1.5097431e-01 + 1.2480400e+04 1.1887013e-01 + 1.2480800e+04 6.8866166e-01 + 1.2481200e+04 1.1287169e+00 + 1.2481600e+04 1.5132023e+00 + 1.2482000e+04 1.4203695e+00 + 1.2482400e+04 9.8574662e-01 + 1.2482800e+04 2.3316256e-01 + 1.2483200e+04 -6.3897250e-01 + 1.2483600e+04 -1.5783700e+00 + 1.2484000e+04 -1.9478616e+00 + 1.2484400e+04 -1.8274536e+00 + 1.2484800e+04 -1.9772364e+00 + 1.2485200e+04 -1.7671009e+00 + 1.2485600e+04 -1.4171059e+00 + 1.2486000e+04 -1.0674077e+00 + 1.2486400e+04 -6.7960606e-02 + 1.2486800e+04 2.5119552e-01 + 1.2487200e+04 7.7016662e-01 + 1.2487600e+04 1.6693147e+00 + 1.2488000e+04 2.7685961e+00 + 1.2488400e+04 3.1978312e+00 + 1.2488800e+04 3.2370593e+00 + 1.2489200e+04 3.3463013e+00 + 1.2489600e+04 3.2355328e+00 + 1.2490000e+04 2.8547152e+00 + 1.2490400e+04 2.3041750e+00 + 1.2490800e+04 1.6737247e+00 + 1.2491200e+04 8.6354533e-01 + 1.2491600e+04 -7.6153484e-02 + 1.2492000e+04 -9.7296406e-01 + 1.2492400e+04 -1.7820119e+00 + 1.2492800e+04 -2.2087704e+00 + 1.2493200e+04 -2.4097800e+00 + 1.2493600e+04 -2.8622848e+00 + 1.2494000e+04 -3.1714799e+00 + 1.2494400e+04 -2.9707292e+00 + 1.2494800e+04 -2.8700439e+00 + 1.2495200e+04 -2.9794491e+00 + 1.2495600e+04 -3.1888826e+00 + 1.2496000e+04 -2.8985139e+00 + 1.2496400e+04 -2.2683503e+00 + 1.2496800e+04 -2.0483738e+00 + 1.2497200e+04 -1.0819057e+00 + 1.2497600e+04 1.9509547e-01 + 1.2498000e+04 1.5306664e+00 + 1.2498400e+04 1.6201619e+00 + 1.2498800e+04 1.8294716e+00 + 1.2499200e+04 1.5586128e+00 + 1.2499600e+04 1.3676889e+00 + 1.2500000e+04 8.5679373e-01 + 1.2500400e+04 5.6595206e-01 + 1.2500800e+04 4.6517641e-01 + 1.2501200e+04 7.4442805e-01 + 1.2501600e+04 1.2751873e+00 + 1.2502000e+04 1.5075055e+00 + 1.2502400e+04 1.3145233e+00 + 1.2502800e+04 1.4355083e+00 + 1.2503200e+04 1.0732403e+00 + 1.2503600e+04 6.0391087e-01 + 1.2504000e+04 -6.5632669e-02 + 1.2504400e+04 -5.1512192e-01 + 1.2504800e+04 -6.1450171e-01 + 1.2505200e+04 -5.1383637e-01 + 1.2505600e+04 -6.0331269e-01 + 1.2506000e+04 -4.2286711e-01 + 1.2506400e+04 -1.7277073e-01 + 1.2506800e+04 2.1719144e-01 + 1.2507200e+04 6.7690620e-01 + 1.2507600e+04 4.5647546e-01 + 1.2508000e+04 1.8589070e-01 + 1.2508400e+04 -3.1498484e-01 + 1.2508800e+04 -3.4596455e-01 + 1.2509200e+04 2.3013807e-02 + 1.2509600e+04 5.1210730e-01 + 1.2510000e+04 1.1914394e+00 + 1.2510400e+04 1.8611251e+00 + 1.2510800e+04 1.8010452e+00 + 1.2511200e+04 1.3812261e+00 + 1.2511600e+04 1.0716525e+00 + 1.2512000e+04 3.4217491e-01 + 1.2512400e+04 -2.5702908e-01 + 1.2512800e+04 -5.6680145e-01 + 1.2513200e+04 -6.9666176e-01 + 1.2513600e+04 -1.7559698e+00 + 1.2514000e+04 -2.2356168e+00 + 1.2514400e+04 -2.5953120e+00 + 1.2514800e+04 -2.7050464e+00 + 1.2515200e+04 -2.3548829e+00 + 1.2515600e+04 -2.1849067e+00 + 1.2516000e+04 -1.6349937e+00 + 1.2516400e+04 -1.0751198e+00 + 1.2516800e+04 -1.0453890e+00 + 1.2517200e+04 -7.3558200e-01 + 1.2517600e+04 -3.8017889e-01 + 1.2518000e+04 -3.0884967e-01 + 1.2518400e+04 2.5839956e-01 + 1.2518800e+04 6.8620761e-01 + 1.2519200e+04 8.2193350e-01 + 1.2519600e+04 1.0213078e+00 + 1.2520000e+04 1.4107715e+00 + 1.2520400e+04 1.8003316e+00 + 1.2520800e+04 2.2499106e+00 + 1.2521200e+04 2.4095497e+00 + 1.2521600e+04 2.4692899e+00 + 1.2522000e+04 2.1290496e+00 + 1.2522400e+04 1.6589381e+00 + 1.2522800e+04 1.3089131e+00 + 1.2523200e+04 1.2589872e+00 + 1.2523600e+04 1.4691336e+00 + 1.2524000e+04 1.2792569e+00 + 1.2524400e+04 9.2936047e-01 + 1.2524800e+04 6.1938497e-01 + 1.2525200e+04 1.1933278e-01 + 1.2525600e+04 -5.2088843e-01 + 1.2526000e+04 -7.8115813e-01 + 1.2526400e+04 -8.6149619e-01 + 1.2526800e+04 -1.1918122e+00 + 1.2527200e+04 -1.2631336e+00 + 1.2527600e+04 -1.7160322e+00 + 1.2528000e+04 -2.1717335e+00 + 1.2528400e+04 -2.3169797e+00 + 1.2528800e+04 -2.2744851e+00 + 1.2529200e+04 -2.0614063e+00 + 1.2529600e+04 -1.8316451e+00 + 1.2530000e+04 -1.2414727e+00 + 1.2530400e+04 -9.3161148e-01 + 1.2530800e+04 -7.6181652e-01 + 1.2531200e+04 -5.4193920e-01 + 1.2531600e+04 2.8072878e-02 + 1.2532000e+04 3.0805330e-01 + 1.2532400e+04 4.1811459e-01 + 1.2532800e+04 6.5809340e-01 + 1.2533200e+04 7.7807474e-01 + 1.2533600e+04 6.8788635e-01 + 1.2534000e+04 3.4764508e-01 + 1.2534400e+04 9.7254784e-02 + 1.2534800e+04 -2.3224558e-02 + 1.2535200e+04 2.6256757e-02 + 1.2535600e+04 1.2560618e-01 + 1.2536000e+04 -7.4987383e-02 + 1.2536400e+04 -5.6995086e-03 + 1.2536800e+04 2.6918650e-02 + 1.2537200e+04 -2.6957693e-01 + 1.2537600e+04 -3.0818960e-01 + 1.2538000e+04 -3.1637303e-01 + 1.2538400e+04 -4.3381812e-01 + 1.2538800e+04 -7.7309071e-02 + 1.2539200e+04 7.6528652e-01 + 1.2539600e+04 1.5529776e+00 + 1.2540000e+04 1.7219489e+00 + 1.2540400e+04 1.6255437e+00 + 1.2540800e+04 1.1929547e+00 + 1.2541200e+04 4.7537842e-01 + 1.2541600e+04 -2.2482172e-01 + 1.2542000e+04 -4.5495671e-01 + 1.2542400e+04 -5.3530817e-01 + 1.2542800e+04 -7.2601749e-01 + 1.2543200e+04 -6.4453124e-01 + 1.2543600e+04 -4.4634899e-01 + 1.2544000e+04 -5.7285963e-01 + 1.2544400e+04 -3.5696046e-01 + 1.2544800e+04 -1.0819089e-01 + 1.2545200e+04 2.4145705e-01 + 1.2545600e+04 9.7120932e-01 + 1.2546000e+04 1.5511410e+00 + 1.2546400e+04 1.8112709e+00 + 1.2546800e+04 2.0814285e+00 + 1.2547200e+04 1.4914047e+00 + 1.2547600e+04 6.0523491e-01 + 1.2548000e+04 -3.5810823e-01 + 1.2548400e+04 -1.1279620e+00 + 1.2548800e+04 -1.3378278e+00 + 1.2549200e+04 -1.4421981e+00 + 1.2549600e+04 -1.4625678e+00 + 1.2550000e+04 -1.5243293e+00 + 1.2550400e+04 -1.6609715e+00 + 1.2550800e+04 -1.6043629e+00 + 1.2551200e+04 -1.6091567e+00 + 1.2551600e+04 -1.5169989e+00 + 1.2552000e+04 -1.4855150e+00 + 1.2552400e+04 -1.1861910e+00 + 1.2552800e+04 -9.0638515e-01 + 1.2553200e+04 -6.6659415e-01 + 1.2553600e+04 -4.3685414e-01 + 1.2554000e+04 -1.2723139e-01 + 1.2554400e+04 1.9106231e-01 + 1.2554800e+04 3.8942754e-01 + 1.2555200e+04 5.0829045e-01 + 1.2555600e+04 7.1879627e-01 + 1.2556000e+04 1.0301087e+00 + 1.2556400e+04 1.4593051e+00 + 1.2556800e+04 1.8984874e+00 + 1.2557200e+04 2.1347708e+00 + 1.2557600e+04 2.3054726e+00 + 1.2558000e+04 2.3136736e+00 + 1.2558400e+04 2.0667543e+00 + 1.2558800e+04 1.8272890e+00 + 1.2559200e+04 1.4475709e+00 + 1.2559600e+04 1.3678208e+00 + 1.2560000e+04 1.1580350e+00 + 1.2560400e+04 8.9431344e-01 + 1.2560800e+04 2.0124001e-01 + 1.2561200e+04 -4.8374783e-01 + 1.2561600e+04 -1.0165570e+00 + 1.2562000e+04 -1.4497858e+00 + 1.2562400e+04 -2.2795458e+00 + 1.2562800e+04 -3.1493822e+00 + 1.2563200e+04 -3.3493089e+00 + 1.2563600e+04 -3.0293091e+00 + 1.2564000e+04 -2.7094031e+00 + 1.2564400e+04 -1.6595838e+00 + 1.2564800e+04 -1.0399120e+00 + 1.2565200e+04 -2.5030051e-01 + 1.2565600e+04 4.8899134e-01 + 1.2566000e+04 1.1082860e+00 + 1.2566400e+04 1.5876284e+00 + 1.2566800e+04 2.0469718e+00 + 1.2567200e+04 2.8063198e+00 + 1.2567600e+04 3.0958148e+00 + 1.2568000e+04 3.6654334e+00 + 1.2568400e+04 3.5352267e+00 + 1.2568800e+04 3.0852210e+00 + 1.2569200e+04 2.2252538e+00 + 1.2569600e+04 1.4306332e+00 + 1.2570000e+04 7.8952419e-01 + 1.2570400e+04 -1.1385631e-01 + 1.2570800e+04 -1.0233180e+00 + 1.2571200e+04 -2.1888452e+00 + 1.2571600e+04 -2.9115602e+00 + 1.2572000e+04 -2.8918138e+00 + 1.2572400e+04 -2.4809883e+00 + 1.2572800e+04 -2.3300906e+00 + 1.2573200e+04 -2.4691924e+00 + 1.2573600e+04 -2.2684324e+00 + 1.2574000e+04 -2.1477209e+00 + 1.2574400e+04 -1.9173761e+00 + 1.2574800e+04 -1.5374069e+00 + 1.2575200e+04 -1.0678992e+00 + 1.2575600e+04 -5.4887353e-01 + 1.2576000e+04 3.3971892e-01 + 1.2576400e+04 1.5608617e+00 + 1.2576800e+04 2.6402378e+00 + 1.2577200e+04 3.5794171e+00 + 1.2577600e+04 4.0534285e+00 + 1.2578000e+04 4.1187566e+00 + 1.2578400e+04 3.7306341e+00 + 1.2578800e+04 3.2499509e+00 + 1.2579200e+04 1.9995715e+00 + 1.2579600e+04 1.0994841e+00 + 1.2580000e+04 7.0973075e-01 + 1.2580400e+04 4.9023199e-01 + 1.2580800e+04 2.4098248e-01 + 1.2581200e+04 -4.0805354e-01 + 1.2581600e+04 -1.3069623e+00 + 1.2582000e+04 -1.9957521e+00 + 1.2582400e+04 -2.3145785e+00 + 1.2582800e+04 -2.6135278e+00 + 1.2583200e+04 -2.6526483e+00 + 1.2583600e+04 -2.3819814e+00 + 1.2584000e+04 -2.0815598e+00 + 1.2584400e+04 -1.5714074e+00 + 1.2584800e+04 -1.3915702e+00 + 1.2585200e+04 -1.1420659e+00 + 1.2585600e+04 -7.2313231e-01 + 1.2586000e+04 -5.4313243e-02 + 1.2586400e+04 9.0413394e-01 + 1.2586800e+04 1.3024102e+00 + 1.2587200e+04 6.9075637e-01 + 1.2587600e+04 6.0938515e-01 + 1.2588000e+04 1.1283695e+00 + 1.2588400e+04 1.7678676e+00 + 1.2588800e+04 1.9678183e+00 + 1.2589200e+04 2.1280795e+00 + 1.2589600e+04 2.0484311e+00 + 1.2590000e+04 1.1032253e+00 + 1.2590400e+04 2.8167392e-01 + 1.2590800e+04 -7.2078392e-01 + 1.2591200e+04 -1.5201307e+00 + 1.2591600e+04 -2.2352844e+00 + 1.2592000e+04 -2.3336770e+00 + 1.2592400e+04 -1.9898046e+00 + 1.2592800e+04 -1.4590304e+00 + 1.2593200e+04 -1.1085938e+00 + 1.2593600e+04 -8.5814989e-01 + 1.2594000e+04 -6.2770880e-01 + 1.2594400e+04 -1.4732530e-01 + 1.2594800e+04 6.6295701e-01 + 1.2595200e+04 1.5431629e+00 + 1.2595600e+04 1.9632666e+00 + 1.2596000e+04 1.3831248e+00 + 1.2596400e+04 8.9272056e-01 + 1.2596800e+04 5.7111185e-01 + 1.2597200e+04 3.6986986e-01 + 1.2597600e+04 3.8238152e-01 + 1.2598000e+04 9.2021613e-01 + 1.2598400e+04 9.1939894e-01 + 1.2598800e+04 1.0791190e+00 + 1.2599200e+04 9.5896228e-01 + 1.2599600e+04 7.5887900e-01 + 1.2600000e+04 1.2889340e-01 + 1.2600400e+04 -2.8109445e-01 + 1.2600800e+04 -1.7126972e-01 + 1.2601200e+04 1.6683903e-01 + 1.2601600e+04 4.9675445e-01 + 1.2602000e+04 4.6231639e-01 + 1.2602400e+04 3.9294875e-01 + 1.2602800e+04 2.6755898e-01 + 1.2603200e+04 1.0772871e-01 + 1.2603600e+04 -4.2210331e-01 + 1.2604000e+04 -8.1225751e-01 + 1.2604400e+04 -1.0880517e+00 + 1.2604800e+04 -1.3022997e+00 + 1.2605200e+04 -1.0737974e+00 + 1.2605600e+04 -7.7385264e-01 + 1.2606000e+04 -6.2055164e-01 + 1.2606400e+04 -6.4923041e-01 + 1.2606800e+04 -5.1360409e-01 + 1.2607200e+04 -4.7477394e-01 + 1.2607600e+04 -3.7479019e-01 + 1.2608000e+04 -2.8344927e-01 + 1.2608400e+04 4.9546239e-02 + 1.2608800e+04 3.3923070e-01 + 1.2609200e+04 9.2872537e-01 + 1.2609600e+04 1.2782195e+00 + 1.2610000e+04 1.5479031e+00 + 1.2610400e+04 1.6278066e+00 + 1.2610800e+04 1.6778918e+00 + 1.2611200e+04 1.5681765e+00 + 1.2611600e+04 9.6857573e-01 + 1.2612000e+04 -7.1068657e-02 + 1.2612400e+04 -1.3511023e+00 + 1.2612800e+04 -2.2418506e+00 + 1.2613200e+04 -2.5328303e+00 + 1.2613600e+04 -2.3937916e+00 + 1.2614000e+04 -1.6046652e+00 + 1.2614400e+04 -8.8521654e-01 + 1.2614800e+04 6.4343886e-02 + 1.2615200e+04 7.6411281e-01 + 1.2615600e+04 1.3941426e+00 + 1.2616000e+04 1.6243777e+00 + 1.2616400e+04 1.7247975e+00 + 1.2616800e+04 1.5254682e+00 + 1.2617200e+04 1.0263303e+00 + 1.2617600e+04 4.3748339e-01 + 1.2618000e+04 1.7859337e-01 + 1.2618400e+04 -2.1036697e-01 + 1.2618800e+04 -5.0956877e-01 + 1.2619200e+04 -5.9894155e-01 + 1.2619600e+04 -7.4854267e-01 + 1.2620000e+04 -9.2830750e-01 + 1.2620400e+04 -1.2681831e+00 + 1.2620800e+04 -9.7817150e-01 + 1.2621200e+04 -5.3829418e-01 + 1.2621600e+04 -5.6858961e-01 + 1.2622000e+04 -6.1918342e-01 + 1.2622400e+04 -6.8022785e-01 + 1.2622800e+04 -5.8090280e-01 + 1.2623200e+04 -8.1172323e-01 + 1.2623600e+04 -1.1225753e+00 + 1.2624000e+04 -8.1312801e-01 + 1.2624400e+04 -4.2313214e-01 + 1.2624800e+04 1.9672501e-01 + 1.2625200e+04 9.9652089e-01 + 1.2625600e+04 1.3961691e+00 + 1.2626000e+04 1.0957723e+00 + 1.2626400e+04 5.3551365e-01 + 1.2626800e+04 -4.8485712e-03 + 1.2627200e+04 -1.7536851e-01 + 1.2627600e+04 2.2394525e-01 + 1.2628000e+04 9.2307641e-01 + 1.2628400e+04 1.5822374e+00 + 1.2628800e+04 2.0215010e+00 + 1.2629200e+04 1.9510229e+00 + 1.2629600e+04 1.5308425e+00 + 1.2630000e+04 9.1100574e-01 + 1.2630400e+04 4.7387657e-02 + 1.2630800e+04 -1.1430468e+00 + 1.2631200e+04 -1.6166942e+00 + 1.2631600e+04 -1.8359613e+00 + 1.2632000e+04 -1.8753520e+00 + 1.2632400e+04 -1.6548106e+00 + 1.2632800e+04 -1.4143696e+00 + 1.2633200e+04 -9.8422379e-01 + 1.2633600e+04 -5.8436394e-01 + 1.2634000e+04 -2.0466922e-01 + 1.2634400e+04 4.4486523e-01 + 1.2634800e+04 9.7120261e-01 + 1.2635200e+04 1.1937335e+00 + 1.2635600e+04 1.5569718e+00 + 1.2636000e+04 1.4757940e+00 + 1.2636400e+04 1.0948084e+00 + 1.2636800e+04 6.5575852e-01 + 1.2637200e+04 1.7066302e-01 + 1.2637600e+04 6.8389236e-02 + 1.2638000e+04 -1.3477968e-01 + 1.2638400e+04 -2.3239204e-01 + 1.2638800e+04 -4.7199933e-01 + 1.2639200e+04 -8.1456858e-01 + 1.2639600e+04 -1.2278926e+00 + 1.2640000e+04 -1.7523945e+00 + 1.2640400e+04 -1.7164389e+00 + 1.2640800e+04 -1.5665116e+00 + 1.2641200e+04 -1.2520534e+00 + 1.2641600e+04 -1.1883941e+00 + 1.2642000e+04 -1.2678139e+00 + 1.2642400e+04 -1.1251871e+00 + 1.2642800e+04 -9.8582573e-01 + 1.2643200e+04 -7.7650281e-01 + 1.2643600e+04 -6.5703400e-01 + 1.2644000e+04 -3.5746604e-01 + 1.2644400e+04 2.3714506e-03 + 1.2644800e+04 5.7222442e-01 + 1.2645200e+04 1.3119669e+00 + 1.2645600e+04 1.9317781e+00 + 1.2646000e+04 2.2212813e+00 + 1.2646400e+04 2.2905169e+00 + 1.2646800e+04 2.0996698e+00 + 1.2647200e+04 1.8589857e+00 + 1.2647600e+04 1.6685517e+00 + 1.2648000e+04 5.3848990e-01 + 1.2648400e+04 3.6852400e-01 + 1.2648800e+04 -1.4132199e-01 + 1.2649200e+04 -3.5109416e-01 + 1.2649600e+04 -9.0749380e-02 + 1.2650000e+04 4.0964738e-01 + 1.2650400e+04 5.4021486e-01 + 1.2650800e+04 5.7095786e-01 + 1.2651200e+04 4.7186608e-01 + 1.2651600e+04 4.3298002e-01 + 1.2652000e+04 1.2405876e-01 + 1.2652400e+04 -9.0130534e-01 + 1.2652800e+04 -1.4842085e+00 + 1.2653200e+04 -1.3835245e+00 + 1.2653600e+04 -1.2428849e+00 + 1.2654000e+04 -8.1803391e-01 + 1.2654400e+04 -4.0336267e-01 + 1.2654800e+04 -1.5210512e-01 + 1.2655200e+04 -3.7161876e-01 + 1.2655600e+04 -6.7148930e-01 + 1.2656000e+04 -5.3235976e-01 + 1.2656400e+04 -6.2338920e-01 + 1.2656800e+04 -1.2043610e+00 + 1.2657200e+04 -9.5507732e-01 + 1.2657600e+04 -2.7725600e-01 + 1.2658000e+04 5.7202710e-01 + 1.2658400e+04 1.4306861e+00 + 1.2658800e+04 2.2454816e+00 + 1.2659200e+04 2.3423942e+00 + 1.2659600e+04 1.8460460e+00 + 1.2660000e+04 9.8669750e-01 + 1.2660400e+04 3.4716745e-01 + 1.2660800e+04 -2.2275783e-01 + 1.2661200e+04 -6.6301566e-01 + 1.2661600e+04 -9.7381820e-01 + 1.2662000e+04 -1.2253018e+00 + 1.2662400e+04 -1.5571759e+00 + 1.2662800e+04 -1.6889629e+00 + 1.2663200e+04 -1.7605042e+00 + 1.2663600e+04 -2.1517559e+00 + 1.2664000e+04 -2.5327182e+00 + 1.2664400e+04 -2.3932012e+00 + 1.2664800e+04 -1.9833921e+00 + 1.2665200e+04 -1.5835437e+00 + 1.2665600e+04 -8.4375623e-01 + 1.2666000e+04 3.4602055e-01 + 1.2666400e+04 1.1659351e+00 + 1.2666800e+04 2.0006356e+00 + 1.2667200e+04 2.3969038e+00 + 1.2667600e+04 1.9878110e+00 + 1.2668000e+04 1.8185871e+00 + 1.2668400e+04 1.5390822e+00 + 1.2668800e+04 1.4228558e+00 + 1.2669200e+04 1.6258587e+00 + 1.2669600e+04 1.5257790e+00 + 1.2670000e+04 1.1768949e+00 + 1.2670400e+04 1.2218700e+00 + 1.2670800e+04 1.1429793e+00 + 1.2671200e+04 1.0940672e+00 + 1.2671600e+04 1.0451207e+00 + 1.2672000e+04 1.0959357e+00 + 1.2672400e+04 9.2647195e-01 + 1.2672800e+04 5.8654125e-01 + 1.2673200e+04 -2.5375466e-01 + 1.2673600e+04 -1.0047755e+00 + 1.2674000e+04 -1.4357346e+00 + 1.2674400e+04 -1.8368414e+00 + 1.2674800e+04 -1.9579308e+00 + 1.2675200e+04 -2.0789057e+00 + 1.2675600e+04 -1.8596918e+00 + 1.2676000e+04 -1.6599639e+00 + 1.2676400e+04 -1.5801010e+00 + 1.2676800e+04 -1.5000746e+00 + 1.2677200e+04 -1.7201583e+00 + 1.2677600e+04 -1.7602256e+00 + 1.2678000e+04 -1.6201506e+00 + 1.2678400e+04 -1.1000162e+00 + 1.2678800e+04 -5.5979602e-01 + 1.2679200e+04 -6.9558458e-02 + 1.2679600e+04 6.2056432e-01 + 1.2680000e+04 1.7007083e+00 + 1.2680400e+04 2.8070018e+00 + 1.2680800e+04 3.7241051e+00 + 1.2681200e+04 3.7510206e+00 + 1.2681600e+04 2.8910566e+00 + 1.2682000e+04 1.8812891e+00 + 1.2682400e+04 1.0913245e+00 + 1.2682800e+04 6.2153297e-01 + 1.2683200e+04 1.1167729e-01 + 1.2683600e+04 -1.0884984e+00 + 1.2684000e+04 -2.1090301e+00 + 1.2684400e+04 -3.0597588e+00 + 1.2684800e+04 -3.5709174e+00 + 1.2685200e+04 -3.7721908e+00 + 1.2685600e+04 -3.4634580e+00 + 1.2686000e+04 -2.7744871e+00 + 1.2686400e+04 -1.6051882e+00 + 1.2686800e+04 -4.7547071e-01 + 1.2687200e+04 1.3465302e-01 + 1.2687600e+04 3.3515860e-01 + 1.2688000e+04 4.8606319e-01 + 1.2688400e+04 6.6728408e-01 + 1.2688800e+04 6.9870428e-01 + 1.2689200e+04 8.5010563e-01 + 1.2689600e+04 1.3514764e+00 + 1.2690000e+04 2.0327823e+00 + 1.2690400e+04 2.8538723e+00 + 1.2690800e+04 3.5049544e+00 + 1.2691200e+04 3.8257019e+00 + 1.2691600e+04 4.0461018e+00 + 1.2692000e+04 3.8360966e+00 + 1.2692400e+04 3.1754785e+00 + 1.2692800e+04 2.9244533e+00 + 1.2693200e+04 2.7231686e+00 + 1.2693600e+04 2.2418254e+00 + 1.2694000e+04 1.2804964e+00 + 1.2694400e+04 -5.0795962e-02 + 1.2694800e+04 -1.5921434e+00 + 1.2695200e+04 -2.9334323e+00 + 1.2695600e+04 -3.8247200e+00 + 1.2696000e+04 -4.3359720e+00 + 1.2696400e+04 -4.3971520e+00 + 1.2696800e+04 -4.3281160e+00 + 1.2697200e+04 -4.2387899e+00 + 1.2697600e+04 -4.1692549e+00 + 1.2698000e+04 -3.8295283e+00 + 1.2698400e+04 -3.0997057e+00 + 1.2698800e+04 -1.9895782e+00 + 1.2699200e+04 -8.2903450e-01 + 1.2699600e+04 1.3173433e-01 + 1.2700000e+04 7.2273835e-01 + 1.2700400e+04 1.5040107e+00 + 1.2700800e+04 2.7855019e+00 + 1.2701200e+04 3.6569446e+00 + 1.2701600e+04 4.0381198e+00 + 1.2702000e+04 3.9489396e+00 + 1.2702400e+04 3.3292462e+00 + 1.2702800e+04 2.5193902e+00 + 1.2703200e+04 2.0392117e+00 + 1.2703600e+04 1.3087709e+00 + 1.2704000e+04 9.7817742e-01 + 1.2704400e+04 6.6741247e-01 + 1.2704800e+04 5.3647557e-01 + 1.2705200e+04 4.0565303e-01 + 1.2705600e+04 6.5168339e-02 + 1.2706000e+04 -3.1509075e-01 + 1.2706400e+04 -9.6494811e-01 + 1.2706800e+04 -1.7116723e+00 + 1.2707200e+04 -2.5933554e+00 + 1.2707600e+04 -3.1014531e+00 + 1.2708000e+04 -3.4313024e+00 + 1.2708400e+04 -3.6585129e+00 + 1.2708800e+04 -3.2317540e+00 + 1.2709200e+04 -2.4817724e+00 + 1.2709600e+04 -1.6018497e+00 + 1.2710000e+04 -7.3201405e-01 + 1.2710400e+04 6.1484369e-01 + 1.2710800e+04 1.8971294e+00 + 1.2711200e+04 2.7399884e+00 + 1.2711600e+04 3.3444013e+00 + 1.2712000e+04 3.3818954e+00 + 1.2712400e+04 3.1856832e+00 + 1.2712800e+04 2.9778353e+00 + 1.2713200e+04 2.4386452e+00 + 1.2713600e+04 1.8890619e+00 + 1.2714000e+04 1.4891143e+00 + 1.2714400e+04 9.8927875e-01 + 1.2714800e+04 5.6916159e-01 + 1.2715200e+04 5.3887951e-01 + 1.2715600e+04 -3.6150928e-01 + 1.2716000e+04 -1.3421579e+00 + 1.2716400e+04 -1.7329363e+00 + 1.2716800e+04 -2.4138909e+00 + 1.2717200e+04 -2.5449264e+00 + 1.2717600e+04 -2.4157430e+00 + 1.2718000e+04 -1.8164779e+00 + 1.2718400e+04 -1.6773006e+00 + 1.2718800e+04 -1.8281807e+00 + 1.2719200e+04 -1.7388178e+00 + 1.2719600e+04 -1.6391488e+00 + 1.2720000e+04 -1.4989817e+00 + 1.2720400e+04 -1.3284031e+00 + 1.2720800e+04 -9.1755116e-01 + 1.2721200e+04 -3.4664356e-01 + 1.2721600e+04 1.8428847e-01 + 1.2722000e+04 8.8512559e-01 + 1.2722400e+04 1.2061554e+00 + 1.2722800e+04 1.3673811e+00 + 1.2723200e+04 1.7187173e+00 + 1.2723600e+04 1.9099408e+00 + 1.2724000e+04 2.0008702e+00 + 1.2724400e+04 1.7016870e+00 + 1.2724800e+04 1.2720936e+00 + 1.2725200e+04 5.4240990e-01 + 1.2725600e+04 8.2765280e-02 + 1.2726000e+04 -2.3703177e-01 + 1.2726400e+04 -3.2704438e-01 + 1.2726800e+04 -4.7718743e-01 + 1.2727200e+04 -5.8750145e-01 + 1.2727600e+04 -5.5797894e-01 + 1.2728000e+04 -3.3193576e-01 + 1.2728400e+04 -4.3990612e-01 + 1.2728800e+04 -5.3222216e-01 + 1.2729200e+04 -3.1160637e-01 + 1.2729600e+04 -2.4239709e-01 + 1.2730000e+04 9.6504701e-02 + 1.2730400e+04 -5.4652686e-02 + 1.2730800e+04 -1.0577745e-01 + 1.2731200e+04 1.2999870e-02 + 1.2731600e+04 2.8195070e-01 + 1.2732000e+04 3.2123971e-01 + 1.2732400e+04 -2.1910352e-01 + 1.2732800e+04 -6.5897120e-01 + 1.2733200e+04 -1.2485289e+00 + 1.2733600e+04 -2.3978324e+00 + 1.2734000e+04 -2.6370338e+00 + 1.2734400e+04 -2.2460162e+00 + 1.2734800e+04 -1.5149281e+00 + 1.2735200e+04 -7.9388354e-01 + 1.2735600e+04 6.1683782e-01 + 1.2736000e+04 9.8725586e-01 + 1.2736400e+04 1.1071465e+00 + 1.2736800e+04 1.6467840e+00 + 1.2737200e+04 2.2460772e+00 + 1.2737600e+04 2.6751304e+00 + 1.2738000e+04 3.0140096e+00 + 1.2738400e+04 2.7229314e+00 + 1.2738800e+04 2.5320733e+00 + 1.2739200e+04 1.6715898e+00 + 1.2739600e+04 9.4125100e-01 + 1.2740000e+04 -6.0950355e-02 + 1.2740400e+04 -1.0984166e+00 + 1.2740800e+04 -1.9979957e+00 + 1.2741200e+04 -2.2573133e+00 + 1.2741600e+04 -2.1163974e+00 + 1.2742000e+04 -1.9452418e+00 + 1.2742400e+04 -1.8838631e+00 + 1.2742800e+04 -2.0221890e+00 + 1.2743200e+04 -2.1407390e+00 + 1.2743600e+04 -2.0398379e+00 + 1.2744000e+04 -1.6693786e+00 + 1.2744400e+04 -1.1691452e+00 + 1.2744800e+04 -3.5893310e-01 + 1.2745200e+04 2.3136646e-01 + 1.2745600e+04 6.6173800e-01 + 1.2746000e+04 9.8194968e-01 + 1.2746400e+04 1.2619426e+00 + 1.2746800e+04 1.7917212e+00 + 1.2747200e+04 2.2213054e+00 + 1.2747600e+04 2.7404413e+00 + 1.2748000e+04 3.2295663e+00 + 1.2748400e+04 3.3787567e+00 + 1.2748800e+04 2.9577268e+00 + 1.2749200e+04 2.0865392e+00 + 1.2749600e+04 1.8455195e+00 + 1.2750000e+04 9.8492025e-01 + 1.2750400e+04 1.2417033e-01 + 1.2750800e+04 -7.3628461e-01 + 1.2751200e+04 -1.1863050e+00 + 1.2751600e+04 -1.3759244e+00 + 1.2752000e+04 -1.9255259e+00 + 1.2752400e+04 -2.1122142e+00 + 1.2752800e+04 -2.4389534e+00 + 1.2753200e+04 -2.7957159e+00 + 1.2753600e+04 -3.0949883e+00 + 1.2754000e+04 -3.1135669e+00 + 1.2754400e+04 -2.9196569e+00 + 1.2754800e+04 -2.6047544e+00 + 1.2755200e+04 -1.8649879e+00 + 1.2755600e+04 -1.0153616e+00 + 1.2756000e+04 -2.8555379e-01 + 1.2756400e+04 1.4074075e+00 + 1.2756800e+04 3.0354955e+00 + 1.2757200e+04 3.9336430e+00 + 1.2757600e+04 3.6136556e+00 + 1.2758000e+04 3.2439325e+00 + 1.2758400e+04 2.6744986e+00 + 1.2758800e+04 1.9852991e+00 + 1.2759200e+04 8.3626246e-01 + 1.2759600e+04 -3.9230747e-01 + 1.2760000e+04 -8.7088746e-01 + 1.2760400e+04 -1.2693275e+00 + 1.2760800e+04 -1.5777189e+00 + 1.2761200e+04 -2.1562771e+00 + 1.2761600e+04 -2.7251260e+00 + 1.2762000e+04 -2.9545103e+00 + 1.2762400e+04 -2.5044258e+00 + 1.2762800e+04 -1.8245000e+00 + 1.2763200e+04 -1.5246161e+00 + 1.2763600e+04 -9.1104416e-01 + 1.2764000e+04 4.5329717e-02 + 1.2764400e+04 6.9472331e-01 + 1.2764800e+04 7.2431055e-01 + 1.2765200e+04 1.1639237e+00 + 1.2765600e+04 1.5472130e+00 + 1.2766000e+04 1.3405115e+00 + 1.2766400e+04 1.1609569e+00 + 1.2766800e+04 1.0844746e+00 + 1.2767200e+04 1.6390047e+00 + 1.2767600e+04 2.2285875e+00 + 1.2768000e+04 3.0190516e+00 + 1.2768400e+04 2.8898114e+00 + 1.2768800e+04 2.0608354e+00 + 1.2769200e+04 8.2146477e-01 + 1.2769600e+04 4.1831906e-02 + 1.2770000e+04 -9.6811489e-01 + 1.2770400e+04 -1.2482769e+00 + 1.2770800e+04 -1.5185351e+00 + 1.2771200e+04 -1.8276425e+00 + 1.2771600e+04 -1.7386546e+00 + 1.2772000e+04 -1.6065629e+00 + 1.2772400e+04 -1.7140741e+00 + 1.2772800e+04 -2.0009089e+00 + 1.2773200e+04 -1.9572224e+00 + 1.2773600e+04 -1.6005374e+00 + 1.2774000e+04 -1.2711027e+00 + 1.2774400e+04 -1.1018028e+00 + 1.2774800e+04 -8.0263668e-01 + 1.2775200e+04 -5.2314410e-01 + 1.2775600e+04 -1.7330470e-01 + 1.2776000e+04 1.7672857e-01 + 1.2776400e+04 6.4711434e-01 + 1.2776800e+04 9.3776693e-01 + 1.2777200e+04 1.1185997e+00 + 1.2777600e+04 8.1956569e-01 + 1.2778000e+04 9.7047158e-01 + 1.2778400e+04 1.3814228e+00 + 1.2778800e+04 1.7023874e+00 + 1.2779200e+04 2.2633478e+00 + 1.2779600e+04 2.5243028e+00 + 1.2780000e+04 2.4152346e+00 + 1.2780400e+04 1.6862262e+00 + 1.2780800e+04 7.9707437e-01 + 1.2781200e+04 -2.0204709e-01 + 1.2781600e+04 -1.4013920e+00 + 1.2782000e+04 -1.8910222e+00 + 1.2782400e+04 -3.1608545e+00 + 1.2782800e+04 -3.3009189e+00 + 1.2783200e+04 -3.1111540e+00 + 1.2783600e+04 -2.6543430e+00 + 1.2784000e+04 -1.8014355e+00 + 1.2784400e+04 -7.7468944e-01 + 1.2784800e+04 2.5031161e-01 + 1.2785200e+04 1.2190519e+00 + 1.2785600e+04 2.2543539e+00 + 1.2786000e+04 3.0078952e+00 + 1.2786400e+04 3.5375934e+00 + 1.2786800e+04 3.5850530e+00 + 1.2787200e+04 3.2285301e+00 + 1.2787600e+04 2.5680917e+00 + 1.2788000e+04 2.0178799e+00 + 1.2788400e+04 1.1679962e+00 + 1.2788800e+04 4.6860173e-01 + 1.2789200e+04 -1.2045006e-01 + 1.2789600e+04 -6.4951207e-01 + 1.2790000e+04 -9.5856420e-01 + 1.2790400e+04 -1.4177152e+00 + 1.2790800e+04 -2.1772304e+00 + 1.2791200e+04 -2.9170971e+00 + 1.2791600e+04 -3.2971862e+00 + 1.2792000e+04 -3.3975869e+00 + 1.2792400e+04 -2.9581795e+00 + 1.2792800e+04 -2.4587702e+00 + 1.2793200e+04 -2.1895119e+00 + 1.2793600e+04 -1.6403021e+00 + 1.2794000e+04 -8.4110082e-01 + 1.2794400e+04 -5.9181526e-01 + 1.2794800e+04 -2.6202942e-01 + 1.2795200e+04 3.6885936e-02 + 1.2795600e+04 -2.9338750e-01 + 1.2796000e+04 -5.4401827e-01 + 1.2796400e+04 -7.2408379e-01 + 1.2796800e+04 -6.0337860e-01 + 1.2797200e+04 -3.2233012e-01 + 1.2797600e+04 1.9147832e-02 + 1.2798000e+04 3.4069093e-01 + 1.2798400e+04 4.6219233e-01 + 1.2798800e+04 5.0357415e-01 + 1.2799200e+04 4.3484988e-01 + 1.2799600e+04 5.3599012e-01 + 1.2800000e+04 7.5695018e-01 + 1.2800400e+04 9.5764331e-01 + 1.2800800e+04 1.5181539e+00 + 1.2801200e+04 2.3684772e+00 + 1.2801600e+04 2.6186967e+00 + 1.2802000e+04 3.5887894e+00 + 1.2802400e+04 3.4186688e+00 + 1.2802800e+04 3.0385285e+00 + 1.2803200e+04 1.8183741e+00 + 1.2803600e+04 9.7805263e-01 + 1.2804000e+04 3.2753788e-01 + 1.2804400e+04 -2.0311200e-01 + 1.2804800e+04 -8.0394265e-01 + 1.2805200e+04 -1.3448452e+00 + 1.2805600e+04 -1.5357137e+00 + 1.2806000e+04 -1.2763756e+00 + 1.2806400e+04 -1.3071387e+00 + 1.2806800e+04 -1.5781424e+00 + 1.2807200e+04 -2.1095463e+00 + 1.2807600e+04 -3.1610054e+00 + 1.2808000e+04 -3.2123435e+00 + 1.2808400e+04 -2.9634218e+00 + 1.2808800e+04 -2.3541484e+00 + 1.2809200e+04 -1.4444375e+00 + 1.2809600e+04 -6.9843763e-01 + 1.2810000e+04 2.5614521e-01 + 1.2810400e+04 1.0140670e+00 + 1.2810800e+04 1.6438601e+00 + 1.2811200e+04 1.9732539e+00 + 1.2811600e+04 1.5948964e+00 + 1.2812000e+04 6.8154336e-01 + 1.2812400e+04 -1.5712671e-01 + 1.2812800e+04 -4.8618693e-01 + 1.2813200e+04 -5.4577591e-01 + 1.2813600e+04 -5.2450913e-01 + 1.2814000e+04 -5.6593595e-01 + 1.2814400e+04 3.3557623e-02 + 1.2814800e+04 1.2752521e+00 + 1.2815200e+04 1.6923607e+00 + 1.2815600e+04 9.5187733e-01 + 1.2816000e+04 -1.3644464e-01 + 1.2816400e+04 -9.8741008e-01 + 1.2816800e+04 -1.7364452e+00 + 1.2817200e+04 -2.1696582e+00 + 1.2817600e+04 -2.5680752e+00 + 1.2818000e+04 -2.4289653e+00 + 1.2818400e+04 -1.9587208e+00 + 1.2818800e+04 -1.4284227e+00 + 1.2819200e+04 -5.6802780e-01 + 1.2819600e+04 3.1235797e-01 + 1.2820000e+04 1.3528512e+00 + 1.2820400e+04 1.9133565e+00 + 1.2820800e+04 2.3737488e+00 + 1.2821200e+04 2.7240700e+00 + 1.2821600e+04 2.9543403e+00 + 1.2822000e+04 3.2846156e+00 + 1.2822400e+04 3.7747978e+00 + 1.2822800e+04 4.1847821e+00 + 1.2823200e+04 4.1146556e+00 + 1.2823600e+04 3.6144334e+00 + 1.2824000e+04 2.9341353e+00 + 1.2824400e+04 2.2538886e+00 + 1.2824800e+04 1.5436517e+00 + 1.2825200e+04 9.0350028e-01 + 1.2825600e+04 2.3342721e-01 + 1.2826000e+04 -2.8646728e-01 + 1.2826400e+04 -1.2425495e+00 + 1.2826800e+04 -2.2378177e+00 + 1.2827200e+04 -3.1934156e+00 + 1.2827600e+04 -4.2098004e+00 + 1.2828000e+04 -4.9369044e+00 + 1.2828400e+04 -5.1269856e+00 + 1.2828800e+04 -4.8171812e+00 + 1.2829200e+04 -4.0375677e+00 + 1.2829600e+04 -3.1182046e+00 + 1.2830000e+04 -1.9891995e+00 + 1.2830400e+04 -1.1002412e+00 + 1.2830800e+04 -1.1512856e+00 + 1.2831200e+04 -8.5227486e-01 + 1.2831600e+04 -3.7305103e-01 + 1.2832000e+04 6.0644420e-01 + 1.2832400e+04 1.7362860e+00 + 1.2832800e+04 2.2463363e+00 + 1.2833200e+04 2.9166002e+00 + 1.2833600e+04 3.4173029e+00 + 1.2834000e+04 3.8181766e+00 + 1.2834400e+04 3.5291010e+00 + 1.2834800e+04 2.8998110e+00 + 1.2835200e+04 2.2003549e+00 + 1.2835600e+04 1.1405975e+00 + 1.2836000e+04 4.8076481e-01 + 1.2836400e+04 7.0803359e-02 + 1.2836800e+04 -2.0916634e-01 + 1.2837200e+04 -5.9886506e-01 + 1.2837600e+04 -5.1843176e-01 + 1.2838000e+04 -3.9788884e-01 + 1.2838400e+04 -2.0740537e-01 + 1.2838800e+04 6.3065037e-02 + 1.2839200e+04 3.3340726e-01 + 1.2839600e+04 -2.3632869e-01 + 1.2840000e+04 -7.5612245e-01 + 1.2840400e+04 -1.4860318e+00 + 1.2840800e+04 -2.0459039e+00 + 1.2841200e+04 -2.1156913e+00 + 1.2841600e+04 -1.9553819e+00 + 1.2842000e+04 -1.6850291e+00 + 1.2842400e+04 -1.2947439e+00 + 1.2842800e+04 -5.5932924e-01 + 1.2843200e+04 1.1211266e-01 + 1.2843600e+04 8.1481054e-01 + 1.2844000e+04 1.8195536e+00 + 1.2844400e+04 2.6249538e+00 + 1.2844800e+04 3.4042779e+00 + 1.2845200e+04 4.0134942e+00 + 1.2845600e+04 3.6027941e+00 + 1.2846000e+04 3.0221605e+00 + 1.2846400e+04 2.7714671e+00 + 1.2846800e+04 2.7526724e+00 + 1.2847200e+04 2.6629268e+00 + 1.2847600e+04 2.0425109e+00 + 1.2848000e+04 1.2731939e+00 + 1.2848400e+04 3.5634220e-01 + 1.2848800e+04 -9.1661923e-01 + 1.2849200e+04 -2.4211468e+00 + 1.2849600e+04 -3.5480262e+00 + 1.2850000e+04 -4.5010011e+00 + 1.2850400e+04 -4.6812500e+00 + 1.2850800e+04 -4.1208876e+00 + 1.2851200e+04 -3.1542901e+00 + 1.2851600e+04 -2.1127451e+00 + 1.2852000e+04 -1.3261111e+00 + 1.2852400e+04 -5.8647983e-01 + 1.2852800e+04 -8.7820425e-02 + 1.2853200e+04 3.2068566e-01 + 1.2853600e+04 6.7727673e-01 + 1.2854000e+04 1.0671665e+00 + 1.2854400e+04 1.7423116e+00 + 1.2854800e+04 2.5389556e+00 + 1.2855200e+04 2.9188375e+00 + 1.2855600e+04 3.1348937e+00 + 1.2856000e+04 3.2579350e+00 + 1.2856400e+04 2.9579205e+00 + 1.2856800e+04 2.4379735e+00 + 1.2857200e+04 1.7680833e+00 + 1.2857600e+04 1.0582749e+00 + 1.2858000e+04 5.6863687e-01 + 1.2858400e+04 4.0915197e-01 + 1.2858800e+04 -1.2014461e-01 + 1.2859200e+04 -7.9930204e-01 + 1.2859600e+04 -1.3283845e+00 + 1.2860000e+04 -1.6762367e+00 + 1.2860400e+04 -1.7335709e+00 + 1.2860800e+04 -1.6968243e+00 + 1.2861200e+04 -2.0814454e+00 + 1.2861600e+04 -2.5271955e+00 + 1.2862000e+04 -2.9419915e+00 + 1.2862400e+04 -2.9062114e+00 + 1.2862800e+04 -2.7831469e+00 + 1.2863200e+04 -2.7034586e+00 + 1.2863600e+04 -2.3039291e+00 + 1.2864000e+04 -1.2044649e+00 + 1.2864400e+04 -2.4520766e-01 + 1.2864800e+04 7.6381283e-01 + 1.2865200e+04 1.7027213e+00 + 1.2865600e+04 2.7914438e+00 + 1.2866000e+04 3.1500929e+00 + 1.2866400e+04 3.4294741e+00 + 1.2866800e+04 3.6576793e+00 + 1.2867200e+04 3.2567341e+00 + 1.2867600e+04 2.7059474e+00 + 1.2868000e+04 1.8612787e+00 + 1.2868400e+04 9.0250923e-01 + 1.2868800e+04 -2.9290608e-01 + 1.2869200e+04 -1.0733140e+00 + 1.2869600e+04 -1.5237425e+00 + 1.2870000e+04 -1.4949253e+00 + 1.2870400e+04 -1.4274695e+00 + 1.2870800e+04 -1.2375914e+00 + 1.2871200e+04 -1.1372268e+00 + 1.2871600e+04 -1.2164361e+00 + 1.2872000e+04 -1.1757296e+00 + 1.2872400e+04 -1.1047709e+00 + 1.2872800e+04 -9.7363586e-01 + 1.2873200e+04 -6.0257908e-01 + 1.2873600e+04 -2.7105559e-01 + 1.2874000e+04 6.9923689e-01 + 1.2874400e+04 6.0988661e-01 + 1.2874800e+04 5.0024351e-01 + 1.2875200e+04 6.1037670e-01 + 1.2875600e+04 9.2025098e-01 + 1.2876000e+04 9.5781061e-01 + 1.2876400e+04 1.1142102e+00 + 1.2876800e+04 1.3134288e+00 + 1.2877200e+04 1.3874756e+00 + 1.2877600e+04 1.1572841e+00 + 1.2878000e+04 7.8759049e-01 + 1.2878400e+04 4.3815584e-01 + 1.2878800e+04 -1.7088197e-01 + 1.2879200e+04 -9.9988367e-01 + 1.2879600e+04 -1.0289661e+00 + 1.2880000e+04 -1.7581681e+00 + 1.2880400e+04 -1.9774324e+00 + 1.2880800e+04 -2.1367667e+00 + 1.2881200e+04 -2.1661714e+00 + 1.2881600e+04 -2.2156000e+00 + 1.2882000e+04 -1.8450861e+00 + 1.2882400e+04 -1.3648670e+00 + 1.2882800e+04 -1.3349170e+00 + 1.2883200e+04 -2.0520670e-01 + 1.2883600e+04 3.5411472e-01 + 1.2884000e+04 7.0317249e-01 + 1.2884400e+04 1.0918993e+00 + 1.2884800e+04 1.7804529e+00 + 1.2885200e+04 2.2387610e+00 + 1.2885600e+04 2.7471293e+00 + 1.2886000e+04 3.0357727e+00 + 1.2886400e+04 3.3810528e+00 + 1.2886800e+04 3.2676163e+00 + 1.2887200e+04 2.8164888e+00 + 1.2887600e+04 2.3330774e+00 + 1.2888000e+04 2.2111876e+00 + 1.2888400e+04 2.1574959e+00 + 1.2888800e+04 1.3745169e+00 + 1.2889200e+04 2.2108009e-01 + 1.2889600e+04 -5.0865878e-01 + 1.2890000e+04 -1.0483107e+00 + 1.2890400e+04 -1.1477214e+00 + 1.2890800e+04 -1.2171335e+00 + 1.2891200e+04 -1.2964231e+00 + 1.2891600e+04 -2.0657614e+00 + 1.2892000e+04 -2.4650758e+00 + 1.2892400e+04 -2.3843943e+00 + 1.2892800e+04 -1.9637305e+00 + 1.2893200e+04 -1.5128711e+00 + 1.2893600e+04 -1.3922006e+00 + 1.2894000e+04 -6.4170841e-01 + 1.2894400e+04 4.2860979e-01 + 1.2894800e+04 1.5786471e+00 + 1.2895200e+04 2.4025747e+00 + 1.2895600e+04 2.9584642e+00 + 1.2896000e+04 3.3058983e+00 + 1.2896400e+04 3.2575825e+00 + 1.2896800e+04 2.8172460e+00 + 1.2897200e+04 1.1971597e+00 + 1.2897600e+04 -4.4282274e-01 + 1.2898000e+04 -1.5629349e+00 + 1.2898400e+04 -2.3830959e+00 + 1.2898800e+04 -2.9831676e+00 + 1.2899200e+04 -3.1129727e+00 + 1.2899600e+04 -2.9624609e+00 + 1.2900000e+04 -2.7117854e+00 + 1.2900400e+04 -2.3610137e+00 + 1.2900800e+04 -1.8902140e+00 + 1.2901200e+04 -1.5292677e+00 + 1.2901600e+04 -1.1582230e+00 + 1.2902000e+04 -8.6710309e-01 + 1.2902400e+04 -4.5625057e-01 + 1.2902800e+04 4.4067321e-02 + 1.2903200e+04 6.3408810e-01 + 1.2903600e+04 1.2040028e+00 + 1.2904000e+04 1.9435938e+00 + 1.2904400e+04 2.7128624e+00 + 1.2904800e+04 3.7418554e+00 + 1.2905200e+04 4.3805905e+00 + 1.2905600e+04 4.8890906e+00 + 1.2906000e+04 4.6174759e+00 + 1.2906400e+04 4.1459782e+00 + 1.2906800e+04 3.0149056e+00 + 1.2907200e+04 2.3242935e+00 + 1.2907600e+04 1.4239289e+00 + 1.2908000e+04 3.9341927e-01 + 1.2908400e+04 -3.1713573e-01 + 1.2908800e+04 -5.9772751e-01 + 1.2909200e+04 -1.0182038e+00 + 1.2909600e+04 -1.6482296e+00 + 1.2910000e+04 -2.2678372e+00 + 1.2910400e+04 -2.7672483e+00 + 1.2910800e+04 -3.1660899e+00 + 1.2911200e+04 -3.0246351e+00 + 1.2911600e+04 -2.5231500e+00 + 1.2912000e+04 -2.1219649e+00 + 1.2912400e+04 -1.3309597e+00 + 1.2912800e+04 -1.0502918e+00 + 1.2913200e+04 -7.3972515e-01 + 1.2913600e+04 -6.0941359e-01 + 1.2914000e+04 -3.5950622e-01 + 1.2914400e+04 -1.9900864e-02 + 1.2914800e+04 3.9610177e-02 + 1.2915200e+04 2.7905395e-01 + 1.2915600e+04 4.2867123e-01 + 1.2916000e+04 6.9859086e-01 + 1.2916400e+04 7.7896347e-01 + 1.2916800e+04 5.2956985e-01 + 1.2917200e+04 2.9045387e-01 + 1.2917600e+04 3.5122633e-01 + 1.2918000e+04 1.1632162e-02 + 1.2918400e+04 -2.0833707e-01 + 1.2918800e+04 -3.2856250e-01 + 1.2919200e+04 -5.1889516e-01 + 1.2919600e+04 -5.7917988e-01 + 1.2920000e+04 -2.5923812e-01 + 1.2920400e+04 -8.0230078e-02 + 1.2920800e+04 -2.2079210e-01 + 1.2921200e+04 -1.3121320e-01 + 1.2921600e+04 -3.1532953e-02 + 1.2922000e+04 3.5817228e-01 + 1.2922400e+04 6.5777225e-01 + 1.2922800e+04 6.1750236e-01 + 1.2923200e+04 3.7735707e-01 + 1.2923600e+04 1.0911475e-01 + 1.2924000e+04 1.7065026e-01 + 1.2924400e+04 3.6349884e-01 + 1.2924800e+04 7.9534672e-01 + 1.2925200e+04 8.9191685e-01 + 1.2925600e+04 7.3356355e-01 + 1.2926000e+04 6.2628409e-01 + 1.2926400e+04 4.6821080e-01 + 1.2926800e+04 6.0753854e-01 + 1.2927200e+04 9.3636685e-01 + 1.2927600e+04 1.1435069e+00 + 1.2928000e+04 1.2573301e+00 + 1.2928400e+04 1.0987140e+00 + 1.2928800e+04 1.1801010e+00 + 1.2929200e+04 1.1606251e+00 + 1.2929600e+04 8.9012953e-01 + 1.2930000e+04 6.5986985e-01 + 1.2930400e+04 2.9986760e-01 + 1.2930800e+04 -1.5985913e-01 + 1.2931200e+04 -3.9923645e-01 + 1.2931600e+04 -5.8658859e-01 + 1.2932000e+04 -8.8643352e-01 + 1.2932400e+04 -1.3724447e+00 + 1.2932800e+04 -1.9440948e+00 + 1.2933200e+04 -2.2631531e+00 + 1.2933600e+04 -2.4818986e+00 + 1.2934000e+04 -2.2507915e+00 + 1.2934400e+04 -1.4082990e+00 + 1.2934800e+04 -2.7213349e-01 + 1.2935200e+04 1.8143782e-01 + 1.2935600e+04 1.1701293e-02 + 1.2936000e+04 -7.4724315e-01 + 1.2936400e+04 -1.0737765e+00 + 1.2936800e+04 -7.7211040e-01 + 1.2937200e+04 -1.9271884e-01 + 1.2937600e+04 1.1151209e-01 + 1.2938000e+04 3.9095016e-01 + 1.2938400e+04 7.1020540e-01 + 1.2938800e+04 4.0937945e-01 + 1.2939200e+04 1.6864351e-01 + 1.2939600e+04 1.4572657e-01 + 1.2940000e+04 -7.3361359e-02 + 1.2940400e+04 -2.0000608e-02 + 1.2940800e+04 2.7790502e-01 + 1.2941200e+04 1.2728655e-01 + 1.2941600e+04 -2.1225478e-01 + 1.2942000e+04 -4.5536663e-02 + 1.2942400e+04 1.0412701e-01 + 1.2942800e+04 7.3956617e-02 + 1.2943200e+04 -2.3599985e-01 + 1.2943600e+04 -2.7573841e-01 + 1.2944000e+04 -4.5888842e-02 + 1.2944400e+04 2.5410877e-01 + 1.2944800e+04 4.4394724e-01 + 1.2945200e+04 7.8379347e-01 + 1.2945600e+04 1.4237772e+00 + 1.2946000e+04 1.9636598e+00 + 1.2946400e+04 1.8931065e+00 + 1.2946800e+04 1.8223134e+00 + 1.2947200e+04 1.8814106e+00 + 1.2947600e+04 1.6404169e+00 + 1.2948000e+04 1.4594466e+00 + 1.2948400e+04 1.7987639e+00 + 1.2948800e+04 2.5182927e+00 + 1.2949200e+04 3.0480530e+00 + 1.2949600e+04 3.4325464e+00 + 1.2950000e+04 3.1138269e+00 + 1.2950400e+04 2.0582846e+00 + 1.2950800e+04 6.4745693e-01 + 1.2951200e+04 -9.6141012e-01 + 1.2951600e+04 -2.0794721e+00 + 1.2952000e+04 -3.2670239e+00 + 1.2952400e+04 -4.2784025e+00 + 1.2952800e+04 -4.8978664e+00 + 1.2953200e+04 -4.8500259e+00 + 1.2953600e+04 -4.4759689e+00 + 1.2954000e+04 -3.9346957e+00 + 1.2954400e+04 -3.5040007e+00 + 1.2954800e+04 -3.4339343e+00 + 1.2955200e+04 -2.6142669e+00 + 1.2955600e+04 -8.7110139e-01 + 1.2956000e+04 1.3632572e+00 + 1.2956400e+04 2.9472404e+00 + 1.2956800e+04 3.9151294e+00 + 1.2957200e+04 3.8994778e+00 + 1.2957600e+04 3.7638960e+00 + 1.2958000e+04 3.3350268e+00 + 1.2958400e+04 2.4838526e+00 + 1.2958800e+04 2.0025464e+00 + 1.2959200e+04 1.5716750e+00 + 1.2959600e+04 8.1284757e-02 + 1.2960000e+04 -7.1907595e-01 + 1.2960400e+04 -1.5534554e+00 + 1.2960800e+04 -2.0412874e+00 + 1.2961200e+04 -2.2551076e+00 + 1.2961600e+04 -1.9301721e+00 + 1.2962000e+04 -1.3807170e+00 + 1.2962400e+04 -1.1571641e+00 + 1.2962800e+04 -1.0663116e+00 + 1.2963200e+04 -7.3183790e-01 + 1.2963600e+04 -3.6801222e-01 + 1.2964000e+04 -8.8501087e-02 + 1.2964400e+04 1.4116078e-01 + 1.2964800e+04 2.8101621e-01 + 1.2965200e+04 4.6092488e-01 + 1.2965600e+04 6.5089807e-01 + 1.2966000e+04 7.8096917e-01 + 1.2966400e+04 7.3128222e-01 + 1.2966800e+04 9.6170637e-01 + 1.2967200e+04 1.4723239e+00 + 1.2967600e+04 1.8730484e+00 + 1.2968000e+04 1.5338542e+00 + 1.2968400e+04 1.0648557e+00 + 1.2968800e+04 9.6572672e-01 + 1.2969200e+04 1.1262122e+00 + 1.2969600e+04 1.1963214e+00 + 1.2970000e+04 1.6148583e+00 + 1.2970400e+04 1.8935544e+00 + 1.2970800e+04 1.8822525e+00 + 1.2971200e+04 9.8976285e-01 + 1.2971600e+04 -1.9593488e-01 + 1.2972000e+04 -1.6065500e+00 + 1.2972400e+04 -2.5371750e+00 + 1.2972800e+04 -3.1476186e+00 + 1.2973200e+04 -3.3377155e+00 + 1.2973600e+04 -3.4074562e+00 + 1.2974000e+04 -3.3169644e+00 + 1.2974400e+04 -2.8862850e+00 + 1.2974800e+04 -2.5655804e+00 + 1.2975200e+04 -2.1948148e+00 + 1.2975600e+04 -1.4940657e+00 + 1.2976000e+04 -4.6333583e-01 + 1.2976400e+04 8.7223818e-02 + 1.2976800e+04 3.3746577e-01 + 1.2977200e+04 7.1758915e-01 + 1.2977600e+04 1.1076130e+00 + 1.2978000e+04 1.3572552e+00 + 1.2978400e+04 1.5067186e+00 + 1.2978800e+04 1.7058838e+00 + 1.2979200e+04 1.5947584e+00 + 1.2979600e+04 1.5233736e+00 + 1.2980000e+04 1.7420455e+00 + 1.2980400e+04 1.6707803e+00 + 1.2980800e+04 1.5996614e+00 + 1.2981200e+04 1.5287238e+00 + 1.2981600e+04 1.2979765e+00 + 1.2982000e+04 1.0675335e+00 + 1.2982400e+04 9.5745222e-01 + 1.2982800e+04 7.4774037e-01 + 1.2983200e+04 6.7836898e-01 + 1.2983600e+04 5.1918037e-01 + 1.2984000e+04 7.7991896e-01 + 1.2984400e+04 7.1066428e-01 + 1.2984800e+04 3.4166596e-01 + 1.2985200e+04 1.4267710e-01 + 1.2985600e+04 -4.1632215e-01 + 1.2986000e+04 -1.0054149e+00 + 1.2986400e+04 -1.6046557e+00 + 1.2986800e+04 -1.8240429e+00 + 1.2987200e+04 -1.5235039e+00 + 1.2987600e+04 -1.2129176e+00 + 1.2988000e+04 -7.7238679e-01 + 1.2988400e+04 -3.4191156e-01 + 1.2988800e+04 -1.8161354e-01 + 1.2989200e+04 -1.5142544e-01 + 1.2989600e+04 -3.3148795e-01 + 1.2990000e+04 -4.8194706e-01 + 1.2990400e+04 -6.1264384e-01 + 1.2990800e+04 -5.2378903e-01 + 1.2991200e+04 -4.0013095e-01 + 1.2991600e+04 -4.5531242e-01 + 1.2992000e+04 -5.1224367e-01 + 1.2992400e+04 -4.2680823e-01 + 1.2992800e+04 -3.5706398e-01 + 1.2993200e+04 1.3157533e-02 + 1.2993600e+04 1.5389700e-01 + 1.2994000e+04 2.4486742e-01 + 1.2994400e+04 6.0579184e-01 + 1.2994800e+04 1.0965776e+00 + 1.2995200e+04 1.0369877e+00 + 1.2995600e+04 9.7698845e-01 + 1.2996000e+04 2.3657392e-01 + 1.2996400e+04 -3.8408519e-01 + 1.2996800e+04 -6.9530560e-01 + 1.2997200e+04 -1.0059655e+00 + 1.2997600e+04 -1.2770497e+00 + 1.2998000e+04 -1.3679194e+00 + 1.2998400e+04 -1.2328578e+00 + 1.2998800e+04 -1.3365926e+00 + 1.2999200e+04 -1.1398476e+00 + 1.2999600e+04 -7.1545672e-01 + 1.3000000e+04 -2.2828450e-01 + 1.3000400e+04 7.1189675e-01 + 1.3000800e+04 1.3021555e+00 + 1.3001200e+04 1.7122925e+00 + 1.3001600e+04 2.3622716e+00 + 1.3002000e+04 2.9020564e+00 + 1.3002400e+04 3.5119364e+00 + 1.3002800e+04 4.0186122e+00 + 1.3003200e+04 3.5431974e+00 + 1.3003600e+04 2.8629244e+00 + 1.3004000e+04 1.5874761e+00 + 1.3004400e+04 3.5258425e-01 + 1.3004800e+04 -9.2676663e-01 + 1.3005200e+04 -1.6258187e+00 + 1.3005600e+04 -1.6846856e+00 + 1.3006000e+04 -1.5415349e+00 + 1.3006400e+04 -1.4622002e+00 + 1.3006800e+04 -1.3909921e+00 + 1.3007200e+04 -1.3635126e+00 + 1.3007600e+04 -1.2104358e+00 + 1.3008000e+04 -1.0011410e+00 + 1.3008400e+04 -7.6223596e-01 + 1.3008800e+04 -4.4365085e-01 + 1.3009200e+04 -3.7851657e-01 + 1.3009600e+04 -5.0189192e-01 + 1.3010000e+04 -4.4959570e-01 + 1.3010400e+04 -2.4899159e-01 + 1.3010800e+04 -1.9417762e-01 + 1.3011200e+04 -3.4118898e-01 + 1.3011600e+04 -7.4169930e-01 + 1.3012000e+04 -1.0218295e+00 + 1.3012400e+04 -1.2216934e+00 + 1.3012800e+04 -1.0215259e+00 + 1.3013200e+04 -8.7109870e-01 + 1.3013600e+04 -7.7050974e-01 + 1.3014000e+04 -4.1984889e-01 + 1.3014400e+04 -3.1976863e-01 + 1.3014800e+04 -5.9897204e-02 + 1.3015200e+04 -1.0144698e-02 + 1.3015600e+04 -5.0381192e-02 + 1.3016000e+04 8.9504038e-02 + 1.3016400e+04 4.1911827e-01 + 1.3016800e+04 1.1687012e+00 + 1.3017200e+04 1.7679842e+00 + 1.3017600e+04 2.0469901e+00 + 1.3018000e+04 2.1459310e+00 + 1.3018400e+04 2.3049052e+00 + 1.3018800e+04 2.1542446e+00 + 1.3019200e+04 1.5438924e+00 + 1.3019600e+04 1.0839823e+00 + 1.3020000e+04 3.3473973e-01 + 1.3020400e+04 -1.2426726e-01 + 1.3020800e+04 -5.0332472e-01 + 1.3021200e+04 -1.4025302e+00 + 1.3021600e+04 -1.5516793e+00 + 1.3022000e+04 -1.6206860e+00 + 1.3022400e+04 -1.5897909e+00 + 1.3022800e+04 -1.1391131e+00 + 1.3023200e+04 -6.1862957e-01 + 1.3023600e+04 -1.8019164e-02 + 1.3024000e+04 1.0528573e+00 + 1.3024400e+04 9.7408292e-01 + 1.3024800e+04 1.0353030e+00 + 1.3025200e+04 1.3060813e+00 + 1.3025600e+04 1.5364218e+00 + 1.3026000e+04 1.3263127e+00 + 1.3026400e+04 9.0587621e-01 + 1.3026800e+04 3.7518550e-01 + 1.3027200e+04 5.4521458e-02 + 1.3027600e+04 -6.6170111e-02 + 1.3028000e+04 -1.0672437e-01 + 1.3028400e+04 2.5501865e-03 + 1.3028800e+04 9.1748111e-02 + 1.3029200e+04 -1.3918798e-01 + 1.3029600e+04 -7.3020819e-01 + 1.3030000e+04 -1.3008737e+00 + 1.3030400e+04 -1.7417037e+00 + 1.3030800e+04 -2.0025624e+00 + 1.3031200e+04 -1.7035533e+00 + 1.3031600e+04 -1.3045113e+00 + 1.3032000e+04 -8.0547467e-01 + 1.3032400e+04 -1.1608187e-01 + 1.3032800e+04 3.6357551e-01 + 1.3033200e+04 5.1355997e-01 + 1.3033600e+04 4.1381203e-01 + 1.3034000e+04 6.2411916e-01 + 1.3034400e+04 7.5448391e-01 + 1.3034800e+04 1.0550338e+00 + 1.3035200e+04 1.5057609e+00 + 1.3035600e+04 1.8563401e+00 + 1.3036000e+04 2.0766989e+00 + 1.3036400e+04 1.8169490e+00 + 1.3036800e+04 1.0271270e+00 + 1.3037200e+04 -6.2725570e-02 + 1.3037600e+04 -8.1238556e-01 + 1.3038000e+04 -1.3519014e+00 + 1.3038400e+04 -1.9913731e+00 + 1.3038800e+04 -2.1512561e+00 + 1.3039200e+04 -1.9515581e+00 + 1.3039600e+04 -1.5721079e+00 + 1.3040000e+04 -1.0429164e+00 + 1.3040400e+04 -7.1543339e-01 + 1.3040800e+04 -4.4844591e-01 + 1.3041200e+04 -3.6358493e-01 + 1.3041600e+04 -6.3241897e-01 + 1.3042000e+04 -6.1971462e-01 + 1.3042400e+04 -1.0336333e-01 + 1.3042800e+04 8.0714597e-01 + 1.3043200e+04 1.6277568e+00 + 1.3043600e+04 2.3282201e+00 + 1.3044000e+04 2.9584698e+00 + 1.3044400e+04 3.4785519e+00 + 1.3044800e+04 3.1083931e+00 + 1.3045200e+04 2.6159471e+00 + 1.3045600e+04 1.6179595e+00 + 1.3046000e+04 3.7740965e-01 + 1.3046400e+04 -4.4514529e-01 + 1.3046800e+04 -1.2505942e+00 + 1.3047200e+04 -1.9256297e+00 + 1.3047600e+04 -2.0179916e+00 + 1.3048000e+04 -1.9116818e+00 + 1.3048400e+04 -1.8819589e+00 + 1.3048800e+04 -1.5651665e+00 + 1.3049200e+04 -1.2061016e+00 + 1.3049600e+04 -6.5624533e-01 + 1.3050000e+04 -6.3808195e-03 + 1.3050400e+04 2.3339571e-01 + 1.3050800e+04 1.3263337e-02 + 1.3051200e+04 -2.6612810e-01 + 1.3051600e+04 -4.0951302e-02 + 1.3052000e+04 1.8217586e-01 + 1.3052400e+04 2.5281978e-01 + 1.3052800e+04 2.5659944e-01 + 1.3053200e+04 -1.4581123e-01 + 1.3053600e+04 -2.8488320e-01 + 1.3054000e+04 -4.2413385e-01 + 1.3054400e+04 -3.9386056e-01 + 1.3054800e+04 -8.4070133e-02 + 1.3055200e+04 5.2524690e-01 + 1.3055600e+04 1.0643060e+00 + 1.3056000e+04 1.2734591e+00 + 1.3056400e+04 1.2329784e+00 + 1.3056800e+04 1.1829617e+00 + 1.3057200e+04 1.1232176e+00 + 1.3057600e+04 1.2935415e+00 + 1.3058000e+04 1.0237969e+00 + 1.3058400e+04 4.9394862e-01 + 1.3058800e+04 1.4075314e-02 + 1.3059200e+04 -4.9573883e-01 + 1.3059600e+04 -1.0941883e+00 + 1.3060000e+04 -8.4189122e-01 + 1.3060400e+04 -4.9480897e-01 + 1.3060800e+04 -3.5407894e-01 + 1.3061200e+04 -8.9560780e-01 + 1.3061600e+04 -1.1557550e+00 + 1.3062000e+04 -1.3658744e+00 + 1.3062400e+04 -1.2358849e+00 + 1.3062800e+04 -1.1660182e+00 + 1.3063200e+04 -8.0605896e-01 + 1.3063600e+04 -4.8626046e-01 + 1.3064000e+04 -1.4678738e-01 + 1.3064400e+04 2.1240930e-01 + 1.3064800e+04 6.9172226e-01 + 1.3065200e+04 1.3813287e+00 + 1.3065600e+04 2.1312546e+00 + 1.3066000e+04 3.0514181e+00 + 1.3066400e+04 3.9216585e+00 + 1.3066800e+04 4.2222128e+00 + 1.3067200e+04 3.6029891e+00 + 1.3067600e+04 2.7137360e+00 + 1.3068000e+04 1.9543599e+00 + 1.3068400e+04 1.2447437e+00 + 1.3068800e+04 7.9500845e-01 + 1.3069200e+04 1.6515218e-01 + 1.3069600e+04 -5.9489919e-01 + 1.3070000e+04 -1.3754091e+00 + 1.3070400e+04 -2.0058817e+00 + 1.3070800e+04 -2.6262768e+00 + 1.3071200e+04 -3.1666238e+00 + 1.3071600e+04 -3.3569561e+00 + 1.3072000e+04 -3.0473345e+00 + 1.3072400e+04 -2.9475105e+00 + 1.3072800e+04 -2.6275770e+00 + 1.3073200e+04 -1.8375221e+00 + 1.3073600e+04 -9.1716900e-01 + 1.3074000e+04 -5.8674035e-01 + 1.3074400e+04 -8.9632914e-01 + 1.3074800e+04 -8.4606557e-01 + 1.3075200e+04 -4.7599029e-01 + 1.3075600e+04 4.3871364e-02 + 1.3076000e+04 1.2136566e+00 + 1.3076400e+04 2.1234944e+00 + 1.3076800e+04 2.7933265e+00 + 1.3077200e+04 3.1530935e+00 + 1.3077600e+04 2.7628125e+00 + 1.3078000e+04 2.1026131e+00 + 1.3078400e+04 1.7526545e+00 + 1.3078800e+04 1.5126883e+00 + 1.3079200e+04 1.4327590e+00 + 1.3079600e+04 1.0728532e+00 + 1.3080000e+04 6.7319200e-01 + 1.3080400e+04 2.5368299e-01 + 1.3080800e+04 6.4314337e-02 + 1.3081200e+04 -5.4502582e-01 + 1.3081600e+04 -9.2446001e-01 + 1.3082000e+04 -1.4740956e+00 + 1.3082400e+04 -1.8039398e+00 + 1.3082800e+04 -2.0640665e+00 + 1.3083200e+04 -2.2544036e+00 + 1.3083600e+04 -2.2850930e+00 + 1.3084000e+04 -1.9159590e+00 + 1.3084400e+04 -1.5468299e+00 + 1.3084800e+04 -1.0078398e+00 + 1.3085200e+04 -7.2890660e-01 + 1.3085600e+04 -2.8955998e-01 + 1.3086000e+04 5.9945213e-01 + 1.3086400e+04 1.3990517e+00 + 1.3086800e+04 2.2389102e+00 + 1.3087200e+04 2.5390459e+00 + 1.3087600e+04 2.2295208e+00 + 1.3088000e+04 1.9105864e+00 + 1.3088400e+04 1.6420160e+00 + 1.3088800e+04 1.5222895e+00 + 1.3089200e+04 1.5455661e+00 + 1.3089600e+04 1.7647324e+00 + 1.3090000e+04 1.8481432e+00 + 1.3090400e+04 1.5792478e+00 + 1.3090800e+04 1.0000380e+00 + 1.3091200e+04 1.0025773e-01 + 1.3091600e+04 -1.0301864e+00 + 1.3092000e+04 -1.9410620e+00 + 1.3092400e+04 -2.6820552e+00 + 1.3092800e+04 -2.9330903e+00 + 1.3093200e+04 -3.0541944e+00 + 1.3093600e+04 -2.6835808e+00 + 1.3094000e+04 -2.3347924e+00 + 1.3094400e+04 -1.8742325e+00 + 1.3094800e+04 -1.8969265e+00 + 1.3095200e+04 -2.1401642e+00 + 1.3095600e+04 -2.0415940e+00 + 1.3096000e+04 -1.6806243e+00 + 1.3096400e+04 -9.8910395e-01 + 1.3096800e+04 -3.6267655e-01 + 1.3097200e+04 1.9874022e-01 + 1.3097600e+04 6.5973470e-01 + 1.3098000e+04 1.0046096e+00 + 1.3098400e+04 1.2652938e+00 + 1.3098800e+04 1.6861877e+00 + 1.3099200e+04 2.2169936e+00 + 1.3099600e+04 2.5585521e+00 + 1.3100000e+04 2.8509736e+00 + 1.3100400e+04 2.4235973e+00 + 1.3100800e+04 2.0172583e+00 + 1.3101200e+04 1.8513445e+00 + 1.3101600e+04 1.1822651e+00 + 1.3102000e+04 7.5315164e-01 + 1.3102400e+04 5.2401585e-01 + 1.3102800e+04 -6.9570198e-01 + 1.3103200e+04 -1.0847811e+00 + 1.3103600e+04 -1.1744251e+00 + 1.3104000e+04 -1.6242632e+00 + 1.3104400e+04 -1.9043855e+00 + 1.3104800e+04 -2.2546053e+00 + 1.3105200e+04 -2.2950247e+00 + 1.3105600e+04 -1.7512303e+00 + 1.3106000e+04 -1.1451191e+00 + 1.3106400e+04 -3.5688976e-01 + 1.3106800e+04 5.6353649e-01 + 1.3107200e+04 1.2515014e+00 + 1.3107600e+04 1.6379853e+00 + 1.3108000e+04 1.6762656e+00 + 1.3108400e+04 1.9652418e+00 + 1.3108800e+04 2.6115048e+00 + 1.3109200e+04 2.8511797e+00 + 1.3109600e+04 2.2411361e+00 + 1.3110000e+04 1.6287563e+00 + 1.3110400e+04 6.1864012e-01 + 1.3110800e+04 -2.8727915e-01 + 1.3111200e+04 -1.0488223e+00 + 1.3111600e+04 -1.6766639e+00 + 1.3112000e+04 -1.8162767e+00 + 1.3112400e+04 -1.8153829e+00 + 1.3112800e+04 -1.5897265e+00 + 1.3113200e+04 -1.4853373e+00 + 1.3113600e+04 -1.4389586e+00 + 1.3114000e+04 -1.4290297e+00 + 1.3114400e+04 -1.2605103e+00 + 1.3114800e+04 -1.1519280e+00 + 1.3115200e+04 -8.7316107e-01 + 1.3115600e+04 -2.9392994e-01 + 1.3116000e+04 -3.5027204e-02 + 1.3116400e+04 2.8202776e-01 + 1.3116800e+04 6.0055109e-01 + 1.3117200e+04 5.6378039e-01 + 1.3117600e+04 8.4808240e-01 + 1.3118000e+04 9.3397211e-01 + 1.3118400e+04 1.0843056e+00 + 1.3118800e+04 1.3448362e+00 + 1.3119200e+04 1.6255846e+00 + 1.3119600e+04 1.5063712e+00 + 1.3120000e+04 1.3172706e+00 + 1.3120400e+04 1.0081356e+00 + 1.3120800e+04 8.9912185e-01 + 1.3121200e+04 7.2005378e-01 + 1.3121600e+04 5.2092794e-01 + 1.3122000e+04 3.2168632e-01 + 1.3122400e+04 -2.7695208e-02 + 1.3122800e+04 -3.2135687e-01 + 1.3123200e+04 -7.0519833e-01 + 1.3123600e+04 -1.0786174e+00 + 1.3124000e+04 -9.6574459e-01 + 1.3124400e+04 -6.9458895e-01 + 1.3124800e+04 -3.6340883e-01 + 1.3125200e+04 6.8989054e-03 + 1.3125600e+04 1.8697172e-01 + 1.3126000e+04 4.8644328e-01 + 1.3126400e+04 6.3579310e-01 + 1.3126800e+04 5.6495115e-01 + 1.3127200e+04 3.0404098e-01 + 1.3127600e+04 1.0351973e-01 + 1.3128000e+04 -1.9812924e-01 + 1.3128400e+04 -8.0264912e-01 + 1.3128800e+04 -1.1342078e+00 + 1.3129200e+04 -1.0052612e+00 + 1.3129600e+04 -9.0202440e-01 + 1.3130000e+04 -7.5248466e-01 + 1.3130400e+04 5.7027538e-02 + 1.3130800e+04 3.8650483e-01 + 1.3131200e+04 -8.3953441e-02 + 1.3131600e+04 -5.9107066e-01 + 1.3132000e+04 -8.7925895e-01 + 1.3132400e+04 -8.9846206e-01 + 1.3132800e+04 -6.2763634e-01 + 1.3133200e+04 -2.9478564e-01 + 1.3133600e+04 2.1490913e-01 + 1.3134000e+04 5.1491650e-01 + 1.3134400e+04 8.0497122e-01 + 1.3134800e+04 1.0050510e+00 + 1.3135200e+04 1.3653472e+00 + 1.3135600e+04 1.5757363e+00 + 1.3136000e+04 1.4260907e+00 + 1.3136400e+04 1.2565607e+00 + 1.3136800e+04 4.8715346e-01 + 1.3137200e+04 -4.8234203e-01 + 1.3137600e+04 -1.0121329e+00 + 1.3138000e+04 -1.2320968e+00 + 1.3138400e+04 -1.1021644e+00 + 1.3138800e+04 -9.9227495e-01 + 1.3139200e+04 -7.6201674e-01 + 1.3139600e+04 -7.1301895e-01 + 1.3140000e+04 -6.4165453e-01 + 1.3140400e+04 -5.8719380e-01 + 1.3140800e+04 -4.2241787e-01 + 1.3141200e+04 -2.0446392e-04 + 1.3141600e+04 2.1978931e-01 + 1.3142000e+04 1.4965878e-01 + 1.3142400e+04 6.5942502e-01 + 1.3142800e+04 1.2492253e+00 + 1.3143200e+04 1.1591379e+00 + 1.3143600e+04 8.5918661e-01 + 1.3144000e+04 7.6937980e-01 + 1.3144400e+04 1.4597175e+00 + 1.3144800e+04 1.1701105e+00 + 1.3145200e+04 5.6067228e-01 + 1.3145600e+04 3.1146405e-01 + 1.3146000e+04 -5.7750505e-02 + 1.3146400e+04 -7.0712107e-01 + 1.3146800e+04 -8.8197082e-01 + 1.3147200e+04 -8.3532235e-01 + 1.3147600e+04 -7.0174375e-01 + 1.3148000e+04 -3.3321156e-01 + 1.3148400e+04 -3.9132297e-01 + 1.3148800e+04 -7.8940393e-01 + 1.3149200e+04 -1.0007749e+00 + 1.3149600e+04 -1.1721634e+00 + 1.3150000e+04 -1.1593897e+00 + 1.3150400e+04 -1.1442577e+00 + 1.3150800e+04 -1.3213775e+00 + 1.3151200e+04 -1.3509321e+00 + 1.3151600e+04 -7.6763757e-01 + 1.3152000e+04 -4.3813899e-01 + 1.3152400e+04 -6.8460467e-02 + 1.3152800e+04 2.0143089e-01 + 1.3153200e+04 3.9151092e-01 + 1.3153600e+04 5.6439814e-01 + 1.3154000e+04 6.4265398e-01 + 1.3154400e+04 8.8390306e-01 + 1.3154800e+04 9.1471465e-01 + 1.3155200e+04 8.8913770e-01 + 1.3155600e+04 1.3749412e+00 + 1.3156000e+04 1.9158981e+00 + 1.3156400e+04 2.1566612e+00 + 1.3156800e+04 2.1272701e+00 + 1.3157200e+04 1.9076258e+00 + 1.3157600e+04 1.3878591e+00 + 1.3158000e+04 3.5802189e-01 + 1.3158400e+04 -6.0188773e-01 + 1.3158800e+04 -1.2018621e+00 + 1.3159200e+04 -1.3219237e+00 + 1.3159600e+04 -1.1218767e+00 + 1.3160000e+04 -1.0517735e+00 + 1.3160400e+04 -1.1616077e+00 + 1.3160800e+04 -1.6615539e+00 + 1.3161200e+04 -1.9615211e+00 + 1.3161600e+04 -1.9315053e+00 + 1.3162000e+04 -1.6614734e+00 + 1.3162400e+04 -1.1815281e+00 + 1.3162800e+04 -8.0167891e-01 + 1.3163200e+04 -5.3530981e-01 + 1.3163600e+04 9.8334501e-03 + 1.3164000e+04 4.4125449e-01 + 1.3164400e+04 5.4033536e-01 + 1.3164800e+04 5.7887775e-01 + 1.3165200e+04 1.2692528e+00 + 1.3165600e+04 1.7144013e+00 + 1.3166000e+04 1.9231578e+00 + 1.3166400e+04 1.6400987e+00 + 1.3166800e+04 1.6393594e+00 + 1.3167200e+04 1.8471663e+00 + 1.3167600e+04 1.6314782e+00 + 1.3168000e+04 1.1508495e+00 + 1.3168400e+04 3.8345878e-01 + 1.3168800e+04 -2.3636601e-01 + 1.3169200e+04 -5.6090872e-01 + 1.3169600e+04 -6.3152551e-01 + 1.3170000e+04 -8.5008466e-01 + 1.3170400e+04 -1.2021890e+00 + 1.3170800e+04 -1.4476781e+00 + 1.3171200e+04 -1.6646197e+00 + 1.3171600e+04 -1.8237138e+00 + 1.3172000e+04 -2.0832680e+00 + 1.3172400e+04 -2.5803309e+00 + 1.3172800e+04 -2.8563907e+00 + 1.3173200e+04 -2.9644720e+00 + 1.3173600e+04 -2.5249286e+00 + 1.3174000e+04 -2.3852353e+00 + 1.3174400e+04 -1.6222844e+00 + 1.3174800e+04 -6.7158575e-01 + 1.3175200e+04 7.9702537e-01 + 1.3175600e+04 2.5910802e+00 + 1.3176000e+04 4.0455235e+00 + 1.3176400e+04 4.6861047e+00 + 1.3176800e+04 4.8166593e+00 + 1.3177200e+04 4.8572614e+00 + 1.3177600e+04 4.6579304e+00 + 1.3178000e+04 4.3465029e+00 + 1.3178400e+04 3.4772679e+00 + 1.3178800e+04 2.7928185e+00 + 1.3179200e+04 1.7676208e+00 + 1.3179600e+04 2.1153337e-01 + 1.3180000e+04 -1.3481931e+00 + 1.3180400e+04 -2.4107834e+00 + 1.3180800e+04 -3.1017814e+00 + 1.3181200e+04 -3.6816103e+00 + 1.3181600e+04 -4.0276149e+00 + 1.3182000e+04 -4.3274507e+00 + 1.3182400e+04 -4.2210136e+00 + 1.3182800e+04 -3.9753016e+00 + 1.3183200e+04 -3.3106327e+00 + 1.3183600e+04 -2.4827308e+00 + 1.3184000e+04 -1.6484345e+00 + 1.3184400e+04 -9.1512274e-01 + 1.3184800e+04 2.9499618e-01 + 1.3185200e+04 1.4284314e+00 + 1.3185600e+04 2.6486714e+00 + 1.3186000e+04 3.9690371e+00 + 1.3186400e+04 4.5895618e+00 + 1.3186800e+04 5.1900251e+00 + 1.3187200e+04 5.0000987e+00 + 1.3187600e+04 4.1898681e+00 + 1.3188000e+04 2.9796959e+00 + 1.3188400e+04 1.5396724e+00 + 1.3188800e+04 1.9668778e-02 + 1.3189200e+04 -8.9040009e-01 + 1.3189600e+04 -1.1705605e+00 + 1.3190000e+04 -1.2307581e+00 + 1.3190400e+04 -1.2811256e+00 + 1.3190800e+04 -1.3114690e+00 + 1.3191200e+04 -1.1917964e+00 + 1.3191600e+04 -1.3321690e+00 + 1.3192000e+04 -1.4025930e+00 + 1.3192400e+04 -1.4796465e+00 + 1.3192800e+04 -1.7585851e+00 + 1.3193200e+04 -1.8672429e+00 + 1.3193600e+04 -1.5780853e+00 + 1.3194000e+04 -1.4962809e+00 + 1.3194400e+04 -1.3970654e+00 + 1.3194800e+04 -1.0477160e+00 + 1.3195200e+04 -6.4803146e-01 + 1.3195600e+04 -1.9817306e-01 + 1.3196000e+04 4.6173023e-01 + 1.3196400e+04 1.3217886e+00 + 1.3196800e+04 1.9419986e+00 + 1.3197200e+04 2.1823534e+00 + 1.3197600e+04 2.4228608e+00 + 1.3198000e+04 2.0736159e+00 + 1.3198400e+04 1.7145349e+00 + 1.3198800e+04 6.8560966e-01 + 1.3199200e+04 2.2684954e-01 + 1.3199600e+04 -1.1194845e-01 + 1.3200000e+04 -4.6102511e-01 + 1.3200400e+04 -7.1047745e-01 + 1.3200800e+04 -6.3974036e-01 + 1.3201200e+04 -2.7927252e-01 + 1.3201600e+04 -2.0900097e-01 + 1.3202000e+04 -3.0892805e-01 + 1.3202400e+04 -7.8890826e-01 + 1.3202800e+04 -1.3289090e+00 + 1.3203200e+04 -1.4289077e+00 + 1.3203600e+04 -1.0590691e+00 + 1.3204000e+04 -3.7941415e-01 + 1.3204400e+04 4.4019344e-01 + 1.3204800e+04 1.0197701e+00 + 1.3205200e+04 1.4084657e+00 + 1.3205600e+04 1.0091258e+00 + 1.3206000e+04 -6.1115757e-02 + 1.3206400e+04 -7.4150723e-01 + 1.3206800e+04 -1.1120502e+00 + 1.3207200e+04 -9.2277259e-01 + 1.3207600e+04 -7.7342197e-01 + 1.3208000e+04 -5.3402123e-01 + 1.3208400e+04 -6.4527870e-02 + 1.3208800e+04 5.0514409e-01 + 1.3209200e+04 1.1251337e+00 + 1.3209600e+04 1.4752952e+00 + 1.3210000e+04 1.1956465e+00 + 1.3210400e+04 5.7633299e-01 + 1.3210800e+04 3.0718350e-01 + 1.3211200e+04 8.0287808e-03 + 1.3211600e+04 -2.5126837e-01 + 1.3212000e+04 6.8816877e-02 + 1.3212400e+04 8.0849459e-01 + 1.3212800e+04 1.8278408e+00 + 1.3213200e+04 2.4169751e+00 + 1.3213600e+04 2.0460193e+00 + 1.3214000e+04 1.7052162e+00 + 1.3214400e+04 9.1462066e-01 + 1.3214800e+04 3.1429210e-01 + 1.3215200e+04 -2.9557228e-01 + 1.3215600e+04 -5.8601546e-01 + 1.3216000e+04 -9.1956723e-01 + 1.3216400e+04 -1.1030259e+00 + 1.3216800e+04 -1.3855898e+00 + 1.3217200e+04 -1.6078690e+00 + 1.3217600e+04 -1.7557571e+00 + 1.3218000e+04 -1.9804014e+00 + 1.3218400e+04 -1.8987987e+00 + 1.3218800e+04 -1.7089891e+00 + 1.3219200e+04 -1.4018886e+00 + 1.3219600e+04 -1.0560955e+00 + 1.3220000e+04 -1.1459351e+00 + 1.3220400e+04 -1.2274471e+00 + 1.3220800e+04 -1.4005267e+00 + 1.3221200e+04 -1.2607202e+00 + 1.3221600e+04 -1.0800145e+00 + 1.3222000e+04 -5.1959540e-01 + 1.3222400e+04 1.4057813e-01 + 1.3222800e+04 5.2057032e-01 + 1.3223200e+04 8.9028890e-01 + 1.3223600e+04 1.6296953e+00 + 1.3224000e+04 2.0915433e+00 + 1.3224400e+04 2.4670626e+00 + 1.3224800e+04 2.4513883e+00 + 1.3225200e+04 2.2748529e+00 + 1.3225600e+04 2.0366411e+00 + 1.3226000e+04 1.8864531e+00 + 1.3226400e+04 1.5360692e+00 + 1.3226800e+04 1.3856664e+00 + 1.3227200e+04 1.3252443e+00 + 1.3227600e+04 1.4650128e+00 + 1.3228000e+04 1.6551121e+00 + 1.3228400e+04 1.4853598e+00 + 1.3228800e+04 1.0160659e+00 + 1.3229200e+04 2.1532566e-01 + 1.3229600e+04 -6.5542162e-01 + 1.3230000e+04 -1.2649519e+00 + 1.3230400e+04 -1.6919463e+00 + 1.3230800e+04 -2.1681100e+00 + 1.3231200e+04 -2.2754934e+00 + 1.3231600e+04 -2.2492212e+00 + 1.3232000e+04 -1.8753088e+00 + 1.3232400e+04 -1.5357993e+00 + 1.3232800e+04 -1.3060805e+00 + 1.3233200e+04 -4.5617451e-01 + 1.3233600e+04 2.2380705e-01 + 1.3234000e+04 7.4385804e-01 + 1.3234400e+04 9.0412888e-01 + 1.3234800e+04 8.4446421e-01 + 1.3235200e+04 7.2474293e-01 + 1.3235600e+04 2.8503185e-01 + 1.3236000e+04 -1.4834099e-02 + 1.3236400e+04 -7.3477959e-01 + 1.3236800e+04 -1.1148165e+00 + 1.3237200e+04 -1.0649635e+00 + 1.3237600e+04 -8.3516325e-01 + 1.3238000e+04 -6.5537276e-01 + 1.3238400e+04 -3.9543645e-01 + 1.3238800e+04 -1.1547144e-01 + 1.3239200e+04 -3.5339077e-02 + 1.3239600e+04 3.1485252e-01 + 1.3240000e+04 6.8503119e-01 + 1.3240400e+04 1.1399569e+00 + 1.3240800e+04 1.2569015e+00 + 1.3241200e+04 1.0002073e+00 + 1.3241600e+04 6.4831766e-01 + 1.3242000e+04 5.1550296e-01 + 1.3242400e+04 4.3527459e-01 + 1.3242800e+04 1.5505392e-01 + 1.3243200e+04 -1.3529427e-01 + 1.3243600e+04 -5.5568307e-01 + 1.3244000e+04 -7.3604533e-01 + 1.3244400e+04 -9.0637022e-01 + 1.3244800e+04 -7.5649460e-01 + 1.3245200e+04 -3.2651068e-01 + 1.3245600e+04 6.3770162e-02 + 1.3246000e+04 4.1414488e-01 + 1.3246400e+04 7.1029157e-01 + 1.3246800e+04 8.8536587e-01 + 1.3247200e+04 8.2483518e-01 + 1.3247600e+04 1.2138076e+00 + 1.3248000e+04 1.2371720e+00 + 1.3248400e+04 1.6018423e+00 + 1.3248800e+04 2.0609246e+00 + 1.3249200e+04 2.2881249e+00 + 1.3249600e+04 2.0533880e+00 + 1.3250000e+04 1.9078870e+00 + 1.3250400e+04 1.5783085e+00 + 1.3250800e+04 7.4616450e-01 + 1.3251200e+04 -1.6460817e-01 + 1.3251600e+04 -1.0865158e+00 + 1.3252000e+04 -2.0902584e+00 + 1.3252400e+04 -2.6017180e+00 + 1.3252800e+04 -2.6150316e+00 + 1.3253200e+04 -2.7169839e+00 + 1.3253600e+04 -2.7463752e+00 + 1.3254000e+04 -2.9082728e+00 + 1.3254400e+04 -2.8273544e+00 + 1.3254800e+04 -2.6889502e+00 + 1.3255200e+04 -1.5372077e+00 + 1.3255600e+04 3.2280204e-01 + 1.3256000e+04 1.6577618e+00 + 1.3256400e+04 2.2073545e+00 + 1.3256800e+04 2.1169476e+00 + 1.3257200e+04 1.5566469e+00 + 1.3257600e+04 1.4768478e+00 + 1.3258000e+04 3.2791790e-01 + 1.3258400e+04 -9.6090129e-01 + 1.3258800e+04 -1.9191562e+00 + 1.3259200e+04 -1.9871625e+00 + 1.3259600e+04 -1.8851274e+00 + 1.3260000e+04 -1.6335747e+00 + 1.3260400e+04 -9.2240371e-01 + 1.3260800e+04 -6.1809872e-02 + 1.3261200e+04 9.7825352e-01 + 1.3261600e+04 1.8079120e+00 + 1.3262000e+04 3.1373752e+00 + 1.3262400e+04 4.0866215e+00 + 1.3262800e+04 4.0357171e+00 + 1.3263200e+04 3.4347168e+00 + 1.3263600e+04 2.6835317e+00 + 1.3264000e+04 2.3721829e+00 + 1.3264400e+04 1.0608257e+00 + 1.3264800e+04 1.4968751e-01 + 1.3265200e+04 -2.9127004e-01 + 1.3265600e+04 -1.0250364e-01 + 1.3266000e+04 2.0691568e-01 + 1.3266400e+04 -1.8332069e-01 + 1.3266800e+04 -7.4327812e-01 + 1.3267200e+04 -1.4029978e+00 + 1.3267600e+04 -1.6728192e+00 + 1.3268000e+04 -1.4424681e+00 + 1.3268400e+04 -9.2212899e-01 + 1.3268800e+04 -2.6131114e-01 + 1.3269200e+04 -2.1221787e-02 + 1.3269600e+04 -5.2059437e-01 + 1.3270000e+04 -9.8963142e-01 + 1.3270400e+04 -1.7684915e+00 + 1.3270800e+04 -2.1473000e+00 + 1.3271200e+04 -2.2161398e+00 + 1.3271600e+04 -2.1350509e+00 + 1.3272000e+04 -1.7041602e+00 + 1.3272400e+04 -9.1344591e-01 + 1.3272800e+04 1.7695793e-01 + 1.3273200e+04 1.0768012e+00 + 1.3273600e+04 1.2462824e+00 + 1.3274000e+04 1.3054545e+00 + 1.3274400e+04 1.3543768e+00 + 1.3274800e+04 1.1731044e+00 + 1.3275200e+04 1.3919353e+00 + 1.3275600e+04 1.6509258e+00 + 1.3276000e+04 1.7804965e+00 + 1.3276400e+04 1.7280041e+00 + 1.3276800e+04 1.5187101e+00 + 1.3277200e+04 1.1275234e+00 + 1.3277600e+04 6.7655402e-01 + 1.3278000e+04 3.6173540e-02 + 1.3278400e+04 -4.0387329e-01 + 1.3278800e+04 -9.0375838e-01 + 1.3279200e+04 -1.4432952e+00 + 1.3279600e+04 -1.3524606e+00 + 1.3280000e+04 -1.1511572e+00 + 1.3280400e+04 -8.6963947e-01 + 1.3280800e+04 -9.3775360e-01 + 1.3281200e+04 -1.0056312e+00 + 1.3281600e+04 -7.4371517e-01 + 1.3282000e+04 -5.0228111e-01 + 1.3282400e+04 -2.5115138e-01 + 1.3282800e+04 1.9422264e-02 + 1.3283200e+04 4.6961499e-01 + 1.3283600e+04 1.0191797e+00 + 1.3284000e+04 1.5381852e+00 + 1.3284400e+04 1.9466606e+00 + 1.3284800e+04 2.8545896e+00 + 1.3285200e+04 3.2103355e+00 + 1.3285600e+04 2.8202851e+00 + 1.3286000e+04 1.9652209e+00 + 1.3286400e+04 8.4456410e-01 + 1.3286800e+04 8.3602748e-02 + 1.3287200e+04 -7.1045767e-01 + 1.3287600e+04 -1.6166591e+00 + 1.3288000e+04 -2.5394378e+00 + 1.3288400e+04 -3.2171173e+00 + 1.3288800e+04 -3.4568240e+00 + 1.3289200e+04 -3.2760928e+00 + 1.3289600e+04 -3.1048613e+00 + 1.3290000e+04 -2.9231478e+00 + 1.3290400e+04 -2.6909527e+00 + 1.3290800e+04 -2.3084835e+00 + 1.3291200e+04 -1.8959952e+00 + 1.3291600e+04 -1.2335744e+00 + 1.3292000e+04 -3.5158897e-01 + 1.3292400e+04 7.3997716e-01 + 1.3292800e+04 1.6213949e+00 + 1.3293200e+04 2.6225376e+00 + 1.3293600e+04 3.1132271e+00 + 1.3294000e+04 3.2433942e+00 + 1.3294400e+04 3.0230909e+00 + 1.3294800e+04 2.5121080e+00 + 1.3295200e+04 1.9406052e+00 + 1.3295600e+04 1.8388384e+00 + 1.3296000e+04 1.8669646e+00 + 1.3296400e+04 1.9852023e+00 + 1.3296800e+04 1.6935366e+00 + 1.3297200e+04 1.2020189e+00 + 1.3297600e+04 9.3070029e-01 + 1.3298000e+04 6.5960075e-01 + 1.3298400e+04 3.2871417e-01 + 1.3298800e+04 -5.4180863e-01 + 1.3299200e+04 -1.3917950e+00 + 1.3299600e+04 -1.6814388e+00 + 1.3300000e+04 -1.9908158e+00 + 1.3300400e+04 -2.0700709e+00 + 1.3300800e+04 -2.4890271e+00 + 1.3301200e+04 -2.3877607e+00 + 1.3301600e+04 -2.0664335e+00 + 1.3302000e+04 -1.3952496e+00 + 1.3302400e+04 -6.0448411e-01 + 1.3302800e+04 -4.5413339e-01 + 1.3303200e+04 2.5595389e-01 + 1.3303600e+04 8.1585206e-01 + 1.3304000e+04 9.8591563e-01 + 1.3304400e+04 1.4160323e+00 + 1.3304800e+04 1.5862517e+00 + 1.3305200e+04 1.0664730e+00 + 1.3305600e+04 6.4669264e-01 + 1.3306000e+04 2.1683669e-01 + 1.3306400e+04 -3.7332765e-01 + 1.3306800e+04 -1.1339167e+00 + 1.3307200e+04 -1.6449412e+00 + 1.3307600e+04 -1.8461490e+00 + 1.3308000e+04 -1.6673801e+00 + 1.3308400e+04 -1.2185918e+00 + 1.3308800e+04 -8.0978523e-01 + 1.3309200e+04 6.9384197e-02 + 1.3309600e+04 5.7892483e-01 + 1.3310000e+04 1.1588365e+00 + 1.3310400e+04 2.1591379e+00 + 1.3310800e+04 2.0296722e+00 + 1.3311200e+04 1.9304564e+00 + 1.3311600e+04 1.8914626e+00 + 1.3312000e+04 1.2525484e+00 + 1.3312400e+04 6.7375069e-01 + 1.3312800e+04 4.4765881e-02 + 1.3313200e+04 -6.5448697e-01 + 1.3313600e+04 -1.2340843e+00 + 1.3314000e+04 -1.2838441e+00 + 1.3314400e+04 -1.3195291e+00 + 1.3314800e+04 -1.4234008e+00 + 1.3315200e+04 -1.4897957e+00 + 1.3315600e+04 -1.3464509e+00 + 1.3316000e+04 -1.0824903e+00 + 1.3316400e+04 -5.8266724e-01 + 1.3316800e+04 5.6934036e-02 + 1.3317200e+04 4.7613089e-01 + 1.3317600e+04 8.8511632e-01 + 1.3318000e+04 1.5541642e+00 + 1.3318400e+04 2.1731915e+00 + 1.3318800e+04 2.6021654e+00 + 1.3319200e+04 2.8534816e+00 + 1.3319600e+04 2.3200776e+00 + 1.3320000e+04 1.0990171e+00 + 1.3320400e+04 1.0801259e-01 + 1.3320800e+04 -3.9291154e-01 + 1.3321200e+04 -6.2372285e-01 + 1.3321600e+04 -4.5416661e-01 + 1.3322000e+04 -3.4419584e-01 + 1.3322400e+04 -4.4396339e-01 + 1.3322800e+04 -7.4346855e-01 + 1.3323200e+04 -1.1127619e+00 + 1.3323600e+04 -1.1838425e+00 + 1.3324000e+04 -9.4653612e-01 + 1.3324400e+04 -1.0971284e+00 + 1.3324800e+04 -1.3643344e+00 + 1.3325200e+04 -1.4083807e+00 + 1.3325600e+04 -1.4378310e+00 + 1.3326000e+04 -1.2674741e+00 + 1.3326400e+04 -1.0173175e+00 + 1.3326800e+04 -7.7724972e-01 + 1.3327200e+04 -4.2720082e-01 + 1.3327600e+04 -1.1745664e-01 + 1.3328000e+04 1.8231689e-01 + 1.3328400e+04 7.6196581e-01 + 1.3328800e+04 9.3173880e-01 + 1.3329200e+04 1.2117471e+00 + 1.3329600e+04 1.2418767e+00 + 1.3330000e+04 1.0859167e+00 + 1.3330400e+04 1.2214918e+00 + 1.3330800e+04 1.4953035e+00 + 1.3331200e+04 1.8776941e+00 + 1.3331600e+04 1.9533308e+00 + 1.3332000e+04 1.5332082e+00 + 1.3332400e+04 1.1328698e+00 + 1.3332800e+04 9.4235306e-01 + 1.3333200e+04 6.4163186e-01 + 1.3333600e+04 3.1051955e-01 + 1.3334000e+04 2.7929241e-01 + 1.3334400e+04 -6.6168356e-01 + 1.3334800e+04 -1.3789675e+00 + 1.3335200e+04 -1.8631347e+00 + 1.3335600e+04 -1.9231450e+00 + 1.3336000e+04 -1.3028781e+00 + 1.3336400e+04 -4.4533733e-01 + 1.3336800e+04 4.5060659e-01 + 1.3337200e+04 1.0436041e+00 + 1.3337600e+04 1.2625133e+00 + 1.3338000e+04 1.3924694e+00 + 1.3338400e+04 1.2040450e+00 + 1.3338800e+04 7.2555234e-01 + 1.3339200e+04 -1.8327917e-01 + 1.3339600e+04 -1.2277738e-01 + 1.3340000e+04 1.6970352e-02 + 1.3340400e+04 1.0595251e-01 + 1.3340800e+04 -5.4476698e-03 + 1.3341200e+04 -1.9707335e-01 + 1.3341600e+04 -4.9861853e-01 + 1.3342000e+04 -9.4026963e-01 + 1.3342400e+04 -1.3618835e+00 + 1.3342800e+04 -1.4034749e+00 + 1.3343200e+04 -1.1149178e+00 + 1.3343600e+04 -5.7621457e-01 + 1.3344000e+04 -1.6699827e-01 + 1.3344400e+04 3.1275261e-01 + 1.3344800e+04 6.4298954e-01 + 1.3345200e+04 7.2715918e-01 + 1.3345600e+04 7.3066697e-01 + 1.3346000e+04 4.8712106e-01 + 1.3346400e+04 5.3341336e-01 + 1.3346800e+04 6.9718607e-01 + 1.3347200e+04 8.5887016e-01 + 1.3347600e+04 7.5080100e-01 + 1.3348000e+04 3.7287820e-01 + 1.3348400e+04 8.4890349e-02 + 1.3348800e+04 -2.4351549e-01 + 1.3349200e+04 -5.4245812e-01 + 1.3349600e+04 -9.5182343e-01 + 1.3350000e+04 -1.0118634e+00 + 1.3350400e+04 -8.6216327e-01 + 1.3350800e+04 -5.6279375e-01 + 1.3351200e+04 -1.5367059e-01 + 1.3351600e+04 2.2012578e-01 + 1.3352000e+04 3.8987234e-01 + 1.3352400e+04 4.0056180e-01 + 1.3352800e+04 5.1922963e-01 + 1.3353200e+04 7.6132441e-01 + 1.3353600e+04 1.1004324e+00 + 1.3354000e+04 1.1895167e+00 + 1.3354400e+04 1.2584647e+00 + 1.3354800e+04 1.1973529e+00 + 1.3355200e+04 8.5623984e-01 + 1.3355600e+04 5.3552712e-01 + 1.3356000e+04 1.5520333e-01 + 1.3356400e+04 -1.6468640e-01 + 1.3356800e+04 -5.0686279e-01 + 1.3357200e+04 -4.6429659e-01 + 1.3357600e+04 -3.4026708e-01 + 1.3358000e+04 -5.3380742e-01 + 1.3358400e+04 -5.3743708e-01 + 1.3358800e+04 -7.3623436e-01 + 1.3359200e+04 -1.0854660e+00 + 1.3359600e+04 -1.9153243e+00 + 1.3360000e+04 -1.9953236e+00 + 1.3360400e+04 -1.8356036e+00 + 1.3360800e+04 -1.2053540e+00 + 1.3361200e+04 -5.0384971e-01 + 1.3361600e+04 4.2246395e-01 + 1.3362000e+04 8.6593743e-01 + 1.3362400e+04 8.0962121e-01 + 1.3362800e+04 7.1857629e-01 + 1.3363200e+04 7.4752677e-01 + 1.3363600e+04 8.4660053e-01 + 1.3364000e+04 1.2757394e+00 + 1.3364400e+04 1.2050223e+00 + 1.3364800e+04 1.1543560e+00 + 1.3365200e+04 1.0339382e+00 + 1.3365600e+04 7.5372825e-01 + 1.3366000e+04 7.0387535e-01 + 1.3366400e+04 8.2432212e-01 + 1.3366800e+04 1.2513519e-01 + 1.3367200e+04 -1.3905895e-02 + 1.3367600e+04 -5.4261487e-01 + 1.3368000e+04 -1.8610089e+00 + 1.3368400e+04 -2.1193711e+00 + 1.3368800e+04 -2.0280538e+00 + 1.3369200e+04 -1.8474158e+00 + 1.3369600e+04 -1.7872983e+00 + 1.3370000e+04 -1.5477186e+00 + 1.3370400e+04 -1.1283383e+00 + 1.3370800e+04 -7.3923448e-01 + 1.3371200e+04 -4.9015234e-01 + 1.3371600e+04 9.8880031e-02 + 1.3372000e+04 3.8794010e-01 + 1.3372400e+04 8.8704333e-01 + 1.3372800e+04 1.5328511e+00 + 1.3373200e+04 1.8766839e+00 + 1.3373600e+04 2.4763070e+00 + 1.3374000e+04 2.9304666e+00 + 1.3374400e+04 2.6708556e+00 + 1.3374800e+04 1.9940819e+00 + 1.3375200e+04 8.6409727e-01 + 1.3375600e+04 -1.5657992e-02 + 1.3376000e+04 -4.5533558e-01 + 1.3376400e+04 -7.1503176e-01 + 1.3376800e+04 -9.7428164e-01 + 1.3377200e+04 -1.2034930e+00 + 1.3377600e+04 -1.5627689e+00 + 1.3378000e+04 -1.5910917e+00 + 1.3378400e+04 -1.7460391e+00 + 1.3378800e+04 -1.6298244e+00 + 1.3379200e+04 -1.2696286e+00 + 1.3379600e+04 -8.5893256e-01 + 1.3380000e+04 -1.9041462e-01 + 1.3380400e+04 3.9269614e-01 + 1.3380800e+04 5.4137127e-01 + 1.3381200e+04 3.0662513e-01 + 1.3381600e+04 -6.1988196e-02 + 1.3382000e+04 6.6850606e-02 + 1.3382400e+04 2.1536218e-01 + 1.3382800e+04 2.5384954e-01 + 1.3383200e+04 5.2235599e-01 + 1.3383600e+04 1.1210661e+00 + 1.3384000e+04 1.5900703e+00 + 1.3384400e+04 1.8492792e+00 + 1.3384800e+04 2.1786806e+00 + 1.3385200e+04 2.2484269e+00 + 1.3385600e+04 2.2185822e+00 + 1.3386000e+04 1.9689741e+00 + 1.3386400e+04 1.3985887e+00 + 1.3386800e+04 4.8880986e-01 + 1.3387200e+04 -9.7933937e-02 + 1.3387600e+04 -7.8154893e-01 + 1.3388000e+04 -1.6146115e+00 + 1.3388400e+04 -2.3109974e+00 + 1.3388800e+04 -2.8076950e+00 + 1.3389200e+04 -3.2612710e+00 + 1.3389600e+04 -2.9211478e+00 + 1.3390000e+04 -2.2512716e+00 + 1.3390400e+04 -1.2916450e+00 + 1.3390800e+04 -1.5260500e-01 + 1.3391200e+04 1.1159970e+00 + 1.3391600e+04 1.8345104e+00 + 1.3392000e+04 1.8929282e+00 + 1.3392400e+04 1.8312826e+00 + 1.3392800e+04 1.3497071e+00 + 1.3393200e+04 1.0346775e+00 + 1.3393600e+04 1.1134983e+00 + 1.3394000e+04 1.3832275e+00 + 1.3394400e+04 1.4978009e+00 + 1.3394800e+04 1.2864684e+00 + 1.3395200e+04 1.3565237e+00 + 1.3395600e+04 1.1964912e+00 + 1.3396000e+04 7.2663257e-01 + 1.3396400e+04 -5.3017586e-02 + 1.3396800e+04 -6.8277695e-01 + 1.3397200e+04 -1.2118564e+00 + 1.3397600e+04 -1.6212494e+00 + 1.3398000e+04 -1.8905854e+00 + 1.3398400e+04 -1.8298260e+00 + 1.3398800e+04 -1.5390920e+00 + 1.3399200e+04 -1.3685547e+00 + 1.3399600e+04 -1.1283238e+00 + 1.3400000e+04 -7.4847733e-01 + 1.3400400e+04 -3.4900287e-01 + 1.3400800e+04 2.0161621e-01 + 1.3401200e+04 6.2976814e-01 + 1.3401600e+04 7.6656323e-01 + 1.3402000e+04 6.3359904e-01 + 1.3402400e+04 1.9134946e-01 + 1.3402800e+04 -1.6806167e-01 + 1.3403200e+04 -2.4790121e-01 + 1.3403600e+04 -1.7805995e-01 + 1.3404000e+04 5.0148747e-01 + 1.3404400e+04 7.8086103e-01 + 1.3404800e+04 9.2004209e-01 + 1.3405200e+04 1.1990856e+00 + 1.3405600e+04 9.6813319e-01 + 1.3406000e+04 5.5750702e-01 + 1.3406400e+04 3.0714517e-01 + 1.3406800e+04 4.3699329e-01 + 1.3407200e+04 6.8677619e-01 + 1.3407600e+04 5.7630456e-01 + 1.3408000e+04 3.1621037e-01 + 1.3408400e+04 2.6745919e-01 + 1.3408800e+04 3.5380636e-01 + 1.3409200e+04 2.2610604e-01 + 1.3409600e+04 1.3019482e-01 + 1.3410000e+04 -8.0559418e-02 + 1.3410400e+04 -4.1998839e-01 + 1.3410800e+04 -7.8962000e-01 + 1.3411200e+04 -1.6294377e+00 + 1.3411600e+04 -2.3192683e+00 + 1.3412000e+04 -2.7291939e+00 + 1.3412400e+04 -2.5594830e+00 + 1.3412800e+04 -1.9300180e+00 + 1.3413200e+04 -1.1306325e+00 + 1.3413600e+04 -2.5126366e-01 + 1.3414000e+04 7.1774758e-01 + 1.3414400e+04 1.4867404e+00 + 1.3414800e+04 1.9159678e+00 + 1.3415200e+04 2.2850655e+00 + 1.3415600e+04 2.5140948e+00 + 1.3416000e+04 2.6733150e+00 + 1.3416400e+04 2.7427031e+00 + 1.3416800e+04 2.6724308e+00 + 1.3417200e+04 2.1023021e+00 + 1.3417600e+04 1.4723312e+00 + 1.3418000e+04 8.0240687e-01 + 1.3418400e+04 2.1271367e-01 + 1.3418800e+04 -4.1684772e-01 + 1.3419200e+04 -1.0062147e+00 + 1.3419600e+04 -1.3153016e+00 + 1.3420000e+04 -1.5941782e+00 + 1.3420400e+04 -1.5129791e+00 + 1.3420800e+04 -1.4017796e+00 + 1.3421200e+04 -1.0407540e+00 + 1.3421600e+04 -6.2982311e-01 + 1.3422000e+04 -4.0938376e-01 + 1.3422400e+04 -2.9860944e-01 + 1.3422800e+04 -5.8889163e-02 + 1.3423200e+04 4.1069732e-02 + 1.3423600e+04 1.3111930e-01 + 1.3424000e+04 -6.8779318e-02 + 1.3424400e+04 -2.4884384e-01 + 1.3424800e+04 -2.4806496e-01 + 1.3425200e+04 -3.8120829e-01 + 1.3425600e+04 -3.3312654e-01 + 1.3426000e+04 -4.4949980e-01 + 1.3426400e+04 -5.0088674e-01 + 1.3426800e+04 -5.4156624e-01 + 1.3427200e+04 -6.3224538e-01 + 1.3427600e+04 -6.8360616e-01 + 1.3428000e+04 -8.3461357e-01 + 1.3428400e+04 -6.8617670e-01 + 1.3428800e+04 -7.2701950e-01 + 1.3429200e+04 -5.6760347e-01 + 1.3429600e+04 -1.8781587e-01 + 1.3430000e+04 5.5251845e-01 + 1.3430400e+04 8.0313016e-01 + 1.3430800e+04 9.9366096e-01 + 1.3431200e+04 8.4418197e-01 + 1.3431600e+04 6.4475074e-01 + 1.3432000e+04 5.3550066e-01 + 1.3432400e+04 3.9649160e-01 + 1.3432800e+04 3.1756992e-01 + 1.3433200e+04 8.8629103e-02 + 1.3433600e+04 -4.2790754e-04 + 1.3434000e+04 2.7057525e-01 + 1.3434400e+04 8.4144383e-01 + 1.3434800e+04 1.7119072e+00 + 1.3435200e+04 2.6019846e+00 + 1.3435600e+04 2.8317447e+00 + 1.3436000e+04 2.5012456e+00 + 1.3436400e+04 2.2304422e+00 + 1.3436800e+04 1.6694990e+00 + 1.3437200e+04 5.7841385e-01 + 1.3437600e+04 -5.2614980e-02 + 1.3438000e+04 -7.8350722e-01 + 1.3438400e+04 -1.4842450e+00 + 1.3438800e+04 -1.9446308e+00 + 1.3439200e+04 -2.0847921e+00 + 1.3439600e+04 -1.9351103e+00 + 1.3440000e+04 -1.6354620e+00 + 1.3440400e+04 -1.1859129e+00 + 1.3440800e+04 -9.3652585e-01 + 1.3441200e+04 -1.0870931e+00 + 1.3441600e+04 -1.5076186e+00 + 1.3442000e+04 -1.6378855e+00 + 1.3442400e+04 -1.5078784e+00 + 1.3442800e+04 -1.3876212e+00 + 1.3443200e+04 -1.1370339e+00 + 1.3443600e+04 -1.0261679e+00 + 1.3444000e+04 -8.0510453e-01 + 1.3444400e+04 -3.6370284e-01 + 1.3444800e+04 1.1784030e-01 + 1.3445200e+04 6.0944966e-01 + 1.3445600e+04 5.3071230e-01 + 1.3446000e+04 4.9161968e-01 + 1.3446400e+04 6.4213039e-01 + 1.3446800e+04 7.0208717e-01 + 1.3447200e+04 8.5159006e-01 + 1.3447600e+04 9.9067139e-01 + 1.3448000e+04 7.8940381e-01 + 1.3448400e+04 6.2772965e-01 + 1.3448800e+04 4.5601973e-01 + 1.3449200e+04 3.8438801e-01 + 1.3449600e+04 1.9275900e-01 + 1.3450000e+04 -7.8905994e-02 + 1.3450400e+04 -3.5015772e-01 + 1.3450800e+04 -4.2099574e-01 + 1.3451200e+04 -2.3131554e-01 + 1.3451600e+04 -1.7100869e-01 + 1.3452000e+04 -1.0373071e-02 + 1.3452400e+04 3.3050207e-01 + 1.3452800e+04 6.8165574e-01 + 1.3453200e+04 9.9299904e-01 + 1.3453600e+04 1.3144909e+00 + 1.3454000e+04 1.4460460e+00 + 1.3454400e+04 1.1875629e+00 + 1.3454800e+04 9.7899036e-01 + 1.3455200e+04 7.5021489e-01 + 1.3455600e+04 4.7115922e-01 + 1.3456000e+04 5.9629435e-01 + 1.3456400e+04 7.8466953e-01 + 1.3456800e+04 5.1891504e-01 + 1.3457200e+04 4.3175383e-01 + 1.3457600e+04 4.6661011e-01 + 1.3458000e+04 -6.6419159e-02 + 1.3458400e+04 -6.2558088e-01 + 1.3458800e+04 -1.0277612e+00 + 1.3459200e+04 -1.3999712e+00 + 1.3459600e+04 -1.4319763e+00 + 1.3460000e+04 -9.9353766e-01 + 1.3460400e+04 -1.2746317e+00 + 1.3460800e+04 -1.4654178e+00 + 1.3461200e+04 -1.7859638e+00 + 1.3461600e+04 -2.0663781e+00 + 1.3462000e+04 -2.2963906e+00 + 1.3462400e+04 -2.3559505e+00 + 1.3462800e+04 -2.2952478e+00 + 1.3463200e+04 -1.9645189e+00 + 1.3463600e+04 -1.8338637e+00 + 1.3464000e+04 -1.2829870e+00 + 1.3464400e+04 -4.6204383e-01 + 1.3464800e+04 4.6890492e-01 + 1.3465200e+04 1.5998439e+00 + 1.3465600e+04 2.6208690e+00 + 1.3466000e+04 3.2418784e+00 + 1.3466400e+04 3.4529176e+00 + 1.3466800e+04 3.1239927e+00 + 1.3467200e+04 2.5247462e+00 + 1.3467600e+04 1.9251620e+00 + 1.3468000e+04 1.3949521e+00 + 1.3468400e+04 9.6440048e-01 + 1.3468800e+04 5.3364441e-01 + 1.3469200e+04 3.4295156e-01 + 1.3469600e+04 1.2234676e-01 + 1.3470000e+04 -2.2841923e-01 + 1.3470400e+04 -3.6916014e-01 + 1.3470800e+04 -4.4007135e-01 + 1.3471200e+04 -9.6085101e-01 + 1.3471600e+04 -1.3614490e+00 + 1.3472000e+04 -1.0117270e+00 + 1.3472400e+04 -5.1143016e-01 + 1.3472800e+04 -3.5067022e-01 + 1.3473200e+04 3.9069508e-01 + 1.3473600e+04 7.4241111e-01 + 1.3474000e+04 9.7447951e-01 + 1.3474400e+04 1.0464465e+00 + 1.3474800e+04 1.2481710e+00 + 1.3475200e+04 1.4095881e+00 + 1.3475600e+04 1.4405552e+00 + 1.3476000e+04 1.2909579e+00 + 1.3476400e+04 1.1307730e+00 + 1.3476800e+04 1.3199241e+00 + 1.3477200e+04 -1.3321580e-01 + 1.3477600e+04 -1.8329163e+00 + 1.3478000e+04 -3.1648276e+00 + 1.3478400e+04 -3.7569547e+00 + 1.3478800e+04 -4.5391272e+00 + 1.3479200e+04 -4.6512623e+00 + 1.3479600e+04 -3.8730421e+00 + 1.3480000e+04 -3.2348001e+00 + 1.3480400e+04 -2.5965116e+00 + 1.3480800e+04 -1.9180916e+00 + 1.3481200e+04 -1.4293819e+00 + 1.3481600e+04 -1.1203141e+00 + 1.3482000e+04 -6.5079456e-01 + 1.3482400e+04 9.9240048e-02 + 1.3482800e+04 1.1395717e+00 + 1.3483200e+04 2.2507363e+00 + 1.3483600e+04 3.0723014e+00 + 1.3484000e+04 3.7341186e+00 + 1.3484400e+04 4.5559803e+00 + 1.3484800e+04 4.9279437e+00 + 1.3485200e+04 5.2399884e+00 + 1.3485600e+04 4.6721774e+00 + 1.3486000e+04 3.3443694e+00 + 1.3486400e+04 1.7862819e+00 + 1.3486800e+04 6.0804218e-01 + 1.3487200e+04 2.6695299e-03 + 1.3487600e+04 -2.1876350e-01 + 1.3488000e+04 -9.9887435e-01 + 1.3488400e+04 -1.2751451e+00 + 1.3488800e+04 -1.9795277e+00 + 1.3489200e+04 -2.9345965e+00 + 1.3489600e+04 -3.6813839e+00 + 1.3490000e+04 -3.5123778e+00 + 1.3490400e+04 -3.0030990e+00 + 1.3490800e+04 -2.5035488e+00 + 1.3491200e+04 -2.0337905e+00 + 1.3491600e+04 -1.1242189e+00 + 1.3492000e+04 -4.0484119e-01 + 1.3492400e+04 3.1456006e-01 + 1.3492800e+04 8.8411435e-01 + 1.3493200e+04 1.7529579e+00 + 1.3493600e+04 2.4371737e+00 + 1.3494000e+04 2.8699555e+00 + 1.3494400e+04 2.5569525e+00 + 1.3494800e+04 2.1648867e+00 + 1.3495200e+04 1.8860605e+00 + 1.3495600e+04 1.6145378e+00 + 1.3496000e+04 1.2645273e+00 + 1.3496400e+04 7.7028701e-01 + 1.3496800e+04 3.0834589e-01 + 1.3497200e+04 -7.1179444e-01 + 1.3497600e+04 -1.6325131e+00 + 1.3498000e+04 -2.2936968e+00 + 1.3498400e+04 -2.5850972e+00 + 1.3498800e+04 -2.4266347e+00 + 1.3499200e+04 -2.2854481e+00 + 1.3499600e+04 -1.9063427e+00 + 1.3500000e+04 -1.7922556e+00 + 1.3500400e+04 -1.8882455e+00 + 1.3500800e+04 -1.9185027e+00 + 1.3501200e+04 -1.6437390e+00 + 1.3501600e+04 -1.1144149e+00 + 1.3502000e+04 -3.8515754e-01 + 1.3502400e+04 5.9412477e-01 + 1.3502800e+04 1.4734145e+00 + 1.3503200e+04 1.8530577e+00 + 1.3503600e+04 1.9632117e+00 + 1.3504000e+04 2.1440571e+00 + 1.3504400e+04 2.2773806e+00 + 1.3504800e+04 1.9178604e+00 + 1.3505200e+04 1.9420468e+00 + 1.3505600e+04 2.3018833e+00 + 1.3506000e+04 2.4349717e+00 + 1.3506400e+04 1.7774482e+00 + 1.3506800e+04 1.3093690e+00 + 1.3507200e+04 1.1308761e+00 + 1.3507600e+04 6.8200696e-01 + 1.3508000e+04 5.8257891e-01 + 1.3508400e+04 3.5274181e-01 + 1.3508800e+04 3.9265045e-01 + 1.3509200e+04 1.4234113e-01 + 1.3509600e+04 -6.8862890e-01 + 1.3510000e+04 -1.3891182e+00 + 1.3510400e+04 -1.7102049e+00 + 1.3510800e+04 -2.6103315e+00 + 1.3511200e+04 -3.5743440e+00 + 1.3511600e+04 -3.4832933e+00 + 1.3512000e+04 -2.5539207e+00 + 1.3512400e+04 -1.7244485e+00 + 1.3512800e+04 -6.5505680e-01 + 1.3513200e+04 1.6419400e-01 + 1.3513600e+04 6.9340916e-01 + 1.3514000e+04 1.2828471e+00 + 1.3514400e+04 1.6625362e+00 + 1.3514800e+04 1.7222851e+00 + 1.3515200e+04 1.6321526e+00 + 1.3515600e+04 1.2421476e+00 + 1.3516000e+04 9.8229141e-01 + 1.3516400e+04 1.5254780e-01 + 1.3516800e+04 -3.6741762e-01 + 1.3517200e+04 -1.2176564e+00 + 1.3517600e+04 -1.1779441e+00 + 1.3518000e+04 -9.0849905e-01 + 1.3518400e+04 -4.2914199e-01 + 1.3518800e+04 -1.8002719e-01 + 1.3519200e+04 9.9020515e-02 + 1.3519600e+04 3.3809184e-01 + 1.3520000e+04 9.2725791e-01 + 1.3520400e+04 1.8065239e+00 + 1.3520800e+04 2.4864029e+00 + 1.3521200e+04 2.3965820e+00 + 1.3521600e+04 1.9784656e+00 + 1.3522000e+04 1.6167447e+00 + 1.3522400e+04 1.0351615e+00 + 1.3522800e+04 3.1596914e-01 + 1.3523200e+04 -4.0309972e-01 + 1.3523600e+04 -6.8211526e-01 + 1.3524000e+04 -8.4054283e-01 + 1.3524400e+04 -1.2291763e+00 + 1.3524800e+04 -1.6779105e+00 + 1.3525200e+04 -1.7268347e+00 + 1.3525600e+04 -1.9461600e+00 + 1.3526000e+04 -1.3557440e+00 + 1.3526400e+04 -5.8541473e-01 + 1.3526800e+04 5.8443117e-01 + 1.3527200e+04 1.8252088e+00 + 1.3527600e+04 2.6555256e+00 + 1.3528000e+04 2.4157045e+00 + 1.3528400e+04 2.0658242e+00 + 1.3528800e+04 2.1058206e+00 + 1.3529200e+04 1.6157771e+00 + 1.3529600e+04 6.2566587e-01 + 1.3530000e+04 3.1566397e-01 + 1.3530400e+04 -4.6834183e-01 + 1.3530800e+04 -1.1668575e+00 + 1.3531200e+04 -1.5622097e+00 + 1.3531600e+04 -1.8792387e+00 + 1.3532000e+04 -2.1825437e+00 + 1.3532400e+04 -2.3198910e+00 + 1.3532800e+04 -2.6279302e+00 + 1.3533200e+04 -2.4852144e+00 + 1.3533600e+04 -1.8854619e+00 + 1.3534000e+04 -1.3459074e+00 + 1.3534400e+04 -8.3643514e-01 + 1.3534800e+04 -2.0694749e-01 + 1.3535200e+04 6.2237314e-01 + 1.3535600e+04 1.0251012e+00 + 1.3536000e+04 1.4504085e+00 + 1.3536400e+04 1.5918270e+00 + 1.3536800e+04 1.4155434e+00 + 1.3537200e+04 1.1875820e+00 + 1.3537600e+04 1.1166234e+00 + 1.3538000e+04 1.1858392e+00 + 1.3538400e+04 1.2853302e+00 + 1.3538800e+04 1.3251065e+00 + 1.3539200e+04 7.3515222e-01 + 1.3539600e+04 1.1467451e-01 + 1.3540000e+04 -2.2930751e-01 + 1.3540400e+04 -2.9270957e-01 + 1.3540800e+04 -1.6218551e-01 + 1.3541200e+04 4.7749878e-01 + 1.3541600e+04 9.0819255e-01 + 1.3542000e+04 1.3589992e+00 + 1.3542400e+04 1.1797256e+00 + 1.3542800e+04 9.0036733e-01 + 1.3543200e+04 5.6518930e-01 + 1.3543600e+04 3.9381908e-01 + 1.3544000e+04 4.8187923e-01 + 1.3544400e+04 7.5343159e-02 + 1.3544800e+04 -2.3916943e-01 + 1.3545200e+04 -7.3907828e-01 + 1.3545600e+04 -1.4186809e+00 + 1.3546000e+04 -1.4780257e+00 + 1.3546400e+04 -1.0173642e+00 + 1.3546800e+04 -2.8657316e-01 + 1.3547200e+04 7.0389852e-01 + 1.3547600e+04 1.3044704e+00 + 1.3548000e+04 1.7151842e+00 + 1.3548400e+04 1.3360572e+00 + 1.3548800e+04 6.6735180e-01 + 1.3549200e+04 1.4895204e-01 + 1.3549600e+04 -4.6972579e-01 + 1.3550000e+04 -9.7876025e-01 + 1.3550400e+04 -1.6182663e+00 + 1.3550800e+04 -2.2082471e+00 + 1.3551200e+04 -2.6085597e+00 + 1.3551600e+04 -2.6692565e+00 + 1.3552000e+04 -2.8302061e+00 + 1.3552400e+04 -3.4711808e+00 + 1.3552800e+04 -3.3423258e+00 + 1.3553200e+04 -2.6337966e+00 + 1.3553600e+04 -1.5356862e+00 + 1.3554000e+04 -2.6713426e-01 + 1.3554400e+04 1.0699632e+00 + 1.3554800e+04 1.7277605e+00 + 1.3555200e+04 2.1160768e+00 + 1.3555600e+04 2.5249456e+00 + 1.3556000e+04 2.5546922e+00 + 1.3556400e+04 2.3948981e+00 + 1.3556800e+04 2.6854656e+00 + 1.3557200e+04 3.0960377e+00 + 1.3557600e+04 3.6965313e+00 + 1.3558000e+04 4.0870804e+00 + 1.3558400e+04 3.7577865e+00 + 1.3558800e+04 2.7184954e+00 + 1.3559200e+04 1.5091882e+00 + 1.3559600e+04 1.9955333e-01 + 1.3560000e+04 -3.7022396e-01 + 1.3560400e+04 -6.6005087e-01 + 1.3560800e+04 -9.8053025e-01 + 1.3561200e+04 -1.1018920e+00 + 1.3561600e+04 -1.3155741e+00 + 1.3562000e+04 -1.3939283e+00 + 1.3562400e+04 -1.2996408e+00 + 1.3562800e+04 -1.2198192e+00 + 1.3563200e+04 -8.2013852e-01 + 1.3563600e+04 -1.7062434e-01 + 1.3564000e+04 4.8832026e-02 + 1.3564400e+04 -2.7114107e-01 + 1.3564800e+04 -7.2219221e-01 + 1.3565200e+04 -1.0322773e+00 + 1.3565600e+04 -9.7218861e-01 + 1.3566000e+04 -1.0418645e+00 + 1.3566400e+04 -1.4212080e+00 + 1.3566800e+04 -1.9920719e+00 + 1.3567200e+04 -2.3185058e+00 + 1.3567600e+04 -2.1945333e+00 + 1.3568000e+04 -1.6015793e+00 + 1.3568400e+04 -8.1495081e-01 + 1.3568800e+04 3.0634519e-01 + 1.3569200e+04 1.5376653e+00 + 1.3569600e+04 2.2889331e+00 + 1.3570000e+04 2.9181818e+00 + 1.3570400e+04 3.2009441e+00 + 1.3570800e+04 2.6516052e+00 + 1.3571200e+04 2.2819770e+00 + 1.3571600e+04 1.6320347e+00 + 1.3572000e+04 1.0213387e+00 + 1.3572400e+04 8.2015408e-01 + 1.3572800e+04 2.2892184e-01 + 1.3573200e+04 -6.1310496e-01 + 1.3573600e+04 -1.3549816e+00 + 1.3574000e+04 -1.4869167e+00 + 1.3574400e+04 -1.5688179e+00 + 1.3574800e+04 -1.4406733e+00 + 1.3575200e+04 -1.2924390e+00 + 1.3575600e+04 -9.3396417e-01 + 1.3576000e+04 -5.5470564e-01 + 1.3576400e+04 -1.4511377e-01 + 1.3576800e+04 4.8466478e-01 + 1.3577200e+04 7.1469633e-01 + 1.3577600e+04 4.8496224e-01 + 1.3578000e+04 6.5530610e-01 + 1.3578400e+04 9.4565173e-01 + 1.3578800e+04 1.4460001e+00 + 1.3579200e+04 2.1063243e+00 + 1.3579600e+04 2.7168052e+00 + 1.3580000e+04 2.9958772e+00 + 1.3580400e+04 3.2431905e+00 + 1.3580800e+04 3.2939505e+00 + 1.3581200e+04 2.3702606e+00 + 1.3581600e+04 1.0483724e+00 + 1.3582000e+04 -2.7553944e-01 + 1.3582400e+04 -1.4910603e+00 + 1.3582800e+04 -2.4797055e+00 + 1.3583200e+04 -3.1953430e+00 + 1.3583600e+04 -3.5251684e+00 + 1.3584000e+04 -3.2949232e+00 + 1.3584400e+04 -2.8147256e+00 + 1.3584800e+04 -2.3446911e+00 + 1.3585200e+04 -1.9148474e+00 + 1.3585600e+04 -1.6853095e+00 + 1.3586000e+04 -1.3259899e+00 + 1.3586400e+04 -8.8668144e-01 + 1.3586800e+04 -6.3734857e-01 + 1.3587200e+04 -5.3774306e-01 + 1.3587600e+04 -7.7782201e-01 + 1.3588000e+04 -8.4754610e-01 + 1.3588400e+04 -5.3699969e-01 + 1.3588800e+04 -1.2274912e-01 + 1.3589200e+04 4.0603567e-01 + 1.3589600e+04 1.0195665e+00 + 1.3590000e+04 1.5552038e+00 + 1.3590400e+04 1.9305779e+00 + 1.3590800e+04 2.1178576e+00 + 1.3591200e+04 2.3781944e+00 + 1.3591600e+04 2.5283535e+00 + 1.3592000e+04 2.3983321e+00 + 1.3592400e+04 1.6480092e+00 + 1.3592800e+04 1.0574134e+00 + 1.3593200e+04 4.5674216e-01 + 1.3593600e+04 4.5849935e-02 + 1.3594000e+04 -8.5089758e-02 + 1.3594400e+04 -2.0589881e-01 + 1.3594800e+04 -8.6703365e-02 + 1.3595200e+04 6.2383219e-02 + 1.3595600e+04 2.9112000e-01 + 1.3596000e+04 6.3934446e-01 + 1.3596400e+04 9.7702555e-01 + 1.3596800e+04 1.1345278e+00 + 1.3597200e+04 9.5245281e-01 + 1.3597600e+04 7.3088325e-01 + 1.3598000e+04 1.5994984e-01 + 1.3598400e+04 -5.9041053e-01 + 1.3598800e+04 -1.6001625e+00 + 1.3599200e+04 -2.4093265e+00 + 1.3599600e+04 -2.5680303e+00 + 1.3600000e+04 -2.2365185e+00 + 1.3600400e+04 -2.0547753e+00 + 1.3600800e+04 -1.8130443e+00 + 1.3601200e+04 -1.2612477e+00 + 1.3601600e+04 -7.5911403e-01 + 1.3602000e+04 -1.1690843e-01 + 1.3602400e+04 3.5542571e-01 + 1.3602800e+04 7.8733500e-01 + 1.3603200e+04 1.0161141e+00 + 1.3603600e+04 1.1418476e+00 + 1.3604000e+04 1.2264332e+00 + 1.3604400e+04 1.2650727e+00 + 1.3604800e+04 6.0892925e-01 + 1.3605200e+04 7.7363907e-02 + 1.3605600e+04 -2.5418783e-01 + 1.3606000e+04 -6.2624976e-01 + 1.3606400e+04 -9.5808128e-01 + 1.3606800e+04 -1.4694147e+00 + 1.3607200e+04 -1.8503073e+00 + 1.3607600e+04 -1.3108088e+00 + 1.3608000e+04 -8.2104206e-01 + 1.3608400e+04 -2.6071014e-01 + 1.3608800e+04 2.8911689e-01 + 1.3609200e+04 6.5949313e-01 + 1.3609600e+04 8.9010810e-01 + 1.3610000e+04 1.1009225e+00 + 1.3610400e+04 9.5191895e-01 + 1.3610800e+04 9.8301773e-01 + 1.3611200e+04 1.1641163e+00 + 1.3611600e+04 1.0549304e+00 + 1.3612000e+04 1.1832645e+00 + 1.3612400e+04 1.0164695e+00 + 1.3612800e+04 8.9462475e-01 + 1.3613200e+04 8.8031204e-01 + 1.3613600e+04 1.0151530e+00 + 1.3614000e+04 1.3445293e+00 + 1.3614400e+04 1.5736909e+00 + 1.3614800e+04 1.7327101e+00 + 1.3615200e+04 1.8514966e+00 + 1.3615600e+04 1.7304480e+00 + 1.3616000e+04 1.3092709e+00 + 1.3616400e+04 7.8807142e-01 + 1.3616800e+04 4.5685036e-01 + 1.3617200e+04 5.5709800e-02 + 1.3617600e+04 -3.4538253e-01 + 1.3618000e+04 -9.1620848e-01 + 1.3618400e+04 -1.6468117e+00 + 1.3618800e+04 -2.2671235e+00 + 1.3619200e+04 -2.6471509e+00 + 1.3619600e+04 -3.1668516e+00 + 1.3620000e+04 -3.3664211e+00 + 1.3620400e+04 -3.5158281e+00 + 1.3620800e+04 -3.2450063e+00 + 1.3621200e+04 -2.8041818e+00 + 1.3621600e+04 -2.6031192e+00 + 1.3622000e+04 -2.2619320e+00 + 1.3622400e+04 -1.4506043e+00 + 1.3622800e+04 -1.3919749e-01 + 1.3623200e+04 1.0919039e+00 + 1.3623600e+04 1.9927119e+00 + 1.3624000e+04 2.6136122e+00 + 1.3624400e+04 3.0843345e+00 + 1.3624800e+04 3.3448922e+00 + 1.3625200e+04 3.2254594e+00 + 1.3625600e+04 2.7859243e+00 + 1.3626000e+04 2.1762387e+00 + 1.3626400e+04 1.5161936e+00 + 1.3626800e+04 1.0858377e+00 + 1.3627200e+04 3.6536669e-01 + 1.3627600e+04 -1.4517650e-01 + 1.3628000e+04 -8.6588772e-01 + 1.3628400e+04 -1.1865690e+00 + 1.3628800e+04 -1.4672503e+00 + 1.3629200e+04 -1.3079060e+00 + 1.3629600e+04 -1.1086480e+00 + 1.3630000e+04 -1.0395176e+00 + 1.3630400e+04 -8.8034071e-01 + 1.3630800e+04 -7.4127160e-01 + 1.3631200e+04 -5.8198192e-01 + 1.3631600e+04 -3.1243200e-01 + 1.3632000e+04 1.2742377e-01 + 1.3632400e+04 6.8755518e-01 + 1.3632800e+04 1.0679583e+00 + 1.3633200e+04 1.1183990e+00 + 1.3633600e+04 9.1870299e-01 + 1.3634000e+04 1.1289489e+00 + 1.3634400e+04 1.2312965e+00 + 1.3634800e+04 1.3097634e+00 + 1.3635200e+04 1.3133371e+00 + 1.3635600e+04 1.0883190e+00 + 1.3636000e+04 8.7525015e-01 + 1.3636400e+04 8.3085037e-01 + 1.3636800e+04 6.6263995e-01 + 1.3637200e+04 5.8244120e-01 + 1.3637600e+04 -3.5479529e-01 + 1.3638000e+04 -1.4751558e+00 + 1.3638400e+04 -2.0709162e+00 + 1.3638800e+04 -1.5125590e+00 + 1.3639200e+04 -1.1141623e+00 + 1.3639600e+04 -5.7567990e-01 + 1.3640000e+04 -6.2687203e-01 + 1.3640400e+04 -9.9794963e-01 + 1.3640800e+04 -1.2386976e+00 + 1.3641200e+04 -1.3591785e+00 + 1.3641600e+04 -1.2994205e+00 + 1.3642000e+04 -1.6791004e+00 + 1.3642400e+04 -2.0183279e+00 + 1.3642800e+04 -2.1070472e+00 + 1.3643200e+04 -1.7352200e+00 + 1.3643600e+04 -9.3308706e-01 + 1.3644000e+04 -1.0849634e-02 + 1.3644400e+04 7.8133645e-01 + 1.3644800e+04 1.5534659e+00 + 1.3645200e+04 2.0951349e+00 + 1.3645600e+04 3.1962868e+00 + 1.3646000e+04 3.4966682e+00 + 1.3646400e+04 3.3665223e+00 + 1.3646800e+04 3.2258063e+00 + 1.3647200e+04 2.9746289e+00 + 1.3647600e+04 2.3732161e+00 + 1.3648000e+04 2.0716639e+00 + 1.3648400e+04 1.0801355e+00 + 1.3648800e+04 2.3887570e-01 + 1.3649200e+04 -4.0206774e-01 + 1.3649600e+04 -7.6269282e-01 + 1.3650000e+04 -1.1229199e+00 + 1.3650400e+04 -1.3230496e+00 + 1.3650800e+04 -1.5832096e+00 + 1.3651200e+04 -1.9131543e+00 + 1.3651600e+04 -2.0128253e+00 + 1.3652000e+04 -2.2323835e+00 + 1.3652400e+04 -2.2619420e+00 + 1.3652800e+04 -2.0314675e+00 + 1.3653200e+04 -1.9710077e+00 + 1.3653600e+04 -1.6606446e+00 + 1.3654000e+04 -9.4038454e-01 + 1.3654400e+04 2.6978786e-01 + 1.3654800e+04 1.5299549e+00 + 1.3655200e+04 2.7302598e+00 + 1.3655600e+04 3.2305921e+00 + 1.3656000e+04 2.7208054e+00 + 1.3656400e+04 1.9708353e+00 + 1.3656800e+04 1.1106645e+00 + 1.3657200e+04 4.9036462e-01 + 1.3657600e+04 1.3005430e-01 + 1.3658000e+04 -1.0033539e-01 + 1.3658400e+04 -3.3082974e-01 + 1.3658800e+04 -5.9140634e-01 + 1.3659200e+04 -9.1200718e-01 + 1.3659600e+04 -1.2125494e+00 + 1.3660000e+04 -1.4830305e+00 + 1.3660400e+04 -1.6733767e+00 + 1.3660800e+04 -1.4135212e+00 + 1.3661200e+04 -1.1935582e+00 + 1.3661600e+04 -9.6356707e-01 + 1.3662000e+04 -7.6348151e-01 + 1.3662400e+04 -5.5331562e-01 + 1.3662800e+04 1.2685763e-01 + 1.3663200e+04 5.4692124e-01 + 1.3663600e+04 1.1469426e+00 + 1.3664000e+04 2.1870729e+00 + 1.3664400e+04 2.6672622e+00 + 1.3664800e+04 2.2375544e+00 + 1.3665200e+04 1.7379750e+00 + 1.3665600e+04 9.3841553e-01 + 1.3666000e+04 8.9122516e-02 + 1.3666400e+04 -4.6001997e-01 + 1.3666800e+04 -1.1091096e+00 + 1.3667200e+04 -1.5283916e+00 + 1.3667600e+04 -1.3278971e+00 + 1.3668000e+04 -1.1275929e+00 + 1.3668400e+04 -1.0273981e+00 + 1.3668800e+04 -9.3720932e-01 + 1.3669200e+04 -7.8701035e-01 + 1.3669600e+04 -5.9695484e-01 + 1.3670000e+04 -5.7034811e-02 + 1.3670400e+04 2.9589442e-01 + 1.3670800e+04 6.9301879e-01 + 1.3671200e+04 9.3571372e-01 + 1.3671600e+04 1.2412376e+00 + 1.3672000e+04 1.0913040e+00 + 1.3672400e+04 9.4102012e-01 + 1.3672800e+04 9.9058407e-01 + 1.3673200e+04 8.9028901e-01 + 1.3673600e+04 2.8030744e-01 + 1.3674000e+04 -2.0963501e-01 + 1.3674400e+04 -8.0887700e-01 + 1.3674800e+04 -1.0519464e+00 + 1.3675200e+04 -1.0228493e+00 + 1.3675600e+04 -7.7516623e-01 + 1.3676000e+04 -6.6327748e-01 + 1.3676400e+04 -4.1918445e-01 + 1.3676800e+04 -1.0823357e-01 + 1.3677200e+04 3.0245999e-01 + 1.3677600e+04 3.3284229e-01 + 1.3678000e+04 2.2823715e-02 + 1.3678400e+04 -6.4758079e-01 + 1.3678800e+04 -8.0803274e-01 + 1.3679200e+04 -7.2850377e-01 + 1.3679600e+04 -9.0877365e-01 + 1.3680000e+04 -1.1791241e+00 + 1.3680400e+04 -1.2994849e+00 + 1.3680800e+04 -1.3497895e+00 + 1.3681200e+04 -1.0102276e+00 + 1.3681600e+04 -9.2067903e-01 + 1.3682000e+04 -6.2134926e-01 + 1.3682400e+04 -4.1212644e-01 + 1.3682800e+04 1.7094853e-02 + 1.3683200e+04 2.5648401e-01 + 1.3683600e+04 5.1255827e-01 + 1.3684000e+04 6.6493557e-01 + 1.3684400e+04 8.6822225e-01 + 1.3684800e+04 1.0818931e+00 + 1.3685200e+04 1.1773221e+00 + 1.3685600e+04 1.3675198e+00 + 1.3686000e+04 1.0979219e+00 + 1.3686400e+04 1.0385297e+00 + 1.3686800e+04 6.3934774e-01 + 1.3687200e+04 3.1019418e-01 + 1.3687600e+04 1.0085385e-01 + 1.3688000e+04 -4.8861238e-01 + 1.3688400e+04 -1.0281360e+00 + 1.3688800e+04 -1.3976845e+00 + 1.3689200e+04 -1.6572315e+00 + 1.3689600e+04 -1.6767924e+00 + 1.3690000e+04 -1.4363941e+00 + 1.3690400e+04 -1.1660877e+00 + 1.3690800e+04 -8.4582543e-01 + 1.3691200e+04 2.4426669e-01 + 1.3691600e+04 1.1140359e+00 + 1.3692000e+04 1.8038922e+00 + 1.3692400e+04 1.6835429e+00 + 1.3692800e+04 1.3030418e+00 + 1.3693200e+04 8.9250913e-01 + 1.3693600e+04 5.1202542e-01 + 1.3694000e+04 2.7150448e-01 + 1.3694400e+04 2.4099154e-01 + 1.3694800e+04 7.2044706e-01 + 1.3695200e+04 1.2936032e+00 + 1.3695600e+04 1.6198246e+00 + 1.3696000e+04 1.7462022e+00 + 1.3696400e+04 1.6367476e+00 + 1.3696800e+04 1.2379501e+00 + 1.3697200e+04 9.2750710e-01 + 1.3697600e+04 2.5715614e-01 + 1.3698000e+04 2.6805707e-02 + 1.3698400e+04 -5.1355999e-01 + 1.3698800e+04 -7.7360958e-01 + 1.3699200e+04 -1.0133734e+00 + 1.3699600e+04 -1.2630408e+00 + 1.3700000e+04 -1.6428264e+00 + 1.3700400e+04 -2.2227158e+00 + 1.3700800e+04 -2.1925350e+00 + 1.3701200e+04 -2.1421089e+00 + 1.3701600e+04 -2.3016381e+00 + 1.3702000e+04 -2.1311554e+00 + 1.3702400e+04 -2.0707496e+00 + 1.3702800e+04 -1.4508621e+00 + 1.3703200e+04 -9.0260433e-01 + 1.3703600e+04 -7.6548681e-01 + 1.3704000e+04 -1.0619088e+00 + 1.3704400e+04 -8.1580485e-01 + 1.3704800e+04 -5.3110377e-02 + 1.3705200e+04 6.7627425e-01 + 1.3705600e+04 1.1956790e+00 + 1.3706000e+04 1.3351471e+00 + 1.3706400e+04 1.3945916e+00 + 1.3706800e+04 1.1641313e+00 + 1.3707200e+04 9.8398105e-01 + 1.3707600e+04 1.0343714e+00 + 1.3708000e+04 1.0691071e+00 + 1.3708400e+04 1.1049373e+00 + 1.3708800e+04 1.0636133e+00 + 1.3709200e+04 1.0004590e+00 + 1.3709600e+04 1.1257224e+00 + 1.3710000e+04 9.3356515e-01 + 1.3710400e+04 2.4476242e-01 + 1.3710800e+04 1.3545784e-01 + 1.3711200e+04 -4.6423072e-01 + 1.3711600e+04 -6.8473027e-01 + 1.3712000e+04 -8.6491051e-01 + 1.3712400e+04 -6.3573138e-01 + 1.3712800e+04 -2.8671532e-01 + 1.3713200e+04 3.6187628e-01 + 1.3713600e+04 1.3805908e+00 + 1.3714000e+04 1.7181443e+00 + 1.3714400e+04 1.7581527e+00 + 1.3714800e+04 1.5970402e+00 + 1.3715200e+04 1.1661143e+00 + 1.3715600e+04 1.0353731e+00 + 1.3716000e+04 1.1060263e+00 + 1.3716400e+04 1.0710541e+00 + 1.3716800e+04 1.0228333e+00 + 1.3717200e+04 3.6633457e-01 + 1.3717600e+04 -2.4469116e-01 + 1.3718000e+04 -8.0106620e-01 + 1.3718400e+04 -1.4245391e+00 + 1.3718800e+04 -1.5161002e+00 + 1.3719200e+04 -1.5781169e+00 + 1.3719600e+04 -1.5139909e+00 + 1.3720000e+04 -1.3729558e+00 + 1.3720400e+04 -9.1198206e-01 + 1.3720800e+04 -7.8103167e-01 + 1.3721200e+04 -4.6017899e-01 + 1.3721600e+04 -1.8947056e-01 + 1.3722000e+04 -1.4884990e-01 + 1.3722400e+04 -2.9801720e-01 + 1.3722800e+04 -4.3821911e-01 + 1.3723200e+04 -7.1828684e-01 + 1.3723600e+04 -8.7837385e-01 + 1.3724000e+04 -1.1788013e+00 + 1.3724400e+04 -1.5994698e+00 + 1.3724800e+04 -1.5301567e+00 + 1.3725200e+04 -1.0307381e+00 + 1.3725600e+04 -6.4132330e-01 + 1.3726000e+04 5.3815825e-01 + 1.3726400e+04 9.8786138e-01 + 1.3726800e+04 1.2377684e+00 + 1.3727200e+04 1.4077536e+00 + 1.3727600e+04 1.7278186e+00 + 1.3728000e+04 1.6378913e+00 + 1.3728400e+04 1.5479251e+00 + 1.3728800e+04 1.3878249e+00 + 1.3729200e+04 1.0676245e+00 + 1.3729600e+04 5.3756476e-01 + 1.3730000e+04 1.8773946e-01 + 1.3730400e+04 5.4809918e-01 + 1.3730800e+04 8.8235639e-01 + 1.3731200e+04 1.1947784e+00 + 1.3731600e+04 1.4325760e+00 + 1.3732000e+04 1.6074684e+00 + 1.3732400e+04 1.3494326e+00 + 1.3732800e+04 1.0696678e+00 + 1.3733200e+04 8.3997453e-01 + 1.3733600e+04 5.8048058e-01 + 1.3734000e+04 1.6100031e-01 + 1.3734400e+04 -2.2861057e-01 + 1.3734800e+04 -3.5842108e-01 + 1.3735200e+04 -9.1834060e-01 + 1.3735600e+04 -1.0882204e+00 + 1.3736000e+04 -1.1882154e+00 + 1.3736400e+04 -1.6283261e+00 + 1.3736800e+04 -1.9286203e+00 + 1.3737200e+04 -1.6390369e+00 + 1.3737600e+04 -8.1932301e-01 + 1.3738000e+04 4.0273222e-02 + 1.3738400e+04 6.7909919e-01 + 1.3738800e+04 8.0949583e-01 + 1.3739200e+04 9.1714330e-03 + 1.3739600e+04 -3.7115585e-01 + 1.3740000e+04 -7.4159745e-01 + 1.3740400e+04 -8.8171537e-01 + 1.3740800e+04 -6.8203433e-01 + 1.3741200e+04 -3.5187852e-01 + 1.3741600e+04 -2.0198882e-01 + 1.3742000e+04 -1.6233347e-01 + 1.3742400e+04 -9.2512309e-02 + 1.3742800e+04 -2.1234840e-01 + 1.3743200e+04 -4.4222735e-01 + 1.3743600e+04 -7.4191107e-01 + 1.3744000e+04 -9.7305607e-01 + 1.3744400e+04 -1.0426746e+00 + 1.3744800e+04 -1.3560982e+00 + 1.3745200e+04 -1.5898321e+00 + 1.3745600e+04 -1.3682565e+00 + 1.3746000e+04 -9.1779429e-01 + 1.3746400e+04 -3.0751207e-01 + 1.3746800e+04 1.5234732e-01 + 1.3747200e+04 7.4218351e-01 + 1.3747600e+04 1.2718389e+00 + 1.3748000e+04 1.8014758e+00 + 1.3748400e+04 1.9210478e+00 + 1.3748800e+04 2.1705137e+00 + 1.3749200e+04 2.4898408e+00 + 1.3749600e+04 2.5889027e+00 + 1.3750000e+04 2.5479287e+00 + 1.3750400e+04 2.1771228e+00 + 1.3750800e+04 2.0663574e+00 + 1.3751200e+04 1.6458038e+00 + 1.3751600e+04 5.3531634e-01 + 1.3752000e+04 1.8517541e-01 + 1.3752400e+04 4.9685034e-03 + 1.3752800e+04 -4.1522277e-01 + 1.3753200e+04 -6.7616203e-01 + 1.3753600e+04 -9.8468070e-01 + 1.3754000e+04 -1.3911530e+00 + 1.3754400e+04 -1.6600654e+00 + 1.3754800e+04 -1.8391928e+00 + 1.3755200e+04 -2.0085558e+00 + 1.3755600e+04 -2.0681026e+00 + 1.3756000e+04 -1.7576209e+00 + 1.3756400e+04 -9.6720735e-01 + 1.3756800e+04 -6.7271182e-03 + 1.3757200e+04 7.9350592e-01 + 1.3757600e+04 1.1735064e+00 + 1.3758000e+04 1.5165636e+00 + 1.3758400e+04 1.6529418e+00 + 1.3758800e+04 1.7767507e+00 + 1.3759200e+04 1.6605555e+00 + 1.3759600e+04 1.2789153e+00 + 1.3760000e+04 5.2840785e-01 + 1.3760400e+04 5.8194573e-02 + 1.3760800e+04 -2.7161252e-01 + 1.3761200e+04 -7.7229157e-01 + 1.3761600e+04 -1.1724307e+00 + 1.3762000e+04 -1.5423339e+00 + 1.3762400e+04 -2.0622721e+00 + 1.3762800e+04 -2.8119939e+00 + 1.3763200e+04 -3.4416725e+00 + 1.3763600e+04 -3.3714741e+00 + 1.3764000e+04 -2.7715182e+00 + 1.3764400e+04 -2.2018368e+00 + 1.3764800e+04 -2.0124767e+00 + 1.3765200e+04 -1.5232733e+00 + 1.3765600e+04 -1.2041659e+00 + 1.3766000e+04 -7.4483194e-01 + 1.3766400e+04 -3.8535542e-01 + 1.3766800e+04 6.9422321e-01 + 1.3767200e+04 1.8530828e+00 + 1.3767600e+04 2.9771589e+00 + 1.3768000e+04 3.5045004e+00 + 1.3768400e+04 3.7582288e+00 + 1.3768800e+04 3.1163886e+00 + 1.3769200e+04 2.3250424e+00 + 1.3769600e+04 1.1354986e+00 + 1.3770000e+04 4.3605889e-01 + 1.3770400e+04 7.1655253e-01 + 1.3770800e+04 1.5070424e+00 + 1.3771200e+04 1.9374326e+00 + 1.3771600e+04 1.6777556e+00 + 1.3772000e+04 1.6378753e+00 + 1.3772400e+04 9.8778892e-01 + 1.3772800e+04 1.0747046e-01 + 1.3773200e+04 -7.9326126e-01 + 1.3773600e+04 -1.0243078e+00 + 1.3774000e+04 -1.4301062e+00 + 1.3774400e+04 -1.6946908e+00 + 1.3774800e+04 -1.7540539e+00 + 1.3775200e+04 -1.6695298e+00 + 1.3775600e+04 -1.5279273e+00 + 1.3776000e+04 -1.2371979e+00 + 1.3776400e+04 -6.4619418e-01 + 1.3776800e+04 4.4915571e-02 + 1.3777200e+04 6.3620461e-01 + 1.3777600e+04 1.1076744e+00 + 1.3778000e+04 1.8790989e+00 + 1.3778400e+04 2.7301310e+00 + 1.3778800e+04 2.4066927e+00 + 1.3779200e+04 1.3028274e+00 + 1.3779600e+04 -1.8599049e-01 + 1.3780000e+04 -1.3314912e+00 + 1.3780400e+04 -2.0802386e+00 + 1.3780800e+04 -2.2712203e+00 + 1.3781200e+04 -1.8923907e+00 + 1.3781600e+04 -1.5236202e+00 + 1.3782000e+04 -1.2249571e+00 + 1.3782400e+04 -7.3623708e-01 + 1.3782800e+04 -2.3749641e-01 + 1.3783200e+04 2.1126382e-01 + 1.3783600e+04 5.5018546e-01 + 1.3784000e+04 1.9555254e-02 + 1.3784400e+04 -7.8063027e-01 + 1.3784800e+04 -1.5902947e+00 + 1.3785200e+04 -1.7693331e+00 + 1.3785600e+04 -1.4977708e+00 + 1.3786000e+04 -1.2256260e+00 + 1.3786400e+04 -7.9312693e-01 + 1.3786800e+04 -1.7073909e-01 + 1.3787200e+04 4.2127088e-01 + 1.3787600e+04 1.3126778e+00 + 1.3788000e+04 1.5833330e+00 + 1.3788400e+04 1.7331521e+00 + 1.3788800e+04 2.0922134e+00 + 1.3789200e+04 2.2007934e+00 + 1.3789600e+04 2.2593199e+00 + 1.3790000e+04 1.7379366e+00 + 1.3790400e+04 1.2367776e+00 + 1.3790800e+04 2.3588938e-01 + 1.3791200e+04 -2.2486971e-01 + 1.3791600e+04 -3.9545768e-01 + 1.3792000e+04 -3.5609537e-01 + 1.3792400e+04 -3.6535298e-02 + 1.3792800e+04 5.2302698e-01 + 1.3793200e+04 1.1426459e+00 + 1.3793600e+04 1.6523865e+00 + 1.3794000e+04 1.8224488e+00 + 1.3794400e+04 2.1527411e+00 + 1.3794800e+04 2.4031986e+00 + 1.3795200e+04 2.6237977e+00 + 1.3795600e+04 2.3445805e+00 + 1.3796000e+04 1.5556770e+00 + 1.3796400e+04 6.2692541e-01 + 1.3796800e+04 5.8346962e-02 + 1.3797200e+04 -6.1388900e-01 + 1.3797600e+04 -1.2151790e+00 + 1.3798000e+04 -1.6687895e+00 + 1.3798400e+04 -2.1084973e+00 + 1.3798800e+04 -2.3853929e+00 + 1.3799200e+04 -2.7305552e+00 + 1.3799600e+04 -2.8518483e+00 + 1.3800000e+04 -2.6833029e+00 + 1.3800400e+04 -2.3448101e+00 + 1.3800800e+04 -2.1660647e+00 + 1.3801200e+04 -1.7369507e+00 + 1.3801600e+04 -1.0177731e+00 + 1.3802000e+04 -2.6772101e-01 + 1.3802400e+04 1.4598137e-01 + 1.3802800e+04 5.1532837e-01 + 1.3803200e+04 6.6878222e-01 + 1.3803600e+04 5.2933675e-01 + 1.3804000e+04 1.4122192e-01 + 1.3804400e+04 -3.5849656e-01 + 1.3804800e+04 -5.1228992e-01 + 1.3805200e+04 -3.9735447e-01 + 1.3805600e+04 -1.7169547e-01 + 1.3806000e+04 9.6760728e-02 + 1.3806400e+04 5.0736851e-01 + 1.3806800e+04 1.1477912e+00 + 1.3807200e+04 1.7382472e+00 + 1.3807600e+04 1.6085154e+00 + 1.3808000e+04 1.6686534e+00 + 1.3808400e+04 1.5086053e+00 + 1.3808800e+04 1.2285910e+00 + 1.3809200e+04 8.1866696e-01 + 1.3809600e+04 6.7841726e-01 + 1.3810000e+04 4.8773337e-01 + 1.3810400e+04 -4.2340275e-01 + 1.3810800e+04 -9.1490812e-01 + 1.3811200e+04 -1.0463259e+00 + 1.3811600e+04 -8.7728656e-01 + 1.3812000e+04 -7.0780974e-01 + 1.3812400e+04 -5.3751450e-01 + 1.3812800e+04 -2.2656641e-01 + 1.3813200e+04 -8.5158756e-02 + 1.3813600e+04 5.7628285e-01 + 1.3814000e+04 6.1764787e-01 + 1.3814400e+04 7.7876548e-01 + 1.3814800e+04 1.1497569e+00 + 1.3815200e+04 1.3405675e+00 + 1.3815600e+04 1.5411872e+00 + 1.3816000e+04 1.9610086e+00 + 1.3816400e+04 2.1347451e+00 + 1.3816800e+04 1.7085920e+00 + 1.3817200e+04 1.1649242e+00 + 1.3817600e+04 3.7011555e-01 + 1.3818000e+04 -8.8070720e-01 + 1.3818400e+04 -1.6616040e+00 + 1.3818800e+04 -2.0525069e+00 + 1.3819200e+04 -2.4235639e+00 + 1.3819600e+04 -2.6348742e+00 + 1.3820000e+04 -2.7314142e+00 + 1.3820400e+04 -2.9005263e+00 + 1.3820800e+04 -3.1209652e+00 + 1.3821200e+04 -3.0599460e+00 + 1.3821600e+04 -2.6609481e+00 + 1.3822000e+04 -1.9713005e+00 + 1.3822400e+04 -1.2710082e+00 + 1.3822800e+04 -6.6043013e-01 + 1.3823200e+04 -8.9753882e-02 + 1.3823600e+04 6.8120934e-01 + 1.3824000e+04 1.3322082e+00 + 1.3824400e+04 1.8533023e+00 + 1.3824800e+04 2.4844095e+00 + 1.3825200e+04 2.2955826e+00 + 1.3825600e+04 2.2368020e+00 + 1.3826000e+04 1.6879371e+00 + 1.3826400e+04 1.4886403e+00 + 1.3826800e+04 1.1693537e+00 + 1.3827200e+04 1.0199488e+00 + 1.3827600e+04 8.9059478e-01 + 1.3828000e+04 6.7132810e-01 + 1.3828400e+04 3.7199016e-01 + 1.3828800e+04 1.1245685e-01 + 1.3829200e+04 -1.4729778e-01 + 1.3829600e+04 -3.0713092e-01 + 1.3830000e+04 -3.5755095e-01 + 1.3830400e+04 -2.0789119e-01 + 1.3830800e+04 1.4162480e-01 + 1.3831200e+04 8.3105057e-01 + 1.3831600e+04 1.0503481e+00 + 1.3832000e+04 5.4960829e-01 + 1.3832400e+04 9.8816572e-02 + 1.3832800e+04 -5.9195650e-01 + 1.3833200e+04 -1.1222881e+00 + 1.3833600e+04 -1.2698193e+00 + 1.3834000e+04 -9.4398881e-01 + 1.3834400e+04 -7.2835976e-01 + 1.3834800e+04 -4.2359644e-01 + 1.3835200e+04 -5.3747829e-02 + 1.3835600e+04 2.3616375e-01 + 1.3836000e+04 5.5597212e-01 + 1.3836400e+04 8.1587199e-01 + 1.3836800e+04 7.5576582e-01 + 1.3837200e+04 7.9578153e-01 + 1.3837600e+04 7.3591440e-01 + 1.3838000e+04 6.7618528e-01 + 1.3838400e+04 2.0551316e-01 + 1.3838800e+04 -5.4435866e-01 + 1.3839200e+04 -1.1265217e+00 + 1.3839600e+04 -1.5415571e+00 + 1.3840000e+04 -1.8943970e+00 + 1.3840400e+04 -2.0421709e+00 + 1.3840800e+04 -1.8924456e+00 + 1.3841200e+04 -1.7628806e+00 + 1.3841600e+04 -1.5334317e+00 + 1.3842000e+04 -1.0338898e+00 + 1.3842400e+04 -5.1415308e-01 + 1.3842800e+04 -6.0500815e-02 + 1.3843200e+04 1.7485907e-01 + 1.3843600e+04 1.3348448e-01 + 1.3844000e+04 4.5121078e-01 + 1.3844400e+04 9.0478328e-01 + 1.3844800e+04 1.4176812e+00 + 1.3845200e+04 1.4768515e+00 + 1.3845600e+04 1.3577971e+00 + 1.3846000e+04 1.0561400e+00 + 1.3846400e+04 9.3699132e-01 + 1.3846800e+04 6.5794781e-01 + 1.3847200e+04 7.1886107e-01 + 1.3847600e+04 4.4979549e-01 + 1.3848000e+04 -1.3921703e-01 + 1.3848400e+04 -4.3821573e-01 + 1.3848800e+04 -9.1721558e-01 + 1.3849200e+04 -1.3762449e+00 + 1.3849600e+04 -1.6153952e+00 + 1.3850000e+04 -1.3946511e+00 + 1.3850400e+04 -8.0444470e-01 + 1.3850800e+04 -4.0482293e-01 + 1.3851200e+04 -1.4584946e-01 + 1.3851600e+04 8.2765352e-02 + 1.3852000e+04 3.5133175e-01 + 1.3852400e+04 7.3984521e-01 + 1.3852800e+04 1.3685019e+00 + 1.3853200e+04 1.7573296e+00 + 1.3853600e+04 1.8562221e+00 + 1.3854000e+04 2.2350946e+00 + 1.3854400e+04 3.1339909e+00 + 1.3854800e+04 3.7930728e+00 + 1.3855200e+04 3.3827391e+00 + 1.3855600e+04 2.7529285e+00 + 1.3856000e+04 1.7135545e+00 + 1.3856400e+04 5.5435863e-01 + 1.3856800e+04 -3.4759689e-02 + 1.3857200e+04 -1.3408226e-01 + 1.3857600e+04 -1.0538775e+00 + 1.3858000e+04 -2.3533242e+00 + 1.3858400e+04 -3.5133413e+00 + 1.3858800e+04 -4.2138324e+00 + 1.3859200e+04 -4.4443814e+00 + 1.3859600e+04 -4.3449441e+00 + 1.3860000e+04 -3.6954636e+00 + 1.3860400e+04 -3.0957804e+00 + 1.3860800e+04 -2.0120134e+00 + 1.3861200e+04 -8.7090971e-01 + 1.3861600e+04 7.5171906e-02 + 1.3862000e+04 2.9618003e-01 + 1.3862400e+04 6.7760058e-01 + 1.3862800e+04 9.2905994e-01 + 1.3863200e+04 1.2303650e+00 + 1.3863600e+04 1.3618283e+00 + 1.3864000e+04 1.4932187e+00 + 1.3864400e+04 1.5243919e+00 + 1.3864800e+04 1.5850299e+00 + 1.3865200e+04 1.9253391e+00 + 1.3865600e+04 2.1255763e+00 + 1.3866000e+04 2.3684910e+00 + 1.3866400e+04 2.3362586e+00 + 1.3866800e+04 2.0364785e+00 + 1.3867200e+04 1.5988864e+00 + 1.3867600e+04 1.3238520e+00 + 1.3868000e+04 8.2311313e-01 + 1.3868400e+04 5.4257016e-01 + 1.3868800e+04 2.1227027e-01 + 1.3869200e+04 -1.6783126e-01 + 1.3869600e+04 -5.2797567e-01 + 1.3870000e+04 -1.6282920e+00 + 1.3870400e+04 -2.3689213e+00 + 1.3870800e+04 -2.5197496e+00 + 1.3871200e+04 -2.4706206e+00 + 1.3871600e+04 -2.2815034e+00 + 1.3872000e+04 -1.6123133e+00 + 1.3872400e+04 -1.1228533e+00 + 1.3872800e+04 -6.6313741e-01 + 1.3873200e+04 3.6747307e-02 + 1.3873600e+04 5.0673758e-01 + 1.3874000e+04 9.8682646e-01 + 1.3874400e+04 1.3769912e+00 + 1.3874800e+04 1.7672883e+00 + 1.3875200e+04 1.4177693e+00 + 1.3875600e+04 1.2284327e+00 + 1.3876000e+04 1.3490702e+00 + 1.3876400e+04 1.4396635e+00 + 1.3876800e+04 1.2302489e+00 + 1.3877200e+04 5.5082822e-01 + 1.3877600e+04 -8.6464508e-03 + 1.3878000e+04 -4.5853525e-01 + 1.3878400e+04 -9.2864478e-01 + 1.3878800e+04 -1.1187954e+00 + 1.3879200e+04 -1.5091775e+00 + 1.3879600e+04 -1.9595083e+00 + 1.3880000e+04 -2.1298448e+00 + 1.3880400e+04 -2.1802287e+00 + 1.3880800e+04 -2.4307673e+00 + 1.3881200e+04 -2.7111727e+00 + 1.3881600e+04 -2.8513921e+00 + 1.3882000e+04 -2.4314434e+00 + 1.3882400e+04 -2.0712873e+00 + 1.3882800e+04 -1.2741141e+00 + 1.3883200e+04 -4.4399102e-03 + 1.3883600e+04 1.2497730e+00 + 1.3884000e+04 1.8396060e+00 + 1.3884400e+04 2.2612650e+00 + 1.3884800e+04 2.6955828e+00 + 1.3885200e+04 2.8258271e+00 + 1.3885600e+04 3.0172843e+00 + 1.3886000e+04 3.0583806e+00 + 1.3886400e+04 3.2579986e+00 + 1.3886800e+04 3.5591130e+00 + 1.3887200e+04 3.3451992e+00 + 1.3887600e+04 2.7271676e+00 + 1.3888000e+04 1.8351712e+00 + 1.3888400e+04 8.8276664e-01 + 1.3888800e+04 -2.1978049e-01 + 1.3889200e+04 -1.4019387e+00 + 1.3889600e+04 -2.4137005e+00 + 1.3890000e+04 -3.1551317e+00 + 1.3890400e+04 -3.8162628e+00 + 1.3890800e+04 -3.9870731e+00 + 1.3891200e+04 -3.7375420e+00 + 1.3891600e+04 -3.1475933e+00 + 1.3892000e+04 -2.1771817e+00 + 1.3892400e+04 -1.6062986e+00 + 1.3892800e+04 -1.2750999e+00 + 1.3893200e+04 -7.8364590e-01 + 1.3893600e+04 1.2787307e-01 + 1.3894000e+04 6.4934078e-01 + 1.3894400e+04 8.9068836e-01 + 1.3894800e+04 1.2218673e+00 + 1.3895200e+04 1.5728417e+00 + 1.3895600e+04 1.6209564e+00 + 1.3896000e+04 1.3006102e+00 + 1.3896400e+04 7.0853548e-01 + 1.3896800e+04 3.5269500e-01 + 1.3897200e+04 1.7674787e-01 + 1.3897600e+04 -2.5274233e-01 + 1.3898000e+04 -5.2281020e-01 + 1.3898400e+04 -4.2291342e-01 + 1.3898800e+04 -4.5364187e-01 + 1.3899200e+04 -9.7470173e-01 + 1.3899600e+04 -1.0059165e+00 + 1.3900000e+04 -1.2170323e+00 + 1.3900400e+04 -7.8801321e-01 + 1.3900800e+04 -4.1904774e-01 + 1.3901200e+04 -1.4994388e-01 + 1.3901600e+04 -1.0519023e-02 + 1.3902000e+04 4.3914827e-01 + 1.3902400e+04 1.0693559e+00 + 1.3902800e+04 1.4696504e+00 + 1.3903200e+04 1.7200786e+00 + 1.3903600e+04 1.4202970e+00 + 1.3904000e+04 7.3036367e-01 + 1.3904400e+04 3.2067384e-01 + 1.3904800e+04 -6.8864349e-02 + 1.3905200e+04 -4.6842016e-01 + 1.3905600e+04 -5.6795790e-01 + 1.3906000e+04 -6.2753307e-01 + 1.3906400e+04 -5.5731614e-01 + 1.3906800e+04 2.2717962e-02 + 1.3907200e+04 8.6231757e-01 + 1.3907600e+04 1.0417909e+00 + 1.3908000e+04 7.2121021e-01 + 1.3908400e+04 5.9065510e-01 + 1.3908800e+04 2.9014683e-01 + 1.3909200e+04 9.7786520e-03 + 1.3909600e+04 -2.9994334e-01 + 1.3910000e+04 -6.1039918e-01 + 1.3910400e+04 -8.5530672e-01 + 1.3910800e+04 -9.7169409e-01 + 1.3911200e+04 -1.1839399e+00 + 1.3911600e+04 -1.2103163e+00 + 1.3912000e+04 -1.3173893e+00 + 1.3912400e+04 -1.2573039e+00 + 1.3912800e+04 -5.6744592e-01 + 1.3913200e+04 1.8225422e-01 + 1.3913600e+04 5.5191677e-01 + 1.3914000e+04 7.2182341e-01 + 1.3914400e+04 4.6186947e-01 + 1.3914800e+04 -7.9557003e-03 + 1.3915200e+04 -1.0178941e+00 + 1.3915600e+04 -1.5677073e+00 + 1.3916000e+04 -1.6474983e+00 + 1.3916400e+04 -1.3472349e+00 + 1.3916800e+04 -1.0569576e+00 + 1.3917200e+04 -3.4685768e-01 + 1.3917600e+04 4.9320893e-01 + 1.3918000e+04 1.1334115e+00 + 1.3918400e+04 1.8076675e+00 + 1.3918800e+04 2.0795290e+00 + 1.3919200e+04 1.9593663e+00 + 1.3919600e+04 1.9834537e+00 + 1.3920000e+04 2.0996213e+00 + 1.3920400e+04 2.0306592e+00 + 1.3920800e+04 1.9430870e+00 + 1.3921200e+04 1.9923272e+00 + 1.3921600e+04 1.4717514e+00 + 1.3922000e+04 8.9149569e-01 + 1.3922400e+04 3.7157744e-01 + 1.3922800e+04 -1.1817027e-01 + 1.3923200e+04 -3.8780994e-01 + 1.3923600e+04 -4.6746361e-01 + 1.3924000e+04 -1.0072457e+00 + 1.3924400e+04 -1.3269983e+00 + 1.3924800e+04 -1.5467969e+00 + 1.3925200e+04 -1.7166173e+00 + 1.3925600e+04 -1.6265528e+00 + 1.3926000e+04 -1.3666026e+00 + 1.3926400e+04 -8.5670357e-01 + 1.3926800e+04 -6.4706697e-01 + 1.3927200e+04 -4.6743138e-01 + 1.3927600e+04 -1.3789676e-01 + 1.3928000e+04 1.6163731e-01 + 1.3928400e+04 3.2138124e-01 + 1.3928800e+04 1.6128850e-01 + 1.3929200e+04 -3.8864101e-01 + 1.3929600e+04 -6.7865802e-01 + 1.3930000e+04 -8.1825337e-01 + 1.3930400e+04 -7.7794052e-01 + 1.3930800e+04 -1.0173833e+00 + 1.3931200e+04 -1.0564228e+00 + 1.3931600e+04 -5.0511896e-01 + 1.3932000e+04 5.1598211e-01 + 1.3932400e+04 1.4866351e+00 + 1.3932800e+04 1.7834178e+00 + 1.3933200e+04 1.6489853e+00 + 1.3933600e+04 1.2032913e+00 + 1.3934000e+04 1.0274143e+00 + 1.3934400e+04 7.4726219e-01 + 1.3934800e+04 8.5697978e-01 + 1.3935200e+04 8.0654382e-01 + 1.3935600e+04 6.1603024e-01 + 1.3936000e+04 2.4564161e-01 + 1.3936400e+04 -6.4689630e-02 + 1.3936800e+04 -4.2483425e-01 + 1.3937200e+04 -1.4150906e+00 + 1.3937600e+04 -2.1990385e+00 + 1.3938000e+04 -2.8153910e+00 + 1.3938400e+04 -2.9191733e+00 + 1.3938800e+04 -2.6601467e+00 + 1.3939200e+04 -1.7846458e+00 + 1.3939600e+04 -6.1481219e-01 + 1.3940000e+04 6.6492230e-01 + 1.3940400e+04 1.8545469e+00 + 1.3940800e+04 2.2941365e+00 + 1.3941200e+04 2.4738033e+00 + 1.3941600e+04 2.5734094e+00 + 1.3942000e+04 2.8329039e+00 + 1.3942400e+04 2.8622494e+00 + 1.3942800e+04 2.7218013e+00 + 1.3943200e+04 2.2815099e+00 + 1.3943600e+04 1.7115293e+00 + 1.3944000e+04 6.9176714e-01 + 1.3944400e+04 -4.5761518e-01 + 1.3944800e+04 -1.1867370e+00 + 1.3945200e+04 -1.2658035e+00 + 1.3945600e+04 -1.1749048e+00 + 1.3946000e+04 -1.3740975e+00 + 1.3946400e+04 -1.8335729e+00 + 1.3946800e+04 -2.3030530e+00 + 1.3947200e+04 -2.8825674e+00 + 1.3947600e+04 -3.0922738e+00 + 1.3948000e+04 -2.9622832e+00 + 1.3948400e+04 -2.5924287e+00 + 1.3948800e+04 -1.9326095e+00 + 1.3949200e+04 -1.1628228e+00 + 1.3949600e+04 -1.3306613e-01 + 1.3950000e+04 8.9660783e-01 + 1.3950400e+04 1.3386173e+00 + 1.3950800e+04 1.5497916e+00 + 1.3951200e+04 1.4876812e+00 + 1.3951600e+04 1.2336604e+00 + 1.3952000e+04 1.3256592e+00 + 1.3952400e+04 9.6527557e-01 + 1.3952800e+04 3.6496020e-01 + 1.3953200e+04 1.1469901e-01 + 1.3953600e+04 1.4542144e-02 + 1.3954000e+04 2.3461712e-01 + 1.3954400e+04 8.0484509e-01 + 1.3954800e+04 1.1851163e+00 + 1.3955200e+04 1.4552718e+00 + 1.3955600e+04 1.1254075e+00 + 1.3956000e+04 8.4557026e-01 + 1.3956400e+04 6.8575532e-01 + 1.3956800e+04 -4.1397523e-01 + 1.3957200e+04 -7.3364908e-01 + 1.3957600e+04 -1.4834231e+00 + 1.3958000e+04 -1.5533502e+00 + 1.3958400e+04 -1.7034919e+00 + 1.3958800e+04 -1.6638402e+00 + 1.3959200e+04 -1.4342612e+00 + 1.3959600e+04 -1.0847563e+00 + 1.3960000e+04 -9.1521714e-01 + 1.3960400e+04 -4.8553580e-01 + 1.3960800e+04 -2.0570405e-01 + 1.3961200e+04 1.6411400e-01 + 1.3961600e+04 5.4414143e-01 + 1.3962000e+04 7.7430558e-01 + 1.3962400e+04 9.7462329e-01 + 1.3962800e+04 1.2648916e+00 + 1.3963200e+04 1.5751227e+00 + 1.3963600e+04 1.8653257e+00 + 1.3964000e+04 2.4055851e+00 + 1.3964400e+04 2.7856380e+00 + 1.3964800e+04 2.6556089e+00 + 1.3965200e+04 2.3654868e+00 + 1.3965600e+04 1.8553536e+00 + 1.3966000e+04 8.8221900e-01 + 1.3966400e+04 9.5461927e-03 + 1.3966800e+04 -7.8839493e-01 + 1.3967200e+04 -1.6250425e+00 + 1.3967600e+04 -2.0331982e+00 + 1.3968000e+04 -2.1649876e+00 + 1.3968400e+04 -2.2199121e+00 + 1.3968800e+04 -1.9459582e+00 + 1.3969200e+04 -1.1162744e+00 + 1.3969600e+04 -3.3659065e-01 + 1.3970000e+04 2.4320822e-01 + 1.3970400e+04 6.4344815e-01 + 1.3970800e+04 1.1239237e+00 + 1.3971200e+04 9.2448715e-01 + 1.3971600e+04 7.3508789e-01 + 1.3972000e+04 4.8562155e-01 + 1.3972400e+04 2.4613843e-01 + 1.3972800e+04 2.6588864e-02 + 1.3973200e+04 2.4695064e-01 + 1.3973600e+04 4.7726326e-01 + 1.3974000e+04 3.7432261e-02 + 1.3974400e+04 -3.7238335e-01 + 1.3974800e+04 -5.6228070e-01 + 1.3975200e+04 -7.3259139e-01 + 1.3975600e+04 -8.2309977e-01 + 1.3976000e+04 -7.8376271e-01 + 1.3976400e+04 -7.5438548e-01 + 1.3976800e+04 -1.0351857e+00 + 1.3977200e+04 -1.2559529e+00 + 1.3977600e+04 -1.4767125e+00 + 1.3978000e+04 -1.5074031e+00 + 1.3978400e+04 -1.0675671e+00 + 1.3978800e+04 -7.8738856e-01 + 1.3979200e+04 -2.6648756e-01 + 1.3979600e+04 8.2343135e-01 + 1.3980000e+04 1.9039248e+00 + 1.3980400e+04 2.3242671e+00 + 1.3980800e+04 3.0345242e+00 + 1.3981200e+04 2.8248158e+00 + 1.3981600e+04 2.1250353e+00 + 1.3982000e+04 1.5551954e+00 + 1.3982400e+04 1.2953671e+00 + 1.3982800e+04 8.1722553e-01 + 1.3983200e+04 7.8177881e-01 + 1.3983600e+04 1.0864635e+00 + 1.3984000e+04 1.2763654e+00 + 1.3984400e+04 1.1762213e+00 + 1.3984800e+04 1.2464244e+00 + 1.3985200e+04 8.5650848e-01 + 1.3985600e+04 3.7662811e-01 + 1.3986000e+04 3.0663910e-01 + 1.3986400e+04 -8.3332825e-01 + 1.3986800e+04 -2.0273972e+00 + 1.3987200e+04 -2.8936396e+00 + 1.3987600e+04 -2.6739717e+00 + 1.3988000e+04 -2.2246391e+00 + 1.3988400e+04 -1.8356246e+00 + 1.3988800e+04 -1.2936816e+00 + 1.3989200e+04 -1.0168912e+00 + 1.3989600e+04 -1.1854721e+00 + 1.3990000e+04 -8.7538034e-01 + 1.3990400e+04 -2.6079805e-01 + 1.3990800e+04 7.2907854e-01 + 1.3991200e+04 1.1400735e+00 + 1.3991600e+04 1.1714444e+00 + 1.3992000e+04 1.3628106e+00 + 1.3992400e+04 1.9040010e+00 + 1.3992800e+04 2.1348917e+00 + 1.3993200e+04 1.6857345e+00 + 1.3993600e+04 1.2464977e+00 + 1.3994000e+04 7.7724083e-01 + 1.3994400e+04 3.5791027e-01 + 1.3994800e+04 -8.1458228e-02 + 1.3995200e+04 -1.6087380e-01 + 1.3995600e+04 -2.5036292e-01 + 1.3996000e+04 -1.0004779e+00 + 1.3996400e+04 -1.7508284e+00 + 1.3996800e+04 -2.1314665e+00 + 1.3997200e+04 -2.3222815e+00 + 1.3997600e+04 -1.9632700e+00 + 1.3998000e+04 -1.7543541e+00 + 1.3998400e+04 -1.8353774e+00 + 1.3998800e+04 -1.6861470e+00 + 1.3999200e+04 -1.2267722e+00 + 1.3999600e+04 -1.6721450e-01 + 1.4000000e+04 1.2224360e+00 + 1.4000400e+04 2.4323141e+00 + 1.4000800e+04 3.1995194e+00 + 1.4001200e+04 3.3620719e+00 + 1.4001600e+04 2.6622552e+00 + 1.4002000e+04 2.0126272e+00 + 1.4002400e+04 1.2831150e+00 + 1.4002800e+04 1.1736486e+00 + 1.4003200e+04 1.2642126e+00 + 1.4003600e+04 1.6230372e+00 + 1.4004000e+04 2.1247234e+00 + 1.4004400e+04 2.0816214e+00 + 1.4004800e+04 1.9434599e+00 + 1.4005200e+04 1.6561956e+00 + 1.4005600e+04 1.2655422e+00 + 1.4006000e+04 5.8513376e-01 + 1.4006400e+04 -2.1538321e-01 + 1.4006800e+04 -1.1759499e+00 + 1.4007200e+04 -1.5664462e+00 + 1.4007600e+04 -1.7169387e+00 + 1.4008000e+04 -2.8674006e+00 + 1.4008400e+04 -4.1377548e+00 + 1.4008800e+04 -4.3478928e+00 + 1.4009200e+04 -3.9178567e+00 + 1.4009600e+04 -3.2176924e+00 + 1.4010000e+04 -2.5974143e+00 + 1.4010400e+04 -1.8092326e+00 + 1.4010800e+04 -9.2697317e-01 + 1.4011200e+04 -3.6695946e-01 + 1.4011600e+04 3.2723547e-02 + 1.4012000e+04 4.5231937e-01 + 1.4012400e+04 6.4212645e-01 + 1.4012800e+04 1.0219927e+00 + 1.4013200e+04 1.3820490e+00 + 1.4013600e+04 1.5922317e+00 + 1.4014000e+04 1.9525426e+00 + 1.4014400e+04 2.6728119e+00 + 1.4014800e+04 3.6330673e+00 + 1.4015200e+04 4.2635390e+00 + 1.4015600e+04 3.7841419e+00 + 1.4016000e+04 2.5728737e+00 + 1.4016400e+04 1.1256678e+00 + 1.4016800e+04 -5.9336892e-01 + 1.4017200e+04 -1.5627463e+00 + 1.4017600e+04 -2.4323045e+00 + 1.4018000e+04 -2.7020541e+00 + 1.4018400e+04 -2.7920237e+00 + 1.4018800e+04 -2.9136093e+00 + 1.4019200e+04 -2.4355849e+00 + 1.4019600e+04 -1.9491142e+00 + 1.4020000e+04 -1.9013286e+00 + 1.4020400e+04 -1.7040513e+00 + 1.4020800e+04 -1.2842465e+00 + 1.4021200e+04 -5.2426029e-01 + 1.4021600e+04 4.3581907e-01 + 1.4022000e+04 1.8059323e+00 + 1.4022400e+04 2.7859997e+00 + 1.4022800e+04 3.6060893e+00 + 1.4023200e+04 4.1361194e+00 + 1.4023600e+04 3.4860777e+00 + 1.4024000e+04 2.6357188e+00 + 1.4024400e+04 2.4151357e+00 + 1.4024800e+04 2.0645464e+00 + 1.4025200e+04 1.6640007e+00 + 1.4025600e+04 1.6435230e+00 + 1.4026000e+04 1.1830919e+00 + 1.4026400e+04 4.0267619e-01 + 1.4026800e+04 -3.5746455e-01 + 1.4027200e+04 -1.1776478e+00 + 1.4027600e+04 -1.0776652e+00 + 1.4028000e+04 -1.1676936e+00 + 1.4028400e+04 -1.4774675e+00 + 1.4028800e+04 -1.6972347e+00 + 1.4029200e+04 -1.8669231e+00 + 1.4029600e+04 -2.6265138e+00 + 1.4030000e+04 -3.0459416e+00 + 1.4030400e+04 -3.0053436e+00 + 1.4030800e+04 -2.8147011e+00 + 1.4031200e+04 -2.4342116e+00 + 1.4031600e+04 -1.9510450e+00 + 1.4032000e+04 -1.5744507e+00 + 1.4032400e+04 -1.1850495e+00 + 1.4032800e+04 -8.8394841e-01 + 1.4033200e+04 -2.2403870e-01 + 1.4033600e+04 4.3598499e-01 + 1.4034000e+04 6.5609790e-01 + 1.4034400e+04 8.3641537e-01 + 1.4034800e+04 1.5770295e+00 + 1.4035200e+04 1.9579649e+00 + 1.4035600e+04 1.7689409e+00 + 1.4036000e+04 1.9898563e+00 + 1.4036400e+04 2.3906325e+00 + 1.4036800e+04 2.5512500e+00 + 1.4037200e+04 2.6314887e+00 + 1.4037600e+04 2.5012490e+00 + 1.4038000e+04 2.3406429e+00 + 1.4038400e+04 1.8199184e+00 + 1.4038800e+04 1.0990591e+00 + 1.4039200e+04 8.0833035e-01 + 1.4039600e+04 6.0779036e-01 + 1.4040000e+04 2.9741731e-01 + 1.4040400e+04 -2.2756115e-02 + 1.4040800e+04 -3.1283371e-01 + 1.4041200e+04 -3.6296238e-01 + 1.4041600e+04 -5.5339922e-01 + 1.4042000e+04 -1.0139826e+00 + 1.4042400e+04 -1.2845920e+00 + 1.4042800e+04 -1.4453341e+00 + 1.4043200e+04 -1.7061373e+00 + 1.4043600e+04 -1.7369450e+00 + 1.4044000e+04 -1.5177848e+00 + 1.4044400e+04 -1.4385974e+00 + 1.4044800e+04 -1.2992732e+00 + 1.4045200e+04 -1.0097099e+00 + 1.4045600e+04 -2.7981682e-01 + 1.4046000e+04 2.7010388e-01 + 1.4046400e+04 1.2001838e+00 + 1.4046800e+04 1.9404235e+00 + 1.4047200e+04 2.4907755e+00 + 1.4047600e+04 2.8911560e+00 + 1.4048000e+04 3.1117975e+00 + 1.4048400e+04 3.5323440e+00 + 1.4048800e+04 2.8329675e+00 + 1.4049200e+04 1.8336359e+00 + 1.4049600e+04 9.7430376e-01 + 1.4050000e+04 4.8499493e-01 + 1.4050400e+04 -5.2460656e-01 + 1.4050800e+04 -9.1434365e-01 + 1.4051200e+04 -2.3541565e+00 + 1.4051600e+04 -3.3039031e+00 + 1.4052000e+04 -4.0730710e+00 + 1.4052400e+04 -4.4637594e+00 + 1.4052800e+04 -4.6880796e+00 + 1.4053200e+04 -4.8462858e+00 + 1.4053600e+04 -4.7864317e+00 + 1.4054000e+04 -4.3311849e+00 + 1.4054400e+04 -3.6764358e+00 + 1.4054800e+04 -2.9346414e+00 + 1.4055200e+04 -1.7268102e+00 + 1.4055600e+04 -2.4582793e-01 + 1.4056000e+04 1.1726207e+00 + 1.4056400e+04 2.9440132e+00 + 1.4056800e+04 4.3771037e+00 + 1.4057200e+04 5.2467453e+00 + 1.4057600e+04 5.8564972e+00 + 1.4058000e+04 6.1263514e+00 + 1.4058400e+04 6.2961715e+00 + 1.4058800e+04 6.2657949e+00 + 1.4059200e+04 5.7352697e+00 + 1.4059600e+04 4.6347828e+00 + 1.4060000e+04 2.9344988e+00 + 1.4060400e+04 1.1142476e+00 + 1.4060800e+04 -6.5903044e-02 + 1.4061200e+04 -9.4604025e-01 + 1.4061600e+04 -1.5061939e+00 + 1.4062000e+04 -2.7063923e+00 + 1.4062400e+04 -4.1865654e+00 + 1.4062800e+04 -4.9367784e+00 + 1.4063200e+04 -4.9769383e+00 + 1.4063600e+04 -4.3073993e+00 + 1.4064000e+04 -3.7579058e+00 + 1.4064400e+04 -2.9883945e+00 + 1.4064800e+04 -2.2588694e+00 + 1.4065200e+04 -1.1691608e+00 + 1.4065600e+04 -2.7916750e-01 + 1.4066000e+04 1.0939258e-02 + 1.4066400e+04 3.5124091e-01 + 1.4066800e+04 4.5160206e-01 + 1.4067200e+04 9.0200860e-01 + 1.4067600e+04 1.4422854e+00 + 1.4068000e+04 2.3626278e+00 + 1.4068400e+04 2.9855201e+00 + 1.4068800e+04 2.6034368e+00 + 1.4069200e+04 1.7739399e+00 + 1.4069600e+04 1.0844840e+00 + 1.4070000e+04 8.4502372e-01 + 1.4070400e+04 9.3555454e-01 + 1.4070800e+04 1.3157952e+00 + 1.4071200e+04 1.1156083e+00 + 1.4071600e+04 4.9528154e-01 + 1.4072000e+04 -4.2511268e-01 + 1.4072400e+04 -1.9157507e+00 + 1.4072800e+04 -3.3362900e+00 + 1.4073200e+04 -4.7265297e+00 + 1.4073600e+04 -5.5065895e+00 + 1.4074000e+04 -5.5763230e+00 + 1.4074400e+04 -5.3558065e+00 + 1.4074800e+04 -4.7151935e+00 + 1.4075200e+04 -3.6344879e+00 + 1.4075600e+04 -2.0136408e+00 + 1.4076000e+04 -7.1083388e-02 + 1.4076400e+04 1.9497494e+00 + 1.4076800e+04 3.7982807e+00 + 1.4077200e+04 5.0580140e+00 + 1.4077600e+04 5.6871832e+00 + 1.4078000e+04 6.5258930e+00 + 1.4078400e+04 6.7943768e+00 + 1.4078800e+04 6.3025500e+00 + 1.4079200e+04 5.3606315e+00 + 1.4079600e+04 4.2589112e+00 + 1.4080000e+04 3.4573380e+00 + 1.4080400e+04 3.0759343e+00 + 1.4080800e+04 2.5147318e+00 + 1.4081200e+04 1.7339281e+00 + 1.4081600e+04 6.4331553e-01 + 1.4082000e+04 -4.9667197e-01 + 1.4082400e+04 -1.5163601e+00 + 1.4082800e+04 -2.5155355e+00 + 1.4083200e+04 -3.6641914e+00 + 1.4083600e+04 -4.4325234e+00 + 1.4084000e+04 -4.7605375e+00 + 1.4084400e+04 -4.6082085e+00 + 1.4084800e+04 -4.1855435e+00 + 1.4085200e+04 -3.9127918e+00 + 1.4085600e+04 -3.8504358e+00 + 1.4086000e+04 -3.5287625e+00 + 1.4086400e+04 -2.9677779e+00 + 1.4086800e+04 -2.9374626e+00 + 1.4087200e+04 -2.3179642e+00 + 1.4087600e+04 -1.2905295e+00 + 1.4088000e+04 -2.9035216e-01 + 1.4088400e+04 9.9759380e-01 + 1.4088800e+04 1.7657276e+00 + 1.4089200e+04 2.6835477e+00 + 1.4089600e+04 2.5513177e+00 + 1.4090000e+04 1.8892598e+00 + 1.4090400e+04 9.6757979e-01 + 1.4090800e+04 6.6437673e-02 + 1.4091200e+04 -6.1435089e-01 + 1.4091600e+04 -6.7460309e-01 + 1.4092000e+04 -5.7431062e-01 + 1.4092400e+04 -6.5365169e-01 + 1.4092800e+04 -8.5263583e-01 + 1.4093200e+04 -7.6134235e-01 + 1.4093600e+04 -5.6987000e-01 + 1.4094000e+04 -8.6830214e-01 + 1.4094400e+04 -9.7684211e-01 + 1.4094800e+04 -1.2056373e+00 + 1.4095200e+04 -7.6483540e-01 + 1.4095600e+04 5.5835520e-02 + 1.4096000e+04 1.2161320e+00 + 1.4096400e+04 1.2662823e+00 + 1.4096800e+04 1.2261396e+00 + 1.4097200e+04 1.2855691e+00 + 1.4097600e+04 1.8446540e+00 + 1.4098000e+04 1.9034404e+00 + 1.4098400e+04 2.0535151e+00 + 1.4098800e+04 2.1452638e+00 + 1.4099200e+04 2.1679721e+00 + 1.4099600e+04 1.9613883e+00 + 1.4100000e+04 1.5803046e+00 + 1.4100400e+04 9.9046354e-01 + 1.4100800e+04 6.6050440e-01 + 1.4101200e+04 3.1716764e-01 + 1.4101600e+04 3.6801006e-01 + 1.4102000e+04 1.1878083e+00 + 1.4102400e+04 1.6485891e+00 + 1.4102800e+04 2.0795583e+00 + 1.4103200e+04 1.8205799e+00 + 1.4103600e+04 6.3160088e-01 + 1.4104000e+04 -5.5724409e-01 + 1.4104400e+04 -1.5161324e+00 + 1.4104800e+04 -2.2350444e+00 + 1.4105200e+04 -2.7940063e+00 + 1.4105600e+04 -2.8830863e+00 + 1.4106000e+04 -3.2524481e+00 + 1.4106400e+04 -3.3523265e+00 + 1.4106800e+04 -2.8626598e+00 + 1.4107200e+04 -2.2832872e+00 + 1.4107600e+04 -1.9541465e+00 + 1.4108000e+04 -1.3348994e+00 + 1.4108400e+04 -7.5559362e-01 + 1.4108800e+04 -4.3624852e-01 + 1.4109200e+04 -1.2696894e-01 + 1.4109600e+04 1.2560047e-01 + 1.4110000e+04 7.1015214e-01 + 1.4110400e+04 1.2476648e+00 + 1.4110800e+04 1.3140395e+00 + 1.4111200e+04 4.5899602e-01 + 1.4111600e+04 -4.8190052e-01 + 1.4112000e+04 -3.4243334e-01 + 1.4112400e+04 2.2730149e-01 + 1.4112800e+04 9.0739197e-01 + 1.4113200e+04 1.4178353e+00 + 1.4113600e+04 1.5985317e+00 + 1.4114000e+04 1.2798100e+00 + 1.4114400e+04 9.5136696e-01 + 1.4114800e+04 7.8300973e-01 + 1.4115200e+04 5.7455296e-01 + 1.4115600e+04 5.1923482e-01 + 1.4116000e+04 5.3162145e-01 + 1.4116400e+04 4.0236109e-01 + 1.4116800e+04 5.9471265e-01 + 1.4117200e+04 7.6577680e-01 + 1.4117600e+04 1.0751957e+00 + 1.4118000e+04 1.7047913e+00 + 1.4118400e+04 1.9944942e+00 + 1.4118800e+04 2.0241703e+00 + 1.4119200e+04 2.2638401e+00 + 1.4119600e+04 2.4274911e+00 + 1.4120000e+04 3.0702797e+00 + 1.4120400e+04 3.0285983e+00 + 1.4120800e+04 2.5316170e+00 + 1.4121200e+04 2.0158597e+00 + 1.4121600e+04 1.2066759e+00 + 1.4122000e+04 -1.7239616e-01 + 1.4122400e+04 -7.2178655e-01 + 1.4122800e+04 -1.5071579e+00 + 1.4123200e+04 -2.4108145e+00 + 1.4123600e+04 -3.5705361e+00 + 1.4124000e+04 -3.7603622e+00 + 1.4124400e+04 -3.8205127e+00 + 1.4124800e+04 -3.5511159e+00 + 1.4125200e+04 -2.8819809e+00 + 1.4125600e+04 -1.6630912e+00 + 1.4126000e+04 -7.5409729e-01 + 1.4126400e+04 -5.3515405e-01 + 1.4126800e+04 -2.5548117e-01 + 1.4127200e+04 -8.5786500e-02 + 1.4127600e+04 1.4446062e-02 + 1.4128000e+04 3.7455310e-01 + 1.4128400e+04 7.4443254e-01 + 1.4128800e+04 1.1543041e+00 + 1.4129200e+04 1.2341486e+00 + 1.4129600e+04 1.0937841e+00 + 1.4130000e+04 8.0346319e-01 + 1.4130400e+04 6.3310208e-01 + 1.4130800e+04 3.2272616e-01 + 1.4131200e+04 -1.3766136e-01 + 1.4131600e+04 -4.3809031e-01 + 1.4132000e+04 -6.7879360e-01 + 1.4132400e+04 -1.4091966e+00 + 1.4132800e+04 -2.2997069e+00 + 1.4133200e+04 -2.3700826e+00 + 1.4133600e+04 -1.7600352e+00 + 1.4134000e+04 -8.4966256e-01 + 1.4134400e+04 3.5160638e-01 + 1.4134800e+04 1.2434316e+00 + 1.4135200e+04 1.9835534e+00 + 1.4135600e+04 2.0549119e+00 + 1.4136000e+04 3.0961114e+00 + 1.4136400e+04 3.8494025e+00 + 1.4136800e+04 4.2979333e+00 + 1.4137200e+04 4.0826532e+00 + 1.4137600e+04 3.2231971e+00 + 1.4138000e+04 2.7105628e+00 + 1.4138400e+04 2.2210676e+00 + 1.4138800e+04 1.0514075e+00 + 1.4139200e+04 -8.4059197e-03 + 1.4139600e+04 -7.0859243e-01 + 1.4140000e+04 -1.3486948e+00 + 1.4140400e+04 -1.5588888e+00 + 1.4140800e+04 -1.9090228e+00 + 1.4141200e+04 -2.3090204e+00 + 1.4141600e+04 -2.4187989e+00 + 1.4142000e+04 -2.4583543e+00 + 1.4142400e+04 -2.1478575e+00 + 1.4142800e+04 -1.8773796e+00 + 1.4143200e+04 -1.2869544e+00 + 1.4143600e+04 -3.7655299e-01 + 1.4144000e+04 2.3848541e-02 + 1.4144400e+04 2.0412738e-01 + 1.4144800e+04 2.5434974e-01 + 1.4145200e+04 3.2414440e-01 + 1.4145600e+04 1.6359529e-01 + 1.4146000e+04 -2.7078270e-02 + 1.4146400e+04 -1.5767542e-01 + 1.4146800e+04 -2.8095355e-02 + 1.4147200e+04 -7.8325719e-02 + 1.4147600e+04 -1.1860137e-01 + 1.4148000e+04 -5.9886047e-01 + 1.4148400e+04 -9.5961269e-01 + 1.4148800e+04 -1.3805411e+00 + 1.4149200e+04 -1.6512377e+00 + 1.4149600e+04 -1.7918791e+00 + 1.4150000e+04 -1.6023600e+00 + 1.4150400e+04 -1.1029277e+00 + 1.4150800e+04 -5.0364744e-01 + 1.4151200e+04 -1.8450460e-01 + 1.4151600e+04 2.7467424e-01 + 1.4152000e+04 3.6394945e-01 + 1.4152400e+04 -1.7681733e-01 + 1.4152800e+04 -2.5728899e-01 + 1.4153200e+04 2.8214615e-01 + 1.4153600e+04 1.1922571e+00 + 1.4154000e+04 2.3729192e+00 + 1.4154400e+04 3.1240067e+00 + 1.4154800e+04 3.4582194e+00 + 1.4155200e+04 3.2465068e+00 + 1.4155600e+04 3.0179585e+00 + 1.4156000e+04 2.1553799e+00 + 1.4156400e+04 9.9965457e-01 + 1.4156800e+04 5.0189728e-01 + 1.4157200e+04 6.7356199e-01 + 1.4157600e+04 9.2547073e-01 + 1.4158000e+04 8.7750272e-01 + 1.4158400e+04 3.0939331e-01 + 1.4158800e+04 -1.1922728e-01 + 1.4159200e+04 -5.8827578e-01 + 1.4159600e+04 -8.1314653e-01 + 1.4160000e+04 -9.8075432e-01 + 1.4160400e+04 -1.5195364e+00 + 1.4160800e+04 -1.5672119e+00 + 1.4161200e+04 -1.5295327e+00 + 1.4161600e+04 -1.5805854e+00 + 1.4162000e+04 -1.2617396e+00 + 1.4162400e+04 -8.1291963e-01 + 1.4162800e+04 -3.4418791e-01 + 1.4163200e+04 3.4455609e-01 + 1.4163600e+04 1.0935032e+00 + 1.4164000e+04 1.4626245e+00 + 1.4164400e+04 1.5218728e+00 + 1.4164800e+04 1.4012192e+00 + 1.4165200e+04 1.0806743e+00 + 1.4165600e+04 3.8042260e-01 + 1.4166000e+04 -3.8976579e-01 + 1.4166400e+04 -1.1298762e+00 + 1.4166800e+04 -1.8199569e+00 + 1.4167200e+04 -2.1401078e+00 + 1.4167600e+04 -2.4102970e+00 + 1.4168000e+04 -2.6504519e+00 + 1.4168400e+04 -2.9305021e+00 + 1.4168800e+04 -3.0003693e+00 + 1.4169200e+04 -2.8799767e+00 + 1.4169600e+04 -2.6293588e+00 + 1.4170000e+04 -2.4986046e+00 + 1.4170400e+04 -1.8077483e+00 + 1.4170800e+04 -1.4771284e+00 + 1.4171200e+04 -1.0168083e+00 + 1.4171600e+04 -4.0680926e-01 + 1.4172000e+04 3.7272096e-01 + 1.4172400e+04 1.0022038e+00 + 1.4172800e+04 1.6531034e+00 + 1.4173200e+04 2.6758370e+00 + 1.4173600e+04 3.8138185e+00 + 1.4174000e+04 4.7679233e+00 + 1.4174400e+04 5.3319077e+00 + 1.4174800e+04 5.4040796e+00 + 1.4175200e+04 4.3511202e+00 + 1.4175600e+04 3.0899480e+00 + 1.4176000e+04 1.7505109e+00 + 1.4176400e+04 7.3994011e-01 + 1.4176800e+04 5.0284707e-02 + 1.4177200e+04 -3.7233974e-01 + 1.4177600e+04 -2.8971297e-01 + 1.4178000e+04 2.3602908e-01 + 1.4178400e+04 4.1742460e-01 + 1.4178800e+04 6.6888320e-01 + 1.4179200e+04 7.1047274e-01 + 1.4179600e+04 -7.7054237e-03 + 1.4180000e+04 -7.1664114e-01 + 1.4180400e+04 -1.2558614e+00 + 1.4180800e+04 -1.7457602e+00 + 1.4181200e+04 -2.0361562e+00 + 1.4181600e+04 -2.1170521e+00 + 1.4182000e+04 -2.0184901e+00 + 1.4182400e+04 -1.5604493e+00 + 1.4182800e+04 -8.1284601e-01 + 1.4183200e+04 -2.7520829e-01 + 1.4183600e+04 -1.8117913e-02 + 1.4184000e+04 1.9533128e-02 + 1.4184400e+04 4.7528821e-02 + 1.4184800e+04 1.8600344e-01 + 1.4185200e+04 5.6466294e-01 + 1.4185600e+04 9.8371362e-01 + 1.4186000e+04 1.0231185e+00 + 1.4186400e+04 5.6286821e-01 + 1.4186800e+04 1.2292113e-01 + 1.4187200e+04 -4.1700851e-01 + 1.4187600e+04 -1.0370058e+00 + 1.4188000e+04 -1.6268867e+00 + 1.4188400e+04 -2.0266310e+00 + 1.4188800e+04 -2.1061833e+00 + 1.4189200e+04 -2.3755606e+00 + 1.4189600e+04 -3.1647915e+00 + 1.4190000e+04 -3.5239151e+00 + 1.4190400e+04 -3.3029358e+00 + 1.4190800e+04 -2.6618584e+00 + 1.4191200e+04 -1.7207117e+00 + 1.4191600e+04 -9.7960233e-01 + 1.4192000e+04 -4.9873749e-01 + 1.4192400e+04 5.2156718e-01 + 1.4192800e+04 1.2715321e+00 + 1.4193200e+04 2.0714736e+00 + 1.4193600e+04 2.8113294e+00 + 1.4194000e+04 3.0312850e+00 + 1.4194400e+04 3.1413307e+00 + 1.4194800e+04 3.3414820e+00 + 1.4195200e+04 3.8516904e+00 + 1.4195600e+04 4.6519816e+00 + 1.4196000e+04 5.4823722e+00 + 1.4196400e+04 6.4730061e+00 + 1.4196800e+04 6.7538291e+00 + 1.4197200e+04 5.7216459e+00 + 1.4197600e+04 3.9424865e+00 + 1.4198000e+04 1.9677501e+00 + 1.4198400e+04 -2.2308718e-01 + 1.4198800e+04 -2.0230019e+00 + 1.4199200e+04 -3.4331023e+00 + 1.4199600e+04 -4.4732529e+00 + 1.4200000e+04 -4.8033087e+00 + 1.4200400e+04 -4.5233355e+00 + 1.4200800e+04 -3.9134895e+00 + 1.4201200e+04 -3.6737224e+00 + 1.4201600e+04 -3.8140193e+00 + 1.4202000e+04 -3.9142893e+00 + 1.4202400e+04 -3.4947017e+00 + 1.4202800e+04 -2.9353449e+00 + 1.4203200e+04 -2.3663659e+00 + 1.4203600e+04 -1.3674049e+00 + 1.4204000e+04 -8.8377710e-02 + 1.4204400e+04 1.1806922e+00 + 1.4204800e+04 2.2500402e+00 + 1.4205200e+04 3.0394204e+00 + 1.4205600e+04 3.5489680e+00 + 1.4206000e+04 3.9885494e+00 + 1.4206400e+04 3.7882127e+00 + 1.4206800e+04 2.4578437e+00 + 1.4207200e+04 1.2473915e+00 + 1.4207600e+04 3.4715958e-01 + 1.4208000e+04 -2.3304556e-01 + 1.4208400e+04 -9.2493420e-01 + 1.4208800e+04 -1.3084790e+00 + 1.4209200e+04 -1.8679487e+00 + 1.4209600e+04 -2.1344305e+00 + 1.4210000e+04 -2.6735169e+00 + 1.4210400e+04 -3.2132526e+00 + 1.4210800e+04 -3.5628905e+00 + 1.4211200e+04 -3.6623708e+00 + 1.4211600e+04 -3.2218120e+00 + 1.4212000e+04 -2.7212110e+00 + 1.4212400e+04 -2.2705501e+00 + 1.4212800e+04 -1.2198132e+00 + 1.4213200e+04 -1.0889743e-01 + 1.4213600e+04 8.0335731e-01 + 1.4214000e+04 1.8644038e+00 + 1.4214400e+04 3.0985548e+00 + 1.4214800e+04 3.6486761e+00 + 1.4215200e+04 3.6569914e+00 + 1.4215600e+04 3.0281355e+00 + 1.4216000e+04 3.5091136e+00 + 1.4216400e+04 3.9998684e+00 + 1.4216800e+04 4.8705493e+00 + 1.4217200e+04 5.3810653e+00 + 1.4217600e+04 5.1513957e+00 + 1.4218000e+04 4.6014791e+00 + 1.4218400e+04 3.9611474e+00 + 1.4218800e+04 3.0703932e+00 + 1.4219200e+04 1.7558809e+00 + 1.4219600e+04 2.1805351e-01 + 1.4220000e+04 -9.5383741e-01 + 1.4220400e+04 -1.9258232e+00 + 1.4220800e+04 -2.9976300e+00 + 1.4221200e+04 -3.9291541e+00 + 1.4221600e+04 -4.7703577e+00 + 1.4222000e+04 -5.2512235e+00 + 1.4222400e+04 -5.5015903e+00 + 1.4222800e+04 -5.2013053e+00 + 1.4223200e+04 -4.1804407e+00 + 1.4223600e+04 -2.3391622e+00 + 1.4224000e+04 -1.7177647e+00 + 1.4224400e+04 -1.2948213e+00 + 1.4224800e+04 -8.3735246e-01 + 1.4225200e+04 -4.9845470e-01 + 1.4225600e+04 -2.0325315e-01 + 1.4226000e+04 4.2524347e-01 + 1.4226400e+04 8.9502948e-01 + 1.4226800e+04 1.3850176e+00 + 1.4227200e+04 1.5048793e+00 + 1.4227600e+04 1.6146855e+00 + 1.4228000e+04 1.9042931e+00 + 1.4228400e+04 2.0838787e+00 + 1.4228800e+04 2.0033520e+00 + 1.4229200e+04 1.8429542e+00 + 1.4229600e+04 1.5026309e+00 + 1.4230000e+04 1.1124766e+00 + 1.4230400e+04 9.1239660e-01 + 1.4230800e+04 7.1234113e-01 + 1.4231200e+04 4.0232654e-01 + 1.4231600e+04 6.2242666e-02 + 1.4232000e+04 -3.3794910e-01 + 1.4232400e+04 -6.7838580e-01 + 1.4232800e+04 -8.8851519e-01 + 1.4233200e+04 -8.2858036e-01 + 1.4233600e+04 -5.1842514e-01 + 1.4234000e+04 -1.3791773e-01 + 1.4234400e+04 1.6276928e-01 + 1.4234800e+04 -1.2636953e-01 + 1.4235200e+04 -6.2456340e-01 + 1.4235600e+04 -9.3157198e-01 + 1.4236000e+04 -9.3906525e-01 + 1.4236400e+04 -6.2004145e-01 + 1.4236800e+04 8.7232042e-03 + 1.4237200e+04 5.4964521e-01 + 1.4237600e+04 1.2401411e+00 + 1.4238000e+04 1.9603063e+00 + 1.4238400e+04 2.5399780e+00 + 1.4238800e+04 2.8397168e+00 + 1.4239200e+04 2.9592488e+00 + 1.4239600e+04 2.9287721e+00 + 1.4240000e+04 2.5981979e+00 + 1.4240400e+04 2.0973146e+00 + 1.4240800e+04 1.3664845e+00 + 1.4241200e+04 5.5585235e-01 + 1.4241600e+04 4.5310023e-02 + 1.4242000e+04 -1.4355271e+00 + 1.4242400e+04 -2.4465750e+00 + 1.4242800e+04 -3.0776844e+00 + 1.4243200e+04 -3.8785554e+00 + 1.4243600e+04 -3.9990149e+00 + 1.4244000e+04 -3.5990120e+00 + 1.4244400e+04 -3.3386280e+00 + 1.4244800e+04 -3.2079593e+00 + 1.4245200e+04 -2.6571542e+00 + 1.4245600e+04 -1.8559653e+00 + 1.4246000e+04 -8.6460317e-01 + 1.4246400e+04 3.7671390e-01 + 1.4246800e+04 1.7778109e+00 + 1.4247200e+04 2.7386593e+00 + 1.4247600e+04 3.2991512e+00 + 1.4248000e+04 3.5294454e+00 + 1.4248400e+04 3.1393661e+00 + 1.4248800e+04 2.5389694e+00 + 1.4249200e+04 1.7782622e+00 + 1.4249600e+04 1.1073564e+00 + 1.4250000e+04 6.2643622e-01 + 1.4250400e+04 4.8574162e-01 + 1.4250800e+04 4.5508455e-01 + 1.4251200e+04 -5.0517441e-01 + 1.4251600e+04 -1.3952632e+00 + 1.4252000e+04 -1.8053302e+00 + 1.4252400e+04 -1.7453771e+00 + 1.4252800e+04 -1.6955235e+00 + 1.4253200e+04 -1.5558043e+00 + 1.4253600e+04 -1.3662282e+00 + 1.4254000e+04 -1.1364842e+00 + 1.4254400e+04 -9.2639290e-01 + 1.4254800e+04 -5.9584504e-01 + 1.4255200e+04 -3.3489144e-01 + 1.4255600e+04 6.1997320e-03 + 1.4256000e+04 5.9732219e-01 + 1.4256400e+04 1.1083061e+00 + 1.4256800e+04 1.5991277e+00 + 1.4257200e+04 2.0698648e+00 + 1.4257600e+04 2.2805585e+00 + 1.4258000e+04 2.2112125e+00 + 1.4258400e+04 2.0117258e+00 + 1.4258800e+04 1.6719791e+00 + 1.4259200e+04 1.2420553e+00 + 1.4259600e+04 8.8198602e-01 + 1.4260000e+04 4.6180577e-01 + 1.4260400e+04 1.5465972e-03 + 1.4260800e+04 -4.4869656e-01 + 1.4261200e+04 -7.6887802e-01 + 1.4261600e+04 -1.1390100e+00 + 1.4262000e+04 -1.5591506e+00 + 1.4262400e+04 -1.8092635e+00 + 1.4262800e+04 -1.5992784e+00 + 1.4263200e+04 -1.0992894e+00 + 1.4263600e+04 -6.4927501e-01 + 1.4264000e+04 -4.1906101e-01 + 1.4264400e+04 -3.2887483e-01 + 1.4264800e+04 -2.8847541e-01 + 1.4265200e+04 1.3161095e-01 + 1.4265600e+04 7.0164777e-01 + 1.4266000e+04 1.2013472e+00 + 1.4266400e+04 1.2407522e+00 + 1.4266800e+04 1.3796412e+00 + 1.4267200e+04 1.3480802e+00 + 1.4267600e+04 1.2268542e+00 + 1.4268000e+04 1.0959847e+00 + 1.4268400e+04 6.2545166e-01 + 1.4268800e+04 1.9521962e-01 + 1.4269200e+04 -2.8471306e-01 + 1.4269600e+04 -8.0465576e-01 + 1.4270000e+04 -1.2641579e+00 + 1.4270400e+04 -1.4134695e+00 + 1.4270800e+04 -1.5426315e+00 + 1.4271200e+04 -2.0716735e+00 + 1.4271600e+04 -2.2105925e+00 + 1.4272000e+04 -2.1496015e+00 + 1.4272400e+04 -2.0988455e+00 + 1.4272800e+04 -1.3381203e+00 + 1.4273200e+04 -9.5762280e-01 + 1.4273600e+04 -8.1760265e-01 + 1.4274000e+04 -7.5799624e-01 + 1.4274400e+04 -5.6856695e-01 + 1.4274800e+04 -4.0904729e-01 + 1.4275200e+04 -1.7936923e-01 + 1.4275600e+04 2.0035140e-01 + 1.4276000e+04 1.1015042e-01 + 1.4276400e+04 4.0121155e-02 + 1.4276800e+04 5.3010458e-01 + 1.4277200e+04 8.8014678e-01 + 1.4277600e+04 1.6000978e+00 + 1.4278000e+04 2.3498609e+00 + 1.4278400e+04 2.7395360e+00 + 1.4278800e+04 2.8491956e+00 + 1.4279200e+04 2.5890900e+00 + 1.4279600e+04 2.1389205e+00 + 1.4280000e+04 1.6686351e+00 + 1.4280400e+04 1.3083208e+00 + 1.4280800e+04 9.6794018e-01 + 1.4281200e+04 5.7174845e-01 + 1.4281600e+04 2.5959155e-01 + 1.4282000e+04 1.8404006e-01 + 1.4282400e+04 5.4666753e-01 + 1.4282800e+04 3.5674710e-01 + 1.4283200e+04 -4.5322494e-01 + 1.4283600e+04 -1.9532069e+00 + 1.4284000e+04 -2.4330394e+00 + 1.4284400e+04 -2.3427339e+00 + 1.4284800e+04 -2.0422603e+00 + 1.4285200e+04 -1.4515560e+00 + 1.4285600e+04 -8.7074599e-01 + 1.4286000e+04 -6.3996580e-01 + 1.4286400e+04 -4.3931706e-01 + 1.4286800e+04 -1.4896974e-01 + 1.4287200e+04 4.1116953e-02 + 1.4287600e+04 2.1107711e-01 + 1.4288000e+04 5.4744235e-01 + 1.4288400e+04 4.4739733e-01 + 1.4288800e+04 3.3303897e-01 + 1.4289200e+04 4.9180110e-01 + 1.4289600e+04 5.7970697e-01 + 1.4290000e+04 6.8984674e-01 + 1.4290400e+04 5.5008740e-01 + 1.4290800e+04 3.6028961e-01 + 1.4291200e+04 -1.5923847e-01 + 1.4291600e+04 -4.8855909e-01 + 1.4292000e+04 -1.4278746e+00 + 1.4292400e+04 -1.6072429e+00 + 1.4292800e+04 -1.5467994e+00 + 1.4293200e+04 -1.4966111e+00 + 1.4293600e+04 -1.3622173e+00 + 1.4294000e+04 -1.5816690e+00 + 1.4294400e+04 -1.4263190e+00 + 1.4294800e+04 -1.0544990e+00 + 1.4295200e+04 -5.9762875e-01 + 1.4295600e+04 -2.8785820e-01 + 1.4296000e+04 -2.3845832e-01 + 1.4296400e+04 7.1095307e-01 + 1.4296800e+04 1.0805337e+00 + 1.4297200e+04 1.5702190e+00 + 1.4297600e+04 1.8300937e+00 + 1.4298000e+04 2.1501636e+00 + 1.4298400e+04 2.2303611e+00 + 1.4298800e+04 1.8006857e+00 + 1.4299200e+04 1.4011267e+00 + 1.4299600e+04 1.3516288e+00 + 1.4300000e+04 1.6219702e+00 + 1.4300400e+04 1.8318681e+00 + 1.4300800e+04 1.4115415e+00 + 1.4301200e+04 6.5102102e-01 + 1.4301600e+04 -2.3950729e-01 + 1.4302000e+04 -7.8996952e-01 + 1.4302400e+04 -6.5051042e-01 + 1.4302800e+04 -2.8093606e-01 + 1.4303200e+04 -6.1501077e-02 + 1.4303600e+04 -1.8139322e-01 + 1.4304000e+04 -4.2764262e-01 + 1.4304400e+04 -4.9209545e-01 + 1.4304800e+04 -5.8238032e-01 + 1.4305200e+04 -4.9462380e-01 + 1.4305600e+04 -1.8448080e-01 + 1.4306000e+04 1.6583665e-01 + 1.4306400e+04 8.7620218e-01 + 1.4306800e+04 1.0765783e+00 + 1.4307200e+04 7.9692794e-01 + 1.4307600e+04 -2.4261937e-01 + 1.4308000e+04 -1.0123587e+00 + 1.4308400e+04 -2.2421136e+00 + 1.4308800e+04 -2.5817888e+00 + 1.4309200e+04 -2.8812586e+00 + 1.4309600e+04 -3.0606296e+00 + 1.4310000e+04 -2.9299140e+00 + 1.4310400e+04 -2.7493171e+00 + 1.4310800e+04 -2.2986829e+00 + 1.4311200e+04 -1.7381667e+00 + 1.4311600e+04 -1.2477575e+00 + 1.4312000e+04 -3.8759799e-01 + 1.4312400e+04 6.7257797e-01 + 1.4312800e+04 1.5127799e+00 + 1.4313200e+04 1.9630381e+00 + 1.4313600e+04 2.2133715e+00 + 1.4314000e+04 2.3834797e+00 + 1.4314400e+04 2.3235221e+00 + 1.4314800e+04 2.1535588e+00 + 1.4315200e+04 1.8134648e+00 + 1.4315600e+04 1.9133278e+00 + 1.4316000e+04 2.3830088e+00 + 1.4316400e+04 2.8825425e+00 + 1.4316800e+04 2.6220122e+00 + 1.4317200e+04 1.9914761e+00 + 1.4317600e+04 1.1110469e+00 + 1.4318000e+04 1.5074621e-01 + 1.4318400e+04 -7.1992157e-01 + 1.4318800e+04 -1.2605197e+00 + 1.4319200e+04 -1.6583186e+00 + 1.4319600e+04 -1.7959830e+00 + 1.4320000e+04 -1.8452563e+00 + 1.4320400e+04 -2.0292714e+00 + 1.4320800e+04 -1.9233773e+00 + 1.4321200e+04 -1.7933356e+00 + 1.4321600e+04 -1.7431221e+00 + 1.4322000e+04 -1.5027804e+00 + 1.4322400e+04 -1.2224037e+00 + 1.4322800e+04 -9.9199484e-01 + 1.4323200e+04 -9.2157719e-01 + 1.4323600e+04 -5.1139372e-02 + 1.4324000e+04 4.4928026e-01 + 1.4324400e+04 1.2595587e+00 + 1.4324800e+04 1.6996351e+00 + 1.4325200e+04 1.7798321e+00 + 1.4325600e+04 1.9700167e+00 + 1.4326000e+04 2.0105427e+00 + 1.4326400e+04 1.4309632e+00 + 1.4326800e+04 8.3128786e-01 + 1.4327200e+04 3.6151223e-01 + 1.4327600e+04 -1.3832865e-01 + 1.4328000e+04 -5.6847097e-01 + 1.4328400e+04 -6.0868397e-01 + 1.4328800e+04 -4.6894300e-01 + 1.4329200e+04 -3.5936232e-01 + 1.4329600e+04 -6.4988182e-01 + 1.4330000e+04 -1.1203999e+00 + 1.4330400e+04 -1.3454427e+00 + 1.4330800e+04 -1.4860297e+00 + 1.4331200e+04 -1.4651801e+00 + 1.4331600e+04 -1.1652788e+00 + 1.4332000e+04 -9.1115565e-01 + 1.4332400e+04 -7.2071744e-01 + 1.4332800e+04 -1.1398872e+00 + 1.4333200e+04 -1.1990869e+00 + 1.4333600e+04 -1.2482785e+00 + 1.4334000e+04 -9.8753216e-01 + 1.4334400e+04 -4.1689647e-01 + 1.4334800e+04 4.5359718e-01 + 1.4335200e+04 1.1238545e+00 + 1.4335600e+04 1.2539919e+00 + 1.4336000e+04 1.3541193e+00 + 1.4336400e+04 1.4740289e+00 + 1.4336800e+04 1.3037013e+00 + 1.4337200e+04 7.9334100e-01 + 1.4337600e+04 6.3386007e-02 + 1.4338000e+04 -1.2637796e-01 + 1.4338400e+04 3.7274153e-03 + 1.4338800e+04 1.7363212e-01 + 1.4339200e+04 2.6309788e-01 + 1.4339600e+04 4.1242883e-01 + 1.4340000e+04 5.6155046e-01 + 1.4340400e+04 -9.2300510e-03 + 1.4340800e+04 -4.9937919e-02 + 1.4341200e+04 2.1958002e-01 + 1.4341600e+04 6.7898512e-01 + 1.4342000e+04 1.0782528e+00 + 1.4342400e+04 1.1873737e+00 + 1.4342800e+04 7.8638749e-01 + 1.4343200e+04 7.1557407e-01 + 1.4343600e+04 -3.0828718e-02 + 1.4344000e+04 -8.3546984e-01 + 1.4344400e+04 -1.3955648e+00 + 1.4344800e+04 -1.5151708e+00 + 1.4345200e+04 -1.5545902e+00 + 1.4345600e+04 -1.5140390e+00 + 1.4346000e+04 -1.3834017e+00 + 1.4346400e+04 -1.1126328e+00 + 1.4346800e+04 -6.5186082e-01 + 1.4347200e+04 -5.8087763e-01 + 1.4347600e+04 1.5018176e-01 + 1.4348000e+04 3.3117244e-01 + 1.4348400e+04 5.4204188e-01 + 1.4348800e+04 7.3278854e-01 + 1.4349200e+04 1.0032876e+00 + 1.4349600e+04 1.6735733e+00 + 1.4350000e+04 1.6237310e+00 + 1.4350400e+04 1.3035978e+00 + 1.4350800e+04 1.0934029e+00 + 1.4351200e+04 7.2334391e-01 + 1.4351600e+04 6.6320254e-01 + 1.4352000e+04 1.6309603e-01 + 1.4352400e+04 -6.1724248e-01 + 1.4352800e+04 -1.3276003e+00 + 1.4353200e+04 -2.2181203e+00 + 1.4353600e+04 -2.6187064e+00 + 1.4354000e+04 -2.7793616e+00 + 1.4354400e+04 -2.5400352e+00 + 1.4354800e+04 -1.7006843e+00 + 1.4355200e+04 -7.2140804e-01 + 1.4355600e+04 -3.1800453e-02 + 1.4356000e+04 6.6547799e-01 + 1.4356400e+04 9.8775319e-01 + 1.4356800e+04 8.6828778e-01 + 1.4357200e+04 9.5922980e-01 + 1.4357600e+04 1.3803554e+00 + 1.4358000e+04 1.7516580e+00 + 1.4358400e+04 2.0431355e+00 + 1.4358800e+04 2.5144503e+00 + 1.4359200e+04 2.2256718e+00 + 1.4359600e+04 1.7792776e+00 + 1.4360000e+04 4.9131147e-01 + 1.4360400e+04 -7.0618244e-01 + 1.4360800e+04 -1.4143670e+00 + 1.4361200e+04 -1.8763049e+00 + 1.4361600e+04 -1.9498962e+00 + 1.4362000e+04 -1.8556326e+00 + 1.4362400e+04 -1.4373848e+00 + 1.4362800e+04 -1.6296810e+00 + 1.4363200e+04 -1.5123271e+00 + 1.4363600e+04 -9.6488938e-01 + 1.4364000e+04 -1.7105456e-02 + 1.4364400e+04 1.1611412e+00 + 1.4364800e+04 2.4998883e+00 + 1.4365200e+04 3.6788936e+00 + 1.4365600e+04 4.2782388e+00 + 1.4366000e+04 3.7178399e+00 + 1.4366400e+04 3.2977781e+00 + 1.4366800e+04 2.9483337e+00 + 1.4367200e+04 2.1492791e+00 + 1.4367600e+04 1.5504921e+00 + 1.4368000e+04 4.8033420e-01 + 1.4368400e+04 -7.0902268e-01 + 1.4368800e+04 -1.4143484e+00 + 1.4369200e+04 -1.7524853e+00 + 1.4369600e+04 -2.2010544e+00 + 1.4370000e+04 -2.5798322e+00 + 1.4370400e+04 -2.7685032e+00 + 1.4370800e+04 -2.9170511e+00 + 1.4371200e+04 -3.0356785e+00 + 1.4371600e+04 -3.2347642e+00 + 1.4372000e+04 -3.0143355e+00 + 1.4372400e+04 -2.6046789e+00 + 1.4372800e+04 -1.9055431e+00 + 1.4373200e+04 -6.7665678e-01 + 1.4373600e+04 4.7236879e-01 + 1.4374000e+04 1.5512625e+00 + 1.4374400e+04 2.4963454e+00 + 1.4374800e+04 2.7391770e+00 + 1.4375200e+04 2.5082416e+00 + 1.4375600e+04 2.1575027e+00 + 1.4376000e+04 1.8969929e+00 + 1.4376400e+04 1.6668514e+00 + 1.4376800e+04 1.5071512e+00 + 1.4377200e+04 9.4770946e-01 + 1.4377600e+04 1.6838777e-01 + 1.4378000e+04 -4.0075603e-01 + 1.4378400e+04 -3.2997647e-01 + 1.4378800e+04 -2.0951520e-01 + 1.4379200e+04 -1.7937281e-01 + 1.4379600e+04 -1.0957530e-01 + 1.4380000e+04 -1.6929015e-04 + 1.4380400e+04 5.9088663e-02 + 1.4380800e+04 1.2824558e-01 + 1.4381200e+04 7.5530742e-03 + 1.4381600e+04 -2.0296223e-01 + 1.4382000e+04 -2.9316758e-01 + 1.4382400e+04 -2.0376882e-01 + 1.4382800e+04 2.3598139e-01 + 1.4383200e+04 5.0585708e-01 + 1.4383600e+04 7.7572310e-01 + 1.4384000e+04 4.0531427e-01 + 1.4384400e+04 -3.9879757e-01 + 1.4384800e+04 -1.1260172e+00 + 1.4385200e+04 -1.8410194e+00 + 1.4385600e+04 -2.6445937e+00 + 1.4386000e+04 -2.8473726e+00 + 1.4386400e+04 -2.7795984e+00 + 1.4386800e+04 -1.9794760e+00 + 1.4387200e+04 -1.1689961e+00 + 1.4387600e+04 -1.1797365e-01 + 1.4388000e+04 1.0731936e+00 + 1.4388400e+04 2.0745988e+00 + 1.4388800e+04 2.8560511e+00 + 1.4389200e+04 3.3077507e+00 + 1.4389600e+04 3.2491934e+00 + 1.4390000e+04 2.9203864e+00 + 1.4390400e+04 2.0913995e+00 + 1.4390800e+04 1.4319136e+00 + 1.4391200e+04 1.0621253e+00 + 1.4391600e+04 6.1226941e-01 + 1.4392000e+04 3.0242071e-01 + 1.4392400e+04 -7.7368298e-02 + 1.4392800e+04 -4.1717920e-01 + 1.4393200e+04 -5.2699539e-01 + 1.4393600e+04 -6.4688610e-01 + 1.4394000e+04 -1.7069343e+00 + 1.4394400e+04 -2.2768801e+00 + 1.4394800e+04 -2.4466910e+00 + 1.4395200e+04 -2.4163305e+00 + 1.4395600e+04 -2.6059464e+00 + 1.4396000e+04 -2.7557603e+00 + 1.4396400e+04 -2.5458068e+00 + 1.4396800e+04 -2.0859748e+00 + 1.4397200e+04 -1.3863088e+00 + 1.4397600e+04 -3.7677604e-01 + 1.4398000e+04 2.3255641e-01 + 1.4398400e+04 1.0919109e+00 + 1.4398800e+04 2.8214091e+00 + 1.4399200e+04 4.2305583e+00 + 1.4399600e+04 4.8928226e+00 + 1.4400000e+04 4.7496125e+00 + 1.4400400e+04 3.8087568e+00 + 1.4400800e+04 3.0879145e+00 + 1.4401200e+04 2.4071413e+00 + 1.4401600e+04 2.2963999e+00 + 1.4402000e+04 1.6058704e+00 + 1.4402400e+04 6.1542349e-01 + 1.4402800e+04 -3.4866172e-02 + 1.4403200e+04 -6.6509481e-01 + 1.4403600e+04 -1.6052111e+00 + 1.4404000e+04 -2.1950657e+00 + 1.4404400e+04 -2.6447187e+00 + 1.4404800e+04 -2.7044489e+00 + 1.4405200e+04 -2.5443300e+00 + 1.4405600e+04 -2.4016724e+00 + 1.4406000e+04 -2.2894313e+00 + 1.4406400e+04 -2.2777153e+00 + 1.4406800e+04 -2.3711157e+00 + 1.4407200e+04 -2.2011378e+00 + 1.4407600e+04 -1.6395262e+00 + 1.4408000e+04 -9.3771987e-01 + 1.4408400e+04 4.3916695e-02 + 1.4408800e+04 5.4521355e-01 + 1.4409200e+04 8.8585853e-01 + 1.4409600e+04 2.2661721e+00 + 1.4410000e+04 3.2662027e+00 + 1.4410400e+04 4.3256282e+00 + 1.4410800e+04 4.5146027e+00 + 1.4411200e+04 4.0333739e+00 + 1.4411600e+04 2.8418505e+00 + 1.4412000e+04 1.4703225e+00 + 1.4412400e+04 6.9050598e-02 + 1.4412800e+04 -1.0417352e+00 + 1.4413200e+04 -1.7819682e+00 + 1.4413600e+04 -2.3119767e+00 + 1.4414000e+04 -2.4415754e+00 + 1.4414400e+04 -2.4709691e+00 + 1.4414800e+04 -2.6801992e+00 + 1.4415200e+04 -2.7194617e+00 + 1.4415600e+04 -2.4189135e+00 + 1.4416000e+04 -1.7685999e+00 + 1.4416400e+04 -1.3282776e+00 + 1.4416800e+04 -6.8830655e-01 + 1.4417200e+04 3.2422083e-02 + 1.4417600e+04 6.1264401e-01 + 1.4418000e+04 8.7250124e-01 + 1.4418400e+04 1.0021488e+00 + 1.4418800e+04 1.2817044e+00 + 1.4419200e+04 1.7511571e+00 + 1.4419600e+04 2.2403622e+00 + 1.4420000e+04 2.6493709e+00 + 1.4420400e+04 2.5684812e+00 + 1.4420800e+04 2.4977473e+00 + 1.4421200e+04 2.6770857e+00 + 1.4421600e+04 1.8865709e+00 + 1.4422000e+04 5.0596420e-01 + 1.4422400e+04 -6.6463962e-01 + 1.4422800e+04 -1.4453982e+00 + 1.4423200e+04 -1.6491611e+00 + 1.4423600e+04 -1.4460086e+00 + 1.4424000e+04 -1.2965951e+00 + 1.4424400e+04 -1.5034622e+00 + 1.4424800e+04 -1.7122875e+00 + 1.4425200e+04 -1.6710175e+00 + 1.4425600e+04 -1.6297842e+00 + 1.4426000e+04 -1.4388162e+00 + 1.4426400e+04 -1.0680146e+00 + 1.4426800e+04 -4.2728400e-01 + 1.4427200e+04 -1.6912904e-01 + 1.4427600e+04 5.7653421e-02 + 1.4428000e+04 -2.9720455e-01 + 1.4428400e+04 -5.0686192e-01 + 1.4428800e+04 -3.5725746e-01 + 1.4429200e+04 -3.0720463e-01 + 1.4429600e+04 -9.7586418e-02 + 1.4430000e+04 1.8209775e-01 + 1.4430400e+04 2.6167997e-01 + 1.4430800e+04 2.2133228e-01 + 1.4431200e+04 3.4113614e-01 + 1.4431600e+04 6.4100082e-01 + 1.4432000e+04 8.4702801e-01 + 1.4432400e+04 1.2661662e+00 + 1.4432800e+04 1.6941774e+00 + 1.4433200e+04 1.8484498e+00 + 1.4433600e+04 1.4699362e+00 + 1.4434000e+04 1.5701806e+00 + 1.4434400e+04 1.5105279e+00 + 1.4434800e+04 1.6708655e+00 + 1.4435200e+04 8.5123343e-01 + 1.4435600e+04 5.4150390e-01 + 1.4436000e+04 5.1178149e-01 + 1.4436400e+04 -4.6805714e-01 + 1.4436800e+04 -7.9810260e-01 + 1.4437200e+04 -1.1080766e+00 + 1.4437600e+04 -1.2179495e+00 + 1.4438000e+04 -1.4476818e+00 + 1.4438400e+04 -1.5775588e+00 + 1.4438800e+04 -1.3574770e+00 + 1.4439200e+04 -9.9737416e-01 + 1.4439600e+04 -5.8743937e-01 + 1.4440000e+04 -1.0771934e-01 + 1.4440400e+04 6.4181257e-01 + 1.4440800e+04 1.3614166e+00 + 1.4441200e+04 1.8811352e+00 + 1.4441600e+04 2.1708889e+00 + 1.4442000e+04 1.8808072e+00 + 1.4442400e+04 1.3208079e+00 + 1.4442800e+04 6.9083841e-01 + 1.4443200e+04 3.9098435e-01 + 1.4443600e+04 2.6117319e-01 + 1.4444000e+04 -8.5460109e-03 + 1.4444400e+04 -4.4833443e-01 + 1.4444800e+04 -8.2808489e-01 + 1.4445200e+04 -1.0079139e+00 + 1.4445600e+04 -1.3377994e+00 + 1.4446000e+04 -1.6177893e+00 + 1.4446400e+04 -1.8577732e+00 + 1.4446800e+04 -2.1177193e+00 + 1.4447200e+04 -1.8775793e+00 + 1.4447600e+04 -1.6875757e+00 + 1.4448000e+04 -1.7178365e+00 + 1.4448400e+04 -1.7782364e+00 + 1.4448800e+04 -1.6887738e+00 + 1.4449200e+04 -1.4094680e+00 + 1.4449600e+04 -8.5026001e-01 + 1.4450000e+04 -2.9079875e-01 + 1.4450400e+04 9.6849830e-01 + 1.4450800e+04 2.0283791e+00 + 1.4451200e+04 2.8582940e+00 + 1.4451600e+04 3.1286220e+00 + 1.4452000e+04 2.4391850e+00 + 1.4452400e+04 1.7097162e+00 + 1.4452800e+04 1.3501984e+00 + 1.4453200e+04 9.4075231e-01 + 1.4453600e+04 6.1131545e-01 + 1.4454000e+04 5.3207236e-01 + 1.4454400e+04 4.7323974e-01 + 1.4454800e+04 7.4665179e-02 + 1.4455200e+04 -2.3391524e-01 + 1.4455600e+04 -4.2237837e-01 + 1.4456000e+04 -1.4116739e-01 + 1.4456400e+04 5.0882604e-01 + 1.4456800e+04 8.3655729e-01 + 1.4457200e+04 8.0403555e-01 + 1.4457600e+04 1.5472886e-01 + 1.4458000e+04 -4.0074191e-01 + 1.4458400e+04 -5.5225606e-01 + 1.4458800e+04 -2.9166560e-01 + 1.4459200e+04 -2.7108891e-01 + 1.4459600e+04 -2.4279749e-01 + 1.4460000e+04 -9.9521493e-02 + 1.4460400e+04 1.2527155e-01 + 1.4460800e+04 8.9876709e-02 + 1.4461200e+04 -1.0046284e-01 + 1.4461600e+04 -5.0337686e-02 + 1.4462000e+04 8.9992128e-02 + 1.4462400e+04 -1.9969147e-01 + 1.4462800e+04 -3.9930964e-01 + 1.4463200e+04 -4.6901386e-01 + 1.4463600e+04 -1.6887223e+00 + 1.4464000e+04 -2.1984106e+00 + 1.4464400e+04 -2.0182823e+00 + 1.4464800e+04 -1.7383733e+00 + 1.4465200e+04 -1.1885049e+00 + 1.4465600e+04 -8.0872815e-01 + 1.4466000e+04 -4.6894685e-01 + 1.4466400e+04 -9.0282080e-03 + 1.4466800e+04 1.4083294e-01 + 1.4467200e+04 7.3093793e-01 + 1.4467600e+04 8.9147571e-01 + 1.4468000e+04 7.6210687e-01 + 1.4468400e+04 8.0271333e-01 + 1.4468800e+04 6.9314886e-01 + 1.4469200e+04 2.8348322e-01 + 1.4469600e+04 -7.6413384e-02 + 1.4470000e+04 -2.0674279e-01 + 1.4470400e+04 8.2495224e-02 + 1.4470800e+04 3.1161320e-01 + 1.4471200e+04 4.4075924e-01 + 1.4471600e+04 4.8008122e-01 + 1.4472000e+04 7.5970922e-01 + 1.4472400e+04 8.5958728e-01 + 1.4472800e+04 1.1098113e+00 + 1.4473200e+04 1.3004498e+00 + 1.4473600e+04 1.2612047e+00 + 1.4474000e+04 9.4198083e-01 + 1.4474400e+04 8.8279212e-01 + 1.4474800e+04 3.5359364e-01 + 1.4475200e+04 -9.5908382e-02 + 1.4475600e+04 -3.6549033e-01 + 1.4476000e+04 -4.5514788e-01 + 1.4476400e+04 -4.8470367e-01 + 1.4476800e+04 -7.3421474e-01 + 1.4477200e+04 -8.7381732e-01 + 1.4477600e+04 -6.8380981e-01 + 1.4478000e+04 -3.7332801e-01 + 1.4478400e+04 -1.9338110e-01 + 1.4478800e+04 -3.2334811e-01 + 1.4479200e+04 -4.2320795e-01 + 1.4479600e+04 -4.5344052e-01 + 1.4480000e+04 -1.9378684e-01 + 1.4480400e+04 3.6557945e-01 + 1.4480800e+04 6.6455012e-01 + 1.4481200e+04 2.2323636e-01 + 1.4481600e+04 -6.8225058e-02 + 1.4482000e+04 -3.8965019e-01 + 1.4482400e+04 -7.1751288e-01 + 1.4482800e+04 -9.6672751e-01 + 1.4483200e+04 -1.1154324e+00 + 1.4483600e+04 -1.2589503e+00 + 1.4484000e+04 -1.7048757e+00 + 1.4484400e+04 -1.7550411e+00 + 1.4484800e+04 -1.9222056e+00 + 1.4485200e+04 -1.8472693e+00 + 1.4485600e+04 -1.7889841e+00 + 1.4486000e+04 -1.3357361e+00 + 1.4486400e+04 -8.1122084e-01 + 1.4486800e+04 1.2003945e-01 + 1.4487200e+04 1.5411136e+00 + 1.4487600e+04 2.2521294e+00 + 1.4488000e+04 3.5328514e+00 + 1.4488400e+04 4.2998774e+00 + 1.4488800e+04 4.2434193e+00 + 1.4489200e+04 3.1833460e+00 + 1.4489600e+04 2.1330568e+00 + 1.4490000e+04 1.5062044e+00 + 1.4490400e+04 7.8006958e-01 + 1.4490800e+04 2.8106155e-01 + 1.4491200e+04 -3.7938076e-01 + 1.4491600e+04 -1.0906880e+00 + 1.4492000e+04 -1.6411070e+00 + 1.4492400e+04 -1.8911879e+00 + 1.4492800e+04 -1.9110609e+00 + 1.4493200e+04 -1.6406338e+00 + 1.4493600e+04 -1.4698689e+00 + 1.4494000e+04 -1.2890660e+00 + 1.4494400e+04 -1.0683790e+00 + 1.4494800e+04 -1.1722791e+00 + 1.4495200e+04 -1.0446911e+00 + 1.4495600e+04 -1.0077737e+00 + 1.4496000e+04 -9.9290374e-01 + 1.4496400e+04 -8.4318732e-01 + 1.4496800e+04 -5.1155506e-01 + 1.4497200e+04 -3.2932192e-01 + 1.4497600e+04 -1.3784082e-01 + 1.4498000e+04 4.0149562e-01 + 1.4498400e+04 9.3084808e-01 + 1.4498800e+04 1.4101785e+00 + 1.4499200e+04 1.6892297e+00 + 1.4499600e+04 1.9182191e+00 + 1.4500000e+04 1.8541503e+00 + 1.4500400e+04 1.1608367e+00 + 1.4500800e+04 6.5736209e-01 + 1.4501200e+04 3.5551556e-01 + 1.4501600e+04 -3.7892693e-02 + 1.4502000e+04 -5.5336301e-01 + 1.4502400e+04 -1.3329389e+00 + 1.4502800e+04 -1.2925392e+00 + 1.4503200e+04 -9.3213860e-01 + 1.4503600e+04 4.8213246e-02 + 1.4504000e+04 7.4829760e-01 + 1.4504400e+04 6.0831429e-01 + 1.4504800e+04 2.1825247e-01 + 1.4505200e+04 -3.1201956e-01 + 1.4505600e+04 -7.4211722e-01 + 1.4506000e+04 -1.0021237e+00 + 1.4506400e+04 -1.1519642e+00 + 1.4506800e+04 -1.0716476e+00 + 1.4507200e+04 -7.1108335e-01 + 1.4507600e+04 -2.8037204e-01 + 1.4508000e+04 3.5867558e-01 + 1.4508400e+04 1.1647967e+00 + 1.4508800e+04 1.5453339e+00 + 1.4509200e+04 1.4865016e+00 + 1.4509600e+04 1.2997936e+00 + 1.4510000e+04 9.8975226e-01 + 1.4510400e+04 2.7980467e-01 + 1.4510800e+04 -7.0132292e-02 + 1.4511200e+04 -2.7992508e-01 + 1.4511600e+04 -9.6864035e-03 + 1.4512000e+04 2.6049256e-01 + 1.4512400e+04 4.0072581e-01 + 1.4512800e+04 6.0117296e-01 + 1.4513200e+04 2.9188911e-01 + 1.4513600e+04 -3.7725856e-01 + 1.4514000e+04 -1.0464777e+00 + 1.4514400e+04 -1.4057943e+00 + 1.4514800e+04 -1.7878825e+00 + 1.4515200e+04 -1.7169209e+00 + 1.4515600e+04 -1.6615404e+00 + 1.4516000e+04 -1.4766867e+00 + 1.4516400e+04 -1.3085969e+00 + 1.4516800e+04 -7.4958612e-01 + 1.4517200e+04 1.9963634e-01 + 1.4517600e+04 6.1901895e-01 + 1.4518000e+04 8.9840969e-01 + 1.4518400e+04 1.0576811e+00 + 1.4518800e+04 1.1868942e+00 + 1.4519200e+04 1.4662994e+00 + 1.4519600e+04 1.9058734e+00 + 1.4520000e+04 1.9458109e+00 + 1.4520400e+04 1.8860565e+00 + 1.4520800e+04 2.0365660e+00 + 1.4521200e+04 1.6773411e+00 + 1.4521600e+04 1.1780704e+00 + 1.4522000e+04 3.8881683e-01 + 1.4522400e+04 -6.0052534e-01 + 1.4522800e+04 -1.4900159e+00 + 1.4523200e+04 -2.1995360e+00 + 1.4523600e+04 -2.6298751e+00 + 1.4524000e+04 -2.6373835e+00 + 1.4524400e+04 -2.6414070e+00 + 1.4524800e+04 -2.5381203e+00 + 1.4525200e+04 -1.9592439e+00 + 1.4525600e+04 -1.6396881e+00 + 1.4526000e+04 -1.0801540e+00 + 1.4526400e+04 -5.7057682e-01 + 1.4526800e+04 1.8904765e-01 + 1.4527200e+04 7.7857507e-01 + 1.4527600e+04 1.3082250e+00 + 1.4528000e+04 1.5079280e+00 + 1.4528400e+04 1.5376573e+00 + 1.4528800e+04 1.1973650e+00 + 1.4529200e+04 9.6693411e-01 + 1.4529600e+04 7.8648664e-01 + 1.4530000e+04 6.2611484e-01 + 1.4530400e+04 4.3579206e-01 + 1.4530800e+04 -1.5450740e-01 + 1.4531200e+04 -1.0745070e+00 + 1.4531600e+04 -1.9143237e+00 + 1.4532000e+04 -1.7736917e+00 + 1.4532400e+04 -9.4292133e-01 + 1.4532800e+04 -2.9181323e-01 + 1.4533200e+04 -6.1198299e-02 + 1.4533600e+04 5.9675594e-02 + 1.4534000e+04 1.2046548e-01 + 1.4534400e+04 -1.6897822e-01 + 1.4534800e+04 -4.8854983e-01 + 1.4535200e+04 -5.2819948e-01 + 1.4535600e+04 -3.3791664e-01 + 1.4536000e+04 -4.7956615e-02 + 1.4536400e+04 2.8088997e-01 + 1.4536800e+04 6.9850860e-01 + 1.4537200e+04 1.1386916e+00 + 1.4537600e+04 1.2844779e+00 + 1.4538000e+04 1.1783990e+00 + 1.4538400e+04 5.0674037e-01 + 1.4538800e+04 -2.5026033e-02 + 1.4539200e+04 3.2989647e-03 + 1.4539600e+04 4.0209329e-01 + 1.4540000e+04 8.0156877e-01 + 1.4540400e+04 1.3215796e+00 + 1.4540800e+04 1.1621771e+00 + 1.4541200e+04 8.0309858e-01 + 1.4541600e+04 7.0418468e-01 + 1.4542000e+04 5.5553546e-01 + 1.4542400e+04 4.0702689e-01 + 1.4542800e+04 1.2855824e-01 + 1.4543200e+04 -2.4001636e-01 + 1.4543600e+04 -6.1882550e-01 + 1.4544000e+04 -9.6796796e-01 + 1.4544400e+04 -1.3675326e+00 + 1.4544800e+04 -2.0474322e+00 + 1.4545200e+04 -2.3174708e+00 + 1.4545600e+04 -2.2377065e+00 + 1.4546000e+04 -1.7681692e+00 + 1.4546400e+04 -1.0688024e+00 + 1.4546800e+04 -8.2966606e-01 + 1.4547200e+04 -5.9073061e-01 + 1.4547600e+04 -1.1192469e-01 + 1.4548000e+04 3.9685246e-01 + 1.4548400e+04 4.7575162e-01 + 1.4548800e+04 2.3484829e-01 + 1.4549200e+04 1.4420851e-01 + 1.4549600e+04 -5.6079566e-02 + 1.4550000e+04 -1.8602652e-01 + 1.4550400e+04 -1.2589535e-01 + 1.4550800e+04 -1.6570240e-01 + 1.4551200e+04 9.4500655e-02 + 1.4551600e+04 4.7477106e-01 + 1.4552000e+04 1.0052778e+00 + 1.4552400e+04 1.3859113e+00 + 1.4552800e+04 1.5067489e+00 + 1.4553200e+04 1.6376521e+00 + 1.4553600e+04 1.5085538e+00 + 1.4554000e+04 9.3930679e-01 + 1.4554400e+04 5.2996732e-01 + 1.4554800e+04 3.6046556e-01 + 1.4555200e+04 4.5090018e-01 + 1.4555600e+04 6.6277561e-02 + 1.4556000e+04 -3.1124538e-01 + 1.4556400e+04 -6.2170979e-01 + 1.4556800e+04 -8.6068242e-01 + 1.4557200e+04 -1.3410978e+00 + 1.4557600e+04 -1.2521526e+00 + 1.4558000e+04 -7.5330284e-01 + 1.4558400e+04 -1.7460171e-01 + 1.4558800e+04 3.2402263e-01 + 1.4559200e+04 2.1287581e-01 + 1.4559600e+04 -2.6736116e-01 + 1.4560000e+04 -7.0864080e-01 + 1.4560400e+04 -8.6879035e-01 + 1.4560800e+04 -8.1864936e-01 + 1.4561200e+04 -4.2810658e-01 + 1.4561600e+04 -2.8089469e-01 + 1.4562000e+04 4.4727627e-02 + 1.4562400e+04 2.0711586e-01 + 1.4562800e+04 1.3321395e-01 + 1.4563200e+04 7.6917314e-02 + 1.4563600e+04 2.8789911e-01 + 1.4564000e+04 5.0867851e-01 + 1.4564400e+04 1.0091175e+00 + 1.4564800e+04 1.3192926e+00 + 1.4565200e+04 1.3690500e+00 + 1.4565600e+04 1.1985646e+00 + 1.4566000e+04 7.9798433e-01 + 1.4566400e+04 4.5733689e-01 + 1.4566800e+04 1.1696787e-01 + 1.4567200e+04 -2.0319562e-01 + 1.4567600e+04 -4.9317322e-01 + 1.4568000e+04 -7.1503904e-01 + 1.4568400e+04 -9.3941130e-01 + 1.4568800e+04 -8.7083767e-01 + 1.4569200e+04 -8.3105097e-01 + 1.4569600e+04 -7.5093254e-01 + 1.4570000e+04 -1.1000191e+00 + 1.4570400e+04 -1.8792503e+00 + 1.4570800e+04 -2.2485414e+00 + 1.4571200e+04 -2.1781749e+00 + 1.4571600e+04 -1.6680488e+00 + 1.4572000e+04 -1.1481613e+00 + 1.4572400e+04 -5.9862423e-01 + 1.4572800e+04 6.0176119e-04 + 1.4573200e+04 3.5984476e-01 + 1.4573600e+04 8.5913105e-01 + 1.4574000e+04 1.5083613e+00 + 1.4574400e+04 1.8919401e+00 + 1.4574800e+04 2.0751634e+00 + 1.4575200e+04 2.0850147e+00 + 1.4575600e+04 1.7347057e+00 + 1.4576000e+04 1.5248977e+00 + 1.4576400e+04 1.2047408e+00 + 1.4576800e+04 1.1747814e+00 + 1.4577200e+04 1.1447675e+00 + 1.4577600e+04 7.3464215e-01 + 1.4578000e+04 4.1448327e-01 + 1.4578400e+04 -1.0657308e+00 + 1.4578800e+04 -1.8059453e+00 + 1.4579200e+04 -2.1659072e+00 + 1.4579600e+04 -2.5653825e+00 + 1.4580000e+04 -2.2444102e+00 + 1.4580400e+04 -1.7432026e+00 + 1.4580800e+04 -1.3617942e+00 + 1.4581200e+04 -1.1706161e+00 + 1.4581600e+04 -6.4984631e-01 + 1.4582000e+04 -4.2959360e-01 + 1.4582400e+04 -3.8979349e-01 + 1.4582800e+04 -1.0990809e-01 + 1.4583200e+04 2.1002416e-01 + 1.4583600e+04 4.3013687e-01 + 1.4584000e+04 8.2040259e-01 + 1.4584400e+04 1.4509088e+00 + 1.4584800e+04 1.5714184e+00 + 1.4585200e+04 2.0118961e+00 + 1.4585600e+04 2.3438767e+00 + 1.4586000e+04 1.9023961e+00 + 1.4586400e+04 9.3223438e-01 + 1.4586800e+04 7.2170603e-01 + 1.4587200e+04 -3.2921914e-01 + 1.4587600e+04 -4.4024364e-01 + 1.4588000e+04 -9.1288220e-02 + 1.4588400e+04 3.9763174e-01 + 1.4588800e+04 9.8671068e-01 + 1.4589200e+04 1.3160859e+00 + 1.4589600e+04 1.2558021e+00 + 1.4590000e+04 7.3579298e-01 + 1.4590400e+04 -1.2397265e-01 + 1.4590800e+04 -1.0733993e+00 + 1.4591200e+04 -1.8926968e+00 + 1.4591600e+04 -2.2619319e+00 + 1.4592000e+04 -2.1711548e+00 + 1.4592400e+04 -1.7002531e+00 + 1.4592800e+04 -1.2893774e+00 + 1.4593200e+04 -1.1487704e+00 + 1.4593600e+04 -1.1086223e+00 + 1.4594000e+04 -8.7874079e-01 + 1.4594400e+04 -6.0903918e-01 + 1.4594800e+04 -5.7946784e-01 + 1.4595200e+04 -4.0989743e-01 + 1.4595600e+04 -8.0348131e-02 + 1.4596000e+04 7.8885952e-01 + 1.4596400e+04 1.4644285e+00 + 1.4596800e+04 1.7245597e+00 + 1.4597200e+04 1.5393509e+00 + 1.4597600e+04 1.5982108e+00 + 1.4598000e+04 1.4344225e+00 + 1.4598400e+04 1.1938786e+00 + 1.4598800e+04 8.3343889e-01 + 1.4599200e+04 5.5316942e-01 + 1.4599600e+04 3.4294261e-01 + 1.4600000e+04 4.6249081e-01 + 1.4600400e+04 4.0715124e-01 + 1.4600800e+04 4.4037927e-01 + 1.4601200e+04 2.0758623e-01 + 1.4601600e+04 -5.9769211e-01 + 1.4602000e+04 -1.2828386e+00 + 1.4602400e+04 -1.8123134e+00 + 1.4602800e+04 -2.1435951e+00 + 1.4603200e+04 -1.9190868e+00 + 1.4603600e+04 -1.3388733e+00 + 1.4604000e+04 -7.7880790e-01 + 1.4604400e+04 -2.8846358e-01 + 1.4604800e+04 2.8159749e-01 + 1.4605200e+04 8.9185093e-01 + 1.4605600e+04 1.5021844e+00 + 1.4606000e+04 1.8224918e+00 + 1.4606400e+04 1.8925922e+00 + 1.4606800e+04 2.0324729e+00 + 1.4607200e+04 2.2523519e+00 + 1.4607600e+04 2.0522939e+00 + 1.4608000e+04 1.7117714e+00 + 1.4608400e+04 1.1906614e+00 + 1.4608800e+04 3.6936639e-01 + 1.4609200e+04 -2.4194672e-01 + 1.4609600e+04 -9.1399107e-01 + 1.4610000e+04 -1.3396761e+00 + 1.4610400e+04 -1.7623969e+00 + 1.4610800e+04 -1.8983889e+00 + 1.4611200e+04 -1.9085460e+00 + 1.4611600e+04 -1.5042271e+00 + 1.4612000e+04 -1.5643583e+00 + 1.4612400e+04 -1.9947904e+00 + 1.4612800e+04 -1.6051383e+00 + 1.4613200e+04 -1.2653791e+00 + 1.4613600e+04 -6.9592845e-01 + 1.4614000e+04 -1.4549115e-01 + 1.4614400e+04 6.2489999e-01 + 1.4614800e+04 1.1157767e+00 + 1.4615200e+04 8.7700579e-01 + 1.4615600e+04 6.6819968e-01 + 1.4616000e+04 5.2894290e-01 + 1.4616400e+04 3.0919267e-01 + 1.4616800e+04 -1.0090700e-03 + 1.4617200e+04 2.9143679e-01 + 1.4617600e+04 4.7123346e-01 + 1.4618000e+04 5.3317101e-01 + 1.4618400e+04 1.3702196e-01 + 1.4618800e+04 -1.2833611e-01 + 1.4619200e+04 -2.0415651e-01 + 1.4619600e+04 1.8747548e-01 + 1.4620000e+04 1.0746076e-01 + 1.4620400e+04 -3.2255287e-01 + 1.4620800e+04 -7.0260584e-01 + 1.4621200e+04 -9.3274728e-01 + 1.4621600e+04 -8.9274028e-01 + 1.4622000e+04 -1.0177869e+00 + 1.4622400e+04 -9.0622222e-01 + 1.4622800e+04 -7.2975929e-01 + 1.4623200e+04 -4.5305826e-01 + 1.4623600e+04 2.4839153e-01 + 1.4624000e+04 1.0582133e+00 + 1.4624400e+04 1.3880870e+00 + 1.4624800e+04 1.5982376e+00 + 1.4625200e+04 1.8312093e+00 + 1.4625600e+04 1.8462427e+00 + 1.4626000e+04 1.8534491e+00 + 1.4626400e+04 1.4481356e+00 + 1.4626800e+04 7.3224263e-01 + 1.4627200e+04 -2.7376890e-01 + 1.4627600e+04 -8.6394479e-01 + 1.4628000e+04 -1.0614532e+00 + 1.4628400e+04 -1.1957406e+00 + 1.4628800e+04 -1.4981417e+00 + 1.4629200e+04 -1.5280968e+00 + 1.4629600e+04 -1.3384255e+00 + 1.4630000e+04 -1.1290336e+00 + 1.4630400e+04 -9.6983768e-01 + 1.4630800e+04 -9.4069756e-01 + 1.4631200e+04 -7.4157402e-01 + 1.4631600e+04 -2.5224449e-01 + 1.4632000e+04 3.7689899e-01 + 1.4632400e+04 7.3625911e-01 + 1.4632800e+04 5.9565296e-01 + 1.4633200e+04 2.9518595e-01 + 1.4633600e+04 -6.4945790e-02 + 1.4634000e+04 -5.5817237e-01 + 1.4634400e+04 -9.7341702e-01 + 1.4634800e+04 -1.3918252e+00 + 1.4635200e+04 -1.7074333e+00 + 1.4635600e+04 -1.6071752e+00 + 1.4636000e+04 -1.2060753e+00 + 1.4636400e+04 -8.2442529e-01 + 1.4636800e+04 -2.3249427e-01 + 1.4637200e+04 -3.3179763e-02 + 1.4637600e+04 6.5813213e-01 + 1.4638000e+04 9.6952597e-01 + 1.4638400e+04 7.6086528e-01 + 1.4638800e+04 5.0199914e-01 + 1.4639200e+04 1.5308612e-01 + 1.4639600e+04 -3.0811047e-01 + 1.4640000e+04 -2.5695883e-01 + 1.4640400e+04 -2.7187865e-01 + 1.4640800e+04 -2.2484013e-02 + 1.4641200e+04 1.5563762e-01 + 1.4641600e+04 -8.2186504e-02 + 1.4642000e+04 3.2487789e-02 + 1.4642400e+04 4.1129331e-01 + 1.4642800e+04 8.6009941e-01 + 1.4643200e+04 1.1991005e+00 + 1.4643600e+04 1.4182255e+00 + 1.4644000e+04 1.7775238e+00 + 1.4644400e+04 2.0969009e+00 + 1.4644800e+04 2.1564166e+00 + 1.4645200e+04 1.8861215e+00 + 1.4645600e+04 1.0061593e+00 + 1.4646000e+04 7.0540865e-01 + 1.4646400e+04 6.4462825e-01 + 1.4646800e+04 4.5086256e-01 + 1.4647200e+04 1.3472087e-01 + 1.4647600e+04 -1.9638609e-01 + 1.4648000e+04 -3.4155075e-01 + 1.4648400e+04 -7.6814496e-01 + 1.4648800e+04 -1.1469468e+00 + 1.4649200e+04 -1.6679705e+00 + 1.4649600e+04 -2.0130628e+00 + 1.4650000e+04 -2.0442879e+00 + 1.4650400e+04 -1.5140338e+00 + 1.4650800e+04 -1.1941314e+00 + 1.4651200e+04 -9.2494113e-01 + 1.4651600e+04 -8.4623928e-01 + 1.4652000e+04 -1.1477370e+00 + 1.4652400e+04 -1.2793738e+00 + 1.4652800e+04 -8.5097414e-01 + 1.4653200e+04 -9.2576270e-02 + 1.4653600e+04 7.5916546e-02 + 1.4654000e+04 4.1462049e-01 + 1.4654400e+04 8.6350607e-01 + 1.4654800e+04 1.4826973e+00 + 1.4655200e+04 1.6425879e+00 + 1.4655600e+04 1.3128084e+00 + 1.4656000e+04 1.0833700e+00 + 1.4656400e+04 1.2143309e+00 + 1.4656800e+04 1.3356984e+00 + 1.4657200e+04 1.0573733e+00 + 1.4657600e+04 5.4939094e-01 + 1.4658000e+04 8.1514826e-02 + 1.4658400e+04 -6.5958002e-02 + 1.4658800e+04 1.2664783e-01 + 1.4659200e+04 2.0893815e-01 + 1.4659600e+04 1.0085361e-01 + 1.4660000e+04 -1.0780090e-01 + 1.4660400e+04 -5.2719467e-01 + 1.4660800e+04 -8.1697131e-01 + 1.4661200e+04 -1.4171126e+00 + 1.4661600e+04 -2.1170125e+00 + 1.4662000e+04 -2.4421935e+00 + 1.4662400e+04 -2.5707076e+00 + 1.4662800e+04 -2.3176595e+00 + 1.4663200e+04 -1.4525193e+00 + 1.4663600e+04 -4.2380969e-01 + 1.4664000e+04 2.6478430e-01 + 1.4664400e+04 1.0628598e+00 + 1.4664800e+04 1.8325481e+00 + 1.4665200e+04 2.5117462e+00 + 1.4665600e+04 2.8612388e+00 + 1.4666000e+04 2.8909551e+00 + 1.4666400e+04 2.6811151e+00 + 1.4666800e+04 1.9813673e+00 + 1.4667200e+04 1.2218993e+00 + 1.4667600e+04 1.1427212e+00 + 1.4668000e+04 6.5960139e-01 + 1.4668400e+04 -1.0696054e-02 + 1.4668800e+04 -5.4978835e-01 + 1.4669200e+04 -1.5033811e+00 + 1.4669600e+04 -1.9378117e+00 + 1.4670000e+04 -2.1793660e+00 + 1.4670400e+04 -1.9506614e+00 + 1.4670800e+04 -1.1201582e+00 + 1.4671200e+04 -3.9007364e-01 + 1.4671600e+04 -2.9995371e-01 + 1.4672000e+04 5.6854918e-01 + 1.4672400e+04 9.5677967e-01 + 1.4672800e+04 1.3544668e+00 + 1.4673200e+04 1.1318336e+00 + 1.4673600e+04 9.3915139e-01 + 1.4674000e+04 1.8690990e-01 + 1.4674400e+04 -4.9498166e-01 + 1.4674800e+04 -5.8648154e-01 + 1.4675200e+04 -7.0745050e-01 + 1.4675600e+04 -1.2082791e+00 + 1.4676000e+04 -1.4471548e+00 + 1.4676400e+04 -6.7598975e-01 + 1.4676800e+04 2.7608369e-01 + 1.4677200e+04 9.0380865e-01 + 1.4677600e+04 1.0494522e+00 + 1.4678000e+04 1.1904880e+00 + 1.4678400e+04 1.1248301e+00 + 1.4678800e+04 1.0950883e+00 + 1.4679200e+04 1.2507995e+00 + 1.4679600e+04 1.3520206e+00 + 1.4680000e+04 1.5033894e+00 + 1.4680400e+04 1.7344924e+00 + 1.4680800e+04 1.6653603e+00 + 1.4681200e+04 1.0759325e+00 + 1.4681600e+04 7.4616504e-01 + 1.4682000e+04 -5.1404064e-01 + 1.4682400e+04 -1.3172911e+00 + 1.4682800e+04 -1.7595792e+00 + 1.4683200e+04 -2.0173542e+00 + 1.4683600e+04 -2.2581702e+00 + 1.4684000e+04 -2.1372597e+00 + 1.4684400e+04 -2.4025984e+00 + 1.4684800e+04 -3.0440258e+00 + 1.4685200e+04 -2.9953498e+00 + 1.4685600e+04 -2.3768337e+00 + 1.4686000e+04 -1.6580329e+00 + 1.4686400e+04 -1.1588984e+00 + 1.4686800e+04 -3.2959513e-01 + 1.4687200e+04 1.3899543e+00 + 1.4687600e+04 2.8598911e+00 + 1.4688000e+04 3.5703667e+00 + 1.4688400e+04 3.8410644e+00 + 1.4688800e+04 3.7517649e+00 + 1.4689200e+04 3.6525740e+00 + 1.4689600e+04 3.0030244e+00 + 1.4690000e+04 2.7630646e+00 + 1.4690400e+04 2.5708536e+00 + 1.4690800e+04 1.4958432e+00 + 1.4691200e+04 2.8101938e-01 + 1.4691600e+04 -7.9102305e-01 + 1.4692000e+04 -1.7076559e+00 + 1.4692400e+04 -2.4539556e+00 + 1.4692800e+04 -2.7520662e+00 + 1.4693200e+04 -3.0261517e+00 + 1.4693600e+04 -3.0545745e+00 + 1.4694000e+04 -2.7627844e+00 + 1.4694400e+04 -2.1827139e+00 + 1.4694800e+04 -1.3925532e+00 + 1.4695200e+04 -4.1208863e-01 + 1.4695600e+04 4.5990720e-01 + 1.4696000e+04 1.2212993e+00 + 1.4696400e+04 1.8567470e+00 + 1.4696800e+04 2.3104777e+00 + 1.4697200e+04 2.1620010e+00 + 1.4697600e+04 1.7206629e+00 + 1.4698000e+04 1.3263107e+00 + 1.4698400e+04 1.1834197e+00 + 1.4698800e+04 1.2342353e+00 + 1.4699200e+04 1.1756201e+00 + 1.4699600e+04 7.8373929e-01 + 1.4700000e+04 1.9615638e-01 + 1.4700400e+04 -6.1438432e-01 + 1.4700800e+04 -1.1829793e+00 + 1.4701200e+04 -1.4110322e+00 + 1.4701600e+04 -1.6911019e+00 + 1.4702000e+04 -1.8312114e+00 + 1.4702400e+04 -1.6011677e+00 + 1.4702800e+04 -1.3208564e+00 + 1.4703200e+04 -1.2404179e+00 + 1.4703600e+04 -1.1602357e+00 + 1.4704000e+04 -1.2303830e+00 + 1.4704400e+04 -1.1509351e+00 + 1.4704800e+04 -9.3186868e-01 + 1.4705200e+04 -6.5301071e-01 + 1.4705600e+04 -2.9401482e-01 + 1.4706000e+04 5.5411889e-01 + 1.4706400e+04 1.4426221e+00 + 1.4706800e+04 2.3014370e+00 + 1.4707200e+04 2.9805545e+00 + 1.4707600e+04 3.2798922e+00 + 1.4708000e+04 2.9295364e+00 + 1.4708400e+04 2.6594770e+00 + 1.4708800e+04 2.3794684e+00 + 1.4709200e+04 2.1396274e+00 + 1.4709600e+04 1.7297426e+00 + 1.4710000e+04 1.1298360e+00 + 1.4710400e+04 5.3990647e-01 + 1.4710800e+04 -6.0193454e-02 + 1.4711200e+04 -4.9043672e-01 + 1.4711600e+04 -1.0916213e+00 + 1.4712000e+04 -1.1745720e+00 + 1.4712400e+04 -8.5479247e-01 + 1.4712800e+04 -9.2810025e-01 + 1.4713200e+04 -1.1009601e+00 + 1.4713600e+04 -1.3501234e+00 + 1.4714000e+04 -2.5993166e+00 + 1.4714400e+04 -3.0085496e+00 + 1.4714800e+04 -3.1777911e+00 + 1.4715200e+04 -2.9070468e+00 + 1.4715600e+04 -2.5666454e+00 + 1.4716000e+04 -1.5962971e+00 + 1.4716400e+04 -7.5965963e-02 + 1.4716800e+04 8.9121890e-01 + 1.4717200e+04 9.4451932e-01 + 1.4717600e+04 5.7515424e-01 + 1.4718000e+04 4.1603227e-01 + 1.4718400e+04 5.0699436e-01 + 1.4718800e+04 8.6797714e-01 + 1.4719200e+04 1.0490494e+00 + 1.4719600e+04 1.0200400e+00 + 1.4720000e+04 7.7097764e-01 + 1.4720400e+04 1.4179336e-01 + 1.4720800e+04 -5.3754321e-01 + 1.4721200e+04 -9.8701326e-01 + 1.4721600e+04 -1.2268756e+00 + 1.4722000e+04 -1.3772857e+00 + 1.4722400e+04 -1.3280824e+00 + 1.4722800e+04 -1.2492719e+00 + 1.4723200e+04 -1.3707732e+00 + 1.4723600e+04 -1.4625301e+00 + 1.4724000e+04 -1.3342670e+00 + 1.4724400e+04 -7.5592416e-01 + 1.4724800e+04 1.5244560e-01 + 1.4725200e+04 8.6095750e-01 + 1.4725600e+04 1.3999552e+00 + 1.4726000e+04 2.0824142e+00 + 1.4726400e+04 2.5084820e+00 + 1.4726800e+04 2.2879472e+00 + 1.4727200e+04 2.0275119e+00 + 1.4727600e+04 1.9774505e+00 + 1.4728000e+04 2.1176517e+00 + 1.4728400e+04 2.3681507e+00 + 1.4728800e+04 2.4689881e+00 + 1.4729200e+04 2.1199840e+00 + 1.4729600e+04 1.7110958e+00 + 1.4730000e+04 1.3220633e+00 + 1.4730400e+04 8.6303116e-01 + 1.4730800e+04 4.7399097e-01 + 1.4731200e+04 7.4856213e-02 + 1.4731600e+04 -2.8416050e-01 + 1.4732000e+04 -4.1349720e-01 + 1.4732400e+04 -5.5297473e-01 + 1.4732800e+04 -9.0292300e-01 + 1.4733200e+04 -1.3631851e+00 + 1.4733600e+04 -1.9635998e+00 + 1.4734000e+04 -2.2840157e+00 + 1.4734400e+04 -3.1244673e+00 + 1.4734800e+04 -3.3349226e+00 + 1.4735200e+04 -3.4853422e+00 + 1.4735600e+04 -3.3058391e+00 + 1.4736000e+04 -2.6960939e+00 + 1.4736400e+04 -2.4265318e+00 + 1.4736800e+04 -2.1468846e+00 + 1.4737200e+04 -1.4968912e+00 + 1.4737600e+04 -1.1665037e+00 + 1.4738000e+04 -3.7568940e-01 + 1.4738400e+04 -1.9478817e-01 + 1.4738800e+04 2.2584551e-01 + 1.4739200e+04 4.6632274e-01 + 1.4739600e+04 7.6696086e-01 + 1.4740000e+04 8.9692604e-01 + 1.4740400e+04 1.4817293e+00 + 1.4740800e+04 1.8381958e+00 + 1.4741200e+04 1.8171443e+00 + 1.4741600e+04 1.5756765e+00 + 1.4742000e+04 1.2800109e+00 + 1.4742400e+04 9.3128620e-01 + 1.4742800e+04 2.0879149e-01 + 1.4743200e+04 -4.0121022e-01 + 1.4743600e+04 -1.0582228e+00 + 1.4744000e+04 -1.1932145e+00 + 1.4744400e+04 -1.1460165e+00 + 1.4744800e+04 -7.7649874e-01 + 1.4745200e+04 -1.7689338e-01 + 1.4745600e+04 2.6268534e-01 + 1.4746000e+04 5.5229141e-01 + 1.4746400e+04 7.4192491e-01 + 1.4746800e+04 1.0518375e+00 + 1.4747200e+04 1.4520508e+00 + 1.4747600e+04 2.0823423e+00 + 1.4748000e+04 2.5828634e+00 + 1.4748400e+04 3.5135339e+00 + 1.4748800e+04 3.4440040e+00 + 1.4749200e+04 2.1842254e+00 + 1.4749600e+04 1.4841113e+00 + 1.4750000e+04 4.6399281e-01 + 1.4750400e+04 1.5371835e-01 + 1.4750800e+04 4.3347536e-02 + 1.4751200e+04 -6.6969626e-02 + 1.4751600e+04 -1.8728463e-01 + 1.4752000e+04 -6.6769386e-01 + 1.4752400e+04 -1.0485386e+00 + 1.4752800e+04 -1.0993653e+00 + 1.4753200e+04 -1.7099703e+00 + 1.4753600e+04 -2.0401555e+00 + 1.4754000e+04 -2.1600248e+00 + 1.4754400e+04 -2.0996037e+00 + 1.4754800e+04 -1.9191188e+00 + 1.4755200e+04 -1.7684881e+00 + 1.4755600e+04 -1.7377269e+00 + 1.4756000e+04 -1.3872084e+00 + 1.4756400e+04 -1.3165799e+00 + 1.4756800e+04 -1.4858752e+00 + 1.4757200e+04 -1.8648259e+00 + 1.4757600e+04 -2.0736563e+00 + 1.4758000e+04 -1.9626382e+00 + 1.4758400e+04 -1.8019195e+00 + 1.4758800e+04 -1.3715000e+00 + 1.4759200e+04 -1.3414103e+00 + 1.4759600e+04 -9.9147429e-01 + 1.4760000e+04 -3.3194470e-01 + 1.4760400e+04 -1.2905504e-02 + 1.4760800e+04 8.5600070e-01 + 1.4761200e+04 1.4249590e+00 + 1.4761600e+04 1.8840337e+00 + 1.4762000e+04 2.1633017e+00 + 1.4762400e+04 2.3428631e+00 + 1.4762800e+04 2.6427254e+00 + 1.4763200e+04 2.9728799e+00 + 1.4763600e+04 2.8733149e+00 + 1.4764000e+04 2.7939262e+00 + 1.4764400e+04 2.4090330e+00 + 1.4764800e+04 1.8552394e+00 + 1.4765200e+04 9.4282515e-01 + 1.4765600e+04 1.4957802e-01 + 1.4766000e+04 -4.8378426e-01 + 1.4766400e+04 -1.1438432e+00 + 1.4766800e+04 -1.2041098e+00 + 1.4767200e+04 -9.8437482e-01 + 1.4767600e+04 -7.5478941e-01 + 1.4768000e+04 -6.7556667e-01 + 1.4768400e+04 -5.8627611e-01 + 1.4768800e+04 -7.7111134e-02 + 1.4769200e+04 3.5206093e-01 + 1.4769600e+04 4.4139258e-01 + 1.4770000e+04 5.4076229e-01 + 1.4770400e+04 6.6029003e-01 + 1.4770800e+04 8.6982656e-01 + 1.4771200e+04 1.2994232e+00 + 1.4771600e+04 1.7791486e+00 + 1.4772000e+04 2.3689461e+00 + 1.4772400e+04 2.2888180e+00 + 1.4772800e+04 1.7787309e+00 + 1.4773200e+04 9.6872975e-01 + 1.4773600e+04 -3.6844388e-01 + 1.4774000e+04 -7.8605665e-01 + 1.4774400e+04 -1.2295712e+00 + 1.4774800e+04 -1.3991052e+00 + 1.4775200e+04 -1.5121161e+00 + 1.4775600e+04 -1.3864472e+00 + 1.4776000e+04 -1.5932033e+00 + 1.4776400e+04 -1.9822898e+00 + 1.4776800e+04 -2.5943719e+00 + 1.4777200e+04 -2.9879244e+00 + 1.4777600e+04 -2.9273608e+00 + 1.4778000e+04 -2.9967614e+00 + 1.4778400e+04 -3.1661929e+00 + 1.4778800e+04 -2.9955582e+00 + 1.4779200e+04 -2.6449513e+00 + 1.4779600e+04 -2.5145713e+00 + 1.4780000e+04 -1.3814838e+00 + 1.4780400e+04 -4.2979472e-03 + 1.4780800e+04 1.0755949e+00 + 1.4781200e+04 1.9056549e+00 + 1.4781600e+04 2.7658382e+00 + 1.4782000e+04 3.6259586e+00 + 1.4782400e+04 4.3961929e+00 + 1.4782800e+04 4.9167229e+00 + 1.4783200e+04 4.6876109e+00 + 1.4783600e+04 4.4586217e+00 + 1.4784000e+04 3.8695087e+00 + 1.4784400e+04 3.1501640e+00 + 1.4784800e+04 2.4105959e+00 + 1.4785200e+04 1.9107408e+00 + 1.4785600e+04 1.2190292e+00 + 1.4786000e+04 8.9066835e-01 + 1.4786400e+04 2.6769191e-01 + 1.4786800e+04 -4.2295725e-01 + 1.4787200e+04 -8.5502186e-01 + 1.4787600e+04 -9.6702422e-01 + 1.4788000e+04 -1.1487755e+00 + 1.4788400e+04 -1.4795494e+00 + 1.4788800e+04 -1.5227476e+00 + 1.4789200e+04 -1.5694559e+00 + 1.4789600e+04 -1.3287238e+00 + 1.4790000e+04 -1.2193006e+00 + 1.4790400e+04 -1.2032622e+00 + 1.4790800e+04 -1.1978031e+00 + 1.4791200e+04 -1.0464996e+00 + 1.4791600e+04 -7.2675147e-01 + 1.4792000e+04 -1.5403109e-01 + 1.4792400e+04 7.4423840e-01 + 1.4792800e+04 1.1244911e+00 + 1.4793200e+04 7.3536386e-01 + 1.4793600e+04 4.2643711e-01 + 1.4794000e+04 5.7599766e-02 + 1.4794400e+04 -3.2135454e-01 + 1.4794800e+04 -4.9015967e-01 + 1.4795200e+04 -5.9875637e-01 + 1.4795600e+04 -5.0714024e-01 + 1.4796000e+04 -5.8520361e-01 + 1.4796400e+04 -9.1283973e-01 + 1.4796800e+04 -1.3003383e+00 + 1.4797200e+04 -1.5282161e+00 + 1.4797600e+04 -1.8865399e+00 + 1.4798000e+04 -2.2053917e+00 + 1.4798400e+04 -2.1348327e+00 + 1.4798800e+04 -1.9149395e+00 + 1.4799200e+04 -2.0356545e+00 + 1.4799600e+04 -2.0767626e+00 + 1.4800000e+04 -2.0280391e+00 + 1.4800400e+04 -1.9392593e+00 + 1.4800800e+04 -1.3202824e+00 + 1.4801200e+04 -5.3126270e-01 + 1.4801600e+04 1.5781150e-01 + 1.4802000e+04 7.1670075e-01 + 1.4802400e+04 1.6157505e+00 + 1.4802800e+04 2.7248645e+00 + 1.4803200e+04 3.8140159e+00 + 1.4803600e+04 3.9533970e+00 + 1.4804000e+04 3.7430575e+00 + 1.4804400e+04 3.3629824e+00 + 1.4804800e+04 2.6532493e+00 + 1.4805200e+04 1.9337640e+00 + 1.4805600e+04 1.6239588e+00 + 1.4806000e+04 9.5370196e-01 + 1.4806400e+04 4.0339936e-01 + 1.4806800e+04 -1.5028932e-01 + 1.4807200e+04 -5.4249033e-01 + 1.4807600e+04 -4.1233313e-01 + 1.4808000e+04 -2.0222651e-01 + 1.4808400e+04 2.2772501e-01 + 1.4808800e+04 8.2748711e-01 + 1.4809200e+04 1.1770701e+00 + 1.4809600e+04 1.1163268e+00 + 1.4810000e+04 6.8523767e-01 + 1.4810400e+04 2.1378159e-01 + 1.4810800e+04 -7.8000429e-02 + 1.4811200e+04 -3.7977951e-01 + 1.4811600e+04 -6.2153410e-01 + 1.4812000e+04 -8.5301183e-01 + 1.4812400e+04 -1.1043604e+00 + 1.4812800e+04 -1.2452474e+00 + 1.4813200e+04 -1.6855738e+00 + 1.4813600e+04 -1.9554425e+00 + 1.4814000e+04 -2.1851342e+00 + 1.4814400e+04 -2.2445719e+00 + 1.4814800e+04 -2.0036382e+00 + 1.4815200e+04 -1.7548471e+00 + 1.4815600e+04 -1.7507208e+00 + 1.4816000e+04 -1.7072697e+00 + 1.4816400e+04 -1.5013520e+00 + 1.4816800e+04 -1.5445160e+00 + 1.4817200e+04 -1.5120711e+00 + 1.4817600e+04 -1.2896481e+00 + 1.4818000e+04 -1.0972612e+00 + 1.4818400e+04 -5.9498616e-01 + 1.4818800e+04 2.7016622e-02 + 1.4819200e+04 4.7840812e-01 + 1.4819600e+04 9.8912952e-01 + 1.4820000e+04 2.2393558e+00 + 1.4820400e+04 2.3190738e+00 + 1.4820800e+04 2.2781724e+00 + 1.4821200e+04 1.8167322e+00 + 1.4821600e+04 1.2271963e+00 + 1.4822000e+04 5.4275450e-02 + 1.4822400e+04 -1.0627273e+00 + 1.4822800e+04 -1.8273431e+00 + 1.4823200e+04 -2.1803194e+00 + 1.4823600e+04 -1.8766632e+00 + 1.4824000e+04 -1.5180265e+00 + 1.4824400e+04 -4.5898234e-01 + 1.4824800e+04 5.6017467e-01 + 1.4825200e+04 1.4395615e+00 + 1.4825600e+04 2.1192804e+00 + 1.4826000e+04 2.3383567e+00 + 1.4826400e+04 2.0894063e+00 + 1.4826800e+04 1.1799484e+00 + 1.4827200e+04 3.1099441e-01 + 1.4827600e+04 -1.7595805e-01 + 1.4828000e+04 -2.0310804e-01 + 1.4828400e+04 -2.1092526e-01 + 1.4828800e+04 -2.8778645e-01 + 1.4829200e+04 -5.4237040e-02 + 1.4829600e+04 -2.3343342e-01 + 1.4830000e+04 -5.2282277e-01 + 1.4830400e+04 -6.1230608e-01 + 1.4830800e+04 -5.2187905e-01 + 1.4831200e+04 -4.8164554e-01 + 1.4831600e+04 1.1840499e-01 + 1.4832000e+04 7.5815625e-01 + 1.4832400e+04 1.4278320e+00 + 1.4832800e+04 2.0173864e+00 + 1.4833200e+04 1.7101501e+00 + 1.4833600e+04 1.0260385e+00 + 1.4834000e+04 1.6948419e-01 + 1.4834400e+04 -7.9784236e-01 + 1.4834800e+04 -1.6228366e+00 + 1.4835200e+04 -1.8940325e+00 + 1.4835600e+04 -2.0739134e+00 + 1.4836000e+04 -2.1036785e+00 + 1.4836400e+04 -2.1633335e+00 + 1.4836800e+04 -2.3127741e+00 + 1.4837200e+04 -2.1721659e+00 + 1.4837600e+04 -1.9014648e+00 + 1.4838000e+04 -1.6206114e+00 + 1.4838400e+04 -1.0796601e+00 + 1.4838800e+04 -7.2876688e-01 + 1.4839200e+04 3.7238128e-01 + 1.4839600e+04 8.4353505e-01 + 1.4840000e+04 1.2646585e+00 + 1.4840400e+04 1.6056711e+00 + 1.4840800e+04 1.2164761e+00 + 1.4841200e+04 6.1710054e-01 + 1.4841600e+04 4.0761528e-01 + 1.4842000e+04 8.1757265e-01 + 1.4842400e+04 1.1171359e+00 + 1.4842800e+04 1.2763893e+00 + 1.4843200e+04 9.3533923e-01 + 1.4843600e+04 4.8414477e-01 + 1.4844000e+04 1.2848856e-02 + 1.4844400e+04 -3.3855024e-01 + 1.4844800e+04 -4.3005771e-01 + 1.4845200e+04 -3.3148940e-01 + 1.4845600e+04 -3.6249140e-01 + 1.4846000e+04 -4.6305598e-01 + 1.4846400e+04 -5.0315814e-01 + 1.4846800e+04 -3.2717384e-02 + 1.4847200e+04 4.3801712e-01 + 1.4847600e+04 8.6889859e-01 + 1.4848000e+04 1.1998142e+00 + 1.4848400e+04 1.3605166e+00 + 1.4848800e+04 1.5209981e+00 + 1.4849200e+04 1.7712397e+00 + 1.4849600e+04 1.8613093e+00 + 1.4850000e+04 1.7012501e+00 + 1.4850400e+04 8.5119420e-01 + 1.4850800e+04 4.2104724e-01 + 1.4851200e+04 -1.0996244e+00 + 1.4851600e+04 -1.7906375e+00 + 1.4852000e+04 -2.0417050e+00 + 1.4852400e+04 -2.0727179e+00 + 1.4852800e+04 -1.6034566e+00 + 1.4853200e+04 -1.0538881e+00 + 1.4853600e+04 -3.4396989e-01 + 1.4854000e+04 -6.3633030e-02 + 1.4854400e+04 2.4403815e-01 + 1.4854800e+04 2.4027724e-01 + 1.4855200e+04 3.0420739e-01 + 1.4855600e+04 -1.9165602e-01 + 1.4856000e+04 -7.0054461e-01 + 1.4856400e+04 -9.7902624e-01 + 1.4856800e+04 -1.2772840e+00 + 1.4857200e+04 -1.6255226e+00 + 1.4857600e+04 -1.9340099e+00 + 1.4858000e+04 -1.9828888e+00 + 1.4858400e+04 -1.7823154e+00 + 1.4858800e+04 -1.6883490e+00 + 1.4859200e+04 -1.3849333e+00 + 1.4859600e+04 -1.0658155e+00 + 1.4860000e+04 -1.0771901e+00 + 1.4860400e+04 -1.1528722e+00 + 1.4860800e+04 -7.1062571e-01 + 1.4861200e+04 -3.4882658e-01 + 1.4861600e+04 -2.2547923e-01 + 1.4862000e+04 -2.9308152e-01 + 1.4862400e+04 -2.0586533e-01 + 1.4862800e+04 2.2332230e-01 + 1.4863200e+04 6.9262778e-01 + 1.4863600e+04 1.1721098e+00 + 1.4864000e+04 1.7216801e+00 + 1.4864400e+04 2.0411364e+00 + 1.4864800e+04 1.6105244e+00 + 1.4865200e+04 9.5004789e-01 + 1.4865600e+04 7.6983207e-01 + 1.4866000e+04 9.9005755e-01 + 1.4866400e+04 1.3705992e+00 + 1.4866800e+04 2.2912942e+00 + 1.4867200e+04 3.1821135e+00 + 1.4867600e+04 3.2046226e+00 + 1.4868000e+04 2.5876599e+00 + 1.4868400e+04 1.8925572e+00 + 1.4868800e+04 6.2403894e-01 + 1.4869200e+04 -6.6182720e-01 + 1.4869600e+04 -1.5770083e+00 + 1.4870000e+04 -2.1934441e+00 + 1.4870400e+04 -2.7738706e+00 + 1.4870800e+04 -3.1714259e+00 + 1.4871200e+04 -2.8949129e+00 + 1.4871600e+04 -2.4510214e+00 + 1.4872000e+04 -1.8623247e+00 + 1.4872400e+04 -1.3535644e+00 + 1.4872800e+04 -1.0145651e+00 + 1.4873200e+04 -5.4535705e-01 + 1.4873600e+04 3.1396750e-01 + 1.4874000e+04 1.1134170e+00 + 1.4874400e+04 1.3833021e+00 + 1.4874800e+04 1.2534489e+00 + 1.4875200e+04 8.9394464e-01 + 1.4875600e+04 6.8478699e-01 + 1.4876000e+04 4.8573139e-01 + 1.4876400e+04 -4.3251972e-02 + 1.4876800e+04 -7.2186470e-02 + 1.4877200e+04 1.5893701e-01 + 1.4877600e+04 5.4023538e-01 + 1.4878000e+04 7.7174293e-01 + 1.4878400e+04 3.7396183e-01 + 1.4878800e+04 -4.3415737e-02 + 1.4879200e+04 -3.1071426e-01 + 1.4879600e+04 -5.4828882e-01 + 1.4880000e+04 -6.6489208e-01 + 1.4880400e+04 -6.0774973e-01 + 1.4880800e+04 -3.0494377e-01 + 1.4881200e+04 1.9820652e-02 + 1.4881600e+04 9.9457830e-02 + 1.4882000e+04 3.1909718e-01 + 1.4882400e+04 2.3864795e-01 + 1.4882800e+04 2.7822091e-01 + 1.4883200e+04 3.5840119e-01 + 1.4883600e+04 4.4812279e-01 + 1.4884000e+04 4.2464596e-01 + 1.4884400e+04 2.8349119e-02 + 1.4884800e+04 -4.1748224e-01 + 1.4885200e+04 -8.3858921e-01 + 1.4885600e+04 -1.0094105e+00 + 1.4886000e+04 -1.1500646e+00 + 1.4886400e+04 -8.5061820e-01 + 1.4886800e+04 -3.8098398e-01 + 1.4887200e+04 3.8820637e-02 + 1.4887600e+04 2.8880563e-01 + 1.4888000e+04 3.1889325e-01 + 1.4888400e+04 6.8924511e-02 + 1.4888800e+04 -2.8099146e-01 + 1.4889200e+04 -8.6091541e-01 + 1.4889600e+04 -1.2907988e+00 + 1.4890000e+04 -1.8905158e+00 + 1.4890400e+04 -1.8101857e+00 + 1.4890800e+04 -1.4198025e+00 + 1.4891200e+04 -1.1495487e+00 + 1.4891600e+04 -8.2937147e-01 + 1.4892000e+04 -3.4926209e-01 + 1.4892400e+04 -2.2913386e-01 + 1.4892800e+04 2.1180413e-02 + 1.4893200e+04 3.7130433e-01 + 1.4893600e+04 7.6110754e-01 + 1.4894000e+04 1.0206055e+00 + 1.4894400e+04 1.1499949e+00 + 1.4894800e+04 1.3293128e+00 + 1.4895200e+04 1.6886908e+00 + 1.4895600e+04 2.1982945e+00 + 1.4896000e+04 2.5680647e+00 + 1.4896400e+04 2.7981928e+00 + 1.4896800e+04 2.4985743e+00 + 1.4897200e+04 1.9391316e+00 + 1.4897600e+04 7.3982599e-01 + 1.4898000e+04 -1.3924280e-01 + 1.4898400e+04 -1.0984505e+00 + 1.4898800e+04 -1.7277736e+00 + 1.4899200e+04 -2.3471121e+00 + 1.4899600e+04 -2.7263856e+00 + 1.4900000e+04 -2.5256162e+00 + 1.4900400e+04 -1.9247540e+00 + 1.4900800e+04 -1.2240007e+00 + 1.4901200e+04 -5.5354218e-01 + 1.4901600e+04 -5.0344886e-01 + 1.4902000e+04 -6.7362454e-01 + 1.4902400e+04 -5.4364092e-01 + 1.4902800e+04 -5.3621046e-02 + 1.4903200e+04 5.6632440e-01 + 1.4903600e+04 1.1760564e+00 + 1.4904000e+04 1.6257262e+00 + 1.4904400e+04 2.0651770e+00 + 1.4904800e+04 2.1145269e+00 + 1.4905200e+04 1.5836361e+00 + 1.4905600e+04 7.0292523e-01 + 1.4906000e+04 1.7498006e-01 + 1.4906400e+04 1.7116838e-01 + 1.4906800e+04 1.1526826e-01 + 1.4907200e+04 -2.0181503e-01 + 1.4907600e+04 -1.3693004e-01 + 1.4908000e+04 -3.6922675e-02 + 1.4908400e+04 2.7689561e-03 + 1.4908800e+04 -2.3762820e-01 + 1.4909200e+04 -8.2825539e-01 + 1.4909600e+04 -1.0491860e+00 + 1.4910000e+04 -1.1900860e+00 + 1.4910400e+04 -1.5512551e+00 + 1.4910800e+04 -1.7425406e+00 + 1.4911200e+04 -1.9839157e+00 + 1.4911600e+04 -1.7751503e+00 + 1.4912000e+04 -1.3261934e+00 + 1.4912400e+04 -1.1768650e+00 + 1.4912800e+04 -8.8676366e-01 + 1.4913200e+04 -3.3611510e-01 + 1.4913600e+04 4.3460592e-01 + 1.4914000e+04 1.1654880e+00 + 1.4914400e+04 1.6764397e+00 + 1.4914800e+04 2.0012137e+00 + 1.4915200e+04 2.2152090e+00 + 1.4915600e+04 2.1322374e+00 + 1.4916000e+04 1.9254819e+00 + 1.4916400e+04 1.7980381e+00 + 1.4916800e+04 1.8125580e+00 + 1.4917200e+04 1.3536274e+00 + 1.4917600e+04 6.1446899e-01 + 1.4918000e+04 3.3504485e-01 + 1.4918400e+04 4.3533787e-01 + 1.4918800e+04 9.2546769e-01 + 1.4919200e+04 9.8632185e-01 + 1.4919600e+04 1.1707163e+00 + 1.4920000e+04 1.3937013e+00 + 1.4920400e+04 1.0359290e+00 + 1.4920800e+04 2.1499516e-01 + 1.4921200e+04 -4.8546290e-01 + 1.4921600e+04 -1.0545263e+00 + 1.4922000e+04 -1.5035634e+00 + 1.4922400e+04 -2.0846372e+00 + 1.4922800e+04 -2.6502762e+00 + 1.4923200e+04 -3.1518322e+00 + 1.4923600e+04 -3.3773572e+00 + 1.4924000e+04 -3.1349343e+00 + 1.4924400e+04 -2.5288866e+00 + 1.4924800e+04 -1.6784879e+00 + 1.4925200e+04 -1.4980122e+00 + 1.4925600e+04 -1.2373959e+00 + 1.4926000e+04 -9.0676996e-01 + 1.4926400e+04 -3.6635142e-01 + 1.4926800e+04 2.6375457e-01 + 1.4927200e+04 8.3379573e-01 + 1.4927600e+04 1.4137215e+00 + 1.4928000e+04 2.0235410e+00 + 1.4928400e+04 2.1932563e+00 + 1.4928800e+04 2.2329551e+00 + 1.4929200e+04 2.3726083e+00 + 1.4929600e+04 2.1021500e+00 + 1.4930000e+04 1.8116033e+00 + 1.4930400e+04 1.6011111e+00 + 1.4930800e+04 1.7707113e+00 + 1.4931200e+04 1.5904577e+00 + 1.4931600e+04 1.1001987e+00 + 1.4932000e+04 2.3992918e-01 + 1.4932400e+04 -3.8048620e-01 + 1.4932800e+04 -9.5139236e-01 + 1.4933200e+04 -1.5623712e+00 + 1.4933600e+04 -1.7931791e+00 + 1.4934000e+04 -2.0238632e+00 + 1.4934400e+04 -2.0743668e+00 + 1.4934800e+04 -1.8846236e+00 + 1.4935200e+04 -1.7446018e+00 + 1.4935600e+04 -1.4542976e+00 + 1.4936000e+04 -1.5337978e+00 + 1.4936400e+04 -1.3930368e+00 + 1.4936800e+04 -8.9206675e-01 + 1.4937200e+04 -5.2102442e-01 + 1.4937600e+04 -7.7003961e-01 + 1.4938000e+04 -7.2915992e-01 + 1.4938400e+04 2.4179707e-01 + 1.4938800e+04 1.1124485e+00 + 1.4939200e+04 1.6230981e+00 + 1.4939600e+04 1.7236926e+00 + 1.4940000e+04 1.8344470e+00 + 1.4940400e+04 1.6951456e+00 + 1.4940800e+04 1.3557310e+00 + 1.4941200e+04 1.2362997e+00 + 1.4941600e+04 1.4567867e+00 + 1.4942000e+04 2.0272069e+00 + 1.4942400e+04 2.5875784e+00 + 1.4942800e+04 2.7977447e+00 + 1.4943200e+04 2.0478912e+00 + 1.4943600e+04 1.3175844e+00 + 1.4944000e+04 3.1824788e-01 + 1.4944400e+04 -1.0137219e+00 + 1.4944800e+04 -2.6145213e+00 + 1.4945200e+04 -3.1954011e+00 + 1.4945600e+04 -2.9764072e+00 + 1.4946000e+04 -2.7775272e+00 + 1.4946400e+04 -2.4786517e+00 + 1.4946800e+04 -2.1496302e+00 + 1.4947200e+04 -2.2306509e+00 + 1.4947600e+04 -1.7614211e+00 + 1.4948000e+04 -1.2623098e+00 + 1.4948400e+04 -6.6294193e-01 + 1.4948800e+04 -9.3462320e-02 + 1.4949200e+04 9.7631643e-01 + 1.4949600e+04 1.8467069e+00 + 1.4950000e+04 2.1672798e+00 + 1.4950400e+04 2.5718987e+00 + 1.4950800e+04 2.6786250e+00 + 1.4951200e+04 1.8693011e+00 + 1.4951600e+04 1.0200460e+00 + 1.4952000e+04 6.2073690e-01 + 1.4952400e+04 6.8119820e-01 + 1.4952800e+04 3.3135861e-01 + 1.4953200e+04 5.0117804e-01 + 1.4953600e+04 5.7082056e-01 + 1.4954000e+04 6.4047469e-01 + 1.4954400e+04 7.6498192e-01 + 1.4954800e+04 6.7433627e-01 + 1.4955200e+04 2.6476288e-01 + 1.4955600e+04 5.0630343e-02 + 1.4956000e+04 -3.4778320e-01 + 1.4956400e+04 -8.4948683e-01 + 1.4956800e+04 -1.5894579e+00 + 1.4957200e+04 -2.0094565e+00 + 1.4957600e+04 -2.1293843e+00 + 1.4958000e+04 -2.3293051e+00 + 1.4958400e+04 -2.7891994e+00 + 1.4958800e+04 -2.5226468e+00 + 1.4959200e+04 -1.9822629e+00 + 1.4959600e+04 -1.4774855e+00 + 1.4960000e+04 -5.7403442e-01 + 1.4960400e+04 -1.5225943e-01 + 1.4960800e+04 1.9090106e-01 + 1.4961200e+04 5.2099197e-01 + 1.4961600e+04 1.7412992e+00 + 1.4962000e+04 2.6517571e+00 + 1.4962400e+04 3.3125133e+00 + 1.4962800e+04 4.0631569e+00 + 1.4963200e+04 4.5736399e+00 + 1.4963600e+04 4.3941048e+00 + 1.4964000e+04 3.9645828e+00 + 1.4964400e+04 2.9852159e+00 + 1.4964800e+04 1.9559859e+00 + 1.4965200e+04 1.4067249e+00 + 1.4965600e+04 7.9711914e-01 + 1.4966000e+04 4.7708392e-01 + 1.4966400e+04 -1.3326398e-01 + 1.4966800e+04 -9.1379524e-01 + 1.4967200e+04 -1.5746487e+00 + 1.4967600e+04 -2.0453617e+00 + 1.4968000e+04 -2.4960767e+00 + 1.4968400e+04 -2.9967538e+00 + 1.4968800e+04 -3.2274179e+00 + 1.4969200e+04 -3.2879815e+00 + 1.4969600e+04 -3.1585910e+00 + 1.4970000e+04 -3.1892167e+00 + 1.4970400e+04 -3.2298028e+00 + 1.4970800e+04 -2.8003407e+00 + 1.4971200e+04 -2.1408307e+00 + 1.4971600e+04 -1.0314038e+00 + 1.4972000e+04 3.6800036e-01 + 1.4972400e+04 2.0374440e+00 + 1.4972800e+04 2.6970662e+00 + 1.4973200e+04 2.4270566e+00 + 1.4973600e+04 2.2375004e+00 + 1.4974000e+04 2.0982748e+00 + 1.4974400e+04 1.8691816e+00 + 1.4974800e+04 1.4800958e+00 + 1.4975200e+04 1.2310476e+00 + 1.4975600e+04 7.7174863e-01 + 1.4976000e+04 3.1227783e-01 + 1.4976400e+04 -2.3741255e-01 + 1.4976800e+04 -8.0736531e-01 + 1.4977200e+04 -1.0473798e+00 + 1.4977600e+04 -8.0738193e-01 + 1.4978000e+04 -4.5723526e-01 + 1.4978400e+04 3.0293732e-01 + 1.4978800e+04 4.6315463e-01 + 1.4979200e+04 4.0344006e-01 + 1.4979600e+04 4.4370616e-01 + 1.4980000e+04 4.9384073e-01 + 1.4980400e+04 2.6371498e-01 + 1.4980800e+04 2.1357704e-01 + 1.4981200e+04 1.6330725e-01 + 1.4981600e+04 2.0059832e-01 + 1.4982000e+04 1.1636938e-01 + 1.4982400e+04 2.6244204e-01 + 1.4982800e+04 3.6895945e-01 + 1.4983200e+04 6.1293284e-01 + 1.4983600e+04 9.4316781e-01 + 1.4984000e+04 1.3433128e+00 + 1.4984400e+04 1.7332697e+00 + 1.4984800e+04 1.7729632e+00 + 1.4985200e+04 1.6323876e+00 + 1.4985600e+04 1.2114906e+00 + 1.4986000e+04 7.7041687e-01 + 1.4986400e+04 8.9355366e-02 + 1.4986800e+04 -5.1140554e-01 + 1.4987200e+04 -1.0317527e+00 + 1.4987600e+04 -1.5516841e+00 + 1.4988000e+04 -1.9911072e+00 + 1.4988400e+04 -2.3103060e+00 + 1.4988800e+04 -2.5592656e+00 + 1.4989200e+04 -2.6179246e+00 + 1.4989600e+04 -1.9964717e+00 + 1.4990000e+04 -1.8350775e+00 + 1.4990400e+04 -1.7239252e+00 + 1.4990800e+04 -1.3531803e+00 + 1.4991200e+04 -8.7281789e-01 + 1.4991600e+04 -7.0285199e-01 + 1.4992000e+04 -7.5340377e-01 + 1.4992400e+04 -5.1450681e-01 + 1.4992800e+04 -3.5739537e-02 + 1.4993200e+04 6.0287211e-01 + 1.4993600e+04 1.3016487e+00 + 1.4994000e+04 1.8905060e+00 + 1.4994400e+04 2.0194752e+00 + 1.4994800e+04 1.8787569e+00 + 1.4995200e+04 1.5783070e+00 + 1.4995600e+04 1.2282166e+00 + 1.4996000e+04 1.0382457e+00 + 1.4996400e+04 9.3979243e-01 + 1.4996800e+04 1.0857051e+00 + 1.4997200e+04 1.3403074e+00 + 1.4997600e+04 1.0828194e+00 + 1.4998000e+04 5.3947715e-01 + 1.4998400e+04 -2.0331064e-02 + 1.4998800e+04 -7.4971047e-01 + 1.4999200e+04 -1.0989323e+00 + 1.4999600e+04 -1.0079800e+00 + 1.5000000e+04 -4.5791773e-01 + 1.5000400e+04 1.3205571e-01 + 1.5000800e+04 4.3204439e-01 + 1.5001200e+04 5.4205480e-01 + 1.5001600e+04 1.2520292e+00 + 1.5002000e+04 1.3220325e+00 + 1.5002400e+04 1.2520292e+00 + 1.5002800e+04 1.0120212e+00 + 1.5003200e+04 7.6202890e-01 + 1.5003600e+04 2.7204860e-01 + 1.5004000e+04 -3.2793826e-01 + 1.5004400e+04 -7.5788750e-01 + 1.5004800e+04 -5.6792867e-01 + 1.5005200e+04 -1.9793843e-01 + 1.5005600e+04 -3.5794544e-01 + 1.5006000e+04 -7.7794744e-01 + 1.5006400e+04 -9.8794051e-01 + 1.5006800e+04 -1.3279700e+00 + 1.5007200e+04 -2.3779924e+00 + 1.5007600e+04 -3.1879826e+00 + 1.5008000e+04 -3.6079787e+00 + 1.5008400e+04 -3.3379790e+00 + 1.5008800e+04 -2.6279898e+00 + 1.5009200e+04 -1.1680041e+00 + 1.5009600e+04 -1.5795713e-01 + 1.5010000e+04 4.3204439e-01 + 1.5010400e+04 1.3220325e+00 + 1.5010800e+04 2.1720620e+00 + 1.5011200e+04 2.6920702e+00 + 1.5011600e+04 3.7420504e+00 + 1.5012000e+04 3.9020693e+00 + 1.5012400e+04 3.3920407e+00 + 1.5012800e+04 1.9520843e+00 + 1.5013200e+04 7.4203412e-01 + 1.5013600e+04 5.8204294e-01 + 1.5014000e+04 -5.1794722e-01 + 1.5014400e+04 -1.0079800e+00 + 1.5014800e+04 -1.1680041e+00 + 1.5015200e+04 -8.0796108e-01 + 1.5015600e+04 -9.7933282e-02 + 1.5016000e+04 6.2203218e-01 + 1.5016400e+04 4.8206211e-01 + 1.5016800e+04 1.8200265e-01 + 1.5017200e+04 -4.6340317e-01 + 1.5017600e+04 -9.6896337e-01 + 1.5018000e+04 -1.0053479e+00 + 1.5018400e+04 -1.0784839e+00 + 1.5018800e+04 -9.0871792e-01 + 1.5019200e+04 -6.1795881e-01 + 1.5019600e+04 -1.7792291e-01 + 1.5020000e+04 2.4205732e-01 + 1.5020400e+04 -8.7944347e-02 + 1.5020800e+04 -7.7794744e-01 + 1.5021200e+04 -1.0979503e+00 + 1.5021600e+04 -1.0079800e+00 + 1.5022000e+04 -1.9793843e-01 + 1.5022400e+04 6.9202713e-01 + 1.5022800e+04 6.0204184e-01 + 1.5023200e+04 2.7831760e-01 + 1.5023600e+04 5.2304788e-02 + 1.5024000e+04 -2.1531611e-01 + 1.5024400e+04 -6.7134383e-01 + 1.5024800e+04 -1.0379993e+00 + 1.5025200e+04 -1.5379717e+00 + 1.5025600e+04 -1.3879676e+00 + 1.5026000e+04 -1.1279484e+00 + 1.5026400e+04 -8.4793918e-01 + 1.5026800e+04 -6.4795636e-01 + 1.5027200e+04 -2.5764030e-01 + 1.5027600e+04 6.2203218e-01 + 1.5028000e+04 1.0220225e+00 + 1.5028400e+04 8.4202595e-01 + 1.5028800e+04 5.8204294e-01 + 1.5029200e+04 2.6205066e-01 + 1.5029600e+04 3.7205426e-01 + 1.5030000e+04 6.8203356e-01 + 1.5030400e+04 9.9202286e-01 + 1.5030800e+04 1.3120303e+00 + 1.5031200e+04 1.3520320e+00 + 1.5031600e+04 1.4520417e+00 + 1.5032000e+04 1.3220325e+00 + 1.5032400e+04 8.5202527e-01 + 1.5032800e+04 6.1204809e-01 + 1.5033200e+04 1.4205537e-01 + 1.5033600e+04 -7.6795038e-01 + 1.5034000e+04 -1.2479471e+00 + 1.5034400e+04 -1.4579715e+00 + 1.5034800e+04 -1.3879676e+00 + 1.5035200e+04 -1.1680041e+00 + 1.5035600e+04 -4.7795345e-01 + 1.5036000e+04 -2.0791151e-01 + 1.5036400e+04 4.0204772e-01 + 1.5036800e+04 8.6202568e-01 + 1.5037200e+04 7.7203456e-01 + 1.5037600e+04 3.8208328e-01 + 1.5038000e+04 -1.4793481e-01 + 1.5038400e+04 -3.4794578e-01 + 1.5038800e+04 -7.4794196e-01 + 1.5039200e+04 -1.3379653e+00 + 1.5039600e+04 -1.2879686e+00 + 1.5040000e+04 -8.0796108e-01 + 1.5040400e+04 -4.3404961e-01 + 1.5040800e+04 -2.3637605e-01 + 1.5041200e+04 4.1775903e-03 + 1.5041600e+04 -4.7278232e-01 + 1.5042000e+04 -7.3795156e-01 + 1.5042400e+04 -5.8795586e-01 + 1.5042800e+04 -2.8776601e-01 + 1.5043200e+04 -8.8555604e-02 + 1.5043600e+04 -2.0978343e-01 + 1.5044000e+04 -3.8471931e-01 + 1.5044400e+04 -2.0797274e-01 + 1.5044800e+04 1.0389036e-01 + 1.5045200e+04 6.2534640e-01 + 1.5045600e+04 8.4202595e-01 + 1.5046000e+04 9.7202317e-01 + 1.5046400e+04 8.9202409e-01 + 1.5046800e+04 5.4205480e-01 + 1.5047200e+04 3.2206555e-01 + 1.5047600e+04 5.0204621e-01 + 1.5048000e+04 6.7204601e-01 + 1.5048400e+04 8.0203120e-01 + 1.5048800e+04 7.1203160e-01 + 1.5049200e+04 8.0203120e-01 + 1.5049600e+04 8.9202409e-01 + 1.5050000e+04 9.3202402e-01 + 1.5050400e+04 4.9203833e-01 + 1.5050800e+04 1.0204909e-01 + 1.5051200e+04 -1.1794394e-01 + 1.5051600e+04 -6.0794405e-01 + 1.5052000e+04 -1.3179667e+00 + 1.5052400e+04 -8.1792726e-01 + 1.5052800e+04 -1.1794394e-01 + 1.5053200e+04 9.2102893e-02 + 1.5053600e+04 2.7204860e-01 + 1.5054000e+04 -1.7940681e-02 + 1.5054400e+04 -2.9751609e-01 + 1.5054800e+04 -4.4795051e-01 + 1.5055200e+04 -7.6795038e-01 + 1.5055600e+04 -1.6079854e+00 + 1.5056000e+04 -2.0379932e+00 + 1.5056400e+04 -1.9479965e+00 + 1.5056800e+04 -1.4479655e+00 + 1.5057200e+04 -8.6796044e-01 + 1.5057600e+04 -1.0789555e-01 + 1.5058000e+04 6.1204809e-01 + 1.5058400e+04 1.0120212e+00 + 1.5058800e+04 1.0920231e+00 + 1.5059200e+04 6.0204184e-01 + 1.5059600e+04 1.9207561e-01 + 1.5060000e+04 -1.4793481e-01 + 1.5060400e+04 -9.7933282e-02 + 1.5060800e+04 -1.8795954e-01 + 1.5061200e+04 -7.7909953e-02 + 1.5061600e+04 -2.9751609e-01 + 1.5062000e+04 -5.0794468e-01 + 1.5062400e+04 -3.6788160e-01 + 1.5062800e+04 -7.8904071e-03 + 1.5063200e+04 1.9207561e-01 + 1.5063600e+04 3.7205426e-01 + 1.5064000e+04 5.4205480e-01 + 1.5064400e+04 1.2020259e+00 + 1.5064800e+04 1.8920727e+00 + 1.5065200e+04 2.4520400e+00 + 1.5065600e+04 2.8020582e+00 + 1.5066000e+04 2.7220572e+00 + 1.5066400e+04 2.2220597e+00 + 1.5066800e+04 1.9420562e+00 + 1.5067200e+04 1.0920231e+00 + 1.5067600e+04 -2.7785596e-01 + 1.5068000e+04 -1.0279529e+00 + 1.5068400e+04 -1.2579708e+00 + 1.5068800e+04 -1.0579415e+00 + 1.5069200e+04 -9.7796163e-01 + 1.5069600e+04 -7.7794744e-01 + 1.5070000e+04 -6.1795881e-01 + 1.5070400e+04 -9.7933282e-02 + 1.5070800e+04 1.2211615e-01 + 1.5071200e+04 9.2102893e-02 + 1.5071600e+04 -1.7792291e-01 + 1.5072000e+04 -5.6792867e-01 + 1.5072400e+04 -7.2805526e-01 + 1.5072800e+04 -1.3079598e+00 + 1.5073200e+04 -1.8379974e+00 + 1.5073600e+04 -1.7279909e+00 + 1.5074000e+04 -1.3079598e+00 + 1.5074400e+04 -1.0179735e+00 + 1.5074800e+04 -4.7795345e-01 + 1.5075200e+04 -6.7921390e-02 + 1.5075600e+04 1.7205226e-01 + 1.5076000e+04 2.5209989e-01 + 1.5076400e+04 1.0204909e-01 + 1.5076800e+04 -2.3789972e-01 + 1.5077200e+04 -6.4795636e-01 + 1.5077600e+04 -8.4793918e-01 + 1.5078000e+04 -9.1794118e-01 + 1.5078400e+04 -8.2794922e-01 + 1.5078800e+04 -1.2279653e+00 + 1.5079200e+04 -1.5379717e+00 + 1.5079600e+04 -1.4779649e+00 + 1.5080000e+04 -1.1279484e+00 + 1.5080400e+04 -2.0045568e-01 + 1.5080800e+04 6.6203366e-01 + 1.5081200e+04 1.3820335e+00 + 1.5081600e+04 1.5620609e+00 + 1.5082000e+04 1.8620657e+00 + 1.5082400e+04 2.1120860e+00 + 1.5082800e+04 2.5620779e+00 + 1.5083200e+04 2.7020737e+00 + 1.5083600e+04 2.6320827e+00 + 1.5084000e+04 2.5220533e+00 + 1.5084400e+04 2.1520749e+00 + 1.5084800e+04 1.3620376e+00 + 1.5085200e+04 7.6202890e-01 + 1.5085600e+04 6.5203301e-01 + 1.5086000e+04 6.9227550e-01 + 1.5086400e+04 3.7250416e-01 + 1.5086800e+04 3.6853217e-01 + 1.5087200e+04 1.6330909e-01 + 1.5087600e+04 -1.3288787e-01 + 1.5088000e+04 -1.2897191e-01 + 1.5088400e+04 -3.5794544e-01 + 1.5088800e+04 -6.0794405e-01 + 1.5089200e+04 -1.0879288e+00 + 1.5089600e+04 -1.5379717e+00 + 1.5090000e+04 -1.6679961e+00 + 1.5090400e+04 -1.3879676e+00 + 1.5090800e+04 -1.3179667e+00 + 1.5091200e+04 -1.0579415e+00 + 1.5091600e+04 -9.7796163e-01 + 1.5092000e+04 -1.0480194e+00 + 1.5092400e+04 -1.3479652e+00 + 1.5092800e+04 -1.6079854e+00 + 1.5093200e+04 -2.0179881e+00 + 1.5093600e+04 -2.0579868e+00 + 1.5094000e+04 -1.7279909e+00 + 1.5094400e+04 -1.0979503e+00 + 1.5094800e+04 -5.3794067e-01 + 1.5095200e+04 9.2102893e-02 + 1.5095600e+04 4.9203833e-01 + 1.5096000e+04 7.7203456e-01 + 1.5096400e+04 8.4202595e-01 + 1.5096800e+04 1.0820223e+00 + 1.5097200e+04 1.3720292e+00 + 1.5097600e+04 1.5120296e+00 + 1.5098000e+04 1.3920419e+00 + 1.5098400e+04 1.4520417e+00 + 1.5098800e+04 1.6420441e+00 + 1.5099200e+04 1.9920673e+00 + 1.5099600e+04 2.0920623e+00 + 1.5100000e+04 1.8020522e+00 + 1.5100400e+04 1.5920678e+00 + 1.5100800e+04 1.1320226e+00 + 1.5101200e+04 -2.8776601e-01 + 1.5101600e+04 -7.9795095e-01 + 1.5102000e+04 -7.3795156e-01 + 1.5102400e+04 -2.4793595e-01 + 1.5102800e+04 3.0204686e-01 + 1.5103200e+04 5.8204294e-01 + 1.5103600e+04 6.7170092e-01 + 1.5104000e+04 6.9539268e-01 + 1.5104400e+04 8.8947769e-01 + 1.5104800e+04 6.3949346e-01 + 1.5105200e+04 2.7204860e-01 + 1.5105600e+04 -2.7785596e-01 + 1.5106000e+04 -6.2790497e-01 + 1.5106400e+04 -8.8792400e-01 + 1.5106800e+04 -9.8794051e-01 + 1.5107200e+04 -1.0279529e+00 + 1.5107600e+04 -7.2805526e-01 + 1.5108000e+04 -7.7909953e-02 + 1.5108400e+04 1.5210861e-01 + 1.5108800e+04 4.9203833e-01 + 1.5109200e+04 3.1207296e-01 + 1.5109600e+04 -5.7944370e-02 + 1.5110000e+04 -4.5791773e-01 + 1.5110400e+04 -8.2794922e-01 + 1.5110800e+04 -1.1379607e+00 + 1.5111200e+04 -1.8079856e+00 + 1.5111600e+04 -2.3161643e+00 + 1.5112000e+04 -2.4979250e+00 + 1.5112400e+04 -2.2757478e+00 + 1.5112800e+04 -1.9483509e+00 + 1.5113200e+04 -1.8680075e+00 + 1.5113600e+04 -1.9779908e+00 + 1.5114000e+04 -1.8279887e+00 + 1.5114400e+04 -1.4079679e+00 + 1.5114800e+04 -6.8834082e-01 + 1.5115200e+04 -1.6793038e-01 + 1.5115600e+04 4.3204439e-01 + 1.5116000e+04 1.5620609e+00 + 1.5116400e+04 1.8620657e+00 + 1.5116800e+04 2.0220748e+00 + 1.5117200e+04 1.9720505e+00 + 1.5117600e+04 2.3220454e+00 + 1.5118000e+04 2.9420418e+00 + 1.5118400e+04 3.4220354e+00 + 1.5118800e+04 3.6520527e+00 + 1.5119200e+04 3.1620605e+00 + 1.5119600e+04 2.7120647e+00 + 1.5120000e+04 2.0999128e+00 + 1.5120400e+04 1.7724696e+00 + 1.5120800e+04 1.5823540e+00 + 1.5121200e+04 6.9467977e-01 + 1.5121600e+04 -3.2378349e-01 + 1.5122000e+04 -1.1308268e+00 + 1.5122400e+04 -1.7070471e+00 + 1.5122800e+04 -2.0645529e+00 + 1.5123200e+04 -2.5833931e+00 + 1.5123600e+04 -3.0930862e+00 + 1.5124000e+04 -3.0598974e+00 + 1.5124400e+04 -2.9069679e+00 + 1.5124800e+04 -2.4799231e+00 + 1.5125200e+04 -1.9441790e+00 + 1.5125600e+04 -9.2761266e-01 + 1.5126000e+04 2.4205732e-01 + 1.5126400e+04 1.2982271e+00 + 1.5126800e+04 1.5396310e+00 + 1.5127200e+04 1.4091486e+00 + 1.5127600e+04 1.0806851e+00 + 1.5128000e+04 1.1120217e+00 + 1.5128400e+04 1.1620245e+00 + 1.5128800e+04 1.0120212e+00 + 1.5129200e+04 9.3202402e-01 + 1.5129600e+04 7.2202689e-01 + 1.5130000e+04 3.4206066e-01 + 1.5130400e+04 2.5209989e-01 + 1.5130800e+04 -6.7921390e-02 + 1.5131200e+04 -1.0579415e+00 + 1.5131600e+04 -1.1479269e+00 + 1.5132000e+04 -1.2979691e+00 + 1.5132400e+04 -1.3198954e+00 + 1.5132800e+04 -1.3892145e+00 + 1.5133200e+04 -1.3459937e+00 + 1.5133600e+04 -1.4243086e+00 + 1.5134000e+04 -1.2979691e+00 + 1.5134400e+04 -9.9795376e-01 + 1.5134800e+04 -4.0792934e-01 + 1.5135200e+04 -2.0791151e-01 + 1.5135600e+04 -1.2794856e-01 + 1.5136000e+04 3.0204686e-01 + 1.5136400e+04 5.8204294e-01 + 1.5136800e+04 4.1207516e-01 + 1.5137200e+04 7.5202638e-01 + 1.5137600e+04 1.4320468e+00 + 1.5138000e+04 2.2120685e+00 + 1.5138400e+04 2.9820550e+00 + 1.5138800e+04 3.3420526e+00 + 1.5139200e+04 3.3020464e+00 + 1.5139600e+04 2.9520544e+00 + 1.5140000e+04 2.2220597e+00 + 1.5140400e+04 1.8420533e+00 + 1.5140800e+04 5.1206378e-01 + 1.5141200e+04 -2.3789972e-01 + 1.5141600e+04 -6.3793096e-01 + 1.5142000e+04 -1.1779775e+00 + 1.5142400e+04 -1.5479790e+00 + 1.5142800e+04 -1.5715929e+00 + 1.5143200e+04 -1.5532536e+00 + 1.5143600e+04 -1.6656773e+00 + 1.5144000e+04 -1.9144755e+00 + 1.5144400e+04 -1.7479808e+00 + 1.5144800e+04 -1.5279764e+00 + 1.5145200e+04 -1.1579578e+00 + 1.5145600e+04 -4.0792934e-01 + 1.5146000e+04 6.2089219e-02 + 1.5146400e+04 1.7205226e-01 + 1.5146800e+04 -1.4283210e-01 + 1.5147200e+04 -4.3192316e-01 + 1.5147600e+04 -5.4625539e-01 + 1.5148000e+04 -4.4092837e-01 + 1.5148400e+04 -3.9865447e-01 + 1.5148800e+04 1.8034715e-01 + 1.5149200e+04 4.6754313e-01 + 1.5149600e+04 3.5685507e-01 + 1.5150000e+04 7.1980394e-01 + 1.5150400e+04 7.5467842e-01 + 1.5150800e+04 7.1203160e-01 + 1.5151200e+04 8.0203120e-01 + 1.5151600e+04 4.1207516e-01 + 1.5152000e+04 -2.5764030e-01 + 1.5152400e+04 -8.6796044e-01 + 1.5152800e+04 -2.1079924e+00 + 1.5153200e+04 -2.5679859e+00 + 1.5153600e+04 -2.6679854e+00 + 1.5154000e+04 -2.0479875e+00 + 1.5154400e+04 -1.0979503e+00 + 1.5154800e+04 -2.5764030e-01 + 1.5155200e+04 2.1207246e-01 + 1.5155600e+04 1.3820335e+00 + 1.5156000e+04 1.6420441e+00 + 1.5156400e+04 1.4918961e+00 + 1.5156800e+04 1.5520597e+00 + 1.5157200e+04 1.5020074e+00 + 1.5157600e+04 1.7120580e+00 + 1.5158000e+04 2.0720694e+00 + 1.5158400e+04 2.2020521e+00 + 1.5158800e+04 2.4320661e+00 + 1.5159200e+04 2.0520833e+00 + 1.5159600e+04 1.5620609e+00 + 1.5160000e+04 7.9202612e-01 + 1.5160400e+04 1.4205537e-01 + 1.5160800e+04 -4.7795345e-01 + 1.5161200e+04 -1.1879473e+00 + 1.5161600e+04 -1.4279701e+00 + 1.5162000e+04 -1.8379974e+00 + 1.5162400e+04 -2.6180030e+00 + 1.5162800e+04 -2.5180054e+00 + 1.5163200e+04 -1.7279909e+00 + 1.5163600e+04 -9.7796163e-01 + 1.5164000e+04 1.2048255e-02 + 1.5164400e+04 1.4120335e+00 + 1.5164800e+04 2.1920577e+00 + 1.5165200e+04 3.1020409e+00 + 1.5165600e+04 3.3120480e+00 + 1.5166000e+04 2.6120555e+00 + 1.5166400e+04 1.9920673e+00 + 1.5166800e+04 4.5205405e-01 + 1.5167200e+04 -8.1792726e-01 + 1.5167600e+04 -1.8279887e+00 + 1.5168000e+04 -2.4479917e+00 + 1.5168400e+04 -2.5379865e+00 + 1.5168800e+04 -2.5779923e+00 + 1.5169200e+04 -3.2979776e+00 + 1.5169600e+04 -3.1779792e+00 + 1.5170000e+04 -2.5679859e+00 + 1.5170400e+04 -1.7479808e+00 + 1.5170800e+04 -9.8794051e-01 + 1.5171200e+04 -1.3791162e-01 + 1.5171600e+04 3.8208328e-01 + 1.5172000e+04 1.0520225e+00 + 1.5172400e+04 1.6720463e+00 + 1.5172800e+04 2.3620504e+00 + 1.5173200e+04 2.4820351e+00 + 1.5173600e+04 2.5720719e+00 + 1.5174000e+04 2.4120396e+00 + 1.5174400e+04 1.9420562e+00 + 1.5174800e+04 1.7220749e+00 + 1.5175200e+04 1.9267495e+00 + 1.5175600e+04 1.5020074e+00 + 1.5176000e+04 4.5205405e-01 + 1.5176400e+04 -3.0780748e-01 + 1.5176800e+04 -1.1279484e+00 + 1.5177200e+04 -1.1879473e+00 + 1.5177600e+04 -1.0579415e+00 + 1.5178000e+04 -8.6796044e-01 + 1.5178400e+04 -4.8793395e-01 + 1.5178800e+04 -2.0791151e-01 + 1.5179200e+04 -4.0792934e-01 + 1.5179600e+04 -6.6791967e-01 + 1.5180000e+04 -1.0079800e+00 + 1.5180400e+04 -1.2279653e+00 + 1.5180800e+04 -1.1479269e+00 + 1.5181200e+04 -7.6795038e-01 + 1.5181600e+04 2.2107299e-02 + 1.5182000e+04 1.1220231e+00 + 1.5182400e+04 1.6620571e+00 + 1.5182800e+04 1.6320486e+00 + 1.5183200e+04 1.3120303e+00 + 1.5183600e+04 8.3202808e-01 + 1.5184000e+04 3.6204238e-01 + 1.5184400e+04 -2.5764030e-01 + 1.5184800e+04 -2.8776601e-01 + 1.5185200e+04 -3.1212883e-01 + 1.5185600e+04 -5.3528536e-01 + 1.5186000e+04 -6.2719679e-01 + 1.5186400e+04 -5.0546762e-01 + 1.5186800e+04 -2.8776601e-01 + 1.5187200e+04 4.2043775e-02 + 1.5187600e+04 3.7205426e-01 + 1.5188000e+04 9.6202312e-01 + 1.5188400e+04 1.3920419e+00 + 1.5188800e+04 1.1520232e+00 + 1.5189200e+04 5.7204810e-01 + 1.5189600e+04 -2.2795024e-01 + 1.5190000e+04 -1.0543533e+00 + 1.5190400e+04 -1.6788776e+00 + 1.5190800e+04 -1.5109754e+00 + 1.5191200e+04 -1.1759716e+00 + 1.5191600e+04 -1.0879288e+00 + 1.5192000e+04 -9.1794118e-01 + 1.5192400e+04 -7.7794744e-01 + 1.5192800e+04 -3.8794602e-01 + 1.5193200e+04 2.2107299e-02 + 1.5193600e+04 7.7203456e-01 + 1.5194000e+04 1.1720222e+00 + 1.5194400e+04 1.2520292e+00 + 1.5194800e+04 1.1219280e+00 + 1.5195200e+04 1.0567190e+00 + 1.5195600e+04 1.1473159e+00 + 1.5196000e+04 1.3254196e+00 + 1.5196400e+04 1.3620376e+00 + 1.5196800e+04 1.2220281e+00 + 1.5197200e+04 8.1202616e-01 + 1.5197600e+04 2.2208728e-01 + 1.5198000e+04 -2.5363426e-01 + 1.5198400e+04 -5.8476487e-01 + 1.5198800e+04 -7.3795400e-01 + 1.5199200e+04 -6.1009815e-01 + 1.5199600e+04 -2.9751609e-01 + 1.5200000e+04 -1.2903576e-01 + 1.5200400e+04 -9.7766812e-02 + 1.5200800e+04 -4.2208495e-01 + 1.5201200e+04 -8.0540456e-01 + 1.5201600e+04 -8.8792400e-01 + 1.5202000e+04 -6.8834082e-01 + 1.5202400e+04 -4.7795345e-01 + 1.5202800e+04 -7.7909953e-02 + 1.5203200e+04 5.2204022e-01 + 1.5203600e+04 9.2202318e-01 + 1.5204000e+04 1.4420326e+00 + 1.5204400e+04 1.1520232e+00 + 1.5204800e+04 9.0202533e-01 + 1.5205200e+04 7.1791889e-02 + 1.5205600e+04 -4.2037279e-01 + 1.5206000e+04 -9.1518466e-01 + 1.5206400e+04 -1.1798724e+00 + 1.5206800e+04 -1.3962352e+00 + 1.5207200e+04 -1.5437670e+00 + 1.5207600e+04 -1.4379712e+00 + 1.5208000e+04 -1.2979691e+00 + 1.5208400e+04 -8.9796040e-01 + 1.5208800e+04 -3.5794544e-01 + 1.5209200e+04 1.4205537e-01 + 1.5209600e+04 2.3204603e-01 + 1.5210000e+04 -2.4793595e-01 + 1.5210400e+04 -5.4795215e-01 + 1.5210800e+04 -7.0800718e-01 + 1.5211200e+04 -5.3794067e-01 + 1.5211600e+04 -1.4793481e-01 + 1.5212000e+04 8.5202527e-01 + 1.5212400e+04 1.9020448e+00 + 1.5212800e+04 2.1320535e+00 + 1.5213200e+04 2.1720620e+00 + 1.5213600e+04 2.2720497e+00 + 1.5214000e+04 1.7920673e+00 + 1.5214400e+04 1.4220429e+00 + 1.5214800e+04 1.0120212e+00 + 1.5215200e+04 6.0204184e-01 + 1.5215600e+04 2.6205066e-01 + 1.5216000e+04 3.1207296e-01 + 1.5216400e+04 4.4206085e-01 + 1.5216800e+04 1.1206308e-01 + 1.5217200e+04 -5.0794468e-01 + 1.5217600e+04 -1.3279700e+00 + 1.5218000e+04 -1.8279887e+00 + 1.5218400e+04 -2.0105666e+00 + 1.5218800e+04 -2.0497027e+00 + 1.5219200e+04 -2.0371606e+00 + 1.5219600e+04 -2.3854669e+00 + 1.5220000e+04 -2.1880145e+00 + 1.5220400e+04 -1.6879813e+00 + 1.5220800e+04 -1.0480194e+00 + 1.5221200e+04 -1.1794394e-01 + 1.5221600e+04 4.8206211e-01 + 1.5222000e+04 1.3315257e+00 + 1.5222400e+04 2.0064320e+00 + 1.5222800e+04 2.8120434e+00 + 1.5223200e+04 3.2620581e+00 + 1.5223600e+04 3.1920672e+00 + 1.5224000e+04 3.0120594e+00 + 1.5224400e+04 2.8720151e+00 + 1.5224800e+04 1.6520712e+00 + 1.5225200e+04 1.0020228e+00 + 1.5225600e+04 2.6205066e-01 + 1.5226000e+04 -5.1315042e-01 + 1.5226400e+04 -8.7462595e-01 + 1.5226800e+04 -1.1279693e+00 + 1.5227200e+04 -1.6560362e+00 + 1.5227600e+04 -2.2280050e+00 + 1.5228000e+04 -2.7079959e+00 + 1.5228400e+04 -2.5479965e+00 + 1.5228800e+04 -2.1379962e+00 + 1.5229200e+04 -1.9779908e+00 + 1.5229600e+04 -1.5779820e+00 + 1.5230000e+04 -1.1680041e+00 + 1.5230400e+04 -5.8795586e-01 + 1.5230800e+04 -1.8795954e-01 + 1.5231200e+04 2.3204603e-01 + 1.5231600e+04 4.1207516e-01 + 1.5232000e+04 5.0204621e-01 + 1.5232400e+04 5.7204810e-01 + 1.5232800e+04 9.6202312e-01 + 1.5233200e+04 1.2720244e+00 + 1.5233600e+04 9.1202342e-01 + 1.5234000e+04 9.9202286e-01 + 1.5234400e+04 1.4720303e+00 + 1.5234800e+04 2.2620511e+00 + 1.5235200e+04 2.7920538e+00 + 1.5235600e+04 2.5020791e+00 + 1.5236000e+04 1.8920727e+00 + 1.5236400e+04 6.5203301e-01 + 1.5236800e+04 -2.6729547e-01 + 1.5237200e+04 -1.0179735e+00 + 1.5237600e+04 -1.5479790e+00 + 1.5238000e+04 -1.8579948e+00 + 1.5238400e+04 -2.1479941e+00 + 1.5238800e+04 -2.2280050e+00 + 1.5239200e+04 -2.2580114e+00 + 1.5239600e+04 -1.6979946e+00 + 1.5240000e+04 -1.1479269e+00 + 1.5240400e+04 -5.6792867e-01 + 1.5240800e+04 4.2043775e-02 + 1.5241200e+04 6.5203301e-01 + 1.5241600e+04 1.3220325e+00 + 1.5242000e+04 1.9120641e+00 + 1.5242400e+04 2.3020487e+00 + 1.5242800e+04 2.0520833e+00 + 1.5243200e+04 1.3020292e+00 + 1.5243600e+04 6.5490350e-01 + 1.5244000e+04 4.5212050e-01 + 1.5244400e+04 3.8895991e-01 + 1.5244800e+04 3.3908406e-01 + 1.5245200e+04 -4.7925605e-02 + 1.5245600e+04 -5.2792863e-01 + 1.5246000e+04 -8.2794922e-01 + 1.5246400e+04 -1.0179735e+00 + 1.5246800e+04 -1.2079450e+00 + 1.5247200e+04 -1.1079527e+00 + 1.5247600e+04 -6.8834082e-01 + 1.5248000e+04 -2.5764030e-01 + 1.5248400e+04 1.2048255e-02 + 1.5248800e+04 1.3205571e-01 + 1.5249200e+04 -2.4793595e-01 + 1.5249600e+04 -3.4794578e-01 + 1.5250000e+04 -1.2579708e+00 + 1.5250400e+04 -1.2079450e+00 + 1.5250800e+04 -5.5794322e-01 + 1.5251200e+04 1.2211615e-01 + 1.5251600e+04 6.4204993e-01 + 1.5252000e+04 8.3202808e-01 + 1.5252400e+04 1.3584441e+00 + 1.5252800e+04 1.6589051e+00 + 1.5253200e+04 2.1164238e+00 + 1.5253600e+04 1.8442401e+00 + 1.5254000e+04 1.4190862e+00 + 1.5254400e+04 1.0295733e+00 + 1.5254800e+04 4.8206211e-01 + 1.5255200e+04 -1.0789555e-01 + 1.5255600e+04 -3.3789873e-01 + 1.5256000e+04 -8.7944347e-02 + 1.5256400e+04 1.5210861e-01 + 1.5256800e+04 2.9205712e-01 + 1.5257200e+04 2.2208728e-01 + 1.5257600e+04 -8.7944347e-02 + 1.5258000e+04 -1.5795713e-01 + 1.5258400e+04 -1.2679686e+00 + 1.5258800e+04 -1.4879737e+00 + 1.5259200e+04 -1.1779775e+00 + 1.5259600e+04 -7.9412104e-01 + 1.5260000e+04 -2.8365038e-01 + 1.5260400e+04 7.4641409e-03 + 1.5260800e+04 -2.6514535e-01 + 1.5261200e+04 -6.4305947e-01 + 1.5261600e+04 -8.2230203e-01 + 1.5262000e+04 -8.2764975e-01 + 1.5262400e+04 -7.0205394e-01 + 1.5262800e+04 -4.1791434e-01 + 1.5263200e+04 -9.7933282e-02 + 1.5263600e+04 -7.8904071e-03 + 1.5264000e+04 1.4205537e-01 + 1.5264400e+04 5.4205480e-01 + 1.5264800e+04 1.0020228e+00 + 1.5265200e+04 1.2120235e+00 + 1.5265600e+04 1.1420209e+00 + 1.5266000e+04 7.6202890e-01 + 1.5266400e+04 2.2208728e-01 + 1.5266800e+04 -1.6793038e-01 + 1.5267200e+04 -8.3796494e-01 + 1.5267600e+04 -1.0179735e+00 + 1.5268000e+04 -1.6079854e+00 + 1.5268400e+04 -1.7990337e+00 + 1.5268800e+04 -1.5173895e+00 + 1.5269200e+04 -1.0970033e+00 + 1.5269600e+04 -7.1116480e-01 + 1.5270000e+04 -4.8793395e-01 + 1.5270400e+04 -3.8794602e-01 + 1.5270800e+04 4.2043775e-02 + 1.5271200e+04 8.8202445e-01 + 1.5271600e+04 1.6320486e+00 + 1.5272000e+04 2.5420549e+00 + 1.5272400e+04 3.3620444e+00 + 1.5272800e+04 3.6720418e+00 + 1.5273200e+04 3.1420471e+00 + 1.5273600e+04 2.5920736e+00 + 1.5274000e+04 1.4220429e+00 + 1.5274400e+04 2.9205712e-01 + 1.5274800e+04 -6.7331237e-01 + 1.5275200e+04 -1.3441351e+00 + 1.5275600e+04 -1.7159784e+00 + 1.5276000e+04 -1.8806780e+00 + 1.5276400e+04 -1.9779908e+00 + 1.5276800e+04 -2.1379962e+00 + 1.5277200e+04 -1.9179998e+00 + 1.5277600e+04 -1.4279701e+00 + 1.5278000e+04 -9.4795147e-01 + 1.5278400e+04 -8.6796044e-01 + 1.5278800e+04 -9.3795472e-01 + 1.5279200e+04 -8.5792875e-01 + 1.5279600e+04 -7.3795156e-01 + 1.5280000e+04 -6.3793096e-01 + 1.5280400e+04 -1.0789555e-01 + 1.5280800e+04 -6.7921390e-02 + 1.5281200e+04 -2.7939982e-02 + 1.5281600e+04 1.2048255e-02 + 1.5282000e+04 2.3204603e-01 + 1.5282400e+04 7.3203276e-01 + 1.5282800e+04 1.0220225e+00 + 1.5283200e+04 8.4202595e-01 + 1.5283600e+04 7.0203708e-01 + 1.5284000e+04 5.8204294e-01 + 1.5284400e+04 3.5207729e-01 + 1.5284800e+04 1.6206416e-01 + 1.5285200e+04 1.0204909e-01 + 1.5285600e+04 5.9203021e-01 + 1.5286000e+04 7.2717561e-01 + 1.5286400e+04 3.3364315e-01 + 1.5286800e+04 -3.2885668e-01 + 1.5287200e+04 -7.5342550e-01 + 1.5287600e+04 -1.2279653e+00 + 1.5288000e+04 -1.4779649e+00 + 1.5288400e+04 -1.4107642e+00 + 1.5288800e+04 -7.0423114e-01 + 1.5289200e+04 1.7629094e-01 + 1.5289600e+04 1.3308598e+00 + 1.5290000e+04 2.3158534e+00 + 1.5290400e+04 2.6420670e+00 + 1.5290800e+04 2.1820719e+00 + 1.5291200e+04 1.8420533e+00 + 1.5291600e+04 1.7720546e+00 + 1.5292000e+04 1.6720463e+00 + 1.5292400e+04 1.4520417e+00 + 1.5292800e+04 1.2520292e+00 + 1.5293200e+04 9.5202260e-01 + 1.5293600e+04 1.0204909e-01 + 1.5294000e+04 -6.8834082e-01 + 1.5294400e+04 -1.1979609e+00 + 1.5294800e+04 -1.5779820e+00 + 1.5295200e+04 -2.0980128e+00 + 1.5295600e+04 -2.4182244e+00 + 1.5296000e+04 -2.5977499e+00 + 1.5296400e+04 -2.8016861e+00 + 1.5296800e+04 -2.7924967e+00 + 1.5297200e+04 -2.6279898e+00 + 1.5297600e+04 -2.1880145e+00 + 1.5298000e+04 -1.5979794e+00 + 1.5298400e+04 -8.0796108e-01 + 1.5298800e+04 -1.4793481e-01 + 1.5299200e+04 4.8206211e-01 + 1.5299600e+04 5.9203021e-01 + 1.5300000e+04 6.3203722e-01 + 1.5300400e+04 3.8208328e-01 + 1.5300800e+04 3.4206066e-01 + 1.5301200e+04 6.5203301e-01 + 1.5301600e+04 1.1820237e+00 + 1.5302000e+04 1.5220508e+00 + 1.5302400e+04 1.5920678e+00 + 1.5302800e+04 1.2120235e+00 + 1.5303200e+04 5.8204294e-01 + 1.5303600e+04 6.2089219e-02 + 1.5304000e+04 -5.7944370e-02 + 1.5304400e+04 2.9205712e-01 + 1.5304800e+04 4.8206211e-01 + 1.5305200e+04 7.2202689e-01 + 1.5305600e+04 1.1120217e+00 + 1.5306000e+04 1.3520320e+00 + 1.5306400e+04 1.1620245e+00 + 1.5306800e+04 7.7203456e-01 + 1.5307200e+04 3.8208328e-01 + 1.5307600e+04 4.2043775e-02 + 1.5308000e+04 -4.2249671e-01 + 1.5308400e+04 -7.4567982e-01 + 1.5308800e+04 -4.4250172e-01 + 1.5309200e+04 -4.6150581e-01 + 1.5309600e+04 -4.6885935e-01 + 1.5310000e+04 -7.7909953e-02 + 1.5310400e+04 3.2206555e-01 + 1.5310800e+04 8.3202808e-01 + 1.5311200e+04 1.2520292e+00 + 1.5311600e+04 1.5820533e+00 + 1.5312000e+04 1.5220508e+00 + 1.5312400e+04 9.5202260e-01 + 1.5312800e+04 -5.7944370e-02 + 1.5313200e+04 -6.2790497e-01 + 1.5313600e+04 -1.0495444e+00 + 1.5314000e+04 -1.4307365e+00 + 1.5314400e+04 -2.0974763e+00 + 1.5314800e+04 -2.2922152e+00 + 1.5315200e+04 -1.6479873e+00 + 1.5315600e+04 -8.5792875e-01 + 1.5316000e+04 -7.7794744e-01 + 1.5316400e+04 -5.0794468e-01 + 1.5316800e+04 -2.7939982e-02 + 1.5317200e+04 -4.1791434e-01 + 1.5317600e+04 -7.3795156e-01 + 1.5318000e+04 -8.2794922e-01 + 1.5318400e+04 -9.1794118e-01 + 1.5318800e+04 -9.7796163e-01 + 1.5319200e+04 -9.3795472e-01 + 1.5319600e+04 -8.0796108e-01 + 1.5320000e+04 -6.3793096e-01 + 1.5320400e+04 -1.9793843e-01 + 1.5320800e+04 1.3205571e-01 + 1.5321200e+04 4.5205405e-01 + 1.5321600e+04 7.4203412e-01 + 1.5322000e+04 1.0920231e+00 + 1.5322400e+04 1.6720463e+00 + 1.5322800e+04 2.0020431e+00 + 1.5323200e+04 2.0720694e+00 + 1.5323600e+04 1.7020480e+00 + 1.5324000e+04 1.3826488e+00 + 1.5324400e+04 1.3092697e+00 + 1.5324800e+04 1.0590212e+00 + 1.5325200e+04 1.2105146e+00 + 1.5325600e+04 1.3920419e+00 + 1.5326000e+04 1.7020480e+00 + 1.5326400e+04 1.5220508e+00 + 1.5326800e+04 1.3620376e+00 + 1.5327200e+04 1.3120303e+00 + 1.5327600e+04 2.5209989e-01 + 1.5328000e+04 -5.3389263e-01 + 1.5328400e+04 -1.2679561e+00 + 1.5328800e+04 -1.7989884e+00 + 1.5329200e+04 -2.2290732e+00 + 1.5329600e+04 -2.2280050e+00 + 1.5330000e+04 -2.1580222e+00 + 1.5330400e+04 -2.2679886e+00 + 1.5330800e+04 -2.4479917e+00 + 1.5331200e+04 -2.7079959e+00 + 1.5331600e+04 -3.0479837e+00 + 1.5332000e+04 -2.9879819e+00 + 1.5332400e+04 -2.9179847e+00 + 1.5332800e+04 -2.4479917e+00 + 1.5333200e+04 -1.5779820e+00 + 1.5333600e+04 8.7700157e-02 + 1.5334000e+04 1.3086445e+00 + 1.5334400e+04 1.8626594e+00 + 1.5334800e+04 2.3560595e+00 + 1.5335200e+04 3.2720464e+00 + 1.5335600e+04 3.5720583e+00 + 1.5336000e+04 3.8720791e+00 + 1.5336400e+04 4.3620526e+00 + 1.5336800e+04 4.1720596e+00 + 1.5337200e+04 3.1920672e+00 + 1.5337600e+04 1.7220749e+00 + 1.5338000e+04 4.9203833e-01 + 1.5338400e+04 -5.0794468e-01 + 1.5338800e+04 -7.9795095e-01 + 1.5339200e+04 -1.4779649e+00 + 1.5339600e+04 -2.6379872e+00 + 1.5340000e+04 -3.3179799e+00 + 1.5340400e+04 -3.4779784e+00 + 1.5340800e+04 -3.2379779e+00 + 1.5341200e+04 -2.7779881e+00 + 1.5341600e+04 -1.9979995e+00 + 1.5342000e+04 -9.5795301e-01 + 1.5342400e+04 1.9207561e-01 + 1.5342800e+04 1.0220225e+00 + 1.5343200e+04 1.3620376e+00 + 1.5343600e+04 1.8320591e+00 + 1.5344000e+04 1.6020398e+00 + 1.5344400e+04 1.5620609e+00 + 1.5344800e+04 1.6820686e+00 + 1.5345200e+04 1.6020398e+00 + 1.5345600e+04 1.3720292e+00 + 1.5346000e+04 1.1420209e+00 + 1.5346400e+04 9.3202402e-01 + 1.5346800e+04 2.3204603e-01 + 1.5347200e+04 -6.2790497e-01 + 1.5347600e+04 -8.8792400e-01 + 1.5348000e+04 -2.2379888e+00 + 1.5348400e+04 -2.8479887e+00 + 1.5348800e+04 -2.7879874e+00 + 1.5349200e+04 -2.3180005e+00 + 1.5349600e+04 -1.7779794e+00 + 1.5350000e+04 -9.2796022e-01 + 1.5350400e+04 -6.7921390e-02 + 1.5350800e+04 4.7205340e-01 + 1.5351200e+04 8.5202527e-01 + 1.5351600e+04 1.1720222e+00 + 1.5352000e+04 1.7120580e+00 + 1.5352400e+04 2.1120860e+00 + 1.5352800e+04 2.4320661e+00 + 1.5353200e+04 2.0420792e+00 + 1.5353600e+04 1.7520737e+00 + 1.5354000e+04 1.9020448e+00 + 1.5354400e+04 1.9420562e+00 + 1.5354800e+04 1.8320591e+00 + 1.5355200e+04 1.4320468e+00 + 1.5355600e+04 7.4203412e-01 + 1.5356000e+04 5.7204810e-01 + 1.5356400e+04 -3.9281347e-01 + 1.5356800e+04 -1.8401864e+00 + 1.5357200e+04 -2.5579926e+00 + 1.5357600e+04 -2.5279914e+00 + 1.5358000e+04 -2.1980003e+00 + 1.5358400e+04 -1.7879785e+00 + 1.5358800e+04 -1.2979691e+00 + 1.5359200e+04 -8.3796494e-01 + 1.5359600e+04 -7.2805526e-01 + 1.5360000e+04 3.2206555e-01 + 1.5360400e+04 1.4020387e+00 + 1.5360800e+04 1.5720371e+00 + 1.5361200e+04 1.6620571e+00 + 1.5361600e+04 1.3220325e+00 + 1.5362000e+04 8.8202445e-01 + 1.5362400e+04 4.9203833e-01 + 1.5362800e+04 1.1206308e-01 + 1.5363200e+04 -1.6793038e-01 + 1.5363600e+04 -2.5764030e-01 + 1.5364000e+04 -2.2795024e-01 + 1.5364400e+04 -3.1795281e-01 + 1.5364800e+04 -3.1264466e-01 + 1.5365200e+04 -4.7145980e-01 + 1.5365600e+04 -7.1515386e-01 + 1.5366000e+04 -9.0864954e-01 + 1.5366400e+04 -9.4795147e-01 + 1.5366800e+04 -1.0279529e+00 + 1.5367200e+04 -1.3279700e+00 + 1.5367600e+04 -9.9795376e-01 + 1.5368000e+04 -6.4795636e-01 + 1.5368400e+04 -5.7795226e-01 + 1.5368800e+04 -3.3789873e-01 + 1.5369200e+04 -4.1791434e-01 + 1.5369600e+04 -6.6791967e-01 + 1.5370000e+04 -6.0794405e-01 + 1.5370400e+04 -4.0792934e-01 + 1.5370800e+04 -9.7933282e-02 + 1.5371200e+04 6.1651370e-01 + 1.5371600e+04 1.2315073e+00 + 1.5372000e+04 1.6315398e+00 + 1.5372400e+04 1.7122183e+00 + 1.5372800e+04 1.7920673e+00 + 1.5373200e+04 1.8442508e+00 + 1.5373600e+04 2.0999093e+00 + 1.5374000e+04 2.2487921e+00 + 1.5374400e+04 2.2905554e+00 + 1.5374800e+04 2.0620540e+00 + 1.5375200e+04 1.9320501e+00 + 1.5375600e+04 1.5420329e+00 + 1.5376000e+04 1.0920231e+00 + 1.5376400e+04 5.6203478e-01 + 1.5376800e+04 -3.7793841e-01 + 1.5377200e+04 -9.7796163e-01 + 1.5377600e+04 -1.3279700e+00 + 1.5378000e+04 -1.5479790e+00 + 1.5378400e+04 -1.2879686e+00 + 1.5378800e+04 -1.1871761e+00 + 1.5379200e+04 -1.1014972e+00 + 1.5379600e+04 -1.0348494e+00 + 1.5380000e+04 -1.0857325e+00 + 1.5380400e+04 -1.3179667e+00 + 1.5380800e+04 -1.6179831e+00 + 1.5381200e+04 -2.1280245e+00 + 1.5381600e+04 -2.5879982e+00 + 1.5382000e+04 -2.4079928e+00 + 1.5382400e+04 -2.2679886e+00 + 1.5382800e+04 -2.4079928e+00 + 1.5383200e+04 -2.8979819e+00 + 1.5383600e+04 -3.0079839e+00 + 1.5384000e+04 -2.5779923e+00 + 1.5384400e+04 -1.9079976e+00 + 1.5384800e+04 -1.1779775e+00 + 1.5385200e+04 7.2944051e-03 + 1.5385600e+04 1.6802318e+00 + 1.5386000e+04 3.2220758e+00 + 1.5386400e+04 4.4820427e+00 + 1.5386800e+04 5.0720297e+00 + 1.5387200e+04 5.3420236e+00 + 1.5387600e+04 4.8820426e+00 + 1.5388000e+04 3.7620538e+00 + 1.5388400e+04 2.3820393e+00 + 1.5388800e+04 1.1620245e+00 + 1.5389200e+04 3.0204686e-01 + 1.5389600e+04 -3.6788160e-01 + 1.5390000e+04 -6.7809323e-01 + 1.5390400e+04 -5.2792863e-01 + 1.5390800e+04 2.2107299e-02 + 1.5391200e+04 -5.7944370e-02 + 1.5391600e+04 -4.3791261e-01 + 1.5392000e+04 -6.7809323e-01 + 1.5392400e+04 -7.2805526e-01 + 1.5392800e+04 -5.4617920e-01 + 1.5393200e+04 -4.9833613e-01 + 1.5393600e+04 -3.0423142e-01 + 1.5394000e+04 -3.5877497e-01 + 1.5394400e+04 -1.8795954e-01 + 1.5394800e+04 -1.1794394e-01 + 1.5395200e+04 -3.3789873e-01 + 1.5395600e+04 -2.5764030e-01 + 1.5396000e+04 -3.1795281e-01 + 1.5396400e+04 -5.7795226e-01 + 1.5396800e+04 -7.9795095e-01 + 1.5397200e+04 -1.1680041e+00 + 1.5397600e+04 -1.6479873e+00 + 1.5398000e+04 -1.8879988e+00 + 1.5398400e+04 -1.9179998e+00 + 1.5398800e+04 -1.6679961e+00 + 1.5399200e+04 -1.2479471e+00 + 1.5399600e+04 -9.6645772e-01 + 1.5400000e+04 -4.6769709e-01 + 1.5400400e+04 -1.4094456e-01 + 1.5400800e+04 -1.3828561e-01 + 1.5401200e+04 -5.7795226e-01 + 1.5401600e+04 -9.8794051e-01 + 1.5402000e+04 -7.3795156e-01 + 1.5402400e+04 -5.0794468e-01 + 1.5402800e+04 -2.7785596e-01 + 1.5403200e+04 1.4205537e-01 + 1.5403600e+04 5.2204022e-01 + 1.5404000e+04 9.4202269e-01 + 1.5404400e+04 1.4220429e+00 + 1.5404800e+04 1.5120296e+00 + 1.5405200e+04 1.4819545e+00 + 1.5405600e+04 1.4420326e+00 + 1.5406000e+04 1.1720222e+00 + 1.5406400e+04 7.6202890e-01 + 1.5406800e+04 5.1206378e-01 + 1.5407200e+04 6.2089219e-02 + 1.5407600e+04 -1.4793481e-01 + 1.5408000e+04 -3.9788258e-01 + 1.5408400e+04 -5.7795226e-01 + 1.5408800e+04 -4.7795345e-01 + 1.5409200e+04 -3.4794578e-01 + 1.5409600e+04 1.1206308e-01 + 1.5410000e+04 6.4204993e-01 + 1.5410400e+04 1.3220325e+00 + 1.5410800e+04 1.8320591e+00 + 1.5411200e+04 1.5920678e+00 + 1.5411600e+04 2.1220723e+00 + 1.5412000e+04 1.7620604e+00 + 1.5412400e+04 1.6920680e+00 + 1.5412800e+04 1.4918961e+00 + 1.5413200e+04 7.1313847e-01 + 1.5413600e+04 1.8209100e-01 + 1.5414000e+04 5.1206378e-01 + 1.5414400e+04 5.7204810e-01 + 1.5414800e+04 1.5210861e-01 + 1.5415200e+04 -3.7793841e-01 + 1.5415600e+04 -1.3479652e+00 + 1.5416000e+04 -2.0379932e+00 + 1.5416400e+04 -2.3579927e+00 + 1.5416800e+04 -2.0980128e+00 + 1.5417200e+04 -1.9280037e+00 + 1.5417600e+04 -2.1079924e+00 + 1.5418000e+04 -2.4880084e+00 + 1.5418400e+04 -2.7279855e+00 + 1.5418800e+04 -2.8979819e+00 + 1.5419200e+04 -2.6979853e+00 + 1.5419600e+04 -2.0680008e+00 + 1.5420000e+04 -1.5279764e+00 + 1.5420400e+04 -1.0779475e+00 + 1.5420800e+04 -2.5764030e-01 + 1.5421200e+04 4.7205340e-01 + 1.5421600e+04 7.7203456e-01 + 1.5422000e+04 1.5920678e+00 + 1.5422400e+04 2.2220597e+00 + 1.5422800e+04 2.6720707e+00 + 1.5423200e+04 2.7920538e+00 + 1.5423600e+04 2.8519804e+00 + 1.5424000e+04 2.4420440e+00 + 1.5424400e+04 1.9220788e+00 + 1.5424800e+04 1.6620571e+00 + 1.5425200e+04 1.4720303e+00 + 1.5425600e+04 9.9202286e-01 + 1.5426000e+04 7.5202638e-01 + 1.5426400e+04 2.3204603e-01 + 1.5426800e+04 -3.5794544e-01 + 1.5427200e+04 -8.4793918e-01 + 1.5427600e+04 -1.1680041e+00 + 1.5428000e+04 -1.6377293e+00 + 1.5428400e+04 -1.5111250e+00 + 1.5428800e+04 -1.2270454e+00 + 1.5429200e+04 -7.0986971e-01 + 1.5429600e+04 -5.5733579e-01 + 1.5430000e+04 -7.2349860e-01 + 1.5430400e+04 -7.3724311e-01 + 1.5430800e+04 -5.2792863e-01 + 1.5431200e+04 -2.6729547e-01 + 1.5431600e+04 6.2089219e-02 + 1.5432000e+04 2.0205012e-01 + 1.5432400e+04 3.7205426e-01 + 1.5432800e+04 5.8204294e-01 + 1.5433200e+04 6.4204993e-01 + 1.5433600e+04 6.0204184e-01 + 1.5434000e+04 4.9203833e-01 + 1.5434400e+04 3.9204589e-01 + 1.5434800e+04 3.0204686e-01 + 1.5435200e+04 -3.7906644e-02 + 1.5435600e+04 -6.5791533e-01 + 1.5436000e+04 -1.0480194e+00 + 1.5436400e+04 -1.2479471e+00 + 1.5436800e+04 -1.6079854e+00 + 1.5437200e+04 -1.2479471e+00 + 1.5437600e+04 -8.8792400e-01 + 1.5438000e+04 -5.1794722e-01 + 1.5438400e+04 -1.7792291e-01 + 1.5438800e+04 -1.1794394e-01 + 1.5439200e+04 -1.9793843e-01 + 1.5439600e+04 -6.0794405e-01 + 1.5440000e+04 -9.1741873e-01 + 1.5440400e+04 -1.0452178e+00 + 1.5440800e+04 -1.1527994e+00 + 1.5441200e+04 -1.2755748e+00 + 1.5441600e+04 -1.4279701e+00 + 1.5442000e+04 -1.3879676e+00 + 1.5442400e+04 -1.1279484e+00 + 1.5442800e+04 -8.0796108e-01 + 1.5443200e+04 -7.0800718e-01 + 1.5443600e+04 -2.9751609e-01 + 1.5444000e+04 2.9205712e-01 + 1.5444400e+04 1.0220225e+00 + 1.5444800e+04 1.5120296e+00 + 1.5445200e+04 1.4819545e+00 + 1.5445600e+04 1.0239195e+00 + 1.5446000e+04 7.2388200e-01 + 1.5446400e+04 5.9656127e-01 + 1.5446800e+04 5.6422345e-01 + 1.5447200e+04 4.3952081e-01 + 1.5447600e+04 6.3279024e-01 + 1.5448000e+04 8.8156681e-01 + 1.5448400e+04 1.0820223e+00 + 1.5448800e+04 1.1420209e+00 + 1.5449200e+04 1.0820223e+00 + 1.5449600e+04 9.5202260e-01 + 1.5450000e+04 7.6202890e-01 + 1.5450400e+04 6.0204184e-01 + 1.5450800e+04 9.9202286e-01 + 1.5451200e+04 1.5120296e+00 + 1.5451600e+04 1.5920678e+00 + 1.5452000e+04 1.3720292e+00 + 1.5452400e+04 1.3020292e+00 + 1.5452800e+04 5.7204810e-01 + 1.5453200e+04 -2.9751609e-01 + 1.5453600e+04 -8.9796040e-01 + 1.5454000e+04 -1.2379549e+00 + 1.5454400e+04 -1.6479873e+00 + 1.5454800e+04 -2.0680008e+00 + 1.5455200e+04 -2.3779924e+00 + 1.5455600e+04 -2.5679859e+00 + 1.5456000e+04 -2.8879870e+00 + 1.5456400e+04 -3.2979776e+00 + 1.5456800e+04 -3.5979786e+00 + 1.5457200e+04 -3.2779799e+00 + 1.5457600e+04 -2.3279917e+00 + 1.5458000e+04 -1.0979503e+00 + 1.5458400e+04 3.4206066e-01 + 1.5458800e+04 1.2420228e+00 + 1.5459200e+04 2.2871111e+00 + 1.5459600e+04 2.5920736e+00 + 1.5460000e+04 1.6420441e+00 + 1.5460400e+04 7.7203456e-01 + 1.5460800e+04 1.8209100e-01 + 1.5461200e+04 -1.6793038e-01 + 1.5461600e+04 4.2043775e-02 + 1.5462000e+04 5.0204621e-01 + 1.5462400e+04 7.5202638e-01 + 1.5462800e+04 7.7900700e-01 + 1.5463200e+04 9.4207597e-01 + 1.5463600e+04 1.0220556e+00 + 1.5464000e+04 1.1854056e+00 + 1.5464400e+04 1.3120303e+00 + 1.5464800e+04 1.4520417e+00 + 1.5465200e+04 1.5220508e+00 + 1.5465600e+04 1.3920419e+00 + 1.5466000e+04 5.0204621e-01 + 1.5466400e+04 -3.5794544e-01 + 1.5466800e+04 -6.2790497e-01 + 1.5467200e+04 -1.0480194e+00 + 1.5467600e+04 -1.5579773e+00 + 1.5468000e+04 -1.6879813e+00 + 1.5468400e+04 -1.0779475e+00 + 1.5468800e+04 -5.4795215e-01 + 1.5469200e+04 -3.3789873e-01 + 1.5469600e+04 2.7204860e-01 + 1.5470000e+04 1.3820335e+00 + 1.5470400e+04 2.0330643e+00 + 1.5470800e+04 2.3347271e+00 + 1.5471200e+04 2.3703632e+00 + 1.5471600e+04 2.0938950e+00 + 1.5472000e+04 1.7720546e+00 + 1.5472400e+04 1.7220749e+00 + 1.5472800e+04 1.6420441e+00 + 1.5473200e+04 1.5520597e+00 + 1.5473600e+04 1.2720244e+00 + 1.5474000e+04 7.5202638e-01 + 1.5474400e+04 -1.6793038e-01 + 1.5474800e+04 -8.5792875e-01 + 1.5475200e+04 -1.6779892e+00 + 1.5475600e+04 -2.2979901e+00 + 1.5476000e+04 -2.6579893e+00 + 1.5476400e+04 -2.8579888e+00 + 1.5476800e+04 -2.6679854e+00 + 1.5477200e+04 -2.7161733e+00 + 1.5477600e+04 -2.5563916e+00 + 1.5478000e+04 -2.6984165e+00 + 1.5478400e+04 -2.4825523e+00 + 1.5478800e+04 -2.0779887e+00 + 1.5479200e+04 -2.1079924e+00 + 1.5479600e+04 -2.0779887e+00 + 1.5480000e+04 -1.6379936e+00 + 1.5480400e+04 -7.0800718e-01 + 1.5480800e+04 3.2206555e-01 + 1.5481200e+04 1.4020387e+00 + 1.5481600e+04 2.1870058e+00 + 1.5482000e+04 2.6905186e+00 + 1.5482400e+04 2.8067891e+00 + 1.5482800e+04 2.1299083e+00 + 1.5483200e+04 1.7620604e+00 + 1.5483600e+04 1.3120303e+00 + 1.5484000e+04 1.3720292e+00 + 1.5484400e+04 1.5820533e+00 + 1.5484800e+04 1.9820911e+00 + 1.5485200e+04 1.7520737e+00 + 1.5485600e+04 1.5520597e+00 + 1.5486000e+04 1.5220508e+00 + 1.5486400e+04 1.2120235e+00 + 1.5486800e+04 8.8202445e-01 + 1.5487200e+04 6.5203301e-01 + 1.5487600e+04 3.2206555e-01 + 1.5488000e+04 1.2211615e-01 + 1.5488400e+04 2.6205066e-01 + 1.5488800e+04 3.6204238e-01 + 1.5489200e+04 2.2208728e-01 + 1.5489600e+04 1.7205226e-01 + 1.5490000e+04 -2.3789972e-01 + 1.5490400e+04 -3.7793841e-01 + 1.5490800e+04 -7.2805526e-01 + 1.5491200e+04 -7.6795038e-01 + 1.5491600e+04 -1.1079527e+00 + 1.5492000e+04 -1.7379879e+00 + 1.5492400e+04 -1.9779908e+00 + 1.5492800e+04 -2.3279917e+00 + 1.5493200e+04 -2.0079871e+00 + 1.5493600e+04 -8.5792875e-01 + 1.5494000e+04 2.4205732e-01 + 1.5494400e+04 7.9202612e-01 + 1.5494800e+04 1.2320300e+00 + 1.5495200e+04 1.4120335e+00 + 1.5495600e+04 8.3202808e-01 + 1.5496000e+04 7.7809945e-02 + 1.5496400e+04 -8.8446626e-02 + 1.5496800e+04 -1.7933328e-01 + 1.5497200e+04 -7.9459382e-02 + 1.5497600e+04 -2.8776601e-01 + 1.5498000e+04 -4.4795051e-01 + 1.5498400e+04 -2.7785596e-01 + 1.5498800e+04 -3.3789873e-01 + 1.5499200e+04 -5.8795586e-01 + 1.5499600e+04 -7.8789954e-01 + 1.5500000e+04 -7.0800718e-01 + 1.5500400e+04 -7.5788750e-01 + 1.5500800e+04 -7.2805526e-01 + 1.5501200e+04 -6.8834082e-01 + 1.5501600e+04 -4.4795051e-01 + 1.5502000e+04 -3.6788160e-01 + 1.5502400e+04 -5.0794468e-01 + 1.5502800e+04 -3.4794578e-01 + 1.5503200e+04 9.2102893e-02 + 1.5503600e+04 6.1204809e-01 + 1.5504000e+04 8.4202595e-01 + 1.5504400e+04 1.2420228e+00 + 1.5504800e+04 1.6120454e+00 + 1.5505200e+04 2.1320535e+00 + 1.5505600e+04 1.9020448e+00 + 1.5506000e+04 1.5220508e+00 + 1.5506400e+04 1.0620224e+00 + 1.5506800e+04 5.9203021e-01 + 1.5507200e+04 -4.7925605e-02 + 1.5507600e+04 -6.7809323e-01 + 1.5508000e+04 -9.9795376e-01 + 1.5508400e+04 -1.3779617e+00 + 1.5508800e+04 -1.2679686e+00 + 1.5509200e+04 -1.1379607e+00 + 1.5509600e+04 -4.5791773e-01 + 1.5510000e+04 -2.7939982e-02 + 1.5510400e+04 6.9202713e-01 + 1.5510800e+04 1.5720371e+00 + 1.5511200e+04 2.3620504e+00 + 1.5511600e+04 2.5020791e+00 + 1.5512000e+04 2.7720590e+00 + 1.5512400e+04 2.6520582e+00 + 1.5512800e+04 1.4120335e+00 + 1.5513200e+04 1.4205537e-01 + 1.5513600e+04 -5.6266074e-01 + 1.5514000e+04 -9.4322142e-01 + 1.5514400e+04 -8.4098771e-01 + 1.5514800e+04 -3.2614890e-01 + 1.5515200e+04 1.6890842e-01 + 1.5515600e+04 3.8895482e-01 + 1.5516000e+04 -3.1802807e-02 + 1.5516400e+04 -3.4496086e-01 + 1.5516800e+04 -9.7796163e-01 + 1.5517200e+04 -1.2979691e+00 + 1.5517600e+04 -1.3679672e+00 + 1.5518000e+04 -1.5579773e+00 + 1.5518400e+04 -1.5879795e+00 + 1.5518800e+04 -1.7079889e+00 + 1.5519200e+04 -1.7379879e+00 + 1.5519600e+04 -1.6079854e+00 + 1.5520000e+04 -1.4079679e+00 + 1.5520400e+04 -1.3379653e+00 + 1.5520800e+04 -9.7796163e-01 + 1.5521200e+04 -4.7795345e-01 + 1.5521600e+04 1.2211615e-01 + 1.5522000e+04 5.4205480e-01 + 1.5522400e+04 6.4204993e-01 + 1.5522800e+04 8.9202409e-01 + 1.5523200e+04 1.6084284e+00 + 1.5523600e+04 1.7388857e+00 + 1.5524000e+04 1.6639504e+00 + 1.5524400e+04 1.2346921e+00 + 1.5524800e+04 5.2204022e-01 + 1.5525200e+04 4.0204772e-01 + 1.5525600e+04 1.9207561e-01 + 1.5526000e+04 1.5210861e-01 + 1.5526400e+04 4.0204772e-01 + 1.5526800e+04 3.0204686e-01 + 1.5527200e+04 6.2484422e-03 + 1.5527600e+04 -2.6380504e-02 + 1.5528000e+04 6.1929978e-02 + 1.5528400e+04 1.5285051e-01 + 1.5528800e+04 4.1207516e-01 + 1.5529200e+04 7.0203708e-01 + 1.5529600e+04 7.5202638e-01 + 1.5530000e+04 5.4205480e-01 + 1.5530400e+04 2.4205732e-01 + 1.5530800e+04 4.2043775e-02 + 1.5531200e+04 -2.8776601e-01 + 1.5531600e+04 -3.5794544e-01 + 1.5532000e+04 1.2048255e-02 + 1.5532400e+04 5.2204022e-01 + 1.5532800e+04 1.5820533e+00 + 1.5533200e+04 1.6820686e+00 + 1.5533600e+04 1.1820237e+00 + 1.5534000e+04 1.0420203e+00 + 1.5534400e+04 1.0920231e+00 + 1.5534800e+04 1.2120235e+00 + 1.5535200e+04 1.1220231e+00 + 1.5535600e+04 3.8208328e-01 + 1.5536000e+04 -1.4793481e-01 + 1.5536400e+04 -7.8789954e-01 + 1.5536800e+04 -1.5279764e+00 + 1.5537200e+04 -2.3279917e+00 + 1.5537600e+04 -2.8979819e+00 + 1.5538000e+04 -2.9879819e+00 + 1.5538400e+04 -2.6079898e+00 + 1.5538800e+04 -1.8779931e+00 + 1.5539200e+04 -1.5279764e+00 + 1.5539600e+04 -1.3679672e+00 + 1.5540000e+04 -1.7479808e+00 + 1.5540400e+04 -2.0680008e+00 + 1.5540800e+04 -1.8779931e+00 + 1.5541200e+04 -1.4779649e+00 + 1.5541600e+04 -7.2805526e-01 + 1.5542000e+04 -1.1794394e-01 + 1.5542400e+04 9.2102893e-02 + 1.5542800e+04 3.1207296e-01 + 1.5543200e+04 3.5207729e-01 + 1.5543600e+04 6.6203366e-01 + 1.5544000e+04 9.0202533e-01 + 1.5544400e+04 7.7203456e-01 + 1.5544800e+04 8.6202568e-01 + 1.5545200e+04 1.1520232e+00 + 1.5545600e+04 1.5220508e+00 + 1.5546000e+04 1.9820911e+00 + 1.5546400e+04 2.2620511e+00 + 1.5546800e+04 2.2920507e+00 + 1.5547200e+04 2.4820351e+00 + 1.5547600e+04 2.5220533e+00 + 1.5548000e+04 3.0420562e+00 + 1.5548400e+04 2.6520582e+00 + 1.5548800e+04 2.1820719e+00 + 1.5549200e+04 1.5820533e+00 + 1.5549600e+04 6.3203722e-01 + 1.5550000e+04 -1.0789555e-01 + 1.5550400e+04 -8.6725699e-01 + 1.5550800e+04 -1.4481444e+00 + 1.5551200e+04 -1.5921133e+00 + 1.5551600e+04 -1.8170632e+00 + 1.5552000e+04 -1.9855438e+00 + 1.5552400e+04 -1.9879924e+00 + 1.5552800e+04 -1.7679833e+00 + 1.5553200e+04 -1.6679961e+00 + 1.5553600e+04 -1.5279764e+00 + 1.5554000e+04 -1.7279909e+00 + 1.5554400e+04 -1.6079854e+00 + 1.5554800e+04 -7.8789954e-01 + 1.5555200e+04 -5.3794067e-01 + 1.5555600e+04 -4.4795051e-01 + 1.5556000e+04 -1.9793843e-01 + 1.5556400e+04 1.1206308e-01 + 1.5556800e+04 6.5203301e-01 + 1.5557200e+04 9.4202269e-01 + 1.5557600e+04 1.0720206e+00 + 1.5558000e+04 1.6220727e+00 + 1.5558400e+04 1.7420541e+00 + 1.5558800e+04 1.8520734e+00 + 1.5559200e+04 1.7620604e+00 + 1.5559600e+04 1.6120454e+00 + 1.5560000e+04 9.5202260e-01 + 1.5560400e+04 1.1693988e-01 + 1.5560800e+04 -1.2433484e+00 + 1.5561200e+04 -2.3399749e+00 + 1.5561600e+04 -3.1307449e+00 + 1.5562000e+04 -3.6252947e+00 + 1.5562400e+04 -3.7279788e+00 + 1.5562800e+04 -3.5179799e+00 + 1.5563200e+04 -2.9979824e+00 + 1.5563600e+04 -2.2880051e+00 + 1.5564000e+04 -1.4779649e+00 + 1.5564400e+04 -6.6791967e-01 + 1.5564800e+04 2.5209989e-01 + 1.5565200e+04 1.3720292e+00 + 1.5565600e+04 3.0920715e+00 + 1.5566000e+04 3.9520492e+00 + 1.5566400e+04 4.3820541e+00 + 1.5566800e+04 4.5220449e+00 + 1.5567200e+04 4.6320341e+00 + 1.5567600e+04 3.6820441e+00 + 1.5568000e+04 2.6820577e+00 + 1.5568400e+04 1.6420441e+00 + 1.5568800e+04 5.9203021e-01 + 1.5569200e+04 -3.7906644e-02 + 1.5569600e+04 -3.6788160e-01 + 1.5570000e+04 -6.8834082e-01 + 1.5570400e+04 -9.9795376e-01 + 1.5570800e+04 -1.3179667e+00 + 1.5571200e+04 -1.5579773e+00 + 1.5571600e+04 -1.4279701e+00 + 1.5572000e+04 -1.1779775e+00 + 1.5572400e+04 -9.0795135e-01 + 1.5572800e+04 -6.8834082e-01 + 1.5573200e+04 -7.2805526e-01 + 1.5573600e+04 -8.4793918e-01 + 1.5574000e+04 -7.6795038e-01 + 1.5574400e+04 -5.2792863e-01 + 1.5574800e+04 -2.2795024e-01 + 1.5575200e+04 -1.4793481e-01 + 1.5575600e+04 8.2076153e-02 + 1.5576000e+04 4.4206085e-01 + 1.5576400e+04 8.3202808e-01 + 1.5576800e+04 1.1920264e+00 + 1.5577200e+04 8.3202808e-01 + 1.5577600e+04 3.6204238e-01 + 1.5578000e+04 -6.9815523e-01 + 1.5578400e+04 -9.3795472e-01 + 1.5578800e+04 -8.6796044e-01 + 1.5579200e+04 -9.9795376e-01 + 1.5579600e+04 -8.4793918e-01 + 1.5580000e+04 -4.7795345e-01 + 1.5580400e+04 4.7205340e-01 + 1.5580800e+04 6.6203366e-01 + 1.5581200e+04 7.7203456e-01 + 1.5581600e+04 7.1203160e-01 + 1.5582000e+04 2.4205732e-01 + 1.5582400e+04 8.5860410e-02 + 1.5582800e+04 -6.8182659e-02 + 1.5583200e+04 -9.4307162e-02 + 1.5583600e+04 -2.4618205e-01 + 1.5584000e+04 -3.9638642e-01 + 1.5584400e+04 -3.2886143e-01 + 1.5584800e+04 -2.0430460e-01 + 1.5585200e+04 2.4205732e-01 + 1.5585600e+04 6.1204809e-01 + 1.5586000e+04 8.1202616e-01 + 1.5586400e+04 6.7204601e-01 + 1.5586800e+04 1.5210861e-01 + 1.5587200e+04 -1.7792291e-01 + 1.5587600e+04 -3.4794578e-01 + 1.5588000e+04 -6.7809323e-01 + 1.5588400e+04 -3.2793826e-01 + 1.5588800e+04 -2.2795024e-01 + 1.5589200e+04 -7.3795156e-01 + 1.5589600e+04 -1.0879288e+00 + 1.5590000e+04 -1.2579708e+00 + 1.5590400e+04 -1.3179667e+00 + 1.5590800e+04 -7.2805526e-01 + 1.5591200e+04 1.2048255e-02 + 1.5591600e+04 7.5202638e-01 + 1.5592000e+04 2.0820841e+00 + 1.5592400e+04 3.1420471e+00 + 1.5592800e+04 3.6328102e+00 + 1.5593200e+04 3.5220573e+00 + 1.5593600e+04 2.9920635e+00 + 1.5594000e+04 2.0887668e+00 + 1.5594400e+04 8.3202808e-01 + 1.5594800e+04 -3.3789873e-01 + 1.5595200e+04 -1.1179195e+00 + 1.5595600e+04 -2.3579927e+00 + 1.5596000e+04 -2.8679834e+00 + 1.5596400e+04 -3.0479837e+00 + 1.5596800e+04 -2.7279855e+00 + 1.5597200e+04 -2.2280050e+00 + 1.5597600e+04 -1.4379712e+00 + 1.5598000e+04 -2.7785596e-01 + 1.5598400e+04 5.2204022e-01 + 1.5598800e+04 1.0220225e+00 + 1.5599200e+04 1.0943089e+00 + 1.5599600e+04 1.0254654e+00 diff --git a/wafo/data/info.py b/wafo/data/info.py new file mode 100755 index 0000000..83dc599 --- /dev/null +++ b/wafo/data/info.py @@ -0,0 +1,442 @@ +""" +Data package in WAFO Toolbox. + +Contents +-------- +atlantic - Significant wave-height data recorded in the Atlantic Ocean +gfaks89 - Surface elevation measured at Gullfaks C 24.12.1989 +gfaksr89 - Reconstructed surface elevation measured at Gullfaks C 24.12.1989. +japansea - coastline map of The Japan Sea +northsea - coastline map of The Nortsea +sea - Surface elevation dataset used in WAT version 1.1. +sfa89 - Wind measurements at Statfjord A 24.12.1989 +sn - Fatigue experiment, constant-amplitude loading. +yura87 - Surface elevation measured off the coast of Yura + + + +This module gives gives detailed information and easy access to all datasets +included in WAFO + +""" +#from pylab import load +#from scipy.io import read_array +from numpy import (loadtxt,nan) +import os +__path2data = os.path.dirname( os.path.realpath(__file__)) + +__all__ =['atlantic','gfaks89','gfaksr89','japansea','northsea','sea','sfa89', + 'sn','yura87'] + +def _load(file): + """ local load function + """ + return loadtxt(os.path.join(__path2data,file)) + +def _tofloat(x): + if x=='nan' or x=='NaN': + y = nan + else: + y = float(x or 0) + return y +def _loadnan(file): + """ local load function accepting nan's + """ + myconverter = {0: _tofloat, 1: _tofloat} + return loadtxt(os.path.join(__path2data,file),converters=myconverter) + +def atlantic(): + """ + Return Significant wave-height data recorded in the Atlantic Ocean + + Data summary + ------------ + Size : 582 X 1 + Sampling Rate : ~ 14 times a month + Device : + Source : + Format : ascii + + Description + ------------ + atlantic.dat contains average significant wave-height data recorded + approximately 14 times a month in December-February during 7 years and + at 2 locations in the Atlantic Ocean + + Example + -------- + >>> import pylab + >>> import wafo + >>> Hs = wafo.data.atlantic() + >>> h = pylab.plot(Hs) + + Acknowledgement: + --------------- + This dataset were made available by Dr. David Carter + and Dr. David Cotton, Satellite Observing Systems, UK. + """ + return _load('atlantic.dat') +def gfaks89(): + """ + Return Surface elevation measured at Gullfaks C 24.12.1989 + + Data summary + ------------ + Size : 39000 X 2 + Sampling Rate : 2.5 Hz + Device : EMI laser + Source : STATOIL + Format : ascii, c1: time c2: surface elevation + + Description + ------------ + The wave data was measured 24th December 1989 at the Gullfaks C platform + in the North Sea from 17.00 to 21.20. The period from 20.00 to 20.20 + is missing and contains NaNs. The water depth of 218 m is + regarded as deep water for the most important wave components. + There are two EMI laser sensors named 219 and 220. This data set is + obtained from sensor 219, which is located in the Northwest + corner approximately two platform leg diameters away from + the closest leg. + Thus the wave elevation is not expected to be significantly + affected by diffraction effects for incoming waves in the western sector. + The wind direction for this period is from the south. + Some difficulties in calibration of the instruments have been reported + resulting in several consecutive measured values being equal or almost equal + in the observed data set. + + This dataset is for non-commercial use only. + + Hm0 = 6.8m, Tm02 = 8s, Tp = 10.5 + + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.gfaks89() + >>> h = pylab.plot(x[:,0],x[:,1]) + + Acknowledgement: + --------------- + This dataset were prepared and made available by Dr. S. Haver, + STATOIL, Norway + + See also + -------- + gfaksr89, northsea + + """ + return _loadnan('gfaks89.dat') +def gfaksr89(): + """ + Return a reconstruction of surface elevation measured at Gullfaks C 24.12.1989. + + + Data summary + ------------ + Size : 39000 X 2 + Sampling Rate : 2.5 Hz + Device : EMI laser + Source : STATOIL + Format : ascii, c1: time c2: surface elevation + + Description + ----------- + This is a reconstructed version of the data in the GFAKS89.DAT file. + The following calls were made to reconstruct the data: + + inds = findoutliers(gfaks89,.02,2,1.23); + gfaksr89 = reconstruct(gfaks89,inds,6); + + The wave data was measured 24th December 1989 at the Gullfaks C platform + in the North Sea from 17.00 to 21.20. The period from 20.00 to 20.20 + is missing in the original data. The water depth of 218 m is + regarded as deep water for the most important wave components. + There are two EMI laser sensors named 219 and 220. This data set is + obtained from sensor 219, which is located in the Northwest + corner approximately two platform leg diameters away from + the closest leg. + Thus the wave elevation is not expected to be significantly + affected by diffraction effects for incoming waves in the western sector. + The wind direction for this period is from the south. + Some difficulties in calibration of the instruments have been reported + resulting in several consecutive measured values being equal or almost equal + in the observed data set. + + Hm0 = 6.8m, Tm02 = 8s, Tp = 10.5 + + + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.gfaksr89() + >>> h = pylab.plot(x[:,0],x[:,1]) + + + See also + -------- + gfaks89 + """ + return _loadnan('gfaksr89.dat') +def japansea(): + """ + Return coastline map of The Japan Sea + + + Data summary + ------------ + Size : 692 X 2 + Sampling Rate : + Device : + Source : http://crusty.er.usgs.gov/coast/getcoast.html + Format : ascii, c1: longitude c2: latitude + + Description + ----------- + JAPANSEA.DAT contains data for plotting a map of The Japan Sea. + The data is obtained from USGS coastline extractor. + + Example: + ------- + #the map is seen by + + >>> import pylab + >>> import wafo + >>> map1 = wafo.data.japansea() + >>> h = pylab.plot(map1[:,0],map1[:,1]) + >>> lon_loc = [131,132,132,135,139.5,139] + >>> lat_loc = [46, 43, 40, 35, 38.3, 35.7] + >>> loc = ['China','Vladivostok','Japan Sea', 'Japan', 'Yura','Tokyo'] + >>> algn = 'right' + >>> for lon, lat, name in zip(lon_loc,lat_loc,loc): + pylab.text(lon,lat,name,horizontalalignment=algn) + + + # If you have the m_map toolbox (see http://www.ocgy.ubc.ca/~rich/): + m_proj('lambert','long',[130 148],'lat',[30 48]); + m_line(map(:,1),map(:,2)); + m_grid('box','fancy','tickdir','out'); + m_text(131,46,'China'); + m_text(132,43,'Vladivostok'); + m_text(132,40,'Japan Sea'); + m_text(135,35,'Japan'); + m_text(139.5,38.3,'Yura'); + m_text(139,35.7,'Tokyo'); + """ + return _loadnan('japansea.dat') +def northsea(): + """ + NORTHSEA coastline map of The Nortsea + + Data summary + ------------- + Size : 60646 X 2 + Sampling Rate : + Device : + Source : http://crusty.er.usgs.gov/coast/getcoast.html + Format : ascii, c1: longitude c2: latitude + + Description + ----------- + NORTHSEA.DAT contains data for plotting a map of The Northsea. + The data is obtained from USGS coastline extractor. + + Example + ------- + # the map is seen by + + >>> import pylab + >>> import wafo + >>> map1 = wafo.data.northsea() + >>> h = pylab.plot(map1[:,0],map1[:,1]) + >>> lon_pltfrm = [1.8, 2.3, 2., 1.9, 2.6] + >>> lat_pltfrm = [61.2, 61.2, 59.9, 58.4, 57.7] + >>> pltfrm = ['Statfjord A', 'Gullfaks C', 'Frigg', 'Sleipner', 'Draupner'] + >>> h = pylab.scatter(lon_pltfrm,lat_pltfrm); + >>> algn = 'right' + >>> for lon, lat, name in zip(lon_pltfrm,lat_pltfrm,pltfrm): + pylab.text(lon,lat,name,horizontalalignment=algn); algn = 'left' + + + >>> lon_city = [10.8, 10.8, 5.52, 5.2] + >>> lat_city = [59.85, 63.4, 58.9, 60.3] + >>> city = ['Oslo','Trondheim','Stavanger', 'Bergen'] + >>> h = pylab.scatter(lon_city,lat_city); + >>> algn = 'right' + >>> for lon, lat, name in zip(lon_city,lat_city,city): + pylab.text(lon,lat,name,horizontalalignment=algn) + + # If you have the mpl_toolkits.basemap installed + >>> from mpl_toolkits.basemap import Basemap + >>> import matplotlib.pyplot as plt + + # setup Lambert Conformal basemap. + >>> m = Basemap(width=1200000,height=900000,projection='lcc', + resolution='f',lat_1=56.,lat_2=64,lat_0=58,lon_0=5.) + >>> m.drawcoastlines() + >>> h = m.scatter(lon_pltfrm,lat_pltfrm); + >>> algn = 'right' + >>> for lon, lat, name in zip(lon_pltfrm,lat_pltfrm,pltfrm): + m.text(lon,lat,name,horizontalalignment=algn); algn = 'left' + >>> m.scatter(lon_city,lat_city) + >>> algn = 'right' + >>> for lon, lat, name in zip(lon_city,lat_city,city): + m.text(lon,lat,name,horizontalalignment=algn) + """ + return _loadnan('northsea.dat') +def sea(): + """ + Return Surface elevation dataset used in WAT version 1.1. + + Data summary + ------------ + Size : 9524 X 2 + Sampling Rate : 4.0 Hz + Device : unknown + Source : unknown + Format : ascii, c1: time c2: surface elevation + + Description + ----------- + The wave data was used in one of WAFO predecessors, i.e. the Wave + Analysis Toolbox version 1.1 (WAT) + Hm0 = 1.9m, Tm02 = 4.0s, Tp2 = 11.5s Tp1=5.6s + + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.sea() + >>> h = pylab.plot(x[:,0],x[:,1]) + """ + return _load('sea.dat') +def sfa89(): + """ + Return Wind measurements at Statfjord A 24.12.1989 + + Data summary + ------------ + Size : 144 X 3 + Sampling Rate : 1/600 Hz + Device : + Source : DNMI (The Norwegian Meteorological Institute) + Format : ascii, c1: time (hours) + c2: velocity (m/s) + c3: direction (degrees) + Description + ----------- + The registration of wind speeds at the Gullfaks field + started up on Statfjord A in 1978 and continued until 1990. + The dataregistration was transferred to Gullfaks C in Nov 1989. + Due to some difficulties of the windregistration on Gullfaks C in + the beginning, they continued to use the registered data from + Statfjord A. + The windspeed is measured in (meter/second), 110 m above mean water + level (MWL) and the wind direction is given in degrees for the data. + The data are a mean value of every 10 minutes. + Wind directions are defined in the meteorological convention, i.e., + 0 degrees = wind approaching from North, 90 degrees = wind from East, etc. + This dataset is for non-commercial use only. + + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.sfa89() + >>> h = pylab.plot(x[:,0],x[:,1]) + + Acknowledgement + ---------------- + These data are made available by Knut A. Iden, DNMI. + + See also + -------- + northsea + """ + return _load('sfa89.dat') +def sn(): + """ + Return SN Fatigue experiment, constant-amplitude loading. + + + Data summary + ------------ + Size : 40 X 2 + Source : unknown + Format : ascii, c1: Amplitude MPa c2: Number of cycles + + Description + ----------- + A fatigue experiment with constant amplitudes at five levels: + 10,15,20,25 and 30 MPa. For each level is related 8 observations of + the number of cycles to failure. + + The origin of the data is unknown. + + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.sn() + >>> h = pylab.plot(x[:,0],x[:,1]) + + See also + -------- + The same data appear in the directory wdemos/itmkurs/ + as SN.mat. + + """ + return _load('sn.dat') +def yura87(): + """ + Return Surface elevation measured off the coast of Yura. + + + Data summary + ----------- + Size : 85547 X 4 + Sampling Rate : 1 Hz + Device : ultrasonic wave gauges + Source : SRI, Ministry of Transport, Japan + Format : ascii, c1: time (sec) c2-4: surface elevation (m) + + Description + ----------- + The wave data was measured at the Poseidon platform + in the Japan Sea from 24th November 1987 08.12 hours to 25th November + 1987 07.57 hours. Poseidon was located 3 km off the coast of Yura + in the Yamagata prefecture, in the Japan Sea during the measurements. + The most important wave components are to some extent influenced by the + water depth of 42 m. The data are measured with three ultrasonic wave + gauges located at the sea floor and the relative coordinates of the + gauges are as follows (x-axis points to the East, y-axis points to + the North): + X (m) Y (m) + c2: -4.93, 25.02 + c3: 5.80, 92.12 + c4: 0.00, 0.00 + + This dataset is for non-commercial use only. + + Hm0 = 5.1m, Tm02 = 7.7s, Tp = 12.8s + Example + ------- + >>> import pylab + >>> import wafo + >>> x = wafo.data.yura87() + >>> h = pylab.plot(x[:,0],x[:,1]) + + Acknowledgement: + ----------------- + This dataset were prepared and made available by Dr. Sc. H. Tomita, + Ship Research Institute, Ministry of Transport, Japan. + + See also + -------- + japansea + """ + return _load('yura87.dat') +if __name__=='__main__': + import doctest + doctest.testmod() \ No newline at end of file diff --git a/wafo/data/japansea.dat b/wafo/data/japansea.dat new file mode 100755 index 0000000..a9fc01f --- /dev/null +++ b/wafo/data/japansea.dat @@ -0,0 +1,692 @@ +nan nan +141.960057 40.022926 +142.058624 39.818752 +142.103214 39.640392 +142.157191 39.469073 +142.136070 39.332957 +142.070358 39.229696 +142.046890 39.074805 +141.927201 38.955116 +141.805166 38.948076 +141.727720 38.765023 +141.638541 38.542073 +141.638541 38.368408 +141.629153 38.316777 +141.396817 38.333205 +141.143358 38.194742 +141.054179 37.934243 +141.087034 37.671397 +141.143358 37.453142 +141.143358 37.143360 +141.164480 36.957960 +140.976733 36.826537 +140.854698 36.603588 +140.812455 36.533182 +140.756131 36.258603 +140.744396 35.944127 +140.887553 35.791583 +140.922756 35.683628 +140.767865 35.603836 +140.589505 35.359765 +140.479204 35.162631 +140.237480 35.007740 +nan nan +139.984022 35.233036 +140.016877 35.369152 +140.148300 35.495881 +140.192890 35.622610 +nan nan +139.972288 39.161638 +140.070855 39.323569 +140.138913 39.530091 +140.148300 39.750693 +140.016877 39.844567 +nan nan +140.237480 35.007740 +139.993409 34.862236 +139.951166 35.007740 +139.984022 35.233036 +nan nan +140.192890 35.622610 +139.951166 35.622610 +139.894842 35.451291 +139.805662 35.305788 +139.784541 35.153243 +139.653118 35.233036 +139.409047 35.261198 +139.298746 35.115694 +139.254156 34.918560 +139.209566 34.726119 +139.089878 34.618165 +138.956108 34.636940 +138.911518 34.871623 +138.946721 35.035902 +138.791830 35.052329 +138.625204 34.925600 +138.460926 34.763669 +138.348278 34.580616 +138.315422 34.554800 +138.195733 34.571228 +137.996252 34.608778 +137.731060 34.618165 +137.477602 34.618165 +137.256999 34.554800 +137.212409 34.554800 +137.278121 34.636940 +137.388422 34.709692 +137.266387 34.726119 +137.167820 34.744894 +137.113842 34.798871 +137.057518 34.709692 +136.935483 34.817646 +136.926096 35.017127 +136.836916 34.981924 +136.714880 34.754281 +136.628048 34.618165 +136.771204 34.536026 +136.968339 34.416337 +136.968339 34.179307 +136.836916 34.270833 +136.714880 34.216856 +136.583458 34.198081 +136.449688 34.134717 +136.372243 34.040844 +136.351121 33.977479 +136.229086 33.813201 +136.064807 33.555049 +135.853592 33.454135 +135.701048 33.498725 +135.579012 33.555049 +135.478098 33.702899 +135.290352 33.803813 +135.236374 33.977479 +135.248108 34.134717 +135.248108 34.261446 +135.334941 34.334198 +135.501567 34.564188 +135.522688 34.636940 +135.478098 34.662755 +135.325554 34.643980 +135.147195 34.608778 +134.926592 34.681530 +134.684868 34.726119 +134.464266 34.716732 +134.264785 34.580616 +134.142749 34.526638 +133.978471 34.435112 +133.955002 34.425725 +133.901025 34.463274 +133.835314 34.489089 +133.680423 34.444499 +133.579509 34.435112 +133.403496 34.371747 +133.281461 34.362360 +133.161772 34.308383 +133.016268 34.280221 +132.851990 34.233284 +132.664243 34.198081 +132.530473 34.298995 +132.420172 34.270833 +132.300484 34.015028 +132.244160 33.885952 +132.154980 33.867178 +131.924990 33.932889 +131.758365 34.005641 +131.570618 33.949317 +131.427461 33.949317 +131.338281 33.914114 +131.162269 33.968092 +130.986256 33.996254 +130.974522 34.207469 +130.997990 34.317770 +131.195124 34.362360 +131.460317 34.416337 +131.636329 34.571228 +131.814689 34.681530 +132.122124 34.827033 +132.321605 35.045289 +132.563329 35.179059 +132.718220 35.387927 +132.917701 35.486494 +133.138304 35.549859 +133.304929 35.521697 +133.459820 35.477107 +133.800111 35.505269 +134.077038 35.495881 +134.309374 35.540471 +134.583954 35.594448 +134.795169 35.631998 +134.959448 35.639038 +135.137807 35.693015 +135.325554 35.702403 +135.313820 35.559246 +135.412387 35.531084 +135.733903 35.477107 +135.820736 35.495881 +135.909916 35.568633 +136.031951 35.631998 +136.142253 35.693015 +136.142253 35.944127 +136.151640 36.176464 +136.440301 36.382985 +136.682025 36.631750 +136.836916 36.932144 +136.848650 37.143360 +136.893240 37.312332 +137.233531 37.469570 +137.388422 37.453142 +137.355566 37.312332 +137.212409 37.248967 +137.057518 37.126932 +137.036397 37.082342 +137.113842 36.915717 +137.113842 36.737357 +137.224144 36.727970 +137.433012 36.756132 +137.609025 36.906329 +137.853095 37.011937 +138.151144 37.091729 +138.470313 37.284170 +138.681528 37.453142 +138.836419 37.654970 +139.012432 37.847410 +139.233035 37.960058 +139.244769 37.969446 +139.254156 37.976486 +139.355070 37.976486 +139.507614 38.152499 +139.531083 38.307390 +139.575672 38.438813 +139.695361 38.628906 +139.850252 38.835428 +139.927698 38.997359 +139.972288 39.161638 +nan nan +140.016877 39.844567 +139.805662 39.912625 +139.906576 39.980683 +nan nan +138.604083 38.272187 +138.580614 38.098521 +138.625204 38.056278 +138.514903 37.812208 +138.360012 37.802820 +138.327156 37.950671 +138.449192 38.204129 +138.604083 38.272187 +nan nan +134.276519 33.268735 +134.065304 33.379036 +133.800111 33.454135 +133.570121 33.397811 +133.391762 33.296897 +133.293195 33.111497 +133.105448 32.879160 +133.084326 32.712535 +132.905967 32.693760 +132.751076 32.804061 +132.685365 32.879160 +132.553942 33.083335 +132.575063 33.167821 +132.509352 33.278122 +132.387316 33.360261 +132.223038 33.360261 +132.488230 33.536274 +132.697099 33.756876 +132.896580 33.977479 +133.105448 33.949317 +133.239218 33.895340 +133.436352 33.932889 +133.624099 34.005641 +133.689810 34.134717 +133.823580 34.226244 +133.933881 34.317770 +134.065304 34.334198 +134.264785 34.289608 +134.452531 34.198081 +134.619157 34.188694 +134.661400 33.996254 +134.717724 33.822588 +134.762314 33.803813 +134.771701 33.794426 +134.762314 33.766264 +134.652012 33.665350 +134.551098 33.618413 +134.452531 33.517499 +134.363352 33.369649 +134.276519 33.268735 +nan nan +135.060362 34.571228 +135.027506 34.526638 +134.872615 34.371747 +134.762314 34.207469 +134.872615 34.179307 +134.982916 34.226244 +135.004038 34.390522 +135.060362 34.571228 +nan nan +130.864220 33.876565 +130.920544 33.885952 +130.831365 33.895340 +130.676474 33.848403 +130.521583 33.721674 +130.423015 33.564436 +130.279859 33.564436 +130.178945 33.470563 +130.035788 33.416585 +nan nan +130.000000 32.676758 +130.146089 32.712535 +130.324448 32.628049 +130.411281 32.759472 +130.289246 32.813449 +130.235269 32.897935 +130.235269 33.083335 +130.333836 33.149046 +130.444137 32.944872 +130.577907 32.766512 +130.577907 32.599887 +130.622496 32.581112 +130.631884 32.581112 +130.622496 32.386325 +130.521583 32.179803 +130.401894 32.095317 +130.300980 31.935732 +130.289246 31.710436 +130.345570 31.464019 +130.289246 31.323208 +130.401894 31.229335 +130.655352 31.123727 +130.709329 31.341983 +130.631884 31.520343 +130.688208 31.663500 +130.852486 31.625950 +130.775041 31.569626 +130.753919 31.445244 +130.810243 31.248110 +130.810243 31.011079 +130.941666 31.048629 +131.096557 31.161277 +131.108291 31.304434 +131.251448 31.435857 +131.361750 31.388920 +131.483785 31.625950 +131.549496 31.879408 +131.615208 32.114092 +131.725509 32.386325 +131.835810 32.552950 +131.967233 32.712535 +132.023557 32.794674 +132.035291 32.841611 +132.023557 32.998849 +131.978967 33.073947 +131.924990 33.174861 +131.680919 33.221798 +131.648063 33.306284 +131.746630 33.517499 +131.692653 33.627801 +131.537762 33.583211 +131.239714 33.573823 +131.051967 33.766264 +131.040233 33.857790 +130.962788 33.857790 +130.864220 33.876565 +nan nan +130.146089 32.477851 +130.092112 32.358163 +130.080378 32.217353 +130.113233 32.142254 +130.247003 32.421527 +130.146089 32.477851 +nan nan +131.117679 30.630892 +131.084823 30.764662 +131.030846 30.630892 +130.962788 30.410290 +131.030846 30.344578 +131.117679 30.630892 +nan nan +130.545051 30.353966 +130.512195 30.410290 +130.455871 30.325804 +130.512195 30.210809 +130.676474 30.192034 +130.676474 30.325804 +130.545051 30.353966 +nan nan +130.897076 37.539975 +130.843099 37.495385 +130.843099 37.478957 +130.885342 37.453142 +130.974522 37.504772 +130.897076 37.539975 +nan nan +130.035788 33.416585 +130.000000 33.445983 +nan nan +142.678694 48.000000 +142.654720 47.880130 +142.666454 47.650140 +142.809611 47.448313 +142.952768 47.335665 +143.107659 47.194854 +143.140515 47.028229 +143.206226 46.915581 +143.307140 46.840482 +143.462031 46.772424 +143.516009 46.802933 +143.572333 46.755996 +143.626310 46.582330 +143.670900 46.415705 +143.649778 46.225612 +143.548864 46.070720 +143.494887 46.270201 +143.417442 46.537741 +143.173371 46.605799 +142.943381 46.687938 +142.699310 46.697325 +142.523297 46.558862 +142.434118 46.361728 +142.356672 46.148166 +142.258105 45.955725 +142.025768 46.049599 +141.969444 46.354687 +141.960057 46.657429 +142.025768 46.983639 +142.070358 47.194854 +142.091480 47.441272 +142.124335 47.671262 +142.157191 47.894211 +142.248875 48.000000 +nan nan +148.000000 44.948933 +147.909284 44.948933 +147.789595 44.885569 +147.679294 44.754146 +147.566646 44.697822 +147.435223 44.620376 +147.313188 44.524156 +147.214621 44.446711 +147.071464 44.446711 +147.125441 44.540584 +147.235742 44.650885 +147.280332 44.768227 +147.381246 44.801083 +147.590114 45.002910 +147.733271 45.113212 +147.864694 45.160148 +147.953874 45.291571 +148.000000 45.306694 +nan nan +146.937694 43.843574 +147.015140 43.820106 +146.928307 43.756741 +146.761682 43.691030 +146.663115 43.730926 +146.761682 43.796637 +146.937694 43.843574 +nan nan +146.210175 44.446711 +146.231297 44.486607 +146.287621 44.446711 +146.365066 44.399774 +146.419044 44.303554 +146.320477 44.249576 +146.120996 44.097032 +145.912127 43.939794 +145.724380 43.796637 +145.614079 43.667561 +145.536634 43.796637 +145.703259 43.946835 +145.900393 44.113460 +146.067018 44.280085 +146.144464 44.430283 +146.210175 44.446711 +nan nan +145.083695 44.066523 +145.149406 44.113460 +145.370008 44.256617 +145.447454 44.209680 +145.348887 44.003159 +145.182262 43.780209 +145.250320 43.620625 +145.426332 43.540832 +145.426332 43.339004 +145.646935 43.331964 +145.912127 43.404716 +145.813560 43.249825 +145.492044 43.146564 +145.226851 43.001060 +145.050839 42.977592 +144.952272 43.017488 +144.841970 42.904840 +144.508720 42.935349 +144.234140 42.911880 +143.957214 42.799232 +143.692021 42.538734 +143.516009 42.285275 +143.450297 42.048245 +143.328262 41.923863 +143.051335 42.081101 +142.842467 42.196096 +142.478708 42.294663 +142.180659 42.440166 +141.960057 42.529346 +141.650275 42.555161 +141.417938 42.473022 +141.253660 42.367415 +141.054179 42.383842 +140.845310 42.505878 +140.556650 42.489450 +140.404105 42.311091 +140.502672 42.153853 +140.702153 42.097529 +140.922756 42.015389 +141.110503 41.900394 +141.241925 41.808868 +141.176214 41.710301 +140.955612 41.726729 +140.788986 41.719688 +140.624708 41.635202 +140.523794 41.520207 +140.270336 41.388784 +140.138913 41.421640 +140.082589 41.562450 +140.160034 41.801827 +140.216358 41.982534 +140.028612 42.120997 +nan nan +139.927698 42.522306 +140.094323 42.660769 +140.326660 42.749949 +140.514407 42.904840 +140.568384 43.057384 +140.469817 43.162992 +140.514407 43.282680 +140.744396 43.242784 +140.964999 43.179420 +141.152746 43.179420 +141.363961 43.186460 +141.495384 43.378901 +141.462528 43.557260 +141.462528 43.716845 +141.596297 43.810718 +141.727720 44.043055 +141.739454 44.303554 +141.805166 44.547624 +141.870877 44.721290 +141.805166 44.862100 +141.727720 45.035766 +141.683130 45.160148 +141.694865 45.284531 +141.793432 45.354936 +141.903733 45.432381 +141.992913 45.462890 +142.124335 45.376057 +142.136070 45.361976 +142.180659 45.284531 +142.347285 45.190657 +142.490442 45.042807 +142.610130 44.918424 +142.765021 44.768227 +142.931647 44.643845 +143.140515 44.493647 +143.339996 44.383346 +143.516009 44.280085 +143.736611 44.193252 +143.936092 44.129888 +144.144960 44.082951 +144.332707 44.059483 +144.443009 43.970303 +144.654224 43.906938 +144.863092 43.939794 +145.083695 44.066523 +nan nan +141.241925 45.230553 +141.131624 45.167189 +141.241925 45.096784 +141.340492 45.089743 +141.363961 45.230553 +141.241925 45.230553 +nan nan +141.209070 41.372356 +141.230191 41.379397 +141.363961 41.372356 +141.485996 41.379397 +141.528239 41.280830 +141.518852 41.137673 +141.495384 40.947579 +141.518852 40.722283 +141.605685 40.501681 +141.793432 40.325668 +141.903733 40.130881 +141.960057 40.022926 +nan nan +139.906576 39.980683 +140.082589 40.182511 +140.070855 40.435969 +140.061467 40.611982 +140.148300 40.729324 +140.282070 40.787995 +140.314926 40.787995 +140.336047 40.863093 +140.347781 41.022678 +140.413493 41.130632 +140.547262 41.179916 +140.657563 41.071962 +140.744396 40.879521 +140.821842 40.797382 +140.943877 40.931151 +141.075300 40.888908 +141.197336 40.895949 +141.319371 41.088389 +141.331105 41.245627 +141.185601 41.156448 +140.943877 41.104817 +140.878166 41.264402 +140.943877 41.428681 +141.042444 41.454496 +141.209070 41.372356 +nan nan +132.729954 44.838632 +132.786278 44.909037 +132.828521 45.113212 +132.741689 45.244634 +132.521086 45.284531 +132.178448 45.237594 +132.089268 45.120252 +132.199570 44.941893 +132.199570 44.777614 +132.300484 44.667313 +132.476496 44.596908 +132.697099 44.681394 +132.729954 44.838632 +nan nan +139.676457 48.000000 +139.620262 47.962270 +139.420781 47.814419 +139.265890 47.619632 +139.122733 47.441272 +138.934986 47.291075 +138.747240 47.140877 +138.592349 46.960171 +138.538371 46.817014 +138.460926 46.643348 +138.404602 46.521313 +138.261445 46.324179 +138.139409 46.162247 +138.261445 46.392237 +138.172265 46.256120 +138.085432 46.110617 +137.885951 45.979194 +137.787384 45.817262 +137.587903 45.655331 +137.379035 45.509827 +137.212409 45.361976 +137.012928 45.230553 +136.869772 45.113212 +136.804060 45.035766 +136.682025 44.901997 +136.538868 44.808123 +136.395711 44.643845 +136.297144 44.500688 +136.097663 44.413855 +135.921650 44.289473 +135.776146 44.146316 +135.755025 44.033668 +135.632989 43.899898 +135.513301 43.763781 +135.346676 43.597156 +135.093217 43.404716 +134.872615 43.282680 +134.628544 43.162992 +134.330496 43.008101 +134.065304 42.846169 +133.877557 42.782804 +133.746134 42.782804 +133.546653 42.740561 +133.326051 42.677197 +133.105448 42.700665 +132.995147 42.749949 +132.929435 42.740561 +132.762810 42.829741 +132.563329 42.855556 +132.410785 42.846169 +132.377929 42.895452 +132.366195 43.033916 +132.399051 43.137177 +132.399051 43.242784 +132.288749 43.209928 +132.068147 43.090240 +132.002435 43.146564 +132.089268 43.282680 +131.934377 43.299108 +131.913256 43.418797 +131.847544 43.292068 +131.781833 43.106668 +131.648063 42.984632 +131.558884 42.928308 +131.504906 42.822701 +131.382871 42.740561 +131.284304 42.611485 +131.073089 42.611485 +130.908810 42.620873 +130.753919 42.595058 +130.810243 42.529346 +130.843099 42.423739 +130.622496 42.562202 +nan nan +140.028612 42.120997 +139.883108 42.212523 +139.894842 42.334559 +139.927698 42.522306 +nan nan +130.699942 42.374455 +130.732798 42.278235 +130.610762 42.301703 +130.476993 42.268848 +130.324448 42.130384 +130.103846 41.956718 +nan nan +130.103846 41.956718 +130.000000 41.866852 diff --git a/wafo/data/northsea.dat b/wafo/data/northsea.dat new file mode 100755 index 0000000..a28abc2 --- /dev/null +++ b/wafo/data/northsea.dat @@ -0,0 +1,60646 @@ +nan nan +1.261996 50.000000 +1.264064 50.002843 +1.268171 50.004603 +1.271985 50.006656 +1.275798 50.009003 +1.279025 50.011350 +1.283132 50.013403 +1.286946 50.015457 +1.289879 50.018097 +1.293986 50.019857 +1.297213 50.022497 +1.301027 50.024844 +1.304547 50.027191 +1.308361 50.029245 +1.311294 50.031885 +1.315401 50.033938 +1.318628 50.036285 +1.321855 50.038925 +1.325962 50.040979 +1.329775 50.043619 +1.333589 50.045672 +1.336816 50.048019 +1.340923 50.050366 +1.344737 50.052126 +1.349137 50.053886 +1.352950 50.055940 +1.357057 50.057700 +1.360871 50.060047 +1.364685 50.061807 +1.368498 50.064154 +1.372605 50.066207 +1.377006 50.067674 +1.380819 50.069727 +1.385513 50.071194 +1.389326 50.073248 +1.394020 50.074714 +1.397834 50.077061 +1.401647 50.078821 +1.405461 50.081168 +1.409568 50.082928 +1.412795 50.085569 +1.416608 50.087622 +1.420422 50.089676 +1.424529 50.091729 +1.427756 50.094076 +1.431569 50.096423 +1.435676 50.098476 +1.438903 50.100823 +1.441837 50.103463 +1.444770 50.106397 +1.447704 50.109037 +1.450637 50.112264 +1.452984 50.115197 +1.455918 50.118424 +1.458265 50.121064 +1.461198 50.124291 +1.462958 50.127812 +1.465012 50.131332 +1.467065 50.135146 +1.468239 50.138959 +1.469705 50.143066 +1.471172 50.146880 +1.472639 50.150987 +1.473519 50.155387 +1.474986 50.159201 +1.477333 50.162721 +1.478213 50.166828 +1.480560 50.170348 +1.482613 50.173868 +1.484373 50.177389 +1.487013 50.180615 +1.489654 50.183549 +1.492294 50.186776 +1.494934 50.189709 +1.497574 50.192643 +1.500214 50.195870 +1.502855 50.198803 +1.505495 50.202030 +1.509308 50.203790 +1.512535 50.206431 +1.516642 50.208191 +1.521043 50.209951 +1.525443 50.211711 +1.530137 50.213178 +1.534830 50.214645 +1.539524 50.216111 +1.544511 50.217285 +1.549205 50.218752 +1.555072 50.219338 +1.560645 50.218752 +1.566512 50.218752 +1.567686 50.215231 +1.570326 50.212298 +1.575020 50.210538 +1.579713 50.208777 +1.584407 50.207311 +1.588514 50.205257 +1.593208 50.203497 +1.598195 50.201737 +1.602888 50.199977 +1.608462 50.198803 +1.611982 50.197923 +1.616676 50.196457 +1.621370 50.194696 +1.625183 50.192643 +1.629877 50.191176 +1.634864 50.189123 +1.641024 50.188243 +1.645718 50.186776 +1.650412 50.185016 +1.656866 50.184136 +1.662733 50.184722 +1.668013 50.185896 +1.669480 50.189709 +1.670947 50.193816 +1.665373 50.194990 +1.658919 50.196163 +1.654225 50.197923 +1.652465 50.201150 +1.650118 50.203790 +1.646892 50.206431 +1.651292 50.208191 +1.657159 50.208484 +1.662439 50.209364 +1.666253 50.211711 +1.663906 50.214351 +1.659212 50.216111 +1.652172 50.216698 +1.645131 50.217285 +1.637798 50.217578 +1.630757 50.218165 +1.626943 50.219925 +1.623717 50.222858 +1.620490 50.225205 +1.617263 50.227845 +1.614036 50.230192 +1.611689 50.233126 +1.608462 50.235473 +1.606115 50.238700 +1.602888 50.241046 +1.600542 50.243980 +1.598781 50.247207 +1.596435 50.250140 +1.593501 50.251314 +1.590568 50.248674 +1.586461 50.250140 +1.582940 50.252487 +1.582354 50.256008 +1.582354 50.260408 +1.578833 50.262755 +1.573260 50.263048 +1.567979 50.262168 +1.562112 50.261581 +1.555365 50.261875 +1.551258 50.264221 +1.548031 50.266568 +1.545684 50.269502 +1.543044 50.272435 +1.540697 50.275369 +1.538350 50.278302 +1.535710 50.281236 +1.535124 50.285050 +1.534243 50.288570 +1.534830 50.292090 +1.536004 50.296490 +1.537470 50.300304 +1.538937 50.304411 +1.540404 50.308225 +1.540991 50.312918 +1.542164 50.317025 +1.543044 50.321719 +1.543924 50.326119 +1.544511 50.330813 +1.545391 50.335213 +1.546564 50.339320 +1.547151 50.344014 +1.548618 50.347827 +1.549498 50.352521 +1.550965 50.356335 +1.552725 50.359855 +1.555365 50.363082 +1.560059 50.364842 +1.565926 50.365135 +1.572086 50.365135 +1.577367 50.366309 +1.581474 50.368362 +1.585287 50.370416 +1.591154 50.370709 +1.598195 50.370416 +1.603768 50.369242 +1.610222 50.368362 +1.608462 50.370416 +1.606115 50.373643 +1.603475 50.376283 +1.602888 50.380390 +1.599661 50.382737 +1.592621 50.383323 +1.586754 50.383617 +1.581180 50.384790 +1.577367 50.386844 +1.573260 50.389190 +1.570033 50.391537 +1.566219 50.393591 +1.562699 50.396231 +1.560352 50.399164 +1.558885 50.402391 +1.558005 50.406205 +1.559179 50.410312 +1.560645 50.414126 +1.562699 50.417646 +1.564752 50.421459 +1.566219 50.425273 +1.567393 50.429380 +1.568859 50.433194 +1.569446 50.438181 +1.570326 50.442581 +1.570913 50.446981 +1.570913 50.450208 +1.572086 50.454315 +1.572673 50.459009 +1.572673 50.463116 +1.572673 50.467223 +1.573260 50.471623 +1.574140 50.476317 +1.574140 50.480424 +1.574140 50.484531 +1.574726 50.489224 +1.574726 50.493331 +1.574726 50.497438 +1.575313 50.501838 +1.576193 50.506532 +1.577073 50.511226 +1.576780 50.515333 +1.576780 50.519146 +1.577367 50.523840 +1.577367 50.527947 +1.577953 50.532641 +1.578833 50.537334 +1.581474 50.539975 +1.584700 50.542908 +1.590568 50.543201 +1.595555 50.541735 +1.601128 50.540268 +1.606115 50.541441 +1.606995 50.544962 +1.605235 50.548188 +1.602888 50.551122 +1.600248 50.554056 +1.597315 50.556696 +1.593794 50.559043 +1.590861 50.561683 +1.586754 50.563736 +1.582647 50.565790 +1.581180 50.569310 +1.579420 50.572537 +1.577660 50.575764 +1.577073 50.579577 +1.577073 50.583684 +1.577073 50.587791 +1.577367 50.592192 +1.577367 50.596299 +1.577367 50.599819 +1.576486 50.603339 +1.576486 50.607446 +1.577073 50.612140 +1.576193 50.615953 +1.576193 50.620060 +1.576193 50.624167 +1.576193 50.628274 +1.575313 50.632088 +1.575020 50.636195 +1.574140 50.639715 +1.573260 50.643529 +1.572380 50.647342 +1.571793 50.651156 +1.570913 50.654676 +1.570033 50.658490 +1.569153 50.662303 +1.568273 50.665824 +1.567393 50.669637 +1.566806 50.673451 +1.565926 50.677264 +1.565046 50.680785 +1.564166 50.684598 +1.563872 50.688705 +1.563872 50.692812 +1.563872 50.696919 +1.563872 50.701026 +1.564459 50.705720 +1.566806 50.709240 +1.568566 50.712760 +1.570619 50.716281 +1.572380 50.720094 +1.575313 50.723028 +1.577367 50.726255 +1.580007 50.729481 +1.583234 50.731828 +1.585874 50.735055 +1.588514 50.737989 +1.589981 50.742096 +1.592034 50.745909 +1.594088 50.749136 +1.595555 50.753243 +1.597608 50.757057 +1.598781 50.760870 +1.599368 50.765564 +1.600835 50.769378 +1.601715 50.774071 +1.602595 50.778472 +1.603182 50.783165 +1.603182 50.787272 +1.602302 50.791086 +1.602302 50.795193 +1.600542 50.798713 +1.600248 50.801647 +1.599368 50.805460 +1.598488 50.809274 +1.597021 50.812501 +1.595261 50.815728 +1.594381 50.819541 +1.592914 50.822768 +1.592034 50.826582 +1.590274 50.830102 +1.589394 50.833622 +1.587634 50.836849 +1.586167 50.840369 +1.584407 50.843596 +1.582647 50.846823 +1.581180 50.850344 +1.579713 50.853570 +1.577953 50.857091 +1.576486 50.860318 +1.576193 50.864425 +1.577367 50.868238 +1.580300 50.871465 +1.584994 50.872932 +1.590861 50.873519 +1.597608 50.873519 +1.602595 50.874692 +1.607289 50.876159 +1.612569 50.877332 +1.619023 50.877332 +1.624890 50.877919 +1.630170 50.878799 +1.634864 50.880266 +1.640144 50.881439 +1.644838 50.883199 +1.648652 50.884959 +1.652759 50.887013 +1.656572 50.889066 +1.660679 50.891120 +1.663906 50.893467 +1.667133 50.896107 +1.670653 50.898747 +1.673880 50.901387 +1.677107 50.904027 +1.680041 50.906961 +1.683267 50.909308 +1.686201 50.912535 +1.689428 50.914881 +1.692655 50.917522 +1.696175 50.919868 +1.699989 50.922215 +1.703802 50.924269 +1.707909 50.926029 +1.711430 50.928669 +1.715243 50.930723 +1.719057 50.932776 +1.722577 50.935416 +1.725804 50.937763 +1.729911 50.940110 +1.733431 50.942457 +1.737245 50.944510 +1.741058 50.946270 +1.745752 50.948031 +1.750446 50.949497 +1.755139 50.951257 +1.759833 50.952431 +1.764527 50.954191 +1.768927 50.955951 +1.774207 50.956538 +1.778901 50.958298 +1.783595 50.959765 +1.787995 50.961525 +1.792689 50.962698 +1.798556 50.963285 +1.804716 50.963872 +1.810583 50.964458 +1.815277 50.966218 +1.819677 50.967392 +1.824958 50.968565 +1.830238 50.969739 +1.834932 50.971206 +1.839625 50.972672 +1.843732 50.974726 +1.849013 50.975899 +1.853706 50.977366 +1.858987 50.978246 +1.864267 50.979126 +1.870134 50.979713 +1.875708 50.980300 +1.882455 50.980300 +1.888322 50.980886 +1.893016 50.982646 +1.897710 50.983820 +1.901523 50.986167 +1.906510 50.987633 +1.910324 50.989393 +1.915017 50.991154 +1.920298 50.992327 +1.925578 50.992914 +1.930859 50.994087 +1.936726 50.994674 +1.939659 50.993794 +1.940246 50.993500 +1.943473 50.995261 +1.949340 50.995554 +1.955207 50.996141 +1.961074 50.996727 +1.967235 50.997314 +1.973102 50.997901 +1.978382 50.998781 +1.983076 51.000248 +1.988356 51.001421 +1.993636 51.002301 +1.999504 51.002888 +2.005664 51.003475 +2.011531 51.003768 +2.017105 51.004355 +2.023265 51.004941 +2.029132 51.005528 +2.034999 51.005821 +2.040280 51.006995 +2.045854 51.008168 +2.051134 51.008755 +2.057001 51.009342 +2.064041 51.009048 +2.071375 51.008755 +2.078123 51.008755 +2.085163 51.008168 +2.091030 51.008755 +2.097777 51.009048 +2.103644 51.009342 +2.109805 51.009928 +2.115085 51.011102 +2.120366 51.012275 +2.124766 51.013742 +2.127699 51.014035 +2.132393 51.015209 +2.137673 51.016382 +2.142954 51.017556 +2.148234 51.018436 +2.153515 51.019316 +2.158795 51.020489 +2.164075 51.021369 +2.168769 51.023129 +2.173756 51.024303 +2.178156 51.026063 +2.182850 51.027530 +2.186957 51.029583 +2.191357 51.031050 +2.196051 51.032517 +2.200745 51.034277 +2.206025 51.035157 +2.211892 51.035450 +2.218053 51.036037 +2.223333 51.037210 +2.229200 51.037797 +2.235360 51.038090 +2.240641 51.039264 +2.246508 51.039850 +2.251788 51.040731 +2.257069 51.041611 +2.262349 51.042784 +2.267629 51.043664 +2.272910 51.044837 +2.278190 51.045718 +2.282884 51.047184 +2.287578 51.048944 +2.292858 51.049824 +2.298138 51.050705 +2.302832 51.052171 +2.308112 51.053345 +2.312806 51.054812 +2.318086 51.055692 +2.323367 51.056865 +2.329234 51.057452 +2.335101 51.056865 +2.339208 51.054812 +2.342141 51.052171 +2.348889 51.052171 +2.353582 51.053931 +2.359449 51.054518 +2.365316 51.053931 +2.371770 51.053051 +2.378811 51.052465 +2.384678 51.051878 +2.389958 51.053051 +2.395825 51.053638 +2.401106 51.054812 +2.407266 51.055105 +2.412547 51.055985 +2.417827 51.057158 +2.423107 51.058038 +2.427801 51.059799 +2.433081 51.060679 +2.437775 51.062145 +2.443055 51.063025 +2.448336 51.064199 +2.453029 51.065666 +2.457430 51.067132 +2.462710 51.068012 +2.468284 51.069186 +2.472684 51.070653 +2.477378 51.072119 +2.482365 51.073586 +2.487645 51.074760 +2.492339 51.076226 +2.497033 51.077693 +2.501433 51.079160 +2.507007 51.080333 +2.511407 51.081800 +2.516687 51.082680 +2.521381 51.084147 +2.526075 51.085614 +2.530768 51.087081 +2.535462 51.088547 +2.539862 51.090307 +2.541622 51.091187 +nan nan +2.541622 51.091187 +2.547783 51.092361 +2.550716 51.092361 +2.555410 51.094121 +2.560397 51.095588 +2.564211 51.097641 +2.568904 51.099108 +2.572718 51.101162 +2.577412 51.102922 +2.581812 51.104682 +2.585626 51.106735 +2.590319 51.108202 +2.594426 51.110255 +2.598827 51.111722 +2.602934 51.113482 +2.607921 51.115243 +2.611734 51.117296 +2.616428 51.118469 +2.621121 51.120230 +2.625228 51.122283 +2.629629 51.123750 +2.634029 51.125803 +2.638723 51.127270 +2.642536 51.129030 +2.647230 51.130790 +2.651924 51.132257 +2.655737 51.134311 +2.660431 51.135777 +2.664831 51.137831 +2.668645 51.139591 +2.673339 51.141351 +2.677446 51.143405 +2.682139 51.144578 +2.686246 51.146631 +2.690353 51.148978 +2.694167 51.150738 +2.698274 51.152792 +2.702967 51.154259 +2.707074 51.156312 +2.711768 51.157779 +2.716462 51.159246 +2.721155 51.160712 +2.725849 51.162179 +2.730249 51.163939 +2.734943 51.165406 +2.739637 51.166580 +2.744330 51.168340 +2.748731 51.170393 +2.753131 51.171567 +2.757238 51.173913 +2.761932 51.175380 +2.765745 51.177140 +2.770146 51.179194 +2.774839 51.180954 +2.778653 51.182714 +2.783346 51.184181 +2.787453 51.186234 +2.791267 51.187114 +2.794787 51.188874 +2.799188 51.190635 +2.803881 51.191808 +2.808575 51.193275 +2.812682 51.195622 +2.817376 51.197088 +2.822069 51.198262 +2.826176 51.200315 +2.830870 51.202075 +2.835564 51.203249 +2.840257 51.205009 +2.845538 51.206476 +2.850231 51.207649 +2.854338 51.209703 +2.859032 51.211463 +2.863139 51.213223 +2.867833 51.214690 +2.872526 51.216450 +2.876633 51.218210 +2.881033 51.219677 +2.885140 51.221730 +2.889541 51.223784 +2.894234 51.225250 +2.898048 51.227304 +2.902742 51.228477 +2.907435 51.230237 +2.911542 51.232291 +2.916236 51.233758 +2.920930 51.235224 +2.925037 51.237278 +2.929730 51.238745 +2.933837 51.240505 +2.938238 51.242265 +2.942638 51.244025 +2.946745 51.246079 +2.950558 51.248132 +2.955252 51.249599 +2.959359 51.251652 +2.963466 51.253706 +2.967573 51.255466 +2.971680 51.257519 +2.975494 51.259866 +2.979601 51.261626 +2.984001 51.263680 +2.988401 51.265147 +2.993095 51.266613 +2.997202 51.268667 +3.001895 51.270134 +3.006589 51.271600 +3.010696 51.273654 +3.015390 51.275121 +3.020083 51.276294 +3.025070 51.278348 +3.029764 51.280108 +3.033578 51.281868 +3.037685 51.283921 +3.042378 51.285388 +3.046485 51.287442 +3.050592 51.289495 +3.054699 51.291255 +3.058513 51.293309 +3.062913 51.295362 +3.067020 51.297416 +3.070834 51.299469 +3.074941 51.301523 +3.079048 51.303283 +3.083155 51.305336 +3.087262 51.307096 +3.091369 51.309443 +3.095182 51.311497 +3.099876 51.312670 +3.104276 51.314724 +3.108090 51.316777 +3.112783 51.318244 +3.117477 51.319711 +3.122171 51.321177 +3.126864 51.322644 +3.131558 51.324111 +3.137132 51.325284 +3.141532 51.326751 +3.147106 51.327631 +3.151800 51.329098 +3.155026 51.329685 +3.160307 51.330858 +3.165587 51.331738 +3.170281 51.332911 +3.174975 51.334672 +3.179668 51.336138 +3.184949 51.337312 +3.190522 51.338192 +3.195803 51.339072 +3.201083 51.339952 +3.206657 51.341125 +3.211351 51.342592 +3.216631 51.343472 +3.221911 51.344352 +3.227192 51.345232 +3.232765 51.346406 +3.238046 51.347286 +3.243326 51.348459 +3.248607 51.349046 +3.254180 51.350219 +3.259461 51.351099 +3.265621 51.351686 +3.270901 51.352566 +3.276769 51.353153 +3.281462 51.354326 +3.287623 51.354913 +3.292903 51.355793 +3.297597 51.357553 +3.302290 51.359020 +3.307571 51.359607 +3.312264 51.361367 +3.316958 51.362834 +3.322532 51.363714 +3.327812 51.364594 +3.333093 51.365474 +3.338666 51.366647 +3.344533 51.366941 +3.349227 51.368701 +3.354507 51.369581 +3.360081 51.370461 +3.364775 51.371928 +3.369469 51.373394 +3.374162 51.374861 +3.378856 51.376328 +3.383550 51.377795 +3.388243 51.379261 +3.392937 51.380728 +3.397337 51.382782 +3.402031 51.384249 +3.406725 51.385422 +3.410538 51.387769 +3.415232 51.389236 +3.419925 51.390702 +3.425499 51.391582 +3.431953 51.391289 +3.438113 51.391876 +3.443394 51.392756 +3.448968 51.393929 +3.454248 51.394809 +3.458942 51.396276 +3.464222 51.397156 +3.468916 51.398623 +3.473609 51.400383 +3.479183 51.400970 +3.483877 51.402436 +3.489157 51.403610 +3.493851 51.405077 +3.498544 51.406250 +3.503825 51.407423 +3.508519 51.408890 +3.514092 51.410357 +3.519373 51.411530 +3.525533 51.411530 +3.531694 51.412117 +3.538441 51.411824 +3.544601 51.411237 +3.550175 51.409770 +3.554282 51.407423 +3.558389 51.405370 +3.563962 51.404197 +3.568656 51.402143 +3.573643 51.400676 +3.578337 51.398623 +3.581270 51.395983 +3.584791 51.393636 +3.589484 51.391876 +3.596231 51.391582 +3.601219 51.391876 +3.607672 51.390702 +3.612366 51.389236 +3.617940 51.387769 +3.623513 51.386302 +3.629381 51.385129 +3.634074 51.383075 +3.639648 51.381608 +3.646102 51.380728 +3.652849 51.379848 +3.659303 51.378968 +3.666343 51.378381 +3.673677 51.377795 +3.680718 51.376915 +3.685411 51.375155 +3.690692 51.373688 +3.695385 51.371634 +3.699199 51.369581 +3.703306 51.367527 +3.707119 51.365180 +3.710346 51.362834 +3.714453 51.360487 +3.718267 51.358433 +3.721494 51.355793 +3.726187 51.354033 +3.730294 51.351980 +3.734988 51.349926 +3.740562 51.348753 +3.746429 51.348459 +3.753176 51.348166 +3.758750 51.346699 +3.764030 51.345232 +3.769311 51.345232 +3.772244 51.348459 +3.775764 51.350806 +3.780458 51.352273 +3.787205 51.352273 +3.791899 51.350513 +3.796593 51.348753 +3.802166 51.347286 +3.808033 51.345819 +3.814487 51.344939 +3.820941 51.343766 +3.826515 51.342592 +3.832675 51.341712 +3.840009 51.341125 +3.847343 51.340245 +3.854677 51.339659 +3.862011 51.339072 +3.867291 51.339952 +3.871398 51.342299 +3.874625 51.344352 +3.877852 51.347579 +3.881665 51.349339 +3.885772 51.351393 +3.889586 51.354033 +3.893399 51.355793 +3.897506 51.357847 +3.902200 51.359313 +3.906307 51.361367 +3.911587 51.362247 +3.916281 51.363714 +3.921268 51.364887 +3.926549 51.366061 +3.931829 51.366941 +3.937989 51.367527 +3.944736 51.367234 +3.950604 51.367821 +3.956177 51.368701 +3.961458 51.369581 +3.965565 51.371634 +3.968792 51.374274 +3.972018 51.376915 +3.974659 51.380142 +3.974659 51.384249 +3.974072 51.388062 +3.972899 51.391289 +3.971138 51.394809 +3.973192 51.398036 +3.977005 51.400676 +3.979059 51.404197 +3.981993 51.407130 +3.987273 51.408010 +3.992553 51.408010 +3.996660 51.406543 +4.002234 51.405370 +4.009568 51.404783 +4.016902 51.404197 +4.023355 51.403023 +4.029809 51.402143 +4.033623 51.400090 +4.036263 51.398330 +4.038610 51.395396 +4.041543 51.392756 +4.043304 51.389529 +4.045650 51.386595 +4.047704 51.383662 +4.051224 51.381022 +4.053278 51.378088 +4.055624 51.374861 +4.058558 51.372514 +4.062665 51.370167 +4.068239 51.368994 +4.073226 51.368114 +4.079680 51.366941 +4.085253 51.365474 +4.090827 51.364300 +4.096694 51.362834 +4.101388 51.361074 +4.106081 51.359313 +4.110775 51.357553 +4.115469 51.355500 +4.120456 51.354033 +4.126323 51.354326 +4.129256 51.357260 +4.130723 51.361367 +4.136004 51.361367 +4.140111 51.359313 +4.143044 51.356673 +4.146271 51.354033 +4.150378 51.351980 +4.155952 51.350513 +4.161232 51.350513 +4.161819 51.354033 +4.160352 51.357553 +4.158885 51.360780 +4.158298 51.364300 +4.160645 51.368114 +4.165339 51.369581 +4.170619 51.370167 +4.175900 51.371341 +4.181473 51.372221 +4.186754 51.373101 +4.192034 51.374274 +4.198195 51.374568 +4.205235 51.373981 +4.210809 51.372514 +4.214916 51.370167 +4.217556 51.368407 +4.219610 51.365180 +4.221076 51.361954 +4.224303 51.359313 +4.227530 51.356673 +4.231344 51.354326 +4.235157 51.352566 +4.239264 51.350219 +4.242491 51.347579 +4.245425 51.344939 +4.248652 51.342592 +4.251585 51.339952 +4.255105 51.337312 +4.257159 51.334378 +4.258626 51.331151 +4.260092 51.327631 +4.261559 51.324111 +4.262146 51.320591 +4.263613 51.317364 +4.266253 51.314137 +4.268306 51.311203 +4.271533 51.308563 +4.273587 51.305923 +4.277694 51.303576 +4.280921 51.300936 +4.285614 51.299176 +4.290308 51.297122 +4.295002 51.295655 +4.299989 51.293602 +4.304682 51.291842 +4.309376 51.290375 +4.312603 51.287442 +4.313190 51.283921 +4.310843 51.280401 +4.307909 51.277174 +4.305269 51.274534 +4.302335 51.271307 +4.299989 51.267787 +4.300575 51.264267 +4.304682 51.261920 +4.309669 51.261920 +4.311429 51.266027 +4.312603 51.270427 +4.315243 51.273654 +4.317590 51.276881 +4.321110 51.279521 +4.323750 51.282455 +4.326684 51.285388 +4.327857 51.290082 +4.325510 51.292722 +4.322577 51.295655 +4.318470 51.297709 +4.313483 51.299469 +4.307909 51.300936 +4.303216 51.302696 +4.298522 51.304456 +4.293828 51.306510 +4.289721 51.308270 +4.286788 51.311203 +4.284441 51.313843 +4.282974 51.317364 +4.282974 51.321471 +4.282387 51.325284 +4.282681 51.329391 +4.282681 51.333498 +4.282094 51.337312 +4.281801 51.341125 +4.280041 51.344352 +4.276814 51.346992 +4.273000 51.349046 +4.269186 51.351393 +4.265079 51.353740 +4.260973 51.355500 +4.258919 51.358727 +4.256572 51.361660 +4.255105 51.364887 +4.254519 51.368701 +4.253052 51.371928 +4.252172 51.375741 +4.251585 51.379555 +4.250412 51.383075 +4.248652 51.386302 +4.248065 51.390116 +4.246598 51.393342 +4.245718 51.397156 +4.245131 51.400970 +4.245425 51.405077 +4.244838 51.408890 +4.243371 51.412117 +4.237504 51.412411 +4.234864 51.409770 +4.232517 51.406250 +4.228410 51.404197 +4.223717 51.402730 +4.218143 51.401850 +4.212276 51.401263 +4.206702 51.402730 +4.202595 51.405077 +4.200248 51.408010 +4.194674 51.409477 +4.188514 51.408890 +4.183234 51.408010 +4.179127 51.406250 +4.175020 51.404197 +4.170913 51.402143 +4.167392 51.400676 +4.162699 51.399210 +4.157418 51.398330 +4.150965 51.398330 +4.144217 51.398330 +4.136884 51.399210 +4.130430 51.400090 +4.124269 51.400970 +4.117816 51.402143 +4.111068 51.403023 +4.105495 51.404490 +4.099921 51.405957 +4.094347 51.407130 +4.088774 51.408597 +4.083786 51.410650 +4.078213 51.411824 +4.072639 51.413291 +4.066479 51.414171 +4.062372 51.416517 +4.060025 51.419451 +4.058558 51.422678 +4.056211 51.425905 +4.051517 51.427372 +4.046530 51.429425 +4.042717 51.431479 +4.039490 51.434119 +4.036263 51.436759 +4.031569 51.438226 +4.025409 51.439399 +4.018662 51.440573 +4.012208 51.441453 +4.007514 51.443213 +4.003701 51.445266 +3.999300 51.447613 +3.995487 51.449667 +3.991673 51.452013 +3.987860 51.454067 +3.983753 51.456414 +3.978179 51.457880 +3.972899 51.456707 +3.968498 51.454654 +3.961458 51.455240 +3.954124 51.456120 +3.948550 51.454947 +3.943856 51.453480 +3.940630 51.451133 +3.935056 51.450253 +3.930362 51.448493 +3.927429 51.445853 +3.926549 51.442333 +3.928015 51.438812 +3.928895 51.434999 +3.927722 51.430598 +3.925668 51.427078 +3.922735 51.423851 +3.920095 51.421211 +3.917748 51.417398 +3.915694 51.413877 +3.913348 51.410650 +3.911001 51.406837 +3.908947 51.403610 +3.906600 51.400090 +3.903080 51.397449 +3.899853 51.395103 +3.893693 51.394809 +3.888119 51.395983 +3.880785 51.396569 +3.874625 51.395983 +3.869931 51.394223 +3.864357 51.393342 +3.858490 51.393049 +3.852623 51.392462 +3.847343 51.391582 +3.841182 51.390996 +3.835902 51.390409 +3.829742 51.389822 +3.822994 51.390116 +3.817421 51.391289 +3.812727 51.393049 +3.808033 51.394809 +3.803926 51.396863 +3.799233 51.398623 +3.795419 51.400970 +3.791019 51.403023 +3.787205 51.405370 +3.784858 51.408304 +3.781631 51.410944 +3.776938 51.412411 +3.769604 51.412997 +3.763443 51.414171 +3.756696 51.415051 +3.750829 51.414757 +3.744082 51.414757 +3.739388 51.416811 +3.735281 51.418571 +3.732348 51.421505 +3.729121 51.423851 +3.725894 51.426492 +3.722667 51.428838 +3.719440 51.431772 +3.716507 51.434119 +3.713280 51.436759 +3.710053 51.439106 +3.706826 51.441746 +3.703893 51.444386 +3.699786 51.446440 +3.695972 51.448493 +3.694212 51.452013 +3.693625 51.455827 +3.691278 51.458467 +3.686585 51.458174 +3.681891 51.456707 +3.677197 51.455240 +3.672504 51.453773 +3.667810 51.452013 +3.662823 51.450547 +3.658129 51.448786 +3.652849 51.447613 +3.648742 51.445560 +3.643462 51.444680 +3.637301 51.444093 +3.631141 51.443799 +3.625274 51.443213 +3.620580 51.442919 +3.613833 51.442919 +3.607379 51.442919 +3.600925 51.442919 +3.594178 51.442919 +3.586844 51.443506 +3.580390 51.443506 +3.573056 51.444386 +3.568069 51.446146 +3.563376 51.447906 +3.558682 51.449667 +3.552815 51.451133 +3.548121 51.452893 +3.543428 51.454360 +3.538441 51.456414 +3.533747 51.458174 +3.530520 51.460521 +3.528173 51.463748 +3.524946 51.466094 +3.522600 51.469028 +3.521133 51.472548 +3.519373 51.475775 +3.518199 51.479295 +3.516439 51.482522 +3.514092 51.485162 +3.510865 51.488096 +3.507638 51.490443 +3.503531 51.492790 +3.498838 51.494550 +3.495024 51.496603 +3.490917 51.498950 +3.486810 51.500710 +3.482117 51.502764 +3.478010 51.504817 +3.474196 51.506871 +3.470089 51.509217 +3.466862 51.511564 +3.463049 51.513911 +3.459822 51.516258 +3.456595 51.518898 +3.452488 51.521245 +3.449554 51.523592 +3.446034 51.526525 +3.443100 51.528872 +3.440460 51.531806 +3.440754 51.535913 +3.443687 51.538846 +3.446327 51.542073 +3.450141 51.544420 +3.453368 51.547060 +3.457475 51.548820 +3.461582 51.550874 +3.465102 51.553221 +3.469209 51.555274 +3.473316 51.557328 +3.477423 51.559088 +3.481530 51.561141 +3.485637 51.563195 +3.490331 51.564661 +3.494438 51.566715 +3.498544 51.568475 +3.503238 51.569942 +3.507052 51.572582 +3.510865 51.574342 +3.515852 51.576102 +3.519666 51.578156 +3.523773 51.579916 +3.528467 51.581383 +3.533747 51.583436 +3.538441 51.584610 +3.543134 51.586370 +3.547241 51.588423 +3.551055 51.590183 +3.555162 51.592237 +3.559856 51.593704 +3.564256 51.595464 +3.568950 51.597224 +3.574523 51.598104 +3.580390 51.598691 +3.586844 51.598397 +3.593005 51.598984 +3.599752 51.598984 +3.607086 51.598397 +3.612659 51.596930 +3.617646 51.594877 +3.622340 51.593410 +3.627914 51.592823 +3.634074 51.593410 +3.640235 51.593704 +3.646102 51.594290 +3.651675 51.594877 +3.657836 51.595464 +3.663116 51.596344 +3.669277 51.596930 +3.675144 51.597224 +3.680424 51.598397 +3.685705 51.599277 +3.691278 51.600157 +3.697145 51.600451 +3.703306 51.601037 +3.709760 51.599864 +3.714747 51.598397 +3.719440 51.596344 +3.725894 51.595464 +3.732641 51.595464 +3.737922 51.596344 +3.743202 51.597224 +3.748482 51.598397 +3.754643 51.598691 +3.760217 51.599864 +3.766084 51.599864 +3.772244 51.600451 +3.778405 51.600744 +3.783685 51.601917 +3.788965 51.602798 +3.794539 51.603971 +3.799819 51.604851 +3.805980 51.605144 +3.811847 51.605438 +3.818594 51.605438 +3.824461 51.605731 +3.830622 51.606318 +3.832675 51.606611 +3.832088 51.606611 +3.837369 51.606611 +3.842943 51.605144 +3.848516 51.603971 +3.854970 51.603091 +3.862597 51.602211 +3.868758 51.601331 +3.872865 51.599277 +3.872865 51.594877 +3.875798 51.592530 +3.879612 51.590183 +3.884599 51.588717 +3.889586 51.586663 +3.893399 51.584316 +3.895746 51.581676 +3.898093 51.578742 +3.899853 51.575222 +3.901907 51.572289 +3.903667 51.568768 +3.902787 51.565248 +3.899267 51.562901 +3.893986 51.562021 +3.889293 51.560554 +3.884305 51.559088 +3.880199 51.557328 +3.878145 51.553514 +3.874331 51.551167 +3.869638 51.549700 +3.870518 51.547060 +3.872865 51.543833 +3.876972 51.542367 +3.883719 51.542367 +3.889293 51.543247 +3.894573 51.544420 +3.900147 51.545300 +3.905134 51.546473 +3.910414 51.547354 +3.915988 51.547940 +3.921268 51.549114 +3.928602 51.548234 +3.934469 51.547060 +3.937696 51.545300 +3.940043 51.542367 +3.942390 51.539433 +3.945617 51.537086 +3.951190 51.535619 +3.958231 51.535033 +3.965858 51.534446 +3.972312 51.533273 +3.978472 51.532099 +3.984046 51.530926 +3.989913 51.529459 +3.995487 51.527992 +4.001061 51.526525 +4.006634 51.525352 +4.011621 51.523592 +4.016315 51.521538 +4.021009 51.520072 +4.025702 51.518311 +4.030689 51.516258 +4.035676 51.514791 +4.040370 51.512738 +4.044477 51.510684 +4.049171 51.508924 +4.051811 51.507751 +4.055918 51.505697 +4.058851 51.503057 +4.061492 51.500123 +4.064425 51.497483 +4.067359 51.495136 +4.069119 51.491616 +4.067945 51.486923 +4.067359 51.482522 +4.067652 51.478709 +4.071759 51.476655 +4.075866 51.474308 +4.078799 51.471668 +4.082026 51.469028 +4.084080 51.466388 +4.086720 51.463454 +4.088774 51.460227 +4.091120 51.457587 +4.093467 51.454360 +4.095814 51.451427 +4.099628 51.449080 +4.102561 51.447906 +4.107255 51.445853 +4.111068 51.443506 +4.116055 51.442039 +4.120749 51.439986 +4.125443 51.438226 +4.131897 51.437346 +4.139230 51.436759 +4.145978 51.435879 +4.152138 51.435586 +4.157712 51.436466 +4.162405 51.437932 +4.167686 51.438812 +4.173260 51.439692 +4.179127 51.440279 +4.185874 51.439986 +4.192328 51.439106 +4.198195 51.438519 +4.203475 51.439399 +4.208755 51.440573 +4.214329 51.439106 +4.218436 51.437052 +4.224303 51.435586 +4.231344 51.434705 +4.238091 51.434705 +4.243371 51.435586 +4.248065 51.437052 +4.252759 51.438519 +4.256866 51.440573 +4.260973 51.442626 +4.265373 51.444386 +4.271533 51.444680 +4.277107 51.445266 +4.281801 51.446733 +4.286201 51.448493 +4.289135 51.451720 +4.291481 51.454947 +4.292361 51.459347 +4.293242 51.464041 +4.293535 51.468441 +4.292655 51.471961 +4.292361 51.475775 +4.290895 51.479295 +4.289135 51.482522 +4.287081 51.485162 +4.284734 51.488389 +4.281801 51.490736 +4.278280 51.493670 +4.274467 51.495723 +4.271533 51.498363 +4.268893 51.501297 +4.269186 51.505404 +4.266840 51.508337 +4.262733 51.510684 +4.256279 51.511564 +4.250705 51.513031 +4.247185 51.513618 +4.241611 51.515085 +4.236917 51.516845 +4.231344 51.518311 +4.224597 51.519485 +4.219316 51.518311 +4.215209 51.516258 +4.209929 51.515671 +4.203768 51.515085 +4.199075 51.516845 +4.194088 51.518605 +4.188514 51.520072 +4.182940 51.521538 +4.178247 51.523298 +4.173553 51.525059 +4.168566 51.526819 +4.162112 51.527699 +4.155072 51.528579 +4.147738 51.529166 +4.140404 51.529752 +4.133950 51.530926 +4.128083 51.530339 +4.121923 51.530046 +4.115175 51.530046 +4.108722 51.530339 +4.101974 51.530339 +4.095227 51.530339 +4.089067 51.530046 +4.082906 51.530926 +4.078799 51.532979 +4.075866 51.535913 +4.072052 51.538260 +4.069412 51.541486 +4.066479 51.543833 +4.064132 51.547060 +4.060905 51.549407 +4.057678 51.552047 +4.053864 51.554101 +4.047117 51.555274 +4.040957 51.556154 +4.035970 51.557914 +4.033036 51.560554 +4.030689 51.563195 +4.028342 51.566422 +4.025116 51.568768 +4.021889 51.571702 +4.018075 51.573755 +4.013088 51.575516 +4.007514 51.576982 +4.001061 51.578156 +3.995487 51.579329 +3.992260 51.581969 +3.989913 51.584610 +3.990793 51.588423 +3.994313 51.590770 +3.998420 51.592823 +4.003114 51.594584 +4.008101 51.595757 +4.013381 51.596637 +4.018075 51.598104 +4.023649 51.599277 +4.027462 51.601037 +4.032449 51.602504 +4.037143 51.603971 +4.041837 51.605144 +4.047117 51.606318 +4.052104 51.607785 +4.057385 51.608665 +4.062078 51.610425 +4.067652 51.611011 +4.072932 51.611892 +4.079093 51.612478 +4.086427 51.611892 +4.090827 51.611305 +4.096401 51.610131 +4.101974 51.608665 +4.106961 51.606904 +4.111655 51.605144 +4.117229 51.603678 +4.122803 51.602211 +4.130136 51.601624 +4.136884 51.601624 +4.142751 51.601917 +4.148324 51.602798 +4.153605 51.603971 +4.159765 51.604264 +4.163579 51.605144 +4.169739 51.605438 +4.175313 51.604264 +4.178540 51.601624 +4.184114 51.600157 +4.190274 51.600744 +4.195848 51.599277 +4.196728 51.596344 +4.197315 51.592823 +4.199661 51.589597 +4.204355 51.588130 +4.208755 51.589890 +4.209342 51.594584 +4.208169 51.597810 +4.205822 51.600744 +4.202595 51.603384 +4.201128 51.606611 +4.198781 51.609838 +4.196435 51.612478 +4.192621 51.614825 +4.187634 51.616585 +4.182060 51.618052 +4.176193 51.617465 +4.170619 51.616585 +4.165926 51.615412 +4.159765 51.614825 +4.153898 51.614532 +4.146271 51.615118 +4.139817 51.615118 +4.134830 51.615998 +4.131603 51.618639 +4.129550 51.621572 +4.126910 51.624506 +4.123096 51.626559 +4.118402 51.628613 +4.113415 51.630373 +4.111949 51.633600 +4.110482 51.636827 +4.111362 51.641520 +4.113709 51.645041 +4.116642 51.647974 +4.116936 51.649734 +4.115762 51.651494 +4.112829 51.650614 +4.106081 51.650908 +4.103148 51.647681 +4.099628 51.645334 +4.096107 51.642694 +4.092000 51.640934 +4.088480 51.638293 +4.084373 51.636533 +4.080266 51.634480 +4.076159 51.632426 +4.071466 51.631253 +4.066479 51.629786 +4.060611 51.629199 +4.054451 51.628906 +4.049171 51.627733 +4.044184 51.626266 +4.038903 51.625679 +4.034210 51.624212 +4.029516 51.622452 +4.024529 51.620985 +4.019835 51.619812 +4.014555 51.618932 +4.008981 51.617759 +4.002234 51.618052 +3.995487 51.618052 +3.990206 51.617172 +3.985513 51.615412 +3.979939 51.614825 +3.974072 51.614238 +3.967618 51.614532 +3.963218 51.616585 +3.960284 51.619225 +3.957351 51.621572 +3.953830 51.624212 +3.950897 51.626853 +3.947377 51.629493 +3.942683 51.631253 +3.936523 51.630960 +3.930655 51.630079 +3.923322 51.630666 +3.916868 51.631253 +3.910414 51.632426 +3.903960 51.633600 +3.899267 51.635360 +3.896626 51.638293 +3.896040 51.641814 +3.895453 51.645921 +3.893986 51.649148 +3.891639 51.652081 +3.889293 51.655015 +3.885186 51.657361 +3.882252 51.659708 +3.881372 51.663229 +3.881665 51.667629 +3.879025 51.670562 +3.877558 51.672616 +3.872571 51.674376 +3.868758 51.674669 +3.863477 51.676136 +3.856730 51.676136 +3.849396 51.676723 +3.843529 51.678190 +3.838836 51.679950 +3.834729 51.682003 +3.832382 51.684937 +3.831795 51.688750 +3.828568 51.691391 +3.824755 51.693737 +3.820648 51.695498 +3.814194 51.696671 +3.807447 51.696671 +3.802753 51.695204 +3.799233 51.692857 +3.795712 51.690217 +3.792192 51.687870 +3.788085 51.685817 +3.783978 51.683763 +3.779285 51.682590 +3.774591 51.681123 +3.770191 51.679070 +3.766670 51.676723 +3.761977 51.674963 +3.756696 51.674083 +3.750536 51.673496 +3.744375 51.673203 +3.739095 51.672323 +3.732935 51.672029 +3.726481 51.672029 +3.720614 51.672616 +3.715040 51.673789 +3.709173 51.675256 +3.704479 51.677016 +3.700666 51.679070 +3.696265 51.681416 +3.693332 51.683763 +3.690692 51.686990 +3.687758 51.689337 +3.685998 51.692857 +3.685411 51.696378 +3.686291 51.701071 +3.686585 51.705178 +3.687465 51.709579 +3.689225 51.713685 +3.691278 51.717206 +3.693625 51.720726 +3.696265 51.723660 +3.700079 51.726006 +3.703306 51.728647 +3.707413 51.730700 +3.710640 51.731287 +3.714160 51.733927 +3.718854 51.735394 +3.723547 51.736567 +3.729121 51.737741 +3.734401 51.738621 +3.740562 51.739207 +3.747309 51.738914 +3.753763 51.738914 +3.759337 51.739794 +3.764030 51.741261 +3.768431 51.743314 +3.773124 51.744781 +3.777818 51.746248 +3.783978 51.746541 +3.790432 51.746248 +3.797766 51.745954 +3.805393 51.745368 +3.812434 51.744781 +3.818007 51.743314 +3.824755 51.742141 +3.830035 51.743314 +3.832088 51.745954 +3.833555 51.750061 +3.835315 51.753875 +3.837075 51.757982 +3.839129 51.761502 +3.842062 51.764436 +3.845583 51.767076 +3.850276 51.768249 +3.853797 51.770890 +3.858197 51.772650 +3.862304 51.774703 +3.864944 51.777637 +3.868758 51.780277 +3.871398 51.783210 +3.874038 51.786144 +3.875212 51.790838 +3.873745 51.794065 +3.871398 51.796998 +3.869051 51.800518 +3.867584 51.803745 +3.866118 51.807266 +3.865237 51.810786 +3.865531 51.814893 +3.867878 51.818706 +3.871985 51.820466 +3.876092 51.822520 +3.880785 51.823987 +3.886946 51.824573 +3.893106 51.824867 +3.898387 51.825747 +3.904547 51.826040 +3.910121 51.826920 +3.915401 51.828094 +3.920975 51.828974 +3.926255 51.829854 +3.931536 51.830734 +3.936523 51.832201 +3.941216 51.833667 +3.946790 51.834841 +3.951484 51.836014 +3.956177 51.837481 +3.960871 51.838948 +3.964098 51.840415 +3.969085 51.841881 +3.973779 51.843348 +3.978472 51.845108 +3.983459 51.846282 +3.989033 51.847162 +3.994900 51.847748 +4.001647 51.847455 +4.006634 51.846575 +4.010448 51.844522 +4.015435 51.842761 +4.019542 51.840415 +4.023649 51.838361 +4.027462 51.836014 +4.032156 51.834547 +4.035676 51.831907 +4.038610 51.829267 +4.042717 51.827214 +4.046237 51.825454 +4.055038 51.828974 +4.059731 51.830147 +4.064425 51.831614 +4.068532 51.833667 +4.079093 51.840415 +4.076746 51.843055 +4.073519 51.845695 +4.071172 51.848629 +4.068825 51.851562 +4.066772 51.854789 +4.064132 51.857429 +4.061198 51.860363 +4.057678 51.862710 +4.054744 51.865350 +4.051811 51.867697 +4.047411 51.870043 +4.044477 51.872390 +4.040370 51.874737 +4.036263 51.877084 +4.032449 51.879137 +4.029223 51.881778 +4.025996 51.884124 +4.025996 51.888231 +4.027756 51.892632 +4.030689 51.895272 +4.033623 51.898205 +4.036263 51.901432 +4.040077 51.903779 +4.043597 51.906419 +4.046530 51.909353 +4.050051 51.911700 +4.052104 51.915220 +4.049171 51.917860 +4.044184 51.919620 +4.041837 51.922554 +4.039490 51.925487 +4.037143 51.928714 +4.035970 51.931941 +4.034210 51.935168 +4.032743 51.938688 +4.031863 51.942209 +4.029809 51.945142 +4.028049 51.948662 +4.026582 51.951889 +4.025116 51.955410 +4.022769 51.958343 +4.021302 51.961570 +4.018955 51.964797 +4.016608 51.967437 +4.015142 51.970957 +4.013675 51.974184 +4.011915 51.977704 +4.012208 51.981811 +4.015142 51.984745 +4.018662 51.987092 +4.021009 51.987972 +nan nan +4.021009 51.987972 +4.024822 51.987972 +4.031569 51.987972 +4.038903 51.987385 +4.044477 51.986212 +4.051811 51.985332 +4.059145 51.984745 +4.066185 51.984745 +4.072639 51.984745 +4.079973 51.983865 +4.086720 51.983865 +4.093467 51.983865 +4.099334 51.984158 +4.104908 51.985038 +4.111068 51.985625 +4.115762 51.986798 +4.120749 51.988265 +4.125443 51.989732 +4.129843 51.992079 +4.133950 51.993839 +4.138057 51.995892 +4.141577 51.997946 +4.145978 51.999999 +4.149498 52.002640 +4.152725 52.004986 +4.155952 52.007920 +4.158592 52.011147 +4.161525 52.013787 +4.164459 52.017014 +4.166806 52.020534 +4.169739 52.023468 +4.172380 52.026401 +4.175606 52.029335 +4.178247 52.032562 +4.182060 52.034909 +4.185580 52.037549 +4.188221 52.040189 +4.192034 52.042829 +4.196141 52.044589 +4.199661 52.047816 +4.203475 52.050163 +4.206409 52.053097 +4.209636 52.055443 +4.212862 52.058670 +4.215503 52.061604 +4.219023 52.063951 +4.222836 52.066297 +4.225477 52.069524 +4.228704 52.072458 +4.232224 52.075098 +4.234864 52.077738 +4.238091 52.080965 +4.240731 52.083899 +4.244545 52.086246 +4.247478 52.089472 +4.250705 52.091526 +4.253932 52.094753 +4.257452 52.097100 +4.260386 52.100327 +4.263906 52.102673 +4.267426 52.105020 +4.271240 52.107367 +4.273880 52.110594 +4.277400 52.112941 +4.281214 52.115581 +4.284734 52.117928 +4.287961 52.120568 +4.291775 52.122915 +4.294708 52.125848 +4.298229 52.128195 +4.301749 52.130835 +4.305269 52.133476 +4.308789 52.135822 +4.311723 52.137876 +4.315243 52.140223 +4.318763 52.142863 +4.322284 52.145210 +4.326391 52.147263 +4.329911 52.149610 +4.333724 52.151957 +4.337245 52.154304 +4.340765 52.156944 +4.344872 52.158997 +4.348685 52.161344 +4.352206 52.163984 +4.355139 52.166918 +4.358660 52.169558 +4.362180 52.171612 +4.365113 52.174839 +4.368634 52.177185 +4.371567 52.180412 +4.374501 52.183053 +4.377434 52.185986 +4.381248 52.189213 +4.384181 52.191853 +4.386822 52.195080 +4.390048 52.198014 +4.393569 52.200654 +4.396502 52.203294 +4.400023 52.205934 +4.402956 52.208868 +4.405303 52.212095 +4.408823 52.214735 +4.411757 52.217668 +4.414690 52.220895 +4.417917 52.223535 +4.420557 52.226762 +4.423198 52.230283 +4.425838 52.233216 +4.428771 52.236150 +4.431118 52.239670 +4.433465 52.243190 +4.435812 52.246710 +4.438745 52.249644 +4.441679 52.252577 +4.444026 52.256098 +4.446079 52.259325 +4.448719 52.263138 +4.451360 52.266072 +4.454000 52.269299 +4.455466 52.273699 +4.458693 52.276926 +4.460747 52.280446 +4.463094 52.283966 +4.465441 52.287487 +4.468374 52.290420 +4.470721 52.293940 +4.473068 52.297461 +4.474828 52.301274 +4.476881 52.305088 +4.479522 52.308315 +4.481575 52.311835 +4.483629 52.313595 +4.486269 52.316529 +4.489496 52.319462 +4.491549 52.322983 +4.494189 52.326503 +4.496243 52.330023 +4.498590 52.333250 +4.501230 52.337064 +4.502697 52.341171 +4.505630 52.343811 +4.507977 52.347624 +4.510324 52.350851 +4.512377 52.354371 +4.515017 52.357892 +4.517658 52.360825 +4.520298 52.364346 +4.522645 52.367866 +4.524698 52.371386 +4.527338 52.374613 +4.529392 52.378427 +4.532032 52.381653 +4.534085 52.385174 +4.536432 52.388987 +4.538779 52.392214 +4.540539 52.396321 +4.542886 52.399841 +4.544353 52.403948 +4.546113 52.407762 +4.547873 52.411576 +4.549340 52.415976 +4.551100 52.419790 +4.553740 52.423310 +4.555207 52.427123 +4.557554 52.430937 +4.559021 52.434751 +4.561661 52.438271 +4.564008 52.441791 +4.566354 52.445311 +4.568115 52.449125 +4.570755 52.452352 +4.573982 52.455285 +4.576915 52.457926 +4.581022 52.459979 +4.585422 52.462033 +4.589529 52.463793 +4.593930 52.465846 +4.598037 52.467900 +4.600970 52.470833 +4.596863 52.473180 +4.590703 52.472887 +4.585716 52.471127 +4.580142 52.471713 +4.579555 52.475527 +4.581609 52.478754 +4.584249 52.482567 +4.586303 52.485794 +4.588649 52.489314 +4.590410 52.493421 +4.592170 52.497528 +4.593050 52.501929 +4.594810 52.505742 +4.596570 52.510143 +4.598330 52.513956 +4.599210 52.518650 +4.600384 52.523050 +4.601264 52.527451 +4.603024 52.531558 +4.604197 52.536251 +4.605957 52.540065 +4.606837 52.544758 +4.608011 52.549159 +4.609184 52.553559 +4.610944 52.557373 +4.611824 52.562360 +4.612704 52.566760 +4.613878 52.571160 +4.615051 52.575854 +4.616811 52.579668 +4.617691 52.584068 +4.619452 52.588468 +4.620625 52.592869 +4.622092 52.596682 +4.623265 52.601376 +4.624439 52.605776 +4.625612 52.610177 +4.626492 52.614577 +4.627372 52.619564 +4.628546 52.623964 +4.629132 52.626604 +4.630012 52.630418 +4.632066 52.634232 +4.632653 52.638632 +4.633826 52.643326 +4.634999 52.647726 +4.636173 52.652126 +4.636466 52.656526 +4.636466 52.660633 +4.635879 52.664447 +4.636173 52.668261 +4.635586 52.672368 +4.635586 52.676475 +4.635879 52.680582 +4.637053 52.684982 +4.638520 52.688795 +4.639693 52.693489 +4.639986 52.697596 +4.641747 52.701703 +4.643213 52.705517 +4.644973 52.709624 +4.646147 52.714024 +4.647907 52.718131 +4.648787 52.722825 +4.649960 52.727225 +4.651134 52.731625 +4.652307 52.736319 +4.651427 52.739252 +4.652307 52.742773 +4.653187 52.747173 +4.654067 52.751573 +4.656121 52.755974 +4.657881 52.759787 +4.659348 52.763894 +4.661108 52.767708 +4.662868 52.771521 +4.665215 52.775335 +4.667562 52.778562 +4.669028 52.782669 +4.671669 52.786189 +4.673429 52.790296 +4.675482 52.793523 +4.677536 52.797923 +4.679296 52.801737 +4.680763 52.805844 +4.683109 52.809071 +4.684870 52.813471 +4.686630 52.817285 +4.688977 52.820512 +4.690443 52.824619 +4.692497 52.828726 +4.694844 52.832246 +4.696310 52.836059 +4.698951 52.839580 +4.700417 52.843687 +4.702178 52.847794 +4.703938 52.851607 +4.705698 52.855421 +4.707458 52.859821 +4.709218 52.863635 +4.711272 52.867155 +4.713325 52.870969 +4.715085 52.875369 +4.715965 52.879769 +4.717725 52.883583 +4.717725 52.886810 +4.719485 52.890917 +4.720659 52.895610 +4.721539 52.900011 +4.722712 52.904411 +4.723886 52.908811 +4.723886 52.912918 +4.724179 52.917319 +4.725353 52.921719 +4.725646 52.925826 +4.726526 52.930519 +4.726819 52.934333 +4.727993 52.939027 +4.729166 52.943720 +4.730046 52.948121 +4.731806 52.952228 +4.734153 52.955455 +4.737673 52.958095 +4.741487 52.960442 +4.744714 52.961028 +4.749701 52.962495 +4.755861 52.963082 +4.761435 52.963962 +4.767889 52.964255 +4.773756 52.964842 +4.779916 52.965135 +4.786370 52.965135 +4.793117 52.965135 +4.796051 52.964549 +4.797518 52.961028 +4.797224 52.956921 +4.799865 52.953988 +4.803385 52.953401 +4.809545 52.953694 +4.813946 52.955455 +4.816879 52.958682 +4.820693 52.960735 +4.823626 52.958388 +4.822453 52.953988 +4.820399 52.950174 +4.816586 52.948121 +4.813065 52.945481 +4.810132 52.942547 +4.807492 52.939027 +4.805732 52.934920 +4.806318 52.931400 +4.806905 52.927586 +4.808665 52.924066 +4.810719 52.921132 +4.813359 52.918199 +4.817172 52.916145 +4.821279 52.913798 +4.826266 52.912038 +4.831253 52.910278 +4.836240 52.908225 +4.841814 52.907051 +4.847681 52.905584 +4.852375 52.903531 +4.857362 52.902064 +4.862642 52.900011 +4.867923 52.898544 +4.872616 52.897077 +4.879950 52.896784 +4.887578 52.896197 +4.893738 52.896490 +4.899312 52.897077 +4.904592 52.897957 +4.910166 52.899131 +4.915740 52.900011 +4.921313 52.900891 +4.926887 52.901771 +4.932461 52.902357 +4.938328 52.903531 +4.943021 52.904998 +4.947422 52.907051 +4.951529 52.908811 +4.955342 52.911158 +4.959156 52.913505 +4.962090 52.916732 +4.965023 52.919372 +4.967957 52.922599 +4.971184 52.925532 +4.974117 52.928466 +4.978224 52.930226 +4.982918 52.932280 +4.988198 52.933453 +4.993478 52.934626 +4.998759 52.935507 +5.004333 52.936387 +5.009906 52.937267 +5.016067 52.937560 +5.021640 52.938733 +5.027508 52.939320 +5.033081 52.940200 +5.037775 52.941667 +5.043642 52.942547 +5.048336 52.944014 +5.053909 52.944601 +5.058896 52.946361 +5.063883 52.947827 +5.067990 52.949588 +5.072977 52.951054 +5.077378 52.952814 +5.080898 52.953988 +5.085885 52.955161 +5.089992 52.957215 +5.094392 52.959268 +5.098499 52.961028 +5.103193 52.963082 +5.106713 52.965429 +5.110820 52.967482 +5.114634 52.970122 +5.119034 52.971589 +5.122554 52.974229 +5.126955 52.975989 +5.130475 52.978630 +5.134875 52.980683 +5.138689 52.983030 +5.142796 52.984790 +5.146609 52.987137 +5.150716 52.989190 +5.155410 52.991244 +5.159517 52.993004 +5.163917 52.995057 +5.168024 52.996818 +5.172425 52.998871 +5.176238 53.001218 +5.180345 53.002978 +5.184159 53.005618 +5.187679 53.007965 +5.191493 53.010605 +5.195893 53.012365 +5.199413 53.014712 +5.202933 53.017352 +5.206747 53.019699 +5.210561 53.022339 +5.214081 53.024393 +5.217895 53.027033 +5.221708 53.029380 +5.224348 53.032607 +5.228455 53.034660 +5.231976 53.037300 +5.235496 53.039647 +5.239309 53.042288 +5.243123 53.044341 +5.246643 53.046981 +5.251044 53.049035 +5.254857 53.051382 +5.258964 53.053435 +5.263364 53.055195 +5.267765 53.056955 +5.271872 53.059009 +5.276272 53.060769 +5.280672 53.062822 +5.284486 53.065169 +5.288593 53.067223 +5.292993 53.069276 +5.297100 53.071036 +5.301794 53.072796 +5.306781 53.074263 +5.311768 53.075437 +5.316462 53.076903 +5.322329 53.078077 +5.327316 53.079544 +5.332889 53.080424 +5.338463 53.081010 +5.343744 53.081890 +5.349317 53.082770 +5.354891 53.083650 +5.360758 53.084531 +5.365452 53.085704 +5.369559 53.088344 +5.374546 53.089811 +5.378653 53.091571 +5.382466 53.094211 +5.385987 53.096558 +5.388627 53.100078 +5.390387 53.103892 +5.391854 53.107999 +5.393907 53.111813 +5.396841 53.115039 +5.400068 53.117680 +5.402414 53.121493 +5.403881 53.124427 +5.405935 53.128240 +5.407401 53.132641 +5.409455 53.136454 +5.411215 53.140268 +5.412095 53.144962 +5.413269 53.149362 +5.414735 53.153762 +5.415909 53.158456 +5.417082 53.163150 +5.416495 53.166670 +5.415029 53.169897 +5.415322 53.174297 +5.418256 53.177231 +5.421483 53.179871 +5.424416 53.183098 +5.427643 53.186031 +5.429990 53.189551 +5.431750 53.193658 +5.433510 53.197472 +5.435270 53.201286 +5.437910 53.205099 +5.440257 53.208326 +5.442604 53.211846 +5.445538 53.214780 +5.448471 53.217713 +5.451991 53.220940 +5.455512 53.222994 +5.458739 53.226221 +5.462259 53.228568 +5.466072 53.230914 +5.470179 53.232675 +5.474286 53.235315 +5.478393 53.237368 +5.478393 53.236781 +5.480153 53.238248 +5.485140 53.239715 +5.489834 53.241769 +5.493941 53.243529 +5.498341 53.245582 +5.502742 53.247636 +5.506262 53.249689 +5.510956 53.251743 +5.515063 53.253503 +5.519463 53.255556 +5.523863 53.257610 +5.528850 53.258783 +5.532957 53.260837 +5.537357 53.262597 +5.541464 53.264944 +5.545571 53.266997 +5.549972 53.268757 +5.553492 53.271397 +5.557599 53.273744 +5.560532 53.276678 +5.563173 53.279905 +5.566693 53.282545 +5.569626 53.285478 +5.573440 53.288118 +5.577254 53.290172 +5.581654 53.292225 +5.586054 53.294866 +5.590161 53.296332 +5.594855 53.298386 +5.599255 53.300146 +5.604242 53.301613 +5.609229 53.303080 +5.614216 53.304546 +5.619790 53.305133 +5.624777 53.306600 +5.631231 53.306893 +5.636805 53.307773 +5.642965 53.308360 +5.648539 53.309240 +5.654113 53.310120 +5.659686 53.310707 +5.664673 53.312174 +5.669660 53.313640 +5.674647 53.315107 +5.678754 53.317161 +5.683155 53.319214 +5.684915 53.320974 +5.689902 53.322148 +5.694302 53.324201 +5.699582 53.325668 +5.703689 53.327428 +5.708676 53.328895 +5.713663 53.330362 +5.718651 53.331535 +5.723638 53.333002 +5.729505 53.333882 +5.734492 53.335349 +5.739479 53.336522 +5.745052 53.337402 +5.750039 53.338869 +5.755026 53.340336 +5.760600 53.341216 +5.765587 53.342389 +5.770574 53.343856 +5.776441 53.344736 +5.781428 53.346203 +5.786415 53.347376 +5.791402 53.348550 +5.796389 53.350016 +5.801376 53.351483 +5.806363 53.352656 +5.810764 53.354710 +5.815751 53.356177 +5.820151 53.357937 +5.824551 53.359990 +5.829538 53.361457 +5.834525 53.362924 +5.839513 53.363804 +5.844500 53.365271 +5.849487 53.366737 +5.854767 53.367911 +5.859754 53.369378 +5.864741 53.370844 +5.868848 53.372898 +5.873248 53.374658 +5.877649 53.376712 +5.882342 53.378472 +5.886743 53.380232 +5.890850 53.382285 +5.897303 53.382579 +5.903757 53.382872 +5.909038 53.383752 +5.911384 53.383752 +5.914611 53.384045 +nan nan +4.104028 51.651494 +4.106668 51.653254 +4.107842 51.657948 +4.105201 51.660882 +4.102268 51.663522 +4.098161 51.665869 +4.093467 51.667629 +4.088480 51.669096 +4.084373 51.671442 +4.079680 51.673203 +4.075866 51.675256 +4.070879 51.677310 +4.067065 51.679363 +4.062078 51.681123 +4.057091 51.683177 +4.050931 51.683763 +4.043597 51.684350 +4.036263 51.685230 +4.029809 51.685230 +4.022182 51.685817 +4.016608 51.687284 +4.013675 51.689924 +4.012795 51.693737 +4.011328 51.696964 +4.011328 51.701071 +4.010741 51.704591 +4.007514 51.707525 +4.004581 51.709872 +3.999594 51.711632 +3.994607 51.713685 +3.989913 51.715152 +3.986099 51.717499 +3.982873 51.720139 +3.979646 51.722779 +3.978179 51.726006 +3.975832 51.728940 +3.972899 51.731287 +3.968498 51.733634 +3.962924 51.735100 +3.955884 51.735687 +3.949137 51.735687 +3.942976 51.735394 +3.937403 51.734514 +3.932122 51.733634 +3.926549 51.732460 +3.920975 51.732167 +3.914228 51.733047 +3.909534 51.735100 +3.905134 51.737154 +3.901320 51.739207 +3.896626 51.740967 +3.891639 51.742728 +3.885186 51.743901 +3.878732 51.743901 +3.873158 51.743021 +3.868464 51.741261 +3.863477 51.740087 +3.858197 51.739207 +3.852330 51.738621 +3.846169 51.738327 +3.838836 51.738914 +3.832088 51.740087 +3.827981 51.740967 +3.827395 51.740967 +nan nan +4.104028 51.662055 +4.106961 51.664989 +4.109602 51.667922 +4.112829 51.670856 +4.116055 51.673203 +4.120162 51.675256 +4.124563 51.677310 +4.130136 51.678190 +4.135417 51.679070 +4.140697 51.679950 +4.145684 51.681416 +4.150965 51.682590 +4.155952 51.683763 +4.161232 51.684643 +4.167099 51.685230 +4.173846 51.684937 +4.180300 51.684057 +4.185874 51.682883 +4.190861 51.680830 +4.194674 51.678483 +4.199368 51.677016 +4.206115 51.675843 +4.212569 51.674963 +4.216383 51.672909 +4.221370 51.670856 +4.225183 51.668509 +4.229290 51.666749 +4.234277 51.664695 +4.238971 51.662935 +4.242785 51.660882 +4.248358 51.659415 +4.255692 51.658828 +4.262146 51.657655 +4.269480 51.657361 +4.276814 51.656481 +4.283561 51.656481 +4.289428 51.656775 +4.295588 51.657361 +4.301162 51.657948 +4.306442 51.658828 +4.311723 51.660002 +4.317297 51.660882 +4.322577 51.661762 +4.327564 51.663229 +4.332258 51.664695 +4.336951 51.666162 +4.341645 51.667629 +4.345752 51.669389 +4.349859 51.671442 +4.353673 51.673789 +4.356313 51.677016 +4.358073 51.680830 +4.357486 51.684643 +4.356899 51.688457 +4.354553 51.691391 +4.352206 51.694031 +4.349272 51.696964 +4.344872 51.699311 +4.340178 51.700778 +4.334604 51.702245 +4.328151 51.703418 +4.322577 51.704591 +4.317883 51.706352 +4.313776 51.708698 +4.309669 51.710752 +4.305856 51.713099 +4.302042 51.715152 +4.296175 51.716619 +4.291481 51.718379 +4.286788 51.720139 +4.281801 51.721899 +4.276814 51.723953 +4.273000 51.726006 +4.268013 51.727766 +4.263319 51.729820 +4.259506 51.731580 +4.255986 51.734514 +4.253052 51.736860 +4.250118 51.739501 +4.247478 51.742434 +4.243665 51.744781 +4.239851 51.746835 +4.235451 51.749181 +4.230757 51.750941 +4.226063 51.752408 +4.221956 51.754755 +4.218143 51.756809 +4.214036 51.759155 +4.210809 51.761796 +4.206995 51.764436 +4.203768 51.767076 +4.201715 51.770010 +4.198195 51.772356 +4.194381 51.774703 +4.189687 51.776463 +4.182940 51.777637 +4.177367 51.778810 +4.171793 51.780277 +4.166806 51.782330 +4.161525 51.783504 +4.156245 51.785264 +4.151551 51.787024 +4.146858 51.788784 +4.142751 51.791131 +4.138937 51.793478 +4.133363 51.794651 +4.126616 51.795531 +4.119576 51.796118 +4.112829 51.796411 +4.106081 51.797291 +4.100508 51.798758 +4.095814 51.800518 +4.089947 51.801985 +4.085253 51.803745 +4.080560 51.805505 +4.076453 51.807852 +4.071759 51.809319 +4.067359 51.811666 +4.062665 51.813426 +4.058851 51.815479 +4.053864 51.817533 +4.050931 51.819880 +4.046237 51.825454 +nan nan +4.167979 51.686110 +4.167099 51.688750 +4.165046 51.691977 +4.162405 51.694617 +4.159472 51.697551 +4.153898 51.699018 +4.147151 51.699604 +4.141577 51.701071 +4.136884 51.703125 +4.131897 51.704591 +4.127203 51.706645 +4.120749 51.707525 +4.113415 51.708405 +4.106668 51.708405 +4.100801 51.707818 +4.094054 51.708112 +4.087600 51.708112 +4.080853 51.708112 +4.074986 51.709579 +4.069412 51.711045 +4.065599 51.713099 +4.062078 51.715739 +4.060905 51.719259 +4.060025 51.722779 +4.059438 51.726886 +4.059731 51.730993 +4.058851 51.735100 +4.059145 51.739207 +4.059438 51.743314 +4.059438 51.747128 +4.059731 51.751528 +4.057971 51.754755 +4.056798 51.757982 +4.054451 51.761209 +4.051224 51.763556 +4.047117 51.765903 +4.043010 51.767956 +4.039197 51.770303 +4.035383 51.772356 +4.031863 51.774997 +4.030689 51.778223 +4.031276 51.782917 +4.030689 51.786731 +4.027756 51.789078 +4.023649 51.791424 +4.019835 51.793478 +4.014848 51.795238 +4.009861 51.797291 +4.005168 51.798758 +3.999300 51.800225 +3.993140 51.801398 +3.986686 51.802279 +3.980526 51.802865 +3.974659 51.802279 +3.968498 51.801985 +3.962044 51.801985 +3.955884 51.801692 +3.951190 51.800225 +3.946203 51.798465 +3.940923 51.797878 +3.935349 51.796998 +3.930655 51.795238 +3.925962 51.793771 +3.919801 51.793478 +3.913641 51.793185 +3.906307 51.793478 +3.900733 51.794945 +3.894280 51.796118 +3.891346 51.793185 +3.890173 51.788491 +3.886946 51.786144 +3.880785 51.785557 +3.874038 51.785851 +3.873451 51.785851 +nan nan +4.403836 51.728060 +4.402369 51.725713 +4.400316 51.722486 +4.398556 51.718379 +4.396502 51.714859 +4.394155 51.711339 +4.396502 51.705178 +4.387995 51.704298 +4.381248 51.704591 +4.375381 51.704298 +4.370100 51.703418 +4.364527 51.702538 +4.358366 51.701951 +4.353086 51.701071 +4.345752 51.698724 +nan nan +5.624777 52.354078 +5.622430 52.357305 +5.620377 52.360239 +5.618030 52.363465 +5.615096 52.366692 +5.611870 52.369626 +nan nan +5.278912 52.684689 +5.282139 52.686449 +5.287126 52.687915 +5.291527 52.689676 +5.296514 52.691142 +5.302087 52.690556 +5.307954 52.688795 +5.312648 52.687329 +5.318515 52.685862 +5.324382 52.684102 +5.329956 52.682635 +5.334943 52.681168 +5.340517 52.679408 +5.345504 52.677648 +5.350491 52.675888 +5.355184 52.673834 +5.361051 52.672368 +5.366625 52.671194 +5.372492 52.669727 +5.378359 52.668261 +5.382173 52.666207 +5.385400 52.663274 +5.387747 52.660340 +5.390974 52.657700 +5.393907 52.655353 +5.397134 52.652420 +5.400361 52.650073 +5.404175 52.647726 +5.408282 52.645672 +5.411508 52.643032 +5.415615 52.640979 +5.419429 52.638632 +5.423243 52.636285 +5.426763 52.633645 +5.429696 52.631005 +5.432923 52.628364 +5.436150 52.625724 +5.439084 52.623377 +5.442311 52.620444 +5.445538 52.618097 +5.448471 52.615457 +5.450818 52.612523 +5.453751 52.609590 +5.457272 52.607243 +5.459325 52.604309 +5.461672 52.601376 +5.464606 52.598736 +5.467246 52.595509 +5.469299 52.592869 +5.472526 52.589935 +5.474580 52.587002 +5.477220 52.584068 +5.479567 52.581134 +5.481620 52.578201 +5.482500 52.575267 +5.485434 52.572920 +5.486020 52.568814 +5.485140 52.565293 +5.479273 52.565000 +5.473113 52.564707 +5.468713 52.562653 +5.464899 52.560306 +5.463432 52.556493 +5.460792 52.552679 +5.457858 52.550039 +5.455218 52.546519 +5.452285 52.543292 +5.449351 52.540652 +5.446418 52.537425 +5.443777 52.534198 +5.441431 52.530677 +5.439670 52.526570 +5.442311 52.525104 +5.449058 52.524810 +5.452285 52.524517 +nan nan +5.107007 52.488141 +5.109060 52.484914 +5.109647 52.481394 +5.111114 52.478167 +5.111700 52.474060 +5.111407 52.469953 +5.109647 52.466139 +5.106713 52.462913 +5.103193 52.460859 +5.099966 52.457632 +5.100846 52.454112 +5.103193 52.451178 +5.105246 52.447952 +5.105833 52.444431 +5.103193 52.441498 +5.099086 52.438858 +5.095566 52.436511 +5.093219 52.436217 +5.090872 52.435631 +nan nan +10.903103 53.957553 +10.898409 53.956967 +10.894009 53.957260 +10.889608 53.957847 +10.886381 53.959313 +10.884035 53.961073 +10.882568 53.963714 +10.882861 53.966941 +10.883448 53.970167 +10.884035 53.973981 +10.884035 53.977208 +10.884621 53.980435 +10.884035 53.983368 +10.881981 53.985422 +10.879928 53.987769 +10.877874 53.989235 +10.873767 53.990702 +10.870540 53.991876 +10.865847 53.992756 +10.861446 53.993929 +10.856753 53.993929 +10.852059 53.993636 +10.847659 53.992756 +10.842965 53.992169 +10.837098 53.992169 +10.831818 53.992756 +10.827417 53.993636 +10.822137 53.994223 +10.816856 53.994223 +10.811576 53.994223 +10.806882 53.993636 +10.801015 53.993929 +10.796615 53.994809 +10.793975 53.995689 +10.789868 53.997156 +10.787228 53.998916 +10.784001 54.000676 +10.781947 54.002730 +10.779307 54.004490 +10.776667 54.006250 +10.774320 54.008597 +10.772560 54.010650 +10.770213 54.012704 +10.768746 54.015344 +10.767573 54.017691 +10.765519 54.020038 +10.763466 54.022091 +10.761999 54.024438 +10.760532 54.027078 +10.759066 54.029425 +10.757892 54.032065 +10.756425 54.034412 +10.755545 54.037346 +10.754665 54.039986 +10.754372 54.042919 +10.754959 54.046733 +10.756719 54.049080 +10.758186 54.052013 +10.760239 54.054067 +10.762293 54.056707 +10.764346 54.058760 +10.766400 54.061107 +10.768746 54.063161 +10.772267 54.064628 +10.774613 54.066681 +10.777254 54.068735 +10.780481 54.070201 +10.783121 54.071961 +10.786348 54.073722 +10.789575 54.075188 +10.791921 54.077242 +10.794268 54.079589 +10.796615 54.081349 +10.798375 54.084282 +10.799842 54.086629 +10.801309 54.089563 +10.801602 54.092790 +10.802189 54.095430 +10.805416 54.097190 +10.810696 54.097190 +10.815390 54.096310 +10.818323 54.094843 +10.821550 54.093376 +10.825070 54.091616 +10.829764 54.090736 +10.834164 54.089856 +10.839445 54.089856 +10.843552 54.090736 +10.847952 54.091616 +10.852059 54.091910 +10.857633 54.091323 +10.862620 54.090149 +10.865847 54.088976 +10.869660 54.087509 +10.873767 54.087803 +10.877581 54.088976 +10.881101 54.090149 +10.884035 54.091616 +10.887555 54.093376 +10.889902 54.095136 +10.892835 54.097190 +10.894595 54.099537 +10.897236 54.101297 +10.899582 54.103644 +10.901929 54.105697 +10.904863 54.107457 +10.907796 54.109217 +10.910730 54.110978 +10.914250 54.112151 +10.917184 54.113911 +10.920411 54.115671 +10.923051 54.117431 +10.925984 54.118898 +10.929505 54.120658 +10.931851 54.122418 +10.935078 54.123885 +10.937718 54.125939 +10.940945 54.127405 +10.943586 54.129459 +10.946226 54.131512 +10.948573 54.133272 +10.951506 54.135326 +10.954440 54.137086 +10.957080 54.138846 +10.960307 54.140313 +10.962654 54.141780 +10.964707 54.143247 +10.967641 54.145300 +10.970574 54.146767 +10.973508 54.148234 +10.977028 54.149994 +10.980548 54.151167 +10.984068 54.152341 +10.988175 54.153514 +10.991696 54.154687 +10.995216 54.155861 +10.999030 54.157034 +11.002843 54.158208 +11.006950 54.159088 +11.010470 54.160261 +11.014577 54.161435 +11.018098 54.162901 +11.021031 54.164075 +11.025138 54.165541 +11.028072 54.167008 +11.031592 54.168475 +11.035699 54.169355 +11.039219 54.170529 +11.042739 54.171702 +11.046553 54.173169 +11.051247 54.173755 +11.055647 54.174635 +11.058874 54.176102 +11.061807 54.177862 +11.064448 54.179622 +11.066794 54.181969 +11.068555 54.184023 +11.070901 54.186663 +11.072955 54.189010 +11.075008 54.191063 +11.077355 54.193117 +11.080875 54.194584 +11.084982 54.195464 +11.088503 54.196637 +11.093196 54.197517 +11.093783 54.200451 +11.094370 54.203971 +11.094370 54.207198 +11.094076 54.210425 +11.093196 54.213065 +11.093196 54.215998 +11.093196 54.219225 +11.092610 54.221866 +11.091730 54.224799 +11.090849 54.227439 +11.089969 54.230373 +11.089969 54.233306 +11.089089 54.236533 +11.088209 54.239173 +11.087623 54.241814 +11.086743 54.244747 +11.086743 54.247681 +11.086449 54.250908 +11.086449 54.253841 +11.087036 54.257361 +11.087329 54.260882 +11.087916 54.264109 +11.088796 54.267335 +11.089969 54.270269 +11.090263 54.273496 +11.090849 54.277310 +11.091436 54.280536 +11.090556 54.283470 +11.089676 54.286110 +11.088209 54.288750 +11.087623 54.291391 +11.086156 54.294031 +11.085569 54.296671 +11.084689 54.299311 +11.083222 54.301951 +11.082049 54.304298 +11.081169 54.307232 +11.080289 54.309872 +11.079409 54.312805 +11.079995 54.316032 +11.080582 54.319553 +11.080875 54.323073 +11.080875 54.326006 +11.079995 54.328940 +11.079115 54.331580 +11.078529 54.334514 +11.078235 54.337447 +11.078822 54.340967 +11.076768 54.343021 +11.070901 54.343314 +11.067088 54.344781 +11.065034 54.346541 +11.064741 54.350061 +11.066501 54.352408 +11.068848 54.354462 +11.072368 54.356222 +11.077355 54.356222 +11.081462 54.355048 +11.083516 54.352702 +11.084102 54.350061 +11.086449 54.352115 +11.089383 54.353875 +11.092316 54.355928 +11.094663 54.357689 +11.098477 54.358862 +11.102877 54.359742 +11.105811 54.361502 +11.108157 54.363556 +11.110798 54.365609 +11.114024 54.367076 +11.117545 54.368249 +11.121358 54.369423 +11.124585 54.371476 +11.127225 54.373236 +11.129279 54.375583 +11.130159 54.378517 +11.131332 54.381744 +11.132506 54.384677 +11.131626 54.387611 +11.128986 54.389371 +11.126052 54.391424 +11.122238 54.392598 +11.117838 54.393478 +11.112558 54.393771 +11.107277 54.394651 +11.102584 54.394065 +11.098477 54.393184 +11.096130 54.391131 +11.093196 54.389078 +11.091436 54.386731 +11.088503 54.384677 +11.086743 54.382624 +11.083809 54.380570 +11.081462 54.378517 +11.077355 54.377637 +11.073835 54.376463 +11.069728 54.375583 +11.065328 54.374703 +11.060634 54.374116 +11.056820 54.372650 +11.052420 54.372063 +11.048900 54.370596 +11.044793 54.369716 +11.038632 54.370009 +11.032765 54.370303 +11.028072 54.370009 +11.022791 54.369716 +11.016924 54.370009 +11.012230 54.371183 +11.007830 54.372063 +11.002550 54.372356 +10.997856 54.372063 +10.993162 54.371770 +10.987002 54.372063 +10.982602 54.372650 +10.978495 54.373823 +10.973801 54.374997 +10.967934 54.375290 +10.962654 54.375877 +10.958840 54.377050 +10.957667 54.377930 +10.955906 54.380277 +10.955613 54.382917 +10.960013 54.381744 +10.964120 54.380570 +10.969401 54.379984 +10.974681 54.379984 +10.979375 54.380570 +10.983482 54.379984 +10.986122 54.377930 +10.991402 54.377637 +10.997269 54.377343 +11.003137 54.377050 +11.008417 54.377050 +11.013404 54.377637 +11.016924 54.378517 +11.017804 54.380277 +11.011937 54.380570 +11.006657 54.381450 +11.000790 54.381744 +10.994923 54.382037 +10.989642 54.381744 +10.985242 54.380864 +10.980548 54.380570 +10.974681 54.380864 +10.969401 54.380570 +10.964707 54.381744 +10.960307 54.382624 +10.955613 54.383210 +10.951799 54.384677 +10.945932 54.384971 +10.941239 54.384384 +10.936545 54.383504 +10.933612 54.382037 +10.930971 54.379984 +10.927744 54.377930 +10.925104 54.376170 +10.923051 54.373823 +10.919824 54.372356 +10.916597 54.370890 +10.913957 54.368836 +10.910143 54.367663 +10.906036 54.367076 +10.901929 54.366196 +10.897529 54.365316 +10.892835 54.364436 +10.889022 54.362969 +10.885208 54.362089 +10.882861 54.360035 +10.879341 54.358275 +10.876994 54.356515 +10.874061 54.354462 +10.871127 54.352995 +10.868193 54.351235 +10.865260 54.349475 +10.861740 54.348301 +10.858219 54.346541 +10.855286 54.345368 +10.852352 54.343608 +10.848832 54.341847 +10.846485 54.340087 +10.842965 54.338621 +10.840618 54.336567 +10.838271 54.334220 +10.835924 54.332167 +10.832991 54.330407 +10.830057 54.328940 +10.827417 54.326886 +10.824190 54.325420 +10.821257 54.323659 +10.818030 54.322779 +10.814216 54.321606 +10.810989 54.320139 +10.808056 54.318672 +10.805416 54.316619 +10.802189 54.314859 +10.798375 54.313979 +10.794855 54.312512 +10.791628 54.311045 +10.787814 54.309578 +10.783707 54.308992 +10.779894 54.307818 +10.775200 54.307232 +10.770213 54.306938 +10.764933 54.306645 +10.759066 54.306938 +10.753785 54.306938 +10.748505 54.307525 +10.743225 54.308112 +10.737357 54.308405 +10.731784 54.308698 +10.727090 54.308112 +10.721810 54.308112 +10.716823 54.307525 +10.711542 54.307525 +10.706555 54.306938 +10.700688 54.307232 +10.695114 54.307525 +10.690421 54.308405 +10.685727 54.309578 +10.682500 54.310752 +10.679273 54.312512 +10.677220 54.314566 +10.675753 54.316912 +10.674873 54.319846 +10.673700 54.322193 +10.669299 54.323659 +10.664899 54.324540 +10.660792 54.325420 +10.657565 54.327180 +10.654925 54.328940 +10.652285 54.330700 +10.650231 54.333047 +10.648178 54.335100 +10.646124 54.337154 +10.644364 54.339794 +10.643191 54.342141 +10.641137 54.344488 +10.638790 54.346541 +10.636444 54.348301 +10.632923 54.350061 +10.629696 54.351528 +10.625589 54.352702 +10.621776 54.353875 +10.618842 54.355928 +10.615615 54.357102 +10.612975 54.359155 +10.609748 54.360622 +10.605641 54.361796 +10.601534 54.362969 +10.596841 54.363849 +10.593027 54.365022 +10.588627 54.366196 +10.584520 54.367076 +10.580119 54.367956 +10.575719 54.369423 +10.571906 54.370596 +10.568092 54.371770 +10.564278 54.372943 +10.560465 54.374410 +10.556064 54.375290 +10.552251 54.376757 +10.548144 54.377637 +10.544037 54.378810 +10.540223 54.380277 +10.536996 54.381744 +10.532889 54.382917 +10.528782 54.384091 +10.524969 54.385264 +10.520862 54.386731 +10.516462 54.387611 +10.512355 54.388491 +10.507661 54.389371 +10.502967 54.390544 +10.497980 54.391131 +10.493287 54.392011 +10.488593 54.392891 +10.484193 54.393478 +10.479499 54.394358 +10.475099 54.395531 +10.470405 54.396411 +10.466298 54.397585 +10.462191 54.398758 +10.457791 54.399638 +10.454564 54.401398 +10.450457 54.402865 +10.446350 54.403745 +10.442536 54.404919 +10.437843 54.406092 +10.434029 54.407266 +10.429042 54.408146 +10.425815 54.409612 +10.422001 54.410786 +10.418188 54.411959 +10.414668 54.413719 +10.412027 54.415186 +10.408507 54.416946 +10.405280 54.418413 +10.402053 54.419880 +10.399120 54.421640 +10.395893 54.423693 +10.392373 54.425160 +10.389732 54.426920 +10.386506 54.428680 +10.382399 54.429854 +10.379172 54.431027 +10.375945 54.432787 +10.372425 54.434254 +10.368318 54.435428 +10.363917 54.436308 +10.359224 54.437188 +10.354530 54.438068 +10.349543 54.438654 +10.343382 54.438948 +10.337515 54.439241 +10.331648 54.439534 +10.325781 54.439828 +10.320501 54.439828 +10.315807 54.439241 +10.310820 54.438654 +10.306126 54.438068 +10.303193 54.436601 +10.300259 54.434841 +10.298206 54.432201 +10.296739 54.429854 +10.295272 54.426920 +10.294099 54.423987 +10.292339 54.421640 +10.289699 54.419586 +10.284712 54.419293 +10.278845 54.419586 +10.272977 54.419586 +10.267697 54.419586 +10.262417 54.419586 +10.257136 54.419293 +10.252149 54.419000 +10.246869 54.418706 +10.242175 54.418120 +10.238068 54.417240 +10.234255 54.416066 +10.231028 54.414306 +10.228681 54.412546 +10.226334 54.409906 +10.224574 54.407559 +10.222814 54.404919 +10.221347 54.402278 +10.219587 54.399345 +10.219000 54.396411 +10.217827 54.393478 +10.216360 54.390838 +10.214893 54.388197 +10.212840 54.385851 +10.210200 54.383797 +10.207559 54.382037 +10.205506 54.379397 +10.203746 54.377343 +10.201986 54.374410 +10.201106 54.371476 +10.199932 54.368249 +10.198172 54.366196 +10.194652 54.364142 +10.192305 54.362089 +10.189665 54.360329 +10.188198 54.357395 +10.186731 54.355048 +10.184971 54.352115 +10.184091 54.349181 +10.182624 54.346248 +10.181744 54.343314 +10.180864 54.340381 +10.180277 54.336860 +10.179397 54.333927 +10.176757 54.331873 +10.173530 54.330407 +10.170597 54.328940 +10.167076 54.327180 +10.164143 54.325420 +10.161209 54.323953 +10.157102 54.322779 +10.154169 54.321019 +10.150649 54.320139 +10.146835 54.318672 +10.143608 54.320139 +10.145075 54.323073 +10.146835 54.325420 +10.148595 54.328060 +10.150649 54.330407 +10.152702 54.332460 +10.154169 54.335394 +10.155636 54.338034 +10.156809 54.340967 +10.155929 54.343901 +10.152995 54.345661 +10.150355 54.347421 +10.147422 54.349181 +10.145662 54.351528 +10.144195 54.353875 +10.144488 54.357102 +10.145955 54.360035 +10.148595 54.362089 +10.151529 54.363556 +10.150355 54.366196 +10.145662 54.367076 +10.141555 54.367956 +10.142435 54.369716 +10.147128 54.370303 +10.151822 54.370890 +10.156222 54.371770 +10.160623 54.372356 +10.164143 54.373530 +10.166783 54.375583 +10.167663 54.378517 +10.166196 54.381157 +10.167663 54.383797 +10.170303 54.384971 +10.174410 54.385851 +10.177931 54.387317 +10.182624 54.388197 +10.186731 54.388784 +10.190251 54.389958 +10.194065 54.391424 +10.196705 54.393478 +10.198172 54.395825 +10.199052 54.398758 +10.199345 54.402572 +10.199345 54.405505 +10.197879 54.408146 +10.196412 54.410492 +10.194945 54.413426 +10.192892 54.415479 +10.189958 54.417240 +10.188198 54.419586 +10.185851 54.421640 +10.183798 54.423693 +10.181157 54.425453 +10.178811 54.427800 +10.177051 54.429854 +10.174704 54.431907 +10.175877 54.435134 +10.178224 54.436894 +10.181157 54.438948 +10.182918 54.441295 +10.184971 54.443641 +10.186145 54.446575 +10.188198 54.448922 +10.190838 54.450975 +10.193772 54.452735 +10.196999 54.454496 +10.200226 54.456256 +10.202866 54.458016 +10.199932 54.459776 +10.195532 54.460656 +10.192305 54.462123 +10.188785 54.463590 +10.186731 54.465350 +10.183798 54.466816 +10.180571 54.468577 +10.177637 54.470337 +10.174410 54.471803 +10.171183 54.473270 +10.167663 54.475030 +10.165023 54.476790 +10.160916 54.477671 +10.156809 54.479137 +10.153582 54.480604 +10.149769 54.482071 +10.146248 54.483244 +10.142728 54.484711 +10.138914 54.486178 +10.135101 54.487351 +10.130701 54.488231 +10.126887 54.489698 +10.122193 54.489698 +10.116326 54.489991 +10.110752 54.489991 +10.106059 54.489405 +10.101365 54.488818 +10.097258 54.487938 +10.093445 54.487058 +10.089631 54.485591 +10.086111 54.484418 +10.082297 54.482951 +10.077603 54.482658 +10.072323 54.482364 +10.066456 54.482658 +10.061762 54.482364 +10.057362 54.481484 +10.052375 54.480604 +10.048268 54.479724 +10.043868 54.478844 +10.039174 54.478257 +10.034480 54.477964 +10.029200 54.477671 +10.024213 54.477084 +10.019519 54.477084 +10.015412 54.475910 +10.011012 54.475030 +10.006612 54.474150 +10.001918 54.473564 +9.997224 54.473270 +9.991944 54.472977 +9.986957 54.472390 +9.981677 54.472390 +9.976983 54.471803 +9.971702 54.471803 +9.967596 54.471217 +9.962608 54.470630 +9.957915 54.470043 +9.953514 54.469163 +9.949408 54.468283 +9.945007 54.467403 +9.939727 54.467110 +9.935033 54.466523 +9.930339 54.466523 +9.926526 54.465056 +9.923299 54.463296 +9.920365 54.461829 +9.916845 54.460363 +9.913325 54.459189 +9.910391 54.457429 +9.905991 54.456549 +9.901591 54.455962 +9.897484 54.454789 +9.893377 54.453909 +9.888683 54.453615 +9.883696 54.453029 +9.878416 54.452735 +9.874309 54.453322 +9.870202 54.454496 +9.866975 54.456256 +9.863748 54.457429 +9.860815 54.459483 +9.857588 54.460949 +9.854654 54.462709 +9.852014 54.464470 +9.849667 54.466523 +9.847907 54.468870 +9.845560 54.470923 +9.843507 54.472977 +9.843213 54.476204 +9.845267 54.478551 +9.849960 54.479137 +9.855241 54.478551 +9.860521 54.477964 +9.865802 54.477377 +9.871082 54.477377 +9.875482 54.478257 +9.879589 54.479137 +9.884576 54.480017 +9.888683 54.480897 +9.893083 54.482071 +9.896604 54.482951 +9.900417 54.484124 +9.904231 54.485591 +9.907751 54.486765 +9.911271 54.487938 +9.915085 54.489111 +9.918899 54.490578 +9.922419 54.491752 +9.926233 54.492632 +9.930046 54.494098 +9.932980 54.495859 +9.936207 54.497325 +9.939433 54.498792 +9.942367 54.500552 +9.946181 54.501726 +9.949408 54.503192 +9.954101 54.503779 +9.958795 54.504072 +9.963195 54.505246 +9.967009 54.506419 +9.970529 54.507593 +9.973756 54.509059 +9.977276 54.510526 +9.980503 54.511993 +9.983730 54.513753 +9.986664 54.515220 +9.989890 54.516687 +9.993704 54.518153 +9.996638 54.519620 +10.000451 54.520794 +10.003091 54.522847 +10.006318 54.524607 +10.008372 54.526954 +10.010719 54.529008 +10.012479 54.531648 +10.013945 54.534581 +10.015412 54.536928 +10.016292 54.539862 +10.017172 54.543089 +10.018346 54.546022 +10.021279 54.547782 +10.024800 54.549542 +10.027733 54.551009 +10.030373 54.553063 +10.032427 54.555409 +10.032133 54.558343 +10.031840 54.561277 +10.031253 54.563623 +10.031547 54.563330 +10.031253 54.566264 +10.031253 54.569490 +10.030373 54.572131 +10.030080 54.575358 +10.029787 54.578291 +10.029787 54.581518 +10.029493 54.584745 +10.029200 54.587678 +10.029787 54.591199 +10.029493 54.594132 +10.029200 54.597359 +10.028907 54.600586 +10.029493 54.603813 +10.029200 54.607040 +10.029493 54.610267 +10.030667 54.613200 +10.031840 54.616134 +10.033600 54.618774 +10.035067 54.621414 +10.036827 54.623761 +10.038587 54.626401 +10.039467 54.629335 +10.040054 54.633148 +10.039761 54.636082 +10.038881 54.639015 +10.037414 54.641362 +10.035947 54.644002 +10.035067 54.646643 +10.034774 54.649576 +10.034774 54.652803 +10.036240 54.655443 +10.036534 54.658964 +10.036827 54.662190 +10.037707 54.665417 +10.037707 54.668351 +10.036827 54.670991 +10.034480 54.670404 +10.029493 54.669818 +10.024800 54.669231 +10.020986 54.668058 +10.017759 54.666297 +10.013652 54.666297 +10.011599 54.668351 +10.009545 54.670698 +10.008078 54.673045 +10.004558 54.674511 +9.999864 54.674218 +9.996051 54.672751 +9.993411 54.670698 +9.988717 54.670404 +9.985783 54.671284 +9.983730 54.673631 +9.979623 54.675098 +9.974929 54.675978 +9.969649 54.676271 +9.964369 54.676858 +9.959675 54.677738 +9.949114 54.678032 +9.942367 54.675391 +9.941780 54.670404 +9.939727 54.663364 +9.932100 54.665417 +9.927699 54.668938 +nan nan +8.805032 54.685952 +8.795938 54.687712 +8.788017 54.690352 +8.781270 54.693286 +8.775990 54.696806 +8.770416 54.700913 +8.765136 54.704433 +8.759855 54.707954 +8.754575 54.712061 +8.748121 54.714994 +8.741374 54.717928 +8.734627 54.721155 +8.726706 54.723502 +8.719959 54.726728 +8.710865 54.728489 +8.701771 54.730249 +8.691211 54.731715 +8.689744 54.737289 +8.693851 54.741690 +8.697078 54.746970 +8.699131 54.753130 +8.697664 54.758704 +8.695024 54.763691 +8.690917 54.767798 +8.685637 54.771612 +8.681530 54.775719 +8.676249 54.779532 +8.671849 54.783933 +8.667742 54.788333 +8.663929 54.792440 +8.659822 54.796840 +8.655421 54.801240 +8.652781 54.806227 +8.648674 54.810628 +8.645741 54.815321 +8.644567 54.820895 +8.642807 54.826469 +8.641340 54.832043 +8.641047 54.838203 +8.640754 54.844364 +8.641927 54.851111 +8.643980 54.857271 +8.646034 54.863432 +8.648381 54.869299 +8.650141 54.875166 +8.653661 54.880739 +8.656595 54.886020 +8.660115 54.891300 +8.661875 54.895994 +8.665102 54.901274 +8.665982 54.908021 +8.664809 54.913595 +8.664515 54.920049 +8.666275 54.925916 +8.669796 54.931490 +8.672729 54.936770 +8.675076 54.942637 +8.676249 54.949384 +8.674489 54.954958 +8.672729 54.959065 +8.668622 54.963465 +8.665689 54.968452 +8.661582 54.972853 +8.658942 54.977840 +8.654835 54.981947 +8.651901 54.986934 +8.649261 54.991921 +8.646327 54.996908 +8.643687 55.001601 +8.641927 55.007175 +8.640460 55.012749 +8.638993 55.018323 +8.638700 55.024776 +8.639580 55.031524 +8.640754 55.038271 +8.642807 55.044138 +8.644861 55.050298 +8.647207 55.056459 +8.649261 55.062619 +8.650141 55.069073 +8.652488 55.075233 +8.655421 55.077287 +8.657181 55.081981 +8.659235 55.088141 +8.661288 55.094301 +8.664515 55.099582 +8.668916 55.103982 +8.672143 55.109263 +8.676249 55.114543 +8.679770 55.119823 +8.680650 55.125397 +8.682410 55.130091 +8.671849 55.130971 +8.662168 55.130384 +8.651314 55.130384 +8.639580 55.130971 +8.629019 55.131851 +8.618459 55.133318 +8.608778 55.135078 +8.600857 55.136251 +8.591470 55.138011 +8.582083 55.139771 +8.571522 55.141238 +8.560961 55.140945 +8.553041 55.138598 +8.550107 55.133318 +8.551281 55.127744 +8.555681 55.123344 +8.557148 55.117770 +8.558614 55.112196 +8.560374 55.106622 +8.561841 55.101049 +8.562135 55.094888 +8.561255 55.088141 +8.556561 55.083741 +8.548054 55.081981 +8.538960 55.083741 +8.530159 55.082274 +8.525759 55.077580 +8.522825 55.072300 +8.517545 55.068193 +8.510798 55.065259 +8.504344 55.062326 +8.495837 55.060566 +8.487916 55.062913 +8.481169 55.066139 +8.475888 55.069660 +8.471781 55.074060 +8.470021 55.079634 +8.468261 55.085207 +8.467088 55.090781 +8.466794 55.096942 +8.465034 55.102515 +8.463568 55.108089 +8.461807 55.113663 +8.459167 55.118650 +8.457407 55.124224 +8.458581 55.130971 +8.462687 55.135664 +8.466208 55.140945 +8.469141 55.146225 +8.472368 55.151506 +8.473248 55.158253 +8.472075 55.164413 +8.470315 55.169987 +8.472368 55.176147 +8.475595 55.181428 +8.479995 55.186121 +8.482929 55.191402 +8.488503 55.195215 +8.497303 55.196682 +8.506984 55.197856 +8.514905 55.195215 +8.521652 55.192282 +8.531039 55.190228 +8.540720 55.191108 +8.549520 55.192869 +8.558028 55.194335 +8.568588 55.193455 +8.576802 55.190815 +8.586190 55.188762 +8.592643 55.185828 +8.594404 55.180254 +8.588830 55.176441 +8.581496 55.174094 +8.575042 55.171160 +8.567122 55.168520 +8.561841 55.164707 +8.557734 55.160306 +8.554507 55.155026 +8.555094 55.150039 +8.561548 55.146812 +8.569762 55.144465 +8.576802 55.142705 +8.584723 55.140358 +8.592643 55.138011 +8.602031 55.136251 +8.612592 55.135078 +8.621979 55.133024 +8.632540 55.131851 +8.644567 55.130971 +8.655128 55.130091 +8.665689 55.130384 +8.675663 55.130971 +8.684170 55.132731 +8.689450 55.136251 +8.691797 55.142412 +8.692677 55.149452 +8.691211 55.155026 +8.689744 55.160600 +8.685637 55.164707 +8.682703 55.169694 +8.679770 55.174681 +8.678303 55.180254 +8.675663 55.185241 +8.671262 55.189348 +8.667155 55.193749 +8.664515 55.199029 +8.661582 55.203723 +8.661288 55.209883 +8.660995 55.216044 +8.659528 55.221617 +8.659235 55.227778 +8.658942 55.233938 +8.658942 55.240392 +8.658648 55.246259 +8.658355 55.252420 +8.658061 55.258580 +8.655421 55.263567 +8.653661 55.269141 +8.650728 55.274128 +8.649261 55.279701 +8.648968 55.285862 +8.651021 55.292022 +8.654541 55.297303 +8.658648 55.301996 +8.660702 55.308157 +8.663049 55.314024 +8.664222 55.320771 +8.663929 55.326932 +8.662168 55.332505 +8.659528 55.337492 +8.656595 55.342479 +8.653661 55.347466 +8.650728 55.352160 +8.648087 55.357147 +8.645154 55.362134 +8.643687 55.367708 +8.642220 55.373282 +8.640460 55.378855 +8.638993 55.384429 +8.638700 55.390589 +8.638700 55.396750 +8.638407 55.402910 +8.635180 55.408191 +8.632540 55.412884 +8.629606 55.417871 +8.626966 55.422858 +8.624032 55.427845 +8.618752 55.431366 +8.613178 55.434886 +8.606138 55.438113 +8.599391 55.441340 +8.590003 55.443100 +8.579443 55.444567 +8.568588 55.445447 +8.558028 55.446620 +8.547174 55.448087 +8.536613 55.449260 +8.524585 55.449847 +8.512558 55.450140 +8.500530 55.450727 +8.491143 55.452781 +8.480582 55.453954 +8.468555 55.454541 +8.459754 55.452781 +8.450073 55.451900 +8.440393 55.452487 +8.435992 55.456594 +8.431885 55.460994 +8.427778 55.465688 +8.423671 55.469795 +8.419564 55.474195 +8.413991 55.477716 +8.408417 55.481529 +8.403137 55.485050 +8.397563 55.488863 +8.391989 55.492383 +8.386415 55.496197 +8.380842 55.500011 +8.375268 55.503531 +8.371161 55.507638 +8.365881 55.511745 +8.361480 55.515852 +8.356200 55.519372 +8.351800 55.523772 +8.346519 55.527586 +8.340945 55.531400 +8.335372 55.534920 +8.329798 55.538733 +8.324224 55.542254 +8.318650 55.546067 +8.313077 55.549588 +8.307796 55.553401 +8.306036 55.558975 +8.312490 55.561908 +8.319237 55.565135 +8.326571 55.567482 +8.334492 55.570122 +8.332731 55.575696 +8.324811 55.578043 +8.313957 55.579216 +8.301929 55.579803 +8.291955 55.578923 +8.282275 55.577750 +8.273474 55.575989 +8.265847 55.573936 +8.257926 55.571296 +8.251766 55.568362 +8.245019 55.565135 +8.239738 55.561322 +8.235631 55.556628 +8.235925 55.550468 +8.240031 55.546361 +8.245605 55.542547 +8.252352 55.539320 +8.260566 55.536973 +8.267313 55.533746 +8.270247 55.529053 +8.264673 55.525239 +8.256166 55.523479 +8.248245 55.521132 +8.245312 55.515852 +8.253232 55.513212 +8.265260 55.512918 +8.276114 55.511745 +8.285501 55.509985 +8.292542 55.506758 +8.292835 55.500597 +8.295475 55.495610 +8.299582 55.491503 +8.306623 55.488276 +8.313370 55.485343 +8.318944 55.481529 +8.324518 55.477716 +8.328625 55.473609 +8.328918 55.467448 +8.323637 55.463635 +8.313663 55.462461 +8.304569 55.464515 +8.297529 55.467448 +8.291955 55.470969 +8.286381 55.475075 +8.282275 55.477716 +8.275234 55.480943 +8.269660 55.484463 +8.264087 55.488276 +8.257633 55.491503 +8.252059 55.495024 +8.246485 55.498544 +8.239445 55.501771 +8.234164 55.505291 +8.228591 55.509105 +8.223017 55.512918 +8.215976 55.515852 +8.208056 55.518199 +8.201015 55.521425 +8.193095 55.523479 +8.184881 55.526119 +8.176960 55.528466 +8.168746 55.531106 +8.158186 55.532280 +8.145865 55.532866 +8.135304 55.533746 +8.124450 55.534920 +8.113889 55.536387 +8.104502 55.538147 +8.097461 55.541080 +8.091888 55.544600 +8.087781 55.549294 +8.087194 55.555161 +8.090421 55.560442 +8.093648 55.565722 +8.098048 55.570416 +8.102155 55.575403 +8.106555 55.579803 +8.110956 55.584497 +8.115063 55.588897 +8.119463 55.593591 +8.122396 55.598871 +8.127090 55.603565 +8.130024 55.608845 +8.133250 55.614125 +8.136477 55.619406 +8.139704 55.624980 +8.141758 55.630847 +8.143811 55.637007 +8.145865 55.643168 +8.147918 55.649035 +8.151145 55.654315 +8.154372 55.659889 +8.156425 55.665756 +8.158479 55.671916 +8.160532 55.678077 +8.163759 55.683357 +8.165813 55.689518 +8.170213 55.694211 +8.172267 55.700372 +8.175494 55.705652 +8.178720 55.710932 +8.180774 55.716800 +8.182827 55.722960 +8.184001 55.729707 +8.184588 55.736748 +8.185761 55.743201 +8.185468 55.749655 +8.184001 55.755229 +8.183707 55.761389 +8.183121 55.767550 +8.181361 55.773124 +8.179894 55.778697 +8.178427 55.784271 +8.178134 55.790431 +8.176374 55.796005 +8.174613 55.801579 +8.174027 55.807739 +8.174027 55.813900 +8.173733 55.820354 +8.171973 55.825927 +8.170213 55.831501 +8.168746 55.837075 +8.168453 55.842942 +8.166693 55.848516 +8.166400 55.854676 +8.164639 55.860250 +8.164346 55.866410 +8.164053 55.872864 +8.162586 55.878438 +8.160826 55.884012 +8.159066 55.889585 +8.156132 55.894572 +8.153199 55.899266 +8.151732 55.904840 +8.149972 55.910413 +8.149678 55.916574 +8.149092 55.922734 +8.148798 55.928895 +8.148505 55.935349 +8.148212 55.941509 +8.147918 55.947376 +8.147625 55.953536 +8.147332 55.959990 +8.151438 55.962924 +8.155545 55.958817 +8.158479 55.953830 +8.160239 55.948256 +8.161999 55.942682 +8.163466 55.937109 +8.165226 55.931535 +8.166986 55.926255 +8.168746 55.920681 +8.168746 55.914520 +8.170507 55.908947 +8.172267 55.903373 +8.174027 55.897799 +8.176667 55.892812 +8.179600 55.887825 +8.182827 55.882838 +8.185468 55.877851 +8.188694 55.873157 +8.192801 55.868757 +8.195735 55.863477 +8.198962 55.858783 +8.196615 55.852916 +8.191041 55.848809 +8.186934 55.844115 +8.182534 55.839715 +8.182827 55.833261 +8.183414 55.827101 +8.183707 55.821234 +8.184001 55.815073 +8.186934 55.810086 +8.193975 55.808326 +8.202775 55.810086 +8.209229 55.813020 +8.214803 55.816833 +8.222137 55.819180 +8.230057 55.821527 +8.237685 55.824167 +8.244138 55.827101 +8.252059 55.829741 +8.259686 55.832088 +8.268194 55.833555 +8.277287 55.835315 +8.284915 55.837662 +8.292542 55.840008 +8.299289 55.843235 +8.305743 55.846462 +8.312197 55.849396 +8.317770 55.853209 +8.324224 55.856436 +8.329798 55.860250 +8.335372 55.864063 +8.341825 55.867290 +8.348279 55.870224 +8.355026 55.873744 +8.361774 55.876678 +8.367934 55.879611 +8.374681 55.882838 +8.381428 55.886065 +8.387882 55.889292 +8.394336 55.892225 +8.397856 55.897506 +8.394629 55.902493 +8.391989 55.907480 +8.387589 55.911587 +8.386122 55.917161 +8.385829 55.923614 +8.384068 55.929188 +8.382602 55.934762 +8.378201 55.938869 +8.373801 55.943269 +8.368227 55.947083 +8.364120 55.951483 +8.358547 55.955003 +8.352973 55.958524 +8.347399 55.962630 +8.342999 55.966737 +8.337425 55.970258 +8.331851 55.974071 +8.326278 55.977885 +8.322171 55.982285 +8.317770 55.986392 +8.315130 55.991379 +8.311903 55.996366 +8.308970 56.001060 +8.306036 56.006047 +8.304569 56.011621 +8.302809 56.017194 +8.301049 56.022768 +8.299582 56.028342 +8.298116 56.033916 +8.293715 56.038316 +8.289315 56.042423 +8.284035 56.046530 +8.276994 56.049463 +8.271127 56.052984 +8.264380 56.056211 +8.257633 56.059144 +8.251766 56.062664 +8.246192 56.066771 +8.239151 56.069705 +8.233578 56.073225 +8.226537 56.076452 +8.218617 56.078799 +8.210403 56.081439 +8.199549 56.082612 +8.189868 56.084079 +8.181361 56.086719 +8.173440 56.089066 +8.166400 56.092293 +8.159359 56.095227 +8.153492 56.098747 +8.146745 56.101974 +8.135891 56.103147 +8.129144 56.099920 +8.126210 56.094640 +8.126797 56.089653 +8.132077 56.086133 +8.136477 56.082026 +8.140878 56.077625 +8.144985 56.073225 +8.146745 56.067651 +8.146158 56.062078 +8.144985 56.055330 +8.142638 56.049170 +8.140878 56.043303 +8.139704 56.036262 +8.137651 56.030395 +8.136771 56.023648 +8.137064 56.017194 +8.136184 56.010447 +8.139118 56.005460 +8.142051 56.000473 +8.144985 55.995486 +8.147918 55.990793 +8.150852 55.985805 +8.146745 55.981112 +8.136771 55.980232 +8.127090 55.981992 +8.121516 55.985805 +8.117116 55.989912 +8.115649 55.995486 +8.113889 56.001060 +8.112129 56.006634 +8.110662 56.012207 +8.108902 56.017781 +8.107142 56.023355 +8.106849 56.029809 +8.105382 56.035382 +8.103622 56.040956 +8.103328 56.046823 +8.101568 56.052397 +8.100982 56.058557 +8.102155 56.065598 +8.101862 56.071758 +8.102742 56.078505 +8.103915 56.085253 +8.104795 56.092293 +8.105969 56.098747 +8.106555 56.105787 +8.106262 56.111948 +8.105969 56.118108 +8.106849 56.124855 +8.109195 56.131016 +8.111249 56.137176 +8.114476 56.142457 +8.117703 56.147737 +8.120930 56.153311 +8.125330 56.157711 +8.127383 56.163872 +8.127677 56.166805 +8.126797 56.166805 +8.129730 56.172086 +8.130610 56.177366 +8.131784 56.184113 +8.132370 56.191154 +8.134717 56.197314 +8.134424 56.203474 +8.135304 56.210222 +8.136477 56.216969 +8.135891 56.223423 +8.137064 56.229876 +8.136771 56.236037 +8.136184 56.242491 +8.137357 56.249238 +8.137064 56.255692 +8.132370 56.259798 +8.129437 56.264786 +8.126797 56.269773 +8.126210 56.275933 +8.127090 56.282387 +8.127970 56.289427 +8.129144 56.296468 +8.128850 56.302628 +8.130904 56.308495 +8.129144 56.314069 +8.125037 56.318469 +8.124743 56.324630 +8.124157 56.330790 +8.123863 56.336951 +8.123570 56.343404 +8.123276 56.349565 +8.128557 56.351912 +8.137064 56.349565 +8.137357 56.343404 +8.137357 56.337244 +8.137651 56.330790 +8.139411 56.325217 +8.146745 56.322283 +8.154665 56.319643 +8.160239 56.322576 +8.166986 56.325510 +8.174027 56.323750 +8.175494 56.318469 +8.182827 56.315242 +8.192215 56.313189 +8.203362 56.313482 +8.214803 56.313482 +8.225950 56.313776 +8.236805 56.312896 +8.243552 56.309669 +8.247952 56.305268 +8.248245 56.299108 +8.247365 56.292361 +8.245312 56.286494 +8.242965 56.280333 +8.248539 56.276520 +8.259686 56.275346 +8.264087 56.280040 +8.268194 56.284440 +8.272887 56.289134 +8.280514 56.291481 +8.289315 56.292948 +8.294009 56.297641 +8.299582 56.301748 +8.303983 56.306148 +8.309556 56.309962 +8.313957 56.314656 +8.316890 56.319936 +8.307503 56.321990 +8.295182 56.322576 +8.284035 56.322283 +8.275527 56.324630 +8.268487 56.327857 +8.261740 56.330790 +8.256166 56.334310 +8.250592 56.338417 +8.244725 56.341938 +8.239151 56.345458 +8.232111 56.348685 +8.225364 56.351618 +8.219497 56.355139 +8.212456 56.358366 +8.206882 56.362179 +8.201015 56.365699 +8.194268 56.368926 +8.188694 56.372447 +8.184294 56.376847 +8.178720 56.381247 +8.174320 56.385648 +8.171387 56.390635 +8.173440 56.396795 +8.176667 56.400609 +8.184588 56.402955 +8.195148 56.402075 +8.203656 56.399435 +8.210696 56.396502 +8.217443 56.393275 +8.223310 56.389461 +8.231524 56.387114 +8.241498 56.385354 +8.250299 56.386821 +8.247365 56.391808 +8.242672 56.396208 +8.241205 56.401782 +8.238271 56.406769 +8.231231 56.409703 +8.222724 56.412343 +8.213336 56.414103 +8.201895 56.413810 +8.191041 56.414983 +8.185174 56.418503 +8.179600 56.422610 +8.167573 56.423197 +8.159066 56.425250 +8.150852 56.427891 +8.141758 56.426130 +8.139704 56.419970 +8.141464 56.414396 +8.141758 56.408236 +8.140584 56.401489 +8.139704 56.394742 +8.138531 56.387701 +8.136771 56.381541 +8.134424 56.375673 +8.134717 56.369513 +8.131784 56.364233 +8.124450 56.365699 +8.123863 56.371860 +8.123570 56.378314 +8.124743 56.385061 +8.125623 56.391808 +8.127677 56.397968 +8.130024 56.404129 +8.129437 56.410289 +8.129144 56.416450 +8.128850 56.422610 +8.125917 56.427597 +8.125623 56.433758 +8.123863 56.439331 +8.122103 56.444905 +8.120636 56.450479 +8.121516 56.457226 +8.121223 56.463680 +8.122103 56.470134 +8.124157 56.476294 +8.125330 56.483335 +8.126210 56.490082 +8.125917 56.496242 +8.124157 56.501522 +8.122396 56.507390 +8.120930 56.512963 +8.119169 56.518537 +8.118876 56.524697 +8.118289 56.530858 +8.119463 56.537898 +8.120343 56.543179 +8.121223 56.549926 +8.123276 56.556086 +8.126797 56.561367 +8.128557 56.567527 +8.130904 56.573688 +8.134131 56.578968 +8.137357 56.584542 +8.140584 56.589822 +8.143811 56.595103 +8.147332 56.600383 +8.151732 56.605663 +8.154959 56.611237 +8.158479 56.616517 +8.162879 56.620918 +8.166106 56.626491 +8.169040 56.631772 +8.172560 56.637052 +8.175787 56.642626 +8.178134 56.648200 +8.179894 56.654360 +8.182241 56.660521 +8.185468 56.666094 +8.188988 56.671375 +8.193388 56.675775 +8.197788 56.680469 +8.202189 56.685162 +8.206296 56.688389 +8.215390 56.689856 +8.226537 56.690149 +8.235338 56.689269 +8.241205 56.685456 +8.235338 56.681642 +8.230938 56.676948 +8.227711 56.671668 +8.224484 56.666388 +8.220083 56.661694 +8.215683 56.657294 +8.212163 56.651720 +8.208936 56.646440 +8.206589 56.640279 +8.205709 56.633532 +8.203656 56.627372 +8.201309 56.621504 +8.204536 56.616517 +8.211283 56.613291 +8.220083 56.610944 +8.229764 56.609184 +8.235338 56.605370 +8.234458 56.600090 +8.232111 56.593929 +8.236805 56.589529 +8.246485 56.587769 +8.257633 56.586302 +8.268487 56.585422 +8.279341 56.584248 +8.291955 56.583662 +8.300169 56.581022 +8.300462 56.574861 +8.294889 56.571047 +8.290488 56.566354 +8.288435 56.560193 +8.291369 56.555500 +8.295769 56.551099 +8.304276 56.548753 +8.311610 56.549633 +8.315130 56.554913 +8.317184 56.561073 +8.322757 56.564887 +8.330678 56.567527 +8.342999 56.566647 +8.354146 56.565474 +8.363827 56.564007 +8.374681 56.562540 +8.384949 56.563714 +8.394923 56.564300 +8.404310 56.566060 +8.415164 56.566060 +8.423671 56.564007 +8.430418 56.560487 +8.440393 56.559020 +8.452713 56.558433 +8.462394 56.556380 +8.470901 56.554033 +8.476475 56.550219 +8.483222 56.547286 +8.490263 56.544059 +8.498770 56.541712 +8.507277 56.539072 +8.516665 56.537605 +8.528106 56.537605 +8.536906 56.539072 +8.543653 56.542299 +8.545707 56.548459 +8.546880 56.555206 +8.550400 56.560487 +8.556854 56.563714 +8.565655 56.562540 +8.571522 56.559020 +8.575629 56.554326 +8.578562 56.549339 +8.581496 56.543766 +8.581789 56.537898 +8.582083 56.531445 +8.584723 56.526751 +8.592057 56.523524 +8.598804 56.520297 +8.602911 56.516190 +8.603204 56.510030 +8.599977 56.504456 +8.597924 56.498296 +8.597924 56.492135 +8.602618 56.488028 +8.608191 56.484215 +8.614938 56.480988 +8.621979 56.478054 +8.631660 56.476001 +8.641340 56.474534 +8.652194 56.473067 +8.663342 56.471894 +8.674489 56.471894 +8.684757 56.473067 +8.695904 56.473067 +8.707052 56.473360 +8.716146 56.474827 +8.724946 56.476294 +8.733747 56.478054 +8.740787 56.480988 +8.747535 56.484215 +8.750761 56.489788 +8.750468 56.495949 +8.747535 56.500936 +8.743428 56.505043 +8.739027 56.509443 +8.736094 56.514430 +8.734334 56.520004 +8.735507 56.525284 +8.739027 56.530858 +8.744308 56.534672 +8.749881 56.538192 +8.754575 56.543179 +8.754282 56.549046 +8.749881 56.553740 +8.743134 56.556673 +8.734627 56.559313 +8.726413 56.561660 +8.719373 56.564594 +8.713505 56.568407 +8.709399 56.572808 +8.706465 56.577795 +8.702358 56.581902 +8.696784 56.585715 +8.689450 56.588942 +8.681236 56.591289 +8.676836 56.595689 +8.675369 56.600970 +8.677423 56.607130 +8.682997 56.611237 +8.691211 56.613584 +8.702358 56.613584 +8.713212 56.612410 +8.724360 56.611237 +8.733454 56.612704 +8.741374 56.615344 +8.748121 56.618278 +8.752522 56.622678 +8.755749 56.627958 +8.760442 56.632652 +8.763962 56.637932 +8.768363 56.642919 +8.772763 56.647320 +8.778337 56.651133 +8.783030 56.655827 +8.788604 56.659347 +8.794178 56.663454 +8.798578 56.668148 +8.804445 56.671961 +8.811192 56.674895 +8.820286 56.676655 +8.829087 56.678122 +8.840528 56.678415 +8.851675 56.678415 +8.864290 56.677828 +8.875144 56.676655 +8.885411 56.677535 +8.893332 56.679589 +8.901252 56.682229 +8.907999 56.685162 +8.912400 56.689856 +8.915920 56.695136 +8.911813 56.699537 +8.903306 56.701884 +8.892158 56.703350 +8.879837 56.703937 +8.869863 56.703057 +8.857249 56.703644 +8.847568 56.705697 +8.844342 56.710684 +8.845515 56.715965 +8.849915 56.720658 +8.855489 56.724178 +8.861356 56.727992 +8.866930 56.731806 +8.871330 56.736793 +8.876024 56.741193 +8.879544 56.746473 +8.885118 56.750287 +8.889811 56.754981 +8.894212 56.759381 +8.898612 56.764075 +8.904479 56.768182 +8.910053 56.771702 +8.915627 56.775516 +8.922374 56.778742 +8.927948 56.782556 +8.934988 56.785490 +8.942909 56.788130 +8.950829 56.790183 +8.959923 56.791943 +8.969897 56.792823 +8.981338 56.792823 +8.989845 56.790183 +8.996592 56.787250 +9.003926 56.784023 +9.013607 56.783729 +9.021528 56.786076 +9.028275 56.789303 +9.034142 56.793117 +9.043236 56.794584 +9.053210 56.795170 +9.064651 56.795464 +9.076092 56.795464 +9.083132 56.792530 +9.089879 56.789303 +9.094573 56.784903 +9.098680 56.780503 +9.101320 56.775516 +9.104547 56.770822 +9.108654 56.766422 +9.113054 56.762021 +9.115694 56.757034 +9.120095 56.752634 +9.123028 56.747647 +9.124495 56.742366 +9.128895 56.737673 +9.131535 56.732686 +9.137109 56.729166 +9.141803 56.724765 +9.147083 56.721245 +9.151484 56.716551 +9.154124 56.711564 +9.153244 56.705991 +9.152364 56.699537 +9.147377 56.694843 +9.144150 56.689563 +9.139749 56.684869 +9.135056 56.680175 +9.131535 56.674895 +9.128015 56.669615 +9.123615 56.664921 +9.120388 56.659641 +9.115694 56.655240 +9.112174 56.649960 +9.107774 56.645266 +9.103080 56.640866 +9.097506 56.637052 +9.091639 56.632945 +9.084892 56.630012 +9.077265 56.627665 +9.070224 56.624731 +9.064651 56.620918 +9.059957 56.616224 +9.056730 56.610944 +9.054383 56.604783 +9.052330 56.598623 +9.052330 56.592462 +9.052623 56.586302 +9.053797 56.580728 +9.055557 56.575154 +9.058197 56.570167 +9.061424 56.565180 +9.062891 56.559607 +9.067291 56.555206 +9.071398 56.550806 +9.078438 56.547872 +9.088119 56.545819 +9.095746 56.548459 +9.099267 56.553740 +9.100440 56.560487 +9.098973 56.566060 +9.098680 56.572221 +9.100147 56.578968 +9.102200 56.585129 +9.106600 56.589822 +9.112467 56.593636 +9.120388 56.595689 +9.131535 56.595689 +9.140043 56.593342 +9.148843 56.595103 +9.146203 56.600090 +9.140629 56.603610 +9.134762 56.607423 +9.134762 56.613584 +9.136523 56.618278 +9.141510 56.622971 +9.143270 56.627665 +9.146790 56.632945 +9.155884 56.634412 +9.158524 56.629425 +9.157644 56.622678 +9.161751 56.618278 +9.166151 56.614171 +9.173192 56.610944 +9.182579 56.609184 +9.194020 56.609184 +9.200474 56.612117 +9.207514 56.615344 +9.214261 56.618278 +9.225702 56.618278 +9.237730 56.617691 +9.249171 56.617691 +9.260318 56.616811 +9.271172 56.615344 +9.277919 56.612117 +9.283493 56.608303 +9.286720 56.603316 +9.284080 56.597449 +9.279679 56.592756 +9.272932 56.589822 +9.265012 56.587475 +9.259438 56.583662 +9.254744 56.579261 +9.252397 56.573101 +9.251517 56.567527 +9.252984 56.561954 +9.254451 56.556380 +9.257091 56.551393 +9.258851 56.545819 +9.261785 56.540832 +9.267359 56.537312 +9.274106 56.533791 +9.281146 56.530858 +9.286720 56.527338 +9.289654 56.522351 +9.293760 56.517657 +9.302268 56.516777 +9.308135 56.520591 +9.312535 56.524991 +9.318402 56.528804 +9.327203 56.530271 +9.339524 56.529685 +9.351845 56.529098 +9.364166 56.528218 +9.375606 56.528218 +9.383234 56.530858 +9.384407 56.536138 +9.381767 56.541125 +9.380007 56.546699 +9.380007 56.553153 +9.380887 56.558433 +9.372673 56.560780 +9.362405 56.559900 +9.354778 56.557847 +9.347738 56.554620 +9.340110 56.552566 +9.331897 56.549926 +9.321922 56.549046 +9.312829 56.547872 +9.301681 56.547579 +9.290534 56.548753 +9.287893 56.554033 +9.289947 56.559900 +9.293467 56.565180 +9.295814 56.571341 +9.298454 56.577501 +9.299334 56.584248 +9.299041 56.590409 +9.297867 56.595983 +9.298747 56.602730 +9.299921 56.608303 +9.303441 56.613584 +9.308135 56.617984 +9.311362 56.623265 +9.312829 56.630305 +9.314002 56.637346 +9.313709 56.643213 +9.312242 56.648786 +9.310775 56.654947 +9.309308 56.660814 +9.307841 56.666388 +9.304908 56.671375 +9.302268 56.676362 +9.296694 56.679882 +9.292294 56.684576 +9.285253 56.687509 +9.275572 56.689563 +9.263252 56.689856 +9.255331 56.687803 +9.248584 56.684869 +9.239490 56.683109 +9.230689 56.681349 +9.221302 56.679882 +9.214555 56.676948 +9.209861 56.672255 +9.206634 56.666974 +9.203114 56.661694 +9.197540 56.657880 +9.191673 56.653773 +9.182873 56.652600 +9.174365 56.654947 +9.170258 56.659054 +9.169965 56.665508 +9.173192 56.670788 +9.178179 56.675188 +9.182579 56.679882 +9.187273 56.684576 +9.194020 56.687509 +9.196660 56.688976 +9.196660 56.689563 +9.202234 56.691909 +9.207808 56.695723 +9.212501 56.700417 +9.218075 56.704230 +9.222769 56.708631 +9.227169 56.713324 +9.230689 56.718605 +9.235383 56.723005 +9.238903 56.728579 +9.242130 56.733859 +9.244477 56.740020 +9.245944 56.746767 +9.242717 56.751754 +9.237143 56.755567 +9.228929 56.757914 +9.216315 56.758501 +9.205461 56.759968 +9.197247 56.762608 +9.191380 56.766128 +9.188740 56.771115 +9.185806 56.776102 +9.182873 56.781089 +9.181406 56.786663 +9.178472 56.791650 +9.174072 56.795757 +9.172605 56.801624 +9.173485 56.806904 +9.177005 56.812185 +9.181699 56.816878 +9.187273 56.820692 +9.191966 56.825386 +9.197540 56.829199 +9.202234 56.833600 +9.204581 56.839760 +9.206928 56.845921 +9.205167 56.851494 +9.201060 56.855895 +9.196660 56.860002 +9.189620 56.863228 +9.182873 56.866455 +9.175832 56.869389 +9.171432 56.873789 +9.169965 56.879363 +9.171138 56.886110 +9.174659 56.891684 +9.177005 56.897551 +9.180526 56.903125 +9.183753 56.908405 +9.189620 56.912219 +9.196367 56.915152 +9.202234 56.918966 +9.209274 56.922193 +9.214848 56.925713 +9.220422 56.929820 +9.225116 56.934514 +9.228636 56.939794 +9.233036 56.944194 +9.237730 56.948888 +9.243597 56.952408 +9.250344 56.955635 +9.258265 56.957982 +9.265305 56.961209 +9.272346 56.964142 +9.278799 56.967076 +9.283493 56.972063 +9.289360 56.975583 +9.296107 56.978517 +9.303148 56.981744 +9.309895 56.984971 +9.316642 56.988197 +9.324856 56.990251 +9.333950 56.992011 +9.343044 56.993478 +9.354778 56.994065 +9.364752 56.994945 +9.375020 56.995825 +9.385287 56.996705 +9.396728 56.996705 +9.406995 56.997585 +9.417263 56.998465 +9.429584 56.997585 +9.441024 56.997878 +9.453639 56.996998 +9.466253 56.996411 +9.478574 56.995531 +9.490015 56.994358 +9.499989 56.993771 +9.507322 56.992011 +9.517003 56.989958 +9.526684 56.988197 +9.536365 56.986144 +9.547512 56.984971 +9.557193 56.982917 +9.568340 56.981744 +9.576554 56.979103 +9.579781 56.974116 +9.575967 56.968836 +9.571274 56.964436 +9.569220 56.958275 +9.563353 56.954462 +9.553086 56.953582 +9.543992 56.951821 +9.539298 56.947421 +9.540765 56.941847 +9.544872 56.937447 +9.549272 56.933047 +9.553379 56.928940 +9.557779 56.924540 +9.560420 56.919553 +9.566873 56.919846 +9.570394 56.925126 +9.570394 56.931287 +9.570394 56.937447 +9.571274 56.944488 +9.577141 56.948008 +9.584181 56.951235 +9.593275 56.952702 +9.601489 56.955048 +9.607063 56.958862 +9.611757 56.963262 +9.616450 56.967956 +9.622317 56.971770 +9.629065 56.974703 +9.638159 56.976463 +9.644906 56.979397 +9.650773 56.983210 +9.656640 56.987024 +9.660160 56.992598 +9.663680 56.997878 +9.667201 57.003159 +9.670721 57.008439 +9.674534 57.013719 +9.679228 57.018120 +9.683628 57.022813 +9.690669 57.025747 +9.697416 57.028974 +9.706510 57.028974 +9.715604 57.030440 +9.727925 57.029854 +9.739366 57.029854 +9.751980 57.029267 +9.762247 57.029854 +9.771341 57.031321 +9.781609 57.032201 +9.793050 57.032201 +9.804490 57.030734 +9.814171 57.028974 +9.821212 57.025747 +9.829426 57.023400 +9.838520 57.024867 +9.843213 57.029560 +9.850254 57.032494 +9.857294 57.035427 +9.863748 57.037774 +9.863748 57.037188 +9.871962 57.039534 +9.882229 57.040415 +9.891323 57.041588 +9.900417 57.043348 +9.908631 57.045695 +9.919779 57.044228 +9.929459 57.042175 +9.944421 57.047455 +9.950288 57.051269 +9.954688 57.054496 +9.949994 57.050095 +9.944127 57.045988 +9.936207 57.043935 +9.924766 57.043935 +9.915085 57.045695 +9.909511 57.049802 +9.902177 57.052735 +9.893964 57.055376 +9.884283 57.057136 +9.877242 57.060656 +9.869028 57.063003 +9.863455 57.066523 +9.856414 57.070043 +9.850840 57.073564 +9.843507 57.077084 +9.837933 57.080604 +9.831186 57.083831 +9.822678 57.086471 +9.814465 57.088818 +9.806251 57.091458 +9.796277 57.093218 +9.783662 57.094098 +9.775448 57.092045 +9.768701 57.088818 +9.764301 57.084124 +9.761661 57.078257 +9.759021 57.072097 +9.755500 57.066816 +9.751980 57.061536 +9.747286 57.056842 +9.740246 57.053909 +9.731152 57.052442 +9.719711 57.052149 +9.708270 57.052149 +9.698590 57.054202 +9.688909 57.056256 +9.677761 57.057429 +9.665147 57.058309 +9.652826 57.058896 +9.644026 57.058602 +9.634638 57.057136 +9.627891 57.054202 +9.619677 57.051855 +9.612637 57.048922 +9.604716 57.046282 +9.597676 57.043348 +9.589755 57.041001 +9.581541 57.038948 +9.572447 57.037188 +9.563353 57.035721 +9.553086 57.035134 +9.541645 57.034841 +9.530204 57.034841 +9.517883 57.035427 +9.509376 57.038068 +9.511723 57.042761 +9.517297 57.046282 +9.511429 57.048922 +9.502335 57.047455 +9.494122 57.045108 +9.487374 57.041881 +9.481801 57.038068 +9.474760 57.035134 +9.465666 57.033667 +9.456279 57.031907 +9.445131 57.031907 +9.434864 57.031027 +9.423423 57.031027 +9.413156 57.030147 +9.403768 57.028680 +9.393501 57.027800 +9.386754 57.024867 +9.379713 57.021640 +9.372086 57.019586 +9.365046 57.016359 +9.356832 57.014013 +9.348911 57.011666 +9.339817 57.009906 +9.329550 57.009026 +9.320162 57.007852 +9.311362 57.006092 +9.303441 57.003745 +9.295227 57.001398 +9.288480 56.998465 +9.279093 56.996998 +9.271172 56.994358 +9.265598 56.990544 +9.260905 56.986144 +9.253864 56.982917 +9.247410 56.982917 +9.237436 56.982037 +9.227169 56.981157 +9.217195 56.982917 +9.209861 56.984677 +9.204581 56.988197 +9.200180 56.992891 +9.195780 56.997291 +9.190206 57.000812 +9.185806 57.005212 +9.180232 57.009026 +9.176125 57.013426 +9.170258 57.016946 +9.166151 57.021346 +9.160284 57.025160 +9.153244 57.028387 +9.146497 57.031321 +9.139163 57.034547 +9.130949 57.036894 +9.123908 57.040121 +9.116574 57.043348 +9.109827 57.046282 +9.102787 57.049509 +9.095453 57.052442 +9.089879 57.056256 +9.084305 57.060069 +9.081372 57.065056 +9.076972 57.069457 +9.074038 57.074444 +9.069638 57.078551 +9.065531 57.082951 +9.061130 57.087645 +9.057023 57.091752 +9.052623 57.096152 +9.049690 57.101139 +9.045289 57.105539 +9.041182 57.109646 +9.035315 57.113753 +9.028568 57.111993 +9.024168 57.107299 +9.022994 57.100259 +9.024461 57.094685 +9.028861 57.090578 +9.034435 57.086765 +9.044116 57.084711 +9.051156 57.081191 +9.057023 57.077084 +9.063771 57.074150 +9.068464 57.069750 +9.073745 57.066230 +9.078438 57.061536 +9.082545 57.057429 +9.088412 57.053615 +9.095160 57.050682 +9.102200 57.047455 +9.108067 57.043641 +9.115108 57.040415 +9.120975 57.036894 +9.123615 57.031907 +9.123908 57.025453 +9.118041 57.021933 +9.107774 57.021053 +9.097506 57.020173 +9.087239 57.019586 +9.076972 57.018706 +9.067878 57.016946 +9.059957 57.014306 +9.054090 57.010786 +9.048223 57.006972 +9.044996 57.001692 +9.035902 56.999932 +9.028568 57.001692 +9.024168 57.006092 +9.015954 57.008732 +9.004513 57.008439 +8.995419 57.006972 +8.988672 57.003745 +8.981631 57.000518 +8.973711 56.998465 +8.963443 56.997585 +8.952003 56.997291 +8.943202 56.995825 +8.933815 56.994065 +8.927067 56.991131 +8.920027 56.988197 +8.910053 56.987317 +8.901252 56.988197 +8.894212 56.991424 +8.890985 56.996411 +8.886878 57.000518 +8.882478 57.004919 +8.876904 57.008732 +8.869863 57.011666 +8.859596 57.012252 +8.853142 57.009026 +8.851969 57.003745 +8.854902 56.998758 +8.856662 56.993478 +8.851969 56.988491 +8.844048 56.986437 +8.832901 56.986144 +8.821753 56.988197 +8.813246 56.990544 +8.804739 56.993184 +8.794765 56.993478 +8.796525 56.988197 +8.803272 56.984677 +8.810606 56.981744 +8.817646 56.978517 +8.824687 56.975583 +8.822340 56.969423 +8.816766 56.965609 +8.808552 56.963262 +8.800925 56.960915 +8.793885 56.957689 +8.786844 56.954755 +8.780390 56.951528 +8.774523 56.946834 +8.768949 56.943021 +8.763082 56.939501 +8.756335 56.935980 +8.748415 56.933927 +8.736974 56.933634 +8.725826 56.935100 +8.716146 56.936860 +8.706465 56.938621 +8.695024 56.940087 +8.683583 56.939794 +8.675956 56.937447 +8.670089 56.933634 +8.665689 56.928940 +8.662168 56.923659 +8.660115 56.917499 +8.656595 56.912219 +8.650728 56.908405 +8.645154 56.904298 +8.638407 56.901365 +8.632833 56.897551 +8.627259 56.893737 +8.622566 56.889044 +8.620219 56.883177 +8.618165 56.877016 +8.618459 56.870856 +8.619925 56.865282 +8.620219 56.858828 +8.618165 56.852668 +8.613472 56.848267 +8.607898 56.844454 +8.602324 56.840640 +8.595577 56.837413 +8.588537 56.834480 +8.582963 56.830666 +8.578562 56.825972 +8.574162 56.821279 +8.569468 56.816585 +8.562721 56.813652 +8.555094 56.811011 +8.543653 56.811011 +8.535439 56.808665 +8.532212 56.803384 +8.524585 56.800744 +8.515198 56.799277 +8.506397 56.797810 +8.498477 56.795170 +8.492903 56.791357 +8.487329 56.787543 +8.483809 56.782263 +8.480582 56.776982 +8.479409 56.769942 +8.482342 56.764955 +8.487916 56.761434 +8.492610 56.757034 +8.496717 56.752634 +8.501117 56.748234 +8.504050 56.743247 +8.504344 56.737086 +8.504637 56.731219 +8.499943 56.726525 +8.494370 56.722418 +8.488796 56.718898 +8.485569 56.713324 +8.487329 56.707751 +8.494076 56.704817 +8.505224 56.703644 +8.516371 56.702177 +8.523412 56.699243 +8.524879 56.693670 +8.525172 56.687509 +8.523118 56.681349 +8.517545 56.677535 +8.509624 56.675188 +8.498477 56.674895 +8.489969 56.677535 +8.482929 56.680469 +8.473248 56.682522 +8.461807 56.682229 +8.452713 56.680469 +8.445086 56.678122 +8.438339 56.674895 +8.436286 56.670201 +8.445966 56.668735 +8.456234 56.669321 +8.462981 56.672548 +8.470901 56.674895 +8.479702 56.675188 +8.485276 56.671375 +8.487036 56.665801 +8.488503 56.660227 +8.494076 56.656707 +8.502584 56.654067 +8.513731 56.653187 +8.523999 56.653773 +8.530452 56.657000 +8.537199 56.659934 +8.542773 56.663747 +8.548640 56.667854 +8.555387 56.670788 +8.564188 56.672548 +8.574162 56.672255 +8.579736 56.668441 +8.578856 56.661694 +8.574162 56.657000 +8.570935 56.651720 +8.568588 56.645560 +8.568882 56.639399 +8.573282 56.634999 +8.578856 56.631478 +8.584723 56.627372 +8.587363 56.622678 +8.590590 56.617691 +8.589417 56.610944 +8.588243 56.604197 +8.590003 56.598623 +8.590297 56.592169 +8.585896 56.587769 +8.575629 56.586595 +8.566535 56.585422 +8.560081 56.581902 +8.555681 56.577501 +8.548934 56.574568 +8.537493 56.574274 +8.529279 56.576621 +8.522238 56.579848 +8.519305 56.584835 +8.516078 56.589822 +8.517251 56.596276 +8.515491 56.601850 +8.512851 56.606837 +8.509624 56.611824 +8.504050 56.615637 +8.499650 56.620038 +8.494076 56.623558 +8.488209 56.627372 +8.481462 56.630598 +8.475888 56.634119 +8.468555 56.637346 +8.461807 56.640279 +8.456234 56.643799 +8.448900 56.647320 +8.440686 56.649373 +8.432179 56.652013 +8.423965 56.654360 +8.416924 56.657587 +8.407243 56.659347 +8.398736 56.661694 +8.390229 56.664041 +8.382015 56.666681 +8.372334 56.668735 +8.365294 56.671668 +8.357960 56.674602 +8.352386 56.678415 +8.345639 56.681349 +8.339772 56.684869 +8.335372 56.689563 +8.329798 56.693083 +8.325398 56.697483 +8.320997 56.701590 +8.321877 56.708631 +8.323051 56.715671 +8.322757 56.721538 +8.322464 56.727699 +8.319531 56.732686 +8.316304 56.737673 +8.311903 56.742073 +8.307796 56.746473 +8.300462 56.749407 +8.292249 56.752047 +8.284035 56.754394 +8.276701 56.757621 +8.269660 56.760554 +8.259980 56.762315 +8.253232 56.759088 +8.251179 56.752927 +8.251472 56.747060 +8.252939 56.741486 +8.256166 56.736499 +8.257633 56.730926 +8.260860 56.725939 +8.263793 56.720952 +8.265553 56.715378 +8.267313 56.709804 +8.264967 56.703644 +8.259393 56.699830 +8.249125 56.698950 +8.245019 56.703057 +8.240618 56.707457 +8.238858 56.713031 +8.238565 56.719191 +8.236805 56.724765 +8.236511 56.731219 +8.236218 56.737086 +8.235925 56.743247 +8.235631 56.749700 +8.235338 56.755861 +8.236218 56.762901 +8.235925 56.768768 +8.236805 56.775516 +8.239151 56.781676 +8.241205 56.787836 +8.242085 56.794584 +8.244432 56.800744 +8.246779 56.806904 +8.250006 56.812185 +8.253232 56.817465 +8.256459 56.822746 +8.261153 56.827439 +8.264087 56.832720 +8.268487 56.837413 +8.273474 56.842107 +8.277874 56.846801 +8.282275 56.851494 +8.286675 56.855895 +8.291075 56.860588 +8.296649 56.864402 +8.301049 56.868802 +8.306623 56.872909 +8.311317 56.877603 +8.315717 56.882296 +8.320411 56.886697 +8.324811 56.891390 +8.329211 56.895791 +8.333612 56.900484 +8.336838 56.905765 +8.341532 56.910459 +8.345932 56.914859 +8.350333 56.919846 +8.355026 56.924246 +8.359427 56.928940 +8.365000 56.932753 +8.369401 56.937447 +8.375268 56.941261 +8.379668 56.945954 +8.385242 56.949768 +8.390816 56.953582 +8.395216 56.957982 +8.399910 56.962676 +8.405483 56.966783 +8.409884 56.971476 +8.415457 56.975290 +8.421325 56.978810 +8.425725 56.983504 +8.431299 56.987611 +8.437166 56.991424 +8.441566 56.995825 +8.445966 57.000518 +8.450660 57.005212 +8.457407 57.008439 +8.464154 57.011372 +8.471195 57.014306 +8.477649 57.017826 +8.484689 57.020760 +8.491436 57.023987 +8.497303 57.027800 +8.503757 57.030734 +8.509624 57.034841 +8.515198 57.038654 +8.520772 57.042468 +8.526639 57.046282 +8.532212 57.050389 +8.536906 57.054789 +8.541306 57.059483 +8.546880 57.063296 +8.551574 57.067696 +8.555974 57.072390 +8.559494 57.077671 +8.563895 57.082364 +8.568588 57.087058 +8.572989 57.091752 +8.577389 57.096152 +8.582083 57.098499 +8.582963 57.098499 +8.588537 57.101139 +8.596457 57.103486 +8.605551 57.105246 +8.614645 57.106713 +8.627259 57.106126 +8.638700 57.104952 +8.648381 57.103192 +8.658355 57.101432 +8.668036 57.099379 +8.677716 57.097619 +8.687690 57.095858 +8.697371 57.093805 +8.707345 57.092045 +8.718493 57.090871 +8.729640 57.089405 +8.742254 57.088818 +8.754868 57.088231 +8.766309 57.088231 +8.776577 57.089405 +8.786844 57.090285 +8.797111 57.091165 +8.805032 57.093218 +8.814126 57.094978 +8.823220 57.096739 +8.832607 57.098205 +8.840528 57.100552 +8.848742 57.103192 +8.856369 57.105246 +8.863410 57.108473 +8.871330 57.110820 +8.878371 57.113753 +8.885998 57.116393 +8.894212 57.118740 +8.901252 57.121674 +8.909173 57.124021 +8.915920 57.127247 +8.923841 57.129301 +8.930881 57.132528 +8.938802 57.134875 +8.948189 57.137221 +8.956110 57.139862 +8.964030 57.141915 +8.972244 57.144262 +8.981338 57.145729 +8.990432 57.147489 +9.000699 57.148369 +9.010967 57.149249 +9.021528 57.150129 +9.032382 57.148956 +9.041476 57.147782 +9.049690 57.145142 +9.059370 57.143382 +9.069344 57.141328 +9.080492 57.139862 +9.091639 57.138982 +9.103080 57.137515 +9.114228 57.136341 +9.125375 57.134875 +9.136523 57.133995 +9.146497 57.131941 +9.158817 57.131061 +9.169965 57.129888 +9.182873 57.129301 +9.194313 57.129301 +9.205461 57.129301 +9.216902 57.129301 +9.227169 57.130181 +9.237436 57.131061 +9.247704 57.131941 +9.259145 57.132234 +9.269705 57.133115 +9.279973 57.133995 +9.290240 57.134581 +9.299334 57.136048 +9.307548 57.138688 +9.315469 57.140742 +9.323683 57.143089 +9.332777 57.144849 +9.341871 57.146315 +9.352138 57.147196 +9.362405 57.148076 +9.372673 57.148956 +9.382060 57.150422 +9.391154 57.152476 +9.399075 57.155116 +9.407289 57.157170 +9.414036 57.160396 +9.422250 57.162743 +9.429290 57.165970 +9.437211 57.168024 +9.444251 57.171251 +9.450998 57.174184 +9.459212 57.176531 +9.466253 57.179464 +9.474173 57.181811 +9.481214 57.185038 +9.487961 57.187972 +9.496175 57.190319 +9.502042 57.194132 +9.508789 57.197359 +9.515830 57.200293 +9.521697 57.204106 +9.528444 57.207333 +9.534311 57.210853 +9.541058 57.213787 +9.546925 57.217894 +9.551619 57.222294 +9.557486 57.226108 +9.563353 57.229921 +9.569220 57.234028 +9.575087 57.237549 +9.580954 57.241362 +9.585648 57.245763 +9.590342 57.250456 +9.596209 57.254857 +9.600903 57.259550 +9.605596 57.264244 +9.611463 57.268058 +9.617330 57.271578 +9.620851 57.277152 +9.625251 57.281552 +9.629945 57.286245 +9.635812 57.290059 +9.640505 57.294459 +9.645199 57.299153 +9.649893 57.303553 +9.655760 57.307367 +9.660453 57.312061 +9.664267 57.317341 +9.667787 57.322621 +9.672481 57.327315 +9.676001 57.332595 +9.680695 57.336996 +9.685682 57.341689 +9.690376 57.346090 +9.693896 57.351664 +9.698590 57.356064 +9.703283 57.360464 +9.707977 57.365158 +9.711497 57.370438 +9.716484 57.375132 +9.721178 57.379826 +9.724405 57.385106 +9.727925 57.390386 +9.731739 57.395667 +9.736432 57.400067 +9.739952 57.405347 +9.744646 57.410041 +9.748460 57.415321 +9.751980 57.420602 +9.756674 57.425295 +9.760194 57.430576 +9.764008 57.435856 +9.768701 57.440257 +9.773395 57.444950 +9.779555 57.448470 +9.784249 57.453457 +9.788943 57.457858 +9.793636 57.462258 +9.799503 57.466072 +9.805371 57.469885 +9.805371 57.469299 +9.808304 57.471939 +9.814171 57.475459 +9.820038 57.479566 +9.825905 57.483380 +9.831772 57.486900 +9.837640 57.490714 +9.843507 57.494820 +9.849374 57.498634 +9.855241 57.502154 +9.861108 57.505968 +9.867268 57.509782 +9.874309 57.512715 +9.879883 57.516529 +9.885750 57.520636 +9.891910 57.524156 +9.896604 57.528850 +9.902471 57.532370 +9.907164 57.537357 +9.913325 57.541170 +9.916845 57.546451 +9.920659 57.551731 +9.924179 57.557012 +9.927699 57.562292 +9.932393 57.566692 +9.938260 57.570506 +9.944421 57.574320 +9.953514 57.575786 +9.963195 57.577546 +9.973463 57.578426 +9.984023 57.579013 +9.995464 57.579013 +10.005438 57.578426 +10.017172 57.578426 +10.029787 57.576960 +10.041521 57.576960 +10.052962 57.576960 +10.064402 57.576960 +10.076137 57.576960 +10.087871 57.576960 +10.098138 57.577840 +10.109579 57.577840 +10.121313 57.577840 +10.130701 57.579307 +10.140968 57.579893 +10.150649 57.581360 +10.159743 57.583120 +10.170303 57.584000 +10.180864 57.584587 +10.189958 57.586054 +10.199345 57.587520 +10.208733 57.588987 +10.218120 57.590454 +10.227214 57.591921 +10.236601 57.593681 +10.245989 57.594854 +10.255376 57.596614 +10.263590 57.598961 +10.272684 57.600135 +10.281191 57.602482 +10.289405 57.604828 +10.297619 57.607175 +10.304660 57.610109 +10.312874 57.612162 +10.319914 57.615389 +10.326955 57.618323 +10.334288 57.621256 +10.338982 57.625950 +10.345143 57.629763 +10.349836 57.634164 +10.356877 57.637977 +10.363037 57.641791 +10.370078 57.644725 +10.377118 57.647658 +10.382985 57.651472 +10.390319 57.654405 +10.397360 57.657632 +10.403227 57.661446 +10.410561 57.664379 +10.416428 57.668193 +10.423468 57.671126 +10.429335 57.674940 +10.435496 57.678754 +10.441363 57.682567 +10.446350 57.686968 +10.452217 57.690781 +10.458377 57.694301 +10.464538 57.698408 +10.471578 57.701929 +10.477445 57.705742 +10.484779 57.708676 +10.490940 57.712489 +10.497687 57.715423 +10.505021 57.718650 +10.512355 57.721290 +10.519102 57.724517 +10.528489 57.725984 +10.536996 57.728331 +10.546090 57.729797 +10.555478 57.730971 +10.566038 57.731851 +10.577773 57.731851 +10.589507 57.731851 +10.601241 57.731557 +10.612388 57.730384 +10.622363 57.728331 +10.629403 57.725397 +10.631163 57.722170 +nan nan +10.631456 57.723050 +10.627936 57.719237 +10.620896 57.716010 +10.613562 57.713076 +10.606521 57.710143 +10.599481 57.706916 +10.592147 57.704276 +10.583933 57.701635 +10.576893 57.698995 +10.569852 57.695768 +10.562518 57.692835 +10.554304 57.690488 +10.547264 57.687554 +10.539930 57.684327 +10.533183 57.681394 +10.525849 57.678754 +10.519982 57.674647 +10.512648 57.671713 +10.506781 57.668193 +10.499740 57.664966 +10.493580 57.661446 +10.487713 57.657632 +10.481552 57.653525 +10.475979 57.650005 +10.469818 57.646191 +10.463658 57.642378 +10.458964 57.637684 +10.453977 57.633284 +10.449283 57.628883 +10.444296 57.624190 +10.439309 57.619789 +10.435789 57.614509 +10.431976 57.609229 +10.428455 57.603948 +10.425522 57.597788 +10.423175 57.591627 +10.420535 57.585467 +10.418775 57.579013 +10.418775 57.572853 +10.418775 57.566399 +10.418775 57.560238 +10.420241 57.554665 +10.421708 57.548798 +10.422882 57.543224 +10.425522 57.538237 +10.426988 57.532663 +10.428455 57.527089 +10.428455 57.521222 +10.429629 57.515355 +10.431095 57.509782 +10.435202 57.505381 +10.439309 57.500981 +10.444883 57.497167 +10.451924 57.493940 +10.461898 57.491887 +10.471578 57.490127 +10.480379 57.487487 +10.488593 57.484846 +10.494167 57.481033 +10.501207 57.477806 +10.507954 57.474579 +10.513821 57.470765 +10.517928 57.466365 +10.523502 57.462551 +10.529076 57.459031 +10.533476 57.454338 +10.537583 57.449937 +10.540223 57.444950 +10.543157 57.439963 +10.544037 57.434389 +10.541690 57.428229 +10.536996 57.423535 +10.533183 57.418255 +10.528196 57.413855 +10.525556 57.407694 +10.522915 57.401827 +10.521742 57.395080 +10.520275 57.389506 +10.519102 57.384226 +10.517635 57.377185 +10.517635 57.371025 +10.516168 57.364278 +10.517635 57.358704 +10.517635 57.352544 +10.517342 57.346383 +10.517342 57.339929 +10.518515 57.334356 +10.519982 57.328782 +10.521449 57.323208 +10.521155 57.317048 +10.522622 57.311474 +10.523795 57.305900 +10.523795 57.299740 +10.524969 57.294166 +10.527902 57.289179 +10.529076 57.283312 +10.530543 57.277738 +10.532009 57.272164 +10.533183 57.266591 +10.535823 57.261604 +10.537290 57.256030 +10.538757 57.250163 +10.539930 57.244589 +10.541103 57.239309 +10.541103 57.233148 +10.541103 57.226695 +10.539637 57.219947 +10.538170 57.213200 +10.533476 57.208507 +10.528489 57.204106 +10.522622 57.200293 +10.515582 57.197359 +10.509714 57.193546 +10.502381 57.190612 +10.495633 57.187385 +10.488593 57.184452 +10.482726 57.180931 +10.475685 57.177704 +10.468645 57.174771 +10.462778 57.171251 +10.456911 57.167144 +10.450750 57.163623 +10.444883 57.159810 +10.440189 57.155409 +10.435496 57.150422 +10.430509 57.146022 +10.425815 57.141622 +10.422295 57.136341 +10.417601 57.131648 +10.412907 57.127247 +10.408801 57.121967 +10.405280 57.116687 +10.402640 57.110526 +10.399120 57.105246 +10.395600 57.099965 +10.391786 57.094685 +10.387972 57.088818 +10.384159 57.083538 +10.380638 57.078257 +10.376825 57.072977 +10.374478 57.066816 +10.371838 57.060949 +10.369198 57.054789 +10.367731 57.048042 +10.365384 57.041881 +10.363917 57.035134 +10.362451 57.028387 +10.358930 57.023107 +10.355117 57.017826 +10.351303 57.012546 +10.347783 57.007265 +10.344263 57.001985 +10.340449 56.996705 +10.334582 56.992891 +10.327835 56.989664 +10.318741 56.988197 +10.309353 56.987024 +10.297913 56.987024 +10.288819 56.985264 +10.279725 56.983797 +10.270631 56.982330 +10.262417 56.979984 +10.252149 56.979397 +10.240708 56.979397 +10.229854 56.980864 +10.219880 56.982917 +10.211666 56.985264 +10.204626 56.988197 +10.196412 56.991131 +10.188198 56.993478 +10.181157 56.996998 +10.174117 56.999932 +10.167076 57.003159 +10.161796 57.006972 +10.156222 57.010786 +10.150649 57.014306 +10.146248 57.019000 +10.140968 57.022813 +10.133927 57.025747 +10.126887 57.029267 +10.120140 57.032201 +10.111633 57.034841 +10.103419 57.037481 +10.094911 57.040121 +10.086697 57.042468 +10.078190 57.045108 +10.071443 57.048335 +10.062936 57.051562 +10.056189 57.054789 +10.049148 57.057722 +10.042108 57.061243 +10.036534 57.064763 +10.031253 57.068577 +10.024213 57.071803 +10.017172 57.075030 +10.008665 57.077377 +9.997518 57.078844 +9.986077 57.078844 +9.978156 57.076790 +9.972289 57.072683 +9.966422 57.068870 +9.960555 57.065350 +9.954688 57.054496 +9.962608 57.061536 +9.969356 57.064763 +9.979623 57.065643 +9.992237 57.064763 +10.001918 57.062709 +10.008958 57.059776 +10.017172 57.056842 +10.024213 57.053909 +10.029787 57.050095 +10.035360 57.046282 +10.040934 57.042468 +10.047681 57.039534 +10.053548 57.035427 +10.060589 57.032494 +10.067629 57.029267 +10.074376 57.026040 +10.082884 57.023400 +10.089631 57.020173 +10.099312 57.018413 +10.106352 57.014893 +10.114859 57.012546 +10.121607 57.009319 +10.128647 57.006092 +10.135688 57.003159 +10.140968 56.999052 +10.145368 56.994651 +10.150942 56.991131 +10.155049 56.986731 +10.160623 56.982917 +10.168837 56.980277 +10.177344 56.977637 +10.185558 56.975290 +10.193772 56.972356 +10.202279 56.970009 +10.213133 56.968543 +10.222814 56.966783 +10.235135 56.965903 +10.245695 56.966783 +10.255963 56.967369 +10.266230 56.967956 +10.275324 56.969716 +10.285005 56.967369 +10.287645 56.962382 +10.285298 56.956809 +10.281778 56.951528 +10.279138 56.945368 +10.275618 56.940087 +10.272977 56.933927 +10.270631 56.927766 +10.267990 56.921899 +10.266524 56.914859 +10.263883 56.908992 +10.262417 56.902245 +10.261243 56.895204 +10.259776 56.888750 +10.257136 56.882590 +10.257136 56.876429 +10.255963 56.869389 +10.255963 56.863228 +10.255963 56.857068 +10.255963 56.850908 +10.256843 56.845334 +10.256843 56.839173 +10.256843 56.832720 +10.256843 56.826559 +10.256843 56.820692 +10.256843 56.814238 +10.258310 56.808665 +10.259776 56.803091 +10.262417 56.798104 +10.263590 56.792530 +10.266524 56.787543 +10.269164 56.782556 +10.273271 56.778156 +10.277378 56.773755 +10.281778 56.769062 +10.284125 56.764368 +10.287058 56.758501 +10.289699 56.753514 +10.292339 56.748527 +10.294979 56.743540 +10.297913 56.738553 +10.302020 56.734153 +10.307593 56.730632 +10.313167 56.726525 +10.319621 56.722712 +10.324021 56.718311 +10.324901 56.712738 +10.324901 56.706577 +10.321381 56.700417 +10.316687 56.696016 +10.310820 56.692203 +10.300553 56.691616 +10.290579 56.692203 +10.283832 56.695136 +10.277084 56.698657 +10.270044 56.701590 +10.261830 56.704524 +10.252149 56.706284 +10.240708 56.706284 +10.232788 56.704230 +10.224867 56.701884 +10.216947 56.699830 +10.209026 56.697190 +10.197585 56.697190 +10.186731 56.698657 +10.179691 56.701884 +10.172650 56.705110 +10.162970 56.706871 +10.153289 56.707751 +10.149769 56.702177 +10.152409 56.697190 +10.157983 56.693670 +10.162089 56.689269 +10.164730 56.684282 +10.168837 56.679589 +10.175877 56.676655 +10.188198 56.675775 +10.196999 56.676068 +10.204919 56.678415 +10.211960 56.681349 +10.217827 56.684869 +10.224574 56.688096 +10.233668 56.689563 +10.243935 56.690149 +10.253909 56.689856 +10.260657 56.686336 +10.267404 56.683402 +10.272977 56.679589 +10.277084 56.675188 +10.282365 56.671375 +10.286765 56.666974 +10.292339 56.663161 +10.297913 56.659347 +10.304366 56.656120 +10.311407 56.653187 +10.319621 56.650547 +10.329301 56.648200 +10.336049 56.645266 +10.340156 56.640866 +10.342796 56.635879 +10.342796 56.629718 +10.342796 56.623558 +10.340156 56.617397 +10.334582 56.613584 +10.325488 56.612117 +10.316394 56.610650 +10.307300 56.609184 +10.299086 56.606837 +10.292632 56.603903 +10.285592 56.600970 +10.279725 56.597156 +10.273857 56.593342 +10.267990 56.589529 +10.263590 56.585129 +10.257723 56.581315 +10.251856 56.577501 +10.245989 56.573688 +10.239242 56.570754 +10.234548 56.566060 +10.229854 56.561660 +10.225161 56.557260 +10.219587 56.553446 +10.210200 56.551979 +10.208146 56.547286 +10.209320 56.541712 +10.210786 56.535845 +10.209320 56.529098 +10.208146 56.522351 +10.205506 56.516484 +10.208439 56.511497 +10.209613 56.505923 +10.211080 56.500056 +10.209613 56.493309 +10.207266 56.487148 +10.203746 56.481868 +10.198759 56.477467 +10.194065 56.473067 +10.188491 56.469254 +10.186438 56.464560 +10.196412 56.465147 +10.205506 56.466613 +10.215480 56.467493 +10.226921 56.467493 +10.234548 56.468373 +10.231614 56.473360 +10.230148 56.478934 +10.229268 56.484508 +10.226334 56.489495 +10.226334 56.495949 +10.224867 56.501522 +10.224867 56.507390 +10.224867 56.513550 +10.224867 56.520004 +10.226334 56.526751 +10.226334 56.532911 +10.225161 56.538485 +10.227507 56.544352 +10.231028 56.549633 +10.236895 56.553740 +10.242469 56.556086 +10.250682 56.558433 +10.257136 56.561367 +10.265350 56.563714 +10.273271 56.565767 +10.280311 56.568994 +10.285885 56.572514 +10.291752 56.576328 +10.296446 56.580728 +10.303193 56.583955 +10.310233 56.586889 +10.321381 56.586889 +10.328421 56.583662 +10.332235 56.579555 +10.334875 56.574568 +10.336342 56.568701 +10.339276 56.564007 +10.343382 56.559313 +10.347196 56.554913 +10.352770 56.551099 +10.356877 56.546699 +10.362157 56.543179 +10.367731 56.539072 +10.373305 56.535258 +10.378585 56.531738 +10.385626 56.528218 +10.392079 56.525284 +10.400587 56.522644 +10.407627 56.520884 +10.417308 56.518830 +10.423762 56.515604 +10.432269 56.512963 +10.439309 56.509736 +10.447230 56.507096 +10.458084 56.505923 +10.466298 56.503283 +10.477152 56.501816 +10.488300 56.500642 +10.500620 56.499762 +10.512648 56.498882 +10.524089 56.498882 +10.533183 56.500349 +10.542277 56.501522 +10.552544 56.502403 +10.560171 56.504749 +10.569559 56.506216 +10.578653 56.507683 +10.587453 56.509150 +10.596547 56.510616 +10.605641 56.512083 +10.614735 56.513550 +10.625003 56.514137 +10.633803 56.515897 +10.643191 56.517364 +10.653165 56.517950 +10.663432 56.518537 +10.673406 56.519417 +10.684847 56.519124 +10.696875 56.518244 +10.708315 56.518244 +10.718289 56.519124 +10.727383 56.520591 +10.736771 56.522057 +10.743225 56.524991 +10.751438 56.527338 +10.759359 56.529391 +10.770506 56.529391 +10.779307 56.527924 +10.788694 56.526164 +10.796908 56.523524 +10.806296 56.521471 +10.815976 56.519417 +10.825657 56.517364 +10.833578 56.514723 +10.840618 56.511790 +10.844432 56.507096 +10.848539 56.502696 +10.851179 56.497709 +10.852646 56.492135 +10.854993 56.487148 +10.859099 56.482748 +10.862913 56.478348 +10.868193 56.474534 +10.875234 56.471307 +10.881981 56.468080 +10.889022 56.464853 +10.896942 56.462213 +10.903689 56.458986 +10.911903 56.456346 +10.920117 56.453999 +10.926571 56.450479 +10.933612 56.447252 +10.940359 56.444025 +10.946812 56.440798 +10.949746 56.435811 +10.949453 56.429651 +10.944759 56.425250 +10.938892 56.421437 +10.931851 56.418210 +10.925104 56.415570 +10.919531 56.411756 +10.914543 56.407356 +10.910730 56.402075 +10.908383 56.395915 +10.904863 56.390635 +10.901929 56.384767 +10.899582 56.378607 +10.898116 56.371860 +10.898116 56.366873 +10.899582 56.361299 +10.900462 56.355725 +10.901636 56.350152 +10.903103 56.344578 +10.902809 56.338417 +10.900169 56.332550 +10.895475 56.327857 +10.889608 56.324043 +10.884035 56.320229 +10.876994 56.317589 +10.870247 56.314362 +10.864380 56.310549 +10.857633 56.307029 +10.851766 56.303215 +10.844725 56.300281 +10.838565 56.295881 +10.832991 56.292361 +10.828297 56.287667 +10.822430 56.283854 +10.817737 56.279453 +10.811869 56.275640 +10.808349 56.270359 +10.803656 56.265959 +10.798962 56.261265 +10.793095 56.257452 +10.787228 56.253931 +10.781361 56.250118 +10.774613 56.247184 +10.768746 56.243371 +10.763173 56.239850 +10.757306 56.235743 +10.751438 56.232223 +10.747038 56.227823 +10.741171 56.224009 +10.735304 56.220196 +10.730610 56.215502 +10.727090 56.210222 +10.722103 56.205821 +10.718583 56.200541 +10.717116 56.193794 +10.717116 56.188807 +10.720050 56.183820 +10.721223 56.178246 +10.722396 56.172672 +10.722396 56.166805 +10.722103 56.160351 +10.719756 56.154484 +10.717116 56.148324 +10.713596 56.143043 +10.708902 56.138643 +10.703035 56.134830 +10.694234 56.133363 +10.685727 56.134830 +10.677806 56.137176 +10.672233 56.140990 +10.668419 56.145684 +10.665486 56.150671 +10.661672 56.154778 +10.656392 56.158591 +10.650818 56.162405 +10.644071 56.165632 +10.638790 56.169445 +10.633217 56.173259 +10.629403 56.177659 +10.632923 56.181766 +10.643777 56.181473 +10.653751 56.182353 +10.660792 56.185286 +10.665486 56.189687 +10.665486 56.195847 +10.663139 56.200834 +10.660205 56.205821 +10.656392 56.210222 +10.649351 56.213742 +10.641431 56.216089 +10.630576 56.217555 +10.618256 56.218436 +10.608281 56.217555 +10.598307 56.216969 +10.589213 56.215502 +10.581293 56.213448 +10.573372 56.211102 +10.567799 56.207288 +10.561931 56.203474 +10.557238 56.198781 +10.553718 56.193500 +10.551077 56.187633 +10.546384 56.182940 +10.540810 56.179419 +10.533769 56.176486 +10.527022 56.173259 +10.522622 56.168859 +10.518808 56.163578 +10.519982 56.158005 +10.522915 56.153017 +10.526729 56.148617 +10.530836 56.144217 +10.536116 56.140403 +10.540223 56.136003 +10.544037 56.131603 +10.548437 56.127202 +10.549317 56.121629 +10.552251 56.116642 +10.550784 56.109601 +10.548144 56.104027 +10.542570 56.099920 +10.535530 56.096987 +10.527902 56.094640 +10.516755 56.094933 +10.505901 56.096400 +10.499154 56.099334 +10.493580 56.103441 +10.489766 56.107841 +10.486833 56.112828 +10.484486 56.117522 +10.480379 56.121922 +10.476272 56.126322 +10.480672 56.122802 +10.477445 56.125442 +10.473338 56.130136 +10.472165 56.135416 +10.478912 56.138643 +10.490060 56.138643 +10.500914 56.137176 +10.506781 56.140990 +10.509128 56.146857 +10.507661 56.152431 +10.506781 56.158298 +10.499740 56.161525 +10.490353 56.163285 +10.479206 56.163285 +10.468351 56.164752 +10.461604 56.167979 +10.453684 56.170619 +10.445176 56.173259 +10.437549 56.170912 +10.430509 56.167979 +10.426108 56.163285 +10.421415 56.158885 +10.415548 56.155364 +10.409974 56.151257 +10.402933 56.148324 +10.395306 56.145977 +10.384452 56.147444 +10.378878 56.151257 +10.375065 56.155951 +10.372131 56.160938 +10.369784 56.165925 +10.365677 56.170032 +10.360397 56.173846 +10.353357 56.177073 +10.346609 56.180299 +10.341036 56.184113 +10.337222 56.189100 +10.337222 56.195261 +10.343089 56.199074 +10.353063 56.199661 +10.364211 56.199661 +10.373305 56.201421 +10.381225 56.203474 +10.389146 56.205821 +10.394719 56.209342 +10.400587 56.213448 +10.407334 56.216382 +10.414374 56.214329 +10.417014 56.209342 +10.417014 56.203474 +10.423762 56.199954 +10.431682 56.202301 +10.437549 56.206115 +10.441069 56.211395 +10.443710 56.217555 +10.439309 56.221662 +10.436669 56.226649 +10.439309 56.232810 +10.444883 56.236623 +10.448697 56.241904 +10.451044 56.247771 +10.455737 56.252465 +10.465711 56.253051 +10.475979 56.253931 +10.482726 56.256865 +10.485073 56.261559 +10.482139 56.266546 +10.476859 56.270359 +10.470405 56.273586 +10.459257 56.275053 +10.448403 56.276520 +10.440189 56.278867 +10.433736 56.282093 +10.425228 56.284734 +10.415841 56.286787 +10.403520 56.287374 +10.393546 56.286787 +10.384452 56.285320 +10.377705 56.282093 +10.373011 56.277693 +10.368318 56.273293 +10.364797 56.268012 +10.359224 56.264199 +10.354530 56.259798 +10.348663 56.255692 +10.341916 56.252758 +10.334875 56.250118 +10.329301 56.246011 +10.325488 56.240730 +10.323434 56.234863 +10.320794 56.228703 +10.317274 56.223423 +10.312580 56.219022 +10.305833 56.215795 +10.299966 56.212275 +10.292926 56.209048 +10.287645 56.205235 +10.281778 56.201714 +10.276204 56.197901 +10.271511 56.193207 +10.265644 56.189393 +10.261830 56.184113 +10.256256 56.180593 +10.251563 56.175899 +10.245989 56.172086 +10.240415 56.168272 +10.235428 56.163872 +10.234548 56.158298 +10.237188 56.153311 +10.240122 56.148324 +10.241295 56.142750 +10.241295 56.136590 +10.238948 56.130429 +10.235135 56.125149 +10.231614 56.119868 +10.229268 56.114295 +10.226627 56.108134 +10.225454 56.102561 +10.229854 56.098160 +10.233961 56.093760 +10.239242 56.089946 +10.241882 56.084959 +10.247162 56.081146 +10.250096 56.076159 +10.252736 56.071465 +10.255376 56.066478 +10.256550 56.060611 +10.260950 56.056504 +10.263297 56.051517 +10.263297 56.045063 +10.259776 56.039783 +10.256550 56.035969 +10.250976 56.032155 +10.245989 56.027462 +10.241589 56.023061 +10.236895 56.018661 +10.233668 56.013381 +10.238655 56.014554 +10.244522 56.018074 +10.250976 56.021008 +10.258896 56.023355 +10.266524 56.025702 +10.277378 56.024235 +10.280311 56.019248 +10.276791 56.013968 +10.272977 56.008687 +10.268577 56.004287 +10.262710 56.000180 +10.258310 55.995780 +10.253616 55.991379 +10.249216 55.986979 +10.247749 55.979938 +10.248922 55.974365 +10.251563 55.969378 +10.253323 55.965271 +10.254789 55.959697 +10.257136 55.954710 +10.257136 55.948256 +10.253616 55.942976 +10.250389 55.937695 +10.248922 55.931242 +10.251269 55.926255 +10.252736 55.920681 +10.250389 55.914520 +10.248336 55.909827 +10.244815 55.904546 +10.238948 55.900733 +10.232201 55.897799 +10.226627 55.893986 +10.220760 55.890172 +10.215187 55.886358 +10.205213 55.885478 +10.197585 55.883425 +10.189665 55.881078 +10.186145 55.875798 +10.187611 55.870224 +10.190251 55.865237 +10.195532 55.861717 +10.199345 55.857316 +10.199345 55.850862 +10.196119 55.845582 +10.193478 55.839715 +10.193478 55.833261 +10.189958 55.827981 +10.183211 55.825341 +10.173824 55.827101 +10.167076 55.830328 +10.160623 55.833555 +10.151235 55.835608 +10.144488 55.838542 +10.140675 55.843529 +10.137741 55.848516 +10.136274 55.854089 +10.135101 55.859663 +10.132461 55.864650 +10.126887 55.868757 +10.120140 55.871691 +10.113686 55.874918 +10.105472 55.877558 +10.094618 55.879024 +10.083470 55.879024 +10.072910 55.879024 +10.061762 55.879024 +10.050615 55.879024 +10.042694 55.876678 +10.035067 55.874331 +10.023920 55.874037 +10.011892 55.874918 +9.999864 55.875798 +9.989597 55.874918 +9.983143 55.871984 +9.977570 55.868464 +9.973756 55.863183 +9.970529 55.857903 +9.964662 55.853796 +9.957035 55.851743 +9.947354 55.850862 +9.935033 55.851743 +9.925352 55.852329 +9.914205 55.852329 +9.903351 55.852329 +9.891030 55.852916 +9.881056 55.852036 +9.872255 55.850569 +9.866682 55.846755 +9.868148 55.841182 +9.874602 55.837955 +9.882816 55.835608 +9.892203 55.833555 +9.903058 55.832088 +9.913912 55.830914 +9.923299 55.828861 +9.935327 55.827981 +9.946181 55.826807 +9.957035 55.825634 +9.968769 55.824754 +9.979623 55.823287 +9.991944 55.822407 +10.003971 55.821820 +10.013359 55.820060 +10.020106 55.816540 +10.031253 55.816540 +10.041227 55.817420 +10.049148 55.815073 +10.047975 55.809499 +10.044454 55.804219 +10.040054 55.799819 +10.036534 55.794538 +10.033014 55.789258 +10.028320 55.784858 +10.025093 55.779577 +10.020693 55.774590 +10.016879 55.769310 +10.013652 55.764030 +10.012185 55.757576 +10.014826 55.752589 +10.024213 55.750535 +10.036534 55.749655 +10.046214 55.750535 +10.057362 55.750535 +10.062642 55.746722 +10.055895 55.743495 +10.046801 55.742321 +10.040347 55.739094 +10.034774 55.735281 +10.028027 55.732641 +10.019226 55.730881 +10.010132 55.729414 +10.003678 55.726480 +10.003678 55.720026 +10.009252 55.716506 +10.014532 55.712399 +10.018346 55.708292 +10.015119 55.703012 +10.007198 55.700665 +10.000158 55.702425 +9.993704 55.705652 +9.982557 55.705652 +9.973756 55.704185 +9.964955 55.702425 +9.957328 55.700372 +9.948234 55.698905 +9.939433 55.697145 +9.930633 55.695971 +9.922712 55.693331 +9.913032 55.692744 +9.903058 55.691864 +9.893083 55.690691 +9.884283 55.688931 +9.876362 55.686584 +9.868735 55.684531 +9.860815 55.682184 +9.854067 55.679250 +9.846440 55.676610 +9.839693 55.673970 +9.832359 55.671330 +9.822092 55.670743 +9.812118 55.669863 +9.802730 55.670450 +9.793343 55.672503 +9.785422 55.675143 +9.775742 55.676903 +9.766354 55.678957 +9.755794 55.680424 +9.743473 55.680717 +9.732912 55.682184 +9.724991 55.684824 +9.717951 55.687757 +9.712671 55.691571 +9.706217 55.694798 +9.701523 55.697731 +9.695069 55.700958 +9.688322 55.704185 +9.680402 55.706532 +9.672188 55.709172 +9.661334 55.710639 +9.650479 55.711812 +9.639625 55.711812 +9.629651 55.710932 +9.620851 55.709466 +9.611170 55.708586 +9.601196 55.707706 +9.591222 55.706825 +9.580368 55.706825 +9.568047 55.707706 +9.557486 55.708879 +9.550739 55.705945 +9.553672 55.701252 +9.558953 55.697145 +9.566873 55.694798 +9.575381 55.693625 +9.586528 55.693625 +9.596209 55.694505 +9.606183 55.695385 +9.617330 55.695385 +9.629065 55.694505 +9.639919 55.693331 +9.646666 55.690104 +9.653413 55.686877 +9.658987 55.683064 +9.665440 55.680130 +9.670721 55.676317 +9.676295 55.672503 +9.681575 55.668983 +9.687149 55.664876 +9.693896 55.661942 +9.703283 55.659889 +9.712377 55.658129 +9.719418 55.654902 +9.723231 55.650501 +9.724698 55.644928 +9.723525 55.638181 +9.724991 55.632607 +9.728805 55.627913 +9.735552 55.624980 +9.742593 55.622046 +9.754327 55.621166 +9.765181 55.621166 +9.774275 55.622633 +9.783076 55.624100 +9.791876 55.625860 +9.801557 55.626740 +9.812704 55.626740 +9.824732 55.625860 +9.836759 55.625273 +9.846147 55.623219 +9.851427 55.619406 +9.850547 55.613832 +9.843800 55.611192 +9.836173 55.608552 +9.827079 55.607085 +9.819452 55.605031 +9.812704 55.601805 +9.806251 55.598871 +9.799503 55.595937 +9.792756 55.592711 +9.786009 55.589777 +9.779849 55.586550 +9.774862 55.582150 +9.770461 55.577456 +9.767234 55.572176 +9.762834 55.567775 +9.758140 55.563375 +9.751687 55.560148 +9.743766 55.557801 +9.732912 55.559268 +9.722645 55.560442 +9.714724 55.558388 +9.710324 55.553694 +9.707684 55.547827 +9.709444 55.542254 +9.709444 55.535800 +9.705043 55.531400 +9.700643 55.528173 +9.693016 55.525826 +9.681868 55.525826 +9.671014 55.525826 +9.661040 55.524946 +9.651359 55.524066 +9.644612 55.521132 +9.638159 55.518199 +9.631411 55.514972 +9.624958 55.512038 +9.613810 55.512038 +9.602076 55.512918 +9.592395 55.514678 +9.584475 55.517319 +9.577728 55.520252 +9.569807 55.522892 +9.563353 55.521132 +9.562473 55.515558 +9.565407 55.510865 +9.561886 55.505584 +9.555139 55.502357 +9.546339 55.500891 +9.535484 55.500891 +9.526684 55.499131 +9.518177 55.497664 +9.510256 55.495317 +9.503509 55.492090 +9.500282 55.486810 +9.502042 55.482703 +9.511429 55.480943 +9.522284 55.480943 +9.532258 55.481529 +9.541938 55.482409 +9.551619 55.483289 +9.561593 55.484169 +9.570394 55.485636 +9.579194 55.487103 +9.586822 55.489450 +9.597676 55.489450 +9.608530 55.489743 +9.620557 55.488863 +9.629945 55.486810 +9.636692 55.483876 +9.643439 55.480943 +9.649893 55.477422 +9.655466 55.473902 +9.660747 55.470088 +9.663680 55.465101 +9.666321 55.460408 +9.663974 55.454247 +9.660453 55.448967 +9.656053 55.444273 +9.649306 55.441046 +9.642852 55.438113 +9.635225 55.435766 +9.627598 55.433713 +9.617917 55.432832 +9.607650 55.431952 +9.599142 55.430486 +9.593569 55.426672 +9.589168 55.422272 +9.587702 55.415231 +9.590635 55.410244 +9.594742 55.406137 +9.598556 55.401737 +9.604129 55.397923 +9.610877 55.394696 +9.609410 55.387949 +9.605009 55.383256 +9.600609 55.378855 +9.597089 55.373575 +9.597089 55.367414 +9.602663 55.363601 +9.613223 55.362134 +9.618504 55.358614 +9.621437 55.353627 +9.622904 55.348053 +9.622904 55.341893 +9.623197 55.335439 +9.624371 55.329865 +9.627011 55.324878 +9.624664 55.319304 +9.619090 55.315197 +9.615864 55.309917 +9.622611 55.306983 +9.633171 55.305517 +9.638745 55.301703 +9.638745 55.295543 +9.633171 55.292022 +9.624371 55.290262 +9.617917 55.288502 +9.612637 55.284688 +9.614103 55.280582 +9.623784 55.281462 +9.633465 55.279408 +9.638745 55.275888 +9.644026 55.272074 +9.651946 55.269434 +9.658693 55.266501 +9.666321 55.263567 +9.677175 55.262394 +9.683922 55.259167 +9.689202 55.255646 +9.693016 55.251246 +9.697123 55.246846 +9.699763 55.241859 +9.697416 55.235698 +9.691842 55.231885 +9.685682 55.228951 +9.678935 55.225724 +9.673361 55.222204 +9.670134 55.216924 +9.667787 55.210763 +9.665147 55.204603 +9.661920 55.199322 +9.658693 55.194042 +9.653120 55.190228 +9.646666 55.187295 +9.638745 55.184361 +9.632291 55.181428 +9.625544 55.178201 +9.620264 55.174387 +9.613517 55.171454 +9.602956 55.172920 +9.598849 55.177321 +9.595035 55.181428 +9.588582 55.185241 +9.581834 55.188468 +9.570980 55.188468 +9.563353 55.186121 +9.557779 55.182308 +9.553379 55.177907 +9.548099 55.173801 +9.542525 55.170280 +9.534898 55.167640 +9.527271 55.165587 +9.519643 55.163240 +9.512016 55.160893 +9.504389 55.158546 +9.497642 55.155613 +9.491481 55.152386 +9.485908 55.148572 +9.481507 55.144172 +9.484147 55.139185 +9.493241 55.137131 +9.502922 55.138011 +9.511136 55.135664 +9.509083 55.130971 +9.500282 55.129504 +9.489721 55.130677 +9.477987 55.131264 +9.468013 55.130677 +9.462733 55.126570 +9.458332 55.122170 +9.459799 55.116596 +9.466253 55.113663 +9.475934 55.113076 +9.487668 55.112196 +9.498228 55.110729 +9.503509 55.107209 +9.507909 55.102809 +9.511723 55.098702 +9.514363 55.093715 +9.519643 55.089608 +9.523750 55.085501 +9.527857 55.081101 +9.527857 55.074940 +9.526684 55.068193 +9.524337 55.062326 +9.519937 55.057632 +9.513190 55.054405 +9.507029 55.051472 +9.499402 55.049125 +9.489721 55.048245 +9.480921 55.046778 +9.471240 55.046191 +9.462439 55.044431 +9.453932 55.042671 +9.444251 55.042084 +9.437797 55.038858 +9.433397 55.034457 +9.433691 55.029764 +9.437797 55.025363 +9.445425 55.022723 +9.456279 55.022723 +9.465079 55.024483 +9.474760 55.025363 +9.483267 55.026537 +9.491188 55.029177 +9.499695 55.030644 +9.510256 55.030644 +9.522284 55.030057 +9.533138 55.030057 +9.541645 55.031524 +9.549272 55.033870 +9.554846 55.037684 +9.559246 55.042084 +9.566580 55.044431 +9.573327 55.041498 +9.577434 55.036804 +9.581248 55.032697 +9.585355 55.028297 +9.589462 55.023896 +9.593275 55.019789 +9.598556 55.015976 +9.604129 55.012162 +9.609410 55.008349 +9.617330 55.005708 +9.625251 55.003362 +9.633171 55.000721 +9.642265 54.998961 +9.651653 54.996908 +9.661920 54.995441 +9.671308 54.993681 +9.680695 54.991921 +9.691256 54.990454 +9.700350 54.988694 +9.707977 54.986054 +9.717364 54.984294 +9.722645 54.980187 +9.727925 54.976666 +9.732032 54.972266 +9.734672 54.967279 +9.738486 54.963172 +9.741419 54.958185 +9.743766 54.953198 +9.746700 54.947918 +9.746700 54.942051 +9.745526 54.935010 +9.745820 54.930316 +9.748460 54.925329 +9.751100 54.920342 +9.753740 54.915355 +9.757847 54.911248 +9.760194 54.905968 +9.764301 54.901568 +9.766941 54.896581 +9.768408 54.891007 +9.761954 54.888073 +9.751100 54.888073 +9.742006 54.890127 +9.732912 54.891887 +9.723525 54.893940 +9.711790 54.894527 +9.704163 54.892180 +9.700936 54.886900 +9.706217 54.882500 +9.713844 54.879859 +9.721765 54.877513 +9.730859 54.875459 +9.737606 54.872526 +9.742886 54.868712 +9.746700 54.864312 +9.749340 54.859325 +9.750807 54.853751 +9.752273 54.848471 +9.750807 54.841430 +9.747580 54.836150 +9.743179 54.831749 +9.737899 54.827642 +9.727045 54.827642 +9.720298 54.830869 +9.715017 54.834683 +9.712377 54.839670 +9.709737 54.844657 +9.705923 54.848764 +9.700643 54.852871 +9.692722 54.855218 +9.684802 54.857858 +9.673068 54.858738 +9.663387 54.857858 +9.654586 54.856098 +9.647253 54.853751 +9.638745 54.852284 +9.627891 54.852284 +9.621144 54.855218 +9.619677 54.861085 +9.623197 54.866365 +9.628478 54.869885 +9.633171 54.874579 +9.633171 54.880739 +9.628771 54.885140 +9.622317 54.888367 +9.614397 54.890714 +9.609116 54.894527 +9.605303 54.898927 +9.611757 54.901861 +9.622611 54.901861 +9.634052 54.901274 +9.642852 54.902741 +9.647253 54.907141 +9.648719 54.914182 +9.644319 54.918582 +9.639039 54.922102 +9.632585 54.925329 +9.623197 54.927089 +9.612637 54.928556 +9.602076 54.928556 +9.593569 54.927089 +9.587995 54.923276 +9.584768 54.917995 +9.582421 54.911835 +9.579194 54.906555 +9.573621 54.902741 +9.568340 54.898927 +9.565700 54.893060 +9.562473 54.887780 +9.560420 54.881620 +9.555726 54.877219 +9.548392 54.874579 +9.537831 54.874579 +9.525804 54.875459 +9.516123 54.874579 +9.509669 54.871646 +9.503215 54.868712 +9.498815 54.864018 +9.494415 54.859325 +9.490015 54.854924 +9.485614 54.850231 +9.479160 54.847297 +9.472707 54.844070 +9.466253 54.841137 +9.458626 54.838790 +9.453345 54.834976 +9.448945 54.830576 +9.445425 54.825296 +9.442198 54.820015 +9.440144 54.813855 +9.437797 54.807694 +9.439264 54.802121 +9.447478 54.802414 +9.451878 54.806814 +9.457159 54.810921 +9.463906 54.813855 +9.471533 54.816202 +9.478867 54.818548 +9.485321 54.821775 +9.497348 54.820895 +9.506736 54.820308 +9.510843 54.825002 +9.513190 54.830869 +9.518470 54.834683 +9.523164 54.839083 +9.529324 54.842310 +9.539005 54.841723 +9.545459 54.838496 +9.552206 54.835563 +9.557486 54.839083 +9.559833 54.845244 +9.563060 54.850524 +9.566287 54.855804 +9.570687 54.860498 +9.577141 54.862258 +9.577141 54.855804 +9.575967 54.849057 +9.575967 54.843190 +9.575087 54.836150 +9.576261 54.830576 +9.578901 54.825589 +9.585648 54.822362 +9.595035 54.822069 +9.604716 54.822655 +9.615277 54.822655 +9.624371 54.820895 +9.632291 54.817668 +9.641385 54.815908 +9.650479 54.813855 +9.661040 54.812388 +9.671601 54.811214 +9.683335 54.810628 +9.694189 54.810628 +9.704750 54.810628 +9.715311 54.809161 +9.724405 54.807108 +9.732325 54.804761 +9.740246 54.802121 +9.748166 54.799774 +9.757260 54.797720 +9.764008 54.794787 +9.770168 54.791560 +9.778089 54.788920 +9.786009 54.786279 +9.792463 54.783346 +9.797743 54.779532 +9.803024 54.775719 +9.805957 54.770732 +9.809771 54.766331 +9.813584 54.762224 +9.820332 54.758997 +9.826785 54.755771 +9.834706 54.753424 +9.842627 54.750783 +9.852894 54.749317 +9.860521 54.751664 +9.862868 54.757824 +9.867268 54.762224 +9.873722 54.765158 +9.884576 54.765158 +9.894844 54.763984 +9.898364 54.769265 +9.894257 54.773665 +9.890150 54.778065 +9.887803 54.783052 +9.889857 54.788920 +9.896604 54.791853 +9.905991 54.792733 +9.916552 54.791266 +9.923299 54.788333 +9.929753 54.785106 +9.936500 54.781879 +9.941780 54.778359 +9.947941 54.774545 +9.954395 54.771025 +9.962315 54.768678 +9.967596 54.764865 +9.972876 54.761051 +9.976689 54.756651 +9.978156 54.751077 +9.978156 54.744916 +9.978156 54.738756 +9.979330 54.733476 +9.980796 54.727902 +9.984610 54.723208 +9.989890 54.719688 +9.994877 54.715874 +10.000158 54.712061 +10.005438 54.708247 +10.007198 54.704140 +10.011012 54.699740 +10.016292 54.695926 +10.010719 54.692113 +10.001038 54.691526 +9.991944 54.693286 +9.989304 54.698273 +9.986957 54.703260 +9.978743 54.705900 +9.972583 54.702673 +9.970236 54.696806 +9.971409 54.691526 +9.966129 54.687419 +9.956448 54.686539 +9.945887 54.686539 +9.937087 54.685365 +9.930633 54.681259 +9.929166 54.674805 +9.928286 54.669231 +nan nan +8.804739 54.686246 +8.809139 54.682725 +8.811779 54.678618 +8.814126 54.668351 +8.821460 54.654563 +8.823513 54.652216 +8.825567 54.649870 +8.827914 54.648109 +8.829967 54.645763 +8.831727 54.643416 +8.834367 54.641656 +8.836714 54.639309 +8.839355 54.637842 +8.841701 54.635495 +8.843755 54.633442 +8.845808 54.631388 +8.847568 54.628748 +8.849035 54.626401 +8.849915 54.623468 +8.850795 54.620827 +8.850502 54.617601 +8.848742 54.614960 +8.846102 54.613200 +8.842875 54.611440 +8.839648 54.609973 +8.836714 54.608213 +8.833487 54.606746 +8.829967 54.605280 +8.825567 54.604400 +8.820873 54.603813 +8.817353 54.602640 +8.816473 54.600293 +8.819113 54.598533 +8.823807 54.597653 +8.827914 54.598533 +8.831727 54.599706 +8.835541 54.601173 +8.839648 54.602053 +8.843755 54.602640 +8.849035 54.602933 +8.854022 54.603520 +8.859303 54.603813 +8.864583 54.603813 +8.870450 54.603813 +8.876024 54.603813 +8.880424 54.602933 +8.883358 54.601466 +8.885411 54.599119 +8.888345 54.597359 +8.891865 54.595892 +8.894798 54.594132 +8.895972 54.591785 +8.897145 54.588852 +8.898612 54.586505 +8.899492 54.583571 +8.901546 54.581811 +8.903892 54.579465 +8.906239 54.577118 +8.907706 54.574771 +8.908586 54.571837 +8.910053 54.569784 +8.911813 54.567144 +8.913867 54.565090 +8.916213 54.562743 +8.918854 54.560983 +8.921787 54.559516 +8.925601 54.558050 +8.929708 54.556876 +8.932935 54.555409 +8.935868 54.553649 +8.937922 54.551596 +8.940268 54.549542 +8.943495 54.548076 +8.947016 54.546315 +8.951123 54.545142 +8.955816 54.544555 +8.960217 54.543675 +8.964323 54.542502 +8.967844 54.541035 +8.970484 54.539275 +8.972831 54.537221 +8.974884 54.534875 +8.977231 54.532821 +8.979285 54.530768 +8.981925 54.529008 +8.984858 54.527247 +8.988379 54.525487 +8.990139 54.523727 +8.991899 54.521087 +8.992779 54.518447 +8.994539 54.515807 +8.997179 54.513753 +8.999526 54.511993 +9.002166 54.509940 +9.005686 54.508473 +9.007740 54.506419 +9.010087 54.504366 +9.011847 54.502312 +9.014780 54.500259 +9.016834 54.498205 +9.018594 54.495859 +9.019474 54.492925 +9.018594 54.489991 +9.016247 54.487938 +9.013314 54.486178 +9.010967 54.484124 +9.010967 54.481778 +9.014780 54.480311 +9.016247 54.477671 +9.016247 54.474737 +9.015074 54.471803 +9.013020 54.469750 +9.010967 54.467110 +9.009207 54.465056 +9.006860 54.462416 +9.005100 54.460363 +9.002460 54.458309 +9.000113 54.456256 +8.997473 54.453909 +8.994832 54.451855 +8.990432 54.450975 +8.987205 54.451855 +8.984565 54.453615 +8.981631 54.455669 +8.977524 54.456842 +8.972244 54.457429 +8.966964 54.457136 +8.963443 54.455962 +8.960217 54.454202 +8.957283 54.452442 +8.953763 54.450975 +8.951416 54.448922 +8.948776 54.446868 +8.945842 54.445402 +8.943202 54.443348 +8.940855 54.441295 +8.937628 54.439828 +8.934988 54.437774 +8.932055 54.436014 +8.928828 54.434547 +8.925894 54.432787 +8.922667 54.431321 +8.920027 54.429267 +8.916800 54.427800 +8.913867 54.426040 +8.910933 54.424573 +8.907706 54.422813 +8.904773 54.421053 +8.901546 54.419586 +8.897732 54.418413 +8.894212 54.416653 +8.890692 54.415479 +8.886878 54.414306 +8.882771 54.413426 +8.878957 54.411959 +8.875144 54.410786 +8.871037 54.409906 +8.867517 54.408732 +8.863410 54.407852 +8.859596 54.406385 +8.855489 54.405505 +8.850502 54.404919 +8.845808 54.404332 +8.840528 54.404919 +8.837888 54.406679 +8.835541 54.409026 +8.833487 54.411079 +8.831434 54.413133 +8.827914 54.414599 +8.823220 54.415479 +8.817940 54.415186 +8.813246 54.414599 +8.808259 54.414306 +8.802979 54.414306 +8.798285 54.413719 +8.793591 54.413133 +8.788311 54.412839 +8.783617 54.412253 +8.778043 54.411959 +8.773350 54.411372 +8.768656 54.410786 +8.764549 54.409906 +8.760149 54.409026 +8.756042 54.408439 +8.752522 54.406972 +8.748121 54.406092 +8.744308 54.404625 +8.740201 54.403745 +8.736094 54.403159 +8.731987 54.402278 +8.727293 54.401692 +8.722599 54.401105 +8.717612 54.400518 +8.711745 54.400518 +8.706465 54.401105 +8.701185 54.401692 +8.695904 54.402278 +8.690037 54.402278 +8.684170 54.402572 +8.680063 54.401692 +8.675956 54.400812 +8.672143 54.399345 +8.668622 54.398172 +8.665395 54.396705 +8.662168 54.394945 +8.659822 54.393184 +8.659528 54.394358 +8.658355 54.397291 +8.655128 54.398465 +8.650728 54.399638 +8.646034 54.399052 +8.642514 54.397878 +8.638993 54.396705 +8.636353 54.394651 +8.634006 54.392891 +8.633126 54.389664 +8.632246 54.386731 +8.630780 54.383797 +8.627553 54.382330 +8.624326 54.380570 +8.621979 54.378517 +8.621099 54.375583 +8.622272 54.372650 +8.624032 54.370596 +8.625793 54.368836 +8.628726 54.367076 +8.632833 54.365903 +8.637233 54.365022 +8.642807 54.365316 +8.646327 54.366783 +8.648968 54.368543 +8.650141 54.371183 +8.651021 54.374410 +8.654248 54.375877 +8.658355 54.376170 +8.662168 54.374997 +8.665395 54.373236 +8.668036 54.371476 +8.671849 54.370303 +8.674783 54.368249 +8.676836 54.366489 +8.678303 54.363849 +8.680650 54.361796 +8.685343 54.360916 +8.690037 54.360916 +8.695318 54.360329 +8.693851 54.357395 +8.690917 54.356222 +8.687104 54.354755 +8.682117 54.354168 +8.677423 54.353582 +8.672729 54.352995 +8.668036 54.352408 +8.663929 54.351528 +8.659822 54.350941 +8.655421 54.349768 +8.651901 54.348595 +8.648087 54.347128 +8.644567 54.346248 +8.640167 54.345074 +8.634887 54.345074 +8.629606 54.345661 +8.624912 54.346248 +8.619045 54.346248 +8.613765 54.346248 +8.609071 54.345661 +8.606724 54.343608 +8.604084 54.341554 +8.602324 54.339501 +8.600857 54.336567 +8.599391 54.333927 +8.599097 54.330700 +8.599391 54.327473 +8.600271 54.324833 +8.601444 54.321899 +8.602324 54.319259 +8.602911 54.316326 +8.604671 54.313979 +8.606431 54.311339 +8.607311 54.308698 +8.608778 54.306058 +8.610245 54.304005 +8.612005 54.301365 +8.614058 54.299311 +8.616112 54.297258 +8.618459 54.294911 +8.620512 54.292857 +8.622272 54.290217 +8.624032 54.288457 +8.625793 54.285817 +8.628139 54.283470 +8.629313 54.281416 +8.631660 54.279070 +8.634300 54.277310 +8.637527 54.276136 +8.640167 54.274376 +8.643687 54.272909 +8.647501 54.272029 +8.651608 54.270562 +8.655421 54.269389 +8.659822 54.268216 +8.664809 54.267922 +8.669502 54.267042 +8.674783 54.266749 +8.680063 54.266162 +8.685930 54.265869 +8.691211 54.266162 +8.694144 54.267922 +8.695611 54.270269 +8.695318 54.273496 +8.695024 54.276723 +8.697078 54.278776 +8.700011 54.280536 +8.703531 54.282003 +8.707345 54.283177 +8.710865 54.284350 +8.714679 54.285523 +8.718199 54.286990 +8.722013 54.288164 +8.725533 54.289337 +8.729053 54.290510 +8.732867 54.291977 +8.737561 54.292564 +8.743428 54.292271 +8.747535 54.291097 +8.751935 54.290217 +8.757802 54.290217 +8.762496 54.289924 +8.767189 54.289044 +8.770416 54.287870 +8.773350 54.285817 +8.778043 54.284937 +8.783324 54.284350 +8.789191 54.284350 +8.793885 54.284057 +8.798578 54.284643 +8.802685 54.285523 +8.807086 54.286697 +8.810606 54.287870 +8.814126 54.289044 +8.817646 54.290217 +8.822340 54.291391 +8.826447 54.292271 +8.829967 54.293444 +8.833194 54.294911 +8.836714 54.296378 +8.839648 54.298138 +8.842875 54.299311 +8.846395 54.300778 +8.849915 54.301951 +8.854902 54.302538 +8.859596 54.303125 +8.864876 54.303418 +8.869863 54.302538 +8.873090 54.301071 +8.876904 54.299898 +8.881011 54.298724 +8.885118 54.297551 +8.887171 54.295497 +8.883651 54.294031 +8.881011 54.292271 +8.881304 54.289044 +8.884238 54.287284 +8.888051 54.286110 +8.892745 54.286697 +8.896265 54.288164 +8.900079 54.289044 +8.903306 54.290804 +8.906826 54.292271 +8.910053 54.293737 +8.912986 54.295204 +8.916800 54.296671 +8.919734 54.298138 +8.923254 54.299311 +8.925894 54.301365 +8.928534 54.303418 +8.931761 54.304885 +8.934108 54.306938 +8.937335 54.308698 +8.939682 54.310459 +8.942909 54.312219 +8.945842 54.313979 +8.949362 54.314859 +8.953469 54.316326 +8.958163 54.316912 +8.962563 54.316032 +8.962270 54.313392 +8.960803 54.310459 +8.959336 54.308112 +8.958750 54.304591 +8.957283 54.302245 +8.955229 54.299604 +8.953763 54.297258 +8.951709 54.294617 +8.948482 54.293151 +8.946136 54.291097 +8.943495 54.289044 +8.941735 54.286990 +8.939095 54.284937 +8.936161 54.283470 +8.932641 54.282003 +8.928534 54.280830 +8.925014 54.279363 +8.922080 54.277896 +8.919440 54.275843 +8.917973 54.272909 +8.916213 54.270856 +8.912986 54.269096 +8.910640 54.267335 +8.906533 54.266162 +8.903599 54.264402 +8.900079 54.262935 +8.896265 54.262055 +8.892745 54.260588 +8.888051 54.260002 +8.883944 54.259122 +8.879251 54.258535 +8.873970 54.258241 +8.868690 54.258241 +8.863116 54.257948 +8.857836 54.257948 +8.853142 54.257361 +8.849035 54.256481 +8.845222 54.255308 +8.842875 54.253254 +8.841408 54.250614 +8.842288 54.247681 +8.843755 54.245334 +8.845808 54.242987 +8.848155 54.241227 +8.848448 54.238000 +8.848155 54.234480 +8.847275 54.231253 +8.846395 54.228319 +8.845515 54.225386 +8.844635 54.222159 +8.843755 54.219225 +8.841408 54.217172 +8.838181 54.215412 +8.834954 54.213945 +8.831434 54.212772 +8.828207 54.211011 +8.825860 54.209251 +8.823220 54.207198 +8.822047 54.204558 +8.820580 54.201624 +8.819700 54.198691 +8.818820 54.195464 +8.817646 54.193117 +8.816473 54.189890 +8.815593 54.186663 +8.814713 54.183729 +8.813833 54.180503 +8.812953 54.177569 +8.812659 54.174929 +8.814419 54.172582 +8.817646 54.170822 +8.820580 54.169062 +8.823220 54.167302 +8.825567 54.165248 +8.824980 54.161728 +8.824687 54.158208 +8.824980 54.155274 +8.826740 54.152634 +8.828207 54.150287 +8.829674 54.147940 +8.832021 54.145887 +8.834661 54.143833 +8.837594 54.142366 +8.840821 54.140900 +8.843755 54.138846 +8.844342 54.136206 +8.844635 54.132979 +8.847568 54.131219 +8.851675 54.130046 +8.854902 54.128579 +8.857249 54.126525 +8.858716 54.123885 +8.863410 54.123298 +8.866343 54.124765 +8.869863 54.126232 +8.873090 54.127699 +8.876024 54.129459 +8.879251 54.130926 +8.882184 54.132392 +8.885705 54.133859 +8.890105 54.134739 +8.895385 54.135033 +8.900079 54.135619 +8.905359 54.135619 +8.911226 54.135619 +8.915920 54.135913 +8.919734 54.137086 +8.923254 54.138553 +8.926481 54.140020 +8.929414 54.141780 +8.932641 54.143247 +8.936748 54.144127 +8.940268 54.145593 +8.944375 54.146473 +8.949069 54.147060 +8.954349 54.147354 +8.960217 54.147060 +8.964910 54.146180 +8.970191 54.145593 +8.973711 54.144127 +8.976938 54.142366 +8.979285 54.140606 +8.978404 54.137966 +8.975178 54.136499 +8.972831 54.134446 +8.971071 54.131806 +8.972831 54.129459 +8.974884 54.127112 +8.977818 54.125352 +8.980458 54.123592 +8.983098 54.121538 +8.984858 54.119485 +8.986032 54.116845 +8.987792 54.114498 +8.988672 54.111564 +8.990725 54.109511 +8.993659 54.107751 +8.996299 54.105697 +8.998646 54.103937 +9.000993 54.101884 +9.003340 54.100123 +9.005980 54.098070 +9.008913 54.096310 +9.012727 54.095136 +9.015661 54.093376 +9.017714 54.091029 +9.018007 54.088096 +9.017127 54.084869 +9.015954 54.082229 +9.014487 54.079589 +9.013314 54.076655 +9.013020 54.073135 +9.013314 54.069908 +9.013020 54.066681 +9.013314 54.063748 +9.013020 54.059934 +9.012727 54.056707 +9.013020 54.053480 +9.012727 54.049960 +9.011847 54.047026 +9.010967 54.043799 +9.008913 54.041746 +9.006860 54.039399 +9.005100 54.037052 +9.004220 54.033825 +9.003926 54.031185 +9.003046 54.027958 +9.000699 54.026198 +8.996299 54.025318 +8.992192 54.024438 +8.988085 54.023265 +8.985445 54.021504 +8.982511 54.020038 +8.978991 54.018571 +8.974298 54.017984 +8.971071 54.017691 +8.971071 54.017984 +8.967257 54.019451 +8.964030 54.020918 +8.960510 54.022091 +8.957870 54.024145 +8.954349 54.025611 +8.951709 54.027372 +8.948189 54.028838 +8.945549 54.030598 +8.941442 54.032065 +8.937922 54.033239 +8.934695 54.034705 +8.930881 54.035879 +8.926774 54.037346 +8.922667 54.038226 +8.917387 54.038812 +8.912986 54.039692 +8.908293 54.040573 +8.904479 54.041746 +8.899786 54.042626 +8.895385 54.043213 +8.890692 54.044093 +8.885411 54.044679 +8.880717 54.045266 +8.875437 54.045266 +8.870743 54.044679 +8.866050 54.044093 +8.861943 54.043213 +8.857836 54.042333 +8.854022 54.041159 +8.850502 54.039692 +8.846688 54.038519 +8.843755 54.037052 +8.840528 54.035292 +8.838181 54.033239 +8.836128 54.031185 +8.837301 54.028252 +8.839941 54.026492 +8.841995 54.024438 +8.844048 54.022091 +8.844928 54.019451 +8.846102 54.016811 +8.846982 54.013877 +8.848448 54.011530 +8.849915 54.008890 +8.852262 54.006837 +8.854902 54.005077 +8.856956 54.002730 +8.859303 54.000970 +8.861356 53.998623 +8.862823 53.995983 +8.864876 53.994223 +8.867810 53.992169 +8.871037 53.990702 +8.874557 53.989529 +8.877784 53.987769 +8.881891 53.986595 +8.883944 53.984542 +8.883064 53.981315 +8.881598 53.978968 +8.880717 53.975741 +8.880131 53.972808 +8.879837 53.969287 +8.880424 53.966354 +8.881304 53.963714 +8.883064 53.961073 +8.885411 53.959313 +8.887758 53.957260 +8.890105 53.955206 +8.892158 53.953153 +8.893625 53.950513 +8.894798 53.947873 +8.895972 53.945232 +8.897732 53.943179 +8.899786 53.940832 +8.901839 53.938485 +8.904186 53.936725 +8.906826 53.934672 +8.908880 53.932618 +8.911813 53.930858 +8.913867 53.928511 +8.916800 53.927044 +8.919440 53.924991 +8.922080 53.923231 +8.925014 53.921471 +8.927361 53.919711 +8.931174 53.917950 +8.934401 53.916777 +8.937922 53.915310 +8.940562 53.913257 +8.942615 53.911497 +8.944669 53.909150 +8.947602 53.907096 +8.950242 53.905629 +8.953469 53.904163 +8.956403 53.902109 +8.959630 53.900936 +8.961977 53.898589 +8.964323 53.896829 +8.967257 53.895069 +8.971364 53.893895 +8.975178 53.892722 +8.978698 53.891255 +8.983392 53.890375 +8.988965 53.890375 +8.993072 53.891255 +8.996592 53.892429 +9.000406 53.893602 +9.003926 53.895069 +9.007447 53.896242 +9.010967 53.897416 +9.015367 53.898296 +9.018887 53.899469 +9.023581 53.900056 +9.028275 53.900642 +9.032968 53.901229 +9.038249 53.901523 +9.043529 53.900936 +9.048810 53.900349 +9.053797 53.899762 +9.058490 53.898882 +9.063184 53.898002 +9.067291 53.896829 +9.071104 53.895949 +9.075505 53.895069 +9.079612 53.893895 +9.084305 53.893015 +9.088412 53.891548 +9.092813 53.890962 +9.098093 53.890668 +9.103080 53.890082 +9.108360 53.889495 +9.114228 53.889202 +9.120095 53.888908 +9.125962 53.888908 +9.131242 53.888908 +9.136523 53.889202 +9.141803 53.889788 +9.147083 53.889788 +9.151777 53.890375 +9.157057 53.890668 +9.162338 53.890668 +9.167325 53.890962 +9.172605 53.891255 +9.177885 53.891255 +9.183166 53.891255 +9.188446 53.891255 +9.194313 53.891255 +9.199300 53.890962 +9.205167 53.890668 +9.210154 53.890082 +9.215435 53.889495 +9.220715 53.888908 +9.225409 53.888028 +9.230103 53.887148 +9.234503 53.886268 +9.238316 53.885388 +9.242423 53.884215 +9.246530 53.883041 +9.249757 53.881281 +9.254158 53.880401 +9.258851 53.879521 +9.264132 53.878934 +9.268532 53.878054 +9.273226 53.877174 +9.278213 53.876587 +9.282320 53.875414 +9.286427 53.874534 +9.289654 53.872774 +9.292587 53.871014 +9.294934 53.869254 +9.298454 53.867787 +9.301974 53.866320 +9.305201 53.864853 +9.308722 53.863386 +9.312535 53.862213 +9.316349 53.861040 +9.319869 53.859573 +9.323683 53.858399 +9.327790 53.857226 +9.331016 53.855466 +9.334537 53.854292 +9.337764 53.852826 +9.340110 53.851066 +9.342457 53.849305 +9.344804 53.847252 +9.346858 53.844905 +9.349498 53.843438 +9.352138 53.841385 +9.355072 53.839625 +9.358298 53.838451 +9.361525 53.836691 +9.365632 53.835518 +9.368859 53.834051 +9.372966 53.832878 +9.376486 53.831411 +9.379713 53.829944 +9.382940 53.828477 +9.386460 53.827011 +9.389687 53.825544 +9.392914 53.823784 +9.394381 53.821437 +9.392034 53.819383 +9.389981 53.817330 +9.388514 53.814396 +9.389981 53.812049 +9.392914 53.810289 +9.395554 53.808236 +9.398195 53.806769 +9.400835 53.804716 +9.403182 53.802369 +9.404355 53.800315 +9.406115 53.797675 +9.406995 53.795035 +9.407875 53.792101 +9.409049 53.789755 +9.409929 53.786821 +9.411689 53.784474 +9.412569 53.781541 +9.414036 53.779194 +9.414622 53.776260 +9.416383 53.773913 +9.417263 53.770980 +9.418729 53.768633 +9.420196 53.766286 +9.421663 53.763939 +9.423130 53.761299 +9.424597 53.758952 +9.426063 53.756312 +9.427530 53.753672 +9.429290 53.751032 +9.430464 53.748685 +9.432224 53.746338 +9.434277 53.744285 +9.435451 53.741644 +9.437797 53.739591 +9.440438 53.737831 +9.443371 53.735777 +9.445718 53.734311 +9.449238 53.732550 +9.452465 53.731084 +9.456279 53.729910 +9.460972 53.729030 +9.465666 53.728443 +9.470360 53.727563 +9.474173 53.726097 +9.478574 53.725217 +9.483267 53.724336 +9.488254 53.723750 +9.492948 53.723163 +9.497055 53.721990 +9.500282 53.720523 +9.504096 53.719056 +9.507616 53.717883 +9.510843 53.716416 +9.514656 53.714949 +9.518470 53.713776 +9.521990 53.712602 +9.525217 53.710842 +9.526977 53.709375 +9.529617 53.707909 +9.531671 53.705562 +9.533431 53.702922 +9.534604 53.700575 +9.536071 53.697935 +9.536951 53.695001 +9.537831 53.692361 +9.539005 53.689427 +9.539591 53.686787 +9.541058 53.684147 +9.542525 53.681800 +9.544578 53.679747 +9.546045 53.677106 +9.547805 53.674760 +9.549272 53.672119 +9.549859 53.669479 +9.550739 53.666546 +9.551619 53.663905 +9.551912 53.660972 +9.552206 53.657745 +9.553086 53.655105 +9.553966 53.652171 +9.554846 53.649531 +9.555433 53.646598 +9.557193 53.644251 +9.559246 53.641904 +9.561300 53.639850 +9.563353 53.637797 +9.565700 53.635450 +9.568340 53.633983 +9.570394 53.631636 +9.566873 53.631636 +9.563647 53.633397 +9.560713 53.634863 +9.558073 53.636917 +9.555433 53.638677 +9.552792 53.640437 +9.550446 53.642784 +9.549272 53.645131 +9.547805 53.647478 +9.546045 53.650118 +9.545165 53.652758 +9.543992 53.655398 +9.542525 53.657745 +9.540765 53.660385 +9.539005 53.658625 +9.538711 53.655105 +9.539005 53.651878 +9.539298 53.648944 +9.539885 53.646011 +9.541352 53.643664 +9.542232 53.640730 +9.543992 53.638384 +9.545165 53.636037 +9.546632 53.633690 +9.548979 53.631343 +9.551619 53.629583 +9.553672 53.627530 +9.556313 53.625476 +9.559246 53.624009 +9.561006 53.621662 +9.563940 53.619609 +9.567167 53.618436 +9.570100 53.616382 +9.572447 53.614622 +9.575381 53.613742 +9.579194 53.612568 +9.583301 53.611102 +9.587115 53.609928 +9.591809 53.609048 +9.595622 53.608168 +9.600316 53.607288 +9.604129 53.605821 +9.608530 53.604941 +9.612637 53.603768 +9.616450 53.602888 +9.619677 53.601128 +9.623491 53.599661 +9.627011 53.598194 +9.630238 53.596727 +9.633465 53.595261 +9.636398 53.593207 +9.639625 53.592034 +9.642265 53.589980 +9.645492 53.588513 +9.648426 53.586753 +9.651653 53.585286 +9.654880 53.583820 +9.657813 53.582060 +9.660747 53.580593 +9.663680 53.578539 +9.666907 53.577366 +9.670721 53.575899 +9.674241 53.574432 +9.678055 53.573259 +9.681868 53.572086 +9.685975 53.570912 +9.690669 53.570032 +9.695069 53.569152 +9.699470 53.568272 +9.704163 53.567979 +9.709444 53.567392 +9.714431 53.566805 +9.718831 53.566218 +9.724111 53.565632 +9.729978 53.565632 +9.735552 53.565338 +9.741419 53.565045 +9.747286 53.564752 +9.752273 53.564165 +9.757554 53.563578 +9.763421 53.563285 +9.768408 53.562698 +9.774275 53.562698 +9.778675 53.561818 +9.783956 53.561525 +9.787769 53.560058 +9.792170 53.559178 +9.795983 53.558005 +9.800970 53.557124 +9.804784 53.556244 +9.808597 53.554778 +9.812411 53.553604 +9.816518 53.552431 +9.820918 53.551551 +9.824732 53.550377 +9.827372 53.548617 +9.830306 53.546564 +9.832359 53.544510 +9.833826 53.542163 +9.833826 53.538937 +9.832359 53.536296 +9.830012 53.534536 +9.826492 53.533069 +9.821798 53.532483 +9.816518 53.532483 +9.811531 53.533069 +9.806837 53.533949 +9.802144 53.534830 +9.798330 53.535710 +9.793930 53.536883 +9.790116 53.538056 +9.786009 53.539230 +9.782196 53.540403 +9.776915 53.540697 +9.773102 53.542163 +9.768701 53.543043 +9.764008 53.543924 +9.759314 53.544804 +9.754034 53.545390 +9.749046 53.545977 +9.743766 53.546270 +9.738779 53.546857 +9.733499 53.547444 +9.728512 53.548030 +9.723231 53.548617 +9.718244 53.548911 +9.712964 53.549497 +9.707390 53.549791 +9.701523 53.550084 +9.695949 53.550377 +9.690669 53.550084 +9.685975 53.550964 +9.682162 53.552137 +9.678348 53.553311 +9.676001 53.554191 +9.672774 53.555658 +9.670134 53.557418 +9.666614 53.558885 +9.664267 53.560938 +9.660747 53.562112 +9.657520 53.563872 +9.654293 53.565338 +9.650773 53.566805 +9.647546 53.568272 +9.644026 53.569739 +9.640799 53.571205 +9.637572 53.572672 +9.634052 53.574139 +9.630825 53.575899 +9.627598 53.577366 +9.623491 53.578246 +9.619677 53.579713 +9.615277 53.580593 +9.609996 53.581180 +9.605009 53.581473 +9.600316 53.582646 +9.595329 53.582940 +9.590928 53.583820 +9.586528 53.584993 +9.582715 53.586167 +9.579488 53.587633 +9.576261 53.589393 +9.573034 53.591154 +9.570394 53.592914 +9.567460 53.594674 +9.564820 53.596434 +9.562180 53.598194 +9.560126 53.600248 +9.558073 53.602594 +9.555139 53.604355 +9.553086 53.606408 +9.550446 53.608461 +9.547805 53.610515 +9.545752 53.612568 +9.543698 53.614622 +9.541645 53.616969 +9.539298 53.619022 +9.538418 53.620489 +9.536365 53.622543 +9.533724 53.624303 +9.532258 53.626943 +9.529324 53.628703 +9.527564 53.630756 +9.524630 53.632517 +9.522577 53.634863 +9.520523 53.636917 +9.518470 53.639264 +9.516416 53.641024 +9.514070 53.643371 +9.512309 53.645424 +9.510549 53.648064 +9.508496 53.650118 +9.507029 53.652465 +9.504976 53.654811 +9.502922 53.656572 +9.502042 53.659505 +9.500575 53.661852 +9.499695 53.664786 +9.497935 53.667132 +9.496175 53.669479 +9.493828 53.671533 +9.492068 53.673586 +9.489721 53.675933 +9.488254 53.678280 +9.486201 53.680627 +9.484734 53.682680 +9.483267 53.685320 +9.481801 53.687667 +9.479747 53.690014 +9.476814 53.691774 +9.474173 53.693534 +9.471533 53.695294 +9.468013 53.697055 +9.465666 53.698521 +9.462146 53.700281 +9.459506 53.702042 +9.456572 53.703802 +9.453345 53.705268 +9.450118 53.707029 +9.446598 53.708202 +9.443371 53.709669 +9.440144 53.711429 +9.436624 53.712896 +9.433397 53.714069 +9.429877 53.715829 +9.426650 53.717296 +9.424303 53.719056 +9.421370 53.720816 +9.418729 53.722870 +9.415796 53.724336 +9.414036 53.726683 +9.411102 53.728737 +9.408755 53.730497 +9.407582 53.733137 +9.405235 53.735191 +9.403768 53.737831 +9.401715 53.739591 +9.400248 53.742231 +9.398195 53.744578 +9.395554 53.746045 +9.393208 53.748392 +9.391447 53.750445 +9.389101 53.752499 +9.387047 53.754845 +9.384407 53.756899 +9.381767 53.758659 +9.379420 53.760712 +9.376193 53.762179 +9.374140 53.764526 +9.372086 53.766580 +9.370033 53.768926 +9.368272 53.770980 +9.366806 53.773620 +9.365632 53.775967 +9.363872 53.778607 +9.362405 53.781247 +9.360939 53.783594 +9.360059 53.786528 +9.358592 53.788581 +9.356245 53.790928 +9.355072 53.793275 +9.352725 53.795622 +9.351258 53.797968 +9.348618 53.799729 +9.346564 53.802075 +9.343924 53.803542 +9.340991 53.805596 +9.338937 53.807649 +9.336884 53.809703 +9.334830 53.812049 +9.331897 53.813516 +9.330430 53.816156 +9.328376 53.818210 +9.326910 53.820850 +9.326029 53.823490 +9.324563 53.826130 +9.322509 53.828184 +9.320162 53.830237 +9.317522 53.832291 +9.314295 53.833758 +9.310775 53.834931 +9.308135 53.836985 +9.305495 53.838745 +9.302854 53.840505 +9.300508 53.842852 +9.298747 53.844612 +9.296401 53.846959 +9.294054 53.849305 +9.291707 53.850772 +9.288773 53.852826 +9.286133 53.854586 +9.283200 53.856346 +9.279973 53.857813 +9.276159 53.858986 +9.270879 53.859573 +9.265012 53.859866 +9.259145 53.859866 +9.254744 53.860746 +9.249464 53.861333 +9.244184 53.861626 +9.238610 53.861920 +9.233329 53.862506 +9.228636 53.863386 +9.223649 53.863973 +9.218955 53.864853 +9.213088 53.865147 +9.207808 53.864853 +9.203114 53.864267 +9.198714 53.863680 +9.194020 53.863093 +9.188740 53.863093 +9.182873 53.863093 +9.177005 53.863386 +9.171725 53.863973 +9.166445 53.864560 +9.161458 53.864267 +9.155591 53.864560 +9.150310 53.864267 +9.145030 53.864853 +9.139749 53.865147 +9.134762 53.865733 +9.128895 53.866027 +9.124202 53.865440 +9.119508 53.865147 +9.114814 53.864560 +9.110121 53.863973 +9.105134 53.863386 +9.101027 53.862506 +9.096920 53.861626 +9.092813 53.860746 +9.088706 53.859866 +9.084892 53.858693 +9.080785 53.857813 +9.076678 53.856639 +9.073158 53.855466 +9.068758 53.854586 +9.064651 53.853999 +9.060544 53.852826 +9.055850 53.852239 +9.051743 53.851359 +9.047049 53.850772 +9.042649 53.849892 +9.037955 53.849305 +9.033848 53.848719 +9.029448 53.848132 +9.025341 53.847252 +9.020648 53.846665 +9.016834 53.845198 +9.014487 53.843438 +9.015954 53.840798 +9.018007 53.838745 +9.019474 53.836398 +9.017421 53.834638 +9.012434 53.835224 +9.008327 53.836398 +9.003926 53.837278 +9.000113 53.838451 +8.995419 53.839038 +8.990725 53.839918 +8.986032 53.840798 +8.980751 53.841385 +8.975178 53.841678 +8.969897 53.841385 +8.965204 53.840798 +8.960510 53.840211 +8.956403 53.839331 +8.952296 53.838745 +8.948482 53.837278 +8.944375 53.836398 +8.940855 53.834931 +8.936748 53.834051 +8.932935 53.833171 +8.928828 53.831998 +8.924721 53.831117 +8.920614 53.830237 +8.916507 53.829357 +8.912106 53.828477 +8.907413 53.828184 +8.902132 53.827891 +8.897145 53.828477 +8.891865 53.828771 +8.886585 53.829064 +8.881304 53.829064 +8.875730 53.829064 +8.870450 53.829064 +8.864583 53.829064 +8.859009 53.829357 +8.853142 53.829651 +8.847862 53.830237 +8.842875 53.830531 +8.837594 53.831117 +8.832901 53.831998 +8.827914 53.832584 +8.822633 53.833171 +8.817353 53.833758 +8.812366 53.834051 +8.807379 53.834638 +8.802392 53.835224 +8.797111 53.835811 +8.792418 53.836691 +8.788604 53.837865 +8.784204 53.838745 +8.780097 53.839625 +8.775697 53.840505 +8.771590 53.841678 +8.767483 53.843145 +8.763669 53.844025 +8.760149 53.845492 +8.756335 53.846665 +8.752815 53.848425 +8.750175 53.849892 +8.747535 53.851946 +8.745188 53.853999 +8.742548 53.855759 +8.737854 53.856639 +8.733454 53.857519 +8.728173 53.857813 +8.724066 53.859279 +8.720839 53.860453 +8.718199 53.862213 +8.714679 53.863973 +8.712919 53.866027 +8.712332 53.868960 +8.711452 53.871600 +8.708518 53.873654 +8.706465 53.875707 +8.702945 53.877174 +8.699131 53.878348 +8.695024 53.879521 +8.691797 53.880694 +8.688864 53.882748 +8.686810 53.885095 +8.685930 53.887735 +8.685637 53.890962 +8.683877 53.893015 +8.680650 53.894775 +8.674783 53.894775 +8.670089 53.894189 +8.665689 53.893895 +8.661288 53.892722 +8.656595 53.892135 +8.652488 53.891255 +8.648381 53.890668 +8.644861 53.889202 +8.640460 53.888322 +8.636940 53.886855 +8.633420 53.885975 +8.629313 53.885095 +8.624912 53.883921 +8.620219 53.883335 +8.616112 53.882454 +8.612005 53.881574 +8.607898 53.880694 +8.604084 53.879521 +8.601151 53.877467 +8.599684 53.874827 +8.597924 53.872480 +8.595284 53.870427 +8.592643 53.868373 +8.590297 53.866320 +8.587656 53.864560 +8.585310 53.862506 +8.582669 53.860453 +8.580323 53.858693 +8.578269 53.856053 +8.576509 53.853999 +8.574455 53.851359 +8.572989 53.849012 +8.571229 53.846372 +8.569762 53.843732 +8.567708 53.841385 +8.566535 53.838745 +8.564481 53.836398 +8.562428 53.833758 +8.560668 53.831704 +8.559201 53.828771 +8.557148 53.826717 +8.554801 53.824370 +8.552747 53.822317 +8.550400 53.820263 +8.548054 53.818210 +8.546587 53.815570 +8.545707 53.812636 +8.545120 53.809409 +8.544240 53.806476 +8.543653 53.802955 +8.542773 53.799729 +8.542480 53.796502 +8.542187 53.792981 +8.541306 53.790048 +8.540133 53.787114 +8.539253 53.784181 +8.537786 53.781247 +8.536906 53.778020 +8.535439 53.775380 +8.534853 53.772153 +8.533386 53.769513 +8.531919 53.766873 +8.530452 53.764233 +8.529279 53.761299 +8.527812 53.758952 +8.526345 53.756019 +8.524585 53.753672 +8.522825 53.751325 +8.520772 53.748978 +8.519012 53.746631 +8.516958 53.744578 +8.514905 53.741938 +8.513144 53.739591 +8.511091 53.737244 +8.509037 53.734897 +8.507277 53.732550 +8.505224 53.730204 +8.503757 53.727563 +8.502584 53.724630 +8.501117 53.722283 +8.499650 53.719349 +8.497890 53.717003 +8.496423 53.714362 +8.494370 53.712016 +8.493196 53.709082 +8.491143 53.707029 +8.489676 53.704095 +8.487916 53.702042 +8.486449 53.699108 +8.485569 53.696174 +8.484102 53.693241 +8.483222 53.690307 +8.483222 53.687374 +8.482929 53.684147 +8.482342 53.681213 +8.482636 53.677986 +8.482636 53.675053 +8.482929 53.671826 +8.484102 53.669186 +8.484396 53.665959 +8.485276 53.663025 +8.485569 53.660092 +8.486743 53.657158 +8.487623 53.654518 +8.488209 53.651585 +8.489969 53.649531 +8.491436 53.646891 +8.493196 53.644544 +8.494663 53.641904 +8.496717 53.639850 +8.498770 53.637797 +8.501117 53.635450 +8.503170 53.633690 +8.504637 53.631050 +8.506104 53.628703 +8.507864 53.626063 +8.508744 53.623423 +8.510211 53.620782 +8.511091 53.618142 +8.512851 53.615795 +8.514024 53.613449 +8.516371 53.611102 +8.517251 53.608461 +8.519012 53.605821 +8.519598 53.603181 +8.521358 53.600541 +8.522825 53.598194 +8.524879 53.596141 +8.527225 53.593794 +8.529279 53.592034 +8.531332 53.589687 +8.534266 53.587927 +8.536319 53.585873 +8.538373 53.583526 +8.540133 53.581473 +8.541306 53.578833 +8.541893 53.575899 +8.542187 53.572379 +8.543653 53.570325 +8.545413 53.567685 +8.546587 53.565338 +8.548347 53.562698 +8.549814 53.560351 +8.551281 53.558005 +8.553627 53.555951 +8.555094 53.553311 +8.554801 53.555071 +8.555681 53.553018 +8.557734 53.550671 +8.559201 53.548030 +8.560961 53.545684 +8.562721 53.543630 +8.564481 53.540990 +8.565948 53.538643 +8.567415 53.536003 +8.568295 53.533363 +8.568588 53.530136 +8.568295 53.526909 +8.566828 53.524269 +8.565655 53.521335 +8.563895 53.519282 +8.561841 53.516642 +8.560081 53.514588 +8.557441 53.512535 +8.555094 53.510481 +8.552454 53.508721 +8.549520 53.506961 +8.545707 53.505494 +8.542773 53.504027 +8.539546 53.502854 +8.535733 53.501387 +8.532212 53.499920 +8.528692 53.498747 +8.524879 53.497574 +8.521358 53.496400 +8.517838 53.494933 +8.514318 53.493760 +8.511384 53.492293 +8.508744 53.490240 +8.506397 53.488186 +8.504931 53.485546 +8.503757 53.482906 +8.501704 53.480559 +8.500824 53.477332 +8.499357 53.474692 +8.498183 53.472052 +8.497303 53.468825 +8.496423 53.465891 +8.496130 53.462371 +8.496717 53.459144 +8.497010 53.456211 +8.497890 53.453277 +8.498477 53.450637 +8.499650 53.447703 +8.500530 53.445063 +8.502290 53.442716 +8.503170 53.440076 +8.503757 53.437143 +8.504931 53.434502 +8.505224 53.430982 +8.505517 53.428049 +8.505811 53.425115 +8.505517 53.421595 +8.505224 53.418074 +8.504931 53.414848 +8.504050 53.411621 +8.502877 53.408981 +8.502584 53.405460 +8.502290 53.402233 +8.502584 53.399300 +8.503170 53.395780 +8.503464 53.392846 +8.503757 53.389619 +8.504344 53.386979 +8.504637 53.383752 +8.505811 53.381112 +8.506104 53.378178 +8.506984 53.375245 +8.508157 53.372605 +8.507864 53.369084 +8.507571 53.365564 +8.506691 53.362631 +8.505811 53.359404 +8.504344 53.356763 +8.503170 53.354123 +8.501410 53.355883 +8.499357 53.357937 +8.497890 53.360284 +8.496423 53.362924 +8.495250 53.365564 +8.493783 53.367911 +8.492316 53.370551 +8.490849 53.373191 +8.489676 53.375831 +8.489383 53.378765 +8.488503 53.381699 +8.488209 53.384632 +8.487916 53.387859 +8.487623 53.390793 +8.487916 53.394313 +8.487036 53.397246 +8.486743 53.400180 +8.486449 53.403407 +8.485276 53.406047 +8.484982 53.409274 +8.484689 53.412207 +8.484396 53.415141 +8.484102 53.418368 +8.484396 53.421888 +8.483809 53.425115 +8.484102 53.428342 +8.484396 53.431862 +8.484102 53.435089 +8.484396 53.438316 +8.484102 53.441249 +8.483809 53.444476 +8.483516 53.447703 +8.482929 53.450930 +8.482636 53.453864 +8.482929 53.457091 +8.483222 53.460611 +8.484102 53.463838 +8.484982 53.467065 +8.485276 53.470292 +8.486156 53.473225 +8.487623 53.476159 +8.488209 53.479092 +8.489676 53.481732 +8.491143 53.484373 +8.493196 53.487013 +8.494370 53.489360 +8.496423 53.492000 +8.498770 53.493760 +8.500824 53.496107 +8.501997 53.498747 +8.503757 53.501387 +8.506397 53.503441 +8.508451 53.505494 +8.510798 53.507548 +8.513438 53.509601 +8.515785 53.511655 +8.518425 53.513708 +8.521358 53.515175 +8.524585 53.516935 +8.527225 53.518695 +8.530159 53.519868 +8.533973 53.521335 +8.537493 53.522802 +8.541013 53.523975 +8.544827 53.525149 +8.547760 53.526909 +8.548934 53.529549 +8.548640 53.532483 +8.548934 53.536003 +8.548054 53.538937 +8.545707 53.540697 +8.542480 53.542457 +8.538080 53.543337 +8.532799 53.543630 +8.527812 53.544217 +8.524585 53.545684 +8.520185 53.546857 +8.516371 53.548030 +8.513144 53.548911 +8.509037 53.550084 +8.505224 53.551257 +8.501704 53.552431 +8.498477 53.553898 +8.494370 53.555071 +8.489969 53.555951 +8.484689 53.556244 +8.478822 53.556538 +8.473248 53.556538 +8.467968 53.557124 +8.462101 53.557711 +8.458287 53.558885 +8.454474 53.560058 +8.451247 53.561525 +8.447140 53.562698 +8.443033 53.563872 +8.439219 53.565045 +8.434819 53.565925 +8.430125 53.566805 +8.425431 53.567392 +8.421031 53.567979 +8.416337 53.568859 +8.411937 53.569739 +8.407243 53.570619 +8.403430 53.571792 +8.399030 53.572379 +8.394629 53.573552 +8.390816 53.574726 +8.388175 53.576779 +8.385242 53.578246 +8.383188 53.580593 +8.380548 53.582646 +8.377908 53.584113 +8.374975 53.585873 +8.372334 53.587633 +8.369987 53.589687 +8.367934 53.592034 +8.366467 53.594380 +8.364120 53.596727 +8.362654 53.598781 +8.360600 53.601128 +8.358253 53.603474 +8.356493 53.605235 +8.354146 53.607581 +8.351506 53.609048 +8.347986 53.610808 +8.344759 53.612275 +8.341532 53.613742 +8.336545 53.614329 +8.332731 53.615502 +8.327451 53.616089 +8.323051 53.616969 +8.317184 53.616969 +8.311317 53.617262 +8.306036 53.616969 +8.301636 53.616382 +8.296356 53.616089 +8.292249 53.615209 +8.287555 53.614622 +8.283448 53.614035 +8.279928 53.612568 +8.276407 53.611395 +8.272887 53.609928 +8.269660 53.608461 +8.266727 53.606701 +8.264087 53.604648 +8.261153 53.603181 +8.258806 53.601128 +8.256459 53.599074 +8.254406 53.596727 +8.252059 53.594674 +8.250006 53.592620 +8.247365 53.590567 +8.245605 53.587927 +8.242965 53.586167 +8.242085 53.582940 +8.241792 53.580006 +8.241498 53.576486 +8.240618 53.573259 +8.240325 53.570032 +8.239445 53.566805 +8.238565 53.563872 +8.237685 53.560938 +8.236805 53.557711 +8.236805 53.554484 +8.235925 53.551257 +8.235631 53.547737 +8.235338 53.544510 +8.234751 53.541283 +8.233871 53.538350 +8.232991 53.535416 +8.232111 53.532189 +8.231818 53.528669 +8.231524 53.525149 +8.231818 53.522215 +8.232991 53.519575 +8.237391 53.518695 +8.242085 53.519282 +8.247365 53.519575 +8.252939 53.519282 +8.258219 53.519575 +8.263500 53.519868 +8.268194 53.520162 +8.272887 53.520749 +8.276994 53.521629 +8.281101 53.522509 +8.285208 53.523682 +8.289315 53.524562 +8.293422 53.525149 +8.298116 53.525736 +8.303396 53.526029 +8.308676 53.525442 +8.311903 53.524269 +8.314837 53.522509 +8.316597 53.520162 +8.318357 53.517815 +8.319824 53.515175 +8.320411 53.512241 +8.320411 53.509308 +8.320411 53.505787 +8.320117 53.502267 +8.319824 53.498747 +8.318944 53.495813 +8.318064 53.492880 +8.317770 53.489360 +8.316890 53.486426 +8.316010 53.483199 +8.315717 53.479679 +8.315424 53.476452 +8.315424 53.472932 +8.315424 53.469412 +8.315130 53.466185 +8.314250 53.462958 +8.313957 53.459437 +8.313077 53.456504 +8.311610 53.453864 +8.309850 53.451517 +8.307210 53.449463 +8.304863 53.447410 +8.301929 53.445943 +8.298996 53.444183 +8.296356 53.442130 +8.294302 53.440076 +8.293715 53.436556 +8.294009 53.433622 +8.293715 53.430395 +8.292835 53.427168 +8.291075 53.424822 +8.289022 53.422475 +8.286675 53.420421 +8.284035 53.418661 +8.281101 53.416901 +8.277581 53.415434 +8.274647 53.413968 +8.271127 53.412794 +8.267607 53.411327 +8.264380 53.409861 +8.260860 53.408687 +8.257926 53.406927 +8.254406 53.405460 +8.251472 53.403993 +8.248245 53.402233 +8.244138 53.401353 +8.239738 53.400767 +8.234458 53.400473 +8.228591 53.400767 +8.223017 53.400767 +8.218323 53.401647 +8.213336 53.402233 +8.208643 53.403113 +8.204829 53.404287 +8.202482 53.406340 +8.201015 53.408687 +8.199549 53.411034 +8.197495 53.413381 +8.194268 53.414848 +8.191335 53.416314 +8.188108 53.418074 +8.185761 53.420128 +8.183707 53.422181 +8.181361 53.424528 +8.179894 53.426582 +8.178427 53.429222 +8.176374 53.431275 +8.174613 53.433916 +8.172560 53.435969 +8.170213 53.438023 +8.167866 53.439783 +8.165519 53.441836 +8.162293 53.443303 +8.158772 53.444770 +8.156132 53.446530 +8.153199 53.448290 +8.149972 53.449757 +8.146745 53.451517 +8.142051 53.452104 +8.137357 53.452984 +8.132077 53.453277 +8.127090 53.452984 +8.122396 53.452397 +8.117703 53.451810 +8.113596 53.451224 +8.110956 53.449463 +8.108902 53.447117 +8.108609 53.443596 +8.107729 53.440663 +8.105382 53.438609 +8.101862 53.437436 +8.095994 53.437436 +8.095114 53.439783 +8.096875 53.441836 +8.097755 53.444476 +8.095701 53.446530 +8.092768 53.448290 +8.090127 53.450343 +8.087194 53.452104 +8.085140 53.454157 +8.083087 53.456504 +8.080153 53.457971 +8.078100 53.460318 +8.075753 53.462371 +8.074580 53.464718 +8.072819 53.467358 +8.071353 53.469705 +8.069593 53.472345 +8.068713 53.474985 +8.067246 53.477332 +8.066072 53.479972 +8.065779 53.483199 +8.064899 53.486133 +8.064312 53.489066 +8.063726 53.492000 +8.062845 53.494640 +8.061672 53.497574 +8.061379 53.500507 +8.063432 53.502854 +8.068419 53.503147 +8.073700 53.502561 +8.078980 53.502267 +8.084554 53.501974 +8.089247 53.502561 +8.093941 53.503147 +8.098635 53.503734 +8.103035 53.504027 +8.107142 53.505201 +8.110956 53.505787 +8.115356 53.506374 +8.119463 53.507254 +8.123570 53.508134 +8.127677 53.509308 +8.132077 53.509894 +8.135304 53.511361 +8.132957 53.510774 +8.128263 53.509894 +8.122983 53.509894 +8.117996 53.509601 +8.114769 53.511068 +8.115356 53.513708 +8.118876 53.514588 +8.124157 53.514881 +8.129437 53.515175 +8.133250 53.516055 +8.137064 53.517522 +8.139998 53.519282 +8.144105 53.519868 +8.149385 53.520162 +8.154372 53.519868 +8.159066 53.519868 +8.163466 53.520455 +8.165519 53.522509 +8.168160 53.524562 +8.168453 53.527202 +8.166106 53.529549 +8.164639 53.531896 +8.163466 53.534830 +8.164346 53.537763 +8.165813 53.540403 +8.166693 53.543337 +8.166400 53.546564 +8.165813 53.549791 +8.164933 53.552431 +8.163466 53.555071 +8.162586 53.557711 +8.160826 53.560058 +8.159359 53.562405 +8.157306 53.564752 +8.153199 53.565925 +8.147918 53.565632 +8.143811 53.564752 +8.140291 53.563285 +8.136184 53.562405 +8.132077 53.561525 +8.127970 53.560645 +8.123276 53.560938 +8.121810 53.562992 +8.120343 53.565632 +8.120050 53.568565 +8.120343 53.572086 +8.119756 53.575312 +8.120050 53.578539 +8.121516 53.581473 +8.125037 53.582646 +8.123863 53.584700 +8.121810 53.586167 +8.118876 53.587927 +8.116236 53.589100 +8.113302 53.590860 +8.110075 53.592327 +8.107142 53.594087 +8.104502 53.595847 +8.101568 53.597607 +8.099808 53.599661 +8.096875 53.601714 +8.094821 53.603474 +8.092474 53.605821 +8.089834 53.607581 +8.086900 53.609342 +8.084847 53.611395 +8.081913 53.613449 +8.079273 53.614915 +8.076633 53.616969 +8.073993 53.618729 +8.070179 53.619902 +8.066952 53.621369 +8.064312 53.623423 +8.060792 53.624596 +8.058152 53.626356 +8.055218 53.628410 +8.053458 53.630463 +8.050525 53.632223 +8.048471 53.634570 +8.046124 53.636330 +8.044364 53.638970 +8.043191 53.641317 +8.041431 53.643957 +8.039670 53.646011 +8.038204 53.648651 +8.036737 53.650998 +8.035270 53.653638 +8.034097 53.656278 +8.032630 53.658625 +8.031163 53.660972 +8.029403 53.663612 +8.027936 53.666252 +8.026469 53.668599 +8.024709 53.670946 +8.023243 53.673293 +8.022363 53.676226 +8.022069 53.679160 +8.021776 53.682093 +8.021776 53.685907 +8.022363 53.688841 +8.023829 53.691774 +8.025883 53.693828 +8.027643 53.696468 +8.029696 53.698521 +8.028523 53.701455 +8.026469 53.703508 +8.023536 53.705268 +8.020309 53.706735 +8.016495 53.707909 +8.012388 53.708789 +8.008282 53.709962 +8.003881 53.710842 +8.000068 53.712016 +7.995374 53.712896 +7.990974 53.713482 +7.985987 53.714362 +7.981586 53.715242 +7.976306 53.715829 +7.971026 53.716123 +7.965745 53.716709 +7.960171 53.716709 +7.954891 53.717296 +7.949024 53.717589 +7.943744 53.717296 +7.939050 53.716709 +7.933476 53.716709 +7.927902 53.717003 +7.922622 53.717296 +7.917928 53.718469 +7.913235 53.719056 +7.907368 53.719349 +7.902967 53.718763 +7.897687 53.718469 +7.892407 53.718469 +7.887713 53.717883 +7.882432 53.717589 +7.877739 53.717003 +7.873045 53.716416 +7.869232 53.715536 +7.865125 53.714656 +7.859844 53.714362 +7.854564 53.714069 +7.848697 53.714069 +7.843416 53.714069 +7.839016 53.713189 +7.834029 53.712896 +7.829335 53.712309 +7.825228 53.711429 +7.821121 53.710549 +7.816428 53.709375 +7.812614 53.708495 +7.808214 53.707909 +7.802933 53.707615 +7.798240 53.707029 +7.794133 53.705855 +7.789439 53.705268 +7.785626 53.704388 +7.781519 53.703215 +7.777118 53.702628 +7.773598 53.701161 +7.769491 53.700281 +7.764211 53.699988 +7.759224 53.699695 +7.753357 53.699988 +7.748076 53.699695 +7.742209 53.699988 +7.736342 53.699988 +7.730475 53.700281 +7.725488 53.699988 +7.720208 53.699695 +7.714340 53.699695 +7.709060 53.700281 +7.703193 53.700281 +7.698206 53.700281 +7.693512 53.699695 +7.688232 53.699401 +7.684125 53.698228 +7.679431 53.697641 +7.675031 53.697348 +7.670924 53.696468 +7.666524 53.695294 +7.662417 53.694414 +7.658310 53.693534 +7.654203 53.692361 +7.649802 53.692067 +7.644522 53.691774 +7.639828 53.691187 +7.635135 53.690601 +7.630148 53.690014 +7.625747 53.689427 +7.621054 53.688841 +7.616947 53.687667 +7.612840 53.687080 +7.608733 53.686200 +7.604039 53.685320 +7.599932 53.684440 +7.595239 53.683854 +7.591132 53.682974 +7.586438 53.682093 +7.581744 53.681507 +7.577344 53.680920 +7.572357 53.680333 +7.567077 53.680040 +7.562383 53.679453 +7.557689 53.678867 +7.553289 53.678280 +7.548595 53.677693 +7.544488 53.676813 +7.539795 53.676226 +7.535688 53.675346 +7.530994 53.674466 +7.527474 53.673293 +7.522780 53.672706 +7.518673 53.671533 +7.513393 53.672119 +7.508406 53.672413 +7.504299 53.673880 +7.500778 53.675346 +7.497552 53.676813 +7.494031 53.678280 +7.491391 53.680333 +7.488164 53.681800 +7.484351 53.682974 +7.480537 53.684147 +7.476723 53.685320 +7.472616 53.686494 +7.467629 53.687080 +7.462349 53.687080 +7.456482 53.687374 +7.450615 53.687374 +7.445628 53.687080 +7.440347 53.687080 +7.434480 53.687080 +7.429200 53.687080 +7.423333 53.687080 +7.418052 53.686787 +7.413065 53.686787 +7.407785 53.686494 +7.401918 53.686494 +7.396638 53.686200 +7.390771 53.686494 +7.384903 53.686494 +7.379916 53.687080 +7.375223 53.687374 +7.369356 53.687667 +7.364369 53.687961 +7.358502 53.688254 +7.352634 53.688254 +7.347061 53.688547 +7.341194 53.688547 +7.336207 53.688254 +7.330926 53.687961 +7.325646 53.687667 +7.320952 53.687080 +7.315965 53.686787 +7.310978 53.686494 +7.305698 53.686200 +7.301004 53.685614 +7.295724 53.685320 +7.291617 53.684440 +7.287803 53.683267 +7.284576 53.681800 +7.282816 53.679453 +7.279589 53.677693 +7.275189 53.677106 +7.270495 53.676813 +7.265802 53.676226 +7.261108 53.675346 +7.257001 53.674466 +7.252601 53.673880 +7.248787 53.672413 +7.244680 53.671533 +7.241160 53.670359 +7.237346 53.669479 +7.233533 53.668012 +7.230599 53.666252 +7.227079 53.665079 +7.224145 53.663319 +7.222092 53.660972 +7.220918 53.658332 +7.219158 53.655692 +7.216811 53.653931 +7.213584 53.652171 +7.209478 53.651291 +7.206251 53.650118 +7.201850 53.648944 +7.198330 53.647771 +7.194810 53.646304 +7.191290 53.645131 +7.187769 53.643957 +7.184836 53.642197 +7.182196 53.640144 +7.180142 53.638090 +7.178089 53.635743 +7.175448 53.633690 +7.173395 53.631636 +7.170755 53.629583 +7.167821 53.628116 +7.164888 53.626356 +7.161954 53.624596 +7.159021 53.623129 +7.156380 53.621076 +7.154034 53.619022 +7.151687 53.616969 +7.149047 53.614915 +7.146993 53.613155 +7.144353 53.610808 +7.141419 53.609048 +7.138486 53.607581 +7.135552 53.605821 +7.132032 53.604648 +7.128218 53.603474 +7.124405 53.602594 +7.120298 53.601421 +7.116778 53.599954 +7.112671 53.599074 +7.109150 53.597901 +7.105630 53.596434 +7.101816 53.595261 +7.099176 53.593500 +7.096243 53.592034 +7.093603 53.589687 +7.091842 53.587633 +7.090082 53.584993 +7.088029 53.582646 +7.087442 53.579713 +7.087149 53.576193 +7.087735 53.573846 +7.088909 53.571205 +7.090962 53.568859 +7.093896 53.567099 +7.096536 53.565632 +7.100056 53.563872 +7.103283 53.562405 +7.107097 53.561525 +7.111497 53.560351 +7.115311 53.559471 +7.118538 53.557711 +7.120884 53.555951 +7.123525 53.553898 +7.127338 53.552431 +7.131152 53.551257 +7.134379 53.550084 +7.136726 53.548030 +7.138779 53.545977 +7.139953 53.543043 +7.142299 53.540990 +7.144353 53.538937 +7.147286 53.537176 +7.148166 53.534536 +7.146406 53.531896 +7.143766 53.530136 +7.140833 53.528376 +7.138192 53.526616 +7.134966 53.524855 +7.131445 53.523682 +7.127925 53.522509 +7.123231 53.521629 +7.117364 53.521922 +7.113551 53.522215 +7.108270 53.522802 +7.104163 53.522509 +7.104750 53.519868 +7.108564 53.518988 +7.113844 53.518695 +7.117658 53.517522 +7.116778 53.514588 +7.113551 53.513121 +7.110030 53.511655 +7.106803 53.510188 +7.101816 53.509601 +7.096536 53.510188 +7.093309 53.511655 +7.091256 53.513708 +7.088322 53.515468 +7.085682 53.517228 +7.082748 53.519282 +7.078935 53.520162 +7.073068 53.520162 +7.068374 53.519868 +7.064267 53.518695 +7.060747 53.517522 +7.058400 53.515175 +7.055760 53.513415 +7.053120 53.511655 +7.051066 53.509308 +7.049306 53.506961 +7.048133 53.504027 +7.046666 53.501387 +7.045492 53.498747 +7.044026 53.496107 +7.042852 53.493467 +7.040505 53.491413 +7.037572 53.489653 +7.034932 53.487599 +7.033465 53.485253 +7.031998 53.482612 +7.031411 53.479386 +7.031118 53.476159 +7.031118 53.472638 +7.030825 53.469118 +7.030531 53.465891 +7.029945 53.462664 +7.029065 53.459437 +7.027891 53.456504 +7.026718 53.453864 +7.025251 53.451224 +7.024078 53.448290 +7.023197 53.445356 +7.022024 53.442423 +7.021437 53.439489 +7.020557 53.436262 +7.019971 53.433329 +7.019091 53.430395 +7.018504 53.427168 +7.017917 53.424235 +7.017037 53.421008 +7.016450 53.418074 +7.015570 53.414848 +7.015570 53.411327 +7.015277 53.408100 +7.014397 53.404874 +7.015570 53.402233 +7.016157 53.399300 +7.017037 53.396366 +7.017624 53.393433 +7.017330 53.389619 +7.016744 53.386686 +7.015864 53.383752 +7.016450 53.380525 +7.017330 53.377885 +7.018210 53.374951 +7.019384 53.372311 +7.021144 53.369671 +7.022611 53.367618 +7.024078 53.364977 +7.026424 53.362924 +7.029065 53.361164 +7.031998 53.359404 +7.034052 53.357350 +7.036398 53.355297 +7.038745 53.352950 +7.040212 53.350603 +7.041972 53.348256 +7.043439 53.345909 +7.045492 53.343562 +7.047839 53.341802 +7.050479 53.339749 +7.054586 53.338575 +7.058107 53.337109 +7.062507 53.336522 +7.067787 53.336229 +7.073361 53.336229 +7.078641 53.336522 +7.083335 53.336815 +7.088322 53.337109 +7.092429 53.337989 +7.097709 53.338282 +7.102697 53.338575 +7.107390 53.338575 +7.112084 53.339162 +7.117364 53.339456 +7.122058 53.340042 +7.126458 53.340042 +7.132325 53.339749 +7.138192 53.339749 +7.143179 53.339162 +7.148460 53.338869 +7.152860 53.337989 +7.158140 53.337695 +7.162541 53.336815 +7.168408 53.336522 +7.172808 53.337402 +7.176328 53.338575 +7.180435 53.339749 +7.183956 53.340922 +7.188649 53.340336 +7.192463 53.339162 +7.194810 53.338282 +7.200090 53.337989 +7.204490 53.337109 +7.209771 53.336522 +7.215345 53.336522 +7.221212 53.336522 +7.227079 53.336522 +7.231479 53.335642 +7.235293 53.334468 +7.239986 53.333882 +7.244387 53.333002 +7.248787 53.332122 +7.253481 53.331535 +7.257588 53.330362 +7.261401 53.329188 +7.264921 53.327721 +7.269028 53.326548 +7.272842 53.325668 +7.278122 53.325375 +7.283696 53.325081 +7.289563 53.325081 +7.294844 53.325375 +7.300417 53.325081 +7.305991 53.325081 +7.310978 53.324494 +7.316259 53.324201 +7.321539 53.323614 +7.326526 53.323908 +7.332393 53.323908 +7.337087 53.323028 +7.341780 53.322148 +7.345007 53.320974 +7.348234 53.319507 +7.351168 53.317454 +7.353221 53.315694 +7.354688 53.313054 +7.357035 53.310707 +7.358502 53.308653 +7.360262 53.306013 +7.361728 53.303666 +7.363195 53.301026 +7.364369 53.299266 +7.359968 53.300146 +7.355275 53.300733 +7.352048 53.302200 +7.349114 53.303960 +7.346474 53.305426 +7.344127 53.307773 +7.342367 53.310413 +7.339727 53.311880 +7.337087 53.313934 +7.333566 53.315400 +7.329753 53.316281 +7.325353 53.316867 +7.320072 53.317454 +7.314498 53.317454 +7.308631 53.317747 +7.303351 53.317454 +7.298364 53.317161 +7.293084 53.317747 +7.287216 53.317747 +7.282816 53.318627 +7.277536 53.318921 +7.271962 53.319214 +7.266095 53.319214 +7.260815 53.318921 +7.256414 53.318334 +7.252894 53.316867 +7.249960 53.315400 +7.247614 53.313347 +7.244973 53.311293 +7.243800 53.308653 +7.242627 53.305720 +7.241160 53.303080 +7.239400 53.300733 +7.237053 53.298973 +7.233826 53.297212 +7.231186 53.295452 +7.231479 53.292519 +7.232946 53.289879 +7.234706 53.287532 +7.235586 53.284598 +7.236173 53.281665 +7.235879 53.278438 +7.235293 53.275211 +7.234413 53.272277 +7.232946 53.269344 +7.232359 53.266410 +7.230599 53.263477 +7.229132 53.260837 +7.227959 53.258196 +7.225612 53.256143 +7.223559 53.253796 +7.221505 53.251743 +7.218865 53.249689 +7.216811 53.247636 +7.213584 53.246169 +7.211238 53.244115 +7.208304 53.242355 +7.205371 53.240888 +7.200970 53.239715 +7.195690 53.240008 +7.190409 53.240302 +7.186303 53.241475 +7.182489 53.242355 +7.178675 53.243529 +7.174568 53.244702 +7.170461 53.245875 +7.167234 53.247342 +7.163421 53.248222 +7.157554 53.248222 +7.153153 53.247636 +7.148460 53.247342 +7.143766 53.247929 +7.139659 53.249102 +7.135846 53.250276 +7.131445 53.251156 +7.127338 53.252036 +7.122351 53.252623 +7.116484 53.252623 +7.111497 53.252916 +7.106217 53.253209 +7.101230 53.253796 +7.096243 53.254676 +7.092429 53.255850 +7.088616 53.257023 +7.085389 53.258196 +7.081868 53.259663 +7.078348 53.261130 +7.076881 53.263477 +7.075708 53.266410 +7.074828 53.269050 +7.075121 53.272571 +7.075415 53.275798 +7.075708 53.279025 +7.075415 53.282251 +7.075121 53.285185 +7.073948 53.288118 +7.074241 53.291345 +7.075121 53.294572 +7.076588 53.296919 +7.079228 53.298973 +7.081282 53.300733 +7.084509 53.302493 +7.087442 53.304253 +7.088616 53.305426 +7.083922 53.305133 +7.080108 53.303960 +7.076295 53.302786 +7.073361 53.301026 +7.070428 53.299559 +7.065734 53.298973 +7.060160 53.298973 +7.054880 53.298679 +7.050186 53.298679 +7.046959 53.300146 +7.043732 53.301613 +7.039625 53.302493 +7.034345 53.303080 +7.029358 53.302786 +7.024078 53.302493 +7.018797 53.303080 +7.014984 53.304253 +7.011757 53.305426 +7.008236 53.306893 +7.005010 53.308360 +7.002076 53.310120 +6.998849 53.311587 +6.994742 53.312467 +6.990342 53.313347 +6.985061 53.313934 +6.980074 53.314227 +6.975381 53.315107 +6.970687 53.315694 +6.965993 53.316574 +6.961593 53.317161 +6.957779 53.318334 +6.953672 53.319507 +6.949859 53.320681 +6.945165 53.321268 +6.942525 53.323028 +6.939591 53.324788 +6.937538 53.326841 +6.935778 53.329481 +6.934604 53.332122 +6.933138 53.334468 +6.930791 53.336522 +6.929031 53.338575 +6.927271 53.341216 +6.924337 53.342976 +6.922284 53.345029 +6.919937 53.347083 +6.916710 53.348550 +6.911429 53.348843 +6.905562 53.349136 +6.901749 53.350310 +6.901162 53.352363 +6.901455 53.356177 +6.900869 53.359110 +6.899989 53.362044 +6.898815 53.364684 +6.897348 53.367031 +6.896175 53.369671 +6.895295 53.372605 +6.893535 53.374951 +6.892361 53.377885 +6.891481 53.380525 +6.890601 53.383459 +6.889428 53.386099 +6.888254 53.389032 +6.887961 53.391966 +6.887081 53.394606 +6.885908 53.397540 +6.885028 53.400180 +6.882681 53.402233 +6.880627 53.404580 +6.878280 53.406340 +6.876520 53.408981 +6.874467 53.410741 +6.873293 53.413674 +6.871533 53.416021 +6.871533 53.419248 +6.870947 53.422181 +6.871240 53.425702 +6.871533 53.428929 +6.871533 53.431862 +6.869186 53.433916 +6.865960 53.435676 +6.862733 53.437143 +6.858919 53.438316 +6.855105 53.439489 +6.849825 53.439783 +6.844838 53.440369 +6.839558 53.440663 +6.835451 53.441543 +6.830757 53.442423 +6.826357 53.443303 +6.822250 53.444476 +6.817849 53.445063 +6.814036 53.446237 +6.809635 53.447117 +6.806409 53.448583 +6.803182 53.450050 +6.799368 53.451517 +6.796141 53.452984 +6.792914 53.454450 +6.788807 53.455624 +6.784700 53.456797 +6.781473 53.457971 +6.777366 53.459144 +6.773260 53.460024 +6.768859 53.460904 +6.764166 53.461784 +6.760352 53.462664 +6.755952 53.463251 +6.751551 53.464424 +6.746564 53.465011 +6.741871 53.465891 +6.736004 53.465891 +6.731017 53.465598 +6.726323 53.465011 +6.721042 53.464718 +6.716642 53.464131 +6.711948 53.463251 +6.707255 53.462664 +6.702854 53.462078 +6.697574 53.462078 +6.693467 53.460904 +6.689360 53.460024 +6.684667 53.459437 +6.680560 53.458264 +6.676159 53.457677 +6.671466 53.457091 +6.666772 53.456504 +6.662078 53.455917 +6.657385 53.455331 +6.652691 53.454744 +6.648877 53.453570 +6.644184 53.452984 +6.640077 53.451810 +6.635676 53.451517 +6.631276 53.450050 +6.627169 53.449170 +6.623942 53.447703 +6.619835 53.446823 +6.615435 53.445943 +6.612208 53.444476 +6.608101 53.443596 +6.604581 53.442130 +6.600474 53.441249 +6.595780 53.440663 +6.591673 53.439783 +6.587860 53.438609 +6.583166 53.438023 +6.578472 53.437436 +6.573779 53.436556 +6.570258 53.435969 +6.565271 53.435969 +6.559991 53.435676 +6.554711 53.435382 +6.549723 53.435089 +6.544443 53.434796 +6.540336 53.433916 +6.535936 53.433036 +6.531242 53.432449 +6.526255 53.431862 +6.521855 53.431275 +6.517161 53.430689 +6.512467 53.430102 +6.508067 53.429515 +6.503960 53.428342 +6.498680 53.428049 +6.493693 53.427755 +6.488999 53.427168 +6.483719 53.426875 +6.478732 53.426582 +6.473451 53.426288 +6.468171 53.425995 +6.462597 53.425995 +6.457904 53.425702 +6.452623 53.425408 +6.447930 53.424822 +6.443236 53.423942 +6.439129 53.423062 +6.434729 53.422475 +6.430622 53.421301 +6.425928 53.420715 +6.421821 53.419835 +6.417714 53.418955 +6.413020 53.418074 +6.408033 53.417781 +6.402753 53.417488 +6.397473 53.417194 +6.392486 53.416901 +6.386618 53.417194 +6.381925 53.416314 +6.376938 53.416021 +6.372831 53.415141 +6.368724 53.414261 +6.364617 53.413381 +6.361097 53.411914 +6.357283 53.410741 +6.353469 53.409861 +6.350243 53.408394 +6.346136 53.407220 +6.342615 53.405754 +6.339095 53.404580 +6.334988 53.403700 +6.331761 53.402233 +6.327948 53.400767 +6.323841 53.399887 +6.320614 53.398713 +6.316507 53.397833 +6.312400 53.396660 +6.308293 53.395486 +6.303599 53.395780 +6.301252 53.397833 +6.299199 53.399887 +6.296852 53.401940 +6.293625 53.403407 +6.290398 53.404580 +6.285998 53.405754 +6.282184 53.406927 +6.278371 53.408100 +6.274850 53.409567 +6.270743 53.410447 +6.267517 53.411914 +6.263410 53.413087 +6.259303 53.414261 +6.255489 53.415141 +6.250209 53.415434 +6.244928 53.415728 +6.239355 53.415728 +6.235248 53.415141 +6.231141 53.413968 +6.226740 53.413381 +6.222633 53.412207 +6.218526 53.411327 +6.214419 53.410154 +6.210312 53.409567 +6.205325 53.409274 +6.199458 53.409274 +6.194765 53.409861 +6.191244 53.411327 +6.188018 53.412794 +6.183324 53.413968 +6.177750 53.413968 +6.172470 53.413674 +6.168363 53.412501 +6.164549 53.411621 +6.160736 53.410154 +6.157509 53.408981 +6.153402 53.407807 +6.149001 53.406927 +6.144601 53.405754 +6.139907 53.405167 +6.135507 53.405167 +6.130227 53.405754 +6.125826 53.406340 +6.121133 53.407220 +6.116732 53.407807 +6.112039 53.408687 +6.107638 53.409567 +6.102651 53.409861 +6.097664 53.410447 +6.092384 53.410741 +6.087690 53.410154 +6.083877 53.409274 +6.079770 53.408394 +6.075076 53.407514 +6.070089 53.407220 +6.064809 53.406927 +6.059528 53.406634 +6.055128 53.406047 +6.050141 53.405167 +6.044861 53.405460 +6.039580 53.404874 +6.034593 53.404580 +6.030193 53.403993 +6.024912 53.403700 +6.020219 53.402820 +6.015818 53.402233 +6.010538 53.401940 +6.005844 53.401353 +6.000857 53.401060 +5.996164 53.400180 +5.990883 53.399887 +5.986483 53.399300 +5.981789 53.399006 +5.977096 53.398126 +5.972989 53.397246 +5.968295 53.396366 +5.964481 53.395486 +5.959788 53.394606 +5.955974 53.394019 +5.951574 53.392846 +5.946880 53.392259 +5.943067 53.391086 +5.938960 53.390206 +5.935146 53.389032 +5.930159 53.388739 +5.926345 53.387566 +5.922238 53.386686 +5.919012 53.385219 +5.915198 53.384045 +nan nan +12.000000 54.176618 +11.998195 54.176102 +11.994088 54.175222 +11.990274 54.174049 +11.986167 54.173462 +11.982647 54.172289 +11.978540 54.171115 +11.975020 54.169942 +11.971499 54.168768 +11.966806 54.168182 +11.962699 54.167302 +11.958592 54.166422 +11.954191 54.165541 +11.949498 54.165248 +11.945391 54.164368 +11.940697 54.163781 +11.936003 54.163195 +11.931897 54.162608 +11.927790 54.161728 +11.923683 54.160848 +11.919282 54.159968 +11.914882 54.159088 +11.911362 54.157914 +11.906961 54.157328 +11.905201 54.156741 +11.902854 54.156154 +11.898747 54.154981 +11.894640 54.154101 +11.890534 54.153221 +11.886427 54.152634 +11.882026 54.151754 +11.877919 54.150874 +11.873519 54.149994 +11.869119 54.149407 +11.864425 54.148820 +11.859731 54.148527 +11.855624 54.147647 +11.850931 54.147354 +11.845944 54.147060 +11.841543 54.146180 +11.836850 54.145593 +11.832743 54.144713 +11.828049 54.144420 +11.823062 54.143833 +11.818368 54.143540 +11.812501 54.143833 +11.808101 54.144713 +11.802821 54.145593 +11.798420 54.146473 +11.793140 54.147060 +11.788740 54.147940 +11.784633 54.149114 +11.779939 54.149994 +11.776125 54.151460 +11.771725 54.152341 +11.767911 54.153514 +11.763804 54.154687 +11.758524 54.155567 +11.753244 54.156154 +11.747377 54.156447 +11.742096 54.156447 +11.737403 54.155861 +11.732709 54.155567 +11.728015 54.154981 +11.722148 54.155274 +11.716281 54.155567 +11.711001 54.155567 +11.705427 54.155567 +11.700147 54.155567 +11.695453 54.154981 +11.690759 54.154687 +11.686652 54.153807 +11.682839 54.152634 +11.679612 54.151167 +11.676091 54.149994 +11.673451 54.147940 +11.670811 54.146180 +11.668171 54.144127 +11.665237 54.142366 +11.662891 54.140313 +11.660544 54.137966 +11.658197 54.136206 +11.655263 54.134153 +11.652916 54.132099 +11.649983 54.130339 +11.647636 54.128285 +11.644703 54.126525 +11.642062 54.124472 +11.639422 54.122712 +11.637369 54.120365 +11.634729 54.118311 +11.632088 54.116258 +11.630035 54.114204 +11.626808 54.112738 +11.624461 54.110391 +11.621821 54.108337 +11.619767 54.105991 +11.618594 54.103057 +11.620061 54.100417 +11.621528 54.098070 +11.623581 54.095723 +11.625635 54.093963 +11.627395 54.091616 +11.628861 54.089269 +11.630328 54.086629 +11.630328 54.083696 +11.629448 54.080469 +11.627688 54.077829 +11.625635 54.075482 +11.622408 54.074015 +11.618594 54.072841 +11.615074 54.071668 +11.610967 54.070788 +11.607447 54.069028 +11.603340 54.068441 +11.599819 54.067268 +11.596006 54.066094 +11.592192 54.064921 +11.588672 54.063748 +11.585738 54.061987 +11.585445 54.059054 +11.586912 54.056414 +11.587498 54.053480 +11.587792 54.050253 +11.587205 54.047026 +11.586032 54.043799 +11.586325 54.042626 +11.584565 54.040279 +11.582218 54.037932 +11.579578 54.036172 +11.576938 54.034119 +11.574004 54.032359 +11.569897 54.031479 +11.566377 54.030305 +11.562857 54.028838 +11.558750 54.027665 +11.554643 54.027078 +11.549949 54.026785 +11.544669 54.026492 +11.540268 54.027372 +11.536455 54.028545 +11.533521 54.030598 +11.531761 54.032652 +11.528828 54.034412 +11.524427 54.034705 +11.520614 54.033532 +11.517387 54.032065 +11.515920 54.029425 +11.516213 54.026492 +11.520027 54.025025 +11.524427 54.024145 +11.527654 54.022385 +11.529121 54.020038 +11.526481 54.017984 +11.522080 54.017398 +11.518560 54.016224 +11.514747 54.015051 +11.512106 54.012997 +11.509466 54.011237 +11.507999 54.008597 +11.505946 54.006250 +11.503892 54.003903 +11.501546 54.001556 +11.499199 53.999796 +11.496265 53.997743 +11.493332 53.995983 +11.492158 53.993049 +11.492452 53.990702 +11.494505 53.988649 +11.496265 53.986302 +11.497145 53.983662 +11.495972 53.980435 +11.494505 53.977795 +11.491278 53.976328 +11.488345 53.974861 +11.485118 53.973394 +11.481304 53.971928 +11.477784 53.970754 +11.474557 53.969287 +11.471330 53.967821 +11.471623 53.965180 +11.474850 53.964007 +11.478664 53.962540 +11.480717 53.960193 +11.480717 53.957260 +11.481011 53.954033 +11.481011 53.951099 +11.480424 53.947579 +11.480131 53.944059 +11.480424 53.941125 +11.479251 53.938192 +11.478077 53.934965 +11.478077 53.932031 +11.480424 53.929685 +11.480424 53.926751 +11.474557 53.927044 +11.470743 53.925871 +11.468397 53.923817 +11.466050 53.921764 +11.463410 53.919711 +11.460769 53.917657 +11.458716 53.915310 +11.456662 53.912963 +11.454022 53.911203 +11.452555 53.908563 +11.451382 53.905629 +11.453435 53.903283 +11.454022 53.901229 +11.449915 53.900349 +11.444048 53.900642 +11.441115 53.902109 +11.438768 53.904456 +11.438474 53.907096 +11.437594 53.910030 +11.434661 53.912083 +11.431727 53.913257 +11.428207 53.915017 +11.424393 53.916190 +11.420580 53.917364 +11.416766 53.918537 +11.412659 53.919711 +11.408846 53.921177 +11.405619 53.922644 +11.403565 53.924698 +11.404445 53.927924 +11.406205 53.930565 +11.405912 53.933498 +11.402685 53.935258 +11.398872 53.936432 +11.394178 53.937312 +11.388311 53.937898 +11.382737 53.938192 +11.378337 53.937312 +11.374230 53.936432 +11.370123 53.935552 +11.364842 53.935552 +11.359562 53.936138 +11.356335 53.937605 +11.353695 53.939365 +11.351642 53.941712 +11.349588 53.943766 +11.347535 53.945819 +11.345481 53.948166 +11.344601 53.950806 +11.343428 53.953446 +11.340787 53.955206 +11.338147 53.957260 +11.333747 53.956380 +11.330813 53.954620 +11.328173 53.952566 +11.326120 53.950219 +11.324360 53.947579 +11.322306 53.945232 +11.319666 53.943472 +11.317319 53.941419 +11.313799 53.939659 +11.310865 53.938192 +11.307345 53.937018 +11.303238 53.935845 +11.299718 53.934672 +11.295611 53.933792 +11.290917 53.933205 +11.286810 53.932618 +11.281823 53.932325 +11.276836 53.931738 +11.271849 53.931738 +11.267742 53.932325 +11.263342 53.932911 +11.259528 53.934085 +11.255421 53.935552 +11.252194 53.937018 +11.248967 53.938485 +11.246034 53.940539 +11.244274 53.942592 +11.242220 53.944646 +11.240754 53.947286 +11.239873 53.949926 +11.239873 53.953153 +11.240167 53.956673 +11.241340 53.959607 +11.242514 53.962834 +11.243687 53.965767 +11.244861 53.968407 +11.246034 53.971341 +11.246621 53.974861 +11.246327 53.978088 +11.243100 53.979555 +11.239287 53.980142 +11.234006 53.980435 +11.229019 53.981315 +11.223739 53.981902 +11.219045 53.982782 +11.213765 53.983368 +11.209951 53.984835 +11.206138 53.985715 +11.202324 53.986889 +11.199977 53.989235 +11.197924 53.991289 +11.196750 53.993929 +11.195870 53.996569 +11.195284 53.999503 +11.194404 54.002143 +11.193524 54.005077 +11.192643 54.007717 +11.192350 54.010650 +11.189417 54.012410 +11.186190 54.013877 +11.182083 54.015344 +11.176802 54.015931 +11.172695 54.015051 +11.168588 54.014171 +11.163895 54.013877 +11.159201 54.013291 +11.154507 54.012704 +11.149814 54.012410 +11.145120 54.011824 +11.139840 54.011824 +11.134559 54.011530 +11.128692 54.012117 +11.122825 54.012410 +11.116958 54.012704 +11.111091 54.012997 +11.105811 54.013584 +11.099943 54.013877 +11.094663 54.013584 +11.091143 54.012410 +11.087623 54.011530 +11.083222 54.010650 +11.079409 54.009477 +11.074715 54.008890 +11.070021 54.008304 +11.064741 54.008304 +11.060047 54.007717 +11.055354 54.007423 +11.050660 54.006837 +11.045966 54.006543 +11.041859 54.005370 +11.038339 54.004197 +11.034819 54.003023 +11.031005 54.001556 +11.027778 54.000383 +11.024258 53.998916 +11.020444 53.997743 +11.016924 53.996569 +11.013111 53.995396 +11.009590 53.994223 +11.005190 53.993342 +11.001670 53.992169 +10.997856 53.990996 +10.994629 53.989529 +10.991109 53.988355 +10.987589 53.986889 +10.983482 53.985715 +10.979962 53.984835 +10.975855 53.983955 +10.972334 53.982488 +10.968521 53.981315 +10.964707 53.980142 +10.961774 53.978675 +10.957960 53.977501 +10.954733 53.975741 +10.951213 53.974861 +10.947986 53.973101 +10.945052 53.971634 +10.941532 53.969874 +10.938599 53.968407 +10.935665 53.966941 +10.932145 53.965180 +10.929211 53.963714 +10.925691 53.962540 +10.922464 53.960780 +10.918064 53.959900 +10.913957 53.959020 +10.909850 53.958140 +10.905449 53.957260 +10.903103 53.957553 +nan nan +11.427620 58.986528 +11.420286 58.989754 +11.417646 58.995035 +11.414713 59.000022 +11.410606 59.004422 +11.406499 59.008822 +11.402098 59.013223 +11.399458 59.018210 +11.396525 59.023197 +11.390951 59.027304 +11.385084 59.031117 +11.379510 59.034931 +11.376577 59.039918 +11.375403 59.045492 +11.374230 59.051066 +11.371296 59.056053 +11.368656 59.061333 +11.364256 59.065733 +11.359855 59.070134 +11.355748 59.074827 +11.353108 59.079814 +11.350175 59.084801 +11.344308 59.088615 +11.338734 59.092428 +11.331400 59.095949 +11.325533 59.099469 +11.315559 59.101522 +11.306758 59.099469 +11.297078 59.098002 +11.287104 59.096535 +11.276249 59.095949 +11.266275 59.094482 +11.257768 59.092135 +11.249261 59.090082 +11.241634 59.087148 +11.233126 59.085095 +11.223152 59.083628 +11.214352 59.081281 +11.204671 59.079814 +11.196164 59.077761 +11.187363 59.075414 +11.180029 59.072480 +11.173575 59.068960 +11.167122 59.065147 +11.163308 59.059866 +11.161548 59.053119 +11.157441 59.047545 +11.152454 59.043145 +11.146000 59.039331 +11.139840 59.034931 +11.133386 59.031117 +11.128105 59.026717 +11.124292 59.021437 +11.120185 59.016156 +11.117251 59.009996 +11.114318 59.004129 +11.114318 58.997675 +11.115491 58.992101 +11.124585 58.989461 +11.136319 58.989461 +11.148640 58.989461 +11.159494 58.990048 +11.171522 58.990048 +11.183256 58.988288 +11.183549 58.985061 +11.175042 58.982714 +11.166535 58.980660 +11.156561 58.979194 +11.149227 58.975967 +11.140426 58.973913 +11.131919 58.971566 +11.126052 58.969513 +11.127519 58.969220 +11.119892 58.966286 +11.113731 58.962472 +11.109624 58.957192 +11.108157 58.950445 +11.112264 58.946045 +11.116665 58.941644 +11.123999 58.938417 +11.132506 58.935484 +11.144240 58.934310 +11.153041 58.931670 +11.158908 58.927857 +11.167415 58.924923 +11.176509 58.922576 +11.186483 58.920229 +11.195284 58.917883 +11.196457 58.912016 +11.194697 58.905268 +11.194990 58.900281 +11.197924 58.895294 +11.200564 58.890307 +11.200271 58.884147 +11.198511 58.877106 +11.197044 58.870653 +11.195577 58.865079 +11.198217 58.860092 +11.202617 58.855691 +11.208191 58.851585 +11.211125 58.846598 +11.218752 58.844837 +11.224912 58.848651 +11.232246 58.845424 +11.231953 58.839264 +11.233420 58.833397 +11.233126 58.827236 +11.231366 58.820196 +11.231073 58.814035 +11.234006 58.809048 +11.236647 58.804061 +11.234886 58.797314 +11.229606 58.792914 +11.223739 58.789100 +11.218459 58.784406 +11.216992 58.779126 +11.219632 58.773846 +11.209951 58.772379 +11.201444 58.770325 +11.202911 58.764752 +11.207018 58.760351 +11.211418 58.755951 +11.210245 58.751844 +11.198511 58.753311 +11.187656 58.752724 +11.182376 58.748030 +11.183843 58.742457 +11.180029 58.737176 +11.177096 58.731016 +11.178269 58.725442 +11.179736 58.719868 +11.178269 58.714588 +11.181203 58.709308 +11.188243 58.706081 +11.195577 58.709308 +11.204084 58.711361 +11.216112 58.711068 +11.221979 58.707548 +11.223152 58.701680 +11.219045 58.696400 +11.214058 58.692000 +11.211418 58.685839 +11.211125 58.679679 +11.212298 58.674105 +11.219339 58.670878 +11.228139 58.668238 +11.236940 58.665598 +11.242514 58.661784 +11.248381 58.657677 +11.252488 58.653277 +11.255421 58.648290 +11.258061 58.643303 +11.260702 58.638316 +11.261875 58.632742 +11.261582 58.626288 +11.258942 58.620421 +11.256008 58.614554 +11.253368 58.608394 +11.253074 58.602233 +11.260408 58.599006 +11.268916 58.596073 +11.270089 58.590499 +11.265982 58.585219 +11.267449 58.579645 +11.277423 58.577592 +11.286223 58.574951 +11.287397 58.569378 +11.281236 58.565564 +11.273903 58.562630 +11.266275 58.559697 +11.257768 58.557643 +11.255128 58.551483 +11.252194 58.545323 +11.255128 58.540336 +11.256008 58.534762 +11.257475 58.529188 +11.257181 58.522734 +11.254541 58.516867 +11.248381 58.513054 +11.240754 58.510413 +11.235767 58.505426 +11.238700 58.500439 +11.244274 58.496626 +11.248381 58.492225 +11.249848 58.486652 +11.249554 58.480491 +11.258061 58.477851 +11.265395 58.474624 +11.273903 58.471984 +11.283290 58.473451 +11.290624 58.469930 +11.290330 58.463770 +11.286517 58.458490 +11.277716 58.456436 +11.269502 58.454089 +11.259822 58.452916 +11.253661 58.449102 +11.251901 58.442355 +11.254835 58.437368 +11.255715 58.431794 +11.257181 58.425927 +11.258355 58.420354 +11.253368 58.415953 +11.244567 58.417127 +11.240167 58.421527 +11.237527 58.426807 +11.229019 58.429154 +11.221392 58.426514 +11.218752 58.420354 +11.216992 58.413313 +11.212005 58.408913 +11.207018 58.404512 +11.202031 58.400112 +11.208778 58.396592 +11.216112 58.393365 +11.218752 58.388378 +11.218752 58.382218 +11.219925 58.376644 +11.222566 58.371657 +11.222566 58.365203 +11.220805 58.358749 +11.220512 58.352295 +11.221686 58.346722 +11.224326 58.341735 +11.228726 58.337334 +11.233713 58.335574 +11.237527 58.340855 +11.239287 58.347602 +11.241634 58.353175 +11.246914 58.357576 +11.254248 58.360216 +11.261288 58.363443 +11.266569 58.367843 +11.273903 58.370777 +11.282410 58.368136 +11.285343 58.363149 +11.286517 58.357576 +11.292091 58.353469 +11.299131 58.350242 +11.312332 58.349362 +11.319373 58.352589 +11.325826 58.356109 +11.330813 58.360803 +11.334627 58.365790 +11.337561 58.371950 +11.341667 58.377230 +11.345481 58.382511 +11.351642 58.386324 +11.358095 58.390138 +11.364256 58.393658 +11.370416 58.397472 +11.376577 58.400992 +11.382737 58.405099 +11.387724 58.409499 +11.394178 58.413020 +11.397992 58.418300 +11.404445 58.422114 +11.410606 58.425927 +11.415593 58.430328 +11.420873 58.434728 +11.427034 58.438542 +11.431727 58.441768 +11.426740 58.437368 +11.422633 58.432088 +11.417646 58.427394 +11.413539 58.422114 +11.410899 58.416247 +11.407672 58.410086 +11.402685 58.405686 +11.396525 58.401872 +11.390364 58.398059 +11.385377 58.393658 +11.379217 58.390138 +11.373936 58.385444 +11.367776 58.381631 +11.363962 58.376350 +11.360736 58.370483 +11.358095 58.364323 +11.355162 58.358456 +11.351348 58.353175 +11.346361 58.348482 +11.346068 58.342615 +11.349295 58.338508 +11.357802 58.336161 +11.366896 58.336161 +11.374230 58.338801 +11.379510 58.343495 +11.383324 58.348775 +11.387137 58.354055 +11.390071 58.359923 +11.392711 58.366083 +11.395938 58.372243 +11.399752 58.377524 +11.404739 58.381924 +11.412366 58.384858 +11.420286 58.385738 +11.424393 58.381337 +11.421753 58.375177 +11.419993 58.368430 +11.418526 58.363149 +11.421167 58.358162 +11.428207 58.354642 +11.435248 58.351415 +11.442581 58.348188 +11.449622 58.344961 +11.450795 58.339094 +11.448155 58.333227 +11.437301 58.332641 +11.428500 58.335281 +11.418526 58.337334 +11.407085 58.337628 +11.399458 58.334401 +11.393298 58.330880 +11.389484 58.325600 +11.386257 58.319440 +11.384791 58.312693 +11.386257 58.306825 +11.388604 58.301838 +11.395938 58.298905 +11.406499 58.299492 +11.412659 58.303012 +11.419993 58.306239 +11.427620 58.309172 +11.437008 58.310639 +11.447275 58.309759 +11.445808 58.304479 +11.439648 58.300665 +11.433487 58.296851 +11.427327 58.293038 +11.421167 58.289518 +11.415006 58.285411 +11.408552 58.281890 +11.404739 58.276610 +11.400925 58.271330 +11.399165 58.264582 +11.399165 58.259595 +11.406205 58.261355 +11.412366 58.264876 +11.419700 58.268103 +11.427034 58.271036 +11.435541 58.273090 +11.442875 58.276023 +11.451382 58.278370 +11.458716 58.281304 +11.464583 58.285117 +11.472210 58.288051 +11.475144 58.289811 +11.476610 58.289811 +11.481598 58.294211 +11.486585 58.298611 +11.493038 58.302425 +11.498025 58.306825 +11.503012 58.311519 +11.508293 58.315919 +11.513280 58.320320 +11.517093 58.325600 +11.522374 58.330000 +11.525307 58.336161 +11.529121 58.341441 +11.532054 58.347602 +11.533815 58.354055 +11.535575 58.361096 +11.537335 58.367843 +11.538802 58.374590 +11.542029 58.380751 +11.544669 58.386618 +11.548482 58.391898 +11.551709 58.398059 +11.553469 58.405099 +11.556110 58.410966 +11.558163 58.417713 +11.559630 58.424461 +11.559923 58.430914 +11.558750 58.436488 +11.556110 58.441475 +11.552003 58.445875 +11.547896 58.450276 +11.544962 58.455263 +11.545255 58.461717 +11.552883 58.459663 +11.556990 58.455263 +11.559630 58.449982 +11.562270 58.444995 +11.563737 58.439422 +11.566084 58.434435 +11.569017 58.429448 +11.571657 58.424461 +11.574298 58.419180 +11.578404 58.415073 +11.582511 58.410673 +11.585152 58.405392 +11.589552 58.400699 +11.593952 58.397765 +11.597472 58.401579 +11.602460 58.405979 +11.606566 58.411260 +11.610673 58.416540 +11.616834 58.420647 +11.622994 58.424167 +11.630622 58.427101 +11.638835 58.429154 +11.648516 58.430621 +11.658784 58.430034 +11.667584 58.427101 +11.673451 58.423287 +11.668171 58.418887 +11.658197 58.417420 +11.649983 58.415367 +11.641476 58.413020 +11.634142 58.410380 +11.627688 58.406273 +11.621528 58.402752 +11.616247 58.398352 +11.611260 58.393952 +11.615660 58.389551 +11.622408 58.386031 +11.618594 58.380751 +11.610967 58.378111 +11.603926 58.374884 +11.596299 58.371950 +11.590139 58.368430 +11.582805 58.365203 +11.577818 58.360803 +11.571364 58.357282 +11.567550 58.352002 +11.563737 58.346722 +11.559336 58.341441 +11.554349 58.337041 +11.549362 58.332641 +11.544082 58.327654 +11.539095 58.323253 +11.535281 58.317973 +11.530001 58.313573 +11.525014 58.309172 +11.519734 58.304772 +11.514747 58.300372 +11.511813 58.294211 +11.510346 58.287171 +11.510053 58.281010 +11.509760 58.275143 +11.505946 58.269863 +11.501546 58.264582 +11.497732 58.259302 +11.495092 58.253142 +11.491865 58.246981 +11.491865 58.240821 +11.495972 58.236420 +11.505946 58.234367 +11.515920 58.232313 +11.527361 58.230847 +11.536748 58.230847 +11.537041 58.237007 +11.534108 58.241994 +11.531761 58.246981 +11.528828 58.252262 +11.528241 58.255488 +11.534108 58.251675 +11.542615 58.249035 +11.551123 58.246394 +11.563150 58.246101 +11.572537 58.247568 +11.580751 58.249621 +11.588379 58.252848 +11.595419 58.255488 +11.601873 58.259302 +11.608033 58.263116 +11.613020 58.267516 +11.618301 58.271916 +11.623288 58.276610 +11.629741 58.280424 +11.637075 58.283357 +11.642062 58.287757 +11.647343 58.292158 +11.653210 58.295971 +11.662010 58.298025 +11.671398 58.299492 +11.683425 58.299492 +11.694866 58.299198 +11.704840 58.300665 +11.713054 58.302718 +11.720681 58.305945 +11.723322 58.311812 +11.720975 58.316799 +11.720975 58.322960 +11.723908 58.328827 +11.735936 58.328827 +11.744443 58.326187 +11.755884 58.324720 +11.765858 58.322373 +11.775832 58.320320 +11.787273 58.318853 +11.799300 58.318560 +11.808981 58.320026 +11.817195 58.322080 +11.823649 58.325893 +11.830689 58.328827 +11.837143 58.332641 +11.843303 58.336454 +11.850931 58.339094 +11.857971 58.342321 +11.867652 58.343495 +11.877919 58.342908 +11.882320 58.338214 +11.880266 58.331761 +11.874106 58.327654 +11.867652 58.324133 +11.860611 58.321200 +11.852984 58.318266 +11.844770 58.316213 +11.835970 58.313866 +11.826582 58.312399 +11.819248 58.309759 +11.810741 58.307412 +11.805461 58.303012 +11.805461 58.298025 +11.809861 58.293624 +11.810741 58.288051 +11.810448 58.281890 +11.807808 58.275730 +11.813381 58.271916 +11.820422 58.268689 +11.827169 58.265169 +11.831276 58.260769 +11.835676 58.256368 +11.839783 58.251968 +11.843597 58.247568 +11.846530 58.242581 +11.850637 58.238180 +11.851811 58.232607 +11.854158 58.227620 +11.853864 58.221166 +11.855038 58.215592 +11.860611 58.211779 +11.869119 58.213832 +11.878506 58.215299 +11.887307 58.212365 +11.885253 58.205912 +11.881440 58.200631 +11.876159 58.195937 +11.871172 58.191244 +11.859145 58.191537 +11.847410 58.191831 +11.840077 58.188897 +11.835090 58.184497 +11.835970 58.178923 +11.837143 58.173056 +11.838316 58.167482 +11.838023 58.161322 +11.837730 58.154868 +11.835970 58.148414 +11.835970 58.142254 +11.833916 58.135213 +11.832156 58.128466 +11.830396 58.121719 +11.828636 58.114972 +11.825702 58.108811 +11.821302 58.102944 +11.814261 58.100011 +11.804581 58.098544 +11.797247 58.095904 +11.797540 58.090917 +11.798714 58.085343 +11.794313 58.080062 +11.789326 58.075662 +11.785513 58.070382 +11.780232 58.065688 +11.777592 58.059821 +11.777299 58.053661 +11.785513 58.050727 +11.794313 58.048087 +11.799594 58.044273 +11.800767 58.038700 +11.801941 58.033126 +11.801647 58.026672 +11.799594 58.019925 +11.798127 58.013471 +11.796367 58.006431 +11.792260 58.001150 +11.790500 57.994403 +11.789033 57.987362 +11.785806 57.981789 +11.781992 57.976508 +11.778179 57.971228 +11.770552 57.968001 +11.763218 57.965361 +11.756177 57.962134 +11.748843 57.959494 +11.742390 57.955680 +11.736522 57.951867 +11.732416 57.946586 +11.731242 57.941012 +11.732122 57.935439 +11.739163 57.932212 +11.747670 57.929865 +11.756177 57.926931 +11.762924 57.923705 +11.764098 57.918131 +11.757057 57.914904 +11.747083 57.913144 +11.743270 57.907863 +11.750310 57.904343 +11.758524 57.901703 +11.757644 57.897889 +11.749137 57.895543 +11.741803 57.892902 +11.731535 57.892022 +11.721855 57.890556 +11.712467 57.889089 +11.703080 57.887915 +11.694866 57.885569 +11.688706 57.882048 +11.688412 57.875888 +11.692226 57.871488 +11.700440 57.868554 +11.707774 57.865327 +11.706307 57.860047 +11.700147 57.856233 +11.691639 57.853886 +11.682252 57.852713 +11.674918 57.849779 +11.668758 57.845966 +11.662891 57.842152 +11.659957 57.836285 +11.669638 57.834231 +11.675798 57.837752 +11.684305 57.840099 +11.693399 57.840099 +11.689586 57.834818 +11.688119 57.829538 +11.693693 57.825431 +11.703373 57.823377 +11.708947 57.819564 +11.713054 57.814870 +11.718628 57.811057 +11.723908 57.807243 +11.726548 57.802256 +11.729189 57.797269 +11.731829 57.792282 +11.735936 57.787882 +11.744150 57.784948 +11.754417 57.784361 +11.762924 57.786708 +11.773192 57.787295 +11.782872 57.788468 +11.795487 57.787588 +11.806928 57.786121 +11.812208 57.782308 +11.810741 57.776734 +11.802527 57.774681 +11.794313 57.772627 +11.789033 57.767933 +11.789033 57.762946 +11.790206 57.757373 +11.784046 57.753852 +11.777005 57.750919 +11.769672 57.747985 +11.762631 57.745052 +11.755297 57.741825 +11.747083 57.740065 +11.739749 57.736838 +11.731535 57.734784 +11.723028 57.732731 +11.716868 57.728917 +11.713054 57.723637 +11.707774 57.719237 +11.700440 57.716303 +11.700147 57.715130 +11.701320 57.709556 +11.702787 57.703689 +11.699853 57.697822 +11.705134 57.694008 +11.714814 57.695182 +11.726255 57.694888 +11.734762 57.692248 +11.741803 57.689021 +11.750897 57.689021 +11.751777 57.693128 +11.749137 57.698408 +11.746790 57.703395 +11.748257 57.710143 +11.756764 57.712196 +11.767911 57.710436 +11.780526 57.709849 +11.787566 57.706329 +11.791673 57.701929 +11.794313 57.696942 +11.799594 57.693128 +11.810741 57.691661 +11.821302 57.692248 +11.829809 57.694301 +11.840370 57.694888 +11.850344 57.692835 +11.860025 57.690781 +11.872639 57.689608 +11.874399 57.686968 +11.865012 57.685501 +11.857678 57.682567 +11.849464 57.680514 +11.840077 57.679047 +11.832743 57.676113 +11.827756 57.671713 +11.827756 57.667019 +11.830689 57.661739 +11.834503 57.657339 +11.836850 57.652352 +11.842423 57.648245 +11.847997 57.644431 +11.853278 57.640618 +11.858851 57.636804 +11.864425 57.632990 +11.865598 57.627123 +11.865305 57.621256 +11.863252 57.614509 +11.862958 57.608055 +11.865598 57.603068 +11.875572 57.600721 +11.884960 57.602188 +11.891120 57.606002 +11.893760 57.611869 +11.895521 57.618909 +11.898747 57.625070 +11.907255 57.623603 +11.911068 57.619203 +11.914002 57.614216 +11.913415 57.607762 +11.913122 57.601601 +11.910188 57.595441 +11.908722 57.588987 +11.909602 57.583120 +11.912242 57.578133 +11.917522 57.574026 +11.921629 57.569626 +11.922803 57.564052 +11.917815 57.559652 +11.912828 57.555251 +11.908722 57.549971 +11.909602 57.544397 +11.914002 57.539997 +11.916349 57.535010 +11.913709 57.528850 +11.908722 57.524449 +11.903441 57.520049 +11.907548 57.515649 +11.917229 57.513302 +11.926909 57.511248 +11.932483 57.507435 +11.927496 57.502741 +11.920162 57.500101 +11.913122 57.496874 +11.920162 57.495114 +11.930136 57.494527 +11.941284 57.492767 +11.945684 57.488367 +11.939524 57.484846 +11.931016 57.482500 +11.922803 57.480153 +11.919869 57.474579 +11.914002 57.470472 +11.909895 57.465192 +11.912535 57.460205 +11.913709 57.454631 +11.908722 57.450231 +11.904615 57.444950 +11.905788 57.439376 +11.905201 57.433216 +11.902561 57.427349 +11.904908 57.422362 +11.913415 57.419428 +11.914589 57.417962 +11.914589 57.418548 +11.917229 57.414441 +11.919869 57.409161 +11.918109 57.402414 +11.915175 57.396253 +11.910188 57.391853 +11.904028 57.388333 +11.910775 57.385106 +11.921336 57.385693 +11.930430 57.386866 +11.939817 57.386866 +11.945097 57.383052 +11.943337 57.376305 +11.939524 57.371025 +11.938937 57.369265 +11.935417 57.365745 +11.931603 57.360464 +11.932777 57.354890 +11.936590 57.350490 +11.945391 57.349023 +11.950378 57.353717 +11.954191 57.358997 +11.959178 57.363398 +11.969739 57.363984 +11.976486 57.360758 +11.978833 57.355770 +11.978540 57.349317 +11.979713 57.343743 +11.987047 57.341983 +11.989687 57.348143 +11.991741 57.354597 +11.992034 57.360758 +11.992328 57.367211 +11.992621 57.373372 +11.991447 57.378945 +11.992034 57.385399 +11.995848 57.390386 +12.000000 57.394294 +nan nan +9.986180 64.000000 +9.985490 63.996727 +9.981970 63.990567 +9.976103 63.986166 +9.970236 63.981473 +9.963195 63.977659 +9.956155 63.973846 +9.948527 63.970032 +9.941487 63.966218 +9.935620 63.961525 +9.934446 63.956244 +9.944421 63.953604 +9.957328 63.954484 +9.964369 63.956831 +9.973169 63.960058 +9.981383 63.962991 +9.991944 63.965338 +10.003091 63.966805 +10.014826 63.968272 +10.023039 63.971499 +10.031840 63.974432 +10.040641 63.977366 +10.049441 63.980593 +10.059415 63.982646 +10.068216 63.980886 +10.066456 63.974139 +10.065283 63.968565 +10.078190 63.969445 +10.086404 63.972379 +10.094031 63.976192 +10.101072 63.980006 +10.108699 63.983820 +10.119846 63.985286 +10.125127 63.980886 +10.119260 63.976486 +10.112219 63.972379 +10.104592 63.968565 +10.097551 63.965045 +10.089924 63.961231 +10.084057 63.956538 +10.075843 63.953604 +10.065283 63.951257 +10.055308 63.948910 +10.044161 63.947444 +10.034187 63.945390 +10.024213 63.942750 +10.012479 63.941283 +10.001331 63.939816 +9.990770 63.937470 +9.979623 63.936003 +9.969649 63.933656 +9.959675 63.931309 +9.952048 63.926909 +9.946181 63.922215 +9.945007 63.916935 +9.957328 63.914881 +9.968476 63.916348 +9.978450 63.918695 +9.985490 63.922509 +9.994291 63.925442 +10.004852 63.927789 +10.020106 63.927202 +10.032427 63.926322 +10.045334 63.927202 +10.054135 63.930136 +10.061176 63.934243 +10.067043 63.938643 +10.075843 63.941577 +10.085817 63.944217 +10.095791 63.946270 +10.105765 63.948617 +10.114566 63.951551 +10.121607 63.955658 +10.130407 63.958298 +10.142141 63.960058 +10.153876 63.958004 +10.166196 63.956244 +10.173237 63.952137 +10.174997 63.946564 +10.180277 63.942163 +10.188491 63.938936 +10.195532 63.935416 +10.189665 63.930429 +10.176757 63.930136 +10.167957 63.933069 +10.161503 63.936883 +10.150942 63.939523 +10.136861 63.939523 +10.126887 63.937176 +10.118086 63.934243 +10.109286 63.931016 +10.100485 63.928082 +10.092271 63.924855 +10.084644 63.921042 +10.076430 63.918402 +10.062936 63.917522 +10.050615 63.916641 +10.037707 63.915761 +10.025973 63.914588 +10.015999 63.911948 +10.006025 63.909601 +9.997811 63.906667 +9.989010 63.903734 +9.980210 63.900507 +9.971996 63.897573 +9.964369 63.893760 +9.956155 63.890826 +9.947354 63.887893 +9.938553 63.884372 +9.931513 63.880852 +9.922712 63.877919 +9.910978 63.876159 +9.902764 63.879385 +9.908631 63.883786 +9.915672 63.887893 +9.918605 63.893760 +9.911565 63.897867 +9.896310 63.898453 +9.887510 63.895227 +9.880469 63.891413 +9.871669 63.888479 +9.861695 63.886133 +9.850547 63.884666 +9.837640 63.883786 +9.824732 63.883199 +9.811824 63.882319 +9.800677 63.880852 +9.791876 63.877919 +9.798917 63.873812 +9.811238 63.872052 +9.820038 63.868531 +9.825319 63.864424 +9.839400 63.864424 +9.848200 63.867358 +9.859348 63.868825 +9.871082 63.867065 +9.873429 63.861491 +9.864628 63.858264 +9.852894 63.856797 +9.840573 63.856210 +9.826492 63.855917 +9.811824 63.855917 +9.803610 63.852690 +9.795983 63.849170 +9.788943 63.845356 +9.781902 63.841249 +9.774862 63.837436 +9.766061 63.834502 +9.756087 63.832155 +9.746113 63.830102 +9.734379 63.828342 +9.723231 63.826875 +9.712084 63.825408 +9.700936 63.823648 +9.690962 63.821301 +9.680402 63.819248 +9.672188 63.816021 +9.662214 63.813674 +9.652240 63.811327 +9.639332 63.810447 +9.631118 63.807514 +9.622317 63.804580 +9.616450 63.799886 +9.610583 63.795193 +9.601783 63.792259 +9.592395 63.789912 +9.582421 63.787566 +9.575381 63.783752 +9.569514 63.779058 +9.560713 63.776125 +9.553672 63.772311 +9.546632 63.768497 +9.543698 63.763510 +9.548979 63.759403 +9.557779 63.756177 +9.571274 63.755003 +9.585355 63.753536 +9.599436 63.753536 +9.612343 63.754416 +9.623491 63.755883 +9.633465 63.758230 +9.644612 63.759697 +9.655760 63.761457 +9.667494 63.762924 +9.678641 63.764391 +9.688615 63.766737 +9.700350 63.768204 +9.711497 63.769964 +9.723818 63.770844 +9.737899 63.770844 +9.750807 63.771724 +9.764888 63.771724 +9.778969 63.770258 +9.777795 63.766151 +9.766648 63.764391 +9.754914 63.762924 +9.743766 63.761457 +9.730859 63.760577 +9.719711 63.759110 +9.706803 63.758230 +9.695656 63.756763 +9.685682 63.754416 +9.676881 63.751483 +9.668667 63.748256 +9.661627 63.744442 +9.652826 63.741509 +9.645786 63.737402 +9.635812 63.735348 +9.624664 63.733588 +9.612930 63.732122 +9.600609 63.731535 +9.589462 63.729775 +9.577728 63.728308 +9.567753 63.725961 +9.557779 63.723614 +9.550739 63.719801 +9.554846 63.715987 +9.563647 63.713053 +9.568340 63.708653 +9.571860 63.703666 +9.570687 63.696626 +9.565993 63.691345 +9.560126 63.686652 +9.554846 63.682251 +9.548979 63.677558 +9.541938 63.673744 +9.539005 63.667877 +9.539005 63.662890 +9.547805 63.659663 +9.560126 63.659076 +9.570100 63.661423 +9.577141 63.665237 +9.584181 63.669050 +9.591809 63.672864 +9.601783 63.675211 +9.611757 63.677558 +9.622904 63.679024 +9.634052 63.680491 +9.641092 63.684305 +9.644026 63.690465 +9.648719 63.695746 +9.656933 63.698972 +9.668667 63.700439 +9.683922 63.699853 +9.696243 63.699266 +9.708564 63.698679 +9.721471 63.699559 +9.732619 63.701026 +9.742593 63.703373 +9.752567 63.705426 +9.760781 63.708653 +9.769581 63.711587 +9.779555 63.714227 +9.789529 63.716280 +9.800677 63.718041 +9.810651 63.718921 +9.821212 63.718921 +9.837053 63.718334 +9.848200 63.719801 +9.855241 63.723614 +9.861108 63.728308 +9.861695 63.729775 +9.862868 63.729481 +9.869908 63.731828 +9.875189 63.735348 +9.882816 63.738869 +9.889857 63.742682 +9.896897 63.746789 +9.905698 63.749723 +9.913912 63.752656 +9.923886 63.755003 +9.935620 63.756763 +9.947941 63.757350 +9.959675 63.758817 +9.969062 63.761164 +9.979036 63.763217 +9.989010 63.765857 +9.997811 63.768791 +10.004852 63.772604 +10.013652 63.775538 +10.022453 63.778472 +10.032427 63.781112 +10.041227 63.780525 +10.040054 63.773485 +10.034187 63.769084 +10.028320 63.764391 +10.020693 63.760870 +10.012479 63.757643 +10.006612 63.752950 +10.001918 63.747669 +10.002505 63.742976 +10.014826 63.740922 +10.024800 63.743269 +10.033014 63.746496 +10.041814 63.749429 +10.048855 63.752950 +10.057655 63.756177 +10.066456 63.759110 +10.075843 63.761750 +10.085817 63.763804 +10.098138 63.762044 +10.096965 63.756470 +10.088164 63.753243 +10.079364 63.750310 +10.071150 63.747083 +10.063522 63.743269 +10.055308 63.740335 +10.046508 63.737109 +10.036534 63.735055 +10.027733 63.731828 +10.020693 63.728308 +10.011892 63.724494 +10.004852 63.720681 +9.994877 63.718334 +9.983730 63.716867 +9.970822 63.715987 +9.957915 63.715400 +9.945594 63.714520 +9.935620 63.712173 +9.926819 63.709240 +9.920952 63.704840 +9.915085 63.700146 +9.903938 63.698679 +9.892790 63.696919 +9.882816 63.694866 +9.872842 63.692519 +9.862868 63.689878 +9.851721 63.688705 +9.835879 63.689292 +9.822385 63.690465 +9.808304 63.690465 +9.800677 63.686652 +9.801264 63.681958 +9.804784 63.676971 +9.800677 63.671691 +9.791876 63.668757 +9.788943 63.662597 +9.799503 63.659663 +9.809477 63.657316 +9.816518 63.653209 +9.827079 63.650862 +9.835293 63.647635 +9.831186 63.642355 +9.825319 63.637661 +9.815345 63.635608 +9.809477 63.630914 +9.806544 63.624754 +9.810064 63.619767 +9.816518 63.616247 +9.820625 63.610966 +9.825319 63.606566 +9.830599 63.602166 +9.837640 63.598352 +9.846440 63.595418 +9.854654 63.591898 +9.868735 63.590431 +9.881056 63.591311 +9.895137 63.591311 +9.903938 63.588378 +9.899244 63.583098 +9.892203 63.579284 +9.887510 63.574004 +9.891030 63.569016 +9.898071 63.564910 +9.901591 63.559923 +9.905111 63.554935 +9.903351 63.548188 +9.903351 63.542028 +9.903351 63.535574 +9.903351 63.529414 +9.905111 63.523840 +9.908631 63.518853 +9.912152 63.513866 +9.916845 63.509466 +9.915672 63.510052 +9.919779 63.506532 +9.927993 63.503305 +9.942074 63.501838 +9.955568 63.500665 +9.963782 63.497438 +9.970822 63.493624 +9.977863 63.489811 +9.987250 63.490691 +9.994291 63.494504 +10.005438 63.495971 +10.019519 63.495971 +10.033600 63.495971 +10.047681 63.495971 +10.058829 63.497438 +10.069976 63.499198 +10.081124 63.500665 +10.092858 63.502132 +10.101072 63.505359 +10.109286 63.508292 +10.116913 63.511812 +10.123953 63.515919 +10.132167 63.518853 +10.142141 63.521200 +10.152115 63.523253 +10.162089 63.525893 +10.172064 63.527947 +10.180864 63.531174 +10.187905 63.534987 +10.193772 63.539388 +10.200812 63.543201 +10.207853 63.547015 +10.216653 63.549948 +10.224867 63.553175 +10.236015 63.554642 +10.245989 63.556989 +10.258896 63.557576 +10.274151 63.556989 +10.289405 63.556109 +10.305246 63.555229 +10.314634 63.557576 +10.323434 63.560509 +10.332235 63.563736 +10.340449 63.566670 +10.350423 63.569016 +10.363331 63.569603 +10.377412 63.569603 +10.392666 63.569016 +10.403813 63.570190 +10.412614 63.573417 +10.421415 63.576350 +10.428455 63.580164 +10.436669 63.583098 +10.445470 63.586031 +10.454270 63.589258 +10.464244 63.591311 +10.472458 63.594538 +10.481259 63.597472 +10.490060 63.600699 +10.497100 63.604512 +10.507074 63.606566 +10.517048 63.608913 +10.527022 63.610966 +10.536996 63.613313 +10.546970 63.615660 +10.554011 63.619473 +10.561051 63.622994 +10.569852 63.626221 +10.579826 63.628274 +10.588627 63.631501 +10.598601 63.633554 +10.608575 63.635901 +10.615615 63.639715 +10.622656 63.643529 +10.627350 63.648809 +10.629110 63.655556 +10.631456 63.662597 +10.633803 63.667290 +10.641431 63.671104 +10.651405 63.673451 +10.661379 63.675504 +10.671353 63.677851 +10.682500 63.679024 +10.694234 63.680491 +10.705382 63.682251 +10.716529 63.683718 +10.728263 63.684891 +10.738237 63.687238 +10.748212 63.689585 +10.757012 63.692519 +10.765226 63.695452 +10.772853 63.699559 +10.781654 63.702493 +10.789868 63.705133 +10.798668 63.708360 +10.807469 63.711293 +10.817443 63.713640 +10.827417 63.715694 +10.837391 63.718041 +10.847365 63.720387 +10.858513 63.721561 +10.870247 63.723321 +10.880221 63.725668 +10.891955 63.726841 +10.903103 63.728308 +10.914837 63.729775 +10.924811 63.731828 +10.933025 63.735055 +10.941825 63.737989 +10.946519 63.743269 +10.951213 63.748549 +10.955906 63.753830 +10.961774 63.758523 +10.968814 63.762337 +10.976441 63.765857 +10.983482 63.769671 +10.987002 63.775831 +10.985242 63.781405 +10.984068 63.786979 +10.988175 63.792259 +10.994629 63.796953 +11.000496 63.801353 +11.008124 63.805167 +11.015164 63.808980 +11.022791 63.812794 +11.031592 63.815434 +11.038632 63.819541 +11.047433 63.822475 +11.056234 63.825408 +11.063274 63.829222 +11.070901 63.833035 +11.077355 63.837436 +11.072075 63.841836 +11.065034 63.845943 +11.058580 63.849757 +11.051540 63.853277 +11.046260 63.857971 +11.043326 63.862958 +11.038046 63.867358 +11.033352 63.872052 +11.026311 63.875572 +11.014577 63.877919 +11.000496 63.879092 +10.988762 63.881439 +10.976441 63.883199 +10.962947 63.884666 +10.952386 63.887599 +10.941825 63.889946 +10.930091 63.892000 +10.918357 63.894053 +10.904276 63.894053 +10.892542 63.892880 +10.883741 63.889653 +10.876701 63.886133 +10.867900 63.883199 +10.860273 63.879092 +10.851472 63.876159 +10.844432 63.872638 +10.836805 63.868531 +10.829764 63.865011 +10.822137 63.861197 +10.815096 63.857384 +10.806296 63.854450 +10.795735 63.852103 +10.785761 63.850050 +10.775787 63.847703 +10.763466 63.846823 +10.751732 63.845650 +10.737651 63.845650 +10.726503 63.844183 +10.714769 63.842423 +10.704795 63.840369 +10.695994 63.837436 +10.688954 63.833622 +10.681327 63.829809 +10.674286 63.825995 +10.664312 63.823941 +10.655512 63.820715 +10.647884 63.816901 +10.639084 63.814261 +10.629110 63.811621 +10.619136 63.809567 +10.609162 63.807220 +10.599188 63.804873 +10.589213 63.802820 +10.576306 63.801940 +10.573959 63.804873 +10.579826 63.809567 +10.588627 63.812501 +10.597427 63.815434 +10.604468 63.819248 +10.613269 63.822181 +10.622069 63.825408 +10.630870 63.828342 +10.639084 63.831275 +10.647884 63.834502 +10.654925 63.838022 +10.662552 63.841836 +10.669593 63.845650 +10.677220 63.849463 +10.684847 63.853277 +10.693061 63.856504 +10.701862 63.859144 +10.711836 63.861491 +10.721810 63.863838 +10.731784 63.866184 +10.741758 63.867065 +10.752905 63.868238 +10.764639 63.869705 +10.774613 63.872052 +10.786348 63.873518 +10.796322 63.875865 +10.806296 63.877919 +10.815096 63.881146 +10.823897 63.883786 +10.832698 63.887013 +10.841498 63.889946 +10.848539 63.893760 +10.857339 63.896693 +10.867313 63.898747 +10.877874 63.901094 +10.887848 63.903440 +10.897822 63.905494 +10.904863 63.909308 +10.912490 63.913121 +10.918357 63.917815 +10.923051 63.923095 +10.930678 63.926615 +10.937718 63.930429 +10.945346 63.934536 +10.954146 63.937176 +10.962360 63.940403 +10.971748 63.943337 +10.979962 63.946270 +10.988762 63.949204 +10.998149 63.952137 +11.006363 63.955364 +11.016337 63.957418 +11.025138 63.960645 +11.034525 63.963285 +11.042739 63.966512 +11.051540 63.969445 +11.061514 63.971792 +11.072075 63.973846 +11.082049 63.976192 +11.092610 63.978246 +11.103757 63.979713 +11.113731 63.982059 +11.124292 63.984113 +11.130159 63.988513 +11.137786 63.992620 +11.146000 63.995260 +11.155387 63.998194 +11.158483 64.000000 +nan nan +11.482863 64.000000 +11.482184 63.999661 +11.473384 63.997021 +11.462823 63.994674 +11.454022 63.991740 +11.448155 63.987340 +11.441701 63.982646 +11.435834 63.978246 +11.424100 63.976779 +11.411779 63.976192 +11.397111 63.976486 +11.383030 63.976486 +11.368949 63.976486 +11.357215 63.975019 +11.347241 63.972672 +11.338441 63.970032 +11.329640 63.966805 +11.320839 63.963872 +11.312039 63.961231 +11.302065 63.958884 +11.289157 63.958004 +11.276836 63.960351 +11.264515 63.960938 +11.258648 63.956244 +11.252194 63.951844 +11.246327 63.947444 +11.238700 63.943630 +11.229899 63.940697 +11.221099 63.937763 +11.213472 63.933949 +11.208778 63.928669 +11.205844 63.922509 +11.201151 63.917228 +11.194697 63.912828 +11.186483 63.909601 +11.174749 63.908428 +11.161841 63.907841 +11.148934 63.906961 +11.143067 63.902560 +11.134266 63.899334 +11.125465 63.896693 +11.113731 63.895227 +11.102584 63.893466 +11.096717 63.889066 +11.092023 63.883786 +11.090263 63.878212 +11.093196 63.873225 +11.096717 63.868238 +11.096717 63.862078 +11.096717 63.855917 +11.099650 63.850930 +11.106691 63.846823 +11.114905 63.843596 +11.130159 63.842716 +11.143067 63.843596 +11.153627 63.845650 +11.164775 63.847116 +11.176509 63.848583 +11.187656 63.850050 +11.197630 63.852103 +11.206431 63.855330 +11.215232 63.857971 +11.224032 63.861197 +11.234006 63.863251 +11.242807 63.866478 +11.254541 63.867651 +11.266862 63.868238 +11.282703 63.867358 +11.295024 63.865598 +11.301478 63.861784 +11.306758 63.857091 +11.311452 63.852690 +11.319666 63.849463 +11.331987 63.847116 +11.344308 63.845356 +11.356042 63.843009 +11.368363 63.842423 +11.381270 63.843009 +11.392418 63.844476 +11.404152 63.845943 +11.415299 63.846236 +11.425273 63.843303 +11.432314 63.839489 +11.437008 63.835089 +11.437008 63.830102 +11.429380 63.826288 +11.424687 63.821008 +11.428207 63.817488 +11.442288 63.815728 +11.452849 63.813381 +11.459303 63.809567 +11.462236 63.804580 +11.462236 63.798126 +11.461649 63.791966 +11.455782 63.787272 +11.444048 63.785805 +11.432901 63.784339 +11.421753 63.783165 +11.408846 63.782578 +11.397111 63.781112 +11.383030 63.781112 +11.368949 63.781405 +11.356042 63.780525 +11.344894 63.779058 +11.337267 63.775538 +11.327293 63.773191 +11.316146 63.771724 +11.300304 63.772898 +11.285050 63.773485 +11.273316 63.772311 +11.263342 63.769964 +11.253368 63.767911 +11.244567 63.764684 +11.237527 63.761164 +11.228726 63.757937 +11.225206 63.752070 +11.221686 63.745909 +11.221686 63.739749 +11.218752 63.733588 +11.211125 63.730068 +11.203498 63.726254 +11.197630 63.721561 +11.191763 63.717160 +11.182963 63.714227 +11.174162 63.711000 +11.165361 63.708360 +11.155387 63.705720 +11.142480 63.705133 +11.127225 63.706013 +11.113144 63.706306 +11.101997 63.704840 +11.093196 63.701906 +11.084396 63.698972 +11.070901 63.700146 +11.065621 63.704840 +11.060927 63.709240 +11.052127 63.712467 +11.036872 63.713347 +11.028072 63.710413 +11.020444 63.706600 +11.009297 63.705133 +10.998149 63.703666 +10.984068 63.703960 +10.972921 63.702199 +10.968814 63.701026 +10.958840 63.698972 +10.950626 63.695746 +10.941825 63.692812 +10.933025 63.689878 +10.924224 63.686945 +10.917184 63.683131 +10.910143 63.679318 +10.902516 63.675504 +10.894889 63.671984 +10.887848 63.668170 +10.880221 63.664357 +10.874354 63.659663 +10.867313 63.656143 +10.861446 63.651449 +10.856753 63.646169 +10.849125 63.642355 +10.842085 63.638541 +10.833284 63.635901 +10.823310 63.633261 +10.815096 63.630621 +10.805122 63.628274 +10.793388 63.626807 +10.782241 63.625341 +10.772267 63.622994 +10.761119 63.621527 +10.751145 63.619473 +10.742344 63.616247 +10.734717 63.612433 +10.727677 63.608913 +10.720636 63.605099 +10.715943 63.599819 +10.712422 63.593658 +10.712422 63.587498 +10.707729 63.582217 +10.700688 63.578404 +10.691887 63.575177 +10.686020 63.570777 +10.684847 63.565203 +10.683087 63.559629 +10.674286 63.556696 +10.666072 63.553762 +10.659032 63.549948 +10.657272 63.544375 +10.669006 63.542615 +10.678980 63.544668 +10.687781 63.547895 +10.695408 63.551709 +10.702448 63.555229 +10.711249 63.558456 +10.718289 63.562269 +10.727090 63.564910 +10.735304 63.568136 +10.745278 63.570190 +10.758186 63.571070 +10.769333 63.572537 +10.780481 63.574004 +10.790455 63.576057 +10.800429 63.578697 +10.808056 63.582217 +10.816270 63.585151 +10.826244 63.587498 +10.836805 63.589845 +10.846192 63.591898 +10.856166 63.594245 +10.864967 63.597179 +10.873767 63.600405 +10.883741 63.602459 +10.897822 63.602166 +10.911317 63.600699 +10.921291 63.598352 +10.920117 63.592778 +10.915424 63.587498 +10.910730 63.582217 +10.903689 63.578404 +10.891955 63.576937 +10.878461 63.576937 +10.865553 63.576350 +10.855579 63.574297 +10.852646 63.568136 +10.856166 63.564323 +10.864380 63.561096 +10.877874 63.559629 +10.889022 63.559629 +10.901343 63.560509 +10.914250 63.561096 +10.922464 63.557869 +10.920117 63.553175 +10.912490 63.549362 +10.901343 63.548188 +10.889608 63.546428 +10.877287 63.545841 +10.864380 63.544961 +10.852059 63.544375 +10.839151 63.543495 +10.826244 63.543201 +10.813923 63.542321 +10.802775 63.540854 +10.792801 63.538508 +10.784001 63.535574 +10.776960 63.532054 +10.771093 63.527360 +10.765226 63.522666 +10.761706 63.516799 +10.759946 63.509759 +10.759946 63.503598 +10.763466 63.498611 +10.764639 63.493038 +10.769333 63.488637 +10.774613 63.484237 +10.781654 63.480423 +10.793388 63.478370 +10.805122 63.476023 +10.818617 63.474850 +10.833871 63.473970 +10.833871 63.473970 +10.845018 63.473970 +10.860273 63.473090 +10.873767 63.471623 +10.885501 63.469863 +10.896062 63.466929 +10.906036 63.464582 +10.914837 63.461062 +10.916010 63.455488 +10.910143 63.451088 +10.900169 63.449035 +10.889022 63.447274 +10.877874 63.445808 +10.866140 63.444341 +10.853819 63.443754 +10.841498 63.443167 +10.829764 63.441407 +10.823897 63.437007 +10.819203 63.431727 +10.815096 63.426446 +10.810403 63.421166 +10.804536 63.416766 +10.793388 63.415005 +10.782827 63.417646 +10.778134 63.422339 +10.772853 63.426740 +10.766400 63.430260 +10.758186 63.433487 +10.747625 63.436420 +10.737651 63.438767 +10.725917 63.440821 +10.713596 63.443167 +10.700101 63.444341 +10.684847 63.445221 +10.686607 63.445221 +10.677220 63.445514 +10.663725 63.445808 +10.650818 63.444928 +10.640844 63.442874 +10.629696 63.441407 +10.619722 63.438767 +10.609748 63.436714 +10.599774 63.434367 +10.588627 63.433193 +10.577479 63.431727 +10.564572 63.430847 +10.550491 63.430847 +10.537583 63.432313 +10.525262 63.434073 +10.517048 63.437594 +10.508248 63.440821 +10.500034 63.443754 +10.491233 63.447274 +10.483019 63.450208 +10.471285 63.452555 +10.455444 63.453435 +10.443123 63.452555 +10.433149 63.450208 +10.423175 63.448154 +10.414961 63.444928 +10.406160 63.441994 +10.397946 63.438767 +10.386799 63.437594 +10.372718 63.437594 +10.363917 63.439060 +10.356877 63.443167 +10.351596 63.447568 +10.345143 63.451381 +10.338689 63.454902 +10.329888 63.458422 +10.319327 63.460769 +10.308180 63.463116 +10.292339 63.463702 +10.278258 63.463702 +10.267110 63.462235 +10.257136 63.459889 +10.245989 63.458422 +10.236015 63.456075 +10.226041 63.454022 +10.216653 63.451675 +10.204919 63.449915 +10.192598 63.449328 +10.181451 63.447861 +10.170303 63.446394 +10.157396 63.445514 +10.146248 63.444048 +10.136274 63.441701 +10.125127 63.440234 +10.115153 63.438180 +10.105179 63.435834 +10.095791 63.433193 +10.086991 63.430260 +10.078777 63.427326 +10.071736 63.423513 +10.064109 63.419699 +10.058242 63.415005 +10.052962 63.410605 +10.047095 63.406205 +10.044161 63.400044 +10.041227 63.393884 +10.041227 63.387430 +10.042401 63.381856 +10.045921 63.376869 +10.051202 63.372469 +10.057655 63.368655 +10.066456 63.364842 +10.074670 63.361615 +10.083470 63.358388 +10.093445 63.355748 +10.101658 63.352814 +10.112219 63.349881 +10.122193 63.347534 +10.135688 63.346067 +10.150942 63.345187 +10.164436 63.344014 +10.178517 63.344014 +10.192598 63.344014 +10.207853 63.343427 +10.221347 63.343427 +10.234841 63.341960 +10.247162 63.339613 +10.257136 63.337267 +10.264177 63.333453 +10.267110 63.328466 +10.272391 63.323772 +10.277084 63.319372 +10.278845 63.313798 +10.275911 63.307638 +10.272977 63.301771 +10.271217 63.295023 +10.271217 63.288570 +10.272977 63.282996 +10.274738 63.277422 +10.272391 63.270675 +10.268284 63.265395 +10.262417 63.260701 +10.256550 63.260994 +10.259483 63.267155 +10.259483 63.273315 +10.257723 63.278889 +10.255963 63.284463 +10.254789 63.290330 +10.254789 63.296490 +10.255963 63.303237 +10.258310 63.310278 +10.258310 63.316438 +10.254789 63.321425 +10.245989 63.324652 +10.234841 63.326706 +10.221934 63.325826 +10.210786 63.324359 +10.199639 63.322892 +10.188491 63.321425 +10.178517 63.319079 +10.164436 63.319079 +10.152115 63.319665 +10.138621 63.321132 +10.126887 63.323186 +10.115153 63.324946 +10.104592 63.327586 +10.093445 63.329346 +10.082884 63.332279 +10.072910 63.334626 +10.064109 63.337853 +10.055895 63.341080 +10.047095 63.344307 +10.040641 63.348121 +10.031840 63.351348 +10.023626 63.354574 +10.013652 63.357215 +9.999571 63.358388 +9.987250 63.357801 +9.976103 63.356041 +9.966129 63.353988 +9.956155 63.351641 +9.947941 63.348707 +9.937967 63.346067 +9.929753 63.343134 +9.919779 63.340787 +9.910978 63.337853 +9.902764 63.334626 +9.894550 63.331693 +9.885750 63.328466 +9.876362 63.326412 +9.867562 63.323479 +9.858174 63.320839 +9.845267 63.320252 +9.836466 63.322012 +9.836466 63.328466 +9.842333 63.332866 +9.850547 63.335800 +9.858761 63.339027 +9.867562 63.341960 +9.875776 63.344894 +9.884576 63.348121 +9.892790 63.351054 +9.900417 63.354868 +9.905698 63.359561 +9.911565 63.364255 +9.917432 63.368655 +9.922712 63.373349 +9.928579 63.377749 +9.933273 63.383030 +9.938553 63.387723 +9.943247 63.393004 +9.946181 63.399164 +9.949114 63.405325 +9.952634 63.411485 +9.956741 63.417352 +9.959675 63.423219 +9.961435 63.430260 +9.959675 63.435834 +9.956741 63.440821 +9.949701 63.444634 +9.942660 63.448741 +9.936207 63.452261 +9.929166 63.456075 +9.923886 63.460475 +9.916845 63.464582 +9.912152 63.468689 +9.905111 63.472503 +9.898657 63.476317 +9.889857 63.479543 +9.882816 63.483357 +9.874015 63.486291 +9.867562 63.490398 +9.860521 63.494211 +9.853481 63.497731 +9.843507 63.500372 +9.835293 63.503598 +9.824732 63.506239 +9.816518 63.509466 +9.809477 63.512986 +9.809477 63.519440 +9.813584 63.524720 +9.818278 63.530000 +9.819452 63.535574 +9.815931 63.540561 +9.810651 63.544961 +9.805957 63.549362 +9.800677 63.553469 +9.795396 63.558162 +9.791876 63.563149 +9.788356 63.568136 +9.784836 63.573123 +9.777795 63.576937 +9.770755 63.580751 +9.762541 63.583978 +9.755500 63.587791 +9.747286 63.590725 +9.742006 63.595418 +9.737899 63.600405 +9.733205 63.604806 +9.727925 63.609206 +9.722645 63.613606 +9.719124 63.618593 +9.717364 63.624167 +9.717364 63.630328 +9.720298 63.636488 +9.713257 63.640302 +9.701523 63.640888 +9.690962 63.638541 +9.689789 63.637955 +9.680988 63.636195 +9.671601 63.633848 +9.661627 63.631794 +9.654586 63.627687 +9.647546 63.623874 +9.638745 63.620940 +9.628771 63.618593 +9.617624 63.616833 +9.604716 63.616247 +9.593569 63.614780 +9.583595 63.612140 +9.573621 63.610086 +9.562473 63.608326 +9.551326 63.606859 +9.539005 63.605979 +9.530204 63.603046 +9.523164 63.599232 +9.514363 63.596005 +9.506149 63.593072 +9.497348 63.590138 +9.492068 63.586618 +9.497348 63.583684 +9.512016 63.583684 +9.523164 63.585151 +9.534311 63.586911 +9.546632 63.586324 +9.551912 63.581924 +9.555433 63.576937 +9.558953 63.571950 +9.560713 63.566376 +9.562473 63.560509 +9.565993 63.555522 +9.567753 63.549948 +9.571274 63.544961 +9.571274 63.538801 +9.563060 63.535867 +9.557779 63.539974 +9.556019 63.545841 +9.554259 63.551415 +9.552499 63.556989 +9.548979 63.561976 +9.543698 63.566376 +9.534898 63.569310 +9.519643 63.570190 +9.505562 63.570190 +9.492655 63.569310 +9.480334 63.568723 +9.469186 63.566963 +9.463319 63.562563 +9.457452 63.557869 +9.451585 63.553175 +9.447478 63.547895 +9.440438 63.543788 +9.432224 63.540854 +9.423423 63.537921 +9.416383 63.533814 +9.413449 63.527947 +9.412276 63.521200 +9.412276 63.514746 +9.409342 63.508585 +9.398781 63.511519 +9.388807 63.513866 +9.380007 63.516799 +9.374726 63.521493 +9.376486 63.528240 +9.376486 63.534401 +9.374140 63.539974 +9.372379 63.545548 +9.378247 63.550242 +9.384114 63.554935 +9.385287 63.560216 +9.371793 63.561683 +9.361232 63.559336 +9.354778 63.555522 +9.347151 63.551709 +9.341871 63.547015 +9.334830 63.543201 +9.327790 63.539388 +9.318989 63.536454 +9.310775 63.532934 +9.303735 63.529414 +9.296694 63.525600 +9.285547 63.523840 +9.276746 63.525600 +9.269705 63.529414 +9.262665 63.532934 +9.252104 63.535867 +9.242717 63.534694 +9.238610 63.531467 +9.238610 63.530880 +9.239197 63.524427 +9.242130 63.519440 +9.242717 63.513279 +9.238610 63.507999 +9.228636 63.505652 +9.221595 63.509466 +9.219835 63.515039 +9.212795 63.518853 +9.202821 63.516506 +9.195780 63.512399 +9.188740 63.508585 +9.181699 63.505065 +9.172312 63.502425 +9.163511 63.499491 +9.156471 63.495678 +9.152364 63.490398 +9.149430 63.484237 +9.150017 63.479250 +9.153537 63.474263 +9.157057 63.469276 +9.165858 63.466049 +9.177592 63.464289 +9.189326 63.462235 +9.194607 63.458129 +9.203407 63.454608 +9.215141 63.452848 +9.229809 63.453142 +9.240957 63.454315 +9.251517 63.456075 +9.267359 63.455488 +9.281440 63.455488 +9.290827 63.457835 +9.283786 63.461649 +9.273812 63.464289 +9.265012 63.467223 +9.265012 63.473676 +9.265012 63.479837 +9.262665 63.485410 +9.260905 63.490984 +9.257385 63.495971 +9.265598 63.497731 +9.272639 63.493918 +9.277919 63.489811 +9.279679 63.483944 +9.279679 63.477783 +9.292000 63.475730 +9.304321 63.476610 +9.319576 63.476023 +9.323096 63.471036 +9.323683 63.464582 +9.331897 63.461649 +9.345978 63.461649 +9.357125 63.463409 +9.368272 63.464582 +9.379420 63.466342 +9.392328 63.467223 +9.406409 63.467223 +9.418729 63.468103 +9.428703 63.470449 +9.438678 63.472796 +9.448065 63.475143 +9.458039 63.477490 +9.469186 63.479250 +9.481507 63.479837 +9.486788 63.475436 +9.482681 63.469863 +9.474467 63.466929 +9.463319 63.465462 +9.451585 63.463996 +9.438091 63.463996 +9.425183 63.463116 +9.411689 63.463116 +9.398781 63.462235 +9.387634 63.460475 +9.376486 63.459009 +9.365339 63.457542 +9.354191 63.455782 +9.344217 63.453435 +9.334243 63.451088 +9.324856 63.449035 +9.314882 63.446394 +9.304908 63.444048 +9.293760 63.442581 +9.282613 63.440821 +9.267359 63.441701 +9.253864 63.443167 +9.242130 63.441407 +9.232743 63.438767 +9.222769 63.436714 +9.212795 63.434073 +9.200474 63.433193 +9.189326 63.432020 +9.181112 63.428793 +9.175245 63.424099 +9.174659 63.422633 +9.170552 63.417646 +9.167618 63.411485 +9.164685 63.405325 +9.163511 63.398284 +9.162338 63.391244 +9.167618 63.387137 +9.179352 63.385377 +9.194607 63.384497 +9.203407 63.381270 +9.199887 63.375403 +9.202234 63.369829 +9.213968 63.367775 +9.225116 63.368069 +9.235676 63.369829 +9.247410 63.371002 +9.256798 63.373642 +9.269705 63.374523 +9.280853 63.375989 +9.293174 63.376576 +9.305495 63.377456 +9.318402 63.378336 +9.330723 63.379216 +9.343631 63.380096 +9.357125 63.380390 +9.370033 63.380976 +9.382353 63.381856 +9.394674 63.382736 +9.408755 63.382736 +9.419903 63.384203 +9.431050 63.385963 +9.439851 63.388897 +9.448065 63.391830 +9.456279 63.395057 +9.465079 63.398284 +9.472120 63.401804 +9.478574 63.402978 +9.472707 63.398578 +9.466840 63.393884 +9.461559 63.389484 +9.452759 63.386257 +9.444545 63.383030 +9.436331 63.380390 +9.427530 63.376869 +9.418143 63.374816 +9.408169 63.372469 +9.397021 63.370709 +9.384114 63.370122 +9.372966 63.368362 +9.360645 63.367482 +9.348324 63.366602 +9.335417 63.365722 +9.321922 63.365722 +9.309015 63.365135 +9.296694 63.364255 +9.283786 63.363375 +9.272639 63.361615 +9.262078 63.360148 +9.250931 63.358681 +9.240957 63.356335 +9.230983 63.353988 +9.222769 63.350761 +9.215728 63.346947 +9.209861 63.342547 +9.204581 63.337853 +9.195780 63.334626 +9.183459 63.333746 +9.169378 63.333746 +9.158231 63.332279 +9.150017 63.329053 +9.141803 63.325826 +9.134762 63.322305 +9.126548 63.318785 +9.119508 63.314972 +9.113641 63.310571 +9.109534 63.305291 +9.105427 63.299717 +9.101320 63.294437 +9.091346 63.292090 +9.087826 63.297077 +9.088999 63.302357 +9.093106 63.307931 +9.093106 63.314092 +9.094866 63.321132 +9.098973 63.326412 +9.100147 63.333453 +9.098386 63.339027 +9.100147 63.345774 +9.105427 63.350174 +9.112467 63.354281 +9.120681 63.357215 +9.128895 63.360148 +9.137109 63.363668 +9.142976 63.368069 +9.145910 63.374229 +9.138869 63.378043 +9.133589 63.382150 +9.130069 63.387137 +9.126548 63.392124 +9.124788 63.397991 +9.121268 63.402978 +9.119508 63.408552 +9.114228 63.412952 +9.108947 63.417352 +9.098386 63.419699 +9.086652 63.421753 +9.081372 63.426153 +9.077852 63.431140 +9.075505 63.436714 +9.068464 63.440527 +9.062010 63.444048 +9.053210 63.447274 +9.041476 63.449035 +9.030915 63.451675 +9.022114 63.454902 +9.018594 63.459889 +9.015074 63.464876 +9.005100 63.467516 +8.995126 63.464876 +8.988085 63.461062 +8.986912 63.455782 +8.984565 63.450795 +8.974591 63.448741 +8.967550 63.444634 +8.966377 63.439060 +8.961097 63.434660 +8.959923 63.429086 +8.965204 63.426153 +8.977524 63.424099 +8.989259 63.422633 +8.998059 63.419112 +8.995126 63.414419 +8.985738 63.412365 +8.974591 63.410605 +8.958750 63.411192 +8.948776 63.413539 +8.938215 63.416179 +8.928241 63.419406 +8.919440 63.422633 +8.907119 63.422926 +8.897732 63.420579 +8.889518 63.417646 +8.880717 63.414419 +8.878371 63.408258 +8.878957 63.403565 +8.882478 63.398284 +8.880131 63.395057 +8.869570 63.397404 +8.863116 63.401511 +8.857249 63.405911 +8.853729 63.410605 +8.851969 63.416472 +8.848448 63.421459 +8.841408 63.424979 +8.830847 63.427620 +8.820286 63.428500 +8.806792 63.428500 +8.793885 63.427913 +8.784497 63.425273 +8.772763 63.423513 +8.761616 63.422046 +8.750468 63.420286 +8.741081 63.417939 +8.734040 63.414125 +8.729933 63.408845 +8.728173 63.401804 +8.717612 63.400338 +8.710572 63.404151 +8.705292 63.408258 +8.698251 63.412365 +8.685930 63.413832 +8.671849 63.413832 +8.662462 63.411485 +8.652488 63.409138 +8.644274 63.406205 +8.638993 63.401511 +8.636060 63.395351 +8.636647 63.390364 +8.641927 63.386257 +8.650728 63.383030 +8.659528 63.379803 +8.667742 63.376576 +8.674783 63.373056 +8.681823 63.369242 +8.687104 63.364842 +8.692384 63.360442 +8.695904 63.355454 +8.702945 63.351641 +8.711745 63.348707 +8.723480 63.346654 +8.737561 63.346947 +8.751642 63.346947 +8.763376 63.345187 +8.759269 63.339613 +8.749295 63.337560 +8.739907 63.334920 +8.729933 63.332866 +8.720546 63.330226 +8.710572 63.328173 +8.701185 63.325532 +8.691211 63.323479 +8.681236 63.320839 +8.671849 63.318198 +8.661875 63.316145 +8.650728 63.314385 +8.638407 63.313505 +8.626086 63.312918 +8.612005 63.312625 +8.597924 63.312331 +8.584430 63.312331 +8.571522 63.311451 +8.559201 63.310278 +8.545120 63.310278 +8.534559 63.308518 +8.527519 63.304704 +8.519305 63.301771 +8.511091 63.298250 +8.501117 63.296197 +8.488796 63.295317 +8.477649 63.293557 +8.481756 63.290036 +8.491730 63.287396 +8.502290 63.285049 +8.515785 63.283876 +8.522825 63.280062 +8.528106 63.275662 +8.525172 63.269502 +8.529279 63.264515 +8.534559 63.260408 +8.542773 63.257181 +8.553334 63.254834 +8.563308 63.252194 +8.570349 63.248380 +8.577389 63.244860 +8.578562 63.242513 +8.581496 63.242513 +8.583843 63.238406 +8.587363 63.234592 +8.592643 63.230192 +8.596750 63.225205 +8.600271 63.220218 +8.603791 63.215231 +8.606138 63.209657 +8.607898 63.204084 +8.614938 63.200270 +8.624912 63.197923 +8.638993 63.197923 +8.651314 63.198803 +8.663635 63.199683 +8.673609 63.202324 +8.685930 63.202910 +8.697078 63.204670 +8.711159 63.204670 +8.724653 63.204964 +8.738734 63.204964 +8.752228 63.205257 +8.766309 63.205257 +8.780390 63.205550 +8.792124 63.206430 +8.805032 63.207311 +8.818526 63.207604 +8.832607 63.207604 +8.844928 63.208191 +8.857836 63.209071 +8.871330 63.209364 +8.886585 63.208484 +8.900666 63.208777 +8.914160 63.208777 +8.928241 63.209071 +8.941735 63.209071 +8.938215 63.206724 +8.925894 63.205844 +8.913573 63.204670 +8.901252 63.203790 +8.888345 63.202910 +8.876024 63.202324 +8.863703 63.201443 +8.849622 63.201150 +8.838474 63.199683 +8.826154 63.198510 +8.815006 63.197336 +8.803859 63.195576 +8.791538 63.194696 +8.779217 63.193816 +8.766896 63.192643 +8.754575 63.192056 +8.743428 63.190296 +8.733454 63.187949 +8.722893 63.186482 +8.708812 63.186189 +8.696491 63.185309 +8.683583 63.184429 +8.670089 63.184429 +8.657768 63.183255 +8.643687 63.183255 +8.631366 63.182375 +8.621392 63.180029 +8.612005 63.177682 +8.602618 63.175335 +8.592643 63.172695 +8.584430 63.169761 +8.575042 63.167121 +8.569175 63.162721 +8.568002 63.157147 +8.568588 63.150986 +8.566828 63.144239 +8.570935 63.139252 +8.584430 63.137786 +8.594404 63.135439 +8.604964 63.133092 +8.613178 63.129865 +8.621979 63.126638 +8.629019 63.123118 +8.634300 63.118717 +8.639580 63.114024 +8.639580 63.108157 +8.633126 63.104050 +8.627846 63.108743 +8.622566 63.113144 +8.617285 63.117251 +8.608485 63.120184 +8.597924 63.122824 +8.585016 63.124291 +8.572695 63.125758 +8.562721 63.128398 +8.552161 63.130745 +8.542187 63.133385 +8.531626 63.135732 +8.518718 63.136905 +8.503464 63.137492 +8.487623 63.138372 +8.474128 63.138079 +8.460634 63.137786 +8.446553 63.139252 +8.433059 63.140132 +8.421325 63.142186 +8.407830 63.143359 +8.394336 63.144533 +8.384362 63.142186 +8.376735 63.139252 +8.365587 63.137492 +8.353266 63.139252 +8.345052 63.142186 +8.336252 63.145413 +8.325691 63.147760 +8.315717 63.150400 +8.300462 63.150693 +8.288142 63.150106 +8.275821 63.149226 +8.263500 63.148053 +8.251179 63.147173 +8.240031 63.145413 +8.236511 63.141599 +8.242965 63.137786 +8.255286 63.136025 +8.267020 63.134265 +8.276994 63.131625 +8.285795 63.128692 +8.294009 63.125465 +8.302809 63.122531 +8.309850 63.118717 +8.315130 63.114317 +8.317477 63.108743 +8.314544 63.102876 +8.312197 63.096716 +8.317477 63.092316 +8.324518 63.088209 +8.324518 63.082342 +8.316304 63.079115 +8.306916 63.076768 +8.297529 63.074421 +8.283448 63.074128 +8.282861 63.078821 +8.288142 63.083515 +8.289315 63.089089 +8.280514 63.092316 +8.273474 63.095836 +8.268194 63.100236 +8.262913 63.104636 +8.257633 63.108743 +8.252352 63.114024 +8.247072 63.118424 +8.240031 63.121944 +8.232991 63.125758 +8.227711 63.129865 +8.219497 63.133092 +8.204242 63.133972 +8.196028 63.130452 +8.186054 63.128105 +8.175494 63.126345 +8.165519 63.124291 +8.159066 63.120184 +8.159066 63.114024 +8.161413 63.109624 +8.168453 63.106103 +8.177254 63.103170 +8.184294 63.099063 +8.191335 63.095543 +8.193095 63.089969 +8.194855 63.084102 +8.202482 63.080581 +8.207763 63.076181 +8.213043 63.072074 +8.218323 63.067380 +8.223604 63.063274 +8.227124 63.058286 +8.225950 63.051246 +8.223017 63.044792 +8.221844 63.037752 +8.222430 63.032765 +8.225950 63.027778 +8.236511 63.025137 +8.248245 63.023671 +8.257633 63.021911 +8.268780 63.019857 +8.282861 63.018977 +8.297529 63.018390 +8.311023 63.017217 +8.323344 63.016630 +8.335665 63.017510 +8.347986 63.018390 +8.360307 63.019564 +8.372628 63.020150 +8.386709 63.020444 +8.400203 63.020444 +8.414284 63.020737 +8.426018 63.021617 +8.437166 63.023377 +8.449487 63.024257 +8.464741 63.023671 +8.470021 63.019270 +8.467674 63.014577 +8.459461 63.011350 +8.448313 63.009590 +8.434819 63.009590 +8.422498 63.008710 +8.409004 63.008710 +8.396096 63.007830 +8.383775 63.006656 +8.371454 63.005776 +8.357960 63.005483 +8.343879 63.005483 +8.336252 63.002256 +8.327451 62.999029 +8.320997 62.995215 +8.324518 62.990228 +8.335078 62.987881 +8.346812 62.986121 +8.356787 62.983481 +8.363827 62.979668 +8.367347 62.974974 +8.374388 62.971160 +8.389056 62.970574 +8.399030 62.972920 +8.409590 62.974680 +8.419564 62.977027 +8.430125 62.978494 +8.440099 62.981134 +8.451247 62.982894 +8.460634 62.984948 +8.470021 62.987588 +8.478235 62.990522 +8.485276 62.994335 +8.494663 62.996975 +8.502877 62.999909 +8.511091 63.003136 +8.519305 63.006363 +8.529279 63.008710 +8.538666 63.011056 +8.548054 63.013697 +8.558028 63.015750 +8.567415 63.018390 +8.576802 63.020444 +8.589123 63.018977 +8.583256 63.014283 +8.575042 63.011056 +8.568588 63.007243 +8.558614 63.004603 +8.550400 63.001669 +8.541013 62.999029 +8.531039 62.996975 +8.524585 62.993162 +8.517545 62.989055 +8.515198 62.983188 +8.519305 62.979374 +8.529279 62.977027 +8.542773 62.975561 +8.555094 62.976734 +8.567415 62.977614 +8.577976 62.979081 +8.590883 62.979961 +8.601444 62.981721 +8.613765 62.983188 +8.626086 62.984068 +8.640167 62.984068 +8.653661 62.984361 +8.664222 62.982014 +8.665982 62.976441 +8.663049 62.970280 +8.656595 62.966467 +8.646621 62.963826 +8.634300 62.962946 +8.621979 62.962360 +8.609658 62.961480 +8.597337 62.960306 +8.583843 62.960306 +8.571522 62.959426 +8.557441 62.959133 +8.543947 62.958839 +8.529866 62.958839 +8.516371 62.958546 +8.501704 62.959426 +8.486449 62.960013 +8.471195 62.960599 +8.457700 62.960306 +8.445380 62.959426 +8.434232 62.957666 +8.423085 62.956199 +8.414871 62.952972 +8.415457 62.947985 +8.420738 62.943878 +8.427778 62.940065 +8.434819 62.936251 +8.441859 62.932437 +8.446553 62.928330 +8.453593 62.924517 +8.458874 62.920410 +8.462394 62.915423 +8.466501 62.910143 +8.470021 62.905156 +8.477062 62.901342 +8.482342 62.897235 +8.492316 62.894595 +8.504050 62.892835 +8.517545 62.891661 +8.529279 62.889608 +8.539253 62.887261 +8.549814 62.884621 +8.559788 62.882274 +8.571522 62.880514 +8.583256 62.879927 +8.596164 62.880807 +8.610831 62.880220 +8.624326 62.879047 +8.631366 62.875233 +8.633126 62.869660 +8.636647 62.864673 +8.640167 62.860566 +8.640167 62.859686 +8.645447 62.856752 +8.654248 62.853525 +8.663049 62.850592 +8.669502 62.847071 +8.676543 62.842964 +8.681823 62.838564 +8.686517 62.834457 +8.690624 62.829470 +8.694144 62.824483 +8.699424 62.820083 +8.690624 62.823016 +8.680650 62.825656 +8.668916 62.828297 +8.657181 62.830057 +8.648968 62.832990 +8.640167 62.836217 +8.633713 62.840031 +8.628433 62.844431 +8.623152 62.848538 +8.617872 62.852938 +8.612592 62.857632 +8.607311 62.861739 +8.598511 62.864966 +8.590297 62.868193 +8.578562 62.869660 +8.565068 62.871126 +8.551574 62.870833 +8.539840 62.872887 +8.531039 62.875820 +8.521065 62.878460 +8.512851 62.881394 +8.502290 62.884034 +8.492316 62.886381 +8.480582 62.888434 +8.468848 62.889901 +8.455354 62.891368 +8.441859 62.892541 +8.430712 62.890781 +8.434819 62.885794 +8.443033 62.882861 +8.453007 62.880220 +8.462981 62.877874 +8.475302 62.875820 +8.487036 62.874060 +8.500530 62.872887 +8.510504 62.870540 +8.519305 62.867606 +8.527519 62.864086 +8.535733 62.861152 +8.541013 62.856752 +8.541600 62.850592 +8.538666 62.844431 +8.530452 62.841498 +8.516958 62.841204 +8.506984 62.843551 +8.497010 62.846191 +8.488209 62.849125 +8.479995 62.852352 +8.471195 62.855579 +8.462394 62.858512 +8.454180 62.861739 +8.447140 62.865259 +8.438926 62.868193 +8.431885 62.872300 +8.424845 62.875820 +8.418391 62.879340 +8.409590 62.882861 +8.399616 62.885207 +8.389056 62.886087 +8.375561 62.886087 +8.365587 62.883741 +8.357373 62.880514 +8.350919 62.876700 +8.341532 62.874060 +8.332145 62.874647 +8.328625 62.878460 +8.329211 62.883741 +8.330971 62.890488 +8.333318 62.896648 +8.334492 62.903689 +8.332731 62.909262 +8.330385 62.914836 +8.326864 62.919823 +8.321584 62.924224 +8.316304 62.928330 +8.311023 62.932731 +8.307503 62.937718 +8.308676 62.943292 +8.315130 62.947105 +8.325104 62.949452 +8.334492 62.951799 +8.339772 62.956786 +8.339185 62.961480 +8.333905 62.965880 +8.325104 62.968813 +8.318064 62.972627 +8.308090 62.974974 +8.292835 62.975561 +8.281101 62.976147 +8.277581 62.981134 +8.273474 62.986121 +8.268194 62.990228 +8.261153 62.994042 +8.254113 62.997855 +8.245899 63.000789 +8.237098 63.004016 +8.227124 63.006363 +8.215390 63.008416 +8.204829 63.010470 +8.196028 63.013990 +8.186054 63.016043 +8.177840 63.019270 +8.169040 63.022204 +8.160239 63.025431 +8.152025 63.028658 +8.144985 63.032178 +8.137944 63.035698 +8.132664 63.040392 +8.128557 63.045379 +8.126797 63.050953 +8.127383 63.056526 +8.132077 63.061807 +8.135597 63.067087 +8.135597 63.073248 +8.131490 63.078235 +8.126210 63.082635 +8.120930 63.087035 +8.116823 63.092022 +8.111542 63.096423 +8.106262 63.100530 +8.098048 63.103756 +8.089247 63.106983 +8.077513 63.108743 +8.063432 63.108450 +8.052871 63.106690 +8.042897 63.104343 +8.033510 63.101996 +8.025296 63.098476 +8.018256 63.094662 +8.010042 63.091729 +8.001828 63.088502 +7.992440 63.086155 +7.981293 63.084395 +7.974839 63.080581 +7.967799 63.076768 +7.966625 63.069727 +7.965452 63.062687 +7.964865 63.055940 +7.961932 63.049779 +7.960171 63.050073 +7.954891 63.045379 +7.946677 63.041859 +7.940223 63.038045 +7.932009 63.035111 +7.923795 63.031591 +7.915582 63.028658 +7.907368 63.025431 +7.899154 63.022204 +7.892700 63.018390 +7.885659 63.014577 +7.879206 63.010470 +7.876272 63.004309 +7.878619 62.999029 +7.888593 62.996389 +7.900914 62.994629 +7.914408 62.994629 +7.926729 62.995802 +7.940223 62.996095 +7.951371 62.997855 +7.959585 63.000789 +7.967799 63.004309 +7.970145 63.010176 +7.961932 63.013403 +7.948437 63.014577 +7.943157 63.018684 +7.946677 63.024257 +7.956064 63.026604 +7.970145 63.026604 +7.981880 63.025137 +7.988920 63.021324 +7.992440 63.016337 +7.994787 63.010470 +7.996547 63.004896 +8.000654 62.999909 +8.005935 62.995802 +8.012975 62.991988 +8.020016 62.988468 +8.028230 62.985241 +8.037030 62.982308 +8.045831 62.979081 +8.054045 62.976147 +8.062845 62.972920 +8.073406 62.970574 +8.083380 62.967933 +8.091594 62.965000 +8.102155 62.962360 +8.112129 62.960306 +8.122690 62.957666 +8.130904 62.954732 +8.141464 62.952092 +8.147918 62.948279 +8.154959 62.944758 +8.158479 62.939771 +8.160826 62.934198 +8.163173 62.928624 +8.164933 62.923050 +8.170213 62.918650 +8.175494 62.914543 +8.185468 62.911903 +8.199549 62.910436 +8.207763 62.907502 +8.202482 62.904569 +8.191921 62.902515 +8.183707 62.899582 +8.175494 62.896355 +8.171387 62.890781 +8.168453 62.884621 +8.170800 62.879047 +8.171387 62.874353 +8.171973 62.868193 +8.173733 62.862619 +8.174320 62.856459 +8.176667 62.850592 +8.178427 62.845018 +8.183707 62.840911 +8.190748 62.836804 +8.197788 62.833284 +8.206002 62.830350 +8.215976 62.827710 +8.226537 62.825363 +8.231818 62.821256 +8.240031 62.817736 +8.250592 62.815389 +8.262326 62.813629 +8.275821 62.812456 +8.287555 62.810695 +8.300462 62.809522 +8.312783 62.807468 +8.322757 62.805122 +8.330971 62.801895 +8.336252 62.797788 +8.340359 62.792801 +8.343879 62.787814 +8.349159 62.783413 +8.357373 62.780187 +8.367347 62.777840 +8.377908 62.775200 +8.387882 62.772853 +8.399616 62.771093 +8.409590 62.768746 +8.419564 62.766106 +8.428365 62.763172 +8.435406 62.759358 +8.441859 62.755545 +8.447140 62.751144 +8.452420 62.747037 +8.461221 62.743811 +8.467674 62.739997 +8.477649 62.737357 +8.487623 62.735010 +8.498183 62.732370 +8.509918 62.730903 +8.519892 62.728263 +8.529866 62.725916 +8.536906 62.723569 +8.543947 62.719756 +8.552161 62.716529 +8.559201 62.713008 +8.564481 62.708608 +8.566242 62.703034 +8.566828 62.696581 +8.566828 62.690420 +8.567415 62.684260 +8.569175 62.678686 +8.569762 62.672525 +8.564481 62.667832 +8.557441 62.664018 +8.552161 62.659031 +8.548054 62.653751 +8.546880 62.656684 +8.545120 62.662258 +8.545120 62.668712 +8.544533 62.674579 +8.541013 62.679859 +8.537493 62.684846 +8.532212 62.689247 +8.525172 62.692767 +8.519892 62.697167 +8.513438 62.700687 +8.506397 62.704794 +8.501117 62.709195 +8.495837 62.713302 +8.489383 62.717115 +8.477062 62.718875 +8.467088 62.718582 +8.455940 62.716822 +8.445380 62.715355 +8.431885 62.716529 +8.423085 62.719756 +8.414871 62.722689 +8.407830 62.726503 +8.401376 62.730316 +8.394336 62.733837 +8.389056 62.738237 +8.382015 62.742050 +8.375561 62.745864 +8.368521 62.749384 +8.361480 62.753198 +8.354440 62.757012 +8.347986 62.760532 +8.339185 62.763465 +8.332145 62.767572 +8.323931 62.770506 +8.315130 62.773733 +8.306916 62.776666 +8.296942 62.779306 +8.286381 62.781653 +8.274647 62.783413 +8.262913 62.785174 +8.251179 62.786934 +8.237685 62.788400 +8.225950 62.789867 +8.214216 62.791921 +8.204242 62.794561 +8.194268 62.796614 +8.184294 62.799255 +8.175494 62.802188 +8.168453 62.806002 +8.161413 62.809815 +8.156132 62.814216 +8.149678 62.817736 +8.147332 62.823310 +8.143811 62.828297 +8.142051 62.833870 +8.139704 62.839444 +8.136184 62.844431 +8.133837 62.850298 +8.132077 62.855872 +8.129730 62.861446 +8.129144 62.867606 +8.129144 62.873767 +8.126797 62.879340 +8.121516 62.884034 +8.116236 62.888141 +8.109195 62.891955 +8.109195 62.898115 +8.110369 62.904862 +8.110956 62.910436 +8.107435 62.915423 +8.100395 62.919237 +8.093354 62.922757 +8.089834 62.927744 +8.088074 62.933318 +8.085727 62.938891 +8.081620 62.942412 +8.073406 62.945638 +8.064606 62.948572 +8.056392 62.951799 +8.045831 62.954146 +8.037617 62.957079 +8.028816 62.960306 +8.020016 62.964120 +8.010042 62.966760 +8.001241 62.969693 +7.991267 62.972040 +7.977773 62.973214 +7.964278 62.972920 +7.954304 62.970574 +7.943744 62.968813 +7.935530 62.965880 +7.926142 62.963240 +7.917342 62.960306 +7.907954 62.957666 +7.900327 62.954732 +7.890353 62.952092 +7.879792 62.950625 +7.867471 62.949452 +7.854564 62.948572 +7.842830 62.947399 +7.831682 62.945932 +7.822295 62.943292 +7.812907 62.941238 +7.804694 62.937718 +7.795306 62.935371 +7.787092 62.932144 +7.777118 62.929797 +7.769491 62.926570 +7.760104 62.924224 +7.748956 62.922463 +7.739569 62.920117 +7.729595 62.917476 +7.719034 62.915716 +7.708473 62.914249 +7.698499 62.911609 +7.687352 62.910143 +7.676791 62.908382 +7.666230 62.910436 +7.672097 62.915423 +7.678551 62.919237 +7.686765 62.922463 +7.694979 62.925690 +7.704366 62.928037 +7.713754 62.930677 +7.721968 62.933611 +7.731355 62.936251 +7.739569 62.939478 +7.748956 62.941531 +7.757170 62.945052 +7.765384 62.947985 +7.771838 62.951799 +7.778878 62.955906 +7.784159 62.960599 +7.786506 62.966760 +7.781225 62.971160 +7.772425 62.974094 +7.760690 62.975854 +7.747196 62.977027 +7.731942 62.977614 +7.718447 62.977321 +7.706126 62.976441 +7.693806 62.975267 +7.681485 62.974387 +7.670337 62.972920 +7.659777 62.971160 +7.648629 62.969107 +7.639242 62.967053 +7.629854 62.964413 +7.619880 62.962066 +7.613427 62.957959 +7.605213 62.955026 +7.598759 62.950919 +7.593478 62.946225 +7.588198 62.941531 +7.582918 62.936838 +7.575877 62.933024 +7.567663 62.929797 +7.557102 62.928037 +7.547715 62.925690 +7.539501 62.922463 +7.530114 62.920117 +7.520727 62.917476 +7.509579 62.915716 +7.497258 62.914836 +7.486697 62.913076 +7.473790 62.911316 +7.460296 62.911023 +7.448561 62.912783 +7.441521 62.916596 +7.440934 62.922757 +7.438587 62.928330 +7.435067 62.933318 +7.429787 62.937718 +7.424506 62.941825 +7.420399 62.946812 +7.415119 62.951505 +7.403385 62.952972 +7.389304 62.954146 +7.381090 62.957079 +7.375223 62.961480 +7.371702 62.966467 +7.364662 62.969987 +7.357621 62.973800 +7.347061 62.976147 +7.338847 62.979081 +7.328286 62.981721 +7.321246 62.985241 +7.315965 62.989348 +7.310685 62.993749 +7.304818 62.998149 +7.297777 63.001962 +7.289563 63.004896 +7.280176 63.007830 +7.271962 63.010763 +7.258468 63.011937 +7.250254 63.010176 +7.242627 63.008416 +7.232066 63.006656 +7.222092 63.004309 +7.211531 63.002256 +7.200384 63.000496 +7.188063 62.999616 +7.175742 62.998736 +7.164594 62.996975 +7.154034 62.994922 +7.145820 62.991988 +7.136432 62.989348 +7.125285 62.987881 +7.110617 62.988175 +7.098296 62.987001 +7.090082 62.983774 +7.085975 62.978201 +7.082455 62.972920 +7.074241 62.969693 +7.060747 62.969400 +7.047253 62.969107 +7.036105 62.967640 +7.029651 62.963533 +7.023197 62.959426 +7.016157 62.955612 +7.009703 62.951799 +7.004423 62.946812 +7.001489 62.945638 +6.999142 62.942118 +6.994449 62.938891 +6.985061 62.936251 +6.973914 62.934784 +6.963353 62.933024 +6.952206 62.930971 +6.947512 62.931264 +6.949272 62.931264 +6.941058 62.929504 +6.930497 62.927744 +6.919350 62.925690 +6.909963 62.923343 +6.900575 62.920703 +6.890015 62.919237 +6.881801 62.915716 +6.881214 62.910143 +6.887081 62.906036 +6.899989 62.904862 +6.912310 62.904862 +6.924630 62.905742 +6.938125 62.906036 +6.945165 62.902222 +6.952206 62.898702 +6.956313 62.894008 +6.956899 62.887554 +6.954553 62.881394 +6.958660 62.877874 +6.969220 62.875527 +6.976261 62.873473 +6.981541 62.868780 +6.985648 62.863793 +6.990928 62.859686 +6.993275 62.854112 +6.995622 62.848538 +6.997382 62.842671 +7.003249 62.838564 +7.013223 62.836217 +7.026718 62.835337 +7.040799 62.835631 +7.053120 62.836511 +7.064854 62.837391 +7.076001 62.839151 +7.086562 62.841204 +7.095949 62.843551 +7.107097 62.845311 +7.117658 62.847071 +7.129978 62.847951 +7.143473 62.847071 +7.150513 62.843258 +7.154034 62.838271 +7.162834 62.835337 +7.173395 62.832990 +7.172808 62.827417 +7.176328 62.822430 +7.183369 62.818909 +7.193930 62.816269 +7.203904 62.814216 +7.212118 62.810989 +7.210358 62.807762 +7.195690 62.808055 +7.183369 62.810109 +7.171635 62.811575 +7.163421 62.814802 +7.151100 62.816269 +7.137606 62.815976 +7.125285 62.815096 +7.111791 62.815976 +7.106510 62.820669 +7.099470 62.824190 +7.084215 62.824483 +7.069547 62.825070 +7.055466 62.824776 +7.043732 62.823016 +7.031411 62.821843 +7.022024 62.819496 +7.013810 62.815976 +7.007356 62.812162 +7.000903 62.808349 +6.992689 62.805122 +6.984475 62.801895 +6.975087 62.799548 +6.974501 62.793974 +6.976847 62.788400 +6.974501 62.782240 +6.969220 62.777546 +6.962766 62.773733 +6.955726 62.769332 +6.955139 62.764052 +6.962180 62.760238 +6.970980 62.757598 +6.979781 62.754371 +6.985061 62.749971 +6.985648 62.743811 +6.980954 62.739117 +6.972741 62.736183 +6.965700 62.732076 +6.958073 62.728850 +6.949859 62.725623 +6.958660 62.722396 +6.972154 62.721516 +6.985648 62.721809 +6.995035 62.724156 +7.006183 62.726209 +7.019677 62.726503 +7.033172 62.726796 +7.043732 62.727089 +7.051359 62.727969 +7.053120 62.727969 +7.060160 62.728556 +7.072481 62.729730 +7.084802 62.730610 +7.098296 62.730903 +7.111791 62.731196 +7.125872 62.731490 +7.140539 62.731196 +7.154034 62.731490 +7.166354 62.732076 +7.177502 62.734130 +7.189823 62.735303 +7.203317 62.735597 +7.215638 62.736477 +7.227372 62.737357 +7.239693 62.738530 +7.250254 62.740290 +7.263748 62.740584 +7.276069 62.741464 +7.288390 62.742637 +7.300711 62.743517 +7.314205 62.743811 +7.326526 62.744691 +7.337087 62.746451 +7.349408 62.747624 +7.361728 62.748504 +7.372876 62.750264 +7.384610 62.751438 +7.395758 62.753198 +7.405145 62.755545 +7.414532 62.758185 +7.420986 62.761999 +7.429200 62.764932 +7.436827 62.768452 +7.445041 62.771386 +7.453255 62.774613 +7.462642 62.777253 +7.474963 62.778133 +7.487284 62.779306 +7.499018 62.779893 +7.510166 62.781947 +7.522487 62.782827 +7.533047 62.784587 +7.545368 62.785467 +7.557689 62.786347 +7.570010 62.787520 +7.583504 62.787814 +7.594652 62.789574 +7.604039 62.791921 +7.613427 62.794561 +7.625747 62.795148 +7.640415 62.794854 +7.652149 62.793094 +7.666230 62.791921 +7.680898 62.791334 +7.670337 62.789867 +7.660950 62.787227 +7.650976 62.784587 +7.640415 62.783120 +7.628094 62.782240 +7.614013 62.781947 +7.602279 62.780773 +7.589958 62.779893 +7.577637 62.779013 +7.565316 62.778133 +7.552996 62.776960 +7.540675 62.775786 +7.531287 62.773733 +7.520727 62.771973 +7.511339 62.769332 +7.500192 62.767572 +7.490804 62.765225 +7.481417 62.762879 +7.472030 62.760238 +7.462642 62.757892 +7.453255 62.755251 +7.445628 62.752318 +7.437414 62.748798 +7.428027 62.746451 +7.419813 62.743224 +7.411599 62.739997 +7.403971 62.737063 +7.396931 62.732663 +7.388130 62.730610 +7.378743 62.727969 +7.367596 62.726209 +7.378156 62.725329 +7.392824 62.724743 +7.401625 62.721809 +7.403971 62.717409 +7.408078 62.713888 +7.408665 62.709195 +7.406318 62.702741 +7.398104 62.699807 +7.387544 62.698047 +7.376396 62.695994 +7.365835 62.694527 +7.357621 62.691300 +7.358795 62.686313 +7.365835 62.682793 +7.378743 62.681619 +7.389890 62.683380 +7.399278 62.685726 +7.406905 62.689247 +7.418052 62.690713 +7.429787 62.690420 +7.438587 62.687487 +7.445628 62.683673 +7.455602 62.681326 +7.467336 62.679566 +7.482590 62.679273 +7.494325 62.679859 +7.504299 62.682500 +7.513686 62.685140 +7.523073 62.687487 +7.530701 62.690420 +7.540088 62.693060 +7.548302 62.696287 +7.556516 62.699514 +7.565903 62.701861 +7.575290 62.704501 +7.584678 62.706848 +7.594065 62.709195 +7.603452 62.711542 +7.612840 62.714182 +7.622227 62.716529 +7.631614 62.719169 +7.641002 62.721809 +7.650389 62.723862 +7.659777 62.726503 +7.669164 62.728850 +7.680311 62.730610 +7.692632 62.731783 +7.704366 62.732370 +7.716687 62.733543 +7.729008 62.734423 +7.741329 62.735597 +7.753650 62.736477 +7.765971 62.737357 +7.777705 62.738237 +7.790026 62.739410 +7.802347 62.740290 +7.814668 62.741464 +7.825228 62.742931 +7.837549 62.743811 +7.848697 62.745571 +7.859257 62.747331 +7.870405 62.748798 +7.880966 62.750851 +7.890940 62.753198 +7.901501 62.754665 +7.910888 62.757305 +7.920275 62.759652 +7.928489 62.762879 +7.939050 62.764345 +7.953131 62.764639 +7.963105 62.762292 +7.976599 62.761118 +7.988920 62.762292 +7.999481 62.763759 +8.008868 62.766106 +8.018256 62.768746 +8.029403 62.770212 +8.038790 62.772853 +8.051111 62.773733 +8.063432 62.774613 +8.075166 62.774026 +8.071646 62.770212 +8.064606 62.766399 +8.058152 62.762292 +8.051698 62.758478 +8.046418 62.753785 +8.046418 62.747624 +8.051698 62.743224 +8.058738 62.739410 +8.069299 62.737357 +8.077513 62.734130 +8.087487 62.731783 +8.097461 62.729143 +8.106262 62.726209 +8.115063 62.722982 +8.121516 62.719169 +8.128557 62.715649 +8.133837 62.711248 +8.139118 62.706848 +8.142638 62.701861 +8.144985 62.696287 +8.144985 62.690127 +8.137357 62.686900 +8.128557 62.690127 +8.121516 62.693647 +8.115063 62.697461 +8.106262 62.700687 +8.099221 62.704208 +8.091007 62.707141 +8.083967 62.711248 +8.075166 62.714182 +8.066952 62.717115 +8.056978 62.719462 +8.047004 62.721809 +8.038204 62.725036 +8.027643 62.727383 +8.019429 62.730610 +8.011215 62.733543 +8.001241 62.736183 +7.987160 62.737357 +7.977773 62.735010 +7.971319 62.730903 +7.971906 62.724743 +7.967799 62.719169 +7.956064 62.719756 +7.945504 62.722102 +7.937290 62.725329 +7.928489 62.728263 +7.916755 62.730023 +7.905021 62.732076 +7.890353 62.732370 +7.876272 62.732076 +7.862778 62.732076 +7.850457 62.731196 +7.838723 62.730023 +7.824642 62.729730 +7.814081 62.727969 +7.801760 62.727089 +7.791199 62.725623 +7.780052 62.723862 +7.770664 62.721516 +7.760104 62.719756 +7.748956 62.717995 +7.739569 62.715649 +7.730182 62.713008 +7.720794 62.710662 +7.711407 62.708021 +7.700259 62.706261 +7.689699 62.704794 +7.677378 62.703914 +7.666230 62.702154 +7.654496 62.700981 +7.642175 62.700101 +7.629854 62.699221 +7.620467 62.696581 +7.611080 62.694234 +7.601692 62.691887 +7.593478 62.688660 +7.585851 62.685433 +7.577637 62.682206 +7.568250 62.679859 +7.560623 62.676632 +7.551235 62.674286 +7.541261 62.671645 +7.531874 62.669299 +7.522487 62.666658 +7.514859 62.663725 +7.506646 62.660205 +7.501365 62.655804 +7.500192 62.648764 +7.502539 62.643190 +7.507819 62.638790 +7.513099 62.634683 +7.520140 62.630869 +7.525420 62.626762 +7.529527 62.621775 +7.531287 62.616201 +7.531874 62.609748 +7.534221 62.604174 +7.535981 62.598600 +7.535394 62.591560 +7.532461 62.585693 +7.524833 62.582466 +7.512513 62.581292 +7.502539 62.582466 +7.498432 62.587453 +7.499605 62.594200 +7.500192 62.599774 +7.503125 62.605934 +7.502539 62.612094 +7.501952 62.618255 +7.497845 62.623242 +7.494325 62.628229 +7.488458 62.632923 +7.478483 62.634976 +7.467336 62.636736 +7.456189 62.634976 +7.445628 62.633216 +7.434480 62.631749 +7.423920 62.629696 +7.414532 62.627642 +7.409252 62.622655 +7.408665 62.617081 +7.410425 62.611801 +7.412772 62.606227 +7.415119 62.600654 +7.418639 62.595667 +7.425680 62.591853 +7.432720 62.588039 +7.439761 62.584519 +7.445041 62.580412 +7.450321 62.575719 +7.457362 62.572198 +7.465576 62.569265 +7.474377 62.566038 +7.486111 62.564571 +7.497845 62.562518 +7.510752 62.561344 +7.524247 62.560171 +7.537741 62.560464 +7.551235 62.560757 +7.561796 62.562518 +7.572944 62.564278 +7.583504 62.566038 +7.595825 62.566918 +7.606386 62.568678 +7.618707 62.569851 +7.631028 62.570438 +7.642762 62.571612 +7.655083 62.572492 +7.667404 62.573665 +7.677964 62.575132 +7.688525 62.575425 +7.699086 62.577185 +7.711407 62.578359 +7.723728 62.579239 +7.737222 62.579532 +7.751890 62.578945 +7.765384 62.577772 +7.774185 62.574838 +7.779465 62.571905 +7.764797 62.572492 +7.749543 62.572785 +7.736049 62.572785 +7.723728 62.571612 +7.713167 62.570145 +7.702606 62.568385 +7.696152 62.564571 +7.689112 62.560171 +7.681485 62.557237 +7.669164 62.556357 +7.656843 62.555184 +7.645109 62.554304 +7.632788 62.553424 +7.619294 62.553130 +7.606973 62.552250 +7.594652 62.551077 +7.584091 62.549317 +7.574704 62.546970 +7.569423 62.542276 +7.567077 62.536116 +7.564730 62.529955 +7.563556 62.522915 +7.562383 62.516461 +7.561796 62.509420 +7.556516 62.504727 +7.548302 62.501793 +7.538914 62.499153 +7.533634 62.502087 +7.531287 62.507367 +7.528940 62.513234 +7.527180 62.518808 +7.524833 62.524382 +7.524247 62.530542 +7.520727 62.535529 +7.514859 62.539929 +7.506646 62.543156 +7.494911 62.544623 +7.483177 62.543743 +7.472030 62.541983 +7.461469 62.540223 +7.450908 62.538756 +7.438587 62.538756 +7.433307 62.543450 +7.429787 62.548437 +7.425680 62.553130 +7.419226 62.556944 +7.410425 62.559584 +7.401625 62.563104 +7.391651 62.565158 +7.384610 62.568971 +7.379330 62.573372 +7.374049 62.577479 +7.370529 62.582466 +7.362902 62.585986 +7.359382 62.590973 +7.352341 62.594787 +7.344127 62.597720 +7.331806 62.598307 +7.320072 62.597133 +7.305404 62.597720 +7.293084 62.599480 +7.284283 62.602414 +7.276069 62.605641 +7.269028 62.609161 +7.260815 62.612094 +7.252014 62.613855 +7.242627 62.611508 +7.229132 62.611214 +7.218572 62.612094 +7.209771 62.615028 +7.201557 62.617962 +7.192756 62.621188 +7.182782 62.623535 +7.172808 62.625882 +7.160487 62.627642 +7.152860 62.624415 +7.151687 62.617375 +7.149340 62.611508 +7.144059 62.606521 +7.137606 62.602707 +7.131152 62.598894 +7.131739 62.592440 +7.137019 62.588333 +7.144059 62.584813 +7.149340 62.580412 +7.151687 62.574838 +7.150513 62.567798 +7.148753 62.561638 +7.143473 62.556944 +7.139366 62.551663 +7.137019 62.545503 +7.134672 62.539343 +7.132325 62.533475 +7.128805 62.527902 +7.124698 62.530542 +7.124111 62.536996 +7.124698 62.543743 +7.125872 62.549023 +7.128218 62.555477 +7.128805 62.562224 +7.125285 62.567211 +7.121765 62.572198 +7.114724 62.575719 +7.112377 62.581292 +7.110030 62.586866 +7.106510 62.591853 +7.104163 62.597427 +7.103577 62.603881 +7.099470 62.608574 +7.085975 62.609748 +7.076588 62.607107 +7.067201 62.604761 +7.054293 62.604467 +7.043732 62.606814 +7.036692 62.610628 +7.036105 62.616788 +7.040799 62.620015 +7.050186 62.622362 +7.058400 62.625882 +7.067787 62.628229 +7.075415 62.631456 +7.083628 62.634683 +7.091256 62.637910 +7.095363 62.643190 +7.090082 62.647884 +7.074828 62.648177 +7.061334 62.647884 +7.047839 62.647590 +7.035518 62.646417 +7.020851 62.647004 +7.007356 62.648177 +6.993862 62.649057 +6.979194 62.649350 +6.963940 62.649937 +6.950446 62.649350 +6.938125 62.648470 +6.924630 62.648470 +6.912896 62.647297 +6.901749 62.645537 +6.894122 62.642310 +6.890015 62.636736 +6.894122 62.632043 +6.901162 62.628229 +6.909376 62.625295 +6.917003 62.621775 +6.925217 62.618548 +6.925804 62.612094 +6.922284 62.606814 +6.915830 62.603000 +6.910549 62.598307 +6.914656 62.593320 +6.921697 62.589800 +6.923457 62.584226 +6.924044 62.577772 +6.919350 62.573372 +6.911136 62.570145 +6.902335 62.567505 +6.892948 62.569265 +6.895882 62.575132 +6.899402 62.580412 +6.899989 62.587453 +6.896468 62.592440 +6.891188 62.596547 +6.884147 62.600360 +6.875347 62.603294 +6.868306 62.606814 +6.859506 62.610041 +6.852465 62.613561 +6.845425 62.617081 +6.837211 62.620308 +6.829584 62.623829 +6.821370 62.627056 +6.812569 62.629989 +6.803768 62.632923 +6.797315 62.636736 +6.791448 62.640843 +6.786167 62.645244 +6.777366 62.648177 +6.769153 62.651111 +6.756832 62.652871 +6.746271 62.651111 +6.735710 62.649350 +6.727496 62.646124 +6.719869 62.642897 +6.711655 62.639670 +6.704028 62.636443 +6.697574 62.632629 +6.691120 62.628229 +6.684667 62.624415 +6.677626 62.620602 +6.671759 62.616788 +6.663545 62.613268 +6.657091 62.609454 +6.649464 62.606227 +6.645357 62.609748 +6.643010 62.615321 +6.638903 62.620015 +6.630103 62.620308 +6.621889 62.617081 +6.617195 62.612388 +6.614848 62.607401 +6.618955 62.602707 +6.622475 62.597720 +6.623649 62.591560 +6.622475 62.584813 +6.620129 62.578652 +6.617782 62.572492 +6.615435 62.566038 +6.611915 62.560757 +6.604287 62.560171 +6.602527 62.565744 +6.603114 62.571318 +6.603701 62.578359 +6.601354 62.583932 +6.594313 62.587453 +6.582579 62.589213 +6.575539 62.592733 +6.572018 62.597720 +6.567911 62.602707 +6.565565 62.608281 +6.556764 62.611214 +6.543270 62.612094 +6.531536 62.611214 +6.520975 62.609454 +6.508654 62.608281 +6.496333 62.607107 +6.482839 62.606814 +6.469344 62.606521 +6.458197 62.604761 +6.452330 62.600947 +6.440009 62.599774 +6.432968 62.603294 +6.424168 62.606227 +6.414194 62.608574 +6.400699 62.608281 +6.388379 62.607107 +6.376058 62.606227 +6.364324 62.606521 +6.352589 62.607988 +6.339095 62.608868 +6.328534 62.607107 +6.325601 62.606521 +6.325601 62.607107 +6.317387 62.603881 +6.306826 62.602120 +6.297439 62.599774 +6.288051 62.597133 +6.280424 62.593906 +6.272797 62.590680 +6.264583 62.587159 +6.258129 62.583346 +6.251675 62.579532 +6.246982 62.574838 +6.248155 62.569851 +6.254609 62.566038 +6.262236 62.562518 +6.267517 62.558411 +6.269863 62.552837 +6.267517 62.546383 +6.265170 62.540223 +6.269863 62.535529 +6.267517 62.529369 +6.261063 62.525262 +6.263410 62.521155 +6.278077 62.520861 +6.290398 62.522035 +6.302132 62.522915 +6.314453 62.524088 +6.327948 62.524382 +6.341442 62.524675 +6.354936 62.525262 +6.368430 62.525555 +6.380751 62.526728 +6.394246 62.527022 +6.407740 62.527315 +6.421234 62.527902 +6.432968 62.528782 +6.447049 62.529075 +6.458784 62.530249 +6.472278 62.530542 +6.485772 62.530835 +6.499267 62.531129 +6.514521 62.530835 +6.527429 62.531129 +6.542683 62.530835 +6.556177 62.529662 +6.562631 62.526142 +6.557937 62.522915 +6.546203 62.521741 +6.533882 62.520861 +6.521561 62.519688 +6.509827 62.518514 +6.497506 62.517634 +6.485772 62.516461 +6.476385 62.513821 +6.478732 62.509714 +6.492226 62.508540 +6.506894 62.508247 +6.520975 62.508540 +6.532709 62.509714 +6.546203 62.510007 +6.559698 62.510300 +6.572018 62.511474 +6.583753 62.512354 +6.596073 62.513527 +6.609568 62.513821 +6.621302 62.514994 +6.631863 62.512647 +6.634210 62.507074 +6.630689 62.501793 +6.637730 62.499446 +6.651224 62.498273 +6.664132 62.497100 +6.675866 62.495633 +6.675279 62.491526 +6.666479 62.488886 +6.652398 62.488592 +6.638903 62.488299 +6.624236 62.488592 +6.614261 62.489766 +6.601941 62.491526 +6.589033 62.492406 +6.575539 62.491819 +6.562044 62.491526 +6.550310 62.493286 +6.538576 62.495046 +6.525082 62.496219 +6.511587 62.497100 +6.498093 62.496806 +6.487532 62.495046 +6.476972 62.493286 +6.463477 62.492699 +6.449983 62.493873 +6.436489 62.493286 +6.425928 62.491526 +6.415367 62.490059 +6.404806 62.488006 +6.394246 62.486245 +6.381925 62.485365 +6.369604 62.484192 +6.361977 62.480965 +6.353763 62.477445 +6.347896 62.473631 +6.338508 62.470991 +6.327948 62.469231 +6.316800 62.467471 +6.305066 62.466297 +6.293332 62.465417 +6.279837 62.465124 +6.267517 62.463950 +6.254022 62.463364 +6.242288 62.462190 +6.231141 62.460430 +6.222340 62.458083 +6.221753 62.453976 +6.230554 62.450750 +6.243462 62.449869 +6.256956 62.448989 +6.270450 62.449283 +6.282184 62.450163 +6.293332 62.452216 +6.305066 62.453390 +6.318560 62.452216 +6.325601 62.448696 +6.327948 62.443122 +6.333228 62.439015 +6.338508 62.434322 +6.346136 62.430801 +6.356110 62.428748 +6.361390 62.424054 +6.367257 62.419947 +6.380165 62.418774 +6.393659 62.419361 +6.405980 62.421121 +6.417714 62.422294 +6.428275 62.423761 +6.440596 62.424934 +6.454090 62.425521 +6.466411 62.426694 +6.478145 62.427575 +6.491639 62.428161 +6.503960 62.429041 +6.515694 62.429921 +6.526255 62.431975 +6.536816 62.433735 +6.547377 62.435495 +6.556764 62.438135 +6.566151 62.440482 +6.575539 62.443122 +6.583166 62.446349 +6.592553 62.448989 +6.601941 62.451336 +6.609568 62.454857 +6.621889 62.455443 +6.635383 62.456030 +6.645944 62.457790 +6.652398 62.461604 +6.658851 62.465711 +6.665305 62.469818 +6.672932 62.473044 +6.681146 62.475978 +6.691707 62.478032 +6.698748 62.474511 +6.704028 62.470111 +6.715762 62.468351 +6.729256 62.468644 +6.738644 62.470991 +6.749204 62.473044 +6.759765 62.474805 +6.770913 62.476565 +6.781473 62.478325 +6.791448 62.475978 +6.790861 62.471871 +6.781473 62.469524 +6.772086 62.466884 +6.763285 62.464537 +6.756245 62.460137 +6.762112 62.456030 +6.775606 62.454857 +6.787341 62.456030 +6.799661 62.457203 +6.814329 62.456617 +6.829584 62.456323 +6.840731 62.454857 +6.849532 62.451630 +6.855399 62.449576 +6.857159 62.444002 +6.863026 62.439309 +6.868306 62.435202 +6.876520 62.432268 +6.883561 62.428748 +6.892361 62.425521 +6.901162 62.422588 +6.907616 62.418774 +6.911723 62.413787 +6.915243 62.409093 +6.919350 62.404106 +6.924630 62.399706 +6.931671 62.396186 +6.938711 62.392372 +6.945752 62.388852 +6.953966 62.385918 +6.961006 62.382105 +6.968047 62.378584 +6.973327 62.374184 +6.969807 62.370370 +6.959246 62.368317 +6.946925 62.367437 +6.934018 62.366850 +6.923457 62.365383 +6.915243 62.362157 +6.917590 62.356583 +6.922870 62.352182 +6.928151 62.347782 +6.934018 62.343675 +6.939298 62.339568 +6.944579 62.334875 +6.948099 62.329888 +6.953379 62.325781 +6.957486 62.320794 +6.962766 62.316687 +6.969807 62.313166 +6.975087 62.309939 +6.986822 62.308473 +6.998556 62.306713 +7.012050 62.305539 +7.024958 62.304366 +7.036692 62.302899 +7.048426 62.300845 +7.061334 62.299965 +7.073068 62.297912 +7.083042 62.295858 +7.094776 62.294098 +7.106510 62.292338 +7.116484 62.289991 +7.128218 62.288231 +7.138192 62.285884 +7.148166 62.283538 +7.159901 62.281777 +7.171635 62.280017 +7.185129 62.278844 +7.198037 62.279137 +7.211531 62.279431 +7.222092 62.281484 +7.234413 62.282364 +7.244973 62.283831 +7.255534 62.285884 +7.266095 62.287645 +7.276656 62.289111 +7.288977 62.290285 +7.303644 62.289698 +7.316552 62.288525 +7.326526 62.286471 +7.338260 62.284418 +7.345887 62.282364 +7.354101 62.279137 +7.362315 62.276204 +7.366422 62.271217 +7.371702 62.266816 +7.379916 62.263296 +7.386957 62.259482 +7.393997 62.255962 +7.399278 62.251562 +7.402798 62.246575 +7.406318 62.241588 +7.409839 62.236601 +7.415119 62.232494 +7.414532 62.226920 +7.404558 62.228094 +7.395758 62.229854 +7.388717 62.233374 +7.383437 62.237481 +7.378156 62.241881 +7.372876 62.245988 +7.367596 62.250682 +7.362315 62.254789 +7.355275 62.258309 +7.348234 62.262123 +7.341780 62.265936 +7.334740 62.269457 +7.326526 62.272390 +7.315965 62.275030 +7.305991 62.277084 +7.293084 62.278257 +7.282523 62.276790 +7.271962 62.275030 +7.261401 62.272977 +7.253187 62.270043 +7.246734 62.266230 +7.242627 62.260656 +7.237933 62.255962 +7.231479 62.251855 +7.219158 62.250975 +7.208011 62.252735 +7.197450 62.255082 +7.186303 62.256842 +7.172808 62.258016 +7.158140 62.258309 +7.146406 62.260069 +7.138192 62.263003 +7.132912 62.267403 +7.124111 62.270630 +7.115897 62.273270 +7.104163 62.273857 +7.091842 62.272683 +7.080108 62.271803 +7.066614 62.271510 +7.051946 62.271803 +7.037278 62.272097 +7.027891 62.269750 +7.022611 62.265350 +7.023197 62.258896 +7.025544 62.253322 +7.029065 62.248335 +7.028478 62.241295 +7.029065 62.235134 +7.031411 62.229854 +7.031998 62.223693 +7.033758 62.217826 +7.036105 62.212252 +7.036692 62.206092 +7.037865 62.199638 +7.038452 62.193478 +7.037278 62.186731 +7.036105 62.179983 +7.033758 62.173530 +7.031998 62.167369 +7.026718 62.162676 +7.021437 62.157982 +7.014984 62.154168 +7.008530 62.150355 +7.002076 62.146248 +6.994449 62.143021 +6.987995 62.139207 +6.981541 62.135394 +6.973914 62.131287 +6.968634 62.126593 +6.967460 62.119846 +6.969807 62.114272 +6.975674 62.109872 +6.982128 62.106058 +6.990928 62.103418 +7.000903 62.100778 +7.010877 62.098431 +7.025544 62.098138 +7.038452 62.098431 +7.049013 62.099898 +7.059573 62.101951 +7.068961 62.104591 +7.076588 62.107525 +7.084802 62.110752 +7.091256 62.114859 +7.098883 62.118086 +7.106510 62.121019 +7.114724 62.124539 +7.125285 62.126006 +7.138192 62.126300 +7.149927 62.124833 +7.159901 62.122193 +7.166941 62.118672 +7.173982 62.114565 +7.179262 62.109872 +7.182782 62.106351 +7.186303 62.101364 +7.188649 62.095791 +7.183369 62.099018 +7.176328 62.102538 +7.168115 62.105471 +7.159314 62.108698 +7.151100 62.111339 +7.141126 62.113979 +7.129392 62.114272 +7.120004 62.111632 +7.112377 62.108698 +7.104750 62.105178 +7.098296 62.101364 +7.090082 62.098138 +7.080695 62.095791 +7.073068 62.092564 +7.064267 62.089924 +7.053706 62.088457 +7.043146 62.086403 +7.030825 62.085523 +7.017917 62.084937 +7.002663 62.085523 +6.989755 62.086697 +6.978021 62.088457 +6.969807 62.091390 +6.962766 62.094911 +6.955726 62.098724 +6.950446 62.103125 +6.943992 62.107232 +6.939885 62.112219 +6.938125 62.117792 +6.937538 62.124246 +6.938125 62.130700 +6.940472 62.135980 +6.942232 62.140674 +6.947512 62.145368 +6.953966 62.149181 +6.960420 62.152995 +6.966873 62.156808 +6.973327 62.161209 +6.980954 62.164142 +6.988582 62.167369 +6.995622 62.171476 +7.002076 62.175290 +7.005596 62.180864 +7.009116 62.186144 +7.010290 62.193184 +7.009116 62.199051 +7.008530 62.205505 +7.006770 62.211079 +7.006183 62.217239 +7.003836 62.223107 +7.002663 62.229267 +7.002076 62.235134 +7.002076 62.241588 +7.000903 62.247748 +7.000316 62.254202 +6.997969 62.259776 +6.996209 62.265350 +6.992102 62.270337 +6.989755 62.275910 +6.984475 62.280017 +6.980954 62.285004 +6.973914 62.288525 +6.966873 62.292338 +6.958660 62.295272 +6.948685 62.297912 +6.939885 62.300552 +6.932844 62.304366 +6.925804 62.308179 +6.923457 62.313753 +6.919937 62.318740 +6.916416 62.323434 +6.910549 62.327834 +6.905269 62.331941 +6.897055 62.334875 +6.890015 62.338688 +6.884734 62.343088 +6.878867 62.347195 +6.875347 62.352182 +6.871240 62.357170 +6.870653 62.363330 +6.870066 62.369784 +6.871240 62.376531 +6.873000 62.382398 +6.877107 62.387972 +6.880627 62.393545 +6.884147 62.398826 +6.885321 62.405866 +6.882974 62.411440 +6.875934 62.414960 +6.867133 62.418187 +6.855399 62.419654 +6.844251 62.421414 +6.830757 62.422588 +6.816089 62.422881 +6.802595 62.423761 +6.787927 62.424054 +6.772673 62.424641 +6.759765 62.425814 +6.749791 62.428161 +6.742751 62.431682 +6.735123 62.435202 +6.726910 62.438429 +6.719869 62.441949 +6.709895 62.444589 +6.696401 62.445176 +6.687600 62.442829 +6.677626 62.440189 +6.668825 62.437842 +6.658265 62.436082 +6.647117 62.434028 +6.639490 62.431095 +6.633036 62.426988 +6.623649 62.424348 +6.614848 62.422001 +6.605461 62.419361 +6.593140 62.418187 +6.582579 62.416720 +6.572018 62.414667 +6.562631 62.412320 +6.553244 62.409680 +6.546790 62.405866 +6.546790 62.400293 +6.553244 62.396772 +6.562044 62.393839 +6.562631 62.387385 +6.559111 62.381811 +6.558524 62.375357 +6.560871 62.369784 +6.562631 62.364210 +6.566738 62.359223 +6.567911 62.354236 +6.559111 62.357170 +6.553830 62.361276 +6.547963 62.365970 +6.542683 62.370077 +6.537403 62.374477 +6.533296 62.379171 +6.528015 62.383571 +6.522735 62.387678 +6.516868 62.392079 +6.508654 62.395012 +6.498680 62.397359 +6.485186 62.398239 +6.474625 62.397946 +6.462891 62.397066 +6.450570 62.395892 +6.440009 62.394132 +6.429448 62.392079 +6.420061 62.389732 +6.410674 62.387092 +6.403046 62.383865 +6.396592 62.380051 +6.391899 62.375357 +6.388379 62.369784 +6.386032 62.363623 +6.384858 62.356876 +6.386032 62.350422 +6.388379 62.345142 +6.391899 62.339862 +6.396006 62.334875 +6.401286 62.330768 +6.405393 62.325781 +6.405980 62.319620 +6.408327 62.314046 +6.414194 62.309939 +6.417714 62.304952 +6.422994 62.300552 +6.431795 62.297032 +6.438836 62.293218 +6.445876 62.289698 +6.451156 62.285591 +6.456437 62.281191 +6.462304 62.277084 +6.467584 62.272683 +6.474625 62.268870 +6.479905 62.264763 +6.485186 62.260656 +6.489292 62.255669 +6.493399 62.250682 +6.496920 62.245695 +6.499853 62.241295 +6.503373 62.236601 +6.508654 62.232201 +6.513934 62.228094 +6.518041 62.223107 +6.521561 62.218120 +6.525668 62.213426 +6.528015 62.207852 +6.533296 62.203452 +6.537403 62.198465 +6.541510 62.193478 +6.545030 62.188491 +6.548550 62.183504 +6.554417 62.179397 +6.559698 62.174996 +6.566738 62.171476 +6.572018 62.167076 +6.574365 62.161795 +6.578472 62.156808 +6.581992 62.151528 +6.586099 62.146834 +6.588446 62.141261 +6.590206 62.135687 +6.588446 62.129526 +6.581992 62.125420 +6.571432 62.123953 +6.560871 62.121899 +6.554417 62.118086 +6.549137 62.113392 +6.544443 62.108698 +6.537989 62.104591 +6.529189 62.106058 +6.530362 62.113099 +6.535056 62.117792 +6.541510 62.121606 +6.547963 62.125713 +6.554417 62.129820 +6.559111 62.134514 +6.564391 62.139207 +6.564978 62.146248 +6.562631 62.151528 +6.557351 62.155928 +6.553244 62.160915 +6.549723 62.165609 +6.544443 62.170009 +6.538576 62.174116 +6.531536 62.177637 +6.526255 62.182330 +6.519801 62.185851 +6.513934 62.189957 +6.508654 62.194358 +6.503373 62.198465 +6.499853 62.203745 +6.495746 62.208439 +6.493399 62.214306 +6.489292 62.219000 +6.485186 62.223987 +6.481665 62.228974 +6.478145 62.233961 +6.472278 62.238068 +6.466998 62.242175 +6.463477 62.247162 +6.457610 62.251269 +6.450570 62.255082 +6.442356 62.258016 +6.433555 62.261243 +6.423581 62.263296 +6.413607 62.265936 +6.404806 62.268576 +6.397766 62.272097 +6.394246 62.277084 +6.391312 62.282657 +6.390725 62.289111 +6.388379 62.294685 +6.386032 62.300259 +6.382511 62.304952 +6.376644 62.309353 +6.371364 62.313753 +6.366084 62.318153 +6.360217 62.322260 +6.356696 62.327247 +6.354349 62.332821 +6.350243 62.337515 +6.346136 62.342502 +6.340855 62.346902 +6.335575 62.351009 +6.331468 62.355996 +6.327361 62.360690 +6.323841 62.365970 +6.316800 62.369490 +6.306239 62.371544 +6.294505 62.370957 +6.283944 62.368904 +6.275730 62.365677 +6.268103 62.362450 +6.260476 62.359223 +6.251089 62.356583 +6.243462 62.353356 +6.234074 62.350716 +6.225274 62.348076 +6.214713 62.346315 +6.205325 62.343969 +6.196525 62.341328 +6.185964 62.339568 +6.175990 62.336928 +6.167189 62.334581 +6.156629 62.332528 +6.147241 62.329888 +6.138441 62.327541 +6.127880 62.325487 +6.118493 62.323140 +6.109105 62.320500 +6.098544 62.318740 +6.089744 62.316100 +6.080356 62.313753 +6.070969 62.311113 +6.062168 62.308473 +6.051608 62.306713 +6.042220 62.304072 +6.033420 62.301432 +6.024032 62.298792 +6.016405 62.295565 +6.008191 62.292632 +6.002324 62.288231 +5.995870 62.284418 +5.989417 62.280604 +5.982963 62.276497 +5.976509 62.272390 +5.971815 62.267696 +5.965948 62.263589 +5.959494 62.259776 +5.951281 62.256256 +5.946587 62.251562 +5.947174 62.245695 +5.955974 62.242468 +5.967708 62.240708 +5.974749 62.237188 +5.978856 62.232201 +5.982376 62.227507 +5.985310 62.221933 +5.990590 62.217533 +5.997631 62.214306 +6.006431 62.211079 +6.019339 62.209906 +6.032833 62.209026 +6.044567 62.207559 +6.054541 62.205212 +6.065689 62.203745 +6.060995 62.200225 +6.048087 62.199638 +6.034593 62.199345 +6.019925 62.199638 +6.008191 62.201398 +5.998217 62.203745 +5.987656 62.205799 +5.981203 62.209319 +5.973575 62.213132 +5.968295 62.217533 +5.961255 62.221053 +5.952454 62.223987 +5.940720 62.225453 +5.930159 62.223987 +5.923119 62.220466 +5.917838 62.215773 +5.917251 62.209026 +5.919598 62.203452 +5.924879 62.198758 +5.931919 62.195531 +5.939546 62.192011 +5.947760 62.188784 +5.956561 62.185851 +5.964775 62.182917 +5.975336 62.180864 +5.981789 62.177343 +5.990590 62.174116 +5.997631 62.170596 +6.004671 62.167076 +6.009951 62.162676 +6.015818 62.158275 +6.021099 62.154168 +6.026379 62.150061 +6.032246 62.145661 +6.037527 62.141261 +6.041634 62.136274 +6.046914 62.132167 +6.052194 62.128060 +6.059822 62.124539 +6.065102 62.120139 +6.070382 62.115739 +6.077423 62.112219 +6.082703 62.108112 +6.089744 62.104591 +6.098544 62.101364 +6.108518 62.099311 +6.120253 62.097551 +6.123186 62.096671 +6.133160 62.095791 +6.147828 62.095497 +6.162496 62.094911 +6.175403 62.094031 +6.187137 62.092564 +6.200632 62.091390 +6.210606 62.089044 +6.223513 62.088457 +6.237008 62.088750 +6.251675 62.088457 +6.264583 62.087283 +6.275144 62.084937 +6.283358 62.082003 +6.292158 62.078776 +6.299199 62.075256 +6.307413 62.072616 +6.317387 62.069976 +6.330881 62.069095 +6.345549 62.068509 +6.355523 62.066455 +6.363737 62.063228 +6.364910 62.058535 +6.357283 62.055308 +6.342615 62.055601 +6.329121 62.056775 +6.317387 62.057068 +6.305653 62.055895 +6.295679 62.057068 +6.286878 62.059708 +6.281598 62.064108 +6.277491 62.068802 +6.270450 62.072616 +6.262236 62.075549 +6.248742 62.076723 +6.235834 62.076136 +6.222340 62.077309 +6.211193 62.078776 +6.199458 62.080536 +6.187724 62.082296 +6.174817 62.083176 +6.163082 62.084643 +6.149588 62.085817 +6.134920 62.086110 +6.124360 62.084350 +6.113799 62.082590 +6.102065 62.081416 +6.090331 62.080243 +6.081530 62.077896 +6.075076 62.073496 +6.066862 62.070562 +6.060995 62.066455 +6.052194 62.066749 +6.055715 62.072029 +6.055128 62.078189 +6.051021 62.083470 +6.048674 62.088750 +6.045741 62.094324 +6.040460 62.098724 +6.046327 62.094911 +6.042220 62.098724 +6.036353 62.102831 +6.028139 62.105765 +6.018165 62.108112 +6.011125 62.111632 +6.004084 62.115152 +5.997044 62.118966 +5.991763 62.123073 +5.985896 62.127473 +5.981789 62.132167 +5.975336 62.135980 +5.964775 62.138327 +5.954801 62.136274 +5.949520 62.131580 +5.947174 62.125420 +5.948347 62.119259 +5.949520 62.113099 +5.950107 62.106645 +5.949520 62.099898 +5.946000 62.094324 +5.942480 62.088750 +5.937786 62.084350 +5.932506 62.079363 +5.927812 62.074669 +5.921358 62.070856 +5.916665 62.066162 +5.910211 62.062348 +5.905517 62.057361 +5.899063 62.053254 +5.894370 62.048561 +5.889676 62.043867 +5.883222 62.040053 +5.878529 62.035360 +5.872075 62.031253 +5.865621 62.027146 +5.859754 62.023332 +5.850367 62.020692 +5.844500 62.018052 +5.842153 62.023626 +5.842739 62.030666 +5.844500 62.036533 +5.849780 62.041520 +5.852713 62.046801 +5.857994 62.051788 +5.862688 62.056188 +5.867381 62.061175 +5.872075 62.065575 +5.877355 62.070562 +5.883222 62.074376 +5.888503 62.079070 +5.894956 62.083176 +5.899650 62.087870 +5.903170 62.093444 +5.907864 62.098138 +5.913144 62.102831 +5.916078 62.108405 +5.919598 62.113685 +5.920185 62.120433 +5.921358 62.127473 +5.921945 62.134514 +5.922532 62.140967 +5.924292 62.147128 +5.924879 62.154168 +5.924292 62.160622 +5.923705 62.166783 +5.920772 62.172356 +5.917251 62.177343 +5.911384 62.181450 +5.904344 62.184970 +5.897890 62.188491 +5.890263 62.192304 +5.882049 62.194945 +5.870315 62.196705 +5.858581 62.198465 +5.845086 62.198171 +5.834525 62.196118 +5.825725 62.193478 +5.818098 62.190251 +5.809884 62.187024 +5.801083 62.184384 +5.792282 62.181744 +5.782895 62.179103 +5.773508 62.176757 +5.762947 62.174703 +5.752386 62.172943 +5.740652 62.171770 +5.725984 62.172356 +5.712490 62.171770 +5.697822 62.172063 +5.683155 62.172356 +5.672594 62.170303 +5.667900 62.165609 +5.664380 62.160329 +5.665553 62.153875 +5.667900 62.148301 +5.670247 62.142727 +5.672594 62.137154 +5.676701 62.132460 +5.680808 62.127473 +5.686088 62.123366 +5.691955 62.118966 +5.698996 62.115152 +5.706036 62.111632 +5.714837 62.108992 +5.721291 62.105178 +5.730091 62.102538 +5.737132 62.099018 +5.744172 62.095204 +5.749453 62.091097 +5.746519 62.086990 +5.734785 62.088750 +5.727744 62.090804 +5.718944 62.093737 +5.710143 62.096671 +5.701929 62.099311 +5.694889 62.103125 +5.686088 62.106058 +5.679048 62.109578 +5.670834 62.112512 +5.664967 62.116619 +5.659686 62.121019 +5.653819 62.125420 +5.650299 62.130407 +5.647365 62.135980 +5.645019 62.141261 +5.643845 62.147421 +5.640325 62.152408 +5.636218 62.157102 +5.627417 62.160329 +5.617443 62.162382 +5.604536 62.163262 +5.591041 62.164436 +5.578134 62.165316 +5.564639 62.166196 +5.551732 62.167076 +5.541171 62.169423 +5.531197 62.171770 +5.521223 62.173823 +5.512422 62.177050 +5.503622 62.179690 +5.493648 62.182037 +5.483674 62.184090 +5.469006 62.184384 +5.455512 62.184090 +5.443191 62.182917 +5.431457 62.181744 +5.422069 62.179103 +5.415029 62.175876 +5.411508 62.170303 +5.410922 62.163556 +5.411508 62.157102 +5.409748 62.151235 +5.405055 62.146248 +5.398601 62.142141 +5.392734 62.138327 +5.388040 62.133633 +5.384520 62.128060 +5.385693 62.121899 +5.389214 62.116912 +5.398014 62.114272 +5.406228 62.111045 +5.413855 62.107818 +5.422069 62.104591 +5.432630 62.102538 +5.442604 62.100191 +5.452578 62.098138 +5.463139 62.095791 +5.474286 62.094031 +5.486020 62.092564 +5.499515 62.091684 +5.511249 62.089924 +5.525917 62.089630 +5.538824 62.090217 +5.552319 62.089044 +5.559359 62.085523 +5.568160 62.082883 +5.576374 62.079656 +5.586348 62.077603 +5.593388 62.073789 +5.594562 62.067922 +5.589868 62.062935 +5.579307 62.065282 +5.572267 62.068802 +5.565226 62.072616 +5.557012 62.075256 +5.548212 62.078189 +5.534717 62.077896 +5.528850 62.073789 +5.525330 62.068215 +5.521810 62.062935 +5.520050 62.056775 +5.516529 62.051494 +5.511836 62.046801 +5.507142 62.041814 +5.503622 62.036533 +5.501275 62.030373 +5.496581 62.025679 +5.491888 62.020692 +5.485434 62.015998 +5.479567 62.011891 +5.473113 62.008078 +5.464312 62.005438 +5.461965 62.011011 +5.463726 62.017172 +5.467246 62.022452 +5.470179 62.028026 +5.470766 62.035066 +5.467246 62.039760 +5.463139 62.044747 +5.457858 62.048854 +5.451991 62.052961 +5.446711 62.057361 +5.439084 62.061175 +5.430870 62.063815 +5.423829 62.067629 +5.416789 62.071149 +5.411508 62.075256 +5.405641 62.079363 +5.400361 62.083763 +5.391560 62.086697 +5.382760 62.089337 +5.372786 62.091684 +5.363985 62.094617 +5.354011 62.096964 +5.345210 62.099604 +5.336996 62.102831 +5.328196 62.105471 +5.319395 62.108698 +5.312355 62.112219 +5.303554 62.114859 +5.296514 62.118672 +5.288300 62.121313 +5.280672 62.125126 +5.275392 62.129233 +5.273045 62.134807 +5.271872 62.140967 +5.273632 62.147128 +5.277152 62.152701 +5.278912 62.158862 +5.276565 62.164436 +5.267765 62.167076 +5.256031 62.168836 +5.247817 62.171770 +5.240189 62.175290 +5.233736 62.178810 +5.224935 62.181744 +5.217895 62.185264 +5.210267 62.188784 +5.204987 62.193184 +5.199120 62.197585 +5.193839 62.201692 +5.186799 62.205212 +5.179172 62.208732 +5.172131 62.212252 +5.160397 62.214013 +5.150423 62.211959 +5.145143 62.207265 +5.145143 62.201692 +5.147490 62.196118 +5.145729 62.189957 +5.136342 62.187611 +5.126368 62.189371 +5.116394 62.191718 +5.102900 62.191424 +5.092339 62.189371 +5.086472 62.186731 +nan nan +5.086472 62.186731 +5.081778 62.183210 +5.078258 62.177930 +5.083538 62.173530 +5.091165 62.170303 +5.089405 62.165316 +5.080018 62.162676 +5.074151 62.158569 +5.073564 62.152995 +5.080605 62.149768 +5.087645 62.146248 +5.096446 62.143021 +5.105246 62.140381 +5.113460 62.137447 +5.118154 62.132460 +5.124608 62.128940 +5.121674 62.125126 +5.112874 62.122193 +5.102313 62.120139 +5.094686 62.116912 +5.092926 62.112219 +5.098206 62.108112 +5.105833 62.105765 +5.115807 62.103711 +5.129302 62.102831 +5.143969 62.102538 +5.158637 62.102245 +5.173305 62.101951 +5.186212 62.101071 +5.196773 62.099018 +5.206747 62.096671 +5.214961 62.094031 +5.222588 62.090217 +5.227869 62.085817 +5.236669 62.083176 +5.246643 62.080830 +5.256617 62.078483 +5.268352 62.077016 +5.278912 62.074669 +5.285953 62.071149 +5.291233 62.067042 +5.298274 62.063228 +5.304141 62.059121 +5.307661 62.054428 +5.313528 62.050027 +5.315875 62.044454 +5.321742 62.040347 +5.329956 62.037413 +5.340517 62.035360 +5.350491 62.032720 +5.363398 62.031839 +5.373959 62.029786 +5.383933 62.027439 +5.393907 62.025386 +5.400948 62.021572 +5.403295 62.015998 +5.397427 62.012185 +5.383933 62.011598 +5.369265 62.011891 +5.357531 62.013652 +5.347557 62.015705 +5.337583 62.018052 +5.325849 62.019519 +5.314115 62.019812 +5.307661 62.015412 +5.305901 62.009545 +5.305314 62.002797 +5.303554 61.996344 +5.298860 61.991650 +5.294167 61.986956 +5.287713 61.983143 +5.278912 61.980209 +5.268352 61.978449 +5.257791 61.976689 +5.248990 61.973755 +5.244296 61.969062 +5.243710 61.962314 +5.243123 61.955567 +5.238429 61.950874 +5.228455 61.951754 +5.224348 61.956447 +5.220241 61.961434 +5.217895 61.967008 +5.210854 61.970528 +5.200293 61.971408 +5.194426 61.967302 +5.190906 61.962021 +5.187386 61.956447 +5.181519 61.952340 +5.172718 61.953807 +5.170371 61.959381 +5.167438 61.964955 +5.166264 61.971115 +5.159810 61.974635 +5.149250 61.974049 +5.141622 61.970822 +5.136929 61.966128 +5.138102 61.959968 +5.139276 61.953514 +5.138689 61.946767 +5.132235 61.942660 +5.124608 61.939433 +5.117567 61.936206 +5.115221 61.930046 +5.110527 61.925352 +5.104660 61.921245 +5.101140 61.915964 +5.103486 61.910097 +5.112287 61.907164 +5.125195 61.906284 +5.135755 61.906871 +5.136929 61.900417 +5.140449 61.895723 +5.148076 61.892203 +5.160984 61.892789 +5.168611 61.896016 +5.175065 61.900123 +5.182105 61.903350 +5.189733 61.906577 +5.200293 61.908631 +5.212027 61.909804 +5.224935 61.910391 +5.239603 61.910097 +5.251337 61.908337 +5.263071 61.906871 +5.277739 61.906577 +5.289473 61.907751 +5.300034 61.909804 +5.310008 61.911564 +5.320569 61.913618 +5.329369 61.916258 +5.339930 61.918018 +5.348731 61.920658 +5.359291 61.922418 +5.368679 61.925058 +5.378653 61.926819 +5.387453 61.929459 +5.398014 61.931512 +5.409748 61.932392 +5.422069 61.933859 +5.433217 61.935033 +5.442017 61.931806 +5.442017 61.926525 +5.445538 61.923005 +5.456098 61.923592 +5.467832 61.924765 +5.479567 61.925939 +5.491301 61.926819 +5.505969 61.926525 +5.519463 61.927112 +5.534131 61.926819 +5.547038 61.925939 +5.559946 61.925058 +5.574613 61.924765 +5.588108 61.923885 +5.601015 61.922712 +5.610989 61.920658 +5.620963 61.918311 +5.629764 61.915671 +5.639738 61.913031 +5.651472 61.911564 +5.664380 61.910684 +5.677874 61.910977 +5.692542 61.910977 +5.705450 61.910977 +5.718944 61.911564 +5.731851 61.911858 +5.743586 61.913324 +5.757080 61.913618 +5.769988 61.914204 +5.782308 61.915378 +5.796389 61.915084 +5.809297 61.913911 +5.824551 61.913618 +5.837459 61.914204 +5.850953 61.914498 +5.863861 61.915084 +5.878529 61.914498 +5.893196 61.914204 +5.907864 61.913911 +5.922532 61.913618 +5.935439 61.912738 +5.948347 61.911564 +5.960081 61.910097 +5.962428 61.905697 +5.953627 61.903350 +5.943067 61.901297 +5.931332 61.900417 +5.918425 61.900123 +5.903757 61.900417 +5.889089 61.900417 +5.874422 61.900710 +5.861514 61.901883 +5.848020 61.901297 +5.835112 61.901003 +5.821618 61.900417 +5.809884 61.899537 +5.796389 61.899243 +5.784655 61.897777 +5.772921 61.896603 +5.761187 61.895430 +5.750626 61.893963 +5.740652 61.891909 +5.730091 61.889856 +5.726571 61.887216 +5.735372 61.884576 +5.742412 61.880762 +5.744759 61.876655 +5.750039 61.872548 +5.757080 61.869028 +5.764120 61.865214 +5.772921 61.862281 +5.781135 61.859347 +5.788175 61.855827 +5.801083 61.854653 +5.809884 61.857587 +5.816338 61.861401 +5.823965 61.864627 +5.833352 61.867268 +5.842153 61.869615 +5.852713 61.871668 +5.862688 61.873721 +5.872075 61.876068 +5.880875 61.878708 +5.894370 61.879295 +5.908451 61.879002 +5.920185 61.877242 +5.927225 61.873721 +5.934266 61.869908 +5.944240 61.867854 +5.958908 61.867268 +5.971815 61.867854 +5.987070 61.867561 +6.001151 61.867268 +6.015818 61.866681 +6.027553 61.865214 +6.037527 61.862867 +6.047501 61.860521 +6.055715 61.857587 +6.065689 61.855240 +6.074489 61.852307 +6.082703 61.849373 +6.091504 61.846440 +6.097958 61.842919 +6.107932 61.840572 +6.121426 61.839399 +6.123773 61.838812 +6.124360 61.839399 +6.134334 61.839986 +6.144894 61.842039 +6.155455 61.843506 +6.165429 61.845559 +6.175990 61.847320 +6.187724 61.848200 +6.198285 61.850253 +6.208846 61.852013 +6.219406 61.853773 +6.231141 61.854947 +6.242875 61.856120 +6.255782 61.856414 +6.270450 61.856120 +6.283944 61.854947 +6.295092 61.853480 +6.305066 61.851133 +6.313867 61.848200 +6.323254 61.845853 +6.332055 61.842919 +6.340268 61.839986 +6.349069 61.837052 +6.360217 61.835292 +6.371951 61.833532 +6.383685 61.832065 +6.396592 61.830892 +6.409500 61.830012 +6.422408 61.828838 +6.437075 61.828545 +6.449983 61.827371 +6.463477 61.826491 +6.476385 61.825611 +6.490466 61.825025 +6.501027 61.827078 +6.508654 61.830012 +6.512174 61.835585 +6.515694 61.840866 +6.518041 61.847320 +6.521561 61.852600 +6.526255 61.857294 +6.530362 61.862867 +6.535056 61.867561 +6.541510 61.871375 +6.549137 61.874602 +6.557937 61.877242 +6.567325 61.879589 +6.579059 61.880762 +6.590793 61.881642 +6.604287 61.882229 +6.618955 61.881642 +6.631863 61.880469 +6.642423 61.882522 +6.651811 61.884869 +6.658851 61.888389 +6.665305 61.892203 +6.674692 61.894843 +6.684667 61.893963 +6.687013 61.888096 +6.687600 61.881935 +6.694641 61.878415 +6.704615 61.875775 +6.717522 61.874895 +6.730430 61.874015 +6.740404 61.871668 +6.752138 61.869615 +6.763285 61.868148 +6.775020 61.867854 +6.783820 61.869028 +6.793208 61.871375 +6.803768 61.873428 +6.815503 61.872841 +6.817849 61.867268 +6.812569 61.862867 +6.804942 61.859347 +6.799661 61.854653 +6.796141 61.849080 +6.792621 61.843799 +6.786167 61.839986 +6.774433 61.840279 +6.764459 61.842626 +6.758005 61.846146 +6.752725 61.850546 +6.745684 61.854067 +6.738644 61.857880 +6.728670 61.859934 +6.717522 61.861987 +6.705788 61.863747 +6.694054 61.865214 +6.682906 61.866974 +6.669999 61.868148 +6.658265 61.869615 +6.645357 61.870495 +6.630689 61.871081 +6.617195 61.870788 +6.605461 61.869615 +6.593727 61.868734 +6.583753 61.866681 +6.575539 61.863747 +6.575539 61.862281 +6.575539 61.862867 +6.567911 61.859640 +6.560284 61.856414 +6.553830 61.852600 +6.549137 61.847906 +6.546790 61.841746 +6.546203 61.836172 +6.546790 61.829718 +6.546203 61.822971 +6.539749 61.818864 +6.533296 61.815051 +6.525668 61.811530 +6.518041 61.808597 +6.509241 61.805957 +6.502787 61.804783 +6.491053 61.803610 +6.479318 61.802436 +6.468758 61.800970 +6.467584 61.800970 +6.468758 61.801263 +6.457610 61.801556 +6.442942 61.802143 +6.428275 61.802436 +6.415367 61.803610 +6.400699 61.803903 +6.389552 61.805663 +6.376058 61.806543 +6.364910 61.808303 +6.353176 61.810064 +6.343202 61.812117 +6.334988 61.815344 +6.327948 61.818864 +6.320907 61.822384 +6.312693 61.825318 +6.303893 61.828252 +6.294505 61.830598 +6.282771 61.832358 +6.271037 61.833825 +6.259303 61.835585 +6.246395 61.836759 +6.232314 61.837052 +6.219993 61.835879 +6.208259 61.834705 +6.196525 61.833532 +6.184791 61.832358 +6.174230 61.830892 +6.162496 61.828838 +6.150762 61.827665 +6.139027 61.826785 +6.127293 61.825611 +6.112625 61.826198 +6.097958 61.826491 +6.085050 61.827078 +6.073316 61.828838 +6.061582 61.830598 +6.054541 61.828545 +6.059822 61.824438 +6.068036 61.821504 +6.076836 61.818571 +6.085050 61.815637 +6.092091 61.811824 +6.099131 61.808303 +6.104412 61.804196 +6.111452 61.800676 +6.117906 61.796863 +6.124946 61.793342 +6.133747 61.790409 +6.140787 61.786595 +6.149001 61.783955 +6.158975 61.781315 +6.167189 61.778675 +6.174230 61.774861 +6.181270 61.771341 +6.177750 61.765767 +6.167189 61.764007 +6.154282 61.763714 +6.139614 61.764007 +6.126706 61.764887 +6.113799 61.766060 +6.102065 61.767527 +6.095611 61.771047 +6.089744 61.775448 +6.086224 61.780141 +6.082117 61.785422 +6.078010 61.790409 +6.072729 61.794516 +6.067449 61.798916 +6.060408 61.802436 +6.055128 61.806543 +6.046327 61.809477 +6.038113 61.812410 +6.029313 61.815637 +6.022859 61.819158 +6.015818 61.822384 +6.005844 61.825025 +5.997631 61.827665 +5.987070 61.830305 +5.972989 61.830598 +5.967708 61.825905 +5.965948 61.819744 +5.962428 61.814171 +5.961841 61.807130 +5.959494 61.800970 +5.957734 61.795102 +5.955974 61.788942 +5.953627 61.782488 +5.953041 61.775741 +5.950694 61.769581 +5.948934 61.763420 +5.944240 61.758727 +5.937786 61.754620 +5.931332 61.750806 +5.922532 61.748166 +5.914905 61.744939 +5.907277 61.741712 +5.900824 61.737605 +5.892610 61.740539 +5.896130 61.745819 +5.902584 61.749926 +5.907277 61.754620 +5.914318 61.758140 +5.920772 61.761953 +5.925465 61.766647 +5.930746 61.771341 +5.932506 61.777501 +5.933093 61.784542 +5.934266 61.791289 +5.934853 61.798329 +5.935439 61.805077 +5.937200 61.811530 +5.940720 61.816811 +5.944240 61.822091 +5.946000 61.828252 +5.947174 61.835292 +5.944827 61.840866 +5.936026 61.843506 +5.923119 61.844679 +5.911384 61.846440 +5.899650 61.848200 +5.885569 61.848200 +5.872075 61.847906 +5.860341 61.846733 +5.848606 61.845559 +5.838046 61.843506 +5.828072 61.842039 +5.815751 61.840866 +5.804017 61.839399 +5.792282 61.838226 +5.782308 61.836759 +5.771748 61.834705 +5.760013 61.833532 +5.748279 61.832358 +5.734785 61.832065 +5.723051 61.830892 +5.711317 61.829718 +5.699582 61.828545 +5.687848 61.827371 +5.677288 61.825611 +5.667313 61.823558 +5.659100 61.820624 +5.653232 61.816517 +5.647365 61.812410 +5.639151 61.809183 +5.626244 61.808597 +5.620963 61.812704 +5.620963 61.818277 +5.627417 61.822384 +5.635044 61.825905 +5.642672 61.828838 +5.651472 61.831772 +5.662033 61.833532 +5.670834 61.836172 +5.683155 61.837346 +5.693129 61.839106 +5.706623 61.840279 +5.720704 61.839986 +5.734198 61.840279 +5.744759 61.842333 +5.738892 61.844973 +5.731851 61.848493 +5.725398 61.852307 +5.717770 61.855827 +5.712490 61.859934 +5.707210 61.864334 +5.701343 61.868734 +5.694302 61.872255 +5.687848 61.875775 +5.680808 61.879295 +5.672007 61.882229 +5.660860 61.883989 +5.647365 61.884869 +5.634458 61.885749 +5.622724 61.887216 +5.612750 61.889563 +5.604536 61.892496 +5.595735 61.895136 +5.582827 61.896310 +5.569333 61.895723 +5.557599 61.894843 +5.545865 61.893670 +5.534131 61.892496 +5.522396 61.894256 +5.515356 61.897483 +5.508315 61.901003 +5.498341 61.903350 +5.485434 61.904524 +5.471939 61.905404 +5.459032 61.905990 +5.449058 61.908631 +5.437324 61.910097 +5.424416 61.910977 +5.409748 61.911271 +5.399188 61.909511 +5.387453 61.908337 +5.375719 61.906871 +5.363985 61.905697 +5.354598 61.903350 +5.348731 61.898657 +5.344037 61.893963 +5.339343 61.890443 +5.334650 61.885749 +5.329956 61.880762 +5.322329 61.877535 +5.315875 61.873721 +5.308248 61.870201 +5.301207 61.866974 +5.293580 61.863747 +5.287126 61.859640 +5.280672 61.855533 +5.280672 61.849960 +5.290646 61.847906 +5.303554 61.847026 +5.317048 61.846146 +5.328196 61.844386 +5.335236 61.840866 +5.331129 61.837639 +5.317635 61.837052 +5.302967 61.837346 +5.290060 61.837052 +5.278326 61.835585 +5.267765 61.833532 +5.257204 61.832065 +5.261311 61.827078 +5.268352 61.823265 +5.259551 61.820918 +5.248990 61.818864 +5.239016 61.816811 +5.229629 61.814464 +5.220828 61.811530 +5.213201 61.808303 +5.204400 61.805957 +5.195600 61.803316 +5.185039 61.801263 +5.173305 61.800090 +5.161571 61.798916 +5.149836 61.797743 +5.141036 61.795396 +5.133408 61.791876 +5.125781 61.788649 +5.118741 61.785422 +5.112287 61.781021 +5.104660 61.777795 +5.095859 61.775154 +5.087058 61.772514 +5.077671 61.769874 +5.067697 61.768114 +5.063003 61.763420 +5.065937 61.759313 +5.072391 61.755500 +5.085885 61.754620 +5.098793 61.755206 +5.108767 61.756966 +5.121088 61.758433 +5.131062 61.759900 +5.141622 61.761953 +5.154530 61.762540 +5.166264 61.763714 +5.177998 61.764887 +5.189733 61.766060 +5.204400 61.765767 +5.217895 61.766354 +5.230802 61.765474 +5.224348 61.762834 +5.213201 61.761660 +5.201467 61.760193 +5.189146 61.759313 +5.177412 61.758140 +5.165677 61.756966 +5.154530 61.755500 +5.143969 61.753740 +5.134582 61.751099 +5.128715 61.747286 +5.131062 61.741712 +5.136929 61.737312 +5.145143 61.734378 +5.153943 61.731738 +5.160984 61.727924 +5.166264 61.723524 +5.163331 61.718244 +5.154530 61.715897 +5.146903 61.712377 +5.140449 61.708270 +5.131648 61.706803 +5.126368 61.711496 +5.122261 61.716190 +5.118154 61.721177 +5.112874 61.725284 +5.105833 61.728804 +5.097033 61.727631 +5.087645 61.724991 +5.081191 61.728511 +5.078258 61.734085 +5.074151 61.738778 +5.068871 61.743472 +5.060657 61.746112 +5.050683 61.748459 +5.038948 61.749633 +5.025454 61.749339 +5.014307 61.748166 +5.001986 61.746112 +4.992012 61.744352 +4.982624 61.741712 +4.977931 61.737018 +4.982624 61.732325 +4.987905 61.727924 +4.986145 61.722937 +4.975584 61.721177 +4.965610 61.719124 +4.959156 61.715310 +4.959156 61.708270 +4.961503 61.702696 +4.963850 61.697122 +4.965023 61.691255 +4.959156 61.686855 +4.950355 61.684508 +4.940968 61.681574 +4.938034 61.676294 +4.939208 61.671307 +4.943315 61.666320 +4.950355 61.663093 +4.957396 61.659573 +4.962676 61.655172 +4.963850 61.650185 +4.963263 61.644905 +4.963263 61.638158 +4.966783 61.633171 +4.974410 61.629357 +4.982624 61.628184 +4.997292 61.627890 +5.009026 61.629064 +5.019587 61.630824 +5.032495 61.631411 +5.045402 61.631997 +5.048336 61.631997 +5.050096 61.631997 +5.058310 61.633171 +5.070044 61.633171 +5.082952 61.631997 +5.094686 61.630531 +5.105833 61.628771 +5.117567 61.627304 +5.132235 61.627304 +5.143969 61.628477 +5.155117 61.629357 +5.168611 61.629944 +5.180345 61.628477 +5.191493 61.627010 +5.204400 61.627304 +5.219068 61.627304 +5.231976 61.627597 +5.242536 61.629357 +5.252510 61.631411 +5.261311 61.633758 +5.273045 61.635224 +5.283606 61.636984 +5.294167 61.638745 +5.305901 61.639918 +5.317635 61.641385 +5.330543 61.641678 +5.343450 61.642265 +5.356358 61.642852 +5.359291 61.637278 +5.352838 61.633171 +5.342864 61.631117 +5.329369 61.630824 +5.316462 61.630237 +5.306488 61.628477 +5.294753 61.627304 +5.281259 61.626717 +5.266591 61.627010 +5.256617 61.624957 +5.244883 61.623784 +5.234322 61.622023 +5.223175 61.620850 +5.211441 61.619677 +5.196773 61.619970 +5.182105 61.619970 +5.169198 61.619677 +5.159224 61.617916 +5.150423 61.615276 +5.139862 61.613223 +5.129302 61.611463 +5.118154 61.609996 +5.108767 61.607356 +5.102900 61.603249 +5.111700 61.602075 +5.122848 61.601782 +5.133408 61.603542 +5.143383 61.605596 +5.152183 61.608236 +5.160984 61.610876 +5.171545 61.612636 +5.186212 61.612636 +5.199120 61.612929 +5.212614 61.613223 +5.225522 61.613809 +5.238429 61.614396 +5.249577 61.612636 +5.263071 61.612049 +5.277152 61.611756 +5.291820 61.611463 +5.304727 61.610583 +5.317635 61.609703 +5.329369 61.607942 +5.340517 61.606476 +5.350491 61.604129 +5.360465 61.602075 +5.370439 61.599728 +5.380413 61.597382 +5.385693 61.593275 +5.394494 61.590341 +5.404468 61.587994 +5.414442 61.585941 +5.424416 61.583594 +5.422069 61.577434 +5.412095 61.575673 +5.399188 61.575087 +5.384520 61.575380 +5.369852 61.575673 +5.356945 61.575380 +5.342864 61.575673 +5.329956 61.576260 +5.317048 61.577140 +5.308248 61.580367 +5.308834 61.584181 +5.318808 61.586234 +5.332303 61.586528 +5.341103 61.589168 +5.336996 61.592688 +5.325262 61.594448 +5.312355 61.595328 +5.299447 61.596208 +5.286539 61.597088 +5.273632 61.597968 +5.258964 61.598262 +5.244296 61.598262 +5.230215 61.598555 +5.218481 61.598848 +5.206747 61.599142 +5.196773 61.597088 +5.187386 61.594448 +5.174478 61.594155 +5.160397 61.594155 +5.148663 61.592981 +5.148076 61.588874 +5.158050 61.586528 +5.169784 61.585354 +5.182692 61.584181 +5.193839 61.582714 +5.203814 61.580660 +5.212614 61.577434 +5.216721 61.572740 +5.223175 61.569220 +5.237843 61.568926 +5.248403 61.570980 +5.260138 61.571860 +5.273045 61.570980 +5.283019 61.568926 +5.292993 61.566579 +5.302967 61.564526 +5.314115 61.562766 +5.324089 61.560419 +5.335823 61.558952 +5.345797 61.556605 +5.355771 61.554552 +5.358118 61.550152 +5.349317 61.547805 +5.336410 61.548685 +5.326436 61.550738 +5.314702 61.552498 +5.301794 61.553378 +5.288886 61.553085 +5.277152 61.551618 +5.263071 61.551912 +5.249577 61.551325 +5.240776 61.548978 +5.233736 61.545458 +5.223175 61.543698 +5.210267 61.543404 +5.198533 61.544578 +5.186799 61.546338 +5.175652 61.547805 +5.165677 61.550152 +5.155703 61.552205 +5.142796 61.551912 +5.142209 61.546338 +5.146316 61.541351 +5.147490 61.536657 +5.137515 61.536071 +5.129888 61.532844 +5.130475 61.526683 +5.133408 61.521109 +5.138689 61.517003 +5.145729 61.513189 +5.154530 61.510255 +5.162744 61.507615 +5.170958 61.504388 +5.179758 61.501748 +5.187972 61.498815 +5.199707 61.497348 +5.210854 61.495588 +5.223762 61.494708 +5.238429 61.494414 +5.249577 61.492947 +5.258377 61.490014 +5.266591 61.487080 +5.275392 61.484147 +5.286539 61.482680 +5.299447 61.481800 +5.313528 61.481507 +5.327022 61.480627 +5.341103 61.480333 +5.355771 61.480040 +5.369852 61.479747 +5.382760 61.480333 +5.396254 61.480920 +5.409162 61.481213 +5.422069 61.481800 +5.433217 61.480040 +5.443191 61.477693 +5.441431 61.472999 +5.435564 61.468892 +5.433803 61.462732 +5.436150 61.457158 +5.441431 61.453051 +5.451405 61.450704 +5.464312 61.450118 +5.476046 61.450998 +5.486020 61.453051 +5.496581 61.454811 +5.506555 61.456572 +5.518289 61.457745 +5.531197 61.458332 +5.544105 61.457158 +5.557599 61.457745 +5.567573 61.459798 +5.575200 61.463025 +5.584001 61.465666 +5.591041 61.468892 +5.598669 61.472119 +5.606296 61.475640 +5.612163 61.479453 +5.619790 61.482680 +5.626244 61.487080 +5.633284 61.490014 +5.643845 61.492067 +5.655579 61.492947 +5.667313 61.494121 +5.680221 61.494708 +5.693129 61.495001 +5.704863 61.495001 +5.717770 61.493828 +5.728918 61.492361 +5.738892 61.490014 +5.747106 61.487080 +5.755907 61.484147 +5.764120 61.481507 +5.771161 61.477693 +5.772334 61.471533 +5.772921 61.465372 +5.777028 61.460385 +5.786415 61.458038 +5.796389 61.455691 +5.804603 61.452758 +5.804017 61.447184 +5.794043 61.445424 +5.781135 61.446304 +5.771161 61.448651 +5.764707 61.452171 +5.758840 61.456572 +5.755320 61.461265 +5.752973 61.466839 +5.748866 61.471826 +5.741825 61.475640 +5.733612 61.478280 +5.722464 61.480040 +5.709557 61.481213 +5.697822 61.482387 +5.684915 61.483560 +5.670834 61.483853 +5.662033 61.481507 +5.654406 61.477986 +5.646779 61.474759 +5.636805 61.472706 +5.629177 61.469479 +5.626831 61.463319 +5.626244 61.456278 +5.621550 61.451584 +5.612750 61.449238 +5.602776 61.447184 +5.589868 61.446891 +5.575200 61.447184 +5.563466 61.445717 +5.550558 61.445424 +5.541758 61.443077 +5.539998 61.438090 +5.545278 61.433983 +5.538824 61.429876 +5.527090 61.428703 +5.514769 61.429583 +5.501862 61.430463 +5.488954 61.431343 +5.476046 61.432516 +5.463139 61.433397 +5.450231 61.434277 +5.440257 61.436623 +5.430283 61.438970 +5.420309 61.441024 +5.410335 61.443371 +5.403295 61.446891 +5.398014 61.450998 +5.390974 61.454811 +5.382760 61.457452 +5.374546 61.460678 +5.362812 61.461852 +5.351664 61.463612 +5.338757 61.464492 +5.327022 61.466252 +5.315875 61.467719 +5.321155 61.465666 +5.329956 61.462439 +5.335236 61.458332 +5.336410 61.452171 +5.327609 61.449824 +5.317048 61.447771 +5.302381 61.448064 +5.291233 61.449531 +5.280086 61.450998 +5.268352 61.452758 +5.258377 61.455105 +5.247230 61.456278 +5.235496 61.458038 +5.227282 61.460972 +5.218481 61.463905 +5.208507 61.466252 +5.199120 61.468306 +5.189146 61.470653 +5.181519 61.468599 +5.185626 61.463612 +5.187972 61.458038 +5.183279 61.453345 +5.176238 61.450118 +5.164504 61.448944 +5.151010 61.448358 +5.138689 61.447771 +5.125195 61.447478 +5.111114 61.447478 +5.096446 61.447771 +5.083538 61.447184 +5.072977 61.445424 +5.063003 61.443664 +5.055963 61.440144 +5.048336 61.436917 +5.040709 61.433690 +5.030734 61.431636 +5.019000 61.430463 +5.014307 61.429290 +5.004333 61.427236 +4.993772 61.425183 +4.982624 61.424303 +4.972064 61.422249 +4.963263 61.419316 +4.956222 61.416089 +4.948595 61.412862 +4.949769 61.408168 +4.959743 61.405821 +4.969717 61.403474 +4.982624 61.402888 +4.994359 61.403768 +5.004333 61.405821 +5.014307 61.407875 +5.023694 61.410222 +5.030734 61.414035 +5.039535 61.416382 +5.052443 61.416969 +5.062417 61.414622 +5.075324 61.414035 +5.087058 61.414915 +5.095859 61.417555 +5.102900 61.420782 +5.112287 61.423716 +5.120501 61.420489 +5.117567 61.415209 +5.109940 61.411982 +5.099379 61.409928 +5.089405 61.408168 +5.080605 61.405235 +5.075911 61.400541 +5.074151 61.394380 +5.075324 61.388220 +5.076498 61.382060 +5.075911 61.375312 +5.071217 61.370619 +5.062417 61.367685 +5.055376 61.371499 +5.051269 61.376192 +5.051856 61.382940 +5.052443 61.389980 +5.048336 61.394674 +5.043055 61.399074 +5.029561 61.398487 +5.022521 61.395260 +5.014893 61.392034 +5.010200 61.387340 +5.005506 61.382646 +5.002572 61.377072 +4.999052 61.371499 +4.997292 61.365338 +4.998465 61.359178 +4.999639 61.352724 +5.003452 61.348030 +5.008733 61.343923 +5.015773 61.340403 +5.024281 61.337470 +5.034255 61.335123 +5.045402 61.333656 +5.060070 61.333363 +5.062417 61.330429 +5.050976 61.329549 +5.042175 61.326616 +5.036015 61.322802 +5.040122 61.317815 +5.053029 61.316935 +5.063297 61.318988 +5.073271 61.320748 +5.082071 61.323389 +5.089405 61.326616 +5.097033 61.330136 +5.104366 61.333363 +5.111700 61.336590 +5.120501 61.339523 +5.128128 61.342750 +5.136929 61.345390 +5.145436 61.347737 +5.155703 61.349791 +5.165971 61.351551 +5.191786 61.352137 +5.205867 61.351844 +5.232269 61.352431 +5.242243 61.354484 +5.251044 61.356831 +5.259844 61.359471 +5.268645 61.362111 +5.277445 61.364752 +5.289180 61.365925 +5.303261 61.365632 +5.317342 61.365632 +5.332009 61.365338 +5.344917 61.365632 +5.355478 61.367392 +5.365452 61.369445 +5.374252 61.370619 +5.385400 61.372085 +5.397134 61.372966 +5.408868 61.374139 +5.420602 61.375312 +5.431750 61.376486 +5.443484 61.376486 +5.458152 61.376192 +5.472233 61.375899 +5.485140 61.374726 +5.496875 61.373259 +5.509782 61.372085 +5.520930 61.370912 +5.532077 61.369152 +5.544985 61.368272 +5.557892 61.367098 +5.572560 61.366805 +5.583707 61.367978 +5.595442 61.369445 +5.607176 61.370619 +5.621257 61.370325 +5.632991 61.368565 +5.642965 61.366512 +5.651179 61.363285 +5.659393 61.360645 +5.653526 61.359178 +5.641205 61.360351 +5.627711 61.361231 +5.613630 61.361525 +5.600722 61.361231 +5.587814 61.360645 +5.576080 61.359471 +5.564346 61.359765 +5.556132 61.362405 +5.547918 61.365632 +5.537944 61.367685 +5.527970 61.370032 +5.515063 61.370912 +5.503915 61.372379 +5.489247 61.372672 +5.476340 61.373552 +5.464606 61.372379 +5.453458 61.371499 +5.440551 61.370912 +5.429990 61.368859 +5.420016 61.367098 +5.410042 61.365338 +5.400654 61.362405 +5.391854 61.360058 +5.383053 61.357418 +5.374252 61.354778 +5.365452 61.352137 +5.356651 61.349791 +5.346384 61.347737 +5.336410 61.345977 +5.324676 61.344803 +5.311475 61.344217 +5.298860 61.345097 +5.284486 61.345390 +5.280086 61.341870 +5.285366 61.337763 +5.293873 61.334829 +5.303554 61.332483 +5.313528 61.330136 +5.322035 61.327496 +5.332009 61.325149 +5.338757 61.321628 +5.345504 61.318108 +5.348144 61.312535 +5.350491 61.306961 +5.353131 61.301387 +5.355478 61.295813 +5.354891 61.288773 +5.355771 61.282906 +5.358411 61.277332 +5.360758 61.271758 +5.363398 61.266185 +5.363985 61.260024 +5.362225 61.253570 +5.353424 61.251223 +5.342277 61.252690 +5.336703 61.255624 +5.332596 61.260611 +5.330249 61.266185 +5.329369 61.272345 +5.327022 61.277919 +5.327316 61.284666 +5.326436 61.290826 +5.325556 61.297280 +5.322915 61.302560 +5.319102 61.307547 +5.313528 61.311654 +5.307954 61.316055 +5.302674 61.320162 +5.295927 61.323975 +5.288886 61.327202 +5.281846 61.330722 +5.272165 61.333069 +5.260724 61.334829 +5.247817 61.335416 +5.233442 61.335710 +5.220535 61.335416 +5.207334 61.335123 +5.196186 61.333656 +5.190026 61.329842 +5.191199 61.323389 +5.193546 61.318108 +5.191493 61.311654 +5.185626 61.307841 +5.176532 61.304907 +5.166558 61.303147 +5.156290 61.301387 +5.144849 61.301387 +5.136635 61.304321 +5.124901 61.304321 +5.119034 61.300507 +5.114340 61.295813 +5.105540 61.293173 +5.095566 61.291120 +5.085298 61.289066 +5.073858 61.288186 +5.063590 61.286133 +5.053323 61.284079 +5.043349 61.282319 +5.033081 61.280559 +5.021640 61.279092 +5.015480 61.275279 +5.008146 61.272052 +5.000812 61.268531 +4.993185 61.265304 +4.986145 61.262078 +4.978517 61.258557 +4.976757 61.253570 +4.982331 61.250930 +4.993772 61.250930 +5.002866 61.253277 +5.011373 61.255917 +5.022814 61.254450 +5.022521 61.248877 +5.017827 61.244183 +5.021934 61.239196 +5.030148 61.237729 +5.043349 61.236849 +5.055963 61.235969 +5.065937 61.237729 +5.075031 61.240663 +5.080898 61.244476 +5.086472 61.241543 +5.087352 61.235676 +5.081485 61.231275 +5.071217 61.229515 +5.058310 61.229222 +5.045402 61.230102 +5.032788 61.230689 +5.025161 61.227462 +5.018120 61.224235 +5.013427 61.219541 +5.020174 61.215728 +5.030148 61.215141 +5.044815 61.214848 +5.055963 61.216021 +5.067697 61.217194 +5.079138 61.219248 +5.090872 61.220421 +5.102313 61.221301 +5.113754 61.222768 +5.126661 61.223355 +5.138396 61.224528 +5.151010 61.224822 +5.160984 61.224235 +5.169491 61.221008 +5.176238 61.217488 +5.183279 61.214261 +5.192959 61.211914 +5.202933 61.209567 +5.214374 61.208100 +5.224055 61.205754 +5.231096 61.202233 +5.239309 61.199300 +5.244883 61.194899 +5.251924 61.191673 +5.258671 61.188152 +5.265418 61.184339 +5.270992 61.180232 +5.264831 61.177591 +5.250750 61.177885 +5.238136 61.177298 +5.243416 61.173191 +5.248697 61.168791 +5.249577 61.162630 +5.238429 61.161457 +5.226989 61.162924 +5.218481 61.165857 +5.210267 61.168791 +5.203227 61.172311 +5.195013 61.175245 +5.187972 61.178765 +5.177998 61.181112 +5.168318 61.183459 +5.158637 61.185512 +5.148663 61.187859 +5.135755 61.188739 +5.123141 61.189326 +5.109940 61.189032 +5.101433 61.186392 +5.092339 61.183752 +5.083832 61.181112 +5.077671 61.177298 +5.071804 61.173191 +5.067110 61.168204 +5.069751 61.162924 +5.075324 61.158523 +5.086472 61.157057 +5.097619 61.155590 +5.107593 61.153243 +5.116101 61.150310 +5.124315 61.147376 +5.132822 61.144736 +5.141036 61.141802 +5.152477 61.140042 +5.163917 61.141509 +5.170078 61.144736 +5.171545 61.149429 +5.179172 61.152656 +5.190613 61.153830 +5.203227 61.152950 +5.213201 61.150896 +5.221708 61.147963 +5.228162 61.144442 +5.238429 61.142096 +5.246643 61.139162 +5.253684 61.135935 +5.248697 61.132122 +5.236083 61.131828 +5.224642 61.133295 +5.214961 61.135642 +5.202053 61.136522 +5.189439 61.136229 +5.184746 61.132708 +5.187386 61.128601 +5.194133 61.125081 +5.199707 61.120974 +5.203520 61.115694 +5.207334 61.111000 +5.211441 61.106013 +5.215254 61.101026 +5.223468 61.098386 +5.232562 61.100733 +5.239603 61.104253 +5.248697 61.106893 +5.245470 61.105133 +5.256911 61.106013 +5.268645 61.107186 +5.281259 61.107773 +5.292993 61.108947 +5.302967 61.110707 +5.310595 61.114227 +5.316462 61.118041 +5.322329 61.122148 +5.326436 61.118627 +5.330249 61.113640 +5.334063 61.108947 +5.339637 61.104840 +5.344917 61.100146 +5.350491 61.096039 +5.358705 61.093399 +5.367212 61.090172 +5.373959 61.086652 +5.379533 61.082545 +5.384813 61.078438 +5.390094 61.074037 +5.398308 61.071104 +5.408282 61.068757 +5.422363 61.068757 +5.432337 61.070517 +5.441431 61.073157 +5.449938 61.075798 +5.457565 61.079024 +5.466072 61.081665 +5.474873 61.084305 +5.484847 61.086065 +5.493941 61.088705 +5.500982 61.091932 +5.508609 61.095159 +5.515943 61.098679 +5.523276 61.101906 +5.530904 61.105133 +5.536771 61.109240 +5.542638 61.113347 +5.548798 61.117160 +5.556426 61.120681 +5.563466 61.123908 +5.571093 61.127135 +5.578427 61.130655 +5.588695 61.132415 +5.600135 61.133588 +5.614510 61.133295 +5.627124 61.132122 +5.638565 61.133588 +5.648832 61.135348 +5.660273 61.136522 +5.673181 61.136815 +5.684621 61.136522 +5.698702 61.136522 +5.709263 61.138282 +5.716304 61.141802 +5.722464 61.145616 +5.728625 61.149723 +5.735958 61.152950 +5.748866 61.152070 +5.762947 61.151776 +5.774388 61.152656 +5.783188 61.155297 +5.787882 61.159990 +5.789936 61.166444 +5.790522 61.173191 +5.791402 61.179938 +5.794629 61.185512 +5.798150 61.190792 +5.805483 61.194313 +5.813991 61.196660 +5.818098 61.191966 +5.816044 61.185805 +5.812817 61.180232 +5.809297 61.174951 +5.804603 61.169964 +5.802843 61.163804 +5.802257 61.158230 +5.810470 61.155590 +5.823378 61.154710 +5.835992 61.153536 +5.850367 61.153243 +5.863274 61.153536 +5.877355 61.153243 +5.890263 61.153830 +5.900530 61.155590 +5.910798 61.157643 +5.922238 61.158523 +5.936319 61.158230 +5.949520 61.158523 +5.959494 61.160577 +5.968295 61.162924 +5.972989 61.167911 +5.977682 61.172604 +5.985310 61.175831 +5.991470 61.179938 +6.000271 61.182579 +6.009071 61.185512 +6.017872 61.188446 +6.026966 61.190792 +6.035473 61.193433 +6.044274 61.195779 +6.053368 61.198420 +6.061875 61.198420 +6.064515 61.194313 +6.059528 61.189326 +6.053368 61.185219 +6.046034 61.181992 +6.038700 61.178765 +6.029606 61.176125 +6.020806 61.173485 +6.013178 61.170551 +6.004378 61.167911 +5.995870 61.165271 +5.989710 61.161457 +5.990590 61.156470 +5.998804 61.153536 +6.007311 61.150603 +6.016992 61.148256 +6.026673 61.146203 +6.038113 61.144442 +6.050728 61.143269 +6.064809 61.142976 +6.078010 61.143269 +6.089450 61.144442 +6.099718 61.146496 +6.109692 61.148256 +6.119959 61.150016 +6.131693 61.151190 +6.143134 61.152363 +6.154575 61.153243 +6.164549 61.155297 +6.172176 61.158230 +6.178337 61.162630 +6.184497 61.166444 +6.188018 61.172018 +6.192711 61.176711 +6.201512 61.179058 +6.202392 61.174365 +6.201512 61.167617 +6.202392 61.161164 +6.206205 61.156470 +6.214713 61.153243 +6.224393 61.151190 +6.234074 61.148549 +6.243755 61.146496 +6.249035 61.142096 +6.254316 61.137989 +6.262823 61.135055 +6.273970 61.133295 +6.286585 61.132122 +6.296265 61.130068 +6.305946 61.127721 +6.314453 61.124788 +6.322667 61.121561 +6.330881 61.118921 +6.339095 61.115694 +6.348776 61.113640 +6.360217 61.111880 +6.371364 61.110413 +6.383098 61.111293 +6.395712 61.111587 +6.407447 61.112760 +6.421528 61.112173 +6.435902 61.111880 +6.448516 61.112173 +6.458784 61.114227 +6.466411 61.117454 +6.472571 61.121267 +6.477558 61.126254 +6.487532 61.127721 +6.501907 61.127428 +6.513348 61.128601 +6.523615 61.130361 +6.529775 61.134468 +6.528895 61.140629 +6.532416 61.146203 +6.535642 61.151483 +6.537989 61.157643 +6.535642 61.162924 +6.532122 61.167911 +6.528309 61.173191 +6.525962 61.178472 +6.525375 61.184632 +6.521561 61.189619 +6.516281 61.194313 +6.509534 61.197833 +6.501320 61.200473 +6.493106 61.203700 +6.486359 61.207220 +6.492519 61.211034 +6.506894 61.210741 +6.518041 61.209274 +6.528015 61.206927 +6.539163 61.205167 +6.550604 61.203407 +6.563218 61.203993 +6.557937 61.208100 +6.550017 61.211034 +6.544736 61.215141 +6.543856 61.221595 +6.546203 61.227755 +6.547963 61.233916 +6.547377 61.240076 +6.545323 61.245650 +6.538576 61.249170 +6.531536 61.252984 +6.525082 61.256797 +6.518335 61.260317 +6.521561 61.265598 +6.530362 61.267945 +6.536523 61.272052 +6.541510 61.276745 +6.547670 61.280852 +6.557644 61.279679 +6.564391 61.276159 +6.568205 61.271465 +6.567325 61.265891 +6.571432 61.260904 +6.581112 61.258557 +6.592847 61.259437 +6.601647 61.262078 +6.610448 61.264718 +6.616608 61.268531 +6.621595 61.273225 +6.626289 61.277919 +6.632449 61.282026 +6.640370 61.285253 +6.646237 61.289066 +6.648291 61.294640 +6.648291 61.293760 +6.651811 61.299334 +6.655331 61.304614 +6.658851 61.310188 +6.662372 61.315468 +6.667065 61.320162 +6.672052 61.324855 +6.677039 61.329842 +6.682026 61.334536 +6.689360 61.337763 +6.694347 61.342163 +6.700508 61.346270 +6.705201 61.352431 +6.702854 61.358004 +6.703441 61.365045 +6.708135 61.369739 +6.711655 61.375019 +6.716935 61.379713 +6.719282 61.385873 +6.721042 61.392034 +6.724563 61.397607 +6.731017 61.401421 +6.739817 61.401128 +6.743337 61.396141 +6.745684 61.390567 +6.742164 61.385286 +6.738644 61.379713 +6.735123 61.374432 +6.736297 61.374432 +6.731603 61.371205 +6.728083 61.365632 +6.726910 61.358591 +6.725149 61.352431 +6.723976 61.345977 +6.720749 61.340403 +6.714295 61.336296 +6.709602 61.331603 +6.703148 61.327496 +6.696987 61.323682 +6.689360 61.320455 +6.684373 61.315761 +6.679679 61.311068 +6.676159 61.305494 +6.675279 61.298747 +6.674399 61.292000 +6.673812 61.284959 +6.670292 61.279679 +6.666772 61.274105 +6.660611 61.270291 +6.654158 61.266185 +6.647997 61.262078 +6.640663 61.258851 +6.633036 61.255917 +6.625409 61.252397 +6.617782 61.249170 +6.611621 61.245356 +6.604287 61.241836 +6.597834 61.238022 +6.593140 61.233329 +6.586979 61.229515 +6.586099 61.222475 +6.591380 61.218368 +6.598127 61.214848 +6.606341 61.211621 +6.614555 61.208687 +6.624236 61.206340 +6.635676 61.204580 +6.647117 61.203113 +6.657971 61.201353 +6.669412 61.199593 +6.679093 61.197246 +6.689067 61.194899 +6.698748 61.192553 +6.705201 61.189032 +6.713709 61.186099 +6.721629 61.183165 +6.731310 61.180525 +6.741284 61.178472 +6.753898 61.177298 +6.767099 61.177591 +6.778540 61.178472 +6.789981 61.179645 +6.801715 61.180818 +6.814623 61.181112 +6.827530 61.181405 +6.841611 61.181112 +6.852759 61.179058 +6.862733 61.177005 +6.872707 61.174658 +6.882387 61.172311 +6.891775 61.169964 +6.901455 61.167617 +6.909669 61.164391 +6.920817 61.162924 +6.933724 61.161750 +6.948099 61.161457 +6.959540 61.162630 +6.969807 61.164097 +6.980074 61.165857 +6.988875 61.168204 +6.997969 61.170844 +7.006770 61.173191 +7.014103 61.176711 +7.023197 61.179058 +7.031705 61.177591 +7.030825 61.172018 +7.025838 61.167324 +7.019677 61.163217 +7.012343 61.160284 +7.004423 61.157057 +6.997089 61.153536 +6.986822 61.152070 +6.976847 61.150310 +6.963647 61.149723 +6.951912 61.148843 +6.945752 61.145029 +6.943698 61.138575 +6.944285 61.132415 +6.948099 61.127428 +6.950152 61.121854 +6.953966 61.116867 +6.961886 61.114227 +6.973034 61.112173 +6.982715 61.110120 +6.994155 61.109827 +7.000609 61.113640 +7.006770 61.117454 +7.012930 61.121267 +7.020557 61.124788 +7.029358 61.127135 +7.040799 61.128308 +7.051066 61.130068 +7.062800 61.131241 +7.075708 61.131535 +7.089789 61.130948 +7.104163 61.130655 +7.114137 61.132122 +7.123231 61.134762 +7.132325 61.137109 +7.142299 61.138869 +7.154034 61.140042 +7.165474 61.141216 +7.176035 61.142682 +7.183369 61.145909 +7.188356 61.150603 +7.189236 61.157643 +7.190116 61.162924 +7.194810 61.167911 +7.202437 61.170844 +7.212704 61.172604 +7.224145 61.173485 +7.234413 61.175245 +7.242040 61.178472 +7.251134 61.181112 +7.259348 61.178178 +7.264335 61.173485 +7.269615 61.169378 +7.277536 61.166444 +7.287216 61.164097 +7.296897 61.161750 +7.305404 61.158523 +7.319485 61.157937 +7.330926 61.159110 +7.338260 61.161164 +7.346181 61.164097 +7.352341 61.168791 +7.358795 61.172898 +7.366129 61.175831 +7.374049 61.179058 +7.381383 61.182285 +7.387837 61.186392 +7.381090 61.189912 +7.371409 61.192259 +7.363489 61.195193 +7.354981 61.198420 +7.348527 61.201940 +7.343247 61.206340 +7.339727 61.211327 +7.334446 61.215434 +7.330926 61.220421 +7.330340 61.226875 +7.329753 61.233035 +7.327699 61.238609 +7.325646 61.244183 +7.325059 61.250637 +7.323006 61.256210 +7.320952 61.261784 +7.318899 61.267358 +7.315378 61.272345 +7.308631 61.275865 +7.300417 61.278799 +7.290737 61.281439 +7.280763 61.283492 +7.272842 61.286719 +7.267562 61.290826 +7.266975 61.297280 +7.270495 61.302560 +7.275482 61.307254 +7.281643 61.311068 +7.288096 61.314881 +7.292790 61.318402 +7.299244 61.322215 +7.306871 61.325442 +7.313032 61.329549 +7.319485 61.333363 +7.325939 61.337470 +7.332100 61.341283 +7.337087 61.345977 +7.340607 61.351257 +7.339434 61.357418 +7.335913 61.362405 +7.331220 61.366805 +7.324179 61.370619 +7.315965 61.373552 +7.309511 61.377366 +7.302471 61.380886 +7.296017 61.384406 +7.292497 61.389393 +7.301297 61.392034 +7.311271 61.389687 +7.317725 61.385873 +7.325939 61.382646 +7.332393 61.379126 +7.342367 61.377072 +7.355275 61.375899 +7.361142 61.378246 +7.366422 61.382940 +7.369942 61.388220 +7.376396 61.392327 +7.384023 61.395554 +7.392824 61.398194 +7.401625 61.400541 +7.411012 61.403181 +7.418639 61.406115 +7.426266 61.409341 +7.431547 61.414035 +7.436240 61.418729 +7.441521 61.423422 +7.446215 61.428116 +7.451495 61.432810 +7.459122 61.435743 +7.466749 61.439264 +7.474377 61.442197 +7.483177 61.444837 +7.490804 61.447771 +7.500192 61.450411 +7.510166 61.452171 +7.519553 61.454518 +7.528354 61.456865 +7.537154 61.459505 +7.546542 61.461852 +7.554169 61.465079 +7.561796 61.468306 +7.569423 61.471533 +7.577637 61.474759 +7.584678 61.477693 +7.594065 61.480333 +7.601106 61.479453 +7.597585 61.474173 +7.592305 61.469479 +7.587611 61.464785 +7.581158 61.460972 +7.572944 61.457452 +7.565903 61.454518 +7.556516 61.451878 +7.546542 61.450411 +7.537154 61.447771 +7.528354 61.445424 +7.518966 61.442784 +7.510166 61.440144 +7.502539 61.437210 +7.494911 61.433983 +7.488458 61.429876 +7.482004 61.426063 +7.478483 61.420782 +7.474377 61.415209 +7.472616 61.409048 +7.468509 61.403768 +7.463816 61.399074 +7.457362 61.395260 +7.449735 61.392034 +7.440934 61.389393 +7.432133 61.387047 +7.423920 61.383820 +7.416292 61.380593 +7.410425 61.376779 +7.403971 61.372672 +7.397518 61.368859 +7.391064 61.365045 +7.387544 61.359471 +7.386370 61.352724 +7.389890 61.347737 +7.391944 61.342163 +7.391064 61.335416 +7.386077 61.330429 +7.381090 61.325735 +7.374636 61.321922 +7.368476 61.318108 +7.362315 61.314295 +7.355861 61.310188 +7.348234 61.306961 +7.342074 61.303147 +7.334153 61.299627 +7.330633 61.294347 +7.331220 61.288186 +7.336500 61.283786 +7.344421 61.280852 +7.351168 61.277332 +7.357915 61.273518 +7.363195 61.269118 +7.364955 61.263544 +7.367302 61.257971 +7.367889 61.251810 +7.368476 61.245650 +7.370236 61.240076 +7.370822 61.233916 +7.373169 61.228342 +7.373756 61.221888 +7.375516 61.216314 +7.380796 61.211914 +7.384610 61.207220 +7.389597 61.202820 +7.397811 61.199593 +7.405732 61.196660 +7.416879 61.194899 +7.429787 61.194019 +7.441227 61.193726 +7.452668 61.194313 +7.464402 61.195486 +7.476137 61.196366 +7.486404 61.198420 +7.496671 61.199886 +7.508112 61.200766 +7.518380 61.202527 +7.530114 61.203700 +7.541555 61.204580 +7.554462 61.204873 +7.567663 61.205167 +7.580571 61.205167 +7.594652 61.204873 +7.607559 61.205167 +7.619294 61.206047 +7.630734 61.207220 +7.641002 61.208980 +7.647456 61.212794 +7.652443 61.217488 +7.657430 61.221888 +7.663883 61.225702 +7.675324 61.226875 +7.687939 61.225702 +7.698499 61.225995 +7.708767 61.227755 +7.719914 61.227462 +7.716394 61.221888 +7.711407 61.217488 +7.704953 61.213381 +7.697326 61.210154 +7.689699 61.207220 +7.680605 61.204580 +7.670337 61.203113 +7.660070 61.201060 +7.649802 61.199300 +7.641002 61.196953 +7.630441 61.195193 +7.619000 61.194313 +7.606093 61.194313 +7.593185 61.194019 +7.581451 61.192846 +7.567370 61.193433 +7.555636 61.192553 +7.542728 61.192259 +7.530994 61.191086 +7.520727 61.189326 +7.509286 61.188446 +7.496378 61.188446 +7.484644 61.187272 +7.474377 61.185512 +7.464109 61.183752 +7.455308 61.181405 +7.447388 61.178178 +7.443868 61.172898 +7.438881 61.167911 +7.431547 61.164684 +7.422453 61.162337 +7.414826 61.159110 +7.404558 61.157643 +7.395464 61.155003 +7.385197 61.153243 +7.376396 61.150896 +7.370236 61.147083 +7.370822 61.140629 +7.377276 61.136815 +7.385490 61.133882 +7.393704 61.130948 +7.400451 61.127135 +7.403971 61.122148 +7.405732 61.116574 +7.409545 61.111587 +7.415999 61.108067 +7.427146 61.106306 +7.441814 61.105720 +7.452668 61.104253 +7.462642 61.101613 +7.464696 61.097506 +7.454428 61.095746 +7.441521 61.095452 +7.428907 61.096626 +7.417466 61.098386 +7.406318 61.100146 +7.396638 61.102493 +7.387250 61.105133 +7.375809 61.106600 +7.367889 61.109827 +7.361142 61.113347 +7.356155 61.117454 +7.347941 61.120681 +7.339727 61.123614 +7.328579 61.125374 +7.315965 61.126254 +7.304818 61.128308 +7.293670 61.130068 +7.283990 61.132122 +7.274309 61.134762 +7.263161 61.136522 +7.251721 61.138282 +7.240280 61.137109 +7.232653 61.133882 +7.227665 61.129481 +7.224145 61.123908 +7.225319 61.122441 +7.226785 61.122441 +7.222092 61.117747 +7.217105 61.113054 +7.209478 61.110120 +7.199210 61.108067 +7.186303 61.109240 +7.173688 61.110413 +7.162247 61.109240 +7.150513 61.108360 +7.140246 61.106600 +7.131445 61.104253 +7.120004 61.103079 +7.109737 61.101319 +7.098003 61.100146 +7.085389 61.100146 +7.071014 61.100146 +7.058400 61.101319 +7.046666 61.100439 +7.036398 61.098679 +7.027598 61.096039 +7.024078 61.090759 +7.023491 61.085185 +7.023784 61.079024 +7.029065 61.074624 +7.035812 61.071104 +7.038159 61.065530 +7.039919 61.059956 +7.040505 61.053503 +7.041385 61.047635 +7.043439 61.042062 +7.045492 61.036488 +7.050479 61.032088 +7.057227 61.028274 +7.063974 61.024754 +7.069254 61.020647 +7.074241 61.016247 +7.079522 61.011846 +7.081282 61.005979 +7.083628 61.000699 +7.085975 60.995125 +7.087735 60.989551 +7.091549 60.984564 +7.095069 60.979577 +7.098590 60.974590 +7.105337 60.971070 +7.110617 60.966670 +7.115604 60.962563 +7.123525 60.959336 +7.130272 60.955816 +7.139953 60.953469 +7.151100 60.951709 +7.162247 60.949948 +7.173395 60.948188 +7.186009 60.947308 +7.194223 60.944081 +7.196277 60.938508 +7.195397 60.931761 +7.194516 60.924720 +7.195103 60.918560 +7.194223 60.911812 +7.191876 60.905652 +7.189529 60.899492 +7.186009 60.893918 +7.182489 60.888637 +7.178969 60.883064 +7.174275 60.878663 +7.169288 60.873970 +7.163128 60.869863 +7.156674 60.865756 +7.149340 60.862822 +7.140539 60.860182 +7.130565 60.859889 +7.129685 60.864582 +7.134379 60.869569 +7.139366 60.874263 +7.144059 60.878957 +7.147873 60.884237 +7.149927 60.890398 +7.152273 60.896265 +7.153153 60.901838 +7.154034 60.908879 +7.156087 60.915039 +7.157260 60.922080 +7.154914 60.927360 +7.149927 60.931761 +7.144646 60.936161 +7.138192 60.939681 +7.128512 60.942028 +7.118831 60.944375 +7.107684 60.946135 +7.098003 60.948482 +7.090082 60.951415 +7.083335 60.955229 +7.078348 60.959336 +7.073068 60.963736 +7.068081 60.968136 +7.059867 60.971070 +7.051653 60.974297 +7.040212 60.973123 +7.029945 60.971363 +7.021144 60.969017 +7.012343 60.966376 +7.004716 60.963149 +6.996209 60.960509 +6.988288 60.957282 +6.979781 60.954936 +6.972154 60.951709 +6.963353 60.949068 +6.954553 60.946722 +6.944285 60.944961 +6.934311 60.943201 +6.925217 60.940561 +6.916416 60.937921 +6.907616 60.935574 +6.897642 60.933814 +6.903216 60.935867 +6.910843 60.938801 +6.919643 60.941441 +6.927271 60.944668 +6.933431 60.948482 +6.940765 60.952002 +6.948392 60.954936 +6.955726 60.958456 +6.963353 60.961683 +6.970980 60.964616 +6.977141 60.968723 +6.984768 60.971950 +6.992395 60.975177 +6.999729 60.978404 +7.005890 60.982217 +7.013223 60.985444 +7.019384 60.989551 +7.025838 60.993365 +7.030531 60.998059 +7.034052 61.003632 +7.036398 61.009793 +7.035812 61.015953 +7.030531 61.020354 +7.025544 61.024461 +7.018797 61.027981 +7.013517 61.032381 +7.009997 61.037368 +7.009410 61.043529 +7.008823 61.049689 +7.005303 61.054676 +7.001783 61.059663 +6.997676 61.064650 +6.994155 61.069637 +6.990635 61.074331 +6.985648 61.079024 +6.980368 61.083131 +6.969220 61.084598 +6.957486 61.084011 +6.947219 61.081958 +6.937245 61.080198 +6.924337 61.081371 +6.913483 61.083131 +6.902042 61.084598 +6.893828 61.087825 +6.888548 61.091932 +6.886494 61.097506 +6.885908 61.103960 +6.886788 61.110707 +6.886201 61.116867 +6.885321 61.123028 +6.881801 61.128015 +6.875054 61.131535 +6.868306 61.135348 +6.860386 61.138282 +6.850705 61.140922 +6.839264 61.142389 +6.824890 61.142682 +6.810809 61.143269 +6.799368 61.143562 +6.786754 61.144736 +6.773846 61.145616 +6.761232 61.146789 +6.748324 61.147669 +6.734243 61.147963 +6.720162 61.148549 +6.707255 61.149723 +6.693174 61.150016 +6.681733 61.151776 +6.672052 61.154123 +6.663545 61.157057 +6.657091 61.160577 +6.650344 61.164097 +6.643597 61.167911 +6.635383 61.170844 +6.626289 61.168204 +6.620422 61.164391 +6.618075 61.158230 +6.617195 61.151483 +6.613968 61.145909 +6.610448 61.140629 +6.606928 61.135055 +6.603407 61.129775 +6.601354 61.123614 +6.597834 61.118041 +6.593140 61.113347 +6.588153 61.108653 +6.583459 61.104253 +6.578766 61.099559 +6.573779 61.094866 +6.562338 61.093692 +6.552657 61.095746 +6.539749 61.096919 +6.529482 61.094866 +6.521855 61.091932 +6.514521 61.088705 +6.505720 61.086065 +6.496920 61.083718 +6.488119 61.081078 +6.476385 61.079904 +6.467878 61.077558 +6.458784 61.074917 +6.448516 61.073157 +6.441182 61.069637 +6.433555 61.066704 +6.428861 61.062010 +6.424168 61.057316 +6.419181 61.052623 +6.415954 61.047049 +6.411260 61.042355 +6.406273 61.037661 +6.401286 61.032968 +6.398059 61.027394 +6.396006 61.021527 +6.396886 61.016247 +6.402166 61.012140 +6.398939 61.008326 +6.387205 61.007153 +6.373124 61.007446 +6.367844 61.011553 +6.365497 61.017127 +6.369311 61.022700 +6.374004 61.027394 +6.378698 61.032088 +6.383392 61.037075 +6.386912 61.042355 +6.393072 61.046169 +6.397766 61.050862 +6.401286 61.056436 +6.398939 61.062010 +6.389259 61.064063 +6.376351 61.065237 +6.362270 61.065530 +6.348189 61.066117 +6.338215 61.064063 +6.330588 61.060836 +6.325601 61.056143 +6.319440 61.052329 +6.314747 61.047635 +6.307119 61.044115 +6.297145 61.042355 +6.284531 61.042355 +6.272797 61.041182 +6.274850 61.044409 +6.281891 61.047635 +6.288051 61.051742 +6.291572 61.057023 +6.295092 61.062597 +6.298319 61.068170 +6.300666 61.074037 +6.301252 61.079318 +6.297145 61.084305 +6.291865 61.088705 +6.285411 61.092225 +6.275730 61.094866 +6.264583 61.096332 +6.249915 61.096626 +6.237301 61.096332 +6.224393 61.095746 +6.211779 61.096919 +6.200338 61.098679 +6.192124 61.101613 +6.185377 61.105133 +6.177163 61.108067 +6.168949 61.111000 +6.159269 61.113347 +6.149588 61.115694 +6.136681 61.116574 +6.122599 61.116867 +6.109399 61.116574 +6.097958 61.115694 +6.086517 61.114520 +6.075076 61.113347 +6.064809 61.111293 +6.054541 61.109533 +6.043100 61.108360 +6.030193 61.108067 +6.020219 61.108947 +6.008778 61.110413 +5.999097 61.112760 +5.989417 61.115400 +5.981203 61.118041 +5.970055 61.119801 +5.958614 61.121267 +5.947467 61.123028 +5.933093 61.123321 +5.920478 61.124201 +5.907571 61.123908 +5.898770 61.121267 +5.892903 61.117160 +5.885276 61.113934 +5.875008 61.112173 +5.863568 61.111000 +5.856234 61.107773 +5.858287 61.102199 +5.863861 61.098092 +5.870608 61.094572 +5.867381 61.090172 +5.857114 61.088412 +5.848313 61.085772 +5.842153 61.081665 +5.836286 61.077851 +5.830419 61.073744 +5.824258 61.069637 +5.818098 61.065823 +5.810470 61.062597 +5.800790 61.063477 +5.799910 61.069637 +5.803430 61.074917 +5.806657 61.080491 +5.809884 61.085772 +5.813404 61.091345 +5.816631 61.096919 +5.818684 61.103079 +5.816338 61.108653 +5.810764 61.112760 +5.801083 61.115107 +5.787002 61.115694 +5.778201 61.112760 +5.770868 61.109533 +5.766174 61.104840 +5.761480 61.100146 +5.752386 61.097506 +5.741239 61.096332 +5.732145 61.093985 +5.723344 61.091052 +5.714837 61.088705 +5.701929 61.088412 +5.697529 61.087532 +5.698996 61.087532 +5.691955 61.088412 +5.679341 61.089585 +5.664967 61.089585 +5.652059 61.089292 +5.642085 61.087238 +5.632991 61.084598 +5.628591 61.081371 +5.623897 61.078144 +5.627711 61.073157 +5.637685 61.070810 +5.647659 61.068757 +5.657339 61.066410 +5.665553 61.063477 +5.663500 61.058490 +5.649419 61.058783 +5.636805 61.059663 +5.626831 61.062303 +5.617150 61.064357 +5.607469 61.066704 +5.597495 61.068757 +5.584881 61.068757 +5.574613 61.066704 +5.565813 61.063770 +5.554372 61.062890 +5.542931 61.061717 +5.531490 61.060543 +5.520050 61.058490 +5.509782 61.056729 +5.501275 61.054089 +5.495114 61.050276 +5.488954 61.046169 +5.485727 61.040888 +5.482500 61.035315 +5.481914 61.028274 +5.484260 61.022700 +5.486607 61.017127 +5.490714 61.012140 +5.493061 61.006566 +5.492474 61.000112 +5.487781 60.995418 +5.477807 60.993365 +5.470766 60.996885 +5.468419 61.002459 +5.466072 61.008033 +5.464899 61.014193 +5.462845 61.019767 +5.455805 61.023287 +5.446124 61.025634 +5.438497 61.022114 +5.428523 61.020354 +5.417376 61.019180 +5.407401 61.021527 +5.399188 61.024461 +5.389507 61.027101 +5.378066 61.028861 +5.365452 61.029741 +5.354011 61.028567 +5.342570 61.027394 +5.329663 61.026807 +5.317048 61.027687 +5.307074 61.030034 +5.297394 61.032381 +5.290646 61.035901 +5.286539 61.040888 +5.282433 61.045582 +5.278619 61.050569 +5.271872 61.054089 +5.263658 61.057023 +5.249283 61.057316 +5.237843 61.057610 +5.228162 61.059663 +5.218481 61.062010 +5.209974 61.064650 +5.201760 61.067877 +5.190319 61.069050 +5.177412 61.068757 +5.164797 61.069637 +5.155117 61.071984 +5.142209 61.072864 +5.130768 61.073157 +5.120501 61.071104 +5.110527 61.069050 +5.100553 61.067290 +5.091752 61.064650 +5.081778 61.062890 +5.072977 61.059956 +5.065644 61.056729 +5.058310 61.053209 +5.050976 61.049982 +5.045109 61.046169 +5.039242 61.042062 +5.034548 61.037368 +5.031321 61.032088 +5.032201 61.025634 +5.036015 61.020940 +5.034548 61.014486 +5.035721 61.008326 +5.032201 61.002752 +5.029268 60.997472 +5.028681 60.990431 +5.029854 60.984564 +5.033668 60.979577 +5.043349 60.977230 +5.057430 60.976937 +5.070337 60.976057 +5.081778 60.974590 +5.091459 60.972537 +5.099673 60.969310 +5.108180 60.966670 +5.122261 60.966376 +5.132235 60.968430 +5.140742 60.970777 +5.146903 60.974884 +5.151303 60.979577 +5.155997 60.984564 +5.161864 60.988378 +5.166264 60.985444 +5.166851 60.979577 +5.169491 60.974004 +5.170664 60.967843 +5.164504 60.963736 +5.155997 60.961096 +5.145729 60.959042 +5.137222 60.956402 +5.129888 60.953175 +5.125195 60.948188 +5.124608 60.941441 +5.125781 60.935281 +5.128128 60.929707 +5.130475 60.924133 +5.130182 60.917093 +5.128421 60.911226 +5.128128 60.905652 +5.129008 60.899492 +5.129888 60.893331 +5.129595 60.886291 +5.127835 60.880423 +5.124608 60.874850 +5.117274 60.871330 +5.110233 60.875143 +5.106420 60.879837 +5.103780 60.885411 +5.103193 60.891571 +5.103486 60.898611 +5.103780 60.905359 +5.104366 60.912106 +5.106127 60.918266 +5.109353 60.923840 +5.109647 60.930880 +5.110233 60.937628 +5.110820 60.944375 +5.105246 60.948482 +5.098499 60.952295 +5.084418 60.952589 +5.071804 60.952002 +5.060363 60.953469 +5.050683 60.955816 +5.042175 60.958749 +5.030734 60.960216 +5.019587 60.960216 +5.010786 60.957869 +5.009320 60.951709 +5.010200 60.946722 +5.012840 60.941148 +5.018120 60.937041 +5.023694 60.932641 +5.030441 60.929120 +5.035721 60.925013 +5.036602 60.918853 +5.035135 60.912399 +5.035721 60.906532 +5.038362 60.900958 +5.042469 60.895971 +5.046282 60.890984 +5.051563 60.886877 +5.055670 60.881890 +5.058016 60.876317 +5.059190 60.870156 +5.060070 60.863996 +5.061243 60.857835 +5.062123 60.851675 +5.066230 60.846688 +5.070044 60.841994 +5.075324 60.837594 +5.082365 60.834074 +5.090579 60.831140 +5.093219 60.830553 +5.103193 60.828206 +5.117274 60.827913 +5.128715 60.829086 +5.138689 60.831140 +5.145729 60.834367 +5.155997 60.836420 +5.156877 60.829967 +5.152183 60.825273 +5.147783 60.820579 +5.144556 60.815299 +5.154237 60.812659 +5.166851 60.812072 +5.172131 60.807672 +5.180932 60.809138 +5.182692 60.815299 +5.187386 60.819992 +5.191786 60.824686 +5.195013 60.830260 +5.195600 60.837007 +5.194426 60.843461 +5.193546 60.849328 +5.196480 60.852261 +5.197653 60.846101 +5.195600 60.839647 +5.195306 60.832900 +5.199120 60.827913 +5.207334 60.825273 +5.218775 60.824980 +5.232856 60.824686 +5.244003 60.822926 +5.253684 60.820286 +5.260724 60.816766 +5.267178 60.812952 +5.275685 60.810312 +5.285659 60.810899 +5.291527 60.814712 +5.298567 60.817939 +5.307368 60.820579 +5.317635 60.822633 +5.328783 60.823806 +5.336116 60.827033 +5.340517 60.832020 +5.344037 60.837300 +5.345797 60.843461 +5.347557 60.849621 +5.350784 60.854902 +5.352838 60.861062 +5.357238 60.865756 +5.361932 60.870743 +5.370439 60.873383 +5.379533 60.875730 +5.389507 60.877783 +5.400948 60.878957 +5.412389 60.880130 +5.423536 60.881304 +5.433510 60.883064 +5.442311 60.885704 +5.452578 60.887757 +5.462552 60.889517 +5.471059 60.892158 +5.478687 60.895678 +5.487194 60.898025 +5.494528 60.901252 +5.501862 60.904772 +5.510662 60.907119 +5.522103 60.906825 +5.517116 60.902132 +5.510076 60.899198 +5.502448 60.895971 +5.496581 60.891571 +5.494821 60.885411 +5.495701 60.879250 +5.503915 60.876317 +5.515356 60.876023 +5.526503 60.876023 +5.539118 60.875143 +5.547625 60.872210 +5.560239 60.872503 +5.557306 60.869863 +5.548505 60.867223 +5.541171 60.863996 +5.532664 60.861355 +5.522396 60.859302 +5.509782 60.859302 +5.499808 60.859889 +5.491301 60.862822 +5.481620 60.864876 +5.467832 60.865169 +5.456098 60.864289 +5.446124 60.862236 +5.436150 60.860182 +5.426176 60.858715 +5.413269 60.858129 +5.401828 60.856955 +5.391854 60.854902 +5.384520 60.851675 +5.377186 60.848448 +5.371319 60.844341 +5.365452 60.840234 +5.364865 60.833193 +5.367212 60.827913 +5.369852 60.823513 +5.373666 60.818819 +5.376013 60.813245 +5.375719 60.807672 +5.366919 60.805325 +5.352838 60.805618 +5.341397 60.804151 +5.331423 60.802391 +5.322915 60.799751 +5.311475 60.798578 +5.302674 60.796231 +5.296807 60.791830 +5.290940 60.788017 +5.283606 60.784790 +5.275099 60.781856 +5.267471 60.778630 +5.263071 60.773936 +5.261018 60.767775 +5.265125 60.762202 +5.270405 60.758095 +5.278619 60.754868 +5.288300 60.752814 +5.299447 60.751348 +5.310595 60.749587 +5.321742 60.748121 +5.331423 60.745774 +5.339637 60.743134 +5.348144 60.739907 +5.357825 60.737853 +5.367799 60.739613 +5.377773 60.741667 +5.387453 60.739907 +5.391560 60.735213 +5.390974 60.728466 +5.391854 60.723479 +5.395667 60.718492 +5.401241 60.714385 +5.406521 60.709985 +5.414442 60.707344 +5.422949 60.704118 +5.432630 60.702064 +5.437910 60.697664 +5.437324 60.690917 +5.436737 60.684169 +5.442017 60.680062 +5.447298 60.675662 +5.454338 60.671849 +5.457858 60.667155 +5.463139 60.663048 +5.464312 60.656594 +5.452871 60.655421 +5.447591 60.659821 +5.443777 60.664808 +5.438497 60.668915 +5.433217 60.673022 +5.427936 60.677129 +5.419429 60.680356 +5.407108 60.681236 +5.396841 60.679182 +5.392147 60.674489 +5.394787 60.668915 +5.400068 60.664808 +5.405348 60.660701 +5.412389 60.656887 +5.418842 60.653367 +5.425589 60.650140 +5.430870 60.645447 +5.439084 60.642806 +5.445831 60.639286 +5.452578 60.635473 +5.459619 60.631952 +5.460205 60.627259 +5.449058 60.627259 +5.441137 60.630192 +5.434097 60.634006 +5.427643 60.637526 +5.422363 60.641633 +5.417082 60.645740 +5.410335 60.649554 +5.403295 60.653074 +5.395374 60.655714 +5.385693 60.658061 +5.375719 60.660408 +5.379826 60.655421 +5.379239 60.650140 +5.381586 60.645740 +5.386867 60.641633 +5.395374 60.638699 +5.400654 60.634299 +5.391854 60.631952 +5.381000 60.633419 +5.374252 60.636939 +5.367212 60.640460 +5.361932 60.644860 +5.356651 60.648967 +5.352838 60.653954 +5.349024 60.658941 +5.346677 60.664515 +5.341397 60.668622 +5.337583 60.673609 +5.333770 60.678302 +5.334063 60.685343 +5.333183 60.691503 +5.336410 60.697077 +5.335236 60.702944 +5.329956 60.707344 +5.324676 60.711745 +5.318222 60.714972 +5.311181 60.718492 +5.302967 60.721719 +5.291820 60.723186 +5.279206 60.724066 +5.265125 60.724066 +5.256911 60.727293 +5.251630 60.731399 +5.244883 60.734920 +5.236376 60.737853 +5.222588 60.738147 +5.209681 60.739027 +5.198533 60.740493 +5.190319 60.743427 +5.182105 60.746361 +5.175358 60.749881 +5.168611 60.753401 +5.161571 60.756921 +5.155117 60.760442 +5.148076 60.764255 +5.138396 60.766309 +5.128715 60.768655 +5.116101 60.769536 +5.103486 60.768949 +5.090579 60.768655 +5.080898 60.770709 +5.074151 60.774229 +5.068577 60.778630 +5.063297 60.782736 +5.058016 60.786843 +5.051269 60.790657 +5.044229 60.793884 +5.038948 60.798284 +5.031908 60.801805 +5.023987 60.804738 +5.015187 60.801805 +5.002572 60.801805 +4.988491 60.801805 +4.974117 60.801805 +4.960036 60.802098 +4.955636 60.798871 +4.965316 60.796524 +4.970890 60.792417 +4.979104 60.789484 +4.985851 60.785963 +4.994065 60.783030 +5.002572 60.780390 +5.009320 60.776576 +5.017534 60.773642 +5.025747 60.770709 +5.035721 60.768655 +5.042469 60.765135 +5.045109 60.759561 +5.047162 60.753988 +5.051563 60.749294 +5.053616 60.743720 +5.057430 60.738733 +5.063003 60.734333 +5.069751 60.730813 +5.076791 60.727586 +5.087939 60.728466 +5.099086 60.729639 +5.113460 60.729639 +5.123141 60.727293 +5.132822 60.724946 +5.141036 60.722305 +5.141036 60.721719 +5.142502 60.721425 +5.150716 60.718492 +5.157464 60.714972 +5.162744 60.710865 +5.168024 60.706758 +5.170664 60.701184 +5.161864 60.699717 +5.152183 60.702357 +5.144263 60.704998 +5.134582 60.707344 +5.124608 60.709398 +5.113460 60.709691 +5.117274 60.704704 +5.122848 60.700597 +5.130768 60.697370 +5.139276 60.694730 +5.147490 60.692090 +5.155703 60.688863 +5.163917 60.686223 +5.170958 60.682409 +5.177412 60.678889 +5.184159 60.675369 +5.189733 60.670968 +5.196480 60.667448 +5.203227 60.664221 +5.211441 60.660994 +5.216721 60.656887 +5.214961 60.650727 +5.211734 60.645153 +5.214081 60.639580 +5.219361 60.635473 +5.227869 60.632832 +5.234616 60.629312 +5.242830 60.626085 +5.249577 60.622858 +5.254857 60.618458 +5.251630 60.614351 +5.241950 60.615231 +5.233736 60.618165 +5.225522 60.621098 +5.218775 60.624325 +5.210561 60.627552 +5.203520 60.631072 +5.197066 60.634299 +5.191786 60.638993 +5.186506 60.643100 +5.180932 60.647207 +5.175652 60.651314 +5.170371 60.655421 +5.161864 60.658648 +5.153943 60.661288 +5.142796 60.663048 +5.129888 60.662461 +5.119914 60.660701 +5.114340 60.656594 +5.116687 60.651020 +5.120501 60.646033 +5.127248 60.642513 +5.135462 60.639580 +5.142209 60.636059 +5.150716 60.633419 +5.158637 60.630192 +5.166851 60.627552 +5.173598 60.624032 +5.177412 60.619045 +5.180345 60.618458 +5.182985 60.618458 +5.185626 60.612884 +5.190906 60.608484 +5.194720 60.603497 +5.200000 60.599390 +5.205574 60.595283 +5.210854 60.590883 +5.216134 60.586776 +5.221415 60.582375 +5.225228 60.577388 +5.231976 60.573868 +5.239016 60.570641 +5.245470 60.566828 +5.252217 60.563307 +5.259258 60.559787 +5.267178 60.556854 +5.276859 60.554800 +5.288006 60.553040 +5.302087 60.552747 +5.313235 60.554213 +5.323502 60.555974 +5.334356 60.557147 +5.345797 60.558320 +5.355771 60.560374 +5.366919 60.561254 +5.376893 60.563307 +5.386867 60.565068 +5.392734 60.569174 +5.388920 60.574162 +5.392147 60.577975 +5.406228 60.577682 +5.412095 60.582082 +5.415322 60.587362 +5.419722 60.592349 +5.427350 60.595283 +5.435857 60.597923 +5.447004 60.599097 +5.456978 60.601150 +5.464312 60.604377 +5.471646 60.607897 +5.478980 60.610831 +5.487487 60.613471 +5.497461 60.615524 +5.511542 60.615231 +5.524157 60.615524 +5.534131 60.617578 +5.542931 60.619925 +5.549972 60.623445 +5.557306 60.626672 +5.560532 60.632246 +5.561119 60.639286 +5.560239 60.645153 +5.559066 60.651314 +5.557012 60.656887 +5.554372 60.662461 +5.552319 60.668035 +5.551438 60.674489 +5.550265 60.680649 +5.553785 60.686223 +5.557012 60.691503 +5.566986 60.693263 +5.576374 60.691210 +5.589281 60.690330 +5.600722 60.691503 +5.610696 60.692970 +5.619203 60.695904 +5.626537 60.699130 +5.633578 60.702357 +5.639738 60.706464 +5.647072 60.709691 +5.654406 60.712918 +5.660273 60.717025 +5.666433 60.720839 +5.672301 60.724946 +5.678461 60.728759 +5.682861 60.733746 +5.687555 60.738440 +5.690782 60.744014 +5.695182 60.748707 +5.701343 60.752814 +5.708676 60.755748 +5.717184 60.755748 +5.718064 60.750761 +5.715130 60.745480 +5.708970 60.741374 +5.704276 60.736680 +5.700756 60.731399 +5.697822 60.725826 +5.693129 60.721132 +5.689608 60.715852 +5.687848 60.709398 +5.688728 60.703237 +5.695476 60.699717 +5.703689 60.697077 +5.714837 60.695317 +5.727451 60.694143 +5.738599 60.695317 +5.747399 60.697957 +5.754733 60.701477 +5.762067 60.704411 +5.766761 60.709105 +5.772921 60.713211 +5.773801 60.710571 +5.770574 60.704998 +5.764414 60.701184 +5.761480 60.695610 +5.756787 60.690917 +5.753266 60.685636 +5.750039 60.680062 +5.746813 60.674489 +5.746226 60.667742 +5.747106 60.662755 +5.752386 60.658648 +5.759133 60.655127 +5.768814 60.652780 +5.762947 60.650727 +5.752973 60.648967 +5.745639 60.645447 +5.741239 60.640753 +5.740652 60.634006 +5.740065 60.627259 +5.740945 60.620805 +5.741825 60.614644 +5.742412 60.608484 +5.743292 60.602324 +5.742706 60.595576 +5.742119 60.588536 +5.741825 60.581789 +5.739772 60.575628 +5.737719 60.569468 +5.734492 60.563894 +5.731265 60.558320 +5.729505 60.553627 +5.734785 60.549520 +5.735665 60.544533 +5.733612 60.538372 +5.731558 60.532212 +5.732438 60.526051 +5.735078 60.520478 +5.737132 60.514904 +5.738012 60.508743 +5.740359 60.503170 +5.741532 60.497009 +5.742119 60.490849 +5.741825 60.483808 +5.740945 60.477061 +5.740359 60.470021 +5.737132 60.464740 +5.733905 60.459167 +5.729211 60.454473 +5.719531 60.452419 +5.706623 60.452126 +5.692835 60.452419 +5.682861 60.450659 +5.676994 60.446552 +5.674941 60.440685 +5.675821 60.434231 +5.676701 60.428071 +5.672301 60.423377 +5.667607 60.418684 +5.660273 60.415163 +5.647952 60.414577 +5.633871 60.414870 +5.621550 60.416043 +5.607469 60.416337 +5.594855 60.415750 +5.582241 60.415457 +5.569626 60.414870 +5.555839 60.415163 +5.543225 60.416043 +5.532370 60.417804 +5.521223 60.419564 +5.514476 60.423084 +5.506555 60.425724 +5.501275 60.430125 +5.493061 60.433058 +5.486020 60.436578 +5.481033 60.440979 +5.474286 60.444499 +5.467539 60.448019 +5.462259 60.452126 +5.455512 60.455940 +5.450231 60.460047 +5.443777 60.463567 +5.437030 60.467087 +5.430283 60.470901 +5.423536 60.474128 +5.416789 60.477648 +5.408575 60.480875 +5.403295 60.484982 +5.396841 60.488502 +5.391560 60.492902 +5.384813 60.496423 +5.379533 60.500530 +5.374252 60.504637 +5.367212 60.508450 +5.360465 60.511970 +5.354011 60.515491 +5.347264 60.519304 +5.339050 60.521944 +5.330836 60.524585 +5.319395 60.524878 +5.312355 60.521651 +5.305021 60.518424 +5.299154 60.514317 +5.293287 60.510210 +5.286246 60.506983 +5.280379 60.503170 +5.274512 60.498769 +5.268352 60.494956 +5.262484 60.490849 +5.259551 60.485568 +5.256031 60.479995 +5.255737 60.472954 +5.256617 60.468261 +5.260724 60.463274 +5.267178 60.459753 +5.274219 60.456526 +5.280966 60.452713 +5.287420 60.449193 +5.285953 60.444499 +5.281552 60.439805 +5.279499 60.433351 +5.279206 60.428071 +5.282726 60.423084 +5.286833 60.418097 +5.288006 60.418097 +5.290646 60.413990 +5.295927 60.409590 +5.301207 60.405483 +5.306488 60.401376 +5.312941 60.397856 +5.318222 60.393749 +5.323502 60.389055 +5.318222 60.386708 +5.307074 60.388175 +5.295927 60.389642 +5.283313 60.390815 +5.280672 60.391402 +5.264245 60.394335 +5.253097 60.394629 +5.240483 60.394042 +5.230509 60.392282 +5.223468 60.388762 +5.217601 60.384948 +5.210267 60.381721 +5.201760 60.378787 +5.193253 60.376441 +5.184746 60.373800 +5.176238 60.371160 +5.171838 60.366467 +5.169784 60.360306 +5.169491 60.353266 +5.168904 60.346519 +5.171545 60.341238 +5.175358 60.336251 +5.180639 60.331851 +5.190319 60.332437 +5.196186 60.336251 +5.202053 60.340651 +5.209094 60.343878 +5.218775 60.342705 +5.225522 60.339478 +5.230802 60.335078 +5.237549 60.331557 +5.242830 60.327450 +5.248110 60.323050 +5.251924 60.318356 +5.244883 60.315130 +5.233736 60.315423 +5.222588 60.316596 +5.209974 60.316010 +5.200000 60.314543 +5.192959 60.311023 +5.189733 60.305449 +5.187972 60.299582 +5.187386 60.294008 +5.187386 60.286968 +5.190906 60.282274 +5.194720 60.277287 +5.201467 60.273473 +5.209681 60.270833 +5.222002 60.269953 +5.234616 60.268780 +5.248403 60.268486 +5.260724 60.267900 +5.271578 60.266433 +5.285659 60.266139 +5.299447 60.265846 +5.312061 60.264966 +5.324382 60.263793 +5.336703 60.262913 +5.340810 60.259392 +5.337583 60.255579 +5.331716 60.251472 +5.324676 60.247951 +5.318808 60.244138 +5.311768 60.240911 +5.304434 60.237391 +5.297394 60.234164 +5.290060 60.230937 +5.281552 60.228297 +5.274512 60.225070 +5.267178 60.221550 +5.262778 60.216856 +5.256911 60.212749 +5.249870 60.209522 +5.249577 60.203948 +5.258964 60.203068 +5.267471 60.205708 +5.276272 60.208349 +5.283019 60.211575 +5.291820 60.214216 +5.301501 60.215976 +5.313821 60.216563 +5.325262 60.217736 +5.336410 60.217736 +5.344330 60.214802 +5.352838 60.217149 +5.365452 60.217736 +5.375133 60.215682 +5.380413 60.211282 +5.375719 60.206588 +5.365745 60.204828 +5.354891 60.203655 +5.352838 60.197494 +5.343157 60.196908 +5.333476 60.194854 +5.332889 60.189574 +5.336703 60.185174 +5.341983 60.181067 +5.344330 60.176960 +5.351077 60.173439 +5.359291 60.170213 +5.371612 60.169332 +5.383933 60.169919 +5.395081 60.168452 +5.400361 60.164052 +5.399774 60.158478 +5.388627 60.158772 +5.381586 60.155545 +5.382466 60.150851 +5.387747 60.146451 +5.395961 60.143517 +5.407108 60.142050 +5.415029 60.139117 +5.421776 60.135597 +5.428230 60.132076 +5.437910 60.129730 +5.446124 60.132076 +5.448178 60.138530 +5.447298 60.144691 +5.450231 60.149971 +5.452285 60.156425 +5.455218 60.161705 +5.458739 60.167279 +5.463139 60.171973 +5.469006 60.175786 +5.477513 60.179307 +5.488661 60.180187 +5.497168 60.183120 +5.505675 60.185467 +5.512716 60.188987 +5.520050 60.192214 +5.527383 60.195441 +5.532957 60.199548 +5.538824 60.203655 +5.544691 60.207469 +5.549385 60.212162 +5.553785 60.216856 +5.558479 60.221550 +5.561706 60.227123 +5.563466 60.233284 +5.564053 60.240324 +5.565813 60.246485 +5.567866 60.252645 +5.571093 60.257925 +5.575494 60.262913 +5.579894 60.267606 +5.585761 60.271420 +5.591921 60.275527 +5.597788 60.279340 +5.602189 60.284034 +5.608056 60.288434 +5.611283 60.293715 +5.614510 60.299288 +5.617737 60.304569 +5.619790 60.310729 +5.623017 60.316010 +5.624777 60.322170 +5.628004 60.327744 +5.631524 60.333318 +5.634458 60.338598 +5.639151 60.343292 +5.642378 60.348865 +5.647072 60.353559 +5.651472 60.358253 +5.657339 60.362360 +5.662620 60.357959 +5.664967 60.352386 +5.667313 60.346812 +5.669660 60.342705 +5.672887 60.347985 +5.677581 60.352972 +5.681981 60.357666 +5.688142 60.361773 +5.692542 60.366467 +5.699876 60.369694 +5.709850 60.371747 +5.718357 60.374094 +5.724224 60.378201 +5.728625 60.382894 +5.734785 60.387001 +5.743292 60.389348 +5.754440 60.390522 +5.761187 60.387001 +5.763240 60.381428 +5.758840 60.376734 +5.752973 60.372920 +5.747106 60.368520 +5.738305 60.366173 +5.728625 60.364120 +5.717184 60.362946 +5.707503 60.361480 +5.700169 60.357959 +5.696942 60.352386 +5.696356 60.345638 +5.693129 60.340358 +5.687262 60.336251 +5.679928 60.332144 +5.675234 60.327450 +5.672301 60.321877 +5.669074 60.319530 +5.670540 60.319530 +5.664673 60.316596 +5.659980 60.311903 +5.658219 60.305742 +5.656459 60.299582 +5.654406 60.293715 +5.651179 60.288141 +5.646779 60.283447 +5.640912 60.279047 +5.635044 60.275233 +5.628884 60.271420 +5.621550 60.268193 +5.614510 60.264673 +5.607176 60.261446 +5.602776 60.256752 +5.598375 60.252058 +5.595148 60.246485 +5.594855 60.241204 +5.596908 60.235337 +5.602189 60.231230 +5.607763 60.233870 +5.612456 60.238564 +5.615683 60.243844 +5.618910 60.249418 +5.623310 60.254112 +5.629177 60.257925 +5.635338 60.262326 +5.641205 60.266139 +5.648245 60.269366 +5.657046 60.272006 +5.666433 60.269660 +5.667313 60.263499 +5.663793 60.257925 +5.659393 60.253232 +5.653526 60.249418 +5.647952 60.245311 +5.641792 60.241498 +5.635925 60.237391 +5.630057 60.233284 +5.628297 60.228590 +5.636805 60.229763 +5.643845 60.232990 +5.651179 60.236511 +5.663500 60.236804 +5.676114 60.237097 +5.685501 60.235044 +5.698116 60.234164 +5.710730 60.234457 +5.723051 60.235044 +5.734198 60.234750 +5.732438 60.230057 +5.722464 60.228003 +5.711317 60.226830 +5.700169 60.225950 +5.689022 60.224776 +5.679341 60.222723 +5.667900 60.221550 +5.660860 60.218323 +5.653526 60.215096 +5.647659 60.210989 +5.640618 60.207762 +5.633284 60.204535 +5.623310 60.202481 +5.612163 60.201308 +5.599842 60.200721 +5.589868 60.199255 +5.592215 60.193681 +5.598962 60.189867 +5.603949 60.185467 +5.606296 60.180187 +5.606002 60.173439 +5.601015 60.168746 +5.594268 60.165225 +5.586934 60.161999 +5.578427 60.159358 +5.571093 60.156132 +5.570800 60.150558 +5.575787 60.146451 +5.584001 60.143224 +5.593682 60.141170 +5.606002 60.140290 +5.618323 60.140584 +5.630938 60.141170 +5.642085 60.142344 +5.652939 60.143224 +5.664087 60.144397 +5.672887 60.147331 +5.677288 60.152025 +5.680514 60.157305 +5.682568 60.163465 +5.683155 60.170213 +5.683741 60.177253 +5.686968 60.182533 +5.695182 60.185174 +5.706330 60.184880 +5.717477 60.184587 +5.727158 60.186640 +5.735958 60.189281 +5.742999 60.192507 +5.751800 60.194854 +5.758840 60.198375 +5.767347 60.200721 +5.775855 60.202188 +5.785535 60.203948 +5.795509 60.205708 +5.805190 60.207762 +5.816338 60.207469 +5.817511 60.202481 +5.810177 60.199548 +5.801670 60.196614 +5.791696 60.194854 +5.782015 60.193094 +5.773508 60.190454 +5.768814 60.185760 +5.762947 60.181653 +5.757080 60.177840 +5.747106 60.175786 +5.734785 60.175493 +5.726278 60.172853 +5.723051 60.167572 +5.725398 60.161999 +5.727451 60.156425 +5.732732 60.152318 +5.737719 60.147918 +5.744466 60.143517 +5.751213 60.139997 +5.754733 60.135010 +5.758547 60.130316 +5.757960 60.123276 +5.754733 60.117702 +5.748866 60.113888 +5.740359 60.111248 +5.731851 60.108608 +5.727158 60.103914 +5.729798 60.099807 +5.733318 60.095114 +5.734198 60.088660 +5.739479 60.084553 +5.744466 60.080153 +5.752386 60.077219 +5.760600 60.074579 +5.771748 60.072819 +5.777615 60.076632 +5.776735 60.083086 +5.778495 60.089247 +5.786709 60.088953 +5.791989 60.084846 +5.802843 60.083086 +5.806070 60.088660 +5.813404 60.091887 +5.821325 60.088953 +5.820444 60.081913 +5.817511 60.076632 +5.814284 60.071059 +5.809884 60.066365 +5.802550 60.063138 +5.795216 60.059618 +5.785535 60.058151 +5.774388 60.056978 +5.762067 60.056391 +5.749453 60.057564 +5.741532 60.060205 +5.733612 60.063432 +5.726864 60.066952 +5.717184 60.066365 +5.713957 60.060791 +5.713663 60.055511 +5.714544 60.049057 +5.711023 60.043483 +5.710730 60.037030 +5.715717 60.032629 +5.719531 60.027642 +5.723051 60.022655 +5.725691 60.017082 +5.729211 60.012094 +5.731558 60.006814 +5.738012 60.003294 +5.747399 60.001240 +5.755613 59.998013 +5.762360 59.994493 +5.768521 59.990973 +5.773801 59.986573 +5.783482 59.985693 +5.786709 59.990973 +5.787295 59.998013 +5.787882 60.005054 +5.788469 60.011801 +5.792869 60.016495 +5.799910 60.019722 +5.812524 60.020308 +5.816044 60.015321 +5.813111 60.010041 +5.811057 60.003587 +5.816044 59.999480 +5.825725 59.998600 +5.833059 60.001827 +5.841273 60.004467 +5.848606 60.007694 +5.855940 60.011214 +5.864154 60.013561 +5.871488 60.017082 +5.879995 60.019428 +5.885863 60.023242 +5.891730 60.027642 +5.896423 60.032336 +5.900824 60.037030 +5.905224 60.041723 +5.907277 60.047884 +5.908157 60.054631 +5.908744 60.061378 +5.906397 60.066952 +5.905517 60.073406 +5.904637 60.079566 +5.902584 60.085140 +5.899944 60.090420 +5.897890 60.095994 +5.895543 60.101568 +5.893490 60.107141 +5.891143 60.112715 +5.888796 60.118289 +5.886743 60.123863 +5.884102 60.129436 +5.882049 60.135010 +5.879702 60.140584 +5.878822 60.147038 +5.879409 60.153491 +5.881462 60.159945 +5.888503 60.163172 +5.899650 60.161705 +5.904637 60.157305 +5.908451 60.152611 +5.916371 60.149384 +5.926345 60.151438 +5.932212 60.155251 +5.936906 60.159945 +5.942773 60.164052 +5.946000 60.169332 +5.949227 60.174906 +5.952454 60.180187 +5.957148 60.184880 +5.961841 60.189867 +5.966535 60.194561 +5.972109 60.198375 +5.977976 60.202481 +5.984136 60.206295 +5.988537 60.210989 +5.993230 60.215976 +5.997924 60.220669 +6.001151 60.226243 +6.004378 60.231524 +6.008778 60.236217 +6.012298 60.241791 +6.015525 60.247365 +6.017579 60.253232 +6.019339 60.259392 +6.024326 60.264086 +6.029900 60.268193 +6.041047 60.267900 +6.052194 60.266139 +6.060408 60.263206 +6.069796 60.261152 +6.076543 60.257632 +6.084170 60.254405 +6.093851 60.252352 +6.103238 60.249712 +6.115559 60.248831 +6.128173 60.247658 +6.133454 60.243551 +6.138441 60.239444 +6.147828 60.236804 +6.156335 60.239738 +6.161029 60.244431 +6.165723 60.248831 +6.168949 60.254405 +6.172176 60.259979 +6.176870 60.264673 +6.180390 60.269953 +6.183617 60.275527 +6.186844 60.280807 +6.183324 60.285794 +6.176577 60.289314 +6.173056 60.294301 +6.171003 60.299875 +6.170123 60.306036 +6.173350 60.311316 +6.176577 60.316890 +6.182444 60.320997 +6.188604 60.325104 +6.194471 60.328917 +6.200632 60.333024 +6.206499 60.336838 +6.212659 60.341531 +6.214419 60.347692 +6.209139 60.351799 +6.198285 60.353559 +6.187137 60.355319 +6.176283 60.357079 +6.165429 60.358546 +6.155749 60.360893 +6.147828 60.363826 +6.145188 60.367933 +6.153988 60.370574 +6.168069 60.370280 +6.180390 60.369107 +6.190364 60.369694 +6.197405 60.372920 +6.204739 60.376147 +6.217353 60.376734 +6.229674 60.375561 +6.240821 60.373800 +6.251675 60.372334 +6.262823 60.372040 +6.270450 60.375267 +6.268103 60.380841 +6.264290 60.385828 +6.259303 60.389935 +6.252555 60.393749 +6.247568 60.398149 +6.239355 60.400789 +6.234074 60.404896 +6.228794 60.409590 +6.223807 60.413697 +6.220287 60.418684 +6.216473 60.423671 +6.214126 60.429244 +6.212073 60.434818 +6.208259 60.439512 +6.202979 60.443912 +6.200925 60.449486 +6.198578 60.455060 +6.199458 60.461807 +6.205325 60.465914 +6.215006 60.464740 +6.221753 60.461220 +6.223807 60.455646 +6.226154 60.450073 +6.227620 60.448606 +6.226154 60.448606 +6.226740 60.442445 +6.227620 60.436285 +6.231141 60.431298 +6.234954 60.426311 +6.238768 60.421617 +6.244048 60.417217 +6.247568 60.412523 +6.252555 60.408123 +6.259303 60.404309 +6.264583 60.400202 +6.270743 60.396682 +6.277491 60.393162 +6.285705 60.389935 +6.295385 60.387881 +6.306239 60.386121 +6.317387 60.385828 +6.327361 60.387881 +6.334401 60.390815 +6.342029 60.394042 +6.347896 60.398149 +6.354056 60.402256 +6.362563 60.404603 +6.371071 60.407243 +6.381045 60.409003 +6.389845 60.411350 +6.396006 60.415457 +6.401580 60.419564 +6.409207 60.422791 +6.417714 60.425137 +6.427688 60.427191 +6.440302 60.427484 +6.451743 60.428658 +6.461717 60.430418 +6.471398 60.432178 +6.479025 60.435405 +6.486066 60.438632 +6.493693 60.441859 +6.502200 60.444499 +6.513641 60.445672 +6.523322 60.447139 +6.533296 60.449193 +6.544736 60.450366 +6.557644 60.451246 +6.568498 60.452126 +6.577592 60.454766 +6.586099 60.457113 +6.594607 60.459753 +6.602234 60.462980 +6.609568 60.466500 +6.615728 60.470314 +6.621595 60.474128 +6.628929 60.477355 +6.635090 60.481462 +6.641250 60.485275 +6.648291 60.488502 +6.654451 60.492609 +6.660611 60.496716 +6.666772 60.500530 +6.673812 60.503756 +6.679973 60.507863 +6.687307 60.511090 +6.694641 60.514024 +6.703441 60.516664 +6.713415 60.517251 +6.719869 60.513731 +6.720456 60.507277 +6.714589 60.503463 +6.708428 60.499356 +6.701094 60.496129 +6.693760 60.492902 +6.686427 60.489675 +6.680266 60.485862 +6.672932 60.482635 +6.665598 60.479115 +6.657971 60.476181 +6.650931 60.472661 +6.643304 60.469434 +6.636263 60.466500 +6.630103 60.462100 +6.622475 60.459167 +6.617782 60.454473 +6.615728 60.448019 +6.619542 60.443325 +6.624529 60.438925 +6.631276 60.435405 +6.639197 60.432471 +6.647117 60.429538 +6.657971 60.427778 +6.670879 60.428071 +6.682026 60.429244 +6.690827 60.431591 +6.699334 60.434231 +6.706668 60.437458 +6.715469 60.440099 +6.721336 60.443912 +6.728963 60.447139 +6.735123 60.451246 +6.741284 60.455060 +6.746858 60.458873 +6.754485 60.462100 +6.760645 60.466207 +6.767686 60.469434 +6.775313 60.472661 +6.783820 60.475301 +6.791448 60.478235 +6.799955 60.480875 +6.808755 60.483222 +6.818729 60.485275 +6.828704 60.487035 +6.838678 60.488502 +6.850118 60.489675 +6.862733 60.489969 +6.876814 60.489675 +6.883854 60.493196 +6.888841 60.497596 +6.893535 60.502290 +6.897055 60.507863 +6.898815 60.512557 +6.902629 60.517837 +6.907322 60.522531 +6.912016 60.527225 +6.916710 60.531918 +6.922870 60.535732 +6.929031 60.539839 +6.934898 60.543946 +6.942525 60.546880 +6.948685 60.550693 +6.954846 60.555093 +6.961006 60.558907 +6.966873 60.562721 +6.973034 60.566828 +6.979194 60.570935 +6.986822 60.573868 +6.993862 60.577095 +7.002663 60.580322 +7.011757 60.582669 +7.020264 60.585309 +7.028771 60.587656 +7.040212 60.587362 +7.041092 60.582669 +7.036105 60.577095 +7.029945 60.573281 +7.023784 60.569468 +7.019091 60.564774 +7.014103 60.560081 +7.007943 60.555974 +7.004716 60.550693 +7.000022 60.545999 +6.993862 60.541893 +6.986528 60.538959 +6.978901 60.535439 +6.970394 60.533092 +6.962766 60.529865 +6.958073 60.525171 +6.957193 60.518424 +6.949859 60.514904 +6.942232 60.511970 +6.933724 60.509330 +6.926097 60.506103 +6.925510 60.500530 +6.936658 60.500236 +6.948099 60.501410 +6.956606 60.503756 +6.968047 60.504930 +6.979488 60.505810 +6.992102 60.506103 +7.006183 60.505810 +7.018504 60.504637 +7.028185 60.502290 +7.037572 60.499943 +7.045492 60.497009 +7.056347 60.495249 +7.068961 60.494076 +7.078935 60.494369 +7.088909 60.496423 +7.097416 60.498769 +7.108857 60.499943 +7.120298 60.500823 +7.131152 60.499063 +7.134672 60.494076 +7.128512 60.490262 +7.121178 60.487035 +7.113844 60.483808 +7.107684 60.479995 +7.100350 60.476768 +7.091549 60.474128 +7.082748 60.471781 +7.070428 60.471487 +7.059280 60.472954 +7.048426 60.474714 +7.039039 60.477355 +7.027891 60.478821 +7.017037 60.480581 +7.005890 60.482342 +6.993275 60.483222 +6.980954 60.484395 +6.966873 60.484982 +6.954553 60.484688 +6.944579 60.482635 +6.935485 60.480288 +6.928444 60.477355 +6.920817 60.473834 +6.912310 60.471487 +6.899402 60.471194 +6.887081 60.472368 +6.874760 60.473248 +6.860679 60.473541 +6.849532 60.472368 +6.838091 60.471487 +6.828117 60.469727 +6.819610 60.467087 +6.811982 60.464154 +6.805822 60.460047 +6.798781 60.456820 +6.792621 60.452713 +6.786460 60.448899 +6.780300 60.445086 +6.774140 60.440979 +6.768273 60.436872 +6.763285 60.432178 +6.758592 60.427778 +6.756832 60.421324 +6.751845 60.416924 +6.748324 60.411350 +6.742457 60.407536 +6.736297 60.403723 +6.728963 60.400202 +6.725443 60.394629 +6.722216 60.389348 +6.718696 60.383775 +6.708722 60.382308 +6.697574 60.381134 +6.687600 60.379374 +6.681440 60.375267 +6.676746 60.370867 +6.673226 60.365293 +6.669999 60.359719 +6.665305 60.355319 +6.661785 60.349745 +6.658265 60.344465 +6.653571 60.339771 +6.650344 60.334198 +6.645650 60.329504 +6.642130 60.324224 +6.638610 60.318650 +6.638023 60.311609 +6.635970 60.305449 +6.633916 60.299582 +6.630396 60.294301 +6.626876 60.288728 +6.621009 60.284621 +6.615142 60.280807 +6.608981 60.276113 +6.604287 60.271420 +6.600767 60.266139 +6.601354 60.259686 +6.605167 60.254992 +6.607221 60.249125 +6.609568 60.243551 +6.611621 60.237977 +6.612208 60.231817 +6.610448 60.225950 +6.606634 60.220376 +6.603407 60.215096 +6.598714 60.210402 +6.595193 60.204828 +6.590500 60.200135 +6.585806 60.195441 +6.581406 60.190747 +6.576712 60.186054 +6.572018 60.181360 +6.568498 60.175786 +6.565271 60.170506 +6.560578 60.165812 +6.558231 60.159652 +6.556471 60.153491 +6.554124 60.147624 +6.552364 60.141170 +6.551484 60.134423 +6.550897 60.127383 +6.550017 60.120636 +6.550604 60.114475 +6.551484 60.108021 +6.552070 60.101861 +6.552950 60.095700 +6.552070 60.088953 +6.551190 60.081913 +6.547670 60.076632 +6.542683 60.079566 +6.540630 60.085140 +6.538283 60.090420 +6.536229 60.095994 +6.534176 60.101568 +6.533296 60.108021 +6.531242 60.113595 +6.531829 60.120342 +6.532709 60.127089 +6.533296 60.134130 +6.534176 60.139704 +6.534762 60.146451 +6.535642 60.153198 +6.537403 60.159358 +6.539749 60.165812 +6.541803 60.171973 +6.542390 60.178720 +6.544443 60.184587 +6.547963 60.190161 +6.551484 60.195441 +6.553244 60.201895 +6.556764 60.207175 +6.558817 60.213336 +6.559404 60.220376 +6.557644 60.225950 +6.556764 60.231817 +6.556177 60.238271 +6.556764 60.245018 +6.557644 60.252058 +6.558231 60.258806 +6.561751 60.264379 +6.564978 60.269660 +6.569672 60.274353 +6.575832 60.278460 +6.581699 60.282274 +6.589326 60.285501 +6.594900 60.289314 +6.599887 60.294301 +6.601941 60.300462 +6.599887 60.306036 +6.597540 60.311609 +6.596954 60.317770 +6.597834 60.324810 +6.601061 60.330091 +6.604581 60.335664 +6.606341 60.341531 +6.610154 60.346812 +6.613381 60.352386 +6.616608 60.357666 +6.621302 60.362360 +6.625996 60.367347 +6.630983 60.372040 +6.634210 60.377614 +6.638903 60.382014 +6.643597 60.386708 +6.648291 60.391402 +6.652984 60.396095 +6.659145 60.400202 +6.665305 60.404309 +6.667359 60.410176 +6.660905 60.413990 +6.652691 60.416924 +6.644770 60.419857 +6.635383 60.422204 +6.625702 60.424551 +6.614848 60.426018 +6.603701 60.427778 +6.591380 60.428951 +6.577299 60.429244 +6.563218 60.429831 +6.550897 60.429538 +6.540923 60.427484 +6.530949 60.425724 +6.522148 60.423377 +6.513641 60.420444 +6.505134 60.418097 +6.497506 60.414870 +6.491639 60.410763 +6.488119 60.405483 +6.484892 60.399909 +6.479905 60.395215 +6.475211 60.390522 +6.469344 60.386708 +6.462011 60.383188 +6.454677 60.380254 +6.446169 60.377907 +6.437662 60.374974 +6.428861 60.372627 +6.420354 60.369987 +6.410380 60.368227 +6.398939 60.367347 +6.387792 60.366173 +6.376351 60.365000 +6.365204 60.363826 +6.357870 60.360600 +6.358750 60.355906 +6.364030 60.351799 +6.366084 60.346225 +6.362857 60.340651 +6.354056 60.338011 +6.345549 60.335664 +6.337042 60.333024 +6.330881 60.328917 +6.325014 60.325104 +6.318854 60.320997 +6.314160 60.316303 +6.307119 60.313076 +6.300959 60.309262 +6.292158 60.306329 +6.283944 60.303982 +6.272504 60.302222 +6.261063 60.301049 +6.249915 60.299875 +6.238768 60.298995 +6.231434 60.295475 +6.233781 60.289901 +6.237301 60.285207 +6.242581 60.280807 +6.241701 60.274060 +6.235834 60.269953 +6.229967 60.266139 +6.222633 60.262913 +6.216766 60.258806 +6.209432 60.255579 +6.203272 60.251472 +6.197405 60.247365 +6.194178 60.242084 +6.190951 60.236804 +6.188898 60.230644 +6.185671 60.225363 +6.182150 60.219789 +6.177457 60.215096 +6.171590 60.210989 +6.163082 60.208349 +6.153108 60.206588 +6.141961 60.205415 +6.129347 60.205415 +6.120839 60.202481 +6.113506 60.199255 +6.109399 60.198081 +6.110865 60.198668 +6.106465 60.195148 +6.101771 60.190454 +6.098251 60.185174 +6.097664 60.179600 +6.098544 60.173733 +6.102651 60.168746 +6.104705 60.163172 +6.108225 60.158185 +6.113506 60.153198 +6.118786 60.148798 +6.124946 60.145277 +6.130227 60.141170 +6.135214 60.136770 +6.140201 60.132370 +6.144308 60.127676 +6.146361 60.122102 +6.144601 60.115942 +6.139614 60.111248 +6.134920 60.106261 +6.140201 60.102154 +6.150175 60.104208 +6.160149 60.105968 +6.169830 60.107728 +6.180977 60.108901 +6.190951 60.110662 +6.199458 60.113008 +6.207672 60.115942 +6.215006 60.118875 +6.222633 60.122102 +6.228500 60.126209 +6.234074 60.130316 +6.240235 60.134130 +6.244635 60.138824 +6.250795 60.142637 +6.256662 60.147038 +6.262530 60.150851 +6.268690 60.154958 +6.275730 60.158185 +6.285705 60.158478 +6.289518 60.154958 +6.287758 60.153491 +6.290105 60.147918 +6.288051 60.143224 +6.285998 60.137357 +6.284238 60.131196 +6.292158 60.127969 +6.303012 60.127676 +6.315627 60.127089 +6.317680 60.121516 +6.309173 60.118582 +6.300666 60.116235 +6.290985 60.114475 +6.279544 60.113302 +6.269863 60.111248 +6.258716 60.110368 +6.248742 60.108608 +6.239061 60.106555 +6.228794 60.105088 +6.219113 60.103034 +6.209139 60.101274 +6.199458 60.099514 +6.189484 60.097461 +6.179804 60.095700 +6.168656 60.094820 +6.158682 60.092767 +6.149001 60.091007 +6.139027 60.089247 +6.129053 60.087487 +6.119079 60.085433 +6.110865 60.083086 +6.102358 60.080446 +6.093557 60.077806 +6.085050 60.075166 +6.076836 60.072819 +6.069502 60.069299 +6.060995 60.066952 +6.053661 60.063725 +6.047794 60.059618 +6.041927 60.055804 +6.035767 60.051697 +6.029900 60.047884 +6.025499 60.043190 +6.019632 60.038790 +6.014938 60.034096 +6.009071 60.030282 +6.004378 60.025589 +5.999977 60.020895 +5.995577 60.016201 +5.990883 60.011508 +5.985016 60.007401 +5.980323 60.002707 +5.977389 59.997133 +5.977976 59.992440 +5.983256 59.988333 +5.991177 59.985399 +6.000564 59.983052 +6.007311 59.979532 +6.010831 59.974545 +6.007605 59.969265 +6.003204 59.964571 +5.999684 59.958997 +5.993817 59.954890 +5.986776 59.951663 +5.977096 59.949610 +5.964481 59.949317 +5.950987 59.949610 +5.936906 59.949903 +5.924879 59.949610 +5.913731 59.948730 +5.902584 59.947263 +5.892903 59.945503 +5.882929 59.943743 +5.872955 59.941689 +5.862101 59.940516 +5.850953 59.939343 +5.842446 59.936996 +5.835406 59.933476 +5.828072 59.930249 +5.818391 59.928488 +5.807244 59.927608 +5.797563 59.925555 +5.790229 59.922328 +5.785829 59.917634 +5.779962 59.913527 +5.770281 59.911767 +5.761774 59.909127 +5.758547 59.903553 +5.759427 59.897393 +5.761774 59.891819 +5.763827 59.886245 +5.767641 59.881258 +5.768227 59.875391 +5.765294 59.869818 +5.754146 59.868644 +5.741825 59.868351 +5.731851 59.866297 +5.727451 59.861604 +5.717770 59.859844 +5.706623 59.858670 +5.700756 59.854857 +5.696356 59.849870 +5.686675 59.848109 +5.674061 59.847523 +5.674061 59.842242 +5.680221 59.838722 +5.686968 59.834908 +5.699289 59.834028 +5.707503 59.836669 +5.716010 59.839309 +5.723051 59.842536 +5.730385 59.845763 +5.736252 59.849576 +5.742119 59.853683 +5.747399 59.856323 +5.745932 59.850163 +5.741239 59.845469 +5.734198 59.842242 +5.728331 59.838429 +5.725104 59.832855 +5.727451 59.827281 +5.736838 59.824934 +5.747693 59.824641 +5.758547 59.823174 +5.766467 59.820241 +5.774388 59.817307 +5.781135 59.813494 +5.787589 59.809973 +5.792869 59.805866 +5.797856 59.801759 +5.802843 59.797359 +5.808124 59.792959 +5.813111 59.788852 +5.819564 59.784745 +5.824845 59.780345 +5.831005 59.776824 +5.837752 59.773011 +5.845673 59.770370 +5.855060 59.768024 +5.867381 59.766850 +5.877062 59.768904 +5.886743 59.770957 +5.893783 59.773891 +5.901117 59.777118 +5.909331 59.780051 +5.917838 59.782398 +5.927519 59.784158 +5.937200 59.786212 +5.946000 59.788558 +5.951574 59.792665 +5.954801 59.797946 +5.956561 59.804106 +5.957441 59.811147 +5.958028 59.818187 +5.957148 59.824054 +5.957734 59.831095 +5.959788 59.837255 +5.963015 59.842829 +5.967415 59.847523 +5.973282 59.851336 +5.979149 59.855150 +5.987950 59.858083 +5.995870 59.856323 +5.992644 59.850750 +5.986776 59.846936 +5.982376 59.842242 +5.981496 59.835202 +5.983550 59.829628 +5.987656 59.824934 +5.989710 59.819361 +5.990590 59.813200 +5.987363 59.807920 +5.981496 59.803520 +5.975629 59.799706 +5.969762 59.795892 +5.962428 59.792372 +5.959201 59.786798 +5.961841 59.781518 +5.963895 59.775944 +5.967415 59.770957 +5.971229 59.765970 +5.977389 59.762450 +5.984136 59.758930 +5.992057 59.755703 +5.999977 59.753063 +6.013765 59.752769 +6.024619 59.753943 +6.034593 59.755409 +6.045447 59.756583 +6.056301 59.757756 +6.066275 59.759810 +6.075956 59.761570 +6.084463 59.764210 +6.090331 59.768024 +6.093557 59.773597 +6.096784 59.778878 +6.102651 59.782985 +6.109692 59.786212 +6.122306 59.786798 +6.133160 59.787678 +6.140201 59.790905 +6.143428 59.794426 +6.143428 59.795012 +6.150468 59.798239 +6.156335 59.802346 +6.162202 59.806453 +6.169536 59.809387 +6.176577 59.812907 +6.183911 59.816134 +6.192124 59.818481 +6.199458 59.822001 +6.207672 59.824348 +6.216473 59.826988 +6.224687 59.829335 +6.233487 59.831975 +6.243168 59.834028 +6.252849 59.835789 +6.262823 59.837549 +6.271037 59.839895 +6.282184 59.841069 +6.291865 59.843122 +6.301839 59.844589 +6.310346 59.847229 +6.320027 59.849283 +6.328534 59.851630 +6.339682 59.852803 +6.337922 59.848109 +6.333228 59.843416 +6.325894 59.839895 +6.317387 59.837549 +6.308880 59.834908 +6.298025 59.834028 +6.288051 59.831975 +6.278371 59.830215 +6.270157 59.827868 +6.259889 59.825814 +6.251675 59.823468 +6.244342 59.819947 +6.236128 59.817601 +6.231434 59.812907 +6.226740 59.807626 +6.219700 59.804106 +6.208552 59.802933 +6.198872 59.801173 +6.192711 59.797359 +6.188311 59.792372 +6.182444 59.788558 +6.175403 59.785332 +6.168069 59.781811 +6.161029 59.778878 +6.153988 59.775651 +6.145188 59.773011 +6.138441 59.769784 +6.131107 59.766264 +6.125240 59.762450 +6.119373 59.758343 +6.113506 59.754529 +6.107932 59.750422 +6.100598 59.747195 +6.093264 59.743969 +6.083583 59.741915 +6.071556 59.741622 +6.057768 59.741915 +6.045447 59.741622 +6.033126 59.741035 +6.021979 59.739862 +6.012298 59.738395 +6.001151 59.737221 +5.991470 59.735168 +5.980616 59.734288 +5.968295 59.735168 +5.960375 59.738101 +5.955387 59.742208 +5.951574 59.747195 +5.948054 59.752183 +5.942773 59.756289 +5.936319 59.760103 +5.928399 59.763037 +5.919892 59.760396 +5.919598 59.753649 +5.918718 59.746609 +5.916958 59.740448 +5.911091 59.736341 +5.901410 59.734581 +5.890263 59.732821 +5.879115 59.731648 +5.867088 59.731354 +5.858287 59.728714 +5.848606 59.726954 +5.840393 59.724020 +5.833059 59.721087 +5.828658 59.716393 +5.824258 59.711700 +5.822205 59.705246 +5.816338 59.701432 +5.809590 59.697912 +5.800790 59.695565 +5.794043 59.692338 +5.786709 59.688818 +5.779668 59.685591 +5.772628 59.682364 +5.768227 59.677670 +5.770281 59.672097 +5.775268 59.667696 +5.782015 59.664176 +5.791402 59.661829 +5.803430 59.661243 +5.815751 59.661243 +5.826605 59.662416 +5.836286 59.664470 +5.846260 59.666523 +5.855940 59.667990 +5.865621 59.670043 +5.875302 59.671803 +5.886449 59.672977 +5.898770 59.673270 +5.904931 59.669750 +5.903464 59.665056 +5.897597 59.661243 +5.901117 59.656256 +5.904637 59.650975 +5.892610 59.650975 +5.881756 59.650975 +5.867968 59.651269 +5.855940 59.650975 +5.843326 59.650682 +5.831005 59.650389 +5.820151 59.648922 +5.807830 59.648628 +5.798150 59.646575 +5.793749 59.641881 +5.790522 59.636601 +5.789936 59.629854 +5.790816 59.623693 +5.793163 59.618120 +5.792576 59.611079 +5.787882 59.606385 +5.778495 59.604332 +5.767347 59.603452 +5.753560 59.603745 +5.744466 59.605799 +5.743586 59.612252 +5.749159 59.616066 +5.755026 59.620173 +5.760894 59.624280 +5.763827 59.629854 +5.764414 59.636308 +5.763534 59.642761 +5.761480 59.648335 +5.756493 59.652442 +5.750039 59.656256 +5.740652 59.658309 +5.732438 59.661243 +5.724811 59.664176 +5.715424 59.666523 +5.704569 59.667990 +5.692542 59.668870 +5.679048 59.669163 +5.667900 59.667990 +5.656753 59.666816 +5.644432 59.666523 +5.635044 59.668870 +5.627124 59.671803 +5.620670 59.675324 +5.611283 59.677377 +5.597788 59.677670 +5.589281 59.675324 +5.582241 59.671803 +5.576374 59.667696 +5.571973 59.663003 +5.567573 59.658309 +5.564346 59.653029 +5.562586 59.646868 +5.559359 59.641295 +5.557599 59.635134 +5.554372 59.629854 +5.552612 59.623693 +5.550852 59.617533 +5.550265 59.611959 +5.552612 59.606385 +5.557892 59.602278 +5.561413 59.597291 +5.564933 59.592598 +5.567280 59.587024 +5.568453 59.580570 +5.566400 59.574410 +5.561999 59.569716 +5.558772 59.564436 +5.555545 59.558862 +5.552612 59.553288 +5.548212 59.548595 +5.544985 59.543314 +5.540584 59.538621 +5.534717 59.534514 +5.529144 59.530700 +5.522103 59.527180 +5.513596 59.524833 +5.503915 59.522779 +5.494528 59.520726 +5.484847 59.518966 +5.475166 59.517206 +5.465486 59.515152 +5.457272 59.512805 +5.451405 59.508698 +5.448471 59.503418 +5.437617 59.503418 +5.435270 59.508992 +5.435564 59.515739 +5.437617 59.521899 +5.436737 59.528060 +5.437030 59.533633 +5.441431 59.538327 +5.449645 59.540967 +5.461965 59.540087 +5.474286 59.539207 +5.481033 59.542434 +5.480447 59.548595 +5.484847 59.553288 +5.490421 59.557395 +5.498635 59.560035 +5.508315 59.562089 +5.516823 59.564436 +5.522396 59.568543 +5.524157 59.574703 +5.520636 59.579397 +5.518289 59.584971 +5.516236 59.590544 +5.513596 59.596118 +5.511542 59.601692 +5.509195 59.607265 +5.509782 59.614306 +5.508609 59.620173 +5.511836 59.625747 +5.515063 59.631320 +5.517116 59.637481 +5.518583 59.643641 +5.520636 59.649802 +5.523570 59.655376 +5.527970 59.660069 +5.532664 59.664763 +5.534424 59.670923 +5.533544 59.677084 +5.532664 59.683244 +5.534424 59.689405 +5.537944 59.694685 +5.539411 59.700845 +5.537357 59.706713 +5.530610 59.709939 +5.521516 59.712286 +5.513302 59.715220 +5.511249 59.720794 +5.516823 59.724607 +5.518583 59.730768 +5.508902 59.729301 +5.501862 59.725781 +5.495995 59.721674 +5.490421 59.717860 +5.484554 59.713753 +5.478980 59.709646 +5.471646 59.706419 +5.464606 59.703192 +5.457565 59.699672 +5.451698 59.695858 +5.446124 59.691752 +5.441724 59.687058 +5.437324 59.682364 +5.435270 59.676204 +5.432337 59.670630 +5.425003 59.667403 +5.419429 59.663296 +5.421776 59.657722 +5.427056 59.653615 +5.436150 59.651269 +5.445538 59.649215 +5.447884 59.643641 +5.451698 59.638654 +5.454045 59.633081 +5.459325 59.628974 +5.461379 59.623400 +5.459619 59.618706 +5.449938 59.616653 +5.445538 59.611959 +5.443777 59.605799 +5.443484 59.598758 +5.439964 59.593478 +5.434390 59.590838 +5.429403 59.594945 +5.427056 59.600518 +5.426176 59.606972 +5.425296 59.613133 +5.424123 59.619293 +5.422069 59.624867 +5.419722 59.631027 +5.417669 59.636601 +5.413562 59.641295 +5.410042 59.646282 +5.403295 59.650095 +5.393907 59.650975 +5.388333 59.649508 +5.381293 59.645988 +5.375719 59.642175 +5.370145 59.638068 +5.364278 59.634254 +5.354598 59.632201 +5.344624 59.630147 +5.337877 59.626920 +5.330836 59.623693 +5.328783 59.617533 +5.328783 59.611959 +5.325556 59.606679 +5.319689 59.602572 +5.313821 59.598465 +5.307074 59.595238 +5.300034 59.592011 +5.295633 59.587317 +5.291233 59.582624 +5.288300 59.579690 +5.283899 59.574996 +5.279499 59.570303 +5.275099 59.565609 +5.271872 59.560035 +5.268938 59.554755 +5.263071 59.550648 +5.254857 59.548008 +5.245177 59.546248 +5.235496 59.544194 +5.229629 59.540381 +5.230802 59.535394 +5.240189 59.533047 +5.250750 59.531580 +5.261604 59.530113 +5.268352 59.526300 +5.269232 59.521606 +5.259844 59.519846 +5.246057 59.520139 +5.234029 59.520726 +5.223175 59.519846 +5.213494 59.517792 +5.206454 59.514565 +5.204694 59.508405 +5.205574 59.502245 +5.209094 59.496671 +5.213201 59.491684 +5.216721 59.486110 +5.218775 59.480536 +5.221415 59.474963 +5.222295 59.468802 +5.223468 59.462642 +5.222882 59.455895 +5.222295 59.448854 +5.222002 59.441814 +5.221415 59.436533 +5.226695 59.432133 +5.230215 59.428613 +5.230509 59.430959 +5.236963 59.427146 +5.242243 59.424506 +5.248990 59.420692 +5.255444 59.417172 +5.261898 59.413945 +5.266885 59.409545 +5.270698 59.404851 +5.275979 59.400451 +5.280966 59.396050 +5.286246 59.391943 +5.288300 59.386370 +5.292113 59.381676 +5.294460 59.376102 +5.296807 59.370528 +5.298860 59.364955 +5.301501 59.359381 +5.303554 59.355274 +5.308834 59.351167 +5.313821 59.346767 +5.320569 59.343246 +5.327022 59.339726 +5.334650 59.336793 +5.344330 59.334446 +5.352544 59.337086 +5.355478 59.342366 +5.355771 59.349407 +5.354891 59.355567 +5.352838 59.361141 +5.353424 59.368182 +5.353718 59.374929 +5.355478 59.381089 +5.357238 59.387250 +5.360171 59.392823 +5.360758 59.399571 +5.361345 59.406318 +5.360465 59.412771 +5.364865 59.417465 +5.371319 59.413945 +5.376306 59.409838 +5.380413 59.404851 +5.383933 59.399864 +5.384813 59.393703 +5.384226 59.386663 +5.382466 59.380502 +5.380706 59.374342 +5.378946 59.368475 +5.377186 59.362315 +5.376599 59.355274 +5.378946 59.349700 +5.382466 59.344713 +5.386280 59.340020 +5.390094 59.335033 +5.393614 59.330339 +5.394787 59.323885 +5.396841 59.318311 +5.397721 59.312151 +5.400068 59.306577 +5.402414 59.301003 +5.406228 59.296016 +5.411215 59.291909 +5.420309 59.289856 +5.428523 59.292203 +5.433217 59.297190 +5.436150 59.302470 +5.436737 59.309511 +5.435857 59.315671 +5.433510 59.321245 +5.431163 59.326525 +5.430283 59.332686 +5.429403 59.339140 +5.428523 59.345300 +5.428816 59.352340 +5.429403 59.359088 +5.429990 59.364661 +5.431750 59.370822 +5.433510 59.376982 +5.436737 59.382263 +5.439670 59.387836 +5.441724 59.393997 +5.444657 59.399571 +5.447884 59.404851 +5.456098 59.407491 +5.462552 59.403971 +5.466072 59.398984 +5.467246 59.394290 +5.466659 59.387250 +5.466072 59.380209 +5.465486 59.373755 +5.464019 59.367595 +5.461965 59.361141 +5.459032 59.355861 +5.458445 59.348820 +5.456685 59.342660 +5.456098 59.335913 +5.456978 59.329752 +5.458152 59.323298 +5.460205 59.318018 +5.461085 59.311564 +5.461965 59.305697 +5.464312 59.300123 +5.465192 59.293670 +5.469006 59.288976 +5.473993 59.284869 +5.481620 59.281642 +5.491007 59.279589 +5.501568 59.277828 +5.512129 59.276362 +5.525917 59.276068 +5.537944 59.274895 +5.548505 59.276068 +5.555545 59.279589 +5.562879 59.282815 +5.566986 59.287509 +5.571387 59.292203 +5.574613 59.297777 +5.580187 59.301590 +5.584881 59.306284 +5.589281 59.310978 +5.594855 59.315378 +5.599255 59.320071 +5.602189 59.325352 +5.602776 59.332099 +5.603362 59.337673 +5.603949 59.344713 +5.604242 59.349994 +5.604829 59.357034 +5.605416 59.362608 +5.606002 59.369355 +5.606296 59.376102 +5.606882 59.383143 +5.608643 59.389303 +5.609229 59.394584 +5.605709 59.399864 +5.598962 59.403384 +5.586934 59.404264 +5.579307 59.406904 +5.583707 59.411598 +5.594562 59.413065 +5.607763 59.412771 +5.617150 59.410425 +5.623604 59.406904 +5.626244 59.402504 +5.629764 59.397810 +5.630644 59.392823 +5.632698 59.387543 +5.635338 59.381676 +5.640325 59.376982 +5.643845 59.371995 +5.646192 59.366421 +5.645605 59.359381 +5.646485 59.353221 +5.648539 59.347647 +5.650886 59.342366 +5.654406 59.337379 +5.661153 59.333859 +5.668780 59.330926 +5.675234 59.327112 +5.672301 59.323298 +5.661446 59.321832 +5.652059 59.320365 +5.647659 59.315671 +5.642965 59.310978 +5.639738 59.305404 +5.636805 59.300123 +5.636218 59.293083 +5.637391 59.288096 +5.649126 59.287216 +5.657633 59.289856 +5.665847 59.292496 +5.672887 59.295723 +5.679634 59.298950 +5.688142 59.301590 +5.697822 59.303350 +5.705743 59.305990 +5.714250 59.308631 +5.720117 59.312444 +5.723051 59.318018 +5.725104 59.324178 +5.724224 59.330339 +5.727158 59.335913 +5.735665 59.338259 +5.744759 59.336206 +5.754146 59.333859 +5.763240 59.331806 +5.772628 59.329459 +5.780842 59.331806 +5.784069 59.337379 +5.791109 59.340606 +5.796096 59.336499 +5.804017 59.333566 +5.813404 59.333859 +5.820444 59.337086 +5.828952 59.339726 +5.838339 59.341780 +5.850660 59.342073 +5.862688 59.342366 +5.875008 59.342660 +5.883222 59.345593 +5.883809 59.352340 +5.885863 59.358501 +5.887916 59.364661 +5.889383 59.370822 +5.888503 59.376982 +5.884982 59.381969 +5.879995 59.386076 +5.872368 59.389303 +5.865914 59.392823 +5.857994 59.395464 +5.851540 59.399277 +5.845086 59.402797 +5.840099 59.406904 +5.835112 59.411305 +5.831299 59.415998 +5.827778 59.420985 +5.824258 59.425972 +5.816044 59.428906 +5.804310 59.429786 +5.791989 59.429493 +5.779668 59.428906 +5.768521 59.427733 +5.759133 59.425972 +5.749453 59.424212 +5.741239 59.421279 +5.731558 59.419812 +5.723051 59.417172 +5.715130 59.414532 +5.707796 59.411305 +5.700756 59.408078 +5.694009 59.404851 +5.686675 59.401331 +5.677288 59.399571 +5.672007 59.402504 +5.677874 59.406318 +5.684621 59.409838 +5.691662 59.413065 +5.698996 59.416292 +5.705743 59.419519 +5.712783 59.422746 +5.720117 59.425972 +5.728331 59.428613 +5.733905 59.432720 +5.739772 59.436533 +5.742706 59.442107 +5.743292 59.448854 +5.739772 59.453841 +5.737425 59.459415 +5.732438 59.463522 +5.735078 59.460882 +5.738599 59.456188 +5.742119 59.451201 +5.747106 59.446801 +5.756787 59.444747 +5.765881 59.442107 +5.778201 59.442694 +5.787882 59.444747 +5.796096 59.447094 +5.803137 59.450614 +5.809004 59.454428 +5.814871 59.458241 +5.821618 59.461762 +5.828658 59.464989 +5.834525 59.469096 +5.837752 59.474376 +5.836872 59.480830 +5.833352 59.485523 +5.831005 59.491097 +5.825725 59.495204 +5.820738 59.499604 +5.815751 59.504005 +5.810764 59.508112 +5.807244 59.513099 +5.806363 59.519259 +5.810470 59.522486 +5.821618 59.523659 +5.827192 59.527766 +5.831885 59.532460 +5.842739 59.532167 +5.847726 59.528060 +5.851540 59.523073 +5.856527 59.518966 +5.858581 59.513392 +5.863568 59.508992 +5.868848 59.504591 +5.875302 59.501071 +5.883222 59.498431 +5.885276 59.492857 +5.890263 59.488457 +5.895543 59.484057 +5.903464 59.481123 +5.911091 59.478190 +5.921945 59.476723 +5.933973 59.475843 +5.946000 59.474669 +5.958321 59.475256 +5.970642 59.475549 +5.982669 59.476136 +5.996457 59.475549 +6.009658 59.475256 +6.021979 59.474376 +6.034300 59.473202 +6.044861 59.471736 +6.055715 59.471442 +6.065395 59.473202 +6.073609 59.475843 +6.082117 59.478190 +6.091797 59.480243 +6.101478 59.482296 +6.110865 59.483763 +6.122013 59.484937 +6.132867 59.486110 +6.144894 59.486697 +6.155749 59.486403 +6.166603 59.484643 +6.174523 59.481710 +6.178043 59.476723 +6.169830 59.474083 +6.158682 59.473202 +6.147828 59.472029 +6.136974 59.470856 +6.127293 59.469096 +6.116146 59.467922 +6.106758 59.466162 +6.097078 59.464402 +6.087397 59.462642 +6.077423 59.460588 +6.069209 59.457948 +6.060995 59.455601 +6.051021 59.453548 +6.042807 59.451201 +6.033126 59.449441 +6.023739 59.447387 +6.014058 59.445627 +6.003204 59.444454 +5.990883 59.444160 +5.979736 59.442987 +5.968882 59.441814 +5.955387 59.442107 +5.943360 59.442987 +5.935439 59.446214 +5.923412 59.447094 +5.916371 59.443867 +5.911678 59.439173 +5.908744 59.433600 +5.906691 59.427439 +5.904637 59.421279 +5.904050 59.414532 +5.903757 59.408958 +5.907277 59.404264 +5.910798 59.399277 +5.916078 59.394877 +5.922532 59.391357 +5.926052 59.386370 +5.931039 59.382263 +5.934853 59.377276 +5.938373 59.372582 +5.941893 59.367595 +5.945707 59.362608 +5.947760 59.357034 +5.952747 59.352634 +5.960668 59.349994 +5.970349 59.351754 +5.975922 59.353514 +5.980323 59.358208 +5.984723 59.363195 +5.990590 59.367008 +5.997631 59.370235 +6.005844 59.372875 +6.015525 59.374635 +6.019925 59.379329 +6.021979 59.385490 +6.018459 59.390477 +6.012005 59.394290 +6.005551 59.397810 +5.996164 59.399864 +5.995284 59.403384 +6.002324 59.406611 +6.009071 59.410131 +6.012592 59.415412 +6.008778 59.420399 +6.012005 59.425972 +6.020512 59.428319 +6.028433 59.425386 +6.031953 59.420692 +6.031366 59.413652 +6.029606 59.407491 +6.031660 59.401917 +6.038113 59.398397 +6.047501 59.398690 +6.056008 59.401331 +6.062755 59.404851 +6.071262 59.407198 +6.080943 59.408958 +6.090624 59.410718 +6.101478 59.411891 +6.108518 59.415412 +6.114092 59.419225 +6.121426 59.422452 +6.128467 59.425679 +6.135507 59.428906 +6.141374 59.433013 +6.148415 59.436240 +6.155455 59.439467 +6.161322 59.443574 +6.166896 59.447387 +6.174230 59.450908 +6.180097 59.454721 +6.184497 59.459415 +6.188898 59.464108 +6.193591 59.468802 +6.197992 59.473496 +6.201512 59.478776 +6.204445 59.484350 +6.206499 59.490510 +6.209726 59.495791 +6.210312 59.502831 +6.213539 59.508405 +6.219406 59.512219 +6.225274 59.515446 +6.232314 59.518966 +6.239355 59.521899 +6.246688 59.525420 +6.251089 59.530113 +6.252849 59.534807 +6.257543 59.539501 +6.260769 59.545074 +6.263996 59.550355 +6.267223 59.555928 +6.270450 59.561209 +6.275144 59.565902 +6.278371 59.571476 +6.281598 59.576757 +6.284824 59.582330 +6.286585 59.588197 +6.288931 59.594358 +6.289518 59.601398 +6.291278 59.607559 +6.292158 59.614306 +6.294212 59.620466 +6.296265 59.626627 +6.298025 59.632787 +6.302426 59.637481 +6.307119 59.642175 +6.311813 59.646868 +6.318854 59.650389 +6.327361 59.652735 +6.337042 59.654495 +6.336748 59.651562 +6.332348 59.646868 +6.327654 59.642175 +6.322961 59.637481 +6.319734 59.632201 +6.316507 59.626627 +6.314453 59.620466 +6.311520 59.615186 +6.309173 59.609026 +6.308586 59.602278 +6.309466 59.596118 +6.310053 59.589664 +6.310933 59.583504 +6.310053 59.576757 +6.307119 59.571183 +6.302132 59.566783 +6.299199 59.562382 +6.294799 59.557689 +6.290105 59.552995 +6.284238 59.549181 +6.279837 59.544488 +6.273970 59.540674 +6.269277 59.535687 +6.266050 59.530407 +6.265170 59.523366 +6.273384 59.520433 +6.282771 59.520726 +6.292452 59.522779 +6.300959 59.525420 +6.309173 59.527766 +6.317387 59.530407 +6.324721 59.533633 +6.332055 59.536860 +6.340268 59.539501 +6.348776 59.541847 +6.357283 59.545368 +6.365497 59.547714 +6.374004 59.550355 +6.382511 59.552702 +6.392192 59.554462 +6.400699 59.557102 +6.410380 59.558862 +6.421234 59.560035 +6.432382 59.561209 +6.442942 59.562089 +6.454090 59.563262 +6.466411 59.563556 +6.478732 59.563849 +6.491053 59.564142 +6.503373 59.564729 +6.515694 59.565022 +6.529189 59.564729 +6.541216 59.563556 +6.552070 59.562089 +6.562631 59.560329 +6.573485 59.558569 +6.571725 59.555928 +6.559404 59.555635 +6.548257 59.554462 +6.534762 59.554755 +6.521561 59.555342 +6.507774 59.555635 +6.495453 59.555342 +6.484599 59.554168 +6.473451 59.552995 +6.464064 59.551235 +6.455263 59.548595 +6.445583 59.546834 +6.437369 59.544488 +6.427395 59.542434 +6.417714 59.540967 +6.409500 59.538327 +6.399819 59.536274 +6.391312 59.533927 +6.381631 59.532167 +6.373418 59.529820 +6.363737 59.527766 +6.354936 59.525420 +6.346722 59.522779 +6.337042 59.520726 +6.328534 59.518379 +6.318854 59.516619 +6.310640 59.514272 +6.300959 59.512219 +6.291278 59.510165 +6.280424 59.509285 +6.270450 59.507525 +6.262236 59.504885 +6.256369 59.501071 +6.251675 59.496377 +6.247275 59.491684 +6.245222 59.485230 +6.243462 59.479070 +6.241408 59.473202 +6.243755 59.467629 +6.242875 59.460882 +6.238474 59.456188 +6.234954 59.450614 +6.230554 59.445921 +6.226154 59.441227 +6.221460 59.436533 +6.217060 59.431546 +6.212659 59.428319 +6.210606 59.433893 +6.203859 59.437413 +6.197112 59.434480 +6.191244 59.430373 +6.185377 59.426266 +6.178337 59.423039 +6.171003 59.419812 +6.162789 59.417172 +6.154575 59.414825 +6.146068 59.412185 +6.137854 59.409838 +6.129347 59.407198 +6.122306 59.403971 +6.115266 59.400451 +6.108225 59.397224 +6.099718 59.394584 +6.092677 59.391357 +6.087104 59.387543 +6.081237 59.383729 +6.071556 59.381676 +6.064515 59.378449 +6.058648 59.374342 +6.054248 59.369648 +6.051021 59.364075 +6.047794 59.358794 +6.045741 59.352634 +6.041340 59.347940 +6.035473 59.343833 +6.029900 59.340020 +6.024326 59.336206 +6.022272 59.329752 +6.029900 59.326819 +6.040460 59.325352 +6.052781 59.325645 +6.065102 59.326232 +6.075956 59.327112 +6.081823 59.331219 +6.083583 59.337086 +6.084170 59.344127 +6.086224 59.348820 +6.088277 59.344713 +6.089157 59.338553 +6.091504 59.332979 +6.095024 59.327992 +6.100011 59.323885 +6.107932 59.320952 +6.118493 59.319191 +6.129053 59.317431 +6.141081 59.318018 +6.151935 59.319191 +6.159269 59.322418 +6.165136 59.326525 +6.169536 59.331219 +6.173937 59.335913 +6.182150 59.338259 +6.187137 59.334152 +6.186551 59.327112 +6.186257 59.321538 +6.195351 59.319485 +6.206205 59.320658 +6.215886 59.322125 +6.221753 59.326525 +6.226154 59.331219 +6.228207 59.337086 +6.227327 59.343246 +6.223513 59.348234 +6.219993 59.353221 +6.219406 59.359381 +6.219993 59.366421 +6.219406 59.359381 +6.221753 59.353807 +6.223513 59.348234 +6.228500 59.344127 +6.233781 59.339726 +6.241408 59.337086 +6.250502 59.334446 +6.257249 59.330926 +6.257836 59.324765 +6.258716 59.318311 +6.262236 59.313618 +6.261649 59.308044 +6.252262 59.308924 +6.244342 59.311858 +6.231141 59.312151 +6.219993 59.310978 +6.211779 59.308631 +6.202392 59.306871 +6.192418 59.305110 +6.179217 59.305404 +6.166896 59.305110 +6.154868 59.304817 +6.141374 59.305110 +6.129053 59.304524 +6.117026 59.304230 +6.112625 59.299537 +6.114679 59.293963 +6.118199 59.288976 +6.121719 59.284282 +6.126706 59.279589 +6.129053 59.274308 +6.132574 59.269321 +6.137561 59.264921 +6.142548 59.260814 +6.150175 59.258174 +6.161029 59.258760 +6.169536 59.261694 +6.176283 59.264628 +6.184791 59.267561 +6.191831 59.270495 +6.200338 59.273135 +6.208552 59.275482 +6.217940 59.277535 +6.228794 59.278709 +6.239941 59.279589 +6.250795 59.280762 +6.260183 59.282522 +6.270157 59.284576 +6.276904 59.287803 +6.285705 59.290736 +6.291278 59.295136 +6.296852 59.298950 +6.302719 59.302764 +6.308586 59.306871 +6.315920 59.310097 +6.322667 59.313324 +6.331174 59.315965 +6.339388 59.318311 +6.349069 59.320365 +6.358750 59.321832 +6.369897 59.323005 +6.380458 59.324178 +6.391312 59.325352 +6.402460 59.326525 +6.414487 59.326525 +6.422408 59.326525 +6.433262 59.326525 +6.443823 59.324765 +6.457610 59.324178 +6.469638 59.324765 +6.481959 59.325059 +6.491053 59.322418 +6.491933 59.317725 +6.480785 59.316551 +6.469051 59.316258 +6.456730 59.316258 +6.442942 59.316258 +6.431208 59.317431 +6.418887 59.316845 +6.406567 59.316551 +6.394539 59.316258 +6.383685 59.315378 +6.372831 59.314204 +6.363150 59.312151 +6.353763 59.310684 +6.345255 59.308044 +6.337042 59.305697 +6.331174 59.301297 +6.325307 59.297483 +6.317974 59.294256 +6.313573 59.289563 +6.307706 59.285456 +6.301839 59.281642 +6.296559 59.277535 +6.289225 59.274308 +6.279837 59.272548 +6.267517 59.272255 +6.257836 59.270201 +6.248449 59.268734 +6.238768 59.266681 +6.229087 59.264921 +6.220873 59.262281 +6.211193 59.259640 +6.202685 59.257294 +6.194471 59.254653 +6.187137 59.251427 +6.180390 59.248200 +6.173350 59.244973 +6.167483 59.241159 +6.163082 59.236172 +6.155749 59.232945 +6.147828 59.230598 +6.138147 59.228545 +6.131107 59.225318 +6.125240 59.221504 +6.119373 59.217397 +6.112625 59.214171 +6.105585 59.210944 +6.098251 59.207423 +6.091504 59.204490 +6.085637 59.200383 +6.081237 59.195689 +6.076836 59.190702 +6.072143 59.186009 +6.065395 59.182782 +6.060995 59.178381 +6.055128 59.174274 +6.048087 59.170754 +6.041047 59.167821 +6.034006 59.164300 +6.030780 59.159020 +6.029019 59.152859 +6.031073 59.147286 +6.036060 59.143179 +6.045447 59.140832 +6.057181 59.141125 +6.065689 59.143472 +6.075369 59.145526 +6.084757 59.147286 +6.097078 59.147872 +6.110279 59.147579 +6.123773 59.147286 +6.134334 59.148459 +6.146655 59.148753 +6.154575 59.145526 +6.150175 59.142299 +6.140494 59.140539 +6.130813 59.138485 +6.119959 59.137605 +6.108225 59.137312 +6.097371 59.136138 +6.085050 59.135552 +6.075663 59.133791 +6.067156 59.131445 +6.060408 59.127924 +6.054541 59.123817 +6.047501 59.120884 +6.039287 59.118244 +6.026966 59.117657 +6.013765 59.117950 +6.005551 59.117364 +6.004084 59.117657 +5.993230 59.116484 +5.982669 59.115603 +5.972989 59.113550 +5.964775 59.111203 +5.955387 59.109150 +5.946880 59.106803 +5.938666 59.104163 +5.929279 59.102109 +5.922238 59.098882 +5.914025 59.096535 +5.908451 59.092428 +5.902584 59.088322 +5.898183 59.083628 +5.894956 59.078347 +5.893196 59.072187 +5.895250 59.066613 +5.899063 59.061626 +5.904050 59.057519 +5.909038 59.053119 +5.914025 59.049012 +5.919012 59.044612 +5.923705 59.040505 +5.928692 59.036104 +5.933679 59.031997 +5.938666 59.027891 +5.943653 59.023197 +5.948640 59.019090 +5.955094 59.015570 +5.962721 59.012636 +5.974749 59.011756 +5.985603 59.012636 +5.996164 59.013810 +6.005844 59.015863 +6.015232 59.017623 +6.024619 59.019383 +6.034300 59.018503 +6.041927 59.015570 +6.048087 59.012049 +6.053075 59.007649 +6.058062 59.003542 +6.063049 58.999435 +6.069502 58.995915 +6.074489 58.991515 +6.070089 58.987994 +6.060995 58.990341 +6.050434 58.991808 +6.036940 58.992395 +6.029019 58.989754 +6.023152 58.985941 +6.018752 58.981247 +6.015525 58.975673 +6.009658 58.971566 +6.005258 58.966873 +6.000857 58.962179 +6.001737 58.956019 +6.008191 58.952498 +6.014352 58.948978 +6.019339 58.944578 +6.022859 58.939591 +6.027846 58.935484 +6.031366 58.930497 +6.034887 58.925510 +6.038700 58.920816 +6.040460 58.915242 +6.044274 58.910255 +6.049261 58.906148 +6.054248 58.902041 +6.061875 58.898815 +6.067449 58.902922 +6.069209 58.905562 +6.073609 58.910255 +6.078010 58.914949 +6.082410 58.919643 +6.087104 58.924336 +6.091504 58.929030 +6.095611 58.934017 +6.100011 58.938711 +6.104412 58.943404 +6.108812 58.948098 +6.113506 58.952792 +6.117906 58.957192 +6.122306 58.961886 +6.126706 58.966579 +6.132574 58.970980 +6.138147 58.974793 +6.144014 58.978607 +6.150762 58.981834 +6.157802 58.985354 +6.166016 58.987701 +6.173056 58.991221 +6.181564 58.993568 +6.190951 58.995622 +6.199165 58.997968 +6.208552 58.999728 +6.218233 59.001782 +6.227914 59.003249 +6.237301 59.005302 +6.248155 59.006476 +6.259009 59.007356 +6.269863 59.008529 +6.281598 59.008822 +6.292452 59.009996 +6.304479 59.010289 +6.315333 59.011463 +6.326187 59.012636 +6.334401 59.014983 +6.343789 59.017036 +6.351123 59.019970 +6.359336 59.022903 +6.367550 59.025250 +6.375764 59.027891 +6.385445 59.029357 +6.395126 59.031411 +6.404513 59.033171 +6.415367 59.034051 +6.426221 59.036104 +6.437075 59.036985 +6.447930 59.038158 +6.458784 59.039038 +6.469344 59.040211 +6.481372 59.040505 +6.492226 59.041678 +6.501907 59.043732 +6.511294 59.045198 +6.520975 59.047252 +6.530655 59.049012 +6.541510 59.049892 +6.552364 59.051066 +6.563218 59.052239 +6.574952 59.052532 +6.585806 59.053706 +6.596660 59.054586 +6.607514 59.055759 +6.618368 59.056639 +6.629223 59.057813 +6.640077 59.058986 +6.650637 59.057226 +6.650051 59.051652 +6.642717 59.048719 +6.634503 59.046078 +6.625116 59.044025 +6.615728 59.042558 +6.604874 59.041385 +6.594020 59.040211 +6.583166 59.039038 +6.572312 59.038158 +6.561458 59.036985 +6.552070 59.035224 +6.541216 59.034051 +6.531536 59.032584 +6.521855 59.030531 +6.512174 59.028771 +6.501613 59.027891 +6.491933 59.025837 +6.481079 59.024957 +6.471691 59.023197 +6.460837 59.022023 +6.451450 59.020263 +6.440596 59.019090 +6.430915 59.017330 +6.420061 59.016156 +6.408033 59.015863 +6.397179 59.014690 +6.387792 59.012929 +6.378111 59.011169 +6.368724 59.009409 +6.360217 59.006769 +6.353469 59.003542 +6.344962 59.001195 +6.335575 58.999142 +6.326187 58.997382 +6.315333 58.996502 +6.304479 58.995328 +6.293625 58.994155 +6.282771 58.992981 +6.273384 58.991221 +6.263996 58.989461 +6.254316 58.987408 +6.244635 58.985941 +6.236421 58.983301 +6.227034 58.981247 +6.218526 58.978900 +6.210606 58.976260 +6.203272 58.973033 +6.193885 58.971273 +6.185671 58.968633 +6.176283 58.966873 +6.167776 58.964526 +6.158389 58.962472 +6.150175 58.960126 +6.143134 58.956605 +6.137561 58.952792 +6.131693 58.948978 +6.127293 58.944285 +6.122893 58.939591 +6.117319 58.935191 +6.112919 58.930497 +6.108225 58.925803 +6.103825 58.921110 +6.099424 58.916709 +6.095024 58.912016 +6.090624 58.907322 +6.086224 58.902628 +6.082997 58.897054 +6.083583 58.890894 +6.087397 58.885907 +6.092384 58.881800 +6.097371 58.877400 +6.103238 58.873879 +6.109692 58.870359 +6.114679 58.865959 +6.122599 58.863025 +6.128760 58.859505 +6.136387 58.856278 +6.144308 58.853638 +6.153402 58.850998 +6.160736 58.848358 +6.170123 58.846011 +6.180684 58.844544 +6.190951 58.842784 +6.202685 58.841610 +6.214713 58.842197 +6.227034 58.842491 +6.239941 58.842197 +6.250795 58.841904 +6.256956 58.838384 +6.254022 58.834277 +6.241995 58.833983 +6.229967 58.834863 +6.219406 58.833690 +6.207379 58.833397 +6.195351 58.832223 +6.181857 58.832516 +6.168949 58.833103 +6.156922 58.833983 +6.147828 58.836037 +6.137267 58.837797 +6.129640 58.840730 +6.122013 58.843957 +6.112919 58.846011 +6.106465 58.849824 +6.098838 58.852465 +6.091211 58.855691 +6.084757 58.859212 +6.079770 58.863319 +6.073609 58.866839 +6.067156 58.870653 +6.062168 58.874760 +6.056008 58.878280 +6.048381 58.881507 +6.041927 58.885027 +6.035473 58.888547 +6.026379 58.890894 +6.017285 58.892947 +6.007018 58.894708 +5.999097 58.897641 +5.991470 58.900575 +5.983550 58.903508 +5.978562 58.907909 +5.975336 58.912896 +5.974456 58.918763 +5.973575 58.924923 +5.968588 58.929323 +5.962135 58.933137 +5.954507 58.935777 +5.945707 58.938124 +5.937786 58.941058 +5.931332 58.944578 +5.923705 58.947511 +5.917251 58.951032 +5.909331 58.954259 +5.901704 58.956899 +5.892610 58.959539 +5.883516 58.961592 +5.872955 58.963353 +5.860927 58.962766 +5.851540 58.960712 +5.845966 58.956899 +5.843913 58.950738 +5.843326 58.945165 +5.845673 58.939591 +5.846553 58.933724 +5.843326 58.928150 +5.836286 58.924630 +5.825725 58.923750 +5.812231 58.923750 +5.801670 58.925510 +5.791109 58.927270 +5.780842 58.929030 +5.769988 58.927857 +5.765587 58.923163 +5.763534 58.917003 +5.762067 58.910549 +5.760013 58.904388 +5.757080 58.899108 +5.753853 58.893534 +5.752093 58.887374 +5.748866 58.881800 +5.747106 58.875933 +5.743879 58.870653 +5.739479 58.865959 +5.731851 58.868599 +5.731265 58.875053 +5.730385 58.881213 +5.730971 58.887960 +5.731265 58.893241 +5.731558 58.900281 +5.732145 58.907322 +5.728625 58.912309 +5.726278 58.917589 +5.726864 58.923163 +5.730091 58.928737 +5.731851 58.934604 +5.732438 58.941644 +5.731558 58.947805 +5.733318 58.953965 +5.736838 58.959539 +5.739772 58.964819 +5.741532 58.970980 +5.736545 58.975380 +5.728918 58.978020 +5.719824 58.980367 +5.710730 58.982714 +5.702809 58.985647 +5.694889 58.988288 +5.687262 58.991515 +5.679341 58.994155 +5.670247 58.996795 +5.662620 58.999435 +5.654699 59.002369 +5.647072 59.005302 +5.637685 59.007356 +5.630057 59.010583 +5.623604 59.014103 +5.617150 59.017623 +5.610696 59.021143 +5.604242 59.024664 +5.597788 59.028477 +5.590161 59.031117 +5.579601 59.032878 +5.574027 59.028771 +5.573440 59.022023 +5.571680 59.015863 +5.568453 59.010289 +5.569333 59.004129 +5.566106 58.998555 +5.560532 58.994741 +5.554959 58.990635 +5.552025 58.985354 +5.557012 58.982421 +5.567573 58.982127 +5.578427 58.983301 +5.589281 58.984474 +5.602482 58.984181 +5.611576 58.981834 +5.618030 58.978314 +5.617737 58.975673 +5.608643 58.977727 +5.598082 58.978020 +5.588695 58.976260 +5.581654 58.973033 +5.578720 58.967460 +5.585174 58.963939 +5.592801 58.961006 +5.601895 58.958952 +5.608349 58.955139 +5.611870 58.950152 +5.612750 58.944285 +5.619203 58.940471 +5.625657 58.936951 +5.634751 58.934604 +5.646485 58.934017 +5.652939 58.930204 +5.653526 58.923750 +5.650592 58.918469 +5.647659 58.913189 +5.644432 58.907909 +5.637391 58.904388 +5.629764 58.905855 +5.623310 58.909375 +5.618323 58.913482 +5.613336 58.918176 +5.608349 58.922283 +5.604829 58.926977 +5.601015 58.931964 +5.597495 58.936951 +5.592508 58.941058 +5.587521 58.945165 +5.582534 58.949565 +5.574613 58.952498 +5.565226 58.950445 +5.559359 58.946631 +5.557892 58.940178 +5.562879 58.936071 +5.570507 58.933430 +5.576960 58.929617 +5.580481 58.924630 +5.578720 58.918469 +5.576960 58.913776 +5.580481 58.909082 +5.586934 58.905562 +5.591921 58.901161 +5.596908 58.897054 +5.601895 58.892654 +5.600429 58.886787 +5.595735 58.881800 +5.587814 58.879453 +5.579601 58.876813 +5.569920 58.874760 +5.564346 58.870946 +5.559946 58.866252 +5.559359 58.859212 +5.560239 58.853051 +5.558772 58.846891 +5.554079 58.842197 +5.549972 58.837504 +5.547038 58.831930 +5.544985 58.825769 +5.545865 58.819609 +5.548212 58.814035 +5.550265 58.808755 +5.548505 58.802594 +5.544105 58.797021 +5.539704 58.792327 +5.535597 58.787633 +5.531197 58.782646 +5.525623 58.778833 +5.521223 58.774139 +5.515649 58.770032 +5.508609 58.766805 +5.501862 58.763578 +5.495114 58.760351 +5.489541 58.756244 +5.485140 58.751257 +5.483674 58.750084 +nan nan +5.455512 58.750377 +5.457858 58.744510 +5.461379 58.739817 +5.464019 58.735416 +5.470179 58.731896 +5.476633 58.728376 +5.482794 58.724855 +5.489247 58.721335 +5.495701 58.717815 +5.500688 58.713708 +5.505675 58.709308 +5.510662 58.704907 +5.514182 58.700214 +5.513596 58.693467 +5.511836 58.687306 +5.508902 58.681732 +5.506849 58.675572 +5.506555 58.669998 +5.510369 58.665304 +5.516529 58.661784 +5.521516 58.657384 +5.527677 58.653864 +5.534131 58.650343 +5.540584 58.646530 +5.547038 58.643010 +5.553199 58.639489 +5.559359 58.635969 +5.564346 58.631569 +5.569333 58.627462 +5.574320 58.623355 +5.578134 58.618368 +5.582827 58.614261 +5.586348 58.609274 +5.589868 58.604580 +5.593682 58.599300 +5.597202 58.594606 +5.599549 58.589032 +5.603069 58.584045 +5.606589 58.579058 +5.610403 58.574365 +5.613630 58.569378 +5.617150 58.564684 +5.620963 58.559697 +5.625951 58.555590 +5.632111 58.552070 +5.638271 58.548256 +5.644725 58.544736 +5.652646 58.541802 +5.659980 58.538869 +5.667900 58.536229 +5.676701 58.533882 +5.687262 58.532122 +5.697529 58.530655 +5.708090 58.528895 +5.716890 58.526548 +5.724811 58.523908 +5.730971 58.520387 +5.734492 58.515400 +5.738012 58.510413 +5.738892 58.504253 +5.738305 58.497506 +5.743292 58.493105 +5.749453 58.489585 +5.757080 58.486652 +5.767641 58.484892 +5.778201 58.483425 +5.789642 58.482545 +5.801376 58.481371 +5.811937 58.479905 +5.823671 58.479024 +5.833939 58.477264 +5.843033 58.474917 +5.853300 58.473451 +5.866501 58.473157 +5.878235 58.473744 +5.890263 58.473744 +5.900824 58.474917 +5.912851 58.475504 +5.924585 58.475798 +5.937786 58.475504 +5.948054 58.473744 +5.956854 58.471691 +5.961841 58.467584 +5.965655 58.462597 +5.966242 58.456436 +5.966828 58.450276 +5.969175 58.444702 +5.968588 58.437661 +5.969175 58.431794 +5.970055 58.425341 +5.970935 58.419180 +5.972989 58.413606 +5.976509 58.408619 +5.980029 58.403926 +5.983256 58.398939 +5.988243 58.394832 +5.992937 58.390138 +5.999391 58.386618 +6.005551 58.383391 +6.012005 58.379577 +6.020806 58.377230 +6.032833 58.377817 +6.045741 58.376644 +6.054835 58.374590 +6.060702 58.370777 +6.067156 58.367256 +6.073316 58.363736 +6.079770 58.359923 +6.085930 58.356402 +6.092091 58.352882 +6.099718 58.349949 +6.108518 58.347895 +6.117612 58.345255 +6.124946 58.342615 +6.134040 58.339974 +6.143134 58.337921 +6.151935 58.335574 +6.162202 58.333814 +6.172470 58.332347 +6.183031 58.330587 +6.194765 58.329707 +6.205032 58.327947 +6.215299 58.326480 +6.224100 58.323840 +6.233194 58.321786 +6.240821 58.318853 +6.248449 58.315919 +6.257249 58.313573 +6.266050 58.311226 +6.275144 58.308879 +6.284238 58.306532 +6.290398 58.303012 +6.295092 58.298905 +6.298612 58.293918 +6.303306 58.289518 +6.306533 58.284824 +6.311813 58.280424 +6.319147 58.277490 +6.326774 58.274556 +6.337042 58.272796 +6.347309 58.271036 +6.360217 58.270743 +6.371951 58.269863 +6.384858 58.269569 +6.396592 58.268689 +6.408327 58.267516 +6.420061 58.266343 +6.432968 58.266049 +6.446169 58.265756 +6.459077 58.265169 +6.472278 58.264876 +6.482545 58.263409 +6.491346 58.261062 +6.497506 58.257542 +6.505134 58.254315 +6.511001 58.250795 +6.518628 58.247861 +6.527429 58.245514 +6.539163 58.244341 +6.549430 58.242874 +6.561164 58.241701 +6.571432 58.239941 +6.583166 58.239061 +6.594607 58.238180 +6.607808 58.237887 +6.618368 58.238474 +6.623942 58.242874 +6.624822 58.249328 +6.620129 58.254022 +6.616608 58.258715 +6.614555 58.264289 +6.612501 58.269863 +6.613088 58.275143 +6.615142 58.281304 +6.618368 58.286877 +6.620422 58.293038 +6.620715 58.299785 +6.620129 58.303305 +6.619248 58.306532 +6.619835 58.313573 +6.627756 58.313279 +6.632449 58.309172 +6.640370 58.308879 +6.644770 58.313573 +6.647704 58.318853 +6.657091 58.320906 +6.670292 58.320320 +6.678213 58.322667 +6.687893 58.324720 +6.695521 58.322960 +6.698748 58.317973 +6.704908 58.314453 +6.708428 58.309466 +6.702854 58.305652 +6.702268 58.300372 +6.701388 58.293331 +6.694347 58.290104 +6.687013 58.293038 +6.680853 58.296558 +6.673226 58.299785 +6.662958 58.301252 +6.651224 58.301252 +6.646530 58.296265 +6.643597 58.290691 +6.639197 58.285997 +6.635970 58.280717 +6.632743 58.275437 +6.631863 58.268689 +6.636556 58.264289 +6.641250 58.259889 +6.647704 58.256368 +6.653864 58.252848 +6.655918 58.247274 +6.657678 58.241701 +6.659731 58.236127 +6.662078 58.230553 +6.665305 58.225566 +6.671466 58.222046 +6.681733 58.220286 +6.689654 58.221459 +6.697867 58.223806 +6.705788 58.226446 +6.712829 58.229673 +6.719576 58.232900 +6.725149 58.237007 +6.732190 58.239941 +6.738937 58.243461 +6.745978 58.246688 +6.752725 58.249621 +6.760939 58.252262 +6.769153 58.254608 +6.777366 58.257249 +6.786754 58.259595 +6.794674 58.262236 +6.804062 58.263996 +6.812276 58.266343 +6.820196 58.268983 +6.828410 58.271330 +6.838971 58.272503 +6.849238 58.270743 +6.843665 58.266049 +6.835157 58.263702 +6.826063 58.261942 +6.818143 58.259302 +6.809635 58.256955 +6.802888 58.253728 +6.796141 58.250501 +6.789101 58.247274 +6.781180 58.244634 +6.774140 58.241701 +6.767099 58.238474 +6.759179 58.235834 +6.752138 58.232607 +6.744217 58.229967 +6.737177 58.227033 +6.730136 58.223513 +6.723389 58.220286 +6.716642 58.217352 +6.708428 58.214712 +6.700214 58.212365 +6.692294 58.209725 +6.684080 58.207085 +6.677333 58.203858 +6.670292 58.200924 +6.664718 58.196524 +6.657678 58.193591 +6.653278 58.188897 +6.659438 58.185377 +6.668239 58.182737 +6.672932 58.178630 +6.669999 58.173349 +6.659438 58.172176 +6.647704 58.171882 +6.635970 58.172762 +6.624529 58.173936 +6.612795 58.175109 +6.599594 58.175403 +6.591673 58.172762 +6.588740 58.167482 +6.587860 58.160442 +6.587273 58.153694 +6.583753 58.148414 +6.580819 58.142840 +6.576419 58.138440 +6.573192 58.132866 +6.568498 58.128173 +6.562924 58.124066 +6.556471 58.120839 +6.548257 58.118199 +6.538869 58.116732 +6.530949 58.114092 +6.527722 58.108518 +6.535349 58.105878 +6.544150 58.103237 +6.552657 58.101184 +6.558817 58.097370 +6.563805 58.092970 +6.569965 58.089743 +6.577592 58.086810 +6.586099 58.084169 +6.591086 58.080062 +6.594313 58.075075 +6.597834 58.070382 +6.608101 58.068622 +6.617195 58.070382 +6.627756 58.071262 +6.639490 58.070382 +6.650931 58.069208 +6.663838 58.068915 +6.675573 58.067742 +6.684373 58.065688 +6.694347 58.063928 +6.706081 58.062755 +6.716642 58.063928 +6.728376 58.064221 +6.738644 58.062461 +6.744804 58.058941 +6.750965 58.055421 +6.759765 58.054247 +6.766806 58.057474 +6.777366 58.058648 +6.785287 58.060994 +6.785874 58.067742 +6.782647 58.072729 +6.775313 58.075956 +6.765046 58.077422 +6.756245 58.080062 +6.752725 58.084756 +6.749498 58.089743 +6.741871 58.092677 +6.733070 58.095024 +6.721336 58.096197 +6.712535 58.097077 +6.707842 58.101477 +6.709308 58.106171 +6.714002 58.110571 +6.709308 58.114972 +6.700214 58.117318 +6.691414 58.119665 +6.692000 58.123479 +6.697574 58.127879 +6.703441 58.131693 +6.706375 58.135800 +6.709308 58.141080 +6.710188 58.148121 +6.711068 58.154868 +6.711655 58.160148 +6.712242 58.165722 +6.713122 58.172469 +6.714882 58.178923 +6.719576 58.183323 +6.719869 58.177163 +6.719282 58.170416 +6.722509 58.165429 +6.725736 58.160442 +6.729550 58.155455 +6.730136 58.149587 +6.726616 58.144014 +6.722216 58.139320 +6.719282 58.133746 +6.717229 58.127879 +6.720456 58.124066 +6.725149 58.119959 +6.731310 58.116438 +6.740697 58.116732 +6.752431 58.117025 +6.761525 58.114678 +6.770033 58.112625 +6.781767 58.111451 +6.791154 58.112918 +6.800248 58.114972 +6.806995 58.115265 +6.813742 58.117318 +6.816969 58.122599 +6.817556 58.129346 +6.814036 58.134333 +6.810809 58.139320 +6.804648 58.143134 +6.797315 58.145774 +6.789687 58.149001 +6.783527 58.152521 +6.784407 58.159562 +6.781180 58.164549 +6.777660 58.169242 +6.774433 58.174229 +6.778833 58.178923 +6.787634 58.176283 +6.799368 58.175696 +6.807582 58.178043 +6.811102 58.175109 +6.808755 58.168949 +6.812569 58.163962 +6.815796 58.159268 +6.820490 58.154868 +6.826650 58.151054 +6.834277 58.148414 +6.840144 58.144600 +6.846011 58.140787 +6.853639 58.138147 +6.860972 58.134920 +6.870066 58.132866 +6.877400 58.129639 +6.886494 58.127293 +6.895295 58.124946 +6.907029 58.123772 +6.918470 58.124066 +6.926684 58.126706 +6.934604 58.129053 +6.942818 58.131693 +6.952206 58.133453 +6.960420 58.135800 +6.970687 58.136973 +6.981248 58.138147 +6.990342 58.135506 +6.986822 58.130226 +6.980074 58.126999 +6.971860 58.124359 +6.962766 58.122892 +6.954553 58.120252 +6.945165 58.118492 +6.934604 58.117612 +6.924044 58.116438 +6.913483 58.115558 +6.900575 58.115852 +6.890601 58.117612 +6.878867 58.118492 +6.867133 58.118199 +6.856572 58.117318 +6.847185 58.115558 +6.839264 58.112918 +6.832224 58.109691 +6.825477 58.106758 +6.818729 58.103237 +6.812862 58.099424 +6.807289 58.095610 +6.802888 58.090917 +6.807582 58.086516 +6.814916 58.083583 +6.826650 58.082409 +6.838091 58.081529 +6.850998 58.081236 +6.860092 58.078596 +6.866253 58.075075 +6.876520 58.073315 +6.881801 58.077129 +6.885321 58.082703 +6.887081 58.088863 +6.892655 58.092677 +6.902335 58.094437 +6.903216 58.092970 +6.907322 58.092970 +6.910549 58.087983 +6.912603 58.082409 +6.915830 58.077422 +6.912603 58.072142 +6.907909 58.067448 +6.904976 58.062168 +6.902922 58.056007 +6.903509 58.051020 +6.912603 58.048967 +6.918177 58.052781 +6.923750 58.056594 +6.929324 58.060701 +6.934018 58.065395 +6.936951 58.070675 +6.941352 58.075369 +6.945752 58.080062 +6.951619 58.083876 +6.956019 58.088570 +6.961593 58.092383 +6.967460 58.096490 +6.973034 58.100597 +6.980074 58.103531 +6.986822 58.107051 +6.995916 58.105878 +6.995035 58.099131 +6.990635 58.094437 +6.986235 58.089743 +6.981541 58.085050 +6.977141 58.080356 +6.972741 58.075956 +6.968340 58.070968 +6.963940 58.066275 +6.960420 58.060701 +6.956019 58.056301 +6.950446 58.052194 +6.946045 58.047793 +6.940472 58.043687 +6.936071 58.039286 +6.942232 58.035473 +6.952499 58.034886 +6.964233 58.035179 +6.973327 58.037233 +6.981541 58.039580 +6.986235 58.044273 +6.989168 58.049847 +6.997089 58.052194 +7.005303 58.054834 +7.013517 58.057181 +7.022904 58.058941 +7.032291 58.060701 +7.041385 58.062461 +7.048426 58.065688 +7.054000 58.069502 +7.059867 58.073609 +7.066321 58.076542 +7.074828 58.079182 +7.082748 58.081529 +7.093309 58.082703 +7.101816 58.080356 +7.108857 58.082116 +7.112964 58.085636 +7.118831 58.089450 +7.124405 58.093263 +7.131445 58.096490 +7.138192 58.099717 +7.148460 58.097957 +7.145233 58.092383 +7.142006 58.087103 +7.139953 58.082409 +7.136726 58.076836 +7.132325 58.072435 +7.129098 58.066862 +7.125872 58.061581 +7.122645 58.056301 +7.117071 58.052194 +7.110324 58.051900 +7.106803 58.056594 +7.105043 58.062168 +7.100643 58.066568 +7.090082 58.066862 +7.083042 58.063635 +7.076295 58.060701 +7.069547 58.057181 +7.062507 58.054247 +7.055466 58.050727 +7.049013 58.047793 +7.040505 58.045153 +7.033758 58.041926 +7.027011 58.038993 +7.018797 58.036353 +7.012050 58.033126 +7.005010 58.029899 +6.999436 58.026085 +6.997382 58.019925 +6.999436 58.014058 +7.001489 58.008484 +6.997969 58.003204 +6.996209 57.997337 +6.996796 57.992643 +7.001489 57.987949 +7.014397 57.987656 +7.022611 57.990296 +7.031705 57.992056 +7.039625 57.994403 +7.049306 57.996163 +7.057227 57.998510 +7.065147 58.001150 +7.073361 58.003497 +7.080402 58.006724 +7.080695 58.012298 +7.078935 58.017871 +7.075415 58.022858 +7.073654 58.028432 +7.080695 58.031659 +7.091256 58.032539 +7.101523 58.033712 +7.113257 58.034006 +7.121471 58.036353 +7.128218 58.039580 +7.133792 58.043687 +7.142299 58.045740 +7.151393 58.047793 +7.161661 58.046033 +7.164888 58.041046 +7.165474 58.034593 +7.171341 58.031072 +7.181902 58.032246 +7.188943 58.035179 +7.195690 58.038700 +7.202730 58.041633 +7.211824 58.043687 +7.223559 58.043980 +7.230599 58.046913 +7.236466 58.050727 +7.242040 58.055127 +7.249374 58.053367 +7.249960 58.046913 +7.250547 58.040753 +7.251134 58.034593 +7.258468 58.031659 +7.269028 58.032539 +7.276069 58.035766 +7.287803 58.036059 +7.295137 58.033126 +7.299831 58.029019 +7.307165 58.025792 +7.314792 58.022858 +7.324766 58.021098 +7.336500 58.019925 +7.346474 58.018165 +7.355275 58.015818 +7.362902 58.012884 +7.375516 58.012298 +7.387250 58.012591 +7.396638 58.014058 +7.405732 58.016111 +7.418933 58.015525 +7.430373 58.014351 +7.440934 58.015231 +7.451495 58.016405 +7.462936 58.015231 +7.468803 58.011711 +7.473496 58.007311 +7.483764 58.005550 +7.495498 58.005844 +7.506059 58.006724 +7.516620 58.007897 +7.528354 58.008191 +7.538914 58.009071 +7.549182 58.009951 +7.559743 58.010831 +7.567957 58.013471 +7.576171 58.015818 +7.577931 58.021978 +7.574997 58.026965 +7.571770 58.031952 +7.571477 58.038113 +7.577931 58.039580 +7.586731 58.037526 +7.588491 58.031952 +7.589078 58.025792 +7.592305 58.020805 +7.599639 58.017871 +7.611080 58.016698 +7.620467 58.018458 +7.627508 58.021392 +7.631908 58.026085 +7.632788 58.031659 +7.629561 58.036646 +7.626334 58.041340 +7.626921 58.045447 +7.636895 58.043980 +7.644522 58.040753 +7.654789 58.040166 +7.660657 58.044273 +7.658603 58.050140 +7.656843 58.055421 +7.656256 58.061581 +7.659777 58.066862 +7.668577 58.065981 +7.675031 58.063635 +7.683538 58.061288 +7.691165 58.058354 +7.699673 58.055714 +7.710233 58.056594 +7.714927 58.061288 +7.720501 58.065395 +7.729888 58.066862 +7.740449 58.068035 +7.752183 58.068328 +7.762744 58.069208 +7.773305 58.070382 +7.785039 58.069208 +7.796480 58.067742 +7.809387 58.067448 +7.819948 58.068328 +7.829042 58.070088 +7.839603 58.070968 +7.851630 58.070968 +7.863364 58.071262 +7.875099 58.071555 +7.885659 58.072435 +7.890353 58.077129 +7.898274 58.079769 +7.908834 58.080649 +7.916462 58.078889 +7.927022 58.078596 +7.934650 58.079476 +7.941690 58.082703 +7.947557 58.086810 +7.953424 58.090623 +7.949904 58.095610 +7.944037 58.099131 +7.938170 58.102651 +7.936410 58.108224 +7.938757 58.114385 +7.939930 58.114385 +7.939930 58.115265 +7.943157 58.119079 +7.949024 58.123186 +7.954598 58.126999 +7.964278 58.128466 +7.974546 58.128173 +7.985987 58.128466 +7.994494 58.130813 +8.000361 58.135213 +8.006228 58.139027 +8.012975 58.142547 +8.020016 58.145481 +8.022363 58.151641 +8.023243 58.158681 +8.022949 58.164842 +8.025003 58.169536 +8.028230 58.174816 +8.029403 58.181563 +8.027643 58.187137 +8.024416 58.192124 +8.021189 58.197111 +8.017962 58.202098 +8.015029 58.207085 +8.010335 58.211485 +8.007108 58.216472 +8.006521 58.222633 +8.017082 58.223513 +8.026176 58.221166 +8.030576 58.216766 +8.035270 58.212365 +8.039670 58.207965 +8.043191 58.202978 +8.046124 58.198284 +8.049351 58.193297 +8.052578 58.188310 +8.055805 58.183323 +8.059032 58.178336 +8.060792 58.172762 +8.064019 58.167775 +8.066952 58.163082 +8.073113 58.159268 +8.077513 58.154868 +8.074580 58.150761 +8.064899 58.149294 +8.055512 58.147534 +8.048471 58.144307 +8.040551 58.141960 +8.033217 58.139027 +8.027643 58.134920 +8.029403 58.129346 +8.037910 58.126999 +8.032043 58.129053 +8.037910 58.126999 +8.044071 58.123479 +8.045831 58.117905 +8.047884 58.112331 +8.053751 58.108224 +8.065192 58.107344 +8.078100 58.106758 +8.088367 58.104998 +8.097168 58.102357 +8.103328 58.100011 +8.111836 58.097664 +8.117996 58.095317 +8.127383 58.097077 +8.132077 58.101771 +8.134424 58.107638 +8.136771 58.113798 +8.139998 58.119079 +8.143225 58.124359 +8.145571 58.130519 +8.150265 58.135213 +8.154959 58.139907 +8.163173 58.142254 +8.174613 58.141080 +8.179307 58.136973 +8.182534 58.131986 +8.185468 58.126999 +8.188694 58.122012 +8.191921 58.117025 +8.201895 58.115265 +8.210989 58.115558 +8.216856 58.119372 +8.221550 58.123772 +8.222724 58.130813 +8.219497 58.135800 +8.216270 58.140787 +8.215976 58.146947 +8.221844 58.150761 +8.227711 58.154868 +8.232111 58.159562 +8.237978 58.163375 +8.243845 58.167189 +8.250886 58.170416 +8.255579 58.175109 +8.260273 58.179510 +8.264967 58.184203 +8.268194 58.189484 +8.265260 58.194471 +8.254993 58.196231 +8.244725 58.197991 +8.247952 58.201805 +8.256459 58.204445 +8.264380 58.207085 +8.273767 58.208552 +8.284328 58.209432 +8.294889 58.210312 +8.303396 58.212659 +8.309263 58.216766 +8.316010 58.219699 +8.321877 58.223513 +8.330385 58.226153 +8.338599 58.228206 +8.344466 58.232313 +8.347693 58.237887 +8.352386 58.242287 +8.360894 58.244634 +8.369987 58.246394 +8.377615 58.243461 +8.380548 58.238474 +8.389349 58.235834 +8.398736 58.236127 +8.405483 58.239061 +8.409297 58.244634 +8.407537 58.250208 +8.402843 58.254315 +8.399616 58.259302 +8.398150 58.264876 +8.402843 58.269863 +8.412231 58.271330 +8.422205 58.269569 +8.426898 58.265169 +8.428658 58.259302 +8.434525 58.255782 +8.441566 58.259009 +8.451247 58.260475 +8.461221 58.259009 +8.470021 58.256368 +8.478529 58.254022 +8.488796 58.251968 +8.499357 58.252848 +8.507864 58.255195 +8.512558 58.259889 +8.514611 58.266049 +8.510211 58.270156 +8.502877 58.273383 +8.502584 58.279837 +8.503757 58.286291 +8.511971 58.288931 +8.522532 58.289811 +8.528399 58.293624 +8.531919 58.298905 +8.536613 58.303599 +8.545120 58.306239 +8.551867 58.309172 +8.556561 58.313573 +8.560374 58.319146 +8.562428 58.325307 +8.567122 58.329707 +8.571815 58.334401 +8.575629 58.339681 +8.580029 58.344375 +8.584723 58.348775 +8.591470 58.349362 +8.591763 58.343201 +8.588243 58.337921 +8.585896 58.331761 +8.587363 58.326187 +8.596457 58.323547 +8.603204 58.326774 +8.608191 58.331467 +8.614058 58.335281 +8.618752 58.339681 +8.625793 58.343201 +8.633126 58.346135 +8.634300 58.352882 +8.636353 58.358749 +8.644861 58.361389 +8.657768 58.360803 +8.667155 58.362563 +8.675663 58.364616 +8.681530 58.368723 +8.688570 58.371657 +8.692091 58.377230 +8.687397 58.381337 +8.687104 58.387791 +8.688864 58.388965 +8.690330 58.390138 +8.692091 58.393658 +8.697958 58.397472 +8.702651 58.402166 +8.707638 58.406566 +8.711159 58.411846 +8.713505 58.418007 +8.713212 58.424461 +8.712919 58.430621 +8.711452 58.436195 +8.712332 58.441768 +8.720546 58.444115 +8.728760 58.446462 +8.738441 58.447929 +8.745481 58.451156 +8.752522 58.454089 +8.759855 58.457610 +8.766896 58.460543 +8.777457 58.461423 +8.786844 58.463183 +8.796525 58.464650 +8.803565 58.467877 +8.810899 58.470811 +8.817940 58.473744 +8.824980 58.476971 +8.831141 58.480785 +8.835834 58.485478 +8.840528 58.489879 +8.845222 58.494866 +8.851382 58.498679 +8.857249 58.502199 +8.864583 58.505426 +8.870157 58.509533 +8.875144 58.513934 +8.881011 58.517747 +8.885705 58.522441 +8.893038 58.525668 +8.900079 58.528601 +8.907119 58.531535 +8.914453 58.534762 +8.919147 58.539455 +8.925307 58.543269 +8.931174 58.547083 +8.937335 58.551776 +8.942029 58.556177 +8.945549 58.561750 +8.948189 58.567911 +8.951709 58.573191 +8.951416 58.579058 +8.944082 58.582285 +8.933815 58.584045 +8.927654 58.588152 +8.922080 58.591673 +8.917387 58.596073 +8.914160 58.601060 +8.917680 58.606340 +8.926187 58.608687 +8.936455 58.606927 +8.939388 58.601940 +8.942909 58.596953 +8.949949 58.594019 +8.957576 58.590499 +8.960510 58.585512 +8.964910 58.581405 +8.973124 58.582285 +8.979285 58.586099 +8.983978 58.590792 +8.990139 58.594313 +8.995712 58.598420 +9.003046 58.601353 +9.012434 58.603113 +9.021234 58.605460 +9.030622 58.607220 +9.038835 58.609567 +9.047343 58.611621 +9.055557 58.614261 +9.064064 58.616314 +9.071104 58.619541 +9.077265 58.623355 +9.084305 58.626288 +9.091639 58.629809 +9.100147 58.631862 +9.109534 58.633622 +9.119215 58.635089 +9.126255 58.638316 +9.132416 58.641836 +9.137109 58.646530 +9.144443 58.649757 +9.155297 58.650637 +9.167325 58.650930 +9.176712 58.652104 +9.183753 58.655330 +9.191086 58.658264 +9.197247 58.662078 +9.201941 58.667065 +9.205461 58.672345 +9.203701 58.676452 +9.197834 58.680266 +9.187566 58.682026 +9.175832 58.683199 +9.167911 58.682612 +9.157057 58.681732 +9.145030 58.681439 +9.133002 58.681439 +9.119801 58.682026 +9.108067 58.683199 +9.097213 58.682612 +9.087826 58.680852 +9.079318 58.678505 +9.068758 58.677919 +9.056730 58.677625 +9.061424 58.682319 +9.068758 58.685253 +9.076972 58.687599 +9.087826 58.688479 +9.097506 58.689946 +9.108067 58.690826 +9.120095 58.690826 +9.133296 58.690240 +9.145323 58.690533 +9.156177 58.691120 +9.167031 58.692293 +9.176419 58.693467 +9.187273 58.694347 +9.196660 58.696107 +9.207514 58.696987 +9.214848 58.699920 +9.220422 58.702560 +9.224235 58.707841 +9.224235 58.714295 +9.219542 58.718402 +9.212208 58.721629 +9.201941 58.723682 +9.188740 58.724269 +9.176712 58.724269 +9.164685 58.723975 +9.152657 58.723975 +9.139749 58.724562 +9.127722 58.725735 +9.117454 58.727789 +9.107187 58.729549 +9.098386 58.731896 +9.103373 58.729256 +9.113641 58.727202 +9.123908 58.725149 +9.134176 58.723389 +9.144443 58.721335 +9.153244 58.718988 +9.160578 58.715761 +9.166738 58.712241 +9.157937 58.709601 +9.147083 58.709014 +9.134176 58.709601 +9.120975 58.710188 +9.109241 58.711361 +9.098973 58.713415 +9.088706 58.715175 +9.076972 58.716642 +9.066704 58.718402 +9.059370 58.721629 +9.057904 58.727202 +9.062597 58.731603 +9.067291 58.736296 +9.075798 58.738643 +9.086652 58.739523 +9.098386 58.738350 +9.110121 58.736883 +9.123028 58.736296 +9.135056 58.735123 +9.147963 58.734536 +9.161458 58.733949 +9.174365 58.733069 +9.186393 58.733363 +9.198420 58.733363 +9.209274 58.734243 +9.220129 58.735123 +9.231863 58.735123 +9.242130 58.733069 +9.255624 58.732483 +9.267359 58.732483 +9.278213 58.733363 +9.286720 58.735710 +9.296107 58.737176 +9.305788 58.738936 +9.314295 58.740990 +9.322803 58.743630 +9.330136 58.746564 +9.337177 58.749791 +9.337470 58.751257 +9.340110 58.750964 +9.343337 58.753604 +9.348324 58.758885 +9.353018 58.763285 +9.359178 58.767098 +9.365339 58.771205 +9.372379 58.774139 +9.378540 58.777953 +9.385874 58.781179 +9.392034 58.784700 +9.398195 58.788513 +9.406409 58.791154 +9.411396 58.795554 +9.403475 58.796141 +9.396141 58.792914 +9.387634 58.790567 +9.379127 58.788220 +9.370913 58.785873 +9.366219 58.788807 +9.372086 58.792914 +9.377953 58.796727 +9.377953 58.795847 +9.385580 58.801128 +9.390274 58.804061 +9.396435 58.808168 +9.406115 58.809635 +9.415503 58.811102 +9.424303 58.813742 +9.432517 58.815795 +9.442198 58.817555 +9.448358 58.821369 +9.449238 58.826649 +9.443371 58.830463 +9.435744 58.833690 +9.428703 58.836917 +9.419609 58.839557 +9.409342 58.841317 +9.397901 58.842491 +9.385580 58.842491 +9.374726 58.841610 +9.365339 58.840144 +9.356538 58.837797 +9.348324 58.835450 +9.339817 58.833103 +9.331310 58.830756 +9.324269 58.827823 +9.315469 58.825183 +9.304615 58.824303 +9.298747 58.828410 +9.291414 58.831343 +9.280560 58.830463 +9.271759 58.833103 +9.273812 58.837797 +9.278799 58.842491 +9.283786 58.846891 +9.287600 58.852465 +9.291120 58.857745 +9.294641 58.863025 +9.297281 58.869186 +9.299628 58.875346 +9.304615 58.872706 +9.309308 58.868599 +9.315175 58.864785 +9.321042 58.860972 +9.326910 58.857158 +9.339230 58.857158 +9.351258 58.857452 +9.361819 58.858332 +9.371793 58.859798 +9.378833 58.862732 +9.387341 58.865372 +9.394674 58.868306 +9.400835 58.872119 +9.404355 58.877400 +9.402888 58.882973 +9.391154 58.884440 +9.382647 58.881800 +9.376486 58.877986 +9.369153 58.875053 +9.358592 58.875640 +9.359765 58.881213 +9.364752 58.885907 +9.370619 58.889427 +9.379127 58.892067 +9.387634 58.894121 +9.398195 58.895001 +9.407582 58.893828 +9.417849 58.892067 +9.426650 58.889427 +9.434277 58.886494 +9.440144 58.882387 +9.448945 58.880040 +9.452759 58.885320 +9.452465 58.891481 +9.457452 58.896174 +9.465959 58.898228 +9.473587 58.896761 +9.477987 58.892361 +9.487081 58.889721 +9.497642 58.890601 +9.507616 58.892067 +9.515830 58.894414 +9.523457 58.897641 +9.526977 58.902922 +9.522577 58.907322 +9.521110 58.907322 +9.521110 58.906735 +9.513483 58.909669 +9.506149 58.912896 +9.495882 58.914656 +9.485614 58.916709 +9.476814 58.919056 +9.470947 58.923163 +9.471533 58.927270 +9.482387 58.927857 +9.495588 58.927270 +9.507616 58.925803 +9.519057 58.924630 +9.529324 58.922870 +9.541352 58.921403 +9.553086 58.919936 +9.565113 58.918763 +9.576554 58.917589 +9.585355 58.919643 +9.593569 58.921990 +9.603249 58.923750 +9.607943 58.926683 +9.600609 58.929910 +9.591809 58.932550 +9.595329 58.936364 +9.603543 58.939004 +9.613223 58.940178 +9.620851 58.943404 +9.629065 58.945751 +9.635225 58.949565 +9.640212 58.954259 +9.646372 58.958072 +9.656053 58.959539 +9.666321 58.957485 +9.675415 58.955139 +9.686269 58.956312 +9.688909 58.962472 +9.681282 58.965699 +9.675415 58.969513 +9.666614 58.971860 +9.656346 58.973913 +9.656053 58.978900 +9.663387 58.981834 +9.675121 58.980660 +9.686855 58.979194 +9.693016 58.983007 +9.696536 58.988288 +9.701523 58.992981 +9.707977 58.990635 +9.713844 58.986528 +9.717071 58.981541 +9.721471 58.977140 +9.723818 58.983301 +9.726752 58.989461 +9.730272 58.994741 +9.731739 59.001782 +9.727338 59.006182 +9.724111 59.011169 +9.719711 59.015570 +9.712084 59.018503 +9.706510 59.022610 +9.700643 59.026130 +9.693016 59.029357 +9.684215 59.031997 +9.674828 59.031704 +9.663974 59.030824 +9.651946 59.032291 +9.645786 59.034638 +9.638452 59.037865 +9.633758 59.042265 +9.632291 59.047839 +9.629065 59.052826 +9.626424 59.057813 +9.621731 59.062213 +9.618797 59.067200 +9.614103 59.071600 +9.609703 59.075707 +9.603836 59.079814 +9.597676 59.083334 +9.591809 59.087148 +9.584475 59.090375 +9.576847 59.093602 +9.569514 59.096535 +9.560420 59.099176 +9.553379 59.102403 +9.544285 59.105043 +9.539591 59.109443 +9.540765 59.114723 +9.548099 59.116484 +9.560126 59.116777 +9.571860 59.115310 +9.583888 59.113843 +9.595915 59.113843 +9.605596 59.115603 +9.614103 59.117657 +9.619090 59.122644 +9.626424 59.125578 +9.633758 59.128511 +9.641385 59.125284 +9.640212 59.120004 +9.640212 59.113550 +9.636398 59.108270 +9.626718 59.106803 +9.628771 59.103869 +9.636398 59.100936 +9.642265 59.096829 +9.645199 59.091842 +9.646959 59.086268 +9.646959 59.080401 +9.646959 59.073947 +9.648719 59.068373 +9.648719 59.062213 +9.651653 59.057226 +9.654586 59.052239 +9.663680 59.049305 +9.672481 59.046959 +9.680108 59.044025 +9.686855 59.045492 +9.689496 59.051652 +9.688029 59.057226 +9.685095 59.062213 +9.683335 59.067787 +9.683335 59.074241 +9.683335 59.080401 +9.686855 59.085681 +9.691842 59.090375 +9.700056 59.089788 +9.702990 59.084801 +9.702990 59.078641 +9.702990 59.072187 +9.704750 59.066613 +9.706217 59.061040 +9.715017 59.058693 +9.723818 59.055759 +9.728512 59.051652 +9.732912 59.047252 +9.737606 59.042852 +9.742006 59.038451 +9.749340 59.035224 +9.755207 59.031411 +9.761074 59.033758 +9.762541 59.040798 +9.762541 59.046959 +9.766354 59.052239 +9.769875 59.057813 +9.776622 59.056639 +9.779555 59.051652 +9.781022 59.046078 +9.784249 59.041091 +9.786889 59.036104 +9.793050 59.032291 +9.798917 59.028477 +9.806251 59.025250 +9.813584 59.022317 +9.819745 59.018210 +9.825612 59.014396 +9.830892 59.014103 +9.832359 59.008529 +9.835586 59.003542 +9.842920 59.000609 +9.847320 58.996208 +9.848787 58.990635 +9.848787 58.984181 +9.848787 58.978020 +9.846440 58.971860 +9.841453 58.967166 +9.833826 58.964233 +9.824145 58.962766 +9.813291 58.961886 +9.819158 58.958366 +9.826785 58.955139 +9.832359 58.951325 +9.839986 58.948098 +9.850840 58.948978 +9.858468 58.951912 +9.865508 58.955139 +9.877536 58.955139 +9.889563 58.953672 +9.900124 58.953085 +9.908631 58.955139 +9.915965 58.958366 +9.926526 58.957779 +9.933860 58.954845 +9.944127 58.952792 +9.954688 58.951912 +9.962022 58.955139 +9.967009 58.959832 +9.974343 58.962766 +9.987544 58.961886 +9.996344 58.959539 +10.006025 58.960712 +10.013652 58.963939 +10.020693 58.966873 +10.025973 58.971566 +10.028613 58.977434 +10.029787 58.983007 +10.029787 58.989461 +10.028027 58.995035 +10.026560 59.000609 +10.026560 59.006769 +10.025386 59.012636 +10.022159 59.017623 +10.019226 59.022610 +10.019226 59.028477 +10.025680 59.032584 +10.037414 59.032584 +10.043281 59.028477 +10.046508 59.023490 +10.050908 59.019090 +10.055308 59.014690 +10.064109 59.012343 +10.074670 59.011756 +10.082004 59.014690 +10.089338 59.017916 +10.095498 59.021437 +10.101952 59.025250 +10.108112 59.029064 +10.113099 59.033758 +10.119260 59.037571 +10.125420 59.041091 +10.132754 59.044025 +10.142435 59.045785 +10.152115 59.047252 +10.162970 59.046665 +10.168837 59.042852 +10.170303 59.037278 +10.167370 59.031117 +10.162383 59.026717 +10.156516 59.022903 +10.148889 59.019677 +10.140675 59.017623 +10.130701 59.016156 +10.123367 59.012929 +10.117206 59.009116 +10.114566 59.002955 +10.118966 58.998848 +10.130701 58.997382 +10.142728 58.997382 +10.152409 58.998848 +10.161209 59.001195 +10.169717 59.003249 +10.177931 59.005889 +10.186731 59.007942 +10.196412 59.009409 +10.204919 59.011756 +10.213720 59.013810 +10.220760 59.017036 +10.225747 59.021730 +10.231028 59.026130 +10.232495 59.033171 +10.231028 59.038745 +10.228094 59.043732 +10.223694 59.048132 +10.219294 59.052532 +10.213426 59.056053 +10.209026 59.060453 +10.207559 59.066320 +10.212546 59.070720 +10.216360 59.076001 +10.220174 59.081281 +10.221640 59.088322 +10.223401 59.095069 +10.224867 59.101816 +10.224867 59.107976 +10.227214 59.112670 +10.228681 59.107096 +10.228681 59.101229 +10.233081 59.096535 +10.238948 59.092722 +10.244815 59.088908 +10.247749 59.083921 +10.252149 59.079521 +10.253616 59.073947 +10.253616 59.067787 +10.255083 59.062213 +10.255083 59.055759 +10.255083 59.049599 +10.256256 59.044025 +10.257723 59.038451 +10.262123 59.033758 +10.269457 59.035518 +10.271804 59.041678 +10.273564 59.048719 +10.272097 59.054292 +10.269164 59.059279 +10.267697 59.064853 +10.266524 59.070427 +10.265057 59.076001 +10.263297 59.081574 +10.261830 59.087148 +10.261830 59.093602 +10.261830 59.099762 +10.263590 59.106803 +10.271804 59.107390 +10.275031 59.103869 +10.277964 59.098882 +10.282365 59.094482 +10.283832 59.088908 +10.285298 59.083041 +10.285298 59.076881 +10.286765 59.071307 +10.289699 59.066320 +10.292632 59.061333 +10.298206 59.057519 +10.304953 59.056346 +10.302020 59.061333 +10.299086 59.066320 +10.299086 59.072774 +10.300553 59.079521 +10.299086 59.085095 +10.297913 59.090962 +10.294686 59.095949 +10.292045 59.100936 +10.288819 59.105923 +10.286178 59.110910 +10.282951 59.115897 +10.280311 59.120884 +10.280311 59.127044 +10.287645 59.129978 +10.298206 59.129391 +10.304073 59.125578 +10.311700 59.122644 +10.314047 59.128511 +10.311407 59.133498 +10.308473 59.138485 +10.308473 59.144646 +10.311994 59.148753 +10.317274 59.154033 +10.321088 59.159313 +10.322554 59.166060 +10.322848 59.172221 +10.322848 59.178675 +10.322848 59.184835 +10.324021 59.191582 +10.325781 59.198329 +10.327248 59.205370 +10.331062 59.210650 +10.341036 59.211824 +10.353063 59.211824 +10.361570 59.214171 +10.366851 59.218864 +10.366851 59.225025 +10.366264 59.229132 +10.367144 59.232065 +10.364211 59.237052 +10.361277 59.242039 +10.359810 59.247613 +10.358344 59.253187 +10.360104 59.259934 +10.363917 59.265214 +10.371251 59.268441 +10.383279 59.268441 +10.390906 59.264921 +10.398240 59.261987 +10.408507 59.259934 +10.420828 59.259934 +10.431095 59.257880 +10.437256 59.254067 +10.438723 59.248493 +10.441363 59.243213 +10.447230 59.239692 +10.455737 59.242039 +10.463364 59.244973 +10.468645 59.249373 +10.473632 59.253773 +10.477445 59.259054 +10.480379 59.265214 +10.485366 59.269908 +10.489473 59.275188 +10.494460 59.279589 +10.499447 59.284282 +10.503261 59.289563 +10.508541 59.294256 +10.513528 59.298657 +10.516462 59.304817 +10.516462 59.310978 +10.510594 59.314791 +10.500327 59.316551 +10.489766 59.318605 +10.482139 59.320658 +10.473338 59.323005 +10.465711 59.326525 +10.461311 59.330926 +10.456911 59.335326 +10.452510 59.339726 +10.449577 59.344713 +10.448403 59.350287 +10.446643 59.355861 +10.448403 59.362901 +10.451044 59.368768 +10.454857 59.374049 +10.458964 59.379329 +10.462778 59.384609 +10.468058 59.389303 +10.471872 59.394584 +10.476859 59.399277 +10.480966 59.404558 +10.485073 59.409838 +10.483606 59.415412 +10.479206 59.419812 +10.474805 59.424212 +10.467178 59.427439 +10.456617 59.429493 +10.447817 59.431840 +10.443416 59.436533 +10.441950 59.441814 +10.439309 59.446801 +10.429629 59.448267 +10.423468 59.444454 +10.414668 59.442107 +10.402640 59.442107 +10.390613 59.443574 +10.392079 59.444160 +10.381812 59.446507 +10.374185 59.449441 +10.368318 59.453254 +10.363917 59.457655 +10.360690 59.462642 +10.356290 59.467335 +10.351890 59.471442 +10.347489 59.475843 +10.341622 59.479656 +10.335462 59.483470 +10.329595 59.487577 +10.324021 59.491097 +10.317861 59.494911 +10.310233 59.498138 +10.304366 59.501951 +10.298206 59.505765 +10.290872 59.508992 +10.293512 59.508112 +10.288525 59.511045 +10.282658 59.514859 +10.276791 59.518966 +10.270924 59.522486 +10.263297 59.525713 +10.257430 59.529820 +10.253029 59.533927 +10.246869 59.537740 +10.242469 59.542141 +10.241295 59.543608 +10.236895 59.548008 +10.235135 59.552115 +10.235135 59.558569 +10.247456 59.558569 +10.256256 59.556222 +10.263883 59.552702 +10.271511 59.549475 +10.280311 59.546834 +10.289405 59.544488 +10.297032 59.540967 +10.305833 59.538621 +10.313460 59.535394 +10.320794 59.532167 +10.329301 59.528940 +10.338689 59.526300 +10.348956 59.524539 +10.358344 59.523073 +10.370664 59.523073 +10.377998 59.526006 +10.382985 59.530700 +10.385919 59.536567 +10.386212 59.543021 +10.384452 59.548595 +10.384745 59.554755 +10.386212 59.561796 +10.390026 59.567076 +10.392666 59.572943 +10.395600 59.579103 +10.398240 59.584971 +10.398240 59.591424 +10.397066 59.596998 +10.397066 59.603452 +10.394133 59.608146 +10.392373 59.614013 +10.391199 59.619586 +10.389732 59.624867 +10.389732 59.631320 +10.388266 59.636894 +10.386799 59.642468 +10.383865 59.647455 +10.382399 59.653322 +10.379465 59.658016 +10.375065 59.662416 +10.365971 59.665350 +10.358637 59.668283 +10.350716 59.670337 +10.343382 59.673564 +10.335755 59.676790 +10.328421 59.680017 +10.319327 59.682951 +10.309940 59.684418 +10.299379 59.686471 +10.287645 59.687645 +10.277084 59.689698 +10.269457 59.692925 +10.270631 59.692338 +10.265937 59.695272 +10.258310 59.698205 +10.253909 59.702899 +10.249509 59.707299 +10.243349 59.711113 +10.238948 59.715513 +10.231321 59.718740 +10.225161 59.722554 +10.222227 59.727541 +10.228681 59.731354 +10.238655 59.732821 +10.247456 59.734875 +10.257136 59.736341 +10.268577 59.737221 +10.278845 59.735168 +10.287938 59.732821 +10.295566 59.729301 +10.301726 59.725781 +10.306126 59.721380 +10.311994 59.717567 +10.318154 59.713753 +10.324021 59.709939 +10.329888 59.706126 +10.337515 59.702899 +10.345436 59.702606 +10.354530 59.704659 +10.365677 59.705246 +10.374771 59.702899 +10.380638 59.698792 +10.383572 59.693805 +10.385039 59.688231 +10.389439 59.683831 +10.397066 59.680897 +10.404400 59.677377 +10.410561 59.673564 +10.413201 59.668577 +10.414668 59.663003 +10.413201 59.656256 +10.409387 59.650975 +10.409094 59.644815 +10.413494 59.640414 +10.416721 59.635134 +10.418188 59.629854 +10.418188 59.623400 +10.418188 59.617239 +10.419361 59.611666 +10.422588 59.606679 +10.425228 59.601398 +10.428455 59.596411 +10.429629 59.590838 +10.429629 59.584677 +10.428162 59.577637 +10.425228 59.571770 +10.423762 59.565022 +10.425228 59.559155 +10.425228 59.552995 +10.424935 59.546834 +10.422588 59.540967 +10.419655 59.534807 +10.419361 59.528646 +10.422588 59.523659 +10.426988 59.519259 +10.435789 59.516326 +10.444590 59.513979 +10.458377 59.513099 +10.469525 59.513979 +10.479206 59.515152 +10.488006 59.517499 +10.495633 59.520433 +10.502967 59.523659 +10.512941 59.525126 +10.520569 59.528060 +10.528196 59.530993 +10.535530 59.534220 +10.543157 59.537154 +10.550491 59.540087 +10.558118 59.543021 +10.564572 59.546834 +10.570732 59.550648 +10.577186 59.554462 +10.583640 59.557982 +10.588627 59.562676 +10.595081 59.566489 +10.598894 59.571770 +10.603001 59.577343 +10.606815 59.582624 +10.609748 59.588197 +10.611508 59.595238 +10.611508 59.601398 +10.610042 59.607265 +10.608575 59.612839 +10.607108 59.618413 +10.605935 59.623987 +10.604468 59.629854 +10.601534 59.634841 +10.598601 59.639828 +10.594200 59.644228 +10.589800 59.648628 +10.585400 59.653029 +10.579239 59.656549 +10.573372 59.660656 +10.564572 59.663296 +10.556944 59.666523 +10.549024 59.668283 +10.538757 59.670337 +10.529369 59.672683 +10.523502 59.676790 +10.519102 59.681191 +10.517635 59.686764 +10.517635 59.692925 +10.514701 59.697912 +10.512061 59.703192 +10.508834 59.708179 +10.504434 59.712580 +10.501500 59.717567 +10.496807 59.721967 +10.494167 59.726954 +10.492700 59.732528 +10.491233 59.738101 +10.491526 59.744555 +10.491526 59.750422 +10.491526 59.756876 +10.491526 59.763037 +10.492993 59.770077 +10.494753 59.776531 +10.491526 59.781811 +10.488886 59.786798 +10.485953 59.792079 +10.482726 59.797066 +10.481259 59.802639 +10.481259 59.808507 +10.482726 59.814080 +10.488006 59.818481 +10.492993 59.823468 +10.495927 59.829335 +10.491526 59.833735 +10.479206 59.833735 +10.473045 59.837549 +10.471578 59.843416 +10.474219 59.847816 +10.478912 59.851043 +10.485366 59.854857 +10.490646 59.859550 +10.495927 59.863951 +10.502087 59.867764 +10.511181 59.870111 +10.518515 59.873045 +10.527609 59.875391 +10.537583 59.876565 +10.548731 59.877445 +10.559585 59.878032 +10.566038 59.881845 +10.571319 59.886245 +10.577186 59.887419 +10.580413 59.882432 +10.583053 59.877445 +10.592147 59.874805 +10.601241 59.877151 +10.606228 59.881552 +10.611508 59.886245 +10.616789 59.890939 +10.624123 59.893579 +10.631750 59.890646 +10.636150 59.886245 +10.645244 59.883312 +10.655805 59.881258 +10.664606 59.883605 +10.671059 59.887419 +10.676340 59.891819 +10.679273 59.897980 +10.683087 59.903260 +10.694234 59.902673 +10.704795 59.900620 +10.715356 59.898566 +10.725917 59.896806 +10.734717 59.893873 +10.742344 59.890939 +10.748212 59.886832 +10.747918 59.880672 +10.749385 59.875098 +10.750852 59.869524 +10.752612 59.863951 +10.753785 59.858083 +10.755252 59.852510 +10.756719 59.846936 +10.759359 59.841949 +10.760826 59.836375 +10.760826 59.829921 +10.756719 59.824641 +10.752905 59.819361 +10.747625 59.814960 +10.743225 59.809680 +10.739411 59.804400 +10.737651 59.802933 +10.739118 59.802933 +10.735304 59.799119 +10.732370 59.792959 +10.729730 59.786798 +10.727090 59.780931 +10.723863 59.774771 +10.722396 59.768024 +10.722103 59.761570 +10.720636 59.755116 +10.718876 59.748076 +10.717703 59.742502 +10.716236 59.735755 +10.713889 59.738688 +10.711249 59.743675 +10.705088 59.747489 +10.702155 59.752476 +10.699221 59.757463 +10.697755 59.763330 +10.698048 59.769490 +10.698048 59.775651 +10.698341 59.781811 +10.696581 59.787385 +10.696875 59.793545 +10.695701 59.799413 +10.692474 59.804400 +10.689834 59.809387 +10.686607 59.814374 +10.683967 59.819361 +10.680740 59.824348 +10.678100 59.829335 +10.674873 59.834322 +10.671939 59.839602 +10.666072 59.843416 +10.661672 59.847816 +10.657272 59.852216 +10.649644 59.855443 +10.640257 59.856617 +10.633803 59.853096 +10.629696 59.847816 +10.625883 59.842536 +10.622069 59.836962 +10.617669 59.831682 +10.615029 59.825814 +10.611215 59.820241 +10.605935 59.815840 +10.600654 59.811440 +10.596547 59.806160 +10.592440 59.800879 +10.588627 59.795599 +10.584520 59.790025 +10.581586 59.784158 +10.578946 59.777998 +10.576013 59.771837 +10.573372 59.765970 +10.570439 59.759810 +10.567799 59.753649 +10.564865 59.747782 +10.562225 59.741622 +10.559585 59.735461 +10.557825 59.728714 +10.559291 59.723140 +10.560465 59.717567 +10.563692 59.712580 +10.568092 59.708179 +10.570732 59.703192 +10.575132 59.698499 +10.579826 59.694098 +10.584226 59.689698 +10.587160 59.684711 +10.593027 59.680897 +10.600654 59.677377 +10.607695 59.679137 +10.610628 59.685298 +10.612095 59.692338 +10.614442 59.689111 +10.612682 59.682364 +10.612388 59.676497 +10.612388 59.670043 +10.613855 59.664470 +10.615322 59.658896 +10.616789 59.653029 +10.617962 59.647455 +10.619722 59.641881 +10.624123 59.637481 +10.627056 59.632494 +10.629990 59.627507 +10.632923 59.622520 +10.635857 59.617239 +10.638497 59.612252 +10.643191 59.607852 +10.646124 59.602865 +10.648764 59.597878 +10.651991 59.592891 +10.653458 59.587317 +10.651698 59.580277 +10.649938 59.573530 +10.646124 59.568249 +10.643191 59.562089 +10.642017 59.556808 +10.644657 59.551528 +10.647884 59.546541 +10.647884 59.540674 +10.650525 59.535687 +10.651991 59.529820 +10.653458 59.524246 +10.654631 59.518672 +10.657858 59.513685 +10.660499 59.508698 +10.664899 59.504298 +10.669299 59.499604 +10.673993 59.495204 +10.679860 59.491390 +10.687194 59.488164 +10.691594 59.483763 +10.691301 59.477603 +10.692768 59.472029 +10.692768 59.465575 +10.690127 59.459708 +10.685727 59.454428 +10.683087 59.448267 +10.680153 59.442107 +10.676340 59.436827 +10.669886 59.433013 +10.659032 59.432426 +10.652871 59.435066 +10.651405 59.440640 +10.653165 59.447387 +10.655805 59.453254 +10.657565 59.460295 +10.659032 59.467042 +10.660499 59.473789 +10.662259 59.480830 +10.660792 59.486403 +10.659325 59.491977 +10.653751 59.495791 +10.644951 59.494911 +10.641137 59.489630 +10.638204 59.483470 +10.634390 59.478190 +10.627936 59.474376 +10.622656 59.469976 +10.622949 59.464989 +10.620309 59.458828 +10.613855 59.455308 +10.607401 59.451494 +10.603588 59.446214 +10.602414 59.440933 +10.596254 59.436827 +10.589800 59.433013 +10.585693 59.427733 +10.585693 59.421572 +10.588627 59.416585 +10.598894 59.414825 +10.612388 59.413945 +10.623243 59.414532 +10.635857 59.414532 +10.643191 59.412478 +10.652285 59.410131 +10.656685 59.405438 +10.659619 59.400451 +10.659325 59.394584 +10.658738 59.390770 +10.654631 59.385490 +10.650818 59.380209 +10.645537 59.375809 +10.644364 59.370235 +10.651698 59.367302 +10.659032 59.363781 +10.663725 59.359381 +10.664899 59.353807 +10.664606 59.347647 +10.664606 59.341486 +10.663432 59.335913 +10.663432 59.329752 +10.664606 59.324178 +10.667539 59.319191 +10.671939 59.314791 +10.676340 59.310391 +10.683967 59.306871 +10.694234 59.305110 +10.705382 59.305697 +10.710369 59.310391 +10.713889 59.314204 +10.717703 59.319485 +10.722983 59.323885 +10.728263 59.328579 +10.738824 59.327699 +10.741758 59.322712 +10.744691 59.317725 +10.749092 59.313324 +10.759359 59.311271 +10.771680 59.311271 +10.780774 59.310097 +10.775493 59.304817 +10.770213 59.300417 +10.763759 59.296310 +10.758772 59.291909 +10.753492 59.287509 +10.748505 59.282815 +10.745865 59.276948 +10.744105 59.269908 +10.744105 59.263747 +10.743811 59.257587 +10.742344 59.250840 +10.740584 59.243799 +10.736771 59.238519 +10.729144 59.235585 +10.730610 59.230012 +10.732077 59.224438 +10.735011 59.219451 +10.739118 59.215051 +10.746451 59.216811 +10.749092 59.222384 +10.753199 59.227958 +10.755839 59.233825 +10.758479 59.239986 +10.762879 59.245266 +10.770800 59.244679 +10.769040 59.237932 +10.766400 59.232065 +10.763466 59.225905 +10.764639 59.220331 +10.769040 59.215931 +10.776667 59.212410 +10.782534 59.208890 +10.786641 59.204490 +10.786641 59.198036 +10.784001 59.192169 +10.781067 59.186009 +10.788694 59.184248 +10.797495 59.186302 +10.805122 59.184542 +10.807762 59.179555 +10.810696 59.174568 +10.815096 59.169874 +10.818030 59.164887 +10.820963 59.159900 +10.820670 59.154033 +10.825070 59.149339 +10.833578 59.151686 +10.840031 59.155206 +10.846192 59.159313 +10.849125 59.165180 +10.849125 59.171341 +10.849419 59.177501 +10.855579 59.181315 +10.867607 59.180141 +10.878461 59.180435 +10.884621 59.184542 +10.889902 59.188942 +10.896062 59.192462 +10.903689 59.195689 +10.903983 59.190702 +10.901049 59.184835 +10.898409 59.178675 +10.896942 59.173394 +10.899582 59.168114 +10.904276 59.163714 +10.906916 59.158727 +10.908383 59.153153 +10.903103 59.148753 +10.900169 59.142592 +10.906036 59.138485 +10.907503 59.138485 +10.906036 59.138485 +10.915130 59.136138 +10.920997 59.133498 +10.931265 59.131738 +10.938892 59.134378 +10.941532 59.140539 +10.943292 59.147579 +10.943586 59.153740 +10.942119 59.159313 +10.940945 59.164887 +10.941239 59.171047 +10.939772 59.176621 +10.938305 59.182195 +10.941825 59.186302 +10.949746 59.184542 +10.955613 59.180435 +10.959720 59.176034 +10.965587 59.172221 +10.974681 59.171047 +10.983188 59.173394 +10.994336 59.173981 +10.997269 59.168994 +10.998736 59.163420 +10.999910 59.157847 +11.007243 59.154326 +11.016044 59.151686 +11.026311 59.149633 +11.036579 59.147872 +11.040979 59.143472 +11.040979 59.137018 +11.036579 59.131738 +11.033939 59.125578 +11.041566 59.123817 +11.051247 59.123817 +11.056820 59.120004 +11.064154 59.116777 +11.073542 59.117070 +11.081169 59.119710 +11.088503 59.122644 +11.093490 59.127338 +11.097890 59.132618 +11.099357 59.139365 +11.098183 59.144939 +11.095250 59.149926 +11.092610 59.154913 +11.089676 59.160193 +11.087036 59.165180 +11.085569 59.170754 +11.091730 59.168407 +11.097597 59.164300 +11.100237 59.159313 +11.103170 59.154326 +11.107571 59.149926 +11.110211 59.144939 +11.113144 59.139952 +11.123705 59.139072 +11.132212 59.141419 +11.139840 59.144352 +11.145120 59.148753 +11.150400 59.153446 +11.154214 59.158727 +11.152747 59.164300 +11.150107 59.169581 +11.145707 59.173981 +11.140133 59.177795 +11.135439 59.181902 +11.141893 59.185715 +11.152161 59.183955 +11.163308 59.184542 +11.168588 59.188942 +11.173575 59.193342 +11.179736 59.190996 +11.182669 59.185715 +11.180909 59.179261 +11.179149 59.172221 +11.178856 59.166060 +11.178856 59.159607 +11.181789 59.154620 +11.190297 59.152273 +11.200857 59.149926 +11.206431 59.146112 +11.204964 59.140832 +11.197630 59.137898 +11.187656 59.136432 +11.177976 59.134965 +11.171522 59.131151 +11.171522 59.124991 +11.177096 59.121177 +11.186190 59.118537 +11.193230 59.115310 +11.197630 59.110910 +11.203204 59.106803 +11.210538 59.103576 +11.220805 59.101522 +11.233126 59.101522 +11.242807 59.102989 +11.251608 59.105336 +11.260408 59.107390 +11.268916 59.109443 +11.277423 59.111790 +11.287104 59.112963 +11.298251 59.113843 +11.310279 59.113550 +11.323479 59.112670 +11.336974 59.112083 +11.347241 59.109736 +11.356042 59.107096 +11.363376 59.103869 +11.366016 59.098882 +11.367189 59.093309 +11.373056 59.089495 +11.377163 59.085095 +11.381564 59.080694 +11.385964 59.076001 +11.386844 59.070427 +11.388311 59.064853 +11.388017 59.058693 +11.389484 59.053119 +11.393591 59.048719 +11.396525 59.043732 +11.400632 59.039038 +11.404739 59.034638 +11.407379 59.029651 +11.408846 59.023784 +11.411779 59.018797 +11.417646 59.014983 +11.422927 59.011169 +11.427327 59.006769 +11.431727 59.002369 +11.434367 58.997088 +11.432607 58.990635 +11.427620 58.986528 +nan nan +11.535868 54.082522 +11.538802 54.083989 +11.542615 54.084869 +11.545842 54.086629 +11.548189 54.088683 +11.551123 54.090443 +11.553176 54.092790 +11.555816 54.094843 +11.559336 54.095723 +11.564030 54.096310 +11.568724 54.097190 +11.573417 54.097483 +11.577524 54.098363 +11.581631 54.099243 +11.586325 54.099830 +11.590725 54.100417 +11.595419 54.100710 +11.599819 54.101590 +11.603926 54.102470 +11.607740 54.103644 +11.611847 54.104524 +11.616247 54.105404 +11.611847 54.104524 +11.608620 54.103057 +11.605980 54.101004 +11.605100 54.098070 +11.603046 54.095430 +11.599233 54.094550 +11.593952 54.094550 +11.590139 54.093376 +11.586912 54.091616 +11.586032 54.088683 +11.585445 54.085162 +11.582218 54.083696 +11.578111 54.082816 +11.574884 54.081349 +11.572831 54.079295 +11.570484 54.076655 +11.568137 54.074602 +11.564617 54.073428 +11.561683 54.071668 +11.558163 54.070495 +11.554643 54.069028 +11.551709 54.067561 +11.548776 54.065508 +11.546429 54.063748 +11.544082 54.061401 +11.542615 54.058467 +11.541148 54.056707 +11.538508 54.055827 +11.533815 54.055240 +11.532935 54.058174 +11.531761 54.059934 +11.531761 54.063161 +11.532348 54.066388 +11.532641 54.069615 +11.532054 54.072548 +11.528534 54.074308 +11.525601 54.072548 +11.523254 54.070201 +11.521200 54.068148 +11.519147 54.065801 +11.517387 54.063161 +11.515333 54.060814 +11.514453 54.057880 +11.513866 54.054067 +11.512106 54.051720 +11.511226 54.048493 +11.511226 54.051720 +11.512106 54.054654 +11.512986 54.057880 +11.514747 54.060521 +11.516507 54.063161 +11.518267 54.065214 +11.520614 54.067854 +11.522667 54.069908 +11.524721 54.072255 +11.527067 54.074602 +11.528828 54.076948 +11.531761 54.079002 +11.534108 54.080762 +11.535868 54.082522 +nan nan +11.377457 53.974861 +11.375697 53.976915 +11.374817 53.979848 +11.373350 53.982195 +11.373936 53.985422 +11.373936 53.988649 +11.375110 53.991582 +11.376283 53.994516 +11.378630 53.996569 +11.381564 53.998329 +11.384497 54.000383 +11.388017 54.001263 +11.391244 54.002730 +11.395058 54.004197 +11.398578 54.005370 +11.401805 54.006837 +11.405619 54.008010 +11.409139 54.009184 +11.412659 54.010357 +11.416473 54.011530 +11.420286 54.012704 +11.423807 54.013877 +11.427034 54.015637 +11.430847 54.016811 +11.433781 54.018278 +11.437594 54.019451 +11.440821 54.020918 +11.444342 54.022091 +11.448742 54.022971 +11.452849 54.023851 +11.457249 54.024438 +11.462529 54.024731 +11.467810 54.024731 +11.473090 54.024731 +11.478077 54.024145 +11.483358 54.023558 +11.488638 54.022971 +11.491572 54.021504 +11.493918 54.019158 +11.495385 54.016811 +11.494798 54.013291 +11.494212 54.010064 +11.492452 54.007130 +11.490985 54.004490 +11.488345 54.002436 +11.485411 54.000970 +11.482478 53.999210 +11.480424 53.996863 +11.480131 53.993342 +11.480131 53.990409 +11.480424 53.987182 +11.480424 53.984248 +11.478664 53.981315 +11.477197 53.978968 +11.474557 53.976915 +11.472504 53.974568 +11.470743 53.971928 +11.469863 53.968994 +11.467810 53.966647 +11.464876 53.964594 +11.462529 53.962834 +11.459303 53.961073 +11.455489 53.959900 +11.451382 53.959313 +11.446688 53.959313 +11.442875 53.960487 +11.441995 53.963420 +11.443755 53.966060 +11.445808 53.968407 +11.447862 53.970461 +11.449915 53.973101 +11.451382 53.975448 +11.451382 53.978968 +11.449915 53.981022 +11.449035 53.984248 +11.449035 53.987182 +11.449035 53.990409 +11.448448 53.993049 +11.446982 53.995689 +11.442875 53.995983 +11.439061 53.995103 +11.437008 53.992462 +11.434954 53.990409 +11.433194 53.987475 +11.432314 53.984542 +11.432607 53.981315 +11.432021 53.978088 +11.432901 53.975154 +11.432901 53.974861 +11.433487 53.973101 +11.433194 53.969581 +11.432607 53.966354 +11.431434 53.963420 +11.428794 53.961367 +11.423513 53.961954 +11.420286 53.963714 +11.417646 53.965180 +11.412366 53.966060 +11.406792 53.966354 +11.400925 53.966647 +11.395938 53.967234 +11.392418 53.968114 +11.388604 53.969287 +11.385377 53.970754 +11.381857 53.972514 +11.379217 53.974274 +11.377457 53.974861 +nan nan +11.006363 54.461536 +11.007243 54.464763 +11.008417 54.467697 +11.009590 54.470923 +11.010470 54.473857 +11.011350 54.477084 +11.013111 54.479724 +11.014284 54.482658 +11.015457 54.485298 +11.017218 54.487938 +11.018684 54.490872 +11.020151 54.493218 +11.022498 54.495859 +11.023965 54.498205 +11.025431 54.501139 +11.027778 54.503192 +11.029832 54.505539 +11.031885 54.508179 +11.034525 54.509940 +11.036579 54.512286 +11.039219 54.514046 +11.041859 54.516100 +11.043913 54.518447 +11.046553 54.520207 +11.048900 54.522554 +11.051247 54.524314 +11.054180 54.526367 +11.056527 54.528421 +11.059461 54.530181 +11.061807 54.532234 +11.064741 54.534288 +11.068848 54.534875 +11.073542 54.534288 +11.077062 54.532528 +11.080289 54.531061 +11.084689 54.530181 +11.089969 54.529301 +11.095250 54.529008 +11.100530 54.529301 +11.106104 54.529301 +11.111971 54.529008 +11.117251 54.529008 +11.123118 54.528714 +11.127812 54.527834 +11.131626 54.526367 +11.135439 54.525194 +11.140133 54.524314 +11.145120 54.523434 +11.147760 54.523434 +11.151867 54.522847 +11.156267 54.521967 +11.162428 54.521674 +11.167415 54.520794 +11.173575 54.520500 +11.178856 54.519914 +11.184136 54.519914 +11.187363 54.518740 +11.190003 54.516687 +11.192643 54.514927 +11.194990 54.512873 +11.197044 54.510526 +11.199684 54.508473 +11.203498 54.507593 +11.208191 54.506713 +11.213472 54.505833 +11.219045 54.505539 +11.225206 54.505246 +11.229313 54.504659 +11.231953 54.503192 +11.235180 54.501432 +11.238113 54.499379 +11.240460 54.497912 +11.242807 54.495565 +11.244861 54.493218 +11.246034 54.490872 +11.247501 54.488231 +11.248967 54.485884 +11.249848 54.483831 +11.251021 54.481484 +11.252488 54.478844 +11.254248 54.476497 +11.255421 54.473857 +11.258061 54.471803 +11.260408 54.470043 +11.262755 54.467990 +11.265689 54.466230 +11.268329 54.464470 +11.270969 54.462416 +11.273023 54.460363 +11.274489 54.457722 +11.275956 54.455376 +11.277130 54.452735 +11.278596 54.450389 +11.280063 54.448042 +11.281823 54.445695 +11.284170 54.443641 +11.286810 54.441588 +11.288864 54.439534 +11.290330 54.437188 +11.292677 54.435134 +11.294144 54.432787 +11.296491 54.430440 +11.298251 54.428387 +11.300598 54.426334 +11.302065 54.423987 +11.303825 54.421640 +11.304705 54.419000 +11.306758 54.416653 +11.308518 54.414306 +11.309985 54.411959 +11.312332 54.409612 +11.312919 54.406972 +11.309105 54.406679 +11.303238 54.406972 +11.297371 54.407266 +11.292091 54.407852 +11.286517 54.408146 +11.281236 54.408732 +11.276249 54.409026 +11.270969 54.409906 +11.265982 54.410786 +11.262168 54.411959 +11.257768 54.413133 +11.253661 54.414306 +11.249261 54.414893 +11.243980 54.415479 +11.239287 54.415186 +11.234300 54.414599 +11.228433 54.414893 +11.223152 54.414893 +11.217872 54.414893 +11.213472 54.414306 +11.209071 54.413426 +11.211711 54.413133 +11.215232 54.414306 +11.219925 54.414599 +11.225792 54.414306 +11.231366 54.414599 +11.235473 54.415186 +11.231660 54.416653 +11.227553 54.417826 +11.223739 54.419293 +11.219045 54.419880 +11.214352 54.420760 +11.209951 54.421933 +11.204671 54.422520 +11.199391 54.423107 +11.193524 54.423400 +11.188243 54.423400 +11.183843 54.422520 +11.180323 54.421347 +11.176802 54.419880 +11.173869 54.418120 +11.172695 54.414893 +11.175042 54.413133 +11.178856 54.411666 +11.183256 54.410786 +11.186483 54.411079 +11.188536 54.410199 +11.185603 54.408732 +11.181203 54.407852 +11.175922 54.407852 +11.170642 54.407559 +11.164775 54.408146 +11.159494 54.407852 +11.153627 54.408146 +11.148054 54.408146 +11.143360 54.407559 +11.139253 54.406679 +11.133386 54.406972 +11.128986 54.406385 +11.123999 54.406972 +11.120478 54.408439 +11.117838 54.410199 +11.114318 54.411666 +11.110504 54.413133 +11.106397 54.414306 +11.103757 54.416066 +11.102584 54.418706 +11.102877 54.421347 +11.103757 54.424573 +11.105517 54.426920 +11.107571 54.429560 +11.109037 54.431907 +11.106984 54.434254 +11.104930 54.436308 +11.104050 54.439241 +11.104050 54.442175 +11.102877 54.444815 +11.099943 54.446575 +11.096717 54.448042 +11.092903 54.449509 +11.087916 54.450389 +11.083222 54.449802 +11.080289 54.448922 +11.077062 54.450682 +11.072661 54.451562 +11.067674 54.452149 +11.063861 54.450975 +11.060927 54.449509 +11.056820 54.448335 +11.054474 54.450095 +11.052127 54.452149 +11.048020 54.452149 +11.045673 54.450389 +11.042153 54.448628 +11.039219 54.446868 +11.033939 54.446868 +11.031005 54.448922 +11.029245 54.450975 +11.026311 54.452735 +11.023085 54.454496 +11.018391 54.454789 +11.015164 54.453029 +11.015164 54.450095 +11.018098 54.448042 +11.019858 54.445695 +11.020738 54.443055 +11.021618 54.440415 +11.025138 54.438948 +11.029538 54.438068 +11.034819 54.437188 +11.039512 54.437774 +11.036579 54.437481 +11.031299 54.437481 +11.026605 54.438361 +11.021911 54.439534 +11.018684 54.440708 +11.015164 54.442468 +11.012817 54.444228 +11.009884 54.445988 +11.008124 54.448335 +11.006657 54.450975 +11.005777 54.453615 +11.006070 54.456842 +11.007243 54.460069 +11.006363 54.461536 +nan nan +8.280808 54.749317 +8.280514 54.752837 +8.280808 54.756064 +8.281101 54.758997 +8.280514 54.761931 +8.280808 54.765158 +8.281101 54.768971 +8.280808 54.771905 +8.280514 54.775132 +8.280808 54.778359 +8.281101 54.781586 +8.281394 54.785399 +8.281688 54.788626 +8.281688 54.791853 +8.281981 54.795667 +8.282275 54.798894 +8.282568 54.802121 +8.282275 54.805641 +8.281981 54.808574 +8.281688 54.811801 +8.281981 54.815028 +8.281394 54.817962 +8.281688 54.821775 +8.281981 54.825002 +8.282275 54.828229 +8.282568 54.832043 +8.282861 54.835270 +8.283741 54.838203 +8.284035 54.841723 +8.284621 54.844657 +8.284915 54.848471 +8.285208 54.851697 +8.285501 54.854924 +8.286381 54.858151 +8.287262 54.861085 +8.287555 54.864605 +8.287848 54.868125 +8.288728 54.871059 +8.289022 54.874579 +8.289022 54.878099 +8.289315 54.881326 +8.289608 54.884846 +8.289902 54.888367 +8.290782 54.891300 +8.291075 54.894820 +8.292542 54.897461 +8.293422 54.900688 +8.294595 54.903034 +8.295475 54.906261 +8.297529 54.908608 +8.298996 54.911248 +8.300169 54.913889 +8.301049 54.916822 +8.301929 54.920049 +8.302809 54.923276 +8.303689 54.926503 +8.304863 54.928850 +8.306330 54.931783 +8.307796 54.934423 +8.309556 54.937357 +8.310730 54.939704 +8.312783 54.942344 +8.314837 54.944397 +8.316597 54.947038 +8.318650 54.949091 +8.320997 54.951145 +8.322464 54.953785 +8.325398 54.955838 +8.327158 54.958478 +8.329211 54.960532 +8.330971 54.963172 +8.332438 54.965519 +8.333905 54.968452 +8.335958 54.970506 +8.337132 54.973439 +8.339185 54.975786 +8.340652 54.978427 +8.342119 54.981067 +8.343586 54.984000 +8.345052 54.986640 +8.346519 54.989281 +8.348279 54.991627 +8.350333 54.993974 +8.352093 54.996321 +8.353560 54.998961 +8.355613 55.001308 +8.357080 55.004242 +8.358547 55.006589 +8.360013 55.009522 +8.361480 55.012162 +8.362654 55.015096 +8.364120 55.017443 +8.365587 55.020376 +8.367054 55.023016 +8.368227 55.025950 +8.370281 55.028003 +8.372041 55.030937 +8.373214 55.033284 +8.375268 55.035924 +8.377321 55.037977 +8.379081 55.040618 +8.381135 55.042671 +8.383188 55.045311 +8.385829 55.047365 +8.388469 55.049125 +8.390816 55.051178 +8.393456 55.052939 +8.396976 55.054405 +8.400790 55.055872 +8.404897 55.056752 +8.411057 55.056459 +8.415751 55.055579 +8.419858 55.054405 +8.424551 55.053525 +8.430418 55.053525 +8.435699 55.053525 +8.441859 55.053525 +8.447140 55.052939 +8.451247 55.052058 +8.455647 55.050885 +8.459461 55.049712 +8.462981 55.047951 +8.460634 55.047071 +8.454474 55.047071 +8.449780 55.047365 +8.445086 55.047951 +8.440979 55.049125 +8.435699 55.049712 +8.429832 55.049712 +8.425138 55.048832 +8.420444 55.048245 +8.415457 55.047658 +8.410177 55.047365 +8.404897 55.047365 +8.399323 55.047365 +8.396976 55.045311 +8.397856 55.042378 +8.400790 55.040618 +8.404310 55.039151 +8.409590 55.038564 +8.415457 55.038564 +8.420151 55.037684 +8.424551 55.036804 +8.427192 55.034751 +8.430418 55.033284 +8.433645 55.031524 +8.436286 55.029764 +8.438632 55.027417 +8.438339 55.024190 +8.435699 55.022136 +8.433059 55.020376 +8.430125 55.018616 +8.427485 55.016563 +8.424551 55.015096 +8.421618 55.013042 +8.418098 55.011576 +8.414577 55.010695 +8.410177 55.009522 +8.405190 55.008935 +8.401083 55.008055 +8.397563 55.006589 +8.395216 55.004535 +8.393456 55.001895 +8.390816 55.000135 +8.386122 54.999548 +8.381722 54.998668 +8.378201 54.997201 +8.374975 54.995734 +8.372041 54.994268 +8.369694 54.991627 +8.368227 54.988987 +8.367054 54.986347 +8.365000 54.984000 +8.362947 54.981653 +8.360600 54.979600 +8.358547 54.977253 +8.355906 54.975200 +8.353853 54.973146 +8.352973 54.969919 +8.352093 54.966986 +8.353266 54.964052 +8.353560 54.960825 +8.353853 54.957892 +8.353560 54.954371 +8.352680 54.951438 +8.353853 54.948504 +8.356200 54.946451 +8.357373 54.944104 +8.357960 54.940877 +8.356787 54.938237 +8.355906 54.935890 +8.355613 54.932370 +8.354733 54.929436 +8.355026 54.926503 +8.355320 54.922983 +8.355906 54.920049 +8.356200 54.916822 +8.357080 54.914182 +8.357373 54.911248 +8.358253 54.908315 +8.360013 54.905968 +8.361480 54.903621 +8.362947 54.900981 +8.365881 54.899221 +8.368814 54.897461 +8.371748 54.895701 +8.374975 54.894234 +8.378495 54.892767 +8.382602 54.891594 +8.386709 54.890420 +8.390816 54.889540 +8.394923 54.888073 +8.399030 54.886900 +8.403137 54.885727 +8.406363 54.884553 +8.410470 54.883380 +8.414284 54.881913 +8.418098 54.880446 +8.422205 54.879566 +8.426898 54.878686 +8.432179 54.878393 +8.436872 54.877513 +8.440979 54.877806 +8.445966 54.878393 +8.450953 54.878979 +8.456234 54.878979 +8.460927 54.879566 +8.467088 54.879566 +8.472662 54.879273 +8.478235 54.879566 +8.482636 54.880153 +8.486156 54.881620 +8.489676 54.882793 +8.494076 54.883966 +8.498477 54.884846 +8.502584 54.885433 +8.508157 54.885727 +8.512851 54.886313 +8.518131 54.886313 +8.523118 54.886900 +8.528399 54.887193 +8.533093 54.887780 +8.537493 54.888073 +8.542773 54.888367 +8.548640 54.888073 +8.554801 54.887780 +8.560081 54.888073 +8.564188 54.888367 +8.569175 54.888953 +8.574455 54.889247 +8.579736 54.889833 +8.585310 54.889833 +8.590590 54.890127 +8.596164 54.890420 +8.601444 54.890420 +8.606724 54.890420 +8.612298 54.890714 +8.617579 54.890420 +8.638993 54.889247 +8.658355 54.888367 +8.653074 54.880446 +8.634300 54.882206 +8.614352 54.883380 +8.605551 54.884260 +8.600271 54.884553 +8.594990 54.885140 +8.590297 54.884553 +8.585310 54.883966 +8.580616 54.883380 +8.574455 54.883380 +8.569762 54.882793 +8.565068 54.882206 +8.559494 54.881913 +8.554214 54.881620 +8.548640 54.881620 +8.543360 54.881326 +8.538080 54.881033 +8.531919 54.881326 +8.526052 54.881326 +8.520772 54.881326 +8.515198 54.881033 +8.510504 54.880446 +8.505517 54.879859 +8.501410 54.879273 +8.497890 54.877806 +8.494076 54.876633 +8.490263 54.875166 +8.486743 54.873992 +8.482636 54.873112 +8.478822 54.871939 +8.475008 54.870472 +8.471488 54.869299 +8.468261 54.867832 +8.464741 54.866365 +8.461514 54.864605 +8.457700 54.863725 +8.453593 54.862552 +8.448900 54.861965 +8.445086 54.860791 +8.441273 54.859325 +8.437166 54.858738 +8.431592 54.858445 +8.428072 54.857271 +8.425431 54.854924 +8.423085 54.853164 +8.418978 54.852871 +8.415164 54.853751 +8.410470 54.854338 +8.405777 54.855218 +8.401083 54.856098 +8.396389 54.856978 +8.391109 54.857564 +8.386415 54.858445 +8.383188 54.859618 +8.378788 54.860791 +8.375561 54.862258 +8.372041 54.864018 +8.369107 54.865485 +8.366467 54.867245 +8.364707 54.869592 +8.363827 54.872526 +8.361774 54.873992 +8.358547 54.875752 +8.353266 54.876339 +8.347986 54.876046 +8.343879 54.877219 +8.339772 54.878393 +8.335958 54.878979 +8.333612 54.876339 +8.332731 54.873406 +8.331851 54.870179 +8.330678 54.867539 +8.328038 54.865485 +8.324518 54.864312 +8.320411 54.863432 +8.314837 54.863432 +8.309556 54.863138 +8.305743 54.861671 +8.302516 54.859911 +8.300462 54.857564 +8.299582 54.854338 +8.298996 54.851404 +8.298116 54.848471 +8.297822 54.844657 +8.297529 54.841430 +8.297236 54.837910 +8.296356 54.834976 +8.295475 54.832043 +8.295182 54.828229 +8.294302 54.825296 +8.294889 54.822362 +8.296356 54.819722 +8.297529 54.817082 +8.297822 54.813855 +8.298116 54.810921 +8.297822 54.807401 +8.297529 54.803881 +8.296062 54.801534 +8.295182 54.798307 +8.294009 54.795667 +8.293129 54.792440 +8.292249 54.789506 +8.292835 54.786279 +8.293715 54.783639 +8.295182 54.780999 +8.296649 54.778652 +8.298409 54.776012 +8.299876 54.773958 +8.300169 54.770438 +8.300462 54.767505 +8.299289 54.764865 +8.297822 54.762224 +8.296942 54.759291 +8.296649 54.755477 +8.296356 54.752250 +8.297529 54.749317 +8.297822 54.746383 +8.298116 54.743450 +8.298702 54.740223 +8.298409 54.738756 +8.293715 54.739636 +8.290488 54.738169 +8.288435 54.737583 +8.286088 54.739343 +8.284035 54.741690 +8.282275 54.744036 +8.281101 54.746970 +8.280808 54.749317 +nan nan +8.396976 54.713821 +8.398443 54.716754 +8.400203 54.718808 +8.401670 54.721741 +8.403137 54.724382 +8.404897 54.726728 +8.406363 54.729369 +8.408417 54.731715 +8.410764 54.733769 +8.413404 54.735822 +8.416631 54.737583 +8.419858 54.738756 +8.422791 54.740516 +8.425725 54.742276 +8.429538 54.743743 +8.433059 54.744623 +8.436872 54.746090 +8.440979 54.746970 +8.444793 54.748437 +8.448900 54.749023 +8.453300 54.749903 +8.457407 54.751077 +8.461807 54.751957 +8.466501 54.752544 +8.472075 54.752837 +8.476768 54.751957 +8.481169 54.751077 +8.486743 54.750490 +8.491436 54.751077 +8.496717 54.750490 +8.499943 54.749023 +8.504637 54.748437 +8.506691 54.748437 +8.511091 54.747557 +8.516665 54.747850 +8.520185 54.749023 +8.523999 54.750197 +8.526345 54.752250 +8.530159 54.753424 +8.533973 54.754597 +8.538666 54.755184 +8.543360 54.754890 +8.546880 54.754304 +8.550987 54.754010 +8.555094 54.752837 +8.559788 54.751957 +8.564481 54.751077 +8.569762 54.750197 +8.573869 54.749023 +8.577682 54.748143 +8.582083 54.746970 +8.584723 54.744916 +8.587070 54.743156 +8.587656 54.740223 +8.587363 54.736702 +8.586776 54.733476 +8.586483 54.730249 +8.587363 54.727608 +8.589710 54.725262 +8.592643 54.723502 +8.594697 54.721448 +8.594990 54.718221 +8.592643 54.716461 +8.589123 54.714701 +8.586776 54.712647 +8.584136 54.710887 +8.581789 54.708834 +8.580323 54.706194 +8.578856 54.703260 +8.577976 54.700327 +8.577096 54.697100 +8.575629 54.694459 +8.574162 54.691819 +8.572109 54.689472 +8.570349 54.687126 +8.567708 54.685365 +8.563601 54.684192 +8.558028 54.684485 +8.552161 54.684485 +8.546293 54.684779 +8.541013 54.685365 +8.535146 54.685365 +8.529866 54.685952 +8.524585 54.686246 +8.519305 54.686832 +8.514024 54.687126 +8.508157 54.687419 +8.503464 54.686832 +8.498770 54.686246 +8.493490 54.685952 +8.488209 54.685659 +8.482929 54.686246 +8.478235 54.686832 +8.474128 54.688006 +8.470315 54.689179 +8.466208 54.690352 +8.462687 54.691819 +8.459754 54.693579 +8.456527 54.695046 +8.453007 54.696806 +8.448313 54.697393 +8.443619 54.697393 +8.438339 54.697980 +8.433645 54.698860 +8.428952 54.699740 +8.424258 54.700620 +8.419564 54.701500 +8.414577 54.702087 +8.410764 54.703260 +8.406070 54.704140 +8.402550 54.704727 +8.399030 54.706487 +8.396976 54.708247 +8.396683 54.711474 +8.396976 54.713821 +nan nan +8.352386 54.702967 +8.349453 54.701500 +8.346519 54.699740 +8.343292 54.697980 +8.340359 54.696806 +8.338305 54.694166 +8.336252 54.691819 +8.336252 54.688299 +8.337425 54.686246 +8.339772 54.683899 +8.341825 54.681552 +8.344172 54.679792 +8.346519 54.677445 +8.348573 54.675391 +8.350919 54.673338 +8.352973 54.670991 +8.353853 54.668351 +8.355613 54.665711 +8.356787 54.663071 +8.357080 54.660137 +8.358253 54.657790 +8.360013 54.655150 +8.362360 54.653096 +8.365000 54.651336 +8.367641 54.649576 +8.371454 54.648109 +8.374681 54.646643 +8.378201 54.644883 +8.380255 54.643122 +8.381428 54.640189 +8.382308 54.637549 +8.383188 54.634615 +8.385535 54.632562 +8.388762 54.631095 +8.392576 54.629628 +8.396389 54.628748 +8.399910 54.627868 +8.395803 54.626988 +8.390816 54.626401 +8.386122 54.625815 +8.380842 54.625521 +8.375561 54.625228 +8.370574 54.624641 +8.367934 54.622881 +8.369694 54.620241 +8.374975 54.619654 +8.380255 54.619361 +8.386122 54.619067 +8.383775 54.618774 +8.377908 54.619067 +8.373508 54.618187 +8.371161 54.616134 +8.367934 54.614374 +8.364414 54.613200 +8.359133 54.613200 +8.353560 54.612907 +8.348866 54.613494 +8.345639 54.614960 +8.342119 54.616721 +8.340065 54.618187 +8.336838 54.619654 +8.335078 54.622001 +8.331851 54.623468 +8.329798 54.625815 +8.327744 54.628161 +8.325984 54.630215 +8.323931 54.632562 +8.322171 54.634909 +8.320411 54.637549 +8.318650 54.639309 +8.316304 54.641656 +8.314250 54.643709 +8.311903 54.645763 +8.309850 54.648109 +8.308090 54.650456 +8.305156 54.652510 +8.303103 54.654857 +8.300169 54.656323 +8.298116 54.658670 +8.296356 54.661017 +8.294889 54.663364 +8.294302 54.666591 +8.295182 54.669818 +8.296649 54.672165 +8.298702 54.674805 +8.301343 54.676565 +8.302809 54.679498 +8.304863 54.681552 +8.306036 54.684485 +8.307503 54.687126 +8.309556 54.689472 +8.311903 54.691526 +8.315130 54.692993 +8.318650 54.694459 +8.322171 54.695633 +8.325691 54.697100 +8.328625 54.698860 +8.331558 54.700620 +8.334785 54.702087 +8.337132 54.704140 +8.340359 54.705900 +8.342706 54.707660 +8.346812 54.709127 +8.349746 54.710887 +8.353853 54.711767 +8.357960 54.710594 +8.358253 54.707367 +8.355906 54.705314 +8.352386 54.702967 +nan nan +8.719079 54.685072 +8.719959 54.682725 +8.718493 54.680085 +8.716146 54.678032 +8.712919 54.676271 +8.709105 54.675391 +8.704411 54.674805 +8.699718 54.674218 +8.693851 54.674218 +8.691797 54.676271 +8.692971 54.679205 +8.696784 54.680378 +8.700305 54.681552 +8.704118 54.683019 +8.707345 54.684485 +8.710865 54.685952 +8.714386 54.686832 +8.718199 54.686832 +8.719079 54.685072 +nan nan +8.661582 54.653977 +8.660408 54.651336 +8.658355 54.648990 +8.656301 54.646643 +8.654541 54.644296 +8.650728 54.643122 +8.646327 54.641949 +8.641634 54.641362 +8.637527 54.640482 +8.633420 54.639602 +8.628433 54.639309 +8.624032 54.638429 +8.621099 54.636669 +8.617579 54.635202 +8.612885 54.634615 +8.606724 54.634909 +8.602324 54.635789 +8.596750 54.636375 +8.591470 54.636082 +8.587656 54.634615 +8.584723 54.633442 +8.581789 54.631682 +8.578562 54.629921 +8.574749 54.628748 +8.570642 54.627868 +8.566828 54.626401 +8.563895 54.624934 +8.560961 54.623468 +8.556854 54.622001 +8.552747 54.620827 +8.548054 54.621708 +8.544827 54.623174 +8.541893 54.624641 +8.539253 54.626695 +8.536906 54.628748 +8.537786 54.631682 +8.539840 54.634028 +8.542187 54.636082 +8.545413 54.637842 +8.550400 54.638429 +8.555974 54.638135 +8.561255 54.638135 +8.565655 54.639015 +8.570349 54.639309 +8.574749 54.640189 +8.579443 54.640776 +8.584136 54.641362 +8.588243 54.642536 +8.593230 54.642829 +8.597924 54.643416 +8.602911 54.644002 +8.607605 54.644589 +8.612005 54.645469 +8.616699 54.646056 +8.621392 54.646643 +8.624912 54.647816 +8.628726 54.649283 +8.632540 54.650163 +8.636647 54.651336 +8.640167 54.652510 +8.643394 54.654270 +8.646327 54.655737 +8.648674 54.658084 +8.651021 54.660137 +8.655421 54.661017 +8.659528 54.660137 +8.660702 54.657497 +8.661582 54.653977 +nan nan +8.456234 54.575651 +8.457407 54.573011 +8.458581 54.570371 +8.460927 54.568024 +8.461221 54.565090 +8.458581 54.563037 +8.458287 54.559810 +8.453593 54.558930 +8.450073 54.560690 +8.447140 54.562157 +8.444500 54.564210 +8.442153 54.565970 +8.441273 54.568904 +8.442153 54.571837 +8.443619 54.574771 +8.445966 54.576531 +8.448606 54.578584 +8.452127 54.580051 +8.456820 54.579171 +8.456234 54.575651 +nan nan +8.568002 54.575944 +8.568295 54.573304 +8.570055 54.570957 +8.572109 54.568610 +8.574162 54.566557 +8.576802 54.564797 +8.579149 54.562743 +8.578562 54.560396 +8.575336 54.558636 +8.571229 54.557756 +8.566828 54.556876 +8.562135 54.556290 +8.556854 54.555996 +8.551574 54.556583 +8.548054 54.558343 +8.544240 54.559810 +8.541306 54.561277 +8.539840 54.563917 +8.538080 54.566264 +8.534853 54.567730 +8.530452 54.568904 +8.525172 54.569490 +8.519892 54.570077 +8.515491 54.570664 +8.511384 54.571837 +8.508744 54.573597 +8.507571 54.576531 +8.508744 54.579465 +8.511091 54.581518 +8.516371 54.581811 +8.521652 54.580931 +8.525465 54.579758 +8.530159 54.578878 +8.536026 54.578584 +8.541013 54.579171 +8.545413 54.580345 +8.548934 54.581518 +8.555387 54.581225 +8.560668 54.580931 +8.564188 54.579171 +8.568002 54.575944 +nan nan +8.479995 54.529594 +8.479115 54.526661 +8.477649 54.524021 +8.477062 54.521087 +8.476182 54.517860 +8.477355 54.515220 +8.479995 54.513460 +8.481462 54.510820 +8.483516 54.508766 +8.485276 54.506419 +8.486156 54.503486 +8.485276 54.500552 +8.482342 54.498792 +8.478529 54.497619 +8.473248 54.497619 +8.469728 54.498205 +8.468261 54.500552 +8.466794 54.503192 +8.465034 54.505539 +8.464154 54.508473 +8.462394 54.510820 +8.461807 54.513753 +8.460634 54.516393 +8.459754 54.519034 +8.457994 54.521380 +8.457700 54.524607 +8.456527 54.526661 +8.455940 54.529301 +8.455060 54.532234 +8.454474 54.535168 +8.454767 54.538688 +8.455647 54.541915 +8.457407 54.544262 +8.460927 54.545729 +8.465034 54.546022 +8.467674 54.544262 +8.469141 54.541622 +8.470901 54.539568 +8.474128 54.537808 +8.477649 54.536341 +8.479115 54.533995 +8.479995 54.529594 +nan nan +8.744014 54.637255 +8.743134 54.634615 +8.739907 54.633148 +8.735800 54.632268 +8.730227 54.631975 +8.725533 54.631388 +8.720253 54.631388 +8.718199 54.633442 +8.718786 54.636375 +8.721426 54.638722 +8.725240 54.639602 +8.729347 54.640482 +8.733747 54.641656 +8.738441 54.642242 +8.741961 54.640482 +8.744014 54.638722 +8.744014 54.637255 +nan nan +8.709692 54.546902 +8.708225 54.545142 +8.707932 54.541328 +8.709105 54.538688 +8.709985 54.535755 +8.709692 54.532528 +8.708225 54.529594 +8.706465 54.527541 +8.703825 54.525487 +8.701478 54.523434 +8.698544 54.521380 +8.696198 54.519327 +8.694144 54.517273 +8.693264 54.514046 +8.692091 54.511406 +8.690037 54.509059 +8.687984 54.506713 +8.685637 54.504659 +8.682703 54.502899 +8.680356 54.500846 +8.677130 54.499085 +8.674196 54.497619 +8.670969 54.495859 +8.666862 54.494978 +8.662755 54.494098 +8.657768 54.493512 +8.653074 54.492925 +8.648381 54.492632 +8.643687 54.492045 +8.638407 54.491752 +8.632833 54.491458 +8.626966 54.491752 +8.621686 54.492338 +8.616405 54.492632 +8.612592 54.493805 +8.610245 54.495859 +8.609071 54.498499 +8.608778 54.501726 +8.606724 54.503779 +8.603204 54.505246 +8.600564 54.507299 +8.597924 54.508766 +8.595577 54.511113 +8.593230 54.513460 +8.592057 54.515513 +8.591470 54.519034 +8.590590 54.521674 +8.590297 54.524607 +8.591177 54.527834 +8.592937 54.529888 +8.596164 54.531941 +8.599684 54.533408 +8.604671 54.533995 +8.610538 54.533701 +8.616405 54.533701 +8.621099 54.534288 +8.625206 54.534875 +8.628726 54.536635 +8.631073 54.538688 +8.633713 54.540448 +8.635473 54.542795 +8.638700 54.544555 +8.642220 54.545729 +8.646327 54.546609 +8.651901 54.546902 +8.657768 54.546609 +8.663049 54.546902 +8.668329 54.546902 +8.673316 54.547489 +8.677423 54.548662 +8.680063 54.550422 +8.682997 54.552183 +8.686810 54.553356 +8.691504 54.553943 +8.697078 54.554236 +8.702651 54.553943 +8.707638 54.553063 +8.710865 54.551596 +8.711159 54.548662 +8.709692 54.546902 +nan nan +8.493783 54.447162 +8.494956 54.444522 +8.497010 54.442175 +8.499943 54.440415 +8.502877 54.438654 +8.504050 54.436014 +8.503464 54.433081 +8.500237 54.431321 +8.497890 54.429560 +8.495837 54.427214 +8.494370 54.424573 +8.491436 54.422813 +8.486743 54.423107 +8.483222 54.424573 +8.479115 54.425453 +8.475302 54.426627 +8.471195 54.427800 +8.468261 54.429854 +8.465034 54.431027 +8.462101 54.432787 +8.458581 54.434547 +8.455940 54.436014 +8.452420 54.437481 +8.449193 54.439241 +8.445673 54.440415 +8.443326 54.442761 +8.441859 54.445108 +8.440979 54.447748 +8.440686 54.450975 +8.440979 54.453615 +8.442739 54.456256 +8.445380 54.458016 +8.448900 54.459483 +8.452420 54.460656 +8.456527 54.461243 +8.461221 54.462416 +8.464741 54.463590 +8.468848 54.464763 +8.473542 54.463883 +8.474422 54.461243 +8.474715 54.457722 +8.477355 54.456256 +8.480289 54.454496 +8.484396 54.453029 +8.488209 54.451855 +8.492023 54.450682 +8.493783 54.447162 +nan nan +8.807379 54.546902 +8.802685 54.547782 +8.798872 54.548956 +8.795938 54.550716 +8.797405 54.553649 +8.801218 54.554823 +8.806499 54.555116 +8.811779 54.554529 +8.816473 54.553649 +8.820286 54.552476 +8.824980 54.551596 +8.829674 54.550716 +8.833194 54.549542 +8.831727 54.546609 +8.829674 54.544555 +8.825567 54.544262 +8.820873 54.545142 +8.815593 54.545435 +8.807379 54.546902 +nan nan +8.603791 54.347128 +8.602618 54.344488 +8.601151 54.341554 +8.599684 54.339207 +8.598217 54.336274 +8.597630 54.333340 +8.596750 54.330407 +8.596457 54.326886 +8.596164 54.323366 +8.595870 54.320139 +8.594990 54.316912 +8.594697 54.313685 +8.594990 54.310165 +8.595870 54.307525 +8.597044 54.304591 +8.598217 54.302538 +8.599391 54.299604 +8.600857 54.297258 +8.602618 54.294617 +8.603204 54.291977 +8.604378 54.289044 +8.602031 54.287284 +8.597337 54.288164 +8.594990 54.290217 +8.592643 54.292271 +8.591470 54.294617 +8.589710 54.297551 +8.588830 54.300191 +8.587363 54.302831 +8.587070 54.305765 +8.586190 54.308698 +8.585896 54.311632 +8.585310 54.314859 +8.584430 54.317499 +8.584136 54.320433 +8.583843 54.323953 +8.583256 54.326886 +8.583549 54.330407 +8.584723 54.333340 +8.585603 54.336274 +8.587070 54.339207 +8.588830 54.341261 +8.590883 54.343901 +8.593230 54.345954 +8.595284 54.348008 +8.597924 54.350061 +8.600857 54.351528 +8.604964 54.351822 +8.603791 54.347128 +nan nan +8.716146 54.167888 +8.714092 54.165541 +8.711745 54.163488 +8.709105 54.161728 +8.704998 54.162021 +8.704705 54.164955 +8.706172 54.167888 +8.708518 54.169648 +8.711745 54.171409 +8.716439 54.171409 +8.718493 54.169062 +8.716146 54.167888 +nan nan +8.696491 54.131512 +8.694437 54.129752 +8.692384 54.127405 +8.693557 54.124765 +8.691211 54.124765 +8.687104 54.125939 +8.684463 54.127405 +8.683877 54.130046 +8.686224 54.132392 +8.689157 54.133859 +8.692677 54.135326 +8.696784 54.134739 +8.696491 54.131512 +nan nan +8.665982 54.063748 +8.666862 54.066974 +8.667155 54.070495 +8.667449 54.073428 +8.668916 54.075775 +8.671262 54.077829 +8.674489 54.079589 +8.678010 54.080762 +8.681530 54.081935 +8.685930 54.083109 +8.690624 54.083696 +8.693264 54.082522 +8.691504 54.079882 +8.690037 54.077242 +8.687397 54.075188 +8.686224 54.072841 +8.684757 54.069908 +8.684463 54.066681 +8.687104 54.064628 +8.690624 54.063454 +8.695318 54.062574 +8.699131 54.061401 +8.700011 54.058467 +8.697958 54.056120 +8.695611 54.054067 +8.694144 54.051427 +8.695904 54.048786 +8.697078 54.046733 +8.697371 54.043506 +8.695611 54.041159 +8.692091 54.039986 +8.686224 54.039986 +8.681530 54.040866 +8.678890 54.042919 +8.676543 54.044679 +8.675076 54.047320 +8.673023 54.049373 +8.671849 54.052307 +8.670676 54.054360 +8.669502 54.057294 +8.668036 54.059641 +8.665982 54.063748 +nan nan +8.448606 53.958433 +8.444793 53.958140 +8.440686 53.957260 +8.436286 53.956380 +8.433352 53.954620 +8.431885 53.951979 +8.431592 53.948753 +8.435112 53.946992 +8.439219 53.948166 +8.443326 53.948753 +8.445966 53.947286 +8.444206 53.944646 +8.440979 53.943179 +8.438046 53.941419 +8.435699 53.939365 +8.433059 53.937605 +8.430418 53.935552 +8.428658 53.932911 +8.427192 53.930565 +8.425138 53.927924 +8.422205 53.926458 +8.416924 53.927044 +8.413111 53.927924 +8.413991 53.931151 +8.415751 53.933498 +8.417804 53.935845 +8.419858 53.938192 +8.419564 53.941419 +8.417218 53.943472 +8.412524 53.944059 +8.408710 53.945232 +8.406950 53.947873 +8.407830 53.950806 +8.409590 53.953446 +8.411644 53.955500 +8.414284 53.957553 +8.417218 53.959313 +8.419858 53.961073 +8.422791 53.962834 +8.426898 53.964007 +8.431005 53.964594 +8.435699 53.965180 +8.440979 53.965474 +8.446260 53.964887 +8.450953 53.964300 +8.455060 53.963127 +8.457114 53.960780 +8.448606 53.958433 +nan nan +8.512558 53.918244 +8.509331 53.917070 +8.505811 53.915604 +8.501117 53.915017 +8.495250 53.914723 +8.490556 53.915017 +8.487916 53.916777 +8.487916 53.919417 +8.489969 53.922057 +8.491436 53.924404 +8.492316 53.927631 +8.494663 53.929685 +8.498770 53.930271 +8.502290 53.928511 +8.504931 53.927044 +8.508451 53.925578 +8.511971 53.923817 +8.514318 53.922351 +8.512558 53.918244 +nan nan +9.584475 53.590860 +9.581834 53.592914 +9.579194 53.594380 +9.577728 53.597021 +9.577434 53.599954 +9.581248 53.601421 +9.585061 53.600248 +9.588875 53.598781 +9.591809 53.597314 +9.594155 53.595261 +9.597089 53.593500 +9.599729 53.591740 +9.602076 53.589980 +9.605009 53.587927 +9.606770 53.585580 +9.602956 53.584406 +9.598849 53.585580 +9.595035 53.586753 +9.591222 53.587633 +9.584475 53.590860 +nan nan +9.518763 53.682680 +9.518177 53.684734 +9.516416 53.687080 +9.514363 53.689427 +9.512896 53.691774 +9.511429 53.694121 +9.509963 53.696761 +9.508203 53.699108 +9.507029 53.701748 +9.509376 53.703508 +9.512896 53.702335 +9.515536 53.700281 +9.517590 53.697935 +9.520230 53.696468 +9.522577 53.694121 +9.523750 53.691774 +9.526097 53.689721 +9.527564 53.687080 +9.529031 53.684734 +9.529617 53.681800 +9.529911 53.678867 +9.529617 53.675346 +9.529031 53.672119 +9.528151 53.669186 +9.526390 53.671533 +9.524924 53.674173 +9.522870 53.676520 +9.521403 53.678867 +9.518763 53.682680 +nan nan +8.183707 53.725217 +8.179307 53.724923 +8.174027 53.724630 +8.169920 53.723750 +8.166986 53.722283 +8.164346 53.720230 +8.162879 53.717883 +8.159066 53.716709 +8.156719 53.714656 +8.154079 53.712602 +8.150558 53.711429 +8.145278 53.712016 +8.142051 53.713189 +8.138531 53.714656 +8.133837 53.714656 +8.130024 53.713776 +8.127383 53.712016 +8.126797 53.709375 +8.124157 53.708789 +8.120930 53.710255 +8.120050 53.713189 +8.122983 53.714656 +8.125037 53.717296 +8.124450 53.720230 +8.124743 53.723750 +8.126797 53.726097 +8.129144 53.728150 +8.132077 53.729617 +8.135304 53.731377 +8.138824 53.732550 +8.142638 53.733724 +8.147038 53.734311 +8.151732 53.734897 +8.156425 53.735484 +8.162293 53.735484 +8.168160 53.735191 +8.173147 53.734604 +8.177840 53.734017 +8.181654 53.732844 +8.184881 53.731377 +8.188401 53.729910 +8.191041 53.728150 +8.193388 53.726097 +8.191041 53.724630 +8.185174 53.724923 +8.183707 53.725217 +nan nan +7.932596 53.778900 +7.927316 53.779487 +7.922329 53.779780 +7.916462 53.780074 +7.911768 53.780954 +7.907368 53.781247 +7.903847 53.783007 +7.899740 53.784181 +7.895340 53.785061 +7.890646 53.785648 +7.885366 53.786234 +7.880379 53.785941 +7.875979 53.785061 +7.873045 53.783301 +7.870112 53.781541 +7.868058 53.779487 +7.869818 53.776847 +7.873045 53.775673 +7.870698 53.775967 +7.868058 53.777727 +7.863951 53.778900 +7.859551 53.779487 +7.855444 53.780661 +7.851924 53.782127 +7.850457 53.784474 +7.850457 53.787994 +7.853097 53.790048 +7.857204 53.790928 +7.861311 53.791808 +7.866005 53.792395 +7.871285 53.792981 +7.876565 53.793275 +7.881846 53.793275 +7.886833 53.793568 +7.892700 53.793568 +7.898567 53.793275 +7.903847 53.792981 +7.909128 53.792395 +7.914115 53.791808 +7.918808 53.791221 +7.923209 53.790341 +7.927609 53.789168 +7.932009 53.788581 +7.935236 53.786821 +7.938757 53.785648 +7.942863 53.784474 +7.946677 53.783301 +7.950784 53.781834 +7.954304 53.780367 +7.958118 53.779194 +7.961345 53.777727 +7.964278 53.775967 +7.966919 53.774207 +7.964865 53.775087 +7.961932 53.776554 +7.958705 53.778314 +7.955184 53.779780 +7.951077 53.780954 +7.946677 53.780367 +7.942570 53.779487 +7.937876 53.778607 +7.932596 53.778900 +nan nan +7.798826 53.770100 +7.795600 53.769513 +7.790906 53.768926 +7.786799 53.767753 +7.781519 53.767460 +7.777118 53.766580 +7.772425 53.765993 +7.768611 53.765406 +7.764504 53.764233 +7.762451 53.761886 +7.758930 53.760419 +7.753650 53.760419 +7.748370 53.760712 +7.742796 53.760712 +7.737515 53.760712 +7.732235 53.760419 +7.727541 53.760126 +7.722261 53.759832 +7.716394 53.759832 +7.711994 53.760419 +7.706713 53.761006 +7.702313 53.761886 +7.697033 53.762179 +7.691752 53.761886 +7.687058 53.761299 +7.683245 53.760419 +7.681191 53.758072 +7.678551 53.756019 +7.675031 53.755139 +7.669751 53.754845 +7.666817 53.756312 +7.664764 53.758659 +7.664470 53.761592 +7.665937 53.764526 +7.667404 53.766580 +7.669457 53.769220 +7.671804 53.770980 +7.674444 53.773033 +7.677378 53.774793 +7.680311 53.776260 +7.683832 53.777727 +7.688525 53.778314 +7.693219 53.778900 +7.698499 53.779194 +7.704366 53.778900 +7.710233 53.778900 +7.715220 53.778314 +7.721088 53.778314 +7.726368 53.777727 +7.732235 53.777727 +7.737515 53.777727 +7.743089 53.777727 +7.748370 53.778020 +7.754237 53.777727 +7.760104 53.777727 +7.765971 53.777434 +7.771545 53.777434 +7.776825 53.777727 +7.782399 53.777434 +7.788266 53.777434 +7.794133 53.777140 +7.799413 53.777434 +7.804694 53.777727 +7.809974 53.777140 +7.812907 53.775673 +7.810854 53.773033 +7.807334 53.771860 +7.798826 53.770100 +nan nan +7.621640 53.744578 +7.616947 53.745165 +7.612253 53.745751 +7.607853 53.746631 +7.602572 53.747218 +7.597585 53.747511 +7.592305 53.748098 +7.587025 53.748685 +7.581158 53.748685 +7.575290 53.748978 +7.569717 53.748978 +7.564436 53.748685 +7.559156 53.748392 +7.554462 53.747805 +7.549769 53.747218 +7.545662 53.746338 +7.542141 53.744871 +7.538034 53.744285 +7.532167 53.744285 +7.528060 53.745165 +7.523073 53.745751 +7.518380 53.745751 +7.514273 53.744871 +7.511046 53.743405 +7.508992 53.741058 +7.506939 53.739004 +7.506059 53.735777 +7.506059 53.733137 +7.506939 53.730204 +7.508699 53.727857 +7.507232 53.725217 +7.503419 53.726390 +7.498138 53.726097 +7.495498 53.723750 +7.491391 53.723163 +7.486991 53.723750 +7.482297 53.723456 +7.478190 53.722283 +7.473496 53.723163 +7.470856 53.724923 +7.469096 53.727270 +7.467923 53.729910 +7.467923 53.733137 +7.467923 53.736657 +7.468509 53.739884 +7.469390 53.743111 +7.470856 53.745751 +7.472323 53.748685 +7.474377 53.750445 +7.476430 53.752792 +7.478777 53.755139 +7.482590 53.756019 +7.485817 53.757486 +7.490511 53.758072 +7.495205 53.758659 +7.500485 53.758952 +7.505765 53.759246 +7.510459 53.759832 +7.515740 53.760126 +7.521313 53.759832 +7.527180 53.759832 +7.532461 53.760126 +7.538328 53.759832 +7.543608 53.760126 +7.548889 53.760419 +7.554756 53.760419 +7.559743 53.760419 +7.565023 53.760419 +7.570303 53.760712 +7.575584 53.761006 +7.581451 53.761006 +7.586731 53.761006 +7.592598 53.761006 +7.598172 53.761006 +7.603746 53.760712 +7.609613 53.760712 +7.614893 53.760419 +7.618414 53.758952 +7.620467 53.756605 +7.622227 53.754552 +7.623694 53.751912 +7.625161 53.749565 +7.626921 53.746925 +7.628681 53.744578 +7.628974 53.742231 +7.626041 53.743405 +7.621640 53.744578 +nan nan +7.420986 53.719936 +7.415706 53.719643 +7.410719 53.720230 +7.405438 53.720523 +7.400158 53.721110 +7.395758 53.721990 +7.391064 53.722870 +7.386664 53.723456 +7.381383 53.723750 +7.376103 53.724336 +7.371116 53.724630 +7.368476 53.726683 +7.369942 53.729030 +7.373756 53.730204 +7.377863 53.731084 +7.382557 53.731670 +7.387250 53.732257 +7.392237 53.732550 +7.397518 53.732844 +7.403385 53.732844 +7.409252 53.732550 +7.413652 53.731964 +7.418346 53.731084 +7.423040 53.730204 +7.426266 53.729030 +7.430373 53.727857 +7.433014 53.725803 +7.434774 53.723750 +7.432133 53.721403 +7.428027 53.720523 +7.420986 53.719936 +nan nan +7.339434 53.717883 +7.334740 53.717296 +7.331220 53.715829 +7.327406 53.714656 +7.322712 53.713776 +7.317725 53.713776 +7.312445 53.713482 +7.307751 53.713189 +7.303058 53.712309 +7.297777 53.712309 +7.293964 53.711136 +7.288683 53.710842 +7.284576 53.709962 +7.279589 53.709375 +7.275482 53.708202 +7.271082 53.707909 +7.266975 53.707029 +7.262868 53.705855 +7.258174 53.705268 +7.252894 53.704975 +7.247907 53.704682 +7.242627 53.704388 +7.236759 53.704682 +7.231479 53.704975 +7.226199 53.705562 +7.221212 53.705855 +7.215345 53.706149 +7.210064 53.705855 +7.205957 53.704975 +7.201850 53.703802 +7.198330 53.702628 +7.194810 53.701455 +7.189529 53.701161 +7.185129 53.701161 +7.180729 53.702335 +7.176915 53.703215 +7.172222 53.704095 +7.167528 53.703802 +7.164594 53.702335 +7.162247 53.700281 +7.158727 53.698815 +7.152860 53.698815 +7.148460 53.699695 +7.144059 53.700868 +7.140833 53.702335 +7.138192 53.703802 +7.135846 53.706149 +7.137312 53.708789 +7.140246 53.710549 +7.144059 53.711429 +7.148460 53.712602 +7.152567 53.713189 +7.156674 53.714362 +7.159901 53.715536 +7.164301 53.716709 +7.167821 53.717883 +7.171928 53.718763 +7.175155 53.720230 +7.179555 53.721110 +7.183662 53.721990 +7.187769 53.723163 +7.191876 53.723750 +7.196277 53.724336 +7.200970 53.725217 +7.206251 53.725510 +7.212118 53.725217 +7.217985 53.725217 +7.222972 53.724630 +7.228839 53.724630 +7.234706 53.724336 +7.239986 53.724630 +7.245267 53.724923 +7.251134 53.724923 +7.256121 53.725217 +7.261401 53.725510 +7.266682 53.725803 +7.272549 53.725510 +7.277829 53.725803 +7.283109 53.726097 +7.288096 53.726390 +7.293377 53.726683 +7.298657 53.726977 +7.303938 53.726977 +7.309805 53.726977 +7.315672 53.726977 +7.321246 53.726683 +7.326819 53.726683 +7.331806 53.725803 +7.337087 53.725510 +7.340900 53.724336 +7.344127 53.722870 +7.347061 53.721110 +7.345887 53.718469 +7.339434 53.717883 +nan nan +7.084215 53.680040 +7.080402 53.680333 +7.074534 53.680333 +7.068667 53.680627 +7.063974 53.680040 +7.058693 53.679747 +7.053413 53.679453 +7.048426 53.679160 +7.043146 53.678867 +7.037278 53.678867 +7.031411 53.679160 +7.026131 53.678867 +7.021144 53.678573 +7.015864 53.678280 +7.011170 53.677693 +7.005890 53.677400 +7.000609 53.677106 +6.996209 53.676813 +6.990928 53.676520 +6.986235 53.675640 +6.981248 53.675053 +6.976847 53.674466 +6.972154 53.673880 +6.967460 53.673293 +6.962766 53.672413 +6.957486 53.672413 +6.953086 53.671533 +6.948392 53.671239 +6.943698 53.670653 +6.939298 53.669479 +6.934311 53.669479 +6.929617 53.668599 +6.924337 53.668306 +6.919643 53.667719 +6.914363 53.667426 +6.909376 53.667132 +6.904096 53.666839 +6.898815 53.666546 +6.893535 53.666252 +6.887668 53.666546 +6.882681 53.666839 +6.878574 53.668012 +6.876520 53.670359 +6.878280 53.672413 +6.881507 53.674173 +6.885321 53.675346 +6.889428 53.676226 +6.894122 53.676813 +6.898815 53.677400 +6.903802 53.677693 +6.909083 53.677986 +6.913776 53.678573 +6.919057 53.678867 +6.923750 53.679453 +6.929031 53.679747 +6.933724 53.680333 +6.939005 53.680627 +6.943698 53.681213 +6.948979 53.681507 +6.954553 53.681507 +6.960420 53.681213 +6.965700 53.681507 +6.971274 53.681507 +6.976554 53.681800 +6.981248 53.682093 +6.986528 53.682387 +6.991809 53.682680 +6.996502 53.683267 +7.001783 53.683560 +7.006770 53.683854 +7.012050 53.684147 +7.017917 53.684147 +7.022611 53.684734 +7.028478 53.684734 +7.032878 53.685320 +7.038159 53.685614 +7.043439 53.685907 +7.048133 53.686494 +7.053413 53.686787 +7.058400 53.687080 +7.063680 53.687080 +7.069547 53.687080 +7.075415 53.687080 +7.080988 53.687080 +7.085682 53.686200 +7.088322 53.684147 +7.088322 53.681800 +7.084215 53.680040 +nan nan +6.918177 53.641611 +6.914950 53.640144 +6.912896 53.638090 +6.910256 53.636037 +6.907322 53.634570 +6.903802 53.633103 +6.899695 53.632223 +6.896762 53.630463 +6.895588 53.627823 +6.893535 53.625183 +6.888841 53.625476 +6.885028 53.626356 +6.880921 53.627530 +6.876814 53.628703 +6.872413 53.629583 +6.868306 53.630463 +6.865666 53.632223 +6.865079 53.635157 +6.864786 53.638677 +6.864786 53.641904 +6.865079 53.645424 +6.866546 53.647771 +6.869773 53.649531 +6.872707 53.650998 +6.876520 53.652465 +6.880334 53.653345 +6.884441 53.654518 +6.890308 53.654225 +6.894122 53.653051 +6.898229 53.651878 +6.901162 53.650411 +6.903802 53.648651 +6.908203 53.647771 +6.913483 53.648064 +6.918470 53.648651 +6.922284 53.647478 +6.921697 53.644544 +6.919057 53.642491 +6.918177 53.641611 +nan nan +6.871533 53.598487 +6.869186 53.596727 +6.863319 53.596727 +6.858919 53.597607 +6.853639 53.597314 +6.848945 53.596727 +6.849825 53.598781 +6.852465 53.600541 +6.856572 53.601714 +6.861853 53.602008 +6.867720 53.601714 +6.871533 53.598487 +nan nan +6.796728 53.602301 +6.792034 53.602301 +6.786167 53.602301 +6.780593 53.602594 +6.775313 53.602301 +6.771206 53.601128 +6.767392 53.599661 +6.762992 53.599074 +6.758298 53.598487 +6.753018 53.598194 +6.749204 53.597314 +6.745978 53.595554 +6.743044 53.593794 +6.740697 53.592034 +6.737177 53.590567 +6.733070 53.589393 +6.728963 53.588220 +6.725443 53.587047 +6.723096 53.584993 +6.724856 53.582646 +6.726910 53.580593 +6.730136 53.579126 +6.733950 53.577659 +6.737177 53.576193 +6.740991 53.575312 +6.744804 53.573552 +6.748618 53.572672 +6.751258 53.570912 +6.754778 53.569445 +6.756832 53.567392 +6.758005 53.564752 +6.755365 53.562992 +6.751258 53.561525 +6.746858 53.560351 +6.743044 53.561525 +6.742457 53.564458 +6.740404 53.566805 +6.737470 53.568565 +6.733657 53.569739 +6.728963 53.570619 +6.723683 53.570912 +6.718696 53.571499 +6.712829 53.571499 +6.706961 53.571499 +6.702268 53.570912 +6.698748 53.569445 +6.695227 53.568272 +6.690534 53.567392 +6.686133 53.568272 +6.681440 53.569152 +6.677626 53.570325 +6.673226 53.571499 +6.669999 53.572672 +6.666772 53.574139 +6.663838 53.575899 +6.661785 53.577953 +6.660025 53.580299 +6.658851 53.582940 +6.658265 53.586167 +6.658558 53.589687 +6.658558 53.592914 +6.660025 53.595847 +6.661198 53.598487 +6.662958 53.600834 +6.666185 53.602594 +6.669412 53.603768 +6.674106 53.604355 +6.678799 53.605235 +6.684080 53.605528 +6.688480 53.606115 +6.693467 53.606701 +6.698748 53.606995 +6.703441 53.607581 +6.707255 53.608755 +6.711948 53.609048 +6.716055 53.609928 +6.719869 53.611102 +6.723683 53.612568 +6.727203 53.614035 +6.730430 53.614915 +6.734830 53.616089 +6.738937 53.616969 +6.743044 53.618142 +6.747444 53.618729 +6.752725 53.619022 +6.758592 53.619022 +6.763872 53.618436 +6.768273 53.617555 +6.772086 53.616675 +6.775900 53.614915 +6.778540 53.613449 +6.781473 53.611688 +6.785287 53.610515 +6.788807 53.609048 +6.792914 53.608168 +6.797021 53.606995 +6.800835 53.605821 +6.804062 53.604355 +6.806409 53.602301 +6.804648 53.600541 +6.799368 53.601128 +6.796728 53.602301 +nan nan +6.606634 53.544217 +6.603114 53.544217 +6.599300 53.543043 +6.597247 53.540697 +6.596073 53.538056 +6.594313 53.535416 +6.589913 53.534830 +6.586686 53.536003 +6.585513 53.538937 +6.581112 53.539817 +6.575832 53.539523 +6.571432 53.540110 +6.568205 53.541870 +6.567911 53.545097 +6.570845 53.546564 +6.574952 53.547444 +6.580232 53.547737 +6.584633 53.548324 +6.589326 53.549204 +6.594313 53.549791 +6.599300 53.550084 +6.603994 53.549204 +6.608688 53.548617 +6.611328 53.546564 +6.611915 53.544510 +6.606634 53.544217 +nan nan +6.493106 53.534536 +6.489292 53.534243 +6.484012 53.533949 +6.479318 53.534830 +6.475211 53.535710 +6.471985 53.536296 +6.467878 53.537470 +6.463771 53.538643 +6.458490 53.539230 +6.452917 53.539230 +6.448223 53.538643 +6.442942 53.538350 +6.439716 53.539817 +6.438542 53.542457 +6.439129 53.545684 +6.441769 53.547444 +6.443236 53.550084 +6.445876 53.551844 +6.449983 53.552724 +6.454970 53.552431 +6.459077 53.551257 +6.462597 53.550084 +6.466411 53.548911 +6.470518 53.547737 +6.474918 53.547150 +6.479025 53.545977 +6.483719 53.545390 +6.488412 53.544510 +6.492226 53.543337 +6.496333 53.542457 +6.499267 53.540697 +6.502493 53.539230 +6.506600 53.538056 +6.504254 53.537470 +6.499853 53.536883 +6.493106 53.534536 +nan nan +6.327948 53.498454 +6.324721 53.497867 +6.320027 53.496987 +6.315627 53.496400 +6.310933 53.495813 +6.307119 53.494347 +6.303306 53.493467 +6.299786 53.492293 +6.295679 53.491120 +6.291572 53.490240 +6.286291 53.489946 +6.282184 53.488773 +6.278957 53.487599 +6.275730 53.485839 +6.272504 53.484373 +6.268397 53.483493 +6.264290 53.482612 +6.259596 53.482026 +6.255489 53.480852 +6.250795 53.480266 +6.246982 53.479386 +6.242875 53.478212 +6.238768 53.477332 +6.234661 53.476452 +6.229967 53.475865 +6.225567 53.474985 +6.220287 53.474692 +6.215006 53.474399 +6.209432 53.474399 +6.204152 53.474105 +6.198872 53.473812 +6.193591 53.473518 +6.189191 53.472932 +6.183911 53.472638 +6.178043 53.472638 +6.173056 53.472638 +6.167776 53.472345 +6.163082 53.471758 +6.159856 53.470292 +6.156629 53.468531 +6.152815 53.467358 +6.150175 53.465305 +6.148121 53.462958 +6.145481 53.461198 +6.143428 53.459144 +6.140787 53.457091 +6.138734 53.455037 +6.134920 53.453570 +6.130227 53.453570 +6.128173 53.455917 +6.126413 53.458264 +6.126120 53.461491 +6.127293 53.464131 +6.129347 53.466185 +6.129640 53.467358 +6.124946 53.466771 +6.121133 53.467651 +6.118493 53.469998 +6.116439 53.472052 +6.117319 53.474985 +6.119373 53.477332 +6.122599 53.478799 +6.125240 53.480559 +6.127880 53.482612 +6.129347 53.484959 +6.131987 53.487013 +6.133747 53.489360 +6.136094 53.491413 +6.139027 53.493173 +6.141961 53.494640 +6.144601 53.496400 +6.149001 53.497574 +6.152815 53.498454 +6.158095 53.499040 +6.163376 53.499334 +6.168656 53.499627 +6.173056 53.500214 +6.178924 53.500214 +6.184204 53.500507 +6.189191 53.500800 +6.194471 53.501094 +6.199752 53.501387 +6.204445 53.501974 +6.209432 53.502267 +6.214713 53.502561 +6.219993 53.503147 +6.224393 53.503734 +6.229087 53.504027 +6.233781 53.504614 +6.239355 53.504614 +6.244635 53.504907 +6.249915 53.505201 +6.255196 53.505494 +6.260183 53.505787 +6.265463 53.506081 +6.270157 53.506961 +6.275144 53.507548 +6.280131 53.508134 +6.284824 53.509014 +6.289225 53.509308 +6.293918 53.509894 +6.298612 53.510481 +6.303306 53.511361 +6.308880 53.511361 +6.314747 53.511068 +6.319440 53.510481 +6.323841 53.509601 +6.327654 53.508721 +6.332641 53.508134 +6.335868 53.506374 +6.339388 53.504907 +6.341149 53.502854 +6.340268 53.500214 +6.337628 53.498747 +6.332348 53.498454 +6.327948 53.498454 +nan nan +6.058355 53.452104 +6.054541 53.451517 +6.051314 53.449757 +6.049261 53.447410 +6.046621 53.445650 +6.042220 53.446530 +6.039287 53.447997 +6.038993 53.451224 +6.038993 53.453864 +6.040460 53.456211 +6.044274 53.457384 +6.048087 53.458557 +6.052781 53.459144 +6.058062 53.458851 +6.062462 53.457971 +6.064809 53.456211 +6.065689 53.453277 +6.063635 53.451224 +6.058355 53.452104 +nan nan +10.944466 53.586460 +10.945346 53.583526 +10.945346 53.580299 +10.941532 53.579126 +10.936545 53.579713 +10.933318 53.581473 +10.930678 53.582940 +10.929211 53.585580 +10.927158 53.587633 +10.927158 53.590860 +10.925691 53.593207 +10.926571 53.596434 +10.931851 53.596434 +10.935372 53.594967 +10.937718 53.592914 +10.940652 53.591447 +10.941825 53.589393 +10.944466 53.586460 +nan nan +8.953763 54.505833 +8.953176 54.503192 +8.951123 54.501139 +8.948482 54.499085 +8.944669 54.497912 +8.940562 54.497032 +8.937042 54.495565 +8.934988 54.493218 +8.933521 54.490578 +8.932348 54.487938 +8.930588 54.485298 +8.929121 54.482364 +8.927654 54.479724 +8.926481 54.476790 +8.925014 54.474150 +8.922667 54.471803 +8.920320 54.469750 +8.917680 54.467697 +8.914747 54.466230 +8.911226 54.465056 +8.906826 54.463883 +8.902426 54.463003 +8.897732 54.462416 +8.893038 54.461829 +8.887758 54.461829 +8.882478 54.461536 +8.876317 54.461829 +8.870450 54.461829 +8.864583 54.462123 +8.859303 54.461829 +8.854022 54.461829 +8.848448 54.461829 +8.842875 54.461829 +8.837594 54.461536 +8.832314 54.462123 +8.827034 54.462709 +8.823513 54.464176 +8.819406 54.465350 +8.816766 54.467110 +8.814713 54.469163 +8.814126 54.472390 +8.815886 54.475030 +8.818233 54.477084 +8.820286 54.479431 +8.822633 54.481484 +8.824100 54.484124 +8.824980 54.487351 +8.823513 54.489698 +8.821460 54.491752 +8.819113 54.493805 +8.816473 54.495565 +8.814126 54.497912 +8.815006 54.500846 +8.817060 54.503192 +8.820286 54.504659 +8.823807 54.506126 +8.827620 54.507299 +8.831727 54.508473 +8.835834 54.509059 +8.839648 54.510233 +8.843461 54.511700 +8.846982 54.512873 +8.849915 54.513753 +8.852555 54.515807 +8.854902 54.517860 +8.857542 54.519620 +8.859596 54.522260 +8.862236 54.524021 +8.865756 54.525194 +8.870450 54.524314 +8.875144 54.523727 +8.879837 54.522847 +8.885411 54.522847 +8.890692 54.523434 +8.895385 54.524021 +8.900079 54.524021 +8.904773 54.524607 +8.910053 54.524901 +8.915627 54.525194 +8.921494 54.524901 +8.926774 54.524314 +8.932055 54.524021 +8.937335 54.523434 +8.942615 54.523140 +8.947309 54.522260 +8.951123 54.521087 +8.955229 54.519620 +8.960510 54.519034 +8.959043 54.517273 +8.956403 54.515220 +8.955523 54.512286 +8.954643 54.509059 +8.954936 54.506126 +8.953763 54.505833 +nan nan +4.285908 51.753875 +4.292361 51.753875 +4.298229 51.752408 +4.303802 51.751235 +4.311136 51.750355 +4.317003 51.748888 +4.323457 51.748008 +4.328151 51.746248 +4.333138 51.744488 +4.338711 51.743021 +4.343405 51.740967 +4.348392 51.739501 +4.347512 51.736567 +4.342818 51.735394 +4.338125 51.733927 +4.332551 51.732754 +4.326684 51.732460 +4.319057 51.733047 +4.313483 51.734514 +4.307909 51.735687 +4.302922 51.737741 +4.297642 51.739207 +4.292655 51.740967 +4.287668 51.742728 +4.282974 51.744488 +4.278280 51.746248 +4.273293 51.748008 +4.270360 51.750648 +4.269773 51.754462 +4.275640 51.754755 +4.282974 51.754168 +4.285908 51.753875 +nan nan +5.835992 52.563533 +5.839513 52.561186 +5.841566 52.557959 +5.843913 52.555026 +5.845966 52.551799 +5.849193 52.549452 +5.852127 52.546812 +5.855647 52.544172 +5.857700 52.541238 +5.859167 52.537718 +5.861514 52.535078 +5.861807 52.530971 +5.862394 52.527451 +5.862981 52.523637 +5.862394 52.519530 +5.861514 52.515130 +5.860341 52.510436 +5.859167 52.505742 +5.857700 52.501342 +5.856527 52.496942 +5.855647 52.492541 +5.853007 52.489021 +5.850073 52.486088 +5.847433 52.482567 +5.844500 52.479634 +5.841273 52.476700 +5.839219 52.473473 +5.835992 52.470246 +5.833645 52.467020 +5.831005 52.463206 +5.828072 52.460566 +5.825138 52.457632 +5.821911 52.454405 +5.818978 52.451765 +5.815164 52.449125 +5.812231 52.446191 +5.808710 52.443845 +5.805483 52.440911 +5.803137 52.437391 +5.800790 52.433871 +5.798443 52.430644 +5.795216 52.427417 +5.790816 52.425657 +5.786709 52.423603 +5.782602 52.421843 +5.777615 52.420670 +5.772921 52.418616 +5.768227 52.417149 +5.763827 52.415389 +5.759133 52.413922 +5.754146 52.412456 +5.747986 52.412162 +5.741532 52.412456 +5.733905 52.413042 +5.727158 52.413336 +5.720704 52.413042 +5.715424 52.412162 +5.710143 52.411282 +5.704569 52.410402 +5.699582 52.409229 +5.694009 52.408055 +5.689608 52.406295 +5.684621 52.405122 +5.680514 52.403068 +5.675527 52.401602 +5.671420 52.399841 +5.666433 52.398375 +5.661446 52.396908 +5.657339 52.394854 +5.652352 52.393681 +5.647952 52.391627 +5.642965 52.390161 +5.638858 52.388694 +5.635338 52.386054 +5.631524 52.383707 +5.627124 52.381653 +5.624484 52.379600 +5.621257 52.376666 +5.618323 52.374026 +5.615390 52.370799 +5.610696 52.369333 +5.605122 52.368746 +5.598962 52.368452 +5.591921 52.368452 +5.585174 52.368746 +5.577840 52.369333 +5.573147 52.368159 +5.569333 52.365519 +5.564933 52.363465 +5.561413 52.361119 +5.557892 52.358772 +5.553492 52.357012 +5.549972 52.354371 +5.546158 52.352025 +5.544985 52.347624 +5.545571 52.343811 +5.547918 52.340877 +5.550265 52.337650 +5.552612 52.334717 +5.554665 52.332077 +5.557012 52.328850 +5.559066 52.325916 +5.559652 52.322102 +5.557599 52.318582 +5.554959 52.315355 +5.552025 52.312128 +5.549385 52.308608 +5.547332 52.305381 +5.544691 52.301568 +5.542638 52.298341 +5.540584 52.294527 +5.538824 52.290420 +5.536477 52.286900 +5.534131 52.283380 +5.529730 52.281326 +5.525037 52.279859 +5.521810 52.279566 +5.516823 52.278099 +5.511249 52.277219 +5.505969 52.276339 +5.500395 52.275459 +5.494234 52.275166 +5.488661 52.274579 +5.482500 52.273992 +5.476926 52.273112 +5.471646 52.272232 +5.466072 52.271352 +5.460499 52.270472 +5.454925 52.269592 +5.450231 52.268419 +5.444657 52.267539 +5.439670 52.266072 +5.434097 52.264898 +5.428523 52.264312 +5.422363 52.264018 +5.415909 52.264312 +5.410335 52.265485 +5.404468 52.266952 +5.400654 52.269299 +5.397427 52.271939 +5.393320 52.274286 +5.389507 52.276339 +5.385693 52.278686 +5.381586 52.280740 +5.377479 52.283086 +5.373666 52.285140 +5.369852 52.287487 +5.364865 52.289247 +5.360758 52.291300 +5.357825 52.294234 +5.353718 52.295994 +5.349611 52.298634 +5.345797 52.300688 +5.341690 52.303034 +5.338463 52.304795 +5.334356 52.306848 +5.330543 52.309195 +5.325556 52.310955 +5.320862 52.312715 +5.315875 52.314475 +5.310301 52.316235 +5.305608 52.317702 +5.299740 52.319169 +5.295047 52.321222 +5.289180 52.322396 +5.283606 52.324156 +5.278619 52.325916 +5.273045 52.327090 +5.266298 52.328263 +5.260724 52.329730 +5.254270 52.330903 +5.248697 52.332370 +5.241950 52.333250 +5.235496 52.334423 +5.229629 52.335890 +5.224055 52.337357 +5.218188 52.338824 +5.212027 52.339997 +5.204987 52.339997 +5.198827 52.339704 +5.192666 52.339410 +5.187092 52.338530 +5.182399 52.337357 +5.177412 52.335597 +5.171838 52.334717 +5.165971 52.334423 +5.160690 52.335303 +5.155997 52.337357 +5.151890 52.339410 +5.148956 52.342051 +5.145729 52.344691 +5.143676 52.347624 +5.141916 52.350851 +5.141329 52.354665 +5.141622 52.358772 +5.141916 52.363172 +5.143089 52.367572 +5.142502 52.371093 +5.141036 52.374613 +5.137809 52.377253 +5.135462 52.380187 +5.137809 52.382827 +5.141622 52.384000 +5.146023 52.385760 +5.150423 52.387521 +5.155410 52.388987 +5.159517 52.390747 +5.164504 52.392214 +5.168611 52.394268 +5.172131 52.396615 +5.175945 52.399255 +5.178292 52.402482 +5.181225 52.405415 +5.184746 52.408055 +5.189146 52.410109 +5.193253 52.411869 +5.197360 52.413922 +5.202933 52.414802 +5.207627 52.416563 +5.212321 52.418029 +5.217308 52.419496 +5.222002 52.420963 +5.226402 52.422723 +5.231096 52.424190 +5.235496 52.426243 +5.239603 52.427710 +5.244590 52.429177 +5.248990 52.431230 +5.253097 52.432990 +5.257497 52.435044 +5.261604 52.436804 +5.265711 52.438858 +5.270405 52.440911 +5.274512 52.442671 +5.278912 52.444725 +5.283606 52.446191 +5.288006 52.447658 +5.292113 52.449712 +5.296514 52.451765 +5.301501 52.452939 +5.305608 52.454992 +5.310595 52.456459 +5.314702 52.458219 +5.319689 52.459686 +5.323795 52.461739 +5.328783 52.462913 +5.333183 52.464966 +5.338170 52.466433 +5.343157 52.467900 +5.347264 52.469660 +5.352251 52.471127 +5.356358 52.473180 +5.360465 52.474940 +5.364865 52.476700 +5.369265 52.478754 +5.373372 52.480514 +5.377773 52.482567 +5.381880 52.484327 +5.385693 52.486968 +5.390094 52.489021 +5.394787 52.490195 +5.399774 52.491661 +5.405348 52.492541 +5.411508 52.492835 +5.416495 52.494302 +5.420602 52.496062 +5.425003 52.498115 +5.429110 52.499875 +5.433217 52.501635 +5.438204 52.503102 +5.442604 52.504862 +5.446418 52.507502 +5.450525 52.509556 +5.453165 52.512783 +5.454632 52.516890 +5.454045 52.520410 +5.454338 52.524810 +5.456978 52.528331 +5.459912 52.530971 +5.464312 52.533024 +5.467246 52.536251 +5.470179 52.538891 +5.472526 52.542412 +5.474873 52.545932 +5.478100 52.548865 +5.481327 52.550039 +5.486901 52.550919 +5.492474 52.551799 +5.498635 52.551799 +5.504795 52.552386 +5.510369 52.553266 +5.514769 52.555319 +5.518876 52.557079 +5.522396 52.559426 +5.526210 52.562066 +5.530024 52.564413 +5.533544 52.566760 +5.537357 52.569107 +5.540878 52.571747 +5.545278 52.573507 +5.548798 52.575854 +5.552612 52.578201 +5.556132 52.580841 +5.560532 52.582895 +5.564639 52.584655 +5.568746 52.586415 +5.573440 52.588468 +5.579307 52.588762 +5.584881 52.589642 +5.591041 52.589935 +5.597495 52.590228 +5.603656 52.590522 +5.609229 52.591402 +5.614803 52.592575 +5.619497 52.593749 +5.623897 52.595509 +5.628884 52.596976 +5.633578 52.598442 +5.639151 52.599029 +5.643552 52.601083 +5.647365 52.603723 +5.650299 52.606656 +5.653232 52.604016 +5.656753 52.601376 +5.659686 52.598736 +5.662913 52.596095 +5.668487 52.594629 +5.674061 52.593162 +5.679928 52.591695 +5.686382 52.590522 +5.694009 52.589935 +5.699582 52.588468 +5.706916 52.587882 +5.713663 52.586708 +5.720411 52.585535 +5.727451 52.584655 +5.733612 52.584068 +5.740359 52.584068 +5.747693 52.583188 +5.755320 52.582601 +5.760013 52.580841 +5.763827 52.578494 +5.767347 52.575854 +5.772921 52.575267 +5.779668 52.574094 +5.787002 52.573507 +5.793749 52.573214 +5.800496 52.572920 +5.807537 52.572920 +5.814577 52.572334 +5.820738 52.571747 +5.827192 52.570574 +5.831299 52.568227 +5.834525 52.565587 +5.835992 52.563533 +nan nan +5.104366 52.450592 +5.107887 52.451765 +5.113460 52.452645 +5.118154 52.453819 +5.123141 52.455285 +5.127835 52.456752 +5.132822 52.457926 +5.136929 52.459979 +5.137809 52.462913 +5.130768 52.462913 +5.124021 52.462913 +5.116687 52.463499 +5.111994 52.465553 +5.110233 52.465553 +nan nan +4.885817 53.181631 +4.886404 53.178111 +4.889338 53.175177 +4.891098 53.171950 +4.890804 53.167843 +4.889631 53.163443 +4.888164 53.159336 +4.891978 53.157282 +4.897845 53.155816 +4.901952 53.153469 +4.904885 53.150829 +4.907526 53.148188 +4.909579 53.144962 +4.912219 53.142028 +4.912806 53.138214 +4.912513 53.134107 +4.911339 53.129707 +4.909579 53.125600 +4.908699 53.121200 +4.906939 53.117093 +4.905765 53.112399 +4.905472 53.108586 +4.901072 53.106532 +4.894911 53.106239 +4.889924 53.104772 +4.889924 53.101545 +4.896085 53.101838 +4.900485 53.103892 +4.906646 53.104185 +4.909872 53.101545 +4.912219 53.098612 +4.910459 53.094798 +4.908992 53.090691 +4.906352 53.087171 +4.903419 53.084237 +4.899312 53.082184 +4.895498 53.079837 +4.890511 53.078370 +4.886111 53.076317 +4.883764 53.073090 +4.882004 53.069276 +4.880830 53.064582 +4.879070 53.060475 +4.876723 53.056955 +4.872910 53.054608 +4.869976 53.051675 +4.867336 53.048741 +4.864696 53.045221 +4.861762 53.042288 +4.858535 53.039061 +4.854428 53.037300 +4.850028 53.035247 +4.844454 53.034367 +4.838881 53.033487 +4.834480 53.031727 +4.830960 53.029087 +4.827147 53.026740 +4.824213 53.023806 +4.820693 53.021459 +4.816879 53.018819 +4.812479 53.017059 +4.809839 53.014125 +4.807198 53.010605 +4.804852 53.007085 +4.799278 53.006205 +4.794291 53.004445 +4.791064 53.001511 +4.787544 52.998871 +4.782557 52.997404 +4.777863 52.996231 +4.773463 52.994177 +4.769062 52.992124 +4.764662 52.990364 +4.759088 52.989484 +4.753515 52.988604 +4.746181 52.989190 +4.738553 52.989777 +4.732686 52.991244 +4.727699 52.993004 +4.723886 52.995351 +4.720659 52.997698 +4.718312 53.000925 +4.715965 53.003858 +4.714498 53.007085 +4.712738 53.010605 +4.711272 53.013832 +4.710098 53.017352 +4.708338 53.020579 +4.707751 53.024100 +4.707165 53.027913 +4.707458 53.032313 +4.706578 53.035834 +4.706871 53.039941 +4.708045 53.044341 +4.709805 53.048741 +4.712152 53.051968 +4.713912 53.056075 +4.715965 53.059302 +4.719192 53.062529 +4.721539 53.066049 +4.724766 53.068983 +4.728286 53.071330 +4.730633 53.075143 +4.734447 53.077197 +4.737087 53.080424 +4.740314 53.083357 +4.743247 53.085997 +4.747061 53.088638 +4.749994 53.091571 +4.753515 53.094211 +4.756741 53.096851 +4.759675 53.100078 +4.763195 53.102425 +4.767302 53.105065 +4.769942 53.107706 +4.773756 53.110346 +4.777570 53.112693 +4.780503 53.115919 +4.783730 53.118560 +4.787250 53.121200 +4.790771 53.123547 +4.793997 53.126774 +4.797518 53.129120 +4.800451 53.132054 +4.803678 53.134988 +4.806612 53.137921 +4.809839 53.140855 +4.812772 53.143788 +4.815412 53.147015 +4.818639 53.149655 +4.821573 53.152882 +4.824800 53.155816 +4.827733 53.158749 +4.830960 53.161683 +4.834480 53.164030 +4.837414 53.166963 +4.840641 53.169897 +4.843574 53.173124 +4.846801 53.175764 +4.850322 53.178404 +4.853255 53.181338 +4.857069 53.183978 +4.859709 53.185738 +4.863816 53.186911 +4.868803 53.188378 +4.873203 53.187791 +4.879070 53.186325 +4.883471 53.184271 +4.885817 53.181631 +nan nan +5.077084 53.298093 +5.072684 53.296039 +5.068284 53.294279 +5.064177 53.292225 +5.059190 53.290759 +5.054790 53.289292 +5.049802 53.287532 +5.044815 53.286065 +5.040122 53.284598 +5.035135 53.283425 +5.029268 53.282545 +5.024281 53.281078 +5.019587 53.279611 +5.014307 53.278438 +5.009320 53.276971 +5.004919 53.274918 +5.000519 53.273157 +4.996999 53.270517 +4.993772 53.267877 +4.990838 53.264650 +4.988491 53.261130 +4.986145 53.257903 +4.982918 53.254676 +4.979984 53.252036 +4.977051 53.248809 +4.973824 53.245875 +4.970303 53.243529 +4.965903 53.241769 +4.961796 53.239715 +4.957103 53.237662 +4.953582 53.235315 +4.950649 53.232088 +4.947422 53.229448 +4.945075 53.225927 +4.941848 53.222700 +4.938915 53.220060 +4.935688 53.216833 +4.931581 53.215073 +4.926007 53.214193 +4.919260 53.214487 +4.912806 53.213900 +4.906646 53.213606 +4.901072 53.212726 +4.895205 53.211553 +4.889631 53.210966 +4.883177 53.211846 +4.879950 53.214487 +4.881124 53.219180 +4.883471 53.222407 +4.886404 53.225634 +4.889924 53.227981 +4.893151 53.230914 +4.897552 53.232675 +4.901072 53.235315 +4.905472 53.237368 +4.908699 53.240302 +4.912219 53.242355 +4.916326 53.244409 +4.920727 53.246462 +4.924540 53.248809 +4.928940 53.250862 +4.933341 53.252916 +4.936861 53.255263 +4.940968 53.257316 +4.945075 53.259370 +4.949182 53.261423 +4.952996 53.263770 +4.956809 53.266410 +4.960916 53.268464 +4.964730 53.270811 +4.968837 53.272864 +4.973237 53.274331 +4.977051 53.276971 +4.981451 53.279025 +4.985558 53.280785 +4.989371 53.283425 +4.993478 53.285185 +4.998172 53.287238 +5.002279 53.289292 +5.007266 53.290465 +5.011666 53.292519 +5.016653 53.293986 +5.021640 53.295159 +5.026627 53.296626 +5.031615 53.298093 +5.035135 53.299266 +5.040122 53.300439 +5.045109 53.301906 +5.050096 53.303373 +5.054790 53.304840 +5.059777 53.306013 +5.065644 53.306893 +5.070631 53.308360 +5.075618 53.309827 +5.079431 53.310707 +5.086472 53.310413 +5.093806 53.310120 +5.099673 53.308653 +5.104660 53.306600 +5.106420 53.303373 +5.103780 53.300146 +5.098206 53.298973 +5.091459 53.299266 +5.084418 53.299559 +5.078845 53.298386 +5.077084 53.298093 +nan nan +5.579601 53.442423 +5.577547 53.439196 +5.574027 53.435969 +5.570507 53.433622 +5.566106 53.431569 +5.561119 53.430395 +5.555545 53.429515 +5.549092 53.429222 +5.543518 53.428342 +5.537357 53.428049 +5.531784 53.427168 +5.526797 53.425702 +5.521223 53.425115 +5.515943 53.423648 +5.510956 53.422181 +5.505382 53.421008 +5.499515 53.422768 +5.494528 53.424528 +5.491301 53.421595 +5.486314 53.420421 +5.481327 53.421008 +5.477513 53.421008 +5.476926 53.416901 +5.481033 53.414848 +5.483380 53.411621 +5.481033 53.408394 +5.476633 53.406340 +5.471646 53.404874 +5.465192 53.404580 +5.459032 53.404287 +5.452285 53.404580 +5.444364 53.405167 +5.437910 53.405167 +5.431457 53.404874 +5.425003 53.404580 +5.418842 53.404287 +5.412975 53.403407 +5.407988 53.401940 +5.402414 53.401060 +5.398014 53.399300 +5.393027 53.397833 +5.388920 53.395780 +5.384520 53.394313 +5.380120 53.392259 +5.375719 53.390206 +5.371319 53.388446 +5.366919 53.386392 +5.362518 53.384339 +5.358411 53.382579 +5.353424 53.381112 +5.347557 53.380232 +5.341397 53.379938 +5.335530 53.379058 +5.330836 53.377885 +5.324969 53.377005 +5.320569 53.374951 +5.315875 53.373485 +5.311475 53.371725 +5.305021 53.371431 +5.299740 53.371431 +5.294167 53.371431 +5.287126 53.371431 +5.280966 53.371138 +5.275979 53.369671 +5.270992 53.368204 +5.266591 53.366444 +5.262191 53.364391 +5.258084 53.362631 +5.253684 53.360870 +5.249283 53.358817 +5.244296 53.357643 +5.239309 53.356177 +5.234029 53.354710 +5.228749 53.353537 +5.223468 53.352363 +5.218188 53.351483 +5.213201 53.350016 +5.206747 53.349723 +5.200587 53.349430 +5.193546 53.349430 +5.186799 53.349723 +5.180052 53.350896 +5.175065 53.352363 +5.171838 53.355297 +5.168611 53.357643 +5.167144 53.361164 +5.166558 53.364977 +5.167731 53.369378 +5.168904 53.373778 +5.171251 53.377592 +5.175652 53.379058 +5.180052 53.381112 +5.185039 53.382579 +5.190613 53.383752 +5.195600 53.384925 +5.200587 53.386392 +5.205574 53.387859 +5.209974 53.389619 +5.213494 53.391966 +5.218188 53.394019 +5.223175 53.395193 +5.228162 53.396660 +5.234029 53.396953 +5.240483 53.397540 +5.246057 53.398420 +5.251924 53.399300 +5.258671 53.399006 +5.264538 53.399887 +5.270698 53.400180 +5.276859 53.400473 +5.283313 53.400767 +5.289473 53.401353 +5.295927 53.401647 +5.302087 53.401940 +5.308248 53.402233 +5.313821 53.403407 +5.319689 53.404287 +5.324676 53.405460 +5.329663 53.406927 +5.334650 53.408394 +5.340223 53.409274 +5.345797 53.409861 +5.351664 53.410741 +5.356651 53.412207 +5.362225 53.413087 +5.367799 53.413968 +5.372786 53.415141 +5.378653 53.416314 +5.383640 53.417781 +5.389214 53.418661 +5.394201 53.420128 +5.399188 53.421301 +5.404761 53.422181 +5.411215 53.422475 +5.416202 53.423942 +5.421189 53.425408 +5.426176 53.426582 +5.431163 53.428049 +5.436737 53.428929 +5.441137 53.430689 +5.446124 53.432156 +5.451991 53.433036 +5.457565 53.433916 +5.463139 53.434796 +5.468126 53.435969 +5.473993 53.437143 +5.478980 53.438609 +5.484554 53.439489 +5.490127 53.440369 +5.495701 53.441249 +5.500688 53.442423 +5.506262 53.443303 +5.512716 53.444183 +5.518289 53.445063 +5.524157 53.445943 +5.529144 53.447117 +5.534717 53.447997 +5.539704 53.449463 +5.545571 53.450343 +5.551145 53.451224 +5.556719 53.451810 +5.563173 53.452397 +5.567866 53.452690 +5.574613 53.452690 +5.579601 53.450930 +5.581947 53.447703 +5.579601 53.442423 +nan nan +5.674354 53.466478 +5.679048 53.466185 +5.685795 53.465011 +5.692542 53.463838 +5.699289 53.462664 +5.706036 53.462371 +5.713663 53.462078 +5.720411 53.461784 +5.726864 53.462078 +5.733318 53.462078 +5.739479 53.462664 +5.745932 53.462958 +5.752093 53.463251 +5.758253 53.463544 +5.764120 53.464424 +5.771161 53.464424 +5.778201 53.464131 +5.784655 53.463838 +5.791109 53.464131 +5.798150 53.464131 +5.804897 53.463838 +5.811350 53.464131 +5.817511 53.464424 +5.823965 53.464718 +5.830419 53.465305 +5.836286 53.465598 +5.842739 53.465891 +5.849193 53.466185 +5.854767 53.467065 +5.861807 53.466771 +5.867088 53.467651 +5.873542 53.467945 +5.880582 53.467651 +5.886156 53.468531 +5.892610 53.468825 +5.898770 53.469118 +5.904931 53.469705 +5.911971 53.469412 +5.918425 53.469705 +5.924585 53.469998 +5.930746 53.470292 +5.937200 53.470585 +5.944827 53.469998 +5.951281 53.468825 +5.955681 53.466771 +5.955974 53.462664 +5.952161 53.460611 +5.948054 53.458557 +5.941600 53.458264 +5.936026 53.457384 +5.929866 53.457091 +5.923412 53.456797 +5.917838 53.455917 +5.912851 53.454450 +5.906984 53.453570 +5.901997 53.452104 +5.897010 53.450930 +5.891436 53.450050 +5.884982 53.449757 +5.879409 53.448877 +5.872955 53.448583 +5.867381 53.447703 +5.861807 53.446823 +5.856527 53.445650 +5.851247 53.444770 +5.845673 53.443890 +5.839806 53.443010 +5.834232 53.442130 +5.828365 53.441249 +5.822791 53.440663 +5.817218 53.439783 +5.811350 53.438903 +5.805190 53.438316 +5.798443 53.438609 +5.791696 53.439783 +5.784655 53.440076 +5.777321 53.440663 +5.771454 53.442130 +5.763534 53.442716 +5.756200 53.443596 +5.748573 53.444183 +5.742999 53.443303 +5.737132 53.442423 +5.732145 53.441249 +5.727744 53.439196 +5.723638 53.437436 +5.719237 53.435676 +5.713957 53.433622 +5.709850 53.431569 +5.704569 53.430395 +5.700169 53.428635 +5.695182 53.427168 +5.689315 53.426288 +5.684035 53.425408 +5.676994 53.425702 +5.669954 53.425702 +5.662620 53.426288 +5.655873 53.427462 +5.650006 53.429222 +5.645899 53.431275 +5.642085 53.433622 +5.637685 53.435969 +5.635631 53.438609 +5.632991 53.441543 +5.632404 53.445650 +5.633284 53.447997 +5.636511 53.451224 +5.639445 53.454157 +5.643258 53.456504 +5.646485 53.459437 +5.649419 53.462078 +5.651472 53.466478 +5.653526 53.469705 +5.657633 53.472345 +5.662913 53.472932 +5.668780 53.471758 +5.672301 53.468825 +5.674354 53.466478 +nan nan +-4.000000 58.566095 +-3.999300 58.566151 +-3.994607 58.567911 +-3.987566 58.568498 +-3.980819 58.567617 +-3.972899 58.566737 +-3.964978 58.566737 +-3.959404 58.567911 +-3.952364 58.568498 +-3.946790 58.567031 +-3.937696 58.566737 +-3.930655 58.567324 +-3.922442 58.567324 +-3.917748 58.564977 +-3.913934 58.562630 +-3.910121 58.559990 +-3.903374 58.558523 +-3.896920 58.559697 +-3.892226 58.562044 +-3.885772 58.562924 +-3.879318 58.563804 +-3.871691 58.562924 +-3.863771 58.562337 +-3.857317 58.560870 +-3.848223 58.560577 +-3.842649 58.562044 +-3.838836 58.564391 +-3.834729 58.567031 +-3.829155 58.568498 +-3.820354 58.567911 +-3.812434 58.567911 +-3.805980 58.569084 +-3.799233 58.569671 +-3.793366 58.567911 +-3.785152 58.567324 +-3.779578 58.568498 +-3.775764 58.571138 +-3.771657 58.573778 +-3.767844 58.576418 +-3.763150 58.578472 +-3.758456 58.580232 +-3.753469 58.582579 +-3.748482 58.584339 +-3.743495 58.586392 +-3.739682 58.589032 +-3.735868 58.591673 +-3.730001 58.593139 +-3.726187 58.595486 +-3.722081 58.598126 +-3.717974 58.600767 +-3.713867 58.603407 +-3.709173 58.605167 +-3.702719 58.606340 +-3.696559 58.607220 +-3.689225 58.607807 +-3.683651 58.609567 +-3.678077 58.610741 +-3.674264 58.613674 +-3.670743 58.616314 +-3.666050 58.618661 +-3.660183 58.620128 +-3.652556 58.619248 +-3.646688 58.617488 +-3.639061 58.616608 +-3.632021 58.617194 +-3.625567 58.618074 +-3.619113 58.619248 +-3.612073 58.619835 +-3.604739 58.620421 +-3.596818 58.620421 +-3.588898 58.620421 +-3.581564 58.620715 +-3.575990 58.622181 +-3.570710 58.623061 +-3.561909 58.622475 +-3.553402 58.621888 +-3.547535 58.620421 +-3.543721 58.617781 +-3.545188 58.614848 +-3.548415 58.611621 +-3.553402 58.609861 +-3.552815 58.607220 +-3.552228 58.605167 +-3.545188 58.604287 +-3.539614 58.602527 +-3.534920 58.600180 +-3.528173 58.599006 +-3.520253 58.598126 +-3.513799 58.599300 +-3.512039 58.599300 +-3.507345 58.601353 +-3.501185 58.602527 +-3.496198 58.604580 +-3.489744 58.605460 +-3.484170 58.607220 +-3.476250 58.607220 +-3.469796 58.608100 +-3.464222 58.609861 +-3.455421 58.609274 +-3.446621 58.608687 +-3.438700 58.608687 +-3.432246 58.607514 +-3.435180 58.604580 +-3.432540 58.601353 +-3.425206 58.601940 +-3.416405 58.601353 +-3.408485 58.600473 +-3.402031 58.599300 +-3.394697 58.599593 +-3.386190 58.599300 +-3.379443 58.598126 +-3.373575 58.596366 +-3.364775 58.595779 +-3.360961 58.598420 +-3.358028 58.601940 +-3.356268 58.605754 +-3.353921 58.609567 +-3.351574 58.613087 +-3.350694 58.616608 +-3.354801 58.619248 +-3.362135 58.620128 +-3.367122 58.622181 +-3.369175 58.625702 +-3.372989 58.628048 +-3.378856 58.629809 +-3.384723 58.631275 +-3.391763 58.632742 +-3.397924 58.633916 +-3.402324 58.636262 +-3.404084 58.639783 +-3.407018 58.642716 +-3.408778 58.646236 +-3.409951 58.649757 +-3.408778 58.654450 +-3.406431 58.657677 +-3.403204 58.660904 +-3.399977 58.663838 +-3.396164 58.666478 +-3.391177 58.668238 +-3.386190 58.670585 +-3.380616 58.672052 +-3.374162 58.672932 +-3.365655 58.672638 +-3.360668 58.670585 +-3.356561 58.667651 +-3.354801 58.664424 +-3.353921 58.660904 +-3.353921 58.656797 +-3.351867 58.653277 +-3.348934 58.650637 +-3.345413 58.647997 +-3.337493 58.646823 +-3.329866 58.647410 +-3.322238 58.647410 +-3.314318 58.646530 +-3.308744 58.645063 +-3.300824 58.644183 +-3.294663 58.644183 +-3.289676 58.646236 +-3.285569 58.648583 +-3.280289 58.650343 +-3.272955 58.650930 +-3.265034 58.650930 +-3.257994 58.650343 +-3.252420 58.651810 +-3.245380 58.652104 +-3.236579 58.651810 +-3.228952 58.650930 +-3.219858 58.650637 +-3.214577 58.651223 +-3.208417 58.651810 +-3.201963 58.652984 +-3.195509 58.654157 +-3.186709 58.653570 +-3.180842 58.651810 +-3.176148 58.649757 +-3.172334 58.647117 +-3.169401 58.644183 +-3.166467 58.641249 +-3.162360 58.638903 +-3.156787 58.637142 +-3.149746 58.637436 +-3.145052 58.638609 +-3.137719 58.639196 +-3.130678 58.639783 +-3.125104 58.641249 +-3.120117 58.643303 +-3.113957 58.644183 +-3.105743 58.644183 +-3.097822 58.644183 +-3.089608 58.644183 +-3.083741 58.645356 +-3.077288 58.646236 +-3.069660 58.646530 +-3.061446 58.646236 +-3.053233 58.645356 +-3.046192 58.645943 +-3.039738 58.646823 +-3.033284 58.647703 +-3.025657 58.647703 +-3.019790 58.646236 +-3.015976 58.643596 +-3.015096 58.639783 +-3.014803 58.637436 +-3.013630 58.633916 +-3.015390 58.629809 +-3.018617 58.626582 +-3.022724 58.624235 +-3.026831 58.621595 +-3.028591 58.617781 +-3.028591 58.613674 +-3.028591 58.609567 +-3.028591 58.605167 +-3.029471 58.600767 +-3.032991 58.597833 +-3.038565 58.596073 +-3.045019 58.595193 +-3.051472 58.594313 +-3.057633 58.593139 +-3.058220 58.590499 +-3.054406 58.588152 +-3.052939 58.586392 +-3.051179 58.584045 +-3.052646 58.579938 +-3.055873 58.577005 +-3.059980 58.574365 +-3.063500 58.571431 +-3.066727 58.568204 +-3.069074 58.564977 +-3.071127 58.560870 +-3.074061 58.557643 +-3.076701 58.554417 +-3.079928 58.551483 +-3.083448 58.548256 +-3.088142 58.546496 +-3.093129 58.544149 +-3.097236 58.541802 +-3.102809 58.540336 +-3.106623 58.537695 +-3.111903 58.535348 +-3.115130 58.532122 +-3.119237 58.529775 +-3.121584 58.526255 +-3.125104 58.523028 +-3.127451 58.519801 +-3.130091 58.515987 +-3.131558 58.511880 +-3.135078 58.509240 +-3.137425 58.505426 +-3.140065 58.501906 +-3.141532 58.498973 +-3.141532 58.494866 +-3.138599 58.491932 +-3.134785 58.489292 +-3.130971 58.486652 +-3.128038 58.484011 +-3.124224 58.481371 +-3.121291 58.478438 +-3.117477 58.475798 +-3.113664 58.473451 +-3.110143 58.470811 +-3.104863 58.468757 +-3.097236 58.467877 +-3.090782 58.468757 +-3.084328 58.469637 +-3.078168 58.470811 +-3.072594 58.472277 +-3.067020 58.473744 +-3.060566 58.474624 +-3.054993 58.476384 +-3.048539 58.477264 +-3.042085 58.478438 +-3.034458 58.478438 +-3.028591 58.476678 +-3.024777 58.474037 +-3.022724 58.470811 +-3.021550 58.466997 +-3.021844 58.462890 +-3.023604 58.458783 +-3.027417 58.456436 +-3.031524 58.453796 +-3.035338 58.450862 +-3.039151 58.448222 +-3.041498 58.444702 +-3.045019 58.441768 +-3.047365 58.438248 +-3.051472 58.435608 +-3.056459 58.433555 +-3.060273 58.431208 +-3.063500 58.427981 +-3.065847 58.425634 +-3.067020 58.420940 +-3.067900 58.416247 +-3.071420 58.413313 +-3.075234 58.410966 +-3.079928 58.408913 +-3.083448 58.405979 +-3.084035 58.401286 +-3.085501 58.396592 +-3.087262 58.392778 +-3.089608 58.389258 +-3.092835 58.386031 +-3.096942 58.383684 +-3.102516 58.382218 +-3.106623 58.379577 +-3.107503 58.376057 +-3.105450 58.372830 +-3.104570 58.369017 +-3.103689 58.365203 +-3.105743 58.361683 +-3.110143 58.359043 +-3.113957 58.356696 +-3.118944 58.354642 +-3.125398 58.353469 +-3.133318 58.353469 +-3.140359 58.353175 +-3.145932 58.351709 +-3.148279 58.348188 +-3.150920 58.344668 +-3.154146 58.341735 +-3.158840 58.339388 +-3.163827 58.337628 +-3.168227 58.335574 +-3.173214 58.333521 +-3.178788 58.332054 +-3.182895 58.329414 +-3.187882 58.327360 +-3.190229 58.323840 +-3.193749 58.320906 +-3.196096 58.317386 +-3.197856 58.313279 +-3.200203 58.309759 +-3.203723 58.306532 +-3.208417 58.304772 +-3.215457 58.303892 +-3.222791 58.303305 +-3.228365 58.301545 +-3.233939 58.300372 +-3.240393 58.299198 +-3.246553 58.298318 +-3.253594 58.297731 +-3.260047 58.296558 +-3.266208 58.295971 +-3.269728 58.295091 +-3.275302 58.293624 +-3.281169 58.291864 +-3.285569 58.290104 +-3.289676 58.287464 +-3.293783 58.285117 +-3.299357 58.283357 +-3.307571 58.283357 +-3.315198 58.283357 +-3.320478 58.281890 +-3.326052 58.280424 +-3.331039 58.278370 +-3.337493 58.277197 +-3.345413 58.277197 +-3.353041 58.277197 +-3.359494 58.276317 +-3.364188 58.274263 +-3.368002 58.271623 +-3.372109 58.269276 +-3.376216 58.266636 +-3.382083 58.265169 +-3.385896 58.262529 +-3.390003 58.259889 +-3.392937 58.256955 +-3.396164 58.254022 +-3.398804 58.250501 +-3.403498 58.248741 +-3.409071 58.246981 +-3.415525 58.245808 +-3.420219 58.243754 +-3.423739 58.240821 +-3.426086 58.237594 +-3.429313 58.234367 +-3.433126 58.232020 +-3.438113 58.229673 +-3.441927 58.227326 +-3.444567 58.223513 +-3.446327 58.219699 +-3.448674 58.217059 +-3.450728 58.213539 +-3.453368 58.210018 +-3.455715 58.206498 +-3.458942 58.203271 +-3.462462 58.200338 +-3.466275 58.197698 +-3.470969 58.195937 +-3.474489 58.192711 +-3.477423 58.189777 +-3.480063 58.186257 +-3.482997 58.183030 +-3.487104 58.180683 +-3.492091 58.178630 +-3.497078 58.176576 +-3.500891 58.174229 +-3.504705 58.171589 +-3.507932 58.168656 +-3.511159 58.165429 +-3.514972 58.163082 +-3.519959 58.160735 +-3.524653 58.158975 +-3.529347 58.156921 +-3.534920 58.155161 +-3.540494 58.153988 +-3.546068 58.152228 +-3.551642 58.150761 +-3.556335 58.148707 +-3.559562 58.145774 +-3.562789 58.142840 +-3.566016 58.139613 +-3.570123 58.136973 +-3.575697 58.134920 +-3.581270 58.133746 +-3.586551 58.131986 +-3.592125 58.130519 +-3.597698 58.128759 +-3.602392 58.126999 +-3.607966 58.125532 +-3.612659 58.123479 +-3.617646 58.121425 +-3.621753 58.118785 +-3.625567 58.116438 +-3.630261 58.114092 +-3.634074 58.112331 +-3.633194 58.112331 +-3.638475 58.111451 +-3.645808 58.111158 +-3.652262 58.109985 +-3.657543 58.108224 +-3.662236 58.106464 +-3.666343 58.103824 +-3.670157 58.101477 +-3.673384 58.098250 +-3.676611 58.095317 +-3.680424 58.092677 +-3.684531 58.090330 +-3.689518 58.087983 +-3.694212 58.086223 +-3.698612 58.084169 +-3.704479 58.082409 +-3.710053 58.081236 +-3.715333 58.079476 +-3.720907 58.078009 +-3.726481 58.076249 +-3.730588 58.073902 +-3.733521 58.070968 +-3.736162 58.067155 +-3.739095 58.064221 +-3.743202 58.061581 +-3.747896 58.059821 +-3.753469 58.058061 +-3.759043 58.056594 +-3.764324 58.055127 +-3.771364 58.054541 +-3.779285 58.054541 +-3.785445 58.053367 +-3.791019 58.051900 +-3.795419 58.049554 +-3.799233 58.046913 +-3.804513 58.045153 +-3.810087 58.043980 +-3.816247 58.042806 +-3.822408 58.041633 +-3.825635 58.038700 +-3.827981 58.034886 +-3.831502 58.031952 +-3.835609 58.029312 +-3.839422 58.026965 +-3.842356 58.024032 +-3.844996 58.020218 +-3.846463 58.016405 +-3.847636 58.012004 +-3.847636 58.007897 +-3.847636 58.003497 +-3.847636 57.999977 +-3.853503 57.998217 +-3.858784 57.996750 +-3.863184 57.994110 +-3.867878 57.992350 +-3.873745 57.991176 +-3.880785 57.990589 +-3.886359 57.989123 +-3.891933 57.987362 +-3.896626 57.985602 +-3.902200 57.983842 +-3.906894 57.982082 +-3.911587 57.980029 +-3.917748 57.978855 +-3.924202 57.977095 +-3.930655 57.976508 +-3.936229 57.974748 +-3.940630 57.972695 +-3.944443 57.970348 +-3.949137 57.968001 +-3.954711 57.966534 +-3.962924 57.966534 +-3.967911 57.965068 +-3.973485 57.963307 +-3.978472 57.961254 +-3.983166 57.959494 +-3.987860 57.957147 +-3.991673 57.954800 +-3.995487 57.952160 +-3.999007 57.949226 +-4.000000 57.946645 +nan nan +-4.000000 57.916033 +-3.999007 57.915784 +-3.993433 57.914024 +-3.989326 57.911384 +-3.989033 57.907570 +-3.990793 57.903463 +-3.991967 57.898769 +-3.994313 57.895249 +-3.997247 57.892316 +-4.000000 57.890410 +nan nan +-4.000000 57.828132 +-3.998127 57.828951 +-3.993433 57.830711 +-3.987860 57.832471 +-3.982579 57.833938 +-3.977005 57.835698 +-3.971432 57.836872 +-3.963805 57.835992 +-3.957351 57.835112 +-3.950604 57.833645 +-3.943856 57.832471 +-3.937109 57.831005 +-3.930655 57.830125 +-3.924788 57.828071 +-3.920975 57.825431 +-3.920975 57.822497 +-3.925668 57.820150 +-3.930362 57.818390 +-3.935643 57.816924 +-3.940630 57.814577 +-3.945030 57.812817 +-3.949724 57.810763 +-3.951190 57.807536 +-3.945617 57.805776 +-3.938576 57.806363 +-3.933882 57.808416 +-3.928309 57.809883 +-3.923615 57.811937 +-3.918335 57.813697 +-3.912468 57.814870 +-3.906307 57.816044 +-3.900147 57.817217 +-3.893399 57.817804 +-3.886066 57.818390 +-3.879025 57.818977 +-3.871398 57.818977 +-3.864357 57.819564 +-3.857610 57.819857 +-3.851450 57.820737 +-3.845876 57.822497 +-3.841182 57.824551 +-3.836489 57.826604 +-3.833262 57.829831 +-3.830915 57.833058 +-3.829155 57.837165 +-3.827395 57.841272 +-3.825928 57.845379 +-3.823581 57.848899 +-3.821234 57.852419 +-3.817714 57.855646 +-3.814781 57.858287 +-3.810087 57.860633 +-3.805393 57.862394 +-3.799233 57.863567 +-3.791899 57.864154 +-3.783392 57.863567 +-3.777818 57.861807 +-3.775764 57.858580 +-3.774884 57.855060 +-3.775471 57.850366 +-3.776644 57.845966 +-3.779578 57.842739 +-3.783098 57.839805 +-3.786032 57.836578 +-3.790139 57.834231 +-3.794832 57.832178 +-3.798646 57.829831 +-3.802460 57.826898 +-3.805687 57.823964 +-3.807447 57.819857 +-3.809793 57.816337 +-3.812140 57.812817 +-3.815661 57.809590 +-3.819474 57.807243 +-3.823288 57.804603 +-3.827101 57.802256 +-3.831502 57.799616 +-3.835315 57.797269 +-3.839129 57.794335 +-3.842943 57.791988 +-3.846169 57.788762 +-3.848516 57.785535 +-3.851156 57.782014 +-3.854090 57.778788 +-3.857610 57.775854 +-3.859664 57.772334 +-3.863477 57.769694 +-3.867584 57.767347 +-3.872278 57.765293 +-3.877852 57.763533 +-3.883132 57.762066 +-3.889586 57.761186 +-3.894866 57.759426 +-3.899853 57.757373 +-3.904254 57.755319 +-3.908361 57.752679 +-3.912174 57.750332 +-3.914521 57.746812 +-3.917748 57.743585 +-3.920095 57.740358 +-3.923028 57.737131 +-3.926255 57.734198 +-3.930362 57.731264 +-3.933296 57.728624 +-3.937109 57.725690 +-3.940630 57.722757 +-3.942096 57.718943 +-3.944443 57.715423 +-3.948550 57.712783 +-3.953830 57.711023 +-3.958524 57.709263 +-3.962924 57.707209 +-3.967031 57.705449 +-3.970845 57.703102 +-3.974659 57.700462 +-3.978179 57.697528 +-3.981993 57.694595 +-3.984926 57.691661 +-3.987273 57.688434 +-3.990500 57.685207 +-3.996074 57.683741 +-4.000000 57.682024 +nan nan +-4.000000 57.672011 +-3.999887 57.672007 +-3.999007 57.668193 +-4.000000 57.667759 +nan nan +-4.000000 57.591041 +-3.992847 57.591041 +-3.984046 57.590747 +-3.976712 57.590747 +-3.967911 57.590161 +-3.959404 57.589867 +-3.950897 57.589574 +-3.942390 57.588987 +-3.934176 57.588401 +-3.926255 57.588401 +-3.917748 57.588107 +-3.909534 57.587520 +-3.900733 57.587227 +-3.893399 57.586054 +-3.884599 57.585760 +-3.877265 57.585760 +-3.869931 57.586347 +-3.863771 57.587520 +-3.857904 57.588401 +-3.854090 57.589867 +-3.853210 57.589867 +-3.849690 57.590161 +-3.844116 57.591627 +-3.837955 57.592801 +-3.832675 57.594561 +-3.826515 57.595441 +-3.820354 57.596321 +-3.815661 57.598668 +-3.810087 57.600135 +-3.805980 57.602482 +-3.801286 57.604828 +-3.797473 57.607175 +-3.793072 57.609229 +-3.788379 57.611282 +-3.783392 57.613922 +-3.779578 57.616269 +-3.774884 57.618323 +-3.771071 57.620963 +-3.767257 57.623310 +-3.761390 57.625070 +-3.754643 57.625657 +-3.747602 57.626243 +-3.742322 57.627417 +-3.737628 57.629763 +-3.733521 57.632110 +-3.728828 57.634164 +-3.724427 57.636217 +-3.720320 57.638564 +-3.715627 57.640911 +-3.710933 57.642671 +-3.706533 57.644725 +-3.700959 57.646485 +-3.695972 57.648245 +-3.691278 57.650592 +-3.687465 57.652938 +-3.685118 57.656752 +-3.679837 57.657926 +-3.671037 57.657632 +-3.663410 57.657632 +-3.657249 57.658512 +-3.651969 57.660272 +-3.646395 57.660859 +-3.638475 57.660859 +-3.632021 57.659392 +-3.625567 57.658219 +-3.617646 57.658219 +-3.611779 57.659099 +-3.605325 57.660272 +-3.598285 57.660859 +-3.589778 57.660272 +-3.581270 57.659979 +-3.572763 57.659392 +-3.565136 57.659392 +-3.556629 57.658806 +-3.549001 57.658806 +-3.542841 57.659979 +-3.536387 57.661152 +-3.531107 57.662619 +-3.526413 57.664379 +-3.522600 57.667313 +-3.518199 57.669660 +-3.514386 57.672300 +-3.511159 57.675233 +-3.507345 57.677874 +-3.504118 57.680807 +-3.500305 57.683447 +-3.497664 57.686968 +-3.496198 57.690781 +-3.492971 57.694008 +-3.487397 57.695475 +-3.480650 57.695768 +-3.471849 57.695475 +-3.466569 57.696062 +-3.460995 57.697822 +-3.456595 57.699582 +-3.451901 57.701635 +-3.445447 57.702809 +-3.438700 57.703395 +-3.431660 57.703689 +-3.424326 57.704276 +-3.418459 57.705156 +-3.412298 57.706329 +-3.406138 57.707209 +-3.399684 57.708382 +-3.394110 57.709849 +-3.387950 57.710729 +-3.382083 57.711903 +-3.375629 57.712783 +-3.370055 57.714543 +-3.364482 57.715716 +-3.358321 57.716890 +-3.351867 57.718063 +-3.345413 57.718357 +-3.338080 57.718943 +-3.331626 57.717770 +-3.324879 57.716303 +-3.318718 57.717476 +-3.311091 57.716303 +-3.305517 57.714836 +-3.297597 57.714836 +-3.290850 57.715423 +-3.283516 57.715716 +-3.279115 57.713663 +-3.277355 57.710143 +-3.274128 57.707502 +-3.268555 57.705742 +-3.263861 57.703689 +-3.257114 57.702222 +-3.255647 57.701635 +-3.249780 57.700755 +-3.244206 57.699288 +-3.237459 57.697822 +-3.231885 57.696062 +-3.225138 57.694595 +-3.219564 57.693128 +-3.212817 57.691955 +-3.206363 57.690488 +-3.199616 57.689021 +-3.193163 57.687848 +-3.186415 57.686674 +-3.179962 57.685207 +-3.173214 57.684034 +-3.166761 57.682861 +-3.160307 57.681394 +-3.153560 57.679927 +-3.146813 57.678754 +-3.140065 57.677580 +-3.133612 57.676113 +-3.125984 57.675233 +-3.119531 57.673767 +-3.111903 57.673180 +-3.105156 57.671713 +-3.097822 57.670833 +-3.091075 57.669366 +-3.084621 57.668193 +-3.077288 57.667313 +-3.069367 57.666139 +-3.062033 57.665259 +-3.054406 57.664379 +-3.047072 57.663499 +-3.039445 57.662619 +-3.030938 57.662032 +-3.022137 57.661739 +-3.015390 57.662032 +-3.008349 57.662619 +-3.002189 57.663499 +-2.995735 57.664379 +-2.991041 57.666433 +-2.985468 57.668193 +-2.980774 57.669953 +-2.975494 57.671420 +-2.969040 57.672593 +-2.961413 57.672593 +-2.954665 57.673180 +-2.949678 57.674940 +-2.944398 57.676407 +-2.938531 57.678167 +-2.931197 57.678167 +-2.927090 57.680514 +-2.930904 57.683154 +-2.932370 57.686381 +-2.932077 57.689901 +-2.927970 57.692541 +-2.920343 57.692541 +-2.913009 57.693128 +-2.908315 57.694888 +-2.902155 57.696062 +-2.893941 57.695475 +-2.886020 57.695475 +-2.879860 57.696355 +-2.873700 57.697528 +-2.868126 57.698995 +-2.861965 57.699875 +-2.855512 57.700755 +-2.849645 57.699875 +-2.847884 57.696648 +-2.847004 57.693128 +-2.844951 57.689608 +-2.840257 57.687554 +-2.832923 57.687554 +-2.826470 57.688728 +-2.820896 57.689901 +-2.814735 57.691075 +-2.807402 57.691661 +-2.801534 57.692541 +-2.795961 57.694008 +-2.790680 57.695475 +-2.785107 57.694008 +-2.781880 57.690781 +-2.773372 57.690194 +-2.765745 57.689314 +-2.761052 57.689021 +-2.754891 57.687261 +-2.749317 57.685501 +-2.745797 57.683154 +-2.743157 57.679927 +-2.738463 57.678167 +-2.732303 57.678167 +-2.727609 57.679927 +-2.722329 57.681394 +-2.714408 57.681394 +-2.708541 57.679634 +-2.704141 57.677874 +-2.696807 57.676700 +-2.689473 57.677287 +-2.684193 57.678754 +-2.678326 57.680220 +-2.670698 57.679927 +-2.665125 57.678460 +-2.658377 57.676994 +-2.650750 57.676113 +-2.643710 57.674940 +-2.635789 57.674940 +-2.628749 57.675527 +-2.622588 57.676700 +-2.614961 57.675527 +-2.609387 57.673767 +-2.602640 57.672593 +-2.595306 57.671713 +-2.587972 57.672007 +-2.581812 57.673180 +-2.575065 57.673473 +-2.568318 57.672300 +-2.564797 57.669660 +-2.560104 57.667606 +-2.554530 57.665846 +-2.545729 57.665259 +-2.539569 57.666139 +-2.532528 57.666726 +-2.526075 57.665259 +-2.519034 57.663793 +-2.511994 57.662913 +-2.504953 57.663499 +-2.500259 57.665553 +-2.494686 57.667019 +-2.488819 57.668193 +-2.481485 57.668193 +-2.474738 57.668193 +-2.466817 57.667019 +-2.460657 57.665553 +-2.452149 57.664966 +-2.443642 57.664379 +-2.435722 57.664379 +-2.427214 57.663793 +-2.419000 57.663206 +-2.410200 57.662913 +-2.402866 57.662032 +-2.395239 57.660859 +-2.388491 57.659392 +-2.381158 57.659392 +-2.374704 57.660566 +-2.369130 57.662032 +-2.362970 57.662913 +-2.355929 57.663206 +-2.348302 57.663206 +-2.340968 57.662619 +-2.333928 57.662032 +-2.326887 57.662619 +-2.322193 57.664379 +-2.317500 57.666433 +-2.314860 57.669953 +-2.313393 57.673767 +-2.310459 57.677580 +-2.306646 57.679927 +-2.301659 57.681981 +-2.297258 57.684034 +-2.291391 57.685207 +-2.285817 57.683741 +-2.281417 57.681394 +-2.276723 57.679047 +-2.271150 57.677580 +-2.265283 57.675820 +-2.258829 57.674353 +-2.250322 57.673767 +-2.242694 57.672887 +-2.235067 57.672007 +-2.226853 57.671420 +-2.219226 57.670246 +-2.210425 57.669660 +-2.204265 57.668193 +-2.199571 57.666433 +-2.193997 57.664379 +-2.187250 57.662913 +-2.180503 57.663499 +-2.174636 57.664966 +-2.168476 57.666139 +-2.163195 57.667606 +-2.158208 57.669366 +-2.152635 57.671126 +-2.147941 57.673180 +-2.143247 57.674940 +-2.139140 57.677580 +-2.136207 57.680514 +-2.131806 57.683154 +-2.127699 57.685207 +-2.122126 57.686968 +-2.114498 57.686968 +-2.106578 57.686674 +-2.100417 57.687848 +-2.093670 57.688141 +-2.086336 57.688728 +-2.079003 57.688728 +-2.071082 57.688434 +-2.062575 57.687848 +-2.054948 57.686968 +-2.048200 57.685501 +-2.041160 57.684621 +-2.032359 57.684034 +-2.026199 57.684914 +-2.020038 57.685794 +-2.012998 57.686381 +-2.005077 57.686381 +-1.997743 57.685207 +-1.995690 57.681981 +-1.995103 57.678167 +-1.993343 57.674647 +-1.988943 57.672887 +-1.984249 57.670540 +-1.978675 57.668486 +-1.969875 57.668193 +-1.963128 57.667900 +-1.956087 57.668193 +-1.949047 57.668486 +-1.942886 57.669366 +-1.935846 57.669953 +-1.928805 57.670246 +-1.921471 57.669366 +-1.915898 57.667900 +-1.912964 57.664673 +-1.911204 57.661446 +-1.908270 57.658219 +-1.905923 57.655285 +-1.902110 57.652645 +-1.899176 57.651178 +-1.896243 57.648245 +-1.892429 57.645898 +-1.890082 57.642671 +-1.885975 57.640324 +-1.881575 57.637977 +-1.878935 57.635044 +-1.875415 57.632404 +-1.873654 57.629177 +-1.870428 57.626243 +-1.866907 57.623603 +-1.863387 57.621256 +-1.857813 57.619496 +-1.852240 57.617443 +-1.847546 57.615389 +-1.841972 57.613629 +-1.836398 57.611869 +-1.829651 57.610695 +-1.823198 57.609229 +-1.816744 57.607762 +-1.812050 57.605415 +-1.811170 57.602775 +-1.812930 57.598668 +-1.815570 57.595148 +-1.817917 57.591627 +-1.820557 57.588401 +-1.822611 57.584294 +-1.823491 57.579600 +-1.823491 57.575493 +-1.823784 57.571386 +-1.822317 57.568159 +-1.821437 57.564052 +-1.818797 57.560825 +-1.815277 57.558478 +-1.811463 57.555838 +-1.807063 57.553491 +-1.803249 57.551145 +-1.799436 57.548211 +-1.797089 57.545571 +-1.797676 57.540877 +-1.799142 57.536477 +-1.800903 57.532076 +-1.800023 57.528556 +-1.799436 57.524743 +-1.797382 57.521809 +-1.795622 57.518289 +-1.792982 57.515355 +-1.789462 57.512715 +-1.784768 57.510662 +-1.780074 57.508315 +-1.775381 57.505968 +-1.770687 57.503914 +-1.765993 57.501568 +-1.763647 57.498927 +-1.761593 57.495701 +-1.761006 57.495114 +nan nan +-1.760420 57.495114 +-1.765113 57.493060 +-1.773327 57.493647 +-1.781248 57.494527 +-1.786528 57.493060 +-1.785648 57.489540 +-1.780074 57.487487 +-1.777141 57.484846 +-1.779781 57.481033 +-1.783301 57.478099 +-1.782421 57.474579 +-1.779781 57.471352 +-1.773034 57.469885 +-1.766873 57.471059 +-1.759540 57.469885 +-1.756899 57.466952 +-1.760126 57.464018 +-1.763353 57.461085 +-1.766580 57.459031 +-1.769807 57.455804 +-1.773914 57.453457 +-1.777141 57.450524 +-1.780661 57.447590 +-1.784475 57.444950 +-1.788582 57.442603 +-1.792395 57.439963 +-1.797382 57.437910 +-1.801489 57.435563 +-1.805596 57.432923 +-1.804130 57.431163 +-1.797382 57.429696 +-1.797089 57.426176 +-1.800023 57.422949 +-1.805596 57.421775 +-1.810290 57.419722 +-1.813517 57.416788 +-1.816157 57.412975 +-1.820264 57.410628 +-1.823491 57.407694 +-1.829065 57.406227 +-1.835225 57.405347 +-1.843146 57.405347 +-1.850479 57.405347 +-1.855467 57.403294 +-1.857227 57.399480 +-1.856347 57.395667 +-1.854000 57.392733 +-1.851946 57.389506 +-1.849893 57.385986 +-1.851946 57.381879 +-1.856933 57.380119 +-1.861627 57.378065 +-1.866027 57.376012 +-1.871014 57.374252 +-1.875708 57.372198 +-1.880695 57.370145 +-1.885389 57.368385 +-1.889496 57.365745 +-1.894189 57.363984 +-1.898003 57.361344 +-1.901523 57.358411 +-1.904750 57.355184 +-1.909444 57.353424 +-1.914431 57.351370 +-1.918244 57.349023 +-1.921471 57.345796 +-1.924111 57.342570 +-1.926458 57.338756 +-1.929098 57.335236 +-1.932912 57.332889 +-1.937312 57.330249 +-1.942006 57.328195 +-1.945820 57.325848 +-1.949927 57.323208 +-1.953154 57.320275 +-1.956674 57.317634 +-1.959607 57.314408 +-1.963128 57.311474 +-1.966354 57.308247 +-1.969581 57.305607 +-1.972808 57.302380 +-1.976915 57.300033 +-1.980142 57.296806 +-1.983369 57.293873 +-1.987183 57.291526 +-1.990703 57.288592 +-1.993930 57.285659 +-1.998037 57.283019 +-2.000677 57.279498 +-2.003904 57.276271 +-2.006251 57.273045 +-2.009478 57.270111 +-2.012118 57.266297 +-2.014758 57.263070 +-2.017105 57.259550 +-2.019158 57.255443 +-2.022092 57.252510 +-2.024145 57.248403 +-2.027079 57.245176 +-2.030012 57.241362 +-2.032359 57.238135 +-2.035293 57.234322 +-2.038226 57.231388 +-2.040866 57.228161 +-2.044093 57.224934 +-2.046734 57.221414 +-2.049374 57.217894 +-2.051721 57.214374 +-2.054948 57.211440 +-2.057588 57.207920 +-2.059935 57.204400 +-2.061988 57.200293 +-2.063748 57.197359 +-2.063748 57.192959 +-2.063748 57.188852 +-2.064628 57.184452 +-2.066682 57.180345 +-2.068442 57.176531 +-2.069322 57.171837 +-2.071375 57.167730 +-2.072255 57.163330 +-2.073722 57.158636 +-2.074309 57.154236 +-2.074309 57.150129 +-2.073722 57.146315 +-2.071082 57.143382 +-2.067562 57.140742 +-2.063748 57.138395 +-2.061108 57.135168 +-2.059348 57.131941 +-2.055534 57.129301 +-2.051134 57.127247 +-2.046440 57.124901 +-2.042920 57.122554 +-2.042040 57.118740 +-2.043507 57.115513 +-2.044680 57.111113 +-2.047907 57.108179 +-2.050547 57.104659 +-2.053481 57.101726 +-2.057001 57.098499 +-2.059348 57.094978 +-2.062868 57.092045 +-2.065802 57.089111 +-2.070789 57.087351 +-2.075482 57.085004 +-2.079589 57.082364 +-2.081643 57.079137 +-2.083696 57.075030 +-2.084576 57.070630 +-2.086336 57.066523 +-2.088390 57.062416 +-2.089857 57.058309 +-2.092790 57.055082 +-2.096604 57.052442 +-2.099831 57.049509 +-2.102178 57.045695 +-2.105111 57.042468 +-2.107458 57.038948 +-2.110685 57.035721 +-2.114498 57.033374 +-2.120072 57.031321 +-2.125646 57.029854 +-2.129753 57.027507 +-2.131513 57.023693 +-2.134447 57.020466 +-2.139140 57.018706 +-2.144714 57.016946 +-2.148528 57.014599 +-2.152048 57.011666 +-2.154101 57.008146 +-2.155568 57.003745 +-2.155568 56.999345 +-2.156448 56.994651 +-2.157915 56.990251 +-2.158502 56.985851 +-2.161142 56.982330 +-2.165249 56.979690 +-2.170529 56.978223 +-2.175223 56.976463 +-2.179916 56.974410 +-2.183143 56.971476 +-2.182557 56.967369 +-2.179623 56.964729 +-2.178156 56.961502 +-2.176396 56.957982 +-2.174343 56.954755 +-2.171996 56.951235 +-2.169942 56.947715 +-2.170236 56.943608 +-2.170236 56.939501 +-2.171409 56.935100 +-2.173169 56.930993 +-2.175516 56.927473 +-2.177276 56.923366 +-2.177570 56.919553 +-2.176690 56.915446 +-2.177863 56.911045 +-2.180797 56.908112 +-2.183437 56.904298 +-2.186370 56.901365 +-2.189304 56.898138 +-2.192531 56.894911 +-2.195464 56.891977 +-2.198104 56.888457 +-2.200451 56.884937 +-2.204852 56.882590 +-2.207785 56.879363 +-2.210719 56.876429 +-2.212772 56.872616 +-2.213946 56.867922 +-2.214826 56.863228 +-2.216586 56.859415 +-2.220693 56.857068 +-2.224800 56.854428 +-2.229200 56.852081 +-2.233014 56.849734 +-2.236827 56.847094 +-2.240347 56.844454 +-2.244161 56.841814 +-2.248855 56.840053 +-2.254428 56.838293 +-2.258242 56.835947 +-2.259122 56.831253 +-2.261176 56.827146 +-2.264109 56.824506 +-2.267336 56.821279 +-2.271443 56.818932 +-2.274670 56.815705 +-2.278484 56.813358 +-2.282591 56.810718 +-2.286404 56.808371 +-2.290218 56.805731 +-2.294031 56.803384 +-2.298138 56.800744 +-2.302245 56.798397 +-2.306939 56.796344 +-2.310753 56.793997 +-2.315446 56.791943 +-2.320140 56.789890 +-2.323953 56.787543 +-2.328647 56.785196 +-2.333341 56.783436 +-2.339501 56.782556 +-2.344782 56.780796 +-2.349475 56.779036 +-2.352409 56.775809 +-2.355929 56.773169 +-2.360623 56.770822 +-2.367957 56.771115 +-2.375584 56.771995 +-2.383798 56.772582 +-2.389958 56.771702 +-2.394359 56.769355 +-2.399052 56.767595 +-2.403159 56.764955 +-2.406386 56.762021 +-2.408733 56.758501 +-2.410493 56.757034 +-2.406386 56.758208 +-2.408440 56.755861 +-2.410786 56.752341 +-2.413427 56.748527 +-2.414307 56.747647 +-2.416360 56.743833 +-2.418120 56.739726 +-2.419587 56.735913 +-2.421347 56.731806 +-2.423107 56.727699 +-2.424867 56.723592 +-2.426334 56.719778 +-2.428388 56.715671 +-2.430734 56.712151 +-2.433375 56.708631 +-2.437188 56.705991 +-2.440415 56.703057 +-2.441002 56.699537 +-2.436308 56.697190 +-2.430148 56.695723 +-2.424867 56.694256 +-2.422814 56.690736 +-2.423107 56.686629 +-2.424867 56.682816 +-2.428094 56.679589 +-2.431028 56.676655 +-2.435135 56.674308 +-2.438948 56.671668 +-2.443642 56.669615 +-2.448922 56.668148 +-2.455083 56.667268 +-2.461830 56.666681 +-2.467990 56.665801 +-2.473271 56.664041 +-2.477965 56.662281 +-2.482658 56.660227 +-2.485885 56.657294 +-2.488819 56.654067 +-2.492339 56.651133 +-2.493806 56.647320 +-2.496446 56.643506 +-2.497913 56.639692 +-2.497913 56.635585 +-2.496446 56.632359 +-2.491752 56.630012 +-2.487352 56.627665 +-2.480898 56.626785 +-2.476498 56.624438 +-2.474738 56.621211 +-2.474738 56.616811 +-2.477671 56.613877 +-2.480898 56.610944 +-2.485005 56.608303 +-2.488819 56.605957 +-2.493219 56.603903 +-2.496739 56.600970 +-2.500553 56.598329 +-2.503486 56.595396 +-2.506127 56.591876 +-2.507887 56.587769 +-2.511114 56.584835 +-2.515514 56.582782 +-2.519328 56.580141 +-2.522848 56.577208 +-2.524315 56.573394 +-2.526955 56.569581 +-2.529888 56.566647 +-2.533995 56.564300 +-2.537809 56.561660 +-2.540742 56.559900 +-2.545143 56.558140 +-2.550716 56.556673 +-2.555703 56.554913 +-2.561864 56.554033 +-2.568024 56.553153 +-2.575065 56.552566 +-2.581812 56.552273 +-2.587679 56.551099 +-2.593840 56.550219 +-2.598240 56.548459 +-2.602934 56.546112 +-2.607040 56.543472 +-2.609387 56.540245 +-2.612614 56.537312 +-2.614961 56.533498 +-2.618188 56.530565 +-2.622002 56.527924 +-2.626109 56.525578 +-2.630509 56.523524 +-2.635202 56.521764 +-2.640190 56.520004 +-2.644883 56.517950 +-2.649577 56.516190 +-2.652804 56.512963 +-2.656031 56.510030 +-2.661311 56.508563 +-2.668352 56.507976 +-2.674219 56.507096 +-2.679499 56.505629 +-2.683313 56.502989 +-2.688006 56.501229 +-2.693287 56.499762 +-2.698567 56.498002 +-2.704727 56.497122 +-2.710008 56.495655 +-2.714702 56.493602 +-2.718515 56.491255 +-2.720862 56.487441 +-2.723209 56.484215 +-2.724969 56.480108 +-2.726142 56.475414 +-2.727022 56.470720 +-2.726142 56.467200 +-2.727022 56.462800 +-2.732596 56.461040 +-2.740810 56.461626 +-2.746971 56.463093 +-2.752544 56.464853 +-2.758118 56.466613 +-2.763398 56.468373 +-2.768972 56.470134 +-2.775133 56.471307 +-2.781000 56.472187 +-2.787160 56.473654 +-2.794787 56.474534 +-2.801828 56.474534 +-2.807988 56.473654 +-2.814149 56.472480 +-2.820309 56.471307 +-2.825589 56.470134 +-2.829990 56.468080 +-2.835564 56.466320 +-2.839964 56.464560 +-2.845538 56.463093 +-2.849938 56.461040 +-2.855218 56.459573 +-2.860499 56.458106 +-2.868126 56.458106 +-2.873700 56.459866 +-2.879273 56.461333 +-2.884554 56.463386 +-2.890714 56.464560 +-2.898341 56.464560 +-2.903915 56.463093 +-2.909782 56.461920 +-2.917996 56.462506 +-2.925330 56.463680 +-2.932077 56.463093 +-2.937358 56.461920 +-2.937358 56.462800 +-2.940878 56.461333 +-2.945278 56.459279 +-2.949972 56.457226 +-2.954665 56.455173 +-2.958772 56.453412 +-2.962879 56.450772 +-2.967573 56.448719 +-2.972853 56.447252 +-2.979601 56.446665 +-2.986934 56.446665 +-2.993682 56.448132 +-3.000135 56.449305 +-3.006296 56.450479 +-3.014510 56.451066 +-3.021550 56.452239 +-3.030058 56.452532 +-3.036805 56.452239 +-3.043552 56.451652 +-3.048832 56.449892 +-3.054113 56.448719 +-3.059393 56.447252 +-3.064967 56.445492 +-3.069367 56.443732 +-3.073474 56.441091 +-3.077874 56.439038 +-3.081688 56.436691 +-3.086088 56.434344 +-3.092249 56.433758 +-3.097822 56.431998 +-3.102809 56.430531 +-3.108970 56.429357 +-3.114250 56.428184 +-3.119824 56.426424 +-3.124811 56.424957 +-3.129505 56.423197 +-3.133318 56.420263 +-3.136839 56.417916 +-3.140945 56.415276 +-3.144172 56.412343 +-3.148573 56.410289 +-3.152973 56.408236 +-3.157667 56.406476 +-3.162947 56.404716 +-3.166761 56.402369 +-3.171454 56.400315 +-3.175268 56.397675 +-3.178201 56.394742 +-3.182308 56.392101 +-3.186709 56.390048 +-3.191402 56.387994 +-3.196683 56.386528 +-3.201083 56.384474 +-3.205777 56.382421 +-3.210470 56.380660 +-3.214284 56.378020 +-3.218098 56.375673 +-3.221031 56.372447 +-3.224845 56.370100 +-3.228952 56.367460 +-3.234232 56.365699 +-3.240099 56.365113 +-3.246846 56.364526 +-3.253007 56.363353 +-3.258874 56.362179 +-3.264154 56.360712 +-3.269435 56.359246 +-3.274715 56.357779 +-3.280876 56.356605 +-3.288796 56.357192 +-3.296130 56.358072 +-3.301704 56.360126 +-3.307277 56.361592 +-3.312851 56.363353 +-3.319305 56.364819 +-3.324292 56.363059 +-3.324879 56.360419 +-3.321358 56.357779 +-3.316665 56.355725 +-3.311971 56.353672 +-3.306691 56.351912 +-3.301410 56.350152 +-3.294663 56.348978 +-3.287329 56.348098 +-3.280289 56.346925 +-3.272075 56.346631 +-3.264448 56.346631 +-3.258581 56.347511 +-3.252420 56.348685 +-3.246846 56.349858 +-3.240979 56.351032 +-3.235699 56.352792 +-3.229245 56.353085 +-3.223965 56.354845 +-3.216924 56.355139 +-3.210764 56.356019 +-3.204897 56.357192 +-3.199030 56.358366 +-3.193163 56.359246 +-3.187882 56.360712 +-3.183188 56.362766 +-3.178495 56.364819 +-3.174095 56.366579 +-3.168521 56.368340 +-3.162360 56.369513 +-3.156787 56.370393 +-3.151506 56.371860 +-3.146226 56.373327 +-3.141532 56.375380 +-3.136839 56.377727 +-3.133025 56.380367 +-3.129211 56.382714 +-3.124811 56.385061 +-3.119531 56.386528 +-3.113370 56.387408 +-3.107210 56.388288 +-3.101343 56.389461 +-3.095182 56.390635 +-3.089022 56.391515 +-3.084035 56.392981 +-3.079341 56.395035 +-3.074647 56.397088 +-3.070247 56.398848 +-3.065553 56.401195 +-3.060273 56.402369 +-3.053233 56.402955 +-3.047072 56.403542 +-3.040912 56.404422 +-3.036218 56.406476 +-3.032404 56.409116 +-3.027124 56.410583 +-3.021257 56.411756 +-3.015096 56.412636 +-3.008349 56.412929 +-3.002189 56.414103 +-2.995148 56.414396 +-2.990161 56.416156 +-2.984881 56.417623 +-2.980187 56.419383 +-2.975494 56.421730 +-2.971093 56.423490 +-2.966693 56.425544 +-2.961119 56.427304 +-2.955839 56.428477 +-2.951439 56.430531 +-2.946745 56.432584 +-2.942345 56.434638 +-2.938824 56.437865 +-2.935011 56.440211 +-2.932077 56.443438 +-2.928264 56.445785 +-2.923570 56.447839 +-2.918876 56.449599 +-2.913889 56.451066 +-2.906849 56.451652 +-2.900688 56.452826 +-2.892474 56.452239 +-2.884554 56.451652 +-2.877220 56.450772 +-2.869886 56.449599 +-2.864312 56.448132 +-2.859912 56.445785 +-2.855218 56.444025 +-2.851698 56.441385 +-2.847884 56.438745 +-2.840551 56.437865 +-2.834683 56.438745 +-2.828523 56.439625 +-2.821776 56.440211 +-2.815322 56.440798 +-2.808868 56.439331 +-2.805935 56.436398 +-2.804175 56.433171 +-2.804175 56.428771 +-2.803295 56.425250 +-2.801534 56.422023 +-2.798894 56.418797 +-2.798014 56.415276 +-2.799774 56.411169 +-2.801828 56.407649 +-2.804468 56.404129 +-2.806815 56.400609 +-2.809455 56.397088 +-2.810335 56.392395 +-2.809455 56.388874 +-2.808575 56.385061 +-2.809455 56.380660 +-2.811508 56.376260 +-2.815322 56.373913 +-2.818842 56.371273 +-2.823536 56.369513 +-2.828816 56.368046 +-2.833803 56.366286 +-2.837910 56.363939 +-2.836150 56.360419 +-2.831750 56.358659 +-2.828230 56.358366 +-2.822949 56.359832 +-2.819136 56.362179 +-2.813269 56.363353 +-2.809455 56.361592 +-2.807402 56.358366 +-2.806521 56.354552 +-2.805935 56.350738 +-2.803881 56.347511 +-2.800361 56.344871 +-2.795961 56.342818 +-2.788627 56.341938 +-2.782173 56.340471 +-2.779533 56.337537 +-2.775719 56.334897 +-2.771026 56.332844 +-2.764865 56.331670 +-2.759291 56.332550 +-2.751371 56.332550 +-2.744037 56.331670 +-2.738757 56.329910 +-2.734943 56.327270 +-2.730836 56.325217 +-2.723209 56.324043 +-2.718222 56.324630 +-2.710595 56.324630 +-2.704141 56.325217 +-2.695927 56.324630 +-2.687713 56.324043 +-2.680379 56.324043 +-2.675392 56.323750 +-2.668938 56.322576 +-2.664538 56.320229 +-2.658964 56.318469 +-2.651630 56.317883 +-2.643710 56.317296 +-2.638136 56.315242 +-2.633736 56.313189 +-2.631976 56.309962 +-2.629922 56.306735 +-2.628162 56.303215 +-2.623762 56.301161 +-2.619068 56.298521 +-2.614668 56.296468 +-2.609387 56.294708 +-2.603814 56.292654 +-2.599413 56.290894 +-2.594720 56.288547 +-2.590319 56.286494 +-2.585626 56.284147 +-2.582105 56.281800 +-2.579759 56.278867 +-2.577705 56.275640 +-2.579465 56.271533 +-2.582399 56.268306 +-2.586506 56.265959 +-2.591199 56.263905 +-2.595893 56.261852 +-2.600293 56.260092 +-2.603814 56.257452 +-2.607921 56.255105 +-2.612614 56.252758 +-2.616428 56.250411 +-2.620828 56.248358 +-2.624642 56.245717 +-2.628749 56.243371 +-2.633442 56.241317 +-2.637256 56.238970 +-2.640776 56.236330 +-2.644590 56.233983 +-2.649577 56.231930 +-2.653390 56.229583 +-2.657791 56.227236 +-2.661604 56.224596 +-2.665418 56.222249 +-2.669525 56.219609 +-2.673045 56.217262 +-2.677739 56.215209 +-2.683019 56.214035 +-2.688886 56.212862 +-2.696807 56.212862 +-2.704141 56.212862 +-2.710008 56.211982 +-2.716168 56.210808 +-2.722035 56.209928 +-2.726729 56.207875 +-2.731129 56.205821 +-2.735530 56.203768 +-2.741690 56.202888 +-2.748437 56.202594 +-2.754304 56.201421 +-2.760465 56.200541 +-2.765452 56.198781 +-2.771026 56.197021 +-2.775426 56.194967 +-2.780413 56.192914 +-2.784227 56.190567 +-2.787747 56.187927 +-2.793907 56.187047 +-2.800654 56.186460 +-2.807402 56.186167 +-2.813562 56.184993 +-2.820016 56.184406 +-2.827056 56.184113 +-2.834097 56.184113 +-2.841724 56.184993 +-2.847004 56.186753 +-2.851698 56.188807 +-2.856978 56.190567 +-2.861379 56.192914 +-2.865779 56.194967 +-2.870179 56.197021 +-2.874873 56.199074 +-2.880153 56.200834 +-2.886607 56.202301 +-2.894234 56.203181 +-2.901275 56.204061 +-2.909489 56.204648 +-2.916529 56.205528 +-2.924157 56.205528 +-2.931784 56.205528 +-2.938238 56.204941 +-2.944985 56.204355 +-2.951145 56.203474 +-2.957012 56.202594 +-2.961706 56.200541 +-2.966693 56.199074 +-2.971387 56.197021 +-2.976080 56.194967 +-2.979601 56.192620 +-2.983708 56.189980 +-2.986934 56.187047 +-2.990455 56.184406 +-2.993682 56.181473 +-2.997495 56.178833 +-3.001309 56.176486 +-3.005122 56.173846 +-3.009229 56.171499 +-3.013336 56.169445 +-3.018030 56.167098 +-3.022724 56.165338 +-3.027711 56.163872 +-3.033284 56.162111 +-3.038271 56.160938 +-3.044432 56.159765 +-3.049126 56.157711 +-3.052059 56.154778 +-3.055873 56.152137 +-3.059100 56.149204 +-3.062913 56.146564 +-3.066727 56.144217 +-3.071420 56.142163 +-3.074941 56.139817 +-3.078754 56.137176 +-3.083448 56.135123 +-3.088728 56.133656 +-3.093422 56.131603 +-3.097822 56.129549 +-3.102223 56.127496 +-3.105743 56.124855 +-3.110143 56.122509 +-3.113077 56.119575 +-3.115717 56.116348 +-3.121291 56.114881 +-3.128038 56.114588 +-3.134785 56.114001 +-3.138305 56.111361 +-3.141532 56.108428 +-3.143292 56.104321 +-3.145639 56.100800 +-3.147986 56.097280 +-3.150333 56.093467 +-3.152386 56.090240 +-3.154146 56.086133 +-3.151800 56.083199 +-3.150039 56.079679 +-3.150039 56.075865 +-3.150626 56.071172 +-3.152093 56.067358 +-3.154733 56.063544 +-3.157960 56.060611 +-3.161774 56.057971 +-3.165587 56.055624 +-3.172334 56.055037 +-3.179375 56.055037 +-3.187882 56.055624 +-3.194629 56.056504 +-3.203137 56.057091 +-3.211057 56.057384 +-3.216631 56.055917 +-3.220738 56.053864 +-3.226898 56.052690 +-3.229245 56.053570 +-3.228365 56.054450 +-3.234232 56.054157 +-3.240686 56.055624 +-3.246846 56.057091 +-3.254180 56.057091 +-3.260341 56.055917 +-3.265328 56.054450 +-3.270021 56.052104 +-3.274422 56.050343 +-3.278235 56.047703 +-3.283222 56.046530 +-3.290263 56.045943 +-3.295250 56.044183 +-3.299357 56.041543 +-3.302290 56.038609 +-3.306104 56.035969 +-3.311971 56.035089 +-3.319012 56.034796 +-3.324585 56.033622 +-3.329572 56.031569 +-3.333679 56.029515 +-3.337786 56.026875 +-3.341307 56.024528 +-3.346587 56.023061 +-3.353921 56.023061 +-3.360375 56.024235 +-3.367415 56.025408 +-3.374162 56.024822 +-3.377976 56.022181 +-3.381203 56.019248 +-3.384136 56.016021 +-3.387950 56.013674 +-3.392350 56.011327 +-3.399097 56.010741 +-3.404378 56.012207 +-3.404378 56.012794 +-3.409365 56.013087 +-3.414058 56.015141 +-3.419339 56.016901 +-3.425793 56.018074 +-3.432833 56.018955 +-3.441047 56.019541 +-3.446621 56.021008 +-3.451021 56.023355 +-3.455421 56.025702 +-3.460702 56.027168 +-3.468329 56.028049 +-3.474489 56.026875 +-3.480356 56.025995 +-3.487397 56.026875 +-3.492091 56.028929 +-3.494731 56.031862 +-3.497078 56.034796 +-3.503531 56.035969 +-3.511159 56.035969 +-3.517319 56.035089 +-3.523186 56.034209 +-3.530227 56.035089 +-3.535800 56.036556 +-3.540201 56.038903 +-3.544894 56.040956 +-3.548708 56.043303 +-3.553108 56.045650 +-3.556629 56.047997 +-3.561322 56.050343 +-3.565429 56.052104 +-3.571296 56.053864 +-3.578337 56.054744 +-3.582444 56.055624 +-3.588311 56.054450 +-3.594471 56.053570 +-3.600338 56.052397 +-3.606499 56.051517 +-3.612953 56.050930 +-3.620287 56.050930 +-3.628500 56.051517 +-3.634368 56.050343 +-3.641408 56.049757 +-3.648742 56.049757 +-3.656076 56.050637 +-3.662236 56.051224 +-3.668397 56.050050 +-3.675144 56.049463 +-3.682478 56.049463 +-3.688638 56.047997 +-3.692452 56.045650 +-3.694505 56.041836 +-3.695385 56.038316 +-3.690105 56.036556 +-3.684531 56.034796 +-3.681598 56.031862 +-3.681598 56.027755 +-3.684531 56.024822 +-3.685998 56.021595 +-3.680424 56.020128 +-3.675144 56.018368 +-3.672504 56.015141 +-3.670450 56.011914 +-3.666930 56.009567 +-3.662236 56.007220 +-3.654902 56.006340 +-3.648449 56.006927 +-3.643462 56.008687 +-3.637301 56.009567 +-3.632021 56.011034 +-3.626740 56.012501 +-3.619993 56.013087 +-3.613539 56.013674 +-3.606792 56.014261 +-3.600045 56.014848 +-3.593591 56.015141 +-3.585964 56.015141 +-3.579510 56.015141 +-3.573056 56.013674 +-3.567483 56.011914 +-3.560442 56.011034 +-3.554869 56.009274 +-3.549588 56.007514 +-3.544894 56.005460 +-3.540201 56.005167 +-3.533454 56.005754 +-3.527000 56.006047 +-3.519079 56.006340 +-3.511159 56.005754 +-3.505878 56.004287 +-3.501185 56.001940 +-3.497078 55.999593 +-3.492091 55.997833 +-3.487397 55.995486 +-3.482117 55.994019 +-3.474196 55.993433 +-3.468916 55.994313 +-3.461582 55.994313 +-3.454248 55.994313 +-3.447501 55.994313 +-3.440167 55.994606 +-3.434300 55.994019 +-3.429313 55.991966 +-3.423739 55.990206 +-3.417285 55.989032 +-3.409951 55.989032 +-3.403204 55.989619 +-3.395284 55.989032 +-3.388830 55.987859 +-3.382376 55.986392 +-3.376216 55.985219 +-3.369762 55.984632 +-3.365362 55.986979 +-3.360668 55.989032 +-3.356854 55.991379 +-3.353041 55.994019 +-3.347174 55.994899 +-3.340426 55.994313 +-3.335146 55.992846 +-3.330452 55.990499 +-3.326052 55.988739 +-3.321652 55.986392 +-3.317251 55.984339 +-3.311678 55.982579 +-3.307277 55.980525 +-3.302877 55.978472 +-3.297303 55.976711 +-3.290850 55.975245 +-3.283222 55.975245 +-3.277355 55.976418 +-3.270315 55.975538 +-3.263861 55.974071 +-3.257407 55.973778 +-3.252127 55.975245 +-3.246846 55.976711 +-3.240979 55.977885 +-3.233939 55.977005 +-3.226312 55.977005 +-3.220445 55.978178 +-3.213697 55.978472 +-3.206657 55.977592 +-3.198736 55.977005 +-3.191989 55.976711 +-3.184362 55.976711 +-3.177908 55.977298 +-3.170281 55.977298 +-3.162360 55.976711 +-3.155026 55.975538 +-3.148279 55.975245 +-3.141532 55.974365 +-3.135078 55.973191 +-3.129798 55.971431 +-3.125104 55.969084 +-3.120411 55.967031 +-3.116010 55.964977 +-3.112490 55.962630 +-3.107796 55.960284 +-3.103689 55.957937 +-3.098996 55.956177 +-3.094302 55.953830 +-3.089608 55.951776 +-3.084328 55.950016 +-3.079048 55.948256 +-3.072887 55.947083 +-3.066433 55.945616 +-3.059393 55.944736 +-3.051472 55.944149 +-3.045312 55.945323 +-3.039445 55.946496 +-3.033284 55.947083 +-3.025364 55.946789 +-3.018030 55.945909 +-3.012456 55.944149 +-3.006002 55.942682 +-3.001015 55.943269 +-2.995735 55.945029 +-2.991335 55.947083 +-2.988401 55.950016 +-2.984588 55.952363 +-2.979894 55.954417 +-2.975200 55.956470 +-2.971680 55.958817 +-2.966986 55.961164 +-2.963466 55.963511 +-2.959359 55.966151 +-2.954959 55.967911 +-2.948798 55.969084 +-2.941758 55.968791 +-2.933544 55.968498 +-2.925330 55.967911 +-2.917996 55.967911 +-2.911249 55.968204 +-2.905382 55.969378 +-2.900395 55.970844 +-2.895701 55.973191 +-2.891888 55.975538 +-2.888074 55.978178 +-2.884260 55.980525 +-2.881033 55.983752 +-2.879567 55.987566 +-2.878393 55.992259 +-2.878393 55.996366 +-2.879273 55.999886 +-2.877807 56.004287 +-2.874580 56.006927 +-2.869299 56.008687 +-2.861965 56.008687 +-2.854338 56.008687 +-2.851991 56.011914 +-2.853752 56.015141 +-2.856392 56.018368 +-2.858152 56.021595 +-2.859032 56.025408 +-2.858152 56.030102 +-2.853752 56.031862 +-2.847884 56.033036 +-2.841137 56.033329 +-2.834097 56.033916 +-2.831457 56.036849 +-2.830283 56.041249 +-2.829990 56.045650 +-2.827350 56.047703 +-2.821483 56.048583 +-2.814735 56.049170 +-2.810922 56.051810 +-2.809162 56.055917 +-2.806521 56.059144 +-2.801534 56.060904 +-2.793907 56.060904 +-2.789214 56.061491 +-2.782173 56.062078 +-2.774252 56.061491 +-2.768972 56.059437 +-2.763105 56.057677 +-2.754891 56.057091 +-2.746971 56.056797 +-2.740810 56.057677 +-2.735823 56.059144 +-2.730543 56.060904 +-2.724382 56.061784 +-2.717048 56.061784 +-2.711768 56.060024 +-2.705314 56.058557 +-2.698274 56.057677 +-2.690060 56.057091 +-2.682433 56.057091 +-2.676272 56.057971 +-2.670698 56.059144 +-2.664538 56.060024 +-2.657204 56.060024 +-2.649870 56.059144 +-2.643710 56.057677 +-2.637256 56.056504 +-2.631096 56.055037 +-2.625815 56.053277 +-2.619948 56.051810 +-2.615841 56.049463 +-2.611147 56.047117 +-2.605867 56.045650 +-2.600293 56.043890 +-2.597066 56.041249 +-2.594133 56.038316 +-2.591786 56.035382 +-2.589733 56.031862 +-2.587092 56.029222 +-2.584452 56.025995 +-2.579759 56.023942 +-2.574478 56.022181 +-2.571251 56.019835 +-2.570078 56.015728 +-2.571545 56.011914 +-2.575065 56.008980 +-2.577998 56.005754 +-2.580345 56.002527 +-2.580052 56.000473 +-2.579465 55.999886 +-2.577412 55.998126 +-2.572718 55.995780 +-2.568024 55.994606 +-2.563331 55.994313 +-2.560104 55.997246 +-2.556877 56.000180 +-2.552477 56.002233 +-2.547196 56.000473 +-2.542503 55.998420 +-2.537222 55.996660 +-2.529595 55.996660 +-2.525781 55.999300 +-2.521381 56.001060 +-2.516101 56.002820 +-2.509940 56.003700 +-2.502020 56.003113 +-2.497326 56.001940 +-2.492926 55.999593 +-2.489112 55.997246 +-2.485885 55.994313 +-2.479431 55.993433 +-2.472684 55.992846 +-2.466524 55.991379 +-2.461243 55.989619 +-2.457723 55.987272 +-2.454203 55.984632 +-2.448629 55.982872 +-2.440415 55.982285 +-2.433375 55.981405 +-2.428974 55.979058 +-2.423694 55.977592 +-2.419294 55.975245 +-2.415480 55.972898 +-2.411080 55.970551 +-2.406386 55.968204 +-2.401106 55.966737 +-2.394652 55.965271 +-2.388491 55.963804 +-2.384091 55.962044 +-2.379691 55.959697 +-2.375291 55.957643 +-2.371770 55.955003 +-2.367957 55.952363 +-2.364436 55.949723 +-2.360036 55.947669 +-2.356516 55.945323 +-2.351822 55.942976 +-2.346542 55.941216 +-2.340381 55.940042 +-2.334221 55.938575 +-2.328647 55.936522 +-2.324247 55.934762 +-2.320727 55.931828 +-2.316033 55.930068 +-2.309872 55.928601 +-2.301659 55.928015 +-2.294618 55.926841 +-2.288458 55.925668 +-2.283177 55.923908 +-2.277017 55.922441 +-2.270563 55.920974 +-2.265576 55.920974 +-2.260296 55.919214 +-2.252082 55.918627 +-2.245335 55.918921 +-2.242401 55.921854 +-2.238587 55.924494 +-2.232427 55.925668 +-2.225093 55.925374 +-2.219519 55.924494 +-2.212185 55.924494 +-2.204265 55.923908 +-2.198691 55.922148 +-2.193411 55.920387 +-2.186957 55.918921 +-2.180503 55.917747 +-2.174343 55.916280 +-2.169062 55.914520 +-2.163782 55.912760 +-2.156448 55.911587 +-2.149408 55.910707 +-2.141194 55.910413 +-2.133860 55.910413 +-2.129460 55.908067 +-2.126526 55.905133 +-2.126819 55.900733 +-2.128579 55.896919 +-2.131220 55.893399 +-2.132686 55.889585 +-2.130046 55.886358 +-2.125939 55.884305 +-2.120366 55.882545 +-2.115085 55.880785 +-2.111565 55.878144 +-2.107751 55.875504 +-2.102471 55.873744 +-2.095430 55.872864 +-2.089270 55.871397 +-2.083696 55.869637 +-2.079589 55.867584 +-2.075776 55.864943 +-2.074309 55.861717 +-2.072549 55.858196 +-2.072549 55.854089 +-2.069615 55.851156 +-2.068148 55.847636 +-2.064628 55.845289 +-2.061988 55.842355 +-2.060815 55.840302 +-2.057588 55.837662 +-2.053774 55.835315 +-2.049374 55.832968 +-2.047027 55.830328 +-2.043213 55.827394 +-2.039693 55.825047 +-2.037346 55.821820 +-2.033533 55.819474 +-2.030012 55.816833 +-2.027372 55.813900 +-2.025025 55.810966 +-2.022092 55.808033 +-2.020625 55.804806 +-2.017985 55.801579 +-2.015345 55.798939 +-2.013585 55.795418 +-2.011238 55.792485 +-2.008598 55.789551 +-2.005957 55.786618 +-2.003024 55.783684 +-2.000970 55.780457 +-1.996863 55.778111 +-1.994810 55.775177 +-1.990703 55.772537 +-1.988356 55.769603 +-1.985716 55.766670 +-1.984249 55.763443 +-1.981316 55.760216 +-1.979849 55.756989 +-1.976329 55.754349 +-1.972808 55.752002 +-1.968408 55.749655 +-1.964008 55.747602 +-1.958727 55.745842 +-1.954034 55.743495 +-1.949633 55.741441 +-1.946406 55.738801 +-1.942593 55.736454 +-1.939073 55.733814 +-1.936726 55.730881 +-1.934086 55.727654 +-1.931445 55.725013 +-1.928805 55.722080 +-1.925285 55.719440 +-1.922645 55.716506 +-1.918244 55.714159 +-1.914724 55.711812 +-1.910324 55.709466 +-1.906217 55.707119 +-1.900643 55.705652 +-1.896243 55.703305 +-1.891842 55.701252 +-1.887442 55.699198 +-1.884215 55.696265 +-1.880402 55.693918 +-1.876881 55.691278 +-1.875415 55.688051 +-1.872481 55.685117 +-1.870134 55.682184 +-1.867494 55.679250 +-1.864854 55.676023 +-1.862214 55.673383 +-1.860454 55.669863 +-1.857813 55.666929 +-1.856347 55.663702 +-1.854000 55.660475 +-1.851066 55.657542 +-1.847839 55.654902 +-1.843439 55.652848 +-1.839625 55.650208 +-1.836398 55.647861 +-1.831705 55.645514 +-1.828478 55.643168 +-1.824958 55.640527 +-1.822317 55.637594 +-1.819677 55.634367 +-1.815570 55.632607 +-1.808236 55.631433 +-1.801489 55.632020 +-1.797676 55.634367 +-1.794742 55.637300 +-1.792689 55.641407 +-1.791809 55.645808 +-1.790929 55.650208 +-1.787115 55.651968 +-1.782421 55.650795 +-1.779194 55.648155 +-1.775381 55.645514 +-1.773034 55.642581 +-1.770394 55.639647 +-1.766873 55.637300 +-1.764233 55.634074 +-1.760713 55.631727 +-1.756313 55.629380 +-1.751032 55.627620 +-1.746632 55.625273 +-1.744872 55.622046 +-1.748979 55.619406 +-1.755139 55.618526 +-1.760713 55.617646 +-1.765993 55.616179 +-1.768340 55.612659 +-1.766873 55.609432 +-1.763060 55.607085 +-1.758073 55.605031 +-1.750739 55.605031 +-1.746925 55.607378 +-1.743112 55.610019 +-1.739885 55.612072 +-1.734311 55.612952 +-1.727564 55.613245 +-1.719350 55.612659 +-1.713190 55.611485 +-1.707909 55.609725 +-1.701455 55.609138 +-1.695295 55.607672 +-1.690015 55.605912 +-1.685614 55.603858 +-1.682094 55.601218 +-1.678280 55.598578 +-1.674467 55.596524 +-1.670067 55.594177 +-1.664493 55.592417 +-1.659212 55.590657 +-1.654225 55.588897 +-1.648652 55.587137 +-1.643371 55.585377 +-1.638091 55.583617 +-1.633984 55.581270 +-1.631930 55.578043 +-1.634571 55.574523 +-1.637798 55.571296 +-1.639558 55.567482 +-1.637798 55.564255 +-1.634277 55.561615 +-1.629877 55.559562 +-1.626357 55.556921 +-1.623130 55.554281 +-1.620196 55.551348 +-1.620490 55.547241 +-1.624010 55.544307 +-1.626943 55.541080 +-1.629877 55.538147 +-1.633104 55.535213 +-1.631637 55.531693 +-1.624303 55.530813 +-1.618143 55.529346 +-1.614623 55.526999 +-1.610222 55.524652 +-1.607875 55.521719 +-1.604062 55.519079 +-1.605529 55.514678 +-1.607289 55.510571 +-1.608169 55.507051 +-1.608169 55.502651 +-1.606409 55.499424 +-1.603768 55.496490 +-1.600542 55.493850 +-1.596141 55.491797 +-1.591741 55.489450 +-1.585580 55.487983 +-1.581474 55.485930 +-1.580593 55.482116 +-1.580593 55.478009 +-1.581767 55.473609 +-1.582060 55.469502 +-1.582940 55.464808 +-1.583234 55.460701 +-1.582647 55.456888 +-1.581767 55.453367 +-1.581767 55.449260 +-1.582940 55.444567 +-1.582940 55.440166 +-1.581767 55.436939 +-1.579713 55.433713 +-1.577953 55.430192 +-1.575606 55.427259 +-1.573846 55.424032 +-1.573260 55.420218 +-1.574140 55.415818 +-1.575606 55.411124 +-1.577367 55.407311 +-1.579713 55.403497 +-1.582060 55.399977 +-1.585287 55.397337 +-1.589101 55.394696 +-1.592914 55.392350 +-1.596141 55.389123 +-1.599075 55.386189 +-1.598195 55.382375 +-1.597315 55.380615 +-1.594674 55.377388 +-1.592328 55.374748 +-1.590568 55.371228 +-1.587634 55.368294 +-1.586461 55.365068 +-1.584700 55.361547 +-1.582940 55.358027 +-1.581767 55.354800 +-1.580887 55.350987 +-1.580887 55.346880 +-1.579420 55.343653 +-1.578247 55.339839 +-1.574140 55.337786 +-1.567099 55.336612 +-1.561525 55.334852 +-1.558299 55.332212 +-1.555952 55.329572 +-1.552138 55.326638 +-1.549791 55.323998 +-1.547444 55.320771 +-1.547444 55.316664 +-1.549498 55.312557 +-1.551551 55.309037 +-1.555072 55.306103 +-1.557418 55.302876 +-1.559765 55.299063 +-1.562112 55.295543 +-1.563872 55.291729 +-1.565632 55.287622 +-1.567393 55.283515 +-1.568566 55.278821 +-1.567686 55.275301 +-1.566806 55.272368 +-1.565339 55.269141 +-1.563579 55.265914 +-1.561232 55.262687 +-1.559472 55.259460 +-1.557712 55.256233 +-1.555365 55.253006 +-1.552725 55.250073 +-1.549498 55.247432 +-1.545978 55.245086 +-1.542457 55.242445 +-1.538057 55.240392 +-1.534830 55.237458 +-1.531310 55.235112 +-1.528670 55.232178 +-1.526030 55.229245 +-1.523683 55.226018 +-1.524856 55.221617 +-1.526323 55.217510 +-1.528963 55.214283 +-1.530723 55.209883 +-1.528083 55.207243 +-1.524856 55.204309 +-1.521043 55.201963 +-1.516936 55.199616 +-1.513415 55.197269 +-1.509895 55.194629 +-1.507548 55.191695 +-1.505788 55.188468 +-1.506081 55.184068 +-1.508722 55.180548 +-1.511655 55.177321 +-1.514882 55.174094 +-1.518109 55.171160 +-1.521043 55.168227 +-1.520456 55.164413 +-1.518989 55.161186 +-1.518109 55.157373 +-1.516642 55.153559 +-1.514882 55.150332 +-1.512535 55.147105 +-1.509308 55.144758 +-1.505495 55.141825 +-1.502268 55.139478 +-1.498748 55.136838 +-1.496987 55.133611 +-1.496401 55.129797 +-1.494641 55.126277 +-1.493761 55.122757 +-1.492587 55.119530 +-1.491707 55.115423 +-1.489947 55.112196 +-1.489067 55.108676 +-1.487600 55.104862 +-1.487013 55.101342 +-1.486427 55.097528 +-1.485547 55.094008 +-1.484960 55.089901 +-1.482613 55.086674 +-1.480853 55.083447 +-1.477333 55.080807 +-1.472639 55.078754 +-1.466772 55.077287 +-1.459731 55.076994 +-1.453278 55.076700 +-1.450637 55.073473 +-1.451811 55.069073 +-1.452691 55.064379 +-1.453864 55.060859 +-1.454158 55.056752 +-1.453278 55.052939 +-1.450637 55.050005 +-1.448291 55.047071 +-1.445357 55.045898 +-1.446237 55.046191 +-1.445357 55.045898 +-1.442424 55.043845 +-1.439197 55.041498 +-1.435970 55.038564 +-1.432449 55.036217 +-1.429809 55.032990 +-1.428343 55.029764 +-1.426289 55.026243 +-1.425702 55.022723 +-1.425116 55.018909 +-1.423649 55.015683 +-1.422769 55.011869 +-1.420422 55.008935 +-1.418662 55.005415 +-1.415142 55.002775 +-1.412795 55.000135 +-1.409568 54.997495 +-1.405168 54.994854 +-1.401941 54.992214 +-1.398420 54.989574 +-1.394900 54.986934 +-1.391673 54.984587 +-1.388153 54.981947 +-1.384633 54.979307 +-1.381406 54.976666 +-1.377006 54.974320 +-1.373485 54.971973 +-1.369085 54.969626 +-1.364978 54.967572 +-1.360578 54.965226 +-1.357937 54.962585 +-1.356764 54.958478 +-1.357057 54.954371 +-1.357644 54.949971 +-1.359111 54.945277 +-1.360871 54.941464 +-1.362044 54.936770 +-1.362925 54.932077 +-1.364685 54.928263 +-1.364978 54.924156 +-1.363218 54.920929 +-1.362044 54.917409 +-1.359111 54.914475 +-1.355884 54.911835 +-1.352364 54.909195 +-1.352070 54.905675 +-1.352657 54.900688 +-1.353831 54.896287 +-1.353831 54.892180 +-1.352364 54.888953 +-1.352070 54.885140 +-1.350017 54.881620 +-1.348550 54.878393 +-1.347083 54.874872 +-1.345617 54.871646 +-1.342683 54.869005 +-1.340336 54.865778 +-1.338869 54.862552 +-1.336229 54.859325 +-1.334762 54.856098 +-1.332122 54.853164 +-1.330656 54.849644 +-1.329189 54.846417 +-1.328309 54.842603 +-1.326549 54.839083 +-1.325375 54.835856 +-1.324495 54.832336 +-1.321562 54.829109 +-1.320388 54.825882 +-1.317748 54.822655 +-1.315988 54.819428 +-1.314814 54.816202 +-1.311294 54.813561 +-1.308654 54.810628 +-1.306014 54.807401 +-1.303667 54.804761 +-1.303080 54.800947 +-1.303374 54.796547 +-1.303374 54.792440 +-1.304547 54.788040 +-1.304840 54.783933 +-1.305134 54.779826 +-1.305134 54.775425 +-1.304547 54.771905 +-1.301907 54.768971 +-1.299560 54.765745 +-1.297506 54.763984 +-1.294280 54.761344 +-1.290759 54.758997 +-1.287239 54.756064 +-1.284012 54.753717 +-1.279612 54.751370 +-1.275212 54.749023 +-1.271105 54.746970 +-1.266998 54.744623 +-1.263477 54.742276 +-1.261131 54.739049 +-1.258490 54.736409 +-1.257024 54.733182 +-1.254383 54.729955 +-1.252037 54.727022 +-1.248516 54.724382 +-1.244409 54.722328 +-1.239129 54.720568 +-1.235022 54.718221 +-1.229742 54.716461 +-1.225341 54.714114 +-1.220354 54.712354 +-1.215074 54.710594 +-1.208913 54.709127 +-1.203926 54.707367 +-1.197766 54.706194 +-1.192486 54.704140 +-1.186325 54.702673 +-1.181338 54.701207 +-1.175471 54.699446 +-1.171071 54.697100 +-1.168724 54.694459 +-1.172538 54.691819 +-1.177818 54.690646 +-1.183392 54.689766 +-1.189259 54.688592 +-1.192486 54.685659 +-1.190139 54.682725 +-1.188379 54.679498 +-1.186619 54.675978 +-1.186032 54.672165 +-1.185152 54.668644 +-1.183978 54.665124 +-1.183098 54.661310 +-1.181338 54.658084 +-1.178991 54.654857 +-1.174004 54.653390 +-1.166084 54.652510 +-1.160803 54.650750 +-1.162270 54.647816 +-1.166964 54.645763 +-1.169311 54.642242 +-1.169604 54.638135 +-1.172244 54.634322 +-1.176351 54.632562 +-1.181631 54.631095 +-1.186032 54.629041 +-1.190432 54.627281 +-1.193659 54.624348 +-1.195419 54.620241 +-1.195419 54.616134 +-1.195126 54.612614 +-1.193366 54.609093 +-1.191899 54.605573 +-1.188672 54.602933 +-1.185738 54.601173 +-1.182512 54.598239 +-1.176351 54.597066 +-1.169311 54.596186 +-1.163150 54.595599 +-1.156696 54.595892 +-1.150243 54.596479 +-1.144962 54.597653 +-1.140562 54.599706 +-1.136748 54.602346 +-1.134988 54.606160 +-1.134695 54.610267 +-1.137335 54.613200 +-1.141735 54.615547 +-1.144082 54.618187 +-1.143789 54.622588 +-1.142322 54.626695 +-1.138802 54.629335 +-1.136455 54.633148 +-1.131468 54.634322 +-1.126774 54.634028 +-1.120614 54.632855 +-1.116213 54.630508 +-1.110346 54.629041 +-1.105359 54.627281 +-1.100079 54.625521 +-1.094799 54.623468 +-1.088931 54.622294 +-1.082771 54.620827 +-1.075144 54.620241 +-1.068103 54.619067 +-1.061063 54.618187 +-1.054902 54.616721 +-1.049035 54.615254 +-1.043755 54.613200 +-1.038768 54.611734 +-1.033488 54.609680 +-1.030261 54.607333 +-1.025860 54.604986 +-1.022927 54.602933 +-1.022927 54.603226 +-1.023807 54.603226 +-1.020287 54.601759 +-1.016180 54.599706 +-1.012073 54.597359 +-1.007086 54.595599 +-1.001805 54.593839 +-0.996525 54.592079 +-0.990658 54.590612 +-0.985377 54.588559 +-0.980390 54.586798 +-0.975110 54.585038 +-0.968069 54.584158 +-0.960736 54.583865 +-0.954869 54.584158 +-0.948121 54.584745 +-0.941374 54.585038 +-0.934920 54.585625 +-0.927293 54.584745 +-0.921133 54.583278 +-0.916146 54.581811 +-0.910865 54.579758 +-0.906758 54.577411 +-0.902358 54.575358 +-0.897078 54.573597 +-0.890331 54.572424 +-0.883583 54.571251 +-0.875956 54.570957 +-0.869209 54.571251 +-0.862755 54.571251 +-0.856008 54.571837 +-0.849261 54.571544 +-0.842220 54.570957 +-0.837233 54.568904 +-0.831953 54.566850 +-0.827553 54.565090 +-0.822566 54.563037 +-0.817579 54.560983 +-0.811418 54.559810 +-0.804378 54.558636 +-0.797631 54.558636 +-0.790297 54.558343 +-0.782963 54.558343 +-0.777096 54.556876 +-0.772989 54.554823 +-0.769469 54.551889 +-0.766242 54.549542 +-0.763601 54.546315 +-0.760668 54.543969 +-0.756854 54.541328 +-0.753041 54.539275 +-0.747760 54.537221 +-0.741600 54.535755 +-0.736613 54.533995 +-0.734266 54.531061 +-0.729866 54.529008 +-0.725465 54.526661 +-0.720772 54.524607 +-0.713731 54.523727 +-0.706691 54.522847 +-0.700530 54.521087 +-0.693783 54.520207 +-0.687036 54.519034 +-0.680876 54.517860 +-0.675889 54.515807 +-0.670608 54.514046 +-0.666501 54.511406 +-0.662101 54.509059 +-0.659167 54.506713 +-0.655940 54.503779 +-0.652127 54.501432 +-0.649193 54.498792 +-0.644793 54.496739 +-0.640099 54.494685 +-0.634819 54.492632 +-0.629832 54.491165 +-0.623671 54.489698 +-0.618391 54.487645 +-0.611644 54.486765 +-0.604603 54.485591 +-0.599616 54.487058 +-0.593163 54.487645 +-0.587295 54.486178 +-0.583482 54.483244 +-0.578495 54.481778 +-0.571748 54.481484 +-0.564707 54.480311 +-0.562360 54.477084 +-0.560894 54.473857 +-0.558253 54.471217 +-0.555907 54.467990 +-0.552386 54.465350 +-0.549453 54.462709 +-0.545052 54.460656 +-0.539772 54.458896 +-0.534785 54.456842 +-0.530678 54.454789 +-0.525398 54.452735 +-0.520997 54.450682 +-0.518064 54.448042 +-0.515424 54.445108 +-0.515130 54.441295 +-0.515130 54.437188 +-0.516304 54.432787 +-0.517477 54.428094 +-0.518944 54.423693 +-0.519237 54.419586 +-0.518357 54.415773 +-0.515717 54.412839 +-0.511610 54.410492 +-0.505743 54.409026 +-0.499583 54.407559 +-0.493129 54.406385 +-0.487848 54.404625 +-0.480808 54.403745 +-0.477581 54.401105 +-0.474354 54.398465 +-0.472007 54.395238 +-0.468780 54.392891 +-0.466433 54.389664 +-0.463793 54.387024 +-0.461446 54.383797 +-0.459980 54.380570 +-0.457633 54.377637 +-0.454113 54.374997 +-0.450886 54.372356 +-0.449419 54.368836 +-0.447952 54.365609 +-0.446485 54.362089 +-0.444725 54.358862 +-0.441792 54.356222 +-0.438271 54.353582 +-0.435925 54.350648 +-0.434458 54.347128 +-0.432698 54.343901 +-0.432404 54.340087 +-0.428884 54.337447 +-0.423897 54.335687 +-0.421257 54.332753 +-0.420083 54.329233 +-0.419497 54.325420 +-0.419790 54.321313 +-0.418910 54.317499 +-0.417443 54.314272 +-0.415977 54.310752 +-0.414510 54.307525 +-0.414803 54.303418 +-0.413336 54.299898 +-0.411870 54.296671 +-0.410403 54.293444 +-0.408643 54.289924 +-0.408349 54.286110 +-0.405709 54.283177 +-0.398962 54.282003 +-0.392215 54.281123 +-0.388108 54.278776 +-0.389868 54.276136 +-0.393388 54.273203 +-0.394268 54.269682 +-0.392802 54.266162 +-0.389575 54.263522 +-0.387815 54.261762 +-0.384294 54.258828 +-0.381947 54.256188 +-0.378721 54.253254 +-0.375494 54.250908 +-0.371973 54.247974 +-0.368160 54.245921 +-0.364346 54.243280 +-0.360239 54.241227 +-0.357306 54.238587 +-0.353199 54.236533 +-0.348798 54.234186 +-0.343811 54.232133 +-0.337064 54.231253 +-0.329144 54.230666 +-0.322690 54.230960 +-0.315943 54.229786 +-0.310956 54.227733 +-0.305675 54.225972 +-0.300688 54.224212 +-0.294821 54.222746 +-0.288954 54.221279 +-0.283674 54.219519 +-0.278687 54.217465 +-0.273700 54.215705 +-0.269299 54.213652 +-0.266072 54.210718 +-0.264606 54.207491 +-0.267833 54.204851 +-0.271646 54.202211 +-0.273406 54.198104 +-0.273113 54.194584 +-0.271353 54.191063 +-0.269886 54.187836 +-0.268713 54.184023 +-0.266072 54.181383 +-0.264606 54.178156 +-0.262259 54.174929 +-0.259032 54.172289 +-0.255512 54.169648 +-0.251405 54.167595 +-0.247298 54.165248 +-0.243191 54.163195 +-0.237910 54.161141 +-0.232337 54.159674 +-0.226470 54.157914 +-0.220603 54.156447 +-0.213562 54.155274 +-0.207402 54.153807 +-0.201534 54.152341 +-0.194787 54.151167 +-0.188920 54.149700 +-0.183053 54.148234 +-0.176893 54.147060 +-0.170146 54.145887 +-0.164572 54.144127 +-0.158411 54.142660 +-0.151664 54.141780 +-0.145504 54.140313 +-0.140517 54.138260 +-0.134356 54.137086 +-0.128489 54.135619 +-0.122915 54.133859 +-0.116755 54.132392 +-0.112061 54.130926 +-0.106781 54.128872 +-0.101794 54.126819 +-0.096807 54.125059 +-0.092407 54.122712 +-0.087420 54.121245 +-0.082433 54.119191 +-0.078326 54.116845 +-0.075979 54.113911 +-0.075685 54.113031 +nan nan +-0.074805 54.112444 +-0.077739 54.109511 +-0.080966 54.106577 +-0.086246 54.105404 +-0.091527 54.103937 +-0.096514 54.102470 +-0.102087 54.101590 +-0.107368 54.100417 +-0.112355 54.098950 +-0.117928 54.098070 +-0.124382 54.097483 +-0.130249 54.096603 +-0.136116 54.095723 +-0.141103 54.094550 +-0.146090 54.093083 +-0.150491 54.091029 +-0.155771 54.089856 +-0.160758 54.088389 +-0.165159 54.086336 +-0.170146 54.084576 +-0.173666 54.082229 +-0.176893 54.078709 +-0.179533 54.075188 +-0.182466 54.072255 +-0.185107 54.069028 +-0.188627 54.066388 +-0.191854 54.063454 +-0.196254 54.060521 +-0.198894 54.057587 +-0.202708 54.055240 +-0.205348 54.051720 +-0.208575 54.048493 +-0.209748 54.044093 +-0.211802 54.040279 +-0.213269 54.036172 +-0.214735 54.031772 +-0.215909 54.027078 +-0.216202 54.022971 +-0.215615 54.019158 +-0.214735 54.015637 +-0.213269 54.012117 +-0.211802 54.008890 +-0.209455 54.005957 +-0.207988 54.002436 +-0.206521 53.998916 +-0.205055 53.995689 +-0.203588 53.992169 +-0.202121 53.988942 +-0.199774 53.985715 +-0.198308 53.982488 +-0.196254 53.979555 +-0.193614 53.976328 +-0.192147 53.973101 +-0.190094 53.970167 +-0.188334 53.966647 +-0.185987 53.964007 +-0.184520 53.960193 +-0.183053 53.956967 +-0.181586 53.953740 +-0.180413 53.950219 +-0.178653 53.946992 +-0.177186 53.943472 +-0.175719 53.940245 +-0.174253 53.936725 +-0.173666 53.932911 +-0.173079 53.929098 +-0.171612 53.925871 +-0.170732 53.922351 +-0.168679 53.919124 +-0.167212 53.915897 +-0.164865 53.912670 +-0.162225 53.909736 +-0.160171 53.906803 +-0.157825 53.903869 +-0.155478 53.900936 +-0.153131 53.897709 +-0.150491 53.894775 +-0.148144 53.891548 +-0.146090 53.888908 +-0.143744 53.885975 +-0.141397 53.882748 +-0.138757 53.879814 +-0.136410 53.876881 +-0.134063 53.873361 +-0.132009 53.870134 +-0.129663 53.867493 +-0.127316 53.864560 +-0.124969 53.861333 +-0.121742 53.858986 +-0.118222 53.856053 +-0.115288 53.853706 +-0.112648 53.851066 +-0.104141 53.844025 +-0.101794 53.843145 +-0.099154 53.839918 +-0.095927 53.837571 +-0.092700 53.834638 +-0.088593 53.832584 +-0.084486 53.830237 +-0.080379 53.828184 +-0.075979 53.825837 +-0.071872 53.823490 +-0.067765 53.821437 +-0.064831 53.818797 +-0.062484 53.815863 +-0.060138 53.812636 +-0.058671 53.809409 +-0.056324 53.806476 +-0.053977 53.803249 +-0.050750 53.800902 +-0.048403 53.797675 +-0.045177 53.795328 +-0.041950 53.792395 +-0.039309 53.789461 +-0.036376 53.786821 +-0.033442 53.784474 +-0.029629 53.781541 +-0.026695 53.779194 +-0.023468 53.776260 +-0.019068 53.774207 +-0.016134 53.771567 +-0.013201 53.769220 +-0.008801 53.766580 +-0.005574 53.764233 +-0.001467 53.761886 +0.002053 53.759539 +0.005280 53.756605 +0.008214 53.754259 +0.010854 53.751032 +0.013201 53.748098 +0.015254 53.744871 +0.018481 53.742524 +0.020828 53.739591 +0.023468 53.736364 +0.026402 53.734017 +0.028749 53.730790 +0.031976 53.728443 +0.034322 53.725217 +0.036669 53.722283 +0.039016 53.719056 +0.041656 53.717296 +0.045470 53.714949 +0.048990 53.712309 +0.053097 53.709962 +0.057204 53.707909 +0.061018 53.705562 +0.064538 53.702922 +0.066591 53.699988 +0.069232 53.697055 +0.071285 53.693828 +0.073632 53.691187 +0.075979 53.687961 +0.079206 53.685320 +0.082433 53.682680 +0.085659 53.680040 +0.088886 53.677400 +0.092113 53.675053 +0.095340 53.672119 +0.099447 53.670066 +0.101794 53.666839 +0.105021 53.664492 +0.107954 53.661559 +0.110595 53.658918 +0.113528 53.655985 +0.117048 53.653638 +0.119982 53.650705 +0.123209 53.648358 +0.126436 53.645424 +0.128783 53.642784 +0.132009 53.639850 +0.134063 53.636624 +0.136410 53.633690 +0.138757 53.630463 +0.141103 53.627530 +0.143450 53.624596 +0.144917 53.621076 +0.147264 53.618436 +0.149317 53.615209 +0.150784 53.611982 +0.152544 53.608755 +0.154011 53.604941 +0.154304 53.601421 +0.153131 53.597021 +0.151958 53.592327 +0.149317 53.588807 +0.146971 53.585286 +0.143744 53.582646 +0.140517 53.579419 +0.136997 53.577073 +0.133183 53.574726 +0.129369 53.572086 +0.125556 53.569739 +0.122035 53.567099 +0.117928 53.565045 +0.112941 53.563578 +0.113822 53.567099 +0.117342 53.570032 +0.119689 53.573552 +0.123209 53.576193 +0.126436 53.578833 +0.129663 53.582060 +0.132890 53.584700 +0.135823 53.587633 +0.137877 53.591740 +0.138757 53.596434 +0.138463 53.599954 +0.136116 53.603181 +0.133770 53.606115 +0.130543 53.608755 +0.126436 53.610808 +0.122622 53.613155 +0.117635 53.614915 +0.113235 53.617262 +0.109128 53.619316 +0.104434 53.621369 +0.099447 53.623423 +0.094460 53.624889 +0.089473 53.626943 +0.084486 53.628996 +0.078619 53.630170 +0.072752 53.631636 +0.067765 53.633690 +0.061898 53.634863 +0.056031 53.636624 +0.050164 53.638090 +0.044590 53.639557 +0.036669 53.640144 +0.029629 53.640437 +0.023468 53.640144 +0.017015 53.639850 +0.011441 53.638970 +0.006454 53.637504 +0.001173 53.636037 +-0.004107 53.634863 +-0.009094 53.633397 +-0.014081 53.631930 +-0.019068 53.630170 +-0.024348 53.628996 +-0.029042 53.627530 +-0.034322 53.626063 +-0.039896 53.625183 +-0.045763 53.624303 +-0.051337 53.623423 +-0.058671 53.623716 +-0.065125 53.623423 +-0.071285 53.623129 +-0.078912 53.623716 +-0.085659 53.624596 +-0.090647 53.626649 +-0.095634 53.628410 +-0.100621 53.630170 +-0.105608 53.632223 +-0.109715 53.634570 +-0.114408 53.636330 +-0.118515 53.638677 +-0.123502 53.640730 +-0.127903 53.643077 +-0.132009 53.645424 +-0.135823 53.647478 +-0.139930 53.649824 +-0.144037 53.651878 +-0.148144 53.654225 +-0.152251 53.656278 +-0.156358 53.658625 +-0.159585 53.661265 +-0.163985 53.663612 +-0.168679 53.665372 +-0.172786 53.667426 +-0.176599 53.669773 +-0.180413 53.672413 +-0.184227 53.674760 +-0.187453 53.677106 +-0.191560 53.679453 +-0.195667 53.681800 +-0.199774 53.683854 +-0.203881 53.686200 +-0.208868 53.687961 +-0.212682 53.690307 +-0.216496 53.692654 +-0.220309 53.695001 +-0.222656 53.697935 +-0.225883 53.700575 +-0.228230 53.703508 +-0.232630 53.705855 +-0.235564 53.708495 +-0.237910 53.711429 +-0.240257 53.714362 +-0.242897 53.717589 +-0.244071 53.720816 +-0.248471 53.723163 +-0.251991 53.723750 +-0.259032 53.724043 +-0.266659 53.724630 +-0.272526 53.726097 +-0.277220 53.728150 +-0.283380 53.729324 +-0.290127 53.730497 +-0.297168 53.730790 +-0.303328 53.730497 +-0.309782 53.729910 +-0.316236 53.729617 +-0.321810 53.729030 +-0.327970 53.728737 +-0.332077 53.727563 +-0.337358 53.726097 +-0.342638 53.724630 +-0.347918 53.723750 +-0.353199 53.722576 +-0.358772 53.721696 +-0.363759 53.720230 +-0.369040 53.718763 +-0.374027 53.717589 +-0.379307 53.716123 +-0.383708 53.714069 +-0.388108 53.712309 +-0.392215 53.710255 +-0.397495 53.708789 +-0.403069 53.708202 +-0.408936 53.707029 +-0.415390 53.706735 +-0.422137 53.707029 +-0.428297 53.706442 +-0.435631 53.706735 +-0.442378 53.707029 +-0.450299 53.707615 +-0.457633 53.708202 +-0.465260 53.708789 +-0.472594 53.709082 +-0.478754 53.708495 +-0.484915 53.708202 +-0.492835 53.708789 +-0.498702 53.708202 +-0.504276 53.707322 +-0.509850 53.706442 +-0.515130 53.704975 +-0.520411 53.704095 +-0.526278 53.702922 +-0.532732 53.702628 +-0.539185 53.702042 +-0.545346 53.701748 +-0.552973 53.702335 +-0.559133 53.703802 +-0.563827 53.705562 +-0.567934 53.707909 +-0.571454 53.710549 +-0.576441 53.712309 +-0.582308 53.713482 +-0.587589 53.715536 +-0.592283 53.717589 +-0.598150 53.718763 +-0.604897 53.719936 +-0.610764 53.721403 +-0.618391 53.721990 +-0.626018 53.722870 +-0.631885 53.721696 +-0.637459 53.720816 +-0.643326 53.719936 +-0.648313 53.718469 +-0.652420 53.716709 +-0.656820 53.714656 +-0.661514 53.712896 +-0.665914 53.710842 +-0.670315 53.708789 +-0.674128 53.706442 +-0.678235 53.704682 +-0.682636 53.702922 +-0.687329 53.700868 +-0.692316 53.699401 +-0.698183 53.698228 +-0.704051 53.697935 +-0.711091 53.698228 +-0.718425 53.698228 +-0.723999 53.697641 +-0.723412 53.693534 +-0.718425 53.691481 +-0.710504 53.690894 +-0.704637 53.689427 +-0.700530 53.687080 +-0.698477 53.684147 +-0.696717 53.680920 +-0.692610 53.679453 +-0.688209 53.680627 +-0.684396 53.682974 +-0.681462 53.685907 +-0.677062 53.687667 +-0.672368 53.689721 +-0.667675 53.691187 +-0.661808 53.692067 +-0.656527 53.692948 +-0.650660 53.693828 +-0.644793 53.694708 +-0.640099 53.696174 +-0.634232 53.697055 +-0.629245 53.698228 +-0.623965 53.699695 +-0.619858 53.701748 +-0.614577 53.702922 +-0.608417 53.703508 +-0.601670 53.702628 +-0.596389 53.700575 +-0.592576 53.698228 +-0.589056 53.695881 +-0.586709 53.692654 +-0.584362 53.689721 +-0.582015 53.687080 +-0.579668 53.683854 +-0.576441 53.681507 +-0.572334 53.679160 +-0.567934 53.676813 +-0.563240 53.675053 +-0.557080 53.673586 +-0.551506 53.672119 +-0.544759 53.671239 +-0.537425 53.670946 +-0.530678 53.670946 +-0.525104 53.671533 +-0.519237 53.672413 +-0.513664 53.673293 +-0.507796 53.674173 +-0.502809 53.675640 +-0.497822 53.676813 +-0.492835 53.678280 +-0.487555 53.680040 +-0.483448 53.681800 +-0.478461 53.683267 +-0.473767 53.685027 +-0.469367 53.687080 +-0.464380 53.688254 +-0.459393 53.689721 +-0.452939 53.690307 +-0.445312 53.689427 +-0.438565 53.688254 +-0.431818 53.687374 +-0.424777 53.687080 +-0.417737 53.687080 +-0.411576 53.687374 +-0.405709 53.688254 +-0.400135 53.689134 +-0.393975 53.689427 +-0.388108 53.690307 +-0.382241 53.691481 +-0.376667 53.692361 +-0.371093 53.692948 +-0.365226 53.693828 +-0.359652 53.694708 +-0.353785 53.695588 +-0.348798 53.697055 +-0.343225 53.697641 +-0.337358 53.698815 +-0.331784 53.699695 +-0.326797 53.701161 +-0.321223 53.702042 +-0.315356 53.702922 +-0.309489 53.703508 +-0.303328 53.703802 +-0.296875 53.704388 +-0.290127 53.704095 +-0.283380 53.702922 +-0.279273 53.700868 +-0.274873 53.698521 +-0.271646 53.696174 +-0.269299 53.692948 +-0.266072 53.690601 +-0.263139 53.687667 +-0.260499 53.684734 +-0.258152 53.681800 +-0.254925 53.679160 +-0.251698 53.676813 +-0.248471 53.673880 +-0.244951 53.671533 +-0.243191 53.668306 +-0.239671 53.665959 +-0.237324 53.662732 +-0.234977 53.659799 +-0.232923 53.656865 +-0.230283 53.653931 +-0.227936 53.650705 +-0.224709 53.647771 +-0.222363 53.644837 +-0.219136 53.642197 +-0.217082 53.639264 +-0.213562 53.636624 +-0.210628 53.633983 +-0.207108 53.631343 +-0.202415 53.629583 +-0.198308 53.627236 +-0.194201 53.624889 +-0.190094 53.622836 +-0.185693 53.620489 +-0.181586 53.618436 +-0.176599 53.616382 +-0.172492 53.614035 +-0.167799 53.612568 +-0.163692 53.610222 +-0.158705 53.608461 +-0.154304 53.606115 +-0.150197 53.603768 +-0.146090 53.601714 +-0.143157 53.599074 +-0.138757 53.597021 +-0.134943 53.594674 +-0.130836 53.592620 +-0.127903 53.589687 +-0.123502 53.587633 +-0.120275 53.584993 +-0.117048 53.582353 +-0.112941 53.580006 +-0.108834 53.577659 +-0.104728 53.575606 +-0.100621 53.573259 +-0.095927 53.571499 +-0.090940 53.569739 +-0.085073 53.567979 +-0.077739 53.567979 +-0.072165 53.568859 +-0.067765 53.570912 +-0.062778 53.572086 +-0.057204 53.572966 +-0.049870 53.572672 +-0.045763 53.570619 +-0.042830 53.567979 +-0.039309 53.565338 +-0.037256 53.562405 +-0.034029 53.559765 +-0.030802 53.557124 +-0.028749 53.554191 +-0.025228 53.551551 +-0.022295 53.548911 +-0.019655 53.545977 +-0.016721 53.543337 +-0.014081 53.540403 +-0.011147 53.537763 +-0.007921 53.535123 +-0.003520 53.532776 +0.000587 53.530429 +0.004400 53.528376 +0.008507 53.526029 +0.012908 53.523975 +0.017015 53.521629 +0.020828 53.519575 +0.023468 53.516348 +0.024642 53.513121 +0.026989 53.509894 +0.032856 53.508721 +0.039309 53.507548 +0.046350 53.506374 +0.052217 53.504907 +0.058084 53.503441 +0.063951 53.501974 +0.067765 53.499627 +0.070405 53.496693 +0.073339 53.493467 +0.076272 53.491120 +0.080672 53.488773 +0.085659 53.487013 +0.091527 53.485546 +0.097100 53.483786 +0.102967 53.482612 +0.107954 53.480559 +0.112648 53.478799 +0.117635 53.477039 +0.122915 53.474985 +0.128783 53.474399 +0.134356 53.475279 +0.140223 53.476159 +0.146971 53.474985 +0.149904 53.472638 +0.151664 53.469118 +0.155478 53.467065 +0.159585 53.464718 +0.164865 53.462664 +0.168679 53.460611 +0.171906 53.457677 +0.174253 53.455037 +0.173959 53.450930 +0.172786 53.446237 +0.173079 53.442423 +0.175426 53.439489 +0.177773 53.436262 +0.179240 53.433036 +0.182466 53.430689 +0.186280 53.428049 +0.190680 53.425702 +0.195667 53.424235 +0.200361 53.422181 +0.206228 53.420715 +0.211215 53.418955 +0.217082 53.417488 +0.218256 53.413968 +0.215909 53.410447 +0.215909 53.407220 +0.218842 53.404580 +0.224709 53.403407 +0.230577 53.401647 +0.235564 53.399593 +0.238790 53.397246 +0.241137 53.394313 +0.242604 53.390793 +0.244658 53.387859 +0.246124 53.384339 +0.247591 53.381112 +0.249938 53.378178 +0.251405 53.374658 +0.252871 53.371431 +0.254925 53.368204 +0.256392 53.364977 +0.258739 53.362044 +0.261085 53.358817 +0.263432 53.355883 +0.265486 53.352950 +0.268126 53.350016 +0.270179 53.347083 +0.273406 53.344149 +0.274580 53.340922 +0.277220 53.337989 +0.278687 53.334468 +0.279860 53.331242 +0.282207 53.328015 +0.283674 53.324788 +0.285140 53.321268 +0.286314 53.318041 +0.288661 53.315107 +0.290421 53.311587 +0.291594 53.308360 +0.293061 53.304840 +0.295408 53.301906 +0.296581 53.298679 +0.298048 53.294866 +0.300395 53.292225 +0.302742 53.289292 +0.305089 53.286065 +0.307142 53.283131 +0.309489 53.279905 +0.311542 53.277264 +0.313302 53.273744 +0.315649 53.270517 +0.317703 53.267877 +0.320050 53.264650 +0.322103 53.261717 +0.324743 53.258490 +0.326210 53.255263 +0.327384 53.252036 +0.329730 53.248809 +0.332077 53.245875 +0.334131 53.242649 +0.336771 53.240008 +0.338824 53.237075 +0.340291 53.233555 +0.340878 53.229741 +0.341465 53.226221 +0.341171 53.221820 +0.340584 53.217713 +0.340291 53.213606 +0.340878 53.209793 +0.342345 53.206273 +0.343518 53.203046 +0.346745 53.200699 +0.349092 53.197472 +0.351439 53.194538 +0.352905 53.191018 +0.354079 53.187791 +0.354665 53.183978 +0.356132 53.180457 +0.356719 53.176644 +0.357306 53.173124 +0.356719 53.169017 +0.357306 53.164910 +0.357892 53.161389 +0.357599 53.157282 +0.357306 53.153175 +0.356719 53.148775 +0.355546 53.144375 +0.354079 53.139975 +0.352612 53.135868 +0.349972 53.132641 +0.347038 53.129414 +0.344985 53.125600 +0.344691 53.121493 +0.345278 53.117386 +0.343811 53.112986 +0.342638 53.108586 +0.342638 53.104479 +0.342638 53.100665 +0.341758 53.095971 +0.339118 53.092744 +0.336771 53.089224 +0.332957 53.086877 +0.329144 53.084531 +0.324157 53.083064 +0.318583 53.082184 +0.311542 53.082477 +0.305969 53.081597 +0.300688 53.080717 +0.295995 53.078957 +0.292181 53.076317 +0.288074 53.074557 +0.284260 53.071916 +0.280447 53.069863 +0.276633 53.067223 +0.273700 53.064582 +0.269886 53.061942 +0.266072 53.059302 +0.262552 53.056955 +0.258739 53.054608 +0.254925 53.052262 +0.250525 53.050208 +0.246124 53.048448 +0.242604 53.046101 +0.237910 53.044048 +0.233803 53.042288 +0.229403 53.040234 +0.225883 53.038181 +0.221483 53.036127 +0.217082 53.034074 +0.212389 53.032313 +0.208282 53.030260 +0.203881 53.028207 +0.200361 53.026153 +0.196254 53.023513 +0.192734 53.021166 +0.188920 53.018819 +0.185400 53.016472 +0.181586 53.013832 +0.177773 53.011485 +0.173372 53.009725 +0.169852 53.007085 +0.166039 53.004738 +0.162225 53.002098 +0.158705 53.000044 +0.154598 52.997404 +0.151664 52.994471 +0.148144 52.992124 +0.144917 52.989190 +0.141984 52.986257 +0.138757 52.983323 +0.135530 52.980390 +0.132596 52.977456 +0.128783 52.975109 +0.124969 52.972469 +0.121449 52.970122 +0.117048 52.968362 +0.113235 52.965722 +0.109715 52.963375 +0.105901 52.960735 +0.102674 52.958095 +0.099154 52.955455 +0.095340 52.953108 +0.091527 52.950761 +0.088593 52.947827 +0.085659 52.944601 +0.082433 52.941960 +0.079499 52.939027 +0.076859 52.935507 +0.075099 52.931400 +0.072459 52.928173 +0.070405 52.924359 +0.066298 52.922306 +0.061311 52.920839 +0.056324 52.919372 +0.050164 52.918785 +0.043416 52.919079 +0.037256 52.918785 +0.032269 52.917612 +0.029629 52.914092 +0.029335 52.909985 +0.028455 52.905291 +0.025228 52.902357 +0.021415 52.900011 +0.017895 52.897370 +0.014668 52.894730 +0.011147 52.892090 +0.007921 52.889157 +0.004694 52.886516 +0.001760 52.883289 +-0.000293 52.879476 +0.006747 52.878302 +0.011441 52.878596 +0.017015 52.879769 +0.022588 52.880649 +0.028162 52.881529 +0.033149 52.882703 +0.038136 52.884170 +0.043123 52.885636 +0.048110 52.886810 +0.053097 52.888276 +0.057791 52.889450 +0.063658 52.890623 +0.069232 52.891503 +0.075392 52.891797 +0.082726 52.890917 +0.086246 52.890037 +0.091527 52.888276 +0.096220 52.886516 +0.101207 52.884463 +0.107074 52.882996 +0.111768 52.881236 +0.117635 52.879769 +0.122622 52.877716 +0.127316 52.876249 +0.132303 52.874195 +0.136997 52.872142 +0.141984 52.870382 +0.147557 52.868915 +0.152544 52.866862 +0.157531 52.865395 +0.161345 52.863048 +0.165159 52.860701 +0.168679 52.858061 +0.171612 52.855421 +0.173959 52.852487 +0.176013 52.849554 +0.179533 52.846913 +0.181586 52.843980 +0.184813 52.841046 +0.186867 52.838406 +0.190974 52.836059 +0.194201 52.833419 +0.196254 52.830192 +0.199774 52.827845 +0.201828 52.824619 +0.204175 52.821685 +0.207108 52.818751 +0.209455 52.815525 +0.212389 52.813178 +0.214735 52.809951 +0.217962 52.807604 +0.222069 52.805257 +0.227056 52.803204 +0.230870 52.801150 +0.233803 52.798217 +0.238790 52.796750 +0.243777 52.795576 +0.250231 52.795870 +0.255805 52.796750 +0.260792 52.797923 +0.266366 52.798803 +0.271353 52.800270 +0.276927 52.801150 +0.282500 52.802030 +0.288074 52.802910 +0.294234 52.803204 +0.300688 52.803497 +0.307142 52.803204 +0.314183 52.802910 +0.320930 52.802030 +0.326503 52.800564 +0.331490 52.798510 +0.335304 52.796457 +0.339411 52.794110 +0.342638 52.791763 +0.346452 52.789123 +0.351439 52.787363 +0.356132 52.785602 +0.360239 52.783256 +0.363466 52.780615 +0.365520 52.777682 +0.366986 52.774162 +0.369040 52.771521 +0.371387 52.768295 +0.374614 52.765654 +0.379307 52.763894 +0.381067 52.766828 +0.380481 52.770641 +0.379894 52.774455 +0.379307 52.777975 +0.379014 52.782082 +0.379307 52.786189 +0.380481 52.790589 +0.383708 52.793523 +0.386054 52.797043 +0.390455 52.798803 +0.393682 52.801737 +0.396615 52.804670 +0.399842 52.807897 +0.402189 52.811124 +0.405709 52.813471 +0.410696 52.814938 +0.415977 52.816405 +0.420377 52.818165 +0.423897 52.820512 +0.427711 52.823152 +0.430938 52.825792 +0.433284 52.829312 +0.435045 52.833419 +0.436805 52.837526 +0.437978 52.841926 +0.438565 52.846033 +0.439738 52.850434 +0.441205 52.855127 +0.442085 52.859528 +0.443258 52.864221 +0.445312 52.868035 +0.447659 52.871555 +0.450299 52.875076 +0.453233 52.878009 +0.455873 52.881529 +0.458806 52.884463 +0.462033 52.887103 +0.463793 52.891503 +0.466433 52.894730 +0.468194 52.898544 +0.469954 52.902651 +0.472594 52.906171 +0.474941 52.909691 +0.477581 52.912918 +0.479341 52.917319 +0.481981 52.920545 +0.484328 52.923772 +0.486088 52.928173 +0.488728 52.931400 +0.491075 52.934920 +0.494302 52.937853 +0.498116 52.940200 +0.501636 52.942840 +0.506036 52.944307 +0.511023 52.945774 +0.516010 52.947241 +0.520997 52.948707 +0.525691 52.950468 +0.529211 52.953108 +0.532145 52.955748 +0.534785 52.959562 +0.537132 52.962788 +0.541239 52.965135 +0.546226 52.966602 +0.551800 52.967482 +0.558547 52.967189 +0.566174 52.966309 +0.570868 52.964549 +0.575855 52.962788 +0.578788 52.959855 +0.583775 52.958095 +0.588469 52.956335 +0.595216 52.955161 +0.600496 52.954868 +0.606950 52.955161 +0.613111 52.955455 +0.618978 52.956335 +0.624551 52.957215 +0.630125 52.958095 +0.635699 52.958975 +0.640686 52.960148 +0.645673 52.961615 +0.651247 52.962495 +0.656234 52.963962 +0.662394 52.964255 +0.668555 52.964549 +0.675595 52.964255 +0.682342 52.963082 +0.688796 52.961908 +0.695543 52.960735 +0.702877 52.959855 +0.709331 52.958975 +0.716958 52.958095 +0.724585 52.957508 +0.731332 52.957215 +0.738373 52.956921 +0.744533 52.957215 +0.748934 52.959268 +0.753921 52.960442 +0.758908 52.961908 +0.764482 52.962788 +0.770935 52.963082 +0.777389 52.962788 +0.783256 52.963669 +0.790003 52.963375 +0.796457 52.963669 +0.803204 52.963375 +0.809951 52.963082 +0.817579 52.962202 +0.824913 52.961615 +0.831660 52.960442 +0.836353 52.958682 +0.841340 52.956628 +0.848968 52.955748 +0.853955 52.957215 +0.858355 52.959268 +0.861288 52.961908 +0.865395 52.964549 +0.868916 52.966895 +0.872729 52.969242 +0.880357 52.968362 +0.885050 52.966602 +0.890037 52.964842 +0.892971 52.961908 +0.895318 52.958975 +0.898251 52.956335 +0.901478 52.953988 +0.906465 52.951934 +0.912039 52.952814 +0.918786 52.952521 +0.921719 52.952228 +0.928173 52.952521 +0.934627 52.952228 +0.942254 52.951348 +0.949295 52.951054 +0.956042 52.950761 +0.963082 52.950468 +0.969830 52.950174 +0.975990 52.950468 +0.982151 52.950761 +0.988604 52.951054 +0.994765 52.951348 +1.000338 52.952228 +1.006206 52.953108 +1.011193 52.954575 +1.016180 52.955748 +1.014713 52.959268 +1.007966 52.960148 +1.000632 52.961028 +0.993591 52.961322 +0.986844 52.961615 +0.980097 52.961908 +0.973350 52.963082 +0.967776 52.964549 +0.967776 52.967776 +0.972176 52.969829 +0.977163 52.971002 +0.982737 52.971589 +0.988311 52.972469 +0.995351 52.972176 +1.002099 52.972176 +1.009139 52.971882 +1.015593 52.970709 +1.021460 52.969242 +1.027327 52.967776 +1.032021 52.965722 +1.037888 52.964255 +1.042582 52.962202 +1.047569 52.960442 +1.052262 52.958682 +1.058129 52.956921 +1.063703 52.955455 +1.069570 52.953988 +1.075144 52.952521 +1.080718 52.950761 +1.086585 52.949588 +1.092452 52.947827 +1.098025 52.946361 +1.104773 52.945187 +1.112106 52.944307 +1.119734 52.943720 +1.127361 52.942840 +1.134695 52.941960 +1.141442 52.941667 +1.148189 52.941374 +1.155230 52.941374 +1.162857 52.940494 +1.169311 52.940200 +1.176351 52.939907 +1.183978 52.939027 +1.191312 52.938440 +1.198939 52.937560 +1.206273 52.936680 +1.212727 52.935507 +1.220354 52.934626 +1.226808 52.933746 +1.233555 52.932573 +1.239129 52.931106 +1.246756 52.930226 +1.254090 52.929346 +1.261131 52.929053 +1.268171 52.928759 +1.274625 52.928466 +1.282252 52.927879 +1.288999 52.926706 +1.294866 52.924946 +1.300147 52.923479 +1.306014 52.922012 +1.310707 52.919959 +1.316575 52.918492 +1.323028 52.917612 +1.328895 52.915852 +1.335643 52.914678 +1.341216 52.912918 +1.347083 52.911745 +1.352364 52.909985 +1.357644 52.907931 +1.362338 52.906464 +1.367912 52.904704 +1.372899 52.902651 +1.377299 52.902357 +1.379646 52.900304 +1.383753 52.897957 +1.388740 52.896197 +1.393433 52.894144 +1.397247 52.892090 +1.402234 52.890037 +1.406048 52.887396 +1.410741 52.885930 +1.414848 52.883289 +1.419835 52.881529 +1.423649 52.879182 +1.427462 52.876836 +1.432449 52.875076 +1.436263 52.872729 +1.440370 52.870675 +1.444184 52.868035 +1.447997 52.865688 +1.452104 52.863635 +1.457091 52.861581 +1.460905 52.859528 +1.464718 52.857181 +1.468532 52.854834 +1.473519 52.853074 +1.477626 52.850434 +1.482320 52.848674 +1.486427 52.846327 +1.491120 52.844567 +1.494934 52.842220 +1.499628 52.840166 +1.504028 52.838113 +1.508722 52.836059 +1.513415 52.834299 +1.517229 52.831952 +1.522216 52.829899 +1.526910 52.828139 +1.530723 52.825792 +1.535710 52.824032 +1.540697 52.821978 +1.545391 52.819925 +1.549205 52.817871 +1.554192 52.815818 +1.558005 52.813471 +1.561819 52.811124 +1.565926 52.808777 +1.569739 52.806724 +1.574726 52.804670 +1.578540 52.802617 +1.582647 52.800270 +1.587341 52.798217 +1.591154 52.795870 +1.594968 52.793523 +1.599955 52.791763 +1.603768 52.789416 +1.607875 52.787363 +1.612569 52.785309 +1.617556 52.783256 +1.622250 52.781495 +1.626943 52.779442 +1.631930 52.777389 +1.635744 52.775335 +1.640438 52.773282 +1.645131 52.771521 +1.649238 52.769175 +1.653345 52.766828 +1.657159 52.764481 +1.660386 52.761841 +1.663319 52.759201 +1.666253 52.756560 +1.669186 52.753920 +1.672120 52.751280 +1.675347 52.748640 +1.677400 52.745413 +1.680627 52.742773 +1.683267 52.739839 +1.686494 52.737199 +1.688548 52.734265 +1.690895 52.731039 +1.693828 52.728398 +1.696175 52.725171 +1.697935 52.722238 +1.700282 52.719304 +1.702629 52.716371 +1.703802 52.712851 +1.704976 52.709330 +1.707323 52.706397 +1.708496 52.703170 +1.709669 52.699650 +1.711136 52.696423 +1.712310 52.692902 +1.713483 52.689382 +1.715830 52.686449 +1.717003 52.682928 +1.719057 52.679995 +1.721404 52.677061 +1.722577 52.673541 +1.723750 52.670314 +1.725217 52.667087 +1.726391 52.663274 +1.727857 52.660047 +1.729911 52.656820 +1.731084 52.653593 +1.732551 52.650366 +1.734311 52.647139 +1.735778 52.643912 +1.738125 52.640979 +1.739298 52.637165 +1.740472 52.633938 +1.742818 52.630711 +1.743992 52.627484 +1.745165 52.624258 +1.746339 52.620737 +1.746925 52.616924 +1.746339 52.612817 +1.744872 52.608416 +1.744579 52.604309 +1.744285 52.599909 +1.744579 52.596389 +1.744872 52.592575 +1.746045 52.589055 +1.746632 52.585241 +1.747805 52.582014 +1.748979 52.578201 +1.747512 52.573507 +1.746339 52.569107 +1.743699 52.565880 +1.742232 52.561186 +1.741352 52.557373 +1.741645 52.553852 +1.741938 52.550039 +1.743405 52.546812 +1.744579 52.543292 +1.745752 52.540065 +1.747219 52.536251 +1.748392 52.533024 +1.749859 52.529797 +1.749859 52.525690 +1.751326 52.522464 +1.752499 52.519237 +1.753966 52.515716 +1.755139 52.512196 +1.756313 52.508969 +1.758660 52.505742 +1.759833 52.502515 +1.761886 52.499582 +1.764233 52.496355 +1.766287 52.493421 +1.768340 52.489901 +1.769514 52.486674 +1.770687 52.483154 +1.770980 52.479340 +1.770394 52.476700 +1.769220 52.473180 +1.767167 52.469073 +1.764820 52.465846 +1.761006 52.463206 +1.757193 52.460859 +1.753673 52.458512 +1.749859 52.456165 +1.746632 52.453232 +1.743405 52.450298 +1.740765 52.447071 +1.739298 52.442378 +1.737538 52.438564 +1.736071 52.433871 +1.734605 52.429470 +1.733724 52.425070 +1.732258 52.420670 +1.730791 52.415976 +1.730204 52.411869 +1.729031 52.407469 +1.729324 52.403655 +1.730498 52.400135 +1.731964 52.396908 +1.733138 52.393388 +1.730498 52.389867 +1.728151 52.386640 +1.726684 52.381947 +1.724044 52.378720 +1.720230 52.376373 +1.717297 52.373440 +1.714070 52.370506 +1.710843 52.367572 +1.708203 52.364052 +1.705269 52.361119 +1.703216 52.357305 +1.700869 52.353785 +1.698815 52.349678 +1.697055 52.345864 +1.694122 52.342637 +1.692361 52.338530 +1.690308 52.334423 +1.687668 52.331196 +1.685321 52.327383 +1.682681 52.324156 +1.680334 52.320929 +1.678280 52.316529 +1.676520 52.312715 +1.673880 52.309488 +1.671240 52.305968 +1.667426 52.303621 +1.663613 52.300981 +1.660679 52.298341 +1.656866 52.295701 +1.653639 52.293060 +1.650412 52.290127 +1.647478 52.287193 +1.644251 52.284553 +1.642198 52.280153 +1.639851 52.276926 +1.637798 52.273112 +1.635744 52.269005 +1.634571 52.264312 +1.633397 52.259911 +1.631930 52.255511 +1.630464 52.251111 +1.629877 52.247004 +1.628997 52.242310 +1.627530 52.237910 +1.626063 52.233216 +1.625477 52.229109 +1.625183 52.225002 +1.625477 52.221482 +1.626943 52.217962 +1.627237 52.214148 +1.628704 52.210921 +1.628997 52.206814 +1.629584 52.203294 +1.629584 52.199480 +1.629877 52.195960 +1.628997 52.190973 +1.628410 52.187159 +1.627824 52.183053 +1.626650 52.178359 +1.625183 52.173959 +1.622836 52.170438 +1.620783 52.166625 +1.617556 52.163691 +1.614916 52.160171 +1.613156 52.156357 +1.611102 52.152250 +1.610809 52.148143 +1.610222 52.143743 +1.608755 52.139343 +1.606995 52.135529 +1.604355 52.132302 +1.602595 52.128195 +1.601128 52.123502 +1.599955 52.119101 +1.599368 52.114994 +1.598195 52.110594 +1.596141 52.106780 +1.593501 52.102967 +1.591741 52.099153 +1.590568 52.094753 +1.589981 52.090646 +1.588514 52.086246 +1.586167 52.082432 +1.582940 52.079792 +1.580007 52.076565 +1.575606 52.075098 +1.571206 52.073045 +1.566512 52.071578 +1.561525 52.070698 +1.555952 52.069818 +1.550378 52.068938 +1.544804 52.068058 +1.538644 52.067764 +1.533070 52.066884 +1.528376 52.065711 +1.523389 52.064537 +1.519282 52.062484 +1.514589 52.060724 +1.510188 52.058964 +1.506081 52.056910 +1.502561 52.054857 +1.498161 52.052803 +1.493467 52.051043 +1.489360 52.049283 +1.483787 52.048403 +1.479093 52.050163 +1.472639 52.051336 +1.468239 52.049576 +1.465892 52.046056 +1.464425 52.041656 +1.465012 52.037842 +1.463545 52.033442 +1.460612 52.030508 +1.457971 52.026988 +1.456211 52.025228 +1.453571 52.022001 +1.450637 52.019067 +1.446531 52.016721 +1.443010 52.014374 +1.439490 52.012027 +1.435676 52.009387 +1.431863 52.007333 +1.428049 52.004693 +1.425116 52.002053 +1.421889 51.998826 +1.418955 51.996186 +1.416315 51.992372 +1.413968 51.989145 +1.410741 51.986505 +1.406928 51.983865 +1.403407 51.981518 +1.399594 51.979171 +1.396660 51.976238 +1.393433 51.973304 +1.390206 51.970371 +1.386686 51.968024 +1.382873 51.965677 +1.379059 51.963330 +1.376125 51.960397 +1.372605 51.958050 +1.367912 51.955996 +1.364391 51.953649 +1.360871 51.951303 +1.356471 51.949542 +1.352657 51.947196 +1.349724 51.944262 +1.345910 51.941915 +1.342683 51.938982 +1.339750 51.936048 +1.337109 51.932528 +1.334176 51.929594 +1.328602 51.929008 +1.327135 51.932235 +1.325375 51.935168 +1.323028 51.938395 +1.320095 51.940742 +1.317748 51.943969 +1.317455 51.947782 +1.315401 51.950716 +1.312174 51.953356 +1.307481 51.955410 +1.302787 51.957170 +1.298973 51.959516 +1.294866 51.961570 +1.292226 51.964503 +1.289879 51.967437 +1.287826 51.970664 +1.286652 51.973891 +1.283719 51.976531 +1.281372 51.979465 +1.278438 51.982105 +1.275212 51.984745 +1.271398 51.986798 +1.267584 51.989439 +1.262891 51.991492 +1.258197 51.992959 +1.253210 51.995012 +1.247050 51.996186 +1.240302 51.996479 +1.238542 51.993252 +1.240889 51.990319 +1.244703 51.987972 +1.249396 51.986212 +1.254970 51.984745 +1.260544 51.982985 +1.265237 51.981225 +1.269051 51.978878 +1.271398 51.975944 +1.273451 51.973011 +1.273745 51.969197 +1.273451 51.965090 +1.275505 51.961863 +1.276092 51.958343 +1.275505 51.954236 +1.272571 51.951009 +1.267584 51.950129 +1.263477 51.951303 +1.259664 51.953649 +1.255557 51.955116 +1.250863 51.956876 +1.244116 51.957170 +1.238542 51.956290 +1.233555 51.955116 +1.227981 51.954236 +1.222701 51.953356 +1.215954 51.953649 +1.208620 51.954529 +1.203046 51.955703 +1.197473 51.957463 +1.192779 51.959516 +1.187205 51.960690 +1.181631 51.962450 +1.174884 51.963623 +1.168431 51.963917 +1.164030 51.961863 +1.159630 51.960397 +1.156110 51.957756 +1.152003 51.955703 +1.147016 51.954529 +1.143202 51.954529 +1.137628 51.952769 +1.131468 51.952476 +1.124721 51.952769 +1.118560 51.952476 +1.112987 51.951596 +1.116213 51.949249 +1.120027 51.946902 +1.124721 51.945142 +1.131175 51.943969 +1.137335 51.943969 +1.143789 51.943969 +1.149949 51.944262 +1.156110 51.944262 +1.161683 51.945142 +1.167844 51.945142 +1.174004 51.945435 +1.179871 51.945729 +1.186619 51.945435 +1.193952 51.945142 +1.200406 51.943675 +1.207740 51.943089 +1.213607 51.942209 +1.219768 51.942502 +1.225048 51.943382 +1.230035 51.944849 +1.235022 51.946022 +1.239716 51.947196 +1.245876 51.947489 +1.252917 51.946902 +1.257904 51.945142 +1.261717 51.942502 +1.265531 51.940155 +1.271105 51.938982 +1.276092 51.940155 +1.280492 51.941915 +1.285186 51.943382 +1.290466 51.943382 +1.292813 51.940155 +1.289586 51.937222 +1.286652 51.934581 +1.283425 51.931354 +1.280199 51.928714 +1.276678 51.926074 +1.273745 51.923434 +1.270518 51.920207 +1.267584 51.917567 +1.265531 51.913460 +1.263477 51.909353 +1.260544 51.906713 +1.254970 51.905833 +1.248516 51.907006 +1.242943 51.908473 +1.237369 51.907886 +1.233262 51.905833 +1.230035 51.902899 +1.231502 51.899379 +1.233555 51.896445 +1.231208 51.892925 +1.226221 51.891752 +1.219474 51.892045 +1.213900 51.891165 +1.211260 51.887645 +1.210674 51.884124 +1.208620 51.880311 +1.204513 51.878257 +1.200993 51.875324 +1.200993 51.872097 +1.205980 51.870337 +1.213020 51.869457 +1.219181 51.869750 +1.224755 51.868283 +1.228568 51.865936 +1.232382 51.863590 +1.237369 51.861536 +1.243529 51.860656 +1.250276 51.860363 +1.256437 51.860656 +1.261424 51.861829 +1.265531 51.863883 +1.268758 51.866523 +1.269931 51.871217 +1.269344 51.875030 +1.269931 51.879137 +1.273158 51.882071 +1.279025 51.882364 +1.285479 51.881191 +1.290173 51.879137 +1.294280 51.877084 +1.297213 51.874150 +1.297506 51.870630 +1.295746 51.867403 +1.294866 51.862710 +1.292226 51.859483 +1.289293 51.856549 +1.286066 51.853616 +1.283132 51.850975 +1.279025 51.848335 +1.275505 51.845695 +1.272571 51.843055 +1.268758 51.840415 +1.264944 51.838361 +1.261424 51.835721 +1.257904 51.833667 +1.253210 51.831614 +1.249690 51.829267 +1.246169 51.826920 +1.242943 51.823987 +1.240009 51.821053 +1.236195 51.818706 +1.232382 51.816360 +1.228862 51.814013 +1.225341 51.811372 +1.222114 51.808732 +1.218301 51.806092 +1.214781 51.803745 +1.210674 51.801985 +1.206567 51.799638 +1.202460 51.797878 +1.198353 51.795825 +1.193952 51.793771 +1.189845 51.792304 +1.184858 51.790838 +1.179871 51.789371 +1.174884 51.788197 +1.170777 51.786437 +1.165790 51.784971 +1.161097 51.783504 +1.156110 51.782330 +1.151416 51.781157 +1.146429 51.779690 +1.140855 51.778810 +1.137042 51.777637 +1.132055 51.776757 +1.127361 51.775290 +1.121787 51.774410 +1.116213 51.773530 +1.110053 51.773236 +1.104773 51.772356 +1.098612 51.772356 +1.092452 51.772063 +1.086878 51.771183 +1.080718 51.770890 +1.074850 51.770596 +1.068983 51.770303 +1.062823 51.770010 +1.056663 51.769716 +1.049915 51.770010 +1.042875 51.770890 +1.038181 51.772650 +1.034954 51.775290 +1.033488 51.778810 +1.032314 51.782330 +1.030261 51.785264 +1.028794 51.788491 +1.027620 51.792011 +1.024394 51.794651 +1.021753 51.797291 +1.018526 51.799932 +1.014713 51.802279 +1.010019 51.804039 +1.004445 51.805505 +0.998872 51.807266 +0.992711 51.806972 +0.987138 51.806092 +0.981564 51.805212 +0.976283 51.804332 +0.969536 51.804625 +0.962789 51.804919 +0.956042 51.804919 +0.950175 51.804625 +0.944601 51.804039 +0.939027 51.803452 +0.934334 51.801985 +0.929933 51.799932 +0.926413 51.797585 +0.922306 51.795825 +0.917906 51.793771 +0.913506 51.792011 +0.909399 51.790251 +0.904998 51.788197 +0.900305 51.787024 +0.895318 51.785557 +0.891211 51.783504 +0.886810 51.782037 +0.881823 51.780570 +0.879476 51.777050 +0.881237 51.774410 +0.882410 51.772356 +0.882997 51.768249 +0.880650 51.765023 +0.877423 51.762089 +0.873316 51.760035 +0.868329 51.758569 +0.863635 51.757395 +0.860115 51.755048 +0.856888 51.752115 +0.854541 51.748595 +0.850141 51.746541 +0.845741 51.745074 +0.840460 51.744194 +0.834887 51.743314 +0.829020 51.743021 +0.822272 51.743314 +0.815525 51.743314 +0.808191 51.744194 +0.802031 51.745368 +0.797044 51.743901 +0.792350 51.742728 +0.787363 51.741261 +0.782376 51.740087 +0.777389 51.738621 +0.772695 51.737154 +0.767122 51.736274 +0.762135 51.735100 +0.757441 51.733927 +0.752454 51.732460 +0.745707 51.732754 +0.739546 51.733927 +0.733973 51.735394 +0.727226 51.735687 +0.722532 51.734220 +0.718132 51.732167 +0.715785 51.728940 +0.716958 51.725420 +0.722825 51.723953 +0.728399 51.722486 +0.734853 51.721313 +0.740133 51.719846 +0.746587 51.718673 +0.752161 51.717206 +0.756854 51.715152 +0.761548 51.713392 +0.765655 51.711045 +0.767708 51.708112 +0.769175 51.704591 +0.770349 51.701365 +0.775922 51.699604 +0.778856 51.702831 +0.781203 51.705178 +0.783550 51.708992 +0.786190 51.712219 +0.789123 51.715152 +0.792350 51.718086 +0.795870 51.720433 +0.799977 51.722193 +0.806138 51.722779 +0.812592 51.721313 +0.818165 51.720139 +0.824326 51.718379 +0.831660 51.717499 +0.836647 51.718966 +0.841340 51.720139 +0.845447 51.722193 +0.850141 51.724246 +0.854835 51.725420 +0.858355 51.727766 +0.862755 51.729820 +0.867449 51.730993 +0.871556 51.732754 +0.876543 51.734220 +0.882117 51.735100 +0.886810 51.736274 +0.892091 51.737741 +0.896784 51.739207 +0.901771 51.740674 +0.907052 51.740967 +0.912039 51.742434 +0.917613 51.743314 +0.923480 51.743608 +0.929053 51.743021 +0.935801 51.741848 +0.940494 51.740087 +0.944894 51.738034 +0.949001 51.735687 +0.951935 51.733340 +0.954869 51.730700 +0.957215 51.727473 +0.958682 51.724246 +0.958976 51.720139 +0.959562 51.716619 +0.959856 51.712805 +0.959562 51.708992 +0.957509 51.704591 +0.958095 51.701071 +0.959562 51.697551 +0.960442 51.694031 +0.960149 51.689924 +0.957802 51.686697 +0.956042 51.682883 +0.954282 51.678483 +0.952228 51.674669 +0.951055 51.670269 +0.949295 51.666455 +0.948121 51.661762 +0.945481 51.658242 +0.943134 51.654721 +0.940494 51.651494 +0.938147 51.647974 +0.935801 51.644454 +0.932867 51.641520 +0.929640 51.638587 +0.925826 51.636533 +0.921719 51.634480 +0.917613 51.632426 +0.913212 51.630666 +0.907638 51.629786 +0.902651 51.628613 +0.897958 51.627146 +0.892384 51.626266 +0.886810 51.625973 +0.880650 51.625973 +0.873903 51.625973 +0.867156 51.626266 +0.860995 51.625973 +0.855128 51.625679 +0.848381 51.625973 +0.841634 51.625973 +0.834887 51.626266 +0.827846 51.627146 +0.821392 51.628319 +0.816699 51.630373 +0.812298 51.629786 +0.814352 51.627733 +0.818459 51.625386 +0.823152 51.623626 +0.829313 51.622159 +0.835767 51.620985 +0.843101 51.620692 +0.849848 51.619519 +0.856008 51.618052 +0.860702 51.616292 +0.863635 51.613652 +0.864222 51.610131 +0.864809 51.606024 +0.865102 51.602504 +0.867156 51.599571 +0.872729 51.597810 +0.877716 51.599277 +0.880650 51.601037 +0.882703 51.604851 +0.885344 51.608078 +0.888277 51.611011 +0.892091 51.613358 +0.897078 51.614825 +0.901771 51.615998 +0.907638 51.616292 +0.913212 51.617172 +0.919079 51.617465 +0.925240 51.617759 +0.931400 51.618052 +0.937561 51.618345 +0.943721 51.618639 +0.950762 51.617759 +0.955455 51.615705 +0.956629 51.612478 +0.953695 51.609838 +0.950468 51.606611 +0.947241 51.605144 +0.943721 51.602798 +0.939321 51.601037 +0.935801 51.598691 +0.932280 51.596050 +0.928467 51.593997 +0.924653 51.591357 +0.920546 51.589303 +0.917026 51.587250 +0.913212 51.584610 +0.910279 51.581969 +0.905878 51.579329 +0.902358 51.577276 +0.897958 51.575222 +0.894438 51.572875 +0.890624 51.570529 +0.886517 51.568475 +0.882703 51.566128 +0.879183 51.563781 +0.875663 51.561435 +0.871263 51.559381 +0.866862 51.557914 +0.861582 51.557034 +0.856595 51.555567 +0.852488 51.553514 +0.848381 51.551754 +0.845154 51.548820 +0.841634 51.546473 +0.837233 51.544420 +0.833126 51.542367 +0.828726 51.540313 +0.824326 51.538553 +0.820806 51.536206 +0.816699 51.534153 +0.812592 51.532392 +0.808191 51.530632 +0.803791 51.528579 +0.799097 51.527112 +0.794110 51.525939 +0.789417 51.524472 +0.784723 51.523298 +0.779149 51.522418 +0.772989 51.522125 +0.766828 51.521832 +0.760668 51.523005 +0.755094 51.524472 +0.747760 51.525352 +0.742187 51.526525 +0.735733 51.527699 +0.728692 51.528579 +0.721945 51.528872 +0.715198 51.529166 +0.708744 51.529459 +0.701410 51.530046 +0.694076 51.530926 +0.687916 51.531806 +0.680582 51.532686 +0.674128 51.533859 +0.667675 51.535033 +0.661514 51.536206 +0.655060 51.537086 +0.648900 51.537086 +0.644793 51.535033 +0.643033 51.531219 +0.642739 51.527699 +0.642446 51.523592 +0.638926 51.521245 +0.634819 51.519485 +0.629245 51.518605 +0.623085 51.518311 +0.616338 51.518605 +0.609297 51.519192 +0.602550 51.519485 +0.596683 51.519192 +0.591696 51.517725 +0.587589 51.516258 +0.583775 51.513618 +0.580255 51.510978 +0.576148 51.509511 +0.571161 51.508044 +0.565587 51.509511 +0.561774 51.511564 +0.558840 51.514498 +0.553266 51.515965 +0.547693 51.515085 +0.542119 51.514204 +0.537425 51.512738 +0.532732 51.511271 +0.527158 51.510684 +0.521877 51.509804 +0.515717 51.509511 +0.510143 51.508631 +0.504863 51.507751 +0.498996 51.507457 +0.492835 51.507164 +0.487555 51.506284 +0.481981 51.505697 +0.476701 51.504817 +0.470540 51.504524 +0.464967 51.503644 +0.460273 51.502177 +0.456166 51.500417 +0.452059 51.498363 +0.448832 51.495430 +0.446485 51.491910 +0.446192 51.487803 +0.445899 51.483989 +0.445312 51.479589 +0.444139 51.475188 +0.441205 51.472255 +0.438858 51.469028 +0.435338 51.466388 +0.431524 51.463748 +0.427417 51.461987 +0.422430 51.460521 +0.417737 51.459347 +0.412163 51.458467 +0.407469 51.457294 +0.401896 51.456414 +0.397202 51.454947 +0.391921 51.454067 +0.386348 51.453480 +0.382827 51.450840 +0.386641 51.448493 +0.393095 51.447613 +0.399255 51.447906 +0.405709 51.447613 +0.412456 51.447320 +0.417737 51.448200 +0.423310 51.449080 +0.428591 51.449960 +0.433284 51.450253 +0.438565 51.451133 +0.444139 51.452013 +0.448246 51.453773 +0.452646 51.455827 +0.456166 51.458174 +0.459100 51.461107 +0.461446 51.464334 +0.463793 51.468148 +0.466433 51.471375 +0.468194 51.475482 +0.471127 51.478415 +0.474647 51.480762 +0.478754 51.482816 +0.484035 51.484282 +0.489022 51.484869 +0.495182 51.485162 +0.501929 51.484869 +0.508677 51.484869 +0.513957 51.485456 +0.519531 51.486336 +0.525398 51.486629 +0.530971 51.487509 +0.536252 51.488389 +0.542119 51.488683 +0.548866 51.488683 +0.556200 51.487803 +0.561774 51.486042 +0.567347 51.484869 +0.573214 51.484869 +0.578202 51.486336 +0.583189 51.487803 +0.588469 51.488683 +0.595509 51.487803 +0.601963 51.486629 +0.606657 51.484869 +0.610470 51.482522 +0.615164 51.480469 +0.620738 51.479295 +0.627192 51.478122 +0.633939 51.477829 +0.640686 51.477535 +0.646260 51.477829 +0.653007 51.477829 +0.660341 51.476948 +0.665914 51.475188 +0.671488 51.474015 +0.677649 51.472842 +0.683809 51.473135 +0.691143 51.472255 +0.697597 51.471081 +0.702290 51.469028 +0.707864 51.467855 +0.711678 51.465508 +0.716371 51.463748 +0.720185 51.461401 +0.723412 51.458761 +0.725172 51.455827 +0.726639 51.452600 +0.727226 51.448493 +0.725172 51.444680 +0.723119 51.441159 +0.719305 51.438812 +0.714318 51.437639 +0.709038 51.436759 +0.703170 51.436466 +0.697010 51.436172 +0.690850 51.435879 +0.684396 51.435879 +0.677942 51.437346 +0.671782 51.438226 +0.666208 51.439692 +0.659461 51.439986 +0.652127 51.440866 +0.645086 51.441453 +0.640099 51.439986 +0.637752 51.436759 +0.635406 51.433239 +0.629245 51.432652 +0.625138 51.431185 +0.621911 51.427958 +0.618978 51.425318 +0.615164 51.422678 +0.611644 51.420331 +0.606950 51.418864 +0.602843 51.417104 +0.598150 51.415931 +0.592576 51.415051 +0.587002 51.414171 +0.581135 51.413877 +0.574975 51.413584 +0.568814 51.413291 +0.562947 51.412704 +0.557960 51.411530 +0.556787 51.408304 +0.558840 51.405663 +0.561774 51.402730 +0.564707 51.400383 +0.568521 51.398036 +0.572628 51.395689 +0.575561 51.393049 +0.578495 51.390702 +0.582602 51.388062 +0.588176 51.386595 +0.593749 51.386889 +0.600203 51.385715 +0.604897 51.383955 +0.608124 51.381315 +0.611937 51.379261 +0.617218 51.380142 +0.619858 51.383368 +0.622791 51.386302 +0.626312 51.388649 +0.632472 51.388942 +0.638046 51.388355 +0.644206 51.388649 +0.647726 51.390996 +0.653300 51.391876 +0.659754 51.391582 +0.663568 51.389529 +0.666795 51.386889 +0.669728 51.384249 +0.672075 51.381022 +0.677355 51.379848 +0.681756 51.381608 +0.685276 51.383955 +0.690556 51.384835 +0.696717 51.385129 +0.701410 51.386302 +0.706397 51.387769 +0.709918 51.390409 +0.712264 51.393636 +0.711971 51.397449 +0.709624 51.400383 +0.706691 51.403023 +0.704344 51.406250 +0.703464 51.409477 +0.704344 51.413877 +0.706104 51.417691 +0.708158 51.422091 +0.711678 51.424145 +0.717838 51.424731 +0.722532 51.422678 +0.725172 51.420038 +0.726639 51.416811 +0.727226 51.412997 +0.728692 51.409477 +0.734266 51.408010 +0.736906 51.410944 +0.739546 51.414464 +0.741307 51.418278 +0.740720 51.422091 +0.740133 51.425905 +0.740720 51.430012 +0.744533 51.432359 +0.746587 51.435879 +0.747174 51.439986 +0.748934 51.443799 +0.754507 51.444680 +0.760375 51.444973 +0.766535 51.443799 +0.771522 51.442333 +0.777682 51.440866 +0.783843 51.441453 +0.791177 51.440573 +0.796751 51.438812 +0.801444 51.437346 +0.806138 51.435292 +0.812592 51.434119 +0.818752 51.432945 +0.825206 51.431772 +0.831660 51.430598 +0.838113 51.429425 +0.844567 51.428252 +0.851608 51.427372 +0.858062 51.426492 +0.863635 51.425025 +0.870969 51.424145 +0.878010 51.423265 +0.885344 51.422678 +0.892384 51.422091 +0.898838 51.420918 +0.904118 51.419158 +0.908812 51.417104 +0.912039 51.414757 +0.914092 51.411530 +0.916439 51.408597 +0.918199 51.405663 +0.922306 51.403317 +0.927000 51.401263 +0.930813 51.399210 +0.933747 51.396569 +0.936681 51.393929 +0.939027 51.390702 +0.941081 51.388062 +0.944308 51.385422 +0.945188 51.381902 +0.947535 51.378968 +0.948121 51.375155 +0.946948 51.371634 +0.942841 51.369581 +0.936681 51.369581 +0.929347 51.370167 +0.925240 51.368407 +0.921133 51.366354 +0.917613 51.364300 +0.913799 51.361660 +0.909399 51.359607 +0.904705 51.358433 +0.899425 51.357553 +0.892677 51.357847 +0.885637 51.358727 +0.880063 51.360193 +0.873609 51.361367 +0.867156 51.362540 +0.860702 51.363714 +0.853661 51.364300 +0.847207 51.365474 +0.839874 51.366354 +0.833420 51.366354 +0.826966 51.366647 +0.819632 51.367527 +0.812592 51.368407 +0.805258 51.368994 +0.797924 51.369581 +0.793524 51.368114 +0.795870 51.364887 +0.798804 51.362247 +0.803498 51.360193 +0.809071 51.359020 +0.814645 51.357260 +0.821099 51.356086 +0.827553 51.354913 +0.834593 51.354326 +0.841634 51.353740 +0.848968 51.352860 +0.856008 51.351980 +0.863342 51.351393 +0.870676 51.350513 +0.877716 51.349633 +0.884170 51.348753 +0.888864 51.346699 +0.893557 51.344646 +0.900011 51.343472 +0.906465 51.342592 +0.913506 51.341712 +0.919373 51.342005 +0.924946 51.342886 +0.929640 51.344059 +0.935214 51.344939 +0.939907 51.346406 +0.944601 51.347873 +0.950175 51.348753 +0.956922 51.348459 +0.963669 51.348166 +0.970710 51.347286 +0.976577 51.347579 +0.983324 51.347286 +0.989484 51.347579 +0.996232 51.347286 +1.001512 51.348166 +1.007086 51.348753 +1.011193 51.350806 +1.015886 51.352273 +1.020580 51.353446 +1.024980 51.355206 +1.028500 51.357847 +1.032901 51.359313 +1.037008 51.361367 +1.041115 51.363420 +1.046102 51.364594 +1.050795 51.365767 +1.055782 51.367234 +1.061063 51.368114 +1.067223 51.368407 +1.073090 51.368701 +1.079251 51.368994 +1.085411 51.369287 +1.091865 51.368994 +1.097732 51.369287 +1.103893 51.369581 +1.110053 51.369581 +1.116507 51.369581 +1.122081 51.370167 +1.127361 51.371048 +1.132641 51.371928 +1.137628 51.373394 +1.142615 51.374568 +1.147896 51.375155 +1.153763 51.375448 +1.159923 51.375741 +1.165790 51.376035 +1.171364 51.376915 +1.177525 51.377208 +1.182805 51.378088 +1.187792 51.379555 +1.193366 51.380435 +1.198646 51.381315 +1.203340 51.382782 +1.208913 51.383662 +1.215074 51.383955 +1.220941 51.384249 +1.227395 51.383955 +1.234142 51.383662 +1.241476 51.382782 +1.247930 51.382488 +1.254677 51.382195 +1.261131 51.381902 +1.268464 51.381022 +1.274331 51.381315 +1.279318 51.382782 +1.284306 51.384249 +1.288999 51.385422 +1.294573 51.386009 +1.300440 51.386302 +1.306894 51.386009 +1.313054 51.386302 +1.319801 51.386009 +1.325082 51.386889 +1.331536 51.386595 +1.337109 51.387475 +1.342390 51.388355 +1.347377 51.389822 +1.352657 51.390702 +1.358818 51.390702 +1.364391 51.391289 +1.370258 51.391582 +1.377006 51.391289 +1.383166 51.391582 +1.388446 51.392462 +1.393433 51.393929 +1.398714 51.394809 +1.404581 51.395103 +1.410741 51.395396 +1.416608 51.395396 +1.422769 51.395689 +1.428929 51.395689 +1.435676 51.395689 +1.441837 51.395396 +1.448291 51.394223 +1.452104 51.391876 +nan nan +1.452104 51.391876 +1.452984 51.390116 +1.453864 51.387182 +1.454158 51.383368 +1.454744 51.379555 +1.454158 51.375448 +1.452984 51.370754 +1.451811 51.366354 +1.449757 51.362540 +1.447704 51.358727 +1.446237 51.354326 +1.444184 51.350513 +1.442130 51.346699 +1.440370 51.342886 +1.437143 51.339659 +1.434210 51.337018 +1.430983 51.333792 +1.427462 51.331738 +1.423356 51.329685 +1.419249 51.327924 +1.413675 51.327044 +1.406928 51.327338 +1.400181 51.327631 +1.394313 51.327338 +1.389033 51.326751 +1.384046 51.325284 +1.379939 51.323231 +1.377006 51.320591 +1.375539 51.316190 +1.377006 51.312377 +1.380526 51.310323 +1.382873 51.307096 +1.384633 51.304163 +1.385219 51.300642 +1.383753 51.296242 +1.382873 51.291255 +1.383166 51.287735 +1.384339 51.284508 +1.387273 51.281574 +1.389326 51.278641 +1.391673 51.275414 +1.393727 51.272774 +1.395780 51.269840 +1.396954 51.266320 +1.399300 51.263386 +1.400181 51.259866 +1.401647 51.256346 +1.402821 51.253119 +1.404874 51.249892 +1.405461 51.246372 +1.406634 51.242852 +1.407221 51.239038 +1.407514 51.235224 +1.408101 51.231704 +1.408394 51.227891 +1.408688 51.224077 +1.409861 51.220850 +1.410448 51.217036 +1.410741 51.212930 +1.411035 51.209409 +1.410741 51.205302 +1.411035 51.201782 +1.410741 51.197382 +1.409568 51.192981 +1.409274 51.188874 +1.407808 51.184181 +1.406341 51.179780 +1.404581 51.175967 +1.402821 51.171860 +1.400181 51.168340 +1.398420 51.164526 +1.396074 51.161006 +1.393140 51.158072 +1.390500 51.154845 +1.386686 51.151912 +1.383753 51.148978 +1.380526 51.146045 +1.377592 51.143111 +1.373779 51.140764 +1.371138 51.138711 +1.368792 51.136071 +1.365271 51.134017 +1.361751 51.131377 +1.357937 51.129030 +1.353831 51.127270 +1.349137 51.125803 +1.344150 51.124337 +1.338869 51.123750 +1.333296 51.123163 +1.327429 51.122870 +1.322735 51.121403 +1.317748 51.119936 +1.313641 51.118469 +1.309534 51.116416 +1.304840 51.114949 +1.300147 51.113189 +1.295453 51.112016 +1.290759 51.110549 +1.285772 51.109082 +1.281079 51.107909 +1.276972 51.106149 +1.272278 51.104682 +1.267291 51.103215 +1.262597 51.102042 +1.257317 51.101455 +1.251743 51.100575 +1.245876 51.100281 +1.239129 51.100575 +1.232088 51.101455 +1.226221 51.101162 +1.220648 51.100281 +1.216834 51.097641 +1.213314 51.095294 +1.210967 51.092068 +1.208033 51.089134 +1.205100 51.086200 +1.201286 51.083854 +1.196886 51.081800 +1.193659 51.080627 +1.189552 51.078573 +1.184272 51.077693 +1.179578 51.076520 +1.174004 51.075640 +1.168724 51.074760 +1.161977 51.075053 +1.155816 51.074760 +1.149949 51.074466 +1.143789 51.074173 +1.137628 51.074466 +1.130881 51.074760 +1.123547 51.075640 +1.117094 51.075933 +1.111226 51.075640 +1.105946 51.074760 +1.100372 51.073880 +1.095679 51.072413 +1.091278 51.070946 +1.087171 51.068893 +1.083064 51.066839 +1.078957 51.065372 +1.074557 51.063319 +1.070157 51.061265 +1.066050 51.059799 +1.061943 51.057745 +1.058423 51.055398 +1.054022 51.053638 +1.049915 51.051585 +1.045808 51.049824 +1.042288 51.047478 +1.038181 51.045424 +1.034368 51.043077 +1.029967 51.041317 +1.026447 51.038970 +1.022927 51.036330 +1.019407 51.034277 +1.015886 51.031637 +1.012366 51.029583 +1.008552 51.026943 +1.005032 51.024303 +1.001512 51.022249 +0.998285 51.019022 +0.994765 51.016969 +0.991538 51.014035 +0.988604 51.011102 +0.986257 51.007581 +0.983911 51.004061 +0.981270 51.000541 +0.978924 50.997314 +0.977163 50.993207 +0.974817 50.989687 +0.973057 50.985873 +0.971003 50.982060 +0.970123 50.977366 +0.968656 50.972672 +0.968363 50.968565 +0.968656 50.965045 +0.969243 50.961231 +0.969830 50.957418 +0.969243 50.953311 +0.969830 50.949497 +0.970123 50.945977 +0.971296 50.942457 +0.972763 50.938937 +0.973937 50.935416 +0.975403 50.932189 +0.978337 50.929843 +0.979510 50.926029 +0.980097 50.922509 +0.978630 50.918108 +0.975697 50.914881 +0.970710 50.913708 +0.965429 50.912828 +0.959856 50.912535 +0.955749 50.912535 +0.949588 50.912828 +0.942254 50.913708 +0.934920 50.914588 +0.928173 50.914881 +0.920839 50.915762 +0.913506 50.916642 +0.907932 50.917228 +0.900891 50.918108 +0.893557 50.918988 +0.886517 50.919868 +0.880357 50.920749 +0.873903 50.921922 +0.867449 50.923095 +0.862169 50.924562 +0.856595 50.926029 +0.850141 50.927202 +0.844274 50.928376 +0.838700 50.929843 +0.832246 50.930723 +0.826673 50.932483 +0.820512 50.933656 +0.814058 50.934830 +0.807018 50.935416 +0.799977 50.936296 +0.793230 50.936296 +0.787363 50.936003 +0.781496 50.935710 +0.777096 50.934243 +0.773576 50.931603 +0.770349 50.930136 +0.766242 50.928376 +0.761841 50.926322 +0.757734 50.924562 +0.753627 50.922802 +0.749520 50.920749 +0.745414 50.918988 +0.741013 50.916935 +0.736906 50.915175 +0.732799 50.913415 +0.729279 50.910775 +0.724879 50.909308 +0.720772 50.907254 +0.716665 50.905201 +0.713145 50.902854 +0.709331 50.900507 +0.705811 50.898160 +0.702877 50.895227 +0.699357 50.892880 +0.696423 50.889653 +0.692903 50.887600 +0.689089 50.884959 +0.686156 50.882319 +0.682636 50.879679 +0.679115 50.877332 +0.675595 50.874985 +0.671488 50.872932 +0.667088 50.871172 +0.662394 50.869705 +0.656820 50.868825 +0.652127 50.867651 +0.646846 50.867065 +0.642153 50.865598 +0.636872 50.864718 +0.631299 50.863838 +0.626605 50.862371 +0.621325 50.861784 +0.616631 50.860318 +0.611057 50.859437 +0.605777 50.858557 +0.600496 50.857677 +0.595216 50.857091 +0.589642 50.856211 +0.584949 50.854744 +0.580842 50.852984 +0.576148 50.851810 +0.572041 50.849757 +0.567347 50.848290 +0.562067 50.847410 +0.555907 50.847117 +0.550626 50.846530 +0.544759 50.846237 +0.538599 50.845943 +0.532732 50.845650 +0.526571 50.845356 +0.521291 50.844476 +0.516597 50.843010 +0.511903 50.841543 +0.508677 50.840663 +0.503396 50.839783 +0.498702 50.838316 +0.493422 50.837436 +0.488142 50.836556 +0.482568 50.835969 +0.476701 50.835676 +0.470834 50.835382 +0.465260 50.834502 +0.459393 50.834209 +0.452646 50.834502 +0.447365 50.833622 +0.441792 50.833036 +0.436218 50.832449 +0.430938 50.831275 +0.426244 50.830395 +0.420964 50.829515 +0.415977 50.828049 +0.410696 50.827169 +0.405709 50.825702 +0.400429 50.825115 +0.395735 50.823648 +0.391041 50.822181 +0.386348 50.820715 +0.381654 50.819541 +0.376960 50.818075 +0.372267 50.816608 +0.368160 50.815141 +0.363466 50.813674 +0.358479 50.812207 +0.354372 50.810154 +0.349385 50.808981 +0.346158 50.806340 +0.342931 50.803700 +0.342051 50.799300 +0.340878 50.794313 +0.337358 50.792259 +0.333544 50.789619 +0.328850 50.788446 +0.324157 50.786979 +0.320930 50.785512 +0.316236 50.784045 +0.311249 50.782872 +0.307142 50.780819 +0.303622 50.778472 +0.300102 50.776125 +0.296581 50.773485 +0.293648 50.770551 +0.290714 50.767911 +0.287194 50.765271 +0.284847 50.762044 +0.281914 50.758817 +0.279567 50.755590 +0.277220 50.752070 +0.274286 50.749136 +0.271353 50.746203 +0.267833 50.743563 +0.263726 50.741802 +0.259032 50.740629 +0.254045 50.739162 +0.248471 50.738869 +0.242311 50.738282 +0.235270 50.739162 +0.227936 50.740042 +0.221776 50.741216 +0.215615 50.742096 +0.210042 50.743563 +0.205348 50.745616 +0.199774 50.747083 +0.195374 50.748843 +0.190680 50.750603 +0.186573 50.752656 +0.181880 50.754710 +0.177479 50.756763 +0.171906 50.757937 +0.166332 50.759404 +0.160171 50.760870 +0.153131 50.761457 +0.146384 50.761750 +0.140517 50.761457 +0.135236 50.760577 +0.129369 50.759990 +0.123209 50.759697 +0.116462 50.760577 +0.110888 50.762044 +0.106194 50.763804 +0.102087 50.766151 +0.098567 50.768204 +0.093873 50.770258 +0.089180 50.772018 +0.084486 50.773778 +0.080086 50.775831 +0.075392 50.777592 +0.069818 50.779058 +0.064245 50.780525 +0.057204 50.781405 +0.051044 50.780819 +0.046350 50.779352 +0.041070 50.778472 +0.034616 50.779645 +0.029629 50.779645 +0.023468 50.780819 +0.017895 50.782579 +0.013201 50.784045 +0.007921 50.785806 +0.002347 50.787272 +-0.003227 50.788739 +-0.008801 50.789913 +-0.013201 50.791966 +-0.019068 50.793433 +-0.024348 50.794900 +-0.029922 50.796366 +-0.035203 50.797833 +-0.041070 50.799300 +-0.047523 50.800180 +-0.052804 50.801940 +-0.058378 50.803407 +-0.064538 50.804580 +-0.070698 50.805460 +-0.077152 50.806634 +-0.082726 50.808100 +-0.089180 50.809274 +-0.094460 50.810447 +-0.100914 50.811621 +-0.107368 50.812794 +-0.114115 50.813674 +-0.119982 50.815141 +-0.126142 50.816021 +-0.132303 50.817194 +-0.138170 50.818661 +-0.144037 50.819835 +-0.150491 50.820715 +-0.156651 50.821888 +-0.160465 50.821595 +-0.164278 50.822475 +-0.171026 50.823355 +-0.177479 50.824528 +-0.183933 50.825702 +-0.190974 50.825995 +-0.198014 50.826875 +-0.204761 50.826875 +-0.210628 50.826582 +-0.216789 50.826288 +-0.222363 50.825995 +-0.227056 50.824822 +-0.231163 50.822768 +-0.237030 50.823355 +-0.241724 50.825115 +-0.248178 50.825995 +-0.254925 50.826875 +-0.260499 50.825995 +-0.266366 50.825702 +-0.271646 50.824822 +-0.277513 50.824528 +-0.283087 50.823648 +-0.287781 50.822181 +-0.293061 50.821301 +-0.297168 50.819541 +-0.301275 50.819835 +-0.306849 50.818955 +-0.311249 50.817488 +-0.316823 50.816608 +-0.322103 50.815728 +-0.327090 50.814554 +-0.331784 50.813088 +-0.336477 50.811621 +-0.341171 50.810154 +-0.345865 50.808981 +-0.350558 50.807514 +-0.355839 50.806634 +-0.361119 50.805754 +-0.366400 50.804580 +-0.372267 50.804580 +-0.378427 50.804287 +-0.384294 50.803994 +-0.389868 50.803407 +-0.396028 50.803113 +-0.402189 50.802820 +-0.406589 50.801353 +-0.410696 50.799300 +-0.415977 50.798126 +-0.419790 50.796073 +-0.425071 50.795193 +-0.430644 50.794313 +-0.435925 50.793433 +-0.441792 50.793139 +-0.448539 50.794019 +-0.454993 50.794606 +-0.461446 50.795780 +-0.467314 50.795486 +-0.473767 50.795780 +-0.479634 50.795193 +-0.485795 50.794900 +-0.491662 50.794606 +-0.496942 50.793726 +-0.503103 50.793433 +-0.508383 50.792553 +-0.513664 50.791673 +-0.519237 50.790793 +-0.524224 50.789913 +-0.529505 50.789032 +-0.535078 50.788152 +-0.538892 50.787272 +-0.544759 50.786686 +-0.550039 50.785806 +-0.555907 50.785512 +-0.562360 50.785512 +-0.569108 50.785806 +-0.574975 50.785512 +-0.580255 50.784339 +-0.584949 50.783165 +-0.590229 50.782285 +-0.595803 50.781405 +-0.601670 50.781112 +-0.606950 50.779938 +-0.612817 50.779645 +-0.618098 50.778765 +-0.623965 50.778472 +-0.629539 50.777592 +-0.634819 50.776712 +-0.640686 50.776418 +-0.645966 50.775538 +-0.651247 50.774658 +-0.656527 50.773485 +-0.661808 50.772898 +-0.667088 50.772018 +-0.672955 50.771725 +-0.679115 50.771138 +-0.684983 50.770844 +-0.690850 50.770551 +-0.696717 50.769964 +-0.702877 50.769671 +-0.708744 50.769378 +-0.714025 50.768204 +-0.719012 50.767031 +-0.722825 50.764977 +-0.726345 50.762924 +-0.729866 50.760284 +-0.733386 50.757644 +-0.737493 50.755883 +-0.742187 50.756763 +-0.746294 50.757937 +-0.746000 50.762337 +-0.746880 50.766151 +-0.751281 50.767911 +-0.757148 50.767618 +-0.760375 50.764391 +-0.761255 50.759990 +-0.758321 50.757350 +-0.754507 50.755297 +-0.750694 50.752950 +-0.748934 50.749430 +-0.748640 50.745909 +-0.749520 50.741509 +-0.750987 50.737109 +-0.753041 50.733295 +-0.755094 50.729775 +-0.758028 50.726841 +-0.762135 50.725081 +-0.766828 50.723614 +-0.772695 50.723028 +-0.778563 50.722734 +-0.785016 50.723908 +-0.790590 50.725375 +-0.795870 50.726548 +-0.799684 50.728895 +-0.803498 50.731242 +-0.807605 50.733295 +-0.812298 50.735055 +-0.816112 50.737109 +-0.819926 50.739456 +-0.824032 50.741802 +-0.828726 50.743563 +-0.833420 50.745323 +-0.837820 50.747083 +-0.842514 50.748843 +-0.847501 50.750896 +-0.852781 50.752363 +-0.857475 50.754123 +-0.863049 50.755590 +-0.867742 50.757350 +-0.873316 50.758524 +-0.878596 50.760284 +-0.884170 50.761750 +-0.888864 50.763217 +-0.894438 50.764684 +-0.895318 50.764391 +-0.898544 50.765271 +-0.904118 50.766738 +-0.908225 50.768791 +-0.912039 50.771138 +-0.914972 50.773485 +-0.916439 50.777005 +-0.915559 50.780525 +-0.911745 50.782579 +-0.905585 50.782872 +-0.899718 50.783459 +-0.897371 50.786686 +-0.895318 50.790206 +-0.892091 50.793433 +-0.889451 50.796073 +-0.885344 50.798126 +-0.878890 50.798126 +-0.872729 50.798420 +-0.868916 50.800180 +-0.865689 50.803407 +-0.864809 50.807807 +-0.868036 50.810154 +-0.871849 50.812501 +-0.877130 50.813968 +-0.882997 50.814554 +-0.886224 50.817194 +-0.887397 50.820421 +-0.888864 50.823942 +-0.890331 50.827169 +-0.893557 50.829809 +-0.898838 50.830982 +-0.904118 50.830395 +-0.907345 50.827169 +-0.908225 50.822768 +-0.908812 50.819248 +-0.910572 50.815141 +-0.914092 50.812794 +-0.918786 50.811327 +-0.923773 50.812207 +-0.926707 50.814848 +-0.927587 50.818661 +-0.926413 50.823062 +-0.924066 50.826582 +-0.922600 50.830689 +-0.921426 50.835089 +-0.922893 50.838609 +-0.926120 50.841250 +-0.931400 50.842423 +-0.937267 50.842130 +-0.943428 50.841543 +-0.949295 50.841250 +-0.954282 50.840076 +-0.958095 50.838023 +-0.962202 50.835969 +-0.965136 50.833036 +-0.961909 50.830689 +-0.957215 50.828635 +-0.951642 50.827169 +-0.947828 50.825115 +-0.944308 50.822768 +-0.943428 50.819248 +-0.945481 50.815434 +-0.949295 50.813088 +-0.951935 50.810154 +-0.954282 50.806634 +-0.954575 50.802527 +-0.952815 50.799300 +-0.953108 50.794900 +-0.954869 50.791086 +-0.954869 50.786979 +-0.952815 50.783752 +-0.950468 50.781112 +-0.949882 50.777298 +-0.953402 50.774658 +-0.959562 50.774365 +-0.965723 50.774365 +-0.973057 50.775245 +-0.979510 50.776125 +-0.985964 50.777298 +-0.991244 50.778472 +-0.997698 50.778765 +-1.001805 50.777005 +-1.004739 50.773778 +-1.008846 50.772018 +-1.014126 50.771138 +-1.017940 50.773191 +-1.020287 50.776125 +-1.020873 50.779938 +-1.018526 50.783752 +-1.015593 50.786392 +-1.012366 50.789032 +-1.008259 50.790793 +-1.004152 50.792846 +-1.000045 50.794606 +-0.995938 50.796660 +-0.992418 50.799300 +-0.990364 50.802527 +-0.988604 50.806634 +-0.988311 50.810741 +-0.989778 50.814261 +-0.988898 50.817781 +-0.986844 50.821008 +-0.984497 50.824822 +-0.982737 50.828635 +-0.982737 50.832742 +-0.984204 50.835969 +-0.986844 50.838903 +-0.991538 50.840663 +-0.997992 50.841543 +-1.005325 50.842130 +-1.012366 50.842716 +-1.017646 50.841836 +-1.022633 50.840663 +-1.025860 50.838023 +-1.028794 50.835382 +-1.031141 50.831569 +-1.032314 50.827169 +-1.033488 50.823062 +-1.033781 50.818955 +-1.035541 50.815141 +-1.037301 50.811034 +-1.038475 50.806340 +-1.037594 50.802820 +-1.037008 50.799006 +-1.037008 50.795780 +-1.039355 50.792259 +-1.042875 50.789619 +-1.047569 50.788446 +-1.051969 50.786979 +-1.056956 50.785512 +-1.061356 50.784045 +-1.065463 50.782285 +-1.069863 50.780232 +-1.075144 50.779352 +-1.079838 50.777885 +-1.085998 50.778178 +-1.092452 50.779058 +-1.097145 50.780819 +-1.100372 50.783459 +-1.103599 50.786099 +-1.105946 50.789032 +-1.106239 50.792846 +-1.106239 50.796953 +-1.104479 50.800767 +-1.101252 50.803407 +-1.095972 50.804580 +-1.092158 50.806634 +-1.089518 50.809861 +-1.087758 50.813674 +-1.090105 50.816608 +-1.092158 50.819835 +-1.091865 50.823942 +-1.090105 50.826288 +-1.083651 50.825995 +-1.078077 50.827169 +-1.073970 50.829222 +-1.070450 50.831275 +-1.068397 50.835089 +-1.069863 50.838316 +-1.072797 50.840956 +-1.076611 50.843010 +-1.080424 50.845356 +-1.085998 50.846530 +-1.091572 50.847117 +-1.097145 50.846530 +-1.101839 50.845063 +-1.106533 50.843596 +-1.110640 50.841543 +-1.115920 50.840663 +-1.122081 50.840369 +-1.129121 50.840956 +-1.136162 50.841543 +-1.142029 50.843010 +-1.148189 50.843890 +-1.154350 50.845063 +-1.159923 50.844183 +-1.163444 50.841543 +-1.163444 50.838316 +-1.160803 50.835676 +-1.155523 50.834209 +-1.148189 50.833329 +-1.142909 50.831862 +-1.141442 50.828635 +-1.139095 50.825702 +-1.136162 50.823062 +-1.132055 50.820715 +-1.127948 50.818661 +-1.124134 50.816314 +-1.120320 50.814554 +-1.117974 50.811327 +-1.117680 50.807514 +-1.117680 50.803407 +-1.120027 50.799887 +-1.122667 50.796953 +-1.124427 50.793139 +-1.125601 50.788446 +-1.126481 50.783752 +-1.129414 50.781112 +-1.134108 50.779352 +-1.139388 50.778472 +-1.145256 50.778472 +-1.151123 50.778765 +-1.157576 50.779645 +-1.163737 50.780819 +-1.168431 50.782579 +-1.174004 50.783752 +-1.178698 50.785806 +-1.182512 50.788152 +-1.186325 50.790206 +-1.190139 50.792553 +-1.194246 50.794606 +-1.197179 50.797246 +-1.199819 50.799300 +-1.202753 50.801647 +-1.205980 50.804580 +-1.208913 50.806927 +-1.211847 50.809567 +-1.215954 50.811621 +-1.219768 50.813968 +-1.223581 50.816021 +-1.228275 50.818075 +-1.232969 50.819835 +-1.237662 50.821301 +-1.242356 50.823355 +-1.247343 50.825115 +-1.252917 50.826288 +-1.258197 50.828049 +-1.263771 50.829515 +-1.269051 50.830689 +-1.275505 50.831569 +-1.281372 50.833036 +-1.285772 50.835089 +-1.290759 50.836556 +-1.294866 50.838903 +-1.298680 50.841250 +-1.302493 50.843303 +-1.306307 50.845650 +-1.309534 50.847997 +-1.313348 50.850344 +-1.316281 50.852690 +-1.320388 50.855037 +-1.324202 50.857091 +-1.328015 50.859437 +-1.331242 50.862078 +-1.335056 50.864131 +-1.338869 50.866478 +-1.342683 50.868531 +-1.346790 50.870878 +-1.350604 50.872638 +-1.354417 50.874985 +-1.357644 50.877919 +-1.361751 50.879679 +-1.366151 50.881732 +-1.370258 50.883786 +-1.373779 50.886133 +-1.378766 50.887893 +-1.385219 50.888773 +-1.391967 50.888773 +-1.396367 50.890826 +-1.399594 50.893467 +-1.403701 50.895520 +-1.406341 50.898160 +-1.410155 50.900214 +-1.414555 50.902561 +-1.418368 50.904614 +-1.423062 50.906374 +-1.428636 50.907841 +-1.434210 50.909308 +-1.439783 50.910481 +-1.445357 50.911948 +-1.450637 50.913415 +-1.456505 50.914588 +-1.463545 50.915468 +-1.468825 50.914295 +-1.472639 50.911655 +-1.472639 50.908428 +-1.469119 50.905787 +-1.465012 50.904321 +-1.459731 50.903147 +-1.454744 50.901387 +-1.449171 50.899920 +-1.443890 50.898747 +-1.438317 50.897280 +-1.433623 50.895227 +-1.428049 50.893760 +-1.422475 50.892587 +-1.416902 50.891120 +-1.412208 50.889360 +-1.407514 50.887600 +-1.404287 50.884959 +-1.401061 50.882612 +-1.399887 50.879092 +-1.396660 50.876452 +-1.394313 50.873519 +-1.392260 50.870585 +-1.388153 50.868238 +-1.383753 50.866771 +-1.378472 50.864718 +-1.374952 50.862371 +-1.369378 50.861198 +-1.364391 50.859437 +-1.359991 50.857384 +-1.355297 50.855917 +-1.351484 50.853570 +-1.347377 50.851517 +-1.343563 50.849170 +-1.340336 50.846530 +-1.337403 50.844183 +-1.334176 50.841250 +-1.331242 50.838903 +-1.328895 50.835969 +-1.326549 50.833036 +-1.324202 50.830102 +-1.322735 50.826582 +-1.320681 50.823648 +-1.317455 50.821008 +-1.310414 50.820421 +-1.306307 50.818368 +-1.307481 50.813968 +-1.309534 50.810154 +-1.311587 50.806927 +-1.315694 50.804580 +-1.318921 50.801940 +-1.322148 50.799300 +-1.325375 50.796366 +-1.328602 50.794019 +-1.331536 50.791086 +-1.334176 50.788152 +-1.338283 50.786099 +-1.341803 50.783752 +-1.345910 50.781699 +-1.349724 50.779645 +-1.355297 50.778765 +-1.360578 50.777885 +-1.365858 50.777005 +-1.370552 50.775538 +-1.375832 50.774365 +-1.381112 50.773485 +-1.386980 50.773191 +-1.393140 50.772898 +-1.399007 50.772605 +-1.405461 50.772605 +-1.411328 50.772311 +-1.417195 50.771725 +-1.422475 50.770844 +-1.428343 50.770258 +-1.433916 50.769378 +-1.439197 50.768498 +-1.444477 50.767618 +-1.448877 50.766151 +-1.454451 50.765271 +-1.458851 50.763804 +-1.463545 50.762631 +-1.467652 50.760577 +-1.472052 50.758230 +-1.476746 50.757057 +-1.480853 50.755003 +-1.484667 50.752950 +-1.488774 50.751190 +-1.493467 50.749723 +-1.497574 50.747669 +-1.502268 50.746496 +-1.506081 50.744443 +-1.510188 50.742389 +-1.514589 50.740629 +-1.517816 50.737989 +-1.521923 50.736229 +-1.525149 50.733588 +-1.528963 50.731242 +-1.532190 50.728601 +-1.536004 50.726548 +-1.539817 50.724201 +-1.541577 50.720974 +-1.543924 50.717161 +-1.546271 50.713640 +-1.549791 50.711000 +-1.555072 50.710413 +-1.561525 50.711294 +-1.566219 50.713054 +-1.570033 50.715400 +-1.573846 50.717454 +-1.577660 50.719801 +-1.581767 50.721561 +-1.587341 50.723028 +-1.592914 50.724788 +-1.597608 50.726255 +-1.600248 50.726548 +-1.606702 50.727428 +-1.612276 50.728895 +-1.618730 50.730068 +-1.624010 50.731535 +-1.629584 50.732708 +-1.636037 50.733882 +-1.643078 50.734469 +-1.649532 50.735349 +-1.655692 50.736522 +-1.662146 50.737402 +-1.668306 50.738282 +-1.675640 50.738869 +-1.682387 50.739749 +-1.689135 50.739749 +-1.694415 50.738575 +-1.700575 50.738282 +-1.704976 50.736815 +-1.709669 50.735642 +-1.714656 50.733882 +-1.719057 50.732415 +-1.723750 50.731242 +-1.728737 50.729775 +-1.734018 50.728601 +-1.738711 50.727135 +-1.743699 50.726255 +-1.749859 50.725961 +-1.756313 50.725961 +-1.756899 50.723321 +-1.753086 50.720974 +-1.746632 50.720094 +-1.739298 50.719507 +-1.732844 50.718627 +-1.729911 50.715694 +-1.731378 50.711880 +-1.736071 50.710413 +-1.740765 50.708947 +-1.747219 50.709240 +-1.754553 50.709827 +-1.761006 50.710413 +-1.767167 50.711587 +-1.773327 50.712760 +-1.779781 50.713640 +-1.785061 50.714520 +-1.790342 50.715694 +-1.795916 50.717161 +-1.802076 50.718334 +-1.808823 50.718334 +-1.815277 50.718334 +-1.820557 50.717454 +-1.825838 50.716574 +-1.831705 50.715987 +-1.837279 50.715400 +-1.841679 50.713640 +-1.846959 50.712760 +-1.852240 50.711880 +-1.857520 50.710707 +-1.862800 50.710120 +-1.868667 50.709533 +-1.873948 50.708653 +-1.878642 50.707187 +-1.883335 50.705426 +-1.888029 50.704253 +-1.891256 50.701613 +-1.895656 50.699853 +-1.898883 50.697213 +-1.902697 50.695159 +-1.906510 50.692812 +-1.909737 50.690172 +-1.913844 50.688412 +-1.916484 50.685185 +-1.920004 50.682838 +-1.923231 50.680198 +-1.927632 50.678438 +-1.932912 50.677558 +-1.938192 50.679025 +-1.940539 50.681958 +-1.940539 50.685772 +-1.939366 50.690465 +-1.939366 50.694866 +-1.939366 50.698679 +-1.940833 50.702200 +-1.943179 50.705133 +-1.945233 50.708067 +-1.948753 50.710413 +-1.954034 50.711880 +-1.960487 50.712760 +-1.966354 50.712467 +-1.972222 50.711880 +-1.977502 50.711000 +-1.982782 50.710120 +-1.988063 50.709240 +-1.992756 50.707773 +-1.998037 50.706600 +-2.003904 50.706307 +-2.009771 50.705720 +-2.015051 50.705133 +-2.022092 50.705426 +-2.027666 50.706893 +-2.031186 50.709533 +-2.033826 50.711880 +-2.038813 50.713934 +-2.045267 50.713934 +-2.049960 50.712467 +-2.054654 50.710707 +-2.058468 50.708947 +-2.061988 50.706307 +-2.063748 50.702493 +-2.064335 50.697799 +-2.066682 50.694572 +-2.069909 50.691932 +-2.072842 50.688999 +-2.076069 50.686358 +-2.079589 50.684012 +-2.079589 50.679611 +-2.074896 50.678144 +-2.071375 50.678438 +-2.067562 50.680198 +-2.063455 50.682251 +-2.059641 50.684598 +-2.055828 50.686652 +-2.051721 50.688705 +-2.048200 50.691052 +-2.043507 50.693106 +-2.039400 50.694866 +-2.034999 50.696332 +-2.029132 50.696919 +-2.024439 50.694866 +-2.023559 50.691345 +-2.024732 50.686945 +-2.027079 50.684012 +-2.029132 50.679611 +-2.028839 50.676678 +-2.025612 50.674038 +-2.020332 50.672864 +-2.012998 50.672277 +-2.008304 50.673744 +-2.004491 50.675504 +-2.000970 50.678144 +-1.997450 50.680491 +-1.993343 50.682545 +-1.988063 50.681078 +-1.984249 50.679025 +-1.980142 50.676678 +-1.974862 50.675211 +-1.967528 50.674624 +-1.961074 50.673744 +-1.954620 50.672864 +-1.948753 50.671984 +-1.941419 50.671397 +-1.934966 50.670224 +-1.930272 50.668757 +-1.927925 50.665530 +-1.930565 50.662597 +-1.934086 50.659957 +-1.938192 50.658196 +-1.941713 50.655556 +-1.943766 50.652329 +-1.942299 50.648809 +-1.938192 50.646756 +-1.932325 50.645582 +-1.925872 50.644702 +-1.920298 50.643235 +-1.914431 50.642062 +-1.910617 50.639715 +-1.908270 50.637075 +-1.908270 50.632675 +-1.912084 50.630328 +-1.916484 50.628568 +-1.921178 50.627101 +-1.926458 50.626514 +-1.931152 50.625047 +-1.935846 50.623287 +-1.938486 50.620354 +-1.941419 50.617420 +-1.940539 50.613607 +-1.938486 50.610966 +-1.937019 50.607446 +-1.937019 50.603339 +-1.940539 50.600699 +-1.943179 50.597765 +-1.945526 50.593952 +-1.948460 50.590725 +-1.951687 50.588378 +-1.956380 50.586911 +-1.962248 50.586325 +-1.969581 50.586911 +-1.975448 50.588085 +-1.982782 50.588671 +-1.990116 50.589258 +-1.996863 50.589845 +-2.003610 50.589845 +-2.009478 50.589551 +-2.015345 50.588965 +-2.020918 50.588085 +-2.025905 50.586911 +-2.030599 50.585444 +-2.035293 50.584271 +-2.038520 50.581631 +-2.042920 50.579577 +-2.047614 50.578111 +-2.052601 50.577231 +-2.057294 50.578991 +-2.059348 50.581924 +-2.061988 50.584858 +-2.064922 50.587498 +-2.068148 50.590138 +-2.071962 50.592192 +-2.077536 50.593658 +-2.083696 50.594538 +-2.091030 50.595125 +-2.097484 50.595125 +-2.103938 50.596005 +-2.108631 50.597765 +-2.111565 50.600699 +-2.115965 50.602459 +-2.120366 50.604513 +-2.126526 50.605393 +-2.133860 50.605979 +-2.140900 50.606273 +-2.147354 50.606566 +-2.152928 50.607739 +-2.157035 50.610086 +-2.161729 50.611846 +-2.167302 50.612140 +-2.172583 50.611260 +-2.179036 50.611260 +-2.183143 50.613607 +-2.186957 50.615660 +-2.192531 50.616833 +-2.198985 50.618007 +-2.204852 50.617420 +-2.208665 50.615660 +-2.214239 50.614780 +-2.220106 50.614193 +-2.226266 50.614193 +-2.233600 50.614780 +-2.240054 50.615953 +-2.246801 50.616247 +-2.253255 50.617127 +-2.259709 50.618300 +-2.267043 50.618887 +-2.273790 50.619474 +-2.281417 50.620060 +-2.288458 50.620647 +-2.295205 50.621234 +-2.301952 50.621234 +-2.309286 50.621527 +-2.316033 50.622114 +-2.321607 50.623581 +-2.328060 50.624461 +-2.332754 50.626514 +-2.338328 50.627688 +-2.345662 50.628274 +-2.351529 50.627688 +-2.356809 50.626807 +-2.363263 50.626807 +-2.368543 50.628274 +-2.374117 50.629448 +-2.380571 50.630621 +-2.387025 50.631501 +-2.394065 50.632088 +-2.398466 50.630621 +-2.403453 50.629154 +-2.409906 50.629154 +-2.415773 50.628568 +-2.421640 50.628274 +-2.426921 50.626807 +-2.431615 50.625341 +-2.435135 50.622701 +-2.438655 50.620354 +-2.440415 50.616540 +-2.441295 50.612140 +-2.441589 50.608033 +-2.440415 50.604513 +-2.440709 50.600406 +-2.444522 50.597765 +-2.447456 50.595419 +-2.450976 50.592778 +-2.454496 50.590138 +-2.457723 50.587791 +-2.460070 50.584271 +-2.460070 50.579871 +-2.457723 50.577231 +-2.455376 50.574297 +-2.451269 50.571950 +-2.447456 50.569897 +-2.441882 50.568723 +-2.435135 50.568723 +-2.429268 50.567550 +-2.426041 50.564910 +-2.423694 50.562269 +-2.421347 50.559043 +-2.419000 50.556109 +-2.417534 50.552882 +-2.414893 50.549949 +-2.414307 50.546135 +-2.414307 50.542028 +-2.416360 50.538508 +-2.420467 50.536748 +-2.424574 50.534401 +-2.428094 50.532347 +-2.431321 50.529707 +-2.434255 50.526774 +-2.436602 50.523547 +-2.438948 50.520026 +-2.441589 50.516800 +-2.443935 50.513573 +-2.445696 50.510052 +-2.448629 50.506826 +-2.452149 50.504479 +-2.456256 50.502425 +nan nan +-2.455376 50.503012 +-2.458603 50.503599 +-2.460950 50.506532 +-2.462710 50.510052 +-2.461537 50.514453 +-2.460950 50.517973 +-2.458897 50.521787 +-2.456256 50.524720 +-2.453323 50.527360 +-2.450096 50.530001 +-2.449216 50.534694 +-2.450683 50.537921 +-2.453029 50.540855 +-2.453616 50.544668 +-2.452736 50.549069 +-2.450683 50.552882 +-2.450096 50.557282 +-2.452149 50.560216 +-2.455376 50.562856 +-2.459190 50.564910 +-2.464177 50.566670 +-2.468871 50.568430 +-2.473271 50.569897 +-2.476791 50.572830 +-2.481191 50.574590 +-2.485298 50.576644 +-2.488525 50.579284 +-2.492632 50.581044 +-2.496446 50.583391 +-2.499379 50.585738 +-2.503193 50.588085 +-2.507300 50.590138 +-2.511114 50.592192 +-2.514927 50.594538 +-2.519034 50.596592 +-2.524021 50.598352 +-2.527835 50.600699 +-2.532528 50.602166 +-2.536342 50.604513 +-2.540156 50.606566 +-2.544556 50.608619 +-2.548370 50.610966 +-2.552183 50.613020 +-2.555410 50.615660 +-2.559517 50.617713 +-2.563917 50.619767 +-2.566558 50.621234 +-2.570665 50.622994 +-2.574478 50.625341 +-2.578292 50.627394 +-2.581812 50.630034 +-2.585626 50.632088 +-2.588853 50.634728 +-2.592666 50.636782 +-2.595893 50.639128 +-2.599707 50.641475 +-2.603814 50.643529 +-2.608214 50.645289 +-2.612321 50.647636 +-2.617308 50.649102 +-2.621121 50.651449 +-2.626695 50.652916 +-2.631976 50.653796 +-2.636963 50.655850 +-2.641656 50.657610 +-2.647230 50.658783 +-2.652217 50.660543 +-2.657497 50.662010 +-2.663071 50.663477 +-2.668645 50.664650 +-2.674512 50.665824 +-2.678912 50.667877 +-2.684486 50.668757 +-2.689180 50.670811 +-2.694753 50.672277 +-2.699740 50.673744 +-2.704434 50.675504 +-2.709128 50.677264 +-2.713821 50.679025 +-2.718808 50.680785 +-2.723209 50.682545 +-2.728196 50.684305 +-2.732303 50.686358 +-2.736116 50.688705 +-2.739930 50.690465 +-2.744624 50.692519 +-2.749024 50.694572 +-2.752838 50.696626 +-2.756651 50.698973 +-2.760465 50.700733 +-2.764865 50.703080 +-2.769265 50.704840 +-2.773079 50.706893 +-2.778946 50.708360 +-2.785400 50.709240 +-2.792147 50.709827 +-2.799481 50.710413 +-2.806521 50.710707 +-2.812975 50.711587 +-2.819429 50.712760 +-2.825589 50.713640 +-2.832043 50.714520 +-2.836150 50.715694 +-2.842604 50.716574 +-2.849058 50.717454 +-2.855218 50.718627 +-2.861965 50.719507 +-2.867246 50.720974 +-2.872820 50.722148 +-2.879273 50.723028 +-2.885434 50.723908 +-2.891888 50.725081 +-2.899221 50.725668 +-2.905969 50.725668 +-2.912129 50.725668 +-2.917409 50.724494 +-2.922396 50.723321 +-2.927090 50.721854 +-2.931490 50.720094 +-2.935304 50.718041 +-2.939118 50.715694 +-2.944105 50.714520 +-2.948505 50.713054 +-2.953199 50.711294 +-2.957892 50.710120 +-2.962586 50.708360 +-2.966986 50.706893 +-2.971680 50.705426 +-2.975787 50.703373 +-2.980481 50.701906 +-2.984881 50.700146 +-2.989575 50.698973 +-2.994268 50.697506 +-2.998962 50.695746 +-3.004242 50.694866 +-3.008936 50.693399 +-3.015390 50.693399 +-3.021550 50.693399 +-3.029177 50.693986 +-3.036218 50.694572 +-3.042378 50.695159 +-3.048832 50.696332 +-3.056166 50.696919 +-3.062033 50.696332 +-3.067900 50.695746 +-3.072594 50.694279 +-3.077288 50.692812 +-3.081688 50.691345 +-3.085501 50.689292 +-3.089608 50.687238 +-3.094009 50.685185 +-3.097822 50.683425 +-3.102223 50.681665 +-3.107503 50.680785 +-3.113664 50.680198 +-3.120117 50.680198 +-3.126864 50.680785 +-3.134198 50.681371 +-3.141532 50.681665 +-3.147986 50.681665 +-3.155026 50.682251 +-3.162360 50.682838 +-3.168521 50.682838 +-3.175268 50.682838 +-3.181135 50.682251 +-3.187882 50.682251 +-3.193749 50.681665 +-3.199323 50.681371 +-3.205190 50.680785 +-3.210470 50.679611 +-3.215751 50.679025 +-3.221618 50.678438 +-3.226898 50.677264 +-3.232472 50.676091 +-3.237459 50.675211 +-3.243033 50.674038 +-3.247140 50.672864 +-3.251833 50.671104 +-3.256527 50.669637 +-3.260634 50.667877 +-3.264741 50.665530 +-3.267675 50.663183 +-3.271195 50.660543 +-3.274715 50.658196 +-3.277649 50.655556 +-3.280876 50.652623 +-3.283222 50.649396 +-3.287036 50.646462 +-3.289383 50.643529 +-3.292316 50.640595 +-3.294076 50.637075 +-3.297010 50.633848 +-3.300237 50.631501 +-3.304931 50.630034 +-3.308744 50.627688 +-3.314025 50.626807 +-3.319305 50.625927 +-3.323999 50.624167 +-3.327812 50.622114 +-3.331332 50.619767 +-3.334559 50.617127 +-3.337786 50.614780 +-3.341307 50.612140 +-3.344533 50.609793 +-3.349227 50.608033 +-3.354507 50.607153 +-3.359788 50.605979 +-3.365068 50.605099 +-3.370935 50.604806 +-3.377096 50.604513 +-3.383843 50.604513 +-3.390297 50.604513 +-3.396750 50.605686 +-3.402324 50.606566 +-3.407898 50.608033 +-3.412592 50.609793 +-3.417285 50.611260 +-3.419632 50.614487 +-3.419045 50.618007 +-3.416992 50.621527 +-3.415819 50.625634 +-3.415819 50.629741 +-3.418459 50.632675 +-3.420219 50.635608 +-3.424326 50.637662 +-3.427846 50.640302 +-3.430780 50.642649 +-3.433420 50.645582 +-3.435473 50.648516 +-3.437233 50.652036 +-3.439580 50.654676 +-3.441047 50.658196 +-3.442807 50.661423 +-3.445154 50.664357 +-3.447794 50.667290 +-3.450728 50.669637 +-3.454248 50.672277 +-3.460702 50.673451 +-3.465689 50.672277 +-3.468916 50.669637 +-3.469796 50.666117 +-3.467156 50.663183 +-3.464222 50.660543 +-3.460702 50.658196 +-3.457768 50.655556 +-3.455421 50.652623 +-3.452194 50.649982 +-3.449848 50.647342 +-3.447207 50.644115 +-3.445447 50.640888 +-3.444861 50.637368 +-3.444861 50.632968 +-3.444861 50.628861 +-3.445447 50.624461 +-3.446914 50.620354 +-3.448674 50.616247 +-3.449261 50.611553 +-3.449261 50.607739 +-3.448381 50.603926 +-3.441927 50.603046 +-3.437233 50.601286 +-3.435473 50.598059 +-3.436353 50.594538 +-3.438994 50.591312 +-3.442220 50.588965 +-3.445447 50.586325 +-3.448381 50.583391 +-3.449848 50.579284 +-3.450434 50.574590 +-3.451901 50.570483 +-3.453955 50.567257 +-3.456595 50.564030 +-3.460115 50.561683 +-3.463049 50.558749 +-3.466569 50.556402 +-3.469796 50.553762 +-3.472436 50.550829 +-3.475956 50.548188 +-3.479183 50.545842 +-3.482410 50.543201 +-3.485930 50.540855 +-3.488570 50.537921 +-3.491797 50.535281 +-3.494438 50.532347 +-3.497078 50.529120 +-3.499718 50.526187 +-3.501771 50.522373 +-3.503825 50.519146 +-3.505878 50.515626 +-3.507345 50.511519 +-3.508812 50.507412 +-3.509399 50.503012 +-3.510279 50.498318 +-3.509399 50.494798 +-3.508519 50.490691 +-3.507052 50.487464 +-3.505292 50.484237 +-3.502945 50.481304 +-3.500598 50.478370 +-3.498251 50.475437 +-3.495904 50.472503 +-3.492677 50.469863 +-3.489450 50.467516 +-3.486810 50.464582 +-3.483877 50.462236 +-3.482117 50.459009 +-3.485637 50.456369 +-3.490917 50.455195 +-3.497078 50.455195 +-3.504412 50.455782 +-3.511159 50.455782 +-3.517319 50.455782 +-3.522893 50.454608 +-3.527880 50.453728 +-3.533160 50.452848 +-3.537561 50.451088 +-3.541374 50.449035 +-3.544894 50.446688 +-3.546948 50.443168 +-3.549295 50.439354 +-3.549001 50.435247 +-3.548121 50.431727 +-3.548121 50.427620 +-3.547535 50.423806 +-3.548121 50.419113 +-3.548121 50.415006 +-3.546948 50.412365 +-3.544601 50.409432 +-3.541374 50.407085 +-3.535800 50.405618 +-3.528760 50.405032 +-3.522600 50.404151 +-3.518493 50.402098 +-3.514972 50.399458 +-3.512039 50.396818 +-3.507345 50.395351 +-3.501185 50.394471 +-3.495024 50.395057 +-3.489157 50.395644 +-3.483583 50.395057 +-3.480650 50.392417 +-3.480943 50.388897 +-3.485050 50.386844 +-3.489450 50.385670 +-3.493264 50.383323 +-3.497078 50.381270 +-3.501478 50.379510 +-3.504705 50.376870 +-3.507345 50.373936 +-3.508812 50.369829 +-3.509399 50.365135 +-3.511452 50.361615 +-3.513506 50.358095 +-3.514972 50.354281 +-3.513212 50.350761 +-3.512625 50.346947 +-3.512625 50.342840 +-3.517906 50.341960 +-3.523186 50.340787 +-3.526120 50.338440 +-3.530227 50.336387 +-3.536094 50.335800 +-3.541374 50.336973 +-3.546361 50.339027 +-3.550175 50.340787 +-3.554282 50.343134 +-3.557509 50.345481 +-3.559856 50.348414 +-3.563082 50.350761 +-3.568656 50.352228 +-3.571296 50.349294 +-3.572470 50.345187 +-3.572470 50.341080 +-3.570123 50.338147 +-3.567776 50.335213 +-3.565429 50.332280 +-3.562202 50.329639 +-3.559856 50.326999 +-3.559269 50.323186 +-3.563082 50.321132 +-3.568950 50.320545 +-3.573937 50.319372 +-3.579804 50.318785 +-3.585084 50.318199 +-3.590364 50.317025 +-3.595645 50.315852 +-3.600045 50.314385 +-3.604445 50.312918 +-3.609726 50.312038 +-3.613833 50.309691 +-3.617646 50.307638 +-3.620873 50.305291 +-3.624100 50.302651 +-3.627620 50.300304 +-3.629967 50.297077 +-3.632901 50.294144 +-3.635541 50.291210 +-3.637594 50.287396 +-3.639941 50.284463 +-3.642288 50.281236 +-3.644635 50.278009 +-3.646688 50.274489 +-3.648742 50.270969 +-3.650209 50.266862 +-3.651675 50.262755 +-3.653729 50.259234 +-3.654022 50.254834 +-3.654902 50.250140 +-3.655782 50.245447 +-3.654902 50.241927 +-3.654022 50.238113 +-3.652556 50.234886 +-3.650795 50.231659 +-3.648742 50.228726 +-3.646102 50.225792 +-3.646688 50.222272 +-3.651382 50.220512 +-3.658423 50.221098 +-3.664583 50.221098 +-3.671917 50.221392 +-3.678371 50.221392 +-3.683651 50.220512 +-3.688345 50.218752 +-3.693332 50.217871 +-3.698025 50.216405 +-3.702426 50.214645 +-3.706533 50.212884 +-3.710346 50.210831 +-3.714747 50.209071 +-3.719440 50.207897 +-3.724721 50.206724 +-3.730001 50.207897 +-3.734108 50.209951 +-3.737922 50.212298 +-3.742909 50.214058 +-3.748189 50.215525 +-3.753469 50.216991 +-3.758750 50.218752 +-3.762563 50.220512 +-3.767257 50.222272 +-3.771071 50.224325 +-3.776058 50.224032 +-3.778405 50.220805 +-3.779285 50.216111 +-3.783098 50.214058 +-3.787205 50.212591 +-3.793072 50.213764 +-3.799526 50.214645 +-3.803926 50.216405 +-3.809500 50.217871 +-3.814194 50.219338 +-3.819181 50.221098 +-3.823581 50.222858 +-3.829448 50.224032 +-3.833262 50.226085 +-3.836489 50.228726 +-3.840596 50.230779 +-3.843823 50.233419 +-3.845876 50.236059 +-3.848223 50.239286 +-3.849983 50.242513 +-3.850863 50.246033 +-3.852623 50.249554 +-3.853210 50.253367 +-3.854970 50.256301 +-3.856730 50.259821 +-3.859077 50.262755 +-3.863184 50.264808 +-3.866998 50.266862 +-3.871985 50.268622 +-3.875798 50.270969 +-3.878145 50.273609 +-3.880492 50.276542 +-3.884012 50.279183 +-3.887826 50.281236 +-3.891639 50.283289 +-3.897213 50.284463 +-3.902787 50.285930 +-3.908361 50.286810 +-3.913934 50.288276 +-3.920388 50.289157 +-3.926255 50.290037 +-3.932122 50.291503 +-3.936523 50.292970 +-3.938576 50.296490 +-3.938576 50.300597 +-3.939163 50.304118 +-3.942390 50.306758 +-3.948257 50.307051 +-3.951484 50.304411 +-3.955297 50.302358 +-3.959991 50.300891 +-3.965858 50.300304 +-3.972312 50.300304 +-3.979352 50.300891 +-3.985513 50.301771 +-3.993140 50.302358 +-3.999300 50.302064 +-4.000000 50.301991 +nan nan +-4.000000 51.211229 +-3.999007 51.211463 +-3.992847 51.212049 +-3.986099 51.212049 +-3.979352 51.212049 +-3.972312 51.211463 +-3.965858 51.210583 +-3.958524 51.210289 +-3.952364 51.210583 +-3.947963 51.212343 +-3.943270 51.213810 +-3.938576 51.215276 +-3.934176 51.217036 +-3.930069 51.218797 +-3.924788 51.219970 +-3.918628 51.220557 +-3.911587 51.219970 +-3.905720 51.218797 +-3.900147 51.217623 +-3.893986 51.216743 +-3.887239 51.216743 +-3.881959 51.217917 +-3.877265 51.219090 +-3.873451 51.220263 +-3.868758 51.222024 +-3.862891 51.222610 +-3.857610 51.223490 +-3.852037 51.224370 +-3.846169 51.224957 +-3.839716 51.224957 +-3.832088 51.224664 +-3.827395 51.223197 +-3.822408 51.221437 +-3.817421 51.219383 +-3.811260 51.218503 +-3.805980 51.219677 +-3.801286 51.221437 +-3.797473 51.223197 +-3.793366 51.225250 +-3.789552 51.227597 +-3.783978 51.228477 +-3.777231 51.228477 +-3.771071 51.227597 +-3.764324 51.226717 +-3.758163 51.225837 +-3.751416 51.225837 +-3.745256 51.226424 +-3.738802 51.226424 +-3.733815 51.225544 +-3.728241 51.224370 +-3.722374 51.223197 +-3.715333 51.222610 +-3.708000 51.222317 +-3.703012 51.220557 +-3.699199 51.218210 +-3.694505 51.216743 +-3.688345 51.217330 +-3.681598 51.217330 +-3.675731 51.217917 +-3.669863 51.218210 +-3.663996 51.218797 +-3.656369 51.218210 +-3.651969 51.216743 +-3.646102 51.215276 +-3.640235 51.213810 +-3.633194 51.213516 +-3.626740 51.212636 +-3.619993 51.212636 +-3.615300 51.211169 +-3.610312 51.209116 +-3.603272 51.208823 +-3.597698 51.209703 +-3.591538 51.210289 +-3.585377 51.210289 +-3.580097 51.211463 +-3.576577 51.213810 +-3.574523 51.217623 +-3.571590 51.220557 +-3.568363 51.223197 +-3.562496 51.223490 +-3.556042 51.222904 +-3.550468 51.221437 +-3.544014 51.220557 +-3.537561 51.219677 +-3.531107 51.218503 +-3.525240 51.217623 +-3.519079 51.216450 +-3.511745 51.216156 +-3.506172 51.214690 +-3.501185 51.212930 +-3.495611 51.211756 +-3.488277 51.211463 +-3.480943 51.210876 +-3.475369 51.209409 +-3.469796 51.207943 +-3.467742 51.206182 +-3.465689 51.203249 +-3.461288 51.201195 +-3.455715 51.200022 +-3.450141 51.200315 +-3.443100 51.200315 +-3.436647 51.199142 +-3.434300 51.197382 +-3.431660 51.194448 +-3.428433 51.191808 +-3.424326 51.190048 +-3.420219 51.187701 +-3.416405 51.185941 +-3.413178 51.183301 +-3.409951 51.180954 +-3.406725 51.178020 +-3.402031 51.176260 +-3.395577 51.175674 +-3.388830 51.175674 +-3.382083 51.175674 +-3.375042 51.175087 +-3.368295 51.175087 +-3.361255 51.174793 +-3.354507 51.174793 +-3.347174 51.174500 +-3.340133 51.174207 +-3.333679 51.174207 +-3.326052 51.173620 +-3.319012 51.173033 +-3.311678 51.172447 +-3.304344 51.172153 +-3.297303 51.171567 +-3.289676 51.170980 +-3.282636 51.170687 +-3.276475 51.169806 +-3.271195 51.170980 +-3.265621 51.171567 +-3.261221 51.173327 +-3.255647 51.174207 +-3.250367 51.175380 +-3.245673 51.176554 +-3.240979 51.178314 +-3.236286 51.179780 +-3.232472 51.181834 +-3.228365 51.183887 +-3.223671 51.185354 +-3.218978 51.186821 +-3.214577 51.188288 +-3.209590 51.190048 +-3.204603 51.191515 +-3.199616 51.192395 +-3.193163 51.192395 +-3.186415 51.192395 +-3.179962 51.191515 +-3.172921 51.191221 +-3.166761 51.191515 +-3.162360 51.192981 +-3.157960 51.195035 +-3.154146 51.197088 +-3.149453 51.198555 +-3.143292 51.199142 +-3.138012 51.200022 +-3.131851 51.200609 +-3.125691 51.200609 +-3.119237 51.199729 +-3.113664 51.198262 +-3.106916 51.197382 +-3.099582 51.197088 +-3.094009 51.197382 +-3.088142 51.196208 +-3.082568 51.194742 +-3.076114 51.193862 +-3.069367 51.193862 +-3.063500 51.194448 +-3.057926 51.195328 +-3.054113 51.197088 +-3.050006 51.199435 +-3.046192 51.201489 +-3.041498 51.202662 +-3.037098 51.205009 +-3.032111 51.205889 +-3.026244 51.206476 +-3.018910 51.206476 +-3.013043 51.206769 +-3.008056 51.208236 +-3.005122 51.209409 +-3.001602 51.212049 +-2.999549 51.215570 +-2.998962 51.219970 +-2.996908 51.224077 +-2.996322 51.228477 +-2.994855 51.232878 +-2.995442 51.236398 +-2.997202 51.239625 +-2.999842 51.242852 +-3.003069 51.245199 +-3.006002 51.247839 +-3.009229 51.250186 +-3.011576 51.253119 +-3.013336 51.256346 +-3.014216 51.260160 +-3.014216 51.264560 +-3.013043 51.268960 +-3.013043 51.273067 +-3.012456 51.277468 +-3.010989 51.281574 +-3.010403 51.285975 +-3.009229 51.290962 +-3.008643 51.295362 +-3.006883 51.299176 +-3.006002 51.303869 +-3.006883 51.307390 +-3.008643 51.310910 +-3.011576 51.313257 +-3.015976 51.315604 +-3.019790 51.317657 +-3.022137 51.320591 +-3.018323 51.321764 +-3.012456 51.321471 +-3.009229 51.318830 +-3.004536 51.317070 +-2.998962 51.315897 +-2.992215 51.315897 +-2.988401 51.317657 +-2.985174 51.320884 +-2.984588 51.325284 +-2.983708 51.329685 +-2.983708 51.333792 +-2.985174 51.337312 +-2.986934 51.340539 +-2.989281 51.343472 +-2.989575 51.346699 +-2.986054 51.349339 +-2.980774 51.350219 +-2.975200 51.351393 +-2.971387 51.353446 +-2.967280 51.355206 +-2.964639 51.358433 +-2.963173 51.362540 +-2.961706 51.366354 +-2.960533 51.370754 +-2.959946 51.375448 +-2.963759 51.377795 +-2.969333 51.378968 +-2.971973 51.381902 +-2.970507 51.385715 +-2.965813 51.387475 +-2.960533 51.388355 +-2.956719 51.390702 +-2.951732 51.391876 +-2.945278 51.390996 +-2.939704 51.389822 +-2.932370 51.389236 +-2.927090 51.390409 +-2.922396 51.391582 +-2.917409 51.393049 +-2.913596 51.395396 +-2.909489 51.397156 +-2.905969 51.399796 +-2.903328 51.402730 +-2.900102 51.405370 +-2.896288 51.406837 +-2.893354 51.409477 +-2.890421 51.412411 +-2.887781 51.415344 +-2.884260 51.417691 +-2.880740 51.420331 +-2.878100 51.423265 +-2.874580 51.425905 +-2.871059 51.428252 +-2.868126 51.430892 +-2.864899 51.433825 +-2.861672 51.436466 +-2.859032 51.439399 +-2.855512 51.442039 +-2.852578 51.444973 +-2.849058 51.447613 +-2.845831 51.449960 +-2.842311 51.452600 +-2.838790 51.454947 +-2.836150 51.458174 +-2.832043 51.459934 +-2.828523 51.462867 +-2.824416 51.464628 +-2.820602 51.466681 +-2.817082 51.469028 +-2.812975 51.471081 +-2.808282 51.472842 +-2.804175 51.474602 +-2.800068 51.476655 +-2.796254 51.478709 +-2.792734 51.481055 +-2.788627 51.483402 +-2.783346 51.484282 +-2.779240 51.486042 +-2.774546 51.487803 +-2.770146 51.489856 +-2.764865 51.490443 +-2.759585 51.490736 +-2.753131 51.490736 +-2.745797 51.490149 +-2.738757 51.489856 +-2.732009 51.489856 +-2.726729 51.490443 +-2.721155 51.491616 +-2.717048 51.493670 +-2.713528 51.496017 +-2.710888 51.499243 +-2.708541 51.502764 +-2.706781 51.505991 +-2.702381 51.508044 +-2.698567 51.510391 +-2.695047 51.512738 +-2.691527 51.515378 +-2.688300 51.517725 +-2.685366 51.520952 +-2.681846 51.523298 +-2.680966 51.524179 +-2.680966 51.523592 +-2.677739 51.526232 +-2.674805 51.529166 +-2.672165 51.532099 +-2.670112 51.535619 +-2.666885 51.538553 +-2.665125 51.542367 +-2.662778 51.545887 +-2.660431 51.549114 +-2.659258 51.553221 +-2.657791 51.557328 +-2.655444 51.560848 +-2.653390 51.564368 +-2.650164 51.567595 +-2.647817 51.570235 +-2.644883 51.573462 +-2.642243 51.576396 +-2.639309 51.579329 +-2.635789 51.581969 +-2.633149 51.584903 +-2.629629 51.587543 +-2.626109 51.589890 +-2.622002 51.591943 +-2.618481 51.594584 +-2.615841 51.597517 +-2.612321 51.599864 +-2.608214 51.601917 +-2.604987 51.604558 +-2.600880 51.606318 +-2.596773 51.608665 +-2.592373 51.610425 +-2.588266 51.612478 +-2.585039 51.615118 +-2.581812 51.617465 +-2.579465 51.620985 +-2.577118 51.624506 +-2.575652 51.628613 +-2.573598 51.632133 +-2.571251 51.635653 +-2.569491 51.639173 +-2.566264 51.642107 +-2.564211 51.645627 +-2.561277 51.648561 +-2.558637 51.651788 +-2.555703 51.654721 +-2.553063 51.657655 +-2.549543 51.660295 +-2.546023 51.662642 +-2.542503 51.665869 +-2.539276 51.668216 +-2.535462 51.670856 +-2.531355 51.672909 +-2.527248 51.674669 +-2.523434 51.676723 +-2.518741 51.678190 +-2.514340 51.680243 +-2.510234 51.682297 +-2.506420 51.684057 +-2.502313 51.686110 +-2.498793 51.688750 +-2.495272 51.691097 +-2.492632 51.694031 +-2.489405 51.697258 +-2.487059 51.700191 +-2.485298 51.704298 +-2.482952 51.707818 +-2.481485 51.711632 +-2.480018 51.715739 +-2.477671 51.719259 +-2.475031 51.722193 +-2.471511 51.724833 +-2.467110 51.726886 +-2.463297 51.728940 +-2.459190 51.730700 +-2.454496 51.732167 +-2.450683 51.733340 +-2.445109 51.734514 +-2.439828 51.735394 +-2.434548 51.736274 +-2.428974 51.737154 +-2.422814 51.737741 +-2.417534 51.738621 +-2.412253 51.739794 +-2.406093 51.740087 +-2.401399 51.741554 +-2.396412 51.743021 +-2.392012 51.744488 +-2.388198 51.746835 +-2.384678 51.749475 +-2.382038 51.752408 +-2.379984 51.756222 +-2.378811 51.760622 +-2.379691 51.764436 +-2.381158 51.767663 +-2.383504 51.770596 +-2.386731 51.773236 +-2.390838 51.775290 +-2.396412 51.776757 +-2.399932 51.774116 +-2.399052 51.771476 +-2.397585 51.767956 +-2.396705 51.764142 +-2.396705 51.760329 +-2.397879 51.755635 +-2.402279 51.752995 +-2.406679 51.751528 +-2.412253 51.750941 +-2.418414 51.750355 +-2.424574 51.749768 +-2.430148 51.749475 +-2.436895 51.749475 +-2.442762 51.748888 +-2.449803 51.748888 +-2.455083 51.748008 +-2.460657 51.746835 +-2.465057 51.745661 +-2.470044 51.744194 +-2.474151 51.741848 +-2.478845 51.740674 +-2.482365 51.738034 +-2.485885 51.735687 +-2.489112 51.733047 +-2.492339 51.730113 +-2.494979 51.726886 +-2.497913 51.724246 +-2.500553 51.721019 +-2.503193 51.718086 +-2.507007 51.715446 +-2.509353 51.712512 +-2.513167 51.709872 +-2.517274 51.708112 +-2.521088 51.706058 +-2.524608 51.703711 +-2.529008 51.701365 +-2.533115 51.699311 +-2.537222 51.697551 +-2.540449 51.694911 +-2.544849 51.693151 +-2.548956 51.691097 +-2.552183 51.688750 +-2.556290 51.686404 +-2.560397 51.684350 +-2.565384 51.683177 +-2.569784 51.681710 +-2.573891 51.679363 +-2.578878 51.678190 +-2.582692 51.676136 +-2.586799 51.674083 +-2.591199 51.672029 +-2.594426 51.669389 +-2.598533 51.667629 +-2.602053 51.664989 +-2.606160 51.662935 +-2.609681 51.660588 +-2.613788 51.658535 +-2.616428 51.655601 +-2.619948 51.652961 +-2.622882 51.650028 +-2.625522 51.646801 +-2.628749 51.644454 +-2.631976 51.641520 +-2.634029 51.638000 +-2.636669 51.635067 +-2.639896 51.632426 +-2.643123 51.629493 +-2.645763 51.626266 +-2.649870 51.624506 +-2.654271 51.622452 +-2.657497 51.620105 +-2.661604 51.618052 +-2.665125 51.615412 +-2.668352 51.612772 +-2.671872 51.610425 +-2.674805 51.607491 +-2.678326 51.605144 +-2.681552 51.602504 +-2.685073 51.599864 +-2.688593 51.597224 +-2.691820 51.594584 +-2.695340 51.592237 +-2.698567 51.589597 +-2.702674 51.587836 +-2.706488 51.585196 +-2.710595 51.583436 +-2.714702 51.581383 +-2.719102 51.579623 +-2.724676 51.579036 +-2.730836 51.578449 +-2.736703 51.577862 +-2.742864 51.577569 +-2.749024 51.576982 +-2.754304 51.575809 +-2.759291 51.574929 +-2.764865 51.573755 +-2.769559 51.572582 +-2.774252 51.570822 +-2.779533 51.569942 +-2.783640 51.568182 +-2.788333 51.566422 +-2.793321 51.564955 +-2.797134 51.563195 +-2.801828 51.561435 +-2.805935 51.559381 +-2.810922 51.557914 +-2.814735 51.555861 +-2.819429 51.554394 +-2.823536 51.552634 +-2.828230 51.551167 +-2.832923 51.549407 +-2.837910 51.547940 +-2.843191 51.547060 +-2.847884 51.545593 +-2.853458 51.544420 +-2.858739 51.543540 +-2.864019 51.542367 +-2.869886 51.542073 +-2.875166 51.541193 +-2.881327 51.540606 +-2.886607 51.539433 +-2.892768 51.539140 +-2.899515 51.539140 +-2.905382 51.538553 +-2.911249 51.537966 +-2.918583 51.537966 +-2.926210 51.538553 +-2.933251 51.539140 +-2.940584 51.539726 +-2.947332 51.539726 +-2.954665 51.540313 +-2.960533 51.540900 +-2.966106 51.542073 +-2.967866 51.545300 +-2.965520 51.548820 +-2.964639 51.552634 +-2.966693 51.555861 +-2.970507 51.557914 +-2.976667 51.557621 +-2.981067 51.557034 +-2.985761 51.555274 +-2.988108 51.552047 +-2.989575 51.547647 +-2.991628 51.544127 +-2.994855 51.541780 +-2.998962 51.539726 +-3.004536 51.538846 +-3.009816 51.537673 +-3.013923 51.535913 +-3.014803 51.531219 +-3.017443 51.528286 +-3.021257 51.525645 +-3.025070 51.523592 +-3.029764 51.522125 +-3.035631 51.521538 +-3.041205 51.520658 +-3.045312 51.518605 +-3.049712 51.517138 +-3.053819 51.515085 +-3.057633 51.513031 +-3.062033 51.510978 +-3.066140 51.509217 +-3.069954 51.506871 +-3.074061 51.505111 +-3.078461 51.503057 +-3.082275 51.501004 +-3.086968 51.499537 +-3.091075 51.497483 +-3.095769 51.496017 +-3.100463 51.494550 +-3.105156 51.493083 +-3.110437 51.491910 +-3.115424 51.490443 +-3.118651 51.488096 +-3.121877 51.485456 +-3.125104 51.482522 +-3.127745 51.479589 +-3.129798 51.475775 +-3.131851 51.472255 +-3.134492 51.469028 +-3.133905 51.465508 +-3.135372 51.461401 +-3.138012 51.458467 +-3.140945 51.455534 +-3.145639 51.453773 +-3.151800 51.453480 +-3.157960 51.454360 +-3.164414 51.455240 +-3.167347 51.452307 +-3.169988 51.449080 +-3.168227 51.445853 +-3.166174 51.442919 +-3.163534 51.439986 +-3.160307 51.437639 +-3.158547 51.434119 +-3.157960 51.430598 +-3.157960 51.426492 +-3.158547 51.421798 +-3.160307 51.417691 +-3.161774 51.413584 +-3.163534 51.410357 +-3.166467 51.407130 +-3.169988 51.404783 +-3.173214 51.402143 +-3.176441 51.399503 +-3.180548 51.397449 +-3.185242 51.395983 +-3.192576 51.396569 +-3.198443 51.397743 +-3.204603 51.398916 +-3.210470 51.398330 +-3.216631 51.397743 +-3.222791 51.397156 +-3.228072 51.395983 +-3.233352 51.395396 +-3.238926 51.394223 +-3.243326 51.392756 +-3.247433 51.390702 +-3.251247 51.388649 +-3.255647 51.386595 +-3.259461 51.384835 +-3.264448 51.383075 +-3.268261 51.381022 +-3.273542 51.380142 +-3.280289 51.380142 +-3.287623 51.380435 +-3.293196 51.382195 +-3.298183 51.384249 +-3.303757 51.385422 +-3.309331 51.386595 +-3.315785 51.386595 +-3.320478 51.385129 +-3.324585 51.383075 +-3.328986 51.381022 +-3.334266 51.380142 +-3.340133 51.379555 +-3.346000 51.379261 +-3.352747 51.379261 +-3.359494 51.379261 +-3.365948 51.380142 +-3.372109 51.380728 +-3.378563 51.381608 +-3.385310 51.381608 +-3.391470 51.381022 +-3.397337 51.380728 +-3.403204 51.380142 +-3.410538 51.380435 +-3.416405 51.381022 +-3.421099 51.382782 +-3.425206 51.385129 +-3.431953 51.385715 +-3.438994 51.386302 +-3.444861 51.385715 +-3.450728 51.385422 +-3.457768 51.385422 +-3.465102 51.385715 +-3.470969 51.386889 +-3.476836 51.387769 +-3.482703 51.389236 +-3.488570 51.390702 +-3.494144 51.391876 +-3.499718 51.393049 +-3.504705 51.394809 +-3.509399 51.396276 +-3.517026 51.396863 +-3.523186 51.397743 +-3.529640 51.397743 +-3.535800 51.397156 +-3.542254 51.398330 +-3.547241 51.400090 +-3.551348 51.401850 +-3.555455 51.404197 +-3.560149 51.405957 +-3.562789 51.408890 +-3.565136 51.411530 +-3.566896 51.415051 +-3.569536 51.417984 +-3.571590 51.420918 +-3.575697 51.422971 +-3.579804 51.425025 +-3.584791 51.426785 +-3.589778 51.428545 +-3.593591 51.430598 +-3.597698 51.432652 +-3.599458 51.436172 +-3.602392 51.438519 +-3.606792 51.440573 +-3.610606 51.442919 +-3.615593 51.444386 +-3.619700 51.446733 +-3.624394 51.448200 +-3.628500 51.450253 +-3.632607 51.452600 +-3.636128 51.454947 +-3.638475 51.457880 +-3.639941 51.461107 +-3.643462 51.463748 +-3.646395 51.466094 +-3.650502 51.468441 +-3.654609 51.470495 +-3.659596 51.472255 +-3.665170 51.473428 +-3.671917 51.474308 +-3.676904 51.473428 +-3.680424 51.470788 +-3.684531 51.468735 +-3.689812 51.468735 +-3.692452 51.469615 +-3.697145 51.471375 +-3.703306 51.470788 +-3.710053 51.470788 +-3.714747 51.472548 +-3.718854 51.474602 +-3.721494 51.477535 +-3.722961 51.480762 +-3.725601 51.483989 +-3.727361 51.487216 +-3.731175 51.489269 +-3.736162 51.490736 +-3.740268 51.493083 +-3.744375 51.495136 +-3.746136 51.498363 +-3.744962 51.503057 +-3.744375 51.507457 +-3.745256 51.510978 +-3.746136 51.515085 +-3.747016 51.518605 +-3.747896 51.522418 +-3.749362 51.525939 +-3.751123 51.529166 +-3.753176 51.532392 +-3.754643 51.535913 +-3.756990 51.538553 +-3.758750 51.542073 +-3.761097 51.545007 +-3.763737 51.547647 +-3.766084 51.550874 +-3.768724 51.553514 +-3.771071 51.556741 +-3.773418 51.559381 +-3.776938 51.562021 +-3.779285 51.564955 +-3.781631 51.567888 +-3.784858 51.570235 +-3.790139 51.571995 +-3.793952 51.574049 +-3.797179 51.576982 +-3.798939 51.580209 +-3.801286 51.583436 +-3.803633 51.586076 +-3.807153 51.588717 +-3.812727 51.589890 +-3.816834 51.592237 +-3.821234 51.594290 +-3.825048 51.596344 +-3.828275 51.598984 +-3.831795 51.601331 +-3.834142 51.604264 +-3.835022 51.608078 +-3.833555 51.611892 +-3.833555 51.615998 +-3.835609 51.619519 +-3.840302 51.620985 +-3.845583 51.620985 +-3.851743 51.620692 +-3.857024 51.619519 +-3.863477 51.619519 +-3.869344 51.618932 +-3.875505 51.618345 +-3.881665 51.617759 +-3.886946 51.616585 +-3.892813 51.615998 +-3.897506 51.614825 +-3.902200 51.613065 +-3.906307 51.611011 +-3.910707 51.609545 +-3.917748 51.609545 +-3.924202 51.610425 +-3.930069 51.611598 +-3.935643 51.612772 +-3.942683 51.613358 +-3.949430 51.613358 +-3.954711 51.612185 +-3.960284 51.611011 +-3.965565 51.610425 +-3.970258 51.608665 +-3.974659 51.607198 +-3.979646 51.605438 +-3.984339 51.603971 +-3.988446 51.601917 +-3.991673 51.599571 +-3.995780 51.597517 +-3.998714 51.594584 +-4.000000 51.592815 +nan nan +-4.000000 51.584430 +-3.999887 51.584316 +-3.996954 51.581969 +-3.993433 51.579329 +-3.990206 51.576982 +-3.986099 51.574636 +-3.981993 51.572582 +-3.977886 51.570529 +-3.973779 51.568475 +-3.972312 51.564955 +-3.973485 51.561141 +-3.977005 51.558501 +-3.983753 51.558501 +-3.989913 51.559381 +-3.994900 51.561141 +-3.999594 51.562901 +-4.000000 51.563014 +nan nan +-4.000000 52.525600 +-3.999594 52.525690 +-3.994313 52.526277 +-3.989326 52.528037 +-3.985219 52.530091 +-3.980526 52.531558 +-3.975832 52.533024 +-3.971725 52.535371 +-3.966738 52.536545 +-3.962924 52.538891 +-3.957937 52.540358 +-3.953830 52.542412 +-3.950604 52.545052 +-3.947083 52.547399 +-3.945617 52.551799 +-3.949724 52.553559 +-3.956764 52.553559 +-3.962924 52.552972 +-3.968792 52.552386 +-3.974072 52.551506 +-3.979646 52.550626 +-3.984926 52.549452 +-3.990793 52.548279 +-3.996074 52.547105 +-4.000000 52.546452 +nan nan +-4.000000 52.720906 +-3.996660 52.723411 +-3.993140 52.725758 +-3.989620 52.728692 +-3.989033 52.732212 +-3.994313 52.733972 +-4.000000 52.733972 +nan nan +-4.000000 53.243913 +-3.999007 53.244409 +-3.994607 53.246462 +-3.990500 53.248516 +-3.985513 53.249982 +-3.981406 53.252329 +-3.977299 53.254089 +-3.972899 53.256436 +-3.967911 53.257903 +-3.962924 53.259370 +-3.959111 53.260543 +-3.954417 53.262010 +-3.949430 53.263477 +-3.944443 53.264944 +-3.938869 53.266117 +-3.934176 53.267877 +-3.928602 53.268757 +-3.923028 53.269637 +-3.916574 53.270224 +-3.911001 53.271397 +-3.905720 53.272571 +-3.900733 53.273744 +-3.896626 53.276091 +-3.893106 53.278731 +-3.888999 53.280491 +-3.882545 53.281078 +-3.874918 53.280785 +-3.868758 53.280198 +-3.863771 53.281958 +-3.859957 53.284012 +-3.854090 53.284892 +-3.847636 53.284305 +-3.840889 53.283425 +-3.833262 53.282838 +-3.829155 53.284598 +-3.828275 53.288412 +-3.830035 53.291639 +-3.833555 53.294279 +-3.836195 53.297212 +-3.838542 53.300146 +-3.840302 53.303373 +-3.841476 53.307187 +-3.842943 53.310413 +-3.846463 53.313054 +-3.849690 53.315694 +-3.854090 53.317454 +-3.859370 53.319214 +-3.863477 53.321268 +-3.868758 53.323028 +-3.872865 53.325375 +-3.876092 53.327721 +-3.877265 53.331535 +-3.873745 53.333882 +-3.867584 53.334468 +-3.861717 53.333295 +-3.858490 53.332122 +-3.853503 53.330655 +-3.847636 53.329188 +-3.841769 53.327721 +-3.834729 53.328015 +-3.830328 53.326548 +-3.825928 53.324788 +-3.822408 53.322148 +-3.818301 53.320094 +-3.813900 53.318041 +-3.807447 53.316867 +-3.800993 53.317454 +-3.795419 53.318627 +-3.789845 53.319801 +-3.783685 53.320387 +-3.777524 53.318921 +-3.774591 53.316281 +-3.770777 53.313934 +-3.767257 53.311293 +-3.764030 53.308947 +-3.759630 53.306600 +-3.753763 53.305426 +-3.747896 53.304253 +-3.743495 53.302200 +-3.740268 53.299559 +-3.737628 53.296626 +-3.735868 53.293399 +-3.732641 53.290759 +-3.727361 53.289292 +-3.720907 53.288412 +-3.713573 53.288412 +-3.706239 53.287825 +-3.698612 53.287238 +-3.692452 53.286065 +-3.685705 53.285185 +-3.678957 53.284305 +-3.671330 53.284012 +-3.664583 53.284012 +-3.657543 53.284012 +-3.651969 53.284892 +-3.644928 53.284892 +-3.638181 53.284012 +-3.632314 53.282838 +-3.626447 53.281371 +-3.619700 53.280491 +-3.612659 53.279611 +-3.606792 53.280198 +-3.601219 53.281078 +-3.594765 53.281665 +-3.589191 53.282838 +-3.584497 53.284305 +-3.579510 53.285772 +-3.574817 53.287238 +-3.571883 53.289585 +-3.566309 53.290465 +-3.561322 53.291932 +-3.557215 53.294279 +-3.553108 53.296039 +-3.549001 53.298093 +-3.544014 53.299853 +-3.539321 53.301613 +-3.534040 53.302786 +-3.529053 53.304253 +-3.524360 53.305720 +-3.518786 53.306893 +-3.513799 53.308360 +-3.508225 53.309533 +-3.503238 53.310707 +-3.498544 53.312467 +-3.493557 53.313934 +-3.488864 53.315694 +-3.483877 53.316867 +-3.478890 53.318627 +-3.472729 53.319214 +-3.466275 53.319507 +-3.461288 53.320974 +-3.456595 53.322441 +-3.452488 53.324788 +-3.448381 53.326548 +-3.443981 53.328601 +-3.437820 53.329188 +-3.432246 53.330362 +-3.426379 53.331535 +-3.420806 53.332122 +-3.416112 53.333882 +-3.411125 53.335349 +-3.406431 53.336815 +-3.402324 53.338869 +-3.397337 53.340629 +-3.392644 53.342389 +-3.387950 53.343856 +-3.381789 53.344443 +-3.376216 53.345616 +-3.370055 53.346203 +-3.362721 53.346496 +-3.355388 53.346203 +-3.348934 53.346496 +-3.342773 53.347083 +-3.336319 53.347376 +-3.329866 53.347376 +-3.322532 53.347376 +-3.314905 53.347083 +-3.311384 53.345323 +-3.307277 53.343269 +-3.303170 53.341216 +-3.298477 53.339162 +-3.295250 53.336522 +-3.292023 53.333882 +-3.287623 53.331828 +-3.283222 53.329775 +-3.279115 53.327721 +-3.275008 53.325668 +-3.270901 53.323321 +-3.266794 53.321268 +-3.262981 53.318921 +-3.258874 53.316574 +-3.253887 53.315107 +-3.249487 53.312760 +-3.245380 53.310413 +-3.240979 53.308653 +-3.235992 53.306893 +-3.231885 53.304840 +-3.226898 53.303080 +-3.221618 53.301319 +-3.216631 53.299559 +-3.211351 53.297799 +-3.207244 53.295746 +-3.203137 53.293692 +-3.198736 53.291345 +-3.193749 53.289585 +-3.189349 53.287825 +-3.184362 53.285772 +-3.180255 53.284012 +-3.174975 53.282251 +-3.170868 53.279905 +-3.166761 53.277851 +-3.163240 53.275211 +-3.160014 53.272864 +-3.156493 53.270224 +-3.151800 53.268757 +-3.146519 53.266997 +-3.142119 53.264650 +-3.138012 53.262597 +-3.133905 53.260543 +-3.130385 53.257903 +-3.125691 53.256143 +-3.120997 53.254089 +-3.115424 53.252916 +-3.110143 53.251156 +-3.106623 53.248516 +-3.103689 53.245875 +-3.101929 53.242355 +-3.099289 53.239715 +-3.095769 53.237368 +-3.094009 53.235315 +-3.090489 53.232675 +-3.085501 53.230914 +-3.079634 53.229741 +-3.073474 53.230034 +-3.068194 53.231794 +-3.067314 53.234728 +-3.069367 53.237662 +-3.071420 53.241182 +-3.072007 53.244702 +-3.070540 53.248809 +-3.069367 53.253209 +-3.071420 53.256730 +-3.070540 53.261130 +-3.067607 53.264063 +-3.065553 53.267877 +-3.064673 53.271397 +-3.067607 53.274331 +-3.069660 53.277264 +-3.075527 53.278731 +-3.080808 53.280198 +-3.084915 53.282545 +-3.088435 53.284892 +-3.090782 53.288118 +-3.094302 53.290465 +-3.098409 53.292519 +-3.099582 53.296332 +-3.096356 53.299559 +-3.092835 53.301906 +-3.092249 53.305426 +-3.095476 53.308067 +-3.099582 53.310413 +-3.104863 53.311880 +-3.107503 53.314814 +-3.110143 53.317747 +-3.112490 53.320974 +-3.115130 53.323614 +-3.119237 53.325961 +-3.123638 53.327721 +-3.128331 53.329775 +-3.132732 53.331535 +-3.137719 53.333295 +-3.142119 53.335642 +-3.145346 53.337989 +-3.147986 53.341216 +-3.151506 53.343562 +-3.154733 53.346203 +-3.158253 53.348550 +-3.161480 53.351190 +-3.164707 53.353537 +-3.168227 53.356177 +-3.171748 53.358524 +-3.174095 53.361750 +-3.177615 53.364097 +-3.180842 53.366737 +-3.184362 53.369084 +-3.186709 53.372311 +-3.189349 53.374951 +-3.191109 53.378472 +-3.192869 53.381699 +-3.192869 53.385806 +-3.191109 53.389912 +-3.188469 53.393139 +-3.184655 53.395486 +-3.181135 53.398126 +-3.177028 53.399887 +-3.172921 53.402233 +-3.168227 53.404287 +-3.163534 53.405460 +-3.157960 53.406634 +-3.152093 53.407807 +-3.146813 53.408687 +-3.141826 53.410154 +-3.138012 53.410154 +-3.131851 53.410741 +-3.125984 53.411914 +-3.120411 53.412794 +-3.115130 53.413968 +-3.110437 53.415728 +-3.105743 53.417488 +-3.101636 53.419541 +-3.096649 53.420715 +-3.092249 53.423062 +-3.087555 53.424528 +-3.082568 53.425995 +-3.077581 53.427462 +-3.072007 53.428635 +-3.067314 53.430102 +-3.060860 53.430689 +-3.054406 53.430982 +-3.048245 53.431275 +-3.040618 53.430982 +-3.033578 53.430102 +-3.027711 53.428635 +-3.023604 53.426582 +-3.020377 53.424235 +-3.018617 53.420715 +-3.017737 53.416901 +-3.016857 53.413381 +-3.015096 53.409861 +-3.013630 53.406634 +-3.010403 53.404287 +-3.007469 53.401060 +-3.005122 53.398126 +-3.002776 53.395193 +-3.000135 53.392259 +-2.998375 53.389032 +-2.994855 53.386392 +-2.993388 53.383165 +-2.993388 53.378765 +-2.994268 53.374365 +-2.992508 53.371138 +-2.989868 53.367911 +-2.987521 53.365271 +-2.984294 53.362924 +-2.980774 53.359990 +-2.977254 53.357643 +-2.974614 53.354710 +-2.972560 53.351776 +-2.969627 53.348843 +-2.967280 53.345909 +-2.964639 53.342682 +-2.962293 53.340042 +-2.959652 53.336815 +-2.957306 53.334175 +-2.954665 53.331242 +-2.952319 53.328308 +-2.949678 53.325375 +-2.947918 53.321854 +-2.944398 53.319507 +-2.942345 53.316281 +-2.938531 53.313934 +-2.935304 53.311293 +-2.931197 53.309240 +-2.927677 53.306600 +-2.922396 53.305133 +-2.920050 53.303080 +-2.915943 53.300733 +-2.911542 53.298679 +-2.907435 53.296626 +-2.902155 53.294866 +-2.897168 53.293106 +-2.892181 53.291345 +-2.885434 53.290465 +-2.880153 53.288705 +-2.873700 53.287825 +-2.868713 53.286065 +-2.862552 53.284598 +-2.856685 53.283425 +-2.850818 53.281958 +-2.844071 53.281078 +-2.837910 53.279611 +-2.831457 53.279611 +-2.824416 53.279611 +-2.817962 53.280198 +-2.812389 53.281371 +-2.806815 53.282251 +-2.801828 53.283718 +-2.797721 53.285772 +-2.793321 53.287825 +-2.789507 53.289585 +-2.785693 53.292225 +-2.782173 53.294866 +-2.778653 53.297212 +-2.774546 53.299266 +-2.769265 53.300733 +-2.764572 53.302200 +-2.759585 53.303960 +-2.754598 53.305133 +-2.751664 53.308360 +-2.750784 53.312760 +-2.752544 53.315987 +-2.754891 53.319214 +-2.754891 53.323321 +-2.751958 53.326255 +-2.749024 53.329481 +-2.744917 53.331535 +-2.741103 53.333882 +-2.738463 53.336815 +-2.735236 53.340042 +-2.736410 53.343562 +-2.740517 53.345909 +-2.746090 53.344736 +-2.751077 53.343269 +-2.755771 53.341802 +-2.760171 53.339749 +-2.763692 53.337109 +-2.768092 53.335349 +-2.771319 53.332708 +-2.775719 53.330948 +-2.780120 53.328601 +-2.785693 53.327721 +-2.791267 53.326548 +-2.798894 53.327135 +-2.806521 53.327721 +-2.812389 53.329188 +-2.820016 53.329775 +-2.827056 53.329775 +-2.833803 53.329188 +-2.841724 53.329775 +-2.848471 53.329775 +-2.855218 53.330948 +-2.861085 53.332122 +-2.866072 53.333882 +-2.870179 53.335935 +-2.874580 53.337989 +-2.878100 53.340629 +-2.881327 53.342976 +-2.885434 53.345323 +-2.890421 53.347083 +-2.896288 53.348256 +-2.901568 53.350016 +-2.906555 53.352070 +-2.911836 53.353537 +-2.916529 53.355297 +-2.921223 53.357643 +-2.925330 53.359404 +-2.929437 53.361750 +-2.933837 53.363804 +-2.937358 53.366444 +-2.942345 53.367911 +-2.947332 53.369671 +-2.953199 53.371138 +-2.958479 53.372898 +-2.961706 53.374365 +-2.966693 53.376125 +-2.970213 53.378765 +-2.973733 53.381405 +-2.976960 53.383752 +-2.980481 53.386392 +-2.982827 53.389032 +-2.986348 53.391966 +-2.988988 53.394606 +-2.991041 53.397833 +-2.993095 53.401060 +-2.996322 53.403700 +-2.998962 53.406340 +-3.000429 53.409861 +-3.002189 53.413087 +-3.003949 53.416314 +-3.005122 53.420421 +-3.005416 53.423942 +-3.006296 53.427755 +-3.007176 53.431275 +-3.009229 53.434796 +-3.011283 53.437729 +-3.013923 53.440663 +-3.016563 53.443596 +-3.019203 53.446530 +-3.019203 53.450930 +-3.019790 53.454450 +-3.021257 53.457677 +-3.025070 53.460318 +-3.028297 53.462664 +-3.032404 53.465011 +-3.036805 53.467358 +-3.040032 53.469705 +-3.043258 53.472345 +-3.045312 53.475572 +-3.047659 53.478212 +-3.048832 53.481439 +-3.050592 53.484666 +-3.051472 53.488480 +-3.052939 53.491706 +-3.053526 53.495520 +-3.055579 53.498747 +-3.057339 53.502267 +-3.059686 53.504907 +-3.063207 53.507548 +-3.066727 53.509894 +-3.069660 53.512535 +-3.073474 53.515175 +-3.076701 53.517815 +-3.079928 53.520162 +-3.083741 53.522802 +-3.086968 53.525149 +-3.089315 53.528376 +-3.092835 53.531016 +-3.095182 53.534243 +-3.097822 53.536883 +-3.100169 53.540110 +-3.102809 53.543043 +-3.105450 53.545977 +-3.107210 53.549204 +-3.107796 53.553018 +-3.107796 53.557124 +-3.106330 53.561231 +-3.104276 53.564752 +-3.101929 53.568272 +-3.099289 53.571205 +-3.096942 53.574726 +-3.094009 53.577659 +-3.091075 53.580886 +-3.088142 53.583820 +-3.085208 53.587047 +-3.082275 53.589980 +-3.079341 53.592914 +-3.075527 53.595847 +-3.072887 53.598781 +-3.069367 53.601421 +-3.066433 53.604355 +-3.064087 53.608168 +-3.061446 53.611102 +-3.058220 53.614035 +-3.055579 53.617262 +-3.052646 53.620196 +-3.048832 53.622836 +-3.045899 53.625769 +-3.042085 53.628703 +-3.039445 53.631636 +-3.036511 53.634863 +-3.033578 53.637797 +-3.030938 53.640730 +-3.027124 53.643371 +-3.024190 53.646304 +-3.021257 53.649531 +-3.017443 53.651878 +-3.014803 53.655105 +-3.011576 53.658038 +-3.008349 53.660679 +-3.005416 53.663612 +-3.001602 53.666252 +-2.998082 53.668599 +-2.994855 53.671239 +-2.990748 53.673586 +-2.987228 53.676226 +-2.983708 53.678573 +-2.980187 53.681213 +-2.976667 53.683560 +-2.971680 53.685320 +-2.965226 53.685614 +-2.958479 53.684734 +-2.951732 53.683854 +-2.946745 53.685320 +-2.942638 53.687080 +-2.938531 53.689721 +-2.934424 53.692067 +-2.930904 53.694414 +-2.927090 53.697055 +-2.924450 53.699988 +-2.920636 53.702628 +-2.917996 53.705562 +-2.914476 53.708202 +-2.910076 53.709962 +-2.906262 53.712602 +-2.902155 53.714362 +-2.896875 53.716123 +-2.892181 53.717589 +-2.887194 53.718763 +-2.881620 53.719936 +-2.876340 53.721403 +-2.871646 53.723163 +-2.865779 53.723750 +-2.860205 53.724923 +-2.854632 53.726097 +-2.849645 53.727563 +-2.847591 53.731084 +-2.843191 53.733137 +-2.839671 53.735484 +-2.839084 53.738417 +-2.845244 53.738711 +-2.850818 53.737831 +-2.855805 53.736071 +-2.861379 53.735191 +-2.866366 53.733724 +-2.871059 53.733137 +-2.877513 53.732550 +-2.884554 53.732844 +-2.890127 53.731670 +-2.896288 53.731084 +-2.902742 53.730497 +-2.909782 53.731670 +-2.914769 53.733430 +-2.920050 53.734897 +-2.926797 53.736071 +-2.933544 53.736071 +-2.939998 53.735484 +-2.944398 53.733724 +-2.948505 53.731377 +-2.952905 53.729324 +-2.958772 53.729910 +-2.964933 53.730204 +-2.970800 53.729324 +-2.975787 53.727857 +-2.982241 53.727270 +-2.988108 53.728737 +-2.992508 53.730790 +-2.998962 53.730204 +-3.004536 53.729030 +-3.010696 53.729030 +-3.015683 53.730497 +-3.021550 53.731964 +-3.025951 53.734017 +-3.030351 53.736071 +-3.033578 53.738711 +-3.037685 53.740764 +-3.041498 53.743405 +-3.044725 53.745751 +-3.046779 53.747218 +-3.046779 53.748392 +-3.049419 53.749565 +-3.052059 53.752205 +-3.054406 53.755139 +-3.057339 53.758072 +-3.058806 53.761299 +-3.059686 53.765406 +-3.060566 53.768926 +-3.062326 53.772153 +-3.062326 53.776260 +-3.062913 53.780367 +-3.063500 53.784474 +-3.063500 53.788581 +-3.063500 53.792688 +-3.062913 53.797088 +-3.061446 53.801489 +-3.059686 53.805302 +-3.057926 53.809409 +-3.057633 53.813810 +-3.055873 53.817917 +-3.054993 53.822610 +-3.054993 53.826717 +-3.054993 53.830824 +-3.054993 53.834931 +-3.054993 53.839038 +-3.053819 53.843732 +-3.052646 53.847839 +-3.050886 53.851652 +-3.050006 53.856346 +-3.049126 53.860746 +-3.047365 53.865147 +-3.046779 53.869547 +-3.045312 53.873361 +-3.044139 53.878054 +-3.044139 53.882161 +-3.045312 53.885975 +-3.045899 53.889788 +-3.046779 53.893309 +-3.047365 53.897122 +-3.048245 53.900936 +-3.049419 53.904749 +-3.049419 53.908563 +-3.048245 53.913257 +-3.047365 53.917070 +-3.045312 53.920591 +-3.042378 53.923524 +-3.038271 53.925578 +-3.034751 53.927924 +-3.029177 53.928804 +-3.021844 53.928804 +-3.015096 53.928804 +-3.009229 53.929978 +-3.003069 53.930565 +-2.996908 53.929098 +-2.989868 53.928218 +-2.984588 53.929098 +-2.979307 53.930858 +-2.974320 53.932325 +-2.969040 53.933792 +-2.964346 53.935258 +-2.958479 53.936432 +-2.952905 53.937312 +-2.947332 53.938192 +-2.940878 53.938779 +-2.936184 53.940245 +-2.930904 53.941712 +-2.926210 53.943472 +-2.920343 53.944059 +-2.916529 53.944352 +-2.910369 53.944939 +-2.903035 53.943766 +-2.898928 53.942005 +-2.895701 53.939365 +-2.893941 53.936138 +-2.888661 53.934085 +-2.884260 53.936432 +-2.881914 53.939659 +-2.877807 53.942005 +-2.873700 53.943766 +-2.869886 53.946406 +-2.867539 53.949926 +-2.864312 53.952860 +-2.861085 53.955500 +-2.855805 53.956967 +-2.849645 53.957553 +-2.845244 53.959313 +-2.841724 53.961954 +-2.839964 53.966060 +-2.841724 53.969581 +-2.848471 53.970167 +-2.854045 53.969287 +-2.859912 53.968407 +-2.866072 53.968701 +-2.868126 53.971928 +-2.866072 53.976035 +-2.863432 53.979261 +-2.862552 53.983662 +-2.859912 53.987182 +-2.855805 53.989235 +-2.852285 53.991582 +-2.848471 53.994223 +-2.847884 53.997743 +-2.849645 54.000970 +-2.854632 54.002730 +-2.861085 54.002436 +-2.866072 54.000970 +-2.869593 53.998329 +-2.873406 53.995689 +-2.877807 53.993929 +-2.883380 53.992756 +-2.887781 53.995103 +-2.891008 53.997449 +-2.892768 54.000970 +-2.892768 54.005077 +-2.891008 54.009184 +-2.890127 54.013584 +-2.892768 54.016811 +-2.896875 54.018571 +-2.901275 54.020918 +-2.904795 54.023265 +-2.907435 54.026492 +-2.910076 54.029132 +-2.911542 54.032359 +-2.911542 54.036759 +-2.908022 54.039106 +-2.905089 54.042333 +-2.902155 54.045266 +-2.899221 54.048200 +-2.895995 54.051427 +-2.893061 54.054360 +-2.889834 54.057000 +-2.886607 54.059934 +-2.883674 54.063161 +-2.880447 54.065801 +-2.877807 54.069028 +-2.873993 54.071375 +-2.869299 54.073135 +-2.862846 54.073722 +-2.856978 54.074308 +-2.851991 54.076068 +-2.847884 54.078122 +-2.843777 54.080469 +-2.840257 54.083109 +-2.835564 54.084576 +-2.830283 54.086042 +-2.823829 54.086336 +-2.819136 54.088096 +-2.814735 54.089856 +-2.812389 54.093670 +-2.813269 54.097190 +-2.813269 54.101297 +-2.811508 54.105697 +-2.808575 54.108631 +-2.805641 54.111271 +-2.801828 54.114204 +-2.799188 54.116845 +-2.796841 54.120658 +-2.799481 54.123592 +-2.801534 54.125939 +-2.805641 54.127992 +-2.809748 54.130339 +-2.812095 54.132979 +-2.813269 54.137086 +-2.815029 54.140313 +-2.816789 54.143540 +-2.819136 54.146767 +-2.821776 54.149407 +-2.825003 54.152047 +-2.827643 54.154981 +-2.831163 54.157621 +-2.834390 54.159968 +-2.837324 54.163195 +-2.839671 54.165835 +-2.842311 54.168768 +-2.844658 54.171702 +-2.846418 54.175222 +-2.848178 54.178742 +-2.847298 54.183143 +-2.844071 54.186076 +-2.839377 54.187543 +-2.832923 54.187250 +-2.826176 54.186076 +-2.820309 54.187250 +-2.817962 54.190770 +-2.819722 54.194290 +-2.822363 54.196930 +-2.826763 54.199277 +-2.833510 54.199864 +-2.839964 54.199864 +-2.845831 54.198691 +-2.851698 54.197517 +-2.856392 54.196050 +-2.861965 54.194877 +-2.868713 54.194584 +-2.874873 54.194290 +-2.879860 54.192530 +-2.883674 54.189890 +-2.887194 54.187543 +-2.890714 54.184903 +-2.895408 54.183143 +-2.900688 54.181969 +-2.905969 54.180503 +-2.909782 54.178156 +-2.913302 54.175516 +-2.916529 54.172582 +-2.917996 54.168475 +-2.919463 54.164368 +-2.921810 54.160848 +-2.924450 54.157914 +-2.928264 54.155274 +-2.934131 54.154394 +-2.938824 54.152634 +-2.944691 54.152047 +-2.951145 54.151460 +-2.956719 54.150287 +-2.962586 54.149407 +-2.968746 54.148820 +-2.976667 54.149407 +-2.982827 54.150874 +-2.987814 54.152634 +-2.993095 54.154101 +-2.996615 54.156741 +-2.997202 54.160554 +-2.997202 54.164661 +-2.997202 54.168475 +-2.998082 54.172582 +-3.002482 54.174635 +-3.007469 54.176396 +-3.012750 54.178156 +-3.015976 54.180503 +-3.019497 54.183143 +-3.022137 54.186076 +-3.025070 54.189010 +-3.027124 54.191943 +-3.032404 54.193704 +-3.037391 54.192237 +-3.040618 54.189303 +-3.043258 54.186076 +-3.046485 54.183143 +-3.049419 54.179916 +-3.049419 54.175809 +-3.049419 54.171702 +-3.049419 54.167595 +-3.051179 54.163488 +-3.053233 54.159968 +-3.056166 54.157034 +-3.059686 54.154394 +-3.063500 54.152047 +-3.067314 54.149407 +-3.069367 54.145887 +-3.069367 54.141780 +-3.069367 54.137379 +-3.072301 54.134446 +-3.075821 54.131806 +-3.079634 54.129459 +-3.081101 54.125645 +-3.083741 54.121832 +-3.086382 54.118898 +-3.089902 54.116258 +-3.094302 54.114498 +-3.099582 54.112738 +-3.103689 54.110978 +-3.106623 54.107751 +-3.106623 54.103644 +-3.109850 54.100417 +-3.115424 54.099830 +-3.120117 54.098070 +-3.125398 54.096603 +-3.130091 54.095136 +-3.135372 54.093670 +-3.140065 54.092203 +-3.145346 54.090443 +-3.149453 54.088683 +-3.153853 54.086629 +-3.155320 54.082522 +-3.151800 54.079882 +-3.148279 54.077535 +-3.145052 54.074895 +-3.141532 54.072548 +-3.139185 54.069321 +-3.137425 54.066094 +-3.138012 54.061694 +-3.143879 54.061401 +-3.147986 54.063748 +-3.151506 54.066094 +-3.154733 54.068735 +-3.160307 54.070201 +-3.165294 54.071961 +-3.169401 54.074308 +-3.172921 54.076655 +-3.174681 54.079882 +-3.175561 54.083989 +-3.177321 54.087216 +-3.180548 54.089856 +-3.186122 54.091323 +-3.190229 54.093670 +-3.194336 54.095430 +-3.202257 54.096016 +-3.208710 54.095430 +-3.214577 54.096016 +-3.220738 54.097483 +-3.226018 54.099243 +-3.230419 54.101004 +-3.233939 54.103644 +-3.236286 54.106577 +-3.238046 54.110098 +-3.237166 54.114498 +-3.237166 54.118605 +-3.238339 54.122418 +-3.239806 54.125939 +-3.240979 54.129459 +-3.239806 54.134153 +-3.237459 54.137379 +-3.234819 54.140606 +-3.230712 54.142953 +-3.228952 54.146767 +-3.227192 54.150874 +-3.228952 54.154101 +-3.231592 54.157034 +-3.235699 54.159088 +-3.240393 54.161435 +-3.245380 54.163195 +-3.248900 54.165541 +-3.245966 54.167595 +-3.241566 54.169648 +-3.235992 54.170529 +-3.229832 54.171115 +-3.222791 54.171115 +-3.217511 54.172875 +-3.213404 54.174635 +-3.212524 54.179036 +-3.213404 54.183143 +-3.214871 54.186370 +-3.214871 54.190477 +-3.213697 54.193704 +-3.211351 54.197224 +-3.208710 54.200157 +-3.206363 54.203678 +-3.204017 54.207198 +-3.202550 54.211305 +-3.200790 54.215412 +-3.199030 54.219519 +-3.197856 54.223332 +-3.198736 54.227146 +-3.201083 54.230079 +-3.204017 54.233013 +-3.206363 54.235947 +-3.209004 54.238880 +-3.210470 54.242107 +-3.211644 54.245921 +-3.213404 54.249147 +-3.213404 54.253254 +-3.211644 54.257361 +-3.207244 54.259415 +-3.208710 54.261468 +-3.214577 54.262642 +-3.218978 54.260882 +-3.221911 54.257655 +-3.224845 54.254721 +-3.226898 54.251201 +-3.229245 54.247387 +-3.230419 54.242987 +-3.231005 54.238587 +-3.231005 54.234480 +-3.231005 54.230373 +-3.232765 54.225972 +-3.234232 54.222159 +-3.236579 54.218639 +-3.238926 54.215118 +-3.239513 54.211305 +-3.235699 54.208958 +-3.232472 54.206318 +-3.233059 54.202797 +-3.235112 54.200451 +-3.236872 54.198397 +-3.240099 54.195170 +-3.243620 54.192823 +-3.248900 54.191357 +-3.255647 54.192237 +-3.262394 54.193117 +-3.269435 54.193997 +-3.277355 54.194584 +-3.284396 54.194584 +-3.289969 54.193704 +-3.294370 54.191357 +-3.298477 54.189303 +-3.304931 54.189010 +-3.311091 54.190183 +-3.316078 54.191943 +-3.319598 54.194584 +-3.323412 54.196930 +-3.326639 54.199571 +-3.329572 54.202504 +-3.331626 54.205144 +-3.334559 54.208371 +-3.337200 54.211011 +-3.340426 54.213945 +-3.343067 54.216585 +-3.345707 54.219812 +-3.348347 54.222452 +-3.350694 54.225679 +-3.353627 54.228319 +-3.355974 54.231253 +-3.359788 54.233893 +-3.363015 54.236533 +-3.366535 54.238880 +-3.371815 54.240640 +-3.376216 54.242694 +-3.380323 54.244747 +-3.382083 54.247974 +-3.384723 54.251201 +-3.386483 54.254428 +-3.387950 54.257655 +-3.390883 54.260882 +-3.392644 54.264109 +-3.396164 54.266749 +-3.399391 54.269096 +-3.402911 54.271736 +-3.406431 54.274083 +-3.409071 54.277016 +-3.410832 54.280243 +-3.411712 54.284057 +-3.412005 54.287284 +-3.412005 54.291391 +-3.410245 54.295497 +-3.409658 54.299898 +-3.407311 54.303711 +-3.405844 54.307818 +-3.404964 54.312219 +-3.404964 54.316326 +-3.406725 54.319846 +-3.408191 54.323073 +-3.410245 54.326300 +-3.412005 54.329820 +-3.412885 54.333340 +-3.412005 54.338034 +-3.412298 54.342141 +-3.417285 54.343901 +-3.423446 54.345368 +-3.429313 54.346248 +-3.434007 54.348595 +-3.437233 54.351235 +-3.440460 54.353582 +-3.443394 54.356809 +-3.446621 54.359155 +-3.450141 54.361796 +-3.452781 54.364436 +-3.455421 54.367369 +-3.458355 54.370303 +-3.460702 54.373236 +-3.463342 54.376170 +-3.465982 54.379103 +-3.469502 54.381744 +-3.472143 54.384677 +-3.475663 54.387317 +-3.478890 54.389664 +-3.481530 54.392598 +-3.484463 54.395531 +-3.487690 54.398172 +-3.490624 54.400812 +-3.492971 54.403745 +-3.496784 54.406385 +-3.500011 54.409026 +-3.503531 54.411372 +-3.507052 54.414013 +-3.510572 54.416359 +-3.513799 54.419000 +-3.517613 54.421347 +-3.519959 54.424573 +-3.524360 54.426627 +-3.528173 54.429267 +-3.531400 54.431614 +-3.534920 54.434254 +-3.538734 54.436601 +-3.542841 54.438654 +-3.546361 54.441001 +-3.549588 54.443641 +-3.553402 54.446282 +-3.556922 54.448922 +-3.559562 54.451562 +-3.561909 54.454789 +-3.564843 54.457429 +-3.568069 54.460069 +-3.572470 54.462123 +-3.575990 54.464763 +-3.579804 54.467110 +-3.583031 54.469750 +-3.585671 54.472684 +-3.588311 54.475617 +-3.591244 54.478551 +-3.594471 54.481191 +-3.598872 54.482951 +-3.605032 54.484418 +-3.609432 54.486471 +-3.612659 54.489111 +-3.615593 54.492045 +-3.617940 54.494978 +-3.620873 54.497912 +-3.623220 54.500846 +-3.627034 54.503192 +-3.629674 54.506126 +-3.632021 54.509059 +-3.634074 54.512580 +-3.633194 54.516100 +-3.629674 54.518740 +-3.624687 54.520207 +-3.620287 54.522260 +-3.615300 54.523727 +-3.611779 54.526074 +-3.609432 54.529594 +-3.608552 54.534581 +-3.606499 54.537808 +-3.603565 54.540742 +-3.599752 54.543675 +-3.596231 54.546022 +-3.592418 54.548662 +-3.591244 54.552476 +-3.590364 54.555996 +-3.590364 54.560396 +-3.589778 54.565090 +-3.587137 54.568610 +-3.585084 54.571837 +-3.581857 54.575064 +-3.578337 54.577411 +-3.575697 54.580638 +-3.575697 54.584745 +-3.576577 54.587385 +-3.577457 54.591492 +-3.575697 54.595306 +-3.573643 54.598826 +-3.571590 54.602640 +-3.569536 54.606160 +-3.570416 54.609680 +-3.571003 54.613494 +-3.571883 54.617307 +-3.571883 54.621414 +-3.571296 54.625815 +-3.571296 54.629921 +-3.571296 54.634028 +-3.570416 54.639015 +-3.568950 54.642829 +-3.565723 54.645763 +-3.563082 54.648990 +-3.559856 54.651923 +-3.557215 54.654857 +-3.554282 54.658084 +-3.550468 54.660430 +-3.547535 54.663657 +-3.544601 54.666591 +-3.541668 54.669818 +-3.539321 54.673338 +-3.537267 54.676565 +-3.534040 54.679792 +-3.530520 54.682139 +-3.527587 54.685365 +-3.523773 54.688006 +-3.521133 54.691233 +-3.518199 54.694166 +-3.516732 54.697980 +-3.514972 54.702087 +-3.513212 54.706194 +-3.511159 54.709714 +-3.509105 54.713234 +-3.505292 54.715874 +-3.501771 54.718221 +-3.497078 54.720275 +-3.492971 54.722621 +-3.488570 54.724382 +-3.484170 54.726435 +-3.480943 54.728195 +-3.476250 54.729955 +-3.472729 54.732596 +-3.468329 54.734649 +-3.464809 54.737289 +-3.460702 54.739049 +-3.456595 54.741690 +-3.453075 54.744330 +-3.450141 54.747263 +-3.446914 54.750197 +-3.444274 54.753424 +-3.441047 54.756357 +-3.438407 54.759584 +-3.435767 54.763104 +-3.434300 54.767211 +-3.433713 54.771612 +-3.432540 54.776012 +-3.433713 54.780119 +-3.434300 54.783639 +-3.435180 54.787453 +-3.436353 54.790973 +-3.437233 54.795080 +-3.438113 54.798600 +-3.438113 54.802707 +-3.438113 54.806814 +-3.436060 54.809454 +-3.433126 54.807401 +-3.429313 54.810041 +-3.426379 54.812975 +-3.422859 54.815615 +-3.419925 54.818548 +-3.416405 54.821189 +-3.413472 54.824122 +-3.410245 54.827349 +-3.407311 54.830283 +-3.404084 54.833216 +-3.400564 54.835856 +-3.397924 54.838790 +-3.394697 54.842017 +-3.392644 54.845537 +-3.389417 54.848471 +-3.387363 54.851991 +-3.386483 54.856684 +-3.384723 54.860498 +-3.383256 54.864605 +-3.379736 54.867245 +-3.376216 54.869592 +-3.372109 54.872232 +-3.368588 54.874579 +-3.365068 54.877513 +-3.360375 54.879566 +-3.357441 54.882500 +-3.353921 54.885140 +-3.349520 54.886900 +-3.345120 54.888953 +-3.340426 54.891007 +-3.335439 54.892474 +-3.329866 54.893647 +-3.323999 54.894820 +-3.321358 54.891594 +-3.324292 54.888660 +-3.326639 54.885140 +-3.324585 54.882793 +-3.323119 54.882500 +-3.323705 54.883673 +-3.317545 54.882206 +-3.310211 54.882206 +-3.302584 54.881620 +-3.297303 54.879859 +-3.293490 54.877513 +-3.289383 54.875166 +-3.285569 54.872819 +-3.281462 54.870765 +-3.277062 54.868712 +-3.272075 54.869299 +-3.269141 54.872232 +-3.267968 54.876633 +-3.269141 54.880446 +-3.270021 54.884260 +-3.266208 54.886900 +-3.261221 54.888367 +-3.255354 54.889540 +-3.250367 54.890714 +-3.247140 54.893940 +-3.245086 54.897461 +-3.243326 54.901274 +-3.246846 54.903914 +-3.253300 54.903621 +-3.258581 54.901861 +-3.264154 54.900688 +-3.271488 54.900688 +-3.277355 54.902154 +-3.282049 54.904501 +-3.284689 54.907141 +-3.287623 54.909488 +-3.287036 54.913008 +-3.284689 54.916529 +-3.282929 54.920636 +-3.279995 54.923569 +-3.275595 54.925623 +-3.270608 54.927089 +-3.264741 54.927970 +-3.260341 54.930316 +-3.256527 54.932663 +-3.253007 54.935303 +-3.249193 54.937650 +-3.244206 54.939117 +-3.238339 54.940290 +-3.232472 54.941757 +-3.228072 54.943811 +-3.223671 54.946451 +-3.218684 54.947918 +-3.212817 54.948798 +-3.206070 54.949091 +-3.199030 54.949091 +-3.191989 54.948211 +-3.186415 54.946744 +-3.186415 54.942637 +-3.185829 54.938824 +-3.178201 54.938824 +-3.172628 54.939704 +-3.165587 54.938824 +-3.159427 54.937357 +-3.155026 54.935597 +-3.148866 54.934130 +-3.144466 54.932077 +-3.140065 54.929730 +-3.136252 54.927089 +-3.131265 54.925329 +-3.125104 54.925623 +-3.119237 54.926796 +-3.112783 54.926209 +-3.107503 54.924449 +-3.102223 54.922689 +-3.095182 54.921809 +-3.089315 54.922689 +-3.084915 54.925036 +-3.080514 54.927089 +-3.076994 54.929436 +-3.072594 54.931490 +-3.068194 54.933250 +-3.063500 54.935597 +-3.059393 54.937357 +-3.053233 54.938530 +-3.046192 54.938530 +-3.039151 54.938530 +-3.032404 54.938824 +-3.025951 54.939410 +-3.022137 54.942051 +-3.022137 54.946158 +-3.025070 54.949091 +-3.029177 54.951145 +-3.037098 54.951731 +-3.043552 54.951145 +-3.049419 54.950264 +-3.055579 54.949091 +-3.060566 54.947918 +-3.066140 54.946744 +-3.073474 54.946744 +-3.076114 54.949678 +-3.074647 54.952905 +-3.071714 54.955838 +-3.068487 54.958772 +-3.065553 54.961999 +-3.062033 54.964345 +-3.056166 54.965226 +-3.049126 54.964345 +-3.043845 54.962879 +-3.036805 54.961999 +-3.029764 54.960825 +-3.022430 54.960825 +-3.017150 54.962585 +-3.013630 54.964932 +-3.011283 54.968746 +-3.009816 54.972559 +-3.008936 54.976960 +-3.008936 54.981067 +-3.010696 54.984587 +-3.015096 54.986640 +-3.021844 54.987520 +-3.029177 54.987520 +-3.035338 54.986640 +-3.040325 54.984880 +-3.045312 54.983707 +-3.050592 54.981947 +-3.054993 54.979893 +-3.059393 54.978133 +-3.063500 54.976080 +-3.068780 54.974320 +-3.073767 54.973146 +-3.080221 54.972559 +-3.087848 54.972559 +-3.095476 54.973146 +-3.101929 54.972559 +-3.107796 54.971386 +-3.113077 54.969919 +-3.118064 54.968746 +-3.122464 54.966399 +-3.127745 54.964932 +-3.133612 54.963759 +-3.140065 54.963465 +-3.146226 54.964639 +-3.151506 54.966399 +-3.157373 54.967866 +-3.164414 54.968746 +-3.172628 54.969039 +-3.180548 54.969626 +-3.188469 54.970213 +-3.195509 54.970213 +-3.202257 54.969626 +-3.208124 54.968746 +-3.213111 54.967279 +-3.218978 54.966106 +-3.225138 54.965812 +-3.231885 54.965226 +-3.238339 54.964639 +-3.243326 54.963172 +-3.250073 54.962879 +-3.257114 54.962879 +-3.263274 54.963759 +-3.267675 54.966106 +-3.272075 54.968746 +-3.277355 54.970213 +-3.284396 54.971386 +-3.292610 54.971679 +-3.299357 54.972853 +-3.305517 54.974026 +-3.311678 54.975200 +-3.317838 54.976666 +-3.324879 54.977546 +-3.329866 54.976080 +-3.334559 54.974026 +-3.339840 54.972559 +-3.346000 54.971973 +-3.353334 54.971973 +-3.360668 54.971973 +-3.368295 54.972559 +-3.376509 54.973146 +-3.383550 54.974026 +-3.390297 54.974613 +-3.395870 54.976373 +-3.401151 54.978133 +-3.406431 54.979893 +-3.410832 54.981947 +-3.415232 54.984294 +-3.420219 54.985760 +-3.425793 54.987520 +-3.432833 54.988401 +-3.440460 54.988987 +-3.444861 54.986934 +-3.447501 54.983414 +-3.451021 54.980773 +-3.456888 54.979600 +-3.462169 54.981360 +-3.468916 54.981360 +-3.475076 54.980773 +-3.478890 54.983414 +-3.482117 54.985760 +-3.487690 54.985760 +-3.494144 54.986054 +-3.497664 54.988694 +-3.502358 54.990747 +-3.508519 54.991041 +-3.512332 54.988694 +-3.511159 54.984880 +-3.511159 54.980773 +-3.516439 54.979307 +-3.519959 54.976666 +-3.521133 54.972266 +-3.525240 54.970213 +-3.531694 54.969626 +-3.536387 54.970799 +-3.539027 54.974026 +-3.542548 54.976373 +-3.545188 54.979307 +-3.549001 54.981653 +-3.551348 54.984587 +-3.555749 54.986640 +-3.560149 54.988987 +-3.565429 54.990454 +-3.571003 54.991334 +-3.571883 54.986934 +-3.573643 54.982827 +-3.575110 54.978720 +-3.577750 54.975493 +-3.580390 54.972266 +-3.580977 54.967572 +-3.578337 54.964639 +-3.575110 54.962292 +-3.572176 54.959065 +-3.570416 54.955838 +-3.570416 54.951731 +-3.571883 54.947918 +-3.574230 54.944104 +-3.575697 54.939997 +-3.576577 54.935597 +-3.578924 54.932077 +-3.580390 54.927970 +-3.577457 54.925036 +-3.573350 54.922983 +-3.568950 54.920929 +-3.566016 54.917702 +-3.567189 54.913302 +-3.567776 54.908902 +-3.567776 54.904795 +-3.567776 54.900688 +-3.568656 54.895701 +-3.569536 54.891300 +-3.573937 54.889540 +-3.578924 54.887780 +-3.583911 54.886313 +-3.587724 54.883966 +-3.590658 54.880739 +-3.592711 54.877219 +-3.595351 54.873699 +-3.599752 54.871646 +-3.606792 54.871646 +-3.611193 54.873699 +-3.615593 54.875752 +-3.622047 54.877219 +-3.628794 54.878099 +-3.636128 54.878099 +-3.643168 54.878099 +-3.650209 54.877806 +-3.656956 54.877513 +-3.664290 54.877219 +-3.671330 54.877219 +-3.678371 54.878393 +-3.683651 54.879859 +-3.688931 54.881620 +-3.695972 54.881620 +-3.701252 54.879859 +-3.706533 54.878686 +-3.710640 54.876339 +-3.714453 54.873992 +-3.718854 54.871939 +-3.722081 54.869299 +-3.725894 54.866952 +-3.730294 54.864605 +-3.734695 54.862845 +-3.738802 54.860498 +-3.743202 54.858738 +-3.748482 54.857271 +-3.754936 54.856684 +-3.762270 54.856684 +-3.769311 54.856391 +-3.775471 54.857858 +-3.781631 54.859031 +-3.787205 54.860791 +-3.793366 54.861965 +-3.800406 54.863138 +-3.807447 54.862845 +-3.811554 54.860791 +-3.809207 54.858151 +-3.808913 54.855218 +-3.805100 54.854338 +-3.807153 54.850817 +-3.812140 54.849351 +-3.817421 54.850231 +-3.821821 54.852284 +-3.823874 54.855511 +-3.825635 54.859031 +-3.827395 54.862258 +-3.827395 54.866365 +-3.825635 54.869885 +-3.822994 54.873699 +-3.819474 54.876046 +-3.814781 54.875752 +-3.811260 54.873406 +-3.808327 54.871059 +-3.808620 54.874579 +-3.811847 54.876926 +-3.815661 54.879566 +-3.820941 54.878099 +-3.822994 54.874579 +-3.825928 54.871352 +-3.827981 54.867832 +-3.830328 54.864312 +-3.836195 54.863432 +-3.842356 54.862845 +-3.846169 54.859911 +-3.845289 54.856391 +-3.842649 54.853458 +-3.840889 54.850231 +-3.842943 54.846710 +-3.849690 54.846124 +-3.855263 54.844950 +-3.857610 54.842603 +-3.852037 54.840550 +-3.849396 54.837910 +-3.847636 54.834389 +-3.843823 54.832043 +-3.837662 54.830576 +-3.831795 54.829402 +-3.827395 54.827349 +-3.824755 54.824415 +-3.825635 54.820895 +-3.828862 54.817962 +-3.833262 54.816202 +-3.838249 54.814441 +-3.844703 54.814148 +-3.852037 54.813855 +-3.858490 54.813268 +-3.864064 54.812388 +-3.867291 54.809454 +-3.869344 54.805934 +-3.874331 54.804174 +-3.880199 54.803294 +-3.884305 54.801240 +-3.888999 54.799187 +-3.893399 54.797133 +-3.898387 54.795667 +-3.904254 54.794493 +-3.908361 54.792440 +-3.913641 54.790973 +-3.917161 54.788333 +-3.920975 54.785693 +-3.925375 54.783933 +-3.929482 54.781586 +-3.934469 54.780412 +-3.939749 54.778652 +-3.944150 54.776599 +-3.947377 54.774252 +-3.950017 54.770438 +-3.953244 54.768091 +-3.959111 54.766918 +-3.964978 54.765745 +-3.972312 54.765745 +-3.979352 54.765745 +-3.985513 54.766918 +-3.991673 54.768385 +-3.997834 54.769558 +-4.000000 54.769829 +nan nan +-1.588221 59.551821 +-1.593501 59.550061 +-1.599955 59.548888 +-1.605235 59.546834 +-1.608755 59.544194 +-1.610516 59.540087 +-1.610516 59.536860 +-1.605822 59.534807 +-1.599661 59.532753 +-1.599661 59.529820 +-1.606409 59.528646 +-1.612276 59.527180 +-1.615796 59.524246 +-1.617849 59.520139 +-1.621956 59.517792 +-1.625477 59.514859 +-1.628117 59.511339 +-1.631930 59.508405 +-1.639264 59.508112 +-1.645131 59.509578 +-1.645131 59.513099 +-1.642198 59.516326 +-1.645131 59.519552 +-1.648065 59.522193 +-1.650118 59.525420 +-1.648065 59.529820 +-1.645131 59.533047 +-1.642198 59.536567 +-1.639851 59.540381 +-1.636918 59.543608 +-1.634864 59.547421 +-1.632224 59.551235 +-1.626357 59.552408 +-1.619023 59.552995 +-1.613449 59.554462 +-1.607582 59.555928 +-1.600835 59.556808 +-1.592621 59.556808 +-1.585580 59.555342 +-1.584700 59.552408 +-1.588221 59.551821 +nan nan +-2.372944 59.384023 +-2.378811 59.382556 +-2.384678 59.381089 +-2.388785 59.378742 +-2.391718 59.374929 +-2.394065 59.371409 +-2.396705 59.368182 +-2.397879 59.364368 +-2.395825 59.361141 +-2.390838 59.358794 +-2.387025 59.356447 +-2.387905 59.353514 +-2.394945 59.352927 +-2.400812 59.351754 +-2.406386 59.350287 +-2.414013 59.349700 +-2.417827 59.352340 +-2.422521 59.354394 +-2.430441 59.354394 +-2.438068 59.354101 +-2.442762 59.356154 +-2.442175 59.359674 +-2.438068 59.362315 +-2.433668 59.364661 +-2.430148 59.367888 +-2.429268 59.372289 +-2.429268 59.376396 +-2.427214 59.380502 +-2.423987 59.383729 +-2.417240 59.384316 +-2.409906 59.384903 +-2.402572 59.385196 +-2.397879 59.387250 +-2.392598 59.389303 +-2.388198 59.391650 +-2.383211 59.393997 +-2.378224 59.395757 +-2.372357 59.394877 +-2.368250 59.392530 +-2.364436 59.389890 +-2.366197 59.386663 +-2.372944 59.384023 +nan nan +-2.398466 59.279002 +-2.405799 59.278709 +-2.412547 59.279589 +-2.419587 59.281055 +-2.427508 59.282229 +-2.432495 59.280175 +-2.438068 59.278709 +-2.445402 59.278415 +-2.452443 59.277828 +-2.459190 59.276655 +-2.465057 59.275188 +-2.468577 59.272255 +-2.469164 59.268734 +-2.469164 59.264334 +-2.473564 59.262281 +-2.479138 59.260521 +-2.484418 59.258467 +-2.486178 59.254653 +-2.487939 59.250546 +-2.491459 59.247613 +-2.495566 59.244973 +-2.496446 59.241453 +-2.494686 59.237932 +-2.495566 59.233532 +-2.498793 59.230598 +-2.504953 59.229132 +-2.511994 59.229425 +-2.515514 59.232359 +-2.517567 59.235879 +-2.517274 59.239986 +-2.516394 59.244386 +-2.515221 59.248786 +-2.512874 59.252600 +-2.511700 59.256120 +-2.517274 59.256414 +-2.521088 59.253773 +-2.525488 59.251720 +-2.529008 59.248493 +-2.529302 59.244386 +-2.529595 59.240866 +-2.533995 59.238226 +-2.540449 59.237346 +-2.547783 59.237052 +-2.554530 59.235879 +-2.558637 59.233239 +-2.561864 59.230305 +-2.563037 59.225905 +-2.567144 59.223265 +-2.574185 59.223558 +-2.577118 59.226785 +-2.577118 59.230892 +-2.574478 59.234412 +-2.571251 59.237346 +-2.567438 59.240279 +-2.570958 59.242333 +-2.577118 59.242333 +-2.581812 59.240279 +-2.585626 59.237346 +-2.588853 59.234119 +-2.596186 59.233825 +-2.601173 59.235879 +-2.607040 59.237639 +-2.614081 59.237346 +-2.620535 59.236172 +-2.624935 59.233532 +-2.627575 59.230305 +-2.629335 59.226198 +-2.633736 59.223558 +-2.636963 59.220918 +-2.639603 59.217104 +-2.644003 59.214757 +-2.648697 59.212704 +-2.653684 59.210650 +-2.656324 59.207130 +-2.657204 59.202436 +-2.660431 59.199796 +-2.666591 59.200676 +-2.671578 59.202436 +-2.677739 59.203316 +-2.680966 59.200090 +-2.681259 59.195689 +-2.680672 59.192169 +-2.678326 59.188942 +-2.680379 59.184835 +-2.685953 59.184248 +-2.689766 59.186595 +-2.691527 59.190115 +-2.692407 59.193929 +-2.693580 59.197449 +-2.692407 59.201850 +-2.692407 59.206250 +-2.692407 59.210357 +-2.690646 59.214464 +-2.686246 59.216811 +-2.684486 59.220918 +-2.680672 59.223265 +-2.674512 59.224731 +-2.668938 59.226491 +-2.663071 59.227665 +-2.658377 59.229718 +-2.654271 59.232359 +-2.651337 59.235879 +-2.648697 59.239399 +-2.646057 59.242919 +-2.641070 59.244679 +-2.636963 59.247320 +-2.631976 59.249373 +-2.628162 59.252013 +-2.622882 59.253773 +-2.617308 59.255240 +-2.609974 59.255827 +-2.602640 59.256120 +-2.597066 59.257880 +-2.597066 59.260814 +-2.599707 59.263747 +-2.599120 59.266681 +-2.594133 59.268734 +-2.593253 59.273135 +-2.596480 59.275188 +-2.599120 59.278122 +-2.602934 59.280469 +-2.607040 59.283109 +-2.608801 59.286336 +-2.605574 59.289563 +-2.599707 59.291029 +-2.592666 59.290443 +-2.585626 59.291029 +-2.578878 59.291909 +-2.574771 59.294550 +-2.566558 59.294550 +-2.561277 59.296310 +-2.559224 59.300123 +-2.555410 59.303057 +-2.549250 59.303937 +-2.541622 59.304524 +-2.534582 59.305110 +-2.526368 59.305110 +-2.520501 59.303057 +-2.519328 59.299537 +-2.523141 59.296310 +-2.527835 59.294550 +-2.533115 59.292496 +-2.539569 59.291323 +-2.543676 59.288976 +-2.544556 59.285162 +-2.546023 59.282229 +-2.553357 59.281642 +-2.559224 59.280175 +-2.563331 59.277828 +-2.566851 59.274602 +-2.570078 59.271668 +-2.573598 59.268734 +-2.571545 59.265214 +-2.565678 59.264334 +-2.559810 59.266094 +-2.554237 59.267561 +-2.546023 59.266681 +-2.539569 59.265214 +-2.531942 59.265508 +-2.527835 59.268441 +-2.523141 59.270201 +-2.517861 59.272255 +-2.513167 59.274308 +-2.508180 59.276068 +-2.503486 59.278709 +-2.498793 59.280469 +-2.493806 59.282522 +-2.488819 59.284869 +-2.483832 59.286629 +-2.478258 59.288096 +-2.472978 59.289856 +-2.465057 59.289856 +-2.457136 59.289269 +-2.450096 59.289563 +-2.443349 59.290443 +-2.438655 59.292496 +-2.435135 59.295430 +-2.433961 59.300123 +-2.432788 59.304524 +-2.429561 59.307457 +-2.424574 59.309511 +-2.419587 59.311564 +-2.414307 59.313618 +-2.407266 59.313911 +-2.402279 59.312738 +-2.399932 59.310391 +-2.398759 59.306577 +-2.397292 59.303350 +-2.397292 59.299243 +-2.399052 59.295136 +-2.399932 59.291323 +-2.396999 59.288683 +-2.394065 59.285456 +-2.390252 59.283109 +-2.389958 59.279589 +-2.396119 59.278415 +-2.398466 59.279002 +nan nan +-2.541329 59.116190 +-2.545143 59.113550 +-2.550423 59.111790 +-2.552183 59.107390 +-2.552477 59.103283 +-2.549543 59.100642 +-2.547490 59.097122 +-2.542796 59.095069 +-2.534875 59.093895 +-2.526955 59.093895 +-2.519034 59.093895 +-2.514927 59.091255 +-2.518447 59.088322 +-2.521674 59.085681 +-2.525781 59.082748 +-2.529888 59.080401 +-2.534875 59.078347 +-2.541036 59.079228 +-2.545729 59.081281 +-2.553650 59.082161 +-2.559517 59.080694 +-2.563624 59.078347 +-2.570078 59.077467 +-2.577998 59.077467 +-2.583865 59.075707 +-2.589733 59.074534 +-2.594426 59.072480 +-2.598533 59.074241 +-2.597653 59.078641 +-2.595893 59.082748 +-2.595893 59.086561 +-2.596773 59.090668 +-2.598240 59.093895 +-2.601467 59.096535 +-2.605280 59.099176 +-2.612027 59.100642 +-2.619948 59.101522 +-2.625815 59.103283 +-2.631682 59.105043 +-2.638136 59.104163 +-2.644003 59.102403 +-2.648110 59.100056 +-2.648697 59.097416 +-2.646643 59.094189 +-2.644590 59.090962 +-2.644003 59.086855 +-2.644883 59.082454 +-2.646643 59.078347 +-2.650750 59.075707 +-2.656324 59.075414 +-2.662191 59.076881 +-2.668645 59.076001 +-2.674512 59.074827 +-2.682433 59.075414 +-2.685366 59.078641 +-2.685073 59.082454 +-2.683313 59.086561 +-2.680086 59.089788 +-2.675979 59.092135 +-2.672459 59.095362 +-2.669818 59.098589 +-2.667178 59.102109 +-2.664538 59.105923 +-2.661898 59.109150 +-2.657791 59.111790 +-2.649870 59.111790 +-2.641950 59.110910 +-2.634029 59.109736 +-2.626109 59.109736 +-2.620241 59.111497 +-2.616134 59.113550 +-2.615254 59.118244 +-2.617015 59.121764 +-2.618775 59.124991 +-2.622002 59.127924 +-2.627869 59.129684 +-2.633736 59.131445 +-2.637549 59.133791 +-2.640190 59.137018 +-2.640190 59.140832 +-2.642243 59.144059 +-2.646937 59.146406 +-2.654271 59.147872 +-2.660431 59.149046 +-2.666591 59.150806 +-2.663658 59.153153 +-2.657791 59.154326 +-2.649577 59.154326 +-2.643123 59.155206 +-2.637549 59.156966 +-2.631976 59.158433 +-2.626109 59.159607 +-2.618188 59.159607 +-2.613788 59.157260 +-2.613201 59.153740 +-2.614961 59.149339 +-2.615841 59.145819 +-2.609974 59.144059 +-2.602053 59.143472 +-2.593840 59.143179 +-2.586799 59.143472 +-2.578878 59.143472 +-2.571251 59.142885 +-2.571251 59.138485 +-2.571545 59.140245 +-2.577412 59.142299 +-2.583572 59.141125 +-2.588853 59.139072 +-2.592079 59.136138 +-2.595306 59.134085 +-2.597653 59.130565 +-2.598827 59.126164 +-2.597360 59.122644 +-2.593253 59.120004 +-2.588266 59.117950 +-2.581812 59.116777 +-2.574185 59.117364 +-2.567438 59.117950 +-2.561864 59.119710 +-2.555410 59.120591 +-2.549250 59.121764 +-2.542503 59.122644 +-2.535462 59.121177 +-2.534582 59.117364 +-2.541329 59.116190 +nan nan +-2.803881 59.079228 +-2.805641 59.075414 +-2.807402 59.071014 +-2.811215 59.068080 +-2.813562 59.064853 +-2.816202 59.061040 +-2.818549 59.057519 +-2.821483 59.054292 +-2.824709 59.051066 +-2.823536 59.047252 +-2.819722 59.044612 +-2.812975 59.043732 +-2.809162 59.040798 +-2.807108 59.037571 +-2.808868 59.033758 +-2.810922 59.029651 +-2.812389 59.025544 +-2.815909 59.022610 +-2.820896 59.020557 +-2.827350 59.020557 +-2.832043 59.022610 +-2.835857 59.024957 +-2.841724 59.027010 +-2.848764 59.027304 +-2.856685 59.028477 +-2.864312 59.029064 +-2.871646 59.028477 +-2.877513 59.027304 +-2.883380 59.028771 +-2.888074 59.031117 +-2.894234 59.032878 +-2.900395 59.033758 +-2.905969 59.031997 +-2.910662 59.029944 +-2.916823 59.029064 +-2.924743 59.029944 +-2.928850 59.032584 +-2.928557 59.036691 +-2.925623 59.039625 +-2.922103 59.042852 +-2.919463 59.046078 +-2.918289 59.050772 +-2.915943 59.054292 +-2.914183 59.058399 +-2.912129 59.062213 +-2.907435 59.064266 +-2.903328 59.066613 +-2.900102 59.069840 +-2.895995 59.071307 +-2.895701 59.068373 +-2.895701 59.064266 +-2.893941 59.060746 +-2.888074 59.058986 +-2.879273 59.058693 +-2.871059 59.058693 +-2.862259 59.058106 +-2.855218 59.057519 +-2.848764 59.058693 +-2.843191 59.059866 +-2.839671 59.063093 +-2.836444 59.066027 +-2.835564 59.070427 +-2.834390 59.075121 +-2.832630 59.079228 +-2.827643 59.080988 +-2.822069 59.082748 +-2.815615 59.083628 +-2.808282 59.083041 +-2.807402 59.079521 +-2.803881 59.079228 +nan nan +-2.687713 58.955432 +-2.690940 58.952498 +-2.694460 58.949565 +-2.699154 58.947511 +-2.702087 58.943991 +-2.704727 58.940471 +-2.707661 58.937537 +-2.709715 58.933430 +-2.708541 58.929617 +-2.705901 58.926683 +-2.700914 58.924630 +-2.699154 58.921403 +-2.702381 58.918469 +-2.709715 58.917883 +-2.716755 58.919056 +-2.723209 58.920523 +-2.731129 58.921403 +-2.739930 58.921990 +-2.746384 58.920816 +-2.751077 58.918763 +-2.758705 58.918469 +-2.765452 58.918176 +-2.771319 58.916416 +-2.776306 58.914362 +-2.781293 58.912602 +-2.784813 58.909375 +-2.787747 58.906442 +-2.791267 58.903508 +-2.793907 58.899988 +-2.796254 58.896468 +-2.800654 58.893828 +-2.807108 58.892947 +-2.811802 58.890894 +-2.812975 58.886494 +-2.812975 58.882093 +-2.815615 58.878573 +-2.820602 58.876813 +-2.827056 58.875933 +-2.832923 58.877400 +-2.836737 58.880040 +-2.840551 58.882387 +-2.844071 58.885027 +-2.848178 58.887374 +-2.851991 58.890014 +-2.856978 58.892361 +-2.861965 58.894414 +-2.867833 58.896174 +-2.875460 58.897054 +-2.882500 58.896761 +-2.889247 58.895588 +-2.894821 58.894121 +-2.900395 58.892361 +-2.906262 58.891187 +-2.912422 58.890014 +-2.918289 58.891774 +-2.921516 58.894708 +-2.923277 58.897935 +-2.924157 58.901748 +-2.927090 58.904682 +-2.930904 58.907322 +-2.935891 58.909375 +-2.937651 58.912896 +-2.939704 58.916122 +-2.942638 58.918763 +-2.946745 58.921403 +-2.951439 58.923750 +-2.953199 58.926977 +-2.955252 58.930204 +-2.954959 58.934310 +-2.956132 58.938124 +-2.956132 58.942231 +-2.954372 58.946338 +-2.952612 58.950152 +-2.951439 58.954845 +-2.954372 58.957779 +-2.959066 58.960419 +-2.965226 58.960419 +-2.970507 58.958366 +-2.975200 58.956312 +-2.980187 58.954259 +-2.984294 58.951618 +-2.988401 58.949272 +-2.993095 58.947218 +-2.998375 58.944578 +-3.003949 58.943404 +-3.009816 58.941644 +-3.015976 58.940764 +-3.022430 58.939591 +-3.029177 58.939004 +-3.035338 58.937831 +-3.042085 58.936657 +-3.049126 58.936071 +-3.057339 58.936071 +-3.065847 58.936657 +-3.073474 58.937831 +-3.079928 58.936657 +-3.079048 58.934017 +-3.074061 58.931670 +-3.071420 58.929030 +-3.074354 58.925803 +-3.078461 58.924923 +-3.085501 58.924630 +-3.091369 58.926390 +-3.097236 58.928150 +-3.103983 58.929323 +-3.110143 58.928443 +-3.115424 58.926390 +-3.119531 58.923750 +-3.119531 58.919643 +-3.117477 58.916416 +-3.120704 58.913189 +-3.125984 58.914362 +-3.132732 58.915829 +-3.140652 58.917003 +-3.148279 58.917003 +-3.155026 58.915829 +-3.160600 58.914069 +-3.166467 58.912896 +-3.172041 58.911429 +-3.176735 58.913189 +-3.183188 58.912602 +-3.188469 58.910255 +-3.194923 58.911722 +-3.199910 58.913776 +-3.204603 58.915829 +-3.208710 58.918469 +-3.212817 58.920816 +-3.218684 58.922870 +-3.222498 58.925216 +-3.224551 58.928737 +-3.226312 58.931964 +-3.228365 58.935191 +-3.230419 58.938711 +-3.231005 58.942231 +-3.232179 58.945751 +-3.232179 58.949858 +-3.231005 58.954845 +-3.231005 58.958659 +-3.233059 58.961886 +-3.235992 58.965113 +-3.238926 58.967753 +-3.240099 58.971566 +-3.238926 58.975967 +-3.235699 58.979194 +-3.231299 58.981541 +-3.226898 58.983594 +-3.222498 58.986528 +-3.221618 58.989754 +-3.222791 58.992688 +-3.218978 58.995328 +-3.214577 58.997675 +-3.211351 59.000902 +-3.207244 59.003249 +-3.204603 59.006769 +-3.207830 59.009703 +-3.214577 59.011169 +-3.219564 59.012929 +-3.221325 59.016450 +-3.221325 59.020557 +-3.220445 59.025250 +-3.222498 59.028477 +-3.224551 59.031997 +-3.230419 59.032584 +-3.235992 59.031117 +-3.240979 59.029064 +-3.245086 59.026717 +-3.248313 59.023490 +-3.249193 59.019970 +-3.246260 59.017036 +-3.242446 59.014396 +-3.239219 59.011756 +-3.241859 59.007942 +-3.248900 59.008236 +-3.255060 59.009996 +-3.260927 59.012049 +-3.269435 59.012343 +-3.275888 59.011463 +-3.272955 59.008236 +-3.267968 59.006476 +-3.264154 59.003835 +-3.261221 59.000902 +-3.261221 58.996795 +-3.264741 58.993568 +-3.267675 58.990635 +-3.271195 58.987701 +-3.271782 58.985061 +-3.267088 58.983594 +-3.259461 58.984181 +-3.253300 58.983301 +-3.252420 58.979780 +-3.254180 58.975673 +-3.258287 58.973033 +-3.261221 58.969806 +-3.264154 58.966579 +-3.267381 58.963646 +-3.271488 58.961006 +-3.279409 58.961006 +-3.287036 58.960419 +-3.291730 58.958659 +-3.293196 58.954552 +-3.290556 58.951618 +-3.290556 58.947511 +-3.296130 58.945751 +-3.303464 58.946338 +-3.308157 58.948391 +-3.313144 58.950445 +-3.316958 58.953085 +-3.319598 58.956019 +-3.323705 58.958659 +-3.328692 58.960419 +-3.334559 58.962179 +-3.340133 58.963939 +-3.345413 58.965993 +-3.347174 58.969513 +-3.349520 58.972740 +-3.351281 58.975967 +-3.352161 58.979780 +-3.353334 58.983594 +-3.354214 58.987114 +-3.357148 58.990341 +-3.361255 58.992688 +-3.363015 58.996208 +-3.363015 59.000315 +-3.363895 59.003835 +-3.365068 59.007356 +-3.368002 59.010583 +-3.368002 59.014690 +-3.366242 59.018503 +-3.364482 59.022903 +-3.364482 59.027010 +-3.363895 59.030531 +-3.359788 59.033171 +-3.355681 59.035518 +-3.353921 59.039331 +-3.354801 59.043438 +-3.355974 59.046959 +-3.350694 59.049305 +-3.345413 59.050479 +-3.341893 59.053706 +-3.343947 59.056053 +-3.346880 59.058986 +-3.349814 59.061920 +-3.351867 59.065147 +-3.353041 59.068960 +-3.353041 59.073067 +-3.353041 59.077174 +-3.353041 59.081281 +-3.353041 59.085681 +-3.351867 59.090082 +-3.351867 59.094189 +-3.350987 59.098589 +-3.350987 59.102696 +-3.350987 59.106803 +-3.350401 59.110616 +-3.344827 59.112083 +-3.337493 59.112377 +-3.331626 59.114137 +-3.325759 59.115603 +-3.322825 59.118537 +-3.321065 59.122644 +-3.321065 59.126751 +-3.317545 59.129684 +-3.311384 59.130858 +-3.304637 59.132031 +-3.299063 59.133205 +-3.293196 59.134672 +-3.287623 59.136432 +-3.282636 59.138192 +-3.277649 59.140245 +-3.272075 59.142005 +-3.265034 59.142592 +-3.257407 59.142885 +-3.251247 59.143765 +-3.245380 59.145232 +-3.238926 59.146406 +-3.232472 59.147579 +-3.225725 59.148753 +-3.218978 59.148753 +-3.210470 59.148753 +-3.202550 59.148753 +-3.195509 59.147872 +-3.190522 59.145526 +-3.185829 59.143472 +-3.179962 59.141712 +-3.172921 59.140245 +-3.168227 59.138192 +-3.163240 59.136138 +-3.159427 59.133498 +-3.153560 59.132031 +-3.146519 59.130565 +-3.138599 59.129684 +-3.133905 59.127631 +-3.130091 59.124991 +-3.125104 59.122937 +-3.120117 59.120884 +-3.114250 59.119124 +-3.108383 59.117364 +-3.100169 59.116484 +-3.094595 59.117950 +-3.089608 59.120004 +-3.084035 59.121471 +-3.076994 59.122057 +-3.073181 59.119417 +-3.073181 59.115310 +-3.071127 59.112083 +-3.065260 59.110323 +-3.059393 59.108563 +-3.055579 59.106216 +-3.052646 59.102989 +-3.053233 59.099469 +-3.057633 59.096829 +-3.063793 59.096242 +-3.067900 59.094482 +-3.062913 59.092135 +-3.057926 59.090082 +-3.053819 59.087441 +-3.052352 59.084215 +-3.047365 59.082161 +-3.043845 59.080988 +-3.036218 59.080108 +-3.028884 59.080694 +-3.020964 59.080694 +-3.015096 59.078934 +-3.010696 59.077174 +-3.005709 59.075414 +-3.001895 59.072774 +-2.998082 59.070134 +-2.994855 59.067200 +-3.002482 59.066613 +-3.005416 59.064853 +-3.001602 59.061920 +-2.998962 59.059279 +-2.995735 59.056053 +-2.997202 59.053119 +-3.003949 59.052239 +-3.010403 59.051066 +-3.016857 59.049892 +-3.020377 59.046959 +-3.019203 59.043438 +-3.023310 59.040798 +-3.030644 59.040211 +-3.036511 59.041972 +-3.040325 59.044612 +-3.045312 59.046665 +-3.051179 59.048425 +-3.058220 59.048132 +-3.063207 59.045785 +-3.065847 59.042558 +-3.064967 59.038745 +-3.064967 59.034344 +-3.067607 59.031117 +-3.069367 59.027010 +-3.073474 59.024370 +-3.080514 59.023784 +-3.087262 59.023197 +-3.091075 59.020557 +-3.094302 59.017623 +-3.099582 59.015570 +-3.103689 59.012636 +-3.107796 59.010289 +-3.110143 59.007062 +-3.114250 59.004422 +-3.120704 59.003249 +-3.128038 59.002662 +-3.133905 59.001489 +-3.130091 58.998848 +-3.125984 58.996502 +-3.118064 58.995328 +-3.110143 58.994448 +-3.102223 58.994448 +-3.094302 58.993568 +-3.089608 58.991515 +-3.083741 58.989754 +-3.078754 58.987408 +-3.073181 58.985941 +-3.065260 58.985061 +-3.057339 58.985061 +-3.051472 58.986528 +-3.046779 58.988288 +-3.043258 58.991515 +-3.042085 58.996208 +-3.041498 59.000609 +-3.040325 59.005009 +-3.036805 59.007942 +-3.031524 59.009409 +-3.025364 59.011169 +-3.018323 59.011756 +-3.010989 59.012343 +-3.002189 59.011756 +-2.998375 59.009116 +-2.994562 59.006769 +-2.990455 59.003835 +-2.987521 59.001195 +-2.983708 58.998555 +-2.979014 58.996502 +-2.971973 58.995035 +-2.964053 58.994155 +-2.955252 58.993568 +-2.949678 58.995328 +-2.947038 58.998555 +-2.946158 59.002955 +-2.944985 59.007649 +-2.942638 59.011463 +-2.938531 59.008822 +-2.934424 59.006182 +-2.928557 59.005302 +-2.922690 59.007062 +-2.916529 59.007649 +-2.911249 59.006769 +-2.910369 59.002662 +-2.909489 58.999142 +-2.909782 58.995035 +-2.908609 58.991515 +-2.907729 58.987408 +-2.902742 58.985647 +-2.895701 58.986234 +-2.890127 58.987408 +-2.885140 58.989461 +-2.879860 58.991515 +-2.876927 58.989461 +-2.877807 58.985941 +-2.881914 58.983301 +-2.884554 58.979780 +-2.886020 58.976553 +-2.883967 58.974793 +-2.876046 58.973913 +-2.871059 58.971566 +-2.865192 58.970100 +-2.858152 58.969513 +-2.854925 58.972447 +-2.852285 58.975967 +-2.850525 58.980074 +-2.847884 58.983594 +-2.843777 58.982714 +-2.839671 58.980367 +-2.833803 58.978607 +-2.827643 58.978607 +-2.822656 58.980660 +-2.817669 58.982714 +-2.812975 58.984767 +-2.807108 58.986234 +-2.802121 58.987994 +-2.796547 58.989754 +-2.790094 58.990635 +-2.782173 58.989754 +-2.778653 58.987114 +-2.778653 58.983007 +-2.778653 58.978900 +-2.779533 58.974500 +-2.780706 58.970100 +-2.783933 58.966873 +-2.791560 58.967753 +-2.799481 58.968633 +-2.805348 58.967166 +-2.811802 58.965993 +-2.816789 58.964233 +-2.822363 58.962766 +-2.828816 58.961592 +-2.834390 58.960419 +-2.838497 58.957779 +-2.839377 58.954259 +-2.835564 58.951618 +-2.830870 58.949565 +-2.827643 58.946631 +-2.823829 58.943991 +-2.821189 58.941058 +-2.814149 58.939591 +-2.808575 58.941058 +-2.803588 58.943404 +-2.798894 58.945165 +-2.794787 58.947805 +-2.789507 58.949858 +-2.783933 58.951032 +-2.776893 58.951618 +-2.769559 58.952205 +-2.761345 58.952205 +-2.755771 58.953672 +-2.751664 58.956019 +-2.749024 58.959832 +-2.746677 58.963353 +-2.742570 58.965699 +-2.734356 58.965699 +-2.727609 58.964526 +-2.718808 58.963939 +-2.712355 58.964819 +-2.704434 58.964819 +-2.698567 58.963059 +-2.692407 58.961299 +-2.687713 58.959246 +-2.687713 58.955432 +nan nan +-2.864606 58.846304 +-2.868713 58.844837 +-2.873700 58.842784 +-2.879860 58.841610 +-2.888661 58.842197 +-2.897461 58.842784 +-2.905382 58.843664 +-2.913889 58.844251 +-2.920343 58.843371 +-2.926503 58.843077 +-2.933544 58.843664 +-2.940878 58.843077 +-2.948505 58.843957 +-2.953199 58.846011 +-2.953199 58.850411 +-2.948505 58.852171 +-2.943518 58.854225 +-2.937944 58.855691 +-2.930024 58.855691 +-2.921223 58.855398 +-2.913302 58.855398 +-2.910662 58.858625 +-2.910662 58.862732 +-2.907142 58.865959 +-2.902155 58.867719 +-2.896581 58.869479 +-2.891008 58.870946 +-2.884260 58.870653 +-2.881914 58.867132 +-2.884847 58.863612 +-2.887194 58.860092 +-2.888954 58.856865 +-2.888954 58.852758 +-2.883087 58.850998 +-2.875166 58.850998 +-2.869299 58.852465 +-2.861672 58.852465 +-2.861672 58.848358 +-2.864606 58.846304 +nan nan +-2.888074 58.816382 +-2.894528 58.816382 +-2.900688 58.815209 +-2.904208 58.812568 +-2.906555 58.808755 +-2.908315 58.804648 +-2.911836 58.801421 +-2.916236 58.798781 +-2.917996 58.794674 +-2.916823 58.791154 +-2.914183 58.787927 +-2.911249 58.785286 +-2.910369 58.781473 +-2.914476 58.778833 +-2.919170 58.777073 +-2.924157 58.775019 +-2.926503 58.771499 +-2.926503 58.768272 +-2.924450 58.765045 +-2.920636 58.762405 +-2.915943 58.760351 +-2.910956 58.758004 +-2.908902 58.754778 +-2.908902 58.750671 +-2.909195 58.746564 +-2.910956 58.742457 +-2.911836 58.738056 +-2.913889 58.733949 +-2.918289 58.731896 +-2.925917 58.731309 +-2.932664 58.731016 +-2.939411 58.730136 +-2.947918 58.730429 +-2.952905 58.732483 +-2.957892 58.734829 +-2.961706 58.737176 +-2.965520 58.739817 +-2.970507 58.741870 +-2.973147 58.744804 +-2.976080 58.747737 +-2.979894 58.750377 +-2.982827 58.753311 +-2.984881 58.756538 +-2.985761 58.760351 +-2.981654 58.762698 +-2.976080 58.764165 +-2.972853 58.767098 +-2.974614 58.770619 +-2.975494 58.774432 +-2.976667 58.777953 +-2.977547 58.782060 +-2.979307 58.785286 +-2.986348 58.786460 +-2.993975 58.787633 +-2.996908 58.790273 +-2.997789 58.794087 +-3.003656 58.795847 +-3.010403 58.797607 +-3.015096 58.799661 +-3.017150 58.803181 +-3.013923 58.806115 +-3.007469 58.806115 +-3.002776 58.803768 +-2.994855 58.803181 +-2.986934 58.803181 +-2.980481 58.804061 +-2.975494 58.806115 +-2.970800 58.808168 +-2.967573 58.811102 +-2.969333 58.814329 +-2.973147 58.816969 +-2.981947 58.817555 +-2.989281 58.816969 +-2.994268 58.819022 +-2.998962 58.821076 +-3.006883 58.821076 +-3.012456 58.819609 +-3.018323 58.818435 +-3.024777 58.817262 +-3.031231 58.816382 +-3.036805 58.818142 +-3.033578 58.820782 +-3.028884 58.823129 +-3.023604 58.824889 +-3.019203 58.826943 +-3.014216 58.829290 +-3.010109 58.831636 +-3.004536 58.833103 +-2.997202 58.832516 +-2.991335 58.830756 +-2.982827 58.830170 +-2.978720 58.832810 +-2.974614 58.835157 +-2.967280 58.835743 +-2.959066 58.835743 +-2.953199 58.834277 +-2.946745 58.832810 +-2.940878 58.834570 +-2.935304 58.835743 +-2.928850 58.836917 +-2.922396 58.837797 +-2.916236 58.838970 +-2.908022 58.838970 +-2.899221 58.838384 +-2.894234 58.836917 +-2.890421 58.834570 +-2.886314 58.831930 +-2.883674 58.829290 +-2.880447 58.826063 +-2.877807 58.824303 +-2.876633 58.820196 +-2.880740 58.817849 +-2.888074 58.817555 +-2.888074 58.816382 +nan nan +-3.043552 58.742163 +-3.046485 58.738643 +-3.050299 58.736003 +-3.055286 58.734243 +-3.060860 58.732483 +-3.068194 58.731896 +-3.069954 58.735416 +-3.067607 58.738056 +-3.062913 58.740110 +-3.058806 58.742457 +-3.054699 58.745097 +-3.050592 58.747444 +-3.043258 58.748030 +-3.041498 58.744804 +-3.043552 58.742163 +nan nan +-3.104863 58.682026 +-3.105450 58.678212 +-3.107210 58.674105 +-3.110143 58.670585 +-3.113957 58.667945 +-3.120411 58.667358 +-3.127451 58.666771 +-3.133025 58.665011 +-3.141239 58.665011 +-3.144759 58.667651 +-3.141532 58.670878 +-3.138012 58.673518 +-3.136252 58.677919 +-3.134198 58.681146 +-3.129211 58.683199 +-3.126278 58.687013 +-3.125691 58.691413 +-3.120117 58.692880 +-3.116010 58.690240 +-3.112197 58.687893 +-3.110143 58.684373 +-3.104863 58.682026 +nan nan +-3.155026 58.878573 +-3.150333 58.876520 +-3.146226 58.873879 +-3.145346 58.870359 +-3.150333 58.868306 +-3.158253 58.868306 +-3.165001 58.869479 +-3.169988 58.871533 +-3.173801 58.874173 +-3.175855 58.877400 +-3.172921 58.881213 +-3.166174 58.881507 +-3.161187 58.879453 +-3.155026 58.878573 +nan nan +-3.155026 58.850411 +-3.152973 58.846598 +-3.151213 58.843664 +-3.150333 58.839850 +-3.151800 58.835743 +-3.157373 58.834277 +-3.165587 58.834277 +-3.169401 58.836623 +-3.172628 58.839850 +-3.175268 58.842491 +-3.176441 58.846304 +-3.173801 58.849824 +-3.169694 58.852171 +-3.161774 58.852171 +-3.155026 58.850411 +nan nan +-3.077874 58.825476 +-3.078754 58.820782 +-3.078754 58.816675 +-3.077874 58.813155 +-3.082861 58.811102 +-3.089022 58.811982 +-3.095769 58.813155 +-3.101929 58.812275 +-3.107796 58.810515 +-3.112783 58.811982 +-3.121584 58.812568 +-3.128331 58.813742 +-3.135078 58.814915 +-3.140945 58.816675 +-3.143879 58.819609 +-3.144759 58.823423 +-3.146813 58.826649 +-3.144172 58.830170 +-3.140065 58.832810 +-3.136252 58.835157 +-3.132732 58.838384 +-3.128625 58.840730 +-3.124518 58.843371 +-3.116304 58.843371 +-3.109557 58.843957 +-3.103983 58.845424 +-3.096356 58.845717 +-3.090782 58.847184 +-3.084328 58.848358 +-3.077874 58.849531 +-3.072007 58.848651 +-3.071714 58.845424 +-3.075821 58.842784 +-3.081688 58.841024 +-3.087848 58.840144 +-3.094302 58.839264 +-3.101636 58.838970 +-3.106330 58.836623 +-3.108970 58.833397 +-3.103983 58.831050 +-3.096062 58.831050 +-3.089022 58.831636 +-3.081101 58.830463 +-3.078168 58.827823 +-3.077874 58.825476 +nan nan +-3.194043 58.850118 +-3.197270 58.848064 +-3.200496 58.845131 +-3.204017 58.841904 +-3.206363 58.838384 +-3.206363 58.835157 +-3.199030 58.834863 +-3.191109 58.834863 +-3.184362 58.833690 +-3.187002 58.829876 +-3.189349 58.826356 +-3.184362 58.824303 +-3.175855 58.824009 +-3.169694 58.823129 +-3.169694 58.819609 +-3.172921 58.816675 +-3.177908 58.814622 +-3.183188 58.813448 +-3.190522 58.812862 +-3.195509 58.810222 +-3.199616 58.807875 +-3.206070 58.806701 +-3.212524 58.805528 +-3.221031 58.806115 +-3.229245 58.806115 +-3.235112 58.804648 +-3.238926 58.802301 +-3.242153 58.799074 +-3.245673 58.796141 +-3.248020 58.792620 +-3.248020 58.788220 +-3.240979 58.787340 +-3.235699 58.788513 +-3.228658 58.789100 +-3.221911 58.790273 +-3.217218 58.792327 +-3.213111 58.794674 +-3.209004 58.797314 +-3.203430 58.798487 +-3.195216 58.798487 +-3.188469 58.799074 +-3.183188 58.801128 +-3.177028 58.802301 +-3.170281 58.803474 +-3.163240 58.803474 +-3.156200 58.804061 +-3.149746 58.805235 +-3.142119 58.805821 +-3.136252 58.804061 +-3.134785 58.800834 +-3.137132 58.797314 +-3.139772 58.793500 +-3.137719 58.790273 +-3.136839 58.786753 +-3.141532 58.784700 +-3.147986 58.783526 +-3.154440 58.782646 +-3.160307 58.781179 +-3.168227 58.781179 +-3.175268 58.780593 +-3.180842 58.779126 +-3.188762 58.779126 +-3.194629 58.780886 +-3.201670 58.782353 +-3.210470 58.782646 +-3.216044 58.781179 +-3.220738 58.779126 +-3.225725 58.777366 +-3.231299 58.775606 +-3.237166 58.776486 +-3.245086 58.777366 +-3.253007 58.777953 +-3.261807 58.778539 +-3.269141 58.777953 +-3.275302 58.777366 +-3.281756 58.776192 +-3.288796 58.775606 +-3.295837 58.776192 +-3.300824 58.777953 +-3.303757 58.781179 +-3.305517 58.784406 +-3.307571 58.787633 +-3.310504 58.790567 +-3.314318 58.792914 +-3.317545 58.796141 +-3.319305 58.799367 +-3.320185 58.803181 +-3.323412 58.806115 +-3.327226 58.808755 +-3.329866 58.811395 +-3.329866 58.815502 +-3.331919 58.819022 +-3.335146 58.821956 +-3.338960 58.824303 +-3.343947 58.826356 +-3.349814 58.828116 +-3.354507 58.830170 +-3.357441 58.833397 +-3.360668 58.835157 +-3.363601 58.838090 +-3.366535 58.841024 +-3.369469 58.843957 +-3.372109 58.846891 +-3.375336 58.850118 +-3.377976 58.852758 +-3.377976 58.856865 +-3.375922 58.860385 +-3.374749 58.865079 +-3.377682 58.867719 +-3.384430 58.869186 +-3.390883 58.868012 +-3.396457 58.866546 +-3.403204 58.868012 +-3.410245 58.869186 +-3.417579 58.868599 +-3.426379 58.869186 +-3.431073 58.871533 +-3.433126 58.874760 +-3.433126 58.878866 +-3.430486 58.882093 +-3.427259 58.885320 +-3.424032 58.888254 +-3.421392 58.892067 +-3.419632 58.895881 +-3.418752 58.900575 +-3.418165 58.904095 +-3.415525 58.907615 +-3.412298 58.910549 +-3.407311 58.912896 +-3.402911 58.915242 +-3.397924 58.917296 +-3.392057 58.918469 +-3.385603 58.919056 +-3.377976 58.919643 +-3.372402 58.921403 +-3.366828 58.922870 +-3.361255 58.924336 +-3.355974 58.925803 +-3.349227 58.926977 +-3.343947 58.927563 +-3.335439 58.927563 +-3.330746 58.925216 +-3.329866 58.921696 +-3.325759 58.919056 +-3.318132 58.918469 +-3.314025 58.915829 +-3.315198 58.911135 +-3.311384 58.908495 +-3.305517 58.907029 +-3.296717 58.906442 +-3.290850 58.904682 +-3.285863 58.902922 +-3.279995 58.900868 +-3.274128 58.899108 +-3.269141 58.897054 +-3.264448 58.895001 +-3.260634 58.892361 +-3.254767 58.890894 +-3.247726 58.889427 +-3.240099 58.888547 +-3.233059 58.887080 +-3.228365 58.885027 +-3.225138 58.882093 +-3.222498 58.879160 +-3.218684 58.876813 +-3.214577 58.874173 +-3.216924 58.871533 +-3.214871 58.868306 +-3.211937 58.866252 +-3.210764 58.862439 +-3.209004 58.859212 +-3.204897 58.856572 +-3.198443 58.855398 +-3.195216 58.852465 +-3.194043 58.850118 +nan nan +-3.266501 58.927857 +-3.268848 58.924043 +-3.274422 58.922870 +-3.281756 58.922283 +-3.289383 58.923163 +-3.296423 58.924336 +-3.302290 58.926097 +-3.307277 58.928150 +-3.309038 58.931377 +-3.306397 58.934897 +-3.300824 58.936364 +-3.295837 58.935191 +-3.290850 58.933430 +-3.282929 58.932257 +-3.274128 58.931964 +-3.269435 58.929617 +-3.266501 58.927857 +nan nan +-2.964933 59.081281 +-2.964053 59.078641 +-2.963759 59.075414 +-2.969333 59.073947 +-2.975200 59.075414 +-2.982241 59.076881 +-2.990161 59.077761 +-2.996028 59.079814 +-2.999842 59.082161 +-2.995735 59.084801 +-2.989281 59.085681 +-2.981947 59.085975 +-2.974614 59.086561 +-2.966693 59.086561 +-2.964639 59.083334 +-2.964933 59.081281 +nan nan +-2.961413 59.169874 +-2.967280 59.168407 +-2.972853 59.166940 +-2.979014 59.165180 +-2.981947 59.162247 +-2.981947 59.158433 +-2.979894 59.154913 +-2.978427 59.151686 +-2.975200 59.148753 +-2.972560 59.145819 +-2.970507 59.142592 +-2.969333 59.138485 +-2.969333 59.134378 +-2.973733 59.132031 +-2.978720 59.129978 +-2.983414 59.127924 +-2.988988 59.126458 +-2.994855 59.124991 +-3.000429 59.123524 +-3.007763 59.122937 +-3.015096 59.122644 +-3.023897 59.122937 +-3.032698 59.123524 +-3.040032 59.122937 +-3.047952 59.122937 +-3.053819 59.124697 +-3.058806 59.127044 +-3.063500 59.129098 +-3.069367 59.130858 +-3.075527 59.132618 +-3.080221 59.134672 +-3.085208 59.136725 +-3.089022 59.139072 +-3.091075 59.142592 +-3.094302 59.145526 +-3.097822 59.148166 +-3.103983 59.149633 +-3.110143 59.151393 +-3.113957 59.154033 +-3.114837 59.157847 +-3.117770 59.160487 +-3.121584 59.163127 +-3.122464 59.166940 +-3.122464 59.171047 +-3.119237 59.174274 +-3.115130 59.176621 +-3.110143 59.178675 +-3.105156 59.180435 +-3.101929 59.183662 +-3.097822 59.186009 +-3.094302 59.189235 +-3.089902 59.191582 +-3.086968 59.194809 +-3.083741 59.197743 +-3.079928 59.200676 +-3.074647 59.201263 +-3.066727 59.200383 +-3.058806 59.199503 +-3.053819 59.197156 +-3.052646 59.194516 +-3.051766 59.190702 +-3.051179 59.186889 +-3.049712 59.184248 +-3.047072 59.181315 +-3.042085 59.179261 +-3.035045 59.177795 +-3.026244 59.177208 +-3.019497 59.178381 +-3.013043 59.179555 +-3.007469 59.180728 +-3.001602 59.182195 +-2.996908 59.184542 +-2.991041 59.185715 +-2.986054 59.187769 +-2.979601 59.188942 +-2.973733 59.188062 +-2.970800 59.185422 +-2.965813 59.183075 +-2.959946 59.181315 +-2.956132 59.178968 +-2.950852 59.177501 +-2.952025 59.173101 +-2.956719 59.171047 +-2.961413 59.169874 +nan nan +-2.909782 59.153153 +-2.911249 59.149926 +-2.914183 59.146406 +-2.917116 59.143472 +-2.920050 59.139952 +-2.922396 59.136432 +-2.924450 59.132618 +-2.925037 59.128511 +-2.928264 59.125871 +-2.935011 59.124697 +-2.937651 59.127924 +-2.939704 59.131151 +-2.939704 59.134965 +-2.941758 59.138192 +-2.943518 59.141712 +-2.946745 59.144646 +-2.947625 59.148459 +-2.949385 59.151686 +-2.949385 59.155793 +-2.948505 59.160193 +-2.944398 59.162834 +-2.939118 59.164887 +-2.932077 59.165474 +-2.925917 59.165474 +-2.917996 59.164300 +-2.913009 59.162540 +-2.910369 59.159313 +-2.907142 59.156673 +-2.909782 59.153153 +nan nan +-2.952612 59.118244 +-2.954079 59.115310 +-2.956719 59.111790 +-2.959946 59.108856 +-2.966693 59.107683 +-2.972853 59.108563 +-2.977547 59.110616 +-2.985174 59.111790 +-2.991628 59.110616 +-2.998375 59.109736 +-3.004829 59.108563 +-3.012750 59.108563 +-3.018910 59.109443 +-3.020964 59.112670 +-3.016563 59.115310 +-3.010403 59.116484 +-3.003069 59.116777 +-2.996322 59.117657 +-2.990748 59.119124 +-2.984881 59.120884 +-2.979307 59.122351 +-2.973733 59.123817 +-2.966986 59.124697 +-2.958479 59.124111 +-2.953199 59.122351 +-2.952612 59.118244 +nan nan +-2.952612 59.345593 +-2.958479 59.344127 +-2.963466 59.342366 +-2.967573 59.339726 +-2.965226 59.336499 +-2.962879 59.333272 +-2.960533 59.330046 +-2.960533 59.325939 +-2.965520 59.323885 +-2.972267 59.323005 +-2.979307 59.322418 +-2.985761 59.321245 +-2.989868 59.318898 +-2.989868 59.315671 +-2.981947 59.314791 +-2.976960 59.312738 +-2.972267 59.310684 +-2.964346 59.309804 +-2.958479 59.310978 +-2.952612 59.310391 +-2.950558 59.306871 +-2.947625 59.304230 +-2.941464 59.303350 +-2.934131 59.303644 +-2.927090 59.302470 +-2.924450 59.299537 +-2.921516 59.296603 +-2.915063 59.296603 +-2.909489 59.298070 +-2.903622 59.299830 +-2.897168 59.299830 +-2.893354 59.297190 +-2.890127 59.295136 +-2.891301 59.290443 +-2.888074 59.287803 +-2.881327 59.286336 +-2.876340 59.284282 +-2.875460 59.280469 +-2.874580 59.276655 +-2.874580 59.272841 +-2.872820 59.269321 +-2.865779 59.269028 +-2.857565 59.269028 +-2.849645 59.268148 +-2.843777 59.266094 +-2.838790 59.264041 +-2.835857 59.261107 +-2.833803 59.257880 +-2.832923 59.254067 +-2.832923 59.249960 +-2.837910 59.248200 +-2.845831 59.248786 +-2.853165 59.249373 +-2.858739 59.247906 +-2.862846 59.245266 +-2.866072 59.242333 +-2.868126 59.238226 +-2.869886 59.234119 +-2.872526 59.230892 +-2.877513 59.228545 +-2.883967 59.228545 +-2.887781 59.231185 +-2.887781 59.235292 +-2.885140 59.238812 +-2.881620 59.242039 +-2.879273 59.245266 +-2.875753 59.248200 +-2.873113 59.252013 +-2.873113 59.256120 +-2.876927 59.258467 +-2.882794 59.260227 +-2.888661 59.261987 +-2.894528 59.263747 +-2.899808 59.265801 +-2.904502 59.268148 +-2.909489 59.269908 +-2.914476 59.272255 +-2.918289 59.274602 +-2.922983 59.276948 +-2.927090 59.279589 +-2.932077 59.281642 +-2.936771 59.283696 +-2.944691 59.284869 +-2.951439 59.286336 +-2.958479 59.287803 +-2.965520 59.288096 +-2.971973 59.287216 +-2.976374 59.284869 +-2.974027 59.281349 +-2.967280 59.279882 +-2.961413 59.278415 +-2.958479 59.275188 +-2.961119 59.271668 +-2.969040 59.271668 +-2.976960 59.272841 +-2.983708 59.271668 +-2.986054 59.268441 +-2.988108 59.264041 +-2.992215 59.261694 +-2.999255 59.261107 +-3.003362 59.263747 +-3.005416 59.266974 +-3.007176 59.270201 +-3.010989 59.272841 +-3.018030 59.274308 +-3.025070 59.275482 +-3.029764 59.277828 +-3.030938 59.281349 +-3.028297 59.284869 +-3.028297 59.288976 +-3.030351 59.292203 +-3.030058 59.296310 +-3.029177 59.301003 +-3.030058 59.304817 +-3.031818 59.308044 +-3.035045 59.310978 +-3.040032 59.313031 +-3.047072 59.314498 +-3.054699 59.315378 +-3.061446 59.316551 +-3.066727 59.318898 +-3.070540 59.321245 +-3.073474 59.324178 +-3.075527 59.327405 +-3.076407 59.331512 +-3.071714 59.331512 +-3.068487 59.330339 +-3.062620 59.328579 +-3.056166 59.328872 +-3.048832 59.329165 +-3.042965 59.327405 +-3.037098 59.325939 +-3.031524 59.324178 +-3.025364 59.325645 +-3.021257 59.327992 +-3.015096 59.329165 +-3.007763 59.327699 +-3.002482 59.328285 +-2.997202 59.330339 +-2.993095 59.332686 +-2.989868 59.335913 +-2.988988 59.340606 +-2.988988 59.344713 +-2.988108 59.347940 +-2.985174 59.351754 +-2.980481 59.353514 +-2.974614 59.355274 +-2.968453 59.356154 +-2.960239 59.355274 +-2.954372 59.353514 +-2.950265 59.352047 +-2.945278 59.349700 +-2.947038 59.346767 +-2.952612 59.345593 +nan nan +-2.869886 59.367888 +-2.873406 59.365835 +-2.877513 59.363195 +-2.881620 59.360848 +-2.883674 59.356741 +-2.880153 59.353807 +-2.878687 59.350580 +-2.881033 59.347060 +-2.883087 59.342953 +-2.881033 59.339726 +-2.879860 59.335913 +-2.878100 59.332392 +-2.876046 59.329165 +-2.878687 59.325645 +-2.883087 59.323298 +-2.888661 59.321538 +-2.889834 59.321245 +-2.889834 59.321538 +-2.896875 59.321245 +-2.903915 59.322418 +-2.906555 59.325645 +-2.902448 59.327992 +-2.895995 59.328872 +-2.899808 59.329165 +-2.907435 59.330339 +-2.911249 59.332686 +-2.912129 59.336499 +-2.913302 59.340313 +-2.913302 59.344127 +-2.912129 59.348820 +-2.909782 59.352340 +-2.906849 59.355861 +-2.903622 59.358794 +-2.899515 59.361434 +-2.895408 59.363781 +-2.894528 59.367595 +-2.896288 59.370822 +-2.897461 59.374342 +-2.895701 59.377862 +-2.892181 59.380502 +-2.886607 59.382263 +-2.880447 59.381383 +-2.875753 59.379036 +-2.871646 59.376689 +-2.868713 59.373755 +-2.869886 59.367888 +nan nan +-2.816789 59.219158 +-2.815615 59.216517 +-2.815615 59.212117 +-2.814735 59.208597 +-2.814735 59.204490 +-2.817376 59.200970 +-2.822363 59.198916 +-2.819136 59.200970 +-2.823829 59.203023 +-2.828816 59.205370 +-2.828816 59.209477 +-2.827643 59.213877 +-2.827056 59.218278 +-2.825003 59.222384 +-2.820309 59.223558 +-2.816789 59.219158 +nan nan +-2.726729 59.216811 +-2.728489 59.212997 +-2.732009 59.210064 +-2.736996 59.208010 +-2.741690 59.205957 +-2.743744 59.201850 +-2.746090 59.198329 +-2.749317 59.195396 +-2.753718 59.192756 +-2.758998 59.190702 +-2.761052 59.187475 +-2.760171 59.183662 +-2.759291 59.180141 +-2.758705 59.176034 +-2.757531 59.172514 +-2.758705 59.168114 +-2.759585 59.163420 +-2.758998 59.159607 +-2.756651 59.157260 +-2.752838 59.154620 +-2.744624 59.154620 +-2.738757 59.154033 +-2.736703 59.150513 +-2.737290 59.146992 +-2.740810 59.143765 +-2.746677 59.142592 +-2.753131 59.141419 +-2.761052 59.141419 +-2.767505 59.140539 +-2.774252 59.139365 +-2.779826 59.138192 +-2.786280 59.137018 +-2.788040 59.140245 +-2.789214 59.143765 +-2.790094 59.147872 +-2.790094 59.151979 +-2.790974 59.155500 +-2.793907 59.158727 +-2.797721 59.161073 +-2.801534 59.163714 +-2.807402 59.165180 +-2.812389 59.167527 +-2.819429 59.168994 +-2.825296 59.170461 +-2.827936 59.173394 +-2.829110 59.177208 +-2.827936 59.180728 +-2.825589 59.184542 +-2.826763 59.188062 +-2.828523 59.191289 +-2.824416 59.193929 +-2.820309 59.191289 +-2.816789 59.188942 +-2.811508 59.186595 +-2.805641 59.185128 +-2.798308 59.185422 +-2.792734 59.186889 +-2.788627 59.189529 +-2.785400 59.192462 +-2.782760 59.195689 +-2.781293 59.200676 +-2.784520 59.203316 +-2.788333 59.205957 +-2.792147 59.208597 +-2.794201 59.211824 +-2.795374 59.215637 +-2.794201 59.220038 +-2.790974 59.222971 +-2.792734 59.226491 +-2.793614 59.230305 +-2.791560 59.234119 +-2.790974 59.237639 +-2.790974 59.242039 +-2.786867 59.244386 +-2.781586 59.246440 +-2.776013 59.248200 +-2.770146 59.249373 +-2.763105 59.249960 +-2.759291 59.248200 +-2.759585 59.244679 +-2.763105 59.241746 +-2.766625 59.238519 +-2.766625 59.234412 +-2.762812 59.232065 +-2.754891 59.231185 +-2.749024 59.232359 +-2.741690 59.232945 +-2.736996 59.230892 +-2.733770 59.227958 +-2.732303 59.224731 +-2.730249 59.221504 +-2.728196 59.217984 +-2.726729 59.216811 +nan nan +-2.722915 59.244386 +-2.718808 59.242919 +-2.716168 59.239692 +-2.712941 59.236759 +-2.713528 59.234119 +-2.721742 59.234119 +-2.729663 59.234999 +-2.735530 59.236759 +-2.740517 59.238812 +-2.744330 59.241453 +-2.744330 59.245559 +-2.740810 59.248493 +-2.734943 59.249960 +-2.728196 59.248493 +-2.722915 59.244386 +nan nan +-1.774207 55.671623 +-1.775967 55.667809 +-1.778608 55.664289 +-1.783008 55.662236 +-1.789462 55.661942 +-1.797089 55.662822 +-1.802076 55.664582 +-1.805596 55.667223 +-1.811757 55.668689 +-1.819677 55.669276 +-1.827891 55.669863 +-1.834932 55.670743 +-1.841386 55.672210 +-1.845786 55.674556 +-1.848426 55.677197 +-1.846373 55.681304 +-1.841972 55.683357 +-1.835812 55.684237 +-1.829358 55.684824 +-1.821437 55.684237 +-1.813810 55.683944 +-1.805890 55.683357 +-1.798556 55.683357 +-1.791515 55.682184 +-1.785355 55.680717 +-1.780955 55.678663 +-1.777141 55.676023 +-1.774207 55.671623 +nan nan +0.709918 52.977456 +0.715785 52.975696 +0.722532 52.974816 +0.729866 52.974229 +0.734853 52.972176 +0.736026 52.968949 +0.732506 52.966309 +0.726052 52.966015 +0.718718 52.966895 +0.711678 52.966895 +0.706984 52.968949 +0.699357 52.969829 +0.693196 52.969536 +0.687916 52.968069 +0.682342 52.968656 +0.678235 52.970709 +0.677062 52.974229 +0.679995 52.977163 +0.683222 52.978630 +0.689089 52.979510 +0.695837 52.979510 +0.701704 52.977750 +0.709918 52.977456 +nan nan +1.259077 51.880897 +1.256730 51.877084 +1.252917 51.875030 +1.248516 51.872977 +1.244409 51.871217 +1.239716 51.872977 +1.235902 51.875324 +1.235609 51.877084 +1.238542 51.880311 +1.242356 51.882364 +1.247343 51.883831 +1.253210 51.884124 +1.259077 51.883538 +1.259077 51.880897 +nan nan +0.997992 51.780277 +0.993005 51.778810 +0.987724 51.777930 +0.980977 51.778223 +0.975697 51.777637 +0.970123 51.776757 +0.965136 51.775290 +0.959856 51.774703 +0.954869 51.773236 +0.949882 51.772063 +0.944894 51.770596 +0.939614 51.769716 +0.934627 51.768249 +0.929933 51.767076 +0.924360 51.766489 +0.917906 51.766489 +0.912332 51.767956 +0.908225 51.770303 +0.907052 51.773530 +0.909985 51.776757 +0.914386 51.778517 +0.918493 51.780864 +0.923186 51.782917 +0.927293 51.784384 +0.932280 51.785851 +0.936387 51.787904 +0.941374 51.789078 +0.945481 51.790838 +0.951055 51.791718 +0.955749 51.793185 +0.961322 51.793771 +0.967483 51.794065 +0.971296 51.795238 +0.975990 51.795531 +0.982151 51.795825 +0.988898 51.795531 +0.996232 51.794651 +1.001805 51.793478 +1.006499 51.791424 +1.011193 51.789371 +1.014126 51.787024 +1.015593 51.783504 +1.011193 51.781744 +1.005912 51.780864 +1.000338 51.779984 +0.997992 51.780277 +nan nan +-1.073677 50.677851 +-1.077491 50.676678 +-1.082184 50.675211 +-1.086291 50.673451 +-1.091572 50.672571 +-1.096265 50.671104 +-1.101252 50.669637 +-1.106533 50.668757 +-1.111813 50.667877 +-1.116800 50.666997 +-1.121787 50.665530 +-1.127068 50.664357 +-1.131175 50.662597 +-1.135868 50.661130 +-1.139095 50.658490 +-1.143202 50.656730 +-1.146136 50.653796 +-1.149363 50.651449 +-1.153176 50.648809 +-1.155816 50.645875 +-1.158750 50.642942 +-1.161683 50.640008 +-1.164324 50.637075 +-1.166084 50.632968 +-1.166964 50.628274 +-1.166377 50.624754 +-1.165790 50.620940 +-1.165790 50.616833 +-1.165204 50.613020 +-1.164324 50.609500 +-1.165790 50.604806 +-1.168431 50.601872 +-1.172538 50.600112 +-1.177231 50.598352 +-1.181925 50.596592 +-1.186619 50.595419 +-1.191312 50.593658 +-1.196006 50.592192 +-1.200700 50.590725 +-1.205393 50.589551 +-1.210674 50.588671 +-1.215367 50.587205 +-1.220941 50.586031 +-1.225928 50.585151 +-1.231208 50.584564 +-1.236782 50.583391 +-1.241769 50.582511 +-1.247636 50.582218 +-1.252917 50.581044 +-1.258784 50.580751 +-1.264944 50.579871 +-1.270811 50.579577 +-1.276678 50.579284 +-1.282545 50.578991 +-1.289293 50.578991 +-1.295453 50.578991 +-1.301613 50.579871 +-1.307481 50.581338 +-1.311294 50.583684 +-1.315401 50.585738 +-1.318041 50.588378 +-1.321268 50.590725 +-1.325082 50.593658 +-1.328015 50.596005 +-1.331242 50.598645 +-1.335056 50.600699 +-1.338869 50.603046 +-1.343563 50.605393 +-1.349137 50.606566 +-1.352657 50.609500 +-1.356764 50.611553 +-1.359991 50.614193 +-1.363511 50.616247 +-1.367618 50.618594 +-1.373192 50.620060 +-1.377006 50.622114 +-1.381699 50.623874 +-1.387273 50.625341 +-1.391967 50.626807 +-1.397540 50.628568 +-1.402821 50.630034 +-1.407514 50.631794 +-1.413088 50.632968 +-1.418368 50.634435 +-1.424236 50.635901 +-1.429809 50.637368 +-1.434503 50.639128 +-1.438317 50.641475 +-1.442717 50.642942 +-1.446531 50.645289 +-1.451518 50.647049 +-1.456505 50.648809 +-1.460025 50.651156 +-1.463838 50.652916 +-1.466479 50.656143 +-1.469119 50.658490 +-1.472932 50.660837 +-1.478799 50.662303 +-1.484080 50.663477 +-1.488774 50.665530 +-1.493467 50.667290 +-1.499041 50.668757 +-1.506375 50.669050 +-1.512242 50.668757 +-1.518109 50.668464 +-1.523389 50.667584 +-1.528083 50.666117 +-1.533363 50.664944 +-1.538057 50.663477 +-1.543337 50.662890 +-1.548618 50.662010 +-1.553312 50.660250 +-1.558592 50.659370 +-1.563872 50.658490 +-1.569153 50.657610 +-1.570033 50.660543 +-1.565926 50.662597 +-1.561525 50.664357 +-1.557712 50.666410 +-1.554485 50.668757 +-1.553605 50.672571 +-1.550965 50.675211 +-1.545978 50.676971 +-1.541284 50.678438 +-1.537177 50.680198 +-1.535710 50.684305 +-1.532483 50.686652 +-1.529256 50.689292 +-1.526030 50.692225 +-1.523389 50.695159 +-1.522509 50.699853 +-1.519869 50.703080 +-1.515175 50.704840 +-1.508428 50.703960 +-1.501681 50.703960 +-1.495814 50.704546 +-1.491120 50.705720 +-1.485840 50.707187 +-1.481146 50.708653 +-1.475866 50.709533 +-1.471172 50.710707 +-1.466772 50.712467 +-1.462078 50.713934 +-1.457091 50.715400 +-1.452398 50.716574 +-1.447704 50.718041 +-1.443890 50.720094 +-1.439783 50.721854 +-1.435676 50.723908 +-1.432156 50.726255 +-1.427462 50.727721 +-1.421595 50.728308 +-1.417488 50.726841 +-1.418955 50.723028 +-1.422475 50.720681 +-1.424236 50.716574 +-1.421889 50.713640 +-1.416315 50.713054 +-1.411328 50.714520 +-1.406634 50.715694 +-1.402234 50.717454 +-1.396660 50.718334 +-1.392260 50.719801 +-1.388153 50.721561 +-1.388153 50.725961 +-1.389913 50.728895 +-1.388740 50.731828 +-1.384046 50.733295 +-1.379646 50.733882 +-1.375539 50.735935 +-1.370845 50.737109 +-1.366738 50.739162 +-1.362925 50.741216 +-1.358524 50.742976 +-1.354417 50.745029 +-1.350310 50.747083 +-1.347083 50.749430 +-1.343563 50.752070 +-1.340923 50.755003 +-1.338283 50.758230 +-1.333296 50.759404 +-1.327722 50.760284 +-1.323322 50.761750 +-1.319801 50.764097 +-1.316281 50.766738 +-1.313054 50.769084 +-1.308947 50.771138 +-1.302200 50.770844 +-1.296920 50.772018 +-1.291346 50.771431 +-1.288119 50.768791 +-1.285186 50.766151 +-1.279025 50.766738 +-1.275212 50.768498 +-1.269931 50.767911 +-1.267291 50.764977 +-1.263184 50.762924 +-1.258490 50.761164 +-1.254677 50.758817 +-1.249690 50.757350 +-1.244996 50.755297 +-1.240596 50.753537 +-1.236782 50.751483 +-1.232088 50.749430 +-1.227101 50.747669 +-1.222408 50.745909 +-1.217714 50.744149 +-1.211260 50.742976 +-1.205980 50.741802 +-1.199819 50.740629 +-1.194246 50.739162 +-1.188672 50.737695 +-1.183098 50.736522 +-1.177525 50.735055 +-1.171071 50.733882 +-1.164030 50.733295 +-1.157576 50.733295 +-1.150829 50.733002 +-1.144375 50.733002 +-1.139095 50.733882 +-1.133815 50.734762 +-1.129121 50.736229 +-1.124427 50.737695 +-1.117974 50.737402 +-1.113867 50.735349 +-1.111226 50.732708 +-1.107119 50.730655 +-1.103893 50.728015 +-1.101252 50.725375 +-1.097145 50.723321 +-1.093919 50.720681 +-1.095972 50.716574 +-1.096559 50.711880 +-1.091865 50.710413 +-1.085998 50.709827 +-1.081598 50.708067 +-1.079251 50.705720 +-1.076024 50.703373 +-1.074557 50.700146 +-1.072210 50.696919 +-1.070744 50.693692 +-1.067810 50.691052 +-1.062236 50.689585 +-1.059596 50.687532 +-1.063703 50.684892 +-1.067517 50.683132 +-1.071917 50.681665 +-1.073677 50.677851 +nan nan +-3.243620 54.147354 +-3.243620 54.142953 +-3.245966 54.139433 +-3.248020 54.136206 +-3.248900 54.131512 +-3.247140 54.127992 +-3.248020 54.123592 +-3.251247 54.120658 +-3.251833 54.115965 +-3.249193 54.113031 +-3.246846 54.110098 +-3.245966 54.106284 +-3.245086 54.102470 +-3.243326 54.099243 +-3.240979 54.096310 +-3.238046 54.093376 +-3.236286 54.089856 +-3.233939 54.087216 +-3.230419 54.084869 +-3.225138 54.082816 +-3.218391 54.081935 +-3.214577 54.079589 +-3.214284 54.075775 +-3.216631 54.072841 +-3.217511 54.069908 +-3.211351 54.068735 +-3.209590 54.065214 +-3.208124 54.061987 +-3.204603 54.059347 +-3.200203 54.057294 +-3.194923 54.055534 +-3.187295 54.054947 +-3.179375 54.054654 +-3.173508 54.053480 +-3.170281 54.050840 +-3.174975 54.049080 +-3.181428 54.048493 +-3.189056 54.049080 +-3.196096 54.050253 +-3.202257 54.051427 +-3.209004 54.052600 +-3.214871 54.053480 +-3.219271 54.055827 +-3.223671 54.058174 +-3.226018 54.060814 +-3.229832 54.063454 +-3.232179 54.066388 +-3.235112 54.069028 +-3.237459 54.072255 +-3.239219 54.075482 +-3.241566 54.078415 +-3.244500 54.081349 +-3.245966 54.084869 +-3.248607 54.087803 +-3.250367 54.091029 +-3.253007 54.093963 +-3.255647 54.096897 +-3.257994 54.099830 +-3.259754 54.103057 +-3.261807 54.106284 +-3.262981 54.109804 +-3.262981 54.113911 +-3.264154 54.117725 +-3.264154 54.121832 +-3.265914 54.125352 +-3.267088 54.128872 +-3.267381 54.132686 +-3.267381 54.136793 +-3.266208 54.140900 +-3.262981 54.143833 +-3.260341 54.147060 +-3.255060 54.148234 +-3.248020 54.148234 +-3.243620 54.147354 +nan nan +-0.794697 60.837300 +-0.799097 60.838767 +-0.806138 60.840527 +-0.814645 60.840821 +-0.823739 60.841114 +-0.831366 60.840821 +-0.836647 60.838767 +-0.838113 60.835247 +-0.836060 60.831727 +-0.834300 60.828206 +-0.834887 60.824099 +-0.834300 60.820286 +-0.833713 60.816472 +-0.835473 60.812072 +-0.838700 60.808258 +-0.842514 60.805325 +-0.847207 60.802978 +-0.851901 60.800631 +-0.857475 60.798578 +-0.861875 60.796231 +-0.867742 60.794177 +-0.870676 60.790950 +-0.870969 60.786550 +-0.873316 60.783323 +-0.878596 60.781270 +-0.884170 60.779803 +-0.889157 60.779510 +-0.890917 60.782736 +-0.891504 60.786550 +-0.892091 60.790657 +-0.890331 60.795351 +-0.888277 60.798284 +-0.881823 60.799751 +-0.876250 60.801218 +-0.870382 60.802978 +-0.865102 60.804738 +-0.860995 60.807672 +-0.857768 60.811485 +-0.856008 60.815886 +-0.855715 60.819992 +-0.855421 60.824099 +-0.855715 60.827913 +-0.857768 60.831727 +-0.859528 60.834954 +-0.864222 60.837300 +-0.869502 60.839647 +-0.874196 60.841994 +-0.878303 60.844341 +-0.882997 60.842287 +-0.886224 60.838474 +-0.887690 60.833780 +-0.887104 60.830260 +-0.886517 60.826446 +-0.886810 60.822339 +-0.889451 60.817939 +-0.894731 60.816472 +-0.900305 60.814419 +-0.905878 60.812365 +-0.912332 60.811192 +-0.918786 60.810312 +-0.920839 60.807965 +-0.918199 60.805031 +-0.916439 60.801511 +-0.921719 60.799751 +-0.928173 60.798284 +-0.933747 60.796524 +-0.939027 60.794471 +-0.938441 60.790657 +-0.932280 60.788604 +-0.927293 60.786257 +-0.923480 60.783617 +-0.922600 60.780096 +-0.924360 60.775403 +-0.925826 60.770709 +-0.928467 60.766602 +-0.930520 60.762495 +-0.932867 60.758681 +-0.932280 60.754868 +-0.932574 60.750467 +-0.935801 60.746947 +-0.942841 60.746067 +-0.949882 60.745187 +-0.951935 60.742254 +-0.948121 60.739320 +-0.945188 60.736386 +-0.941374 60.733746 +-0.938734 60.730813 +-0.936681 60.727293 +-0.936387 60.723479 +-0.937854 60.718785 +-0.943134 60.717025 +-0.950468 60.717612 +-0.958095 60.719079 +-0.963963 60.721132 +-0.969243 60.719959 +-0.966309 60.717025 +-0.962496 60.714385 +-0.959856 60.711451 +-0.958095 60.707638 +-0.957215 60.703824 +-0.957802 60.699717 +-0.959856 60.695904 +-0.962496 60.691797 +-0.965429 60.687983 +-0.962789 60.685343 +-0.958682 60.682409 +-0.952522 60.680649 +-0.947828 60.678302 +-0.941668 60.676249 +-0.935507 60.674489 +-0.927000 60.674195 +-0.919079 60.674489 +-0.912332 60.675369 +-0.908519 60.677422 +-0.905585 60.680943 +-0.901771 60.683876 +-0.894438 60.684756 +-0.886810 60.685049 +-0.879183 60.684463 +-0.871849 60.682996 +-0.866862 60.680649 +-0.860995 60.678596 +-0.855715 60.676249 +-0.848968 60.675075 +-0.841634 60.673315 +-0.834887 60.673315 +-0.827846 60.674195 +-0.824619 60.677422 +-0.825499 60.681529 +-0.823152 60.685636 +-0.819632 60.688863 +-0.824913 60.691503 +-0.829020 60.693850 +-0.834887 60.695904 +-0.839580 60.697957 +-0.845741 60.700011 +-0.848674 60.702944 +-0.849554 60.707051 +-0.847794 60.711745 +-0.843981 60.714385 +-0.839580 60.717612 +-0.835767 60.720545 +-0.831953 60.723479 +-0.828139 60.726412 +-0.824032 60.729346 +-0.820219 60.732573 +-0.816405 60.735213 +-0.811712 60.737853 +-0.807311 60.740200 +-0.802324 60.742840 +-0.799391 60.746067 +-0.803204 60.749001 +-0.809071 60.750761 +-0.817579 60.751934 +-0.824619 60.753401 +-0.826673 60.756041 +-0.820512 60.757215 +-0.812885 60.757801 +-0.804964 60.758095 +-0.804671 60.761028 +-0.805258 60.765135 +-0.807018 60.768655 +-0.809658 60.771589 +-0.810245 60.775403 +-0.811125 60.779216 +-0.811418 60.783030 +-0.804964 60.782736 +-0.796164 60.782736 +-0.787363 60.782443 +-0.779736 60.782736 +-0.776216 60.784790 +-0.773869 60.788897 +-0.769175 60.791244 +-0.763601 60.793297 +-0.765068 60.795351 +-0.771229 60.797111 +-0.777096 60.799164 +-0.783256 60.800924 +-0.787950 60.803271 +-0.787950 60.806498 +-0.782376 60.808258 +-0.775336 60.809138 +-0.768295 60.810018 +-0.762135 60.811485 +-0.757148 60.813832 +-0.758028 60.817646 +-0.763015 60.819992 +-0.769175 60.822046 +-0.770935 60.825273 +-0.767708 60.828793 +-0.772695 60.831140 +-0.782083 60.832020 +-0.790297 60.833193 +-0.795284 60.835540 +-0.794697 60.837300 +nan nan +-0.974817 60.619045 +-0.969536 60.620218 +-0.963963 60.619631 +-0.959856 60.616991 +-0.956922 60.613764 +-0.959562 60.609951 +-0.964256 60.607604 +-0.968950 60.604964 +-0.975697 60.604084 +-0.985084 60.604964 +-0.993005 60.604670 +-0.997405 60.602324 +-1.002979 60.600270 +-1.007672 60.597923 +-1.011193 60.599097 +-1.007086 60.602030 +-1.001805 60.603790 +-0.996525 60.605844 +-0.991538 60.608191 +-0.987724 60.611418 +-0.987138 60.615524 +-0.984791 60.618165 +-0.976870 60.618458 +-0.974817 60.619045 +nan nan +-0.762721 60.587362 +-0.759495 60.590589 +-0.755681 60.593523 +-0.753041 60.597630 +-0.755094 60.601150 +-0.757734 60.604084 +-0.759495 60.607604 +-0.764482 60.609951 +-0.772695 60.611124 +-0.780616 60.610831 +-0.786776 60.609364 +-0.789123 60.605257 +-0.793524 60.602910 +-0.802031 60.604084 +-0.805845 60.606724 +-0.807605 60.610244 +-0.807311 60.614351 +-0.806725 60.618751 +-0.809365 60.621685 +-0.816699 60.623445 +-0.825793 60.624032 +-0.834300 60.624032 +-0.843101 60.624325 +-0.851608 60.624618 +-0.858648 60.624032 +-0.863342 60.621392 +-0.868036 60.618751 +-0.874196 60.617578 +-0.882703 60.617871 +-0.887984 60.619045 +-0.892091 60.621978 +-0.895904 60.624325 +-0.902065 60.626379 +-0.910279 60.626672 +-0.917613 60.625792 +-0.924360 60.624912 +-0.930520 60.623738 +-0.936974 60.622272 +-0.936094 60.619338 +-0.933454 60.616405 +-0.929347 60.613471 +-0.926413 60.610537 +-0.922600 60.607897 +-0.919959 60.604670 +-0.917026 60.601737 +-0.914386 60.598510 +-0.911452 60.595576 +-0.908519 60.592643 +-0.906172 60.589416 +-0.902945 60.586482 +-0.901478 60.582962 +-0.899718 60.579735 +-0.897078 60.576802 +-0.894144 60.573281 +-0.891504 60.570641 +-0.888277 60.567121 +-0.884463 60.564774 +-0.880650 60.561841 +-0.874196 60.561254 +-0.867449 60.561841 +-0.860408 60.562721 +-0.855128 60.564481 +-0.855421 60.568294 +-0.857182 60.571815 +-0.860995 60.574455 +-0.865102 60.577095 +-0.867742 60.580322 +-0.869502 60.583549 +-0.863929 60.585602 +-0.859822 60.587362 +-0.855421 60.587949 +-0.846034 60.587362 +-0.837820 60.586482 +-0.831660 60.584429 +-0.824619 60.582669 +-0.818752 60.580909 +-0.813472 60.578562 +-0.807605 60.576802 +-0.801444 60.574748 +-0.797631 60.572108 +-0.793524 60.569468 +-0.788830 60.567121 +-0.782963 60.567414 +-0.778269 60.570055 +-0.775336 60.573575 +-0.772695 60.577388 +-0.769469 60.581202 +-0.765655 60.584136 +-0.762721 60.587362 +nan nan +-0.740720 60.420150 +-0.741013 60.423964 +-0.745120 60.426604 +-0.753041 60.426311 +-0.759201 60.425137 +-0.764482 60.423084 +-0.769762 60.421031 +-0.774749 60.418977 +-0.778563 60.415750 +-0.780909 60.411643 +-0.779149 60.408416 +-0.771522 60.407830 +-0.763895 60.408123 +-0.758614 60.409883 +-0.753921 60.412230 +-0.747467 60.413697 +-0.743067 60.416043 +-0.738960 60.419270 +-0.740720 60.420150 +nan nan +-0.908519 60.372920 +-0.903238 60.374681 +-0.897078 60.376147 +-0.892971 60.379081 +-0.890917 60.383188 +-0.892384 60.386708 +-0.897078 60.386415 +-0.902651 60.384361 +-0.908225 60.382894 +-0.914972 60.382014 +-0.922306 60.381134 +-0.928760 60.380254 +-0.936094 60.379374 +-0.944308 60.379374 +-0.950468 60.381428 +-0.954282 60.379374 +-0.957215 60.375854 +-0.961029 60.372920 +-0.966603 60.370867 +-0.971003 60.368520 +-0.976577 60.366760 +-0.981857 60.364706 +-0.987138 60.362653 +-0.992711 60.360893 +-0.996525 60.357666 +-0.999752 60.354439 +-1.001805 60.350332 +-1.002979 60.346812 +-1.005619 60.342412 +-1.010313 60.340358 +-1.016473 60.338891 +-1.022633 60.337425 +-1.018820 60.334784 +-1.013539 60.332437 +-1.008846 60.330384 +-1.001805 60.328624 +-0.994765 60.327157 +-0.987138 60.326277 +-0.980390 60.327157 +-0.974817 60.329211 +-0.970416 60.331557 +-0.965429 60.334198 +-0.960736 60.336544 +-0.956335 60.338891 +-0.951642 60.341531 +-0.946948 60.343878 +-0.943134 60.346812 +-0.939907 60.350625 +-0.936974 60.353852 +-0.933160 60.357079 +-0.929053 60.360013 +-0.925240 60.362653 +-0.921426 60.365880 +-0.916732 60.368227 +-0.912332 60.370867 +-0.908519 60.372920 +nan nan +-1.006206 60.141757 +-1.003859 60.145864 +-1.000925 60.149091 +-1.004739 60.152025 +-1.011193 60.152905 +-1.017646 60.152318 +-1.022633 60.149678 +-1.023513 60.145864 +-1.025274 60.141464 +-1.027034 60.136770 +-1.022047 60.134423 +-1.015593 60.135890 +-1.011193 60.138237 +-1.006206 60.141757 +nan nan +-1.041115 60.133543 +-1.041701 60.137357 +-1.038475 60.141170 +-1.037301 60.145571 +-1.034954 60.149678 +-1.033194 60.154078 +-1.032901 60.158478 +-1.032607 60.162879 +-1.035248 60.165812 +-1.042582 60.166399 +-1.047862 60.164345 +-1.054902 60.163465 +-1.061063 60.164639 +-1.063116 60.168159 +-1.062530 60.172266 +-1.059303 60.175786 +-1.059889 60.179600 +-1.062823 60.182827 +-1.068983 60.184587 +-1.075144 60.183120 +-1.077197 60.179307 +-1.080131 60.176373 +-1.088051 60.177840 +-1.096265 60.179013 +-1.105653 60.179307 +-1.113867 60.179600 +-1.120907 60.179013 +-1.127361 60.177546 +-1.127361 60.173439 +-1.127068 60.169332 +-1.122961 60.166986 +-1.116800 60.164932 +-1.111226 60.163172 +-1.105946 60.160825 +-1.102132 60.158185 +-1.101546 60.154078 +-1.103893 60.150264 +-1.106239 60.146157 +-1.108293 60.142344 +-1.110053 60.137357 +-1.111813 60.132663 +-1.111813 60.128556 +-1.110053 60.125329 +-1.108293 60.121809 +-1.105946 60.118582 +-1.100959 60.116529 +-1.095972 60.114182 +-1.090985 60.111835 +-1.085118 60.110075 +-1.078957 60.108021 +-1.071624 60.106261 +-1.065757 60.104794 +-1.059009 60.103034 +-1.052849 60.104501 +-1.048155 60.106848 +-1.044928 60.110662 +-1.044635 60.114769 +-1.047569 60.117702 +-1.049915 60.120929 +-1.048742 60.125329 +-1.045515 60.128850 +-1.041701 60.132076 +-1.041115 60.133543 +nan nan +-1.190432 60.466207 +-1.188672 60.469141 +-1.188379 60.473248 +-1.188965 60.477355 +-1.190432 60.480875 +-1.194539 60.483222 +-1.198646 60.486155 +-1.200993 60.489089 +-1.204220 60.492316 +-1.210967 60.493489 +-1.218007 60.493489 +-1.224168 60.492316 +-1.228862 60.489969 +-1.231795 60.486449 +-1.235022 60.482635 +-1.237369 60.478821 +-1.240302 60.475301 +-1.244996 60.472661 +-1.247930 60.469141 +-1.250276 60.465327 +-1.254970 60.462687 +-1.262891 60.462393 +-1.263477 60.465327 +-1.262597 60.468847 +-1.259957 60.472954 +-1.258490 60.477648 +-1.261424 60.480875 +-1.268758 60.481462 +-1.274038 60.479408 +-1.278145 60.476474 +-1.281959 60.473248 +-1.286652 60.471194 +-1.290466 60.467967 +-1.294280 60.465034 +-1.291346 60.461807 +-1.287532 60.459167 +-1.281372 60.457406 +-1.275212 60.455646 +-1.269051 60.453593 +-1.263477 60.451539 +-1.257317 60.449779 +-1.249983 60.448312 +-1.244116 60.446259 +-1.240302 60.443619 +-1.236489 60.440979 +-1.237075 60.439218 +-1.242356 60.437165 +-1.249983 60.436872 +-1.257904 60.436578 +-1.266411 60.436872 +-1.274918 60.436872 +-1.282545 60.436578 +-1.290173 60.436285 +-1.297506 60.435698 +-1.303374 60.434231 +-1.308947 60.432178 +-1.314228 60.430418 +-1.319508 60.428364 +-1.323615 60.425137 +-1.327429 60.422497 +-1.329775 60.418390 +-1.327722 60.414577 +-1.323908 60.412230 +-1.320095 60.409590 +-1.323908 60.406656 +-1.328602 60.404309 +-1.333882 60.402256 +-1.340043 60.400789 +-1.347083 60.399909 +-1.353831 60.399029 +-1.362631 60.399029 +-1.369672 60.400789 +-1.367912 60.405189 +-1.362925 60.407243 +-1.356764 60.408710 +-1.350310 60.409883 +-1.348257 60.413403 +-1.349137 60.416924 +-1.350897 60.420444 +-1.350310 60.424844 +-1.347670 60.427191 +-1.342096 60.429244 +-1.338283 60.432178 +-1.334762 60.435405 +-1.331536 60.438632 +-1.330069 60.443325 +-1.329775 60.447432 +-1.328015 60.452126 +-1.322735 60.453886 +-1.316575 60.452126 +-1.312468 60.450659 +-1.311001 60.455060 +-1.311294 60.458873 +-1.313641 60.462100 +-1.313934 60.466207 +-1.312761 60.469727 +-1.309827 60.473248 +-1.305134 60.475888 +-1.301907 60.479115 +-1.299853 60.483222 +-1.297506 60.487622 +-1.296040 60.491142 +-1.303374 60.492609 +-1.308947 60.490556 +-1.313641 60.487915 +-1.317455 60.485275 +-1.320388 60.481755 +-1.324202 60.478528 +-1.331829 60.478235 +-1.336816 60.480581 +-1.335056 60.483515 +-1.329775 60.485568 +-1.326255 60.489089 +-1.328309 60.492902 +-1.327722 60.497009 +-1.324788 60.500236 +-1.319508 60.502290 +-1.315988 60.505810 +-1.315694 60.509917 +-1.317455 60.513731 +-1.320388 60.516664 +-1.326255 60.518424 +-1.332416 60.520184 +-1.335643 60.523411 +-1.328309 60.524291 +-1.322148 60.525465 +-1.316868 60.527518 +-1.319801 60.529865 +-1.328015 60.530745 +-1.336523 60.531918 +-1.339456 60.535145 +-1.337989 60.538666 +-1.331536 60.540132 +-1.323322 60.539839 +-1.315694 60.540132 +-1.310707 60.542479 +-1.307774 60.545999 +-1.304840 60.549813 +-1.301613 60.553333 +-1.299560 60.557147 +-1.299267 60.561254 +-1.299560 60.565361 +-1.301320 60.568588 +-1.304254 60.571521 +-1.305720 60.575335 +-1.308947 60.578268 +-1.311294 60.581495 +-1.312174 60.585016 +-1.306014 60.586482 +-1.298387 60.587069 +-1.294573 60.589709 +-1.291933 60.593816 +-1.291639 60.597923 +-1.292226 60.602030 +-1.290759 60.606430 +-1.287826 60.609951 +-1.287532 60.613471 +-1.289586 60.616698 +-1.294573 60.618751 +-1.296040 60.622565 +-1.295453 60.626672 +-1.294280 60.631072 +-1.295746 60.634593 +-1.301907 60.636646 +-1.306600 60.634299 +-1.309241 60.629899 +-1.309534 60.625792 +-1.317161 60.625499 +-1.322735 60.623738 +-1.326255 60.620512 +-1.329775 60.616991 +-1.330069 60.612884 +-1.327135 60.609951 +-1.323322 60.607311 +-1.319508 60.604377 +-1.315694 60.602030 +-1.311294 60.599097 +-1.312761 60.595576 +-1.318041 60.593523 +-1.326255 60.594696 +-1.332416 60.596750 +-1.337403 60.598803 +-1.341510 60.601737 +-1.349724 60.602910 +-1.357644 60.603790 +-1.366151 60.604964 +-1.372312 60.607017 +-1.380526 60.608191 +-1.389033 60.609071 +-1.398127 60.609657 +-1.404287 60.608191 +-1.410448 60.607017 +-1.416022 60.604964 +-1.415142 60.602324 +-1.409861 60.599977 +-1.413088 60.596456 +-1.416902 60.593230 +-1.420715 60.590589 +-1.421889 60.586776 +-1.420422 60.583255 +-1.416315 60.580615 +-1.413675 60.577388 +-1.416315 60.573868 +-1.421889 60.572108 +-1.426289 60.569761 +-1.432156 60.567708 +-1.437437 60.565948 +-1.442717 60.563894 +-1.448291 60.561841 +-1.456798 60.562134 +-1.458851 60.558027 +-1.459145 60.554800 +-1.457385 60.551280 +-1.461492 60.548346 +-1.466772 60.546293 +-1.471466 60.543946 +-1.476159 60.541306 +-1.479680 60.538666 +-1.473519 60.536612 +-1.465599 60.535439 +-1.458265 60.533972 +-1.453278 60.531625 +-1.450344 60.529865 +-1.447117 60.526638 +-1.444477 60.523705 +-1.441543 60.520478 +-1.437730 60.517837 +-1.433916 60.514904 +-1.428636 60.512850 +-1.422769 60.510797 +-1.415142 60.510210 +-1.408394 60.511090 +-1.402821 60.513144 +-1.395780 60.514024 +-1.388446 60.513437 +-1.386686 60.509917 +-1.388153 60.506397 +-1.392553 60.503756 +-1.398714 60.502583 +-1.405754 60.501703 +-1.413675 60.501410 +-1.421889 60.501410 +-1.430689 60.501703 +-1.438610 60.502876 +-1.445944 60.504050 +-1.452984 60.505810 +-1.459145 60.507863 +-1.465305 60.509624 +-1.470292 60.511970 +-1.474106 60.514317 +-1.479093 60.516957 +-1.483200 60.519304 +-1.488187 60.521651 +-1.492000 60.524585 +-1.496987 60.526638 +-1.501094 60.529572 +-1.501681 60.533092 +-1.503441 60.536612 +-1.504028 60.540426 +-1.503735 60.544826 +-1.504321 60.548346 +-1.506081 60.551867 +-1.511068 60.554213 +-1.518989 60.553920 +-1.525736 60.553040 +-1.531897 60.551573 +-1.539230 60.550693 +-1.543631 60.548346 +-1.545978 60.544239 +-1.547444 60.539546 +-1.546858 60.535732 +-1.547151 60.531332 +-1.547444 60.527225 +-1.548031 60.523118 +-1.549498 60.518718 +-1.551551 60.514317 +-1.554778 60.510797 +-1.558592 60.507863 +-1.563286 60.505517 +-1.571793 60.505517 +-1.578833 60.507277 +-1.586167 60.508743 +-1.592914 60.507863 +-1.594381 60.503463 +-1.594968 60.498769 +-1.597901 60.495543 +-1.602008 60.492609 +-1.604649 60.488795 +-1.607875 60.485275 +-1.609929 60.481462 +-1.611689 60.476768 +-1.609636 60.474128 +-1.601128 60.474128 +-1.594674 60.475594 +-1.588514 60.477061 +-1.579420 60.476181 +-1.572086 60.474714 +-1.565046 60.472954 +-1.558299 60.472954 +-1.553605 60.475594 +-1.551258 60.479701 +-1.551258 60.483808 +-1.545684 60.485862 +-1.539524 60.484688 +-1.536297 60.481755 +-1.532483 60.479115 +-1.526323 60.477355 +-1.518696 60.477355 +-1.513122 60.479408 +-1.507842 60.481462 +-1.501681 60.482635 +-1.494641 60.483515 +-1.487013 60.483808 +-1.482026 60.481755 +-1.482026 60.478235 +-1.487600 60.476474 +-1.493467 60.475008 +-1.498748 60.472954 +-1.502268 60.469727 +-1.500214 60.466207 +-1.498748 60.462687 +-1.494641 60.460047 +-1.490827 60.457406 +-1.485840 60.455060 +-1.478506 60.453593 +-1.472639 60.455060 +-1.469119 60.458580 +-1.466479 60.462100 +-1.464718 60.466794 +-1.464425 60.470901 +-1.459731 60.473248 +-1.455038 60.475888 +-1.452691 60.479995 +-1.448291 60.482342 +-1.443597 60.484688 +-1.439490 60.482928 +-1.441543 60.478821 +-1.444770 60.475594 +-1.447704 60.472074 +-1.446824 60.467967 +-1.446531 60.464447 +-1.445944 60.460633 +-1.444770 60.457406 +-1.443010 60.454180 +-1.441250 60.450953 +-1.437437 60.448019 +-1.432449 60.445966 +-1.429809 60.442739 +-1.430103 60.438632 +-1.432449 60.434525 +-1.434503 60.430418 +-1.435970 60.426604 +-1.433916 60.423377 +-1.430983 60.420150 +-1.424236 60.418684 +-1.415728 60.417510 +-1.408101 60.417804 +-1.400181 60.418390 +-1.391967 60.418097 +-1.383753 60.416924 +-1.384339 60.414283 +-1.389033 60.411643 +-1.394313 60.409590 +-1.396660 60.405776 +-1.397247 60.401376 +-1.395193 60.398149 +-1.396074 60.395215 +-1.398420 60.391402 +-1.398127 60.387588 +-1.394900 60.384361 +-1.389913 60.382308 +-1.382873 60.380548 +-1.375832 60.379081 +-1.367912 60.378201 +-1.366738 60.377614 +-1.365858 60.377614 +-1.364685 60.381134 +-1.361751 60.384361 +-1.357644 60.387588 +-1.351777 60.388762 +-1.344737 60.389642 +-1.341803 60.386708 +-1.341216 60.383188 +-1.341803 60.378494 +-1.346203 60.370574 +-1.343856 60.372334 +-1.341803 60.371747 +-1.341216 60.368813 +-1.333882 60.367347 +-1.325668 60.366173 +-1.317161 60.365880 +-1.307774 60.365293 +-1.299560 60.365000 +-1.289879 60.364120 +-1.281959 60.362946 +-1.276972 60.360893 +-1.271985 60.358546 +-1.268171 60.355906 +-1.263184 60.353559 +-1.259077 60.350919 +-1.259664 60.349159 +-1.267584 60.348865 +-1.274625 60.350332 +-1.280492 60.352679 +-1.287532 60.354146 +-1.294866 60.355612 +-1.304254 60.356493 +-1.313641 60.357079 +-1.320388 60.356493 +-1.325668 60.354439 +-1.326255 60.350332 +-1.325668 60.346519 +-1.322735 60.343292 +-1.319801 60.340358 +-1.318041 60.336838 +-1.319215 60.334198 +-1.326255 60.334784 +-1.330362 60.337131 +-1.334176 60.340065 +-1.340336 60.341825 +-1.345910 60.340065 +-1.347670 60.335958 +-1.351190 60.332144 +-1.353831 60.328917 +-1.357351 60.325397 +-1.359404 60.321290 +-1.360871 60.316596 +-1.357937 60.313663 +-1.354124 60.310729 +-1.350310 60.308382 +-1.342976 60.306622 +-1.337109 60.304862 +-1.339750 60.302222 +-1.344443 60.299582 +-1.348257 60.296648 +-1.352070 60.294008 +-1.355297 60.290194 +-1.357937 60.286674 +-1.361458 60.283447 +-1.362925 60.286674 +-1.364685 60.289901 +-1.367912 60.293128 +-1.369085 60.296648 +-1.371138 60.299875 +-1.372899 60.303395 +-1.374365 60.306916 +-1.377299 60.310143 +-1.382286 60.312196 +-1.388446 60.314250 +-1.396367 60.315423 +-1.405754 60.316010 +-1.411035 60.317183 +-1.412795 60.320703 +-1.419249 60.321583 +-1.426876 60.321290 +-1.433916 60.320410 +-1.440663 60.319823 +-1.445944 60.318650 +-1.444184 60.315423 +-1.444477 60.311023 +-1.442717 60.307502 +-1.440957 60.304275 +-1.441837 60.301342 +-1.448877 60.302809 +-1.455038 60.304862 +-1.460612 60.305156 +-1.460905 60.301049 +-1.458265 60.298115 +-1.455331 60.294888 +-1.452398 60.291955 +-1.450931 60.288434 +-1.448877 60.284914 +-1.447117 60.281687 +-1.453571 60.280220 +-1.459731 60.278754 +-1.465892 60.277580 +-1.467359 60.280807 +-1.468239 60.284621 +-1.467652 60.289021 +-1.467359 60.293128 +-1.467945 60.296942 +-1.468825 60.300755 +-1.469412 60.304569 +-1.471172 60.308089 +-1.472639 60.311316 +-1.474693 60.315130 +-1.479680 60.317183 +-1.486427 60.317183 +-1.491707 60.315423 +-1.496987 60.313369 +-1.503148 60.311903 +-1.509308 60.310436 +-1.516349 60.309849 +-1.523096 60.308676 +-1.531017 60.308382 +-1.530137 60.305449 +-1.525149 60.302809 +-1.520162 60.300462 +-1.522216 60.297528 +-1.529843 60.296942 +-1.535710 60.298995 +-1.541871 60.300755 +-1.550671 60.301049 +-1.558005 60.300462 +-1.556245 60.297235 +-1.553605 60.294301 +-1.550965 60.291075 +-1.550965 60.287848 +-1.557712 60.286968 +-1.565632 60.286674 +-1.571793 60.288728 +-1.573260 60.291955 +-1.575313 60.295181 +-1.577660 60.298408 +-1.581767 60.301049 +-1.585580 60.303982 +-1.589687 60.306329 +-1.596728 60.308089 +-1.605235 60.308089 +-1.612276 60.307209 +-1.619903 60.306916 +-1.628410 60.307209 +-1.635157 60.306036 +-1.642198 60.305156 +-1.648358 60.303982 +-1.655399 60.303102 +-1.661266 60.301635 +-1.666840 60.299582 +-1.671533 60.297235 +-1.676520 60.295181 +-1.681507 60.292835 +-1.686788 60.290781 +-1.691481 60.288434 +-1.692655 60.284034 +-1.692948 60.279634 +-1.690015 60.278167 +-1.682681 60.278754 +-1.678280 60.278754 +-1.676520 60.275527 +-1.676520 60.271420 +-1.678280 60.266726 +-1.679747 60.262032 +-1.680334 60.257632 +-1.679454 60.254112 +-1.678574 60.250298 +-1.677987 60.246485 +-1.676520 60.242964 +-1.674467 60.239444 +-1.671533 60.236511 +-1.667720 60.233870 +-1.664786 60.230937 +-1.660092 60.228590 +-1.655105 60.226243 +-1.647772 60.224776 +-1.639558 60.224483 +-1.631637 60.225070 +-1.629877 60.221256 +-1.631050 60.217736 +-1.631050 60.214509 +-1.626063 60.212162 +-1.619903 60.210402 +-1.612862 60.209815 +-1.604942 60.210109 +-1.598195 60.210989 +-1.592034 60.212162 +-1.588807 60.215976 +-1.583527 60.217736 +-1.576780 60.218616 +-1.570619 60.220083 +-1.563579 60.221256 +-1.557418 60.222430 +-1.553605 60.225656 +-1.550378 60.227417 +-1.547444 60.224483 +-1.544511 60.221256 +-1.542751 60.218029 +-1.540991 60.214509 +-1.539524 60.210989 +-1.539817 60.206882 +-1.533657 60.207762 +-1.533950 60.206882 +-1.529843 60.208055 +-1.524563 60.210109 +-1.521043 60.211869 +-1.516349 60.214509 +-1.511068 60.216269 +-1.509015 60.220669 +-1.507255 60.225070 +-1.505788 60.229763 +-1.505201 60.233870 +-1.504908 60.237977 +-1.501094 60.241204 +-1.495814 60.242964 +-1.492880 60.240911 +-1.491707 60.237977 +-1.488774 60.235044 +-1.486133 60.231817 +-1.484373 60.228297 +-1.484960 60.224190 +-1.486427 60.219789 +-1.485547 60.215976 +-1.477919 60.215976 +-1.469412 60.215976 +-1.470292 60.213042 +-1.475573 60.210989 +-1.479386 60.208349 +-1.478799 60.204535 +-1.484667 60.203948 +-1.493174 60.205122 +-1.500508 60.204828 +-1.508428 60.204535 +-1.514589 60.203068 +-1.519869 60.201015 +-1.523389 60.198081 +-1.526616 60.194561 +-1.527790 60.190747 +-1.527203 60.186934 +-1.524269 60.184000 +-1.520162 60.181360 +-1.513122 60.179600 +-1.504028 60.179307 +-1.498748 60.176666 +-1.496107 60.173733 +-1.494347 60.170213 +-1.490534 60.167866 +-1.484667 60.165812 +-1.478506 60.163759 +-1.472639 60.161999 +-1.465305 60.160532 +-1.459438 60.158478 +-1.456798 60.155545 +-1.453571 60.152611 +-1.448584 60.151144 +-1.444477 60.154078 +-1.441543 60.157598 +-1.439490 60.161705 +-1.438903 60.165812 +-1.439783 60.169626 +-1.440663 60.173733 +-1.436263 60.176666 +-1.430689 60.178133 +-1.428343 60.181947 +-1.425116 60.185467 +-1.419249 60.183707 +-1.418368 60.179600 +-1.418662 60.175493 +-1.416022 60.172559 +-1.413088 60.169332 +-1.408394 60.170506 +-1.403701 60.173146 +-1.399594 60.175786 +-1.398127 60.180480 +-1.398127 60.184587 +-1.395487 60.188987 +-1.394313 60.193388 +-1.394607 60.197201 +-1.395487 60.201015 +-1.394900 60.205415 +-1.394020 60.208935 +-1.387860 60.210402 +-1.382873 60.208055 +-1.379939 60.205122 +-1.376125 60.202188 +-1.372018 60.199841 +-1.367912 60.196908 +-1.363218 60.194854 +-1.358231 60.192507 +-1.357351 60.196028 +-1.355884 60.200721 +-1.354124 60.205415 +-1.352950 60.208935 +-1.355884 60.211869 +-1.358524 60.215096 +-1.361458 60.218323 +-1.363218 60.221550 +-1.362925 60.225950 +-1.363511 60.229763 +-1.369378 60.231524 +-1.375539 60.233284 +-1.381699 60.235337 +-1.387566 60.237097 +-1.391380 60.240031 +-1.393433 60.243258 +-1.396074 60.246485 +-1.403114 60.247951 +-1.410155 60.249418 +-1.414262 60.252058 +-1.410155 60.254992 +-1.403407 60.255872 +-1.397247 60.254112 +-1.392260 60.251765 +-1.387566 60.249418 +-1.380232 60.247951 +-1.371138 60.247365 +-1.362631 60.247071 +-1.355591 60.245605 +-1.350310 60.243258 +-1.347670 60.240324 +-1.347083 60.236511 +-1.345323 60.232697 +-1.342390 60.229763 +-1.341803 60.226243 +-1.340043 60.222430 +-1.338283 60.219203 +-1.336523 60.215976 +-1.335936 60.211869 +-1.334176 60.208349 +-1.333589 60.204828 +-1.331536 60.201015 +-1.327722 60.201308 +-1.324202 60.204535 +-1.320975 60.207762 +-1.318921 60.211869 +-1.315694 60.215682 +-1.310414 60.217443 +-1.307481 60.220963 +-1.308067 60.224776 +-1.306600 60.229470 +-1.305134 60.233870 +-1.299853 60.235924 +-1.294280 60.237684 +-1.291346 60.241498 +-1.286652 60.243844 +-1.280492 60.245018 +-1.274038 60.244138 +-1.270225 60.241791 +-1.269344 60.237684 +-1.273451 60.234750 +-1.277265 60.231524 +-1.280199 60.228297 +-1.282839 60.224190 +-1.284892 60.220083 +-1.287826 60.216269 +-1.291053 60.213042 +-1.293400 60.208935 +-1.296333 60.205415 +-1.299560 60.201895 +-1.302493 60.198375 +-1.305427 60.194854 +-1.308654 60.191334 +-1.310707 60.187227 +-1.313054 60.183120 +-1.315401 60.179307 +-1.315694 60.174906 +-1.315108 60.171093 +-1.312174 60.168159 +-1.309534 60.164932 +-1.305134 60.163465 +-1.302200 60.166692 +-1.299560 60.170213 +-1.296040 60.174026 +-1.291346 60.176373 +-1.288706 60.179600 +-1.286359 60.184000 +-1.283425 60.187520 +-1.277852 60.189281 +-1.273745 60.187520 +-1.274038 60.183413 +-1.275505 60.178720 +-1.275798 60.174319 +-1.277558 60.169919 +-1.279612 60.165812 +-1.282839 60.162292 +-1.285186 60.158478 +-1.286652 60.153491 +-1.288119 60.149091 +-1.289586 60.144397 +-1.288999 60.140584 +-1.287239 60.137357 +-1.279025 60.136183 +-1.269638 60.135303 +-1.263771 60.133250 +-1.261717 60.130903 +-1.260837 60.127969 +-1.260250 60.124156 +-1.260837 60.120049 +-1.261131 60.115942 +-1.262597 60.111248 +-1.263184 60.106848 +-1.264357 60.102448 +-1.266998 60.098341 +-1.268464 60.093647 +-1.270518 60.089833 +-1.273451 60.086020 +-1.275798 60.082206 +-1.279025 60.078686 +-1.280199 60.073992 +-1.282839 60.069885 +-1.284892 60.065778 +-1.287239 60.061671 +-1.289586 60.057858 +-1.290759 60.053164 +-1.292519 60.048470 +-1.293986 60.043777 +-1.295160 60.039376 +-1.297506 60.035269 +-1.299267 60.030576 +-1.300440 60.026176 +-1.301907 60.021482 +-1.304547 60.017375 +-1.305720 60.012681 +-1.308067 60.008868 +-1.311294 60.006521 +-1.316281 60.008868 +-1.322442 60.007401 +-1.326255 60.004467 +-1.329482 60.001240 +-1.331536 59.996840 +-1.331829 59.992733 +-1.330362 59.989213 +-1.328602 59.985693 +-1.326842 59.982466 +-1.325375 59.978945 +-1.324495 59.975132 +-1.328309 59.972198 +-1.332709 59.973078 +-1.337696 59.975132 +-1.342683 59.974252 +-1.346790 59.971318 +-1.347083 59.966918 +-1.344150 59.963984 +-1.337109 59.962518 +-1.329775 59.962811 +-1.327722 59.959584 +-1.326255 59.955770 +-1.325668 59.952250 +-1.324788 59.948437 +-1.331536 59.948437 +-1.337989 59.947557 +-1.345323 59.946676 +-1.350310 59.944623 +-1.355004 59.942276 +-1.357644 59.938756 +-1.361164 59.935236 +-1.360284 59.931422 +-1.357644 59.928195 +-1.355884 59.924675 +-1.356177 59.920568 +-1.355884 59.916754 +-1.357351 59.912354 +-1.365565 59.912354 +-1.372605 59.913821 +-1.375539 59.910301 +-1.377886 59.906487 +-1.378179 59.902087 +-1.376419 59.898566 +-1.373779 59.895339 +-1.372018 59.891526 +-1.367912 59.889179 +-1.360578 59.889472 +-1.353831 59.890352 +-1.349724 59.888592 +-1.347083 59.885659 +-1.342976 59.882725 +-1.338283 59.885365 +-1.336229 59.889179 +-1.333296 59.892699 +-1.326255 59.893579 +-1.318628 59.893873 +-1.312761 59.892113 +-1.308947 59.889472 +-1.306014 59.886245 +-1.302200 59.883605 +-1.301907 59.881258 +-1.305720 59.878325 +-1.309534 59.875391 +-1.312761 59.871578 +-1.314228 59.867177 +-1.313641 59.863364 +-1.310707 59.860137 +-1.306894 59.857497 +-1.303374 59.859844 +-1.300147 59.863364 +-1.297506 59.866591 +-1.292813 59.869231 +-1.289293 59.866591 +-1.286066 59.863657 +-1.282545 59.860724 +-1.279318 59.857790 +-1.276972 59.854857 +-1.271985 59.852510 +-1.268758 59.851043 +-1.265531 59.854857 +-1.262597 59.858377 +-1.260250 59.862190 +-1.258784 59.866884 +-1.258197 59.870991 +-1.262304 59.873925 +-1.268171 59.875978 +-1.273158 59.878032 +-1.271398 59.882432 +-1.269051 59.886539 +-1.266411 59.890352 +-1.264944 59.894753 +-1.263477 59.899446 +-1.263184 59.903553 +-1.262597 59.907660 +-1.263184 59.911767 +-1.265824 59.914701 +-1.268758 59.917634 +-1.271398 59.920861 +-1.273158 59.924088 +-1.269051 59.924968 +-1.264357 59.922621 +-1.259664 59.924968 +-1.256730 59.928488 +-1.254383 59.932889 +-1.253797 59.936996 +-1.252623 59.941396 +-1.249396 59.944916 +-1.247343 59.949023 +-1.244996 59.953130 +-1.243236 59.957824 +-1.242062 59.962224 +-1.240596 59.966918 +-1.241182 59.970732 +-1.242943 59.974252 +-1.244703 59.977479 +-1.246463 59.980999 +-1.247930 59.984519 +-1.248516 59.988920 +-1.247930 59.993026 +-1.243236 59.995667 +-1.238542 59.993026 +-1.235902 59.990093 +-1.234142 59.986573 +-1.229742 59.988333 +-1.224461 59.990386 +-1.219474 59.987746 +-1.216541 59.984813 +-1.213900 59.981586 +-1.210380 59.979239 +-1.202460 59.979532 +-1.198646 59.982172 +-1.196299 59.986279 +-1.196006 59.990680 +-1.194539 59.995373 +-1.196299 59.998600 +-1.200113 60.001534 +-1.203926 60.004174 +-1.207740 60.006521 +-1.210674 60.009748 +-1.213314 60.012681 +-1.215074 60.016495 +-1.217714 60.019428 +-1.220648 60.022362 +-1.221234 60.026176 +-1.221821 60.029989 +-1.220061 60.032923 +-1.210674 60.032629 +-1.201286 60.031749 +-1.194539 60.032629 +-1.187792 60.033216 +-1.182512 60.035269 +-1.176938 60.037323 +-1.171657 60.039083 +-1.166964 60.041723 +-1.165497 60.046124 +-1.164910 60.050524 +-1.165790 60.054044 +-1.174298 60.054338 +-1.182512 60.054631 +-1.189845 60.056098 +-1.191312 60.059618 +-1.190725 60.064018 +-1.191606 60.067832 +-1.193366 60.071059 +-1.196886 60.073992 +-1.200113 60.076926 +-1.199526 60.081033 +-1.197179 60.085140 +-1.192486 60.087487 +-1.188672 60.090420 +-1.186325 60.091887 +-1.192486 60.093647 +-1.200700 60.095114 +-1.206567 60.096581 +-1.210674 60.099514 +-1.212140 60.102741 +-1.206567 60.104794 +-1.200113 60.105675 +-1.193072 60.106261 +-1.188672 60.108901 +-1.185445 60.112422 +-1.187205 60.115942 +-1.192192 60.118289 +-1.194832 60.121516 +-1.196593 60.124743 +-1.194539 60.127676 +-1.187205 60.127089 +-1.182512 60.125036 +-1.177231 60.122689 +-1.173418 60.123276 +-1.171364 60.126503 +-1.172244 60.130316 +-1.172538 60.134130 +-1.170484 60.137357 +-1.163150 60.137357 +-1.158163 60.135303 +-1.153176 60.132957 +-1.146722 60.132076 +-1.143789 60.135597 +-1.146429 60.138530 +-1.150243 60.141464 +-1.149069 60.144984 +-1.142615 60.144984 +-1.135575 60.143224 +-1.128534 60.144104 +-1.125601 60.147918 +-1.126188 60.151731 +-1.130001 60.154078 +-1.134988 60.156425 +-1.139975 60.158772 +-1.144669 60.161119 +-1.150829 60.163172 +-1.155816 60.165225 +-1.157576 60.168746 +-1.154056 60.172266 +-1.150536 60.175200 +-1.147602 60.178720 +-1.143789 60.181653 +-1.141442 60.185760 +-1.141442 60.189281 +-1.142029 60.192801 +-1.143495 60.196321 +-1.151416 60.196028 +-1.157576 60.194854 +-1.161390 60.191627 +-1.166084 60.189281 +-1.169017 60.185467 +-1.173711 60.183413 +-1.178991 60.181360 +-1.184565 60.179307 +-1.189845 60.177546 +-1.195126 60.175493 +-1.195419 60.177546 +-1.194246 60.181067 +-1.192486 60.185760 +-1.187205 60.187814 +-1.183685 60.190454 +-1.179578 60.193681 +-1.176351 60.197201 +-1.173711 60.200428 +-1.170191 60.204242 +-1.168431 60.208349 +-1.164910 60.211869 +-1.162857 60.215976 +-1.160510 60.220083 +-1.166377 60.221550 +-1.171951 60.220083 +-1.175764 60.216856 +-1.179578 60.213922 +-1.183685 60.210695 +-1.188085 60.208349 +-1.192486 60.206002 +-1.196593 60.203068 +-1.201873 60.201015 +-1.201286 60.205415 +-1.199233 60.209522 +-1.195419 60.212162 +-1.191312 60.215389 +-1.187792 60.218323 +-1.183978 60.221256 +-1.180458 60.225070 +-1.180458 60.228003 +-1.185445 60.230644 +-1.194246 60.230644 +-1.200700 60.229763 +-1.208033 60.228883 +-1.214781 60.228003 +-1.220941 60.230057 +-1.221821 60.232697 +-1.218007 60.235924 +-1.212727 60.237684 +-1.204806 60.237977 +-1.198059 60.238857 +-1.191899 60.240324 +-1.187205 60.242671 +-1.183392 60.245898 +-1.184565 60.248538 +-1.189259 60.251178 +-1.194246 60.253232 +-1.198059 60.255872 +-1.199819 60.259392 +-1.200700 60.263206 +-1.198939 60.267900 +-1.195126 60.270833 +-1.186912 60.269660 +-1.184272 60.266726 +-1.182512 60.262913 +-1.174298 60.262032 +-1.165790 60.262032 +-1.164030 60.258219 +-1.165497 60.253819 +-1.166084 60.249418 +-1.166377 60.245311 +-1.163737 60.242084 +-1.157576 60.240618 +-1.149363 60.239151 +-1.144669 60.241791 +-1.142615 60.245898 +-1.139388 60.249125 +-1.134108 60.251472 +-1.126188 60.251472 +-1.118560 60.252058 +-1.113280 60.253819 +-1.108586 60.256165 +-1.103893 60.258512 +-1.098612 60.260566 +-1.093332 60.262619 +-1.092745 60.266726 +-1.093625 60.270540 +-1.097439 60.273473 +-1.101252 60.275820 +-1.107119 60.277874 +-1.113573 60.278754 +-1.119734 60.277580 +-1.123547 60.274353 +-1.127361 60.271420 +-1.133815 60.269660 +-1.134108 60.273473 +-1.134988 60.277287 +-1.138802 60.279927 +-1.137922 60.282861 +-1.135575 60.286674 +-1.132641 60.290194 +-1.129414 60.294008 +-1.125601 60.296648 +-1.121200 60.299288 +-1.116800 60.300755 +-1.108000 60.300462 +-1.101252 60.301342 +-1.096559 60.303982 +-1.093625 60.307502 +-1.090692 60.310729 +-1.084238 60.312196 +-1.078077 60.313663 +-1.073677 60.316010 +-1.073677 60.319530 +-1.079544 60.321290 +-1.085411 60.323344 +-1.092452 60.324810 +-1.099786 60.325984 +-1.107119 60.326864 +-1.113280 60.325690 +-1.120027 60.324810 +-1.127654 60.325397 +-1.132348 60.328037 +-1.137628 60.330384 +-1.144375 60.331557 +-1.151416 60.330971 +-1.156990 60.328917 +-1.159630 60.331851 +-1.160217 60.335958 +-1.162270 60.339478 +-1.164617 60.342412 +-1.168724 60.345052 +-1.170484 60.347399 +-1.163150 60.347692 +-1.155230 60.347985 +-1.146136 60.347399 +-1.137922 60.346519 +-1.129708 60.345345 +-1.120320 60.344465 +-1.111813 60.344172 +-1.103893 60.344465 +-1.097145 60.345345 +-1.090105 60.346225 +-1.084825 60.347985 +-1.080131 60.350625 +-1.075437 60.352972 +-1.069863 60.355026 +-1.066050 60.357959 +-1.064583 60.362360 +-1.064290 60.366760 +-1.065757 60.370280 +-1.066637 60.374094 +-1.066050 60.378201 +-1.063116 60.381721 +-1.060769 60.385828 +-1.062823 60.388468 +-1.068983 60.390228 +-1.078077 60.391108 +-1.087465 60.391695 +-1.095972 60.391988 +-1.099199 60.388468 +-1.101839 60.384948 +-1.105359 60.381428 +-1.107413 60.377321 +-1.110053 60.373214 +-1.114453 60.370867 +-1.121787 60.372334 +-1.123254 60.375854 +-1.122667 60.379961 +-1.121494 60.384361 +-1.117387 60.387588 +-1.113573 60.390522 +-1.109760 60.393749 +-1.105066 60.396095 +-1.101252 60.399029 +-1.097439 60.401962 +-1.091865 60.404016 +-1.086291 60.405776 +-1.081011 60.407830 +-1.076317 60.410176 +-1.071624 60.412523 +-1.067223 60.414870 +-1.062530 60.417510 +-1.058716 60.420444 +-1.054022 60.423084 +-1.051089 60.426311 +-1.047275 60.429538 +-1.043462 60.432471 +-1.039941 60.435992 +-1.037888 60.440099 +-1.037301 60.444206 +-1.041408 60.446846 +-1.049035 60.446552 +-1.055196 60.445379 +-1.061356 60.443912 +-1.066930 60.441859 +-1.072210 60.440099 +-1.076904 60.437458 +-1.081598 60.435112 +-1.085411 60.432178 +-1.088345 60.428658 +-1.090692 60.424551 +-1.093038 60.420444 +-1.095679 60.416337 +-1.097732 60.414577 +-1.098319 60.418684 +-1.099199 60.422497 +-1.103306 60.424257 +-1.108586 60.422204 +-1.111813 60.418684 +-1.115040 60.415163 +-1.119734 60.412817 +-1.123547 60.409590 +-1.123841 60.405483 +-1.122081 60.402256 +-1.127948 60.401669 +-1.136455 60.401962 +-1.140269 60.399029 +-1.144082 60.395802 +-1.145842 60.391402 +-1.146136 60.387295 +-1.147896 60.382601 +-1.150536 60.385535 +-1.151123 60.389348 +-1.152003 60.393455 +-1.151416 60.397562 +-1.150829 60.401669 +-1.152589 60.404896 +-1.155523 60.408123 +-1.162563 60.409590 +-1.168724 60.408416 +-1.174298 60.406363 +-1.180458 60.404896 +-1.186325 60.403723 +-1.192779 60.402256 +-1.200700 60.401962 +-1.198646 60.404309 +-1.195126 60.406950 +-1.189552 60.409003 +-1.184272 60.410763 +-1.187205 60.413110 +-1.195126 60.412817 +-1.200700 60.410763 +-1.205980 60.409003 +-1.211847 60.407536 +-1.218887 60.406656 +-1.225928 60.405776 +-1.231795 60.405189 +-1.225635 60.406656 +-1.220941 60.409296 +-1.216247 60.411643 +-1.211554 60.414283 +-1.206860 60.416337 +-1.202460 60.418977 +-1.197766 60.421324 +-1.192486 60.423377 +-1.186325 60.424844 +-1.179285 60.423377 +-1.173124 60.421324 +-1.166964 60.419564 +-1.159337 60.418977 +-1.154643 60.421031 +-1.152589 60.425137 +-1.155230 60.428364 +-1.159337 60.431005 +-1.164324 60.433351 +-1.165204 60.435992 +-1.162270 60.439805 +-1.161097 60.442445 +-1.166377 60.444792 +-1.168431 60.447139 +-1.165204 60.450953 +-1.164030 60.454473 +-1.166670 60.457406 +-1.170484 60.460340 +-1.177818 60.461807 +-1.186325 60.461807 +-1.189259 60.465034 +-1.190432 60.466207 +nan nan +-2.020038 60.132957 +-2.021798 60.136770 +-2.024732 60.139704 +-2.027372 60.142637 +-2.029132 60.146157 +-2.029132 60.150264 +-2.028546 60.154371 +-2.032653 60.157305 +-2.041747 60.158185 +-2.051134 60.158478 +-2.059348 60.158772 +-2.065508 60.157305 +-2.072549 60.156425 +-2.077829 60.154371 +-2.082523 60.152025 +-2.086923 60.149384 +-2.089857 60.145864 +-2.091323 60.141464 +-2.095137 60.138237 +-2.098071 60.134717 +-2.095137 60.132663 +-2.089857 60.130610 +-2.084870 60.128263 +-2.079003 60.126503 +-2.071669 60.124743 +-2.065508 60.122982 +-2.059348 60.121222 +-2.053187 60.119169 +-2.048494 60.116822 +-2.043507 60.114769 +-2.036173 60.114182 +-2.032359 60.117115 +-2.028839 60.120342 +-2.026785 60.124156 +-2.022679 60.127089 +-2.019158 60.130316 +-2.020038 60.132957 +nan nan +-1.556538 60.201015 +-1.558885 60.203068 +-1.565926 60.204828 +-1.575313 60.205415 +-1.582940 60.205122 +-1.587634 60.202481 +-1.589687 60.198668 +-1.587634 60.194854 +-1.585287 60.191921 +-1.577073 60.190747 +-1.568859 60.189867 +-1.560352 60.189867 +-1.553312 60.190454 +-1.548911 60.193094 +-1.547444 60.197494 +-1.549205 60.201015 +-1.556538 60.201015 +nan nan +-1.697642 60.343585 +-1.702336 60.344465 +-1.710549 60.344758 +-1.718470 60.344172 +-1.717883 60.340358 +-1.714656 60.337425 +-1.712310 60.334198 +-1.708203 60.331557 +-1.702922 60.329504 +-1.698229 60.327157 +-1.689721 60.326864 +-1.682387 60.327744 +-1.685028 60.323637 +-1.684441 60.320117 +-1.676227 60.318943 +-1.670653 60.320703 +-1.665373 60.322757 +-1.658039 60.322170 +-1.650412 60.322463 +-1.648358 60.324810 +-1.651292 60.327744 +-1.649238 60.331557 +-1.646892 60.335958 +-1.647478 60.339771 +-1.651292 60.342118 +-1.659212 60.341825 +-1.666253 60.341238 +-1.674467 60.341531 +-1.682094 60.341825 +-1.691481 60.342412 +-1.697642 60.343585 +nan nan +-1.363218 60.332437 +-1.366151 60.335664 +-1.367912 60.338891 +-1.373779 60.340945 +-1.380819 60.340065 +-1.384046 60.336251 +-1.386980 60.332731 +-1.387273 60.329504 +-1.385513 60.325984 +-1.381699 60.323637 +-1.377886 60.320703 +-1.371432 60.319823 +-1.368792 60.323930 +-1.366738 60.328037 +-1.363218 60.332437 +nan nan +-1.376419 60.371160 +-1.381993 60.372627 +-1.389033 60.374094 +-1.397247 60.374974 +-1.404287 60.376734 +-1.410155 60.378494 +-1.415142 60.380841 +-1.420422 60.383188 +-1.425409 60.385241 +-1.430103 60.382894 +-1.432743 60.379374 +-1.438317 60.377614 +-1.444477 60.376147 +-1.448877 60.373507 +-1.454744 60.371747 +-1.454744 60.368227 +-1.452691 60.365000 +-1.451224 60.361480 +-1.448291 60.358253 +-1.446531 60.355026 +-1.443597 60.351799 +-1.440957 60.348865 +-1.436850 60.348572 +-1.431863 60.347105 +-1.425996 60.347692 +-1.418368 60.347985 +-1.410448 60.348279 +-1.402821 60.348572 +-1.394900 60.349159 +-1.389620 60.351212 +-1.384046 60.352972 +-1.380526 60.355906 +-1.376125 60.358253 +-1.372899 60.362066 +-1.370552 60.365880 +-1.373192 60.368813 +-1.376419 60.371160 +nan nan +-0.996525 60.724652 +-1.005032 60.724946 +-1.014419 60.725532 +-1.023807 60.726412 +-1.033194 60.727293 +-1.040528 60.728466 +-1.048742 60.729639 +-1.056956 60.730813 +-1.061356 60.729346 +-1.063703 60.725239 +-1.065757 60.721425 +-1.068397 60.717318 +-1.073677 60.719372 +-1.075144 60.723186 +-1.075437 60.726999 +-1.077491 60.730226 +-1.084825 60.731693 +-1.092452 60.731399 +-1.098612 60.729933 +-1.104186 60.727879 +-1.110053 60.725826 +-1.112693 60.722305 +-1.111226 60.718785 +-1.110640 60.714972 +-1.111226 60.710865 +-1.113867 60.707344 +-1.117094 60.703824 +-1.120320 60.700304 +-1.122374 60.696197 +-1.122961 60.692090 +-1.120027 60.688863 +-1.117387 60.685930 +-1.114453 60.682703 +-1.111813 60.679769 +-1.113280 60.675369 +-1.114747 60.670675 +-1.117094 60.666568 +-1.120320 60.663048 +-1.122374 60.658941 +-1.122961 60.654834 +-1.123547 60.650434 +-1.125014 60.646033 +-1.124134 60.642220 +-1.123841 60.638406 +-1.122081 60.634886 +-1.120320 60.631366 +-1.117387 60.628432 +-1.113573 60.625792 +-1.110933 60.622858 +-1.107706 60.619631 +-1.106239 60.616111 +-1.106533 60.612004 +-1.108000 60.607604 +-1.111520 60.603790 +-1.116800 60.604377 +-1.117387 60.608191 +-1.117974 60.612004 +-1.120907 60.614938 +-1.126188 60.617285 +-1.132055 60.619045 +-1.136162 60.621978 +-1.139975 60.624325 +-1.142615 60.627552 +-1.142322 60.631952 +-1.142029 60.636059 +-1.139975 60.640460 +-1.140855 60.644567 +-1.144669 60.647207 +-1.153176 60.648380 +-1.159337 60.646913 +-1.164617 60.644860 +-1.169311 60.642513 +-1.174298 60.639873 +-1.177231 60.636646 +-1.179578 60.632539 +-1.180751 60.627845 +-1.181338 60.623738 +-1.180751 60.619925 +-1.181045 60.615524 +-1.181631 60.611418 +-1.183098 60.607017 +-1.183685 60.602910 +-1.183098 60.598803 +-1.182512 60.594990 +-1.180458 60.591763 +-1.179871 60.587656 +-1.178405 60.584136 +-1.176351 60.580909 +-1.174591 60.577388 +-1.173124 60.573868 +-1.172538 60.570348 +-1.171657 60.566534 +-1.171071 60.562427 +-1.171657 60.558320 +-1.170777 60.554507 +-1.170191 60.550693 +-1.170484 60.546293 +-1.171071 60.542186 +-1.170191 60.538372 +-1.168724 60.535145 +-1.169897 60.531332 +-1.170191 60.527225 +-1.167844 60.524291 +-1.164617 60.521064 +-1.162270 60.518131 +-1.159043 60.514904 +-1.156403 60.511970 +-1.154350 60.508450 +-1.152003 60.505223 +-1.148776 60.502290 +-1.146136 60.499063 +-1.144375 60.495836 +-1.142909 60.492609 +-1.139975 60.489382 +-1.133815 60.487622 +-1.127361 60.486449 +-1.121494 60.487915 +-1.112987 60.486742 +-1.104773 60.485568 +-1.097732 60.486449 +-1.094799 60.489969 +-1.097732 60.493196 +-1.100372 60.496129 +-1.104186 60.498476 +-1.107119 60.501703 +-1.108880 60.505223 +-1.107119 60.509624 +-1.105946 60.513731 +-1.099786 60.512557 +-1.096852 60.509330 +-1.093038 60.506690 +-1.089225 60.504050 +-1.083944 60.501703 +-1.078077 60.499943 +-1.069863 60.498476 +-1.061356 60.498476 +-1.052849 60.498476 +-1.043462 60.497596 +-1.036421 60.496129 +-1.029381 60.495836 +-1.025567 60.498769 +-1.023220 60.503170 +-1.023807 60.506983 +-1.022633 60.511384 +-1.019113 60.514904 +-1.017646 60.519304 +-1.019407 60.523118 +-1.020287 60.526638 +-1.024100 60.529572 +-1.027914 60.532212 +-1.031727 60.534852 +-1.033194 60.538372 +-1.035248 60.541599 +-1.037008 60.545119 +-1.039648 60.548053 +-1.032901 60.548933 +-1.023220 60.548346 +-1.018233 60.549226 +-1.017646 60.553333 +-1.017353 60.557440 +-1.014419 60.561254 +-1.010606 60.564187 +-1.007086 60.567414 +-1.004152 60.571228 +-1.004152 60.574455 +-1.007966 60.577095 +-1.013833 60.579149 +-1.023220 60.579735 +-1.026740 60.582082 +-1.023220 60.585602 +-1.022633 60.588243 +-1.029381 60.589709 +-1.037888 60.590883 +-1.044928 60.592643 +-1.049915 60.594696 +-1.056076 60.596750 +-1.063410 60.597923 +-1.067223 60.600857 +-1.068983 60.604084 +-1.066637 60.608191 +-1.058423 60.607311 +-1.052262 60.605257 +-1.045222 60.603497 +-1.037301 60.603790 +-1.031141 60.605257 +-1.026447 60.607897 +-1.021753 60.610244 +-1.017353 60.612884 +-1.014713 60.616991 +-1.017646 60.619925 +-1.021460 60.622565 +-1.026447 60.624618 +-1.031434 60.627259 +-1.037594 60.629019 +-1.040235 60.631952 +-1.041995 60.635473 +-1.042875 60.639580 +-1.044342 60.642806 +-1.048449 60.645447 +-1.049915 60.648967 +-1.051675 60.652194 +-1.053436 60.655714 +-1.056076 60.658941 +-1.059303 60.661874 +-1.051382 60.662168 +-1.044048 60.660701 +-1.039061 60.658354 +-1.035248 60.655714 +-1.032607 60.652780 +-1.028500 60.650140 +-1.025567 60.646913 +-1.021753 60.644273 +-1.017646 60.641633 +-1.012953 60.639286 +-1.007672 60.636939 +-1.000925 60.635473 +-0.992125 60.635179 +-0.988898 60.638699 +-0.986844 60.642806 +-0.985084 60.647500 +-0.982737 60.651314 +-0.982444 60.655421 +-0.984204 60.659234 +-0.986844 60.662461 +-0.989484 60.665688 +-0.993298 60.668328 +-0.996525 60.671262 +-0.997992 60.674782 +-0.999752 60.678302 +-0.997992 60.682703 +-0.996232 60.686223 +-0.993005 60.689450 +-0.990071 60.692970 +-0.990658 60.697077 +-0.993298 60.699717 +-0.997112 60.702357 +-1.000045 60.705584 +-0.996818 60.709105 +-0.993885 60.712918 +-0.990951 60.716145 +-0.991244 60.719959 +-0.994178 60.723186 +-0.996525 60.724652 +nan nan +11.231953 54.957305 +11.240460 54.957305 +11.248674 54.956132 +11.257768 54.953785 +11.266569 54.952025 +11.275956 54.949971 +11.282410 54.946744 +11.288864 54.943224 +11.293851 54.939704 +11.299131 54.935890 +11.304118 54.932077 +11.310572 54.928556 +11.317319 54.925623 +11.324946 54.922689 +11.331400 54.919756 +11.336387 54.915942 +11.340201 54.911248 +11.342841 54.906261 +11.345188 54.901274 +11.347535 54.896287 +11.351348 54.891887 +11.356335 54.888073 +11.361616 54.884260 +11.368069 54.881033 +11.375697 54.878393 +11.382150 54.875166 +11.387137 54.871352 +11.393885 54.868125 +11.401805 54.865485 +11.409432 54.862845 +11.418233 54.860791 +11.427620 54.858738 +11.435248 54.856098 +11.444342 54.853751 +11.450795 54.850817 +11.458716 54.848177 +11.466343 54.845244 +11.474264 54.842897 +11.483064 54.840550 +11.490691 54.837910 +11.498612 54.835270 +11.506533 54.832923 +11.514160 54.829989 +11.524427 54.828522 +11.534988 54.827056 +11.546722 54.826176 +11.556990 54.824709 +11.564617 54.822069 +11.571071 54.818548 +11.576351 54.815028 +11.582805 54.811801 +11.589259 54.808281 +11.597179 54.806814 +11.596006 54.812681 +11.592192 54.817082 +11.587205 54.820895 +11.582218 54.824709 +11.577231 54.828522 +11.570777 54.832043 +11.565497 54.835563 +11.564030 54.839963 +11.574004 54.840550 +11.581631 54.842897 +11.589259 54.844950 +11.598059 54.846417 +11.608620 54.846124 +11.618301 54.846710 +11.627981 54.847297 +11.634729 54.850231 +11.635022 54.856391 +11.632382 54.861378 +11.634142 54.868419 +11.634435 54.874579 +11.633262 54.879859 +11.632088 54.885433 +11.630035 54.890420 +11.632088 54.895407 +11.641769 54.894527 +11.650570 54.892474 +11.657317 54.889247 +11.662304 54.885140 +11.668758 54.881913 +11.674918 54.878979 +11.681372 54.875459 +11.689292 54.872819 +11.698386 54.870765 +11.706014 54.868125 +11.715108 54.866072 +11.720095 54.862258 +11.722441 54.857271 +11.723615 54.851697 +11.724788 54.846124 +11.725962 54.840257 +11.728015 54.835270 +11.734469 54.832336 +11.743563 54.829989 +11.752950 54.829109 +11.763511 54.829109 +11.769965 54.825882 +11.769672 54.819722 +11.767911 54.812975 +11.770552 54.807988 +11.774365 54.803587 +11.778179 54.799187 +11.783166 54.795373 +11.788153 54.791266 +11.793140 54.787453 +11.798420 54.783639 +11.803407 54.780119 +11.808394 54.776012 +11.811915 54.771612 +11.817195 54.767798 +11.820715 54.763398 +11.824529 54.758997 +11.829516 54.754890 +11.834796 54.751077 +11.838316 54.746677 +11.841837 54.742276 +11.843010 54.736702 +11.839490 54.731715 +11.832743 54.728489 +11.825116 54.726435 +11.814555 54.726728 +11.804874 54.727608 +11.802527 54.721448 +11.799007 54.716168 +11.796073 54.710301 +11.795780 54.704140 +11.796953 54.698273 +11.800474 54.693873 +11.806928 54.690939 +11.816315 54.690059 +11.825116 54.691526 +11.833036 54.690059 +11.832743 54.683899 +11.828049 54.679498 +11.822475 54.675978 +11.817782 54.671284 +11.814261 54.666004 +11.813968 54.660137 +11.816315 54.654857 +11.813088 54.651043 +11.805167 54.648990 +11.798714 54.646056 +11.791966 54.643122 +11.785513 54.640189 +11.776125 54.640776 +11.767031 54.643122 +11.757937 54.644883 +11.748257 54.644589 +11.736522 54.645176 +11.729189 54.648109 +11.722735 54.651336 +11.718921 54.655737 +11.711294 54.658377 +11.701613 54.657790 +11.693986 54.655443 +11.683425 54.655737 +11.675211 54.657203 +11.666117 54.659257 +11.658490 54.661897 +11.649396 54.663951 +11.640889 54.662484 +11.634142 54.659844 +11.625635 54.658377 +11.615954 54.657790 +11.605686 54.659257 +11.596299 54.661017 +11.588965 54.663951 +11.579285 54.663364 +11.572537 54.660137 +11.565790 54.657497 +11.560216 54.653683 +11.552883 54.651630 +11.546135 54.648696 +11.538215 54.646349 +11.530881 54.644589 +11.522960 54.642242 +11.516507 54.639309 +11.508879 54.637255 +11.502132 54.634028 +11.495679 54.631095 +11.488931 54.628455 +11.483358 54.624641 +11.476904 54.621708 +11.471037 54.618187 +11.465463 54.614080 +11.459889 54.610560 +11.453435 54.607920 +11.443168 54.609093 +11.433781 54.611147 +11.426447 54.613787 +11.418526 54.616427 +11.412366 54.619654 +11.405912 54.623174 +11.399458 54.626108 +11.393004 54.629335 +11.386551 54.632855 +11.380390 54.635789 +11.373936 54.639309 +11.366016 54.641949 +11.359855 54.644883 +11.353402 54.648403 +11.346948 54.651336 +11.339027 54.654270 +11.330227 54.656030 +11.322599 54.658964 +11.314679 54.661310 +11.307052 54.664244 +11.300598 54.667471 +11.294144 54.670698 +11.287690 54.673925 +11.281530 54.677152 +11.275076 54.680378 +11.269502 54.682725 +11.263048 54.686246 +11.256595 54.689179 +11.250141 54.692406 +11.243980 54.695926 +11.236060 54.698273 +11.229606 54.701793 +11.221979 54.704140 +11.215525 54.707367 +11.207898 54.710007 +11.198804 54.712354 +11.191177 54.714701 +11.183256 54.717634 +11.174162 54.719395 +11.163895 54.720861 +11.154801 54.722915 +11.144533 54.724382 +11.133973 54.725848 +11.124879 54.727902 +11.115785 54.729955 +11.106691 54.732009 +11.098770 54.734649 +11.091143 54.737289 +11.082342 54.739049 +11.071781 54.740809 +11.061514 54.742276 +11.049780 54.743156 +11.039219 54.744330 +11.028952 54.745796 +11.019858 54.748143 +11.013404 54.751077 +11.006950 54.754304 +11.001670 54.758117 +10.997856 54.762518 +10.994043 54.766918 +10.988762 54.770732 +10.984949 54.775132 +10.981428 54.779826 +10.976148 54.783346 +10.973508 54.788333 +10.974388 54.792440 +10.980255 54.796253 +10.986709 54.799187 +10.994336 54.801534 +10.999910 54.805054 +10.998736 54.809161 +10.990522 54.810628 +10.983482 54.812388 +10.994336 54.812095 +11.003723 54.810334 +11.012524 54.808281 +11.021618 54.806227 +11.028072 54.803001 +11.033352 54.799187 +11.039806 54.796253 +11.049486 54.796547 +11.056820 54.798894 +11.064741 54.801240 +11.071488 54.803881 +11.078822 54.806227 +11.086743 54.808281 +11.093196 54.811508 +11.099650 54.814441 +11.105224 54.817962 +11.107571 54.822655 +11.105224 54.827642 +11.098477 54.830869 +11.090849 54.833509 +11.082049 54.835563 +11.074128 54.838203 +11.067381 54.841430 +11.062394 54.845244 +11.060047 54.850231 +11.056234 54.854631 +11.053593 54.859618 +11.049780 54.864018 +11.044793 54.867832 +11.036872 54.870472 +11.030418 54.873699 +11.025138 54.877513 +11.020151 54.881326 +11.014871 54.885140 +11.013991 54.890420 +11.014871 54.895994 +11.019858 54.900688 +11.024258 54.905088 +11.027778 54.910368 +11.032179 54.914769 +11.037752 54.918582 +11.042446 54.922983 +11.048020 54.926796 +11.052420 54.931196 +11.058287 54.935010 +11.064741 54.937650 +11.071488 54.940877 +11.083222 54.939997 +11.093490 54.938530 +11.100237 54.941464 +11.104930 54.946158 +11.111678 54.948798 +11.119305 54.951145 +11.128105 54.952611 +11.136613 54.953785 +11.146293 54.954665 +11.155094 54.956132 +11.164775 54.956718 +11.174455 54.957598 +11.185310 54.957305 +11.193524 54.957305 +11.204378 54.957305 +11.215232 54.957305 +11.224912 54.957892 +11.231953 54.957305 +nan nan +11.831863 54.953785 +11.836263 54.952318 +11.841250 54.948211 +11.844184 54.944691 +11.847704 54.940290 +11.852691 54.936477 +11.856798 54.932077 +11.862958 54.928556 +11.867945 54.924743 +11.874399 54.921809 +11.882320 54.918876 +11.890534 54.918876 +11.897281 54.921809 +11.899921 54.927676 +11.905495 54.931490 +11.916349 54.931490 +11.928083 54.930316 +11.937177 54.928263 +11.943631 54.925036 +11.947444 54.920636 +11.948324 54.915062 +11.950965 54.910075 +11.954485 54.905675 +11.960939 54.902154 +11.971499 54.900688 +11.982940 54.899808 +11.994674 54.898927 +12.000000 54.898041 +nan nan +12.000000 54.731042 +11.998781 54.730249 +11.992328 54.727608 +11.985580 54.724382 +11.978833 54.721741 +11.972086 54.718808 +11.965632 54.715288 +11.959765 54.711474 +11.954191 54.707660 +11.949498 54.703260 +11.944804 54.698860 +11.940404 54.694459 +11.936297 54.689179 +11.933950 54.683312 +11.931016 54.677152 +11.929843 54.670698 +11.929256 54.664537 +11.928963 54.658377 +11.930136 54.652510 +11.929843 54.646349 +11.930723 54.640776 +11.930430 54.634615 +11.931310 54.629041 +11.932483 54.623468 +11.933657 54.618187 +11.934537 54.612320 +11.936884 54.607333 +11.937764 54.601759 +11.940404 54.596772 +11.941284 54.591199 +11.943631 54.586212 +11.947151 54.581811 +11.948324 54.576238 +11.949498 54.570664 +11.944804 54.565970 +11.936003 54.564797 +11.928376 54.567437 +11.922216 54.570664 +11.915469 54.572424 +11.904908 54.574184 +11.897574 54.576531 +11.893760 54.581225 +11.891414 54.586212 +11.890240 54.592079 +11.889360 54.597359 +11.887013 54.602640 +11.883200 54.607040 +11.879679 54.611440 +11.875866 54.615547 +11.872346 54.619947 +11.868532 54.624348 +11.864718 54.628748 +11.861198 54.633442 +11.857384 54.637842 +11.853571 54.642242 +11.851517 54.647229 +11.847704 54.651630 +11.845357 54.656617 +11.843010 54.661604 +11.844477 54.668644 +11.846237 54.675391 +11.850931 54.679792 +11.854451 54.685072 +11.857971 54.690059 +11.862665 54.694459 +11.867359 54.698860 +11.872052 54.703260 +11.877919 54.707367 +11.880266 54.712941 +11.883200 54.719101 +11.877919 54.722915 +11.870292 54.725555 +11.862372 54.728195 +11.861491 54.733769 +11.862958 54.740516 +11.859438 54.744916 +11.855624 54.749317 +11.851811 54.754010 +11.846824 54.757824 +11.841837 54.761638 +11.836850 54.765451 +11.830689 54.768971 +11.825702 54.772492 +11.820422 54.776305 +11.815141 54.780412 +11.811621 54.784813 +11.806634 54.788626 +11.802821 54.793027 +11.799300 54.797427 +11.795193 54.801827 +11.793140 54.806814 +11.795487 54.812681 +11.798420 54.818842 +11.797247 54.824415 +11.793727 54.828816 +11.789620 54.833216 +11.786099 54.837910 +11.781112 54.841723 +11.777299 54.846124 +11.770845 54.849057 +11.762924 54.851991 +11.755297 54.854631 +11.746497 54.856684 +11.740043 54.859911 +11.736229 54.864312 +11.736522 54.870472 +11.736522 54.876633 +11.736816 54.882793 +11.738576 54.889833 +11.738869 54.895701 +11.737696 54.901274 +11.736522 54.906848 +11.734469 54.911835 +11.730655 54.916529 +11.725668 54.920342 +11.717454 54.921809 +11.705720 54.922396 +11.696040 54.921809 +11.685479 54.923276 +11.679025 54.925329 +11.677852 54.930903 +11.684305 54.933837 +11.691053 54.936770 +11.696626 54.940584 +11.702493 54.944104 +11.709241 54.947038 +11.715694 54.949971 +11.722441 54.952905 +11.730362 54.954958 +11.737989 54.957305 +11.748257 54.955545 +11.753830 54.953198 +11.760284 54.949971 +11.763804 54.945571 +11.767911 54.941170 +11.772898 54.937357 +11.780526 54.934423 +11.790206 54.935303 +11.796953 54.937944 +11.802527 54.941757 +11.805167 54.947918 +11.806928 54.954371 +11.809568 54.960532 +11.818368 54.961999 +11.824822 54.958478 +11.831863 54.953785 +nan nan +12.000000 54.920140 +11.995261 54.920929 +11.990274 54.924743 +11.993794 54.930023 +12.000000 54.930824 +nan nan +12.000000 54.963033 +11.992621 54.962585 +11.981767 54.962585 +11.971206 54.964052 +11.962112 54.966106 +11.954485 54.968746 +11.946564 54.971679 +11.940404 54.974613 +11.935417 54.978720 +11.930136 54.982533 +11.924856 54.986347 +11.919869 54.990161 +11.912242 54.993094 +11.900508 54.993974 +11.892880 54.991627 +11.889067 54.986640 +11.883200 54.982827 +11.877919 54.979307 +11.869999 54.976960 +11.859438 54.978720 +11.855918 54.983120 +11.853278 54.988107 +11.851224 54.993094 +11.845944 54.996908 +11.839490 55.000135 +11.833036 55.003362 +11.826582 55.006589 +11.818955 55.009522 +11.812501 55.012456 +11.806047 55.015976 +11.799594 55.019203 +11.794313 55.023016 +11.789326 55.026830 +11.783166 55.030057 +11.776712 55.033284 +11.768791 55.036217 +11.761164 55.038564 +11.753244 55.041498 +11.742683 55.042964 +11.732122 55.044431 +11.723322 55.046485 +11.712761 55.047951 +11.702200 55.049418 +11.693399 55.051765 +11.685185 55.054405 +11.679025 55.057632 +11.671104 55.060272 +11.664651 55.063499 +11.657023 55.066139 +11.649103 55.068780 +11.641476 55.071420 +11.633555 55.074060 +11.637955 55.073180 +11.645876 55.070540 +11.654970 55.068193 +11.662891 55.065846 +11.673451 55.064086 +11.685185 55.063206 +11.695746 55.062913 +11.706600 55.062913 +11.717454 55.062913 +11.726548 55.060859 +11.734469 55.057926 +11.740923 55.054699 +11.748550 55.052352 +11.756471 55.049418 +11.762924 55.046191 +11.770552 55.043551 +11.778472 55.040911 +11.787566 55.038564 +11.796660 55.036804 +11.806928 55.035044 +11.816902 55.035924 +11.821302 55.040324 +11.817782 55.044725 +11.814261 55.048832 +11.810154 55.053232 +11.805167 55.057339 +11.799887 55.061152 +11.796367 55.065553 +11.789913 55.068780 +11.783753 55.072300 +11.773192 55.073473 +11.763804 55.075820 +11.753244 55.077287 +11.745616 55.079927 +11.737696 55.082567 +11.731535 55.085794 +11.725082 55.089021 +11.720095 55.093128 +11.714814 55.096648 +11.709827 55.100462 +11.704547 55.104569 +11.700733 55.108969 +11.698386 55.113956 +11.703080 55.118357 +11.711001 55.116890 +11.721855 55.116890 +11.729775 55.119237 +11.738576 55.120410 +11.747083 55.121583 +11.757937 55.121583 +11.768791 55.121290 +11.776712 55.123637 +11.784339 55.125690 +11.789913 55.129504 +11.792847 55.135664 +11.790206 55.140651 +11.783753 55.143585 +11.774659 55.145932 +11.762924 55.146812 +11.751190 55.147692 +11.743270 55.150332 +11.731535 55.151506 +11.723615 55.149159 +11.715694 55.146812 +11.705134 55.147105 +11.696040 55.149159 +11.690759 55.152972 +11.689586 55.158546 +11.692519 55.164707 +11.697213 55.169107 +11.700733 55.174387 +11.704547 55.179374 +11.706014 55.186415 +11.705134 55.191988 +11.695746 55.194042 +11.684012 55.194922 +11.672278 55.195802 +11.664357 55.193749 +11.658490 55.189935 +11.653797 55.185535 +11.650276 55.180254 +11.644703 55.176734 +11.637075 55.174387 +11.627981 55.172920 +11.617421 55.174681 +11.608327 55.176734 +11.599233 55.178788 +11.591312 55.181428 +11.582218 55.183481 +11.574591 55.186121 +11.565204 55.188468 +11.556110 55.190228 +11.545549 55.191988 +11.533815 55.192869 +11.523841 55.192282 +11.512986 55.192282 +11.502719 55.193749 +11.493332 55.195802 +11.484238 55.197856 +11.477784 55.201082 +11.471330 55.204309 +11.463703 55.206950 +11.455489 55.209590 +11.445222 55.211057 +11.436128 55.213403 +11.427914 55.215750 +11.417353 55.216044 +11.408552 55.214577 +11.400925 55.212523 +11.394178 55.209590 +11.387431 55.206656 +11.378630 55.205189 +11.368949 55.204309 +11.359855 55.203136 +11.351055 55.201669 +11.341374 55.201082 +11.330813 55.202549 +11.321719 55.204603 +11.311159 55.206070 +11.302358 55.204603 +11.301185 55.199029 +11.307638 55.196095 +11.317026 55.193749 +11.323479 55.190815 +11.318199 55.188468 +11.306172 55.189055 +11.297078 55.191402 +11.285050 55.192282 +11.273316 55.193162 +11.262755 55.194335 +11.253661 55.196682 +11.246914 55.199616 +11.244567 55.204603 +11.243394 55.210176 +11.243687 55.216630 +11.241047 55.221617 +11.237233 55.226018 +11.236060 55.231591 +11.240754 55.235992 +11.250141 55.233938 +11.260702 55.232471 +11.270382 55.233058 +11.276836 55.235992 +11.281530 55.240685 +11.284170 55.246552 +11.286810 55.252420 +11.282703 55.255646 +11.278010 55.251246 +11.272436 55.247432 +11.265689 55.244499 +11.255715 55.243912 +11.245154 55.245379 +11.240167 55.249193 +11.240167 55.255353 +11.240460 55.261807 +11.241927 55.268261 +11.239580 55.273248 +11.236940 55.278235 +11.231953 55.282342 +11.229606 55.282928 +11.227846 55.285862 +11.221392 55.289089 +11.214938 55.292316 +11.207018 55.294956 +11.199097 55.297596 +11.191470 55.300236 +11.183256 55.303170 +11.176802 55.306103 +11.168882 55.308744 +11.161255 55.311384 +11.153334 55.314024 +11.148054 55.317838 +11.151574 55.323118 +11.159494 55.325171 +11.170349 55.325171 +11.179149 55.326638 +11.186776 55.328985 +11.189123 55.333679 +11.187656 55.339252 +11.182669 55.342773 +11.177389 55.346586 +11.171229 55.350107 +11.161548 55.351867 +11.150694 55.352160 +11.141893 55.350693 +11.137493 55.346000 +11.135146 55.340132 +11.133386 55.333385 +11.128692 55.328985 +11.119011 55.328398 +11.111091 55.330745 +11.104344 55.334265 +11.100530 55.338666 +11.098183 55.343653 +11.095543 55.348640 +11.091730 55.353040 +11.089089 55.358027 +11.087916 55.363601 +11.095836 55.365948 +11.104930 55.363601 +11.116958 55.362721 +11.127812 55.362721 +11.135439 55.365068 +11.142186 55.367708 +11.148934 55.370935 +11.154801 55.374455 +11.160374 55.378269 +11.169175 55.379735 +11.179149 55.380322 +11.188830 55.381202 +11.196750 55.382962 +11.203204 55.386189 +11.205844 55.392350 +11.200857 55.396163 +11.195577 55.399683 +11.190297 55.403497 +11.185310 55.407604 +11.181496 55.412004 +11.180029 55.417578 +11.180323 55.423738 +11.182083 55.430192 +11.183256 55.437233 +11.185896 55.443100 +11.184723 55.448967 +11.183549 55.454541 +11.179736 55.458941 +11.175922 55.463341 +11.170642 55.466862 +11.168002 55.471849 +11.164481 55.476249 +11.161548 55.481529 +11.158028 55.485930 +11.155387 55.490917 +11.151574 55.495317 +11.147760 55.499717 +11.143947 55.504118 +11.140133 55.508518 +11.134853 55.512331 +11.128105 55.515558 +11.117545 55.517025 +11.111971 55.513212 +11.108451 55.507931 +11.103757 55.503531 +11.093490 55.502651 +11.085862 55.505584 +11.080582 55.509398 +11.080582 55.515558 +11.080875 55.521719 +11.084396 55.526999 +11.090263 55.530519 +11.098183 55.532866 +11.107864 55.533746 +11.117838 55.534040 +11.127519 55.534920 +11.136319 55.536387 +11.142186 55.539907 +11.146880 55.544307 +11.150694 55.549588 +11.151867 55.556628 +11.150694 55.562202 +11.149814 55.567775 +11.147174 55.572762 +11.144533 55.577750 +11.140720 55.582150 +11.136906 55.586550 +11.133092 55.591244 +11.129279 55.595351 +11.123999 55.599164 +11.119892 55.603565 +11.114611 55.607378 +11.110798 55.612072 +11.105517 55.615592 +11.102584 55.617939 +11.103757 55.617646 +11.099357 55.620873 +11.093783 55.623219 +11.087329 55.626740 +11.080875 55.629673 +11.074128 55.633194 +11.066208 55.635834 +11.056820 55.637887 +11.047433 55.639647 +11.038339 55.641994 +11.028952 55.643754 +11.018391 55.645221 +11.007537 55.646688 +10.995509 55.647568 +10.983482 55.648448 +10.972921 55.649915 +10.963534 55.651968 +10.952680 55.653435 +10.940945 55.654022 +10.934198 55.657542 +10.927744 55.660475 +10.927451 55.665462 +10.937132 55.664582 +10.946519 55.662822 +10.958253 55.661942 +10.969107 55.660475 +10.979081 55.661062 +10.991109 55.660182 +11.001963 55.660182 +11.014284 55.659302 +11.026018 55.658715 +11.036579 55.657249 +11.047433 55.655488 +11.059461 55.654608 +11.069435 55.655488 +11.078235 55.656955 +11.086156 55.659302 +11.089383 55.663116 +11.087623 55.665756 +11.083516 55.670156 +11.075888 55.673090 +11.066501 55.675143 +11.055940 55.676317 +11.043619 55.677197 +11.031592 55.678077 +11.021031 55.679543 +11.013111 55.682184 +11.006363 55.685411 +10.999616 55.688637 +10.994336 55.692451 +10.990522 55.696851 +10.985242 55.700665 +10.981428 55.705065 +10.977615 55.709466 +10.973508 55.713866 +10.969694 55.718266 +10.962947 55.721787 +10.955026 55.724133 +10.945932 55.726187 +10.934785 55.726480 +10.924811 55.725600 +10.912783 55.726480 +10.901929 55.726480 +10.889608 55.727360 +10.880514 55.729414 +10.873767 55.732641 +10.878461 55.737334 +10.887262 55.738508 +10.897236 55.739094 +10.908383 55.739094 +10.919237 55.739094 +10.930385 55.738801 +10.941239 55.738801 +10.953266 55.737921 +10.963827 55.736748 +10.974681 55.735281 +10.983775 55.732934 +10.994629 55.731761 +11.005190 55.730294 +11.016044 55.728827 +11.028072 55.727947 +11.040393 55.727360 +11.050073 55.727654 +11.060047 55.728240 +11.068848 55.730000 +11.076768 55.732347 +11.084689 55.734107 +11.091436 55.737334 +11.098183 55.740268 +11.106104 55.742615 +11.112851 55.745255 +11.119598 55.748188 +11.129572 55.748775 +11.141600 55.748188 +11.153627 55.747308 +11.161548 55.744668 +11.164481 55.741148 +11.155681 55.739388 +11.144533 55.739681 +11.133679 55.739681 +11.125759 55.737628 +11.123118 55.731761 +11.125465 55.726774 +11.129572 55.722080 +11.134853 55.718266 +11.138666 55.713866 +11.145413 55.710639 +11.153334 55.707999 +11.161255 55.705359 +11.169175 55.702718 +11.180029 55.701252 +11.189123 55.699198 +11.201151 55.698318 +11.211125 55.698905 +11.216992 55.702718 +11.214352 55.707706 +11.207898 55.710932 +11.201151 55.714159 +11.194404 55.717386 +11.187950 55.720613 +11.181496 55.723840 +11.174749 55.727360 +11.177682 55.729707 +11.187656 55.730294 +11.194404 55.727360 +11.204964 55.725600 +11.212885 55.727654 +11.219632 55.730881 +11.229019 55.728534 +11.235473 55.725600 +11.246034 55.724133 +11.254248 55.726187 +11.260702 55.729120 +11.266569 55.732641 +11.273316 55.735868 +11.284463 55.735868 +11.294437 55.736454 +11.300011 55.739974 +11.307052 55.743201 +11.315852 55.744375 +11.325826 55.744962 +11.335800 55.745842 +11.343721 55.748188 +11.349588 55.751709 +11.354868 55.755229 +11.360736 55.759043 +11.365723 55.764030 +11.369536 55.769310 +11.371883 55.775470 +11.370710 55.781044 +11.369829 55.786618 +11.370123 55.792778 +11.372470 55.798939 +11.375403 55.805099 +11.372763 55.810086 +11.368949 55.814487 +11.363376 55.816540 +11.356629 55.820060 +11.351348 55.823874 +11.346068 55.827687 +11.348708 55.832381 +11.355748 55.832088 +11.365136 55.829741 +11.370416 55.827101 +11.378630 55.824754 +11.388017 55.822407 +11.400045 55.821527 +11.408846 55.822994 +11.417060 55.825341 +11.423513 55.827981 +11.428207 55.832674 +11.434074 55.836488 +11.441115 55.839422 +11.451675 55.837662 +11.462529 55.836488 +11.473384 55.836195 +11.481304 55.838248 +11.487171 55.842355 +11.491865 55.846755 +11.496559 55.851156 +11.500372 55.856436 +11.503012 55.862303 +11.506533 55.867584 +11.508293 55.874037 +11.511813 55.879318 +11.513573 55.886358 +11.516213 55.892225 +11.516507 55.898679 +11.513866 55.903666 +11.512693 55.909240 +11.510346 55.914227 +11.507706 55.919214 +11.502426 55.923028 +11.497439 55.926841 +11.492158 55.930948 +11.485411 55.933882 +11.478957 55.937109 +11.470743 55.940042 +11.460183 55.941509 +11.449329 55.942682 +11.437301 55.943562 +11.425273 55.944736 +11.414126 55.944736 +11.401805 55.945616 +11.392418 55.946496 +11.380390 55.947083 +11.370416 55.947963 +11.359855 55.949430 +11.351935 55.952363 +11.344014 55.954710 +11.337267 55.957937 +11.327880 55.959990 +11.319666 55.962924 +11.310572 55.964684 +11.301185 55.967031 +11.291797 55.968791 +11.283583 55.971724 +11.278303 55.975245 +11.274489 55.979645 +11.276249 55.986686 +11.273609 55.991673 +11.278303 55.990499 +11.285050 55.987272 +11.292677 55.984632 +11.303531 55.983459 +11.312919 55.981112 +11.321133 55.978472 +11.329053 55.975831 +11.338441 55.973778 +11.349295 55.972311 +11.358682 55.970258 +11.368069 55.967911 +11.377163 55.966151 +11.386551 55.963804 +11.397405 55.962630 +11.409432 55.961750 +11.420580 55.961457 +11.430554 55.962337 +11.441701 55.962044 +11.452849 55.962044 +11.464583 55.961164 +11.474264 55.958817 +11.482184 55.956470 +11.491572 55.954123 +11.500959 55.952363 +11.511813 55.950603 +11.521494 55.950016 +11.532641 55.949723 +11.542615 55.950310 +11.551416 55.951776 +11.560216 55.952950 +11.572537 55.952363 +11.579285 55.948843 +11.582805 55.944443 +11.588085 55.940922 +11.596006 55.937989 +11.606860 55.936522 +11.615954 55.937989 +11.623581 55.940042 +11.632675 55.941509 +11.643529 55.941509 +11.654677 55.941216 +11.664651 55.941802 +11.672865 55.943856 +11.681665 55.945323 +11.689586 55.947376 +11.697506 55.949723 +11.706307 55.951190 +11.714521 55.953243 +11.722148 55.955297 +11.730362 55.957643 +11.737989 55.959697 +11.745030 55.962630 +11.752950 55.964684 +11.764098 55.964684 +11.773192 55.962630 +11.778472 55.958524 +11.782579 55.954123 +11.778472 55.948843 +11.772018 55.946203 +11.764978 55.942976 +11.757937 55.940336 +11.752364 55.936522 +11.746497 55.932708 +11.742683 55.927428 +11.740043 55.921561 +11.741216 55.915987 +11.743563 55.911000 +11.747083 55.906600 +11.751190 55.902199 +11.753537 55.896919 +11.753244 55.890759 +11.752070 55.885478 +11.747083 55.881078 +11.737109 55.880198 +11.728015 55.882545 +11.720095 55.885185 +11.711881 55.887825 +11.705427 55.891052 +11.697506 55.893986 +11.690759 55.896919 +11.682839 55.899853 +11.674918 55.902493 +11.664064 55.903960 +11.654090 55.903373 +11.649396 55.898973 +11.645876 55.893692 +11.644409 55.888118 +11.647049 55.883131 +11.652330 55.879318 +11.657317 55.875504 +11.663771 55.872277 +11.670518 55.868757 +11.675798 55.864943 +11.680785 55.861423 +11.684599 55.857023 +11.689879 55.852916 +11.695160 55.849102 +11.699266 55.844702 +11.704253 55.840888 +11.708067 55.836488 +11.711881 55.832088 +11.714521 55.826807 +11.716868 55.821820 +11.719508 55.816833 +11.721561 55.811846 +11.722735 55.806273 +11.718041 55.801872 +11.710414 55.799819 +11.698093 55.800699 +11.688999 55.802752 +11.680785 55.805393 +11.673158 55.808033 +11.664944 55.810966 +11.655850 55.812726 +11.643529 55.813606 +11.634729 55.812140 +11.631208 55.807153 +11.632088 55.801286 +11.634729 55.796299 +11.633262 55.791018 +11.626515 55.788085 +11.618594 55.786031 +11.609793 55.784564 +11.601579 55.782511 +11.598353 55.778697 +11.602166 55.774297 +11.611554 55.771950 +11.620941 55.769897 +11.631502 55.768430 +11.642356 55.768430 +11.652623 55.769017 +11.661424 55.770190 +11.669051 55.772537 +11.677265 55.774590 +11.684892 55.776644 +11.692813 55.778991 +11.700733 55.781044 +11.709827 55.782511 +11.721561 55.781631 +11.729775 55.778991 +11.735349 55.776350 +11.741803 55.773124 +11.747083 55.769310 +11.750897 55.764616 +11.754710 55.760216 +11.750017 55.755816 +11.740043 55.755229 +11.736816 55.752882 +11.741803 55.748775 +11.744736 55.745255 +11.750017 55.741441 +11.752364 55.736454 +11.756471 55.732054 +11.761458 55.727947 +11.763804 55.722960 +11.767911 55.718560 +11.771725 55.714159 +11.773778 55.709172 +11.777885 55.704772 +11.783166 55.700958 +11.788153 55.696851 +11.793433 55.693331 +11.794607 55.688931 +11.795780 55.683357 +11.791086 55.678957 +11.786393 55.674556 +11.780526 55.670743 +11.777005 55.665462 +11.777005 55.660475 +11.786393 55.659889 +11.792260 55.663702 +11.798127 55.667223 +11.803994 55.671036 +11.812795 55.672503 +11.818662 55.676023 +11.821009 55.681890 +11.822769 55.688931 +11.825702 55.694798 +11.827169 55.701545 +11.830103 55.707412 +11.833623 55.712693 +11.837436 55.717973 +11.843303 55.721787 +11.849171 55.725600 +11.853864 55.730000 +11.855331 55.735281 +11.850051 55.739094 +11.844770 55.743201 +11.842130 55.748188 +11.840077 55.753175 +11.840370 55.759043 +11.840663 55.765496 +11.843303 55.771363 +11.849171 55.774884 +11.855918 55.778111 +11.860611 55.782511 +11.863252 55.788671 +11.866185 55.794538 +11.867359 55.800112 +11.871172 55.805393 +11.877919 55.808033 +11.889067 55.807739 +11.898161 55.809206 +11.904615 55.812140 +11.911655 55.815073 +11.917522 55.818887 +11.922216 55.823287 +11.928083 55.826807 +11.931897 55.832088 +11.935710 55.837368 +11.936003 55.843529 +11.932190 55.847929 +11.926909 55.852036 +11.921922 55.855849 +11.918109 55.860250 +11.914589 55.865237 +11.913415 55.870811 +11.910775 55.875798 +11.909602 55.881371 +11.908722 55.887238 +11.906375 55.892225 +11.904028 55.897212 +11.899921 55.901613 +11.896107 55.906013 +11.895227 55.911587 +11.894054 55.917161 +11.896694 55.923321 +11.902854 55.926841 +11.910482 55.929188 +11.922803 55.928015 +11.931897 55.926255 +11.940110 55.923321 +11.946271 55.920094 +11.954485 55.917161 +11.961232 55.914227 +11.968859 55.911293 +11.975606 55.908067 +11.983527 55.905133 +11.989981 55.902199 +11.995261 55.898386 +11.999075 55.893986 +12.000000 55.892020 +nan nan +12.000000 55.883313 +11.999661 55.881958 +11.996141 55.876678 +11.992328 55.871691 +11.988221 55.866410 +11.986754 55.859370 +11.987634 55.853796 +11.991741 55.849396 +11.998195 55.846169 +12.000000 55.845266 +nan nan +12.000000 55.716701 +11.998781 55.717093 +11.988221 55.718560 +11.978833 55.720906 +11.970033 55.719440 +11.965339 55.715039 +11.962405 55.708879 +11.960939 55.702132 +11.958005 55.695971 +11.954485 55.690691 +11.949791 55.686291 +11.943924 55.682770 +11.938057 55.679250 +11.931016 55.676023 +11.924563 55.673383 +11.918696 55.669863 +11.914589 55.664582 +11.911068 55.659302 +11.913415 55.654022 +11.919869 55.650795 +11.930136 55.651381 +11.935710 55.655195 +11.940697 55.659595 +11.946271 55.663409 +11.953018 55.666049 +11.961525 55.666049 +11.970619 55.667516 +11.981767 55.667516 +11.992328 55.665756 +12.000000 55.664024 +nan nan +12.000000 55.958921 +11.998195 55.958817 +11.987927 55.958230 +11.979127 55.957057 +11.971206 55.954710 +11.962112 55.953243 +11.953311 55.952070 +11.944511 55.950603 +11.934243 55.950016 +11.926323 55.947669 +11.918402 55.945909 +11.910482 55.943562 +11.902561 55.941509 +11.894640 55.939162 +11.886720 55.937109 +11.876746 55.936522 +11.867065 55.937109 +11.860611 55.940629 +11.853864 55.943856 +11.848584 55.947669 +11.846237 55.952656 +11.848877 55.958524 +11.853571 55.963217 +11.859438 55.967031 +11.866478 55.969671 +11.874399 55.972018 +11.881440 55.974951 +11.888187 55.977885 +11.894934 55.980818 +11.900801 55.984339 +11.907841 55.987272 +11.913709 55.991086 +11.919576 55.994606 +11.926323 55.997540 +11.933363 56.000473 +11.940404 56.003407 +11.948324 56.005460 +11.955072 56.008394 +11.962992 56.010447 +11.970033 56.013674 +11.977953 56.015434 +11.983234 56.018074 +11.991447 56.020128 +11.998195 56.023061 +12.000000 56.023739 +nan nan +12.000000 55.678139 +11.997901 55.678663 +11.991447 55.681597 +11.986167 55.685411 +11.983527 55.690691 +11.988514 55.695091 +11.998195 55.695971 +12.000000 55.694618 +nan nan +11.823649 55.786031 +11.825116 55.781924 +11.824822 55.775470 +11.824529 55.769310 +11.824235 55.763443 +11.822475 55.756402 +11.818662 55.751415 +11.811621 55.748188 +11.800767 55.748482 +11.792847 55.751122 +11.787859 55.754936 +11.782579 55.758749 +11.775832 55.762269 +11.772312 55.766670 +11.772018 55.771363 +11.777592 55.774004 +11.784339 55.776644 +11.791086 55.779577 +11.796953 55.783391 +11.802821 55.786911 +11.808688 55.790725 +11.815435 55.793658 +11.820715 55.789845 +11.823649 55.786031 +nan nan +11.638249 56.714498 +11.631502 56.711564 +11.623288 56.709511 +11.616247 56.706284 +11.609207 56.703644 +11.603340 56.699830 +11.598353 56.695136 +11.592485 56.691616 +11.587498 56.687216 +11.582805 56.682816 +11.577818 56.678415 +11.571951 56.674308 +11.565790 56.670788 +11.556696 56.669321 +11.545842 56.670788 +11.540562 56.674602 +11.536455 56.679295 +11.532641 56.683696 +11.527361 56.687509 +11.522080 56.691323 +11.515040 56.694550 +11.509760 56.698363 +11.503012 56.701590 +11.503306 56.707751 +11.510346 56.710978 +11.522374 56.710097 +11.534988 56.708924 +11.544082 56.710684 +11.554349 56.710978 +11.563737 56.712444 +11.572831 56.713911 +11.581925 56.715378 +11.591899 56.715965 +11.600993 56.717138 +11.610380 56.718605 +11.619474 56.720072 +11.628568 56.721245 +11.637662 56.722712 +11.647929 56.723298 +11.648516 56.720072 +11.641476 56.716845 +11.638249 56.714498 +nan nan +11.092903 55.906600 +11.100824 55.904253 +11.107571 55.900733 +11.116958 55.898973 +11.124585 55.896039 +11.132799 55.893692 +11.139546 55.890172 +11.144827 55.886358 +11.150107 55.882545 +11.156561 55.879318 +11.163308 55.876091 +11.170055 55.872864 +11.177976 55.870224 +11.184430 55.866997 +11.182083 55.862597 +11.170349 55.863477 +11.159494 55.864650 +11.151280 55.867290 +11.146000 55.871104 +11.140720 55.874918 +11.135439 55.879024 +11.130159 55.882545 +11.123705 55.885772 +11.117251 55.889292 +11.107864 55.891052 +11.099650 55.893986 +11.091730 55.896332 +11.084982 55.899853 +11.078235 55.902786 +11.071781 55.906013 +11.071781 55.910707 +11.082636 55.910707 +11.092903 55.906600 +nan nan +11.271556 55.786911 +11.276836 55.783098 +11.280943 55.778697 +11.281823 55.773124 +11.273023 55.771657 +11.266275 55.774884 +11.263929 55.779871 +11.262755 55.785444 +11.261582 55.791018 +11.268036 55.792778 +11.271849 55.788378 +11.271556 55.786911 +nan nan +11.173575 55.222497 +11.176802 55.218684 +11.179149 55.213697 +11.182669 55.208710 +11.186776 55.204309 +11.189123 55.199029 +11.192643 55.194629 +11.196750 55.190228 +11.191470 55.188175 +11.183549 55.190815 +11.178269 55.194335 +11.172989 55.198442 +11.169468 55.202843 +11.165655 55.207243 +11.161548 55.211643 +11.159201 55.216630 +11.156561 55.221617 +11.156854 55.227778 +11.165361 55.227778 +11.173575 55.222497 +nan nan +11.146293 55.158839 +11.141893 55.155906 +11.136319 55.152092 +11.133973 55.146225 +11.127225 55.142998 +11.121945 55.146812 +11.120772 55.152386 +11.124585 55.157666 +11.128986 55.162360 +11.135439 55.165293 +11.144533 55.166760 +11.145707 55.162360 +11.146293 55.158839 +nan nan +11.684305 55.176441 +11.684305 55.169987 +11.681372 55.164120 +11.674625 55.161186 +11.664064 55.162653 +11.661717 55.167640 +11.664357 55.173507 +11.669931 55.177614 +11.675798 55.181134 +11.684012 55.179668 +11.684305 55.176441 +nan nan +11.482771 54.900981 +11.490691 54.898634 +11.496852 54.895407 +11.498025 54.889833 +11.493625 54.886607 +11.481891 54.887487 +11.471623 54.888953 +11.463996 54.891594 +11.461356 54.896581 +11.466930 54.900394 +11.475730 54.901568 +11.482771 54.900981 +nan nan +11.516213 54.983414 +11.527067 54.983414 +11.536161 54.981067 +11.543789 54.978720 +11.550242 54.975200 +11.552883 54.970213 +11.549949 54.964052 +11.544375 54.960532 +11.538802 54.957012 +11.532348 54.953785 +11.524427 54.951731 +11.516507 54.953198 +11.510053 54.956425 +11.503306 54.959358 +11.498319 54.963465 +11.494798 54.967866 +11.492158 54.972853 +11.490985 54.978427 +11.496559 54.982240 +11.504479 54.984294 +11.516213 54.983414 +nan nan +11.399458 54.960532 +11.409726 54.959065 +11.420580 54.958772 +11.431141 54.957598 +11.438768 54.954665 +11.445222 54.951731 +11.450209 54.947918 +11.449329 54.943517 +11.439648 54.942931 +11.428794 54.943224 +11.418233 54.943224 +11.408552 54.942637 +11.399752 54.941464 +11.391831 54.939117 +11.386257 54.935303 +11.381857 54.930903 +11.375990 54.927089 +11.367483 54.925916 +11.363669 54.930316 +11.361029 54.935303 +11.357509 54.939704 +11.353695 54.944104 +11.357215 54.949384 +11.366016 54.950851 +11.377750 54.949678 +11.383324 54.953491 +11.382150 54.959065 +11.380977 54.964639 +11.385964 54.963465 +11.399458 54.960532 +nan nan +10.934198 55.136251 +10.931851 55.131557 +10.930678 55.125104 +10.926864 55.119823 +10.925691 55.113076 +10.923051 55.106916 +10.920411 55.100755 +10.916890 55.095475 +10.914543 55.089608 +10.911903 55.083741 +10.909556 55.077874 +10.906916 55.071713 +10.904569 55.065553 +10.901929 55.059686 +10.899582 55.053525 +10.895769 55.048245 +10.892542 55.042964 +10.889902 55.036804 +10.886381 55.031817 +10.884035 55.025950 +10.881394 55.019789 +10.878754 55.013922 +10.875234 55.008642 +10.872007 55.003362 +10.868193 54.998081 +10.863500 54.993681 +10.857926 54.989867 +10.852646 54.986054 +10.847072 54.982240 +10.841498 54.978720 +10.835924 54.974906 +10.830351 54.971093 +10.825657 54.966692 +10.821257 54.962292 +10.817443 54.957012 +10.814216 54.951731 +10.810696 54.946451 +10.808056 54.940290 +10.804536 54.935303 +10.801895 54.929143 +10.799842 54.922983 +10.796028 54.917702 +10.792508 54.912422 +10.789281 54.907435 +10.785468 54.901274 +10.781947 54.895994 +10.778427 54.890714 +10.775787 54.885140 +10.772560 54.879859 +10.768746 54.874579 +10.766400 54.868419 +10.763173 54.863138 +10.760532 54.857271 +10.757012 54.851991 +10.754372 54.845830 +10.751145 54.840550 +10.749678 54.833803 +10.746158 54.827642 +10.743518 54.822069 +10.741171 54.815908 +10.737357 54.810628 +10.734131 54.805347 +10.731784 54.799480 +10.727970 54.794200 +10.725917 54.788040 +10.723276 54.782172 +10.719756 54.776892 +10.717116 54.770732 +10.713889 54.765451 +10.711249 54.759584 +10.708902 54.753717 +10.705675 54.748437 +10.703035 54.742276 +10.699515 54.736996 +10.695994 54.731715 +10.689541 54.728782 +10.683087 54.725848 +10.673406 54.724968 +10.666659 54.728195 +10.660205 54.731422 +10.656392 54.735822 +10.653751 54.740809 +10.652871 54.746383 +10.652871 54.752837 +10.654045 54.759584 +10.655512 54.766038 +10.654338 54.771612 +10.653165 54.777185 +10.651991 54.782759 +10.650818 54.788626 +10.649351 54.794200 +10.647004 54.799187 +10.644364 54.804174 +10.640550 54.808281 +10.636737 54.812681 +10.631750 54.816788 +10.625003 54.819722 +10.618549 54.822949 +10.609455 54.825002 +10.600361 54.827056 +10.592440 54.829696 +10.594787 54.834096 +10.605348 54.834096 +10.615909 54.832923 +10.625589 54.833509 +10.634097 54.834976 +10.640844 54.837910 +10.645244 54.842603 +10.647884 54.848471 +10.649058 54.855218 +10.650231 54.860498 +10.652871 54.866658 +10.659032 54.869592 +10.669006 54.870179 +10.680740 54.869299 +10.691301 54.869299 +10.698048 54.872526 +10.703622 54.876046 +10.705969 54.882206 +10.703622 54.887193 +10.700981 54.892180 +10.697168 54.896581 +10.691887 54.900394 +10.682794 54.902448 +10.673406 54.903034 +10.664606 54.901568 +10.659325 54.905381 +10.661965 54.911248 +10.666366 54.915942 +10.671059 54.920342 +10.675460 54.925036 +10.681033 54.928556 +10.685434 54.932957 +10.690421 54.937357 +10.694821 54.942344 +10.698341 54.947624 +10.703915 54.951145 +10.708315 54.955545 +10.712716 54.959945 +10.718289 54.963759 +10.722983 54.968452 +10.728557 54.971973 +10.735304 54.974906 +10.740878 54.979013 +10.747625 54.981653 +10.753199 54.985467 +10.759359 54.988694 +10.766106 54.991334 +10.772853 54.994561 +10.779307 54.997495 +10.784881 55.001015 +10.790455 55.005122 +10.795148 55.009522 +10.800722 55.013042 +10.805416 55.017443 +10.810696 55.021256 +10.815683 55.025950 +10.821257 55.029470 +10.826537 55.033284 +10.831231 55.037684 +10.836805 55.041498 +10.841498 55.046191 +10.845899 55.050592 +10.846192 55.056752 +10.846192 55.062913 +10.847659 55.069660 +10.849125 55.076407 +10.849125 55.082567 +10.850592 55.089314 +10.854112 55.094595 +10.856753 55.100462 +10.859099 55.106622 +10.863793 55.111023 +10.867313 55.116303 +10.870834 55.121583 +10.875527 55.125984 +10.879928 55.130677 +10.885501 55.134491 +10.891368 55.138011 +10.896942 55.141825 +10.902516 55.145639 +10.908090 55.149159 +10.913663 55.152972 +10.920411 55.156199 +10.928624 55.154732 +10.929798 55.149159 +10.930971 55.143585 +10.934198 55.136251 +nan nan +10.644951 55.575989 +10.650231 55.572469 +10.654045 55.568069 +10.658152 55.563669 +10.661965 55.559268 +10.664312 55.554281 +10.665779 55.548707 +10.668419 55.543720 +10.674873 55.540494 +10.678980 55.536093 +10.682794 55.531693 +10.685434 55.526706 +10.688074 55.521719 +10.690421 55.516732 +10.693354 55.511745 +10.697168 55.507344 +10.702448 55.503238 +10.708902 55.500304 +10.715649 55.497077 +10.720930 55.493263 +10.727383 55.490037 +10.732664 55.486223 +10.736771 55.481823 +10.739118 55.476836 +10.733544 55.473022 +10.722690 55.473022 +10.711542 55.473315 +10.701862 55.472435 +10.693061 55.470969 +10.685140 55.468915 +10.679860 55.465101 +10.674873 55.460701 +10.672526 55.454541 +10.673993 55.448967 +10.676340 55.443980 +10.678980 55.438993 +10.682794 55.434006 +10.686607 55.429312 +10.690421 55.424912 +10.694528 55.420805 +10.699808 55.416991 +10.705088 55.413178 +10.710369 55.409364 +10.716823 55.406137 +10.722103 55.402324 +10.727383 55.398510 +10.732664 55.394696 +10.737651 55.390883 +10.742931 55.387363 +10.747038 55.382669 +10.752318 55.378855 +10.756132 55.374455 +10.761412 55.370935 +10.766693 55.366828 +10.770506 55.362427 +10.774320 55.358027 +10.779600 55.354507 +10.783707 55.350107 +10.787521 55.345413 +10.792801 55.341599 +10.796615 55.337199 +10.800429 55.333092 +10.805709 55.329278 +10.809816 55.324585 +10.813630 55.320184 +10.817443 55.315784 +10.821257 55.311677 +10.825364 55.307277 +10.829177 55.302876 +10.831524 55.297889 +10.832698 55.292316 +10.828297 55.287915 +10.823017 55.291436 +10.817737 55.295249 +10.812456 55.299063 +10.806002 55.302290 +10.798082 55.304930 +10.788694 55.305517 +10.781947 55.302583 +10.778427 55.297303 +10.775787 55.291436 +10.774320 55.284395 +10.775493 55.278821 +10.775493 55.272661 +10.776667 55.267087 +10.778134 55.261807 +10.779307 55.256233 +10.780481 55.250366 +10.783121 55.245379 +10.784294 55.239805 +10.786641 55.234818 +10.788108 55.229245 +10.790455 55.224257 +10.791628 55.218684 +10.793095 55.213110 +10.794268 55.207536 +10.792801 55.200789 +10.792508 55.194335 +10.791041 55.187882 +10.789868 55.180841 +10.787228 55.174974 +10.785761 55.167933 +10.783414 55.162360 +10.780774 55.156199 +10.778427 55.150039 +10.775787 55.144172 +10.773440 55.138011 +10.770800 55.131851 +10.769333 55.125397 +10.766986 55.119237 +10.764346 55.113370 +10.761999 55.107209 +10.758479 55.101929 +10.753492 55.096942 +10.750265 55.091661 +10.747918 55.085501 +10.746451 55.078754 +10.743811 55.072887 +10.740291 55.067606 +10.733544 55.064379 +10.726210 55.062326 +10.715356 55.062619 +10.704502 55.062619 +10.693941 55.063793 +10.682207 55.064673 +10.673406 55.063206 +10.665779 55.061152 +10.656978 55.059392 +10.647298 55.058806 +10.637910 55.059392 +10.627350 55.060859 +10.616495 55.060859 +10.607695 55.059392 +10.599188 55.057926 +10.592440 55.054992 +10.584813 55.052645 +10.578066 55.049712 +10.571612 55.046778 +10.566038 55.042964 +10.560465 55.039151 +10.554011 55.036511 +10.546090 55.034164 +10.538757 55.031817 +10.529663 55.029764 +10.519982 55.028883 +10.510301 55.028297 +10.498274 55.029177 +10.489180 55.031230 +10.482432 55.034164 +10.475979 55.037391 +10.466885 55.039444 +10.456324 55.040911 +10.445470 55.040911 +10.434616 55.040911 +10.424055 55.040911 +10.413494 55.042084 +10.402933 55.043551 +10.395306 55.046191 +10.388559 55.049418 +10.381812 55.052645 +10.375651 55.055872 +10.367438 55.058219 +10.355703 55.059099 +10.346023 55.058219 +10.335169 55.058219 +10.324608 55.059686 +10.314047 55.061152 +10.307300 55.062913 +10.297913 55.064966 +10.290285 55.067606 +10.281191 55.069366 +10.274444 55.072887 +10.266524 55.075233 +10.258603 55.077874 +10.250976 55.080514 +10.244229 55.083741 +10.237775 55.086968 +10.231028 55.089901 +10.224574 55.093128 +10.218120 55.096355 +10.209026 55.098408 +10.204039 55.094008 +10.201692 55.086968 +10.200226 55.080220 +10.199052 55.073473 +10.199052 55.067313 +10.195532 55.062033 +10.187611 55.063206 +10.183504 55.067900 +10.178224 55.071420 +10.172944 55.075233 +10.167663 55.078754 +10.161209 55.082274 +10.153289 55.084621 +10.142728 55.086088 +10.132167 55.087554 +10.122487 55.086674 +10.112806 55.085794 +10.103125 55.085207 +10.093445 55.084327 +10.082590 55.084327 +10.070563 55.085207 +10.069096 55.090781 +10.072616 55.094595 +10.078190 55.098408 +10.082297 55.101635 +10.088751 55.104862 +10.095205 55.107502 +10.103125 55.110143 +10.109579 55.112783 +10.118380 55.114543 +10.126887 55.115716 +10.135688 55.117476 +10.143315 55.119823 +10.150942 55.121877 +10.154462 55.127157 +10.152995 55.132731 +10.150649 55.137718 +10.145368 55.141532 +10.140968 55.145932 +10.137154 55.150332 +10.133341 55.154732 +10.130701 55.159720 +10.128060 55.164707 +10.124247 55.168814 +10.121313 55.173801 +10.118966 55.178788 +10.113686 55.182895 +10.108406 55.186415 +10.099018 55.188468 +10.091684 55.187588 +10.087284 55.183188 +10.082590 55.178494 +10.077310 55.174681 +10.068216 55.172920 +10.058829 55.173801 +10.049735 55.175854 +10.041521 55.178201 +10.035067 55.181428 +10.029787 55.185241 +10.023333 55.188468 +10.016586 55.192282 +10.006025 55.193749 +9.998691 55.191402 +9.993117 55.187588 +9.989304 55.182308 +9.990770 55.176734 +9.993704 55.171747 +9.998984 55.167933 +10.002798 55.163533 +10.006612 55.159133 +10.010719 55.154732 +10.015999 55.151212 +10.020106 55.146812 +10.023920 55.142118 +10.026560 55.137131 +10.030667 55.133024 +10.030667 55.126864 +10.025973 55.122170 +10.017466 55.120703 +10.005438 55.121290 +9.994877 55.122757 +9.986957 55.125397 +9.980503 55.128624 +9.982557 55.133318 +9.990184 55.135664 +9.997811 55.137718 +9.998984 55.143292 +9.994877 55.147399 +9.990770 55.151799 +9.985490 55.155906 +9.981677 55.160013 +9.979036 55.165000 +9.976396 55.169987 +9.973756 55.174974 +9.972583 55.180548 +9.972289 55.186708 +9.974636 55.192869 +9.979036 55.197269 +9.982557 55.202549 +9.982263 55.207536 +9.976983 55.211057 +9.970236 55.214577 +9.961142 55.216337 +9.949114 55.216924 +9.938260 55.216924 +9.927699 55.218390 +9.920952 55.220151 +9.915672 55.223964 +9.908925 55.227191 +9.903644 55.230711 +9.898364 55.234818 +9.894550 55.238925 +9.890443 55.243326 +9.886336 55.247726 +9.883696 55.252713 +9.883696 55.258873 +9.887216 55.264154 +9.891617 55.268554 +9.895137 55.273834 +9.897190 55.279995 +9.897190 55.286155 +9.895724 55.291729 +9.893377 55.296716 +9.890443 55.301703 +9.886630 55.306103 +9.882523 55.310504 +9.878709 55.314611 +9.875776 55.319598 +9.873429 55.324585 +9.876656 55.329865 +9.884576 55.332212 +9.888977 55.336906 +9.887510 55.342479 +9.882229 55.346000 +9.872842 55.348053 +9.861988 55.348053 +9.852307 55.347173 +9.841453 55.347173 +9.832946 55.348640 +9.825025 55.350987 +9.816811 55.353627 +9.809184 55.355974 +9.802437 55.359201 +9.797157 55.363014 +9.791583 55.366534 +9.786302 55.370641 +9.782489 55.375042 +9.784542 55.379735 +9.792170 55.382082 +9.801850 55.382669 +9.812704 55.382669 +9.822678 55.383256 +9.830306 55.385896 +9.835586 55.387949 +9.839986 55.391469 +9.842920 55.395283 +9.836466 55.398217 +9.827079 55.400270 +9.819158 55.403497 +9.811238 55.406137 +9.800677 55.407604 +9.792170 55.408484 +9.783076 55.410538 +9.788356 55.413178 +9.799210 55.413178 +9.811238 55.412298 +9.820038 55.413764 +9.821798 55.418751 +9.813878 55.421098 +9.807131 55.424032 +9.798037 55.426085 +9.787476 55.427552 +9.776622 55.429019 +9.766061 55.430192 +9.756380 55.429312 +9.745526 55.430779 +9.738779 55.434006 +9.732325 55.436939 +9.728218 55.441340 +9.722645 55.444860 +9.718831 55.449554 +9.713257 55.453367 +9.707977 55.456888 +9.702696 55.460701 +9.703577 55.464808 +9.714137 55.463635 +9.722351 55.460701 +9.728805 55.457768 +9.734085 55.454247 +9.740833 55.450727 +9.748753 55.448380 +9.755500 55.445153 +9.762247 55.441926 +9.770168 55.439580 +9.778382 55.436939 +9.786302 55.434299 +9.796863 55.433126 +9.806251 55.432539 +9.810944 55.436939 +9.805664 55.440753 +9.800383 55.444567 +9.793636 55.447794 +9.788356 55.451314 +9.781609 55.454834 +9.778969 55.459821 +9.773688 55.463341 +9.768115 55.467155 +9.759021 55.469208 +9.748166 55.470382 +9.738779 55.472142 +9.729392 55.474195 +9.724111 55.478009 +9.718831 55.481529 +9.713257 55.485636 +9.704163 55.487396 +9.694776 55.489450 +9.685389 55.491503 +9.678641 55.494437 +9.675708 55.499424 +9.680402 55.503824 +9.688029 55.506171 +9.695949 55.508518 +9.704750 55.509985 +9.714431 55.510865 +9.724111 55.511745 +9.732032 55.513798 +9.737606 55.517905 +9.741126 55.523186 +9.743473 55.529053 +9.744353 55.535800 +9.749046 55.540200 +9.759901 55.540494 +9.770461 55.539027 +9.781609 55.539027 +9.790409 55.540494 +9.799210 55.542254 +9.805957 55.545187 +9.813584 55.547534 +9.824439 55.547534 +9.832359 55.544894 +9.835293 55.539907 +9.835293 55.533746 +9.835293 55.527879 +9.837933 55.522892 +9.843213 55.518785 +9.849960 55.515852 +9.856708 55.512625 +9.864628 55.509985 +9.874309 55.507931 +9.883403 55.506171 +9.895137 55.505584 +9.905404 55.506171 +9.914205 55.507638 +9.921539 55.509985 +9.928286 55.512918 +9.936207 55.515265 +9.942660 55.518199 +9.949408 55.521425 +9.956155 55.524359 +9.962902 55.527586 +9.969356 55.530519 +9.976103 55.533746 +9.982850 55.536387 +9.990477 55.539027 +9.998104 55.541080 +10.006905 55.542547 +10.013652 55.545481 +10.021279 55.547827 +10.029200 55.550174 +10.036534 55.552521 +10.045628 55.553988 +10.055602 55.554868 +10.065283 55.555455 +10.074083 55.556921 +10.082004 55.559268 +10.089631 55.561322 +10.097551 55.564549 +10.105179 55.566602 +10.114859 55.567482 +10.125127 55.568069 +10.132754 55.570416 +10.140675 55.572762 +10.149182 55.574229 +10.156809 55.576283 +10.164730 55.578630 +10.171477 55.581563 +10.177931 55.584790 +10.183504 55.588604 +10.190545 55.591537 +10.197292 55.594471 +10.203746 55.597404 +10.212546 55.599164 +10.222520 55.599751 +10.232495 55.600631 +10.241002 55.601805 +10.250976 55.602685 +10.260070 55.604151 +10.269164 55.602098 +10.274738 55.598578 +10.274444 55.592417 +10.277084 55.587430 +10.281191 55.583030 +10.289992 55.584497 +10.295566 55.588310 +10.297913 55.594177 +10.296739 55.600044 +10.294099 55.604738 +10.291459 55.609725 +10.290285 55.615592 +10.298793 55.617059 +10.309940 55.617059 +10.319034 55.615006 +10.327248 55.612365 +10.333995 55.609138 +10.340449 55.606205 +10.347196 55.602685 +10.353943 55.599751 +10.361864 55.596818 +10.370078 55.594471 +10.380638 55.593004 +10.390026 55.591244 +10.399120 55.589190 +10.405867 55.585963 +10.411147 55.582150 +10.416428 55.578336 +10.419068 55.573349 +10.423175 55.568949 +10.425815 55.563962 +10.431095 55.560148 +10.436376 55.556335 +10.443123 55.553108 +10.449577 55.549881 +10.457497 55.547534 +10.468351 55.546067 +10.480379 55.545187 +10.490940 55.544014 +10.498860 55.541080 +10.507074 55.538733 +10.513528 55.535506 +10.519982 55.532280 +10.529369 55.530226 +10.536116 55.526999 +10.541397 55.523479 +10.536410 55.522306 +10.529663 55.525532 +10.522915 55.528466 +10.514995 55.531106 +10.505901 55.533453 +10.494753 55.533453 +10.485073 55.532573 +10.477152 55.530226 +10.472458 55.525826 +10.470112 55.519665 +10.474219 55.515265 +10.479499 55.511745 +10.484779 55.507638 +10.490060 55.503824 +10.492407 55.498837 +10.491526 55.493557 +10.484779 55.490623 +10.475979 55.488276 +10.466885 55.486810 +10.459257 55.484756 +10.452510 55.481529 +10.445763 55.478596 +10.440189 55.475075 +10.434616 55.470969 +10.428162 55.468328 +10.422295 55.464515 +10.418775 55.459234 +10.416428 55.453074 +10.417894 55.447500 +10.420241 55.442513 +10.425522 55.438993 +10.437549 55.438113 +10.446350 55.439580 +10.458377 55.438700 +10.468938 55.437233 +10.478619 55.438113 +10.485659 55.441046 +10.488886 55.446327 +10.491526 55.452194 +10.491526 55.458648 +10.493873 55.464515 +10.503554 55.463928 +10.512648 55.461875 +10.522329 55.461288 +10.531129 55.462755 +10.537876 55.465688 +10.544330 55.468622 +10.550197 55.472435 +10.556944 55.475662 +10.564865 55.477716 +10.573372 55.479182 +10.584520 55.479182 +10.593027 55.480649 +10.600948 55.482703 +10.606521 55.486810 +10.608868 55.492383 +10.607695 55.497957 +10.603881 55.502357 +10.598601 55.506464 +10.591854 55.509398 +10.582466 55.511745 +10.571906 55.512918 +10.565158 55.516145 +10.563985 55.520252 +10.566919 55.524359 +10.574839 55.526706 +10.585693 55.526413 +10.592440 55.523479 +10.596254 55.518785 +10.601534 55.514972 +10.611508 55.515852 +10.614735 55.519665 +10.614735 55.525826 +10.615029 55.532280 +10.612095 55.537267 +10.609748 55.542254 +10.605935 55.546361 +10.603001 55.551348 +10.599188 55.555748 +10.598014 55.561322 +10.596547 55.566895 +10.595667 55.572469 +10.594200 55.578336 +10.596254 55.575403 +10.598601 55.570416 +10.602414 55.565722 +10.609162 55.562788 +10.617962 55.564255 +10.616789 55.569829 +10.615615 55.575403 +10.615615 55.581563 +10.614442 55.587137 +10.612975 55.592711 +10.610628 55.597698 +10.607695 55.602685 +10.603881 55.607085 +10.609748 55.610899 +10.616495 55.609138 +10.617669 55.603271 +10.620309 55.598578 +10.624416 55.594177 +10.628230 55.589777 +10.632337 55.585377 +10.636150 55.580976 +10.644951 55.575989 +nan nan +10.699808 55.039444 +10.696288 55.035631 +10.689834 55.032404 +10.678980 55.032404 +10.673993 55.036511 +10.671059 55.041498 +10.663432 55.043845 +10.667539 55.047365 +10.677220 55.047658 +10.688074 55.047658 +10.696288 55.046485 +10.699808 55.039444 +nan nan +10.596547 54.918582 +10.604761 54.917409 +10.609748 54.913595 +10.612388 54.908608 +10.610042 54.902448 +10.605641 54.898047 +10.598014 54.897167 +10.594200 54.901568 +10.590387 54.905968 +10.586280 54.910368 +10.583933 54.915355 +10.589507 54.919169 +10.596547 54.918582 +nan nan +10.634097 55.036511 +10.635270 55.030937 +10.639084 55.026243 +10.644364 55.022430 +10.645831 55.016856 +10.643191 55.010695 +10.638497 55.006295 +10.635270 55.001015 +10.632923 54.995148 +10.635270 54.990161 +10.643191 54.987520 +10.651991 54.989281 +10.658738 54.991921 +10.664899 54.994854 +10.674580 54.994561 +10.677220 54.989574 +10.674580 54.983414 +10.671059 54.978133 +10.666659 54.973733 +10.659032 54.971386 +10.649351 54.971973 +10.638790 54.972266 +10.632337 54.969039 +10.627643 54.964639 +10.622949 54.959945 +10.619722 54.954665 +10.615029 54.950264 +10.604468 54.950264 +10.596254 54.951731 +10.588040 54.952905 +10.581293 54.949971 +10.575132 54.947038 +10.565158 54.946158 +10.555771 54.947038 +10.549024 54.949971 +10.545210 54.954371 +10.539930 54.958478 +10.536410 54.963465 +10.532596 54.967866 +10.528489 54.971973 +10.523209 54.975786 +10.517048 54.979013 +10.512941 54.983414 +10.510301 54.988401 +10.507661 54.993388 +10.503847 54.997788 +10.498567 55.001601 +10.498567 55.006295 +10.505021 55.009522 +10.512355 55.010402 +10.519982 55.012456 +10.530836 55.012456 +10.540517 55.013042 +10.548437 55.015389 +10.554598 55.016856 +10.561931 55.017736 +10.569852 55.020083 +10.576306 55.023016 +10.583933 55.025363 +10.589507 55.029177 +10.596254 55.031817 +10.601534 55.035924 +10.608281 55.038858 +10.615029 55.041791 +10.622363 55.043845 +10.632043 55.043258 +10.634977 55.039738 +10.634097 55.036511 +nan nan +10.204332 54.966692 +10.209613 54.963172 +10.214893 54.959065 +10.221347 54.956132 +10.228094 54.952905 +10.234548 54.949678 +10.243642 54.947918 +10.253029 54.945571 +10.260950 54.942931 +10.268577 54.940584 +10.277671 54.938530 +10.285592 54.936183 +10.292339 54.932663 +10.298793 54.929730 +10.306713 54.927089 +10.311994 54.923276 +10.316981 54.919462 +10.322261 54.915942 +10.326075 54.911248 +10.329888 54.906848 +10.335169 54.903328 +10.340449 54.899514 +10.346903 54.896287 +10.353650 54.893060 +10.360104 54.890127 +10.368024 54.887193 +10.378292 54.885727 +10.387972 54.886607 +10.394719 54.889833 +10.397946 54.895114 +10.397066 54.900688 +10.394133 54.905675 +10.391786 54.910662 +10.389146 54.915649 +10.387386 54.919756 +10.391493 54.915355 +10.396773 54.911248 +10.403227 54.908315 +10.408214 54.904501 +10.411147 54.899514 +10.412321 54.893940 +10.413494 54.888367 +10.412321 54.881620 +10.413201 54.876046 +10.417308 54.871646 +10.425228 54.869299 +10.431682 54.865778 +10.440776 54.864018 +10.452510 54.863138 +10.461311 54.864605 +10.465711 54.869299 +10.465711 54.875166 +10.460431 54.879273 +10.455150 54.882793 +10.450163 54.886607 +10.447523 54.891594 +10.450750 54.895701 +10.457204 54.892180 +10.463951 54.889247 +10.470405 54.885727 +10.475685 54.882206 +10.483313 54.879859 +10.490060 54.876339 +10.496513 54.873406 +10.500327 54.869005 +10.501794 54.863432 +10.500327 54.856391 +10.504141 54.852284 +10.509128 54.848471 +10.518222 54.846417 +10.513235 54.845244 +10.502674 54.845244 +10.492993 54.844657 +10.482139 54.844657 +10.472458 54.843777 +10.460724 54.844657 +10.449870 54.844657 +10.441363 54.843190 +10.432856 54.841723 +10.427282 54.837910 +10.423762 54.832923 +10.420241 54.827642 +10.415841 54.822949 +10.407334 54.821482 +10.399413 54.824122 +10.394133 54.827642 +10.387679 54.831163 +10.381225 54.834096 +10.375945 54.837910 +10.369491 54.841137 +10.363037 54.844364 +10.356290 54.847590 +10.351010 54.851404 +10.344849 54.854338 +10.336929 54.857858 +10.330475 54.860791 +10.324021 54.864312 +10.319914 54.868712 +10.314634 54.872232 +10.309647 54.876046 +10.304366 54.879859 +10.300553 54.884260 +10.293806 54.887487 +10.286178 54.890127 +10.278258 54.892474 +10.270337 54.895114 +10.262417 54.897754 +10.254789 54.900394 +10.248336 54.904208 +10.243055 54.907728 +10.239242 54.912128 +10.235135 54.916529 +10.231321 54.921222 +10.226041 54.924743 +10.222227 54.929143 +10.218414 54.933543 +10.214307 54.937650 +10.210200 54.942344 +10.205213 54.946158 +10.199932 54.949678 +10.196119 54.954078 +10.190838 54.958185 +10.188198 54.963172 +10.185558 54.968159 +10.184091 54.973733 +10.188491 54.978133 +10.195239 54.974613 +10.204332 54.966692 +nan nan +9.763127 55.069660 +9.773982 55.069953 +9.781902 55.068486 +9.791290 55.066726 +9.800677 55.064673 +9.808304 55.062326 +9.817691 55.060272 +9.825612 55.057632 +9.833239 55.055285 +9.839986 55.052352 +9.845267 55.048245 +9.852014 55.045311 +9.857294 55.041498 +9.862575 55.037684 +9.867855 55.033870 +9.873135 55.030350 +9.879589 55.026830 +9.884870 55.023310 +9.891617 55.020083 +9.898071 55.016856 +9.905991 55.014509 +9.913912 55.011869 +9.921832 55.009522 +9.931220 55.007469 +9.940314 55.005415 +9.947941 55.002775 +9.954688 54.999841 +9.961435 54.996614 +9.966715 54.992801 +9.971996 54.989281 +9.975809 54.984587 +9.981090 54.980773 +9.984903 54.976666 +9.991651 54.973439 +9.996931 54.969626 +10.002211 54.965812 +10.007492 54.962292 +10.012772 54.958478 +10.016586 54.953785 +10.020693 54.949678 +10.023333 54.944691 +10.027146 54.940290 +10.029787 54.935303 +10.032427 54.930316 +10.035067 54.925329 +10.036534 54.919756 +10.038881 54.914769 +10.040347 54.909195 +10.042988 54.904208 +10.045628 54.899221 +10.046801 54.893647 +10.050908 54.888660 +10.053255 54.883673 +10.055895 54.878686 +10.047095 54.877219 +10.036534 54.877219 +10.026853 54.876339 +10.017172 54.875752 +10.010425 54.872819 +10.004265 54.869592 +9.996344 54.867539 +9.985783 54.867539 +9.976689 54.869299 +9.968769 54.871939 +9.960848 54.874579 +9.952928 54.876926 +9.945301 54.879566 +9.937087 54.881913 +9.929459 54.884846 +9.922712 54.887780 +9.916258 54.890714 +9.908338 54.893647 +9.903058 54.897167 +9.895137 54.899808 +9.887510 54.902154 +9.876656 54.902154 +9.869908 54.899221 +9.862575 54.896874 +9.857001 54.893354 +9.850547 54.890420 +9.843800 54.887193 +9.834413 54.886313 +9.822385 54.887193 +9.813291 54.889247 +9.804197 54.891007 +9.797450 54.894234 +9.792170 54.897754 +9.786889 54.901568 +9.783076 54.905968 +9.779262 54.910368 +9.776328 54.915355 +9.773982 54.920342 +9.772515 54.925916 +9.769581 54.930903 +9.768408 54.936477 +9.765474 54.941464 +9.764301 54.947038 +9.761661 54.952025 +9.759021 54.957012 +9.756380 54.961999 +9.756380 54.968159 +9.760487 54.971093 +9.770755 54.969919 +9.777502 54.966692 +9.784249 54.963465 +9.790703 54.960532 +9.795983 54.956718 +9.800090 54.952318 +9.803904 54.947918 +9.807717 54.943517 +9.811824 54.939117 +9.814465 54.934130 +9.819745 54.930610 +9.830306 54.929143 +9.837640 54.931490 +9.843213 54.935303 +9.845853 54.941464 +9.845560 54.947624 +9.842920 54.952611 +9.840280 54.957598 +9.834999 54.961119 +9.829719 54.964932 +9.821798 54.967572 +9.813878 54.969919 +9.806251 54.972559 +9.798330 54.974906 +9.791583 54.978427 +9.786302 54.981947 +9.785129 54.987520 +9.786009 54.993094 +9.787183 54.999841 +9.779555 55.002188 +9.769875 55.004242 +9.759314 55.004242 +9.748753 55.004242 +9.737899 55.004242 +9.725871 55.004828 +9.716777 55.006589 +9.707390 55.008642 +9.698296 55.010695 +9.689202 55.012456 +9.680988 55.015096 +9.673361 55.017443 +9.666614 55.020963 +9.661334 55.024483 +9.661040 55.029470 +9.669841 55.030937 +9.677175 55.032990 +9.685095 55.035631 +9.691256 55.038564 +9.695949 55.042964 +9.689202 55.046191 +9.677468 55.047071 +9.668667 55.045311 +9.659867 55.043845 +9.651359 55.042084 +9.639332 55.042964 +9.630238 55.045018 +9.626424 55.049125 +9.627304 55.054699 +9.633758 55.057632 +9.641385 55.059979 +9.649013 55.062326 +9.654586 55.066139 +9.662214 55.068193 +9.669841 55.070540 +9.678348 55.072300 +9.686855 55.073473 +9.695656 55.073767 +9.705337 55.074647 +9.716191 55.074647 +9.727045 55.074647 +9.737606 55.074647 +9.749340 55.074060 +9.759901 55.072887 +9.763127 55.069660 +nan nan +9.558659 55.125984 +9.560126 55.120410 +9.561300 55.114836 +9.560420 55.109556 +9.550446 55.108676 +9.542818 55.111023 +9.538711 55.115423 +9.536071 55.120410 +9.534604 55.125984 +9.538125 55.131264 +9.547805 55.132144 +9.554553 55.128917 +9.558659 55.125984 +nan nan +10.469818 55.011576 +10.473925 55.008642 +10.474219 55.003948 +10.465418 55.002482 +10.456617 55.000721 +10.447230 55.001601 +10.448403 55.006882 +10.454857 55.010109 +10.462484 55.012162 +10.469818 55.011576 +nan nan +10.366264 54.986347 +10.376825 54.986347 +10.385039 54.983707 +10.396773 54.983120 +10.405574 54.984587 +10.416134 54.984587 +10.422882 54.981067 +10.422882 54.974906 +10.420241 54.968746 +10.414668 54.965226 +10.404987 54.964345 +10.397360 54.967279 +10.389146 54.969626 +10.380052 54.971679 +10.368318 54.972559 +10.360397 54.973733 +10.353650 54.976960 +10.353650 54.983120 +10.361277 54.985174 +10.366264 54.986347 +nan nan +10.238655 55.043258 +10.244229 55.041204 +10.249509 55.037097 +10.254789 55.033577 +10.253323 55.026537 +10.244815 55.025363 +10.235428 55.027123 +10.227507 55.029764 +10.222520 55.033577 +10.218414 55.037684 +10.221934 55.042964 +10.230441 55.044725 +10.238655 55.043258 +nan nan +10.144488 55.051765 +10.148595 55.048538 +10.155342 55.045311 +10.157689 55.040618 +10.151235 55.037391 +10.143608 55.035337 +10.136861 55.038271 +10.132754 55.041498 +10.128940 55.045898 +10.123660 55.049418 +10.116913 55.052645 +10.117793 55.056752 +10.124540 55.059686 +10.130994 55.062913 +10.138328 55.063499 +10.137154 55.058219 +10.141261 55.053819 +10.144488 55.051765 +nan nan +9.739072 55.266501 +9.742299 55.262687 +9.748753 55.259460 +9.759314 55.257993 +9.766061 55.255060 +9.766061 55.248899 +9.760487 55.245086 +9.753153 55.242739 +9.744059 55.240979 +9.732619 55.241859 +9.725578 55.243619 +9.720298 55.247432 +9.716191 55.251833 +9.713257 55.256820 +9.712084 55.262394 +9.715604 55.267674 +9.722058 55.270901 +9.730272 55.269434 +9.739072 55.266501 +nan nan +9.815345 55.318131 +9.816811 55.314024 +9.820918 55.309330 +9.823558 55.304343 +9.825025 55.298769 +9.823852 55.293196 +9.817105 55.290262 +9.808597 55.288795 +9.797743 55.288795 +9.792463 55.292609 +9.788356 55.297009 +9.786889 55.302583 +9.785422 55.308157 +9.785422 55.314024 +9.788943 55.319304 +9.796570 55.321944 +9.806251 55.321358 +9.815345 55.318131 +nan nan +10.313167 55.769897 +10.313460 55.765203 +10.314340 55.759629 +10.313167 55.752882 +10.307593 55.749068 +10.298499 55.747602 +10.287645 55.747895 +10.277671 55.747015 +10.267697 55.746135 +10.257723 55.745548 +10.246869 55.745548 +10.237482 55.747602 +10.234841 55.752589 +10.241589 55.755522 +10.251269 55.756109 +10.261243 55.756989 +10.271511 55.757869 +10.280311 55.759043 +10.285885 55.762856 +10.288232 55.769017 +10.291752 55.774297 +10.296446 55.778697 +10.304073 55.781044 +10.312287 55.778404 +10.313754 55.772830 +10.313167 55.769897 +nan nan +10.556651 55.969671 +10.558118 55.964097 +10.559585 55.958230 +10.560465 55.952656 +10.564865 55.948256 +10.568679 55.944149 +10.572492 55.939749 +10.576599 55.935349 +10.581880 55.931535 +10.587160 55.927721 +10.593907 55.924494 +10.600654 55.921268 +10.611508 55.919801 +10.619429 55.917161 +10.626176 55.914227 +10.623829 55.909533 +10.618256 55.905426 +10.613562 55.901026 +10.612095 55.894572 +10.613269 55.888705 +10.614735 55.883131 +10.617082 55.878144 +10.620016 55.873157 +10.623829 55.868757 +10.630576 55.865530 +10.639964 55.863477 +10.650818 55.863477 +10.659032 55.865824 +10.663432 55.870224 +10.665779 55.876384 +10.666072 55.882545 +10.663139 55.886065 +10.665779 55.881078 +10.666952 55.875504 +10.665486 55.868757 +10.661965 55.863477 +10.657272 55.858783 +10.651698 55.855263 +10.645831 55.851449 +10.640257 55.847636 +10.634390 55.843822 +10.630870 55.838542 +10.627643 55.833261 +10.623829 55.827981 +10.622363 55.821527 +10.622363 55.815367 +10.625003 55.810380 +10.626176 55.804512 +10.628816 55.799819 +10.627350 55.792778 +10.623829 55.787498 +10.620309 55.782218 +10.617669 55.776057 +10.616495 55.769310 +10.613855 55.763443 +10.607988 55.759629 +10.600361 55.757576 +10.589213 55.757576 +10.581000 55.759923 +10.573372 55.762856 +10.562518 55.764030 +10.553718 55.762563 +10.544624 55.761096 +10.534063 55.762563 +10.527609 55.765790 +10.524675 55.770777 +10.523502 55.776350 +10.522329 55.781924 +10.520862 55.787498 +10.518222 55.792485 +10.514408 55.796885 +10.511768 55.801872 +10.511768 55.808033 +10.512941 55.815073 +10.514701 55.821527 +10.515875 55.826807 +10.517342 55.833848 +10.517342 55.840008 +10.519688 55.846169 +10.524382 55.850569 +10.528782 55.854969 +10.534650 55.858783 +10.542570 55.861130 +10.551371 55.862597 +10.560171 55.864063 +10.568092 55.866410 +10.573959 55.869930 +10.577479 55.875211 +10.580119 55.881371 +10.581293 55.888118 +10.581293 55.894572 +10.581293 55.900439 +10.580413 55.906013 +10.578946 55.911587 +10.575132 55.915987 +10.571025 55.920681 +10.565452 55.924201 +10.557531 55.926841 +10.546970 55.928308 +10.536116 55.929775 +10.526729 55.931535 +10.521449 55.935642 +10.517635 55.940629 +10.517635 55.946789 +10.516168 55.952363 +10.516462 55.958524 +10.516462 55.964684 +10.516462 55.970844 +10.519982 55.976125 +10.523502 55.981405 +10.529076 55.985219 +10.534943 55.989032 +10.540810 55.992846 +10.547557 55.995780 +10.555184 55.998126 +10.562518 55.996073 +10.560758 55.989326 +10.557531 55.984045 +10.557238 55.977885 +10.558705 55.972311 +10.556651 55.969671 +nan nan +10.409974 55.956470 +10.422295 55.955883 +10.434322 55.955003 +10.445176 55.953536 +10.451924 55.950310 +10.454857 55.946789 +10.448110 55.943562 +10.441363 55.940922 +10.432269 55.939162 +10.423468 55.937695 +10.411441 55.938575 +10.403227 55.941216 +10.395306 55.943562 +10.389732 55.947376 +10.392079 55.952363 +10.398826 55.955297 +10.409974 55.956470 +nan nan +10.086111 55.853209 +10.079070 55.850276 +10.072616 55.847342 +10.067923 55.842649 +10.062642 55.838835 +10.053548 55.837368 +10.042694 55.839422 +10.036240 55.842355 +10.033307 55.847636 +10.033307 55.853796 +10.038001 55.858196 +10.044748 55.861423 +10.052375 55.863477 +10.062642 55.864357 +10.072616 55.864943 +10.082297 55.864357 +10.091978 55.865237 +10.101365 55.863477 +10.096965 55.858783 +10.089044 55.856436 +10.086111 55.853209 +nan nan +10.075550 55.825047 +10.084937 55.822994 +10.091684 55.820060 +10.089338 55.815367 +10.078483 55.815367 +10.067629 55.815367 +10.057949 55.817127 +10.059122 55.822407 +10.067043 55.825047 +10.075550 55.825047 +nan nan +11.012817 57.192665 +11.006070 57.191492 +10.998149 57.189145 +10.988469 57.187385 +10.981722 57.190905 +10.984068 57.195599 +10.989642 57.197652 +10.999030 57.199413 +11.009590 57.199999 +11.017804 57.197359 +11.012817 57.192665 +nan nan +11.187363 57.301207 +11.185310 57.296513 +11.181496 57.291233 +11.174455 57.288299 +11.162721 57.288299 +11.152454 57.287712 +11.143067 57.286245 +11.132799 57.285659 +11.122532 57.285072 +11.113144 57.283312 +11.102877 57.282725 +11.094370 57.280672 +11.086449 57.278325 +11.077942 57.275978 +11.073248 57.271578 +11.072955 57.265417 +11.075888 57.260430 +11.079702 57.256030 +11.078235 57.249283 +11.075595 57.243122 +11.071781 57.237842 +11.065914 57.234028 +11.059754 57.230508 +11.052713 57.227575 +11.043619 57.226108 +11.033059 57.225228 +11.025138 57.223174 +11.021618 57.220534 +11.033059 57.219067 +11.034525 57.214960 +11.024258 57.214080 +11.013991 57.213494 +11.004310 57.212320 +10.996389 57.209973 +10.987295 57.208213 +10.975561 57.208507 +10.965880 57.210560 +10.968227 57.215254 +10.964120 57.219654 +10.955906 57.222294 +10.946226 57.224348 +10.936252 57.226401 +10.925398 57.227868 +10.914250 57.229041 +10.904569 57.231388 +10.894595 57.233442 +10.884621 57.235202 +10.874941 57.237549 +10.871127 57.241949 +10.871127 57.248109 +10.877287 57.251630 +10.885208 57.253977 +10.891075 57.257790 +10.897236 57.261310 +10.903103 57.265417 +10.906916 57.270698 +10.909556 57.276271 +10.913370 57.281552 +10.919531 57.285659 +10.927451 57.287712 +10.936545 57.289179 +10.947106 57.290059 +10.959720 57.289179 +10.969987 57.289766 +10.978201 57.291819 +10.986415 57.294166 +10.992576 57.297686 +10.999323 57.300913 +11.009884 57.301500 +11.021324 57.301500 +11.032765 57.301500 +11.045673 57.300620 +11.055940 57.301207 +11.066501 57.302087 +11.076768 57.302380 +11.084689 57.304727 +11.093196 57.307074 +11.102290 57.308247 +11.111678 57.309714 +11.120772 57.311181 +11.131332 57.312061 +11.141600 57.312354 +11.152161 57.313234 +11.164775 57.312354 +11.174455 57.310301 +11.182669 57.307660 +11.187070 57.303260 +11.187363 57.301207 +nan nan +9.822972 57.061536 +9.833239 57.062123 +9.844387 57.061243 +9.852894 57.058309 +9.857001 57.054202 +9.854361 57.048042 +9.847614 57.045108 +9.837346 57.044228 +9.827372 57.045988 +9.817691 57.048042 +9.810944 57.051269 +9.813291 57.057136 +9.820332 57.060363 +9.822972 57.061536 +nan nan +9.092519 56.889630 +9.098386 56.887284 +9.103960 56.883470 +9.106894 56.878483 +9.105427 56.871736 +9.101027 56.867335 +9.094279 56.864109 +9.085772 56.866749 +9.080198 56.870269 +9.075798 56.874669 +9.071691 56.879070 +9.068758 56.883763 +9.072278 56.889337 +9.081372 56.890804 +9.092519 56.889630 +nan nan +8.978991 56.829493 +8.986618 56.830666 +8.997766 56.830666 +9.009207 56.830666 +9.019474 56.831253 +9.028568 56.833013 +9.037369 56.834773 +9.047343 56.832720 +9.052917 56.829199 +9.059957 56.825972 +9.065531 56.822159 +9.061424 56.819225 +9.049983 56.818932 +9.038542 56.818932 +9.031795 56.815705 +9.027101 56.811011 +9.022701 56.806611 +9.015954 56.803678 +9.008033 56.801037 +8.996592 56.801037 +8.988379 56.803678 +8.985152 56.808665 +8.979578 56.812185 +8.972831 56.815412 +8.966964 56.819225 +8.968137 56.824506 +8.973711 56.828319 +8.978991 56.829493 +nan nan +8.581203 56.708044 +8.587070 56.704524 +8.591177 56.700417 +8.592643 56.694550 +8.587363 56.690736 +8.578562 56.691909 +8.572695 56.695430 +8.571522 56.701003 +8.571229 56.707164 +8.581203 56.708044 +nan nan +8.622272 56.652013 +8.630486 56.649373 +8.637527 56.646440 +8.641927 56.642039 +8.644861 56.637052 +8.643980 56.630305 +8.640460 56.625025 +8.632540 56.622385 +8.624032 56.623558 +8.618459 56.627078 +8.613765 56.631772 +8.611125 56.636759 +8.606724 56.641159 +8.605258 56.646733 +8.607311 56.651427 +8.615818 56.651720 +8.622272 56.652013 +nan nan +8.658061 56.564300 +8.655715 56.558140 +8.650141 56.554326 +8.643687 56.551099 +8.638113 56.547579 +8.633713 56.542885 +8.631366 56.536725 +8.633126 56.531151 +8.634300 56.525578 +8.636060 56.520004 +8.634006 56.513843 +8.630486 56.508563 +8.629606 56.511497 +8.631953 56.517364 +8.630193 56.522937 +8.629899 56.529098 +8.625793 56.533498 +8.622859 56.538485 +8.621392 56.544059 +8.623739 56.549926 +8.625499 56.554620 +8.629019 56.560193 +8.634300 56.564300 +8.643394 56.565474 +8.658061 56.564300 +nan nan +8.232404 55.879905 +8.234164 55.875504 +8.239738 55.871984 +8.245312 55.868464 +8.252352 55.865237 +8.256459 55.860837 +8.259393 55.856143 +8.253819 55.852329 +8.242965 55.852036 +8.233578 55.853796 +8.225364 55.856143 +8.218323 55.859076 +8.214216 55.863477 +8.209816 55.867877 +8.213043 55.873451 +8.214216 55.879905 +8.217150 55.885185 +8.225950 55.885478 +8.232404 55.879905 +nan nan +8.211869 55.840302 +8.223017 55.840595 +8.225950 55.835608 +8.219497 55.832381 +8.211576 55.830034 +8.201602 55.829154 +8.194855 55.830914 +8.191628 55.835901 +8.197202 55.839715 +8.205122 55.842062 +8.211869 55.840302 +nan nan +8.405483 55.461581 +8.408710 55.458061 +8.410177 55.452487 +8.410470 55.446327 +8.410764 55.440166 +8.412231 55.434593 +8.415164 55.429606 +8.418098 55.424619 +8.423671 55.421098 +8.432179 55.422858 +8.438926 55.425792 +8.444206 55.429606 +8.452713 55.429899 +8.458287 55.426379 +8.461221 55.421392 +8.461514 55.414938 +8.460341 55.408191 +8.457114 55.402910 +8.453887 55.397923 +8.449780 55.392936 +8.447433 55.387069 +8.450367 55.382082 +8.454474 55.377682 +8.458581 55.373282 +8.460341 55.367708 +8.461807 55.362134 +8.462101 55.355974 +8.463568 55.350693 +8.467674 55.346293 +8.473248 55.342479 +8.471488 55.336319 +8.463568 55.334265 +8.452713 55.333972 +8.445966 55.336906 +8.439219 55.340132 +8.435112 55.344533 +8.429832 55.348053 +8.425431 55.352453 +8.422498 55.357147 +8.418391 55.361547 +8.415457 55.366534 +8.412524 55.371521 +8.408417 55.375922 +8.403137 55.379442 +8.399910 55.384429 +8.395803 55.388829 +8.393162 55.393523 +8.388762 55.397923 +8.385829 55.402910 +8.383188 55.408191 +8.379962 55.412884 +8.377321 55.417871 +8.374388 55.422858 +8.371454 55.427845 +8.368521 55.432539 +8.365587 55.437526 +8.362654 55.442513 +8.359720 55.447500 +8.357080 55.452194 +8.360307 55.457768 +8.365587 55.461581 +8.372921 55.463928 +8.380842 55.466275 +8.389349 55.468035 +8.401376 55.467448 +8.405483 55.461581 +nan nan +8.561255 55.287622 +8.569468 55.284982 +8.573575 55.280875 +8.574162 55.275888 +8.569762 55.271488 +8.564481 55.267381 +8.556561 55.265034 +8.548054 55.263567 +8.538373 55.262394 +8.528986 55.262980 +8.523412 55.266794 +8.525465 55.272661 +8.529866 55.277355 +8.535146 55.281462 +8.541600 55.284395 +8.548054 55.287622 +8.561255 55.287622 +nan nan +8.910640 56.916912 +8.912106 56.911339 +8.911226 56.904298 +8.910053 56.897844 +8.908586 56.890804 +8.906533 56.884643 +8.904186 56.878483 +8.901839 56.872616 +8.898319 56.867335 +8.893918 56.862642 +8.888345 56.860295 +8.881304 56.863228 +8.875730 56.867042 +8.869863 56.870856 +8.864583 56.874376 +8.854609 56.876429 +8.848155 56.874669 +8.846982 56.867922 +8.848742 56.862348 +8.849915 56.856775 +8.847862 56.850614 +8.845515 56.844454 +8.844342 56.837707 +8.846102 56.831840 +8.847568 56.826266 +8.847862 56.820399 +8.852262 56.815705 +8.857836 56.812185 +8.863410 56.808665 +8.870450 56.805144 +8.876024 56.801624 +8.881598 56.798104 +8.884824 56.793117 +8.883651 56.786076 +8.880424 56.780796 +8.874557 56.776982 +8.869863 56.772582 +8.864290 56.768475 +8.859596 56.763781 +8.854022 56.759968 +8.849329 56.755567 +8.844928 56.750874 +8.840528 56.746473 +8.837301 56.741193 +8.832607 56.736499 +8.827034 56.732392 +8.821460 56.728872 +8.813246 56.726525 +8.807672 56.722418 +8.800925 56.719485 +8.795351 56.715671 +8.789778 56.711564 +8.785377 56.707164 +8.780684 56.702470 +8.775990 56.698070 +8.771590 56.693376 +8.769536 56.687216 +8.764842 56.682816 +8.760149 56.678122 +8.753695 56.674895 +8.746948 56.671961 +8.736680 56.671081 +8.725240 56.670788 +8.714092 56.670788 +8.702651 56.670495 +8.692677 56.669615 +8.682410 56.669028 +8.673609 56.667268 +8.663342 56.666388 +8.650728 56.666974 +8.642514 56.669321 +8.636940 56.673428 +8.632540 56.677535 +8.628433 56.681935 +8.624032 56.686042 +8.619632 56.690443 +8.616699 56.695430 +8.612592 56.699830 +8.609365 56.704817 +8.604964 56.709217 +8.600857 56.713324 +8.594990 56.717138 +8.586776 56.719778 +8.576802 56.721245 +8.567122 56.723298 +8.558908 56.725939 +8.550694 56.728285 +8.541306 56.726525 +8.536906 56.721832 +8.533679 56.716551 +8.526932 56.713618 +8.518718 56.716258 +8.519305 56.721245 +8.521652 56.727405 +8.523999 56.733566 +8.526052 56.739726 +8.530452 56.744127 +8.537199 56.747647 +8.545413 56.749700 +8.551867 56.752634 +8.557441 56.756741 +8.555974 56.762315 +8.553041 56.767302 +8.555094 56.771995 +8.565068 56.771409 +8.576216 56.771702 +8.582963 56.774635 +8.588537 56.778742 +8.601151 56.778156 +8.612592 56.778156 +8.619045 56.781383 +8.625793 56.784316 +8.634006 56.786663 +8.643980 56.787836 +8.651901 56.789890 +8.657475 56.793997 +8.663342 56.797810 +8.665689 56.803971 +8.662462 56.808958 +8.655421 56.811891 +8.644567 56.813065 +8.634300 56.812185 +8.625793 56.814825 +8.628139 56.821279 +8.636060 56.823919 +8.644861 56.825679 +8.648381 56.830959 +8.645447 56.835947 +8.646327 56.841227 +8.648674 56.847094 +8.645447 56.852081 +8.642807 56.857361 +8.639580 56.862348 +8.641927 56.868215 +8.648674 56.871442 +8.655421 56.873203 +8.665689 56.873789 +8.674489 56.875549 +8.684757 56.876429 +8.695024 56.877309 +8.705292 56.878190 +8.714092 56.879656 +8.723480 56.881416 +8.732574 56.883177 +8.741374 56.884643 +8.751642 56.885523 +8.763082 56.885817 +8.774523 56.885817 +8.782444 56.888164 +8.791244 56.889630 +8.801805 56.890510 +8.810899 56.892271 +8.818526 56.894617 +8.825567 56.897844 +8.828794 56.903125 +8.832314 56.908405 +8.835834 56.913685 +8.841408 56.917499 +8.847275 56.921313 +8.852849 56.925420 +8.860769 56.927473 +8.868690 56.930113 +8.878957 56.930700 +8.888051 56.932460 +8.894798 56.935687 +8.899492 56.940381 +8.901546 56.946248 +8.905066 56.951528 +8.908586 56.956809 +8.914160 56.960915 +8.922667 56.959742 +8.922080 56.954168 +8.919734 56.948008 +8.916507 56.942728 +8.913867 56.936567 +8.911813 56.930700 +8.910640 56.923953 +8.910640 56.916912 +nan nan +9.885456 54.886607 +9.894257 54.886900 +9.904524 54.885433 +9.912445 54.883086 +9.917725 54.879273 +9.925646 54.876633 +9.933273 54.874286 +9.941487 54.871646 +9.950581 54.869592 +9.957035 54.866365 +9.962315 54.862845 +9.967596 54.859031 +9.964075 54.853751 +9.954395 54.852871 +9.943834 54.854044 +9.934740 54.856098 +9.924179 54.857564 +9.913912 54.859031 +9.902177 54.860205 +9.891617 54.861671 +9.883989 54.864312 +9.877242 54.867245 +9.871962 54.871059 +9.870495 54.876633 +9.872842 54.881326 +9.880176 54.883673 +9.885456 54.886607 +nan nan +9.924766 63.929842 +9.920659 63.924562 +9.908925 63.922802 +9.900124 63.924855 +9.896017 63.929842 +9.900711 63.933656 +9.908925 63.936590 +9.923006 63.935416 +9.928286 63.930722 +9.924766 63.929842 +nan nan +9.772221 63.852984 +9.765181 63.850637 +9.755207 63.848290 +9.745233 63.845943 +9.732912 63.845063 +9.718244 63.845063 +9.707097 63.843596 +9.695949 63.841836 +9.687149 63.838903 +9.680108 63.835089 +9.671308 63.831862 +9.663094 63.828928 +9.651359 63.827462 +9.643146 63.830689 +9.630238 63.830982 +9.620264 63.828928 +9.614397 63.824235 +9.618504 63.826875 +9.625544 63.830689 +9.635518 63.833035 +9.644319 63.835969 +9.655466 63.837436 +9.665440 63.840076 +9.674241 63.843009 +9.682455 63.846236 +9.692429 63.848290 +9.701230 63.851517 +9.705337 63.855330 +9.712377 63.859144 +9.721178 63.862078 +9.733499 63.862958 +9.746406 63.863838 +9.762247 63.862958 +9.775742 63.861784 +9.778089 63.857384 +9.772221 63.852984 +nan nan +9.406995 63.794606 +9.395261 63.793433 +9.381180 63.793139 +9.368272 63.792259 +9.364752 63.797246 +9.366512 63.804287 +9.373553 63.808100 +9.379420 63.812501 +9.385287 63.817194 +9.393501 63.820421 +9.405235 63.821888 +9.414036 63.818661 +9.417556 63.813674 +9.419316 63.808100 +9.419316 63.801940 +9.414622 63.796366 +9.406995 63.794606 +nan nan +9.172312 63.991153 +9.163511 63.987927 +9.150604 63.987340 +9.143563 63.991153 +9.138283 63.995260 +9.140540 64.000000 +nan nan +9.160686 64.000000 +9.165271 63.996434 +9.172312 63.991153 +nan nan +11.224619 63.797833 +11.216405 63.796366 +11.203498 63.795486 +11.189417 63.795779 +11.177096 63.797833 +11.163015 63.798126 +11.153041 63.795486 +11.148347 63.790206 +11.140720 63.786685 +11.132506 63.783752 +11.123705 63.780525 +11.113731 63.778472 +11.104930 63.775538 +11.096130 63.772604 +11.087329 63.769378 +11.078529 63.766737 +11.069728 63.763510 +11.062687 63.759697 +11.056234 63.755297 +11.052127 63.750016 +11.044499 63.746203 +11.034525 63.743856 +11.022205 63.744736 +11.016924 63.749136 +11.013991 63.754123 +11.013991 63.760284 +11.017511 63.766444 +11.022205 63.771724 +11.028072 63.776418 +11.036872 63.779058 +11.043913 63.783165 +11.050367 63.787566 +11.051540 63.793139 +11.054474 63.797833 +11.064448 63.799886 +11.078529 63.799593 +11.094370 63.799006 +11.105517 63.800473 +11.115491 63.802527 +11.126052 63.804873 +11.137199 63.806340 +11.147174 63.808687 +11.160081 63.809274 +11.175922 63.808394 +11.187070 63.809860 +11.197044 63.811914 +11.207018 63.814261 +11.222859 63.813381 +11.227553 63.808980 +11.229313 63.803113 +11.224619 63.797833 +nan nan +10.630870 63.573123 +10.622069 63.569897 +10.612095 63.567843 +10.603294 63.564616 +10.596254 63.565790 +10.597427 63.571363 +10.604468 63.574884 +10.612095 63.578991 +10.622069 63.581044 +10.632630 63.581044 +10.636150 63.576057 +10.630870 63.573123 +nan nan +9.444838 63.644115 +9.448945 63.640595 +9.440144 63.637368 +9.428410 63.639422 +9.421370 63.643235 +9.416089 63.647635 +9.418436 63.650862 +9.428997 63.649689 +9.437797 63.646755 +9.444838 63.644115 +nan nan +9.419316 63.684305 +9.426357 63.680198 +9.433397 63.676678 +9.436917 63.671691 +9.429290 63.667877 +9.414036 63.668464 +9.402888 63.666997 +9.395848 63.663183 +9.389981 63.658196 +9.381767 63.655263 +9.369446 63.657316 +9.364166 63.661716 +9.365339 63.667290 +9.371206 63.671691 +9.377073 63.676384 +9.378247 63.683131 +9.380007 63.689878 +9.389981 63.692519 +9.398195 63.689292 +9.408755 63.686652 +9.419316 63.684305 +nan nan +9.311948 63.580164 +9.303148 63.577230 +9.297867 63.572537 +9.296107 63.565496 +9.287893 63.562563 +9.275572 63.564029 +9.272052 63.569016 +9.273226 63.575470 +9.279093 63.580164 +9.286133 63.584271 +9.294347 63.587204 +9.304321 63.589551 +9.317229 63.590138 +9.329550 63.588378 +9.327790 63.583098 +9.316642 63.581337 +9.311948 63.580164 +nan nan +9.125375 63.494211 +9.121268 63.489517 +9.116574 63.484237 +9.105427 63.482477 +9.093693 63.484530 +9.090173 63.489517 +9.089586 63.495678 +9.096626 63.499491 +9.106600 63.501838 +9.119508 63.502718 +9.130069 63.502718 +9.129482 63.500372 +9.125375 63.494211 +nan nan +8.902719 63.444634 +8.905066 63.439060 +8.906826 63.434660 +8.893332 63.434660 +8.881011 63.436714 +8.869277 63.438474 +8.865170 63.443461 +8.871037 63.448154 +8.882184 63.449621 +8.896265 63.449621 +8.905653 63.449328 +8.902719 63.444634 +nan nan +8.673903 63.343427 +8.670969 63.337267 +8.665689 63.332573 +8.655715 63.330226 +8.646327 63.327879 +8.635180 63.326119 +8.622859 63.325239 +8.611712 63.323479 +8.598804 63.322892 +8.587656 63.321132 +8.575336 63.320252 +8.563015 63.319079 +8.550694 63.321132 +8.542480 63.324066 +8.533679 63.327586 +8.523118 63.329639 +8.512558 63.328173 +8.513144 63.323479 +8.511971 63.319079 +8.498477 63.319079 +8.484396 63.320252 +8.470901 63.321425 +8.460927 63.323772 +8.450367 63.326412 +8.439806 63.328759 +8.431005 63.331986 +8.435699 63.337267 +8.446260 63.339027 +8.457407 63.340493 +8.466208 63.344014 +8.470315 63.349294 +8.473835 63.354574 +8.476768 63.360442 +8.479702 63.366602 +8.484982 63.371296 +8.492023 63.375403 +8.500237 63.378336 +8.508451 63.381563 +8.518425 63.383910 +8.529572 63.385670 +8.541893 63.386257 +8.554214 63.384790 +8.565948 63.382736 +8.578269 63.382150 +8.592350 63.382443 +8.604084 63.380683 +8.615818 63.378629 +8.624619 63.375696 +8.631660 63.371882 +8.636940 63.367482 +8.639287 63.363375 +8.644567 63.358975 +8.656301 63.357215 +8.666862 63.356041 +8.672143 63.351641 +8.676249 63.346654 +8.673903 63.343427 +nan nan +8.517545 63.252487 +8.522825 63.248380 +8.526345 63.243393 +8.523999 63.238699 +8.514024 63.240753 +8.509918 63.245740 +8.508157 63.251607 +8.510504 63.256301 +8.517545 63.252487 +nan nan +8.567415 63.176802 +8.560961 63.174161 +8.552161 63.171228 +8.542773 63.168588 +8.533386 63.166241 +8.523412 63.163894 +8.511091 63.163014 +8.499943 63.161254 +8.487623 63.160374 +8.473542 63.160374 +8.460047 63.160080 +8.444793 63.160667 +8.429538 63.161254 +8.414284 63.161547 +8.401963 63.160961 +8.390816 63.159200 +8.377321 63.159200 +8.363240 63.160374 +8.355026 63.163307 +8.347986 63.167121 +8.342706 63.171521 +8.339185 63.176508 +8.335665 63.181495 +8.331558 63.186482 +8.328038 63.191469 +8.322757 63.195870 +8.317477 63.199977 +8.311610 63.204377 +8.304569 63.208191 +8.298116 63.212004 +8.291075 63.215524 +8.284035 63.219045 +8.278754 63.223738 +8.271714 63.227259 +8.266433 63.231659 +8.267607 63.237233 +8.274061 63.241046 +8.279341 63.245740 +8.277581 63.251314 +8.272300 63.255421 +8.268194 63.260701 +8.269367 63.265981 +8.279341 63.268622 +8.293422 63.268622 +8.305156 63.266861 +8.312197 63.263048 +8.319237 63.259528 +8.329211 63.256887 +8.341532 63.257767 +8.350333 63.260994 +8.360894 63.262755 +8.368521 63.260408 +8.370281 63.254834 +8.372628 63.249260 +8.374388 63.243686 +8.376735 63.237819 +8.380255 63.233126 +8.382015 63.227259 +8.384362 63.221685 +8.391402 63.219338 +8.398443 63.223445 +8.401963 63.227259 +8.403137 63.232832 +8.405483 63.238993 +8.403723 63.244567 +8.403723 63.250727 +8.403137 63.256887 +8.400790 63.262461 +8.400790 63.268915 +8.400203 63.275075 +8.404310 63.280356 +8.414284 63.282703 +8.424845 63.284463 +8.437166 63.283876 +8.444206 63.280356 +8.451247 63.276542 +8.456527 63.272142 +8.461807 63.267742 +8.465914 63.262755 +8.469435 63.257767 +8.472955 63.253074 +8.476475 63.247793 +8.480582 63.243100 +8.485276 63.237819 +8.490556 63.233712 +8.499357 63.230486 +8.508157 63.227259 +8.519892 63.225498 +8.531626 63.223738 +8.542187 63.221098 +8.550400 63.218165 +8.557441 63.214351 +8.560961 63.209364 +8.565068 63.204377 +8.572109 63.200563 +8.573869 63.194990 +8.576216 63.189416 +8.574455 63.182375 +8.569175 63.177975 +8.567415 63.176802 +nan nan +8.291955 63.161547 +8.280808 63.160080 +8.268487 63.158907 +8.256166 63.158027 +8.243845 63.157147 +8.231524 63.156267 +8.217443 63.155974 +8.209229 63.159200 +8.206882 63.164774 +8.205122 63.170348 +8.201015 63.175335 +8.197495 63.180322 +8.193975 63.185309 +8.193388 63.191469 +8.192801 63.197923 +8.189281 63.202910 +8.184001 63.207311 +8.178720 63.211417 +8.179307 63.216991 +8.184588 63.221685 +8.193388 63.224618 +8.202775 63.226965 +8.215683 63.228139 +8.230351 63.227552 +8.239151 63.224325 +8.244432 63.219925 +8.247952 63.214938 +8.253232 63.210831 +8.260860 63.207017 +8.266140 63.202910 +8.271420 63.198217 +8.278461 63.194696 +8.283741 63.190296 +8.289022 63.185896 +8.294302 63.181789 +8.299582 63.177095 +8.304863 63.172695 +8.308383 63.167708 +8.309556 63.163014 +8.296649 63.162134 +8.291955 63.161547 +nan nan +9.139163 63.638248 +9.126842 63.637368 +9.116868 63.635021 +9.108654 63.632088 +9.101613 63.627981 +9.091639 63.625927 +9.081665 63.623287 +9.068758 63.622407 +9.055263 63.622114 +9.041182 63.622114 +9.025341 63.622700 +9.015367 63.625634 +9.016541 63.630914 +9.024754 63.634141 +9.035902 63.635608 +9.045876 63.637955 +9.048810 63.644115 +9.047049 63.649689 +9.047636 63.655263 +9.055263 63.659076 +9.064651 63.661423 +9.076385 63.663183 +9.089879 63.663183 +9.097506 63.659370 +9.102787 63.654969 +9.112761 63.652622 +9.126255 63.651156 +9.142096 63.650569 +9.154417 63.648516 +9.156177 63.642942 +9.147377 63.640008 +9.139163 63.638248 +nan nan +9.079318 63.671104 +9.067584 63.673157 +9.055263 63.674917 +9.046463 63.678144 +9.042942 63.683131 +9.057023 63.683131 +9.067584 63.680491 +9.076385 63.677558 +9.083425 63.673744 +9.079318 63.671104 +nan nan +8.901546 63.731828 +8.895092 63.729481 +8.886291 63.726254 +8.876904 63.725374 +8.868103 63.728308 +8.864583 63.733295 +8.868690 63.738575 +8.875730 63.741216 +8.885705 63.743562 +8.894505 63.741802 +8.903306 63.738575 +8.905066 63.733002 +8.901546 63.731828 +nan nan +8.878371 63.778472 +8.878957 63.773485 +8.876024 63.767617 +8.866050 63.764977 +8.857249 63.768204 +8.843755 63.769378 +8.832607 63.769084 +8.836714 63.774658 +8.845515 63.777885 +8.852555 63.781698 +8.862530 63.783752 +8.873090 63.782872 +8.878371 63.778472 +nan nan +8.826740 63.716867 +8.822633 63.712760 +8.816766 63.708360 +8.809726 63.704546 +8.802685 63.700439 +8.794471 63.697506 +8.784497 63.694866 +8.774523 63.692812 +8.763376 63.691052 +8.752228 63.689585 +8.739321 63.688705 +8.727000 63.687825 +8.714092 63.686652 +8.702945 63.685185 +8.691797 63.683718 +8.678890 63.682545 +8.667742 63.681078 +8.656595 63.679318 +8.644274 63.678731 +8.631366 63.677558 +8.617285 63.677558 +8.604378 63.676678 +8.592057 63.675504 +8.579149 63.674624 +8.566242 63.673744 +8.553921 63.673157 +8.541013 63.672277 +8.529866 63.670517 +8.518718 63.668757 +8.507571 63.667290 +8.496423 63.665530 +8.485276 63.663770 +8.474128 63.662303 +8.460047 63.663477 +8.458287 63.668757 +8.467674 63.671397 +8.477649 63.673744 +8.487623 63.676091 +8.497597 63.678731 +8.506984 63.681078 +8.518718 63.682545 +8.525172 63.685185 +8.511091 63.684891 +8.498183 63.684305 +8.488209 63.681665 +8.477062 63.679904 +8.466501 63.678438 +8.453593 63.677558 +8.453007 63.682251 +8.444206 63.685478 +8.434232 63.683131 +8.427192 63.679024 +8.418978 63.676091 +8.409004 63.673744 +8.397856 63.671984 +8.383775 63.671984 +8.369694 63.671691 +8.358547 63.669930 +8.348573 63.667584 +8.339185 63.665237 +8.330385 63.662010 +8.319237 63.660250 +8.306916 63.660836 +8.299876 63.664357 +8.292835 63.668464 +8.285795 63.671984 +8.275234 63.674331 +8.269954 63.679024 +8.273474 63.684305 +8.284035 63.686652 +8.294595 63.688412 +8.304569 63.690465 +8.315717 63.692225 +8.325691 63.694866 +8.336838 63.696332 +8.347986 63.698092 +8.360894 63.698972 +8.376148 63.698386 +8.389056 63.699266 +8.400203 63.700733 +8.407243 63.704840 +8.414284 63.708653 +8.424258 63.711000 +8.433059 63.709533 +8.440099 63.705426 +8.454180 63.705720 +8.464154 63.708360 +8.473542 63.710413 +8.483516 63.713053 +8.494663 63.714814 +8.506397 63.716280 +8.517545 63.718041 +8.528692 63.719507 +8.538666 63.721854 +8.545120 63.725961 +8.553921 63.728895 +8.563895 63.731535 +8.575042 63.733002 +8.585016 63.735348 +8.594990 63.737695 +8.604378 63.740335 +8.614352 63.742389 +8.624326 63.745029 +8.634300 63.747083 +8.644274 63.749723 +8.654248 63.752363 +8.663635 63.754416 +8.673609 63.757057 +8.684757 63.758523 +8.696491 63.759990 +8.707638 63.761750 +8.717612 63.764097 +8.727000 63.766444 +8.735800 63.769671 +8.746948 63.771431 +8.741081 63.772311 +8.728760 63.774071 +8.714679 63.775245 +8.703531 63.773485 +8.695318 63.770551 +8.685343 63.767911 +8.674196 63.766444 +8.673023 63.770844 +8.678303 63.773778 +8.687104 63.777005 +8.694144 63.780818 +8.702358 63.784045 +8.709399 63.788152 +8.716439 63.791966 +8.722306 63.796366 +8.729347 63.800180 +8.738147 63.803407 +8.741668 63.798713 +8.748708 63.794606 +8.753988 63.798126 +8.762202 63.801060 +8.769830 63.804873 +8.778043 63.808100 +8.786257 63.811034 +8.797405 63.812794 +8.807966 63.810154 +8.803859 63.804873 +8.797992 63.800180 +8.792711 63.795779 +8.795058 63.791379 +8.805619 63.789032 +8.810899 63.784632 +8.809139 63.777885 +8.807966 63.770844 +8.806792 63.765271 +8.808552 63.759697 +8.813833 63.755590 +8.819700 63.751190 +8.821460 63.745616 +8.823220 63.739749 +8.825567 63.734175 +8.827327 63.728601 +8.827914 63.722441 +8.826740 63.716867 +nan nan +9.143856 63.550829 +9.138576 63.547602 +9.130362 63.544375 +9.123322 63.540561 +9.114521 63.537628 +9.106307 63.534401 +9.098093 63.531467 +9.089292 63.528240 +9.079318 63.525893 +9.069931 63.523547 +9.059957 63.521200 +9.051743 63.517973 +9.040596 63.516506 +9.028861 63.514746 +9.017714 63.513279 +9.008327 63.510932 +8.998353 63.508585 +8.988379 63.506239 +8.980165 63.503012 +8.970191 63.500665 +8.961977 63.497438 +8.952003 63.495385 +8.940855 63.493624 +8.931468 63.490984 +8.919734 63.489811 +8.908586 63.488051 +8.897439 63.486291 +8.886291 63.484824 +8.875144 63.483357 +8.861063 63.483064 +8.847568 63.483064 +8.834661 63.481890 +8.820580 63.481890 +8.807086 63.481890 +8.797111 63.479543 +8.787137 63.476903 +8.774817 63.476023 +8.760736 63.476023 +8.746655 63.475730 +8.732574 63.475730 +8.718493 63.475436 +8.706172 63.474850 +8.696784 63.472503 +8.685050 63.470743 +8.672729 63.469863 +8.660408 63.468983 +8.649261 63.467223 +8.638113 63.465756 +8.626379 63.464289 +8.615232 63.462529 +8.604084 63.460769 +8.594697 63.458422 +8.583549 63.456662 +8.573575 63.454315 +8.565362 63.451381 +8.557148 63.448154 +8.548934 63.444928 +8.541893 63.441114 +8.533679 63.438180 +8.524879 63.434660 +8.515491 63.432607 +8.505517 63.429967 +8.494370 63.428206 +8.482049 63.427620 +8.469141 63.426740 +8.455647 63.426446 +8.441566 63.426446 +8.426312 63.427033 +8.412231 63.427913 +8.400496 63.429967 +8.387002 63.431140 +8.371161 63.431727 +8.359427 63.433487 +8.355906 63.438474 +8.351800 63.443461 +8.348279 63.448741 +8.344759 63.453435 +8.337132 63.457248 +8.326571 63.458422 +8.322464 63.452848 +8.320117 63.446688 +8.316010 63.441407 +8.307796 63.438474 +8.295475 63.438474 +8.290195 63.443167 +8.283155 63.446688 +8.280808 63.452555 +8.281981 63.459302 +8.280221 63.464582 +8.284328 63.470156 +8.285501 63.476903 +8.284915 63.483357 +8.287848 63.489517 +8.291955 63.494798 +8.297236 63.499491 +8.305450 63.502425 +8.312490 63.506532 +8.320704 63.509759 +8.329505 63.512692 +8.334785 63.517386 +8.342999 63.520613 +8.350039 63.524427 +8.358253 63.527360 +8.365294 63.531467 +8.373508 63.534694 +8.382308 63.537921 +8.390522 63.540854 +8.398736 63.544081 +8.406950 63.547308 +8.415164 63.550242 +8.423965 63.553469 +8.432179 63.556696 +8.442153 63.559042 +8.451540 63.561389 +8.462687 63.563149 +8.475595 63.564029 +8.489676 63.564029 +8.503170 63.562856 +8.515491 63.561096 +8.530746 63.560509 +8.543067 63.559923 +8.555974 63.560803 +8.568295 63.561976 +8.579443 63.563443 +8.590590 63.564910 +8.603498 63.566670 +8.614645 63.568430 +8.625206 63.568723 +8.639874 63.568723 +8.653368 63.567550 +8.666862 63.566376 +8.679183 63.564323 +8.689744 63.561976 +8.703238 63.560509 +8.717319 63.560803 +8.725533 63.564029 +8.718493 63.567843 +8.707932 63.569897 +8.696198 63.571950 +8.682117 63.573417 +8.670382 63.574884 +8.658061 63.576937 +8.644567 63.578404 +8.632246 63.579871 +8.622272 63.582511 +8.611712 63.584858 +8.599391 63.586911 +8.589417 63.589551 +8.578856 63.591898 +8.566535 63.593658 +8.554801 63.595418 +8.547174 63.597765 +8.554214 63.601579 +8.561255 63.605686 +8.568295 63.609499 +8.578269 63.611846 +8.590590 63.612726 +8.604671 63.611553 +8.614645 63.609206 +8.629313 63.609206 +8.639874 63.610966 +8.651021 63.612433 +8.662755 63.614193 +8.673903 63.615953 +8.685050 63.617420 +8.696198 63.619180 +8.707345 63.620647 +8.717319 63.622994 +8.728467 63.624754 +8.739614 63.626514 +8.749588 63.628567 +8.759562 63.631208 +8.769536 63.633261 +8.778924 63.635901 +8.790071 63.637368 +8.801805 63.639128 +8.815299 63.639128 +8.826447 63.637955 +8.834661 63.635021 +8.837008 63.629154 +8.835248 63.622407 +8.834074 63.615660 +8.837594 63.610673 +8.846982 63.610379 +8.854022 63.614193 +8.859303 63.618593 +8.862236 63.624754 +8.862236 63.631208 +8.861649 63.637368 +8.867517 63.642062 +8.877491 63.644115 +8.892745 63.643529 +8.903892 63.645289 +8.913867 63.647635 +8.923841 63.649982 +8.934988 63.651742 +8.944962 63.653796 +8.957283 63.654676 +8.971364 63.653503 +8.976644 63.649102 +8.976644 63.642942 +8.971364 63.638248 +8.964323 63.634435 +8.958456 63.629741 +8.957283 63.624460 +8.964323 63.620647 +8.971364 63.616833 +8.976644 63.612433 +8.978991 63.608326 +8.977818 63.602752 +8.974884 63.596592 +8.974884 63.590431 +8.980165 63.586031 +8.993072 63.586911 +9.001286 63.590138 +9.008327 63.593952 +9.015367 63.597765 +9.025341 63.600112 +9.035315 63.602459 +9.046463 63.604219 +9.060544 63.604219 +9.074038 63.602752 +9.086359 63.600992 +9.093399 63.598645 +9.102200 63.595418 +9.109241 63.591605 +9.116281 63.588085 +9.121561 63.583684 +9.123322 63.578110 +9.123322 63.571657 +9.122148 63.564910 +9.132709 63.563736 +9.142683 63.566083 +9.155004 63.566963 +9.167911 63.567843 +9.176712 63.564616 +9.173192 63.558749 +9.164978 63.555522 +9.155591 63.553175 +9.143856 63.550829 +nan nan +8.838181 63.651449 +8.828207 63.649102 +8.815886 63.647929 +8.804739 63.646462 +8.791831 63.645582 +8.777750 63.645582 +8.765429 63.644702 +8.752522 63.643822 +8.739614 63.642648 +8.727293 63.642062 +8.716146 63.640302 +8.702065 63.640302 +8.689157 63.639422 +8.679770 63.638248 +8.686810 63.640888 +8.697958 63.642355 +8.706172 63.644115 +8.715559 63.646755 +8.725533 63.648809 +8.736680 63.650569 +8.748415 63.652329 +8.759562 63.653796 +8.773643 63.653796 +8.784791 63.655556 +8.797111 63.656436 +8.808259 63.658196 +8.819993 63.659663 +8.831141 63.661423 +8.845222 63.661423 +8.845808 63.656729 +8.838181 63.651449 +nan nan +8.402843 63.582804 +8.400496 63.577817 +8.392282 63.574590 +8.381135 63.573123 +8.371748 63.574590 +8.369987 63.580164 +8.364707 63.584858 +8.372921 63.587791 +8.382895 63.590138 +8.398150 63.589845 +8.405190 63.585738 +8.402843 63.582804 +nan nan +8.433939 63.306464 +8.421618 63.305291 +8.410470 63.303531 +8.399323 63.302064 +8.384068 63.302651 +8.371748 63.301771 +8.357667 63.301771 +8.352386 63.305878 +8.357667 63.310571 +8.368814 63.312331 +8.378788 63.314385 +8.387002 63.317905 +8.395216 63.320839 +8.407537 63.320545 +8.419858 63.318492 +8.429832 63.316145 +8.433352 63.311158 +8.433939 63.306464 +nan nan +8.211576 63.311158 +8.205122 63.308518 +8.196908 63.305584 +8.188694 63.302357 +8.179307 63.300011 +8.169333 63.297370 +8.161119 63.294143 +8.151732 63.292090 +8.140584 63.290330 +8.129437 63.288570 +8.115356 63.288276 +8.110075 63.292677 +8.117116 63.296784 +8.125330 63.299717 +8.136477 63.301477 +8.147625 63.302944 +8.157012 63.305584 +8.166986 63.307638 +8.174613 63.311158 +8.181654 63.314972 +8.188694 63.318785 +8.195148 63.322892 +8.208056 63.323479 +8.216856 63.320545 +8.215683 63.314972 +8.211576 63.311158 +nan nan +8.183707 63.386257 +8.179600 63.382150 +8.174320 63.377456 +8.170213 63.371882 +8.166106 63.366602 +8.161999 63.361322 +8.156719 63.356628 +8.147332 63.354281 +8.137357 63.351934 +8.132077 63.347241 +8.130904 63.341667 +8.121516 63.339027 +8.108609 63.338440 +8.097461 63.336680 +8.092181 63.331986 +8.092768 63.327292 +8.083380 63.324652 +8.070473 63.323772 +8.056978 63.323479 +8.042897 63.323479 +8.028816 63.323479 +8.019429 63.320839 +8.010042 63.318198 +8.003001 63.314385 +7.994787 63.311451 +7.985400 63.308811 +7.979533 63.311745 +7.980706 63.318492 +7.976599 63.323479 +7.966625 63.326119 +7.954304 63.326412 +7.939050 63.326999 +7.930249 63.329933 +7.921449 63.333160 +7.914408 63.336973 +7.919688 63.341373 +7.932596 63.342547 +7.944330 63.340493 +7.957825 63.339320 +7.970145 63.337853 +7.985400 63.337267 +7.994787 63.339613 +7.991267 63.344307 +7.982466 63.347534 +7.968972 63.349001 +7.953718 63.349587 +7.943157 63.351641 +7.934356 63.354868 +7.923795 63.357215 +7.912648 63.354868 +7.903261 63.352521 +7.888006 63.353108 +7.877445 63.355161 +7.868645 63.358388 +7.859844 63.361322 +7.852804 63.365135 +7.845763 63.368949 +7.835202 63.368655 +7.825228 63.366015 +7.815841 63.363668 +7.802933 63.362788 +7.799413 63.367775 +7.794133 63.371882 +7.790026 63.376869 +7.784745 63.381270 +7.782399 63.386843 +7.786506 63.392124 +7.789439 63.398284 +7.786506 63.402685 +7.778292 63.405911 +7.780639 63.410605 +7.791786 63.412365 +7.801173 63.414712 +7.810561 63.417352 +7.821708 63.418819 +7.831682 63.421166 +7.839896 63.424393 +7.845176 63.429086 +7.853390 63.432313 +7.861018 63.432900 +7.866885 63.428206 +7.878619 63.426740 +7.891526 63.427620 +7.900914 63.429967 +7.909128 63.433193 +7.919102 63.435540 +7.926142 63.439354 +7.932596 63.443461 +7.940810 63.446688 +7.949024 63.449621 +7.957825 63.452848 +7.964278 63.456662 +7.972492 63.459889 +7.979533 63.463996 +7.987747 63.466929 +8.001828 63.467223 +8.015909 63.467516 +8.027643 63.465462 +8.039964 63.463996 +8.053458 63.463996 +8.064606 63.465462 +8.075753 63.467223 +8.091594 63.466636 +8.098635 63.463116 +8.102155 63.458129 +8.105675 63.453142 +8.108022 63.447568 +8.111542 63.442581 +8.113889 63.437007 +8.117409 63.432020 +8.123276 63.427913 +8.130317 63.423219 +8.135597 63.418819 +8.139118 63.413832 +8.144398 63.409725 +8.153199 63.406498 +8.163759 63.404151 +8.173733 63.401804 +8.179014 63.397111 +8.181361 63.391537 +8.183707 63.386257 +nan nan +7.873045 63.337560 +7.877152 63.333746 +7.874805 63.329053 +7.865418 63.326999 +7.854857 63.327879 +7.846057 63.330813 +7.837256 63.333746 +7.830215 63.337853 +7.823175 63.341373 +7.819068 63.346361 +7.830215 63.348121 +7.842536 63.346361 +7.854270 63.344307 +7.866591 63.342840 +7.875392 63.339613 +7.873045 63.337560 +nan nan +8.079567 63.302064 +8.073113 63.299424 +8.064312 63.296490 +8.054925 63.293850 +8.043777 63.292090 +8.031457 63.291503 +8.027936 63.296490 +8.034390 63.300304 +8.043191 63.303237 +8.053751 63.304998 +8.063726 63.307638 +8.076046 63.308224 +8.090127 63.308518 +8.088954 63.304411 +8.079567 63.302064 +nan nan +8.153492 63.149520 +8.147625 63.148346 +8.136477 63.146586 +8.124157 63.145413 +8.111249 63.144826 +8.098928 63.143946 +8.086607 63.142773 +8.074286 63.141892 +8.060205 63.141599 +8.045538 63.142186 +8.031457 63.141892 +8.017376 63.141892 +8.005641 63.140719 +7.991560 63.140719 +7.979239 63.141012 +7.972199 63.144826 +7.966919 63.149226 +7.961638 63.153627 +7.956358 63.157734 +7.949317 63.161254 +7.937583 63.163307 +7.928196 63.166534 +7.926436 63.171815 +7.931716 63.176802 +7.938757 63.180615 +7.946970 63.183549 +7.955184 63.187069 +7.964572 63.189416 +7.974546 63.191763 +7.983933 63.194110 +7.992147 63.197336 +8.000361 63.200563 +8.006815 63.204377 +8.013855 63.208191 +8.020896 63.212298 +8.027936 63.216111 +8.034390 63.219925 +8.041431 63.224032 +8.047884 63.227845 +8.056098 63.231072 +8.063139 63.233712 +8.073700 63.235179 +8.086020 63.236059 +8.098341 63.235766 +8.111836 63.234299 +8.122396 63.232246 +8.127677 63.229312 +8.135304 63.225498 +8.142344 63.221685 +8.145865 63.216698 +8.149385 63.211711 +8.154665 63.207604 +8.157012 63.203204 +8.162293 63.198803 +8.169333 63.194990 +8.173440 63.190296 +8.174027 63.183842 +8.172267 63.177095 +8.171680 63.171521 +8.175200 63.166534 +8.180481 63.162134 +8.185761 63.157734 +8.186348 63.153040 +8.176960 63.150693 +8.164053 63.149813 +8.153492 63.149520 +nan nan +7.934063 63.145413 +7.926436 63.143653 +7.912355 63.144826 +7.902381 63.147173 +7.893580 63.150400 +7.892993 63.155387 +7.905314 63.155974 +7.917635 63.154507 +7.929369 63.152453 +7.936410 63.148933 +7.934063 63.145413 +nan nan +7.861604 62.969693 +7.855151 62.967347 +7.842830 62.966173 +7.830509 62.965293 +7.817014 62.965000 +7.808214 62.967933 +7.805867 62.973507 +7.807040 62.979081 +7.813494 62.981721 +7.824055 62.983188 +7.838136 62.983481 +7.849870 62.982014 +7.859844 62.979374 +7.866885 62.975854 +7.866298 62.970280 +7.861604 62.969693 +nan nan +7.915288 63.079115 +7.914115 63.073541 +7.910595 63.068261 +7.906488 63.062100 +7.902381 63.056526 +7.895927 63.052713 +7.888886 63.048899 +7.880672 63.045966 +7.871285 63.043325 +7.863071 63.040392 +7.854857 63.036872 +7.846643 63.033938 +7.838429 63.030418 +7.829042 63.028364 +7.819068 63.025724 +7.809681 63.023377 +7.799120 63.021617 +7.789146 63.019270 +7.778585 63.017510 +7.768024 63.019857 +7.759810 63.023084 +7.754530 63.027191 +7.746903 63.031005 +7.738689 63.034231 +7.728128 63.036285 +7.718154 63.038925 +7.707593 63.041272 +7.698793 63.044499 +7.690579 63.047432 +7.683538 63.051246 +7.679431 63.056233 +7.688819 63.058286 +7.699966 63.060340 +7.708180 63.063274 +7.710527 63.067967 +7.708767 63.073541 +7.706420 63.079115 +7.708767 63.084102 +7.715220 63.087915 +7.726368 63.089675 +7.739862 63.089969 +7.752183 63.087915 +7.760984 63.084982 +7.769198 63.082048 +7.779758 63.079701 +7.789733 63.077355 +7.800293 63.076181 +7.802640 63.082342 +7.803814 63.087915 +7.809094 63.092609 +7.820241 63.094076 +7.832562 63.094956 +7.846057 63.095249 +7.860138 63.094076 +7.871872 63.092316 +7.885366 63.091142 +7.898860 63.089969 +7.905901 63.086449 +7.911181 63.082048 +7.915288 63.079115 +nan nan +7.575584 63.082635 +7.580864 63.078528 +7.581451 63.072368 +7.572064 63.070021 +7.558569 63.071194 +7.551529 63.074714 +7.549182 63.080288 +7.550355 63.085862 +7.559743 63.088209 +7.569717 63.085862 +7.575584 63.082635 +nan nan +7.649509 63.106690 +7.645989 63.102876 +7.645402 63.097303 +7.650683 63.092902 +7.647749 63.086742 +7.650096 63.081168 +7.655376 63.077061 +7.657723 63.071194 +7.651269 63.067087 +7.644229 63.063274 +7.640708 63.057993 +7.644229 63.053006 +7.651269 63.049486 +7.658310 63.045672 +7.660657 63.040099 +7.662417 63.034525 +7.664764 63.028951 +7.668284 63.023964 +7.675324 63.020150 +7.680605 63.015750 +7.689405 63.012817 +7.698206 63.009590 +7.707007 63.006656 +7.712287 63.002549 +7.708767 62.998442 +7.699966 62.995215 +7.689405 62.993749 +7.678258 62.991988 +7.667110 62.989935 +7.656550 62.988468 +7.645989 62.986708 +7.636015 62.984068 +7.624867 62.982601 +7.615480 62.979961 +7.606093 62.977614 +7.599639 62.973507 +7.591425 62.970574 +7.584384 62.966760 +7.577931 62.962360 +7.571477 62.958546 +7.563263 62.955612 +7.556809 62.951799 +7.548595 62.948279 +7.540381 62.945345 +7.530994 62.942705 +7.521020 62.940358 +7.510459 62.938598 +7.498725 62.940358 +7.491684 62.943878 +7.487577 62.948865 +7.484057 62.953852 +7.477017 62.957373 +7.468216 62.960599 +7.457655 62.962946 +7.446508 62.964706 +7.432427 62.965880 +7.418933 62.967053 +7.408959 62.969400 +7.400158 62.972627 +7.393117 62.976147 +7.384317 62.979081 +7.376103 62.982308 +7.368476 62.985828 +7.364955 62.990815 +7.365542 62.996389 +7.372583 63.000202 +7.380796 63.003429 +7.390184 63.005776 +7.399571 63.008416 +7.410132 63.009883 +7.423040 63.011056 +7.432427 63.013697 +7.434774 63.018390 +7.427733 63.021911 +7.418933 63.025137 +7.411892 63.028658 +7.415412 63.034231 +7.423626 63.037165 +7.430667 63.041272 +7.432427 63.045966 +7.424213 63.049193 +7.408959 63.049486 +7.400158 63.052419 +7.399571 63.057406 +7.410132 63.059167 +7.424213 63.059460 +7.436534 63.060340 +7.445921 63.061513 +7.456482 63.063274 +7.468803 63.064154 +7.481124 63.065327 +7.488751 63.062687 +7.486404 63.057993 +7.479364 63.054180 +7.474083 63.049486 +7.484644 63.048606 +7.496965 63.049486 +7.512219 63.048899 +7.522780 63.046552 +7.530994 63.043619 +7.536861 63.039218 +7.542141 63.035111 +7.547422 63.030418 +7.551529 63.025431 +7.558569 63.021911 +7.568543 63.019564 +7.573824 63.024257 +7.576757 63.030418 +7.574410 63.035698 +7.572064 63.041565 +7.568543 63.046552 +7.564436 63.051246 +7.568543 63.056820 +7.579104 63.058580 +7.590252 63.060340 +7.598465 63.063567 +7.606679 63.066794 +7.611960 63.071487 +7.609613 63.077061 +7.604333 63.081461 +7.604919 63.086742 +7.604333 63.093196 +7.597879 63.096716 +7.590838 63.100236 +7.586731 63.105223 +7.589078 63.111384 +7.597292 63.114611 +7.608439 63.114904 +7.621934 63.114024 +7.637188 63.113437 +7.647162 63.111090 +7.649509 63.106690 +nan nan +6.944579 62.839444 +6.940472 62.834164 +6.942818 62.828590 +6.946925 62.823603 +6.941645 62.818909 +6.930497 62.817149 +6.917003 62.816856 +6.904682 62.815976 +6.891188 62.815682 +6.881801 62.813042 +6.881214 62.807468 +6.886494 62.803362 +6.893535 62.799548 +6.899402 62.795148 +6.901749 62.789867 +6.902335 62.783707 +6.897055 62.779013 +6.886494 62.776960 +6.872413 62.776666 +6.862439 62.779306 +6.853639 62.782240 +6.846598 62.785467 +6.840731 62.789867 +6.834277 62.793681 +6.827237 62.797201 +6.818436 62.800135 +6.806702 62.801895 +6.794381 62.803655 +6.782647 62.805415 +6.767392 62.805708 +6.762112 62.810109 +6.767392 62.814802 +6.779713 62.815976 +6.793208 62.815976 +6.801422 62.819496 +6.800248 62.824190 +6.793208 62.827710 +6.784407 62.830937 +6.777366 62.834457 +6.775020 62.840031 +6.775606 62.845605 +6.784994 62.847951 +6.797315 62.849125 +6.810809 62.849418 +6.821370 62.847365 +6.826650 62.842671 +6.832517 62.838564 +6.842491 62.836217 +6.855985 62.836511 +6.865960 62.838857 +6.873587 62.842084 +6.880041 62.846191 +6.888254 62.849418 +6.898815 62.851178 +6.911136 62.852352 +6.924630 62.851178 +6.933431 62.848245 +6.940472 62.844431 +6.944579 62.839444 +nan nan +7.362022 62.647004 +7.354395 62.645244 +7.342074 62.644070 +7.328579 62.643777 +7.315085 62.643483 +7.301591 62.643190 +7.286336 62.643777 +7.271669 62.644070 +7.259934 62.646124 +7.249374 62.648470 +7.239400 62.650817 +7.229426 62.653164 +7.222385 62.656978 +7.217105 62.661085 +7.223559 62.664898 +7.231772 62.668419 +7.243507 62.669299 +7.257001 62.669592 +7.270495 62.668712 +7.283990 62.667538 +7.295724 62.665485 +7.309218 62.664312 +7.322126 62.663431 +7.337380 62.663138 +7.350874 62.661965 +7.360848 62.659325 +7.367889 62.655804 +7.365542 62.651111 +7.362022 62.647004 +nan nan +6.911429 62.694234 +6.902629 62.691594 +6.892655 62.689247 +6.882094 62.687487 +6.871533 62.685433 +6.860972 62.683966 +6.848652 62.682793 +6.836331 62.681619 +6.825183 62.679859 +6.813449 62.678979 +6.802888 62.677219 +6.790567 62.676046 +6.779420 62.674579 +6.768859 62.672525 +6.758298 62.670765 +6.747151 62.669299 +6.736590 62.667245 +6.727203 62.664605 +6.717816 62.662258 +6.709015 62.659618 +6.699041 62.657271 +6.688480 62.655511 +6.677919 62.653751 +6.667359 62.656098 +6.668532 62.662845 +6.664425 62.667832 +6.657385 62.671352 +6.650344 62.674872 +6.649757 62.681326 +6.659145 62.683966 +6.668532 62.686313 +6.676159 62.689540 +6.678506 62.695700 +6.674986 62.700687 +6.672639 62.705968 +6.673226 62.713008 +6.675573 62.719169 +6.679093 62.724743 +6.685547 62.728556 +6.693760 62.732076 +6.706081 62.732663 +6.714882 62.730023 +6.720162 62.725623 +6.718989 62.718875 +6.730723 62.716822 +6.740697 62.719462 +6.748324 62.722689 +6.754778 62.725623 +6.762405 62.728556 +6.770619 62.732076 +6.782940 62.732663 +6.796435 62.733250 +6.809929 62.733543 +6.822250 62.734717 +6.832810 62.736477 +6.843958 62.737943 +6.852759 62.740584 +6.865079 62.741757 +6.876227 62.743517 +6.889135 62.742637 +6.896762 62.738824 +6.902042 62.734423 +6.904389 62.728850 +6.907909 62.723862 +6.912016 62.718875 +6.915536 62.714182 +6.919643 62.709195 +6.920230 62.702741 +6.914950 62.698341 +6.911429 62.694234 +nan nan +6.625702 62.646710 +6.615728 62.649057 +6.605167 62.651404 +6.601647 62.645830 +6.595193 62.642017 +6.584633 62.640256 +6.572312 62.639083 +6.560578 62.637910 +6.549430 62.636150 +6.538869 62.634389 +6.529482 62.632043 +6.518921 62.629989 +6.507187 62.631749 +6.504840 62.637616 +6.512467 62.640550 +6.521855 62.643190 +6.532416 62.644950 +6.544736 62.646124 +6.554124 62.648470 +6.563511 62.651111 +6.571138 62.654337 +6.578179 62.658444 +6.582873 62.663138 +6.586393 62.668419 +6.592847 62.672525 +6.599300 62.676339 +6.607514 62.679566 +6.614555 62.677219 +6.618662 62.672525 +6.625702 62.669005 +6.634503 62.665778 +6.641543 62.662258 +6.646824 62.657858 +6.650931 62.653164 +6.645650 62.648470 +6.635090 62.646417 +6.625702 62.646710 +nan nan +6.451450 62.774026 +6.450863 62.768452 +6.450276 62.761705 +6.453797 62.756718 +6.459664 62.752318 +6.462011 62.746744 +6.461424 62.741464 +6.457904 62.735890 +6.452623 62.731196 +6.447930 62.726503 +6.440889 62.722396 +6.430915 62.723276 +6.426808 62.728263 +6.424461 62.733837 +6.425048 62.740877 +6.428568 62.746157 +6.432088 62.751731 +6.430328 62.757305 +6.421528 62.760238 +6.412727 62.763172 +6.410380 62.768746 +6.419767 62.771386 +6.427395 62.774319 +6.433849 62.778720 +6.444996 62.780187 +6.447343 62.774613 +6.451450 62.774026 +nan nan +6.406273 62.683380 +6.396886 62.680739 +6.383392 62.680153 +6.373418 62.682793 +6.361683 62.684553 +6.348189 62.685140 +6.332935 62.685726 +6.327654 62.688660 +6.332348 62.691887 +6.341735 62.694527 +6.351123 62.696874 +6.361683 62.698927 +6.375178 62.699221 +6.390432 62.698927 +6.398646 62.695700 +6.406273 62.692180 +6.408620 62.686606 +6.406273 62.683380 +nan nan +6.334108 62.658151 +6.335281 62.651991 +6.330001 62.647297 +6.325307 62.642603 +6.314747 62.640550 +6.301252 62.640256 +6.293625 62.643777 +6.288345 62.648177 +6.282478 62.652577 +6.275437 62.656098 +6.268397 62.659618 +6.261356 62.663431 +6.252555 62.666072 +6.243755 62.669299 +6.233781 62.671352 +6.226740 62.674872 +6.217940 62.678099 +6.215593 62.683673 +6.226154 62.685433 +6.236714 62.683086 +6.244928 62.680153 +6.255489 62.677806 +6.265463 62.675459 +6.279544 62.674579 +6.294212 62.674286 +6.307706 62.673406 +6.319440 62.671645 +6.328241 62.668712 +6.335281 62.664898 +6.339388 62.659911 +6.334108 62.658151 +nan nan +6.222340 62.634389 +6.212953 62.637616 +6.204739 62.640550 +6.195938 62.643190 +6.185964 62.645830 +6.172470 62.646710 +6.158975 62.646417 +6.149588 62.649057 +6.149001 62.655511 +6.148415 62.661671 +6.149001 62.668712 +6.158389 62.671059 +6.170123 62.669299 +6.180684 62.667245 +6.190658 62.664898 +6.199458 62.661965 +6.206499 62.658444 +6.213539 62.654631 +6.220580 62.651111 +6.227620 62.647590 +6.234661 62.643777 +6.238768 62.638790 +6.242875 62.634096 +6.238181 62.630576 +6.229380 62.633509 +6.222340 62.634389 +nan nan +6.190658 62.605641 +6.186551 62.601534 +6.174817 62.600360 +6.161322 62.601534 +6.151348 62.603587 +6.139027 62.605347 +6.129053 62.607694 +6.118493 62.610041 +6.110279 62.612681 +6.101478 62.615908 +6.091504 62.617962 +6.091504 62.622362 +6.100891 62.624709 +6.116146 62.624415 +6.129053 62.623535 +6.140787 62.622069 +6.151348 62.619428 +6.163082 62.617962 +6.173643 62.615615 +6.180684 62.611801 +6.187724 62.608281 +6.190658 62.605641 +nan nan +6.094731 62.564864 +6.094144 62.558117 +6.093557 62.551077 +6.095904 62.545503 +6.101185 62.541396 +6.105292 62.536409 +6.107638 62.530835 +6.101185 62.527022 +6.087690 62.527902 +6.082410 62.532302 +6.075369 62.535822 +6.068329 62.539343 +6.061288 62.543156 +6.050141 62.541103 +6.042514 62.537876 +6.036060 62.533769 +6.031366 62.529075 +6.021979 62.525848 +6.013765 62.528782 +6.007898 62.533182 +5.999097 62.536116 +5.996750 62.541689 +6.002031 62.546383 +6.009658 62.549610 +6.016112 62.553717 +6.022566 62.557531 +6.029019 62.561638 +6.036647 62.564864 +6.045447 62.567505 +6.054835 62.570145 +6.063049 62.573372 +6.070676 62.576599 +6.082410 62.577772 +6.091797 62.574838 +6.093557 62.569265 +6.094731 62.564864 +nan nan +6.121133 62.502967 +6.114679 62.499153 +6.111159 62.493579 +6.106465 62.488886 +6.095904 62.486832 +6.082410 62.488006 +6.075369 62.491526 +6.071262 62.496806 +6.070676 62.502673 +6.069502 62.508834 +6.071849 62.515288 +6.082410 62.517048 +6.094144 62.516754 +6.101771 62.512941 +6.107052 62.508834 +6.121133 62.502967 +nan nan +6.034593 62.505020 +6.035180 62.498566 +6.034593 62.493286 +6.022859 62.492113 +6.015818 62.495926 +6.007018 62.498566 +6.004671 62.504140 +6.011125 62.508247 +6.024619 62.508540 +6.034593 62.506487 +6.034593 62.505020 +nan nan +6.384858 62.497393 +6.374298 62.495926 +6.363737 62.493873 +6.353176 62.492113 +6.339095 62.491526 +6.327361 62.490646 +6.315040 62.489472 +6.304479 62.487712 +6.293918 62.485952 +6.283358 62.484192 +6.269863 62.483605 +6.254609 62.484192 +6.241701 62.485072 +6.228207 62.486245 +6.216473 62.487712 +6.204739 62.489472 +6.190071 62.489766 +6.175990 62.489472 +6.164256 62.489766 +6.161909 62.495339 +6.171296 62.497686 +6.184791 62.497980 +6.197698 62.497100 +6.212953 62.496806 +6.227620 62.496513 +6.238181 62.498273 +6.247568 62.500913 +6.258716 62.502380 +6.270450 62.503553 +6.282771 62.504727 +6.297439 62.504433 +6.307413 62.502087 +6.320907 62.501207 +6.332641 62.500913 +6.344962 62.502087 +6.358456 62.502087 +6.370191 62.503260 +6.384272 62.503553 +6.396006 62.504727 +6.408327 62.505900 +6.420061 62.507074 +6.417127 62.504433 +6.405980 62.502380 +6.397179 62.500033 +6.384858 62.497393 +nan nan +6.317387 62.402639 +6.307999 62.399999 +6.297439 62.398239 +6.286878 62.396479 +6.275144 62.395306 +6.264583 62.393545 +6.254022 62.391785 +6.239941 62.391492 +6.228207 62.390319 +6.213539 62.390612 +6.200045 62.391785 +6.186551 62.392372 +6.173643 62.392079 +6.161322 62.391199 +6.147828 62.390612 +6.134334 62.390319 +6.119666 62.390612 +6.107932 62.392079 +6.096198 62.393839 +6.087397 62.397066 +6.077423 62.399119 +6.068622 62.402346 +6.060408 62.404986 +6.054541 62.409387 +6.049261 62.413494 +6.043394 62.417894 +6.038113 62.422294 +6.032246 62.426401 +6.026966 62.430508 +6.022859 62.435495 +6.038113 62.435202 +6.051021 62.434028 +6.065689 62.434028 +6.079770 62.434028 +6.094437 62.434028 +6.107932 62.434322 +6.119666 62.435495 +6.131987 62.436669 +6.142548 62.438429 +6.153108 62.440189 +6.164843 62.441362 +6.177163 62.442536 +6.188898 62.442242 +6.199458 62.439895 +6.206499 62.436082 +6.215299 62.433442 +6.227034 62.431682 +6.239941 62.431975 +6.252262 62.431682 +6.255782 62.426694 +6.263410 62.423468 +6.275144 62.421414 +6.288051 62.420534 +6.302719 62.419947 +6.317974 62.419654 +6.327948 62.417601 +6.333228 62.413200 +6.332641 62.407920 +6.326774 62.403519 +6.317387 62.402639 +nan nan +6.039580 62.333995 +6.031953 62.330474 +6.024326 62.327247 +6.017872 62.323434 +6.010245 62.319913 +6.002618 62.316687 +5.996164 62.312873 +5.989710 62.308473 +5.982083 62.305246 +5.975629 62.301432 +5.968002 62.297912 +5.961548 62.294098 +5.955094 62.289991 +5.948640 62.286178 +5.942187 62.282364 +5.935146 62.278844 +5.928692 62.274737 +5.920478 62.271510 +5.912851 62.268283 +5.906397 62.264176 +5.900530 62.260363 +5.892903 62.256842 +5.886449 62.253029 +5.878235 62.249802 +5.871195 62.246282 +5.861807 62.243935 +5.851247 62.241881 +5.840686 62.240121 +5.827192 62.239828 +5.812524 62.240121 +5.808417 62.245108 +5.813697 62.249802 +5.819564 62.253615 +5.827192 62.256842 +5.835406 62.260363 +5.841273 62.265056 +5.846553 62.269750 +5.851247 62.274444 +5.851833 62.278551 +5.840099 62.280017 +5.834819 62.284418 +5.836579 62.290578 +5.838339 62.296738 +5.840686 62.302899 +5.841273 62.309646 +5.840686 62.315807 +5.837752 62.321380 +5.837166 62.327834 +5.834819 62.333408 +5.824258 62.334288 +5.809590 62.334581 +5.800790 62.337515 +5.800203 62.343675 +5.803723 62.349249 +5.805483 62.355409 +5.803137 62.360690 +5.804897 62.366850 +5.810177 62.371544 +5.814871 62.376531 +5.820151 62.381225 +5.824845 62.385918 +5.828365 62.391492 +5.833059 62.396186 +5.838339 62.400879 +5.843033 62.405573 +5.849487 62.409387 +5.857114 62.412907 +5.864741 62.416134 +5.874128 62.418481 +5.882929 62.421414 +5.892316 62.423761 +5.903464 62.425521 +5.914025 62.427575 +5.926932 62.428161 +5.937493 62.426988 +5.947467 62.424641 +5.958028 62.422588 +5.965068 62.418774 +5.972109 62.415254 +5.977389 62.411147 +5.981496 62.406160 +5.983843 62.400586 +5.986776 62.395012 +5.987363 62.388558 +5.987950 62.382398 +5.989123 62.376531 +5.991470 62.370957 +5.996750 62.366263 +6.002618 62.362157 +6.009658 62.358636 +6.018459 62.355409 +6.026673 62.352769 +6.036647 62.350422 +6.047207 62.348076 +6.060702 62.347195 +6.071849 62.345435 +6.075956 62.340448 +6.066569 62.338101 +6.056008 62.336048 +6.045447 62.334581 +6.039580 62.333995 +nan nan +5.802843 62.264176 +5.796389 62.260363 +5.791696 62.255669 +5.786415 62.250975 +5.782895 62.245401 +5.781135 62.239241 +5.785242 62.234547 +5.790522 62.229854 +5.795803 62.225747 +5.796976 62.219586 +5.793456 62.214306 +5.788762 62.209319 +5.781135 62.206092 +5.772921 62.202865 +5.764120 62.200225 +5.755320 62.197878 +5.744759 62.195825 +5.732438 62.194651 +5.720704 62.193478 +5.710143 62.191718 +5.698409 62.190544 +5.684915 62.190251 +5.673181 62.188784 +5.659686 62.188491 +5.647365 62.187611 +5.634458 62.187024 +5.620963 62.186731 +5.609229 62.185264 +5.594562 62.185557 +5.581067 62.185264 +5.566400 62.185557 +5.551732 62.185851 +5.539998 62.187611 +5.531197 62.190251 +5.527090 62.195238 +5.526503 62.201398 +5.523570 62.206972 +5.520050 62.211959 +5.512422 62.215479 +5.505382 62.219293 +5.505969 62.224573 +5.517703 62.224280 +5.527677 62.221933 +5.539411 62.220466 +5.552905 62.219586 +5.564639 62.218120 +5.576374 62.216359 +5.586348 62.214306 +5.599842 62.214306 +5.605709 62.218706 +5.603362 62.224280 +5.594562 62.226920 +5.581654 62.228094 +5.568746 62.228974 +5.557012 62.230440 +5.545278 62.232201 +5.534717 62.234547 +5.526503 62.237188 +5.519463 62.240708 +5.516529 62.246282 +5.521810 62.250975 +5.530610 62.253909 +5.545278 62.253615 +5.557599 62.254789 +5.560532 62.260069 +5.555252 62.264176 +5.548212 62.267696 +5.542345 62.272097 +5.542931 62.277377 +5.547625 62.282364 +5.555839 62.285591 +5.564639 62.288231 +5.576960 62.289405 +5.589868 62.289991 +5.605122 62.289698 +5.619790 62.289111 +5.632698 62.288231 +5.646192 62.287645 +5.657926 62.287351 +5.667313 62.289698 +5.676114 62.292338 +5.686675 62.294098 +5.701343 62.293805 +5.710143 62.290871 +5.714250 62.286178 +5.718357 62.281191 +5.728331 62.278844 +5.742999 62.278551 +5.757667 62.278257 +5.772921 62.277964 +5.784655 62.276497 +5.796389 62.274737 +5.808124 62.272977 +5.809297 62.268283 +5.802843 62.264176 +nan nan +5.377186 62.202865 +5.383053 62.198465 +5.388333 62.194064 +5.389507 62.188197 +5.380706 62.185264 +5.368385 62.185557 +5.358411 62.187904 +5.349611 62.190838 +5.341397 62.193478 +5.330836 62.195825 +5.319102 62.197585 +5.309128 62.199638 +5.302087 62.203452 +5.300914 62.209319 +5.307368 62.213719 +5.319102 62.214599 +5.330836 62.213132 +5.340810 62.210786 +5.351371 62.208732 +5.361345 62.206385 +5.371319 62.204039 +5.377186 62.202865 +nan nan +6.016992 62.463950 +6.016405 62.456910 +6.009951 62.453096 +5.997631 62.451923 +5.987070 62.452803 +5.974162 62.453976 +5.959494 62.454270 +5.948934 62.456323 +5.938960 62.458670 +5.930159 62.461604 +5.923119 62.465417 +5.921945 62.471284 +5.928399 62.475685 +5.937786 62.478032 +5.947174 62.480672 +5.960668 62.480965 +5.975336 62.480672 +5.987070 62.479205 +5.998804 62.477445 +6.007605 62.474511 +6.011712 62.469818 +6.016992 62.463950 +nan nan +6.100598 62.448403 +6.088277 62.447229 +6.076543 62.446056 +6.061288 62.446349 +6.053075 62.449576 +6.047207 62.453683 +6.046621 62.460137 +6.048968 62.466004 +6.055421 62.470111 +6.065395 62.467764 +6.072436 62.464244 +6.079476 62.460430 +6.089450 62.458083 +6.100011 62.455737 +6.109985 62.453683 +6.120546 62.451336 +6.117026 62.447229 +6.100598 62.448403 +nan nan +5.817218 62.307593 +5.814284 62.303192 +5.809004 62.298499 +5.803137 62.294685 +5.794923 62.291458 +5.786122 62.288818 +5.777321 62.288818 +5.779082 62.293805 +5.780842 62.299965 +5.775561 62.304072 +5.766761 62.307006 +5.768521 62.311993 +5.780842 62.313166 +5.789642 62.315513 +5.800203 62.317567 +5.812524 62.317273 +5.819564 62.313753 +5.817218 62.307593 +nan nan +5.628297 62.386505 +5.620670 62.382985 +5.611283 62.380638 +5.600722 62.378584 +5.594268 62.382105 +5.588401 62.386505 +5.582534 62.390612 +5.577254 62.395012 +5.577840 62.401759 +5.584294 62.405866 +5.593095 62.405573 +5.600135 62.402053 +5.608936 62.399119 +5.621844 62.397946 +5.632404 62.395892 +5.634751 62.390319 +5.628297 62.386505 +nan nan +5.626831 62.353356 +5.616270 62.352769 +5.604536 62.354529 +5.600429 62.359223 +5.609816 62.361863 +5.624484 62.361570 +5.636218 62.360103 +5.637391 62.355409 +5.626831 62.353356 +nan nan +5.572853 62.329301 +5.562293 62.329007 +5.548798 62.329888 +5.534131 62.330181 +5.521810 62.329301 +5.511249 62.327247 +5.503035 62.328714 +5.498928 62.333701 +5.500688 62.339862 +5.496581 62.344849 +5.488367 62.347489 +5.480740 62.351009 +5.481327 62.355409 +5.490127 62.356289 +5.505382 62.355996 +5.520050 62.355703 +5.532957 62.355116 +5.545278 62.353356 +5.555252 62.351009 +5.565226 62.348956 +5.572853 62.345142 +5.579894 62.341622 +5.585174 62.337515 +5.582241 62.333408 +5.572853 62.329301 +nan nan +5.487194 62.317273 +5.488367 62.312580 +5.483087 62.307886 +5.469593 62.307299 +5.459619 62.309353 +5.452578 62.313166 +5.448471 62.318153 +5.444364 62.322847 +5.446711 62.329007 +5.457272 62.330768 +5.467246 62.328714 +5.473113 62.325781 +5.480153 62.322260 +5.487194 62.317273 +nan nan +5.633284 62.324020 +5.629764 62.320207 +5.623310 62.316100 +5.615683 62.312873 +5.605122 62.311113 +5.593388 62.309646 +5.590455 62.313753 +5.585174 62.318447 +5.591041 62.319327 +5.598669 62.322847 +5.605122 62.326954 +5.614510 62.329301 +5.623310 62.331941 +5.630351 62.328421 +5.633284 62.324020 +nan nan +5.437324 62.230440 +5.423829 62.231320 +5.410335 62.232494 +5.398601 62.234254 +5.385693 62.235134 +5.376893 62.237774 +5.377479 62.244815 +5.378066 62.250389 +5.378653 62.257136 +5.385693 62.260656 +5.398014 62.261536 +5.412682 62.261243 +5.427350 62.261243 +5.440844 62.261536 +5.455512 62.261243 +5.453751 62.257722 +5.443191 62.256256 +5.431457 62.254789 +5.423829 62.251269 +5.430870 62.248042 +5.439670 62.245108 +5.451405 62.243348 +5.459619 62.240414 +5.465486 62.236307 +5.463726 62.231320 +5.451991 62.230147 +5.437324 62.230440 +nan nan +5.273632 62.008078 +5.274805 62.001624 +5.265418 61.999277 +5.257791 61.995757 +5.248990 61.993410 +5.235496 61.994290 +5.228455 61.997810 +5.227869 62.003971 +5.229629 62.010131 +5.236083 62.014238 +5.246057 62.015998 +5.259551 62.015118 +5.267765 62.012185 +5.273632 62.008078 +nan nan +5.111700 61.979622 +5.105246 61.975515 +5.099379 61.971702 +5.094686 61.966715 +5.091165 61.961434 +5.087645 61.955861 +5.085885 61.949700 +5.085298 61.942660 +5.082365 61.937086 +5.078845 61.931806 +5.074151 61.927112 +5.067697 61.923005 +5.058896 61.920658 +5.051856 61.923885 +5.047749 61.928872 +5.039535 61.931806 +5.026041 61.932392 +5.013133 61.933566 +5.003159 61.935913 +4.994359 61.938553 +4.988491 61.942660 +4.986145 61.948233 +4.993772 61.950287 +5.005506 61.951754 +5.019000 61.950580 +5.028974 61.948233 +5.040122 61.947060 +5.047749 61.950287 +5.048336 61.955861 +5.044229 61.960554 +5.040122 61.965541 +5.034841 61.969648 +5.028974 61.973755 +5.017240 61.975515 +5.005506 61.976982 +4.995532 61.979036 +4.987318 61.982263 +4.979691 61.985489 +4.972650 61.989303 +4.965610 61.992823 +4.960329 61.996930 +4.957396 62.002504 +4.956809 62.008958 +4.957983 62.015118 +4.958569 62.020692 +4.956222 62.025972 +4.959156 62.031253 +4.966783 62.028026 +4.974997 62.025092 +4.983798 62.022159 +4.992598 62.019225 +5.000812 62.016292 +5.009613 62.013652 +5.016653 62.010131 +5.025454 62.007198 +5.034255 62.004264 +5.040709 62.000451 +5.051269 61.997810 +5.061243 61.995464 +5.067110 61.999570 +5.067697 62.006318 +5.075324 62.009838 +5.085885 62.011598 +5.092339 62.015705 +5.099379 62.019225 +5.108180 62.017465 +5.108180 62.010425 +5.108767 62.004558 +5.112874 61.999570 +5.121674 61.996637 +5.126955 61.992530 +5.122261 61.987836 +5.116394 61.983729 +5.111700 61.979622 +nan nan +5.060070 61.890736 +5.046576 61.891616 +5.032495 61.891909 +5.023694 61.894843 +5.014893 61.897777 +5.007853 61.901003 +4.999052 61.904230 +4.992598 61.907751 +4.992598 61.913031 +5.003159 61.915084 +5.016067 61.915671 +5.026041 61.913324 +5.036602 61.910977 +5.043642 61.907457 +5.053616 61.905404 +5.060657 61.901883 +5.066524 61.897483 +5.073564 61.894256 +5.077084 61.889269 +5.068871 61.889269 +5.060070 61.890736 +nan nan +5.282433 61.871375 +5.274805 61.868148 +5.267178 61.864627 +5.258377 61.862281 +5.246643 61.861107 +5.233736 61.862574 +5.222002 61.864041 +5.210267 61.865508 +5.198533 61.867268 +5.188559 61.869321 +5.190319 61.874308 +5.202053 61.875482 +5.213788 61.876655 +5.227282 61.877242 +5.240189 61.877535 +5.254857 61.877535 +5.265418 61.879295 +5.277152 61.880469 +5.288886 61.881642 +5.290060 61.876655 +5.283606 61.872841 +5.282433 61.871375 +nan nan +5.222002 61.845559 +5.223175 61.840572 +5.219655 61.835292 +5.209094 61.833239 +5.199120 61.831478 +5.188559 61.829425 +5.180932 61.826198 +5.175065 61.822091 +5.164504 61.820331 +5.152770 61.819158 +5.138102 61.819158 +5.125195 61.818864 +5.116394 61.820331 +5.125195 61.822971 +5.131648 61.827078 +5.137515 61.831185 +5.139862 61.837346 +5.138689 61.843213 +5.132822 61.847906 +5.124021 61.849080 +5.118154 61.844973 +5.114634 61.839692 +5.109940 61.834999 +5.104073 61.830892 +5.096446 61.827371 +5.087645 61.825025 +5.078845 61.822091 +5.071217 61.818864 +5.065350 61.815051 +5.060657 61.810357 +5.054203 61.806250 +5.049509 61.801263 +5.041882 61.798036 +5.034841 61.794809 +5.025454 61.792169 +5.014893 61.790409 +5.004919 61.788355 +4.996119 61.785422 +4.985558 61.783662 +4.975584 61.781902 +4.965023 61.780141 +4.953289 61.778675 +4.942728 61.776621 +4.933928 61.774274 +4.922193 61.773101 +4.915153 61.776328 +4.911046 61.781315 +4.902832 61.784248 +4.889338 61.783662 +4.881124 61.786595 +4.877017 61.791289 +4.874083 61.796863 +4.871736 61.802436 +4.873496 61.808890 +4.882297 61.810064 +4.892271 61.807717 +4.898138 61.803610 +4.908112 61.804196 +4.911633 61.809770 +4.913393 61.815931 +4.921020 61.819158 +4.926887 61.822971 +4.918673 61.826198 +4.905179 61.825611 +4.892271 61.826491 +4.882297 61.828545 +4.872323 61.830892 +4.860589 61.832358 +4.845921 61.832358 +4.831253 61.832652 +4.818346 61.833532 +4.807785 61.835879 +4.804265 61.840572 +4.808959 61.845559 +4.815999 61.848786 +4.823626 61.852307 +4.832427 61.854653 +4.840054 61.858174 +4.847681 61.861401 +4.856482 61.864041 +4.864109 61.867561 +4.868803 61.872255 +4.867629 61.878415 +4.867629 61.885162 +4.875843 61.888683 +4.883471 61.891909 +4.893445 61.893963 +4.904005 61.895723 +4.913979 61.897777 +4.925714 61.898950 +4.937448 61.897483 +4.949182 61.895723 +4.959156 61.893670 +4.969130 61.891323 +4.977931 61.888683 +4.987905 61.886336 +4.996705 61.883402 +5.006679 61.881349 +5.016653 61.879295 +5.028388 61.877535 +5.041295 61.876655 +5.054790 61.875775 +5.066524 61.874308 +5.076498 61.871961 +5.087645 61.870201 +5.097619 61.868148 +5.109353 61.866681 +5.121088 61.864921 +5.132822 61.863747 +5.144556 61.861987 +5.154530 61.859640 +5.165677 61.858174 +5.177412 61.856707 +5.190319 61.855827 +5.202053 61.854067 +5.209094 61.850546 +5.216134 61.847026 +5.222002 61.845559 +nan nan +4.853548 61.764887 +4.847095 61.760780 +4.840054 61.757553 +4.832427 61.754033 +4.824800 61.750806 +4.820693 61.755793 +4.820693 61.761073 +4.820106 61.767527 +4.814239 61.771634 +4.806025 61.774568 +4.797224 61.777501 +4.790184 61.780728 +4.786077 61.785715 +4.790771 61.789235 +4.800745 61.790996 +4.810132 61.793929 +4.820106 61.795689 +4.831840 61.794222 +4.840641 61.791289 +4.847095 61.787769 +4.851788 61.782782 +4.857069 61.778675 +4.859415 61.773101 +4.857655 61.766940 +4.853548 61.764887 +nan nan +4.852962 61.686268 +4.857069 61.681281 +4.859415 61.676001 +4.862349 61.670134 +4.862936 61.664266 +4.852962 61.663680 +4.841228 61.663973 +4.829493 61.662506 +4.818346 61.663386 +4.810719 61.666907 +4.810132 61.673067 +4.811892 61.679521 +4.815412 61.684801 +4.821279 61.688908 +4.831253 61.690962 +4.841228 61.690082 +4.852962 61.686268 +nan nan +5.054496 61.591808 +5.042762 61.590634 +5.032788 61.588581 +5.022227 61.586821 +5.012253 61.585061 +5.003452 61.582127 +4.992892 61.580367 +4.982918 61.578314 +4.971184 61.577140 +4.962383 61.578607 +4.958276 61.583594 +4.960036 61.588288 +4.966490 61.591221 +4.976464 61.592981 +4.987025 61.595035 +4.996999 61.597088 +5.008733 61.597968 +5.020467 61.599142 +5.033375 61.599728 +5.046282 61.600315 +5.059777 61.600902 +5.072097 61.599728 +5.072097 61.595915 +5.061537 61.593861 +5.054496 61.591808 +nan nan +5.098793 61.544284 +5.090579 61.547218 +5.075911 61.547511 +5.063003 61.548391 +5.051269 61.549858 +5.041295 61.551912 +5.034841 61.555432 +5.031908 61.561006 +5.040709 61.563939 +5.049509 61.566286 +5.061243 61.567459 +5.074151 61.568046 +5.085885 61.566579 +5.095859 61.564526 +5.104073 61.561299 +5.112874 61.558659 +5.115221 61.553085 +5.116394 61.546631 +5.115807 61.541351 +5.105833 61.543698 +5.098793 61.544284 +nan nan +4.776690 61.647545 +4.780797 61.642558 +4.783143 61.636984 +4.778450 61.632291 +4.766716 61.631117 +4.755568 61.632584 +4.749701 61.636691 +4.748528 61.643145 +4.753221 61.647839 +4.760848 61.651065 +4.772583 61.649305 +4.776690 61.647545 +nan nan +4.837121 61.591515 +4.825386 61.590341 +4.813652 61.589168 +4.803678 61.587114 +4.793117 61.585354 +4.783143 61.583301 +4.771409 61.583301 +4.766129 61.587408 +4.773169 61.591221 +4.783730 61.592981 +4.794878 61.594155 +4.804265 61.596795 +4.810132 61.600902 +4.815999 61.605009 +4.827733 61.603249 +4.834774 61.599728 +4.841228 61.596502 +4.837121 61.591515 +nan nan +4.823920 61.561299 +4.812185 61.560419 +4.802211 61.558365 +4.790477 61.556899 +4.777570 61.556312 +4.765835 61.556605 +4.758795 61.560419 +4.764662 61.564233 +4.778156 61.564819 +4.789304 61.565993 +4.798104 61.568633 +4.806905 61.571273 +4.818639 61.572447 +4.830373 61.570980 +4.838587 61.568046 +4.834480 61.563353 +4.823920 61.561299 +nan nan +4.950649 61.508495 +4.943608 61.506735 +4.934808 61.504095 +4.920140 61.504095 +4.908992 61.505855 +4.900192 61.508495 +4.893151 61.512309 +4.889044 61.517003 +4.884937 61.521990 +4.883764 61.528150 +4.887284 61.533724 +4.899018 61.533724 +4.906059 61.529910 +4.909579 61.524923 +4.915446 61.520816 +4.924247 61.518176 +4.935394 61.516416 +4.945368 61.514069 +4.950649 61.508495 +nan nan +5.104953 61.487080 +5.106127 61.482093 +5.102020 61.477400 +5.090285 61.476226 +5.078551 61.475053 +5.077965 61.469479 +5.073271 61.464785 +5.060363 61.464199 +5.047456 61.463905 +5.035721 61.465372 +5.025747 61.467426 +5.022227 61.472413 +5.022227 61.479453 +5.024574 61.485614 +5.027508 61.490894 +5.033961 61.495001 +5.045109 61.494708 +5.053909 61.492067 +5.063297 61.489721 +5.077965 61.489427 +5.086765 61.492361 +5.097326 61.493828 +5.100846 61.489134 +5.104953 61.487080 +nan nan +4.967957 61.354191 +4.967370 61.347150 +4.966783 61.340403 +4.972357 61.336003 +4.979397 61.332483 +4.986438 61.328962 +4.986145 61.323682 +4.974410 61.322215 +4.960036 61.322509 +4.948595 61.321042 +4.936861 61.319868 +4.929527 61.316641 +4.922193 61.313415 +4.917500 61.308721 +4.908992 61.306081 +4.897552 61.307547 +4.893445 61.312535 +4.893738 61.318108 +4.889631 61.322802 +4.882884 61.326322 +4.874377 61.329256 +4.862936 61.330722 +4.852962 61.333069 +4.847388 61.337176 +4.849441 61.343337 +4.856775 61.346564 +4.865576 61.349497 +4.874377 61.354191 +4.874963 61.361231 +4.876723 61.367098 +4.885524 61.369739 +4.895498 61.367392 +4.902539 61.364165 +4.910753 61.361231 +4.919553 61.358298 +4.933634 61.358004 +4.942435 61.360938 +4.951235 61.363285 +4.961209 61.362405 +4.965316 61.357418 +4.972357 61.354191 +nan nan +4.939501 61.240956 +4.935101 61.237436 +4.921900 61.236849 +4.913686 61.239783 +4.915153 61.244476 +4.925420 61.246530 +4.936861 61.245063 +4.943902 61.241249 +4.939501 61.240956 +nan nan +5.014307 61.181992 +5.016947 61.176418 +5.020760 61.172898 +5.021934 61.167911 +5.010493 61.166737 +5.002279 61.169671 +4.996705 61.173778 +4.991132 61.178178 +4.994359 61.183752 +5.003159 61.186099 +5.016067 61.185219 +5.014307 61.181992 +nan nan +5.050976 61.131535 +5.049216 61.126841 +5.048922 61.120094 +5.051269 61.114520 +5.050976 61.108947 +5.038068 61.109827 +5.031321 61.113347 +5.024574 61.116867 +5.017534 61.120681 +5.011960 61.124788 +5.006679 61.128895 +5.004039 61.134468 +5.000226 61.139455 +5.000519 61.146203 +5.002279 61.151190 +5.009613 61.154416 +5.018120 61.152656 +5.024867 61.149136 +5.030441 61.146496 +5.036015 61.142096 +5.041295 61.137989 +5.050976 61.131535 +nan nan +4.813652 61.341577 +4.810425 61.336296 +4.805732 61.331309 +4.795758 61.331016 +4.790184 61.335416 +4.793411 61.340697 +4.798104 61.345390 +4.805438 61.348910 +4.813946 61.347150 +4.813652 61.341577 +nan nan +4.748821 61.313708 +4.740314 61.312535 +4.731806 61.315175 +4.733273 61.319868 +4.745007 61.319868 +4.748821 61.314881 +4.748821 61.313708 +nan nan +4.723886 61.277625 +4.718312 61.279679 +4.708338 61.282026 +4.695430 61.282906 +4.682523 61.283492 +4.669615 61.283199 +4.662868 61.286719 +4.663161 61.290826 +4.673135 61.292586 +4.677829 61.297573 +4.686336 61.299920 +4.693377 61.296400 +4.698951 61.292293 +4.705698 61.288773 +4.717139 61.287306 +4.728579 61.285839 +4.737087 61.282906 +4.733860 61.278799 +4.723886 61.277625 +nan nan +4.801331 61.204873 +4.805145 61.201353 +4.806318 61.194899 +4.796344 61.193433 +4.790771 61.197540 +4.786957 61.202233 +4.789890 61.207807 +4.799865 61.206927 +4.801331 61.204873 +nan nan +4.733566 61.194313 +4.721832 61.194313 +4.712152 61.196366 +4.705404 61.199886 +4.698364 61.203407 +4.696897 61.206927 +4.707165 61.208980 +4.716845 61.206634 +4.726819 61.204580 +4.730926 61.199593 +4.733566 61.194313 +nan nan +4.959743 61.176418 +4.962090 61.170844 +4.958863 61.165564 +4.962970 61.160577 +4.967077 61.155590 +4.970890 61.150896 +4.973237 61.145323 +4.975877 61.139749 +4.978224 61.134175 +4.980864 61.128601 +4.983211 61.123028 +4.985851 61.117454 +4.987025 61.111293 +4.986438 61.104546 +4.983211 61.098973 +4.979984 61.093692 +4.974117 61.089585 +4.967957 61.085478 +4.960916 61.081958 +4.953582 61.079024 +4.943315 61.076971 +4.934808 61.074037 +4.924834 61.072277 +4.915740 61.069637 +4.909872 61.065530 +4.908112 61.059370 +4.907819 61.053796 +4.903419 61.049102 +4.896085 61.047342 +4.890511 61.051449 +4.888164 61.057023 +4.885524 61.062597 +4.884351 61.068757 +4.882004 61.074037 +4.879364 61.079611 +4.877017 61.085185 +4.872910 61.090172 +4.867629 61.094572 +4.856189 61.094866 +4.848855 61.091345 +4.848268 61.084305 +4.843868 61.079611 +4.835360 61.076971 +4.826266 61.074331 +4.817759 61.071691 +4.814826 61.066117 +4.815412 61.059956 +4.815412 61.052916 +4.813652 61.047049 +4.804852 61.044409 +4.799571 61.048516 +4.795171 61.053209 +4.794584 61.059663 +4.794584 61.066410 +4.794878 61.073451 +4.795464 61.080198 +4.798691 61.085772 +4.800451 61.091932 +4.800745 61.098973 +4.801331 61.105426 +4.798691 61.111000 +4.797811 61.117454 +4.794878 61.123028 +4.792531 61.128601 +4.791651 61.134762 +4.789010 61.140335 +4.788130 61.146496 +4.791064 61.152070 +4.801038 61.151190 +4.809545 61.148256 +4.820693 61.149429 +4.824213 61.155003 +4.831253 61.158230 +4.835654 61.153243 +4.836534 61.147083 +4.837414 61.141216 +4.841521 61.136229 +4.845628 61.131535 +4.849441 61.126254 +4.853548 61.121267 +4.862056 61.118627 +4.873203 61.119801 +4.875257 61.126254 +4.875550 61.131535 +4.874377 61.137695 +4.872030 61.143269 +4.867923 61.147963 +4.865576 61.153536 +4.861469 61.158523 +4.857362 61.163217 +4.855015 61.168791 +4.852375 61.174365 +4.850028 61.179938 +4.848855 61.186392 +4.847681 61.192553 +4.849441 61.197246 +4.858242 61.199886 +4.867923 61.197833 +4.874963 61.194313 +4.878777 61.189326 +4.879950 61.183165 +4.879657 61.176125 +4.879070 61.169378 +4.880244 61.162924 +4.882884 61.157643 +4.885231 61.152070 +4.887871 61.146496 +4.891978 61.141802 +4.895791 61.136522 +4.901365 61.132415 +4.903125 61.138575 +4.903712 61.145616 +4.904005 61.152363 +4.902832 61.158523 +4.901952 61.164684 +4.906352 61.168204 +4.917793 61.167911 +4.927767 61.167324 +4.932167 61.170551 +4.929821 61.176125 +4.925420 61.181112 +4.921607 61.185805 +4.927767 61.189912 +4.938915 61.188446 +4.945955 61.184925 +4.948595 61.180818 +4.959743 61.176418 +nan nan +4.758795 61.086358 +4.758502 61.080785 +4.756741 61.074624 +4.756448 61.069050 +4.757622 61.062890 +4.752928 61.058196 +4.751168 61.052036 +4.752341 61.045875 +4.750581 61.039422 +4.744421 61.034728 +4.738847 61.036195 +4.737673 61.042355 +4.735327 61.047929 +4.732686 61.053503 +4.731806 61.059663 +4.730633 61.065823 +4.729459 61.072277 +4.728286 61.078438 +4.727406 61.084598 +4.726526 61.090759 +4.730926 61.095452 +4.740900 61.097506 +4.750874 61.095159 +4.754688 61.090465 +4.758795 61.086358 +nan nan +4.672255 61.066117 +4.676362 61.062597 +4.677536 61.056436 +4.676949 61.049396 +4.678416 61.044702 +4.682229 61.039715 +4.689270 61.036195 +4.696017 61.032674 +4.703058 61.029154 +4.708338 61.025047 +4.709511 61.018887 +4.711858 61.013020 +4.713032 61.006859 +4.717139 61.002166 +4.719779 60.996592 +4.715085 60.991898 +4.705111 60.989845 +4.696310 60.987204 +4.686336 60.986618 +4.679589 60.990138 +4.676949 60.995712 +4.677536 61.002752 +4.679296 61.008913 +4.674896 61.013606 +4.668148 61.011553 +4.664628 61.005979 +4.661695 61.000699 +4.653187 60.998059 +4.642920 60.998939 +4.637640 61.003046 +4.630892 61.006566 +4.626785 61.011553 +4.622678 61.016247 +4.620038 61.021820 +4.620625 61.028861 +4.622092 61.035021 +4.623852 61.041182 +4.622678 61.047635 +4.621798 61.053503 +4.623559 61.059663 +4.627959 61.064357 +4.635293 61.067877 +4.644093 61.070517 +4.652894 61.073157 +4.662575 61.072277 +4.669322 61.068757 +4.672255 61.066117 +nan nan +4.858535 61.062303 +4.862642 61.058490 +4.863522 61.052623 +4.862056 61.046462 +4.854428 61.042942 +4.844454 61.041182 +4.840641 61.045875 +4.839467 61.052329 +4.838294 61.058196 +4.840347 61.064357 +4.848855 61.067290 +4.857362 61.064063 +4.858535 61.062303 +nan nan +4.819226 60.975764 +4.807785 60.974590 +4.797811 60.972830 +4.788130 60.974884 +4.789597 60.979577 +4.798398 60.982511 +4.811012 60.983098 +4.818053 60.979577 +4.819226 60.975764 +nan nan +4.911633 61.000112 +4.924540 61.000699 +4.934514 60.999819 +4.946835 60.998939 +4.960036 60.999525 +4.972650 61.000112 +4.976757 60.996298 +4.977637 60.990138 +4.981744 60.985151 +4.987318 60.981044 +4.991132 60.976057 +4.982624 60.973710 +4.972357 60.971657 +4.957983 60.971950 +4.945368 60.971363 +4.932754 60.972243 +4.922780 60.974590 +4.913099 60.976644 +4.904592 60.979577 +4.896378 60.982511 +4.890804 60.986618 +4.888458 60.992192 +4.893151 60.996885 +4.903125 60.998939 +4.911633 61.000112 +nan nan +4.976464 60.923253 +4.976171 60.917973 +4.978517 60.912399 +4.979397 60.906239 +4.980571 60.900078 +4.982918 60.894505 +4.984091 60.888051 +4.986731 60.882770 +4.990545 60.877783 +4.994359 60.872796 +4.996999 60.867223 +4.997879 60.861062 +5.000226 60.855488 +5.001399 60.849328 +4.994065 60.846101 +4.979984 60.846394 +4.968837 60.847861 +4.962090 60.851381 +4.957983 60.856075 +4.954169 60.861062 +4.950062 60.865756 +4.947422 60.871330 +4.945368 60.876903 +4.945662 60.882477 +4.947128 60.888637 +4.949182 60.895091 +4.948009 60.901252 +4.945662 60.905359 +4.941555 60.910346 +4.937448 60.915039 +4.935101 60.920613 +4.934221 60.926773 +4.934514 60.933521 +4.944488 60.934107 +4.952996 60.935574 +4.965903 60.936161 +4.971184 60.931761 +4.973530 60.926187 +4.976464 60.923253 +nan nan +5.224642 60.809138 +5.228749 60.804445 +5.231096 60.798871 +5.227869 60.793297 +5.218188 60.792711 +5.211147 60.796524 +5.205867 60.800631 +5.203227 60.806205 +5.206747 60.811779 +5.214961 60.811485 +5.224642 60.809138 +nan nan +5.689022 60.674489 +5.689902 60.668328 +5.690782 60.661874 +5.690195 60.655421 +5.691075 60.648967 +5.693715 60.643393 +5.693129 60.637819 +5.691075 60.631659 +5.689022 60.625499 +5.687262 60.619338 +5.685208 60.613471 +5.686088 60.607311 +5.684035 60.600857 +5.683741 60.593816 +5.683155 60.587362 +5.682568 60.580322 +5.680514 60.574162 +5.678754 60.568001 +5.676701 60.561547 +5.676114 60.555093 +5.674061 60.548933 +5.673474 60.541893 +5.674354 60.535439 +5.675234 60.529572 +5.674647 60.522531 +5.675527 60.516371 +5.674941 60.509330 +5.674354 60.502583 +5.676994 60.497009 +5.677874 60.490849 +5.679928 60.485275 +5.680808 60.479115 +5.681688 60.472661 +5.677288 60.467967 +5.664673 60.467674 +5.652352 60.468554 +5.639445 60.467967 +5.629471 60.466500 +5.622137 60.462980 +5.616270 60.458873 +5.614510 60.452713 +5.615390 60.446552 +5.613336 60.440685 +5.606002 60.437165 +5.592215 60.437458 +5.579601 60.436872 +5.569626 60.435112 +5.558479 60.433938 +5.549972 60.431298 +5.538531 60.430418 +5.527383 60.429244 +5.515063 60.430125 +5.505382 60.432178 +5.498635 60.435698 +5.490421 60.438632 +5.483674 60.442152 +5.478687 60.446552 +5.471646 60.450366 +5.464899 60.453593 +5.459619 60.457700 +5.453165 60.461513 +5.447884 60.465914 +5.442604 60.470021 +5.438790 60.474714 +5.433510 60.479115 +5.428230 60.483222 +5.424416 60.487035 +5.417376 60.490556 +5.412095 60.494662 +5.405641 60.498183 +5.398894 60.501703 +5.393614 60.506103 +5.386867 60.509330 +5.380413 60.513144 +5.373372 60.516664 +5.366625 60.520184 +5.359878 60.523998 +5.351958 60.526638 +5.343744 60.529865 +5.336996 60.533385 +5.331716 60.537492 +5.327902 60.542186 +5.330836 60.546293 +5.340810 60.548346 +5.349317 60.550693 +5.359291 60.551280 +5.370439 60.552453 +5.383053 60.553040 +5.395961 60.552160 +5.403881 60.549226 +5.413562 60.548346 +5.415615 60.554507 +5.415909 60.560081 +5.420602 60.564774 +5.426470 60.568588 +5.434977 60.571521 +5.444951 60.573281 +5.453751 60.575922 +5.455512 60.582082 +5.457272 60.586776 +5.464312 60.590003 +5.473113 60.592643 +5.477807 60.597630 +5.487781 60.599097 +5.497755 60.601150 +5.510369 60.601737 +5.520343 60.603204 +5.530317 60.605257 +5.538824 60.608191 +5.547625 60.610537 +5.556132 60.613178 +5.563466 60.616405 +5.569333 60.620512 +5.575200 60.624325 +5.581361 60.628432 +5.584588 60.634006 +5.586348 60.639873 +5.588401 60.646033 +5.588988 60.653074 +5.590748 60.659234 +5.589868 60.665688 +5.589281 60.671555 +5.589868 60.678596 +5.592801 60.683876 +5.601602 60.686810 +5.608643 60.688570 +5.618910 60.690330 +5.630057 60.688863 +5.636805 60.685343 +5.643258 60.681529 +5.653232 60.682116 +5.663207 60.683876 +5.675821 60.682996 +5.682568 60.679476 +5.689022 60.674489 +nan nan +4.916326 60.961389 +4.927767 60.961389 +4.934808 60.959042 +4.933047 60.954349 +4.925420 60.951122 +4.914273 60.949655 +4.903125 60.951415 +4.900192 60.955522 +4.907819 60.958749 +4.919260 60.959923 +4.916326 60.961389 +nan nan +4.842108 60.908879 +4.849148 60.905359 +4.856189 60.901545 +4.862642 60.898318 +4.868216 60.893918 +4.873496 60.889811 +4.879070 60.885411 +4.883177 60.880717 +4.881417 60.875730 +4.874083 60.872503 +4.868216 60.868689 +4.870856 60.864582 +4.879070 60.861355 +4.873203 60.861649 +4.862349 60.863116 +4.852375 60.865169 +4.845628 60.868983 +4.844454 60.875143 +4.845041 60.881890 +4.843868 60.888051 +4.838587 60.892451 +4.827147 60.893918 +4.818933 60.896558 +4.815119 60.901545 +4.812479 60.907119 +4.811305 60.911812 +4.822453 60.910639 +4.835360 60.909759 +4.842108 60.908879 +nan nan +4.885817 60.927947 +4.894031 60.925307 +4.902539 60.922373 +4.910753 60.919440 +4.916326 60.915333 +4.918966 60.909759 +4.921313 60.904185 +4.916620 60.899492 +4.908699 60.902132 +4.903125 60.906532 +4.896085 60.910052 +4.890804 60.912986 +4.883764 60.916506 +4.877017 60.920026 +4.872910 60.925013 +4.885817 60.927947 +nan nan +4.831547 60.826446 +4.838587 60.822633 +4.846801 60.819992 +4.847975 60.815005 +4.835654 60.816179 +4.827147 60.818819 +4.820399 60.822633 +4.821866 60.827326 +4.831547 60.826446 +nan nan +4.692203 60.780096 +4.701884 60.777749 +4.707458 60.773642 +4.710098 60.768069 +4.710978 60.761908 +4.711858 60.755455 +4.714792 60.749881 +4.708631 60.746067 +4.700417 60.747534 +4.693670 60.751054 +4.688097 60.755161 +4.682816 60.759561 +4.677242 60.763668 +4.671962 60.767775 +4.667855 60.772762 +4.672549 60.777456 +4.682229 60.779510 +4.692203 60.780096 +nan nan +4.889924 60.786257 +4.894031 60.781270 +4.899312 60.777163 +4.906352 60.773642 +4.911633 60.769536 +4.920140 60.766309 +4.926594 60.763082 +4.933634 60.759561 +4.937448 60.754574 +4.940088 60.749294 +4.943902 60.745480 +4.949475 60.741374 +4.939501 60.739320 +4.926594 60.740200 +4.915446 60.741960 +4.905765 60.744014 +4.894618 60.746361 +4.884937 60.748414 +4.876723 60.751348 +4.869976 60.754868 +4.864403 60.759268 +4.859122 60.763375 +4.853548 60.767482 +4.846801 60.771002 +4.840054 60.774523 +4.833307 60.778043 +4.830960 60.783617 +4.833894 60.787724 +4.846508 60.786843 +4.854722 60.783910 +4.864403 60.781856 +4.870270 60.785963 +4.872323 60.791830 +4.869683 60.797404 +4.868509 60.803858 +4.877017 60.802098 +4.882590 60.797991 +4.886404 60.793297 +4.889924 60.786257 +nan nan +4.886697 60.730519 +4.894911 60.729053 +4.904592 60.726999 +4.914566 60.724652 +4.925714 60.723186 +4.939795 60.722892 +4.951235 60.721425 +4.960916 60.719079 +4.970303 60.717025 +4.979984 60.714678 +4.987025 60.711158 +4.992305 60.707051 +4.997879 60.702651 +5.001692 60.697664 +5.002572 60.691797 +5.006386 60.686810 +5.009026 60.681236 +5.012840 60.676249 +5.016653 60.671262 +5.020467 60.666568 +5.027508 60.663048 +5.032788 60.658941 +5.041002 60.655714 +5.049509 60.653074 +5.057430 60.650140 +5.067110 60.647793 +5.074151 60.644567 +5.080898 60.640753 +5.086178 60.636646 +5.092926 60.633126 +5.099673 60.629312 +5.107887 60.625792 +5.114634 60.622565 +5.123141 60.619338 +5.129595 60.615818 +5.134875 60.611711 +5.140156 60.607017 +5.144263 60.602030 +5.148076 60.597043 +5.151890 60.592349 +5.155703 60.587362 +5.158344 60.581789 +5.159224 60.576802 +5.148076 60.577095 +5.141329 60.580615 +5.136049 60.584722 +5.130475 60.589123 +5.125195 60.593230 +5.118741 60.597043 +5.107593 60.598217 +5.094686 60.597923 +5.085005 60.596163 +5.072097 60.595576 +5.062417 60.598217 +5.057136 60.602910 +5.051856 60.607017 +5.045109 60.610244 +5.038362 60.613764 +5.027214 60.615524 +5.017534 60.617871 +5.007853 60.619925 +5.001106 60.623738 +4.994065 60.626965 +4.988785 60.631072 +4.983504 60.635473 +4.978224 60.639580 +4.972650 60.643980 +4.966196 60.647500 +4.959156 60.650727 +4.951235 60.653954 +4.944195 60.657474 +4.935688 60.660408 +4.930701 60.664515 +4.923953 60.668035 +4.916913 60.671555 +4.911633 60.675955 +4.906059 60.680062 +4.903712 60.685636 +4.898432 60.689743 +4.893151 60.693850 +4.887578 60.697957 +4.882297 60.702357 +4.877017 60.706758 +4.889338 60.707051 +4.899312 60.708811 +4.899605 60.712918 +4.891391 60.716145 +4.884644 60.719372 +4.876430 60.722599 +4.867923 60.725239 +4.859709 60.728173 +4.854428 60.732573 +4.860296 60.736386 +4.871736 60.734920 +4.881417 60.732866 +4.886697 60.730519 +nan nan +4.892565 60.661581 +4.902245 60.659528 +4.910459 60.656301 +4.917206 60.653074 +4.924247 60.649554 +4.929527 60.645153 +4.934808 60.641046 +4.927474 60.639286 +4.918086 60.641046 +4.909579 60.644273 +4.901365 60.646913 +4.894618 60.650434 +4.887871 60.654247 +4.879364 60.656887 +4.877017 60.662461 +4.886991 60.664515 +4.892565 60.661581 +nan nan +4.783730 60.650727 +4.783437 60.645153 +4.787250 60.640166 +4.792531 60.636059 +4.793704 60.629899 +4.784023 60.628139 +4.775223 60.629312 +4.771409 60.634299 +4.768769 60.639873 +4.769356 60.646620 +4.769649 60.652194 +4.778450 60.655127 +4.783730 60.650727 +nan nan +4.818346 60.621392 +4.820693 60.615818 +4.816292 60.611124 +4.805145 60.609657 +4.799571 60.605844 +4.800158 60.599390 +4.802798 60.593816 +4.803972 60.587656 +4.799571 60.582962 +4.790771 60.580322 +4.792237 60.580322 +4.784023 60.579735 +4.775516 60.581495 +4.767302 60.584136 +4.763195 60.589123 +4.759382 60.593816 +4.761142 60.599977 +4.762902 60.606430 +4.769942 60.609657 +4.778743 60.612298 +4.788717 60.614058 +4.797224 60.616991 +4.803091 60.620805 +4.813065 60.622858 +4.818346 60.621392 +nan nan +4.834774 60.564774 +4.827440 60.561254 +4.823040 60.556560 +4.818639 60.551573 +4.810132 60.549226 +4.801918 60.551867 +4.799571 60.557440 +4.801038 60.563601 +4.808372 60.566828 +4.818346 60.568881 +4.829493 60.570348 +4.834774 60.564774 +nan nan +4.859122 60.547760 +4.865869 60.545413 +4.872910 60.541893 +4.878190 60.537786 +4.883471 60.533679 +4.885817 60.528105 +4.884057 60.523411 +4.875550 60.520478 +4.867629 60.523705 +4.860589 60.527225 +4.852375 60.529865 +4.842694 60.532212 +4.835947 60.535732 +4.831840 60.540426 +4.835067 60.545999 +4.845041 60.548053 +4.859122 60.547760 +nan nan +4.953289 60.602324 +4.961796 60.599097 +4.970010 60.596456 +4.981158 60.594696 +4.990838 60.596750 +4.999346 60.599390 +5.010786 60.600563 +5.021934 60.599097 +5.030148 60.596163 +5.036895 60.592643 +5.045402 60.589709 +5.053323 60.587069 +5.064470 60.585309 +5.077084 60.584429 +5.091165 60.584136 +5.103486 60.583255 +5.113460 60.581202 +5.121674 60.577975 +5.126955 60.573868 +5.133702 60.570641 +5.140156 60.566828 +5.148663 60.563894 +5.155410 60.560667 +5.163624 60.557440 +5.170371 60.553920 +5.177118 60.550400 +5.183865 60.546880 +5.189146 60.542773 +5.192959 60.537786 +5.197066 60.532799 +5.199120 60.527225 +5.198827 60.520184 +5.198240 60.513731 +5.193839 60.508743 +5.185332 60.506103 +5.172425 60.505810 +5.164504 60.508743 +5.155997 60.511384 +5.146609 60.513731 +5.136929 60.515784 +5.128715 60.519011 +5.120501 60.521651 +5.113754 60.525171 +5.107007 60.528985 +5.101726 60.533092 +5.093512 60.535732 +5.085298 60.538959 +5.077084 60.541599 +5.066230 60.543359 +5.053323 60.544239 +5.040709 60.545119 +5.029854 60.546586 +5.021640 60.550400 +5.014600 60.553627 +5.008146 60.557147 +4.998465 60.559494 +4.987318 60.561254 +4.983211 60.565948 +4.980864 60.571521 +4.977051 60.576508 +4.970303 60.580029 +4.963263 60.583255 +4.956809 60.587069 +4.948302 60.589709 +4.941555 60.593230 +4.934808 60.597043 +4.928060 60.600563 +4.926887 60.605257 +4.939501 60.604377 +4.950649 60.602910 +4.953289 60.602324 +nan nan +4.939208 60.486155 +4.940381 60.481168 +4.941261 60.475008 +4.942435 60.468554 +4.943315 60.462393 +4.943021 60.456820 +4.934514 60.454473 +4.923367 60.454473 +4.915153 60.457406 +4.911339 60.462100 +4.907526 60.467087 +4.906352 60.473248 +4.912219 60.477355 +4.915153 60.482928 +4.914273 60.489089 +4.914859 60.494662 +4.925714 60.494369 +4.930994 60.490262 +4.939208 60.486155 +nan nan +4.985265 60.417804 +4.987905 60.412230 +4.993185 60.408123 +4.998465 60.404016 +5.004919 60.400202 +5.011960 60.396682 +5.018707 60.393455 +5.019587 60.387001 +5.019294 60.380254 +5.024574 60.375854 +5.029854 60.371747 +5.036308 60.368227 +5.043349 60.364706 +5.050096 60.361186 +5.056550 60.357373 +5.061830 60.353266 +5.067110 60.349159 +5.072391 60.345052 +5.076498 60.340065 +5.080311 60.335078 +5.085592 60.330971 +5.089405 60.325984 +5.092046 60.320410 +5.095566 60.315423 +5.097913 60.310143 +5.099086 60.303982 +5.099966 60.297822 +5.101140 60.291368 +5.099086 60.285207 +5.097619 60.279047 +5.091752 60.274940 +5.080605 60.275233 +5.072391 60.278167 +5.065644 60.281687 +5.054790 60.283447 +5.048922 60.279047 +5.048629 60.273473 +5.055376 60.269953 +5.064764 60.268193 +5.075911 60.266433 +5.083832 60.263206 +5.090579 60.259979 +5.094392 60.254992 +5.098206 60.250298 +5.100846 60.244431 +5.104366 60.239738 +5.107007 60.234164 +5.108180 60.228003 +5.110233 60.222430 +5.111407 60.215976 +5.109353 60.210109 +5.110527 60.203948 +5.112874 60.198375 +5.112580 60.191334 +5.111994 60.185760 +5.103486 60.183413 +5.097033 60.185467 +5.085885 60.186934 +5.074738 60.185760 +5.063590 60.184587 +5.058310 60.188987 +5.055963 60.194561 +5.053323 60.200135 +5.052443 60.206002 +5.050096 60.211575 +5.047456 60.217149 +5.045402 60.222723 +5.042762 60.226830 +5.038948 60.231817 +5.035135 60.236804 +5.029854 60.240911 +5.024281 60.241204 +5.023987 60.234164 +5.023401 60.227123 +5.021640 60.221256 +5.015773 60.216856 +5.004333 60.215976 +4.994945 60.218029 +4.989665 60.222136 +4.981744 60.225363 +4.974997 60.228590 +4.967957 60.232110 +4.961503 60.235924 +4.956222 60.240031 +4.950942 60.244138 +4.946835 60.249125 +4.946248 60.255285 +4.945075 60.261446 +4.942435 60.267019 +4.938621 60.272006 +4.934808 60.276700 +4.932461 60.282274 +4.931287 60.288728 +4.935688 60.291955 +4.946835 60.293128 +4.956516 60.290781 +4.963263 60.287554 +4.974410 60.287261 +4.978811 60.291955 +4.987318 60.294595 +4.999639 60.293715 +5.006386 60.290194 +5.013427 60.286674 +5.021347 60.283741 +5.027214 60.287848 +5.027508 60.294595 +5.030734 60.299875 +5.033961 60.305449 +5.038362 60.310143 +5.035135 60.307502 +5.026921 60.304862 +5.015773 60.304862 +5.006093 60.307502 +4.999346 60.310729 +4.994065 60.315423 +4.987611 60.318650 +4.980864 60.322170 +4.975290 60.326277 +4.970010 60.330677 +4.969130 60.336838 +4.967957 60.342998 +4.967077 60.349159 +4.967370 60.356199 +4.966490 60.362360 +4.964143 60.367933 +4.965903 60.374094 +4.968837 60.379374 +4.973237 60.384361 +4.975290 60.390522 +4.968250 60.393749 +4.961796 60.397562 +4.955049 60.401082 +4.951235 60.405776 +4.947128 60.410763 +4.943315 60.415750 +4.940968 60.421031 +4.942435 60.427484 +4.949769 60.430711 +4.962383 60.431005 +4.972357 60.430418 +4.971184 60.436578 +4.967077 60.441272 +4.972650 60.440979 +4.976757 60.437165 +4.980571 60.432471 +4.985851 60.428071 +4.985265 60.417804 +nan nan +4.919260 60.362946 +4.928940 60.363533 +4.937154 60.360893 +4.939795 60.355319 +4.933928 60.351212 +4.926594 60.347692 +4.916620 60.345932 +4.914566 60.351506 +4.908992 60.355612 +4.910753 60.360600 +4.919260 60.362946 +nan nan +5.033961 60.196614 +5.033375 60.189867 +5.034548 60.183707 +5.036895 60.178133 +5.037775 60.171973 +5.028094 60.171386 +5.021347 60.174906 +5.017534 60.179600 +5.014893 60.185174 +5.011373 60.190161 +5.013133 60.196321 +5.019000 60.200428 +5.024867 60.204535 +5.031321 60.202188 +5.033961 60.196614 +nan nan +5.037188 60.139704 +5.046576 60.137357 +5.050683 60.132370 +5.043349 60.129143 +5.035135 60.126796 +5.029268 60.122396 +5.020760 60.121516 +5.014307 60.124743 +5.014307 60.130316 +5.021640 60.133543 +5.029854 60.136477 +5.037188 60.139704 +nan nan +5.110233 60.136477 +5.112580 60.130903 +5.116394 60.125916 +5.120208 60.121222 +5.124021 60.116235 +5.127835 60.111248 +5.131648 60.106261 +5.127248 60.101568 +5.114634 60.102448 +5.109647 60.106555 +5.105833 60.111542 +5.102020 60.116529 +5.097913 60.121516 +5.092632 60.125623 +5.089112 60.130610 +5.083832 60.134717 +5.085592 60.140877 +5.094099 60.143517 +5.101140 60.147038 +5.106713 60.145277 +5.110233 60.136477 +nan nan +5.188852 60.113008 +5.195600 60.109488 +5.203520 60.106555 +5.210267 60.103034 +5.218188 60.100101 +5.223468 60.095700 +5.221708 60.089833 +5.225522 60.085140 +5.232269 60.081326 +5.239016 60.077806 +5.244003 60.073699 +5.249283 60.069299 +5.254564 60.064898 +5.259844 60.060791 +5.263364 60.055804 +5.267178 60.051111 +5.270992 60.046124 +5.271872 60.039963 +5.268938 60.034389 +5.265711 60.029109 +5.260138 60.025002 +5.256617 60.019722 +5.263364 60.016201 +5.267178 60.011214 +5.268058 60.005054 +5.259844 60.002414 +5.251630 60.005347 +5.243710 60.007988 +5.235496 60.011214 +5.223175 60.011801 +5.210854 60.011508 +5.199707 60.012975 +5.191786 60.015908 +5.185039 60.019428 +5.178585 60.022949 +5.171838 60.026762 +5.168024 60.031456 +5.165677 60.037030 +5.167438 60.043190 +5.169198 60.049351 +5.162451 60.052871 +5.158930 60.057858 +5.156290 60.063432 +5.158050 60.069299 +5.162744 60.074286 +5.172131 60.074579 +5.176238 60.069885 +5.174478 60.063725 +5.172425 60.057564 +5.175065 60.051991 +5.180345 60.047884 +5.188266 60.044950 +5.197653 60.042897 +5.209974 60.041723 +5.215841 60.045830 +5.212027 60.050524 +5.205574 60.054044 +5.198827 60.057858 +5.196480 60.063432 +5.193839 60.069005 +5.191786 60.074579 +5.189146 60.079859 +5.186799 60.085433 +5.182985 60.090420 +5.179172 60.095407 +5.176825 60.100688 +5.174478 60.106261 +5.170664 60.111248 +5.168318 60.116822 +5.172718 60.121809 +5.177998 60.117115 +5.188852 60.113008 +nan nan +5.040415 60.020602 +5.051269 60.018842 +5.053909 60.013268 +5.050976 60.007988 +5.047749 60.002414 +5.044522 59.996840 +5.042762 59.990973 +5.038362 59.985986 +5.032495 59.981879 +5.023107 59.982759 +5.017827 59.987159 +5.015187 59.992733 +5.015773 59.998013 +5.021347 60.002120 +5.024867 60.007694 +5.023694 60.013855 +5.021054 60.019428 +5.032201 60.020602 +5.040415 60.020602 +nan nan +5.157170 60.012094 +5.162157 60.007988 +5.167438 60.003881 +5.172718 59.999774 +5.176532 59.994787 +5.180345 59.990093 +5.175945 59.985399 +5.168904 59.981879 +5.160397 59.979532 +5.153357 59.975719 +5.146023 59.972785 +5.137809 59.970145 +5.124021 59.970145 +5.110233 59.970438 +5.099086 59.969265 +5.091165 59.972198 +5.082952 59.975132 +5.077671 59.979239 +5.072391 59.983639 +5.067404 59.988333 +5.067697 59.995373 +5.072097 60.000067 +5.077965 60.004174 +5.086472 60.006521 +5.094979 60.009454 +5.104660 60.011214 +5.113167 60.013855 +5.121674 60.016495 +5.131355 60.018255 +5.142502 60.019428 +5.149250 60.016201 +5.157170 60.012094 +nan nan +5.245177 59.953717 +5.250457 59.949317 +5.255444 59.945210 +5.260724 59.941103 +5.263364 59.935529 +5.265418 59.929955 +5.258671 59.929369 +5.250457 59.932302 +5.244003 59.935822 +5.234322 59.938169 +5.228162 59.941689 +5.224055 59.946383 +5.225815 59.952837 +5.234322 59.955184 +5.245177 59.953717 +nan nan +4.982331 60.546586 +4.987611 60.543946 +4.991718 60.540132 +4.995532 60.535439 +5.000812 60.531038 +5.009026 60.528398 +5.023107 60.528105 +5.029854 60.524585 +5.036602 60.521064 +5.045989 60.519011 +5.057430 60.518718 +5.068577 60.518424 +5.078258 60.516077 +5.086472 60.513437 +5.092926 60.509624 +5.101433 60.506983 +5.109353 60.504050 +5.119034 60.501703 +5.129008 60.499649 +5.138689 60.497303 +5.146609 60.494369 +5.156290 60.492316 +5.164504 60.489382 +5.172718 60.486449 +5.179465 60.482635 +5.184746 60.478528 +5.190026 60.474421 +5.193839 60.469434 +5.199120 60.465327 +5.201760 60.459753 +5.201173 60.453006 +5.200587 60.445966 +5.201760 60.439805 +5.203814 60.434525 +5.206454 60.428658 +5.208801 60.423377 +5.207040 60.416924 +5.201173 60.413110 +5.195306 60.409003 +5.185332 60.406950 +5.175652 60.405189 +5.165677 60.403429 +5.155703 60.401376 +5.148663 60.398149 +5.138689 60.396095 +5.130182 60.397856 +5.124901 60.401962 +5.121088 60.406656 +5.115807 60.411056 +5.111994 60.415750 +5.109647 60.421324 +5.112874 60.426898 +5.121381 60.429538 +5.128715 60.432765 +5.130182 60.438925 +5.123728 60.442445 +5.113754 60.444792 +5.101433 60.445672 +5.090579 60.447139 +5.080898 60.449486 +5.075618 60.453593 +5.070337 60.457700 +5.066524 60.462687 +5.073564 60.466207 +5.080898 60.469434 +5.081191 60.473541 +5.070044 60.475008 +5.058896 60.476768 +5.056256 60.482342 +5.055376 60.488209 +5.054496 60.494369 +5.049216 60.498769 +5.042175 60.502290 +5.032495 60.500530 +5.026627 60.496423 +5.020760 60.492316 +5.010786 60.491729 +5.002866 60.494662 +4.998759 60.499356 +4.993478 60.503756 +4.989665 60.508743 +4.985851 60.513731 +4.982038 60.518424 +4.977931 60.523411 +4.975584 60.528985 +4.972944 60.534559 +4.969130 60.539252 +4.965316 60.544239 +4.961503 60.548933 +4.958863 60.554507 +4.964436 60.554507 +4.970010 60.551573 +4.977931 60.548933 +4.982331 60.546586 +nan nan +5.070044 60.391108 +5.082365 60.390228 +5.096446 60.389935 +5.108767 60.390522 +5.115807 60.387001 +5.116687 60.380548 +5.119034 60.374974 +5.118741 60.368227 +5.114047 60.363533 +5.112287 60.357079 +5.116101 60.352386 +5.119914 60.347399 +5.119621 60.340651 +5.114927 60.335958 +5.105246 60.336544 +5.099966 60.341238 +5.094686 60.345345 +5.089405 60.349452 +5.085885 60.354439 +5.084712 60.360600 +5.083538 60.366760 +5.081485 60.372334 +5.074444 60.375854 +5.065057 60.378201 +5.056550 60.380841 +5.054496 60.386415 +5.062710 60.389055 +5.070044 60.391108 +nan nan +8.188988 63.253367 +8.194855 63.250140 +8.200135 63.247207 +8.208936 63.244273 +8.217150 63.241046 +8.210696 63.237233 +8.200722 63.234592 +8.189575 63.233126 +8.177840 63.234886 +8.172560 63.239286 +8.167280 63.243686 +8.164933 63.249260 +8.169040 63.254541 +8.181361 63.255421 +8.188988 63.253367 +nan nan +8.522532 63.582804 +8.535439 63.583978 +8.550694 63.583391 +8.564775 63.581924 +8.574749 63.579577 +8.585310 63.576937 +8.594110 63.574004 +8.584136 63.571657 +8.571815 63.570483 +8.557734 63.570483 +8.543653 63.570190 +8.529572 63.570190 +8.517251 63.570483 +8.503757 63.571950 +8.494370 63.574884 +8.498477 63.578991 +8.506691 63.580751 +8.519598 63.581631 +8.522532 63.582804 +nan nan +6.160149 62.478032 +6.173643 62.478325 +6.188311 62.478032 +6.200632 62.476271 +6.213539 62.475391 +6.227034 62.474511 +6.234074 62.470698 +6.228794 62.467471 +6.217060 62.466297 +6.205325 62.465417 +6.194178 62.463364 +6.183617 62.461604 +6.171883 62.463364 +6.163669 62.466004 +6.151348 62.467764 +6.139614 62.469524 +6.135507 62.473044 +6.146068 62.474805 +6.160149 62.478032 +nan nan +5.226402 60.258219 +5.233442 60.254699 +5.231389 60.248538 +5.225522 60.244431 +5.217014 60.242084 +5.205867 60.240911 +5.199120 60.244431 +5.199707 60.251178 +5.205574 60.255285 +5.213788 60.257632 +5.226402 60.258219 +nan nan +5.326142 60.158185 +5.327022 60.152025 +5.329369 60.146451 +5.330249 60.140290 +5.322035 60.140290 +5.317928 60.145277 +5.315875 60.150851 +5.314995 60.157012 +5.315288 60.162585 +5.323795 60.164932 +5.326142 60.158185 +nan nan +5.367505 60.082206 +5.375426 60.079566 +5.380706 60.075166 +5.385693 60.071059 +5.388333 60.065192 +5.393614 60.061085 +5.398601 60.056978 +5.403881 60.052871 +5.407695 60.047884 +5.410042 60.042310 +5.410922 60.036150 +5.410335 60.029109 +5.407108 60.023829 +5.402708 60.018842 +5.396841 60.015028 +5.387160 60.012975 +5.377773 60.015321 +5.371026 60.018842 +5.358705 60.018548 +5.352838 60.014441 +5.346970 60.010334 +5.337583 60.011508 +5.330836 60.015028 +5.325556 60.019135 +5.323209 60.024709 +5.323502 60.029989 +5.326729 60.035563 +5.332596 60.039376 +5.337290 60.044363 +5.340223 60.049644 +5.341983 60.055804 +5.341103 60.062258 +5.338757 60.067832 +5.336410 60.073406 +5.335530 60.079566 +5.343744 60.082206 +5.354011 60.083966 +5.367505 60.082206 +nan nan +5.659980 60.064312 +5.660860 60.058151 +5.660273 60.051111 +5.661153 60.044950 +5.662033 60.038496 +5.662913 60.032629 +5.663500 60.026469 +5.662913 60.019428 +5.663793 60.012975 +5.663207 60.006521 +5.662913 59.999480 +5.659686 59.993907 +5.655286 59.989213 +5.649419 59.985399 +5.640912 59.982759 +5.632404 59.980119 +5.623897 59.977479 +5.615683 59.975132 +5.609816 59.970732 +5.605122 59.966038 +5.601895 59.960757 +5.600135 59.954597 +5.600722 59.948437 +5.604829 59.943743 +5.608349 59.938756 +5.615096 59.934942 +5.620083 59.930835 +5.626537 59.927315 +5.631818 59.922915 +5.635631 59.917928 +5.636511 59.912061 +5.631818 59.907367 +5.626244 59.902967 +5.619497 59.905313 +5.617150 59.910887 +5.607763 59.912941 +5.601015 59.916754 +5.600135 59.922915 +5.594855 59.927315 +5.585174 59.925262 +5.578134 59.922035 +5.571093 59.918514 +5.565226 59.914701 +5.558186 59.911474 +5.552319 59.907367 +5.546451 59.903260 +5.539411 59.900033 +5.533544 59.896220 +5.525037 59.893286 +5.512716 59.892993 +5.503328 59.895339 +5.498048 59.899446 +5.494528 59.904433 +5.491888 59.910007 +5.489834 59.915581 +5.488954 59.921741 +5.488074 59.928195 +5.486901 59.934062 +5.486020 59.940223 +5.483967 59.945796 +5.479860 59.950783 +5.474873 59.954890 +5.469593 59.959291 +5.460205 59.959877 +5.455805 59.955184 +5.453751 59.949023 +5.448178 59.945210 +5.438204 59.944623 +5.428816 59.946970 +5.420896 59.949610 +5.414442 59.953424 +5.407695 59.956944 +5.401241 59.960464 +5.394494 59.964278 +5.387747 59.967798 +5.381293 59.971318 +5.374839 59.974838 +5.368092 59.978359 +5.361345 59.981879 +5.357825 59.986866 +5.360758 59.992146 +5.366625 59.996253 +5.376306 59.998013 +5.387453 59.999480 +5.401534 59.999187 +5.412095 60.000360 +5.420896 60.002707 +5.430283 60.000654 +5.438204 59.997720 +5.449351 59.998894 +5.455218 60.002707 +5.454338 60.009161 +5.449058 60.013268 +5.445244 60.018255 +5.443191 60.023829 +5.442311 60.029989 +5.442604 60.035563 +5.445831 60.040843 +5.452871 60.044070 +5.462845 60.046124 +5.474873 60.045244 +5.487194 60.044070 +5.497168 60.046124 +5.501568 60.050817 +5.505969 60.055511 +5.515943 60.057564 +5.525917 60.059325 +5.537064 60.060498 +5.549385 60.060791 +5.563173 60.060498 +5.575494 60.059618 +5.584881 60.057564 +5.597495 60.058151 +5.603362 60.061965 +5.607763 60.066658 +5.613630 60.070472 +5.624777 60.071939 +5.635925 60.073112 +5.645605 60.074579 +5.657926 60.075166 +5.658806 60.069299 +5.659980 60.064312 +nan nan +5.977976 60.160532 +5.990590 60.160825 +5.998511 60.158185 +6.005258 60.154371 +6.010245 60.150264 +6.016992 60.146744 +6.020512 60.141757 +6.022859 60.136183 +6.024912 60.130610 +6.024326 60.123569 +6.022566 60.117409 +6.017872 60.112715 +6.012005 60.108901 +6.006138 60.104794 +5.998804 60.101568 +5.990297 60.098927 +5.980616 60.097167 +5.970642 60.095407 +5.961841 60.092767 +5.954801 60.089540 +5.950400 60.084846 +5.944533 60.080739 +5.938666 60.076632 +5.931332 60.074579 +5.927812 60.079859 +5.926932 60.085726 +5.926052 60.092180 +5.922532 60.097167 +5.918718 60.101861 +5.914905 60.106848 +5.911384 60.111835 +5.910504 60.117995 +5.909624 60.124156 +5.913144 60.129730 +5.914905 60.135890 +5.919305 60.140584 +5.924292 60.145277 +5.929866 60.149091 +5.937200 60.152611 +5.945707 60.154958 +5.954214 60.157892 +5.965655 60.158772 +5.977976 60.160532 +nan nan +5.913438 59.982172 +5.921358 59.980706 +5.926639 59.976305 +5.927519 59.970145 +5.921358 59.966038 +5.913144 59.963691 +5.900530 59.963398 +5.887916 59.963104 +5.878235 59.961051 +5.868555 59.959291 +5.860047 59.956651 +5.850367 59.954597 +5.841859 59.952250 +5.830712 59.951077 +5.819858 59.952837 +5.824551 59.957531 +5.832765 59.959877 +5.842739 59.961931 +5.851247 59.964571 +5.859754 59.966918 +5.867968 59.969558 +5.875302 59.972785 +5.881169 59.976892 +5.888209 59.980119 +5.897010 59.982466 +5.908157 59.983932 +5.913438 59.982172 +nan nan +5.695769 59.931422 +5.700756 59.928195 +5.699289 59.922328 +5.693422 59.918221 +5.680808 59.919101 +5.678754 59.924675 +5.683155 59.929369 +5.695769 59.931422 +nan nan +5.595442 59.898273 +5.594855 59.892699 +5.593095 59.886539 +5.592801 59.880965 +5.588401 59.876271 +5.577254 59.876565 +5.570800 59.880378 +5.564053 59.883605 +5.561999 59.889472 +5.562293 59.894753 +5.566693 59.899446 +5.572560 59.903553 +5.578427 59.907367 +5.585174 59.907954 +5.588988 59.902380 +5.595442 59.898273 +nan nan +5.703983 59.799706 +5.708970 59.795306 +5.714250 59.791199 +5.720411 59.787385 +5.728625 59.784745 +5.739479 59.782985 +5.751800 59.782105 +5.761187 59.779758 +5.767641 59.776238 +5.772921 59.771837 +5.777908 59.767730 +5.782895 59.763623 +5.783482 59.757170 +5.775268 59.754823 +5.762947 59.754236 +5.750919 59.755409 +5.743586 59.751889 +5.739185 59.747195 +5.738599 59.740155 +5.736545 59.734288 +5.734785 59.728127 +5.731558 59.722554 +5.724518 59.719327 +5.713663 59.720794 +5.708676 59.725194 +5.707796 59.731354 +5.709557 59.736928 +5.711317 59.743089 +5.709263 59.748662 +5.706916 59.754236 +5.710143 59.759516 +5.711903 59.765970 +5.712490 59.771251 +5.707210 59.775651 +5.700756 59.779171 +5.694302 59.782398 +5.684621 59.785038 +5.674941 59.782985 +5.666727 59.780638 +5.652939 59.780931 +5.643552 59.782985 +5.634164 59.785332 +5.626244 59.787972 +5.618323 59.791199 +5.611576 59.794719 +5.605416 59.798239 +5.601309 59.802933 +5.601895 59.809973 +5.606589 59.814667 +5.615096 59.817307 +5.627124 59.817894 +5.632404 59.813494 +5.633284 59.807333 +5.635631 59.801759 +5.642085 59.797946 +5.652939 59.796772 +5.665260 59.795599 +5.673474 59.797946 +5.676994 59.803520 +5.686382 59.804106 +5.695769 59.802053 +5.703983 59.799706 +nan nan +5.651179 59.755996 +5.660273 59.753649 +5.671127 59.752183 +5.679048 59.749249 +5.681394 59.743675 +5.676994 59.738982 +5.664673 59.738688 +5.656753 59.741328 +5.650006 59.745142 +5.643552 59.748662 +5.636805 59.752183 +5.644138 59.755409 +5.651179 59.755996 +nan nan +5.634164 59.734875 +5.645019 59.733408 +5.652939 59.730474 +5.659393 59.726954 +5.666140 59.723434 +5.671127 59.719033 +5.674941 59.714046 +5.679928 59.709939 +5.679341 59.704366 +5.668487 59.704659 +5.663500 59.708766 +5.657046 59.712580 +5.647365 59.711993 +5.636511 59.710820 +5.625657 59.711113 +5.620377 59.715220 +5.618030 59.720794 +5.618617 59.727834 +5.619203 59.733408 +5.627417 59.735755 +5.634164 59.734875 +nan nan +5.564346 59.869231 +5.568160 59.864537 +5.573440 59.860137 +5.578427 59.855737 +5.583707 59.851630 +5.579014 59.846936 +5.574320 59.842242 +5.572853 59.836082 +5.570800 59.829921 +5.567573 59.824348 +5.560532 59.821121 +5.548212 59.822294 +5.542931 59.826401 +5.539411 59.831095 +5.535597 59.836082 +5.532077 59.841069 +5.529730 59.846643 +5.525917 59.851336 +5.522103 59.856323 +5.522396 59.861897 +5.527090 59.865417 +5.535597 59.867764 +5.541171 59.871871 +5.549678 59.874511 +5.557892 59.872751 +5.564346 59.869231 +nan nan +5.330543 59.312151 +5.330249 59.305697 +5.328196 59.299243 +5.326729 59.293083 +5.324676 59.286922 +5.325849 59.280762 +5.320275 59.278122 +5.314995 59.282229 +5.312648 59.287803 +5.310595 59.293376 +5.310888 59.300417 +5.311475 59.307164 +5.314408 59.312444 +5.317635 59.318018 +5.324676 59.321245 +5.331129 59.317725 +5.330543 59.312151 +nan nan +5.370439 59.285162 +5.375426 59.281055 +5.376306 59.274895 +5.372199 59.270201 +5.365452 59.272548 +5.363398 59.278122 +5.364865 59.284282 +5.370439 59.285162 +nan nan +5.610696 59.275188 +5.618617 59.272255 +5.623604 59.268148 +5.618030 59.263747 +5.608643 59.266094 +5.603656 59.270495 +5.610696 59.275188 +nan nan +5.775855 59.252307 +5.771454 59.247613 +5.762067 59.245853 +5.755320 59.249373 +5.758253 59.253480 +5.767934 59.255240 +5.776441 59.257880 +5.780842 59.262574 +5.779082 59.259640 +5.778495 59.254360 +5.775855 59.252307 +nan nan +5.841859 59.269028 +5.846846 59.264334 +5.849193 59.258760 +5.847140 59.252893 +5.841273 59.248786 +5.829538 59.248200 +5.821325 59.249960 +5.813697 59.252893 +5.812817 59.259054 +5.817218 59.263747 +5.821618 59.268734 +5.827192 59.272548 +5.838046 59.272255 +5.841859 59.269028 +nan nan +6.029313 59.286336 +6.037233 59.283402 +6.042220 59.279295 +6.048674 59.275482 +6.052194 59.270495 +6.056888 59.266388 +6.059235 59.260814 +6.058648 59.255240 +6.053075 59.251427 +6.045741 59.248200 +6.037820 59.245559 +6.029313 59.242919 +6.019632 59.241159 +6.011418 59.238519 +6.002911 59.236172 +5.994697 59.233532 +5.985310 59.231772 +5.974456 59.230598 +5.963601 59.229425 +5.952747 59.228252 +5.940426 59.227958 +5.928399 59.227372 +5.916371 59.228252 +5.905811 59.230012 +5.900824 59.234412 +5.903757 59.239692 +5.907277 59.245266 +5.906397 59.251427 +5.904050 59.257000 +5.903464 59.263161 +5.905224 59.269321 +5.909624 59.274308 +5.918131 59.276655 +5.926345 59.279295 +5.934559 59.281642 +5.942773 59.284576 +5.952454 59.286042 +5.961841 59.288096 +5.972989 59.289269 +5.983843 59.290149 +5.996164 59.290443 +6.007018 59.291616 +6.017579 59.289856 +6.026673 59.287803 +6.029313 59.286336 +nan nan +6.053661 59.215637 +6.050434 59.211530 +6.044861 59.207423 +6.036647 59.205077 +6.032540 59.203610 +6.025499 59.201850 +6.015818 59.200090 +6.006431 59.198036 +6.002031 59.193342 +5.999977 59.187182 +5.997924 59.181022 +5.988537 59.179555 +5.983256 59.182195 +5.979736 59.187182 +5.979149 59.193342 +5.978269 59.199503 +5.977389 59.205957 +5.977976 59.211237 +5.983550 59.215344 +5.994697 59.216517 +6.006725 59.216811 +6.014938 59.219158 +6.021979 59.222384 +6.030193 59.225025 +6.041047 59.226198 +6.053368 59.226785 +6.058355 59.222091 +6.053661 59.215637 +nan nan +5.923412 59.200090 +5.929866 59.196276 +5.936026 59.193049 +5.939840 59.188062 +5.943360 59.183075 +5.946880 59.178381 +5.937200 59.176328 +5.930746 59.180141 +5.925759 59.184248 +5.920772 59.188649 +5.915785 59.192756 +5.912264 59.197449 +5.912851 59.203023 +5.921945 59.200970 +5.923412 59.200090 +nan nan +5.901410 59.151099 +5.904931 59.146112 +5.907277 59.140539 +5.906691 59.133791 +5.903464 59.128218 +5.896423 59.124404 +5.887916 59.122057 +5.879995 59.119124 +5.874128 59.115310 +5.869728 59.110616 +5.864154 59.107976 +5.857700 59.111497 +5.852713 59.115897 +5.850660 59.121471 +5.852420 59.127631 +5.859461 59.130858 +5.865034 59.134672 +5.869435 59.139365 +5.872662 59.144939 +5.877355 59.149339 +5.882636 59.153740 +5.892610 59.155500 +5.901704 59.153153 +5.901410 59.151099 +nan nan +5.960081 58.981834 +5.960961 58.976847 +5.961841 58.972153 +5.953627 58.969806 +5.944533 58.970686 +5.945120 58.977434 +5.948054 58.982714 +5.958908 58.983887 +5.960081 58.981834 +nan nan +5.982083 58.918176 +5.988537 58.914362 +5.990883 58.908789 +5.989417 58.907615 +5.985016 58.904975 +5.978562 58.907322 +5.973575 58.911429 +5.970055 58.916416 +5.973282 58.921696 +5.982083 58.918176 +nan nan +5.895250 58.988874 +5.904344 58.986528 +5.912264 58.983594 +5.919892 58.980954 +5.924585 58.976553 +5.919305 58.972447 +5.907277 58.973327 +5.899357 58.976260 +5.891730 58.979487 +5.882636 58.981541 +5.876182 58.985354 +5.877942 58.990048 +5.887623 58.991808 +5.895250 58.988874 +nan nan +5.201173 59.889766 +5.206160 59.885659 +5.212908 59.881845 +5.218188 59.877738 +5.224642 59.874218 +5.229629 59.870111 +5.226989 59.866004 +5.218188 59.863364 +5.208801 59.865417 +5.201173 59.869231 +5.195893 59.873338 +5.190613 59.877445 +5.185332 59.881845 +5.181812 59.886539 +5.183279 59.891526 +5.192666 59.890646 +5.201173 59.889766 +nan nan +5.043642 59.895926 +5.041882 59.889766 +5.036015 59.885659 +5.027801 59.883019 +5.018414 59.885365 +5.019880 59.890059 +5.025747 59.894166 +5.043642 59.895926 +nan nan +5.072977 59.863070 +5.075618 59.858964 +5.080898 59.854857 +5.084418 59.849576 +5.087058 59.844296 +5.087645 59.838135 +5.083538 59.833442 +5.076498 59.829921 +5.065644 59.831388 +5.057430 59.834322 +5.049509 59.837255 +5.042762 59.840776 +5.034841 59.843709 +5.028388 59.847229 +5.024574 59.852216 +5.031321 59.855443 +5.043935 59.854563 +5.046576 59.858670 +5.048629 59.864831 +5.058310 59.866591 +5.069164 59.865417 +5.072977 59.863070 +nan nan +5.044522 59.819947 +5.049509 59.815840 +5.053323 59.811147 +5.051563 59.804986 +5.042175 59.807333 +5.038362 59.812027 +5.034548 59.817014 +5.037482 59.820827 +5.044522 59.819947 +nan nan +5.344917 59.962224 +5.354304 59.959877 +5.363985 59.957824 +5.371906 59.954890 +5.379826 59.951957 +5.387747 59.949023 +5.395961 59.946090 +5.403881 59.943450 +5.411802 59.940223 +5.418549 59.936702 +5.425296 59.933476 +5.430283 59.929075 +5.437030 59.925555 +5.442311 59.921155 +5.445831 59.916461 +5.449645 59.911474 +5.453458 59.906780 +5.457272 59.901793 +5.460792 59.896806 +5.464606 59.891819 +5.468419 59.886245 +5.470473 59.880965 +5.474580 59.875978 +5.476633 59.870404 +5.480153 59.865417 +5.484260 59.860430 +5.486314 59.854857 +5.490421 59.849870 +5.492474 59.844589 +5.493354 59.838429 +5.492768 59.831388 +5.492181 59.824348 +5.494821 59.819067 +5.494234 59.812320 +5.495114 59.805866 +5.494528 59.800586 +5.492768 59.794132 +5.488367 59.789439 +5.481033 59.786505 +5.476633 59.781518 +5.473700 59.776238 +5.469299 59.771251 +5.460499 59.768904 +5.450818 59.766850 +5.442604 59.764210 +5.437910 59.759516 +5.432337 59.755409 +5.423829 59.753063 +5.412975 59.751596 +5.400654 59.751302 +5.386867 59.751596 +5.376013 59.751596 +5.366625 59.753943 +5.358705 59.756876 +5.354891 59.761863 +5.359585 59.766264 +5.367799 59.769197 +5.380120 59.769784 +5.393614 59.769490 +5.403295 59.771251 +5.407695 59.776238 +5.404175 59.780931 +5.397427 59.784451 +5.390974 59.787972 +5.380413 59.789439 +5.373079 59.786505 +5.370145 59.780931 +5.364278 59.776531 +5.353131 59.775651 +5.339343 59.775944 +5.328489 59.777411 +5.320862 59.780345 +5.314115 59.783865 +5.308834 59.787972 +5.305314 59.792959 +5.304141 59.799119 +5.304727 59.806160 +5.302381 59.811733 +5.300034 59.817307 +5.297687 59.822881 +5.295340 59.828455 +5.292993 59.834028 +5.289180 59.838722 +5.286833 59.844296 +5.283313 59.849283 +5.279499 59.853976 +5.275685 59.858964 +5.270698 59.863070 +5.265418 59.867177 +5.258671 59.870698 +5.260138 59.875978 +5.263658 59.880965 +5.262484 59.887126 +5.260138 59.892699 +5.257791 59.898273 +5.255444 59.903847 +5.251630 59.908834 +5.254857 59.914407 +5.263364 59.917048 +5.271578 59.919395 +5.277445 59.923501 +5.284779 59.927022 +5.289180 59.931715 +5.293580 59.936409 +5.297980 59.941103 +5.298274 59.946676 +5.294753 59.951370 +5.286539 59.954304 +5.277152 59.956651 +5.273339 59.961344 +5.276272 59.966918 +5.283606 59.970145 +5.291820 59.972785 +5.302674 59.971318 +5.310888 59.968385 +5.319395 59.971025 +5.330543 59.972198 +5.339930 59.970145 +5.344917 59.965745 +5.344917 59.962224 +nan nan +5.151596 59.868644 +5.154237 59.864537 +5.157757 59.859844 +5.160397 59.853976 +5.163917 59.849283 +5.169198 59.844882 +5.174478 59.840776 +5.179465 59.836375 +5.187386 59.833735 +5.195600 59.830801 +5.206454 59.829041 +5.214374 59.826108 +5.219655 59.822001 +5.223468 59.817307 +5.223175 59.810267 +5.225228 59.804693 +5.234616 59.802639 +5.245763 59.803520 +5.258084 59.802639 +5.263364 59.798533 +5.266885 59.793545 +5.269525 59.787972 +5.271578 59.782398 +5.276859 59.778291 +5.281846 59.774184 +5.288593 59.770664 +5.293580 59.766264 +5.298860 59.762157 +5.304141 59.757756 +5.309128 59.753649 +5.314408 59.749542 +5.317928 59.744555 +5.322035 59.739862 +5.324089 59.734288 +5.326729 59.728714 +5.328783 59.723140 +5.329663 59.716980 +5.334943 59.712580 +5.341690 59.709059 +5.345210 59.704072 +5.340810 59.699379 +5.332596 59.697032 +5.325262 59.693512 +5.318222 59.690285 +5.311475 59.687058 +5.302967 59.684124 +5.294460 59.681777 +5.285073 59.679724 +5.273925 59.678551 +5.268645 59.682658 +5.273045 59.686178 +5.280086 59.689405 +5.286833 59.691458 +5.294167 59.694685 +5.302381 59.697619 +5.309421 59.700552 +5.307368 59.706419 +5.302087 59.710526 +5.299740 59.716100 +5.297394 59.721674 +5.296514 59.727834 +5.296807 59.734581 +5.296220 59.740742 +5.293580 59.746315 +5.288593 59.750422 +5.278912 59.750129 +5.273045 59.746022 +5.271285 59.739862 +5.273632 59.734581 +5.270698 59.729008 +5.258377 59.728421 +5.248990 59.730474 +5.242243 59.734288 +5.235789 59.737808 +5.233442 59.743382 +5.229629 59.748369 +5.224348 59.752476 +5.214668 59.750422 +5.207921 59.747195 +5.199413 59.744849 +5.192079 59.741328 +5.186799 59.737221 +5.184746 59.731061 +5.187092 59.725487 +5.192079 59.721380 +5.196186 59.716393 +5.197066 59.710233 +5.193839 59.704659 +5.187972 59.700845 +5.182399 59.696739 +5.177998 59.692045 +5.172131 59.687938 +5.167731 59.683244 +5.163624 59.678551 +5.159224 59.673857 +5.154823 59.668870 +5.151596 59.663589 +5.152477 59.657429 +5.156290 59.652442 +5.165971 59.651562 +5.172718 59.655082 +5.178585 59.658896 +5.181812 59.664470 +5.184746 59.670043 +5.190613 59.673857 +5.197360 59.677084 +5.207040 59.677670 +5.206747 59.672097 +5.200880 59.668283 +5.195306 59.664176 +5.192079 59.658602 +5.190319 59.652442 +5.194133 59.647748 +5.196480 59.642175 +5.200293 59.637188 +5.201173 59.631027 +5.199413 59.624867 +5.197360 59.618706 +5.201467 59.614013 +5.199413 59.607852 +5.193839 59.603745 +5.186799 59.600225 +5.182399 59.595531 +5.175652 59.592304 +5.169784 59.588197 +5.162744 59.584971 +5.155410 59.581744 +5.148956 59.581157 +5.147783 59.587317 +5.148370 59.594064 +5.138982 59.596411 +5.131062 59.599052 +5.129888 59.605505 +5.130475 59.612252 +5.126661 59.617239 +5.123141 59.621933 +5.119034 59.626920 +5.115514 59.631907 +5.111700 59.636601 +5.110820 59.643055 +5.109647 59.649215 +5.112874 59.654495 +5.117274 59.659483 +5.120208 59.664763 +5.115221 59.668870 +5.109940 59.673270 +5.111700 59.679431 +5.114634 59.684711 +5.119034 59.689698 +5.123728 59.694098 +5.125195 59.700552 +5.128715 59.705833 +5.130182 59.712286 +5.131942 59.718447 +5.134875 59.723727 +5.138396 59.729301 +5.143969 59.733408 +5.152183 59.735755 +5.160690 59.738395 +5.167731 59.741622 +5.174771 59.745142 +5.181812 59.748369 +5.186212 59.753063 +5.183865 59.757170 +5.173011 59.758930 +5.161864 59.757756 +5.152183 59.755703 +5.139862 59.755409 +5.127835 59.755996 +5.121088 59.759810 +5.118741 59.765383 +5.119034 59.770957 +5.119327 59.776531 +5.114927 59.771251 +5.110527 59.766557 +5.106127 59.761863 +5.099086 59.758636 +5.090872 59.755996 +5.082658 59.758930 +5.076204 59.763330 +5.072391 59.768024 +5.070044 59.773597 +5.069164 59.780051 +5.070924 59.786212 +5.075324 59.790905 +5.081191 59.794719 +5.089405 59.797359 +5.094979 59.801466 +5.098206 59.807040 +5.098499 59.813787 +5.099086 59.820534 +5.104660 59.822001 +5.111407 59.818187 +5.116394 59.814080 +5.118154 59.818774 +5.121381 59.824348 +5.126955 59.826988 +5.134875 59.824054 +5.144556 59.824641 +5.147783 59.830215 +5.142502 59.834322 +5.137222 59.838722 +5.131942 59.842829 +5.126955 59.846936 +5.121674 59.851043 +5.116394 59.855443 +5.111114 59.859844 +5.107593 59.864537 +5.110527 59.870111 +5.119034 59.872458 +5.131355 59.873045 +5.143676 59.872164 +5.151596 59.868644 +nan nan +5.205280 59.409545 +5.211734 59.405731 +5.216721 59.401624 +5.222002 59.397517 +5.225522 59.392530 +5.229335 59.387836 +5.231682 59.382263 +5.234029 59.376689 +5.234909 59.370528 +5.238723 59.365541 +5.242243 59.360554 +5.247523 59.356447 +5.251044 59.351754 +5.254857 59.346767 +5.258671 59.341780 +5.263658 59.337379 +5.268938 59.333272 +5.276565 59.330632 +5.281552 59.326232 +5.285659 59.321245 +5.287713 59.315965 +5.282139 59.311564 +5.275392 59.308337 +5.274805 59.301590 +5.278326 59.296603 +5.282139 59.291909 +5.285953 59.286922 +5.288006 59.281349 +5.288886 59.275188 +5.291527 59.269615 +5.292113 59.263454 +5.292993 59.257294 +5.292700 59.250253 +5.293580 59.244093 +5.292993 59.237346 +5.291527 59.231185 +5.289473 59.225025 +5.287713 59.218864 +5.284779 59.212704 +5.282726 59.206543 +5.279792 59.200970 +5.275685 59.196276 +5.272458 59.190702 +5.269525 59.185422 +5.268938 59.178675 +5.268352 59.171634 +5.266591 59.165474 +5.263658 59.159900 +5.261604 59.154033 +5.260138 59.147872 +5.251924 59.146699 +5.242830 59.148753 +5.233442 59.151099 +5.222882 59.151099 +5.214374 59.148753 +5.203520 59.147579 +5.190319 59.147872 +5.180932 59.145819 +5.172425 59.143179 +5.160690 59.142885 +5.155410 59.146992 +5.153063 59.152566 +5.153650 59.159313 +5.155410 59.165474 +5.154530 59.171634 +5.150423 59.176621 +5.146903 59.181315 +5.143089 59.186302 +5.140742 59.191876 +5.137222 59.196569 +5.133408 59.201556 +5.131062 59.207130 +5.131648 59.214171 +5.131942 59.220918 +5.133702 59.227078 +5.135462 59.233239 +5.138689 59.238519 +5.140156 59.244679 +5.139569 59.251133 +5.138396 59.257294 +5.137515 59.263454 +5.139276 59.269615 +5.143676 59.274308 +5.147783 59.279295 +5.153650 59.283109 +5.159224 59.287216 +5.165971 59.290443 +5.178292 59.290736 +5.188852 59.289563 +5.198240 59.287216 +5.207627 59.284869 +5.217014 59.282815 +5.226108 59.280469 +5.223762 59.286042 +5.218481 59.290149 +5.213494 59.294550 +5.207040 59.298070 +5.202053 59.302177 +5.197066 59.306284 +5.191786 59.310684 +5.186799 59.315084 +5.182985 59.319778 +5.179172 59.324765 +5.174185 59.328872 +5.170371 59.333566 +5.169491 59.340020 +5.171251 59.346180 +5.176825 59.349994 +5.183865 59.353221 +5.192079 59.356154 +5.200293 59.358501 +5.206160 59.362901 +5.207921 59.368768 +5.202640 59.373169 +5.196186 59.376689 +5.189733 59.380209 +5.182985 59.383729 +5.179465 59.388716 +5.177118 59.394290 +5.177412 59.401037 +5.177998 59.407784 +5.183572 59.411891 +5.194426 59.413065 +5.205280 59.409545 +nan nan +5.368679 59.241453 +5.375133 59.239106 +5.381586 59.235585 +5.388040 59.232359 +5.393320 59.227665 +5.399774 59.224438 +5.404761 59.220038 +5.409748 59.215931 +5.415029 59.211530 +5.418549 59.206543 +5.420896 59.200970 +5.421776 59.195103 +5.422363 59.188942 +5.420896 59.182488 +5.419136 59.176328 +5.415909 59.171047 +5.410335 59.166940 +5.400948 59.165180 +5.391267 59.166060 +5.386280 59.170167 +5.382760 59.174861 +5.378946 59.180141 +5.372199 59.179555 +5.370439 59.174861 +5.366039 59.169874 +5.360465 59.165767 +5.349611 59.166060 +5.346090 59.171047 +5.343744 59.176328 +5.343157 59.182782 +5.343450 59.189822 +5.345210 59.195689 +5.346970 59.201850 +5.349024 59.208010 +5.349317 59.215051 +5.348437 59.221211 +5.346090 59.226785 +5.345210 59.232652 +5.346970 59.239106 +5.352838 59.242919 +5.364865 59.243506 +5.368679 59.241453 +nan nan +5.447004 59.244093 +5.451991 59.239692 +5.455512 59.234999 +5.459032 59.230012 +5.464312 59.225905 +5.464019 59.220331 +5.454338 59.218278 +5.446711 59.221504 +5.441431 59.225611 +5.436444 59.229718 +5.432923 59.234705 +5.430576 59.240279 +5.427936 59.245853 +5.435270 59.249080 +5.443191 59.246146 +5.447004 59.244093 +nan nan +5.354011 59.072480 +5.363105 59.071600 +5.366919 59.066613 +5.361051 59.062800 +5.347851 59.063093 +5.341397 59.066320 +5.354011 59.072480 +nan nan +5.796096 59.189235 +5.793163 59.185422 +5.800790 59.182195 +5.808710 59.179555 +5.819271 59.177795 +5.828365 59.175448 +5.834819 59.171928 +5.830419 59.167234 +5.822205 59.164594 +5.814871 59.161367 +5.808124 59.158140 +5.801083 59.154620 +5.796683 59.149926 +5.792282 59.145232 +5.785242 59.142005 +5.774388 59.140832 +5.762360 59.140539 +5.750333 59.141419 +5.741239 59.143472 +5.734785 59.147286 +5.730971 59.152273 +5.730385 59.156966 +5.730678 59.162540 +5.733905 59.168114 +5.744759 59.169287 +5.755613 59.170167 +5.758547 59.175448 +5.760600 59.181902 +5.765000 59.186302 +5.770574 59.190702 +5.777615 59.193929 +5.787002 59.191582 +5.796096 59.189235 +nan nan +5.618323 59.133791 +5.626244 59.131151 +5.633871 59.127924 +5.644432 59.126458 +5.656753 59.127044 +5.666140 59.128804 +5.676994 59.129978 +5.689022 59.129098 +5.696942 59.126164 +5.704863 59.122937 +5.712490 59.120297 +5.718944 59.116777 +5.725398 59.112963 +5.728918 59.108270 +5.732438 59.103283 +5.736252 59.098296 +5.738305 59.092722 +5.737719 59.085975 +5.733318 59.081281 +5.726278 59.078054 +5.715424 59.076881 +5.702223 59.077174 +5.694302 59.080108 +5.688142 59.083628 +5.683155 59.087735 +5.676701 59.091255 +5.667607 59.094482 +5.657046 59.096242 +5.646485 59.097416 +5.636805 59.099762 +5.629177 59.102696 +5.621257 59.105923 +5.615096 59.109150 +5.608643 59.112670 +5.600722 59.115897 +5.594562 59.119417 +5.586641 59.122351 +5.577547 59.124404 +5.563759 59.124697 +5.553199 59.126458 +5.548212 59.130565 +5.554079 59.134672 +5.559652 59.138485 +5.565226 59.142885 +5.573440 59.141125 +5.575494 59.137018 +5.584881 59.134672 +5.595735 59.135845 +5.609229 59.135552 +5.618323 59.133205 +5.618323 59.133791 +nan nan +5.556719 59.100056 +5.568746 59.099176 +5.578134 59.098296 +5.589868 59.097416 +5.599255 59.095362 +5.608349 59.092722 +5.618910 59.091255 +5.626537 59.088322 +5.634751 59.085681 +5.641205 59.081868 +5.647365 59.078347 +5.655286 59.075414 +5.660273 59.071014 +5.661153 59.066320 +5.651766 59.064560 +5.645312 59.068080 +5.638858 59.071600 +5.631231 59.074534 +5.617737 59.074827 +5.607176 59.076294 +5.599255 59.079228 +5.589868 59.081574 +5.582241 59.084508 +5.577254 59.088615 +5.566693 59.090375 +5.556132 59.090668 +5.547918 59.093309 +5.549972 59.098296 +5.556719 59.100056 +nan nan +5.600722 59.047839 +5.612750 59.048132 +5.621844 59.045785 +5.626831 59.041678 +5.623897 59.036104 +5.613043 59.034931 +5.605416 59.038158 +5.600135 59.042265 +5.600722 59.047839 +nan nan +5.702516 59.046959 +5.710437 59.048132 +5.722464 59.048719 +5.730385 59.045492 +5.725691 59.040798 +5.715424 59.039625 +5.701929 59.039918 +5.694302 59.042852 +5.699582 59.046959 +5.702516 59.046959 +nan nan +5.769694 58.956605 +5.776148 58.953085 +5.778201 58.947511 +5.772921 58.944871 +5.760894 58.945751 +5.757080 58.950738 +5.755026 58.956312 +5.763240 58.958952 +5.769694 58.956605 +nan nan +5.779962 59.112377 +5.792282 59.111790 +5.804310 59.110616 +5.813404 59.108270 +5.821031 59.105629 +5.821911 59.100642 +5.811057 59.099469 +5.799030 59.100642 +5.788469 59.102109 +5.779375 59.104456 +5.774388 59.108563 +5.779962 59.112377 +nan nan +5.902584 58.465237 +5.910504 58.466704 +5.922532 58.466997 +5.934266 58.465237 +5.940426 58.462010 +5.942480 58.456143 +5.943360 58.449982 +5.942773 58.444409 +5.942187 58.437661 +5.944533 58.432088 +5.945413 58.425927 +5.943360 58.419767 +5.938960 58.415073 +5.929866 58.414780 +5.923705 58.418300 +5.921358 58.423580 +5.917838 58.428567 +5.915491 58.434141 +5.912264 58.439128 +5.908744 58.443822 +5.904931 58.448809 +5.900237 58.452916 +5.889969 58.454676 +5.880582 58.452329 +5.877355 58.446755 +5.876769 58.440008 +5.873542 58.434435 +5.867088 58.431208 +5.857700 58.432088 +5.855647 58.437661 +5.854767 58.443822 +5.856527 58.449982 +5.861221 58.454676 +5.865328 58.459370 +5.872368 58.462890 +5.881462 58.464357 +5.902584 58.465237 +nan nan +6.507187 58.237887 +6.512174 58.236420 +6.522442 58.234660 +6.532709 58.233193 +6.542976 58.231433 +6.552070 58.228793 +6.562338 58.227326 +6.572605 58.225566 +6.582873 58.223806 +6.589033 58.220286 +6.593727 58.216179 +6.594313 58.209725 +6.592553 58.203565 +6.583166 58.201805 +6.571432 58.201805 +6.560871 58.201805 +6.552070 58.204151 +6.545910 58.207672 +6.541216 58.212365 +6.536523 58.216472 +6.531536 58.220579 +6.525375 58.224099 +6.516281 58.226740 +6.513348 58.221166 +6.507774 58.217352 +6.500147 58.218819 +6.492519 58.221753 +6.483132 58.219993 +6.480785 58.222633 +6.484012 58.228206 +6.485772 58.234367 +6.492813 58.237594 +6.500733 58.238474 +6.507187 58.237887 +nan nan +6.628636 58.224686 +6.635970 58.222926 +6.638317 58.217646 +6.635090 58.212365 +6.628049 58.208845 +6.618955 58.207085 +6.616902 58.212365 +6.620129 58.217939 +6.624529 58.222633 +6.628636 58.224686 +nan nan +6.966287 58.021685 +6.970980 58.017285 +6.969220 58.011124 +6.963353 58.007311 +6.956019 58.010244 +6.955433 58.016405 +6.961006 58.020218 +6.966287 58.021685 +nan nan +7.494325 57.997043 +7.505765 57.995870 +7.513393 57.992643 +7.516326 57.987656 +7.513099 57.982375 +7.507526 57.978562 +7.497258 57.980322 +7.491391 57.983842 +7.485231 57.987362 +7.483471 57.993230 +7.487871 57.996456 +7.494325 57.997043 +nan nan +7.985987 58.082116 +7.991854 58.078596 +7.993614 58.073022 +7.991267 58.066862 +7.982173 58.065395 +7.970439 58.065101 +7.958998 58.065981 +7.951371 58.069208 +7.950784 58.074195 +7.959878 58.074489 +7.966919 58.077422 +7.973959 58.080649 +7.985987 58.082116 +nan nan +8.351800 58.205912 +8.351506 58.201805 +8.346812 58.196818 +8.340945 58.193004 +8.335078 58.189190 +8.325691 58.187724 +8.315424 58.189484 +8.309556 58.193004 +8.307503 58.197404 +8.314544 58.200631 +8.321291 58.203565 +8.328625 58.206792 +8.336545 58.209138 +8.347106 58.208845 +8.351800 58.205912 +nan nan +8.759562 58.433261 +8.761029 58.427687 +8.761322 58.421527 +8.757802 58.416247 +8.751935 58.412140 +8.743721 58.409793 +8.731987 58.409793 +8.727000 58.412726 +8.728173 58.418007 +8.730227 58.424167 +8.733747 58.429741 +8.737561 58.435021 +8.744308 58.437955 +8.752522 58.439128 +8.761322 58.436781 +8.759562 58.433261 +nan nan +8.901252 58.481665 +8.896265 58.476971 +8.891572 58.472571 +8.885411 58.468757 +8.879837 58.464650 +8.871330 58.462597 +8.867810 58.457023 +8.866636 58.451742 +8.863410 58.446169 +8.856076 58.442942 +8.847862 58.440888 +8.840528 58.437661 +8.833487 58.434435 +8.825274 58.432088 +8.817940 58.429154 +8.818820 58.432968 +8.821167 58.439128 +8.814126 58.437368 +8.808259 58.433555 +8.800045 58.431501 +8.789484 58.430621 +8.781564 58.432088 +8.777163 58.436488 +8.776870 58.442649 +8.780684 58.447929 +8.787724 58.451156 +8.796231 58.453503 +8.802979 58.456730 +8.810312 58.459663 +8.817646 58.462890 +8.823220 58.466704 +8.830554 58.469930 +8.836421 58.473744 +8.844635 58.476091 +8.853142 58.478438 +8.861356 58.480785 +8.869863 58.483131 +8.876904 58.486358 +8.886291 58.487825 +8.895972 58.489585 +8.901839 58.487238 +8.901252 58.481665 +nan nan +8.953176 58.528895 +8.945842 58.525668 +8.938508 58.522441 +8.931761 58.519507 +8.923254 58.517161 +8.916213 58.514227 +8.907706 58.511587 +8.898025 58.510120 +8.899199 58.515694 +8.905066 58.519507 +8.913280 58.521561 +8.920614 58.524788 +8.928828 58.527135 +8.937335 58.529481 +8.944375 58.532708 +8.950536 58.536522 +8.955229 58.533588 +8.953176 58.528895 +nan nan +8.995712 58.576418 +8.992192 58.571138 +8.990139 58.564977 +8.982805 58.562044 +8.976644 58.565564 +8.982805 58.569378 +8.987498 58.574071 +8.995712 58.576418 +nan nan +9.042356 58.583752 +9.037369 58.579058 +9.029155 58.577005 +9.020941 58.575831 +9.017714 58.580818 +9.023874 58.585219 +9.031208 58.588446 +9.041769 58.588152 +9.042356 58.583752 +nan nan +9.469480 58.855398 +9.478867 58.855691 +9.491188 58.855691 +9.502922 58.855691 +9.516123 58.855105 +9.524924 58.852465 +9.528151 58.847478 +9.521990 58.843664 +9.515830 58.839850 +9.507616 58.837504 +9.499695 58.839557 +9.493828 58.843077 +9.485028 58.845424 +9.474467 58.846011 +9.466253 58.843957 +9.463613 58.839264 +9.458332 58.839557 +9.454812 58.840730 +9.448652 58.843371 +9.448065 58.848358 +9.453932 58.850411 +9.460972 58.853638 +9.469480 58.855398 +nan nan +9.592102 58.861265 +9.591222 58.855691 +9.587408 58.850411 +9.581248 58.846598 +9.574207 58.843664 +9.566580 58.840437 +9.559540 58.837504 +9.551032 58.835157 +9.551912 58.839557 +9.557779 58.841610 +9.563940 58.845424 +9.570980 58.848651 +9.578314 58.851585 +9.583301 58.856278 +9.586822 58.861559 +9.592102 58.861265 +nan nan +9.522870 58.880920 +9.516710 58.876813 +9.507909 58.874760 +9.499695 58.872413 +9.491188 58.870066 +9.484734 58.871239 +9.487081 58.875933 +9.494122 58.878866 +9.501455 58.881800 +9.508789 58.885027 +9.517297 58.887374 +9.526097 58.885027 +9.522870 58.880920 +nan nan +10.524969 59.382556 +10.526436 59.376689 +10.527902 59.371115 +10.526436 59.365541 +10.517635 59.368475 +10.511768 59.372289 +10.507368 59.376689 +10.505901 59.382263 +10.509421 59.386076 +10.518515 59.384609 +10.524969 59.382556 +nan nan +10.557825 59.699672 +10.559291 59.693805 +10.561931 59.688231 +10.563398 59.682658 +10.566332 59.677377 +10.566625 59.672683 +10.556064 59.674737 +10.551664 59.679137 +10.548731 59.684124 +10.548731 59.690578 +10.547264 59.696152 +10.545797 59.701726 +10.549904 59.707006 +10.557238 59.703779 +10.557825 59.699672 +nan nan +10.764346 59.207130 +10.767280 59.202143 +10.768746 59.196276 +10.764639 59.190996 +10.759652 59.192756 +10.758479 59.198623 +10.758479 59.204783 +10.760826 59.209477 +10.764346 59.207130 +nan nan +10.907796 59.106216 +10.906623 59.101816 +10.902809 59.096535 +10.899876 59.090668 +10.894595 59.085975 +10.888728 59.082161 +10.882274 59.078641 +10.872594 59.077174 +10.863793 59.075121 +10.859980 59.069547 +10.857046 59.063680 +10.848832 59.062800 +10.844432 59.067200 +10.844725 59.073360 +10.843258 59.078934 +10.842085 59.084801 +10.840618 59.090375 +10.837685 59.095362 +10.841792 59.100642 +10.849712 59.100056 +10.855579 59.096242 +10.860860 59.095949 +10.864673 59.101229 +10.869954 59.105923 +10.878754 59.107683 +10.888435 59.109443 +10.899289 59.110030 +10.907796 59.106216 +nan nan +10.937132 59.082748 +10.934785 59.078054 +10.929505 59.073654 +10.924518 59.068960 +10.919237 59.064560 +10.914250 59.059866 +10.908970 59.055466 +10.903689 59.055759 +10.896356 59.058986 +10.891955 59.063386 +10.896062 59.068667 +10.901049 59.073360 +10.906330 59.077761 +10.911317 59.082161 +10.917770 59.085975 +10.925398 59.088908 +10.933905 59.091255 +10.939772 59.087441 +10.937132 59.082748 +nan nan +11.062687 59.055759 +11.058580 59.050479 +11.053593 59.046078 +11.047140 59.042558 +11.040979 59.038745 +11.033352 59.035518 +11.027192 59.031997 +11.028365 59.026130 +11.034232 59.022610 +11.034232 59.016156 +11.030125 59.010876 +11.023965 59.007356 +11.014284 59.005889 +11.004310 59.004129 +10.997563 59.003835 +10.997856 59.010289 +10.997563 59.014983 +10.991696 59.018797 +10.987589 59.023197 +10.986122 59.028771 +10.986122 59.035224 +10.991402 59.039625 +10.996389 59.044025 +10.996683 59.050479 +10.996976 59.056639 +10.996976 59.062800 +10.997269 59.069253 +11.002256 59.073654 +11.008710 59.077467 +11.014871 59.080988 +11.022498 59.084215 +11.031005 59.081281 +11.031005 59.075414 +11.029538 59.068667 +11.029245 59.062213 +11.035405 59.059866 +11.042739 59.062800 +11.049193 59.066320 +11.056527 59.069547 +11.065328 59.071600 +11.065034 59.065440 +11.062687 59.055759 +nan nan +11.094663 59.006182 +11.096130 59.000315 +11.091143 58.995915 +11.084689 58.992101 +11.076182 58.990048 +11.063861 58.990048 +11.058287 58.993861 +11.057994 58.998555 +11.062981 59.003249 +11.069435 59.007062 +11.077942 59.009116 +11.089676 59.007649 +11.094663 59.006182 +nan nan +10.964120 60.750761 +10.972921 60.751641 +10.984362 60.752228 +10.995803 60.751641 +11.003430 60.748414 +11.009590 60.744307 +11.012524 60.739320 +11.015457 60.734333 +11.016631 60.728173 +11.019858 60.723186 +11.021031 60.717612 +11.020738 60.711158 +11.011644 60.708811 +10.999030 60.709105 +10.988469 60.711158 +10.980548 60.714385 +10.972921 60.717612 +10.963534 60.720252 +10.955906 60.723479 +10.946812 60.726119 +10.935958 60.728466 +10.926571 60.730813 +10.917184 60.733746 +10.912783 60.738147 +10.916890 60.743427 +10.925984 60.745480 +10.937425 60.746067 +10.947693 60.747534 +10.964120 60.750761 +nan nan +7.880379 63.134265 +7.877445 63.129572 +7.873925 63.124291 +7.868645 63.119304 +7.861604 63.115491 +7.852217 63.113144 +7.842243 63.110504 +7.831682 63.108743 +7.818775 63.108157 +7.805280 63.107863 +7.793546 63.109330 +7.782985 63.111970 +7.777705 63.116371 +7.777118 63.121064 +7.783572 63.124878 +7.790613 63.128985 +7.798826 63.132212 +7.809387 63.133972 +7.818775 63.135145 +7.832856 63.133972 +7.842243 63.136025 +7.851630 63.138666 +7.863951 63.139839 +7.874512 63.138666 +7.880379 63.134265 +nan nan +7.692632 63.129572 +7.706713 63.129865 +7.721968 63.129278 +7.733702 63.127518 +7.744263 63.124878 +7.750716 63.121358 +7.754823 63.116371 +7.752476 63.110210 +7.742502 63.107863 +7.730182 63.106983 +7.716687 63.106690 +7.704366 63.106983 +7.692632 63.108743 +7.682071 63.111090 +7.675031 63.114611 +7.672684 63.120478 +7.675618 63.126638 +7.685005 63.129278 +7.692632 63.129572 +nan nan +5.721584 62.348662 +5.722757 62.343969 +5.722171 62.336928 +5.720411 62.330768 +5.716304 62.325194 +5.710437 62.321380 +5.703983 62.317273 +5.693422 62.315513 +5.681688 62.314046 +5.671127 62.312580 +5.657633 62.311993 +5.654699 62.316100 +5.661153 62.320207 +5.667607 62.324020 +5.669367 62.330181 +5.665847 62.335168 +5.659980 62.339568 +5.652939 62.343088 +5.652352 62.349542 +5.659393 62.351302 +5.672887 62.351596 +5.684621 62.352769 +5.698702 62.353356 +5.710437 62.351596 +5.718651 62.348662 +5.721584 62.348662 +nan nan +10.958840 59.061040 +10.957373 59.055759 +10.954733 59.049599 +10.952973 59.042852 +10.952973 59.036691 +10.948866 59.031411 +10.940359 59.029064 +10.934198 59.031704 +10.928331 59.035518 +10.924224 59.039918 +10.928038 59.045198 +10.934492 59.049012 +10.938305 59.054292 +10.941239 59.060159 +10.943879 59.066320 +10.950333 59.070134 +10.957373 59.066907 +10.955906 59.059866 +10.958840 59.061040 +nan nan +11.033645 58.881800 +11.036286 58.876813 +11.040686 58.872413 +11.045086 58.868012 +11.047726 58.863025 +11.046260 58.857452 +11.038926 58.854518 +11.028658 58.856572 +11.023085 58.860385 +11.014284 58.863025 +11.005483 58.865959 +11.004310 58.871533 +11.006950 58.877400 +11.014577 58.880333 +11.025138 58.881213 +11.033645 58.881800 +nan nan +11.126639 58.916709 +11.132212 58.912896 +11.135146 58.907909 +11.139546 58.903215 +11.143653 58.898815 +11.149520 58.895001 +11.155094 58.891187 +11.146000 58.892361 +11.133973 58.892654 +11.121945 58.892654 +11.114611 58.896174 +11.111971 58.901161 +11.109037 58.906148 +11.106397 58.911135 +11.111384 58.915536 +11.122532 58.916416 +11.126639 58.916709 +nan nan +11.174749 58.872706 +11.175922 58.866839 +11.177096 58.861265 +11.173282 58.855985 +11.162721 58.856865 +11.153921 58.859505 +11.152747 58.865079 +11.157734 58.869772 +11.164188 58.873293 +11.174749 58.872706 +nan nan +11.172989 58.844544 +11.182376 58.844544 +11.194110 58.843077 +11.201444 58.839850 +11.204084 58.834863 +11.202911 58.829290 +11.195284 58.826356 +11.186776 58.824009 +11.176216 58.824596 +11.171815 58.829290 +11.167708 58.834277 +11.160668 58.837504 +11.160668 58.842491 +11.172989 58.844544 +nan nan +11.185310 58.802008 +11.191177 58.798194 +11.192350 58.792620 +11.187363 58.787927 +11.179736 58.784993 +11.171229 58.782646 +11.162135 58.784113 +11.162135 58.790273 +11.166535 58.795554 +11.171522 58.800248 +11.178856 58.803181 +11.188243 58.803181 +11.185310 58.802008 +nan nan +11.222272 58.654744 +11.223446 58.649170 +11.223446 58.643010 +11.219045 58.637436 +11.208485 58.636849 +11.199684 58.639783 +11.201444 58.646530 +11.203791 58.651223 +11.210245 58.654744 +11.221099 58.655624 +11.222272 58.654744 +nan nan +11.224032 58.624822 +11.229606 58.621008 +11.232540 58.616021 +11.232833 58.611034 +11.224032 58.613967 +11.216992 58.616901 +11.214058 58.621888 +11.224032 58.624822 +nan nan +11.235473 58.547083 +11.238113 58.542096 +11.240754 58.537109 +11.242220 58.531535 +11.241927 58.525374 +11.235767 58.521561 +11.228139 58.522148 +11.223739 58.526548 +11.221099 58.531535 +11.219632 58.537109 +11.218459 58.542682 +11.223739 58.547083 +11.229606 58.551190 +11.237233 58.549136 +11.235473 58.547083 +nan nan +11.297371 58.337921 +11.307638 58.336161 +11.311745 58.331761 +11.312919 58.325893 +11.309985 58.320026 +11.304998 58.315333 +11.295904 58.315333 +11.296198 58.321786 +11.294731 58.327360 +11.290624 58.331761 +11.286517 58.336161 +11.291211 58.339094 +11.297371 58.337921 +nan nan +11.465170 58.239941 +11.461356 58.234660 +11.454902 58.230847 +11.449915 58.226446 +11.449622 58.220286 +11.449329 58.213832 +11.447862 58.207085 +11.442875 58.202685 +11.432314 58.202098 +11.421753 58.202685 +11.412366 58.201511 +11.406205 58.197698 +11.399752 58.193884 +11.396525 58.196818 +11.400338 58.200924 +11.401805 58.206498 +11.397405 58.210899 +11.394471 58.214419 +11.393885 58.217352 +11.397698 58.222633 +11.403859 58.226153 +11.407672 58.231433 +11.415299 58.234367 +11.427034 58.234074 +11.435541 58.236420 +11.440528 58.240821 +11.445515 58.245514 +11.454022 58.247861 +11.462529 58.244928 +11.465170 58.239941 +nan nan +11.495092 58.222633 +11.490985 58.217352 +11.483944 58.214419 +11.475144 58.212365 +11.466930 58.210018 +11.465756 58.215592 +11.470743 58.220286 +11.480424 58.221753 +11.495092 58.222633 +nan nan +11.374230 58.158975 +11.372470 58.152228 +11.372176 58.146067 +11.369829 58.141374 +11.363669 58.137560 +11.357215 58.133746 +11.347828 58.132573 +11.340787 58.135800 +11.342548 58.142547 +11.347535 58.146947 +11.351348 58.152228 +11.356335 58.156628 +11.360149 58.161908 +11.366603 58.165722 +11.373643 58.167482 +11.373350 58.161028 +11.374230 58.158975 +nan nan +11.736522 58.281597 +11.739749 58.278077 +11.742096 58.272796 +11.743563 58.267223 +11.743270 58.261062 +11.745910 58.256075 +11.757351 58.254315 +11.762924 58.250501 +11.767031 58.246101 +11.774952 58.246981 +11.786686 58.245514 +11.789033 58.240527 +11.791673 58.235247 +11.797540 58.231727 +11.804581 58.228206 +11.809861 58.224393 +11.812501 58.219112 +11.813675 58.213539 +11.813381 58.207378 +11.813088 58.201511 +11.812795 58.195057 +11.812501 58.188897 +11.812208 58.182443 +11.814848 58.177456 +11.815728 58.171882 +11.815435 58.165722 +11.815141 58.159562 +11.815141 58.153401 +11.814848 58.147241 +11.812795 58.140200 +11.811034 58.133746 +11.808394 58.127586 +11.806341 58.120545 +11.800180 58.117025 +11.791380 58.118199 +11.779939 58.119665 +11.769378 58.119079 +11.762924 58.115558 +11.757057 58.112038 +11.749723 58.108811 +11.740043 58.107638 +11.730655 58.106171 +11.720975 58.104704 +11.714814 58.101184 +11.710707 58.095904 +11.706894 58.090623 +11.697213 58.089156 +11.687532 58.091210 +11.681959 58.095024 +11.676385 58.098837 +11.666411 58.101184 +11.654970 58.102357 +11.644996 58.104704 +11.637369 58.101771 +11.630328 58.098837 +11.622994 58.100597 +11.624754 58.107638 +11.623581 58.112918 +11.615074 58.115852 +11.606566 58.118492 +11.594832 58.118492 +11.583098 58.118785 +11.573417 58.117318 +11.562857 58.116732 +11.553469 58.115265 +11.546135 58.112625 +11.538508 58.109398 +11.533521 58.104998 +11.529708 58.099717 +11.527948 58.092677 +11.525014 58.086810 +11.522080 58.080943 +11.516213 58.077129 +11.508586 58.078889 +11.503012 58.082703 +11.497439 58.086810 +11.491865 58.090623 +11.486291 58.094437 +11.479544 58.097664 +11.473970 58.101771 +11.467223 58.101477 +11.465756 58.095904 +11.466930 58.090330 +11.466636 58.083876 +11.466343 58.077716 +11.463703 58.071555 +11.464876 58.065981 +11.460183 58.068622 +11.454609 58.072435 +11.450502 58.076836 +11.450795 58.082996 +11.451089 58.089450 +11.449622 58.095024 +11.447275 58.100011 +11.441701 58.103824 +11.436128 58.107638 +11.428794 58.110865 +11.422047 58.114092 +11.416473 58.118199 +11.412366 58.122599 +11.406792 58.126412 +11.401218 58.130226 +11.402685 58.136973 +11.406792 58.142254 +11.410606 58.147534 +11.417646 58.150468 +11.425273 58.153401 +11.432607 58.156335 +11.439648 58.159268 +11.445808 58.163082 +11.451089 58.167482 +11.456076 58.171882 +11.463410 58.175109 +11.470450 58.178043 +11.474850 58.183030 +11.476317 58.190070 +11.481304 58.194471 +11.490105 58.191831 +11.501252 58.190364 +11.507413 58.193884 +11.513866 58.197698 +11.517680 58.202978 +11.523841 58.206792 +11.531468 58.209725 +11.539682 58.212072 +11.547896 58.212659 +11.556403 58.214712 +11.564617 58.217059 +11.569604 58.221459 +11.576058 58.225273 +11.583391 58.227913 +11.591605 58.230260 +11.601286 58.231727 +11.611847 58.232313 +11.623874 58.232313 +11.635609 58.232313 +11.645583 58.229967 +11.655263 58.231433 +11.660250 58.235834 +11.659077 58.241407 +11.659370 58.247861 +11.663477 58.253142 +11.665237 58.259595 +11.669051 58.264876 +11.674038 58.269569 +11.674331 58.275730 +11.668758 58.279543 +11.668758 58.284530 +11.677558 58.286584 +11.687826 58.285704 +11.698093 58.285117 +11.708947 58.285704 +11.721561 58.284824 +11.729189 58.282770 +11.736522 58.281597 +nan nan +11.736522 58.053074 +11.736229 58.046620 +11.735936 58.040460 +11.738283 58.035473 +11.741216 58.030486 +11.742096 58.024912 +11.740629 58.018165 +11.738576 58.011418 +11.736816 58.004377 +11.734176 57.998510 +11.729189 57.993816 +11.722735 57.990296 +11.712174 57.989709 +11.706600 57.993523 +11.706894 57.999683 +11.708654 58.006724 +11.707480 58.012298 +11.700147 58.014058 +11.691933 58.012004 +11.686652 58.007604 +11.681665 58.002910 +11.676678 57.998510 +11.673745 57.992643 +11.673451 57.986482 +11.670518 57.980322 +11.665531 57.975922 +11.662891 57.969761 +11.662597 57.963307 +11.659370 57.957440 +11.653210 57.953920 +11.646169 57.950693 +11.637662 57.948640 +11.625048 57.949813 +11.614487 57.948933 +11.608033 57.945413 +11.606566 57.939839 +11.601579 57.935145 +11.594539 57.932505 +11.584858 57.930745 +11.574591 57.931625 +11.567844 57.935145 +11.563737 57.939546 +11.561097 57.944533 +11.556990 57.948933 +11.546722 57.949813 +11.538215 57.947466 +11.527948 57.948053 +11.522374 57.951867 +11.522667 57.958320 +11.522960 57.964481 +11.521787 57.970055 +11.520614 57.975922 +11.517973 57.980909 +11.513866 57.985309 +11.509760 57.989709 +11.510053 57.995870 +11.517093 57.998803 +11.527654 57.999390 +11.537922 57.997337 +11.550536 57.996456 +11.559043 57.998510 +11.564030 58.002910 +11.559923 58.007604 +11.551416 58.010244 +11.539682 58.010244 +11.530294 58.008777 +11.519734 58.008191 +11.511520 58.006137 +11.498319 58.007017 +11.497145 58.012884 +11.498905 58.019338 +11.497732 58.024912 +11.498025 58.031366 +11.501839 58.036646 +11.507999 58.040166 +11.514160 58.043980 +11.520614 58.047793 +11.530001 58.049260 +11.542909 58.048380 +11.548189 58.044567 +11.555229 58.041046 +11.566084 58.041633 +11.577818 58.041633 +11.590432 58.040460 +11.601286 58.041340 +11.609207 58.042220 +11.617714 58.044273 +11.629448 58.044273 +11.642356 58.043980 +11.640009 58.044273 +11.650276 58.043393 +11.658197 58.044273 +11.666411 58.044860 +11.675798 58.046327 +11.683132 58.049260 +11.690466 58.052194 +11.696626 58.055714 +11.703960 58.058941 +11.713347 58.060408 +11.726255 58.059528 +11.733296 58.056007 +11.736522 58.053074 +nan nan +11.691346 58.071262 +11.685185 58.067742 +11.679025 58.064221 +11.671691 58.060994 +11.666117 58.059528 +11.663184 58.057474 +11.653503 58.056301 +11.642649 58.055421 +11.631502 58.057181 +11.627395 58.061581 +11.624754 58.066568 +11.627395 58.072729 +11.635022 58.075662 +11.643529 58.074195 +11.653503 58.072142 +11.662010 58.074489 +11.665531 58.078302 +11.673158 58.081236 +11.683132 58.079182 +11.691346 58.076249 +11.690172 58.072142 +11.691346 58.071262 +nan nan +11.570484 57.868847 +11.580751 57.868261 +11.589845 57.867087 +11.595126 57.862980 +11.596299 57.857406 +11.590139 57.853593 +11.578991 57.855353 +11.569017 57.857113 +11.560510 57.860047 +11.550536 57.862100 +11.555523 57.866794 +11.565204 57.867967 +11.570484 57.868847 +nan nan +11.646463 57.890556 +11.646169 57.884395 +11.642356 57.879115 +11.632675 57.877648 +11.627101 57.881755 +11.626221 57.887329 +11.631208 57.891729 +11.640302 57.891729 +11.646463 57.890556 +nan nan +11.578111 57.887915 +11.589845 57.887915 +11.600113 57.887035 +11.605686 57.882928 +11.609500 57.878528 +11.607447 57.875301 +11.598939 57.877941 +11.586032 57.878821 +11.574591 57.879115 +11.564323 57.881168 +11.570777 57.884982 +11.578111 57.887915 +nan nan +11.676091 57.742118 +11.679025 57.737131 +11.678732 57.730971 +11.675505 57.725104 +11.672865 57.718943 +11.672571 57.712783 +11.672278 57.706622 +11.671985 57.700169 +11.664651 57.697528 +11.660837 57.701929 +11.658197 57.706916 +11.657023 57.712489 +11.658490 57.719530 +11.658784 57.725690 +11.659077 57.731557 +11.659370 57.738011 +11.663477 57.743292 +11.671691 57.745345 +11.676091 57.742118 +nan nan +11.625635 57.711316 +11.636195 57.711903 +11.638542 57.706916 +11.633555 57.702515 +11.621821 57.702515 +11.615074 57.705742 +11.625635 57.711316 +nan nan +11.649690 57.689021 +11.649690 57.684034 +11.647343 57.679340 +11.636782 57.678754 +11.626221 57.678167 +11.623581 57.683154 +11.619474 57.687554 +11.610967 57.690194 +11.610967 57.694008 +11.621528 57.694301 +11.632675 57.694301 +11.642649 57.692248 +11.649690 57.689021 +nan nan +11.752950 57.642378 +11.757057 57.637977 +11.750897 57.634457 +11.741803 57.632990 +11.734762 57.636511 +11.737403 57.642084 +11.744736 57.645311 +11.756471 57.645018 +11.752950 57.642378 +nan nan +11.760871 58.091503 +11.763218 58.086516 +11.764685 58.080943 +11.760578 58.075662 +11.751484 58.075662 +11.748843 58.080649 +11.747670 58.086223 +11.747963 58.092383 +11.757644 58.093557 +11.760871 58.091503 +nan nan +11.728309 58.082703 +11.733882 58.078889 +11.735056 58.073315 +11.729775 58.073022 +11.722735 58.076249 +11.723028 58.082409 +11.728309 58.082703 +nan nan +11.495679 58.073609 +11.502426 58.070675 +11.508293 58.066568 +11.510933 58.061581 +11.510640 58.055421 +11.504479 58.051607 +11.492745 58.051607 +11.484238 58.054541 +11.481598 58.059528 +11.480424 58.065101 +11.479251 58.070675 +11.483064 58.076249 +11.494505 58.074489 +11.495679 58.073609 +nan nan +11.524721 53.776847 +11.522080 53.775967 +11.518854 53.774207 +11.515920 53.772447 +11.512106 53.771273 +11.508586 53.770393 +11.503892 53.769806 +11.499199 53.769513 +11.496265 53.767460 +11.494505 53.765406 +11.495092 53.762473 +11.496265 53.760126 +11.497145 53.757192 +11.498025 53.754259 +11.498612 53.751325 +11.498905 53.748392 +11.498319 53.744871 +11.498905 53.742231 +11.499199 53.739298 +11.499199 53.736071 +11.498612 53.732550 +11.498025 53.729030 +11.497732 53.725803 +11.496559 53.722870 +11.495679 53.719643 +11.493918 53.717003 +11.491865 53.714656 +11.489811 53.712602 +11.488345 53.709669 +11.487758 53.706442 +11.488638 53.703508 +11.489225 53.700868 +11.489518 53.697641 +11.489518 53.694414 +11.487171 53.692361 +11.484238 53.690601 +11.480131 53.689721 +11.475144 53.690014 +11.471623 53.691481 +11.469570 53.693534 +11.466343 53.695001 +11.461649 53.695294 +11.458129 53.694121 +11.456369 53.691481 +11.456662 53.688254 +11.459303 53.686494 +11.461649 53.684734 +11.466343 53.683560 +11.470157 53.682387 +11.472797 53.680627 +11.475437 53.678573 +11.477491 53.676813 +11.478957 53.674173 +11.479544 53.671533 +11.481598 53.669186 +11.483651 53.666839 +11.485118 53.664492 +11.485118 53.660972 +11.484531 53.657452 +11.484531 53.654518 +11.486585 53.652171 +11.487171 53.649531 +11.486291 53.646304 +11.485411 53.643371 +11.484238 53.640144 +11.485118 53.637504 +11.488051 53.636037 +11.491278 53.634570 +11.494798 53.633103 +11.498612 53.631636 +11.502426 53.630463 +11.505653 53.628996 +11.508293 53.626943 +11.509760 53.624596 +11.509760 53.621369 +11.509173 53.618142 +11.508586 53.614622 +11.508293 53.611395 +11.507119 53.608461 +11.505653 53.605528 +11.503012 53.603474 +11.500079 53.602008 +11.495385 53.602301 +11.493332 53.604355 +11.490105 53.606115 +11.485411 53.605528 +11.481598 53.604355 +11.476904 53.603768 +11.472210 53.604061 +11.469863 53.606115 +11.467810 53.608461 +11.464583 53.609635 +11.460183 53.608755 +11.456662 53.607875 +11.451969 53.607288 +11.448155 53.608755 +11.444048 53.609635 +11.440235 53.611102 +11.437008 53.612568 +11.435541 53.614915 +11.434367 53.617555 +11.434074 53.620489 +11.432901 53.623129 +11.429380 53.624596 +11.423807 53.624889 +11.422633 53.627530 +11.426154 53.628703 +11.430260 53.629583 +11.431434 53.632517 +11.431727 53.634570 +11.433194 53.637210 +11.435834 53.639264 +11.439941 53.640144 +11.444048 53.640730 +11.447862 53.641904 +11.451089 53.643664 +11.453142 53.645718 +11.454022 53.648944 +11.455196 53.651878 +11.455489 53.655398 +11.454902 53.658038 +11.454022 53.660972 +11.453435 53.663612 +11.452262 53.666546 +11.451382 53.669479 +11.451382 53.672413 +11.452849 53.675053 +11.455782 53.676813 +11.458716 53.678573 +11.459889 53.681507 +11.456076 53.681800 +11.451382 53.681507 +11.446688 53.680920 +11.441408 53.680920 +11.439354 53.682974 +11.439354 53.686200 +11.439648 53.688841 +11.440235 53.692361 +11.440821 53.695881 +11.439941 53.698521 +11.438474 53.701161 +11.436714 53.702922 +11.434661 53.705268 +11.433194 53.707909 +11.432021 53.710255 +11.431141 53.713189 +11.429674 53.715536 +11.428207 53.718176 +11.427034 53.720523 +11.427034 53.723750 +11.427620 53.726390 +11.428794 53.729030 +11.431141 53.731377 +11.433487 53.733430 +11.435248 53.735777 +11.435834 53.739591 +11.436128 53.742818 +11.437301 53.745751 +11.439354 53.748098 +11.441995 53.749858 +11.444928 53.751618 +11.447862 53.753672 +11.449035 53.756019 +11.450209 53.759246 +11.453142 53.761006 +11.457249 53.761886 +11.460769 53.763059 +11.464583 53.764526 +11.467810 53.765699 +11.469863 53.768046 +11.472504 53.770100 +11.475144 53.771860 +11.478664 53.773327 +11.482771 53.774207 +11.486878 53.774793 +11.491278 53.775673 +11.495092 53.776847 +11.498025 53.778314 +11.501252 53.780074 +11.505066 53.781247 +11.508586 53.782127 +11.512693 53.783007 +11.516507 53.784181 +11.520614 53.785061 +11.523547 53.786234 +11.527654 53.786528 +11.532054 53.786234 +11.530294 53.783301 +11.527948 53.780954 +11.526187 53.778607 +11.524721 53.776847 +nan nan +11.542322 53.614035 +11.542615 53.611982 +11.541442 53.608755 +11.539975 53.606115 +11.537335 53.604061 +11.534108 53.602594 +11.531174 53.601128 +11.527361 53.599954 +11.524134 53.598194 +11.519440 53.597901 +11.517973 53.600248 +11.520320 53.602888 +11.522080 53.604941 +11.525014 53.606995 +11.527361 53.608755 +11.527948 53.611688 +11.526774 53.614035 +11.528534 53.616382 +11.532641 53.617262 +11.537628 53.616969 +11.541442 53.615502 +11.542322 53.614035 +nan nan +11.716574 53.611395 +11.714521 53.609635 +11.711881 53.607875 +11.709534 53.605821 +11.706014 53.604355 +11.702493 53.603181 +11.698973 53.602008 +11.695160 53.600834 +11.691933 53.599074 +11.689586 53.597314 +11.686359 53.595847 +11.682252 53.594967 +11.678145 53.594087 +11.673451 53.593500 +11.669931 53.595261 +11.671398 53.597314 +11.674625 53.598781 +11.678438 53.599954 +11.681959 53.601128 +11.686066 53.602008 +11.689586 53.603181 +11.692519 53.604941 +11.694866 53.606995 +11.697213 53.609048 +11.699266 53.611688 +11.701320 53.614035 +11.705134 53.614915 +11.709827 53.615502 +11.714814 53.614915 +11.716574 53.611395 +nan nan +11.632088 53.705562 +11.630915 53.702922 +11.627688 53.701748 +11.622994 53.701161 +11.619181 53.701748 +11.616834 53.703802 +11.617421 53.706735 +11.620061 53.708495 +11.623874 53.709669 +11.628568 53.709962 +11.633555 53.709375 +11.634435 53.707615 +11.632382 53.704975 +11.632088 53.705562 +nan nan +11.877333 53.726390 +11.877919 53.724043 +11.880559 53.722576 +11.883200 53.720523 +11.884666 53.718176 +11.882026 53.716123 +11.877333 53.715829 +11.872639 53.715829 +11.868532 53.717296 +11.863838 53.716709 +11.860318 53.715536 +11.857678 53.713482 +11.855038 53.711722 +11.852984 53.709375 +11.850344 53.707615 +11.846530 53.706442 +11.841250 53.707029 +11.839490 53.709082 +11.838023 53.711722 +11.835676 53.713482 +11.832156 53.714949 +11.829222 53.716709 +11.827169 53.718763 +11.825702 53.721403 +11.826876 53.724336 +11.829516 53.726390 +11.833329 53.725803 +11.838023 53.726097 +11.842717 53.726683 +11.845064 53.724336 +11.844477 53.721696 +11.849171 53.722283 +11.852691 53.723456 +11.856504 53.724336 +11.859731 53.726097 +11.862665 53.727563 +11.866478 53.728737 +11.871759 53.728737 +11.875572 53.727563 +11.877333 53.726390 +nan nan +11.947738 53.652171 +11.948618 53.649531 +11.949204 53.646598 +11.950671 53.644251 +11.948324 53.641611 +11.944804 53.640437 +11.942164 53.638677 +11.938937 53.636624 +11.934830 53.636037 +11.930723 53.637210 +11.928963 53.639850 +11.926909 53.641904 +11.926323 53.644837 +11.928376 53.646304 +11.934243 53.646011 +11.936003 53.647184 +11.932777 53.648944 +11.928376 53.649824 +11.924856 53.651291 +11.926323 53.653345 +11.930723 53.654225 +11.935417 53.654518 +11.940697 53.654811 +11.943924 53.653638 +11.947738 53.652171 +nan nan +11.701907 50.523547 +11.706894 50.522960 +11.711587 50.522960 +11.713641 50.520907 +11.715988 50.519146 +11.720681 50.519440 +11.724788 50.520026 +11.729189 50.519733 +11.732122 50.517973 +11.732709 50.515333 +11.730949 50.512986 +11.727428 50.511813 +11.724495 50.510346 +11.721561 50.508879 +11.720095 50.506239 +11.719215 50.503012 +11.715401 50.503012 +11.712174 50.504479 +11.709827 50.506532 +11.708067 50.508586 +11.707187 50.511519 +11.706600 50.514159 +11.704840 50.516506 +11.703080 50.518266 +11.700147 50.519733 +11.699266 50.522080 +11.701907 50.523547 +nan nan +8.086607 51.486336 +8.089834 51.485749 +8.094234 51.484869 +8.098635 51.485456 +8.102448 51.486336 +8.106849 51.486923 +8.110956 51.488096 +8.115356 51.488683 +8.120343 51.488683 +8.125330 51.488976 +8.129144 51.489856 +8.133544 51.490149 +8.137944 51.491029 +8.142931 51.491029 +8.148505 51.491029 +8.153199 51.490149 +8.157306 51.489563 +8.161119 51.488389 +8.164933 51.487216 +8.169040 51.486336 +8.172560 51.484869 +8.174907 51.483109 +8.177254 51.481055 +8.179307 51.479002 +8.180187 51.476655 +8.175200 51.477242 +8.171973 51.478709 +8.168746 51.480175 +8.164933 51.481349 +8.161999 51.482816 +8.157599 51.483696 +8.153199 51.484576 +8.147918 51.484869 +8.142638 51.484869 +8.138238 51.484576 +8.133837 51.483989 +8.129437 51.483402 +8.125330 51.482522 +8.120636 51.482229 +8.116236 51.481642 +8.111836 51.480469 +8.108022 51.479589 +8.104208 51.479002 +8.099221 51.478709 +8.093648 51.479002 +8.089541 51.479589 +8.085434 51.480762 +8.081033 51.480762 +8.077807 51.479589 +8.074873 51.477829 +8.073113 51.475482 +8.074286 51.472842 +8.077220 51.471375 +8.081033 51.470201 +8.085727 51.469615 +8.091301 51.469321 +8.096288 51.469028 +8.099808 51.467561 +8.097168 51.465508 +8.093354 51.464628 +8.088954 51.465508 +8.083674 51.465508 +8.078100 51.465801 +8.074286 51.464921 +8.068713 51.464921 +8.065779 51.466681 +8.064019 51.469028 +8.061085 51.470788 +8.059032 51.472842 +8.057272 51.474895 +8.057858 51.478122 +8.058152 51.480762 +8.056685 51.483109 +8.054338 51.485162 +8.052578 51.487509 +8.049644 51.489269 +8.053751 51.488096 +8.059032 51.488096 +8.063432 51.487216 +8.066659 51.485456 +8.071646 51.485162 +8.074873 51.486336 +8.078393 51.487803 +8.082794 51.487803 +8.086607 51.486336 +nan nan +9.384407 52.495768 +9.384994 52.493421 +9.386460 52.490781 +9.388221 52.488728 +9.390274 52.486674 +9.392621 52.484327 +9.393794 52.481981 +9.393501 52.478754 +9.390567 52.476994 +9.387047 52.475527 +9.384114 52.474060 +9.383820 52.470540 +9.383234 52.467313 +9.380887 52.465259 +9.377366 52.463793 +9.372673 52.463499 +9.368859 52.462619 +9.364752 52.461739 +9.361525 52.460272 +9.358298 52.458512 +9.355365 52.457046 +9.352138 52.455285 +9.349498 52.453525 +9.346271 52.452352 +9.342751 52.450885 +9.338937 52.450005 +9.334830 52.449125 +9.330136 52.448538 +9.325149 52.448245 +9.319576 52.448538 +9.314589 52.449125 +9.309308 52.449712 +9.304321 52.450298 +9.299334 52.450885 +9.295521 52.452058 +9.291707 52.452939 +9.288187 52.454112 +9.285253 52.456165 +9.283200 52.457926 +9.282026 52.460566 +9.280853 52.463206 +9.279973 52.466139 +9.279679 52.469073 +9.281146 52.472007 +9.283200 52.474353 +9.285547 52.476407 +9.288480 52.477874 +9.291707 52.479340 +9.294934 52.480807 +9.298747 52.481981 +9.301681 52.483741 +9.304908 52.484914 +9.308722 52.486088 +9.311948 52.487554 +9.316055 52.488434 +9.319869 52.489314 +9.323683 52.490195 +9.327203 52.491661 +9.331016 52.492541 +9.334830 52.494008 +9.338644 52.494595 +9.343337 52.495182 +9.347151 52.496062 +9.351845 52.496648 +9.356245 52.497235 +9.360645 52.498115 +9.365046 52.498702 +9.369153 52.499582 +9.372379 52.499875 +9.377660 52.499875 +9.380887 52.498702 +9.384407 52.495768 +nan nan +8.339479 52.536251 +8.343879 52.536545 +8.348866 52.536838 +8.351800 52.535078 +8.354440 52.533318 +8.355906 52.530971 +8.357080 52.528037 +8.358253 52.525690 +8.359720 52.523050 +8.360894 52.520410 +8.360600 52.517477 +8.357373 52.516010 +8.354733 52.514543 +8.353266 52.511609 +8.351800 52.508969 +8.351213 52.505742 +8.351800 52.503396 +8.352386 52.500462 +8.349453 52.499289 +8.345052 52.498702 +8.341532 52.497235 +8.339185 52.495182 +8.336252 52.493715 +8.331558 52.493715 +8.330971 52.496355 +8.328625 52.498702 +8.324224 52.499582 +8.319237 52.499289 +8.315424 52.500169 +8.313077 52.502515 +8.311610 52.504862 +8.311317 52.508089 +8.310730 52.511023 +8.310437 52.514250 +8.310143 52.517183 +8.310143 52.520410 +8.310143 52.523930 +8.310143 52.526864 +8.310143 52.530384 +8.311903 52.532731 +8.314544 52.534784 +8.316890 52.536545 +8.319824 52.538305 +8.323931 52.539185 +8.327744 52.538011 +8.339479 52.536251 +nan nan +6.015525 52.635698 +6.009951 52.635698 +6.006138 52.634818 +6.002618 52.633351 +5.999684 52.631591 +5.996457 52.630125 +5.992644 52.628658 +5.989417 52.627191 +5.986190 52.626018 +5.982083 52.625138 +5.976802 52.624844 +5.971815 52.624551 +5.966242 52.624551 +5.961255 52.624844 +5.956561 52.624258 +5.953041 52.622791 +5.950400 52.621031 +5.947467 52.619564 +5.943947 52.618097 +5.940426 52.616630 +5.937200 52.615164 +5.933973 52.614283 +5.929866 52.613110 +5.925172 52.612523 +5.920772 52.612523 +5.916958 52.613697 +5.913438 52.614870 +5.910504 52.616630 +5.908451 52.618684 +5.906104 52.620737 +5.902290 52.621911 +5.897890 52.622497 +5.893196 52.621911 +5.892316 52.623377 +5.894956 52.625138 +5.897890 52.626604 +5.901410 52.628071 +5.905224 52.629245 +5.909038 52.630125 +5.914025 52.630418 +5.917838 52.631591 +5.922238 52.632178 +5.926345 52.633351 +5.930746 52.633938 +5.934853 52.635112 +5.939546 52.635698 +5.943947 52.636285 +5.948347 52.636872 +5.953041 52.637458 +5.956854 52.638632 +5.960961 52.640099 +5.963601 52.641565 +5.965655 52.643912 +5.967708 52.645966 +5.970055 52.648019 +5.972402 52.650073 +5.974749 52.652126 +5.976802 52.654180 +5.979443 52.656233 +5.982669 52.657407 +5.986776 52.658580 +5.990590 52.657407 +5.995284 52.656526 +5.998511 52.655353 +6.001444 52.653593 +6.004671 52.652126 +6.008191 52.650953 +6.010831 52.649193 +6.013472 52.647433 +6.016405 52.645672 +6.019045 52.643912 +6.021392 52.641859 +6.022566 52.639219 +6.019632 52.637458 +6.015525 52.635698 +nan nan +6.106172 52.686449 +6.105585 52.683808 +6.102358 52.682635 +6.098544 52.681462 +6.094731 52.680288 +6.090331 52.679701 +6.087104 52.677941 +6.087104 52.675888 +6.090624 52.674421 +6.093264 52.672661 +6.092677 52.670314 +6.090037 52.668554 +6.085930 52.667674 +6.081823 52.666794 +6.077423 52.666207 +6.072143 52.665914 +6.067742 52.665914 +6.065982 52.667967 +6.067742 52.670608 +6.071262 52.672074 +6.074196 52.673541 +6.076250 52.675595 +6.077130 52.677941 +6.072436 52.678821 +6.066862 52.678821 +6.061875 52.679115 +6.057475 52.679995 +6.052194 52.680288 +6.046621 52.680288 +6.042220 52.679701 +6.038113 52.678528 +6.033713 52.677941 +6.029019 52.677355 +6.028139 52.678821 +6.030780 52.680582 +6.034593 52.681462 +6.038993 52.682635 +6.043394 52.682928 +6.047794 52.683808 +6.051901 52.684689 +6.055421 52.686155 +6.058062 52.687915 +6.062168 52.688795 +6.065982 52.689676 +6.070676 52.690556 +6.075369 52.691142 +6.079183 52.692022 +6.084170 52.692609 +6.088864 52.693196 +6.094437 52.693196 +6.100011 52.693196 +6.104705 52.692316 +6.107638 52.690556 +6.107638 52.687622 +6.106172 52.686449 +nan nan +6.067742 52.708744 +6.067449 52.705517 +6.068036 52.702583 +6.068036 52.699063 +6.067449 52.695836 +6.064515 52.694076 +6.060995 52.693196 +6.056008 52.692609 +6.050728 52.692316 +6.046327 52.691729 +6.042807 52.690262 +6.039580 52.688795 +6.036060 52.687915 +6.032540 52.686449 +6.028726 52.685275 +6.024619 52.684395 +6.019339 52.683808 +6.016112 52.684689 +6.012298 52.685862 +6.007311 52.686155 +6.004378 52.687915 +6.003791 52.691142 +6.004964 52.693783 +6.007018 52.696129 +6.008191 52.698770 +6.008485 52.701996 +6.010245 52.704343 +6.013765 52.705517 +6.018752 52.706103 +6.024032 52.705517 +6.028726 52.706103 +6.032540 52.707277 +6.035473 52.708744 +6.038407 52.710504 +6.041634 52.711970 +6.045154 52.713437 +6.049848 52.714024 +6.054835 52.714024 +6.060115 52.714024 +6.063929 52.712851 +6.067742 52.708744 +nan nan +6.110572 52.728692 +6.109399 52.725758 +6.108225 52.723118 +6.107932 52.719598 +6.109692 52.717838 +6.113799 52.716664 +6.116732 52.715784 +6.119373 52.714024 +6.117026 52.712851 +6.112039 52.712264 +6.106465 52.712557 +6.100598 52.712557 +6.096784 52.713731 +6.093851 52.715197 +6.092677 52.718131 +6.094731 52.720184 +6.095904 52.721358 +6.095904 52.724291 +6.094144 52.726638 +6.092971 52.729572 +6.093264 52.732799 +6.095024 52.735145 +6.098838 52.736026 +6.102651 52.735732 +6.106465 52.734559 +6.107932 52.732505 +6.108812 52.730452 +6.110572 52.728692 +nan nan +6.711655 53.137921 +6.714002 53.136454 +6.715469 53.133521 +6.714882 53.130587 +6.713122 53.128240 +6.711948 53.125600 +6.710482 53.122667 +6.709895 53.119733 +6.708135 53.117386 +6.705495 53.115333 +6.702854 53.113573 +6.699041 53.112106 +6.695814 53.111226 +6.690534 53.110932 +6.686133 53.111519 +6.683200 53.113279 +6.681146 53.115333 +6.678799 53.117386 +6.676746 53.119440 +6.675573 53.122080 +6.674692 53.125013 +6.674692 53.127654 +6.677919 53.129414 +6.681733 53.130587 +6.684667 53.132347 +6.686427 53.134401 +6.686133 53.137921 +6.686133 53.141441 +6.688480 53.143201 +6.693174 53.143788 +6.697867 53.143788 +6.702268 53.143201 +6.706081 53.142321 +6.709015 53.140268 +6.711655 53.137921 +nan nan +6.071262 53.161683 +6.072436 53.160216 +6.073609 53.157576 +6.072729 53.154349 +6.070969 53.152295 +6.067742 53.150829 +6.062462 53.150535 +6.057181 53.150242 +6.052781 53.150829 +6.049554 53.152295 +6.048381 53.154936 +6.048968 53.158163 +6.049848 53.161096 +6.049848 53.164616 +6.051901 53.166670 +6.057181 53.166963 +6.061582 53.166376 +6.065689 53.165203 +6.068622 53.163443 +6.071262 53.161683 +nan nan +6.052781 53.198939 +6.053955 53.196005 +6.055128 53.193365 +6.056595 53.191018 +6.055715 53.187791 +6.053661 53.185738 +6.051314 53.183978 +6.048381 53.182218 +6.044861 53.180751 +6.040754 53.179577 +6.036940 53.180751 +6.034300 53.182511 +6.031953 53.184858 +6.030193 53.187205 +6.029313 53.190138 +6.028139 53.192485 +6.026966 53.195419 +6.026379 53.198352 +6.025793 53.201579 +6.026086 53.205099 +6.030486 53.205686 +6.034593 53.204512 +6.037527 53.202752 +6.042514 53.202459 +6.046621 53.202752 +6.051021 53.203339 +6.053368 53.201286 +6.052781 53.198939 +nan nan +6.305066 53.395193 +6.301839 53.394313 +6.299199 53.392846 +6.295972 53.391086 +6.293332 53.389326 +6.290398 53.387859 +6.287171 53.385806 +6.285118 53.383752 +6.282478 53.381992 +6.280718 53.379058 +6.279837 53.376418 +6.278371 53.373485 +6.276611 53.371431 +6.275730 53.368204 +6.275730 53.364684 +6.276317 53.362631 +6.276611 53.359404 +6.278371 53.357057 +6.279544 53.354123 +6.280424 53.351483 +6.280424 53.347963 +6.280424 53.344443 +6.279837 53.341509 +6.277784 53.339162 +6.275144 53.337402 +6.271917 53.335935 +6.269277 53.334175 +6.268690 53.331535 +6.270743 53.329481 +6.274264 53.328015 +6.274850 53.325081 +6.272210 53.323028 +6.269570 53.321268 +6.265756 53.320094 +6.262530 53.318627 +6.258423 53.317747 +6.254022 53.316574 +6.249622 53.315987 +6.244342 53.315694 +6.239355 53.315694 +6.233487 53.315694 +6.228207 53.315694 +6.223220 53.316281 +6.217940 53.316574 +6.212953 53.317161 +6.207086 53.317161 +6.201805 53.316867 +6.197405 53.315987 +6.192711 53.315400 +6.187724 53.315107 +6.183031 53.315107 +6.178630 53.315694 +6.175697 53.317454 +6.173937 53.320094 +6.173056 53.322734 +6.171883 53.325375 +6.170710 53.328015 +6.168656 53.330655 +6.166309 53.332708 +6.164256 53.334762 +6.161909 53.336815 +6.158389 53.338282 +6.155455 53.340042 +6.152815 53.341802 +6.150468 53.343856 +6.147828 53.345909 +6.146068 53.348256 +6.147241 53.348256 +6.146068 53.350310 +6.144894 53.352950 +6.145481 53.356177 +6.147535 53.358524 +6.149295 53.360870 +6.152815 53.362631 +6.154868 53.364684 +6.158095 53.366444 +6.159856 53.367911 +6.161616 53.370551 +6.162789 53.373191 +6.162789 53.376712 +6.161909 53.379352 +6.161322 53.382579 +6.160149 53.385219 +6.159856 53.388446 +6.158682 53.391086 +6.159562 53.394313 +6.160442 53.396953 +6.161029 53.399887 +6.162496 53.402820 +6.163082 53.405754 +6.164549 53.408687 +6.166016 53.410741 +6.169243 53.412501 +6.173056 53.413674 +6.178337 53.413968 +6.183324 53.413381 +6.187431 53.412501 +6.191244 53.411327 +6.194765 53.409861 +6.199458 53.409274 +6.204739 53.408981 +6.209726 53.409274 +6.214419 53.409861 +6.218233 53.410447 +6.222633 53.411621 +6.226740 53.412794 +6.230554 53.413674 +6.234661 53.414848 +6.238474 53.415434 +6.243755 53.415728 +6.249622 53.415728 +6.254022 53.415141 +6.259009 53.414554 +6.262823 53.413381 +6.266343 53.411914 +6.270157 53.410741 +6.273677 53.409567 +6.277784 53.408394 +6.281011 53.406927 +6.285118 53.405754 +6.289225 53.404580 +6.292452 53.403407 +6.295972 53.401940 +6.298612 53.400180 +6.300959 53.398126 +6.302426 53.395780 +6.305066 53.395193 +nan nan +6.837504 53.275504 +6.838678 53.273744 +6.839264 53.270517 +6.836624 53.268757 +6.832810 53.267584 +6.826943 53.267584 +6.822543 53.268464 +6.817849 53.269050 +6.812862 53.268757 +6.808755 53.267877 +6.803768 53.267290 +6.799368 53.268170 +6.799368 53.270811 +6.802008 53.272864 +6.806115 53.273744 +6.810516 53.274331 +6.816383 53.274037 +6.820196 53.275211 +6.824010 53.276678 +6.826943 53.278438 +6.829290 53.280198 +6.831637 53.282251 +6.833397 53.284598 +6.836331 53.286652 +6.836624 53.283718 +6.836624 53.279905 +6.837504 53.275504 +nan nan +7.282229 53.414848 +7.283109 53.413381 +7.283696 53.410154 +7.280469 53.408687 +7.276069 53.408687 +7.272549 53.409861 +7.268735 53.411034 +7.265802 53.412794 +7.265508 53.415728 +7.267855 53.418074 +7.271375 53.419248 +7.276656 53.419541 +7.281056 53.418955 +7.283990 53.416901 +7.282229 53.414848 +nan nan +7.305991 53.443303 +7.305698 53.440663 +7.306284 53.437436 +7.307165 53.434796 +7.305991 53.431862 +7.304231 53.429809 +7.302764 53.426875 +7.302764 53.423648 +7.304231 53.421008 +7.306284 53.418955 +7.308045 53.416608 +7.305991 53.414261 +7.301004 53.413968 +7.296897 53.415141 +7.295137 53.417194 +7.293964 53.420128 +7.292790 53.422768 +7.291910 53.425408 +7.290150 53.427755 +7.287510 53.429809 +7.284283 53.430982 +7.281349 53.432742 +7.284283 53.434502 +7.286630 53.436262 +7.287510 53.438903 +7.285750 53.441249 +7.285750 53.444183 +7.288977 53.445943 +7.293084 53.446530 +7.298657 53.446530 +7.302178 53.445943 +7.304524 53.444476 +7.305991 53.443303 +nan nan +8.034683 53.202459 +8.035563 53.199819 +8.034097 53.197179 +8.032923 53.194538 +8.031163 53.191898 +8.028523 53.190138 +8.025003 53.188671 +8.021776 53.187498 +8.016495 53.187205 +8.012388 53.188378 +8.008575 53.189551 +8.004761 53.190431 +7.999481 53.191018 +7.995081 53.191898 +7.995081 53.194832 +7.997427 53.196592 +8.000654 53.198352 +8.003588 53.200112 +8.006521 53.201579 +8.009455 53.203339 +8.011508 53.205686 +8.013855 53.207446 +8.015615 53.210086 +8.017962 53.211846 +8.022656 53.212433 +8.026763 53.211260 +8.029990 53.210086 +8.033217 53.208326 +8.034977 53.205979 +8.034683 53.202459 +nan nan +10.956493 53.652758 +10.956787 53.650411 +10.956493 53.646891 +10.954733 53.644251 +10.956200 53.641611 +10.957080 53.638970 +10.955320 53.636330 +10.953266 53.633983 +10.950919 53.631930 +10.947986 53.630170 +10.943292 53.629583 +10.939772 53.628703 +10.941239 53.626063 +10.943292 53.624009 +10.943879 53.621076 +10.943586 53.617849 +10.941825 53.614915 +10.941239 53.611982 +10.940065 53.608755 +10.941532 53.606408 +10.942705 53.603768 +10.946226 53.602594 +10.949453 53.600834 +10.951506 53.598487 +10.953266 53.596434 +10.954733 53.594087 +10.955026 53.592327 +10.956200 53.590274 +10.955613 53.586753 +10.955026 53.583233 +10.955906 53.580593 +10.957080 53.577953 +10.955613 53.575606 +10.953560 53.572966 +10.950626 53.571792 +10.945932 53.571205 +10.942412 53.572379 +10.938305 53.572379 +10.938599 53.569445 +10.941825 53.567685 +10.946226 53.568565 +10.951506 53.568859 +10.955906 53.567685 +10.957667 53.565632 +10.954733 53.564165 +10.950626 53.563285 +10.944759 53.563578 +10.940652 53.562698 +10.940065 53.559471 +10.940945 53.556538 +10.941239 53.553311 +10.939479 53.550964 +10.936838 53.548911 +10.933318 53.547444 +10.928038 53.547444 +10.925691 53.549497 +10.922757 53.551257 +10.922464 53.554484 +10.922464 53.557418 +10.922171 53.560645 +10.920704 53.562992 +10.918944 53.565338 +10.917477 53.567685 +10.915424 53.569739 +10.912197 53.571792 +10.907796 53.572966 +10.906330 53.574726 +10.906036 53.577659 +10.906036 53.580886 +10.905743 53.584113 +10.905743 53.587340 +10.906036 53.590567 +10.906036 53.593500 +10.907503 53.596727 +10.909263 53.599368 +10.911610 53.601421 +10.913957 53.603474 +10.916304 53.605528 +10.918357 53.607875 +10.920117 53.610515 +10.917770 53.612862 +10.913957 53.614035 +10.910143 53.614915 +10.906036 53.616382 +10.901636 53.617262 +10.896356 53.617262 +10.894009 53.615209 +10.895769 53.613155 +10.899289 53.611688 +10.901929 53.609635 +10.902516 53.606995 +10.898409 53.606115 +10.894302 53.607288 +10.891368 53.608755 +10.889022 53.611102 +10.887848 53.613449 +10.885795 53.615502 +10.884035 53.617849 +10.879048 53.618729 +10.874647 53.619316 +10.873767 53.621662 +10.876407 53.623716 +10.878754 53.625769 +10.879341 53.628996 +10.877581 53.631050 +10.873181 53.631930 +10.869074 53.633397 +10.867313 53.635450 +10.867607 53.638090 +10.869954 53.640144 +10.875234 53.640144 +10.879634 53.639264 +10.883155 53.637797 +10.885795 53.635743 +10.888435 53.634277 +10.890195 53.631930 +10.893715 53.630170 +10.897529 53.629290 +10.901929 53.628410 +10.907210 53.627823 +10.913077 53.627530 +10.918650 53.627236 +10.922464 53.628410 +10.925104 53.630170 +10.926864 53.632517 +10.929798 53.634570 +10.931558 53.636624 +10.934198 53.638677 +10.937425 53.640144 +10.940652 53.641904 +10.941825 53.644544 +10.941532 53.647184 +10.939185 53.649531 +10.940359 53.652465 +10.942119 53.654225 +10.945932 53.655398 +10.948866 53.656865 +10.953560 53.657452 +10.955906 53.655398 +10.956493 53.652758 +nan nan +10.767866 53.777434 +10.768160 53.774207 +10.766400 53.771567 +10.764933 53.768926 +10.763466 53.766286 +10.761412 53.763939 +10.759652 53.761299 +10.758772 53.758366 +10.757892 53.755139 +10.757012 53.752205 +10.757599 53.749565 +10.758479 53.746631 +10.759652 53.744285 +10.761119 53.741644 +10.762586 53.739298 +10.763466 53.736364 +10.764639 53.734017 +10.766400 53.731377 +10.766986 53.728737 +10.766693 53.725217 +10.765519 53.722283 +10.764639 53.719056 +10.764053 53.715536 +10.764933 53.712896 +10.766986 53.710842 +10.770213 53.709082 +10.774613 53.708202 +10.779307 53.708495 +10.784587 53.708789 +10.787521 53.707029 +10.788401 53.704975 +10.789281 53.702335 +10.788108 53.699108 +10.786348 53.696174 +10.784587 53.693534 +10.781947 53.691774 +10.778720 53.690307 +10.775493 53.688547 +10.772560 53.687080 +10.769333 53.685614 +10.765813 53.684147 +10.762586 53.682680 +10.758772 53.681507 +10.754372 53.682387 +10.755545 53.685614 +10.756425 53.688547 +10.758186 53.691187 +10.758772 53.694121 +10.759946 53.697348 +10.759652 53.700868 +10.757892 53.702922 +10.755839 53.704975 +10.753492 53.707322 +10.751732 53.709375 +10.748798 53.711136 +10.747038 53.713189 +10.744985 53.715536 +10.742638 53.717883 +10.742344 53.720523 +10.741464 53.723456 +10.741758 53.726683 +10.743225 53.729324 +10.744691 53.731964 +10.746451 53.734604 +10.747038 53.738124 +10.746158 53.740764 +10.743811 53.742524 +10.740584 53.743991 +10.737944 53.745751 +10.735304 53.747511 +10.733250 53.749858 +10.732077 53.752205 +10.732077 53.755432 +10.733250 53.758659 +10.734131 53.761592 +10.735304 53.764819 +10.736184 53.767753 +10.738237 53.770393 +10.739704 53.772740 +10.742638 53.774793 +10.744985 53.776554 +10.747918 53.778314 +10.751732 53.779487 +10.755839 53.780367 +10.760239 53.781247 +10.764933 53.781541 +10.768746 53.780661 +10.767866 53.777434 +nan nan +10.905449 53.945232 +10.904276 53.942592 +10.902516 53.939952 +10.900756 53.937312 +10.899876 53.934085 +10.898996 53.931151 +10.899289 53.927924 +10.901636 53.926164 +10.906916 53.925578 +10.911317 53.924698 +10.914837 53.922937 +10.917477 53.921471 +10.921291 53.920004 +10.926571 53.919417 +10.931558 53.918830 +10.936252 53.917950 +10.940945 53.917070 +10.944759 53.915897 +10.949159 53.915017 +10.955026 53.914723 +10.960307 53.914723 +10.965587 53.914137 +10.967054 53.912083 +10.962654 53.911497 +10.957960 53.911203 +10.954440 53.909736 +10.951799 53.907683 +10.948573 53.906510 +10.945052 53.904749 +10.940359 53.904456 +10.935665 53.903869 +10.930385 53.903869 +10.925691 53.903283 +10.921877 53.902109 +10.916890 53.901523 +10.912490 53.901816 +10.908676 53.902989 +10.905743 53.905043 +10.904863 53.907683 +10.906623 53.910617 +10.908676 53.912670 +10.909263 53.915604 +10.904569 53.916484 +10.898702 53.916777 +10.894302 53.917364 +10.890782 53.919124 +10.887555 53.920591 +10.884915 53.922644 +10.882861 53.920297 +10.880221 53.918244 +10.877581 53.916484 +10.874354 53.914723 +10.870834 53.913550 +10.866140 53.912963 +10.861446 53.912377 +10.859099 53.910323 +10.856166 53.908563 +10.852059 53.907683 +10.848832 53.906510 +10.847365 53.903576 +10.845312 53.901523 +10.843845 53.900056 +10.840325 53.898882 +10.835631 53.898296 +10.831524 53.897416 +10.826244 53.896536 +10.823310 53.895362 +10.820963 53.893309 +10.819203 53.890668 +10.816563 53.888615 +10.812456 53.887735 +10.809229 53.889202 +10.807176 53.891255 +10.804536 53.893309 +10.800429 53.894482 +10.795148 53.895069 +10.791041 53.894189 +10.786934 53.893309 +10.783414 53.892135 +10.779307 53.891255 +10.774320 53.890962 +10.771093 53.892429 +10.769626 53.895069 +10.771680 53.897122 +10.774027 53.899469 +10.776667 53.899762 +10.781947 53.899176 +10.786934 53.898589 +10.792215 53.898002 +10.797495 53.897416 +10.803362 53.897122 +10.808936 53.896829 +10.814216 53.896829 +10.818323 53.897122 +10.822430 53.898002 +10.826537 53.898882 +10.830057 53.900642 +10.832404 53.901816 +10.835631 53.903576 +10.837978 53.905629 +10.840912 53.907390 +10.843845 53.908856 +10.846779 53.910910 +10.849419 53.911790 +10.853232 53.912963 +10.857046 53.914137 +10.860566 53.915310 +10.863500 53.917070 +10.865260 53.919711 +10.865847 53.922937 +10.864967 53.925871 +10.864673 53.928804 +10.864673 53.932031 +10.864967 53.935552 +10.864967 53.938485 +10.867020 53.940832 +10.871127 53.941712 +10.874941 53.942885 +10.878168 53.944352 +10.881688 53.945526 +10.884621 53.947286 +10.888142 53.948753 +10.890488 53.950806 +10.894302 53.951979 +10.898996 53.952566 +10.904276 53.951979 +10.906036 53.949633 +10.905743 53.946992 +10.905449 53.945232 +nan nan +10.805416 53.972221 +10.803362 53.970754 +10.800429 53.968994 +10.796908 53.967527 +10.793975 53.966060 +10.790161 53.964594 +10.786934 53.963420 +10.784587 53.961367 +10.782534 53.959020 +10.781361 53.955793 +10.782241 53.953153 +10.782241 53.949926 +10.781947 53.946699 +10.780187 53.943766 +10.779014 53.941419 +10.774027 53.942299 +10.772267 53.944352 +10.771387 53.947286 +10.771387 53.950219 +10.771680 53.953740 +10.770800 53.956380 +10.770213 53.959313 +10.770506 53.962540 +10.771680 53.965474 +10.773147 53.968407 +10.774613 53.971048 +10.776667 53.973394 +10.779307 53.975154 +10.781947 53.977208 +10.784881 53.978968 +10.789281 53.979848 +10.793681 53.980435 +10.798375 53.980728 +10.804242 53.980435 +10.808056 53.979555 +10.808936 53.976621 +10.806589 53.974568 +10.805416 53.972221 +nan nan +10.697755 53.876587 +10.699808 53.874534 +10.701862 53.872187 +10.702448 53.869547 +10.702155 53.866613 +10.700395 53.864560 +10.697461 53.862506 +10.694528 53.860746 +10.691301 53.859573 +10.688367 53.857813 +10.685140 53.858399 +10.683380 53.860746 +10.682500 53.863680 +10.681620 53.866320 +10.681620 53.869547 +10.681913 53.872187 +10.684847 53.874241 +10.687781 53.875707 +10.690714 53.877174 +10.692768 53.878934 +10.696875 53.879814 +10.697755 53.876587 +nan nan +10.376532 53.990409 +10.380638 53.989235 +10.383865 53.987769 +10.387092 53.986009 +10.390613 53.984835 +10.393253 53.982782 +10.396186 53.980728 +10.399120 53.979555 +10.404987 53.979261 +10.409681 53.979848 +10.414081 53.980435 +10.418188 53.981315 +10.423468 53.981315 +10.428749 53.980728 +10.432856 53.979848 +10.437256 53.978968 +10.441656 53.978088 +10.444883 53.976328 +10.446350 53.973981 +10.448697 53.971634 +10.452510 53.970461 +10.455737 53.969287 +10.457204 53.966647 +10.458671 53.964300 +10.460138 53.961660 +10.462191 53.959313 +10.464244 53.957260 +10.463951 53.954620 +10.460138 53.954913 +10.457204 53.956967 +10.454564 53.959020 +10.451924 53.960487 +10.449577 53.962834 +10.447817 53.964887 +10.445470 53.967234 +10.444296 53.969581 +10.440776 53.971048 +10.436963 53.972221 +10.431682 53.972808 +10.427282 53.973688 +10.422882 53.974861 +10.417601 53.975154 +10.413201 53.974861 +10.409094 53.974274 +10.404400 53.973688 +10.399120 53.973688 +10.395306 53.974861 +10.392373 53.976621 +10.389732 53.978381 +10.387092 53.980142 +10.383865 53.981902 +10.380052 53.983075 +10.375945 53.984248 +10.371838 53.985422 +10.368611 53.986889 +10.365384 53.988649 +10.361864 53.990116 +10.363331 53.991289 +10.368024 53.991876 +10.373305 53.990996 +10.376532 53.990409 +nan nan +10.626176 54.147647 +10.630576 54.146473 +10.635270 54.146473 +10.639377 54.147354 +10.643484 54.147940 +10.648178 54.148820 +10.653751 54.148527 +10.658445 54.147647 +10.661672 54.146180 +10.661965 54.143540 +10.657858 54.142660 +10.653751 54.142073 +10.648471 54.142073 +10.643191 54.141486 +10.639670 54.140313 +10.636150 54.139140 +10.630870 54.138846 +10.625589 54.139433 +10.621776 54.140900 +10.618842 54.142366 +10.617375 54.145007 +10.617082 54.147940 +10.619429 54.150580 +10.623243 54.149994 +10.626176 54.147647 +nan nan +10.602708 54.185196 +10.607401 54.184903 +10.612682 54.184316 +10.617962 54.184316 +10.622363 54.183729 +10.624709 54.181383 +10.623536 54.178449 +10.621189 54.176396 +10.617962 54.174929 +10.615322 54.173169 +10.613269 54.170529 +10.611802 54.168182 +10.610922 54.164955 +10.610922 54.162021 +10.607988 54.161728 +10.605935 54.163781 +10.604468 54.166422 +10.602414 54.168475 +10.599188 54.169942 +10.593907 54.169648 +10.590094 54.168475 +10.585400 54.168182 +10.580706 54.169062 +10.578653 54.171115 +10.576599 54.173462 +10.575719 54.176102 +10.578946 54.177862 +10.582760 54.179036 +10.585987 54.179329 +10.588920 54.181383 +10.590974 54.183729 +10.594787 54.184903 +10.599481 54.185196 +10.602708 54.185196 +nan nan +10.639377 54.335687 +10.638790 54.333047 +10.639670 54.330407 +10.639964 54.327180 +10.641431 54.324833 +10.642897 54.322193 +10.644071 54.319846 +10.643191 54.316619 +10.640550 54.314859 +10.637910 54.312805 +10.632923 54.312805 +10.627643 54.312805 +10.623243 54.313979 +10.623243 54.316912 +10.622363 54.319846 +10.621776 54.322486 +10.620309 54.325126 +10.619429 54.327766 +10.617962 54.330407 +10.616495 54.332753 +10.615029 54.335394 +10.613562 54.337741 +10.611802 54.340087 +10.614149 54.340967 +10.619429 54.340967 +10.625296 54.340967 +10.630576 54.340967 +10.635857 54.340674 +10.637910 54.338327 +10.639377 54.335687 +nan nan +10.500914 54.319259 +10.502967 54.317792 +10.503847 54.314859 +10.502967 54.312805 +10.500034 54.311045 +10.497100 54.309285 +10.495340 54.306938 +10.496220 54.304298 +10.500620 54.303418 +10.506781 54.303125 +10.511475 54.303418 +10.515288 54.302245 +10.516755 54.299604 +10.514701 54.297551 +10.510594 54.296671 +10.504434 54.296964 +10.500620 54.296671 +10.496807 54.295497 +10.493580 54.294031 +10.490940 54.291977 +10.488300 54.289924 +10.485953 54.288164 +10.483019 54.286110 +10.480086 54.284350 +10.475979 54.283470 +10.470992 54.283470 +10.465711 54.283763 +10.461604 54.284937 +10.458377 54.286697 +10.454857 54.288164 +10.451630 54.289337 +10.448403 54.291097 +10.444883 54.292564 +10.441069 54.294031 +10.437843 54.295204 +10.434029 54.296671 +10.429922 54.297844 +10.424642 54.298431 +10.419361 54.299018 +10.413494 54.299311 +10.408214 54.299604 +10.403520 54.300485 +10.399120 54.301365 +10.394426 54.302538 +10.389439 54.303125 +10.384745 54.304005 +10.382399 54.306058 +10.382399 54.309285 +10.382105 54.312219 +10.382692 54.315446 +10.383572 54.318672 +10.385919 54.321019 +10.388852 54.322486 +10.392959 54.323366 +10.398826 54.323073 +10.404694 54.322779 +10.409974 54.322193 +10.415841 54.321899 +10.420535 54.321019 +10.426402 54.320726 +10.431095 54.320726 +10.436376 54.320726 +10.441069 54.321313 +10.445763 54.321899 +10.451630 54.321606 +10.456324 54.320433 +10.460138 54.319553 +10.465125 54.318672 +10.468938 54.317206 +10.472752 54.316032 +10.476859 54.314859 +10.481259 54.314272 +10.487126 54.313979 +10.491526 54.314859 +10.491233 54.316326 +10.487713 54.317792 +10.487419 54.320139 +10.492700 54.320433 +10.497394 54.319553 +10.500914 54.319259 +nan nan +10.306126 54.328940 +10.307593 54.327180 +10.310233 54.325420 +10.314047 54.324246 +10.319034 54.323073 +10.324021 54.322486 +10.329301 54.321899 +10.331355 54.320139 +10.330182 54.316912 +10.326661 54.315446 +10.322554 54.314859 +10.317274 54.314859 +10.313167 54.313979 +10.308180 54.313392 +10.305540 54.315152 +10.302900 54.316912 +10.299966 54.318966 +10.296739 54.320139 +10.293806 54.322193 +10.293512 54.325420 +10.294686 54.328353 +10.297326 54.330407 +10.300553 54.331873 +10.304953 54.330993 +10.306126 54.328940 +nan nan +10.325195 54.361502 +10.325488 54.358862 +10.327248 54.356515 +10.330475 54.355048 +10.334582 54.353288 +10.337809 54.351822 +10.339862 54.349768 +10.337809 54.347421 +10.333115 54.346834 +10.327835 54.346834 +10.324021 54.345661 +10.321381 54.343608 +10.319034 54.341554 +10.313754 54.340967 +10.310527 54.342728 +10.310527 54.345954 +10.311994 54.348595 +10.312580 54.351822 +10.311700 54.354755 +10.312580 54.357689 +10.314634 54.360035 +10.317274 54.362089 +10.319034 54.364436 +10.322554 54.366196 +10.326368 54.365609 +10.325195 54.361502 +nan nan +10.297619 54.223039 +10.301433 54.221866 +10.305246 54.220692 +10.308473 54.219225 +10.313754 54.218639 +10.318741 54.217759 +10.321968 54.215998 +10.319621 54.217172 +10.314340 54.217759 +10.310233 54.216879 +10.308180 54.214825 +10.305540 54.212772 +10.303193 54.210718 +10.302020 54.207785 +10.304660 54.205731 +10.308180 54.204558 +10.310820 54.202504 +10.311113 54.200157 +10.307593 54.198984 +10.301433 54.199277 +10.296446 54.199864 +10.292339 54.200744 +10.290285 54.203091 +10.289992 54.206024 +10.288525 54.208665 +10.285298 54.210425 +10.281485 54.211305 +10.279725 54.213945 +10.280898 54.216879 +10.282658 54.219225 +10.285005 54.221279 +10.287938 54.223039 +10.291752 54.224506 +10.297032 54.223919 +10.297619 54.223039 +nan nan +10.267404 54.238000 +10.265644 54.236533 +10.262417 54.234773 +10.258896 54.233600 +10.253909 54.233013 +10.248629 54.233013 +10.244522 54.232133 +10.241295 54.230666 +10.239535 54.228319 +10.238948 54.224799 +10.238362 54.221279 +10.236895 54.218932 +10.234548 54.216585 +10.231614 54.214825 +10.228094 54.213652 +10.222814 54.214238 +10.220174 54.215998 +10.219880 54.219225 +10.219587 54.222159 +10.221347 54.225092 +10.223987 54.226853 +10.226334 54.228906 +10.229854 54.230373 +10.228974 54.229786 +10.231321 54.230666 +10.233961 54.232426 +10.236601 54.234480 +10.239242 54.236533 +10.242762 54.237707 +10.247456 54.238293 +10.252443 54.238587 +10.256550 54.239467 +10.260363 54.240934 +10.262710 54.242694 +10.266817 54.242694 +10.269751 54.241227 +10.267404 54.238000 +nan nan +10.391199 54.169062 +10.392079 54.167302 +10.393546 54.164661 +10.396186 54.162901 +10.401467 54.162315 +10.406160 54.162021 +10.407040 54.159088 +10.404694 54.157034 +10.402640 54.154687 +10.399707 54.152927 +10.395013 54.153221 +10.391786 54.154687 +10.388852 54.156741 +10.387386 54.159088 +10.384745 54.160848 +10.382105 54.162901 +10.379465 54.164368 +10.379172 54.167888 +10.380932 54.170235 +10.383865 54.171995 +10.388559 54.171702 +10.391199 54.169062 +nan nan +10.420828 54.176102 +10.423762 54.176982 +10.428162 54.177862 +10.432856 54.178449 +10.435496 54.176689 +10.434029 54.173755 +10.431389 54.171995 +10.428455 54.170235 +10.424935 54.168475 +10.420241 54.168475 +10.415548 54.167888 +10.410854 54.167302 +10.407040 54.168475 +10.407920 54.170822 +10.410267 54.172875 +10.413201 54.173755 +10.420828 54.176102 +nan nan +10.478912 54.176102 +10.480966 54.175809 +10.485953 54.174929 +10.489180 54.173755 +10.491233 54.171409 +10.492700 54.168768 +10.492113 54.165541 +10.489766 54.163488 +10.485953 54.162315 +10.482139 54.161141 +10.478032 54.160261 +10.473925 54.159381 +10.470698 54.157914 +10.467471 54.156154 +10.463951 54.154981 +10.460431 54.156447 +10.461311 54.159381 +10.462484 54.162608 +10.463658 54.165541 +10.463951 54.169062 +10.465125 54.172289 +10.465711 54.175222 +10.468938 54.176689 +10.474512 54.176982 +10.478912 54.176102 +nan nan +10.516462 54.174929 +10.519102 54.173755 +10.523502 54.173169 +10.528782 54.172582 +10.534063 54.171995 +10.539343 54.171115 +10.544330 54.170529 +10.547850 54.169062 +10.549904 54.167008 +10.546384 54.165835 +10.542570 54.164368 +10.538463 54.163488 +10.533476 54.163195 +10.528196 54.163195 +10.522622 54.163195 +10.517342 54.163195 +10.512061 54.163195 +10.506781 54.163195 +10.502087 54.162608 +10.496807 54.162608 +10.493287 54.163781 +10.494167 54.167008 +10.495047 54.169355 +10.496807 54.171115 +10.499740 54.173169 +10.503261 54.174049 +10.507954 54.174635 +10.516462 54.174929 +nan nan +10.486246 54.155861 +10.492113 54.155567 +10.496807 54.154687 +10.497394 54.152634 +10.493873 54.151460 +10.489766 54.150580 +10.486246 54.149114 +10.482726 54.147647 +10.479792 54.146180 +10.475099 54.145593 +10.472752 54.147647 +10.474512 54.150287 +10.475979 54.152927 +10.478619 54.154981 +10.482139 54.156447 +10.486246 54.155861 +nan nan +10.450457 54.146767 +10.449870 54.143247 +10.448110 54.140900 +10.446937 54.137673 +10.444883 54.135619 +10.443416 54.132686 +10.441950 54.130339 +10.439603 54.127699 +10.437256 54.125939 +10.435789 54.123298 +10.434616 54.120365 +10.434322 54.116551 +10.434322 54.113618 +10.433736 54.110684 +10.430802 54.108631 +10.428455 54.106577 +10.428749 54.104524 +10.430215 54.102470 +10.432269 54.100417 +10.432562 54.097190 +10.431976 54.094550 +10.430509 54.091910 +10.429042 54.089269 +10.426402 54.087216 +10.423762 54.085162 +10.419068 54.084869 +10.413201 54.084869 +10.407920 54.085456 +10.403520 54.086336 +10.400880 54.088389 +10.399413 54.090736 +10.399120 54.093963 +10.399707 54.097190 +10.399413 54.100417 +10.399707 54.103937 +10.399707 54.106871 +10.400000 54.110391 +10.398533 54.112738 +10.397360 54.115378 +10.396480 54.118018 +10.397066 54.121245 +10.396773 54.124765 +10.395306 54.126819 +10.392373 54.128872 +10.387092 54.129459 +10.383572 54.128285 +10.380638 54.126525 +10.377118 54.125059 +10.371838 54.125059 +10.366557 54.125059 +10.361864 54.124472 +10.358344 54.123005 +10.354823 54.121832 +10.350716 54.120952 +10.347196 54.119485 +10.342209 54.120072 +10.338982 54.121538 +10.337222 54.124179 +10.337222 54.127112 +10.338689 54.130046 +10.341622 54.131512 +10.343382 54.134153 +10.342502 54.137086 +10.341036 54.139433 +10.341329 54.142366 +10.343969 54.144127 +10.346023 54.146473 +10.348663 54.148234 +10.352770 54.149114 +10.356877 54.149994 +10.361570 54.150580 +10.365971 54.151460 +10.371251 54.151460 +10.376532 54.150874 +10.380638 54.149700 +10.384452 54.148527 +10.388852 54.147647 +10.394133 54.147060 +10.398826 54.147060 +10.404107 54.147060 +10.409387 54.146473 +10.412907 54.145007 +10.414668 54.142660 +10.415548 54.140020 +10.414668 54.137086 +10.414374 54.135619 +10.415254 54.138553 +10.415841 54.142073 +10.413788 54.144127 +10.411147 54.146180 +10.412614 54.148527 +10.415841 54.150287 +10.418775 54.152047 +10.422001 54.153221 +10.424935 54.154981 +10.429335 54.155861 +10.435202 54.155567 +10.438723 54.154101 +10.444590 54.153807 +10.448990 54.152634 +10.451044 54.150874 +10.451044 54.147647 +10.450457 54.146767 +nan nan +9.967302 54.299018 +9.967596 54.297258 +9.969649 54.294911 +9.974343 54.294031 +9.979330 54.293737 +9.984610 54.293151 +9.989010 54.291977 +9.989304 54.289337 +9.984610 54.288750 +9.979916 54.288164 +9.975223 54.287577 +9.971702 54.286403 +9.968476 54.284643 +9.965835 54.282883 +9.964369 54.279950 +9.964662 54.277016 +9.963195 54.274376 +9.961728 54.271736 +9.956448 54.272322 +9.953514 54.273789 +9.951168 54.275843 +9.948234 54.277896 +9.945594 54.279363 +9.942367 54.281123 +9.937087 54.281710 +9.932100 54.281123 +9.927993 54.280243 +9.922419 54.279950 +9.917432 54.280536 +9.916552 54.280243 +9.912738 54.279950 +9.907751 54.279656 +9.906284 54.282003 +9.907164 54.284937 +9.909218 54.286697 +9.913325 54.286990 +9.917139 54.288164 +9.920365 54.289044 +9.922712 54.290217 +9.925352 54.292271 +9.928873 54.293737 +9.934153 54.293737 +9.939433 54.293151 +9.943247 54.291977 +9.947941 54.291097 +9.952634 54.291684 +9.955275 54.292857 +9.953808 54.295204 +9.951168 54.297258 +9.950288 54.299898 +9.952341 54.302245 +9.957035 54.302831 +9.961728 54.301951 +9.966422 54.301071 +9.967302 54.299018 +nan nan +9.790409 54.385264 +9.786009 54.384384 +9.782489 54.382917 +9.778382 54.382330 +9.774568 54.380864 +9.770755 54.379690 +9.767234 54.378517 +9.764301 54.377050 +9.760781 54.375290 +9.757260 54.374116 +9.753740 54.372650 +9.749340 54.372650 +9.744646 54.373530 +9.739366 54.373236 +9.734965 54.374116 +9.732912 54.376463 +9.731445 54.378810 +9.730272 54.381744 +9.729392 54.384384 +9.731152 54.387317 +9.734085 54.388491 +9.737312 54.390251 +9.740833 54.391424 +9.744646 54.392891 +9.748460 54.393771 +9.751393 54.395531 +9.754914 54.396998 +9.759314 54.397878 +9.763127 54.398758 +9.766648 54.400225 +9.769581 54.401692 +9.773688 54.403159 +9.777795 54.403745 +9.783076 54.403452 +9.785716 54.401398 +9.787769 54.399345 +9.789529 54.396998 +9.790703 54.394358 +9.793050 54.392304 +9.794516 54.389664 +9.793050 54.387317 +9.790409 54.385264 +nan nan +9.717364 54.503486 +9.718244 54.500846 +9.717951 54.497619 +9.716484 54.494685 +9.713257 54.493218 +9.708564 54.492632 +9.702696 54.492632 +9.698003 54.493805 +9.693309 54.494685 +9.688909 54.495565 +9.682748 54.495859 +9.678348 54.496739 +9.675121 54.497912 +9.672188 54.499965 +9.669547 54.501726 +9.666614 54.503486 +9.664560 54.505539 +9.662507 54.507886 +9.658400 54.508766 +9.654586 54.510233 +9.649599 54.511113 +9.644026 54.511113 +9.638159 54.511406 +9.632585 54.511406 +9.627304 54.511113 +9.622611 54.510526 +9.617917 54.510233 +9.613223 54.509059 +9.609703 54.508179 +9.605596 54.507299 +9.602076 54.505833 +9.598556 54.504366 +9.595622 54.502899 +9.592982 54.500846 +9.590928 54.498205 +9.588875 54.496152 +9.587995 54.492925 +9.587702 54.490285 +9.588582 54.487645 +9.590048 54.485004 +9.589168 54.482071 +9.586528 54.480017 +9.582421 54.479137 +9.578901 54.480604 +9.578608 54.483831 +9.577728 54.486765 +9.575087 54.488231 +9.573034 54.490578 +9.570687 54.492632 +9.571567 54.495859 +9.574501 54.497912 +9.577434 54.499085 +9.577141 54.501726 +9.572447 54.502606 +9.567167 54.502606 +9.562473 54.503192 +9.558659 54.504366 +9.555139 54.505833 +9.551619 54.507593 +9.550739 54.510233 +9.551032 54.513166 +9.554259 54.514340 +9.558659 54.515220 +9.563940 54.515513 +9.567753 54.514340 +9.572447 54.513753 +9.577728 54.513166 +9.583595 54.512873 +9.588875 54.513166 +9.591515 54.514046 +9.594155 54.516100 +9.597089 54.517860 +9.600903 54.519034 +9.604423 54.520207 +9.607650 54.521967 +9.610290 54.524021 +9.612637 54.525781 +9.616744 54.526954 +9.621437 54.527541 +9.626131 54.528128 +9.631411 54.528128 +9.635518 54.527834 +9.634638 54.524607 +9.633465 54.521674 +9.635225 54.519034 +9.638159 54.518740 +9.641972 54.519914 +9.645492 54.521087 +9.649599 54.521967 +9.654000 54.522847 +9.658987 54.523434 +9.663680 54.524021 +9.668961 54.524021 +9.673654 54.524314 +9.678641 54.524901 +9.682748 54.525781 +9.687442 54.526367 +9.692722 54.526661 +9.697416 54.525781 +9.702110 54.524607 +9.704457 54.523434 +9.705923 54.520794 +9.704457 54.518447 +9.705337 54.516100 +9.708564 54.514633 +9.712084 54.513166 +9.714137 54.511113 +9.715604 54.508473 +9.717364 54.503486 +nan nan +9.922712 54.621121 +9.919779 54.620241 +9.915672 54.619361 +9.911858 54.618187 +9.908045 54.617014 +9.905111 54.615254 +9.902471 54.613200 +9.899244 54.611734 +9.896604 54.609680 +9.893964 54.607920 +9.890737 54.606160 +9.887803 54.604693 +9.884576 54.602933 +9.881349 54.601466 +9.878416 54.599706 +9.874309 54.598533 +9.870202 54.597653 +9.866682 54.596479 +9.862575 54.595599 +9.858174 54.594719 +9.853187 54.594132 +9.849080 54.593252 +9.845267 54.592079 +9.842920 54.590319 +9.840866 54.587972 +9.837933 54.585918 +9.834413 54.584745 +9.830306 54.583865 +9.825905 54.582985 +9.821798 54.582105 +9.818571 54.580638 +9.815345 54.578878 +9.813291 54.576531 +9.810944 54.574771 +9.808597 54.572131 +9.806544 54.570077 +9.804197 54.568024 +9.801264 54.565970 +9.798330 54.564210 +9.795396 54.562450 +9.791876 54.560690 +9.788356 54.559810 +9.782489 54.560103 +9.777209 54.560690 +9.773395 54.559223 +9.770755 54.557170 +9.768995 54.555116 +9.766061 54.553063 +9.762541 54.551596 +9.759314 54.550422 +9.756967 54.548369 +9.754620 54.545729 +9.752860 54.543675 +9.750807 54.541035 +9.749046 54.538688 +9.747873 54.535755 +9.746700 54.532821 +9.745820 54.529594 +9.743473 54.527834 +9.739659 54.526661 +9.735552 54.526954 +9.733205 54.529301 +9.730565 54.531061 +9.733205 54.533115 +9.735259 54.535168 +9.737312 54.537515 +9.739366 54.539862 +9.741419 54.542209 +9.742886 54.545142 +9.744353 54.547782 +9.746406 54.550129 +9.748460 54.552183 +9.750513 54.554823 +9.753153 54.556583 +9.754914 54.558930 +9.757847 54.560690 +9.760194 54.562743 +9.764008 54.564503 +9.766648 54.566264 +9.766354 54.569490 +9.766648 54.572717 +9.768408 54.575651 +9.771341 54.577118 +9.775448 54.576531 +9.778382 54.574771 +9.782196 54.573597 +9.786302 54.574478 +9.790703 54.575358 +9.793930 54.576824 +9.796863 54.578584 +9.800970 54.580345 +9.803904 54.581811 +9.806837 54.583278 +9.810944 54.584745 +9.813878 54.586212 +9.816811 54.587678 +9.820918 54.589145 +9.823852 54.590612 +9.827372 54.592079 +9.830892 54.593252 +9.833239 54.595306 +9.833533 54.597359 +9.832066 54.599999 +9.835293 54.601759 +9.839986 54.602053 +9.844680 54.602640 +9.849374 54.602933 +9.853774 54.603813 +9.858174 54.604693 +9.861695 54.606160 +9.864921 54.607627 +9.868735 54.608800 +9.871669 54.610267 +9.874309 54.612614 +9.876949 54.614374 +9.879296 54.616721 +9.881056 54.618774 +9.883109 54.621414 +9.885163 54.623468 +9.888390 54.625228 +9.891323 54.626988 +9.895137 54.628161 +9.897777 54.629921 +9.901297 54.631095 +9.905698 54.632268 +9.910978 54.632268 +9.916258 54.632562 +9.920659 54.632562 +9.924472 54.634028 +9.927993 54.634909 +9.931220 54.635789 +9.935327 54.636669 +9.937380 54.639309 +9.937673 54.641069 +9.937380 54.644296 +9.937673 54.647816 +9.940607 54.646349 +9.942367 54.644296 +9.944127 54.641949 +9.945007 54.639309 +9.942367 54.637255 +9.940020 54.635202 +9.940900 54.632562 +9.941194 54.629335 +9.938847 54.626988 +9.935913 54.625228 +9.932100 54.624054 +9.928873 54.622588 +9.922712 54.621121 +nan nan +3.876972 51.542367 +3.869638 51.539140 +3.863477 51.538553 +3.857317 51.539726 +3.852330 51.541486 +3.848223 51.543540 +3.844409 51.545887 +3.839422 51.547647 +3.833849 51.548820 +3.826808 51.549407 +3.820648 51.549114 +3.815367 51.547940 +3.809793 51.547354 +3.805980 51.545300 +3.800993 51.543833 +3.795419 51.542660 +3.788965 51.542953 +3.783392 51.544420 +3.778698 51.546180 +3.772831 51.547647 +3.766377 51.548234 +3.759630 51.548527 +3.754936 51.547354 +3.750243 51.545593 +3.746136 51.543540 +3.742615 51.541193 +3.739095 51.538553 +3.737628 51.534739 +3.735868 51.530632 +3.732935 51.527699 +3.729708 51.525352 +3.726187 51.522712 +3.722081 51.520952 +3.718560 51.518311 +3.713867 51.516551 +3.708000 51.518018 +3.705066 51.520952 +3.702719 51.523592 +3.700372 51.526525 +3.698025 51.529752 +3.694799 51.532099 +3.692452 51.535033 +3.690105 51.537966 +3.687758 51.541193 +3.685411 51.543833 +3.683064 51.547060 +3.679251 51.549114 +3.675144 51.551461 +3.671037 51.553221 +3.668103 51.556154 +3.663996 51.557914 +3.659889 51.560261 +3.655782 51.562608 +3.651969 51.564661 +3.647275 51.566422 +3.642288 51.568475 +3.638475 51.570235 +3.635834 51.573462 +3.634368 51.576689 +3.634368 51.580796 +3.638475 51.582849 +3.643462 51.584023 +3.649035 51.585196 +3.653729 51.583436 +3.652849 51.579623 +3.655196 51.576982 +3.658423 51.574049 +3.662530 51.572289 +3.667223 51.570235 +3.671917 51.568475 +3.676904 51.566715 +3.680718 51.564661 +3.684825 51.562608 +3.689812 51.560848 +3.694505 51.558794 +3.700079 51.557621 +3.703306 51.554981 +3.706533 51.552634 +3.708000 51.549114 +3.709466 51.545887 +3.709466 51.541780 +3.710053 51.537673 +3.710933 51.534153 +3.712400 51.531806 +3.716800 51.533566 +3.720027 51.536206 +3.724721 51.537379 +3.729414 51.538846 +3.733521 51.541193 +3.737922 51.542953 +3.742029 51.545007 +3.746136 51.547060 +3.750243 51.548820 +3.754056 51.550874 +3.759630 51.551754 +3.764324 51.553221 +3.769604 51.554101 +3.775764 51.554687 +3.782512 51.554394 +3.788965 51.553514 +3.796006 51.552927 +3.802753 51.552634 +3.808913 51.553221 +3.814487 51.554101 +3.819181 51.555567 +3.824461 51.556741 +3.829742 51.557621 +3.837369 51.557034 +3.842062 51.555274 +3.845876 51.552927 +3.849103 51.550580 +3.853797 51.548527 +3.859370 51.547354 +3.865237 51.546767 +3.869931 51.547647 +nan nan +4.569288 52.217962 +4.568701 52.215321 +4.571048 52.213268 +4.576915 52.212681 +4.582489 52.213561 +4.589236 52.213561 +4.587769 52.210334 +4.582196 52.209454 +4.576915 52.208574 +4.571928 52.207108 +4.567235 52.205934 +4.562247 52.204467 +4.556674 52.203294 +4.551980 52.201827 +4.545820 52.201534 +4.538192 52.202121 +4.532032 52.203294 +4.528805 52.205934 +4.529098 52.207694 +4.533205 52.209748 +4.537019 52.211801 +4.540539 52.214441 +4.546700 52.215028 +4.552273 52.215908 +4.556380 52.217668 +4.559314 52.220895 +4.563714 52.222655 +4.567235 52.222655 +4.569581 52.219722 +4.569288 52.217962 +nan nan +4.670789 52.207694 +4.675482 52.205934 +4.676949 52.202414 +4.674309 52.199774 +4.671082 52.196547 +4.669909 52.192146 +4.667268 52.189213 +4.661695 52.188333 +4.656121 52.187159 +4.649960 52.186866 +4.644387 52.188333 +4.642040 52.191266 +4.644973 52.194200 +4.649080 52.196253 +4.651721 52.199774 +4.651721 52.203881 +4.654654 52.206814 +4.658761 52.208868 +4.664922 52.209161 +4.670789 52.207694 +nan nan +4.794584 52.129662 +4.791064 52.128195 +4.786957 52.126435 +4.782850 52.124382 +4.778156 52.122915 +4.773756 52.124382 +4.776103 52.127902 +4.779623 52.130249 +4.781677 52.132009 +4.784317 52.134942 +4.789304 52.136409 +4.794878 52.134942 +4.794584 52.129662 +nan nan +4.817466 52.159878 +4.815412 52.158411 +4.812185 52.156064 +4.809252 52.153130 +4.805145 52.151077 +4.798984 52.150784 +4.794584 52.151077 +4.790184 52.149023 +4.787250 52.146090 +4.783730 52.143743 +4.781383 52.141103 +4.785490 52.138756 +4.782850 52.139929 +4.778156 52.141983 +4.777276 52.145503 +4.779916 52.147850 +4.782557 52.151077 +4.785784 52.153717 +4.789010 52.156651 +4.792531 52.159291 +4.796638 52.161051 +4.801625 52.162518 +4.806318 52.163984 +4.813065 52.163691 +4.818053 52.161931 +4.817466 52.159878 +nan nan +4.984384 52.230576 +4.984971 52.226762 +4.983211 52.223535 +4.977344 52.223242 +4.972064 52.222362 +4.965903 52.222069 +4.959743 52.221775 +4.957689 52.223535 +4.961503 52.226176 +4.965610 52.227936 +4.969130 52.230576 +4.973530 52.232629 +4.978224 52.233803 +4.983504 52.233803 +4.984384 52.230576 +nan nan +4.969130 52.249351 +4.975877 52.248471 +4.977931 52.245244 +4.978517 52.241723 +4.975877 52.238496 +4.970890 52.237323 +4.965316 52.236443 +4.960036 52.235563 +4.953289 52.236736 +4.946835 52.237616 +4.942728 52.239670 +4.941261 52.243190 +4.943608 52.246710 +4.947128 52.249057 +4.952702 52.249937 +4.958276 52.250817 +4.965023 52.250817 +4.969130 52.249351 +nan nan +4.760848 52.258151 +4.760848 52.253751 +4.760555 52.249644 +4.758795 52.245537 +4.756448 52.242310 +4.753515 52.239083 +4.749114 52.237323 +4.744421 52.235856 +4.738847 52.234976 +4.732686 52.234390 +4.726233 52.234683 +4.719192 52.234683 +4.712445 52.234976 +4.706871 52.234096 +4.701591 52.232923 +4.697191 52.231163 +4.691910 52.230283 +4.687803 52.232629 +4.687216 52.236443 +4.689563 52.239670 +4.692497 52.242897 +4.696604 52.244657 +4.701591 52.246124 +4.706284 52.247590 +4.710098 52.249937 +4.713618 52.252577 +4.717139 52.254924 +4.722126 52.256391 +4.726819 52.257858 +4.731806 52.259031 +4.736793 52.260498 +4.742367 52.261378 +4.747354 52.263432 +4.752048 52.264605 +4.759382 52.264312 +4.761728 52.261085 +4.760848 52.258151 +nan nan +5.097619 52.199480 +5.098793 52.196253 +5.097326 52.191853 +5.094686 52.188626 +5.097033 52.185693 +5.099086 52.182466 +5.099966 52.178946 +5.094979 52.177479 +5.090285 52.176012 +5.084712 52.175132 +5.079138 52.174252 +5.074444 52.172785 +5.069457 52.171318 +5.063883 52.170438 +5.059190 52.169265 +5.053616 52.168385 +5.049509 52.166331 +5.043935 52.165451 +5.038362 52.166918 +5.038362 52.170145 +5.041295 52.173078 +5.042175 52.176599 +5.036308 52.178065 +5.030734 52.179826 +5.029561 52.183053 +5.033668 52.185106 +5.039828 52.185399 +5.043349 52.187746 +5.045696 52.190973 +5.045696 52.195373 +5.050096 52.197134 +5.055376 52.197134 +5.062123 52.197134 +5.069457 52.196253 +5.071804 52.200067 +5.074738 52.202707 +5.079725 52.204174 +5.086472 52.204174 +5.092926 52.203001 +5.097033 52.200947 +5.097619 52.199480 +nan nan +5.070337 52.227642 +5.074444 52.225589 +5.074151 52.221482 +5.071804 52.217962 +5.069457 52.214441 +5.067404 52.210041 +5.065350 52.206521 +5.060363 52.205054 +5.053029 52.205934 +5.046576 52.207108 +5.041589 52.209161 +5.041882 52.213268 +5.044522 52.216788 +5.045989 52.220895 +5.047162 52.225296 +5.050096 52.228229 +5.053616 52.230576 +5.059190 52.231749 +5.065937 52.231456 +5.070924 52.229403 +5.070337 52.227642 +nan nan +5.112874 52.244070 +5.111994 52.240550 +5.108767 52.237616 +5.104660 52.235856 +5.100553 52.233803 +5.096152 52.232043 +5.091459 52.230576 +5.086472 52.231456 +5.084125 52.234390 +5.086472 52.237910 +5.090579 52.239670 +5.094979 52.241723 +5.097913 52.244657 +5.101433 52.247004 +5.105833 52.248764 +5.111700 52.248471 +5.113754 52.245537 +5.112874 52.244070 +nan nan +5.099086 52.274872 +5.098793 52.270765 +5.097913 52.266365 +5.096739 52.261965 +5.092926 52.259325 +5.086765 52.260498 +5.080898 52.261965 +5.074444 52.263138 +5.069457 52.261671 +5.065937 52.259031 +5.061243 52.257858 +5.055963 52.257858 +5.056256 52.261965 +5.056256 52.266072 +5.057430 52.270472 +5.058310 52.274286 +5.061243 52.276926 +5.067404 52.277513 +5.072977 52.276046 +5.079138 52.276339 +5.084125 52.277806 +5.089405 52.278686 +5.096446 52.278686 +5.099086 52.274872 +nan nan +4.862936 52.518357 +4.866456 52.515716 +4.870270 52.513663 +4.872910 52.510436 +4.872616 52.507502 +4.867043 52.508969 +4.860002 52.508969 +4.855309 52.507502 +4.851788 52.504862 +4.845628 52.504862 +4.838587 52.504862 +4.833894 52.503396 +4.828907 52.501929 +4.823333 52.501049 +4.817172 52.500755 +4.810425 52.500755 +4.806318 52.503102 +4.803385 52.505449 +4.804852 52.508969 +4.809545 52.509263 +4.812185 52.508089 +4.815706 52.510436 +4.818053 52.514250 +4.820986 52.516890 +4.825973 52.518357 +4.830960 52.516596 +4.836827 52.516890 +4.842401 52.517770 +4.847975 52.518943 +4.853548 52.519823 +4.860296 52.519530 +4.862936 52.518357 +nan nan +4.756155 52.566173 +4.760262 52.563827 +4.764955 52.562360 +4.770822 52.560893 +4.776983 52.561186 +4.781970 52.562360 +4.784610 52.561480 +4.782263 52.557666 +4.778743 52.555319 +4.774343 52.553266 +4.769356 52.551799 +4.765249 52.550039 +4.762315 52.547105 +4.762315 52.542998 +4.764369 52.540065 +4.766129 52.537131 +4.761142 52.535958 +4.753808 52.536838 +4.747647 52.537131 +4.744127 52.535078 +4.740607 52.532438 +4.735913 52.530971 +4.734740 52.533024 +4.738847 52.535078 +4.741194 52.537425 +4.743247 52.540945 +4.743247 52.544172 +4.748821 52.545052 +4.752634 52.547399 +4.754981 52.551212 +4.751754 52.553559 +4.748528 52.556199 +4.748821 52.560306 +4.749701 52.564707 +4.756155 52.566173 +nan nan +4.921020 52.892383 +4.925714 52.890917 +4.930114 52.888570 +4.935101 52.886810 +4.938915 52.884463 +4.940968 52.881529 +4.940968 52.877422 +4.938034 52.874489 +4.934514 52.871849 +4.929527 52.870675 +4.923367 52.870969 +4.921020 52.874195 +4.918673 52.876836 +4.914859 52.879182 +4.909579 52.881236 +4.903125 52.882116 +4.897552 52.883583 +4.893445 52.885930 +4.893445 52.888863 +4.897552 52.890037 +4.902539 52.891503 +4.907232 52.892677 +4.912806 52.893850 +4.919846 52.893557 +4.921020 52.892383 +nan nan +5.070044 52.950761 +5.066817 52.947827 +5.063883 52.944894 +5.060363 52.942547 +5.057136 52.939320 +5.053616 52.936973 +5.049216 52.934920 +5.045696 52.932866 +5.041295 52.930813 +5.037775 52.928466 +5.039535 52.925826 +5.045109 52.926706 +5.050976 52.927293 +5.057723 52.926119 +5.060950 52.923479 +5.061537 52.920545 +5.062417 52.917025 +5.063883 52.913505 +5.066817 52.910865 +5.069457 52.907931 +5.071804 52.904998 +5.076791 52.902944 +5.081485 52.901477 +5.086472 52.899424 +5.088525 52.896490 +5.089405 52.892677 +5.090872 52.889450 +5.092339 52.886223 +5.094392 52.882996 +5.097033 52.880063 +5.099966 52.877422 +5.101726 52.874195 +5.103780 52.870969 +5.106127 52.868035 +5.108473 52.865395 +5.111700 52.862461 +5.113754 52.859821 +5.116394 52.856594 +5.117861 52.853367 +5.119034 52.850140 +5.120794 52.846327 +5.121381 52.842807 +5.122261 52.840753 +5.124021 52.837526 +5.125195 52.834299 +5.125781 52.830192 +5.126368 52.826672 +5.126075 52.822565 +5.124315 52.818751 +5.122848 52.814351 +5.120794 52.810538 +5.119034 52.806431 +5.119034 52.802617 +5.119327 52.798510 +5.119914 52.794990 +5.119034 52.790296 +5.116687 52.787069 +5.116394 52.782669 +5.117567 52.780909 +5.123434 52.780322 +5.126661 52.777682 +5.128128 52.774455 +5.128715 52.770641 +5.129888 52.767121 +5.132528 52.764188 +5.134582 52.761254 +5.137809 52.758614 +5.141036 52.755974 +5.144263 52.753333 +5.147196 52.750693 +5.150423 52.748346 +5.154530 52.746000 +5.160397 52.744826 +5.167731 52.743946 +5.173598 52.743359 +5.178585 52.744826 +5.182985 52.746586 +5.186799 52.749226 +5.189733 52.751867 +5.193253 52.754507 +5.197360 52.756267 +5.202640 52.757734 +5.209387 52.757734 +5.216134 52.757440 +5.223468 52.756854 +5.231096 52.755974 +5.237843 52.755094 +5.244296 52.753920 +5.250750 52.753040 +5.258377 52.752160 +5.264245 52.751573 +5.270992 52.751573 +5.278619 52.750693 +5.282433 52.748640 +5.286539 52.746293 +5.288006 52.743066 +5.290646 52.740719 +5.292700 52.738079 +5.294460 52.734852 +5.295927 52.731332 +5.296514 52.727518 +5.296220 52.723411 +5.295927 52.719304 +5.296514 52.715491 +5.298567 52.712557 +5.302087 52.709917 +5.304141 52.706983 +5.302381 52.703170 +5.297980 52.701116 +5.292407 52.700236 +5.286833 52.699063 +5.283313 52.697009 +5.280379 52.693783 +5.275392 52.692022 +5.269232 52.691729 +5.262191 52.692022 +5.256031 52.691436 +5.253684 52.687915 +5.252510 52.683515 +5.252217 52.679408 +5.251044 52.675008 +5.249870 52.670314 +5.247523 52.667087 +5.244590 52.663860 +5.241656 52.660927 +5.238136 52.658580 +5.234029 52.656233 +5.230509 52.653593 +5.226402 52.651539 +5.222002 52.649779 +5.217308 52.648313 +5.212908 52.646259 +5.208507 52.644792 +5.204987 52.642152 +5.201467 52.639805 +5.197066 52.637752 +5.192079 52.636285 +5.186799 52.635698 +5.181225 52.634818 +5.174771 52.634232 +5.170664 52.632471 +5.168024 52.628951 +5.162451 52.628071 +5.156877 52.627191 +5.152183 52.625724 +5.147196 52.624551 +5.142209 52.623084 +5.135462 52.623084 +5.133408 52.626018 +5.132528 52.629831 +5.127835 52.631591 +5.121088 52.632765 +5.117274 52.635112 +5.113754 52.637458 +5.110820 52.640099 +5.107007 52.642152 +5.102020 52.644206 +5.096739 52.644206 +5.091752 52.642739 +5.086765 52.641272 +5.082952 52.638925 +5.078258 52.637458 +5.073271 52.635992 +5.068284 52.636872 +5.066524 52.640685 +5.061830 52.642152 +5.055963 52.642739 +5.050389 52.641859 +5.045696 52.640685 +5.041002 52.638632 +5.036895 52.636578 +5.033375 52.634232 +5.030734 52.630711 +5.029268 52.626604 +5.028681 52.623964 +5.028388 52.619857 +5.028974 52.616044 +5.030148 52.612817 +5.031615 52.609590 +5.033375 52.606070 +5.034841 52.602843 +5.036015 52.599322 +5.037482 52.596095 +5.039242 52.592575 +5.040415 52.589055 +5.041002 52.585535 +5.041589 52.581721 +5.042175 52.578201 +5.043055 52.574094 +5.045402 52.571454 +5.045696 52.567640 +5.048042 52.564413 +5.051269 52.562066 +5.054496 52.559426 +5.058603 52.557079 +5.062417 52.555026 +5.066524 52.552679 +5.068871 52.549745 +5.069457 52.546225 +5.068284 52.541532 +5.069751 52.538011 +5.071217 52.534784 +5.073564 52.531558 +5.076791 52.529211 +5.078845 52.525984 +5.082365 52.523637 +5.084418 52.520410 +5.087645 52.518063 +5.089112 52.514836 +5.090579 52.511316 +5.092046 52.508089 +5.092632 52.504276 +5.092926 52.500462 +5.091459 52.496355 +5.088232 52.493715 +5.084125 52.491661 +5.080018 52.489608 +5.075618 52.487848 +5.072391 52.484621 +5.073271 52.481981 +5.075911 52.478754 +5.077084 52.475527 +5.077671 52.472007 +5.074738 52.468780 +5.068577 52.468486 +5.061830 52.468486 +5.056256 52.467900 +5.050976 52.467020 +5.047749 52.463793 +5.051269 52.462913 +5.057430 52.463499 +5.063297 52.462033 +5.063590 52.459686 +5.062417 52.455285 +5.062123 52.451178 +5.061830 52.447071 +5.064177 52.443845 +5.066524 52.442084 +5.073271 52.441498 +5.080018 52.440324 +5.085885 52.439738 +5.089699 52.437391 +5.090579 52.433577 +5.087645 52.430937 +5.084418 52.427710 +5.082365 52.424483 +5.081191 52.419790 +5.078551 52.416269 +5.073564 52.415096 +5.066817 52.415096 +5.064764 52.411576 +5.061537 52.408642 +5.056550 52.407175 +5.051856 52.405708 +5.047456 52.403948 +5.045696 52.400135 +5.044815 52.395148 +5.042469 52.391921 +5.039535 52.388987 +5.036895 52.385467 +5.033375 52.383120 +5.031028 52.379307 +5.028681 52.376080 +5.023107 52.375200 +5.016653 52.376373 +5.012546 52.378427 +5.006386 52.378133 +4.999639 52.378427 +4.994652 52.379307 +4.988198 52.380187 +4.981451 52.380187 +4.979104 52.377840 +4.982624 52.376080 +4.988198 52.374613 +4.992305 52.372559 +4.994652 52.370213 +4.989078 52.371973 +4.982918 52.372266 +4.977637 52.371386 +4.972650 52.369919 +4.970597 52.367572 +4.975584 52.365519 +4.981158 52.364052 +4.987025 52.362879 +4.992598 52.361412 +4.996705 52.359065 +5.000519 52.357012 +5.003746 52.354371 +5.008733 52.352611 +5.015187 52.351438 +5.022521 52.350851 +5.028388 52.349384 +5.032201 52.347331 +5.034548 52.344104 +5.036895 52.341171 +5.041589 52.339410 +5.047162 52.340290 +5.052736 52.341171 +5.058896 52.341464 +5.065057 52.342051 +5.072097 52.341171 +5.077084 52.342637 +5.083245 52.342931 +5.089992 52.342051 +5.095566 52.340584 +5.100553 52.338530 +5.104366 52.336477 +5.109060 52.334423 +5.114927 52.332957 +5.121381 52.332077 +5.127248 52.330610 +5.131062 52.328263 +5.135169 52.326209 +5.139276 52.323863 +5.142209 52.321516 +5.146316 52.319169 +5.148663 52.316235 +5.152477 52.313889 +5.156583 52.311542 +5.161277 52.310075 +5.167144 52.308608 +5.172718 52.306848 +5.180345 52.306261 +5.186212 52.305968 +5.192079 52.305968 +5.197653 52.306848 +5.203227 52.308021 +5.208507 52.308902 +5.214961 52.309195 +5.220241 52.310075 +5.225228 52.311248 +5.231389 52.311542 +5.236963 52.312715 +5.243710 52.312422 +5.249577 52.311835 +5.255151 52.310662 +5.260138 52.308608 +5.265711 52.307141 +5.271285 52.305968 +5.277152 52.304501 +5.283606 52.303328 +5.289473 52.301568 +5.294167 52.300101 +5.298860 52.298047 +5.302967 52.295701 +5.305314 52.293060 +5.308248 52.290420 +5.310595 52.287193 +5.312941 52.284553 +5.316168 52.281620 +5.319102 52.279273 +5.324089 52.277219 +5.330543 52.276046 +5.338170 52.275459 +5.343744 52.274286 +5.349024 52.272819 +5.356651 52.271939 +5.364278 52.271352 +5.370145 52.270765 +5.375426 52.269299 +5.379826 52.266952 +5.384520 52.265192 +5.386867 52.263138 +5.390094 52.260498 +5.395081 52.258738 +5.398894 52.256391 +5.403588 52.254631 +5.407695 52.252577 +5.412389 52.250524 +5.417962 52.249057 +5.425003 52.248764 +5.431163 52.249057 +5.436444 52.249937 +5.441431 52.251404 +5.446418 52.252871 +5.451111 52.254044 +5.455218 52.256098 +5.460792 52.256978 +5.465779 52.258445 +5.471353 52.259325 +5.477513 52.259618 +5.483087 52.260498 +5.487781 52.261965 +5.492768 52.263432 +5.498341 52.264312 +5.505089 52.264018 +5.511542 52.264018 +5.517703 52.264312 +5.523863 52.264312 +5.529437 52.265192 +5.533544 52.267245 +5.537357 52.269592 +5.541171 52.272232 +5.544691 52.274579 +5.547918 52.277513 +5.550558 52.280446 +5.553492 52.283380 +5.556132 52.286900 +5.557892 52.290714 +5.560239 52.294527 +5.562879 52.297754 +5.564346 52.301568 +5.566986 52.305381 +5.568746 52.309195 +5.570213 52.313302 +5.572853 52.316529 +5.575787 52.319756 +5.578134 52.322983 +5.581947 52.325623 +5.585468 52.327970 +5.589868 52.330023 +5.593975 52.331783 +5.598375 52.333543 +5.603069 52.335010 +5.607469 52.337064 +5.610989 52.339410 +5.614803 52.342051 +5.617150 52.345277 +5.618910 52.349091 +5.621844 52.352318 +5.625657 52.354665 +5.630057 52.356718 +5.635338 52.357598 +5.640325 52.358772 +5.644432 52.360532 +5.649419 52.361999 +5.653526 52.363759 +5.657926 52.365812 +5.662326 52.367866 +5.666727 52.369626 +5.670834 52.371679 +5.675821 52.373146 +5.679928 52.374613 +5.684035 52.376666 +5.689022 52.378133 +5.694302 52.379307 +5.698996 52.380773 +5.703396 52.382827 +5.708090 52.384294 +5.713077 52.385467 +5.718064 52.386934 +5.722757 52.388401 +5.728331 52.389281 +5.733318 52.390454 +5.738305 52.391921 +5.742999 52.393388 +5.747399 52.395148 +5.752093 52.396615 +5.756787 52.398375 +5.760894 52.400135 +5.765881 52.401602 +5.769988 52.403655 +5.774388 52.405415 +5.778495 52.407469 +5.782308 52.409815 +5.785829 52.412162 +5.789642 52.414802 +5.793456 52.417149 +5.797563 52.418909 +5.801083 52.421256 +5.805483 52.423310 +5.809297 52.425950 +5.813404 52.427417 +5.816338 52.430644 +5.820151 52.432990 +5.823378 52.435924 +5.826312 52.438858 +5.829538 52.441791 +5.831592 52.445311 +5.834232 52.448538 +5.836872 52.450885 +5.840099 52.453525 +5.843619 52.456165 +5.846553 52.459099 +5.850367 52.461446 +5.852713 52.464966 +5.854767 52.468780 +5.856527 52.472887 +5.858874 52.476407 +5.861514 52.479634 +5.862394 52.484327 +5.864154 52.488434 +5.866208 52.492248 +5.868555 52.495768 +5.870901 52.499289 +5.873835 52.502222 +5.876475 52.505449 +5.878235 52.509849 +5.877062 52.513076 +5.875595 52.516303 +5.874128 52.519823 +5.872662 52.523050 +5.872368 52.526864 +5.871781 52.530677 +5.871195 52.534491 +5.870608 52.538011 +5.870021 52.541825 +5.868555 52.545345 +5.867088 52.548572 +5.864154 52.551506 +5.861221 52.553852 +5.857700 52.556493 +5.853887 52.558546 +5.851540 52.561773 +5.850367 52.565000 +5.848020 52.567933 +5.843033 52.569987 +5.838339 52.571747 +5.831592 52.572920 +5.826898 52.574681 +5.821911 52.576734 +5.816338 52.578201 +5.819858 52.579081 +5.826312 52.578788 +5.833352 52.578788 +5.840099 52.578494 +5.846846 52.578201 +5.853007 52.578494 +5.859167 52.578788 +5.871488 52.584655 +5.860634 52.581134 +5.854767 52.581721 +5.850660 52.583775 +5.849193 52.587588 +5.851247 52.591402 +5.852127 52.595802 +5.853300 52.600202 +5.855354 52.604309 +5.855647 52.608710 +5.850073 52.607830 +5.843913 52.607243 +5.836872 52.607536 +5.830712 52.607243 +5.824258 52.607536 +5.817218 52.607536 +5.810470 52.607830 +5.803723 52.608123 +5.797563 52.607830 +5.790522 52.607830 +5.784362 52.607536 +5.778201 52.607243 +5.771748 52.607536 +5.765294 52.606950 +5.759133 52.606656 +5.752386 52.606950 +5.745639 52.607243 +5.738892 52.607243 +5.731851 52.607536 +5.725398 52.607830 +5.718944 52.607243 +5.712197 52.607536 +5.705156 52.607830 +5.699289 52.607536 +5.692542 52.607536 +5.685501 52.607830 +5.679341 52.607536 +5.672594 52.607536 +5.665260 52.608416 +5.662033 52.610763 +5.658806 52.613697 +5.657633 52.614870 +5.656753 52.616924 +5.654113 52.619270 +5.652059 52.622204 +5.647952 52.624551 +5.645019 52.626898 +5.640912 52.629245 +5.636805 52.631298 +5.633871 52.633938 +5.630644 52.636578 +5.628297 52.639805 +5.625364 52.642152 +5.621257 52.644499 +5.618030 52.646846 +5.614216 52.649193 +5.610109 52.651246 +5.606002 52.653593 +5.602189 52.655940 +5.599842 52.658873 +5.599255 52.662687 +5.599549 52.667087 +5.600135 52.670901 +5.600135 52.675008 +5.599842 52.678821 +5.600135 52.682928 +5.599549 52.686742 +5.599842 52.690849 +5.600135 52.694956 +5.599549 52.698476 +5.598962 52.702583 +5.599255 52.706690 +5.598669 52.710210 +5.598962 52.714317 +5.599255 52.718718 +5.598669 52.722531 +5.598962 52.726345 +5.598375 52.730158 +5.596908 52.733679 +5.596322 52.737492 +5.595735 52.741013 +5.596028 52.745413 +5.596322 52.749520 +5.597788 52.753920 +5.599549 52.757734 +5.602482 52.760961 +5.605122 52.764188 +5.608056 52.767121 +5.610989 52.770348 +5.613336 52.773575 +5.616270 52.776802 +5.619497 52.779442 +5.623310 52.782376 +5.626244 52.785309 +5.629471 52.788243 +5.632404 52.791176 +5.635631 52.794110 +5.638565 52.797337 +5.641792 52.799977 +5.644725 52.802910 +5.647659 52.805844 +5.650886 52.808777 +5.653819 52.812004 +5.656459 52.815231 +5.659393 52.818458 +5.662620 52.821098 +5.665553 52.824032 +5.669074 52.826672 +5.672887 52.829019 +5.677288 52.830779 +5.683448 52.831072 +5.689022 52.832246 +5.695182 52.832539 +5.701343 52.832832 +5.708383 52.832539 +5.714544 52.832832 +5.719531 52.834299 +5.718944 52.838113 +5.715130 52.840166 +5.707503 52.841046 +5.699876 52.841633 +5.693129 52.841926 +5.686968 52.841633 +5.679928 52.841633 +5.673767 52.841340 +5.668194 52.842807 +5.668194 52.846913 +5.666140 52.850140 +5.662326 52.852194 +5.657339 52.854247 +5.651472 52.855421 +5.646192 52.855421 +5.641205 52.854247 +5.636511 52.852781 +5.631818 52.850727 +5.626244 52.850140 +5.620963 52.849260 +5.614510 52.848967 +5.607763 52.849260 +5.601602 52.848674 +5.595148 52.848380 +5.592215 52.845447 +5.589281 52.842513 +5.586641 52.838993 +5.583707 52.836059 +5.579307 52.834299 +5.574907 52.832246 +5.569333 52.831366 +5.563466 52.831072 +5.556719 52.832246 +5.550852 52.833713 +5.546158 52.835473 +5.540291 52.836939 +5.534717 52.838406 +5.528850 52.839580 +5.523863 52.841633 +5.519170 52.843687 +5.513302 52.844860 +5.507435 52.846327 +5.501862 52.847794 +5.495995 52.849554 +5.490421 52.850727 +5.483967 52.851901 +5.477220 52.853367 +5.470473 52.853661 +5.464312 52.853367 +5.458739 52.852487 +5.452578 52.851901 +5.446124 52.851314 +5.439964 52.850727 +5.433510 52.850434 +5.426176 52.851314 +5.418842 52.851901 +5.412975 52.853367 +5.407988 52.855421 +5.403295 52.857181 +5.398308 52.858941 +5.394494 52.860995 +5.390387 52.863341 +5.386280 52.865688 +5.382173 52.867742 +5.378359 52.870088 +5.374252 52.872142 +5.371906 52.875369 +5.368679 52.877716 +5.367212 52.881236 +5.364865 52.884170 +5.363692 52.887396 +5.365745 52.891210 +5.368972 52.893850 +5.371906 52.897077 +5.376306 52.898837 +5.381293 52.900304 +5.385693 52.902357 +5.389214 52.904704 +5.393614 52.906464 +5.398601 52.907638 +5.404175 52.909105 +5.409162 52.910571 +5.412682 52.912918 +5.414149 52.917612 +5.413269 52.920252 +5.410922 52.923479 +5.408575 52.926413 +5.406521 52.929346 +5.405055 52.932866 +5.403295 52.936093 +5.403588 52.940200 +5.407401 52.942840 +5.412389 52.944307 +5.416789 52.945774 +5.419136 52.949588 +5.419429 52.953694 +5.417962 52.956921 +5.418842 52.960442 +5.420602 52.964549 +5.420016 52.968362 +5.418549 52.971589 +5.417082 52.975109 +5.415909 52.978336 +5.414442 52.981563 +5.412682 52.985083 +5.410628 52.988604 +5.410042 52.992124 +5.410335 52.996524 +5.410628 53.000631 +5.411802 53.005032 +5.412975 53.009432 +5.412389 53.013245 +5.411802 53.017059 +5.412095 53.021166 +5.411802 53.024980 +5.411802 53.029087 +5.410335 53.032607 +5.407988 53.035247 +5.402121 53.035834 +5.397134 53.034367 +5.393027 53.036714 +5.390974 53.039647 +5.389507 53.043168 +5.387747 53.046394 +5.385693 53.049328 +5.383346 53.052555 +5.381880 53.055782 +5.380413 53.059302 +5.379826 53.063116 +5.378359 53.066343 +5.376893 53.069863 +5.373666 53.072210 +5.371319 53.075143 +5.369265 53.078370 +5.366625 53.081010 +5.365158 53.084824 +5.365452 53.085411 +nan nan +5.848313 52.908225 +5.848900 52.904704 +5.850367 52.901184 +5.852713 52.898251 +5.854180 52.894730 +5.853594 52.890917 +5.851247 52.887103 +5.847433 52.884756 +5.843326 52.882996 +5.838926 52.881236 +5.833939 52.879769 +5.827778 52.879476 +5.821618 52.879182 +5.815164 52.878596 +5.809297 52.878302 +5.802257 52.878596 +5.796096 52.878302 +5.789642 52.878009 +5.783482 52.877422 +5.778201 52.876542 +5.772041 52.876249 +5.765587 52.876249 +5.758840 52.877129 +5.755026 52.879476 +5.754440 52.882996 +5.757373 52.886223 +5.759720 52.888570 +5.763240 52.891210 +5.768227 52.892383 +5.772921 52.894437 +5.775855 52.897077 +5.772628 52.900011 +5.767054 52.901477 +5.760600 52.901184 +5.762067 52.903238 +5.766467 52.904998 +5.770574 52.907051 +5.773801 52.909985 +5.778201 52.912038 +5.782308 52.912918 +5.787295 52.914092 +5.793456 52.914385 +5.800203 52.914385 +5.806950 52.914092 +5.813991 52.913798 +5.819858 52.914385 +5.826312 52.914678 +5.833059 52.914385 +5.840686 52.913505 +5.846260 52.912332 +5.849487 52.909691 +5.848313 52.908225 +nan nan +5.711903 52.890917 +5.711610 52.886810 +5.711317 52.882703 +5.710143 52.878009 +5.710730 52.874489 +5.708970 52.870382 +5.705156 52.868035 +5.700756 52.865982 +5.696649 52.864221 +5.691075 52.863341 +5.690195 52.865982 +5.692835 52.869795 +5.695769 52.872435 +5.698409 52.876249 +5.699876 52.880063 +5.700169 52.884170 +5.701343 52.887690 +5.703689 52.891503 +5.706623 52.894144 +5.710730 52.895317 +5.713077 52.892090 +5.711903 52.890917 +nan nan +5.709850 52.961322 +5.710437 52.958682 +5.709557 52.953988 +5.706330 52.951054 +5.703396 52.948121 +5.700756 52.944601 +5.700463 52.940494 +5.702809 52.937560 +5.706916 52.935213 +5.709263 52.932280 +5.705156 52.929933 +5.700169 52.930813 +5.695182 52.932866 +5.691369 52.934920 +5.687262 52.937267 +5.685795 52.940494 +5.687848 52.944307 +5.689315 52.948707 +5.689902 52.952521 +5.688435 52.956041 +5.689022 52.960148 +5.691075 52.963669 +5.695476 52.965429 +5.701636 52.965135 +5.705450 52.962788 +5.709850 52.961322 +nan nan +5.739772 52.975696 +5.743879 52.974229 +5.750039 52.973643 +5.755613 52.974523 +5.761187 52.975696 +5.765000 52.973349 +5.764120 52.969829 +5.760600 52.967189 +5.756200 52.965135 +5.751213 52.963962 +5.745639 52.963082 +5.739479 52.962788 +5.732438 52.963082 +5.726571 52.964549 +5.723638 52.966895 +5.723931 52.971002 +5.726864 52.974229 +5.730091 52.976869 +5.734492 52.978923 +5.739772 52.975696 +nan nan +5.806070 53.044048 +5.809884 53.041994 +5.811644 53.038474 +5.810177 53.034074 +5.811644 53.030553 +5.809884 53.026740 +5.805483 53.024686 +5.800203 53.024686 +5.795216 53.026740 +5.794629 53.030553 +5.796683 53.034367 +5.795216 53.037887 +5.794629 53.041701 +5.797856 53.044341 +5.806070 53.044048 +nan nan +5.775561 53.044634 +5.776148 53.041114 +5.775855 53.037007 +5.777321 53.033487 +5.779375 53.030553 +5.779962 53.026740 +5.778788 53.022339 +5.777615 53.017646 +5.775855 53.013832 +5.772921 53.010899 +5.768227 53.008845 +5.761480 53.009138 +5.757373 53.011485 +5.757373 53.014712 +5.760600 53.017646 +5.762947 53.021166 +5.762067 53.022926 +5.757667 53.021166 +5.752680 53.019699 +5.746813 53.019406 +5.743292 53.022046 +5.742706 53.025860 +5.742999 53.029673 +5.742412 53.033487 +5.743586 53.037300 +5.746813 53.039941 +5.751800 53.041407 +5.755907 53.043461 +5.759720 53.045808 +5.762654 53.049035 +5.767641 53.050208 +5.773508 53.049328 +5.774975 53.046101 +5.775561 53.044634 +nan nan +5.944240 53.134401 +5.944827 53.130587 +5.945413 53.127067 +5.947467 53.123840 +5.951281 53.121787 +5.954801 53.119146 +5.956854 53.116213 +5.956561 53.111813 +5.953334 53.108879 +5.948347 53.107706 +5.942773 53.106825 +5.936613 53.106532 +5.930159 53.106239 +5.925465 53.107999 +5.921358 53.110346 +5.918425 53.112693 +5.916958 53.116506 +5.917251 53.120320 +5.917545 53.124427 +5.914318 53.127360 +5.910211 53.129414 +5.904637 53.130881 +5.904050 53.134694 +5.909624 53.135574 +5.914611 53.134401 +5.920478 53.132934 +5.926052 53.132934 +5.928399 53.136454 +5.931626 53.139388 +5.935146 53.141735 +5.941306 53.141148 +5.944240 53.134401 +nan nan +5.666727 52.928759 +5.666433 52.924652 +5.665260 52.920252 +5.662913 52.917025 +5.659686 52.913798 +5.656166 52.911451 +5.651766 52.909398 +5.647365 52.907638 +5.642085 52.907051 +5.636805 52.905584 +5.632404 52.903531 +5.629471 52.900597 +5.625364 52.898544 +5.618323 52.898837 +5.613630 52.900891 +5.609523 52.902944 +5.606296 52.905584 +5.605122 52.908811 +5.605416 52.912918 +5.606002 52.916732 +5.609229 52.919665 +5.611870 52.921719 +5.615976 52.924066 +5.619497 52.926413 +5.623017 52.928759 +5.627417 52.930813 +5.632404 52.932280 +5.637098 52.933746 +5.640618 52.934040 +5.646192 52.934920 +5.651766 52.935800 +5.658513 52.935800 +5.664380 52.934040 +5.666727 52.931400 +5.666727 52.928759 +nan nan +5.622430 52.959562 +5.618323 52.957508 +5.614803 52.955161 +5.611283 52.952228 +5.608349 52.949294 +5.604829 52.946947 +5.599255 52.945774 +5.592215 52.946067 +5.584588 52.946947 +5.579894 52.945481 +5.574907 52.944307 +5.571093 52.941667 +5.567573 52.939027 +5.563466 52.937267 +5.559359 52.934920 +5.555252 52.933160 +5.550265 52.931693 +5.545278 52.930226 +5.540291 52.928759 +5.535304 52.927586 +5.531784 52.924946 +5.527090 52.923186 +5.523570 52.920839 +5.519463 52.918785 +5.514476 52.917612 +5.509489 52.916145 +5.505969 52.913505 +5.507142 52.910278 +5.506849 52.906171 +5.503915 52.902944 +5.501275 52.899717 +5.499808 52.895904 +5.494821 52.894437 +5.490421 52.895610 +5.487194 52.898251 +5.482207 52.900011 +5.478393 52.902357 +5.481914 52.904704 +5.485434 52.907344 +5.486901 52.911745 +5.487194 52.915852 +5.488367 52.920252 +5.486901 52.923479 +5.485434 52.926999 +5.488954 52.928466 +5.492474 52.927879 +5.497461 52.925826 +5.503035 52.924359 +5.508022 52.925826 +5.511836 52.928466 +5.514769 52.931106 +5.517996 52.934040 +5.521810 52.936680 +5.524743 52.939320 +5.528264 52.941960 +5.532077 52.944307 +5.537064 52.945774 +5.541464 52.947827 +5.545571 52.949588 +5.550558 52.951054 +5.554372 52.953401 +5.556719 52.956921 +5.560532 52.959562 +5.567280 52.959268 +5.571387 52.956921 +5.577547 52.957215 +5.581067 52.959855 +5.586054 52.961028 +5.591041 52.962495 +5.595442 52.964549 +5.602189 52.964255 +5.608643 52.964549 +5.613630 52.965722 +5.618617 52.967189 +5.623897 52.967189 +5.626244 52.964255 +5.624484 52.960148 +5.622430 52.959562 +nan nan +5.542638 52.965135 +5.538238 52.963375 +5.533544 52.961908 +5.527090 52.961322 +5.520636 52.962495 +5.516529 52.960442 +5.512422 52.960442 +5.510369 52.963669 +5.509782 52.967189 +5.513596 52.968362 +5.519170 52.969242 +5.524157 52.970416 +5.529730 52.971296 +5.535891 52.970709 +5.542638 52.969829 +5.545571 52.967189 +5.542638 52.965135 +nan nan +5.528557 52.990657 +5.529144 52.986550 +5.535011 52.985377 +5.541758 52.984203 +5.545571 52.981857 +5.548505 52.979510 +5.544398 52.977456 +5.538238 52.978043 +5.533544 52.979803 +5.529437 52.982150 +5.524743 52.983910 +5.518583 52.984497 +5.514182 52.982443 +5.511249 52.979803 +5.508022 52.976576 +5.503915 52.974816 +5.505675 52.978923 +5.508022 52.982150 +5.509489 52.984497 +5.511249 52.988310 +5.512129 52.993004 +5.516236 52.995351 +5.520343 52.997111 +5.523570 52.997698 +5.528557 52.999164 +5.534717 52.999751 +5.541171 53.000044 +5.547918 52.999751 +5.544691 52.999751 +5.539118 52.998578 +5.534131 52.997111 +5.531197 52.994471 +5.527970 52.991244 +5.532077 52.989190 +5.536184 52.986844 +5.528557 52.990657 +nan nan +5.453751 52.899131 +5.459619 52.898544 +5.465779 52.898837 +5.467539 52.895610 +5.464899 52.892090 +5.459912 52.890623 +5.456392 52.888276 +5.452871 52.885930 +5.448764 52.883289 +5.445244 52.880943 +5.443191 52.883876 +5.444071 52.888276 +5.444364 52.892383 +5.447004 52.896197 +5.453751 52.899131 +nan nan +5.965948 52.708450 +5.968002 52.705223 +5.970349 52.702290 +5.972695 52.699063 +5.975042 52.696423 +5.973869 52.692902 +5.968882 52.691436 +5.961548 52.692022 +5.959201 52.694956 +5.957734 52.698476 +5.957441 52.702290 +5.957734 52.706397 +5.958028 52.710504 +5.960081 52.714317 +5.964775 52.712557 +5.967708 52.709917 +5.965948 52.708450 +nan nan +-2.948505 54.405505 +-2.945865 54.402572 +-2.942638 54.399932 +-2.939704 54.396998 +-2.935597 54.394945 +-2.932664 54.392011 +-2.929437 54.389371 +-2.925037 54.387317 +-2.920636 54.385264 +-2.918289 54.382330 +-2.918289 54.377930 +-2.921223 54.374997 +-2.918583 54.372356 +-2.917703 54.368249 +-2.919463 54.364436 +-2.921810 54.360916 +-2.923863 54.357102 +-2.925623 54.353288 +-2.924450 54.349475 +-2.925623 54.345074 +-2.926503 54.340674 +-2.929437 54.337447 +-2.932370 54.334514 +-2.934424 54.330700 +-2.935304 54.327180 +-2.934424 54.323366 +-2.936184 54.319553 +-2.939118 54.316326 +-2.942345 54.313392 +-2.944985 54.310165 +-2.944985 54.306058 +-2.944398 54.302538 +-2.943225 54.298724 +-2.942638 54.294911 +-2.940878 54.291684 +-2.939998 54.287870 +-2.938531 54.286110 +-2.942931 54.288164 +-2.945865 54.291097 +-2.948212 54.294031 +-2.949972 54.297258 +-2.951732 54.300485 +-2.952612 54.304298 +-2.953199 54.308112 +-2.952612 54.312805 +-2.950852 54.316619 +-2.949092 54.320726 +-2.947918 54.324833 +-2.946158 54.328940 +-2.943811 54.332460 +-2.942638 54.336274 +-2.941464 54.340967 +-2.939704 54.345074 +-2.938238 54.349181 +-2.936477 54.352995 +-2.935891 54.357689 +-2.934131 54.361796 +-2.932957 54.366196 +-2.935011 54.369423 +-2.936771 54.372650 +-2.939118 54.375877 +-2.940878 54.379103 +-2.943518 54.382330 +-2.946158 54.384971 +-2.949678 54.387611 +-2.953199 54.389958 +-2.955545 54.393184 +-2.956719 54.396705 +-2.958772 54.399638 +-2.963466 54.401985 +-2.967866 54.403745 +-2.969333 54.407266 +-2.968746 54.411959 +-2.964053 54.414013 +-2.958479 54.413133 +-2.955839 54.411959 +-2.952612 54.409319 +-2.948505 54.405505 +nan nan +-3.140652 54.582398 +-3.141532 54.577998 +-3.143879 54.574478 +-3.146813 54.571251 +-3.149746 54.568317 +-3.151506 54.564503 +-3.155026 54.561863 +-3.160014 54.560396 +-3.165587 54.560396 +-3.168814 54.562743 +-3.170868 54.565970 +-3.172628 54.569490 +-3.171748 54.574184 +-3.169401 54.577411 +-3.167347 54.581225 +-3.164707 54.584745 +-3.163240 54.588559 +-3.161774 54.592665 +-3.158547 54.595892 +-3.156200 54.597653 +-3.154146 54.594426 +-3.151800 54.591785 +-3.147106 54.589439 +-3.144466 54.586798 +-3.140652 54.582398 +nan nan +-4.000000 56.578571 +-3.999007 56.578381 +-4.000000 56.577290 +nan nan +-3.588898 57.625950 +-3.594765 57.626537 +-3.601512 57.627710 +-3.610019 57.628297 +-3.615300 57.626830 +-3.620873 57.625363 +-3.626154 57.623896 +-3.632901 57.625070 +-3.637888 57.627123 +-3.642288 57.629470 +-3.645222 57.632110 +-3.646102 57.635631 +-3.640821 57.636804 +-3.634368 57.637977 +-3.627034 57.637977 +-3.620580 57.639151 +-3.614419 57.640324 +-3.610606 57.642671 +-3.610606 57.647071 +-3.613246 57.649712 +-3.617353 57.652352 +-3.615886 57.654405 +-3.611193 57.653232 +-3.609139 57.650005 +-3.605325 57.647365 +-3.598578 57.646191 +-3.593885 57.644138 +-3.589191 57.642084 +-3.584497 57.639738 +-3.580684 57.637097 +-3.577750 57.634457 +-3.575697 57.631230 +-3.576577 57.627417 +-3.583617 57.626830 +-3.588898 57.625950 +nan nan +-2.482365 56.691029 +-2.486472 56.692790 +-2.494686 56.693376 +-2.503193 56.693963 +-2.508473 56.695430 +-2.511114 56.698657 +-2.511994 56.702177 +-2.510234 56.706284 +-2.507887 56.710097 +-2.503193 56.711858 +-2.498499 56.713911 +-2.492339 56.714791 +-2.486472 56.715965 +-2.477965 56.715378 +-2.475031 56.713618 +-2.475911 56.713618 +-2.471217 56.711564 +-2.469457 56.708337 +-2.469457 56.704230 +-2.471804 56.700417 +-2.468284 56.698070 +-2.461243 56.698657 +-2.455376 56.699537 +-2.449509 56.700417 +-2.445989 56.700417 +-2.451269 56.698657 +-2.457430 56.697777 +-2.462710 56.696310 +-2.467404 56.694256 +-2.472684 56.692790 +-2.482365 56.691029 +nan nan +8.229471 56.178539 +8.233871 56.175606 +8.237978 56.171499 +8.245019 56.168272 +8.252059 56.165045 +8.258806 56.161818 +8.262033 56.157124 +8.258513 56.151551 +8.253232 56.148030 +8.250006 56.142457 +8.246779 56.137176 +8.241205 56.133363 +8.234751 56.130136 +8.231524 56.124855 +8.222724 56.125736 +8.217150 56.129842 +8.211576 56.133363 +8.203362 56.135710 +8.191041 56.136296 +8.184294 56.139523 +8.178720 56.143043 +8.173147 56.146564 +8.166106 56.149791 +8.161706 56.154191 +8.168453 56.157124 +8.177254 56.158885 +8.186054 56.160645 +8.194855 56.162111 +8.201602 56.165338 +8.205709 56.170032 +8.208056 56.176192 +8.213630 56.180006 +8.222137 56.180299 +8.229471 56.178539 +nan nan +11.568137 63.830102 +11.571657 63.835969 +11.576351 63.841249 +11.582218 63.845943 +11.588672 63.850637 +11.593366 63.855624 +11.599819 63.860317 +11.604513 63.865598 +11.609207 63.870878 +11.605686 63.875865 +11.599233 63.879679 +11.592192 63.883492 +11.587498 63.888186 +11.585738 63.893466 +11.584565 63.899040 +11.581045 63.904321 +11.579871 63.909894 +11.578698 63.915468 +11.582218 63.921628 +11.591019 63.919868 +11.597472 63.915761 +11.602753 63.911361 +11.609207 63.907547 +11.612140 63.902560 +11.615660 63.897573 +11.618594 63.892586 +11.620354 63.886719 +11.623288 63.881732 +11.626808 63.876745 +11.629741 63.871758 +11.632675 63.866771 +11.634435 63.860904 +11.635609 63.855330 +11.637369 63.849757 +11.636782 63.843303 +11.635022 63.836556 +11.632675 63.829809 +11.626808 63.825408 +11.615074 63.823941 +11.600993 63.823941 +11.588085 63.823355 +11.572831 63.824235 +11.560510 63.826288 +11.568137 63.830102 +nan nan +11.850051 63.548775 +11.848291 63.553175 +11.841250 63.556989 +11.833036 63.560216 +11.820715 63.561096 +11.808981 63.563149 +11.804287 63.567550 +11.799007 63.572243 +11.790793 63.575177 +11.780819 63.578110 +11.772605 63.581337 +11.766151 63.585151 +11.762631 63.590138 +11.770258 63.593952 +11.783166 63.594832 +11.794900 63.593952 +11.804287 63.591898 +11.815435 63.589845 +11.831276 63.588965 +11.845357 63.588671 +11.857091 63.586618 +11.867065 63.583978 +11.878799 63.581631 +11.890534 63.579577 +11.901094 63.576937 +11.911068 63.574297 +11.921042 63.571363 +11.932777 63.569310 +11.948031 63.568430 +11.958005 63.565790 +11.958592 63.560803 +11.953898 63.556989 +11.945097 63.553762 +11.933950 63.552882 +11.921629 63.553469 +11.907548 63.552882 +11.897574 63.550829 +11.888773 63.547895 +11.879973 63.544668 +11.869999 63.542908 +11.857678 63.543201 +11.851224 63.547308 +11.850051 63.548775 +nan nan +12.000000 63.051974 +11.997021 63.054766 +11.992328 63.059167 +11.987047 63.063567 +11.980593 63.067380 +11.972379 63.070901 +11.962405 63.073541 +11.951258 63.075888 +11.940697 63.078235 +11.934830 63.082342 +11.928376 63.086155 +11.923683 63.090849 +11.918989 63.095836 +11.915469 63.100823 +11.916055 63.107277 +11.916642 63.113437 +11.921336 63.118717 +11.927203 63.123998 +11.934830 63.127518 +11.945978 63.128985 +11.957712 63.126638 +11.964165 63.122824 +11.968859 63.118424 +11.975313 63.114317 +11.985287 63.111677 +11.998781 63.111677 +12.000000 63.111963 +nan nan +11.073542 63.276542 +11.079409 63.273609 +11.080582 63.267742 +11.078822 63.262461 +11.067674 63.260701 +11.059461 63.264221 +11.051247 63.267448 +11.038926 63.266568 +11.031299 63.263048 +11.026605 63.257767 +11.030125 63.252780 +11.033645 63.247500 +11.030125 63.241633 +11.023085 63.237819 +11.015457 63.234006 +11.009590 63.229312 +11.002550 63.225792 +10.991402 63.224032 +10.980255 63.222858 +10.967934 63.222272 +10.956787 63.220511 +10.942705 63.220805 +10.934492 63.224032 +10.924518 63.226672 +10.914543 63.229312 +10.905743 63.232539 +10.892249 63.234006 +10.878754 63.235473 +10.863500 63.236353 +10.851766 63.238406 +10.841792 63.240753 +10.831818 63.243686 +10.821843 63.246327 +10.813043 63.249554 +10.803069 63.252194 +10.793095 63.254834 +10.783121 63.257474 +10.773147 63.260114 +10.761412 63.261874 +10.749092 63.264221 +10.736184 63.265688 +10.720930 63.266275 +10.705675 63.267155 +10.693941 63.269208 +10.681620 63.270968 +10.669886 63.273315 +10.658152 63.275369 +10.643484 63.276249 +10.629403 63.276249 +10.617082 63.275662 +10.605348 63.273902 +10.594200 63.272435 +10.583053 63.270968 +10.571906 63.269502 +10.560758 63.268035 +10.549611 63.266568 +10.539637 63.264221 +10.529663 63.261874 +10.518515 63.260701 +10.507954 63.261581 +10.509714 63.267155 +10.515582 63.271848 +10.523795 63.274782 +10.534943 63.276249 +10.546090 63.277716 +10.558998 63.278596 +10.571319 63.279182 +10.582466 63.280942 +10.595374 63.281529 +10.606521 63.282996 +10.618842 63.283583 +10.631750 63.284463 +10.645244 63.284169 +10.660499 63.283583 +10.674580 63.283289 +10.688074 63.283289 +10.702155 63.283289 +10.717409 63.282409 +10.731490 63.282409 +10.744985 63.282409 +10.759066 63.282116 +10.770800 63.280356 +10.786054 63.279476 +10.797788 63.277422 +10.809523 63.275369 +10.821257 63.273315 +10.832991 63.271262 +10.846485 63.270088 +10.859980 63.268328 +10.875234 63.267448 +10.890488 63.266568 +10.903983 63.265395 +10.919237 63.264515 +10.930971 63.262461 +10.944466 63.260701 +10.952680 63.262461 +10.959720 63.266275 +10.967347 63.270088 +10.974388 63.273902 +10.983188 63.276836 +10.991402 63.280062 +11.002550 63.281529 +11.013697 63.282703 +11.026018 63.283289 +11.038339 63.282703 +11.052420 63.282703 +11.064154 63.280649 +11.073542 63.276542 +nan nan +11.748550 62.687193 +11.757351 62.685140 +11.770258 62.683673 +11.783753 62.682206 +11.796660 62.680446 +11.809568 62.679273 +11.823062 62.677512 +11.830689 62.674579 +11.837143 62.670472 +11.838903 62.664605 +11.830689 62.661965 +11.818368 62.662551 +11.806634 62.664605 +11.793727 62.666072 +11.780819 62.667832 +11.769085 62.670472 +11.759697 62.673406 +11.747963 62.675166 +11.735056 62.676926 +11.721561 62.678393 +11.708067 62.678686 +11.694573 62.678979 +11.685772 62.675752 +11.682839 62.669592 +11.682839 62.664898 +11.684012 62.659031 +11.689292 62.654631 +11.693986 62.650231 +11.699853 62.646417 +11.705134 62.642017 +11.712761 62.638496 +11.724495 62.636736 +11.733882 62.633803 +11.742096 62.630576 +11.752070 62.627642 +11.762044 62.625295 +11.773192 62.622949 +11.788446 62.622362 +11.799594 62.621482 +11.813675 62.621188 +11.825409 62.621775 +11.835970 62.620602 +11.837143 62.614735 +11.831276 62.610334 +11.823062 62.607107 +11.809568 62.607401 +11.796073 62.609161 +11.783166 62.610628 +11.772018 62.612681 +11.760284 62.614735 +11.750310 62.617375 +11.740923 62.620308 +11.730949 62.622655 +11.720975 62.625589 +11.711001 62.628229 +11.698093 62.629696 +11.686946 62.632043 +11.675211 62.634096 +11.665237 62.636736 +11.660544 62.641137 +11.655850 62.645830 +11.651156 62.650231 +11.646463 62.654631 +11.641769 62.659031 +11.638835 62.664312 +11.634142 62.668712 +11.627688 62.672525 +11.619474 62.675752 +11.611260 62.679273 +11.601286 62.681619 +11.588379 62.683380 +11.574298 62.683380 +11.563737 62.681913 +11.552589 62.680446 +11.543202 62.678393 +11.533228 62.676339 +11.525014 62.673406 +11.513866 62.671939 +11.500959 62.673406 +11.492158 62.676632 +11.484531 62.679859 +11.476317 62.683086 +11.469863 62.686900 +11.466343 62.692180 +11.473970 62.695700 +11.487465 62.695700 +11.499199 62.693647 +11.510346 62.691594 +11.522667 62.692180 +11.533815 62.693647 +11.544962 62.695114 +11.554349 62.697167 +11.566670 62.697754 +11.580165 62.697754 +11.595419 62.696581 +11.606566 62.694820 +11.620061 62.693060 +11.631795 62.692474 +11.645289 62.692180 +11.658784 62.692180 +11.674038 62.691007 +11.688706 62.690420 +11.702200 62.690127 +11.715694 62.688660 +11.727428 62.687780 +11.742096 62.686900 +11.748550 62.687193 +nan nan +11.949791 62.407920 +11.956245 62.404106 +11.962112 62.400293 +11.966806 62.395892 +11.969739 62.390612 +11.969739 62.384451 +11.969153 62.377998 +11.966806 62.371251 +11.965046 62.364503 +11.966219 62.358930 +11.969153 62.353943 +11.968566 62.347489 +11.968566 62.341328 +11.963872 62.336048 +11.960352 62.329888 +11.956832 62.324020 +11.953898 62.318153 +11.950378 62.311993 +11.946858 62.305832 +11.945097 62.298792 +11.941577 62.292925 +11.939817 62.286178 +11.936297 62.280017 +11.933363 62.274150 +11.931016 62.267110 +11.932190 62.261536 +11.933950 62.255962 +11.935123 62.250389 +11.936297 62.244815 +11.935710 62.238361 +11.936884 62.232787 +11.938644 62.227214 +11.938057 62.220760 +11.939230 62.215186 +11.940404 62.209612 +11.941577 62.203745 +11.941577 62.197878 +11.940990 62.191424 +11.940404 62.185264 +11.938644 62.178223 +11.936884 62.171770 +11.929843 62.167663 +11.922803 62.164142 +11.912828 62.162089 +11.902268 62.160622 +11.892880 62.158275 +11.887013 62.153875 +11.883493 62.148008 +11.881733 62.140967 +11.881146 62.135100 +11.880559 62.128646 +11.878799 62.121899 +11.878213 62.115445 +11.877626 62.109578 +11.875866 62.102538 +11.875279 62.096377 +11.875279 62.089924 +11.874692 62.083763 +11.874106 62.077603 +11.872346 62.070856 +11.872346 62.064402 +11.874692 62.059415 +11.884666 62.056775 +11.894054 62.054134 +11.898747 62.049441 +11.899921 62.043867 +11.898161 62.037120 +11.895814 62.030373 +11.896987 62.024799 +11.899921 62.019519 +11.901681 62.013945 +11.901094 62.007784 +11.898747 62.000744 +11.896987 61.994290 +11.893467 61.988130 +11.898161 61.983729 +11.906375 61.980209 +11.912242 61.976396 +11.914589 61.971995 +11.915175 61.966421 +11.915175 61.960261 +11.914589 61.953807 +11.915762 61.948233 +11.919282 61.943246 +11.923389 61.938846 +11.926323 61.933566 +11.931016 61.929165 +11.930430 61.923005 +11.924563 61.918605 +11.912828 61.917725 +11.899921 61.919485 +11.893467 61.923298 +11.887600 61.927699 +11.884666 61.932979 +11.883493 61.938553 +11.880559 61.943540 +11.879386 61.949114 +11.877626 61.954981 +11.877039 61.960554 +11.875279 61.966128 +11.874106 61.971995 +11.872932 61.977569 +11.871759 61.983143 +11.870585 61.989010 +11.870585 61.994877 +11.869412 62.000744 +11.866478 62.005731 +11.865305 62.011305 +11.861785 62.016292 +11.859438 62.021572 +11.856504 62.026559 +11.853571 62.031546 +11.850637 62.036533 +11.847117 62.041814 +11.843010 62.046507 +11.838316 62.050908 +11.831863 62.054721 +11.827169 62.059121 +11.819542 62.062642 +11.811328 62.065575 +11.803701 62.068802 +11.794313 62.071736 +11.782579 62.073789 +11.773192 62.076429 +11.762044 62.078483 +11.752070 62.081416 +11.742683 62.084057 +11.734469 62.087283 +11.728602 62.091097 +11.720388 62.094324 +11.714521 62.099311 +11.711001 62.104298 +11.711001 62.108992 +11.711587 62.115152 +11.716281 62.120433 +11.721561 62.125126 +11.726255 62.128940 +11.731535 62.133340 +11.738576 62.137154 +11.741510 62.141554 +11.740336 62.147421 +11.739163 62.152995 +11.739163 62.159449 +11.747377 62.160915 +11.755591 62.157395 +11.757937 62.152408 +11.762631 62.148008 +11.771432 62.146248 +11.784339 62.146248 +11.796073 62.143901 +11.809568 62.143608 +11.817782 62.146541 +11.820715 62.152701 +11.819542 62.158275 +11.816608 62.163262 +11.813675 62.168249 +11.810741 62.173530 +11.807808 62.178517 +11.807808 62.184677 +11.813675 62.189371 +11.823649 62.186731 +11.828342 62.182330 +11.837730 62.179397 +11.848291 62.179397 +11.856504 62.182624 +11.860025 62.188197 +11.858265 62.194064 +11.860611 62.200812 +11.862372 62.207852 +11.864718 62.214306 +11.866478 62.221346 +11.869999 62.227507 +11.871759 62.234254 +11.875279 62.240414 +11.878213 62.246282 +11.881733 62.252442 +11.885253 62.258309 +11.888187 62.264470 +11.892880 62.269750 +11.896401 62.275910 +11.901094 62.281191 +11.904028 62.287351 +11.907548 62.292925 +11.909308 62.299965 +11.911655 62.306713 +11.914002 62.313753 +11.912242 62.319033 +11.912828 62.325487 +11.913415 62.331648 +11.911655 62.337221 +11.912242 62.343675 +11.911068 62.349249 +11.908135 62.354236 +11.906375 62.360103 +11.904028 62.365090 +11.898747 62.369490 +11.895814 62.374477 +11.891120 62.379171 +11.887013 62.383571 +11.882320 62.387972 +11.877626 62.392372 +11.871172 62.396479 +11.864718 62.400293 +11.874692 62.398826 +11.886427 62.396772 +11.899334 62.395306 +11.911655 62.395892 +11.918696 62.399413 +11.919282 62.405866 +11.915762 62.410853 +11.912828 62.415840 +11.919869 62.418187 +11.929256 62.415547 +11.937470 62.412320 +11.949791 62.407920 +nan nan +11.789913 62.037707 +11.786979 62.031546 +11.784633 62.025092 +11.786393 62.019519 +11.791086 62.015118 +11.794020 62.009838 +11.798714 62.005144 +11.801647 62.000157 +11.797540 61.996344 +11.787566 61.999277 +11.781699 62.003091 +11.771725 62.004558 +11.765858 62.001037 +11.766445 61.996344 +11.770552 61.991943 +11.777005 61.988130 +11.783459 61.984023 +11.788153 61.979622 +11.791086 61.974342 +11.792260 61.968768 +11.793433 61.962608 +11.794607 61.957034 +11.797540 61.952047 +11.800474 61.947060 +11.803407 61.941780 +11.806341 61.936793 +11.805754 61.930632 +11.802821 61.924472 +11.795780 61.920952 +11.788740 61.916845 +11.779352 61.914791 +11.766445 61.916258 +11.759991 61.920365 +11.757644 61.925352 +11.755884 61.930926 +11.754710 61.936793 +11.756471 61.943246 +11.758231 61.950287 +11.758817 61.956447 +11.757644 61.962021 +11.756471 61.967888 +11.753537 61.972875 +11.748843 61.977276 +11.744150 61.981676 +11.739456 61.986076 +11.736522 61.991357 +11.731829 61.995757 +11.728895 62.000744 +11.727135 62.005144 +11.730069 62.009838 +11.737109 62.013652 +11.744736 62.015118 +11.745323 62.021279 +11.742390 62.026266 +11.745910 62.032426 +11.752364 62.036240 +11.757057 62.041520 +11.761751 62.046801 +11.767618 62.051201 +11.778179 62.052374 +11.788153 62.049734 +11.789326 62.044160 +11.789913 62.037707 +nan nan +11.573417 61.969648 +11.571657 61.964075 +11.569897 61.957621 +11.572831 61.952634 +11.575764 61.947353 +11.582218 61.943246 +11.588672 61.939433 +11.593366 61.935033 +11.599233 61.931219 +11.605686 61.927112 +11.613314 61.924178 +11.619767 61.920365 +11.626221 61.916258 +11.633848 61.913031 +11.640302 61.909217 +11.647929 61.905697 +11.654383 61.901883 +11.660837 61.898070 +11.667291 61.894256 +11.665531 61.888976 +11.653210 61.888096 +11.642649 61.890149 +11.632675 61.893083 +11.625048 61.896016 +11.615074 61.898950 +11.609207 61.902764 +11.602753 61.906577 +11.599819 61.911564 +11.595126 61.916258 +11.590432 61.920658 +11.582805 61.923885 +11.572831 61.926525 +11.565204 61.930046 +11.556990 61.932979 +11.551123 61.937086 +11.542909 61.940313 +11.538215 61.944713 +11.535281 61.949700 +11.534108 61.955567 +11.534108 61.961728 +11.534695 61.968182 +11.536455 61.974635 +11.542322 61.979036 +11.550536 61.982263 +11.564030 61.982263 +11.568724 61.977862 +11.573417 61.969648 +nan nan +8.488503 61.882522 +8.497303 61.879589 +8.504931 61.876362 +8.513731 61.873428 +8.518425 61.869028 +8.524879 61.865214 +8.531919 61.861694 +8.538373 61.857880 +8.550107 61.856120 +8.563015 61.856120 +8.572402 61.858467 +8.581789 61.860814 +8.590590 61.863454 +8.601151 61.864921 +8.612298 61.866388 +8.625206 61.866681 +8.639874 61.866094 +8.654541 61.865508 +8.665689 61.863747 +8.678596 61.862574 +8.689157 61.863747 +8.698544 61.866388 +8.707932 61.869028 +8.716732 61.871081 +8.727880 61.872841 +8.738441 61.874308 +8.749588 61.875188 +8.764842 61.874602 +8.775990 61.872841 +8.788898 61.871668 +8.798872 61.869028 +8.808259 61.866681 +8.818233 61.864041 +8.828207 61.861694 +8.838181 61.859054 +8.852262 61.858467 +8.864583 61.859347 +8.876317 61.860227 +8.886878 61.861987 +8.899786 61.861987 +8.912106 61.862867 +8.921494 61.865214 +8.932641 61.866094 +8.946136 61.866094 +8.960803 61.865508 +8.974298 61.865508 +8.986032 61.866388 +8.996592 61.868148 +9.008327 61.869028 +9.021821 61.869028 +9.034729 61.869028 +9.049396 61.868734 +9.061130 61.869321 +9.071691 61.870788 +9.082839 61.872548 +9.093399 61.874308 +9.105134 61.874895 +9.118041 61.873721 +9.116868 61.869615 +9.109241 61.866388 +9.099853 61.864041 +9.089292 61.862574 +9.078732 61.860814 +9.065237 61.860814 +9.052330 61.860814 +9.040596 61.859934 +9.027101 61.859640 +9.015367 61.858760 +9.001873 61.858760 +8.991312 61.857294 +8.980751 61.855533 +8.970191 61.853773 +8.958456 61.853187 +8.946722 61.852307 +8.934401 61.851427 +8.922667 61.850546 +8.912106 61.848786 +8.900372 61.848200 +8.888051 61.847320 +8.875144 61.847320 +8.860476 61.847906 +8.845808 61.848200 +8.832901 61.849666 +8.822927 61.852307 +8.811779 61.853773 +8.801805 61.856414 +8.790658 61.858467 +8.779510 61.860227 +8.766603 61.861401 +8.766603 61.862281 +8.751935 61.862867 +8.739027 61.862867 +8.726706 61.861694 +8.716146 61.859934 +8.705585 61.858467 +8.693851 61.857587 +8.682117 61.856707 +8.670382 61.855827 +8.659822 61.854067 +8.647501 61.853480 +8.634593 61.853187 +8.622272 61.852307 +8.611712 61.850546 +8.601151 61.849080 +8.590590 61.847320 +8.580029 61.845853 +8.568295 61.844679 +8.555387 61.844679 +8.540720 61.845266 +8.530746 61.847906 +8.520772 61.850253 +8.514318 61.852600 +8.506104 61.855827 +8.500824 61.859934 +8.493783 61.863747 +8.486156 61.866974 +8.479115 61.870495 +8.472662 61.874308 +8.464448 61.877535 +8.454474 61.879589 +8.459167 61.882522 +8.473835 61.881935 +8.488503 61.882522 +nan nan +8.400790 61.359471 +8.413697 61.359765 +8.426605 61.358298 +8.439512 61.357124 +8.451833 61.356244 +8.466501 61.355658 +8.480582 61.354778 +8.494663 61.354484 +8.509331 61.353604 +8.523412 61.353017 +8.538080 61.352431 +8.550400 61.351257 +8.564775 61.350671 +8.579149 61.350084 +8.593230 61.349497 +8.607898 61.348910 +8.621979 61.348324 +8.634593 61.347150 +8.646034 61.345390 +8.658648 61.343923 +8.673023 61.343337 +8.685930 61.342163 +8.698544 61.340697 +8.709692 61.339230 +8.719373 61.336590 +8.727586 61.333363 +8.736974 61.331016 +8.748415 61.329256 +8.761029 61.329256 +8.772763 61.330136 +8.783324 61.331603 +8.795058 61.332483 +8.807966 61.332776 +8.820873 61.332776 +8.833487 61.331603 +8.844928 61.329842 +8.854316 61.327202 +8.862530 61.324269 +8.870450 61.321042 +8.880131 61.318695 +8.889811 61.316055 +8.902426 61.314588 +8.916800 61.314295 +8.927067 61.315761 +8.934988 61.318988 +8.941442 61.322802 +8.946429 61.325735 +8.955816 61.328962 +8.963737 61.332189 +8.971364 61.335416 +8.979285 61.338350 +8.988379 61.340697 +8.996006 61.343923 +9.005393 61.345977 +9.014487 61.348617 +9.023288 61.350964 +9.041476 61.353311 +9.050863 61.355658 +9.058490 61.358591 +9.067291 61.361231 +9.076678 61.363285 +9.087239 61.365045 +9.100147 61.365045 +9.113054 61.365338 +9.125962 61.365338 +9.137696 61.366218 +9.148257 61.367685 +9.155884 61.370912 +9.165271 61.372966 +9.177005 61.373846 +9.185219 61.370912 +9.189913 61.366512 +9.197540 61.363285 +9.207514 61.360938 +9.216902 61.358298 +9.228636 61.356244 +9.238023 61.353897 +9.248877 61.351844 +9.258558 61.349497 +9.253571 61.345977 +9.243010 61.344803 +9.229809 61.344510 +9.218662 61.346270 +9.209274 61.348910 +9.199594 61.351257 +9.189620 61.351257 +9.188446 61.345977 +9.190206 61.340403 +9.183753 61.336296 +9.172018 61.336883 +9.162631 61.339523 +9.152950 61.341870 +9.145030 61.345097 +9.137109 61.348030 +9.127429 61.350671 +9.108067 61.353017 +9.095746 61.354484 +9.081079 61.355071 +9.068171 61.355071 +9.058784 61.352724 +9.054970 61.347150 +9.048516 61.343337 +9.039422 61.340990 +9.027688 61.340403 +9.015954 61.339523 +9.005393 61.337763 +9.000113 61.333069 +8.996299 61.327789 +8.992486 61.321628 +8.988379 61.316348 +8.983392 61.311654 +8.975471 61.308721 +8.967550 61.305494 +8.957283 61.304027 +8.947896 61.301680 +8.937628 61.299920 +8.926187 61.299040 +8.914453 61.298454 +8.902719 61.297573 +8.888345 61.298160 +8.875437 61.299334 +8.866050 61.301680 +8.856369 61.304321 +8.846982 61.306961 +8.837301 61.309308 +8.829087 61.312535 +8.819406 61.313708 +8.809726 61.316055 +8.800045 61.318695 +8.791831 61.321628 +8.782444 61.324269 +8.768069 61.324855 +8.757802 61.323095 +8.759562 61.317522 +8.754282 61.312828 +8.742841 61.311948 +8.729933 61.313415 +8.723480 61.316935 +8.718493 61.321335 +8.710572 61.324562 +8.697664 61.325735 +8.684757 61.325442 +8.673023 61.324855 +8.658942 61.325149 +8.647501 61.327202 +8.634593 61.328376 +8.620512 61.328962 +8.607311 61.328962 +8.596457 61.330722 +8.586483 61.333069 +8.573869 61.334536 +8.560961 61.335416 +8.546880 61.336003 +8.533973 61.336003 +8.520772 61.335710 +8.509037 61.335123 +8.496423 61.334829 +8.481756 61.335416 +8.468848 61.335416 +8.454767 61.335710 +8.440099 61.336296 +8.427485 61.337763 +8.414577 61.338936 +8.405190 61.341283 +8.393749 61.343043 +8.384362 61.345684 +8.372921 61.347444 +8.363534 61.350084 +8.344172 61.352431 +8.335958 61.355658 +8.327744 61.358591 +8.321291 61.362111 +8.313077 61.365338 +8.303689 61.367685 +8.293715 61.370325 +8.283741 61.372672 +8.289608 61.372379 +8.302516 61.371499 +8.315424 61.370032 +8.328331 61.368859 +8.340652 61.367685 +8.351800 61.365925 +8.362947 61.364165 +8.375855 61.362698 +8.388762 61.361525 +8.389936 61.359471 +nan nan +7.981293 60.790364 +7.979239 60.785670 +7.979533 60.779216 +7.981293 60.773642 +7.986280 60.769536 +7.993027 60.765429 +7.999188 60.761028 +8.005935 60.757508 +8.012095 60.753988 +8.018549 60.749881 +8.026763 60.746947 +8.039084 60.745774 +8.053458 60.745187 +8.066072 60.745480 +8.079860 60.744894 +8.091007 60.743427 +8.095994 60.739027 +8.102448 60.735213 +8.107435 60.730813 +8.113889 60.727293 +8.121810 60.724066 +8.132664 60.722305 +8.143811 60.720252 +8.157892 60.719959 +8.168746 60.718199 +8.174027 60.713505 +8.164933 60.711451 +8.154665 60.709691 +8.143225 60.708518 +8.132077 60.707638 +8.119169 60.707638 +8.105088 60.707931 +8.092474 60.709398 +8.083087 60.711745 +8.076633 60.715558 +8.068713 60.718492 +8.060792 60.721719 +8.048471 60.722892 +8.036737 60.722012 +8.024123 60.723186 +8.014735 60.725532 +8.009748 60.729639 +8.004761 60.734040 +8.001534 60.739027 +7.990387 60.740787 +7.978946 60.739907 +7.964865 60.740493 +7.956945 60.743720 +7.950491 60.747241 +7.945504 60.751641 +7.941983 60.756335 +7.939930 60.762202 +7.941103 60.768949 +7.942277 60.775696 +7.940223 60.781270 +7.936996 60.786257 +7.934943 60.791830 +7.935823 60.798871 +7.942277 60.802685 +7.949611 60.805911 +7.958705 60.807085 +7.972492 60.806498 +7.980413 60.803271 +7.983933 60.798284 +7.981293 60.790364 +nan nan +11.229313 61.674534 +11.232246 61.669253 +11.235180 61.664266 +11.238113 61.659279 +11.239287 61.653706 +11.241047 61.647839 +11.242220 61.642265 +11.243980 61.636691 +11.242220 61.631117 +11.243394 61.625544 +11.244567 61.619677 +11.246327 61.614103 +11.247501 61.608529 +11.247501 61.602369 +11.245741 61.595622 +11.245154 61.589168 +11.243394 61.582421 +11.241634 61.575673 +11.241634 61.569513 +11.239287 61.562472 +11.239287 61.556312 +11.239287 61.549858 +11.238700 61.543991 +11.239873 61.538417 +11.244567 61.534017 +11.248087 61.528737 +11.252781 61.524043 +11.256888 61.519643 +11.261582 61.515242 +11.266275 61.510842 +11.269209 61.505855 +11.273903 61.501455 +11.278596 61.497054 +11.281530 61.492067 +11.286223 61.487374 +11.290917 61.482973 +11.293851 61.477986 +11.298544 61.473586 +11.304411 61.469772 +11.309105 61.465372 +11.313799 61.460972 +11.318492 61.456278 +11.323186 61.451878 +11.327880 61.447478 +11.331987 61.443077 +11.336680 61.438677 +11.341374 61.433983 +11.344308 61.428996 +11.347241 61.424009 +11.350175 61.419022 +11.350175 61.412862 +11.349588 61.406408 +11.347828 61.399661 +11.341374 61.395847 +11.334920 61.399661 +11.331987 61.404648 +11.329053 61.409635 +11.326120 61.414622 +11.321426 61.419316 +11.316732 61.424009 +11.312039 61.428409 +11.307345 61.432810 +11.301478 61.436623 +11.295024 61.440144 +11.289157 61.444251 +11.284463 61.448651 +11.278010 61.452465 +11.273316 61.456865 +11.269209 61.461265 +11.264515 61.465959 +11.259822 61.470359 +11.255128 61.474759 +11.250434 61.479160 +11.247501 61.484147 +11.244567 61.489427 +11.241634 61.494414 +11.236940 61.498815 +11.230486 61.502922 +11.224032 61.506735 +11.224619 61.512896 +11.223446 61.518469 +11.221686 61.524043 +11.222272 61.530203 +11.222272 61.536657 +11.222859 61.542818 +11.222859 61.548978 +11.221686 61.554845 +11.221686 61.560712 +11.223446 61.567753 +11.226379 61.573913 +11.228726 61.580660 +11.231660 61.586528 +11.232833 61.592101 +11.233420 61.598262 +11.235180 61.605302 +11.236940 61.612049 +11.238700 61.618796 +11.237527 61.624370 +11.232833 61.628771 +11.228139 61.633464 +11.225206 61.638451 +11.222272 61.643438 +11.218752 61.648719 +11.217579 61.654292 +11.216405 61.659866 +11.213472 61.665146 +11.211711 61.670427 +11.210538 61.676001 +11.208778 61.681574 +11.209365 61.688028 +11.211711 61.691255 +11.218165 61.687441 +11.221099 61.682454 +11.224032 61.677467 +11.229313 61.674534 +nan nan +11.783166 61.297280 +11.792553 61.294347 +11.801647 61.292000 +11.808101 61.288186 +11.812501 61.283492 +11.818662 61.279679 +11.823062 61.274985 +11.825702 61.269998 +11.828929 61.265011 +11.831569 61.260024 +11.835970 61.255624 +11.840663 61.251223 +11.846530 61.247116 +11.852691 61.243303 +11.858851 61.239489 +11.865012 61.235676 +11.869412 61.230982 +11.874106 61.226582 +11.878506 61.221888 +11.881440 61.216901 +11.884080 61.211914 +11.885547 61.206340 +11.888480 61.201060 +11.892880 61.196660 +11.897281 61.192259 +11.901974 61.187859 +11.908135 61.183752 +11.912535 61.179352 +11.916935 61.174951 +11.921336 61.170551 +11.925736 61.166151 +11.931897 61.162337 +11.936297 61.157643 +11.940697 61.153243 +11.945391 61.148549 +11.951258 61.145029 +11.957418 61.141216 +11.961819 61.136522 +11.966512 61.131828 +11.969153 61.126841 +11.967392 61.121561 +11.961525 61.125374 +11.955658 61.129188 +11.951258 61.133882 +11.945097 61.137695 +11.938937 61.141509 +11.932777 61.145323 +11.926616 61.149429 +11.918989 61.152363 +11.911362 61.155883 +11.905201 61.159697 +11.899041 61.163510 +11.894640 61.167911 +11.890240 61.172604 +11.885840 61.177298 +11.882906 61.182285 +11.878213 61.186685 +11.873812 61.191086 +11.869412 61.195486 +11.865012 61.199886 +11.860611 61.204580 +11.857384 61.209567 +11.852984 61.214261 +11.850344 61.219248 +11.845944 61.223648 +11.842717 61.228635 +11.838316 61.233035 +11.829222 61.235969 +11.818075 61.237729 +11.805461 61.239489 +11.802821 61.244476 +11.803114 61.250930 +11.795193 61.254157 +11.789033 61.257971 +11.783166 61.261784 +11.777005 61.265598 +11.772605 61.270291 +11.766445 61.274692 +11.762044 61.279092 +11.757644 61.283492 +11.752950 61.288186 +11.750017 61.293173 +11.743856 61.296987 +11.741216 61.302267 +11.743270 61.305494 +11.756471 61.305201 +11.765858 61.302560 +11.783166 61.297280 +nan nan +11.634142 60.414870 +11.637369 60.411350 +11.640302 60.406363 +11.641769 60.400789 +11.642649 60.394922 +11.642356 60.388762 +11.645289 60.383775 +11.647929 60.378494 +11.654090 60.374974 +11.659957 60.370867 +11.669051 60.368227 +11.677852 60.369107 +11.686946 60.371454 +11.698386 60.372040 +11.705720 60.368520 +11.710414 60.364120 +11.713054 60.359133 +11.714228 60.353266 +11.713934 60.347105 +11.713641 60.341238 +11.714814 60.335371 +11.715988 60.329797 +11.718921 60.324810 +11.721561 60.319823 +11.724495 60.314836 +11.725962 60.308969 +11.726842 60.303395 +11.728309 60.297822 +11.728309 60.292835 +11.720975 60.296062 +11.713347 60.299582 +11.708947 60.303982 +11.704840 60.308382 +11.700147 60.312783 +11.695746 60.317183 +11.693106 60.322170 +11.690172 60.327157 +11.684305 60.330971 +11.680198 60.327157 +11.679905 60.320997 +11.679612 60.314836 +11.674038 60.314543 +11.669638 60.318943 +11.663477 60.322757 +11.657904 60.326570 +11.650276 60.330091 +11.641182 60.332731 +11.630622 60.334784 +11.621528 60.337425 +11.612140 60.340358 +11.604806 60.343292 +11.597179 60.346812 +11.591312 60.350625 +11.583978 60.353852 +11.577818 60.357666 +11.570191 60.361186 +11.562857 60.364120 +11.556696 60.368227 +11.547896 60.371454 +11.540268 60.374681 +11.534401 60.378494 +11.534108 60.383481 +11.543202 60.385828 +11.552883 60.384361 +11.561977 60.381721 +11.567844 60.377907 +11.576938 60.375267 +11.589259 60.373507 +11.600699 60.374387 +11.608327 60.377321 +11.611260 60.383188 +11.608620 60.388468 +11.604220 60.392868 +11.601286 60.397856 +11.598646 60.402843 +11.595712 60.407830 +11.596006 60.414283 +11.599233 60.420150 +11.606860 60.423084 +11.618301 60.423964 +11.627395 60.421031 +11.634142 60.414870 +nan nan +10.452804 61.080198 +10.454270 61.074624 +10.452510 61.067877 +10.449577 61.061717 +10.449577 61.055556 +10.449577 61.049102 +10.452510 61.044115 +10.455737 61.039128 +10.460138 61.034728 +10.465125 61.030328 +10.470992 61.026807 +10.475979 61.022114 +10.482139 61.018300 +10.490060 61.015367 +10.497687 61.011846 +10.507368 61.009206 +10.517928 61.007153 +10.529076 61.005392 +10.538463 61.002752 +10.547850 61.000112 +10.555478 60.996885 +10.563398 60.993658 +10.571025 60.990138 +10.578946 60.987204 +10.585400 60.983391 +10.593027 60.979871 +10.599188 60.976350 +10.605348 60.972537 +10.610042 60.968136 +10.616202 60.964029 +10.623829 60.961096 +10.630283 60.957282 +10.637910 60.953762 +10.644071 60.949948 +10.651991 60.947015 +10.656392 60.942615 +10.661085 60.937921 +10.664312 60.932934 +10.667246 60.927947 +10.671939 60.923547 +10.674873 60.918560 +10.679567 60.914159 +10.682500 60.908879 +10.687194 60.904772 +10.691594 60.900372 +10.697755 60.896265 +10.704208 60.892451 +10.711836 60.889517 +10.721223 60.886584 +10.728850 60.883357 +10.733544 60.879250 +10.737944 60.874850 +10.737944 60.868396 +10.735011 60.862236 +10.730904 60.856955 +10.726797 60.851675 +10.722396 60.846394 +10.718289 60.841114 +10.715649 60.834954 +10.713889 60.827913 +10.713596 60.822046 +10.715062 60.816472 +10.717996 60.811485 +10.722690 60.807085 +10.724156 60.806792 +10.727383 60.802978 +10.732077 60.798578 +10.736771 60.794177 +10.741171 60.789777 +10.747625 60.786257 +10.754959 60.782736 +10.764346 60.780096 +10.773733 60.777456 +10.784587 60.775696 +10.793975 60.772762 +10.803069 60.770416 +10.812456 60.767482 +10.823310 60.765429 +10.834164 60.763668 +10.845018 60.761322 +10.855873 60.759561 +10.869660 60.758681 +10.882274 60.757215 +10.896062 60.756335 +10.908970 60.756041 +10.919237 60.757801 +10.930971 60.758388 +10.939772 60.760442 +10.948866 60.762788 +10.955613 60.766309 +10.960893 60.771002 +10.962654 60.777749 +10.962654 60.784203 +10.962947 60.790364 +10.961774 60.796231 +10.958547 60.801218 +10.954146 60.805618 +10.947986 60.809432 +10.940359 60.812365 +10.930971 60.815299 +10.921584 60.817646 +10.912490 60.820579 +10.904863 60.823513 +10.898702 60.827620 +10.895475 60.832607 +10.894302 60.838474 +10.894302 60.844341 +10.896062 60.851381 +10.897822 60.858129 +10.896356 60.863996 +10.890195 60.867516 +10.882568 60.870743 +10.874647 60.874263 +10.865553 60.876610 +10.857633 60.880130 +10.860273 60.884824 +10.873181 60.884824 +10.884035 60.882477 +10.894889 60.880423 +10.905743 60.878663 +10.916597 60.876317 +10.922757 60.872503 +10.930678 60.869569 +10.936545 60.865462 +10.939772 60.860475 +10.942705 60.855488 +10.944172 60.849621 +10.945639 60.844048 +10.950039 60.839647 +10.956200 60.835834 +10.965587 60.833193 +10.974681 60.830553 +10.982602 60.827326 +10.993456 60.825273 +11.001083 60.822046 +11.008710 60.818819 +11.014577 60.815005 +11.019564 60.810605 +11.020738 60.805031 +11.022205 60.799164 +11.026605 60.794764 +11.032765 60.790950 +11.045380 60.789484 +11.056820 60.790364 +11.067088 60.791537 +11.076475 60.793884 +11.087329 60.791537 +11.093196 60.788017 +11.096130 60.782736 +11.094663 60.777456 +11.087916 60.773642 +11.081462 60.770122 +11.076182 60.765429 +11.072955 60.759561 +11.070021 60.753401 +11.071488 60.747827 +11.074422 60.742547 +11.078822 60.738147 +11.084982 60.734333 +11.089383 60.729639 +11.095543 60.726119 +11.098477 60.721132 +11.101410 60.716145 +11.102877 60.710278 +11.104050 60.704704 +11.105517 60.699130 +11.105517 60.692677 +11.105224 60.686810 +11.106691 60.680943 +11.108157 60.675369 +11.110798 60.670382 +11.116958 60.666275 +11.124585 60.663048 +11.129279 60.658648 +11.132506 60.655127 +11.135146 60.650140 +11.138373 60.644860 +11.139840 60.639580 +11.139546 60.633126 +11.143947 60.628725 +11.148640 60.624032 +11.153041 60.619631 +11.157441 60.615231 +11.163601 60.611418 +11.169762 60.607604 +11.175629 60.603790 +11.180323 60.599390 +11.186190 60.595576 +11.192350 60.591763 +11.199977 60.588243 +11.207605 60.585016 +11.213472 60.581495 +11.221099 60.577975 +11.228726 60.579735 +11.234300 60.584136 +11.243100 60.586482 +11.254541 60.585602 +11.263342 60.587656 +11.261875 60.593523 +11.259235 60.598510 +11.256008 60.603497 +11.256008 60.608191 +11.267155 60.607897 +11.271556 60.603204 +11.276249 60.598803 +11.279183 60.593816 +11.280356 60.587949 +11.278596 60.581495 +11.274489 60.576215 +11.266569 60.572988 +11.260115 60.569468 +11.254541 60.564774 +11.250141 60.559494 +11.248674 60.552747 +11.246621 60.545706 +11.243687 60.539839 +11.239580 60.534559 +11.236353 60.528398 +11.233420 60.522531 +11.229313 60.517251 +11.227553 60.510210 +11.227259 60.504050 +11.228726 60.498476 +11.228433 60.492316 +11.229606 60.486742 +11.229313 60.480288 +11.229313 60.474128 +11.229313 60.467674 +11.229019 60.461807 +11.226966 60.454766 +11.226966 60.448606 +11.228139 60.443032 +11.229313 60.437165 +11.232540 60.432178 +11.234006 60.426604 +11.236647 60.421617 +11.238113 60.415750 +11.237820 60.409590 +11.233713 60.404309 +11.226966 60.400789 +11.219045 60.397856 +11.209951 60.400202 +11.205551 60.404896 +11.204084 60.410470 +11.202911 60.416043 +11.201737 60.421617 +11.201737 60.428071 +11.200564 60.433645 +11.197630 60.438632 +11.196164 60.444206 +11.193230 60.449486 +11.188830 60.453886 +11.184430 60.458287 +11.179736 60.462687 +11.175336 60.467087 +11.170935 60.471781 +11.168002 60.476768 +11.166535 60.482342 +11.165361 60.487915 +11.166828 60.494662 +11.170055 60.500823 +11.171522 60.507570 +11.174749 60.513731 +11.176802 60.520478 +11.178269 60.527225 +11.180029 60.534265 +11.182083 60.540719 +11.180616 60.546586 +11.177389 60.551573 +11.174749 60.556560 +11.168588 60.560667 +11.162428 60.564481 +11.156561 60.568294 +11.148934 60.571521 +11.142773 60.575335 +11.135146 60.578562 +11.129279 60.582375 +11.123118 60.586482 +11.118718 60.590589 +11.114024 60.595283 +11.109331 60.599683 +11.106691 60.604670 +11.102290 60.609071 +11.099063 60.614058 +11.096423 60.619045 +11.091730 60.623738 +11.087036 60.626672 +11.079115 60.629899 +11.070021 60.632539 +11.060927 60.635179 +11.053007 60.638699 +11.043913 60.641046 +11.034819 60.643980 +11.023965 60.645740 +11.013111 60.647793 +11.002256 60.650140 +10.993162 60.652487 +10.983775 60.655421 +10.977908 60.659234 +10.971748 60.663048 +10.965587 60.666568 +10.959427 60.670675 +10.953266 60.674489 +10.947106 60.678302 +10.939479 60.681529 +10.931851 60.684756 +10.922757 60.687396 +10.913370 60.690036 +10.904276 60.692677 +10.894889 60.695317 +10.885501 60.697957 +10.876407 60.700597 +10.867313 60.703237 +10.857633 60.705878 +10.851766 60.709691 +10.844138 60.712918 +10.837978 60.716732 +10.831818 60.720545 +10.825657 60.724359 +10.818030 60.727879 +10.810403 60.730813 +10.802482 60.734040 +10.794855 60.737560 +10.787228 60.740493 +10.777840 60.743427 +10.770213 60.746361 +10.762586 60.749587 +10.754665 60.753108 +10.745571 60.755455 +10.739411 60.759561 +10.731784 60.762788 +10.723863 60.765722 +10.716236 60.769242 +10.710075 60.773056 +10.703915 60.776576 +10.699221 60.780976 +10.694821 60.785670 +10.690127 60.790070 +10.687194 60.795057 +10.684260 60.800044 +10.681033 60.805325 +10.679860 60.810899 +10.678100 60.816472 +10.676633 60.822046 +10.676633 60.828206 +10.676926 60.834367 +10.679860 60.840527 +10.682794 60.846688 +10.686900 60.851968 +10.691007 60.857248 +10.692768 60.864289 +10.691301 60.869863 +10.686607 60.874263 +10.682207 60.878663 +10.677513 60.883064 +10.674580 60.888051 +10.669593 60.892451 +10.665192 60.896851 +10.660499 60.901252 +10.654338 60.905359 +10.649644 60.909466 +10.645244 60.913866 +10.642311 60.919146 +10.637617 60.923253 +10.631456 60.927360 +10.625296 60.931174 +10.618842 60.934987 +10.612682 60.938801 +10.607988 60.943201 +10.601828 60.947015 +10.597134 60.951415 +10.590974 60.955229 +10.585106 60.959042 +10.577186 60.962269 +10.570732 60.966083 +10.564865 60.969897 +10.558705 60.974004 +10.550784 60.976937 +10.543157 60.980164 +10.535236 60.983391 +10.527609 60.986618 +10.517928 60.989258 +10.508541 60.991898 +10.499154 60.994538 +10.490060 60.997179 +10.478912 60.999232 +10.470992 61.002459 +10.463364 61.005686 +10.455444 61.008913 +10.449283 61.012433 +10.443123 61.016247 +10.436963 61.020354 +10.430509 61.024167 +10.425815 61.028567 +10.422882 61.033554 +10.419655 61.038542 +10.418188 61.044115 +10.418188 61.050276 +10.419948 61.057316 +10.421415 61.057903 +10.425228 61.061717 +10.428455 61.067877 +10.431095 61.073744 +10.434029 61.079904 +10.436963 61.086065 +10.435202 61.091639 +10.435496 61.098092 +10.432269 61.103079 +10.430802 61.108653 +10.427869 61.113640 +10.427575 61.118334 +10.432269 61.114227 +10.436963 61.109827 +10.439896 61.104840 +10.444590 61.100146 +10.446057 61.094572 +10.449283 61.089585 +10.450750 61.084011 +10.452804 61.080198 +nan nan +11.072955 60.397269 +11.067381 60.392868 +11.062101 60.388175 +11.057994 60.382894 +11.053887 60.377907 +11.049780 60.372334 +11.048020 60.365587 +11.047726 60.359133 +11.049193 60.353559 +11.052127 60.348572 +11.056527 60.344172 +11.061221 60.339771 +11.068555 60.336251 +11.077649 60.333904 +11.088503 60.331557 +11.097597 60.329211 +11.106691 60.326277 +11.112851 60.322463 +11.115491 60.317476 +11.114024 60.310729 +11.111091 60.304862 +11.110798 60.298408 +11.113731 60.293421 +11.122825 60.290781 +11.132506 60.290781 +11.142480 60.290781 +11.139840 60.286087 +11.134559 60.281687 +11.127812 60.278167 +11.119011 60.275820 +11.109918 60.273473 +11.099650 60.272006 +11.087623 60.273473 +11.079995 60.276700 +11.075595 60.281394 +11.072661 60.286381 +11.071488 60.291955 +11.070021 60.297528 +11.070315 60.303982 +11.068848 60.309556 +11.067381 60.315130 +11.062981 60.319530 +11.056820 60.323344 +11.050953 60.327157 +11.041566 60.329797 +11.032472 60.332437 +11.025138 60.335958 +11.017511 60.338891 +11.013111 60.343292 +11.009884 60.348279 +11.010177 60.354732 +11.013111 60.360893 +11.016044 60.366760 +11.020151 60.372040 +11.025431 60.376734 +11.031005 60.381134 +11.036286 60.385535 +11.040686 60.390815 +11.043326 60.396975 +11.047433 60.402256 +11.054180 60.406069 +11.061807 60.409003 +11.070901 60.411350 +11.078529 60.408123 +11.077062 60.401082 +11.072955 60.397269 +nan nan +10.205506 60.789190 +10.213426 60.786257 +10.222814 60.783323 +10.228974 60.778923 +10.233668 60.774523 +10.236601 60.769536 +10.236601 60.763375 +10.238068 60.757508 +10.238068 60.751348 +10.239828 60.745774 +10.242762 60.740787 +10.245695 60.735800 +10.250682 60.731399 +10.255083 60.726999 +10.262710 60.723479 +10.270631 60.720545 +10.278258 60.717318 +10.286178 60.714092 +10.295272 60.711451 +10.304660 60.708811 +10.313754 60.706464 +10.320207 60.702357 +10.324608 60.697957 +10.329301 60.693557 +10.332528 60.688570 +10.335462 60.683583 +10.341622 60.679769 +10.344849 60.674782 +10.347783 60.669795 +10.350716 60.664808 +10.352476 60.659234 +10.353943 60.653661 +10.353943 60.647207 +10.353943 60.641046 +10.353943 60.634593 +10.353943 60.628725 +10.355410 60.623152 +10.353650 60.616111 +10.350716 60.609951 +10.348076 60.603790 +10.345143 60.597923 +10.341036 60.592643 +10.338395 60.586482 +10.335462 60.580322 +10.332528 60.574162 +10.329595 60.568294 +10.326955 60.562134 +10.324021 60.555974 +10.322554 60.549226 +10.320794 60.542479 +10.320794 60.536025 +10.322554 60.530452 +10.325488 60.525465 +10.331648 60.521651 +10.342502 60.519598 +10.351303 60.521944 +10.360397 60.524291 +10.370664 60.525758 +10.378292 60.522531 +10.382692 60.518131 +10.387386 60.513731 +10.392079 60.509037 +10.395013 60.504050 +10.401173 60.500530 +10.405867 60.496129 +10.410854 60.493196 +10.417014 60.489089 +10.421415 60.484102 +10.424055 60.479115 +10.427282 60.474128 +10.430215 60.468847 +10.434909 60.464740 +10.434909 60.458287 +10.434616 60.452126 +10.431976 60.445966 +10.431976 60.439805 +10.436376 60.435405 +10.442536 60.431591 +10.454857 60.430418 +10.467178 60.428951 +10.468938 60.424551 +10.461311 60.421324 +10.452217 60.419270 +10.444590 60.416043 +10.436963 60.413403 +10.431682 60.408710 +10.427575 60.403429 +10.422295 60.399029 +10.418188 60.393749 +10.415254 60.387588 +10.411441 60.382308 +10.407334 60.376734 +10.403227 60.371454 +10.399120 60.366173 +10.395013 60.360893 +10.391199 60.355612 +10.388266 60.349452 +10.384159 60.344172 +10.381519 60.338011 +10.378585 60.331851 +10.376825 60.325397 +10.374185 60.319237 +10.374185 60.312783 +10.374185 60.306622 +10.375651 60.301049 +10.378585 60.296062 +10.382985 60.291661 +10.389146 60.287848 +10.395306 60.284034 +10.401467 60.280220 +10.407627 60.276407 +10.413494 60.272593 +10.418188 60.268193 +10.421121 60.262913 +10.419948 60.257632 +10.414668 60.252938 +10.407040 60.250005 +10.397066 60.248538 +10.387679 60.251178 +10.382985 60.255579 +10.376825 60.259392 +10.370958 60.262913 +10.364797 60.267019 +10.360397 60.271420 +10.355703 60.275820 +10.351010 60.280220 +10.346609 60.284621 +10.343676 60.289608 +10.342209 60.295181 +10.340449 60.300755 +10.339276 60.306622 +10.337515 60.312196 +10.337809 60.318356 +10.339276 60.325397 +10.344556 60.329797 +10.349836 60.334491 +10.352476 60.340651 +10.354237 60.347105 +10.354237 60.353559 +10.354237 60.359719 +10.354530 60.365880 +10.355703 60.372920 +10.357170 60.378201 +10.362451 60.382894 +10.367731 60.387588 +10.370664 60.393455 +10.372131 60.400202 +10.370664 60.405776 +10.370664 60.412230 +10.370958 60.418390 +10.372131 60.425137 +10.373891 60.431885 +10.376532 60.438045 +10.378292 60.445086 +10.380052 60.451539 +10.380052 60.457993 +10.378585 60.463567 +10.378585 60.470021 +10.375651 60.475008 +10.374185 60.481168 +10.372718 60.487035 +10.371251 60.492609 +10.369784 60.498183 +10.365091 60.502583 +10.357463 60.505810 +10.346609 60.507863 +10.332822 60.508743 +10.320207 60.509917 +10.311113 60.512557 +10.304953 60.516371 +10.302020 60.521358 +10.298793 60.526345 +10.297619 60.531918 +10.295859 60.537492 +10.294392 60.543359 +10.292632 60.548933 +10.291459 60.554507 +10.289699 60.560081 +10.289992 60.566534 +10.289992 60.572401 +10.291459 60.579442 +10.294392 60.585602 +10.299673 60.590003 +10.304953 60.594403 +10.312874 60.597630 +10.320207 60.600563 +10.326955 60.604377 +10.331062 60.609657 +10.334875 60.614938 +10.337809 60.621098 +10.339569 60.628139 +10.338102 60.633712 +10.338102 60.639580 +10.334875 60.644860 +10.333702 60.650434 +10.330182 60.655421 +10.325781 60.660114 +10.321088 60.664221 +10.314927 60.668035 +10.310233 60.672435 +10.307300 60.677422 +10.305833 60.683289 +10.302900 60.688276 +10.296446 60.692090 +10.288819 60.695317 +10.279431 60.697664 +10.271804 60.701184 +10.263883 60.704118 +10.257723 60.707931 +10.251563 60.712038 +10.243935 60.714972 +10.237482 60.718785 +10.231321 60.722892 +10.228388 60.727879 +10.225161 60.732866 +10.222227 60.737853 +10.215773 60.741374 +10.214307 60.747241 +10.214307 60.753401 +10.214307 60.759855 +10.211373 60.764842 +10.206679 60.769242 +10.200519 60.772762 +10.194065 60.776576 +10.186438 60.780096 +10.178517 60.783030 +10.169423 60.785670 +10.158569 60.787430 +10.147422 60.789484 +10.135101 60.791244 +10.121020 60.791537 +10.110166 60.793591 +10.115739 60.793297 +10.126594 60.791244 +10.140968 60.790657 +10.153582 60.790657 +10.163850 60.792124 +10.174117 60.793591 +10.185558 60.794471 +10.195239 60.793297 +10.205506 60.789190 +nan nan +10.012479 60.548933 +10.018933 60.545413 +10.026560 60.541893 +10.038881 60.540719 +10.050321 60.541306 +10.056482 60.537492 +10.059709 60.532505 +10.059709 60.526345 +10.059709 60.520184 +10.057949 60.513437 +10.056775 60.506397 +10.053842 60.500530 +10.051202 60.494369 +10.048268 60.488209 +10.046801 60.481462 +10.043868 60.475301 +10.043868 60.469141 +10.045628 60.463567 +10.047095 60.457700 +10.048561 60.452126 +10.053255 60.447726 +10.059415 60.444206 +10.067336 60.440979 +10.071736 60.436285 +10.071736 60.430418 +10.068803 60.424257 +10.068803 60.417804 +10.068803 60.411643 +10.068803 60.405189 +10.066456 60.399322 +10.062349 60.393749 +10.059415 60.387881 +10.062642 60.383188 +10.065576 60.377907 +10.068803 60.372920 +10.068803 60.366760 +10.063229 60.367053 +10.058535 60.371454 +10.053842 60.375854 +10.049441 60.380254 +10.044748 60.384361 +10.043281 60.390228 +10.041521 60.395802 +10.042988 60.402843 +10.044748 60.409590 +10.046214 60.416337 +10.046214 60.422497 +10.042988 60.427484 +10.040054 60.432471 +10.036827 60.437458 +10.032133 60.441859 +10.027733 60.446259 +10.023039 60.450953 +10.020106 60.455940 +10.021279 60.462687 +10.018346 60.467674 +10.016879 60.473248 +10.016879 60.479408 +10.016586 60.485862 +10.019519 60.492022 +10.022159 60.498183 +10.023920 60.504637 +10.025386 60.511677 +10.026853 60.518424 +10.025386 60.524291 +10.020693 60.528692 +10.011305 60.531038 +10.000451 60.533092 +9.992824 60.536025 +9.986664 60.540132 +9.984903 60.545413 +9.983730 60.551280 +9.990770 60.553040 +10.001625 60.550693 +10.012479 60.548933 +nan nan +10.333115 60.099807 +10.331648 60.093060 +10.329008 60.086900 +10.324608 60.081619 +10.321968 60.075459 +10.318154 60.070179 +10.314047 60.064898 +10.308767 60.060205 +10.303486 60.055804 +10.298206 60.051404 +10.292045 60.046710 +10.286765 60.042310 +10.278845 60.039083 +10.271511 60.036150 +10.265057 60.032629 +10.257430 60.029402 +10.252149 60.024709 +10.248336 60.019428 +10.246576 60.012681 +10.248042 60.006814 +10.250976 60.001827 +10.255963 59.997427 +10.260363 59.993026 +10.263297 59.988333 +10.267697 59.983932 +10.272097 59.979532 +10.277084 59.975132 +10.281485 59.970438 +10.285885 59.966038 +10.290579 59.961638 +10.294979 59.957237 +10.299379 59.952837 +10.302606 59.947850 +10.305540 59.942863 +10.308473 59.937876 +10.309940 59.932302 +10.311407 59.926728 +10.309940 59.919688 +10.307300 59.913527 +10.304366 59.907367 +10.300259 59.902087 +10.295272 59.897686 +10.289992 59.892993 +10.280311 59.892993 +10.277084 59.897980 +10.277378 59.904433 +10.278845 59.911181 +10.281778 59.917341 +10.281778 59.923208 +10.281778 59.929662 +10.280311 59.935236 +10.278845 59.940809 +10.275911 59.945796 +10.272684 59.950783 +10.268284 59.955184 +10.262123 59.959291 +10.257723 59.963691 +10.251563 59.967505 +10.245695 59.971025 +10.238068 59.974545 +10.230148 59.977479 +10.222814 59.980706 +10.215187 59.983932 +10.207853 59.987159 +10.198465 59.989800 +10.191132 59.993026 +10.183211 59.996253 +10.175877 59.999480 +10.168250 60.002414 +10.159156 60.005347 +10.150062 60.007694 +10.139501 60.009748 +10.130407 60.012094 +10.118086 60.013561 +10.104299 60.014441 +10.093151 60.013561 +10.083177 60.012094 +10.074083 60.009748 +10.065576 60.007401 +10.057655 60.004467 +10.051495 60.000947 +10.045334 59.996840 +10.038881 59.993026 +10.032133 59.988626 +10.027146 59.984226 +10.021866 59.979532 +10.015412 59.975719 +10.010425 59.971025 +9.998104 59.971025 +9.991944 59.975132 +9.991944 59.980999 +9.995758 59.986279 +9.999864 59.991853 +10.003678 59.997133 +10.008958 60.002414 +10.012772 60.007694 +10.018052 60.012094 +10.024506 60.016201 +10.029787 60.020602 +10.034774 60.025295 +10.040054 60.029696 +10.046508 60.033509 +10.052668 60.037323 +10.057655 60.042017 +10.064109 60.045830 +10.069389 60.050231 +10.075843 60.054044 +10.080830 60.058738 +10.086111 60.063138 +10.091391 60.067832 +10.096378 60.072232 +10.101658 60.076926 +10.106939 60.081326 +10.111926 60.085726 +10.117206 60.090420 +10.122487 60.095114 +10.127474 60.099807 +10.132754 60.104208 +10.139208 60.108021 +10.144488 60.112422 +10.151822 60.115649 +10.160916 60.117702 +10.169130 60.117409 +10.173530 60.113008 +10.172064 60.105968 +10.170597 60.099514 +10.167663 60.093354 +10.166490 60.086313 +10.166196 60.080153 +10.166196 60.073992 +10.167663 60.068419 +10.169130 60.062845 +10.167663 60.055804 +10.169130 60.050231 +10.175290 60.046417 +10.182918 60.043190 +10.194945 60.042017 +10.206386 60.042603 +10.215187 60.044950 +10.221640 60.048470 +10.224574 60.054631 +10.227214 60.060791 +10.232201 60.065192 +10.240708 60.066365 +10.245402 60.061965 +10.250096 60.057564 +10.256256 60.053751 +10.266817 60.053164 +10.274444 60.056098 +10.278551 60.061378 +10.282365 60.066658 +10.284125 60.073699 +10.287058 60.079859 +10.288232 60.086313 +10.291165 60.092474 +10.295272 60.097754 +10.299086 60.103034 +10.307007 60.105968 +10.313460 60.110075 +10.320794 60.113008 +10.327248 60.116529 +10.330768 60.113888 +10.330768 60.107435 +10.333115 60.099807 +nan nan +11.083809 59.947263 +11.087329 59.943743 +11.094663 59.940223 +11.100530 59.936409 +11.106691 59.932595 +11.112558 59.928488 +11.118718 59.924968 +11.121358 59.919688 +11.125759 59.915288 +11.130159 59.910887 +11.133386 59.907367 +11.137786 59.902673 +11.140426 59.897686 +11.145120 59.893286 +11.154214 59.890646 +11.164481 59.888592 +11.173575 59.885952 +11.179442 59.882139 +11.182376 59.876858 +11.185310 59.871871 +11.189710 59.867471 +11.195577 59.863657 +11.202911 59.860430 +11.207605 59.856030 +11.210245 59.851043 +11.208485 59.844296 +11.209658 59.838722 +11.212885 59.833735 +11.218752 59.829628 +11.223152 59.825228 +11.229019 59.821414 +11.231660 59.816427 +11.234300 59.811440 +11.234300 59.804986 +11.232540 59.798239 +11.232246 59.792079 +11.232246 59.785918 +11.233420 59.780345 +11.237820 59.775944 +11.242220 59.771251 +11.244861 59.766264 +11.246327 59.760690 +11.246034 59.754529 +11.241927 59.749249 +11.237820 59.743969 +11.234886 59.737808 +11.234593 59.731648 +11.234300 59.725194 +11.237527 59.720207 +11.238700 59.714633 +11.239873 59.708766 +11.241340 59.703192 +11.242514 59.697912 +11.243980 59.692338 +11.245154 59.686471 +11.244861 59.680311 +11.246327 59.674737 +11.247501 59.668870 +11.250434 59.663883 +11.253368 59.658896 +11.256008 59.653909 +11.257475 59.648335 +11.254541 59.642175 +11.246914 59.639241 +11.236940 59.637774 +11.224912 59.639241 +11.217579 59.642468 +11.213178 59.646868 +11.212005 59.652442 +11.210538 59.658309 +11.209071 59.663883 +11.209365 59.670043 +11.208191 59.675910 +11.207018 59.681484 +11.207018 59.687645 +11.205844 59.693218 +11.205844 59.699379 +11.208778 59.705539 +11.207605 59.711113 +11.206138 59.716687 +11.202031 59.721087 +11.197630 59.725487 +11.197924 59.731941 +11.199391 59.738688 +11.202617 59.744849 +11.205258 59.750716 +11.207018 59.757463 +11.200564 59.758636 +11.190590 59.757170 +11.190590 59.763623 +11.192643 59.770370 +11.192643 59.776531 +11.194404 59.783278 +11.196164 59.790319 +11.193230 59.795306 +11.188830 59.799706 +11.184430 59.804106 +11.178562 59.807920 +11.175629 59.813200 +11.172695 59.818187 +11.166828 59.822001 +11.161255 59.825814 +11.151867 59.828455 +11.144533 59.831682 +11.137199 59.834908 +11.129866 59.838135 +11.125172 59.842536 +11.119305 59.846349 +11.116371 59.851336 +11.111971 59.855737 +11.110798 59.861604 +11.107864 59.866591 +11.111971 59.871871 +11.119598 59.875098 +11.123705 59.880085 +11.120772 59.885365 +11.114905 59.889179 +11.107571 59.892113 +11.099943 59.895633 +11.097303 59.900620 +11.092903 59.905020 +11.088209 59.909420 +11.080875 59.912647 +11.073248 59.915874 +11.067381 59.919688 +11.062981 59.924088 +11.060047 59.929075 +11.055647 59.933476 +11.052713 59.938756 +11.050073 59.943743 +11.050073 59.949903 +11.050367 59.956357 +11.058874 59.956944 +11.066501 59.954010 +11.075302 59.951077 +11.083809 59.947263 +nan nan +11.222272 59.467629 +11.219632 59.462642 +11.219339 59.456775 +11.219339 59.450321 +11.216405 59.444160 +11.211125 59.439760 +11.207311 59.434480 +11.202031 59.430079 +11.196750 59.425679 +11.192643 59.420399 +11.188536 59.415118 +11.184430 59.409838 +11.181789 59.403677 +11.177389 59.398397 +11.173575 59.393117 +11.170642 59.386956 +11.166535 59.381676 +11.159201 59.378742 +11.149227 59.377276 +11.139253 59.375809 +11.132799 59.372289 +11.126639 59.368475 +11.120185 59.364661 +11.112558 59.361728 +11.103757 59.359381 +11.095250 59.357327 +11.088796 59.353514 +11.082636 59.349700 +11.075008 59.346767 +11.067381 59.343833 +11.059754 59.340900 +11.053593 59.337086 +11.049486 59.331806 +11.052127 59.326525 +11.061807 59.326819 +11.067968 59.330632 +11.073835 59.326525 +11.077062 59.321538 +11.079702 59.316551 +11.079409 59.310684 +11.076768 59.304524 +11.071488 59.300123 +11.060634 59.299243 +11.050073 59.301297 +11.042739 59.304524 +11.036286 59.306284 +11.027778 59.309804 +11.017218 59.311564 +11.009884 59.315084 +11.004310 59.318605 +11.002843 59.324472 +11.004310 59.329752 +11.009590 59.334446 +11.015751 59.337966 +11.023378 59.341193 +11.030712 59.344127 +11.038339 59.347060 +11.045966 59.349994 +11.052127 59.353807 +11.059754 59.356741 +11.067088 59.359674 +11.074715 59.362901 +11.082342 59.365835 +11.089969 59.368475 +11.097597 59.371702 +11.104930 59.374635 +11.111384 59.378449 +11.119011 59.381383 +11.125172 59.384903 +11.131626 59.389010 +11.139253 59.391943 +11.144533 59.396344 +11.149814 59.400744 +11.154801 59.405144 +11.157734 59.411305 +11.160668 59.417465 +11.164775 59.422746 +11.168588 59.428026 +11.172695 59.433306 +11.176802 59.438587 +11.179736 59.444747 +11.183843 59.450027 +11.186776 59.455895 +11.190883 59.461175 +11.194697 59.466749 +11.198804 59.471736 +11.204084 59.476429 +11.210538 59.479950 +11.215818 59.479656 +11.217285 59.474083 +11.222272 59.467629 +nan nan +10.895182 59.440640 +10.890195 59.437413 +10.886381 59.432133 +10.883741 59.425972 +10.882274 59.420692 +10.883741 59.415118 +10.888142 59.410425 +10.890782 59.405438 +10.895182 59.401037 +10.899582 59.396637 +10.903983 59.392237 +10.908383 59.388130 +10.911023 59.382849 +10.913957 59.377862 +10.916890 59.372875 +10.918064 59.367302 +10.915424 59.361141 +10.907210 59.361728 +10.904569 59.366715 +10.901636 59.371702 +10.898702 59.376689 +10.895769 59.381676 +10.886675 59.383143 +10.881394 59.378742 +10.884328 59.373755 +10.885795 59.367888 +10.885501 59.361728 +10.880221 59.357327 +10.871714 59.354687 +10.861153 59.355567 +10.850592 59.357621 +10.840325 59.359674 +10.831524 59.362315 +10.822430 59.364955 +10.818030 59.369062 +10.816563 59.374929 +10.816856 59.381089 +10.815683 59.386663 +10.808056 59.389890 +10.799255 59.392823 +10.791921 59.395757 +10.784587 59.399277 +10.775493 59.401624 +10.762293 59.402504 +10.754665 59.399571 +10.744691 59.398104 +10.735891 59.400744 +10.732957 59.405731 +10.732957 59.411891 +10.734717 59.418932 +10.736477 59.425679 +10.740291 59.430959 +10.744105 59.436240 +10.748212 59.441814 +10.753199 59.446214 +10.757599 59.451494 +10.763759 59.455015 +10.768746 59.459708 +10.774027 59.464108 +10.774613 59.461468 +10.774613 59.455015 +10.779307 59.450908 +10.788108 59.447974 +10.795148 59.444747 +10.796615 59.439173 +10.793975 59.433013 +10.792215 59.426266 +10.790455 59.419519 +10.791921 59.413945 +10.796322 59.409545 +10.806296 59.410718 +10.812750 59.414825 +10.814216 59.409251 +10.818323 59.404851 +10.826244 59.402797 +10.832404 59.406318 +10.835338 59.412478 +10.836805 59.419519 +10.843258 59.423039 +10.850886 59.425972 +10.858219 59.429199 +10.864673 59.432720 +10.871127 59.436533 +10.876407 59.441227 +10.881394 59.445627 +10.887848 59.449441 +10.897529 59.449441 +10.897529 59.444747 +10.895182 59.440640 +nan nan +9.902764 59.665056 +9.908925 59.661243 +9.916258 59.658016 +9.922419 59.654202 +9.928579 59.650682 +9.934446 59.646575 +9.940607 59.643055 +9.945007 59.638654 +9.949701 59.634254 +9.955568 59.630147 +9.961728 59.626627 +9.967889 59.622813 +9.975223 59.619586 +9.981383 59.615773 +9.987250 59.611959 +9.993411 59.608146 +10.000745 59.604919 +10.006905 59.601105 +10.012772 59.597585 +10.020399 59.594064 +10.030960 59.592304 +10.042694 59.590838 +10.056482 59.590251 +10.065283 59.587611 +10.069976 59.582917 +10.069976 59.577050 +10.074376 59.572356 +10.080244 59.568543 +10.087871 59.565609 +10.095205 59.562382 +10.089924 59.562676 +10.079364 59.564729 +10.068803 59.566783 +10.058535 59.568543 +10.051202 59.571770 +10.043574 59.574996 +10.037414 59.578517 +10.026853 59.580864 +10.013652 59.581450 +10.001331 59.582917 +9.991064 59.584677 +9.984903 59.588491 +9.977570 59.591718 +9.971409 59.595531 +9.963782 59.598465 +9.956448 59.601985 +9.950288 59.605799 +9.942660 59.609026 +9.935327 59.611959 +9.927699 59.615186 +9.920365 59.618413 +9.914205 59.622227 +9.906578 59.625160 +9.900711 59.629267 +9.893083 59.632494 +9.887216 59.636014 +9.881056 59.640121 +9.874896 59.643641 +9.867562 59.646868 +9.861401 59.650975 +9.855534 59.654495 +9.852601 59.659483 +9.849374 59.664470 +9.846440 59.669457 +9.843213 59.674444 +9.838520 59.678844 +9.827959 59.680897 +9.818278 59.679431 +9.809184 59.682071 +9.806251 59.687058 +9.810064 59.692338 +9.815345 59.697619 +9.823852 59.699672 +9.831479 59.696739 +9.842040 59.694685 +9.851427 59.693218 +9.854361 59.688231 +9.857588 59.683244 +9.860521 59.678257 +9.866682 59.674737 +9.875482 59.671803 +9.886043 59.670043 +9.896604 59.667990 +9.902764 59.665056 +nan nan +8.555974 60.465327 +8.562721 60.462687 +8.572109 60.460633 +8.582963 60.458580 +8.592350 60.456233 +8.598511 60.452126 +8.606724 60.449193 +8.615818 60.446552 +8.626673 60.445086 +8.636060 60.442445 +8.648674 60.440979 +8.660995 60.441272 +8.671262 60.443032 +8.683877 60.443032 +8.691797 60.440099 +8.699424 60.436872 +8.708812 60.434525 +8.719666 60.432471 +8.729933 60.434231 +8.734627 60.437458 +8.729933 60.441565 +8.739907 60.443325 +8.750761 60.441565 +8.760149 60.439218 +8.769536 60.436578 +8.777457 60.433645 +8.788311 60.431591 +8.800632 60.430418 +8.812953 60.429244 +8.825274 60.427778 +8.834661 60.425137 +8.842581 60.422204 +8.850209 60.419270 +8.858129 60.416043 +8.863116 60.411643 +8.866050 60.406656 +8.866343 60.400496 +8.866636 60.394042 +8.865463 60.387588 +8.865463 60.381134 +8.865756 60.374974 +8.866050 60.368520 +8.868103 60.362946 +8.869863 60.357373 +8.871330 60.351799 +8.873090 60.346225 +8.876317 60.341238 +8.879837 60.336251 +8.873677 60.333904 +8.865756 60.336838 +8.859303 60.340651 +8.853436 60.344465 +8.846982 60.347985 +8.840821 60.351799 +8.834367 60.355612 +8.829674 60.360013 +8.824687 60.364120 +8.822927 60.369987 +8.821460 60.375561 +8.824980 60.380841 +8.831434 60.384655 +8.838768 60.387881 +8.846395 60.391108 +8.851675 60.395509 +8.848448 60.400496 +8.838768 60.403136 +8.827620 60.402256 +8.815299 60.403429 +8.807379 60.406656 +8.797992 60.409296 +8.788898 60.411350 +8.777750 60.413403 +8.766896 60.415163 +8.756042 60.417217 +8.744014 60.418390 +8.733160 60.420150 +8.719079 60.420737 +8.706758 60.421911 +8.694437 60.423377 +8.681823 60.424551 +8.670969 60.426311 +8.660408 60.428364 +8.649554 60.430418 +8.638407 60.430418 +8.625793 60.431885 +8.612005 60.432471 +8.599684 60.433645 +8.590297 60.435992 +8.582376 60.439218 +8.574455 60.442152 +8.566535 60.445672 +8.560374 60.449193 +8.552454 60.452126 +8.544827 60.455353 +8.538373 60.459167 +8.533386 60.463274 +8.534266 60.467381 +8.543947 60.467674 +8.555974 60.465327 +nan nan +8.195442 60.172266 +8.199255 60.168746 +8.205416 60.164932 +8.210403 60.160532 +8.216563 60.157012 +8.221257 60.152611 +8.227711 60.148798 +8.232404 60.144397 +8.237391 60.140290 +8.243552 60.136477 +8.252939 60.134130 +8.260860 60.130903 +8.267313 60.127089 +8.273474 60.123569 +8.276994 60.118582 +8.280221 60.113595 +8.283741 60.108608 +8.286968 60.103621 +8.288728 60.098047 +8.289022 60.091887 +8.286968 60.088660 +8.280808 60.092180 +8.271420 60.094820 +8.262326 60.096874 +8.252646 60.099514 +8.243552 60.101861 +8.232698 60.103914 +8.223604 60.105968 +8.214216 60.108608 +8.205122 60.111248 +8.203069 60.116529 +8.206589 60.122102 +8.209229 60.128263 +8.211283 60.132957 +8.209523 60.138530 +8.204536 60.142637 +8.196615 60.145864 +8.188988 60.149091 +8.181067 60.152318 +8.174613 60.155838 +8.171387 60.160825 +8.169333 60.166399 +8.169040 60.172559 +8.174027 60.177253 +8.185174 60.178426 +8.193095 60.174906 +8.195442 60.172266 +nan nan +8.779804 59.971025 +8.789191 59.970145 +8.801218 59.968971 +8.813246 59.967505 +8.822633 59.964864 +8.827620 59.960757 +8.830554 59.955770 +8.835248 59.951370 +8.839941 59.946970 +8.843461 59.942276 +8.846395 59.936996 +8.851089 59.932889 +8.855782 59.928195 +8.859303 59.923208 +8.863996 59.919101 +8.867223 59.914114 +8.871917 59.909714 +8.875144 59.904727 +8.878371 59.899740 +8.881304 59.894753 +8.885998 59.890352 +8.890692 59.886245 +8.895679 59.881552 +8.900372 59.877151 +8.905066 59.873045 +8.909760 59.868644 +8.914453 59.864244 +8.920614 59.860430 +8.925307 59.856030 +8.931468 59.852510 +8.936161 59.848109 +8.942615 59.844296 +8.947016 59.839602 +8.951709 59.835495 +8.958163 59.831682 +8.965497 59.828748 +8.971657 59.824934 +8.980751 59.822588 +8.988672 59.819067 +8.997766 59.816720 +9.003926 59.813200 +9.010087 59.809387 +9.013314 59.804106 +9.018007 59.799999 +9.016541 59.792959 +9.015367 59.786505 +9.012727 59.780051 +9.013020 59.773891 +9.016247 59.768904 +9.019474 59.763917 +9.022701 59.758930 +9.024461 59.753356 +9.024461 59.747195 +9.021821 59.741035 +9.018301 59.735461 +9.013314 59.731061 +9.006567 59.732234 +9.005100 59.737808 +9.004806 59.743969 +9.004513 59.750129 +9.001286 59.755116 +8.998059 59.760103 +8.993659 59.764503 +8.991605 59.770077 +8.988672 59.775064 +8.986912 59.780638 +8.989552 59.786798 +8.991899 59.792665 +8.995419 59.798239 +8.993952 59.803813 +8.989259 59.808213 +8.981631 59.811440 +8.975471 59.814960 +8.967844 59.818187 +8.958750 59.820534 +8.952589 59.824348 +8.944669 59.827575 +8.937335 59.830508 +8.930881 59.834322 +8.924721 59.838135 +8.920027 59.842536 +8.915333 59.846936 +8.910640 59.851043 +8.905946 59.855443 +8.899786 59.859550 +8.895092 59.863657 +8.890398 59.868057 +8.885411 59.872458 +8.880717 59.876565 +8.877784 59.881552 +8.873090 59.886245 +8.869863 59.891232 +8.866636 59.896220 +8.861943 59.900620 +8.858716 59.905607 +8.854022 59.909714 +8.849035 59.914114 +8.843168 59.917634 +8.835248 59.921155 +8.824687 59.922915 +8.812366 59.924088 +8.803859 59.921741 +8.793885 59.919981 +8.782737 59.920568 +8.785084 59.925262 +8.792418 59.928488 +8.800045 59.931715 +8.806205 59.935529 +8.808552 59.941689 +8.805619 59.946676 +8.800925 59.950783 +8.791538 59.953424 +8.780977 59.955184 +8.771590 59.957824 +8.762496 59.960171 +8.756042 59.963984 +8.753108 59.968971 +8.759269 59.972785 +8.772763 59.972198 +8.779804 59.971025 +nan nan +9.197540 59.697325 +9.206341 59.694685 +9.212501 59.691165 +9.218662 59.687351 +9.223355 59.682951 +9.226289 59.677964 +9.228049 59.672097 +9.231276 59.667110 +9.235970 59.663003 +9.232449 59.658896 +9.221302 59.658016 +9.207808 59.658896 +9.198714 59.661243 +9.191086 59.664470 +9.177592 59.665350 +9.169965 59.668283 +9.165271 59.672683 +9.164978 59.678844 +9.168791 59.684124 +9.173779 59.688818 +9.178766 59.693218 +9.186099 59.696739 +9.197540 59.697325 +nan nan +9.890443 59.190115 +9.901004 59.189529 +9.908631 59.186009 +9.913032 59.181902 +9.915965 59.176621 +9.917432 59.171047 +9.919192 59.165474 +9.919192 59.159313 +9.919192 59.153153 +9.922126 59.148166 +9.926526 59.143472 +9.932393 59.139952 +9.937087 59.135552 +9.942954 59.131738 +9.948821 59.127924 +9.954688 59.124111 +9.959088 59.119710 +9.965249 59.115897 +9.971116 59.112083 +9.976983 59.108270 +9.983143 59.104749 +9.989010 59.100936 +9.993411 59.096535 +9.999278 59.092428 +10.003678 59.088322 +10.009839 59.084508 +10.012479 59.079521 +10.016879 59.075121 +10.020106 59.070134 +10.021279 59.064560 +10.018933 59.058399 +10.010719 59.058986 +10.003678 59.061920 +10.000451 59.066907 +9.996051 59.071307 +9.991651 59.075707 +9.987250 59.080401 +9.982850 59.084801 +9.978450 59.088908 +9.970822 59.092135 +9.963489 59.095362 +9.954688 59.098002 +9.944127 59.100056 +9.937087 59.102989 +9.929459 59.106216 +9.925059 59.110616 +9.921832 59.115603 +9.917432 59.120004 +9.914792 59.124991 +9.911565 59.129978 +9.907164 59.134378 +9.902764 59.138778 +9.896604 59.142885 +9.890737 59.146406 +9.883403 59.149339 +9.874309 59.152273 +9.866975 59.155206 +9.862575 59.159607 +9.863748 59.166647 +9.871375 59.169581 +9.879002 59.172514 +9.881349 59.178675 +9.879883 59.184542 +9.874015 59.188062 +9.868148 59.191876 +9.873722 59.193049 +9.883989 59.190996 +9.890443 59.190115 +nan nan +9.240663 59.360848 +9.239490 59.355274 +9.239783 59.349114 +9.241250 59.343540 +9.245944 59.339140 +9.247410 59.333566 +9.251811 59.329165 +9.255331 59.324178 +9.259731 59.319778 +9.264132 59.315671 +9.270292 59.311564 +9.274986 59.307457 +9.282613 59.304230 +9.291414 59.301590 +9.300214 59.299243 +9.310775 59.297190 +9.321336 59.295136 +9.330136 59.292790 +9.339230 59.290149 +9.346564 59.287216 +9.352725 59.283402 +9.360352 59.280175 +9.366512 59.276362 +9.370913 59.272255 +9.377073 59.268441 +9.384407 59.265214 +9.394674 59.263454 +9.402302 59.260227 +9.408462 59.256414 +9.414329 59.252600 +9.419023 59.248200 +9.421956 59.243213 +9.424890 59.238226 +9.429584 59.233825 +9.434277 59.229425 +9.440144 59.225905 +9.446011 59.222091 +9.455105 59.219451 +9.464199 59.216811 +9.473000 59.214464 +9.483267 59.211530 +9.492361 59.209184 +9.499695 59.206250 +9.493828 59.204490 +9.486788 59.200970 +9.484441 59.196276 +9.492068 59.193342 +9.486494 59.193636 +9.473000 59.194516 +9.463906 59.195689 +9.457746 59.199209 +9.453345 59.203610 +9.448945 59.208010 +9.444251 59.212410 +9.433984 59.214464 +9.421956 59.215637 +9.413156 59.217984 +9.405528 59.221504 +9.401128 59.225611 +9.398195 59.230598 +9.393208 59.234999 +9.388807 59.239399 +9.384114 59.243799 +9.378247 59.247613 +9.372086 59.251427 +9.366219 59.254947 +9.360352 59.258760 +9.352725 59.261987 +9.343631 59.264334 +9.331897 59.265801 +9.321336 59.267854 +9.312535 59.270201 +9.304908 59.273428 +9.295814 59.275775 +9.287013 59.278415 +9.280853 59.282229 +9.276453 59.286629 +9.274692 59.292203 +9.268532 59.295723 +9.261198 59.299243 +9.253571 59.302177 +9.247410 59.305697 +9.240077 59.309217 +9.232449 59.312151 +9.223649 59.314791 +9.214555 59.317138 +9.205461 59.319778 +9.196660 59.322125 +9.187566 59.324765 +9.179939 59.327992 +9.173779 59.331806 +9.167911 59.335619 +9.163218 59.339726 +9.158524 59.344127 +9.155591 59.349114 +9.153830 59.354687 +9.152364 59.360261 +9.150604 59.366128 +9.152070 59.372875 +9.160871 59.370235 +9.168205 59.366421 +9.174365 59.362901 +9.180526 59.358794 +9.192847 59.359088 +9.199007 59.363195 +9.206048 59.366128 +9.213675 59.369062 +9.220715 59.372289 +9.227169 59.376102 +9.234503 59.379036 +9.243010 59.381383 +9.246530 59.378742 +9.244184 59.372582 +9.241543 59.366421 +9.240663 59.360848 +nan nan +9.186099 59.045198 +9.193727 59.043438 +9.204287 59.041678 +9.216022 59.041678 +9.228342 59.041678 +9.235970 59.039918 +9.241837 59.036398 +9.247997 59.032584 +9.255624 59.029357 +9.265892 59.027597 +9.279093 59.026717 +9.288187 59.024077 +9.299921 59.023197 +9.310775 59.023784 +9.318402 59.020557 +9.324269 59.017036 +9.334537 59.014983 +9.341871 59.012049 +9.345097 59.007062 +9.348031 59.002075 +9.355658 58.998555 +9.360059 58.994448 +9.361525 58.988581 +9.358005 58.983301 +9.347444 58.983887 +9.340110 58.986821 +9.335417 58.991515 +9.330723 58.995915 +9.323389 58.998848 +9.314589 59.001489 +9.307255 59.004716 +9.301094 59.008236 +9.292294 59.010876 +9.283200 59.013223 +9.271466 59.014690 +9.259731 59.016156 +9.246530 59.016743 +9.235676 59.015863 +9.226876 59.013516 +9.223355 59.007942 +9.227756 59.003835 +9.235383 59.000609 +9.242717 58.997382 +9.251517 58.994448 +9.257385 58.990635 +9.262078 58.986234 +9.265012 58.981247 +9.267945 58.975967 +9.262078 58.973620 +9.251811 58.975673 +9.241543 58.977434 +9.229516 58.977434 +9.217488 58.977434 +9.208688 58.980074 +9.205461 58.985061 +9.202527 58.989754 +9.199300 58.995035 +9.194607 58.999142 +9.191673 59.004129 +9.188740 59.009116 +9.185513 59.014103 +9.183753 59.019677 +9.179352 59.024077 +9.174659 59.028477 +9.170258 59.032878 +9.167325 59.037865 +9.164098 59.042852 +9.172605 59.045198 +9.186099 59.045198 +nan nan +8.864583 58.808755 +8.867810 58.803768 +8.866636 58.797314 +8.861943 58.792620 +8.859303 58.786460 +8.859596 58.780299 +8.859889 58.773846 +8.856369 58.768565 +8.856662 58.762405 +8.856662 58.756244 +8.849622 58.753017 +8.840821 58.755658 +8.828794 58.756538 +8.821753 58.760058 +8.818233 58.765045 +8.820873 58.771205 +8.825567 58.775606 +8.830554 58.780299 +8.834074 58.785580 +8.832314 58.789687 +8.822633 58.789393 +8.812073 58.788513 +8.801218 58.787633 +8.789191 58.787633 +8.777163 58.787633 +8.766309 58.786753 +8.754575 58.786753 +8.745774 58.784113 +8.737561 58.781766 +8.729053 58.779419 +8.720839 58.777366 +8.716146 58.772379 +8.712625 58.767098 +8.712919 58.760938 +8.715852 58.755951 +8.718786 58.750964 +8.715266 58.745684 +8.707052 58.743337 +8.697371 58.741577 +8.687690 58.740110 +8.678890 58.742457 +8.675956 58.747444 +8.676836 58.754191 +8.679476 58.760351 +8.682703 58.765925 +8.686517 58.771205 +8.690037 58.776486 +8.693557 58.781766 +8.699718 58.785580 +8.709105 58.787340 +8.718786 58.788807 +8.729640 58.789687 +8.740201 58.790567 +8.751055 58.791447 +8.761909 58.792620 +8.771590 58.793794 +8.782444 58.794967 +8.791831 58.796727 +8.801805 58.798194 +8.812366 58.798781 +8.820873 58.801421 +8.829087 58.803474 +8.836421 58.806995 +8.842581 58.810515 +8.848448 58.814329 +8.858129 58.816089 +8.864290 58.812568 +8.864583 58.808755 +nan nan +8.939388 59.299537 +8.932055 59.296310 +8.922080 59.294843 +8.912400 59.293376 +8.902719 59.291616 +8.891572 59.290736 +8.878371 59.290443 +8.866050 59.290443 +8.854902 59.289856 +8.844048 59.288976 +8.833194 59.288096 +8.822340 59.287216 +8.810019 59.286922 +8.797698 59.286922 +8.787137 59.288683 +8.775403 59.289856 +8.761909 59.290443 +8.751055 59.289856 +8.741374 59.288096 +8.730227 59.287216 +8.719373 59.286336 +8.708225 59.285162 +8.696491 59.286629 +8.688864 59.289856 +8.685930 59.294843 +8.689450 59.300123 +8.699131 59.301590 +8.709985 59.302470 +8.719666 59.304230 +8.730813 59.305110 +8.743134 59.305404 +8.753988 59.305990 +8.765723 59.305110 +8.778043 59.305110 +8.787724 59.306577 +8.799752 59.305404 +8.810312 59.303644 +8.819113 59.301003 +8.831141 59.299830 +8.841995 59.299243 +8.851675 59.300710 +8.861356 59.302470 +8.869863 59.305110 +8.879837 59.306284 +8.891865 59.306577 +8.905359 59.305697 +8.917093 59.304817 +8.929414 59.304817 +8.941442 59.303644 +8.939388 59.299537 +nan nan +8.460341 59.311564 +8.467674 59.308631 +8.475302 59.305697 +8.482636 59.301590 +8.487623 59.297190 +8.490849 59.292496 +8.493783 59.287509 +8.492903 59.280469 +8.490263 59.274308 +8.487036 59.269028 +8.483222 59.263747 +8.479702 59.258467 +8.476182 59.253187 +8.473542 59.247026 +8.471488 59.240866 +8.470021 59.233825 +8.467674 59.227665 +8.465328 59.221798 +8.462981 59.215637 +8.460634 59.209477 +8.459461 59.202730 +8.461514 59.197156 +8.462981 59.191289 +8.464741 59.185715 +8.467968 59.180728 +8.469728 59.175154 +8.470021 59.169287 +8.470315 59.162834 +8.472368 59.157260 +8.473835 59.151686 +8.477355 59.146699 +8.477942 59.144646 +8.481462 59.139659 +8.482929 59.134085 +8.483222 59.127924 +8.481169 59.121764 +8.479995 59.115017 +8.481756 59.109150 +8.483222 59.103576 +8.486743 59.098589 +8.489676 59.093602 +8.491730 59.088028 +8.494663 59.083041 +8.493490 59.076294 +8.491143 59.070134 +8.487916 59.065147 +8.482636 59.060159 +8.480582 59.054292 +8.477942 59.048132 +8.479995 59.042558 +8.481756 59.036985 +8.484689 59.031997 +8.487916 59.027010 +8.489676 59.021437 +8.489969 59.014983 +8.482636 59.012049 +8.472368 59.013810 +8.465034 59.017036 +8.460341 59.021143 +8.455647 59.025544 +8.451247 59.029944 +8.447726 59.034931 +8.444793 59.039625 +8.441273 59.044612 +8.438339 59.049599 +8.437752 59.056053 +8.437459 59.062213 +8.440099 59.068373 +8.443619 59.073654 +8.448313 59.078347 +8.451833 59.083628 +8.453007 59.090668 +8.451247 59.096242 +8.449487 59.101522 +8.447726 59.107096 +8.447433 59.113550 +8.444206 59.118537 +8.439512 59.122644 +8.435112 59.127338 +8.434525 59.133205 +8.436872 59.139365 +8.440686 59.144939 +8.441566 59.151686 +8.440099 59.157260 +8.436579 59.162247 +8.435112 59.167821 +8.431592 59.172808 +8.428365 59.177795 +8.423965 59.182195 +8.421911 59.187769 +8.418978 59.192756 +8.416924 59.198329 +8.418098 59.205370 +8.417804 59.211530 +8.416044 59.216811 +8.417218 59.223851 +8.418391 59.230598 +8.419564 59.237639 +8.426605 59.240572 +8.435406 59.242919 +8.437459 59.249080 +8.432765 59.253480 +8.431005 59.259054 +8.433645 59.265214 +8.443326 59.266974 +8.454180 59.267854 +8.461514 59.270788 +8.463861 59.276948 +8.460634 59.281935 +8.453007 59.284869 +8.445673 59.288096 +8.440979 59.292496 +8.437459 59.297483 +8.434232 59.302470 +8.429832 59.306577 +8.426312 59.311564 +8.431005 59.316258 +8.440979 59.318018 +8.451247 59.316258 +8.460341 59.311564 +nan nan +8.059032 59.182195 +8.059619 59.178968 +8.059032 59.171928 +8.057858 59.164887 +8.055512 59.159020 +8.055805 59.152859 +8.056098 59.146699 +8.059325 59.141712 +8.064312 59.137312 +8.069006 59.132911 +8.073700 59.128511 +8.079860 59.124991 +8.085727 59.121177 +8.093648 59.117950 +8.100982 59.115017 +8.108609 59.112083 +8.117703 59.109443 +8.126797 59.107096 +8.135891 59.104749 +8.144691 59.102109 +8.153492 59.099762 +8.164053 59.098002 +8.174613 59.096242 +8.182241 59.093015 +8.186934 59.088908 +8.191628 59.084508 +8.197788 59.080694 +8.206589 59.078347 +8.218617 59.077174 +8.224777 59.073360 +8.229471 59.069253 +8.232698 59.064266 +8.235925 59.059279 +8.239151 59.054292 +8.240912 59.048719 +8.242672 59.043145 +8.245899 59.038158 +8.247659 59.032584 +8.249419 59.027010 +8.251472 59.021437 +8.252939 59.015863 +8.254993 59.009996 +8.255286 59.003835 +8.251766 58.998555 +8.243258 58.996208 +8.234164 58.998555 +8.231231 59.003542 +8.230938 59.009703 +8.228884 59.015276 +8.224190 59.019677 +8.218030 59.023197 +8.211869 59.027010 +8.207176 59.031411 +8.202775 59.035811 +8.198082 59.039918 +8.191921 59.044025 +8.185761 59.047545 +8.178427 59.050479 +8.169040 59.053119 +8.161706 59.056053 +8.154079 59.059279 +8.146451 59.062213 +8.140291 59.065733 +8.134131 59.069547 +8.127970 59.073360 +8.121810 59.076881 +8.117116 59.081281 +8.111249 59.085095 +8.106262 59.089495 +8.101568 59.093602 +8.095701 59.097416 +8.088074 59.100642 +8.079273 59.102696 +8.071353 59.106216 +8.062552 59.108270 +8.056392 59.112083 +8.049938 59.115897 +8.043777 59.119417 +8.037910 59.122937 +8.031750 59.127044 +8.028230 59.132031 +8.026763 59.137605 +8.026176 59.143472 +8.025883 59.149633 +8.025296 59.156086 +8.028816 59.161367 +8.033510 59.166060 +8.037324 59.171341 +8.039377 59.177501 +8.041724 59.183662 +8.041431 59.190115 +8.044951 59.195396 +8.049644 59.190702 +8.059032 59.182195 +nan nan +8.064899 59.429786 +8.075460 59.427733 +8.086020 59.425972 +8.096581 59.424212 +8.104208 59.420985 +8.111836 59.418052 +8.121223 59.415412 +8.132957 59.414532 +8.142638 59.414825 +8.152319 59.416292 +8.164346 59.416585 +8.178134 59.415998 +8.187228 59.413652 +8.197788 59.411598 +8.208349 59.410131 +8.217150 59.407491 +8.227711 59.405438 +8.236805 59.403384 +8.247365 59.401331 +8.256753 59.398984 +8.267313 59.397224 +8.277874 59.395170 +8.288435 59.393703 +8.298996 59.391650 +8.309556 59.389890 +8.321291 59.388716 +8.333318 59.387543 +8.344172 59.386956 +8.356493 59.387250 +8.368521 59.387543 +8.382015 59.386663 +8.394043 59.386956 +8.407537 59.386370 +8.416631 59.384023 +8.422791 59.380209 +8.427485 59.375809 +8.430712 59.370822 +8.422498 59.369648 +8.410177 59.369648 +8.398150 59.369355 +8.384655 59.369942 +8.372628 59.369942 +8.358840 59.370528 +8.346812 59.370235 +8.333318 59.370822 +8.320997 59.370822 +8.307796 59.371409 +8.297236 59.373169 +8.286675 59.374929 +8.274354 59.376102 +8.265553 59.378742 +8.254993 59.380502 +8.244432 59.382263 +8.235338 59.384609 +8.226244 59.387250 +8.217150 59.389303 +8.208056 59.391943 +8.197495 59.393997 +8.186934 59.395464 +8.174613 59.395464 +8.162586 59.395170 +8.149092 59.395757 +8.138531 59.397810 +8.127970 59.399571 +8.118876 59.401917 +8.111249 59.405144 +8.102155 59.407491 +8.094528 59.410425 +8.085140 59.412771 +8.077807 59.415998 +8.068713 59.418345 +8.059325 59.420692 +8.050231 59.423332 +8.041137 59.425972 +8.032337 59.428026 +8.021776 59.430079 +8.012388 59.432426 +8.023243 59.431840 +8.035270 59.430959 +8.047298 59.429786 +8.064899 59.429786 +nan nan +7.731062 59.763917 +7.741916 59.762157 +7.751010 59.759810 +7.761570 59.757756 +7.770958 59.755409 +7.778585 59.752476 +7.787972 59.750129 +7.795600 59.746315 +7.802053 59.742502 +7.809681 59.739568 +7.815841 59.735755 +7.822295 59.732234 +7.828749 59.728714 +7.833442 59.724020 +7.839603 59.720500 +7.845763 59.716980 +7.852217 59.713166 +7.858671 59.709353 +7.866298 59.706419 +7.876859 59.704366 +7.888006 59.705539 +7.899154 59.706419 +7.908834 59.708179 +7.918515 59.709939 +7.928489 59.711700 +7.938463 59.713460 +7.951957 59.712873 +7.965452 59.712286 +7.976306 59.710233 +7.985693 59.708179 +7.994787 59.705539 +8.002414 59.702606 +8.008575 59.698792 +8.011802 59.693805 +8.013855 59.688231 +8.018549 59.683831 +8.025003 59.680311 +8.032630 59.677084 +8.037617 59.672683 +8.034097 59.668870 +8.025589 59.666523 +8.017962 59.663296 +8.010922 59.660069 +8.004761 59.656256 +7.996547 59.656256 +7.991854 59.660949 +7.986867 59.665056 +7.982173 59.669457 +7.977479 59.673857 +7.969852 59.677084 +7.960465 59.679137 +7.951371 59.681777 +7.943744 59.684711 +7.935823 59.687645 +7.928196 59.690871 +7.917635 59.692632 +7.905314 59.693805 +7.892993 59.693512 +7.881846 59.692632 +7.870698 59.691752 +7.858671 59.691458 +7.847817 59.692045 +7.841363 59.695565 +7.836669 59.699965 +7.831682 59.704072 +7.826989 59.708473 +7.820535 59.712286 +7.814374 59.715807 +7.809387 59.720207 +7.803227 59.724020 +7.797066 59.727541 +7.790613 59.731354 +7.784452 59.734875 +7.776532 59.738101 +7.768904 59.741035 +7.759810 59.743675 +7.747489 59.744849 +7.738395 59.747195 +7.729008 59.749542 +7.722848 59.753063 +7.716394 59.756876 +7.711700 59.760983 +7.705246 59.764797 +7.700259 59.769197 +7.704953 59.772424 +7.712874 59.769490 +7.720501 59.766264 +7.731062 59.763917 +nan nan +7.963105 59.971612 +7.967799 59.967211 +7.974252 59.963691 +7.980413 59.959877 +7.986867 59.956357 +7.996254 59.954010 +8.005348 59.951370 +8.014735 59.949023 +8.025296 59.947263 +8.034683 59.944623 +8.043777 59.942276 +8.050231 59.938756 +8.056392 59.934942 +8.059912 59.929955 +8.061672 59.924382 +8.058152 59.918808 +8.053458 59.914407 +8.048471 59.909714 +8.042311 59.905900 +8.037617 59.901207 +8.032630 59.896806 +8.028816 59.891232 +8.026763 59.885072 +8.028523 59.879498 +8.032043 59.874511 +8.037910 59.870698 +8.045831 59.867764 +8.055218 59.865417 +8.069006 59.864831 +8.081327 59.865124 +8.091007 59.866591 +8.100982 59.868351 +8.110956 59.870111 +8.121810 59.870698 +8.132664 59.869231 +8.139118 59.865417 +8.143811 59.861017 +8.149972 59.857203 +8.154959 59.853096 +8.159652 59.848696 +8.166106 59.844882 +8.174027 59.841949 +8.185761 59.840482 +8.196615 59.839015 +8.204536 59.835789 +8.210696 59.832268 +8.218323 59.828748 +8.226244 59.825814 +8.235338 59.823468 +8.242965 59.820241 +8.252352 59.818187 +8.259980 59.814960 +8.269074 59.812614 +8.276994 59.809387 +8.286088 59.807040 +8.295182 59.804400 +8.289608 59.803226 +8.278754 59.802639 +8.267607 59.801466 +8.256459 59.802053 +8.245899 59.803520 +8.236805 59.806160 +8.227417 59.808507 +8.219790 59.811733 +8.210696 59.814080 +8.202775 59.817307 +8.194855 59.820241 +8.185761 59.822881 +8.179307 59.826401 +8.171680 59.829335 +8.163759 59.832562 +8.156425 59.835495 +8.148505 59.839015 +8.139411 59.841069 +8.130024 59.843709 +8.117703 59.844589 +8.104208 59.845176 +8.095701 59.843122 +8.091888 59.837549 +8.095408 59.832562 +8.098635 59.827575 +8.101862 59.822881 +8.103915 59.817014 +8.107142 59.812320 +8.110662 59.807333 +8.115356 59.802639 +8.120343 59.798533 +8.126503 59.794719 +8.132664 59.791199 +8.140584 59.787972 +8.146745 59.784158 +8.154372 59.781225 +8.162293 59.777998 +8.169920 59.775064 +8.179307 59.772717 +8.186934 59.769784 +8.196028 59.767144 +8.202189 59.763330 +8.210109 59.760396 +8.204829 59.761863 +8.196908 59.765090 +8.187814 59.767437 +8.177254 59.769197 +8.166400 59.771251 +8.155839 59.773011 +8.144985 59.773304 +8.135891 59.775944 +8.127677 59.777411 +8.118583 59.780051 +8.109489 59.782985 +8.101568 59.786212 +8.095408 59.788265 +8.087487 59.791492 +8.079860 59.794719 +8.071939 59.797652 +8.064312 59.800879 +8.056392 59.803813 +8.050231 59.807626 +8.042604 59.810560 +8.034683 59.813494 +8.028230 59.817307 +8.020896 59.820241 +8.014442 59.824054 +8.007988 59.827868 +8.003294 59.832268 +8.004175 59.837549 +8.012682 59.839895 +8.017376 59.844589 +8.012682 59.848989 +8.006521 59.852803 +7.998601 59.855737 +7.992440 59.859550 +7.989213 59.864537 +7.985693 59.869524 +7.985400 59.875685 +7.987747 59.881552 +7.992440 59.886245 +7.997134 59.891232 +8.002121 59.895633 +8.006815 59.900326 +8.011802 59.905020 +8.016789 59.909420 +8.022656 59.913234 +8.026469 59.918808 +8.029990 59.924088 +8.030870 59.929662 +8.026176 59.933769 +8.018256 59.936996 +8.009162 59.939343 +7.996841 59.940516 +7.985987 59.942570 +7.976893 59.944916 +7.969265 59.948143 +7.961051 59.951077 +7.956358 59.955184 +7.949904 59.959291 +7.946677 59.963984 +7.943450 59.968971 +7.941397 59.974545 +7.939343 59.980412 +7.936116 59.985106 +7.931423 59.989506 +7.926436 59.993907 +7.921742 59.998013 +7.925262 59.995373 +7.933183 59.992146 +7.938170 59.987746 +7.944037 59.984226 +7.950491 59.980412 +7.956945 59.976599 +7.961638 59.972492 +7.963105 59.971612 +nan nan +7.628974 60.195734 +7.638362 60.194854 +7.652149 60.194561 +7.664764 60.194854 +7.674738 60.196321 +7.684712 60.198081 +7.695566 60.197788 +7.697619 60.191921 +7.695272 60.185760 +7.692926 60.179600 +7.697913 60.175493 +7.702900 60.171093 +7.709060 60.167572 +7.715514 60.163759 +7.723728 60.160825 +7.731355 60.157892 +7.740449 60.155251 +7.753063 60.154078 +7.764211 60.154958 +7.775065 60.153198 +7.778585 60.148211 +7.769784 60.145864 +7.758637 60.144984 +7.746023 60.144691 +7.733995 60.145864 +7.724314 60.148211 +7.716687 60.151438 +7.707300 60.153785 +7.697913 60.156132 +7.689992 60.159065 +7.679138 60.161119 +7.666817 60.162292 +7.653029 60.162585 +7.640415 60.162585 +7.629268 60.161412 +7.619587 60.159652 +7.609320 60.158185 +7.598172 60.157012 +7.588198 60.155251 +7.577051 60.154371 +7.567077 60.152611 +7.554462 60.152318 +7.543608 60.152905 +7.538621 60.157012 +7.545955 60.160238 +7.557102 60.161412 +7.569717 60.161412 +7.579397 60.161705 +7.585558 60.165812 +7.591718 60.169626 +7.596412 60.174319 +7.601399 60.179013 +7.606093 60.183707 +7.612253 60.187520 +7.628974 60.195734 +nan nan +7.465283 59.881552 +7.470270 59.877445 +7.476723 59.873631 +7.483177 59.870111 +7.490804 59.866884 +7.503125 59.865711 +7.512806 59.867764 +7.521313 59.870111 +7.533927 59.870404 +7.537154 59.865417 +7.540675 59.860430 +7.544195 59.855443 +7.548889 59.851043 +7.553876 59.846936 +7.558863 59.842536 +7.559449 59.837842 +7.553289 59.834028 +7.547128 59.829921 +7.545075 59.823468 +7.548595 59.818774 +7.545075 59.822588 +7.540088 59.826695 +7.532167 59.829628 +7.522487 59.828161 +7.514859 59.824641 +7.504299 59.825228 +7.499312 59.829335 +7.500192 59.836375 +7.495205 59.840482 +7.487577 59.843709 +7.478190 59.846056 +7.468803 59.848696 +7.462642 59.852216 +7.457655 59.856323 +7.452668 59.860724 +7.449441 59.865711 +7.447388 59.871284 +7.445628 59.876858 +7.445041 59.883019 +7.447095 59.889179 +7.452082 59.893873 +7.458242 59.890352 +7.463229 59.885952 +7.465283 59.881552 +nan nan +7.737222 58.835743 +7.741916 58.831636 +7.748076 58.827823 +7.754237 58.824303 +7.760397 58.820489 +7.763624 58.815502 +7.765677 58.809928 +7.765971 58.803768 +7.767731 58.798194 +7.772425 58.793794 +7.780052 58.790860 +7.788852 58.788220 +7.796480 58.785286 +7.802640 58.781766 +7.807334 58.777366 +7.812027 58.772966 +7.819361 58.770032 +7.825522 58.766512 +7.828749 58.761525 +7.832269 58.756244 +7.829922 58.750377 +7.824055 58.746270 +7.818188 58.742457 +7.813494 58.737763 +7.808801 58.733363 +7.804107 58.728669 +7.802053 58.722509 +7.799707 58.716348 +7.800293 58.710188 +7.799120 58.703441 +7.797066 58.697280 +7.793546 58.692000 +7.790319 58.686426 +7.787972 58.680266 +7.788266 58.674105 +7.791786 58.669118 +7.796480 58.664718 +7.799707 58.660024 +7.801467 58.654157 +7.803227 58.648583 +7.803520 58.642423 +7.801467 58.636262 +7.799413 58.630395 +7.799707 58.624235 +7.800293 58.617781 +7.802053 58.612207 +7.803814 58.606634 +7.800587 58.601353 +7.794426 58.604873 +7.789439 58.608100 +7.786212 58.612794 +7.784452 58.618368 +7.782399 58.624235 +7.780639 58.629809 +7.781812 58.636262 +7.783865 58.642423 +7.784745 58.649463 +7.781812 58.654450 +7.778292 58.659437 +7.773598 58.663544 +7.770371 58.668531 +7.765971 58.672932 +7.762451 58.677919 +7.760690 58.683199 +7.761277 58.688773 +7.764797 58.694053 +7.766851 58.700507 +7.768024 58.707254 +7.768904 58.714295 +7.768611 58.720162 +7.769491 58.727202 +7.774185 58.731896 +7.778878 58.736296 +7.785919 58.739817 +7.794133 58.741870 +7.801467 58.745390 +7.808214 58.748324 +7.813201 58.753017 +7.808214 58.757124 +7.799413 58.759765 +7.790613 58.762111 +7.784452 58.765925 +7.778292 58.769445 +7.770958 58.772379 +7.763037 58.775606 +7.756877 58.779419 +7.750716 58.782940 +7.747783 58.787927 +7.744556 58.792914 +7.742502 58.798487 +7.741916 58.804648 +7.740156 58.810222 +7.738395 58.815795 +7.736342 58.821369 +7.733408 58.826356 +7.728715 58.830756 +7.724021 58.834863 +7.719034 58.839557 +7.717274 58.845131 +7.721674 58.848358 +7.726368 58.843957 +7.737222 58.835743 +nan nan +6.687307 58.654744 +6.686720 58.649463 +6.684667 58.643303 +6.682906 58.637142 +6.679386 58.631569 +6.678506 58.624822 +6.676746 58.618661 +6.677333 58.612501 +6.677919 58.606340 +6.679973 58.600767 +6.680560 58.594313 +6.682906 58.589032 +6.684667 58.583459 +6.688187 58.578472 +6.688480 58.572311 +6.688187 58.566737 +6.684960 58.561457 +6.681733 58.555883 +6.678213 58.550603 +6.675279 58.545029 +6.672052 58.539749 +6.669999 58.533588 +6.667945 58.527428 +6.667359 58.520681 +6.666479 58.513934 +6.663252 58.508360 +6.661492 58.502199 +6.657971 58.496626 +6.656211 58.490465 +6.654158 58.484305 +6.652104 58.478438 +6.651517 58.471397 +6.650637 58.464650 +6.649757 58.457903 +6.649171 58.451156 +6.645944 58.445582 +6.642717 58.440302 +6.638317 58.435608 +6.633916 58.430914 +6.628049 58.426807 +6.623062 58.429741 +6.622475 58.435901 +6.623062 58.441475 +6.625116 58.447636 +6.626876 58.453503 +6.630396 58.459076 +6.632156 58.465237 +6.634210 58.471397 +6.637436 58.476678 +6.639490 58.482838 +6.641250 58.488998 +6.643304 58.495159 +6.646530 58.500439 +6.648584 58.506600 +6.650637 58.512760 +6.652398 58.518921 +6.654451 58.525081 +6.656798 58.531535 +6.658558 58.537402 +6.661785 58.542682 +6.662372 58.549723 +6.664425 58.555883 +6.665305 58.562630 +6.666185 58.569378 +6.666772 58.576418 +6.667359 58.583459 +6.668239 58.589912 +6.667359 58.596366 +6.668239 58.603113 +6.666479 58.608687 +6.665892 58.615141 +6.663545 58.620421 +6.661785 58.625995 +6.661198 58.632155 +6.660318 58.638316 +6.659731 58.644770 +6.661785 58.650930 +6.663545 58.657091 +6.665892 58.662958 +6.670292 58.667651 +6.675866 58.671758 +6.683786 58.672638 +6.684667 58.666771 +6.683786 58.659731 +6.687307 58.654744 +nan nan +6.565271 58.427981 +6.565858 58.421527 +6.566445 58.415660 +6.568498 58.410086 +6.570552 58.404512 +6.572605 58.398939 +6.576125 58.393952 +6.578179 58.388378 +6.579939 58.382804 +6.582286 58.377230 +6.581406 58.370483 +6.580526 58.363736 +6.578472 58.357576 +6.575539 58.352002 +6.571138 58.347602 +6.566738 58.342908 +6.562338 58.337921 +6.555297 58.334694 +6.548257 58.331761 +6.540336 58.328827 +6.529775 58.329120 +6.530362 58.334694 +6.534762 58.339388 +6.540630 58.343201 +6.545030 58.348188 +6.550604 58.352002 +6.553830 58.357576 +6.555884 58.363736 +6.555004 58.369603 +6.552950 58.375177 +6.551190 58.381044 +6.547377 58.385738 +6.544150 58.390725 +6.540923 58.395418 +6.537109 58.400699 +6.533882 58.405686 +6.530655 58.410673 +6.526842 58.415367 +6.522148 58.419767 +6.518921 58.424461 +6.516574 58.430034 +6.514814 58.435608 +6.516574 58.441768 +6.523615 58.444995 +6.534176 58.444702 +6.541803 58.441768 +6.553244 58.440888 +6.563511 58.439128 +6.567325 58.434141 +6.567911 58.427981 +6.565271 58.427981 +nan nan +6.421234 61.931219 +6.413607 61.931806 +6.400699 61.932686 +6.386032 61.933272 +6.372537 61.932686 +6.362563 61.931219 +6.353176 61.928579 +6.342615 61.926525 +6.333815 61.924178 +6.323254 61.922418 +6.312693 61.920658 +6.303893 61.918018 +6.293332 61.916258 +6.282771 61.914498 +6.272210 61.912444 +6.261649 61.910977 +6.251675 61.908924 +6.241115 61.907164 +6.230554 61.905404 +6.219993 61.903350 +6.207086 61.903057 +6.195351 61.901883 +6.181857 61.901590 +6.168949 61.901003 +6.155455 61.900710 +6.141961 61.900417 +6.130813 61.902177 +6.119079 61.903644 +6.107345 61.905697 +6.102065 61.908337 +6.112625 61.910097 +6.125533 61.910684 +6.140201 61.910391 +6.151935 61.910097 +6.164843 61.910391 +6.178337 61.910684 +6.191244 61.910977 +6.203565 61.912151 +6.215299 61.913324 +6.225860 61.915084 +6.237594 61.916258 +6.248155 61.918018 +6.258716 61.919778 +6.269277 61.921538 +6.279251 61.923298 +6.288638 61.925939 +6.296265 61.929165 +6.303893 61.932392 +6.311520 61.935913 +6.319147 61.938846 +6.325601 61.942953 +6.332055 61.947060 +6.336748 61.951754 +6.344375 61.954981 +6.350829 61.958794 +6.359630 61.961434 +6.374298 61.961141 +6.387792 61.961434 +6.398353 61.963195 +6.407153 61.965835 +6.415954 61.968475 +6.429448 61.968475 +6.441182 61.967008 +6.455850 61.966715 +6.468758 61.965541 +6.478732 61.963195 +6.472278 61.958501 +6.460544 61.957621 +6.451743 61.954981 +6.445289 61.951167 +6.442942 61.946473 +6.445876 61.942073 +6.454090 61.939139 +6.465824 61.937379 +6.476972 61.935913 +6.488706 61.934152 +6.492813 61.930632 +6.485186 61.927112 +6.471691 61.926819 +6.457024 61.927112 +6.445876 61.928872 +6.434142 61.930632 +6.421234 61.931219 +nan nan +6.383685 61.636104 +6.379578 61.639625 +6.374298 61.644025 +6.369017 61.648132 +6.361977 61.651652 +6.354936 61.655172 +6.349656 61.659866 +6.344375 61.663973 +6.339095 61.668080 +6.334988 61.673067 +6.334401 61.679521 +6.334988 61.685975 +6.337335 61.692428 +6.339682 61.698589 +6.341442 61.704749 +6.342615 61.711790 +6.343202 61.718244 +6.342615 61.724697 +6.338508 61.729684 +6.333228 61.733791 +6.326187 61.737605 +6.316213 61.739659 +6.305066 61.741419 +6.290398 61.741712 +6.276904 61.741419 +6.268690 61.744352 +6.269277 61.748752 +6.278077 61.751099 +6.291572 61.751393 +6.304479 61.751686 +6.317387 61.750806 +6.327361 61.748752 +6.337335 61.746112 +6.346136 61.743472 +6.354349 61.740245 +6.361390 61.736725 +6.367844 61.732911 +6.373711 61.728511 +6.375471 61.722937 +6.379578 61.718244 +6.378991 61.711496 +6.376644 61.705336 +6.373124 61.699762 +6.369604 61.694482 +6.366084 61.688908 +6.362563 61.683334 +6.360217 61.677174 +6.364324 61.672480 +6.369604 61.668080 +6.376644 61.664560 +6.384858 61.661626 +6.393072 61.658693 +6.401286 61.655466 +6.408327 61.651946 +6.413607 61.647839 +6.418887 61.643438 +6.421234 61.637865 +6.419474 61.631704 +6.414194 61.627010 +6.405393 61.624370 +6.396592 61.626130 +6.391312 61.630237 +6.383685 61.636104 +nan nan +11.857384 59.468509 +11.852104 59.464108 +11.846824 59.459708 +11.843890 59.453548 +11.845064 59.447974 +11.847704 59.442987 +11.850637 59.438000 +11.851811 59.432133 +11.851517 59.425972 +11.849464 59.419225 +11.853864 59.414825 +11.862372 59.412185 +11.868239 59.408371 +11.872639 59.403971 +11.878213 59.399864 +11.885547 59.396637 +11.892880 59.393410 +11.900214 59.389890 +11.907548 59.386663 +11.915762 59.387543 +11.921042 59.391943 +11.918402 59.396930 +11.918989 59.403384 +11.919282 59.409545 +11.913415 59.413358 +11.907548 59.417172 +11.903441 59.421572 +11.902268 59.427439 +11.903734 59.432720 +11.913709 59.434186 +11.920749 59.430959 +11.928376 59.427439 +11.932483 59.423039 +11.939817 59.419812 +11.948618 59.417172 +11.958885 59.415118 +11.967686 59.412185 +11.977953 59.410425 +11.989687 59.408665 +12.000000 59.406373 +nan nan +12.000000 59.399090 +11.992621 59.398690 +11.982353 59.400744 +11.970326 59.402504 +11.960059 59.404558 +11.946564 59.405438 +11.940404 59.401624 +11.938644 59.396344 +11.943044 59.391943 +11.945684 59.386663 +11.943044 59.382263 +11.937764 59.377862 +11.932190 59.373169 +11.929550 59.367302 +11.926323 59.361141 +11.919869 59.357621 +11.911068 59.355274 +11.905788 59.350874 +11.904028 59.343833 +11.900801 59.337966 +11.893467 59.335033 +11.888187 59.330632 +11.882906 59.326232 +11.885253 59.321245 +11.892587 59.317725 +11.899921 59.314498 +11.904028 59.310097 +11.905201 59.304524 +11.904908 59.298070 +11.903148 59.291323 +11.901094 59.284576 +11.902561 59.279002 +11.903734 59.273135 +11.909308 59.269028 +11.921042 59.267854 +11.932190 59.268441 +11.942751 59.267561 +11.943924 59.261987 +11.945097 59.256414 +11.947738 59.251427 +11.950671 59.246146 +11.954778 59.241746 +11.958885 59.237346 +11.962992 59.232652 +11.970326 59.229425 +11.976193 59.225611 +11.983234 59.222091 +11.992034 59.219744 +12.000000 59.218550 +nan nan +12.000000 59.198311 +11.998781 59.200383 +11.994674 59.205077 +11.986167 59.207423 +11.978833 59.210944 +11.972966 59.214757 +11.964165 59.217397 +11.952431 59.218864 +11.940404 59.219158 +11.928670 59.220918 +11.922803 59.224731 +11.918696 59.229132 +11.914295 59.232359 +11.909895 59.236759 +11.905201 59.239692 +11.899334 59.243506 +11.895227 59.248200 +11.891120 59.252600 +11.887013 59.257000 +11.882906 59.261401 +11.878506 59.265801 +11.874106 59.270201 +11.871759 59.275482 +11.868825 59.280469 +11.866185 59.285456 +11.865012 59.291029 +11.860905 59.295430 +11.859731 59.301297 +11.857091 59.306284 +11.855918 59.311858 +11.856211 59.318018 +11.856504 59.324472 +11.849171 59.327699 +11.840370 59.325645 +11.835090 59.321245 +11.830689 59.315965 +11.827756 59.309804 +11.823942 59.304524 +11.819835 59.299243 +11.817782 59.292496 +11.816315 59.286922 +11.818955 59.281935 +11.821595 59.276948 +11.822769 59.271375 +11.825702 59.266094 +11.828342 59.261107 +11.830983 59.256120 +11.832156 59.250546 +11.833329 59.244973 +11.835970 59.239692 +11.837143 59.234119 +11.835676 59.227372 +11.832449 59.221504 +11.829516 59.215344 +11.829222 59.209184 +11.827169 59.202143 +11.828636 59.196569 +11.828049 59.190409 +11.830689 59.184835 +11.833329 59.179848 +11.839197 59.175741 +11.848584 59.175741 +11.850637 59.182488 +11.857091 59.186302 +11.862372 59.182488 +11.863838 59.176621 +11.866478 59.171634 +11.867359 59.166060 +11.868825 59.160487 +11.869999 59.154620 +11.869705 59.148753 +11.870879 59.143179 +11.874986 59.138485 +11.879093 59.134085 +11.884960 59.130271 +11.890534 59.126458 +11.893467 59.121177 +11.896107 59.116190 +11.901681 59.112083 +11.902854 59.106803 +11.899921 59.100642 +11.894640 59.096242 +11.888480 59.092428 +11.885253 59.086268 +11.882320 59.080401 +11.877039 59.075707 +11.871759 59.071307 +11.866478 59.066907 +11.867359 59.061333 +11.868825 59.055759 +11.871465 59.050479 +11.872639 59.044905 +11.873812 59.039331 +11.874986 59.033758 +11.877919 59.028477 +11.880266 59.023490 +11.883200 59.018503 +11.885840 59.013516 +11.888480 59.008529 +11.892587 59.003835 +11.895227 58.998848 +11.899334 58.994448 +11.903734 58.990048 +11.907841 58.985647 +11.910482 58.980660 +11.911655 58.975087 +11.908722 58.968926 +11.908428 58.962766 +11.908135 58.956312 +11.906081 58.949858 +11.907255 58.943991 +11.909895 58.939004 +11.909308 58.941644 +11.910775 58.937537 +11.914882 58.933137 +11.919282 58.928737 +11.923389 58.924043 +11.927496 58.919643 +11.928670 58.913776 +11.926909 58.907322 +11.922803 58.902041 +11.912242 58.902922 +11.908135 58.907322 +11.905201 58.912309 +11.902854 58.917296 +11.901681 58.923163 +11.900214 58.928737 +11.897867 58.933724 +11.894934 58.938711 +11.892587 58.943698 +11.888480 58.948098 +11.885547 58.953085 +11.884373 58.958952 +11.883200 58.964526 +11.882026 58.970100 +11.880853 58.975967 +11.878213 58.980954 +11.871172 58.984181 +11.862078 58.986528 +11.853571 58.989461 +11.845064 58.992101 +11.834796 58.994155 +11.827462 58.997382 +11.828929 59.002955 +11.835383 59.006769 +11.840663 59.011169 +11.843597 59.017330 +11.844184 59.024077 +11.841250 59.029064 +11.837143 59.033758 +11.826582 59.034344 +11.818075 59.037278 +11.816608 59.042852 +11.819542 59.047545 +11.825702 59.051066 +11.830983 59.055466 +11.833916 59.061626 +11.834503 59.067787 +11.830103 59.072187 +11.825702 59.076587 +11.823355 59.081868 +11.820422 59.086855 +11.816315 59.091255 +11.810448 59.095362 +11.807514 59.098882 +11.820715 59.098002 +11.831569 59.098589 +11.841543 59.100056 +11.850344 59.102109 +11.853278 59.107976 +11.852104 59.113843 +11.852397 59.120004 +11.851224 59.125578 +11.848584 59.130565 +11.844477 59.135258 +11.841543 59.140245 +11.838903 59.145232 +11.833329 59.149046 +11.825996 59.152566 +11.820422 59.156380 +11.814555 59.160193 +11.808981 59.164007 +11.803114 59.167821 +11.797540 59.171634 +11.794607 59.176915 +11.794900 59.183075 +11.796953 59.189822 +11.796953 59.194809 +11.797247 59.200970 +11.795780 59.206543 +11.796367 59.212704 +11.796660 59.218864 +11.795193 59.224731 +11.794313 59.230305 +11.793140 59.235879 +11.789033 59.240279 +11.783166 59.244093 +11.780232 59.249080 +11.777592 59.254360 +11.779352 59.261107 +11.779646 59.267561 +11.779939 59.273721 +11.778766 59.279295 +11.776125 59.284282 +11.773192 59.289563 +11.770845 59.294550 +11.767911 59.299537 +11.763804 59.303937 +11.761164 59.308924 +11.757057 59.313324 +11.752364 59.317725 +11.748257 59.322125 +11.744150 59.326525 +11.738283 59.330632 +11.734176 59.335033 +11.728309 59.338846 +11.724202 59.343246 +11.718335 59.347353 +11.714228 59.351754 +11.711294 59.357034 +11.707187 59.361434 +11.712467 59.360848 +11.719801 59.357914 +11.725668 59.353807 +11.731535 59.349994 +11.736816 59.346180 +11.742683 59.342366 +11.750017 59.338846 +11.755884 59.335033 +11.762924 59.331806 +11.767325 59.327112 +11.773192 59.323298 +11.777299 59.318898 +11.781699 59.314498 +11.787273 59.310684 +11.794607 59.307164 +11.804287 59.307164 +11.809568 59.311564 +11.812501 59.317725 +11.814261 59.324765 +11.816022 59.331512 +11.818075 59.338259 +11.819835 59.345007 +11.821595 59.352047 +11.823649 59.358501 +11.825409 59.365541 +11.824235 59.371115 +11.820128 59.375515 +11.815435 59.379916 +11.811328 59.384316 +11.808688 59.389303 +11.803114 59.393410 +11.797247 59.397224 +11.796073 59.403091 +11.796953 59.406318 +11.802234 59.410718 +11.812208 59.412185 +11.821889 59.413652 +11.823649 59.419225 +11.819248 59.423626 +11.815141 59.428026 +11.815141 59.434186 +11.819542 59.439467 +11.822475 59.445627 +11.821302 59.451201 +11.815435 59.455015 +11.811328 59.459415 +11.812795 59.464989 +11.816902 59.470269 +11.823649 59.474376 +11.831276 59.477603 +11.841250 59.478776 +11.853278 59.478483 +11.860905 59.475256 +11.857384 59.468509 diff --git a/wafo/data/sea.dat b/wafo/data/sea.dat new file mode 100755 index 0000000..06cc49b --- /dev/null +++ b/wafo/data/sea.dat @@ -0,0 +1,9524 @@ + 5.0000000e-02 -1.2004945e+00 + 3.0000000e-01 -1.0904945e+00 + 5.5000000e-01 -7.9049454e-01 + 8.0000000e-01 -3.7049454e-01 + 1.0500000e+00 -9.0494540e-02 + 1.3000000e+00 2.2950546e-01 + 1.5500000e+00 3.9950546e-01 + 1.8000000e+00 5.8950546e-01 + 2.0500000e+00 5.8950546e-01 + 2.3000000e+00 5.8950546e-01 + 2.5500000e+00 6.7950546e-01 + 2.8000000e+00 8.3950546e-01 + 3.0500000e+00 7.9950546e-01 + 3.3000000e+00 6.0950546e-01 + 3.5500000e+00 5.9950546e-01 + 3.8000000e+00 5.1950546e-01 + 4.0500000e+00 3.4950546e-01 + 4.3000000e+00 2.9950546e-01 + 4.5500000e+00 1.3950546e-01 + 4.8000000e+00 3.9505460e-02 + 5.0500000e+00 -7.0494540e-02 + 5.3000000e+00 -9.0494540e-02 + 5.5500000e+00 -2.0494540e-02 + 5.8000000e+00 -5.0494540e-02 + 6.0500000e+00 -9.0494540e-02 + 6.3000000e+00 -4.0494540e-02 + 6.5500000e+00 -4.0494540e-02 + 6.8000000e+00 -1.4049454e-01 + 7.0500000e+00 -1.6049454e-01 + 7.3000000e+00 -7.0494540e-02 + 7.5500000e+00 1.6950546e-01 + 7.8000000e+00 2.5950546e-01 + 8.0500000e+00 2.4950546e-01 + 8.3000000e+00 2.4950546e-01 + 8.5500000e+00 1.3950546e-01 + 8.8000000e+00 -5.0494540e-02 + 9.0500000e+00 -7.0494540e-02 + 9.3000000e+00 -1.6049454e-01 + 9.5500000e+00 -3.0049454e-01 + 9.8000000e+00 -4.3049454e-01 + 1.0050000e+01 -3.9049454e-01 + 1.0300000e+01 -3.0049454e-01 + 1.0550000e+01 -1.6049454e-01 + 1.0800000e+01 -8.0494540e-02 + 1.1050000e+01 -2.1049454e-01 + 1.1300000e+01 -2.1049454e-01 + 1.1550000e+01 -1.4049454e-01 + 1.1800000e+01 -8.0494540e-02 + 1.2050000e+01 -9.0494540e-02 + 1.2300000e+01 -1.7049454e-01 + 1.2550000e+01 -3.3049454e-01 + 1.2800000e+01 -4.2049454e-01 + 1.3050000e+01 -4.0049454e-01 + 1.3300000e+01 -1.9049454e-01 + 1.3550000e+01 7.9505460e-02 + 1.3800000e+01 3.1950546e-01 + 1.4050000e+01 3.4950546e-01 + 1.4300000e+01 2.2950546e-01 + 1.4550000e+01 1.3950546e-01 + 1.4800000e+01 8.9505460e-02 + 1.5050000e+01 1.9505460e-02 + 1.5300000e+01 -1.0049454e-01 + 1.5550000e+01 -3.0049454e-01 + 1.5800000e+01 -4.5049454e-01 + 1.6050000e+01 -5.1049454e-01 + 1.6300000e+01 -4.9049454e-01 + 1.6550000e+01 -3.5049454e-01 + 1.6800000e+01 -9.0494540e-02 + 1.7050000e+01 3.9950546e-01 + 1.7300000e+01 8.5950546e-01 + 1.7550000e+01 8.5950546e-01 + 1.7800000e+01 8.4950546e-01 + 1.8050000e+01 7.9950546e-01 + 1.8300000e+01 7.9950546e-01 + 1.8550000e+01 6.5950546e-01 + 1.8800000e+01 4.1950546e-01 + 1.9050000e+01 1.0950546e-01 + 1.9300000e+01 -3.0494540e-02 + 1.9550000e+01 -1.9049454e-01 + 1.9800000e+01 -1.7049454e-01 + 2.0050000e+01 -2.0494540e-02 + 2.0300000e+01 -1.0494540e-02 + 2.0550000e+01 9.5054599e-03 + 2.0800000e+01 -1.6049454e-01 + 2.1050000e+01 -1.6049454e-01 + 2.1300000e+01 1.9505460e-02 + 2.1550000e+01 1.5950546e-01 + 2.1800000e+01 2.3950546e-01 + 2.2050000e+01 2.5950546e-01 + 2.2300000e+01 3.1950546e-01 + 2.2550000e+01 2.0950546e-01 + 2.2800000e+01 -9.0494540e-02 + 2.3050000e+01 -4.1049454e-01 + 2.3300000e+01 -5.3049454e-01 + 2.3550000e+01 -5.5049454e-01 + 2.3800000e+01 -4.5049454e-01 + 2.4050000e+01 -3.2049454e-01 + 2.4300000e+01 -2.8049454e-01 + 2.4550000e+01 -1.9049454e-01 + 2.4800000e+01 -9.0494540e-02 + 2.5050000e+01 1.5950546e-01 + 2.5300000e+01 3.7950546e-01 + 2.5550000e+01 3.0950546e-01 + 2.5800000e+01 1.9950546e-01 + 2.6050000e+01 -7.0494540e-02 + 2.6300000e+01 -2.3049454e-01 + 2.6550000e+01 -3.1049454e-01 + 2.6800000e+01 -4.1049454e-01 + 2.7050000e+01 -4.7049454e-01 + 2.7300000e+01 -3.9049454e-01 + 2.7550000e+01 -2.3049454e-01 + 2.7800000e+01 -1.5049454e-01 + 2.8050000e+01 -4.0494540e-02 + 2.8300000e+01 4.9505460e-02 + 2.8550000e+01 2.2950546e-01 + 2.8800000e+01 2.6950546e-01 + 2.9050000e+01 4.2950546e-01 + 2.9300000e+01 6.3950546e-01 + 2.9550000e+01 9.6950546e-01 + 2.9800000e+01 1.0995055e+00 + 3.0050000e+01 9.7950546e-01 + 3.0300000e+01 8.6950546e-01 + 3.0550000e+01 6.7950546e-01 + 3.0800000e+01 4.7950546e-01 + 3.1050000e+01 3.3950546e-01 + 3.1300000e+01 2.0950546e-01 + 3.1550000e+01 1.2950546e-01 + 3.1800000e+01 4.9505460e-02 + 3.2050000e+01 -1.1049454e-01 + 3.2300000e+01 -2.5049454e-01 + 3.2550000e+01 -5.1049454e-01 + 3.2800000e+01 -7.3049454e-01 + 3.3050000e+01 -7.1049454e-01 + 3.3300000e+01 -6.6049454e-01 + 3.3550000e+01 -5.2049454e-01 + 3.3800000e+01 -3.8049454e-01 + 3.4050000e+01 -2.4049454e-01 + 3.4300000e+01 -1.1049454e-01 + 3.4550000e+01 2.9505460e-02 + 3.4800000e+01 2.7950546e-01 + 3.5050000e+01 5.6950546e-01 + 3.5300000e+01 5.6950546e-01 + 3.5550000e+01 4.4950546e-01 + 3.5800000e+01 2.6950546e-01 + 3.6050000e+01 -8.0494540e-02 + 3.6300000e+01 -4.5049454e-01 + 3.6550000e+01 -7.1049454e-01 + 3.6800000e+01 -9.0049454e-01 + 3.7050000e+01 -1.0204945e+00 + 3.7300000e+01 -8.8049454e-01 + 3.7550000e+01 -8.9049454e-01 + 3.7800000e+01 -7.7049454e-01 + 3.8050000e+01 -6.0049454e-01 + 3.8300000e+01 -3.1049454e-01 + 3.8550000e+01 -5.0494540e-02 + 3.8800000e+01 2.0950546e-01 + 3.9050000e+01 5.9950546e-01 + 3.9300000e+01 1.0695055e+00 + 3.9550000e+01 1.4795055e+00 + 3.9800000e+01 1.5795055e+00 + 4.0050000e+01 1.5695055e+00 + 4.0300000e+01 1.4895055e+00 + 4.0550000e+01 1.3795055e+00 + 4.0800000e+01 1.3395055e+00 + 4.1050000e+01 1.2195055e+00 + 4.1300000e+01 7.0950546e-01 + 4.1550000e+01 1.6950546e-01 + 4.1800000e+01 -1.9049454e-01 + 4.2050000e+01 -3.0049454e-01 + 4.2300000e+01 -3.6049454e-01 + 4.2550000e+01 -5.0049454e-01 + 4.2800000e+01 -6.5049454e-01 + 4.3050000e+01 -7.3049454e-01 + 4.3300000e+01 -7.9049454e-01 + 4.3550000e+01 -7.3049454e-01 + 4.3800000e+01 -5.6049454e-01 + 4.4050000e+01 -4.7049454e-01 + 4.4300000e+01 -4.5049454e-01 + 4.4550000e+01 -4.2049454e-01 + 4.4800000e+01 -2.3049454e-01 + 4.5050000e+01 -9.0494540e-02 + 4.5300000e+01 4.9505460e-02 + 4.5550000e+01 1.5950546e-01 + 4.5800000e+01 2.8950546e-01 + 4.6050000e+01 4.2950546e-01 + 4.6300000e+01 3.1950546e-01 + 4.6550000e+01 -4.9454011e-04 + 4.6800000e+01 -3.2049454e-01 + 4.7050000e+01 -5.9049454e-01 + 4.7300000e+01 -7.9049454e-01 + 4.7550000e+01 -8.9049454e-01 + 4.7800000e+01 -8.1049454e-01 + 4.8050000e+01 -6.9049454e-01 + 4.8300000e+01 -4.7049454e-01 + 4.8550000e+01 -1.6049454e-01 + 4.8800000e+01 1.0950546e-01 + 4.9050000e+01 1.5950546e-01 + 4.9300000e+01 1.6950546e-01 + 4.9550000e+01 3.3950546e-01 + 4.9800000e+01 4.8950546e-01 + 5.0050000e+01 7.4950546e-01 + 5.0300000e+01 9.5950546e-01 + 5.0550000e+01 1.0495055e+00 + 5.0800000e+01 8.2950546e-01 + 5.1050000e+01 6.3950546e-01 + 5.1300000e+01 5.0950546e-01 + 5.1550000e+01 3.8950546e-01 + 5.1800000e+01 4.0950546e-01 + 5.2050000e+01 4.0950546e-01 + 5.2300000e+01 3.6950546e-01 + 5.2550000e+01 3.6950546e-01 + 5.2800000e+01 3.2950546e-01 + 5.3050000e+01 2.8950546e-01 + 5.3300000e+01 1.3950546e-01 + 5.3550000e+01 -8.0494540e-02 + 5.3800000e+01 -1.0049454e-01 + 5.4050000e+01 4.9505460e-02 + 5.4300000e+01 -1.4049454e-01 + 5.4550000e+01 -3.5049454e-01 + 5.4800000e+01 -3.5049454e-01 + 5.5050000e+01 -3.1049454e-01 + 5.5300000e+01 -1.5049454e-01 + 5.5550000e+01 -2.4049454e-01 + 5.5800000e+01 -2.6049454e-01 + 5.6050000e+01 -3.3049454e-01 + 5.6300000e+01 -4.6049454e-01 + 5.6550000e+01 -5.3049454e-01 + 5.6800000e+01 -5.2049454e-01 + 5.7050000e+01 -3.4049454e-01 + 5.7300000e+01 1.2950546e-01 + 5.7550000e+01 3.9950546e-01 + 5.7800000e+01 4.6950546e-01 + 5.8050000e+01 1.7950546e-01 + 5.8300000e+01 -1.3049454e-01 + 5.8550000e+01 -2.7049454e-01 + 5.8800000e+01 -2.8049454e-01 + 5.9050000e+01 -1.3049454e-01 + 5.9300000e+01 -1.2049454e-01 + 5.9550000e+01 -4.0494540e-02 + 5.9800000e+01 4.9505460e-02 + 6.0050000e+01 8.9505460e-02 + 6.0300000e+01 1.3950546e-01 + 6.0550000e+01 1.4950546e-01 + 6.0800000e+01 -9.0494540e-02 + 6.1050000e+01 -1.4049454e-01 + 6.1300000e+01 -3.0494540e-02 + 6.1550000e+01 2.3950546e-01 + 6.1800000e+01 5.1950546e-01 + 6.2050000e+01 5.6950546e-01 + 6.2300000e+01 6.1950546e-01 + 6.2550000e+01 6.6950546e-01 + 6.2800000e+01 6.8950546e-01 + 6.3050000e+01 6.7950546e-01 + 6.3300000e+01 6.9950546e-01 + 6.3550000e+01 4.8950546e-01 + 6.3800000e+01 1.0950546e-01 + 6.4050000e+01 -6.7049454e-01 + 6.4300000e+01 -1.0904945e+00 + 6.4550000e+01 -1.2604945e+00 + 6.4800000e+01 -1.2504945e+00 + 6.5050000e+01 -1.0504945e+00 + 6.5300000e+01 -6.9049454e-01 + 6.5550000e+01 -4.5049454e-01 + 6.5800000e+01 -1.5049454e-01 + 6.6050000e+01 1.0950546e-01 + 6.6300000e+01 3.3950546e-01 + 6.6550000e+01 4.6950546e-01 + 6.6800000e+01 5.4950546e-01 + 6.7050000e+01 5.5950546e-01 + 6.7300000e+01 5.4950546e-01 + 6.7550000e+01 4.9950546e-01 + 6.7800000e+01 3.9950546e-01 + 6.8050000e+01 3.9950546e-01 + 6.8300000e+01 2.9950546e-01 + 6.8550000e+01 3.1950546e-01 + 6.8800000e+01 2.2950546e-01 + 6.9050000e+01 2.9505460e-02 + 6.9300000e+01 -1.1049454e-01 + 6.9550000e+01 -2.8049454e-01 + 6.9800000e+01 -3.5049454e-01 + 7.0050000e+01 -3.9049454e-01 + 7.0300000e+01 -3.7049454e-01 + 7.0550000e+01 -2.4049454e-01 + 7.0800000e+01 -1.0049454e-01 + 7.1050000e+01 -2.0494540e-02 + 7.1300000e+01 9.5054599e-03 + 7.1550000e+01 1.1950546e-01 + 7.1800000e+01 2.1950546e-01 + 7.2050000e+01 3.0950546e-01 + 7.2300000e+01 3.8950546e-01 + 7.2550000e+01 4.9950546e-01 + 7.2800000e+01 5.2950546e-01 + 7.3050000e+01 5.0950546e-01 + 7.3300000e+01 3.4950546e-01 + 7.3550000e+01 1.1950546e-01 + 7.3800000e+01 -8.0494540e-02 + 7.4050000e+01 -3.2049454e-01 + 7.4300000e+01 -5.4049454e-01 + 7.4550000e+01 -7.3049454e-01 + 7.4800000e+01 -8.1049454e-01 + 7.5050000e+01 -8.4049454e-01 + 7.5300000e+01 -9.0049454e-01 + 7.5550000e+01 -7.7049454e-01 + 7.5800000e+01 -5.5049454e-01 + 7.6050000e+01 -3.6049454e-01 + 7.6300000e+01 -2.3049454e-01 + 7.6550000e+01 -9.0494540e-02 + 7.6800000e+01 1.8950546e-01 + 7.7050000e+01 5.7950546e-01 + 7.7300000e+01 1.0095055e+00 + 7.7550000e+01 9.7950546e-01 + 7.7800000e+01 7.9950546e-01 + 7.8050000e+01 7.6950546e-01 + 7.8300000e+01 9.3950546e-01 + 7.8550000e+01 1.0695055e+00 + 7.8800000e+01 1.1195055e+00 + 7.9050000e+01 8.8950546e-01 + 7.9300000e+01 5.0950546e-01 + 7.9550000e+01 6.9505460e-02 + 7.9800000e+01 -3.5049454e-01 + 8.0050000e+01 -5.9049454e-01 + 8.0300000e+01 -6.2049454e-01 + 8.0550000e+01 -5.3049454e-01 + 8.0800000e+01 -3.0049454e-01 + 8.1050000e+01 -2.7049454e-01 + 8.1300000e+01 -1.5049454e-01 + 8.1550000e+01 -8.0494540e-02 + 8.1800000e+01 -7.0494540e-02 + 8.2050000e+01 9.5054599e-03 + 8.2300000e+01 -4.9454011e-04 + 8.2550000e+01 8.9505460e-02 + 8.2800000e+01 2.1950546e-01 + 8.3050000e+01 2.4950546e-01 + 8.3300000e+01 2.0950546e-01 + 8.3550000e+01 1.2950546e-01 + 8.3800000e+01 -6.0494540e-02 + 8.4050000e+01 -1.9049454e-01 + 8.4300000e+01 -2.7049454e-01 + 8.4550000e+01 -3.7049454e-01 + 8.4800000e+01 -4.8049454e-01 + 8.5050000e+01 -5.9049454e-01 + 8.5300000e+01 -6.4049454e-01 + 8.5550000e+01 -6.8049454e-01 + 8.5800000e+01 -6.3049454e-01 + 8.6050000e+01 -6.0049454e-01 + 8.6300000e+01 -5.0049454e-01 + 8.6550000e+01 -3.2049454e-01 + 8.6800000e+01 -5.0494540e-02 + 8.7050000e+01 2.1950546e-01 + 8.7300000e+01 3.6950546e-01 + 8.7550000e+01 3.9950546e-01 + 8.7800000e+01 4.1950546e-01 + 8.8050000e+01 4.4950546e-01 + 8.8300000e+01 4.5950546e-01 + 8.8550000e+01 4.6950546e-01 + 8.8800000e+01 4.2950546e-01 + 8.9050000e+01 2.9950546e-01 + 8.9300000e+01 2.2950546e-01 + 8.9550000e+01 2.7950546e-01 + 8.9800000e+01 2.6950546e-01 + 9.0050000e+01 3.9950546e-01 + 9.0300000e+01 3.9950546e-01 + 9.0550000e+01 4.1950546e-01 + 9.0800000e+01 4.0950546e-01 + 9.1050000e+01 4.4950546e-01 + 9.1300000e+01 4.2950546e-01 + 9.1550000e+01 2.1950546e-01 + 9.1800000e+01 6.9505460e-02 + 9.2050000e+01 -1.0494540e-02 + 9.2300000e+01 -3.0494540e-02 + 9.2550000e+01 -1.7049454e-01 + 9.2800000e+01 -3.1049454e-01 + 9.3050000e+01 -4.3049454e-01 + 9.3300000e+01 -3.5049454e-01 + 9.3550000e+01 -3.7049454e-01 + 9.3800000e+01 -4.2049454e-01 + 9.4050000e+01 -4.2049454e-01 + 9.4300000e+01 -4.0049454e-01 + 9.4550000e+01 -5.3049454e-01 + 9.4800000e+01 -6.9049454e-01 + 9.5050000e+01 -7.7049454e-01 + 9.5300000e+01 -6.8049454e-01 + 9.5550000e+01 -4.2049454e-01 + 9.5800000e+01 -1.0049454e-01 + 9.6050000e+01 2.6950546e-01 + 9.6300000e+01 4.5950546e-01 + 9.6550000e+01 4.5950546e-01 + 9.6800000e+01 2.6950546e-01 + 9.7050000e+01 2.6950546e-01 + 9.7300000e+01 2.8950546e-01 + 9.7550000e+01 2.6950546e-01 + 9.7800000e+01 6.9505460e-02 + 9.8050000e+01 -4.0494540e-02 + 9.8300000e+01 2.9505460e-02 + 9.8550000e+01 3.4950546e-01 + 9.8800000e+01 6.4950546e-01 + 9.9050000e+01 7.5950546e-01 + 9.9300000e+01 6.9950546e-01 + 9.9550000e+01 4.8950546e-01 + 9.9800000e+01 2.2950546e-01 + 1.0005000e+02 -4.9454011e-04 + 1.0030000e+02 -2.0494540e-02 + 1.0055000e+02 -4.9454011e-04 + 1.0080000e+02 9.5054599e-03 + 1.0105000e+02 1.8950546e-01 + 1.0130000e+02 3.4950546e-01 + 1.0155000e+02 4.0950546e-01 + 1.0180000e+02 3.4950546e-01 + 1.0205000e+02 2.4950546e-01 + 1.0230000e+02 1.1950546e-01 + 1.0255000e+02 -9.0494540e-02 + 1.0280000e+02 -3.0049454e-01 + 1.0305000e+02 -5.0049454e-01 + 1.0330000e+02 -5.4049454e-01 + 1.0355000e+02 -5.3049454e-01 + 1.0380000e+02 -4.4049454e-01 + 1.0405000e+02 -4.7049454e-01 + 1.0430000e+02 -4.7049454e-01 + 1.0455000e+02 -4.1049454e-01 + 1.0480000e+02 -4.0049454e-01 + 1.0505000e+02 -1.4049454e-01 + 1.0530000e+02 5.9505460e-02 + 1.0555000e+02 1.6950546e-01 + 1.0580000e+02 3.3950546e-01 + 1.0605000e+02 4.9950546e-01 + 1.0630000e+02 4.7950546e-01 + 1.0655000e+02 2.5950546e-01 + 1.0680000e+02 -6.0494540e-02 + 1.0705000e+02 -1.5049454e-01 + 1.0730000e+02 -1.1049454e-01 + 1.0755000e+02 -2.5049454e-01 + 1.0780000e+02 -3.0049454e-01 + 1.0805000e+02 -1.1049454e-01 + 1.0830000e+02 1.8950546e-01 + 1.0855000e+02 4.4950546e-01 + 1.0880000e+02 3.8950546e-01 + 1.0905000e+02 2.4950546e-01 + 1.0930000e+02 6.9505460e-02 + 1.0955000e+02 -1.4049454e-01 + 1.0980000e+02 -2.2049454e-01 + 1.1005000e+02 -2.8049454e-01 + 1.1030000e+02 -3.0049454e-01 + 1.1055000e+02 -2.6049454e-01 + 1.1080000e+02 -1.2049454e-01 + 1.1105000e+02 5.9505460e-02 + 1.1130000e+02 1.8950546e-01 + 1.1155000e+02 3.1950546e-01 + 1.1180000e+02 4.5950546e-01 + 1.1205000e+02 5.6950546e-01 + 1.1230000e+02 4.3950546e-01 + 1.1255000e+02 2.7950546e-01 + 1.1280000e+02 1.0950546e-01 + 1.1305000e+02 4.9505460e-02 + 1.1330000e+02 7.9505460e-02 + 1.1355000e+02 1.2950546e-01 + 1.1380000e+02 2.9950546e-01 + 1.1405000e+02 4.5950546e-01 + 1.1430000e+02 6.9950546e-01 + 1.1455000e+02 9.2950546e-01 + 1.1480000e+02 8.1950546e-01 + 1.1505000e+02 4.9950546e-01 + 1.1530000e+02 1.4950546e-01 + 1.1555000e+02 -4.0494540e-02 + 1.1580000e+02 -1.5049454e-01 + 1.1605000e+02 -2.9049454e-01 + 1.1630000e+02 -4.9049454e-01 + 1.1655000e+02 -6.2049454e-01 + 1.1680000e+02 -7.3049454e-01 + 1.1705000e+02 -8.8049454e-01 + 1.1730000e+02 -8.4049454e-01 + 1.1755000e+02 -8.2049454e-01 + 1.1780000e+02 -6.8049454e-01 + 1.1805000e+02 -5.9049454e-01 + 1.1830000e+02 -5.2049454e-01 + 1.1855000e+02 -4.9049454e-01 + 1.1880000e+02 -3.4049454e-01 + 1.1905000e+02 -2.0049454e-01 + 1.1930000e+02 1.7950546e-01 + 1.1955000e+02 7.0950546e-01 + 1.1980000e+02 8.5950546e-01 + 1.2005000e+02 8.6950546e-01 + 1.2030000e+02 7.1950546e-01 + 1.2055000e+02 3.6950546e-01 + 1.2080000e+02 6.9505460e-02 + 1.2105000e+02 -1.8049454e-01 + 1.2130000e+02 -4.1049454e-01 + 1.2155000e+02 -5.7049454e-01 + 1.2180000e+02 -5.2049454e-01 + 1.2205000e+02 -1.6049454e-01 + 1.2230000e+02 -1.0494540e-02 + 1.2255000e+02 1.8950546e-01 + 1.2280000e+02 4.3950546e-01 + 1.2305000e+02 8.3950546e-01 + 1.2330000e+02 1.3095055e+00 + 1.2355000e+02 1.3695055e+00 + 1.2380000e+02 9.4950546e-01 + 1.2405000e+02 7.8950546e-01 + 1.2430000e+02 7.4950546e-01 + 1.2455000e+02 7.2950546e-01 + 1.2480000e+02 3.4950546e-01 + 1.2505000e+02 7.9505460e-02 + 1.2530000e+02 -8.0494540e-02 + 1.2555000e+02 -4.0049454e-01 + 1.2580000e+02 -6.1049454e-01 + 1.2605000e+02 -6.5049454e-01 + 1.2630000e+02 -8.1049454e-01 + 1.2655000e+02 -8.5049454e-01 + 1.2680000e+02 -8.2049454e-01 + 1.2705000e+02 -7.5049454e-01 + 1.2730000e+02 -5.6049454e-01 + 1.2755000e+02 -2.6049454e-01 + 1.2780000e+02 1.8950546e-01 + 1.2805000e+02 5.7950546e-01 + 1.2830000e+02 7.7950546e-01 + 1.2855000e+02 8.3950546e-01 + 1.2880000e+02 7.9950546e-01 + 1.2905000e+02 7.7950546e-01 + 1.2930000e+02 6.3950546e-01 + 1.2955000e+02 3.4950546e-01 + 1.2980000e+02 9.9505460e-02 + 1.3005000e+02 -2.3049454e-01 + 1.3030000e+02 -5.1049454e-01 + 1.3055000e+02 -6.3049454e-01 + 1.3080000e+02 -6.2049454e-01 + 1.3105000e+02 -5.9049454e-01 + 1.3130000e+02 -6.0049454e-01 + 1.3155000e+02 -5.8049454e-01 + 1.3180000e+02 -5.0049454e-01 + 1.3205000e+02 -4.1049454e-01 + 1.3230000e+02 -2.7049454e-01 + 1.3255000e+02 -1.1049454e-01 + 1.3280000e+02 1.9505460e-02 + 1.3305000e+02 8.9505460e-02 + 1.3330000e+02 2.1950546e-01 + 1.3355000e+02 2.8950546e-01 + 1.3380000e+02 2.2950546e-01 + 1.3405000e+02 1.7950546e-01 + 1.3430000e+02 3.3950546e-01 + 1.3455000e+02 4.1950546e-01 + 1.3480000e+02 4.0950546e-01 + 1.3505000e+02 2.9950546e-01 + 1.3530000e+02 1.0950546e-01 + 1.3555000e+02 -7.0494540e-02 + 1.3580000e+02 -1.0049454e-01 + 1.3605000e+02 -8.0494540e-02 + 1.3630000e+02 -1.1049454e-01 + 1.3655000e+02 1.1950546e-01 + 1.3680000e+02 3.5950546e-01 + 1.3705000e+02 4.2950546e-01 + 1.3730000e+02 4.9950546e-01 + 1.3755000e+02 5.4950546e-01 + 1.3780000e+02 5.2950546e-01 + 1.3805000e+02 4.7950546e-01 + 1.3830000e+02 2.8950546e-01 + 1.3855000e+02 1.1950546e-01 + 1.3880000e+02 -8.0494540e-02 + 1.3905000e+02 -2.1049454e-01 + 1.3930000e+02 -3.5049454e-01 + 1.3955000e+02 -3.9049454e-01 + 1.3980000e+02 -3.4049454e-01 + 1.4005000e+02 -2.9049454e-01 + 1.4030000e+02 -2.0049454e-01 + 1.4055000e+02 9.5054599e-03 + 1.4080000e+02 -4.0494540e-02 + 1.4105000e+02 -1.1049454e-01 + 1.4130000e+02 -2.2049454e-01 + 1.4155000e+02 -3.1049454e-01 + 1.4180000e+02 -4.3049454e-01 + 1.4205000e+02 -5.0049454e-01 + 1.4230000e+02 -4.7049454e-01 + 1.4255000e+02 -3.8049454e-01 + 1.4280000e+02 -1.8049454e-01 + 1.4305000e+02 -2.0494540e-02 + 1.4330000e+02 -2.0494540e-02 + 1.4355000e+02 -1.3049454e-01 + 1.4380000e+02 -1.1049454e-01 + 1.4405000e+02 5.9505460e-02 + 1.4430000e+02 3.7950546e-01 + 1.4455000e+02 7.5950546e-01 + 1.4480000e+02 1.2195055e+00 + 1.4505000e+02 1.3095055e+00 + 1.4530000e+02 1.2695055e+00 + 1.4555000e+02 1.0795055e+00 + 1.4580000e+02 7.7950546e-01 + 1.4605000e+02 2.5950546e-01 + 1.4630000e+02 -7.0494540e-02 + 1.4655000e+02 -1.9049454e-01 + 1.4680000e+02 -1.9049454e-01 + 1.4705000e+02 -1.3049454e-01 + 1.4730000e+02 9.5054599e-03 + 1.4755000e+02 1.1950546e-01 + 1.4780000e+02 6.9505460e-02 + 1.4805000e+02 -5.0494540e-02 + 1.4830000e+02 -2.2049454e-01 + 1.4855000e+02 -3.5049454e-01 + 1.4880000e+02 -3.3049454e-01 + 1.4905000e+02 -4.1049454e-01 + 1.4930000e+02 -5.5049454e-01 + 1.4955000e+02 -6.4049454e-01 + 1.4980000e+02 -5.9049454e-01 + 1.5005000e+02 -4.8049454e-01 + 1.5030000e+02 -4.0049454e-01 + 1.5055000e+02 -2.8049454e-01 + 1.5080000e+02 -1.8049454e-01 + 1.5105000e+02 -1.3049454e-01 + 1.5130000e+02 -5.0494540e-02 + 1.5155000e+02 -5.0494540e-02 + 1.5180000e+02 -1.5049454e-01 + 1.5205000e+02 -2.5049454e-01 + 1.5230000e+02 -3.3049454e-01 + 1.5255000e+02 -2.2049454e-01 + 1.5280000e+02 -3.0049454e-01 + 1.5305000e+02 -2.6049454e-01 + 1.5330000e+02 9.5054599e-03 + 1.5355000e+02 1.6950546e-01 + 1.5380000e+02 2.5950546e-01 + 1.5405000e+02 2.3950546e-01 + 1.5430000e+02 3.9950546e-01 + 1.5455000e+02 5.1950546e-01 + 1.5480000e+02 6.3950546e-01 + 1.5505000e+02 8.5950546e-01 + 1.5530000e+02 9.5950546e-01 + 1.5555000e+02 9.1950546e-01 + 1.5580000e+02 6.8950546e-01 + 1.5605000e+02 3.2950546e-01 + 1.5630000e+02 1.3950546e-01 + 1.5655000e+02 1.2950546e-01 + 1.5680000e+02 2.0950546e-01 + 1.5705000e+02 2.9505460e-02 + 1.5730000e+02 -1.4049454e-01 + 1.5755000e+02 -2.4049454e-01 + 1.5780000e+02 -2.2049454e-01 + 1.5805000e+02 -1.7049454e-01 + 1.5830000e+02 -9.0494540e-02 + 1.5855000e+02 5.9505460e-02 + 1.5880000e+02 9.5054599e-03 + 1.5905000e+02 -1.0049454e-01 + 1.5930000e+02 -2.7049454e-01 + 1.5955000e+02 -4.5049454e-01 + 1.5980000e+02 -5.0049454e-01 + 1.6005000e+02 -5.6049454e-01 + 1.6030000e+02 -5.8049454e-01 + 1.6055000e+02 -6.0049454e-01 + 1.6080000e+02 -6.2049454e-01 + 1.6105000e+02 -6.8049454e-01 + 1.6130000e+02 -6.9049454e-01 + 1.6155000e+02 -4.1049454e-01 + 1.6180000e+02 -2.0494540e-02 + 1.6205000e+02 3.2950546e-01 + 1.6230000e+02 5.8950546e-01 + 1.6255000e+02 7.5950546e-01 + 1.6280000e+02 8.5950546e-01 + 1.6305000e+02 8.5950546e-01 + 1.6330000e+02 8.4950546e-01 + 1.6355000e+02 6.4950546e-01 + 1.6380000e+02 4.0950546e-01 + 1.6405000e+02 2.9950546e-01 + 1.6430000e+02 2.0950546e-01 + 1.6455000e+02 9.9505460e-02 + 1.6480000e+02 3.9505460e-02 + 1.6505000e+02 -1.2049454e-01 + 1.6530000e+02 -2.1049454e-01 + 1.6555000e+02 -2.3049454e-01 + 1.6580000e+02 -2.5049454e-01 + 1.6605000e+02 -3.8049454e-01 + 1.6630000e+02 -4.9049454e-01 + 1.6655000e+02 -5.8049454e-01 + 1.6680000e+02 -6.1049454e-01 + 1.6705000e+02 -7.0049454e-01 + 1.6730000e+02 -6.3049454e-01 + 1.6755000e+02 -4.8049454e-01 + 1.6780000e+02 -1.9049454e-01 + 1.6805000e+02 3.9950546e-01 + 1.6830000e+02 8.8950546e-01 + 1.6855000e+02 1.1795055e+00 + 1.6880000e+02 1.3495055e+00 + 1.6905000e+02 1.2995055e+00 + 1.6930000e+02 1.0295055e+00 + 1.6955000e+02 8.6950546e-01 + 1.6980000e+02 4.8950546e-01 + 1.7005000e+02 1.5950546e-01 + 1.7030000e+02 9.5054599e-03 + 1.7055000e+02 -2.0049454e-01 + 1.7080000e+02 -4.7049454e-01 + 1.7105000e+02 -7.0049454e-01 + 1.7130000e+02 -7.4049454e-01 + 1.7155000e+02 -8.0049454e-01 + 1.7180000e+02 -7.6049454e-01 + 1.7205000e+02 -6.0049454e-01 + 1.7230000e+02 -3.5049454e-01 + 1.7255000e+02 -1.9049454e-01 + 1.7280000e+02 -1.0494540e-02 + 1.7305000e+02 2.4950546e-01 + 1.7330000e+02 3.9950546e-01 + 1.7355000e+02 4.8950546e-01 + 1.7380000e+02 6.6950546e-01 + 1.7405000e+02 7.5950546e-01 + 1.7430000e+02 6.7950546e-01 + 1.7455000e+02 6.5950546e-01 + 1.7480000e+02 5.4950546e-01 + 1.7505000e+02 4.4950546e-01 + 1.7530000e+02 2.6950546e-01 + 1.7555000e+02 1.3950546e-01 + 1.7580000e+02 2.9505460e-02 + 1.7605000e+02 -1.5049454e-01 + 1.7630000e+02 -2.9049454e-01 + 1.7655000e+02 -5.9049454e-01 + 1.7680000e+02 -8.2049454e-01 + 1.7705000e+02 -1.0104945e+00 + 1.7730000e+02 -1.0404945e+00 + 1.7755000e+02 -1.0304945e+00 + 1.7780000e+02 -9.5049454e-01 + 1.7805000e+02 -8.3049454e-01 + 1.7830000e+02 -6.8049454e-01 + 1.7855000e+02 -4.9049454e-01 + 1.7880000e+02 -3.2049454e-01 + 1.7905000e+02 -2.4049454e-01 + 1.7930000e+02 5.9505460e-02 + 1.7955000e+02 2.0950546e-01 + 1.7980000e+02 3.2950546e-01 + 1.8005000e+02 6.1950546e-01 + 1.8030000e+02 6.4950546e-01 + 1.8055000e+02 5.6950546e-01 + 1.8080000e+02 6.6950546e-01 + 1.8105000e+02 8.1950546e-01 + 1.8130000e+02 9.2950546e-01 + 1.8155000e+02 1.1795055e+00 + 1.8180000e+02 1.4095055e+00 + 1.8205000e+02 1.3095055e+00 + 1.8230000e+02 9.1950546e-01 + 1.8255000e+02 4.9950546e-01 + 1.8280000e+02 1.4950546e-01 + 1.8305000e+02 -1.2049454e-01 + 1.8330000e+02 -2.5049454e-01 + 1.8355000e+02 -4.9049454e-01 + 1.8380000e+02 -7.6049454e-01 + 1.8405000e+02 -7.5049454e-01 + 1.8430000e+02 -7.5049454e-01 + 1.8455000e+02 -6.6049454e-01 + 1.8480000e+02 -2.8049454e-01 + 1.8505000e+02 1.3950546e-01 + 1.8530000e+02 3.7950546e-01 + 1.8555000e+02 8.0950546e-01 + 1.8580000e+02 9.3950546e-01 + 1.8605000e+02 8.5950546e-01 + 1.8630000e+02 8.8950546e-01 + 1.8655000e+02 7.4950546e-01 + 1.8680000e+02 4.3950546e-01 + 1.8705000e+02 8.9505460e-02 + 1.8730000e+02 -4.0049454e-01 + 1.8755000e+02 -7.6049454e-01 + 1.8780000e+02 -8.9049454e-01 + 1.8805000e+02 -6.8049454e-01 + 1.8830000e+02 -7.9049454e-01 + 1.8855000e+02 -8.4049454e-01 + 1.8880000e+02 -8.6049454e-01 + 1.8905000e+02 -8.8049454e-01 + 1.8930000e+02 -9.6049454e-01 + 1.8955000e+02 -9.6049454e-01 + 1.8980000e+02 -8.2049454e-01 + 1.9005000e+02 -5.3049454e-01 + 1.9030000e+02 -2.0049454e-01 + 1.9055000e+02 1.8950546e-01 + 1.9080000e+02 5.9950546e-01 + 1.9105000e+02 8.1950546e-01 + 1.9130000e+02 9.2950546e-01 + 1.9155000e+02 7.6950546e-01 + 1.9180000e+02 5.6950546e-01 + 1.9205000e+02 4.2950546e-01 + 1.9230000e+02 3.7950546e-01 + 1.9255000e+02 5.0950546e-01 + 1.9280000e+02 6.2950546e-01 + 1.9305000e+02 6.3950546e-01 + 1.9330000e+02 5.9950546e-01 + 1.9355000e+02 3.4950546e-01 + 1.9380000e+02 2.7950546e-01 + 1.9405000e+02 2.6950546e-01 + 1.9430000e+02 2.3950546e-01 + 1.9455000e+02 2.1950546e-01 + 1.9480000e+02 1.4950546e-01 + 1.9505000e+02 9.5054599e-03 + 1.9530000e+02 -1.5049454e-01 + 1.9555000e+02 -1.4049454e-01 + 1.9580000e+02 -2.4049454e-01 + 1.9605000e+02 -4.6049454e-01 + 1.9630000e+02 -6.1049454e-01 + 1.9655000e+02 -6.1049454e-01 + 1.9680000e+02 -4.4049454e-01 + 1.9705000e+02 -1.6049454e-01 + 1.9730000e+02 -2.0494540e-02 + 1.9755000e+02 5.9505460e-02 + 1.9780000e+02 1.3950546e-01 + 1.9805000e+02 6.9505460e-02 + 1.9830000e+02 5.9505460e-02 + 1.9855000e+02 2.4950546e-01 + 1.9880000e+02 5.4950546e-01 + 1.9905000e+02 6.7950546e-01 + 1.9930000e+02 5.9950546e-01 + 1.9955000e+02 2.1950546e-01 + 1.9980000e+02 -8.0494540e-02 + 2.0005000e+02 -2.8049454e-01 + 2.0030000e+02 -4.0049454e-01 + 2.0055000e+02 -4.1049454e-01 + 2.0080000e+02 -5.6049454e-01 + 2.0105000e+02 -4.6049454e-01 + 2.0130000e+02 -3.6049454e-01 + 2.0155000e+02 -2.6049454e-01 + 2.0180000e+02 -1.1049454e-01 + 2.0205000e+02 1.9505460e-02 + 2.0230000e+02 1.7950546e-01 + 2.0255000e+02 1.1950546e-01 + 2.0280000e+02 1.1950546e-01 + 2.0305000e+02 2.0950546e-01 + 2.0330000e+02 3.2950546e-01 + 2.0355000e+02 3.0950546e-01 + 2.0380000e+02 3.2950546e-01 + 2.0405000e+02 3.5950546e-01 + 2.0430000e+02 3.0950546e-01 + 2.0455000e+02 1.9950546e-01 + 2.0480000e+02 1.0950546e-01 + 2.0505000e+02 4.9505460e-02 + 2.0530000e+02 -6.0494540e-02 + 2.0555000e+02 -1.2049454e-01 + 2.0580000e+02 -2.2049454e-01 + 2.0605000e+02 -2.2049454e-01 + 2.0630000e+02 -1.6049454e-01 + 2.0655000e+02 -9.0494540e-02 + 2.0680000e+02 -1.0049454e-01 + 2.0705000e+02 -5.0494540e-02 + 2.0730000e+02 7.9505460e-02 + 2.0755000e+02 1.8950546e-01 + 2.0780000e+02 1.4950546e-01 + 2.0805000e+02 1.3950546e-01 + 2.0830000e+02 9.9505460e-02 + 2.0855000e+02 2.9505460e-02 + 2.0880000e+02 -6.0494540e-02 + 2.0905000e+02 -6.0494540e-02 + 2.0930000e+02 1.9505460e-02 + 2.0955000e+02 1.9505460e-02 + 2.0980000e+02 -8.0494540e-02 + 2.1005000e+02 -1.5049454e-01 + 2.1030000e+02 -2.6049454e-01 + 2.1055000e+02 -2.9049454e-01 + 2.1080000e+02 -2.2049454e-01 + 2.1105000e+02 -1.3049454e-01 + 2.1130000e+02 -1.5049454e-01 + 2.1155000e+02 -9.0494540e-02 + 2.1180000e+02 -5.0494540e-02 + 2.1205000e+02 -6.0494540e-02 + 2.1230000e+02 -1.4049454e-01 + 2.1255000e+02 -3.0049454e-01 + 2.1280000e+02 -2.9049454e-01 + 2.1305000e+02 -1.3049454e-01 + 2.1330000e+02 8.9505460e-02 + 2.1355000e+02 2.2950546e-01 + 2.1380000e+02 3.3950546e-01 + 2.1405000e+02 3.7950546e-01 + 2.1430000e+02 3.9950546e-01 + 2.1455000e+02 3.6950546e-01 + 2.1480000e+02 2.5950546e-01 + 2.1505000e+02 1.2950546e-01 + 2.1530000e+02 9.5054599e-03 + 2.1555000e+02 -8.0494540e-02 + 2.1580000e+02 -4.9454011e-04 + 2.1605000e+02 1.9505460e-02 + 2.1630000e+02 -2.0494540e-02 + 2.1655000e+02 -1.0494540e-02 + 2.1680000e+02 -2.0494540e-02 + 2.1705000e+02 2.9505460e-02 + 2.1730000e+02 1.0950546e-01 + 2.1755000e+02 1.2950546e-01 + 2.1780000e+02 9.9505460e-02 + 2.1805000e+02 2.5950546e-01 + 2.1830000e+02 2.2950546e-01 + 2.1855000e+02 -5.0494540e-02 + 2.1880000e+02 -3.1049454e-01 + 2.1905000e+02 -4.4049454e-01 + 2.1930000e+02 -5.8049454e-01 + 2.1955000e+02 -6.2049454e-01 + 2.1980000e+02 -5.9049454e-01 + 2.2005000e+02 -4.2049454e-01 + 2.2030000e+02 -3.3049454e-01 + 2.2055000e+02 -2.3049454e-01 + 2.2080000e+02 -2.0494540e-02 + 2.2105000e+02 9.9505460e-02 + 2.2130000e+02 1.2950546e-01 + 2.2155000e+02 1.7950546e-01 + 2.2180000e+02 4.2950546e-01 + 2.2205000e+02 5.5950546e-01 + 2.2230000e+02 4.8950546e-01 + 2.2255000e+02 3.8950546e-01 + 2.2280000e+02 2.2950546e-01 + 2.2305000e+02 6.9505460e-02 + 2.2330000e+02 -8.0494540e-02 + 2.2355000e+02 -2.8049454e-01 + 2.2380000e+02 -4.0049454e-01 + 2.2405000e+02 -2.8049454e-01 + 2.2430000e+02 -3.0494540e-02 + 2.2455000e+02 1.6950546e-01 + 2.2480000e+02 2.3950546e-01 + 2.2505000e+02 2.5950546e-01 + 2.2530000e+02 2.0950546e-01 + 2.2555000e+02 8.9505460e-02 + 2.2580000e+02 6.9505460e-02 + 2.2605000e+02 5.9505460e-02 + 2.2630000e+02 4.9505460e-02 + 2.2655000e+02 1.8950546e-01 + 2.2680000e+02 2.1950546e-01 + 2.2705000e+02 1.6950546e-01 + 2.2730000e+02 1.2950546e-01 + 2.2755000e+02 6.9505460e-02 + 2.2780000e+02 -1.0049454e-01 + 2.2805000e+02 -1.6049454e-01 + 2.2830000e+02 -1.0049454e-01 + 2.2855000e+02 1.9505460e-02 + 2.2880000e+02 9.9505460e-02 + 2.2905000e+02 7.9505460e-02 + 2.2930000e+02 2.9505460e-02 + 2.2955000e+02 2.9505460e-02 + 2.2980000e+02 9.5054599e-03 + 2.3005000e+02 -3.0494540e-02 + 2.3030000e+02 -4.0494540e-02 + 2.3055000e+02 -6.0494540e-02 + 2.3080000e+02 -1.6049454e-01 + 2.3105000e+02 -2.6049454e-01 + 2.3130000e+02 -3.6049454e-01 + 2.3155000e+02 -4.9049454e-01 + 2.3180000e+02 -6.0049454e-01 + 2.3205000e+02 -6.5049454e-01 + 2.3230000e+02 -5.7049454e-01 + 2.3255000e+02 -4.4049454e-01 + 2.3280000e+02 -3.0049454e-01 + 2.3305000e+02 -2.3049454e-01 + 2.3330000e+02 -1.5049454e-01 + 2.3355000e+02 1.0950546e-01 + 2.3380000e+02 4.5950546e-01 + 2.3405000e+02 7.4950546e-01 + 2.3430000e+02 7.9950546e-01 + 2.3455000e+02 8.5950546e-01 + 2.3480000e+02 7.3950546e-01 + 2.3505000e+02 7.6950546e-01 + 2.3530000e+02 8.4950546e-01 + 2.3555000e+02 6.4950546e-01 + 2.3580000e+02 2.8950546e-01 + 2.3605000e+02 -1.0494540e-02 + 2.3630000e+02 -1.8049454e-01 + 2.3655000e+02 -3.8049454e-01 + 2.3680000e+02 -5.2049454e-01 + 2.3705000e+02 -5.6049454e-01 + 2.3730000e+02 -4.8049454e-01 + 2.3755000e+02 -3.6049454e-01 + 2.3780000e+02 -2.5049454e-01 + 2.3805000e+02 3.9505460e-02 + 2.3830000e+02 1.5950546e-01 + 2.3855000e+02 1.8950546e-01 + 2.3880000e+02 2.3950546e-01 + 2.3905000e+02 1.6950546e-01 + 2.3930000e+02 8.9505460e-02 + 2.3955000e+02 9.5054599e-03 + 2.3980000e+02 3.9505460e-02 + 2.4005000e+02 9.9505460e-02 + 2.4030000e+02 6.9505460e-02 + 2.4055000e+02 -2.0494540e-02 + 2.4080000e+02 -1.1049454e-01 + 2.4105000e+02 -1.3049454e-01 + 2.4130000e+02 -9.0494540e-02 + 2.4155000e+02 -1.0494540e-02 + 2.4180000e+02 2.7950546e-01 + 2.4205000e+02 5.4950546e-01 + 2.4230000e+02 6.8950546e-01 + 2.4255000e+02 7.7950546e-01 + 2.4280000e+02 7.0950546e-01 + 2.4305000e+02 2.5950546e-01 + 2.4330000e+02 -2.0049454e-01 + 2.4355000e+02 -6.1049454e-01 + 2.4380000e+02 -8.7049454e-01 + 2.4405000e+02 -1.0504945e+00 + 2.4430000e+02 -9.8049454e-01 + 2.4455000e+02 -7.5049454e-01 + 2.4480000e+02 -6.0049454e-01 + 2.4505000e+02 -3.4049454e-01 + 2.4530000e+02 -1.4049454e-01 + 2.4555000e+02 5.9505460e-02 + 2.4580000e+02 1.0950546e-01 + 2.4605000e+02 1.7950546e-01 + 2.4630000e+02 2.0950546e-01 + 2.4655000e+02 2.8950546e-01 + 2.4680000e+02 3.6950546e-01 + 2.4705000e+02 2.9950546e-01 + 2.4730000e+02 1.5950546e-01 + 2.4755000e+02 1.2950546e-01 + 2.4780000e+02 2.1950546e-01 + 2.4805000e+02 3.3950546e-01 + 2.4830000e+02 4.1950546e-01 + 2.4855000e+02 3.1950546e-01 + 2.4880000e+02 1.9950546e-01 + 2.4905000e+02 1.0950546e-01 + 2.4930000e+02 1.9505460e-02 + 2.4955000e+02 9.5054599e-03 + 2.4980000e+02 1.5950546e-01 + 2.5005000e+02 3.4950546e-01 + 2.5030000e+02 3.5950546e-01 + 2.5055000e+02 3.2950546e-01 + 2.5080000e+02 3.5950546e-01 + 2.5105000e+02 3.7950546e-01 + 2.5130000e+02 4.8950546e-01 + 2.5155000e+02 5.0950546e-01 + 2.5180000e+02 4.5950546e-01 + 2.5205000e+02 3.8950546e-01 + 2.5230000e+02 1.7950546e-01 + 2.5255000e+02 1.9505460e-02 + 2.5280000e+02 -1.3049454e-01 + 2.5305000e+02 -4.5049454e-01 + 2.5330000e+02 -7.9049454e-01 + 2.5355000e+02 -8.9049454e-01 + 2.5380000e+02 -8.9049454e-01 + 2.5405000e+02 -8.0049454e-01 + 2.5430000e+02 -7.3049454e-01 + 2.5455000e+02 -6.2049454e-01 + 2.5480000e+02 -5.0049454e-01 + 2.5505000e+02 -4.0049454e-01 + 2.5530000e+02 -3.7049454e-01 + 2.5555000e+02 -2.1049454e-01 + 2.5580000e+02 -9.0494540e-02 + 2.5605000e+02 -9.0494540e-02 + 2.5630000e+02 2.9505460e-02 + 2.5655000e+02 2.3950546e-01 + 2.5680000e+02 2.3950546e-01 + 2.5705000e+02 -4.9454011e-04 + 2.5730000e+02 -1.4049454e-01 + 2.5755000e+02 -8.0494540e-02 + 2.5780000e+02 1.9505460e-02 + 2.5805000e+02 4.9505460e-02 + 2.5830000e+02 1.4950546e-01 + 2.5855000e+02 3.2950546e-01 + 2.5880000e+02 4.3950546e-01 + 2.5905000e+02 6.7950546e-01 + 2.5930000e+02 9.7950546e-01 + 2.5955000e+02 9.6950546e-01 + 2.5980000e+02 6.6950546e-01 + 2.6005000e+02 3.6950546e-01 + 2.6030000e+02 1.9950546e-01 + 2.6055000e+02 8.9505460e-02 + 2.6080000e+02 -6.0494540e-02 + 2.6105000e+02 -1.8049454e-01 + 2.6130000e+02 -1.4049454e-01 + 2.6155000e+02 9.5054599e-03 + 2.6180000e+02 2.0950546e-01 + 2.6205000e+02 3.8950546e-01 + 2.6230000e+02 3.6950546e-01 + 2.6255000e+02 2.7950546e-01 + 2.6280000e+02 2.0950546e-01 + 2.6305000e+02 2.0950546e-01 + 2.6330000e+02 1.8950546e-01 + 2.6355000e+02 6.9505460e-02 + 2.6380000e+02 9.5054599e-03 + 2.6405000e+02 -3.3049454e-01 + 2.6430000e+02 -5.3049454e-01 + 2.6455000e+02 -6.6049454e-01 + 2.6480000e+02 -6.7049454e-01 + 2.6505000e+02 -5.8049454e-01 + 2.6530000e+02 -5.4049454e-01 + 2.6555000e+02 -3.6049454e-01 + 2.6580000e+02 -1.4049454e-01 + 2.6605000e+02 9.5054599e-03 + 2.6630000e+02 -7.0494540e-02 + 2.6655000e+02 -1.4049454e-01 + 2.6680000e+02 -1.8049454e-01 + 2.6705000e+02 -1.7049454e-01 + 2.6730000e+02 -1.8049454e-01 + 2.6755000e+02 -9.0494540e-02 + 2.6780000e+02 1.9505460e-02 + 2.6805000e+02 9.9505460e-02 + 2.6830000e+02 1.1950546e-01 + 2.6855000e+02 1.7950546e-01 + 2.6880000e+02 3.4950546e-01 + 2.6905000e+02 4.1950546e-01 + 2.6930000e+02 5.6950546e-01 + 2.6955000e+02 5.9950546e-01 + 2.6980000e+02 5.5950546e-01 + 2.7005000e+02 4.2950546e-01 + 2.7030000e+02 2.1950546e-01 + 2.7055000e+02 3.9505460e-02 + 2.7080000e+02 -1.7049454e-01 + 2.7105000e+02 -2.7049454e-01 + 2.7130000e+02 -2.6049454e-01 + 2.7155000e+02 -1.0049454e-01 + 2.7180000e+02 1.7950546e-01 + 2.7205000e+02 3.8950546e-01 + 2.7230000e+02 3.6950546e-01 + 2.7255000e+02 1.7950546e-01 + 2.7280000e+02 -2.0494540e-02 + 2.7305000e+02 -2.1049454e-01 + 2.7330000e+02 -4.1049454e-01 + 2.7355000e+02 -4.6049454e-01 + 2.7380000e+02 -5.4049454e-01 + 2.7405000e+02 -5.4049454e-01 + 2.7430000e+02 -2.7049454e-01 + 2.7455000e+02 -2.8049454e-01 + 2.7480000e+02 -2.0049454e-01 + 2.7505000e+02 -2.0494540e-02 + 2.7530000e+02 2.9505460e-02 + 2.7555000e+02 7.9505460e-02 + 2.7580000e+02 3.2950546e-01 + 2.7605000e+02 4.6950546e-01 + 2.7630000e+02 4.6950546e-01 + 2.7655000e+02 6.2950546e-01 + 2.7680000e+02 6.8950546e-01 + 2.7705000e+02 6.6950546e-01 + 2.7730000e+02 6.0950546e-01 + 2.7755000e+02 3.7950546e-01 + 2.7780000e+02 1.7950546e-01 + 2.7805000e+02 9.5054599e-03 + 2.7830000e+02 -1.7049454e-01 + 2.7855000e+02 -3.5049454e-01 + 2.7880000e+02 -5.1049454e-01 + 2.7905000e+02 -6.7049454e-01 + 2.7930000e+02 -7.2049454e-01 + 2.7955000e+02 -4.9049454e-01 + 2.7980000e+02 -2.2049454e-01 + 2.8005000e+02 -1.0049454e-01 + 2.8030000e+02 8.9505460e-02 + 2.8055000e+02 2.1950546e-01 + 2.8080000e+02 2.5950546e-01 + 2.8105000e+02 2.7950546e-01 + 2.8130000e+02 1.9950546e-01 + 2.8155000e+02 1.4950546e-01 + 2.8180000e+02 1.4950546e-01 + 2.8205000e+02 5.9505460e-02 + 2.8230000e+02 -1.9049454e-01 + 2.8255000e+02 -3.1049454e-01 + 2.8280000e+02 -2.4049454e-01 + 2.8305000e+02 9.5054599e-03 + 2.8330000e+02 -5.0494540e-02 + 2.8355000e+02 -1.8049454e-01 + 2.8380000e+02 -2.2049454e-01 + 2.8405000e+02 -2.0049454e-01 + 2.8430000e+02 -1.4049454e-01 + 2.8455000e+02 -2.0049454e-01 + 2.8480000e+02 -3.4049454e-01 + 2.8505000e+02 -4.7049454e-01 + 2.8530000e+02 -5.7049454e-01 + 2.8555000e+02 -6.8049454e-01 + 2.8580000e+02 -7.0049454e-01 + 2.8605000e+02 -5.4049454e-01 + 2.8630000e+02 -2.2049454e-01 + 2.8655000e+02 2.8950546e-01 + 2.8680000e+02 9.2950546e-01 + 2.8705000e+02 9.8950546e-01 + 2.8730000e+02 9.7950546e-01 + 2.8755000e+02 9.6950546e-01 + 2.8780000e+02 1.0595055e+00 + 2.8805000e+02 1.1195055e+00 + 2.8830000e+02 1.1095055e+00 + 2.8855000e+02 1.0995055e+00 + 2.8880000e+02 8.1950546e-01 + 2.8905000e+02 6.0950546e-01 + 2.8930000e+02 2.7950546e-01 + 2.8955000e+02 -9.0494540e-02 + 2.8980000e+02 -3.7049454e-01 + 2.9005000e+02 -5.5049454e-01 + 2.9030000e+02 -6.3049454e-01 + 2.9055000e+02 -5.7049454e-01 + 2.9080000e+02 -5.8049454e-01 + 2.9105000e+02 -4.9049454e-01 + 2.9130000e+02 -5.6049454e-01 + 2.9155000e+02 -6.3049454e-01 + 2.9180000e+02 -6.4049454e-01 + 2.9205000e+02 -6.8049454e-01 + 2.9230000e+02 -5.8049454e-01 + 2.9255000e+02 -4.5049454e-01 + 2.9280000e+02 -2.5049454e-01 + 2.9305000e+02 1.9505460e-02 + 2.9330000e+02 4.3950546e-01 + 2.9355000e+02 5.4950546e-01 + 2.9380000e+02 3.6950546e-01 + 2.9405000e+02 -3.0494540e-02 + 2.9430000e+02 -6.0494540e-02 + 2.9455000e+02 1.9950546e-01 + 2.9480000e+02 5.2950546e-01 + 2.9505000e+02 6.4950546e-01 + 2.9530000e+02 5.0950546e-01 + 2.9555000e+02 3.3950546e-01 + 2.9580000e+02 2.5950546e-01 + 2.9605000e+02 1.4950546e-01 + 2.9630000e+02 1.9505460e-02 + 2.9655000e+02 -2.0049454e-01 + 2.9680000e+02 -3.6049454e-01 + 2.9705000e+02 -4.3049454e-01 + 2.9730000e+02 -6.2049454e-01 + 2.9755000e+02 -5.7049454e-01 + 2.9780000e+02 -7.1049454e-01 + 2.9805000e+02 -7.1049454e-01 + 2.9830000e+02 -6.1049454e-01 + 2.9855000e+02 -4.9049454e-01 + 2.9880000e+02 -2.7049454e-01 + 2.9905000e+02 -1.2049454e-01 + 2.9930000e+02 2.0950546e-01 + 2.9955000e+02 5.0950546e-01 + 2.9980000e+02 6.6950546e-01 + 3.0005000e+02 8.7950546e-01 + 3.0030000e+02 1.0695055e+00 + 3.0055000e+02 1.1495055e+00 + 3.0080000e+02 8.4950546e-01 + 3.0105000e+02 6.4950546e-01 + 3.0130000e+02 6.9950546e-01 + 3.0155000e+02 5.2950546e-01 + 3.0180000e+02 2.7950546e-01 + 3.0205000e+02 1.2950546e-01 + 3.0230000e+02 -2.0494540e-02 + 3.0255000e+02 -1.4049454e-01 + 3.0280000e+02 -2.1049454e-01 + 3.0305000e+02 -2.1049454e-01 + 3.0330000e+02 -2.2049454e-01 + 3.0355000e+02 -2.0049454e-01 + 3.0380000e+02 -1.0494540e-02 + 3.0405000e+02 -8.0494540e-02 + 3.0430000e+02 -1.1049454e-01 + 3.0455000e+02 -1.1049454e-01 + 3.0480000e+02 -1.1049454e-01 + 3.0505000e+02 -2.6049454e-01 + 3.0530000e+02 -3.9049454e-01 + 3.0555000e+02 -4.4049454e-01 + 3.0580000e+02 -4.2049454e-01 + 3.0605000e+02 -2.8049454e-01 + 3.0630000e+02 -1.8049454e-01 + 3.0655000e+02 -1.2049454e-01 + 3.0680000e+02 -6.0494540e-02 + 3.0705000e+02 -2.1049454e-01 + 3.0730000e+02 -3.7049454e-01 + 3.0755000e+02 -2.6049454e-01 + 3.0780000e+02 -2.3049454e-01 + 3.0805000e+02 -4.5049454e-01 + 3.0830000e+02 -4.7049454e-01 + 3.0855000e+02 -4.0049454e-01 + 3.0880000e+02 -1.4049454e-01 + 3.0905000e+02 3.5950546e-01 + 3.0930000e+02 7.1950546e-01 + 3.0955000e+02 7.1950546e-01 + 3.0980000e+02 5.6950546e-01 + 3.1005000e+02 2.3950546e-01 + 3.1030000e+02 5.9505460e-02 + 3.1055000e+02 1.9505460e-02 + 3.1080000e+02 2.9505460e-02 + 3.1105000e+02 1.1950546e-01 + 3.1130000e+02 1.9950546e-01 + 3.1155000e+02 2.2950546e-01 + 3.1180000e+02 3.0950546e-01 + 3.1205000e+02 4.7950546e-01 + 3.1230000e+02 2.8950546e-01 + 3.1255000e+02 8.9505460e-02 + 3.1280000e+02 1.5950546e-01 + 3.1305000e+02 3.2950546e-01 + 3.1330000e+02 5.5950546e-01 + 3.1355000e+02 7.5950546e-01 + 3.1380000e+02 8.9950546e-01 + 3.1405000e+02 8.3950546e-01 + 3.1430000e+02 7.2950546e-01 + 3.1455000e+02 4.1950546e-01 + 3.1480000e+02 5.9505460e-02 + 3.1505000e+02 -1.3049454e-01 + 3.1530000e+02 -3.2049454e-01 + 3.1555000e+02 -4.8049454e-01 + 3.1580000e+02 -5.5049454e-01 + 3.1605000e+02 -4.2049454e-01 + 3.1630000e+02 -2.6049454e-01 + 3.1655000e+02 -2.4049454e-01 + 3.1680000e+02 -2.5049454e-01 + 3.1705000e+02 -2.6049454e-01 + 3.1730000e+02 -6.0494540e-02 + 3.1755000e+02 2.9505460e-02 + 3.1780000e+02 9.5054599e-03 + 3.1805000e+02 -4.0494540e-02 + 3.1830000e+02 -1.7049454e-01 + 3.1855000e+02 -2.8049454e-01 + 3.1880000e+02 -3.5049454e-01 + 3.1905000e+02 -3.6049454e-01 + 3.1930000e+02 -3.7049454e-01 + 3.1955000e+02 -4.1049454e-01 + 3.1980000e+02 -2.8049454e-01 + 3.2005000e+02 -3.1049454e-01 + 3.2030000e+02 -4.6049454e-01 + 3.2055000e+02 -5.7049454e-01 + 3.2080000e+02 -6.8049454e-01 + 3.2105000e+02 -7.5049454e-01 + 3.2130000e+02 -6.3049454e-01 + 3.2155000e+02 -3.4049454e-01 + 3.2180000e+02 2.9505460e-02 + 3.2205000e+02 2.5950546e-01 + 3.2230000e+02 5.2950546e-01 + 3.2255000e+02 8.1950546e-01 + 3.2280000e+02 8.9950546e-01 + 3.2305000e+02 9.7950546e-01 + 3.2330000e+02 9.6950546e-01 + 3.2355000e+02 8.8950546e-01 + 3.2380000e+02 6.5950546e-01 + 3.2405000e+02 3.3950546e-01 + 3.2430000e+02 1.0950546e-01 + 3.2455000e+02 -2.0494540e-02 + 3.2480000e+02 -2.0494540e-02 + 3.2505000e+02 9.9505460e-02 + 3.2530000e+02 2.5950546e-01 + 3.2555000e+02 1.6950546e-01 + 3.2580000e+02 1.1950546e-01 + 3.2605000e+02 1.4950546e-01 + 3.2630000e+02 1.7950546e-01 + 3.2655000e+02 2.8950546e-01 + 3.2680000e+02 4.2950546e-01 + 3.2705000e+02 4.7950546e-01 + 3.2730000e+02 3.9950546e-01 + 3.2755000e+02 2.6950546e-01 + 3.2780000e+02 5.9505460e-02 + 3.2805000e+02 -8.0494540e-02 + 3.2830000e+02 -2.8049454e-01 + 3.2855000e+02 -4.8049454e-01 + 3.2880000e+02 -6.3049454e-01 + 3.2905000e+02 -6.5049454e-01 + 3.2930000e+02 -5.4049454e-01 + 3.2955000e+02 -4.0049454e-01 + 3.2980000e+02 -3.6049454e-01 + 3.3005000e+02 -4.6049454e-01 + 3.3030000e+02 -3.8049454e-01 + 3.3055000e+02 -2.9049454e-01 + 3.3080000e+02 -1.9049454e-01 + 3.3105000e+02 7.9505460e-02 + 3.3130000e+02 1.2950546e-01 + 3.3155000e+02 8.9505460e-02 + 3.3180000e+02 -3.0494540e-02 + 3.3205000e+02 -1.4049454e-01 + 3.3230000e+02 -2.1049454e-01 + 3.3255000e+02 -2.0049454e-01 + 3.3280000e+02 -1.3049454e-01 + 3.3305000e+02 9.5054599e-03 + 3.3330000e+02 8.9505460e-02 + 3.3355000e+02 1.5950546e-01 + 3.3380000e+02 7.9505460e-02 + 3.3405000e+02 9.9505460e-02 + 3.3430000e+02 1.0950546e-01 + 3.3455000e+02 -2.0494540e-02 + 3.3480000e+02 -1.8049454e-01 + 3.3505000e+02 -2.3049454e-01 + 3.3530000e+02 -1.5049454e-01 + 3.3555000e+02 -4.0494540e-02 + 3.3580000e+02 8.9505460e-02 + 3.3605000e+02 8.9505460e-02 + 3.3630000e+02 3.9505460e-02 + 3.3655000e+02 9.5054599e-03 + 3.3680000e+02 2.9505460e-02 + 3.3705000e+02 1.4950546e-01 + 3.3730000e+02 4.7950546e-01 + 3.3755000e+02 6.7950546e-01 + 3.3780000e+02 9.2950546e-01 + 3.3805000e+02 1.0995055e+00 + 3.3830000e+02 1.1795055e+00 + 3.3855000e+02 1.0995055e+00 + 3.3880000e+02 8.6950546e-01 + 3.3905000e+02 7.7950546e-01 + 3.3930000e+02 6.5950546e-01 + 3.3955000e+02 3.3950546e-01 + 3.3980000e+02 -2.3049454e-01 + 3.4005000e+02 -6.8049454e-01 + 3.4030000e+02 -8.8049454e-01 + 3.4055000e+02 -9.3049454e-01 + 3.4080000e+02 -1.0804945e+00 + 3.4105000e+02 -1.1204945e+00 + 3.4130000e+02 -9.3049454e-01 + 3.4155000e+02 -8.2049454e-01 + 3.4180000e+02 -6.4049454e-01 + 3.4205000e+02 -3.2049454e-01 + 3.4230000e+02 9.5054599e-03 + 3.4255000e+02 -2.0494540e-02 + 3.4280000e+02 -9.0494540e-02 + 3.4305000e+02 -1.8049454e-01 + 3.4330000e+02 -2.1049454e-01 + 3.4355000e+02 -3.0049454e-01 + 3.4380000e+02 -4.0049454e-01 + 3.4405000e+02 -3.7049454e-01 + 3.4430000e+02 -3.1049454e-01 + 3.4455000e+02 -2.6049454e-01 + 3.4480000e+02 -3.1049454e-01 + 3.4505000e+02 -3.3049454e-01 + 3.4530000e+02 -2.1049454e-01 + 3.4555000e+02 -2.0494540e-02 + 3.4580000e+02 4.1950546e-01 + 3.4605000e+02 7.8950546e-01 + 3.4630000e+02 1.1295055e+00 + 3.4655000e+02 1.0895055e+00 + 3.4680000e+02 1.0695055e+00 + 3.4705000e+02 8.5950546e-01 + 3.4730000e+02 4.5950546e-01 + 3.4755000e+02 6.9505460e-02 + 3.4780000e+02 -2.3049454e-01 + 3.4805000e+02 -3.7049454e-01 + 3.4830000e+02 -2.9049454e-01 + 3.4855000e+02 -1.0049454e-01 + 3.4880000e+02 7.9505460e-02 + 3.4905000e+02 4.9950546e-01 + 3.4930000e+02 6.4950546e-01 + 3.4955000e+02 5.7950546e-01 + 3.4980000e+02 5.2950546e-01 + 3.5005000e+02 5.1950546e-01 + 3.5030000e+02 5.6950546e-01 + 3.5055000e+02 6.1950546e-01 + 3.5080000e+02 6.1950546e-01 + 3.5105000e+02 4.1950546e-01 + 3.5130000e+02 8.9505460e-02 + 3.5155000e+02 -2.5049454e-01 + 3.5180000e+02 -3.8049454e-01 + 3.5205000e+02 -4.2049454e-01 + 3.5230000e+02 -6.2049454e-01 + 3.5255000e+02 -6.2049454e-01 + 3.5280000e+02 -5.0049454e-01 + 3.5305000e+02 -4.2049454e-01 + 3.5330000e+02 -2.0049454e-01 + 3.5355000e+02 -1.2049454e-01 + 3.5380000e+02 -9.0494540e-02 + 3.5405000e+02 -1.5049454e-01 + 3.5430000e+02 -1.2049454e-01 + 3.5455000e+02 -2.0049454e-01 + 3.5480000e+02 -2.1049454e-01 + 3.5505000e+02 -1.8049454e-01 + 3.5530000e+02 -1.8049454e-01 + 3.5555000e+02 -1.8049454e-01 + 3.5580000e+02 -7.0494540e-02 + 3.5605000e+02 -6.0494540e-02 + 3.5630000e+02 -1.5049454e-01 + 3.5655000e+02 -1.8049454e-01 + 3.5680000e+02 -2.2049454e-01 + 3.5705000e+02 -2.1049454e-01 + 3.5730000e+02 -1.7049454e-01 + 3.5755000e+02 -9.0494540e-02 + 3.5780000e+02 -3.0494540e-02 + 3.5805000e+02 1.1950546e-01 + 3.5830000e+02 3.2950546e-01 + 3.5855000e+02 3.7950546e-01 + 3.5880000e+02 2.3950546e-01 + 3.5905000e+02 9.5054599e-03 + 3.5930000e+02 -8.0494540e-02 + 3.5955000e+02 -6.0494540e-02 + 3.5980000e+02 8.9505460e-02 + 3.6005000e+02 3.6950546e-01 + 3.6030000e+02 3.9950546e-01 + 3.6055000e+02 3.7950546e-01 + 3.6080000e+02 3.5950546e-01 + 3.6105000e+02 3.5950546e-01 + 3.6130000e+02 5.2950546e-01 + 3.6155000e+02 6.7950546e-01 + 3.6180000e+02 5.5950546e-01 + 3.6205000e+02 3.8950546e-01 + 3.6230000e+02 2.4950546e-01 + 3.6255000e+02 5.9505460e-02 + 3.6280000e+02 -7.0494540e-02 + 3.6305000e+02 -1.7049454e-01 + 3.6330000e+02 -1.6049454e-01 + 3.6355000e+02 -1.6049454e-01 + 3.6380000e+02 -2.0494540e-02 + 3.6405000e+02 2.9505460e-02 + 3.6430000e+02 8.9505460e-02 + 3.6455000e+02 2.9950546e-01 + 3.6480000e+02 3.6950546e-01 + 3.6505000e+02 5.2950546e-01 + 3.6530000e+02 4.8950546e-01 + 3.6555000e+02 3.1950546e-01 + 3.6580000e+02 -3.0494540e-02 + 3.6605000e+02 -4.9049454e-01 + 3.6630000e+02 -7.0049454e-01 + 3.6655000e+02 -7.8049454e-01 + 3.6680000e+02 -8.7049454e-01 + 3.6705000e+02 -9.5049454e-01 + 3.6730000e+02 -8.5049454e-01 + 3.6755000e+02 -7.3049454e-01 + 3.6780000e+02 -5.0049454e-01 + 3.6805000e+02 -2.5049454e-01 + 3.6830000e+02 2.9505460e-02 + 3.6855000e+02 2.3950546e-01 + 3.6880000e+02 2.3950546e-01 + 3.6905000e+02 2.1950546e-01 + 3.6930000e+02 2.0950546e-01 + 3.6955000e+02 1.9950546e-01 + 3.6980000e+02 1.2950546e-01 + 3.7005000e+02 4.9505460e-02 + 3.7030000e+02 -1.4049454e-01 + 3.7055000e+02 -3.1049454e-01 + 3.7080000e+02 -3.6049454e-01 + 3.7105000e+02 -2.4049454e-01 + 3.7130000e+02 -1.2049454e-01 + 3.7155000e+02 2.9505460e-02 + 3.7180000e+02 1.0950546e-01 + 3.7205000e+02 1.7950546e-01 + 3.7230000e+02 5.1950546e-01 + 3.7255000e+02 8.6950546e-01 + 3.7280000e+02 1.0095055e+00 + 3.7305000e+02 1.0495055e+00 + 3.7330000e+02 1.0695055e+00 + 3.7355000e+02 9.4950546e-01 + 3.7380000e+02 6.4950546e-01 + 3.7405000e+02 3.4950546e-01 + 3.7430000e+02 1.0950546e-01 + 3.7455000e+02 -1.5049454e-01 + 3.7480000e+02 -4.2049454e-01 + 3.7505000e+02 -5.7049454e-01 + 3.7530000e+02 -5.7049454e-01 + 3.7555000e+02 -5.4049454e-01 + 3.7580000e+02 -7.5049454e-01 + 3.7605000e+02 -8.7049454e-01 + 3.7630000e+02 -8.9049454e-01 + 3.7655000e+02 -8.0049454e-01 + 3.7680000e+02 -5.5049454e-01 + 3.7705000e+02 -1.8049454e-01 + 3.7730000e+02 2.6950546e-01 + 3.7755000e+02 1.0595055e+00 + 3.7780000e+02 1.2895055e+00 + 3.7805000e+02 1.3095055e+00 + 3.7830000e+02 1.1295055e+00 + 3.7855000e+02 7.2950546e-01 + 3.7880000e+02 5.7950546e-01 + 3.7905000e+02 4.3950546e-01 + 3.7930000e+02 1.5950546e-01 + 3.7955000e+02 -2.3049454e-01 + 3.7980000e+02 -5.6049454e-01 + 3.8005000e+02 -7.9049454e-01 + 3.8030000e+02 -7.3049454e-01 + 3.8055000e+02 -9.2049454e-01 + 3.8080000e+02 -9.8049454e-01 + 3.8105000e+02 -8.8049454e-01 + 3.8130000e+02 -6.2049454e-01 + 3.8155000e+02 -4.8049454e-01 + 3.8180000e+02 -2.0049454e-01 + 3.8205000e+02 2.1950546e-01 + 3.8230000e+02 4.6950546e-01 + 3.8255000e+02 7.2950546e-01 + 3.8280000e+02 8.1950546e-01 + 3.8305000e+02 7.6950546e-01 + 3.8330000e+02 6.1950546e-01 + 3.8355000e+02 4.1950546e-01 + 3.8380000e+02 2.7950546e-01 + 3.8405000e+02 1.7950546e-01 + 3.8430000e+02 4.9505460e-02 + 3.8455000e+02 -1.0494540e-02 + 3.8480000e+02 -1.1049454e-01 + 3.8505000e+02 1.0950546e-01 + 3.8530000e+02 2.1950546e-01 + 3.8555000e+02 5.9505460e-02 + 3.8580000e+02 -2.0494540e-02 + 3.8605000e+02 -1.2049454e-01 + 3.8630000e+02 -2.7049454e-01 + 3.8655000e+02 -3.4049454e-01 + 3.8680000e+02 -3.9049454e-01 + 3.8705000e+02 -3.4049454e-01 + 3.8730000e+02 -2.8049454e-01 + 3.8755000e+02 1.9505460e-02 + 3.8780000e+02 3.6950546e-01 + 3.8805000e+02 5.3950546e-01 + 3.8830000e+02 5.0950546e-01 + 3.8855000e+02 2.8950546e-01 + 3.8880000e+02 8.9505460e-02 + 3.8905000e+02 -5.0494540e-02 + 3.8930000e+02 -1.2049454e-01 + 3.8955000e+02 -1.3049454e-01 + 3.8980000e+02 -1.1049454e-01 + 3.9005000e+02 -5.0494540e-02 + 3.9030000e+02 -2.0494540e-02 + 3.9055000e+02 -8.0494540e-02 + 3.9080000e+02 -4.0494540e-02 + 3.9105000e+02 -3.0494540e-02 + 3.9130000e+02 -4.9454011e-04 + 3.9155000e+02 9.9505460e-02 + 3.9180000e+02 2.5950546e-01 + 3.9205000e+02 4.6950546e-01 + 3.9230000e+02 4.0950546e-01 + 3.9255000e+02 2.3950546e-01 + 3.9280000e+02 7.9505460e-02 + 3.9305000e+02 -1.0494540e-02 + 3.9330000e+02 -6.0494540e-02 + 3.9355000e+02 -9.0494540e-02 + 3.9380000e+02 4.9505460e-02 + 3.9405000e+02 2.4950546e-01 + 3.9430000e+02 4.0950546e-01 + 3.9455000e+02 3.9950546e-01 + 3.9480000e+02 3.7950546e-01 + 3.9505000e+02 4.1950546e-01 + 3.9530000e+02 2.8950546e-01 + 3.9555000e+02 -1.6049454e-01 + 3.9580000e+02 -5.7049454e-01 + 3.9605000e+02 -8.2049454e-01 + 3.9630000e+02 -1.0304945e+00 + 3.9655000e+02 -1.1404945e+00 + 3.9680000e+02 -1.0904945e+00 + 3.9705000e+02 -9.9049454e-01 + 3.9730000e+02 -6.8049454e-01 + 3.9755000e+02 -5.8049454e-01 + 3.9780000e+02 -4.0049454e-01 + 3.9805000e+02 -2.2049454e-01 + 3.9830000e+02 1.4950546e-01 + 3.9855000e+02 4.1950546e-01 + 3.9880000e+02 5.5950546e-01 + 3.9905000e+02 6.8950546e-01 + 3.9930000e+02 7.6950546e-01 + 3.9955000e+02 8.9950546e-01 + 3.9980000e+02 8.8950546e-01 + 4.0005000e+02 8.1950546e-01 + 4.0030000e+02 6.0950546e-01 + 4.0055000e+02 2.8950546e-01 + 4.0080000e+02 -4.9454011e-04 + 4.0105000e+02 -1.1049454e-01 + 4.0130000e+02 1.9505460e-02 + 4.0155000e+02 1.4950546e-01 + 4.0180000e+02 2.9950546e-01 + 4.0205000e+02 4.7950546e-01 + 4.0230000e+02 5.7950546e-01 + 4.0255000e+02 6.2950546e-01 + 4.0280000e+02 5.5950546e-01 + 4.0305000e+02 4.9950546e-01 + 4.0330000e+02 4.6950546e-01 + 4.0355000e+02 3.9950546e-01 + 4.0380000e+02 4.1950546e-01 + 4.0405000e+02 3.3950546e-01 + 4.0430000e+02 1.1950546e-01 + 4.0455000e+02 -9.0494540e-02 + 4.0480000e+02 -3.0049454e-01 + 4.0505000e+02 -5.2049454e-01 + 4.0530000e+02 -8.6049454e-01 + 4.0555000e+02 -1.0804945e+00 + 4.0580000e+02 -1.2504945e+00 + 4.0605000e+02 -1.1604945e+00 + 4.0630000e+02 -1.0204945e+00 + 4.0655000e+02 -8.6049454e-01 + 4.0680000e+02 -6.9049454e-01 + 4.0705000e+02 -4.2049454e-01 + 4.0730000e+02 -2.7049454e-01 + 4.0755000e+02 -1.0494540e-02 + 4.0780000e+02 1.5950546e-01 + 4.0805000e+02 2.4950546e-01 + 4.0830000e+02 4.2950546e-01 + 4.0855000e+02 6.4950546e-01 + 4.0880000e+02 6.5950546e-01 + 4.0905000e+02 5.1950546e-01 + 4.0930000e+02 2.3950546e-01 + 4.0955000e+02 -4.0494540e-02 + 4.0980000e+02 -2.3049454e-01 + 4.1005000e+02 -3.1049454e-01 + 4.1030000e+02 -3.4049454e-01 + 4.1055000e+02 -2.7049454e-01 + 4.1080000e+02 -1.5049454e-01 + 4.1105000e+02 -1.1049454e-01 + 4.1130000e+02 -9.0494540e-02 + 4.1155000e+02 6.9505460e-02 + 4.1180000e+02 2.0950546e-01 + 4.1205000e+02 4.0950546e-01 + 4.1230000e+02 4.7950546e-01 + 4.1255000e+02 5.3950546e-01 + 4.1280000e+02 5.6950546e-01 + 4.1305000e+02 5.2950546e-01 + 4.1330000e+02 5.6950546e-01 + 4.1355000e+02 4.1950546e-01 + 4.1380000e+02 2.0950546e-01 + 4.1405000e+02 -8.0494540e-02 + 4.1430000e+02 -2.0049454e-01 + 4.1455000e+02 -1.1049454e-01 + 4.1480000e+02 4.9505460e-02 + 4.1505000e+02 7.9505460e-02 + 4.1530000e+02 1.4950546e-01 + 4.1555000e+02 2.8950546e-01 + 4.1580000e+02 3.6950546e-01 + 4.1605000e+02 3.8950546e-01 + 4.1630000e+02 3.2950546e-01 + 4.1655000e+02 9.9505460e-02 + 4.1680000e+02 -1.5049454e-01 + 4.1705000e+02 -1.5049454e-01 + 4.1730000e+02 -1.0494540e-02 + 4.1755000e+02 1.9950546e-01 + 4.1780000e+02 1.6950546e-01 + 4.1805000e+02 8.9505460e-02 + 4.1830000e+02 -5.0494540e-02 + 4.1855000e+02 -1.5049454e-01 + 4.1880000e+02 -4.2049454e-01 + 4.1905000e+02 -6.5049454e-01 + 4.1930000e+02 -7.6049454e-01 + 4.1955000e+02 -7.9049454e-01 + 4.1980000e+02 -6.6049454e-01 + 4.2005000e+02 -4.4049454e-01 + 4.2030000e+02 -3.9049454e-01 + 4.2055000e+02 -2.5049454e-01 + 4.2080000e+02 -1.3049454e-01 + 4.2105000e+02 7.9505460e-02 + 4.2130000e+02 4.3950546e-01 + 4.2155000e+02 7.5950546e-01 + 4.2180000e+02 9.0950546e-01 + 4.2205000e+02 9.2950546e-01 + 4.2230000e+02 7.6950546e-01 + 4.2255000e+02 4.2950546e-01 + 4.2280000e+02 2.9505460e-02 + 4.2305000e+02 -3.2049454e-01 + 4.2330000e+02 -6.6049454e-01 + 4.2355000e+02 -8.0049454e-01 + 4.2380000e+02 -8.5049454e-01 + 4.2405000e+02 -6.0049454e-01 + 4.2430000e+02 -6.2049454e-01 + 4.2455000e+02 -5.1049454e-01 + 4.2480000e+02 -2.9049454e-01 + 4.2505000e+02 -3.0049454e-01 + 4.2530000e+02 -2.9049454e-01 + 4.2555000e+02 -1.0049454e-01 + 4.2580000e+02 2.0950546e-01 + 4.2605000e+02 6.5950546e-01 + 4.2630000e+02 1.1395055e+00 + 4.2655000e+02 1.4795055e+00 + 4.2680000e+02 1.7595055e+00 + 4.2705000e+02 1.8295055e+00 + 4.2730000e+02 1.7395055e+00 + 4.2755000e+02 8.0950546e-01 + 4.2780000e+02 2.1950546e-01 + 4.2805000e+02 -2.4049454e-01 + 4.2830000e+02 -5.7049454e-01 + 4.2855000e+02 -7.7049454e-01 + 4.2880000e+02 -8.5049454e-01 + 4.2905000e+02 -9.2049454e-01 + 4.2930000e+02 -8.2049454e-01 + 4.2955000e+02 -6.8049454e-01 + 4.2980000e+02 -5.3049454e-01 + 4.3005000e+02 -2.3049454e-01 + 4.3030000e+02 5.9505460e-02 + 4.3055000e+02 5.4950546e-01 + 4.3080000e+02 8.6950546e-01 + 4.3105000e+02 9.0950546e-01 + 4.3130000e+02 6.7950546e-01 + 4.3155000e+02 4.7950546e-01 + 4.3180000e+02 2.8950546e-01 + 4.3205000e+02 2.5950546e-01 + 4.3230000e+02 1.8950546e-01 + 4.3255000e+02 1.1950546e-01 + 4.3280000e+02 -1.0494540e-02 + 4.3305000e+02 -1.2049454e-01 + 4.3330000e+02 -3.3049454e-01 + 4.3355000e+02 -4.8049454e-01 + 4.3380000e+02 -7.8049454e-01 + 4.3405000e+02 -9.8049454e-01 + 4.3430000e+02 -1.0504945e+00 + 4.3455000e+02 -9.9049454e-01 + 4.3480000e+02 -9.4049454e-01 + 4.3505000e+02 -7.8049454e-01 + 4.3530000e+02 -5.4049454e-01 + 4.3555000e+02 -2.1049454e-01 + 4.3580000e+02 6.9505460e-02 + 4.3605000e+02 3.8950546e-01 + 4.3630000e+02 7.1950546e-01 + 4.3655000e+02 9.4950546e-01 + 4.3680000e+02 1.1995055e+00 + 4.3705000e+02 1.2395055e+00 + 4.3730000e+02 1.0395055e+00 + 4.3755000e+02 8.0950546e-01 + 4.3780000e+02 8.1950546e-01 + 4.3805000e+02 8.6950546e-01 + 4.3830000e+02 7.2950546e-01 + 4.3855000e+02 4.6950546e-01 + 4.3880000e+02 3.0950546e-01 + 4.3905000e+02 2.2950546e-01 + 4.3930000e+02 1.3950546e-01 + 4.3955000e+02 -1.0494540e-02 + 4.3980000e+02 -1.8049454e-01 + 4.4005000e+02 -4.0049454e-01 + 4.4030000e+02 -5.0049454e-01 + 4.4055000e+02 -3.7049454e-01 + 4.4080000e+02 -3.7049454e-01 + 4.4105000e+02 -2.7049454e-01 + 4.4130000e+02 -1.3049454e-01 + 4.4155000e+02 9.9505460e-02 + 4.4180000e+02 1.9950546e-01 + 4.4205000e+02 1.4950546e-01 + 4.4230000e+02 9.9505460e-02 + 4.4255000e+02 2.9505460e-02 + 4.4280000e+02 -8.0494540e-02 + 4.4305000e+02 -2.1049454e-01 + 4.4330000e+02 -2.6049454e-01 + 4.4355000e+02 -2.3049454e-01 + 4.4380000e+02 -3.8049454e-01 + 4.4405000e+02 -5.5049454e-01 + 4.4430000e+02 -5.6049454e-01 + 4.4455000e+02 -6.5049454e-01 + 4.4480000e+02 -7.3049454e-01 + 4.4505000e+02 -7.3049454e-01 + 4.4530000e+02 -6.3049454e-01 + 4.4555000e+02 -5.2049454e-01 + 4.4580000e+02 -3.5049454e-01 + 4.4605000e+02 -6.0494540e-02 + 4.4630000e+02 2.5950546e-01 + 4.4655000e+02 4.1950546e-01 + 4.4680000e+02 3.5950546e-01 + 4.4705000e+02 4.5950546e-01 + 4.4730000e+02 6.2950546e-01 + 4.4755000e+02 9.6950546e-01 + 4.4780000e+02 1.1995055e+00 + 4.4805000e+02 1.2695055e+00 + 4.4830000e+02 1.1795055e+00 + 4.4855000e+02 1.0595055e+00 + 4.4880000e+02 8.2950546e-01 + 4.4905000e+02 5.0950546e-01 + 4.4930000e+02 1.1950546e-01 + 4.4955000e+02 -2.7049454e-01 + 4.4980000e+02 -5.4049454e-01 + 4.5005000e+02 -7.5049454e-01 + 4.5030000e+02 -7.1049454e-01 + 4.5055000e+02 -6.0049454e-01 + 4.5080000e+02 -5.0049454e-01 + 4.5105000e+02 -4.4049454e-01 + 4.5130000e+02 -4.5049454e-01 + 4.5155000e+02 -4.4049454e-01 + 4.5180000e+02 -3.3049454e-01 + 4.5205000e+02 -2.2049454e-01 + 4.5230000e+02 9.5054599e-03 + 4.5255000e+02 3.6950546e-01 + 4.5280000e+02 5.5950546e-01 + 4.5305000e+02 8.3950546e-01 + 4.5330000e+02 1.0895055e+00 + 4.5355000e+02 1.1695055e+00 + 4.5380000e+02 1.2495055e+00 + 4.5405000e+02 7.8950546e-01 + 4.5430000e+02 4.2950546e-01 + 4.5455000e+02 7.9505460e-02 + 4.5480000e+02 -3.2049454e-01 + 4.5505000e+02 -7.6049454e-01 + 4.5530000e+02 -1.0004945e+00 + 4.5555000e+02 -1.0704945e+00 + 4.5580000e+02 -1.0104945e+00 + 4.5605000e+02 -8.6049454e-01 + 4.5630000e+02 -6.1049454e-01 + 4.5655000e+02 -4.9049454e-01 + 4.5680000e+02 -2.7049454e-01 + 4.5705000e+02 -5.0494540e-02 + 4.5730000e+02 1.8950546e-01 + 4.5755000e+02 3.8950546e-01 + 4.5780000e+02 5.7950546e-01 + 4.5805000e+02 5.7950546e-01 + 4.5830000e+02 4.8950546e-01 + 4.5855000e+02 4.1950546e-01 + 4.5880000e+02 4.4950546e-01 + 4.5905000e+02 3.7950546e-01 + 4.5930000e+02 2.7950546e-01 + 4.5955000e+02 -2.0494540e-02 + 4.5980000e+02 -2.0049454e-01 + 4.6005000e+02 -2.3049454e-01 + 4.6030000e+02 -2.2049454e-01 + 4.6055000e+02 -2.5049454e-01 + 4.6080000e+02 -3.3049454e-01 + 4.6105000e+02 -1.9049454e-01 + 4.6130000e+02 -6.0494540e-02 + 4.6155000e+02 -4.0494540e-02 + 4.6180000e+02 6.9505460e-02 + 4.6205000e+02 1.2950546e-01 + 4.6230000e+02 1.2950546e-01 + 4.6255000e+02 2.0950546e-01 + 4.6280000e+02 1.7950546e-01 + 4.6305000e+02 9.9505460e-02 + 4.6330000e+02 6.9505460e-02 + 4.6355000e+02 1.4950546e-01 + 4.6380000e+02 1.3950546e-01 + 4.6405000e+02 1.1950546e-01 + 4.6430000e+02 6.9505460e-02 + 4.6455000e+02 5.9505460e-02 + 4.6480000e+02 4.9505460e-02 + 4.6505000e+02 2.9505460e-02 + 4.6530000e+02 1.9505460e-02 + 4.6555000e+02 -8.0494540e-02 + 4.6580000e+02 -1.0494540e-02 + 4.6605000e+02 9.9505460e-02 + 4.6630000e+02 2.2950546e-01 + 4.6655000e+02 5.1950546e-01 + 4.6680000e+02 4.0950546e-01 + 4.6705000e+02 9.9505460e-02 + 4.6730000e+02 -2.2049454e-01 + 4.6755000e+02 -3.9049454e-01 + 4.6780000e+02 -4.5049454e-01 + 4.6805000e+02 -6.4049454e-01 + 4.6830000e+02 -7.3049454e-01 + 4.6855000e+02 -6.5049454e-01 + 4.6880000e+02 -8.1049454e-01 + 4.6905000e+02 -7.5049454e-01 + 4.6930000e+02 -6.6049454e-01 + 4.6955000e+02 -3.5049454e-01 + 4.6980000e+02 7.9505460e-02 + 4.7005000e+02 4.7950546e-01 + 4.7030000e+02 6.5950546e-01 + 4.7055000e+02 7.5950546e-01 + 4.7080000e+02 6.1950546e-01 + 4.7105000e+02 3.4950546e-01 + 4.7130000e+02 1.2950546e-01 + 4.7155000e+02 -6.0494540e-02 + 4.7180000e+02 -7.0494540e-02 + 4.7205000e+02 -1.3049454e-01 + 4.7230000e+02 -1.8049454e-01 + 4.7255000e+02 -1.6049454e-01 + 4.7280000e+02 -2.1049454e-01 + 4.7305000e+02 -3.4049454e-01 + 4.7330000e+02 -3.6049454e-01 + 4.7355000e+02 -8.0494540e-02 + 4.7380000e+02 3.2950546e-01 + 4.7405000e+02 5.9950546e-01 + 4.7430000e+02 6.9950546e-01 + 4.7455000e+02 7.0950546e-01 + 4.7480000e+02 7.1950546e-01 + 4.7505000e+02 6.7950546e-01 + 4.7530000e+02 5.1950546e-01 + 4.7555000e+02 2.9950546e-01 + 4.7580000e+02 2.1950546e-01 + 4.7605000e+02 8.9505460e-02 + 4.7630000e+02 -2.0494540e-02 + 4.7655000e+02 3.9505460e-02 + 4.7680000e+02 -6.0494540e-02 + 4.7705000e+02 -1.6049454e-01 + 4.7730000e+02 -1.9049454e-01 + 4.7755000e+02 -2.3049454e-01 + 4.7780000e+02 -1.8049454e-01 + 4.7805000e+02 -1.0494540e-02 + 4.7830000e+02 1.7950546e-01 + 4.7855000e+02 2.0950546e-01 + 4.7880000e+02 1.1950546e-01 + 4.7905000e+02 9.9505460e-02 + 4.7930000e+02 -3.0494540e-02 + 4.7955000e+02 -3.0494540e-02 + 4.7980000e+02 -1.7049454e-01 + 4.8005000e+02 -5.3049454e-01 + 4.8030000e+02 -8.4049454e-01 + 4.8055000e+02 -8.9049454e-01 + 4.8080000e+02 -8.1049454e-01 + 4.8105000e+02 -6.2049454e-01 + 4.8130000e+02 -3.7049454e-01 + 4.8155000e+02 -2.2049454e-01 + 4.8180000e+02 -2.1049454e-01 + 4.8205000e+02 -2.8049454e-01 + 4.8230000e+02 -1.0049454e-01 + 4.8255000e+02 2.9505460e-02 + 4.8280000e+02 2.4950546e-01 + 4.8305000e+02 3.6950546e-01 + 4.8330000e+02 3.2950546e-01 + 4.8355000e+02 2.3950546e-01 + 4.8380000e+02 1.4950546e-01 + 4.8405000e+02 2.9505460e-02 + 4.8430000e+02 -2.0494540e-02 + 4.8455000e+02 -8.0494540e-02 + 4.8480000e+02 -2.3049454e-01 + 4.8505000e+02 -2.4049454e-01 + 4.8530000e+02 -1.0049454e-01 + 4.8555000e+02 2.4950546e-01 + 4.8580000e+02 6.2950546e-01 + 4.8605000e+02 9.9950546e-01 + 4.8630000e+02 1.2895055e+00 + 4.8655000e+02 1.5695055e+00 + 4.8680000e+02 1.4495055e+00 + 4.8705000e+02 8.3950546e-01 + 4.8730000e+02 4.1950546e-01 + 4.8755000e+02 2.3950546e-01 + 4.8780000e+02 2.9505460e-02 + 4.8805000e+02 -1.9049454e-01 + 4.8830000e+02 -4.5049454e-01 + 4.8855000e+02 -5.2049454e-01 + 4.8880000e+02 -4.0049454e-01 + 4.8905000e+02 -4.2049454e-01 + 4.8930000e+02 -2.8049454e-01 + 4.8955000e+02 -1.1049454e-01 + 4.8980000e+02 1.0950546e-01 + 4.9005000e+02 3.2950546e-01 + 4.9030000e+02 1.7950546e-01 + 4.9055000e+02 -4.0494540e-02 + 4.9080000e+02 -1.4049454e-01 + 4.9105000e+02 -3.4049454e-01 + 4.9130000e+02 -5.4049454e-01 + 4.9155000e+02 -8.1049454e-01 + 4.9180000e+02 -9.1049454e-01 + 4.9205000e+02 -9.0049454e-01 + 4.9230000e+02 -9.2049454e-01 + 4.9255000e+02 -7.0049454e-01 + 4.9280000e+02 -4.9049454e-01 + 4.9305000e+02 -1.2049454e-01 + 4.9330000e+02 4.9950546e-01 + 4.9355000e+02 9.4950546e-01 + 4.9380000e+02 9.7950546e-01 + 4.9405000e+02 9.9950546e-01 + 4.9430000e+02 8.9950546e-01 + 4.9455000e+02 6.1950546e-01 + 4.9480000e+02 2.6950546e-01 + 4.9505000e+02 -1.0494540e-02 + 4.9530000e+02 -2.5049454e-01 + 4.9555000e+02 -4.7049454e-01 + 4.9580000e+02 -5.0049454e-01 + 4.9605000e+02 -2.0049454e-01 + 4.9630000e+02 7.9505460e-02 + 4.9655000e+02 4.9505460e-02 + 4.9680000e+02 1.7950546e-01 + 4.9705000e+02 2.7950546e-01 + 4.9730000e+02 5.0950546e-01 + 4.9755000e+02 8.2950546e-01 + 4.9780000e+02 1.0095055e+00 + 4.9805000e+02 9.6950546e-01 + 4.9830000e+02 1.0995055e+00 + 4.9855000e+02 1.0995055e+00 + 4.9880000e+02 1.0495055e+00 + 4.9905000e+02 8.3950546e-01 + 4.9930000e+02 6.4950546e-01 + 4.9955000e+02 3.1950546e-01 + 4.9980000e+02 -1.8049454e-01 + 5.0005000e+02 -6.1049454e-01 + 5.0030000e+02 -9.0049454e-01 + 5.0055000e+02 -1.1404945e+00 + 5.0080000e+02 -1.6004945e+00 + 5.0105000e+02 -1.7504945e+00 + 5.0130000e+02 -1.6904945e+00 + 5.0155000e+02 -1.5404945e+00 + 5.0180000e+02 -1.3304945e+00 + 5.0205000e+02 -9.7049454e-01 + 5.0230000e+02 -5.8049454e-01 + 5.0255000e+02 1.9505460e-02 + 5.0280000e+02 5.3950546e-01 + 5.0305000e+02 6.1950546e-01 + 5.0330000e+02 6.1950546e-01 + 5.0355000e+02 8.3950546e-01 + 5.0380000e+02 9.7950546e-01 + 5.0405000e+02 1.0195055e+00 + 5.0430000e+02 9.5950546e-01 + 5.0455000e+02 8.2950546e-01 + 5.0480000e+02 8.1950546e-01 + 5.0505000e+02 6.6950546e-01 + 5.0530000e+02 3.8950546e-01 + 5.0555000e+02 2.5950546e-01 + 5.0580000e+02 2.9505460e-02 + 5.0605000e+02 -1.3049454e-01 + 5.0630000e+02 -4.0049454e-01 + 5.0655000e+02 -7.4049454e-01 + 5.0680000e+02 -6.8049454e-01 + 5.0705000e+02 -5.2049454e-01 + 5.0730000e+02 -2.5049454e-01 + 5.0755000e+02 -1.0049454e-01 + 5.0780000e+02 5.9505460e-02 + 5.0805000e+02 2.5950546e-01 + 5.0830000e+02 2.6950546e-01 + 5.0855000e+02 4.9950546e-01 + 5.0880000e+02 6.2950546e-01 + 5.0905000e+02 6.4950546e-01 + 5.0930000e+02 5.9950546e-01 + 5.0955000e+02 5.1950546e-01 + 5.0980000e+02 2.3950546e-01 + 5.1005000e+02 3.9505460e-02 + 5.1030000e+02 -8.0494540e-02 + 5.1055000e+02 -1.6049454e-01 + 5.1080000e+02 -2.3049454e-01 + 5.1105000e+02 -1.7049454e-01 + 5.1130000e+02 -2.1049454e-01 + 5.1155000e+02 -3.2049454e-01 + 5.1180000e+02 -4.7049454e-01 + 5.1205000e+02 -5.1049454e-01 + 5.1230000e+02 -5.8049454e-01 + 5.1255000e+02 -6.3049454e-01 + 5.1280000e+02 -5.7049454e-01 + 5.1305000e+02 -5.1049454e-01 + 5.1330000e+02 -3.7049454e-01 + 5.1355000e+02 -2.2049454e-01 + 5.1380000e+02 -8.0494540e-02 + 5.1405000e+02 -6.0494540e-02 + 5.1430000e+02 6.9505460e-02 + 5.1455000e+02 1.1950546e-01 + 5.1480000e+02 1.4950546e-01 + 5.1505000e+02 -1.0494540e-02 + 5.1530000e+02 -2.0494540e-02 + 5.1555000e+02 9.5054599e-03 + 5.1580000e+02 -3.0494540e-02 + 5.1605000e+02 3.9505460e-02 + 5.1630000e+02 1.6950546e-01 + 5.1655000e+02 3.3950546e-01 + 5.1680000e+02 5.7950546e-01 + 5.1705000e+02 7.1950546e-01 + 5.1730000e+02 7.2950546e-01 + 5.1755000e+02 6.7950546e-01 + 5.1780000e+02 6.2950546e-01 + 5.1805000e+02 6.0950546e-01 + 5.1830000e+02 4.6950546e-01 + 5.1855000e+02 2.8950546e-01 + 5.1880000e+02 -8.0494540e-02 + 5.1905000e+02 -4.1049454e-01 + 5.1930000e+02 -5.8049454e-01 + 5.1955000e+02 -6.5049454e-01 + 5.1980000e+02 -5.4049454e-01 + 5.2005000e+02 -5.7049454e-01 + 5.2030000e+02 -4.1049454e-01 + 5.2055000e+02 -3.2049454e-01 + 5.2080000e+02 -2.3049454e-01 + 5.2105000e+02 -1.3049454e-01 + 5.2130000e+02 -1.2049454e-01 + 5.2155000e+02 -1.0049454e-01 + 5.2180000e+02 5.9505460e-02 + 5.2205000e+02 1.7950546e-01 + 5.2230000e+02 2.6950546e-01 + 5.2255000e+02 1.8950546e-01 + 5.2280000e+02 1.1950546e-01 + 5.2305000e+02 1.1950546e-01 + 5.2330000e+02 1.9505460e-02 + 5.2355000e+02 -2.0494540e-02 + 5.2380000e+02 -2.0494540e-02 + 5.2405000e+02 2.5950546e-01 + 5.2430000e+02 3.5950546e-01 + 5.2455000e+02 -5.0494540e-02 + 5.2480000e+02 -4.8049454e-01 + 5.2505000e+02 -7.5049454e-01 + 5.2530000e+02 -7.6049454e-01 + 5.2555000e+02 -6.3049454e-01 + 5.2580000e+02 -5.1049454e-01 + 5.2605000e+02 -2.0049454e-01 + 5.2630000e+02 2.2950546e-01 + 5.2655000e+02 5.7950546e-01 + 5.2680000e+02 7.6950546e-01 + 5.2705000e+02 7.6950546e-01 + 5.2730000e+02 7.0950546e-01 + 5.2755000e+02 5.5950546e-01 + 5.2780000e+02 4.6950546e-01 + 5.2805000e+02 4.6950546e-01 + 5.2830000e+02 3.8950546e-01 + 5.2855000e+02 3.3950546e-01 + 5.2880000e+02 2.1950546e-01 + 5.2905000e+02 7.9505460e-02 + 5.2930000e+02 9.5054599e-03 + 5.2955000e+02 -6.0494540e-02 + 5.2980000e+02 -1.7049454e-01 + 5.3005000e+02 -3.7049454e-01 + 5.3030000e+02 -3.9049454e-01 + 5.3055000e+02 -3.9049454e-01 + 5.3080000e+02 -3.2049454e-01 + 5.3105000e+02 -2.0494540e-02 + 5.3130000e+02 2.1950546e-01 + 5.3155000e+02 2.2950546e-01 + 5.3180000e+02 2.7950546e-01 + 5.3205000e+02 3.6950546e-01 + 5.3230000e+02 4.1950546e-01 + 5.3255000e+02 5.8950546e-01 + 5.3280000e+02 4.4950546e-01 + 5.3305000e+02 1.6950546e-01 + 5.3330000e+02 -9.0494540e-02 + 5.3355000e+02 -3.1049454e-01 + 5.3380000e+02 -5.4049454e-01 + 5.3405000e+02 -7.2049454e-01 + 5.3430000e+02 -8.8049454e-01 + 5.3455000e+02 -1.0104945e+00 + 5.3480000e+02 -9.8049454e-01 + 5.3505000e+02 -8.4049454e-01 + 5.3530000e+02 -6.0049454e-01 + 5.3555000e+02 -2.7049454e-01 + 5.3580000e+02 -3.0494540e-02 + 5.3605000e+02 1.5950546e-01 + 5.3630000e+02 3.2950546e-01 + 5.3655000e+02 5.5950546e-01 + 5.3680000e+02 5.7950546e-01 + 5.3705000e+02 3.5950546e-01 + 5.3730000e+02 8.9505460e-02 + 5.3755000e+02 -9.0494540e-02 + 5.3780000e+02 -1.8049454e-01 + 5.3805000e+02 -1.6049454e-01 + 5.3830000e+02 5.9505460e-02 + 5.3855000e+02 1.5950546e-01 + 5.3880000e+02 2.7950546e-01 + 5.3905000e+02 2.5950546e-01 + 5.3930000e+02 3.1950546e-01 + 5.3955000e+02 3.6950546e-01 + 5.3980000e+02 3.6950546e-01 + 5.4005000e+02 4.7950546e-01 + 5.4030000e+02 4.9950546e-01 + 5.4055000e+02 5.6950546e-01 + 5.4080000e+02 5.3950546e-01 + 5.4105000e+02 3.8950546e-01 + 5.4130000e+02 1.8950546e-01 + 5.4155000e+02 1.9505460e-02 + 5.4180000e+02 -8.0494540e-02 + 5.4205000e+02 -2.7049454e-01 + 5.4230000e+02 -4.1049454e-01 + 5.4255000e+02 -5.0049454e-01 + 5.4280000e+02 -6.0049454e-01 + 5.4305000e+02 -6.2049454e-01 + 5.4330000e+02 -5.7049454e-01 + 5.4355000e+02 -4.6049454e-01 + 5.4380000e+02 -2.4049454e-01 + 5.4405000e+02 6.9505460e-02 + 5.4430000e+02 6.4950546e-01 + 5.4455000e+02 1.0395055e+00 + 5.4480000e+02 1.0395055e+00 + 5.4505000e+02 7.7950546e-01 + 5.4530000e+02 3.1950546e-01 + 5.4555000e+02 -1.3049454e-01 + 5.4580000e+02 -3.2049454e-01 + 5.4605000e+02 -4.1049454e-01 + 5.4630000e+02 -5.8049454e-01 + 5.4655000e+02 -7.1049454e-01 + 5.4680000e+02 -8.3049454e-01 + 5.4705000e+02 -6.9049454e-01 + 5.4730000e+02 -5.4049454e-01 + 5.4755000e+02 -2.2049454e-01 + 5.4780000e+02 1.4950546e-01 + 5.4805000e+02 5.7950546e-01 + 5.4830000e+02 7.9950546e-01 + 5.4855000e+02 8.6950546e-01 + 5.4880000e+02 7.0950546e-01 + 5.4905000e+02 6.0950546e-01 + 5.4930000e+02 5.8950546e-01 + 5.4955000e+02 4.6950546e-01 + 5.4980000e+02 3.0950546e-01 + 5.5005000e+02 -1.6049454e-01 + 5.5030000e+02 -4.3049454e-01 + 5.5055000e+02 -6.4049454e-01 + 5.5080000e+02 -7.7049454e-01 + 5.5105000e+02 -6.9049454e-01 + 5.5130000e+02 -6.8049454e-01 + 5.5155000e+02 -3.4049454e-01 + 5.5180000e+02 -2.1049454e-01 + 5.5205000e+02 -4.9454011e-04 + 5.5230000e+02 7.9505460e-02 + 5.5255000e+02 3.1950546e-01 + 5.5280000e+02 4.6950546e-01 + 5.5305000e+02 4.2950546e-01 + 5.5330000e+02 5.5950546e-01 + 5.5355000e+02 5.9950546e-01 + 5.5380000e+02 3.2950546e-01 + 5.5405000e+02 1.1950546e-01 + 5.5430000e+02 -2.5049454e-01 + 5.5455000e+02 -5.3049454e-01 + 5.5480000e+02 -5.4049454e-01 + 5.5505000e+02 -4.2049454e-01 + 5.5530000e+02 -3.0049454e-01 + 5.5555000e+02 -1.9049454e-01 + 5.5580000e+02 -1.5049454e-01 + 5.5605000e+02 -1.4049454e-01 + 5.5630000e+02 7.9505460e-02 + 5.5655000e+02 2.5950546e-01 + 5.5680000e+02 5.5950546e-01 + 5.5705000e+02 9.6950546e-01 + 5.5730000e+02 1.1795055e+00 + 5.5755000e+02 1.1795055e+00 + 5.5780000e+02 8.2950546e-01 + 5.5805000e+02 3.0950546e-01 + 5.5830000e+02 -1.0494540e-02 + 5.5855000e+02 -2.5049454e-01 + 5.5880000e+02 -4.1049454e-01 + 5.5905000e+02 -6.7049454e-01 + 5.5930000e+02 -7.4049454e-01 + 5.5955000e+02 -6.5049454e-01 + 5.5980000e+02 -5.1049454e-01 + 5.6005000e+02 -5.2049454e-01 + 5.6030000e+02 -4.4049454e-01 + 5.6055000e+02 -3.4049454e-01 + 5.6080000e+02 -2.0049454e-01 + 5.6105000e+02 3.9505460e-02 + 5.6130000e+02 1.6950546e-01 + 5.6155000e+02 5.9505460e-02 + 5.6180000e+02 -2.0049454e-01 + 5.6205000e+02 -3.5049454e-01 + 5.6230000e+02 -4.6049454e-01 + 5.6255000e+02 -5.6049454e-01 + 5.6280000e+02 -6.3049454e-01 + 5.6305000e+02 -6.2049454e-01 + 5.6330000e+02 -4.7049454e-01 + 5.6355000e+02 -2.1049454e-01 + 5.6380000e+02 -1.5049454e-01 + 5.6405000e+02 -5.0494540e-02 + 5.6430000e+02 1.0950546e-01 + 5.6455000e+02 3.3950546e-01 + 5.6480000e+02 5.6950546e-01 + 5.6505000e+02 8.7950546e-01 + 5.6530000e+02 1.0495055e+00 + 5.6555000e+02 1.1395055e+00 + 5.6580000e+02 1.0795055e+00 + 5.6605000e+02 9.4950546e-01 + 5.6630000e+02 6.7950546e-01 + 5.6655000e+02 3.4950546e-01 + 5.6680000e+02 1.9950546e-01 + 5.6705000e+02 2.9505460e-02 + 5.6730000e+02 -2.5049454e-01 + 5.6755000e+02 -3.9049454e-01 + 5.6780000e+02 -3.2049454e-01 + 5.6805000e+02 -2.2049454e-01 + 5.6830000e+02 -3.0049454e-01 + 5.6855000e+02 -3.3049454e-01 + 5.6880000e+02 -2.3049454e-01 + 5.6905000e+02 -1.4049454e-01 + 5.6930000e+02 9.9505460e-02 + 5.6955000e+02 2.6950546e-01 + 5.6980000e+02 3.5950546e-01 + 5.7005000e+02 2.6950546e-01 + 5.7030000e+02 4.9505460e-02 + 5.7055000e+02 -1.1049454e-01 + 5.7080000e+02 -1.7049454e-01 + 5.7105000e+02 -2.2049454e-01 + 5.7130000e+02 -2.0049454e-01 + 5.7155000e+02 -1.6049454e-01 + 5.7180000e+02 -1.1049454e-01 + 5.7205000e+02 -1.4049454e-01 + 5.7230000e+02 -1.4049454e-01 + 5.7255000e+02 -4.2049454e-01 + 5.7280000e+02 -6.5049454e-01 + 5.7305000e+02 -6.3049454e-01 + 5.7330000e+02 -4.6049454e-01 + 5.7355000e+02 -3.3049454e-01 + 5.7380000e+02 -6.0494540e-02 + 5.7405000e+02 6.9505460e-02 + 5.7430000e+02 -3.0494540e-02 + 5.7455000e+02 -5.0494540e-02 + 5.7480000e+02 -3.0494540e-02 + 5.7505000e+02 1.9505460e-02 + 5.7530000e+02 3.9505460e-02 + 5.7555000e+02 7.9505460e-02 + 5.7580000e+02 3.9505460e-02 + 5.7605000e+02 3.9505460e-02 + 5.7630000e+02 1.8950546e-01 + 5.7655000e+02 3.9950546e-01 + 5.7680000e+02 4.7950546e-01 + 5.7705000e+02 4.6950546e-01 + 5.7730000e+02 4.7950546e-01 + 5.7755000e+02 4.6950546e-01 + 5.7780000e+02 3.6950546e-01 + 5.7805000e+02 1.2950546e-01 + 5.7830000e+02 -1.9049454e-01 + 5.7855000e+02 -3.4049454e-01 + 5.7880000e+02 -4.4049454e-01 + 5.7905000e+02 -4.3049454e-01 + 5.7930000e+02 -2.6049454e-01 + 5.7955000e+02 -3.0494540e-02 + 5.7980000e+02 2.0950546e-01 + 5.8005000e+02 2.1950546e-01 + 5.8030000e+02 1.2950546e-01 + 5.8055000e+02 1.5950546e-01 + 5.8080000e+02 1.4950546e-01 + 5.8105000e+02 -1.0494540e-02 + 5.8130000e+02 -1.9049454e-01 + 5.8155000e+02 -3.1049454e-01 + 5.8180000e+02 -2.7049454e-01 + 5.8205000e+02 -8.0494540e-02 + 5.8230000e+02 2.7950546e-01 + 5.8255000e+02 5.6950546e-01 + 5.8280000e+02 5.8950546e-01 + 5.8305000e+02 5.8950546e-01 + 5.8330000e+02 5.2950546e-01 + 5.8355000e+02 4.6950546e-01 + 5.8380000e+02 4.1950546e-01 + 5.8405000e+02 2.2950546e-01 + 5.8430000e+02 1.0950546e-01 + 5.8455000e+02 -1.5049454e-01 + 5.8480000e+02 -3.4049454e-01 + 5.8505000e+02 -4.0049454e-01 + 5.8530000e+02 -4.1049454e-01 + 5.8555000e+02 -4.3049454e-01 + 5.8580000e+02 -5.0049454e-01 + 5.8605000e+02 -5.5049454e-01 + 5.8630000e+02 -4.0049454e-01 + 5.8655000e+02 -2.2049454e-01 + 5.8680000e+02 -2.5049454e-01 + 5.8705000e+02 -2.3049454e-01 + 5.8730000e+02 -1.0049454e-01 + 5.8755000e+02 -1.3049454e-01 + 5.8780000e+02 -1.9049454e-01 + 5.8805000e+02 -2.0049454e-01 + 5.8830000e+02 -1.2049454e-01 + 5.8855000e+02 -2.0494540e-02 + 5.8880000e+02 1.9950546e-01 + 5.8905000e+02 3.0950546e-01 + 5.8930000e+02 4.7950546e-01 + 5.8955000e+02 6.5950546e-01 + 5.8980000e+02 6.5950546e-01 + 5.9005000e+02 3.5950546e-01 + 5.9030000e+02 1.6950546e-01 + 5.9055000e+02 -4.9454011e-04 + 5.9080000e+02 -2.5049454e-01 + 5.9105000e+02 -4.1049454e-01 + 5.9130000e+02 -4.8049454e-01 + 5.9155000e+02 -4.0049454e-01 + 5.9180000e+02 -1.9049454e-01 + 5.9205000e+02 1.2950546e-01 + 5.9230000e+02 3.0950546e-01 + 5.9255000e+02 3.3950546e-01 + 5.9280000e+02 5.5950546e-01 + 5.9305000e+02 6.4950546e-01 + 5.9330000e+02 6.0950546e-01 + 5.9355000e+02 5.4950546e-01 + 5.9380000e+02 5.9950546e-01 + 5.9405000e+02 5.4950546e-01 + 5.9430000e+02 3.2950546e-01 + 5.9455000e+02 1.8950546e-01 + 5.9480000e+02 1.4950546e-01 + 5.9505000e+02 1.5950546e-01 + 5.9530000e+02 1.2950546e-01 + 5.9555000e+02 1.1950546e-01 + 5.9580000e+02 6.9505460e-02 + 5.9605000e+02 -1.9049454e-01 + 5.9630000e+02 -4.5049454e-01 + 5.9655000e+02 -7.7049454e-01 + 5.9680000e+02 -7.9049454e-01 + 5.9705000e+02 -8.3049454e-01 + 5.9730000e+02 -7.3049454e-01 + 5.9755000e+02 -6.5049454e-01 + 5.9780000e+02 -6.7049454e-01 + 5.9805000e+02 -6.9049454e-01 + 5.9830000e+02 -6.4049454e-01 + 5.9855000e+02 -5.8049454e-01 + 5.9880000e+02 -3.3049454e-01 + 5.9905000e+02 -2.0494540e-02 + 5.9930000e+02 1.9950546e-01 + 5.9955000e+02 3.3950546e-01 + 5.9980000e+02 4.3950546e-01 + 6.0005000e+02 6.8950546e-01 + 6.0030000e+02 1.0695055e+00 + 6.0055000e+02 1.3795055e+00 + 6.0080000e+02 1.2695055e+00 + 6.0105000e+02 1.0295055e+00 + 6.0130000e+02 7.6950546e-01 + 6.0155000e+02 1.4950546e-01 + 6.0180000e+02 -2.6049454e-01 + 6.0205000e+02 -5.3049454e-01 + 6.0230000e+02 -6.4049454e-01 + 6.0255000e+02 -6.1049454e-01 + 6.0280000e+02 -3.9049454e-01 + 6.0305000e+02 9.9505460e-02 + 6.0330000e+02 1.1950546e-01 + 6.0355000e+02 2.1950546e-01 + 6.0380000e+02 3.1950546e-01 + 6.0405000e+02 4.1950546e-01 + 6.0430000e+02 5.2950546e-01 + 6.0455000e+02 6.1950546e-01 + 6.0480000e+02 6.3950546e-01 + 6.0505000e+02 4.3950546e-01 + 6.0530000e+02 2.0950546e-01 + 6.0555000e+02 -6.0494540e-02 + 6.0580000e+02 -3.0049454e-01 + 6.0605000e+02 -4.6049454e-01 + 6.0630000e+02 -5.4049454e-01 + 6.0655000e+02 -6.3049454e-01 + 6.0680000e+02 -4.5049454e-01 + 6.0705000e+02 -1.4049454e-01 + 6.0730000e+02 -3.3049454e-01 + 6.0755000e+02 -4.0049454e-01 + 6.0780000e+02 -3.8049454e-01 + 6.0805000e+02 -3.4049454e-01 + 6.0830000e+02 -2.1049454e-01 + 6.0855000e+02 9.5054599e-03 + 6.0880000e+02 1.8950546e-01 + 6.0905000e+02 3.5950546e-01 + 6.0930000e+02 3.2950546e-01 + 6.0955000e+02 2.2950546e-01 + 6.0980000e+02 1.7950546e-01 + 6.1005000e+02 1.2950546e-01 + 6.1030000e+02 -8.0494540e-02 + 6.1055000e+02 -3.4049454e-01 + 6.1080000e+02 -4.8049454e-01 + 6.1105000e+02 -5.0049454e-01 + 6.1130000e+02 -3.4049454e-01 + 6.1155000e+02 -1.0494540e-02 + 6.1180000e+02 2.3950546e-01 + 6.1205000e+02 4.2950546e-01 + 6.1230000e+02 8.3950546e-01 + 6.1255000e+02 8.1950546e-01 + 6.1280000e+02 9.4950546e-01 + 6.1305000e+02 1.0795055e+00 + 6.1330000e+02 9.5950546e-01 + 6.1355000e+02 6.6950546e-01 + 6.1380000e+02 3.9950546e-01 + 6.1405000e+02 1.3950546e-01 + 6.1430000e+02 -1.8049454e-01 + 6.1455000e+02 -4.4049454e-01 + 6.1480000e+02 -5.4049454e-01 + 6.1505000e+02 -5.7049454e-01 + 6.1530000e+02 -6.5049454e-01 + 6.1555000e+02 -7.9049454e-01 + 6.1580000e+02 -8.5049454e-01 + 6.1605000e+02 -7.6049454e-01 + 6.1630000e+02 -4.6049454e-01 + 6.1655000e+02 -1.1049454e-01 + 6.1680000e+02 3.3950546e-01 + 6.1705000e+02 4.7950546e-01 + 6.1730000e+02 5.5950546e-01 + 6.1755000e+02 6.2950546e-01 + 6.1780000e+02 7.8950546e-01 + 6.1805000e+02 8.3950546e-01 + 6.1830000e+02 6.8950546e-01 + 6.1855000e+02 6.2950546e-01 + 6.1880000e+02 5.7950546e-01 + 6.1905000e+02 4.3950546e-01 + 6.1930000e+02 1.6950546e-01 + 6.1955000e+02 -1.4049454e-01 + 6.1980000e+02 -4.6049454e-01 + 6.2005000e+02 -6.4049454e-01 + 6.2030000e+02 -6.6049454e-01 + 6.2055000e+02 -6.9049454e-01 + 6.2080000e+02 -5.2049454e-01 + 6.2105000e+02 -3.1049454e-01 + 6.2130000e+02 -3.0494540e-02 + 6.2155000e+02 1.9505460e-02 + 6.2180000e+02 1.9505460e-02 + 6.2205000e+02 -7.0494540e-02 + 6.2230000e+02 -1.4049454e-01 + 6.2255000e+02 -8.0494540e-02 + 6.2280000e+02 4.9505460e-02 + 6.2305000e+02 1.9505460e-02 + 6.2330000e+02 3.9505460e-02 + 6.2355000e+02 2.2950546e-01 + 6.2380000e+02 4.2950546e-01 + 6.2405000e+02 7.7950546e-01 + 6.2430000e+02 1.0095055e+00 + 6.2455000e+02 1.0395055e+00 + 6.2480000e+02 9.8950546e-01 + 6.2505000e+02 4.8950546e-01 + 6.2530000e+02 1.8950546e-01 + 6.2555000e+02 -7.0494540e-02 + 6.2580000e+02 -3.8049454e-01 + 6.2605000e+02 -7.6049454e-01 + 6.2630000e+02 -1.0104945e+00 + 6.2655000e+02 -9.5049454e-01 + 6.2680000e+02 -8.8049454e-01 + 6.2705000e+02 -7.7049454e-01 + 6.2730000e+02 -5.3049454e-01 + 6.2755000e+02 -2.8049454e-01 + 6.2780000e+02 -5.0494540e-02 + 6.2805000e+02 1.1950546e-01 + 6.2830000e+02 3.0950546e-01 + 6.2855000e+02 5.7950546e-01 + 6.2880000e+02 6.6950546e-01 + 6.2905000e+02 6.5950546e-01 + 6.2930000e+02 3.8950546e-01 + 6.2955000e+02 1.4950546e-01 + 6.2980000e+02 7.9505460e-02 + 6.3005000e+02 1.1950546e-01 + 6.3030000e+02 9.5054599e-03 + 6.3055000e+02 -1.1049454e-01 + 6.3080000e+02 -5.0494540e-02 + 6.3105000e+02 -5.0494540e-02 + 6.3130000e+02 -5.0494540e-02 + 6.3155000e+02 3.9505460e-02 + 6.3180000e+02 2.0950546e-01 + 6.3205000e+02 1.3950546e-01 + 6.3230000e+02 8.9505460e-02 + 6.3255000e+02 1.4950546e-01 + 6.3280000e+02 3.0950546e-01 + 6.3305000e+02 3.9950546e-01 + 6.3330000e+02 3.0950546e-01 + 6.3355000e+02 2.4950546e-01 + 6.3380000e+02 2.4950546e-01 + 6.3405000e+02 5.9505460e-02 + 6.3430000e+02 -2.0494540e-02 + 6.3455000e+02 -1.3049454e-01 + 6.3480000e+02 -4.6049454e-01 + 6.3505000e+02 -7.9049454e-01 + 6.3530000e+02 -9.5049454e-01 + 6.3555000e+02 -1.0204945e+00 + 6.3580000e+02 -1.0904945e+00 + 6.3605000e+02 -9.7049454e-01 + 6.3630000e+02 -8.1049454e-01 + 6.3655000e+02 -6.5049454e-01 + 6.3680000e+02 -3.3049454e-01 + 6.3705000e+02 -4.0494540e-02 + 6.3730000e+02 3.2950546e-01 + 6.3755000e+02 7.9950546e-01 + 6.3780000e+02 1.2595055e+00 + 6.3805000e+02 1.2595055e+00 + 6.3830000e+02 1.2495055e+00 + 6.3855000e+02 1.2695055e+00 + 6.3880000e+02 1.4395055e+00 + 6.3905000e+02 1.5195055e+00 + 6.3930000e+02 1.0895055e+00 + 6.3955000e+02 6.8950546e-01 + 6.3980000e+02 1.5950546e-01 + 6.4005000e+02 -2.8049454e-01 + 6.4030000e+02 -5.7049454e-01 + 6.4055000e+02 -7.1049454e-01 + 6.4080000e+02 -7.0049454e-01 + 6.4105000e+02 -5.2049454e-01 + 6.4130000e+02 -3.5049454e-01 + 6.4155000e+02 -2.2049454e-01 + 6.4180000e+02 -1.3049454e-01 + 6.4205000e+02 -2.6049454e-01 + 6.4230000e+02 -4.0049454e-01 + 6.4255000e+02 -6.4049454e-01 + 6.4280000e+02 -7.7049454e-01 + 6.4305000e+02 -8.0049454e-01 + 6.4330000e+02 -7.9049454e-01 + 6.4355000e+02 -6.0049454e-01 + 6.4380000e+02 -3.1049454e-01 + 6.4405000e+02 -1.2049454e-01 + 6.4430000e+02 -1.0494540e-02 + 6.4455000e+02 3.9505460e-02 + 6.4480000e+02 9.5054599e-03 + 6.4505000e+02 4.9505460e-02 + 6.4530000e+02 6.9505460e-02 + 6.4555000e+02 2.1950546e-01 + 6.4580000e+02 1.7950546e-01 + 6.4605000e+02 6.9505460e-02 + 6.4630000e+02 2.9505460e-02 + 6.4655000e+02 6.9505460e-02 + 6.4680000e+02 1.1950546e-01 + 6.4705000e+02 1.3950546e-01 + 6.4730000e+02 1.8950546e-01 + 6.4755000e+02 6.9505460e-02 + 6.4780000e+02 9.5054599e-03 + 6.4805000e+02 -7.0494540e-02 + 6.4830000e+02 -2.9049454e-01 + 6.4855000e+02 -5.1049454e-01 + 6.4880000e+02 -5.2049454e-01 + 6.4905000e+02 -4.4049454e-01 + 6.4930000e+02 -2.0049454e-01 + 6.4955000e+02 1.9950546e-01 + 6.4980000e+02 6.4950546e-01 + 6.5005000e+02 1.0195055e+00 + 6.5030000e+02 1.1795055e+00 + 6.5055000e+02 1.1795055e+00 + 6.5080000e+02 1.3795055e+00 + 6.5105000e+02 1.2095055e+00 + 6.5130000e+02 6.0950546e-01 + 6.5155000e+02 1.3950546e-01 + 6.5180000e+02 2.9505460e-02 + 6.5205000e+02 2.9505460e-02 + 6.5230000e+02 -1.0494540e-02 + 6.5255000e+02 -1.4049454e-01 + 6.5280000e+02 -2.0049454e-01 + 6.5305000e+02 -1.7049454e-01 + 6.5330000e+02 -8.0494540e-02 + 6.5355000e+02 -2.8049454e-01 + 6.5380000e+02 -5.3049454e-01 + 6.5405000e+02 -7.9049454e-01 + 6.5430000e+02 -9.5049454e-01 + 6.5455000e+02 -1.0304945e+00 + 6.5480000e+02 -1.0404945e+00 + 6.5505000e+02 -9.3049454e-01 + 6.5530000e+02 -7.9049454e-01 + 6.5555000e+02 -6.6049454e-01 + 6.5580000e+02 -6.4049454e-01 + 6.5605000e+02 -5.6049454e-01 + 6.5630000e+02 -5.5049454e-01 + 6.5655000e+02 -4.8049454e-01 + 6.5680000e+02 -3.8049454e-01 + 6.5705000e+02 -2.2049454e-01 + 6.5730000e+02 6.9505460e-02 + 6.5755000e+02 3.5950546e-01 + 6.5780000e+02 2.6950546e-01 + 6.5805000e+02 3.4950546e-01 + 6.5830000e+02 4.0950546e-01 + 6.5855000e+02 5.2950546e-01 + 6.5880000e+02 5.8950546e-01 + 6.5905000e+02 5.0950546e-01 + 6.5930000e+02 4.5950546e-01 + 6.5955000e+02 4.1950546e-01 + 6.5980000e+02 4.7950546e-01 + 6.6005000e+02 6.0950546e-01 + 6.6030000e+02 7.7950546e-01 + 6.6055000e+02 6.4950546e-01 + 6.6080000e+02 5.6950546e-01 + 6.6105000e+02 6.6950546e-01 + 6.6130000e+02 5.5950546e-01 + 6.6155000e+02 4.5950546e-01 + 6.6180000e+02 2.5950546e-01 + 6.6205000e+02 2.9505460e-02 + 6.6230000e+02 -4.0494540e-02 + 6.6255000e+02 6.9505460e-02 + 6.6280000e+02 1.7950546e-01 + 6.6305000e+02 1.8950546e-01 + 6.6330000e+02 -2.0494540e-02 + 6.6355000e+02 -1.5049454e-01 + 6.6380000e+02 -2.4049454e-01 + 6.6405000e+02 -2.5049454e-01 + 6.6430000e+02 -3.8049454e-01 + 6.6455000e+02 -5.3049454e-01 + 6.6480000e+02 -6.8049454e-01 + 6.6505000e+02 -6.8049454e-01 + 6.6530000e+02 -6.5049454e-01 + 6.6555000e+02 -5.3049454e-01 + 6.6580000e+02 -2.3049454e-01 + 6.6605000e+02 -1.0494540e-02 + 6.6630000e+02 -6.0494540e-02 + 6.6655000e+02 -1.5049454e-01 + 6.6680000e+02 -2.5049454e-01 + 6.6705000e+02 -4.2049454e-01 + 6.6730000e+02 -6.1049454e-01 + 6.6755000e+02 -7.1049454e-01 + 6.6780000e+02 -7.6049454e-01 + 6.6805000e+02 -6.6049454e-01 + 6.6830000e+02 -6.0049454e-01 + 6.6855000e+02 -3.8049454e-01 + 6.6880000e+02 -3.3049454e-01 + 6.6905000e+02 -3.0049454e-01 + 6.6930000e+02 -1.8049454e-01 + 6.6955000e+02 -4.9454011e-04 + 6.6980000e+02 2.9950546e-01 + 6.7005000e+02 6.1950546e-01 + 6.7030000e+02 8.3950546e-01 + 6.7055000e+02 1.0995055e+00 + 6.7080000e+02 1.3695055e+00 + 6.7105000e+02 1.6395055e+00 + 6.7130000e+02 1.5795055e+00 + 6.7155000e+02 1.4695055e+00 + 6.7180000e+02 9.6950546e-01 + 6.7205000e+02 4.5950546e-01 + 6.7230000e+02 1.6950546e-01 + 6.7255000e+02 -6.0494540e-02 + 6.7280000e+02 -1.6049454e-01 + 6.7305000e+02 -2.6049454e-01 + 6.7330000e+02 -3.8049454e-01 + 6.7355000e+02 -4.5049454e-01 + 6.7380000e+02 -3.4049454e-01 + 6.7405000e+02 -3.9049454e-01 + 6.7430000e+02 -4.9049454e-01 + 6.7455000e+02 -4.2049454e-01 + 6.7480000e+02 -2.3049454e-01 + 6.7505000e+02 -1.0049454e-01 + 6.7530000e+02 2.9505460e-02 + 6.7555000e+02 3.9505460e-02 + 6.7580000e+02 -6.0494540e-02 + 6.7605000e+02 -1.1049454e-01 + 6.7630000e+02 -2.3049454e-01 + 6.7655000e+02 -3.4049454e-01 + 6.7680000e+02 -4.3049454e-01 + 6.7705000e+02 -4.9049454e-01 + 6.7730000e+02 -4.4049454e-01 + 6.7755000e+02 -3.0049454e-01 + 6.7780000e+02 -1.8049454e-01 + 6.7805000e+02 -2.0494540e-02 + 6.7830000e+02 -1.0494540e-02 + 6.7855000e+02 -1.0049454e-01 + 6.7880000e+02 -2.3049454e-01 + 6.7905000e+02 -3.2049454e-01 + 6.7930000e+02 -2.8049454e-01 + 6.7955000e+02 -2.4049454e-01 + 6.7980000e+02 -2.7049454e-01 + 6.8005000e+02 -1.6049454e-01 + 6.8030000e+02 1.9505460e-02 + 6.8055000e+02 9.9505460e-02 + 6.8080000e+02 9.9505460e-02 + 6.8105000e+02 1.3950546e-01 + 6.8130000e+02 1.6950546e-01 + 6.8155000e+02 1.6950546e-01 + 6.8180000e+02 2.6950546e-01 + 6.8205000e+02 2.7950546e-01 + 6.8230000e+02 2.7950546e-01 + 6.8255000e+02 3.0950546e-01 + 6.8280000e+02 2.2950546e-01 + 6.8305000e+02 2.3950546e-01 + 6.8330000e+02 2.5950546e-01 + 6.8355000e+02 1.7950546e-01 + 6.8380000e+02 5.9505460e-02 + 6.8405000e+02 -1.1049454e-01 + 6.8430000e+02 -2.4049454e-01 + 6.8455000e+02 -2.1049454e-01 + 6.8480000e+02 2.9505460e-02 + 6.8505000e+02 1.3950546e-01 + 6.8530000e+02 1.8950546e-01 + 6.8555000e+02 3.2950546e-01 + 6.8580000e+02 4.3950546e-01 + 6.8605000e+02 5.0950546e-01 + 6.8630000e+02 3.9950546e-01 + 6.8655000e+02 1.8950546e-01 + 6.8680000e+02 1.0950546e-01 + 6.8705000e+02 8.9505460e-02 + 6.8730000e+02 3.9505460e-02 + 6.8755000e+02 -1.1049454e-01 + 6.8780000e+02 -2.1049454e-01 + 6.8805000e+02 -2.5049454e-01 + 6.8830000e+02 -1.7049454e-01 + 6.8855000e+02 -1.0049454e-01 + 6.8880000e+02 6.9505460e-02 + 6.8905000e+02 9.9505460e-02 + 6.8930000e+02 -4.9454011e-04 + 6.8955000e+02 -1.0049454e-01 + 6.8980000e+02 -2.2049454e-01 + 6.9005000e+02 -3.0049454e-01 + 6.9030000e+02 -3.4049454e-01 + 6.9055000e+02 -4.1049454e-01 + 6.9080000e+02 -5.3049454e-01 + 6.9105000e+02 -6.1049454e-01 + 6.9130000e+02 -6.5049454e-01 + 6.9155000e+02 -6.1049454e-01 + 6.9180000e+02 -4.5049454e-01 + 6.9205000e+02 -2.7049454e-01 + 6.9230000e+02 -3.0049454e-01 + 6.9255000e+02 -3.1049454e-01 + 6.9280000e+02 -3.1049454e-01 + 6.9305000e+02 -2.5049454e-01 + 6.9330000e+02 -1.1049454e-01 + 6.9355000e+02 8.9505460e-02 + 6.9380000e+02 1.0950546e-01 + 6.9405000e+02 2.7950546e-01 + 6.9430000e+02 5.3950546e-01 + 6.9455000e+02 7.4950546e-01 + 6.9480000e+02 8.5950546e-01 + 6.9505000e+02 1.0695055e+00 + 6.9530000e+02 8.6950546e-01 + 6.9555000e+02 4.6950546e-01 + 6.9580000e+02 1.3950546e-01 + 6.9605000e+02 -4.0494540e-02 + 6.9630000e+02 9.5054599e-03 + 6.9655000e+02 1.2950546e-01 + 6.9680000e+02 2.0950546e-01 + 6.9705000e+02 3.6950546e-01 + 6.9730000e+02 5.2950546e-01 + 6.9755000e+02 5.6950546e-01 + 6.9780000e+02 6.1950546e-01 + 6.9805000e+02 3.8950546e-01 + 6.9830000e+02 1.0950546e-01 + 6.9855000e+02 -1.3049454e-01 + 6.9880000e+02 -4.2049454e-01 + 6.9905000e+02 -6.4049454e-01 + 6.9930000e+02 -8.0049454e-01 + 6.9955000e+02 -7.6049454e-01 + 6.9980000e+02 -6.0049454e-01 + 7.0005000e+02 -4.1049454e-01 + 7.0030000e+02 -2.1049454e-01 + 7.0055000e+02 -3.0494540e-02 + 7.0080000e+02 6.9505460e-02 + 7.0105000e+02 -1.0049454e-01 + 7.0130000e+02 -2.2049454e-01 + 7.0155000e+02 -2.5049454e-01 + 7.0180000e+02 -3.1049454e-01 + 7.0205000e+02 -4.1049454e-01 + 7.0230000e+02 -4.3049454e-01 + 7.0255000e+02 -4.2049454e-01 + 7.0280000e+02 -3.1049454e-01 + 7.0305000e+02 -1.1049454e-01 + 7.0330000e+02 -4.9454011e-04 + 7.0355000e+02 1.4950546e-01 + 7.0380000e+02 1.6950546e-01 + 7.0405000e+02 7.9505460e-02 + 7.0430000e+02 3.9505460e-02 + 7.0455000e+02 2.9505460e-02 + 7.0480000e+02 -2.0494540e-02 + 7.0505000e+02 1.9505460e-02 + 7.0530000e+02 1.5950546e-01 + 7.0555000e+02 3.2950546e-01 + 7.0580000e+02 4.0950546e-01 + 7.0605000e+02 5.7950546e-01 + 7.0630000e+02 7.4950546e-01 + 7.0655000e+02 7.9950546e-01 + 7.0680000e+02 9.5950546e-01 + 7.0705000e+02 9.7950546e-01 + 7.0730000e+02 7.5950546e-01 + 7.0755000e+02 6.0950546e-01 + 7.0780000e+02 4.1950546e-01 + 7.0805000e+02 1.4950546e-01 + 7.0830000e+02 -2.0494540e-02 + 7.0855000e+02 -2.0049454e-01 + 7.0880000e+02 -3.4049454e-01 + 7.0905000e+02 -4.2049454e-01 + 7.0930000e+02 -4.0049454e-01 + 7.0955000e+02 -3.8049454e-01 + 7.0980000e+02 -2.9049454e-01 + 7.1005000e+02 -3.2049454e-01 + 7.1030000e+02 -3.3049454e-01 + 7.1055000e+02 -3.4049454e-01 + 7.1080000e+02 -2.1049454e-01 + 7.1105000e+02 -1.0049454e-01 + 7.1130000e+02 -1.0494540e-02 + 7.1155000e+02 1.5950546e-01 + 7.1180000e+02 3.7950546e-01 + 7.1205000e+02 2.4950546e-01 + 7.1230000e+02 4.9505460e-02 + 7.1255000e+02 9.5054599e-03 + 7.1280000e+02 7.9505460e-02 + 7.1305000e+02 2.9505460e-02 + 7.1330000e+02 -2.1049454e-01 + 7.1355000e+02 -4.0049454e-01 + 7.1380000e+02 -5.8049454e-01 + 7.1405000e+02 -7.4049454e-01 + 7.1430000e+02 -9.3049454e-01 + 7.1455000e+02 -8.7049454e-01 + 7.1480000e+02 -6.8049454e-01 + 7.1505000e+02 -3.7049454e-01 + 7.1530000e+02 -5.0494540e-02 + 7.1555000e+02 5.9505460e-02 + 7.1580000e+02 1.6950546e-01 + 7.1605000e+02 1.9950546e-01 + 7.1630000e+02 1.5950546e-01 + 7.1655000e+02 2.5950546e-01 + 7.1680000e+02 2.7950546e-01 + 7.1705000e+02 3.8950546e-01 + 7.1730000e+02 4.2950546e-01 + 7.1755000e+02 5.2950546e-01 + 7.1780000e+02 6.1950546e-01 + 7.1805000e+02 5.9950546e-01 + 7.1830000e+02 5.6950546e-01 + 7.1855000e+02 5.7950546e-01 + 7.1880000e+02 4.8950546e-01 + 7.1905000e+02 2.7950546e-01 + 7.1930000e+02 7.9505460e-02 + 7.1955000e+02 4.9505460e-02 + 7.1980000e+02 -1.1049454e-01 + 7.2005000e+02 -2.3049454e-01 + 7.2030000e+02 -3.2049454e-01 + 7.2055000e+02 -3.5049454e-01 + 7.2080000e+02 -3.8049454e-01 + 7.2105000e+02 -3.3049454e-01 + 7.2130000e+02 -9.0494540e-02 + 7.2155000e+02 -6.0494540e-02 + 7.2180000e+02 -1.7049454e-01 + 7.2205000e+02 -1.2049454e-01 + 7.2230000e+02 -1.1049454e-01 + 7.2255000e+02 -1.0049454e-01 + 7.2280000e+02 2.9505460e-02 + 7.2305000e+02 9.9505460e-02 + 7.2330000e+02 9.9505460e-02 + 7.2355000e+02 8.9505460e-02 + 7.2380000e+02 1.1950546e-01 + 7.2405000e+02 2.9505460e-02 + 7.2430000e+02 -8.0494540e-02 + 7.2455000e+02 -1.0049454e-01 + 7.2480000e+02 -9.0494540e-02 + 7.2505000e+02 -1.0494540e-02 + 7.2530000e+02 1.1950546e-01 + 7.2555000e+02 8.9505460e-02 + 7.2580000e+02 3.9505460e-02 + 7.2605000e+02 1.9505460e-02 + 7.2630000e+02 9.5054599e-03 + 7.2655000e+02 -3.0494540e-02 + 7.2680000e+02 -3.0494540e-02 + 7.2705000e+02 -9.0494540e-02 + 7.2730000e+02 -1.4049454e-01 + 7.2755000e+02 -3.5049454e-01 + 7.2780000e+02 -4.7049454e-01 + 7.2805000e+02 -3.3049454e-01 + 7.2830000e+02 -1.2049454e-01 + 7.2855000e+02 6.9505460e-02 + 7.2880000e+02 2.0950546e-01 + 7.2905000e+02 2.3950546e-01 + 7.2930000e+02 2.3950546e-01 + 7.2955000e+02 1.5950546e-01 + 7.2980000e+02 1.3950546e-01 + 7.3005000e+02 6.9505460e-02 + 7.3030000e+02 1.3950546e-01 + 7.3055000e+02 2.4950546e-01 + 7.3080000e+02 3.3950546e-01 + 7.3105000e+02 2.7950546e-01 + 7.3130000e+02 1.6950546e-01 + 7.3155000e+02 1.9505460e-02 + 7.3180000e+02 -2.2049454e-01 + 7.3205000e+02 -3.7049454e-01 + 7.3230000e+02 -3.0049454e-01 + 7.3255000e+02 -1.9049454e-01 + 7.3280000e+02 -6.0494540e-02 + 7.3305000e+02 -6.0494540e-02 + 7.3330000e+02 1.4950546e-01 + 7.3355000e+02 2.6950546e-01 + 7.3380000e+02 3.3950546e-01 + 7.3405000e+02 3.8950546e-01 + 7.3430000e+02 3.3950546e-01 + 7.3455000e+02 2.6950546e-01 + 7.3480000e+02 1.4950546e-01 + 7.3505000e+02 5.9505460e-02 + 7.3530000e+02 2.9505460e-02 + 7.3555000e+02 9.5054599e-03 + 7.3580000e+02 9.9505460e-02 + 7.3605000e+02 1.9505460e-02 + 7.3630000e+02 -2.2049454e-01 + 7.3655000e+02 -5.9049454e-01 + 7.3680000e+02 -7.5049454e-01 + 7.3705000e+02 -6.4049454e-01 + 7.3730000e+02 -5.0049454e-01 + 7.3755000e+02 -4.3049454e-01 + 7.3780000e+02 -2.2049454e-01 + 7.3805000e+02 -3.0494540e-02 + 7.3830000e+02 3.9505460e-02 + 7.3855000e+02 9.5054599e-03 + 7.3880000e+02 -1.0494540e-02 + 7.3905000e+02 1.1950546e-01 + 7.3930000e+02 1.6950546e-01 + 7.3955000e+02 1.3950546e-01 + 7.3980000e+02 1.1950546e-01 + 7.4005000e+02 1.2950546e-01 + 7.4030000e+02 2.5950546e-01 + 7.4055000e+02 4.4950546e-01 + 7.4080000e+02 4.2950546e-01 + 7.4105000e+02 3.0950546e-01 + 7.4130000e+02 1.5950546e-01 + 7.4155000e+02 -3.0494540e-02 + 7.4180000e+02 -2.5049454e-01 + 7.4205000e+02 -5.8049454e-01 + 7.4230000e+02 -6.1049454e-01 + 7.4255000e+02 -5.5049454e-01 + 7.4280000e+02 -4.1049454e-01 + 7.4305000e+02 -5.0494540e-02 + 7.4330000e+02 2.1950546e-01 + 7.4355000e+02 4.2950546e-01 + 7.4380000e+02 7.6950546e-01 + 7.4405000e+02 1.1095055e+00 + 7.4430000e+02 1.2095055e+00 + 7.4455000e+02 1.1595055e+00 + 7.4480000e+02 7.9950546e-01 + 7.4505000e+02 3.9950546e-01 + 7.4530000e+02 7.9505460e-02 + 7.4555000e+02 -2.5049454e-01 + 7.4580000e+02 -4.2049454e-01 + 7.4605000e+02 -5.3049454e-01 + 7.4630000e+02 -7.2049454e-01 + 7.4655000e+02 -6.8049454e-01 + 7.4680000e+02 -5.0049454e-01 + 7.4705000e+02 -5.0049454e-01 + 7.4730000e+02 -5.3049454e-01 + 7.4755000e+02 -3.1049454e-01 + 7.4780000e+02 -1.3049454e-01 + 7.4805000e+02 -1.0494540e-02 + 7.4830000e+02 1.7950546e-01 + 7.4855000e+02 3.0950546e-01 + 7.4880000e+02 4.7950546e-01 + 7.4905000e+02 6.0950546e-01 + 7.4930000e+02 7.1950546e-01 + 7.4955000e+02 8.1950546e-01 + 7.4980000e+02 8.0950546e-01 + 7.5005000e+02 6.6950546e-01 + 7.5030000e+02 1.6950546e-01 + 7.5055000e+02 -1.8049454e-01 + 7.5080000e+02 -3.7049454e-01 + 7.5105000e+02 -4.5049454e-01 + 7.5130000e+02 -5.4049454e-01 + 7.5155000e+02 -5.7049454e-01 + 7.5180000e+02 -3.8049454e-01 + 7.5205000e+02 -2.7049454e-01 + 7.5230000e+02 -2.6049454e-01 + 7.5255000e+02 -3.0049454e-01 + 7.5280000e+02 -4.5049454e-01 + 7.5305000e+02 -4.5049454e-01 + 7.5330000e+02 -3.9049454e-01 + 7.5355000e+02 -4.0049454e-01 + 7.5380000e+02 -4.3049454e-01 + 7.5405000e+02 -3.0049454e-01 + 7.5430000e+02 -7.0494540e-02 + 7.5455000e+02 1.9950546e-01 + 7.5480000e+02 4.3950546e-01 + 7.5505000e+02 7.3950546e-01 + 7.5530000e+02 7.4950546e-01 + 7.5555000e+02 6.7950546e-01 + 7.5580000e+02 5.5950546e-01 + 7.5605000e+02 3.6950546e-01 + 7.5630000e+02 5.9505460e-02 + 7.5655000e+02 -9.0494540e-02 + 7.5680000e+02 -1.9049454e-01 + 7.5705000e+02 -1.9049454e-01 + 7.5730000e+02 -7.0494540e-02 + 7.5755000e+02 1.6950546e-01 + 7.5780000e+02 2.6950546e-01 + 7.5805000e+02 4.0950546e-01 + 7.5830000e+02 5.3950546e-01 + 7.5855000e+02 3.9950546e-01 + 7.5880000e+02 9.9505460e-02 + 7.5905000e+02 -2.0494540e-02 + 7.5930000e+02 -4.0494540e-02 + 7.5955000e+02 -1.9049454e-01 + 7.5980000e+02 -3.9049454e-01 + 7.6005000e+02 -4.8049454e-01 + 7.6030000e+02 -3.5049454e-01 + 7.6055000e+02 -2.6049454e-01 + 7.6080000e+02 -1.5049454e-01 + 7.6105000e+02 1.2950546e-01 + 7.6130000e+02 3.5950546e-01 + 7.6155000e+02 3.7950546e-01 + 7.6180000e+02 3.8950546e-01 + 7.6205000e+02 3.8950546e-01 + 7.6230000e+02 3.6950546e-01 + 7.6255000e+02 3.0950546e-01 + 7.6280000e+02 1.8950546e-01 + 7.6305000e+02 -9.0494540e-02 + 7.6330000e+02 -3.1049454e-01 + 7.6355000e+02 -4.8049454e-01 + 7.6380000e+02 -4.9049454e-01 + 7.6405000e+02 -7.0049454e-01 + 7.6430000e+02 -7.0049454e-01 + 7.6455000e+02 -5.6049454e-01 + 7.6480000e+02 -3.7049454e-01 + 7.6505000e+02 -1.2049454e-01 + 7.6530000e+02 1.2950546e-01 + 7.6555000e+02 4.9950546e-01 + 7.6580000e+02 5.3950546e-01 + 7.6605000e+02 4.2950546e-01 + 7.6630000e+02 2.7950546e-01 + 7.6655000e+02 8.9505460e-02 + 7.6680000e+02 -2.0494540e-02 + 7.6705000e+02 -1.9049454e-01 + 7.6730000e+02 -4.4049454e-01 + 7.6755000e+02 -5.3049454e-01 + 7.6780000e+02 -5.2049454e-01 + 7.6805000e+02 -4.8049454e-01 + 7.6830000e+02 -4.2049454e-01 + 7.6855000e+02 -3.4049454e-01 + 7.6880000e+02 -3.7049454e-01 + 7.6905000e+02 -1.8049454e-01 + 7.6930000e+02 6.9505460e-02 + 7.6955000e+02 2.3950546e-01 + 7.6980000e+02 3.0950546e-01 + 7.7005000e+02 4.7950546e-01 + 7.7030000e+02 5.7950546e-01 + 7.7055000e+02 7.1950546e-01 + 7.7080000e+02 8.6950546e-01 + 7.7105000e+02 9.4950546e-01 + 7.7130000e+02 1.1195055e+00 + 7.7155000e+02 1.1495055e+00 + 7.7180000e+02 9.7950546e-01 + 7.7205000e+02 5.9950546e-01 + 7.7230000e+02 3.9950546e-01 + 7.7255000e+02 3.3950546e-01 + 7.7280000e+02 1.7950546e-01 + 7.7305000e+02 -5.0494540e-02 + 7.7330000e+02 -2.8049454e-01 + 7.7355000e+02 -4.6049454e-01 + 7.7380000e+02 -5.8049454e-01 + 7.7405000e+02 -6.7049454e-01 + 7.7430000e+02 -7.3049454e-01 + 7.7455000e+02 -6.3049454e-01 + 7.7480000e+02 -5.0049454e-01 + 7.7505000e+02 -4.9049454e-01 + 7.7530000e+02 -4.2049454e-01 + 7.7555000e+02 -4.8049454e-01 + 7.7580000e+02 -5.1049454e-01 + 7.7605000e+02 -3.6049454e-01 + 7.7630000e+02 -1.1049454e-01 + 7.7655000e+02 1.9505460e-02 + 7.7680000e+02 -2.8049454e-01 + 7.7705000e+02 -6.4049454e-01 + 7.7730000e+02 -7.0049454e-01 + 7.7755000e+02 -6.2049454e-01 + 7.7780000e+02 -5.2049454e-01 + 7.7805000e+02 -3.9049454e-01 + 7.7830000e+02 -2.1049454e-01 + 7.7855000e+02 4.9505460e-02 + 7.7880000e+02 1.3950546e-01 + 7.7905000e+02 1.2950546e-01 + 7.7930000e+02 -7.0494540e-02 + 7.7955000e+02 -8.0494540e-02 + 7.7980000e+02 1.4950546e-01 + 7.8005000e+02 3.4950546e-01 + 7.8030000e+02 6.0950546e-01 + 7.8055000e+02 7.0950546e-01 + 7.8080000e+02 7.3950546e-01 + 7.8105000e+02 7.9950546e-01 + 7.8130000e+02 8.8950546e-01 + 7.8155000e+02 9.5950546e-01 + 7.8180000e+02 9.5950546e-01 + 7.8205000e+02 8.5950546e-01 + 7.8230000e+02 5.7950546e-01 + 7.8255000e+02 4.9950546e-01 + 7.8280000e+02 5.4950546e-01 + 7.8305000e+02 5.1950546e-01 + 7.8330000e+02 6.1950546e-01 + 7.8355000e+02 8.2950546e-01 + 7.8380000e+02 3.4950546e-01 + 7.8405000e+02 -6.0494540e-02 + 7.8430000e+02 -3.7049454e-01 + 7.8455000e+02 -7.3049454e-01 + 7.8480000e+02 -1.0904945e+00 + 7.8505000e+02 -1.3304945e+00 + 7.8530000e+02 -1.4004945e+00 + 7.8555000e+02 -1.1904945e+00 + 7.8580000e+02 -9.2049454e-01 + 7.8605000e+02 -8.1049454e-01 + 7.8630000e+02 -6.6049454e-01 + 7.8655000e+02 -5.2049454e-01 + 7.8680000e+02 -3.7049454e-01 + 7.8705000e+02 -2.3049454e-01 + 7.8730000e+02 -1.0049454e-01 + 7.8755000e+02 -2.3049454e-01 + 7.8780000e+02 -3.5049454e-01 + 7.8805000e+02 -4.2049454e-01 + 7.8830000e+02 -3.7049454e-01 + 7.8855000e+02 -1.8049454e-01 + 7.8880000e+02 -3.0494540e-02 + 7.8905000e+02 1.0950546e-01 + 7.8930000e+02 2.5950546e-01 + 7.8955000e+02 4.0950546e-01 + 7.8980000e+02 5.1950546e-01 + 7.9005000e+02 5.7950546e-01 + 7.9030000e+02 4.7950546e-01 + 7.9055000e+02 3.3950546e-01 + 7.9080000e+02 1.9950546e-01 + 7.9105000e+02 1.2950546e-01 + 7.9130000e+02 2.4950546e-01 + 7.9155000e+02 3.2950546e-01 + 7.9180000e+02 2.6950546e-01 + 7.9205000e+02 1.4950546e-01 + 7.9230000e+02 2.2950546e-01 + 7.9255000e+02 2.0950546e-01 + 7.9280000e+02 1.6950546e-01 + 7.9305000e+02 2.0950546e-01 + 7.9330000e+02 1.9950546e-01 + 7.9355000e+02 1.7950546e-01 + 7.9380000e+02 1.3950546e-01 + 7.9405000e+02 2.1950546e-01 + 7.9430000e+02 2.1950546e-01 + 7.9455000e+02 4.3950546e-01 + 7.9480000e+02 6.4950546e-01 + 7.9505000e+02 7.0950546e-01 + 7.9530000e+02 6.2950546e-01 + 7.9555000e+02 4.2950546e-01 + 7.9580000e+02 9.9505460e-02 + 7.9605000e+02 -7.0494540e-02 + 7.9630000e+02 -1.7049454e-01 + 7.9655000e+02 -1.9049454e-01 + 7.9680000e+02 -1.6049454e-01 + 7.9705000e+02 -1.5049454e-01 + 7.9730000e+02 -1.4049454e-01 + 7.9755000e+02 -1.7049454e-01 + 7.9780000e+02 -3.6049454e-01 + 7.9805000e+02 -7.3049454e-01 + 7.9830000e+02 -9.2049454e-01 + 7.9855000e+02 -1.0504945e+00 + 7.9880000e+02 -1.0604945e+00 + 7.9905000e+02 -9.1049454e-01 + 7.9930000e+02 -7.9049454e-01 + 7.9955000e+02 -5.8049454e-01 + 7.9980000e+02 -1.6049454e-01 + 8.0005000e+02 1.9950546e-01 + 8.0030000e+02 3.9950546e-01 + 8.0055000e+02 5.9950546e-01 + 8.0080000e+02 7.8950546e-01 + 8.0105000e+02 9.3950546e-01 + 8.0130000e+02 1.0895055e+00 + 8.0155000e+02 1.0895055e+00 + 8.0180000e+02 5.8950546e-01 + 8.0205000e+02 8.9505460e-02 + 8.0230000e+02 -4.0049454e-01 + 8.0255000e+02 -6.4049454e-01 + 8.0280000e+02 -7.9049454e-01 + 8.0305000e+02 -6.9049454e-01 + 8.0330000e+02 -6.1049454e-01 + 8.0355000e+02 -4.8049454e-01 + 8.0380000e+02 -2.4049454e-01 + 8.0405000e+02 -1.0049454e-01 + 8.0430000e+02 5.9505460e-02 + 8.0455000e+02 3.8950546e-01 + 8.0480000e+02 6.3950546e-01 + 8.0505000e+02 6.8950546e-01 + 8.0530000e+02 5.5950546e-01 + 8.0555000e+02 5.0950546e-01 + 8.0580000e+02 4.8950546e-01 + 8.0605000e+02 3.4950546e-01 + 8.0630000e+02 9.9505460e-02 + 8.0655000e+02 -1.7049454e-01 + 8.0680000e+02 -3.2049454e-01 + 8.0705000e+02 -3.4049454e-01 + 8.0730000e+02 -3.2049454e-01 + 8.0755000e+02 -1.9049454e-01 + 8.0780000e+02 5.9505460e-02 + 8.0805000e+02 3.6950546e-01 + 8.0830000e+02 4.6950546e-01 + 8.0855000e+02 5.1950546e-01 + 8.0880000e+02 4.8950546e-01 + 8.0905000e+02 3.5950546e-01 + 8.0930000e+02 1.7950546e-01 + 8.0955000e+02 2.9505460e-02 + 8.0980000e+02 -1.6049454e-01 + 8.1005000e+02 -2.1049454e-01 + 8.1030000e+02 -2.0049454e-01 + 8.1055000e+02 -1.8049454e-01 + 8.1080000e+02 -1.1049454e-01 + 8.1105000e+02 -1.4049454e-01 + 8.1130000e+02 -5.0494540e-02 + 8.1155000e+02 2.9505460e-02 + 8.1180000e+02 9.5054599e-03 + 8.1205000e+02 -1.2049454e-01 + 8.1230000e+02 -1.7049454e-01 + 8.1255000e+02 -8.0494540e-02 + 8.1280000e+02 -3.0494540e-02 + 8.1305000e+02 -7.0494540e-02 + 8.1330000e+02 -3.1049454e-01 + 8.1355000e+02 -4.5049454e-01 + 8.1380000e+02 -5.4049454e-01 + 8.1405000e+02 -5.2049454e-01 + 8.1430000e+02 -4.9049454e-01 + 8.1455000e+02 -4.4049454e-01 + 8.1480000e+02 -3.2049454e-01 + 8.1505000e+02 -1.6049454e-01 + 8.1530000e+02 -7.0494540e-02 + 8.1555000e+02 1.9505460e-02 + 8.1580000e+02 2.1950546e-01 + 8.1605000e+02 4.0950546e-01 + 8.1630000e+02 5.9950546e-01 + 8.1655000e+02 7.4950546e-01 + 8.1680000e+02 9.3950546e-01 + 8.1705000e+02 8.6950546e-01 + 8.1730000e+02 5.0950546e-01 + 8.1755000e+02 8.9505460e-02 + 8.1780000e+02 9.5054599e-03 + 8.1805000e+02 5.9505460e-02 + 8.1830000e+02 7.9505460e-02 + 8.1855000e+02 1.4950546e-01 + 8.1880000e+02 2.0950546e-01 + 8.1905000e+02 2.0950546e-01 + 8.1930000e+02 5.9505460e-02 + 8.1955000e+02 -1.7049454e-01 + 8.1980000e+02 -3.0494540e-02 + 8.2005000e+02 1.0950546e-01 + 8.2030000e+02 3.6950546e-01 + 8.2055000e+02 5.9950546e-01 + 8.2080000e+02 7.4950546e-01 + 8.2105000e+02 7.0950546e-01 + 8.2130000e+02 5.6950546e-01 + 8.2155000e+02 4.4950546e-01 + 8.2180000e+02 2.1950546e-01 + 8.2205000e+02 -1.1049454e-01 + 8.2230000e+02 -4.4049454e-01 + 8.2255000e+02 -6.7049454e-01 + 8.2280000e+02 -7.2049454e-01 + 8.2305000e+02 -6.4049454e-01 + 8.2330000e+02 -7.2049454e-01 + 8.2355000e+02 -5.5049454e-01 + 8.2380000e+02 -4.9049454e-01 + 8.2405000e+02 -3.3049454e-01 + 8.2430000e+02 -3.2049454e-01 + 8.2455000e+02 -3.8049454e-01 + 8.2480000e+02 -5.0049454e-01 + 8.2505000e+02 -4.6049454e-01 + 8.2530000e+02 -4.2049454e-01 + 8.2555000e+02 -3.6049454e-01 + 8.2580000e+02 -2.8049454e-01 + 8.2605000e+02 -2.8049454e-01 + 8.2630000e+02 -1.4049454e-01 + 8.2655000e+02 7.9505460e-02 + 8.2680000e+02 2.7950546e-01 + 8.2705000e+02 2.4950546e-01 + 8.2730000e+02 2.9950546e-01 + 8.2755000e+02 5.3950546e-01 + 8.2780000e+02 9.7950546e-01 + 8.2805000e+02 1.0895055e+00 + 8.2830000e+02 8.6950546e-01 + 8.2855000e+02 4.4950546e-01 + 8.2880000e+02 2.3950546e-01 + 8.2905000e+02 9.9505460e-02 + 8.2930000e+02 9.5054599e-03 + 8.2955000e+02 -2.5049454e-01 + 8.2980000e+02 -4.2049454e-01 + 8.3005000e+02 -4.9049454e-01 + 8.3030000e+02 -3.8049454e-01 + 8.3055000e+02 -1.5049454e-01 + 8.3080000e+02 -1.5049454e-01 + 8.3105000e+02 -4.0494540e-02 + 8.3130000e+02 -3.0494540e-02 + 8.3155000e+02 1.9505460e-02 + 8.3180000e+02 -5.0494540e-02 + 8.3205000e+02 -3.0494540e-02 + 8.3230000e+02 -1.0494540e-02 + 8.3255000e+02 9.9505460e-02 + 8.3280000e+02 3.9950546e-01 + 8.3305000e+02 5.5950546e-01 + 8.3330000e+02 5.8950546e-01 + 8.3355000e+02 5.7950546e-01 + 8.3380000e+02 4.3950546e-01 + 8.3405000e+02 1.5950546e-01 + 8.3430000e+02 -4.0494540e-02 + 8.3455000e+02 -1.8049454e-01 + 8.3480000e+02 -2.3049454e-01 + 8.3505000e+02 -1.0049454e-01 + 8.3530000e+02 -1.0494540e-02 + 8.3555000e+02 -1.0494540e-02 + 8.3580000e+02 -1.0494540e-02 + 8.3605000e+02 -6.0494540e-02 + 8.3630000e+02 9.5054599e-03 + 8.3655000e+02 8.9505460e-02 + 8.3680000e+02 7.9505460e-02 + 8.3705000e+02 -2.0494540e-02 + 8.3730000e+02 -2.6049454e-01 + 8.3755000e+02 -4.7049454e-01 + 8.3780000e+02 -6.2049454e-01 + 8.3805000e+02 -7.5049454e-01 + 8.3830000e+02 -7.8049454e-01 + 8.3855000e+02 -6.4049454e-01 + 8.3880000e+02 -5.0049454e-01 + 8.3905000e+02 -4.2049454e-01 + 8.3930000e+02 -2.5049454e-01 + 8.3955000e+02 -1.6049454e-01 + 8.3980000e+02 -2.0494540e-02 + 8.4005000e+02 -8.0494540e-02 + 8.4030000e+02 -4.0494540e-02 + 8.4055000e+02 -7.0494540e-02 + 8.4080000e+02 -4.9454011e-04 + 8.4105000e+02 2.7950546e-01 + 8.4130000e+02 7.3950546e-01 + 8.4155000e+02 1.3195055e+00 + 8.4180000e+02 1.6195055e+00 + 8.4205000e+02 1.4495055e+00 + 8.4230000e+02 9.3950546e-01 + 8.4255000e+02 4.9950546e-01 + 8.4280000e+02 2.5950546e-01 + 8.4305000e+02 4.9505460e-02 + 8.4330000e+02 -2.2049454e-01 + 8.4355000e+02 -4.6049454e-01 + 8.4380000e+02 -6.9049454e-01 + 8.4405000e+02 -6.8049454e-01 + 8.4430000e+02 -3.7049454e-01 + 8.4455000e+02 -4.3049454e-01 + 8.4480000e+02 -4.0049454e-01 + 8.4505000e+02 -2.0049454e-01 + 8.4530000e+02 8.9505460e-02 + 8.4555000e+02 3.0950546e-01 + 8.4580000e+02 5.9950546e-01 + 8.4605000e+02 5.7950546e-01 + 8.4630000e+02 4.3950546e-01 + 8.4655000e+02 4.3950546e-01 + 8.4680000e+02 4.4950546e-01 + 8.4705000e+02 4.6950546e-01 + 8.4730000e+02 3.9950546e-01 + 8.4755000e+02 2.0950546e-01 + 8.4780000e+02 3.9505460e-02 + 8.4805000e+02 -1.9049454e-01 + 8.4830000e+02 -3.5049454e-01 + 8.4855000e+02 -4.2049454e-01 + 8.4880000e+02 -6.3049454e-01 + 8.4905000e+02 -7.1049454e-01 + 8.4930000e+02 -7.0049454e-01 + 8.4955000e+02 -6.8049454e-01 + 8.4980000e+02 -5.1049454e-01 + 8.5005000e+02 -3.8049454e-01 + 8.5030000e+02 -2.1049454e-01 + 8.5055000e+02 -2.6049454e-01 + 8.5080000e+02 -3.5049454e-01 + 8.5105000e+02 -3.7049454e-01 + 8.5130000e+02 -4.2049454e-01 + 8.5155000e+02 -3.9049454e-01 + 8.5180000e+02 -3.3049454e-01 + 8.5205000e+02 -2.6049454e-01 + 8.5230000e+02 -1.6049454e-01 + 8.5255000e+02 3.9505460e-02 + 8.5280000e+02 4.5950546e-01 + 8.5305000e+02 7.3950546e-01 + 8.5330000e+02 9.2950546e-01 + 8.5355000e+02 1.0295055e+00 + 8.5380000e+02 1.0595055e+00 + 8.5405000e+02 1.0895055e+00 + 8.5430000e+02 1.0495055e+00 + 8.5455000e+02 6.4950546e-01 + 8.5480000e+02 2.9950546e-01 + 8.5505000e+02 1.6950546e-01 + 8.5530000e+02 3.9505460e-02 + 8.5555000e+02 -9.0494540e-02 + 8.5580000e+02 -1.7049454e-01 + 8.5605000e+02 -1.8049454e-01 + 8.5630000e+02 -2.1049454e-01 + 8.5655000e+02 -1.2049454e-01 + 8.5680000e+02 1.9505460e-02 + 8.5705000e+02 1.9505460e-02 + 8.5730000e+02 2.9505460e-02 + 8.5755000e+02 1.0950546e-01 + 8.5780000e+02 1.4950546e-01 + 8.5805000e+02 6.9505460e-02 + 8.5830000e+02 -7.0494540e-02 + 8.5855000e+02 -1.9049454e-01 + 8.5880000e+02 -3.7049454e-01 + 8.5905000e+02 -5.6049454e-01 + 8.5930000e+02 -6.9049454e-01 + 8.5955000e+02 -7.0049454e-01 + 8.5980000e+02 -6.4049454e-01 + 8.6005000e+02 -3.9049454e-01 + 8.6030000e+02 -1.4049454e-01 + 8.6055000e+02 1.7950546e-01 + 8.6080000e+02 4.7950546e-01 + 8.6105000e+02 6.5950546e-01 + 8.6130000e+02 5.8950546e-01 + 8.6155000e+02 5.0950546e-01 + 8.6180000e+02 3.7950546e-01 + 8.6205000e+02 2.2950546e-01 + 8.6230000e+02 7.9505460e-02 + 8.6255000e+02 -8.0494540e-02 + 8.6280000e+02 -2.5049454e-01 + 8.6305000e+02 -4.3049454e-01 + 8.6330000e+02 -3.4049454e-01 + 8.6355000e+02 -2.2049454e-01 + 8.6380000e+02 -2.1049454e-01 + 8.6405000e+02 -1.1049454e-01 + 8.6430000e+02 -3.0494540e-02 + 8.6455000e+02 -2.0494540e-02 + 8.6480000e+02 1.5950546e-01 + 8.6505000e+02 2.7950546e-01 + 8.6530000e+02 2.6950546e-01 + 8.6555000e+02 1.6950546e-01 + 8.6580000e+02 9.5054599e-03 + 8.6605000e+02 -1.0049454e-01 + 8.6630000e+02 -1.6049454e-01 + 8.6655000e+02 -1.0049454e-01 + 8.6680000e+02 1.0950546e-01 + 8.6705000e+02 3.8950546e-01 + 8.6730000e+02 6.1950546e-01 + 8.6755000e+02 7.6950546e-01 + 8.6780000e+02 5.9950546e-01 + 8.6805000e+02 4.6950546e-01 + 8.6830000e+02 3.0950546e-01 + 8.6855000e+02 1.6950546e-01 + 8.6880000e+02 1.9950546e-01 + 8.6905000e+02 2.0950546e-01 + 8.6930000e+02 1.1950546e-01 + 8.6955000e+02 -8.0494540e-02 + 8.6980000e+02 -3.4049454e-01 + 8.7005000e+02 -5.4049454e-01 + 8.7030000e+02 -6.7049454e-01 + 8.7055000e+02 -7.1049454e-01 + 8.7080000e+02 -6.5049454e-01 + 8.7105000e+02 -4.8049454e-01 + 8.7130000e+02 -2.4049454e-01 + 8.7155000e+02 -1.3049454e-01 + 8.7180000e+02 -3.0494540e-02 + 8.7205000e+02 9.5054599e-03 + 8.7230000e+02 -1.0494540e-02 + 8.7255000e+02 -8.0494540e-02 + 8.7280000e+02 -9.0494540e-02 + 8.7305000e+02 2.0950546e-01 + 8.7330000e+02 4.8950546e-01 + 8.7355000e+02 5.6950546e-01 + 8.7380000e+02 6.2950546e-01 + 8.7405000e+02 5.2950546e-01 + 8.7430000e+02 5.9950546e-01 + 8.7455000e+02 6.0950546e-01 + 8.7480000e+02 4.7950546e-01 + 8.7505000e+02 2.8950546e-01 + 8.7530000e+02 8.9505460e-02 + 8.7555000e+02 -4.0494540e-02 + 8.7580000e+02 -2.0494540e-02 + 8.7605000e+02 7.9505460e-02 + 8.7630000e+02 3.9505460e-02 + 8.7655000e+02 -1.9049454e-01 + 8.7680000e+02 -3.8049454e-01 + 8.7705000e+02 -5.9049454e-01 + 8.7730000e+02 -8.2049454e-01 + 8.7755000e+02 -1.0304945e+00 + 8.7780000e+02 -1.0304945e+00 + 8.7805000e+02 -1.0304945e+00 + 8.7830000e+02 -9.1049454e-01 + 8.7855000e+02 -6.5049454e-01 + 8.7880000e+02 -3.0049454e-01 + 8.7905000e+02 -2.0049454e-01 + 8.7930000e+02 -2.1049454e-01 + 8.7955000e+02 -5.0494540e-02 + 8.7980000e+02 1.1950546e-01 + 8.8005000e+02 4.1950546e-01 + 8.8030000e+02 6.9950546e-01 + 8.8055000e+02 7.6950546e-01 + 8.8080000e+02 7.1950546e-01 + 8.8105000e+02 6.7950546e-01 + 8.8130000e+02 7.6950546e-01 + 8.8155000e+02 7.8950546e-01 + 8.8180000e+02 7.9950546e-01 + 8.8205000e+02 7.5950546e-01 + 8.8230000e+02 9.7950546e-01 + 8.8255000e+02 1.3995055e+00 + 8.8280000e+02 1.5095055e+00 + 8.8305000e+02 9.0950546e-01 + 8.8330000e+02 2.4950546e-01 + 8.8355000e+02 -2.9049454e-01 + 8.8380000e+02 -6.3049454e-01 + 8.8405000e+02 -8.1049454e-01 + 8.8430000e+02 -9.6049454e-01 + 8.8455000e+02 -9.4049454e-01 + 8.8480000e+02 -6.7049454e-01 + 8.8505000e+02 -5.1049454e-01 + 8.8530000e+02 -4.5049454e-01 + 8.8555000e+02 -4.8049454e-01 + 8.8580000e+02 -4.3049454e-01 + 8.8605000e+02 -4.1049454e-01 + 8.8630000e+02 -4.3049454e-01 + 8.8655000e+02 -6.0049454e-01 + 8.8680000e+02 -6.9049454e-01 + 8.8705000e+02 -6.5049454e-01 + 8.8730000e+02 -5.8049454e-01 + 8.8755000e+02 -4.0049454e-01 + 8.8780000e+02 -1.7049454e-01 + 8.8805000e+02 1.9505460e-02 + 8.8830000e+02 2.4950546e-01 + 8.8855000e+02 5.4950546e-01 + 8.8880000e+02 7.4950546e-01 + 8.8905000e+02 8.8950546e-01 + 8.8930000e+02 1.0195055e+00 + 8.8955000e+02 1.2195055e+00 + 8.8980000e+02 1.2495055e+00 + 8.9005000e+02 1.0095055e+00 + 8.9030000e+02 4.9950546e-01 + 8.9055000e+02 4.9505460e-02 + 8.9080000e+02 -2.2049454e-01 + 8.9105000e+02 -3.8049454e-01 + 8.9130000e+02 -4.9049454e-01 + 8.9155000e+02 -5.4049454e-01 + 8.9180000e+02 -4.7049454e-01 + 8.9205000e+02 -5.5049454e-01 + 8.9230000e+02 -6.1049454e-01 + 8.9255000e+02 -4.3049454e-01 + 8.9280000e+02 -2.5049454e-01 + 8.9305000e+02 -1.4049454e-01 + 8.9330000e+02 5.9505460e-02 + 8.9355000e+02 2.9950546e-01 + 8.9380000e+02 5.2950546e-01 + 8.9405000e+02 8.8950546e-01 + 8.9430000e+02 1.1295055e+00 + 8.9455000e+02 1.0395055e+00 + 8.9480000e+02 9.7950546e-01 + 8.9505000e+02 8.6950546e-01 + 8.9530000e+02 8.4950546e-01 + 8.9555000e+02 8.4950546e-01 + 8.9580000e+02 4.4950546e-01 + 8.9605000e+02 -2.0494540e-02 + 8.9630000e+02 -3.8049454e-01 + 8.9655000e+02 -6.5049454e-01 + 8.9680000e+02 -8.1049454e-01 + 8.9705000e+02 -9.5049454e-01 + 8.9730000e+02 -1.0004945e+00 + 8.9755000e+02 -1.0004945e+00 + 8.9780000e+02 -9.6049454e-01 + 8.9805000e+02 -9.1049454e-01 + 8.9830000e+02 -8.3049454e-01 + 8.9855000e+02 -7.4049454e-01 + 8.9880000e+02 -6.5049454e-01 + 8.9905000e+02 -4.7049454e-01 + 8.9930000e+02 -1.8049454e-01 + 8.9955000e+02 -2.5049454e-01 + 8.9980000e+02 -2.7049454e-01 + 9.0005000e+02 -2.2049454e-01 + 9.0030000e+02 -8.0494540e-02 + 9.0055000e+02 9.9505460e-02 + 9.0080000e+02 2.2950546e-01 + 9.0105000e+02 3.3950546e-01 + 9.0130000e+02 4.6950546e-01 + 9.0155000e+02 3.9950546e-01 + 9.0180000e+02 4.6950546e-01 + 9.0205000e+02 5.3950546e-01 + 9.0230000e+02 5.5950546e-01 + 9.0255000e+02 4.6950546e-01 + 9.0280000e+02 4.4950546e-01 + 9.0305000e+02 4.9950546e-01 + 9.0330000e+02 7.9950546e-01 + 9.0355000e+02 1.1095055e+00 + 9.0380000e+02 1.1595055e+00 + 9.0405000e+02 1.1195055e+00 + 9.0430000e+02 9.4950546e-01 + 9.0455000e+02 5.2950546e-01 + 9.0480000e+02 2.5950546e-01 + 9.0505000e+02 9.9505460e-02 + 9.0530000e+02 -9.0494540e-02 + 9.0555000e+02 -3.2049454e-01 + 9.0580000e+02 -5.1049454e-01 + 9.0605000e+02 -5.1049454e-01 + 9.0630000e+02 -4.3049454e-01 + 9.0655000e+02 -5.0049454e-01 + 9.0680000e+02 -4.7049454e-01 + 9.0705000e+02 -4.6049454e-01 + 9.0730000e+02 -4.0049454e-01 + 9.0755000e+02 -4.3049454e-01 + 9.0780000e+02 -4.0049454e-01 + 9.0805000e+02 -3.7049454e-01 + 9.0830000e+02 -3.9049454e-01 + 9.0855000e+02 -4.2049454e-01 + 9.0880000e+02 -5.5049454e-01 + 9.0905000e+02 -5.3049454e-01 + 9.0930000e+02 -4.8049454e-01 + 9.0955000e+02 -3.8049454e-01 + 9.0980000e+02 -1.9049454e-01 + 9.1005000e+02 2.9505460e-02 + 9.1030000e+02 1.8950546e-01 + 9.1055000e+02 3.5950546e-01 + 9.1080000e+02 4.1950546e-01 + 9.1105000e+02 4.1950546e-01 + 9.1130000e+02 3.7950546e-01 + 9.1155000e+02 3.0950546e-01 + 9.1180000e+02 3.6950546e-01 + 9.1205000e+02 4.0950546e-01 + 9.1230000e+02 4.7950546e-01 + 9.1255000e+02 3.7950546e-01 + 9.1280000e+02 1.9950546e-01 + 9.1305000e+02 1.9505460e-02 + 9.1330000e+02 -1.1049454e-01 + 9.1355000e+02 -1.3049454e-01 + 9.1380000e+02 -2.0049454e-01 + 9.1405000e+02 -2.3049454e-01 + 9.1430000e+02 9.5054599e-03 + 9.1455000e+02 3.1950546e-01 + 9.1480000e+02 5.4950546e-01 + 9.1505000e+02 4.3950546e-01 + 9.1530000e+02 3.1950546e-01 + 9.1555000e+02 2.3950546e-01 + 9.1580000e+02 1.0950546e-01 + 9.1605000e+02 -1.0494540e-02 + 9.1630000e+02 -7.0494540e-02 + 9.1655000e+02 -1.4049454e-01 + 9.1680000e+02 -2.0049454e-01 + 9.1705000e+02 -1.7049454e-01 + 9.1730000e+02 -4.0494540e-02 + 9.1755000e+02 -2.0049454e-01 + 9.1780000e+02 -2.6049454e-01 + 9.1805000e+02 -1.9049454e-01 + 9.1830000e+02 -1.6049454e-01 + 9.1855000e+02 -2.4049454e-01 + 9.1880000e+02 -2.2049454e-01 + 9.1905000e+02 -1.6049454e-01 + 9.1930000e+02 -2.0049454e-01 + 9.1955000e+02 -1.8049454e-01 + 9.1980000e+02 -1.0049454e-01 + 9.2005000e+02 -1.3049454e-01 + 9.2030000e+02 -1.3049454e-01 + 9.2055000e+02 -7.0494540e-02 + 9.2080000e+02 4.9505460e-02 + 9.2105000e+02 3.9505460e-02 + 9.2130000e+02 9.5054599e-03 + 9.2155000e+02 -7.0494540e-02 + 9.2180000e+02 -1.1049454e-01 + 9.2205000e+02 -7.0494540e-02 + 9.2230000e+02 1.5950546e-01 + 9.2255000e+02 4.4950546e-01 + 9.2280000e+02 5.0950546e-01 + 9.2305000e+02 5.4950546e-01 + 9.2330000e+02 4.1950546e-01 + 9.2355000e+02 3.1950546e-01 + 9.2380000e+02 2.3950546e-01 + 9.2405000e+02 -1.1049454e-01 + 9.2430000e+02 -4.4049454e-01 + 9.2455000e+02 -5.5049454e-01 + 9.2480000e+02 -5.2049454e-01 + 9.2505000e+02 -4.3049454e-01 + 9.2530000e+02 -3.1049454e-01 + 9.2555000e+02 -1.6049454e-01 + 9.2580000e+02 -1.2049454e-01 + 9.2605000e+02 -2.0049454e-01 + 9.2630000e+02 -3.1049454e-01 + 9.2655000e+02 -3.2049454e-01 + 9.2680000e+02 -1.7049454e-01 + 9.2705000e+02 -2.0494540e-02 + 9.2730000e+02 8.9505460e-02 + 9.2755000e+02 1.2950546e-01 + 9.2780000e+02 2.8950546e-01 + 9.2805000e+02 3.9950546e-01 + 9.2830000e+02 5.3950546e-01 + 9.2855000e+02 5.1950546e-01 + 9.2880000e+02 4.8950546e-01 + 9.2905000e+02 4.1950546e-01 + 9.2930000e+02 4.2950546e-01 + 9.2955000e+02 4.9950546e-01 + 9.2980000e+02 3.7950546e-01 + 9.3005000e+02 -1.0494540e-02 + 9.3030000e+02 -3.3049454e-01 + 9.3055000e+02 -4.5049454e-01 + 9.3080000e+02 -5.1049454e-01 + 9.3105000e+02 -4.7049454e-01 + 9.3130000e+02 -3.8049454e-01 + 9.3155000e+02 -1.0049454e-01 + 9.3180000e+02 -1.1049454e-01 + 9.3205000e+02 -1.3049454e-01 + 9.3230000e+02 -1.6049454e-01 + 9.3255000e+02 -1.3049454e-01 + 9.3280000e+02 -8.0494540e-02 + 9.3305000e+02 1.0950546e-01 + 9.3330000e+02 3.5950546e-01 + 9.3355000e+02 5.4950546e-01 + 9.3380000e+02 4.7950546e-01 + 9.3405000e+02 4.0950546e-01 + 9.3430000e+02 2.5950546e-01 + 9.3455000e+02 2.9505460e-02 + 9.3480000e+02 -2.8049454e-01 + 9.3505000e+02 -4.8049454e-01 + 9.3530000e+02 -5.7049454e-01 + 9.3555000e+02 -4.9049454e-01 + 9.3580000e+02 -2.0049454e-01 + 9.3605000e+02 1.8950546e-01 + 9.3630000e+02 5.0950546e-01 + 9.3655000e+02 6.1950546e-01 + 9.3680000e+02 5.5950546e-01 + 9.3705000e+02 5.4950546e-01 + 9.3730000e+02 3.2950546e-01 + 9.3755000e+02 1.9505460e-02 + 9.3780000e+02 -2.3049454e-01 + 9.3805000e+02 -3.9049454e-01 + 9.3830000e+02 -5.0049454e-01 + 9.3855000e+02 -6.0049454e-01 + 9.3880000e+02 -4.8049454e-01 + 9.3905000e+02 -3.6049454e-01 + 9.3930000e+02 -4.6049454e-01 + 9.3955000e+02 -4.3049454e-01 + 9.3980000e+02 -3.0049454e-01 + 9.4005000e+02 -1.1049454e-01 + 9.4030000e+02 4.9505460e-02 + 9.4055000e+02 1.3950546e-01 + 9.4080000e+02 1.5950546e-01 + 9.4105000e+02 2.5950546e-01 + 9.4130000e+02 2.9950546e-01 + 9.4155000e+02 4.2950546e-01 + 9.4180000e+02 5.9950546e-01 + 9.4205000e+02 8.0950546e-01 + 9.4230000e+02 1.0895055e+00 + 9.4255000e+02 1.0695055e+00 + 9.4280000e+02 8.4950546e-01 + 9.4305000e+02 5.2950546e-01 + 9.4330000e+02 1.7950546e-01 + 9.4355000e+02 -1.8049454e-01 + 9.4380000e+02 -4.2049454e-01 + 9.4405000e+02 -5.7049454e-01 + 9.4430000e+02 -5.8049454e-01 + 9.4455000e+02 -4.8049454e-01 + 9.4480000e+02 -2.7049454e-01 + 9.4505000e+02 -3.2049454e-01 + 9.4530000e+02 -3.2049454e-01 + 9.4555000e+02 -2.5049454e-01 + 9.4580000e+02 -2.4049454e-01 + 9.4605000e+02 -2.5049454e-01 + 9.4630000e+02 -1.8049454e-01 + 9.4655000e+02 -1.5049454e-01 + 9.4680000e+02 -1.3049454e-01 + 9.4705000e+02 -9.0494540e-02 + 9.4730000e+02 1.4950546e-01 + 9.4755000e+02 4.4950546e-01 + 9.4780000e+02 5.3950546e-01 + 9.4805000e+02 1.1950546e-01 + 9.4830000e+02 -9.0494540e-02 + 9.4855000e+02 -2.2049454e-01 + 9.4880000e+02 -2.8049454e-01 + 9.4905000e+02 -2.7049454e-01 + 9.4930000e+02 -1.2049454e-01 + 9.4955000e+02 7.9505460e-02 + 9.4980000e+02 2.5950546e-01 + 9.5005000e+02 3.5950546e-01 + 9.5030000e+02 3.1950546e-01 + 9.5055000e+02 9.9505460e-02 + 9.5080000e+02 -6.0494540e-02 + 9.5105000e+02 -5.0494540e-02 + 9.5130000e+02 -2.5049454e-01 + 9.5155000e+02 -2.8049454e-01 + 9.5180000e+02 -2.1049454e-01 + 9.5205000e+02 -1.4049454e-01 + 9.5230000e+02 -9.0494540e-02 + 9.5255000e+02 -1.0049454e-01 + 9.5280000e+02 -1.6049454e-01 + 9.5305000e+02 -9.0494540e-02 + 9.5330000e+02 1.1950546e-01 + 9.5355000e+02 3.1950546e-01 + 9.5380000e+02 3.3950546e-01 + 9.5405000e+02 3.7950546e-01 + 9.5430000e+02 4.1950546e-01 + 9.5455000e+02 4.4950546e-01 + 9.5480000e+02 2.6950546e-01 + 9.5505000e+02 -5.0494540e-02 + 9.5530000e+02 -1.8049454e-01 + 9.5555000e+02 -3.1049454e-01 + 9.5580000e+02 -3.5049454e-01 + 9.5605000e+02 -2.3049454e-01 + 9.5630000e+02 -1.3049454e-01 + 9.5655000e+02 -4.0494540e-02 + 9.5680000e+02 -6.0494540e-02 + 9.5705000e+02 1.9505460e-02 + 9.5730000e+02 -1.0049454e-01 + 9.5755000e+02 -1.5049454e-01 + 9.5780000e+02 -1.1049454e-01 + 9.5805000e+02 -4.0494540e-02 + 9.5830000e+02 -4.0494540e-02 + 9.5855000e+02 2.9505460e-02 + 9.5880000e+02 1.7950546e-01 + 9.5905000e+02 1.8950546e-01 + 9.5930000e+02 9.9505460e-02 + 9.5955000e+02 -4.0494540e-02 + 9.5980000e+02 -2.0049454e-01 + 9.6005000e+02 -2.7049454e-01 + 9.6030000e+02 -3.2049454e-01 + 9.6055000e+02 -2.6049454e-01 + 9.6080000e+02 -1.7049454e-01 + 9.6105000e+02 2.9505460e-02 + 9.6130000e+02 1.7950546e-01 + 9.6155000e+02 1.2950546e-01 + 9.6180000e+02 3.0950546e-01 + 9.6205000e+02 5.8950546e-01 + 9.6230000e+02 9.7950546e-01 + 9.6255000e+02 1.0295055e+00 + 9.6280000e+02 9.7950546e-01 + 9.6305000e+02 9.4950546e-01 + 9.6330000e+02 8.1950546e-01 + 9.6355000e+02 5.8950546e-01 + 9.6380000e+02 2.6950546e-01 + 9.6405000e+02 -1.1049454e-01 + 9.6430000e+02 -5.2049454e-01 + 9.6455000e+02 -8.8049454e-01 + 9.6480000e+02 -1.0004945e+00 + 9.6505000e+02 -1.0104945e+00 + 9.6530000e+02 -1.1304945e+00 + 9.6555000e+02 -1.0304945e+00 + 9.6580000e+02 -8.5049454e-01 + 9.6605000e+02 -6.6049454e-01 + 9.6630000e+02 -5.7049454e-01 + 9.6655000e+02 -4.8049454e-01 + 9.6680000e+02 -2.9049454e-01 + 9.6705000e+02 -1.2049454e-01 + 9.6730000e+02 -2.0494540e-02 + 9.6755000e+02 1.8950546e-01 + 9.6780000e+02 4.9950546e-01 + 9.6805000e+02 4.2950546e-01 + 9.6830000e+02 1.8950546e-01 + 9.6855000e+02 5.9505460e-02 + 9.6880000e+02 -2.0494540e-02 + 9.6905000e+02 -1.0494540e-02 + 9.6930000e+02 6.9505460e-02 + 9.6955000e+02 1.5950546e-01 + 9.6980000e+02 2.1950546e-01 + 9.7005000e+02 1.5950546e-01 + 9.7030000e+02 1.5950546e-01 + 9.7055000e+02 1.9950546e-01 + 9.7080000e+02 1.1950546e-01 + 9.7105000e+02 3.9505460e-02 + 9.7130000e+02 8.9505460e-02 + 9.7155000e+02 3.2950546e-01 + 9.7180000e+02 8.2950546e-01 + 9.7205000e+02 9.7950546e-01 + 9.7230000e+02 1.0395055e+00 + 9.7255000e+02 6.6950546e-01 + 9.7280000e+02 3.7950546e-01 + 9.7305000e+02 1.0950546e-01 + 9.7330000e+02 2.9505460e-02 + 9.7355000e+02 -4.9454011e-04 + 9.7380000e+02 -4.9454011e-04 + 9.7405000e+02 -1.4049454e-01 + 9.7430000e+02 -3.3049454e-01 + 9.7455000e+02 -3.1049454e-01 + 9.7480000e+02 -5.1049454e-01 + 9.7505000e+02 -4.0049454e-01 + 9.7530000e+02 -3.8049454e-01 + 9.7555000e+02 -2.8049454e-01 + 9.7580000e+02 -1.5049454e-01 + 9.7605000e+02 -1.5049454e-01 + 9.7630000e+02 -1.5049454e-01 + 9.7655000e+02 -1.6049454e-01 + 9.7680000e+02 -2.4049454e-01 + 9.7705000e+02 -3.2049454e-01 + 9.7730000e+02 -3.7049454e-01 + 9.7755000e+02 -4.2049454e-01 + 9.7780000e+02 -4.8049454e-01 + 9.7805000e+02 -6.0049454e-01 + 9.7830000e+02 -6.5049454e-01 + 9.7855000e+02 -5.6049454e-01 + 9.7880000e+02 -4.0049454e-01 + 9.7905000e+02 -1.6049454e-01 + 9.7930000e+02 6.9505460e-02 + 9.7955000e+02 6.9505460e-02 + 9.7980000e+02 4.9505460e-02 + 9.8005000e+02 1.5950546e-01 + 9.8030000e+02 4.5950546e-01 + 9.8055000e+02 6.3950546e-01 + 9.8080000e+02 6.3950546e-01 + 9.8105000e+02 5.5950546e-01 + 9.8130000e+02 5.2950546e-01 + 9.8155000e+02 4.5950546e-01 + 9.8180000e+02 3.5950546e-01 + 9.8205000e+02 1.1950546e-01 + 9.8230000e+02 -9.0494540e-02 + 9.8255000e+02 -2.0049454e-01 + 9.8280000e+02 -2.0049454e-01 + 9.8305000e+02 -5.0494540e-02 + 9.8330000e+02 6.9505460e-02 + 9.8355000e+02 2.8950546e-01 + 9.8380000e+02 5.0950546e-01 + 9.8405000e+02 6.2950546e-01 + 9.8430000e+02 6.2950546e-01 + 9.8455000e+02 5.8950546e-01 + 9.8480000e+02 3.0950546e-01 + 9.8505000e+02 2.1950546e-01 + 9.8530000e+02 1.3950546e-01 + 9.8555000e+02 -4.0494540e-02 + 9.8580000e+02 -2.7049454e-01 + 9.8605000e+02 -4.6049454e-01 + 9.8630000e+02 -7.4049454e-01 + 9.8655000e+02 -7.9049454e-01 + 9.8680000e+02 -8.0049454e-01 + 9.8705000e+02 -5.9049454e-01 + 9.8730000e+02 -3.7049454e-01 + 9.8755000e+02 -3.9049454e-01 + 9.8780000e+02 -4.3049454e-01 + 9.8805000e+02 -5.7049454e-01 + 9.8830000e+02 -5.5049454e-01 + 9.8855000e+02 -4.1049454e-01 + 9.8880000e+02 -3.0049454e-01 + 9.8905000e+02 -1.9049454e-01 + 9.8930000e+02 1.0950546e-01 + 9.8955000e+02 5.6950546e-01 + 9.8980000e+02 1.0695055e+00 + 9.9005000e+02 1.2895055e+00 + 9.9030000e+02 1.5295055e+00 + 9.9055000e+02 1.2195055e+00 + 9.9080000e+02 7.9950546e-01 + 9.9105000e+02 5.9950546e-01 + 9.9130000e+02 5.2950546e-01 + 9.9155000e+02 3.4950546e-01 + 9.9180000e+02 1.9950546e-01 + 9.9205000e+02 -1.5049454e-01 + 9.9230000e+02 -4.8049454e-01 + 9.9255000e+02 -4.7049454e-01 + 9.9280000e+02 -6.5049454e-01 + 9.9305000e+02 -7.4049454e-01 + 9.9330000e+02 -7.0049454e-01 + 9.9355000e+02 -7.3049454e-01 + 9.9380000e+02 -7.4049454e-01 + 9.9405000e+02 -6.7049454e-01 + 9.9430000e+02 -5.6049454e-01 + 9.9455000e+02 -4.2049454e-01 + 9.9480000e+02 -1.6049454e-01 + 9.9505000e+02 2.3950546e-01 + 9.9530000e+02 4.4950546e-01 + 9.9555000e+02 4.7950546e-01 + 9.9580000e+02 3.2950546e-01 + 9.9605000e+02 2.4950546e-01 + 9.9630000e+02 3.6950546e-01 + 9.9655000e+02 6.2950546e-01 + 9.9680000e+02 7.9950546e-01 + 9.9705000e+02 7.2950546e-01 + 9.9730000e+02 6.5950546e-01 + 9.9755000e+02 4.6950546e-01 + 9.9780000e+02 1.0950546e-01 + 9.9805000e+02 -2.6049454e-01 + 9.9830000e+02 -4.8049454e-01 + 9.9855000e+02 -6.5049454e-01 + 9.9880000e+02 -6.6049454e-01 + 9.9905000e+02 -4.6049454e-01 + 9.9930000e+02 -3.1049454e-01 + 9.9955000e+02 -3.6049454e-01 + 9.9980000e+02 -2.6049454e-01 + 1.0000500e+03 -7.0494540e-02 + 1.0003000e+03 1.7950546e-01 + 1.0005500e+03 2.6950546e-01 + 1.0008000e+03 2.8950546e-01 + 1.0010500e+03 3.8950546e-01 + 1.0013000e+03 4.0950546e-01 + 1.0015500e+03 3.9950546e-01 + 1.0018000e+03 3.7950546e-01 + 1.0020500e+03 3.4950546e-01 + 1.0023000e+03 2.8950546e-01 + 1.0025500e+03 1.3950546e-01 + 1.0028000e+03 3.9505460e-02 + 1.0030500e+03 -8.0494540e-02 + 1.0033000e+03 -1.5049454e-01 + 1.0035500e+03 -1.9049454e-01 + 1.0038000e+03 -3.1049454e-01 + 1.0040500e+03 -3.0049454e-01 + 1.0043000e+03 -1.9049454e-01 + 1.0045500e+03 -1.0049454e-01 + 1.0048000e+03 -1.2049454e-01 + 1.0050500e+03 -9.0494540e-02 + 1.0053000e+03 -1.2049454e-01 + 1.0055500e+03 -8.0494540e-02 + 1.0058000e+03 -6.0494540e-02 + 1.0060500e+03 -5.0494540e-02 + 1.0063000e+03 -6.0494540e-02 + 1.0065500e+03 -1.8049454e-01 + 1.0068000e+03 -2.7049454e-01 + 1.0070500e+03 -1.4049454e-01 + 1.0073000e+03 9.9505460e-02 + 1.0075500e+03 1.3950546e-01 + 1.0078000e+03 1.2950546e-01 + 1.0080500e+03 1.4950546e-01 + 1.0083000e+03 7.9505460e-02 + 1.0085500e+03 8.9505460e-02 + 1.0088000e+03 4.9505460e-02 + 1.0090500e+03 9.5054599e-03 + 1.0093000e+03 -1.0494540e-02 + 1.0095500e+03 1.2950546e-01 + 1.0098000e+03 2.9950546e-01 + 1.0100500e+03 2.7950546e-01 + 1.0103000e+03 2.0950546e-01 + 1.0105500e+03 1.4950546e-01 + 1.0108000e+03 1.5950546e-01 + 1.0110500e+03 1.5950546e-01 + 1.0113000e+03 3.2950546e-01 + 1.0115500e+03 2.8950546e-01 + 1.0118000e+03 2.7950546e-01 + 1.0120500e+03 1.4950546e-01 + 1.0123000e+03 -7.0494540e-02 + 1.0125500e+03 -2.5049454e-01 + 1.0128000e+03 -4.6049454e-01 + 1.0130500e+03 -7.3049454e-01 + 1.0133000e+03 -8.5049454e-01 + 1.0135500e+03 -8.4049454e-01 + 1.0138000e+03 -7.3049454e-01 + 1.0140500e+03 -6.0049454e-01 + 1.0143000e+03 -3.5049454e-01 + 1.0145500e+03 -2.1049454e-01 + 1.0148000e+03 2.9505460e-02 + 1.0150500e+03 3.0950546e-01 + 1.0153000e+03 5.5950546e-01 + 1.0155500e+03 8.3950546e-01 + 1.0158000e+03 7.5950546e-01 + 1.0160500e+03 4.7950546e-01 + 1.0163000e+03 1.2950546e-01 + 1.0165500e+03 -1.4049454e-01 + 1.0168000e+03 -2.1049454e-01 + 1.0170500e+03 -1.6049454e-01 + 1.0173000e+03 -2.3049454e-01 + 1.0175500e+03 -2.7049454e-01 + 1.0178000e+03 -6.0494540e-02 + 1.0180500e+03 9.5054599e-03 + 1.0183000e+03 -3.0494540e-02 + 1.0185500e+03 1.9505460e-02 + 1.0188000e+03 2.9505460e-02 + 1.0190500e+03 9.5054599e-03 + 1.0193000e+03 5.9505460e-02 + 1.0195500e+03 1.7950546e-01 + 1.0198000e+03 1.2950546e-01 + 1.0200500e+03 1.0950546e-01 + 1.0203000e+03 1.3950546e-01 + 1.0205500e+03 -1.0494540e-02 + 1.0208000e+03 -1.1049454e-01 + 1.0210500e+03 -1.0049454e-01 + 1.0213000e+03 -8.0494540e-02 + 1.0215500e+03 -1.2049454e-01 + 1.0218000e+03 -2.0049454e-01 + 1.0220500e+03 -2.4049454e-01 + 1.0223000e+03 -1.6049454e-01 + 1.0225500e+03 -1.7049454e-01 + 1.0228000e+03 -1.5049454e-01 + 1.0230500e+03 -6.0494540e-02 + 1.0233000e+03 2.2950546e-01 + 1.0235500e+03 6.1950546e-01 + 1.0238000e+03 6.3950546e-01 + 1.0240500e+03 6.2950546e-01 + 1.0243000e+03 5.6950546e-01 + 1.0245500e+03 4.9950546e-01 + 1.0248000e+03 4.7950546e-01 + 1.0250500e+03 2.9950546e-01 + 1.0253000e+03 1.2950546e-01 + 1.0255500e+03 2.9505460e-02 + 1.0258000e+03 -1.1049454e-01 + 1.0260500e+03 -3.2049454e-01 + 1.0263000e+03 -4.7049454e-01 + 1.0265500e+03 -6.2049454e-01 + 1.0268000e+03 -6.7049454e-01 + 1.0270500e+03 -6.1049454e-01 + 1.0273000e+03 -6.4049454e-01 + 1.0275500e+03 -5.0049454e-01 + 1.0278000e+03 -3.8049454e-01 + 1.0280500e+03 -1.8049454e-01 + 1.0283000e+03 4.9505460e-02 + 1.0285500e+03 3.1950546e-01 + 1.0288000e+03 6.3950546e-01 + 1.0290500e+03 6.6950546e-01 + 1.0293000e+03 5.8950546e-01 + 1.0295500e+03 3.6950546e-01 + 1.0298000e+03 1.0950546e-01 + 1.0300500e+03 4.9505460e-02 + 1.0303000e+03 7.9505460e-02 + 1.0305500e+03 -7.0494540e-02 + 1.0308000e+03 -1.8049454e-01 + 1.0310500e+03 -2.5049454e-01 + 1.0313000e+03 -1.7049454e-01 + 1.0315500e+03 -1.8049454e-01 + 1.0318000e+03 -2.2049454e-01 + 1.0320500e+03 -1.5049454e-01 + 1.0323000e+03 -8.0494540e-02 + 1.0325500e+03 9.5054599e-03 + 1.0328000e+03 1.6950546e-01 + 1.0330500e+03 2.5950546e-01 + 1.0333000e+03 4.0950546e-01 + 1.0335500e+03 6.0950546e-01 + 1.0338000e+03 8.0950546e-01 + 1.0340500e+03 8.6950546e-01 + 1.0343000e+03 6.8950546e-01 + 1.0345500e+03 3.8950546e-01 + 1.0348000e+03 2.5950546e-01 + 1.0350500e+03 2.9505460e-02 + 1.0353000e+03 -3.1049454e-01 + 1.0355500e+03 -6.3049454e-01 + 1.0358000e+03 -9.2049454e-01 + 1.0360500e+03 -1.0504945e+00 + 1.0363000e+03 -1.1804945e+00 + 1.0365500e+03 -1.0204945e+00 + 1.0368000e+03 -5.2049454e-01 + 1.0370500e+03 -3.3049454e-01 + 1.0373000e+03 -1.0049454e-01 + 1.0375500e+03 4.9505460e-02 + 1.0378000e+03 1.4950546e-01 + 1.0380500e+03 2.2950546e-01 + 1.0383000e+03 3.6950546e-01 + 1.0385500e+03 4.8950546e-01 + 1.0388000e+03 5.7950546e-01 + 1.0390500e+03 4.2950546e-01 + 1.0393000e+03 3.6950546e-01 + 1.0395500e+03 7.9505460e-02 + 1.0398000e+03 -2.4049454e-01 + 1.0400500e+03 -4.5049454e-01 + 1.0403000e+03 -5.4049454e-01 + 1.0405500e+03 -5.2049454e-01 + 1.0408000e+03 -3.6049454e-01 + 1.0410500e+03 -9.0494540e-02 + 1.0413000e+03 1.1950546e-01 + 1.0415500e+03 2.4950546e-01 + 1.0418000e+03 3.4950546e-01 + 1.0420500e+03 3.5950546e-01 + 1.0423000e+03 3.5950546e-01 + 1.0425500e+03 2.7950546e-01 + 1.0428000e+03 2.2950546e-01 + 1.0430500e+03 1.5950546e-01 + 1.0433000e+03 1.6950546e-01 + 1.0435500e+03 2.2950546e-01 + 1.0438000e+03 2.8950546e-01 + 1.0440500e+03 4.5950546e-01 + 1.0443000e+03 4.5950546e-01 + 1.0445500e+03 3.9950546e-01 + 1.0448000e+03 2.9950546e-01 + 1.0450500e+03 1.1950546e-01 + 1.0453000e+03 -1.6049454e-01 + 1.0455500e+03 -3.4049454e-01 + 1.0458000e+03 -4.2049454e-01 + 1.0460500e+03 -4.6049454e-01 + 1.0463000e+03 -3.8049454e-01 + 1.0465500e+03 -3.6049454e-01 + 1.0468000e+03 -2.1049454e-01 + 1.0470500e+03 9.5054599e-03 + 1.0473000e+03 1.6950546e-01 + 1.0475500e+03 1.8950546e-01 + 1.0478000e+03 1.4950546e-01 + 1.0480500e+03 1.5950546e-01 + 1.0483000e+03 1.9950546e-01 + 1.0485500e+03 1.1950546e-01 + 1.0488000e+03 8.9505460e-02 + 1.0490500e+03 -2.0494540e-02 + 1.0493000e+03 -7.0494540e-02 + 1.0495500e+03 -1.6049454e-01 + 1.0498000e+03 -2.4049454e-01 + 1.0500500e+03 -3.3049454e-01 + 1.0503000e+03 -3.4049454e-01 + 1.0505500e+03 -1.2049454e-01 + 1.0508000e+03 -2.2049454e-01 + 1.0510500e+03 -4.7049454e-01 + 1.0513000e+03 -6.7049454e-01 + 1.0515500e+03 -7.1049454e-01 + 1.0518000e+03 -5.7049454e-01 + 1.0520500e+03 -4.3049454e-01 + 1.0523000e+03 -1.9049454e-01 + 1.0525500e+03 4.9505460e-02 + 1.0528000e+03 2.0950546e-01 + 1.0530500e+03 1.9950546e-01 + 1.0533000e+03 3.2950546e-01 + 1.0535500e+03 4.2950546e-01 + 1.0538000e+03 5.0950546e-01 + 1.0540500e+03 3.9950546e-01 + 1.0543000e+03 2.9950546e-01 + 1.0545500e+03 3.9950546e-01 + 1.0548000e+03 5.5950546e-01 + 1.0550500e+03 5.4950546e-01 + 1.0553000e+03 5.4950546e-01 + 1.0555500e+03 5.0950546e-01 + 1.0558000e+03 2.4950546e-01 + 1.0560500e+03 -4.0494540e-02 + 1.0563000e+03 -2.6049454e-01 + 1.0565500e+03 -3.4049454e-01 + 1.0568000e+03 -3.9049454e-01 + 1.0570500e+03 -4.4049454e-01 + 1.0573000e+03 -3.4049454e-01 + 1.0575500e+03 -2.3049454e-01 + 1.0578000e+03 -2.4049454e-01 + 1.0580500e+03 -7.0494540e-02 + 1.0583000e+03 -7.0494540e-02 + 1.0585500e+03 -2.0049454e-01 + 1.0588000e+03 -3.1049454e-01 + 1.0590500e+03 -2.4049454e-01 + 1.0593000e+03 -6.0494540e-02 + 1.0595500e+03 2.9505460e-02 + 1.0598000e+03 9.5054599e-03 + 1.0600500e+03 -5.0494540e-02 + 1.0603000e+03 -6.0494540e-02 + 1.0605500e+03 -1.0494540e-02 + 1.0608000e+03 -2.0494540e-02 + 1.0610500e+03 1.0950546e-01 + 1.0613000e+03 2.9950546e-01 + 1.0615500e+03 2.0950546e-01 + 1.0618000e+03 9.9505460e-02 + 1.0620500e+03 -2.0494540e-02 + 1.0623000e+03 -1.6049454e-01 + 1.0625500e+03 -3.3049454e-01 + 1.0628000e+03 -4.8049454e-01 + 1.0630500e+03 -4.0049454e-01 + 1.0633000e+03 -1.8049454e-01 + 1.0635500e+03 1.5950546e-01 + 1.0638000e+03 2.0950546e-01 + 1.0640500e+03 8.9505460e-02 + 1.0643000e+03 -1.1049454e-01 + 1.0645500e+03 -2.0049454e-01 + 1.0648000e+03 -1.9049454e-01 + 1.0650500e+03 -1.0494540e-02 + 1.0653000e+03 1.4950546e-01 + 1.0655500e+03 1.2950546e-01 + 1.0658000e+03 -4.9454011e-04 + 1.0660500e+03 -4.0494540e-02 + 1.0663000e+03 -3.0494540e-02 + 1.0665500e+03 -2.0494540e-02 + 1.0668000e+03 -1.2049454e-01 + 1.0670500e+03 -9.0494540e-02 + 1.0673000e+03 1.0950546e-01 + 1.0675500e+03 2.1950546e-01 + 1.0678000e+03 3.3950546e-01 + 1.0680500e+03 3.8950546e-01 + 1.0683000e+03 4.7950546e-01 + 1.0685500e+03 3.8950546e-01 + 1.0688000e+03 1.5950546e-01 + 1.0690500e+03 6.9505460e-02 + 1.0693000e+03 2.4950546e-01 + 1.0695500e+03 4.4950546e-01 + 1.0698000e+03 3.7950546e-01 + 1.0700500e+03 2.1950546e-01 + 1.0703000e+03 7.9505460e-02 + 1.0705500e+03 -4.0494540e-02 + 1.0708000e+03 -1.3049454e-01 + 1.0710500e+03 -2.2049454e-01 + 1.0713000e+03 -3.7049454e-01 + 1.0715500e+03 -3.2049454e-01 + 1.0718000e+03 -3.7049454e-01 + 1.0720500e+03 -3.8049454e-01 + 1.0723000e+03 -3.1049454e-01 + 1.0725500e+03 -1.0049454e-01 + 1.0728000e+03 1.5950546e-01 + 1.0730500e+03 2.7950546e-01 + 1.0733000e+03 2.0950546e-01 + 1.0735500e+03 3.9505460e-02 + 1.0738000e+03 -1.0494540e-02 + 1.0740500e+03 -5.0494540e-02 + 1.0743000e+03 -2.1049454e-01 + 1.0745500e+03 -2.5049454e-01 + 1.0748000e+03 -3.2049454e-01 + 1.0750500e+03 -4.0049454e-01 + 1.0753000e+03 -3.5049454e-01 + 1.0755500e+03 -7.0494540e-02 + 1.0758000e+03 2.5950546e-01 + 1.0760500e+03 3.3950546e-01 + 1.0763000e+03 2.9950546e-01 + 1.0765500e+03 9.5054599e-03 + 1.0768000e+03 -3.2049454e-01 + 1.0770500e+03 -5.5049454e-01 + 1.0773000e+03 -5.9049454e-01 + 1.0775500e+03 -6.0049454e-01 + 1.0778000e+03 -5.6049454e-01 + 1.0780500e+03 -4.8049454e-01 + 1.0783000e+03 -3.5049454e-01 + 1.0785500e+03 -8.0494540e-02 + 1.0788000e+03 1.2950546e-01 + 1.0790500e+03 3.8950546e-01 + 1.0793000e+03 6.0950546e-01 + 1.0795500e+03 7.4950546e-01 + 1.0798000e+03 7.2950546e-01 + 1.0800500e+03 7.5950546e-01 + 1.0803000e+03 6.9950546e-01 + 1.0805500e+03 6.7950546e-01 + 1.0808000e+03 4.5950546e-01 + 1.0810500e+03 1.8950546e-01 + 1.0813000e+03 1.5950546e-01 + 1.0815500e+03 6.9505460e-02 + 1.0818000e+03 -4.0494540e-02 + 1.0820500e+03 -1.6049454e-01 + 1.0823000e+03 -1.8049454e-01 + 1.0825500e+03 -1.4049454e-01 + 1.0828000e+03 1.0950546e-01 + 1.0830500e+03 4.0950546e-01 + 1.0833000e+03 4.8950546e-01 + 1.0835500e+03 4.8950546e-01 + 1.0838000e+03 2.5950546e-01 + 1.0840500e+03 2.9505460e-02 + 1.0843000e+03 -3.0494540e-02 + 1.0845500e+03 -5.0494540e-02 + 1.0848000e+03 4.9505460e-02 + 1.0850500e+03 -7.0494540e-02 + 1.0853000e+03 -3.7049454e-01 + 1.0855500e+03 -5.1049454e-01 + 1.0858000e+03 -5.7049454e-01 + 1.0860500e+03 -6.5049454e-01 + 1.0863000e+03 -6.2049454e-01 + 1.0865500e+03 -5.9049454e-01 + 1.0868000e+03 -6.0049454e-01 + 1.0870500e+03 -5.2049454e-01 + 1.0873000e+03 -3.0049454e-01 + 1.0875500e+03 -7.0494540e-02 + 1.0878000e+03 6.9505460e-02 + 1.0880500e+03 1.8950546e-01 + 1.0883000e+03 2.8950546e-01 + 1.0885500e+03 4.9950546e-01 + 1.0888000e+03 5.2950546e-01 + 1.0890500e+03 5.9950546e-01 + 1.0893000e+03 3.0950546e-01 + 1.0895500e+03 -7.0494540e-02 + 1.0898000e+03 -3.9049454e-01 + 1.0900500e+03 -6.7049454e-01 + 1.0903000e+03 -8.9049454e-01 + 1.0905500e+03 -9.1049454e-01 + 1.0908000e+03 -7.0049454e-01 + 1.0910500e+03 -5.5049454e-01 + 1.0913000e+03 -2.3049454e-01 + 1.0915500e+03 9.9505460e-02 + 1.0918000e+03 4.8950546e-01 + 1.0920500e+03 7.3950546e-01 + 1.0923000e+03 8.1950546e-01 + 1.0925500e+03 9.6950546e-01 + 1.0928000e+03 1.1495055e+00 + 1.0930500e+03 1.4195055e+00 + 1.0933000e+03 1.2095055e+00 + 1.0935500e+03 6.5950546e-01 + 1.0938000e+03 2.6950546e-01 + 1.0940500e+03 1.9505460e-02 + 1.0943000e+03 -1.2049454e-01 + 1.0945500e+03 -2.9049454e-01 + 1.0948000e+03 -4.8049454e-01 + 1.0950500e+03 -5.0049454e-01 + 1.0953000e+03 -5.9049454e-01 + 1.0955500e+03 -6.4049454e-01 + 1.0958000e+03 -5.8049454e-01 + 1.0960500e+03 -5.4049454e-01 + 1.0963000e+03 -5.4049454e-01 + 1.0965500e+03 -4.7049454e-01 + 1.0968000e+03 -4.0049454e-01 + 1.0970500e+03 -2.2049454e-01 + 1.0973000e+03 3.9505460e-02 + 1.0975500e+03 1.9950546e-01 + 1.0978000e+03 4.0950546e-01 + 1.0980500e+03 6.4950546e-01 + 1.0983000e+03 8.7950546e-01 + 1.0985500e+03 9.5950546e-01 + 1.0988000e+03 8.3950546e-01 + 1.0990500e+03 6.6950546e-01 + 1.0993000e+03 3.7950546e-01 + 1.0995500e+03 6.9505460e-02 + 1.0998000e+03 -2.4049454e-01 + 1.1000500e+03 -4.2049454e-01 + 1.1003000e+03 -5.2049454e-01 + 1.1005500e+03 -4.7049454e-01 + 1.1008000e+03 -5.6049454e-01 + 1.1010500e+03 -5.5049454e-01 + 1.1013000e+03 -4.4049454e-01 + 1.1015500e+03 -4.7049454e-01 + 1.1018000e+03 -2.6049454e-01 + 1.1020500e+03 -7.0494540e-02 + 1.1023000e+03 2.9505460e-02 + 1.1025500e+03 6.9505460e-02 + 1.1028000e+03 1.7950546e-01 + 1.1030500e+03 3.1950546e-01 + 1.1033000e+03 3.8950546e-01 + 1.1035500e+03 2.9950546e-01 + 1.1038000e+03 3.4950546e-01 + 1.1040500e+03 4.2950546e-01 + 1.1043000e+03 3.1950546e-01 + 1.1045500e+03 9.9505460e-02 + 1.1048000e+03 -8.0494540e-02 + 1.1050500e+03 -1.1049454e-01 + 1.1053000e+03 -2.0049454e-01 + 1.1055500e+03 -3.0049454e-01 + 1.1058000e+03 -3.8049454e-01 + 1.1060500e+03 -2.9049454e-01 + 1.1063000e+03 -2.1049454e-01 + 1.1065500e+03 -2.0049454e-01 + 1.1068000e+03 -2.5049454e-01 + 1.1070500e+03 -1.4049454e-01 + 1.1073000e+03 6.9505460e-02 + 1.1075500e+03 -4.9454011e-04 + 1.1078000e+03 -1.2049454e-01 + 1.1080500e+03 -2.3049454e-01 + 1.1083000e+03 -2.7049454e-01 + 1.1085500e+03 -1.5049454e-01 + 1.1088000e+03 -1.6049454e-01 + 1.1090500e+03 -9.0494540e-02 + 1.1093000e+03 -9.0494540e-02 + 1.1095500e+03 3.9505460e-02 + 1.1098000e+03 1.9505460e-02 + 1.1100500e+03 1.9505460e-02 + 1.1103000e+03 1.7950546e-01 + 1.1105500e+03 4.8950546e-01 + 1.1108000e+03 5.2950546e-01 + 1.1110500e+03 5.8950546e-01 + 1.1113000e+03 5.7950546e-01 + 1.1115500e+03 4.4950546e-01 + 1.1118000e+03 2.7950546e-01 + 1.1120500e+03 2.2950546e-01 + 1.1123000e+03 1.9950546e-01 + 1.1125500e+03 -5.0494540e-02 + 1.1128000e+03 -1.9049454e-01 + 1.1130500e+03 -1.9049454e-01 + 1.1133000e+03 -2.4049454e-01 + 1.1135500e+03 -2.2049454e-01 + 1.1138000e+03 -3.4049454e-01 + 1.1140500e+03 -4.5049454e-01 + 1.1143000e+03 -4.7049454e-01 + 1.1145500e+03 -2.8049454e-01 + 1.1148000e+03 1.1950546e-01 + 1.1150500e+03 3.5950546e-01 + 1.1153000e+03 5.4950546e-01 + 1.1155500e+03 6.3950546e-01 + 1.1158000e+03 4.6950546e-01 + 1.1160500e+03 3.9505460e-02 + 1.1163000e+03 -2.8049454e-01 + 1.1165500e+03 -4.1049454e-01 + 1.1168000e+03 -4.3049454e-01 + 1.1170500e+03 -3.7049454e-01 + 1.1173000e+03 -3.2049454e-01 + 1.1175500e+03 -1.8049454e-01 + 1.1178000e+03 6.9505460e-02 + 1.1180500e+03 2.6950546e-01 + 1.1183000e+03 2.2950546e-01 + 1.1185500e+03 -7.0494540e-02 + 1.1188000e+03 -3.2049454e-01 + 1.1190500e+03 -4.0049454e-01 + 1.1193000e+03 -3.6049454e-01 + 1.1195500e+03 -2.7049454e-01 + 1.1198000e+03 -2.2049454e-01 + 1.1200500e+03 -1.0049454e-01 + 1.1203000e+03 7.9505460e-02 + 1.1205500e+03 2.8950546e-01 + 1.1208000e+03 3.0950546e-01 + 1.1210500e+03 3.5950546e-01 + 1.1213000e+03 6.0950546e-01 + 1.1215500e+03 7.0950546e-01 + 1.1218000e+03 9.9950546e-01 + 1.1220500e+03 1.0195055e+00 + 1.1223000e+03 6.6950546e-01 + 1.1225500e+03 1.5950546e-01 + 1.1228000e+03 -2.4049454e-01 + 1.1230500e+03 -5.3049454e-01 + 1.1233000e+03 -7.9049454e-01 + 1.1235500e+03 -8.2049454e-01 + 1.1238000e+03 -7.5049454e-01 + 1.1240500e+03 -3.2049454e-01 + 1.1243000e+03 -1.0049454e-01 + 1.1245500e+03 3.0950546e-01 + 1.1248000e+03 6.0950546e-01 + 1.1250500e+03 6.9950546e-01 + 1.1253000e+03 6.6950546e-01 + 1.1255500e+03 6.7950546e-01 + 1.1258000e+03 6.7950546e-01 + 1.1260500e+03 5.9950546e-01 + 1.1263000e+03 2.6950546e-01 + 1.1265500e+03 -2.3049454e-01 + 1.1268000e+03 -6.3049454e-01 + 1.1270500e+03 -8.8049454e-01 + 1.1273000e+03 -9.9049454e-01 + 1.1275500e+03 -1.0104945e+00 + 1.1278000e+03 -9.7049454e-01 + 1.1280500e+03 -7.6049454e-01 + 1.1283000e+03 -6.5049454e-01 + 1.1285500e+03 -4.4049454e-01 + 1.1288000e+03 -1.5049454e-01 + 1.1290500e+03 -3.0494540e-02 + 1.1293000e+03 1.1950546e-01 + 1.1295500e+03 2.0950546e-01 + 1.1298000e+03 2.9950546e-01 + 1.1300500e+03 4.3950546e-01 + 1.1303000e+03 4.7950546e-01 + 1.1305500e+03 4.9950546e-01 + 1.1308000e+03 3.8950546e-01 + 1.1310500e+03 3.2950546e-01 + 1.1313000e+03 2.0950546e-01 + 1.1315500e+03 1.9505460e-02 + 1.1318000e+03 -7.0494540e-02 + 1.1320500e+03 -1.5049454e-01 + 1.1323000e+03 -2.2049454e-01 + 1.1325500e+03 -2.5049454e-01 + 1.1328000e+03 -2.2049454e-01 + 1.1330500e+03 -9.0494540e-02 + 1.1333000e+03 9.5054599e-03 + 1.1335500e+03 1.0950546e-01 + 1.1338000e+03 4.8950546e-01 + 1.1340500e+03 7.4950546e-01 + 1.1343000e+03 9.6950546e-01 + 1.1345500e+03 9.7950546e-01 + 1.1348000e+03 8.3950546e-01 + 1.1350500e+03 5.9950546e-01 + 1.1353000e+03 2.9950546e-01 + 1.1355500e+03 2.9505460e-02 + 1.1358000e+03 -2.1049454e-01 + 1.1360500e+03 -3.6049454e-01 + 1.1363000e+03 -3.5049454e-01 + 1.1365500e+03 -1.5049454e-01 + 1.1368000e+03 1.2950546e-01 + 1.1370500e+03 4.7950546e-01 + 1.1373000e+03 4.4950546e-01 + 1.1375500e+03 4.3950546e-01 + 1.1378000e+03 4.9950546e-01 + 1.1380500e+03 5.7950546e-01 + 1.1383000e+03 2.5950546e-01 + 1.1385500e+03 -2.4049454e-01 + 1.1388000e+03 -5.7049454e-01 + 1.1390500e+03 -7.3049454e-01 + 1.1393000e+03 -8.7049454e-01 + 1.1395500e+03 -8.4049454e-01 + 1.1398000e+03 -9.2049454e-01 + 1.1400500e+03 -9.4049454e-01 + 1.1403000e+03 -8.4049454e-01 + 1.1405500e+03 -6.1049454e-01 + 1.1408000e+03 -3.7049454e-01 + 1.1410500e+03 -1.6049454e-01 + 1.1413000e+03 -1.7049454e-01 + 1.1415500e+03 -3.9049454e-01 + 1.1418000e+03 -3.8049454e-01 + 1.1420500e+03 -1.9049454e-01 + 1.1423000e+03 -1.0049454e-01 + 1.1425500e+03 -7.0494540e-02 + 1.1428000e+03 -1.0494540e-02 + 1.1430500e+03 2.1950546e-01 + 1.1433000e+03 4.6950546e-01 + 1.1435500e+03 4.4950546e-01 + 1.1438000e+03 5.8950546e-01 + 1.1440500e+03 7.3950546e-01 + 1.1443000e+03 6.7950546e-01 + 1.1445500e+03 4.8950546e-01 + 1.1448000e+03 3.2950546e-01 + 1.1450500e+03 3.0950546e-01 + 1.1453000e+03 4.5950546e-01 + 1.1455500e+03 5.6950546e-01 + 1.1458000e+03 5.5950546e-01 + 1.1460500e+03 4.7950546e-01 + 1.1463000e+03 3.4950546e-01 + 1.1465500e+03 3.5950546e-01 + 1.1468000e+03 2.6950546e-01 + 1.1470500e+03 9.5054599e-03 + 1.1473000e+03 -3.9049454e-01 + 1.1475500e+03 -8.3049454e-01 + 1.1478000e+03 -1.0304945e+00 + 1.1480500e+03 -1.0604945e+00 + 1.1483000e+03 -1.0004945e+00 + 1.1485500e+03 -7.8049454e-01 + 1.1488000e+03 -4.6049454e-01 + 1.1490500e+03 -3.4049454e-01 + 1.1493000e+03 -1.0049454e-01 + 1.1495500e+03 2.6950546e-01 + 1.1498000e+03 6.6950546e-01 + 1.1500500e+03 1.0695055e+00 + 1.1503000e+03 1.3395055e+00 + 1.1505500e+03 1.4295055e+00 + 1.1508000e+03 8.3950546e-01 + 1.1510500e+03 3.7950546e-01 + 1.1513000e+03 7.9505460e-02 + 1.1515500e+03 -6.0494540e-02 + 1.1518000e+03 -1.4049454e-01 + 1.1520500e+03 -1.9049454e-01 + 1.1523000e+03 -2.8049454e-01 + 1.1525500e+03 -3.3049454e-01 + 1.1528000e+03 -1.9049454e-01 + 1.1530500e+03 -2.6049454e-01 + 1.1533000e+03 -4.0049454e-01 + 1.1535500e+03 -3.3049454e-01 + 1.1538000e+03 -2.8049454e-01 + 1.1540500e+03 -2.9049454e-01 + 1.1543000e+03 -2.0049454e-01 + 1.1545500e+03 -1.7049454e-01 + 1.1548000e+03 -1.2049454e-01 + 1.1550500e+03 -2.0494540e-02 + 1.1553000e+03 -5.0494540e-02 + 1.1555500e+03 -1.0049454e-01 + 1.1558000e+03 -1.2049454e-01 + 1.1560500e+03 -4.0494540e-02 + 1.1563000e+03 -1.0049454e-01 + 1.1565500e+03 -8.0494540e-02 + 1.1568000e+03 -3.0494540e-02 + 1.1570500e+03 -4.9454011e-04 + 1.1573000e+03 -8.0494540e-02 + 1.1575500e+03 -1.8049454e-01 + 1.1578000e+03 -2.0049454e-01 + 1.1580500e+03 -2.3049454e-01 + 1.1583000e+03 -1.4049454e-01 + 1.1585500e+03 7.9505460e-02 + 1.1588000e+03 2.4950546e-01 + 1.1590500e+03 2.8950546e-01 + 1.1593000e+03 3.3950546e-01 + 1.1595500e+03 3.4950546e-01 + 1.1598000e+03 3.5950546e-01 + 1.1600500e+03 2.3950546e-01 + 1.1603000e+03 2.9505460e-02 + 1.1605500e+03 -9.0494540e-02 + 1.1608000e+03 -1.2049454e-01 + 1.1610500e+03 -5.0494540e-02 + 1.1613000e+03 1.6950546e-01 + 1.1615500e+03 2.1950546e-01 + 1.1618000e+03 3.2950546e-01 + 1.1620500e+03 5.5950546e-01 + 1.1623000e+03 5.2950546e-01 + 1.1625500e+03 5.0950546e-01 + 1.1628000e+03 4.2950546e-01 + 1.1630500e+03 1.9950546e-01 + 1.1633000e+03 -5.0494540e-02 + 1.1635500e+03 -3.4049454e-01 + 1.1638000e+03 -5.3049454e-01 + 1.1640500e+03 -6.7049454e-01 + 1.1643000e+03 -6.5049454e-01 + 1.1645500e+03 -5.2049454e-01 + 1.1648000e+03 -4.5049454e-01 + 1.1650500e+03 -3.5049454e-01 + 1.1653000e+03 -1.3049454e-01 + 1.1655500e+03 1.9950546e-01 + 1.1658000e+03 2.5950546e-01 + 1.1660500e+03 1.2950546e-01 + 1.1663000e+03 -1.0049454e-01 + 1.1665500e+03 -1.5049454e-01 + 1.1668000e+03 -1.0049454e-01 + 1.1670500e+03 -1.0049454e-01 + 1.1673000e+03 1.9505460e-02 + 1.1675500e+03 2.9950546e-01 + 1.1678000e+03 5.0950546e-01 + 1.1680500e+03 3.9950546e-01 + 1.1683000e+03 2.6950546e-01 + 1.1685500e+03 1.3950546e-01 + 1.1688000e+03 8.9505460e-02 + 1.1690500e+03 1.2950546e-01 + 1.1693000e+03 1.5950546e-01 + 1.1695500e+03 9.9505460e-02 + 1.1698000e+03 -7.0494540e-02 + 1.1700500e+03 -2.7049454e-01 + 1.1703000e+03 -4.8049454e-01 + 1.1705500e+03 -5.7049454e-01 + 1.1708000e+03 -6.4049454e-01 + 1.1710500e+03 -7.1049454e-01 + 1.1713000e+03 -6.1049454e-01 + 1.1715500e+03 -4.9049454e-01 + 1.1718000e+03 -4.3049454e-01 + 1.1720500e+03 -4.8049454e-01 + 1.1723000e+03 -4.7049454e-01 + 1.1725500e+03 -2.0049454e-01 + 1.1728000e+03 1.0950546e-01 + 1.1730500e+03 4.2950546e-01 + 1.1733000e+03 7.5950546e-01 + 1.1735500e+03 1.0595055e+00 + 1.1738000e+03 1.1295055e+00 + 1.1740500e+03 1.0095055e+00 + 1.1743000e+03 8.1950546e-01 + 1.1745500e+03 6.3950546e-01 + 1.1748000e+03 5.0950546e-01 + 1.1750500e+03 3.7950546e-01 + 1.1753000e+03 3.1950546e-01 + 1.1755500e+03 2.2950546e-01 + 1.1758000e+03 8.9505460e-02 + 1.1760500e+03 -2.0494540e-02 + 1.1763000e+03 -1.1049454e-01 + 1.1765500e+03 -1.9049454e-01 + 1.1768000e+03 -3.5049454e-01 + 1.1770500e+03 -3.6049454e-01 + 1.1773000e+03 -3.2049454e-01 + 1.1775500e+03 -4.5049454e-01 + 1.1778000e+03 -4.8049454e-01 + 1.1780500e+03 -4.5049454e-01 + 1.1783000e+03 -4.2049454e-01 + 1.1785500e+03 -2.7049454e-01 + 1.1788000e+03 -2.5049454e-01 + 1.1790500e+03 -2.7049454e-01 + 1.1793000e+03 -2.9049454e-01 + 1.1795500e+03 -2.1049454e-01 + 1.1798000e+03 -1.0049454e-01 + 1.1800500e+03 -4.0494540e-02 + 1.1803000e+03 2.9505460e-02 + 1.1805500e+03 1.0950546e-01 + 1.1808000e+03 2.6950546e-01 + 1.1810500e+03 4.1950546e-01 + 1.1813000e+03 5.7950546e-01 + 1.1815500e+03 7.1950546e-01 + 1.1818000e+03 6.8950546e-01 + 1.1820500e+03 4.8950546e-01 + 1.1823000e+03 2.1950546e-01 + 1.1825500e+03 9.5054599e-03 + 1.1828000e+03 -1.2049454e-01 + 1.1830500e+03 -1.4049454e-01 + 1.1833000e+03 -2.3049454e-01 + 1.1835500e+03 -3.0049454e-01 + 1.1838000e+03 -2.4049454e-01 + 1.1840500e+03 -4.5049454e-01 + 1.1843000e+03 -7.1049454e-01 + 1.1845500e+03 -8.5049454e-01 + 1.1848000e+03 -1.0704945e+00 + 1.1850500e+03 -1.0504945e+00 + 1.1853000e+03 -8.4049454e-01 + 1.1855500e+03 -5.2049454e-01 + 1.1858000e+03 -1.2049454e-01 + 1.1860500e+03 2.9505460e-02 + 1.1863000e+03 2.7950546e-01 + 1.1865500e+03 5.7950546e-01 + 1.1868000e+03 6.2950546e-01 + 1.1870500e+03 5.4950546e-01 + 1.1873000e+03 3.8950546e-01 + 1.1875500e+03 3.0950546e-01 + 1.1878000e+03 3.5950546e-01 + 1.1880500e+03 4.5950546e-01 + 1.1883000e+03 6.1950546e-01 + 1.1885500e+03 7.7950546e-01 + 1.1888000e+03 8.3950546e-01 + 1.1890500e+03 1.0095055e+00 + 1.1893000e+03 1.0195055e+00 + 1.1895500e+03 6.7950546e-01 + 1.1898000e+03 7.9505460e-02 + 1.1900500e+03 -3.1049454e-01 + 1.1903000e+03 -5.4049454e-01 + 1.1905500e+03 -5.4049454e-01 + 1.1908000e+03 -5.0049454e-01 + 1.1910500e+03 -3.8049454e-01 + 1.1913000e+03 -3.2049454e-01 + 1.1915500e+03 1.9505460e-02 + 1.1918000e+03 1.2950546e-01 + 1.1920500e+03 1.8950546e-01 + 1.1923000e+03 3.1950546e-01 + 1.1925500e+03 3.8950546e-01 + 1.1928000e+03 3.4950546e-01 + 1.1930500e+03 2.9950546e-01 + 1.1933000e+03 1.9950546e-01 + 1.1935500e+03 1.5950546e-01 + 1.1938000e+03 8.9505460e-02 + 1.1940500e+03 3.9505460e-02 + 1.1943000e+03 2.0950546e-01 + 1.1945500e+03 2.0950546e-01 + 1.1948000e+03 1.2950546e-01 + 1.1950500e+03 -2.1049454e-01 + 1.1953000e+03 -5.8049454e-01 + 1.1955500e+03 -9.4049454e-01 + 1.1958000e+03 -1.1504945e+00 + 1.1960500e+03 -1.1904945e+00 + 1.1963000e+03 -1.0904945e+00 + 1.1965500e+03 -8.7049454e-01 + 1.1968000e+03 -7.7049454e-01 + 1.1970500e+03 -6.9049454e-01 + 1.1973000e+03 -7.4049454e-01 + 1.1975500e+03 -7.2049454e-01 + 1.1978000e+03 -5.6049454e-01 + 1.1980500e+03 -5.5049454e-01 + 1.1983000e+03 -5.2049454e-01 + 1.1985500e+03 -4.3049454e-01 + 1.1988000e+03 -1.8049454e-01 + 1.1990500e+03 1.6950546e-01 + 1.1993000e+03 7.4950546e-01 + 1.1995500e+03 1.1295055e+00 + 1.1998000e+03 1.1095055e+00 + 1.2000500e+03 1.0195055e+00 + 1.2003000e+03 8.6950546e-01 + 1.2005500e+03 8.5950546e-01 + 1.2008000e+03 8.7950546e-01 + 1.2010500e+03 8.5950546e-01 + 1.2013000e+03 6.8950546e-01 + 1.2015500e+03 5.2950546e-01 + 1.2018000e+03 4.5950546e-01 + 1.2020500e+03 4.7950546e-01 + 1.2023000e+03 4.3950546e-01 + 1.2025500e+03 1.5950546e-01 + 1.2028000e+03 -6.0494540e-02 + 1.2030500e+03 -2.0049454e-01 + 1.2033000e+03 -1.5049454e-01 + 1.2035500e+03 1.1950546e-01 + 1.2038000e+03 4.4950546e-01 + 1.2040500e+03 6.8950546e-01 + 1.2043000e+03 9.5950546e-01 + 1.2045500e+03 9.1950546e-01 + 1.2048000e+03 7.3950546e-01 + 1.2050500e+03 4.4950546e-01 + 1.2053000e+03 -7.0494540e-02 + 1.2055500e+03 -5.5049454e-01 + 1.2058000e+03 -9.0049454e-01 + 1.2060500e+03 -1.0304945e+00 + 1.2063000e+03 -1.0804945e+00 + 1.2065500e+03 -1.0704945e+00 + 1.2068000e+03 -9.0049454e-01 + 1.2070500e+03 -7.9049454e-01 + 1.2073000e+03 -7.1049454e-01 + 1.2075500e+03 -5.3049454e-01 + 1.2078000e+03 -2.3049454e-01 + 1.2080500e+03 6.9505460e-02 + 1.2083000e+03 1.7950546e-01 + 1.2085500e+03 2.6950546e-01 + 1.2088000e+03 1.4950546e-01 + 1.2090500e+03 6.9505460e-02 + 1.2093000e+03 2.9505460e-02 + 1.2095500e+03 -1.2049454e-01 + 1.2098000e+03 -2.9049454e-01 + 1.2100500e+03 -4.2049454e-01 + 1.2103000e+03 -4.1049454e-01 + 1.2105500e+03 -4.1049454e-01 + 1.2108000e+03 -5.9049454e-01 + 1.2110500e+03 -5.1049454e-01 + 1.2113000e+03 -4.1049454e-01 + 1.2115500e+03 -2.4049454e-01 + 1.2118000e+03 -1.0494540e-02 + 1.2120500e+03 1.2950546e-01 + 1.2123000e+03 3.5950546e-01 + 1.2125500e+03 6.2950546e-01 + 1.2128000e+03 8.9950546e-01 + 1.2130500e+03 1.0495055e+00 + 1.2133000e+03 6.6950546e-01 + 1.2135500e+03 4.1950546e-01 + 1.2138000e+03 1.8950546e-01 + 1.2140500e+03 4.9505460e-02 + 1.2143000e+03 9.5054599e-03 + 1.2145500e+03 1.6950546e-01 + 1.2148000e+03 1.8950546e-01 + 1.2150500e+03 2.5950546e-01 + 1.2153000e+03 2.5950546e-01 + 1.2155500e+03 2.9950546e-01 + 1.2158000e+03 4.0950546e-01 + 1.2160500e+03 3.5950546e-01 + 1.2163000e+03 2.8950546e-01 + 1.2165500e+03 1.3950546e-01 + 1.2168000e+03 -8.0494540e-02 + 1.2170500e+03 -2.0049454e-01 + 1.2173000e+03 -3.0049454e-01 + 1.2175500e+03 -2.7049454e-01 + 1.2178000e+03 -3.6049454e-01 + 1.2180500e+03 -3.0049454e-01 + 1.2183000e+03 -3.5049454e-01 + 1.2185500e+03 -1.7049454e-01 + 1.2188000e+03 2.1950546e-01 + 1.2190500e+03 5.0950546e-01 + 1.2193000e+03 1.2950546e-01 + 1.2195500e+03 -4.0494540e-02 + 1.2198000e+03 -8.0494540e-02 + 1.2200500e+03 -2.0494540e-02 + 1.2203000e+03 7.9505460e-02 + 1.2205500e+03 3.9505460e-02 + 1.2208000e+03 -4.9454011e-04 + 1.2210500e+03 -5.0494540e-02 + 1.2213000e+03 -7.0494540e-02 + 1.2215500e+03 -1.8049454e-01 + 1.2218000e+03 -3.8049454e-01 + 1.2220500e+03 -8.3049454e-01 + 1.2223000e+03 -9.9049454e-01 + 1.2225500e+03 -9.8049454e-01 + 1.2228000e+03 -8.1049454e-01 + 1.2230500e+03 -5.8049454e-01 + 1.2233000e+03 -2.3049454e-01 + 1.2235500e+03 2.6950546e-01 + 1.2238000e+03 5.8950546e-01 + 1.2240500e+03 6.2950546e-01 + 1.2243000e+03 7.8950546e-01 + 1.2245500e+03 7.2950546e-01 + 1.2248000e+03 5.7950546e-01 + 1.2250500e+03 3.9950546e-01 + 1.2253000e+03 2.9950546e-01 + 1.2255500e+03 3.1950546e-01 + 1.2258000e+03 2.6950546e-01 + 1.2260500e+03 3.0950546e-01 + 1.2263000e+03 3.6950546e-01 + 1.2265500e+03 4.1950546e-01 + 1.2268000e+03 4.7950546e-01 + 1.2270500e+03 4.8950546e-01 + 1.2273000e+03 2.9950546e-01 + 1.2275500e+03 1.6950546e-01 + 1.2278000e+03 1.7950546e-01 + 1.2280500e+03 1.9950546e-01 + 1.2283000e+03 -2.0494540e-02 + 1.2285500e+03 -2.0049454e-01 + 1.2288000e+03 -1.9049454e-01 + 1.2290500e+03 -2.3049454e-01 + 1.2293000e+03 -2.8049454e-01 + 1.2295500e+03 -3.1049454e-01 + 1.2298000e+03 -3.2049454e-01 + 1.2300500e+03 -2.7049454e-01 + 1.2303000e+03 -3.1049454e-01 + 1.2305500e+03 -3.7049454e-01 + 1.2308000e+03 -4.7049454e-01 + 1.2310500e+03 -5.1049454e-01 + 1.2313000e+03 -4.1049454e-01 + 1.2315500e+03 -3.5049454e-01 + 1.2318000e+03 -2.5049454e-01 + 1.2320500e+03 -1.5049454e-01 + 1.2323000e+03 -1.3049454e-01 + 1.2325500e+03 -4.0494540e-02 + 1.2328000e+03 5.9505460e-02 + 1.2330500e+03 1.8950546e-01 + 1.2333000e+03 2.5950546e-01 + 1.2335500e+03 2.1950546e-01 + 1.2338000e+03 1.9950546e-01 + 1.2340500e+03 2.8950546e-01 + 1.2343000e+03 2.7950546e-01 + 1.2345500e+03 1.4950546e-01 + 1.2348000e+03 -1.3049454e-01 + 1.2350500e+03 -3.4049454e-01 + 1.2353000e+03 -4.5049454e-01 + 1.2355500e+03 -5.3049454e-01 + 1.2358000e+03 -6.5049454e-01 + 1.2360500e+03 -6.3049454e-01 + 1.2363000e+03 -4.7049454e-01 + 1.2365500e+03 -2.0049454e-01 + 1.2368000e+03 7.9505460e-02 + 1.2370500e+03 5.0950546e-01 + 1.2373000e+03 6.5950546e-01 + 1.2375500e+03 6.8950546e-01 + 1.2378000e+03 8.2950546e-01 + 1.2380500e+03 8.1950546e-01 + 1.2383000e+03 6.5950546e-01 + 1.2385500e+03 4.0950546e-01 + 1.2388000e+03 1.9950546e-01 + 1.2390500e+03 -2.3049454e-01 + 1.2393000e+03 -4.4049454e-01 + 1.2395500e+03 -4.2049454e-01 + 1.2398000e+03 -3.6049454e-01 + 1.2400500e+03 -1.0049454e-01 + 1.2403000e+03 7.9505460e-02 + 1.2405500e+03 2.9950546e-01 + 1.2408000e+03 1.9950546e-01 + 1.2410500e+03 2.9505460e-02 + 1.2413000e+03 -1.1049454e-01 + 1.2415500e+03 -1.7049454e-01 + 1.2418000e+03 -2.5049454e-01 + 1.2420500e+03 -2.1049454e-01 + 1.2423000e+03 9.5054599e-03 + 1.2425500e+03 1.4950546e-01 + 1.2428000e+03 2.5950546e-01 + 1.2430500e+03 4.3950546e-01 + 1.2433000e+03 5.6950546e-01 + 1.2435500e+03 6.0950546e-01 + 1.2438000e+03 6.5950546e-01 + 1.2440500e+03 4.1950546e-01 + 1.2443000e+03 6.9505460e-02 + 1.2445500e+03 -2.2049454e-01 + 1.2448000e+03 -2.9049454e-01 + 1.2450500e+03 -4.2049454e-01 + 1.2453000e+03 -5.1049454e-01 + 1.2455500e+03 -5.7049454e-01 + 1.2458000e+03 -4.5049454e-01 + 1.2460500e+03 -4.0494540e-02 + 1.2463000e+03 5.9505460e-02 + 1.2465500e+03 3.9505460e-02 + 1.2468000e+03 2.0950546e-01 + 1.2470500e+03 3.4950546e-01 + 1.2473000e+03 2.7950546e-01 + 1.2475500e+03 -1.3049454e-01 + 1.2478000e+03 -4.3049454e-01 + 1.2480500e+03 -5.1049454e-01 + 1.2483000e+03 -6.1049454e-01 + 1.2485500e+03 -6.9049454e-01 + 1.2488000e+03 -6.6049454e-01 + 1.2490500e+03 -6.9049454e-01 + 1.2493000e+03 -6.2049454e-01 + 1.2495500e+03 -3.5049454e-01 + 1.2498000e+03 -7.0494540e-02 + 1.2500500e+03 2.1950546e-01 + 1.2503000e+03 1.7950546e-01 + 1.2505500e+03 1.0950546e-01 + 1.2508000e+03 1.7950546e-01 + 1.2510500e+03 3.8950546e-01 + 1.2513000e+03 6.6950546e-01 + 1.2515500e+03 8.8950546e-01 + 1.2518000e+03 1.0395055e+00 + 1.2520500e+03 1.0095055e+00 + 1.2523000e+03 1.0095055e+00 + 1.2525500e+03 6.1950546e-01 + 1.2528000e+03 1.9505460e-02 + 1.2530500e+03 -3.7049454e-01 + 1.2533000e+03 -6.4049454e-01 + 1.2535500e+03 -8.9049454e-01 + 1.2538000e+03 -9.6049454e-01 + 1.2540500e+03 -7.6049454e-01 + 1.2543000e+03 -4.8049454e-01 + 1.2545500e+03 -4.8049454e-01 + 1.2548000e+03 -1.2049454e-01 + 1.2550500e+03 2.0950546e-01 + 1.2553000e+03 3.6950546e-01 + 1.2555500e+03 4.8950546e-01 + 1.2558000e+03 4.7950546e-01 + 1.2560500e+03 5.5950546e-01 + 1.2563000e+03 6.9950546e-01 + 1.2565500e+03 6.8950546e-01 + 1.2568000e+03 3.5950546e-01 + 1.2570500e+03 8.9505460e-02 + 1.2573000e+03 -3.0494540e-02 + 1.2575500e+03 -1.0049454e-01 + 1.2578000e+03 -6.0494540e-02 + 1.2580500e+03 -7.0494540e-02 + 1.2583000e+03 -9.0494540e-02 + 1.2585500e+03 -1.1049454e-01 + 1.2588000e+03 -1.1049454e-01 + 1.2590500e+03 -5.0494540e-02 + 1.2593000e+03 -2.3049454e-01 + 1.2595500e+03 -4.1049454e-01 + 1.2598000e+03 -6.4049454e-01 + 1.2600500e+03 -6.6049454e-01 + 1.2603000e+03 -5.9049454e-01 + 1.2605500e+03 -5.2049454e-01 + 1.2608000e+03 -4.7049454e-01 + 1.2610500e+03 -2.6049454e-01 + 1.2613000e+03 -3.3049454e-01 + 1.2615500e+03 -3.5049454e-01 + 1.2618000e+03 -3.6049454e-01 + 1.2620500e+03 -2.8049454e-01 + 1.2623000e+03 9.5054599e-03 + 1.2625500e+03 2.0950546e-01 + 1.2628000e+03 4.3950546e-01 + 1.2630500e+03 6.8950546e-01 + 1.2633000e+03 8.9950546e-01 + 1.2635500e+03 8.5950546e-01 + 1.2638000e+03 9.1950546e-01 + 1.2640500e+03 8.6950546e-01 + 1.2643000e+03 3.5950546e-01 + 1.2645500e+03 -1.1049454e-01 + 1.2648000e+03 -3.1049454e-01 + 1.2650500e+03 -4.2049454e-01 + 1.2653000e+03 -4.5049454e-01 + 1.2655500e+03 -3.8049454e-01 + 1.2658000e+03 -1.1049454e-01 + 1.2660500e+03 1.0950546e-01 + 1.2663000e+03 2.4950546e-01 + 1.2665500e+03 3.7950546e-01 + 1.2668000e+03 4.5950546e-01 + 1.2670500e+03 4.1950546e-01 + 1.2673000e+03 4.2950546e-01 + 1.2675500e+03 3.2950546e-01 + 1.2678000e+03 1.8950546e-01 + 1.2680500e+03 7.9505460e-02 + 1.2683000e+03 -1.0049454e-01 + 1.2685500e+03 -2.2049454e-01 + 1.2688000e+03 -3.2049454e-01 + 1.2690500e+03 -3.8049454e-01 + 1.2693000e+03 -3.3049454e-01 + 1.2695500e+03 -3.6049454e-01 + 1.2698000e+03 -3.6049454e-01 + 1.2700500e+03 -2.9049454e-01 + 1.2703000e+03 -3.1049454e-01 + 1.2705500e+03 -3.2049454e-01 + 1.2708000e+03 -2.1049454e-01 + 1.2710500e+03 -1.4049454e-01 + 1.2713000e+03 -3.0049454e-01 + 1.2715500e+03 -4.2049454e-01 + 1.2718000e+03 -4.6049454e-01 + 1.2720500e+03 -4.8049454e-01 + 1.2723000e+03 -3.9049454e-01 + 1.2725500e+03 -2.8049454e-01 + 1.2728000e+03 -2.6049454e-01 + 1.2730500e+03 -3.2049454e-01 + 1.2733000e+03 -3.6049454e-01 + 1.2735500e+03 -3.9049454e-01 + 1.2738000e+03 -4.2049454e-01 + 1.2740500e+03 -2.8049454e-01 + 1.2743000e+03 -6.0494540e-02 + 1.2745500e+03 9.5054599e-03 + 1.2748000e+03 -2.0494540e-02 + 1.2750500e+03 1.0950546e-01 + 1.2753000e+03 3.2950546e-01 + 1.2755500e+03 6.3950546e-01 + 1.2758000e+03 9.8950546e-01 + 1.2760500e+03 1.2595055e+00 + 1.2763000e+03 1.4495055e+00 + 1.2765500e+03 1.4095055e+00 + 1.2768000e+03 1.0295055e+00 + 1.2770500e+03 6.1950546e-01 + 1.2773000e+03 3.1950546e-01 + 1.2775500e+03 2.1950546e-01 + 1.2778000e+03 2.4950546e-01 + 1.2780500e+03 2.3950546e-01 + 1.2783000e+03 3.0950546e-01 + 1.2785500e+03 3.6950546e-01 + 1.2788000e+03 2.4950546e-01 + 1.2790500e+03 1.4950546e-01 + 1.2793000e+03 -9.0494540e-02 + 1.2795500e+03 -2.8049454e-01 + 1.2798000e+03 -5.8049454e-01 + 1.2800500e+03 -8.8049454e-01 + 1.2803000e+03 -1.0404945e+00 + 1.2805500e+03 -1.0904945e+00 + 1.2808000e+03 -1.0304945e+00 + 1.2810500e+03 -9.7049454e-01 + 1.2813000e+03 -7.3049454e-01 + 1.2815500e+03 -5.3049454e-01 + 1.2818000e+03 -4.0049454e-01 + 1.2820500e+03 -2.8049454e-01 + 1.2823000e+03 -1.1049454e-01 + 1.2825500e+03 -3.1049454e-01 + 1.2828000e+03 -5.8049454e-01 + 1.2830500e+03 -6.7049454e-01 + 1.2833000e+03 -5.2049454e-01 + 1.2835500e+03 -3.3049454e-01 + 1.2838000e+03 -1.7049454e-01 + 1.2840500e+03 1.1950546e-01 + 1.2843000e+03 3.5950546e-01 + 1.2845500e+03 4.8950546e-01 + 1.2848000e+03 5.5950546e-01 + 1.2850500e+03 5.2950546e-01 + 1.2853000e+03 4.5950546e-01 + 1.2855500e+03 4.1950546e-01 + 1.2858000e+03 5.2950546e-01 + 1.2860500e+03 7.7950546e-01 + 1.2863000e+03 7.2950546e-01 + 1.2865500e+03 5.5950546e-01 + 1.2868000e+03 3.3950546e-01 + 1.2870500e+03 2.9950546e-01 + 1.2873000e+03 3.3950546e-01 + 1.2875500e+03 3.0950546e-01 + 1.2878000e+03 1.9950546e-01 + 1.2880500e+03 1.0950546e-01 + 1.2883000e+03 9.9505460e-02 + 1.2885500e+03 6.9505460e-02 + 1.2888000e+03 -1.2049454e-01 + 1.2890500e+03 -2.7049454e-01 + 1.2893000e+03 -3.8049454e-01 + 1.2895500e+03 -5.0049454e-01 + 1.2898000e+03 -5.1049454e-01 + 1.2900500e+03 -5.2049454e-01 + 1.2903000e+03 -2.4049454e-01 + 1.2905500e+03 9.9505460e-02 + 1.2908000e+03 3.8950546e-01 + 1.2910500e+03 5.7950546e-01 + 1.2913000e+03 5.6950546e-01 + 1.2915500e+03 3.8950546e-01 + 1.2918000e+03 1.1950546e-01 + 1.2920500e+03 -1.1049454e-01 + 1.2923000e+03 -3.1049454e-01 + 1.2925500e+03 -5.8049454e-01 + 1.2928000e+03 -7.9049454e-01 + 1.2930500e+03 -9.2049454e-01 + 1.2933000e+03 -7.4049454e-01 + 1.2935500e+03 -5.2049454e-01 + 1.2938000e+03 -4.4049454e-01 + 1.2940500e+03 -3.0049454e-01 + 1.2943000e+03 -1.9049454e-01 + 1.2945500e+03 -6.0494540e-02 + 1.2948000e+03 1.5950546e-01 + 1.2950500e+03 3.8950546e-01 + 1.2953000e+03 4.3950546e-01 + 1.2955500e+03 4.0950546e-01 + 1.2958000e+03 3.6950546e-01 + 1.2960500e+03 3.9950546e-01 + 1.2963000e+03 3.6950546e-01 + 1.2965500e+03 3.6950546e-01 + 1.2968000e+03 4.2950546e-01 + 1.2970500e+03 3.8950546e-01 + 1.2973000e+03 2.1950546e-01 + 1.2975500e+03 1.1950546e-01 + 1.2978000e+03 1.7950546e-01 + 1.2980500e+03 1.8950546e-01 + 1.2983000e+03 1.2950546e-01 + 1.2985500e+03 8.9505460e-02 + 1.2988000e+03 -6.0494540e-02 + 1.2990500e+03 -1.4049454e-01 + 1.2993000e+03 -3.5049454e-01 + 1.2995500e+03 -4.7049454e-01 + 1.2998000e+03 -6.7049454e-01 + 1.3000500e+03 -7.3049454e-01 + 1.3003000e+03 -6.7049454e-01 + 1.3005500e+03 -4.9049454e-01 + 1.3008000e+03 -2.5049454e-01 + 1.3010500e+03 -5.0494540e-02 + 1.3013000e+03 3.9505460e-02 + 1.3015500e+03 2.4950546e-01 + 1.3018000e+03 4.0950546e-01 + 1.3020500e+03 3.5950546e-01 + 1.3023000e+03 2.9950546e-01 + 1.3025500e+03 1.9950546e-01 + 1.3028000e+03 9.9505460e-02 + 1.3030500e+03 1.9505460e-02 + 1.3033000e+03 -1.0494540e-02 + 1.3035500e+03 9.5054599e-03 + 1.3038000e+03 4.9505460e-02 + 1.3040500e+03 1.0950546e-01 + 1.3043000e+03 1.7950546e-01 + 1.3045500e+03 1.5950546e-01 + 1.3048000e+03 -4.0494540e-02 + 1.3050500e+03 -3.7049454e-01 + 1.3053000e+03 -5.3049454e-01 + 1.3055500e+03 -4.4049454e-01 + 1.3058000e+03 -1.7049454e-01 + 1.3060500e+03 -2.0494540e-02 + 1.3063000e+03 -4.9454011e-04 + 1.3065500e+03 -1.0494540e-02 + 1.3068000e+03 -9.0494540e-02 + 1.3070500e+03 -1.4049454e-01 + 1.3073000e+03 -1.3049454e-01 + 1.3075500e+03 -2.0494540e-02 + 1.3078000e+03 3.9505460e-02 + 1.3080500e+03 -4.0494540e-02 + 1.3083000e+03 -5.0494540e-02 + 1.3085500e+03 5.9505460e-02 + 1.3088000e+03 1.5950546e-01 + 1.3090500e+03 1.8950546e-01 + 1.3093000e+03 1.2950546e-01 + 1.3095500e+03 1.0950546e-01 + 1.3098000e+03 1.3950546e-01 + 1.3100500e+03 1.0950546e-01 + 1.3103000e+03 8.9505460e-02 + 1.3105500e+03 1.0950546e-01 + 1.3108000e+03 1.2950546e-01 + 1.3110500e+03 8.9505460e-02 + 1.3113000e+03 -4.0494540e-02 + 1.3115500e+03 -6.0494540e-02 + 1.3118000e+03 -1.4049454e-01 + 1.3120500e+03 -3.8049454e-01 + 1.3123000e+03 -5.2049454e-01 + 1.3125500e+03 -5.4049454e-01 + 1.3128000e+03 -4.3049454e-01 + 1.3130500e+03 -3.1049454e-01 + 1.3133000e+03 -3.1049454e-01 + 1.3135500e+03 -3.9049454e-01 + 1.3138000e+03 -3.7049454e-01 + 1.3140500e+03 -2.9049454e-01 + 1.3143000e+03 -1.5049454e-01 + 1.3145500e+03 1.2950546e-01 + 1.3148000e+03 3.0950546e-01 + 1.3150500e+03 4.5950546e-01 + 1.3153000e+03 4.7950546e-01 + 1.3155500e+03 2.9950546e-01 + 1.3158000e+03 1.1950546e-01 + 1.3160500e+03 1.0950546e-01 + 1.3163000e+03 9.9505460e-02 + 1.3165500e+03 1.1950546e-01 + 1.3168000e+03 1.8950546e-01 + 1.3170500e+03 1.9505460e-02 + 1.3173000e+03 -6.0494540e-02 + 1.3175500e+03 -1.0494540e-02 + 1.3178000e+03 9.9505460e-02 + 1.3180500e+03 4.9505460e-02 + 1.3183000e+03 2.9505460e-02 + 1.3185500e+03 1.3950546e-01 + 1.3188000e+03 1.8950546e-01 + 1.3190500e+03 2.5950546e-01 + 1.3193000e+03 2.3950546e-01 + 1.3195500e+03 1.9950546e-01 + 1.3198000e+03 1.6950546e-01 + 1.3200500e+03 2.6950546e-01 + 1.3203000e+03 3.3950546e-01 + 1.3205500e+03 2.9950546e-01 + 1.3208000e+03 -3.0494540e-02 + 1.3210500e+03 -2.7049454e-01 + 1.3213000e+03 -5.1049454e-01 + 1.3215500e+03 -7.0049454e-01 + 1.3218000e+03 -8.1049454e-01 + 1.3220500e+03 -8.7049454e-01 + 1.3223000e+03 -8.0049454e-01 + 1.3225500e+03 -6.4049454e-01 + 1.3228000e+03 -3.8049454e-01 + 1.3230500e+03 -4.0494540e-02 + 1.3233000e+03 9.9505460e-02 + 1.3235500e+03 1.2950546e-01 + 1.3238000e+03 2.4950546e-01 + 1.3240500e+03 3.8950546e-01 + 1.3243000e+03 3.9950546e-01 + 1.3245500e+03 4.7950546e-01 + 1.3248000e+03 7.1950546e-01 + 1.3250500e+03 7.3950546e-01 + 1.3253000e+03 5.2950546e-01 + 1.3255500e+03 7.9505460e-02 + 1.3258000e+03 -3.4049454e-01 + 1.3260500e+03 -5.1049454e-01 + 1.3263000e+03 -6.5049454e-01 + 1.3265500e+03 -7.0049454e-01 + 1.3268000e+03 -6.9049454e-01 + 1.3270500e+03 -5.4049454e-01 + 1.3273000e+03 -5.0049454e-01 + 1.3275500e+03 -2.2049454e-01 + 1.3278000e+03 1.3950546e-01 + 1.3280500e+03 4.1950546e-01 + 1.3283000e+03 5.1950546e-01 + 1.3285500e+03 5.4950546e-01 + 1.3288000e+03 5.3950546e-01 + 1.3290500e+03 4.9950546e-01 + 1.3293000e+03 5.7950546e-01 + 1.3295500e+03 4.5950546e-01 + 1.3298000e+03 2.7950546e-01 + 1.3300500e+03 1.4950546e-01 + 1.3303000e+03 1.9505460e-02 + 1.3305500e+03 -1.3049454e-01 + 1.3308000e+03 -1.1049454e-01 + 1.3310500e+03 -2.0494540e-02 + 1.3313000e+03 1.3950546e-01 + 1.3315500e+03 2.4950546e-01 + 1.3318000e+03 3.6950546e-01 + 1.3320500e+03 2.5950546e-01 + 1.3323000e+03 9.9505460e-02 + 1.3325500e+03 -7.0494540e-02 + 1.3328000e+03 -1.8049454e-01 + 1.3330500e+03 -1.6049454e-01 + 1.3333000e+03 -1.5049454e-01 + 1.3335500e+03 -8.0494540e-02 + 1.3338000e+03 -2.3049454e-01 + 1.3340500e+03 -1.9049454e-01 + 1.3343000e+03 -4.0494540e-02 + 1.3345500e+03 -1.0494540e-02 + 1.3348000e+03 -1.8049454e-01 + 1.3350500e+03 -4.2049454e-01 + 1.3353000e+03 -5.7049454e-01 + 1.3355500e+03 -6.4049454e-01 + 1.3358000e+03 -5.4049454e-01 + 1.3360500e+03 -5.6049454e-01 + 1.3363000e+03 -5.1049454e-01 + 1.3365500e+03 -3.3049454e-01 + 1.3368000e+03 -1.4049454e-01 + 1.3370500e+03 -5.0494540e-02 + 1.3373000e+03 1.5950546e-01 + 1.3375500e+03 4.1950546e-01 + 1.3378000e+03 7.5950546e-01 + 1.3380500e+03 8.2950546e-01 + 1.3383000e+03 9.0950546e-01 + 1.3385500e+03 7.2950546e-01 + 1.3388000e+03 7.2950546e-01 + 1.3390500e+03 5.4950546e-01 + 1.3393000e+03 4.0950546e-01 + 1.3395500e+03 3.6950546e-01 + 1.3398000e+03 1.8950546e-01 + 1.3400500e+03 -8.0494540e-02 + 1.3403000e+03 -3.4049454e-01 + 1.3405500e+03 -5.2049454e-01 + 1.3408000e+03 -5.8049454e-01 + 1.3410500e+03 -5.7049454e-01 + 1.3413000e+03 -4.7049454e-01 + 1.3415500e+03 -3.4049454e-01 + 1.3418000e+03 -1.2049454e-01 + 1.3420500e+03 -5.0494540e-02 + 1.3423000e+03 -1.1049454e-01 + 1.3425500e+03 -3.2049454e-01 + 1.3428000e+03 -5.0049454e-01 + 1.3430500e+03 -6.4049454e-01 + 1.3433000e+03 -5.6049454e-01 + 1.3435500e+03 -4.0049454e-01 + 1.3438000e+03 -9.0494540e-02 + 1.3440500e+03 4.0950546e-01 + 1.3443000e+03 7.8950546e-01 + 1.3445500e+03 9.9950546e-01 + 1.3448000e+03 1.2395055e+00 + 1.3450500e+03 1.1295055e+00 + 1.3453000e+03 7.7950546e-01 + 1.3455500e+03 5.5950546e-01 + 1.3458000e+03 3.3950546e-01 + 1.3460500e+03 2.2950546e-01 + 1.3463000e+03 1.0950546e-01 + 1.3465500e+03 -4.9454011e-04 + 1.3468000e+03 -1.3049454e-01 + 1.3470500e+03 -4.3049454e-01 + 1.3473000e+03 -6.6049454e-01 + 1.3475500e+03 -8.9049454e-01 + 1.3478000e+03 -9.1049454e-01 + 1.3480500e+03 -7.7049454e-01 + 1.3483000e+03 -4.4049454e-01 + 1.3485500e+03 -2.2049454e-01 + 1.3488000e+03 -1.1049454e-01 + 1.3490500e+03 1.4950546e-01 + 1.3493000e+03 3.2950546e-01 + 1.3495500e+03 5.3950546e-01 + 1.3498000e+03 3.9950546e-01 + 1.3500500e+03 2.5950546e-01 + 1.3503000e+03 2.4950546e-01 + 1.3505500e+03 3.2950546e-01 + 1.3508000e+03 3.1950546e-01 + 1.3510500e+03 1.6950546e-01 + 1.3513000e+03 -2.0494540e-02 + 1.3515500e+03 -1.5049454e-01 + 1.3518000e+03 -2.4049454e-01 + 1.3520500e+03 -2.1049454e-01 + 1.3523000e+03 -2.1049454e-01 + 1.3525500e+03 -3.2049454e-01 + 1.3528000e+03 -3.8049454e-01 + 1.3530500e+03 -1.4049454e-01 + 1.3533000e+03 1.9505460e-02 + 1.3535500e+03 6.9505460e-02 + 1.3538000e+03 1.0950546e-01 + 1.3540500e+03 1.0950546e-01 + 1.3543000e+03 -3.0494540e-02 + 1.3545500e+03 -1.1049454e-01 + 1.3548000e+03 -1.0049454e-01 + 1.3550500e+03 -9.0494540e-02 + 1.3553000e+03 -8.0494540e-02 + 1.3555500e+03 1.4950546e-01 + 1.3558000e+03 3.3950546e-01 + 1.3560500e+03 5.7950546e-01 + 1.3563000e+03 8.9950546e-01 + 1.3565500e+03 8.6950546e-01 + 1.3568000e+03 6.8950546e-01 + 1.3570500e+03 2.7950546e-01 + 1.3573000e+03 1.9505460e-02 + 1.3575500e+03 -2.9049454e-01 + 1.3578000e+03 -5.9049454e-01 + 1.3580500e+03 -7.7049454e-01 + 1.3583000e+03 -8.2049454e-01 + 1.3585500e+03 -7.2049454e-01 + 1.3588000e+03 -6.3049454e-01 + 1.3590500e+03 -5.9049454e-01 + 1.3593000e+03 -5.6049454e-01 + 1.3595500e+03 -2.3049454e-01 + 1.3598000e+03 -1.3049454e-01 + 1.3600500e+03 -6.0494540e-02 + 1.3603000e+03 3.9505460e-02 + 1.3605500e+03 1.2950546e-01 + 1.3608000e+03 3.9505460e-02 + 1.3610500e+03 5.9505460e-02 + 1.3613000e+03 2.4950546e-01 + 1.3615500e+03 3.5950546e-01 + 1.3618000e+03 2.8950546e-01 + 1.3620500e+03 1.0950546e-01 + 1.3623000e+03 -1.0494540e-02 + 1.3625500e+03 -1.0049454e-01 + 1.3628000e+03 -6.0494540e-02 + 1.3630500e+03 -1.4049454e-01 + 1.3633000e+03 -1.2049454e-01 + 1.3635500e+03 -1.0494540e-02 + 1.3638000e+03 9.9505460e-02 + 1.3640500e+03 3.7950546e-01 + 1.3643000e+03 5.4950546e-01 + 1.3645500e+03 5.9950546e-01 + 1.3648000e+03 5.1950546e-01 + 1.3650500e+03 3.4950546e-01 + 1.3653000e+03 -2.0494540e-02 + 1.3655500e+03 -4.5049454e-01 + 1.3658000e+03 -6.1049454e-01 + 1.3660500e+03 -7.4049454e-01 + 1.3663000e+03 -6.5049454e-01 + 1.3665500e+03 -5.3049454e-01 + 1.3668000e+03 -2.7049454e-01 + 1.3670500e+03 1.9505460e-02 + 1.3673000e+03 2.2950546e-01 + 1.3675500e+03 3.9950546e-01 + 1.3678000e+03 6.8950546e-01 + 1.3680500e+03 7.6950546e-01 + 1.3683000e+03 4.1950546e-01 + 1.3685500e+03 2.9505460e-02 + 1.3688000e+03 -2.5049454e-01 + 1.3690500e+03 -3.0049454e-01 + 1.3693000e+03 -3.7049454e-01 + 1.3695500e+03 -3.8049454e-01 + 1.3698000e+03 -2.9049454e-01 + 1.3700500e+03 1.9505460e-02 + 1.3703000e+03 2.8950546e-01 + 1.3705500e+03 8.9505460e-02 + 1.3708000e+03 -2.9049454e-01 + 1.3710500e+03 -4.3049454e-01 + 1.3713000e+03 -6.0049454e-01 + 1.3715500e+03 -6.1049454e-01 + 1.3718000e+03 -6.0049454e-01 + 1.3720500e+03 -6.1049454e-01 + 1.3723000e+03 -3.9049454e-01 + 1.3725500e+03 -7.0494540e-02 + 1.3728000e+03 2.0950546e-01 + 1.3730500e+03 6.8950546e-01 + 1.3733000e+03 7.7950546e-01 + 1.3735500e+03 7.6950546e-01 + 1.3738000e+03 7.5950546e-01 + 1.3740500e+03 8.2950546e-01 + 1.3743000e+03 8.5950546e-01 + 1.3745500e+03 6.2950546e-01 + 1.3748000e+03 3.1950546e-01 + 1.3750500e+03 7.9505460e-02 + 1.3753000e+03 -1.1049454e-01 + 1.3755500e+03 -4.2049454e-01 + 1.3758000e+03 -6.5049454e-01 + 1.3760500e+03 -7.7049454e-01 + 1.3763000e+03 -8.6049454e-01 + 1.3765500e+03 -7.2049454e-01 + 1.3768000e+03 -3.8049454e-01 + 1.3770500e+03 -2.9049454e-01 + 1.3773000e+03 -3.1049454e-01 + 1.3775500e+03 -3.5049454e-01 + 1.3778000e+03 -4.3049454e-01 + 1.3780500e+03 -4.3049454e-01 + 1.3783000e+03 -3.0049454e-01 + 1.3785500e+03 -1.0494540e-02 + 1.3788000e+03 2.9950546e-01 + 1.3790500e+03 5.1950546e-01 + 1.3793000e+03 5.5950546e-01 + 1.3795500e+03 3.8950546e-01 + 1.3798000e+03 1.8950546e-01 + 1.3800500e+03 7.9505460e-02 + 1.3803000e+03 1.9505460e-02 + 1.3805500e+03 2.0950546e-01 + 1.3808000e+03 4.1950546e-01 + 1.3810500e+03 6.6950546e-01 + 1.3813000e+03 5.2950546e-01 + 1.3815500e+03 2.0950546e-01 + 1.3818000e+03 -4.0494540e-02 + 1.3820500e+03 -1.3049454e-01 + 1.3823000e+03 -8.0494540e-02 + 1.3825500e+03 -2.0049454e-01 + 1.3828000e+03 -3.0049454e-01 + 1.3830500e+03 -3.1049454e-01 + 1.3833000e+03 -2.2049454e-01 + 1.3835500e+03 -2.3049454e-01 + 1.3838000e+03 -1.9049454e-01 + 1.3840500e+03 -2.5049454e-01 + 1.3843000e+03 -2.5049454e-01 + 1.3845500e+03 -2.3049454e-01 + 1.3848000e+03 -9.0494540e-02 + 1.3850500e+03 5.9505460e-02 + 1.3853000e+03 9.5054599e-03 + 1.3855500e+03 -1.3049454e-01 + 1.3858000e+03 -1.6049454e-01 + 1.3860500e+03 -9.0494540e-02 + 1.3863000e+03 -3.0494540e-02 + 1.3865500e+03 6.9505460e-02 + 1.3868000e+03 1.2950546e-01 + 1.3870500e+03 9.9505460e-02 + 1.3873000e+03 -4.9454011e-04 + 1.3875500e+03 -6.0494540e-02 + 1.3878000e+03 -1.4049454e-01 + 1.3880500e+03 -8.0494540e-02 + 1.3883000e+03 -4.0494540e-02 + 1.3885500e+03 5.9505460e-02 + 1.3888000e+03 1.0950546e-01 + 1.3890500e+03 1.5950546e-01 + 1.3893000e+03 2.2950546e-01 + 1.3895500e+03 2.4950546e-01 + 1.3898000e+03 4.2950546e-01 + 1.3900500e+03 5.2950546e-01 + 1.3903000e+03 5.0950546e-01 + 1.3905500e+03 4.1950546e-01 + 1.3908000e+03 1.2950546e-01 + 1.3910500e+03 -5.0494540e-02 + 1.3913000e+03 -1.9049454e-01 + 1.3915500e+03 -1.7049454e-01 + 1.3918000e+03 -2.0049454e-01 + 1.3920500e+03 -1.5049454e-01 + 1.3923000e+03 -1.4049454e-01 + 1.3925500e+03 -2.3049454e-01 + 1.3928000e+03 -3.9049454e-01 + 1.3930500e+03 -6.5049454e-01 + 1.3933000e+03 -7.8049454e-01 + 1.3935500e+03 -8.6049454e-01 + 1.3938000e+03 -9.1049454e-01 + 1.3940500e+03 -8.4049454e-01 + 1.3943000e+03 -6.8049454e-01 + 1.3945500e+03 -5.0049454e-01 + 1.3948000e+03 -1.6049454e-01 + 1.3950500e+03 9.9505460e-02 + 1.3953000e+03 1.9950546e-01 + 1.3955500e+03 4.7950546e-01 + 1.3958000e+03 9.2950546e-01 + 1.3960500e+03 9.8950546e-01 + 1.3963000e+03 7.0950546e-01 + 1.3965500e+03 5.1950546e-01 + 1.3968000e+03 5.0950546e-01 + 1.3970500e+03 3.9950546e-01 + 1.3973000e+03 2.7950546e-01 + 1.3975500e+03 1.7950546e-01 + 1.3978000e+03 1.8950546e-01 + 1.3980500e+03 2.6950546e-01 + 1.3983000e+03 3.3950546e-01 + 1.3985500e+03 2.6950546e-01 + 1.3988000e+03 1.2950546e-01 + 1.3990500e+03 -1.0494540e-02 + 1.3993000e+03 -1.2049454e-01 + 1.3995500e+03 -1.4049454e-01 + 1.3998000e+03 -1.8049454e-01 + 1.4000500e+03 -2.1049454e-01 + 1.4003000e+03 -2.1049454e-01 + 1.4005500e+03 -2.7049454e-01 + 1.4008000e+03 -1.7049454e-01 + 1.4010500e+03 2.9505460e-02 + 1.4013000e+03 8.9505460e-02 + 1.4015500e+03 5.9505460e-02 + 1.4018000e+03 1.1950546e-01 + 1.4020500e+03 9.9505460e-02 + 1.4023000e+03 -2.0494540e-02 + 1.4025500e+03 -3.6049454e-01 + 1.4028000e+03 -7.1049454e-01 + 1.4030500e+03 -8.7049454e-01 + 1.4033000e+03 -8.9049454e-01 + 1.4035500e+03 -7.2049454e-01 + 1.4038000e+03 -4.0049454e-01 + 1.4040500e+03 -8.0494540e-02 + 1.4043000e+03 1.1950546e-01 + 1.4045500e+03 3.0950546e-01 + 1.4048000e+03 4.5950546e-01 + 1.4050500e+03 6.2950546e-01 + 1.4053000e+03 5.1950546e-01 + 1.4055500e+03 1.0950546e-01 + 1.4058000e+03 -2.4049454e-01 + 1.4060500e+03 -4.2049454e-01 + 1.4063000e+03 -3.8049454e-01 + 1.4065500e+03 -3.5049454e-01 + 1.4068000e+03 -2.6049454e-01 + 1.4070500e+03 -1.4049454e-01 + 1.4073000e+03 7.9505460e-02 + 1.4075500e+03 1.9950546e-01 + 1.4078000e+03 2.3950546e-01 + 1.4080500e+03 1.4950546e-01 + 1.4083000e+03 8.9505460e-02 + 1.4085500e+03 1.4950546e-01 + 1.4088000e+03 4.1950546e-01 + 1.4090500e+03 6.0950546e-01 + 1.4093000e+03 9.2950546e-01 + 1.4095500e+03 1.0495055e+00 + 1.4098000e+03 1.0195055e+00 + 1.4100500e+03 7.7950546e-01 + 1.4103000e+03 5.9950546e-01 + 1.4105500e+03 5.9950546e-01 + 1.4108000e+03 5.9950546e-01 + 1.4110500e+03 3.5950546e-01 + 1.4113000e+03 -3.0049454e-01 + 1.4115500e+03 -7.9049454e-01 + 1.4118000e+03 -8.1049454e-01 + 1.4120500e+03 -7.7049454e-01 + 1.4123000e+03 -8.3049454e-01 + 1.4125500e+03 -6.7049454e-01 + 1.4128000e+03 -5.7049454e-01 + 1.4130500e+03 -5.0049454e-01 + 1.4133000e+03 -4.7049454e-01 + 1.4135500e+03 -5.4049454e-01 + 1.4138000e+03 -5.5049454e-01 + 1.4140500e+03 -4.6049454e-01 + 1.4143000e+03 -2.7049454e-01 + 1.4145500e+03 -1.5049454e-01 + 1.4148000e+03 -1.9049454e-01 + 1.4150500e+03 -2.7049454e-01 + 1.4153000e+03 -2.8049454e-01 + 1.4155500e+03 -6.0494540e-02 + 1.4158000e+03 7.9505460e-02 + 1.4160500e+03 1.7950546e-01 + 1.4163000e+03 2.8950546e-01 + 1.4165500e+03 3.3950546e-01 + 1.4168000e+03 3.3950546e-01 + 1.4170500e+03 3.1950546e-01 + 1.4173000e+03 2.7950546e-01 + 1.4175500e+03 2.1950546e-01 + 1.4178000e+03 2.0950546e-01 + 1.4180500e+03 2.0950546e-01 + 1.4183000e+03 6.9505460e-02 + 1.4185500e+03 -1.0494540e-02 + 1.4188000e+03 -4.9454011e-04 + 1.4190500e+03 2.0950546e-01 + 1.4193000e+03 4.2950546e-01 + 1.4195500e+03 5.9950546e-01 + 1.4198000e+03 7.1950546e-01 + 1.4200500e+03 6.7950546e-01 + 1.4203000e+03 7.5950546e-01 + 1.4205500e+03 7.5950546e-01 + 1.4208000e+03 2.6950546e-01 + 1.4210500e+03 -1.0049454e-01 + 1.4213000e+03 -3.3049454e-01 + 1.4215500e+03 -5.3049454e-01 + 1.4218000e+03 -7.5049454e-01 + 1.4220500e+03 -8.5049454e-01 + 1.4223000e+03 -8.3049454e-01 + 1.4225500e+03 -7.3049454e-01 + 1.4228000e+03 -5.8049454e-01 + 1.4230500e+03 -5.4049454e-01 + 1.4233000e+03 -4.7049454e-01 + 1.4235500e+03 -4.2049454e-01 + 1.4238000e+03 -2.2049454e-01 + 1.4240500e+03 9.5054599e-03 + 1.4243000e+03 1.0950546e-01 + 1.4245500e+03 1.0950546e-01 + 1.4248000e+03 1.9950546e-01 + 1.4250500e+03 2.0950546e-01 + 1.4253000e+03 2.0950546e-01 + 1.4255500e+03 9.9505460e-02 + 1.4258000e+03 -1.0494540e-02 + 1.4260500e+03 4.9505460e-02 + 1.4263000e+03 1.1950546e-01 + 1.4265500e+03 3.5950546e-01 + 1.4268000e+03 4.0950546e-01 + 1.4270500e+03 4.7950546e-01 + 1.4273000e+03 5.3950546e-01 + 1.4275500e+03 4.4950546e-01 + 1.4278000e+03 2.8950546e-01 + 1.4280500e+03 -1.0494540e-02 + 1.4283000e+03 -1.5049454e-01 + 1.4285500e+03 -2.9049454e-01 + 1.4288000e+03 -3.2049454e-01 + 1.4290500e+03 -3.1049454e-01 + 1.4293000e+03 -3.5049454e-01 + 1.4295500e+03 -4.3049454e-01 + 1.4298000e+03 -4.1049454e-01 + 1.4300500e+03 -5.6049454e-01 + 1.4303000e+03 -7.0049454e-01 + 1.4305500e+03 -6.6049454e-01 + 1.4308000e+03 -3.9049454e-01 + 1.4310500e+03 -1.4049454e-01 + 1.4313000e+03 -1.0494540e-02 + 1.4315500e+03 8.9505460e-02 + 1.4318000e+03 6.9505460e-02 + 1.4320500e+03 7.9505460e-02 + 1.4323000e+03 9.9505460e-02 + 1.4325500e+03 1.1950546e-01 + 1.4328000e+03 2.6950546e-01 + 1.4330500e+03 5.0950546e-01 + 1.4333000e+03 6.7950546e-01 + 1.4335500e+03 7.5950546e-01 + 1.4338000e+03 7.6950546e-01 + 1.4340500e+03 7.3950546e-01 + 1.4343000e+03 6.1950546e-01 + 1.4345500e+03 3.1950546e-01 + 1.4348000e+03 1.9505460e-02 + 1.4350500e+03 -2.3049454e-01 + 1.4353000e+03 -3.9049454e-01 + 1.4355500e+03 -4.7049454e-01 + 1.4358000e+03 -4.8049454e-01 + 1.4360500e+03 -3.0049454e-01 + 1.4363000e+03 -2.4049454e-01 + 1.4365500e+03 -2.3049454e-01 + 1.4368000e+03 -1.4049454e-01 + 1.4370500e+03 -2.1049454e-01 + 1.4373000e+03 -2.4049454e-01 + 1.4375500e+03 -3.1049454e-01 + 1.4378000e+03 -3.0049454e-01 + 1.4380500e+03 -2.8049454e-01 + 1.4383000e+03 -1.4049454e-01 + 1.4385500e+03 -1.0494540e-02 + 1.4388000e+03 2.4950546e-01 + 1.4390500e+03 4.2950546e-01 + 1.4393000e+03 4.2950546e-01 + 1.4395500e+03 3.9950546e-01 + 1.4398000e+03 3.8950546e-01 + 1.4400500e+03 1.1950546e-01 + 1.4403000e+03 -1.4049454e-01 + 1.4405500e+03 -1.7049454e-01 + 1.4408000e+03 -1.1049454e-01 + 1.4410500e+03 -6.0494540e-02 + 1.4413000e+03 -1.0049454e-01 + 1.4415500e+03 -1.5049454e-01 + 1.4418000e+03 -7.0494540e-02 + 1.4420500e+03 6.9505460e-02 + 1.4423000e+03 -3.0494540e-02 + 1.4425500e+03 -1.7049454e-01 + 1.4428000e+03 -1.9049454e-01 + 1.4430500e+03 -2.4049454e-01 + 1.4433000e+03 -2.4049454e-01 + 1.4435500e+03 -2.6049454e-01 + 1.4438000e+03 -2.2049454e-01 + 1.4440500e+03 -2.0049454e-01 + 1.4443000e+03 -1.8049454e-01 + 1.4445500e+03 -1.4049454e-01 + 1.4448000e+03 -8.0494540e-02 + 1.4450500e+03 -2.3049454e-01 + 1.4453000e+03 -4.7049454e-01 + 1.4455500e+03 -5.3049454e-01 + 1.4458000e+03 -4.7049454e-01 + 1.4460500e+03 -3.6049454e-01 + 1.4463000e+03 -2.1049454e-01 + 1.4465500e+03 1.0950546e-01 + 1.4468000e+03 4.5950546e-01 + 1.4470500e+03 4.9950546e-01 + 1.4473000e+03 4.6950546e-01 + 1.4475500e+03 5.2950546e-01 + 1.4478000e+03 7.0950546e-01 + 1.4480500e+03 8.2950546e-01 + 1.4483000e+03 7.3950546e-01 + 1.4485500e+03 6.6950546e-01 + 1.4488000e+03 4.8950546e-01 + 1.4490500e+03 3.7950546e-01 + 1.4493000e+03 2.5950546e-01 + 1.4495500e+03 8.9505460e-02 + 1.4498000e+03 -9.0494540e-02 + 1.4500500e+03 -3.1049454e-01 + 1.4503000e+03 -5.2049454e-01 + 1.4505500e+03 -6.7049454e-01 + 1.4508000e+03 -8.1049454e-01 + 1.4510500e+03 -8.9049454e-01 + 1.4513000e+03 -8.7049454e-01 + 1.4515500e+03 -7.2049454e-01 + 1.4518000e+03 -6.0049454e-01 + 1.4520500e+03 -3.3049454e-01 + 1.4523000e+03 -8.0494540e-02 + 1.4525500e+03 9.9505460e-02 + 1.4528000e+03 2.4950546e-01 + 1.4530500e+03 4.5950546e-01 + 1.4533000e+03 6.8950546e-01 + 1.4535500e+03 6.7950546e-01 + 1.4538000e+03 4.0950546e-01 + 1.4540500e+03 5.9505460e-02 + 1.4543000e+03 -2.6049454e-01 + 1.4545500e+03 -4.6049454e-01 + 1.4548000e+03 -5.5049454e-01 + 1.4550500e+03 -4.8049454e-01 + 1.4553000e+03 -3.0049454e-01 + 1.4555500e+03 1.1950546e-01 + 1.4558000e+03 3.2950546e-01 + 1.4560500e+03 2.9950546e-01 + 1.4563000e+03 4.2950546e-01 + 1.4565500e+03 4.3950546e-01 + 1.4568000e+03 4.4950546e-01 + 1.4570500e+03 4.3950546e-01 + 1.4573000e+03 3.7950546e-01 + 1.4575500e+03 2.7950546e-01 + 1.4578000e+03 3.4950546e-01 + 1.4580500e+03 1.7950546e-01 + 1.4583000e+03 -7.0494540e-02 + 1.4585500e+03 -1.7049454e-01 + 1.4588000e+03 -7.0494540e-02 + 1.4590500e+03 -3.0494540e-02 + 1.4593000e+03 5.9505460e-02 + 1.4595500e+03 2.9950546e-01 + 1.4598000e+03 5.4950546e-01 + 1.4600500e+03 4.3950546e-01 + 1.4603000e+03 1.9950546e-01 + 1.4605500e+03 -5.0494540e-02 + 1.4608000e+03 -2.0049454e-01 + 1.4610500e+03 -3.0049454e-01 + 1.4613000e+03 -2.1049454e-01 + 1.4615500e+03 -4.0494540e-02 + 1.4618000e+03 -1.0049454e-01 + 1.4620500e+03 -1.0494540e-02 + 1.4623000e+03 -1.0049454e-01 + 1.4625500e+03 -1.6049454e-01 + 1.4628000e+03 -3.7049454e-01 + 1.4630500e+03 -5.4049454e-01 + 1.4633000e+03 -7.4049454e-01 + 1.4635500e+03 -7.7049454e-01 + 1.4638000e+03 -6.1049454e-01 + 1.4640500e+03 -4.7049454e-01 + 1.4643000e+03 -3.8049454e-01 + 1.4645500e+03 -2.4049454e-01 + 1.4648000e+03 -1.0049454e-01 + 1.4650500e+03 -1.1049454e-01 + 1.4653000e+03 -1.0049454e-01 + 1.4655500e+03 -1.9049454e-01 + 1.4658000e+03 -2.2049454e-01 + 1.4660500e+03 -1.0049454e-01 + 1.4663000e+03 -4.0494540e-02 + 1.4665500e+03 1.9950546e-01 + 1.4668000e+03 3.1950546e-01 + 1.4670500e+03 2.2950546e-01 + 1.4673000e+03 2.0950546e-01 + 1.4675500e+03 1.6950546e-01 + 1.4678000e+03 5.9505460e-02 + 1.4680500e+03 5.9505460e-02 + 1.4683000e+03 3.9505460e-02 + 1.4685500e+03 9.9505460e-02 + 1.4688000e+03 3.9950546e-01 + 1.4690500e+03 5.1950546e-01 + 1.4693000e+03 3.7950546e-01 + 1.4695500e+03 2.4950546e-01 + 1.4698000e+03 2.8950546e-01 + 1.4700500e+03 4.5950546e-01 + 1.4703000e+03 4.8950546e-01 + 1.4705500e+03 4.5950546e-01 + 1.4708000e+03 4.0950546e-01 + 1.4710500e+03 3.4950546e-01 + 1.4713000e+03 2.1950546e-01 + 1.4715500e+03 1.2950546e-01 + 1.4718000e+03 1.8950546e-01 + 1.4720500e+03 3.0950546e-01 + 1.4723000e+03 1.4950546e-01 + 1.4725500e+03 -1.7049454e-01 + 1.4728000e+03 -4.9049454e-01 + 1.4730500e+03 -7.2049454e-01 + 1.4733000e+03 -8.4049454e-01 + 1.4735500e+03 -1.0204945e+00 + 1.4738000e+03 -1.0004945e+00 + 1.4740500e+03 -7.4049454e-01 + 1.4743000e+03 -5.8049454e-01 + 1.4745500e+03 -4.5049454e-01 + 1.4748000e+03 -1.8049454e-01 + 1.4750500e+03 4.9505460e-02 + 1.4753000e+03 1.4950546e-01 + 1.4755500e+03 1.8950546e-01 + 1.4758000e+03 2.8950546e-01 + 1.4760500e+03 2.3950546e-01 + 1.4763000e+03 1.9505460e-02 + 1.4765500e+03 -1.4049454e-01 + 1.4768000e+03 -3.3049454e-01 + 1.4770500e+03 -4.2049454e-01 + 1.4773000e+03 -4.7049454e-01 + 1.4775500e+03 -5.2049454e-01 + 1.4778000e+03 -4.1049454e-01 + 1.4780500e+03 -2.7049454e-01 + 1.4783000e+03 -5.0494540e-02 + 1.4785500e+03 2.4950546e-01 + 1.4788000e+03 3.5950546e-01 + 1.4790500e+03 3.6950546e-01 + 1.4793000e+03 5.8950546e-01 + 1.4795500e+03 6.8950546e-01 + 1.4798000e+03 5.9950546e-01 + 1.4800500e+03 5.6950546e-01 + 1.4803000e+03 6.5950546e-01 + 1.4805500e+03 7.7950546e-01 + 1.4808000e+03 8.1950546e-01 + 1.4810500e+03 7.0950546e-01 + 1.4813000e+03 4.2950546e-01 + 1.4815500e+03 1.4950546e-01 + 1.4818000e+03 4.9505460e-02 + 1.4820500e+03 -1.0494540e-02 + 1.4823000e+03 1.9505460e-02 + 1.4825500e+03 2.9505460e-02 + 1.4828000e+03 -8.0494540e-02 + 1.4830500e+03 -2.5049454e-01 + 1.4833000e+03 -3.9049454e-01 + 1.4835500e+03 -5.3049454e-01 + 1.4838000e+03 -4.6049454e-01 + 1.4840500e+03 -3.5049454e-01 + 1.4843000e+03 -3.9049454e-01 + 1.4845500e+03 -4.8049454e-01 + 1.4848000e+03 -4.6049454e-01 + 1.4850500e+03 -3.4049454e-01 + 1.4853000e+03 -3.2049454e-01 + 1.4855500e+03 -3.2049454e-01 + 1.4858000e+03 -8.0494540e-02 + 1.4860500e+03 -1.0049454e-01 + 1.4863000e+03 -2.1049454e-01 + 1.4865500e+03 -2.9049454e-01 + 1.4868000e+03 -3.2049454e-01 + 1.4870500e+03 -3.3049454e-01 + 1.4873000e+03 -3.9049454e-01 + 1.4875500e+03 -4.8049454e-01 + 1.4878000e+03 -4.7049454e-01 + 1.4880500e+03 -3.9049454e-01 + 1.4883000e+03 -2.8049454e-01 + 1.4885500e+03 -2.7049454e-01 + 1.4888000e+03 -3.5049454e-01 + 1.4890500e+03 -3.9049454e-01 + 1.4893000e+03 -3.6049454e-01 + 1.4895500e+03 -2.9049454e-01 + 1.4898000e+03 -1.8049454e-01 + 1.4900500e+03 -1.7049454e-01 + 1.4903000e+03 -1.7049454e-01 + 1.4905500e+03 -1.9049454e-01 + 1.4908000e+03 -1.0049454e-01 + 1.4910500e+03 1.2950546e-01 + 1.4913000e+03 5.4950546e-01 + 1.4915500e+03 9.1950546e-01 + 1.4918000e+03 1.3095055e+00 + 1.4920500e+03 1.6295055e+00 + 1.4923000e+03 1.8395055e+00 + 1.4925500e+03 1.8795055e+00 + 1.4928000e+03 1.3395055e+00 + 1.4930500e+03 5.7950546e-01 + 1.4933000e+03 9.9505460e-02 + 1.4935500e+03 -1.3049454e-01 + 1.4938000e+03 -2.6049454e-01 + 1.4940500e+03 -4.8049454e-01 + 1.4943000e+03 -6.7049454e-01 + 1.4945500e+03 -6.1049454e-01 + 1.4948000e+03 -5.2049454e-01 + 1.4950500e+03 -5.8049454e-01 + 1.4953000e+03 -5.5049454e-01 + 1.4955500e+03 -4.4049454e-01 + 1.4958000e+03 -5.1049454e-01 + 1.4960500e+03 -6.6049454e-01 + 1.4963000e+03 -7.0049454e-01 + 1.4965500e+03 -6.3049454e-01 + 1.4968000e+03 -5.1049454e-01 + 1.4970500e+03 -3.5049454e-01 + 1.4973000e+03 -7.0494540e-02 + 1.4975500e+03 6.9505460e-02 + 1.4978000e+03 -4.0494540e-02 + 1.4980500e+03 -1.5049454e-01 + 1.4983000e+03 -1.7049454e-01 + 1.4985500e+03 -1.2049454e-01 + 1.4988000e+03 -1.0049454e-01 + 1.4990500e+03 -1.3049454e-01 + 1.4993000e+03 -1.1049454e-01 + 1.4995500e+03 -2.0494540e-02 + 1.4998000e+03 6.9505460e-02 + 1.5000500e+03 4.9505460e-02 + 1.5003000e+03 -7.0494540e-02 + 1.5005500e+03 -1.2049454e-01 + 1.5008000e+03 -1.5049454e-01 + 1.5010500e+03 9.5054599e-03 + 1.5013000e+03 8.9505460e-02 + 1.5015500e+03 1.1950546e-01 + 1.5018000e+03 -6.0494540e-02 + 1.5020500e+03 -1.5049454e-01 + 1.5023000e+03 -6.0494540e-02 + 1.5025500e+03 1.2950546e-01 + 1.5028000e+03 1.8950546e-01 + 1.5030500e+03 1.2950546e-01 + 1.5033000e+03 1.2950546e-01 + 1.5035500e+03 3.2950546e-01 + 1.5038000e+03 6.2950546e-01 + 1.5040500e+03 7.5950546e-01 + 1.5043000e+03 9.0950546e-01 + 1.5045500e+03 9.2950546e-01 + 1.5048000e+03 6.8950546e-01 + 1.5050500e+03 3.4950546e-01 + 1.5053000e+03 2.0950546e-01 + 1.5055500e+03 9.5054599e-03 + 1.5058000e+03 -3.0049454e-01 + 1.5060500e+03 -5.2049454e-01 + 1.5063000e+03 -6.4049454e-01 + 1.5065500e+03 -6.1049454e-01 + 1.5068000e+03 -7.2049454e-01 + 1.5070500e+03 -8.6049454e-01 + 1.5073000e+03 -9.9049454e-01 + 1.5075500e+03 -9.7049454e-01 + 1.5078000e+03 -7.8049454e-01 + 1.5080500e+03 -4.3049454e-01 + 1.5083000e+03 -1.4049454e-01 + 1.5085500e+03 4.2950546e-01 + 1.5088000e+03 7.5950546e-01 + 1.5090500e+03 7.0950546e-01 + 1.5093000e+03 6.6950546e-01 + 1.5095500e+03 6.7950546e-01 + 1.5098000e+03 5.9950546e-01 + 1.5100500e+03 3.5950546e-01 + 1.5103000e+03 1.0950546e-01 + 1.5105500e+03 -1.0494540e-02 + 1.5108000e+03 -1.2049454e-01 + 1.5110500e+03 -1.6049454e-01 + 1.5113000e+03 -2.5049454e-01 + 1.5115500e+03 -2.8049454e-01 + 1.5118000e+03 -3.0049454e-01 + 1.5120500e+03 -2.7049454e-01 + 1.5123000e+03 -1.7049454e-01 + 1.5125500e+03 -6.0494540e-02 + 1.5128000e+03 2.9505460e-02 + 1.5130500e+03 1.2950546e-01 + 1.5133000e+03 1.6950546e-01 + 1.5135500e+03 3.9950546e-01 + 1.5138000e+03 4.3950546e-01 + 1.5140500e+03 3.2950546e-01 + 1.5143000e+03 1.7950546e-01 + 1.5145500e+03 7.9505460e-02 + 1.5148000e+03 -1.0049454e-01 + 1.5150500e+03 -3.1049454e-01 + 1.5153000e+03 -4.5049454e-01 + 1.5155500e+03 -6.6049454e-01 + 1.5158000e+03 -7.1049454e-01 + 1.5160500e+03 -6.0049454e-01 + 1.5163000e+03 -3.2049454e-01 + 1.5165500e+03 1.6950546e-01 + 1.5168000e+03 6.0950546e-01 + 1.5170500e+03 8.3950546e-01 + 1.5173000e+03 6.8950546e-01 + 1.5175500e+03 4.1950546e-01 + 1.5178000e+03 1.2950546e-01 + 1.5180500e+03 -8.0494540e-02 + 1.5183000e+03 -2.4049454e-01 + 1.5185500e+03 -3.0049454e-01 + 1.5188000e+03 -3.3049454e-01 + 1.5190500e+03 -3.7049454e-01 + 1.5193000e+03 -3.0049454e-01 + 1.5195500e+03 -2.1049454e-01 + 1.5198000e+03 -3.7049454e-01 + 1.5200500e+03 -4.2049454e-01 + 1.5203000e+03 -3.4049454e-01 + 1.5205500e+03 -2.9049454e-01 + 1.5208000e+03 -2.4049454e-01 + 1.5210500e+03 -3.8049454e-01 + 1.5213000e+03 -3.8049454e-01 + 1.5215500e+03 -2.3049454e-01 + 1.5218000e+03 6.9505460e-02 + 1.5220500e+03 3.7950546e-01 + 1.5223000e+03 6.4950546e-01 + 1.5225500e+03 8.1950546e-01 + 1.5228000e+03 1.0295055e+00 + 1.5230500e+03 1.0295055e+00 + 1.5233000e+03 8.9950546e-01 + 1.5235500e+03 5.9950546e-01 + 1.5238000e+03 4.1950546e-01 + 1.5240500e+03 7.9505460e-02 + 1.5243000e+03 -2.1049454e-01 + 1.5245500e+03 -3.1049454e-01 + 1.5248000e+03 -3.0049454e-01 + 1.5250500e+03 -2.2049454e-01 + 1.5253000e+03 -7.0494540e-02 + 1.5255500e+03 -3.0049454e-01 + 1.5258000e+03 -4.5049454e-01 + 1.5260500e+03 -5.1049454e-01 + 1.5263000e+03 -4.1049454e-01 + 1.5265500e+03 -3.1049454e-01 + 1.5268000e+03 -2.5049454e-01 + 1.5270500e+03 -9.0494540e-02 + 1.5273000e+03 1.1950546e-01 + 1.5275500e+03 2.8950546e-01 + 1.5278000e+03 1.4950546e-01 + 1.5280500e+03 1.1950546e-01 + 1.5283000e+03 2.2950546e-01 + 1.5285500e+03 2.9950546e-01 + 1.5288000e+03 1.8950546e-01 + 1.5290500e+03 -4.0494540e-02 + 1.5293000e+03 -2.1049454e-01 + 1.5295500e+03 -2.7049454e-01 + 1.5298000e+03 -2.8049454e-01 + 1.5300500e+03 -1.8049454e-01 + 1.5303000e+03 -2.0494540e-02 + 1.5305500e+03 2.1950546e-01 + 1.5308000e+03 4.2950546e-01 + 1.5310500e+03 3.7950546e-01 + 1.5313000e+03 2.6950546e-01 + 1.5315500e+03 -3.0494540e-02 + 1.5318000e+03 -1.7049454e-01 + 1.5320500e+03 -2.0049454e-01 + 1.5323000e+03 -7.0494540e-02 + 1.5325500e+03 -8.0494540e-02 + 1.5328000e+03 -1.2049454e-01 + 1.5330500e+03 -1.5049454e-01 + 1.5333000e+03 -1.8049454e-01 + 1.5335500e+03 -1.8049454e-01 + 1.5338000e+03 -1.4049454e-01 + 1.5340500e+03 -2.0494540e-02 + 1.5343000e+03 1.5950546e-01 + 1.5345500e+03 3.6950546e-01 + 1.5348000e+03 2.4950546e-01 + 1.5350500e+03 1.4950546e-01 + 1.5353000e+03 -1.0049454e-01 + 1.5355500e+03 -3.5049454e-01 + 1.5358000e+03 -5.1049454e-01 + 1.5360500e+03 -5.9049454e-01 + 1.5363000e+03 -4.3049454e-01 + 1.5365500e+03 -2.5049454e-01 + 1.5368000e+03 -2.6049454e-01 + 1.5370500e+03 -2.7049454e-01 + 1.5373000e+03 -3.4049454e-01 + 1.5375500e+03 -2.6049454e-01 + 1.5378000e+03 -6.0494540e-02 + 1.5380500e+03 1.1950546e-01 + 1.5383000e+03 1.3950546e-01 + 1.5385500e+03 1.0950546e-01 + 1.5388000e+03 9.9505460e-02 + 1.5390500e+03 2.2950546e-01 + 1.5393000e+03 4.3950546e-01 + 1.5395500e+03 5.7950546e-01 + 1.5398000e+03 4.9950546e-01 + 1.5400500e+03 2.5950546e-01 + 1.5403000e+03 1.5950546e-01 + 1.5405500e+03 2.1950546e-01 + 1.5408000e+03 1.7950546e-01 + 1.5410500e+03 1.5950546e-01 + 1.5413000e+03 6.9505460e-02 + 1.5415500e+03 -3.0494540e-02 + 1.5418000e+03 -2.6049454e-01 + 1.5420500e+03 -4.4049454e-01 + 1.5423000e+03 -7.1049454e-01 + 1.5425500e+03 -7.6049454e-01 + 1.5428000e+03 -5.9049454e-01 + 1.5430500e+03 -2.5049454e-01 + 1.5433000e+03 9.9505460e-02 + 1.5435500e+03 3.0950546e-01 + 1.5438000e+03 4.1950546e-01 + 1.5440500e+03 6.0950546e-01 + 1.5443000e+03 6.9950546e-01 + 1.5445500e+03 6.8950546e-01 + 1.5448000e+03 3.5950546e-01 + 1.5450500e+03 8.9505460e-02 + 1.5453000e+03 -6.0494540e-02 + 1.5455500e+03 -2.3049454e-01 + 1.5458000e+03 -2.9049454e-01 + 1.5460500e+03 -2.5049454e-01 + 1.5463000e+03 -2.9049454e-01 + 1.5465500e+03 -2.8049454e-01 + 1.5468000e+03 -3.6049454e-01 + 1.5470500e+03 -3.8049454e-01 + 1.5473000e+03 -1.3049454e-01 + 1.5475500e+03 8.9505460e-02 + 1.5478000e+03 5.9505460e-02 + 1.5480500e+03 -2.0494540e-02 + 1.5483000e+03 -1.3049454e-01 + 1.5485500e+03 -2.1049454e-01 + 1.5488000e+03 -3.1049454e-01 + 1.5490500e+03 -2.8049454e-01 + 1.5493000e+03 -8.0494540e-02 + 1.5495500e+03 9.9505460e-02 + 1.5498000e+03 1.7950546e-01 + 1.5500500e+03 3.8950546e-01 + 1.5503000e+03 6.1950546e-01 + 1.5505500e+03 6.6950546e-01 + 1.5508000e+03 6.4950546e-01 + 1.5510500e+03 6.3950546e-01 + 1.5513000e+03 5.3950546e-01 + 1.5515500e+03 1.2950546e-01 + 1.5518000e+03 -2.3049454e-01 + 1.5520500e+03 -4.4049454e-01 + 1.5523000e+03 -5.7049454e-01 + 1.5525500e+03 -5.5049454e-01 + 1.5528000e+03 -5.8049454e-01 + 1.5530500e+03 -4.0049454e-01 + 1.5533000e+03 -3.0049454e-01 + 1.5535500e+03 -2.2049454e-01 + 1.5538000e+03 -6.0494540e-02 + 1.5540500e+03 -4.0494540e-02 + 1.5543000e+03 -1.4049454e-01 + 1.5545500e+03 -1.0049454e-01 + 1.5548000e+03 1.9505460e-02 + 1.5550500e+03 7.9505460e-02 + 1.5553000e+03 7.9505460e-02 + 1.5555500e+03 8.9505460e-02 + 1.5558000e+03 3.9505460e-02 + 1.5560500e+03 5.9505460e-02 + 1.5563000e+03 1.6950546e-01 + 1.5565500e+03 2.2950546e-01 + 1.5568000e+03 2.6950546e-01 + 1.5570500e+03 1.8950546e-01 + 1.5573000e+03 1.1950546e-01 + 1.5575500e+03 2.0950546e-01 + 1.5578000e+03 2.4950546e-01 + 1.5580500e+03 2.7950546e-01 + 1.5583000e+03 1.8950546e-01 + 1.5585500e+03 -4.9454011e-04 + 1.5588000e+03 -9.0494540e-02 + 1.5590500e+03 -1.7049454e-01 + 1.5593000e+03 -2.2049454e-01 + 1.5595500e+03 -2.2049454e-01 + 1.5598000e+03 -3.2049454e-01 + 1.5600500e+03 -4.3049454e-01 + 1.5603000e+03 -5.5049454e-01 + 1.5605500e+03 -5.7049454e-01 + 1.5608000e+03 -5.8049454e-01 + 1.5610500e+03 -5.9049454e-01 + 1.5613000e+03 -6.1049454e-01 + 1.5615500e+03 -6.6049454e-01 + 1.5618000e+03 -6.6049454e-01 + 1.5620500e+03 -5.6049454e-01 + 1.5623000e+03 -3.8049454e-01 + 1.5625500e+03 -1.9049454e-01 + 1.5628000e+03 -7.0494540e-02 + 1.5630500e+03 -6.0494540e-02 + 1.5633000e+03 -6.0494540e-02 + 1.5635500e+03 1.7950546e-01 + 1.5638000e+03 3.7950546e-01 + 1.5640500e+03 4.8950546e-01 + 1.5643000e+03 6.5950546e-01 + 1.5645500e+03 6.3950546e-01 + 1.5648000e+03 5.6950546e-01 + 1.5650500e+03 5.7950546e-01 + 1.5653000e+03 5.3950546e-01 + 1.5655500e+03 4.6950546e-01 + 1.5658000e+03 4.0950546e-01 + 1.5660500e+03 4.6950546e-01 + 1.5663000e+03 4.4950546e-01 + 1.5665500e+03 5.2950546e-01 + 1.5668000e+03 1.5950546e-01 + 1.5670500e+03 -1.5049454e-01 + 1.5673000e+03 -2.1049454e-01 + 1.5675500e+03 -2.0049454e-01 + 1.5678000e+03 -1.9049454e-01 + 1.5680500e+03 -1.1049454e-01 + 1.5683000e+03 8.9505460e-02 + 1.5685500e+03 3.4950546e-01 + 1.5688000e+03 4.3950546e-01 + 1.5690500e+03 5.0950546e-01 + 1.5693000e+03 5.7950546e-01 + 1.5695500e+03 4.9950546e-01 + 1.5698000e+03 2.4950546e-01 + 1.5700500e+03 -1.3049454e-01 + 1.5703000e+03 -3.7049454e-01 + 1.5705500e+03 -4.5049454e-01 + 1.5708000e+03 -5.5049454e-01 + 1.5710500e+03 -7.7049454e-01 + 1.5713000e+03 -9.0049454e-01 + 1.5715500e+03 -1.0804945e+00 + 1.5718000e+03 -1.1304945e+00 + 1.5720500e+03 -1.2004945e+00 + 1.5723000e+03 -9.6049454e-01 + 1.5725500e+03 -5.9049454e-01 + 1.5728000e+03 -1.8049454e-01 + 1.5730500e+03 3.0950546e-01 + 1.5733000e+03 7.5950546e-01 + 1.5735500e+03 9.8950546e-01 + 1.5738000e+03 9.5950546e-01 + 1.5740500e+03 8.2950546e-01 + 1.5743000e+03 4.4950546e-01 + 1.5745500e+03 1.3950546e-01 + 1.5748000e+03 -2.0494540e-02 + 1.5750500e+03 -1.8049454e-01 + 1.5753000e+03 -3.6049454e-01 + 1.5755500e+03 -5.1049454e-01 + 1.5758000e+03 -5.2049454e-01 + 1.5760500e+03 -3.3049454e-01 + 1.5763000e+03 -2.9049454e-01 + 1.5765500e+03 -1.3049454e-01 + 1.5768000e+03 1.9950546e-01 + 1.5770500e+03 3.6950546e-01 + 1.5773000e+03 3.1950546e-01 + 1.5775500e+03 3.0950546e-01 + 1.5778000e+03 4.3950546e-01 + 1.5780500e+03 5.4950546e-01 + 1.5783000e+03 4.0950546e-01 + 1.5785500e+03 3.9950546e-01 + 1.5788000e+03 4.1950546e-01 + 1.5790500e+03 4.4950546e-01 + 1.5793000e+03 5.1950546e-01 + 1.5795500e+03 5.9950546e-01 + 1.5798000e+03 5.0950546e-01 + 1.5800500e+03 2.5950546e-01 + 1.5803000e+03 -1.0494540e-02 + 1.5805500e+03 -1.4049454e-01 + 1.5808000e+03 -2.3049454e-01 + 1.5810500e+03 -3.4049454e-01 + 1.5813000e+03 -3.8049454e-01 + 1.5815500e+03 -3.7049454e-01 + 1.5818000e+03 -1.4049454e-01 + 1.5820500e+03 -2.4049454e-01 + 1.5823000e+03 -2.4049454e-01 + 1.5825500e+03 -2.2049454e-01 + 1.5828000e+03 -3.0049454e-01 + 1.5830500e+03 -4.8049454e-01 + 1.5833000e+03 -6.3049454e-01 + 1.5835500e+03 -7.2049454e-01 + 1.5838000e+03 -7.3049454e-01 + 1.5840500e+03 -6.6049454e-01 + 1.5843000e+03 -4.8049454e-01 + 1.5845500e+03 -3.0049454e-01 + 1.5848000e+03 -2.6049454e-01 + 1.5850500e+03 -1.2049454e-01 + 1.5853000e+03 -4.0494540e-02 + 1.5855500e+03 6.9505460e-02 + 1.5858000e+03 1.3950546e-01 + 1.5860500e+03 2.8950546e-01 + 1.5863000e+03 4.0950546e-01 + 1.5865500e+03 4.5950546e-01 + 1.5868000e+03 4.1950546e-01 + 1.5870500e+03 2.7950546e-01 + 1.5873000e+03 1.2950546e-01 + 1.5875500e+03 -2.0494540e-02 + 1.5878000e+03 -3.0494540e-02 + 1.5880500e+03 9.5054599e-03 + 1.5883000e+03 -1.2049454e-01 + 1.5885500e+03 -1.3049454e-01 + 1.5888000e+03 5.9505460e-02 + 1.5890500e+03 1.4950546e-01 + 1.5893000e+03 3.7950546e-01 + 1.5895500e+03 4.5950546e-01 + 1.5898000e+03 4.4950546e-01 + 1.5900500e+03 4.2950546e-01 + 1.5903000e+03 2.5950546e-01 + 1.5905500e+03 1.3950546e-01 + 1.5908000e+03 1.6950546e-01 + 1.5910500e+03 2.3950546e-01 + 1.5913000e+03 2.1950546e-01 + 1.5915500e+03 6.9505460e-02 + 1.5918000e+03 -8.0494540e-02 + 1.5920500e+03 -1.6049454e-01 + 1.5923000e+03 -2.3049454e-01 + 1.5925500e+03 -2.5049454e-01 + 1.5928000e+03 -2.5049454e-01 + 1.5930500e+03 -1.7049454e-01 + 1.5933000e+03 -2.8049454e-01 + 1.5935500e+03 -4.1049454e-01 + 1.5938000e+03 -5.8049454e-01 + 1.5940500e+03 -6.6049454e-01 + 1.5943000e+03 -5.9049454e-01 + 1.5945500e+03 -4.2049454e-01 + 1.5948000e+03 -2.8049454e-01 + 1.5950500e+03 -1.2049454e-01 + 1.5953000e+03 7.9505460e-02 + 1.5955500e+03 4.9505460e-02 + 1.5958000e+03 -1.0049454e-01 + 1.5960500e+03 -3.3049454e-01 + 1.5963000e+03 -4.1049454e-01 + 1.5965500e+03 -3.2049454e-01 + 1.5968000e+03 -1.4049454e-01 + 1.5970500e+03 -1.8049454e-01 + 1.5973000e+03 -6.0494540e-02 + 1.5975500e+03 1.2950546e-01 + 1.5978000e+03 1.0950546e-01 + 1.5980500e+03 9.9505460e-02 + 1.5983000e+03 7.9505460e-02 + 1.5985500e+03 -1.0494540e-02 + 1.5988000e+03 1.9505460e-02 + 1.5990500e+03 1.0950546e-01 + 1.5993000e+03 2.0950546e-01 + 1.5995500e+03 9.5054599e-03 + 1.5998000e+03 -2.0049454e-01 + 1.6000500e+03 -1.7049454e-01 + 1.6003000e+03 -1.4049454e-01 + 1.6005500e+03 -8.0494540e-02 + 1.6008000e+03 3.9505460e-02 + 1.6010500e+03 2.2950546e-01 + 1.6013000e+03 3.0950546e-01 + 1.6015500e+03 2.6950546e-01 + 1.6018000e+03 1.4950546e-01 + 1.6020500e+03 5.9505460e-02 + 1.6023000e+03 1.1950546e-01 + 1.6025500e+03 2.7950546e-01 + 1.6028000e+03 3.6950546e-01 + 1.6030500e+03 4.0950546e-01 + 1.6033000e+03 3.3950546e-01 + 1.6035500e+03 2.5950546e-01 + 1.6038000e+03 1.6950546e-01 + 1.6040500e+03 1.0950546e-01 + 1.6043000e+03 9.9505460e-02 + 1.6045500e+03 -2.0494540e-02 + 1.6048000e+03 -1.9049454e-01 + 1.6050500e+03 -3.3049454e-01 + 1.6053000e+03 -3.7049454e-01 + 1.6055500e+03 -4.9049454e-01 + 1.6058000e+03 -6.1049454e-01 + 1.6060500e+03 -6.3049454e-01 + 1.6063000e+03 -5.5049454e-01 + 1.6065500e+03 -3.5049454e-01 + 1.6068000e+03 4.9505460e-02 + 1.6070500e+03 2.5950546e-01 + 1.6073000e+03 3.0950546e-01 + 1.6075500e+03 3.9505460e-02 + 1.6078000e+03 -2.5049454e-01 + 1.6080500e+03 -4.5049454e-01 + 1.6083000e+03 -6.2049454e-01 + 1.6085500e+03 -6.6049454e-01 + 1.6088000e+03 -6.1049454e-01 + 1.6090500e+03 -4.7049454e-01 + 1.6093000e+03 -2.3049454e-01 + 1.6095500e+03 1.9505460e-02 + 1.6098000e+03 1.6950546e-01 + 1.6100500e+03 3.4950546e-01 + 1.6103000e+03 6.0950546e-01 + 1.6105500e+03 8.8950546e-01 + 1.6108000e+03 1.0095055e+00 + 1.6110500e+03 9.5950546e-01 + 1.6113000e+03 7.3950546e-01 + 1.6115500e+03 3.8950546e-01 + 1.6118000e+03 4.9505460e-02 + 1.6120500e+03 -2.1049454e-01 + 1.6123000e+03 -3.8049454e-01 + 1.6125500e+03 -5.6049454e-01 + 1.6128000e+03 -6.0049454e-01 + 1.6130500e+03 -5.6049454e-01 + 1.6133000e+03 -7.0049454e-01 + 1.6135500e+03 -6.8049454e-01 + 1.6138000e+03 -5.6049454e-01 + 1.6140500e+03 -3.0049454e-01 + 1.6143000e+03 -1.6049454e-01 + 1.6145500e+03 -3.0494540e-02 + 1.6148000e+03 1.1950546e-01 + 1.6150500e+03 3.5950546e-01 + 1.6153000e+03 6.4950546e-01 + 1.6155500e+03 1.0695055e+00 + 1.6158000e+03 1.3195055e+00 + 1.6160500e+03 1.3095055e+00 + 1.6163000e+03 7.5950546e-01 + 1.6165500e+03 2.2950546e-01 + 1.6168000e+03 -1.2049454e-01 + 1.6170500e+03 -2.5049454e-01 + 1.6173000e+03 -3.8049454e-01 + 1.6175500e+03 -5.2049454e-01 + 1.6178000e+03 -5.3049454e-01 + 1.6180500e+03 -3.3049454e-01 + 1.6183000e+03 2.0950546e-01 + 1.6185500e+03 4.8950546e-01 + 1.6188000e+03 1.1950546e-01 + 1.6190500e+03 -2.6049454e-01 + 1.6193000e+03 -4.2049454e-01 + 1.6195500e+03 -5.3049454e-01 + 1.6198000e+03 -6.9049454e-01 + 1.6200500e+03 -6.5049454e-01 + 1.6203000e+03 -4.9049454e-01 + 1.6205500e+03 -3.5049454e-01 + 1.6208000e+03 -1.8049454e-01 + 1.6210500e+03 -1.2049454e-01 + 1.6213000e+03 9.5054599e-03 + 1.6215500e+03 7.9505460e-02 + 1.6218000e+03 1.8950546e-01 + 1.6220500e+03 3.2950546e-01 + 1.6223000e+03 6.1950546e-01 + 1.6225500e+03 6.0950546e-01 + 1.6228000e+03 4.0950546e-01 + 1.6230500e+03 3.3950546e-01 + 1.6233000e+03 3.2950546e-01 + 1.6235500e+03 2.7950546e-01 + 1.6238000e+03 1.7950546e-01 + 1.6240500e+03 1.6950546e-01 + 1.6243000e+03 2.2950546e-01 + 1.6245500e+03 2.7950546e-01 + 1.6248000e+03 2.7950546e-01 + 1.6250500e+03 1.5950546e-01 + 1.6253000e+03 9.9505460e-02 + 1.6255500e+03 8.9505460e-02 + 1.6258000e+03 1.1950546e-01 + 1.6260500e+03 2.0950546e-01 + 1.6263000e+03 1.6950546e-01 + 1.6265500e+03 9.5054599e-03 + 1.6268000e+03 -3.9049454e-01 + 1.6270500e+03 -7.5049454e-01 + 1.6273000e+03 -8.9049454e-01 + 1.6275500e+03 -1.0004945e+00 + 1.6278000e+03 -9.0049454e-01 + 1.6280500e+03 -8.5049454e-01 + 1.6283000e+03 -7.5049454e-01 + 1.6285500e+03 -5.6049454e-01 + 1.6288000e+03 -2.9049454e-01 + 1.6290500e+03 5.9505460e-02 + 1.6293000e+03 1.4950546e-01 + 1.6295500e+03 2.8950546e-01 + 1.6298000e+03 4.2950546e-01 + 1.6300500e+03 3.7950546e-01 + 1.6303000e+03 3.6950546e-01 + 1.6305500e+03 2.9950546e-01 + 1.6308000e+03 2.0950546e-01 + 1.6310500e+03 9.9505460e-02 + 1.6313000e+03 1.9505460e-02 + 1.6315500e+03 -6.0494540e-02 + 1.6318000e+03 -1.5049454e-01 + 1.6320500e+03 -3.3049454e-01 + 1.6323000e+03 -4.8049454e-01 + 1.6325500e+03 -5.3049454e-01 + 1.6328000e+03 -5.0049454e-01 + 1.6330500e+03 -3.6049454e-01 + 1.6333000e+03 -1.5049454e-01 + 1.6335500e+03 1.2950546e-01 + 1.6338000e+03 4.0950546e-01 + 1.6340500e+03 6.7950546e-01 + 1.6343000e+03 7.0950546e-01 + 1.6345500e+03 5.9950546e-01 + 1.6348000e+03 4.5950546e-01 + 1.6350500e+03 3.2950546e-01 + 1.6353000e+03 2.0950546e-01 + 1.6355500e+03 1.7950546e-01 + 1.6358000e+03 1.7950546e-01 + 1.6360500e+03 2.4950546e-01 + 1.6363000e+03 3.5950546e-01 + 1.6365500e+03 4.9950546e-01 + 1.6368000e+03 3.3950546e-01 + 1.6370500e+03 -3.0494540e-02 + 1.6373000e+03 -2.0049454e-01 + 1.6375500e+03 -3.0049454e-01 + 1.6378000e+03 -3.6049454e-01 + 1.6380500e+03 -3.4049454e-01 + 1.6383000e+03 -3.7049454e-01 + 1.6385500e+03 -5.0049454e-01 + 1.6388000e+03 -5.4049454e-01 + 1.6390500e+03 -6.1049454e-01 + 1.6393000e+03 -6.5049454e-01 + 1.6395500e+03 -6.1049454e-01 + 1.6398000e+03 -4.6049454e-01 + 1.6400500e+03 -2.7049454e-01 + 1.6403000e+03 -3.0494540e-02 + 1.6405500e+03 4.3950546e-01 + 1.6408000e+03 6.8950546e-01 + 1.6410500e+03 6.8950546e-01 + 1.6413000e+03 5.7950546e-01 + 1.6415500e+03 3.7950546e-01 + 1.6418000e+03 1.5950546e-01 + 1.6420500e+03 2.9505460e-02 + 1.6423000e+03 -1.3049454e-01 + 1.6425500e+03 -3.2049454e-01 + 1.6428000e+03 -6.1049454e-01 + 1.6430500e+03 -6.7049454e-01 + 1.6433000e+03 -5.4049454e-01 + 1.6435500e+03 -5.5049454e-01 + 1.6438000e+03 -3.7049454e-01 + 1.6440500e+03 -1.2049454e-01 + 1.6443000e+03 1.8950546e-01 + 1.6445500e+03 5.7950546e-01 + 1.6448000e+03 7.8950546e-01 + 1.6450500e+03 8.7950546e-01 + 1.6453000e+03 9.2950546e-01 + 1.6455500e+03 8.3950546e-01 + 1.6458000e+03 8.4950546e-01 + 1.6460500e+03 8.2950546e-01 + 1.6463000e+03 6.4950546e-01 + 1.6465500e+03 5.4950546e-01 + 1.6468000e+03 2.8950546e-01 + 1.6470500e+03 -3.0494540e-02 + 1.6473000e+03 -4.6049454e-01 + 1.6475500e+03 -7.5049454e-01 + 1.6478000e+03 -9.6049454e-01 + 1.6480500e+03 -1.3304945e+00 + 1.6483000e+03 -1.3704945e+00 + 1.6485500e+03 -1.3404945e+00 + 1.6488000e+03 -1.2204945e+00 + 1.6490500e+03 -1.1204945e+00 + 1.6493000e+03 -8.7049454e-01 + 1.6495500e+03 -5.1049454e-01 + 1.6498000e+03 9.9505460e-02 + 1.6500500e+03 3.0950546e-01 + 1.6503000e+03 5.3950546e-01 + 1.6505500e+03 9.0950546e-01 + 1.6508000e+03 1.1495055e+00 + 1.6510500e+03 1.3295055e+00 + 1.6513000e+03 9.1950546e-01 + 1.6515500e+03 5.3950546e-01 + 1.6518000e+03 3.0950546e-01 + 1.6520500e+03 9.9505460e-02 + 1.6523000e+03 5.9505460e-02 + 1.6525500e+03 -1.0049454e-01 + 1.6528000e+03 -2.5049454e-01 + 1.6530500e+03 -2.4049454e-01 + 1.6533000e+03 -4.0494540e-02 + 1.6535500e+03 -2.2049454e-01 + 1.6538000e+03 -3.9049454e-01 + 1.6540500e+03 -3.7049454e-01 + 1.6543000e+03 -3.2049454e-01 + 1.6545500e+03 -2.4049454e-01 + 1.6548000e+03 -1.9049454e-01 + 1.6550500e+03 -1.5049454e-01 + 1.6553000e+03 -1.5049454e-01 + 1.6555500e+03 -8.0494540e-02 + 1.6558000e+03 3.9505460e-02 + 1.6560500e+03 1.6950546e-01 + 1.6563000e+03 5.1950546e-01 + 1.6565500e+03 6.5950546e-01 + 1.6568000e+03 6.3950546e-01 + 1.6570500e+03 4.9950546e-01 + 1.6573000e+03 2.7950546e-01 + 1.6575500e+03 1.9950546e-01 + 1.6578000e+03 6.9505460e-02 + 1.6580500e+03 -4.0494540e-02 + 1.6583000e+03 -1.4049454e-01 + 1.6585500e+03 -1.6049454e-01 + 1.6588000e+03 2.9505460e-02 + 1.6590500e+03 1.4950546e-01 + 1.6593000e+03 6.9505460e-02 + 1.6595500e+03 9.5054599e-03 + 1.6598000e+03 -1.2049454e-01 + 1.6600500e+03 -1.6049454e-01 + 1.6603000e+03 -2.7049454e-01 + 1.6605500e+03 -3.4049454e-01 + 1.6608000e+03 -3.2049454e-01 + 1.6610500e+03 -1.8049454e-01 + 1.6613000e+03 9.5054599e-03 + 1.6615500e+03 2.9505460e-02 + 1.6618000e+03 -4.0494540e-02 + 1.6620500e+03 -5.0494540e-02 + 1.6623000e+03 2.9505460e-02 + 1.6625500e+03 2.9505460e-02 + 1.6628000e+03 6.9505460e-02 + 1.6630500e+03 1.8950546e-01 + 1.6633000e+03 3.3950546e-01 + 1.6635500e+03 6.7950546e-01 + 1.6638000e+03 7.6950546e-01 + 1.6640500e+03 6.2950546e-01 + 1.6643000e+03 4.4950546e-01 + 1.6645500e+03 2.5950546e-01 + 1.6648000e+03 6.9505460e-02 + 1.6650500e+03 -2.9049454e-01 + 1.6653000e+03 -5.9049454e-01 + 1.6655500e+03 -7.5049454e-01 + 1.6658000e+03 -9.4049454e-01 + 1.6660500e+03 -8.7049454e-01 + 1.6663000e+03 -9.7049454e-01 + 1.6665500e+03 -8.7049454e-01 + 1.6668000e+03 -6.9049454e-01 + 1.6670500e+03 -5.8049454e-01 + 1.6673000e+03 -4.1049454e-01 + 1.6675500e+03 -2.6049454e-01 + 1.6678000e+03 -1.1049454e-01 + 1.6680500e+03 3.9505460e-02 + 1.6683000e+03 1.9950546e-01 + 1.6685500e+03 2.9950546e-01 + 1.6688000e+03 2.3950546e-01 + 1.6690500e+03 8.9505460e-02 + 1.6693000e+03 -1.0494540e-02 + 1.6695500e+03 -3.0494540e-02 + 1.6698000e+03 3.9505460e-02 + 1.6700500e+03 9.9505460e-02 + 1.6703000e+03 2.0950546e-01 + 1.6705500e+03 2.5950546e-01 + 1.6708000e+03 2.1950546e-01 + 1.6710500e+03 2.3950546e-01 + 1.6713000e+03 3.4950546e-01 + 1.6715500e+03 4.2950546e-01 + 1.6718000e+03 4.9950546e-01 + 1.6720500e+03 8.2950546e-01 + 1.6723000e+03 9.1950546e-01 + 1.6725500e+03 7.6950546e-01 + 1.6728000e+03 5.4950546e-01 + 1.6730500e+03 2.0950546e-01 + 1.6733000e+03 -1.3049454e-01 + 1.6735500e+03 -5.3049454e-01 + 1.6738000e+03 -7.5049454e-01 + 1.6740500e+03 -8.5049454e-01 + 1.6743000e+03 -8.2049454e-01 + 1.6745500e+03 -6.0049454e-01 + 1.6748000e+03 -5.0049454e-01 + 1.6750500e+03 -2.2049454e-01 + 1.6753000e+03 -3.0494540e-02 + 1.6755500e+03 2.2950546e-01 + 1.6758000e+03 2.0950546e-01 + 1.6760500e+03 -7.0494540e-02 + 1.6763000e+03 -2.9049454e-01 + 1.6765500e+03 -4.0049454e-01 + 1.6768000e+03 -4.1049454e-01 + 1.6770500e+03 -3.6049454e-01 + 1.6773000e+03 -3.3049454e-01 + 1.6775500e+03 -2.4049454e-01 + 1.6778000e+03 -1.0049454e-01 + 1.6780500e+03 -1.1049454e-01 + 1.6783000e+03 -4.0494540e-02 + 1.6785500e+03 1.5950546e-01 + 1.6788000e+03 2.6950546e-01 + 1.6790500e+03 2.1950546e-01 + 1.6793000e+03 2.5950546e-01 + 1.6795500e+03 3.5950546e-01 + 1.6798000e+03 5.6950546e-01 + 1.6800500e+03 5.7950546e-01 + 1.6803000e+03 6.6950546e-01 + 1.6805500e+03 6.4950546e-01 + 1.6808000e+03 5.0950546e-01 + 1.6810500e+03 2.3950546e-01 + 1.6813000e+03 9.5054599e-03 + 1.6815500e+03 -2.6049454e-01 + 1.6818000e+03 -4.8049454e-01 + 1.6820500e+03 -5.8049454e-01 + 1.6823000e+03 -4.2049454e-01 + 1.6825500e+03 -2.6049454e-01 + 1.6828000e+03 -2.3049454e-01 + 1.6830500e+03 -1.7049454e-01 + 1.6833000e+03 -2.8049454e-01 + 1.6835500e+03 -2.2049454e-01 + 1.6838000e+03 -1.4049454e-01 + 1.6840500e+03 -8.0494540e-02 + 1.6843000e+03 -7.0494540e-02 + 1.6845500e+03 1.9505460e-02 + 1.6848000e+03 1.0950546e-01 + 1.6850500e+03 1.0950546e-01 + 1.6853000e+03 4.9505460e-02 + 1.6855500e+03 -3.0494540e-02 + 1.6858000e+03 -7.0494540e-02 + 1.6860500e+03 -8.0494540e-02 + 1.6863000e+03 1.9505460e-02 + 1.6865500e+03 -3.0494540e-02 + 1.6868000e+03 -2.7049454e-01 + 1.6870500e+03 -4.1049454e-01 + 1.6873000e+03 -4.2049454e-01 + 1.6875500e+03 -5.1049454e-01 + 1.6878000e+03 -5.7049454e-01 + 1.6880500e+03 -4.1049454e-01 + 1.6883000e+03 -1.8049454e-01 + 1.6885500e+03 1.8950546e-01 + 1.6888000e+03 7.4950546e-01 + 1.6890500e+03 1.0495055e+00 + 1.6893000e+03 1.1595055e+00 + 1.6895500e+03 1.0695055e+00 + 1.6898000e+03 6.9950546e-01 + 1.6900500e+03 4.5950546e-01 + 1.6903000e+03 3.2950546e-01 + 1.6905500e+03 1.7950546e-01 + 1.6908000e+03 6.9505460e-02 + 1.6910500e+03 -2.4049454e-01 + 1.6913000e+03 -4.1049454e-01 + 1.6915500e+03 -5.1049454e-01 + 1.6918000e+03 -4.5049454e-01 + 1.6920500e+03 -4.9049454e-01 + 1.6923000e+03 -6.4049454e-01 + 1.6925500e+03 -5.7049454e-01 + 1.6928000e+03 -5.4049454e-01 + 1.6930500e+03 -5.5049454e-01 + 1.6933000e+03 -3.5049454e-01 + 1.6935500e+03 -4.0049454e-01 + 1.6938000e+03 -4.0049454e-01 + 1.6940500e+03 -3.6049454e-01 + 1.6943000e+03 -3.5049454e-01 + 1.6945500e+03 -3.1049454e-01 + 1.6948000e+03 -2.7049454e-01 + 1.6950500e+03 -2.5049454e-01 + 1.6953000e+03 -9.0494540e-02 + 1.6955500e+03 2.5950546e-01 + 1.6958000e+03 4.9950546e-01 + 1.6960500e+03 5.2950546e-01 + 1.6963000e+03 4.1950546e-01 + 1.6965500e+03 2.1950546e-01 + 1.6968000e+03 1.3950546e-01 + 1.6970500e+03 1.9950546e-01 + 1.6973000e+03 2.4950546e-01 + 1.6975500e+03 2.9950546e-01 + 1.6978000e+03 3.6950546e-01 + 1.6980500e+03 4.8950546e-01 + 1.6983000e+03 4.4950546e-01 + 1.6985500e+03 5.4950546e-01 + 1.6988000e+03 4.7950546e-01 + 1.6990500e+03 3.1950546e-01 + 1.6993000e+03 3.9505460e-02 + 1.6995500e+03 -1.6049454e-01 + 1.6998000e+03 -2.3049454e-01 + 1.7000500e+03 -3.3049454e-01 + 1.7003000e+03 -4.3049454e-01 + 1.7005500e+03 -3.9049454e-01 + 1.7008000e+03 -1.8049454e-01 + 1.7010500e+03 -2.0494540e-02 + 1.7013000e+03 -1.0049454e-01 + 1.7015500e+03 -9.0494540e-02 + 1.7018000e+03 9.5054599e-03 + 1.7020500e+03 1.1950546e-01 + 1.7023000e+03 8.9505460e-02 + 1.7025500e+03 5.9505460e-02 + 1.7028000e+03 4.9505460e-02 + 1.7030500e+03 6.9505460e-02 + 1.7033000e+03 1.9505460e-02 + 1.7035500e+03 -5.0494540e-02 + 1.7038000e+03 -1.2049454e-01 + 1.7040500e+03 -1.0049454e-01 + 1.7043000e+03 4.9505460e-02 + 1.7045500e+03 9.9505460e-02 + 1.7048000e+03 3.9505460e-02 + 1.7050500e+03 -8.0494540e-02 + 1.7053000e+03 -8.0494540e-02 + 1.7055500e+03 -1.5049454e-01 + 1.7058000e+03 -3.5049454e-01 + 1.7060500e+03 -3.5049454e-01 + 1.7063000e+03 -4.3049454e-01 + 1.7065500e+03 -4.4049454e-01 + 1.7068000e+03 -3.8049454e-01 + 1.7070500e+03 -4.9049454e-01 + 1.7073000e+03 -4.7049454e-01 + 1.7075500e+03 -4.4049454e-01 + 1.7078000e+03 -4.2049454e-01 + 1.7080500e+03 -5.3049454e-01 + 1.7083000e+03 -6.0049454e-01 + 1.7085500e+03 -6.0049454e-01 + 1.7088000e+03 -5.9049454e-01 + 1.7090500e+03 -4.7049454e-01 + 1.7093000e+03 -2.1049454e-01 + 1.7095500e+03 1.6950546e-01 + 1.7098000e+03 9.8950546e-01 + 1.7100500e+03 1.6995055e+00 + 1.7103000e+03 1.8195055e+00 + 1.7105500e+03 1.6395055e+00 + 1.7108000e+03 1.1895055e+00 + 1.7110500e+03 9.7950546e-01 + 1.7113000e+03 6.8950546e-01 + 1.7115500e+03 2.9950546e-01 + 1.7118000e+03 1.9505460e-02 + 1.7120500e+03 -2.7049454e-01 + 1.7123000e+03 -4.0049454e-01 + 1.7125500e+03 -4.9049454e-01 + 1.7128000e+03 -4.1049454e-01 + 1.7130500e+03 -3.6049454e-01 + 1.7133000e+03 -3.4049454e-01 + 1.7135500e+03 -3.0049454e-01 + 1.7138000e+03 -2.9049454e-01 + 1.7140500e+03 -3.7049454e-01 + 1.7143000e+03 -4.4049454e-01 + 1.7145500e+03 -4.5049454e-01 + 1.7148000e+03 -3.5049454e-01 + 1.7150500e+03 -1.9049454e-01 + 1.7153000e+03 -1.4049454e-01 + 1.7155500e+03 -1.2049454e-01 + 1.7158000e+03 -6.0494540e-02 + 1.7160500e+03 2.9505460e-02 + 1.7163000e+03 1.6950546e-01 + 1.7165500e+03 5.9505460e-02 + 1.7168000e+03 -1.3049454e-01 + 1.7170500e+03 -2.1049454e-01 + 1.7173000e+03 -2.9049454e-01 + 1.7175500e+03 -2.7049454e-01 + 1.7178000e+03 -1.8049454e-01 + 1.7180500e+03 -9.0494540e-02 + 1.7183000e+03 -1.0494540e-02 + 1.7185500e+03 -7.0494540e-02 + 1.7188000e+03 -5.0494540e-02 + 1.7190500e+03 -5.0494540e-02 + 1.7193000e+03 -1.1049454e-01 + 1.7195500e+03 -9.0494540e-02 + 1.7198000e+03 -3.0494540e-02 + 1.7200500e+03 3.9505460e-02 + 1.7203000e+03 6.9505460e-02 + 1.7205500e+03 1.9505460e-02 + 1.7208000e+03 -4.0494540e-02 + 1.7210500e+03 1.9505460e-02 + 1.7213000e+03 6.9505460e-02 + 1.7215500e+03 1.6950546e-01 + 1.7218000e+03 4.4950546e-01 + 1.7220500e+03 5.1950546e-01 + 1.7223000e+03 4.0950546e-01 + 1.7225500e+03 2.5950546e-01 + 1.7228000e+03 1.6950546e-01 + 1.7230500e+03 1.1950546e-01 + 1.7233000e+03 1.7950546e-01 + 1.7235500e+03 3.8950546e-01 + 1.7238000e+03 6.2950546e-01 + 1.7240500e+03 7.5950546e-01 + 1.7243000e+03 7.1950546e-01 + 1.7245500e+03 6.2950546e-01 + 1.7248000e+03 2.4950546e-01 + 1.7250500e+03 -3.1049454e-01 + 1.7253000e+03 -7.2049454e-01 + 1.7255500e+03 -9.2049454e-01 + 1.7258000e+03 -9.7049454e-01 + 1.7260500e+03 -8.3049454e-01 + 1.7263000e+03 -5.8049454e-01 + 1.7265500e+03 -5.8049454e-01 + 1.7268000e+03 -5.4049454e-01 + 1.7270500e+03 -6.5049454e-01 + 1.7273000e+03 -6.2049454e-01 + 1.7275500e+03 -4.4049454e-01 + 1.7278000e+03 -2.5049454e-01 + 1.7280500e+03 -3.0494540e-02 + 1.7283000e+03 1.6950546e-01 + 1.7285500e+03 2.1950546e-01 + 1.7288000e+03 1.7950546e-01 + 1.7290500e+03 1.5950546e-01 + 1.7293000e+03 2.9950546e-01 + 1.7295500e+03 3.4950546e-01 + 1.7298000e+03 2.5950546e-01 + 1.7300500e+03 3.9505460e-02 + 1.7303000e+03 -1.9049454e-01 + 1.7305500e+03 -2.9049454e-01 + 1.7308000e+03 -2.8049454e-01 + 1.7310500e+03 -2.9049454e-01 + 1.7313000e+03 -3.4049454e-01 + 1.7315500e+03 -1.6049454e-01 + 1.7318000e+03 1.6950546e-01 + 1.7320500e+03 2.7950546e-01 + 1.7323000e+03 3.3950546e-01 + 1.7325500e+03 2.6950546e-01 + 1.7328000e+03 1.5950546e-01 + 1.7330500e+03 1.3950546e-01 + 1.7333000e+03 2.2950546e-01 + 1.7335500e+03 1.3950546e-01 + 1.7338000e+03 2.9505460e-02 + 1.7340500e+03 -2.0494540e-02 + 1.7343000e+03 3.9505460e-02 + 1.7345500e+03 1.8950546e-01 + 1.7348000e+03 2.5950546e-01 + 1.7350500e+03 2.8950546e-01 + 1.7353000e+03 3.8950546e-01 + 1.7355500e+03 4.4950546e-01 + 1.7358000e+03 4.7950546e-01 + 1.7360500e+03 6.6950546e-01 + 1.7363000e+03 6.2950546e-01 + 1.7365500e+03 5.7950546e-01 + 1.7368000e+03 5.1950546e-01 + 1.7370500e+03 2.2950546e-01 + 1.7373000e+03 -1.9049454e-01 + 1.7375500e+03 -5.7049454e-01 + 1.7378000e+03 -7.9049454e-01 + 1.7380500e+03 -1.0304945e+00 + 1.7383000e+03 -1.2204945e+00 + 1.7385500e+03 -1.2504945e+00 + 1.7388000e+03 -1.2204945e+00 + 1.7390500e+03 -1.1104945e+00 + 1.7393000e+03 -9.8049454e-01 + 1.7395500e+03 -7.3049454e-01 + 1.7398000e+03 -4.6049454e-01 + 1.7400500e+03 -1.9049454e-01 + 1.7403000e+03 3.8950546e-01 + 1.7405500e+03 7.8950546e-01 + 1.7408000e+03 8.7950546e-01 + 1.7410500e+03 1.0395055e+00 + 1.7413000e+03 9.2950546e-01 + 1.7415500e+03 5.6950546e-01 + 1.7418000e+03 4.3950546e-01 + 1.7420500e+03 2.2950546e-01 + 1.7423000e+03 1.4950546e-01 + 1.7425500e+03 9.9505460e-02 + 1.7428000e+03 6.9505460e-02 + 1.7430500e+03 -1.0494540e-02 + 1.7433000e+03 4.9505460e-02 + 1.7435500e+03 9.9505460e-02 + 1.7438000e+03 3.9505460e-02 + 1.7440500e+03 9.5054599e-03 + 1.7443000e+03 9.5054599e-03 + 1.7445500e+03 -5.0494540e-02 + 1.7448000e+03 -8.0494540e-02 + 1.7450500e+03 -6.0494540e-02 + 1.7453000e+03 -2.7049454e-01 + 1.7455500e+03 -2.4049454e-01 + 1.7458000e+03 -1.3049454e-01 + 1.7460500e+03 7.9505460e-02 + 1.7463000e+03 4.1950546e-01 + 1.7465500e+03 5.5950546e-01 + 1.7468000e+03 5.2950546e-01 + 1.7470500e+03 3.3950546e-01 + 1.7473000e+03 1.7950546e-01 + 1.7475500e+03 6.9505460e-02 + 1.7478000e+03 -1.1049454e-01 + 1.7480500e+03 -3.0049454e-01 + 1.7483000e+03 -4.9049454e-01 + 1.7485500e+03 -5.9049454e-01 + 1.7488000e+03 -6.0049454e-01 + 1.7490500e+03 -5.1049454e-01 + 1.7493000e+03 -5.9049454e-01 + 1.7495500e+03 -4.5049454e-01 + 1.7498000e+03 -2.7049454e-01 + 1.7500500e+03 -4.2049454e-01 + 1.7503000e+03 -4.3049454e-01 + 1.7505500e+03 -2.9049454e-01 + 1.7508000e+03 -1.9049454e-01 + 1.7510500e+03 -4.0494540e-02 + 1.7513000e+03 1.1950546e-01 + 1.7515500e+03 1.0950546e-01 + 1.7518000e+03 8.9505460e-02 + 1.7520500e+03 2.9505460e-02 + 1.7523000e+03 7.9505460e-02 + 1.7525500e+03 1.6950546e-01 + 1.7528000e+03 2.2950546e-01 + 1.7530500e+03 2.2950546e-01 + 1.7533000e+03 1.8950546e-01 + 1.7535500e+03 1.7950546e-01 + 1.7538000e+03 2.2950546e-01 + 1.7540500e+03 3.7950546e-01 + 1.7543000e+03 4.3950546e-01 + 1.7545500e+03 4.3950546e-01 + 1.7548000e+03 2.5950546e-01 + 1.7550500e+03 8.9505460e-02 + 1.7553000e+03 -2.0494540e-02 + 1.7555500e+03 -1.6049454e-01 + 1.7558000e+03 -2.5049454e-01 + 1.7560500e+03 -1.9049454e-01 + 1.7563000e+03 -3.0494540e-02 + 1.7565500e+03 6.9505460e-02 + 1.7568000e+03 5.9505460e-02 + 1.7570500e+03 -3.0494540e-02 + 1.7573000e+03 1.9505460e-02 + 1.7575500e+03 -4.9454011e-04 + 1.7578000e+03 -7.0494540e-02 + 1.7580500e+03 -1.4049454e-01 + 1.7583000e+03 -1.7049454e-01 + 1.7585500e+03 -7.0494540e-02 + 1.7588000e+03 9.5054599e-03 + 1.7590500e+03 -1.0494540e-02 + 1.7593000e+03 -4.9454011e-04 + 1.7595500e+03 -3.0494540e-02 + 1.7598000e+03 -9.0494540e-02 + 1.7600500e+03 -4.2049454e-01 + 1.7603000e+03 -6.1049454e-01 + 1.7605500e+03 -7.8049454e-01 + 1.7608000e+03 -9.2049454e-01 + 1.7610500e+03 -9.4049454e-01 + 1.7613000e+03 -7.6049454e-01 + 1.7615500e+03 -4.2049454e-01 + 1.7618000e+03 9.9505460e-02 + 1.7620500e+03 5.2950546e-01 + 1.7623000e+03 7.3950546e-01 + 1.7625500e+03 1.0595055e+00 + 1.7628000e+03 1.2095055e+00 + 1.7630500e+03 9.7950546e-01 + 1.7633000e+03 6.7950546e-01 + 1.7635500e+03 5.2950546e-01 + 1.7638000e+03 3.1950546e-01 + 1.7640500e+03 1.9950546e-01 + 1.7643000e+03 4.9505460e-02 + 1.7645500e+03 -1.4049454e-01 + 1.7648000e+03 -1.9049454e-01 + 1.7650500e+03 -2.0494540e-02 + 1.7653000e+03 9.5054599e-03 + 1.7655500e+03 1.0950546e-01 + 1.7658000e+03 1.2950546e-01 + 1.7660500e+03 1.2950546e-01 + 1.7663000e+03 5.9505460e-02 + 1.7665500e+03 -6.0494540e-02 + 1.7668000e+03 -4.0494540e-02 + 1.7670500e+03 -1.8049454e-01 + 1.7673000e+03 -3.4049454e-01 + 1.7675500e+03 -3.9049454e-01 + 1.7678000e+03 -3.9049454e-01 + 1.7680500e+03 -4.1049454e-01 + 1.7683000e+03 -3.6049454e-01 + 1.7685500e+03 -2.0049454e-01 + 1.7688000e+03 -1.0494540e-02 + 1.7690500e+03 -4.0494540e-02 + 1.7693000e+03 2.9505460e-02 + 1.7695500e+03 1.4950546e-01 + 1.7698000e+03 1.4950546e-01 + 1.7700500e+03 1.1950546e-01 + 1.7703000e+03 -3.0494540e-02 + 1.7705500e+03 -3.1049454e-01 + 1.7708000e+03 -5.3049454e-01 + 1.7710500e+03 -6.3049454e-01 + 1.7713000e+03 -5.7049454e-01 + 1.7715500e+03 -5.2049454e-01 + 1.7718000e+03 -4.4049454e-01 + 1.7720500e+03 -2.1049454e-01 + 1.7723000e+03 -4.0494540e-02 + 1.7725500e+03 9.9505460e-02 + 1.7728000e+03 2.4950546e-01 + 1.7730500e+03 2.0950546e-01 + 1.7733000e+03 3.0950546e-01 + 1.7735500e+03 4.9950546e-01 + 1.7738000e+03 4.7950546e-01 + 1.7740500e+03 4.6950546e-01 + 1.7743000e+03 4.6950546e-01 + 1.7745500e+03 3.7950546e-01 + 1.7748000e+03 2.2950546e-01 + 1.7750500e+03 4.9505460e-02 + 1.7753000e+03 -1.0494540e-02 + 1.7755500e+03 1.9505460e-02 + 1.7758000e+03 7.9505460e-02 + 1.7760500e+03 1.6950546e-01 + 1.7763000e+03 1.8950546e-01 + 1.7765500e+03 -5.0494540e-02 + 1.7768000e+03 -2.7049454e-01 + 1.7770500e+03 -4.3049454e-01 + 1.7773000e+03 -5.6049454e-01 + 1.7775500e+03 -5.5049454e-01 + 1.7778000e+03 -5.9049454e-01 + 1.7780500e+03 -5.6049454e-01 + 1.7783000e+03 -4.7049454e-01 + 1.7785500e+03 -4.1049454e-01 + 1.7788000e+03 -4.4049454e-01 + 1.7790500e+03 -4.1049454e-01 + 1.7793000e+03 -4.2049454e-01 + 1.7795500e+03 -3.7049454e-01 + 1.7798000e+03 -1.1049454e-01 + 1.7800500e+03 1.6950546e-01 + 1.7803000e+03 3.0950546e-01 + 1.7805500e+03 4.3950546e-01 + 1.7808000e+03 6.1950546e-01 + 1.7810500e+03 7.8950546e-01 + 1.7813000e+03 8.5950546e-01 + 1.7815500e+03 9.7950546e-01 + 1.7818000e+03 1.3395055e+00 + 1.7820500e+03 1.4895055e+00 + 1.7823000e+03 1.2695055e+00 + 1.7825500e+03 6.9950546e-01 + 1.7828000e+03 2.2950546e-01 + 1.7830500e+03 -3.8049454e-01 + 1.7833000e+03 -7.3049454e-01 + 1.7835500e+03 -9.0049454e-01 + 1.7838000e+03 -9.7049454e-01 + 1.7840500e+03 -9.0049454e-01 + 1.7843000e+03 -5.8049454e-01 + 1.7845500e+03 -6.1049454e-01 + 1.7848000e+03 -6.2049454e-01 + 1.7850500e+03 -5.3049454e-01 + 1.7853000e+03 -4.6049454e-01 + 1.7855500e+03 -5.2049454e-01 + 1.7858000e+03 -4.8049454e-01 + 1.7860500e+03 -5.4049454e-01 + 1.7863000e+03 -4.8049454e-01 + 1.7865500e+03 -3.3049454e-01 + 1.7868000e+03 -7.0494540e-02 + 1.7870500e+03 3.9505460e-02 + 1.7873000e+03 1.2950546e-01 + 1.7875500e+03 1.4950546e-01 + 1.7878000e+03 1.6950546e-01 + 1.7880500e+03 2.4950546e-01 + 1.7883000e+03 4.7950546e-01 + 1.7885500e+03 7.3950546e-01 + 1.7888000e+03 8.3950546e-01 + 1.7890500e+03 7.3950546e-01 + 1.7893000e+03 6.0950546e-01 + 1.7895500e+03 4.3950546e-01 + 1.7898000e+03 2.0950546e-01 + 1.7900500e+03 2.9505460e-02 + 1.7903000e+03 -2.6049454e-01 + 1.7905500e+03 -6.0049454e-01 + 1.7908000e+03 -7.9049454e-01 + 1.7910500e+03 -8.0049454e-01 + 1.7913000e+03 -7.6049454e-01 + 1.7915500e+03 -7.7049454e-01 + 1.7918000e+03 -6.9049454e-01 + 1.7920500e+03 -4.5049454e-01 + 1.7923000e+03 -1.6049454e-01 + 1.7925500e+03 1.9950546e-01 + 1.7928000e+03 2.7950546e-01 + 1.7930500e+03 3.3950546e-01 + 1.7933000e+03 4.5950546e-01 + 1.7935500e+03 5.4950546e-01 + 1.7938000e+03 5.5950546e-01 + 1.7940500e+03 4.3950546e-01 + 1.7943000e+03 2.6950546e-01 + 1.7945500e+03 2.7950546e-01 + 1.7948000e+03 3.3950546e-01 + 1.7950500e+03 3.6950546e-01 + 1.7953000e+03 4.1950546e-01 + 1.7955500e+03 6.1950546e-01 + 1.7958000e+03 5.8950546e-01 + 1.7960500e+03 3.6950546e-01 + 1.7963000e+03 1.4950546e-01 + 1.7965500e+03 -4.9454011e-04 + 1.7968000e+03 -2.6049454e-01 + 1.7970500e+03 -3.9049454e-01 + 1.7973000e+03 -5.2049454e-01 + 1.7975500e+03 -4.8049454e-01 + 1.7978000e+03 -4.7049454e-01 + 1.7980500e+03 -5.7049454e-01 + 1.7983000e+03 -5.8049454e-01 + 1.7985500e+03 -4.9049454e-01 + 1.7988000e+03 -3.8049454e-01 + 1.7990500e+03 -2.2049454e-01 + 1.7993000e+03 -2.2049454e-01 + 1.7995500e+03 -3.4049454e-01 + 1.7998000e+03 -4.0049454e-01 + 1.8000500e+03 -3.3049454e-01 + 1.8003000e+03 -1.8049454e-01 + 1.8005500e+03 4.9505460e-02 + 1.8008000e+03 1.5950546e-01 + 1.8010500e+03 3.1950546e-01 + 1.8013000e+03 2.4950546e-01 + 1.8015500e+03 2.3950546e-01 + 1.8018000e+03 2.1950546e-01 + 1.8020500e+03 6.9505460e-02 + 1.8023000e+03 -7.0494540e-02 + 1.8025500e+03 -1.0049454e-01 + 1.8028000e+03 -1.9049454e-01 + 1.8030500e+03 -2.7049454e-01 + 1.8033000e+03 -3.2049454e-01 + 1.8035500e+03 -2.9049454e-01 + 1.8038000e+03 -3.5049454e-01 + 1.8040500e+03 -3.5049454e-01 + 1.8043000e+03 -2.8049454e-01 + 1.8045500e+03 -2.3049454e-01 + 1.8048000e+03 -1.3049454e-01 + 1.8050500e+03 6.9505460e-02 + 1.8053000e+03 3.8950546e-01 + 1.8055500e+03 4.4950546e-01 + 1.8058000e+03 3.5950546e-01 + 1.8060500e+03 2.5950546e-01 + 1.8063000e+03 1.7950546e-01 + 1.8065500e+03 2.2950546e-01 + 1.8068000e+03 3.8950546e-01 + 1.8070500e+03 4.8950546e-01 + 1.8073000e+03 5.8950546e-01 + 1.8075500e+03 7.2950546e-01 + 1.8078000e+03 7.6950546e-01 + 1.8080500e+03 7.6950546e-01 + 1.8083000e+03 8.0950546e-01 + 1.8085500e+03 7.0950546e-01 + 1.8088000e+03 5.4950546e-01 + 1.8090500e+03 2.0950546e-01 + 1.8093000e+03 -1.6049454e-01 + 1.8095500e+03 -5.5049454e-01 + 1.8098000e+03 -8.0049454e-01 + 1.8100500e+03 -9.9049454e-01 + 1.8103000e+03 -1.1604945e+00 + 1.8105500e+03 -1.3104945e+00 + 1.8108000e+03 -1.4204945e+00 + 1.8110500e+03 -1.4004945e+00 + 1.8113000e+03 -1.4404945e+00 + 1.8115500e+03 -1.3104945e+00 + 1.8118000e+03 -1.0404945e+00 + 1.8120500e+03 -6.2049454e-01 + 1.8123000e+03 -6.0494540e-02 + 1.8125500e+03 3.3950546e-01 + 1.8128000e+03 4.6950546e-01 + 1.8130500e+03 3.9950546e-01 + 1.8133000e+03 4.0950546e-01 + 1.8135500e+03 6.4950546e-01 + 1.8138000e+03 6.4950546e-01 + 1.8140500e+03 6.0950546e-01 + 1.8143000e+03 5.5950546e-01 + 1.8145500e+03 6.9950546e-01 + 1.8148000e+03 6.9950546e-01 + 1.8150500e+03 5.2950546e-01 + 1.8153000e+03 5.1950546e-01 + 1.8155500e+03 7.0950546e-01 + 1.8158000e+03 3.1950546e-01 + 1.8160500e+03 -1.9049454e-01 + 1.8163000e+03 -5.1049454e-01 + 1.8165500e+03 -6.8049454e-01 + 1.8168000e+03 -8.0049454e-01 + 1.8170500e+03 -8.4049454e-01 + 1.8173000e+03 -7.3049454e-01 + 1.8175500e+03 -5.5049454e-01 + 1.8178000e+03 -4.1049454e-01 + 1.8180500e+03 -3.6049454e-01 + 1.8183000e+03 -3.3049454e-01 + 1.8185500e+03 -2.1049454e-01 + 1.8188000e+03 -2.0494540e-02 + 1.8190500e+03 1.6950546e-01 + 1.8193000e+03 4.2950546e-01 + 1.8195500e+03 6.2950546e-01 + 1.8198000e+03 7.1950546e-01 + 1.8200500e+03 7.1950546e-01 + 1.8203000e+03 6.8950546e-01 + 1.8205500e+03 6.0950546e-01 + 1.8208000e+03 5.0950546e-01 + 1.8210500e+03 3.1950546e-01 + 1.8213000e+03 1.5950546e-01 + 1.8215500e+03 6.9505460e-02 + 1.8218000e+03 5.9505460e-02 + 1.8220500e+03 1.3950546e-01 + 1.8223000e+03 1.7950546e-01 + 1.8225500e+03 7.9505460e-02 + 1.8228000e+03 -4.9454011e-04 + 1.8230500e+03 -1.1049454e-01 + 1.8233000e+03 -1.2049454e-01 + 1.8235500e+03 -2.0049454e-01 + 1.8238000e+03 -3.1049454e-01 + 1.8240500e+03 -4.7049454e-01 + 1.8243000e+03 -7.4049454e-01 + 1.8245500e+03 -8.2049454e-01 + 1.8248000e+03 -8.0049454e-01 + 1.8250500e+03 -7.9049454e-01 + 1.8253000e+03 -7.3049454e-01 + 1.8255500e+03 -6.6049454e-01 + 1.8258000e+03 -5.3049454e-01 + 1.8260500e+03 -3.5049454e-01 + 1.8263000e+03 -3.0049454e-01 + 1.8265500e+03 -2.3049454e-01 + 1.8268000e+03 -8.0494540e-02 + 1.8270500e+03 8.9505460e-02 + 1.8273000e+03 2.4950546e-01 + 1.8275500e+03 4.4950546e-01 + 1.8278000e+03 5.1950546e-01 + 1.8280500e+03 5.9950546e-01 + 1.8283000e+03 3.1950546e-01 + 1.8285500e+03 9.9505460e-02 + 1.8288000e+03 -1.6049454e-01 + 1.8290500e+03 -3.5049454e-01 + 1.8293000e+03 -4.3049454e-01 + 1.8295500e+03 -3.3049454e-01 + 1.8298000e+03 -1.3049454e-01 + 1.8300500e+03 1.9950546e-01 + 1.8303000e+03 5.8950546e-01 + 1.8305500e+03 7.3950546e-01 + 1.8308000e+03 8.1950546e-01 + 1.8310500e+03 6.3950546e-01 + 1.8313000e+03 4.4950546e-01 + 1.8315500e+03 3.1950546e-01 + 1.8318000e+03 1.3950546e-01 + 1.8320500e+03 3.9505460e-02 + 1.8323000e+03 -7.0494540e-02 + 1.8325500e+03 -1.6049454e-01 + 1.8328000e+03 -2.0049454e-01 + 1.8330500e+03 -5.0494540e-02 + 1.8333000e+03 -1.0494540e-02 + 1.8335500e+03 4.9505460e-02 + 1.8338000e+03 8.9505460e-02 + 1.8340500e+03 -3.0494540e-02 + 1.8343000e+03 -7.0494540e-02 + 1.8345500e+03 -2.6049454e-01 + 1.8348000e+03 -3.5049454e-01 + 1.8350500e+03 -4.0049454e-01 + 1.8353000e+03 -2.6049454e-01 + 1.8355500e+03 -1.7049454e-01 + 1.8358000e+03 -7.0494540e-02 + 1.8360500e+03 -3.0494540e-02 + 1.8363000e+03 -8.0494540e-02 + 1.8365500e+03 -1.8049454e-01 + 1.8368000e+03 -1.4049454e-01 + 1.8370500e+03 5.9505460e-02 + 1.8373000e+03 -1.0494540e-02 + 1.8375500e+03 -7.0494540e-02 + 1.8378000e+03 -1.0049454e-01 + 1.8380500e+03 -1.5049454e-01 + 1.8383000e+03 -2.2049454e-01 + 1.8385500e+03 -3.5049454e-01 + 1.8388000e+03 -3.8049454e-01 + 1.8390500e+03 -3.5049454e-01 + 1.8393000e+03 -3.4049454e-01 + 1.8395500e+03 -3.0049454e-01 + 1.8398000e+03 -3.0049454e-01 + 1.8400500e+03 -3.7049454e-01 + 1.8403000e+03 -3.2049454e-01 + 1.8405500e+03 -2.0049454e-01 + 1.8408000e+03 -4.9454011e-04 + 1.8410500e+03 2.9505460e-02 + 1.8413000e+03 5.9505460e-02 + 1.8415500e+03 3.9505460e-02 + 1.8418000e+03 2.1950546e-01 + 1.8420500e+03 5.8950546e-01 + 1.8423000e+03 7.8950546e-01 + 1.8425500e+03 8.7950546e-01 + 1.8428000e+03 6.3950546e-01 + 1.8430500e+03 3.0950546e-01 + 1.8433000e+03 1.1950546e-01 + 1.8435500e+03 -7.0494540e-02 + 1.8438000e+03 -1.9049454e-01 + 1.8440500e+03 -3.5049454e-01 + 1.8443000e+03 -4.7049454e-01 + 1.8445500e+03 -4.6049454e-01 + 1.8448000e+03 -2.4049454e-01 + 1.8450500e+03 -1.4049454e-01 + 1.8453000e+03 -3.0494540e-02 + 1.8455500e+03 -3.0494540e-02 + 1.8458000e+03 -1.6049454e-01 + 1.8460500e+03 -2.6049454e-01 + 1.8463000e+03 -3.7049454e-01 + 1.8465500e+03 -4.5049454e-01 + 1.8468000e+03 -3.6049454e-01 + 1.8470500e+03 -2.8049454e-01 + 1.8473000e+03 -3.3049454e-01 + 1.8475500e+03 -3.1049454e-01 + 1.8478000e+03 -2.4049454e-01 + 1.8480500e+03 -2.1049454e-01 + 1.8483000e+03 -1.8049454e-01 + 1.8485500e+03 -3.0494540e-02 + 1.8488000e+03 1.5950546e-01 + 1.8490500e+03 3.5950546e-01 + 1.8493000e+03 6.4950546e-01 + 1.8495500e+03 7.0950546e-01 + 1.8498000e+03 7.2950546e-01 + 1.8500500e+03 8.3950546e-01 + 1.8503000e+03 1.0395055e+00 + 1.8505500e+03 8.4950546e-01 + 1.8508000e+03 2.6950546e-01 + 1.8510500e+03 -1.4049454e-01 + 1.8513000e+03 -2.9049454e-01 + 1.8515500e+03 -3.0049454e-01 + 1.8518000e+03 -3.1049454e-01 + 1.8520500e+03 -3.2049454e-01 + 1.8523000e+03 -4.0049454e-01 + 1.8525500e+03 -4.7049454e-01 + 1.8528000e+03 -5.3049454e-01 + 1.8530500e+03 -4.2049454e-01 + 1.8533000e+03 -3.1049454e-01 + 1.8535500e+03 -4.5049454e-01 + 1.8538000e+03 -5.7049454e-01 + 1.8540500e+03 -6.6049454e-01 + 1.8543000e+03 -6.2049454e-01 + 1.8545500e+03 -4.0049454e-01 + 1.8548000e+03 -1.4049454e-01 + 1.8550500e+03 -6.0494540e-02 + 1.8553000e+03 9.5054599e-03 + 1.8555500e+03 9.5054599e-03 + 1.8558000e+03 1.9505460e-02 + 1.8560500e+03 4.9505460e-02 + 1.8563000e+03 7.9505460e-02 + 1.8565500e+03 1.8950546e-01 + 1.8568000e+03 3.1950546e-01 + 1.8570500e+03 2.9950546e-01 + 1.8573000e+03 2.2950546e-01 + 1.8575500e+03 5.9505460e-02 + 1.8578000e+03 -4.0494540e-02 + 1.8580500e+03 -5.0494540e-02 + 1.8583000e+03 -1.2049454e-01 + 1.8585500e+03 -3.4049454e-01 + 1.8588000e+03 -5.5049454e-01 + 1.8590500e+03 -6.5049454e-01 + 1.8593000e+03 -5.9049454e-01 + 1.8595500e+03 -4.1049454e-01 + 1.8598000e+03 -9.0494540e-02 + 1.8600500e+03 8.9505460e-02 + 1.8603000e+03 2.8950546e-01 + 1.8605500e+03 4.8950546e-01 + 1.8608000e+03 5.5950546e-01 + 1.8610500e+03 6.5950546e-01 + 1.8613000e+03 7.3950546e-01 + 1.8615500e+03 8.1950546e-01 + 1.8618000e+03 9.1950546e-01 + 1.8620500e+03 9.3950546e-01 + 1.8623000e+03 7.6950546e-01 + 1.8625500e+03 2.6950546e-01 + 1.8628000e+03 -6.0494540e-02 + 1.8630500e+03 -2.3049454e-01 + 1.8633000e+03 -3.8049454e-01 + 1.8635500e+03 -5.0049454e-01 + 1.8638000e+03 -6.4049454e-01 + 1.8640500e+03 -7.1049454e-01 + 1.8643000e+03 -7.4049454e-01 + 1.8645500e+03 -7.8049454e-01 + 1.8648000e+03 -7.4049454e-01 + 1.8650500e+03 -6.0049454e-01 + 1.8653000e+03 -4.1049454e-01 + 1.8655500e+03 -1.5049454e-01 + 1.8658000e+03 9.9505460e-02 + 1.8660500e+03 1.9950546e-01 + 1.8663000e+03 2.2950546e-01 + 1.8665500e+03 1.6950546e-01 + 1.8668000e+03 1.2950546e-01 + 1.8670500e+03 -8.0494540e-02 + 1.8673000e+03 -2.0049454e-01 + 1.8675500e+03 -2.8049454e-01 + 1.8678000e+03 -3.8049454e-01 + 1.8680500e+03 -4.2049454e-01 + 1.8683000e+03 -3.8049454e-01 + 1.8685500e+03 -4.3049454e-01 + 1.8688000e+03 -4.7049454e-01 + 1.8690500e+03 -4.0049454e-01 + 1.8693000e+03 -1.3049454e-01 + 1.8695500e+03 -4.9454011e-04 + 1.8698000e+03 1.0950546e-01 + 1.8700500e+03 2.2950546e-01 + 1.8703000e+03 4.9950546e-01 + 1.8705500e+03 6.9950546e-01 + 1.8708000e+03 8.4950546e-01 + 1.8710500e+03 1.0195055e+00 + 1.8713000e+03 1.0195055e+00 + 1.8715500e+03 8.8950546e-01 + 1.8718000e+03 6.0950546e-01 + 1.8720500e+03 1.7950546e-01 + 1.8723000e+03 -1.6049454e-01 + 1.8725500e+03 -3.2049454e-01 + 1.8728000e+03 -4.2049454e-01 + 1.8730500e+03 -4.6049454e-01 + 1.8733000e+03 -3.8049454e-01 + 1.8735500e+03 -2.9049454e-01 + 1.8738000e+03 -3.5049454e-01 + 1.8740500e+03 -1.6049454e-01 + 1.8743000e+03 -1.0494540e-02 + 1.8745500e+03 7.9505460e-02 + 1.8748000e+03 4.4950546e-01 + 1.8750500e+03 7.6950546e-01 + 1.8753000e+03 6.9950546e-01 + 1.8755500e+03 4.1950546e-01 + 1.8758000e+03 -4.9454011e-04 + 1.8760500e+03 -3.0049454e-01 + 1.8763000e+03 -6.8049454e-01 + 1.8765500e+03 -9.5049454e-01 + 1.8768000e+03 -9.5049454e-01 + 1.8770500e+03 -7.9049454e-01 + 1.8773000e+03 -5.8049454e-01 + 1.8775500e+03 -4.3049454e-01 + 1.8778000e+03 -3.2049454e-01 + 1.8780500e+03 -2.6049454e-01 + 1.8783000e+03 -2.8049454e-01 + 1.8785500e+03 -2.4049454e-01 + 1.8788000e+03 -2.0049454e-01 + 1.8790500e+03 -2.2049454e-01 + 1.8793000e+03 -1.7049454e-01 + 1.8795500e+03 -7.0494540e-02 + 1.8798000e+03 2.0950546e-01 + 1.8800500e+03 3.8950546e-01 + 1.8803000e+03 5.3950546e-01 + 1.8805500e+03 6.5950546e-01 + 1.8808000e+03 6.6950546e-01 + 1.8810500e+03 6.6950546e-01 + 1.8813000e+03 5.8950546e-01 + 1.8815500e+03 2.5950546e-01 + 1.8818000e+03 -2.0494540e-02 + 1.8820500e+03 -7.0494540e-02 + 1.8823000e+03 -1.7049454e-01 + 1.8825500e+03 -3.5049454e-01 + 1.8828000e+03 -4.8049454e-01 + 1.8830500e+03 -4.7049454e-01 + 1.8833000e+03 -2.5049454e-01 + 1.8835500e+03 9.5054599e-03 + 1.8838000e+03 1.9950546e-01 + 1.8840500e+03 1.9950546e-01 + 1.8843000e+03 1.0950546e-01 + 1.8845500e+03 1.2950546e-01 + 1.8848000e+03 1.2950546e-01 + 1.8850500e+03 2.0950546e-01 + 1.8853000e+03 1.1950546e-01 + 1.8855500e+03 -1.0494540e-02 + 1.8858000e+03 -7.0494540e-02 + 1.8860500e+03 -4.0494540e-02 + 1.8863000e+03 -1.0049454e-01 + 1.8865500e+03 -1.5049454e-01 + 1.8868000e+03 -1.7049454e-01 + 1.8870500e+03 -4.9454011e-04 + 1.8873000e+03 2.0950546e-01 + 1.8875500e+03 9.9505460e-02 + 1.8878000e+03 -5.0494540e-02 + 1.8880500e+03 -1.9049454e-01 + 1.8883000e+03 -2.0049454e-01 + 1.8885500e+03 -1.4049454e-01 + 1.8888000e+03 -1.0494540e-02 + 1.8890500e+03 3.9505460e-02 + 1.8893000e+03 -6.0494540e-02 + 1.8895500e+03 -1.7049454e-01 + 1.8898000e+03 -1.5049454e-01 + 1.8900500e+03 -2.4049454e-01 + 1.8903000e+03 -2.9049454e-01 + 1.8905500e+03 -1.6049454e-01 + 1.8908000e+03 -8.0494540e-02 + 1.8910500e+03 -7.0494540e-02 + 1.8913000e+03 4.9505460e-02 + 1.8915500e+03 2.9950546e-01 + 1.8918000e+03 3.6950546e-01 + 1.8920500e+03 2.4950546e-01 + 1.8923000e+03 5.9505460e-02 + 1.8925500e+03 -1.3049454e-01 + 1.8928000e+03 -3.1049454e-01 + 1.8930500e+03 -4.1049454e-01 + 1.8933000e+03 -6.2049454e-01 + 1.8935500e+03 -6.7049454e-01 + 1.8938000e+03 -5.5049454e-01 + 1.8940500e+03 -4.3049454e-01 + 1.8943000e+03 -2.8049454e-01 + 1.8945500e+03 -1.7049454e-01 + 1.8948000e+03 2.9505460e-02 + 1.8950500e+03 9.9505460e-02 + 1.8953000e+03 1.1950546e-01 + 1.8955500e+03 9.9505460e-02 + 1.8958000e+03 2.0950546e-01 + 1.8960500e+03 3.0950546e-01 + 1.8963000e+03 4.4950546e-01 + 1.8965500e+03 4.3950546e-01 + 1.8968000e+03 3.4950546e-01 + 1.8970500e+03 2.7950546e-01 + 1.8973000e+03 2.9950546e-01 + 1.8975500e+03 3.3950546e-01 + 1.8978000e+03 8.9505460e-02 + 1.8980500e+03 -1.3049454e-01 + 1.8983000e+03 -2.5049454e-01 + 1.8985500e+03 -1.8049454e-01 + 1.8988000e+03 -4.0494540e-02 + 1.8990500e+03 -4.9454011e-04 + 1.8993000e+03 -6.0494540e-02 + 1.8995500e+03 -7.0494540e-02 + 1.8998000e+03 -8.0494540e-02 + 1.9000500e+03 -4.9454011e-04 + 1.9003000e+03 4.9505460e-02 + 1.9005500e+03 9.5054599e-03 + 1.9008000e+03 -7.0494540e-02 + 1.9010500e+03 -6.0494540e-02 + 1.9013000e+03 2.9505460e-02 + 1.9015500e+03 1.0950546e-01 + 1.9018000e+03 -3.0494540e-02 + 1.9020500e+03 -2.1049454e-01 + 1.9023000e+03 -3.8049454e-01 + 1.9025500e+03 -4.8049454e-01 + 1.9028000e+03 -4.4049454e-01 + 1.9030500e+03 -3.3049454e-01 + 1.9033000e+03 -1.2049454e-01 + 1.9035500e+03 -1.3049454e-01 + 1.9038000e+03 -2.1049454e-01 + 1.9040500e+03 -1.4049454e-01 + 1.9043000e+03 -9.0494540e-02 + 1.9045500e+03 -4.9454011e-04 + 1.9048000e+03 -3.0494540e-02 + 1.9050500e+03 -5.0494540e-02 + 1.9053000e+03 -8.0494540e-02 + 1.9055500e+03 -1.8049454e-01 + 1.9058000e+03 -3.0049454e-01 + 1.9060500e+03 -3.6049454e-01 + 1.9063000e+03 -3.4049454e-01 + 1.9065500e+03 -2.5049454e-01 + 1.9068000e+03 -1.4049454e-01 + 1.9070500e+03 1.5950546e-01 + 1.9073000e+03 6.2950546e-01 + 1.9075500e+03 7.2950546e-01 + 1.9078000e+03 7.0950546e-01 + 1.9080500e+03 5.7950546e-01 + 1.9083000e+03 3.0950546e-01 + 1.9085500e+03 9.5054599e-03 + 1.9088000e+03 -1.8049454e-01 + 1.9090500e+03 -4.0049454e-01 + 1.9093000e+03 -5.8049454e-01 + 1.9095500e+03 -5.2049454e-01 + 1.9098000e+03 -3.5049454e-01 + 1.9100500e+03 -1.5049454e-01 + 1.9103000e+03 2.3950546e-01 + 1.9105500e+03 5.2950546e-01 + 1.9108000e+03 6.7950546e-01 + 1.9110500e+03 7.2950546e-01 + 1.9113000e+03 4.9950546e-01 + 1.9115500e+03 2.9950546e-01 + 1.9118000e+03 1.6950546e-01 + 1.9120500e+03 6.9505460e-02 + 1.9123000e+03 1.9505460e-02 + 1.9125500e+03 -3.0494540e-02 + 1.9128000e+03 -2.8049454e-01 + 1.9130500e+03 -6.1049454e-01 + 1.9133000e+03 -7.3049454e-01 + 1.9135500e+03 -9.6049454e-01 + 1.9138000e+03 -9.9049454e-01 + 1.9140500e+03 -8.6049454e-01 + 1.9143000e+03 -6.5049454e-01 + 1.9145500e+03 -2.5049454e-01 + 1.9148000e+03 1.2950546e-01 + 1.9150500e+03 4.3950546e-01 + 1.9153000e+03 4.6950546e-01 + 1.9155500e+03 5.4950546e-01 + 1.9158000e+03 5.4950546e-01 + 1.9160500e+03 4.6950546e-01 + 1.9163000e+03 3.3950546e-01 + 1.9165500e+03 2.3950546e-01 + 1.9168000e+03 2.6950546e-01 + 1.9170500e+03 3.6950546e-01 + 1.9173000e+03 4.8950546e-01 + 1.9175500e+03 4.5950546e-01 + 1.9178000e+03 1.6950546e-01 + 1.9180500e+03 -1.8049454e-01 + 1.9183000e+03 -3.3049454e-01 + 1.9185500e+03 -5.6049454e-01 + 1.9188000e+03 -7.0049454e-01 + 1.9190500e+03 -6.1049454e-01 + 1.9193000e+03 -3.0049454e-01 + 1.9195500e+03 -2.9049454e-01 + 1.9198000e+03 -1.2049454e-01 + 1.9200500e+03 -6.0494540e-02 + 1.9203000e+03 -1.2049454e-01 + 1.9205500e+03 -1.8049454e-01 + 1.9208000e+03 -1.4049454e-01 + 1.9210500e+03 -8.0494540e-02 + 1.9213000e+03 2.9505460e-02 + 1.9215500e+03 3.1950546e-01 + 1.9218000e+03 6.3950546e-01 + 1.9220500e+03 6.8950546e-01 + 1.9223000e+03 7.1950546e-01 + 1.9225500e+03 7.0950546e-01 + 1.9228000e+03 5.1950546e-01 + 1.9230500e+03 9.9505460e-02 + 1.9233000e+03 -1.9049454e-01 + 1.9235500e+03 -4.2049454e-01 + 1.9238000e+03 -6.1049454e-01 + 1.9240500e+03 -7.3049454e-01 + 1.9243000e+03 -7.0049454e-01 + 1.9245500e+03 -5.3049454e-01 + 1.9248000e+03 -4.5049454e-01 + 1.9250500e+03 -3.8049454e-01 + 1.9253000e+03 -2.6049454e-01 + 1.9255500e+03 -8.0494540e-02 + 1.9258000e+03 2.2950546e-01 + 1.9260500e+03 4.6950546e-01 + 1.9263000e+03 5.3950546e-01 + 1.9265500e+03 5.1950546e-01 + 1.9268000e+03 4.2950546e-01 + 1.9270500e+03 3.2950546e-01 + 1.9273000e+03 2.4950546e-01 + 1.9275500e+03 1.0950546e-01 + 1.9278000e+03 4.9505460e-02 + 1.9280500e+03 1.9505460e-02 + 1.9283000e+03 1.9505460e-02 + 1.9285500e+03 9.5054599e-03 + 1.9288000e+03 -1.7049454e-01 + 1.9290500e+03 -4.5049454e-01 + 1.9293000e+03 -5.7049454e-01 + 1.9295500e+03 -6.6049454e-01 + 1.9298000e+03 -6.9049454e-01 + 1.9300500e+03 -6.5049454e-01 + 1.9303000e+03 -5.5049454e-01 + 1.9305500e+03 -4.5049454e-01 + 1.9308000e+03 -3.4049454e-01 + 1.9310500e+03 -2.3049454e-01 + 1.9313000e+03 -7.0494540e-02 + 1.9315500e+03 1.0950546e-01 + 1.9318000e+03 1.3950546e-01 + 1.9320500e+03 1.1950546e-01 + 1.9323000e+03 1.9505460e-02 + 1.9325500e+03 -7.0494540e-02 + 1.9328000e+03 -2.2049454e-01 + 1.9330500e+03 -3.1049454e-01 + 1.9333000e+03 -2.2049454e-01 + 1.9335500e+03 3.9505460e-02 + 1.9338000e+03 5.0950546e-01 + 1.9340500e+03 1.1095055e+00 + 1.9343000e+03 1.5995055e+00 + 1.9345500e+03 1.7095055e+00 + 1.9348000e+03 1.3295055e+00 + 1.9350500e+03 6.0950546e-01 + 1.9353000e+03 9.9505460e-02 + 1.9355500e+03 -2.2049454e-01 + 1.9358000e+03 -3.9049454e-01 + 1.9360500e+03 -6.1049454e-01 + 1.9363000e+03 -8.8049454e-01 + 1.9365500e+03 -8.7049454e-01 + 1.9368000e+03 -8.2049454e-01 + 1.9370500e+03 -8.7049454e-01 + 1.9373000e+03 -7.7049454e-01 + 1.9375500e+03 -5.5049454e-01 + 1.9378000e+03 -3.2049454e-01 + 1.9380500e+03 -7.0494540e-02 + 1.9383000e+03 3.8950546e-01 + 1.9385500e+03 7.7950546e-01 + 1.9388000e+03 7.3950546e-01 + 1.9390500e+03 6.0950546e-01 + 1.9393000e+03 4.0950546e-01 + 1.9395500e+03 2.5950546e-01 + 1.9398000e+03 8.9505460e-02 + 1.9400500e+03 3.9505460e-02 + 1.9403000e+03 -3.0494540e-02 + 1.9405500e+03 -6.0494540e-02 + 1.9408000e+03 4.9505460e-02 + 1.9410500e+03 -1.0494540e-02 + 1.9413000e+03 -2.7049454e-01 + 1.9415500e+03 -5.3049454e-01 + 1.9418000e+03 -6.2049454e-01 + 1.9420500e+03 -5.7049454e-01 + 1.9423000e+03 -4.3049454e-01 + 1.9425500e+03 -2.0049454e-01 + 1.9428000e+03 1.5950546e-01 + 1.9430500e+03 3.0950546e-01 + 1.9433000e+03 4.1950546e-01 + 1.9435500e+03 4.7950546e-01 + 1.9438000e+03 2.8950546e-01 + 1.9440500e+03 -1.0494540e-02 + 1.9443000e+03 -2.4049454e-01 + 1.9445500e+03 -3.6049454e-01 + 1.9448000e+03 -4.3049454e-01 + 1.9450500e+03 -4.7049454e-01 + 1.9453000e+03 -4.0049454e-01 + 1.9455500e+03 -3.5049454e-01 + 1.9458000e+03 -3.9049454e-01 + 1.9460500e+03 -4.0049454e-01 + 1.9463000e+03 -3.5049454e-01 + 1.9465500e+03 -2.3049454e-01 + 1.9468000e+03 9.5054599e-03 + 1.9470500e+03 3.5950546e-01 + 1.9473000e+03 7.2950546e-01 + 1.9475500e+03 1.2595055e+00 + 1.9478000e+03 1.1395055e+00 + 1.9480500e+03 8.6950546e-01 + 1.9483000e+03 5.6950546e-01 + 1.9485500e+03 3.1950546e-01 + 1.9488000e+03 -2.0494540e-02 + 1.9490500e+03 -2.3049454e-01 + 1.9493000e+03 -4.0049454e-01 + 1.9495500e+03 -5.0049454e-01 + 1.9498000e+03 -4.1049454e-01 + 1.9500500e+03 -2.3049454e-01 + 1.9503000e+03 -2.2049454e-01 + 1.9505500e+03 9.5054599e-03 + 1.9508000e+03 2.6950546e-01 + 1.9510500e+03 4.3950546e-01 + 1.9513000e+03 2.9950546e-01 + 1.9515500e+03 3.9505460e-02 + 1.9518000e+03 -1.8049454e-01 + 1.9520500e+03 -3.1049454e-01 + 1.9523000e+03 -4.4049454e-01 + 1.9525500e+03 -4.4049454e-01 + 1.9528000e+03 -4.8049454e-01 + 1.9530500e+03 -4.8049454e-01 + 1.9533000e+03 -5.1049454e-01 + 1.9535500e+03 -5.5049454e-01 + 1.9538000e+03 -4.4049454e-01 + 1.9540500e+03 -3.4049454e-01 + 1.9543000e+03 -3.7049454e-01 + 1.9545500e+03 -3.2049454e-01 + 1.9548000e+03 -2.4049454e-01 + 1.9550500e+03 -4.0494540e-02 + 1.9553000e+03 1.6950546e-01 + 1.9555500e+03 3.5950546e-01 + 1.9558000e+03 5.3950546e-01 + 1.9560500e+03 6.9950546e-01 + 1.9563000e+03 9.1950546e-01 + 1.9565500e+03 5.6950546e-01 + 1.9568000e+03 2.7950546e-01 + 1.9570500e+03 7.9505460e-02 + 1.9573000e+03 -3.0494540e-02 + 1.9575500e+03 -8.0494540e-02 + 1.9578000e+03 -3.0494540e-02 + 1.9580500e+03 -6.0494540e-02 + 1.9583000e+03 1.0950546e-01 + 1.9585500e+03 3.7950546e-01 + 1.9588000e+03 3.0950546e-01 + 1.9590500e+03 4.6950546e-01 + 1.9593000e+03 5.4950546e-01 + 1.9595500e+03 3.2950546e-01 + 1.9598000e+03 2.8950546e-01 + 1.9600500e+03 6.9505460e-02 + 1.9603000e+03 -8.0494540e-02 + 1.9605500e+03 -2.2049454e-01 + 1.9608000e+03 -4.1049454e-01 + 1.9610500e+03 -5.0049454e-01 + 1.9613000e+03 -5.3049454e-01 + 1.9615500e+03 -3.2049454e-01 + 1.9618000e+03 -1.6049454e-01 + 1.9620500e+03 -1.7049454e-01 + 1.9623000e+03 -1.3049454e-01 + 1.9625500e+03 -1.4049454e-01 + 1.9628000e+03 -2.2049454e-01 + 1.9630500e+03 -4.0049454e-01 + 1.9633000e+03 -4.6049454e-01 + 1.9635500e+03 -4.3049454e-01 + 1.9638000e+03 -3.8049454e-01 + 1.9640500e+03 -3.3049454e-01 + 1.9643000e+03 -1.9049454e-01 + 1.9645500e+03 -7.0494540e-02 + 1.9648000e+03 1.9505460e-02 + 1.9650500e+03 1.2950546e-01 + 1.9653000e+03 2.1950546e-01 + 1.9655500e+03 2.1950546e-01 + 1.9658000e+03 2.8950546e-01 + 1.9660500e+03 5.0950546e-01 + 1.9663000e+03 8.0950546e-01 + 1.9665500e+03 7.0950546e-01 + 1.9668000e+03 5.3950546e-01 + 1.9670500e+03 3.6950546e-01 + 1.9673000e+03 9.9505460e-02 + 1.9675500e+03 -2.8049454e-01 + 1.9678000e+03 -6.6049454e-01 + 1.9680500e+03 -8.3049454e-01 + 1.9683000e+03 -9.9049454e-01 + 1.9685500e+03 -9.5049454e-01 + 1.9688000e+03 -8.5049454e-01 + 1.9690500e+03 -7.9049454e-01 + 1.9693000e+03 -6.2049454e-01 + 1.9695500e+03 -4.9049454e-01 + 1.9698000e+03 -2.8049454e-01 + 1.9700500e+03 -2.0049454e-01 + 1.9703000e+03 -1.2049454e-01 + 1.9705500e+03 -1.2049454e-01 + 1.9708000e+03 -8.0494540e-02 + 1.9710500e+03 -7.0494540e-02 + 1.9713000e+03 8.9505460e-02 + 1.9715500e+03 4.7950546e-01 + 1.9718000e+03 8.9950546e-01 + 1.9720500e+03 1.0195055e+00 + 1.9723000e+03 9.1950546e-01 + 1.9725500e+03 5.5950546e-01 + 1.9728000e+03 3.6950546e-01 + 1.9730500e+03 2.3950546e-01 + 1.9733000e+03 1.7950546e-01 + 1.9735500e+03 1.7950546e-01 + 1.9738000e+03 2.4950546e-01 + 1.9740500e+03 2.9950546e-01 + 1.9743000e+03 2.7950546e-01 + 1.9745500e+03 1.0950546e-01 + 1.9748000e+03 1.1950546e-01 + 1.9750500e+03 1.3950546e-01 + 1.9753000e+03 1.2950546e-01 + 1.9755500e+03 1.2950546e-01 + 1.9758000e+03 1.4950546e-01 + 1.9760500e+03 2.2950546e-01 + 1.9763000e+03 1.8950546e-01 + 1.9765500e+03 1.4950546e-01 + 1.9768000e+03 5.9505460e-02 + 1.9770500e+03 -1.1049454e-01 + 1.9773000e+03 -2.7049454e-01 + 1.9775500e+03 -4.4049454e-01 + 1.9778000e+03 -5.6049454e-01 + 1.9780500e+03 -6.4049454e-01 + 1.9783000e+03 -7.9049454e-01 + 1.9785500e+03 -9.1049454e-01 + 1.9788000e+03 -9.7049454e-01 + 1.9790500e+03 -9.6049454e-01 + 1.9793000e+03 -8.0049454e-01 + 1.9795500e+03 -6.1049454e-01 + 1.9798000e+03 -4.3049454e-01 + 1.9800500e+03 -2.9049454e-01 + 1.9803000e+03 -2.0049454e-01 + 1.9805500e+03 8.9505460e-02 + 1.9808000e+03 3.3950546e-01 + 1.9810500e+03 3.7950546e-01 + 1.9813000e+03 3.6950546e-01 + 1.9815500e+03 3.2950546e-01 + 1.9818000e+03 1.6950546e-01 + 1.9820500e+03 -1.1049454e-01 + 1.9823000e+03 -2.3049454e-01 + 1.9825500e+03 -2.0049454e-01 + 1.9828000e+03 -2.2049454e-01 + 1.9830500e+03 -1.6049454e-01 + 1.9833000e+03 9.9505460e-02 + 1.9835500e+03 2.2950546e-01 + 1.9838000e+03 2.7950546e-01 + 1.9840500e+03 2.3950546e-01 + 1.9843000e+03 1.7950546e-01 + 1.9845500e+03 1.5950546e-01 + 1.9848000e+03 2.3950546e-01 + 1.9850500e+03 4.3950546e-01 + 1.9853000e+03 6.9950546e-01 + 1.9855500e+03 7.6950546e-01 + 1.9858000e+03 7.4950546e-01 + 1.9860500e+03 6.7950546e-01 + 1.9863000e+03 3.8950546e-01 + 1.9865500e+03 1.5950546e-01 + 1.9868000e+03 -8.0494540e-02 + 1.9870500e+03 -3.5049454e-01 + 1.9873000e+03 -4.4049454e-01 + 1.9875500e+03 -3.4049454e-01 + 1.9878000e+03 -4.0494540e-02 + 1.9880500e+03 1.2950546e-01 + 1.9883000e+03 -6.0494540e-02 + 1.9885500e+03 -3.0049454e-01 + 1.9888000e+03 -3.8049454e-01 + 1.9890500e+03 -4.7049454e-01 + 1.9893000e+03 -5.8049454e-01 + 1.9895500e+03 -7.3049454e-01 + 1.9898000e+03 -8.2049454e-01 + 1.9900500e+03 -7.6049454e-01 + 1.9903000e+03 -6.5049454e-01 + 1.9905500e+03 -4.3049454e-01 + 1.9908000e+03 -3.6049454e-01 + 1.9910500e+03 -9.0494540e-02 + 1.9913000e+03 1.0950546e-01 + 1.9915500e+03 3.2950546e-01 + 1.9918000e+03 5.7950546e-01 + 1.9920500e+03 4.6950546e-01 + 1.9923000e+03 3.1950546e-01 + 1.9925500e+03 1.6950546e-01 + 1.9928000e+03 3.9505460e-02 + 1.9930500e+03 -8.0494540e-02 + 1.9933000e+03 -6.0494540e-02 + 1.9935500e+03 9.9505460e-02 + 1.9938000e+03 1.5950546e-01 + 1.9940500e+03 1.8950546e-01 + 1.9943000e+03 1.6950546e-01 + 1.9945500e+03 1.0950546e-01 + 1.9948000e+03 -4.0494540e-02 + 1.9950500e+03 -1.2049454e-01 + 1.9953000e+03 -2.1049454e-01 + 1.9955500e+03 -2.7049454e-01 + 1.9958000e+03 -3.8049454e-01 + 1.9960500e+03 -3.1049454e-01 + 1.9963000e+03 -1.3049454e-01 + 1.9965500e+03 8.9505460e-02 + 1.9968000e+03 2.2950546e-01 + 1.9970500e+03 1.8950546e-01 + 1.9973000e+03 7.9505460e-02 + 1.9975500e+03 9.5054599e-03 + 1.9978000e+03 2.9505460e-02 + 1.9980500e+03 1.1950546e-01 + 1.9983000e+03 1.3950546e-01 + 1.9985500e+03 2.4950546e-01 + 1.9988000e+03 4.3950546e-01 + 1.9990500e+03 6.0950546e-01 + 1.9993000e+03 6.4950546e-01 + 1.9995500e+03 6.4950546e-01 + 1.9998000e+03 5.0950546e-01 + 2.0000500e+03 4.1950546e-01 + 2.0003000e+03 2.3950546e-01 + 2.0005500e+03 -4.9454011e-04 + 2.0008000e+03 -2.7049454e-01 + 2.0010500e+03 -5.1049454e-01 + 2.0013000e+03 -7.6049454e-01 + 2.0015500e+03 -8.8049454e-01 + 2.0018000e+03 -9.5049454e-01 + 2.0020500e+03 -9.8049454e-01 + 2.0023000e+03 -8.8049454e-01 + 2.0025500e+03 -7.4049454e-01 + 2.0028000e+03 -5.6049454e-01 + 2.0030500e+03 -3.7049454e-01 + 2.0033000e+03 -1.1049454e-01 + 2.0035500e+03 2.7950546e-01 + 2.0038000e+03 5.1950546e-01 + 2.0040500e+03 4.8950546e-01 + 2.0043000e+03 3.6950546e-01 + 2.0045500e+03 1.3950546e-01 + 2.0048000e+03 -5.0494540e-02 + 2.0050500e+03 -1.4049454e-01 + 2.0053000e+03 -1.6049454e-01 + 2.0055500e+03 -1.3049454e-01 + 2.0058000e+03 -7.0494540e-02 + 2.0060500e+03 -2.0494540e-02 + 2.0063000e+03 -1.7049454e-01 + 2.0065500e+03 -4.4049454e-01 + 2.0068000e+03 -5.5049454e-01 + 2.0070500e+03 -5.1049454e-01 + 2.0073000e+03 -2.9049454e-01 + 2.0075500e+03 9.9505460e-02 + 2.0078000e+03 4.1950546e-01 + 2.0080500e+03 4.6950546e-01 + 2.0083000e+03 4.1950546e-01 + 2.0085500e+03 3.5950546e-01 + 2.0088000e+03 2.5950546e-01 + 2.0090500e+03 2.0950546e-01 + 2.0093000e+03 2.0950546e-01 + 2.0095500e+03 1.4950546e-01 + 2.0098000e+03 2.9505460e-02 + 2.0100500e+03 -2.2049454e-01 + 2.0103000e+03 -3.2049454e-01 + 2.0105500e+03 -2.8049454e-01 + 2.0108000e+03 -1.8049454e-01 + 2.0110500e+03 -5.0494540e-02 + 2.0113000e+03 1.7950546e-01 + 2.0115500e+03 3.4950546e-01 + 2.0118000e+03 3.6950546e-01 + 2.0120500e+03 3.1950546e-01 + 2.0123000e+03 1.2950546e-01 + 2.0125500e+03 2.9505460e-02 + 2.0128000e+03 -3.0494540e-02 + 2.0130500e+03 -1.3049454e-01 + 2.0133000e+03 -3.1049454e-01 + 2.0135500e+03 -3.9049454e-01 + 2.0138000e+03 -3.6049454e-01 + 2.0140500e+03 -4.4049454e-01 + 2.0143000e+03 -5.3049454e-01 + 2.0145500e+03 -3.7049454e-01 + 2.0148000e+03 9.5054599e-03 + 2.0150500e+03 2.1950546e-01 + 2.0153000e+03 3.8950546e-01 + 2.0155500e+03 4.4950546e-01 + 2.0158000e+03 4.1950546e-01 + 2.0160500e+03 3.6950546e-01 + 2.0163000e+03 1.8950546e-01 + 2.0165500e+03 3.9505460e-02 + 2.0168000e+03 -1.2049454e-01 + 2.0170500e+03 -3.2049454e-01 + 2.0173000e+03 -5.1049454e-01 + 2.0175500e+03 -5.8049454e-01 + 2.0178000e+03 -4.5049454e-01 + 2.0180500e+03 -3.8049454e-01 + 2.0183000e+03 -4.1049454e-01 + 2.0185500e+03 -3.7049454e-01 + 2.0188000e+03 -1.8049454e-01 + 2.0190500e+03 -9.0494540e-02 + 2.0193000e+03 6.9505460e-02 + 2.0195500e+03 9.5054599e-03 + 2.0198000e+03 -1.3049454e-01 + 2.0200500e+03 -1.9049454e-01 + 2.0203000e+03 -2.7049454e-01 + 2.0205500e+03 -4.0049454e-01 + 2.0208000e+03 -4.2049454e-01 + 2.0210500e+03 -2.7049454e-01 + 2.0213000e+03 9.5054599e-03 + 2.0215500e+03 2.1950546e-01 + 2.0218000e+03 4.9950546e-01 + 2.0220500e+03 6.9950546e-01 + 2.0223000e+03 9.1950546e-01 + 2.0225500e+03 1.0095055e+00 + 2.0228000e+03 8.0950546e-01 + 2.0230500e+03 4.8950546e-01 + 2.0233000e+03 2.0950546e-01 + 2.0235500e+03 1.9505460e-02 + 2.0238000e+03 -1.3049454e-01 + 2.0240500e+03 -2.9049454e-01 + 2.0243000e+03 -2.8049454e-01 + 2.0245500e+03 -3.4049454e-01 + 2.0248000e+03 -3.7049454e-01 + 2.0250500e+03 -3.8049454e-01 + 2.0253000e+03 -4.0049454e-01 + 2.0255500e+03 -2.7049454e-01 + 2.0258000e+03 -1.1049454e-01 + 2.0260500e+03 -1.8049454e-01 + 2.0263000e+03 -2.4049454e-01 + 2.0265500e+03 -2.0049454e-01 + 2.0268000e+03 -1.7049454e-01 + 2.0270500e+03 -1.1049454e-01 + 2.0273000e+03 1.9505460e-02 + 2.0275500e+03 1.1950546e-01 + 2.0278000e+03 1.8950546e-01 + 2.0280500e+03 2.5950546e-01 + 2.0283000e+03 2.6950546e-01 + 2.0285500e+03 1.7950546e-01 + 2.0288000e+03 -1.7049454e-01 + 2.0290500e+03 -4.3049454e-01 + 2.0293000e+03 -5.1049454e-01 + 2.0295500e+03 -6.1049454e-01 + 2.0298000e+03 -5.6049454e-01 + 2.0300500e+03 -4.2049454e-01 + 2.0303000e+03 -4.1049454e-01 + 2.0305500e+03 -2.4049454e-01 + 2.0308000e+03 -2.0494540e-02 + 2.0310500e+03 4.6950546e-01 + 2.0313000e+03 1.0195055e+00 + 2.0315500e+03 1.0795055e+00 + 2.0318000e+03 1.0395055e+00 + 2.0320500e+03 6.6950546e-01 + 2.0323000e+03 3.8950546e-01 + 2.0325500e+03 2.6950546e-01 + 2.0328000e+03 1.4950546e-01 + 2.0330500e+03 4.9505460e-02 + 2.0333000e+03 1.3950546e-01 + 2.0335500e+03 4.0950546e-01 + 2.0338000e+03 6.4950546e-01 + 2.0340500e+03 6.1950546e-01 + 2.0343000e+03 2.3950546e-01 + 2.0345500e+03 -4.1049454e-01 + 2.0348000e+03 -9.8049454e-01 + 2.0350500e+03 -1.1604945e+00 + 2.0353000e+03 -1.2704945e+00 + 2.0355500e+03 -1.1804945e+00 + 2.0358000e+03 -8.7049454e-01 + 2.0360500e+03 -5.6049454e-01 + 2.0363000e+03 -4.5049454e-01 + 2.0365500e+03 -3.2049454e-01 + 2.0368000e+03 -1.4049454e-01 + 2.0370500e+03 1.9505460e-02 + 2.0373000e+03 2.1950546e-01 + 2.0375500e+03 4.9950546e-01 + 2.0378000e+03 6.6950546e-01 + 2.0380500e+03 6.6950546e-01 + 2.0383000e+03 6.3950546e-01 + 2.0385500e+03 5.0950546e-01 + 2.0388000e+03 3.1950546e-01 + 2.0390500e+03 1.5950546e-01 + 2.0393000e+03 9.5054599e-03 + 2.0395500e+03 -3.4049454e-01 + 2.0398000e+03 -5.8049454e-01 + 2.0400500e+03 -5.6049454e-01 + 2.0403000e+03 -4.7049454e-01 + 2.0405500e+03 -3.8049454e-01 + 2.0408000e+03 -1.0494540e-02 + 2.0410500e+03 3.9950546e-01 + 2.0413000e+03 6.6950546e-01 + 2.0415500e+03 1.0195055e+00 + 2.0418000e+03 1.2595055e+00 + 2.0420500e+03 1.7895055e+00 + 2.0423000e+03 1.5795055e+00 + 2.0425500e+03 7.0950546e-01 + 2.0428000e+03 7.9505460e-02 + 2.0430500e+03 -3.2049454e-01 + 2.0433000e+03 -5.9049454e-01 + 2.0435500e+03 -7.5049454e-01 + 2.0438000e+03 -8.4049454e-01 + 2.0440500e+03 -8.5049454e-01 + 2.0443000e+03 -6.8049454e-01 + 2.0445500e+03 -7.3049454e-01 + 2.0448000e+03 -5.4049454e-01 + 2.0450500e+03 -2.0049454e-01 + 2.0453000e+03 2.7950546e-01 + 2.0455500e+03 6.0950546e-01 + 2.0458000e+03 6.3950546e-01 + 2.0460500e+03 4.9950546e-01 + 2.0463000e+03 2.2950546e-01 + 2.0465500e+03 3.9505460e-02 + 2.0468000e+03 -1.5049454e-01 + 2.0470500e+03 -2.5049454e-01 + 2.0473000e+03 -3.4049454e-01 + 2.0475500e+03 -4.6049454e-01 + 2.0478000e+03 -4.7049454e-01 + 2.0480500e+03 -3.4049454e-01 + 2.0483000e+03 -2.3049454e-01 + 2.0485500e+03 -8.0494540e-02 + 2.0488000e+03 7.9505460e-02 + 2.0490500e+03 1.0950546e-01 + 2.0493000e+03 5.9505460e-02 + 2.0495500e+03 -4.9454011e-04 + 2.0498000e+03 -6.0494540e-02 + 2.0500500e+03 -8.0494540e-02 + 2.0503000e+03 -1.9049454e-01 + 2.0505500e+03 -3.6049454e-01 + 2.0508000e+03 -4.5049454e-01 + 2.0510500e+03 -4.1049454e-01 + 2.0513000e+03 -3.1049454e-01 + 2.0515500e+03 -2.2049454e-01 + 2.0518000e+03 2.9505460e-02 + 2.0520500e+03 3.0950546e-01 + 2.0523000e+03 3.8950546e-01 + 2.0525500e+03 3.9950546e-01 + 2.0528000e+03 4.4950546e-01 + 2.0530500e+03 5.3950546e-01 + 2.0533000e+03 6.0950546e-01 + 2.0535500e+03 6.8950546e-01 + 2.0538000e+03 7.2950546e-01 + 2.0540500e+03 8.1950546e-01 + 2.0543000e+03 7.0950546e-01 + 2.0545500e+03 4.6950546e-01 + 2.0548000e+03 1.1950546e-01 + 2.0550500e+03 -2.1049454e-01 + 2.0553000e+03 -4.7049454e-01 + 2.0555500e+03 -6.0049454e-01 + 2.0558000e+03 -7.7049454e-01 + 2.0560500e+03 -8.7049454e-01 + 2.0563000e+03 -8.3049454e-01 + 2.0565500e+03 -9.4049454e-01 + 2.0568000e+03 -8.9049454e-01 + 2.0570500e+03 -8.2049454e-01 + 2.0573000e+03 -7.4049454e-01 + 2.0575500e+03 -5.8049454e-01 + 2.0578000e+03 -4.2049454e-01 + 2.0580500e+03 -2.3049454e-01 + 2.0583000e+03 -8.0494540e-02 + 2.0585500e+03 -3.0494540e-02 + 2.0588000e+03 3.9505460e-02 + 2.0590500e+03 2.0950546e-01 + 2.0593000e+03 2.3950546e-01 + 2.0595500e+03 1.8950546e-01 + 2.0598000e+03 2.1950546e-01 + 2.0600500e+03 2.4950546e-01 + 2.0603000e+03 1.7950546e-01 + 2.0605500e+03 1.1950546e-01 + 2.0608000e+03 1.8950546e-01 + 2.0610500e+03 2.1950546e-01 + 2.0613000e+03 1.4950546e-01 + 2.0615500e+03 9.9505460e-02 + 2.0618000e+03 9.9505460e-02 + 2.0620500e+03 9.9505460e-02 + 2.0623000e+03 1.7950546e-01 + 2.0625500e+03 3.8950546e-01 + 2.0628000e+03 6.3950546e-01 + 2.0630500e+03 6.0950546e-01 + 2.0633000e+03 4.4950546e-01 + 2.0635500e+03 1.5950546e-01 + 2.0638000e+03 -1.0494540e-02 + 2.0640500e+03 -1.1049454e-01 + 2.0643000e+03 -1.8049454e-01 + 2.0645500e+03 -3.7049454e-01 + 2.0648000e+03 -5.4049454e-01 + 2.0650500e+03 -6.9049454e-01 + 2.0653000e+03 -8.7049454e-01 + 2.0655500e+03 -9.4049454e-01 + 2.0658000e+03 -7.7049454e-01 + 2.0660500e+03 -4.6049454e-01 + 2.0663000e+03 -1.1049454e-01 + 2.0665500e+03 5.9505460e-02 + 2.0668000e+03 1.9950546e-01 + 2.0670500e+03 2.1950546e-01 + 2.0673000e+03 2.2950546e-01 + 2.0675500e+03 2.3950546e-01 + 2.0678000e+03 3.1950546e-01 + 2.0680500e+03 5.2950546e-01 + 2.0683000e+03 7.0950546e-01 + 2.0685500e+03 8.3950546e-01 + 2.0688000e+03 7.7950546e-01 + 2.0690500e+03 5.2950546e-01 + 2.0693000e+03 3.3950546e-01 + 2.0695500e+03 1.6950546e-01 + 2.0698000e+03 -1.7049454e-01 + 2.0700500e+03 -4.5049454e-01 + 2.0703000e+03 -6.1049454e-01 + 2.0705500e+03 -7.1049454e-01 + 2.0708000e+03 -7.7049454e-01 + 2.0710500e+03 -7.3049454e-01 + 2.0713000e+03 -7.3049454e-01 + 2.0715500e+03 -4.9049454e-01 + 2.0718000e+03 -3.1049454e-01 + 2.0720500e+03 1.9505460e-02 + 2.0723000e+03 1.8950546e-01 + 2.0725500e+03 2.1950546e-01 + 2.0728000e+03 6.9505460e-02 + 2.0730500e+03 9.5054599e-03 + 2.0733000e+03 -7.0494540e-02 + 2.0735500e+03 -1.5049454e-01 + 2.0738000e+03 -1.0049454e-01 + 2.0740500e+03 -1.8049454e-01 + 2.0743000e+03 -3.8049454e-01 + 2.0745500e+03 -2.5049454e-01 + 2.0748000e+03 -2.8049454e-01 + 2.0750500e+03 -8.0494540e-02 + 2.0753000e+03 2.7950546e-01 + 2.0755500e+03 6.7950546e-01 + 2.0758000e+03 8.9950546e-01 + 2.0760500e+03 1.0695055e+00 + 2.0763000e+03 1.0995055e+00 + 2.0765500e+03 1.0695055e+00 + 2.0768000e+03 8.3950546e-01 + 2.0770500e+03 3.9950546e-01 + 2.0773000e+03 -1.2049454e-01 + 2.0775500e+03 -4.9049454e-01 + 2.0778000e+03 -7.0049454e-01 + 2.0780500e+03 -8.1049454e-01 + 2.0783000e+03 -7.3049454e-01 + 2.0785500e+03 -6.7049454e-01 + 2.0788000e+03 -5.3049454e-01 + 2.0790500e+03 -5.6049454e-01 + 2.0793000e+03 -5.7049454e-01 + 2.0795500e+03 -4.7049454e-01 + 2.0798000e+03 -3.5049454e-01 + 2.0800500e+03 -1.9049454e-01 + 2.0803000e+03 -3.0494540e-02 + 2.0805500e+03 5.9505460e-02 + 2.0808000e+03 1.5950546e-01 + 2.0810500e+03 2.1950546e-01 + 2.0813000e+03 1.4950546e-01 + 2.0815500e+03 7.9505460e-02 + 2.0818000e+03 3.9505460e-02 + 2.0820500e+03 9.5054599e-03 + 2.0823000e+03 5.9505460e-02 + 2.0825500e+03 -3.0494540e-02 + 2.0828000e+03 -8.0494540e-02 + 2.0830500e+03 -1.9049454e-01 + 2.0833000e+03 -2.9049454e-01 + 2.0835500e+03 -3.4049454e-01 + 2.0838000e+03 -2.3049454e-01 + 2.0840500e+03 -1.2049454e-01 + 2.0843000e+03 -1.1049454e-01 + 2.0845500e+03 1.8950546e-01 + 2.0848000e+03 4.5950546e-01 + 2.0850500e+03 7.1950546e-01 + 2.0853000e+03 9.1950546e-01 + 2.0855500e+03 1.1495055e+00 + 2.0858000e+03 1.0995055e+00 + 2.0860500e+03 8.1950546e-01 + 2.0863000e+03 4.5950546e-01 + 2.0865500e+03 1.1950546e-01 + 2.0868000e+03 -1.1049454e-01 + 2.0870500e+03 -2.1049454e-01 + 2.0873000e+03 -4.8049454e-01 + 2.0875500e+03 -7.0049454e-01 + 2.0878000e+03 -8.2049454e-01 + 2.0880500e+03 -1.0104945e+00 + 2.0883000e+03 -1.0404945e+00 + 2.0885500e+03 -1.0204945e+00 + 2.0888000e+03 -8.5049454e-01 + 2.0890500e+03 -5.7049454e-01 + 2.0893000e+03 -2.4049454e-01 + 2.0895500e+03 1.1950546e-01 + 2.0898000e+03 4.2950546e-01 + 2.0900500e+03 6.2950546e-01 + 2.0903000e+03 6.2950546e-01 + 2.0905500e+03 5.4950546e-01 + 2.0908000e+03 4.3950546e-01 + 2.0910500e+03 2.7950546e-01 + 2.0913000e+03 1.1950546e-01 + 2.0915500e+03 -1.1049454e-01 + 2.0918000e+03 -3.6049454e-01 + 2.0920500e+03 -5.8049454e-01 + 2.0923000e+03 -6.1049454e-01 + 2.0925500e+03 -6.4049454e-01 + 2.0928000e+03 -5.8049454e-01 + 2.0930500e+03 -2.7049454e-01 + 2.0933000e+03 3.0950546e-01 + 2.0935500e+03 8.1950546e-01 + 2.0938000e+03 8.7950546e-01 + 2.0940500e+03 5.9950546e-01 + 2.0943000e+03 2.4950546e-01 + 2.0945500e+03 -5.0494540e-02 + 2.0948000e+03 -2.3049454e-01 + 2.0950500e+03 -2.5049454e-01 + 2.0953000e+03 -2.0049454e-01 + 2.0955500e+03 -1.9049454e-01 + 2.0958000e+03 9.5054599e-03 + 2.0960500e+03 3.3950546e-01 + 2.0963000e+03 3.4950546e-01 + 2.0965500e+03 1.7950546e-01 + 2.0968000e+03 1.7950546e-01 + 2.0970500e+03 9.9505460e-02 + 2.0973000e+03 3.9505460e-02 + 2.0975500e+03 1.4950546e-01 + 2.0978000e+03 2.2950546e-01 + 2.0980500e+03 2.4950546e-01 + 2.0983000e+03 1.7950546e-01 + 2.0985500e+03 1.6950546e-01 + 2.0988000e+03 1.0950546e-01 + 2.0990500e+03 4.9505460e-02 + 2.0993000e+03 -1.0494540e-02 + 2.0995500e+03 -2.3049454e-01 + 2.0998000e+03 -3.9049454e-01 + 2.1000500e+03 -4.4049454e-01 + 2.1003000e+03 -5.1049454e-01 + 2.1005500e+03 -5.4049454e-01 + 2.1008000e+03 -3.4049454e-01 + 2.1010500e+03 -1.7049454e-01 + 2.1013000e+03 1.9505460e-02 + 2.1015500e+03 1.7950546e-01 + 2.1018000e+03 3.2950546e-01 + 2.1020500e+03 4.4950546e-01 + 2.1023000e+03 3.9950546e-01 + 2.1025500e+03 2.6950546e-01 + 2.1028000e+03 -4.0494540e-02 + 2.1030500e+03 -2.8049454e-01 + 2.1033000e+03 -3.8049454e-01 + 2.1035500e+03 -4.9049454e-01 + 2.1038000e+03 -5.1049454e-01 + 2.1040500e+03 -4.3049454e-01 + 2.1043000e+03 -3.1049454e-01 + 2.1045500e+03 -3.0049454e-01 + 2.1048000e+03 -1.5049454e-01 + 2.1050500e+03 4.9505460e-02 + 2.1053000e+03 2.4950546e-01 + 2.1055500e+03 2.6950546e-01 + 2.1058000e+03 9.9505460e-02 + 2.1060500e+03 -1.0049454e-01 + 2.1063000e+03 -1.3049454e-01 + 2.1065500e+03 -7.0494540e-02 + 2.1068000e+03 1.4950546e-01 + 2.1070500e+03 2.8950546e-01 + 2.1073000e+03 2.7950546e-01 + 2.1075500e+03 2.6950546e-01 + 2.1078000e+03 2.9950546e-01 + 2.1080500e+03 3.2950546e-01 + 2.1083000e+03 2.7950546e-01 + 2.1085500e+03 2.8950546e-01 + 2.1088000e+03 2.7950546e-01 + 2.1090500e+03 1.1950546e-01 + 2.1093000e+03 -8.0494540e-02 + 2.1095500e+03 -2.5049454e-01 + 2.1098000e+03 -3.8049454e-01 + 2.1100500e+03 -4.7049454e-01 + 2.1103000e+03 -4.9049454e-01 + 2.1105500e+03 -4.7049454e-01 + 2.1108000e+03 -4.0049454e-01 + 2.1110500e+03 -3.8049454e-01 + 2.1113000e+03 -3.7049454e-01 + 2.1115500e+03 -4.4049454e-01 + 2.1118000e+03 -3.9049454e-01 + 2.1120500e+03 -2.6049454e-01 + 2.1123000e+03 -1.4049454e-01 + 2.1125500e+03 6.9505460e-02 + 2.1128000e+03 3.0950546e-01 + 2.1130500e+03 2.6950546e-01 + 2.1133000e+03 2.9950546e-01 + 2.1135500e+03 3.5950546e-01 + 2.1138000e+03 3.2950546e-01 + 2.1140500e+03 3.1950546e-01 + 2.1143000e+03 3.3950546e-01 + 2.1145500e+03 3.3950546e-01 + 2.1148000e+03 2.8950546e-01 + 2.1150500e+03 1.4950546e-01 + 2.1153000e+03 3.9505460e-02 + 2.1155500e+03 -1.0494540e-02 + 2.1158000e+03 -2.0494540e-02 + 2.1160500e+03 -1.0049454e-01 + 2.1163000e+03 -3.0049454e-01 + 2.1165500e+03 -4.6049454e-01 + 2.1168000e+03 -5.4049454e-01 + 2.1170500e+03 -4.5049454e-01 + 2.1173000e+03 -4.6049454e-01 + 2.1175500e+03 -4.7049454e-01 + 2.1178000e+03 -4.6049454e-01 + 2.1180500e+03 -5.2049454e-01 + 2.1183000e+03 -4.1049454e-01 + 2.1185500e+03 -3.3049454e-01 + 2.1188000e+03 -4.1049454e-01 + 2.1190500e+03 -4.3049454e-01 + 2.1193000e+03 -4.1049454e-01 + 2.1195500e+03 -4.3049454e-01 + 2.1198000e+03 -5.5049454e-01 + 2.1200500e+03 -4.9049454e-01 + 2.1203000e+03 -2.3049454e-01 + 2.1205500e+03 3.0950546e-01 + 2.1208000e+03 7.6950546e-01 + 2.1210500e+03 8.6950546e-01 + 2.1213000e+03 7.9950546e-01 + 2.1215500e+03 5.5950546e-01 + 2.1218000e+03 4.9950546e-01 + 2.1220500e+03 5.5950546e-01 + 2.1223000e+03 7.8950546e-01 + 2.1225500e+03 9.7950546e-01 + 2.1228000e+03 1.0495055e+00 + 2.1230500e+03 9.7950546e-01 + 2.1233000e+03 7.2950546e-01 + 2.1235500e+03 3.7950546e-01 + 2.1238000e+03 1.9950546e-01 + 2.1240500e+03 1.5950546e-01 + 2.1243000e+03 2.9505460e-02 + 2.1245500e+03 -1.7049454e-01 + 2.1248000e+03 -2.0049454e-01 + 2.1250500e+03 -2.2049454e-01 + 2.1253000e+03 -3.0049454e-01 + 2.1255500e+03 -5.7049454e-01 + 2.1258000e+03 -8.1049454e-01 + 2.1260500e+03 -9.5049454e-01 + 2.1263000e+03 -1.0604945e+00 + 2.1265500e+03 -1.1104945e+00 + 2.1268000e+03 -9.7049454e-01 + 2.1270500e+03 -6.8049454e-01 + 2.1273000e+03 -4.6049454e-01 + 2.1275500e+03 -3.1049454e-01 + 2.1278000e+03 -2.4049454e-01 + 2.1280500e+03 -3.4049454e-01 + 2.1283000e+03 -4.6049454e-01 + 2.1285500e+03 -5.2049454e-01 + 2.1288000e+03 -5.7049454e-01 + 2.1290500e+03 -5.4049454e-01 + 2.1293000e+03 -5.1049454e-01 + 2.1295500e+03 -4.4049454e-01 + 2.1298000e+03 -2.7049454e-01 + 2.1300500e+03 -5.0494540e-02 + 2.1303000e+03 2.6950546e-01 + 2.1305500e+03 7.0950546e-01 + 2.1308000e+03 7.5950546e-01 + 2.1310500e+03 7.3950546e-01 + 2.1313000e+03 8.0950546e-01 + 2.1315500e+03 8.0950546e-01 + 2.1318000e+03 7.6950546e-01 + 2.1320500e+03 7.1950546e-01 + 2.1323000e+03 5.6950546e-01 + 2.1325500e+03 3.9950546e-01 + 2.1328000e+03 2.9950546e-01 + 2.1330500e+03 1.6950546e-01 + 2.1333000e+03 9.9505460e-02 + 2.1335500e+03 1.3950546e-01 + 2.1338000e+03 2.5950546e-01 + 2.1340500e+03 2.2950546e-01 + 2.1343000e+03 1.1950546e-01 + 2.1345500e+03 3.9505460e-02 + 2.1348000e+03 -4.0494540e-02 + 2.1350500e+03 -2.4049454e-01 + 2.1353000e+03 -4.5049454e-01 + 2.1355500e+03 -5.1049454e-01 + 2.1358000e+03 -4.5049454e-01 + 2.1360500e+03 -4.9049454e-01 + 2.1363000e+03 -5.2049454e-01 + 2.1365500e+03 -5.4049454e-01 + 2.1368000e+03 -4.9049454e-01 + 2.1370500e+03 -1.8049454e-01 + 2.1373000e+03 -4.9454011e-04 + 2.1375500e+03 3.3950546e-01 + 2.1378000e+03 5.5950546e-01 + 2.1380500e+03 4.7950546e-01 + 2.1383000e+03 2.0950546e-01 + 2.1385500e+03 -7.0494540e-02 + 2.1388000e+03 -1.9049454e-01 + 2.1390500e+03 -3.0049454e-01 + 2.1393000e+03 -4.7049454e-01 + 2.1395500e+03 -5.2049454e-01 + 2.1398000e+03 -6.3049454e-01 + 2.1400500e+03 -6.7049454e-01 + 2.1403000e+03 -6.1049454e-01 + 2.1405500e+03 -5.0049454e-01 + 2.1408000e+03 -3.4049454e-01 + 2.1410500e+03 -1.8049454e-01 + 2.1413000e+03 -1.2049454e-01 + 2.1415500e+03 -1.8049454e-01 + 2.1418000e+03 -8.0494540e-02 + 2.1420500e+03 1.2950546e-01 + 2.1423000e+03 3.6950546e-01 + 2.1425500e+03 4.6950546e-01 + 2.1428000e+03 6.6950546e-01 + 2.1430500e+03 6.4950546e-01 + 2.1433000e+03 4.1950546e-01 + 2.1435500e+03 1.4950546e-01 + 2.1438000e+03 -7.0494540e-02 + 2.1440500e+03 -1.7049454e-01 + 2.1443000e+03 -2.0049454e-01 + 2.1445500e+03 -2.2049454e-01 + 2.1448000e+03 -1.7049454e-01 + 2.1450500e+03 -1.4049454e-01 + 2.1453000e+03 -2.7049454e-01 + 2.1455500e+03 -2.7049454e-01 + 2.1458000e+03 -1.6049454e-01 + 2.1460500e+03 -1.0049454e-01 + 2.1463000e+03 9.5054599e-03 + 2.1465500e+03 3.8950546e-01 + 2.1468000e+03 6.4950546e-01 + 2.1470500e+03 7.0950546e-01 + 2.1473000e+03 6.8950546e-01 + 2.1475500e+03 5.8950546e-01 + 2.1478000e+03 6.0950546e-01 + 2.1480500e+03 6.4950546e-01 + 2.1483000e+03 6.5950546e-01 + 2.1485500e+03 3.8950546e-01 + 2.1488000e+03 2.1950546e-01 + 2.1490500e+03 9.5054599e-03 + 2.1493000e+03 -3.4049454e-01 + 2.1495500e+03 -5.0049454e-01 + 2.1498000e+03 -5.7049454e-01 + 2.1500500e+03 -6.9049454e-01 + 2.1503000e+03 -8.4049454e-01 + 2.1505500e+03 -1.0204945e+00 + 2.1508000e+03 -1.1004945e+00 + 2.1510500e+03 -9.2049454e-01 + 2.1513000e+03 -7.7049454e-01 + 2.1515500e+03 -6.6049454e-01 + 2.1518000e+03 -6.1049454e-01 + 2.1520500e+03 -5.8049454e-01 + 2.1523000e+03 -4.0049454e-01 + 2.1525500e+03 -2.6049454e-01 + 2.1528000e+03 -2.7049454e-01 + 2.1530500e+03 -1.1049454e-01 + 2.1533000e+03 2.3950546e-01 + 2.1535500e+03 3.2950546e-01 + 2.1538000e+03 5.5950546e-01 + 2.1540500e+03 6.6950546e-01 + 2.1543000e+03 8.1950546e-01 + 2.1545500e+03 8.6950546e-01 + 2.1548000e+03 8.1950546e-01 + 2.1550500e+03 8.1950546e-01 + 2.1553000e+03 7.8950546e-01 + 2.1555500e+03 4.0950546e-01 + 2.1558000e+03 1.9505460e-02 + 2.1560500e+03 -3.7049454e-01 + 2.1563000e+03 -5.6049454e-01 + 2.1565500e+03 -5.2049454e-01 + 2.1568000e+03 -4.3049454e-01 + 2.1570500e+03 -4.2049454e-01 + 2.1573000e+03 -4.1049454e-01 + 2.1575500e+03 -5.0049454e-01 + 2.1578000e+03 -5.5049454e-01 + 2.1580500e+03 -5.6049454e-01 + 2.1583000e+03 -4.1049454e-01 + 2.1585500e+03 -3.0049454e-01 + 2.1588000e+03 -2.1049454e-01 + 2.1590500e+03 -8.0494540e-02 + 2.1593000e+03 7.9505460e-02 + 2.1595500e+03 2.7950546e-01 + 2.1598000e+03 4.3950546e-01 + 2.1600500e+03 5.5950546e-01 + 2.1603000e+03 6.5950546e-01 + 2.1605500e+03 5.9950546e-01 + 2.1608000e+03 4.7950546e-01 + 2.1610500e+03 3.2950546e-01 + 2.1613000e+03 2.0950546e-01 + 2.1615500e+03 4.9505460e-02 + 2.1618000e+03 -8.0494540e-02 + 2.1620500e+03 -1.6049454e-01 + 2.1623000e+03 -2.0049454e-01 + 2.1625500e+03 -2.2049454e-01 + 2.1628000e+03 -2.0049454e-01 + 2.1630500e+03 -1.6049454e-01 + 2.1633000e+03 5.9505460e-02 + 2.1635500e+03 1.6950546e-01 + 2.1638000e+03 1.4950546e-01 + 2.1640500e+03 8.9505460e-02 + 2.1643000e+03 8.9505460e-02 + 2.1645500e+03 4.9505460e-02 + 2.1648000e+03 9.9505460e-02 + 2.1650500e+03 1.9950546e-01 + 2.1653000e+03 1.0950546e-01 + 2.1655500e+03 -6.0494540e-02 + 2.1658000e+03 -1.9049454e-01 + 2.1660500e+03 -4.4049454e-01 + 2.1663000e+03 -5.6049454e-01 + 2.1665500e+03 -7.9049454e-01 + 2.1668000e+03 -9.1049454e-01 + 2.1670500e+03 -8.6049454e-01 + 2.1673000e+03 -7.2049454e-01 + 2.1675500e+03 -7.4049454e-01 + 2.1678000e+03 -8.1049454e-01 + 2.1680500e+03 -8.2049454e-01 + 2.1683000e+03 -7.4049454e-01 + 2.1685500e+03 -5.9049454e-01 + 2.1688000e+03 -2.7049454e-01 + 2.1690500e+03 2.7950546e-01 + 2.1693000e+03 6.2950546e-01 + 2.1695500e+03 7.4950546e-01 + 2.1698000e+03 7.8950546e-01 + 2.1700500e+03 9.4950546e-01 + 2.1703000e+03 7.8950546e-01 + 2.1705500e+03 5.0950546e-01 + 2.1708000e+03 3.6950546e-01 + 2.1710500e+03 2.9950546e-01 + 2.1713000e+03 9.9505460e-02 + 2.1715500e+03 -6.0494540e-02 + 2.1718000e+03 -8.0494540e-02 + 2.1720500e+03 8.9505460e-02 + 2.1723000e+03 4.2950546e-01 + 2.1725500e+03 6.6950546e-01 + 2.1728000e+03 5.9950546e-01 + 2.1730500e+03 3.9950546e-01 + 2.1733000e+03 2.7950546e-01 + 2.1735500e+03 3.2950546e-01 + 2.1738000e+03 4.2950546e-01 + 2.1740500e+03 2.9950546e-01 + 2.1743000e+03 1.5950546e-01 + 2.1745500e+03 -2.1049454e-01 + 2.1748000e+03 -5.3049454e-01 + 2.1750500e+03 -6.4049454e-01 + 2.1753000e+03 -7.1049454e-01 + 2.1755500e+03 -7.4049454e-01 + 2.1758000e+03 -5.8049454e-01 + 2.1760500e+03 -4.8049454e-01 + 2.1763000e+03 -3.7049454e-01 + 2.1765500e+03 -3.5049454e-01 + 2.1768000e+03 -3.4049454e-01 + 2.1770500e+03 -3.8049454e-01 + 2.1773000e+03 -3.5049454e-01 + 2.1775500e+03 -3.3049454e-01 + 2.1778000e+03 -2.9049454e-01 + 2.1780500e+03 -2.4049454e-01 + 2.1783000e+03 -2.1049454e-01 + 2.1785500e+03 -1.7049454e-01 + 2.1788000e+03 -1.9049454e-01 + 2.1790500e+03 -3.0494540e-02 + 2.1793000e+03 1.8950546e-01 + 2.1795500e+03 2.0950546e-01 + 2.1798000e+03 2.4950546e-01 + 2.1800500e+03 1.1950546e-01 + 2.1803000e+03 5.9505460e-02 + 2.1805500e+03 1.2950546e-01 + 2.1808000e+03 1.5950546e-01 + 2.1810500e+03 1.6950546e-01 + 2.1813000e+03 2.4950546e-01 + 2.1815500e+03 2.6950546e-01 + 2.1818000e+03 2.4950546e-01 + 2.1820500e+03 1.9950546e-01 + 2.1823000e+03 1.5950546e-01 + 2.1825500e+03 1.5950546e-01 + 2.1828000e+03 1.4950546e-01 + 2.1830500e+03 1.6950546e-01 + 2.1833000e+03 1.2950546e-01 + 2.1835500e+03 3.9505460e-02 + 2.1838000e+03 4.9505460e-02 + 2.1840500e+03 2.3950546e-01 + 2.1843000e+03 3.4950546e-01 + 2.1845500e+03 3.6950546e-01 + 2.1848000e+03 2.0950546e-01 + 2.1850500e+03 -6.0494540e-02 + 2.1853000e+03 -2.2049454e-01 + 2.1855500e+03 -3.1049454e-01 + 2.1858000e+03 -2.6049454e-01 + 2.1860500e+03 -1.1049454e-01 + 2.1863000e+03 -5.0494540e-02 + 2.1865500e+03 -2.0494540e-02 + 2.1868000e+03 -1.4049454e-01 + 2.1870500e+03 -2.0049454e-01 + 2.1873000e+03 -2.8049454e-01 + 2.1875500e+03 -3.9049454e-01 + 2.1878000e+03 -5.6049454e-01 + 2.1880500e+03 -6.6049454e-01 + 2.1883000e+03 -6.7049454e-01 + 2.1885500e+03 -5.8049454e-01 + 2.1888000e+03 -3.8049454e-01 + 2.1890500e+03 -5.0494540e-02 + 2.1893000e+03 2.5950546e-01 + 2.1895500e+03 3.0950546e-01 + 2.1898000e+03 3.0950546e-01 + 2.1900500e+03 4.6950546e-01 + 2.1903000e+03 4.8950546e-01 + 2.1905500e+03 3.2950546e-01 + 2.1908000e+03 1.4950546e-01 + 2.1910500e+03 -1.2049454e-01 + 2.1913000e+03 -3.4049454e-01 + 2.1915500e+03 -6.2049454e-01 + 2.1918000e+03 -7.2049454e-01 + 2.1920500e+03 -7.2049454e-01 + 2.1923000e+03 -4.2049454e-01 + 2.1925500e+03 -3.9049454e-01 + 2.1928000e+03 -4.1049454e-01 + 2.1930500e+03 -3.3049454e-01 + 2.1933000e+03 -1.7049454e-01 + 2.1935500e+03 2.9505460e-02 + 2.1938000e+03 1.6950546e-01 + 2.1940500e+03 4.1950546e-01 + 2.1943000e+03 6.3950546e-01 + 2.1945500e+03 6.1950546e-01 + 2.1948000e+03 7.1950546e-01 + 2.1950500e+03 5.8950546e-01 + 2.1953000e+03 5.1950546e-01 + 2.1955500e+03 5.4950546e-01 + 2.1958000e+03 4.6950546e-01 + 2.1960500e+03 3.7950546e-01 + 2.1963000e+03 3.3950546e-01 + 2.1965500e+03 2.5950546e-01 + 2.1968000e+03 1.2950546e-01 + 2.1970500e+03 -7.0494540e-02 + 2.1973000e+03 -3.2049454e-01 + 2.1975500e+03 -4.6049454e-01 + 2.1978000e+03 -5.7049454e-01 + 2.1980500e+03 -4.5049454e-01 + 2.1983000e+03 -1.9049454e-01 + 2.1985500e+03 -2.4049454e-01 + 2.1988000e+03 -2.3049454e-01 + 2.1990500e+03 -2.7049454e-01 + 2.1993000e+03 -5.5049454e-01 + 2.1995500e+03 -6.7049454e-01 + 2.1998000e+03 -6.6049454e-01 + 2.2000500e+03 -5.4049454e-01 + 2.2003000e+03 -4.1049454e-01 + 2.2005500e+03 -1.2049454e-01 + 2.2008000e+03 2.0950546e-01 + 2.2010500e+03 1.7950546e-01 + 2.2013000e+03 1.2950546e-01 + 2.2015500e+03 2.3950546e-01 + 2.2018000e+03 5.2950546e-01 + 2.2020500e+03 7.1950546e-01 + 2.2023000e+03 6.1950546e-01 + 2.2025500e+03 4.7950546e-01 + 2.2028000e+03 4.5950546e-01 + 2.2030500e+03 2.8950546e-01 + 2.2033000e+03 1.5950546e-01 + 2.2035500e+03 -6.0494540e-02 + 2.2038000e+03 -2.1049454e-01 + 2.2040500e+03 -3.7049454e-01 + 2.2043000e+03 -4.3049454e-01 + 2.2045500e+03 -4.2049454e-01 + 2.2048000e+03 -5.5049454e-01 + 2.2050500e+03 -5.0049454e-01 + 2.2053000e+03 -4.0049454e-01 + 2.2055500e+03 -4.3049454e-01 + 2.2058000e+03 -3.2049454e-01 + 2.2060500e+03 -1.1049454e-01 + 2.2063000e+03 1.3950546e-01 + 2.2065500e+03 2.1950546e-01 + 2.2068000e+03 1.4950546e-01 + 2.2070500e+03 1.4950546e-01 + 2.2073000e+03 2.3950546e-01 + 2.2075500e+03 4.4950546e-01 + 2.2078000e+03 3.9950546e-01 + 2.2080500e+03 2.5950546e-01 + 2.2083000e+03 1.5950546e-01 + 2.2085500e+03 1.3950546e-01 + 2.2088000e+03 1.7950546e-01 + 2.2090500e+03 9.9505460e-02 + 2.2093000e+03 8.9505460e-02 + 2.2095500e+03 1.6950546e-01 + 2.2098000e+03 2.2950546e-01 + 2.2100500e+03 1.9950546e-01 + 2.2103000e+03 1.4950546e-01 + 2.2105500e+03 -2.0494540e-02 + 2.2108000e+03 -2.9049454e-01 + 2.2110500e+03 -4.7049454e-01 + 2.2113000e+03 -5.3049454e-01 + 2.2115500e+03 -6.4049454e-01 + 2.2118000e+03 -6.0049454e-01 + 2.2120500e+03 -5.5049454e-01 + 2.2123000e+03 -5.0049454e-01 + 2.2125500e+03 -4.7049454e-01 + 2.2128000e+03 -3.3049454e-01 + 2.2130500e+03 -2.9049454e-01 + 2.2133000e+03 -2.4049454e-01 + 2.2135500e+03 -6.0494540e-02 + 2.2138000e+03 6.9505460e-02 + 2.2140500e+03 1.2950546e-01 + 2.2143000e+03 3.0950546e-01 + 2.2145500e+03 4.0950546e-01 + 2.2148000e+03 4.7950546e-01 + 2.2150500e+03 4.9950546e-01 + 2.2153000e+03 4.8950546e-01 + 2.2155500e+03 3.5950546e-01 + 2.2158000e+03 -2.0494540e-02 + 2.2160500e+03 -1.9049454e-01 + 2.2163000e+03 -1.5049454e-01 + 2.2165500e+03 -1.2049454e-01 + 2.2168000e+03 -2.0049454e-01 + 2.2170500e+03 -2.8049454e-01 + 2.2173000e+03 -2.1049454e-01 + 2.2175500e+03 -1.9049454e-01 + 2.2178000e+03 -2.1049454e-01 + 2.2180500e+03 -3.2049454e-01 + 2.2183000e+03 -4.5049454e-01 + 2.2185500e+03 -6.2049454e-01 + 2.2188000e+03 -6.8049454e-01 + 2.2190500e+03 -6.3049454e-01 + 2.2193000e+03 -2.3049454e-01 + 2.2195500e+03 3.4950546e-01 + 2.2198000e+03 6.8950546e-01 + 2.2200500e+03 8.9950546e-01 + 2.2203000e+03 8.0950546e-01 + 2.2205500e+03 5.9950546e-01 + 2.2208000e+03 6.4950546e-01 + 2.2210500e+03 6.7950546e-01 + 2.2213000e+03 5.7950546e-01 + 2.2215500e+03 4.4950546e-01 + 2.2218000e+03 1.9950546e-01 + 2.2220500e+03 -1.0494540e-02 + 2.2223000e+03 -2.3049454e-01 + 2.2225500e+03 -3.7049454e-01 + 2.2228000e+03 -4.3049454e-01 + 2.2230500e+03 -4.7049454e-01 + 2.2233000e+03 -4.6049454e-01 + 2.2235500e+03 -1.6049454e-01 + 2.2238000e+03 -7.0494540e-02 + 2.2240500e+03 -1.5049454e-01 + 2.2243000e+03 -1.7049454e-01 + 2.2245500e+03 -2.2049454e-01 + 2.2248000e+03 -4.4049454e-01 + 2.2250500e+03 -5.8049454e-01 + 2.2253000e+03 -6.3049454e-01 + 2.2255500e+03 -4.8049454e-01 + 2.2258000e+03 -3.7049454e-01 + 2.2260500e+03 -1.4049454e-01 + 2.2263000e+03 7.9505460e-02 + 2.2265500e+03 1.4950546e-01 + 2.2268000e+03 1.6950546e-01 + 2.2270500e+03 2.4950546e-01 + 2.2273000e+03 1.4950546e-01 + 2.2275500e+03 6.9505460e-02 + 2.2278000e+03 7.9505460e-02 + 2.2280500e+03 1.8950546e-01 + 2.2283000e+03 2.6950546e-01 + 2.2285500e+03 4.0950546e-01 + 2.2288000e+03 5.0950546e-01 + 2.2290500e+03 4.2950546e-01 + 2.2293000e+03 2.6950546e-01 + 2.2295500e+03 7.9505460e-02 + 2.2298000e+03 -1.3049454e-01 + 2.2300500e+03 -2.3049454e-01 + 2.2303000e+03 -2.9049454e-01 + 2.2305500e+03 -3.4049454e-01 + 2.2308000e+03 -4.2049454e-01 + 2.2310500e+03 -5.2049454e-01 + 2.2313000e+03 -4.9049454e-01 + 2.2315500e+03 -5.3049454e-01 + 2.2318000e+03 -5.2049454e-01 + 2.2320500e+03 -3.6049454e-01 + 2.2323000e+03 2.9505460e-02 + 2.2325500e+03 2.9950546e-01 + 2.2328000e+03 4.3950546e-01 + 2.2330500e+03 5.3950546e-01 + 2.2333000e+03 7.4950546e-01 + 2.2335500e+03 1.0395055e+00 + 2.2338000e+03 1.1195055e+00 + 2.2340500e+03 1.0295055e+00 + 2.2343000e+03 5.0950546e-01 + 2.2345500e+03 5.9505460e-02 + 2.2348000e+03 -3.9049454e-01 + 2.2350500e+03 -6.0049454e-01 + 2.2353000e+03 -7.5049454e-01 + 2.2355500e+03 -8.0049454e-01 + 2.2358000e+03 -8.4049454e-01 + 2.2360500e+03 -7.8049454e-01 + 2.2363000e+03 -6.2049454e-01 + 2.2365500e+03 -5.1049454e-01 + 2.2368000e+03 -3.9049454e-01 + 2.2370500e+03 -3.1049454e-01 + 2.2373000e+03 -1.2049454e-01 + 2.2375500e+03 -2.0494540e-02 + 2.2378000e+03 2.9505460e-02 + 2.2380500e+03 8.9505460e-02 + 2.2383000e+03 -1.0494540e-02 + 2.2385500e+03 -3.0494540e-02 + 2.2388000e+03 -1.0494540e-02 + 2.2390500e+03 1.2950546e-01 + 2.2393000e+03 2.3950546e-01 + 2.2395500e+03 4.0950546e-01 + 2.2398000e+03 4.9950546e-01 + 2.2400500e+03 6.6950546e-01 + 2.2403000e+03 4.5950546e-01 + 2.2405500e+03 1.2950546e-01 + 2.2408000e+03 -7.0494540e-02 + 2.2410500e+03 -1.0049454e-01 + 2.2413000e+03 -1.0494540e-02 + 2.2415500e+03 1.0950546e-01 + 2.2418000e+03 2.9505460e-02 + 2.2420500e+03 -6.0494540e-02 + 2.2423000e+03 -1.4049454e-01 + 2.2425500e+03 9.5054599e-03 + 2.2428000e+03 3.1950546e-01 + 2.2430500e+03 3.5950546e-01 + 2.2433000e+03 2.1950546e-01 + 2.2435500e+03 -5.0494540e-02 + 2.2438000e+03 -3.5049454e-01 + 2.2440500e+03 -5.3049454e-01 + 2.2443000e+03 -5.7049454e-01 + 2.2445500e+03 -5.6049454e-01 + 2.2448000e+03 -3.6049454e-01 + 2.2450500e+03 -1.5049454e-01 + 2.2453000e+03 2.7950546e-01 + 2.2455500e+03 3.7950546e-01 + 2.2458000e+03 3.7950546e-01 + 2.2460500e+03 2.6950546e-01 + 2.2463000e+03 1.4950546e-01 + 2.2465500e+03 -6.0494540e-02 + 2.2468000e+03 -3.4049454e-01 + 2.2470500e+03 -6.2049454e-01 + 2.2473000e+03 -7.3049454e-01 + 2.2475500e+03 -6.7049454e-01 + 2.2478000e+03 -7.4049454e-01 + 2.2480500e+03 -6.9049454e-01 + 2.2483000e+03 -4.9049454e-01 + 2.2485500e+03 -2.2049454e-01 + 2.2488000e+03 3.9505460e-02 + 2.2490500e+03 3.2950546e-01 + 2.2493000e+03 7.4950546e-01 + 2.2495500e+03 7.0950546e-01 + 2.2498000e+03 7.1950546e-01 + 2.2500500e+03 7.4950546e-01 + 2.2503000e+03 6.0950546e-01 + 2.2505500e+03 4.9950546e-01 + 2.2508000e+03 4.0950546e-01 + 2.2510500e+03 1.7950546e-01 + 2.2513000e+03 2.9505460e-02 + 2.2515500e+03 -2.0494540e-02 + 2.2518000e+03 -7.0494540e-02 + 2.2520500e+03 -8.0494540e-02 + 2.2523000e+03 -1.4049454e-01 + 2.2525500e+03 -1.2049454e-01 + 2.2528000e+03 -1.7049454e-01 + 2.2530500e+03 -1.5049454e-01 + 2.2533000e+03 -1.2049454e-01 + 2.2535500e+03 -5.0494540e-02 + 2.2538000e+03 -9.0494540e-02 + 2.2540500e+03 -9.0494540e-02 + 2.2543000e+03 -5.0494540e-02 + 2.2545500e+03 -2.0494540e-02 + 2.2548000e+03 1.0950546e-01 + 2.2550500e+03 1.7950546e-01 + 2.2553000e+03 1.4950546e-01 + 2.2555500e+03 -2.0494540e-02 + 2.2558000e+03 -3.1049454e-01 + 2.2560500e+03 -5.7049454e-01 + 2.2563000e+03 -6.9049454e-01 + 2.2565500e+03 -6.2049454e-01 + 2.2568000e+03 -5.7049454e-01 + 2.2570500e+03 -5.0049454e-01 + 2.2573000e+03 -4.6049454e-01 + 2.2575500e+03 -4.6049454e-01 + 2.2578000e+03 -4.4049454e-01 + 2.2580500e+03 -4.1049454e-01 + 2.2583000e+03 -3.8049454e-01 + 2.2585500e+03 -3.8049454e-01 + 2.2588000e+03 -4.3049454e-01 + 2.2590500e+03 -3.7049454e-01 + 2.2593000e+03 -1.3049454e-01 + 2.2595500e+03 2.6950546e-01 + 2.2598000e+03 7.3950546e-01 + 2.2600500e+03 1.1795055e+00 + 2.2603000e+03 1.2895055e+00 + 2.2605500e+03 9.3950546e-01 + 2.2608000e+03 5.6950546e-01 + 2.2610500e+03 5.2950546e-01 + 2.2613000e+03 5.5950546e-01 + 2.2615500e+03 4.4950546e-01 + 2.2618000e+03 1.5950546e-01 + 2.2620500e+03 -2.0049454e-01 + 2.2623000e+03 -4.6049454e-01 + 2.2625500e+03 -5.1049454e-01 + 2.2628000e+03 -4.6049454e-01 + 2.2630500e+03 -3.3049454e-01 + 2.2633000e+03 -9.0494540e-02 + 2.2635500e+03 3.9505460e-02 + 2.2638000e+03 2.9505460e-02 + 2.2640500e+03 1.0950546e-01 + 2.2643000e+03 1.1950546e-01 + 2.2645500e+03 -4.0494540e-02 + 2.2648000e+03 -2.4049454e-01 + 2.2650500e+03 -3.4049454e-01 + 2.2653000e+03 -4.4049454e-01 + 2.2655500e+03 -5.0049454e-01 + 2.2658000e+03 -4.0049454e-01 + 2.2660500e+03 -1.1049454e-01 + 2.2663000e+03 2.6950546e-01 + 2.2665500e+03 4.5950546e-01 + 2.2668000e+03 5.7950546e-01 + 2.2670500e+03 4.9950546e-01 + 2.2673000e+03 4.1950546e-01 + 2.2675500e+03 3.3950546e-01 + 2.2678000e+03 2.9950546e-01 + 2.2680500e+03 3.4950546e-01 + 2.2683000e+03 1.8950546e-01 + 2.2685500e+03 -1.0049454e-01 + 2.2688000e+03 -1.9049454e-01 + 2.2690500e+03 -4.0049454e-01 + 2.2693000e+03 -5.9049454e-01 + 2.2695500e+03 -7.6049454e-01 + 2.2698000e+03 -9.9049454e-01 + 2.2700500e+03 -1.1104945e+00 + 2.2703000e+03 -1.1004945e+00 + 2.2705500e+03 -1.0204945e+00 + 2.2708000e+03 -7.9049454e-01 + 2.2710500e+03 -4.6049454e-01 + 2.2713000e+03 -8.0494540e-02 + 2.2715500e+03 4.0950546e-01 + 2.2718000e+03 9.6950546e-01 + 2.2720500e+03 1.2595055e+00 + 2.2723000e+03 1.4595055e+00 + 2.2725500e+03 1.4395055e+00 + 2.2728000e+03 1.2595055e+00 + 2.2730500e+03 6.6950546e-01 + 2.2733000e+03 2.8950546e-01 + 2.2735500e+03 1.5950546e-01 + 2.2738000e+03 1.6950546e-01 + 2.2740500e+03 1.7950546e-01 + 2.2743000e+03 9.9505460e-02 + 2.2745500e+03 -4.0494540e-02 + 2.2748000e+03 -1.3049454e-01 + 2.2750500e+03 -1.3049454e-01 + 2.2753000e+03 -2.0049454e-01 + 2.2755500e+03 -4.3049454e-01 + 2.2758000e+03 -5.3049454e-01 + 2.2760500e+03 -4.8049454e-01 + 2.2763000e+03 -2.6049454e-01 + 2.2765500e+03 -1.1049454e-01 + 2.2768000e+03 -1.0049454e-01 + 2.2770500e+03 -2.3049454e-01 + 2.2773000e+03 -3.0049454e-01 + 2.2775500e+03 -3.1049454e-01 + 2.2778000e+03 -3.4049454e-01 + 2.2780500e+03 -4.0049454e-01 + 2.2783000e+03 -3.9049454e-01 + 2.2785500e+03 -1.5049454e-01 + 2.2788000e+03 2.3950546e-01 + 2.2790500e+03 3.0950546e-01 + 2.2793000e+03 2.2950546e-01 + 2.2795500e+03 1.6950546e-01 + 2.2798000e+03 1.6950546e-01 + 2.2800500e+03 3.9505460e-02 + 2.2803000e+03 -1.4049454e-01 + 2.2805500e+03 -1.8049454e-01 + 2.2808000e+03 -1.5049454e-01 + 2.2810500e+03 -1.2049454e-01 + 2.2813000e+03 -1.1049454e-01 + 2.2815500e+03 -4.0494540e-02 + 2.2818000e+03 -9.0494540e-02 + 2.2820500e+03 -1.8049454e-01 + 2.2823000e+03 -1.0049454e-01 + 2.2825500e+03 -5.0494540e-02 + 2.2828000e+03 -2.1049454e-01 + 2.2830500e+03 -2.7049454e-01 + 2.2833000e+03 -1.2049454e-01 + 2.2835500e+03 2.6950546e-01 + 2.2838000e+03 6.6950546e-01 + 2.2840500e+03 1.1095055e+00 + 2.2843000e+03 1.4695055e+00 + 2.2845500e+03 1.6095055e+00 + 2.2848000e+03 1.5995055e+00 + 2.2850500e+03 1.1895055e+00 + 2.2853000e+03 3.7950546e-01 + 2.2855500e+03 -9.0494540e-02 + 2.2858000e+03 -4.6049454e-01 + 2.2860500e+03 -7.2049454e-01 + 2.2863000e+03 -9.3049454e-01 + 2.2865500e+03 -1.1304945e+00 + 2.2868000e+03 -9.1049454e-01 + 2.2870500e+03 -1.0904945e+00 + 2.2873000e+03 -1.2904945e+00 + 2.2875500e+03 -1.3204945e+00 + 2.2878000e+03 -1.2204945e+00 + 2.2880500e+03 -8.6049454e-01 + 2.2883000e+03 -3.4049454e-01 + 2.2885500e+03 6.9505460e-02 + 2.2888000e+03 3.3950546e-01 + 2.2890500e+03 5.1950546e-01 + 2.2893000e+03 5.7950546e-01 + 2.2895500e+03 4.5950546e-01 + 2.2898000e+03 2.7950546e-01 + 2.2900500e+03 2.1950546e-01 + 2.2903000e+03 3.2950546e-01 + 2.2905500e+03 2.8950546e-01 + 2.2908000e+03 2.4950546e-01 + 2.2910500e+03 2.7950546e-01 + 2.2913000e+03 4.6950546e-01 + 2.2915500e+03 4.4950546e-01 + 2.2918000e+03 4.7950546e-01 + 2.2920500e+03 4.9950546e-01 + 2.2923000e+03 4.1950546e-01 + 2.2925500e+03 3.2950546e-01 + 2.2928000e+03 -4.9454011e-04 + 2.2930500e+03 -5.0049454e-01 + 2.2933000e+03 -7.7049454e-01 + 2.2935500e+03 -9.8049454e-01 + 2.2938000e+03 -9.6049454e-01 + 2.2940500e+03 -7.9049454e-01 + 2.2943000e+03 -4.1049454e-01 + 2.2945500e+03 -1.3049454e-01 + 2.2948000e+03 1.3950546e-01 + 2.2950500e+03 1.8950546e-01 + 2.2953000e+03 3.7950546e-01 + 2.2955500e+03 5.9950546e-01 + 2.2958000e+03 7.1950546e-01 + 2.2960500e+03 8.8950546e-01 + 2.2963000e+03 1.0495055e+00 + 2.2965500e+03 8.6950546e-01 + 2.2968000e+03 2.9950546e-01 + 2.2970500e+03 -2.3049454e-01 + 2.2973000e+03 -3.6049454e-01 + 2.2975500e+03 -4.0049454e-01 + 2.2978000e+03 -3.6049454e-01 + 2.2980500e+03 -2.8049454e-01 + 2.2983000e+03 -9.0494540e-02 + 2.2985500e+03 2.8950546e-01 + 2.2988000e+03 3.0950546e-01 + 2.2990500e+03 2.6950546e-01 + 2.2993000e+03 2.1950546e-01 + 2.2995500e+03 2.1950546e-01 + 2.2998000e+03 1.8950546e-01 + 2.3000500e+03 9.9505460e-02 + 2.3003000e+03 -1.1049454e-01 + 2.3005500e+03 -3.1049454e-01 + 2.3008000e+03 -4.3049454e-01 + 2.3010500e+03 -4.6049454e-01 + 2.3013000e+03 -4.1049454e-01 + 2.3015500e+03 -2.5049454e-01 + 2.3018000e+03 -2.0049454e-01 + 2.3020500e+03 -2.2049454e-01 + 2.3023000e+03 -2.1049454e-01 + 2.3025500e+03 -1.6049454e-01 + 2.3028000e+03 -1.4049454e-01 + 2.3030500e+03 -1.8049454e-01 + 2.3033000e+03 -1.8049454e-01 + 2.3035500e+03 -1.7049454e-01 + 2.3038000e+03 -2.3049454e-01 + 2.3040500e+03 -1.9049454e-01 + 2.3043000e+03 -1.4049454e-01 + 2.3045500e+03 -1.1049454e-01 + 2.3048000e+03 -1.0049454e-01 + 2.3050500e+03 -8.0494540e-02 + 2.3053000e+03 1.9505460e-02 + 2.3055500e+03 8.9505460e-02 + 2.3058000e+03 1.0950546e-01 + 2.3060500e+03 1.1950546e-01 + 2.3063000e+03 7.9505460e-02 + 2.3065500e+03 3.9505460e-02 + 2.3068000e+03 9.5054599e-03 + 2.3070500e+03 -1.0494540e-02 + 2.3073000e+03 4.9505460e-02 + 2.3075500e+03 1.8950546e-01 + 2.3078000e+03 4.2950546e-01 + 2.3080500e+03 4.3950546e-01 + 2.3083000e+03 3.2950546e-01 + 2.3085500e+03 1.5950546e-01 + 2.3088000e+03 5.9505460e-02 + 2.3090500e+03 -1.0494540e-02 + 2.3093000e+03 3.9505460e-02 + 2.3095500e+03 4.9505460e-02 + 2.3098000e+03 8.9505460e-02 + 2.3100500e+03 1.7950546e-01 + 2.3103000e+03 1.5950546e-01 + 2.3105500e+03 9.9505460e-02 + 2.3108000e+03 1.9505460e-02 + 2.3110500e+03 -1.9049454e-01 + 2.3113000e+03 -3.0049454e-01 + 2.3115500e+03 -3.9049454e-01 + 2.3118000e+03 -4.9049454e-01 + 2.3120500e+03 -5.4049454e-01 + 2.3123000e+03 -5.3049454e-01 + 2.3125500e+03 -5.2049454e-01 + 2.3128000e+03 -5.2049454e-01 + 2.3130500e+03 -4.7049454e-01 + 2.3133000e+03 -3.8049454e-01 + 2.3135500e+03 -3.0049454e-01 + 2.3138000e+03 -2.7049454e-01 + 2.3140500e+03 -2.3049454e-01 + 2.3143000e+03 -2.6049454e-01 + 2.3145500e+03 -2.7049454e-01 + 2.3148000e+03 -2.4049454e-01 + 2.3150500e+03 -1.0049454e-01 + 2.3153000e+03 7.9505460e-02 + 2.3155500e+03 1.5950546e-01 + 2.3158000e+03 1.6950546e-01 + 2.3160500e+03 1.9950546e-01 + 2.3163000e+03 2.7950546e-01 + 2.3165500e+03 3.7950546e-01 + 2.3168000e+03 6.7950546e-01 + 2.3170500e+03 1.0295055e+00 + 2.3173000e+03 1.0895055e+00 + 2.3175500e+03 8.1950546e-01 + 2.3178000e+03 5.0950546e-01 + 2.3180500e+03 2.4950546e-01 + 2.3183000e+03 -1.0494540e-02 + 2.3185500e+03 -2.2049454e-01 + 2.3188000e+03 -4.5049454e-01 + 2.3190500e+03 -5.2049454e-01 + 2.3193000e+03 -5.0049454e-01 + 2.3195500e+03 -3.4049454e-01 + 2.3198000e+03 -3.6049454e-01 + 2.3200500e+03 -2.9049454e-01 + 2.3203000e+03 -1.8049454e-01 + 2.3205500e+03 -1.2049454e-01 + 2.3208000e+03 -4.0494540e-02 + 2.3210500e+03 -3.0494540e-02 + 2.3213000e+03 2.1950546e-01 + 2.3215500e+03 3.7950546e-01 + 2.3218000e+03 2.1950546e-01 + 2.3220500e+03 1.9505460e-02 + 2.3223000e+03 -1.1049454e-01 + 2.3225500e+03 -1.2049454e-01 + 2.3228000e+03 -1.3049454e-01 + 2.3230500e+03 -2.7049454e-01 + 2.3233000e+03 -4.8049454e-01 + 2.3235500e+03 -4.9049454e-01 + 2.3238000e+03 -4.0049454e-01 + 2.3240500e+03 -2.0049454e-01 + 2.3243000e+03 -8.0494540e-02 + 2.3245500e+03 -2.0494540e-02 + 2.3248000e+03 1.9505460e-02 + 2.3250500e+03 5.9505460e-02 + 2.3253000e+03 5.9505460e-02 + 2.3255500e+03 1.2950546e-01 + 2.3258000e+03 1.9950546e-01 + 2.3260500e+03 3.0950546e-01 + 2.3263000e+03 4.8950546e-01 + 2.3265500e+03 5.0950546e-01 + 2.3268000e+03 4.6950546e-01 + 2.3270500e+03 3.8950546e-01 + 2.3273000e+03 2.8950546e-01 + 2.3275500e+03 1.0950546e-01 + 2.3278000e+03 -1.0049454e-01 + 2.3280500e+03 -4.0049454e-01 + 2.3283000e+03 -6.2049454e-01 + 2.3285500e+03 -8.9049454e-01 + 2.3288000e+03 -1.0904945e+00 + 2.3290500e+03 -1.1604945e+00 + 2.3293000e+03 -9.2049454e-01 + 2.3295500e+03 -6.8049454e-01 + 2.3298000e+03 -3.0049454e-01 + 2.3300500e+03 1.7950546e-01 + 2.3303000e+03 5.0950546e-01 + 2.3305500e+03 6.4950546e-01 + 2.3308000e+03 6.9950546e-01 + 2.3310500e+03 6.6950546e-01 + 2.3313000e+03 7.2950546e-01 + 2.3315500e+03 8.1950546e-01 + 2.3318000e+03 7.4950546e-01 + 2.3320500e+03 6.0950546e-01 + 2.3323000e+03 4.8950546e-01 + 2.3325500e+03 2.9950546e-01 + 2.3328000e+03 3.9505460e-02 + 2.3330500e+03 -1.5049454e-01 + 2.3333000e+03 -2.9049454e-01 + 2.3335500e+03 -4.5049454e-01 + 2.3338000e+03 -6.4049454e-01 + 2.3340500e+03 -7.2049454e-01 + 2.3343000e+03 -7.5049454e-01 + 2.3345500e+03 -8.0049454e-01 + 2.3348000e+03 -6.0049454e-01 + 2.3350500e+03 -2.7049454e-01 + 2.3353000e+03 1.9505460e-02 + 2.3355500e+03 1.8950546e-01 + 2.3358000e+03 4.6950546e-01 + 2.3360500e+03 6.4950546e-01 + 2.3363000e+03 6.5950546e-01 + 2.3365500e+03 5.7950546e-01 + 2.3368000e+03 4.4950546e-01 + 2.3370500e+03 2.4950546e-01 + 2.3373000e+03 1.9950546e-01 + 2.3375500e+03 8.9505460e-02 + 2.3378000e+03 -9.0494540e-02 + 2.3380500e+03 -3.1049454e-01 + 2.3383000e+03 -4.1049454e-01 + 2.3385500e+03 -5.5049454e-01 + 2.3388000e+03 -6.1049454e-01 + 2.3390500e+03 -5.1049454e-01 + 2.3393000e+03 -2.9049454e-01 + 2.3395500e+03 -2.1049454e-01 + 2.3398000e+03 -4.0494540e-02 + 2.3400500e+03 9.9505460e-02 + 2.3403000e+03 2.7950546e-01 + 2.3405500e+03 2.5950546e-01 + 2.3408000e+03 2.5950546e-01 + 2.3410500e+03 1.7950546e-01 + 2.3413000e+03 8.9505460e-02 + 2.3415500e+03 -8.0494540e-02 + 2.3418000e+03 -2.8049454e-01 + 2.3420500e+03 -5.3049454e-01 + 2.3423000e+03 -6.5049454e-01 + 2.3425500e+03 -6.6049454e-01 + 2.3428000e+03 -4.8049454e-01 + 2.3430500e+03 -2.7049454e-01 + 2.3433000e+03 -8.0494540e-02 + 2.3435500e+03 1.4950546e-01 + 2.3438000e+03 3.7950546e-01 + 2.3440500e+03 5.4950546e-01 + 2.3443000e+03 7.7950546e-01 + 2.3445500e+03 7.8950546e-01 + 2.3448000e+03 6.5950546e-01 + 2.3450500e+03 5.2950546e-01 + 2.3453000e+03 3.4950546e-01 + 2.3455500e+03 2.3950546e-01 + 2.3458000e+03 1.1950546e-01 + 2.3460500e+03 -4.9454011e-04 + 2.3463000e+03 -7.0494540e-02 + 2.3465500e+03 -1.4049454e-01 + 2.3468000e+03 -1.5049454e-01 + 2.3470500e+03 -1.3049454e-01 + 2.3473000e+03 -1.6049454e-01 + 2.3475500e+03 -1.9049454e-01 + 2.3478000e+03 -1.8049454e-01 + 2.3480500e+03 -1.7049454e-01 + 2.3483000e+03 -8.0494540e-02 + 2.3485500e+03 -1.4049454e-01 + 2.3488000e+03 -3.0049454e-01 + 2.3490500e+03 -4.7049454e-01 + 2.3493000e+03 -5.7049454e-01 + 2.3495500e+03 -4.9049454e-01 + 2.3498000e+03 -3.1049454e-01 + 2.3500500e+03 -1.4049454e-01 + 2.3503000e+03 9.5054599e-03 + 2.3505500e+03 6.9505460e-02 + 2.3508000e+03 1.3950546e-01 + 2.3510500e+03 3.9505460e-02 + 2.3513000e+03 -1.4049454e-01 + 2.3515500e+03 -2.2049454e-01 + 2.3518000e+03 -1.8049454e-01 + 2.3520500e+03 -8.0494540e-02 + 2.3523000e+03 1.0950546e-01 + 2.3525500e+03 1.0950546e-01 + 2.3528000e+03 -1.0494540e-02 + 2.3530500e+03 -1.1049454e-01 + 2.3533000e+03 -2.6049454e-01 + 2.3535500e+03 -4.3049454e-01 + 2.3538000e+03 -3.9049454e-01 + 2.3540500e+03 -2.8049454e-01 + 2.3543000e+03 -2.2049454e-01 + 2.3545500e+03 -8.0494540e-02 + 2.3548000e+03 3.1950546e-01 + 2.3550500e+03 5.6950546e-01 + 2.3553000e+03 7.2950546e-01 + 2.3555500e+03 8.1950546e-01 + 2.3558000e+03 7.3950546e-01 + 2.3560500e+03 4.4950546e-01 + 2.3563000e+03 2.9950546e-01 + 2.3565500e+03 3.1950546e-01 + 2.3568000e+03 2.6950546e-01 + 2.3570500e+03 9.9505460e-02 + 2.3573000e+03 -9.0494540e-02 + 2.3575500e+03 -3.2049454e-01 + 2.3578000e+03 -3.3049454e-01 + 2.3580500e+03 -2.5049454e-01 + 2.3583000e+03 -1.6049454e-01 + 2.3585500e+03 -1.0049454e-01 + 2.3588000e+03 6.9505460e-02 + 2.3590500e+03 3.2950546e-01 + 2.3593000e+03 4.5950546e-01 + 2.3595500e+03 4.5950546e-01 + 2.3598000e+03 4.0950546e-01 + 2.3600500e+03 2.3950546e-01 + 2.3603000e+03 6.9505460e-02 + 2.3605500e+03 -1.1049454e-01 + 2.3608000e+03 -2.9049454e-01 + 2.3610500e+03 -4.4049454e-01 + 2.3613000e+03 -7.2049454e-01 + 2.3615500e+03 -8.5049454e-01 + 2.3618000e+03 -9.6049454e-01 + 2.3620500e+03 -1.0304945e+00 + 2.3623000e+03 -9.4049454e-01 + 2.3625500e+03 -7.0049454e-01 + 2.3628000e+03 -5.3049454e-01 + 2.3630500e+03 -2.2049454e-01 + 2.3633000e+03 9.9505460e-02 + 2.3635500e+03 3.9950546e-01 + 2.3638000e+03 4.9950546e-01 + 2.3640500e+03 3.9950546e-01 + 2.3643000e+03 3.8950546e-01 + 2.3645500e+03 3.7950546e-01 + 2.3648000e+03 2.7950546e-01 + 2.3650500e+03 1.6950546e-01 + 2.3653000e+03 -2.0494540e-02 + 2.3655500e+03 -1.2049454e-01 + 2.3658000e+03 -2.2049454e-01 + 2.3660500e+03 -2.8049454e-01 + 2.3663000e+03 -2.9049454e-01 + 2.3665500e+03 -2.0049454e-01 + 2.3668000e+03 -2.0049454e-01 + 2.3670500e+03 -1.9049454e-01 + 2.3673000e+03 -4.0494540e-02 + 2.3675500e+03 8.9505460e-02 + 2.3678000e+03 2.2950546e-01 + 2.3680500e+03 4.5950546e-01 + 2.3683000e+03 7.1950546e-01 + 2.3685500e+03 8.2950546e-01 + 2.3688000e+03 8.3950546e-01 + 2.3690500e+03 6.7950546e-01 + 2.3693000e+03 6.5950546e-01 + 2.3695500e+03 5.0950546e-01 + 2.3698000e+03 1.2950546e-01 + 2.3700500e+03 -1.7049454e-01 + 2.3703000e+03 -3.8049454e-01 + 2.3705500e+03 -4.3049454e-01 + 2.3708000e+03 -4.1049454e-01 + 2.3710500e+03 -4.6049454e-01 + 2.3713000e+03 -5.0049454e-01 + 2.3715500e+03 -6.2049454e-01 + 2.3718000e+03 -5.4049454e-01 + 2.3720500e+03 -6.2049454e-01 + 2.3723000e+03 -6.4049454e-01 + 2.3725500e+03 -6.4049454e-01 + 2.3728000e+03 -5.5049454e-01 + 2.3730500e+03 -3.5049454e-01 + 2.3733000e+03 2.9505460e-02 + 2.3735500e+03 2.1950546e-01 + 2.3738000e+03 5.5950546e-01 + 2.3740500e+03 6.5950546e-01 + 2.3743000e+03 6.0950546e-01 + 2.3745500e+03 5.5950546e-01 + 2.3748000e+03 5.4950546e-01 + 2.3750500e+03 2.9950546e-01 + 2.3753000e+03 -1.5049454e-01 + 2.3755500e+03 -6.1049454e-01 + 2.3758000e+03 -8.5049454e-01 + 2.3760500e+03 -1.0004945e+00 + 2.3763000e+03 -8.4049454e-01 + 2.3765500e+03 -4.5049454e-01 + 2.3768000e+03 6.9505460e-02 + 2.3770500e+03 1.0950546e-01 + 2.3773000e+03 1.8950546e-01 + 2.3775500e+03 1.8950546e-01 + 2.3778000e+03 1.5950546e-01 + 2.3780500e+03 1.7950546e-01 + 2.3783000e+03 3.3950546e-01 + 2.3785500e+03 5.7950546e-01 + 2.3788000e+03 8.7950546e-01 + 2.3790500e+03 9.1950546e-01 + 2.3793000e+03 8.1950546e-01 + 2.3795500e+03 5.6950546e-01 + 2.3798000e+03 1.3950546e-01 + 2.3800500e+03 -2.9049454e-01 + 2.3803000e+03 -4.3049454e-01 + 2.3805500e+03 -5.1049454e-01 + 2.3808000e+03 -4.8049454e-01 diff --git a/wafo/data/sea.m b/wafo/data/sea.m new file mode 100755 index 0000000..36c2052 --- /dev/null +++ b/wafo/data/sea.m @@ -0,0 +1,16 @@ +%SEA Surface elevation dataset used in WAT version 1.1. +% +% CALL: xn = load('sea.dat'); +% +% Size : 9524 X 2 +% Sampling Rate : 4.0 Hz +% Device : unknown +% Source : unknown +% Format : ascii, c1: time c2: surface elevation +% Description : +% The wave data was used in one of WAFO predecessors, i.e. the Wave +% Analysis Toolbox version 1.1 (WAT) +% +% Hm0 = 1.9m, Tm02 = 4.0s, Tp2 = 11.5s Tp1=5.6s +% +% See also diff --git a/wafo/data/sfa89.dat b/wafo/data/sfa89.dat new file mode 100755 index 0000000..8411859 --- /dev/null +++ b/wafo/data/sfa89.dat @@ -0,0 +1,144 @@ + 0.0000000e+00 1.2400000e+01 2.0700000e+02 + 1.6666667e-01 1.1800000e+01 2.0480000e+02 + 3.3333333e-01 1.1300000e+01 1.9940000e+02 + 5.0000000e-01 1.1800000e+01 1.9560000e+02 + 6.6666667e-01 1.3000000e+01 1.9500000e+02 + 8.3333333e-01 1.3400000e+01 1.9550000e+02 + 1.0000000e+00 1.2000000e+01 1.9250000e+02 + 1.1666667e+00 1.3300000e+01 1.9250000e+02 + 1.3333333e+00 1.4900000e+01 1.9450000e+02 + 1.5000000e+00 1.4400000e+01 1.9790000e+02 + 1.6666667e+00 1.3600000e+01 1.9800000e+02 + 1.8333333e+00 1.2400000e+01 1.8510000e+02 + 2.0000000e+00 1.5100000e+01 2.0260000e+02 + 2.1666667e+00 1.5000000e+01 2.0240000e+02 + 2.3333333e+00 1.4400000e+01 2.0540000e+02 + 2.5000000e+00 1.4600000e+01 2.0430000e+02 + 2.6666667e+00 1.2800000e+01 2.0370000e+02 + 2.8333333e+00 1.2600000e+01 2.0620000e+02 + 3.0000000e+00 1.5500000e+01 2.1350000e+02 + 3.1666667e+00 1.6700000e+01 2.1370000e+02 + 3.3333333e+00 1.7100000e+01 2.1490000e+02 + 3.5000000e+00 1.6500000e+01 2.1430000e+02 + 3.6666667e+00 1.6800000e+01 2.1440000e+02 + 3.8333333e+00 1.5100000e+01 2.1060000e+02 + 4.0000000e+00 1.5600000e+01 2.1050000e+02 + 4.1666667e+00 1.4700000e+01 2.0960000e+02 + 4.3333333e+00 1.3900000e+01 2.0860000e+02 + 4.5000000e+00 1.4200000e+01 2.0660000e+02 + 4.6666667e+00 1.4100000e+01 2.0500000e+02 + 4.8333333e+00 1.4800000e+01 2.0500000e+02 + 5.0000000e+00 1.4600000e+01 2.0050000e+02 + 5.1666667e+00 1.5100000e+01 1.9520000e+02 + 5.3333333e+00 1.5000000e+01 1.9360000e+02 + 5.5000000e+00 1.5600000e+01 1.9170000e+02 + 5.6666667e+00 1.6900000e+01 1.8940000e+02 + 5.8333333e+00 1.5800000e+01 1.8690000e+02 + 6.0000000e+00 1.6500000e+01 1.8230000e+02 + 6.1666667e+00 1.8100000e+01 1.8330000e+02 + 6.3333333e+00 1.8400000e+01 1.8080000e+02 + 6.5000000e+00 1.7900000e+01 1.7960000e+02 + 6.6666667e+00 1.8900000e+01 1.7910000e+02 + 6.8333333e+00 2.0000000e+01 1.7830000e+02 + 7.0000000e+00 2.0000000e+01 1.7830000e+02 + 7.1666667e+00 2.1400000e+01 1.7780000e+02 + 7.3333333e+00 2.0800000e+01 1.7530000e+02 + 7.5000000e+00 2.1800000e+01 1.7380000e+02 + 7.6666667e+00 2.1800000e+01 1.7130000e+02 + 7.8333333e+00 2.2600000e+01 1.7220000e+02 + 8.0000000e+00 2.2700000e+01 1.7260000e+02 + 8.1666667e+00 2.4100000e+01 1.7300000e+02 + 8.3333333e+00 2.3500000e+01 1.7180000e+02 + 8.5000000e+00 2.4100000e+01 1.7080000e+02 + 8.6666667e+00 2.4400000e+01 1.6950000e+02 + 8.8333333e+00 2.4900000e+01 1.7010000e+02 + 9.0000000e+00 2.6500000e+01 1.7290000e+02 + 9.1666667e+00 2.6500000e+01 1.7210000e+02 + 9.3333333e+00 2.6300000e+01 1.7200000e+02 + 9.5000000e+00 2.7300000e+01 1.7250000e+02 + 9.6666667e+00 2.7300000e+01 1.7520000e+02 + 9.8333333e+00 2.7800000e+01 1.7220000e+02 + 1.0000000e+01 2.7200000e+01 1.7460000e+02 + 1.0166667e+01 2.7900000e+01 1.7790000e+02 + 1.0333333e+01 2.8400000e+01 1.7830000e+02 + 1.0500000e+01 2.8300000e+01 1.7590000e+02 + 1.0666667e+01 2.7300000e+01 1.7460000e+02 + 1.0833333e+01 2.7600000e+01 1.7310000e+02 + 1.1000000e+01 2.9300000e+01 1.7520000e+02 + 1.1166667e+01 2.9600000e+01 1.7580000e+02 + 1.1333333e+01 2.8700000e+01 1.7430000e+02 + 1.1500000e+01 2.8200000e+01 1.7300000e+02 + 1.1666667e+01 2.8100000e+01 1.7000000e+02 + 1.1833333e+01 2.9100000e+01 1.6820000e+02 + 1.2000000e+01 2.8800000e+01 1.7040000e+02 + 1.2166667e+01 2.9600000e+01 1.7150000e+02 + 1.2333333e+01 2.9900000e+01 1.7160000e+02 + 1.2500000e+01 2.9500000e+01 1.7210000e+02 + 1.2666667e+01 3.0100000e+01 1.7560000e+02 + 1.2833333e+01 3.0900000e+01 1.7520000e+02 + 1.3000000e+01 3.0900000e+01 1.7550000e+02 + 1.3166667e+01 3.0000000e+01 1.7590000e+02 + 1.3333333e+01 3.0500000e+01 1.7490000e+02 + 1.3500000e+01 3.0500000e+01 1.7340000e+02 + 1.3666667e+01 3.0100000e+01 1.7190000e+02 + 1.3833333e+01 3.1500000e+01 1.7180000e+02 + 1.4000000e+01 3.0700000e+01 1.7190000e+02 + 1.4166667e+01 2.9200000e+01 1.6820000e+02 + 1.4333333e+01 3.1200000e+01 1.6770000e+02 + 1.4500000e+01 3.1900000e+01 1.6970000e+02 + 1.4666667e+01 3.1300000e+01 1.7140000e+02 + 1.4833333e+01 3.1300000e+01 1.7500000e+02 + 1.5000000e+01 3.1500000e+01 1.7470000e+02 + 1.5166667e+01 3.1800000e+01 1.7430000e+02 + 1.5333333e+01 3.1500000e+01 1.7460000e+02 + 1.5500000e+01 3.2800000e+01 1.7610000e+02 + 1.5666667e+01 3.2700000e+01 1.7710000e+02 + 1.5833333e+01 3.1000000e+01 1.7970000e+02 + 1.6000000e+01 3.0100000e+01 1.8010000e+02 + 1.6166667e+01 3.0000000e+01 1.7880000e+02 + 1.6333333e+01 2.9200000e+01 1.7930000e+02 + 1.6500000e+01 2.9900000e+01 1.7890000e+02 + 1.6666667e+01 3.0300000e+01 1.7940000e+02 + 1.6833333e+01 3.0700000e+01 1.7930000e+02 + 1.7000000e+01 3.0600000e+01 1.8020000e+02 + 1.7166667e+01 3.0300000e+01 1.7970000e+02 + 1.7333333e+01 3.1100000e+01 1.7920000e+02 + 1.7500000e+01 2.8900000e+01 1.8200000e+02 + 1.7666667e+01 3.0300000e+01 1.8100000e+02 + 1.7833333e+01 2.9900000e+01 1.7940000e+02 + 1.8000000e+01 3.0800000e+01 1.7920000e+02 + 1.8166667e+01 2.9500000e+01 1.7950000e+02 + 1.8333333e+01 3.0600000e+01 1.7900000e+02 + 1.8500000e+01 3.0800000e+01 1.7880000e+02 + 1.8666667e+01 3.0900000e+01 1.8070000e+02 + 1.8833333e+01 3.0700000e+01 1.8040000e+02 + 1.9000000e+01 3.0700000e+01 1.7990000e+02 + 1.9166667e+01 2.9400000e+01 1.8020000e+02 + 1.9333333e+01 2.9100000e+01 1.7990000e+02 + 1.9500000e+01 3.0600000e+01 1.8040000e+02 + 1.9666667e+01 3.0100000e+01 1.8110000e+02 + 1.9833333e+01 3.0000000e+01 1.8130000e+02 + 2.0000000e+01 2.9300000e+01 1.8300000e+02 + 2.0166667e+01 3.0500000e+01 1.8390000e+02 + 2.0333333e+01 3.0800000e+01 1.8470000e+02 + 2.0500000e+01 2.9600000e+01 1.8530000e+02 + 2.0666667e+01 2.8800000e+01 1.8600000e+02 + 2.0833333e+01 2.9100000e+01 1.8640000e+02 + 2.1000000e+01 2.9800000e+01 1.8570000e+02 + 2.1166667e+01 2.8700000e+01 1.8750000e+02 + 2.1333333e+01 2.8700000e+01 1.8640000e+02 + 2.1500000e+01 2.9300000e+01 1.8610000e+02 + 2.1666667e+01 2.8500000e+01 1.8800000e+02 + 2.1833333e+01 2.7200000e+01 1.9140000e+02 + 2.2000000e+01 2.8100000e+01 1.9130000e+02 + 2.2166667e+01 2.7000000e+01 1.9330000e+02 + 2.2333333e+01 2.6300000e+01 1.9900000e+02 + 2.2500000e+01 2.6100000e+01 2.0270000e+02 + 2.2666667e+01 2.4000000e+01 2.1240000e+02 + 2.2833333e+01 2.4000000e+01 2.1840000e+02 + 2.3000000e+01 2.1600000e+01 2.1300000e+02 + 2.3166667e+01 1.8800000e+01 2.0440000e+02 + 2.3333333e+01 1.7700000e+01 1.9810000e+02 + 2.3500000e+01 1.8500000e+01 1.9840000e+02 + 2.3666667e+01 1.9600000e+01 1.9660000e+02 + 2.3833333e+01 1.9200000e+01 1.9410000e+02 diff --git a/wafo/data/sn.dat b/wafo/data/sn.dat new file mode 100755 index 0000000..3e165fb --- /dev/null +++ b/wafo/data/sn.dat @@ -0,0 +1,40 @@ + 1.0000000000000000e+01 1.2075320000000000e+06 + 1.0000000000000000e+01 1.0013290000000000e+06 + 1.0000000000000000e+01 1.1642510000000000e+06 + 1.0000000000000000e+01 1.0521420000000000e+06 + 1.0000000000000000e+01 1.3143320000000000e+06 + 1.0000000000000000e+01 9.2781600000000000e+05 + 1.0000000000000000e+01 8.5991500000000000e+05 + 1.0000000000000000e+01 9.8150100000000000e+05 + 1.5000000000000000e+01 1.9180900000000000e+05 + 1.5000000000000000e+01 3.5513600000000000e+05 + 1.5000000000000000e+01 2.5113800000000000e+05 + 1.5000000000000000e+01 3.2085900000000000e+05 + 1.5000000000000000e+01 4.2688000000000000e+05 + 1.5000000000000000e+01 1.9037600000000000e+05 + 1.5000000000000000e+01 3.3071300000000000e+05 + 1.5000000000000000e+01 3.1301500000000000e+05 + 2.0000000000000000e+01 6.8162000000000000e+04 + 2.0000000000000000e+01 1.3884800000000000e+05 + 2.0000000000000000e+01 1.0781100000000000e+05 + 2.0000000000000000e+01 1.4487700000000000e+05 + 2.0000000000000000e+01 1.5860000000000000e+05 + 2.0000000000000000e+01 8.9558000000000000e+04 + 2.0000000000000000e+01 1.7458000000000000e+05 + 2.0000000000000000e+01 1.1393600000000000e+05 + 2.5000000000000000e+01 5.3675000000000000e+04 + 2.5000000000000000e+01 6.3114000000000000e+04 + 2.5000000000000000e+01 6.6566000000000000e+04 + 2.5000000000000000e+01 4.6152000000000000e+04 + 2.5000000000000000e+01 5.5601000000000000e+04 + 2.5000000000000000e+01 6.3908000000000000e+04 + 2.5000000000000000e+01 4.6279000000000000e+04 + 2.5000000000000000e+01 4.3226000000000000e+04 + 3.0000000000000000e+01 1.9547000000000000e+04 + 3.0000000000000000e+01 2.4162000000000000e+04 + 3.0000000000000000e+01 2.7696000000000000e+04 + 3.0000000000000000e+01 3.5947000000000000e+04 + 3.0000000000000000e+01 4.9134000000000000e+04 + 3.0000000000000000e+01 2.5054000000000000e+04 + 3.0000000000000000e+01 3.0502000000000000e+04 + 3.0000000000000000e+01 4.1359000000000000e+04 diff --git a/wafo/data/wafoLogoNewWithBorder.png b/wafo/data/wafoLogoNewWithBorder.png new file mode 100755 index 0000000000000000000000000000000000000000..f6f426bf83b17b28815055fa5638aab7cb9ffa39 GIT binary patch literal 23976 zcmX6_1yodB+a0=7y1Q%Wk{ntjM7m_8OG>(HkOm1sQc#e3=}uvg?(Qye=#KyT{j5c< zduPsh?tXIbLyY!o6+CPzY!C>9r=|+g1%Z%`fS>&z&J#m zILPEkNJxudOzqgJ2-bq@tcLcHzoWO0NQi4&c~yz*m55tY^0_0NZ2w%AR*x}>J zxS9=FGI0bjLQFvmpi!h7lrDUDCP^aVjl4Xg8$(|?DajKx6ETu7%J_>S2Yy)kU5Jy7 zdju#16;Bl!!C*{j@2q{0qB_p1I9@C_z9?tRjXHrW?-fPk;v83PNfXS2jg74oXElqBZNR`p z8?t+o2X^H3VpP!tB`=z%##kGtur(tI4|o+!W+1DQo@Z{$iS{&OFjyZ)dD`Q|isQe? z#7$aHWA&Ca^u!B^iL1r|6DR{aapAD3_@Jl&F$OtD_xbbohlPoh7dEHheq6H-7Zqi#Hy<}>rM~;=t>9cihB#?r*5E_c;*Wkl;emWr0gWq> zU5%oiphJhL5jP|xB-l}abyyR)(O0O$c75fcPV!t8`Bk(3?w5BiBSM^f!j;%=b6SoL zveX%)WYefL0!4x0G^YugfE|MWy)_d96KO~;!zE6boeP@$H$lC2oEC@n{OY++-ac;Z zUu)@eX%X^+3uA`!_tcpW5j9Gc`Pu=%z6%T$AuDn}b;4#R>5B9Z$}S>0j9u+g4tu5Q zB3L%1k*`OwlK7mhdHz`7k2NKqo1fb~|!1MBT0W@=Fx&y+#ID!!cYQ?#fc5FWVP zq}8ux+>}5=R3;KiUt<`uG-0{>FhF^jSKT-{I812)@O>hMOlys2vMFd6Qyk%iR_g~R zEfOOB`^2lWhURk}5Y<)MXZdc;+wx2fZpiY#+aCUR8ye&SGiEmtHm&ykPOC@zNIprO z9PytzF3}uV{Mm;}XH6-Qr}^*uxQcl1R{-Lk>4EnmredOk6y63B3x9kQ{!U=JjlO6S zE>)g_mAWyMiI2z~>tcFBdzB!aUnlZbTNRh2R$o;d1_R*|LC*aNA+gO9ANC!WF^Gjv z@sFbz4qxK*x7ZSTbj-8=uq&UO%;aZC$ZL^gY%45AhZI=9swBvvxUu*< z^p*H*XNc-($A3J{2+KI$#DAL+WBO#o-Al^Eg_8EMG=EmCPT1cFe1O^){9bf15L^um_Zs@%5F|7X5q|Y4&kB{(l!=Z7^i{SD74wjJQSUu(7 zSXTXqoNYoKvq_2!94cs5{YvzBy7LP}63LlruNO`85PcYpyNk_)HU`{Kd=<>ev5fie zj`yaN|DCeN?8-+S2EKDS3)AH`!%bGi-{$kj)IltqyU&~CfzzoGnIt6YlEAu2uppkX z3|Zuuce*wv{bQdusQPHg($-DIXeRr3k&N8MY~yHQ|8~hr2^hu-pC}MQHRbU=O6!-N zEl5tGO;L9pIox&+^@iY)V<=^h4?f@Hqf(Twt*bL^%xFWHOv!buEMGURaVU+KwcT=x zuf~XellXvpebq>rDlH}ipY4;PLyJs-0gwfU!WNU@b-Fw=s;&reES9V-+7t!c)8b$h zM6TAinr-_o3XMc>X<#XM*0Q>xQjiNt`&ZPj@Ny^Fy>bdDF7ZODM?n-0%T-JhHL0-4 zP1?jT1vNz@Bkm93unR(AN7RYQ$)KV4uwtryDV9hkcykbHn5{u`=5}cp#d+`lmJtRl z!<3=WuL$fsJ?|>GouUEcu!B3I&XX*=X_h z#RXTtxIDJ@khB4Vz?gZs7;OjIVND5tp~-U0@JyP2=Kdr#_yxFuq3~V}YV7QCRWrEk zgG%yEpCJvl?IKhl__)(U4gzXzmW(L>P-zVXUAQHXBv9VC?U#WID zi=tMv;}EqI{X-P+qM}U-p$vrts1t%ctG-;l(>AC0Dva{UH6IzhcR+9!Z!@@|^8a47 zl7rhZGC(oxP(?mNn5p^Rsjq~zGRE*HI8Nj*vpm#XrD#~@tu_Y-fQoHOCSuh3D}uCw z3lz>q{*Xm|p;bms5|m+0^N@TkH6*O5P1@Kn1vjMybc5e7AS_A7of_6Wa}3S*JebD* zfDJg5fk>KMTg3lr{Bx0Y_>J@Ss(r%&$GiMogu5Lf+aBoxBS4hU;MadKL z#==y;#Qw}r(gK{Mi7!n3yewbKIb-?JHVICF_(1ZB^LqVg&V5LN}U%!m<0v024f+5xsm} z=&SBNcQ9Tg{0YFxEd*bJ(QG+l{eUz{&|5CuG=v5TRRlJT%M#K3UN)5#1LvL}nde0p ztEoBX_hfaGsOc6GIRWIFr~xA6RCx!K=?1D-1_j*qLk&@j<}c8k`KjILV;RSUsrqHbD@X)g>LDHVLNA;6>j`MKS4rN6{-9b6m8ig{kjhYM# zYPO-@%|6%}ujzXF-eBwqMPK`j(k@UBNP3&tTLk89@V=v2tU2DKO;Dh-bf?%D&cVzziyuEAg+;l`vxsjeIiiL1f$&kpF&JXO zWWTFqh$xXhBWa^_g)JJtv}j4F*JAXsnW5+5TKT$` ziH$JE#)@lgk&@^#!|ur}*rQ@7yU^ z>^5o9nMQwM=9olxm9oOb6T?u!92%n)mS>3|8!+6ox=n@%3zUVjuSKQkONH)rCd(r%kve}XSC@P>W1LN(^M0?V>>%@5pU=Hxp~$!k*MmDM%Fig!!W z73olswpe}Mg zUoc<@T9aYXSxu}5fTk#*?4QIlJKc858!1D603nLLw2lhe-VJ11{}FfDx$g$+vJI95 zv8Yh@RRu`St1De-;k#0!Z`u9@m$Zpl4x$GXwKE>_$vYf^4duOe7T=qI?=13!Hn%TF ztAVl-D5n^~+QX7jggT$PotA`d+9m9bbBNB_VYE2rb zol6~?Rt;N5>5T1-e|k$rtGsrp??C@&?XKv{b9N1ljzB2}m7V6G#4RuQe6vq~F`)%X zZ2}RbNW}1u$-VTWOU_k0#`Bul=0$hTjrHWvXzIbzSEMROlGGiEIIzTMwG6ji1^thU z2U;$uv9zL^Do}v8mC<*Nd)wyweH+@ld6i!6b?d})bEx@ySCY_?V9R_JUI>J@;V4_g zo}BQXG}bwB5Iq=PXv$Bb2rJ=49qA7t+v?ej!RN#tse}TIN@? z+h`RCpY2)y+-KF``e4~$C)uFe2hzO>v!nK)L=Qr!laWq8CI~VeC;YwQ>a|5ugVT~v zMAGp($h0rw11 zs(n8olmZt0rd{Y31uF-w64%XkbG=cTnBCZVUP^}fjWIfI99yRRz=i(NMY=4bs2HHP zhpg~=%L;Wbw=F%ARMpz8Miev5j%Cvr2_N&yLeHvX4E~nIRSTUaXcXA#3`?R@3^#cH z6mhzr{!c4N%mNYR_H=_3@HmLVXFJge-QTd;Ae%nMX6gt=CSz0;Co zh_-1%>$wI5``yX|=Y*0);<-{!0hWB8Z2%K(F=sE}-xA*@4(VR=T0Bk}bgbFT*j2TZ zJdp!PahQeJPfWYz=C4T!Q(-;RYzZKNfE6&NI~a2x%u;gLwL7V?{dW!3tFyM+zpp*} z3g%H^zVR9~ng7p@@1jB`bkSJE)q?zY)K=mTA~zb`-zlvsYI(1eAn~eDQy#lvYv*HG zRH%;lGX-6;;_H`Co)ndMHoscucNsxr#miT}H42Tlmzr30uzbvJt}dfrs(3q#uY2sR zz8zn|jNFX0nx$bZY?$2^j5WWvZ=6ZdlU%dN^LS$U9v}4E>-0VRbsqP%4BSv3w+9tO zIDrb3Cpg7_jqxWlt-QWiY3$$dkK2y)4Xu@jDi1$n->x^z-1rSMlsFPZR}R*XX@=YC zcVF(sCNYP4!J=F=rhBUmcJL|wb2IJ4O4UX^;wfUm{AZWs->1@A1DHhG9c9M35tM$6*{Q|{H^^V2?Yc%+PD!)y&5IYPM7PK19 z@39oJ8Tiu@iHKx6Q?AelHcxq2l(%gFR}Jb_M$XwH8ikMD$3Wo=9nml=Q~;shi-Hh&`UwxeW}n#!!!vh8K96l znd_XR=4JL&KHq1THMOiT{o(tyP{Zl!;gmWX>=MFFa)M6~9k$jFv;{zjGgF0?)OA~p zQQV&+wTcw;cn3;Qbx#}6VbZML_A6+)*cAAM5bLlKkMyTX2C~AejY%a%$?zC`)`jf2 zE(biA-ZH%yT}1O8bM)~Tb?Id?8u;RiPcJh;nJ|n~@L_x<6x@(@ucS@^VWHwx>(nn@ zs~O2Zl{LCxb8J&ow|i~A!P@A`?{`sXpicuu7#?hu;}cY0|1hjvD|Kd^kd9 zI^+zBPh%SWmNfPhb)V-i%XWv+SOGU+M%c(#mEl31JYMnXhA}WzOr+EmI#-2`AZSlx ztfuD}dC*QzQ_Z9khCN;&%UtiBCa5rq0&tOwOE2Pg3A|DAa6o%X&3Lk%2B7DwnI(LZU2?+yZc+Xv)}Dl)ZZ-(CTy?@^@5c!5$$xkg@&bA>J!3Bpa<$A z!L(BBD_oddm5V`%FSh8&%TV#pT$;kB+VT;M|I+^-02h5i3p1uZamMqcIPxrZb zCwWy1t?!7wcZ$%!U#}@zbG#`zB1P*~6w+P@z}0FKN^SkPd%)~-J)u9mH|k7^5OQGp ziJM=&YUliI;$SIK@hPijxQ@y?tlBH7^}Ed&YIl|gBrsl zAI$CWlx+l-2JF;yDV;eT{2e6BBD1N=xTl>^J#-z0x3cff0$1aBx%Yg{Bog5dR&$}S zK@__}kxb)*i|+~VIQ3{Pjnj-#!dW@3YKs5MAHz#z)}X~lLuJA)owmZqQuxlJGNuuP zP~#*KhYg*#d2BvDvQT|8+Izvo6y6uKdCPC`_UDH;(8|SE>8Bena-?nXkAsBPy&fBx zcTwbpb3|tkExMQAzc26%!|0UfT8i0Ydkk7J>M}`xijc4f!kprjMON6nvQJlh?PG8O z&z40*Oc*y|dofzES1dC=i5ESXp4L)Rquy(WAjyH5l<*`*S91-2|dqWoDFC$Vm?E`04X?_*v zfk5EZXp8zFUONgsnxtpK5asjAk!sOmR{17VU$O!?*KB0*x;-eN^WhXEfTD_QiD79_ zDzbxT<9}}laX{@dZE&D1b^9Tc4sX1eC@MPT4K;sy#3*20YiplDxOv7IBz|CWuoGCK zXDh_OC2Orzf7DmFR6gcOa}@hlcX(O3@W{`DwlUg)>HW8OD7c1y^H1{2Rob#$5z=xMnbHJ{}+iUT`*cb`X`K}l0p;gq5VfV6%M{v;#zfG^o zmN;;LU>&#AmyYA(khx1LgVQ59NIl@!IyE%MMx`I$%-)Umr%*K@)T9MVf9Vo_^ZV@W znK`bS}$ceo-P%il1f-6UE7|>*x-x%N(BB zncrfNKuq?+6R-2Ck~}=8&gP$9>&7NxkD6E zW5-N=xP9g4F$3xDCtt?WSM^F?3stsA>5nGcCeXY0BHV#P9Y2*0uv#Hf!-5EL8r_Q7X8lA!tUukksKP1|WE^SW0W|L{+qDncETZz4N5{-t%;?YUI0 zRcn8*q_r@I2;7CkG5|m|d+>>D``Tzi(8K#WT)UbOWz(+S{>gs=>DOAZ);gYGLkKsT z6Ukb35w5rt(bqQKR>6J2IuL1@Kp++xqKblK=-4u0L#~`Ovy3y(#l|EV-f)g+_6m;3Ly_>pGsWm1fIC&*7QH#d$X2t zw4F}|Bs5GlRJ>Pe=#K7VDi+VP#_c+-hUWO$WFtv?LBdv{{a*sbw9Ha@t=0Qm^Y+&q z_f5cKgjd@(RIeFC zjDy`@~#QNN*s;Pe0bq6VD) zsrw*-rme_@7g6_$NNaB`{NL|M{#p8O-*kM>mwDEWNXMjoz^^DUulqXT`Le0lIx(6U zUV@abe{Lf1@pVi6*c75cEc5t)O2^;z-+l)NB@;7Kbq%Bi{fslvY5m-%hGl}0x9A8YL$Qn=n8)^D@k^CukNzL@HlIXr8o)u?jHw(0+4 z6&V4$@JqdPjxV9UxoNE(5y^gd9&-hHWlsdv=(2{bi%r~d%sX7;@C8wM+d65%?RJUu zK`)cuL*3=y?LJg*lvj=hr32qrjOE;OK!+(2nO31SHKQmHJ&hk?B4uk&_?0bdaeoo` zchZUy*QbG6)?5Z3zQK29voB2=wydT>3?4afE$j~-F_N2CmS;;29=gL=IhYc4gbr#G2@{ZhT?iB1uEX&@FCA}8c`HN|Z+ zM+0Kbvq3IKf^Rx}&en77Sfryf*od&gW<`H5-!vmTLQMM!U)F-IgNLtkwZFOfPnR3e zvnM>DnvGyIJM2ZDY?SVcypuE-LCfpJ=G@O7rdaBKdxH&`UbbxD4O-vf|1;v+-l=-c zG$qC#J@>^U6Wovky#C62HNKbS2qF3tO@mHkD6VYqjg#ehAp##wdUQ0ddfCvFU0(qH z@r6$N8e3<_pZ9lH#%6af9Sy}0+&|W~Xh_Q(fyS$S;c9PX>=nn#-%9zuQF0h&qx4Cf z;dh6ey%RD(J@Efp0QWa4D~*vbKS8)CT#7H3gZl``=wwC-ADw59gIr|G^2g#A=%tS? zo89luC);{Jm{b)F%OhxHNt5h_h$&Y_vii!v=)`DO1mtgvFYDKK>MIs*u33j3&GX5F zU-LIhjlhskh|QyP#=(ogL-%mdR@Nd}cUl<_RAw8Pb>y-0;U%+(QEF$f&xNoC&tj`` z4>8+I|7crauLgH7NA>$gN}e&GJWGg=b<2$#*LiDy*G#Yczb5wmYzcuKQVus9Cw9oZ ztPrQVv?!gb;f~L&5gka;^NT5&A$KVHP*{+8d3mr<0_Cq9AUz8HLW~Bj^=Wh_5&rJ> z-7g%8Yrab4k2t2+I;yc}Yo4tkh_C9SO`te&6jfle<6heD1#3HhsWpW2#`fH|f)H;A zk9shyB)&W4VyeVd%*bc%axd~flHQ3GYCVwt$s|kR_w>(#Gf7=F&x#6T(Y=rf_`VxJSP44f|M~vfM>I`$S!MW*=oMx%(Kw+q2<@n@NIeq9no8T z$KKg^myX!`Y|FpB$)Rx-++wKGqwGG884%cS2Z1Ghf`D@jlgKQ$%5fOcfPLEOvO!rn zFfveJ`bm!P!H%_>o%^ox_^~m3kL;$06KY1MGHd4&27+;XnQlpkw}j)A6TQxZb!a7S ztv+%E9;x$Wp2^@Icm5-_>dzIo|LE5Jbt4dK2O0`IoDO`{$K0`|m`(SDh}HM^=gD(F z*yrpfLw|U7z#>>_7CV$d{k$K(u^!aZp;!o=tu`A;?Zuwt;e4kBlC*ap7j-9#JcJ8? z$jz1fx1njrrFMu@;4``X+as&_ewU_{JM?e%9Se<*y6U0I`>;!VB0qvyU*ug!n+w^w9*RwT7g1TaQ#utg1fMpSyyKCpgFtx~)y4}CxAPSg31zS5=u`Gz{_=AVFG(&K z!^q$D%NwTZT59n2D9^V_J98)^McBsF@2VBItk-$eJ$b`^f{^1_?M}P7q z9{1q}}Z<>3Y`~^=&|z zZDF#2U_&Jdh-arj1!62;?ALORGWNllyT$XaRlZ8dk#SGIot2D<7|-T@IMnsgGXC1X zyhJC~7}w_rBevTqTM5#4md&3oPmTuEUWtu|6M0KyH#L-q+n(;O?6!VHvifr&z_fAL zZR(%=G1jYGA=xd`a{)Kk@UJJ{TKo!FQgF$NWOV;XndN0Ppoy5{SBdsPBvA}s9gMj8 zcNNZ1CId5Ot%Cp$CxkMlgPRbPr%O?*g6LlCaN0z8LD%OuQj_Ug$M%vp3+MiG2#m|) z#cP_cZQeK+Y)6@7jh7mm3%2>nQi}KURMAci0EnW%sU$OdMg@s=7gcUcjGQnH@dMo)CFl~Up>(_eD7*{I4Qe!GHzG~HH^1qvLyRen zP3{DwG6OugEQd{?*Uu%541zL|fHVHrf7Xz7fJ}QW?#tdK{X_8c_ps4Vz(4}xF{RTu z;=GJ33A9r9PG$re*G!c4{$_xbOD6}am<&u+j96$k|CZ!_)wrdnFvn$JYVWq<&(p8x zGgvVmk-~xQ74?fbf|dW6w}NEb&ROQzIN1D4UFiaL$}&CUxnJ+ckx4%+&ZQqf>2s7I zBR&XEIPuQ#-Jx)$aVKfsF9#6ds~R#HP&)qhXGYlWJGe0c`OQ%=4z*6}Ooge&R8Xb> z^5Pvch!LEN@HJ`_~8OPU-T_?-NqGWi}#9xE3iZTDs0nS zF&u5q!1`8fzLa*Nc&QVUxAgOMxJF-G?6}!RnUbXsN_r3C5(Wfc(=W54%=ajrpvyT5 zcvZ|b_&SxPq` zjv~2WzJI{7iYxXYdY}*6Wj32JXQ(geA})x{)-F@Bbz$Vql%~t_8}pdjlIOT*7@V`~ zQaSfumvNtJ_p8ou8Mo+m?KF=*&JdSKnQYx`FX1GM|+g2*MJj*!^?oC+Yp`L?t-T zX(7F4^#J9IWSZ}LA_OXoOu=C*5(7&K<-9+ zIm)xTH-m6YaZt48@`ip zlhh$(q>dt3{Z<06)T|MAk$hD`_hROLVd{^nKkjq&zus}x9o&|@{x(J4rs6^LE#T9W z<`$QiiMvMceCyM72u-{@_ZcfweSZB*I|uEiZiUaSXqU#PLUX)ByNVpy;bS$STE<^~0zcAR^4i6eoQ zq(qb^y?)u7(_v3pXMYS*FTbz(oSN|IYeV-`BTq*A=$~8DUKbDyrhsH|tX_YcHj?Iv z?`#sUD&AWmAFA)#))=%zx2&$M!Nluw^aH&__LNSH0tHBs7_ZWYvYd;X?5uNMMuqe@ zN5@itm|7x3)ep)pIX}Pd4a6R>7ZF!Nb25^l*Nf6>6w8IM^5c@p1PbxdXb~tgZ&=No za*WOcJju55k-QlNU#=txu8$dpj~!8RJXpWlX+~0dTb*b2a}9?{aRVsds}0&r2cRk3 zPS|P3E8N@K0uz{IqVZXQRGl+j%Fk5`2J1l#o03uPGdBS+N~m}p6t7poWym91se6iJ zSt3ILB-o6V9-#i^xcIXT$8FaaUr|(s*i_T|Mc!7D?7ya`MM14gnqm3sINmFj9gt`0_hx}lzhh0?@}=QUgSmd zflh!*Ra<}dw%~JxURDi8F2Qnh2IkjQD0*#$pY8$n;Fv7I=duY<+(7&$ZT}?@{rCx! zOY~!xYXVm!GC%-<#pH*}1uhl{?0Q!2#c7YxN-5z!l2*0IiY3!}KQMCKMg?NhRke&m z`)4y<=hB_#(JH=!8`EZo4}MJsu`Lb_x;s9qX+9}K`U(*2G|dYZApnXAX12mAJ~6&# z3z1JJL_}DHJ1;!8h?X0&zHEn%{uYRk;#7;Y$J((Hg^p-Y z<@uQ@y|h{{Q&{wc*z#Q>e|yj@?{VfGB=_$WTzRX&V2S$ zD^(+{?9dx2b%Ym{Qll@@qo9*PYo~ug%qs zNl`+C0a&3YsdLrQtZRQ36-%`Yq$S7ZJ#yZL5jw-;?$p-`o8t=k!`V9`t+d z(<^QMah91kM_em#?zrG@n!61(qDy})3wr$%aj1maz7F>|X(`o(w6Yi|@;cF(duwJ6!c_gclxP>US7;@>KO7p^;77=5CP?p#VM^n}S)GC8)8&G0nJb ze^|O-BY|4ku?7^Pp>HTo(zLyG@!xw*P8`rqGi(Kz!W9l3y=oh?X6kuQ$=FFA2i_TO zq1Z@6mT`%p9I)ngOj4<3W2$G!+WkU>A3aF8Wxix3NMl6atopXC6s)(33p`6A2#!z1 z9}tj|-!p9rQ-tQY*|?RVZbc2G7b5=v;>U&U-Ey;OiimUZBw>6+8b0@J2* z=2wuKQQBzbGN~5`@k$`C2Zw^$gy6`GvUwQg+jWEJ^4f2IPsOTbvQtd*z!wwUo3H8# zJqJF#Kb5Gh^mzk~sJZr-*u;tG;2PlPIe)0=MvYfa{h($O21gwjLtqYO z=|*)8l%tr>t)|{LvMr})Ph=IcGMTelV*rHHy45TMRm1&2favXJfj2Y5(1a|3i%Bt! z@!mgTHd;ENJpMFc%a6n6k)WrbD*>2OH`~p)ERgC7jK}PE`bQG$SQC#}m@Ksuq?OwF z-D0imkNJ5lL07s@zuU`yH3y)ryZ)ls+VrY} z$O~Ps5)j+j0g^R#rnG#p^Mt_x=RTL`j@y8Afna*%)+UyVUwu|x*w^~BY&w2nzaUlz zU@Ac&Y#jKK&N!}`MxHPsSA7kxm_QAnc%15$sd^CwR0f{ezqOuvxmxF8p#unsdX)a4 zhk(fd6>n@{@A3UCS*Gt2tnl(G^7ake20fz2Ue!3`& zl|uc8vDNg$b|*tUor8z(SJ|MDSo5h-Z{~oHoaDT@b}2`j!`)`4bq@9WO#7O%tERo6 zo8<&o@A9uN){FbYu|=pEiPN)ACg0c#w`$REdyp7**eHf*C&O-p13Hl~(E?+yDoqRv zP3p+fM`Ak(02Nv3X#z7p@T6QP`RTOwW*>jZN9V$nd%T~{5i$Gn^3Xro)7Dg~9CtQ~ zpC_p(P4wL-YJQ|gx9d?xc-+#^pD;Q6j8CNu7%tq@j3-JC6C)zZut=wgA6{#4(uYNp z@eiw&f-=)!p3)Z&F8zyB7~UVGV(liItBeWt+Iq&j4Zma|n1Bc_MOnN~LL^l2=W&!cdW+(B}DGiiwLKwo5rHicqi~G^r7H)hk}I zyhfL?!2=!p$%Op=(zkr!ldo18%k1CiF~KA+S1dVF2r@n!hsNdLXmk&2{2(|_+EO;2 z@p}it^RZK6-Z%zSY3u3R)8$8j=m5h6;%`sEhyGC=M@R(kp8WNRPD%PI(MGL19vlV! z$hBI%jRv&&3WnHEDILBNjX_Bjeix00nzI<75EyO|7%}zspm_4_A^eE=R{52EL~Zm( zx%B4GJ%vVd{zNj3VXHPJc(j?=7FnMQx>@fd}pG;eUe zV59!9E~7F8{n-ETE!9d;T7i?uJ#T7kQSP1Jf7`RFYc-#;S63AK8NQxMh`pqP4S0RH zBg|u|t$FLfOoeB_#KeapPYG2CmlK(uisJU6^Q zOSsTQy3@s-l^UKI3)3%uw&u#qHp1E%PpAh?@WCna>}8eY9%z}7-o+_R7k)$xJU$F2 z{|(v=OjRzcaOt!bRIS+iZbBhkYyut2d(iJmJ8Fmpcd6zum_2JW-6iU#v z-LgFTczQD#)$x0&X) z!kvQ}wMAPVI~^xS8Q&fYLQ)*jf!sWteN#AfG#tbZpbG=2iBa;ny{~4iW!?O}0VcC> zDsYS;;E#%VN~ChC9*&W10t1g*nV#a>J6DDP0k?!uJpfQGiFrn1c572sbu5?L#r+gg zv}p=c83FgNdp^4r>;I%g*3O6~gZ|O$I`Vv<^AfIz5Bjk8!j(dgYvc{2Xt-$H3SwC97~W1R!D+7Ri^0GH>Ne0%U`p zuM{h@5)-r0?VnX(cbl#c?=Si*&ohsxntZ`iP^s= z22KMyA#=+(($*h<9JeZTEbaXCXC9lorktHeKl6Chn8M(8YNVNA@8rnF@5^;PIKE5P z)gozKCLmTM78(T@7ofhcOnZ)viA3mL<$dX3<9vdbwt_f-m-XiW__;rf#Gb|3` z4yiVV^je#;LH{K6C+}=5-05nUPPk5!lYJAh#}=C)e$BCdZ#j49OHSZq{83R9cdgnT zUn=lJzdR?!4clrp2`aF3Umhzt^hMDsP55)w%i8gs_g(_1CQR!*GjoD!zbm>dzNM8M};KJ4MRC6Ph>Rzw$zV zJT$-~7IP+<&>vdLt%{MHU}C z8eO?rA>QCB<<58VQUmdP_Jfd*H}rGg56_?ZC2{tcLbQCj(!Vup_twSAZTw5cny`>9 z<0`Ji`PxqprdC!?D`TC3tXm6EQ4IX;0PP7~i&A3jFBWQJK>{fP>@NjVnLg2+)7-qnS1Dgcfh$9BnL^W;~FJwNjX%_&7Al9N))fg?WL^UWHEno z{viZnx|fCC_E(E9_jjfUbUCEyW6saj|9Ia^EQS~~3IJz@u{01oPrJ^Qmx}1Iw9FmG z&a;#iYi@tq^b3>2o+!WkNaT48JfwaYlq1eO9CW3z#c+c#*+J8lYGU3v}nc zrT?sNOIxPha|9oqTG4BQrV7RYE^_h@s`E$E0@v&gq%~z8nHRWX3h?Cqn zEY;+(m_vo0Rn(h*Qd|un$l4bg;$WLoPMw(>9(yt^4zoXOp8?rcg#GUqIKat|_d;uQ zDaY61QbJ_?)Pxu$wWBCN;r6hYCrfa*5-^q-gQ*A)#;C2s=>AsQZ#5Dtq}Y@AnVv0q?eItcD^ld zTCp^~+;;`D7vpaNk@8%~D7VRK7h~CRux!>f@~P^zreLP?5$t!5NoP?v1rEToiF(LT zxrruA?w@XNhgM`h=vvrz9UTHEaH;>FTk{2Km86~h3=P}1{=g+wUWe0V+fF2Q8#&-O zjq7bdLB#~UHCw^5(HS2p@nXi0$EJ?OY&$drJgL0It)+xhI3Hj|UnnbV1+|J2hkF z&!ESE7c_uezU#>8_FQEwXQ^(#)vEpQf&GWzN6XEr#%2_A1MmMG58MbniyCE?&)Zw^ zI`6;+)KJUy@w4xxWe>a|SBWb7Hvxa|e3iz3$h~cOnLhRq(JG3CjNbW3>!1(rZrvsN zjr1hje^gN6L*4LU7#kzRgr2VSZE0Ud49Ax;0YILj1fQRsivD;S=r_n5maowM5jgJ_ zYH~&f9UjSiSXkCFhp8ckt^(0xlRuQmfQr3+06()vmmW=*4L%tLisCU2qNsKtq+bn; zS2hPVe&dEZX|!!^0LKMaC!7#{$9c@+tM=Uq%rv z4Z8OG;FGttfOzan_C6_U+Tm+|hvo#@zjQstTHf;e0nb8Y;R9D}S|cHIA};-d&E)t9 z!=X21Ac6B^cImk4iMZ+rJApSemT_hP3&$J$bkh7ywnJ)q%-^T{c2Uy^kgjuCrLp6s!d|3J^q&qH~ zoV|~S4E7D*K|@`N3GKJazk0Ozj&=E&=QCE=bzBc#E%j}V@@?X@HQ z@pQYJeGL%92?Y*)vYI&f)BD6r;o;3YH=5?b4#+Oo7%P#P?EpZG6^n_c8XTZBVIWdu)30z*hV)VI*9hFjO@MLz~tib{At&xEFWF%U>@;sq)ph z$%g!1ywUJmNM_Q$41@J^`RFMVpaWDUc0NhE9>mB4vaCb+bw#Nb!?-Ky+%AX?mJU{zt)*` z9&h$* zVgnf+9UYlL0rfc_+XKNeGRlbE5n(Lgh>A~#C+aBT@J0be0qKTL5=say?e==wet#q= zXoL{&O(WmW=W_G8oU`{j`<}ahXYalCTCb95yTjJ!URd%b)p=a(;HNNGEWtyIzJ?$+ zPTv}ES762BzhT{Hiy>uP1tH@ah_1YZ)yLEb0{^)V_rCBRGV=x`te&58qDI8);qF%;kaYoY$(%QJR_{hoo0v3k4K3ZisP z$FBMBKC*a=ow(+=LbdrnOW6C*{^|38r}FA}mP@{{l9<`21?>U*B5$e45M zz(D1Zl6zy3(4u(S)W**tqBM&m`7vGBZp!S@pSyU%9nM}CUjtE!iClJ zFMG>fQn;3QLHNI*xB5}W*#3l7+DvH^>z_bGok+B-<0NN#(#Qo6lg{km6D@oe*&Sk- zJiBrGib&9h4J+Qmy3d!Q>Ub%n3r2yz;Bts5y#Um^zdIv}dk@rOs}MW*F)sbhB#gV` z&v7aDT&O53!Lm1=!mjmSLTY~@ka{T$9fyO&U%!nuvUd@BWdv}`jQH;>e`ogO$hOrV z{WIiq*DJ|A5e>9BTwlz5Yl9;-Jv;99!~>@5n0Zx(&s%x4f4nNg)i*&LC$Vm@N;YD-WEh9Z0f)xH{II zbrrf2fF7xW;@%Ak>;d!cM$EGxDV=g~;pp+`ciDAF>DamPFYFXlIfgwOzr=?Be1tt4 zzXUiF#N<5awmb+)`QYtY;3OMJs4LhO15-lKWj|Ek0qEY{;DY-QtJ;C|?7W%?a&bme z6+HdN!T#e1c0VA;B4?ayC!zwgJ!#E-^Z%37n6noRVcn;T^rdsB|2ycditFea0ElR) zEven|2j5)hJlg}y*GpejKY8WR??Zm~;Fccqxg|qH1^`z%Qrh1Wi-h_ocgT{v_8ul> z_a0{Lm|Xz7D-Bj>%4t3?x~?JMu7KZN4u91N_}%63RUOydCk}^?6c@_J_U{76@t=nL z?zaJa)8^e@Lz`FwAfoOhSXPi|&U6lY28IhpoYVQb>_>3rjkx`>dB`6;CP7x#52ov= zC@aR{ecNzg=T;or^F0EdN<@Pms7ed~ffJ0-)hGZ4K{UW%b;9awhpgOQ=u*%R8M%Ft zmX(X9+~0dPLcVGo-nR{Ui7G zM#HFGKFk5o&umY+NR*8IbWKfFm6((1OcD%6U6o@zW4b1Yl857kN-%azkz=LNkiQf_ zIe-!X8(Et${fzTktcgej@ES?>N#^X|kgeae`i-XRKnom3=$pxy^7!lMapB1L8X89! zV~`^uNJev9rmUJPN-P2*4uaG;p7X!Ni9>tw{FD*ifTv;{W9+m|^F)+xvN|?Rd1^`O zxvbSTHRYxI@bn*tRD=Vb>_kKg6GU;GJ-Pim55Kd?{!{18y&G4u*Js>N5e|5Uosa95 zEt%RF^N}_oZWyh%w>}F*bS)>@J%Y2_Z7E}ykbU5z4Hjwu;B6VO41WU)XWfC_ao9JS zD2NCKv$a(VH2{bPQL%tse&bv2!aZ;#F|UEBQe{Y58IQ|9tpTB{cS?s z#`#R^o(n~dw;~a}#2FkuF{Sq;*XTF7q{|j0OsD~Xx2D5#@jtNW$p;dWZnBM*3C9ay z;B304C5Ho^7C$4HnKuA~ubLQ_5UamLIN+UAd1U{baL_lSO{nV!5p^Pto7k4q``jR+ ztlD;KmdjGDc4SRN0)WRj$uW~Nr-_b1e}U9~P@~$wln^2trlU)j6x{xog%Aywt21#Aj)_KzMeyi#IX-X2(YQx80{~7m zPva!}Bb?DiTJYG1y6n4)F(${mp4I{pjUmbQzUay~sGhw$^q6-XW2~a7?P~52$6v#V zmbZnZ9-`{myF-`#;}~O=O>Nhyv^ue_eVV+VlN__j;50b~%{u3;Sn-7+y6aUKJgaf< z+>h}~+fmwRy)1qCA*}k~4H&bof_=clV7d&?*Y`4|a&xK0Y)HEExsM##eJ*NhGaJm_ zO{=hA#tr*Ies|AviP&}~h{(=K_9bFUuOUez<~v9+_t^b(?F{BD-MELU`|D z#lP(ZACm(Uerd~PQ_yO}nux3bp5P?Mog`XJ_JNPUnAv>Ri(^N>g0g)MZk_QWdXKoa zsm*Dl5eRrHG4KBCaAf~J*atoSv->f$cQJz7UW`ft^NyJ~-FfBhj~bil4BS~+^8CG# zjVs<;9`ID&@N3H=qF$V2TW;xjSBkaZj?=bi#EyK$yx&gqG9@@w*W{(YwyxFy5w+ta z`!cD+&^+fw&)H5545WIC;9fb|&*Z>7UG_iL7GUH@h^Rd$*_RtSUDC}l^eOA9yMYw< zZg^Hr_3LurMWzIwXbx*uEncjNs0WCf%Zb)eyfq!xKKGEZ(`5-s{_tzj0%eG9eh67z z(=qYk`LHFmYig6)ND%9nFUEV%{WqA91m|V1L9k`kd0cI$z&Jg0ATzgj%3aTYeoLbHX@Ki&>~txtJ@0~$l-ty1)dPlT z$r7kVZ{UV|W@FIUTbkOSHsXk={KWj=;ri9>Ga}SitZ9cPE z!fj71cH|Gaypb%9AF)UXb8a0Fs6KXRiX4k9IhS*Z$jnKOMZBZ)6|Tz`*g0eJnNMIE z{F~-PA_qP$(__9X&bMiCA|etkGda;ZGil@-_WC6AiIjY(`8Pf3(PiIxJ1t(*Zq`|x zWWV1v>K}H&dG<84;iC7|z?SFSy6l^fsBMb%p+$)`5hVk7h%-3v0?2IcF%g#Tx1N@| zvZbJf%Msf;3u!4Lem~=HXim9{<4x7EgE)R*HwuQ1ZMDHzG*!XMf6l|Qg-=0a9Blm_ zgsJOw=Tt^$&)WzVzRW~kJDQrFZTam3FD7;Ce@S8tP7vP8V|eoS{rvvw^3ja3jb}Ta zh&bY;Ne~QAS-Rh9we`8*bS|@E(Xy4yxAs9FQ=<f^nseB* z_H#*sy6pdJA|m&ljb<;_L}UYSA1B(TGO$jfvm4AkCc>0CHm)fXn~GTJa>#pLL3(y~ zjGHnOoeLV*V?B{n94^McUjHlhY+eJ&)dL9a$Jkr%!?1Ca5}H=8F;V0w)_k-O%N9Nf zS=M0ed@ZcK?gnRYHmE$+vk$(FPeAqTiAcPDJS{8N_1g#j=4?q0Xk|s;vGdl3r7G3JClJ{3OfYujs~}UOk1$<+yEP{FAfjHJ z!TB0*>Da?DWVTaG>C>Qcm>NNF=Ym*x@7oc^^uIGX@Jv&PPh&wuy*WeD>%1*J*D-ju zQ%o*sP&rHuBe?z5Xn5cML>SZNG9~ytV=NSBbAOR$Db_?}1Td9E^PhS54HcZ9qEzpI zf8%VZ-ja|c=M%P>tEtfb3J?@Ctt{^?;MR3P!kx229C}Z05ObNZj z7z@Xx@H5bC#F~gY0+0vh~4jisq?h}{XBD*9`iyjei!ngkI;YQb-3~m4C`Q5`AV;T{4;f${NoMannAM}L7&@nNy1*-1=0$ZQ;%O^Gj zbR{$$Ok2_tMVpA6oWU_0B;0E2`+(J)a|2)3@9Ec~$Giw`ejW+l4##@bjo|kAk;wj!BTQGHW@>mIV=Nl?ifU;xv91mO zc|Ab4a0cfvrpso*mI-6#0FvOhOVa&R!Uf%djiz2pvDddvH=+ISYk zdXM|v<=FDY|LRNUPS;d9_E*l-?h=6d+Xu|BnYxUlc*f)ZB~))Q{9B&(D-~P4x)PiQ zrhnMnMY}e7)^N_4d>3?etR-)f$&x==A|desmGo#ef`#+L;R7E>p({@_H9DU$7D;%; zaiF%{MsUXD{{mAlx8zSXS@I@{XLIh12YRFufx?%=(Syq(OjqYHHS$U#M7z<%nur_# zE(UNDXK;)G(^E*Y!_a9YjOmv`N*##CxFK5_dZYre;&&jIeg;QMNAwyt8a;=MM(3V` zA&5;ATH0HA44c3B0P8+q0-w7Ye5bLHGOmQ+$ZlAHOhdGE1+)W;!J?Ju*6$MZ89o}_ zFB}QGD=ogp*ViOn$AKN|@$IsAvGvOjpbK_rasSz+X03hu5;QOyXVc&f8y7y?wPSPM&Xqwv5&~dnK z&biTU=rE+tnU+MOc=jT&@=j0{8bqg z8;TY_f#COZL($R|3OM0QJ?dTnU{$>QClVsoM3ezw41mi>Fb*W%l)-dGBGCdv+CUgG z#=y{iNGn}`P8_QLAmrm~!MVRfw4x9lI_IPJMWc~FWHdVE^iJ3sclEJDDBZIeB|A1_ z&*nAoRaHRfbOpqWD%k9M&XaQx{tJ1R@7ML3rQ$V6q=P zX)4DtW>4-Q7YrLqd4ooqv-=K*+14;exB3wFdr-V>4R&w%BD`ze3fb>ILAoxSP&KWC zn4GVfyWN~*%ox=q9cNwWvLDey|JK7r|KrsHhZV;3#Y_n;0kEwp9MXs=gLvbu#2cn^ z=5{u7x0~&z&e!nGrC(&ag4mI-5H5P(BUfxC;`mSXnD-q3>zZ=JO+*=LVG3t% zZ?)v!>@a3s%{A1iGu|*wM(oJyns%%F9>j6~(qq1N0DSjrM%)b&Ya$W>TmT>!KyLuu z0d(d>TX*ncD$`_+H?@P9(i>9R0En(U2uZok=11EqU^*1{ZYU?#f~voR;yZxM{K3fT zUI1ruDr`yZU`=WVTT;#67Q5>gw@oo!MQ1yDm$~VH1+#cQg4@YuZ2iRSywb$70hwD9?m${}Y zs5*K8<%f$=URs2*{rgb1uMpKoi$De^G$uleR6$HGfT_!P7&AuWT()>L1*)$EkprI~ zTDB5e@F<8AA#kcj#B{48S?SodAl50Tm$`lC9)`4xZb;3@fyG{bK?wP(QGU1>6^Dy( z{NSGG(UR@qvZ6vE67Vtx?u4of9Mk1A-qKMu=icHlb-tQ!?%OGAA9mDe=?cH<+b10PP3}XY#bnO8(PZj6-oRU%x33G6 z1BjHaV9|r0dgQ7d67kYOrbSO}w|a{=0muR{1c0OVWd~pdU;|+J;l&%;bAq`&h_gah z1*XM7yadja0^V`~1bY?)XAVSH9(a4_W*I@OHN$inO4W8~fijTd0jK&viU)ek4K3n^ z8u5St7_1JMtVxigAw)x7Xo><52f<(iZ?JUHK54IUv4eX0K#w1ajpz$S2k#c61F?{~-`30K|cV#sr?}0GOsJM8q+k z7j?;G)(l3oCK=7L9E*?~4sx+*M9?&ugU%Q)iUEMC6cvgN!O65}JI7E@5v;X2a;$R&a`L&CzyG`m9I;w{q16Mz972tTky;xgX%4TeBwJjdgLpg zQdP) + +image/svg+xml + Page-3 + + + + Sheet.1 + + + + + + + + + + Sheet.7 + + + + + + + + + + Sheet.6 + + + Sheet.2 + + + Sheet.3 + + + Sheet.4 + + + Sheet.6 + + + Sheet.8 + + + Sheet.9 + + + Sheet.6 + + \ No newline at end of file diff --git a/wafo/data/wafoLogoNewWithoutBorder.png b/wafo/data/wafoLogoNewWithoutBorder.png new file mode 100755 index 0000000000000000000000000000000000000000..1c0811528fa5283f47fc91944a7cdda37dd15d9a GIT binary patch literal 13118 zcmXwg1yoeu*Y?m|(v5V3v~+iOcl_uT80qm7*IjFyWZ>nTOVtY z_nv*uuIKC`URzTM2a^I51OnlxD9h`DKnQ!l&-v)6z*j8D;5P6L*;`gcA07AzMz{X} z{Eh)uHt`1DU;OupAj=Bz2mVOzqhRc#=jrIq)1ghTHs`i7GDSpvnUZ`v;AMt&EQ zeJbyT;|ttcAnS}2lX*T#v+~LDZnh7{WjzjKF{zOCwQ4%tDn*X=+en5q?Ue zXrpF3jJ@}ROvA4)w6^cJ@Cl^g(>>a^Yb7jqy=hm~lrLfuq{=)YL+SEmNnB-($xMP!)b&D^e+{WA$puFiVB8n4G6}x~QYh*H?v%=Rha#$IZ2aE;9Y@-)rJPGS=7AHTQx$9#Vy>Z4?fY@c z<$1ubf%EDOAnCBi@&PPIy#85tL9-@Qlwf^|3w|$7vi{qT4s%#rKEHL)57-g&kz8cy z#Fz+a4$GV%RpABxzo!i1w;ilR8vs9A5g%EjaQT>^gauoVkbftV!)ePfyp41esYVz; zQoN^5q-UT>9xXSzqmGt+qYvm|jH6&nAC!tjdJ8;rB|#V+wwv|%cc297>|?{&saUua zyPK>QWcd?&_ucy;ub5lM^wJ%+;n~ux)y2jM z46gw6%=f=F7{D4Gfb$gBnKsF|@-ZoQsQu3(^|Ca%k3Gb;|HWPeKo!X^wLen$Yw=UH z^#R1n4CgQj1cm}AL`F|Uh$5`H@Bw}?{t?40dNqKgO(ayXl?C!F8&P4u<|Qx&QT+mh zs89x+A)#Rw+llNmg~LojDxVyG;lM2*B%QyknTGZXb*uAeP>}&U9psz~!J)gtO&M0A zn4}fpQIey`kMO&ii|K@~dnnA`>}GNPSqTxn3)82u5A&CG9XhC=lv7`=F$4f^iiTg)N0cBd4{+q1&i7X-JZ-a?6*B`F>?2NMarp0auK}hK zWM;8_`s>l)J?sl1%_rLs&xi964spOv3F$#qO@5tF#zQql1_n{ zkxmf)gpQW8Qe;5M&x|h>{wD~8Hc?&d4~`-gUiF>XG8~K;2&oVMcx452x6M!~8vhAJ z5wHi@XyjwoaokdrB?LDVA%p`kWKKRjD*OyeX3eOLhCS4$lZZZgc?6iSuZ;!)Cj`}6 zbmoH?XBGEV*UNxhXOn~LzBkrqtPZ5jckmFsYKfDt90|C9hx935ZCfVqGaA-hB65UR zhoeO>of)?p$%+_A`y+wb8}oNF;t!Bx)rNDpa;9XUNghS!|k(^rRP0Cb-ixr{ymUvJ# zf)PS4B2GYWFwZeOoit)MqN^&UNti7G4xq`|>w>K{thGZwsstHlqz$M<$FsFK$%|jCe*8YK69OZq1&A|nLI}NnnErvP!nxr_ zRhp?y5jf$FB7|NyZwz{-5k#C7xtvPGUxnW+wqDFpuEu-9>P?yu`teg0uo~G-`3u7k zo@q;ucFpd?bpS+;n-}DQ=!J`U8BND1vVf&dE%coF004bd%5Oz87Rm(wNPjr?3jqa_ z`a|c>d{x>hr@(`qK?N00DNG-zC_e4fT~J~iW%gR^w4TjDR+l@6f2dysK|cYc8*@p= z(EzvuJ>r1}K~|x3G>M@?i>}5(qo7R$*pvYW$Oi!rMqopUSQ=S_YV@p;57R=qUP!5r1vGy1Tc)#9U{Au zgDjJmh`yVc)nCp3`L-A2OqD^y5Oei{Ke_fqSb_ZVMO~k871P7ARIqH9vp``8FwKkC zlM$2}MMiyzE-wI-_^t^H4@=HtbJ)PL?Z_=9ZqMM1pY0VWdA_eIUZfPh=NCf!0svEs zxjZJq6!>^VBkCkH!ZT&G{Klc&W?3EdOx;Oy=e;IVfp+`$6va2m^*_Kp@h6!f`+ph1 zc&83})drGv5r7x#ue}`@Za*K(Z<*sQ=`ycy);Cd1J=oJY&&_Q=zn*K@kPD**tYC5{ zA|}C6BpGVuHO(9b=#Qo9!FX~<6kaX8z;TM`zyxlqwR@ocKraP|Zm^{b$#0s=OcLb5 z=UYsI={!(Lkt2X4XlYeHgB}Op*AjShRa(~|xM8_6Xl1#gs^w`KW_AQU1dRD^TA~KH zNpTvtib+xxHbrM{Oog(csS(q^8QR0=aDvC@@5+F?q!+LVP|g%fI7|9o%yY<^L7S6O zyTH&LH8|hsKIVHsb;|GC3Rmxi<=#(_(dX`bu2tMlBMCgerEh7TwE5j$g%qg@xrZk~ zoRA@KDh5q@2Q+f31Yv02`C1G=#*Z}kuVQ zvA*jbu}hM4UBcr&XtpJ_a^N9648ZjlmiNu{qb*%DerEsGeC$B8lK_9JtsmI4Rmk^A zF&47?q-umn3K4yzefq6myUWvt_E|9QcXzQu+RV{Q%lT?*9wmctDnlQ@n#-Tu|Hz zQxgIjXQc{&&_2?Yft`(2$QS#~wC}greVAQ{|0?;L$#vLjJS<$N^gEv!3vBJhBt*|Y zUzp>rc}h3ODS1&cu_a)8=HSXj(SkH+_Fr&1zs>Iv%>`jb{4%@}WFpITp2y|csw8h? ze5FzxXbMESRbv29@4>(wZ}>g=g2eI?VH7Wqg!QC5x$%ID$eKFnhQBXLss>q z47IEfcly~ZlaASvD<(wt^43z#j#9fWIy{5CHm;c+X7+5BsUmtJVY^AYvW^6&7? z57B)pJ_F7F?WU0Kx_bhVTwk#{om}W8s-S~|Iv!JAadZ{_JVCi+ex)S#(5o5D!?h=Z z$mDTePZm{U|H<@oC4?KMpW7D!kxny3P{aE^q0WomIE1#^R8ec9G?T>cHDioIyM5#x zJZ^((ex#0+QiK~pXV89xMQ4Sf@JGp$s}nkj)Y7sPYlmT9kj{uM2#ssV_)R>VmFa zlZ#WvMDcIFSJyIr|JXUC=LpIif4;HCIbA_5(h4EG3z^n`zkkx{b+1C|A$TVX)eNyL zfHha?Z$1x&@71P~L*qLyet%rXpz_@3ypa}j=Y-65%4s+vjHaz_J0P7RpNhd9e6!r} zT$qZ;t%fP1j#0UD1^yDHrr9+wEmtS0ua^8}(29?i`##SUG<|6E(70iL z0V}QzCA&oOeA6ua^^n)x@YRm|Zx>Bm%&$Kz$$Sz@ewD}ofQ=uDBA#=U0Gr=K+0Y1i z#Duogj!;7a$iWE5bz(-ZI;Yfv-~2b}NW@Fo`AP(*>t^T;^iypr5DlC}j7E^^H65iX ze5(BMttCHFtZgFEwg;ka@xH{2zwieb?LYge%b{5B@%(%zT46!Ii!Vxx)vG^dQmH?g~$2BJo|r*Pp95nd7UAFUxKSx27{S?H@fuRJ{@A+c%3?>+O@TQcDNvh zYdWtB_|q<`)AIQ)_=miitRfP@yA=n!;ObiOUp)?3=1iqSg~QdxPPRQLJtqIesTYx+ z`>#Vw)kQTpDY5c?#kAIXXSUWjinxZiR%0GbE-Cuuyi;N9iMd@>GrJw~Hf!nYb&8e+ zAGH0FsQnvypY8Y%FQ!Pt!QD$6+McHO>XbO6aQEyZjgW6+Hc6WsH|SY8R4ZQ`W6gQL zH-FUiIL5&n@stT}%QxvG;ka+Ur=gFO$+zpd?TGYPoOeTiY@L25Iht;y-z|p2Nr}_> z6=}~eVzp8Mh+!GulKH4Ge*5T@3|j&8854$oV!xGPo!l?s_O6WuwGXVKw%FU@M}xK@ z?BC@islh}Ls-Cf2Z1r6OZIg@3WjP6fhCU3n5A)VZZ?{(5!gC-`^dekM563JNxiEcX zXai01$l3ZynfUw(B;0n?@%F@#Bv!z5=`r>dFdtqkQ4iJG2tL}^kLX#*Xsc^l{$Z?`krg2lW5jkePI~eF|y~>W0GI}ZK1Y^3s-bAqt4^9aM z8^Yek4ya(73W=U-WfVMo#uS;IKRa~Fz*8?04!4WwkqB-AL0j&`Pt`C7K8PT$*)6YG zxIN6rJV%`sOiIi=YT*e086YQEzdg02c2U=IXG+4%HHh|NbNx^Jdr^7%*SPumOm)i} zvuOUgwms83u(W}T2-+Lzi+cYKUgPLhX75a;`v9h&OMf{mEr(j}xQB(K?$tUU_DU|q z@Y&{71Eq|GuAqB^ElolGxi1VY4d18?iO=jmVt7QQ#=W$r7jZoc;uMJY>pr5|kJq(3 zNIm!@v-r_0$R48yJfcdFjq?s<&Z`L`b<691p#|y#&1623pWXU3&d4u4Jeu8}hfe4! zwVC_ExDhMy=AWgF@jz2x)iE0bzZOd+=lI}Q*8FIe;$`*VF9R`cKdST-_ph#*oZSyD zDn;-5W6YH@Uan=ukQUYiqEH44UJ`^)gv}znHJ-wi@`#>3yEUTp@Ay&CT;NRZ7!E|G zN#|car)&B)A%^labU~Uj|KJRt?xT;=>}gzGeQ6T<;*&ivBs92%A1Cji5qP(MJ%tz6 z7#d&03f`23;V|8yJeO!>TPma?VyjFMQA1;@V3>HVi5dDGU!JJ1*oB^_Ti%YI(7jX0 zzXTZz2|`Tc%ZDSmkVl;QXi>dk$$dS)9E-FxwyIr{D58 zW+GFvUf2|ngWYmMRNr;Ri-W?1d}*$wJ6Kf=#HEt(lgVX37+`I9&0pNY^BM#RogYi`05$Y0|-`TYTOL`g1vJ|LmHZ1e{-1YUdDgtbg%k+ z>OmLx<>8?$hQ4lNiqJbeKNM|?u){=X^nqHwoi%eKP9KSIyjIo%nu>BI2^8k|)@%+; z-q;m9vIlMj^(?h;om6C@*>5kY)^YstkQEa4yLo=6S@hT9PU6CO@Y8oZ|ASO5DkV6~b>H`wPz(`Ge`*@ppd% zeI24}2c6=2f?oArj=a~IGS3T4JG?NXJPB3}gsE0W6O{E^>z6SPG77`sCy^On!lO{G zpca2h+?V}V_NJ6Vt@nHB8}8)Jmrf)~sp5lTyWzT<6O~d4+zmGkpDn{$Xdb=hUk`mi zzy6DQ+tZi1a4iY!LB=4iZs+eS|9JREgWnkOgHZxnv!1V`^Sb3@NP$Pp?jGNNf(2lRfKB((3Kj|=P1h&QL`9BMA$cQ#F_M(AF1FEJ ze?zYGb$i!878YR6R{6!Fy!L{A+jIcwAC(|I{92E-?YM>m3}&q~4PPFMpNf1UiT{BL zD1JY_#>mQz!EA(ob2=A$=ss1U_t*1W762`(>=BbsRAP}iXNKw+dkTBM3po9K)-qM{ z=<)Ox-wyevqQm3hxaTC6;%6Wq|9q&AW3TJJ8^Qd809{YDfw+2$o94OL2Ok~gKH&`J zzHf;YMg?2unz*BE>>PthBmP}B#y_Ee!t;e{54?PAG zQ(1Yw282bwPK^IPJQw8(CVvGbOG<}!g`%b7PE_9TqAo8E5zMblJ#}FUB&GEPxSbr@ zx%cX+Yb8*8HSkeVvf7sU0;^B)8lGVMXAk{!-wzhIe1_C*6+1HO~1w+wz$p8i7 zfAhIPk`)DI8Mw&;H^M_8%UHwpxiG1s(l7y(tB(4rPQdf{k6~ zdnMCLN=6k759KNrQS1q~6pH@1mkjU!u~SlLH1ISg_~%l9=Fx3M^ta(ahEw{-y~9@) zf7A@aP<;z>ejBD%stB00v&&AVIsP+1#?2dv*PSP=cS`3|Os<&=*t`w1Y+BY;*6F4E$UZ#TcGm>h0p+{5Rj;^4tjqnTYo9$S|gd)<|Rx=d;5FqeNu zQp()%Q3=t1`h@O(R$F-@&HonfK~(#7@DqYFvAGJ`&q^^Az58rpg68Go+VTHn%=hFu zAzP7wYRGMfQXg5B^F%G6tD&PhbPYnjjH$+fk$ihZRWMw8u^00~n6PuKHxG@0H(vB# z)$X#}AL|ChHhTlMWI$DP5UQT9wR* zM?n1thT`$6cc)aqGk2A{q3#23ouykD+eivY7ePUGHbMWbe2@KvU=1@@08MaN=>iyz zEz?&P&IhDUZJP*{fM@olt1F~{G*>rC^&VyhSf&Z144V${e?o*ln(AvsCY$wqYn7Gu zw3=23NrNA*QKPOpoAluSAbc)6G?xnQ+LTcp^7mQb zB2kw^@EypI7HH=$LcG{Ozr1#x9veq26($1RC85$+rrsDw!#?ifm%tLEzdxJHIoM2IkSJbg&b%< z=)-w_cWJxPy>Gv6aj!Pd_B%R#RYl7j@Lk9cz)g@rc6y>b%9duShB3bp_b9>?w{uGJ0TJ9?ubYMB125wNce3f3@{b5L^$XB4_&u$}Fz*%bz zerW+#LoiYNR*VRgJvsXrIsU z@Q9misC5JHJ?24&F&5iE_jGNmG+9oa*!qaFp?=YViA7=&7C_L<-vr9pl(7dK2Z7hu zG<>wuce?m(B*=aBd_{I|cA%72XUHZqYBt90sfzpkVTP-Vu94oW*_rdrueP zt=2;y_%tOA1KF*w-PTs7*tZb*!hz~SsiQHk=45Y2i-A5*y7IHMK0dGSvm!Vp#@u#U z9{K7Sxq)aN=_dM{7MIuy^#dlc-fph+_Y;xe?bRySJ0Nr?!Uj2~k!W%Iw)i|BkWy1KncS(N`RGV=>c!TqUj+}+ z4Sc#KJLQl`_d22I78PdeSTvTCy`*5A@EoP)L6>vr4`9?}(qY=XwVn)nIKmoVhSO;6&Yq&A4M$TvY!p*Mk*_G*8> zr)vhp$pSU(NEA+Ccy_CL~+Musz2$Wvo`yWsGSkpZj|?c%AG>d zUIT%VjB@r-&;r!~-8Z zS2YPq-`~A~PbdE2L+w=6ota<8UE{1>P7MS31yowJR;D;kjciiNVyuL#sTY;pQ-2Vc zsQlrCJ9C_U`#0U;d)GToLV*`U$fQxn#kKApcS;a?oLphZxpHHFX?lXV6RwcQp5srn z7N3m;y_p|#^a<$|Vk@sbeBoRJcHz`ft%0>e6#|nm06x5b{Inzgk+wN; zVni~w$R(J}ULWEV;Hs`V-9oMaa!jcfnP};PBCUrh3LQOtsJ$SS>3bbl`vp@ZebBY& zjsvc&=M=FS;SZ=vUnw2mDX2u)BHD@gu8J`;T@Y*jpohr(W ziNYO37h@P&DXo`&Y%mq5ORz z8y(@)KeSsRMFryjA)hBoCooDrnM&%H7Uot3o>hS>sCdx}N$)tS@QBQ=QUwuBtW@BFU`0qdp3MkH=;^J0 zC!(=imXA0Hcl9z_zT38dd#!ax5eM{oSpU0t3$}tW{GRs_IuKO>@B_r|X7_xPOsHb~ zr7?<$V--ky18kSJz#rmGQAmp=CpxY_ikSuGzZ`StGkD8bvbo^PCXMa4Tte_1mj0!&&Yt*|nCg+)J4D z4d{!y1U}(VtU#@!uv3*}3W6i(%0&4HIR|k7Db#7dfds1sU7HyPXjzjU7X^=ah}o#4 z2%C$J+$_dyRJ&* z@ip(4BH;jeOx!cq^YN9#U_F!#El_hgL)7(|?ilk(I5aDHr_&M#&DDLmil3Qi ze1elZ=5Q70<{m@-g;o_zs~2DM(|4L-YFuWn2dEu12K^&> zHI4qT!7fLI;o($9w);V~MlH?eW(_dk;niWt{*=h+Y6?yrXt)3*%{J5*@Yb({hb_tw zTP5<#ULFfD*&Zgg>~h+)e30&fmqF>WHXAbS19)h}|LYJ8;|FQc#}NZ72jf zqd1SRRM+PBMl4irr2HDOP2bp)^Kk$?!4N}H)lbhw(X<-2>#!);bU0iTq(}xfyY0@u z)tO}f+1dr){KYKNsv4mVjCA0q^2hC{GbeAg9n-yJ{zMKN1!L*rPAv-JQJ8%t-WAlf zFk!ut#%#Ky+lYVKXynQ*7VO3jt2R?v{gW{P@yNZ@iS~ zcQ(J~c>hWTP`5|d)ymnyppD}#buMT?z!%$D2biORFCQWO41}s{_)fg()0PplQEnCZXYZeWNNy7T_w4n zW)m7)b{gL=pD_S)cl;_DGQ*HQ)4tk7`?6SI!?bu$RKVy25uH|z2XaeEkB3o$r)NJ( zu$nl@Q}(=X0tRrFZNp*Oj_F*^f763?DIz%1F0XGy!2Sa-Maa)sx2EDGSMRB;3y6|c zTw}fYJbw8Wg$u@tcmZQUMFNqZtu9!I1FGBlQh^zb__njBeko?HLY;@hw=AjR#eZ>kw;xEy!~%C*C?4*bk!(5A>)-bPnUgur8s4EN z$`u9J7dWBPb2&v`q%dFy$540q@;mCu2r}T}8Fmty5vZF<8D{7EQ}pMP_>(IC5p|Sb zD5Z{3_fb{-hzAg{?0#|_L?S_A$rt5X7B}WEWQGevot-TY68t&4IU%mZSk4>shgB%T zPe&$YR%K}`B)6XM1%duPa$aC2r=%}=A4*gSFsv8%AZw+8K<$75L=X*&@AgOc4X*qM zTE4X9N)2>o6T7bP2bwd!QiVx6T~0V>*5h5Xwg#UX!DaPWDvDcyOfX)og)ft4#vM9! zW~^^J@9=L+M*qiV!Ir$2Cn|sbQ!#QVD0sN((oZJe$7NvO6^cQ0 zN`4Yc@XoxUMri4<%lfu3>v zt_t1RFErK`xpuqG@?ZI9Y90xO5#NfSw7SqFX`@$Z)H?3G@%^tNak@dQhp@N#KNbL> zFPa%#MQrzZ=@r^pN|1BJ+@Sy+e3|IDp&_OeHO%|3yjBPq=o3A3#}OFB?U80`|WfbBPE{>k>ncI?WJ$Wm~3y z^?L+Rp1x8Bs!~p(r#NuV>w#t~0d)$aarM3wHbTr7n#v0PuRwSCe5Aa{=i1C*0h?p% z+g{sWCG6^kR_jc$h%dQHE8Yahi3V`E`<^uY7T{<)_I zH}CutC!Y6Vx?mx1Upu^@k1^wPBf-$Jcp!>vRh)k}M1|(9?@|Glq$InJ4oz`kQ{v8; z=9+8^6EJUzD7>}dBm8@7Wxdm&#}62>jVuxdkbx5(1Z@uJ{*BdHr8mPMtta_T7;In6 zeMfXW5g1`adOB69=QJ-Fx2i0qx|MWrQP{o3R47uBL;k~sl>?{IgeAh4QY^qPfWwo= zy{w1jY4an{v)+rt*{!s5A=fe6w@5?udC%nU=|I`UwI*|sLSto%j_?DQX5rmP{MD+` zd`=3B^(gj@!=IJwYTEl>BY!%Fi}HzLRA%FYG;bebT3Qycm5?OkSB)8tx~>Psk%BpB z5}((r51iEZ3vUHGn^px%25%XTb0&kGw|et^>c+=dB9@`EM6=H=M*4=)Z|~E#*0-tbTU?!*4`pEXp zs&R9BQ9lSrvzFR&E@(|hkOPPzg-l*y++9^&5)^dY^u7#Iu1XrW*Ga78DhFm4Ph~NB zsNN93&-^)84!y;L(pOOPaLf}S3fLpGZyN?frfA|v%heun9j$bSt&QOQ9{s|N`=h$o zy&fD)$P#Y=#Bv0YBJoEIfziUyg1U&nK=1Mw#bmxff5zWiRiNFy`w5>TUAe`}Rania zt=V6Ja@8-eqksw!v*f5(HelK^1~huxtM9KrzYk%lf1dsNP`}DIfqgq%b3fP5P=)I% z=5K2-nit!$0v6FvAD!&zXuaa{4|u+|NX%(VIXG6iZM#>?wS=3j9h>t2K2=EZ*|rYJZ|OSxLm-5cOodO|mZUy(OCa?EgXUiX<;GWl zdRso`cc=!B`mlzH7V16*Y~6ZR*O0=t-0-ffOfZF=ff2qOFP|~B8u-EU*mh`#dmGZT z)Y`V1OHlZ_w7KlN;Nh8vkWAg*h6;|a?bH%(KxDphRn%azDWhhls1%H(Btm7YE@#3g z+TRi~@vW|XB;7$jEAAk@OXk?!`M{zh&|-H7m_9u*?&<$h`SFt<;_+s%w&9!n7Lq*3 zy+65e_7UaYGXQQBBACJ<5)4;f$Z69MHkJ3=hOsB1>m(y~I%hrC^Il&nmM;o4M%_0} zY7+Y#;lzNhP5=yS-2ltlc^Df+h>14QbhMdsd2AVK>~9WvO+Mod9_75*1$HAa)5Gx1FAke4duS;MA24?u&F#bJOVeaWBbld!yxz=7G zyxd#Cvb1+Ho8ud4LD9BYBiGE8(IxTppKG>QO{u>A?JmV-lOM*|~~%Zaj2 zhwtT8>%Y(To2$0=8z#TQ{XO%6+IpXZ>*6;+=cQIUb8~vsZY7);`T#wj-)-we;xN^- z+I)H&5p-VpK0FoU@J((M+p&Tg?dO6%t1sD|jvFt6uE12}dTqkh7WQMe!m>9%;YYCN o^IRDk7;M$FPFqg~_kDO7ZfUG%fSg$X|LX!$QP7lcl(mlhKSMu@XaE2J literal 0 HcmV?d00001 diff --git a/wafo/data/wafoLogoNewWithoutBorder.svg b/wafo/data/wafoLogoNewWithoutBorder.svg new file mode 100755 index 0000000..bbeb5bd --- /dev/null +++ b/wafo/data/wafoLogoNewWithoutBorder.svg @@ -0,0 +1,243 @@ + + +image/svg+xml + Page-3 + + + + Sheet.1 + + + + + + + + + + + + + + + + Sheet.7 + + + + Sheet.2 + + + Sheet.3 + + + Sheet.4 + + + Sheet.6 + + + Sheet.8 + + + Sheet.9 + + + Sheet.6 + + + Sheet.6 + + \ No newline at end of file diff --git a/wafo/data/wafologoWithBorder.png b/wafo/data/wafologoWithBorder.png new file mode 100755 index 0000000000000000000000000000000000000000..5e7346f0c7cd4c8245f2ae92f8439bd4c418348c GIT binary patch literal 24186 zcmX_o1yEc~(=`?(grLFQ7Y!2Jf&>c^+$FfXd$I(F0E@dUF2UV`1$TFMcNY2X^Zr#o zRj>=S_x8+m&-Cfj=Mtu@D2?%!_$?e99EPlnqzW7y{3-B06BQZwc`bfG1H2%)h|8*> z0$;wUrlG*^XpS=4F2LvK{`-a(XH4@1{z&91rRA#XVD9Q+>}&?-;o-q%WpCqRV(e(f z=HP6Rb}B>+2S*7fEBRT?GyOQj!&6P_u3xm~Ko~q;dQIOZ|3MP|!yjXKsa^wY=FPFU zhcKN#9d9*ykn!=btf;9c-$1BC)rw_h#Jv|Do}Dx)1zqA-TGA9+vi1gkjxGxe%JSST z^Sg}Rp@Qgmcz9N6z^Ew1h!{bSV*1(m%7{hpdl0L{xUtZ{h*W`ySb<1ygM2Ab{vmS) za#MbgL5@aX4)RhNOz-ry050AkG8VKaNsGf4uSH>le}pgRNOw^VOo~N2M&yBu2z1DY z5WyS#jEYhqG66nE!VAXI5Bw%Zk^SLUygTF|cX$B#7V#*M018PP^b`i}2aP;wv@78j z4<+xEdB?DVL(`*gkWtH!Z+zTWxTv_?SK$0z&_0bR1Zxvv9e$mZvMe%5H8mez6iziC zqC4o#0o>xH%YB(g9f3+RzzAoYAoM(KC0kk2k~I1cA8C%0)XNg~?&IsY7OC+?MU&Q6 z^KZszM zvu(efsui~QH8MFoGQziZA{Q)DAAG8rrHmIj%b%!WxBV&+()cRBZ+RaE0)A&bwOmv> zjQR>Y=Cz?WR23)BM=uqqY{;>sy?fWk*j;VZ^V!ihK3B2XTUXLCUo`2E#6sXIpLLs5 zOWb&u%Ax$}{W1$wPya1*Enu4NKhqn)Vk2ZCjiPL}`uREP;fj|uuy-gfN?gYC#J1h} zIN$my8TW~X|9%|Dv3Vdk$bin?cTU>c+O~EAPTV1<>hbE-6;oBJ zzznZYlH4)|^S1x~eQ01eSc){7j>p;1CcPV-^6v@fgK7+1cRr-!jgb{FXmTT9(9RK9 z-}%l3zR<*MR${!R$z3p$=iiF=+*z0FF1&FR~fBPG7%!w!KhUrk*w$c5Te8HK_hZkPlSV67e$udQ?MaFMx|qr^uprpcI5Zh( zUw_*arC{{Gt0=)mArsfR^R*7rT0-CK>?uob+=3?FG=RiMgXr>~9|=c~P0W+F5eei$ z1jvrsJUr^eOHNBjq*OgFozG&w7d}OwA4=AdDXEomd{FVPDkNRF%H^S zh)O$Yr`f{1nl>;m+>c-?1|&~4$FKFOj}D|aaRLY6BTqsuek_c{yD^VF(uqvho_HtojAGNvNS(` z{|g8&xerv5jOV!HQ`f24j=6%X3a(2Rlwb4qcy_=~5W93Ofy}>UdFDyS$U5_*OML~d ze}Hu>rULJyvJ@t3q~*AIW6#;V?c#_+sAnTt0}TrdhC#Omlorh02fRUM4Pq4oeFY`| z#gocsR1SDgc*p%+GUJOLS3mGS^Q1TK#ytKK_@=SV-x2sx5|i~gmE^p>QO=o~sD1$K zL>Xd>^92TXdI8g!Ig$6xB5;(XMYcEQf&O%jYk$!O;@85xcS&VX7qN+!ByBJnn9kEL ztX$AJv$8}$(9iu_51gqDHmt>{Muj&!+kFHB_sr6M+It91v28@~!hOw285Xw_6*VE<H+c3EO9t*_3t-_5!kU#bZH#s;Vwf1ttFV;fRMmB=enQ|68Pe51VvfRL27%6K&5= zOxcum#Wfde^9qg~aDE{QcZC%xD|)<=VVMBv*Z&otPif8MFbS#1;n4 z_TEK)t9B+P7{J&)BeAGS=aJK)X_&4@_DRmbKlYV^Mup~GnB zakjQhLheP&eKdN4CnvyQ{&+tZiz)LW5OFyT$R3J`??zCI5IV{_ilJ@-x zb~cytnw1qq!~I@bk~%t6^2c9XC&_8X$2H@N+1lNVH?*vc;HT~K<^>oO!v6SZ_lQd+ z$udq}grbJHsc$$lde2KtGr_iU!i+Zm<_YaMK?UQ}{Jd5#a6amQu~dVkU0q^Fq;cnb ztOGSow=jaWrT+=n#_x;AShfY@qsY!(dW^gg0PLX=%B;5Kkd?(LV*>> z(`&0WoE!<}CI3?AUpc?hHb}%N8sC~{^H2Dit0}~vLzR`84v7k_95D8Cd{G!fnw;3i z+ikc0PS&u{4*xa>;;d&?e)&~T9p^caIS^ZHMXdFVXd9t4$gHB$@I=2Us_?%f992A& ziqK48P?4t0UbFp>K zmo0;Kq$L?Z4X2eXNI3ZronHK`BswshH)3AUP~c@gj_bSoclTOyO%-JXCaUdKWFByi z83}Ivo+VlO1`?*?p{bqzl*4{(wdNK$qp+gEBwzlT_i{d$NK80@$%XZ%A@CCI17mMcnw~wC8C~LOx5o;$2*m%3!R&{!gqGj`W)yF~opH zHad3%3PcK7&|SjKciTaV`YkpoFxEt;P&RuZ*L@5;JDh_oh-=W=P5_JrgM+T~(B^zX z+Y3;!y|1Z`&#I2X9kS2)cr{*JHJ+LgcFGs@N1#pq`Ps~vZ6RQUYAfad&z$tUSB?xzGqQVvLBm>Oi9vpxw!JYi15<6W?(=_ zR?)oq=!n)zHiW<014a7wSyr)N2Tq*o7h)DQblGesRAC25UjCMproKV zIcDyC4Dry)z;CBppJVG}TOHY=Lwh*2)E_!i{37$c@)(B&ax*Z?XEKtb?{IWlLe|!F zcQa_O#8`1_dL2(5<;#CX~f{}Si0^vdZN z60PKW{Nq&KpBww_!K((^XSVlkpyq09B~Cl61|hQwD0g_F95(EW>E)hHT-WAzldjw` zz&vcX$1sK-jvBHC1X2#8!o=5A*NH%8512Lc5COnlbYLuYcwC`I?hl@CJf-Bka$Pl{ z(x^^?=f5~lQF9*0$IxVtm61!CDE|GhjUzCS^}nQ`Ga%7vVE|GtmQGFS*xAvrBDD() zW_o&0m~!T1)Q3h2mxypC14=ltwW0*?BSs=3uLsi*bj4C;{1ca|(EGlhTi$S- z=~I@Z>XmMM`uI-tr- zitFg>Xg(+gp8!OZky5z57?*-%MCXpt-xYUvKT*n29hO;WDl zZ`$zUeDUnRJfca{|6&`%Af&j@ECWlM&N`zJeeh6X6NMLIhx)EwBFGa_Ns<{6f5efX z8X>8MLSpIWWB!I}tcamuqTZxtD4a#~P3*KX7irYAC&{CcO5dHC?(lNmTaD^&ncER66=pB**;cxeszlCt+NTbMz1 zm(gYPUKehQ&HGjHg;N&!IS9I1zsD-CL`=I{#(w+Gw^{>v7i;O+i8{@&Vwm40PWE}n z*cp?J*-E=52u)@1to2@FkgVeB9P^{vfZS#_Lx-ZvoHD+~O7E;N_oD zdA&gSt|lQ(R3>M8lRht{?ewBC>TB)&KRgN@H|IaAE@3Nt!I?Xb#s#M%w>VoD_sZQTy7H(sCYl3!==WMmjzyc!pC_&()NC}Yg=@k)L4 z0cH%3=qo-#_-o4&#`R4Is;pFJ!uSKxZ^yoKU(il)#e*P+WJIkj!6y=)z1_X`?9UO= z(DvEOzhj0lxx{0 zt%djXZ%ce7=ydp+1_ae$uBHWJp%H3tOZD_gDHDbfj4|+O@Mp3o4%?lnCOZjmlTMf- zQH5m+7eRR6DxL1#FXzZ9IQd333tevLY}(9T4I0c2sEPPqdh@Wp_N67sMtb`z9lkOH z(5m6%;=gtlsP8!4cWyEo8$J03DosxFOF^)7ACh&-&adtO2b0Hq=7&A@DJJk86jC56 zm=+#!(K%0cA0=;wQX-`{wzL3cJ}!l@GP3F{h~Z@OSuxfTcQC^NeUV;#XskTo& zn$nk4DY75d`Gx6YehF_fmN;KNL@{Z~pF$!>fr^$poteJXOG zf9h4D{UZ}-$0Eoe9w;2|%xi&I`0#PTuXR+roX9rI;; zSFt2(<{Po7lG9pvJw-v(dsN&){TgEz^2hZ#rnA~E&%mbZ%vY6~ociT)A=SwOaiEAr zZ(Kwi?K~M);3JLnv;8%;P}ZbP)ata>Yg%CQfuhZQxq_DRCUzP7>oWh?&+}G2db<%^ zASM5ET}?@o8_ccxkn8f{KWb!>w`gy1#`=@dw0`>@!pqg%neTI|4yHdcuRJJ39yBDY zG+N!eQ!9#GF)`vn;!GFg-4M*?`SKfpnniS*NYw2(gVkt#e)71uji>`8}gB z8H%2}pu!St7R1EM{8RIce9$mWX{7=J8*hH)i>PU)j)BVvjl+Yl{o|Nn$JM3XPd=~B#s#_XZvVdLdnx8qQvp$oLGNvyyz3Od zSe07=G#HB-XCKaW+cl&~a!wP=k(6d`cb~|x@TG%W)Fk1}l9NvuRxbQ`8O&4s~ zD$(s*5FHnJTM1vGaNiOab5gWRz}*Fq3k?$d&FnLb4{Ig<$xUgbJxmqPLn7(<{OzTVA_=+fbZeEggXV4Vk@0M;*Uj@xE_te_41&dE-TH z)sIU|F56~qF_kSPOA8=* z>A#Px>j}B76c1e?%=oYeXM?cNl9Ox1Q0NtgwJEqRes|GgpfA?4n&{l8c(Jk+!{yM- zQ(O+$Z541@u3$G(@A#X~mIpXmf=OI3pT7>qk$lc;7r0M_?F$~#8?>5H9t>D7SUT#d z;;=vMLiT06x>Az*E-F#BhC$w>*dH`A81`)MiXSA6KZ~%ha{gXP3*czk27z|A64$bk z^biD-;F92<88c|A8uB3xu%TqE??PXYoBo>JwRd`%&_5oP*UEqv>Mj^G#YtV0YNMX|HiVb7YmDe^+OyQt;o=O@-ecq`j8UZvKCvG z^qLIdWyn3|6c%4R=g#XhNI?T-(fB^}j;hB$J9M@N^=)Av-4JScnfm6DnLo1Z6+4vj zgx##-jE_> z5ABDMcei$H>mIPx@oX~&w#HK`0nGMc8ikuJ6c4VOMSD}I4J=G(lif|q1B~@E=oRrX z@s}UE?O)4!Rk}Ckw*4nm6{7%9p=Wh}@MGt=w?6VF;@4*II&CH=U9HjQeWn2INN60t zrRw_*nZ~1fJk||6I9|}+2s3N291BeII2-~uB;w$a<_@2%G$+1BpOwn^zm-Ov3Gx5N zhNJ^fa!QZQx&1@ps4r(%YsE|XjGXn(M``8wc7a ztNChNw^3^eHD5PsladU%GI7*uu1Q5dCG^i-<5|OthTbXf6*tdKNUau!WtG{dip3QhKj&qXAHv+~XDkI&732WJgw@bIS=4waBUIB?Yh^>K zQ@PYaKs?kmTux>aH3Eng(M{AS){7f+J62q4Uen3po8C=ra_wK&uCNi>tmQ1vuKU<7-jDvO%~>>Yi{i2_}F`^O_jSr>NY(K?B48n5#sZERc)@f8d^vDbYzr`Kh+wQr1gZMp#<3Is#a>FYcG$ML z+4;R$xtkp&SCD~zaB7#)9l(HI`b)-%>>g25z;}7l7r-I_F3AcZiF|)C0 z30>1REl#Fq@6FiSUrQyqZ_AelaV7^Yn)XzGYt*)R0enT%-AHfZ$SDBq_xf%m1%RGR z4HOcf#dG?X?&~Fjql44jjP-QfRi)4G%5a=7NrdIXOqq7F$I~;++FV3qVANi$Brmu;?lDLzMw-hK zx}j>DJ57y`)cd}(E_Rd~@le!AmAMvB!IJX#HhN%L357$Vy0Gz*!#5+RY5idrHi>?Z zat#r)o6_kd&$IzkT{V`XUt$fLrgM zH@+Me#_(KOO#{PLN>}ky(cSx*Zb1v5+)`^dHgz-er#j`I>aSu|F1t~5+Oo3B1?&hg zH+O5h#_#WvrVOs0Swy@Kk*97;*!)rGWk5-fI|{;`J6~4`#C_rPA}?yjOL)kZIwF8Y z&$oiDn%{+^`MWND`k3#L;QKQ`w#)~=yHBZL?%W1(_s=VxfJkh6o_+3ED2aBJwk(~X|+p_>l-0D6rMaLLqJB26=z=3$t=_7*PP3+RExl#UGN z>cr60!%Pg8u7dNuXa~UIJ0zH;iTYksw0o-DP4rzX%`ItC)7L3Ij$l3^cn6aAtHBjS!6(KXw>XEtK;*rUC z8s{4M?tpjj=XBZs`jX@G5lQ86$oF})a;Ou8_wbfEX_#mjdz(v{=I1ka$jioQ-vFv3 zoc$N{;s0v^Ui;@NMRRT6jT)i!S=6cJF`5OHs~fxn>Ipj4nz`UPZTCe*3n~hwChfgi zmmpmhA~z~9VOZJ}a_E7lLzp57rOA~I;QYq#n?s4|JYr)TbJjNMTpq);qEczHhD_V! z22h~>$(hq#vtuAz?DlXF%}I+RjLQ`P+GTKMT|HL3XVXcqFjubbe$iczLX1D>5-0XP z@#=*qn`FzMUV@E=^BesB-xx&PBxDs~CfQKPWy0k;P(0Bo*l}z}3d?>R>K$*q3z-rj zq2ba!swJsA7|f$^F#0zS8;Y7jrol8?-v=o40s7QhUIkBwH)ZbXhH6Z<{rW;QLHArJ zq|ub49k-u{kmvkGBc26$4hsroKpr|gw%L{y$Wn6*t;Pe?m_Q?9V6ixyweG}CL^#A| zj8AxX5XC_Kb>EEYP4QwMDpdT|&;?TUII;wzwG#+)yPY1Z;b-=zkljo)AgTG(5}G67k?)~)3Ic+?U~i`M;7Gea7n1)2WwxT zTMG178LU!~Q@6~Hj8!q01yLY3BhsBa@=pozrd{kcspMNb-IyBXm1RC^yeu^)84D49 zlxdUUtG-nS{v`p{gO4@@{<&!a)X?iZ=inP$B1uyhBlc)o2okRDtt_#092=M{JSm3 zsa%OZbETuS01(J19#%sJ43AWZD#cPbKnI#~lSQ2+bCDW3oET6YsZGefTt~7sbVz2GmNmvrx>R zz7__}&YghhqkR%Fn-TPb;7_-b6g*@9Y3;c7Gbj39asqsWInT4eM{&6nWB1Qq5^^c; z-gRlgI!ICQO~C*BO6KszdrYb>x-|_F$LzW`7s_esNu#?DWuEs#Dp( zM}V?llvIE9GA<+0QQ4^Q6Qdr|kZ~-<=v%u3f%D^(Iqv2!kPA}?L z93^>tMTh+b6&rcD7wd#k9Pko-drdkrtGwuDlCNcD3SQA{nosB?cHWog0$0(s>T_ba zBZ7dg^dtq6-$L|IKnpPexeSF=i^+Krj3XAYL(4!=QflaQrlDteY1uhCx5eVC2w~>T zsDsXD_`+{#6++itm9(=n?zFZDz9&p6<>PAi4%v9${%(^!#{5Y~a=kyZvxVKDtUv&} z19;p}zi;L8(eHuw5Usq+i{N>t&}!n+ zp9#r4+;|U{IIM9^g|{zOfBRWDo(?Z9+3z%VBzo^ExrIS;-Exv4Vu{Y(x38uF?$T5` zFLt#93hCC@`?}^nAtP=V&`o_YGz#Ke4!NWdO-)B;lx3f>p54p2)BLtq_FaC687a(d zY%`M=KZS1kRx)o^a{}nrBPU^XeZ0FE{R#1j>1WBji91DhA(SW?)5PPi{nPA+8f~Mo ziC*LGk35>YH@5MuDqVCmPEx?g^se3Ql`)!PxqLX7wzfd$bxugY;|`@ML=!Y3`9nhd zVEpX6{B8QEc;c|PHm{qwoK;iBZ~|lgu^hlLG;Zyj6|Lp|R0lHZQZ>6^ydTD%1d412XNG8uA5-L=BYs@JOsp>USy2)L5fP*H7R_$S z`B$;f`rK&_o_8{zp3Ca(?p3aCR4OnhTx9>#Q6sr#qwZ<0Z)w;*R#l?XaU+qGto_t> ztsv^JFiB;{z3f~ZB#(22xcov+7ENjIf9sO!@m5cw09P9G&tA-@W{`ZeF6uW7wfY9LQQVs`orNU)mm6C<9az9dw(V5 z71CAxc|pfx-vhfVhmJYsKuZLMu`)`DelESH*K3T_&rMzS5{P4%3>$maE zBA*&>kApwu!1u1cWR2|yO)-z=U*(e79C8w%U*wO{te`&u%{%;#46Lrgz5He~#8%Ih_Uth&?|$HMQxL`XjLSY z1W!9_^W95ft>cviDCji%wqR{vWyFn+K3_#wXd;=Be(rKTuC$v~rUuC5@AV`zFF%C4 z5~Tb~?b(1{#)#-ho%LdtrO6)M#w4xgV$V(UdGq&{p@g1EB}0zVEEK-E>WxcjL@G%N z5cF24Qx#C>jX#m6dYtw@%xR0_lrrjZI1%dxJO=^z^sd-SJd`3IGAQZQ|30Dgy1NJ_ zD5Yh}ZRe9VC`m8`wEtWw2pO`48E@iRoCF0W`A|hmx36?96gl}(l0aK~k>g4BUgCqX z&x_URfV2Y5;p2R@e(5&3itcs&F=t>ApUusdO@Q(n>p*dCi>XX%=vPFM+Q&yY;~U== zcKf>hzZ*v9$uM7?udnhBpKzCoY+c_NT=WJWZM={zpW=4q7)SbDXQ<2|FtSVbGdTB3 z+BF$bzcgW@kS;lux;jxc?|@CZf6#rz{slLIMBp@5MRkQa=9(Ai8#1w zcT_9)J$8f*U8}8L@Bvh^WxqU{YU^}Z6;R76Hvy(>>s3F!O09I43*rrO@%8i*y$j+I zes+mz-A`l~QLAPm!MPs_nPc9FT8z?l>bemLgQ?3@q+E+~ogjY#6{eeHIh7VgFXis{ z4nRyu7t2o$i*84*$#=f6|DXx8Eb}X2`N1+wbG9#F)(RjJR`%T?O>(ukR7po#pu?oNtk^)= z*kY(_IeS_yUTxOv(HyeIsxfAyZ|x>0`}dzB)O?L1t=ICjQB=(I| zyw6|iJgddkRGmFw11~fgH*u1$oYIrR$9-~R5Y_fGDp_evxS_%H+wO5N0Fr+AgiA~H z_=iwF7fNb@=*N*o*a?QO-B*>>`9{e!xop4h*H~r^`g#7ULjx%ZK|z|!1Hg`&xVdac zrnzbtHwqbyn1pX|JuaF@!m;M9H67kIuOz#UD{f?f!hb6ln))^-oIk78aLn0R&9q#w zv&Lu=9hxdxS7)HH%iMf*f?QrU6r4C4D^2%hK?h(kqLt*V5`b3w<({{lA-4P-FhfK! zv>c4)$5p0hL9F*E0MD71Hu*kLv*gr4ImX$-VSKXrW6;3JDuuB#9T!8{C_hqvQW*sK zw~vfnT>eqY2}q!yY{3f?aL_o0|Q@KZ#d34N9m` zNm|iiBe6E4tlbDg5uE14e3hb)t`-AS$Z8@#?s(E;dPJQrr&7!MlkMj%o)uTs59V`r zfZ6*Ir?ll`-X@*fhrjWsh@U4gP%F<;P9;A-k~t4s0(cxAQ*h=({;5iz zHEbMPhJYT^<|CmJWJwNPpGXVnJ|y1EDflOq{A(HMVAM9Ts5|;b$CV=7b-=P+xi-DU zTqeDTyoFC6BU^N!s%>MIxAdFY2?^A+P*+Sj=u^KXqF|T(FN2O-C{8D;JPeO?sZu~j zY~=0Ldnrv#Bx#(9r?)W}c=^T6>~6%mF3SLAXlqz15&`CAS^DT@{A=;eg!MKpm$1}Q zDqdbfNfbHVLT>h8L)aV{;;!>|*@{{PL@5#PPhf;D^cz`6; zxXusT`;siBkQ`m3RDCV3{9V+kz`Cn!!s7lnVk+J8;i9+6zJ2du+21Pm(Hl<86snsz zr}VS*SDD9;{`@#;RKh(IF{-y+>LF@ADNPxFJLciy0DfFHSf23@JK0X3ozH_)NoT4L8?MCdu?K@ zOco;5i5i`8qX@11HYT#h($I%lv6O@uZV?42aREVKrR{(( z9sIBJeXXH@X+TPqP?a58-SOE*V&}yVb?A?2+1qud!f%fSi-PtpPee>85G+0Ma%6l3 zb^k*iyFwB+*dJrG`Dhrobcf7u*2{tQx zHLW=5`k_vp{ZiE8)c8~sq+7(pEi_ri9FO6TnZPV)UmBL84j)g0WW)Oc_nnuBU%@J5 z5a^bQhYF6i6T^Ayl-OxN?@nigvW2W_anzvRF2U z3M59ti-(F3ZnDlULJ~wY(W%(tR7xSfBUtD)B9&jwgs%5ir2dU`QC z6ovpMV-k&WwrFUVzml&W&=Uj6huQ~(?Cg>)a@j{j3kqu|;9-QzTx)feb6;5SCl8!C zcYM$l53TQPfEX5HU?H;LiEEt*Y|Zu5rl{Iige#IfrKD?2MGVF>{Tg_#Ts~_YdSTP` zS0=X5wF@91u5c?OKN4;p?7%x{``vRZSvPHc>}{#_A)W)ITl1@1M_0Kc&&%_-{o`?F z+N3{n91GD;hH=sXh{Rv`v7P(y+y}vG`tP+4Fy#L@j$Si0%S5;mnI9I60bn`P;axoX zyEitx5pX~{o?=|8O@HUMw~I!PhB+AT$l+TN8A`e7t#Dx_eT1qR=Qo0LASX%S?Y^6U z$-%Mm5CEtZ!tnnDv)qUNMbW3Q5X#i;b*;=*3U#Gi0Vf#h<{@oR{gOyW*6FcY{v#wXG6slS>TL z7zsR60)Ttga)}Vpu_iY&`ruT0`k*iSqm5i;CyjYGz%EBK58s*%n@1v!SK;pn9(1YU zbi~&=8p1IIUwD%}0s7Mg=4jxqRazwm~ib>KRk5*Nt7lpJP6P%&G;=lWThYjMi>%+|8TNLSAPx8zIjMWk^8Q zBi;cWjoY70B}*r#yD;km^7*>Jl;#MNW|8AMaxdBaW9=0uUfUUMq9OUm6(Ai@i*o}> zuxQz|->&YI6|G_P`}<6KRwQwbjlsNU$|T3p!HsnLMej1jsrEsZd*;8dZH zwi(^dKY!1(KO-&3(r%ki4sr0ZVbpm^9< zoBrEAvrNYNYoZS>0Yj?clxc15o~jDoX{fd@G+XD`dxjiYXjK5hNOX`H+n;{F<->UE zkQaiZU($`u4DgiTdpLzDSavdU&z=A5BrFlkrslu74=-O2$QANYA$&D4-+ng_#R&)G z2yQ8g)Xv4R#+NyRu?{gOx!T<*?oawFSyC@4=r^28<8(<@P~JaTjW{(NiX{J5ma=4f zPiQ${G$VE~>EmyxkAK8CS7wln;aY)uEl~C!$~<hXye&7P^-$;OMKh6~FREj3M~vbbqU;@zaxY4+9JjW(E$83Lq%O5g44LmHhf z_Jou9z^^$iPRo4=f$`W`sVwUjZC#J|;U2=i=|uWwBj)L%?SL|H0{{+9C`478{;|&X zJXj0RHp+6z`V1i5KiAgM}?vNf>vSBqCyv4=b0sOD43V$-o4ulD%F8@Y-&uMu&@~QCOPPG?+F6p00qY)9Hejr9UboCbQcHh zob4U2NZH0GWGcy~vkbj2zG!&GZcP8iOiup3ttn>tq%k%}54Ee1;cTwo($GE@`QsPG zxy_L=+LqsAv*{x$Z>dn)AGV6Cq3gCh5OU{q+-aD2>_*}YP1Vm#liPLQ$q_ZOBx~qZ z<`*lqU(~izLrsJckSaarj{R44HDJ_l&F0uvdX(vx94T*O12PyY z>P25wEFjfUrzRdRKZns!$F6(2p;)=i>9^UNG-EWW5REP08l;>wOW>$6xIV4hXRQB_ zP6iM8eLMF?Z$QdTFN^nu-EN5_Ut`3(*q2&7$UDW0vH~`*!p~TUN(~CJGe*^Mse)R9 zu@)hoB&#kIG9tA}J1(m%5p@vs-40kJ8@8s(=jwr1AmEuq;U6sCn-&!QIpVe1@%vVV z_O8u1&Yi7R(IHoG*>0es^8PBF#ArS${-)*Bj^aP!BKjQZ2XzGbXL%5RmY z(;5XO7>huwiUImWHp0I>SXr1h@G()qUr~8TTC=A8Se|(oj?itd2I&p6j+C+3K`6PJ zBOtGspe<(g^awYj>k1#v>1ep@4p|h+rGP?E03n_sz%rAl48G%*x@X>Nw^`WDWv=)@JDb1wnK_oG$DFM2_H3Y=+(@(D#Leq36H)qoa23==x`k~J4k zh@%R2>y7;+6dY7FEuc%||05USDv2C8>}j7&ubAZY903y`$0|X9AQQ<6+3Xh~%bP*4kj*A8P*g zJROy_2798uPbTJzhwM5$I$?m|8KvEk!cgdlF3VYjiCA>RE25*}sU*!?Uru}D+Q_cI zd{2J)(PeMX90rM9aQm0QZ9kj zT>O~U&#z3g9w=Z3X0%9bwNh+y@S(;|dnQ-VE_(i+ykS79Vh_T4)*-9dAQyC61 zxm6;#@Ry2ECml^0sdZ)MYwQP?KTv`J%DiAXL#(2b+R!Vb@|gA>lmyOCdM`r=FAqcB1WiGCXVg^{JQODiRN&Xt zIZfdCqyR*@FN;;rE%)0COM^yIK|52g%T~8ozG+8im4AWfx?O-X!*6M}#^Xq52pLdL zm6l7h%D^IUMOTqWJ6H21a273Xnh8eKavR8T@rg#FR7ED}uw!qBB=F3&k0i}8K6~cn z3>L9t((gs36p=*Zi$_-3PXBvRuXSrEH|QyYThkJ}r3j*7ocC)apH&~kU)QK%gPLxj zjA?VDbW!Cj<}py>-Rqzl*WI>qUNI8O?tNMtE13?rE+rV|j>mmblWU?JKe`~O-{R?V z|BcrnlZPo*nlu#C=zKz5pt_wt~7^>%Duz_d1nQT~%r5SIAbY2)U7~mU$Bnj%@9}{|m6*9AY_P7RZ_DVfu+d<11?N6%R%d z?03F-^-%>qSUC$vNK&o|p75ux9d9SE!`JW6-|0GvrpMJ$;1;Q^F&`-G7k2=yfT-_1 z1;y9DQDeiCw_uc1IG127InnWwNQg7KV;0QQ-{8H2BI!W1Tll6+uo<9cdpZk}ch%m8 z!-Ya-o0$@D|7*;j!OPVgHaQ6I#!u8N-mL#Bv^a!h^8uT1p(TMF4;o5YGU93GdQ@`e zSHgh*9)(v(I3D0d&Dbo?d{qK62`TqZULCy}t}3b9e?5K-EFkV8$%h!4K+YOtuDZ77 zs(j>)hzZ^Q%5^1WUs`tJ3jWRV*NQHrH^!FNahg(~>=d0X)+6VK;44bQQT%VQbRu*phkP`OMj%T}g767)np$D2W%vA_vmmHz~KMOT8h2&A&TAlmj{j zG6tUNVxz5Y8<%amb2|3qxTH9Pof94h1=eq=Y8PyPE`~3*LOz2idx#Xp^BlnxIqrXq zT5$-}u_;0`klJJNN2^}eQJ6{T+-`;DE-v|p(zJF2%dIIAHN`#?S4I|b14aDGHLg~1 z!82CTv8~{=$COX14<8~fUtYUz$e1yLGBkXX8N=~h~Di6x~$>0G3nrMsm;I^+jPx0E!}&3}BJH#={3J~MOg zy=Trj*Y!Q`AsIk?Q*)QrXml zx<+)$<~NJ4g@HRqPjbzJ9sY|f-+T^lJZ;2y{1OWjIt71uk_RBP%9qHHN8`z zs{_ntFol0+qbyqyoapul#ls0!T|pO^oStxWe7JKV;gOuhWA|qqkxG*3dt%e zkp`eUB4f}{h-rX&sb}B%%S9*)eh0mLqP$Q_l8@#oI}N`}I~|ai+h}Y`S;YK&aTbMB-qRPeztq(zx)HUpX`V9m z%nEIogSKKrjxFY+fFmlAr?bz(gxA7O=R$8kj{)RXX3(dRH^!-Awyyd?OnQ=;3l}iU z`vWy$RI?WFJMv|zXJj-2mtS-f8Gn zd9gT$uDfdq=wt*+aK=i2EPLi~DNV8D%}G^g|8ALvYBOlAaQx1WV$5q$DZWN(tL-#@ z4)e^M4Ha)_<3hu>sgA#0j%*KvOq}c^mabRBobnlwv%LMHX(OvxAd6e6Z1xhVE{n%=NT)EFUktiGjaN1D&Mi z!e1=uRL()(C&evtsqQ>ARdP}ZSE=V7cc;)1*W5N{pjcn_{c~d4YZsVH3tn;%CLZOK z#R|E;%R~c)0l-aDQZ?W+uTMX@M>jvaL{d6Z5Bww;MrcgtBg0AgB|*gKb{P8Uf`@Rd zzpLIIaP1a`Z!^}3R+W1>w<6_9F#REJ9I%8d*0d=dZhEfv4+`On9TxlId}&3X(P>x|QwXkNaju2u~>~8-e;q{E@06-Wp0nOF@8rTZ}^8gZgQ@}p|jjZnx ztI1d)MQ2f({NMX02yBY+K)z!V391+=S%&Eo_ zt}O<*;h$EMF7J~@palu-;vxx$f_M5AeiP6{GN8LL;_1l@_07@5CGR4RlhfSW3$uBP zO`NNYeTp&o*YWG?rJ>Y@qtT!vJ=IvDW;%5KFWMTQ>SUAc#`7 zKuG@oH`3Niux`td5j(s#6?FqdLN5%tjxyEUS&Nt&Sry}bjWy92U$y;69blXzM z0U&|ZBFl_pT9~J7W&^)M4cC+C**e4WaFWmW?O(XVNW_Du4&^=a@Ia0NSh7;NM~(pC z&D9#;YDSAJUNA{j{OU`2`@q0C&GitNq8h`+gRTM;%Tp&b%&Cz~0`1b(GZeBHnV$I- zYSIb+OgR)8<->+t9+%X$HxHkg`n2?|!@;>kGF(^8{W^eZ{PCop7MJi`^;efcK2jKA z;Z1m;O{SLwtO8>*9wd;*tykJB?CIB_+m-7uOZte%$pqNRmJem^=C)_^jui??UZG{? zDGnN^NRD!1hp_`GcJ_8vwQI+!&2N(XB%GJ1jU$fI*(z5;+9cn>usntg4?B!L05c`B zwE$Xg4j>3NhD!idt!-fLE-bk?^Rf;|g#c_Mo3yfOF=Q$Kk8M7>U#Vx<>%{4O z^St%pd+@J6a&i*3fo5s`g&cXPg!PqlS@D}?<{#zW>HTevx=B9l>;qQ2vlVoUsHF}1 zSeT8L1X?f{;cw#4oWTcJ9)#~6D&N>lPMtL0b)_Cz{arSjzl+FhuahDJrVvekw2sWm z)gQePK0Z{iC%W}Zxt%s+_t5d)>cF$+Lg9aAoKpx^L^xm^b7ynJLrK3r3!N6ho-Eh~ z|8vm)(9Xb(dD9kRGpGRV>gs5yavG!qoVl+ZfBtgec}0;~R+i)B4loE3AmXsKs(R%l zbSXJ90G41bb1;eDipu8J(DI>ioe}|z6R9RM-%>KW-#H2o0cNH=rj?d4)HC*F`06-< zILApq!pteSFYp;wiaUvwaq8d11SRny!lx>Sg-!eC728H#%45EV>+bnhdnF;CAG>Pz z=bO4qXTnxNfu;5T=IBIM&1$R^0)5>rD`5PJ>=p|6EM)TGdcw9)f8WJ;?}15RfM{ra z_y<)W>~w0q_F_;-v&4G5xX`%kGV>>dEo#8a7P`GW!|QX-RW z-iB6a2LT5stS51qpOFb{vQd7jbVBEqjhFoRo~tRH>o5gd8wGN*1t)+$UEraCB=JS9GhHQuVvEG3D*K_R=qDn1X%lJgFh%bjqLky>X+w!9T87-DyfS>R_Qg z00`P*4&NGR*Arnw6P_hyzd;av^fBPc`;P=&0%TFh@K7bKYy}|)NRM9Ur5KN%MPQNJ zdf0(0R3KawZh4fUx~uB`x)LrBNOigK74UvU`BCmO@0q_Ew(95#7kpgrsqRc+){eD-gEc8I`*8tKTb)h3S2q1!k7)bEa1Kz9kiSTl5Q?sNUp!MKdh6Hn7%*g zs3IT8!F=^%pg@0SbDUV&b!|9EjFt_x$tn+#;)~3~K-nATO&c{G`3-|&!YzOjN2$dH zq_@MW`RuqA2{Y)hT!;QMHQO4ROeZLpRa0D%B(LxC7+VzA{L@od;CQ{iYJ`|=NLIF? z0K~k@j|q2Pk1)ThI4j~pY!k>}^k+h+tAOyz&v`rHTsjmFBE&@jrloYg-;WDIlYfdz zTnV5pugp-dARie5!Jy~p5*SnkGQ=1&xK&zkF)~dlaOEo6MO(vD=J~Qc|0o?zyC?Q^ zPCeK(t-K%*cA$T-r<^|;1hY6len{>1K_C$G>Yq%ZBzCw`oLpk2DK=gLcl~Ak3qi|Y`2*RnjJ2| zbKBHXp?O$%@@tPG3Z5$WL&;x2%Lu`^`k*p<+d;ut`HKLh6KBGf`d@U!Q|Zx58es>S z65Ga@ax~l%n^L4E>Ts4cXhQ`=$QEY~hgT5cL6o?~n^Z|kMxt=bDFS?1;b^ZvR(M0Z zvY~d-e8Z6x$N8q{^tGorBuB|_9f#yL=Gexdb#O0+u-2mLS-@U8hj;B)uqj#<1srvF z#2w3msuLt2TJ;VF>yr^D?Wq~xo}te-IkDk|>s&aj8m!u~p&pCcuZVS&S1BYGaqsAH zphc^HuyV0~K5Mclng5u?RH{T)<{cYe+cC9JIBxB^+Dk+YcWG;Vo~7Zy>wL0$w2>tm zJ*XQxs2g0|1Wu@q-7Qh*CK&y1CoLx;QihUR*<8u?eGeA{fCdzY`f&Drx?f5|1Q#QX#+H|0+q4^CCChozs__K{F>tJUQ^yRfu7x%SMyF5P>Ru^7(YEeWr@Yr3Lg%N zq|r=A9;a>_o+qls)M_i7RW;;kWpIE7B-L|;4XlJPH{|D-j63+N+uKXzor{mR#U&Gn z0A-r^Wrfs*t)d!l0zq3AQ*M6{lOfkOEbvlNGritu!gVsggWGaf*qcxWJ@w^JEJp|y z={9>CbC8g`Zmk`53#2(#_;h=>O)Pyxr9s3COkw{CFhcD{f0P`!VVy&+O+d zpA;D#Tx0ag6@CfnWcOp|v8_>;0`UMNHPBw5%e}S!>edwS&1@Px?owkQPAi7B6Dt4c zA3NP(!KUML^)$kAaXx!G61_q=Zghd$ZOgW#ziua8t`fR5A;xi%PQ0G=yrE^3yjX8~ z-cI%UT{u;gh(dq?hWITk7`(1d(!@!rl7eOqf_&z3nFbL{jEKe6w|_4Fi~FJWZP;9; zwQ~SqCQSpILc>2b+f3(auVntoi3p``$0~2njL6-)tiWBi$DUp6a36kU?8y|hXvRP4 zf$>J1_u*bJ!fNiUq2k5mA5r6G){ti{jc?RSg(dR{em`_@R=;>dhW~lB!s?wrn3?be zL|!?O1LLZ%#M5^Q7*|Lx!Hz8|zC&y99Bm;Oyj-bapAUjChk#%EziU!@*FkviuLS9# zCz#>we-nmsw&nPP*ZHP1CnJ}o^~sHKOwOJ!k;M81Ums^pNn|%cjG3q&R~U|3P4bbK z7bHkV_2i}v^9pCH2G*{3M(OL;Rci#?Q^TiID$hsug^NPpz8S|+%h8%A4Q?E9ux7h7 z)?g~k&%se6&O*rnDX<}T!!{j_uJ^QePighhUa{iWEZkZ_0|%(p??HZLVLnOnYQUe7bWz$E!$NF8E(grJ$0^!-iIRk zb*C+f$!H9*^*;2BV`*iuOjb3G!ac!1EG(l&U)obBUAKMYP~Rg3-Orhi@|AHH3sK13 zBT$(x&hlx1)uP={Qs)nVO=u}9_yRV4Q$@Co^By4xifp0L+6o3I1T?}q(NCP+a?jG- z5m`q0>YRyq5C>w3eJmC9#&ss^2qyX)<4J4Jey_8(f*Vn5Oc22rQB_hAS7PRYhH;hY z3&aTZOafwfrK+%wJe&CAD^ByBMI29;c~FbE(92iR6nX8e0xVsJhzke3Ud79TDxY)b zjt3*GuV47qzF!`c6S7xfQ)mH7UI7076Z@Rr|J*6mF}IlN+(P{NFoZ(DK^eB5>oTBm zJy12Bw8)6%e}o6zk;!qx|Lq=Vhq_|=l1nHxesg*284MN)217B9KC)VWb-(80`LUwI zXS*A8V$h;$*kw^I!?zCL8xqyFv`+=dJ*8s_jqY@T2lDKHJFHytlt}IPl&mD`qLlaj zxt!U^uOuJ<*Pt70dE1!lk6AMIz>JhlA6>sJ@~5a}6jEe7NNQO;G0@@MyzL#+NcZbI zbjqRsLM*a@kf!Z~^@c=VC)a$-;lFjDP3kF6Fv)hj(d{r2eOz0j)V+Q%G-y!>fXcJ& z6>sS#y`n^Oi&#S++HL3}4ze%{oKtv) zdxPqzZiGYHx1afoX;ZPy^QN7U+WzA70ZDWDUMI5mpO8z0x^)_UV0L3q4dF)))NPL= zT4>P}^%z3ZEMajiS_cy?>aL3&_SSgn9fUw2%j`Vuj4EnE7)5KZ1cV0T2KUEk;J>{? zi})Ujmu9sc(a*GML_{D^-q6M5>HQO(6Boc3ck#&|R7NVI5MqdX#V>qe-McmMG5 zId30jpdx`JuoF$%jk;4&c)w6qZ^fzN3-gXd=q*z2n6;kV4wwkxDqed|dDkD!N2qIT z#qyr zPd~fVt$;*ppS*Tl%K|~V)zh0T^M3zA;kz!^>CM4X>+#L{KIfxg2iiDl7>icQ;vp&^ zK&YurDY}ZVC7=&uxZ&^Okxx2|rBHC=>b|;N5pNUX4WL9JSG<>PwvSsnIf9!Ad&9P5 zI$sbB#ZG^cdalgO?$)$mVbor5cNJqe%a5bz*}m&Ex?n7MbHz$6yakc?aquGihH+b! z(d_(dWffu*_SFH}1^I~IdX6rmdHZmi>ViY$4`R|$PTVr=;to0|q0l1N9+#|ZwD zQ20^KQ{w!wYNwNx?D2xPX8vQ?f%{7$ts~pb8>&5$3n}D>d6ffQZ_JEl&8?#x`2D(O zlE5#sL5wXl6aGFlhjN?bK;9h<1i{lifq2Ux%A!~1+8Yii_#{5N#cq)82b`e~<7-6| z8WkR^4VKa>PaM#HJ24OL$Dh_if)NbTQonm{p0PlCO*wO~8aP2mGwyE$=XPZoU zpd5Y)6TdO0%tH9_C3lsW<5>hnLdyhdqXM%EnO@V~B3yUl`ij`NCd^i&eEBfnQEdI) z?LlwYhoZl7I`$JP(i4vRR&UY`-KgVcLb_D8XgQfEsi2{^d27<5)wr&-pixO4%ywH8+dMZKxtlf-@W`}-lF-O zUg0sVFCqDx%BfpMtFyA|%Xids^$!LOmBuR54G0wi1&IYhW}DUFdWxzF2-`A$(gfxs z7OU|)nZ{kQjyQLxgMpUsEX7&0m#3WH`)iV+IgI3+EQMp^yZU*mDFGFG^qiH*!QH1y zIM6)TBhwP)-BLziZJr&oh5ta_)aYQE`uK?uzBm?eO(stL;EGH7A1m|=%dhi%XO}}u z1-CZ&UctiU=XBybwW=uOtzml#QFVJqJ5CcNtHN)o*yvCOqMW1a(53v3Z-;7UU?;Z{ zukg|*eqUjtRzy$TD4JC<0Sh-2&c{t9jh0Q$`Lk$`#JuTCRg-$KJA<+s^7W>>Z)91) zU5|~zMZ2O!yUQ0cny7EK@i%e6f&iiScRbG9(5Zr6*l6(&@7e3gr@Yg?Kfmuws${SR zx=KA?ltt({drW(*6Ctc@t|FV%!ErD?ynHzk>O zNKHL2BZ8@N~vddc=SYUjgPY+uSWDuu-g3iY0j7T+{t?FmI}3 zE_RkgiD19bjgd0?UBAWNy)N@n&gW@)dr-eUch+(!j|&92ux~;Y&I_u0(EfK4KBv-{ z`;3=eUN3)Y%Hnb~UpZ01GQ~(Mn!OIO;(=h#eW)*|H7;(YI#2i+yDT2|o}UZu-w)(s z;{<=Am|w1t_bxQ!DWnAU+j{65*>=BQlJMA8$7($OlA8NyDteEH@?Jr>2^M?<3ZTEm zl5$npCxk``BGXchx+Q}m%`v2ULIcYk3HxRA8+41C6G{ren5{TClvsqJB7Xk0C=rf7_4=Zm^l)>j{$6Deb?d*F{8E1dpBPpjiPD8&O60DZ{cI4cb=19?zjy!qDfW z<>zD=X-%_^E&0fbHdYsZa4vPyh2E>7=l|`DELBB6<339PNc8k~Y1nc@F^_ob6^%vB z@YzJtv79r#(T4sh!@zmqeeoxv<`>vv3IFAVmltw#Kee1(K`pv7Xs*^KuMUFMxG$-@ z4}T#!p}M^GmP||f>r0_ljMEg3)xJ&z>o +#------------------------------------------------------------------------------- +#!/usr/bin/env python + + +from __future__ import division +import warnings +import numpy +import numpy as np +from time import gmtime, strftime +from wafo.misc import nextpow2, discretize, findextrema, findrfc, sub_dict_select +#import wafo.spectrum.dispersion_relation as disp_rel +#from scipy import fft +from scipy.integrate import simps, trapz +from pylab import stineman_interp +import scipy.interpolate as interpolate + +import warnings +try: + import diffsumfunq +except: + pass + +from plotbackend import plotbackend + +__all__ = ['SpecData1D','SpecData2D','WafoData', 'AxisLabels','CovData1D', + 'TimeSeries','sensortypeid','sensortype'] +def empty_copy(obj): + class Empty(obj.__class__): + def __init__(self): + pass + newcopy = Empty() + newcopy.__class__ = obj.__class__ + return newcopy + +def _set_seed(iseed): + if iseed != None: + try: + np.random.set_state(iseed) + except: + np.random.seed(iseed) + +class WafoData(object): + '''Container class for data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + labels : AxisLabels + children : list of WafoData objects + + Member methods + -------------- + plot : + copy : + + + Example + ------- + >>> import numpy as np + >>> x = np.arange(-2,2,0.2) + + # Plot 2 objects in one call + >>> d2 = WafoData(np.sin(x),x,xlab='x',ylab='sin',title='sinus') + >>> d2.plot() + + % Plot with confidence interval + d3 = wdata(sin(x),x); + d3 = set(d3,'dataCI',[sin(x(:))*0.9 sin(x(:))*1.2]); + plot(d3) + + See also + -------- + wdata/plot, + specdata, + covdata + ''' + def __init__(self,data=None,args=None,**kwds): + self.data = data + self.args = args + self.date = strftime("%a, %d %b %Y %H:%M:%S", gmtime()) + self.plotter = None + self.children = None + self.labels = AxisLabels(**kwds) + self.setplotter() + + def plot(self,*args,**kwds): + if self.children!=None: + plotbackend.hold('on') + for child in self.children: + tmp = child.plot(*args,**kwds) + + tmp2 = self.plotter.plot(self,*args,**kwds) + return tmp2 + + def copy(self): + newcopy = empty_copy(self) + newcopy.__dict__.update(self.__dict__) + return newcopy + + + def setplotter(self): + ''' + Set plotter based on the data type data_1d, data_2d, data_3d or data_nd + ''' + + if isinstance(self.args,(list,tuple)): # Multidimensional data + ndim = len(self.args) + if ndim<2: + warnings.warn('Unable to determine plotter-type, because len(self.args)<2.') + print('If the data is 1D, then self.args should be a vector!') + print('If the data is 2D, then length(self.args) should be 2.') + print('If the data is 3D, then length(self.args) should be 3.') + print('Unless you fix this, the plot methods will not work!') + elif ndim==2: + self.plotter = Plotter_2d() + else: + warnings.warn('Plotter method not implemented for ndim>2') + + else: #One dimensional data + self.plotter = Plotter_1d() + + +class AxisLabels: + def __init__(self,title='',xlab='',ylab='',zlab='',**kwds): + self.title = title + self.xlab = xlab + self.ylab = ylab + self.zlab = zlab + def copy(self): + lbkwds = self.labels.__dict__.copy() + labels = AxisLabels(**lbkwds) + return labels + + def labelfig(self): + try: + plotbackend.title(self.title) + plotbackend.xlabel(self.xlab) + plotbackend.ylabel(self.ylab) + plotbackend.zlabel(self.zlab) + except: + pass + +class Plotter_1d(object): + """ + class comment + + bar + barh + loglog + semilogx + semilogy + plot + stem + scatter + + """ + + def __init__(self,plotmethod='plot'): + self.plotfun = None + self.plotbackend = plotbackend + try: + self.plotfun = plotbackend.__dict__[plotmethod] + except: + pass + def show(self): + plotbackend.show() + + def plot(self,wdata,*args,**kwds): + if isinstance(wdata.args,(list,tuple)): + args1 = tuple((wdata.args))+(wdata.data,)+args + else: + args1 = tuple((wdata.args,))+(wdata.data,)+args + self.plotfun(*args1,**kwds) + wdata.labels.labelfig() + +class Plotter_2d(Plotter_1d): + """ + class comment + + contour + mesh + surf + + + """ + + def __init__(self,plotmethod='contour'): + super(Plotter_2d,self).__init__(plotmethod) + #self.plotfun = plotbackend.__dict__[plotmethod] + +class TrGauss(WafoData): + def __init__(self,*args,**kwds): + super(TrGauss, self).__init__(*args,**kwds) + +class CycleCount(object): + def __init__(self,M,m): + self.M = M + self.m = m + + def amplitudes(self): + return (self.M-self.m)/2. + +class SpecData1D(WafoData): + """ Container class for 1D spectrum data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + + type : string + spectrum type, one of 'freq', 'k1d', 'enc' (default 'freq') + freqtype : letter + frequency type, one of: 'f', 'w' or 'k' (default 'w') + + + Examples + -------- + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S1 = Sj.toSpecData(w) #Make spectrum object from numerical values + >>> S = SpecData1D(Sj(w),w) # Alternatively do it manually + + See also + -------- + WafoData + CovData + """ + + def __init__(self,*args,**kwds): + super(SpecData1D, self).__init__(*args,**kwds) + + self.name='WAFO Spectrum Object' + self.type='freq' + self.freqtype='w' + self.angletype='' + self.h=np.inf + self.tr=None + self.phi=0. + self.v=0. + self.norm=0 + somekeys = ['angletype', 'phi', 'name', 'h', 'tr', 'freqtype', 'v', 'type', 'norm'] + + self.__dict__.update(sub_dict_select(kwds,somekeys)) + + self.setlabels() +## def copy(self): +## newcopy = empty_copy(self) +## newcopy.update(self.__dict__) +## #kwds = self.__dict__.copy() +## #wdata = SpecData1D(**kwds) +## #wdata.labels = sel.labels.copy() +## return newcopy + def toacf_matrix(self,nr=0,Nt=None,dt=None): + ''' Computes covariance function and its derivatives, alternative version + + Parameters + ---------- + Nr = number of derivatives in output, Nr<=4 (default 0) + Nt = number in time grid, i.e., number of time-lags. + (default rate*(n-1)) where rate = round(1/(2*f(end)*dt)) or + rate = round(pi/(w(n)*dt)) depending on S. + dt = time spacing for R + + Returns + ------- + R = [R0, R1,...Rnr] matrix with autocovariance and its + derivatives, i.e., Ri (i=1:nr) are column vectors with + the 1'st to nr'th derivatives of R0. size Nt+1 x Nr+1 + + NB! This routine requires that the spectrum grid is equidistant + starting from zero frequency. + Example: + -------- + S = jonswap; + dt = 0.1; + R = spec2cov2(S,3,256,dt); + See also + -------- + spec2cov, specinterp, datastructures + ''' + + ftype = self.freqtype #; %options are 'f' and 'w' and 'k' + freq = self.args + n = length(freq) + dTold = self.sampling_period() + if dt is None: + dt = dTold + rate = 1 + else: + rate = np.maximum(np.round(dTold*1./dt),1.) + + + if Nt is None: + Nt = rate*(n-1) + else: #%check if Nt is ok + Nt = np.minimum(Nt,rate*(n-1)); + + + checkdt = 1.2*min(np.diff(freq))/2./np.pi; + if ftype in 'k': + lagtype = 'x' + else: + lagtype = 't' + if ftype in 'f': + checkdt = checkdt*2*np.pi + msg1 = 'The step dt = %g in computation of the density is too small.' % dt + msg2 = 'The step dt = %g step is small, may cause numerical inaccuracies.' % dt + + if (checkdt < 2.**-16/dt): + np.disp(msg1) + np.disp('The computed covariance (by FFT(2^K)) may differ from the theoretical.') + np.disp('Solution:') + raise ValueError('use larger dt or sparser grid for spectrum.') + + + #% Calculating covariances + #%~~~~~~~~~~~~~~~~~~~~~~~~ + S2 = self.copy() + S2.resample(dt) + + R2 = S2.toacf(nr,Nt,rate=1) + R = np.zeros((Nt+1,nr+1)) + R[:,0] = R2.data[0:Nt+1] + fieldname = 'R' + lagtype*nr + for ix in range(1,nr+1): + fn = fieldname[1:ix]; + R[:,0:Nt+1] = gettattr(R2,fn)[0:Nt+1]; + + + EPS0 = 0.0001 + cc = R[0,0]-R[1,0]*(R[1,0]/R[0,0]); + if Nt+1>=5: + #%cc1=R(1,1)-R(3,1)*(R(3,1)/R(1,1))+R(3,2)*(R(3,2)/R(1,3)); + #%cc3=R(1,1)-R(5,1)*(R(5,1)/R(1,1))+R(5,2)*(R(5,2)/R(1,3)); + + cc2 = R(0,0)-R(4,0)*(R(4,0)/R(0,0)); + if (cc2R(x,t); Nt and Ny set =>R(y,t) + 4) Any type, Nt, Nx and Ny set => R(x,y,t) + 5) Any type, Nt not set, Nx and/or Ny set => Nt set to default, goto 3) or 4) + + NB! This routine requires that the spectrum grid is equidistant + starting from zero frequency. + NB! If you are using a model spectrum, S, with sharp edges + to calculate covariances then you should probably round off the sharp + edges like this: + + Example: + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap() + >>> S = Sj.toSpecData() + >>> S.data[0:40] = 0.0 + >>> S.data[100:-1] = 0.0 + >>> Nt = len(S.data)-1; + >>> R = S.toacf(nr=0,Nt=Nt) + + R = spec2cov(S,0,Nt); + win = parzen(2*Nt+1); + R.R = R.R.*win(Nt+1:end); + S1 = cov2spec(R); + R2 = spec2cov(S1); + figure(1) + plotspec(S),hold on, plotspec(S1,'r') + figure(2) + covplot(R), hold on, covplot(R2,[],[],'r') + figure(3) + semilogy(abs(R2.R-R.R)), hold on, + semilogy(abs(S1.S-S.S)+1e-7,'r') + + See also cov2spec, datastructures + ''' + + freq = self.args + n = freq.size + + if freq[0]>0: + raise ValueError('Spectrum does not start at zero frequency/wave number.\n Correct it with resample, for example.') + dw = np.abs(np.diff(freq,n=2,axis=0)) + if np.any(dw>1.0e-8): + raise ValueError('Not equidistant frequencies/wave numbers in spectrum.\n Correct it with resample, for example.') + + + if rate is None: + rate=1 #; %interpolation rate + elif rate>16: + rate=16 + else: # make sure rate is a power of 2 + rate=2**nextpow2(rate) + + if Nt is None: + Nt = rate*(n-1) + else: #check if Nt is ok + Nt = np.minimum(Nt,rate*(n-1)) + + S = self.copy() + + + if self.freqtype in 'k': + lagtype = 'x' + else: + lagtype = 't' + + dT = S.sampling_period() + #normalize spec so that sum(specn)/(n-1)=R(0)=var(X) + specn = S.data*freq[-1] + if S.freqtype in 'f': + w = freq*2*np.pi + else: + w = freq + + nfft = rate*2**nextpow2(2*n-2); + + Rper = np.r_[specn, np.zeros(nfft-(2*n)+2) , np.conj(specn[n-1:0:-1])] #; % periodogram + t = np.r_[0:Nt+1]*dT*(2*n-2)/nfft + + fft = np.fft.fft + + r = fft(Rper,nfft).real/(2*n-2) + R = CovData1D(r[0:Nt+1],t,lagtype=lagtype) + R.tr = S.tr; + R.h = S.h; + R.norm = S.norm; + + if nr>0: + w = np.r_[w , np.zeros(nfft-2*n+2) ,-w[n-1:0:-1] ] + fieldname = 'R' + lagtype*nr ; + for ix in range(1,nr+1): + Rper = (-1j*w*Rper) + r = fft(Rper,nfft).real/(2*n-2) + setattr(R,fieldname[0:ix+1],r[0:Nt+1]) + return R + + + + + def sim(self,ns=None,cases=1,dt=None,iseed=None,method='random',derivative=False): + ''' Simulates a Gaussian process and its derivative from spectrum + + Parameters + ---------- + ns : scalar + number of simulated points. (default length(S)-1=n-1). + If ns>n-1 it is assummed that R(k)=0 for all k>n-1 + cases : scalar + number of replicates (default=1) + dt : scalar + step in grid (default dt is defined by the Nyquist freq) + iseed : int or state + starting state/seed number for the random number generator + (default none is set) + method : string + if 'exact' : simulation using cov2sdat + if 'random' : random phase and amplitude simulation (default) + derivative : bool + if true : return derivative of simulated signal as well + otherwise + + + Returns + ------- + xs = a cases+1 column matrix ( t,X1(t) X2(t) ...). + xsder = a cases+1 column matrix ( t,X1'(t) X2'(t) ...). + + Details + ------- + Performs a fast and exact simulation of stationary zero mean + Gaussian process through circulant embedding of the covariance matrix + or by summation of sinus functions with random amplitudes and random + phase angle. + + If the spectrum has a non-empty field .tr, then the transformation is + applied to the simulated data, the result is a simulation of a transformed + Gaussian process. + + Note: The method 'exact' simulation may give high frequency ripple when + used with a small dt. In this case the method 'random' works better. + + Example: + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap();S = Sj.toSpecData(); + >>> np =100; dt = .2; + >>> x1 = S.sim(np,dt=dt); + + waveplot(x1,'r',x2,'g',1,1) + + See also + -------- + cov2sdat, gaus2dat + + Reference + ----------- + C.R Dietrich and G. N. Newsam (1997) + "Fast and exact simulation of stationary + Gaussian process through circulant embedding + of the Covariance matrix" + SIAM J. SCI. COMPT. Vol 18, No 4, pp. 1088-1107 + + Hudspeth, R.T. and Borgman, L.E. (1979) + "Efficient FFT simulation of Digital Time sequences" + Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM2, + + ''' + + fft = np.fft.fft + + S = self.copy() + if dt is not None: + S.resample(dt) + + + ftype = S.freqtype + freq = S.args + + dT = S.sampling_period() + Nt = freq.size + + if ns is None: + ns=Nt-1 + + if method in 'exact': + + #nr=0,Nt=None,dt=None + R = S.toacf(nr=0); + T = Nt*dT + ix = np.flatnonzero(R.args>T); + + # Trick to avoid adding high frequency noise to the spectrum + if ix.size>0: + R.data[ix[0]::]=0.0 + + return R.sim(ns=ns,cases=cases,iseed=iseed,derivative=derivative) + + _set_seed(iseed) + + ns = ns+np.mod(ns,2) # make sure it is even + + fi = freq[1:-1] + Si = S.data[1:-1] + if ftype in ('w','k'): + fact = 2.*np.pi + Si = Si*fact; + fi = fi/fact; + + zeros = np.zeros + + x = zeros((ns,cases+1)); + + df = 1/(ns*dT) + + + # interpolate for freq. [1:(N/2)-1]*df and create 2-sided, uncentered spectra + # ---------------------------------------------------------------------------- + f = np.arange(1,ns/2.)*df + + Fs = np.hstack((0., fi, df*ns/2.)) + Su = np.hstack((0., np.abs(Si)/2., 0.)); + + + Si = np.interp(f,Fs,Su) + Su=np.hstack((0., Si,0, Si[(ns/2)-2::-1])) + del(Si, Fs) + + # Generate standard normal random numbers for the simulations + # ----------------------------------------------------------- + randn = np.random.randn + Zr = randn((ns/2)+1,cases) + Zi = np.vstack((zeros((1,cases)), randn((ns/2)-1,cases), zeros((1,cases)))); + + A = zeros((ns,cases),dtype=complex) + A[0:(ns/2+1),:] = Zr - 1j*Zi; + del(Zr, Zi) + A[(ns/2+1):ns,:] = A[ns/2-1:0:-1,:].conj(); + A[0,:] = A[0,:]*np.sqrt(2.); + A[(ns/2),:] = A[(ns/2),:]*np.sqrt(2.); + + + # Make simulated time series + # -------------------------- + + T = (ns-1)*dT + Ssqr = np.sqrt(Su*df/2.) + + # stochastic amplitude + A = A*Ssqr[:,np.newaxis]; + + + # Deterministic amplitude + #A = sqrt[1]*Ssqr(:,ones(1,cases)).*exp(sqrt(-1)*atan2(imag(A),real(A))); + del( Su, Ssqr) + + + x[:,1::] = fft(A,axis=0).real + x[:,0] = np.linspace(0,T,ns) #'; %(0:dT:(np-1)*dT).'; + + + if derivative: + xder=np.zeros(ns,cases+1) + w = 2.*np.pi*np.hstack((0, f, 0.,-f[-1::-1])) + A = -1j*A*w[:,newaxis] + xder[:,1:(cases+1)] = fft(A,axis=0).real; + xder[:,0] = x[:,0] + + + + if S.tr is not None: + np.disp(' Transforming data.') + g=S.tr; + G=np.fliplr(g); #% the invers of g + if derivative: + for ix in range(cases): + tmp=tranproc(np.hstack((x[:,ix+1], xder[:,ix+1])),G); + x[:,ix+1]=tmp[:,0]; + xder[:,ix+1]=tmp[:,1]; + + else: + for ix in range(cases): + x[:,ix+1]=tranproc(x[:,ix+1],G); + + + + if derivative: + return x,xder + else: + return x + +# function [x2,x,svec,dvec,A]=spec2nlsdat(S,np,dt,iseed,method,truncationLimit) + def sim_nl(self,ns=None,cases=1,dt=None,iseed=None,method='random', + fnlimit=1.4142,reltol=1e-3,g=9.81): + """ Simulates a Randomized 2nd order non-linear wave X(t) + + Parameters + ---------- + ns : scalar + number of simulated points. (default length(S)-1=n-1). + If ns>n-1 it is assummed that R(k)=0 for all k>n-1 + cases : scalar + number of replicates (default=1) + dt : scalar + step in grid (default dt is defined by the Nyquist freq) + iseed : int or state + starting state/seed number for the random number generator + (default none is set) + method : string + 'apStochastic' : Random amplitude and phase (default) + 'aDeterministic' : Deterministic amplitude and random phase + 'apDeterministic' : Deterministic amplitude and phase + fnLimit : scalar + normalized upper frequency limit of spectrum for 2'nd order + components. The frequency is normalized with + sqrt(gravity*tanh(kbar*waterDepth)/Amax)/(2*pi) + (default sqrt(2), i.e., Convergence criterion [1]_). + Other possible values are: + sqrt(1/2) : No bump in trough criterion + sqrt(pi/7) : Wave steepness criterion + reltol : scalar + relative tolerance defining where to truncate spectrum for the + for sum and difference frequency effects + + + Returns + ------- + xs2 = a cases+1 column matrix ( t,X1(t) X2(t) ...). + xs1 = a cases+1 column matrix ( t,X1'(t) X2'(t) ...). + + Details + ------- + Performs a Fast simulation of Randomized 2nd order non-linear + waves by summation of sinus functions with random amplitudes and + phase angles. The extent to which the simulated result are applicable + to real seastates are dependent on the validity of the assumptions: + + 1. Seastate is unidirectional + 2. Surface elevation is adequately represented by 2nd order random + wave theory + 3. The first order component of the surface elevation is a Gaussian + random process. + + If the spectrum does not decay rapidly enough towards zero, the + contribution from the 2nd order wave components at the upper tail can + be very large and unphysical. To ensure convergence of the perturbation + series, the upper tail of the spectrum is truncated at FNLIMIT in the + calculation of the 2nd order wave components, i.e., in the calculation + of sum and difference frequency effects. This may also be combined with + the elimination of second order effects from the spectrum, i.e., extract + the linear components from the spectrum. One way to do this is to use + SPEC2LINSPEC. + + Example + -------- + np =100; dt = .2; + [x1, x2] = spec2nlsdat(jonswap,np,dt); + waveplot(x1,'r',x2,'g',1,1) + + See also + -------- + spec2linspec, spec2sdat, cov2sdat + + References + ---------- + .. [1] Nestegaard, A and Stokka T (1995) + A Third Order Random Wave model. + In proc.ISOPE conf., Vol III, pp 136-142. + + .. [2] R. S Langley (1987) + A statistical analysis of non-linear random waves. + Ocean Engng, Vol 14, pp 389-407 + + .. [3] Marthinsen, T. and Winterstein, S.R (1992) + 'On the skewness of random surface waves' + In proc. ISOPE Conf., San Francisco, 14-19 june. + """ + + + # TODO % Check the methods: 'apdeterministic' and 'adeterministic' + + from wafo.spectrum import dispersion_relation as sm + + Hm0 = self.characteristic('Hm0')[0] + Tm02 = self.characteristic('Tm02')[0] + #Hm0 = spec2char(S,'Hm0'); + #Tm02 = spec2char(S,'Tm02'); + + _set_seed(iseed) + fft = np.fft.fft + + S = self.copy() + if dt is not None: + S.resample(dt) + + + ftype = S.freqtype + freq = S.args + + dT = S.sampling_period() + Nt = freq.size + + if ns is None: + ns = Nt-1 + + ns = ns+np.mod(ns,2) # make sure it is even + + fi = freq[1:-1] + Si = S.data[1:-1] + if ftype in ('w','k'): + fact = 2.*np.pi + Si = Si*fact; + fi = fi/fact; + + Smax = max(Si) + waterDepth = min(abs(S.h),10.**30); + + zeros = np.zeros + + x = zeros((ns,cases+1)); + + df = 1/(ns*dT) + + # interpolate for freq. [1:(N/2)-1]*df and create 2-sided, uncentered spectra + # ---------------------------------------------------------------------------- + f = np.arange(1,ns/2.)*df + Fs = np.hstack((0., fi, df*ns/2.)) + w = 2.*np.pi*Fs + kw = sm.w2k(w ,0.,waterDepth,g)[0] + Su = np.hstack((0., np.abs(Si)/2., 0.)); + + + + Si = np.interp(f,Fs,Su) + nmin = (Si>Smax*reltol).argmax() + nmax = np.flatnonzero(Si>0).max() + Su = np.hstack((0., Si,0, Si[(ns/2)-2::-1])) + del(Si, Fs) + + # Generate standard normal random numbers for the simulations + # ----------------------------------------------------------- + randn = np.random.randn + Zr = randn((ns/2)+1,cases) + Zi = np.vstack((zeros((1,cases)), randn((ns/2)-1,cases), zeros((1,cases)))); + + A = zeros((ns,cases),dtype=complex) + A[0:(ns/2+1),:] = Zr - 1j*Zi; + del(Zr, Zi) + A[(ns/2+1):ns,:] = A[ns/2-1:0:-1,:].conj(); + A[0,:] = A[0,:]*np.sqrt(2.); + A[(ns/2),:] = A[(ns/2),:]*np.sqrt(2.); + + + # Make simulated time series + # -------------------------- + + T = (ns-1)*dT + Ssqr = np.sqrt(Su*df/2.) + + + if method.startswith('apd') : # apdeterministic + # Deterministic amplitude and phase + A[1:(ns/2),:] = A[1,0]; + A[(ns/2+1):ns,:] = A[1,0].conj(); + A = sqrt(2)*Ssqr[:,np.newaxis]*exp(1J*atan2(A.imag,A.real)) + elif method.startswith('ade'): # adeterministic + # Deterministic amplitude and random phase + A = sqrt(2)*Ssqr[:,np.newaxis]*exp(1J*atan2(A.imag,A.real)); + else: + # stochastic amplitude + A = A*Ssqr[:,np.newaxis]; + # Deterministic amplitude + #A = sqrt(2)*Ssqr(:,ones(1,cases)).*exp(sqrt(-1)*atan2(imag(A),real(A))); + del( Su, Ssqr) + + + x[:,1::] = fft(A,axis=0).real + x[:,0] = np.linspace(0,T,ns) #'; %(0:dT:(np-1)*dT).'; + + + + x2 = x.copy() + + # If the spectrum does not decay rapidly enough towards zero, the + # contribution from the wave components at the upper tail can be very + # large and unphysical. + # To ensure convergence of the perturbation series, the upper tail of the + # spectrum is truncated in the calculation of sum and difference + # frequency effects. + # Find the critical wave frequency to ensure convergence. + + sqrt = np.sqrt + log = np.log + pi = np.pi + tanh = np.tanh + numWaves = 1000. # Typical number of waves in 3 hour seastate + kbar = sm.w2k(2.*np.pi/Tm02,0.,waterDepth)[0]; + Amax = sqrt(2*log(numWaves))*Hm0/4; #% Expected maximum amplitude for 1000 waves seastate + + fLimitUp = fnlimit*sqrt(g*tanh(kbar*waterDepth)/Amax)/(2*pi); + fLimitLo = sqrt(g*tanh(kbar*waterDepth)*Amax/waterDepth)/(2*pi*waterDepth); + + nmax = min(np.flatnonzero(f<=fLimitUp).max(),nmax)+1; + nmin = max(np.flatnonzero(fLimitLo<=f).min(),nmin)+1; + + #if isempty(nmax),nmax = np/2;end + #if isempty(nmin),nmin = 2;end % Must always be greater than 1 + fLimitUp = df*nmax; + fLimitLo = df*nmin; + + print('2nd order frequency Limits = %g,%g'% (fLimitLo, fLimitUp)) + + + +## if nargout>3, +## %compute the sum and frequency effects separately +## [svec, dvec] = disufq((A.'),w,kw,min(h,10^30),g,nmin,nmax); +## svec = svec.'; +## dvec = dvec.'; +## +## x2s = fft(svec); % 2'nd order sum frequency component +## x2d = fft(dvec); % 2'nd order difference frequency component +## +## % 1'st order + 2'nd order component. +## x2(:,2:end) =x(:,2:end)+ real(x2s(1:np,:))+real(x2d(1:np,:)); +## else + rvec,ivec = diffsumfunq.disufq(A.real,A.imag,w,kw,waterDepth,g,nmin,nmax) + + svec = rvec + 1J*ivec + x2o = fft(svec) # 2'nd order component + + + # 1'st order + 2'nd order component. + x2[:,1::] = x[:,1::]+ x2o[0:ns,:].real(); + + return x2, x + + + + + + + def moment(self,nr=2,even=True,j=0): + ''' Calculates spectral moments from spectrum + + Parameters + ---------- + nr : int + order of moments (recomended maximum 4) + even : bool + False for all moments, + True for only even orders + j : int + 0 or 1 + + Returns + ------- + m : list of moments + mtext : list of strings describing the elements of m, see below + + Details + ------- + Calculates spectral moments of up to order NR by use of + Simpson-integration. + + / / + mj_t^i = | w^i S(w)^(j+1) dw, or mj_x^i = | k^i S(k)^(j+1) dk + / / + + where k=w^2/gravity, i=0,1,...,NR + + The strings in output mtext have the same position in the list + as the corresponding numerical value has in output m + Notation in mtext: 'm0' is the variance, + 'm0x' is the first-order moment in x, + 'm0xx' is the second-order moment in x, + 'm0t' is the first-order moment in t, + etc. + For the calculation of moments see Baxevani et al. + + Example: + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values + >>> S.moment() + ([0.56220770033914191, 0.35433180985851975], ['m0', 'm0tt']) + + References + ---------- + Baxevani A. et al. (2001) + Velocities for Random Surfaces + ''' + pi= np.pi + one_dim_spectra = ['freq','enc','k1d'] + if self.type not in one_dim_spectra: + raise ValueError('Unknown spectrum type!') + + f = np.ravel(self.args) + S = np.ravel(self.data) + if self.freqtype in ['f','w']: + vari = 't' + if self.freqtype=='f': + f = 2.*pi*f + S = S/(2.*pi) + else: + vari = 'x' + S1=np.abs(S)**(j+1.) + m = [simps(S1,x=f)] + mtxt = 'm%d' % j + mtext = [mtxt] + step = np.mod(even,2)+1 + df = f**step + for i in range(step,nr+1,step): + S1 = S1*df + m.append(simps(S1,x=f)) + mtext.append(mtxt+vari*i) + return m, mtext + + def sampling_period(self): + ''' Returns sampling interval from Nyquist frequency of spectrum + + Returns + --------- + dT : scalar + sampling interval, unit: + [m] if wave number spectrum, + [s] otherwise + + Let wm be maximum frequency/wave number in spectrum, + then dT=pi/wm if angular frequency, dT=1/(2*wm) if natural frequency (Hz) + + Example + ------- + S = jonswap; + dt = spec2dt(S) + + See also + ''' + + if self.freqtype in 'f': + wmdt = 0.5 # Nyquist to sampling interval factor + else: # ftype == w og ftype == k + wmdt = np.pi; + + wm = self.args[-1] #Nyquist frequency + dt = wmdt/wm; #sampling interval = 1/Fs + return dt + + def resample(self,dt=None,Nmin=0,Nmax=2**13+1,method='stineman'): + ''' Interpolate and zero-padd spectrum to change Nyquist freq. + + Parameters + ---------- + dt : scalar + wanted sampling interval (default as given by S, see spec2dt) + unit: [s] if frequency-spectrum, [m] if wave number spectrum + Nmin : scalar + minimum number of frequencies. + Nmax : scalar + minimum number of frequencies + method : string + interpolation method (options are 'linear', 'cubic' or 'stineman') + + To be used before simulation (e.g. spec2sdat) or evaluation of covariance + function (spec2cov) to directly get wanted sampling interval. + The input spectrum is interpolated and padded with zeros to reach + the right max-frequency, w(end)=pi/dt, f(end)=1/(2*dt), or k(end)=pi/dt. + The objective is that output frequency grid should be at least as dense + as the input grid, have equidistant spacing and length equal to + 2^k+1 (>=Nmin). If the max frequency is changed, the number of points + in the spectrum is maximized to 2^13+1. + + Note: Also zero-padding down to zero freq, if S does not start there. + If empty input dt, this is the only effect. + + See also + -------- + spec2cov, spec2sdat, covinterp, spec2dt + ''' + + + ftype = self.freqtype + w = self.args.ravel() + n = w.size + + #%doInterpolate = 0; + + if ftype=='f': + Cnf2dt = 0.5; # Nyquist to sampling interval factor + else: #% ftype == w og ftype == k + Cnf2dt = np.pi + + wnOld = w[-1] # Old Nyquist frequency + dTold = Cnf2dt/wnOld; # sampling interval=1/Fs + + + if dt is None: + dt=dTold + + + + # Find how many points that is needed + nfft = 2**nextpow2(max(n-1,Nmin-1)) + dttest = dTold*(n-1)/nfft + + while (dttest>dt) and (nfft0 or w[1]>0 or (nfft!=n) or dt!=dTold or any(abs(np.diff(w,axis=0))>1.0e-8); + + if doInterpolate>0: + S1 = self.data + + dw = min(np.diff(w)); + + if dWn>0: + #% add a zero just above old max-freq, and a zero at new max-freq + #% to get correct interpolation there + Nz = 1 + (dWn>dw) #; % Number of zeros to add + if Nz==2: + w = np.hstack((w, wnOld+dw, wnNew)) + else: + w = np.hstack((w, wnNew)) + + S1 = np.hstack((S1, np.zeros(Nz))) + + if w[0]>0: + #% add a zero at freq 0, and, if there is space, a zero just below min-freq + Nz = 1 + (w[0]>dw); #% Number of zeros to add + if Nz==2: + w=np.hstack((0, w[0]-dw, w)) + else: + w=np.hstack((0, w)) + + S1 = np.hstack((zeros(Nz), S1)) + + + #% Do a final check on spacing in order to check that the gridding is + #% sufficiently dense: + #np1 = S1.size + dwMin = np.finfo(float).max + #%wnc = min(wnNew,wnOld-1e-5); + wnc = wnNew; + specfun = lambda xi : stineman_interp(xi,w,S1) + + + x,y = discretize(specfun,0,wnc) + dwMin = np.minimum(min(np.diff(x)),dwMin) + + + newNfft = 2**nextpow2(np.ceil(wnNew/dwMin))+1 + if newNfft>nfft: + if (nfft<=2**15+1) and (newNfft>2**15+1): + warnings.warn('Spectrum matrix is very large (>33k). Memory problems may occur.') + + nfft = newNfft; + + + self.args = np.linspace(0,wnNew,nfft) + if method=='stineman': + self.data = stineman_interp(self.args,w,S1) + else: + intfun = interpolate.interp1d(w,S1,kind=method) + self.data = intfun(self.args) + self.data = self.data.clip(0) # clip negative values to 0 + + def normalize(self): + pass + def bandwidth(self,factors=0): + ''' Return some spectral bandwidth and irregularity factors + + + Returns + -------- + bw : arraylike + vector of bandwidth factors + + Parameters + ----------- + factors : array-like + Input vector 'factors' correspondence: + 0 alpha=m2/sqrt(m0*m4) (irregularity factor) + 1 eps2 = sqrt(m0*m2/m1^2-1) (narrowness factor) + 2 eps4 = sqrt(1-m2^2/(m0*m4))=sqrt(1-alpha^2) (broadness factor) + 3 Qp=(2/m0^2)int_0^inf f*S(f)^2 df (peakedness factor) + + Order of output is the same as order in 'factors' + + Example: + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values + >>> S.bandwidth([0,1,2,3]) + array([ 0.65354446, 0.3975428 , 0.75688813, 2.00207912]) + ''' + + if self.freqtype in 'k': + vari = 'k'; + else: + vari = 'w'; + + m,mtxt = self.moment(nr=4,even=False) + sqrt = np.sqrt + fact = np.atleast_1d(factors) + alpha = m[2]/sqrt(m[0]*m[4]) + eps2 = sqrt(m[0]*m[2]/m[1]**2.-1.) + eps4 = sqrt(1.-m[2]**2./m[0]/m[4]); + f = self.args + S = self.data + Qp = 2/m[0]**2.*simps(f*S**2,x=f); + bw = np.array([alpha,eps2,eps4,Qp]) + return bw[fact] + + def characteristic(self,fact='Hm0',T=1200,g=9.81): + """Returns spectral characteristics and their covariance + + Parameters + ---------- + fact = vector with factor integers or a string or + a cellarray of strings, see below.(default [1]) + T : scalar + recording time (sec) (default 1200 sec = 20 min) + g : scalar + acceleration of gravity [m/s^2] + + Returns + ------- + ch = vector of spectral characteristics + R = matrix of the corresponding covariances given T + chtext = a list of strings describing the elements of ch, see example. + + + Description + ------------ + If input spectrum is of wave number type, output are factors for + corresponding 'k1D', else output are factors for 'freq'. + Input vector 'factors' correspondence: + 1 Hm0 = 4*sqrt(m0) Significant wave height + 2 Tm01 = 2*pi*m0/m1 Mean wave period + 3 Tm02 = 2*pi*sqrt(m0/m2) Mean zero-crossing period + 4 Tm24 = 2*pi*sqrt(m2/m4) Mean period between maxima + 5 Tm_10 = 2*pi*m_1/m0 Energy period + 6 Tp = 2*pi/{w | max(S(w))} Peak period + 7 Ss = 2*pi*Hm0/(g*Tm02^2) Significant wave steepness + 8 Sp = 2*pi*Hm0/(g*Tp^2) Average wave steepness + 9 Ka = abs(int S(w)*exp(i*w*Tm02) dw ) /m0 Groupiness parameter + 10 Rs = (S(0.092)+S(0.12)+S(0.15)/(3*max(S(w))) Quality control parameter + 11 Tp1 = 2*pi*int S(w)^4 dw Peak Period (robust estimate for Tp) + ------------------ + int w*S(w)^4 dw + + 12 alpha = m2/sqrt(m0*m4) Irregularity factor + 13 eps2 = sqrt(m0*m2/m1^2-1) Narrowness factor + 14 eps4 = sqrt(1-m2^2/(m0*m4))=sqrt(1-alpha^2) Broadness factor + 15 Qp = (2/m0^2)int_0^inf w*S(w)^2 dw Peakedness factor + + Order of output is same as order in 'factors' + The covariances are computed with a Taylor expansion technique + and is currently only available for factors 1, 2, and 3. Variances + are also available for factors 4,5,7,12,13,14 and 15 + + Quality control: + ---------------- + Critical value for quality control parameter Rs is Rscrit = 0.02 + for surface displacement records and Rscrit=0.0001 for records of + surface acceleration or slope. If Rs > Rscrit then probably there + are something wrong with the lower frequency part of S. + + Ss may be used as an indicator of major malfunction, by checking that + it is in the range of 1/20 to 1/16 which is the usual range for + locally generated wind seas. + + Examples: + --------- + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=5) + >>> S = Sj.toSpecData() #Make spectrum ob + >>> S.characteristic(1) + (array([ 8.59007646]), array([[ 0.03040216]]), ['Tm01']) + + >>> [ch, R, txt] = S.characteristic([1,2,3]) # fact a vector of integers + >>> S.characteristic('Ss') # fact a string + (array([ 0.04963112]), array([[ 2.63624782e-06]]), ['Ss']) + + >>> S.characteristic(['Hm0','Tm02']) # fact a list of strings + (array([ 4.99833578, 8.03139757]), + array([[ 0.05292989, 0.02511371], + [ 0.02511371, 0.0274645 ]]), + ['Hm0', 'Tm02']) + + See also + --------- + bandwidth, + moment + + References + ---------- + Krogstad, H.E., Wolf, J., Thompson, S.P., and Wyatt, L.R. (1999) + 'Methods for intercomparison of wave measurements' + Coastal Enginering, Vol. 37, pp. 235--257 + + Krogstad, H.E. (1982) + 'On the covariance of the periodogram' + Journal of time series analysis, Vol. 3, No. 3, pp. 195--207 + + Tucker, M.J. (1993) + 'Recommended standard for wave data sampling and near-real-time processing' + Ocean Engineering, Vol.20, No.5, pp. 459--474 + + Young, I.R. (1999) + "Wind generated ocean waves" + Elsevier Ocean Engineering Book Series, Vol. 2, pp 239 + """ + + #% TODO % Need more checking on computing the variances for Tm24,alpha, eps2 and eps4 + #% TODO % Covariances between Tm24,alpha, eps2 and eps4 variables are also needed + NaN = np.nan + tfact = dict(Hm0=0,Tm01=1,Tm02=2,Tm24=3, Tm_10=4,Tp=5,Ss=6, Sp=7, Ka=8, + Rs=9, Tp1=10,Alpha=11,Eps2=12,Eps4=13,Qp=14) + tfact1 = ('Hm0','Tm01','Tm02','Tm24', 'Tm_10','Tp','Ss', 'Sp', 'Ka', + 'Rs', 'Tp1','Alpha','Eps2','Eps4','Qp') + + if isinstance(fact,str): + fact = list((fact,)) + if isinstance(fact,(list,tuple)): + nfact = [] + for k in fact: + if isinstance(k,str): + nfact.append(tfact.get(k.capitalize(),15)) + else: + nfact.append(k) + else: + nfact = fact; + + nfact = np.atleast_1d(nfact) + + if np.any((nfact>14) | (nfact<0)): + raise ValueError('Factor outside range (0,...,14)') + + vari = self.freqtype + + f = self.args.ravel() + S1 = self.data.ravel() + m,mtxt = self.moment(nr=4,even=False) + + #% moments corresponding to freq in Hz + for k in range(1,5): + m[k] = m[k]/(2*np.pi)**k + + pi = np.pi + ind = np.flatnonzero(f>0) + m.append(simps(S1[ind]/f[ind],f[ind])*2.*np.pi) #; % = m_1 + m_10 = simps(S1[ind]**2/f[ind],f[ind])*(2*pi)**2/T # % = COV(m_1,m0|T=t0) + m_11 = simps(S1[ind]**2./f[ind]**2,f[ind])*(2*pi)**3/T #% = COV(m_1,m_1|T=t0) + + sqrt = np.sqrt + #% Hm0 Tm01 Tm02 Tm24 Tm_10 + Hm0 = 4.*sqrt(m[0]); + Tm01 = m[0]/m[1]; + Tm02 = sqrt(m[0]/m[2]); + Tm24 = sqrt(m[2]/m[4]); + Tm_10= m[5]/m[0]; + + Tm12 = m[1]/m[2] + + ind = S1.argmax() + maxS = S1[ind] + #[maxS ind] = max(S1); + Tp = 2.*pi/f[ind] # % peak period /length + Ss = 2.*pi*Hm0/g/Tm02**2 # % Significant wave steepness + Sp = 2.*pi*Hm0/g/Tp**2 #; % Average wave steepness + Ka = abs(simps(S1*np.exp(1J*f*Tm02),f))/m[0]; #% groupiness factor + + #% Quality control parameter + #% critical value is approximately 0.02 for surface displacement records + #% If Rs>0.02 then there are something wrong with the lower frequency part + #% of S. + Rs = np.sum(np.interp(np.r_[0.0146, 0.0195, 0.0244]*2*pi,f,S1))/3./maxS; + Tp2 = 2*pi*simps(S1**4,f)/simps(f*S1**4,f); + + + alpha1 = Tm24/Tm02 #; % m(3)/sqrt(m(1)*m(5)); + eps2 = sqrt(Tm01/Tm12-1.)# % sqrt(m(1)*m(3)/m(2)^2-1); + eps4 = sqrt(1.-alpha1**2) #; % sqrt(1-m(3)^2/m(1)/m(5)); + Qp = 2./m[0]**2*simps(f*S1**2,f); + + + + + ch = np.r_[Hm0, Tm01, Tm02, Tm24, Tm_10, Tp, Ss, Sp, Ka, Rs, Tp2, alpha1, eps2, eps4, Qp] + + + #% Select the appropriate values + ch = ch[nfact] + chtxt = [tfact1[i] for i in nfact] + + #if nargout>1, + #% covariance between the moments: + #%COV(mi,mj |T=t0) = int f^(i+j)*S(f)^2 df/T + mij,mijtxt = self.moment(nr=8,even=False,j=1) + for ix,tmp in enumerate(mij): + mij[ix] = tmp/T/((2.*pi)**(ix-1.0)) + + + #% and the corresponding variances for + #%{'hm0', 'tm01', 'tm02', 'tm24', 'tm_10','tp','ss', 'sp', 'ka', 'rs', 'tp1','alpha','eps2','eps4','qp'} + R = np.r_[4*mij[0]/m[0], + mij[0]/m[1]**2.-2.*m[0]*mij[1]/m[1]**3.+m[0]**2.*mij[2]/m[1]**4., + 0.25*(mij[0]/(m[0]*m[2])-2.*mij[2]/m[2]**2+m[0]*mij[4]/m[2]**3), + 0.25*(mij[4]/(m[2]*m[4])-2*mij[6]/m[4]**2+m[2]*mij[8]/m[4]**3) , + m_11/m[0]**2+(m[5]/m[0]**2)**2*mij[0]-2*m[5]/m[0]**3*m_10, + NaN, + (8*pi/g)**2*(m[2]**2/(4*m[0]**3)*mij[0]+mij[4]/m[0]-m[2]/m[0]**2*mij[2]), + NaN*np.ones(4), + m[2]**2*mij[0]/(4*m[0]**3*m[4])+mij[4]/(m[0]*m[4])+mij[8]*m[2]**2/(4*m[0]*m[4]**3)- + m[2]*mij[2]/(m[0]**2*m[4])+m[2]**2*mij[4]/(2*m[0]**2*m[4]**2)-m[2]*mij[6]/m[0]/m[4]**2, + (m[2]**2*mij[0]/4+(m[0]*m[2]/m[1])**2*mij[2]+m[0]**2*mij[4]/4-m[2]**2*m[0]*mij[1]/m[1]+ + m[0]*m[2]*mij[2]/2-m[0]**2*m[2]/m[1]*mij[3])/eps2**2/m[1]**4, + (m[2]**2*mij[0]/(4*m[0]**2)+mij[4]+m[2]**2*mij[8]/(4*m[4]**2)-m[2]*mij[2]/m[0]+ + m[2]**2*mij[4]/(2*m[0]*m[4])-m[2]*mij[6]/m[4])*m[2]**2/(m[0]*m[4]*eps4)**2, + NaN]; + + #% and covariances by a taylor expansion technique: + #% Cov(Hm0,Tm01) Cov(Hm0,Tm02) Cov(Tm01,Tm02) + S0 = np.r_[ 2./(sqrt(m[0])*m[1])*(mij[0]-m[0]*mij[1]/m[1]), + 1./sqrt(m[2])*(mij[0]/m[0]-mij[2]/m[2]), + 1./(2*m[1])*sqrt(m[0]/m[2])*(mij[0]/m[0]-mij[2]/m[2]-mij[1]/m[1]+m[0]*mij[3]/(m[1]*m[2]))] + + R1 = np.ones((15,15)); + R1[:,:] = NaN + for ix,Ri in enumerate(R): + R1[ix,ix] = Ri + + + + R1[0,2:4] = S0[:2]; + R1[1,2] = S0[2]; + for ix in [0,1]: #%make lower triangular equal to upper triangular part + R1[ix+1:,ix] = R1[ix,ix+1:] + + + R = R[nfact] + R1= R1[nfact,:][:,nfact] + + + #% Needs further checking: + #% Var(Tm24)= 0.25*(mij[4]/(m[2]*m[4])-2*mij[6]/m[4]**2+m[2]*mij[8]/m[4]**3) ... + return ch, R1, chtxt + + def setlabels(self): + ''' Set automatic title, x-,y- and z- labels on SPECDATA object + + based on type, angletype, freqtype + ''' + + N = len(self.type); + if N==0: + raise ValueError('Object does not appear to be initialized, it is empty!') + + labels = ['','',''] + if self.type.endswith('dir'): + title = 'Directional Spectrum' + if self.freqtype.startswith('w'): + labels[0] = 'Frequency [rad/s]' + labels[2] = 'S(w,\theta) [m^2 s / rad^2]' + else: + labels[0] = 'Frequency [Hz]' + labels[2] = 'S(f,\theta) [m^2 s / rad]' + + if self.angletype.startswith('r'): + labels[1] = 'Wave directions [rad]' + elif self.angletype.startswith('d'): + labels[1] = 'Wave directions [deg]' + elif self.type.endswith('freq'): + title = 'Spectral density' + if self.freqtype.startswith('w'): + labels[0] = 'Frequency [rad/s]' + labels[1] = 'S(w) [m^2 s/ rad]' + else: + labels[0] = 'Frequency [Hz]' + labels[1] = 'S(f) [m^2 s]' + else: + title = 'Wave Number Spectrum' + labels[0] = 'Wave number [rad/m]' + if self.type.endswith('k1d'): + labels[1] = 'S(k) [m^3/ rad]' + elif self.type.endswith('k2d'): + labels[1] = labels[0] + labels[2] = 'S(k1,k2) [m^4/ rad^2]' + else: + raise ValueError('Object does not appear to be initialized, it is empty!') + if self.norm!=0: + title = 'Normalized ' + title + labels[0] = 'Normalized ' + labels[0].split('[')[0] + if not self.type.endswith('dir'): + labels[1] = labels[1].split('[')[0] + labels[2] = labels[2].split('[')[0] + + self.labels.title = title + self.labels.xlab = labels[0] + self.labels.ylab = labels[1] + self.labels.zlab = labels[2] +class SpecData2D(WafoData): + """ Container class for 2D spectrum data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + + type : string + spectrum type (default 'freq') + freqtype : letter + frequency type (default 'w') + angletype : string + angle type of directional spectrum (default 'radians') + + Examples + -------- + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values + + See also + -------- + WafoData + CovData + """ + + def __init__(self,*args,**kwds): + super(SpecData2D, self).__init__(*args,**kwds) + + self.name='WAFO Spectrum Object' + self.type='freq' + self.freqtype='w' + self.angletype='' + self.h=np.inf + self.tr=None + self.phi=0. + self.v=0. + self.norm=0 + somekeys = ['angletype', 'phi', 'name', 'h', 'tr', 'freqtype', 'v', 'type', 'norm'] + + self.__dict__.update(sub_dict_select(kwds,somekeys)) + + if self.type.endswith('dir') and self.angletype=='': + self.angletype = 'radians' + + self.setlabels() + + def toacf(self): + pass + def sim(self): + pass + def sim_nl(self): + pass + def rotate(self): + pass + def moment(self,nr=2,vari='xt',even=True): + ''' Calculates spectral moments from spectrum + + Parameters + ---------- + nr : int + order of moments (maximum 4) + vari : string + variables in model, optional when two-dim.spectrum, + string with 'x' and/or 'y' and/or 't' + even : bool + False for all moments, + True for only even orders + + Returns + ------- + m : list of moments + mtext : list of strings describing the elements of m, see below + + Details + ------- + Calculates spectral moments of up to order four by use of + Simpson-integration. + + // + m_jkl=|| k1^j*k2^k*w^l S(w,th) dw dth + // + + where k1=w^2/gravity*cos(th-phi), k2=w^2/gravity*sin(th-phi) + and phi is the angle of the rotation in S.phi. If the spectrum + has field .g, gravity is replaced by S.g. + + The strings in output mtext have the same position in the cell array + as the corresponding numerical value has in output m + Notation in mtext: 'm0' is the variance, + 'mx' is the first-order moment in x, + 'mxx' is the second-order moment in x, + 'mxt' is the second-order cross moment between x and t, + 'myyyy' is the fourth-order moment in y + etc. + For the calculation of moments see Baxevani et al. + + Example: + S=demospec('dir') + [m,mtext]=spec2mom(S,2,'xyt') + + References + ---------- + Baxevani A. et al. (2001) + Velocities for Random Surfaces + ''' + +##% Tested on: Matlab 6.0 +##% Tested on: Matlab 5.3 +##% History: +##% Revised by I.R. 04.04.2001: Introducing the rotation angle phi. +##% Revised by A.B. 23.05.2001: Correcting 'mxxyy' and introducing +##% 'mxxyt','mxyyt' and 'mxytt'. +##% Revised by A.B. 21.10.2001: Correcting 'mxxyt'. +##% Revised by A.B. 21.10.2001: Adding odd-order moments. +##% By es 27.08.1999 + + + pi= np.pi + two_dim_spectra = ['dir','encdir','k2d'] + if self.type not in two_dim_spectra: + raise ValueError('Unknown 2D spectrum type!') + +## if (vari==None and nr<=1: +## vari='x' +## elif vari==None: +## vari='xt' +## else #% secure the mutual order ('xyt') +## vari=''.join(sorted(vari.lower())) +## Nv=len(vari) +## +## if vari[0]=='t' and Nv>1: +## vari = vari[1::]+ vari[0] +## +## Nv = len(vari) +## +## if not self.type.endswith('dir'): +## S1 = self.tospec(self.type[:-2]+'dir') +## else: +## S1 = self; +## w = np.ravel(S1.args[0]) +## theta = S1.args[1]-S1.phi +## S = S1.data +## Sw = simps(S,x=theta) +## m = [simps(Sw,x=w)] +## mtext=['m0'] +## +## if nr>0: +## +## nw=w.size +## if strcmpi(vari(1),'x') +## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'; +## % integral S*cos(th) dth +## end +## if strcmpi(vari(1),'y') +## Ss=simpson(th,S1.S.*(sin(th)*ones(1,nw))).'; +## % integral S*sin(th) dth +## if strcmpi(vari(1),'x') +## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'; +## end +## end +## if ~isfield(S1,'g') +## S1.g=gravity; +## end +## kx=w.^2/S1.g(1); % maybe different normalization in x and y => diff. g +## ky=w.^2/S1.g(end); +## +## if Nv>=1 +## switch vari +## case 'x' +## vec = kx.*Sc; +## mtext(end+1)={'mx'}; +## case 'y' +## vec = ky.*Ss; +## mtext(end+1)={'my'}; +## case 't' +## vec = w.*Sw; +## mtext(end+1)={'mt'}; +## end +## else +## vec = [kx.*Sc ky.*Ss w*Sw]; +## mtext(end+(1:3))={'mx', 'my', 'mt'}; +## end +## if nr>1 +## if strcmpi(vari(1),'x') +## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'; +## % integral S*cos(th) dth +## Sc2=simpson(th,S1.S.*(cos(th).^2*ones(1,nw))).'; +## % integral S*cos(th)^2 dth +## end +## if strcmpi(vari(1),'y')||strcmpi(vari(2),'y') +## Ss=simpson(th,S1.S.*(sin(th)*ones(1,nw))).'; +## % integral S*sin(th) dth +## Ss2=simpson(th,S1.S.*(sin(th).^2*ones(1,nw))).'; +## % integral S*sin(th)^2 dth +## if strcmpi(vari(1),'x') +## Scs=simpson(th,S1.S.*((cos(th).*sin(th))*ones(1,nw))).'; +## % integral S*cos(th)*sin(th) dth +## end +## end +## if ~isfield(S1,'g') +## S1.g=gravity; +## end +## +## if Nv==2 +## switch vari +## case 'xy' +## vec=[kx.*Sc ky.*Ss kx.^2.*Sc2 ky.^2.*Ss2 kx.*ky.*Scs]; +## mtext(end+(1:5))={'mx','my','mxx', 'myy', 'mxy'}; +## case 'xt' +## vec=[kx.*Sc w.*Sw kx.^2.*Sc2 w.^2.*Sw kx.*w.*Sc]; +## mtext(end+(1:5))={'mx','mt','mxx', 'mtt', 'mxt'}; +## case 'yt' +## vec=[ky.*Ss w.*Sw ky.^2.*Ss2 w.^2.*Sw ky.*w.*Ss]; +## mtext(end+(1:5))={'my','mt','myy', 'mtt', 'myt'}; +## end +## else +## vec=[kx.*Sc ky.*Ss w.*Sw kx.^2.*Sc2 ky.^2.*Ss2 w.^2.*Sw kx.*ky.*Scs kx.*w.*Sc ky.*w.*Ss]; +## mtext(end+(1:9))={'mx','my','mt','mxx', 'myy', 'mtt', 'mxy', 'mxt', 'myt'}; +## end +## if nr>3 +## if strcmpi(vari(1),'x') +## Sc3=simpson(th,S1.S.*(cos(th).^3*ones(1,nw))).'; +## % integral S*cos(th)^3 dth +## Sc4=simpson(th,S1.S.*(cos(th).^4*ones(1,nw))).'; +## % integral S*cos(th)^4 dth +## end +## if strcmpi(vari(1),'y')||strcmpi(vari(2),'y') +## Ss3=simpson(th,S1.S.*(sin(th).^3*ones(1,nw))).'; +## % integral S*sin(th)^3 dth +## Ss4=simpson(th,S1.S.*(sin(th).^4*ones(1,nw))).'; +## % integral S*sin(th)^4 dth +## if strcmpi(vari(1),'x') %both x and y +## Sc2s=simpson(th,S1.S.*((cos(th).^2.*sin(th))*ones(1,nw))).'; +## % integral S*cos(th)^2*sin(th) dth +## Sc3s=simpson(th,S1.S.*((cos(th).^3.*sin(th))*ones(1,nw))).'; +## % integral S*cos(th)^3*sin(th) dth +## Scs2=simpson(th,S1.S.*((cos(th).*sin(th).^2)*ones(1,nw))).'; +## % integral S*cos(th)*sin(th)^2 dth +## Scs3=simpson(th,S1.S.*((cos(th).*sin(th).^3)*ones(1,nw))).'; +## % integral S*cos(th)*sin(th)^3 dth +## Sc2s2=simpson(th,S1.S.*((cos(th).^2.*sin(th).^2)*ones(1,nw))).'; +## % integral S*cos(th)^2*sin(th)^2 dth +## end +## end +## if Nv==2 +## switch vari +## case 'xy' +## vec=[vec kx.^4.*Sc4 ky.^4.*Ss4 kx.^3.*ky.*Sc3s ... +## kx.^2.*ky.^2.*Sc2s2 kx.*ky.^3.*Scs3]; +## mtext(end+(1:5))={'mxxxx','myyyy','mxxxy','mxxyy','mxyyy'}; +## case 'xt' +## vec=[vec kx.^4.*Sc4 w.^4.*Sw kx.^3.*w.*Sc3 ... +## kx.^2.*w.^2.*Sc2 kx.*w.^3.*Sc]; +## mtext(end+(1:5))={'mxxxx','mtttt','mxxxt','mxxtt','mxttt'}; +## case 'yt' +## vec=[vec ky.^4.*Ss4 w.^4.*Sw ky.^3.*w.*Ss3 ... +## ky.^2.*w.^2.*Ss2 ky.*w.^3.*Ss]; +## mtext(end+(1:5))={'myyyy','mtttt','myyyt','myytt','myttt'}; +## end +## else +## vec=[vec kx.^4.*Sc4 ky.^4.*Ss4 w.^4.*Sw kx.^3.*ky.*Sc3s ... +## kx.^2.*ky.^2.*Sc2s2 kx.*ky.^3.*Scs3 kx.^3.*w.*Sc3 ... +## kx.^2.*w.^2.*Sc2 kx.*w.^3.*Sc ky.^3.*w.*Ss3 ... +## ky.^2.*w.^2.*Ss2 ky.*w.^3.*Ss kx.^2.*ky.*w.*Sc2s ... +## kx.*ky.^2.*w.*Scs2 kx.*ky.*w.^2.*Scs]; +## mtext(end+(1:15))={'mxxxx','myyyy','mtttt','mxxxy','mxxyy',... +## 'mxyyy','mxxxt','mxxtt','mxttt','myyyt','myytt','myttt','mxxyt','mxyyt','mxytt'}; +## +## end % if Nv==2 ... else ... +## end % if nr>3 +## end % if nr>1 +## m=[m simpson(w,vec)]; +## end % if nr>0 +## % end; %%if Nv==1... else... to be removed +## end % ... else two-dim spectrum + + + + def interp(self): + pass + def normalize(self): + pass + def bandwidth(self): + pass + def setlabels(self): + ''' Set automatic title, x-,y- and z- labels on SPECDATA object + + based on type, angletype, freqtype + ''' + + N = len(self.type); + if N==0: + raise ValueError('Object does not appear to be initialized, it is empty!') + + labels = ['','',''] + if self.type.endswith('dir'): + title = 'Directional Spectrum' + if self.freqtype.startswith('w'): + labels[0] = 'Frequency [rad/s]' + labels[2] = 'S(w,\theta) [m**2 s / rad**2]' + else: + labels[0] = 'Frequency [Hz]' + labels[2] = 'S(f,\theta) [m**2 s / rad]' + + if self.angletype.startswith('r'): + labels[1] = 'Wave directions [rad]' + elif self.angletype.startswith('d'): + labels[1] = 'Wave directions [deg]' + elif self.type.endswith('freq'): + title = 'Spectral density' + if self.freqtype.startswith('w'): + labels[0] = 'Frequency [rad/s]' + labels[1] = 'S(w) [m**2 s/ rad]' + else: + labels[0] = 'Frequency [Hz]' + labels[1] = 'S(f) [m**2 s]' + else: + title = 'Wave Number Spectrum' + labels[0] = 'Wave number [rad/m]' + if self.type.endswith('k1d'): + labels[1] = 'S(k) [m**3/ rad]' + elif self.type.endswith('k2d'): + labels[1] = labels[0] + labels[2] = 'S(k1,k2) [m**4/ rad**2]' + else: + raise ValueError('Object does not appear to be initialized, it is empty!') + if self.norm!=0: + title = 'Normalized ' + title + labels[0] = 'Normalized ' + labels[0].split('[')[0] + if not self.type.endswith('dir'): + labels[1] = labels[1].split('[')[0] + labels[2] = labels[2].split('[')[0] + + self.labels.title = title + self.labels.xlab = labels[0] + self.labels.ylab = labels[1] + self.labels.zlab = labels[2] + +class CovData1D(WafoData): + """ Container class for 1D covariance data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + + type : string + spectrum type, one of 'freq', 'k1d', 'enc' (default 'freq') + lagtype : letter + lag type, one of: 'x', 'y' or 't' (default 't') + + + Examples + -------- + >>> import numpy as np + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=3) + >>> w = np.linspace(0,4,256) + >>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values + + See also + -------- + WafoData + CovData + """ + + def __init__(self,*args,**kwds): + super(CovData1D, self).__init__(*args,**kwds) + + self.name='WAFO Covariance Object' + self.type='time' + self.lagtype='t' + self.h=np.inf + self.tr=None + self.phi=0. + self.v=0. + self.norm=0 + somekeys = ['phi', 'name', 'h', 'tr', 'lagtype', 'v', 'type', 'norm'] + + self.__dict__.update(sub_dict_select(kwds,somekeys)) + + #self.setlabels() + def copy(self): + kwds = self.__dict__.copy() + wdata = CovData1D(**kwds) + return wdata + + def tospec(self,rate=None,method='linear',nugget=0.0,trunc=1e-5,fast=True): + '''Computes spectral density from the auto covariance function + + Parameters + ---------- + rate = scalar, int + 1,2,4,8...2^r, interpolation rate for f (default 1) + + method: string + interpolation method 'stineman', 'linear', 'cubic' + + nugget = scalar, real + nugget effect to ensure that round off errors do not result in + negative spectral estimates. Good choice might be 10^-12. + + trunc : scalar, real + truncates all spectral values where S/max(S) < trunc + 0 <= trunc <1 This is to ensure that high frequency + noise is not added to the spectrum. (default 1e-5) + fast : bool + if True : zero-pad to obtain power of 2 length ACF (default) + otherwise no zero-padding of ACF, slower but more accurate. + + Returns + -------- + S = SpecData1D object + spectral density + + NB! This routine requires that the covariance is evenly spaced + starting from zero lag. Currently only capable of 1D matrices. + + Example: + >>> import wafo.spectrum.models as sm + >>> import numpy as np + >>> import scipy.signal.signaltools as st + >>> L = 129 + >>> t = np.linspace(0,75,L) + >>> R = np.zeros(L) + >>> win = st.parzen(41) + >>> R[0:20] = win[20:41] + >>> R0 = CovData1D(R,t) + >>> S0 = R0.tospec() + + >>> Sj = sm.Jonswap() + >>> S = Sj.toSpecData() + >>> R2 = S.toacf() + >>> S1 = R2.tospec() + >>> assert(all(abs(S1.data-S.data)<1e-4) ,'COV2SPEC') + + See also + -------- + spec2cov + datastructures + ''' + + dT = self.sampling_period() + # dT = time-step between data points.(default = T(2)-T1)). + + ACF, ti = np.atleast_1d(self.data,self.args) + + if self.lagtype in 't': + spectype = 'freq' + ftype = 'w' + else: + spectype = 'k1d' + ftype = 'k' + + if rate is None: + rate = 1 #;%interpolation rate + else: + rate = 2**nextpow2(rate) #;%make sure rate is a power of 2 + + + #% add a nugget effect to ensure that round off errors + #% do not result in negative spectral estimates + ACF[0] = ACF[0] +nugget + n = ACF.size + # embedding a circulant vector and Fourier transform + if fast: + nfft = 2**nextpow2(2*n-2) + else: + nfft = 2*n-2 + + nf = nfft/2 #;% number of frequencies + fft = np.fft.fft + ACF = np.r_[ACF,np.zeros(nfft-2*n+2),ACF[n-1:0:-1]] + + Rper = (fft(ACF,nfft).real).clip(0) #% periodogram + RperMax = Rper.max() + Rper = np.where(Rper1: + So.args = np.linspace(0,pi/dT,nf*rate); + if method=='stineman': + So.data = stineman_interp(So.args,w,S) + else: + intfun = interpolate.interp1d(w,S,kind=method) + So.data = intfun(So.args) + So.data = So.data.clip(0) # clip negative values to 0 + + return So + + + + + + def sampling_period(self): + ''' Returns sampling interval + + Returns + --------- + dT : scalar + sampling interval, unit: + [s] if lagtype=='t' + [m] otherwise + + + See also + ''' + dt1 = self.args[1]-self.args[0] + N = np.size(self.args)-1 + T = self.args[-1]-self.args[0] + dt = T/N + + return dt + + def sim(self,ns=None,cases=1,dt=None,iseed=None,derivative=False): + ''' Simulates a Gaussian process and its derivative from ACF + + Parameters + ---------- + ns : scalar + number of simulated points. (default length(S)-1=n-1). + If ns>n-1 it is assummed that R(k)=0 for all k>n-1 + cases : scalar + number of replicates (default=1) + dt : scalar + step in grid (default dt is defined by the Nyquist freq) + iseed : int or state + starting state/seed number for the random number generator + (default none is set) + derivative : bool + if true : return derivative of simulated signal as well + otherwise + + + Returns + ------- + xs = a cases+1 column matrix ( t,X1(t) X2(t) ...). + xsder = a cases+1 column matrix ( t,X1'(t) X2'(t) ...). + + Details + ------- + Performs a fast and exact simulation of stationary zero mean + Gaussian process through circulant embedding of the covariance matrix. + + If the ACF has a non-empty field .tr, then the transformation is + applied to the simulated data, the result is a simulation of a transformed + Gaussian process. + + Note: The simulation may give high frequency ripple when used with a + small dt. + + Example: + >>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap() + >>> S = Sj.toSpecData() #Make spec + >>> R = S.toacf() + >>> x = R.sim(ns=1000,dt=0.2) + + See also + -------- + spec2sdat, gaus2dat + + Reference + ----------- + C.R Dietrich and G. N. Newsam (1997) + "Fast and exact simulation of stationary + Gaussian process through circulant embedding + of the Covariance matrix" + SIAM J. SCI. COMPT. Vol 18, No 4, pp. 1088-1107 + + ''' + + # TODO fix it, it does not work + #% add a nugget effect to ensure that round off errors + #% do not result in negative spectral estimates + nugget=0 #;%10^-12; + + _set_seed(iseed) + + ACF = self.data.ravel() + n = ACF.size + + + I = ACF.argmax() + if I!=0: + raise ValueError('ACF does not have a maximum at zero lag') + + ACF.shape = (n,1) + + dT = self.sampling_period() + + + fft = np.fft.fft + + x=np.zeros((ns,cases+1)) + + + if derivative: + xder=x.copy() + + + #% add a nugget effect to ensure that round off errors + #% do not result in negative spectral estimates + ACF[0]=ACF[0]+nugget; + + #% Fast and exact simulation of simulation of stationary + #% Gaussian process throug circulant embedding of the + #% Covariance matrix + floatinfo = numpy.finfo(float) + if (abs(ACF[-1])>floatinfo.eps): #% assuming ACF(n+1)==0 + m2=2*n-1; + nfft=2**nextpow2(max(m2,2*ns)); + ACF=np.r_[ACF,np.zeros((nfft-m2,1)),ACF[-1:0:-1,:]] + + #disp('Warning: I am now assuming that ACF(k)=0 ') + #disp('for k>MAXLAG.') + + else: # % ACF(n)==0 + m2=2*n-2; + nfft=2**nextpow2(max(m2,2*ns)) + ACF=np.r_[ACF,np.zeros((nfft-m2,1)),ACF[n-1:1:-1,:]] + + #%m2=2*n-2; + + S=fft(ACF,nfft,axis=0).real #;% periodogram + + + I=S.argmax() + k=np.flatnonzero(S<0); + if k.size>0: + #disp('Warning: Not able to construct a nonnegative circulant ') + #disp('vector from the ACF. Apply the parzen windowfunction ') + #disp('to the ACF in order to avoid this.') + #disp('The returned result is now only an approximation.') + + # truncating negative values to zero to ensure that + # that this noise is not added to the simulated timeseries + + S[k] = 0. + + ix = np.flatnonzero(k>2*I) + if ix.size>0: +## % truncating all oscillating values above 2 times the peak +## % frequency to zero to ensure that +## % that high frequency noise is not added to +## % the simulated timeseries. + ix0 = k[ix[0]] + S[ix0:-ix0] =0.0 + + + sqrt = np.sqrt + trunc = 1e-5; + maxS = S[I] + k=np.flatnonzero(S[I:-I]0: + S[k+I]=0. + #% truncating small values to zero to ensure that + #% that high frequency noise is not added to + #% the simulated timeseries + + cases1 = np.floor(cases/2); + cases2 = np.ceil(cases/2); +#% Generate standard normal random numbers for the simulations +#% ----------------------------------------------------------- + randn = np.random.randn + epsi = randn(nfft,cases2)+1j*randn(nfft,cases2); + Ssqr=sqrt(S/(nfft)) #; %sqrt(S(wn)*dw ) + ephat=epsi*Ssqr[:,np.newaxis] + y=fft(ephat,nfft); + x[:,1:cases+1]=np.hstack((y[2:ns+2,0:cases2].real, y[2:ns+2,0:cases1].imag)) + + + + x[:,0]=np.linspace(0,(ns-1)*dT,ns) #%(0:dT:(dT*(np-1)))'; + + if derivative: + Ssqr = Ssqr*np.r_[0:(nfft/2+1),-(nfft/2-1):0]*2*np.pi/nfft/dT + ephat = epsi*Ssqr[:,np.newaxis] + y = fft(ephat,nfft); + xder[:,1:(cases+1)]= np.hstack((y[2:ns+2,0:cases2].imag -y[2:ns+2,0:cases1].real)) + xder[:,0]=x[:,0] + + if self.tr is not None: + np.disp(' Transforming data.') + g=self.tr; + G=np.fliplr(g); #% the invers of g + if derivative: + for ix in range(cases): + tmp=tranproc(np.hstack((x[:,ix+1], xder[:,ix+1])),G); + x[:,ix+1]=tmp[:,0]; + xder[:,ix+1]=tmp[:,1]; + + else: + for ix in range(cases): + x[:,ix+1]=tranproc(x[:,ix+1],G); + + if derivative: + return x,xder + else: + return x + + + +class TimeSeries(WafoData): + ''' Container class for 1D TimeSeries data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + + type : integer or string + sensor type for time series (default 'n' : Surface elevation) + see sensortype for more options + position : vector of size 3 + instrument position relative to the coordinate system + + ''' + def __init__(self,*args,**kwds): + super(TimeSeries, self).__init__(*args,**kwds) + self.name='WAFO TimeSeries Object' + self.type='n' + self.position = np.zeros(3) + somekeys = ['type', 'position'] + self.__dict__.update(sub_dict_select(kwds,somekeys)) + + #self.setlabels() + if not any(self.args): + n = len(self.data) + self.args = xrange(0,n) + + def sampling_period(self): + ''' Returns sampling interval + + Returns + --------- + dT : scalar + sampling interval, unit: + [s] if lagtype=='t' + [m] otherwise + + + See also + ''' + dt1 = self.args[1]-self.args[0] + N = np.size(self.args)-1 + T = self.args[-1]-self.args[0] + dt = T/N + + return dt + + def acf(self,lag=None,flag='biased',norm=False,dt = None): + ''' Return auto covariance function from data. + + + R = ACF vector length L+1 + t = time lags length L+1 + stdev = estimated large lag standard deviation of the estimate + assuming x is a Gaussian process: + if R(k)=0 for all lags k>q then an approximation + of the variance for large samples due to Bartlett + var(R(k))=1/N*(R(0)^2+2*R(1)^2+2*R(2)^2+ ..+2*R(q)^2) + for k>q and where N=length(x). Special case is + white noise where it equals R(0)^2/N for k>0 + norm = 0 indicating that R is not normalized + + x = a column data vector or two column data matrix with sampled times and values. + L = the maximum time-lag for which the ACF is estimated. + (Default L=n-1) + plotflag = 1 then the ACF is plotted vs lag + 2 then the ACF is plotted vs lag in seconds + 3 then the ACF is plotted vs lag and vs lag (sec + dT = time-step between data points (default xn(2,1)-xn(1,1) or 1 Hz). + flag = 'biased' : scales the raw cross-correlation by 1/n. (default) + 'unbiased': scales the raw correlation by 1/(n-abs(k)), + where k is the index into the result. + + + - x may contain NaN's (i.e. missing values). + + Example: + x = load('sea.dat'); + rf = dat2cov(x,150,2) + ''' + n = len(self.data) + if not lag: + lag = n-1 + + x = self.data.copy() + indnan = numpy.isnan(x) + if any(indnan): + x = x - numpy.mean(x[1-indnan]) # remove the mean pab 09.10.2000 + #indnan = find(indnan); + Ncens = n - sum(indnan) + x[indnan] = 0. # pab 09.10.2000 much faster for censored samples + else: + indnan = None + Ncens = n + x = x - numpy.mean(x) + + fft = numpy.fft.fft + nfft = 2**nextpow2(n) + Rper = abs(fft(x,nfft))**2/Ncens # Raw periodogram + + R = numpy.real(fft(Rper))/nfft # %ifft=fft/nfft since Rper is real! + lags = np.arange(0,lag+1) + if flag.startswith('unbiased'): + # unbiased result, i.e. divide by n-abs(lag) + R=R[lags]*Ncens/ np.arange(Ncens,Ncens-lag,-1) + #else % biased result, i.e. divide by n + # r=r(1:L+1)*Ncens/Ncens; + + #c0 = R[0] + dT = self.sampling_period() + t = numpy.linspace(0,lag*dT,lag+1) + cumsum = numpy.cumsum + acf = CovData1D(R[lags],t) + acf.stdev=numpy.sqrt(numpy.r_[ 0, 1 ,1+2*cumsum(R[1:]**2)]/Ncens) + acf.children = [WafoData(-2.*acf.stdev[lags],t),WafoData(2.*acf.stdev[lags],t)] + return acf + + def spec(self): + pass + def turning_points(self,h=0,wavetype=None,output='tp'): + ''' Return turning points (tp) from data, optionally rainflowfiltered. + + Parameters + ---------- + h : scalar + a threshold; + if h<0, then tp=x; + if h=0, then tp is a sequence of turning points (default); + if h>0, then all rainflow cycles with height smaller than + h are removed. + + wavetype : string + defines the type of wave. Possible options are + 'mw' 'Mw' or 'none'. + If None all rainflow filtered min and max + will be returned, otherwise only the rainflow filtered + min and max, which define a wave according to the + wave definition, will be returned. + output : string + 'tp' if only returning tp + 'all' if tp and ind + + Returns + ------- + tp : TimeSeries object + with times and turning points. + + ind : arraylike + indices to the turning points in the original sequence. + + + Example: + x = load('sea.dat'); x1 = x(1:200,:); + tp = dat2tp(x1,0,'Mw'); tph = dat2tp(x1,0.3,'Mw'); + plot(x1(:,1),x1(:,2),tp(:,1),tp(:,2),'ro',tph(:,1),tph(:,2),'k*') + + See also + --------- + findcross, findrfc + ''' + + if h<0: + tp = self.copy() + ind = np.arange(tp.args.size) + if output.startswith('tp'): + return tp + else: + return tp, ind + x2 = self.data + + n = len(x2) + ind = findextrema(x2) + + if ind.size<2: + tp = None + ind = None + return tp + + + #% In order to get the exact up-crossing intensity from rfc by + #% mm2lc(tp2mm(rfc)) we have to add the indices + #% to the last value (and also the first if the + #% sequence of turning points does not start with a minimum). + + if x2[ind[0]]>x2[ind[1]]: + #% adds indices to first and last value + ind = np.r_[0, ind ,n] + else: # adds index to the last value + ind = np.r_[ind, n] + + + if h>0: + ind1 = findrfc(x2[ind],h) + ind = ind[ind1] + + Nm =ind.size #% number of min and Max + + if wavetype in ('mw','Mw'): + + xor = lambda a,b : a^b + #% make sure that the first is a Max if wdef == 'Mw' + #% or make sure that the first is a min if wdef == 'mw' + removeFirst = xor((x2[ind[0]]>x2[ind[1]]),wavetype.startswith('Mw')) + if removeFirst: + ind = ind[1::] + Nm = Nm-1; + + + #% make sure the number of minima and Maxima are according to the wavedef. + #% i.e., make sure Nm=length(ind) is odd + if (mod(Nm,2))!=1: + ind = ind[:-1] + Nm = Nm-1 + try: + t = self.args + except: + t = ind + tp = TimeSeries(self.data[ind],t) + + return tp + + def lc_spectrum(self): + pass + def cycles(self): + pass + def trough_crest(self): + pass + def wave_period(self): + pass + def reconstruct(self): + pass + def plot_wave_idx(self): + ''' spwaveplot + ''' + pass + def findoutliers(self): + pass + + +def sensortypeid(*sensortypes): + ''' Return ID for sensortype name + + Parameter + --------- + sensortypes : list of strings defining the sensortype + + Returns + ------- + sensorids : list of integers defining the sensortype + + Valid senor-ids and -types for time series are as follows: + 0, 'n' : Surface elevation (n=Eta) + 1, 'n_t' : Vertical surface velocity + 2, 'n_tt' : Vertical surface acceleration + 3, 'n_x' : Surface slope in x-direction + 4, 'n_y' : Surface slope in y-direction + 5, 'n_xx' : Surface curvature in x-direction + 6, 'n_yy' : Surface curvature in y-direction + 7, 'n_xy' : Surface curvature in xy-direction + 8, 'P' : Pressure fluctuation about static MWL pressure + 9, 'U' : Water particle velocity in x-direction + 10, 'V' : Water particle velocity in y-direction + 11, 'W' : Water particle velocity in z-direction + 12, 'U_t' : Water particle acceleration in x-direction + 13, 'V_t' : Water particle acceleration in y-direction + 14, 'W_t' : Water particle acceleration in z-direction + 15, 'X_p' : Water particle displacement in x-direction from its mean position + 16, 'Y_p' : Water particle displacement in y-direction from its mean position + 17, 'Z_p' : Water particle displacement in z-direction from its mean position + + Example: + >>> sensortypeid('W','v') + [11, 10] + >>> sensortypeid('rubbish') + [-1.#IND] + + See also sensortype, id + ''' + + sensorid_table = dict(n=0,n_t=1,n_tt=2,n_x=3,n_y=4,n_xx=5, + n_yy=6,n_xy=7,p=8,u=9,v=10,w=11,u_t=12, + v_t=13,w_t=14,x_p=15,y_p=16,z_p=17) + try: + return [sensorid_table.get(name.lower(),np.NAN) for name in sensortypes] + except: + raise ValueError('Input must be a string!') + + + +def sensortype(*sensorids): + ''' Return sensortype name + + Parameter + --------- + sensorids : vector or list of integers defining the sensortype + + Returns + ------- + sensornames : list of strings defining the sensortype + + Valid senor-ids and -types for time series are as follows: + 0, 'n' : Surface elevation (n=Eta) + 1, 'n_t' : Vertical surface velocity + 2, 'n_tt' : Vertical surface acceleration + 3, 'n_x' : Surface slope in x-direction + 4, 'n_y' : Surface slope in y-direction + 5, 'n_xx' : Surface curvature in x-direction + 6, 'n_yy' : Surface curvature in y-direction + 7, 'n_xy' : Surface curvature in xy-direction + 8, 'P' : Pressure fluctuation about static MWL pressure + 9, 'U' : Water particle velocity in x-direction + 10, 'V' : Water particle velocity in y-direction + 11, 'W' : Water particle velocity in z-direction + 12, 'U_t' : Water particle acceleration in x-direction + 13, 'V_t' : Water particle acceleration in y-direction + 14, 'W_t' : Water particle acceleration in z-direction + 15, 'X_p' : Water particle displacement in x-direction from its mean position + 16, 'Y_p' : Water particle displacement in y-direction from its mean position + 17, 'Z_p' : Water particle displacement in z-direction from its mean position + + Example: + >>> sensortype(range(3)) + ['n', 'n_t', 'n_tt'] + + See also sensortypeid, tran + ''' + + + + validNames = ('n','n_t','n_tt','n_x','n_y','n_xx', + 'n_yy','n_xy','p','u','v','w','u_t', + 'v_t','w_t','x_p','y_p','z_p',np.NAN) + ids = np.atleast_1d(*sensorids) + if isinstance(ids,list): + ids = np.hstack(ids) + N = len(validNames)-1 + + try: + return [validNames[id] for id in ids.clip(0,N)] + except: + raise ValueError('Input must be an integer!') + + +def main(): + from wafo.spectrum import models as sm + sensortype(range(21)) + w = np.linspace(0,3,100) + Sj = sm.Jonswap() + S = Sj.toSpecData() + #S = SpecData1D(Sj(w),w) + R = S.toacf(nr=1) + S1 = S.copy() + Si = R.tospec() + ns =5000; + dt = .2; + x1 = S.sim_nl(ns= ns,dt=dt); + x2 = TimeSeries(x1[:,1],x1[:,0]) + R = x2.acf(lag=100) + R.plot() + + S.plot('ro') + t = S.moment() + t1 = S.bandwidth([0,1,2,3]) + S1 = S.copy() + S1.resample(dt=0.3,method='cubic') + S1.plot('k+') + x = S1.sim(ns=100) + import pylab + pylab.clf() + pylab.plot(x[:,0],x[:,1]) + pylab.show() + + pylab.close('all') + np.disp('done') + + +if __name__ == '__main__': + if False: #True: # + import doctest + doctest.testmod() + else: + #main() + import wafo.spectrum.models as sm + Sj = sm.Jonswap(); + S = Sj.toSpecData(); + + R = S.toacf() + x = R.sim(ns=1000,dt=0.2) + S.characteristic(['hm0','tm02']) + ns =1000; dt = .2; + x1 = S.sim_nl(ns,dt=dt); + + x = np.arange(-2,2,0.2) + + # Plot 2 objects in one call + d2 = WafoData(np.sin(x),x,xlab='x',ylab='sin',title='sinus') + + + d0 = d2.copy() + d0.data = d0.data*0.9 + d1 = d2.copy() + d1.data = d1.data*1.2 + d1.children = [d0] + d2.children = [d1] + + d2.plot() + print 'Done' \ No newline at end of file diff --git a/wafo/dctpack.py b/wafo/dctpack.py new file mode 100755 index 0000000..3ea245f --- /dev/null +++ b/wafo/dctpack.py @@ -0,0 +1,107 @@ +import numpy as np +__all__ = ['dct', 'idct'] +def dct(x, n=None): + """ + Discrete Cosine Transform + + N-1 + y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N. + n=0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + fft = np.fft.fft + x = np.atleast_1d(x) + + if n is None: + n = x.shape[-1] + + if x.shape[-1] < n: + n_shape = x.shape[:-1] + (n - x.shape[-1],) + xx = np.hstack((x, np.zeros(n_shape))) + else: + xx = x[..., :n] + + real_x = np.all(np.isreal(xx)) + if (real_x and (np.remainder(n, 2) == 0)): + xp = 2 * fft(np.hstack((xx[..., ::2], xx[..., ::-2]))) + else: + xp = fft(np.hstack((xx, xx[..., ::-1]))) + xp = xp[..., :n] + + w = np.exp(-1j * np.arange(n) * np.pi / (2 * n)) + + y = xp * w + + if real_x: + return y.real + else: + return y + +def idct(x, n=None): + """ + Inverse Discrete Cosine Transform + + N-1 + x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N. + n=0 + + w(0) = 1/2 + w(n) = 1 for n>0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + + ifft = np.fft.ifft + x = np.atleast_1d(x) + + if n is None: + n = x.shape[-1] + + w = np.exp(1j * np.arange(n) * np.pi / (2 * n)) + + if x.shape[-1] < n: + n_shape = x.shape[:-1] + (n - x.shape[-1],) + xx = np.hstack((x, np.zeros(n_shape))) * w + else: + xx = x[..., :n] * w + + real_x = np.all(np.isreal(x)) + if (real_x and (np.remainder(n, 2) == 0)): + xx[..., 0] = xx[..., 0] * 0.5 + yp = ifft(xx) + y = np.zeros(xx.shape, dtype=complex) + y[..., ::2] = yp[..., :n / 2] + y[..., ::-2] = yp[..., n / 2::] + else: + yp = ifft(np.hstack((xx, np.zeros_like(xx[..., 0]), np.conj(xx[..., :0:-1])))) + y = yp[..., :n] + + if real_x: + return y.real + else: + return y diff --git a/wafo/definitions.py b/wafo/definitions.py new file mode 100755 index 0000000..a6474e1 --- /dev/null +++ b/wafo/definitions.py @@ -0,0 +1,284 @@ +""" +WAFO defintions and numenclature + +crossings : +cycle_pairs : +turning_points : +wave_amplitudes : +wave_periods : +waves : +""" +def wave_amplitudes(): + r""" + Wave amplitudes and heights definitions and nomenclature + + Definition of wave amplitudes and wave heights + --------------------------------------------- + + <----- Direction of wave propagation + + + |..............c_..........| + | /| \ | + Hd | _/ | \ | Hu + M | / | \ | + / \ | M / Ac | \_ | c_ + F \ | / \m/ | \ | / \ + ------d----|---u------------------d---|---u----d------ level v + \ | /| \ | / \L + \_ | / | At \_|_/ + \|/..| t + t + + Parameters + ---------- + Ac : crest amplitude + At : trough amplitude + Hd : wave height as defined for down crossing waves + Hu : wave height as defined for up crossing waves + + See also + -------- + waves, crossings, turning_points + """ + print(wave_amplitudes.__doc__) + +def crossings(): + r""" + Level v crossing definitions and nomenclature + + Definition of level v crossings + ------------------------------- + M + . . M M + . . . . . . + F d . . L + -----------------------u-------d-------o----------------- level v + . . . . u + . m + m + + Let the letters 'm', 'M', 'F', 'L','d' and 'u' in the + figure above denote local minimum, maximum, first value, last + value, down- and up-crossing, respectively. The remaining + sampled values are indicated with a '.'. Values that are identical + with v, but do not cross the level is indicated with the letter 'o'. + We have a level up-crossing at index, k, if + + x(k) < v and v < x(k+1) + or if + x(k) == v and v < x(k+1) and x(r) < v for some di < r <= k-1 + + where di is the index to the previous downcrossing. + Similarly there is a level down-crossing at index, k, if + + x(k) > v and v > x(k+1) + or if + x(k) == v and v > x(k+1) and x(r) > v for some ui < r <= k-1 + + where ui is the index to the previous upcrossing. + + The first (F) value is a up crossing if x(1) = v and x(2) > v. + Similarly, it is a down crossing if x(1) = v and x(2) < v. + + See also + -------- + wave_periods, waves, turning_points, findcross, findtp + """ + print(crossings.__doc__) + +def cycle_pairs(): + r""" + Cycle pairs definitions and numenclature + + Definition of Max2min and min2Max cycle pair + -------------------------------------------- + A min2Max cycle pair (mM) is defined as the pair of a minimum + and the following Maximum. Similarly a Max2min cycle pair (Mm) + is defined as the pair of a Maximum and the following minimum. + (all turning points possibly rainflowfiltered before pairing into cycles.) + + See also + -------- + turning_points + """ + print(cycle_pairs.__doc__) + +def wave_periods(): + r""" + Wave periods (lengths) definitions and nomenclature + + Definition of wave periods (lengths) + ------------------------------------ + + + <----- Direction of wave propagation + + <-------Tu---------> + : : + <---Tc-----> : + : : : <------Tcc----> + M : c : : : : + / \ : M / \_ : : c_ c + F \ :/ \m/ \: :/ \ / \ + ------d--------u----------d-------u----d--------u---d-------- level v + \ / \ / :\_ _/: :\_ L + \_ / \_t_/ : \t_/ : : \m/ + \t/ : : : : + : : <---Tt---> : + <--------Ttt-------> : : + <-----Td-----> + Tu = Up crossing period + Td = Down crossing period + Tc = Crest period, i.e., period between up crossing and + the next down crossing + Tt = Trough period, i.e., period between down crossing and + the next up crossing + Ttt = Trough2trough period + Tcc = Crest2crest period + + + <----- Direction of wave propagation + + <--Tcf-> Tuc + : : <-Tcb-> <-> + M : c : : : : + / \ : M / \_ c_ : : c + F \ :/ \m/ \ / \___: :/ \ + ------d---------u----------d---------u-------d--------u---d------ level v + :\_ / \ __/: \_ _/ \_ L + : \_ / \_t_/ : \t_/ \m/ + : \t/ : : + : : : : + <-Ttf-> <-Ttb-> + + + Tcf = Crest front period, i.e., period between up crossing and crest + Tcb = Crest back period, i.e., period between crest and down crossing + Ttf = Trough front period, i.e., period between down crossing and trough + Ttb = Trough back period, i.e., period between trough and up crossing + Also note that Tcf and Ttf can also be abbreviated by their crossing + marker, e.g. Tuc (u2c) and Tdt (d2t), respectively. Similar applies + to all the other wave periods and wave lengths. + + (The nomenclature for wave length is similar, just substitute T and + period with L and length, respectively) + + <----- Direction of wave propagation + + <--TMm--> + <-TmM-> : : + M : : M : + / \ : M /:\_ : M_ M + F \ : / \m/ : \ : /: \ / \ + \ : / : \ : / : \ / \ + \ : / : \ : / : \_ _/ \_ L + \_ : / : \_m_/ : \m_/ \m/ + \m/ : : : : + <-----TMM-----> <----Tmm-----> + + + TmM = Period between minimum and the following Maximum + TMm = Period between Maximum and the following minimum + TMM = Period between Maximum and the following Maximum + Tmm = Period between minimum and the following minimum + + See also + -------- + waves, + wave_amplitudes, + crossings, + turning_points + """ + print(wave_periods.__doc__) +def turning_points(): + r""" + Turning points definitions and numenclature + + Definition of turningpoints + --------------------------- + <----- Direction of wave propagation + + M M + / \ .... M /:\_ M_ M + F \ | / \m/ : \ /: \ / \ + \ h | / : \ / : \ / \ + \ | / : \ / : \_ _/ \_ L + \_ | / : \_m_/ : \m_/ \m/ + \m/ : : : : + <------Mw-----> <-----mw-----> + + Local minimum or maximum are indicated with the + letters 'm' or 'M'. Turning points in this connection are all + local max (M) and min (m) and the last (L) value and the + first (F) value if the first local extremum is a max. + + (This choice is made in order to get the exact up-crossing intensity + from rfc by mm2lc(tp2mm(rfc)) ) + + + See also + -------- + waves, + crossings, + cycle_pairs + findtp + + """ + print(turning_points.__doc__) +def waves(): + r""" + Wave definitions and nomenclature + + Definition of trough and crest + ------------------------------ + A trough (t) is defined as the global minimum between a + level v down-crossing (d) and the next up-crossing (u) + and a crest (c) is defined as the global maximum between a + level v up-crossing and the following down-crossing. + + Definition of down- and up -crossing waves + ------------------------------------------ + A level v-down-crossing wave (dw) is a wave from a + down-crossing to the following down-crossing. + Similarly, a level v-up-crossing wave (uw) is a wave from an up-crossing + to the next up-crossing. + + Definition of trough and crest waves + ------------------------------------ + A trough-to-trough wave (tw) is a wave from a trough (t) to the + following trough. The crest-to-crest wave (cw) is defined similarly. + + + Definition of min2min and Max2Max wave + -------------------------------------- + A min2min wave (mw) is defined starting from a minimum (m) and + ending in the following minimum. + Similarly a Max2Max wave (Mw) is thus a wave from a maximum (M) + to the next maximum (all waves optionally rainflow filtered). + + <----- Direction of wave propagation + + + <------Mw-----> <----mw----> + M : : c : + / \ M : / \_ : c_ c + F \ / \m/ \ : /: \ /:\ + ------d--------u----------d-------u----d--------u---d------ level v + \ /: \ : /: : :\_ _/ : :\_ L + \_ / : \_t_/ : : : \t_/ : : \m/ + \t/ <-------uw---------> : <-----dw-----> + : : : : + <--------tw--------> <------cw-----> + + (F=first value and L=last value). + + See also + -------- + turning_points, + crossings, + wave_periods + findtc, + findcross + """ + print(waves.__doc__) \ No newline at end of file diff --git a/wafo/definitions.~py b/wafo/definitions.~py new file mode 100755 index 0000000..1ec1a24 --- /dev/null +++ b/wafo/definitions.~py @@ -0,0 +1,281 @@ +""" +WAFO defintions and numenclature + +crossings : +cycle_pairs : +turning_points : +wave_amplitudes : +wave_periods : +waves : +""" +def wave_amplitudes(): + """ + Wave amplitudes and heights definitions and nomenclature + + Definition of wave amplitudes and wave heights + --------------------------------------------- + + <----- Direction of wave propagation + + + ...............c_.......... + | /| \ | + Hd | _/ | \ | Hu + M | / | \ | + / \ | M / Ac | \_ | c_ + F \ | / \m/ | \ | / \ + ------d----|---u------------------d---|---u----d------ level v + \ | /| \ | / \L + \_ | / | At \_|_/ + \|/..| t + t + + Parameters + ---------- + Ac : crest amplitude + At : trough amplitude + Hd : wave height as defined for down crossing waves + Hu : wave height as defined for up crossing waves + + See also + -------- + waves, crossings, turning_points + """ + pass +def crossings(): + """ + Level v crossing definitions and nomenclature + + Definition of level v crossings + ------------------------------- + M + . . M M + . . . . . . + F d . . L + -----------------------u-------d-------o----------------- level v + . . . . u + . m + m + + Let the letters 'm', 'M', 'F', 'L','d' and 'u' in the + figure above denote local minimum, maximum, first value, last + value, down- and up-crossing, respectively. The remaining + sampled values are indicated with a '.'. Values that are identical + with v, but do not cross the level is indicated with the letter 'o'. + We have a level up-crossing at index, k, if + + x(k) < v and v < x(k+1) + or if + x(k) == v and v < x(k+1) and x(r) < v for some di < r <= k-1 + + where di is the index to the previous downcrossing. + Similarly there is a level down-crossing at index, k, if + + x(k) > v and v > x(k+1) + or if + x(k) == v and v > x(k+1) and x(r) > v for some ui < r <= k-1 + + where ui is the index to the previous upcrossing. + + The first (F) value is a up crossing if x(1) = v and x(2) > v. + Similarly, it is a down crossing if x(1) = v and x(2) < v. + + See also + -------- + wave_periods, waves, turning_points, findcross, findtp + """ + pass +def cycle_pairs(): + """ + Cycle pairs definitions and numenclature + + Definition of Max2min and min2Max cycle pair + -------------------------------------------- + A min2Max cycle pair (mM) is defined as the pair of a minimum + and the following Maximum. Similarly a Max2min cycle pair (Mm) + is defined as the pair of a Maximum and the following minimum. + (all turning points possibly rainflowfiltered before pairing into cycles.) + + See also + -------- + turning_points + """ + pass +def wave_periods(): + """ + Wave periods (lengths) definitions and nomenclature + + Definition of wave periods (lengths) + ------------------------------------ + + + <----- Direction of wave propagation + + <-------Tu---------> + : : + <---Tc-----> : + : : : <------Tcc----> + M : c : : : : + / \ : M / \_ : : c_ c + F \ :/ \m/ \: :/ \ / \ + ------d--------u----------d-------u----d--------u---d-------- level v + \ / \ / :\_ _/: :\_ L + \_ / \_t_/ : \t_/ : : \m/ + \t/ : : : : + : : <---Tt---> : + <--------Ttt-------> : : + <-----Td-----> + Tu = Up crossing period + Td = Down crossing period + Tc = Crest period, i.e., period between up crossing and + the next down crossing + Tt = Trough period, i.e., period between down crossing and + the next up crossing + Ttt = Trough2trough period + Tcc = Crest2crest period + + + <----- Direction of wave propagation + + <--Tcf-> Tuc + : : <-Tcb-> <-> + M : c : : : : + / \ : M / \_ c_ : : c + F \ :/ \m/ \ / \___: :/ \ + ------d---------u----------d---------u-------d--------u---d------ level v + :\_ / \ __/: \_ _/ \_ L + : \_ / \_t_/ : \t_/ \m/ + : \t/ : : + : : : : + <-Ttf-> <-Ttb-> + + + Tcf = Crest front period, i.e., period between up crossing and crest + Tcb = Crest back period, i.e., period between crest and down crossing + Ttf = Trough front period, i.e., period between down crossing and trough + Ttb = Trough back period, i.e., period between trough and up crossing + Also note that Tcf and Ttf can also be abbreviated by their crossing + marker, e.g. Tuc (u2c) and Tdt (d2t), respectively. Similar applies + to all the other wave periods and wave lengths. + + (The nomenclature for wave length is similar, just substitute T and + period with L and length, respectively) + + <----- Direction of wave propagation + + <--TMm--> + <-TmM-> : : + M : : M : + / \ : M /:\_ : M_ M + F \ : / \m/ : \ : /: \ / \ + \ : / : \ : / : \ / \ + \ : / : \ : / : \_ _/ \_ L + \_ : / : \_m_/ : \m_/ \m/ + \m/ : : : : + <-----TMM-----> <----Tmm-----> + + + TmM = Period between minimum and the following Maximum + TMm = Period between Maximum and the following minimum + TMM = Period between Maximum and the following Maximum + Tmm = Period between minimum and the following minimum + + See also + -------- + waves, + wave_amplitudes, + crossings, + turning_points + """ + pass +def turning_points(): + """ + Turning points definitions and numenclature + + Definition of turningpoints + --------------------------- + <----- Direction of wave propagation + + M M + / \ .... M /:\_ M_ M + F \ | / \m/ : \ /: \ / \ + \ h | / : \ / : \ / \ + \ | / : \ / : \_ _/ \_ L + \_ | / : \_m_/ : \m_/ \m/ + \m/ : : : : + <------Mw-----> <-----mw-----> + + Local minimum or maximum are indicated with the + letters 'm' or 'M'. Turning points in this connection are all + local max (M) and min (m) and the last (L) value and the + first (F) value if the first local extremum is a max. + + (This choice is made in order to get the exact up-crossing intensity + from rfc by mm2lc(tp2mm(rfc)) ) + + + See also + -------- + waves, + crossings, + cycle_pairs + findtp + + """ + pass +def waves(): + """ + Wave definitions and nomenclature + + Definition of trough and crest + ------------------------------ + A trough (t) is defined as the global minimum between a + level v down-crossing (d) and the next up-crossing (u) + and a crest (c) is defined as the global maximum between a + level v up-crossing and the following down-crossing. + + Definition of down- and up -crossing waves + ------------------------------------------ + A level v-down-crossing wave (dw) is a wave from a + down-crossing to the following down-crossing. + Similarly, a level v-up-crossing wave (uw) is a wave from an up-crossing + to the next up-crossing. + + Definition of trough and crest waves + ------------------------------------ + A trough-to-trough wave (tw) is a wave from a trough (t) to the + following trough. The crest-to-crest wave (cw) is defined similarly. + + + Definition of min2min and Max2Max wave + -------------------------------------- + A min2min wave (mw) is defined starting from a minimum (m) and + ending in the following minimum. + Similarly a Max2Max wave (Mw) is thus a wave from a maximum (M) + to the next maximum (all waves optionally rainflow filtered). + + <----- Direction of wave propagation + + + <------Mw-----> <----mw----> + M : : c : + / \ M : / \_ : c_ c + F \ / \m/ \ : /: \ /:\ + ------d--------u----------d-------u----d--------u---d------ level v + \ /: \ : /: : :\_ _/ : :\_ L + \_ / : \_t_/ : : : \t_/ : : \m/ + \t/ <-------uw---------> : <-----dw-----> + : : : : + <--------tw--------> <------cw-----> + + (F= first value and L=last value). + + See also + -------- + turning_points, + crossings, + wave_periods + findtc, + findcross + """ + pass \ No newline at end of file diff --git a/wafo/demo_sg.py b/wafo/demo_sg.py new file mode 100755 index 0000000..1f70688 --- /dev/null +++ b/wafo/demo_sg.py @@ -0,0 +1,43 @@ +from pylab import subplot, plot, title, savefig, figure, arange, sin, random #@UnresolvedImport +from sg_filter import calc_coeff, smooth + + +figure(figsize=(7,12)) + + +# generate chirp signal +tvec = arange(0, 6.28, .02) +signal = sin(tvec*(2.0+tvec)) + +# add noise to signal +noise = random.normal(size=signal.shape) +signal += (2000.+.15 * noise) + +# plot signal +subplot(311) +plot(signal) +title('signal') + +# smooth and plot signal +subplot(312) +coeff = calc_coeff(8, 4) +s_signal = smooth(signal, coeff) + +plot(s_signal) +title('smoothed signal') + +# smooth derivative of signal and plot it +subplot(313) +coeff = calc_coeff(8, 1, 1) +d_signal = smooth(signal, coeff) + +plot(d_signal) +title('smoothed derivative of signal') + +# show plot +savefig("savitzky.png") + + + + + diff --git a/wafo/diffsumfunq.pyd b/wafo/diffsumfunq.pyd new file mode 100755 index 0000000000000000000000000000000000000000..663281993ddb4a55a03d47c26ec2e8841bcd9bb1 GIT binary patch literal 50146 zcmeHw4SW>Ux%UJXi5lEgLmPclT{UQE0e3f>kA)!lT0Shn2*lD#x(UgKMDt~`E5Qm7cnJZt5ot{{i_vPEn6!<+MXa=W|IaxyyE8ip zLfYH=>+kLSn9Q7Kp7VU2=RD7uGiMJuUvCyB3xZ(4IXWr`?YPpB&i-EdPXiubcgvpZ zgk4v^dTV>c(pPU?Sz1f>-Df`|Pri!X!*PLn7 zu8EgP=Q;#oX~a~)KIN0ef?E(o2-7cIb^EmulTw9yfK-ihk{}dB<4R`%PQg^f?g1yc zBXH7{9Ub_K!jugWOfTT_dQ^ex<6xI&L0C?O7MziEGtSW_2t8z=zw$B1?W%*i!mh>m zLjsYmK_zgHqX7Tr6c@S+ao;_a1DLGKaIZSj1)*b34M&VN;z2b|qIo|~)sc>7owKI4 zmOy4QS_9qbj|QUW;`Eq}nt=mb3ng0IbfQ-#3rIF>!AaLroT?+8$>%DsDw1v4hKHmp z$*DTh1tC*a{KxIzzyf*V2P+zf4bpU>!Bpfs>0TgxF&cN`dH>!!iGAac!Tv_gjnZUa zhx_bkH^*bZ+9ALD4nd5GAGnY%2$qu~BhhJyr)mRzfUSBU{}AZk4+hbaC#vz!5$;8z zJKi8UqQ&g^NXZc?8sZ0zWuey}Y8u_4J&SzjJyFs$CRmqeq2+C{ z$M3rEz&G*_MhRfkKy3VA^BlwIaDTZI5EM!N0b4en8u4eyKM*@QIy&^C|7Y}c;94r| z9$1<#2%SO{AeN4yR{tY{tZ!aBQ~!g;;aHNfooM3*GBaWSv_KHL8ZSiL*l~!{`waY7 z3I9-Y=zu-)2iHL^8H6&i%0DN*A=Y0MJGW;)3x=Kx(sG0Sp!;*g8YUi{z5!q~!55^g zNO5XAbzUj|oCG{n8qPl?#sOy~!x4|TZq!otk z7q^>=#-jZIi0m;|gZ;{Q!|3!?3bortr$^(SEN})5CSDj=1RMG~JU^5KE1a_lf=^&KR>7@V-u1D?dX0*c4j*uQt z2mMoLzcf_3g#7|pk%3#rv0p9|f$SGZ2i8RFx1ZS$KK{RIzba%y?@0M z!+r3n?VDhNPRB5Ag+N}j=x7xkJ4HvE=-4GX+C|4+(a|9~4*MO4(L%HQC}hVc_yNw2 zkM}#;1NmDz9RuW?osNFA+i0ibeSYcTmp*>!=9g3aa+F_A@QasUn)qcSNz&=qK^HJF z`5{Ple4HO5Wyi<*AzXHRj2~iV$49ppl(4=U)jpe?m_-;0H0ZlgaLdu@!*G1dN%W%I z5I&XyN6LdLI|k}5j*g0s0m(4{r@ldQ3`=>#PaGzDh}{o-!Sk( z-TgYAonp`0{f_2=3iY$yct#OMlI6?bN<_6&E+zT=j&71~;NNEn0=nuUqxWS(Pme^! z*oR5J4$iAk52eHF~FmEF!IU8m`i0iWHNLJ`4dzr7Qz=$lTb$Gk->@zS~}Z)Sb)t z>}e*7hz=n>8xSLR6BK$3{j(AWjJ}_tZu?>R0jnIWGx!5M6YHBK$1d4Gs2trMv<~?X zw@wqYj`(GieXB{{4x{&B7*DMCN{%*ZGr^?gk>geOikl07K}2Lm1M?ZJVwu(?M(e2L zBfv{c0MCg%)H)PEm&Qjy*GSPqOFKf{LC# zMZTq6D|O@dh?}bkNhRMlMzBsMcmtEKU-A(^^t{hKgIr4VZ2*XIV%m>Ey`M?Aln6Q+ z$Z~}cFW}fBIU1zg$iV7&ljPVDa5N*m0CSe)*a%oGyvT-Pg5+bSbH|%eijkNNa2GB4 zWRasJ=9z#+N=z8s8AkJB6c=z$MJRxz@P2eFqwiL5=SG>Ax6}PO3^k@nlgRBR8NDA9 z8f%1kjy88JdT5MzP!bl4lh7frmNHoi%#D?p6U=k$GJ5UkXQY#b`kR7k^xcMH5PdKP zB}E+1zqZHJa5vR@gF>IPc&r5A#bqzwD)pxQ`;6xQ$fpbZjD5L7L$K9;u}bDkbm$kJLf|9>ISHE(rcD zxFGm%#Rb8C3og;^E!+wiRYt>VQGksd_dCeGdEm2Ypy52}D98QJD{-F;CC7c(6D?wJ zQ;nT|N7KMlABSqVUy}oZBul{JM|Qlrhj)+|14r*r!uwA_n|I>HjA*Oq%Z2)WN5ep( zinM3ey!3-$f&jXSw|db{cn|&yQTWW_WHf_OWhiAxF_Plm+a~dkSXE8pn zP|DbE@c=a}KN%z+;el=B(6`00TxNznx04wbqe#}J z(W3Yme1QNg1&8S8waaE$%1CczL75Bz7UTnp1xi5?iR6gU+s{&56Y`tvTpQw3ff*xh zrf!CMX_8|T0MU{%GO+RFh18c2K)lV4H%mU!gy>63dXAHPBm(73o-L7zsL_FrG)Th( z+>M|7+^LXs0lI+VL#ufWBvbMRu!@q03+M|dg~I(j&sO*6edpcREAJv#2j79X#pXF$ zE|o8-z2-S~7`;0&cqDW0ph09PUv5S*l!3mDQmC`9M`?dHbzI~^ZOja{t+a+gaq1y9?i2)C>-_3&%z`O z;2F(Nged)pD9u_YQ~EL}(eu3a|EB(pm+%B|h-R;zQS5JIyNLpv=K{T#zJRc0A{Bg8O&54!vI3-lhI zWpIB*iS6Fa6b1NOyZf>2-5`tc&-~HpCJ=n7mFUoDeillS5Hy&69$*B7pQGAC&o_@o z&%YWor0x<%Za>|>+)X+}(<_3w8p9ko@pf~FW(;nJq@bU%6c9={`LLTTqS40^lQOw5 zNbylIxBI$1adnUv&OG=PfWT4!lpob;_yu8g8jjONbRRcl*pG@it&jKgPRWH%0f*_W!FT$9 zX#Ca^3cC*5Jz`#~{h-l*7ZvkbB~Pl99|xMo7k&k%0mE@jj%~XLA;rxX@HgV5-AAQB zUVk9J-RSp$i=_+imeJ{=U!dmLX29P7d*Ac#!tg{;=D$W+MQIz6kv!3oBSy-J3K&iY z3_V%B2Sf(%J@9pY2)_eT)vD5G2+SSw1m($7jFF6E>e zUpNrRYZG6W@>2USBjF=CjV~ONcGFG3(bjuRJb1bbQn=cCyTqdr$7YUj_JREVzGPTq2=xU%pBX8Id+H4F*Hrpy3Nh9Js5c@KYElg3>ePB=2Cu4?}45!6fn7oGR$%U za-Kex(RaM}VDGCC<3!J|dykzy1lyeGJ=Als_ju2%>|{ndar(X9V+80kyvZ<*G1I|r ztkl(K_*Ee8SG`@CeTL3JTxXx*NFeS=I@iXyv4|S5C(twM*eQ8zb{KPG2ep}Fqm*aE zDBj*}-1s_PfSx!^uF0k`q#W)@$Lc=}I1>7DOo99cvTa^mz;IB?i-oTQ9PI=*91P@l z1oBz}aq$Cl@yZPJ-htj@fxMocqpODpe zkDcyf+|V9@{2t!EeL1KU$Uhozu*&#D4%FvKz@K_>2;_GM97HnzXz!GjV8*+{x3di- zOMCC{QK19*x)+Y$11ddzE>t)Qo1cN4$Dsn)4)q=Gn^sMdo&dP(^m~NoY41G_R{-g4 zv9KUrDU*|;_u*AJ!1FqDSTc<#H86#d=sJB2-q)AY-8%q6K34Y_dUs!azjzS+&Chxt z^N!O8`dmHW!TVic$|{HuoUc^(EbdIae-S4`PwxSVv4%Ac;6&Hz?SKn)F&Col26NI$ zj&ck>#r)_P{D(P>+}-*N?*!uB$+Dm29caTwaue3hwsg_4(cXDOR`Jq~%TFNZltH*fI6Oqw20$Mc@Uq~uZ1-$o-uYP_Q$ zcN}hlJMuqATOTk?FwWW2XVH#IlLB>HDmCr41i7K9(E{5d@pr(LptN=GfYO?$kIRna zqiS%P5BuO!$EmrAbzcQ+box_8_8w^JfYT)ed_+IsBf8M|H@&X~@|*iU>^UBoLg9wA z1f-wze--vQarziZ?P?>-fIJjItrNW`m=17!ls-EB5i>=|H+SP>jM_JQ2jGnm7uJMZ zu*OA7py-I60N@~iIXfXgVxxGFhso0)@hGW|icq1?)ok=1zEnt*1N1ADCjOq{VLHtQ zspFv$fCFjq=d zP0((Pybo?l-lvM=<$W`1BMzdGRC#{`D#&@?rpfy}!5kkm@grsM#J`2)yu8G}>NX{~ zN^mgv)f844DIc1n1zA8PH>>a0_9nS2@zFrn>4QLKnZN$gz?25?M;euK$dj1w^x`{| z#KsBSt9p)MfIX2s&s?KB5Z4V?c`Xq4T88}-kG9d zFr#q2h%XFzQ6kFIXtJVf^j(@PY;Q&5(-ek!4*mQWF=CR}MtG)nwWFhq9^&&kd{M>F zP}ut>_|bYCOq2Apxuj-rpl{aVA@|Lr(<7BqRkRUvKkO z%P1|m!56(K3^^e2q|t6YJ2!=xZR1mGK+5v=;4Tyz_fBTRBBS@ayhM{E*BiYD zaIthC-b|<2Dj3hyK4}U-UAT?I_kvhyVU*-$busf54QLF9P<@o5P>Sej?4Yj!k@O^c zGEHY0q)b|@Gy04hBEWQ=?t2vk!({e+VKkdQqvnGKqmB_i{WC9T#P}3_i6UAnCmS07 zIBN7QK$}JM(2P+5@+^__{M2%?@$fA9Bax-!9%-6Jez1s>9*goDXg*JfxFBW6l7wn) zpb49@if+F?qzcWJh1AJlI((OO7)*f-zEMmAPo*!WQ}Io7k%6Yva$`x3Gs@>Gn$MKi zbLB@$E28m{^=kPetNS_;plOStF_vYGz8jqN)q-h0i~I)d>yE)fp6vzHFwN9@`G;tH z!~j_AC4++VUvUr<_)=yx=GuIB@{;9kw$eu276XsI}a;jrs`vi6i7`(muMk@1t6eA0yKL4QSbJg0kn1NNE+?{bobsg;ArohpKG6 znbsF_x1@k8{ZoosDsyqNk8x_QZ98qrFix_ma??I4x36r>j*m?HfJlAlG zj|xL?u&0OUDRo|YYV(;AsMBaGfO46BGgJ^><%AV%c!ZU|ADAj;sQ z5Mzw~N&d~eH&)gX1bFB4-pqO?W~qS_<k2k!t)68r1SU>Sp5&=s722@x&l zcMVIG1BNeP9x#XRAZ1$hI#sY=Z(HR41Tbr zWq*0$n(~3?Vrk-aa%GjN_@%0%TGO7wM+(ctr3f4=C*%EWa#TrY_T*?6RTx+Y+!7#P z!%Af+*)JHsy$6j)D`fZtHXHmA@|iEdn44*i!M~3rfJ>9lj83nnre{74BTJi^L+3^s zpV|UCWena9)%MUI@}zsCEbQx3#8K)Sem1*6(dQ)Si~ESaW?(6L{|Hsx5FbS=qsTZ#O6m2JnY)?*wpMpd zDdmsgDK)Dbb=Au6$NKxifi^rP1I#j2zEqA?*n0}yu41^l0d9})jgzB}z~hC%Yfw3) zU$U%UEw5Z#R9H?u!%$cQ?5l*qzKirZg+3s$o){%HP`rZ?N2i~|_a`#5$buUp+n9az z7L2jPw+3TrN(G5US$`|9hrK}Kt^8=wb5Xi43X!kzQNySwMS7A#JN$mR^dt|j?pq)N z`Yn$*VidAIp-A}`BoA8|i{-t6{VSbu;f^ zFnk9qn2k@Lg7lK(eb9eP%z2+4Z+MrL>#oO|EmZve$A6ac-Um0)@K5tR14i$?RHJ^N zeIqw#B=sIpXU|1a%QF~az-9Sb8I{r0nu4@)`2k|$DfKXuV}zV2#!PQUT#R*;}Mw0WN4`ZenJRr{xp z#gdsbqZ`4~_|$Kps{K>r)3mMtCZ<>|NKtJVqBi{j_q-WiH~J<+6^vn{$sRdqh8G#) z*P<4J!-gMAo?-jh$8zc6(ibmYir@VZjQFj>l`#{KE;PP?uPKq@0jwwzmp*xslwB1C z#SU4{GqVh_ydCu-5DyT$kLEdG+%u2>z8ov%^h;>OrSUN+Vcq-yb*1)U#W~5;aOEgi zlCS7|=5vtXbp2giO6D^^U&!jDe^Yj7Rr3@Bn|Qv7oSTj3EEIBD$k^@I!Cb5^nS+{k z;47#=8q`JkMjtbyy+&Rpx-ht8Xj@4ApYYW$JrPtRXT<(+)Z?@|c7?*_C74`*Uc6B# zhmZ!~I`G?QgxyXGlED--Ot`c*i)=UeJp>!BA8X~OZ$fZdWdHQ>j|O8YDCdlbe_SMG zL`yNv)U8-^i=U$>81tgj#{3tEEF8QQ5PSwD)!^(#|8Cq61LlcCbJ+Y}u%8~qL-bQ4 z2+EyQ>7hN;kv5Q_vAWanv=s9cx=<%PR_qpIo*D|!tBQorLWoN*uc9WPUIII*Z4|)I zbOwJ3t-w*oLPf53eN9g$cN^;b4>Hip3(kR+3~ zpCAZqJ-Awd7&ZWcr7r}fmK`id5+;Cu5mkw4w-ExxKjvbz&IV~scCy(d?+lRQ@$iY^ zS+Js%7enT*k2-%4<1`wgQ^ejJjT@sc3mxM8!Dypz25uVm5l~nUYsT8A&=}b0y$x`Q z)e5yb4Lqd97^;hY`kZ3?S^BglwvZBUF|-)e==}zTpqyAXP?7F4Na>OINx^gyTlF&u zqnB1!o%az_^q^RyH;JmdAy9x(Wu zNB{iiKY!eP>%k}9Yrx?i{PnhY}3mw{CZCG&Lo=cWtG*QJ*KKk7XWb#qt>++_cSbOuW(hmac{#t2I#wH zvUi%TGwB1BxM?Ph#hSb`Q*n_tlbT#{`#mxBU*{5+G)tE!Gp`SErOX%@AFH6Ky^wxU zh-`0>J!xRhG}wZTiK)A9PYq>XTBL3{`NU!JBl!gf&1#>A9iF$9I(H&VFZEQ_an3wx&g-4)ZmysSQ>A#bTJoUebG;@dEmpVs1r7x ziNI$TcYI9adl8T+4zIE+vFaJ#jzweSLe2ET&1PJVxUZF6$ZZtQXhmHWC#AF0C$Xsn zdE8t_F1;d#;{W~B$0FHV5_#r8R1|)S^b)5BC!wtWG4oIQ^`g;Nhrcp2qwgUUBqp@w zJl6ul8a^n8;9Seb_b7B?h9cs|lOLb7bUktKdN?z6XQmNby$;t7b*&f>Qn@FlpU&9M(8+ElQ8v?9V)dtMS`E zqlyf>ao{=z*#QXWmu~cWsmHP|HzNYK^XZS#_XJg9oEz3(cemTa(GBh?umE1V^I`|@ zhR{qEKn4~63fxDD z8BtPJw74P)O(i0IX2pmrqNV#{#EcjzD^^?)Bi$D(W}sr6xFS}%FHX#eld??Wia6;$ zlbB(WCW|XfG$A$F=k0I`rXDywF`uFehnu{^s<&J8bDy35w?@l<(g<#aNBQlO9^OK$Xq659-# zkDX6{jNUIo?kkg(C$>rm1X=f!Ff6fA9^#3OiKa?yh+T44BgJsfa-iE(Lid!++H2f3 zg}7%KZ5K;=XcfwLO`FC_Z0_PKlK9eTZI|p=17E$0x9jpaQO=_*n+D?@7WOLf&iJiw zk-v`>^Qw8w3q?YTcaO-K__DmzxStJPzIXSq9%G|4i-Z8iiT{{$ljXpQ%4ZcQE z>K>T|g=V8~3qWk9LC)uSa7n&`l8yNJ3iCWloIYw*c?Maki5!~E#^*FGfT$(U^k<0qK>dWS}ayKZ3f3YfLJ z2wZ%V_Zx1q&!@2noBlO=pM~#Z=fxu<8(0h#IV>)1n7F`Z4qHI;1dpci6?q3nrIB4+iUP=OIMP3x&JTN%v?DHy_VRp>JY`lTZy5M^coA;I_U|9+h z&<6|ENC-3X;z6VL9A%}Gbt!VoZDgNwq-{+2EDWRAaA`%P?6EMFVc@s0HZ|NRL`7rR z86Woz(q>jkc@?17ZDyz^4m023ztyDovPJX}!u#)3I}aa0j9z-XmvY#v50>9TOiJB+ ztue3s0A4xxbi5;)P2SKeHVhjrW#7OWim3-fOWqrl2K(qtScAF0Jiftvzn~80Wz9ps zAIH#FB{csE$CN=jU4*x$EVRVX+Zd1MMBDwOHq_@f;|rUSWT767pjBjK4~>Afd7VbH^=~_0ER*%kzNoi^2wFa2-seeNU7TRN97v!KCw-65w{*K~;@~b|k^<%kOg_Y?i32J)HVdcoM^5U?vA*|dKR;~^!p9|B+7WSN8!qxH=gq2r^mCM7* zLRdLLQ_f?l51U+IlMY%zf&SDujOoF(_=uV+xW9n;nCVpTXBx1@#dCD)JLwthI;4yT z`1kAWEvr!B!l-*Db$a&=!TvcKvyC2o#d980iv=sO)5kq~M@PSgl@ADh^LOBpFmz42 z6z8K`-`k#ZL;HE6R=zK6ucmLDA7H#-$UjuloX_Naj(|grB=1YnkJIy^7+#I$nD7b` z8Sx}`5-NJ)6M9P z#V*=`z>WB|=VR1q-$9WKgemb4{0nj=p7sFt@<&9LJ*A03jPnNS@l>n7Jlfg|RB1lR zj&%i*e%Cp^(Sc)229E8ypysc~W)54a*y(7Y3wD6mz7h|x9Rr89a_HXes~B`AhqiHO z$M)3>x{DVNZ!bVmbR6AY%&sT4m$Ga3_HuSTW&HV+YTT8GjvlCS+wnx2zL!0>ZEwSKaYZUB z&`nm__6}Adn^#B|vldI!4+D352US>+%bHxwS}OM3dX()S6K{&>GGsJ)zeIz?d)EJ! z*_`h+z^u%-6=0?n*&2LiPre-lw1((j|Bo2we~IWq zPi2w2tg6yfTeh~c(Cw*l&ArBCs;Pa%RWz%N{jDix_w?5^-&9;y>nVBInoyH5t1M&I zx>*mcn^ih%?X1d*vP%3Ztebhwa@WJ2vKm*hsjz0PhdyZ3GKv|dx%diF?QxrG3M(I) zZN=l7!u1Jv7T-D3w64ruYFbm}sVuHFB~;F;m@QB~z5t{SXHGr6k}-QDBRNY>C;J05}JD$km7*ElqiG&D*lL?cB* zgX}UM8Kz4@#r*lTrG?e51f)94%$cT=!m@JcT2fVGDlIE6c2$}xWXsR3m_MVKR_G>F zs_K}>tW&Afsg&!;WRX2&dzMwMHCeEZAZYi3nv6S5RV5~U3z6Zo?pjzy-&HDk$`i(< zXRQonWK%)eUraBtMon+s6^J*sd^UC46g+e#1jp1@ZlHo1M8GQ$ZrL)dHs#H%Z4ZTB z*_F||RF|{DU-T_%z2Z(cHjOLmbYs)FvQ9TPjVtSPav%%#r!m{&GW&*gtj?h@;GJ(7 zj?ZXs8gY%|Kw~oaEdQZV)?bkx8{_>I=v`ia9#i8n+vqa;^OywDFUF*KnKA5&Xe#}h zz4Ba%9aY{gRC+3^*Uu@cs&UP!@RYmD*t?D3%vioW<7>{0+$F-;7$#XuN}d(fh~a{O z{nb6?E+m4AYL;sX*A|vlA{8Lb*3xU*j5^8#S+haZv<5FzZrZV3d59-W5))uE>I9yq z%PPwtPDa;h&m%AP*BbIYb@q*JSvv4}mHf)!8nbw^uVs{eX zLXW#@_F7k^tAkV(w7I+Ie9Z8PUwqr5xt7esW6SrlA@FPWEkW%$e9 zQ0G9O;;JI(q7r_NtEQ%^20Nn1Efj=*&VrgaqSM($=wBdTU*Xrt^vlJ=Sb;LL;2`QI zygL?Ca-UIq4arbe`{U)F z5uIzQbggp|d5m^unby)T8tBcRdj@WmXQqUT!u4xhOyG*b%Jrs_8W$~`gq2*iGihu! z4*ei)6|q_DeVTD}m6XuCHMm!ml#1!W!jgJ?=tm=^^0d?5Ckb)m8`E>z zDn=io_8PBVNm(750+v!#5?+O9eHAs}7b!OQ=FdD7KL2R=N|43X4izGv$FO zWTW-3L0c8NP37=5x5-s5H(F3J=G%PSMbS`4x2&?tX2PH=BLK3DU}@na2$|gAp~k5V(ocXrXI;`J zO!o0?GPWt0-MCg11$f^>PAGJjq4!an5*YR^c9pxJO=VT(Y*$@bt(&^H(sc{n=f@de7`dD;F=HowH=w zB7lLqF45}5dlBaNs@*lS@1~|S&7aSDdsRsSaGZ|C&J~L@mOHX%66HB_?!v#dMMbj{ z=h)^X(cN8m(>el%tb4c$0pYPcJy#fPRvC4qvOO!JKO9iYCux=G>1h8Si#yhq?i(g0J+=Wv) z4&(kL&OV&)>N5NaotRAU6| zE)mvGqT!(+JTa++@*3`TPO88lw5muDUYu0nswk>n4{xQrS{L4{PE4vTs|1BtC)LUn z-k5~Za8X6IAoS852G4@<;Usq#HF@ z{TEW8fh1qBhOFc7y#8qcU~x9GAPas#rKjmAm` z*45UBtQ)MNb*uH?tgl-KtWk-HiP?#{iC<4FNo-2on)s8%y@_3keTlzGG}=zserX%F zePT;U%1-)z(t)HSNpB?eC4G=IGkH$(yyWcU+~oY^lH{u7l_~pER;0d{I+S`Y^-rl& z?AO_Eu$$}&_9Xk=_C@yPcBj46{;>VK_E!7P?1${{*#Btnn*09TkLKP!uWsIvc|-Hg z&HK~5tI~{VGt#VS^U|`@R;LxFm88|C{UGg3+LHOt&Cgv>w%~g-17o5*f}MxVx0n;4 zZJK$BInTVtTxtHMxxwr=Z!te_-eo>uJ_ZZCXa0jZ&SJJCTjpD`ElVuREGsQ*EajGO zTK>iIyyeH1|FZ12oU-&3k7vHsAy)A}>(KI<>6 zr>yT;&sYtKUr797;&&6DvHjkboLrOqTylT%?I}emqbciB6Ycr-pU!(G?bm6RyC1y! zU+(U``|}IFw%~UQ1T)1#L0D_P-I8OuJMo^x6^X@(p2Tk^{vfd>@jnwkOdLs^Wc#-5 zPqsx#e@MD2*_3Qaz9Hqdl+u*y6o1MKDX*q{kaAsWZ0en%G=k1%fGOar8H)(%J`(xU*^JC^G-M#Sc)&)OZ(6``&1s4|x>HNR* zi!j^Fi(#v^=4Z@K*x`t!2fANtjj_6|P1bhkd2`~I67y^owmMt0?QKZ3J?Ym;(^5X4 za!X1=N=C{9DMwNoQ{PCPYhP%eHSe8yar1AT|Kj}n?*7x=O$$Dzw#gL)+NikH+-lxq zK4gB){DJvH^CxDL#cG)gU%bb%-12p_z=M_=%cGVjE#I*`WBGyQS<8!-gO-z)_bg{D zlh6vcS*_Mg>vHQFYmN0u>oeA8tuI;+T2HbTn3Q;Z;%$l6#LUFyiE9#T5}!?fGc(lgS&Czn}be@^6!elP@GsO^Hs4P5DxaIVBa^ zFG*RQQke3cl+7tEDL+a1S;~Qw6Dg-sPN#g7a((KI)Y+*?scTXnOsz?MH1)~U9jQVA z##dyaU-DI8Zbqz+f!1aHAe=XS1S^dP+^B6Gshu$t_Fq{ z@k(Sip*EK}j1h{8%of~pnF*&x%M6hF2#kZ-husz9Zv)7NAm0Kc9mNpjM}U}cGVZtv z0`^T88bJM0okQNQj96-8Z%n%N3 zAuoK6Lr88x_y!>9xN@15wrBv9P$x(12KFx8g${jN90u3e5CZNL|1sg7QH~%DwTJS* zuo9Gdz~qQrYIx0|wAbB$$~}&)iBtDDOzqP$IUyaZX-QLN84VST%;hhU>HkO3UD1@+ zBJOXYTgPkaDVp{xRwa{!9g3z1$+D(l2q-F=l76zLIwVC?`sl$mm1h=}uMcvKZ$XA2 zF9!P_Ag0^L*PW1F08X=l!)hG^q+0`dhafXJ9gy4=SX4Ap~z!q5>mS=+*_t9{Z!#qjhftI{C@zBPZ@wm z;UCpv|0i&K(iT`&1F>zua}6ZCLQw3gqcBpMdmZveS#;vS{rP8%O;>}+e%alcu|ypeptu7Rma_|9}WyxXW)_zW|OrA}V}{UcXdFX(hf{q8!SVCGJvBCFb!|`BaXXEs7S9BK*+h?y+#z z)Up*D!E8Pj4$tP+7%*Ty7D0DVNp&b0e-r9+9NpkT85P*-P;Xou**@1GLXKx2Wt8$a z)ZIp#D2yw!JlZ++*}A91EB+G^rLrEs)#-Ibqpz(BWyQ`(*`X}MCA1|d5-K>!X&6W{ zy#$4OTLz6zuXOBpO2>VJj(dTQdoEaOxpz#6`%WGAl{)UJI_|WUl$Lw6-rCdhrce?r{bblhntN)0btTDUyPn{>L5Oo)4_j(fC@`#GKNsR#~Q z%L|zk@jADTdz_9tIkUzZ$+Q8hmV5MsxNp#LkJoXJ)N$XW<8GP|_ii0`+I&uZo%&db)Vi#DaYNZULi z?tMD$UY+ix;qoNAb-K4qi2M6G?i+R7X|`GJ-8}CkZ_;sZn-KRN9rp$u_hKFQVjcI6 z331<|drY`I$)|L>n<36C%{les6#+TnB+a|=lU&p;k$Gu#q zyI0rl9TVbyRL8wq$9<)ad$f*w_k_4F)p0);&db)LvwVxr^8FLyzEQ{Brqew(T%P1% zozIUeM)K9aWBwu z&(?A8&~cBR5cgd=?yGg&({Uj21dhXv)ciV=~ z)+=d?;tAvHo-(5NPsFq^>x5QAS%bP`JzE8S1Fc=aB~;-#*M02OHG2DuF=HPd>&9yL z%kd4lz0!j+;}>pY$ox$_4}Pf;s^^%Q_Mu2iMatU+%%8{Bi*RVm$YuoxznyRrFJUAI zQFP~Y5W^$>1GTQDs=-6wFUSwI2GB+Ri0EK_ROklxN3Hd3%|t(HQImT zd9;H#jIEaldiw0*oAe7BXHr(RKr&_p%=sXNahX(Q_K{T~C0WzYra&UAJvf*?*PXvw7p>NaJ z&_nr7Y15!y5$SrI8r~Q|8%DgK$C2|z!D4x|GnW6zZQ8BqH5QH>6S~1+TptVP6&zUw zDF;VZK{~;al^NVMxjU&3a%dp74sh2%lJAFgWr)nZRMGT`xZ8Bx`*qw8>$n$$xXb

ESZ(pwYA-pzQ`BKLyhMKQQLHh3j!ir*IK&9@(OH}WhujW`GQY|pv@(JYDsjjnKz7O!a>)IFD6=%+&VR-%q-V%uW5~mQ zmdsc8De_dJR=gZnIh{s8lrLf&@=t)YXe9g*ApMX97g?UebgRMX1*BW{A5P~3!jTUS zIR}WcUW-G7DbPYA4}Bq5;vw{sf5gpKL@Qd{2^?iC!Rgol>CnjY6+o2l1staY5c(Ms z?QqQ@j}skDt!BazOe&lo144>~Y8_!Xgs0Hy0c0gehFW;R6ks)5(~B_QbsdgQgUkFP(aBUKbjn*ttkTHS0UVQt&KrP4YaqYTQN933b&xV~jl@n|%6CRo#t{#Q z);@`Vm^4~s08*f#a~~ken3mHi1;nhW^(Y|GnpzU!Xdv4FQNBcQI=cYb5^NokuoI91 z4du51Sqk(}Tbu<%nI-0QuEwCgPJ?qZAnh8;vjEwo!N~;Vs0Jq&5CJ%${#68svWAoM zss&_~hR$~Z*`=ZLuYf44A9<~vfRKNMC?5c1gN9BoAj)bMmaQs_<=8@&;dDlTqr8oB z$S5E}u;&uyb(mJn)liNH#GIkTAI#0MO-XWt5UOPXj&@YA0FYLVUdsU4tAVTrWF%AZ zXQERDNP>pD1V|g>rD(AYkPZ!<9|1yvEMy=2XFtJ%YkCThez*aZIOKgmiZ#400x}uT zLv*gegzgCquUJ5K1R+konTo*YB}_8qJAh-*P|gH|9)|qz8-R2J7>XMY0g|S{d7Ns2 zR|w}{0BO!tTkOYx#A<3C21Hrgg9kWX2V|B8=R-i01Kz?ni4h7ilvbu^9|I>&Q)?RL z^BOYM+`k0K&Y(4@Rx%&}sBE|l5IRCubpoP%ci<9k1Vniws%|FwnEUNIO=j|6c@);j;HE z5ar#RdL`e4r+{S{h5L7aldhrjLqOUzke>je%$$G$j=g|{vL``K1ERbWah!92#Nak$ zu}EZl<={B6fON2SXAX*ocL36+(cK0}bI?BNC}EDC1~2Tl^3Ia7np(H=%Xud@Jqi`F z%gb{xm!GwK!mdG|gib|$RFZ;7#;X%LKG z76&(SSAL27nHb>12=IMfF}$FyTtFFH`rsX8XnYw^8* zi)A-jTVA!Mu-sY9-kr%UtDG{3zfL=y)h^nU(OJVcUvjeVIM{!&Mo@p)na!FO%Fp}&0F<2u!>N;&g$g9D|c34%gQ=@9b+Kug9I0X_d839 zoDaFy&#|%s_BL|ONfcbAviP+KRoEP}XpT({Bm5*afK^M@OAs;?Jqz|VCmDqx%k!44 zT$1B(=B{w$W#8*u?pS(nmUHQn6)V~Pz1Y0j3Fn~wtu%X9Ii01h!eVE6*&2BZB4;5v z(HMA)0v?5Y4qVBJNUa*aORzJ0<-Ni%4|;zLa!w7Hqn$)sk<5Ov+q^(v669u4^=x^q0z84sI#hs42Hgh4YVuDnBBO&NpHSqSU6^l3md(mpVCIm z6@?F0VMAiin%ecX*lbO;>opX_l$f)wT-6|Qv&-9o(biw#0&1mKcEe-Za&l!Vatg%7 zhN3}ItfgqntdM)4-6$Xh+f5ckX=C+1b21sWkzSCbW|O%fbP3ynO}j-}@L_OIGTCRK zYM8fTI#;dC_&vsfSOsGTt3wS?Q<@Jwrdri{+$(~(+KNg z+g)(ix)6q9ZFoAGzN%K!=CWafo5TgpA@@@*x~7xE$(b7zu5~%rU}tUSSGCv`8(RxI zu?_p$O8P&s7<3_mE!)n^i7nA_=4P=?)u;z6+kA!h7}W-KL0Ob$SM|&>_Y4eHkh_-3 zT;n$u^$OVv>Mh?wM%VPgFh^8^je2u9IjkvW*JcYa%hCrqWyeORlYC66Df1#8e4jta z#QKUZpND#oq6+x}(1IO^cfBHowr2alp#D^eZ*iyr@f{QuhbjuW9OO}Na2KpJmXKk3 zb8nURVgwz{j)O8G76jxSl3B9XZB~eiVT$VZ77PkSIY}KOnRVHyRo<3UCZ^dBGFY2$ z^cUPEk#O~UJqEF5|5Nv6c@9iQLH#i-SIg(cofsoww5jPzVf$tVImz90%y=okn9F)8 zt;jRL*kORVT4-NH)Lb%t$W%5E1(qy@T3=n0sy0A%j+N+@eNSc8$G9){*(psm?p zMeZ15wSaDKN0}U(kPVB$>b%JNhdbok!9lXz^^}ekOcQ+TN{|fZ(qJS(JJLI)%vzo$ z3^p0-9deQh_D@+Q_Ds7GDlCve+r6{@Wg|#LwfiSJrglK89*DxvRQp&4t5dJhIy&!3 z;k{pHdNv3O3s6KXly@$*i>zW1+J00Si|x za*1Md%|Jx9t!Bf{(7^Q}S52j>oCf(M63daHCRK~YpXtO6jXX7@67IK}ajPuH_?zsa zskK4|$AQ|OrO7s$A*L$)1&1+mm*6CHG4&Dye|Z=~**at-?f8~^jS|M?5u`hmW%MIQ N`TGS_%~3X@{eNaTS~LIv literal 0 HcmV?d00001 diff --git a/wafo/diffsumfunq.pyf b/wafo/diffsumfunq.pyf new file mode 100755 index 0000000..c8eb2c0 --- /dev/null +++ b/wafo/diffsumfunq.pyf @@ -0,0 +1,30 @@ +! File diffsumfunq.pyf +python module diffsumfunq +interface + subroutine disufq(rvec, ivec, rA, iA, w, kw, h, g,nmin,nmax, m, n) + intent(c) disufq ! disufq is a C function + intent(c) ! all disufq arguments are considered as C based + integer intent(hide), depend(rA),check(n==shape(iA,0)) :: n=shape(rA,0) + integer intent(hide), depend(rA), check(m==shape(iA,1)) :: m=shape(rA,1) + double precision dimension(n,m), intent(in) :: rA, iA ! input array + double precision dimension(n), intent(in) :: w, kw ! input array + double precision intent(in) :: h, g + integer intent(in) :: nmin, nmax + double precision dimension(n,m), intent(out) :: rvec, ivec ! output array, + end subroutine disufq + + subroutine disufq2(rsvec, isvec,rdvec, idvec, rA, iA, w, kw, h, g,nmin,nmax, m, n) + intent(c) disufq2 ! disufq2 is a C function + intent(c) ! all disufq2 arguments are considered as C based + integer intent(hide), depend(rA),check(n==shape(iA,0)) :: n=shape(rA,0) + integer intent(hide), depend(rA), check(m==shape(iA,1)) :: m=shape(rA,1) + double precision dimension(n,m), intent(in) :: rA, iA ! input array + double precision dimension(n), intent(in) :: w, kw ! input array + double precision intent(in) :: h, g + integer intent(in) :: nmin, nmax + double precision dimension(n,m), intent(out) :: rsvec, isvec, rdvec, idvec ! output array, + + end subroutine disufq + +end interface +end python module diffsumfunq \ No newline at end of file diff --git a/wafo/disufq.pyf b/wafo/disufq.pyf new file mode 100755 index 0000000..c8eb2c0 --- /dev/null +++ b/wafo/disufq.pyf @@ -0,0 +1,30 @@ +! File diffsumfunq.pyf +python module diffsumfunq +interface + subroutine disufq(rvec, ivec, rA, iA, w, kw, h, g,nmin,nmax, m, n) + intent(c) disufq ! disufq is a C function + intent(c) ! all disufq arguments are considered as C based + integer intent(hide), depend(rA),check(n==shape(iA,0)) :: n=shape(rA,0) + integer intent(hide), depend(rA), check(m==shape(iA,1)) :: m=shape(rA,1) + double precision dimension(n,m), intent(in) :: rA, iA ! input array + double precision dimension(n), intent(in) :: w, kw ! input array + double precision intent(in) :: h, g + integer intent(in) :: nmin, nmax + double precision dimension(n,m), intent(out) :: rvec, ivec ! output array, + end subroutine disufq + + subroutine disufq2(rsvec, isvec,rdvec, idvec, rA, iA, w, kw, h, g,nmin,nmax, m, n) + intent(c) disufq2 ! disufq2 is a C function + intent(c) ! all disufq2 arguments are considered as C based + integer intent(hide), depend(rA),check(n==shape(iA,0)) :: n=shape(rA,0) + integer intent(hide), depend(rA), check(m==shape(iA,1)) :: m=shape(rA,1) + double precision dimension(n,m), intent(in) :: rA, iA ! input array + double precision dimension(n), intent(in) :: w, kw ! input array + double precision intent(in) :: h, g + integer intent(in) :: nmin, nmax + double precision dimension(n,m), intent(out) :: rsvec, isvec, rdvec, idvec ! output array, + + end subroutine disufq + +end interface +end python module diffsumfunq \ No newline at end of file diff --git a/wafo/disufq1.c b/wafo/disufq1.c new file mode 100755 index 0000000..cae7868 --- /dev/null +++ b/wafo/disufq1.c @@ -0,0 +1,446 @@ +#include "math.h" +/* + * DISUFQ Is an internal function to spec2nlsdat + * + * CALL: disufq(rvec,ivec,rA,iA, w,kw,h,g,nmin,nmax,m,n) + * + * rvec, ivec = real and imaginary parts of the resultant (size m X n). + * rA, iA = real and imaginary parts of the amplitudes (size m X n). + * w = vector with angular frequencies (w>=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ returns the summation of difference frequency and sum + * frequency effects in the vector vec = rvec +sqrt(-1)*ivec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(vec)). + * + * Install gfortran and run the following to build the module: + * f2py diffsumfunq.pyf disufq1.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + * + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 22.07.2002, oct 2008 + */ + +void disufq(double *rvec, double *ivec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2, iv2; + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ2 returns the summation of sum and difference frequency + * frequency effects in the vectors svec = rsvec +sqrt(-1)*isvec and + * dvec = rdvec +sqrt(-1)*idvec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(svec+dvec)). + * + * + * This is a MEX-file for MATLAB. + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 + */ + +void disufq2(double *rsvec, double *isvec, + double *rdvec, double *idvec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2,iv2 + + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix *(y1+1)){ /* if first is a max*/ + y=&(*(y1+1)); /* ignore the first max*/ + NC=floor((n-1)/2); + Tstart=2; + } + else { + y=y1; + NC=floor(n/2); + Tstart=1; + } + + if (NC<1){ + info = 0; + return; /* No RFC cycles*/ + } + + + if (( *(y+0) > *(y+1)) && ( *(y+1) > *(y+2)) ){ + info = -1; + return; /*This is not a sequence of turningpoints, exit */ + } + if ((*(y+0) < *(y+1)) && (*(y+1)< *(y+2))){ + info=-1; + return; /*This is not a sequence of turningpoints, exit */ + } + + + for (i=0; i=0) && (*(y+2*j+1)<=*(y+2*i+1))){ + if( (*(y+2*j)= xplus){ + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + goto L180; + } + + j=i+1; + while((j= *(y+2*i+1)) goto L170; + if( (*(y+2*j+2) <= xplus) ){ + xplus=*(y+2*j+2); + Tpl=(Tstart+2*j+2); + }/*if*/ + j++; + } /*while*/ + + + if ( (*(y+2*i+1)-xminus) >= hmin) { + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + + } /*if*/ + goto L180; + L170: + if (xplus <= xminus ) { + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + /*goto L180;*/ + } + else{ + if ( (*(y+2*i+1)-xplus) >= hmin) { + *(ind+ix)=(Tstart+2*i+1); + ix++; + *(ind+ix)=Tpl; + ix++; + } /*if*/ + } /*elseif*/ + L180: + iy=i; + } /* for i */ + info = ix; + return ; +} + + + diff --git a/wafo/gaussian.py b/wafo/gaussian.py new file mode 100755 index 0000000..1f616a5 --- /dev/null +++ b/wafo/gaussian.py @@ -0,0 +1,367 @@ +import numpy as np +from numpy import (r_, minimum, maximum, atleast_1d, atleast_2d, mod, zeros, #@UnresolvedImport + ones, floor, random, eye, nonzero, repeat, sqrt, inf, diag, triu) #@UnresolvedImport +from scipy.special import ndtri as invnorm +import rindmod + + +class Rind(object): + ''' + RIND Computes multivariate normal expectations + + Parameters + ---------- + S : array-like, shape Ntdc x Ntdc + Covariance matrix of X=[Xt,Xd,Xc] (Ntdc = Nt+Nd+Nc) + m : array-like, size Ntdc + expectation of X=[Xt,Xd,Xc] + Blo, Bup : array-like, shape Mb x Nb + Lower and upper barriers used to compute the integration limits, Hlo and Hup, respectively. + indI : array-like, length Ni + vector of indices to the different barriers in the indicator function. + (NB! restriction indI(1)=0, indI(NI)=Nt+Nd, Ni = Nb+1) + (default indI = 0:Nt+Nd) + xc : values to condition on (default xc = zeros(0,1)), size Nc x Nx + Nt : size of Xt (default Nt = Ntdc - Nc) + + Returns + ------- + val: ndarray, size Nx + expectation/density as explained below + err, terr : ndarray, size Nx + estimated sampling error and estimated truncation error, respectively. + (err is with 99 confidence level) + + Notes + ----- + RIND computes multivariate normal expectations, i.e., + E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix)) + where + "Indicator" = I{ Hlo(i) < X(i) < Hup(i), i = 1:N_t+N_d } + "Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is + "Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)| + "condition" = Xc=xc(:,ix), ix=1,...,Nx. + X = [Xt, Xd, Xc], a stochastic vector of Multivariate Gaussian + variables where Xt,Xd and Xc have the length Nt,Nd and Nc, respectively. + (Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10) + + Multivariate probability is computed if Nd = 0. + + If Mb>> n = 5 + >>> Blo =-np.inf; Bup=-1.2; indI=[-1, n-1] # Barriers + >>> m = np.zeros(n); rho = 0.3; + >>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n) + >>> rind = Rind() + >>> E0 = rind(Sc,m,Blo,Bup,indI) # exact prob. 0.001946 + + >>> A = np.repeat(Blo,n); B = np.repeat(Bup,n) # Integration limits + >>> E1 = rind(np.triu(Sc),m,A,B) #same as E0 + + Compute expectation E( abs(X1*X2*...*X5) ) + >>> xc = np.zeros((0,1)) + >>> infinity = 37 + >>> dev = np.sqrt(np.diag(Sc)) # std + >>> ind = np.nonzero(indI[1:])[0] + >>> Bup, Blo = np.atleast_2d(Bup,Blo) + >>> Bup[0,ind] = np.minimum(Bup[0,ind] , infinity*dev[indI[ind+1]]) + >>> Blo[0,ind] = np.maximum(Blo[0,ind] ,-infinity*dev[indI[ind+1]]) + >>> rind(Sc,m,Blo,Bup,indI, xc, nt=0) + (array([ 0.05494076]), array([ 0.00083066]), array([ 1.00000000e-10])) + + Compute expectation E( X1^{+}*X2^{+} ) with random + correlation coefficient,Cov(X1,X2) = rho2. + >>> m2 = [0, 0]; rho2 = np.random.rand(1) + >>> Sc2 = [[1, rho2], [rho2 ,1]] + >>> Blo2 = 0; Bup2 = np.inf; indI2 = [-1, 1] + >>> rind2 = Rind(method=1) + >>> g2 = lambda x : (x*(np.pi/2+np.arcsin(x))+np.sqrt(1-x**2))/(2*np.pi) + >>> E2 = g2(rho2) # exact value + >>> E3 = rind(Sc2,m2,Blo2,Bup2,indI2,nt=0) + >>> E4 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0) + >>> E5 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0,abseps=1e-4) + + See also + -------- + prbnormnd, prbnormndpc + + References + ---------- + Podgorski et al. (2000) + "Exact distributions for apparent waves in irregular seas" + Ocean Engineering, Vol 27, no 1, pp979-1016. + + P. A. Brodtkorb (2004), + Numerical evaluation of multinormal expectations + In Lund university report series + and in the Dr.Ing thesis: + The probability of Occurrence of dangerous Wave Situations at Sea. + Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU, + Trondheim, Norway. + + Per A. Brodtkorb (2006) + "Evaluating Nearly Singular Multinormal Expectations with Application to + Wave Distributions", + Methodology And Computing In Applied Probability, Volume 8, Number 1, pp. 65-91(27) + ''' + + + def __init__(self, **kwds): + ''' + Parameters + ---------- + method : integer, optional + defining the integration method + 0 Integrate by Gauss-Legendre quadrature (Podgorski et al. 1999) + 1 Integrate by SADAPT for Ndim<9 and by KRBVRC otherwise + 2 Integrate by SADAPT for Ndim<20 and by KRBVRC otherwise + 3 Integrate by KRBVRC by Genz (1993) (Fast Ndim<101) (default) + 4 Integrate by KROBOV by Genz (1992) (Fast Ndim<101) + 5 Integrate by RCRUDE by Genz (1992) (Slow Ndim<1001) + 6 Integrate by SOBNIED (Fast Ndim<1041) + 7 Integrate by DKBVRC by Genz (2003) (Fast Ndim<1001) + + xcscale : real scalar, optional + scales the conditinal probability density, i.e., + f_{Xc} = exp(-0.5*Xc*inv(Sxc)*Xc + XcScale) (default XcScale=0) + abseps, releps : real scalars, optional + absolute and relative error tolerance. (default abseps=0, releps=1e-3) + coveps : real scalar, optional + error tolerance in Cholesky factorization (default 1e-13) + maxpts, minpts : scalar integers, optional + maximum and minimum number of function values allowed. The parameter, + maxpts, can be used to limit the time. A sensible strategy is to start + with MAXPTS = 1000*N, and then increase MAXPTS if ERROR is too large. + (Only for METHOD~=0) (default maxpts=40000, minpts=0) + seed : scalar integer, optional + seed to the random generator used in the integrations + (Only for METHOD~=0)(default floor(rand*1e9)) + nit : scalar integer, optional + maximum number of Xt variables to integrate. This parameter can be used + to limit the time. If NIT is less than the rank of the covariance matrix, + the returned result is a upper bound for the true value of the integral. + (default 1000) + xcutoff : real scalar, optional + cut off value where the marginal normal distribution is truncated. + (Depends on requested accuracy. A value between 4 and 5 is reasonable.) + xsplit : real scalar + parameter controlling performance of quadrature integration: + if Hup>=xCutOff AND Hlo<-XSPLIT OR + Hup>=XSPLIT AND Hlo<=-xCutOff then + do a different integration to increase speed + in rind2 and rindnit. This give slightly different results + if XSPILT>=xCutOff => do the same integration always + (Only for METHOD==0)(default XSPLIT = 1.5) + quadno : scalar integer + Quadrature formulae number used in integration of Xd variables. + This number implicitly determines number of nodes + used. (Only for METHOD==0) + speed : scalar integer + defines accuracy of calculations by choosing different parameters, + possible values: 1,2...,9 (9 fastest, default []). + If not speed is None the parameters, ABSEPS, RELEPS, COVEPS, + XCUTOFF, MAXPTS and QUADNO will be set according to + INITOPTIONS. + nc1c2 : scalar integer, optional + number of times to use the regression equation to restrict integration + area. Nc1c2 = 1,2 is recommended. (default 2) + (note: works only for method >0) + ''' + self.method = 3 + self.xcscale = 0 + self.abseps = 0 + self.releps = 1e-3, + self.coveps = 1e-10 + self.maxpts = 40000 + self.minpts = 0 + self.seed = None + self.nit = 1000, + self.xcutoff = None + self.xsplit = 1.5 + self.quadno = 2 + self.speed = None + self.nc1c2 = 2 + + self.__dict__.update(**kwds) + self.initialize(self.speed) + self.set_constants() + + def initialize(self, speed=None): + ''' + Initializes member variables according to speed. + + Parameter + --------- + speed : scalar integer + defining accuracy of calculations. + Valid numbers: 1,2,...,10 + (1=slowest and most accurate,10=fastest, but less accuracy) + + + Member variables initialized according to speed: + ----------------------------------------------- + speed : Integer defining accuracy of calculations. + abseps : Absolute error tolerance. + releps : Relative error tolerance. + covep : Error tolerance in Cholesky factorization. + xcutoff : Truncation limit of the normal CDF + maxpts : Maximum number of function values allowed. + quadno : Quadrature formulae used in integration of Xd(i) + implicitly determining # nodes + ''' + if speed is None: + return + self.speed = min(max(speed, 1), 13) + + self.maxpts = 10000 + self.quadno = r_[1:4] + (10 - min(speed, 9)) + (speed == 1) + if speed in (11, 12, 13): + self.abseps = 1e-1 + elif speed == 10: + self.abseps = 1e-2 + elif speed in (7, 8, 9): + self.abseps = 1e-2 + elif speed in (4, 5, 6): + self.maxpts = 20000 + self.abseps = 1e-3 + elif speed in (1, 2, 3): + self.maxpts = 30000 + self.abseps = 1e-4 + + if speed < 12: + tmp = max(abs(11 - abs(speed)), 1) + expon = mod(tmp + 1, 3) + 1 + self.coveps = self.abseps * ((1.0e-1) ** expon) + elif speed < 13: + self.coveps = 0.1 + else: + self.coveps = 0.5 + + self.releps = min(self.abseps, 1.0e-2) + + if self.method == 0 : + # This gives approximately the same accuracy as when using + # RINDDND and RINDNIT + # xCutOff= MIN(MAX(xCutOff+0.5d0,4.d0),5.d0) + self.abseps = self.abseps * 1.0e-1 + trunc_error = 0.05 * max(0, self.abseps) + self.xcutoff = max(min(abs(invnorm(trunc_error)), 7), 1.2) + self.abseps = max(self.abseps - trunc_error, 0) + + def set_constants(self): + if self.xcutoff is None: + trunc_error = 0.1 * self.abseps + self.nc1c2 = max(1, self.nc1c2) + xcut = abs(invnorm(trunc_error / (self.nc1c2 * 2))) + self.xcutoff = max(min(xcut, 8.5), 1.2) + #self.abseps = max(self.abseps- truncError,0); + #self.releps = max(self.releps- truncError,0); + + if self.method > 0: + names = ['method', 'xcscale', 'abseps', 'releps', 'coveps', + 'maxpts', 'minpts', 'nit', 'xcutoff', 'nc1c2', 'quadno', + 'xsplit'] + + constants = [getattr(self, name) for name in names] + constants[0] = mod(constants[0], 10) + rindmod.set_constants(*constants) #@UndefinedVariable + + def __call__(self, cov, m, ab, bb, indI=None, xc=None, nt=None, **kwds): + if any(kwds): + self.__dict__.update(**kwds) + self.set_constants() + if xc is None: + xc = zeros((0, 1)) + + BIG, Blo, Bup, xc = atleast_2d(cov, ab, bb, xc) + Blo = Blo.copy() + Bup = Bup.copy() + + Ntdc = BIG.shape[0] + Nc = xc.shape[0] + if nt is None: + nt = Ntdc - Nc + + unused_Mb, Nb = Blo.shape + Nd = Ntdc - nt - Nc + Ntd = nt + Nd + + if indI is None: + if Nb != Ntd: + raise ValueError('Inconsistent size of Blo and Bup') + indI = r_[-1:Ntd] + + Ex, indI = atleast_1d(m, indI) + if self.seed is None: + seed = int(floor(random.rand(1) * 1e10)) #@UndefinedVariable + else: + seed = int(self.seed) + + # INFIN = INTEGER, array of integration limits flags: size 1 x Nb + # if INFIN(I) < 0, Ith limits are (-infinity, infinity); + # if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)]; + # if INFIN(I) = 1, Ith limits are [Hlo(I), infinity); + # if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)]. + infinity = 37 + dev = sqrt(diag(BIG)) # std + ind = nonzero(indI[1:] > -1)[0] + infin = repeat(2, len(indI) - 1) + infin[ind] = (2 - (Bup[0, ind] > infinity * dev[indI[ind + 1]]) + - 2 * (Blo[0, ind] < -infinity * dev[indI[ind + 1]])) + + Bup[0, ind] = minimum(Bup[0, ind], infinity * dev[indI[ind + 1]]) + Blo[0, ind] = maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]]) + ind2 = indI + 1 + return rindmod.rind(BIG, Ex, xc, nt, ind2, Blo, Bup, infin, seed) #@UndefinedVariable + +def test_rind(): + ''' Small test function + ''' + n = 5 + Blo = -inf + Bup = -1.2 + indI = [-1, n - 1] # Barriers +# A = np.repeat(Blo, n) +# B = np.repeat(Bup, n) # Integration limits + m = zeros(n) + rho = 0.3 + Sc = (ones((n, n)) - eye(n)) * rho + eye(n) + rind = Rind() + E0 = rind(Sc, m, Blo, Bup, indI) # exact prob. 0.001946 A) + print(E0) + + A = repeat(Blo, n) + B = repeat(Bup, n) # Integration limits + E1 = rind(triu(Sc), m, A, B) #same as E0 + + xc = zeros((0, 1)) + infinity = 37 + dev = sqrt(diag(Sc)) # std + ind = nonzero(indI[1:])[0] + Bup, Blo = atleast_2d(Bup, Blo) + Bup[0, ind] = minimum(Bup[0, ind], infinity * dev[indI[ind + 1]]) + Blo[0, ind] = maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]]) + E3 = rind(Sc, m, Blo, Bup, indI, xc, nt=1) + + +if __name__ == '__main__': + if False: #True: # + test_rind() + else: + import doctest + doctest.testmod() diff --git a/wafo/info.py b/wafo/info.py new file mode 100755 index 0000000..0689094 --- /dev/null +++ b/wafo/info.py @@ -0,0 +1,83 @@ +""" +WAFO +===== + WAFO is a toolbox Python routines for statistical analysis and simulation of random waves and random loads. + WAFO is freely redistributable software, see WAFO licence, cf. the GNU General Public License (GPL) and + contain tools for: + +Fatigue Analysis +---------------- +-Fatigue life prediction for random loads +-Theoretical density of rainflow cycles + +Sea modelling +------------- +-Simulation of linear and non-linear Gaussian waves +-Estimation of seamodels (spectrums) +-Joint wave height, wave steepness, wave period distributions + +Statistics +------------ +-Extreme value analysis +-Kernel density estimation +-Hidden markov models + + WAFO consists of several modules with short descriptions below. + The modules SPECTRUM, COVARIANCE, TRANSFORM, WAVEMODELS, and MULTIDIM are + mainly for oceanographic applications. + The modules CYCLES, MARKOV, and DAMAGE are mainly for fatigue problems. + The contents file for each module is shown by typing 'help module-name' + Type 'help fatigue' for a presentation of all routines related to fatigue. + + The paths to the modules are initiated by the function 'initwafo'. + + ONEDIM - Data analysis of time series. Example: extraction of + turning points, estimation of spectrum and covariance function. + Estimation transformation used in transformed Gaussian model. + COVARIANCE - Computation of spectral functions, linear + and non-linear time series simulation. + SPECTRUM - Computation of spectral moments and covariance functions, linear + and non-linear time series simulation. + Ex: common spectra implemented, directional spectra, + bandwidth measures, exact distributions for wave characteristics. + TRANSFORM - Modelling with linear or transformed Gaussian waves. Ex: + + WAVEMODELS - Models for distributions of wave characteristics found in + the literature. Ex: parametric models for breaking + limited wave heights. + MULTIDIM - Multi-dimensional time series analysis. (Under construction) + CYCLES - Cycle counting, discretization, and crossings, calculation of + damage. Simulation of discrete Markov chains, switching Markov + chains, harmonic oscillator. Ex: Rainflow cycles and matrix, + discretization of loads. Damage of a rainflow count or + matrix, damage matrix, S-N plot. + MARKOV - Routines for Markov loads, switching Markov loads, and + their connection to rainflow cycles. + DAMAGE - Calculation of damage. Ex: Damage of a rainflow count or + matrix, damage matrix, S-N plot. + SIMTOOLS - Simulation of random processes. Ex: spectral simulation, + simulation of discrete Markov chains, switching Markov + chains, harmonic oscillator + STATISTICS - Statistical tools and extreme-value distributions. + Ex: generation of random numbers, estimation of parameters, + evaluation of pdf and cdf + KDETOOLS - Kernel-density estimation. + MISC - Miscellaneous routines. Ex: numerical integration, smoothing + spline, binomial coefficient, water density. + WDEMOS - WAFO demos. + DOCS - Documentation of toolbox, definitions. An overview is given + in the routine wafomenu. + DATA - Measurements from marine applications. + PAPERS - Commands that generate figures in selected scientific + publications. + SOURCE - Fortran and C files. Information on compilation. + EXEC - Executable files (cf. SOURCE), pre-compiled for Solaris, + Alpha-Dec or Windows. + + WAFO homepage: + On the WAFO home page you will find: + - The WAFO Tutorial + - New versions of WAFO to download. + - Reported bugs. + - List of publications related to WAFO. +""" \ No newline at end of file diff --git a/wafo/integrate.py b/wafo/integrate.py new file mode 100755 index 0000000..8618a02 --- /dev/null +++ b/wafo/integrate.py @@ -0,0 +1,1494 @@ +from __future__ import division +import warnings +import copy +import numpy as np +from numpy import pi, sqrt, ones, zeros #@UnresolvedImport +from scipy import integrate as intg +import scipy.special.orthogonal as ort +from scipy import special as sp +import matplotlib +import pylab as plb +matplotlib.interactive(True) +_POINTS_AND_WEIGHTS = {} + +def humps(x=None): + ''' + Computes a function that has three roots, and some humps. + ''' + if x is None: + y = np.linspace(0,1) + else: + y = np.asarray(x) + + return 1.0 / ( ( y - 0.3 )**2 + 0.01 ) + 1.0 / ( ( y - 0.9 )**2 + 0.04 ) + 2 * y - 5.2 + +def is_numlike(obj): + 'return true if *obj* looks like a number' + try: + obj+1 + except TypeError: return False + else: return True + +def dea3(v0, v1, v2): + ''' + Extrapolate a slowly convergent sequence + + Parameters + ---------- + v0,v1,v2 : array-like + 3 values of a convergent sequence to extrapolate + + Returns + ------- + result : array-like + extrapolated value + abserr : array-like + absolute error estimate + + Description + ----------- + DEA3 attempts to extrapolate nonlinearly to a better estimate + of the sequence's limiting value, thus improving the rate of + convergence. The routine is based on the epsilon algorithm of + P. Wynn, see [1]_. + + Example + ------- + # integrate sin(x) from 0 to pi/2 + + >>> import numpy as np + >>> Ei= np.zeros(3) + >>> linfun = lambda k : np.linspace(0, np.pi/2., 2.**(k+5)+1) + >>> for k in np.arange(3): + ... x = linfun(k) + ... Ei[k] = np.trapz(np.sin(x),x) + >>> En, err = dea3(Ei[0],Ei[1],Ei[2]) + >>> En, err + (array([ 1.]), array([ 0.00020081])) + >>> TrueErr = Ei-1. + >>> TrueErr + array([ -2.00805680e-04, -5.01999079e-05, -1.25498825e-05]) + + See also + -------- + dea + + Reference + --------- + .. [1] C. Brezinski (1977) + "Acceleration de la convergence en analyse numerique", + "Lecture Notes in Math.", vol. 584, + Springer-Verlag, New York, 1977. + ''' + + E0, E1, E2 = np.atleast_1d(v0, v1, v2) + abs = np.abs + max = np.maximum + ten = 10.0 + one = ones(1) + small = np.finfo(float).eps #1.0e-16 #spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2), abs(E1)) * small + tol1 = max(abs(E1), abs(E0)) * small + + result = zeros(E0.shape) + abserr = result.copy() + converged = ( err1 <= tol1) & (err2 <= tol2).ravel() + k0, = converged.nonzero() + if k0.size>0 : + #%C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE + #%C ACCURACY, CONVERGENCE IS ASSUMED. + result[k0] = E2[k0] + abserr[k0] = err1[k0] + err2[k0] + E2[k0]*small*ten + + k1, = (1-converged).nonzero() + + if k1.size>0 : + ss = one/delta2[k1] - one/delta1[k1] + smallE2 = (abs(ss*E1[k1]) <= 1.0e-3).ravel() + k2 = k1[smallE2.nonzero()] + if k2.size>0 : + result[k2] = E2[k2] + abserr[k2] = err1[k2] + err2[k2] + E2[k2]*small*ten + + k4, = (1-smallE2).nonzero() + if k4.size>0 : + k3 = k1[k4] + result[k3] = E1[k3] + one/ss[k4] + abserr[k3] = err1[k3] + err2[k3] + abs(result[k3]-E2[k3]) + + return result, abserr + +def clencurt(fun,a,b,n0=5,trace=False,*args): + ''' + Numerical evaluation of an integral, Clenshaw-Curtis method. + + Parameters + ---------- + fun : callable + a, b : array-like + Lower and upper integration limit, respectively. + n : integer + defines number of evaluation points (default 5) + + Returns + ------- + Q = evaluated integral + tol = Estimate of the approximation error + + Notes + ----- + CLENCURT approximates the integral of f(x) from a to b + using an 2*n+1 points Clenshaw-Curtis formula. + The error estimate is usually a conservative estimate of the + approximation error. + The integral is exact for polynomials of degree 2*n or less. + + Example + ------- + >>> import numpy as np + >>> val,err = clencurt(np.exp,0,2) + >>> abs(val-np.expm1(2))< err, err<1e-10 + (array([ True], dtype=bool), array([ True], dtype=bool)) + + + See also + -------- + simpson, + gaussq + + References + ---------- + [1] Goodwin, E.T. (1961), + "Modern Computing Methods", + 2nd edition, New yourk: Philosophical Library, pp. 78--79 + + [2] Clenshaw, C.W. and Curtis, A.R. (1960), + Numerische Matematik, Vol. 2, pp. 197--205 + ''' + + + #% make sure n is even + n = 2*n0 + a,b = np.atleast_1d(a,b) + a_shape = a.shape + af = a.ravel() + bf = b.ravel() + + Na = np.prod(a_shape) + + s = np.r_[0:n+1] + s2 = np.r_[0:n+1:2] + s2.shape = (-1,1) + x1 = np.cos(np.pi*s/n) + x1.shape = (-1,1) + x = x1*(bf-af)/2.+(bf+af)/2 + + if hasattr(fun,'__call__'): + f = fun(x) + else: + x0 = np.flipud(fun[:, 0]) + n = len(x0)-1 + if abs(x-x0) > 1e-8: + raise ValueError('Input vector x must equal cos(pi*s/n)*(b-a)/2+(b+a)/2') + + f = np.flipud(fun[:, 1::]) + + if trace: + plb.plot(x, f,'+') + + # using a Gauss-Lobatto variant, i.e., first and last + # term f(a) and f(b) is multiplied with 0.5 + f[0, :] = f[0, :]/2 + f[n, :] = f[n, :]/2 + +## % x = cos(pi*0:n/n) +## % f = f(x) +## % +## % N+1 +## % c(k) = (2/N) sum f''(n)*cos(pi*(2*k-2)*(n-1)/N), 1 <= k <= N/2+1. +## % n=1 + fft = np.fft.fft + tmp = np.real(fft(f[:n, :], axis=0)) + c = 2/n*(tmp[0:n/2+1, :]+np.cos(np.pi*s2)*f[n, :]) +## % old call +## % c = 2/n * cos(s2*s'*pi/n) * f + c[0, :] = c[0, :]/2 + c[n/2, :] = c[n/2, :]/2 + +## % alternative call +## % c = dct(f) + + + c = c[0:n/2+1, :]/((s2-1)*(s2+1)) + Q = (af-bf)*np.sum(c,axis=0) + #Q = (a-b).*sum( c(1:n/2+1,:)./repmat((s2-1).*(s2+1),1,Na)) + + abserr = (bf-af)*np.abs(c[n/2, :]) + + if Na>1: + abserr = np.reshape(abserr, a_shape) + Q = np.reshape(Q, a_shape) + return Q, abserr + +def romberg(fun, a, b, releps=1e-3, abseps=1e-3): + ''' + Numerical integration with the Romberg method + + Parameters + ---------- + fun : callable + function to integrate + a, b : real scalars + lower and upper integration limits, respectively. + releps, abseps : scalar, optional + requested relative and absolute error, respectively. + + Returns + ------- + Q : scalar + value of integral + abserr : scalar + estimated absolute error of integral + + ROMBERG approximates the integral of F(X) from A to B + using Romberg's method of integration. The function F + must return a vector of output values if a vector of input values is given. + + + Example + ------- + >>> import numpy as np + >>> [q,err] = romberg(np.sqrt,0,10,0,1e-4) + >>> q,err + (array([ 21.08185107]), array([ 6.61635466e-05])) + ''' + h = b-a + hMin = 1.0e-9 + # Max size of extrapolation table + tableLimit = max(min(np.round(np.log2(h/hMin)),30),3) + + rom = zeros((2,tableLimit)) + + rom[0,0] = h * (fun(a)+fun(b))/2 + ipower = 1 + fp = ones(tableLimit)*4 + + #Ih1 = 0 + Ih2 = 0. + Ih4 = rom[0,0] + abserr = Ih4 + #%epstab = zeros(1,decdigs+7) + #%newflg = 1 + #%[res,abserr,epstab,newflg] = dea(newflg,Ih4,abserr,epstab) + two = 1 + one = 0 + for i in xrange(1,tableLimit): + h *= 0.5 + Un5 = np.sum(fun(a + np.arange(1,2*ipower,2)*h))*h + + # trapezoidal approximations + #T2n = 0.5 * (Tn + Un) = 0.5*Tn + Un5 + rom[two,0] = 0.5 * rom[one,0] + Un5 + + fp[i] = 4 * fp[i-1] + # Richardson extrapolation + for k in xrange(i): + #rom(2,k+1)=(fp(k)*rom(2,k)-rom(1,k))/(fp(k)-1) + rom[two,k+1] = rom[two,k]+(rom[two,k]-rom[one,k])/(fp[k]-1) + + Ih1 = Ih2 + Ih2 = Ih4 + + Ih4 = rom[two,i] + + if (2<=i): + [res,abserr] = dea3(Ih1,Ih2,Ih4) + #%Ih4 = res + if (abserr <= max(abseps,releps*abs(res)) ): + break + + #%rom(1,1:i) = rom(2,1:i) + two = one + one = (one+1) % 2 + ipower *= 2 + return res, abserr + +def h_roots(n, method='newton'): + ''' + Returns the roots (x) of the nth order Hermite polynomial, + H_n(x), and weights (w) to use in Gaussian Quadrature over + [-inf,inf] with weighting function exp(-x**2). + + Parameters + ---------- + n : integer + number of roots + method : 'newton' or 'eigenvalue' + uses Newton Raphson to find zeros of the Hermite polynomial (Fast) + or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and + weights, respectively. + + Returns + ------- + x : ndarray + roots + w : ndarray + weights + + Example + ------- + >>> import numpy as np + >>> [x,w] = h_roots(10) + >>> np.sum(x*w) + -5.2516042729766621e-019 + + See also + -------- + qrule, gaussq + + References + ---------- + [1] Golub, G. H. and Welsch, J. H. (1969) + 'Calculation of Gaussian Quadrature Rules' + Mathematics of Computation, vol 23,page 221-230, + + [2]. Stroud and Secrest (1966), 'gaussian quadrature formulas', + prentice-hall, Englewood cliffs, n.j. + ''' + + + if not method.startswith('n'): + return ort.h_roots(n) + else: + sqrt = np.sqrt + max_iter = 10 + releps = 3e-14 + C = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03] + #PIM4=0.7511255444649425 + PIM4 = np.pi**(-1./4) + + # The roots are symmetric about the origin, so we have to + # find only half of them. + m = int(np.fix((n+1)/2)) + + # Initial approximations to the roots go into z. + anu = 2.0*n+1 + rhs = np.arange(3,4*m,4)*np.pi/anu + r3 = rhs**(1./3) + r2 = r3**2 + theta = r3*(C[0]+r2*(C[1]+r2*(C[2]+r2*C[3]))) + z = sqrt(anu)*np.cos(theta) + + L = zeros((3,len(z))) + k0 = 0 + kp1 = 1 + for its in xrange(max_iter): + #Newtons method carried out simultaneously on the roots. + L[k0,:] = 0 + L[kp1,:] = PIM4 + + for j in xrange(1,n+1): + #%Loop up the recurrence relation to get the Hermite + #%polynomials evaluated at z. + km1 = k0 + k0 = kp1 + kp1 = np.mod(kp1+1,3) + + L[kp1,:] =z*sqrt(2/j)*L[k0,:]-np.sqrt((j-1)/j)*L[km1,:] + + + # L now contains the desired Hermite polynomials. + # We next compute pp, the derivatives, + # by the relation (4.5.21) using p2, the polynomials + # of one lower order. + + pp = sqrt(2*n)*L[k0,:] + dz = L[kp1,:]/pp + + z = z-dz # Newtons formula. + + if not np.any(abs(dz) > releps): + break + else: + warnings.warn('too many iterations!') + + x = np.empty(n) + w = np.empty(n) + x[0:m] = z # Store the root + x[n-1:n-m-1:-1] = -z # and its symmetric counterpart. + w[0:m] = 2./pp**2 # Compute the weight + w[n-1:n-m-1:-1] = w[0:m] # and its symmetric counterpart. + return x, w + +def j_roots(n, alpha, beta, method='newton'): + ''' + Returns the roots (x) of the nth order Jacobi polynomial, P^(alpha,beta)_n(x) + and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting + function (1-x)**alpha (1+x)**beta with alpha,beta > -1. + + Parameters + ---------- + n : integer + number of roots + alpha,beta : scalars + defining shape of Jacobi polynomial + method : 'newton' or 'eigenvalue' + uses Newton Raphson to find zeros of the Hermite polynomial (Fast) + or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and + weights, respectively. + + Returns + ------- + x : ndarray + roots + w : ndarray + weights + + + Example + -------- + >>> [x,w]= j_roots(10,0,0) + >>> sum(x*w) + 2.7755575615628914e-016 + + See also + -------- + qrule, gaussq + + + Reference + --------- + [1] Golub, G. H. and Welsch, J. H. (1969) + 'Calculation of Gaussian Quadrature Rules' + Mathematics of Computation, vol 23,page 221-230, + + [2]. Stroud and Secrest (1966), 'gaussian quadrature formulas', + prentice-hall, Englewood cliffs, n.j. + ''' + + if not method.startswith('n'): + [x,w] = ort.j_roots(n,alpha,beta) + else: + + max_iter = 10 + releps = 3e-14 + + # Initial approximations to the roots go into z. + alfbet = alpha+beta + + + z = np.cos( np.pi*(np.arange(1,n+1) -0.25+0.5*alpha)/( n +0.5 *(alfbet+1) )) + + L = zeros((3,len(z))) + k0 = 0 + kp1 = 1 + for its in xrange(max_iter): + #Newton's method carried out simultaneously on the roots. + tmp = 2 + alfbet + L[k0,:] = 1 + L[kp1,:] = (alpha-beta+tmp*z)/2 + + for j in xrange(2,n+1): + #Loop up the recurrence relation to get the Jacobi + #polynomials evaluated at z. + km1 = k0 + k0 = kp1 + kp1 = np.mod(kp1+1,3) + + a = 2.*j*(j+alfbet)*tmp + tmp = tmp + 2 + c = 2*(j-1+alpha)*(j-1+beta)*tmp + + b = (tmp-1)*(alpha**2-beta**2+tmp*(tmp-2)*z) + + L[kp1,:] =(b*L[k0,:] - c*L[km1,:])/a + + #L now contains the desired Jacobi polynomials. + #We next compute pp, the derivatives with a standard + # relation involving the polynomials of one lower order. + + pp = (n*(alpha-beta-tmp*z)*L[kp1,:]+2*(n+alpha)*(n+beta)*L[k0,:])/(tmp*(1-z**2)) + dz = L[kp1,:]/pp + z = z-dz # Newton's formula. + + + if not any(abs(dz) > releps*abs(z)): + break + else: + warnings.warn('too many iterations in jrule') + + x = z # %Store the root and the weight. + w = np.exp(sp.gammaln(alpha+n)+sp.gammaln(beta+n)-sp.gammaln(n+1)- + sp.gammaln(alpha+beta+n+1) )*tmp*2**alfbet/(pp*L[k0,:]) + + return x, w + +def la_roots(n, alpha=0, method='newton'): + ''' + Returns the roots (x) of the nth order generalized (associated) Laguerre + polynomial, L^(alpha)_n(x), and weights (w) to use in Gaussian quadrature over + [0,inf] with weighting function exp(-x) x**alpha with alpha > -1. + + Parameters + ---------- + n : integer + number of roots + method : 'newton' or 'eigenvalue' + uses Newton Raphson to find zeros of the Laguerre polynomial (Fast) + or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and + weights, respectively. + + Returns + ------- + x : ndarray + roots + w : ndarray + weights + + Example + ------- + >>> import numpy as np + >>> [x,w] = h_roots(10) + >>> np.sum(x*w) + -5.2516042729766621e-019 + + See also + -------- + qrule, gaussq + + References + ---------- + [1] Golub, G. H. and Welsch, J. H. (1969) + 'Calculation of Gaussian Quadrature Rules' + Mathematics of Computation, vol 23,page 221-230, + + [2]. Stroud and Secrest (1966), 'gaussian quadrature formulas', + prentice-hall, Englewood cliffs, n.j. + ''' + + if alpha<=-1: + raise ValueError('alpha must be greater than -1') + + if not method.startswith('n'): + return ort.la_roots(n,alpha) + else: + max_iter = 10 + releps = 3e-14 + C = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03] + + # Initial approximations to the roots go into z. + anu = 4.0*n+2.0*alpha+2.0 + rhs = np.arange(4*n-1,2,-4)*np.pi/anu + r3 = rhs**(1./3) + r2 = r3**2 + theta = r3*(C[0]+r2*(C[1]+r2*(C[2]+r2*C[3]))) + z = anu*np.cos(theta)**2 + + dz = zeros(len(z)) + L = zeros((3,len(z))) + Lp = zeros((1,len(z))) + pp = zeros((1,len(z))) + k0 = 0 + kp1 = 1 + k = slice(len(z)) + for its in xrange(max_iter): + #%Newton's method carried out simultaneously on the roots. + L[k0,k] = 0. + L[kp1,k] = 1. + + for jj in xrange(1,n+1): + # Loop up the recurrence relation to get the Laguerre + # polynomials evaluated at z. + km1 = k0 + k0 = kp1 + kp1 = np.mod(kp1+1,3) + + L[kp1,k] =((2*jj-1+alpha-z[k])*L[k0,k]-(jj-1+alpha)*L[km1,k])/jj + #end + #%L now contains the desired Laguerre polynomials. + #%We next compute pp, the derivatives with a standard + #% relation involving the polynomials of one lower order. + + Lp[k] = L[k0,k] + pp[k] = (n*L[kp1,k]-(n+alpha)*Lp[k])/z[k] + + dz[k] = L[kp1,k]/pp[k] + z[k] = z[k]-dz[k]# % Newton?s formula. + #%k = find((abs(dz) > releps.*z)) + + + if not np.any(abs(dz) > releps): + break + else: + warnings.warn('too many iterations!') + + x = z + w = -np.exp(sp.gammaln(alpha+n)-sp.gammaln(n))/(pp*n*Lp) + return x,w + +def p_roots(n,method='newton', a=-1, b=1): + ''' + Returns the roots (x) of the nth order Legendre polynomial, P_n(x), + and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting + function 1. + + Parameters + ---------- + n : integer + number of roots + method : 'newton' or 'eigenvalue' + uses Newton Raphson to find zeros of the Hermite polynomial (Fast) + or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and + weights, respectively. + + Returns + ------- + x : ndarray + roots + w : ndarray + weights + + + Example + ------- + Integral of exp(x) from a = 0 to b = 3 is: exp(3)-exp(0)= + >>> import numpy as np + >>> [x,w] = p_roots(11,a=0,b=3) + >>> np.sum(np.exp(x)*w) + 19.085536923187668 + + See also + -------- + quadg. + + + References + ---------- + [1] Davis and Rabinowitz (1975) 'Methods of Numerical Integration', page 365, + Academic Press. + + [2] Golub, G. H. and Welsch, J. H. (1969) + 'Calculation of Gaussian Quadrature Rules' + Mathematics of Computation, vol 23,page 221-230, + + [3] Stroud and Secrest (1966), 'gaussian quadrature formulas', + prentice-hall, Englewood cliffs, n.j. + ''' + + if not method.startswith('n'): + x,w = ort.p_roots(n) + else: + + m = int(np.fix((n+1)/2)) + + mm = 4*m-1 + t = (np.pi/(4*n+2))*np.arange(3,mm+1,4) + nn = (1-(1-1/n)/(8*n*n)) + xo = nn*np.cos(t) + + if method.endswith('1'): + + # Compute the zeros of the N+1 Legendre Polynomial + # using the recursion relation and the Newton-Raphson method + + + #% Legendre-Gauss Polynomials + L = zeros((3,m)) + + # Derivative of LGP + Lp = zeros((m,)) + dx = zeros((m,)) + + releps = 1e-15 + max_iter = 100 + #% Compute the zeros of the N+1 Legendre Polynomial + #% using the recursion relation and the Newton-Raphson method + + #% Iterate until new points are uniformly within epsilon of old points + k = slice(m) + k0 = 0 + kp1 = 1 + for ix in xrange(max_iter): + L[k0,k] = 1 + L[kp1,k] = xo[k] + + for jj in xrange(2,n+1): + km1 = k0 + k0 = kp1 + kp1 = np.mod(k0+1,3) + L[kp1,k] = ( (2*jj-1)*xo[k]*L[k0,k]-(jj-1)*L[km1,k] )/jj + + Lp[k] = n*( L[k0,k]-xo[k]*L[kp1,k] )/(1-xo[k]**2) + + dx[k] = L[kp1,k]/Lp[k] + xo[k] = xo[k]-dx[k] + k, = np.nonzero((abs(dx)> releps*np.abs(xo))) + if len(k)==0: + break + else: + warnings.warn('Too many iterations!') + + x = -xo + w =2./((1-x**2)*(Lp**2)) + else: + # Algorithm given by Davis and Rabinowitz in 'Methods + # of Numerical Integration', page 365, Academic Press, 1975. + + e1 = n*(n+1) + + for j in xrange(2): + pkm1 = 1 + pk = xo + for k in xrange(2,n+1): + t1 = xo*pk + pkp1 = t1-pkm1-(t1-pkm1)/k+t1 + pkm1 = pk + pk = pkp1 + + den = 1.-xo*xo + d1 = n*(pkm1-xo*pk) + dpn = d1/den + d2pn = (2.*xo*dpn-e1*pk)/den + d3pn = (4.*xo*d2pn+(2-e1)*dpn)/den + d4pn = (6.*xo*d3pn+(6-e1)*d2pn)/den + u = pk/dpn + v = d2pn/dpn + h = -u*(1+(.5*u)*(v+u*(v*v-u*d3pn/(3*dpn)))) + p = pk+h*(dpn+(.5*h)*(d2pn+(h/3)*(d3pn+.25*h*d4pn))) + dp = dpn+h*(d2pn+(.5*h)*(d3pn+h*d4pn/3)) + h = h-p/dp + xo = xo+h + + x = -xo-h + fx = d1-h*e1*(pk+(h/2)*(dpn+(h/3)*(d2pn+(h/4)*(d3pn+(.2*h)*d4pn)))) + w = 2*(1-x**2)/(fx**2) + + if (m+m) > n: + x[m-1] = 0.0 + + if not ((m+m) == n): + m = m-1 + + x = np.hstack((x,-x[m-1::-1])) + w = np.hstack((w,w[m-1::-1])) + + + if (a!=-1) | (b!=1): + # Linear map from[-1,1] to [a,b] + dh = (b-a)/2 + x = dh*(x+1)+a + w = w*dh + + return x, w + +def qrule(n, wfun=1, alpha=0, beta=0): + ''' + Return nodes and weights for Gaussian quadratures. + + Parameters + ---------- + n : integer + number of base points + wfun : integer + defining the weight function, p(x). (default wfun = 1) + 1,11,21: p(x) = 1 a =-1, b = 1 Gauss-Legendre + 2,12 : p(x) = exp(-x^2) a =-inf, b = inf Hermite + 3,13 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre + 4,14 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi + 5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind + 6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind + 7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1 + 8 : p(x) = 1/sqrt(b-x), a = 0, b = 1 + 9 : p(x) = sqrt(b-x), a = 0, b = 1 + + Returns + ------- + bp = base points (abscissas) + wf = weight factors + + The Gaussian Quadrature integrates a (2n-1)th order + polynomial exactly and the integral is of the form + b n + Int ( p(x)* F(x) ) dx = Sum ( wf_j* F( bp_j ) ) + a j=1 + where p(x) is the weight function. + For Jacobi and Laguerre: alpha, beta >-1 (default alpha=beta=0) + + Examples: + --------- + >>> [bp,wf] = qrule(10) + >>> sum(bp**2*wf) # integral of x^2 from a = -1 to b = 1 + 0.66666666666666641 + >>> [bp,wf] = qrule(10,2) + >>> sum(bp**2*wf) # integral of exp(-x.^2)*x.^2 from a = -inf to b = inf + 0.88622692545275772 + >>> [bp,wf] = qrule(10,4,1,2) + >>> sum(bp*wf) # integral of (x+1)*(1-x)^2 from a = -1 to b = 1 + 0.26666666666666844 + + See also + -------- + gaussq + + Reference + --------- + Abromowitz and Stegun (1954) + (for method 5 to 9) + ''' + + if (alpha<=-1) | (beta <=-1): + raise ValueError('alpha and beta must be greater than -1') + + if wfun==1: # Gauss-Legendre + [bp,wf] = p_roots(n) + elif wfun==2: # Hermite + [bp,wf] = h_roots(n) + elif wfun==3: # Generalized Laguerre + [bp,wf] = la_roots(n,alpha) + elif wfun==4: #Gauss-Jacobi + [bp,wf] = j_roots(n,alpha,beta) + elif wfun==5: # p(x)=1/sqrt((x-a)*(b-x)), a=-1 and b=1 (default) + jj = np.arange(1,n+1) + wf = ones(n) * np.pi / n + bp = np.cos( (2*jj-1)*np.pi / (2*n) ) + + elif wfun==6: # p(x)=sqrt((x-a)*(b-x)), a=-1 and b=1 + jj = np.arange(1,n+1) + xj = jj * np.pi / (n+1) + wf = np.pi / (n+1) * np.sin( xj )**2 + bp = np.cos( xj ) + + elif wfun==7: # p(x)=sqrt((x-a)/(b-x)), a=0 and b=1 + jj = np.arange(1,n+1) + xj = (jj-0.5)*pi / (2*n+1) + bp = np.cos( xj )**2 + wf = 2*np.pi*bp/(2*n+1) + + elif wfun==8: # p(x)=1/sqrt(b-x), a=0 and b=1 + [bp1, wf1] = p_roots(2*n) + k, = np.where(0<=bp1) + wf = 2*wf1[k] + bp = 1-bp1[k]**2 + + elif wfun==9: # p(x)=np.sqrt(b-x), a=0 and b=1 + [bp1, wf1] = p_roots(2*n+1) + k, = np.where(0-1) (default alpha=beta=0) + + Returns + ------- + val : ndarray + evaluated integral + err : ndarray + error estimate, absolute tolerance abs(int-intold) + + Notes + ----- + GAUSSQ numerically evaluate integral using a Gauss quadrature. + The Quadrature integrates a (2m-1)th order polynomial exactly and the + integral is of the form + b + Int (p(x)* Fun(x)) dx + a + GAUSSQ is vectorized to accept integration limits A, B and + coefficients P1,P2,...Pn, as matrices or scalars and the + result is the common size of A, B and P1,P2,...,Pn. + + Examples + --------- + integration of x**2 from 0 to 2 and from 1 to 4 + + >>> from scitools import numpyutils as npt + scitools.easyviz backend is gnuplot + >>> A = [0, 1]; B = [2,4] + >>> fun = npt.wrap2callable('x**2') + >>> [val1,err1] = gaussq(fun,A,B) + >>> val1 + array([ 2.66666667, 21. ]) + >>> err1 + array([ 1.77635684e-15, 1.06581410e-14]) + + Integration of x^2*exp(-x) from zero to infinity: + >>> fun2 = npt.wrap2callable('1') + >>> val2, err2 = gaussq(fun2, 0, npt.inf, wfun=3, alpha=2) + >>> val3, err3 = gaussq(lambda x: x**2,0, npt.inf, wfun=3, alpha=0) + >>> val2, err2 + (array([ 2.]), array([ 6.66133815e-15])) + >>> val3, err3 + (array([ 2.]), array([ 1.77635684e-15])) + + Integrate humps from 0 to 2 and from 1 to 4 + >>> val4, err4 = gaussq(humps,A,B) + + See also + -------- + qrule + gaussq2d + ''' + global _POINTS_AND_WEIGHTS + max_iter = 11 + gn = 2 + if not hasattr(fun,'__call__'): + raise ValueError('Function must be callable') + + A, B = np.atleast_1d(a,b) + a_shape = np.atleast_1d(A.shape) + b_shape = np.atleast_1d(B.shape) + + if np.prod(a_shape)==1: # make sure the integration limits have correct size + A = A*ones(b_shape) + a_shape = b_shape + elif np.prod(b_shape)==1: + B = B*ones(a_shape) + elif any( a_shape!=b_shape): + raise ValueError('The integration limits must have equal size!') + + + if args is None: + num_parameters = 0 + else: + num_parameters = len(args) + P0 = copy.deepcopy(args) + isvector1 = zeros(num_parameters) + + nk = np.prod(a_shape) #% # of integrals we have to compute + for ix in xrange(num_parameters): + if is_numlike(P0[ix]): + p0_shape = np.shape(P0[ix]) + Np0 = np.prod(p0_shape) + isvector1[ix] = (Np0 > 1) + if isvector1[ix]: + if nk == 1: + a_shape = p0_shape + nk = Np0 + A = A*ones(a_shape) + B = B*ones(a_shape) + elif nk!=Np0: + raise ValueError('The input must have equal size!') + + P0[ix].shape = (-1,1) # make sure it is a column + + + k = np.arange(nk) + val = zeros(nk) + val_old = zeros(nk) + abserr = zeros(nk) + + + #setup mapping parameters + A.shape = (-1, 1) + B.shape = (-1, 1) + jacob = (B-A)/2 + + shift = 1 + if wfun == 1:# Gauss-legendre + dx = jacob + elif wfun==2 or wfun==3: + shift = 0 + jacob = ones((nk,1)) + A = zeros((nk,1)) + dx = jacob + elif wfun==4: + dx = jacob**(alpha+beta+1) + elif wfun==5: + dx = ones((nk,1)) + elif wfun==6: + dx = jacob**2 + elif wfun==7: + shift = 0 + jacob = jacob*2 + dx = jacob + elif wfun==8: + shift = 0 + jacob = jacob*2 + dx = sqrt(jacob) + elif wfun==9: + shift = 0 + jacob = jacob*2 + dx = sqrt(jacob)**3 + else: + raise ValueError('unknown option') + + dx = dx.ravel() + + if trace: + x_trace = [0,]*max_iter + y_trace = [0,]*max_iter + + + if num_parameters>0: + ix_vec, = np.where(isvector1) + if len(ix_vec): + P1 = copy.copy(P0) + + #% Break out of the iteration loop for three reasons: + #% 1) the last update is very small (compared to int and compared to reltol) + #% 2) There are more than 11 iterations. This should NEVER happen. + + + for ix in xrange(max_iter): + x_and_w = 'wfun%d_%d_%g_%g' % (wfun,gn,alpha,beta) + if x_and_w in _POINTS_AND_WEIGHTS: + xn,w = _POINTS_AND_WEIGHTS[x_and_w] + else: + xn,w = qrule(gn,wfun,alpha,beta) + _POINTS_AND_WEIGHTS[x_and_w] = (xn,w) + + # calculate the x values + x = (xn+shift)*jacob[k,:] + A[k,:] + + + # calculate function values y=fun(x,p1,p2,....,pn) + if num_parameters>0: + if len(ix_vec): + #% Expand vector to the correct size + for iy in ix_vec: + P1[iy] = P0[iy][k,:] + + y = fun(x, **P1) + else: + y = fun(x, **P0) + else: + y = fun(x) + + + val[k] = np.sum(w*y,axis=1)*dx[k] # do the integration sum(y.*w) + + + if trace: + x_trace.append(x.ravel()) + y_trace.append(y.ravel()) + + hfig = plb.plot(x,y,'r.') + #hold on + #drawnow,shg + #if trace>1: + # pause + + plb.setp(hfig,'color','b') + + + abserr[k] = abs(val_old[k]-val[k]) #absolute tolerance + if ix > 1: + + k, = np.where(abserr > np.maximum(abs(reltol*val),abstol)) # abserr > abs(abstol))%indices to integrals which did not converge + nk = len(k)# of integrals we have to compute again + if nk : + val_old[k] = val[k] + else: + break + + gn *= 2 #double the # of basepoints and weights + else: + if nk>1: + if (nk==np.prod(a_shape)): + tmptxt = 'All integrals did not converge--singularities likely!' + else: + tmptxt = '%d integrals did not converge--singularities likely!' % (nk,) + + else: + tmptxt = 'Integral did not converge--singularity likely!' + warnings.warn(tmptxt) + + val.shape = a_shape # make sure int is the same size as the integration limits + abserr.shape = a_shape + + if trace>0: + plb.clf() + plb.plot(np.hstack(x_trace), np.hstack(y_trace),'+') + return val, abserr + +def richardson(Q,k): + #% Richardson extrapolation with parameter estimation + c = np.real((Q[k-1]-Q[k-2])/(Q[k]-Q[k-1])) - 1. + #% The lower bound 0.07 admits the singularity x.^-0.9 + c = max(c,0.07) + R = Q[k] + (Q[k] - Q[k-1])/c + return R + +def quadgr(fun,a,b,abseps=1e-5): + ''' + Gauss-Legendre quadrature with Richardson extrapolation. + + [Q,ERR] = QUADGR(FUN,A,B,TOL) approximates the integral of a function + FUN from A to B with an absolute error tolerance TOL. FUN is a function + handle and must accept vector arguments. TOL is 1e-6 by default. Q is + the integral approximation and ERR is an estimate of the absolute error. + + QUADGR uses a 12-point Gauss-Legendre quadrature. The error estimate is + based on successive interval bisection. Richardson extrapolation + accelerates the convergence for some integrals, especially integrals + with endpoint singularities. + + Examples + -------- + >>> import numpy as np + >>> Q, err = quadgr(np.log,0,1) + >>> quadgr(np.exp,0,9999*1j*np.pi) + (-2.0000000000122617, 2.1933275196062141e-009) + + >>> quadgr(lambda x: np.sqrt(4-x**2),0,2,1e-12) + (3.1415926535897811, 1.5809575870662229e-013) + + >>> quadgr(lambda x: x**-0.75,0,1) + (4.0000000000000266, 5.6843418860808015e-014) + + >>> quadgr(lambda x: 1./np.sqrt(1-x**2),-1,1) + (3.141596056985029, 6.2146261559092864e-006) + + >>> quadgr(lambda x: np.exp(-x**2),-np.inf,np.inf,1e-9) #% sqrt(pi) + (1.7724538509055152, 1.9722334876348668e-011) + + >>> quadgr(lambda x: np.cos(x)*np.exp(-x),0,np.inf,1e-9) + (0.50000000000000044, 7.3296813063450372e-011) + + See also + -------- + QUAD, + QUADGK + ''' + #% Author: jonas.lundgren@saabgroup.com, 2009. + + + # Order limits (required if infinite limits) + if a == b: + Q = b - a + err = b - a + return Q, err + elif np.real(a) > np.real(b): + reverse = True + a, b = b, a + else: + reverse = False + + + #% Infinite limits + if np.isinf(a) | np.isinf(b): + # Check real limits + if ~np.isreal(a) | ~np.isreal(b) | np.isnan(a) | np.isnan(b): + raise ValueError('Infinite intervals must be real.') + + #% Change of variable + if np.isfinite(a) & np.isinf(b): + #% a to inf + fun1 = lambda t : fun(a + t/(1-t))/(1-t)**2 + [Q,err] = quadgr(fun1,0,1,abseps) + elif np.isinf(a) & np.isfinite(b): + #% -inf to b + fun2 = lambda t: fun(b + t/(1+t))/(1+t)**2 + [Q,err] = quadgr(fun2,-1,0,abseps) + else: #% -inf to inf + fun1 = lambda t: fun(t/(1-t))/(1-t)**2 + fun2 = lambda t: fun(t/(1+t))/(1+t)**2 + [Q1,err1] = quadgr(fun1,0,1,abseps/2) + [Q2,err2] = quadgr(fun2,-1,0,abseps/2) + Q = Q1 + Q2 + err = err1 + err2 + + #% Reverse direction + if reverse: + Q = -Q + return Q, err + + #% Gauss-Legendre quadrature (12-point) + xq = np.asarray([0.12523340851146894, 0.36783149899818018, 0.58731795428661748, + 0.76990267419430469, 0.9041172563704748, 0.98156063424671924]) + wq = np.asarray([0.24914704581340288, 0.23349253653835478, 0.20316742672306584, + 0.16007832854334636, 0.10693932599531818, 0.047175336386511842]) + xq = np.hstack((xq, -xq)) + wq = np.hstack((wq, wq)) + nq = len(xq) + + #% Initiate vectors + max_iter = 17 # Max number of iterations + Q0 = zeros(max_iter) # Quadrature + Q1 = zeros(max_iter) # First Richardson extrapolation + Q2 = zeros(max_iter) # Second Richardson extrapolation + + # One interval + hh = (b - a)/2 # Half interval length + x = (a + b)/2 + hh*xq # Nodes + # Quadrature + Q0[0] = hh*np.sum(wq*fun(x),axis=0) + + # Successive bisection of intervals + for k in xrange(1,max_iter): + + # Interval bisection + hh = hh/2 + x = np.hstack([x + a, x + b])/2 + # Quadrature + Q0[k] = hh*np.sum(wq*np.sum(np.reshape(fun(x),(-1,nq)),axis=0),axis=0) + + # Richardson extrapolation + if k >= 5: + Q1[k] = richardson(Q0,k) + Q2[k] = richardson(Q1,k) + elif k >= 3: + Q1[k] = richardson(Q0,k) + + + #% Estimate absolute error + if k >= 6: + Qv = np.hstack((Q0[k], Q1[k], Q2[k])) + Qw = np.hstack((Q0[k-1], Q1[k-1], Q2[k-1])) + elif k >= 4: + Qv = np.hstack((Q0[k], Q1[k])) + Qw = np.hstack((Q0[k-1], Q1[k-1])) + else: + Qv = np.atleast_1d(Q0[k]) + Qw = Q0[k-1] + + errors = np.atleast_1d(abs(Qv - Qw)) + j = errors.argmin() + err = errors[j] + Q = Qv[j] + if k>=2: + val,err1 = dea3(Q0[k-2],Q0[k-1],Q0[k]) + + # Convergence + if (err < abseps) | ~np.isfinite(Q): + break + else: + warnings.warn('Max number of iterations reached without convergence.') + + if ~np.isfinite(Q): + warnings.warn('Integral approximation is Infinite or NaN.') + + + # The error estimate should not be zero + err = err + 2*np.finfo(Q).eps + # Reverse direction + if reverse: + Q = -Q + + return Q, err + +def qdemo(f,a,b): + ''' + Compares different quadrature rules. + + Parameters + ---------- + f : callable + function + a,b : scalars + lower and upper integration limits + + Details + ------- + qdemo(f,a,b) computes and compares various approximations to + the integral of f from a to b. Three approximations are used, + the composite trapezoid, Simpson's, and Boole's rules, all with + equal length subintervals. + In a case like qdemo(exp,0,3) one can see the expected + convergence rates for each of the three methods. + In a case like qdemo(sqrt,0,3), the convergence rate is limited + not by the method, but by the singularity of the integrand. + + Example + ------- + >>> import numpy as np + >>> qdemo(np.exp,0,3) + true value = 19.08553692 + ftn Trapezoid Simpsons Booles + evals approx error approx error approx error + 3, 22.5366862979, 3.4511493747, 19.5061466023, 0.4206096791, 19.4008539142, 0.3153169910 + 5, 19.9718950387, 0.8863581155, 19.1169646189, 0.0314276957, 19.0910191534, 0.0054822302 + 9, 19.3086731081, 0.2231361849, 19.0875991312, 0.0020622080, 19.0856414320, 0.0001045088 + 17, 19.1414188470, 0.0558819239, 19.0856674267, 0.0001305035, 19.0855386464, 0.0000017232 + 33, 19.0995135407, 0.0139766175, 19.0855451052, 0.0000081821, 19.0855369505, 0.0000000273 + 65, 19.0890314614, 0.0034945382, 19.0855374350, 0.0000005118, 19.0855369236, 0.0000000004 + 129, 19.0864105817, 0.0008736585, 19.0855369552, 0.0000000320, 19.0855369232, 0.0000000000 + 257, 19.0857553393, 0.0002184161, 19.0855369252, 0.0000000020, 19.0855369232, 0.0000000000 + 513, 19.0855915273, 0.0000546041, 19.0855369233, 0.0000000001, 19.0855369232, 0.0000000000 + ftn Clenshaw Chebychev Gauss-L + evals approx error approx error approx error + 3, 19.5061466023, 0.4206096791, 0.0000000000, 1.0000000000, 19.0803304585, 0.0052064647 + 5, 19.0834145766, 0.0021223465, 0.0000000000, 1.0000000000, 19.0855365951, 0.0000003281 + 9, 19.0855369150, 0.0000000082, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 17, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 33, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 65, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 129, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 257, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + 513, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000 + + ''' + # use quad8 with small tolerance to get "true" value + #true1 = quad8(f,a,b,1e-10) + #[true tol]= gaussq(f,a,b,1e-12) + #[true tol] = agakron(f,a,b,1e-13) + true_val, tol = intg.quad(f, a, b) + print('true value = %12.8f' % (true_val,)) + kmax = 9 + neval = zeros(kmax,dtype=int) + qt = zeros(kmax) + qs = zeros(kmax) + qb = zeros(kmax) + qc = zeros(kmax) + qc2 = zeros(kmax) + qg = zeros(kmax) + + et = ones(kmax) + es = ones(kmax) + eb = ones(kmax) + ec = ones(kmax) + ec2 = ones(kmax) + ec3 = ones(kmax) + eg = ones(kmax) + # try various approximations + + for k in xrange(kmax): + n = 2**(k+1) + 1 + neval[k] = n + h = (b-a)/(n-1) + x = np.linspace(a,b,n) + y = f(x) + + # trapezoid approximation + q = np.trapz(y,x) + #h*( (y(1)+y(n))/2 + sum(y(2:n-1)) ) + qt[k] = q + et[k] = abs(q - true_val) + # Simpson approximation + q = intg.simps(y,x) + #(h/3)*( y(1)+y(n) + 4*sum(y(2:2:n-1)) + 2*sum(y(3:2:n-2)) ) + qs[k] = q + es[k] = abs(q - true_val) + # Boole's rule + #q = boole(x,y) + q = (2*h/45)*(7*(y[0]+y[-1]) + 12*np.sum(y[2:n-1:4]) + + 32*np.sum(y[1:n-1:2]) + 14*np.sum(y[4:n-3:4])) + qb[k] = q + eb[k] = abs(q - true_val) + + # Clenshaw-Curtis + [q, ec3[k]] = clencurt(f,a,b,(n-1)/2) + qc[k] = q + ec[k] = abs(q - true_val) + + # Chebychev + #ck = chebfit(f,n,a,b) + #q = chebval(b,chebint(ck,a,b),a,b) + #qc2[k] = q; ec2[k] = abs(q - true) + + # Gauss-Legendre quadrature + q = intg.fixed_quad(f,a,b,n=n)[0] + #[x, w]=qrule(n,1) + #x = (b-a)/2*x + (a+b)/2 % Transform base points X. + #w = (b-a)/2*w % Adjust weigths. + #q = sum(feval(f,x).*w) + qg[k] = q + eg[k] = abs(q - true_val) + + + #% display results + formats = ['%4.0f, ',] + ['%10.10f, ',]*6 + formats[-1] = formats[-1].split(',')[0] + data = np.vstack((neval,qt,et,qs,es,qb,eb)).T + print(' ftn Trapezoid Simpson''s Boole''s') + print('evals approx error approx error approx error') + + for k in xrange(kmax): + tmp = data[k].tolist() + print(''.join(fi % t for fi, t in zip(formats,tmp))) + + # display results + data = np.vstack((neval,qc,ec,qc2,ec2,qg,eg)).T + print(' ftn Clenshaw Chebychev Gauss-L') + print('evals approx error approx error approx error') + for k in xrange(kmax): + tmp = data[k].tolist() + print(''.join(fi % t for fi, t in zip(formats,tmp))) + + + plb.loglog(neval,np.vstack((et,es,eb,ec,ec2,eg)).T) + plb.xlabel('number of function evaluations') + plb.ylabel('error') + plb.legend(('Trapezoid','Simpsons','Booles','Clenshaw','Chebychev','Gauss-L')) + #ec3' + + + + +def main(): + val,err = clencurt(np.exp,0,2) + valt = np.exp(2)-np.exp(0) + [Q,err] = quadgr(lambda x: x**2,1,4,1e-9) + [Q,err] = quadgr(humps,1,4,1e-9) + + [x,w] = h_roots(11,'newton') + sum(w) + [x2,w2] = la_roots(11,1,'t') + + from scitools import numpyutils as npu + fun = npu.wrap2callable('x**2') + p0 = fun(0) + A = [0, 1,1]; B = [2,4,3] + area,err = gaussq(fun,A,B) + + fun = npu.wrap2callable('x**2') + [val1,err1] = gaussq(fun,A,B) + + + #Integration of x^2*exp(-x) from zero to infinity: + fun2 = npu.wrap2callable('1') + [val2,err2] = gaussq(fun2,0,np.inf,wfun=3, alpha=2) + [val2,err2] = gaussq(lambda x: x**2,0,np.inf,wfun=3,alpha=0) + + #Integrate humps from 0 to 2 and from 1 to 4 + [val3,err3] = gaussq(humps,A,B) + + [x,w] = p_roots(11,'newton',1,3) + y = np.sum(x**2*w) + + x = np.linspace(0,np.pi/2) + q0 = np.trapz(humps(x),x) + [q,err] = romberg(humps,0,np.pi/2,1e-4) + print q,err + +if __name__=='__main__': + import doctest + doctest.testmod() + #main() diff --git a/wafo/interpolate.py b/wafo/interpolate.py new file mode 100755 index 0000000..24743ef --- /dev/null +++ b/wafo/interpolate.py @@ -0,0 +1,418 @@ +#------------------------------------------------------------------------------- +# Name: module1 +# Purpose: +# +# Author: pab +# +# Created: 30.12.2008 +# Copyright: (c) pab 2008 +# Licence: +#------------------------------------------------------------------------------- +#!/usr/bin/env python +from __future__ import division +import numpy as np +import scipy.sparse as sp +import scipy.sparse.linalg #@UnusedImport +from numpy.ma.core import ones, zeros, prod, sin +from numpy import diff, pi, inf #@UnresolvedImport +from numpy.lib.shape_base import vstack +from numpy.lib.function_base import linspace +import polynomial as pl + +class PPform1(object): + """The ppform of the piecewise polynomials is given in terms of coefficients + and breaks. The polynomial in the ith interval is + x_{i} <= x < x_{i+1} + + S_i = sum(coefs[m,i]*(x-breaks[i])^(k-m), m=0..k) + where k is the degree of the polynomial. + + Example + ------- + >>> coef = np.array([[1,1]]) # unit step function + >>> coef = np.array([[1,1],[0,1]]) # linear from 0 to 2 + >>> coef = np.array([[1,1],[1,1],[0,2]]) # linear from 0 to 2 + >>> breaks = [0,1,2] + >>> self = PPform(coef, breaks) + >>> x = linspace(-1,3) + >>> plot(x,self(x)) + """ + def __init__(self, coeffs, breaks, fill=0.0, sort=False, a=None, b=None): + if sort: + self.breaks = np.sort(breaks) + else: + self.breaks = np.asarray(breaks) + if a is None: + a = self.breaks[0] + if b is None: + b = self.breaks[-1] + self.coeffs = np.asarray(coeffs) + self.order = self.coeffs.shape[0] + self.fill = fill + self.a = a + self.b = b + + def __call__(self, xnew): + saveshape = np.shape(xnew) + xnew = np.ravel(xnew) + res = np.empty_like(xnew) + mask = (self.a <= xnew) & (xnew <= self.b) + res[~mask] = self.fill + xx = xnew.compress(mask) + indxs = np.searchsorted(self.breaks[:-1], xx) - 1 + indxs = indxs.clip(0, len(self.breaks)) + pp = self.coeffs + dx = xx - self.breaks.take(indxs) + if True: + v = pp[0, indxs] + for i in xrange(1, self.order): + v = dx * v + pp[i, indxs] + values = v + else: + V = np.vander(dx, N=self.order) + # values = np.diag(dot(V,pp[:,indxs])) + dot = np.dot + values = np.array([dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))]) + + res[mask] = values + res.shape = saveshape + return res + + def linear_extrapolate(self, output=True): + ''' + Return a 1D PPform which extrapolate linearly outside its basic interval + ''' + + max_order = 2 + + if self.order <= max_order: + if output: + return self + else: + return + breaks = self.breaks.copy() + coefs = self.coeffs.copy() + #pieces = len(breaks) - 1 + + # Add new breaks beyond each end + breaks2add = breaks[[0, -1]] + np.array([-1, 1]) + newbreaks = np.hstack([breaks2add[0], breaks, breaks2add[1]]) + + dx = newbreaks[[0, -2]] - breaks[[0, -2]] + + dx = dx.ravel() + + # Get coefficients for the new last polynomial piece (a_n) + # by just relocate the previous last polynomial and + # then set all terms of order > maxOrder to zero + + a_nn = coefs[:, -1] + dxN = dx[-1] + + a_n = pl.polyreloc(a_nn, -dxN) # Relocate last polynomial + #set to zero all terms of order > maxOrder + a_n[0:self.order - max_order] = 0 + + #Get the coefficients for the new first piece (a_1) + # by first setting all terms of order > maxOrder to zero and then + # relocate the polynomial. + + + #Set to zero all terms of order > maxOrder, i.e., not using them + a_11 = coefs[self.order - max_order::, 0] + dx1 = dx[0] + + a_1 = pl.polyreloc(a_11, -dx1) # Relocate first polynomial + a_1 = np.hstack([zeros(self.order - max_order), a_1]) + + newcoefs = np.hstack([ a_1.reshape(-1, 1), coefs, a_n.reshape(-1, 1)]) + if output: + return PPform(newcoefs, newbreaks, a= -inf, b=inf) + else: + self.coeffs = newcoefs + self.breaks = newbreaks + self.a = -inf + self.b = inf + + def derivative(self): + """ + Return first derivative of the piecewise polynomial + """ + + cof = pl.polyder(self.coeffs) + brks = self.breaks.copy() + return PPform(cof, brks, fill=self.fill) + + + def integrate(self): + """ + Return the indefinite integral of the piecewise polynomial + """ + cof = pl.polyint(self.coeffs) + + pieces = len(self.breaks) - 1 + if 1 < pieces : + # evaluate each integrated polynomial at the right endpoint of its interval + xs = diff(self.breaks[:-1, ...], axis=0) + index = np.arange(pieces - 1) + + vv = xs * cof[0, index] + k = self.order + for i in xrange(1, k): + vv = xs * (vv + cof[i, index]) + + cof[-1] = np.hstack((0, vv)).cumsum() + + return PPform(cof, self.breaks, fill=self.fill) + + + +## def fromspline(cls, xk, cvals, order, fill=0.0): +## N = len(xk)-1 +## sivals = np.empty((order+1,N), dtype=float) +## for m in xrange(order,-1,-1): +## fact = spec.gamma(m+1) +## res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) +## res /= fact +## sivals[order-m,:] = res +## return cls(sivals, xk, fill=fill) + +class SmoothSpline(PPform): + """ + Cubic Smoothing Spline. + + Parameters + ---------- + x : array-like + x-coordinates of data. (vector) + y : array-like + y-coordinates of data. (vector or matrix) + p : real scalar + smoothing parameter between 0 and 1: + 0 -> LS-straight line + 1 -> cubic spline interpolant + lin_extrap : bool + if False regular smoothing spline + if True a smoothing spline with a constraint on the ends to + ensure linear extrapolation outside the range of the data (default) + var : array-like + variance of each y(i) (default 1) + + Returns + ------- + pp : ppform + If xx is not given, return self-form of the spline. + + Given the approximate values + + y(i) = g(x(i))+e(i) + + of some smooth function, g, where e(i) is the error. SMOOTH tries to + recover g from y by constructing a function, f, which minimizes + + p * sum (Y(i) - f(X(i)))^2/d2(i) + (1-p) * int (f'')^2 + + + Example + ------- + >>> import numpy as np + >>> x = np.linspace(0,1) + >>> y = exp(x)+1e-1*np.random.randn(x.shape) + >>> pp9 = SmoothSpline(x, y, p=.9) + >>> pp99 = SmoothSpline(x, y, p=.99, var=0.01) + >>> plot(x,y, x,pp99(x),'g', x,pp9(x),'k', x,exp(x),'r') + + See also + -------- + lc2tr, dat2tr + + + References + ---------- + Carl de Boor (1978) + 'Practical Guide to Splines' + Springer Verlag + Uses EqXIV.6--9, self 239 + """ + def __init__(self, xx, yy, p=None, lin_extrap=True, var=1): + coefs, brks = self._compute_coefs(xx, yy, p, var) + super(SmoothSpline, self).__init__(coefs, brks) + if lin_extrap: + self.linear_extrapolate(output=False) + + def _compute_coefs(self, xx, yy, p=None, var=1): + x, y = np.atleast_1d(xx, yy) + x = x.ravel() + dx = np.diff(x) + must_sort = (dx < 0).any() + if must_sort: + ind = x.argsort() + x = x[ind] + y = y[..., ind] + dx = np.diff(x) + + n = len(x) + + #ndy = y.ndim + szy = y.shape + + nd = prod(szy[:-1]) + ny = szy[-1] + + if n < 2: + raise ValueError('There must be >=2 data points.') + elif (dx <= 0).any(): + raise ValueError('Two consecutive values in x can not be equal.') + elif n != ny: + raise ValueError('x and y must have the same length.') + + dydx = np.diff(y) / dx + + if (n == 2) : #% straight line + coefs = np.vstack([dydx.ravel(), y[0, :]]) + else: + + dx1 = 1. / dx + D = sp.spdiags(var * ones(n), 0, n, n) # The variance + + u, p = self._compute_u(p, D, dydx, dx, dx1, n) + dx1.shape = (n - 1, -1) + dx.shape = (n - 1, -1) + zrs = zeros(nd) + if p < 1: + ai = (y - (6 * (1 - p) * D * diff(vstack([zrs, + diff(vstack([zrs, u, zrs]), axis=0) * dx1, + zrs]), axis=0)).T).T #faster than yi-6*(1-p)*Q*u + else: + ai = y.reshape(n, -1) + + # The piecewise polynominals are written as + # fi=ai+bi*(x-xi)+ci*(x-xi)^2+di*(x-xi)^3 + # where the derivatives in the knots according to Carl de Boor are: + # ddfi = 6*p*[0;u] = 2*ci; + # dddfi = 2*diff([ci;0])./dx = 6*di; + # dfi = diff(ai)./dx-(ci+di.*dx).*dx = bi; + + ci = np.vstack([zrs, 3 * p * u]) + di = (diff(vstack([ci, zrs]), axis=0) * dx1 / 3); + bi = (diff(ai, axis=0) * dx1 - (ci + di * dx) * dx) + ai = ai[:n - 1, ...] + if nd > 1: + di = di.T + ci = ci.T + ai = ai.T + #end + if not any(di): + if not any(ci): + coefs = vstack([bi.ravel(), ai.ravel()]) + else: + coefs = vstack([ci.ravel(), bi.ravel(), ai.ravel()]) + #end + else: + coefs = vstack([di.ravel(), ci.ravel(), bi.ravel(), ai.ravel()]) + + return coefs, x + + def _compute_u(self, p, D, dydx, dx, dx1, n): + if p is None or p != 0: + data = [dx[1:n - 1], 2 * (dx[:n - 2] + dx[1:n - 1]), dx[:n - 2]] + R = sp.spdiags(data, [-1, 0, 1], n - 2, n - 2) + + if p is None or p < 1: + Q = sp.spdiags([dx1[:n - 2], -(dx1[:n - 2] + dx1[1:n - 1]), dx1[1:n - 1]], [0, -1, -2], n, n - 2) + QDQ = (Q.T * D * Q) + if p is None or p < 0: + # Estimate p + p = 1. / (1. + QDQ.diagonal().sum() / (100. * R.diagonal().sum()** 2)); + + if p == 0: + QQ = 6 * QDQ + else: + QQ = (6 * (1 - p)) * (QDQ) + p * R + else: + QQ = R + + # Make sure it uses symmetric matrix solver + ddydx = diff(dydx, axis=0) + sp.linalg.use_solver(useUmfpack=True) + u = 2 * sp.linalg.spsolve((QQ + QQ.T), ddydx) + #faster than u=QQ\(Q' * yi); + return u.reshape(n - 2, -1), p + + +def test_smoothing_spline(): + x = linspace(0, 2 * pi + pi / 4, 20) + y = sin(x) #+ np.random.randn(x.size) + pp = SmoothSpline(x, y, p=1) + x1 = linspace(-1, 2 * pi + pi / 4 + 1, 20) + y1 = pp(x1) + pp1 = pp.derivative() + pp0 = pp1.integrate() + dy1 = pp1(x1) + y01 = pp0(x1) + #dy = y-y1 + import pylab as plb + + plb.plot(x, y, x1, y1, '.', x1, dy1, 'ro', x1, y01, 'r-') + plb.show() + pass + #tck = interpolate.splrep(x, y, s=len(x)) + +def main(): + from scipy import interpolate + import matplotlib.pyplot as plt + import matplotlib + matplotlib.interactive(True) + + coef = np.array([[1, 1], [0, 1]]) # linear from 0 to 2 + #coef = np.array([[1,1],[1,1],[0,2]]) # linear from 0 to 2 + breaks = [0, 1, 2] + pp = PPform(coef, breaks, a= -100, b=100) + x = linspace(-1, 3, 20) + y = pp(x) + + x = linspace(0, 2 * pi + pi / 4, 20) + y = x + np.random.randn(x.size) + tck = interpolate.splrep(x, y, s=len(x)) + xnew = linspace(0, 2 * pi, 100) + ynew = interpolate.splev(xnew, tck, der=0) + tck0 = interpolate.splmake(xnew, ynew, order=3, kind='smoothest', conds=None) + pp = interpolate.ppform.fromspline(*tck0) + + plt.plot(x, y, "x", xnew, ynew, xnew, sin(xnew), x, y, "b") + plt.legend(['Linear', 'Cubic Spline', 'True']) + plt.title('Cubic-spline interpolation') + + + t = np.arange(0, 1.1, .1) + x = np.sin(2 * np.pi * t) + y = np.cos(2 * np.pi * t) + tck1, u = interpolate.splprep([t, y], s=0) + tck2 = interpolate.splrep(t, y, s=len(t), task=0) + #interpolate.spl + tck = interpolate.splmake(t, y, order=3, kind='smoothest', conds=None) + self = interpolate.ppform.fromspline(*tck2) + plt.plot(t, self(t)) + pass + +def test_pp(): + import polynomial as pl + coef = np.array([[1, 1], [0, 0]]) # linear from 0 to 2 + + coef = np.array([[1, 1], [1, 1], [0, 2]]) # quadratic from 0 to 1 and 1 to 2. + dc = pl.polyder(coef, 1) + c2 = pl.polyint(dc, 1) + breaks = [0, 1, 2] + pp = PPform(coef, breaks) + pp(0.5) + pp(1) + pp(1.5) + dpp = pp.derivative() + import pylab as plb + x = plb.linspace(-1, 3) + plb.plot(x, pp(x), x, dpp(x), '.') + plb.show() + +if __name__ == '__main__': + #main() + test_smoothing_spline() diff --git a/wafo/kdetools.py b/wafo/kdetools.py new file mode 100755 index 0000000..f71d4fe --- /dev/null +++ b/wafo/kdetools.py @@ -0,0 +1,609 @@ +#------------------------------------------------------------------------------- +# Name: kdetools +# Purpose: +# +# Author: pab +# +# Created: 01.11.2008 +# Copyright: (c) pab2 2008 +# Licence: LGPL +#------------------------------------------------------------------------------- +#!/usr/bin/env python +#import numpy as np +from scipy.special import gamma +from numpy import pi, atleast_2d #@UnresolvedImport +from misc import tranproc, trangood +def sphere_volume(d, r=1.0): + """ + Returns volume of d-dimensional sphere with radius r + + Parameters + ---------- + d : scalar or array_like + dimension of sphere + r : scalar or array_like + radius of sphere (default 1) + + Reference + --------- + Wand,M.P. and Jones, M.C. (1995) + 'Kernel smoothing' + Chapman and Hall, pp 105 + """ + return (r**d)* 2.*pi**(d/2.)/(d*gamma(d/2.)) + + +class kde(object): + """ Representation of a kernel-density estimate using Gaussian kernels. + + Parameters + ---------- + dataset : (# of dims, # of data)-array + datapoints to estimate from + + Members + ------- + d : int + number of dimensions + n : int + number of datapoints + + Methods + ------- + kde.evaluate(points) : array + evaluate the estimated pdf on a provided set of points + kde(points) : array + same as kde.evaluate(points) + kde.integrate_gaussian(mean, cov) : float + multiply pdf with a specified Gaussian and integrate over the whole domain + kde.integrate_box_1d(low, high) : float + integrate pdf (1D only) between two bounds + kde.integrate_box(low_bounds, high_bounds) : float + integrate pdf over a rectangular space between low_bounds and high_bounds + kde.integrate_kde(other_kde) : float + integrate two kernel density estimates multiplied together + + Internal Methods + ---------------- + kde.covariance_factor() : float + computes the coefficient that multiplies the data covariance matrix to + obtain the kernel covariance matrix. Set this method to + kde.scotts_factor or kde.silverman_factor (or subclass to provide your + own). The default is scotts_factor. + """ + + def __init__(self, dataset,**kwds): + self.kernel='gauss' + self.hs = None + self.hsmethod=None + self.L2 = None + self.__dict__.update(kwds) + + self.dataset = atleast_2d(dataset) + self.d, self.n = self.dataset.shape + + + self._compute_covariance() + + + def evaluate(self, points): + """Evaluate the estimated pdf on a set of points. + + Parameters + ---------- + points : (# of dimensions, # of points)-array + Alternatively, a (# of dimensions,) vector can be passed in and + treated as a single point. + + Returns + ------- + values : (# of points,)-array + The values at each point. + + Raises + ------ + ValueError if the dimensionality of the input points is different than + the dimensionality of the KDE. + """ + + points = atleast_2d(points).astype(self.dataset.dtype) + + d, m = points.shape + if d != self.d: + if d == 1 and m == self.d: + # points was passed in as a row vector + points = reshape(points, (self.d, 1)) + m = 1 + else: + msg = "points have dimension %s, dataset has dimension %s" % (d, + self.d) + raise ValueError(msg) + + result = zeros((m,), points.dtype) + + if m >= self.n: + # there are more points than data, so loop over data + for i in range(self.n): + diff = self.dataset[:,i,newaxis] - points + tdiff = dot(self.inv_cov, diff) + energy = sum(diff*tdiff,axis=0)/2.0 + result += exp(-energy) + else: + # loop over points + for i in range(m): + diff = self.dataset - points[:,i,newaxis] + tdiff = dot(self.inv_cov, diff) + energy = sum(diff*tdiff,axis=0)/2.0 + result[i] = sum(exp(-energy),axis=0) + + result /= self._norm_factor + + return result + + __call__ = evaluate + +##function [f, hs,lambda]= kdefun(A,options,varargin) +##%KDEFUN Kernel Density Estimator. +##% +##% CALL: [f, hs] = kdefun(data,options,x1,x2,...,xd) +##% +##% f = kernel density estimate evaluated at x1,x2,...,xd. +##% data = data matrix, size N x D (D = # dimensions) +##% options = kdeoptions-structure or cellvector of named parameters with +##% corresponding values, see kdeoptset for details. +##% x1,x2..= vectors/matrices defining the points to evaluate the density +##% +##% KDEFUN gives a slow, but exact kernel density estimate evaluated at x1,x2,...,xd. +##% Notice that densities close to normality appear to be the easiest for the kernel +##% estimator to estimate and that the degree of estimation difficulty increases with +##% skewness, kurtosis and multimodality. +##% +##% If D > 1 KDE calculates quantile levels by integration. An +##% alternative is to calculate them by ranking the kernel density +##% estimate obtained at the points DATA i.e. use the commands +##% +##% f = kde(data); +##% r = kdefun(data,[],num2cell(data,1)); +##% f.cl = qlevels2(r,f.PL); +##% +##% The first is probably best when estimating the pdf and the latter is the +##% easiest and most robust for multidimensional data when only a visualization +##% of the data is needed. +##% +##% For faster estimates try kdebin. +##% +##% Examples: +##% data = rndray(1,500,1); +##% x = linspace(sqrt(eps),5,55); +##% plotnorm((data).^(.5)) % gives a straight line => L2 = 0.5 reasonable +##% f = kdefun(data,{'L2',.5},x); +##% plot(x,f,x,pdfray(x,1),'r') +##% +##% See also kde, mkernel, kdebin +## +##% Reference: +##% B. W. Silverman (1986) +##% 'Density estimation for statistics and data analysis' +##% Chapman and Hall , pp 100-110 +##% +##% Wand, M.P. and Jones, M.C. (1995) +##% 'Kernel smoothing' +##% Chapman and Hall, pp 43--45 +## +## +## +## +##%Tested on: matlab 5.2 +##% History: +##% revised pab Feb2004 +##% -options moved into a structure +##% revised pab Dec2003 +##% -removed some code +##% revised pab 27.04.2001 +##% - changed call from mkernel to mkernel2 (increased speed by 10%) +##% revised pab 01.01.2001 +##% - added the possibility that L2 is a cellarray of parametric +##% or non-parametric transformations (secret option) +##% revised pab 14.12.1999 +##% - fixed a small error in example in help header +##% revised pab 28.10.1999 +##% - added L2 +##% revised pab 21.10.99 +##% - added alpha to input arguments +##% - made it fully general for d dimensions +##% - HS may be a smoothing matrix +##% revised pab 21.09.99 +##% - adapted from kdetools by Christian Beardah +## +## defaultoptions = kdeoptset; +##% If just 'defaults' passed in, return the default options in g +##if ((nargin==1) && (nargout <= 1) && isequal(A,'defaults')), +## f = defaultoptions; +## return +##end +##error(nargchk(1,inf, nargin)) +## +##[n, d]=size(A); % Find dimensions of A, +## % n=number of data points, +## % d=dimension of the data. +##if (nargin<2 || isempty(options)) +## options = defaultoptions; +##else +## switch lower(class(options)) +## case {'char','struct'}, +## options = kdeoptset(defaultoptions,options); +## case {'cell'} +## +## options = kdeoptset(defaultoptions,options{:}); +## otherwise +## error('Invalid options') +## end +##end +##kernel = options.kernel; +##h = options.hs; +##alpha = options.alpha; +##L2 = options.L2; +##hsMethod = options.hsMethod; +## +##if isempty(h) +## h=zeros(1,d); +##end +## +##L22 = cell(1,d); +##k3=[]; +##if isempty(L2) +## L2=ones(1,d); % default no transformation +##elseif iscell(L2) % cellarray of non-parametric and parametric transformations +## Nl2 = length(L2); +## if ~(Nl2==1||Nl2==d), error('Wrong size of L2'), end +## [L22{1:d}] = deal(L2{1:min(Nl2,d)}); +## L2 = ones(1,d); % default no transformation +## for ix=1:d, +## if length(L22{ix})>1, +## k3=[k3 ix]; % Non-parametric transformation +## else +## L2(ix) = L22{ix}; % Parameter to the Box-Cox transformation +## end +## end +##elseif length(L2)==1 +## L2=L2(:,ones(1,d)); +##end +## +##amin=min(A); +##if any((amin(L2~=1)<=0)) , +## error('DATA cannot be negative or zero when L2~=1') +##end +## +## +##nv=length(varargin); +##if nv0 +## Xn = num2cell(lA,1); +## opt1 = kdeoptset('kernel',kernel,'hs',h,'alpha',0,'L2',1); +## f2 = kdefun(lA,opt1,Xn{:}); % get a pilot estimate by regular KDE (alpha=0) +## g = exp(sum(log(f2))/n); +## +## lambda=(f2(:)/g).^(-alpha); +##else +## lambda=ones(n,1); +##end +## +## +## +## +## +##f=zeros(Nx,1); +##if (min(hsiz)==1)||(d==1) +## for ix=1:n, % Sum over all data points +## Avec=lA(ix,:); +## Xnn=(lX-Avec(ones(Nx,1),:))./(h(ones(Nx,1),:) *lambda(ix)); +## f = f + mkernel2(Xnn,kernel)/lambda(ix)^d; +## end +##else % fully general +## h1=inv(h); +## for ix=1:n, % Sum over all data points +## Avec=lA(ix,:); +## Xnn=(lX-Avec(ones(Nx,1),:))*(h1/lambda(ix)); +## f = f + mkernel2(Xnn,kernel)/lambda(ix)^d; +## end +##end +##f=f/(n*deth); +## +##% transforming back +##if any(k1), % L2=0 i.e. logaritmic transformation +## for ix=k1 +## f=f./X(:,ix); +## end +## if any(max(abs(diff(f)))>10) +## disp('Warning: Numerical problems may have occured due to the logaritmic') +## disp('transformation. Check the KDE for spurious spikes') +## end +##end +##if any(k2) % L2~=0 i.e. power transformation +## for ix=k2 +## f=f.*(X(:,ix).^(L2(ix)-1))*L2(ix)*sign(L2(ix)); +## end +## if any(max(abs(diff(f)))>10) +## disp('Warning: Numerical problems may have occured due to the power') +## disp('transformation. Check the KDE for spurious spikes') +## end +##end +##if any(k3), % non-parametric transformation +## oneC = ones(Nx,1); +## for ix=k3 +## gn = L22{ix}; +## %Gn = fliplr(L22{ix}); +## %x0 = tranproc(lX(:,ix),Gn); +## if any(isnan(X(:,ix))), +## error('The transformation does not have a strictly positive derivative.') +## end +## hg1 = tranproc([X(:,ix) oneC],gn); +## der1 = abs(hg1(:,2)); % dg(X)/dX = 1/(dG(Y)/dY) +## % alternative 2 +## %pp = smooth(Gn(:,1),Gn(:,2),1,[],1); +## %dpp = diffpp(pp); +## %der1 = 1./abs(ppval(dpp,f.x{ix})); +## % Alternative 3 +## %pp = smooth(gn(:,1),gn(:,2),1,[],1); +## %dpp = diffpp(pp); +## %%plot(hg1(:,1),der1-abs(ppval(dpp,x0))) +## %der1 = abs(ppval(dpp,x0)); +## if any(der1<=0), +## error('The transformation must have a strictly positive derivative') +## end +## f = f.*der1; +## end +## if any(max(abs(diff(f)))>10) +## disp('Warning: Numerical problems may have occured due to the power') +## disp('transformation. Check the KDE for spurious spikes') +## end +##end +## +##f=reshape(f,xsiz); % restore original shape +##if nargout>1 +## hs=h; +##end +## +## +## +## +## +## +## +## +## +## +##function [z,c]=mkernel(varargin) +##%MKERNEL Multivariate Kernel Function. +##% +##% CALL: z = mkernel(x1,x2,...,xd,kernel); +##% z = mkernel(X,kernel); +##% +##% +##% z = kernel function values evaluated at x1,x2,...,xd +##% x1,x2..= input arguments, vectors or matrices with common size +##% or +##% X = cellarray of vector/matrices with common size +##% (i.e. X{1}=x1, X{2}=x2....) +##% +##% kernel = 'epanechnikov' - Epanechnikov kernel. +##% 'epa1' - product of 1D Epanechnikov kernel. +##% 'biweight' - Bi-weight kernel. +##% 'biw1' - product of 1D Bi-weight kernel. +##% 'triweight' - Tri-weight kernel. +##% 'triangular' - Triangular kernel. +##% 'gaussian' - Gaussian kernel +##% 'rectangular' - Rectangular kernel. +##% 'laplace' - Laplace kernel. +##% 'logistic' - Logistic kernel. +##% +##% Note that only the first 4 letters of the kernel name is needed. +##% +##% See also kde, kdefun, kdebin +## +##% Reference: +##% B. W. Silverman (1986) +##% 'Density estimation for statistics and data analysis' +##% Chapman and Hall, pp. 43, 76 +##% +##% Wand, M. P. and Jones, M. C. (1995) +##% 'Density estimation for statistics and data analysis' +##% Chapman and Hall, pp 31, 103, 175 +## +##%Tested on: matlab 5.3 +##% History: +##% Revised pab sep2005 +##% -replaced reference to kdefft with kdebin +##% revised pab aug2005 +##% -Fixed some bugs +##% revised pab Dec2003 +##% removed some old code +##% revised pab 27.04.2001 +##% - removed some old calls +##% revised pab 01.01.2001 +##% - speeded up tri3 +##% revised pab 01.12.1999 +##% - added four weight, sphere +##% - made comparison smarter => faster execution for d>1 +##% revised pab 26.10.1999 +##% fixed normalization fault in epan +##% by pab 21.09.99 +##% added multivariate epan, biweight and triweight +##% +##% collected all knorm,kepan ... into this file +##% adapted from kdetools CB +## +##d=length(varargin)-1; +##kstr=varargin{d+1}; % kernel string +##if iscell(varargin{1}) +## X=varargin{1}; +## d=numel(X); +##else +## X=varargin; +##end +## +##switch lower(kstr(1:4)) +## case {'sphe','epan','biwe','triw','four'} +## switch lower(kstr(1:4)) +## case 'sphe', r=0; %Sphere = rect for 1D +## case 'epan', r=1; %Multivariate Epanechnikov kernel. +## case 'biwe', r=2; %Multivariate Bi-weight Kernel +## case 'triw', r=3; %Multi variate Tri-weight Kernel +## case 'four', r=4; %Multi variate Four-weight Kernel +## % as r -> infty, b -> infty => kernel -> Gaussian distribution +## end +## b=1;% radius of the kernel +## b2=b^2; +## s=X{1}.^2; +## k=find(s<=b2); +## z=zeros(size(s)); +## ix=2; +## while (any(k) && (ix<=d)), +## s(k)=s(k)+X{ix}(k).^2; +## k1=(s(k)<=b2); +## k=k(k1); +## ix=ix+1; +## end; +## if any(k) +## c=2^r*prod(1:r)*vsph(d,b)/prod((d+2):2:(d+2*r)); % normalizing constant +## %c=beta(r+1,r+1)*vsph(d,b)*(2^(2*r)); % Wand and Jones pp 31 +## % the commented c above does note yield the right scaling +## % for d>1 +## z(k)=((1-s(k)/b2).^r)/c; +## end +## +## case 'rect', % 1D product Rectangular Kernel +## z=zeros(size(X{1})); +## k=find(abs(X{1})<=1); +## ix=2; +## while (any(k) && (ix<=d)), +## k1 =(abs(X{ix}(k))<=1); +## k=k(k1); +## ix=ix+1; +## end +## if any(k) +## z(k)=(0.5^d); +## end +## case {'epa1','biw1','triw1','fou1'} +## switch lower(kstr(1:4)) +## %case 'rect', r=0; %rectangular +## case 'epa1', r=1; %1D product Epanechnikov kernel. +## case 'biw1', r=2; %1D product Bi-weight Kernel +## case 'tri1', r=3; %1D product Tri-weight Kernel +## case 'fou1', r=4; %1D product Four-weight Kernel +## end +## b=1; +## b2=b^2; +## b21=1/b2; +## z=zeros(size(X{1})); +## k=find(abs(X{1})<=b); +## ix=2; +## while (any(k) && (ix<=d)), +## %for ix=2:d +## k1 =(abs(X{ix}(k))<=b); +## k = k(k1); +## ix=ix+1; +## end +## if any(k) +## c=2^r*prod(1:r)*vsph(1,b)/prod((1+2):2:(1+2*r)); % normalizing constant +## z(k) = (1-X{1}(k).^2*b21).^r; +## for ix=2:d +## z(k)=z(k).*(1-X{ix}(k).^2*b21).^r; +## end; +## z(k)=z(k)/c^d; +## end +## case 'tria',% 1D product Triangular Kernel +## z=zeros(size(X{1})); +## k=find(abs(X{1})<1); +## ix=2; +## while (any(k) && (ix<=d)), +## %for ix=2:d +## k1 =(abs(X{ix}(k))<1); +## k = k(k1); +## ix=ix+1; +## end +## if any(k) +## z(k) = (1-abs(X{1}(k))); +## for ix=2:d +## z(k)=z(k).*(1-abs(X{ix}(k))); +## end +## end +## case {'norm','gaus'},% multivariate gaussian Density Function. +## s=X{1}.^2; +## for ix=2:d +## s=s+X{ix}.^2; +## end; +## z=(2*pi)^(-d/2)*exp(-0.5*s); +## case 'lapl' % Laplace Kernel +## z=0.5*exp(-abs(X{1})); +## for ix=2:d +## z=z.*0.5*exp(-abs(X{ix})); +## end +## case 'logi', % Logistic Kernel +## z1=exp(X{1}); +## z=z1./(z1+1).^2; +## for ix=2:d +## z1=exp(X{ix}); +## z=z.*z1./(z1+1).^2; +## end +## +## otherwise, error('unknown kernel') +## end +## +## + + diff --git a/wafo/meshgrid.py b/wafo/meshgrid.py new file mode 100755 index 0000000..a3081d9 --- /dev/null +++ b/wafo/meshgrid.py @@ -0,0 +1,132 @@ +import numpy as np +def meshgrid(*xi,**kwargs): + """ + Return coordinate matrices from one or more coordinate vectors. + + Make N-D coordinate arrays for vectorized evaluations of + N-D scalar/vector fields over N-D grids, given + one-dimensional coordinate arrays x1, x2,..., xn. + + Parameters + ---------- + x1, x2,..., xn : array_like + 1-D arrays representing the coordinates of a grid. + indexing : 'xy' or 'ij' (optional) + cartesian ('xy', default) or matrix ('ij') indexing of output + sparse : True or False (default) (optional) + If True a sparse grid is returned in order to conserve memory. + copy : True (default) or False (optional) + If False a view into the original arrays are returned in order to + conserve memory + + Returns + ------- + X1, X2,..., XN : ndarray + For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , + return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' + or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' + with the elements of `xi` repeated to fill the matrix along + the first dimension for `x1`, the second for `x2` and so on. + + See Also + -------- + index_tricks.mgrid : Construct a multi-dimensional "meshgrid" + using indexing notation. + index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" + using indexing notation. + + Examples + -------- + >>> x = np.linspace(0,1,3) # coordinates along x axis + >>> y = np.linspace(0,1,2) # coordinates along y axis + >>> xv, yv = meshgrid(x,y) # extend x and y for a 2D xy grid + >>> xv + array([[ 0. , 0.5, 1. ], + [ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0., 0., 0.], + [ 1., 1., 1.]]) + >>> xv, yv = meshgrid(x,y, sparse=True) # make sparse output arrays + >>> xv + array([[ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0.], + [ 1.]]) + + >>> meshgrid(x,y,sparse=True,indexing='ij') # change to matrix indexing + [array([[ 0. ], + [ 0.5], + [ 1. ]]), array([[ 0., 1.]])] + >>> meshgrid(x,y,indexing='ij') + [array([[ 0. , 0. ], + [ 0.5, 0.5], + [ 1. , 1. ]]), + array([[ 0., 1.], + [ 0., 1.], + [ 0., 1.]])] + + >>> meshgrid(0,1,5) # just a 3D point + [array([[[0]]]), array([[[1]]]), array([[[5]]])] + >>> map(np.squeeze,meshgrid(0,1,5)) # just a 3D point + [array(0), array(1), array(5)] + >>> meshgrid(3) + array([3]) + >>> meshgrid(y) # 1D grid; y is just returned + array([ 0., 1.]) + + `meshgrid` is very useful to evaluate functions on a grid. + + >>> x = np.arange(-5, 5, 0.1) + >>> y = np.arange(-5, 5, 0.1) + >>> xx, yy = meshgrid(x, y, sparse=True) + >>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2) + """ + copy = kwargs.get('copy',True) + args = np.atleast_1d(*xi) + if not isinstance(args, list): + if args.size>0: + return args.copy() if copy else args + else: + raise TypeError('meshgrid() take 1 or more arguments (0 given)') + + sparse = kwargs.get('sparse',False) + indexing = kwargs.get('indexing','xy') # 'ij' + + + ndim = len(args) + s0 = (1,)*ndim + output = [x.reshape(s0[:i]+(-1,)+s0[i+1::]) for i, x in enumerate(args)] + + shape = [x.size for x in output] + + if indexing == 'xy': + # switch first and second axis + output[0].shape = (1,-1) + (1,)*(ndim-2) + output[1].shape = (-1, 1) + (1,)*(ndim-2) + shape[0],shape[1] = shape[1],shape[0] + + if sparse: + if copy: + return [x.copy() for x in output] + else: + return output + else: + # Return the full N-D matrix (not only the 1-D vector) + if copy: + mult_fact = np.ones(shape,dtype=int) + return [x*mult_fact for x in output] + else: + return np.broadcast_arrays(*output) + + +def ndgrid(*args,**kwargs): + """ + Same as calling meshgrid with indexing='ij' (see meshgrid for + documentation). + """ + kwargs['indexing'] = 'ij' + return meshgrid(*args,**kwargs) + +if __name__=='__main__': + import doctest + doctest.testmod() diff --git a/wafo/misc.py b/wafo/misc.py new file mode 100755 index 0000000..e854e60 --- /dev/null +++ b/wafo/misc.py @@ -0,0 +1,1895 @@ +''' +Misc lsdkfalsdflasdfl +''' +from __future__ import division + +import sys + +import numpy as np +from numpy import abs +from numpy import amax +from numpy import any +from numpy import arange +from numpy import arctan2 +from numpy import array +from numpy import asarray +from numpy import atleast_1d +from numpy import broadcast_arrays +from numpy import ceil +from numpy import cos +from numpy import diff +from numpy import empty_like +from numpy import exp +from numpy import extract +from numpy import finfo +from numpy import floor +from numpy import frexp +from numpy import hstack +from numpy import hypot +from numpy import inf +from numpy import interp +from numpy import isnan +from numpy import isscalar +from numpy import linspace +from numpy import log +from numpy import logical_and +from numpy import mod +from numpy import nonzero +from numpy import ones +from numpy import pi +from numpy import r_ +from numpy import sign +from numpy import sin +from numpy import sqrt +from numpy import unique1d +from numpy import vstack +from numpy import where +from numpy import zeros +from scipy.special import gammaln +import types +import warnings + +try: + import wafo.c_library as clib +except: + clib = None +floatinfo = finfo(float) + + +__all__ = ['JITImport', 'DotDict', 'Bunch', 'printf', 'sub_dict_select', + 'parse_kwargs', 'ecross', 'findtc', 'findtp', 'findcross', + 'findextrema', 'findrfc', 'rfcfilter', 'common_shape', 'argsreduce', + 'stirlerr', 'getshipchar', 'betaloge', 'gravity', 'nextpow2', + 'discretize', 'pol2cart', 'cart2pol', 'ndgrid', 'meshgrid'] + +class JITImport(object): + ''' + Just In Time Import of module + + Example + ------- + >>> np = JITImport('numpy') + >>> np.exp(0)==1.0 + True + ''' + def __init__(self, module_name): + self._module_name = module_name + self._module = None + def __getattr__(self, attr): + try: + return getattr(self._module, attr) + except: + if self._module is None: + self._module = __import__(self._module_name, None, None, ['*']) + assert(isinstance(self._module, types.ModuleType), 'module') + return getattr(self._module, attr) + else: + raise + +class DotDict(dict): + ''' Implement dot access to dict values + + Example + ------- + >>> d = DotDict(test1=1,test2=3) + >>> d.test1 + 1 + ''' + __getattr__ = dict.__getitem__ + +class Bunch(object): + ''' Implement keyword argument initialization of class + + ''' + def __init__(self, ** kwargs): + self.__dict__.update(kwargs) + def keys(self): + return self.__dict__.keys() + def update(self, ** kwargs): + self.__dict__.update(kwargs) + +def printf(format, * args): + sys.stdout.write(format % args) + + +def sub_dict_select(somedict, somekeys): + ''' + Extracting a Subset from Dictionary + + Example + -------- + # Update options dict from keyword arguments if + # the keyword exists in options + >>> opt = dict(arg1=2, arg2=3) + >>> kwds = dict(arg2=100,arg3=1000) + >>> sub_dict = sub_dict_select(kwds,opt.keys()) + >>> opt.update(sub_dict) + >>> opt + {'arg1': 2, 'arg2': 100} + + See also + -------- + dict_intersection + ''' + #slower: validKeys = set(somedict).intersection(somekeys) + return dict((k, somedict[k]) for k in somekeys if k in somedict) + + +def parse_kwargs(options, ** kwargs): + ''' Update options dict from keyword arguments if the keyword exists in options + + Example + >>> opt = dict(arg1=2, arg2=3) + >>> opt = parse_kwargs(opt,arg2=100) + >>> print opt + {'arg1': 2, 'arg2': 100} + >>> opt2 = dict(arg2=101) + >>> opt = parse_kwargs(opt,**opt2) + + See also sub_dict_select + ''' + + newopts = sub_dict_select(kwargs, options.keys()) + if len(newopts) > 0: + options.update(newopts) + return options + +def testfun(*args, ** kwargs): + opts = dict(opt1=1, opt2=2) + if len(args) == 1 and len(kwargs) == 0 and type(args[0]) is str and args[0].startswith('default'): + return opts + opts = parse_kwargs(opts, ** kwargs) + return opts + +def detrendma(x, L): + """ + Removes a trend from data using a moving average + of size 2*L+1. If 2*L+1 > len(x) then the mean is removed + + Parameters + ---------- + x : vector or matrix of column vectors + of data + L : scalar, integer + defines the size of the moving average window + + Returns + ------- + y : ndarray + detrended data + + Examples + -------- + >>> import pylab as plb + >>> exp = plb.exp; cos = plb.cos; randn = plb.randn + >>> x = plb.linspace(0,1,200) + >>> y = exp(x)+cos(5*2*pi*x)+1e-1*randn(x.size) + >>> y0 = detrendma(y,20); tr = y-y0 + >>> h = plb.plot(x, y, x, y0, 'r', x, exp(x), 'k', x, tr, 'm') + + >>> plb.close('all') + + See also + -------- + Reconstruct + """ + + if L <= 0: + raise ValueError('L must be positive') + if L != round(L): + raise ValueError('L must be an integer') + + x1 = atleast_1d(x) + if x1.shape[0] == 1: + x1 = x1.ravel() + + n = x1.shape[0] + if n < 2 * L + 1: # only able to remove the mean + return x1 - x1.mean(axis=0) + + + mn = x1[0:2 * L + 1].mean(axis=0) + y = empty_like(x1) + y[0:L] = x1[0:L] - mn + + ix = r_[L:(n - L)] + trend = ((x1[ix + L] - x1[ix - L]) / (2 * L + 1)).cumsum(axis=0) + mn + y[ix] = x1[ix] - trend + y[n - L::] = x1[n - L::] - trend[-1] + return y + +def ecross(t, f, ind, v): + ''' + Extracts exact level v crossings + + ECROSS interpolates t and f linearly to find the exact level v + crossings, i.e., the points where f(t0) = v + + Parameters + ---------- + t,f : vectors + of arguments and functions values, respectively. + ind : ndarray of integers + indices to level v crossings as found by findcross. + v : scalar or vector (of size(ind)) + defining the level(s) to cross. + + Returns + ------- + t0 : vector + of exact level v crossings. + + Example + ------- + >>> from matplotlib import pylab as plb + >>> ones = plb.ones + >>> t = plb.linspace(0,7*plb.pi,250) + >>> x = plb.sin(t) + >>> ind = findcross(x,0.75) + >>> ind + array([ 9, 25, 80, 97, 151, 168, 223, 239]) + >>> t0 = ecross(t,x,ind,0.75) + >>> t0 + array([ 0.84910514, 2.2933879 , 7.13205663, 8.57630119, + 13.41484739, 14.85909194, 19.69776067, 21.14204343]) + >>> a = plb.plot(t, x, '.', t[ind], x[ind], 'r.', t, ones(t.shape)*0.75, + ... t0, ones(t0.shape)*0.75, 'g.') + + >>> plb.close('all') + + See also + -------- + findcross + ''' + return t[ind] + (v - f[ind]) * (t[ind + 1] - t[ind]) / (f[ind + 1] - f[ind]) + +def _findcross(xn): + '''Return indices to zero up and downcrossings of a vector + ''' + if clib is not None: + ind, m = clib.findcross(xn, 0.0) + return ind[:m] + + n = len(xn) + iz, = (xn == 0).nonzero() + if any(iz): + # Trick to avoid turning points on the crossinglevel. + if iz[0] == 0: + if len(iz) == n: + warnings.warn('All values are equal to crossing level!') + return zeros(0, dtype=np.int) + + diz = diff(iz) + ix = iz((diz > 1).argmax()) + if not any(ix): + ix = iz[-1] + + #x(ix) is a up crossing if x(1:ix) = v and x(ix+1) > v. + #x(ix) is a downcrossing if x(1:ix) = v and x(ix+1) < v. + xn[0:ix] = -xn[ix + 1] + iz = iz[ix::] + + for ix in iz.tolist(): + xn[ix] = xn[ix - 1] + + #% indices to local level crossings ( without turningpoints) + ind, = (xn[:n - 1] * xn[1:] < 0).nonzero() + return ind + +def findcross(x, v=0.0, kind=None): + ''' + Return indices to level v up and/or downcrossings of a vector + + Parameters + ---------- + x : array_like + vector with sampled values. + v : scalar, real + level v. + kind : string + defines type of wave or crossing returned. Possible options are + 'dw' : downcrossing wave + 'uw' : upcrossing wave + 'cw' : crest wave + 'tw' : trough wave + 'd' : downcrossings only + 'u' : upcrossings only + None : All crossings will be returned + + Returns + ------- + ind : array-like + indices to the crossings in the original sequence x. + + Example + ------- + >>> from matplotlib import pylab as plb + >>> ones = plb.ones + >>> v = 0.75 + >>> t = plb.linspace(0,7*plb.pi,250) + >>> x = plb.sin(t) + >>> ind = findcross(x,v) # all crossings + >>> ind + array([ 9, 25, 80, 97, 151, 168, 223, 239]) + >>> t0 = plb.plot(t,x,'.',t[ind],x[ind],'r.', t, ones(t.shape)*v) + >>> ind2 = findcross(x,v,'u') + >>> ind2 + array([ 9, 80, 151, 223]) + >>> t0 = plb.plot(t[ind2],x[ind2],'o') + >>> plb.close('all') + + See also + -------- + crossdef + wavedef + ''' + xn = np.int8(sign(atleast_1d(x).ravel() - v)) #@UndefinedVariable + ind = _findcross(xn) + if ind.size == 0: + warnings.warn('No level v = %0.5g crossings found in x' % v) + return ind + + if kind not in ('du', 'all', None): + if kind == 'd': #downcrossings only + t_0 = int(xn[ind[0] + 1] > 0) + ind = ind[t_0::2] + elif kind == 'u': #upcrossings only + t_0 = int(xn[ind[0] + 1] < 0) + ind = ind[t_0::2] + elif kind in ('dw', 'uw', 'tw', 'cw'): + #make sure that the first is a level v down-crossing if wdef=='dw' + #or make sure that the first is a level v up-crossing if wdef=='uw' + #make sure that the first is a level v down-crossing if wdef=='tw' + #or make sure that the first is a level v up-crossing if wdef=='cw' + xor = lambda a, b: a ^ b + first_is_down_crossing = int(xn[ind[0]] > xn[ind[0] + 1]) + if xor(first_is_down_crossing, kind in ('dw', 'tw')): + ind = ind[1::] + + n_c = ind.size # number of level v crossings + # make sure the number of troughs and crests are according to the + # wavedef, i.e., make sure length(ind) is odd if dw or uw + # and even if tw or cw + is_odd = mod(n_c, 2) + if xor(is_odd, kind in ('dw', 'uw')): + ind = ind[:-1] + else: + raise ValueError('Unknown wave/crossing definition!') + return ind + +def findextrema(x): + ''' + Return indices to minima and maxima of a vector + + Parameters + ---------- + x : vector with sampled values. + + Returns + ------- + ind : indices to minima and maxima in the original sequence x. + + Examples + -------- + >>> import numpy as np + >>> import pylab as pb + >>> t = np.linspace(0,7*np.pi,250) + >>> x = np.sin(t) + >>> ind = findextrema(x) + >>> a = pb.plot(t,x,'.',t[ind],x[ind],'r.') + >>> pb.close('all') + + See also + -------- + findcross + crossdef + ''' + xn = atleast_1d(x).ravel() + return findcross(diff(xn), 0.0) + 1 + +def findrfc(tp, hmin=0.0): + ''' + Return indices to rainflow cycles of a sequence of TP. + + Parameters + ----------- + tp : array-like + vector of turningpoints (NB! Only values, not sampled times) + h : real scalar + rainflow threshold. If h>0, then all rainflow cycles with height + smaller than h are removed. + + Returns + ------- + ind : ndarray of int + indices to the rainflow cycles of the original sequence TP. + + Example: + -------- + >>> import pylab as pb + >>> t = pb.linspace(0,7*np.pi,250) + >>> x = pb.sin(t)+0.1*np.sin(50*t) + >>> ind = findextrema(x) + >>> ti, tp = t[ind], x[ind] + >>> a = pb.plot(t,x,'.',ti,tp,'r.') + >>> ind1 = findrfc(tp,0.3) + >>> a = pb.plot(ti[ind1],tp[ind1]) + >>> pb.close('all') + + See also + -------- + rfcfilter, + findtp. + ''' + # TODO merge rfcfilter and findrfc + y1 = atleast_1d(tp).ravel() + n = len(y1) + ind = zeros(0, dtype=np.int) + ix = 0 + if y1[0] > y1[1]: + #first is a max, ignore it + y = y1[1::] + NC = floor((n - 1) / 2) - 1 + Tstart = 1 + else: + y = y1 + NC = floor(n / 2) - 1 + Tstart = 0 + + if (NC < 1): + return ind #No RFC cycles*/ + + if (y[0] > y[1]) and (y[1] > y[2]): + warnings.warn('This is not a sequence of turningpoints, exit') + return ind + + if (y[0] < y[1]) and (y[1] < y[2]): + warnings.warn('This is not a sequence of turningpoints, exit') + return ind + + if clib is None: + ind = zeros(n, dtype=np.int) + NC = np.int(NC) + for i in xrange(NC): + Tmi = Tstart + 2 * i + Tpl = Tstart + 2 * i + 2 + xminus = y[2 * i] + xplus = y[2 * i + 2] + + if(i != 0): + j = i - 1 + while ((j >= 0) and (y[2 * j + 1] <= y[2 * i + 1])): + if (y[2 * j] < xminus): + xminus = y[2 * j] + Tmi = Tstart + 2 * j + j -= 1 + if (xminus >= xplus): + if (y[2 * i + 1] - xminus >= hmin): + ind[ix] = Tmi + ix += 1 + ind[ix] = (Tstart + 2 * i + 1) + ix += 1 + #goto L180 continue + else: + j = i + 1 + while (j < NC): + if (y[2 * j + 1] >= y[2 * i + 1]): + break #goto L170 + if((y[2 * j + 2] <= xplus)): + xplus = y[2 * j + 2] + Tpl = (Tstart + 2 * j + 2) + j += 1 + else: + if ((y[2 * i + 1] - xminus) >= hmin): + ind[ix] = Tmi + ix += 1 + ind[ix] = (Tstart + 2 * i + 1) + ix += 1 + #iy = i + continue + + + #goto L180 + #L170: + if (xplus <= xminus): + if ((y[2 * i + 1] - xminus) >= hmin): + ind[ix] = Tmi + ix += 1 + ind[ix] = (Tstart + 2 * i + 1) + ix += 1 + elif ((y[2 * i + 1] - xplus) >= hmin): + ind[ix] = (Tstart + 2 * i + 1) + ix += 1 + ind[ix] = Tpl + ix += 1 + + #L180: + #iy=i + # /* for i */ + else: + ind, ix = clib.findrfc(y, hmin) + return ind[:ix] + +def rfcfilter(x, h, method=0): + """ + Rainflow filter a signal. + + Parameters + ----------- + x : vector + Signal. [nx1] + h : real, scalar + Threshold for rainflow filter. + method : scalar, integer + 0 : removes cycles with range < h. (default) + 1 : removes cycles with range <= h. + + Returns + -------- + y = Rainflow filtered signal. + + Examples: + --------- + # 1. Filtered signal y is the turning points of x. + >>> import wafo.data + >>> x = wafo.data.sea() + >>> y = rfcfilter(x[:,1], h=0, method=1) + >>> y[0:5] + array([-1.2004945 , 0.83950546, -0.09049454, -0.02049454, -0.09049454]) + + # 2. This removes all rainflow cycles with range less than 0.5. + >>> y1 = rfcfilter(x[:,1], h=0.5) + >>> y1[0:5] + array([-1.2004945 , 0.83950546, -0.43049454, 0.34950546, -0.51049454]) + + See also + -------- + findrfc + """ + # TODO merge rfcfilter and findrfc + y = atleast_1d(x).ravel() + n = len(y) + t = zeros(n, dtype=np.int) + j = 0 + t0 = 0 + y0 = y[t0] + + z0 = 0 + if method == 0: + cmpfun1 = lambda a, b: a <= b + cmpfun2 = lambda a, b: a < b + else: + cmpfun1 = lambda a, b: a < b + cmpfun2 = lambda a, b: a <= b + + #% The rainflow filter + for tim1, yi in enumerate(y[1::]): + fpi = y0 + h + fmi = y0 - h + ti = tim1 + 1 + #yi = y[ti] + + if z0 == 0: + if cmpfun1(yi, fmi): + z1 = -1 + elif cmpfun1(fpi, yi): + z1 = + 1 + else: + z1 = 0 + t1, y1 = (t0, y0) if z1 == 0 else (ti, yi) + else: + if (((z0 == + 1) & cmpfun1(yi, fmi)) | ((z0 == -1) & cmpfun2(yi, fpi))): + z1 = -1 + elif (((z0 == + 1) & cmpfun2(fmi, yi)) | ((z0 == -1) & cmpfun1(fpi, yi))): + z1 = + 1 + else: + warnings.warn('Something wrong, i=%d' % tim1) + + #% Update y1 + if z1 != z0: + t1, y1 = ti, yi + elif z1 == -1: + #% y1 = min([y0 xi]) + t1, y1 = (t0, y0) if y0 < yi else (ti, yi) + elif z1 == + 1: + #% y1 = max([y0 xi]) + t1, y1 = (t0, y0) if y0 > yi else (ti, yi) + + #% Update y if y0 is a turning point + if abs(z0 - z1) == 2: + j += 1 + t[j] = t0 + + #% Update t0, y0, z0 + t0, y0, z0 = t1, y1, z1 + #end + + #% Update y if last y0 is greater than (or equal) threshold + if cmpfun1(h, abs(y0 - y[t[j]])): + j += 1 + t[j] = t0 + return y[t[:j]] + +def findtp(x, h=0.0, kind=None): + ''' + Return indices to turning points (tp) of data, optionally rainflowfiltered. + + Parameters + ---------- + x : vector + signal + h : real, scalar + rainflow threshold + if h<0, then ind = range(len(x)) + if h=0, then tp is a sequence of turning points (default) + if h>0, then all rainflow cycles with height smaller than + h are removed. + kind : string + defines the type of wave. Possible options are + 'mw' 'Mw' or 'none'. + If None all rainflow filtered min and max + will be returned, otherwise only the rainflow filtered + min and max, which define a wave according to the + wave definition, will be returned. + + Returns + ------- + ind : arraylike + indices to the turning points in the original sequence. + + Example: + -------- + >>> import wafo.data + >>> import pylab + >>> x = wafo.data.sea() + >>> x1 = x[0:200,:] + >>> itp = findtp(x1[:,1],0,'Mw') + >>> itph = findtp(x1[:,1],0.3,'Mw') + >>> tp = x1[itp,:] + >>> tph = x1[itph,:] + >>> a = pylab.plot(x1[:,0],x1[:,1],tp[:,0],tp[:,1],'ro',tph[:,1],tph[:,1],'k.') + >>> pylab.close('all') + + See also + --------- + findtc + findcross + findextrema + findrfc + ''' + n = len(x) + if h < 0.0: + return arange(n) + + ind = findextrema(x) + + if ind.size < 2: + return None + + + #% In order to get the exact up-crossing intensity from rfc by + #% mm2lc(tp2mm(rfc)) we have to add the indices + #% to the last value (and also the first if the + #% sequence of turning points does not start with a minimum). + + if x[ind[0]] > x[ind[1]]: + #% adds indices to first and last value + ind = r_[0, ind, n - 1] + else: # adds index to the last value + ind = r_[ind, n - 1] + + if h > 0.0: + ind1 = findrfc(x[ind], h) + ind = ind[ind1] + + if kind in ('mw', 'Mw'): + xor = lambda a, b: a ^ b + # make sure that the first is a Max if wdef == 'Mw' + # or make sure that the first is a min if wdef == 'mw' + first_is_max = (x[ind[0]] > x[ind[1]]) + + remove_first = xor(first_is_max, kind.startswith('Mw')) + if remove_first: + ind = ind[1::] + + # make sure the number of minima and Maxima are according to the wavedef. + # i.e., make sure Nm=length(ind) is odd + if (mod(ind.size, 2)) != 1: + ind = ind[:-1] + return ind + +def findtc(x_in, v=None, kind=None): + """ + Return indices to troughs and crests of data. + + Parameters + ---------- + x : vector + surface elevation. + v : real scalar + reference level (default v = mean of x). + + kind : string + defines the type of wave. Possible options are + 'dw', 'uw', 'tw', 'cw' or None. + If None indices to all troughs and crests will be returned, + otherwise only the paired ones will be returned + according to the wavedefinition. + + Returns + -------- + tc_ind : vector of ints + indices to the trough and crest turningpoints of sequence x. + v_ind : vector of ints + indices to the level v crossings of the original + sequence x. (d,u) + + Example: + -------- + >>> import wafo.data + >>> import pylab + >>> x = wafo.data.sea() + >>> x1 = x[0:200,:] + >>> itc, iv = findtc(x1[:,1],0,'dw') + >>> tc = x1[itc,:] + >>> a = pylab.plot(x1[:,0],x1[:,1],tc[:,0],tc[:,1],'ro') + >>> pylab.close('all') + + See also + -------- + findtp + findcross, + wavedef + """ + + x = atleast_1d(x_in) + if v is None: + v = x.mean() + + v_ind = findcross(x, v, kind) + n_c = v_ind.size + if n_c <= 2: + warnings.warn('There are no waves!') + return zeros(0, dtype=np.int), zeros(0, dtype=np.int) + + # determine the number of trough2crest (or crest2trough) cycles + isodd = mod(n_c, 2) + if isodd: + n_tc = int((n_c - 1) / 2) + else: + n_tc = int((n_c - 2) / 2) + + #% allocate variables before the loop increases the speed + ind = zeros(n_c - 1, dtype=np.int) + + first_is_down_crossing = (x[v_ind[0]] > x[v_ind[0] + 1]) + if first_is_down_crossing: + for i in xrange(n_tc): + #% trough + j = 2 * i + ind[j] = x[v_ind[j] + 1:v_ind[j + 1] + 1].argmin() + #% crest + ind[j + 1] = x[v_ind[j + 1] + 1:v_ind[j + 2] + 1].argmax() + + if (2 * n_tc + 1 < n_c) and (kind in (None, 'tw')): + #% trough + ind[n_c - 2] = x[v_ind[n_c - 2] + 1:v_ind[n_c - 1]].argmin() + + else: # %%%% the first is a up-crossing + for i in xrange(n_tc): + #% trough + j = 2 * i + ind[j] = x[v_ind[j] + 1:v_ind[j + 1] + 1].argmax() + #% crest + ind[j + 1] = x[v_ind[j + 1] + 1:v_ind[j + 2] + 1].argmin() + + if (2 * n_tc + 1 < n_c) and (kind in (None, 'cw')): + #% trough + ind[n_c - 2] = x[v_ind[n_c - 2] + 1:v_ind[n_c - 1]].argmax() + + return v_ind[:n_c - 1] + ind + 1, v_ind + +def findoutliers(x, zcrit=0.0, dcrit=None, ddcrit=None, verbose=False): + """ + Return indices to spurious points of data + + Parameters + ---------- + x : vector + of data values. + zcrit : real scalar + critical distance between consecutive points. + dcrit : real scalar + critical distance of Dx used for determination of spurious + points. (Default 1.5 standard deviation of x) + ddcrit : real scalar + critical distance of DDx used for determination of spurious + points. (Default 1.5 standard deviation of x) + + Returns + ------- + inds : ndarray of integers + indices to spurious points. + indg : ndarray of integers + indices to the rest of the points. + + Notes + ----- + Consecutive points less than zcrit apart are considered as spurious. + The point immediately after and before are also removed. Jumps greater than + dcrit in Dxn and greater than ddcrit in D^2xn are also considered as spurious. + (All distances to be interpreted in the vertical direction.) + Another good choice for dcrit and ddcrit are: + + dcrit = 5*dT and ddcrit = 9.81/2*dT**2 + + where dT is the timestep between points. + + Examples + -------- + >>> import numpy as np + >>> import wafo + >>> xx = wafo.data.sea() + >>> dt = np.diff(xx[:2,0]) + >>> dcrit = 5*dt + >>> ddcrit = 9.81/2*dt*dt + >>> zcrit = 0 + >>> [inds, indg] = findoutliers(xx[:,1],zcrit,dcrit,ddcrit,verbose=True) + Found 0 spurious positive jumps of Dx + Found 0 spurious negative jumps of Dx + Found 37 spurious positive jumps of D^2x + Found 200 spurious negative jumps of D^2x + Found 244 consecutive equal values + Found the total of 1152 spurious points + + #waveplot(xx,'-',xx(inds,:),1,1,1) + + See also + -------- + waveplot, reconstruct + """ + + + # finding outliers + findjumpsDx = True # find jumps in Dx + # two point spikes and Spikes dcrit above/under the + # previous and the following point are spurios. + findSpikes = False #find spikes + findDspikes = False # find double (two point) spikes + findjumpsD2x = True # find jumps in D^2x + findNaN = True # % find missing values + + xn = asarray(x).flatten() + + if xn.size < 2: + raise ValueError('The vector must have more than 2 elements!') + + + ind = zeros(0, dtype=int) + #indg=[] + indmiss = isnan(xn) + if findNaN and indmiss.any(): + ind, = nonzero(indmiss) + if verbose: + print('Found %d missing points' % ind.size) + xn[indmiss] = 0. #%set NaN's to zero + + if dcrit is None: + dcrit = 1.5 * xn.std() + if verbose: + print('dcrit is set to %g' % dcrit) + + if ddcrit is None: + ddcrit = 1.5 * xn.std() + if verbose: + print('ddcrit is set to %g' % ddcrit) + + dxn = diff(xn) + ddxn = diff(dxn) + + if findSpikes: # finding spurious spikes + tmp, = nonzero((dxn[:-1] > dcrit) * (dxn[1::] < -dcrit) | + (dxn[:-1] < -dcrit) * (dxn[1::] > dcrit)) + if tmp.size > 0: + tmp = tmp + 1 + ind = hstack((ind, tmp)) + if verbose: + print('Found %d spurious spikes' % tmp.size) + + if findDspikes: #,% finding spurious double (two point) spikes + tmp, = nonzero((dxn[:-2] > dcrit) * (dxn[2::] < -dcrit) | + (dxn[:-2] < -dcrit) * (dxn[2::] > dcrit)) + if tmp.size > 0: + tmp = tmp + 1 + ind = hstack((ind, tmp, tmp + 1)) #%removing both points + if verbose: + print('Found %d spurious two point (double) spikes' % tmp.size) + + if findjumpsDx: # ,% finding spurious jumps in Dx + tmp, = nonzero(dxn > dcrit) + if verbose: + print('Found %d spurious positive jumps of Dx' % tmp.size) + if tmp.size > 0: + ind = hstack((ind, tmp + 1)) #removing the point after the jump + + tmp, = nonzero(dxn < -dcrit) + if verbose: + print('Found %d spurious negative jumps of Dx' % tmp.size) + if tmp.size > 0: + ind = hstack((ind, tmp)) #removing the point before the jump + + if findjumpsD2x: # ,% finding spurious jumps in D^2x + tmp, = nonzero(ddxn > ddcrit) + if tmp.size > 0: + tmp = tmp + 1 + ind = hstack((ind, tmp)) # removing the jump + + if verbose: + print('Found %d spurious positive jumps of D^2x' % tmp.size) + + tmp, = nonzero(ddxn < -ddcrit) + if tmp.size > 0: + tmp = tmp + 1 + ind = hstack((ind, tmp)) # removing the jump + + if verbose: + print('Found %d spurious negative jumps of D^2x' % tmp.size) + + if zcrit >= 0.0: + #% finding consecutive values less than zcrit apart. + indzeros = (abs(dxn) <= zcrit) + indz, = nonzero(indzeros) + if indz.size > 0: + indz = indz + 1 + #%finding the beginning and end of consecutive equal values + indtr, = nonzero((diff(indzeros))) + indtr = indtr + 1 + #%indices to consecutive equal points + if True: # removing the point before + all equal points + the point after + ind = hstack((ind, indtr - 1, indz, indtr, indtr + 1)) + else: # % removing all points + the point after + ind = hstack((ind, indz, indtr, indtr + 1)) + + if verbose: + if zcrit == 0.: + print('Found %d consecutive equal values' % indz.size) + else: + print('Found %d consecutive values less than %g apart.' % (indz.size, zcrit)) + indg = ones(xn.size, dtype=bool) + + if ind.size > 1: + ind = unique1d(ind) + indg[ind] = 0 + indg, = nonzero(indg) + + if verbose: + print('Found the total of %d spurious points' % ind.size) + + return ind, indg + +def common_shape(*args, ** kwds): + ''' + Return the common shape of a sequence of arrays + + Parameters + ----------- + *args : arraylike + sequence of arrays + **kwds : + shape + + Returns + ------- + shape : tuple + common shape of the elements of args. + + Raises + ------ + An error is raised if some of the arrays do not conform + to the common shape according to the broadcasting rules in numpy. + + Examples + -------- + >>> import numpy as np + >>> A = np.ones((4,1)) + >>> B = 2 + >>> C = np.ones((1,5))*5 + >>> common_shape(A,B,C) + (4, 5) + >>> common_shape(A,B,C,shape=(3,4,1)) + (3, 4, 5) + + See also + -------- + broadcast, broadcast_arrays + ''' + args = map(asarray, args) + shapes = [x.shape for x in args] + shape = kwds.get('shape') + if shape is not None: + if not isinstance(shape, (list, tuple)): + shape = (shape, ) + shapes.append(tuple(shape)) + if len(set(shapes)) == 1: + # Common case where nothing needs to be broadcasted. + return tuple(shapes[0]) + shapes = [list(s) for s in shapes] + nds = [len(s) for s in shapes] + biggest = max(nds) + # Go through each array and prepend dimensions of length 1 to each of the + # shapes in order to make the number of dimensions equal. + for i in range(len(shapes)): + diff = biggest - nds[i] + if diff > 0: + shapes[i] = [1] * diff + shapes[i] + + # Check each dimension for compatibility. A dimension length of 1 is + # accepted as compatible with any other length. + c_shape = [] + for axis in range(biggest): + lengths = [s[axis] for s in shapes] + unique = set(lengths + [1]) + if len(unique) > 2: + # There must be at least two non-1 lengths for this axis. + raise ValueError("shape mismatch: two or more arrays have " + "incompatible dimensions on axis %r." % (axis, )) + elif len(unique) == 2: + # There is exactly one non-1 length. The common shape will take this + # value. + unique.remove(1) + new_length = unique.pop() + c_shape.append(new_length) + else: + # Every array has a length of 1 on this axis. Strides can be left + # alone as nothing is broadcasted. + c_shape.append(1) + + return tuple(c_shape) + +def argsreduce(condition, * args): + """ Return the elements of each input array that satisfy some condition. + + Parameters + ---------- + condition : array_like + An array whose nonzero or True entries indicate the elements of each + input array to extract. The shape of 'condition' must match the common + shape of the input arrays according to the broadcasting rules in numpy. + arg1, arg2, arg3, ... : array_like + one or more input arrays. + + Returns + ------- + narg1, narg2, narg3, ... : ndarray + sequence of extracted copies of the input arrays converted to the same + size as the nonzero values of condition. + + Example + ------- + >>> import numpy as np + >>> rand = np.random.random_sample + >>> A = rand((4,5)) + >>> B = 2 + >>> C = rand((1,5)) + >>> cond = np.ones(A.shape) + >>> [A1,B1,C1] = argsreduce(cond,A,B,C) + >>> B1.shape + (20,) + >>> cond[2,:] = 0 + >>> [A2,B2,C2] = argsreduce(cond,A,B,C) + >>> B2.shape + (15,) + + See also + -------- + numpy.extract + """ + newargs = atleast_1d(*args) + if not isinstance(newargs, list): + newargs = [newargs,] + expand_arr = (condition == condition) + return [extract(condition, arr1 * expand_arr) for arr1 in newargs] + + +def stirlerr(n): + ''' + Return error of Stirling approximation, i.e., log(n!) - log( sqrt(2*pi*n)*(n/exp(1))**n ) + + Example + ------- + >>> stirlerr(2) + array([ 0.0413407]) + + See also + --------- + binom + + + Reference + ----------- + Catherine Loader (2000). + Fast and Accurate Computation of Binomial Probabilities + + + ''' + + S0 = 0.083333333333333333333 # /* 1/12 */ + S1 = 0.00277777777777777777778 # /* 1/360 */ + S2 = 0.00079365079365079365079365 # /* 1/1260 */ + S3 = 0.000595238095238095238095238 # /* 1/1680 */ + S4 = 0.0008417508417508417508417508 # /* 1/1188 */ + + n1 = atleast_1d(n) + + y = gammaln(n1 + 1) - log(sqrt(2 * pi * n1) * (n1 / exp(1)) ** n1) + + + nn = n1 * n1 + + n500 = 500 < n1 + y[n500] = (S0 - S1 / nn[n500]) / n1[n500] + n80 = logical_and(80 < n1, n1 <= 500) + if any(n80): + y[n80] = (S0 - (S1 - S2 / nn[n80]) / nn[n80]) / n1[n80] + n35 = logical_and(35 < n1, n1 <= 80) + if any(n35): + nn35 = nn[n35] + y[n35] = (S0 - (S1 - (S2 - S3 / nn35) / nn35) / nn35) / n1[n35] + + n15 = logical_and(15 < n1, n1 <= 35) + if any(n15): + nn15 = nn[n15] + y[n15] = (S0 - (S1 - (S2 - (S3 - S4 / nn15) / nn15) / nn15) / nn15) / n1[n15] + + return y + +def getshipchar(value, property="max_deadweight"): + ''' + Return ship characteristics from value of one ship-property + + Parameters + ---------- + value : scalar + value to use in the estimation. + property : string + defining the ship property used in the estimation. Options are: + 'max_deadweight','length','beam','draft','service_speed', + 'propeller_diameter'. + The length was found from statistics of 40 vessels of size 85 to + 100000 tonn. An exponential curve through 0 was selected, and the + factor and exponent that minimized the standard deviation of the relative + error was selected. (The error returned is the same for any ship.) The + servicespeed was found for ships above 1000 tonns only. + The propeller diameter formula is from [1]_. + + Returns + ------- + sc : dict + containing estimated mean values and standard-deviations of ship characteristics: + max_deadweight [kkg], (weight of cargo, fuel etc.) + length [m] + beam [m] + draught [m] + service_speed [m/s] + propeller_diameter [m] + + Example + --------- + >>> getshipchar(10,'service_speed') + {'beam': 29.0, + 'beamSTD': 2.9000000000000004, + 'draught': 9.5999999999999996, + 'draughtSTD': 2.1120000000000001, + 'length': 216.0, + 'lengthSTD': 2.0113098831942762, + 'max_deadweight': 30969.0, + 'max_deadweightSTD': 3096.9000000000001, + 'propeller_diameter': 6.761165385916601, + 'propeller_diameterSTD': 0.20267047566705432, + 'service_speed': 10.0, + 'service_speedSTD': 0} + + Other units: 1 ft = 0.3048 m and 1 knot = 0.5144 m/s + + + Reference + --------- + .. [1] Gray and Greeley, (1978), + "Source level model for propeller blade rate radiation for the world's merchant + fleet", Bolt Beranek and Newman Technical Memorandum No. 458. + ''' + valid_props = dict(l='length', b='beam', d='draught', m='max_deadweigth', + s='service_speed', p='propeller_diameter') + prop = valid_props[property[0]] + + prop2max_dw = dict(length=lambda x: (x / 3.45) ** (2.5), + beam=lambda x: ((x / 1.78) ** (1 / 0.27)), + draught=lambda x: ((x / 0.8) ** (1 / 0.24)), + service_speed=lambda x: ((x / 1.14) ** (1 / 0.21)), + propeller_diameter=lambda x: (((x / 0.12) ** (4 / 3) / 3.45) ** (2.5))) + + max_deadweight = prop2max_dw.get(prop, lambda x: x)(value) + propertySTD = prop + 'STD' + + length = round(3.45 * max_deadweight ** 0.40) + length_err = length ** 0.13 + + beam = round(1.78 * max_deadweight ** 0.27 * 10) / 10 + beam_err = beam * 0.10 + + draught = round(0.80 * max_deadweight ** 0.24 * 10) / 10 + draught_err = draught * 0.22 + + #S = round(2/3*(L)**0.525) + speed = round(1.14 * max_deadweight ** 0.21 * 10) / 10 + speed_err = speed * 0.10 + + + p_diam = 0.12 * length ** (3.0 / 4.0) + p_diam_err = 0.12 * length_err ** (3.0 / 4.0) + + max_deadweight = round(max_deadweight) + max_deadweightSTD = 0.1 * max_deadweight + + shipchar = {'max_deadweight':max_deadweight, 'max_deadweightSTD':max_deadweightSTD, + 'length':length, 'lengthSTD':length_err, 'beam':beam, 'beamSTD':beam_err, + 'draught':draught, 'draughtSTD':draught_err, + 'service_speed':speed, 'service_speedSTD':speed_err, + 'propeller_diameter':p_diam, 'propeller_diameterSTD':p_diam_err} + + shipchar[propertySTD] = 0 + return shipchar + +def betaloge(z, w): + ''' + Natural Logarithm of beta function. + + CALL betaloge(z,w) + + BETALOGE computes the natural logarithm of the beta + function for corresponding elements of Z and W. The arrays Z and + W must be real and nonnegative. Both arrays must be the same size, + or either can be scalar. BETALOGE is defined as: + + y = LOG(BETA(Z,W)) = gammaln(Z)+gammaln(W)-gammaln(Z+W) + + and is obtained without computing BETA(Z,W). Since the beta + function can range over very large or very small values, its + logarithm is sometimes more useful. + This implementation is more accurate than the BETALN implementation + for large arguments + + Example + + + + See also + -------- + betaln, beta + ''' + # y = gammaln(z)+gammaln(w)-gammaln(z+w) + zpw = z + w + return (stirlerr(z) + stirlerr(w) + 0.5 * log(2 * pi) + (w - 0.5) * log(w) + + (z - 0.5) * log(z) - stirlerr(zpw) - (zpw - 0.5) * log(zpw)) + + # stirlings approximation: + # (-(zpw-0.5).*log(zpw) +(w-0.5).*log(w)+(z-0.5).*log(z) +0.5*log(2*pi)) + #return y + +def gravity(phi=45): + ''' Returns the constant acceleration of gravity + + GRAVITY calculates the acceleration of gravity + using the international gravitational formulae [1]_: + + g = 9.78049*(1+0.0052884*sin(phir)**2-0.0000059*sin(2*phir)**2) + where + phir = phi*pi/180 + + Parameters + ---------- + phi : {float, int} + latitude in degrees + + Returns + -------- + g : ndarray + acceleration of gravity [m/s**2] + + Examples + -------- + >>> import numpy as np + >>> phi = np.linspace(0,45,5) + >>> gravity(phi) + array([ 9.78049 , 9.78245014, 9.78803583, 9.79640552, 9.80629387]) + + See also + -------- + wdensity + + References + ---------- + .. [1] Irgens, Fridtjov (1987) + "Formelsamling i mekanikk: + statikk, fasthetsl?re, dynamikk fluidmekanikk" + tapir forlag, University of Trondheim, + ISBN 82-519-0786-1, pp 19 + + ''' + + phir = phi * pi / 180. # change from degrees to radians + return 9.78049 * (1. + 0.0052884 * sin(phir) ** 2. - 0.0000059 * sin(2 * phir) ** 2.) + +def nextpow2(x): + ''' + Return next higher power of 2 + + Example + ------- + >>> nextpow2(10) + 4 + >>> nextpow2(np.arange(5)) + 3 + ''' + t = isscalar(x) or len(x) + if (t > 1): + f, n = frexp(t) + else: + f, n = frexp(abs(x)) + + if (f == 0.5): + n = n - 1 + return n + +def discretize(fun, a, b, tol=0.005, n=5): + ''' + Automatic discretization of function + + Parameters + ---------- + fun : callable + function to discretize + a,b : real scalars + evaluation limits + tol : real, scalar + absoute error tolerance + n : scalar integer + number of values + + Returns + ------- + x : discretized values + y : fun(x) + + Example + ------- + >>> import numpy as np + >>> import pylab as plb + >>> x,y = discretize(np.cos,0,np.pi) + >>> t = plb.plot(x,y) + >>> plb.show() + + >>> plb.close('all') + + ''' + tiny = floatinfo.tiny + + + x = linspace(a, b, n) + y = fun(x) + + err0 = inf + err = 10000 + nmax = 2 ** 20 + while (err != err0 and err > tol and n < nmax): + err0 = err + x0 = x + y0 = y + n = 2 * (n - 1) + 1 + x = linspace (a, b, n) + y = fun(x) + y00 = interp(x, x0, y0) + err = 0.5 * amax(abs((y00 - y) / (abs(y00 + y) + tiny))) + return x, y + + +def pol2cart(theta, rho): + ''' + Transform polar coordinates into 2D cartesian coordinates. + + Returns + ------- + x, y : array-like + Cartesian coordinates, x = rho*cos(theta), y = rho*sin(theta) + + See also + -------- + cart2pol + ''' + return rho * cos(theta), rho * sin(theta) + +def cart2pol(x, y): + ''' Transform 2D cartesian coordinates into polar coordinates. + + Returns + ------- + theta : array-like + arctan2(y,x) + rho : array-like + sqrt(x**2+y**2) + + See also + -------- + pol2cart + ''' + return arctan2(y, x), hypot(x, y) + +def meshgrid(*xi, ** kwargs): + """ + Return coordinate matrices from one or more coordinate vectors. + + Make N-D coordinate arrays for vectorized evaluations of + N-D scalar/vector fields over N-D grids, given + one-dimensional coordinate arrays x1, x2,..., xn. + + Parameters + ---------- + x1, x2,..., xn : array_like + 1-D arrays representing the coordinates of a grid. + indexing : 'xy' or 'ij' (optional) + cartesian ('xy', default) or matrix ('ij') indexing of output + sparse : True or False (default) (optional) + If True a sparse grid is returned in order to conserve memory. + copy : True (default) or False (optional) + If False a view into the original arrays are returned in order to + conserve memory + + Returns + ------- + X1, X2,..., XN : ndarray + For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , + return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' + or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' + with the elements of `xi` repeated to fill the matrix along + the first dimension for `x1`, the second for `x2` and so on. + + See Also + -------- + index_tricks.mgrid : Construct a multi-dimensional "meshgrid" + using indexing notation. + index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" + using indexing notation. + + Examples + -------- + >>> x = np.linspace(0,1,3) # coordinates along x axis + >>> y = np.linspace(0,1,2) # coordinates along y axis + >>> xv, yv = meshgrid(x,y) # extend x and y for a 2D xy grid + >>> xv + array([[ 0. , 0.5, 1. ], + [ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0., 0., 0.], + [ 1., 1., 1.]]) + >>> xv, yv = meshgrid(x,y, sparse=True) # make sparse output arrays + >>> xv + array([[ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0.], + [ 1.]]) + + >>> meshgrid(x,y,sparse=True,indexing='ij') # change to matrix indexing + [array([[ 0. ], + [ 0.5], + [ 1. ]]), array([[ 0., 1.]])] + >>> meshgrid(x,y,indexing='ij') + [array([[ 0. , 0. ], + [ 0.5, 0.5], + [ 1. , 1. ]]), array([[ 0., 1.], + [ 0., 1.], + [ 0., 1.]])] + + >>> meshgrid(0,1,5) # just a 3D point + [array([[[0]]]), array([[[1]]]), array([[[5]]])] + >>> map(np.squeeze,meshgrid(0,1,5)) # just a 3D point + [array(0), array(1), array(5)] + >>> meshgrid(3) + array([3]) + >>> meshgrid(y) # 1D grid y is just returned + array([ 0., 1.]) + + `meshgrid` is very useful to evaluate functions on a grid. + + >>> x = np.arange(-5, 5, 0.1) + >>> y = np.arange(-5, 5, 0.1) + >>> xx, yy = meshgrid(x, y, sparse=True) + >>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2) + """ + copy = kwargs.get('copy', True) + args = atleast_1d(*xi) + if not isinstance(args, list): + if args.size > 0: + return args.copy() if copy else args + else: + raise TypeError('meshgrid() take 1 or more arguments (0 given)') + + sparse = kwargs.get('sparse', False) + indexing = kwargs.get('indexing', 'xy') # 'ij' + + + ndim = len(args) + s0 = (1, ) * ndim + output = [x.reshape(s0[:i] + (-1, ) + s0[i + 1::]) for i, x in enumerate(args)] + + shape = [x.size for x in output] + + if indexing == 'xy': + # switch first and second axis + output[0].shape = (1, -1) + (1, ) * (ndim - 2) + output[1].shape = (-1, 1) + (1, ) * (ndim - 2) + shape[0], shape[1] = shape[1], shape[0] + + if sparse: + if copy: + return [x.copy() for x in output] + else: + return output + else: + # Return the full N-D matrix (not only the 1-D vector) + if copy: + mult_fact = ones(shape, dtype=int) + return [x * mult_fact for x in output] + else: + return broadcast_arrays(*output) + + +def ndgrid(*args, ** kwargs): + """ + Same as calling meshgrid with indexing='ij' (see meshgrid for + documentation). + """ + kwargs['indexing'] = 'ij' + return meshgrid(*args, ** kwargs) + +def trangood(x, f, min_n=None, min_x=None, max_x=None, max_n=inf): + """ + Make sure transformation is efficient. + + Parameters + ------------ + x, f : array_like + input transform function, (x,f(x)). + min_n : scalar, int + minimum number of points in the good transform. + (Default x.shape[0]) + min_x : scalar, real + minimum x value to transform. (Default min(x)) + max_x : scalar, real + maximum x value to transform. (Default max(x)) + max_n : scalar, int + maximum number of points in the good transform + (default inf) + Returns + ------- + x, f : array_like + the good transform function. + + TRANGOOD interpolates f linearly and optionally + extrapolate it linearly outside the range of x + with X uniformly spaced. + + See also + --------- + tranproc, + numpy.interp + """ + xo, fo = atleast_1d(x, f) + #n = xo.size + if (xo.ndim != 1): + raise ValueError('x must be a vector.') + if (fo.ndim != 1): + raise ValueError('f must be a vector.') + + i = xo.argsort() + xo = xo[i] + fo = fo[i] + del i + dx = diff(xo) + if (any(dx <= 0)): + raise ValueError('Duplicate x-values not allowed.') + + nf = fo.shape[0] + + if max_x is None: + max_x = xo[-1] + if min_x is None: + min_x = xo[0] + if min_n is None: + min_n = nf + if (min_n < 2): + min_n = 2 + if (max_n < 2): + max_n = 2 + + ddx = diff(dx) + xn = xo[-1] + x0 = xo[0] + L = float(xn - x0) + eps = floatinfo.eps + if ((nf < min_n) or (max_n < nf) or any(abs(ddx) > 10 * eps * (L))): +## % pab 07.01.2001: Always choose the stepsize df so that +## % it is an exactly representable number. +## % This is important when calculating numerical derivatives and is +## % accomplished by the following. + dx = L / (min(min_n, max_n) - 1) + dx = (dx + 2.) - 2. + xi = arange(x0, xn + dx / 2., dx) + #% New call pab 11.11.2000: This is much quicker + fo = interp(xi, xo, fo) + xo = xi + +# x is now uniformly spaced + dx = xo[1] - xo[0] + + # Extrapolate linearly outside the range of ff + if (min_x < xo[0]): + x1 = dx * arange(floor((min_x - xo[0]) / dx), -2) + f2 = fo[0] + x1 * (fo[1] - fo[0]) / (xo[1] - xo[0]) + fo = hstack((f2, fo)) + xo = hstack((x1 + xo[0], xo)) + + if (max_x > xo[-1]): + x1 = dx * arange(1, ceil((max_x - xo[-1]) / dx) + 1) + f2 = f[-1] + x1 * (f[-1] - f[-2]) / (xo[-1] - xo[-2]) + fo = hstack((fo, f2)) + xo = hstack((xo, x1 + xo[-1])) + + return xo, fo + +def tranproc(x, f, x0, * xi): + """ + Transforms process X and up to four derivatives + using the transformation f. + + Parameters + ---------- + x,f : array-like + [x,f(x)], transform function, y = f(x). + x0, x1,...,xn : vectors + where xi is the i'th time derivative of x0. 0<=N<=4. + + Returns + ------- + y0, y1,...,yn : vectors + where yi is the i'th time derivative of y0 = f(x0). + + By the basic rules of derivation: + Y1 = f'(X0)*X1 + Y2 = f''(X0)*X1^2 + f'(X0)*X2 + Y3 = f'''(X0)*X1^3 + f'(X0)*X3 + 3*f''(X0)*X1*X2 + Y4 = f''''(X0)*X1^4 + f'(X0)*X4 + 6*f'''(X0)*X1^2*X2 + + f''(X0)*(3*X2^2 + 4*X1*X3) + + The derivation of f is performed numerically with a central difference + method with linear extrapolation towards the beginning and end of f, + respectively. + + Example + -------- + Derivative of g and the transformed Gaussian model. + >>> import pylab as plb + >>> import wafo.transform.models as wtm + >>> tr = wtm.TrHermite() + >>> x = linspace(-5,5,501) + >>> g = tr(x) + >>> gder = tranproc(x, g, x, ones(g.shape[0])) + >>> h = plb.plot(x, g, x, gder[1]) + + plb.plot(x,pdfnorm(g)*gder[1],x,pdfnorm(x)) + plb.legend('Transformed model','Gaussian model') + + >>> plb.close('all') + + See also + -------- + trangood. + """ + + eps = floatinfo.eps + xo, fo, x0 = atleast_1d(x, f, x0) + xi = atleast_1d(*xi) + if not isinstance(xi, list): + xi = [xi,] + N = len(xi) # N = number of derivatives + nmax = ceil((xo.ptp()) * 10 ** (7. / max(N, 1))) + xo, fo = trangood(xo, fo, min_x=min(x0), max_x=max(x0), max_n=nmax) + + n = f.shape[0] + #y = x0.copy() + xu = (n - 1) * (x0 - xo[0]) / (xo[-1] - xo[0]) + + fi = asarray(floor(xu), dtype=int) + fi = where(fi == n - 1, fi - 1, fi) + + xu = xu - fi + y0 = fo[fi] + (fo[fi + 1] - fo[fi]) * xu + + y = y0 + + if N > 0: + y = [y0] + hn = xo[1] - xo[0] + if hn ** N < sqrt(eps): + print('Numerical problems may occur for the derivatives in tranproc.') + warnings.warn('The sampling of the transformation may be too small.') + + #% Transform X with the derivatives of f. + fxder = zeros((N, x0.size)) + fder = vstack((xo, fo)).T + for k in range(N): #% Derivation of f(x) using a difference method. + n = fder.shape[0] + #%fder = [(fder(1:n-1,1)+fder(2:n,1))/2 diff(fder(:,2))./diff(fder(:,1))] + fder = vstack([(fder[0:n - 1, 0] + fder[1:n, 0]) / 2, diff(fder[:, 1]) / hn]) + fxder[k] = tranproc(fder[0], fder[1], x0) + + #% Calculate the transforms of the derivatives of X. + #% First time derivative of y: y1 = f'(x)*x1 + + y1 = fxder[0] * xi[0] + y.append(y1) + if N > 1: + + # Second time derivative of y: + # y2 = f''(x)*x1.^2+f'(x)*x2 + y2 = fxder[1] * xi[0] ** 2. + fxder[0] * xi[1] + y.append(y2) + if N > 2: + # Third time derivative of y: + # y3 = f'''(x)*x1.^3+f'(x)*x3 +3*f''(x)*x1*x2 + y3 = fxder[2] * xi[0] ** 3 + fxder[0] * xi[2] + \ + 3 * fxder[1] * xi[0] * xi[1] + y.append(y3) + if N > 3: + # Fourth time derivative of y: + # y4 = f''''(x)*x1.^4+f'(x)*x4 + # +6*f'''(x)*x1^2*x2+f''(x)*(3*x2^2+4x1*x3) + y4 = (fxder[3] * xi[0] ** 4. + fxder[0] * xi[3] + \ + 6. * fxder[2] * xi[0] ** 2. * xi[1] + \ + fxder[1] * (3. * xi[1] ** 2. + 4. * xi[0] * xi[1])) + y.append(y4) + if N > 4: + warnings.warn('Transformation of derivatives of order>4 not supported.') + return y #0,y1,y2,y3,y4 + + +def test_common_shape(): + + A = ones((4, 1)) + B = 2 + C = ones((1, 5)) * 5 + common_shape(A, B, C) + + common_shape(A, B, C, shape=(3, 4, 1)) + + A = ones((4, 1)) + B = 2 + C = ones((1, 5)) * 5 + common_shape(A, B, C, shape=(4, 5)) + + +def test_meshgrid(): + x = array([-1, -0.5, 1, 4, 5], float) + y = array([0, -2, -5], float) + xv, yv = meshgrid(x, y, sparse=False) + print(xv) + print(yv) + xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays + print(xv) + print(yv) + print(meshgrid(0, 1, 5, sparse=True)) # just a 3D point + print(meshgrid([0, 1, 5], sparse=True)) # just a 3D point + xv, yv = meshgrid(y, y) + yv[0, 0] = 10 + print(xv) + print(yv) +## >>> xv +## array([[ 0. , 0.5, 1. ]]) +## >>> yv +## array([[ 0.], +## [ 1.]]) +## array([[-1. , -0.5, 1. , 4. , 5. ], +## [-1. , -0.5, 1. , 4. , 5. ], +## [-1. , -0.5, 1. , 4. , 5. ]]) +## +## array([[ 0., 0., 0., 0., 0.], +## [-2., -2., -2., -2., -2.], +## [-5., -5., -5., -5., -5.]]) +def _test_tranproc(): + import wafo.transform.models as wtm + tr = wtm.TrHermite() + x = linspace(-5, 5, 501) + g = tr(x) + gder = tranproc(x, g, x, ones(g.size)) + pass + #>>> gder(:,1) = g(:,1) + #>>> plot(g(:,1),[g(:,2),gder(:,2)]) + #>>> plot(g(:,1),pdfnorm(g(:,2)).*gder(:,2),g(:,1),pdfnorm(g(:,1))) + #>>> legend('Transformed model','Gaussian model') +def _test_detrend(): + import pylab as plb + cos = plb.cos;randn = plb.randn + x = linspace(0, 1, 200) + y = exp(x) + cos(5 * 2 * pi * x) + 1e-1 * randn(x.size) + y0 = detrendma(y, 20);tr = y - y0 + plb.plot(x, y, x, y0, 'r', x, exp(x), 'k', x, tr, 'm') + +def _test_extrema(): + import pylab as pb + from pylab import plot + t = pb.linspace(0, 7 * pi, 250) + x = pb.sin(t) + 0.1 * sin(50 * t) + ind = findextrema(x) + ti, tp = t[ind], x[ind] + plot(t, x, '.', ti, tp, 'r.') + ind1 = findrfc(tp, 0.3) + + + +def _test_discretize(): + import pylab as plb + x, y = discretize(cos, 0, pi) + plb.plot(x, y) + plb.show() + + plb.close('all') +def _test_stirlerr(): + x = linspace(1, 5, 6) + print stirlerr(x) + print stirlerr(1) + print getshipchar(1000) + print betaloge(3, 2) + +def _test_parse_kwargs(): + opt = dict(arg1=1, arg2=3) + print opt + opt = parse_kwargs(opt, arg1=5) + print opt + opt2 = dict(arg3=15) + opt = parse_kwargs(opt, **opt2) + print opt + + opt0 = testfun('default') + print opt0 + opt0.update(opt1=100) + print opt0 + opt0 = parse_kwargs(opt0, opt2=200) + print opt0 + out1 = testfun(opt0['opt1'], **opt0) + print out1 + +if __name__ == "__main__": + if True:# False: # + import doctest + doctest.testmod() + else: + _test_tranproc() diff --git a/wafo/mvn.pyd b/wafo/mvn.pyd new file mode 100755 index 0000000000000000000000000000000000000000..b656b239aec647e5109b15efaf852cd22a1b8847 GIT binary patch literal 569827 zcmc${4`5W)l|Md{c?p9Kyb%){G(fbYB`a#8u@VV3galCmqa+w5QBuM|Z5rs<*#EuD ztDF$F=lCB_fAsP6f;%UtKla4*N3I<( z-~ykGx~S0MnBep}Uik2e+a1;Y94}traI`v-F2B&3Fw#+!;BX{^x}~aPnim!LZyNF# zV;oV^?ZiKZ;%~$EL}JgX{-R$FN4l)X3ao=a5mXLx1r@&>`EUPK5Z@ybUp|Y$EArZL=v(dPUHhnn6FdYj z9RmS(_*-zG?~z$gJnWFX1Wz490oVC0xcuv~k&nN0lGX?~@+9?JbS7Mvl|wMc8n)L8 zIPx&OdeaFBn;jPtf8)80d-18``7&$Qa^9Oh0LE z{sAEZZA#9Ea|Ro(P_=eE)+pgb=G-<@yUL*_`y!==!;!T|7bxl#cGMBcMqcUE@;cz3 zf(E>X-xE0J)Na)^pJEhx^#Y&UD0J(JFS04@bm(<~!z@=<)MizO_NyzZL$&@}Lnr+n z19KCEHTcJ6?bpNRBOO!kFR%4D&`brJ`37RXMnF_+SJxv4NzxzjH8~xT7*MyFk<{pje+z%AUjDWIp}z2}UcY+7F9&&be}{3ml2fZ)#I68$ zETtXUK>0mutlJt^1zBN_W1C)_8K2)tI`F9)R6g}G) zD@twKW=vLA&j#4}a8Cu2P5J17UhGq1DZAp>u85@s5hq8FK>+lQ$gLQYP__RTb_?2! zSW2aU)=B_il(;2^SCN-h9i0qlwtE;!wEJP7KKW|}@nMPJ4J5Lv2@*?bMppD`)Lxy5 zQEgk>-H+v6@-D`wC;zHY>96q580*&ieFy)x3lhjbBM(sj9sX?*{KK62f6BiGeZt?& zzosMl7x$P8!&6Lu>*U3U*F&;ayVnfz))yY8yjmse^uo=0VYObkRWIDG7w*yv8}-7E z%)*Z_NW)De3Vc2j*#*9I695IiG!vi&zErcY+A7&#l~>jmMkuiLgtUx^^HY_P+DSyQJ5L&!5qK7uIZq>v$cVTBsJ9+^O} z6z!RX8zQ%yjm7lBh*20}Bke$Elr&0kHJB`6w+q;HkwLv+w+h%@Mqz6l`%*P@2APjm zN3h!Ig==l3|4P8ZrEdxfZ&mcdumLVl@VWH`Pz~e)07NJ3jzt<$kq*rV>qyi=)*q)B zFEc|gTn1dm-R?LO3Rf8z+LsrwtS7EGQny*S3I$3;15)s%UJY7AnAeRV2#k8+O2ZzL zI5j;mtP~ioml(FG!4HX{2&i900Ys=00Yqp60*KH$1Q4OM2vUuZpsX0Z#jqQN6$qe+ zf(Sfj;W7k@iPkaJCCObns2}7FECJUzDxnL|+9>~K?V`|0ZGb(e)!@_2U099W7;^hj zQ}$DXSCcZqsZk}{weLf-4>J;2mf*j{$QPQpC{->b_WCobe5*Dfv|sCQxCrOct}_Y` z8zqMqZ{im?KzW^&IDbxp*DBu--SbT>7Ei5alHlrV-%z!-RlJ;nQuX<}(Zv?vhZCayCSTDXH zMW05h7e7mcKAN(n8dKX=N46#sTFEM@ddnm)OQ4W!RfH*_7dGpKt$N|-X5r^(6Ef9` z05a8#05TOu0GXo7f?8@s03EW+Dyg)}DT7dUwuZ7*({^wHs%e7^*2`d>3^r1>>I;QV zf=cnwIw}(a3ZtX1-g!jo04f}#aMzmZy9Zpx~C+xkBtF z!sfJ9&a2FkT9Ud3^Q>@#A-LA9Y9mtf0ziVFS=KB^7$%dZX|osc&d= zlh^T@o_GX`V7*?#Ijuwn01J2kHS;BrJw_g%#W$B)y6ehZOx%! z&c@vxdf_@lj5oMMRiZ@Ryjb9b;@M4{R6J`@03qSnLr5wSKuD?)KuD@EX}m^UB|=;_ zA|JXZh7N1(*t$3VhZInOUNAWzx+=UtgvEKVWTz#X5L`E)^Lp1 z6JTTw?9w}xwBJXS@A_Nx&8r&qO?A`~`bMUzqG!IPZ+vqpO&cR`oRs>ev$wvPhGO*h zKhZZ;>(2{j>zh|GLZ<*=6t0E7@jwBQpHw~FYKO|CTZbJ-O6ah6&Jr=#Ij-hZbD+txJ7~wlo(J22W)&!jr8sC%DZaHN ztA0%$;8uT)-mLi?S}vBd5m5;JHmwk5detTZp>mf635Bo;Ew7#hu$-}qc89&xsKJ+! z9k;<3t!@kwjeqo8+eMoz01m~ZtX_qP;pk%FxAzUx0kDR(+kRCU^N#Kh4~;fMpnHe$ zE$zg|ad6XwVux3+?Z&wj(Ke%-w;G1BYf+1qGbJ}7YUm**x(1;bsraC41K-T`qu;Pw zqjw;i%SuW$FoSDPvS3>*C4wXvv}qC3T-Y!XV<{C9Xc;oQK=eA6RsCUJoRc=tCS=I5 zif=KNq4pZ?F2GZrd*->TD;^YEy-`{FIp53x(_mg?5137~hR9i5SH*O;4_O#0HXsWy z0y{x8d^z5#X^^3Jw%SxgcH0PqKxg|R7a<*eoO0P^0z6+S_cK^ijEQce!~=>3=~!S& zJUY??*i1w0AbRhv3fp*BuZ3_0s`E(WzysB>ptx1Yq5@;ff%U}dn zKcn0YiW6du-^K^^I}+7<;2h^wgI6M}ejI%%4&kyG2A_f4DBJc`BH5g8xZzRwTA$)J zCb>aRgBm=HZ2f+Z9I(4v#M`52K1sIO{5u%Jf=c@;Ba;r1*xR4XK&CGA@bfTxYXiZ;Uwzr&KS{$ zpRo_on?M5$<3YAz?C;;Da!JQAn-b0sTYfO`#$@`V`rG!hHc&^_fXxsfxRqiDyH>H@ z*_1!Z4aQeXhT~xMH0sbwj$U~k@rw*NtL!Yo-!lb$x37eFC|U zzQJ5kUg$PTG44Z^Ku1gshFN9V&DEH+|EC^B#Oup8&;C?818L^313& zaCskLg~*QpI|INMh*TC*IUVW}ZWg#jlnY=e6|E8YAN^qF%S@SXlLCk|WhR#LIan!W z8ca4`76M)5R$qD*cpeq9PD$P*#2J!wrzeYY=yq=BNSLAF#0Bm1Jn-vp6TeZ|{LXY# z!DP9RC9k5yoIjm&=o&<~0j_RK5*TX8${L0v%?E7mNIA+WVO-M#Z;!w)W{uc7Vn3ny zgpm=eq|RoIZIRJ{SGPgus){x=?P=Z0DV; z!{}1k7fnSV3_E#Vg7t()2jv~Kx5{C@pEd6C@bKdqCFZ}$c%G^qa(}n+yi~8+FtOR^ z_(9|79<2HVF@V4?Jn=Z5u(kv_GJsjV4y4((H|=DAWmVgNRqF_ZDJP8Swx+KA2-dg2 z;an^;dSSa>ayYc#_D-mwiP(CKDnG26sgUmaLg6dLYIDXRrFO1S(r(-hW3jpI+CZms zkvpeR4b6tmg-x15T~N|quPjAX2ehGBDaWX;N(rw(E+4RcB1j&gXXb;2+4*n-&aiyVEw?0A8;cY-7x*iH8>s<4`Cs;si!r z{t>7*3O@(_efq@DS-jw&NY5Vx#{(+<%c*nldZ0C3`KM9-h#I_;H5NvyHcNKW<>`?e z>o$2WdlL5E)?7iWaJH$zrSyIjwt@yn)=6+@(NLqX-N=K3tGN=6kF4rI?jM}$|5rWE z3GeIi=MEba4;y~Bp}llAbaH$9 zoa2j%SUBMiXa8DzQ$QHoD@7>1NZZH33xb+@4Lpzfgy+w)v!xz%tS;-MU`v}=w>^IV zU=5o)I;s%NJq8LO%c;i1Rs(}L!Iz8_&ix{sN>yp|q}*ft_6bnXvhX@d zrI49FjT3cd_pD<>F90;#`~+*RhH{|_B`(aLDxL<5x?~53Hq!Pu8QE^k_k?1LGBIB5 zZxJsTZYUeZasCs&=cZ>cngCC8p7cDo8?6N5t-J}A)7vHog=+|DLaUJ_Xd_w=^#k=` zFF}V1OHV#|7kvfFM)psP^72ceoNmoI^W4#BDwXoYcD?gfV~p2GuH>{5!>wP$64<<$ zw8{SgB;%r&BPXljEp`pUu9|Nk!UlvSwp}ayIbHK~I|?yRRUot{X?%u;Igu8S(f(%4 zPb2vyOrd&6tlp?6ztm=Nt70r{rCxe#DTjcw1bphrqZ5yz#~-6tm?~M-VxIKu-*3SS z*}rvE%H^VeW7)sxN@R>Gk7(O45!nQ>zq463qeSNbC0SZ^mO0>cv@D*J{WNmmN@FfZ zHcHntGt66ACAn%k0fhdeh`}q$Wz80wLehIBP{r;25#XXx0ymr+_Snf<*l9G;sj*-7 zBBF-IVnUp(^{SyO5vh2anU1Hy&D5Mk+QMq^3gjE2R`;lH5#&P%@0uF?3T4)i7=eiKPK)%+!Xd#XwUIqEyd}?pGa*< zs*w+bYUnpe0cmJ8Lems>nln(Nn3b_}=gysKyu5btrxp0qqNi#rDjW`fQq3W6peDhw z#}p>yJ6if<{y>v!%UoRf$*9pcXV8eOO26is^tT?t?H@guL7Y{OK0e#ODgBAZA3;W% zfSCKpj}fO?RQ1>+k86l$BMt+7V}{t%tjrK5XqNRsu92S%=6j3~#|z6Z67H%-TaqG2ega+yo0!vm_4@ABm(IhiJ&U(ej_eH% zhBaq^kd4qT2)UdOSq)ixa+(&V$It7zSiIs;e^H(9tjXE8pdE@m^c##7rU7hg4mi9A z6MX4e4MIc^^%^Ecv*u6|Ct={2GwUP-J2~*F6Evk^D_iVKrL@BlO%bZ(hFkbpwrLmI zBBZJMvEHPXrWtu+=`(~Y!B$$l8)HmPrv9J8Ip&sbEuf8TeAMA+dsE_rkZ{#MCFGO0 zuhh_d{MwDFp`RiliOxDHdjYdX8s#8d_A>A(RVO?Y&cS<5?a69bTssKD%;_w8_a5t55b|sB|o!W0UpCUgNH0eN3`3HdUXTY}}Qqk3q#WeR8UCSDHR1%@~`mPfj!L zO4rAv8!mlvx;SN3gVmUWHrv(U`w$$#`sh~1=B4RxP%NUq>x7Qt#V@H7FcGOON}rMI z4yVb_X9#1aM5-hB|Nka^WGH`f?13_pX3xerK94W*81S|IUT=wx0wEIV--I!)mEXz$ zwZN>`X4K5kR|*vz&BT`F?3OAt6JHxz5tnPj@n6}p$_3*8P#^S_)*x>If;(7m)Bj5p|Mg||-iC!=`~mTm*!`@WTaoDx#|IB9 zgA#qR1M?Cp;kGoXv7-(u!uYvI^mhY zzUceZQn%YpP&KQeSCJ(=4e|ST5J~Al78ZXf4?~H~6LLcwRojDX%yG9}BkXg!1)#NT zKfZJv&wq$|PfLr5Dz+>C4OV}yk@_$Sz4++QnU1@Ri{N~`SP7hl^XmWMUT5gQ-U1n+2Cj@3iO$t@81nM+H0BWi!of6u1?0vfK28kah%4_nUX=$y!BA zF$Cr2WKSTfm~TuV!DHQL^-pS|3CDlcgJ!TDewbw!3$F{#dxYQHra-JxpnwM!JuD%3 zxL_%&ChJ@ap}M{b!o&M|&2h#w0xN|;NN-L}MnRZ8TQX>uXMeR>W?j%Y`_*mzk~ zif;wD-4={myj94KyxYTl*{#Bh{%@>ZfxWxv$y+*;sVxUC#U~n11i{k@!^jMz()2{w*hJ`-h1PhAc;r&;bzCDPRr*NV( zIAFRJyQZ-iiMIW)$0vGoOm-XHmpqdPqgZ6oJzCH`(AW~niw=}f_>njF5X|;&>b6jb zq*w|0#70j_t64Bucw-@+u@x5zPufCEMmVL7;tLh9@}*y60_*$U0Y$yBe<_`%Lh_=g zsXuNNa)H6*&ay`Ugse${y#fs7i^5rD!m-cnUhdAAE-N?N?>m zs%`a36!kbyNBJrugYV{cPn6pd0rAch!oz~=0V~u(*B0krJn7YOcL?WSJlHEY zmeRC}9mM&pK^cIr+HzP4R;qPrT?yQS#*G_i;&}OBec;|xNA!n z{6ufcIIVB5X-#x)H%BZsJzqjZ92rsl12%KoRQ8x7ssU>%@6@y=WYn6;FTypylsDlq zvP-imHbdAGFv8J_u#&#zHSH?E|c+F@1%-sKA7yDF%zfU>?lf~-j2l-0 zXVsYTcda{h#7w)s=FC9J!Vl5Y*8Zj^oY7<^?=(Fxi!SXpl{@sKFebK}*m8J&2As|s zGkK|*+-NFO^%~Ft7I?;*N`vXCJB6xug<|vlP(zOzL)NlaL)ZuXMiFn!=vc$%L)G(d z(T`j$NHKp8!FdksnRKEl@#}R7-YNS$zQ9&RxM~(}6NP(JeHSEcaV=9(9@-^-^31{K z1g^F}F0N&wZTaGQ5eCe+38s%0to|9H2(~g#-%{Q(>Jeq)NoLGww=ThK; zzET93a>c$<$*OgLIuKP~Xh#R%!Gi1{b7RIvUl9S5tQ9zrLB*B6Vy0b46SAejTIp*= zq$zQOM6hHI_DW4hz^zijwXnM6U6w~U3hI(5;#RmVfun({+^b7qFgQG~)CyZcffxbX zBMNm%HLT?W5%tAQ2;&8v-e21A`od2k)3>D z7&vD&p_5HyLztpd8mwQ`Ib3<|B0Y#$Bum$!@M`+JQ_#%}QSf z%0QHWTq_YS6AgzOni3mPrTKJIL%0qgq{c>ufW5MV@QohNu3;u z(;SMh_%A5h4-eQ#n3cX%jEnFon@>3@DW>OYOL=bw--Sm}Ee1z<>?-F-}) zKCFzaAz)AdHfw0KR~_;LOlkmiWH8zTV_O=+HDda%m*|5&64ufH)HZMIRx`uV@b)+Z z2Smu|Xj6me+%%h@@V5vO)DM)@6CK)|?wbZItuj&In-;EaISuK=-1zepK|I?Bgxxv= zbY&X)orz|?qYo`LEm6A;2p1Hu5Eue=&Ya_FXewq#^NsCt>^QT4t~7cT3>M%NlQ=$C zk!~k#Os50TTrZ}uKEf9n+X?WMzEvnTH;Y0zmm=3NHz;yj4nlcjhVI*KH8rp8Imx3} zvnfiFY!35ir7r?Rc5~otP^7yAOca7hGR7(a;7VT=>7qv3j)<^V1NBn)(yp}>O9~&f z<$NK4gl-$sx&+^T0In8FL5I*RuK!K14 zHjCE1l6`pu1kZc56Umo#S^@eUSRH+^3Un((p90&QIp@^S)l^MAhK0j`bl0#@rN$e+ zv8sDaF;oQQP`!%XDo9-lGB8xEz@d5`xv0oo;G-C{)BuW+=!+c2xMq)zk%L+dNJx0G zZ#Hz-IwrcrB$3(+$XbyLW;HcX)Wxq{oCg=9=@qi+WUkqH5f_QV^lcu{3ZlW%3BK8& zqZ$~1h>}eqhYH3jjuC+7gIM>Nh#i3FUKPtAz%$^JYD#Q}1%bornXpjj8wqru22Frs z!=c^Fov?7%=Hspu3dWV%HY@54IR_`acCiyDkvV#x=btuk6Ob{qgqslnvVd z4}ce={RF%He727^jWY1YB{EAv*fii;z^$`60rbF^0lJEGxDI#0m5uU|fM39aF%udE za0=i`vAK+_XL*5dWXr*5A;bz4s-av&Ku>fc{Kbdm^=IFSTi(M%ulS_Pidni-ttQpuHU)YtWtt+Iexh zM{}};1vZ0F<&DTEpLv;a;mAtCpEG(K;4-0!ZN^p2B9rKZQ8N_&{HG!N1hpB?Zav))W6mA)CgfeHZ>(y zq6Q2*+Vc=`+}o^+Tb8V8?VE>MQa^hmmlRRKG<7y5(ma7JN^Ac4VVEc|(h^?(|-g20N^>!)iO+ZikI_7)EF%wlcM|IWb~~?RMB6;cz?5w8N2hm}iIM?XU=8%ML5C)J{*c!*VJ4lC?%DMH#!He*glFTo_^?uFaCS-zP~M<8{j)?mn7k#RkQs@QPkw5xY+gC@wP z27c)(XihxB-Ifse%oX|FSI|k+A_+|m`zH9Zt1#-0qJ6kXu~peW0s3u$Z)D&rr=@gS zms)9^@1U;3(17WPljoYF7WlH^9HLI$uLikL2hKprKO-UumD=dY?Q8(bks6*YB;Ru$ z>y07SS5j3zGP=)?-9Gr zf{yc4(@^b*6U|Jsl;c*}8B{$UuPXa<4&+CEMkEseRB-w{NTAxG(=DaODmx7XHRc0O zuq7FYBc-fJmKN+oMegJ=;d^viRu!mOy-8M2kku0+ga2FAU9!3>vhT~k-nwKOpwavH zt+E!h{(hidA>$O$`w+Lo81^FLCSIld4aQbK{tm^$9LM9tbaP59@M%9NGu(7|68VuI zqe-jmghL7kRxKknfa~;-gS%18C=7sQ6bVFK+7k>E?QRB%+Kmj7v{d15kE97ymU{+7 z0URna21oiM%hZO67BEagt}l%oKaAW7%ze+nT+wR8V(zzK>(2}O`uSj^t3amRM5U-U zR5W2ekRY1Kj6B2K;v10rvBP}8C5X(5OlNKZbK!S;fId4+zQ`njfw}J?H_^s0vKNLV z8^aa7F!ZxAc$iy83>Lb{g_bNi+1A}n>;p$>zH~J-j>D$;%8Xm!cN`vysW1HuE`fSH zGqn8G`FETC+H7vS$KZ>&UG*wd;nmv2X+zXluzQIlj8n)v=>o1-;Z8e3f z!&g%OHXUSl1GUba9sc*Nus%yzB}F>!Ul#kO13{^k1d;JMV`w{*tCxNz(B_=HFPnO# zr3SqzwJsIZ=a8~O%0=u#bqUQf+z1M^_G^k*g$}p_%H_qjoK7`37=^GSgR3bzv>gK? zlAt{n=x_;nfe>{lT5g~tQM)S8kyNRvR-qeP*mCzKDk|Yh!OrhvhfV(fm5iKDztT1j zPMe5T@G-kU$++EV6}%@B82bDKtKeOcfOO1pSp_FV;)KJzPq7Ltk+4uFv1gs6o^|>) zPd|Z9oWK~k(cX%-B)Oc6k&q^`7zy$@f&Aa6!J@AL&mjvr7#T3n1ujw=qNibSU@X#j zo8>vI9{QQxZTdbZ@1~4UgAW7FoXjbHO!byKW~i5xyJx7w2UKF=nW2{LoS|k+l+R?E zg9(oT{djXOPh|<1PxC1p#Sv>N52!?kR|39mpvr~QHbM*T=dw_!Z zqW2)NSMO)C*QM#~_V7N;AD_-znd~z9-MdyMYvr-l_`bFBSgVM&O8eF-Vy$VcHM4K6 zX{q)F8?g8S$Nl%Yo;VP@Hh4!t9zUCwP6=EY^^BqvSj%<2TtekrzD2<~%R`Cf)zD?gQCs+FJ4Fx|=@&TzPu4~La? zUuN?|Bdz;Jl1H_9=Do3;GyXTClYkL!b>UYPeiZRQD~-3RT)demGVvds+-T26yq?Yh z+`;!1BVk+$>uPBS)H$rX&AwU4vc6{xnT^BZ`os$Sx(N$+G+}QM*F*xb3)D#;m?KOy z88ct5#(_gs8lW<^>)Qf<#%+<;SS7^#npP#JPF?ozKp&`8$Wy%9C%7EtfpZDkQ-O0X z?Sa5KMar910-{e<17gPEt(a77Dbnom0Qqu5y6Eqx9rJ9=UK#BBqAhzy91k?*k~ zYDI?2_=(qscwJ=RNxozoVwK29G=7q5Lo62=Nk)E}4Y3Frf!cI)QorbQu(&?465~J) zo1P!);eR=G`YjGhpu??B4C_NUNJa`l>Vv)!7^dkc#M)enfcNMMj2j68lR6LHq}E%I z*|=W`ZN~7>D-j;eRTwTKmIPuj;@6^{`BZGv!w3WC9#$vqwNI;RK26NnfknQ+)Gqz( zEv|y*tv|=YKeFxn`;|9VErj!Eg4Nz@m4|WBk#j~XhR-r^X8NMAdB;lF1|#p#_diamD`!tSay!7W*=#_Zogo z3M={xrGakeo`k~zK9X}J7^XSQe?0HyD+3USPsTb&CqV%^NuI#dAf6*LHwtE=zJk*i zia$(k5S$)4gyVAfxY!6t%nZZO#_x8-(_5l~Evq>iz+DiV!Z;4GH~}WF^i9 z>%#U9UNGR(@KGGRHCUJ6dC!4OHR0n@hc)eJOW<)_Q)hUzN20ku+#gfn%7{EO)!Ikb$h-%zktn$AxkZqv0?L$NC=_TZz>P~WDg}~G zmaDHRZ*W9iAULOP!Sw(Wy7Oj$6hs45{BSh1DKP39=BDn(n>da^HGetGd1CiB5Y}YpA)p&?W;e2BGfg#< z!#bRT*Tk`2Wd0bF;EG8DpoFi)RBCLpb*Ukdi zoZ5uI8DTG6jylO0(eY-%`{FqRv+SH3Iv`TZn!;I8jJLg{T_SKRO`Nl4+AU^s6Vd-1 zKoAu$EZJ0s3XtR)GJ_xhh8yu23BvaIG&%SH&`VHbJdXN>!&3paI%2yMpym`ODKgV8 z=+U6F(@fh> z8yCWI0rOIGj;UrTm}TbPtbeTUKDFC50hi9-5BwQs_$%myd7mUwkwlKD;V!}~xH)E` z_vpwAXu^5G#;jX>6X3%%1+ImDkd)c9OLop;#V9LIWW`gUCDXWAKVgU~sSNDZ!uR4m*~}UTARn1VlIeH3 zFwg=pt%>ehv$!8n@8&T7lRzzyy3BIL1y_y$Og<{ap`c$Z%GcguT4fumc^7>>1;({G zht%a77){|d)13Mz`XSs)*((^$doH-&L{HFoQ>o=BLt$b{xtwMJCLtOf%0|xsAltZr z4k(&kr!YQ}*YUcZT8bI!q8F|ta{}tZbN=amQ5T*#V<75wwUk}U>C@Gc2Iy=&4B=-G91}fm-v>gnN9BB_hQ?qh0$bCB z!j%^{CU6v%`Q{_2$3G;3zG=+!>hf|1FOv;~(TMy7$k&6uj|jEGSHaW@aWIV)XEsxt zea$Re@0-aK%rT}m`ld6r(f2u1IO1b!rO$%^CfzDz@()p3X8gZha6 zBaqJtZWf?T5zrk3jFomeAgOXA3^EZ!aI1Q=V?op_mny3DQcM)p3K za9|i)wi3V{G7#<>akRCCWs?5}8&lZu3ef;Lef{t$}Thd?wTaIl}%&l)PN+k4#RIQJ;YUo}Xg_=XVSZanSOo(!B$ z!1m>|?JpW1IIUbCB8zXbvu<~?3>oR=5vXb9KhVKn#Oov`WB z^2GhUd^i2v`ChA(+efREn@6jZTSu#u8%L`&)5;%dm5vP5aodQe;q3bUYA{m_;3t8v z5^PqPv-&w9ovT1Pq?5cd%WmSZGO8bl{_-0zU5W-JV1;ia2W6!go1B$CH&W_Lo%q$? z&9H!<8Gz!=A1JnEbqE2?r1>lnQR0p4DqiBF+YZuAg!tb<1D`Ko5pU`;$DYHMANU0P z^#tFIw~L9zSh{qu$;1{W$hTh62S9R#dyi8CegNU#(@Nn4sMPZ5+Pj8M09xh(W1fOa zOBVqp+zHsQ8ls8EkrwU%#lU;B)TQ@#r$zas?zAYsr8_OkukB8Y@}WqJeI;5j$Hj8$ zwS^LKA`8Yi@x1LEg?&4L3sKx{&T%vK7o^Pb3C0``Q%xe}GUj-h+9^_sF(;X+w?!(^ zn3KxXYa*3o%t>QvHB+Deol;VFGUxh^;bhQ z#4Ow_2KMUBA_dj3Sq|9pCn58Tw@v_3X}C%~2PZ6qNvMILaa5yFi>RXia29&EmZBsu zZxs4Pza%;c`KPw2K&*zc5r-n7YT5mje#W^U0=bnX!A`tf6O(!s5|9ot%RPsr^A}#G z{%|tg=7!^Mpx7X8@&XKxItQLc!;}(UKo(N+Zz7T){J(LRuuGc>ahXvG$0Fnr`Md~wVdz=LT}UI=Ki}A(0HSy5Uat(ypsd$))+Va ze`CD#{*6hc?{7>xJ%3|{)9*JX6J9@SjPUw_i8Xo9;N58aZ%1>02TGF)75`Iz@-jXD zu(B~1oDw>CnXdwwnCHABeYI5Bm_;2jlWHKRNnM`FMRT*jfvtLVQ$*j^e9WxzD0wH=+hFM?TlzT4V)IL(8uc5gY&t?S7gw6-)3W zEWz~mW?>Z;ueAnM0_AP)mYOQA#vH{2a75%zsOx~2q?)TTGHuWaH9a%`$02hf+C6^c9#EkWa=Tf|L&Uqqss(W0YI@jnY8Y;I^}EY&g#_oa{Hc;5Mbmiyic4 zfk@BwMSjThe%t2gwbISy-KUFAV+QC8D|)>#Bi0uzZdPBq`=9M~+gzY_Nzu^zJPG<)tsXx>Sp zIhoDu!5~e}mScLS*mJ{gh5PpLxyCEo>pY;c2|k{S^&RHe4o(+t`|yV1Mcivo4uCz z|{ZcRT>FI()AsILoWZ%B!RXq2_}d$TMSbLqE0zl7@ze*4d8IS14Bgv25Su=)Zon! z3_HhQ{k)v z8nz8#WGB#xBFPaTbY2kL@qPCVl}a7T31nei^n zziQOS0nJO3p`WQ(kPLk3l#&>(ZQ8lN&DyWNz_$h4)741(Jr0^el>;~_+LAcqn|5M8 zaUzAccRdJ#Ja!G&Zg7dD485URS&e6xn{V8J1*JzPaR&x~yKp~wXUjo8q5<|%p<8Kf zJ+=?__`&jhi5EuDWwHREVj_7y#740K8MrQRDzUp*E@SYl+0qh-IB8e7;B3E4>@%<; z*)_2YSwKL`B7~3!j<6STKCP9|wkUvYq0zFal%@sG8-Zo2Tf9RCCyqD)JQ_c3{Cnc& z)3F@c7p+L*;i=+L`&1F3I8{U_P8AV~Q$>X0R1qP!hlKBOt_XQVm;4)S!7&$H%l$tY zXci_wsDzG=uQyRtPK$!UlwnIb)Pm%p=sIY|rX$fARIg1|6QpS=he3G_3=2J?08)wo z>dC=7B;Ih)EmA0;tU?{HW3bY<9)Ufofo%y8W$6_iixz@Q`?+@ zi*S-S)Fx`!hqhqh@)u$v4`w4bq(5dkU$e-w(LfB|Ql1P2Vv6=?AeJc3KMMk}B<=gA z@(;G6X!g{z4d*`KwUkp`2ot^&1he*kyDa(=x&i9YF6n*LZQYCe)feOTT343Wy4Q=W zgdSO`*1f67a`nhcx9&|xmeM0@xOMMvWF_{<%CzpyL{?IdtdZ8eBazh)Rxxt1$2boQ zMoF!phHImKVv?9 zwc_geImpXDiX0d8$y^+iYg2ego`Xa3O6@Xp#LaPeOKWrP=tAq_tp!uL8I5ChK=7=z zZO$F&i^w0re5wDSD!cRlr{D#iIQ}|;-+VNNZ5Vrss}Gm)hPX|h4VDZrbjC_(l8Z7~X6*pLP*9sI}bXcRLn_ zA3|xATl?YhUBQIuwPmv%cEhS#CA2Bk`OX}2R|_!lTWh*Dp7X^(b~^}&pL z8v%+osLN*inrQzBpd@wDJ&{buLopo>!#|CqcbfU>sMYP0=%x!rbXRmcB8GQ$2t|1) z8bO4!1i~(QQAGDekGA3?n1-ThC{kFfK-7x!KNm%GXJoTT6GdIbJ8iedarOBj&@Q+$ z3F$hF&N@3_`c)u;n`)TewpKUO>QT;YaeYbJ6!zsMDSZ$OY6A$*3xJ|QftyRX?>w3I z1e}%%cDA%9hEZMy#_b7tf9dbBAbQs2J*7A`=Qv@7mGXC56kRy|8=}7vTA=MxTs6D| z+5q?U+6K}~|tUvyjIE90{a2L^wF06#?aJOk^>*D6@mL7SMELOKKoc%p@bE3kl(4%cS6+nZyStcSh z0!4&Ypoq{66cO5iB0@t@L~KhiC+h!=xsYDE3i9F*eY9UAmh*|a{P(<+vNz)#+{p)F z(=0`{enx%G>bj! zwUnLmVby8@Di^c|a24P{PsH}hsvMJuxks%8JWi>^LU$+NKfoIZ+J-rI?mpvei?77W zzBnPJfW{nUXYe^A+-ouKbm|}AMjbC8#BW*j>;b9&fouZKWzxKjcQLl@KIc3Fn~%jF zQv7rR{QK%_r|{%Iz8!LGcc=4^rF+z=Ge!ob_U^q66(rNfG1u z-m`$iL}u>Q%LFEvWZMZN9|lK7qBoPThFl5(Y&o^pgrofn`Vu(}O=Ta?lYxZQ%ASt1dDGAh2?U>!L#}20nXJLw?k|KN9+@BHHBZni#*&_Y}2AW`yGgK*se`b zag%rk%$#-9O_GMP$i`l^YB$UZqi@IieyjOgyWA$A$F+Ktfif($>>({{tl$I5FZk;M;xr z#rj+&(57JD#yneAv`cLP$dIo)fK;&Q=ohfQA=bIXyV+O4tPy;qMV{~KJKjbCUg-Q6 z%$7!Z3HAjnrNZ?TMyu0MY+MZl^BL(U92vAqqYuGV zmjr&~SdeFhHKlE=cr?$a<37p-Zv*iqmTP}>-o;q9q^vhtLjzmAIPI`vdmvMZ>@qJKU zgebfbYH$el&S26^q>Tg&Z!rvpr8)3!XJIyqzT*mL9y-UXpal%^JVpdldVKt9s5uLd zpyJt1iofUORk%<`Z{Z%Sq`2*d`;x(@fXz}qPJd{SH+&E(wF!RDbhaObHT@ajtT5Xk z&&_-I4$3mP(R0H1#!#cP-BRA2?RMcgLHlhKFRTCkCr)+mg4-^2)kNzB^EFx4Luvx8;P z_Omb~#_@G&xlJ{gqSKKHe-Tb=;1WU{0?j}d_j)rUoR(M8b+j8m{)p$hY&8Uptj|jH*3w&kK!Y$5aC;Lfhc6o+1FRUQ5+etzBg$k}fN8 zIDRpgm++Y%(Z?4DAqEByVL6@x(&mXe+!`%J3+NQy%!6N{0+!qcU@+#z@pdJa=hXTq z^K=WVkp~QL+l)~JLlhtJM$W(!5a{QWrv}jdP#1lK0g6|9Q#NG{5mgh32;q9`FD|a7#1GZq9fK&afKI>&`$jq zjz$@Xz7scj(DrY3qiT>}G?NWW&PDlAk^hVfC$M13&PR_5$%<|gO;tw!fDlU)mW(v4 zj_D9IA9N=lXy^0gG%<#Qejk`2E-fORj{H=FX=pSRtWSo_$u|mOZbg&H@58)SoDR84 z1*{LS$-n`563dpy4&8PL-Hv=kG{M&?XH`c&0J*rXSI1|Ri$U5nSShsM3>TO@`Zz>j z-WByp93e~%m`aFPgK;lTZf3CS+FCsI{yGznB#=&%*Q9Zw74u>OXi5f6vyksaKW8Ez zua5IgM?T*-FdO-Nhi-&Juz#R&G4dwl)T%+Qb9kRwBjxmw`ovbeb`3dPv{7R`xR8z+ zL^{|YNUC5IZ2~u+`R9$}`GDd)_4r?Oc+n{h{Bt9%5E*D4uVeCEzKcC4^^nq$&C{{6 z#`|X_R>4;9(?@iAqwN1s;Q(a2)@9K%AYa~d+>8v=X=IR)brSZ(_-$CE*&n=QO>7;I zH>r+|FUN%(c86YyL5QPiQIAhxjz3rP7Z<`wXLKC9J|ZDY2^kp($n_GkknXYZ+wg9+ zE~Gb0&@zI)O;CBU&~Te~VXw6tuX6lqnDZ0d2=Cp3OI9mjwHH{;?!(QX;kHxeh!f}l zE%`ew4%f$k0OivNT}tScqK7y+DDzDKheS7ihyj?+GovdZav*~|fNf)@y-QrU**^iM z*yo6vO1*vzTVg!Xh$GWZ+-shOYl{$<@%6MO>nbTwE7Y2>qvohT5`GScD| zdoywGs1qCLfXI>0L*37(8E?VUjM@-^djW7iz{hmQ*N;&Ia{f4ZRx2CElfV$7@%74! zEP%h)E@Q>C4HS}+CON=&V)r7qnf*af8G5Mi~5z$|@U zM0h_2M+lQ}guweTnS9jl5(`fdf!))Z=ehA{GfYos2hW?B3o4tlKePt-%7nx;Yk26n zcP|jgUh|7jM@!3 zR>yK4DugLWE~!|cW4Rna_fXBi9m4es+Mc!%MWyV*GMKcVsZdaPSahco$>o?DFiEGo z)FthRf*gTjg|8KL%(7apP}8yG1X^9VQpH)`efKgcjAx~QsMH#ULvwj&yE&ufC}gY5 zx>Rg@%sbqpu+&MRrKa2pv^2M#g=MGZ!sm?o({M`;0v$#X9m7P5Z4^cYSl5f2;LVS@ zfmQ?B`{hIP<{h|8C#ou+07g{hbM36Fp>EnMf1vD(K=X+hWfM)Q`$=V#C*ny>v^)?H{JElb=N!7qh1H7o`rhQLgq6G zxY5VSWhv*NKxBJoL_IvOg_n|ab86N%4x3eJ=genZxC6-PXDMeew6b1@s5cAsfEpDy zN*0ee7iZHM@q}%<=xpd>9!0G5ZA70TH^WWaLsEdR5^t6#=?h?p*xnU9|NGgB04g~s{B2eN7LmS zd5iJn=N>hrV5^I3z2p2h28(IbaIq3l!xI zV;p*ogbRi9XC~&d*d6@^2r!4Je;)^;r+L)(G;Kf9GKZ--yz9mxN5)KM%;ZU6H!+X^ zH1r5>3)$36CDc?xb(4d+45<9x=Z5jKKgu$&YborjmcnN}>;^{=)huuC?#mXZr%=t< zO{Nj9Ou%)wDOpgELWin6itK6-1{WI4W-ZOzgWIzN3A0jqH;Bmr;>BLnZm&$hl?k}+ z1|f}rQ|$ZKJY?JsKBJ-krFMJYs*ZCtQE)Y}XD>z8ti;~EwAq?S10dc_0azvgySr)g zH4!iSNN4AG2#H(V{~PV~JYfC5-yU7hwRsrF=lK$CoTNhc6yvQAScv$g3e5CkGnpGy zdL1aS&X1v`X6eUWIAcN*ilP;P={W#BHkMY*^xt?zHRiGl4RJ4ZY>iIUST>ay~yYyYp4%Fj|)`4waeP^JK+tvkvn)pT# zQxZ=$CB?gQS-d;YvAIrk1l>Rvy2$^pz=G~vSR12+-5cUvuk$s;TlM4Ic#Do;=Tz7U zxGw~T;&}2_uZ72>3ca!fj-2L4y)5xsx8j&J)hbMtC8;b)Wl1W@Rs!#)2kO%U+tLGd z>4BPbJk!#Xl#m~y5~aX!>lL@lq7@(z+Vdl3akyvh!)s-s+r-+H3NB95v2hiKI(*e! z+{kb+vrNbFiN-kQu8vcdnT%r(qi5qSl87(fx*5OHaj5tz@aEjeBQW=1%oUS>=*?KK z;vdNdJ|(`V=L^|mSFXfY8Y*dCioe*E8~UWH`lMI&NpJ0w-rOg>t514+pLBDdbhuBt zwNH9upY-}Z>2-b5AN5IB_enSQNpJWi`4PLa-43_f;cPqHWrsmKth7UZk&E>X+hN!a zo9(d54!7GOzm7rpX?D894jp#>*LHfN9nP}D6?VAF4yW7UT07)-If=L04kLD0VTa4? zkY7e8+yXnj*$(I1;aNNU+zw~j;W|59Z-*b*VWS$aA^D8DM<-xIuxJO7Ev8y3x~Diz6BnDnVHHK1LwpiNe>%wJ+3{e#`3nkjBUB_EsH6WO3(G!1;etUN@t%YQ3mf z$%<7~KSN@{>s8xD-p`n~w(77*{3C0OL_?_}X|QZ*m5cC;tBOS4GUTbj*_ixQn#eFk z#skdw6cpnF;PV_+X@d3@qKKa*srr$~co`Y~F!1jZl%MnOlHUt2F;Y7CZTBxg{SQ{R zBMQ!4UW+f3gc83-%0Ey%s}kDdA0Y4}qGVMA4`+UP9ltLQA7!#JATxxj_?&%%HW#lP zc*2>41fv{_WyiHhsPmf!{O5YNPZZ`-24N| z4CtqmmAy75dJMduYhki?UcUbRTkBA(|6V-8U+UeK=XKcM!+{61RmFGG7P$h|{q6`< zXR7OWC^b=KsY~D9ztNBPhI;kz)cecppak7((EydZ}_x7*xSMeK`r!jE-@My-iTVvP2`>bylDxVOi z_6PRz11+aoNJ2ZB-!^8jqkmZ24Kl?G-sRu2%iFR0j(;Ce%8Not*^j$k zXB2I~>SBlvx8axPX(_9V?8J3>+V??vj8>3~Hx@?*jDc9#AbzXug37>Xhba08 z{N2jNF2k_0-dNOwJfOY6VfW(E)et4;;+AyHQ=b@*H`Jk$LT=3f^-?S({A$h#36t;<5Ne|w~KXx1JkbT=D$@&q=~JJ8 zzX9pUUc~XPK8~w_@64b#nk>D8rByO6MruSCW|J?^w&g7nLN<^KWV%2mKei*q<_A5H z{j>+N1CWZg0hK-fggmB3ZUnwa(M{keK3vS#K1+!!A~_in1E*o+=fKdjdSyv{BE=W) z>v!m1)C-l)yMOhGlyF24;{=j1&N3Nub5bE%UiWQ!!1wYsXHlK{R?Zhtg-=P2hO^|k zr`&pq7q!LYnoat6l+^S4J>Y*}p0HA;YQ@GFd~h>i4X3Gw?+v>HovtGNfzi-*08I%?Q}2J z?nHeEyNfSujY-C7#2WTk!?(*)*CZnr+V98bT(Ioa83GK-s-2p=^4AV(ay*sgh&cb~ z6x!X+Bh8U7-#}iWM`RVcNw!?PK1RN{FCoVh-`WbCc54p>PG5+J*YI>Fzi>(wa*CWN zy#mYBa4D~wnvqlW8GbP2{7{*AXE-1;HvsZlKq8*VrhkdKI-_z^3i7Ll;HT|<&Yw-2 zS-%cHZCfZ9XkRY;-RlqdsTc$D9)$(dpe4V>2qtI@pB$@8GcLx0f3y^Qh<^{x)<;;E zBgT#CbHJ*TYUtM>V09i6#*LZy)eGD4uvJ5>%~grjBb>2){GuUd@`d=UP-K|1(I|=R z?iiK4ZP90XjVOHXGgE0nu3mU}lvkT$6t?G$!g5sj`Eyqxj;}}Kndm$u&FpQJMnB^o znTKUNn(ybNti z@PfU4;lZzarpR7R4xPlu%e0%oE1(GMjJ4tUd30fWMtJ<9OU-0l5EA`E=W@3#`ZIdY zlIQ+xD({aPsa>#o8fr=1nc#t*sAg2ss##dS?bcO1~&It9qN_O3%xweeTq@f|RvlWjs9$YGj;u zbmMOw_;TI>AQ)XKqIHOZjJ-ti5rDA&i%szweFgJwlx^iQo+0BP9{LX#umSTPX}Ada(UG7G8C#j*V8#!)j)3vKA;F*^&;br)J+=W4gSPUvk=i6@8e7m3rVl~;yc?zMnZ8!eh2*MY+OSx zAcaeY#x2yiz5JGreA=A(ZUe4Vf8tv&2>g**y{nt7KEA8^jCg(MV0;hRxHOX68~$a& zr}l=I_O0Iy2Q_;5?CUW5>d?I_@zvmSRLy;e-8Y29LQ>Jwd5*V!4vcLd_0-=&U%(o1 z5#0!&1G39sbmV4fKghjT`+n}z+OXVAZFue^&6oSQmR>(Ll`9E01hmZ)s7qk-*NfxD zt^@~<3HGlyy*oG9^ybu$6NuK3&1`xMF5a%mrn1JjCC#zUtOn5gVo@x(N6V?`9HIFt zI@A5Gytc#jiLCMqbfi9!@Fd6XVI{`4^>t@nTfME{&PiY7E zl*un%P;q+hybHGwo!(CPtm>uPW4_RK&=38d0P3r%5l2zr3?3g*Gamz(Ofi28atH3W)`PY22Y)qrNo&{7{aQ{KVa34n0A*y z<$p6WK@#A9O%g>E5xR9Ho_{fJB-uz4H`6RfT*dG8e5`RSwYPQ8;~yp7{rgLZI$}8_>{^nMkJ81yO7IuA-1O4NBqF= zR;_8p8bBZ)$b#A$z-stVqoUsHrW(P92-Lj)|CxI?n*i0{`+Hx0n!R`K%$YN1&N*}D z%$XVgJHaDk{SOssatvKw1N#>C4%c(8=dinOl*kaq8T_-og; z2RN@G4+`&C=OI73O=v5mHK!9Z>7?+-$ZHlzMVDz|UgxOV0h%SLFg!b`~5C?M+OZE<~rEC z;0Z09(YvNw@mga(sAy=5tVgji@_+1?Q6IXqy^><|rHm07*SLmR+OXDa{#$E0Qra{ld5*l@8q?3#L$~ z9!CKu$fKigoeFPYxvi-1iWOmUtCq%}~u{*3C#bcD@7t$mZ<3C=SX5=FzZrFe4x{@cmr88!2P^Wn+Nx zj~?4^B!6?~M19{39<*`Sa%az5 zhe13AJ5CgTs__sEI;;{fL9fBylqIKEoN3$u;sp+Zz__SgMhfIdkHq#F!6yMdpNx3# zk5SE5mB7l4;IpiFbT;cYuYg6waY;%$^ON}aTP%ay=LkdtdM8JV$Fr?=e;VrJMnjiuF5iq2T!pI=7sV5=yP+&rRg+-AZ3Yy` zKllY0rR%#;WF%Q;@db)KJ|ufIfd}E&7+aWDF$>3G!(j%VyxxOZ9o%Ek--{U8>0XT< zL&p)Ic|FH|;kd_a0B~^%fRkYD>DQ;~MILN>*zJHoaQBYbiwXX*V0#9%{ypgG?SbU& z@cX6qojmuGiO{|2%AtYf1)TZghCWp>OnAY5Gv+#X*`w$(zq&O&_uD#YDV#ajETKq((|R^kw8{<7VFDCKCu_!YJnW#l=7tKKTyq#a;Tf6OF}lxk=C0 zfoyK{{GnEn?CZz7WSf%r6u_98su#PB;tND7netixyF}d8@SQpboC}o8!ZMo z_-z!`QnYxSdYhttCeptUExwWBA1y9XiL&$;EoKNv(uyjIX0&P>KjB}nZF97WdWO&{ z*Sw9tM}ph3qE)ZriT|Qi4f4yUdi$wbfFy8%nr6j$;lNYmh3Q)8QE<$${P3}So-qS^ zTk)Md@fA`^tlu!VufuA=FZCmwehIR}Wf4-i_H%GfP{|9m0Zag}Bs=cA1Y$C3dE!=N zUXz7C-~{w^^-E}zS%qO-xz{O(DB(UsB%Q&EDLmEWtL za6}n~Wtg#dYdCljfA*8v2*)b%AJPkdh3bF9|9c`XfZW;riTDBx&OL~?jyyi%%u2+! zJ+2&YBoI6Lb|^GQV`|~E0C){YUp9oyWp>ev-E8hi`~S5egV~T5Flh8NL_0x4n3WCb zUSl@|D6=7tf~-zM0$JP(Ao1yX>#nu}S5xqt5rMDuq4Ur*HA>1+V}vsRJ;`C=?}@BU z`WnF+(g<0;2F)-g#QqeCm)e0Ol+vpI0ns>d$@QwF^(+M_Uif~e@HU#&2@=)2+6ucc zPgZs83wu1;s&uDb+QAc)7K8ohmNACSqdC3T@Ah7dGpmRBd){t0hL!icT^~1xhK#*< z(e2vGPPSJ}qAwxu)VJ+ydx!ZAre6~O3Ae{y|CwtD@(I?mhTxvytF9m;_HG>TK(3j_ zC($A<~J{KR|qCRFf8 zrvfdkBa0E_B$Y^S=bK%*7H*So1Ts+%@&{SMt>_88)%*+G?H1?Tyhv^!Fv;6#okfiW zPa=54{OU2q75DY+o;6fgWQq@v1K3)0I@$BF$cB4S3)g;@N^$7hTL{x0d3zXYzJd;Y zn~(1-P=%C|ctgUMA{icH+A;7Dj{;v9FR=xB>oi>+Kv*HGgYOVkVPMJ{DFj+16R$YS zoh{$5)v9Cvm0t%T8yoc+a$!BeMm*l;4UY;{X88Z$)Vm!iC9xIG>k7$$cK=3kwpbkT z;*0F!xT%ewZBj2I2rC~caok@^`1}i1NUN?>AX7nxxak%LJsr99R-oROFkO!j<>`TQ z6#*Uc$@my&s^3{N0sPqZz9EHY%4C+cpQXP;{(X?V zz`y`Mxo|TzMt4anW3ZF+x}zcqOk>c0Iv%{D64Y*0uP6j9bdRJ{ez7|h&&rsDP#nd1 z2VzdDi4N+Jh1$S5Ah?Wz0E{P&iu^~d`wg@-CZo3*wt)F3<82VdzDxMi?o$8190ET0 zF#BUx`9A5ozS2d(T813x$k_TCpfnK29K@ct<;&?W|9w4-JyGC65ig|3h{`@5&^!gy zx(2!8Z1w?V!REr2)xsxQ=yfDIxWx_TCizMO>A8e5Zz8qC`U6rFKae1)prLgGlNP`i zLQP3h*`yDLS-Ky!rb?Ag2-A$GevJ0xJHJ@BBZ>Z8%x4@DdSWw#-(>xD4Xu96EdS-u zgtHx|Eu$5-<^SqSiMY6&gB+l7PmvuDN%Q^B93%5l`2rcZ*8%@eq?A~s_lfzP;zay0 zUNJO;u`T6kdE4!<2&X^q8D-2LZxrR~ue+Ke?kn_}x!$IVy%BdFoCSmQqVZ04_tjBl z(&6ETuc~-Lado^)(78un0RDuU&(N5&OwC}qupTY9c-F}Zzl8XTH`y29h zR%5Roww$I4#1&^wLI_2aG5Tv0TvCe$o)^!d5^{E<;*Sqm)sH(JEkO8(S~a(k!t?SFfHGZWjd&(NoK zKx6F<42u1)YikazhZ4QD3TAQlk_G+h`NN5qpfW*FIT@&g8}8m|Uh*z{l4IQdH_Z$1 zge6R4h=EC2N6sF72tsQ_uZTSaQ-xpC@){C9<)H^-EyP#(1GA|;u@%to7h;SwW{xx_ zkMh3mKRZqjtRLI-xGIN8l$RPsjKEKbpjMx!t;J}W|<=zuNR!gcg_@R_vcvyGpO4pd6cJA4s^ME2ZB z;WggE53XxRk^(2^H7ILZfua7Zen2UbPcTS< zzHtp&Dd|unZ!*_!@m3;`W1G-0hktEvQgd9X4bIz%3iK9LKN)tmf>Zvf(|N3fC~|=e z-zVZbia@zxw4^X^r!>duP5%)63!{zv5@e^ZfB>=p!2H+S-QB99I6m;VUW+Mh3D*Sj zB4t}3pdYLojLdNSaQzCNv(J9d2G5*{B~N%MOFJUBb=_dwyLcos^3~~Y$DafW_p2O} z6gUM#B^IHAZ^2iuA66zE@Ieh?692H4zyo_gGoYElWc+eqPsVQ=7X|R^vD4$G5#P<5 zfEYGYWAZi{>;nk;R{dRb8zAb3OE^N?4kHLkyuFO~A{BSu?@HQk9p$*BJPEeHPsLLK zCN7`(2ih=BnIgr|N#-WjvSVPQe@xziysm*w{t?vt@c2QxaA6)|Z_=~%!{#fMoYT+oT(NDrc7 zFpU~t6t`f8$%v|J*a=r5#z1dcHx$p{op%pD$2ML+S}!bN{8nMMe*L&;A!e@VN8E*u z_?SX>OA~)mJ6_|Dr%ry-8YD4&-WyEJXpo$l^YEiIG#RePUpWQ+!`1$4vVcJpT%-G5 zT{jf%hPYO|N*rF*XJ7D^&_PpdgVQK| zl_&{5(L!>5x5b!$>Q{uiSU<;eFMqLe>i}^OjLO+uaIQThimo=Ffe;u&$5Zp}^bd&U zPwAx(AumE0Ri2;BpTx_{>n~V-u$154x4ev|GU!|R$foQi9)N(cyCTh)oQsH^nc2Fp z!@Hy6l;{9JM@uug`iTyoQ=_*S^T)Y5yp2mf=1_=dj5@i9oM}lZD$$$$e~+Y}h7UQf zV_ZtsTl4{6U?NMSuC7k$lR3AIaZ78zR${RPmPi%eT}} z{)TxAp6sDKXAd5FhH|`sFNgF>Q}Xm*#`lf(cp3MH@H(tFE>FrzN?KA8DZYjtYdj+= z%9vHcjx&n0y`d@Z;edtFxL?3%yAL-MY^wTY|%)Z?u4&KksR+JPM4xFIn)!W z#^e&$>*7pT7UjDmK#L~WP}7a6Z4ozCY(|1lXO45V=tbkaz78M-9Pr=F5*%A6xSUU_ z4=foEmm5{dZy*xo$ zk-pl!bWItW-r?G2Odcb2UKJKf(mE_M2I%ug!BR9%M-F94=Jv8AXJ+TLj4c|sBt7RH zpgO+)(ptGF^}hdz0{K66y; zQK275V||TrQn#lKc;Aipyq$C(JfnZZ&NrWd2f``?CFazCs72#rn~!NP;_VSmPb;xZ zZ;k{yVrR$YRX742h@qYw`+skAcVAG};lG3mg8~WDU&&<$Eq{8xULi%nFM&pgoHCCc ze<2fGAeO_w&`%VfEF&P|)87%FnNz^f*8%sF&>9htr6?uVetLrVyoXg`w)A#dBNUw} za4r~=M;fQ$q~yt?mE1sp5=1A9b06LJH5Q=R9*%tjY<&G^!`?$IrL9iw2CsXaT$`l= zRHFTXMv{3O(#Wp@Oi?Nx?@apys=(noVoSB681L0g472|0jL8$B9?roxduoO$23Xpj ziluY)UD=ntOMkn9Z0p~aSZ<^`pbQJJEM&g19oUW;h5;BnuqC~^>4w5GF_x7*rtE$0 zHvq9-w5c~1f-AbSD6TtsP!v!GZ5K$q_x`g)V1|%fWAN<;)r)1#H#pOuxIVPk%ei?( z2#kP;1t_7bJu+2ClF|Q5xW9u+S6Bw>)s2=RX{$Q}77Yv_c9K0FAl~eas`f0DLetNT zy!I@w_&Xg|M3)|>@y{YOWnrl^uX|MUC_#K7c&G^m2 z?<@F47x-VSCw1_Wk07tdV^4|yvdsDgk?i4*@5b-6?}K07_rnjU_|LHM9HJU5$OfKa zdj;Xx>O_6@J?OVUMvL#D-+gENSNf4|q#x-<`Vr5;4t^kR;2DM6V>bK5_fN&~b2?Vk ziL75!diFpW=k0`YJUyW=`vDidDR`h8C&{Y*7HO9L0X$gN-02W`xC?|gmOhyT79-T9 z&+^GOCAhu{up**QWw@|SmBpwNUU`i^0$Rc<&5_;s{GzIzCUB&dt0xrO+Il=VYLH42 z*3>xy-mm5DRCm5nb~s1zwWx9;>&SN*s)mHMM#6+7Ov5C)@~%^Ev3E%2~W&vtpY8!r=&gHPKYyx6iiHFg(gd~AwmAs~Mr<4UYjaW+o;Gc! zn8#k3Qv*t;M~mI6Zxc$G&CMJK2Kxt@>*Q&8;DtVwE>e|FLZu9VF3$uUQXm#Gm$Aqj zHqVF+WzJXdwD8YC^Wa;q;{*H8Pz6k@rs4xYv@S{F7JKxIvhShyI0V3+E;WM-GjS@` zUy#)(H4R_8`4jfi*5J2@$Xtn3L~8<$9kG(vt*%Z$O5R=^wu!sm@My>qXZSaG#K}3~ z+5Fv$&29Ds@CU$)u(AIEJ^e%JlRHO>T>&j66X7eN8BsU;;TeqXHoo@YnyEZ1)*ayH zp6M0(0~L5s&>S5^!zF&^BEaLY^w%b2ZIG>Brw=4EVyKgeyulAoz{HK6Q4{Vg|B9`c zoz27_p$b^cdSRB~GlS*s6fMlTZ!}*R#(Id)b|BNor@}9wHZSU1tq1T$>`OFO?^sW# z6s6s|1HoJ+IVbZoD( z=@_Qy19BEq--)L_j?_&*Kw3RLXVxQlJx2c`o({}Q?gEu3?+2A(i~3JC^4-SlEUL0+ zb|bBop>Otj3?|Q9#Y-}#!`3f9ckJ}+ivD>G+c6(^wTvwoz2u-?kc%15bXe}j^b!|* zm+YJ8K^FGSjX(#ORtf%)=U(;%{jVdbQ+-DxzN1uOpJ)JIR3CpT;xE&%-@w-u@yR91Hpm|fNVFB*-KF!;0|92+v0rT_?`Fe}MN}nw z6!xon6T>1te!>4?hLKkV06&KYZST8&0lkV^PNgjUnCABx7zdR7u;xi@bC3j`=~S50ky2ujk`5A@4I=yu(Y9kiwa{2(>FKpI6(FrTn1Q@i+W&JQK7^+Vv}URO7t&T>V&YLK{mo3k6aGD;;SUrD;Q|# zWeH8Y6{#iGNTeK7ASYhnwuAx~O99f#!TzfX!Cnjf8P@JGP(GHgT;5)V&rX?tA+^M+ zKuWLixT<|F*e>$$lV||E0Q4oIu{`^WyfG5fL~xNOZ!eb^?ARaQv-m`HW?pqN@hJZg z6Ur|>MOTI&1Qfk?HU8F1;LU@d04hL^ll(?4zZ(&LSBzZ_{ujo+CeFPXs^lh=OsJFm zRZ0G0SAY`2R(O?lm1H!H{Mb<5tl~n7RalMFw}ERI7sNh@*HRvj&Iw&Xv5QCNJWYO+ z@Q1jVXkjmkk{n)SwQ})7wdoM{{zXb&9_q^_(lKQCrN}`hVNh<5l;lb|M%N%2W&23U zFa;L9IGwdaN-jW3iB*I*apiP27M*G>uMF{WnF}R?%9G3|3jH|`np8^+$*4COa*$Y38d?7X4Oqa&BdPwARxhT412Ro`vAYj?wj#*D; zJWsS=CGvujN#+I^<>uC%_|rHGulJ&7(c<{%$vhAo$y!+^tMF^jLkK6~Jn?uj})(OeHCxIkQK>_o9EbC!O7>JGrqL}|GxjG*& zk?}as79Tde?0mptvviUyjC!yyM(mx>D0ZJR(=bvd+K*HKY`6}Hlkn#gJzwx4@eAb# zl^T`L6I{NKB%1GGu4ujx!6CHMUdHR#Gs1wJ=&_PT;T*jV2NoFDdGdDRu8Gm%ZhvV` zE4Kt-l>u9AxRyKw&2jNSXLol=h9SkUDd0K?WrwR-zs`d)L!$)>g#v{_fuO)SjdEVh zsWA%DVox8#Ph91$As$9ynyV3FId+og&VKqNgr)SwKQ4a(5B=wz0r#9uSjl&1r=z$z z3~mN}IU!;G2YoP@?7OWyPOy>Nr&8q6ij2CX$)40&%C?+p*wQVILX6I~E*UC^knX_MlRzif!Z-q{%rO;#CDX44(Dt8`(ihicP(Cyl0 z{R)F1D+FSZ*{Jh<@&cL)F7Jo-aho7c|3;=n;CeFJgqG>o69f&gzT*r0_w(#kLuGr zfpy+p+M_D!F1#J8V985*t5JrPLNrx-vC$ahYIZg1W$pSP2({>QEJ1@ku%W}=g?Fg+ z>?R#7=4+Ql20Ad0qkpNwFuGT+MoWzP$M84Yz4)>XY;s;_-uBq3M)C!P?gH(_LQk+M z&9&A0*5dOp`?7GN{@#2&8S=6C1NfSxfSw%NWtUX;gPxHPri1=QI3m}G5m7$lU_AQV4;Y|qe04ki@0EHWwlF_}wbycG}jnW`;fiF+{Ug_b09oSyo^ zkxuzO_7D6O%~-+I-&w<>dO-XC#dcPDQq|^5TLiENlUrUV@um#K8+9mWkGp#ZGz?8b z8JQ@NJc5eTj8iZM+uJv5DgjNe3B_URb=7#bmmjf~8M{9r{>9c`gt6%+V$qJgsO2PE zXWfkzRnb{&ANY^aa9n(4fjd|rg{+9<=yIbd$bp-UNs4TsidaX2v($`_sN?Ri=rM=jM z_4)|smfDLgP-xi6SUU=DdN>n*V}s!DN3oOfY(%6Ogb+-RTeUzQkBsqf_Ngma+}*!r zhZ&{y*jpMQ6jzJu4c%Ao4YPv4%fXGL18~~J`MA_zx7^h%4s!kB4A!(-h@vXgUVOtq zV-5L|4{(tzX1P}yt>cTg5zcoc6^<1GXrZ49aOMJ)){?H;i`#PEP_Sc{VL-p=aaaVYk}-V z4uTsTi~ApcMb_-_lSs1pq5d8`Z*Q*ugZ#{?slQdd&vo7x$V1}#qv*eJdg+^LyEVM= z3$sB*a)7M?w9w0V;pkTAj#TWAV7$SY#Ic?eGK}{n>0Eny44E(x(Mn-{Y!wejn6z>= z{}$W=na#q9fVfcw@4+Lf=qWs)Ew2J6^KrCgP7O~C9D;8F6OnLm^6RCox^JK1+Yjwm zu2+f5kX^LVN~#S0Gs@nC^U`DdUaBdas~46Bw~Q0vf&b6fE<`T`p+x_U=IkP_oOnj3 zSzgDfqAFo1;Q6v7;3R@=kExm677NutmdaZ7mP4&8#t#@!?LM_IcsMnH4Qjx8zxe)E z_&%%lnJavsR{N|KzE7%spRe%kulB{*He@-6c!{P-jJM$adD;7J6!PeR9K`k0Hw`KW z&Nd3ifx-xfK!`uKW)C-{#fZ2hMm!G!OL&3LV_zt!R|P&$p{Xc(D&{7w<{sWte(g4`CcG4@y#;1z@yBGNpzUHgUYw+&ymr}F+6kaz@$tsPy$M_Wn@-!yl!m3DF z4Ww3_Zj^?7=wE8%o1aBJYPt^j#$>#bW1n@a9l>3-g|$e>9mAiw2)B@H_HJu4$8@68 zf`C;tV z8kGuj%~-)y*z59ZC)+s}kGq`9=<^XMgda}f3JD(4An_j}4*r)D`OFyv2mcuqxUCI7 zK$|~pWEFZh|HJ7AQKFD}uajBnAJGrF`qX_`_7LJ^Mif*5X{UI%k!XP^LGh_ZImXKBlvD25N(5I zemb!P&q?O={w5TP-HVpbaI->Rdjw0d#Gn0Qw?PZjWUxVEWSG6kwQDRK8?zU|Iv}Zf zBZHJ~vws3I(fkaOS$c-&?exh{RLpn&)YEcW3_Rz^nhZ#B|7Nc2TFfx2WDv;5SQ9wM z@MR)S6qW~dPH83_o-o18AEFM2ioES?cd){f;@^e8{rts7AQL{)Hbn2`DSvciYDT2A z4FJpokQk#Z1G9?LB2$KakhfFjlL_;R3Eqm#1y8x&kG-+ubE6{D)vaTCQjr;Z?pXcK z^JY3zQUX8WLMrr9@y|hT7=(O<;e*)*dPB``L1{d@X+uDTcK?nxP*6^iaptp-{=V?u z`Pp~DbDtQV9q*Q^xGT6YH^o1Z+&$HUc+HEAWcv&pk2(WK3v=H^)xx>>o3Dlcil1m< zIbWOsxf~mfP+WMmbJ;)fNlvzn2Vh$NLZ>5OLs<=Wss5c?+<{U~`X?>I6u4ENv`8kn zJlh8o4-PFNMW@I@%PkJB*{;BrL`EjJk&$aT@(2d8Ckb>Vr44Z9H}+5;o&$Gvn?FMl zRB4AvCfE!P%mQS{Yp_IBBzzWCk1EempNo;5in`ByGnYnl0Mq2l>4nr*osYl9CMq0b z*%tf-IYgh?1XITz*iHzj7ttxS!!U5b4vUo1`HUyH4n;pAx?P!KfoasmKjCW`w%u!? z0rJITWZ3$`)=uTvo>o$BknEVXFB9^#>hcR=u{SPYJXleBu=4OAEwmpvRvsR#h4#ur zuKzro&{uuUfbOWEk3=;s@U~X0)|-{Ak_@UnsW?~~Bujr4rYt%#3%S`#H$RPDLf>Wx zQH8%L3Iqn8cd($q)N)}isxKqKEN+J-Ig@Fj_GsI7(Nc-p7VZc%d~8{}w#_fcOZ~x3+faqef9Z;4Z{qZE;rsw6;g)q%f{TU6xhGe+% zr2Q6G9@$=1EVwPTTFS?o;BDe@9Czb;V*O+}kO1|6{uJu3#=F#Sce&jxWhPW_MP6SU zyI-~T1Wdp=7Em4J?;osaclig^qwABzD7DK$u}M*7!+XHYBT>XwSMm4>8UHiMtXPr} z8KO?mLdE2y>&p$z`$oluR0~-!KX7Fdl5Nsptrjojx-t0GN9en4>81%AxEodke(unx z%COQiOi;GXT~xOi-kWtz-)0xvM9FY<8FwynZIwV1{mw;%&S@BZrIVaCqhRhR*C*k>|;kWq&|t2WKIB)Tg*U1lPgilFQ~LwauPAJxz1bwID(P&KLC5Y9M>QRaI*&YFi5Zcc2o4y z2Hm&Cb}=f~PF*F?0*7H=0D5F;Gr4w~;oE{;0`)RXFBj9S!SB`&9NOb}n~IE^Z-LX5 z0~DrpSHjA}t<+lR=VYs{)WDT`OQfu=v1^20+J*@fJZ_N+Q#zm4H|L@mv0DH__n8=~ z8&z?C28!ZjA;55^n-`-KpwIM{>e9W9W=3RcYc(cqIN>)9wq&($x85?R(M+xO?Xhbh zbnX(A8mOILVB?00$zA#;PEj5Z^}R`?jnXZ~)HjW#(n9zsecN!FV>(s{$kyF6#ESPD zz6SjOtgghCYvHd@+@7$4Oh%o6xak%$TZoY1Hw`XAtd z{uJtOOQ8Onm^V1$OxkN<4V776GCSnW>3>9RI{ly6`J}}xF?SicQj-;5Y`s$st0Cmk zBS;r-0q4tlSKdzZ{4Y@9a^cRBTr6wiT&9|owVu0Rdu4|X>RpTM}nf*?FG;e8Rwe@&}OEJ2<0T29V ztdeFde^tFEMJ0=TnU0-qsOCkyV7+EO?iyXVo> zS24YpzfKcXe3ceH2rf|4+GSo!dI&L zUFM=LJ928#3i_md?52cC}Vf$o!$fR3oqzz+wu5|%% zM!p*pLR&cKF<+qd7<~Y*-rg2#Yq`GM92ajaU$TXd>|NsUlvmn8>)64K&@UMuG6e zR*Yoh?>^vEK?GOy$tA-wa{Yz51hn-Oy_)jai$Sdj(+kUWU#s$1o9`hc z4K_&vLgpSO_3)TcLP3L#X*Ti$_BiFVj`g)JPQe-nA|61B#M0fRZDM1Q8;{qL!96&- zh)Z0MZw2uGF33ES+$NPR$kxe7I(EH+<`&HVI>h_?*3zGW@vqLPqEHyqN9v7@-;B_c z^+~YI>pCkrsfQJd12kYd)^#SM0}=k4q*lzqWSMh<6>F339(u^PmhNRlq2e#(+iVUZ zm#;2bNrxQ&si_b3)!+G6S{L!v>q}|bvH!0rVa%fzo`T|)fT&gPRJqjdH`stXS#4>Z zvH&PzTIfn7+2frct9)l^deaKQ`&qXZewC$sb-{XZQ@|W2R5VwGdi;Tdol!D3Z@V!M zBi7>nIS2IJboyqZb7TmJ*GMF<+zk?wRx&gz{c;2y6Wnr(vwtpSmBTuPjHGjKkav-r>67Iz^(;kB}{14f5u&8V3!dWZWbzd=eq4_P?=K z0i{01J{s*_&K#Bu99xj3E#05k04G0U6Rl#Dx5vYH#m0T4s%FRSU<;G5Z?Nr1^-?mS zgOTcg_Qqe{1*D^>!nQn}`8L>_`?0Zhqj6-Ag)ngH0684YU%-X7WmCX)_+5E9y5EVH zknKZLb|n;%lwZQ%q?g&3@ZEt~u~CA9CjzHA=W(aoDnx}9;{K(;!!hwY0>$@xVmgFc z&}OtI5NpP^#$HS89Z^%jY0&Q=wC^7$zN6K=63UTiM<*-v-x}8!{Rje4<1H5Sp997~ zAE$p?b?{Lr`?RY4M#u#sM{C!DetM)1e>sLd;sK$<4S2)nBwP}ug&x9QwiPSc1D%af z1b@MY;HEe6>RKVbYOS`Z@uQSr+o6Fi)sheibNxtH6JK#a8Uhj0{b+atK6N&_{O43| zFo)lv;68|L2-veMZfx~7n5BH`Z?@f()KIw+7qNHydwxQVjlGRELo zbeYaUl4s7vd@Fbl-12UHM^0m8!Z*RLtOcjBmO4081^#axu0eD_0}_qjzX~|8Vb>WC zv-y}6To#$|IXssOE)RB}=^qp9KFfb`usai>-QC0dIl=DX{_J4)2wdTZ@bWW*-DmrU z2D{Jkrvet}z)408~af+i;A> zy*N83Nui`KV=8VyoDyBufG7ToE+ex1C+;R=qhO44M#xTMY@adj{$w>9YP!3twy?X^ zY*MHc_nJr0yMh$B>Z`ZGJL11IqyntbsRcSIB0J*|FR+Y#&wtn*LVuj}@L1_>zifUS z)B@Tn9*}QNPoERo>mROI0p8$=x-f+iChK9GlwU)76DzEPdYWj@U02$gn$zSx-q$NI zQP+iFiZ`tXX}$m-g&$fA{H&X)rX1!ACEgB=;zu;|xJeoYC1Yxy%h4(G6U0v-Mf6bjD6CbRS6D18Y%#ykQC} z?F0mm!US;Sz!dZpV6EB!Sbri8aik~rg0kuRKpBXA&DO2Ni2W0X}r@d9I?fByN%05*aH|fXOCB*X$zO(-p{Ta30g>p{+sbOJ^ zM+;SuigD(%_@=5aOpBDjCu?kK09Aq=-S7^d-GVrYuAJBP9ZK!G@GI)LMPEr}tIldT zjC^p>En_(?L{DT7{Kw^O3;x2^80Dk05Ho>F85`Z`!xeZt-dI3E1!yXL6!c@!*t(fhh&aP_B6c0+C-q8< zp-i01Kchn_PO%R$mm|w@N@oqFi1gAYe?iG(`;(k!ezr&TXNckRad?dY^qt(ZkKFtW z$~pZhU4|9iLfp2omYA$a1R6TGr&|}M(LZ`7biVkRG4@@p)Ox5t#{mHp?lvZ+ueh#T zTX_JytT#o*jftgt4{IULo>sUDs*?-HGzY$@JTlR5RUWzBIo8hA7~7-tQFIx*og@J% zyWw0?3AVs}5l=t{=6DYYwuo(F$1AQfW~aH1V9j2b0Kx3Pe-fWu+u%!ccq@z===PgJ ziAx~C=xp+ax%GJvq6)BUl(j~DF!PUwsnE#fPt;gzYC8IA>@Dh`{zGtDe^Dq z$^TvWNdDrU{NII-#rN-X*q|jsnA+t--$Y7m5LYpY2lj=LJH%_*4G?1l%jX4gSrQZL8ACb9^fxx z^y^We{Rfz9C|EA|Hqg=EDJml?Q7nbT5d#Xv-UaooEJY!=vRI+A)C74wr;NujtB*%K z>jfb5onzjERj5D6oZrQ~SKy2l>pJEXVnUmz*3g!N4q+dzx{U1y`8Z)Rll3A5<55fT zSstwG!7qxD`^4uU1`AteaXd9PK=?04W0yaMg8EnaMY=q3V+#&wLq*)@0S8%^S%q_e zkc{0kWtn%q<-|}P>z|T%TKa+XTAtoxWWbRhej88l?^j>RQ76K;yoRdA2U%yN9dEKv z!Pv-09F8j4^_rvjY`iQ$Y6U>2<6eLxOP6DnwD3=%=JefFA0`2^9{Cyo5Ydh_<7F1% zs46l9awR6WyFHU&+B|BjI!8xd?@V<)g43a_vb-mm2l=D_3ytoLu!OLt(Y> zQ9>5{Z7)*EI9WpZ8tHS;K>aLc*vP7lRm7k5aG?i2^>f*ONt;wmkk0wtxNLLpQsi8| z8ab6d7TBF~mr#~}P_TR)@cAL}$;XN+o;MIyLttQM6idA`V1sr>vk>4;D(KNF4!%Iu2H>m)-l#9-2Np<0 z4HH>|>OC=jr3OV(AruaK*O${wW`Qge_&aN`(QR>R=!Mc4eHlNnKt2j=<;>6~7lvZh z25FOn(iD9uKM0j4#(CDz*-?7LBL)cx7F_=%QqV8Ei9@Y?kYH(Z>3VdmBC2@Cj4I~T z3r9Nc$4tGdo+;bR&oJdS0?<_{{sgE6pfR$B{YR zWEXnq?`M`f$01I7V%5i$l{oq=-{#0ig(LR{Mu8J0{1U%u075$vJRrYlhy0?^ibJirO$^8MxkN!x6sTu4DAWyGKF0zD>p$perAFzu9f^DFtwW#+ z)?4g$gpz<5&`xc!TQ1@a=j+kMD9#N#wmmEibroBo7#u}b+ZsV?gqqsUA_j}l9uTf% zH>GVB#5{|d;O;6M2i1&Y>hpmQm9+WwCV&)fgYfDi#aieva8%r;mXjanJVxq`JCNEz zBfa$p>STUw~qceLu^MF0I}Kfy!%$RMf2_JLwy@0DYX# z-m1_i_{ylSj@<$!7WJ*ANT1OV^}UMflMq*kjZ93^eGOQ+iTYaj67{{Uep=N}yZYIO zM&Mf;OClr*e}%F`!x*gi<(RIK&>EKg_ zB(r1Upx2|L(U8T@F;z$VNyPt!tM z(9`-h>w)+%YzyLDS;mrV{pBPS&^NkStUF0t$=mA`0>*De(b)RLFSq4-Ynf4tRAM}H z^aE82HTY93xslo@xMU=>(M1A@;EjlYZ|V;2z#%WK=odY*4}T4%#5OVoOY86@i_fp| z+YyFx{=NJrzq~AY<)A_BMZ}uFYsmFYu6GVSC2r!{ql6gl!e7?`E(fXvkmzTt@qw!f zUP;ncW|8~iD&ogrW6HUltby#i?g3-flJ{)YN0GIzrli;-6Dgu};Wv1qE=-GS%IGrc z!iHw(LdgxYRVM(9zTvNEH`=M4RUFMR0ounzC4%{)36+UwZDD$x`&;@9);}VW9mt}s z9L~B0D#iZv#MVIU`!Qn_86|uoA8JSO4qH42DuO)p74p>dfY@(Kny3MQXj%vmA%IYA zOX^BWvrgq}l{D4uO0&|?zl#R)*uCXkZ|@;)S7UGDE+DKiC|pBi7bVIx6wYjZJriH! zTA>lph^kmlkox|c09{#5$|!yfog4QIgeJ?RFbdCLtBvE|4JiYWJ17mXL(R#7E37Exele zEG0gwmkJQitc5w5HVWqP@g#Ya+3vvy#Fh;GA3OEfzWUI?CoWr+i8cawZ0B95?0x_w zi;hoZQ3%7!{K#vwdwBdtd!Uw)7UJ|7 z!k$LqB2id*I}|hKwG3>;6<+c7$0Y&)zg`bms+oy$@xmXFtP&6!Tbwn~?kOi!2G!Jk;d6F`;+QD%|HD`SZk+{p$?TkH`L zL#7Oh95|)Z5{FOgNsb(G-m=kGd-K6t3kZJ<;M)-GX@m*{f}D#|5v65~!EBq&>IDML zx|ksT&8fITO4?!^Gmfjk1iLG#ppKm%V||dcTJv^tb+@U5`-8E*>#Tp{ z`$~LQE}&NPaeTKoGV+$Jz+fXk8^)A>Fa*|rWl*k1nNwr0Y6redYy-MM)}4RtcR*mx z8*=IdU&I=LOk#l=8s7y8xid%(RY&~j6nP-N+?wX|TvdK{<+#+Wz*%TpBs~M|rarXK z*Xn;24s{P4h!nW6f!B6OIP3iqKa2wnuziR71vA8C$5Jjl52^V<9xaYjKgO1&YOC%A z5=KP^C+h|uu@~Lf&c@~J;q5&*FSfMZTWb1$f#4(r#=E}N106Wx1ba*ow!QW|wgEvR z=X2+EAbmyhW&HzZ={suE*zbw3?>m4R1N66~C8-$_?yfI&b25A0;aL-&_{t@s;ZWnI)Sv+*bwC>AJ@)rQ(eq%hR`o|P{Tb6WA zyZY{rV;hh;uM>x!{1y4=xmn@42wBf|vSvuuVs9XI$@{UDkqIsb9~}81j|uS#(jV{- z@!%Ms^FOjFFfbQeNkDDVP&Q;DP#)Dp#-;FB7@U2IlVY;aR#Fl~x$LyS;8;4x`#}1b z^#1;V`M4qFpm&>p49dAaaJ4ed5aIG&uJ=Kz0La-9*Z`N3O^b>6mhbsyIrm5gZt~CfF4mXYjD1 z?BwT4uNjelT_{h<1}i#}4OTSCif=LAS6DHOqH&Q{@=T46rpuKa zkQ1C;_&>o#HAk}oKZ{JM>C$(_2BC8;;lqN-frC&w4SAh8yZz}nzjb*Q8UXRQ>+8tq zh&0Ciu>7Q7io;NV8CHVyQUn0;Jm>d*fpK-ul1({#BBN`WE4D-5mDd@2<5>B{X({Ms zi16OU7v$~C>kN9c{Hd|L;JEv;0y$K2|JL8hIf%G<_oGpFO%`Akdf&P0Ysar^>q{KR z-U{nErzMhpAJ6jPt{aSw<~2YB4yH{`_G9Y@?txTX-BaPY3dAq}NnA8Nu^$?aRA$Mz z(4lVWhz@9j+2cU8M~MQL-XB`%WBVYX=U;$IJxw3b_))SBnaA-&I66cfz-BefapI$R z9wfFxR-}SyAh7UqODBUr)1k$^-)a#Z?TutIDqqFVAR0X95OfpGpmM;Wnra@4Jwjz2 zi?76?SB)Rbk!%oIG#?{V2QyyHjJQYXuxs}P75o{a2>H!EQW@HY(kJ?>vz!*9OJJxaC&;fl%aNCu^ z4_$L~JWqYoKOorltvv4vVq7b0@%Nh(yzRh$^ml`wxz+O#{hi>asp|QV-V$sBI$PB1 zm%)#+^wMqW<%8XK99X^jdcCFU0N3JXJiPk)hx1zgDC=^er67D>gZ4Pa?}aj}(;mmQ zM_6w2|4RFF8AfI(<2QeR+ta%TSB{{Q9>cZ2U-l9iwOdeXAhJ~M{}%69-9mr2SAEtE z*Q8$2j^$LaKzr4v-I)060UX%11uA+V_VQGIatJ%_jnZw<7(=u_m*U{aQT7xE_NV~- z5&&cSWqts9K{J;0b&U3|-YZ}gy<(>uLC+8U_ z-E#`P!E{}CKw)v-AU>PFaGv7VKEwFN5j-zE?Fl#X^S%tlFY5js(G_ax!@yy&I4V?J zBL1Hnh3PopHQ$)z$?3r4XXOm&Og%D=)nVHR{^>jPa5-LK^pP?IZaM~wUz~O?j8%^+&vF|mb`8VIJx&gkMMK~x)*Va2pq&2e8VdGKTwgek);gD zp}qK4yJwM^HWt3FQZ!mpg7 zr$3y9wD8UkUf{2${~CW=`?UcH>sCAlWue9uIL#QAg>K+Z%lA-)b7+?B2^aKoS{w?8 zxzHlMAROqo)`;*mUza6(oa49F2r06Lx!M!)H0nY&9P~$ejkUuf&crhg`Xj~tK|`{l zTjvJTB6c4+2UwaH4dV`yKPG^UI+KCz5^aIghXk?FWtn^p%Ej zB^RPBoRB|IwHBAGvF}_h@EG;HOw?BWnpv^i^d)?arcgklMIt6pD_0xE-62gTJ3q?1}von(H^l z1RJF6y_%42Tpb750SLwf8|3K;APs>Az&H)|KElI+u>SLr6(F(TJ_GcFA-M*(bGvIB zz*@SymetE?1noi{go*HyX;FR-{pX$~_YPn?*717rCi%)sC|*kFv)hqcVy!{S9Nsq~ z+;ENLyte$&6ZT;tawPO23j#~?A&mQYuHo}4_3Y}DJ_IupIr66_kFt;B6n zNs++Y>$za8f2Frzk*df8i#sI+Mm_yDxG^+f=IyP)+-`TU&9x$Z_>OOipxuK6~};K@aK+fj?YO@DpIVL(Co6`^Dnu6CbXz!}p1zYNe18rORC zZ8&?>xYRiHs$jD_;$Fr(XVU_oI+sZVruFT2KcoY9r;>;q1UO~$T$$dFoP(L&#l&YDg&EA7T(;$ApfhLg+YF%o`peX zsb^u3NqB~%u}42}e`HnDN%zcXVjg51@DL z!2;H;eSgi~F@Z_Wg*kG6nDBpg2I)D&PfGOGglEc^S+o4h96F9f%1jI1^aS}ySLKhr zyC|*$laWIxDYqWk!^cekVo$$%pI?;gj3t3G)!8ggc$@Js4G2Sy4aUy@#t)N? zjm*>dS+X)QVs2!+Lec%LuWh>5<|2za$Jy|${on;2yQMmS#@6oPu5Z1qfvA0;F;*j{PePb%b)F0Te;?NjY0}sUY?+)QZC&qY)$``tviY!@e?qo_rGYY9C z*549RhO2y9bp{YQA*ZDxR|4N3N8YR2>9(@%b#|j;uM@7~nuUsMy2v#Q*gFB&D0}@k zu-C84$my`{^{*2-W_2HXomIeImo76NChsuF<{IJ?Au2T0sZI7!!+EL_qn5V6tH%N-Gp$2AlZMRYe7zRNd3gf2)gg73H76nE5y>}8t3CzDosj>k zkt>1!dd-MAUxu1We%2M}7i>GKC&!m_dyhxroN>ZU(_%iZcGuN{J39SdSTIFyWBy3a z8&)F?rWQK%Jwx5Ny+Ts5`EdyzS@13?7>Guf9|iUK&vDJvl;XOHPjH|=4%NoxsY8tX z%zV8lb8L}&$yK--34X$S_t>J$#p3`R=CBqUh6f`*Rp+b!OmidXfQQd<44>pKN|P_J zq>2QP7l5`zi!xbf-rm^roG;UpTSF0{_pC50PJqqKq~_DSU?3B?aN&4ts|f4xjKIfiqhdeslT_-k0nHJeotw*c- z5YqH_R6mTGsKfM4(Ke;!<4Q_63Uy3cu!8DGEY?7Hj?`V>@aq3t@&{UwA{SwS5VF2a zc(|PgWIZKXB+dvqTw$%Ozhf^ztGOI?WA9eJE7*0zg2D9^sn}k{@7T|s^crppJ&S44 zdW}DbctIgfcyRwF0R|6G@jq90Qt(v6A|8i0Vd+2aOXJH~Va6y}qG7;x8 z7p3P1?@4okQFtn-+d7NDIE}J~@Tni42H;8VQ4lEi14_^w1sK}$lkkPLrGa0Lt?!q| zuP@w*+Ugm!f}?tn<0H6S!k>HWo7ukA4J7F>rS&K^{WK=Huk+yT8n4mWRPoD_6MG46>{ z;hlwPsMMz_?aK6@9PAqI9~kT!p@nNeZTl4PNKq`=#z=^Hqf%=DYOSHb?Rgvzp~Y6wF%zb52cSxw^jP9z{9a zL4rf{z(K*TleN%?WTj${#dvdNFBZd5-G&y;mpX!7IKp=}TszvbPoQSlhR_JS2D?C? z^HH(27bQU<)GI`yM3|TMsyG%-_)aD_Pw({|mx57)SvLS&9DmT8oME;zjIEew7O$*8 zy>xk>rkCK%5h-Jn#29W&OE0<#Hz-X@xAp-cbnk;8YC^|5bOBuIMDu>ajnmXY;W0L* zr^m_j<}Z8aM1LKy`zs5d*ssN4*egfRm|iR9oOw`y9TrB4jC~XEntADq{=N zwMaf5sCuA*tT_;{IW;IZP|CS+OtC7LKz30%7G~qt6;v=C=6k>pZT1fW{Ae-l>%?9< z2bh}ck)2gTiV+nKaV|`=wo#Zn%tuigsuAUX0y)TH?xPcEz#&SPb>Bpoc#zePHmG1~ zC1xX+e>ACAU1ziOG`lXTMb&6gLnbsqr0qPF&sLc>QWqm*O+rp#{iFW|_E_2ikIi&j zF0!MU!i{^&Rw%iC3~Jl@Aw*2+Pv`4V9KyQ%{Ry|}F&snVfdG$OGYQTC-JtG()&7w|0p4XVC8qWZH zp;YD$;AC;dpBdITREb=pS>k8Nb-Z|ss&?-GuYj9ZL0AK>0sQH1!waO(c&z;BpK5(j8hQ>S`aCe(~2$%9zN55Ves%-{*l4Mnf`Nw zhllxx2M-U&K}&~6_|t=jv;11{@Y&evclaECzu@6>aV~Q)JcUptm=)M}Js0P~t!aM9 ziE%S#Jr5bhh*|W%kBqFca@E`T>oQgeHq&u_nEwpD1xt5>XpiMXMPvLQGdS?I-W2Q5 zr%#C%Ok^<(M&?QzB;_}2!!2N}ST)Fznq|ux^O3Zj;AXk*F}@zn^VK1?u|Q}4;N=MT2Q7A+F|?WG!6S*$Kvl%;+~@(0tX zqReO#MbQ~si!w3I!i)z~h?@^mbO!r>h_WUau%3U^X7c!%q2^_jSvzt|Tx^aNG8?c#AG)>-jG} zl~wW7Vn)j(8#gWa2iAFlhX?tS<*s9zk)`!wWpNVD??dV`_Rn(CBWbK0XAfp_g4ERfY)v-r*a6DTKZ7{pWXuL#PRql51h__J538+V zMf7+W-L_|OzR8ixwNMkXpp5aGDM*eKr%=+&6{{5+Vm^Y;Ta(UvN-P=4nD81_k4(V+6MWRS zM*bhl&IP`z;@bZ?Az;AZi4_zTC2CY6s6=f`Bx-n^fJzjVRD7h>TaC4s+fqFT(UNfR zR;!+n^0%2@gyD-`~vMd1>$cUp^ml z_MW|FX3d(l)~uOXv!=wLfD%;|As><0)2acZ*j)D07}xlye*q={w?(R&nxSsEHpWx#UfSJ!w5zdnxUJ&r2Grmv52pH zTUbQP=GRI-6MvmkYaZsum0lZZZO5gK@L;i+daXDORGC}IOSHc<5ZpV^x7!pR3!Q#o$1vC})_Pb^lIvvl#A%TuF`E87rh zAK(W7I}@TvUTT+;IlfdRnB%Qv#7S}I9q{whFXkw%gs&Ta>b#1xet%qz%ZnY29-T|5gx zDlZW+bIjz|=s$Bl27ExH9-Fc_FZz$-{?Wa)2?@uII$dHFS=WA`x$ZM7y^el#n&ZDw zkw?-s&Z`EjqqF|6a54-!CqA)LI?4cY0_Mk8DgsYqLqw1;ss!~__u zZwY-HW5Sn4O{~ucRpK*UIXtsixoQt!_zny=jm0i9XzE5+AtX{X8eDlH0u(e32sA~- zH9DpOX!4u@ptqIhfE3aE?idUtOQXR{z+L5b_P?JW#~T>nDJq+vkO0)w&$8!jNG)Je z5NL)UT%n|*D~*{ zU6;C|J$~>4`1ofM;lv&;aMaKTA8$mCH*U_%4X;_3n%2Z*rcN2w7N5f=3ZPZDk!0?B zC*I)^>A|I>s*}`}kB~7{u}I4v&Nm>V<_+emg{+^lI*>l|5>)A)xLLYZbxxbDKfM5E z@BSe*wyC)PJ&RL=9uBWro4R>Q)7--u>spTvFO+cGDpg$x)v4-M7v>K;k2QC1OBdJ- zAIxl|8+o2K<0Rj@?NG|mPcS3OekZqk53HpWIe()7s(Rdw1UN5sq^Ib1f^sDt|@qg zO;~K2YbrU}Jd@>|)Q>~l&b`B3tUU9N3T<~&0y}o^L=~^lu|?*Z-Ky^=UJ}Zfc*Y0t zQ8my_ECs_<#e$&67X1Yh(p}px;-jHKTJeL`b85M|O=b_xH}s+Tw~W!`%}~ytIL*wM zlU-!?E$>?3Y;|4>Ke0O$e&UTjM92;82yH#~wf|!)i{1`DSR%w1oWNhg*v|{|8?+{Q zf!eWH=+F-Lelx+KNO^PX)#a!m|fMS8s*TyZ|kfm@(U-5_}@Yml7Xq9e+se2GgrMB;2plRRT zy23U6;XEXsE!=_8x2ac~Xh+aVV&L@X3ww5pUjVIrt*E2JbW&@QBTJib>)!8Os>Xjw zpHFtmHa5mH)S>)C4RgU^HVpF9K1k`k856MH~9-N~fHy zUCDGZ|Z8Bik*d84|&P1x6IT+R9pHo>S>I8 zpuEK+2;a+TQ9Yg;9aw8@b^jZXgMrkT+b(lsgs~SnLkLo9+F)BV1IB}V-;?wE)w07j z+3ai>o5vrI)35pCF&L|khRACf@q-s*|LefWqR8t=O!7E2vV*t=p90}Nrl!gNszq<+ zj)UZPp${)ryyBbS!?wm3G_DYtLqZxK*C6n^PYu*6; z=g^#H`>QT~aAde$}y8SAhqn3U` zO6|lZI(0AndJH)8Lk*2Z90&^J@X|YBQv*Im0BqM&94@G%?XZ0EiDzGq8+%oz8{1v$Bfb z2`~6MU)}7YH^L8&&=X(BXBRbw7vR{M!JXR=4z{TTkGwL6i^Hk4_NOFijxyiRP}MRK z!yT6l_9?4c5`;I>H8~r(e^r+eEx1O?tu5UOXW1RpZ^{1ZB$Dxy@Z|7fT2S-8knH3M z#dh&NQWD)YSfuLPy}L$`5_DH^cb2su+=?c*{7rVFGi|YQhcRi*aGsL!We$>bH*Ti) z8n5ZW#Exr>WYaQ)ZI6Du|M)`oDT}T}5lF7}Pw!d&#H$)Jq6I?h$uFU`svBCyliK8$ z%3RHt5-Az&$)mj9!Va>`b_o>F;=o+$OjM<@3%xymZYB)t0SKRXHZ- zz9+qqxGvJ73bypBAlg}h_G{MEDYr=IeVt~lSrrICx58EgWHHneD$y(b$gS1m8s|xs z8M<7rN)0!Sxh^|g^E-7CYo_+&!+MM9^usA@MygIpnYR}GY*;MI8K3PPZwj!DXzX)U zZ2ELo%<>TR#_`#=&&sQ0QSHv#r{C7VE~qyQq-@9bvX^Ib8FoYZ+kfv=TNm6j+}B0T zuV>~OB@OpoVgOJQY#?iIciw97v4Q26WyU5tZQPWdUP#Kx@Jg);AKg!&*^{BHHr@dyDmJoRZ8y5R?6(7{LfiKbw` zl9;X$(rs~M*$Hml%OhzMtAzagTaUtqcNI3{jm%v3wA<240W92nwH&N*}5gL38cXU>LD^;6vrm4bh&LQ$?y`Ay7h{tO+xXjbwV%S2l{1^spd(R?= zH;t<5{00_p@y7=;o=8S-tzTa-znV>N)_u~AJoDC3vJLn{q^x&&apyJhcaqtxxZ7yh zvvBq|5BcF5?LNg1p3iP74+abF^1M{*!ENbps^Im-eAJ#+F(br5a4zQJoxS?a3)e`a z7WZerR=;e?Zqx6WaLpV1hS$hA-v>3!BI0`_#Sag+Feuo|VvlyM=sc5W7g=&!%Prgb z?H|5XcD{zHqb*8L?CIXtp{5!>Ka-dKn2K6Y=&Z(XDm1(x0i!2KDdgZJaHo|0!W~b2wQ<#inDUf_S2`uCv}g zKop-J{Z8@7=uJ$buV+o*Iu7r~fN$)Fw^u1;!53+6* zw8gg?jfh8PJorg-Fux6 zhDWI5FZ5RLthrt(5Hvv(z6EbFa&7f4QekFBNc{(3Pj3h*$WJg|S|C)+3%~bA_tGL-(*eB}Tmh6yk^B@zcaq3y(JJ3M*^nl(1mtwUU)a^AIIo zCJ$sgj?#i6jxt3cE|(f0%96RDRoxm*=ixD;5}F4@M)|eWTZ2~~gJ+z-yi;L_C$3N| zgo7@IgT4U=T>uB22M3)42c2cneV9H#uA-AAO4!G?3zD9&DLy~8u2Ths5nZOSw&(r~ zcY^e{0V}>FoK$0i-n&8tnw8E$T|LpMZ@@HqboC81A(k(Bu;o$I-IVA(Oee$-pBJvt ziLm(L^P?@D-`|HO!N6h3Agyn(v0C5wDb=OMw-<-*+0^>mfWHld8ICM>(+Z||v!#aT zX?>)12=o~SeNKixCqSR$pidb391T*{X$fI$SErQx1y*&M*B%&VC$<`>@Y@4f=D|6L zn_29yz1H+-AsF}MnDZ$v=;JeBI<@dTcqLju-$wJLJBGy%_m7?=Dh;MD!O!$%Qv7P> z^R~qd80Xo6WamenOgQ!B$D&C~n5n zdb3`;oCX^Ft;JCa-%@)RB)SOUYtJ~K>1XpTA-b>WTr;9af78?Gs) zGZP!TNtVz2eMwh)O;wD%`C?S&qkpr+i+*+mTolj`a%zg1Z^;lc_bITej z;7zmx7-?ke)y~%aSu7q1|3=u@7$z^1Nj=RHfompT{?ex3<8*&|`t@dlos|0!)jSGX zRt~io>Rl~lP~IZXT^56*eT>63?F>YG@-4>){>`Wabi=2l13%8f@Ax2Kj~|g9v~m~x z>bG*`Hd=YRZRIiKv9)E{+>e^v-D-J)j1>Mi%OKU}vnlj~@B_77g^t|e^HWgr3Y($K zVlyK83ugI?UmRhp{W%|7e`)1MhT#Le2ZrHI=sgXe6Kusfwg7bhQzXb#`mKJ^{PJUz zsq}OGqW2%vFKYh*{i5#Y==a=k&3{AF;t{N1^BW*=JQaFRlTfFrP6cfD%z54m5<5$c z{q(5!7Ye|Bfx-(6gWgFTWYg{Gd-x36Gu{`eEuY>-QvC1_qW$BCuL>t`CMy6}cLNx2 z04fDg%I%C6;Jj`CryBqoy4KW2OEs-BgWL<|fwn$v9%$@u%>%7{%skLs*F4;*@-HWX zHEjWb*WT;Ga2=Yl3q#{I*_Qr8H-N_tKv05W6;r~3ZUAuu5LFdZ!^v3|;NQCee8&LX zD}Woq$?FY(k)Cv<8&r{jI-i4wG7A>3W0~PJRw7Q3&L1M3f1GswG1B=IG=?Dc6yy)P z(Xar%FVNcsaEtoy4tnLqJ1uJ!Q}~NNu+O9PTxp;4d8RpkfXLo>$}{?=5Dw@f$qRO^ z>X&FAZzeNDUq7auzZ!|ki|%7o{5zvztL^e10VoUHtR{MQk^_4w&=ASpyn|fwH}rI% zRDMN{N(kaj1p})uP5=H0SX#s6)jZIfOL?%`)5Lh~EOjtAK69SRmBXH)Egb9p6L8D9 z#lrqtinp)l>h(ju()P72UCi(-TBWPyf3PiI+6`cl0qE+aLSjWiEiRA}ano<{nde*e zyou+4)-fs%7TyfX1Np@;vvX9_A#J8-P{ALW2lUcz^MGD@ z%RIozo6Q59yq*U*MdF$M73wbFpoe%4g!2KO&Gvq!uYYG6z;xIkqdJpvX6=-MXOH+Y zWqGTeZ~owxw=*+00IPX|I(;EJ0Ep?oV0;>6Yxu)1)7*2TXRshWEEpcz(N?YbJ>Wke z$%@o=o}k^`CTAyKh9AfSDbiQj&r{9kV5Gd4>U|6s?b6I!1N={b^v3Z;;w*p6Kuyfz zgHaP_@)5vnQ&!M-D{bPwox)rjKW0EYKU$96ehnI`47>eu?DhznYAkm9B>}}xGniSK z9n5nev;Bp~JJLvjy_DV$=Xu|NBkC;uT37jWyudbcrl~x@=q!uTtv2ya_=yonj{V?1 z*(OFwWX$-2T1fn+O}v*x#)*$?;^`()4SJgd&mlkhlySLH-}m=eZ}aV8e?IEGo*qnh zG9x{@($wTN3Z>O{^Qk)*tsCCVyy!?s}U&uSfPb z{%#9!%j34nkQTgF`%CV}*_@}?oF8sSkPE`eVK((0UNu{d4uvO%fX^U!A{U;>0k3R~ zqvZZ0LfCd{I@=axBH!LYd3R|jO`vXp zep;!l8UjGK9Yw8Fo(PuSb(AiC3)b6;9ahP&W%sDrDQjXw!k%(UY$!IhHO93Ep?};m zoE}cCZsbj^tC!?*JS%Z=zwkVHYx~<%=3DdJb()8|B?K92kq2L75TOY-D^sM2eFFE! z>`*g7=OcTnFLKA_x%cI}cMTz&z%;HS`oj4v{8W>(aV!A^+^nNU^kH9%1a@sgO=E~( z7uhp=yIbDu-Y={s#eXd?m&1;E!*pFZ8jYz#Z{=?iiXzf%J%R8e4`bt-Y+9t0jeEXu zzTd1@nx?(!&KN{^CIY9uNhme5OTl*U75Vs@p6t)x-3iBLjd!w+O{~i`--~uvpX<&( z7W5k3;$uUNPVun`URhaLsUowE9W&wB>^YkX>&KIWAWvJVx27H9gIHpv@DGI->I{?! z!&L%|FiYR1?=(C{Oh7XtugM#5-~C9-hGMhSZ~DZ_mz&8VQWH7+IJ2iP=`axl2NkrH z5Jb@Xp{eTwZ8FSw8)hKsW>eh2e>6ub1*jR1`Sb$3DE^C|(NdJvKY#=YP*l zRJli0(ghW1_x=`IQMA4~6Mq#_=;PR)P=kBFcE2>`_D9I{8-v+Wu1FJgGm=gXI<-J| z*JtHfAQRzhDFCK_)FX-#d^s^X2ar?W!O?q>KXq)MF~4UUrA1Zwo|AX< zDk%26=sF9OJFBGab5AzC(Ac>v+xl2#-F$QT@3Im`Jk%cAu=Xi&F*~YFjrWUh^eRBbxY65kP#P?s{Vo z-NmV+kQ3RN8lS18^KLQ#`0xNC!$agPCSEk4m5o`$&Xjz1HArRMHJqc5_jwP2w&Yy| zIFo1Y_D*FTr!v2f^q@v#qAqT(Q?d)*AXXSeMRo>J0p}`mEs6a$sIQ#Qg!IdY#SkpV zZ&HbpH2Ky*yI1u-lbX4KwS1@h?JRVW%Fso5=@U(b;hG=8PD1|j8`Tf$T5k?CCl0Mo zlR6x8ybG0NX*5HNGiP+Yw=ie+j_Z1FlkwY!cc&@6Vw(!>#Hi+Cam;Y=6-}-kO6+B? zoVPAo8EN*8CQUd!dqc1vcMyfIl;0=?R><%^QcBP9FtKO06Itq%KjM@vNf$M%mZe>s zq)h{H(x1dhk)`RCZ!$crtBpLB_&7g)=;ZJ`nNe=pQg`kbl+Q4F44d0Lp*(TRj(ye` zd0KCNPywzUv2Ppnqw<;=Zd#AG`hbDvW(JyR#lxdhi_eTsiB~;!J{tg4PmPRzoxcO3 z=kqs@1-`1M`bW>;??5JgRZoqHo)BIWc}n~+f2+)Wluu=cEI>%b6+TX~F%1 z$C{!1y~ffU@@Kf!1p2MM&@JU=$<&k_;?k!kW!v^OW(r`u8*;{d;g0=6yUpVcIO9H- zc0D}%uQY|7m{)<}=Ed?2;a}O{I-zw=`G$DamNUc2=lPbnlxy5x(I`>15~uAxj$Evl zrt`MK5E0YKwAP8O@E(I}V5U3Xp?zgb?PVM#;hJxfY|dVA0N+2^?At9Zf0aZpwU=;} z7?{@WFJ7iLQNge`{Cuq(30azcdJ9$qYurgNS(Aq@@b`01}bnlOINh)88 z3NZ>AZX2NF+epR%J?Bz_`IJ48s2`SS!Jhgyc$cq8-JE|03McV?8}e&)&d~gHrV4^- ze`5N03#SLN#uyKIMJA-g_rk*Vi3Xf3sL%bA;qCpgT<>?HhLi)VCwlB+gO|wy!*{a5 z?aREqs6^T4F9SKhY)fs~*7!ks_)dC}+jztajgfl(nm#piR<~>=(V+Xdv8UrzTLFDV z9bUD8VfF*{c&Qmn1Pe<>Z(r6$@^Fo+a?2laGc}Aq zqn8p>-gF3V$}7uuCM(|V5|QAt&hoa>4BXUlPA3nCX!6}}hc@H2ShU=_1vB1C4s<}<2y5*ZSg_Cv6th+8_;_Zh+j)2O5t8UG&cKC*q$ zY=2tx<2MlZPRi~OKB=-dQ_|&2(;uL-%+R4IQf?V$!%nAcHTNkcs#-$fnrfxmCVd`Y zI7NNpCtl?DpSgF6G*SEUfmE`dgHfrHOoB!#>Bw~?MHUHw+BIUjkwy9t0oE;F#F%*! zW9C)E@y>#2et_{}kS<@uXqDxbZS;kv62}`D^D4Pv%;GSt(Nd_WQQT<&l+{vWrKSEC z{iFg)hC7jsl=f2)Q14t0l3pov*4S*=qulh`8-IZY#AsyuLOu0I=-|ed;0Z>+7k&ZC z$`5T9qUpD11s(i-4RO$S11ej;%TYOWc-LSw0RX&T@6*Tg>E_}~h}>@}{d7RoHR2M! zhxtzC+Q?R`?Y*CCuq~^H#W4<6Ln@2|2~aln03rnE7jAMRkARr6%iqALC3ST2RfbJZ ze^98$qxrfi)TA7lyzj##J>okC(h|vz*UH4tw8t!7?i#eY@k$8Xe?Z(uw^nb)X>#g& zL?OnyzYZR%V;+#6^cRG0%DeGHr{2?M^>o5l$=T@zuQGNL+BZ9WI#ANa1H^je*|x>4 zFKZ$(Wr{m#a{7(eMUCwJ_Y0S-*psy5)6L{LKY9|=yyKbXeT~ug7)IX#O!N8`kBP11 zeBHBY*fyoO_}RXB6#Eepu~8WBbq=ZKm3ZetqS#JKx5qVt<4)Xw2;Aet{WDJQo+}PV z$ttk&6q=cS^qZ*19noL=SGexJ5CC-ZS!aN1XNA!R8{?vo{;9rYqCUSG@8)ihuYs9R zSbZma=yp&0GR*&dm5`nO?kgl}EuWlS#fdRhtXS6wIi2tV14FlB)j`kF4xsgxD(* zST=&m=RT^>^BTg88X|0-|TP0C~C~2T*w8 zy-OMsY8cpO)Ectj1%I8`|9p0yN3!!gfSqUd0bu1Ytb8=AJToZYkStvebU-~7rGM5g z;WW~da7lcn$ej^(mWX9+rabtn_1u~*Vdqmm`H4qM$N2pa%&+WngV1x6>TMk^pJzr} z)6;7IH$)l8c{8o@JIgmj>}sgr3k2Itv`~(-uc*OHP?N*;r7 zG%mCj=ucZ0Jac+$vza|Gc&P~+`k)I|cbzvcW^K@Ea$a#>OFMLHs%$$A&QWM1!(INt zj!V<K>rJM4A#uGNXg5=d3!K*Tj*mX#ZyhC5~iAGg+~VG^vW8P=(V_w4VD9)*~>q z*Vu%=htZryTFlixo9&RC8=F+HPXx|W(NYdf_`jy?j8Bx78ahk_lWgUX8mx+He(+4z zRnZ5DwB`ExQ8^0s2?J}^r*~x18iKj|dfU_haw|ygEay3@&FFsL4d=6+*WCe$gC|6* z69-R<-kUghay07Rs4IUmpOGPJi1_Yz)IyqaL*j5|^}qM7V+wUJy`8{V^rsO(9rdSk z6Nmdmqlv@W)if{O07EK0{Ug1>}FaS($gtS5O2FO<7G?^zsfv`^XAtDg0SNDGp# zI2ptvV*&ev{u^O(Hx}1CR+loQBEMpokPR%(9V^6WbBFFosTGMbK`u#n)7SuK{g_C+ zs*hU{H|?{|UqIy2L?^O9Q_BR|3-=dQ#jE>LMZpoLx!^zn3*R;2+V4}B-9z=6m;1U& z3QVa{#oWV`Y|ycm_TRg2=U93| zoKSRzGIm#SZ!$#P;qL?H$rFvha~VTmx0*!jbRqiEP}utg zrOgl3Mm{~W1NhbtD_va+z#Ffv+(lQo>FJOc1<1Ewd$h`@L@6~u3Ael^v{i(nv1)>7 zl|F}WT_p0w{7e!(1wspO70>#G9VFd*k8hHH^zC)r32KtHFxr+W9!Ip`b7Fj^#mhwl6n$X!zZft3& zK|Bju>CbNjmf#@an)@{VM-~)z6h$7X&UUM4*Mb5Z5tvUFa2RSqK@-h%5=MPgK>h(%_QDQ)Voyq0fl%W{B#>90LVhzCcS`l%WZ`KN4l} zA)v+MBblH1EtZ<)Q6r*TCGRFbytfls>iq+rY2TiBL)3wE8SUGkj~;ALFEa`>^f`CD zF_5~ACt_8jGZE3*U%-6#i1|A8o7Ik@}TM8|9SEKxtTcEZuL&M49^^RMBrk>amexiql$aKJV~WT%F*Zy;M%R(g5~9}<2* zxyr`K-hl%eBKtB_+=Ff8$MX1V;eP*297A!x((y&@)lu3OFCH}@wwL+w*Nq}#B8naV z`)MGw4uqBi!4-GhtRMs=_;5#On>BO4A=ZnELhRPO(lEBmpTbNmvY7yFU)ryj?v&SaLyDLsveJ#zOM9{YR=#3>S*}ZW z*4LIj!%;%_TJR+;tyVuyN4RCHSrtmGW%aEsJ}dJ) zoDhJG&mNt5dpN16^=|p<)P#%sNZ_Zw$d{^TGGbh@#g3uLIaWax$~MlQ6sjet%A1Mw zP{p#J$J(1Q8wx+jWNm$eda07J)SrKqZ*cGTRgj6}VT4iikYIzPu}yb`liv~b%Y5ui zFa&GgT#}9Oq6ZZ9gwlh;Vg-Id(K8$ErR{!M-V{^N26wKlHTsV1>K$D`RBHon+VZtM z79$JU&6n5dT+In-jK&W`gQMKo=Bu38W>~2qvNhtLIBSe(Qih8J)18(+u|2G2(3qlT z{C=>c9BzNZAlTR#SuQBnx-+6vwfS1MdF_E=#to@(Z2`B9^{+l{%^j7Mm6l%4#_{c+ zu053LYy`@A!vM_rnErOhF~%9K!~Ac8FQ< z4WY9UKev22SH;Ad6K!-*Iz;FXOe`)_5nSX0Ayvy`qG~zY($yxB=p{r4>HNO%0sF`h zhC2Y6O}40*Wxv_Z%?;N~ReP$^bjHQ@i7vmDC$=b2{G-O3Lu%FNs6FA-w<*qA1RJfs z%t{Yt%RV(|jB}tNb5zN=qR5^(`|(C7M2Bt+F_`Y*excBM=#siSlvv3kWQI|tnTh(5 zwL}ox$v*b+h4t$1h6#N_qe_Y*JLmjE6ks2yg^#11!(*yixSFn_MIub8a)*=ddjwCB zqKcO4V^dkDn*14~#+Q&l{VbFpG2MO*fAgXP=a+4*J*L#HSbn8bfo{`EHY8Y%KFGct zZlgGEW?gAJaJ4#c>A#8Pmz$9d*{4Q2H+>E@(h}deeMW$tmBn^FXI`2 zzNwhlFx{*o!qA~a#b&y0v$}4ix~6>d8h$dkF6hv(_9Llr7i^56M^|*vIrKT1hY5iK= z{LIu99s2MCbs`hWD;qLK-Rq%w8peeR6IE{#)$nmX@pLLXIKr-KGZ&t2cG^vNLK>9Z z;nuAH-SEO3mC@YZT(mB{a6CMo8Xw~ELHU+rTIr3_$_k3Nd~+XD3((=(uanUVKPoGbdao~_@q@HFS9#b+FKfHP zc-%SVI~ziUI#C`m8!cWtOBq(a6M;TkO$*pR3e;3MxrKyIGJJ-ob^b}vfx4$GBm?_<)BfX9J4+IOX_gvtNLH9FdF!mjdXpH0@ z(DG0u$3*2LFq%)o_(3xIveLetMRR-d*a!^)F>5wKmV&pP&$xpY0rHFsc~d)<%Fd$Z zIg_}cFt)ScGh`^kDTn>`fHOyJK^jq`g(y2T`gbpB;5R()EZPTXo_7il3_p|`+w6@( z)(9QY`V7qIm*DfGcOjn?m2(eB(1MlSS`f)Lu0bVEdu=8>3SWAaRO>W_wj1oaq4SAy zV`}}D?2tlZ`7dd;l76BjJF+|=LP%>yFXP8)N2l*ZQDP~ycsZs)dz^OO_9UwIWQCIl z512MO?TPw6KFv@m-g_q5hxFd$4gS>nnDdUd6twT*Bu9#Mj>3FR92m-x`zR5gPmPXH z`0%q#=+-YJ;RlG=y3afe3)k%8!JWv2YEk0A3Dp?;i%t+_4`qjIUZ+UH+u5*PS|%K% zh9yzH!CK%S4jk#&7TUJ>BC6f?w};Mzm@$67C zYF4r8Cew}`qC5t~NGb&t_JmDw;MCbFvP&sxy6J7DnZ|zE7236UG)497tnwwh=&7eE z+O+Qu+Q*a5Ox(Yu7NaLE@or1Vazq-#F z33*NfqWpUXlJ0$u6#M#b*EU0$UCn1^MBt1;`Il&0$vG5Ww07=awP0hbGUvZqe_2`Q zv$0q|$aBbKvCKp^n6F39kLBf60gY^bSo(fNey03i&in^u&Li`#W~+Y@l&@qo!)})T z_B_c$A^`gx6Ngw5*tkRP^@AK68^}<^{Z7Dp&)!BQ5Hw!|eSmFP*MQjzYTV>>zG83} zt}9pyDjCs%`}=-Q0A@_y{Q%pVOKg}UJkVGyw@EgL5#ys%zS1dQ zt@(33sG|{wP>fr?GV~edT6!2(zE_=>W==x6PjhlQjiwym3X4y-dxYaY0S-`#7a5!7xod6d-Fmk?&}_|$a_Qp{CX zvcn!;sQK8g=GK1v&)n7Q?ABi!%W0LARkD6ofA`TD043IEy5?3E*Iez=m@$;k?!?@J zW@lWkPd+veLDG_Fk|KJW3t1ZP7yIj9AXlzo5_tl}79m*HiO3Enrf^@-qG%*v$RKrx zFHAO|(>#@FQPD6sz7Tz-b$xW!Q5*)55poA|)_Y3-WA5wqu95&+d*b>bR>GXcB7}R- zAm`c1dWf6izk^2C4r;)epNyi!&-}|~+I)^A*ofaVm32M(#$BwU#En;=S#~uCqm0y- z;m6aVu;oXF5t|A-o=0lD>VfXOcrrL-8;JR2Th8OXnd_ugqOvJX= z?cjj&uXwQ-4*!w}i3ux(?lw1-OS!$6aHOB77yquCgY;=p^Dx8Ru5G*eiW7Ig5^&dEj1p_e1f&UF|noLh2yB*+3hCPG2M7kuZ9qB9~qHR-Ixwv!HA}OtMR)r;-OEv7}2;=_>3rM?=G~S+r?712t%>d z&3fo!DfuV_EcMItEKB8+=5(>tnP1g6K|rr??H(*}skg52&@j|J49`A88Aad8QwcuA zUz$T5-P!6tNVR3cR@3+xuHC3H(8LXM7c0fE)pDo&X|a_NWB*R46=#XZwD|BZG~GdX z_A9w-qru%x4Wjs7-1W>?=7Fs?m^{7N%C{D}GgOHHVW<^d4D~dtFk@oN!wavbLNS!O zr5i)()i9L0z`vxamvWoK7kKJjBZlhC|Cy)atebxYLz(iw#8AIu_dd{UVhqP;C_#It zG4t8gw-#Y)-n-KX6`Eq(ra*%v*XTR?THNPMBW%zq>J+1QxOT#QR>I=U7}BYCG2F`Q z+-FBA**Dm%{%pkXJLw_~RSSQ;AoSen|v@=Rel4J^0S@4Q6R^lACA zKR|xeF6_F7K|9cO!*hCo=Zr7o8Cb%-QOyJN%LILqlL`TlQ1!lPkn>;qGjt*N>D_y+PW67vgw86~PNryNPRdH!nAj8S(DLk5Ec1S^w3!)Q zb`NI3zym(qYW6^RCLo@dR%P9E2Vj~vo8q1h*SyTLQ?bHZt~Bi1P9)D&!b}ZvU8wB` zwN8Kv3a+f{d@cM6c(*(JLG@N&W2@PzTX!kn4QpyVZHPP&@^^#mq>u@lSN>U$v(o^Q z!<71$9L7>5a^fuLjj5gCd0pT>)7qI73N?0}%`!)@ek>L{Gx3&S^lwXVtM@iTIP;+M z5a!|Q!d#!iLCX69j4q(qmhMzrfgSLw(37!h|X0Nlj<7dp`gu|U-M?uoYFzwJD};lG>yg&MgHrY<^zckaJ zo#hYMENW;$y`3>vbS7KZJ2HS>qNS){vy{PdSNcQ3=vgc%OB$Q926dIy`X`c4w8_WXWJa}&)`u(W z_@Em~fXC+NXAdKIM(h1w+Mn{{albg6&;E)!_h?jQpSUCKZD+W9e{W*_7$)4|MBsJe zkLRo*vWvudNv#O9and*a0`Sbj-!|!Q{GElu(4n+0U?MALa|@_JE7#snfa|<}fb%@d zutnW*!`<>_PT5i?vfAZb#EYAOHf#HP6ZK7EI1;$`VW+d4W*Ie6htGn@IY@-@tU-IV;| z&p}Q=Zvo`eys{_UYjZgp<8rkfPA@l8y}7XJeOQ9cKwTnUqm!KiynK*TwkUBBGooB6 z6;HS~4MCNL7nbTZ@Uqg<%IaE&v4pkKt*S3^D^{>?8G4sj zr>edvvN62yOjE`aW-oK8djqFS-HMf=rlN{E76Zcz*HeV)EH)l9IQfG7qWM_vX7l%5#aYeN<6tc2zueRgP2DgpXNy6JGPaf22`jpY zn*1*~(kG#(;CXJv28r6kzyj#qM-ud88!QwZgVmZU+nuV|Z5FI@j5EtG=-PB@C%i?j z#roZ@NdL>y-aF#NWpQ&m1CCWs)A8e-il;fYJM%cVVwnW{aWX64zzxTY0xEk2t#crv`oU3duljzq^e$)*`P~Z7$C#WWE_4=pTB0ZHGh!F(OWHJsWyu+48o8?Vr^L zj+-K&=KV?D)mzsLN)7sHYHD35bO;aLLHX$~P80c-7;l&*#=C=Ua~hl;@8=ks#jRMh z{JScV?YJeO16tcOQ*kO9Dlk}`n_e#ZCOmNq_;ti|Zl@t@)bLXE;sNn@#S-_L{Lnr( z%XlrYA|R?hrY{jLxA&sS}zlc$~JS|F2pE+ z9n3NyTLtuoc02HljI4&VCm7PO@`;3szOje3auQuDgYI_>lk%g1nvdx*Pz9di1i(M> z-@FNTpjV$pp2m{f;i;UB=nae|BM)H>?$N9gB@@}4UjAlBM}Kxqm&x0N!}y;i)=f>H z@D@Og0%F68oFMmsl2-IcIu`57dz_>$JuAooKw6x9e)5k?qO81&gdr3#Iu3p2U8M0J z9|b>9r}@TV&=uav=EJf^<1#DdV^%;L=Zf()M0v+hG4j{xU(5YKHUK4?5(+_C^IM>_ z8@0H8QljPb+IbQjuIMvCDtWZ3{l%SPiR&SPTRItb8o|+_s(o(h6!f{dd1v!4INitq zVC2U{Vmt@nqHj;0v)!Hd1;x-Sr^-2wqTw(V%uGi=>9NpANT>amUo|T$5q@iR;hTosHO;>XL zd!l|+c=;=R)_Q$v`xu|XG~Qzh+f%Wgp3D9(1WG-aM-gyqDL?5me#U;fk*6=!S2DAx ztG+W+(@GjjN_x~6vh{`D@cin$9@TB=S>3IwZpC6YbnN|7@~4Nj6RVcfNug-P{D*X) zYyY~u*tEoZ?X~6&4naCkNfCP-{G|`Xkm9~qFVtBgQi&on(p8M(u<8nue5-$G zQXdMp81H|hCBjdv%j70*Ha`{+@zy(rMu zx!vu1+RLFyhEQ~j*ef$Su6hW+Sebj8X=mEnpFEwKfjPYpeRYY#ByHm>a$#wcIVcH*I;t@kXrE30Vj zJ@cG4=TKquQI{UWa@1 zI8$mX`+x+J3e71++x)i}nUrKG!kKUS^sbA$D55gBLUS2qw7!(OqA7mx8}~fR(NjhI zErGs?kIyzImn-WMA0Oq-1&r=gS+G@f!T9;d*=uT9pYpr8^}|5Es@}xscA*JlAK4k7 z)sYwN(;6-zU$|xq<-|wlMfd*cGA}Ij$sgD&lfT6Or&|7>?eqUfI^3V-90~Zp(DMJq zxbQ&wW8;_QMfim8RM)wHB@kyZ=b=Kv0XR12$3f;MZKa?U- zrYS(@4}Qrn7oQN6@_~SxXesw(qgaf?wa?Dc zYhmT3lcIO4kv*8z>ayW)b!(*M-#>q|t8kz7@EY71eW`SQKTr3{8TT8z;}D+%lMQVB zwHeRggV>UZ9c4SY@9P5aAS}=$mVKdgM(c|Kzl{{XamA!mZkw-ibBBuM+PbUUV&mQK z>`UjLZ~5(x`NunLs4gyni?reQ(}oJ@+gdOw`Yoh_^yoiG<65*sgawrY?);46snPqY zClN+(QgPIrOvxVlQJ1{xB-ijayV|e!jo;|r_%?%hqc2~@rLomGp+iZ_+VG{QDi~kS zT#T6=^h+i7qk)y|qLX^V9@7ohj#r(n3fEkt@nL+(_)c{nAI*3*RP^KU25#3SxrqaK zuBfxSXu07e_QTBGaP83ZWXP%!3{1@^1{-fZx6@AXuY_B?cI{vLVBz$C1r=y5mnb)) zv=zN`cRzwrWH@euyPg*FeV8bXA*X1kgt60DiH!-myY1Oxf z`pmt$5TfgR8~r=O%pih?83b|d%K7(N;@ZZB~cYuM7q$DxT?V4{aF zdWA_B2M^dtwl@@u*KA~{ET+O*CpcDWBPnfAlw8f<=y9&O6j>(B?YX}HPQWGek7f$H zyD_OC!1@TUpI=<5E%Mo#axWWIIPisy~pHy5WeM zQeMu6w4P3IDeNOtzz;}EWxbr5J+8@VzH+RVf~$a^KbFYSv3C+LsiaW!G&7xM?rq*P zqHnjp+J(A_anvxjW7LbI$l3bG5ZGIy-zS2t;p!Up)1I|*EKBKCis~L+1NoXH6AFdr#u+_1TDJ9U6 z3w2L`o79^*3GF18@R)c>fBRRTy-MdWT$47oy_HiK_8B*vf_2Vf1A3_c95(n>W#T0x z8>y)wT^eOv(?aX!9vVRn;Rol7s*AOW;VhQK+3UxxWcnGyH8lXahJCb*lP8nxs!;3E zwYeo@uMXG9seJx59U5yt(PGwP#+o=BiuS|a+ugcNH2u@4);GF1q2zMQLf+fZs;dWD zKazw$lmiwxY+Ds$mhtd&HVyYMsC^Lt>uv%iL&tW( zPqm>Xc#+rpK7Z_d-rh&dAxBoNqufSjj;;AIfl`?9tP|S+L3O+ot&i<$EX^0w`;flk z?4h5z|D0T7hjOXVYXqN&o~{G*r;HgliA&Q^AoT>ll7gJi6iFsyBV&o%j~x_XCKB;e zFrW8=`Hf&o8Ok#SRBVBUdp!%P1}Huz=Zs#{v@KYq_G9m$rFvQZd%!IW?_SGb#1(Yv5DkoJBM8DH*BEP&t+Z}u~^ z!{m=f*{gds;)e`624CYsW%PHVI;W3qahnh9_?<9Lz}4BA_UlC-TgnDs^Uc>h|Ld$? zU;CM_`Tp0Hy}qWoyCP9N-2eJTudlC|uOs`}dMC8@tarKjI*LZ7#NaSSZ7+!VKzK96 z&Bot$VwO9_Y<@E6zV5-j@R_|NyraBLG%reA+J`fy6EPN$lZl3vMc4~i6A1`Q2JxpL zFwZ)s(6O1Z;jpR@F!}hZ>z&g%)UMp0vwINab`ErwK10B1g?$px>)n8Su~C6Rx8(sV zaTval7A-7V^+jO%vQJ-BX+B@>(-(p1%Rzln zJ;V7D?OsnuP|wJI;Tjz%GGNNnx1V2tdiHzW>p5Cq%5%+ey6BL^#Q>L+1fLTxB$nG) zYWhtDjpmass*&No9hYZVVqCrq??b+650Dex}Jix+{&Rr*Nv{(i>Q16c3*j-k@!R@$@v zu%~lA^T!6}Gs5Ipg+S_qbV77@#!%eqAMEQZhho4bxn^VmyZ`tzqI9mBo6u^t{$c0& z0r90T_BU`+M8P#_1LK+i47Z#~fhGnJxLb44h+Fa}h_ZVzyx;9;`Zz0n$@}#U79Fb@ zLxvH;JGwQ|2Uox&Vsvnz2aT!MPlJorX#u-$N z%q15DB5lc^2IY-}pE45nB4^1Zq&1F}nU~?|dJLm4sdMa5<@4@9P|mUDtd63?Arr|<`E4}p!`{yvZxw|&55*~>la-RX=FuIj z6731bA5VA2M?D34V*X!>)qz*Mve92vgop9To}D64$hdqshB=g37<@!F@|K5G9_m`)?uJ4Mspz*2uXz!OlSl^+j`QClJSAQ^< z{Rj6Ede8dbyN~#O{cq{}V*h*hG2gHMS$&WB-@A|ae*KH}z1;tv>$l&PCBx$BEPWj9 ze^jSQBWSetE1#zC-}1k2?q*K--$(1aZd_2lZ_+ht(S@{FopD88>Y8DR_c$?|j>Al; zYpzML1WZDL72u}ybfrx-2^`zgxkd_=(qyHM($cfrj&!6OU!W{TgMra0b2uxP8T~gu z`T}Q216)}tU}fH{AT6s0pPRrZap2hKl*EC-u_n122=WZD<9w)Ey@f(s*90F9KobSq zVP^4yK0FzG*q{%b8Ky}~^}&R;XQQt=O*kQbX~V(B;x)Z91`4^E-(G zBbY{n(tK($jk}sdsIrr5_0^0JjI9F_Kc0kKDUB^~D=brFG;<|VCmc7H@~kZd)8d(g zk7+aoD7DcHEarO$-!Y^rkER0FF?HSp6x5ilY&Mg9sPMmom8W1juLG6a*?|7;J`|q6 z#OAtBP+Dg{uEf5e6Hhk1WolJlLK0Q=>Zi~mf~5HSW$2Y`yRel#9pZO(7bs-B3_TzI z(tJq!v$tr7JXLu9*Y}8nt;X(eWVGKUOCqvzB|jvTgp-e$gw-ZY{r*O5jhjfQB<@k9 z-T;MbPcjf23`F~SxhRH{Z!>^#Hn=k_i?pAbw4I%4*`!@#(poyxN=VBwX`hP-87eQA zv_{kw=Y36$O3Nedev_6qdG|LG*J-Rt*y!V)7fza!Ymugv8gceF;>++d4+?@|r;oRy zW}S6rE%tcYKs2~;&AB|xxe~jJ$x#+Zx#6DLO{5V3%-C=j>bZO+UIX|{1)0v#1NIF-u{?^y#s`1;%8^6WO@;+AA-@OhZ>Qk?8> zOUp^cFR05t&y7^5N?RKaUmD43lM^L@dblCWfe2W_4Wd&QJXY zm<;jG3^m;{{6-nF{S3?f3}5V34RxIv7In*TmolukS~558XV{|*rL%1lW(CMh6le{g zm37cDcbX5p*#OV5z|jEsBms{HxU;<%`S8mO{4Ey#wgCR)!@zfFtd%{Z@^gInxPiaf z!cPm}UljbR?(iR2InJ4E;7ct0gaCfN;ANh5mcQDE&ol5-Ed0~}{zkzUb%$T%!?(1F zIHN55MFIRdfKXC3?vxFJVqH^^`cp#&z|L{=h^;E|0e@Lr}t@|_l-1H2qT z;iEdWOVNLf&$p!ZXg*2V-^WUgcSQ6v{wc<Sy-08(IeKaN61L4AFMw~*5glqn+yj!q6I`IT^~KJbAPF0(4+cvWeoM5KgA2> zrf)p^NXHE~Rjen5Ti_Tn$UXO3rz=5T7PRDCeu7BKA}ctC|ru;hf+V?qxRpakrP6cdtHX1^W zi8Rj~QMjpa2LPRkdIk`;lP*A?AARBtAs-v!`|jCbT$YH^^|Eh|s5LDw82TM_%68Jw zgZ-PfzVB4D&Bu?UqM2YMTU$lAJzMc?B+U?ZyCIfw5@~C{eJ23}i?-f%2L6U+I|&SX zi_9G>5BQZF+}biGlD_)`qn`}G<=&-07#el*j~^#Q%lpjAS-7Yg#IQai*)gly*+=c{ zyyN(rTeNlN`L?C41EsIWRPCHOUG%`wy$o*XwyodETfGQOobNL3+=j#U!D$=$yU$r0 z(8IX6fD8B$D=yh_@BQt&6YpfSm#5p`_3kDy{L(v#&xSeWZLyQ6`>y_DD)xjQ_%R=R z!Wtmw!2Ghdtu1WYTFUNqb~`ZPyIVgc9k$#05zNF?aBC~?{TsxR;!>Zq`>~TFE$tr> zJay|`r$&hyM1(W%Wa_A7zZ*b`E^50wZRg*7yWE6IH1zB^^S0l7Ew@fXuKCw-X1v$? zExq2q*Xupn>wQ+Q_u0MPYkIxc^?F~>>%F$u`;1=i(|f#o5C6bA4*C*>Ej($*^!zC% z>OuJVW_LpV_lQU_D*XK9{L#)UbKlE|W5nbV!GLw8@beS$zY%_ZYW_uQTXK=y3Hc+H zbb*pa1xdsAH-@4&Fm7U0Ck}^BtZ#2h)N5Lxs4`iUKV6y{Jx|h5UT@=f2*0u;2JtKV zAU7p&Ogw&v^P8Ps!Ks|YhDkTAN6$x3!ZeSaXm_or=I77#E-hiJY^nOMu)cMX-Kv_L zpKn;GwZ&KXvVJqz389XBW?zHc+4*_QSQPpr*O?9u-^q4=m^IfNGIGCJuy5{R8PNBf z&-T$^<2*2(L61Rt+kaubW}WIB<)mG*yJV-RK`uq0IM!2C)+%Fq%i#d{-v#ikuQ7i! zyXAW**j-UVG8H{!Pn5(Hs-|E43iM37j2%$dIZrZ|+(i+iVl^XBE~%z1imP4D&Z?{@%>rMfqZC$~FdTO}^IS zkcUT1a(K;!;~o1*jFU*>$eEl95_nr`kwK<5k`XC-i;3@`eDG3UD#}Vfioxm^;rzKr zA+c2r5zr;KVABN3vaP~Ft|ot{=wZ=!SDVskr4kD^h7K34o7vxo!MU0xE_Ea~=g!?A zGWu(Wg?R4ZMm{^gm;%%=l>UVLDfkZRc85uLRc*p(nM`Ulzl7eLz}IQv=Z@;A@!Kmx zO--cp5(lQuyb)B-Osy~tjTHUEx)zSH<%SbXRXS3S7%W={cBV3!>Y%)dB8++p)QbMh zyk1jctRh+4&YxSGi*5`hCs`u^WxW!XA$5nN!JAKL5peP?scpk+pO z%l@=tigy=}h)Z{Fx>_dXpS}C}0(Xc{xz*V| zWVv$Xm_gr0UH%_EIe!K*)YXa8%wP5KD1C8u>l=LcG}&Q#&9OMs5Pq({y?O1CVW*J+ za$OX}S9Vcu$_D91Q9%yxszmzB_=(PDRh8%A`VOO;Dc;olk?psU1SqXGleo17uY{k= zIjQy-;D(nvHWdI(R%cLdwEw!;BI=ozvWOMDT@cNm1cfwdNX*Wk`a?89vWc;3D#^GV z96APJh{D|y@{950R{fLs&8Cb=1(WlO$x{+aOwBJw4tSoHi8?6&7P!f>&W(e&Nv}!J z*Cdx<@(u|<#{)QsU9Cv7m&y^x4vL+1q0i;r^(T@sDrF@%QuLQ_%{N&25%9eqTBwc% zh5)|sKp{i#=lYn!k)%C%N2Y2_XN;*aAMe^s{^D@${Y)7Gu^M2Len=7(=J^Op;e2QW zY7pyxxDz5!Z_^SH)S$A}mI4Y3w)*M3-EAWw`KXaKDEfn~@9|p9rD&Ugcc8?x$kdenuZ5G}LTZeLfY+u3`uw>*CK{Y% z@EqD3e4o&|yRhC2lLpwzH!|ye03HF*wAL5G&rQys3a*Av%Am_G;(4jwq50ky+Ft6R zGP07J+#&3^Y?b;JF2$N$pKL ziu3VSK?zKPqK`;JV3hE<#6Aw;(X6pp(_~T!EHfztOs+9&S~7XeNv~w76a5<}4|?0c zTh^X?Fe5Hsrz^EQY70f^MyUF2pDH@QW8q)cb6zfc9oQg`NWU5V`>#CL)?Y$;F`PZA z;6Q51;p7%HM{)IObaV-$@==L&KkAo=PlCGB`Zu$#U{pYAEJy#qNT|@f!iIu|#F6h- zpZbFQbtD|jZafp)M3Gb9Hecs_gsLe<)%?n8pvf6V1BGk;$U-DlOriHRXo#@YHp$l@ zQ;`_U;)21?-}l$8%|q@&wN`eR@E)UagzoEG>qPN}}gg`evqvqN$cD2%a^PFi?0 ziaL5e#huqp8w~S~@OjNB;GKQF#P%;oSvd^XiZSRIBYkTMq1;}|!e)c+5+FmB|)U}Bf_qR%;9zuNSOc*18FehgMM1-3@9 z-T$3K>_7mG3M@BBA5Jj?g3peIDG>dIBgBY{^5ax9W|86daLvz1(+EQ2Co!5#g8;u; zXGWs_O^KFJz*GN%J2bA)J>9wE*EY%Lj>&LG54};d8nOHr+%d!IPJfhxJ1h^wD5Jgq zhD4Qhwy*d0Dss1a*up{#pYypOkCpF0?XJ0ij$b>@w*XpK!%2Dcq7<4@+wW1lM1#gy z#_~kp(vb-C3{YrfoCuh%!yRj|p`oHTtI$zw| zUD>_5x08FnTG@SDeX+tYS3!enrRl?sbonY0DwppT7-y-H=CkaDo=x~_auXbxs%QN8pD7g<5h-?FN205 z<4JU^xy(x8+N^CznX}f&YF-72GqBEN#=+oPCpXrax8@&yVdAXt{Z|KtogNf6nForQ zovgq2kL@?-&wANtY>Y5uZFUAJvs-`R4|FfGosq$qT0A|ROu-^D2kUH-SH(Lx`IPB7 zh>B@C6~w#hThoR9c%_lNA&W%BmYX%K8pXTbY7`>HXGD)G9RrzW?=i&34n(?*tw@KQ zEmrSoB6U;JWyp;HFkxi(T;NNqFG}KHq$d1aW*|-0ps{X9%5m>o|6}o$5X2VGTrCbI z;Dee3dHT-U_(Fsw?oT#kv4@|RaWKPE7eWd3VEn$&Md4&AQ-Z|0On*XcdfQ845}5Tl zr{|2O%2skn60Mmb`^4Y3NzVsKH2!*<^c+km1AVGL;u$i(g+WU9fTBisB%?N)wnL8* zzD|^FR&$Gl(ApwvSS-jejGj37-RhA{&q`B6Gg4XWL-j=)tJ_*n3O{w&FAXarD;}z6 z)zg;lZ2U$0VW%-`6g78^y3yjRlKbauGF^O%&l;vbEMH&&L?@W;{n#Je9rkD!Auryq z)UKWj2GbRr<g(}N+mi1 zto|Q+Zvr1xbv}OINhT0Na7K*~HOgp%BpM)5R3b|zBw9 zam>4wF}#UyvpGV!npX<<7VR-dD8zk!#ldtkLJ5_@At z!O=&jT&`21MT~Dr91y%*C~FGT**dL42G8<}rgYG+?&Xy^=uxZ4v>(~-pl7kEP!7Jc za}?I!(je9Rmj2Vk8rgkhJ7B?DrMF0gqvl~jqV2$?Ol1vLkz$$_grn&>){UcR!-B){ z_Wh~B+i1Hr5*ZfU&ukOl$f-jkZ=g^WvMrf0MgvCSunrhbPa!=@<)0CMm5KyiFI8%h z4nBxxn)+=8I5r!>?(M!^3+fi=5y36Avu5LrPKw~`cu-zC(F;5U_3lkUq>T-ars`iH zpcWryHw$rskJD+j&1kQU_cxMjM*V^AxQ(-dkB69{wlR+xD*ZCec@0jra=6_`D`?#95p+-AzM^K4tJ;Dm=)|6(vXcU_K^OqR=x~8 zBlsNXRn4|t%E~j)_pOT1gSdE#g-LkzLM)LCW@^2t>Jd@Zy_TxRkvBwD2@FYI-EbUI z|E)-_rF!RzuF`6;f1;wM9rVi_uL9XBl^-d5k;*8AZ}Z#M^A8;Q2L7F8|_09)2h=A;SGv(Y3b1{cByFtnsU5a3;fwF7%ps+TvwP zsK?)#ng~edA?pS|ml_fn)D|e{gsdtCtOw^WYZm5_EzE#kqTy^8d1z}|PuD4FVkg`7 zLi?DG0sCi;l2^O#dq+oEsiqT8j?w#Mp7oievoUMy+hn}83YBs0KtRs&Lo=6=&U%dGQ>CEpW0Zxw{1L(nWgq zB^ro*O~|PN`SQH}bo-8!voe$$+J(l=R*m2EaKcIk^W zEZ}V+OJ0B=E+QgRMM9ojY2-m>f?67xN+TE1$Vm-ZxQJv)n&gkHZ*orZXGO4riJM(N zbui~orTtwTOR}Q7$S|DrXreKxzPGY({`pE>3IF0e@h?3f|6+$GHDE=X-BhH-%HyPqhy{+U6>zqW0QhKL&DtR2|*=t^TX+eoj|nfk$vcI_o3UZif+M zE2NPVWdCz^Vs>p_Vs=_x`n68S{Gk{%;1*u(tB<2pwtubvJvxSXIl*IYdk_p}(ArqD z1=CfuhW6b;TWGknSItj@9C;J=T?B*ITPXQf+11QeKM+kjqHz201Xu|^uux-`GVPDF z!(D4*JW(@U%rPwnB|#{C*R%@-rSmi@h?+tLBtV6@NNofWt1nEVOz@9#2Ctw3OUcIx z%ha5wL|5_H-rxr83Gj=NeQg9x%=6d#{`rAF2EzjuuvvB--1`6-(Qacei?nWm+L<>0 z8csvNLn z&DBVo|ZI{yh3X=K8@sGjUI&3t#H?HzZ27&U93AhfZsqOZ)TyM>E1P;w8e-yelO24e5wdn@Xsb$#AuZKQ9d z-5=pwVNZW|+HO9ewX6O>gqoPp>!XI(CM>{rshJ5+2|Dc*Ry1TesnKYFq73R}3Xiv` z0ZnTrpXc#fQ1N525(X$dg*k*n#8um@XU!U;>OeCvE7j`y3G&OBn$cbhjqmv0ve#_f)MYjGHFDgFndxLBX$xkowb=*d}DFqtc`iBgeXp&{g`8}?3LO` zm!re(~h|^rcamf5{*f#vuO>LuvA~B_TEUWgB~&J zduWdPn8UoFTD>t7qGreVUQjPMoYQ)zzp*qcF?)J{L{7@1S8?c-f|<>`w|EEG1=Arq z$jKvL)zm=_0N=nh!H?%OO8hJ_v2Ro8MRKvXk4?rT5AY^9<`0KvdofPYUI&dIuv7wH z$+ApDrY9$y=6H}G9>VkhAv{O5N9;W&yYq;|Tt0}zlS#F-y~`t{0kh}}pcW*Vz)|)x zNi0iuZ*eR*LTt#tq5hEFx7D%P{lYJQbn$ec?d;3OC=c#IbP= z^WhinU1?+e)Glx5O|d_ek&#)Z!gYrNci1YwGA#woX1diolrw>w^-O8YmwyCLd(G9vp`pmz5QD$Ky} zB~nb24`aY#$ki&XaSdG20m2PE_EQF&G1UBY<32UT-4BXNEcaY0>6gBrui5WUCU->BQ5s{btwS%Qwx<^EzpYEDI?~Y<<74n{@ z7gVmb(9*<_Zf?QPsKD1`SA=R1QdxPtiC$2R2Q9rAK^7r^%pu(%S=-RB<{i=j$nQkB zt-^^L%?9&c77o|ay%w8d)k0RDB3%!8__iQJ^{AOE7J;@n6~$I$_T|I%pUDW z?;q@AQc3)A)3V<~MQKae;a-`IJ z$iGQU0N{S4U=AFMKg1%`+=?VqME3PIec4+zJ5^BLz;8y}f`*vh)iloSk3hnt_r&?= zWOls%WV%N2FUY7`(kZe{Uo9=C8L5Ji9Z%YnQ9u?a>o5XGr#`BbCAf~^|K<(BGbB=@ z4I&ahfvmap+qx6Cc&yGe>|)CH3rzH0xov^~{DAiJWCo`(N|e|%ZH@12S){vLK z>}^5^qKLtPyu}>3UuA4?WSRW4sY{cX7c7MG9dAHb#qg_skVusDgAj5C=kS>#>8}s& zqXWQHX=9^Sol1AAIzkJ@Z_V6od)VflE&hx&r@yqcdOi%-7PRpliR4I1WBrCbZJIz3 zVBXp>_Eg=AZ+LghHqOk~4UmAi306*Ef9%dDDt|Ah%EP!i2I{n4S&gm;IUnr3$V%{? zHcaXOL*~jcsr#sb4sM>C5oG5_RRLDsY7cC01k+qSNoX~JY!O#|Va@H7lO+~Y=8aT_ zHi!8fA%>$`I(pien)c3XYOYGOoE7GN)WSxqXn3mVl2WAVzflAPWh}&UrKPGstTJUy z|F}eDP7(bIO*WPJ6`h=PL}N~siOOrBHgTwxW!Xi%#8)R)RKgciq*cmB(3ELVQ<{Oz zMf9x#FA9xU)w)@??oda7D6=iaD3T?K4MABj=#NVbYZBjwP|cP2NJ?-r!YaFu7B(Tn zzPg0q2iyVIZ*cHIe(l>x>04Ooh4Bo&E}X9-{r2qKC+B(ghHy;GO7i&H=tQg>(|15R`^8LKQxb zibAE&SL~Z5W5oe7Q@0mM7eSFNR$`DTOpn3zs$;=Mo|n7e9O9Wbvg$5_kA1!c*Zb3j zSAJ)jQI~)7s>rk)_0VpiqpicxzMqv-usMWp(hat<58L1fjxe$Z1?We8O~%B#jjiCVx@ zgB3D+s7H6~e1C=~%*%^F;5cj{QL!ViNJ7!LM#|~uN57z)>q}G1()K2=wB15j1!mitEK@>=H&?U zyjN*Ka8uDdp^0W}i}wrfcZIW$%{@+t;79cun~L!J75haM?BHob=)^3`mm3vv8XcEaynf$3hykD!6M(mjmoWp+s~ zbH5ta!VWj?hj5Oy&1N{lw5HeClUKOY*WBeup0B(Mh$tSp)#U|OOY|R!6ADTf9GoGM zc`u^K5?OUNBnqt#_gIihHf2a!T!zXa!C&&y+8-i)8o5Ias@Vms>!Czl40xj7u0OVZ z9#e3p&hSZl_ z$dM8(MQ)`r)<9X=p{p!A6w-_!&R;60k6mM|mc z%2cL$599`oSn_fw&mJdb}9On2C4AUQaui@wk&bpsH{HPW^n{+f`o~D(8y*N^+ z+!Sa&nHpk!t6~FjH9#=}gV~hbaoTzN8t6L=?^&=di8xeXm!ZSW#04wYm}>_9NmBw(-~&8eLchgVfC z3&n$8{!#U2I)kf4g=?O{^OFl^vFFVh_(g1BTx=j#i%O;vm2Re}I5=xF z@C#>PoDz~u5fcB$N=*DIiT=$^^DaPJZ+7al%phri50klR{5|y763wkVvw<@$5EIq> z9g09JhxsG)57W??^I3ZSfp9#6=M4P3d;OuP^c(E6`uX?xzLp2yVH?%^HXeaCe7>u> zQ)tzDn2m^e6_kwRUF&cA@h0XZ1j!~r635HQy?Jq4c)sle0vH~qz1;X`sd#I8mynn< zac*yb6@B4QKL$)P_kb59pSJx-R9vk_6ElT)B-ZvzmJw8vZ5_jOreC-c9SdYfj_=6j z4&?-~d&%3!cPPT!J#Z5<|FeGPsCiTT7u*H$5o81Y-XR?K-T6&^8G3x9q?LIJDkV-v zg(N9|m|?^O95vo1P+0Hi@0&4qff7NUAgW;NJ^5kWbbQ^NYhO_>PzqI+%j+_-s->ziclRSu_8)R|%R#IgBYNbcTWD3pl%NS0Hw<&ew2P%Lsr~}n&cJQU2YE=%u zP#J^>B($)G!&7|h^P)hsOtJh^6okESJhQcpf7Jw2RsU2+^>>}Ao5kr&p~%M@6oyRw z5Vui#{A#B;A=m)gqgNQCHWM7nI{OavnLRq}dnmpG>2vz~eu{Q1%+vbl4%qJtWM@j; z$qj-zCWek>!)%nF^Fdg7G=3Me4Y41qi_Ze&N7m-_S{M*V8$Fk9Y;!yOb*m&eSz{#x(_`wmlJ~@+hV641M ztvs`p`nqkY-W`F=4`{;vXcNBU-UZT%V5)yh7SfpAg32gCWp%1XFFp^?`H0#`zTuadxhO=@|#Ko=gQ8tY-KYW z0QUql%uO_lt|WPp*kv_E4lNWVYCaPk(|nSS;7uNV2S)MP83^iFIER0I2Zl2ecUD?Hy$TF%hyd zsF<2WA7HfPOV%vGL#ApakXun^LM}zj)i@R&>7*%lS`0PMV(IpgO1l#0pPc^hW=Aat zK@nMZ+J|FuKTBcCFxtlVI0V`!oJ!AGN3S6$E>fp?z3a0z<)8OA5 z3cBH_{ylX%7Ca+zt>1NZEc}Fb43XCgG*+r{6LxMTkK>KH*DmKdc?Aj5ek8OQl@}`2 z#@3{YFlbi7>;&5y)(8+$@EyDyeoJ=LUJQ*e)bUt7^oiRP`;p9!k*>&utAw412D+F& z{31?Od!DF)$l);QmzoGD?6<8HC;l*q_#1uyba>C&Y=2K`VU(|mX~XIJVkhUFGZiKC zaEBZLoj7|0p9GczGpzMawS4)cnRDj&Oym(qRS)KL=iI$U&Fo&w%A7b#5&@8E123oA zke&?^{gLN6Z}WB9YwiBEstj3m4K0Pu{K~pllV950hvt~oS?ezt_%n2RL(R9rNtyLC z(I=!Q<<=dl**K>WT0q*jc!spG{H)VIqnjR~=SP8*J)f^$BV3Y^N~^fBMRyBRxoc|n zVg#hZ*{P^T9Y6eb^)Y~^hq{y5tZ|oBs@}hbjza-FM8NJ1#h^gna{%=MWyxQ~EqPV# z&}eu1PRD!)sKMVUoP?UblS~pCaV)6DI3}-9@f{pat-mO@G{dprbKxM}EOmX!i`G^( zEjgP<6DOV9W=<>+)j?RKa=b`}u~b&agST^Fhz-wVeiUMg&P1a>?ph|!QN&wt&|;PK zA!rb|fOLk%fnl-8U(%#Sh;XWT$X;fgO6yyjCHv+3Vpx(whPn)W8ST2vAxu1}WQ_Ii z^ACyjZ(+RaTP0`2EV2f?CQ{~T`s*`Q)%|F@pi1@qh!_OQV;NDm9V2x&0d%V!92+Q? zhV=6fjg?y<(+(J`erp=@ev2K7RqJuqsuQ0U5SpR3l}*o`rC_JjzMzy4gFo*#SQ=O= zI>}n)y)fokej=gs%1E(o!E8w#{vS*>qvP_NygCqj8NaLe?FLS@yxY}ZFXO-K4CGE2 zlibK6DxFAi$zy8>c%zK;ef|SXqV7r$@^6r-!4ApqCx4Lq9v?ZlLWzOwK88ilbv4^7 z2RtC6nBS(Zf`hoq@}_BuP?IGIR4=laybAljU{6P0dXXksk3cmQ-BdOGXs<$U@9cAF zp!^ipQCuxNAE<%#ZJBuFcGez|Xe;MI-CvHeYr3Hum~K zRCi?;_G4G^-Z5WxpfSMC4OCmJwZtMWB@NY9!|AzVKvq$oyo8qXr%+_}X@2tvw(CWl zR@KN!5MN4-)x+$(KzRHN#UB=tFpbYIoUlW0L>x_IcyRg*=j=Ggn|Vv)I1`2u(d)9z zD}BZ6WI&1R3zZ!;rvVJtM{v=;xpwre{WeX{(!&a*$GL;0@K45a189VWyQTzRQ>DMh zXH`o)velNf72W}Y`=&0>(%tfF*oGdD@~g3)1s5s|J$GglClR z1t8MmM+Go_dlCf@D5YDm(k6skRLGFu=9JX;xF|$tnznNf%J;$@%d%{oMZpXp997e~ zzWpDslay_r+y_(6S%~Gwm=Opi=1Y#cW?Gf{&mBfyZe4}&gsT$yvO@&Qp*4WQ)awr zxHrJ03Lxh+k^^u$hr9V}DOGEh(oGl;oBe@zp>N)&`n)`)83usP~+ za)>OGM~nAOkxaV0ktk~f9ZRa!U8n1LB0Y7{_=1|j*vJrypOTk&Qn76#L#Rzbs$x^3 zqxuDEaxBP)Dw`W6nFH`DX&WPpnyI>t!&)Zf9CL4yR~wLu?4_yHhwYfhO=?WuV74}R z1$itxGEt1VX-8&YM@Far!Z|zsXyf4sG*K!<9sLp1t_^^@zqWbQBi4k`7+IM$c#fO7 zUSU|A*bbR1Y^_2M)gMi)qKsKnvaB4b=9yl;dIb<13o>Dw^gQJFk_129+aQQ(gGzF>;Loj+83nzWx04RU1cwoJNd7EXi^`k))I%i{Ks#k= zoJ!{ZI5>d}s{W-oumV*z>Gy*A{KP6=@vULAW%}d*ahrrC#o}a}Qm6%h7N`Px`3Hjn zk*wegLN4g3rVT52UYTrDh1u#5wqvB@tP^~GZp#3c;=jUA}3;=CBixDH*ht1|j=%wGg^HpQy=0TswQ zvu4UNO@bUKh@7v&X$U$%D^v7@8!(+t44ec&OsSFe^a3w7coo1lHwJssTRQ?n!NQaU zlvQkSz}^`~ir(RVEf_>ML^w_ofFL(f9!s6k;r-%s*{H<~(rk0gZ$t^mA?-zgCC((x ztlt_*gQYe5Hf(xPHIi7hNtiZx0U?go3KDX@Ty$_AT0({Ypu*R%YqGkXgPq@~3pz-U z_}cf>O68A|#!}^EAWHjr^CdU`>cH4I0{4Ld_oN?m_~iUICK^}R-QJzc)mX%II_^)b zB6s@z$_hIkWrPDtQl&N1qb5sroqMz5i2e7(xQOD+p-S>TO;+BHlJGrF&KCApG>fbY`?2HMK%RZEKcY zz*~&32(g-@uNg>g-wbfBxr|@dOv;2{4}qE>vkp@rdKLMvHv3|PN_YSt?M-n|0-S^y z!98LeH4#-P6akPnfS!nkwL3z89fUfh3H~dCe`5M!F=INdb~|c<=p3z}E!G(Ts*B-! zCF+&-TTBH}{aqmMY(Y*MN;jd+KF=aJ!LxwjcFd0jfC=8}3xqZeZdE59g;X7UgT2~% z|8F5}rzWYAVpZIdb;oAHZL5Ono0}qVzuVeEW>W+BtlqoKSDD_GwUSyqLZOSS3qdbr z>9q_MF+1|s8zZ}gv;}xgQB=1im@eIXn?L6Bb&UKLwNWiz+C}Wg&H2AgsR_u=b~zfK zbJ$2n4%G>d%W_H80@OFrw<^A=o62avX6ARH*_1ya>jh?EwHls~D#fND$8l2SjWRU6 zi`EjR=fgU@8A@p~jM4x22IH zDG!rD_6Ua8{qjY?minb(YEo4RdViHYni$3KqwpNBs{&7oZOvpy)QPSr(E&RJwm}&ht zwO!WA4%E0eX}M9qjc>pAs-w>O{gJk{16_#t^eY4Qb^dpsl5GA8J5BjTbW^{R01>c% zB#?z6Mb~p0!OG@3B_C|xjF#rm>>jihavrH2Yp=CGAh`G=0g#}6G8=Jo@B`44A1hnO z!+L*aikj<{v7x)Rn2S%Wz8!}syLdB9_Fl*HBb#nJf%QV1Fu-gp%#IWPeWbzmNS=|o zxPAY0{N(_Bu1qFH`#rM1`-1YF*@#85_8Zu&|xa&xfppqCIXumgFfhK+vMuXNsHN&xX8Nn)8y-8qd=- zUVfITAZKCoo!0(W_DIm+!rD@2?G4WK&3BzCuDO3R<+J$)_)RkZS{TSalLo<3AI z^111L*)C>V>xbn-0L8m(p@FYXIK%fl0&$BdH6VR$bC(7pI!O8|I|ud*DBmTJd<}8r z7UMA>kn$HP#Da!E!f(^X^_TdntjkVu_#UR9bj)Uagra?GlYHvHU81Yr+wrle6YfgX zz=b@)x6u3@V83JESG*RExNO4xJk*OB`_r*`>_~B*&NFS}Rh)kZsqKz-<@!IM8MyqWRjFxdyOc%8gmFw z?M(r)adf~eP*Z(sQ-X{+rT#QMjQgzVVg?({_v_TdGITSW>FufC#gHBxMFr9Z8R0)9 z!qL&cvVrz9JX?Z%-hnsPbS>|n5)}OnX3{c!elRvrs0>g0vUKDIyKKrnTz@#qw$n`` z<7)>;H%Df1x(~nS>=Rv(cp@orND-l8I69m2&CT&J{FbkaAbs`rVdAn@ZbyY=Qvvff zPTz_+-#6U@Dff8wLP6#S54F)JHt=#Dx!8rWOQ}UF!8c`f$+zj-%C}IP6R4MY z?U)R)L$XypZW#M`1qnaev0wbiw-U^ge5Ees-1<3Z-=4lrs;gMt-rMqjG{1P=SW@&E z%$d&G>zv7JD|-iSj0@Nw5S#*W@qrN?;zH!z7qt7fafE+*L}e$wXTCG7jzwoT=YTP>?|+K8z>Ubu8)L@YuoZe*B5P;#|}{DYxb}Mjuwd$t77FJ`*zrC zZ)L1ed5&3uIv*RgbXh6h-LysQcA_@dOo?lAjf4tyn@YuX26fYd;ta}b3bo{eQjjkxTHU{8kEPd=ZTDhwQlOEnuXF{b$gu(OvMg~{&5yNLswoY}n_GN)x)Ti~ zsK!^e{Sl4@PXLdD;l7(b+1K1z-g}Ex)_IM|8~9ei`g!&1n>%f}`+YUz%*c_G(!QG( zSv&nlS=nY+S!tX-dH?#)$@*=l-S9^GW991+NRWxn1UT#Ry_KlWOTc~sskWQIs=U9o z;^UQDN?6YD?@rzTh;9D0cO)koDU-eGDn0 zk;r&ykkydZ^F&0hpqZ@GQ)ii5{o6X6U4KKsE!~Z*G)wfaU}N=>Icg%^U_iyI`WmM3NWFF|zC`nyJ%?|%{cK<5>P-o?JFf1wHdtZVp z61<7#xc%di|QEG zv<6aqfw4 z-ObDR(fn#le<|iL8iSJQ3|xy9yeEA{MT&1`oKb0>Dnc`SD_y+pS{uW5%$@v-b-WQ_ zv;1p}aGN7$bpI<}USFCiT|)X`=Ut~kC)t@A&zBWs2{$QeJ6Ng;o=rE&^oC$X0#OST zL&h}mwZoNN9Oh)@F=dpW5Qu$@ia5+fL{#D>v0@K}Ax>raFp1~z!^yEk^^PU$ZENd; z&cFbUcp1cj0L{)G#3~G1BL}<$>`VmT{gpgV@(`Cp_NR4Cr0kcK(- zxO-?*Z2HH|8CpK#YERd_R-9wWik9lP>FQPG5mKoIAf)mYI9Rf0LV7iO|H0ATo`A5c z0kH7ZpEpkn7jZ@9?~3TR@ppSmyi~}zlJ(pt;qU%J`MYga{wqL`{clvIxH4A!H_op@ z)fwrIdo6vz7yZ;BE+RomFw%uIB?kDm%<6sH{Hx`B;CI#?=@F zmt?(pB1ohnQ+)&UX#i96aetF;m@}J%?!00K%GvaLalf>JCGaAeg;jVRKX)c?sNWhD zu%m3V&k~y|XEz{sn`ViICE^h9A{pZ>X{|3!_yCTjQfKY?;#N48MZ3|Xq%6m>Gkpi$ zvmL&JH_eIht#Fz8oxaAqN%x6;^kx`_C5NEqzz{9;#$~BaQPD(4zC8hh^moV_$07dNNl_HYAO?+jX|LyDjpIo<$xiDj_p!vFsU&*WLzm7=WBl?$vqv&73 zw{UjxwU%*wp3d%LDEU+Q*Gf^;_cHKzs|If6bESsQe-BEoTwW%%{a>lE;WO8tQ z(*+U1Yf13!PgeC=I}qYnav^6x{GQCIfuS~kL~tXOSwNOE0tz7z(FgPi@#t zDKq0AE%GrC`cRo$eFP)1HX<-3qH0D&D&619D&7STWeY`O)vPXTLlXKW^0gy%>JVl# z&bB#iqhm2*_^o5{imIi;d1KzX%Bf0Ys}A;tED4-tDRf&r&K9V&`S*}<-a0d@b_=Qw zrV`C%2Bw6gjj z#92f9dzx+Gxfp+TO5RidMFc$nn>OnG`+WOz9n})m^6f9<+zb(KViNvT{$>9O@kaUp z70K^lIrUmf{ref>H3e=s(j2Yq-H>&Me1|&D*^g;$s**`Jan@IH8pf(Pb!tF7{`4g% zNyh=bz2Ex|x%j*Qut0NOBSPv}TqPuAZzf;*T7jGX5%A;H)*SHPE-iI!d4Pqw$nr?DOL@8)0iPE<5E+A;qzVKYm-Ei$^8YU@wp>;m;Y zOxzL~xggZZE2$-LEp4jV5vU+mu#2jc*7|qj&G~n!8Zf(R5F1}({}o2$J)xs`C`rkm z`RQ9fVV()0%GTdLj-%JVP=K@0n8>E1S~dka7Ix%c7Ckg^^D&4L<1>Onve{^uUs-rO zSX$MV-lWE3L&XD8QpjPf9fNNo@}|5x77w+tZhpGWx1SaAHpNg@$nQ}Sh=KX7GEN)4 znZ8432gdH4la6SFygrxLbGouhW=J3}YiDRuxZ$N-TbSA*av%pPI78-C}~iM$Es0aAsj1Jfgd21dXio0xn^ z7}eBKRqD-w!J4(Zm=*DFqf=Q&mGSbWgQ%L=d%TIGgjL4u1i&Q)vJOkbsHLfaaV$y^ z^`;nCi}ljlEqEd9t&R)M5qw2p4<@UvD+n0nN}0P$mTneF(N1i9a2z?+GNXM`M3&)z zZL|CqStxhmp0+TgZAj4VCT*Ala0O>wk6hoV!E}T|qCfnVMS=%U%2d+LR=?eaOTPp{yU^ zG$nFXmC37vBbAws^cG8drLi}0j3^mKsKpwlyJ5xw_Ps6SbW}^#R2yF#-)Xb&D_gKL zbx1;=)aGvf|?@{t5bJY{w36R^UGr{7DM)=@Qn0%@6LB2T?8Cu=M?onyZA( z2Z=!W4;-bZj_L$b^<)&g!8EdR!f_k_C85~_9FA;%JegmmX$J1O8~@gCL@g3UbhmPo@jlma=*5Mq^4Tl-q7j; z9qAGKbldO8?QHWswj(`UVd+NLb9C6VGweA&?0I`w{ojW@?+<%U3M-!w_WWa5{(fQU ziDA!iVb3XH&waz5Q^TI^Vb3XH@KeK{k-j6jUl~rCVm zp0bJ*UU9oMIcALKj>@8PPoXQnd~)SfPl>leK&Wb5SGkHx$|}9C^8Aw9d!>=1Jbz|V z&%&O`uIWYIDXxj7mB4f*l_XO_fjp%Ws(HsKQPeIBjmj~K9NnyolS+D}CHJ{BIc9X3 zP%*!_Es~lduB!&RE=^5MHE}H}@q&$}k|d>hdZngbVJ1#0F3p!@O}%3zkMY2$5?ATO z+dKuDnu=jG+bXVD7xHW}QONCWBOdMZ|7gxvmb78~R8M|M1&p7TU;f|Zd*LbbU6oL+ zYsZjL}4CCy9hVjzPhVg*kFg(OWAGzFS+`iUk{FxX_-uyu&T8ml zeDhqKk#7jJwtv6Q-n$d@CWvhXD_BrTqIl2&HklS0zw zneRU1E_@q6TJH0Pa}jlZZ>C-ON^2kH{3E;}eVF;~&*t47Qf{^RE_bmmmmQMkHQ)V- zyTD5gNvku{qL%1#DIsYI=DUgd?jApmSZ8zT~ysFdkLelz~@1(AO<*&k9SX5&0Z)v4hZWv-?v!x_dc-DJ2 zcl>JH!)LwH|BUXpzO>VfXpo%_zKZ(cZZ?D^-c4jXg0DYJ6|Kkn$SzDV0yF z@V3I&7#yp->W(Mn7ZuZ-q7tiZMJ1CJ5|+c{nxJUX(^Wdj)zVODepa6$rR83nC*8Y& zN4s_P#g%HUOHua3brlu~@7k?T2-I4i;@XMpJ4RhXtk$}e9GpyDfgP_rzHilwgOrPh zu!skGlwgQ>@n@1uoY#LzINFr|7lflt`BM~*cIkftnt^D$!qIMBC*b8V>M9iJXtzF5 zzE*xJ_Js2D81=PZSGe2?lTW5Hcy7rDv^PpBrv&lj7ghEG;djue>z5cZ@X_ zP~)>x8Ukn|H&A=L<^XV@9@m)TK=Vob`G09}X+n@;)bZ=j8a;C4=uxhT#ia$eD@6Jf z-afIo;PyT)>3U*%L$kut0_Y`LshVQw3?c={w6>>4j*NgAq~_DTPj>aFh>>zd1zrkT z6^t(^E5&|$$_=AOg{zm#=-H#7XD>sKVS5xBDO^^4dZ^aB;3~6zX~R{;o|2@pFN-mJ9fDa|E42A5lPmS>a*0ey1k}xYA}NV`jzXpinqp zQtGAGD=yBL9Ps4Vf!C}RYvhUN^sRi#(CN<7oYOZ5YL6sEW)Q;EVz zOAbG+G*{Bp{F(Hp(%`B2B{N-<$~_($2$eh)$+G6<81=W*9a33}iU25xo=KA=8lZlY zqjyQ6`dL^swPN7Sh6|#)ZcULk^|oH!3b2+|KFE+W2F_I5~cf7D=`F61mL3jLb_C97u;~#ib_0%=$P>9Smh=a&43kfC!~TNg~x`| zetvOzh(o{#&kQIBCqhg~tE~~qE%7E5ncXtye?0%$+Q;4 zlx%CiMXcjd^%j-j5YHmGQ=DJmnH35}An2fvMK5@X@L43>qu{5qPf%R%?4_O(`n$ zB+n{sjk!<()v5}oz^j_!|Fjau{Zj^z{H8Ta7hNnb5rU3taYGiu*oZl#~#Ac2PcH{Vv{#wN~ilW<}4n&?Ui?)&hUP@@2(-8U(C4r z^9TR=`)gmxIRDvhPj!obEn{f^>(h>8F3UJP^{=<4Y^=+;@|nI1`=+kQ_|=Umubdsf zGNb&mnBm2Nl}Evo{ah@lHe|!r&$!%NrCc)4yqD`{28jo_&LPh63`?25AmGrC_1GT~ zW%!UmU=6E+t|!)!H^MMF+{+rHS%&e`V}|kh{WfF$y%EO1pKQjjyG9xJKi$#zBEE~! zi8^IDH#`0m%)#6*=8`2rZ*tuStWDf=xX%FQL9Qog2#OCT+7B-6qf*D<>+l{*0 zqKvaTc5HzsFkpj%*PZ(Ct# zyNo<{8^*|Nn{i2^&FEQTGhU~HM;3K3ew<~rz@y0u-j&=1-h*61&#}}^Xw4YIeHJig z^V<$Bw}9sz5au)ruEVen&N7UFctdMGHH_OXW+4T~vUllhGrszDq;cJnDB}!!lyN7F z2&JdsNHJp=SAQEV=H<% z`)9~Bzen?KHo7*lv)d;Qic$Cvqw)z5c)@ z%e(|0WKsBi!~KsupWO{SkQ;&589cjRYZ&u?iM%`qUhr=hgn8f^yMmXI>`?R+xeSFz zGgVCWE$*Q;F7LadpA2;&mI92h@6%2;)0 z2jh3FKeG5I^tA93cp^W7Uw`WC04&&`;4Md1+Bm0&%{}f@o!y>6K(_@UG=f@f}Rq3DLM{z|@fhE^+E`cZbjp9C!D~4+_ z&%3ER0tLF0#+?U&dgmZZB}B8n;}OQIcSaZso{2OrThqz7c?9-`Iz!=I z#IwNjan0ni=qaBT_%Q^(0th1TW}n{{-Uj%VJe4{Z*o+Uh+l+lLMHqK~VmA`5jx=V} zMJfIXJb@wjS@39{g7-)6^WmQy5FZZj8x!80$V?sl`xUWxftPWX&FK7w%{X_yVT^Z0 z8iQC4`Rv!|=nb(3>{tA=;KlGP`XKPqxCGv8>J^wm&t~qh$+!XfjfIvLe*P2<@9rlx zyl2sIf#*NpX8Z~LX!=v9W5N@dq43`4`7U6F!oy4%xcbJE7ifB}x(1tlA?>&n`-jq6 z_;r6G!no&5n^8W%W_-p8ezDYry0*|$V1>iOWGHw-&pG@S`~;rh7fEJ6Fn{iWro#;5 z34c<#y>aNjK59*N8l9$SLhiEPh^B@j9+reZ@R1& z{49Eo1TTdjY44$X0`HN0!+#dfv-C;2^`e=~?_KXzOHY^AkVHp@W)#tM_Yt?@arJhNAB$f;Sm>LQjEb*vK6L)3Z-l}xl8D`*1&AE2ty9@1xI}^JNepJz7KgAyu{t10WAD-tDeGvRU z=L&@vir;R03V|1k%@%lXe5vtU_7nCNc>AVCwF?jNJ|?^&(9VL_K%D|_WP+xrz!Uit zdAYA1AN_Qj!cX9dygXchA5(2t^b~y;|61r73eUrHD1PDa`hZVeNBZ()d_ekf3!dON zxWC44=4{4KFGm_tw{|crd7+4cN0AnIm@MOD;K?y|7Q95pW`dsuPx!YDCo8}C)Zl#s zY~f#f_zArC(YJA|xQ{FAeoPXupcgRKG(82s2N-V(ev#kW+Q1VWMP7Pw z;qn|8-XFkA^x?b^dbS5odH9FIp&!S83lI#qbWKY=H_I}yB<wwA>97+Q>Cc`M=1Z!UW_oFL-0-&-pS&3B6yhJmhsA9e&4~>9)6+lMxeNs zJ_vrlJJT@EoNgEwOg6yAjl{7)91^be;3 zPx^P!_Y=W;Ccjl)Lh%!Lmb`@GC*#{ExGaA{@c@XkuJ8TIez{=tF= z8(QdjvhW;qW~T}dQ>f$xm*lwcL|(%2i*>ca6MeVj<#_l>UnKfx!OP%xd-xp>-V;5w zeF=q^yvJsUzWRrLHjfY!9CB@KoVR{}7Jf z`@cIjy#70wKLC!{vwsD@lY)17q+#JF@PvQIgSUrtk=1IhlaZHD{1*4ez5wq~7p?FA zO?Vf+W*Gl2ywAbWve!H5H23p-EdCt}-ii1p^t_Wx=qd1Iu2=M3;2n>DCkw9^b%pA~ z@!++m5Aub*ryGc;9fO|X_=%jJ47_uw_hjLHz`U*WN1^&aaixDEum34{BO@Y|e1^jl zf60O;`2IWa{`l)wdRp*aSktNxQa@&*Mc?K3$-w&^1-Fnl)}{Rk=^t)PWd7BJ_shqK z-<$Y_!xNZ-pZH4x?=mjYap@nz<;Btm;a@nsf=iBu_XFcUf%hF>zp9aaThu8qq(5p8 z-non~L-pY;o<$%29e4uMf+u5K!S5n2HHI_$TmW3?uYB5q_cY>L`3F z@I*dOm7d3gm-8E~50-o?dWPU9e6!@{c=!!6rW0pp{L*{cezAf2!$zqxAdVscuT=Kl%4{w6YG1# zo(cb^T|o?1^r0R8g~Jp4Jit5=yfrQ@pO0WLP8FU7)50$l-gSaA$cM@cVL0Pt;Jq?5 zQqfK7x8zfPhr$cT?|AT}e+b2I4Y-EV^H}gK*m4htC%)sc@U!5J!a%jhKY<6Q=kO0< z&bYzcNmgr>!a__Gt2+N{odc@?@NY;Rc^y@ za~WJ!86A7>?f&a7cK5>%Jv4|{8SnkQScZ=o@x8M14qcEe`Q&{jc?TNC<8}PzdYt#J zm82O_x;*cy$VUuMl{=ef`P(XW$$k054>hXv?lsNVEQwdf)!x zn5}Nt!X@Jpig&s%u6$(fpyIFH=Y2Eky$$Quxc^>v=7qPu|CqZZ>zvwoPfu`He)rh< zjq#n`Mc4dx&FtG=c2E1CmuBUhw#mKh`@-jDrG4R^H0I-v%9s4Z{rlCGy)QlE75Bcs zt^R5D%o_JA=alq2Hz~&rcfp1A#t+HgfsEh_OX_aQAD%IJdron4_HQz-yk+UD&+mRe zKY3Q|&G<6Ca7sp( zGX^E~{A~IBU6~onyFEYqPS?T=_s;t-JL88H8Sm6ww)?&_zRtL8(wMJje0VTp_|rpP z|E}0@|9bhaKlUE_<)DkV-uU-bB|i?z89O-o>|63Oz8Tg3?959Z$@pO0n6$=&A7|;pEQhKpZ0~xkDVd+tTiD1_}Q$D z15J6Td&9rsH-G)`g#kHi8hMeu;(wj1jkwq01Dra~?R%ywkVm4B>msr8PD-B^c z1A9ISXHpmY*3`z>e0I@H@sztN*=S;n{}_+&qGF!8JU@9wq|&V+6-FYb!BGd z4QD4<1zVhoCKY)KjWJZ}DwF*zIis?N3?GpLVhUC0lf@3w$}%q%vKwP6^;3BT+pa)~ z&3T$Wf~Y=op|H~2mz7^=jN(j_@}dHl?AhS>jp;7-U`X>BKgi}VITJ)}Gh+vftGu$L zmzVuQF1AgV=arsK!j%5{i*xGxTf4QQpWlv&sTF`^7aSpN%pekL*NN^nhyPN^UPHonB%h zQBYba-G!0K)*v>c$W|p&eAp!CN>XSH`~E^JxC|Yf2=IhNA>RANB>VV zOK$HYTh7fbGktg=^z5T3+`GVlP_97(T|^`w#t=DjhF14d+ZmP2sf|^VK77OoV|a0~XR_K+rsaf9Mn+6-dFkZx{HY>=o}y`@ zEOLHOF`Q?Q8wJPa486`6>zOPz!P=L^-rM69bS3quU;|{23cX8Cq>LE)sBtcf%ITMj z0)^^N%g)+yqple>`ub5ZF&MFFMdhU>$`)}tO_A(=WFM%}tKC1fg;E$b8RKFME-huh zTZzjUtM^^H3}_x>#EdbaYCRSesJP0AX|F=rtmjgqA)29n#AKCDWq)L$))#AQv^2@Z zR=6pi;xbp;zg%pKxpBCd9bz#?wr5hl&~B{9D>;?Hl{*UOy0AyZg)zpcQsYKXg?b@U zA_=l_&~OsWQP_x?Wxe<+<|-k8i$`DbZVj*{euzUQ(FPMt-%UF(zqLX-F2?V_3vS zc5H%3P_hvUYV^3ge-#$H8#xK=RDk7-8KZ$Azo(9yQs$EeH*Rc>kP?urQAeTZlXVyF z((RTlo-Jh4c0$et5RZfYu_Z-k?%hhWypg$d>4uTb326mh*~%$4y`lg|t6+-iLo0f_ zT%++V%GvW;0pC0>%D6o3n7NqYlT@0y_qzgf(Z@@##&czbr!WNSxKVVBLvqICWRK6p z!t*CZ$BfHiV>KdSq9o-?CRR?G&K56oi%Q3o4U%B)fIQBBp(N@#bBHIG9B;J z)6)GY23O!MaSC2Z2wg|#ip!ZfVtnohs@I0RWtVbUab<<-CTUxVsfQIVT``{ZRLrv? zvuW;KLo!E<%?YWTgMKo{jmR4hHAYx{LQC&&_UyXr*D}=BdlfMnS&Hx5%9)t_!rR!g zF1%5`oLLxoJ(`@9w%V1JdgWzT_D$<|Y2Q|&ju<{RZ~WMt+{`hVd7}|$bfhdF8HW9E z9FT%%iINiyj)s`JK(pBWjs5X*k_L32X_+X|n=*EfSHuW2FjrHh`K36WoW3zNKcqzn zYCe=LnJm7n6bYdkl5<_o7}F|AySzdjJbXo@aOb$96(v-C^qBG4<3{FYjUJODvXU(> zV!pV>9_`&GVFxXDFC5a(3I3j`y> zDECaRM2E+V;7d*!uWav8CL#-&DdNn8x=g=plG#Gu9J#*E_S!qsD6$Q%Wm~3o!+p zI-o{QQ;=3U&S_c^)(&eu32&663oyTOP*VlQbi6w7z`|B)V(-&V!&%R@gzL{-PjM~c zYWmi2ju<_3cvj{JBWoDyg%KQMjLDJ5(Iaz5?nNwW)FVsJxt^WaaN$>gl%2 zaJsm9a;0)Pxh%(Ck7>nJn<8b74|1&2LGULf6&pWQ+*;IBtB?$mEu{2OA&N%I;cc4> zE2;*`GB8$let1a*9ZOL`k;DvC&p_{1P+nAq$x!yuR8lS7~NwZ+?fjQclRnEb ze6)FVZVr(PD|XT{1Z(A#Y1WLa{1Q1}MCdA#HdPxYGjIZ;uItAP&%@%F`BXh!)!VPQ-{)4SR${xdG-^ih>*nz z!AOqQm<}*$YDh%LjKH+175s#krY$BO!w6Zdis(X{j3KNQ8fx2Z5zaivgC0=@%5V|n zDBPn!pJX}4k~#<_L_AiR7HZ(UaZ(O_1=6TlMEi0^j|ppAX#VzFPv?z2roScl@~;*q zN*7ktlmT(O@)cF{wd>iIo=3O${6ua-3x= z+9YF83B+QEB(haOxZ3nv^ypt~z4*r19Na(inC_D*M2I1K^hjKPI)_kKDAZkVsnG0I zdK;PQ#3wn5OMv8#%d^faOB3fnr^<;_A*mum6;mgqChw)=Ud2YthNNpXhv6 z=Do&qb?541l?lB+cdgC&#i;)s*BG-c!$R65?*?)8HQ%LjzldvDuFd%}*K=HxPx88z ze8<9dENKa5`d6cE&i~zoSB)rOaWIzWcbh_@snD z3hAU;y~b9DQ}~k`n$pr;5#246p;HCt-{F}v&?zlv&dCh$bGYDTjFqxn^z_+nDhTld zj2uQQ>by4&UzhbVpIsZ<6dH-{+ z@4#axb;-4#-{F_w5&rH!^(=TuNZs;V&6Dn!k(=a|&JylT@l+6iXc-iRS_ka+j4AoV zSnwZ@J;-TWqU{q)cK)ruapL|ls%7k7=qi|kN6LAR<;bWxOgcuhTVS@x>aj(%C2xB_ zh9Uoq{E+SzkTTqt0IHgMA-u*lG7enekQ9X-7@>cP?jm>PCLWhM`umQo4u_OBRf7p8)_^67je|+w}n`A=* zE)XZ8ViF)&)QG64s8O+^qN1XrMMcGmiZxoa zsHjv?QBl!SOD(pj)S_bjf6vU^-Mb-F#6HjO_x%3Pem=AJ&Y77rZ)eV&Idf(%b_Z}C z0HPH-%D`w39+za`LyXGqYfvoYPL$60uEP%Z`BQNjS@c>$=S-{yk|!1;WfVvX ztpq5i8VaXUh}z?_(`~aA%UezVHSSPw_ZadwzEhdH5q2off_TREA&rJU%urY3Fk@3% z6$`m_Ey5Y!b=cuPe+sTDS&o|w<;Vu?P#l$y^4cPuUS9I+??3l>sJL#Dc^c!>`=Qi> z;!rs${u|Qi#)Op{uEqQvK&NXl;2ND ztH;;va$;&{`l=N%5TP??Q_oW@$v)Z>GAb)oP>0T;`I1E zh)-^%bjEibcDPR+*IEO99an!aJwC-TzUyiJ-IL;Pk?vGH$&p`w|GCdY#dTi$fq7Hf zL+KNWqnA6-p;*Y>4SeK`?>g*opE@q50l$u`KbRi>aLPexX`X6sorO)yW@&SIa3KbQ zO|!1Cj}JMT=M$zhhOb0h$nBdaobg?U9q#j|;CjAGl!KlH^4)^xp*SkvPsz(zpL+~- z*Wvxa^sxW*v%kCuwsxU#dVb{B-+%7&P;sqY0KFI-#iytBeDPj@=b<<%=b_})4cz2@ zZoLjSy`KNMpf_?l9^<B55?(iPW+jFY?4-#!f;rw84arntm`b@;A?P0FBH!BuEP%Z z`BQLJ$#T$hoqWFs&qHxkzC+0?8~Df_Zhd}kIz4|XtFgSs_n(``PsL@7Pwxd6ADYwK zoahWYd9Zovl5)VoXZWg1U{3)zVv%shcO7=P&mY58CG*tr8{-?__3(f9r1(^CZev8l zNjIR-KkhTCgKwn9tV*E*h0zfdys?NeJDUXkT5KPd8#BZri;oj!11t6tkoVJ<3bz{1 z8{r7H0MCNUu!kVsZus^0F9Dmo1bYo|li|k06<)4bY;dtms6_tkIo$BG4n+-dQ%DA- zE{nyX4HJX9n%g~`OuI3oDH_*3aV`2m+N4OBpun~drn51mvUcRBDkfH4KOw*?UkC%t zIXD9Z^O#vM6U4V1xv3YCpV+3Me1W36vq2mc(M>}@lKtqS5_2*%^69#&jmLoHB7|I+ zGf+okdpxc<>stltpo#PWGmHkxaIC;74MZp{Z9Hf5ZB-PhzvQfh^nASO#n*D={#4(% zdTX(Ys}zgx3dN#7>HT0%lW`9gelU2ROqYQt?X~n?hqYXfaDV9Y)Zzch=Wk>l_u)B- z45|3QgVCF?&7~I{i;C?tBusET{<%;Sk{&UZLqI3Sya82V!jgW@)!sbgf$?ck`r*FKB=@#huG(Qv23?RgIVUhF>tKAL4`pFD5? zqYjFS!eSRK%F`xV9pXC<8x_l!aBslPg4+nU7Vh7iU4soPN0oSNtuotl+0K$^m$ zqLS*Ln1)PV|9vir<)R}WKPA3A`kY{ZdSE>gA%?H#)#?oa6rOHB%uh#x_Lx*T8J4c` z&N>_X_g7JJI>7`>suSdcT@Sd8O3D; zJV3vZfWv8>1d|c0W%y@5>l<2dy8sSCEFfJ777t`rFAVG{Efa>9bVR9MKjfEiTv6~I z$UZ-M9)o|Awyqfsgp9aR{DB=n;|p{10e#s|Oc9S?k`QmvgT(7QX8Vc8^X85-GyeLE#@pw|Ilt(? zs>LA(|)nEGn;E?apSr^vxvb8v#<(>WneK*BP@PEMj|_~hVg?GOq7Z7Q=Ih- zTel6hbEr^;-=lkk4fiv6k`4DpJjpKm6+AUVJT8-oRRz7q))(e4MEZevQu?8IQhNPo zv==XsaZ6;}SR67BKfq{Qgx1S6O)^a5McR%Qvk2fsqCMMws?5% z_(ri%{;S|8n4VYgU*g?^u#10yp7qOkSe*=e$PoW-gj4(HrK%PmTt1u~PL+OwQ}}K? z%Lb^H`|wP|a||5$2~OcSCR+ZY!jmTr0reBqJ<%^N; z7Ti%awD`@4>Dvo#J96x@p#7{>Q|Cx(5kYg=aS0t49j=fkm|} z!TTTayarFohkit_G*-#BneO+Y`wR8^8i(SY?k%Qo1q_G7C%yQ$k4E5`14s7&=E04D z8w*E=GHh^8xR#kr)C!lK;8y^L^7j7l!w(-79(l%}Z+}>OKA4rKS}y((H|iu6dZtA8 zV`&aGobVoM+;mw^4Nt02{HNdVm0KWSXNqURwc@$tcj7sFAAfc)9)~`|_dkZz@#o@q zZsN~|S6`)Pc66mW9?xC#N`*jfuT{nH_)Q^h_mOkEf?8C!~tN#AU+dGG!R($HI}!1)uG>=!42(bNf#W`nTB~PM6!`^|9I+b(q;$ z;rJrltZ=aS{|o=|7P#!qk*88Dd(RN2;HkSj`19ecaNYR0f*()D=FDpu*S4UZ4^_NV z!vFpKk8Od4E2&S#Z|ARvu<3W9zweC0ylaNAjJt=hg$CF{z@`JX-T>PI*b2bRNU#6$ z9~{DV19q@q!Kxwb9Jo%nrEs^yt%chJw*&5PaLM-|f4E#YKU_K7S#Zs8i{X~TJp|Va zw-s(D+SfTo;`FTa5Q*a4X?f!>xr|54RC+3*0uiop8J1_Q9DR7{V-YnQ+-~ z`EXu1{a1|lD!6HIjc^O$mcT88TLrfUZXH}N+-A6Ka694l!0m@KgLX3Dvf=XK^xyyX z@&DU>Y-Uvp3fpHzt7_Xj8ftJ&O+#Tz{b>yg=Hm*|4t5+uiz;W##sRNrVaFM*P4!is z?T`oK&K3pSYjMWHuNqc*=2nS5tS+n#_kcZi@+sZ?Mq68Ouipv%8)g}S0tgD;b zjtjPM7mtMSyMge<1rd&{WFc1*q^m9pJB9Wp+_lw!Eb08}qY_>QJB9X60enuveY9&n9?Fr{1#g;kKRVg!Tp; zW^W)Lj}}FXQj6o;tAJJT>*t~zJ!4Da5Fo;qCH%6xk&5c6_s=`=5PkA`H_A6s25R~^iNJ^p~6Nf<|g$p=9gdh-RkHd-3WNcp?%JXiA zpI)M69XM&!$tkZ>hw&Kiz!x1qx2d_Fw=?@A`6oa}FtMStv9+H4gZyP!k%=b5VrIM+ zjWq?4UKjbJIL+9ALg2Di;*X2qoD!RN#7-o&N-J%j_~ehQQ9_O1uV){i6tzG`}^kb+jcAQPH1N^>|Wre zHcH&WgdKv!6RpQFa~y@m?a27PHj6g2xAQA9a3N;2sdWbIHB@M(AZ$0Nuwy}-+3L)h zP?0rK`VMubun)oe0(B-IzZa`BV>-i6yFSOQCnn%?+4Rh++xCUVzy`!`Q zU$3^cf>E+pRGuAsRqcr3epBt}Y_H?hW$)5EuI{2VzhF_ZpM>{Tym!#GWq9vK8#mH5 z5O{x?w`a7qVV*6PNE2`e&5rypEPww(K|+7t!G(9b-^;YM|3p zbPX<01X^|;>eez#;8;NQn1fT3fG<(e4YIO5s0&?gOYxWUIy8a`@lpkm{y*V3PLGWvtpd*fq%)S6+VTI1A2d@13cirvNM zSC;1q&kLT9Jpb_g%ah`@cr(4Dykoo`?*#7@Z-ckp`%CX)?`_@(ypMS|cz1cf^J>0( zd|&t!f3|)bdW!8CTZ;W*`-}D+_Al&jIzDmaIjzo#&Q|Bu&U>7% zIk!3g>@0OvxfZ+jyK>w&yI*&I;SPDaJ-_ih?Me6gy%%^hd{*DRzK4BJ`CjpD_5H)2 z9B2%l7hDm%C%7T_TySsD92yxqAv7s;d^kURS$KK)f$%Hgtzl=RG}0BhHu7QQGb*E% zF`6@m*~Z$u=+#?Mrds>m_E#NmJ3eykawyJYoR>L^TsOGBbtSuZd+zXV_kHYZ_YV#{ z6DSQn5zGrUhRzRN61paIPw0Wrlc61uq!GX^z2;QI3-w6C5)gH#?qlyaRg5bcUSQIaSw4*AuR3?i<|?xSw$k@m%FG zc?-PPc>fmI7Z?+q9_$P*3@#2X4K70~tqQIQt_waDd_MSc@QvVm!B2vpq0Q1lgF{Dy zK28kTLcUO8s4R4P=*&5^q3br+M%Ra~Z(JGflijDf8{FOQLEa3n&wILeh3`q< zv%c-VJ-%;!h5qyXrohBNN8tRx_JA7vW$@DA^}&Zgy>Fm=yMkjw<)L>&rtlGAHXZv< z$fpY78>n5;iKJH_W{p_SwN9{KWWUpXHNm?v-{FyD9bx^!akO)i^F-HdSGVgX*F&xs zT-#mWxrVq;bQid%xLe$px>vaW;Qq7Q=DEqU)wA8R)3e(%#XHA)K1SS?-c{a*yiaQ z;MD-@fwmsym=x#=EDBs7xGV5z;Q7ECflmToqMk#7BZKzf_~4}Aj9`0k5$beH@UGwk z!AJY_&zHe(gKB6%Xh>){XnRb^9`c9AhfW2JpB0)BnjLBfEiMXO8M;1nOXx1po7tXW_t=Z= z6Yb6Rd+hgt%Z+f_oR!WCohzIlIyKi3uA^N!;B+3>RM%Wk1aZ6PU4M4%bt&#a?kx0z z!(HUAbl17(xgT~v=YG-sE=K&Spcr&mgkQ^Kkv;@!OqvG!1uQ3wd4(*XYi4IL+H-Xi=jV(!Uu&<44)l7 z53TilcvJX~;m^Y-N1Tzu$b`u3$b!g{$d?heR`5HE)omSbt+JkJt+O^;FR(7MF0tN% zQGT9%fqk9*Rr^fmdgmFgM%Oae3fH}^TDQ+T(|ax`Y?pVaZ-j50?^NHNzRkYReE;+f z_0RU-=zq-rhW|FuOK;#cjEbSb%;2%0m%N}qcy;hr@Sv}Q!$RGmdod$lcpFr$^*rrKuM z+HIHHR@m;fJ!X5u_NncA+YtM8uHo)qx?l4C#mjuHzInb2e2aZo`L6ff>|5!p^SApK z`Y-Wc>Awzbdxt+Qa9RM!w}?DGu`|cR4h9-n>3qcbcV~fXqHC;Yg6B-na9_3W65p-< zNBl4NYXWBnYQeV`ffH>Ho*%jy^AXKM{|x1X?cvqo4Pi6pni-KxA~!_VMP7`&8~K*# zaR*~`xp%AeTI)*d{ot3$w&QHoC_lawWAoW7>}T5_u)pK{$oUm$Z-^_O)7=PnzT57e z;4XKM^8X@K8NNBZlfLY;hp~J-ZnA!9O|lKPW!gsA@@zI+)b@hy9>+k}T-5oQz|znw zlrMGwEcka?yR9!+@q(RY+Q%DY%dvf7D?uGsx<-2khyOrvvlWKVO|ud9-`M|VKhLq& z@khr1=MZPN^Ii8?&xM}*Ja2kF^Q2;icYABVPwc)nUl(Sx=Y7m?_MhsXnqm3S%=#mvOQtjkGXHOeXQMU zKg~W99P|eJqmW{@*>~Fa*!SCqJ6?2Xn4ycD=Q!s(uW+t*Zgsxz{M`ACGs!jBb*#(p zDsr9f>ToT@T={_OS=XDcFI@xNC%K*OVt0poq5B5RNxyTy<=%^V=>(6}bDHOLPn~Cx z=U1KwJuiA@dsllmd;jdc#CN;z3ExY;-M(A=fA${}I5AKas10brR0_ZZJ!&+Fcg!6_d1|K9Hl)CcE5N*V~+p((T^bRXz(2PC2! zFr!ZZ4I*)y!gBFA!Fq!2N?V3~j@{~*;6A}K$rJRB^v(C}3jYwn0*>$7-f2C>ez~Iv z9B-HFR`-7N`wz%rN}w%pS>V3lKZ6%R{+a|{d{zXrSdYT@e=o6~YMX4EZL4rJIy2Co z@48Yvp9M5XY;~c3Q2kdbB(|`#?TgSuuh{b(zj7_|+~FDR+vPjK@AnVIjB{SFJmiYh zLniwQd`V$7yu1p6$2_yx!|9cAoA0 zwevmKvF=>V@k`O;MV>P}XL+CZZS{`~tO#BlS{!Cu6jq9K1=jV}hi#i}tL#TR{^U;e zjPq1`x;!E8Z0{29z2NAdfZL4p?e#4PTpqYFU&peVO|j_Y>}C z-8;*7XZ}In5niYF9Pd2L`fI#fy?eb=eD&adOMG|x9>mP@ zlJ666XVpI(Qnwl&5*`UoH9kBkJR{s5UIa<`uJEInC8iLq>`_<-9@U`Hi#_j!7I7Y; za{6g@zvcaxw*@#a4w=Knkh0H?{2KD&(~->)21^y{<6`T(*1NIBc-J<~iK zKXBK1zVROw$PR1^W{0MQ9)=XgvQ^H9e(+rAzsH{xyb2O<3Ml4veEE!7RT9P7w+@pt z*}WR|{@6V*=nHNPo)Ve|%4P*B=OzEN4MQGR+wZkMW&fl7dyM#T4yWTZM}uRY<3Yz$ zjy;fuk8&<>E_UALVcueIHxWRU3T-Z9R{;0@u79~sbf4m$>0aQz!(HgP6La&M-o1fu z0)vA`22Tj)CrCJVLArUK%XMEurWpcx#tvC#66Bb6$S~JKet8tK%Nty7Ik1h_h1X+d z*c9GO<6*kWHsisp-L`zY)$Rlb+iBm0)z?b&=xX%oTF*MqdQY!sqi2(6vu6wXcpGH9 zeW-=Wo9!*|l|qWE^40jJp_dzd&72Q+W1d^$TM9{H1!lTczSX|9z74)!-$u;MTOr|X z_wB%V+XEWi=iBcy`P2Ote}+F36p`o8_gf)#1pUSSQmo0U{8Rn){zgb3osdBmgDdx7 zwp`&~>0jkv<6q}r@896>^%n%T(A>FJWm6$%ZNk{t0?BHdZM$uUZKrJ)B&KP$aUm7@*P%Ci`Nl!6gY|Hz=j(SI%&Ig}ozp{!7LC^wWB$`4sX&X6}0 z3>DBA=*9Sean3^2eI;tU2Q^_RdoD^j6(wv#$(YOJGP}}U7FUKV)0G8|mTAfaffSY`4<2%C*|H z#Mi$HK}MPC zo#vhHt@k#1o4sw`PH&fYA-KR|@a(1D9`7>ma_4dey#1J-~u;0*)= z1%cu~B6ZXU8UxLkLp!mWS{UdKEDkIQEDiKvt+hO`BCs-ndNx3A-Wb>v*o^VDHLwj5 z^p3#Jz^=gVz@ETftc&*tSkM$S2h*_<$bf8}70eFiLe|O;T7%A@HyHexv{xJ|#j3R` zR0Dm>w9xcWJ=PV?p|((Gs4KJ(a{FS)7)wJvpc+j_ir-jqHo;r}=1$${NXF&1$lmt?5>aHN%=| z&9Y`gYm;Zqw_2@EtJfN|7Fdg|rO;YbVa}auod#V_Jv122);7$*UDkz=h!yI~+Tq(b|o9e6M4lV?S1ACa2k%?zA{FoSDunXSOrf znFp<;)#-#Z7jzatqAPWlJFA>E&Z*96&gss2XQQ*(+2-tYb~zVf9kbZE#JSYj<6P!k zj#d6j=PIlU);QNX*I|Xb!P)EF=-lMo?A(Ht!Zzo2=!14TcR6=E_c-@D_c`}F+5aGZ zyT-lNz0SQJ(s3{3<4x|(?k(=E?rrYv?j4XKcR`NagO$xbNchZS@|Zp89*ZZ#lL^@} z+mq|b^WKGb(_=DMCsw}; zece*->Vf37JSKasf%LV`w_ZwMn;?U2iAiBQA&2dbNn(sk6S_2(1$ittCXsm|lNH3I zvKq)`)BMw=Y}N+ptP9$VZZ4rMg^ac=CZ(;0oVGS5scrOc@^AKU@o)8S^KbX>_`hg2 z>pOE51dD^E!E$H~YJyXP)1U#a4>n>I-3Co?7qnj8&;~DoKDY-O;pNZ?uY^{3HT1%3 zgX@CpgByaqKU?xT)Y)%YXgT&GR)$uER)^MLO}s9&KC~g!i+zbrq0ON!&TyXoe1VM&1Hl|F-^S z+8ruv1rD5NcO0gCU-Pr1`>KOT=Y6?-A{RFsZ}VZvn5!4ZNkcnRwvn5Ravn%Y2>SuZp`PKFqdz0{Lh=S+Y(kt zJqhb0*6*t4zjC(42t1@8>2*~e)5QPx+{P>#$;t93!g~f`S42SWVU~1}fcr&w^hiD2 zav!sF8LaM`a8KUAzTuNb=;78N?p`_||5r}b!@EO@MLVKzdS_S5GF|C6t8pjLvMX^by2V^^C#vDOST zL^48yY1Cf;!wG%dEiXQ720Ja>Qj`j_v&Po>QJ9nApyoPwyE)QTvV;mB&Nj04bcyyfH3cY~km`4fIH6Z9$Z+=*iu`yiV!IxX1I7;Ub_ zMM&avTn#W&#D`Gp*+nBL75&CVZg|`FdFM6 zI!(^r&Oy``vi=lFPaY*opBQU5puC!trh`3%(xFuKQGBxt2A-4;N0xS?gmYgFe4-(c z&xK>qoMf}fV|K956a4HMY;RJ>wa%PLwv2y+mvBVeTU$HXv1kbHqheAUv3o%EDx-;~ zCdk+w#~?8*2dT0;h9TfBO&w9XgiHUpHhTv!G8(L%14@j}Xr0NNI2aX&GyrlPAk?Bd z;k>Q;V-0!2aU3(*kyj6ImF9lshMy#<^Y(F4;RFQEe9j-4QjVSy>-#X-W zK=`*kbin5)QB&h9zUT6f((>YefzD`Z;a_az=CQ&w^=x#C4i%7R3=rg3&yF1zj}kx1 zz1jdZj1hJuCLSH3yc^(F1ITc5Kpys;cpu3NK~}?G&kd`2p;Cr=AsVa$j6ZV_y0U-4L&JmKPfMb@OYSM`e52C#794@&ASuZK9B(2SXCbi< z7xRpYc_b2*)`Q2~1-1`sXl~>CGQIP`D$YK<4wh9nlRBI%h))BzqL|W}m|e~BkVsX4 zcsHV49i4OAn(Cu7=eBTTb^ftix{wVRaIZjJlx(75p3O8Aj`%S?IM>0>hKDN0Jx{@d z?~!9(=)xGS?QCRaV6Gkb{1;{q9dr(g+3by?8=9T^Af}o%@&b_zw+-8r!@+ZBVmN>h ziBEWSuNXRS=w5E*?Sv%4;}Yj$m+L-ZSga0}f%t|QJ_pE6so4XZ_mVvL0mP`|M$7q> zz8XxugU_C@YmGp8tr#}i4KZOlFTV4{t_PTN&F0qDwkTcY$Ii&ZL<-^)Um@1n_+{Xf z7})b+?9N^j@6?hlbDE==D5CXEbJ%6zm*PXb4MZ{2T`vQKREC&L!B7RLsZ~sS(R#YP z;*3Nfdjfv_`@NzZEE!{xj!y8-Wy3KhVi9N{;r>^4s}YFd-OP@3!b*X@Js+LH8S~}v z)3}dz%w#h#ZumP7;`jHlW!OFBb(fRZ0_=KGtvL!_(oF)w6LP>81@S1%RmeRQN`%3F z#e0jS^R!`%y~{}zH!aR0){PGoqtPaS@X)&i!vH`fj^K310l4?Gg*_GbLxyOYxqvMN z8OkI&8rZ?twmX>x0;!ziItyk{^*!1ZWdv;fVSL%jfUp4m2+1*pOKyWo$4-OviD38Q-_ zS`CAzr5=JzyO-slA*2rjx<1uGFO_E&?~%kD&_^*|?^f~v;wJK1HZ zX3UGE^uvsUqSKPB9J6*3B!=du8SS<0B>2`s$~+SgAx5=gc=9AOc@kQs-HF+AAQz~J z_lYTwy)_Cc_~{)f<8DIp@Npm`ECHLqTm{ic0zL(R=OL5PwYxkg3;-04)_arD?mwV5 zG)V}-55uB4%CF$$y%&Sa@hgG|%S4WZ7KKh9Osr5`UBIN9Hu>oKB}TG-Tc?0*a8pAd zToj3J;*5>M%^V@EB2S%w1_Xx_L%NGS3JxXS&u7P>ZNz&kyE67ZgPF(b@Fq59oc`X- z9*(_ZVS+utSa~=Swz%Mc0*QcLG?K^%cN~oyAM>=Z6*13DW(I$ku~=v9UGSAFcztNq zdtW|gF^FSS)o2%c0 z8TB}Stz|wmmt4V6i#9Wop?TO$6obz!=yF9yNA)CJN9gPA*YYgd-}g zruUd|=1aqg$>>}hVybTf>yCxfYWkCSczx46JseUr($i{s2zaSTZwR*Y;4?c^_OZ&? zy>QWJQBCEfXn9$6O*G1W$05ZA2xa=ezyHD(SPEW;R>#kzoKi74yC~Z^&Nm<o}WrT4U>+hG`R~PHURc)H1Ef<#ms3s~d~?W!8L$eHvKjEHDg`B^c=@ zzgopjQyGqQfo*j%_3al?cFmMB7vFT9)q;EcFqoL8ra-`L@61kss?q4ImbrBpe2_SC zua$O^iuvDUibiMPXlG|rODtqK;F^+5vl~mI19)?1vTW0$Cjm~5w&DD$=@NQZbKtE* zex}9Ga<3^lIs@krndwpyY)+2S1!&B4nFvpZpX7Se<-%`4a^ykiO-lqQ11RRsMD3XA z3IWMXj&{yzo5>earYi;FES6&8g)}8meO0#rQOqui zdn->fCa$aoyD|h;(ZzUC+)Fp1ysW5(U110tUsxQi%!aD4w`)m0fE9<4QW-s67T4M_J9TGk_@b z=oy9OlS?40$Lq+!m1mSpnowRjh23BXDXXZ#(YeBMwyYnZDDaJjkizov%A!JQF!n10 zxVQ|LZ`MSq7j80ut4k{<)kG0gIjNW}Hv|AMX>wH!`Vn+;vmv0o5dC_~2}JF3{BWYz z6mx9oaDWPeao927l8)z839s8p-VtvQ<9 z4!WC&(ZeS%AH)l|xJiWr_83Y|zFu!$mr zq>8%cc+$LqGpUg_ z$vpB0k<<|LS_hH*8}mBBs2b69M-aCfAhndBo0ON8T!;wic`0uzzkozPaDHuj3zeUx zydx1aDm+xo9JoyaO#|B+>T6q|HDD?4N|shs6vRvutfyR($ z)lRLR%x|tnf(eCX<&!6sP!il?i+kDBM-X8!7EUZHC0nh<%Rqh+CrcTj5=CR;LjOZm zkTO#GO@l^Lx821Q8L*ODn&}3`aVj8X_}9`1dcFN>AT~g_>?i2s^zrbgoSwGjsz!p5(cvF5W)a$ zQDoH7S$oCH8y`Y98`j1YKaYyZ2p4xM#@6ISrF@W>&w&xBhq94L6z)bKp>2;0qDMuL z(sO_vNt6p|g()BMyp>7pD21!n#DG?Qn@|~J$aJ6`x{_JG0h)(^I+MpDC=8dQ zsY{e+scn%h@K4n<=BxQ+xE#=F8Xi5grsI>ywQ*dSs584Aej(7PN z3iY{qog}U=I3YO^1xkL9z!!qaUuVXLOeC#+#iL-Wr_Uyua;GtW++mTh#isNk>sRk) zmU+NU`)wIK`;|QVy8z3WSv#kxc>z;aa{Su>8p(^Wk{6*09g93MksEjElu^b!n_}As zQdyyFL52e$x35HM+R+nr&eiKI>X<9*XafF(-96g!QwAGzh#nYj0s4Bl&B%iG2an^Q zeqs0y3Fl|m$%fRurkw0rP}2}4nMnGm#0;78gMow+Gh<2{a(M)9A9A97$6Ve#|B~4V zyiCU%+muwkG@^`ydx43TG`S#++hf?ikl5I$7eQwC13sFa!0!Pu-9oVxC9kiZJLO1Y z3pGXih7-LanZ8Y!@@isq9XQ@5ugm95Nl2K3IWMXimx@*D+S^#mTdZ(SH-Z_RImCMfevG>`C}`MgRdR_^Rj=6 zDaGtH^(qfzdP&8+t_%03=M>Q%92yhuV_*|SjtTcMusKzXBVD+U1*E46S-|wX#A``S z6z)wMWk5zefSF$41%q&(Y7p*Czn4+7Qu_$^v5@T4g9-PsD7mQ#!hH;$mrBCDX_L$& ze*hG`aj$hikV4_8h(c|bUbJ9LxHo+uftjg^!oBH3<$07D!hLGL z!oBGunJ_ywLAW>VknmiV-iLi)QDgc<*^K5GhzYVEYZGOufiKc5*8a;A{&+?D1<4ua~i%*N7Qdcm1p~6?LXRdpuZe$HL@T} z7z;GmO!+P4uoWO#*2G3u?(d7cPk0XyZif2-7zSeI5lB}P(vxV}AR0iQo0MPlMHdU% z0wh=6%PglMRTCk?w@jHbjS$TT$P$YVHt{u@9C^Z82|OH5<}#JIuO4~B@y{jKn`A$K9>M@T!AW$;;Cy@fC-%CNq( zwCP7?amo_O^y-)nGK)Wjk|@fNeF&5(qZ6vwH<(7MlBDffJj61L&)TMbW^$U-P=eUB zZ92$wPE!Y_^Iq(asq7w<=f6R{+%m7Jy|v|MOygv{x&#KQC!i(tY25VoCRF(_r*Uo3 z)o2GXjcb?Cdu$rl7T>_V`ZTUxDuVTCT)Rw!>(jV)x$qmNaczkJ#iw!Y3IQ=r4 z#+RMK)C5R*SxpVJl^V2*f>jD5y(H&*XgFl=D@Qk(`>Lqp0Is4ocu7Sa_mYa*;3E~a z!Fzy;IvzIOsG^R84^UCZgZikb;{k+9s;J|@n2I_MqIfYCbsQX5QO98%C8?<6pad0l zAFx419SUhARs;K`v1;#7PbSXa1w>lq#-N@6qg_`6a4K=aZyZY zYr)Z>%vIb^b8kBB@y%z7M|dqsLLl)9R2fM#VEv@{G}A4hu)QK+|PL3LdVz}b)&d3)HHGF_#Ta-UuI4MPQHa5y`jFCc`C6;tpd>17z) za^ScUE*nb#rqCM{i|Eeh(59rj!?Gi8JFc9WsM+ZooDGC!a2tVU2i!;?J&PmV10Oq{ zSAf1}2Tg-gtSVKA>syU8L{RyX8GDZC+#+7)lL4R_lyKk3+4@@r;JE|P*0YiN2{@%( z9c6=mR4)ET>(CQ|@SRXff0OZtUmnz-{hP@vg<68Jd(e19vjr&d3b^ek2ie!lLKkS% z0cHTG(Brv}7qc31uY^-3Xoh0yP+rUvshFoCsb16(Vo$)(@^y(V&o>4P!7Gu$um_ms z3LseyHwGJIxu3K@@iPz%g zL&V1~9~nhETIaUcq1&eN*&-WxRl|LO7%#z%MSfF=dX9z4mW|`Z!`#D^ZBx^4#o*S9(6VBM@oQ!|1@1G%yap}@v6FZ!9SKG0NEA1P*RC8sHjYzw ztZ1v1Dx`cEZZ1OKLTW17eU#Uo09cXuev+NPg~v7p>6K@$KxB!Ax5aD9T0nejm?aa2 zG~*DFP`pYgiUF{~=n%UJt#jtoGUaumrt=93#9IjQa(D#dFHJzf?1FF5-T6%UqhJ~Z z2)F_69mHJ){5c}@6J9Gi36=wXf(;2y4I|(m3A<*d?BxCk{JF&CYJi~$PWea=#2o3T1{{ujVT5@P_DTfiYlV4XM&^EHfc=Hh$@H_uVd z7i>aUO)9@ssmUr3(HWawP|@G2&IWv|P07++kgITBNjXk4KZHYs$D-3?^8#(NN6$34s}1#rqos^qN3g9S>irevcsYvDdeqHlqaC@n{$ zo<17ZtRuNTWRyl_^uaHQMBnL*&jpt#gycx9GP@9M3R;3FW)b1R=T10nEG8tMlIJ|8 zaL;hqY6?PGHUKFl^4Or6rDOw2D_1Wf{#xRkNjU2PAbM*gocEFkIJxJ&7|yN*g!5>c zAD%{9J|hkSzo~6+qT?yiPJT!QdoYAKNh@f=XUTx_5ruFjX*;k9HinKC;d~2I9+l8N z1f@QXa&5_DoUD>G)~SW> zB`U+7lJN_8{FeGA;yoL&t9vz$u`2qTs>`RAO0)0e4mi!|dEF=t5!DxdexgWL6CQuy0 zV``b?gQ#Vw#}vgMjn0`7#bzgL9lBUbn<&3O+E&Lueqio+1~jfH$);^IKFY>If?!{x z^#64_oTk>3iB^7w?uHH)ho5Jbd(l$5?k4H&UX=eZbvLF(mlAnPb3b~I>26Gmui{=^ zcVoI#1nasR(`6!D*WH*d7k-28#ncTo*#=MPxq_{CdL2Q_eo&SGA>yzT7 zQ|HLucj5nPeWYPxTt)K#W35ljFwuNGA3vBBxnZJt1X;TrTqmTGxr#hXnHqVChDV}l z;(&p-gVGX!UN&Ipg8=^LHzGwgm1G&oQos2gd8G2=Mp4d?Q7pjJ?d`P-_?|Qcr2uoXiE1<0o7$^91U7C|tffAu2=BkYU&UH1Kv%4# zJ}>e1Rjj3MlmSM?TIvhDV0{#8slS&|4^XVdLJqE2i$&?9Sc}1hVl8!(%p-ruJnAUj zYaP;U^paw29hz?Frv!~F)>27LNE}y05%HZ_0xY1iX(O&dnFi4?xE(KiWFA4%&4D(RgU#v`h14}r%|Xh>!djiG z@QEFD=)mWsn0lu2B`=SOrNY*-vymSdnuCv$bwOTG&r%*k>SPmTmTXEUz0DvZsiW}5 zGfu)>terF)Ui0{xD1Ag)yh(d)rVzNi@|3b7n7XUvDJm_TgiVZ+NnpzGVppP^nRr0u z#H#X=sVs@9GjJ$l9OYpG6QlFy*_tB>3Wg-o`PN0}lP#F$%m##Hu?{-n#x$3k`%OvW zgHD=T_{~ZD2(RWjod>5U(aDuMrg=rMC5dXxG~aw4oRK8Xerf)jxIYuAkyqde?#p6F za&9*qzN7fxw`d-;Oee~kY@#9_$?1!5^9X>BjzOseBH7!ZBLoF`5H;?3u^{S>qsWVJ z;-kr?DX~~oCV_xHxU9#zfQJ)VQz=C_;XI0xBmHfF@=qM0A+-<{HS;1dUa&37=47+8qQ0@voW(y@yni8H{EKq|r&PoNmF1L)46P`cf;N$!>Y_=7HASVM773VCQdM49ghO9Cz?eT+DObJF zyn^d_wBMhKTv5%Jzvk7%cJi4eyn=YEpl+?=JJE6a(_5*HSmZ04MC#W{pdLXd6_rga zERR-IlCT>07gbK2Sjf9ngd5AFqtg$vYOf~)6$*dt;(mPC zyKr)O4Y0K++>2Uy-6A(;C*`xG#KVdm6I#5!(J78EvD91B%D*UDm@h? zg_BBf6iSnR)TRoS3*+fnodi`)s-!QCmsNn)k|fMn$z<8+?Q|N1Y1R`zhpFloybx?4lkn&^^OKi(+SRZu_;?$NGMesd&b z8vSAkrd_K{Ihs!}Y5W_k_?9Ub(6sB6dvO$*RwB4t0@ojKRim~{N{Z$*QIi`Lsxao6 zG|szlCPa*uUn#@{alR!D=SVWsI`BD8oTLXwg%(=7S!O20 zSw7L-5|dy%&TVR=Nk|u6v3(7dB`#!;+nCzzG9)jp1NW@ZCPD)ty<39w)AU=M^kS@1 zh!oTuE4JtPVeweG?@?&jsyR-CfQiQ7_bSAp)g13|aVZF$d*Fvvwbe>5rgxKayqXgn zKC`JEC&Z~4nRdSnIF15%sp?yso3RnCJs?Alr4SUAtQPC>y-?g5rTtolWl>lQE@y$< zMRk=E#u^!X3GOnXQM9!-I`&!VBVnQ0G8U?#^zn=TU7 zS{ZN@1;nOvK?Lh$*pWO8*QIblSZpO|>t*0D3PexvFtMGZZIEFZ6h?wS3F&mt3+&mU zH3tWHR>l}gF*rZQbyE7-38pu0Zilfby1TrZIeRcx0(}9qbptH zboi14Mqs4ShC8%$LVrb)NkLi%zL#3BUqq#CmhfT;hj9ps`KpALN~jRsUQ>kZRxY7( zqgi`hF8ixM?>L-T2Qh1l1l92Mk8B2}{Xv4Krp=rK5$g@*DLy8rrQwpS=5Z9sD=se#A97X{uq(6?nKj0RWvIx6Reo<4N;J7mqJTGTJ*sJglP*D z;#CkId45bgUpb49`#cm~mp64-ewyCPoFAdPU=XVPQc1^2NgAT!1`MVxlr7|x5Pr@R zP_a_<#s)bTgD;Tapblo*1u}g>Vt!1!PzDqy1_=BYN<^h;v7taOBJd&^Se_Wjw2LIl zsx%m1Xx*~*HEEo)T`U`CYFaI^_ePjuwvybjNG6(|02etek~!5&?#nBAi3BzZAk!|9 z7@Bpy#NK>KAguwvJ8RI$pzik)e>>gTvdj%KvxhM5>mC#YhEGpDt~GR6Q%PlG{B zD=tJ@z_dJx!2%M-Oh$G;+87DTh)tQoz$qSrnT&G{-m`l2ETF}m59rlsOKXdmeTa$6 zRkI!~I}H;VKX#&xQ=jA|&Xu#RRTZ->^jWwP0adc8r947D4KR#-zeUbxwO<_3wajtI~}pG=b7=2k0a?X0;oXWmqzPF zc?oE0D@zG|wJ z;VYFiYCS%;PUDU76ZPRO)>DYU{P z5e!o%&gG&^m_=<$lEsu0_K%W=g#v)b^zPI9h!awW78| zYcg%P^qMh>U`$4Ba*PCFk7Asyq^P|j_XZpDSWtr-1{#3uel^pe9rg|1x8Ly}G3 z0E3>2k5E`9@u1lk6{a&>AvAJ^d||n9jU|y7UE9fE z9m3OSqvC-=ovB~Xr*^1{_8~BirfqGtU8Q$al?L!AdHEw>KETpJVJSG4dO~Y6EK4k+ z*dy9H8s@@40RtA7i;?{mv1jH$yu2SU ztRtCA(XTG+=Wbl(Gvis+CY+}{=ry`Z0T4a|cL}naJ%Ta!T&Da*rP4eMh-WJ5>ZJj# z>=om4Zl|}dy%{DcU#sUMx_aGtk~@=+b6b@SB}6`y5D62n=T%(v3G}>!CE^oEBfa+a1Wvhx- z>w7n_@^oT>4hXlR6qmtW3(O5v66Ez1&+BPGSV)diAu#iS%apB34^li1N4J*I^}}P4 z>P>3Y6ORJzJdBr{5xN>qdCU3-c)^ntak-v;MqLc)w-Svl`-{>GEE(%yP6*VgIVfR$ zCx~sULhl`bfmP6z!1+xrxY-rdwStpjHd3sHdmJ(DM$ECeT#YHWQW-x6h{%w8PRbNy zcpH&nn8>gVD3!Y+Gys;+>*@=UoDTrcO86!5J7^$XjSQB`I}A2Gn=c-(-vq8!42@V|x73GEHEZw#C4Q)Y6FuX38=+`ug3sgZ9*wq7b@wo-F~ zPB2pekOWgo3}7cB?SfPCl@5xu1TgDGLhYOM0 zRdC7~%0m>Xhk|(H5ww?*pQ&u35Yenuu$vLGjY58*d`=;plJOlEyM)%oxs1 zah$wsFZeCQ3ySoaCfP_SQOP=_We8Ggm76FnuTB|-v;j(qlv5O$fTqg>ua#HkC6aQ# zafo`eK`S;m7uG~+C&Gju^fH&z03D)`$i*mZ?FXd@Aw&g0QUO;BM0AZkA!;!o5(g6K z9L?@TJn;ZRQw0T6c;_m zETb@i(LMS!`_AUW^>jeoQp5y^c;op11u=q~xi8R;VIW=~LO|(Gl((8p-imAqAnSO!u5l>#iKxjZ6{Xk9J#xS2AM;wNcsutUxh=Lbo` z!&!`!0R(4QMew!y5>-IO`?AP3K%OySXJ8An=-So9yUZYGN)Dim2ar}ksr+zaYb zl*&i&NIi&QGYPwjQWY)2{f854nA*lWNKsCwQ+m=sO{qw*%Ql3N;t8hNZ7|I~o%fPh z_f#gtj|Wi4B6@c$Iu}!v>I0+m09s%o`gBBRRYA!5Y*rfWul!ftwW>NeY{ji*x5n9a7TU+$XH^eNJrO#{Y$jtHp- z9^6j^$%Fd|Kyh$C0mKjPCqNEzaDRYv5tU0h#EVALj^~{cyIC}CWC2MA2fta=V9=W$ zNkUc$w!2O?aNr0+@ZWHOXu4TxMpkL2bh<*6UI%*9dlgp_CI!Llxtx&xoFeFsLt}@< zV_*|SjvW?{fz9&3w0>AT7LYy&>;~H|>Ca2NmO+V!#nU&+fQ)zmOMihE4EobShQs3N zzn4+72K6~C9t+7Hbg;wXu_(EN5)O;U;CX}Suz30=nMeK+0Sttg*Lp;W(Mwl|2GDdC z8is}|MAKhZ{z*-nm;SbrpNyuB9Trc2Mvf zbWx!9rPm?~v|W19da;Az=^sd7<{+^U)2|OrkJ+;hqKW2!&q<|!Bok&2N;oKR}6U-^~y@mR`&yRR@x}>UhWwI2s=_SLHknh1AVecXMneHlVL!ft#xiLu$2n3f+4==ufx- z6*NO*E5$Sy?-^=oVMQ@ad5%~{ScdUykZZ~&mN2u$r;>s2p!)gct@Dea;jRG-XBNLY zjSwRH`uU|$dB;NnG6V&oV;CHZC8#b&^kLEQXGTR%JO^0w|9|ZL2bfjG`3H`lIrpA> z@9w$mUiyNRMV6+Nr8kvDil7K9MU8D~ix3uAcUi$+Q500Li;Y-GVnJhUF$NP0me?is zV2zqY(WtTe`+VMa&bjB_-IXLJ-~aRfJwG1K-SfWh%scOtGxN?n@64zx8c%N?lG)R3 z0Yv}|Cqg$GyBw~HbK!1V4;3;@Y{BwzFmcjtLd6&(!eO*4TCjWy43uN%VUv5k(kd)1 zZD|Mb5)>tkwWKyk?7(F;4NIzL;0X6QHB)tEF|)T#uv5`e$}$5B=**;(8D|NlSptg1 z$&9!7vZAHRW7>i#xU&bcPq38U8e=l=NKsxBEv0XSBFy%&gmS0w2g)lm$$b@N+KwN6 z1i9wKZ_tVnjJ+> z#wlWne5m9t0f7A^#8Lu{b_j9@QVNI?=>YZ&No=wm2!hVFpk%yz7>Y6}gJnoJ2sK&g z>>ntl()l%XV06S^1Z?0K?CnWWQ*p22F<=YCZ)@*a6DLlXPM1oBXH5+;ra(Ntpu@V0 zmQ{%hjW_lZ#Oz27FXJ824XSN|uEpN$LpTPrI>fcuo2PI*LDyn$fkLPZx)ytj6ihq2 zkdL?cC9q7!$qb@hcOm{31a7ktSK9y=xY`DA;A$Jda5xoL+W?L_rscWXdN&TzM1S#_ zCK`IviUT=(p1sCV;?n!x5USdcAS6d55U2QEY>L}}3TvVD|S6lDJr&N^JuBRxCU2PSWb+xrY z#MM^cqs)U3L0oOU*AD?t6yH0~Nj3xL*n%dVW4(9p)X?vjWFSezIo7^Q3s7`4$)F90 z_mty(@HV(~y43r0Z7X!9)*;RNj4B-aQz)7>m?k>j=c>qc>iiKpckiF7l9eX7UI%FDTA83QbA`pRF?bMk7r@+EjuR`K=-=Ez{NZ)Cs!xH$c6!X1eW)tIh-)o%tqW60+075Fa`$8z7;@qK8u-1sN7amEN#;8-R zWX)J~ZGd(>V;L+jewW#EEx58M_+FHuYhxZ?l=Uq0VuGYAl44>0lj!t7lbMF&#VumB zB9vL&##?KOqF#4O^ek~*F46Hk%j!bo6vDBWH%u&nOKqKA0_7#mZfLo!a3h|x**n6# zft7TbCInt-UUz%eKNNGvD|0ttVV3%-czAfdTt?vBLH$HRM7k*SO7nVK4jIgttXG=1 zo5i&$3LLrZvQ|hbDav}Kg~(1|+q_p=7_1c4pk8TSe|Nb^TvnvIOS#MM8h$@AH}VF$ zF(LQmY_7)fM!8hX*aE~CHxMd7*K%$LWH#XPVgs!wjJFa~c}2sBVRBn54Fj1(H3(Kzv6?092cPNL|HhPkjhqj{5TpbHU|m**nhein5p z;-M0!x_zOL&>5{roYA~#mcG#xOUH76g|9P3+Ov!7$a^V&=6ETSKnS7K+>4!$k)r=cGh%g^ybKd_>}56lbwz>4Sx=4JiB zTH>fq`A`d@eqaSrKd^#)Kd@x{EYZN*p$=QKH}DQ}S+O!7dj`lZoR7r}CuErIm$h7U zJ-i(-y3m^GwEStSQ1_=n(`mW5R1k57kT0)g&1k_Sh*=6#!(yl9652db|3oz`nvaup z6;VjUkwh$0M4E^?NvT#-$`B*F0b3p=R@Lrph{0SM)A^QluSxfgxf@bf)N)02A_{{I zLp3O>)ag32)SPubTn0eI32H0}j=Q+r*Q`~GU1{fO;Aqa#-l44X?u5=&sCVc437w}< z-_BhKty8GHGtUAx>lGT3VAYxnl;;Q;;Eu*3(1nWFBT);lJI7qCU_}C3D(c|ZYc5g5 z_|Auu*<}h%N}wNKxC}C0&Y7IseM;xcNxo8tw#r03Zv_s#^UYPvpWA(=*66hWq(;B* zDw};^u+n+9*~ohBG}CNagOz+KkDo`&+peEehH4xK$xr9-9@i z<#D_6%$CQm6cLoiuNBOe$DN9><#D${+48tIr#$Yn<$(z-_6r5sy#G#=K&e5$LgRoQ zcyw1%`W5F7$ay!cJ>Hq*Xy@#jH9)Z|3%w7SY^>DiJ;LVEq|Ey5g>Uv-5208cI-oPOg%p9yR6uCF}^_@wvaOJ*;R{6om|Utk!mVV5-ZOvp$lX3 zCawCy7)>EP!0+N1tGDM-Y>k)5JNU6Vb(brc!#bE|Osv9knrcJ>9S-Z@Q8iVL2XK0s z1!As&rOt`>(%dy5PH*IHz7y}stl%9Ia0hU_C)WX-?oIkVdh~nb#qTWkx3mQNnEYGd z&HFj4dX30TkjrJ4;2D5*V7iFy#%|+1HWs?k?uPD|OOQY@@Ft*kN3(Ox2U4_s+2~Nu z7}%Fq&%?E-j_IH45zvTEHXD)N9e5rAyE>%V55?clh&s03>A|jQfYxh&R$5qQre$2v zTM+dzJoF#G!A8d+A1DnjT}vFbqM2Re(vY7<;Fs~xL6ZyYOs`uQ0Uj*UU!YY~&0U79 z{w9%AYU^|$7hi5-990Dl@fZ@FfW?%&{J+O{p?n~Gb%0|cDA$Tk{$6Tmn?)(9g z;<*N_)?4O}3-c!f=6_V?ykP0QqKt*kzwmC1+(4p{2kG^fg!Vht$flfufF1= z$?fdwlWuNqf?bwMhUH*38czo}$n*kJGQ25dIPgk*9u*+Z#4`awCLqY5yMff?*iYdy zaM*Mm^ZVSiq9hi@Y;ahN=O}PlXA^oLOen0l<;#yz|A7~B+1a8G$?QFA!EObfE5Y(D z%kufgEQ4kDKR3xSpt3Md2D3GI9tFc8cvu*(H)gn~eh%coNs3J}45-ZXIxxEi&u3t^ z$})U1WY`~Fo!EfQ#jZ5&%?R4)EROkTHMmw+@7~VyOXBrxH4*@(xcC2|^jc!NQx+?uuWH5cwmsgNr>_-rwftu2t~(1)DNV30RjseUI? zRRJ?hvLJo+1A6vK!%Ao1cC@kCh*N`SHA3Bwc!NH(4NnS=zO#@`ORg5dZp3p3f_`L^ zI7>=yJ218*!HDXZ9Xe)hM&LK`6n4iqfNZd&K9XT$7%*DYAITsw2e2|w`@JdAo@fVR zryq7Qbl#b3IkcCa=qbjCYz|QWf0-M(@F8Wxi2V#Px~YG$yV51plLhG>D+>E?j7*$E z4J6|X5?O%fE3kbE@Q76mT?RL>3-B@xFO3t6INnNfag;)k+!d1CaAzQy)q?Tkc$R=o zcLW;oDUg?u=O|OXq;~l+Sr<~&J@%D4W?($0k7_2=(_s1;o7aLfo(9)kprpjXE8B{;kR4!bSnDv@J`AI$;12b{wQPsV8& zbvUq;dwk7EE^Wou-*-}$XYCvez-F>=tOU1r@caakD^Z$zzG2XICvl;16;ONG1omYD z_YfgxnC?emo&Y$8dd|^^e+C}2f5q7VD~`nvJxy&EIN}{DiS0n3_*N(LDPo?A#C9X; z5Wbc6M2rmUrN1};vX{rsjgo|+_LV`L+wcrVDBi?90Nz~f6QooDGXT>MfE4Khf{aT9 z^WgVF%jHxVFfB&o01v^bo*g9iafBAlhcn(T68$>B7%?#KI9krGM%S>}%c!85tLS9z|evK42&!iea4e+au%b zx83!r9%%TZwc)cLTfQt*JP(eG;6o9yIURP_Pa^+A;v6)_Q{SEmPQSo|yJRbF0?ay>ZRKIIm*kdlE|FQ@j_92pM@vRx zQ_$#!AcadkQcC*>KlqH)!Xr?}Xq*+B%P@~B@xbjcJcAMcD$8+|aI7N732^_8GCVey zVJ?yUW`kEPo;t)9rBT*S%@*zJN%;`ZRiM_Q4YIHQo%HpO0n<-L#oxtbVSjyG2gTpT zI4GLk(9xi^JRrm&xc(YyPK?z$4wQ+%MR9J5BiKW+insAz@iKn)*$&L49e5l06@Csx zK>XuStuh_1BlQl*bHx)l4HVz;9#UaLPqLN zy9Xn6l?JQ9dnKr#CO6Wm=2grc^mf_^;WWYnP-z1#WzawehA!r9@J+s7~CnT0uiK)m>fON_N zF{*Sn*G|pW=3@xK*<4#0$Gb_iwywirtPS^=)KiYEcHRm6olOj?B} ztpd9qw2&1X)F0nV3(RGHjyP)zf!0cth-TufvB{`{2J?oMf_;!} zCYR?<;F<_QSxO<}5Il2{UyqDv-7yLWpH8f}(LnWy_0c#Zww^jJW398GCNUAPV87a)1bMU7% zElf@rij#pT9q=5Eq}rkX(Tq>c&G^(NG7bwjj9}Pj)pSAunQ4@Q|6O>_LK>GN4b5_A zN#oaHmOD!#+run(&C7CW6IrgWKB}P_%WSl+B$^f^8ic}Zfgm$pKrb{5_D6JzDvT$> z^aV~oPEUk62(XraGEbOPL>Nvmu&HfPJ$K@Llxy+Ip-Gp4q;J8q0<1S7c{@G%P^Kr> z0;$uJ4`q7thcNve3H^kF`u{kQt$(`%T<1Bj<))uQWBQwsc8hIJ<}I*Ju#3ms=~bEi z6b}zF`?^hR#|da%cBjAejFIl~&0K}EnNZR(A+=}m3;_SFHpMqQ&ejeEW`Op#Z^(4y zI3lF8ctfTlmxm&~GEAG}&sw?m*~UWBD^gyV308L+GtW7o@Zz8?hKU^?Ieo(FghU~L7j##M^vy2Sc0q>`oD0_u${jc4Yvo<5!kK%J zYB!PS8j+|6gW!vD%yn_LVS#ICSvS|qKqF@48-zcU#YHP=VmAeZ+qGsaA z0?Zs7<13_dj}Vl(O#q?#Wqudz*u*tJxz(OW)PbKZ`;6~E$S4j7H2sL+QG5Z`Qbj1>L}Kn|fn{J1z9_>~07^LU}Y3Q#9sQPp#k zF3n`Xb3UGr5a_q$3obXx6l|A00LfQzqpZ|S1Uv-#{m;etwg8Z-p1%OZyMd?%i3K<&XU7u>%U?oR?k74uuw+f>E;Hg-F>dn#FNs3A5@e?KillZgQxk>q zRjW|0#H5#7F5w!X*T>wRyZDkrlVJx^49D{&SdG%vzN$qF@>X#6%w-~G*~XzNz~+2B zJ@$ej3q2=`Zx1m=8~}_|@m}&d9R;wltucD22-{HX1n>xqjpsyco99{EW`C6f%|tdy z*K>pDF>3tU2r(AC=43W7VfL5kz*kBK{xC3uZ(+Z+GQm_n0z8FQ;`N_-P$b>eekJHUYGOkwU`L0BJ2n9~!xAccxK!0p350h5;D4O6NEK%@*q z&?B8FX?Gt(LQu+~+*m-*9gp(z<(OKqDcJ60rhvg#bd5uho%4m|N??Xcb}o?Y{1Nap zT6iVzI&j#OiQk8SeU_9Bi5{eMCPfOd6tg39d15rNQivku2x6~J97e22SqX%d zQnSGTHziI81MtS?ARCk=_PUeF;4!x(E@2>*h1GU1u->0RxjAuLnCf^^+5tOP`n$wdA)QZBc>x$~F(_i-4sfQ+{^HbzKLRplM*jZd^iK8{vtvQDV8d{_ znf=8T9C^)*{Qbr0o$N2>?l20){l)2K_ZQEU?N80@FQ$>%m|2ni#a86VE@JQd-0k8K z5>3#MKokPmTkOSh?W=vlTZ>OdQ{IN>hPDveZY_>&djy~6zqYkF*eo1pgTu0Fse3BTt9nn9dz!4};lTN- zdAMB6J)Ili;bG|E>_gm5=dMz6a8HwahSGz3n%pxLj@;Aau2xj`o+kG!#YFFEa?e)A zyr=2!l9k9kP41e{h|1qA9NiwAv(GoXb9ZNZWt-m&``_Q?ioHqkWWk8|7Q<6K;5v*m zeD$c6_ya~uM6lsD)({txUY~`LZLIM}Y|u`Hsy*mhDx7RWN-6v?18lAq7X~RS%-O~o;(Hfz8*6;4O{1^R zJE}sk+;0~Jc{R%|D7rKoNQ>;%Eb+&1>;^Uq^p0;c*J25yFx#FGA~~Ee{<1}-Rj5}im{Fl#wIE6`+{zk%%_2(*>5Wu3KiJ9|f8E>z znc+cO*yL8$_@8aW(!#ks38x;H`c%UoIlkTE%bXT@T{d>H$KS;A4IG5^xGwZ7STo33 z1*M-smEhTDoQ3C`3LM^sA}WSHKdKsq1}h*2Mylu%ZnvEHA(|oAA^NZI^d5`#35+5w zF`o5du4V$!3jB6wC@>2TZlbp&?i>-HQZqh>bJJnSU<;C9@3tIVZ(=eUeH>HT2%OXU zGK1?nKxu>RqUgaKcLT#2(=LC=jPGQ~xnq=;hhU>)l%nGd937(+ow8SGMaC#4qzl3^N)efYMq`u` z+GGhFqbL~0sDj)vN`rPPXgo$Kr4(n!HakXXkg|gOF-q~h3+x!BVBf-0bW<3k6f7^? zEedjsx)l=oY#!;HF={cwr8q`ihn}GzIz}lchr(yaC`HB#qGOceQn;oo9HSJKR-s<8 zLSAXHt$Eb%<98Diupci_F zy^Ujz${8f&rs@ba=u#dZi$U)SeDNL8?-x56I|>xbDA4lX9R(=7F)epC3fzHQAXr`w zcRC8Nt`V)-QGgvH=sO(+*ze$i`kZTLy;_w$6I?r+sMmQ~BK|ViI(PV}PN%fh|HY7@ zi>W_iyx4)U;@-F6pw=Ej+gVNg$INPCky%YFcUBY2o7KefW;LfuC<7PT%MQD3tH}*84J7-7G`%j)RgSQV^(wYcq>=a&y^AnIJOm)^q z2xK*D>g1WuIT56u_TiixK{1>j6X2W|K?etLuZ!S>W!gc`1rZ9b-v0NItc6P==oyoy zP3OgZ<9N!-r4a%U(`QxAltWLP%OZp+V^Oagdj0E%K6zcK);2${b#w1%O|+mB%71^d z+xVu{WXiNfXIL0dCgObYMoCy;fY8fFqPIRbcgy@tVX#*`IB&5@- zWhBFya5`7ZNQN`vEWt@WB!WT9NJq4cWH=K}=V=)sr8M1~mJtRiOXp}AA-;E-T1GOQ z3AdO8bs+@HTO1k%sb##0qATJ|IC4p8@-f3Jcm3YUZRSsyFr-5*BN@(wDZJG(lHp7^ z9cmfLa3+k=T(yj3I1^T(!kMrN70!gySuG`70_9`5nN zBcn*T`?_lDY6FDq{Y>_BFO?uASh^wK-fn*g(bCXINmllTVWkpPy#v@*f#1?lrrk=& zLxtLsTZopl{s;WPBpyMu-C%%BQa@1k$(x=`yH!0F_XXcZ1nNy5ZE3S__cmm1w+%l| z`*vkSwC7JDe&9a11$d79UEgvt{~YT$j{)6*fxGXG7e<|m7pJ2=lD1ZT1+ypcEJ4)!VPxNh#bJ)-E6g38n1!R6h08z(q}e!{*?5K+Gz-}JS3HQ|UB@A| ztZKqMQeQvkNG$BHU{rT~rZWq6J05dvyT$m^?r{Fhz)u&4Q5*19$_l$4qTG$g^t> z{4(gwBIpf**}dHsa<~gW{HNCtC*qHRR>Vf#(ahrxmb!Vh*uZmGP7y>1%*NA5Z9H_T z8i>DNA+o@u;o;mb%?>3%P;-4KgI|hZo$7f=?V-%ulK|TQ)DVYDYd{4ADNoEvIYg6D zCDNo0ml^Lk4-eExrFo6L+2gd0}d(SiAwyV=! zH2v5H@;0U{U(-+iOZJ|!K+{h)WAFJ3WC8blO+UF4dk_0t3PpQQvRQji59v34*wnKJ zYTR{_ZT>Ix_9b%`E&UN%`xex8)w@onbq9zXu0=eAYWt6^JZGc211k^TBUYYu0%ol| zO3qq&l%BQnD4b*EQB>5*qnKPPk20o}=dY5L94pU1i25H`dAOT;@F32ayNXNzhYcav z?ONpfU)Jcn7XM^1QO&crM^_DTyy5|_McVtNt426p>qLMILITx827*&ri!rNm?AMTATBPHZzR z(Q#$%N{K&N#!q(kj#|7R;znuUar_S4zBQk@37vZhd3wSY3YbaL@wcIO*JJ985 zCF+<}a3aQ-j6Hl9E^z{f_?Y+286p4WXzWWL!ZTt5#$SVd2vu|HaLb#S9$|+~w*mTT z1bqk3d<36`v8OFUV+cP$zNYm8Vgua)B+<7!5of2?MwWV%@1YUCi>kQRqxcc0ca zJs97TWqb(Vp+7MlFh1mtkTFwC#FBJ9t}?zGVOw5;G%Bfs;@k>dCYu1r zm|gSLCNnrvD2uA{$z;i++QGAXpgJX*QJuO$RAaj5t4@iXs7~y-5KUC4L=&phLnuqo zLnCRT8U2Yhfu*wNp*i6^I4nHBao>iR`&QYBd6;+)SldC!@W2#Q?N>*}Irw@txA=N23 zRtk(04yXY2`3-;^50C88?eS^}864dnU-%ZohDWz2adOiNe1WOPXSL^|>{;zONIk1P z2PJ2<=U|#StKAzySBC%G|HO?P#-14SC^Pk6KX<(#4r`oGt*izgZqyE!ctCD{py4BG zhYQiUcDN9oZ-)yBfgKK7nQd8FbDPXFp_SS8l_faP$|zW#9S#bV2JMt@hYKmq+u_0> zd3LxEuXZ@7VVXwY7Cdr41j}1o5e2E0)j>kJXr$Qoj%cya%KFD>hf8cTN1}7f+Toy; zDPt#Mhl5t8$avNc2dzwTsn8AwtxQpA73viWW>lzGE!ZYvhl5t8QA+acaL~%=Ne->7 zX*(RWGL2Z8YlnkYruZ_aIIo*$zTY%wp*S+}#P{ZEkV<%6UHGKj) z=3-v@g!4yFL4YRpH<nfdQwBT2^{xy zt72-H!YNNqJV_0wwGc<@d3x$~YJ`$Ap6psnjckumAD7&F>VBUZHC*5l#70`94-%-8 z(@L&7z89=o%TE$-5Vj5eB;pjYm6RZPO8{UW4zZL#qdkP?2-2%UVt!kKzmix&tqFq8 zx=zIZ8HS=v8ma|Z*-)K<)nqB9(#f+mqa*&Fzy_yYr}m_%ZPp_FOzMbVf#UJZ>eTFi zXhrcc4q?$OhI=}^I zRtIo!%y9q*XI2Mr^t{--GpkcKQmI3tzc^D94UeT35d^YlR)bqev}aZasAvMg8MyYW z#?;Lt!59f_eufD|&#bn9o>^^yD5v0PTRr13b=wAIbVq-fiBi!st1S>cv)ZEUnbj7G zG7rSm^CDAsy`{|WJ(Vfr00Ok8&HH?F){4=Wqgq&F&0CHw^0EA~&2Z->@>HrZW|&P)Wb8Y<&7s6%S)6&P^mmnGxhjN#DeTke#Y2&XI6*sxM}X{R+@f;MthTtQG`VM1r(T?+qP#Xd4N)4OS*@t-nbkIkoLQ~!QRcyiAZJ#m zUjLi&ey5texrmJAZM-#kW_9Y_NeG2PdH)v-9XYewzDo<(*_qX;4~|CccE_M2+?+bX zc*Pk1#HZcfW}gagvrpIKbRG9Kc&lRoOv|~!sa`H4a3xC54Gt0Mba-xXD!k1e%78sL zI2GJG-zJ@RZg5B`NoUUu4w0R}w)t~|!(gT9;N0L;fA{AiaamfnXr{_tmMzYRwQFsu zf$j(i(3h%8jguPXa&W`R!RhG9!6CYqiVH$!11?Wz&;HF~S3-le2MC98kC!AO2MDJ| zOJcF^Cz}Y9rUIO9sE^qLgj3nu?77gq7?tl*ap3{N(E0QL;Z*iE`?P2j_~Ns-*{5-U zaB8Z1KZYM3Ae@#1gj3nu?9-g}ii(`d-exaIw9D`|`?MT?o0{dmg(9@K+24oa^(#_e z8WwBX9%z~R%5YevVjql5UmK2jY)W>7`NnXJVq3DK!ncNF4OE^q_slz~?+k|roFbgY zQF+O^6Btc;Z%6Nd|Ho+PZhZQ zYI&@1v3zd2@|*HqA0JeEJytl?UK($j_McREy*xg>rA{h5R+t6qq{3r`(X91)`BZqU zFpI@WWseok#8ds`JN~z>mp>d$B@y2bm0H5iB6X0zhV7KxGz+G7#<_b}vyKCOn z(%7?c3QDL1=U?I}ndCTUTJAl_eLN6dWZ|+0bFvIzP@FQ;z%{gud0GlBCY!;uHH<+U z5YcU|VoxRGheO6w$@pD>U2$HKBvnaFVlptgzIy;U4FK%e+}InzVft>Ict|Tnvb00( zkBC!j(j%GlG2~Rn1@(h~?&0*bW<&-urdPh5FtL->SJn=q?aYL@0`o@%%bQy|J2N42 zmQA6!`r4EUaSQSS`c6%VEJ9;?2fNgg!7Z4*=&fQ8+)OpUOO0&_$z=DUrJCKP#v%@a z>e$ijE;SA*uxq}Ag?ZO0Dfu7UHRY@#9GCcGY@29L=l3_6KAj+OxGel2>fk@NZJvdS z32d8ukJvWP6EJJrRC3m~sr0OEQ{f!jrlO*@O~vHeHkC1Ln;%G4a%`KQ5cRLwHh)Ed z1KZ~B05ogcl#p55=3f{#$F_MKM}Yr(+hzvI!n8W_RD7*j&(Z(S3w8Rm=~a8vvGxC* zUZ|+@dF{{{NsAjl^Cy)P;1Rpu)M*Dz&B0k01I$&~GBup_FmT)m4)dxhXwTU|oD@!( za4=?sS={&u(Y2)$~PUjRV2Fc*yLuAMGkU=lWIKy$p5~nUXz)I3lV2J$uGGsU4SzJs#jJmKZb6jo}tr6 zlTNoMBW&S`umz@*yP4x)v-7tDNbYWm@XmQajW}95$-Wj7Pd8XhKZ{8@Eyy4_z>Gqi zqIfacT!tsZpCVXSldZNSN1OKmrRUFCKF0xIJL$9?G=aGjJtU_Y^Ht{20r&L$MN1?G zqGOVw*_cyTH|H2^gPc=G(iI>j;>=1bx($y@A)#EiVePMTmn+}~tmxe3iV&T@ToDq2 z@YSG=mMcO^^UD=ski6xJ5Ffe? zYZ`t1&)G9?wMmxyxClK9a=BtMBy7#$E7xtAZN z0k>hrrTk(h`LYGmD$pwy%&0)GS}?j)0heLrP~!8JVK@qFdue8Y0*=BOJa2&_x!vN+ zoTeRxXQKdG(NVa8ISm|zwc;Xqs~T{)Xv-6-JdM$&Q5M1aB> z$Ov7EhhsXMbtz^u=7$%!6e}F}-)7ZycU6?EOR5!?Ixtxm^`H+j7UXE#%Dm=(s#~cL9F@*=qDXGkZEXNf7 z1Si-qPw=a5yc|<_h*^Qyi8vF3KP%qb7Jq;i_zK=6;UshkfA{{F&ZqXCSv7Umlqvd_ z9Y=u94j=%s13-*XWFU$2Ef_&ypq;zi@%uB4aP7w*{3z0huKoB!-WDT5u=e8*{Yv0q z?Z+RcuwDD{hqo15L9q7Yk5IB*`|(GP7ILum<1y15@@ugXh$G9K(v!aKQtt=to`_VQq+>i(OxtD5q|whuJ9j@O|%`)6u< zk9*j*&RZiK|7>l7DR23*2JD`n@A&8FH=Oo3TlUu}l<|(nnR8-g^Dj_Tn~oon<;6N6 zmUQd^rPjYpp-vtLC;xKF0UMPEYn^|^4FZ&TOL6|1<6n7`fW1*j92XOD76|rdu)xCn zEW%muj(;_gXzSPYDMAbXzggPyZ+ryuA< zvQXx~dzprQ|7%HGuF96negB<>GXH}|5PO$P{ZEJC1f-5HvG4wj8Wsiz_+aSGuKwq$ zHg)RQn!WiyRbMLgXaEGLqemGBDy~WRUnrutMTm~?f1#23dXdXr{Vx?+Zjp}vrA8g% z$=Znjm4YJ#R6bv6ls!7$Oi{m9sKV3L7XNFFFutR>cYmYMBrjM&Q5N55q$x->yw=tK zR*{t!>Gj`J%x4yi12gx-eKy z(I}45I5qyg9F&a(YyHQVgt3v9`(F`sEx0lrtm7yX*Ty>Dzl*_Q0?OK(uI&KB#Cd(I zF7Ehoi&$;^+n8?LMpNz(#G>_q$@*wp!<(Yi`6gmvmqsb^P;;PXi~^;9%`kRC<5Cnbd{&czO{I zh^-Q}+3_#56O)uKfch61eluKEla?TE9Xd zhGes#|4U2jMB372Xn}JiulDo1$&z;=ndSy7#myGqk$AnfgKH8s*jnKDw^(8a5^-T$ z^|Bhrzttj3gwwJmOXgTsn=PR|386+PtKj|}mex*aOKRk%hbq}}==gVAVp|eX6S8U# zDc}L;-)CuUNaM1Hy}|-p9(ea6zUSZB5Um+PRwS@m8yvjk_`kR0RwPRv7C8Px7TFR= zU3M1>jK9@{ItE)5@uNuzAxbBa2zbDX5w3i=dqP3Fg}-{{7m zbm%(Wg0(uZoo<6K_hsx{WxB3t zXQ41y)>+8!?_MnuTW2A^+|{u%a2E0hy8R`9br$kRx%~dzJZGU09XbnznC1QrR3w6U z5ig+-*T_rAA1$dg?@cr6n!LKggeC1EH3!e~`bQMO}(` zsKBW%O%7TAAb*;rZ#2H>w+C4GI-{;Z{&ZIrpiMx~-sjJ9UqXRd*Pxc@Zo2CI7gb`f zH;MREw5>#Z9HfK0Fj5l}9UGjO=(;+kTl}@=D!|=p9sf1an7WDH_=aFLJo_36|2uHu zazG3AaQ@qdy zRH;Uubh+3|O)B(e@>5dp(4wq2lV9L+YK76;!GUKuAb$Z=Dl{P9ZQT_PFY3+Yx0kO= zyqWwGX(%i&>F+zZ!72^Cnf#6xOoiS|{w@}UzJg}AP8Q5ik?toQ&A;W%bcz_u#-a*a zus8D$a@jb+>u{HsXQn3Z4~wwcfcP3LHyR;OJ)baM7R6jah|6hAUTKhlks+=C77?d$ z4Us(5+K{mCQ*d-oQr>6au$@UxO5Vp$n=)nWbf-XonNFeposJ_$$YJIbCoL~iD#uR8 zxkfDnn65yP00%q8@^=Q@;~52;AX@56C6*rqGjlqfN?QwnMPs?KOu{)`V(|(kI&uH58{WZMZPT}T+wMcwYVK}?3BAye@BC+fu{;GNl%bA@Z zQTISo#TD9fme#|u2$K-*=bhji=WPTio4*`ee#iTKN8av0x8B3(q)<+;mGe$Uq>VGN z2Lo60D3jr7D%E9jc*yWH*D=a)9PRKlJFlMDlshub;jbs$`|R5yIKc_k=@rb?RmQc3 z#pX1CcW)774dv*Avvki9!fx0{u6K`jD^MMOBgL5Gn9>5O9A$HZH>bPo_~G0Wli#Is zsif=&KQM;v<2?~n_|J+-rm>NDR*cx5*tC66>;n-TYadH6*TwA(7K4I0C?;7sDtOzS zpNly-M*R-O)d4J87eVB{CQ`oI)Xlo+tuWE@xAfWY)4CGRZzem=d0^B}Bs|Zfgnt39 zKhi(XlZ6%BKjJXq^E^>3*QcTh)+{@65zG&`2B+x+L;6M}_8Oj6`$G6$L4wyxf_nkS z1h36a@Y<#l*p38u{{RMg;xH!-((E5~BJEA}+@LpuX;*f9p#nq|vsnmH>)>!AHmk2Wf#6j~Q0S-1&%sgUj z4(^s5oC1t9xKUq%58OBFAj55Vu11(MLOF&?kMcNh1Gs=_hWcVsSRe1NeaJ9h8+J+? z_HdZViElIES4{a3J9 zUibMbcZL813Zv(Tpk*AIsQ zkW-H|E#OOm89;|0(=#nAn(I^jt;0`AKk&4oMC^NF+- zXK+J(aH;*}2~!DqU&K=nMy78d^M(ZL>1rm=2_i17VWDmXJn}DuuSl@jeGGWe{Dvh< z@IhRe;HS1rCD77j!cRcG>#Oq%E|0z)BKRNTmNzgsFcf3H6y2eXnBoYq=J+`#12%`? zxf0Rt3RxW@tR4k!)Sbv$cLbP$#~kjD{uAJwfk`?U$2{3|mu;!D5&N|rxU(57KkpY5 z+!NAWmmWY^`pYLg_LmhvjF5rp3F)y{0`AYgUn={Lo~%}^PnWA+WuEfLF}8m5N#(pd z4L4kvr!DH!6Zeqs97c$2gJa~q7jT2nEe(w^_DJu9f!9_#x5hwWN zb(lpENAHYH(2H@LfR5Q)TKPOcd$NC7g_JMGV@^o)LgJ%uMjtc!I{sXapS=RI^ew~K zw~S%W@+hLC8Ir-z5cwW5SeeL=9FVe+hcPn#4aS}}I+N(ifw?DPo(78p{^4Z41?Sts zQn*`6q0fP6e$+|1#nt>aF?u%M#~ut|*ka|kcO9<5@qSODRII;u6YTP{8i;0ni3n@%#dc_W>}@U^P^7GX;h~q=v8iTw`VKo<;QP&Igq1>nu`uReSAA;fFNLJ_t(qi@ijIR?eM0HE%EJw?bBvIHn zSLh2Ta~+<$5u|W%P=v3#%-q|+=_miH%TGRjDCshPdd;Qovj-5W{Jf^~&GqRK(w)67 zMxBKqj}Yxg;njetv~3sai-hWr4ZzOtKGCbJT^-8VhRg!Iiw{cAkO zg6HL7$vq&$%niVCD)KYIK95*&}oITxn!4d0cMR*2?swi#*6_}0m6MU=Ti z9cO~f4en&S{1m8(lFXf)3XH7+6$`Vv=xOfc7d{8LedNX|b2qtN54aC1M1XxT7ry%g zNb)2@VcfZgQ9dLvudW7S2|QvpV45h+y;Pu1B}fTHG58HTjfa7nq*_!DQ}H#f9v-M! zlcMC&Zcw8~=iWmpd5qHOF*zIgT>d?-js`=2SWus%q=#uW2QV%0IDd}ie-2>nVMa+0 z^BUlhv4yQXQ^pB6+Uo&=0Yybr>O#P9Nj z5_egUC-J3>eRshs<~di(8oRk!i7$n;KW|#%fRrckzDQU8?QMG`ei18O@pImY+P^Dq zGKV9~oRL8bSRq}~S-|P%vqFZf=K$;HvqDCpPXOyEOuo?QaU8P{4m=VBjKG>)r1>cM zB#?E8Jx;p1-viDaVkM$u(lN6IvMus3{Xv)mM+Nc~h{D!!A>gMC4VSU+|rQappfWr$VyIlyDLqTF=^Z5z`O^e}#t?Zgns0l2-y?Y_v4 zrQIOgXgsEOEUyap3P@5LGL{ZQENMe?@WOxHb96II^Km`(GsvZOB7NjL>>21UyUW+M z`wjeX`pS2x=E#29r$Ea71s{OvWM1~XyV!fCN-$^gQ^1IdysuS{_s>lls%5Isn3F~a zNhb?ASd?i8oh)P@-xJ?>K_NSnP$CO*d#-f$3aeCw5^1V@=07W(%$uQArV&DLCf5R^ zo#L88R!2`AKh_qW2ZFP2j<~9HkRVEj>$Ik*ebssvl+P`NIU{1EXdP3_DoUHoaumF~ zXV8ppmRxQGuAk=gW|3_h5akO{p0`SNP307}yzTs0?8i+rzMjF&WC-s8(Ic=?(yyW?fQ8e9@P951y=ld0SYE&3^> zIOafLP6BE8T)epJ7dn+Mg7hXy1ZTAWq%|*g&x20eLtr ze~t8ArvRsY*Ba@&ehrwm@HNtN{T)z$Q5e?Pp3BjmYpwJ?Eta8y20mEk+!&e1)^9ms zkbH&bNtBTYqw_TNk}`^3LNsb%olIVLJ&GMQE~Jiez4rh@=)}(#2Hyed$@P>5cnZ;2 zq8@eT0-;V?T8*iY+ED7f;?5>BX)Y8~oortjAKM1aZ($2`Mi8y1Tv`64#B)Y*3Fqw+ zkUQX${AGOf6M#o=!Oz%}5q{V2F5pX|r{g?=7yOf%$n{9z z08VswH%-+Ch9u8aq7r_FX9waH{0~O0oOkyk6GBN|^%eL!!e5ywc7A ztcCg*nFHV^0v$jUtV8HQ)irRJG{*`3d>}OQ$BUWC87$=(wiR8A`*XrFVRW6{5rg>e=KJAvH2{c$21G7ERzm!d2lYU-rh_z=Jg21RHrqeeQ zG^FB`K&VtG~<$m1soI&sI=uRC!N>KW$>|06*!hZ7Jg`rSF^=lLIr9iN|u$RFal z4>5+0MU$0z#wPhdXl$2nSJmm|`79K@1F?Bn!F%AqwH;l>s22`x8X!h7_3|@8QDa6i zHx6C`(2fJs17}zqZ2|k~W>CD?@xOO7tr=%};1Da+xlampV?Y&NZw0(!&UCp#MS?E+ zQiASa(C5f#Zq1yfi@6sOLrL4cnMkKUWD~*4q0){XD6~q_Bpw~oB-RQ038glOReZ5= zoI`<|;movWdsG6#CC&L~d+h9H1&+;#hE!13^-gm)D@;vEFiydFs8JYvC&vSGODctG z?q-DtQAfrcDBCBSIT@HWXv{&uu^xrBGFbxC$gv)N^T&En<3M2XsFBO3{brB#_~keT zO~n6PietGYg3QbPW)JtEKNt@8Na8baou750=kq>OXO)gC9nybD|MJp7<>e#Fhm{X5 z?M<^_9d3|bx_nMepVC8l`sCtL9>PW6>C%CNhYcP)_;4s-{RilO2{52$(cB|3MDTkb z02c^&(bg}TS3f|PGwBX&F+bw8kB#_v`t4ydSNBF1!qYxpK&||1r+v8CGrF{49u~oH zhB{XFqyM7e<7PN6rTE)(oWFKXf)o&H*6V6F%IqNEUs~;xq~N57qNar37Lo z)qvW}A|gi}h=>iSUb#^sQ7W~OO4ck}dSt2mgfS7u$vMPeh?8u=!|w$-%kII&9TLf+ z838u9E&|Bn6M+2hpLdYr=?iupM@RHj$}p*rz^gG*EzJ4A6~vQ;BT`$;331q8BF6%x z9xz%}f(>sI3(;`~4sR0+(J5bhrr@`6AZjsw8W1hma#OZfX6Zg=Xr(Lco!SQ714SF&CYJh>W$aLRdz)D5MT?C4 z;ca56mn<&jb9k@jiLftQR9c04#ex|X>QxJ(1j9Q^Q?FTMiLVo_!0MHH-8_Qt0uGlx zJMwUr&&uH9MC#8rVyT~Vn^(+(CRnsgfkOa&dDFf?(RhrTITZCW&wx;Le5!mFFk0 zOMM>CfzUrDLb23qzJ5>AsX(=YRrB|3?biTk4U52oq?iM;iCN!?7n(@Pk{DwiQ0m`w2K{gZ!4&^B0053=2LEj89%ZHlGR`8gKbX2zM`T8kPD*5$?033FD@G)Oc=~e<%$#0G|megs4d3EMmQkMbRl?|ddlEJ2$ zy!KEL6!v)tmtWY9X|9+ZlY#W7;JF6ze$5<+^isf20%Z%Bl+2kq1w0*~Entp}7Xl0m zcpCr|EvG##QM7VbXkOVKo?Es}1)+Mr4x$YjZZhwKV_mU|hXOm41=MymB_PBC8cGPl zqreU$b&gO8k$MlHc2JCtAn+0a$!8Tq{*xfi#&yhWCRutGgzprn81V3>_GnwgQ8{0~ zZ7sP$Dj@BJBXAo#*lfz+8?Td;Y7N`$8X&vN*H&xTXkpCjund;2T2VQF32KL>xbz94 zDCTQm%6iN}h&t2O)efRw!uC2F5SI`fvt0U@2|!@s15p)r8)}3usW(WcGLLZ(B!apI zs9vQIcM+Z*Vh6oa*!5;xn-1iBJm%{Bue(=3l1}JraN)oF%67~TRI?-b*a-F&BTc4g z4NOffb1Qfha9Y7^VTTZc=s^XaAyh)7J_AT9m`pw4z?G*`c4Knd%YAJXAK z1obQSgvRxI9OLBH@4Z0vDuuZ7@C5bC=#ilfoj^{8?Vtu5JmTPdz05aY@-VU*3}=kr z`&{HjidcuUNrdfi#`-uBFvn6I&h7w|9iy$)nXmoMv!h^FFq1z+ly0_ zRRGxzgI@e$!qSUVly58*?NWO2K`=9GFHY)oKu+sptLu2w0B51LSHyk~&ab`L4(uFg zf*$lgv#9-gvF!-e=LJOQ+6L|(&hBEM^)|EtWK7?D18r(2hcC0!L$tu+nri0$w$+dy z!SbfWPHHCxS{er^6b-aEbUj)Pf_nia0(yA(a;h0CEsGweP~M!3<<+kLOH(L}r^{hW z9k8Ib;YV0L%h95a+S6p7=?jUi<W<0QE#!o$qZA5ID@zeMYTc#(r z%=qcFvSUA)r?$-aDkTT!9LLX4dT`Eh{7i)-=N!jZD=K@=ar`XBM9(>npRJ6WJm)yR z<`d@bKd@!)%y`-SNv!{U>tb*j?X~#Sa6Syq1Cb*WoJ4S7s9-~bVTf*Y8LgIH6PM8{ zA#xe5BAU32Rtb5R(NZuN3=1L#L)=iNL7TdaRw+Mt8Lb9sd>O6c!^>zD>|3}9T>-8= zQ?R_SJ__<2(Vs&?{{ysz+{FAB^L08{`& zM^kiMJ0heV|8jA_cEKFB(Wiogh_+|lej#fFbM%D2?f5A3^Fa>j6?T(0Y8~m zAK|yvH~c9;QmuF(G-ctg^!j>iaOfdr=yXpYJ51K}dJyzt<|}wblEEty)YnX=)fr&* zFC>NWRqn?{=k1u$k>O^M+>a}0cFl*PYp%m^JUWTdeI6W)_IMtGTm?*97SeSH@-!YZ zWmg1f7l7>_2klV=D%pk?x8bmoH{|cZ?f-_qe*vMxZg>fTn?5a%0obyJKUMsh&YyAk z30X?UI^2ySW2}epxL0RORDu!No+ay@4}%L!w?AG=Si)|@%=RqgDM0AIjt3V>jQ zz=PsZ4du#pE-(FGDjwMt*8y0Poxg0!k5E5OMn#@B1Hkpuh@Hy% zQuQNtn)Y~B{fM1@5lC6}BeqJ(f%*|UL+OF~5j#`ii24y*t*ET}5j#sUQS~Eswlb#r zu|u*FSxSvz&%nQ;EwrkzBVRz>8<(kjcFXQpv>lA=Xr{ESh~5KTdHxnc0%s%M>9{q4$x$YYG$1#n}`T2veAto5IB06edPe=zt=R)I%K_VQQk82F@8S`|p6FQ5ezUv0ks; zieN)6K19bEIJ)ewp;Lv8mi?8GE)19b6_F`ywCt~hHdz9f{V5o<_`--5j}>|i+NrSd zvcFPF3x8nQUxSnt<}dpzzIUNr_E)fP!Re?5Ec+{1Ua%<&Qj7l_61HS7o6K4Eznw+P zW&gio)Gv%K`zt4h!e^KL6&Wv#F8eDkRR}vwuv=MWiEC<+d z;~s2eKtZP^XW+X(F}F*{5qFY}&%k#NF&z;*5ii8Y(kh=Wr$j7hSSn|`I&O_?Vpkz_ zYq`+aaTmLU5SaqB$wuY@SJ-}7>$v9_$#AR{9dehT$L67(*g$j!HV76LfRk?GTIJ3m zTQRBy@3JL%mCJHz3-j8U^5(RHdr&T`bzn6s%j&!ctKeN&ofooNudLeD=>?Wm_-bLd zj;#ih_VE6#XV1_c9-sBULYb5-nNz|PsVE_*A+m>Y>PKR3n@ z$ILXbzu6cw*n=|0jMdpRX7SzWuy|2@J}T!`{y$$khKYcUftTg}rxmQB|I*J~XRy|2O>)-u`Fwlcs|=5q$P4se&t@zd)) zhPoMVFs`zwUmIgGsbYlutLgH*L{7v&9?4i!D=-_P7Ydk*bLYUls73h2&IsCmwilTFUa&W zlm?|9AYbTDfl;Xkiq!W6Qujd=u8Eq#W>w+$~PKxHu* zWQ_XC7TBdhfqkvtEduBl@Qr){&gEKQ-%5e?2GoaR)F$Sz$YtiWu(skYXjS}zoz@7@ z*1ebkvR`m1u=We?&+(~(p$2CAqAM^qSpyP|AH&VlW*=&YUd%bJRi*_Mk{7{HI;o^H zKy)4Lc|T_QUaWMnn^ANylTh-PMM%htZF$hmv}DL~jVgndF+D*{wX6sCfg#H(ERx2| zI8ey5B~_#d5o@GzA(n&K;tFV)ixF~=Gg!=uu?@2U88al`thlrFOscDh7MK;AThII& z(;EcK)Ae_{p2=Acg=%g+^D)#K=%HD$x%EsMvWyuT>^gC4rD?#>D90~5_1*uchQ?(B z*f4&Cd2t;+t*-l<%-4f3R9o|6Y}*!O{y#J?x~KAbT{SPdr|})e0A1a5Pv`x>S@WX1 zO38tF(LF=yfqBtAQ{jkt(Os>mta;HrOEFRNqInVq+mww4M`)}f5Y%8g&7() zyIm#OXm(3U&h?p(vaEQgXJEgC8LGuEk$eu4*Jtutk>-t+jZKsPnjKP;39ip9gifD# zeda$PV3XHp(z;dn9)=}epUIv2*fYXY!FYq_X#mlJeQUME4VsFH``H^b6_aw(bWG!y7a$cb@~*|HIyw zfLB#rZJ&Ma&Am4{IS>X70z!}>2m!-9IRHr*G=vyH(V~EiDUcwLidF>`6{iYnod;TN z>rg9JRH{}{aVXA1QR`5Lidwa`wzYNs-*>Hj&OP_$#u5Gg=l{Pv&pkP7?Y-CDd+qV; zy#}N(NZx`6O>SNjan_~{J!syJ^&_e(le`-Xw$=uRW8s-uh|W}%3DMcAGGRcVDgzIi zN;g|o1|BpuAgU^pyiW?2r78nwmm0O1s!SNtvZ_oNB}-K%#H*?dTxMz>Wo=&qr$Vs2 z?Wa+YXJ&VUb?rEHWO~r#_ih_{(7XkUPFhta`HUqTRh3CTYmpIE8FezRMZ}$ANH(DYHE45V*wrT*}juOUx}uorp8DM7$k#Zo5GDp)XI0 zcDf79_8=N@f$3t;ndt&^cVNK$yyf$k&4Y>VA%g@?yTDX9bb(nT!D$zm8XUU7Tp__} z7ntV>9Js*TBoJL-vUQ3970V-uLV^=V;$I@pBJOI~pGaFG0NXvpvILs!HS`+3BS{IlK2QDxb3SD3-2p5>7<1Km+88ml+`BxH`8#HeXI|!)<_D5mETzh%c z5vF#$s3T0)0_%cxgsD)5BTPlL&y&+B@BEXb>!Qs<-85>`c^4@@@QKNSg+4Lg6Cm`7 z`GJ7+iOH2N5hsV>gp}CO1CsTLNhCV|Rm*Wg_r3YVY=g{@>9tR5raRv!<|&%N#x6La z`&K?N-%vuE=$3V-`@}2=sr#T=vW-i&m)V)76aReW&`i?Wk_VvYb!(0=7H(*D*yF@LJmUgzoUm;1zg zO=G`R#n@xMsZY!{NR9OqldU*3Tti~&y)b;4f-l9iL&G+7Xn0e5tUG}%7&GqXIhP;cz9c$>&P~-G~0(!PXLk;QeWjQodbeR{} za0!ZWm0?$)@14MYOAzu4!(j_IJP4uDl>q-s!xjSpFgi5sn9HG|2GgNoN9r`GsSEFVqj)+r?AY9)p$5{S zVMlQW2tO(}*c5bV*b!%F5r>8vn+^>-hRb>2&``tZ(6A#-+l$$t(4nCQ(xG9;W)2NC zj1CPua-*Nap`pg0L&J`8l#%7oP=o2vQ0oA-MP8y<4@#>eh-5 z4Rr%oi~b%uG*r}7`QC{*G*t9-&pI@`RmS8DZ(ig4nLlh=0>3#=ncoX;7QT6Ca|vDz z?-j&cubEdvt`Gdq<47&>vuZG-Ui&w)==2^@Y#qwZHie-OIBC#Ojyf@Nkd|`Z$Z;J3!O3 zp{5_5nIAnHYCvUXfYLwS5}M$JLxC?ExXK1rX9ha(Y^Wq_J@ss;wV&$A%yxoh&UA0~ z@}nE(EL_&u&`8&?C)z}_GVq$yi8iOXcJ`G@o@9{=6$!6Nmcrs-UUR%P7PT}$DZMo| z=?Xi~3B8joa-|~SOvxrbmUFuUKZvYVtov#sbG@WFMbd~LMDcs5Em*B67i!7t!dS^*Y|er6 zLdCTYmrRvaN{3)2lUYMrHi+ICWMR4qtva)zu|ZcKngLO(W+BxQ4-1)?CW1@E-${vk z*wwb&)zuc~SL)+!fIC4VlyQJz?2mLgc;OOJ=e?j<0eUG-rpQnXFe^N@f2bS@uq%1s zxkQX>h9r-bEYkK?95_DInF0-;CXy=xJR{-&8b+O(I9Ki`+@pU)n%03Mt}!l;RXF3| z2n}}l8{qSGf{lbGPy0tC*V*o#`bXsFC;cOOxO4}Z$u`LbSmLMMsWpjRd0XQGI39*rzpalv30l+&WFPM0lklK3Iu zuHqz-yRfb@FkTU?#^UG?KM?-!YbK<1H7pKyX z4L@7id1a&Jc%RrERw@{lpW4kxq0EHv{cZS#$1NC^%!bAlC=)!~!soYLtJ-tku?~}A zzD71?=(pB8x^elHMJqc}7uVIDTS+isz=gM~o1z}*uX7sdUl~5SU4D#kMz;ez&*fJH z{2SWwop8C8=L8;HNq9+@S0UV7MSUFV2*do%$;%S^NK3Ydk3$X@ zPnxxZJqpB0Jr{)C+~6D?45g1l1ydMEP0JUOEuAb1gI|3dY7Fb+kTb{E@^MJvfkgZV zNLI+{2|flW$~!gWKfa18DI!Sz@MdlV4}tjN9a+(dja;j_E)3JHJhCg=~}Y zyb-IhqNS=Qj;*Szn_M?@+{C&mQ=Q||h^onT&hZftPDWRy!N~_i6HlJvtSyZM*2+08 z?zP8NPpp{goE8ZiixaoW67HNHK~I`E1#V!+2SH~WB(3t9JRd7m}uA`tQ zLkM78_2h${b0Z0nE{mU{0Leddd_4kTo6G|nJ^h* z2X$2ylj|y-3nKwQ)J?0MigrYmE{X)eS?*Nl;?l1pKp^8MEkLkAdhS;fAb5zwBU^xA z1A1Bpk^%%b0Qp@D5PXh2vIGeJjRNKrAowfd7TkaZi~wlH z2owVW0@8p0!BzMN0RmD=V0~-NM_Pbj8lX^sz|M&g0fJ4KkTL`aEcHNu-~%a8q1HsT zo_K^r*@ApfPQ+Oo5g^!z)hA1UK&MB+Mg<5I-AsT$(K!SNG$0~Cpokm-1R9VfK)`}E z7a-86xdaF_A|G)i*;0>y^{1PYe5-G>eJpi!{A?f5820fJjl!ggFOG6e{hfx#j` za2<|UG6V>eQkDRLA~OXD6qg}Dpr}GE)bqAbMOvsAESM!gphTC15872%4~|P74sQUveaI<3s@hh2w2$;s^o++9}ck z1R9(rKyU`)$|n+~3MfFJ<0mRWuo!J50t74t1PK0)5=8_E)}c(TSlbPFk&*dD0tBzJ z1`z=QS=dpBK!D(1Ql6Fs2yRB|M4Xu=;wgNJ?vjWl0o$l8 zpkjG^0;Yf;i&3~loJHK#uvd|`L;$u6-WAIdXflc&BWSP$k)`!v5F4SGAi~-I6Yw$caGOg^|KjhI|r$*WTht*JT~Jh8x(in=jVD<O_1#))5gSSVdxAE=KU1U9s*&#Rw+j z=#bm7Y%zk%ak$l7j6j!-v={*^oJ)*=lVEc(0uG)WVg%Dsbbbe9ixFsM8Da#AD)B-w z0!8E!BhZj$Vg!oLB}TxmkXwv^!#0-~0cYskVgx)a%PB^n0lCBoG$gkefrhmxMxepX z#RwGNf*64YW{D9fGKUy}2ILka(6AQ72sALa7=ea;kr;u-XiA4)(~;AyQ|W z)uI>yCzFU60YCgWx5(Y)(S~yswvVA0L7j~IOfdq*wIoLHqLer)MxY$Z79-H_!)9Ux zip~%t(DXUP2sEGtF#;vjf*64Y<`5%Ll7Se3)-)6&Q06ojBhW;-#RxQ~EHMH_M#Kn| zLWUTDqMC^jXwob(0!2o|2sCjhMnEuIjDTsHixDU`Dn_7bBVq)K$Py#abb%Pb_2>gu zjDU+-!D+~gVgy{Uvc(9r%i}wpVgz^N+9oPSpetNNj6e~YVgyPdQ;a}yxx@%GBuk7y zkzXoCpwTkK2+oocr^N_#wT*}obe0HdF#-a^v6*57ipwQNzz}Kp zmc$4&LbezI>zN@&z{8bnF#?U0Ax5C6P>g_|pBZ8V8lELapvZ_Afp)Nn7{LQzp%o*T zhS_WP1JRwz^1YdclWm?ADzGA8W)PF>$39)2Ky_Xb_}X8#tZ|uR2HWGSJQXBa(YOfL z*k;I&N|>w=U-6XSGDBG`Y>zU@i|9iT);=#So7f1QVVk5w-s~UEu7~}TVTbQQ5}j>E zR<6nnpDSp5qKgNY5sd=&$ddzN$BdjJFu&5T!f;8%PmrUj|A3dRxDs+~$zhn4k9Y*I z%13Z}8OTQvtMNG>OMJ>l@IbqeD*@yqxGIQz1bb*iK7yb8ToKap5&Ry{kdM%y-rhEjyvNGf&_<0nSkKi{- zmV5*+_p;?9w2Tq?2z~?PkdOE~7@L-l;5-n>N7x=1$VUX%1Xeym!3_BbMTPPa3R?LH zPKjSjKH_E^SS8|nAz2~kUC2jp(BK2)FqeHiHExpCh}GBN``kzXzfP(usaT57a>hKg zs%|nq$oYyh4dUYpRMkzKT! zmxMTiA>3ZzT4xveKhfD$!<}ONU*mMpmqVT10;PjCHxXg5VYDk6COJ8c8QYYWeVLBIi^W5jq zdTk25Cif1sn0J)p{Rmd6*b8wTl?LJ-L`{Q`6u9C2*nOP|g1zvuVJZkv9cNGA1|LTqfUz9IB9eS@^n>H0QjVf|uMm)dte3_~cMZ~E?oSvgPLN0jlMD~z47`&9@W2Z18IwQ}*`Brdb=e$H+rVfJDW zl=0;GLpAssRDG*=!C}x~H5vH<4AIA9J9frO>j&W7#j&;nwQGD5a z659$a=)ZL+$0~PB`?%q{L%ET&@vFZS_nzG$a|Dv@;w1S~V0wY%zh)19#&(D1|#{SNZv>4)yQhi0;sULi}Yz*htA3nnzm629Ik zLsmzUCOE-=dkQDy=G9D*OS)Oe=z9DfK+0Y{g3Rie**{5qF%&bFq1T%_j=Ij5!;S46 zm_j2^3&7daj#n7mo0&2fq3{dTaB>rab*AV>9F#H zcz^7Pwv`sR*RTZ^1J_G=c%MYR4v7BBL`A^;NiQ(*eyL6OD-j*$pcVStRe&hAreN_e zkW^**9rJ+RdN$4KB@OnVVU0&4#$L9F)Nyglf>?P3rj?VGvHzmHg@UKKBF1L)ehCb$b}7__5d48DG=Pwmd$XuRiGnQRh8TAdD*^Ra zUzS9%Jah}Ly#ARC`d=f8?(`l+=l}{Z^fk^v6B+(6j+HrbGs2`QsPJ8fnxbtWwzf2= z^k^Bp9{|UmF*eS=TlOnJU_ph9<^2TW3{)9s!(RcoT>Y@mi@yw_gH{7O1(Z+6&rFRE zUJrOkfEaoipkcql_)uozzhCLO|+jo=Aq0c%M9EC+803>?n9*AQ5uwfn>1O^ zt65%_@L^%s0>I9273{PPFBT%qy39U7!Ox8F4ak5JcgKLh4|`*hkkNHE2iGrw>NkHj zysmRE|Aay_$z+TANKh=qIpmUm4azWLP9s#|AwGm|Z0M&QYol>GRB>YmOBdYlhFXyk=Z@j`7m z+$P>H@k>bj61Z|y0Ok5B^0&~ z9eVa|+)G4i=P#o*QyAU;7J|C(VagaZ!xZg00_6?`b+@6#zOkV0*=Wl^P?zuAii%Sk zH_NKLn`Kqr&9W-*Hn%G8HnS@4=CCU7evwsq_sgxyr_DZz)!#r+_dZmnMM2#RgY)r) z?=o(NpzaASK5i-07+7kO8~N{CPnhD%~w*z0?FQ zy~Fs0g&5UPtxMb^w%PFERhVhpJF(RUv`+^(iTk8rI0Gt-*!G5p9?h+DVU}(0Fr=ig zCEMO%lpckFMLtpE3h})QY1=yy81pXkx8~t6NPGq&&!3vX?E!$XhOC|(%a_D(!!ajC*UZ71<3iz?JYg|@x5 zP@!$_!nAE~c<52e9ST)3EpX`#4?TCF%s5Od%xT*j9(pukNnwU<@5IX%-@|F0wOX;> zubOkgj-q(tb8`*qom0%P^@?RjI|;{?n}J+rf4o%kVDlfcEs)wvhE~AQJC@9Ll82Z< z;4eP+>B$GTd!i_)_MIV@c&ORNR*JI*iTLi=__hf}>QaMl02~#mOAX!z4ChL<%##}O zvcQ2zU23SpR-`U9jOGq`AiM(J&E`0%;Tmj3>QW=RVJ*i+d7kPRrbdntSVihmqh<@# z*=Z}@d$xj9J9)Ih8w%S6{}OQ)v8`~Bv?T(tH0-2UmOzs|hDioNJ0ytp?F9N7L=Lqh zh;X)bB5nY*mG)zqG*&T5*;u6#&W2+tHJmitF*(wY2R0C?OYOs=wtohZi&BUG9w8!9 zmzwpd%mjf*U22ZPDpHr4uaFg~OVuk_=7s9J`zENyIGmt4B4{ zYu9V0J6psob$ta0qgETAX9i=d$J87!vu0X#bqL6Ls<9zaaVFOapr{gJ>c*>-(5B(o z2<>DMv(&BcD)HM+C-HA@sU~$h4L+mVcmACOc~C5z9W!O3NMHqUUDd%8aRh22F>0YN zQi-$XFin&vfn;2$PMNx!_QsLX)<$dx(^6sIkBC|7fjDwS?%OspcM6t$4H2`{LnmtL zM?Yuk%BqTqli*XPb}|pu)3BbUQ)*Ddqx=Z^h_#~Oq#oO%B%eG8hyFWH#4PnxJJ3T# zxBrE7>n2aDff7$`_*zMUK4bCHqg@NsRN?p@sw^=Jqc*irn;8prm$*gM)=jRctQt2F z_YAl`u(WHY)S|xQCIW{w!+udT;hQn_>>@47i(_yDwsS?yQZLbtJ*xS7BWZt$P*`e5 z9bzH&TbmgB8w!P`{<<2ecYPES;l|YArZuj*u#2f*5h&KDy1Tj}W25Gzdbn@Mtya8n zF%|1mr7jcTyt_~p>qA6gVW?Q2>TM|$VKZPA>r;I!u6;Y9D6=htWQm_kyxk~+YmE<`%CW{vwGmLJ}T7m8wiYO)RA zU*C_TSJ!DROYPi;5%TvgMFDLbx;qt&ue1@8P>T|m{Y+sn3 zmmQZgKezB!95-cLPSMSOFn%okKGv0m@e7JZeQjPktC5UICg8vAL0pePSqvrL&o_se~A2~W1)ELmdK&- zz72Ijcxbph(ZbmqM=$&)24`={z;Jn&$SGUu^QhmDdY;Aw3h|sCkxlxPEfvc=3{Qu2 z7yIw95{X`;33R$@QR|(v7!K9Sc{t_#sLywNsK(nWoH5V-Hs@)h(X;M8-xOUi5=9Qr z)9yo4eB<-9)6qV`c^cm%=V|K%Oe?-?a9Z(Q!_$iI3TG(3D=Mn^u9!^4cO^{4_qU}g z8H(@!BzH^t=Co^Rza|mWuBuVbG=(x&K%3 zo$CK%@x?Li|4qerH2Iuju5&!Wt(Hd<>Z9n%_gwse?IcaQpW!;3Yb$F{{+M>cmU@^RK{P0 z{}E;U)&Mb)MwIat6II4n43zOn1IqZL@DIxPq;wg6t@%hRYe1GVJ_|-k$;c^r@&Q|jT*~-L#_zIS_{SZ8YGQNW4 zZDU|u2=bJC5=z*PD_Ev7em?fHqKrQ_AFK^e$zjc3DM8pYJSB%Ue??|0<0~#h8DCL_ zTBzr3sv<4a3l_{$#@8e{l<~Fqw5*J;37ae9E50RV{JCIO(wYY-gk!jz4Q~#-LFeIvGkSC24ORvD;O4*^a-V#X z1~&)ZP=!Nf{Ffy-xH<5KYjCKHpO6pH;O4*^*-PL+8GoEWRK{l;T?10Z@;DcT1V3Ux zB;qXMu7AjJOQ6Xb(R&c|kOYyX4(MwT8=;sW!rA|EzYxY^nKaf#$Tx^p z2&`tnQffG97Be~0mjN5x9C-V%s2#>46DZ^V93fU2pUVli*nu*>!htfrLZLFgf>6dM z9dFU0Ak$nK|0u|(2g>;DAfVo{j`2^`ZXVUc*Pa*E!)FC}&%@7rZ=FIJdiaV8_3(9F zX|9K__&^VzWx{EP>fs+JK&Xd*l7N)(=Teu5lR1g_^<-YQ9zK!i_g7&Z{Jt(pykA|8 z@*&e}XKSWA`;x@Fz8wf7gN@fQgKvIG;@!AH32maY(Vcur;@$dtC4SqXB>wF$Nxa)T zf)J{G=UpTiUU=;EOA_zyMVisp{csNOeP5Dz4?L~8Z(GgWzvd;0_fQ>Dfk}@(#?-+j z$hWy9@g7^JB%kbsQ>LAFN#Z^An$q3AiFE%bFG;*-N1+Jd+KX+VtFm)1NxYZtSK6=4 zAnk9hhrb7?pro&#MQUGi<>Kw2r$@wo>q*J`o9f|Tj?}PVgQZaP@Y~>+>?`Quk1ECz z64k?h0eUpti3L|EvLk~z|Gu4x&o<|;%SKucpB2VBqgG}^L-*$!PJ-N<;g~$cUSK$Q za_HgzRfsg#!`I9*^zao`lGejlL@qsi4QZx_ujpKQ`0NU~_3$}tbLru8hQ@Jxr?gO} z$h~`4oBObJh?}lBn(vfp&R+wlhufv|7$#TS;zXnhbzf-uJ2j=`WjC%N;XewVW=u|q@+iW>O zJ^W71%=v3V>fv{4!JNOwpdNlFIT6k>=dZ!k!`C{9Ie$eq*Ta7sZPH8+Uy;rA@U@$a zZl;H?_-s9V#b)c_>$a`A9=>kiGW75j)l3gx(V-sxeljL!wB3#Sz^6==fDsk^0|b#n z1z*b-QNce@VrHq}b6YJc_?^uxOcTZOU?qxWS4|?aDGqkV^ATxx+B>5PKIf5$3O+yg zIIZxO6PElrO=0I4s^I@c##*KdzT#R^!B=|&Q5Ae;PPPiZeib%T!B=#K3cjY#p@Odg zEvVotp%zr|H86(?zLE@7@U^C)3cfO@xeC4}nw8U%zvh&sg0IMk3cgavP{CJJGZlPI znx%rT$cPHQCJt5b31+L{Gfi_9e8omp@HK5j1z!!B+~ID)@@arGl>^St|I7{8ANs zjh3N;KSoNNR>9YWHll+6`0lJyS_PkjH-`$oqN6JKipf^NS8S#VzT$GJ;4|b4Rq!=J zwhBJ$nW2JzG-iox6?~19p@OfdPz9e~o*63m8lI(sugHiBzIL#P3jUA5V=Hj*DrT=P z8LBaf_yF{(M7#rvn24W-EL(A{U>B5=qOML?TJk>uaEVy*=LW1qtlz&PSdGtVOX5>g zou|EpoG_uO&dF0W)!C2{O?7@0bK*>Es`HDLoj0`PubZogrn>G!(wgf0xRaByEKB}m z3HM*2h=b?2{BGmiiDL&{XFKL{w9qyZ9_kb>7Bh zYpQD*Bbw^mC1Zilw&Z^$7~3th&}XsWZF$w4{$*v-9Fmi;&xN=yC;idMohnb>Vu5p~tK|yuPt`!Qe0@nvMzBa`gn`=pD-jby%l5c*U zV*I`h&{e%&NFRU*ec7DmHz}S-)iVL~32%@hlu4c;pZ=AahFrnL6Hq&7q^`6Moy<>! zNiQRC6|gtN$sKLEAY7S`=-_JMZSLGRCsZkctQ(GDgC#a_=+Hvt&% z0%JR-?ct_q;B-s?5!KII*^?hdB&gOx&l_s35V;?LNAuh2&X}g`Dw~*MDoJfrf3c#jO-SWI8S(cHgJ73=6NX|q;Dod zxObj#?-{^-p}cv%Kpzl7ju%K%b@mqG8!hpD zg?Qd?kQMrYLcanugjvl8fyK<~B$Gh;NOltZ9D@GL;AN&~X0Q}=AhKrmW@2VRRgHIM zq^xJ7tcds=evc#Xhr_b|M9TUJO9w`*ld_Jw!EuHzo2N&@<_aT4nT@0inAh*j#vDa? z+)_6eXBK7g%%zaXQqN?j(KRn4-q1OwXdUt>>>hBe!DTnT12_(@2AAFRbwJLrNa{&u zG!pJV*A&G!I?h2ztV5uhY0H6vVwkCB(nA20H_SWAF*O|OD*-yg#7BroRXWgeuLYSi z@H-!2Cx@gON$MU(hf=EOLW@$jd>K0CkYt9~Rr3hzK=2X#UIvA?!pcogl4{|N%Hl(l zEMW~GTO=J`tIgv`STN5N%|=jhkDzj^nD#8j9;9lvfvR^GS7y~Br06u?6kUfXPa~C1 zR=W#7p8<}o+Ew`3?YGdv{0Aljz>FDNf99&b0ksmBgZ^Gb(V5{8_un8~rqj4sdoYK& zGk_Y&Ub_?%hS|&A3@VWxD_!y$#JK@K)5nbj>6YRzh%Z};InE%fUo$hXSz-RDt3(Ov zlBhRD@1Q8R^$hCswDi&rH#yEIndY9By4MoEl@po5#{p)2w@WX+j8LGhy`G0SpEIB2~J1Td5s_)!-RB^2& zyb8g6u~wp1rwL*!5l}Y9QY!Gs&8THV)8fVIS<##!*uFTu&`bK|P%@^UCUd3)9E#`+ z)a`-djv)@MaF%rRR{;%WA+a04a7;-jxfQI~il5n(jCPVert}(WWxL}m*7rUU*6zK>#HufamN8W{!tZfH=9~pbK6oq&baIY8ekcy@d zr4@eW4;izfOsEF~e;C86V+K`=FhY`&`m+o^E*1%Llt<(@wuS6n>tbd!I5cUwDVlM+ zx7PMYFvTUSuw+YAMkB`$hV>7Q=kamDz5e4 zJHGu$@PgmD=7ZRg%diq{03QmFKiBA+CAa55O)C30g#QaabA9Y@IVyV#g6?4O?HQGo zq|=ej;rPL(!=4}>VTJ@hjv$uAl*Os=o*g_IRL7C>==g#h!Ji-~3D%ij@l!H`r4dFU zXbgj$c!aQRgvE^u>fy)LF~_^67LgwOktynMCpLL~gC;mmrr}E9vH zmM;XP9d(tRme;N#16NDjtM5Ww%t;Ep0jLb$K+Efofa5paDm~#en`_MfO1r(kwMd*+4Guz!``!wg-76jeT;2YdaGJ|FI-@@*Gi+f9E&=8J8hWqDnviUi1+J^h*ak6;@Fx#*? z?`=#r=I)>ktMh`%rmvooW3xX=QaD>VFqUJ!fxV6zL7fRy*@8xlE&7BsH|K3#iB>}d zG%es>iC-LLTUN_>T4MMy*gX-Lxwx?rq#w&GgW(6*Z~1TD>Z1`Cz(B{u6IB3oXkMAO zk?*qI@03`?44N8_5<&CTi5;LX?e^Gogo;kr3{Rd1ty?@X; zQ{rr$?)L!>mij4i9{L^uls4EDkzF|vFdJ-|i1hv(kPfh0OkE{@pgzMJmJf3_?g?|AEBE? zDlTn7YQJOfoAGkgGd+g(LoGNr9Y6Euctd8ev;%|Y zF!-q)^PE*GfEBE`c^Q#@eUd3U1nhWbub>q^lvX$yxIU`G@S*VWcSKMs9Fvd8v^)od zvi;*U+tDbWNTc|F0E@Zf3^N>=*X=}f_<4o|~X79YiQI<5P zq)r17GMu3~xOE2b>lxND?>MH+;?~0mdXmAt@-EF0+z$*Ggr6CdcY9{AWL%4&gBYC3 z?9|*G$_}UT2-qC*@?}@J5fR^5i!Xare#n4;p{aa!>#Kn4!^4DBK94g-Yy%kBCrah> zJYhOeqfX`$oS)CsM-d*XFt>yMA^Zcv1^GM~82=DRKpzTQ)&e1Lfgl#bFKmE$1DL+z zfU!_=UGOk=geb9HZv1@G?aR8%!IlswCav;0A+AF-J?UsI@Sh0F&a+71j|7&F`8JaC z`bQ7}L$0kr?*a;QQM;b)B%tq7H3-x`pQC!%qu5Q>H_TZ!vz~j{XY)t@oR#}WK2A-@ zA~`$CI63-Z%9xYEneOCcy&TGvN+}k}AwsDXadC=O7}JlmmdMeJZsob}Vb!$=PJy)8 zduXlw)|sMHP?qY!;HT_KKa&>wEpXZ%pGkYTj|J`Vx$tcd!qOg}OM5H>%vs44a2dIr z5XXoyxZq|GCl$#nU_~wjypMbYDBS8vgmX|~9{}4$ za@A`R5_OyeNry-lut%LJ2<;Gxd6pQMB$|25yk(6u`5A%%it{;iOCizwDVP|OX7D}P zDeAuD+JYfG@EdWODO!r38Cme}ff#9>a6mRTKvt9jnuYW@4C3VW9w)a03W^4049Sr^ z`AfA&(A@9z2; zRkG0DQm{zC>T!FYjk6;B9KfXCjS^R3 z?4{?MqMj(otwRHj-6c632wWe{<*oz+e@6s%d3Pl^_dQ2Qm)9+l@rOj{^16lJ{mwqy zmF4#&$np~iVS>F^B3}VW8(?cf8(`zAvN?gT-Fk=7zr+zRh4@*hmduf1r;G5(BA?!ZN+f3;V`>AH zNH_x4B2UUPM`kM$(T4m2_rSb%K)KTDkY0<5k{p>q)Gska#(P&|CZ!FLZ4iVrZX8aij~X;^2Ao|lz<8kOn)5jN_oesa9G=Cs`jUCu??w}SLw(8kiKn3PR9`ZF65nxw zsP@O=Yt9rf(3gy#tigf4Wc(Bj5A-GDrz#xLmyEAfR9as$ewt#U`jYX}l`!=s-;kiG_b*+=#wpvfoMY7pjiHp=dV;IG; zX7>Hkac~Dz(C;V`ER4f!?1B%)nx6YCJOXBQ<=wAM~_I`cn#3q_0Sbmr%oe}ON} zbvpA?=4r$&Se3->VSXR88~z76o%wyu4agspec?c$^UEw4FFcQ6KMSTDpQ-crGS4G+ zt9WbD7=~XFAFW`bE!lQU{wQ1)fwX+(5@0Jq48%fIB!Uug)}!t4{4M4cY;vO7ocVVfT~GuYYIBC@Ol{5(ovqCo1_aui`S)15+1i}> zTWvs8n=}7DDOi>^XZ`~=YBO!lFr;N|&M-=rHfM-eZO;4$Z60NXyMR+6SYFsQ3R0W% z4Y01=8)%7$HfR1eb0y-n?VZ2fynu~hTAMTf8A})fS)n#({<9Vt(dNv5&f?PAocVvU zs6s8&^A;@9LcL(Ys5WQ*ix!!!&6)p_?L94MbLRiqCd|_2%zxS9b82(uziK`MJKD$d zKR4~M18iBFGv9GP0AmVhT(5I}iA(K5tIe6;&1Ju2R~OxZ{5>ojFQn1F{O&G$E8Q8$ z<~qNJ4UTGa=J#~(k#Sh$)r&SK5ITNBZO;5&?qwiHZBC!1$nWizpb()pr`PRnfUP+U zp1_NY%oemc+olQ+HZ%qnYI7D&H?kE%9YmY6@DS5eGRvvWS$L?~fh-bnW|oML03~R1 zK7l@!jQf4h1-O&7IsN{lK{V9n^au6Fc|%m2(;qw$817ls4x~S1roe$Vr$1C-tIg>T zJ4S*7ZBBo<23u`Tf5Zj}4zxM_ky`{-ZBBpG%K}lGlWkN1s8}BTP)P9OGW<)#S;SqX zSCO_v0CsYSWeGIdh3Gv9nkPYI>BV6X8=;sW!Z~{;;;X}0ERzx#gbagNzm#xxW|mUJ zNwb*Ak^X*Q18q)!9~QO4E9iMe{^5K3R-4nG#f3zexnlOR6^=hgVb$jJ=PP8jIsJMC zq0LD;{-S>&gKTY1|Abvy1=^hc8g>v;4_zz!r)pnMt91IOYxhg5boytp7J*8qzfPfu zN~eFWqS|-715ESJ*R>^Eqtm}g@v713U&3-(jZXj4P6AksPXDrQ0#c)s%UvQ)2EmXf zo>>~5{uM-`?_YH}l6+5QFa2Nbjm(hgwV!LIJ6ogEzy3zeVB^Hr9MRv{?4^HWTM$4= zH~o@?cCKe-|JENU@!S4O;@@7Q)4zSQ61?-UA`txUG&=pe^N|7Avh_t~^gVl4_8(ZL zxo_*zhSmIfW-tAR-qX~NE@A4Oq0#9-)*qz6jwiR0_2sa(%nwSkN=|@o&K}W zX;EIhfkoM=o|XNV=7J{J_sU14{Vg>*{a3drwb%Q$Bh$Xvv$DUV6=EUpw@N^R_Aj>~nHrt`l@{Ghqtn02uq))y==6VKIBc6~bo#$E zoS}1Qboy6QHYJBfr+AyUFNGjZXhzi_g&L^dGU<42@3zQKMV8ER9b8G5f8b z*68#fx2Q~wPX7suR*g>oN%M+~$%toV|0(l^-~zQy|7r8CAhOju{ovCyQ0w%cH~*BF zQMFG01;hQdRqKp(z)n~mtVywKufyGOutm;Cq}}hvmT$W8%Q=|@YMuT{!|y(R=~1oI zKiY7v!uGLHww%Y96J^*(v^xC&ms6|L|FIbaJsFNrz3FoNV=aR+v^s&+uft5OPX9QI zPHS}nrCaH2txo@V8<0z@6M;%UmsY30$_8d@bs|9X60J^uwXMBsb^0e*-ehTY`X|~% zvzlvlB20@B)#~(5vdBQI69~;Vt<~wTv8YU~PN0=uRIAfJ*&+k2P9T(?YIXXj2$-SO z2^zSE$wLm%6&Z1zMdUBBIsl_qG%wTAh9$i)*IU8HPl)Iz!|a zYjuXv(psH+0sU$2?&uX(t8)z|uWYT(r!Yk(;=h&i zn^I)inu`d#pqv;{tJ6QzbO#KrPX9&Ogo#$C|B7HWKBp~-PpwX#`udzN{l6H_ooz?^ z9~w4fpw;PrWcXpsdDCij`X3v9wWhT?{ZH%$E70onKec-itJUd$X83{EOsmuX+%8oS ztxn%@`Rx|b>hz7vkE}qe(|29nxTUo^{g|tJqKH>~WxK zb^5!xH_6hkTAhAJ3#PR?{Z1C8TAhAp3sS4o?Zs?aN0H4P5hy63%>OC+rx>@JL z{$hc{?bQTXOBBvmgT=dVeiPN5k z{c~;l5)2ns)_NZH&zGtv<8JqpQNYxcnc~QdFOw$L!2GYlTWvL7;0{E5K&^1x93_=9`3k9T{D`A53z}dhKcPP5)XA5B|9;0KHU+n znak7{*wiD!)bK8#nTTI+<0JZ_baXNu^qtrm8^08ScqG5Z@E%vmpPY^_R`To93Fa@I1J@bL>*pVhG}SiE?`)cCn+ADI zN+*#LA@*_``^}(8%hJ(TX!Jcr0twn5R`qBf*El_Uq6Q)?x3|k4)rSMX>@BxfeK`2> z&d%Z3#1XaN_mKRcF!|plIrY>3A)^Npaw~B@Ge?x{5g|dku#);d5cY z1-zKsC;_zycs~p{?OFuf%YgEQ2v9QX?gDZF28%W(75Ubx$t3N1B%qrWha?NT`>VF}4fVgjj)Q%Tw%YYj!+&^Bp zzn-wP!12-ow*ej^x?SYZYlMWu)bApu@K3-X{}UwtK7=3^e1ep1A3%;RQ83q7`Mu;($m^|r-y zUoq^kbATH--vPvs69~zWP)T*5$(t*H9=s>AweVAb!7KMQ`BL*<00d!S!f$|4iwHLy z;kbX1#HRtoyxs@o+tne*5k{L9Is_duT|I>O(J1U%{CQEkLAA96%~myor_VflhJ@V~l(Y zS@)2^au>V4GxDPlaX-7gGtvVMjqwOajWbGtr#ZHu46GHBOg}a2P@#7&HAN?&a3}V` zc$J~>F&p7}pvs_{_A%Sw5diy0NB)?1;4d>w>iaQE*Zw7d+&4pW=TcBv3b-E>);?p2 zuO)9O|GNw*TPUjr2iY*_7|NkR?9XzT`HI2Igf-*tr0KaB`# zyb4IWplg1P0>su|uxhkwIgT@9*jlSGIhdpwyA|(aZ^xs2127ej;jRBOV8Y+=8;g{c zh2UQNWiYCL1^6-nze9-roJok@YYWmXCW?Bi3yG>a2(ga9ukuBp&LIkayGqH(j$*Q* zmTT)zkcAHO0=IYM$_w}szmGs7TX}7 zl0h8Xn}aahl`V+IIZ*m>Df)1ol%P~oPmxXGFqu!MN@unm`3f^?>}?pAV{gD?RK;U> z;!k@S3tG(aozcr!^I&4b{PAoq?sM@0=j*S4<{Y@+r#~hx=~d4Nvlat~nHUBUI1AiI z2t|KJ3j8`DVVj=c=Di9n8aCgv9Ba>+v3n!`vE_X9;G-iSt?(#!cE#|Sh_{|dQaJ@L zhv8-XVR(r(UAn4r0bbSvQ?VQ`l_%hF6(gRFmq++=IbJ^D3w2Y+y@r?H;-v{MMwBWh_Mvzj?$|~$=95f`&MLrr1jNsqMHKB|XOt<831v!i zopvnf-Vowj+C(igx=nV+n+>SNW!IXb5lHjL0k$S?6>BmNDAdHQVolZn*ynmK@Kr3` zl>~V_?^f~1A!4ClTL$Mrp0x4hfrsGs| z9daiU9Q_tT=Q-~FO!=$;E0@X!(menPo!);1m*DQtt>%G=+cb6Gqa1eS6Sd$rR;?+=t!p~h0 z8K_kOHW;iiZxR3Oz zn{-nxUFs$|RqG@D=_c92^^wkWlgr-JM|zUQOE=Q@QnajnL$ljAbO!qdgF})zi&VNGO8lk9Szk64*<vGXG{b%6u(=GT%m1=379RukXry`!3A4 zallJ0yE5Nm$$WiP=HKj&yc4{z%-4KJUJK0Fk>L2Kib^uS#xlPd3e0bg%f)t{zHA2H z_a7SYeRIh7%^}}6%h`+aeRG8GnRAo<(|%*FV0 zhH~)*%sKiGfQQRml!(cN_xjNX$`q80F}U(Q$2m}@9)*AUK4kT!B@`YeQ&cL(DQcKZ zWBIY0Fr4?Ix#KH`;{%D`iEghLhyEi-T*rg9lHZu3e)s`Db{H7*GH_J^vhr;}zxXF7 zg*qPR^}P;eeDFi$Mn=AokppDq?SM8*?UzF-e>?4@9Jngjkquxaa|DcenhlWE}LmH z@DoO&Xwpo3#dtz$X4Y^LE$@ho_KN*u1PWC%1dp+N4CSK_A6@up%SVcj&p5NZ&va{% zu<}sg{(`(J=i=qZ|HVrKUfO<$mz8*#ftT?o;|1(I7yl}*z@zflcpQU}ip@lA<>PVU z|AfbrAK_&OUg|#vJO6=~Q*VWqH;;>*PAKVS_a`hV2Tyr#ASyY|&Oux|*2-&v9RC^8 zf$2=OR#V*{rn)*vwGpYtbA$@h8TUbrtJL2M;yoIT$L`8=+YixIi++vnx>u|V7(2ER zxT*kIc{HGRkj!x=^ZfPw>rK&z_#yJxCm1n6RK5VHUHx^(G6}Cw40%7cp{xtn3J=i$ost19Z#_ zktHII-H!LM+xWPXkKgj~OFk~BJv_M+cm@R5sw{4!le`8ZUq5IGVmY ztRjvAu~UFSlk(DGEpS)^F9KRtukwvRRC1wv4{679v6Cic+-Ehe#`|v&uNADxhVh&+ zjM$-z5Y>pI0SLh|M6|0XIc#TW*)W@1U9%LE^RPRhtd3~2_O=r=3{-JDxCl5s0lh`0 z#K(}E`#JAu3KQV=64e16GRE}3@y{Vh#M4Sc^7^i zafbfKFxwX-Tb#?Vjj_HJzzvkhQ)86A`mwpKF;inVphsUq z)Dg3nqk_{U&g}uhns}KO<7ZL#xN(NS@ZHQgD`2|dU|FGVC$6Ch$05@N{tsX=V=+ff z!5kvkA@aR>sAM)M4=HFuMb+_tAjm01iatKNh+xhp2FheJ@%ed}V4eb|6!r;l9CNrJ zhEQ8y3o}y?s}qPp(lkn;20vzLOnl(Zj!{JH4n!F;hXxLgh`oWHQ=E(>am*a4D7NY_ zrXuDg<_ZD^wwBJMH7Uo;i;=GX<)e!PDQkaFZ zIL|_44GFX+w5atGdOSl{z?h3v^oN3558Q!G>3Qi%@%Pi4K;1lW}L z{dbz8$-Fb#4V_|N{LCw{u^oD1To&@-;90z+C8qYY1$PRuP zgm1hT7Vcn*`LnRsEs3+&RRT9;#Q?`N#@XqP0a&^McA69{o!hiz2@C}(#QTq>adyNj z8BM|h=gQ_t2^fM4nPqV{*e&TO+Ct0Y?3=@dJuBiO^x8D5nbi#)GaSVW93TuG)r`d>vTa{j z#`e#25S?ZG!baKx*6x0vDcXh_Zy6H|>M|+p2fz)~0+&gF%kqIhq06MuO9^Sg%cS5} z12Ihs-%kn;^A`gH^B0PF8Zl%*;V4L={0j&*e^D-DU<{jhAtqomJT`VJ>pq^3efTKn zqX!;!ym>6yYKjiT&$NzRj&ci+ss>r4<(2f#CxLsP5j!;Ro#DCVJXq*xo$E%10VUwi zNc`Fs7^nZ(;5@vQ%((VEyp?Rk?Rj`Bz03;E!&}MB8$A!_?2^iv8v;fnr$h1E7r9*; z=9Y}+mW<|>%*-v>EH}(2CRb*_&q6-O;P*r1m8uA8=0x*?Q~?e(Y|U^9hVKg)ch!@A zr&(T@+&{{7{tNtSe>*RSM8 zt)qu^m7iFEIa6E%SP!j#C3>iD1Lm#LH4^F-BFcaxg!J7?x*TL_p`#0e&bOqu2oTd*NRW*c*8 zU_+*GsWhE22WQxjX|>c=Bw|Cx|2&#uJuJqr4Auh*k)m8_8!~>2He{0H7&Q^^-WB5C zl0YoU_=(KPHyzRr6F-Z$bdJodt(T7!gmWb>5?tpH?4!R^OENSJ^(_p^Y(N)XvfUKz zS&PzILo%`LThLD5(2$IK;>l=1H6-Jn#CHf=sUaD6%^3m)hGg86H8?ON z49UdjNzA~IOnl*Mj2kf|lh^Mk7jiD&w;`Fl!G*{cUf4$*A4m58Ye?q*7eg|E(UwG~ zGtuy0*=S2*_wDTQkn#|tEs3r&xB!aLmPEJ985$aGN$l|!iGL-dEy?}Z3v?bO4xd3a8wxo7nj|JeX8Er}RbTMMS#Ar*Z z->W3}wT-qUKb(qmQKK!%JnVUZS}=c(7{AB&o7xXdrp$hbTTp|QxG>qroSwkJ5JhF@ z&U2D|O-F!~VqJU$OlZz^l4TYX_nIuGpT(q{Lefa?WyT?mA8$oUSL4^3k5*1mJlSST za+LWGAT`|rz|Px&=@wvqi%FA0vU6pX142unrdt4Bh~&9Uw;<>`1SR6EO`GA#Er#~# zqNZDtcN?9;1sj@f3DKFRTS9cU>6S1cFx`^8$I{I<-ICmD1EQu|lJ`l$vP`!mAFxrI znQjR~S~lGhM#(bW65`c#OY%XRM_Jofu`vq4^0x0pL7Hxv4%W5XftHAvZb@!4?Gdj{ z@8otf3Hz_K>6YX(mT=T`OY&KZjF@goK4)=h(=EwASyZ7G>Uj$mX`x=QVAOO=@fN&GmZak@K!k!Gh~7C_ z;uaTxOEg})+(~wG*)KVg#B@t?4-3cJc0%lAcbC02G~JTyVS}TlTarCp8vGT-6fxZb zgpQxkbW5_A+X`(&(=CN8MY6ZM9wiD*x8!#lh%&X}Fc^y$8JR7ZZfTP$IM}RV4MYST z5 $jch(p2Ql4JaELiy%9GP{OTnS$V5CmOnOP!!E#6_e<#F^WXm(nQuS-m}1sCrk#j6Du?-CZwT5$0$Jy!s0!Nt4mA^~Z^g{vM+=%8we_?_fncrFQJ z{Ed!x1(E3dSMAygoqtS4Mb(rkGpAG?IIXH?>clbCX#?;nU)l@oe z08g2UUB@Ksifs6_nklta6%)rztg3Y4*gQ4Vub4S|4m^v&FXyi|p?t{n+M_hnoo&Iz zyM9j)Mg|-2W(MEff{S(IB*E{_ zf{SJ@8k}ecSoW{cBoq@g7=;RAADhuQT<|u;Ai7_Dd!C2BXfx^15)vaR@F_$XjGu4YD`_#l&Khv3Rg^? zR6Azs#Ie;?PTZnu>n2xJR*jojgYlVXanUiGuw!+4@42bwHHgw*2UZIga<&O-P-Hr!d*Jk9!xI(slupNJ&k(h^pJf@ijB2)Z&1w%{uQVW@<6k zozQ}dceeTWZnD5+T5$2!n@ZdY@hhYr(rMOvfOnqVC0YwE-cJoH+{}WDcfR2ym}SAm zyTEYpWLt1S(H#`MnFSZ`BAZ#-f{S-?xO-I#F5acVwl&*=i+8yV$+Y0&U1`zHEVy`A z8Fqyn7F@hv7!KQJ7F@hv8qUzrH0}r^`16)6hm$o`fAOw1Td;qK!)ssny*sKq2(r=f zuCW2M;L=gu)if^VjhA<=4WR{>j`JFqf#onsBaYj=>ueY;xO8l2#LeSuu~uW9^#0lg z(}GJ!O2OJvTyOET;L@?affBxY84lNB-fwImEx2@q3r;v}al9KWk``P#BJPsemefWY zKnpG%!{uBo3wWDs7%jMT3>~JxO9IUBc$;k?Ex2@CK3|RN3uVW&p8>U(3I^JD21}(UBl;ymh-k2ba+klH)?;aaW3ocrR`Hpv=MP^xW@g6ig&?cD{ zT)aP6WR?XN?;+bwMrT@Z@gBDL3=1yaBNm%s!Nq&j=-w^Mf{XW<{p3$uaPc0us7wnk z-V+wB7F@h1&2$-)5eqKfQ|55N1r}Vqr_EeJWLt3Yf-lsCZHMEt$a~)WP~t`Hw|FlY zZm(%h!Rcg<#!OKx57whtcGuzNIM^YtLZr?f2u?R%Ij54qev7x#@Z*o4d$ix;9c?&M zVe<%Wes~x1j(VD%d@(}0V2oJFS%xB#VF z>1+co-tjgdmjM?9D*aprT)b5_Fx!9&0yHl%;Nq>ewO0c!-U*gDSq5CZ6K$d#23!!P z#fTbk@lLYHz<>)7nr+&Ei?_z2G7Y!@t@NS>T)dMlGBDr*gwj(3F5W2uiX9JlBNvef z;7BOTfQxsk#fAo4fFUWd-62Bo-dc-@8gKzpsfhs>?^SaQ`hYdy!lkTWU-Z3=-r=%b zWf*Yry1V*~gKu@m>*4-{a!Odw7SDrXfLH43`W6^)2@w$kE?#d-A!5MA>tk`v47h|L zQ3Ea^@{0|)gwfIlT)h77p;BUNz{M+fb*&8yxOfBHw?G?-jvnd`?>up9Wlb_FKpa)BB6z&vE(b7BS%B8JFK!fdLoKb#>pC zHsIpLT-_2y47hl4m!BeO11?^k%WnvFP#xb1mmB%00T(an@~$q!fQy%sW=k7z@$y}6 zl(EJ;`LYMl^F+^c?*L;<#1v0^uULkQ7;y1A*h4`z;NtD({#I6gHQ?fPv|!qRi`U7b z)PRfE*@86S;`Ni6<7*jkIZTc|K0%`va(eO(cGoB*X1e^2!HQ@4pxd9h%p8HEo z3~gYE#61ly1_LhMk8HQ30hbV<0hbU+Ic-wjkKG%PpzV0J`>|mX%nrxdP8nyc6WymQ z*^|OJ_&f-JxYMQ3Tkh`H4HJvV%z7)`=}6Gk8gTJeNwKb(%#9EYgZKWRH4^( zk>jn^H-w(1Zw-!jy1uCa7w=5>e&m25)X<2lt{&cEfdd0B-V*7px`Pt~E?$Eq=R_n1 zT)aj}z%%>hjZMqufEP<`EosBW`-#*tZNtSo$EHu)aPiKyBuX$hvcA@ai+8@%zS}%} zngpLap|U>Q17hdkwBG|3TdbXfT@BBZ_kfs?o-;e$SVHUMy41)v-qB`5l$UCC< zGB+|I6o-2WiS7_&>@Cr|LzS|(=9GwU#8lJ6Pyz&YN6g|(36%g%36DJ=fYdz%iEc$+ zJteP2G3Ip)a6KXOvr!?v zb0{fwZDpL^oL}L&OuYmO`bMDlVe2B3Y^jGXEe6vSs`pco3*k$)$|9t?v_*qLne9VMWF%t3=9)_}z+PtLcxCjOwnR z1v4bTFT?MtFl@A35v^b7l&u8*$N2p{3>()+(lt2!PXPWT{FGkxE*2j&&@y}-qmh1_ zDQ_i>WP{cr@tF^qqJvSwlY0gYwNX07Nx=1leBVaHkShW0B^3sYIzfJ~Txz&cR?>SJ z*%G}`Fs}hKKv;5A_qh_}g*Lk}?? zy5-HfWH(J6Fo(^l;A^Cco_dS))YfeQp)cPeMXVuo6#VDiDtCc50vrq%t&SPwKE4ee z_?~0)jd1V$1KhO!sT+L4f*J4PXYMi6QR89x=&i#(Mu0P%BWyJ$Lh~0hY%I~k`6$C< z#AcvJR^x5tL3rQ~*IY>5?qMXf10~e)KOjd-gn{eO4$h;d=y8@RKc32o^;`Iv zADBl_>1?LIN2VXwjOpc&l*?dxU!9U5)P7IK{2`qkSTc6lWAOir@~ka&oZd1c-OUN< zS)h7@w|BFf@4XA8GNqf}Z8Pmp(^9UR~bCFnsxn*(;im!iG8K1D1Uzf-nPHQ-Z3> zZPsQKJ2Q+~6ru3DJ^}aGNK6|p`wBZxWd$IHs}tj?oEWb_gx-O7>r;8L{SGi%4H2~~ z?|`|n7UUM;_cVCXM-0ZCy(-UfjzgGJwi*Ff|pIIs2zhT8;}br=gAhuZ{~t#AaOa_JL*LHk6)(kt`> z?KgmBp4nfv%X@UxaigDVV+e)*xD_|56L3(n7MHd(MMRdai6X66^=b)ug&|lSGmyhN z1Brvt1@$Y?q?07#A;irKa5aK^lQ?t({V*)u9S{enRAeThpm7w{sVl~DK;b}%HE8*q zWwTezfs^GrmyC+7zvH;UYX0W;?pfd>$2XQ-noNM^(uOC2QD5%=bYFN1s!af(UhyY) zuv)n(jXm?U9sG-sniR}TcN-{22R|p|r5NR=!HuBxJMy21JDQS2eT~!V9PsWlAjUZV zhrKTWjH;-<{7C(9SvHV*S7Nl^xGB5%l}t%tkiu{2edDG)@1n(v7cO40Fb8^!kdO1i%fVe3qKj1T z3jB=c#kuq0!0|0Z-aP#H$wD<>y2+57H~;d>=P$TK&$`)=H8+ z<%0QFNZ&CevP;9OdWsmYMUov*lRZtj&A zNzJ{J7hZMI;)`<^E|Inwa`-n57cYPx%l1!6)CRo6kTW+oci{yvlw)+a8j>~NmlYQ+ zTrAyYNWT2ig^RCP0k@cii!YRJH)J4T@s*3NSfNhodxnhMxiHG#G4XRbCL27FzqG3{ zI}rQf6?}Fd;4?jbKc9Q=r+V(P1F|V1DxzMb|``cS-%z>WT=_w7@Po{5ORBs2|duM+Cch-++M>O65L*SU{JKi zcyQ}f>rx7NsE&xikN#l<8e;Ge>?Ue^#R;49|++JhW7p+>k&RtR{h238J|AM;=xx8uv3c0*$0}8pk#;{^zh01h= zU0!1}69X5Oau-Wsm)988UAqEGp`yYyQs2*Vd3_8^5iR=u zkNiiTvwD}c@7uvG#H-CK*LtwB@2JcOG-6Ue{D!&)FH+xA@*}7NckfT+{+RAL{bk=q z$$>2>#s0E>eE0truTYYry4H`Cu=xzaV}kLB{+*mXR?%Qd#AvM5xL|g4jQX2~8WfIK zvaxT_ziEk5*jp9}EEY-dmc3dnGE|D=F~D1PIKFTpN&PWYkNRF-(JJ)}j28Wt$b4HZ zMt6tp7jlOMn3t}U`sK^{YHOeB4%@FlehjsBci1>^hVdaURnxS45I1_Mnx;R76n1^o zyi`pyey_%LFICe_EgtkzHO+ck&DOnCO|!M^pqHv?P6C*)u$QVSeWn`Myi`pYSE;cP z(jZlQ{~4MZtbX)C2t$s?SDy$T;vjWLxox!oQhyOjGro&hOB){ANuGp4a30;yWJJW4H}+Z@c*QQwMG-AmPEgudU&atdU~mvLSCvvxE<4))o4ch8H2tNrhCT28$kEC{F=QsP51vC zU8B<}6?<)(e)@{mc%Yse|JS`X zP3>7|2-7~;#SMOaUYn*Td|F3Ot%CLR-|e+&dggtt_rv#c?_bbs({!W?wXjIPJk7Pg z3a?Gm^FP*_{7nuFx?i2wrs=l=?O~{$$GP4AO|MPUv1_!U{9z`n%3rP5rsevBtFsEjndrzM;pOi<5j(|cN_Mo$AeW;~nYiW|{L#^6{!ye(`ex$`N zja*+=p*kIEl|Irc<)Ux)MAQ=hsUh8#p+E zm*lzimD>S+1Fy#{_L;7hHw^;&r7ErPq|deBeoY}SrPa$O<+tfKZ{N~qODY{M!IG0aMwI^uCLsxzr6 zRbkYI6N$gE^YaO#fQRl&&ym1s|sv{9r?PPI4D_hBEWm~y-zE1AMRPW@F96LxQk(bh8T-V~!c z#h9*CaKa=>wVBIS?|WsLsZw4`t@H7=|=wBhyDR^F|Cr zLHz!w%sdXfzGE~B^s&rri7ICBzPo|Yt9U{oXQTcqjlskIYB4~LW|1+;3UdYUGm24Z zfTHj*4HwZc9+SdnF9@fG#}Nvjn}7}-Gb0r~@EAT+7b8<2g-;#07-@7Q#3YWA}n#k8i&OcdWmY%FYS+M84}WNun%S~kkLvIKV0o0ZLf!UHmRylmw<52oCx zR3kp_u0LyI8NYrdGzs!YDy<$4eO~SN0Me$Y%lB)Q%2Lz5`Y{;C zZ`5&^#$ojeVGR7Os#(ZXqw4QR{7&`Rb0I;Rz^ai~(5^c12q`(pxIhmg$rC<6MkKxb zwh}vl`&J7NfFqn*n7FXYRH%i`6Oj=~iSMBBCwgJ4URaTmHC9F~JM(h2Y%Z5gMle~W zORRj6WLue!O>~toOS0Y9U@nt(p6Pnw@ycID&&nQ->QVC2LemYwLZA1^8>@+G*(5;E$Tm|$%b6W57y%eds8Y}JI?`?^;n4aQ zH9NAJk_UBevtz2NN;{|7F- z(`L`K6xO(^O4gZIR+LH?q%SM2sHs?%W==Jyr7kNjD=k`fv13`uwI%D8mCTquGi7~Y zN-3DQs%cY~X$|59&?^(?UY0xy|oOwawbn|p`YU0$?)Y+*s zQ>P`K4`X;yc}Xca$(3s-B`#IRhu@~FEa6*IiD}bjPMbDuxg?)+0$T4=zl3eGuuxi$ z<=OJ49QzEGONr1PDT?UZL&2#ieJhH~%H4@QQ{_JDFAEUEJC6TE#k&zm5V2xC9@$hH zI1KhFVnrdF2^;tF&Ww$SSfRewschD=MTF*?r)<&kqY-DhP}!=*V^JOVwzzraMlER& zn(#Pbf5rR#TFTIf6*#}}>rADnc$3!f2q`k+C3M+GHTx(xcX9V3QdQonAFA;(LQ7D? zN~AVNE#p(vynQ43DzXSIfjW03A|m*>_Sqkx3BACi$bB?_#6-1jpUdZ~SJ|nFr_tw1 zJ=**ej$Rnd-0>Z(W1lPa=&i5wvI=6nUt3h2805yw8U%SHWdt3!Jlh-1P>v0Kq<<`MX0@%q6IC8!y|%cFpvinhu;VEs5700 z7U0Q%G#$D2gDL0)ErPcNbu&-_SeFi{sPGTHnw+7%#t}chZ1!(K`_L zRVAQzRT{n1k?S!~iVmiCAmWuOO?wk5@u1^cEb4sFJEm|V5p<(EVlY#GlfgY zM)DA*a6_2F4Pgp5lqsAQ^@cKq+r|N=aBpycDctl)2rz}ao&!wbwsC+d+#?7KVG1`S zMB$!BQbIL)8OjvyV=l=QZp37b!VO~z_ghS0xO85S!tr!K;rg>)RJzvsA57u)fx3P8 zS2_0jrQc9E=32ku=)U3TzBEUt6F6&x%His`Wd)&lj|m(Yx{L_seT$L844oEBoB{%e z`wzAVm6P@q5AdL5W`xSQR-#yz8XOFsFI%m?7ZnniBKnvj&W{+v6mbYs#34)(hdzqr zVN4N+F-0846md9H#Ai@%I8($C$p|n-T*LvUh|L^eikOsw08_;29AJug1p>pEA`WAU zIGlODawH9X8NCc=ig*W?WQzDG0{l-Kgc&Q#H77=gTOVmCgXTsV#*FA_M1!ltoh63Hj599O zvo`f`n_~>M&@bLU#ci-)T5#CoWqE!)FVci0Wa5{l^nqqYTVa|#U+)NOF+W~Qn}jrV zEQU1ci@;b4e%SbcQB>Z?PIFhWhgo={`z2{lm~)I=MhFUBkdA;Y+#0JzYy8Pj+doF8?wygb)%Q_&0j4FAE9V}0b=EWNrsUoh9oLEB@IW^Q|yi8Qf8*s7* zMnVD(V~19BNO=9h4TcvOD5$Uf@Fa9Y*QSy~&el}O-v1pa&FhZq= zN1!28hCXQnLRs}f|0@V(#0nsl@rde;R>l)6h6x?WkPgEGbQs334DxXdR5D^{Tu+pY z*HChh@q8RS0SlJEh^UctAP!^S(9oDv%o`RQgo>HN!+0MR6%!R5#YgdZIxgdOJ!TWh zM-^|=$aw4~p9-Uf7|!w0;U;h}p@zmZs7ExAL_g_t#OE_9#CeR>H;%_SE{v627`PFJ zFbyv!pl zCp>`65dLC~vO;*O&NZ8(i-D^eg3dKW)%CW zm+38iS%UMmu-O_xiPp(SjFEgWd#zGpjoTj3lbXb8)MTKMn#6_3hPrq0M%p!K0+w@d zPh3yX3E2>xkPQu!qG1{-8Xjs>g_rY;qzJ?&EJ%zDjt}_E6ls*&BuEShExB9bN^O=Swk zEX_0w&_Fuy3$r@NaEmj-E5Xs3hFsL0#T0e6+7dG7=qyTlXgzw%CK+MkW1NOgpn`2o6n=gfa>As{9wjqn%83HK$~AVvsd-$V0}J%SVqv&>PG6*xJN$w;6RgGI>1qV) za(&Sa#OVrsx`wnX^>RAF`Z~l5joje*CyiU_XCyZ)ml?~jWJCDSaf;z1F1&saLUj5xh?iEE%K%u~(&|DPLx7(4b*!4cTwj+|tIrbb zB-AJ21<+=x3$I`IEI(cJH14-aUx+9p+_2zjfE(5k8Q`YB1~*~RQ$3ktjVIHv5HvldlVLI*qKLN}kF+n?(`v(OKb^gq&FifZi ztO24SAn7X;r?VXKAxf?h2aPgAFB1j}m1u-1HeQO;TjzaB=+%IJHnCzbSWws6sc@my z)svWr4>Rr`^nyCAhZ2xar`~`N#!&8llpzW*8Ljg@iM;hm;Y@Ao$LI;ct>+eW`1s$! zaP3U^S8&@%BYJ9oCtwNU!YpOH#!?RI$x;pu5(5=j5<+<@p%~JWVI69u8^gi?qHBSM zhap2%ENQ}r#xr3THJ)i?xSk4FI=nC>=sMgW^8)-1K^pe92cBbdHF^`;Qsy_ot@hw1 z!%#a;hy3vj7|f&wF+>9lU5{%7f{-fr>m&%DgYNg-lir*`FZyrXqW&6i4bZ0^t0VnD z{V0LR5;hNfg&GnjrPxGOHxleZrA)ANsOt`%JFGn!scTP0sWS~pE2DMoNup7Ek`!(N z;z~~dJyTc-LZm9aLp!323_8T>aG>TxSkZ~or;93Kpux3~Ff*$cX89y|_MR!9gdx!= zodBxM;UO|LVyPt92uF2&A`2;qLJ-lXa0c=~kD{+FvvSkI0}S^)z2~_+LqC@xn=q-J z#b4YHI1BupweXS;>`I5HXD0W-P?WovG9HEVUOjt7=C=x)JS6pBEms zkuqGspbIf1H2*VMSyqY!ahm6Uac~MjT5?Hnb%N1Lb-{u4B=a=}2BHWA5oD;d;0#qD z32R;RSY%tE7m%cdCQO{mEz;!_2q93bV@(W#2(RbmNvO$kM-QSC5;}sX5o-#s(pS-t zwj@{)K%h~pFT`du5%^*TO5=(0uUJ3M#HRt_J?g=0gEKkD&KkH;-r4x@I`Z1GVT5-q zxU(#$7^1qA63h)7E1A;wl!e$_sRJ;&0n=*4r{UpE;6bp3(oh%{${vUrM!7KK3b4Qd z$EY$|gLN1sHMTfx8qvTyTzd>-kqUu;JvNN!ePZI{SWZ7f_reesq!tr(j62_mi;^@+ zKM*D}SQ^wS8gwP=Gc|zV7lODDQC4aG*Ke*ogKWd`QpYqHCxg=g1OVn3$079cE9EfMw1#1HRFRpZnm%7gXJhNy zG}s#RIW3-8R~A8xh^-@_Hms0rszoO-80t0!K3IX~3|wGW8Js7DD2B?yPd1hYvKwGn z%}>^0I7NqHbGQMpBVpuWh&8YyBQV3X@IdiYtTdIucv`rI2FBC%LI!d&Lr?osC)($v zFJFqa4w6q*>1G7){}SWlS)?a}4U!Q>7ny^Hs;*E`DeM=MuT-cv00z6t1h?QzusYuW zhEc9MyH#2@QmYi;3)`kcULQJCsMJ`82{qEgNE9ZY@ZHdNm%+#&eQ`8wEYf(ha6R2( z#B>@|NHtI(H9Gjvm~e z@k}w=vBB|8*LaN?I+^VuX`$=cp{9CsA1rhQ#RVQzIulpjIE_hY=%HJGj68x36?@~A zZU@2&{=4z&{|61%8M1=TIRq)-c{?b2HY$`7!%cu?3mqXUZ5$Kk>@>d4;G4$&H=5+3 z8kV*E@ho4!>xMb8kWP^W4<=zj7B5V|dhnJy`C=jm!k~*~!DzCP5Tyh=?nMA~RZuF*J4Adsw+)$8o8qi<+<2#6avbRNYig@Vp5gQeUwH&DSCL{mTq;Pw9}Y z(;*Q5&(J-GQTywp4hF-hP9K0|pby~_yoYa|t}tfrydbmNn_7gp0t0Q)*`5&p#S|m7 z;8VhwXT;s)U>`xO@6Gsx!P}zaPpU=>pla3z*HcLb-xqz%j0*;e5yp4$Jo>n}j6vAr zC^(={3&0-eob|%shQbl%d3w9;g}X@CRJL%l1YHQvJY3)$elTblDrmJ+b(@$*sM`P< z5hg&O5gHj+DFjr{I-$5oCmpO|4sIV078+(v_XFKBlYh9ooJE?l2iJ%91Qm6{5sc=B z$HvQ*7aEePb6OCJst1(n55u$86cX$Y6C`)+aTf#*Ze}sp(+e^=yIfaZU!hN*4}vQV zTZf@tl>~N1S3hHX8av}a)9Saf@z~R zq#4+qf45xNLkiJ^#DB}Zw+UFUL1C{5xU=v|hdm!uGCL$l71Uk8eSol|?XV!zgB%t> z*g@CezmMxQ+J+gm#=SjQdZNQ9eN%b&agnA6z8TTTc%KGnl++WNbw7xpykJnrFyxHW zQKF~4NEcft>dJatqtW2TIQ~f*@WSNXV{BnsV6c31X9iUZM^hL=brlPiO#?Jtvuu=! zSwvCs$^fAT9digmrPw~)Ip5F3Jx#FrpL(!pb_c$sNuf$q;bE^fhdp>Dj+iN`=K{1~W3dkoaVkAYe)c3Ai^Q1uPbl68e^J@~Eg z!gNbs$+}CHSoDOmw~f1}XFN)(cZ)23nKT%cB=z}dyzhz8;^(FClUC+pOoqcN%Uz*x zNg0B8vjxd`^GFMuEo(~Ft*Sr-|M=m&V4Fz5^DR9S_|TOimACJbV(C#uriqD^?=WZ4 zY(HJ?2OFzQ*F)2XVW-4}2v@%vEH>Y^%3Oillp!2=ta8Rn5 z7CC6TmvXhd{q<&A>!4UKt#{A}Gp%w^Vt}r3(66MxH5|LpL638*TJayC_%U>TNOF!X zOv`K8+jK>qB_*FaYpqpq9`wU9At6}7uERaG9^{^ZZFSk2!z0 zuuyBgNc64QwX}M*EyF?s9Qli=Ul(2FJ?Wu=!kbUgb}Dt|Q=FZgPO1@IG@&iO0rd*H z=^u67F0?VdfL5Z5d|~KH=e=}Kz0>W=v1H_1Y(4&5YWzkTWT&-(JaM7Oe(`c@tM@yz zXiOJfE!>po7uB>(bf~Mj5kva&Wa4XBP5qT(ofe#H-HX;$mf*)V^z|;s>%_owZNWd+ z+V|WH&;yVXq-l*5@^iIXkoPF|e(cfpifp5!Qb*N^qGmcNxB0SYYklXkYqP&!*^*(o zj{3Rj14+bDxt9irxFtzTcG@yr`Fm)67sYmv$IE;8n%uRtaO{*Ux~bOu?3BuOwbna| zJO9co`ranrjsxxc#n>B80pIPb=Pxawdlc`nz588MVWk)=RdiFF)3YRBBs@Ci?S`d4 z8TYpv+YeH4;A85l6>V;dND~Qkhb+t$ZtQbW-wqv)c1S%N^ve z?{;Uk=u)+w(m6&*p5dq<)V43jmH~-kcdb>9pMKPm55f zq1GEA(?1nqZx$PAuyBA(6;7q(0A1mv(H#`y=drGIP_mV-ZnII6l~yEDl7lXCENMA) z17!#Vt(4)URX!Twr&ZSFG{jFO_=@w>IxGEN>Y6|s{EJKSDN6Wgs6U_jV^QCd9JIYY z(eQ1iSL)1kr!1_QqgoO6Q;M77o%!NGD^2j{SGlSw*5RQcBF;i5>Kt@h>ZaH0y0Jb^ zI$7sz;Drk07c|q{PS7CHM*o8s8fh5%>(_RS+UvXCqAR=hq$DkAz~A=ZH@znLj{W@@ z=(9+yJakuTYi>(^{%xmM@5)q8Cj^bg6p3ozzH@Gp{;`UUumi?xy|uyjgdS{mJgv-w@gZh4Ms z9M4~wHiiCz#}V9_p8coA_TFDHAdSz2r1AQ!ayKUQATaI~NNYA97)pq;R@~G5IL+mGL zxtAnqXx~MZkDUFc77op4$IcT&RCpz7;$>Fmc z-Ho1hlevZZb6UBR`ukAeEsXRPNjYBzL9k-dPB8}M9wNVD8HVilYDJ*A`sj^F`-|Mx ztM2#eywuN0Ro1zy8{7A+Di&39N_GI-e8A;QTScbFQ;48IU%CB^y)GPRusc~aR11%09 z^-ZNq#M5#mS=JWvcr6b~EBjZq>+Yr4g~X!4y}VNY6O&KynE!kU!A zfsZ7&wYUbm1OBBt5mB#i+N^1tMPthry1kZR@2_AaTN+wg8yD?dfcB#N%_1Ictpz`g z=)mq)3~i}0K|YLOaXOe5Q}c0yAUj85KiE=T5DF@h*x3AZdQ`H z<_OWPj!B6Gef2?$rbv(c7tz}4bI@9lKu}}QPK_KI=x>PVB2yE$K!BOZ2F0zfh8BbN zhj?Oyb@>fJ{>21sQ2a|P8qsHJo&6-J^=q>1ECvTe<(;c4(=&5D6lJAqx2=NabXqS2 zygf-TMs|$3Diy?nKW~flj-6u8TGPHx{W?U?%MLILnWg-(&YC^q;PV`!flhE7=IQ&? z$U3L3X*50U5#}*hxr<9Sh?B0z$lXcNUiwq5aQkLZjrqc<6zjB5nRy}jtlV8sR?_MY z8f2xlOz?AQwU?6p?zAc;Ex{(Lch1Rb%4}FLd)fMB^gmHvE3o8okI!m*HEm@5d-Nxz z+v&Qxkv6#BqtV??Th3;{^GloB+-cy)rja|KOc+K(h0kr-nf8N2V&|NlBhvuf-yyFv zQ#4Uyb;r)7N5$CU-{tP`O+}Rq7jX4ukSCdLtLx5FY=iSNate~ih=s0((X>BG#QD~e z$u4q1jzq&cssL{lqfC~+M=mQh*9&h=r5Kg^HfAF-H#)Olr9W>1*LZYK_H0{8MwLsW zzg18A7M$46k?fP=xY$oy>V$ds)N8kv%~K0h(mS%7s{CRPJ*afA7Fj1+D(PBhFtEm% zRFOKGeu0CDmN+TJN>`d`3O=ng!(Kv{2KHvAUrpoes(zlfJz%5L*4t zR0~cB8To6_l9P4V6DiC@wWHw6mPQ`2oW7j=>q^bJg*Y^7W3teKF?eEXYk-6xLb zHBo^3osrhq>CR^vQ3fv9al zhq2bxv$LBr^OrU~Kr0*&kKH*-A&HZ_`xrJl5ochxuM`z)gkz}~a}?q>4p}hcbX@>~ zHKlvK+Hh~B4>krWG1w;B5@Drlz~jgF9F85sIgXuiXJhmM8VXEt6+}ePa~t@Wxjhn{ z#oKKawiV1>jP0Q1RvK%j<%u*lks9QH+jih+W8=ZiBbUz4r&h)1MF&TOWgER5*>*%c zw{kfk?WYxfH1$+;*ACEIHx7g1(c}?vy#jmcMVvpI`ibskRM8=(D#=4ATEqbp76km+ z;{E01MylA0Gbv3*!UxOL1Z7+TQYOi}lre+FYAWpTXDJhgHr)Ks%H{N7t&`=c;aJpE z#=dCbJ(OWNaqyV<9!^)$6#$-EXNV7inwNMp4RYczfnKB=Vgc(r;vH1#< z9QqlScR(9m=TJYv1I0TsELgRl)O8$%h~lL;>)Ki&j}QN`*zx9r3taTE)Om=WsS41a zgy_tmb!OC9BXznZAM;ne(9uCZ!j6->@M!LJs4X{bhTyTwrJoafzGux@c zOuu2~ZFRA*HH*8kmhS9)Vav@IGwVy}nT^8iIziv6Z_9G!78KmP^}Oocqp#XKl74Iw zX1|4^ee{&VEWz(Q%w)aQ*GKEExoeSdOSQcjDIfHO`Uuf&)ox)y{Pn(~1JT>6nbA4k z*Se*J;)ES3Z&ra5WY**tCO(WG_IM*A!K^Th{XDV*z}t>^`vxwmF*qOh<#I1qF(-7t z@UKcm>^Ne2tzSiURhsXK~@8e)T=b`o1je@y{n9)@qi2|Eh+!siicw?3T!m1{8g`TEwYL*?4BkFc@=qc$2|yq1C@AT`fu+ zc#@NlLlo&CKEH_kr)z0@OKP86ZF?>mt+c4Lth`3osc5JE=h0zZ{|b)hbQuV}F0gjb zf+?)@v)UFE*+wf0X4kFG^w@vWOs`#8xCUD9!lExWS+GK9(-FPQYw)%t(+jdyo%Od= zW#ys0?;5RQvpk$}IBZU0A~@ zawd)Iur)ONGO5UtzZ)vCMjGRF6*Q+Dq7@yquigm-o4+6*$~7E$l--R(^a;@{CMaX$ z@xKe|zP5ZEZb}r^?2qc2<$gf`hJxx#)27}PzdH5PXM(;Y@vpp|b3b(9=hL9LC!9kw z)kDbzWt1*t@m5`P5?eJ@W~J~*o^0_t(TT7G3p`?y&;xL)o#2`^A;xlY1mW)h_>&nka&CjHDeley6R-zMXdiE-h zg^K(+8Lm@}N5PYVt7~-~1&69cV28_L{#7K;f6ETDnX|%KRQ{!R*@%&6?065l7g9F@ zr_TuruLBfriISbRr76mkc<`pd&~oRts~0Kb zkvny^#g>_DbL~&goB@eAIW;-+Zn0W?tCY)$R*EvKmV-p9u&ee1b8fCB#a2Ky0pR#j zdOf1eVe=fNyJ0f0!Pwcs!qdFdM_sPx98m6EyrZZ9=A#af-p2CO%HpHKGWYUaSBV8e zM}{pmSHKe4$ppHewX!(BXeL#9QQuQlSt?wa^od(o{nMMOVX@jM+QkMjrk&hwdZJ&4 z+t$#MnO;EGL8O4N>^c1!4fNC7?hfc&H?Ntz?Aq0o$bylXCPE&dAJn%|teXZ2_g)Aq z(`bXesPe&<3|kG=cpGf%DbBb0#RBT5jFG8|hYi8AQJFMoi7UmDx%KHH51BgN$tg;r z3NJ;w$!*_~^k@-OXdQH&Fn^yv(IUD!(>{uT{_-2=kZ%Fg@fyg;Sv15Z2sxZY2Lx@i{FR~LB6 z)%4`r>kbTVf!}x^r^lOmptI;U*)=s}zBX)48 zU%;1En08b1!s~zB{1570-{xC^U70}%0h;2z?}MFU=BCv25@ph`*5pizcJ2|GO|%3P z>IdaOao}Cb?P4YP9`VZ;=uOE?3%oQHU3>ybmtF*+%BOLN)_9Lr(i?Tc#{#st@fbwj zSx!1GA#1JI(*$9`4aKgPb|{_OMH&Do!$rfqFf~(j8=0JC_a3ER#91$XsE8gdb*zSv zlail7zm9~KJhNaoqsC=zdg#uYHgDGcUCP+OAMAzkO2q$R=T0hei$ROpu@PN#4HjfP zx?5_c@n$N)wuw&q?Ix%>Ze;)$(_ey4V23h(_(>YyMkCvfd5+V;`VLA4(e3B3<+Nfc zVc)8xAJ%t43GIVo#E*vU4P=2dPacS6Vj9Ik?D1vTmRMl8w$sqIJy2qflRd(wj2|NM z$%^iLYff)}@mJs4^@2^fGAtI6dsSv5jl}2*tu)d>4iI=pW4?HAXYSFN$LB1iH9nZs z0u;b9&1|C;Fyv7x=CR01sSe6^9u|uzmEru?v8+{CBgUksK7{k&K)wCeSv9$0xFw?r z;K*IgO|P)X{C4ZeKWrQu^~Vcg>|#IP#K@lL=V*457mfFvA6+- zgu@bGKguh1LQn3up@{&1z)qVZh514Hc!QIcLs_5HX-G(i}9Gi##0PQ`(dYe3Z}pZ>)XUjXxLAGmxQA!!}csUPuF-UrVS8G-;WcH6GilT zsbl@PE1swI-V|!adib&q(;wG#Zrw_|2Kwk3sSAp3(Y^N&>~>Wi4?SMzd$)thS)lQGY-!ac?_}Mo=RR7yc$Xu@*CJif`KsT@!@<59_cnG6&WG z2=5)(R(Xt$uEX-(7TVE!EXTN$9<1nMgMZ-_%;g4l1n!L?=EQ7Bkl z6&4!hol;V`2-XG=idyXG3b&F!Y_rHOh7M>krt58?pAkm*3e0Cm+UXd!kH&W&Yk2Ii zE5mcVrPW0jLSsZX*Fh=3;5EII9;yd)9zUu~9(J654Tqj8#Vj8?N@F10)7);g)VNNv zqY#IW1N?C69DnvGl_;~+?>iL)KBQg2HjmRN#S$!gRN@mVwhL;yz_gW(X;Ti=m+YKU zvgSC5c0ZrzNb4WT!g?bc=IeZs?yYrm!)tr%AN41?zo7*>+OtEE( zTvrqQgoORW4`G`Var;*lBo|NTQ-{@?r495u*lBj*cyZD%Sk;O}hD#EhbnoEF(rW&= zuII!Y;S3a~OFC28n#(60g%6 zwMZ9JnI1ATVW-YId<1x84J~v8t`hWw+Q?h%;_?HvmHvuN#`>bY>v+CSl=1adGJ)<5 zIT|my^p*aUHCjjx(#DR_1@J ztutv2_-y-I*|W#d3w7Q0k^*(G9iKK>aL{cu-2B~KWm4?&98`v#4*rRO@DSV7A&NNX zw$Kopb6x5Xy~VjLH}DYM>JS4xhA6znqFfsz_=|NI>Zc6v{(6V+AoND9b)su`1$0Lz zg*J7ESa zSh#me+WvC7+~E@~TTdqMUOFdhx?t~$TkBab{)S{$!{!EV=}mAd8@yoJFaZ`#x*<2X z*_}ymH#yj@w_xGsDQV5+bay>?`?<=5_`IbB5L^PeHJMnc>nX-bWt|!M_br`He*^n* zI}BNwvolj0meRmBDzk2$pN9>3m&%w}3`|4{4eRjSPDMDS2ZOTNDq!9?fsyT~#VL!C zy`?w`XsMT8t_4~2&4pEKX#o@v@ZB^ya%)s+)k4lLb9~BM1C%)Go~#(mnH8`DM-B`#}s%`MEEk~Jr<{X~2FiNn~l(U29op96B_VdH*S@7|J^HD~9P zEYB(YtIT~0R=9`jyKR}H^3|pKP$jO(U!J(0ebPZC@xM*Ihac)(xo%ZisYY#kXi?6x zw3xfDq=UCuNLvGchaSqAp34tq9WVd&HZ1=witI?sP0yOc@|y67rlNesl0c0SY<_ya z&dJ_M56jFs-BN1@A8T#Q+*e_ zfZ}~{hNin~y>R~l7w~-q9eB=zNX0&1M?mQ4AJFF@?|b#^2Ea~KdibxBSD7+o>*2g- zMbfgLC1uz?*$@ogVtbI5yN~@IMfcY8*x#3U9bA2! z*jb|5nH7C4@QN|Nzn>L?4e-W=d%ir{823U&*}p7jBK{hqiTZ>MJOpUvYuC4 zd`NBa4z7ZqN+2Wow2kO%g71O_bA<7zXHtIfdk z7a8v<@CZcCR@6tdQ!%4e#9swpAE0P!`qUs?-32+%Q_p%X6|mk{0c&d=FS{1L8GyyE zvjHf=Xq`6?qJf_tQo8B+S}VQ-__otN#SHHd2I2;F$~Q4Ybrb@kI&foPeIgWWQ2hts z3WKv_T@bcT;G{9a)>ekC=b-TURKVu}0cK?K0e%!%!gwXNLz58?rnb~d@m=)dCb-{H zfKG05;#-Ay@6Mz2#wI`APdK_lO>D0Z1AK)iBZtahqjyu8^U0*^zr$b;wUfg*w5EE| zr3mnrJJploOE}e@!7F~=gQa)Hf2+-6ZCT-(5HtE|HYA-Kf-?4`dPe#PYT7dsB(Vp< z{Jh$1UoL3qc-d+z$$#B9mtq1?39rtuHB|22!^+_pdyBeBIKLD=wZ#|lc0MBo zY$xb+Rp;J0S%q1T*p@(#o4b8?TH}%`@&u@=`)C8)H=+2SR+V#l=XKE4^R)=}U$UaE z+cCY0Zc^Ov-hsCCL-@sP2IYJV3XFT}-Lx8>p3rs0!`8uUtQBI7$xq|_aMs|@8b6i! z@73~HA)KT07w=T%Y!gdfQ zJUYKaWIo*BskCGyjkZ8?@ZvZ?qqo<3Id^;jpW;o=j#I7*+ELGGEztCsp_RuWTHu4z z?uAgA`=C^MSm}IRWEPa$O2E9s3P`)_-KUx%I0(mW&7SQq+9*)>I%auz5r^$M)8>@i5k77;sPQq(K4PbHO|kyFEAV zsPg2~FC?$$M!L3>Rt2Cp2+;TC0AFXL5dqKDzoBj5NDj=In_O%u5O9spwPaW>fN@|3 zw4Sg^&Yiv5Gk=>cSG1F}gKm?%eObj-G}?{K%!Eo>;XjmH1?{f8e64Wpu;H}9xdab5 zY<_p0fP{%L#e<1*Sg60VI5QdMtx8y!+?5+@sw_>O<^u;%V1s{GCGD!|@?{q1wOYQv zs6nGTwd&Du)qe}ssVLb{w8B|lR=R?3MSf}ObH>5YgAeaz*nWGdO8?>hhiwX^)@T7? z&Qu*@GF5Bycm7*8U@bhXSCkj6{PJrb5@5cP1Nt14KYJPW?S}(p9}Te5b-3AShPJPR zF6ug+TwL7pcd(u=5#MMN4IXj64YsXH_r60wv|;x4R$2%*oHm#bY*Yn};eBPI>+a?g zP0)n6l`(^$j|N}bwP!obGjUH>iV5%1u&&C(tsc4`BxP0QiDsLq$!MXeZF?VrFLGiF zT^q>A5!IEdtaP2|a)~PV`3-FoZx-wY9~j$4lSPL+wb_$HuR+=C+w3{!5htr*)C}yX zgq?@oJV%MdZA+6YJ-8eL!;BNAJ^Q=QduW!K=36&;JePU4!*krO4vn*~vmfyge37TQ z=~|!11GjQN{5>1x&h3>=^e(vThj3%8087(NL)?&XP^Fs{#_n=4RYcOij(dGJO6@W=GnmL>1?7&eve1&7i>wt z*bYsO8BV%RTvvg-#h;hit6KL%n{MS>x3~}tJ3ZV1itKcAy=V)F@g>S-Lo8eFoCo6p zECNw(^1!3kOdfyI78>h)7N(Hh;y5kFg^Y{m(P(9!e25l9S)`;6#l_#|R*HpQiQQeV z>3D8`F`HVhg(>EqDB;9yCo7xPW9;`W!-XlF9D4x-zn1LyhVJ;+k~I^$EB+rtap0B^ z{kfbE-I$JM8sXhdX?}VdHrD`5eNRJy_7?8$P43>OBoE$8E7-*0?iNe;;`pB^d)SNB z#P$F!Epj_h0HA)7F-*a0&{7wsW`YI?p$G{eARrN=gTaROUmig3~s2ZQ5w2QxVR}rZ+se!kb9fc9X4} zV!D0PaLGCVe;`~-dJN9#%51q6lS`yg&K4LI+#F0PJte zW{7)DP$t{2eu!3fyVS)34NgWxO z!iRZVpU1WHha#Q%sAfOdN(W(Nexi>P6}|N1$hLyy{1(ax(04arTz|(9{<*0uumx_= zKI|2<8%k`iWNBe*E(98@}8w1Z8FodgvP&h&;!df7NfDYo9@N( zEeRmlNv|Myyw-gzw6u?bC*d-CsjcM?qP&t0ZGt(2oE~1}ehw8Kx>L(fJCYhVQy=$&eBYpA0m&j~um{%;yQa2m+x*t;HBF6x5+}t4TDG68ZiY8W+y15oXnC+4{dq5x z*~3o3Y@A3p!g_idWaDwEyP0pSZfI&brv9&F4blR^PsJmM-hOQ;&$nRhbZHm1v5T7rSqq?vRVe=V zjlvz+=Xr0N*t7w|hS*Tt%qtHX`*xj3Y-a3gqqk~=VI_ZF=cHHr;u=Lqa3MF-6K&ZhmeYW)AJQEF(hvG{gE_?#lwk!1VO3rQ&g2N^Yg^c|ZbwzI2la9> z$Ujtf6I{W~G)yU#X-GG0r%YoG0CJn?sTyw>Z~}e2Alx3Y4=yXG;o05<6W>2PO=|?n#l&rj%%J<7t=$AuwsTL>{bzx0Fx(Kum@okeMEr+hEnpal_;y#$+@I zcz#02`eV*c03J>T;XNii^buROZ?dJd6i}8|88-;dw}7H3A4PYI{M}H5T2?>rQYH>n zvWJtWdk#zrAeatFBO8wiYd!v=U3j%m*qw{&#JsM#}zca!Ob^|6! z>#DK&v$Jip_%i7rznIW^+ugX&Eqorno6h%RwnF$D)&}>4II0xZhDOwJh@}0L48bcs zJ9$rfs<4UF^xX8!Q-|>M#NRi%o7hs#o!kdEnMvw>)-l4_d^g-dS}Bo_#Xr|sMf+=T zaA?Z_&j7j)mzzxb055uMff(`uE_`i|Z-cjH7mg_aG|m+t3qa21Lz#0tFfyB9V}^*F z*@`CY^d0a9r_(cci~OcmanhE762VE8@e={<5#1QqOqh5Z8^qv+jky3_D;-?xr6{bh za(6?8OoIb04P4`A_1*7LiAX$z2MvV#er$by1O2=b``RYPSDtte?3$f^Cpk{RRP2X5 zjB)%%@*?7dL-jV1%T6YI_XdzRR?cWC_AtBf?z4wrFKmF8`qWM^eehgyz^|xST-~5d z8wNL}OP~&N@4*!B!I}5Eq$~jc&?$17Pn5htD=}+qm|0vWrl=lLBmF(y2vo&UZa=mI z-S^)jK~$BOxPuoI)Zhx|+A=7TU`Api6Ld<&njVMc1iqlDSw%uuEB_;uO24`lqQ%FO zyg3g(Q*pal!+eFA&c|g*z|>H@rIW~drh-J8pnc-;2se#((8@#@zSb|G50!vBO(bp0 z!)fF7Wna61hIWdiyk!Mqkn75EvoA}<^A;3uKK;Wn$!t{_2@!;iiEwZ<&k!fCfae(~CU$R~ zG|kc~a<+Ju?OfeY3K7}-1XH+a}- z?zd96Xleil<^g4a`$`u)x$nwM!ObFTFoe6;;gFAR0NeZto-g>g&T1<@czAPr9vEC) zkjF)@P2SBI`$4|dBo1$#G}m(M=$4i(`yUprf_K5S!Ar&_*nsl#CN{6MQa4`+ZNvDw z_~nrk(EfX~g)L8b*stp+@L1aZ63xUN^t|n&MQnv&;sxdOfzl;XNn-A{T&%Y6+$eIc z&%RhSF(hX5Q%L988zD=AIJm($`ygk6?&6@j$SW+35sES<0X~ocT4Tkhh5Z@^Tj6cY zfg#qpa7=@ysZ*Jh@MON7 z*&%Vuk%Ik?emoJ!4IGM~pTkuZKaSl_TZ(Hfdbo8pd_Bkxn#=yQV#T)1^f3TkaA9sb zQj4iza*rq-IGU^Wz@XO+rq8{Vmb%#*(+PR}+qE6=S=z6FXI;eZZ}9G;SD=~ug92Z@ z4c)?ZFWpzyML$pgVaICSG|ACk0fLW5PWCa&>Ej1bx*^HYLfB0u%2VpZANb@-SVoZ*=dr8T5^P;6-LomTe2>2IAS#&3IW((=me*<$I5 zCAROsLniZ*b_B#UF)=f}7;H$FNZKI|d*+O>v5{a7^@C;tWbI}49}~~JGM3MtIy)Ok zLq6GES)5*Q7=Dd>1D~!3OYBwJS|NgT5hP4jS-_RJ>v5VX9L25-@Nc%(xw97HDGvwS z;{cS=P`$VsK~V5&n$LEFr-4~lV1#JEI~@2*5{rs##krm_%Eb7FTWs(sXD%580d@&9 zhhxmu!lJUcYh5MExB=omMhm!^+A?6XhSUh^(LyZn$Dz9y*vN3Gj)Ca6EUC4F**+w7 zicz!`Zjr3`Xad{(esb%p`(GJj`|Z{Di0>>GLz}1otW&K}IhqR&Q*OucKfqhgFD!Y` z!u$9|gDU7M;0!MOuag7MN41GLa9Qf4qagTvMc=l>g**04`!hiMtJ^+1@T2-R?>2rD zuBjrq6gMs4CDs{CC{h!Y5wMnO<JdxA0T{HH?n;dZq=1|ugDFpBVS;t0C?l7yC3cZgbOFY z45zyZXCL@32Ol0|owT08&&;_f!`{VzQaWyH-jkktY38M=@4~y!xo-qiW`3CVS?0SL z)+ii-@FBs2ThIgC3%T`0D6{UB6Y&ib*2A*zCh##G7^P^1U{&a?vi-$Yd}$``t?UNZ z|2z0zcojEnLU?}ggIduE(~$jw%x1Vxh{T+2_fb|S>dk~o3A4eQ8bCKZskIlef$k-I zZRyRr?mdq-L&kF8_-r!_b*}Z`2rvL%;3GzQJw$seh`^X3G#|`Crj_PdDKnAg*)!>g ziy}J$*JNPRB?XTwyeN^erL>{k%KYz#{%7i?s1=LOmb#1{Zi`8pASTf)C+1bVF5|*d#Y(72WiQ8C?u6&oOy}%Z5`LG3fRl|@(46F zP9M(xSdq9N!eO2z928fIo`^noamSVgDY4nEhvzZh=DU4tzs7as{}A zSzf5sp(8FnD~6y*`y3G zxK5Ebb&e&oa4ZdOV<=AOe3hau=1f6{nB6G;Jj0S@W?`+s>oWcCoMp zqm2@s&AUg7tFA6C&uzucic~IPA$MY9b9(Awipo)7wqD6nB$`1-9E zDizz_2W=_Lo>T?z1E80F{{0@8i^f`y-zJVeQF%lRYKNX3P&dj4UB2~K$Dodbntz}l zZfl**c#IQX_MPd)EopO(>`bq`dv-OuEV$vu>^@fj)z?Fe2$yLA6WI;g;K?ttEy62v zRb6zR^C%cG_ip-29jq$5z(&e+8Xo-(bh|A4&$Y62Uc;+$y{Ut(B^mWlvsI4+`aD6!*l63;8&uT~=1N@>6Qi4}( zp<85F?pc!P=M&G0EI6Wx#3D~lL(9&b&BBti^@es@=@qWKY+`K#C9!Com9|ABh=dnr zXTKn_4gVoc3_Hv(whZn{&)foF>F>+0=c%&=M-6n;Uu3{IkoWXI>{d94Ev z8pDs4-!(2QTjwlsSxTnOo(YGW8W$e9GOw&CWd)Av^!o-7!XhW-fKdXIQ0xC05x-Xu*o74HbDeU*mrumbp{Z~ zgk&IrAsI3=0hEMgt;6YW3}@|NDI#{Gux9LUg2FnaO-uS)K{nM!3jV9zu&o~e^Te}$oPV5|FUDo+%)gV3F_amx`d!V=%_0j z>U$#LYa&OTqg!A#X9v7*p{^+X?Me0fg6Gwr3!l;@mrS#!d;azBy}RGlI9eYrtw%Gh zN8INArqw_4{>NrtvdMRc;$d=H|EHhYv+LCUS+jY#XSl<`7pXS>|JVPE5vZu{8+z#= za(>oYF7p9zT!_aL&-r%1r1i6pz2&g=#zuYHb*0J&zg`l9T+nw(|IQ}*LFxBT^o$?=%cZ{~(Z}(_Hh5#Ha(-f4Q=a3r zv+;QAv57D7(YHyzQ=*S^kF6@(i-|3cH}ipg;!UN>Ns0YHX8y2+W21dYb{;%p>n)kD zyzQHZk27sYTbFFRC9zZ6plt77gKfEN?;c@``INp|svMTs;#!VvR%M@@*we9CD%+)r zE!K^(Cw{F|sVDXWll_FT8j}6D(XM^(@DcXGua_!U%Fo71>nPTbxwS1VRR&}Iu#ZOD zQrS3#h~u2*-KJ+Cb4-u6n0K?aLSH88^AgWZJ~7rgcz7<@SIa&ru^$xX4co+Tlqz$h zEjgB8TPE9?i7n<5+nsQGsnXHJPCqR#*|$&ZaZOlk+0uPHwY7b-RJkP9Q-83rKT>b0 zY{x{K@{PHazE!Hcl<3p7PrcH&OO;*Ye2rM!*e86qRQa$DlyThSoM0QgL&vwo7GuYp z+I~=~Y#7@P$8YLQlz#oFS3jbERr+0{KIy}J>GcMY=PK{vLBbkO>?b0T&lb+vBj7Zq)(4?BXeCU`;Kea_vp*2M~1)O$3C<@ z+FaiyJ^P`}!4ZC(vT>GvUeqUJ67yUw``1RX4?R|@+&qfC`lC|i!6yBP@!NhuxY52;_GyVd zzTf8aurgUo$?<988uVQw^fCYW(qEOdb69xqVeTqFEmhu{*kYYF=|7w3sS|C>WLvZb zTh|k%%CT#(EtT!$5wd!;`#$tmx@^dCy}>Au?bbg8mgVvDgRN?%L#v0p>d|1i9641##M>Pv38%e^vSeV;mhn7z6x=r2j#p|DWcye*?YO{&x8M z5exmG^dF0{^qv;SiyW}G{jPbvs`TmmXRH_FE|q<1vQI`k`-#QXLkH9Mc=nSu&B0zW zbjkmKn5V{q{Ll}rLBC4+{JlDi9sU#kP^vte#EE&4H}YtO(4(eyD&p6ZWD%p2Q+Kul) z*eZW1RgO$-={W-SF4^ZcIex^xu3A0(+&bno@ugDbq9!@VoRJm;P1K<(T4JGTLMAOJz^j6}d-S>ECa* z#k{JreJII0JytW;OaD`&Lv7@7hv)Zqxpg=CxY3>yy~nG*xf9u1TyXwNvoy zq`eaVN%E&3*jCB*=fsxgiGBHQEyK65QR)xv*-~7;&=`)4KVh$y%DJP|Un=|jQS1};*4i4yUU^ST@fo#A z`-8Hl^EfiUiTkuvKA7yABke=`wp4~jX@BB-TPnwnQh#v2mSM-Vk?||6gdu{1+T`|&-7SlHX%-!kla zCpn<+lKzI|n2_$f*ejD-Dz7xjG1jjf)Kb|rsh^G;^(P$CQh6@PD;{%V{kB6}Dz7H? zSU=DEu$IcV5__z-O8RY+cHfluku8Enl7VE4CZ$t4@|ZSu1hem`m!IM#PS`LD|xC_%z?;vh6pbUL1!?cS~j6q|G>n(cX4iOXau87^iEC zv8c>wsnm5+9`}ined?XrQh6+iKhi$2x23XPvi3*Xt9^QZOY9@tUp`0ilYL{PeQ0h= zWuJ19-$?ta1;g_jXPuQG$LV75n)*L+P;)xU_*FmIQfW)_OaC^+`1XFL z`8im#{f2$7tPACQCudHaZym!}Bj~H2ZE5=VF>Lc?yCv2c@jj1z!qqKn{H%n1;x#Rm zzl~CV;^$f_hbQ**{e=31vY*ssoMP^)uN}TG$9;~vZC_Zkt=h!K+NR!o*hy1;{p4pY!>*;J>lFJk*^fz%;b~6TE5B%|%v-~Lf_?DW zmdYMU&LitDf3Br+W|DL4)0%SLQ70hW3AbsJm}{zYlIn1W*_Qtsbp}<38@G;XQb$Ag zfBZVDyRUD`>D_t&=H%Wfv!|TZ-QPWXvVN%ktXVTl(+1A!l{~w$Akp4hbh zB9&>gCQsG3H2Rz8e%3&L_qnChPn$ZKACoRk>+YL6dq%JBAe%gG##!BZHnjRTvZ>rV z@9wl2v-{7RJnOX6)SpuC^z-yc=_x&NyBMBg1oXQ=`q7x^K?i220`bB_qf6&Z@792Z zkn~wqN~iTqIlWIFHUhd0bWZo|{*uSC4o}wb>t5;7SuWs5AxX9d%{{LV)XUv-1J$v@7*-1}%;8n7!x@6pV>WIvW&n-#t@n)~4PAO?cB1_#Yw{ndGZ+=`?$S@#p*pnuo)pz=vI+m~2#A&iEykQ+m z59PhRv%BX^p4roM*NI_f>kypxZ)W%DQ~GDj$#=k}3uoG_nWG#P!X8`!x=TyCw^qk7RSNcfz>{)uq!j#iXGx}#unQTXKJ2;f4%{YBVzmCm*$R5_|FpK?q zU$uh(`^TH#mj=9rzA1CMC->btj*zW=k%gQGW{@HK)*Yepq7a>_8Qd+QZ)F?1=e) zd|vebrHVSGEWM@F&z~<#I(0_Q;Jc*IPyQk1FRqQgrPL@v>@6kkh_IJF9hN?%(o(8+ z3Rk#zm2kI<%Y@fld|j}gJ1te)6lG_NRF%?R`~v6hDkKHp>v9HXnOr1=Z_RWKjU2Iat5!~hr@IT@%@3>8^(tvuU)G85VG;8%33HiipWo< z4s84?aX@ZW3u|jgtp*#l&?M|uiP4bHSIM2(AiwB<+$`VKYK1X|hs%e7g}o*>GDs}+ zF(&?T$mla&ldctpHu6y>Zb-WKoFZ0ltiN3LRVpo|c5tvVa(fvbYy7eNTn3b`_^`2_o!SOuM~Jx#dQMKEMy6?nV(GN9d8JlhP?Aj=fK-{eLHKOOXt zFf88~4*xh(t7Ln|?EPiTl;kGVku;1ij4(Drof!oV)q01S( z$K=9yxwcohy$n~noWU`=UZ3Vb-a6(>=kKTMxtzgCCKquz#BomqzL4Xad?TKr?TMepuL&bU{E^;}8tvWuX8Q}Xx zvp0<2m8|0(_`azJGWe{k!C!(J5>4Jp$6gOe<(@VEQ2v^VdNWo|?wFq=J(4?C|C2jb z`J;|IR%1jc2kQ#dQ4TqSTKdDfQqlH?ZZE@)UC!WpO)e&J2W{`8k{l`~YIBkbqXrLh zIfFZ??R3;8N_V1)-k(7*PnT#f1n$~Ym0rkIbhQL#o7fJ{b1hinT5zjt0XIz&0zP5t zcJPXcb?|T3Zld(IS5X^)bdp(_piNF6=@{J8 zSl8&-3nx61)2WJLZD{fIrYLUgvK}0x0Wi536nwW-QFSoM#5{Oao9!wLFRZ(q!3#_- zBF)$K0=JjpLYFgmx5>kO{fwnyXD(loU3(K4>AFn1d#rkY8Q$k|2LEDm5q7n0fL((tq?*)mwAa?=&Zeqk-P^<}aL0V)MmyQKPVQ+c z_#SV%hH;@}tt;>`Qx9Zt(AD6RK@Gp)YA`Zzhjb^Jxq6;(fs3&(oV6@gVRGRTmovDN zy$2T~i|-v~Zy48;UBd!42(FN7$!PsbH8wR>J0}Nj&5x+x2{F}GLjOcXs}QtWojM?@ zv_oa_Hp6oE`q4T7BEa&V{yj*r2$ym66kolaHWga37$a5k*ecObh4CrUs~73zz2h4r8``?iv0vQS)~$ z+}Py|o@;V4l-l0KbPZ#>WF-ntHT6IS2V4zCMtG-mM9{tu_B62yx?D^BIWEQ##(ILO z+OZNc=^b7=Ik5bpjxop?^08IMl@>gkwys0uJJG0PGp6 z2K=-!A3&vJC#~ud=d630V;$^eVh8b$buBo~wFLd3i-6Ca8cO|duP*&RMTJ>`-7aTv zvB|}(bZNUsMd^WgCblmS23@>bpi(kwUE1_IHNeTNS_kKtSOXWi7F_CD@EO+@LGzJV zD$8vuBn@wOIfJ{l44(>o?=gGBxV7xc0E`c=kZQ@WjCLaY`A|(k?S=0o(>08K@>&Jl zzr(tKXR2uAz{m)l(tX&>9dm?hT#WIFeWI!A#JSqVXdTk#Vim>$E^#@7|1i0jKzzS% zIvp0oAF60Ifrm^zkioyZ8jOsfW=bt8vcB1uii4Kn5>#H5eITP`ZW+dBab;oWafQw6@3_U%p7Ayuqy|w%;RgE2h>q zSnc9Es=JYjw3`ZqN)|tnZZgLj;KHlY1|F#fUNmhD{LREV;A5+f2!PKNss=oMz8|zn zHC}~Y!EIgE(~9*$(&VC7_#S4uhH<35SGKdwuB-cEpUWAXqLaw<@P;qn57!8RHkp;+ zc0xFrkBf61sWvfd{x;UD&9ha=8TPrH!7u0xU|2iSah%nqF5}L@4hKwb80Q8(^ceCF zuOaCcn_c^dxWwfQzN&Yqw7r+4+e#@37KHL8c`z0r*ByB4xe$PE-rsT1;Z zF0K-Gw2<|83Di&eM)h;7dhLASITv3QjTew)i#T|Jz04?`!e% zl{%=+hKlWf;?*u^aIwk7N?oe$+uUA;-*P#Fcbi=JF4OisZZE_8T+ZO1O&;#M+;oi+ z{GE#C65uKkj8dyy)T$M=YDq2i-(Ra0=_M8V3tx6QgMZy%_`<;VzbaZ7;MVnRW^Nbo zOeP7(%&axQ7iP6qaD2$czY1Q5(+7KPCe>|b?ZokO7P0f|f;)0LV6W9uy`*9pi!ZyJ z!A50x#zWd(Y&z{z;teim@D`JcQ75?GNPHI&b-X~f%W^cH?tj{}uc5KOD@|x0p_Uxe>puq7?&1x-OIM z9u-o654fDc-AxWwOZRRxxEZub~%H5 zSt;#}+R(%9JViLhj$wl0%w%grahIN-Sc&f>TZ?Cq`cDwzZ{9Kna_>9TJeJ?d#qXaqq(i#SjntC9E z{HrQNL6GlU)&&lP+GsxhJY zQY}zngyBM$^$2ahTAYqBzE`Md-v;ZAv6n%bN72gG>YZyQ6p};7vWvX0iu2pckiu%aGT&yd`g|zf?s5hnGr33%-@8oLFg_qzV-H5UE|+eFx$4h#;!2k@xPwkr z(-Ft_*D4AHerIC+MFG#`ZR+{lTIB@Vt@+BCAl2>`S`#Pk>2d}yH@WBuz6YtONpQG{ zb#SC>j}|`a+PH|g`rS}rWx_=+>rM@wcbQzoU#9JQ++KzcxSYXt#}4m4zCTq_E`YzM zYvH^mjFqRfU~Logb3~plv7rjNz>Qtb;0-1hx!}8^~rXux>PzYHIo{=-Q^74Z*q|uzIUrAwOD<*HdmON7LK^m z0YsPOG%} zjJfG7Qhd(k3~r@Q)M-cGrfo`6y-l0r%}tj%#GPHvAQ#os>TK`s_A=blL;0NCkPQL@N2FHAwnfCyNjgzl9}^^-+{TRJ$fyb>NXVy z9p3J822au_^R(Oe{!m4u2DY=$@0~jc`?|QF@IeNPJ}y$H?qX3VU)h_LemY$^w&S?W9P2nf z?BXlJ8!pD+AJZmkW!9rdj>jx}qWyESg+MEUYjT*lu&CWTwy2%YI*=niT~BT2rrG0%cE$}j|Og`N+m zI{r%X$;j(+73~-xRI9)vtc6Yx@~Ob7t_C5WN|8@KV~5J@9jcxz(L0f^riT=sYjhf= zu5XHA#JXaJTy8sDdaV_jJk`abnS2FpBumJmr&n?a+7ko4sz7h3=tK;RwLn#{o{2TW zf7rFL4p;S_QDJJ~b1rA_L0yhYrxxGW&E7D6*sf{S0oO8dg;Yx>E2&kc_Q_`M1ff=I zQ7a$P!(=|uJgZo{U5r`3qBwO^b$m!T$;Bc}K4d$~!qrL*$$7%%E^?94v&@fsT=`p} z!Z^T{E@$uBdL;Nt3gPj0ynZGIzUJwAN*g+^*2_l2A(ys3jXO@>aT0{^WFV5S-iW|^^E=Y^YGOe49qhV@3X z<_8YyE-+O)_=<^j@HN+h6|RjDS84MZ6-EU9-sKGb-Q*%S?g(g6!53yOXKRd- z$Gg1@cXT;}dzoDLPSo}!x0m5TE@$w^CJ*;*H(jFy&rs1=fo87fyK5N+dp>K+rCVWk z9cRUrE@$v5lZ$3oY5N(sm*I0RXYibj7?R<>FPXhjg6qhx6hSlBt*m;Z41+ySalUj5 z%&v=h;zE}*xbeoro5ik}r90c|Yv&OAT+ZN+OfK5OcZum5#*y~rvaK+?W>j41at1#+ZuoHF z+iALnv6=lXZZE@N&-12!uxE)~yNtikt*2t&xY4DN{Ux87Y|oQ?ak3rjm8DzX^txE0 z>mf%;?n<_)M=ooX+#c%zKy-h{S1Dviudg*XAN4Uzx7lc2% zn8tt1>eN7=Sv#n6gNru_G?aYKct(!@_BvpDbF6_qT--;P;$qQyEjCGBv&~v3uTQxM zmY7%tUve$2f8DjEmBQL0HQj43?Gzc5&JNb7xGX5t{nKo`mWx&`W__UkG-<1AY2jE z)2rrK$MIEjtmAlqrB;uQ?~r8&vvz=Yn^*<(Spz}})2vPv%rvnBe8jcjBG-aTT?-iI zWJL~XbFqr;CE^m7Gx!sei=z#`cbHB$PB*cCC)jnmiurC84Lx|+#2R?iwcs(=#$Mm7 z%^#U6ABg4JT%kgCaHY!`+)jUuPTytleZlMvBX-?Z07h{wQzh8*L)jms`;&^Y|C{id zi!sk@RkmtHYI%+CG zaI=Y3@B`OU|8ds>>L;C9rOjtl=nQ<$!Zeed1CkcnT7*|D?Hm9i2D4gnY26xcoAk(Fa?|_Pef}faJe_X&bIZ?*3 z*Q_*hF7J5LIe8E;GR>49=O?r2@90{y`3TFRR!m|mZmN?u?h&43U%4^T}3M! zcoGBS;1jL}KUdKNj)O##xBj=+D*gYA3f+g#xoo!|@m%Y4-dD-?y4f3LxTow&ox6Ux zdq*M&werpgsZw38qMr1^uc+wg3PQ|YiS}Bi z|L;*@--P$MoWbWzF6L#Kw*6q%Fpgp`;}`7tKDJuAmsDsAzU;Ey{&k3+67O?4ga0(SNEu&# zh=X@k_-7S01YS0^zSJiE-PK@Z1X@)p)*2k+vYoyhU~ziWUVqV(siPA zlT_#gJji8x9Kc+Yi?9>5eXQwp&w=<+6@>*OUFS=;K!vbyq01S3)Z`-Ud~JWqbPeNO zlJ&_GghvBpkZMxve|yc>|DjeHdaY_wtF@?AwJQ2=zDlT-6}4(fE&B~8Z!6zxm#fwa z6?y|#x@^z7_(lu*qBr=yYW9Y4bJ=xL1e&>`*P_}&*cohE3B~8_i3~1Xfe9I9PP<@9ec&5wou#OE)YGLmuGToeM?z(G;6*` zJ(pWMsJoL{IkmOd1a0oF!Z^b{UABj1akFYV&iH=7bPeM%l9ePF>DndT6m!+Pp*Yp$ z40fAbOdkh>v)x{XeJ*D(Jibad{`d>u3(Vdyj$$w4_X!n^6bP>QAqjK1a~AU_%`;zr zOSO5M3gZHAciEnR^>dSp4&eI()A07d_5nM*H|SxrdMCTR41+x%PvQo9me_~o z80@WyeO#Q{q<$r_>#~)gG$gz^dpd zE-rLAgI_hdSaSSsCZDz?hS+g;A!e@re~!}k%> zHH`n1tk%FtSH6VTqC!|W#^nso)t!Us1mHW)>W&?SW4)L9ccT|7yc;^Jw-nJ#i; zD#NO?y_oZSZ7xt@bwHk7AvuFTH@R4J_+DkYhVgpI8h7w57r}Q_SX0oSZczny2Q_>^ zMHRt=K@A^sHTZE*!zWw~MrK5N-*z)?+~p#1f9N8ye&izcf97KB{3>leqeAE5b1r9a zny!hZy9U1hRZ-sH4!sNNZ3WzIVio+^wX21(l7sfzZ#Z-)>PV+4uYgaFCz*(=rA7E^y27yDe!;7cYKOC8?} zRW#dxTX=PNkdz8zI1~sN(r1OvpRQ*aJ7puHyj@~$68$$ zJd%X|Dhn$0Hh=RR()ME0=@01Q5|=ahy2-`J;QJjFr2!r@vA$gRw~H~2!m)x_9OH5ZuhWOfVG}6b7Ai^;46KLPajx)b z7x_x`<1RiSOjdn4oGN_6#ZL-EO%4YnFwTP3z#OaINzl)@NKo!o)KQzDT~@u5po1?I3jIq}b_$q~p$3osEOF6_%;nK-|GvYJaz|kBfjD@PMCpH7F|q)ZB)+ zktI_Fp}Bl1e6VPv=QLHLa~eYs0{7fpMC;i=A?TAL_Y{50-``JAv3?6KE@Fn|_ba$G)VQgmqncK_o z*Cr3N!WV-chI;C?zsTWLw`Xu~Z?^*7w>VeBH{?)(Ay)qJ0sEsWI*%L&Lk?TPe*`@Y zZEOV(wDua~V2HO>%#D6Lt)g8drk0%J{8*OILcS!a!7ZTL5&tdFK(bF_rH1wo;*BwD z`xb&b=EvH?v4-PX=2+V@cg)WXt5UVAaF~I0moxZzlZzR|ce3dk#%m;Ny?~LfGo?G* z%=zxY4Wf%xXbCQHIfH*Rxo8RBTTRz6z9?BOfsw9vOLvc%^OiPqa0knzQHG&k`Ch@TsWhcgi!CZL4SvG4ON1}G2p%=D3TQ^vXklv= zRRc64EqK3cfe%1_Jg7?5u41c6th=1Smp4XV%rU+_W^Wk%_Q?*go(isTP=yH*76mmV zS~BuUurfhIWBG7kf5IEf;4e%bsKApfu|@_z>Pc3h$0!aSv*o+4Wz$Jw+=Ho|`3re6 z`J3ElTS_ zqSi8ava3ONP{Xge8r&MxkhYVxMAKu;+$ck$C~zz633|9N=;7ak9)_;uYcJ_aMwhs& zQws-#u2kTDswy=IU8xjZ=}fv(p(}n5WG4t+sT5twSK@_=`+zl9CxG9AS&#GatSswE ztgd%Ng8%#H~*F z?yaK541)RK*c9gXnYjjnd15qk3+IB(sNM0Xz)gt~{~~OlcY2AZ3SW0I*6C24Z+ggY z3%_y^_^pk#lT`g{7O6(0f4fM)-7Hd#pnjWT?P-bsa_yGt*-k3ShmsW`zJ~qicPb3w zkcoAM3NqP+ZXF#{oU3|Qs>nVaeo93H1V|b6o#I15hBPIYq{ZoU=~-8U(D-!t59?DE zggmCh*(wSGLQ46$XA-#QA4RmDmx~ZRNmufgA(+Yf-Oj5BY}dx{?_AsIVB1R!P>| zM1`EB!j1QIN z!Kk7?kEkfIF8C`mw}TM1E4pI-jhXXo4HYjUom;06)p{W7(%qdz28pDjWRsYl^)yMl zFNxQe#Oq7a?t4n{cJj3Qi1)aP+Ubk&n58>abR3J}B*thGuTo+gD~QB66B4gi$bYCv zJX;ZoEHMtf#29}QRsDcfZ;z_^#mJxZl;kk-C(YNW@9e{H62lQD{UnBi29)+mu?6H9 z?{fJrQPJ^hh46b9uT!mWsAyiOG{vVV)=6@h9{a7B(__bxD+(0ynI5~2ew=cl)5tL% z!x$Fzuy~AI=*RRpP-(rTO6xWi4vg@2mos?L_SQyzV8r(>74-;U)T+ZO}I}A?>->;gz zVf?dX9TUOJrq=C5BGuAEr8cKnB)uPqQ(eyBQj?SS18rY!x`y#)$qEHVy0U$nxoR}U z+g;A!b9)U>9N))PG@9V+J0f;~r6yJZm6F9=)TvSDf(bsPa}hqPq7?|J#Zb?U14_Ne ztgUts>`RB)uT@13gK)9Q1Fg{WE^dGL-mZFBl8V{_KQgg;>Yn+Wr@bo9<)|+X!d5c!h9>i|g#H%N#0-&>?)*#cPF^Tm9go|CgTzJgIE!C<0tYht$3M*Wk{%#%oRa9-Uu+DBK z?k0TD#S?_ZF8)FIh(=GoHwiy-@o{1M-A%i*@F5p36Tao*_k|Z+oVJHrj!UEC@k{r1mDyvIhr{fEN8Tzp;Fz}8ZGT{zdpxx)1>ep$H3#W-o(X_mqY zyK^opf%(<4x^pgVgf(<$zJ@N5`$Ai}olNX4F0zR0HiezcX1k4VCqws@38dXGEl@ei$U`FYIK+6zK= zmd*W$Ttj!3<=wee$=qg>UH^`fA)(~>@tV4|mUXKNeCgI$y8D{8c8t*LB9Xprk*Z4+ z<$jA)1s=2(2b`d9-U*88?cdDnw5N5#_!f?xjN-l4PTu3y8i1EnIMBnFUC!X7y@wx~ z@LkJv4dVwSYoNg>t{GL{Z>}96xK?7SNz`$;2D{$4{Kfss2UzubR8_Uvu0qnV?s5jF z96UT}eEU^&JOvl+Ym4=#a}h38k^T$9k^_SND-wvI75&qE)(LW&1*w5xU!B{hN%^t` ztH1NT`aY$KR>d9yuE_$S_SZeo?Xuo)j`>Xg6}JInSxhM ztbOJ{ogk^mAr4Eg+B)01uRmXleJ*G4DwB(MuR(1$++K!@T+ZMghYTM=eD5&3zLqII zrlLN9ADen0gA-IuYA`Ya8Mde}VQ`Ggc5AK{mGnhs+O)6L=uO8sirv0bqmv26wy)m= z*H%LCny8}DvS#5yF59iUBY#O?qHJfIyJ7`G>h&@> zO+}*wrki@80=fBHYQW9k8juRy$<-hP&i9*%sQ!LKVsm(Y(8CaKbLc5GETxdg=2F}1D*Yc)p1xs`C*kaMvHlPCo~;UdPcYlf{$s71 zotp`}xEQVXOZc^lmU-+@XFbd4j`D>^w!d#KkKG zhC&YD4%gD^1Fns;N+fdBRK}r}*pTLG*De-lKAG#~+FYT+T*H+vXK>&x!{-{`=gh8$ zG>QLK(b$8I;0ilcqz26*@Jn&**6?VP2U_8bpogJeKI=)#87*VisaotfW^Vdsr-i$l zJTMM=sK&5Re~>@Z0YeI#L+?eS0z(SP-~JIepTRG&BueObH`@r;zi#+qg|5}B;XHj9#S0m594qfiO zs<7v)agua1RCFYW-AN7#OJ%uDg(-%&yKK*b=Gn;U6ywVeA+pHeBPI`I@M#sD%7SvJ z26tDH8oW2C;i0Yu%^G>$0yoMqL~DhctEllZ+|A^HR!DgCFvQE(Pm;9#ievHs>yUp1 z?xm{QVL(W<0uORE2!ZqUlLT&MG=8X}6$nD$anOIXu?|AuaqwUZTn8a=zQ73lOBMB~ z0)stYFf{g{iryr^Lnh`UuhCvhL4Dvmfd5uxC#@c$l3ezPlc@C&hgu@PO0%Ik*4`%2 ze6nDw+H6;0!N9u98RQ=Hbiv>|)$9%9d6G5A;2Bd7Wbj#6gJu!<*-2&>{@mn&R`~az zhoN3R>q*NQ8DLM|MKIs!)m!2BOdc2qJyh{7g6|n-Z&YANVRPucXjEWGA)luH+&(b< zg~Fci*Jl;>p1&3Le7|OtexsrZ{iE<-7uAlvKBdh&O;x4;|8y~0t-CfEZ~j8UB_k#Y z-z`knFrFn@ZGt{i4`h&PQl~A1T4i{$nQI`_YAtHzAFya^6BSKo2173Sv1$kD&Q#HU zMC}V*yh!lo^AE7^mFh&ZR%1qk+H9z>FySJX?aL7S)MdIb@x9UP4dc%xt8?HfQx9Zt zEme~mj1r+tBz|I3S;t@6RAa3~C|iU&2odrnn&glX!5@m=4nhtU_?n7VE(j6wBhXFK z-E8I>xXr{4;IV3eZ&_%UC)Beh*1%ZHE5De3uT*#>`*}qk8>%pzaATJ$WDntwgxpTO>?A6+QNrjaSUv@czpUf;T{qHY)`O*!;2%FhAb9?z9@l2BkTKfv$d^nO= z8L`$<(UBLt-NY)`+qEDBt3bXkBWDnD$OnnIJ4mk_TVb&0LoiXgZWSFpJ}O+{V(j4_ z+C0uwwJu?*i*tm_T#Sy}Xp=7L_z3)`f9+R>r@OXDvx79RGHw3GH>6E|Vt`SHOI)^} z8sMSuS`E_p3*QIK-Y_<^^Wy>PaRztt`W4t6^zb7=4}TT(FvQD8koF$;_FCZzuQv|5 zZ*f-ji0pewuU+8?fzT3T=0BD75L4B$UglzIeNrA8!e0q5xd>h{u?h~gIvrI1v5T=f zUnqM_g`**)F@*xFf*Stb)qr37#T$lTAoRaC2L7&e^fh@GAri9Ft3^;_o^zWGj)#Ij!y-c&wX_ka*Oq1Z#1%hOH z)lsC@L5A15L#$3#i&bpD5SO@|L4JlY9cX+XFuV4PHQ3v%j`j<2C$C?D-9ZmO67=xr zK@UTF#eShS_+l3$2p{!&h>}`Kt;Y!x~P`&`c8^ClNZUwkh%UBk$a7icQM_f0*J!Dn3!Mu|`+ z((UHjK`nl4Kyw2^ElK`L+RdnSt-01fXtx4?=xPumek=`J&K9W+dA2j6fl_3w2N zJZWM(SmoN7%W7@Dq+$y~t_fHTnjEyApj&; zvXqlpWnxYLApr6t(i@k<@CXmj7IB6@*&jidxll zkjBbIhldIb15@k?8kh~;J`M(ZPpl7h#hHP9)87X9V^BKC3RTj*gXm_%cdF>X0D|jm ziT3)U{=Zd4=8Y9)OO@ofJ|xRG%vvj~`RDwLWLe}^K&WA1nm9IVikX=wd!{6VxaE>cz;xJzciHeoZpDSe~k`KDaN`RX6I{Utot! z9`36H5q$>U{rotK_hJ=Vg-cw{Ab+V#=WCU=pE2E=pYZoFr7+TWtWx9r0n$62ihz-> z|5V7Ubd6enqrZ9{!ri{{+FS(sW)_6E_{M8<5s2d!dGX?}Zoy-4-r(R7LgjtGI_hg=P~Bt{TO+wxA+3{98e1J*_d2yL{&L#Gq#qf7JLM@Fn*=%H$YVE=qF2>bF7e1w;!KV&aP9#$2edd^Foy^YJa{8n>=AY1) z%K0`G_8rLQefAx=NFQs`3B#9<&`cOyFWBL+K@U$-(P0f-VrsqriXN^JJ5XA#aO+5K zKP8}_1fc52lI>V0+G9mNLayoK?dSE;Doq*RwM?g!#r1<7)`A}LYja8&TyE-t40^aC z<@*$_Bz^p`%jgrg^AzQ?*y8B$EiQ36gCFwqWFpyXNV;E|yK#5EBz!M0yB;7W-mIea2S&Q`S?gTA zUuhTnsPH)#0S}ANVgFO}5az3eWG~!Xs!1y9O3aVoyPK-U$0UNO$xjKbR=0MjP;)WX z8Pq0cn0A~O7rC54z8jwQ3Eyv-yf!cDrcAg2!&FaKJ-D>6qmAGtZ7RR_9{m6ErY#JG!V{oI1 z?Y|NJ>>{AD95xB9>VpoUu27Nohr;6~=6gKB^#*IB2=(THY$qujn>_p^MLEdcC_(Is zs{ifPrvJyQFd=YTm$?tU^a+!TP;J_NkLeo5D<$ir4jAdWhja&&0KTJT}l zg3DbCu5hjX&tGX@b#%7A!dWI42~t6eQb|>T=1d~b1t@LgTJR3nwh44nz96J^tVE(F zN8H`DxtFP`hX_ZxsQ>N7>HFC#j34ZCIfECOT%Of&MOas;xVVMz4i~o-c64!9VGkES zCS2y?Cj|aHtq4Pck7zzkH)vSCY(vv=pWwsTu_SM`VqWc+f@e!uhX@dn*29>tJoVaD$7ST;FA475v1tPYMTF0yS``iPa;8 z<6L`!aGGmp3Ugef_ulOqpz9iexH^+=Pm;xlssl$KpS-V2rMgXpWejh3*&b1Nq25B% zWsL7nRMZamvx%L575uluJKw5<;cxAvu=Do<^^>cK)Y(TK3fT*fQqd513Ev26_&ryH z^A!Yd_z8Xp2_%m07H-Z}a$!-<&sSpHyOhrwCYl9lzW$HTkc~HZ@n!2{J&abAZ z5Crn)7!3grI(whalu*Ot?5wHAdEY!2!BZ-Dz(2Se9HRFH)R5o7RZ@U!)~F$;Pf~-= z1~t6i)OGM|P{V(iy2kb6lYH8G<62xhDZM_dd3%gD1Rt3{t3(hpL3g);L_%4+1*3WDHerHozy;sBXs1MD3YU*8H zJYws#TiXkr!cOf}^U=DQa7mF+tCoNIwMnRkjS_*_KRC%7V^d?6hq%Q0rH zfwN4kg4wQ(Y4XX%RqatVB-LUS8!mB)%NaaRA5(@6mvrwjojx##A68LD;1p92WN?nF z!N>^jl5Tf1=j&s>HW#Rn09@#D1|KoGm@j-kW4ea%A<3E;Fw*rJ>25Z2^=ra+T?Bjp zOV;-FZ&vY~Iet4g`Mk_<>HNjAge)OtoWXEqK3`Q*mDrp3hz7AIYo$$_<5lP|+|lI> z9%ORS;WlkgFkQolJqe|)VOi-E$g+Z0E6sHB@a6N8_B0U8J*eZ0Y!n@AZ(<$nVGcFYhtj_P_px!BkKby8r#(Z-?EWNM8ELeQPj!T_mHfM zRcwulOI*(2zB<~b-Ne_wL1E|nuWD2AUl%s8bIL0Cx``ct6Hg5ZAXGBtkE;up-- zRlJe;SbnGq@;vdnAg>ZbHofYVy}G44Pen&B+`i{xv_4w2a1Lp0q{8$Rjh*wbO2>IF0}VNmW|hM!CKpQ+ zUrwo&0+?)Ke!%*$HcxSDOsZF#XR8n#_PLzF$4oAQ<2$IL;NTGxI{}{3ra`YTRSkqV z`S=sZPukl-Fz5ZfO1g(tl3C{iz)hyg+gPs66)GeSSGt@*ZUNTF=KDUrPpK$Hu-e3Y zR8alWt=u;K7Z+n+N;+F;QK21}K9BsrrZ3vT*Z=fU1@BhT-Z(+%bP=3lVihcQ?GoW( z7atXfnj8w>q0L=Q)eeZJegKcu4rZFReYW5?`nCgZ_LVQV)Wr771)7rSL@>L;T{o#a%$V%GL8gf16P6=s-NrTWKRd#S)}kZKip(7dBV zQY}^?f4Icu4F1F9B7c0ptD;C?xrrSs1w7NWtxb2Vfe@!JA2ZHwRcy?}F)nA2zY3)5 zyd>Q?6}1TtGO>P`fM+r~IBsRu8VGUnHusQ@dr9>UF;%$N#h6h=u{N}pbvLufM@VIt z!J|wrMgiZgRg@7p!o+;ft7@}dg}%YM%Ne}Vz(8_X`KRI90gF zMLzG)f*fM|e0IOig4V$<7O9i?bW^)#(c3!ld1|$^9RkrLf*+WekMc%x+{vofcbCQg za8y5A;yic!j^NevI^6d66_xn+MdaIUyJkO8j=VB%>sQHJ&9k4o&w$3?sRk@>V4{poyJX~%fTbS~PF8THscBQztiBljityCgGg zF&^?gwyplCePre;#*Y)WtNO^CXvwXf_q>F#WLD=(X1QvuP_cuAxYFeeZmaYEbdBTt zcNMJ&aDzVOX~$m{J^)I*TAzhp_s>IX>#r|6R?Oi*;V>7E6n^01uZ3MVG>1vTnJx|p zA93+2;b$(sDE!mK*s~&+8o8`*xzvBHR{x};qcE)=YE9KI7QX1>o2$1|J@oYOk!FtU ziCu>_f6@A_YEt$xyxW@ZWGMLPi5fBz?|*Ncq%i!A$X>^d33Z9N;3JlsVlkFaW$ zsJFSugQoZPTuu`%bTOtS-`MJIMOM?2tfoaf7ePYS(-ZsjXdfdx4}4dzdKl=Jls0ml zbL26~i8PU~2{|IOtVjuYrO1LpW>JOF>51(yI&~Gjk8nfb#U@s-6lh&q8ehl8tbL+z zkc;3*6Klr_^IXf+`>z$W-z4!ZHooob9NWA2L1CVYjQXxNsO^k8{ZMNR#r-b+T6on( zMtvISn?e#p%nfl2|KvBI$_4}+&C)I!9BGq@cI-N!Je5o8P>r``W?-r)J2>MN| zflFLV(C1tPe=xE3vap@SZzujfCe|hjU9O!gT<7ACgq1FWUzk|?jqpd;#sNG@K^I#5 z`dz|3E|S2LE^Z|M&8$wHRy$q%xNwDwpA-nJ;}fxc)ao%lk6&KXQ>WM4Z1@D>Tfx6n z1v_tIm}O$EUzlTJ6bO_@ryWHLkr@c+R!pzb00}Sbfu5pJ6g#yoq%%!Ne*!(zT%7 zwSXriYk*gQ(GZ+y zgH#1RUiow~9`CWtO;Rqkn04@76RY4!*8*D8 z;sLL?7W~Jxw114XUj;l@S^XxJ=`Mmbxug1cP{e&Sm2OB1W$71x5-OstK4yAFLS>JZq{#M*Yk z39bdxOss-0x)!|PS}^7v76GhdVr>Iq3m3uOCf33JuKj?};aYIAYrBMVTnpy8c7gD7 z*MeWW_8H+{t_5$n_APo4>=yPM+&XA8v9_(SpKHM+*B&f%xfY!6+B1Z=w^@h4jwV*Y zZYI|D5DqZ04vsOg3O?gnaD!{Xw_FRpZ(x7~T~bX^;Q$1ux}3q!Za@40gzxz(Isk#qw?XXKQdsEX#llZr{JB8= zfl3br+|4z_nKnBZElpKHM(t_8=r7M$o>FwM1KmTSRzt_7F4 z7F_9C;A=47%UKhf*-X`$_6uEnKv?Nw+%Im`0@}h|t<;%Ngu>=kPu3f3f%e@lh4m`}hW;t{OE;M6^^FMMVV+7y{N` zQL&;$-6RmuqFEq8kPudqASfhJ(PG7#2yLlg8!J_`v<8iuR$5bwN)>HTRBX}4ii$1T zSgGY*t$v?pX3o7cJIfFE!>fON=arLl?lWi3IWu!+?%lh)cd7d%2nkB|oD$2P2Rj~` zSW5%I*vMK|VVe@RVJ((bxNO4uV%D!yHpkKC3Chs8&}IcAbDVDwgcHs&1SV~r^ z#5mcl8YTOQM#=uDQL+y;O4eVwDy6GIT9koK;_zA!hljjI%Te+N2D-yT-P=GI9U5X@f&W`Y`T zcc4K9RYGQ}$Jo_6=3+8a9k;6!0~lm;g#6@_RKQX4Ta}D&;eyxePDROotvc1L_y*m< zDEU7OuDA|9%1+NzaxV6vb+|XxTANn-olWX+{uOM{!9{R8tgaurR;r=fOqG(#n znw@=5DaM!Rekug&5*@*y174^j>vZlG{02pwq#dr)u+7oo=(^AhrJgV4i=8z_9&RFK~#6%Rsa z*A=DYJEVew?o*tM@heLd^76F{^1dKdLE%_aL4LcIOUeIiaPmPzOalt@K@67s77#i_ zwgjY%QmE6TQc6At1RXLy)gDbt$yaHZOpjY#sSI2`hGY#08w-D!fgOj)Za=2Qx6mQF z2TE`Kl&P|j#+0=m@wxnF+*%uC+z@4J1IL6W)B%l{nGSylks6a)p%2nQVEQ(yTPM* zTW8$p3PYTf&Qg}XQkHNj%Xps@_O#vZX}jIicDtwTK~KdG#&J!DE$BqFhjD2q-vMk$L;%3_jo7Oc@CWid!u>~TKK$c(gXkF-W+q%|@l zrCkrSJ59}FT%ap3Ys^0@%Pfnd&I_X*Wkoy6igwg7h_paQJL>u{@==WZHV`5o#U*0a z#VB!2KPG>~jY%4gGemI$QG7tGH!dKG2Z-VTqS)sb?6N@I$H{wYIZA#&p^7Wm$Ekan zs&7{O7fP;+l0O2%ihl#_^)1r zhmm7I7#uPzSBS-A7iyI3A}x|}2%$hme`rQ_g+|FHYn1F7jgrmMC>bNLE=+M0!S(^D zgkG@&Q#=h!2T(#bTBEdIsYM#C)gu0@LMzz+@adNL;%t0iht+k~F+^2xiE2IsAD(I0 zwaY+Oj<8>syAV4y&4n6qcq52oO@6bMqvXF-ayZtFIQ|jHauPx%tXZXM=~sC93{UBGt7krQ5EVw4T5npQ=L?G_{ZuOKp0!HW6&BWietg3X`M4d#bPSPRPDG> zaU4KZHsb$#AXxkl7&RdBbNr*UsI>6!Wsp`ZJ}IazmfGzQblU);<)f92(*8k%(u*PL zScCCN0GbHm_>fQ5a+JKHhdVyhtp;Iy$V@d8OBGfpRdos3bxMrewHhiW`<<#S>kAjh zfvnN{A!>f1YD@Vo;lF7y4@!NMVkz4ktHl$+5?T~L{MzreAa;nH566KVC7;yO?GSbE z1))Qqftio*+m>`~NmyHA*UndMi^=wdY3x)qF+_{}rYs!-wcET1W$xhQG|L1er#f+I zW+&!-sDA*2Q6lS5Vw`Lr<)DnrL{Fx_xLihdic*M^DB`C4XGQWX3|SSm*%uI}rOo&WF4+lgRt-t4su2 z2X)^8A(O~hjdOl@&y)3=RDCe4g!ou^Y~=gnv~n^CBA?cMy%ui;TcJfeqz}=Ki9&u1 z+A~qeX@s~KBTl2VNSwSy$#qe3-Gyc`9br6Ul)dI`@-MXQ9P*!Q8`%lnc#|I%GbY@2hIdq#M=}XhJPV4zsqPLF(0k#8(3iep?0Lq6P}Df?%IvnU;%GOMY!a zDN*=`@>nYIC|oS^3-PAqLfhxU;1$^6Mgw!12Yhe!5O|^8V&Ornmf9OuN z+D(;qtgly5#`&#{A8XZWa;6C~I*sP-sA)2q!0fz! z7wh_L@=`5F$@wfM=CMT3h~pb|eKz^cT8@(6tK?9(700V}eKz@{T8@(c2o`O-)O}0U z#*4clEuU*6CgR3@Z?z9J%cveKv)4}hpUd2v2{PynKCwHu+|c}0kw;iVvrFWpxz1^ zw+xJrWX9=E2Esb?$w(sqmp1$gsi=%^}n}W7{jMlv% zCOx_RMCq*k-GrkqpOeLnnS2-Z*{uJPI*~HPw5cG4o(4{gE<>khLbNL@Q(y zNy4sQ1RTlz2v}d`ru0Ox=~@)UP8@CkF%QZ4l?-0Dkn$XyIM*)k=Tk==8!LizddQx8$%5U>g@l65PwjI0rxFD#IKUx{U8CmyO$ zevjgs!<0yt1YtPy$WKA<(T?m4C6yzCC7p1Qo;IZTMD^xCiwrI%pL#)1?MZtMj^Mf@??=9E&F#HDQcDHT5lBW@<4 zNkGmzM0)-{2qFiK69thIq`ys5D#Hhq38uecP|5|v90N-K^bIjwFoD+_!roO~2nUxd zUnOK_vZ@Nhj#gEK9j%g_K!>XMWrABll*#V~;Z_To>3`KfA^#ghl`O<_5QwrhE>)KT zGjma8jZu}1(M@5r6Xt{=PACdPoG>R0ae@`%gnQxpArR9Y%!D<8Vf{L)K>n3m2sLZNo^kKqgF%m}$QRYGQc--qVV=_vVdWwwNj zrU{cDqFj`a(G6kpBbB=nveeP2h7TIV5VY188FM&T-p~gPw}No6w1EOGsT$h36r>I) z+^!E=>nW_$2TL0$+8VbxOIBgA<&yh%|0V@CFWF~2rH2fRc^En91PVx}#!q?T`4imAho?qZH zE!*m?3~Q^e4D+b1-b$UedMhW|>aCe?tGDL2t=^i_wt8#g+Ul(tX{)!!y{+CF>b81o z4BP6hVQZ_m#-lA5k8fiYOah_bvfLBss$SOtWUa4G)km{%I_n<}JKSk^xYO=%r`_RB zyThG!A3NF*F!llt;Q>3P_1E&<_;A}Irr2{VN|M5I)v5u!{YM47J+ zG<{7qFL@aI(=#BP$E4O8mUZ^9tg9an?@18yd|f?-8hy~xK%q__tZ1Mx4}^;hvU@eY zvVp>2<+hBh00c`b8z>Cd2P+yV6zPMO1`4Y{uta92WL-Ubd5h|48QDS*EUjpuz}-`s zl_i75vS1*}3W1n~orD_|L@tPXv`A*Qp>=9b?$kTNx_S!S9-yCQtk&9NwYL7bFoo9I zDYVv3p|y4jt+i8Vt(`(^?G##Tr_fqEh1S|B6n^-E^J!9un++Eta)If?@q{S5ft4X| zV5*K(wefHmgT?(b)IJNs77&hXQ2P-a9I0!=j0|e6?CP#Rq)%{0?XI`Zj@|Y-u)E$m z({?75LJr4FeEy|!_?xd3trHj^#@~e-RsHrcBV1@Js zrC;+~>(|5677$j^)_Mx>>x1?N3Lof$H4PNHL0ArCha(_dpB0fWQNfjw-ECm4 zp8~I_=u5H+zT_GSqGS|Axrl+tYJFT|ZX|=^pt1Wg~ZL!m8i=9?m?6lgFF0GhHW=oJIV`a@Gg!~;f$MG{T zY`kW*&iiA~_C^q(a4>_Fek5wn)wSXH2DSOPG@l7VTV6h$sIMrV2iv4YUY+Xi1_f=X zG+5Wl07tR8nG36S`)a-2-i_Ps3-osTn!LT#fVycKb@Tz23SWZ4YK>8M^sXx2p%CtNQg&Fd){h)n#|M ztG)-m>1tk)blDy5vOC;mceu;$aF^Z3F1wFi^;WmK?4ESlJqe#HWyQGJj&XDSfnkiB z?HD)PF>bbF+-%3V*^Y6u9ph#@#?5w&o9!4k2cyjx%_%YuL45?mB3OJhZrp$%%F8&2 zk}weE1qVc#M2M1_hvKs8M15&BHilOwp!7TLCVN;m)jtgH&w-Fbo9Zb%uMbu=P*|@I zS{o?50^;rj_NB(#8YncVsLRN10l`vR1BHe9ptXTQvp!hWK;ge2SRylNvq=s7Mz!M0 z$X?eAqqTv;W_{4sKtWw1;1`;(VtG9PJMx+lqO1>y%$%n{5XrdTs7`Y58uTu@sh$GQ zUr>^fv{GoJJysj*k3wfnyc_Kl+GwZHMmvQz+9|ZrPN9u<3T?DgXrrA%8|@U@SZ~MZ zUu7|U7$4F?mW`Dm{0@455ca@u7=y(<95vVI+Hhop+H=wKF(7L@Zo#PC3sUdKg5Rg* zDEZaLtCL=E(}=pOKxj_Z1Jwv@A24cKF;a1zQY<0+M2T^-9ZD=_o1;{lIGJu9gvsU~ zrz#eQip4U1k3gxXGE){t5oACTHP?dJHS!uQN6G)8>#WZQEtL*A~f%A43`2!%_Oe3RP-nAnCK*Q4NE*$<$L8YvH zT8m`QDKU6K){VoDLF_#FCt8k@A2d+g7o*heaf0d_**T}ECAPAG!blMMd=VI%Vd<@G zu-omU+Le%*`V~(7!K%KP%+$9y^&?TiAt2xHL>(9Tol0(2yn2Af$*)&(v*J%9D2@~P zD@txwJYE03t^H(^-=yTa9P(y^lP@+nx$&P(eyR4KLw<+$pG|K3=UD!;8OK{Xt{n1h zI<9PT6Bq7q>r!iMV^CK$h(UEAR@8wsRR_{`Uf8zPZrj>mwQX&%+J;~2c^~~Vv5$Nq zjBBLW{sQ&vD;%~pl$(yKgO{MqUa5okO;dFsZHI>AHL4Cx^?cQhlI~%?MoEN}B|yqz zV+8zP48jV$42;u(&4sK0)`61EP+~C|=Ljg--AXJadsm~Mg6)eypwI`5{em&Ff1ISy zUMJ(;EeMM*h8}TXpvxHltVJ?*8h5bCIEzq_U~h(fGg$5RM6}xz(QZ#f_`W_PZUdq7 zqsdEJAhEEm&sD2N*%c`q$T$=_CTxcgIgu)>-Ze;G0YC3{uDby0FQ zv*K^Y;W7oq$sSf>$!f62G%BG?!r=x51%osPhsJa;CEdV22B|F@{1Yul$uAkKQXncO zsk`4GV$F(gfQ+#rdsV@R7@W@6+va$W6OEa^oY%)-}D$BR9Rry(L}fSAVx~T-eKTQX5Cq z#i|E*VlsHCmZRj?C^?+@B#y7u_1WY#T8@&NZ=MEY-UO^!*JqP2)^e2mAti@)TXDQv z*JqPIs^uv8^GXhNJ8`^0*JqQzqU9+0-;^BccH{VCU7t<)on>Q*bP zS@G*22R-D$T#)pT@?Ew95AFeRyvXkZiSh%GTS0*}9?-ogP)-*Py>h(B=>P*m#^xL^ zF$37L5R4Z)WGv*68xO&F)dTwl$QmyWWEP0yMcz}({1!vxHYJDSg+uitj@*NKL7oPJ zDYEGx4g@)yrFgm~0{+^FV|^U9Do`2rC7MP?ia+d~tuW)OoUU##UQIlnYR&k$9i z?oU7rlKfE+%#yvNMY1nIY(;(mEI@g*!@%ShYnbeE1CvkDFj=~Ywkdzj z+2qD|4*9{#L~}N|ah^jy*x=;Gdk*=f1}8V}bI4~HoZR>iMvwjd3?yG(I{-RIg5;Pz zJl#5G*Tz}L(;(BP=);sMui*by5H6E6fX@g*?M4tMiu`6RN69}>ayU`c{ei;p3pwD= zgJ6n`swr0agNn=)a%%6#Z{pSEF3y&w5}mY{V>>kCE{EKN6ReGHU>}1RI{7DBj*@T7 z*4ZMqs5_*G3P|x?)Mr!A)CV)d_WW)UI+R0h>YZ3jeXdoHTdcagk2XhRh04RWDW9&6 z@g#0MkDGE_>Tx^<@@zTA!^SDkSI5xDG3B4iG4xkJenK7N0QLOp&LoV1_~UOAF13z- z1(|)2dWmx;;=E4v6CWcC`#DPL`6Dy0DL?vam4aLC#&@FKD%i$q9nT*XH)AzkbURSb z{^G6~yLpus*#lY!%HYpOLx_xY4g5@zDNB-9Crh)CY<8DzKyX4JUFi50Dsn(lo%4mlk97{=M%_dAi!iM;0a>*X{gd6v*W6;KFE$Q(P91Fs5qHv z9*q4l!1{skT8Cef>QrJG*+4`KlmpPFMfUYj70I|>VC*WAMtTfg#z6-86xsk8Ya8mz~poSBWZkO z(}#&6$dB(61EC8Kf&D^>ak3{gO7@%*OUYhVVw@~Tc`7C2PrAbbqrF(8WZ%*#gPpBW zvgM-a^I>(D$yX_nDwxfZF&aIK_#42o+(xaJ8v5)AO~P-FTT3||rkt_3lT$!oM6 zC7*qOJABl=OVu}LlfMOmb29$Y2xcXR{8BUnOcvJ`a>!}T3YErQP_3GyWErtmuX=RzNun=uHqNj?9?LBfms>E+sS8^2C}o&Cfzp2UJ%}-U-4uk{M&Q zRy?&5!>6eK0)*ZNTaz^351;5l^*`HP3RQ$*c$s=itAUDRh&&(sIG%=R-5q|N3i`3*|0%O%&k;pkKM-`ZCW z`O#W8kKEYEv25hg#%b`xOC$30lw6lb{}#+Flpz#qk?cGr#>uv5l#IWaiOW^8LM4`veOsesw`%k*u$(*B}m8 z@r@&6j4-isJ_9wzSI%D-8ecg-jqz1>l&j|VhE0w#46T|!)c8^d8*p%ucCl)HY3O2A zV3kvC`rbN!Df(_Y)f#AUbZ!NqA7nVxh|wV19DKvs(` zd@Y?%VFL&m9U3TEYFa538U05vPHk#+lyS(oX0iXt(#77)VLDdD73X4Ipv2N}`IK_` zFu9;h#_#XI0+~s-_W2afQFs~G5(gF9GPclWE_Q146|lc(k>mZo5=+Utl^7@cr$)(+ zK`LP7lbKv;pHJa5g_n|@sl+m}@gVfSeLe+#%K^^o!I;Ggr@&kWPR7Nka0>d%Tcu?0 z=%H?(PeD(2oa{(7L1koTDKSoFQnh_P1-*3RWSmlEJ)GOPtc{=y`BfCwbWKSyl<7humH6KU&C0eBY>$Di!4=%1k`^B{XYh|g7mU^i+ zWwcbRMOvDz#n4jl_E8IJ?gept$nVo~l>BI^lmAA^&5HNK zl`wJg&z0P)xVa>Wl6PPs(+>H6m0TAk|2mc^aq@Kj+f{tc+2lLm6N66nxpH5ZLw-EW z13n3i7OZJu2aJIzxp9z-AykF0$<9?Ty5eNt(&D>FkPksf3sEdX&0_6x0)L;}xSzn@ zE`=(3KjB4iHl-XzEKhYWb!NPzIM4$_G2Z7KHvbU62_BNQ_t;+rdk&UpB>^A(eBQ|QX4N5E}dqatFvNttK zOCM{IjMm^PG#YFR3`83(CgUXw;!Ki%2*UY;%!HqmP-X(t`|dbaf1)(U@lJ4&8ogx@t3ekq5EW=AgYodp|?0P?wo|lY0Vm}KbThN zHGlK%Fx9B!J}5n|6ifKUyl0gdB+?8xe-X+^QaaK*b!lik7_@6qd%sdFq2dQxy!}wz zDFeYJ*&9kM83Z5aYd>UVN-P-?@v?Tre1sHppOrHjQ0ehz5A2yWQ% z-5efVs4DBC)A$^W2XGSii$bj8X527aQ_jMLUx zTC@hIinciUm@qCfzWRbV8LUx@4Ec5~t^hO6szPT$>focpk&{4}BtFVG!U4fLrQ?YP zCZ}z{WQ?BL(hEc`b_t_a70&Ju5OR{n&etL%ze0;-G;PfOPNQTmDKSpQ`LecNYY-+p zf@;&TVAtcYJm6w={85m)79HKOr0Qytp>TkRblR30Kzyipv$#LRtbXZBzd)l=YlQO z;@x1s(;}IPBMDIz#&8M`0>s=HD_EPB56*zDrP;4oKHdl8urJP-py41Xt^47+4|EGI zz+VQff&4Z|%I@m_0Yz>n{Xm02QuwILpMm&Bkf2x4t6mRZ?VTfQlx&Jsb35J zEa*Yd!=U>?eDY9gyOprPn`X~|KCU-D6(?al&8p*_~mHT8Ai*MZIeQEvq38z3p- zhxeaoQ~XOkpMo<6bQ7or#HW5Vf_Up|8Ylsp1d{S8 zCV}`EopR7bkd!>gM}uOZVhcY9xpyAuJD}S@%*6$u1n7Fu#h^<;BS9B}q-5Hz31hh! zREarw9rOdp$6NCu^)HzEdEjlJ=^*9^+f4=Wo-Nz4{brC9sb{+ukhGKf`IwU?PzQ)N zO{LWJ#;q7o&pvqh1=@hi+HPLjnqt=YuYDL3Nc_`9He@onV&K`%q@2`*(Bj#q%50lff{!XF-t zgKqvhUg&|O2)^3jzX0dAweA8f1>Fg121()f<@wW_CBSIwnZEja_o?;MP5ss2(?A=I z-UjejKvM34t>vID(4iLIg5!rkF<_Nx@M44WJKvXqhJg4zdwvT)AH;SifTTPQTfYbO zLoAG)Hm^@p{|!@L2tEQ-YxJ%Kud(z$N8J~oqhdHefTrRF+$_F`GvzAC#2P_AOM~B= zfLAyV)T}S|Jc$$FM>S-^g3uW=rPbbkQCP607|XD85rA1N!1hlR_rx= zAN)~JhqdqQ4ChZdZvZ8+##%vKySd<9z$1Z>#?#;(_FG$LQQ}HPV(7m8;kd&e`;P*`A^7+{3 zK|eSTV+ZO!7aHJ+voTg6DZ}tOt`u|=Xdy_-&hTfTvjNlv`m3eCGdvrw8TJK5L483| zc80HnLa!|B1E5ntQmP@>fO_Dy(kRee$Ty~`&o}i0!3Tp51swr87?cZ2ZPyMPouDIo zU@d}PgS^SIySw@;(Plb`G4TVuQho&a$Dnn1ZI+91dI0jnY3e^U_5TFl4tgE*CWxP4 zeGQb_jvv150MRDjtdk-SNAJLEHjeiLsCzg~{YR$$Z{U2k_8&p7g4Tmx0;RV5C9rl7 zZ4S5QuO0H!Abz|s4w54HHw<0~J_2+Mh!5}X3pyGkzAL zJO2ZcvZs1%LmQ0gW@Bq#a4Gjgei+mXuT#fbuV)26%iyPjp8+}+)E{&Vs2@nmuVCYk zpw~fffTZjU7hS$t&DZH{^JlBwR$%J&HC}ss6SN)2eDtvtsUK|WPX-?dIs|k$CA52?!nsjRlo~E(b|TK&S*w0Zju*`7?5Zzp23w%(sGgKF9}2*glflBxPqf_us3r-^c^(MZY)Jet%FA*8W%!@54O|0@xajgB zw7G|gc4#9N|4lCTQBVu?9|TF+8P4ag^4X|&^w$rvlcxj@#xb8|BM*W*{Wz>sP!@;} z!IEd@osG52$1)uYIt}#Cez*n)9|wLHh)+71AhJuVlHuxnM=Ju@{Bd+ z5+AI^Tw-o9mktAQ?D#0IrWp1#@J{3qbLUua=2TE{t|7iNzp4Iq=f}3o$L;McyK@mE zz^#l34aICG7;#l1@&IVDe_l83i3x43qg zTU>)2Tjstz-HUq`_b~2R%sDB7r}`Jass487$F|ESSnVylgJFyDp8!6}`kd!^uI}+E7 zzXizyC#3xwJ#b$Z#Mi>_g5K$gdqUtp2Y&>_FXw&&`U|KFBqh^!&*K`2zuv}g8pc8V z9^z}DdeBXv>p}BD{O)EKs1wBdBvSrg+dq!$lXlRPpp76Ym*ZN6pGK7roCj= z0DTK2McUmA;H$LbH8SnBn08>Q^v8eNUrmlU7<&`wQV?U1B6@8AcBOX#>Uo|1n$ZLM z|BE#OgQrYWpP^&keDNi&$+Ie|swU5>9Wt0BAC~Klm=%dddSYJEm0Jynr}g3&%Tj5v5!I6$14o>~1orNP%so<%V1 zmyE{gK=o+Mm|Z<%W<_09rIQ_>7+c|J@Zl$opb+6ls5-EZhDbgU1QQ~BR7MQ8!fYuA z(h1sC*3CkFzSC+x5Z)tJtyFAx0BOO{hQ5{oiNjH-(+Z@+(fKWqF1(fvbvClqK{oO} z5Pp6_>y%Hco>q%NYBUJ_;e8G06oKo0$-L`+aV`$QeWM>xF)04LcOf$C@(7xe&oRh) z-Z=_xk$Gp0p7&)qx4A`TxfrmXMn@@J1fn!d6Rw#Br?~B0mMv z{h(i=)|>(){*(rJ>`5Ig!VsHZRMZL7iS5Lq0@o?NO!Bq zd@$A3N+6nXmakgH>5kQ#+Wae5-tfK-!SKDjtRJfY|CFd>3Yw zgX92N=^(v<@H_OOofwc60a89^@X#Tr4_9|;P=UD1uOm{ZKG&iVx<46W5LbDLg&Wg7p;}n=@=3Gn%3<{iT#o5%(K^%0vv6T% zkc#OwGiFUL?{jv5%$i(tU9voK6fSB)o$Dqh%e#ZDqn+f`Y2|0-2RcBiX4I5NOiyw4 zghKV~n({YrQD*E+o;kZ_R&9B&(g2x+Eqiu#`6680g%MU%*OniTQ+nWi(riTd>V*M< zCKXev%j-fNA~m(;zYP#s7dmF<{G2OsFTojqSr73=;O;4R@wLR&V)?vS}J!7Qo zBK<1DT}-tu+-jvN{pvt(R7R!KG1oSYDjxRDvmEU6ft|?UX*`?vAHEP5-`vj8N+ZLT zqi+sU!1p~Jq>!JQGl=otl#%!4p7&PI`+CoNyXUnryys`+ zou3bO=e^DI&Q}wTPT^W_-itEwzSQ%+%JaU?^WN%tk7wk4iRXQ#=Y6f`eWm9;k&*Wf z&-+Htd$;Gkk2mkhjJ&V%ymxrsH+$ZXClqt1S>#C>YGuNRnxk`~uH4L-D;G&*K{;<$j^+4#t{Xw(0$?*+V|-D%9` zI&;hJ`#!u=@+S*IO7Z&j)vkLFOwG(ziCM0M3)aJpbt> zp7$J?cZsJ^eNGZF;hbx{w`Amfx#xYY=e^78JDtLObvukY;{d7t2UU*LIf@x1TrWnD)`-luxrn>_EUJn!G|ysyj1 zd(!j1)brlvdB4K*-kFj2wVwBFo_9Vq!Q`09y6xV)Z_3DftLJ@_=Y6}^_l2JKu8h35 zdEWVMsngSf9iI2)p7*U8dFQv>9ACrQJ?|Sm@1J|~-kp(me)h}tzRvT$#q-W@#+p`U zr`?f}cfJqedXLIkPj>Z!{$AEi#T{VRd*qHxUTux=yeGWA&-40T#fQ-D4^t@Mj-WPh_7kOEipON<}&pY4Iap%3&^FG?^`-qIZ&+)vsc;44| z-WPb@i!$#pNg=>_(f)UvnlqSL|wLA;6t7ldfj2xwo?SG#c9eygSXBNLT;TPWLX2F|}(BY@;-FR5n z+vr497|$i1kFL8($@(x@5)e zq!-L6=8?{*bJJ=uqnJlJqyC5)Jl2Va2h1qukqKxpVV*vWN}Q-KuWWu(r`@`}nS)Jr%zrO;^!bXZ>v zBzCvyDFOAZsDy(ofKHQx+y$i5L0W)Bmf3cG0VM7qPXcLmkY|7t;idy)#%GC>Du76^ z3e@2S=(L17RTFD!lQV0&Wu+*cH=z@8dip+)rhCLPl|BX%Yq1gT{;dvj6p+}xq9dzY zX98FE94xAvX)GxI>Ry4=JwK?YAfFBm`jzIBvDD-0{u!2=Ufujn48L%7m-m*{z4lP| z$z@uftD9$8y}BD<2O(KSR(GOER`)?zc(s;>7P-3fklK264}{d;)8Xn~iq?8{C%EZ& zg{!+3A?VeeK)o9e8*p_Of$wT{^LuirxY0 z@HGzaGAhD*08RIrOz^{1cF%`Sx9BLO7)a4ibt?=P${Zja4)Q}F`S;m6j{<2j2*N_) zF9dc3I{2nZP35fGNNk0PN9nu=omPWrUta);{LI!l5W|^=bYi`>d^iXAe%t$LK=N1G z2!C^sNf@>&1G2A!Oa^k0gYeVzO+UB2^Y;jo&Z@iPmkVb>( zUTh_@+P1^w%6~)dDGYUZm%H| zxN>*&l9fB0i_AzD|==g56O*(4Y+a>;FuEV#PDBdBZQ!E<#N61mCNs9`GqTY zHekJSZ}k-9-2GjoK(KP>_$&7a1Y0DT;D@X1o(7#3(NV}{KspSfbL>hWoenY;NSD*< zCLsKsY<e}N<&gr78QbdaGyngXPJN=121W##l% zgXmt2hE9H)j!+|IKsp?RyLRF+yBD*7Bn_fl%>&ZvAh!bPc93QuxsThv9-tiuc?w9U zL3EzH4J7h}-Rff?aR>PlNVkI=h^3a>ZnxqSpgRnrEe{6L=YfFvB`Ss+P+;M%5QX8Ekji51-e!ffGt?=5Sj7o0)r z#D60Qb^b(OPYI%Cxu&ud;py$2l)g@;&--=+Ekvlkpr;JBn+ZQ>;xdKflhh# zOd5~eezDnYBIR={YlwU=KzPL8cZ~gBTh?~Q04Z{iYWi{zJ~6v7K+5q+(CV4jRo~@U z{uy*~*V>k!0TOeNE+8Ea@+FYOGj^*Zuo1R8$f-bbpS5+0fpi(9C%Y9X2hzCC*5T8_ zx}LWYKDRmd1&v^qXH?F>BCJgY2<@~$r^7*h4kWhTw)1-+MGo>VkQRgJcy<6uzG%0~ z!)BR_(}>=GQ>QAVmYuZG*2M~+|={l$uQ9PvdIL`ine(Ubecp*L8U-C0z~ph z+hO0!pyh`BmGbBMoqrpS?wLQ?7#y8Hg=wQ^{;b6v#RH(^?Pl6DLo{*SROV-`VF6ns&)7`=JD%Qr0@`I~=E!y*=;W zz$;fh@9(8}(ubV)tCz~WpN5H`wp%#wO}%B_KSibAInF8fO+BXrp~GFzEu7OA&XqZ( zj$b&Z?}7B39uEcI7w5DCHM^VB*dEO3+rgaH)Xu^~DN@%vpLN;2i#cTv?t@P36-F8} zy?zo%r-SgfZQ~n7M|J>hnVIlBy2-T{mc5+`vBM-2_^EkV5l@cqRBo)R;G zzgnQrAbbLZZ;F}FAHCI?un0CdPi|o*{QF$VgmW=LEW?p!dWaeMt&3DLb zsl|xsU9n8$8mw*2Iqk}Z9Ax{GcJvZV?Jd|%9#7~tJy%iJJa{60yx)FCFFEqvTf z&6LWNx6X?&g9({IKNQu$3D9W~9fiyR(&ZpO020iX(s>9-K3=edXW?gn#Qtm}?*M5s zh#sy_fpj=J`{RnK(?L!IlDpZqa~_Z)2blnbKTApP+VT`2T?Wyqaue;mW!w1?kc5Lg z%2r*XQ(jl2?o<@LZCm~WbUOcPBd^oWJ2vtz?KsFkfkfW5b@ss(LBc`$0Euk1bxsD- zY7pIvZ&K$2t)r20AaMt|j;;P?>)Z|`@u7`80HpCBwy$3UY5Av(JOiX-yNzrDlKhu# zryEEvUfP8t-?JCam0#F8eSvh~No-+m6adM^aoFlIAn}83WHOLe2e}T&yb|m*7y`bJ zHnDILI;}ai`V&K>9k!Y9O6o*YW6aeg;T)fCRgrS{H~Q zYv=`d)*&4RC9~ZROCn9-?$@V}?0&c5$S>Ueu30C$-<#*VzZaqPx%-{eS9ZVI*w)-_ zKwd?52j^V=eEON5GwzTD2vzTpD{yqFr^6lc$%|x%Ty~150D$LHzHhG2r@urnZai$m z9kK{80>L=P@L$gegrM*`lUE`fy`EVM;n^=d=iZN|JoER=;`OszWEWkD)_NCZ{ZTmQ zxMdSEp#{HDsq)#gqIExkPM7E?=s=u}I*+k4>R2Gjn2nqPB-YPHCICq|$n`+@yPwLt zviw6J-460Nke1_Yoj(G}$CtapR$GCzI>BKa&&G3Qgou-Y9){se55S2{4{m&Bc>tpXWBX0Mm_?Pdy0)@VRo7VL{_Dq9W~2H zP&e_u%Bl=TBP*uHBlRCw<-J%<`kG{xpO$FARe2%4K79b>o>>Q?2isH4s86c=WPq$n z{xYYVRfEN3Y67hzCYf3Rh)Wovg~fh~6(;m0w`F=~a0*f^p+v z3$Drp;N7jtbqGeU$|m0t5UxsoHcqd~LQh9l_B|nSc{n zn!-$&hM06FAdORsWWvYL(V2jY+=`hqQj=jUX1USKa=JVJ>Y0|X9UH7Ofh!80(JGih zh0JEQ7#*Dzi-5#1eLT{w`0I4JLnNcvY&DRMF=m}AJ8P+PnyvE|ko;jbvK>eaH;2RB zZ-2~QY`Bf^mo2*-qyR|nH$+GBS@)g!+!L>1zOQ1Ce||p4q$=R@&PXsCyZAi7GBnru zyvbcS#v1ea1?=j2_nU@E{b}Gw1m^SSgCw87#F3k0@*2N=7q9VUhm6R`XKfSn4(GaP z4c5g-IP&w1>tfSgvMzqcwDtYCnGLuuTJ~UFB!hLa6`uXVbuk|`dR-KI z3bHP8pr_YG)y&D$Q&$C^Dvf?OooTYg9pb=dC3IRvC%9*>TQQ^VgeKfrMKY>L)Y9fcjGd)t zIo<9@!{22l7#%&x_i^5(mGb>dAPI~!cO<>n{fasc@(hrc%k906zuw!4(`eXg3y{Vu zY@HoI5)Kl@JajpBjs();=$s5B<{<=@_37mJRUbunH~hd45vJ8k0xSr_-7 zf^&O{hWvmKJVU)Lpimi2P$i&l+s8#w_;tAi8* z$t|{Z&Z92}DJD{4>r4jHkwbuV;zdNb^B)DIWrmHM0Ho_$8z}(NT4N*U z0qLG&BV&LRHEKlnv>HhKCR>NU(4M?ibYy?lv&>a_<2NFaUpx7-w^!xtlVw#N?JpB} z=Bk{HhxF@JS#Ubux%QR;SLF{8DL2cWS?7VdDzZO!T_O83e=YG@&mULr`lDp!jz9uq z(@!Z}xsL}cm%obW7p~l4h(cf6@XFJThb_2rW4l?o>XWh9hxDtzF5d|3@cQRtkY3&0 zH0=~w-P{56>b`E)v|9HwAZ+ju`rTQ z`;x)3-g#%rFI?{rZItzXG2SVB!OMHD_cu_Z*Lxhx%vF)~-dH2+y)OnIw-8eb*LyZz z3F+4|qcHV_DH{4Sf%9LNGxdgHo&o@MJr=C@P9SbPY{T_lvPuc4jUG62n7Uxh`}*w*qN$ zkmrazY3p zz~JjXy)9V2C^A>KAJxO0n;sabzC4qn!(2TnF1ecKE{*xLMoV3gtMK)`6f623_2_<* zs{=4&hj}_YH(h#AmifNb=ZAU<0GO*~NO*m2x&w$m`OMYC9^`5x){f5AsBZ+8nX7N$ z9VVTti@k6pSC2wI>vPl0WM%5tEzxQyG9me_&V-$vn~I>*Av(&_XlB&&l0Sqd0%>~L z*ikw&fporN>)Zq+akH5VrSm-?F$Y-=WXDam4&OiRaFF|H$3a#D`TRz^)fyn%9E9(> zt`87-uXbgCFd)7U+vp&CA9l2ZJP*q;2YC%hSEKFyuRuD2e#!dM;|#s57m#2NsS%KW zdwYF-j_p>jFaAD{U%0-OT`248V(b}XJSDEL0b^x-4a8BFqa){njyb09Sp(n_7o91E z=YrZ}Wqt9rJFht1!u54A-iyS>gYlV#?Dh-S*E_-bIt2=DJZ!=B)rcPN>Qx)B{TAX~ z552x{xtgYMeO1ATUSBnyhODpt!TQ2)y3O!E1o#hRLeU#$75L!>_cOH)`_413TlQ9N zNX$cnn6I8ZIZe!;A?Dz|Xe2o}UxgFgO;txx>`(Ds^ovSggHEI9M9Ry{=?kCRkv&1y zg|@@K{{pR;wPEr5jzmeBcmG~4XVxv!_cMdOCu=I}DrOFvRf${E;W>OTVvhW2_w%K7 z7&C5tL~vTMip0!kaB=aa+gBy#*e>orOUxsKnDGmF_z|kfwlDLXu6z~qPJEdkru%B~ zaGc#D@r(}QVf{rMv7pGD?yY$8gYogVF^PvypVsF%hH<4Ek30cB&^Z$ivzUQ*=>}Cz ztFAnoEyPYqs57Z&JQyc0eJvVG>x=W%v5WblDV{4^ zf^+3mLQau6UAmh&-GDi5`t$DhRjtE0{hBv8dox!#r@haR^)=e_#ZGcgE2qhva`y0+ zcuFC9-xab3-$bo%igP+)59ahKd>%<(|IGI%9hNz#gZE%gyY^sCqcOSuS(wtJa6jbJ z;dZr7H)Bp)H}8HOATzyA55tJ2U#E@VmN|VH zt$b6Q)22O`(=$(&IlX(Q>-5rKPO;F^_~JU{B?c}>F@`bx_tS&xvw^y|>u z*__JxBJvjJl)msUrR?qbT7Q7JWnP#56Uy@hmXcZJL3v}C9neX5&AUYXdu+;O;JFo7%Co}S1<#}J= zd2jK&kN3PcX5@X2=e^1EjyEf$r{>pE=6K$lGV)&Qd0*stU+H3Lt|dGGIe@5snIpReI$_^>L^`$ErqpU}H`H99Cb3s2eU@3n<{ zX7Hrh(3d%1bV@JaGqvokGqw4hwV?yxK=plBPnwkocm71yf;loi>2%EaoUx1Xku&xG zu>Nct@iyKyVQG7~>P~GOtPqM6z*N9p52{g#5utp54ql%_8BbfR znKosvJ@dWMi$>{1I$vhqwGMsxZ&FFWnqPKBOZ*Qn#CCo>_g-8lAL?^u1!nv>NM{zZs`d?8Sd}-gl~vXFiLLYBvo?mxI&+ ziF}s2+i1%i4Sp*j{b+Q`sHPeDJsJ(ODqDh{Ud?URUXa{-6MYQg#gI zT&LAxK#GQ%R#b_69Z2Fd8#x(BlR@-7t`R^Q9Xsc-6&}tKeop2xAT17Z6_Czhw$3yl zkwQU|`NPy6&flrg*Al3W)Iq0lxagE8hpD%HI~K@Oqp5QXbecwp4w1z`T28l-9|P%j zkcWUI&aibJW2-Z5qytFDS%OGL>2YR8eSui}N9^LSLEimyHxGZ`Xu_)zx5)eW$?ur8 zlQqCK0(Hr#H-n72I&Dh57(;GIFFY&S@1LR5dbZb7)rvjM^V&&IyJWsR4Mb?JTRLUF z(&?BT^8KI}HFe&X^$_F-h%j=Fi7=fVbFHOy81rwSm3~*>TQUDDj5+PdZ%51>MLUlf zJ&Jq@ou+eToDeCctP%der0cu{Cz>pQ!CWBRIQ-Pr`D?HMRj~@*CStwesvq2 zaO8C>_ToD9o_7|)ve$YcR~HN62j+XGc>q;M79elm#JN#YrK@AABNqnnPe0zS#mK?>uZ_e4hCbMaX$$MUe4*LR%a zT%E!#p7&%%-n+fNM?CNRY_bz!;X==QV@BS0c;2I)_x_&u6`uE|jJ)$>)lR>L<$B%+ zdfwYS?=2a5k9ywwc;5N+JSW1!^`7_EjJ$95MxMWiiR?qtm&wHNdeX8fZD~>W5eJnuyrdGG6a=jWi^k>_tKIY?pD8~J!f-urvr z3q0>}&wI@Cp2*01%=4b_dB;*t={tY-#Lc>7M&7r3D=ypf9`n2}3FqCs)_XL#g5CLh zZQ=Ps-fOeYDRN(3dcljtl;T}6rqkJz*Qa{z42{FS8pB<@*S1ympLFk|X*&hkGCt{a z%=nDJ{Q&*i${!!OHg5di^}S&Hu3|RtwVf%Mkgi`^XZS$L-gNJ^rOxSBy5`UEGIOBJ zMR3hO3K`(;349Ifu8Sra)vx3|*Ylq5dFSUDUGI6G_m+&jZx2_unTtHnd%ov=9`0SZ zeQ(Xk`{$l_KIPQuX#wwsI!NJi&wEEk-urtaKhpD_@VxVP72LjeX5_uV^FGG&p7gwT zdEUD+^4`bu&hKzL<6M9*`nyQsNY8tBM&A2+-p};BkN3P+c-|xOyr!?T;s$!&M|<9< zdfwN1-g7hZ9`(Er@Vt-oymxsyAIr%54sXTv@w^v!-WPe^^E2`u^ZH)od7t2UpXZHy zQAXbRC1@wZhs8YaXL{aSy}rjY@}BQ`k9*$vX#yw0!cAV^6B&8W_PqD^ycc=i*Li(U zX5>B3^IqV2k9*z+cztio$ol}#`zX(Qh39=$=-pgd@w1LQyRwqs6A#aoa^-2APt8?I zlk@^UQ_J4I^5ka_R7UOM$}?9+W9L_21p{S#(&?D-Dci;P$d%{+u~D}Ve7q?Ki5oFAG{A@PBZWHdJiI86XY{4<5S+Rq|QUo zS-%^dC!mwKMZYu4F~V;O0O?$)M@u8yfUGdDCN#3|v3L*2%%DaN1G3UVjs_xkQ+wbO zLHZ+jxr-PnK1HB>4TR2_khoGbQUqkw9lAFf83RPtvPPx>$##6z17Tsk*0}@7TGMxp zEC;d*qV|O+gjH5TyXAI?r@W#rNgEOKX*$MSJ8SX`fI-aV71JkGO`cxfW!@XrmfK*t z)8wi~{s4sK%P%FK{{R`_^y`4*kcSQu12Wa=*B~HruRvQq14xIX^GzT{j-77^Nlf{wiU({@^b6!nxbq>tYKk#maH=>pOk zWK?;1<*ZrNGb63RIJ4D9wByXqe*N)FosQ+hfV4RMItj>DI0>_5BoKa8CmiQ1fpj~w zGZ#p!W9PeUg&Yi9tpJh@EJQk#4)tWjUIwzx@%|o=Ee_K2c-u93V-@@>n49*e0MW0KB%eP6!orz`_u83t$z{+ zW@2sa+(@f4^8bNON02}G1%}FMG)V+H<@{+#>=F^j@&No^m|(p}brf3fEwfv8<8uDe9?UkxpkP84I0uXPmDFQtNoH1=8v0ECeF= z26a5kfS}}t-X8)Y??G#w$ARcq{gP3yvQ@DEluxXkISqh*CscI)4jp-4PuuwqkTp&` zIVa(n-VSmikWJ1kp9Lfq?5hm67>K-op)DtXEC~9}U-O)toEzzOMr-V&<{6&}Vh(LL{chE_`g%jH%4t>s9hD44@$u z4J4dF+IbL2+!?VafV4Qio&yq7^Da5|I*_U$W^Q9MW>!=tgTB-9yU-c$SpGK<{r50re#ciIAe$WIWFRY@UYrZ0)5*;7K$ic1ja^@;CCOPo!G|oqWEB)&gi-Sl!M$_; z&7TB?xqD~E++=6wFn5xu45{hU-RIn%+o$_%_c{08vnURT5OLK79}FV6L6N)&3yLn1 zhe0CA!y+33DkOpR!3SXZ`B5`u^2d)!m*R_I?V; zBI^CO0eK$b`4d1si0b?`ARk6`{t=LGN0{FSWbv9k4aKfT-vi{OsLp=@^8E<%zkooL zf{5rRU%|NE3?uWO2jsn|_gjE`*5l#(St*FRPwja4Wz=zJJkS`wr+|FZw<6>MkawfL zeix8u_FE*{>T7_|lXn*T?*REIqUWChdD%;X$uAJhL*@muqvu1^c{`e&{{h79iECd! zj$^@B{=kjh;MiGSosHh|Tt$>yW!8VO2k4+4tsXt`m}NC_(u}Tjkg}e!_9CL^=g`+j z5jVC0`K1W*IY6F!dWhrK0r_S$_8O39zwcK!Z858oa`eR0%vQgNI=4M$yjO_RHG1w_ zvCf|ov$vvzd>xQa`BsFy2gu(>knaKVBx?0TKt_Hp*y<&`$??6Y)lUO*GaA<~0`h0k zxb6V*)krqJ1jv&JPX-7bb0-_WB@jYItnv4c0QunKdZ)Ae=YafM)Ysnw0>lBHe`2es zukQl#P6YXPK;Dla9|Cd_VSZ_wl<;?DRDA3c`1fOS7ykKK)LBNYJ`IRFm#Z}21>~Km z&TjznQpCdokT;_`zXQm2ROc-~s7@LK;A`f1tIz4^t;j-t4Rzj*@caW?*&k$nQS%7m z=$V&iqb_Ci#6wvAEwp;(eF3#8J%W{#eDdWh!;b+#isPXOVZbuxBA%n{`G z0C6V`l%B5wa^d@8?Z0BH2=Wa;T>em7eFu<5G}0fi6@Fds|GfeE2|O-1jxb*Vz|4KAFH&Ew!)Yk(*K8)~u8IX599@4P@SblfmWn&xf$PSmPIoi6HT zt3L$9WkI1|$7P-`Ztagfg{eIAYX~b^({c$PwV_EAnqK9LjDtwPj=%< z%eu|Mv1sfc--mCC#`RNxe8ab5AHM*|SNuq?;%+O;C##uB@J*jt-n!exYEmWh?!Ks| zwJS>|lO{iNcYMK^yPh^^<8C0o?vj4X_G7!j6IxtUigcK1(cpdY2{r;CE2hdXx|`c& zc@OW?!{Xq0nKaAQ;?~YCAMg6y;Y0J<(eWd=bw2EsrV!y7-a4N*$Q_ah3(fLAe7d_> zyG&u0Pm$*!ps80l=A9cr+L6iXv;&*@S;hZX)g=X43#tVR;?`A}LwA-ZbtZUL6Wq)9 z4i@Wr@^mD~kaVjXEc2^nSd=DvOQ3xqXa?pYGH?IEAkY(hsc<7eRp@fzFnkCbDS@apk&ALk?@fjukUKr2a~5citp#=2kpTU^E_14A6iwfJ5`W)%ubOnBJzll1#wSR37WCbWL_}=aiFq@{P z=mXnzYxS|o(^W$*EB86XS&;(owcQAfkhbm-g@~cbo8hrQ;`0W9?#3`pv#OSuTP=Vo z2>OZ3!h#wE3%{HViwsj}vMx1Jfo1BOyq-m*ISY9x>V&r}F2Htv4^@TIb6sRTt*bM* zpP-$9=gEa>S1_V!-DC!{Hd~(b>)671(wydD$AVz9yTY76M@m)|!ayyy+XAG8!Xd^* z0-FSRahGOE04KRQWk@*VO;$s6F()Ggn=l*p+K;YaT!!YCMbf}yDiZ>_J%lST48!*<=-pkTwzu~7_HV+i1Y_VVd!^k#COje(a|_ElQ4UK{IUms)Dt~Xn5DkPG;B-W-m|XFmYy5Bl-v^=t}Zl2~GQ^ohZcQ z2ci++0%=Sks%H1#i##omY#8VoyAC>oK?_UO!0>H}-L0U>(8ZaV!dXkEHtfPeP-b}| z>|vTy7^M*{qqgM<7?c?iZTdD;=tHppR(R(^u@qRYJ6WBqruYgwL>#2>Yg1|+yZc2# zlj};Sm^%?DGCI}(DDRo3aPj>MLAtfKe|>+q$36%G^dz27Zqay(&_RYxEw1V?{ZVW2 zVM7H_BD@}EsHEU~V|)QQNuEg`nk8aya%IlNo8q>coK8dmc8u>>xvCZkY=ny^XeVA@ z6-{oJMG@_;h~3)`0@-n;mzOBn15LbV8SE~y-~+8Qkel|D)efS~Uti@2HhLN$Dux9} zOJf#bwC0_~5uBbMA)%^Z$11EgR%L=kNWZ=agEM^*CNY4J3<@D- zP*GIO6w{tnQZUepIc!aA4|}B%Xs1?;sr&I-QrbV>}U@cZfRC<_biKl7pxNJas1lXxzUM-HBB;HDz z8KeS#Q(3sk<(a(`wG z3|dn16O^*zmI%S~Q-pz^HXG1CB~xdt>&ziBErdFO;BFQnUPr#ecL(jDw7KN~)^V5~ ztUS1YWN4ojFqQ76EarMSDU<3{FE^*9i7}+C z1Ke=6vO2HfT&z)3ixE;)z@9OX(2|iPTBa2aMA#OT2xn;^wHH{H(1MCCW0Q|*4%-%V zFf+Y^$%mh0k_LGTc5+ge$S@ULIpJttQD;H9XCMYC zNuiA#pEbp9TxpGCt>}jXQ>V&=<7QABj%bsYwl7U82Q+lw8Kx(aj}1qSyK?KrY!$kF ztPdI(IOH7|50dWyYLZD;$1G{FMq(CCu5%EH<7J!|P5L0QVPS+K$wUP7o>_s55pTRp>k4&E0)P67vWLGc}xzrh>Gzt>uI)hdN)xhTq zt`Q^~HL}5kYJvs=!H^W-N9=B=c%xDz0$Kq5aW!I9Rp=W7P3i&IWB^tSz`)I5q}m5^ z^LC{_Eo)A!f}XCFKel7eMK0{A31jLC_>w5hD?>4WuGGQV_FWK=ICq(xc9rO^;@P0{ zqS{K@`RMR7kLTEjdc1?}w4Lq8C-ppkeD~KL7n7oTTwJ?({gp-fioASzZ}+i9c$K8C zFb7$&Czn}qW-r~9f5kM*_1(<_Aon_FRtjED9N+Q|z7}uP^;f0vuQ{`co7=kwEUNkd z+IzmJl!dRau%MqCsX8sr@^&IQbOS+0zMC#u%PL+&ywrc-x4+4X3%4lTx?`sz)D2M(hs z-*CjyjqNoC$MclNoS*_@+j)DI zHaB(*MEP=ThdiP3S=p1kweQfPes^>LKv^40l&t4CZa;bu9P0?^{UY6hqc$V~eCC$Z z)_IfgJMf;&}_;;PH_0`p}Z{NRlM>#KW(~Cmxg=`Xr2Hhbo*K5f6!C zR1Vic`^CD*#F_W9Zc1)UxqX_kF*|!|3CYX2}5Of}ETHsLD zg9lZHR<18!co%yrS`S4MOV`Z7a@zpW$s8idb2;6X0z(!IlrBm4$yIR34mYbY7N#^C z?7R`pJbB6t?P>zgfYT_32{^75Scd(-($u1ldTi4z;W#4UbGwU`gwy ziYFXT+okL~3HrhwAhw8f;*RrqvN(YqKe)AngC4FAIX8oYF@T7^9AaMU{2cpnyVuNO zje|jz86UoiFE5HNDFj907be9Fx@Jv|*A>Vl57{_=zo2^?W!T|5q2y$BVkw2lG%{k9 z>p;40J8whTLAUqhgpg|SL8r#8p6+xAApW{GaNx^fdOv7cvGk8-`IOmt!PHVcATQ*+yePC8Vq!V6D`6AQ+VX&`j zwcp^R*}9u&#mkj1p2W0s!n5%9(rvGL-8*QVBxp;pYTVT6L6$*jS{jB;h}9Eh%$<-! z0kJFpAjL_aMk7EG^+hb|sP6U0o>7O+1+*iYf^K4aJXA_MYH;33gh2G67OyGR{3-(@ z-vR?Dqfcfzk{ifpP}2p4o)8SCl#+*SIByo^bYQCn5CIuds}fCl1PFq-qwnyI*Y{vh z?joA$AWm%pTW*~LEMa&YF0gOjt|^)J;YEiNF&ozi?sjM<{rJ7!p!Ve=>Blo(8?hzg zAYBKrUld3l#AqN^3^9D4k>$1%?~qnX>Dhe=;M6p)k7_N>S)68 zMXs+Sa#Rh*NOF2PSI{BIq-G0h&2Y3+cZ$HO6LtfgI)O@aA8|SQUiCJfxvcf4Cj=d) zCB?HQUK57STJ~72M1ebqQOOeP-ef={vk^*2H#0rDkJ@TxX&2ZPIz|zc){jTA2dsm* zI7@uU1DGAHj2;8GeaW0zw(*QFm?Fn|wGWtNV94DbuAR6(eW;6W==6#SPB>v+42)Xz(*^U`4r(+T+z^DKRXFV>o$a_rnk)y}Gs`IP_>R zB4?fhktIdy=yJzwkI_4(q92{HATsDXIm@TXfaGHb&P|bhRMv_eAN`4~4Okhuvdx84uR+iEjn@aV%YHCE>MDljb!>1Hk}5^dRR|p>MSV!AkY!XL=U-Il^3p`ILw(Db5rHf3Y*=d),depend(lower) :: d=len(lower) + integer optional,check(shape(means,1)==n),depend(means) :: n=shape(means,1) + double precision dimension(d) :: lower + double precision dimension(d),depend(d) :: upper + double precision dimension(d,n),depend(d) :: means + double precision dimension(d,d),depend(d,d) :: covar + integer :: maxpts + double precision :: abseps + double precision :: releps + double precision :: value + integer :: inform + end subroutine mvnun + subroutine mvndst(n,lower,upper,infin,correl,maxpts,abseps,releps,error,value,inform) ! in :mvn2:mvndst.f + integer :: n + double precision dimension(*) :: lower + double precision dimension(*) :: upper + integer dimension(*) :: infin + double precision dimension(*) :: correl + integer :: maxpts + double precision :: abseps + double precision :: releps + double precision :: error + double precision :: value + integer :: inform + integer :: ivls + common /dkblck/ ivls + end subroutine mvndst + function mvndfn(n,w) ! in :mvn2:mvndst.f + integer :: n + double precision dimension(*) :: w + double precision dimension(*) :: upper + integer dimension(*) :: infin + integer :: infis + double precision :: e + double precision dimension(*) :: lower + double precision :: d + double precision dimension(*) :: correl + double precision :: mvndfn + double precision :: mvndnt + entry mvndnt(n,correl,lower,upper,infin,infis,d,e) + end function mvndfn + subroutine mvnlms(a,b,infin,lower,upper) ! in :mvn2:mvndst.f + double precision :: a + double precision :: b + integer :: infin + double precision :: lower + double precision :: upper + end subroutine mvnlms + subroutine covsrt(n,lower,upper,correl,infin,y,infis,a,b,cov,infi) ! in :mvn2:mvndst.f + integer :: n + double precision dimension(*) :: lower + double precision dimension(*) :: upper + double precision dimension(*) :: correl + integer dimension(*) :: infin + double precision dimension(*) :: y + integer :: infis + double precision dimension(*) :: a + double precision dimension(*) :: b + double precision dimension(*) :: cov + integer dimension(*) :: infi + end subroutine covsrt + subroutine dkswap(x,y) ! in :mvn2:mvndst.f + double precision :: x + double precision :: y + end subroutine dkswap + subroutine rcswp(p,q,a,b,infin,n,c) ! in :mvn2:mvndst.f + integer :: p + integer :: q + double precision dimension(*) :: a + double precision dimension(*) :: b + integer dimension(*) :: infin + integer :: n + double precision dimension(*) :: c + end subroutine rcswp + subroutine dkbvrc(ndim,minvls,maxvls,functn,abseps,releps,abserr,finest,inform) ! in :mvn2:mvndst.f + integer :: ndim + integer :: minvls + integer :: maxvls + external functn + double precision :: abseps + double precision :: releps + double precision :: abserr + double precision :: finest + integer :: inform + end subroutine dkbvrc + subroutine dksmrc(ndim,klim,sumkro,prime,vk,functn,x) ! in :mvn2:mvndst.f + integer :: ndim + integer :: klim + double precision :: sumkro + integer :: prime + double precision dimension(*) :: vk + external functn + double precision dimension(*) :: x + end subroutine dksmrc + function mvnphi(z) ! in :mvn2:mvndst.f + double precision :: z + double precision :: mvnphi + end function mvnphi + function phinvs(p) ! in :mvn2:mvndst.f + double precision :: p + double precision :: phinvs + end function phinvs + function bvnmvn(lower,upper,infin,correl) ! in :mvn2:mvndst.f + double precision dimension(*) :: lower + double precision dimension(*) :: upper + integer dimension(*) :: infin + double precision :: correl + double precision :: bvnmvn + end function bvnmvn + function bvu(sh,sk,r) ! in :mvn2:mvndst.f + double precision :: sh + double precision :: sk + double precision :: r + double precision :: bvu + end function bvu + function mvnuni() ! in :mvn2:mvndst.f + double precision :: mvnuni + end function mvnuni + end interface +end python module mvn2 + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/mvndst.f b/wafo/mvndst.f new file mode 100755 index 0000000..255efff --- /dev/null +++ b/wafo/mvndst.f @@ -0,0 +1,1130 @@ +C f2py -m -h mvn1.pyf mvndst.f +C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +! f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m mvnprd -c mvnprd.f + +* Note: The test program has been removed and a utlity routine mvnun has been +* added. RTK 2004-08-10 +* +* Copyright 2000 by Alan Genz. +* Copyright 2004-2005 by Enthought, Inc. +* +* The subroutine MVNUN is copyrighted by Enthought, Inc. +* The rest of the file is copyrighted by Alan Genz and has kindly been offered +* to the Scipy project under it's BSD-style license. +* +* This file contains a short test program and MVNDST, a subroutine +* for computing multivariate normal distribution function values. +* The file is self contained and should compile without errors on (77) +* standard Fortran compilers. The test program demonstrates the use of +* MVNDST for computing MVN distribution values for a five dimensional +* example problem, with three different integration limit combinations. +* +* Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 +* Email : alangenz@wsu.edu +* + SUBROUTINE mvnun(d, n, lower, upper, means, covar, maxpts, + & abseps, releps, value, inform) +* Parameters +* +* d integer, dimensionality of the data +* n integer, the number of data points +* lower double(2), the lower integration limits +* upper double(2), the upper integration limits +* means double(n), the mean of each kernel +* covar double(2,2), the covariance matrix +* maxpts integer, the maximum number of points to evaluate at +* abseps double, absolute error tolerance +* releps double, relative error tolerance +* value double intent(out), integral value +* inform integer intent(out), +* if inform == 0: error < eps +* elif inform == 1: error > eps, all maxpts used + integer n, d, infin(d), maxpts, inform, tmpinf + double precision lower(d), upper(d), releps, abseps, + & error, value, stdev(d), rho(d*(d-1)/2), + & covar(d,d), + & nlower(d), nupper(d), means(d,n), tmpval + integer i, j + + do i=1,d + stdev(i) = dsqrt(covar(i,i)) + infin(i) = 2 + end do + do i=1,d + do j=1,i-1 + rho(j+(i-2)*(i-1)/2) = covar(i,j)/stdev(i)/stdev(j) + end do + end do + value = 0d0 + + inform = 0 + + do i=1,n + do j=1,d + nlower(j) = (lower(j) - means(j,i))/stdev(j) + nupper(j) = (upper(j) - means(j,i))/stdev(j) + end do + call mvndst(d,nlower,nupper,infin,rho,maxpts,abseps,releps, + & error,tmpval,tmpinf) + value = value + tmpval + if (tmpinf .eq. 1) then + inform = 1 + end if + end do + + value = value / n + + END + + SUBROUTINE MVNDST( N, LOWER, UPPER, INFIN, CORREL, MAXPTS, + & ABSEPS, RELEPS, ERROR, VALUE, INFORM ) +* +* A subroutine for computing multivariate normal probabilities. +* This subroutine uses an algorithm given in the paper +* "Numerical Computation of Multivariate Normal Probabilities", in +* J. of Computational and Graphical Stat., 1(1992), pp. 141-149, by +* Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 +* Email : AlanGenz@wsu.edu +* +* Parameters +* +* N INTEGER, the number of variables. +* LOWER REAL, array of lower integration limits. +* UPPER REAL, array of upper integration limits. +* INFIN INTEGER, array of integration limits flags: +* if INFIN(I) < 0, Ith limits are (-infinity, infinity); +* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)]; +* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity); +* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)]. +* CORREL REAL, array of correlation coefficients; the correlation +* coefficient in row I column J of the correlation matrix +* should be stored in CORREL( J + ((I-2)*(I-1))/2 ), for J < I. +* THe correlation matrix must be positive semidefinite. +* MAXPTS INTEGER, maximum number of function values allowed. This +* parameter can be used to limit the time. A sensible +* strategy is to start with MAXPTS = 1000*N, and then +* increase MAXPTS if ERROR is too large. +* ABSEPS REAL absolute error tolerance. +* RELEPS REAL relative error tolerance. +* ERROR REAL estimated absolute error, with 99% confidence level. +* VALUE REAL estimated value for the integral +* INFORM INTEGER, termination status parameter: +* if INFORM = 0, normal completion with ERROR < EPS; +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* if INFORM = 2, N > 500 or N < 1. +* + EXTERNAL MVNDFN + INTEGER N, INFIN(*), MAXPTS, INFORM, INFIS, IVLS + DOUBLE PRECISION CORREL(*), LOWER(*), UPPER(*), RELEPS, ABSEPS, + & ERROR, VALUE, E, D, MVNDNT, MVNDFN + COMMON /DKBLCK/IVLS + IF ( N .GT. 500 .OR. N .LT. 1 ) THEN + INFORM = 2 + VALUE = 0 + ERROR = 1 + ELSE + INFORM = MVNDNT(N, CORREL, LOWER, UPPER, INFIN, INFIS, D, E) + IF ( N-INFIS .EQ. 0 ) THEN + VALUE = 1 + ERROR = 0 + ELSE IF ( N-INFIS .EQ. 1 ) THEN + VALUE = E - D + ERROR = 2D-16 + ELSE +* +* Call the lattice rule integration subroutine +* + IVLS = 0 + CALL DKBVRC( N-INFIS-1, IVLS, MAXPTS, MVNDFN, + & ABSEPS, RELEPS, ERROR, VALUE, INFORM ) + ENDIF + ENDIF + END + DOUBLE PRECISION FUNCTION MVNDFN( N, W ) +* +* Integrand subroutine +* + INTEGER N, INFIN(*), INFIS, NL + DOUBLE PRECISION W(*), LOWER(*), UPPER(*), CORREL(*), D, E + PARAMETER ( NL = 500 ) + DOUBLE PRECISION COV(NL*(NL+1)/2), A(NL), B(NL), Y(NL) + INTEGER INFI(NL), I, J, IJ, IK, INFA, INFB + DOUBLE PRECISION SUM, AI, BI, DI, EI, PHINVS, BVNMVN, MVNDNT + SAVE A, B, INFI, COV + MVNDFN = 1 + INFA = 0 + INFB = 0 + IK = 1 + IJ = 0 + DO I = 1, N+1 + SUM = 0 + DO J = 1, I-1 + IJ = IJ + 1 + IF ( J .LT. IK ) SUM = SUM + COV(IJ)*Y(J) + END DO + IF ( INFI(I) .NE. 0 ) THEN + IF ( INFA .EQ. 1 ) THEN + AI = MAX( AI, A(I) - SUM ) + ELSE + AI = A(I) - SUM + INFA = 1 + END IF + END IF + IF ( INFI(I) .NE. 1 ) THEN + IF ( INFB .EQ. 1 ) THEN + BI = MIN( BI, B(I) - SUM ) + ELSE + BI = B(I) - SUM + INFB = 1 + END IF + END IF + IJ = IJ + 1 + IF ( I .EQ. N+1 .OR. COV(IJ+IK+1) .GT. 0 ) THEN + CALL MVNLMS( AI, BI, 2*INFA+INFB-1, DI, EI ) + IF ( DI .GE. EI ) THEN + MVNDFN = 0 + RETURN + ELSE + MVNDFN = MVNDFN*( EI - DI ) + IF ( I .LE. N ) Y(IK) = PHINVS( DI + W(IK)*( EI - DI ) ) + IK = IK + 1 + INFA = 0 + INFB = 0 + END IF + END IF + END DO + RETURN +* +* Entry point for intialization. +* + ENTRY MVNDNT( N, CORREL, LOWER, UPPER, INFIN, INFIS, D, E ) + MVNDNT = 0 +* +* Initialization and computation of covariance Cholesky factor. +* + CALL COVSRT( N, LOWER,UPPER,CORREL,INFIN,Y, INFIS,A,B,COV,INFI ) + IF ( N - INFIS .EQ. 1 ) THEN + CALL MVNLMS( A(1), B(1), INFI(1), D, E ) + ELSE IF ( N - INFIS .EQ. 2 ) THEN + IF ( ABS( COV(3) ) .GT. 0 ) THEN + D = SQRT( 1 + COV(2)**2 ) + IF ( INFI(2) .NE. 0 ) A(2) = A(2)/D + IF ( INFI(2) .NE. 1 ) B(2) = B(2)/D + E = BVNMVN( A, B, INFI, COV(2)/D ) + D = 0 + ELSE + IF ( INFI(1) .NE. 0 ) THEN + IF ( INFI(2) .NE. 0 ) A(1) = MAX( A(1), A(2) ) + ELSE + IF ( INFI(2) .NE. 0 ) A(1) = A(2) + END IF + IF ( INFI(1) .NE. 1 ) THEN + IF ( INFI(2) .NE. 1 ) B(1) = MIN( B(1), B(2) ) + ELSE + IF ( INFI(2) .NE. 1 ) B(1) = B(2) + END IF + IF ( INFI(1) .NE. INFI(2) ) INFI(1) = 2 + CALL MVNLMS( A(1), B(1), INFI(1), D, E ) + END IF + INFIS = INFIS + 1 + END IF + END + SUBROUTINE MVNLMS( A, B, INFIN, LOWER, UPPER ) + DOUBLE PRECISION A, B, LOWER, UPPER, MVNPHI + INTEGER INFIN + LOWER = 0 + UPPER = 1 + IF ( INFIN .GE. 0 ) THEN + IF ( INFIN .NE. 0 ) LOWER = MVNPHI(A) + IF ( INFIN .NE. 1 ) UPPER = MVNPHI(B) + ENDIF + UPPER = MAX( UPPER, LOWER ) + END + SUBROUTINE COVSRT( N, LOWER, UPPER, CORREL, INFIN, Y, + & INFIS, A, B, COV, INFI ) +* +* Subroutine to sort integration limits and determine Cholesky factor. +* + INTEGER N, INFI(*), INFIN(*), INFIS + DOUBLE PRECISION + & A(*), B(*), COV(*), LOWER(*), UPPER(*), CORREL(*), Y(*) + INTEGER I, J, K, L, M, II, IJ, IL, JMIN + DOUBLE PRECISION SUMSQ, AJ, BJ, SUM, SQTWPI, EPS, D, E + DOUBLE PRECISION CVDIAG, AMIN, BMIN, DMIN, EMIN, YL, YU + PARAMETER ( SQTWPI = 2.506628274631001D0, EPS = 1D-10 ) + IJ = 0 + II = 0 + INFIS = 0 + DO I = 1, N + A(I) = 0 + B(I) = 0 + INFI(I) = INFIN(I) + IF ( INFI(I) .LT. 0 ) THEN + INFIS = INFIS + 1 + ELSE + IF ( INFI(I) .NE. 0 ) A(I) = LOWER(I) + IF ( INFI(I) .NE. 1 ) B(I) = UPPER(I) + ENDIF + DO J = 1, I-1 + IJ = IJ + 1 + II = II + 1 + COV(IJ) = CORREL(II) + END DO + IJ = IJ + 1 + COV(IJ) = 1 + END DO +* +* First move any doubly infinite limits to innermost positions. +* + IF ( INFIS .LT. N ) THEN + DO I = N, N-INFIS+1, -1 + IF ( INFI(I) .GE. 0 ) THEN + DO J = 1,I-1 + IF ( INFI(J) .LT. 0 ) THEN + CALL RCSWP( J, I, A, B, INFI, N, COV ) + GO TO 10 + ENDIF + END DO + ENDIF + 10 END DO +* +* Sort remaining limits and determine Cholesky factor. +* + II = 0 + DO I = 1, N-INFIS +* +* Determine the integration limits for variable with minimum +* expected probability and interchange that variable with Ith. +* + DMIN = 0 + EMIN = 1 + JMIN = I + CVDIAG = 0 + IJ = II + DO J = I, N-INFIS + IF ( COV(IJ+J) .GT. EPS ) THEN + SUMSQ = SQRT( COV(IJ+J) ) + SUM = 0 + DO K = 1, I-1 + SUM = SUM + COV(IJ+K)*Y(K) + END DO + AJ = ( A(J) - SUM )/SUMSQ + BJ = ( B(J) - SUM )/SUMSQ + CALL MVNLMS( AJ, BJ, INFI(J), D, E ) + IF ( EMIN + D .GE. E + DMIN ) THEN + JMIN = J + AMIN = AJ + BMIN = BJ + DMIN = D + EMIN = E + CVDIAG = SUMSQ + ENDIF + ENDIF + IJ = IJ + J + END DO + IF ( JMIN .GT. I ) CALL RCSWP( I, JMIN, A,B, INFI, N, COV ) + COV(II+I) = CVDIAG +* +* Compute Ith column of Cholesky factor. +* Compute expected value for Ith integration variable and +* scale Ith covariance matrix row and limits. +* + IF ( CVDIAG .GT. 0 ) THEN + IL = II + I + DO L = I+1, N-INFIS + COV(IL+I) = COV(IL+I)/CVDIAG + IJ = II + I + DO J = I+1, L + COV(IL+J) = COV(IL+J) - COV(IL+I)*COV(IJ+I) + IJ = IJ + J + END DO + IL = IL + L + END DO + IF ( EMIN .GT. DMIN + EPS ) THEN + YL = 0 + YU = 0 + IF ( INFI(I) .NE. 0 ) YL = -EXP( -AMIN**2/2 )/SQTWPI + IF ( INFI(I) .NE. 1 ) YU = -EXP( -BMIN**2/2 )/SQTWPI + Y(I) = ( YU - YL )/( EMIN - DMIN ) + ELSE + IF ( INFI(I) .EQ. 0 ) Y(I) = BMIN + IF ( INFI(I) .EQ. 1 ) Y(I) = AMIN + IF ( INFI(I) .EQ. 2 ) Y(I) = ( AMIN + BMIN )/2 + END IF + DO J = 1, I + II = II + 1 + COV(II) = COV(II)/CVDIAG + END DO + A(I) = A(I)/CVDIAG + B(I) = B(I)/CVDIAG + ELSE + IL = II + I + DO L = I+1, N-INFIS + COV(IL+I) = 0 + IL = IL + L + END DO +* +* If the covariance matrix diagonal entry is zero, +* permute limits and/or rows, if necessary. +* +* + DO J = I-1, 1, -1 + IF ( ABS( COV(II+J) ) .GT. EPS ) THEN + A(I) = A(I)/COV(II+J) + B(I) = B(I)/COV(II+J) + IF ( COV(II+J) .LT. 0 ) THEN + CALL DKSWAP( A(I), B(I) ) + IF ( INFI(I) .NE. 2 ) INFI(I) = 1 - INFI(I) + END IF + DO L = 1, J + COV(II+L) = COV(II+L)/COV(II+J) + END DO + DO L = J+1, I-1 + IF( COV((L-1)*L/2+J+1) .GT. 0 ) THEN + IJ = II + DO K = I-1, L, -1 + DO M = 1, K + CALL DKSWAP( COV(IJ-K+M), COV(IJ+M) ) + END DO + CALL DKSWAP( A(K), A(K+1) ) + CALL DKSWAP( B(K), B(K+1) ) + M = INFI(K) + INFI(K) = INFI(K+1) + INFI(K+1) = M + IJ = IJ - K + END DO + GO TO 20 + END IF + END DO + GO TO 20 + END IF + COV(II+J) = 0 + END DO + 20 II = II + I + Y(I) = 0 + END IF + END DO + ENDIF + END +* + SUBROUTINE DKSWAP( X, Y ) + DOUBLE PRECISION X, Y, T + T = X + X = Y + Y = T + END +* + SUBROUTINE RCSWP( P, Q, A, B, INFIN, N, C ) +* +* Swaps rows and columns P and Q in situ, with P <= Q. +* + DOUBLE PRECISION A(*), B(*), C(*) + INTEGER INFIN(*), P, Q, N, I, J, II, JJ + CALL DKSWAP( A(P), A(Q) ) + CALL DKSWAP( B(P), B(Q) ) + J = INFIN(P) + INFIN(P) = INFIN(Q) + INFIN(Q) = J + JJ = ( P*( P - 1 ) )/2 + II = ( Q*( Q - 1 ) )/2 + CALL DKSWAP( C(JJ+P), C(II+Q) ) + DO J = 1, P-1 + CALL DKSWAP( C(JJ+J), C(II+J) ) + END DO + JJ = JJ + P + DO I = P+1, Q-1 + CALL DKSWAP( C(JJ+P), C(II+I) ) + JJ = JJ + I + END DO + II = II + Q + DO I = Q+1, N + CALL DKSWAP( C(II+P), C(II+Q) ) + II = II + I + END DO + END +* + SUBROUTINE DKBVRC( NDIM, MINVLS, MAXVLS, FUNCTN, ABSEPS, RELEPS, + & ABSERR, FINEST, INFORM ) +* +* Automatic Multidimensional Integration Subroutine +* +* AUTHOR: Alan Genz +* Department of Mathematics +* Washington State University +* Pulman, WA 99164-3113 +* Email: AlanGenz@wsu.edu +* +* Last Change: 1/15/03 +* +* KRBVRC computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +* +* DKBVRC uses randomized Korobov rules for the first 100 variables. +* The primary references are +* "Randomization of Number Theoretic Methods for Multiple Integration" +* R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14, +* and +* "Optimal Parameters for Multidimensional Integration", +* P. Keast, SIAM J Numer Anal, 10, pp.831-838. +* If there are more than 100 variables, the remaining variables are +* integrated using the rules described in the reference +* "On a Number-Theoretical Integration Method" +* H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11. +* +*************** Parameters ******************************************** +****** Input parameters +* NDIM Number of variables, must exceed 1, but not exceed 40 +* MINVLS Integer minimum number of function evaluations allowed. +* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the +* routine assumes a previous call has been made with +* the same integrand and continues that calculation. +* MAXVLS Integer maximum number of function evaluations allowed. +* FUNCTN EXTERNALly declared user defined function to be integrated. +* It must have parameters (NDIM,Z), where Z is a real array +* of dimension NDIM. +* +* ABSEPS Required absolute accuracy. +* RELEPS Required relative accuracy. +****** Output parameters +* MINVLS Actual number of function evaluations used. +* ABSERR Estimated absolute accuracy of FINEST. +* FINEST Estimated value of integral. +* INFORM INFORM = 0 for normal exit, when +* ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) +* and +* INTVLS <= MAXCLS. +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with +* estimated absolute accuracy ABSERR. +************************************************************************ + EXTERNAL FUNCTN + INTEGER NDIM, MINVLS, MAXVLS, INFORM, NP, PLIM, NLIM, KLIM, KLIMI, + & SAMPLS, I, INTVLS, MINSMP + PARAMETER ( PLIM = 28, NLIM = 1000, KLIM = 100, MINSMP = 8 ) + INTEGER P(PLIM), C(PLIM,KLIM-1) + DOUBLE PRECISION FUNCTN, ABSEPS, RELEPS, FINEST, ABSERR, DIFINT, + & FINVAL, VARSQR, VAREST, VARPRD, VALUE + DOUBLE PRECISION X(2*NLIM), VK(NLIM), ONE + PARAMETER ( ONE = 1 ) + SAVE P, C, SAMPLS, NP, VAREST + INFORM = 1 + INTVLS = 0 + KLIMI = KLIM + IF ( MINVLS .GE. 0 ) THEN + FINEST = 0 + VAREST = 0 + SAMPLS = MINSMP + DO I = MIN( NDIM, 10), PLIM + NP = I + IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10 + END DO + SAMPLS = MAX( MINSMP, MINVLS/( 2*P(NP) ) ) + ENDIF + 10 VK(1) = ONE/P(NP) + DO I = 2, NDIM + IF ( I .LE. KLIM ) THEN + VK(I) = MOD( C(NP, MIN(NDIM-1,KLIM-1))*VK(I-1), ONE ) + ELSE + VK(I) = INT( P(NP)*2**(DBLE(I-KLIM)/(NDIM-KLIM+1)) ) + VK(I) = MOD( VK(I)/P(NP), ONE ) + END IF + END DO + FINVAL = 0 + VARSQR = 0 + DO I = 1, SAMPLS + CALL DKSMRC( NDIM, KLIMI, VALUE, P(NP), VK, FUNCTN, X ) + DIFINT = ( VALUE - FINVAL )/I + FINVAL = FINVAL + DIFINT + VARSQR = ( I - 2 )*VARSQR/I + DIFINT**2 + END DO + INTVLS = INTVLS + 2*SAMPLS*P(NP) + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/( 1 + VARPRD ) + IF ( VARSQR .GT. 0 ) VAREST = ( 1 + VARPRD )/VARSQR + ABSERR = 7*SQRT( VARSQR/( 1 + VARPRD ) )/2 + IF ( ABSERR .GT. MAX( ABSEPS, ABS(FINEST)*RELEPS ) ) THEN + IF ( NP .LT. PLIM ) THEN + NP = NP + 1 + ELSE + SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) + SAMPLS = MAX( MINSMP, SAMPLS ) + ENDIF + IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10 + ELSE + INFORM = 0 + ENDIF + MINVLS = INTVLS +* +* Optimal Parameters for Lattice Rules +* + DATA P( 1),(C( 1,I),I = 1,99)/ 31, 12, 2*9, 13, 8*12, 3*3, 12, + & 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7, + & 8*12, 7, 3*3, 3*7, 21*3/ + DATA P( 2),(C( 2,I),I = 1,99)/ 47, 13, 11, 17, 10, 6*15, + & 22, 2*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15, + & 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11, + & 2*10, 8*15, 6, 2, 3, 2, 3, 12*2/ + DATA P( 3),(C( 3,I),I = 1,99)/ 73, 27, 28, 10, 2*11, 20, + & 2*11, 28, 2*13, 28, 3*13, 16*14, 2*31, 3*5, 31, 13, 6*11, 7*13, + & 16*14, 2*31, 3*5, 11, 13, 7*11, 2*13, 11, 13, 4*5, 14, 13, 8*5/ + DATA P( 4),(C( 4,I),I = 1,99)/ 113, 35, 2*27, 36, 22, 2*29, + & 20, 45, 3*5, 16*21, 29, 10*17, 12*23, 21, 27, 3*3, 24, 2*27, + & 17, 3*29, 17, 4*5, 16*21, 3*17, 6, 2*17, 6, 3, 2*6, 5*3/ + DATA P( 5),(C( 5,I),I = 1,99)/ 173, 64, 66, 2*28, 2*44, 55, + & 67, 6*10, 2*38, 5*10, 12*49, 2*38, 31, 2*4, 31, 64, 3*4, 64, + & 6*45, 19*66, 11, 9*66, 45, 11, 7, 3, 3*2, 27, 5, 2*3, 2*5, 7*2/ + DATA P( 6),(C( 6,I),I = 1,99)/ 263, 111, 42, 54, 118, 20, + & 2*31, 72, 17, 94, 2*14, 11, 3*14, 94, 4*10, 7*14, 3*11, 7*8, + & 5*18, 113, 2*62, 2*45, 17*113, 2*63, 53, 63, 15*67, 5*51, 12, + & 51, 12, 51, 5, 2*3, 2*2, 5/ + DATA P( 7),(C( 7,I),I = 1,99)/ 397, 163, 154, 83, 43, 82, + & 92, 150, 59, 2*76, 47, 2*11, 100, 131, 6*116, 9*138, 21*101, + & 6*116, 5*100, 5*138, 19*101, 8*38, 5*3/ + DATA P( 8),(C( 8,I),I = 1,99)/ 593, 246, 189, 242, 102, + & 2*250, 102, 250, 280, 118, 196, 118, 191, 215, 2*121, + & 12*49, 34*171, 8*161, 17*14, 6*10, 103, 4*10, 5/ + DATA P( 9),(C( 9,I),I = 1,99)/ 907, 347, 402, 322, 418, + & 215, 220, 3*339, 337, 218, 4*315, 4*167, 361, 201, 11*124, + & 2*231, 14*90, 4*48, 23*90, 10*243, 9*283, 16, 283, 16, 2*283/ + DATA P(10),(C(10,I),I = 1,99)/ 1361, 505, 220, 601, 644, + & 612, 160, 3*206, 422, 134, 518, 2*134, 518, 652, 382, + & 206, 158, 441, 179, 441, 56, 2*559, 14*56, 2*101, 56, + & 8*101, 7*193, 21*101, 17*122, 4*101/ + DATA P(11),(C(11,I),I = 1,99)/ 2053, 794, 325, 960, 528, + & 2*247, 338, 366, 847, 2*753, 236, 2*334, 461, 711, 652, + & 3*381, 652, 7*381, 226, 7*326, 126, 10*326, 2*195, 19*55, + & 7*195, 11*132, 13*387/ + DATA P(12),(C(12,I),I = 1,99)/ 3079, 1189, 888, 259, 1082, 725, + & 811, 636, 965, 2*497, 2*1490, 392, 1291, 2*508, 2*1291, 508, + & 1291, 2*508, 4*867, 934, 7*867, 9*1284, 4*563, 3*1010, 208, + & 838, 3*563, 2*759, 564, 2*759, 4*801, 5*759, 8*563, 22*226/ + DATA P(13),(C(13,I),I = 1,99)/ 4621, 1763, 1018, 1500, 432, + & 1332, 2203, 126, 2240, 1719, 1284, 878, 1983, 4*266, + & 2*747, 2*127, 2074, 127, 2074, 1400, 10*1383, 1400, 7*1383, + & 507, 4*1073, 5*1990, 9*507, 17*1073, 6*22, 1073, 6*452, 318, + & 4*301, 2*86, 15/ + DATA P(14),(C(14,I),I = 1,99)/ 6947, 2872, 3233, 1534, 2941, + & 2910, 393, 1796, 919, 446, 2*919, 1117, 7*103, 2311, 3117, 1101, + & 2*3117, 5*1101, 8*2503, 7*429, 3*1702, 5*184, 34*105, 13*784/ + DATA P(15),(C(15,I),I = 1,99)/ 10427, 4309, 3758, 4034, 1963, + & 730, 642, 1502, 2246, 3834, 1511, 2*1102, 2*1522, 2*3427, + & 3928, 2*915, 4*3818, 3*4782, 3818, 4782, 2*3818, 7*1327, 9*1387, + & 13*2339, 18*3148, 3*1776, 3*3354, 925, 2*3354, 5*925, 8*2133/ + DATA P(16),(C(16,I),I = 1,99)/ 15641, 6610, 6977, 1686, 3819, + & 2314, 5647, 3953, 3614, 5115, 2*423, 5408, 7426, 2*423, + & 487, 6227, 2660, 6227, 1221, 3811, 197, 4367, 351, + & 1281, 1221, 3*351, 7245, 1984, 6*2999, 3995, 4*2063, 1644, + & 2063, 2077, 3*2512, 4*2077, 19*754, 2*1097, 4*754, 248, 754, + & 4*1097, 4*222, 754,11*1982/ + DATA P(17),(C(17,I),I = 1,99)/ 23473, 9861, 3647, 4073, 2535, + & 3430, 9865, 2830, 9328, 4320, 5913, 10365, 8272, 3706, 6186, + & 3*7806, 8610, 2563, 2*11558, 9421, 1181, 9421, 3*1181, 9421, + & 2*1181, 2*10574, 5*3534, 3*2898, 3450, 7*2141, 15*7055, 2831, + & 24*8204, 3*4688, 8*2831/ + DATA P(18),(C(18,I),I = 1,99)/ 35221, 10327, 7582, 7124, 8214, + & 9600, 10271, 10193, 10800, 9086, 2365, 4409, 13812, + & 5661, 2*9344, 10362, 2*9344, 8585, 11114, 3*13080, 6949, + & 3*3436, 13213, 2*6130, 2*8159, 11595, 8159, 3436, 18*7096, + & 4377, 7096, 5*4377, 2*5410, 32*4377, 2*440, 3*1199/ + DATA P(19),(C(19,I),I = 1,99)/ 52837, 19540, 19926, 11582, + & 11113, 24585, 8726, 17218, 419, 3*4918, 15701, 17710, + & 2*4037, 15808, 11401, 19398, 2*25950, 4454, 24987, 11719, + & 8697, 5*1452, 2*8697, 6436, 21475, 6436, 22913, 6434, 18497, + & 4*11089, 2*3036, 4*14208, 8*12906, 4*7614, 6*5021, 24*10145, + & 6*4544, 4*8394/ + DATA P(20),(C(20,I),I = 1,99)/ 79259, 34566, 9579, 12654, + & 26856, 37873, 38806, 29501, 17271, 3663, 10763, 18955, + & 1298, 26560, 2*17132, 2*4753, 8713, 18624, 13082, 6791, + & 1122, 19363, 34695, 4*18770, 15628, 4*18770, 33766, 6*20837, + & 5*6545, 14*12138, 5*30483, 19*12138, 9305, 13*11107, 2*9305/ + DATA P(21),(C(21,I),I = 1,99)/118891, 31929, 49367, 10982, 3527, + & 27066, 13226, 56010, 18911, 40574, 2*20767, 9686, 2*47603, + & 2*11736, 41601, 12888, 32948, 30801, 44243, 2*53351, 16016, + & 2*35086, 32581, 2*2464, 49554, 2*2464, 2*49554, 2464, 81, 27260, + & 10681, 7*2185, 5*18086, 2*17631, 3*18086, 37335, 3*37774, + & 13*26401, 12982, 6*40398, 3*3518, 9*37799, 4*4721, 4*7067/ + DATA P(22),(C(22,I),I = 1,99)/178349, 40701, 69087, 77576, 64590, + & 39397, 33179, 10858, 38935, 43129, 2*35468, 5279, 2*61518, 27945, + & 2*70975, 2*86478, 2*20514, 2*73178, 2*43098, 4701, + & 2*59979, 58556, 69916, 2*15170, 2*4832, 43064, 71685, 4832, + & 3*15170, 3*27679, 2*60826, 2*6187, 5*4264, 45567, 4*32269, + & 9*62060, 13*1803, 12*51108, 2*55315, 5*54140, 13134/ + DATA P(23),(C(23,I),I = 1,99)/267523, 103650, 125480, 59978, + & 46875, 77172, 83021, 126904, 14541, 56299, 43636, 11655, + & 52680, 88549, 29804, 101894, 113675, 48040, 113675, + & 34987, 48308, 97926, 5475, 49449, 6850, 2*62545, 9440, + & 33242, 9440, 33242, 9440, 33242, 9440, 62850, 3*9440, + & 3*90308, 9*47904, 7*41143, 5*36114, 24997, 14*65162, 7*47650, + & 7*40586, 4*38725, 5*88329/ + DATA P(24),(C(24,I),I = 1,99)/401287, 165843, 90647, 59925, + & 189541, 67647, 74795, 68365, 167485, 143918, 74912, + & 167289, 75517, 8148, 172106, 126159,3*35867, 121694, + & 52171, 95354, 2*113969, 76304, 2*123709, 144615, 123709, + & 2*64958, 32377, 2*193002, 25023, 40017, 141605, 2*189165, + & 141605, 2*189165, 3*141605, 189165, 20*127047, 10*127785, + & 6*80822, 16*131661, 7114, 131661/ + DATA P(25),(C(25,I),I = 1,99)/601942, 130365, 236711, 110235, + & 125699, 56483, 93735, 234469, 60549, 1291, 93937, + & 245291, 196061, 258647, 162489, 176631, 204895, 73353, + & 172319, 28881, 136787,2*122081, 275993, 64673, 3*211587, + & 2*282859, 211587, 242821, 3*256865, 122203, 291915, 122203, + & 2*291915, 122203, 2*25639, 291803, 245397, 284047, + & 7*245397, 94241, 2*66575, 19*217673, 10*210249, 15*94453/ + DATA P(26),(C(26,I),I = 1,99)/902933, 333459, 375354, 102417, + & 383544, 292630, 41147, 374614, 48032, 435453, 281493, 358168, + & 114121, 346892, 238990, 317313, 164158, 35497, 2*70530, 434839, + & 3*24754, 393656, 2*118711, 148227, 271087, 355831, 91034, + & 2*417029, 2*91034, 417029, 91034, 2*299843, 2*413548, 308300, + & 3*413548, 3*308300, 413548, 5*308300, 4*15311, 2*176255, 6*23613, + & 172210, 4* 204328, 5*121626, 5*200187, 2*121551, 12*248492, + & 5*13942/ + DATA P(27), (C(27,I), I = 1,99)/ 1354471, 500884, 566009, 399251, + & 652979, 355008, 430235, 328722, 670680, 2*405585, 424646, + & 2*670180, 641587, 215580, 59048, 633320, 81010, 20789, 2*389250, + & 2*638764, 2*389250, 398094, 80846, 2*147776, 296177, 2*398094, + & 2*147776, 396313, 3*578233, 19482, 620706, 187095, 620706, + & 187095, 126467, 12*241663, 321632, 2*23210, 3*394484, 3*78101, + & 19*542095, 3*277743, 12*457259/ + DATA P(28), (C(28,I), I = 1, 99)/ 2031713, 858339, 918142, 501970, + & 234813, 460565, 31996, 753018, 256150, 199809, 993599, 245149, + & 794183, 121349, 150619, 376952, 2*809123, 804319, 67352, 969594, + & 434796, 969594, 804319, 391368, 761041, 754049, 466264, 2*754049, + & 466264, 2*754049, 282852, 429907, 390017, 276645, 994856, 250142, + & 144595, 907454, 689648, 4*687580, 978368, 687580, 552742, 105195, + & 942843, 768249, 4*307142, 7*880619, 11*117185, 11*60731, + & 4*178309, 8*74373, 3*214965/ +* + END +* + SUBROUTINE DKSMRC( NDIM, KLIM, SUMKRO, PRIME, VK, FUNCTN, X ) + EXTERNAL FUNCTN + INTEGER NDIM, NK, KLIM, PRIME, K, J, JP + DOUBLE PRECISION SUMKRO, VK(*), FUNCTN, X(*), ONE, XT, MVNUNI + PARAMETER ( ONE = 1 ) + SUMKRO = 0 + NK = MIN( NDIM, KLIM ) + DO J = 1, NK - 1 + JP = J + MVNUNI()*( NK + 1 - J ) + XT = VK(J) + VK(J) = VK(JP) + VK(JP) = XT + END DO + DO J = 1, NDIM + X(NDIM+J) = MVNUNI() + END DO + DO K = 1, PRIME + DO J = 1, NDIM + X(J) = ABS( 2*MOD( K*VK(J) + X(NDIM+J), ONE ) - 1 ) + END DO + SUMKRO = SUMKRO + ( FUNCTN(NDIM,X) - SUMKRO )/( 2*K - 1 ) + DO J = 1, NDIM + X(J) = 1 - X(J) + END DO + SUMKRO = SUMKRO + ( FUNCTN(NDIM,X) - SUMKRO )/( 2*K ) + END DO + END +* + DOUBLE PRECISION FUNCTION MVNPHI( Z ) +* +* Normal distribution probabilities accurate to 1.e-15. +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, + * Z, P, EXPNTL, CUTOFF, ROOTPI, ZABS + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = .70038 30644 43688 1D0, + * P6 = .035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = .088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 +* + IF ( ZABS .GT. 37 ) THEN + P = 0 + ELSE +* +* |Z| <= 37 +* + EXPNTL = EXP( -ZABS**2/2 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS .LT. CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1/( ZABS + 2/( ZABS + 3/( ZABS + * + 4/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0 ) P = 1 - P + MVNPHI = P + END + DOUBLE PRECISION FUNCTION PHINVS(P) +* +* ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3 +* +* Produces the normal deviate Z corresponding to a given lower +* tail area of P. +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, + * A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + * C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + * E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + * P, Q, R + PARAMETER ( SPLIT1 = 0.425, SPLIT2 = 5, + * CONST1 = 0.180625D0, CONST2 = 1.6D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( 2*P - 1 )/2 + IF ( ABS(Q) .LE. SPLIT1 ) THEN + R = CONST1 - Q*Q + PHINVS = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + 1 ) + ELSE + R = MIN( P, 1 - P ) + IF ( R .GT. 0 ) THEN + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + PHINVS = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + 1 ) + ELSE + R = R - SPLIT2 + PHINVS = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + 1 ) + END IF + ELSE + PHINVS = 9 + END IF + IF ( Q .LT. 0 ) PHINVS = - PHINVS + END IF + END + DOUBLE PRECISION FUNCTION BVNMVN( LOWER, UPPER, INFIN, CORREL ) +* +* A function for computing bivariate normal probabilities. +* +* Parameters +* +* LOWER REAL, array of lower integration limits. +* UPPER REAL, array of upper integration limits. +* INFIN INTEGER, array of integration limits flags: +* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)]; +* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity); +* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)]. +* CORREL REAL, correlation coefficient. +* + DOUBLE PRECISION LOWER(*), UPPER(*), CORREL, BVU + INTEGER INFIN(*) + IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 2 ) THEN + BVNMVN = BVU ( LOWER(1), LOWER(2), CORREL ) + + - BVU ( UPPER(1), LOWER(2), CORREL ) + + - BVU ( LOWER(1), UPPER(2), CORREL ) + + + BVU ( UPPER(1), UPPER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 1 ) THEN + BVNMVN = BVU ( LOWER(1), LOWER(2), CORREL ) + + - BVU ( UPPER(1), LOWER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 2 ) THEN + BVNMVN = BVU ( LOWER(1), LOWER(2), CORREL ) + + - BVU ( LOWER(1), UPPER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 0 ) THEN + BVNMVN = BVU ( -UPPER(1), -UPPER(2), CORREL ) + + - BVU ( -LOWER(1), -UPPER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 2 ) THEN + BVNMVN = BVU ( -UPPER(1), -UPPER(2), CORREL ) + + - BVU ( -UPPER(1), -LOWER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 0 ) THEN + BVNMVN = BVU ( LOWER(1), -UPPER(2), -CORREL ) + ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 1 ) THEN + BVNMVN = BVU ( -UPPER(1), LOWER(2), -CORREL ) + ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 1 ) THEN + BVNMVN = BVU ( LOWER(1), LOWER(2), CORREL ) + ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 0 ) THEN + BVNMVN = BVU ( -UPPER(1), -UPPER(2), CORREL ) + END IF + END + DOUBLE PRECISION FUNCTION BVU( SH, SK, R ) +* +* A function for computing bivariate normal probabilities. +* +* Yihong Ge +* Department of Computer Science and Electrical Engineering +* Washington State University +* Pullman, WA 99164-2752 +* and +* Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 +* Email : alangenz@wsu.edu +* +* BVN - calculate the probability that X is larger than SH and Y is +* larger than SK. +* +* Parameters +* +* SH REAL, integration limit +* SK REAL, integration limit +* R REAL, correlation coefficient +* LG INTEGER, number of Gauss Rule Points and Weights +* + DOUBLE PRECISION BVN, SH, SK, R, ZERO, TWOPI + INTEGER I, LG, NG + PARAMETER ( ZERO = 0, TWOPI = 6.283185307179586D0 ) + DOUBLE PRECISION X(10,3), W(10,3), AS, A, B, C, D, RS, XS + DOUBLE PRECISION MVNPHI, SN, ASR, H, K, BS, HS, HK + SAVE X, W +* Gauss Legendre Points and Weights, N = 6 + DATA ( W(I,1), X(I,1), I = 1,3) / + * 0.1713244923791705D+00,-0.9324695142031522D+00, + * 0.3607615730481384D+00,-0.6612093864662647D+00, + * 0.4679139345726904D+00,-0.2386191860831970D+00/ +* Gauss Legendre Points and Weights, N = 12 + DATA ( W(I,2), X(I,2), I = 1,6) / + * 0.4717533638651177D-01,-0.9815606342467191D+00, + * 0.1069393259953183D+00,-0.9041172563704750D+00, + * 0.1600783285433464D+00,-0.7699026741943050D+00, + * 0.2031674267230659D+00,-0.5873179542866171D+00, + * 0.2334925365383547D+00,-0.3678314989981802D+00, + * 0.2491470458134029D+00,-0.1252334085114692D+00/ +* Gauss Legendre Points and Weights, N = 20 + DATA ( W(I,3), X(I,3), I = 1,10) / + * 0.1761400713915212D-01,-0.9931285991850949D+00, + * 0.4060142980038694D-01,-0.9639719272779138D+00, + * 0.6267204833410906D-01,-0.9122344282513259D+00, + * 0.8327674157670475D-01,-0.8391169718222188D+00, + * 0.1019301198172404D+00,-0.7463319064601508D+00, + * 0.1181945319615184D+00,-0.6360536807265150D+00, + * 0.1316886384491766D+00,-0.5108670019508271D+00, + * 0.1420961093183821D+00,-0.3737060887154196D+00, + * 0.1491729864726037D+00,-0.2277858511416451D+00, + * 0.1527533871307259D+00,-0.7652652113349733D-01/ + IF ( ABS(R) .LT. 0.3 ) THEN + NG = 1 + LG = 3 + ELSE IF ( ABS(R) .LT. 0.75 ) THEN + NG = 2 + LG = 6 + ELSE + NG = 3 + LG = 10 + ENDIF + H = SH + K = SK + HK = H*K + BVN = 0 + IF ( ABS(R) .LT. 0.925 ) THEN + HS = ( H*H + K*K )/2 + ASR = ASIN(R) + DO I = 1, LG + SN = SIN(ASR*( X(I,NG)+1 )/2) + BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) ) + SN = SIN(ASR*(-X(I,NG)+1 )/2) + BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) ) + END DO + BVN = BVN*ASR/(2*TWOPI) + MVNPHI(-H)*MVNPHI(-K) + ELSE + IF ( R .LT. 0 ) THEN + K = -K + HK = -HK + ENDIF + IF ( ABS(R) .LT. 1 ) THEN + AS = ( 1 - R )*( 1 + R ) + A = SQRT(AS) + BS = ( H - K )**2 + C = ( 4 - HK )/8 + D = ( 12 - HK )/16 + BVN = A*EXP( -(BS/AS + HK)/2 ) + + *( 1 - C*(BS - AS)*(1 - D*BS/5)/3 + C*D*AS*AS/5 ) + IF ( HK .GT. -160 ) THEN + B = SQRT(BS) + BVN = BVN - EXP(-HK/2)*SQRT(TWOPI)*MVNPHI(-B/A)*B + + *( 1 - C*BS*( 1 - D*BS/5 )/3 ) + ENDIF + A = A/2 + DO I = 1, LG + XS = ( A*(X(I,NG)+1) )**2 + RS = SQRT( 1 - XS ) + BVN = BVN + A*W(I,NG)* + + ( EXP( -BS/(2*XS) - HK/(1+RS) )/RS + + - EXP( -(BS/XS+HK)/2 )*( 1 + C*XS*( 1 + D*XS ) ) ) + XS = AS*(-X(I,NG)+1)**2/4 + RS = SQRT( 1 - XS ) + BVN = BVN + A*W(I,NG)*EXP( -(BS/XS + HK)/2 ) + + *( EXP( -HK*(1-RS)/(2*(1+RS)) )/RS + + - ( 1 + C*XS*( 1 + D*XS ) ) ) + END DO + BVN = -BVN/TWOPI + ENDIF + IF ( R .GT. 0 ) BVN = BVN + MVNPHI( -MAX( H, K ) ) + IF ( R .LT. 0 ) BVN = -BVN + MAX( ZERO, MVNPHI(-H)-MVNPHI(-K) ) + ENDIF + BVU = BVN + END + DOUBLE PRECISION FUNCTION MVNUNI() +* +* Uniform (0,1) random number generator +* +* Reference: +* L'Ecuyer, Pierre (1996), +* "Combined Multiple Recursive Random Number Generators" +* Operations Research 44, pp. 816-822. +* +* + INTEGER A12, A13, A21, A23, P12, P13, P21, P23 + INTEGER Q12, Q13, Q21, Q23, R12, R13, R21, R23 + INTEGER X10, X11, X12, X20, X21, X22, Z, M1, M2, H + DOUBLE PRECISION INVMP1 + PARAMETER ( M1 = 2147483647, M2 = 2145483479 ) + PARAMETER ( A12 = 63308, Q12 = 33921, R12 = 12979 ) + PARAMETER ( A13 = -183326, Q13 = 11714, R13 = 2883 ) + PARAMETER ( A21 = 86098, Q21 = 24919, R21 = 7417 ) + PARAMETER ( A23 = -539608, Q23 = 3976, R23 = 2071 ) + PARAMETER ( INVMP1 = 4.656612873077392578125D-10 ) +* INVMP1 = 1/(M1+1) + SAVE X10, X11, X12, X20, X21, X22 + DATA X10, X11, X12, X20, X21, X22 + & / 15485857, 17329489, 36312197, 55911127, 75906931, 96210113 / +* +* Component 1 +* + H = X10/Q13 + P13 = -A13*( X10 - H*Q13 ) - H*R13 + H = X11/Q12 + P12 = A12*( X11 - H*Q12 ) - H*R12 + IF ( P13 .LT. 0 ) P13 = P13 + M1 + IF ( P12 .LT. 0 ) P12 = P12 + M1 + X10 = X11 + X11 = X12 + X12 = P12 - P13 + IF ( X12 .LT. 0 ) X12 = X12 + M1 +* +* Component 2 +* + H = X20/Q23 + P23 = -A23*( X20 - H*Q23 ) - H*R23 + H = X22/Q21 + P21 = A21*( X22 - H*Q21 ) - H*R21 + IF ( P23 .LT. 0 ) P23 = P23 + M2 + IF ( P21 .LT. 0 ) P21 = P21 + M2 + X20 = X21 + X21 = X22 + X22 = P21 - P23 + IF ( X22 .LT. 0 ) X22 = X22 + M2 +* +* Combination +* + Z = X12 - X22 + IF ( Z .LE. 0 ) Z = Z + M1 + MVNUNI = Z*INVMP1 + END diff --git a/wafo/namedtuple.py b/wafo/namedtuple.py new file mode 100755 index 0000000..9a634f3 --- /dev/null +++ b/wafo/namedtuple.py @@ -0,0 +1,132 @@ +from operator import itemgetter as _itemgetter +from keyword import iskeyword as _iskeyword +import sys as _sys + +def namedtuple(typename, field_names, verbose=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', 'x y') + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessable by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Parse and validate the field names. Validation serves two purposes, + # generating informative error messages and preventing template injection attacks. + if isinstance(field_names, basestring): + field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas + field_names = tuple(field_names) + for name in (typename,) + field_names: + if not min(c.isalnum() or c=='_' for c in name): + raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a keyword: %r' % name) + if name[0].isdigit(): + raise ValueError('Type names and field names cannot start with a number: %r' % name) + seen_names = set() + for name in field_names: + if name.startswith('_'): + raise ValueError('Field names cannot start with an underscore: %r' % name) + if name in seen_names: + raise ValueError('Encountered duplicate field name: %r' % name) + seen_names.add(name) + + # Create and fill-in the class template + numfields = len(field_names) + argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes + reprtxt = ', '.join('%s=%%r' % name for name in field_names) + dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names)) + template = '''class %(typename)s(tuple): + '%(typename)s(%(argtxt)s)' \n + __slots__ = () \n + _fields = %(field_names)r \n + def __new__(cls, %(argtxt)s): + return tuple.__new__(cls, (%(argtxt)s)) \n + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new %(typename)s object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != %(numfields)d: + raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result)) + return result \n + def __repr__(self): + return '%(typename)s(%(reprtxt)s)' %% self \n + def _asdict(t): + 'Return a new dict which maps field names to their values' + return {%(dicttxt)s} \n + def _replace(self, **kwds): + 'Return a new %(typename)s object replacing specified fields with new values' + result = self._make(map(kwds.pop, %(field_names)r, self)) + if kwds: + raise ValueError('Got unexpected field names: %%r' %% kwds.keys()) + return result \n\n''' % locals() + for i, name in enumerate(field_names): + template += ' %s = property(itemgetter(%d))\n' % (name, i) + if verbose: + print template + + # Execute the template string in a temporary namespace + namespace = dict(itemgetter=_itemgetter) + try: + exec template in namespace + except SyntaxError, e: + raise SyntaxError(e.message + ':\n' + template) + result = namespace[typename] + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in enviroments where + # sys._getframe is not defined (Jython for example). + if hasattr(_sys, '_getframe'): + result.__module__ = _sys._getframe(1).f_globals['__name__'] + + return result + + + + + + +if __name__ == '__main__': + # verify that instances can be pickled + from cPickle import loads, dumps + Point = namedtuple('Point', 'x, y', True) + p = Point(x=10, y=20) + assert p == loads(dumps(p)) + + # test and demonstrate ability to override methods + class Point(namedtuple('Point', 'x y')): + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + + for p in Point(3,4), Point(14,5), Point(9./7,6): + print p + + class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + + print Point(11, 22)._replace(x=100) + + import doctest + TestResults = namedtuple('TestResults', 'failed attempted') + print TestResults(*doctest.testmod()) \ No newline at end of file diff --git a/wafo/objects.py b/wafo/objects.py new file mode 100755 index 0000000..9883db4 --- /dev/null +++ b/wafo/objects.py @@ -0,0 +1,1454 @@ + +#------------------------------------------------------------------------------- +# Name: module1 +# Purpose: +# +# Author: pab +# +# Created: 16.09.2008 +# Copyright: (c) pab 2008 +# Licence: +#------------------------------------------------------------------------------- +#!/usr/bin/env python + + +from __future__ import division +import warnings +import numpy as np + +from numpy import (inf, pi, zeros, ones, sqrt, where, log, exp, sin, arcsin, mod, #@UnresolvedImport + newaxis, linspace, arange, sort, all, abs, linspace, vstack, hstack, atleast_1d, #@UnresolvedImport + polyfit, r_, nonzero, cumsum, ravel, size, isnan, nan, floor, ceil, diff, array) #@UnresolvedImport +from numpy.fft import fft +from numpy.random import randn +from scipy.integrate import trapz +from pylab import stineman_interp +from matplotlib.mlab import psd +import scipy.signal + +from scipy.special import erf + +from wafo.misc import (nextpow2, findtp, findtc, findcross, sub_dict_select, + ecross, JITImport) +from wafodata import WafoData +from plotbackend import plotbackend +import matplotlib +matplotlib.interactive(True) +_wafocov = JITImport('wafo.covariance') +_wafospec = JITImport('wafo.spectrum') + +__all__ = ['TimeSeries','LevelCrossings','CyclePairs','TurningPoints', + 'sensortypeid','sensortype'] + + + +class LevelCrossings(WafoData): + ''' + Container class for Level crossing data objects in WAFO + + Member variables + ---------------- + data : array-like + number of upcrossings + args : array-like + crossing levels + + ''' + def __init__(self,*args,**kwds): + super(LevelCrossings, self).__init__(*args,**kwds) + self.labels.title = 'Level crossing spectrum' + self.labels.xlab = 'Levels' + self.labels.ylab = 'Count' + self.stdev = kwds.get('stdev',None) + self.mean = kwds.get('mean',None) + self.setplotter(plotmethod='step') + + icmax = self.data.argmax() + if self.data != None: + if self.stdev is None or self.mean is None: + logcros = where(self.data==0.0, inf, -log(self.data)) + logcmin = logcros[icmax] + logcros = sqrt(2*abs(logcros-logcmin)) + logcros[0:icmax+1] = 2*logcros[icmax]-logcros[0:icmax+1] + p = polyfit(self.args[10:-9], logcros[10:-9],1) #least square fit + if self.stdev is None: + self.stdev = 1.0/p[0] #estimated standard deviation of x + if self.mean is None: + self.mean = -p[1]/p[0] #self.args[icmax] + cmax = self.data[icmax] + x = (self.args-self.mean)/self.stdev + y = cmax*exp(-x**2/2.0) + self.children = [WafoData(y,self.args)] + + def sim(self,ns,alpha): + """ + Simulates process with given irregularity factor and crossing spectrum + + Parameters + ---------- + ns : scalar, integer + number of sample points. + alpha : real scalar + irregularity factor, 0>> import wafo.spectrum.models as sm + >>> Sj = sm.Jonswap(Hm0=7) + >>> S = Sj.tospecdata() #Make spectrum object from numerical values + >>> alpha = S.characteristic('alpha')[0] + >>> n = 10000 + >>> xs = S.sim(ns=n) + >>> ts = mat2timeseries(xs) + >>> tp = ts.turning_points() + >>> mm = tp.cycle_pairs() + >>> lc = mm.level_crossings() + + xs2 = lc.sim(n,alpha) + ts2 = mat2timeseries(xs2) + Se = ts2.tospecdata() + + S.plot('b') + Se.plot('r') + alpha2 = Se.characteristic('alpha')[0] + alpha-alpha2 + + spec2char(Se,'alpha') + lc2 = dat2lc(xs2) + figure(gcf+1) + subplot(211) + lcplot(lc2) + subplot(212) + lcplot(lc) + """ + + # TODO % add a good example + f = linspace(0,0.49999,1000) + rho_st = 2.*sin(f*pi)**2-1. + tmp = alpha*arcsin(sqrt((1.+rho_st)/2)) + tmp = sin(tmp)**2 + a2 = (tmp-rho_st)/(1-tmp) + y = vstack((a2+rho_st,1-a2)).min(axis=0) + maxidx = y.argmax() + #[maximum,maxidx]=max(y) + + rho_st = rho_st[maxidx] + a2 = a2[maxidx] + a1 = 2.*rho_st+a2-1. + r0 = 1. + r1 = -a1/(1.+a2) + r2 = (a1**2-a2-a2**2)/(1+a2) + sigma2 = r0+a1*r1+a2*r2 + #randn = np.random.randn + e = randn(ns)*sqrt(sigma2) + e[:1] = 0.0 + L0 = randn(1) + L0 = vstack((L0,r1*L0+sqrt(1-r2**2)*randn(1))) + #%Simulate the process, starting in L0 + lfilter = scipy.signal.lfilter + L = lfilter(1,[1, a1, a2],e,lfilter([1, a1, a2],1,L0)) + + epsilon = 1.01 + min_L = min(L) + max_L = max(L) + maxi = max(abs(r_[min_L, max_L]))*epsilon + mini = -maxi + + u = linspace(mini,maxi,101) + G = (1+erf(u/sqrt(2)))/2 + G = G*(1-G) + + x = linspace(0,r1,100) + factor1 = 1./sqrt(1-x**2) + factor2 = 1./(1+x) + integral = zeros(u.shape, dtype=float) + for i in range(len(integral)): + y = factor1*exp(-u[i]*u[i]*factor2) + integral[i] = trapz(x,y) + #end + G = G-integral/(2*pi) + G = G/max(G) + + Z = ((u>=0)*2-1)*sqrt(-2*log(G)) + +## sumcr = trapz(lc(:,1),lc(:,2)) +## lc(:,2) = lc(:,2)/sumcr +## mcr = trapz(lc(:,1),lc(:,1).*lc(:,2)) +## scr = trapz(lc(:,1),lc(:,1).^2.*lc(:,2)) +## scr = sqrt(scr-mcr^2) +## g = lc2tr(lc,mcr,scr) +## +## f = [u u] +## f(:,2) = tranproc(Z,fliplr(g)) +## +## process = tranproc(L,f) +## process = [(1:length(process)) process] +## +## +## %Check the result without reference to getrfc: +## LCe = dat2lc(process) +## max(lc(:,2)) +## max(LCe(:,2)) +## +## clf +## plot(lc(:,1),lc(:,2)/max(lc(:,2))) +## hold on +## plot(LCe(:,1),LCe(:,2)/max(LCe(:,2)),'-.') +## title('Relative crossing intensity') +## +## %% Plot made by the function funplot_4, JE 970707 +## %param = [min(process(:,2)) max(process(:,2)) 100] +## %plot(lc(:,1),lc(:,2)/max(lc(:,2))) +## %hold on +## %plot(levels(param),mu/max(mu),'--') +## %hold off +## %title('Crossing intensity') +## %watstamp +## +## % Temporarily +## %funplot_4(lc,param,mu) + + + def trdata(self, mean=None, sigma=None, **options): + ''' + Estimate transformation, g, from observed crossing intensity, version2. + + Assumption: a Gaussian process, Y, is related to the + non-Gaussian process, X, by Y = g(X). + + Parameters + ---------- + options = structure with the fields: + csm, gsm - defines the smoothing of the crossing intensity and the + transformation g. Valid values must be + 0<=csm,gsm<=1. (default csm = 0.9 gsm=0.05) + Smaller values gives smoother functions. + param - vector which defines the region of variation of the data X. + (default [-5 5 513]). + + monitor monitor development of estimation + linextrap - 0 use a regular smoothing spline + 1 use a smoothing spline with a constraint on the ends to + ensure linear extrapolation outside the range of the data. + (default) + cvar - Variances for the crossing intensity. (default 1) + gvar - Variances for the empirical transformation, g. (default 1) + ne - Number of extremes (maxima & minima) to remove from the + estimation of the transformation. This makes the + estimation more robust against outliers. (default 7) + Ntr - Maximum length of empirical crossing intensity. + The empirical crossing intensity is interpolated + linearly before smoothing if the length exceeds Ntr. + A reasonable NTR will significantly speed up the + estimation for long time series without loosing any + accuracy. NTR should be chosen greater than + PARAM(3). (default 1000) + Returns + ------- + gs, ge : TrData objects + smoothed and empirical estimate of the transformation g. + ma,sa = mean and standard deviation of the process + + Notes + ----- + The empirical crossing intensity is usually very irregular. + More than one local maximum of the empirical crossing intensity + may cause poor fit of the transformation. In such case one + should use a smaller value of GSM or set a larger variance for GVAR. + If X(t) is likely to cross levels higher than 5 standard deviations + then the vector param has to be modified. For example if X(t) is + unlikely to cross a level of 7 standard deviations one can use + param = [-7 7 513]. + + Example + ------- + Hm0 = 7 + S = jonswap([],Hm0); g=ochitr([],[Hm0/4]); + S.tr = g; S.tr(:,2)=g(:,2)*Hm0/4; + xs = spec2sdat(S,2^13); + lc = dat2lc(xs) + g0 = lc2tr2(lc,0,Hm0/4,'plot','iter'); % Monitor the development + g1 = lc2tr2(lc,0,Hm0/4,troptset('gvar', .5 )); % Equal weight on all points + g2 = lc2tr2(lc,0,Hm0/4,'gvar', [3.5 .5 3.5]); % Less weight on the ends + hold on, trplot(g1,g) % Check the fit + trplot(g2) + + See also troptset, dat2tr, trplot, findcross, smooth + + NB! the transformated data will be N(0,1) + + Reference + --------- + Rychlik , I., Johannesson, P., and Leadbetter, M.R. (1997) + "Modelling and statistical analysis of ocean wavedata + using a transformed Gaussian process", + Marine structures, Design, Construction and Safety, + Vol 10, pp 13--47 + ''' + + + # Tested on: Matlab 5.3, 5.2, 5.1 + # History: + # by pab 29.12.2000 + # based on lc2tr, but the inversion is faster. + # by IR and PJ + pass + +# opt = troptset('chkder','on','plotflag','off','csm',.9,'gsm',.05,.... +# 'param',[-5 5 513],'delay',2,'linextrap','on','ntr',1000,'ne',7,'cvar',1,'gvar',1); +# # If just 'defaults' passed in, return the default options in g +# if nargin==1 && nargout <= 1 && isequal(cross,'defaults') +# g = opt; +# return +# end +# error(nargchk(3,inf,nargin)) +# if nargin>=4 , opt = troptset(opt,varargin{:}); end +# csm2 = opt.gsm; +# param = opt.param; +# ptime = opt.delay; +# Ne = opt.ne; +# switch opt.chkder; +# case 'off', chkder = 0; +# case 'on', chkder = 1; +# otherwise, chkder = opt.chkder; +# end +# switch opt.linextrap; +# case 'off', def = 0; +# case 'on', def = 1; +# otherwise, def = opt.linextrap; +# end +# switch opt.plotflag +# case {'none','off'}, plotflag = 0; +# case 'final', plotflag = 1; +# case 'iter', plotflag = 2; +# otherwise, plotflag = opt.plotflag; +# end +# ncr = length(cross); +# if ncr>opt.ntr && opt.ntr>0, +# x0 = linspace(cross(1+Ne,1),cross(end-Ne,1),opt.ntr)'; +# cros = [ x0,interp1q(cross(:,1),cross(:,2),x0)]; +# Ne = 0; +# Ner = opt.ne; +# ncr = opt.ntr; +# else +# Ner = 0; +# cros=cross; +# end +# +# ng = length(opt.gvar); +# if ng==1 +# gvar = opt.gvar(ones(ncr,1)); +# else +# gvar = interp1(linspace(0,1,ng)',opt.gvar(:),linspace(0,1,ncr)','*linear'); +# end +# ng = length(opt.cvar); +# if ng==1 +# cvar = opt.cvar(ones(ncr,1)); +# else +# cvar = interp1(linspace(0,1,ng)',opt.cvar(:),linspace(0,1,ncr)','*linear'); +# end +# +# g = zeros(param(3),2); +# +# uu = levels(param); +# +# g(:,1) = sa*uu' + ma; +# +# g2 = cros; +# +# if Ner>0, # Compute correction factors +# cor1 = trapz(cross(1:Ner+1,1),cross(1:Ner+1,2)); +# cor2 = trapz(cross(end-Ner-1:end,1),cross(end-Ner-1:end,2)); +# else +# cor1 = 0; +# cor2 = 0; +# end +# cros(:,2) = cumtrapz(cros(:,1),cros(:,2))+cor1; +# cros(:,2) = (cros(:,2)+.5)/(cros(end,2) + cor2 +1); +# cros(:,1) = (cros(:,1)-ma)/sa; +# +# # find the mode +# [tmp,imin]= min(abs(cros(:,2)-.15)); +# [tmp,imax]= min(abs(cros(:,2)-.85)); +# inde = imin:imax; +# tmp = smooth(cros(inde,1),g2(inde,2),opt.csm,cros(inde,1),def,cvar(inde)); +# +# [tmp imax] = max(tmp); +# u0 = cros(inde(imax),1); +# #u0 = interp1q(cros(:,2),cros(:,1),.5) +# +# +# cros(:,2) = invnorm(cros(:,2),-u0,1); +# +# g2(:,2) = cros(:,2); +# # NB! the smooth function does not always extrapolate well outside the edges +# # causing poor estimate of g +# # We may alleviate this problem by: forcing the extrapolation +# # to be linear outside the edges or choosing a lower value for csm2. +# +# inds = 1+Ne:ncr-Ne;# indices to points we are smoothing over +# scros2 = smooth(cros(inds,1),cros(inds,2),csm2,uu,def,gvar(inds)); +# +# g(:,2) = scros2';#*sa; #multiply with stdev +# +# if chkder~=0 +# for ix = 1:5 +# dy = diff(g(:,2)); +# if any(dy<=0) +# warning('WAFO:LCTR2','The empirical crossing spectrum is not sufficiently smoothed.') +# disp(' The estimated transfer function, g, is not ') +# disp(' a strictly increasing function.') +# dy(dy>0)=eps; +# gvar = -([dy;0]+[0;dy])/2+eps; +# g(:,2) = smooth(g(:,1),g(:,2),1,g(:,1),def,ix*gvar); +# else +# break +# end +# end +# end +# if 0, #either +# test = sqrt((param(2)-param(1))/(param(3)-1)*sum((uu-scros2).^2)); +# else # or +# #test=sqrt(simpson(uu,(uu-scros2).^2)); +# # or +# test=sqrt(trapz(uu,(uu-scros2).^2)); +# end +# +# +# if plotflag>0, +# trplot(g ,g2,ma,sa) +# #legend(['Smoothed (T=' num2str(test) ')'],'g(u)=u','Not smoothed',0) +# #ylabel('Transfer function g(u)') +# #xlabel('Crossing level u') +# +# if plotflag>1,pause(ptime),end +# end + + +class CyclePairs(WafoData): + ''' + Container class for Cycle Pairs data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D + + + ''' + def __init__(self, *args, **kwds): + super(CyclePairs, self).__init__(*args, **kwds) + self.type_ = kwds.get('type_', 'max2min') + self.stdev = kwds.get('stdev', None) + self.mean = kwds.get('mean', None) + + self.labels.title = self.type_+ ' cycle pairs' + self.labels.xlab = 'min' + self.labels.ylab = 'max' + + def amplitudes(self): + return (self.data-self.args)/2. + + def damage(self, beta, K=1): + """ + Calculates the total Palmgren-Miner damage of cycle pairs. + + Parameters + ---------- + beta : array-like, size m + Beta-values, material parameter. + K : scalar, optional + K-value, material parameter. + + Returns + ------- + D : ndarray, size m + Damage. + + Notes + ----- + The damage is calculated according to + D[i] = sum ( K * a**beta[i] ), with a = (max-min)/2 + + Examples + -------- + >>> import wafo + >>> from matplotlib import pyplot as plt + >>> ts = wafo.objects.mat2timeseries(wafo.data.sea()) + >>> tp = ts.turning_points() + >>> mm = tp.cycle_pairs() + >>> h = mm.plot('.') + >>> bv = range(3,9) + >>> D = mm.damage(beta=bv) + >>> D + array([ 138.5238799 , 117.56050788, 108.99265423, 107.86681126, + 112.3791076 , 122.08375071]) + >>> h = plt.plot(bv,D,'x-') + + See also + -------- + SurvivalCycleCount + """ + amp = abs(self.amplitudes()) + return atleast_1d([K*np.sum(amp**betai) for betai in beta]) + + def level_crossings(self, type_='uM'): + """ Return number of upcrossings from a cycle count. + + Parameters + ---------- + type_ : int or string + defining crossing type, options are + 0,'u' : only upcrossings. + 1,'uM' : upcrossings and maxima (default). + 2,'umM': upcrossings, minima, and maxima. + 3,'um' :upcrossings and minima. + Return + ------ + lc : level crossing object + with levels and number of upcrossings. + + + Calculates the number of upcrossings from a cycle pairs, e.g. + min2Max cycles or rainflow cycles. + + Example: + -------- + >>> import wafo + >>> ts = wafo.objects.mat2timeseries(wafo.data.sea()) + >>> tp = ts.turning_points() + >>> mm = tp.cycle_pairs() + >>> h = mm.plot('.') + >>> lc = mm.level_crossings() + >>> h2 = lc.plot() + + See also + -------- + TurningPoints + LevelCrossings + """ + + if isinstance(type_, str): + t = dict(u=0, uM=1, umM=2, um=3) + defnr = t.get(type_, 1) + else: + defnr = type_ + + if ((defnr<0) or (defnr>3)): + raise ValueError('type_ must be one of (1,2,3,4).') + + index, = nonzero(self.args <= self.data) + if index.size == 0: + index, = nonzero(self.args >= self.data) + M = self.args[index] + m = self.data[index] + else: + m = self.args[index] + M = self.data[index] + +#if isempty(index) +# error('Error in input cc.') +#end + ncc = len(m) + #ones = np.ones + #zeros = np.zeros + #cumsum = np.cumsum + minima = vstack((m, ones(ncc), zeros(ncc), ones(ncc))) + maxima = vstack((M, -ones(ncc), ones(ncc), zeros(ncc))) + + extremes = hstack((maxima, minima)) + index = extremes[0].argsort() + extremes = extremes[:, index] + + ii = 0 + n = extremes.shape[1] + extr = zeros((4, n)) + extr[:, 0] = extremes[:, 0] + for i in xrange(1, n): + if extremes[0, i] == extr[0, ii]: + extr[1:4, ii] = extr[1:4, ii] + extremes[1:4, i] + else: + ii += 1 + extr[:, ii] = extremes[:, i] + + #[xx nx]=max(extr(:,1)) + nx = extr[0].argmax()+1 + levels = extr[0, 0:nx] + if defnr == 2: ## This are upcrossings + maxima + dcount = cumsum(extr[1, 0:nx]) + extr[2, 0:nx]-extr[3, 0:nx] + elif defnr == 4: # # This are upcrossings + minima + dcount = cumsum(extr[1, 0:nx]) + dcount[nx-1] = dcount[nx-2] + elif defnr == 1: ## This are only upcrossings + dcount = cumsum(extr[1, 0:nx]) - extr[3, 0:nx] + elif defnr == 3: ## This are upcrossings + minima + maxima + dcount = cumsum(extr[1, 0:nx]) + extr[2, 0:nx] + return LevelCrossings(dcount, levels, stdev=self.stdev) + +class TurningPoints(WafoData): + ''' + Container class for Turning Points data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D + + + ''' + def __init__(self, *args, **kwds): + super(TurningPoints, self).__init__(*args, **kwds) + self.name='WAFO TurningPoints Object' + somekeys = ['name'] + self.__dict__.update(sub_dict_select(kwds, somekeys)) + + #self.setlabels() + if not any(self.args): + n = len(self.data) + self.args = range(0, n) + else: + self.args = ravel(self.args) + self.data= ravel(self.data) + + def cycle_pairs(self, type_='min2max'): + """ Return min2Max or Max2min cycle pairs from turning points + + Parameters + ---------- + type_ : string + type of cycles to return options are 'min2max' or 'max2min' + + Return + ------ + mm : cycles object + with min2Max or Max2min cycle pairs. + + Example + ------- + >>> import wafo + >>> x = wafo.data.sea() + >>> ts = wafo.objects.mat2timeseries(x) + >>> tp = ts.turning_points() + >>> mM = tp.cycle_pairs() + >>> h = mM.plot('.') + + + See also + -------- + TurningPoints + SurvivalCycleCount + """ + if self.data[0]>self.data[1]: + im = 1 + iM = 0 + else: + im = 0 + iM = 1 + + # Extract min-max and max-min cycle pairs + #n = len(self.data) + if type_.lower().startswith('min2max'): + m = self.data[im:-1:2] + M = self.data[im+1::2] + else: + type_ = 'max2min' + M = self.data[iM:-1:2] + m = self.data[iM+1::2] + + return CyclePairs(M, m, type=type_) + +def mat2timeseries(x): + """ + Convert 2D arrays to TimeSeries object + assuming 1st column is time and the remaining columns contain data. + """ + return TimeSeries(x[:, 1::], x[:, 0].ravel()) + +class TimeSeries(WafoData): + ''' + Container class for 1D TimeSeries data objects in WAFO + + Member variables + ---------------- + data : array_like + args : vector for 1D, list of vectors for 2D, 3D, ... + + sensortypes : list of integers or strings + sensor type for time series (default ['n'] : Surface elevation) + see sensortype for more options + position : vector of size 3 + instrument position relative to the coordinate system + + Examples + -------- + >>> import wafo.data + >>> x = wafo.data.sea() + >>> ts = mat2timeseries(x) + >>> rf = ts.tocovdata(lag=150) + >>> h = rf.plot() + + ''' + def __init__(self, *args, **kwds): + super(TimeSeries, self).__init__(*args, **kwds) + self.name = 'WAFO TimeSeries Object' + self.sensortypes = ['n', ] + self.position = zeros(3) + somekeys = ['sensortypes', 'position'] + self.__dict__.update(sub_dict_select(kwds, somekeys)) + + #self.setlabels() + if not any(self.args): + n = len(self.data) + self.args = range(0, n) + + def sampling_period(self): + ''' + Returns sampling interval + + Returns + ------- + dt : scalar + sampling interval, unit: + [s] if lagtype=='t' + [m] otherwise + + See also + ''' + dt1 = self.args[1]-self.args[0] + n = size(self.args)-1 + t = self.args[-1]-self.args[0] + dt = t/n + if abs(dt-dt1) > 1e-10: + warnings.warn('Data is not uniformly sampled!') + return dt + + def tocovdata(self, lag=None, flag='biased', norm=False, dt = None): + ''' + Return auto covariance function from data. + + Parameters + ---------- + lag : scalar, int + maximum time-lag for which the ACF is estimated. (Default lag=n-1) + flag : string, 'biased' or 'unbiased' + If 'unbiased' scales the raw correlation by 1/(n-abs(k)), + where k is the index into the result, otherwise scales the raw + cross-correlation by 1/n. (default) + norm : bool + True if normalize output to one + dt : scalar + time-step between data points (default see sampling_period). + + Return + ------- + R : CovData1D object + with attributes: + data : ACF vector length L+1 + args : time lags length L+1 + stdev : estimated large lag standard deviation of the estimate + assuming x is a Gaussian process: + if R(k)=0 for all lags k>q then an approximation + of the variance for large samples due to Bartlett + var(R(k))=1/N*(R(0)^2+2*R(1)^2+2*R(2)^2+ ..+2*R(q)^2) + for k>q and where N=length(x). Special case is + white noise where it equals R(0)^2/N for k>0 + norm : bool + If false indicating that R is not normalized + + Example: + -------- + >>> import wafo.data + >>> x = wafo.data.sea() + >>> ts = mat2timeseries(x) + >>> acf = ts.tocovdata(150) + >>> h = acf.plot() + ''' + n = len(self.data) + if not lag: + lag = n-1 + + x = self.data.flatten() + indnan = isnan(x) + if any(indnan): + x = x - x[1-indnan].mean() # remove the mean pab 09.10.2000 + #indnan = find(indnan) + Ncens = n - sum(indnan) + x[indnan] = 0. # pab 09.10.2000 much faster for censored samples + else: + indnan = None + Ncens = n + x = x - x.mean() + + #fft = np.fft.fft + nfft = 2**nextpow2(n) + Rper = abs(fft(x,nfft))**2/Ncens # Raw periodogram + + R = np.real(fft(Rper))/nfft # %ifft=fft/nfft since Rper is real! + lags = range(0,lag+1) + if flag.startswith('unbiased'): + # unbiased result, i.e. divide by n-abs(lag) + R = R[lags]*Ncens/arange(Ncens, Ncens-lag, -1) + #else % biased result, i.e. divide by n + # r=r(1:L+1)*Ncens/Ncens + + c0 = R[0] + if norm: + R = R/c0 + if dt is None: + dt = self.sampling_period() + t = linspace(0,lag*dt,lag+1) + #cumsum = np.cumsum + acf = _wafocov.CovData1D(R[lags],t) + acf.stdev=sqrt(r_[ 0, 1 ,1+2*cumsum(R[1:]**2)]/Ncens) + acf.children = [WafoData(-2.*acf.stdev[lags],t),WafoData(2.*acf.stdev[lags],t)] + acf.norm = norm + return acf + + def tospecdata(self,*args,**kwargs): + """ + Return power spectral density by Welches average periodogram method. + + Parameters + ---------- + NFFT : int, scalar + if len(data) < NFFT, it will be zero padded to `NFFT` + before estimation. Must be even; a power 2 is most efficient. + detrend : function + Fs : real, scalar + sampling frequency (samples per time unit). + + window : vector of length NFFT or function + To create window vectors see numpy.blackman, numpy.hamming, + numpy.bartlett, scipy.signal, scipy.signal.get_window etc. + noverlap : scalar int + gives the length of the overlap between segments. + + Returns + ------- + S : SpecData1D + Power Spectral Density + + Notes + ----- + The data vector is divided into NFFT length segments. Each segment + is detrended by function detrend and windowed by function window. + noverlap gives the length of the overlap between segments. The + absolute(fft(segment))**2 of each segment are averaged to compute Pxx, + with a scaling to correct for power loss due to windowing. + + Reference + --------- + Bendat & Piersol (1986) Random Data: Analysis and Measurement + Procedures, John Wiley & Sons + """ + fs = 1./(2*self.sampling_period()) + S, f = psd(self.data.ravel(), Fs=fs, *args, **kwargs) + fact = 2.0*pi + w = fact*f + return _wafospec.SpecData1D(S/fact, w) + + def turning_points(self,h=0.0,wavetype=None): + ''' + Return turning points (tp) from data, optionally rainflowfiltered. + + Parameters + ---------- + h : scalar + a threshold + if h<=0, then tp is a sequence of turning points (default) + if h>0, then all rainflow cycles with height smaller than + h are removed. + + wavetype : string + defines the type of wave. Possible options are + 'mw' 'Mw' or 'none'. + If None all rainflow filtered min and max + will be returned, otherwise only the rainflow filtered + min and max, which define a wave according to the + wave definition, will be returned. + + Returns + ------- + tp : TurningPoints object + with times and turning points. + + Example: + >>> import wafo.data + >>> x = wafo.data.sea() + >>> x1 = x[:200,:] + >>> ts1 = mat2timeseries(x1) + >>> tp = ts1.turning_points(wavetype='Mw') + >>> tph = ts1.turning_points(h=0.3,wavetype='Mw') + >>> hs = ts1.plot() + >>> hp = tp.plot('ro') + >>> hph = tph.plot('k.') + + See also + --------- + findcross, + findrfc + findtp + ''' + ind = findtp(self.data, max(h,0.0), wavetype) + try: + t = self.args[ind] + except: + t = ind + return TurningPoints(self.data[ind],t) + + def trough_crest(self,v=None,wavetype=None): + """ + Return trough and crest turning points + + Parameters + ----------- + v : scalar + reference level (default v = mean of x). + + wavetype : string + defines the type of wave. Possible options are + 'dw', 'uw', 'tw', 'cw' or None. + If None indices to all troughs and crests will be returned, + otherwise only the paired ones will be returned + according to the wavedefinition. + + Returns + -------- + tc : TurningPoints object + with trough and crest turningpoints + """ + ind = findtc(self.data, v, wavetype)[0] + try: + t = self.args[ind] + except: + t = ind + return TurningPoints(self.data[ind], t) + + def wave_periods(self, vh=None, pdef='d2d', wdef=None, index=None, rate=1): + """ + Return sequence of wave periods/lengths from data. + + Parameters + ---------- + vh : scalar + reference level ( default v=mean(x(:,2)) ) or + rainflow filtering height (default h=0) + pdef : string + defining type of waveperiod (wavelength) returned: + Level v separated 't2c', 'c2t', 't2t' or 'c2c' -waveperiod. + Level v 'd2d', 'u2u', 'd2u' or 'u2d' -waveperiod. + Rain flow filtered (with height greater than h) + 'm2M', 'M2m', 'm2m' or 'M2M' -waveperiod. + Explanation to the abbreviations: + M=Max, m=min, d=down-crossing, u=up-crossing , + t=trough and c=crest. + Thus 'd2d' means period between a down-crossing to the + next down-crossing and 'u2c' means period between a + u-crossing to the following crest. + wdef : string + defining type of wave. Possible options are + 'mw','Mw','dw', 'uw', 'tw', 'cw' or None. + If wdef is None all troughs and crests will be used, + otherwise only the troughs and crests which define a + wave according to the wavedefinition are used. + + index : vector + index sequence of one of the following : + -level v-crossings (indices to "du" are required to + calculate 'd2d', 'd2u', 'u2d' or 'u2u' waveperiods) + -level v separated trough and crest turningpoints + (indices to 'tc' are required to calculate + 't2t', 't2c', 'c2t' or 'c2c' waveperiods) + -level v crossings and level v separated trough and + crest turningpoints (indices to "dutc" are + required to calculate t2u, u2c, c2d or d2t + waveperiods) + -rainflow filtered turningpoints with minimum rfc height h + (indices to "mMtc" are required to calculate + 'm2m', 'm2M', 'M2m' or 'M2M' waveperiods) + + rate : scalar + interpolation rate. If rate larger than one, then x is + interpolated before extrating T + + Returns + -------- + T : vector + sequence of waveperiods (or wavelengths). + index : vector + of indices + + + Example: + -------- + >>> import wafo + >>> x = wafo.data.sea() + >>> ts = wafo.objects.mat2timeseries(x[0:400,:]) + >>> T = ts.wave_periods(vh=0.0,pdef='c2c') + + T = dat2wa(x1,0,'c2c') #% Returns crest2crest waveperiods + subplot(121), waveplot(x1,'-',1,1),subplot(122),histgrm(T) + + See also: + -------- + findtp, + findtc, + findcross, perioddef + """ + +##% This is a more flexible version than the dat2hwa or tp2wa routines. +##% There is a secret option: if pdef='all' the function returns +##% all the waveperiods 'd2t', 't2u', 'u2c' and 'c2d' in sequence. +##% It is up to the user to extract the right waveperiods. +##% If the first is a down-crossing then the first is a 'd2t' waveperiod. +##% If the first is a up-crossing then the first is a 'u2c' waveperiod. +##% +##% Example: +##% [T ind]=dat2wa(x,0,'all') %returns all waveperiods +##% nn = length(T) +##% % want to extract all t2u waveperiods +##% if x(ind(1),2)>0 % if first is down-crossing +##% Tt2u=T(2:4:nn) +##% else % first is up-crossing +##% Tt2u=T(4:4:nn) +##% end + + if rate>1: #% interpolate with spline + n = ceil(self.data.size*rate) + ti = linspace(self.args[0], self.args[-1], n) + x = stineman_interp(ti, self.args, self.data) + else: + x = self.data + ti = self.args + + + if vh is None: + if pdef[0] in ('m','M'): + vh = 0 + print(' The minimum rfc height, h, is set to: %g' % vh) + else: + vh = x.mean() + print(' The level l is set to: %g' % vh) + + + if index is None: + if pdef in ('m2m', 'm2M', 'M2m','M2M'): + index = findtp(x, vh, wdef) + elif pdef in ('u2u','u2d','d2u', 'd2d'): + index = findcross(x, vh, wdef) + elif pdef in ('t2t','t2c','c2t', 'c2c'): + index = findtc(x,vh,wdef)[0] + elif pdef in ('d2t','t2u', 'u2c', 'c2d','all'): + index, v_ind = findtc(x, vh, wdef) + index = sort(r_[index, v_ind]) #% sorting crossings and tp in sequence + else: + raise ValueError('Unknown pdef option!') + + if (x[index[0]]>x[index[1]]): #% if first is down-crossing or max + if pdef in ('d2t', 'M2m', 'c2t', 'd2u' , 'M2M', 'c2c', 'd2d', 'all'): + start = 1 + elif pdef in ('t2u', 'm2M', 't2c', 'u2d' ,'m2m', 't2t', 'u2u'): + start = 2 + elif pdef in ('u2c'): + start = 3 + elif pdef in ('c2d'): + start = 4 + else: + raise ValueError('Unknown pdef option!') + # else first is up-crossing or min + elif pdef in ('all', 'u2c', 'm2M', 't2c', 'u2d', 'm2m', 't2t', 'u2u'): + start = 0 + elif pdef in ('c2d', 'M2m', 'c2t', 'd2u', 'M2M', 'c2c', 'd2d'): + start = 1 + elif pdef in ('d2t'): + start = 2 + elif pdef in ('t2u'): + start = 3 + else: + raise ValueError('Unknown pdef option!') + + # determine the steps between wanted periods + if pdef in ('d2t', 't2u', 'u2c', 'c2d' ): + step = 4 + elif pdef in ('all'): + step = 1 #% secret option! + else: + step = 2 + + #% determine the distance between min2min, t2t etc.. + if pdef in ('m2m', 't2t', 'u2u', 'M2M', 'c2c', 'd2d'): + dist = 2 + else: + dist = 1 + + nn = len(index) + #% New call: (pab 28.06.2001) + if pdef[0] in ('u', 'd'): + t0 = ecross(ti, x, index[start:(nn-dist):step], vh) + else: # % min, Max, trough, crest or all crossings wanted + t0 = x[index[start:(nn-dist):step]] + + if pdef[2] in ('u','d'): + t1 = ecross(ti, x, index[(start+dist):nn:step], vh) + else: # % min, Max, trough, crest or all crossings wanted + t1 = x[index[(start+dist):nn:step]] + + T = t1 - t0 +## if False: #% Secret option: indices to the actual crossings used. +## index=index.ravel() +## ind = [index(start:(nn-dist):step) index((start+dist):nn:step)].' +## ind = ind(:) + + + return T, index + + #% Old call: kept just in case + #%T = x(index((start+dist):step:nn),1)-x(index(start:step:(nn-dist)),1) + + + + def reconstruct(self): + pass + def plot_wave(self, sym1='k.', ts=None, sym2='k+', nfig=None, nsub=None, + stdev=None, vfact=3): + ''' + Plots the surface elevation of timeseries. + + Parameters + ---------- + sym1, sym2 : string + plot symbol and color for data and ts, respectively + (see PLOT) (default 'k.' and 'k+') + ts : TimeSeries or TurningPoints object + to overplot data. default zero-separated troughs and crests. + nsub : scalar integer + Number of subplots in each figure. By default nsub is such that + there are about 20 mean down crossing waves in each subplot. + If nfig is not given and nsub is larger than 6 then nsub is + changed to nsub=min(6,ceil(nsub/nfig)) + nfig : scalar integer + Number of figures. By default nfig=ceil(Nsub/6). + stdev : real scalar + standard deviation of data. + vfact : real scalar + how large in stdev the vertical scale should be (default 3) + + + Example + ------- + Plot x1 with red lines and mark troughs and crests with blue circles. + >>> import wafo + >>> x = wafo.data.sea() + >>> ts150 = wafo.objects.mat2timeseries(x[:150,:]) + >>> h = ts150.plot_wave('r-', sym2='bo') + + See also + -------- + findtc, plot + ''' + # TODO: finish reconstruct + nw = 20 + tn = self.args + xn = self.data.ravel() + indmiss = isnan(xn) # indices to missing points + indg = where(1-indmiss)[0] + if ts is None: + tc_ix = findtc(xn[indg],0,'tw')[0] + xn2 = xn[tc_ix] + tn2 = tn[tc_ix] + else: + xn2 = ts.data + tn2 = ts.args + + if stdev is None: + stdev = xn[indg].std() + + if nsub is None: + nsub = int(floor(len(xn2)/(2*nw)))+1 # about Nw mdc waves in each plot + if nfig is None: + nfig = int(ceil(nsub/6)) + nsub = min(6,int(ceil(nsub/nfig))) + + n = len(xn) + Ns = int(floor(n/(nfig*nsub))) + ind = r_[0:Ns] + if all(xn>=0): + vscale = [0, 2*stdev*vfact] + else: + vscale = array([-1, 1])*vfact*stdev + + + XlblTxt = 'Time [sec]' + dT = 1 + timespan = tn[ind[-1]]-tn[ind[0]] + if abs(timespan)>18000: # more than 5 hours + dT = 1/(60*60) + XlblTxt = 'Time (hours)' + elif abs(timespan)>300:# more than 5 minutes + dT = 1/60 + XlblTxt = 'Time (minutes)' + + if np.max(abs(xn[indg]))>5*stdev: + XlblTxt = XlblTxt +' (Spurious data since max > 5 std.)' + + plot = plotbackend.plot + subplot = plotbackend.subplot + figs = [] + for iz in xrange(nfig): + figs.append(plotbackend.figure()) + plotbackend.title('Surface elevation from mean water level (MWL).') + for ix in xrange(nsub): + if nsub>1: + subplot(nsub,1,ix) + + h_scale = array([tn[ind[0]], tn[ind[-1]]]) + ind2 = where((h_scale[0]<=tn2) & (tn2<=h_scale[1]))[0] + plot(tn[ind]*dT, xn[ind], sym1) + if len(ind2)>0: + plot(tn2[ind2]*dT,xn2[ind2],sym2) + plot(h_scale*dT, [0, 0], 'k-') + #plotbackend.axis([h_scale*dT, v_scale]) + + for iy in [-2, 2]: + plot(h_scale*dT, iy*stdev*ones(2), ':') + + ind = ind + Ns + #end + plotbackend.xlabel(XlblTxt) + + return figs + + + def plot_sp_wave(self, wave_idx_, tz_idx=None, *args, **kwds): + """ + Plot specified wave(s) from timeseries + + wave_idx : integer vector + of indices to waves we want to plot, i.e., wave numbers. + tz_idx : integer vector + of indices to the beginning, middle and end of + defining wave, i.e. for zero-downcrossing waves, indices to + zerocrossings (default trough2trough wave) + + Examples + -------- + Plot waves nr. 6,7,8 and waves nr. 12,13,...,17 + >>> import wafo + >>> x = wafo.data.sea() + >>> ts = wafo.objects.mat2timeseries(x[0:500,...]) + >>> h = ts.plot_sp_wave(np.r_[6:9,12:18]) + + + See also + -------- + plot_wave, findtc + """ + wave_idx = atleast_1d(wave_idx_).flatten() + if tz_idx is None: + tc_ind, tz_idx = findtc(self.data,0,'tw') # finding trough to trough waves + + dw = nonzero(abs(diff(wave_idx))>1)[0] + Nsub = dw.size+1 + Nwp = zeros(Nsub, dtype=int) + if Nsub>1: + dw = dw + 1 + Nwp[Nsub-1] = wave_idx[-1]-wave_idx[dw[-1]]+1 + wave_idx[dw[-1]+1:] = -2 + for ix in range(Nsub-2,1,-2): + Nwp[ix] = wave_idx[dw[ix]-1] - wave_idx[dw[ix-1]]+1 # # of waves pr subplot + wave_idx[dw[ix-1]+1:dw[ix]] = -2 + + Nwp[0] = wave_idx[dw[0]-1] - wave_idx[0]+1 + wave_idx[1:dw[0]] = -2 + wave_idx = wave_idx[wave_idx>-1] + else: + Nwp[0] = wave_idx[-1]-wave_idx[0]+1 + #end + + Nsub = min(6,Nsub) + Nfig = int(ceil(Nsub/6)) + Nsub = min(6,int(ceil(Nsub/Nfig))) + figs = [] + for iy in range(Nfig): + figs.append(plotbackend.figure()) + for ix in range(Nsub): + plotbackend.subplot(Nsub,1,mod(ix,Nsub)+1) + ind = r_[tz_idx[2*wave_idx[ix]-1]:tz_idx[2*wave_idx[ix]+2*Nwp[ix]-1]] + ## indices to wave + plotbackend.plot(self.args[ind],self.data[ind],*args,**kwds) + plotbackend.hold('on') + xi = [self.args[ind[0]],self.args[ind[-1]]] + plotbackend.plot(xi,[0, 0]) + + if Nwp[ix]==1: + plotbackend.ylabel('Wave %d' % wave_idx[ix]) + else: + plotbackend.ylabel('Wave %d - %d' % (wave_idx[ix], wave_idx[ix]+Nwp[ix]-1)) + + plotbackend.xlabel('Time [sec]') + #wafostamp + return figs + +def sensortypeid(*sensortypes): + ''' Return ID for sensortype name + + Parameter + --------- + sensortypes : list of strings defining the sensortype + + Returns + ------- + sensorids : list of integers defining the sensortype + + Valid senor-ids and -types for time series are as follows: + 0, 'n' : Surface elevation (n=Eta) + 1, 'n_t' : Vertical surface velocity + 2, 'n_tt' : Vertical surface acceleration + 3, 'n_x' : Surface slope in x-direction + 4, 'n_y' : Surface slope in y-direction + 5, 'n_xx' : Surface curvature in x-direction + 6, 'n_yy' : Surface curvature in y-direction + 7, 'n_xy' : Surface curvature in xy-direction + 8, 'P' : Pressure fluctuation about static MWL pressure + 9, 'U' : Water particle velocity in x-direction + 10, 'V' : Water particle velocity in y-direction + 11, 'W' : Water particle velocity in z-direction + 12, 'U_t' : Water particle acceleration in x-direction + 13, 'V_t' : Water particle acceleration in y-direction + 14, 'W_t' : Water particle acceleration in z-direction + 15, 'X_p' : Water particle displacement in x-direction from its mean position + 16, 'Y_p' : Water particle displacement in y-direction from its mean position + 17, 'Z_p' : Water particle displacement in z-direction from its mean position + + Example: + >>> sensortypeid('W','v') + [11, 10] + >>> sensortypeid('rubbish') + [1.#QNAN] + + See also + -------- + sensortype + ''' + + sensorid_table = dict(n=0, n_t=1, n_tt=2, n_x=3, n_y=4, n_xx=5, + n_yy=6, n_xy=7, p=8, u=9, v=10, w=11, u_t=12, + v_t=13, w_t=14, x_p=15, y_p=16, z_p=17) + try: + return [sensorid_table.get(name.lower(), nan) for name in sensortypes] + except: + raise ValueError('Input must be a string!') + + + +def sensortype(*sensorids): + ''' + Return sensortype name + + Parameter + --------- + sensorids : vector or list of integers defining the sensortype + + Returns + ------- + sensornames : tuple of strings defining the sensortype + Valid senor-ids and -types for time series are as follows: + 0, 'n' : Surface elevation (n=Eta) + 1, 'n_t' : Vertical surface velocity + 2, 'n_tt' : Vertical surface acceleration + 3, 'n_x' : Surface slope in x-direction + 4, 'n_y' : Surface slope in y-direction + 5, 'n_xx' : Surface curvature in x-direction + 6, 'n_yy' : Surface curvature in y-direction + 7, 'n_xy' : Surface curvature in xy-direction + 8, 'P' : Pressure fluctuation about static MWL pressure + 9, 'U' : Water particle velocity in x-direction + 10, 'V' : Water particle velocity in y-direction + 11, 'W' : Water particle velocity in z-direction + 12, 'U_t' : Water particle acceleration in x-direction + 13, 'V_t' : Water particle acceleration in y-direction + 14, 'W_t' : Water particle acceleration in z-direction + 15, 'X_p' : Water particle displacement in x-direction from its mean position + 16, 'Y_p' : Water particle displacement in y-direction from its mean position + 17, 'Z_p' : Water particle displacement in z-direction from its mean position + + Example: + >>> sensortype(range(3)) + ('n', 'n_t', 'n_tt') + + See also + -------- + sensortypeid, tran + ''' + valid_names = ('n', 'n_t', 'n_tt', 'n_x', 'n_y', 'n_xx', 'n_yy', 'n_xy', + 'p', 'u', 'v', 'w', 'u_t', 'v_t', 'w_t', 'x_p', 'y_p', 'z_p', + nan) + ids = atleast_1d(*sensorids) + if isinstance(ids, list): + ids = hstack(ids) + n = len(valid_names) - 1 + ids = where(((ids<0) | (n>> p = np.poly1d([1,1,1]) + >>> P = np.polyint(p) + >>> P + poly1d([ 0.33333333, 0.5 , 1. , 0. ]) + >>> np.polyder(P) == p + True + + The integration constants default to zero, but can be specified: + + >>> P = np.polyint(p, 3) + >>> P(0) + 0.0 + >>> np.polyder(P)(0) + 0.0 + >>> np.polyder(P, 2)(0) + 0.0 + >>> P = np.polyint(p, 3, k=[6,5,3]) + >>> P + poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) + + Note that 3 = 6 / 2!, and that the constants are given in the order of + integrations. Constant of the highest-order polynomial term comes first: + + >>> np.polyder(P, 2)(0) + 6.0 + >>> np.polyder(P, 1)(0) + 5.0 + >>> P(0) + 3.0 + + """ + m = int(m) + if m < 0: + raise ValueError, "Order of integral must be positive (see polyder)" + if k is None: + k = zeros(m, float) + k = atleast_1d(k) + if len(k) == 1 and m > 1: + k = k[0] * ones(m, float) + if len(k) < m: + raise ValueError, \ + "k must be a scalar or a rank-1 array of length 1 or >m." + truepoly = isinstance(p, poly1d) + p = asarray(p) + if m == 0: + if truepoly: + return poly1d(p) + return p + else: + ix = arange(len(p), 0, -1) + if p.ndim > 1: + ix = ix[..., newaxis] + pieces = p.shape[-1] + k0 = k[0] * ones((1, pieces), dtype=int) + else: + k0 = [k[0]] + y = np.concatenate((p.__truediv__(ix), k0), axis=0) + + val = polyint(y, m - 1, k=k[1:]) + if truepoly: + return poly1d(val) + return val + +def polyder(p, m=1): + """ + Return the derivative of the specified order of a polynomial. + + Parameters + ---------- + p : poly1d or sequence + Polynomial to differentiate. + A sequence is interpreted as polynomial coefficients, see `poly1d`. + m : int, optional + Order of differentiation (default: 1) + + Returns + ------- + der : poly1d + A new polynomial representing the derivative. + + See Also + -------- + polyint : Anti-derivative of a polynomial. + poly1d : Class for one-dimensional polynomials. + + Examples + -------- + The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: + + >>> p = np.poly1d([1,1,1,1]) + >>> p2 = np.polyder(p) + >>> p2 + poly1d([3, 2, 1]) + + which evaluates to: + + >>> p2(2.) + 17.0 + + We can verify this, approximating the derivative with + ``(f(x + h) - f(x))/h``: + + >>> (p(2. + 0.001) - p(2.)) / 0.001 + 17.007000999997857 + + The fourth-order derivative of a 3rd-order polynomial is zero: + + >>> np.polyder(p, 2) + poly1d([6, 2]) + >>> np.polyder(p, 3) + poly1d([6]) + >>> np.polyder(p, 4) + poly1d([ 0.]) + + """ + m = int(m) + if m < 0: + raise ValueError, "Order of derivative must be positive (see polyint)" + truepoly = isinstance(p, poly1d) + p = asarray(p) + if m == 0: + if truepoly: + return poly1d(p) + return p + else: + n = len(p) - 1 + ix = arange(n, 0, -1) + if p.ndim > 1: + ix = ix[..., newaxis] + y = ix * p[:-1] + val = polyder(y, m - 1) + if truepoly: + return poly1d(val) + return val + +def polyreloc(p, x, y=0.0): + """ + Relocate polynomial + + The polynomial `p` is relocated by "moving" it `x` + units along the x-axis and `y` units along the y-axis. + So the polynomial `r` is relative to the point (x,y) as + the polynomial `p` is relative to the point (0,0). + + Parameters + ---------- + p : array-like, poly1d + vector or matrix of column vectors of polynomial coefficients to relocate. + (Polynomial coefficients are in decreasing order.) + x : scalar + distance to relocate P along x-axis + y : scalar + distance to relocate P along y-axis (default 0) + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of relocated polynomial coefficients. + + See also + -------- + polyrescl + + Example + ------- + >>> import numpy as np + >>> p = np.arange(6); p.shape = (2,-1) + >>> np.polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(p,1) + array([3, 5, 7]) + >>> r = polyreloc(p,-1) # move to the left along x-axis + >>> np.polyval(r,-1) # = polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(r,0) # = polyval(p,1) + array([3, 5, 7]) + """ + + truepoly = isinstance(p, poly1d) + r = atleast_1d(p).copy() + n = r.shape[0] + + # Relocate polynomial using Horner's algorithm + for ii in range(n, 1, -1): + for i in range(1, ii): + r[i] = r[i] - x * r[i - 1] + r[-1] = r[-1] + y + if r.ndim > 1 and r.shape[-1] == 1: + r.shape = (r.size,) + if truepoly: + r = poly1d(r) + return r + +def polyrescl(p, x, y=1.0): + """ + Rescale polynomial. + + Parameters + ---------- + p : array-like, poly1d + vector or matrix of column vectors of polynomial coefficients to rescale. + (Polynomial coefficients are in decreasing order.) + x,y : scalars + defining the factors to rescale the polynomial `p` in + x-direction and y-direction, respectively. + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of rescaled polynomial coefficients. + + See also + -------- + polyreloc + + Example + ------- + >>> import numpy as np + >>> p = np.arange(6); p.shape = (2,-1) + >>> np.polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(p,1) + array([3, 5, 7]) + >>> r = polyrescl(p,2) # scale by 2 along x-axis + >>> np.polyval(r,0) # = polyval(p,0) + array([ 3., 4., 5.]) + >>> np.polyval(r,2) # = polyval(p,1) + array([ 3., 5., 7.]) + """ + + truepoly = isinstance(p, poly1d) + r = atleast_1d(p) + n = r.shape[0] + + xscale = (float(x) ** arange(1 - n , 1)) + if r.ndim == 1: + q = y * r * xscale + else: + q = y * r * xscale[:, newaxis] + if truepoly: + q = poly1d(q) + return q + +def polytrim(p): + """ + Trim polynomial by stripping off leading zeros. + + Parameters + ---------- + p : array-like, poly1d + vector or matrix of column vectors of polynomial coefficients in + decreasing order. + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of trimmed polynomial coefficients. + + Example + ------- + >>> p = [0,1,2] + >>> polytrim(p) + array([1, 2]) + >>> p1 = [[0,0],[1,2],[3,4]] + >>> polytrim(p1) + array([[1, 2], + [3, 4]]) + """ + + truepoly = isinstance(p, poly1d) + if truepoly: + return p + else: + r = atleast_1d(p).copy() + # Remove leading zeros + is_not_lead_zeros = logical_or.accumulate(r != 0, axis=0) + if r.ndim == 1: + r = r[is_not_lead_zeros] + else: + is_not_lead_zeros = any(is_not_lead_zeros, axis=1) + r = r[is_not_lead_zeros, :] + return r + +def poly2hstr(p, variable='x'): + """ + Return polynomial as a Horner represented string. + + Parameters + ---------- + p : array-like poly1d + vector of polynomial coefficients in decreasing order. + variable : string + display character for variable + + Returns + ------- + p_str : string + consisting of the polynomial coefficients in the vector P multiplied + by powers of the given `variable`. + + Examples + -------- + >>> poly2hstr([1, 1, 2], 's' ) + '(s + 1)*s + 2' + + See also + -------- + poly2str + """ + var = variable + + coefs = polytrim(atleast_1d(p)) + order = len(coefs) - 1 # Order of polynomial. + s = '' # Initialize output string. + ix = 1; + for expon in range(order, -1, -1): + coef = coefs[order - expon] + #% There is no point in adding a zero term (except if it's the only + #% term, but we'll take care of that later). + if coef == 0: + ix += 1 + else: + #% Append exponent if necessary. + if ix > 1: + exponstr = '%.0f' % ix + s = '%s**%s' % (s, exponstr); + ix = 1 + #% Is it the first term? + isfirst = s == '' + + # We need the coefficient only if it is different from 1 or -1 or + # when it is the constant term. + needcoef = ((abs(coef) != 1) | (expon == 0) & isfirst) | 1 - isfirst + + # We need the variable except in the constant term. + needvar = (expon != 0) + + #% Add sign, but we don't need a leading plus-sign. + if isfirst: + if coef < 0: + s = '-' # % Unary minus. + else: + if coef < 0: + s = '%s - ' % s # % Binary minus (subtraction). + else: + s = '%s + ' % s # % Binary plus (addition). + + + #% Append the coefficient if it is different from one or when it is + #% the constant term. + if needcoef: + coefstr = '%.20g' % abs(coef) + s = '%s%s' % (s, coefstr) + + #% Append variable if necessary. + if needvar: + #% Append a multiplication sign if necessary. + if needcoef: + if 1 - isfirst: + s = '(%s)' % s + s = '%s*' % s + s = '%s%s' % (s, var) + + #% Now treat the special case where the polynomial is zero. + if s == '': + s = '0' + return s + +def poly2str(p, variable='x'): + """ + Return polynomial as a string. + + Parameters + ---------- + p : array-like poly1d + vector of polynomial coefficients in decreasing order. + variable : string + display character for variable + + Returns + ------- + p_str : string + consisting of the polynomial coefficients in the vector P multiplied + by powers of the given `variable`. + + See also + -------- + poly2hstr + + Examples + -------- + >>> poly2str([1, 1, 2], 's' ) + 's**2 + s + 2' + """ + thestr = "0" + var = variable + + # Remove leading zeros + coeffs = polytrim(atleast_1d(p)) + + N = len(coeffs) - 1 + + for k in range(len(coeffs)): + coefstr = '%.4g' % abs(coeffs[k]) + if coefstr[-4:] == '0000': + coefstr = coefstr[:-5] + power = (N - k) + if power == 0: + if coefstr != '0': + newstr = '%s' % (coefstr,) + else: + if k == 0: + newstr = '0' + else: + newstr = '' + elif power == 1: + if coefstr == '0': + newstr = '' + elif coefstr == 'b' or coefstr == '1': + newstr = var + else: + newstr = '%s*%s' % (coefstr, var) + else: + if coefstr == '0': + newstr = '' + elif coefstr == 'b' or coefstr == '1': + newstr = '%s**%d' % (var, power,) + else: + newstr = '%s*%s**%d' % (coefstr, var, power) + + if k > 0: + if newstr != '': + if coeffs[k] < 0: + thestr = "%s - %s" % (thestr, newstr) + else: + thestr = "%s + %s" % (thestr, newstr) + elif (k == 0) and (newstr != '') and (coeffs[k] < 0): + thestr = "-%s" % (newstr,) + else: + thestr = newstr + return thestr + +def polyshift(py, a= -1, b=1): + """ + Polynomial coefficient shift + + Polyshift shift the polynomial coefficients by a variable shift: + + Y = 2*(X-.5*(b+a))/(b-a) + + i.e., the interval -1 <= Y <= 1 is mapped to the interval a <= X <= b + + Parameters + ---------- + py : array-like + polynomial coefficients for the variable y. + a,b : scalars + lower and upper limit. + + Returns + ------- + px : ndarray + polynomial coefficients for the variable x. + + See also + -------- + polyishift + + Example + ------- + >>> py = [1, 0] + >>> px = polyshift(py,0,5) + >>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below + array([-1., 0., 1.]) + >>> polyval(py,[-1, 0, 1 ]) + array([-1, 0, 1]) + """ + + if (a == -1) & (b == 1): + return py + L = b - a + return polyishift(py, -(2. + b + a) / L, (2. - b - a) / L) + +def polyishift(px, a= -1, b=1): + """ + Inverse polynomial coefficient shift + + Polyishift does the inverse of Polyshift, + shift the polynomial coefficients by a variable shift: + + Y = 2*(X-.5*(b+a)/(b-a) + + i.e., the interval a <= X <= b is mapped to the interval -1 <= Y <= 1 + + Parameters + ---------- + px : array-like + polynomial coefficients for the variable x. + a,b : scalars + lower and upper limit. + + Returns + ------- + py : ndarray + polynomial coefficients for the variable y. + + See also + -------- + polyishift + + Example + ------- + >>> px = [1, 0] + >>> py = polyishift(px,0,5); + >>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below + array([ 0. , 2.5, 5. ]) + >>> polyval(py,[-1, 0, 1]) + array([ 0. , 2.5, 5. ]) + """ + if (a == -1) & (b == 1): + return px + L = b - a + xscale = 2. / L + xloc = -float(a + b) / L + return polyreloc(polyrescl(px, xscale), xloc) + +def map_from_interval(x, a, b) : + """F(x), where F: [a,b] -> [-1,1].""" + return (x - (b + a) / 2.0) * (2.0 / (b - a)) + +def map_to_interval(x, a, b) : + """F(x), where F: [-1,1] -> [a,b].""" + return (x * (b - a) + (b + a)) / 2.0 + +def poly2cheb(p, a= -1, b=1): + """ + Convert polynomial coefficients into Chebyshev coefficients + + Parameters + ---------- + p : array-like + polynomial coefficients + a,b : real scalars + lower and upper limits (Default -1,1) + + Returns + ------- + ck : ndarray + Chebychef coefficients + + POLY2CHEB do the inverse of CHEB2POLY: given a vector of polynomial + coefficients AK, returns an equivalent vector of Chebyshev + coefficients CK. + + This is useful for economization of power series. + The steps for doing so: + 1. Convert polynomial coefficients to Chebychev coefficients, CK. + 2. Truncate the CK series to a smaller number of terms, using the + coefficient of the first neglected Chebychev polynomial as an error + estimate. + 3 Convert back to a polynomial by CHEB2POLY + + See also + -------- + cheb2poly + chebval + chebfit + + Examples + -------- + >>> import numpy as np + >>> p = np.arange(5) + >>> ck = poly2cheb(p) + >>> cheb2poly(ck) + array([ 1., 2., 3., 4.]) + + Reference + --------- + William H. Press, Saul Teukolsky, + William T. Wetterling and Brian P. Flannery (1997) + "Numerical recipes in Fortran 77", Vol. 1, pp 184-194 + """ + f = poly1d(p) + n = len(f.coeffs) + return chebfit(f, n, a, b) + +def cheb2poly(ck, a= -1, b=1): + """ + Converts Chebyshev coefficients to polynomial coefficients + + Parameters + ---------- + ck : array-like + Chebychef coefficients + a,b : real, scalars + lower and upper limits (Default -1,1) + + Returns + ------- + p : ndarray + polynomial coefficients + + It is not advised to do this for len(ck)>10 due to numerical cancellations. + + See also + -------- + chebval + chebfit + + Examples + -------- + >>> import numpy as np + >>> p = np.arange(5) + >>> ck = poly2cheb(p) + >>> cheb2poly(ck) + array([ 1., 2., 3., 4.]) + + + References + ---------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + http://en.wikipedia.org/wiki/Chebyshev_form + http://en.wikipedia.org/wiki/Clenshaw_algorithm + """ + + n = len(ck) + + b_Nmi = zeros(1) + b_Nmip1 = zeros(1) + y = r_[2 / (b - a), -(a + b) / (b - a)] + y2 = 2. * y + + # Clenshaw recurence + for ix in xrange(n - 1): + tmp = b_Nmi + b_Nmi = polymul(y2, b_Nmi) # polynomial multiplication + nb = len(b_Nmip1) + b_Nmip1[-1] = b_Nmip1[-1] - ck[ix] + b_Nmi[-nb::] = b_Nmi[-nb::] - b_Nmip1 + b_Nmip1 = tmp + + p = polymul(y, b_Nmi) # polynomial multiplication + nb = len(b_Nmip1) + b_Nmip1[-1] = b_Nmip1[-1] - ck[n - 1] + p[-nb::] = p[-nb::] - b_Nmip1 + return polytrim(p) + +def chebextr(n): + """ + Return roots of derivative of Chebychev polynomial of the first kind. + + All local extreme values of the polynomial are either -1 or 1. So, + CHEBPOLY( N, CHEBEXTR(N) ) ) return the same as (-1).^(N:-1:0) + except for the numerical noise in the former. + + Because the extreme values of Chebychev polynomials of the first + kind are either -1 or 1, their roots are often used as starting + values for the nodes in minimax approximations. + + + Parameters + ---------- + n : scalar, integer + degree of Chebychev polynomial. + + Examples + -------- + >>> x = chebextr(4) + >>> chebpoly(4,x) + array([ 1., -1., 1., -1., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + return - cos((pi * arange(n + 1)) / n); + +def chebroot(n, kind=1): + """ + Return roots of Chebychev polynomial of the first or second kind. + + The roots of the Chebychev polynomial of the first kind form a particularly + good set of nodes for polynomial interpolation because the resulting + interpolation polynomial minimizes the problem of Runge's phenomenon. + + Parameters + ---------- + n : scalar, integer + degree of Chebychev polynomial. + kind: 1 or 2, optional + kind of Chebychev polynomial (default 1) + + Examples + -------- + >>> import numpy as np + >>> x = chebroot(3) + >>> np.abs(chebpoly(3,x))<1e-15 + array([ True, True, True], dtype=bool) + >>> chebpoly(3) + array([ 4., 0., -3., 0.]) + >>> x2 = chebroot(4,kind=2) + >>> np.abs(chebpoly(4,x2,kind=2))<1e-15 + array([ True, True, True, True], dtype=bool) + >>> chebpoly(4,kind=2) + array([ 16., 0., -12., 0., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + if kind not in (1, 2): + raise ValueError('kind must be 1 or 2') + return - cos(pi * (arange(n) + 0.5 * kind) / (n + kind - 1)); + + +def chebpoly(n, x=None, kind=1): + """ + Return Chebyshev polynomial of the first or second kind. + + These polynomials are orthogonal on the interval [-1,1], with + respect to the weight function w(x) = (1-x^2)^(-1/2+kind-1). + + chebpoly(n) returns the coefficients of the Chebychev polynomial of degree N. + chebpoly(n,x) returns the Chebychev polynomial of degree N evaluated in X. + + Parameters + ---------- + n : integer, scalar + degree of Chebychev polynomial. + x : array-like, optional + evaluation points + kind: 1 or 2, optional + kind of Chebychev polynomial (default 1) + + Returns + ------- + p : ndarray + polynomial coefficients if x is None. + Chebyshev polynomial evaluated at x otherwise + + Examples + -------- + >>> import numpy as np + >>> x = chebroot(3) + >>> np.abs(chebpoly(3,x))<1e-15 + array([ True, True, True], dtype=bool) + >>> chebpoly(3) + array([ 4., 0., -3., 0.]) + >>> x2 = chebroot(4,kind=2) + >>> np.abs(chebpoly(4,x2,kind=2))<1e-15 + array([ True, True, True, True], dtype=bool) + >>> chebpoly(4,kind=2) + array([ 16., 0., -12., 0., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + if x is None: # Calculate coefficients. + if n == 0: + p = ones(1) + else: + p = round(pow(2, n - 2 + kind) * poly(chebroot(n, kind=kind))) + p[1::2] = 0; + return p + else: # Evaluate polynomial in chebychev form + ck = zeros(n + 1) + ck[0] = 1. + return _chebval(atleast_1d(x), ck, kind=kind) + +def chebfit(fun, n=10, a= -1, b=1, trace=False): + """ + Computes the Chebyshevs coefficients + + so that f(x) can be approximated by: + + n-1 + f(x) = sum ck*Tk(x) + k=0 + + where Tk is the k'th Chebyshev polynomial of the first kind. + + Parameters + ---------- + fun : callable + function to approximate + n : integer, scalar, optional + number of base points (abscissas). Default n=10 (maximum 50) + a,b : real, scalars, optional + integration limits + + Returns + ------- + ck : ndarray + polynomial coefficients in Chebychev form. + + Examples + -------- + Fit exp(x) + + >>> import pylab as pb + >>> a = 0; b = 2 + >>> ck = chebfit(pb.exp,7,a,b); + >>> x = pb.linspace(0,4); + >>> h=pb.plot(x,pb.exp(x),'r',x,chebval(x,ck,a,b),'g.') + >>> x1 = chebroot(9)*(b-a)/2+(b+a)/2 + >>> ck1 = chebfit(pb.exp(x1)) + >>> h=pb.plot(x,pb.exp(x),'r',x,chebval(x,ck1,a,b),'g.') + + >>> pb.close() + + See also + -------- + chebval + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://mathworld.wolfram.com/ChebyshevApproximationFormula.html + + W. Fraser (1965) + "A Survey of Methods of Computing Minimax and Near-Minimax Polynomial + Approximations for Functions of a Single Independent Variable" + Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314 + """ + + if (n > 50): + warnings.warn('CHEBFIT should only be used for n<50') + + if hasattr(fun, '__call__'): + x = map_to_interval(chebroot(n), a, b) + f = fun(x); + if trace: + plb.plot(x, f, '+') + else: + f = fun + n = len(f) + #raise ValueError('Function must be callable!') + # N-1 + # c(k) = (2/N) sum w(n) f(n)*cos(pi*k*(2n+1)/(2N)), 0 <= k < N. + # n=0 + # + # w(0) = 0.5, w(n)=1 for n>0 + ck = dct(f[::-1]) / n + ck[0] = ck[0] / 2. + return ck[::-1] + +def dct(x, n=None): + """ + Discrete Cosine Transform + + N-1 + y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N. + n=0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + + x = atleast_1d(x) + + if n is None: + n = x.shape[-1] + + if x.shape[-1] < n: + n_shape = x.shape[:-1] + (n - x.shape[-1],) + xx = hstack((x, zeros(n_shape))) + else: + xx = x[..., :n] + + real_x = all(isreal(xx)) + if (real_x and (remainder(n, 2) == 0)): + xp = 2 * fft(hstack((xx[..., ::2], xx[..., ::-2]))) + else: + xp = fft(hstack((xx, xx[..., ::-1]))) + xp = xp[..., :n] + + w = exp(-1j * arange(n) * pi / (2 * n)) + + y = xp * w + + if real_x: + return y.real + else: + return y + +def idct(x, n=None): + """ + Inverse Discrete Cosine Transform + + N-1 + x[k] = 1/N sum w[n]*y[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N. + n=0 + + w(0) = 1/2 + w(n) = 1 for n>0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + + + x = atleast_1d(x) + + if n is None: + n = x.shape[-1] + + w = exp(1j * arange(n) * pi / (2 * n)) + + if x.shape[-1] < n: + n_shape = x.shape[:-1] + (n - x.shape[-1],) + xx = hstack((x, zeros(n_shape))) * w + else: + xx = x[..., :n] * w + + real_x = all(isreal(x)) + if (real_x and (remainder(n, 2) == 0)): + xx[..., 0] = xx[..., 0] * 0.5 + yp = ifft(xx) + y = zeros(xx.shape, dtype=complex) + y[..., ::2] = yp[..., :n / 2] + y[..., ::-2] = yp[..., n / 2::] + else: + yp = ifft(hstack((xx, zeros_like(xx[..., 0]), conj(xx[..., :0:-1])))) + y = yp[..., :n] + + if real_x: + return y.real + else: + return y + +def _chebval(x, ck, kind=1): + """ + Evaluate polynomial in Chebyshev form. + + A polynomial of degree N in Chebyshev form is a polynomial p(x) of the form: + + N + p(x) = sum ck*Tk(x) + k=0 + or + N + p(x) = sum ck*Uk(x) + k=0 + + where Tk and Uk are the k'th Chebyshev polynomial of the first and second + kind, respectively. + + References + ---------- + http://en.wikipedia.org/wiki/Clenshaw_algorithm + http://mathworld.wolfram.com/ClenshawRecurrenceFormula.html + """ + n = len(ck) + b_Nmi = zeros(x.shape) # b_(N-i) + b_Nmip1 = b_Nmi.copy() # b_(N-i+1) + x2 = 2 * x + # Clenshaw reccurence + for ix in xrange(n - 1): + tmp = b_Nmi + b_Nmi = x2 * b_Nmi - b_Nmip1 + ck[ix] + b_Nmip1 = tmp + return kind * x * b_Nmi - b_Nmip1 + ck[n - 1] + + +def chebval(x, ck, a= -1, b=1, kind=1, fill=None): + """ + Evaluate polynomial in Chebyshev form at X + + A polynomial of degree N in Chebyshev form is a polynomial p(x) of the form: + + N + p(x) = sum ck*Tk(x) + k=0 + + where Tk is the k'th Chebyshev polynomial of the first or second kind. + + Paramaters + ---------- + x : array-like + points to evaluate + ck : array-like + polynomial coefficients in Chebyshev form ordered from highest degree to zero + a,b : real, scalars, optional + limits for polynomial (Default -1,1) + kind: 1 or 2, optional + kind of Chebychev polynomial (default 1) + fill : scalar, optional + If provided, define value to return for `x < a` or `b < x`. + + Examples + -------- + Plot Chebychev polynomial of the first kind and order 4: + >>> import pylab as pb + >>> x = pb.linspace(-1,1) + >>> ck = pb.zeros(5); ck[-1]=1 + >>> h = pb.plot(x,chebval(x,ck),x,chebpoly(4,x),'.') + >>> pb.close() + + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4); + >>> h=pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x)) + >>> pb.close() + + See also + -------- + chebfit + + References + ---------- + http://en.wikipedia.org/wiki/Clenshaw_algorithm + http://mathworld.wolfram.com/ClenshawRecurrenceFormula.html + """ + + y = map_from_interval(atleast_1d(x), a, b) + if fill is None: + f = _chebval(y, ck, kind=kind) + else: + cond = (abs(y) <= 1) + f = where(cond, 0, fill) + if any(cond): + yk = extract(cond, y) + f[cond] = _chebval(yk, ck, kind=kind) + return f + + +def chebder(ck, a= -1, b=1): + """ + Differentiate Chebyshev polynomial + + Parameters + ---------- + ck : array-like + polynomial coefficients in Chebyshev form of function to differentiate + a,b : real, scalars + limits for polynomial(Default -1,1) + + Return + ------ + cder : ndarray + polynomial coefficients in Chebyshev form of the derivative + + Examples + -------- + + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4) + >>> ck2 = chebder(ck,0,2); + >>> h = pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x),'r') + >>> pb.close() + + See also + -------- + chebint + chebfit + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + + W. Fraser (1965) + "A Survey of Methods of Computing Minimax and Near-Minimax Polynomial + Approximations for Functions of a Single Independent Variable" + Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314 + """ + + n = len(ck) - 1 + cder = zeros(n, dtype=asarray(ck).dtype) + cder[0] = 2 * n * ck[0] + cder[1] = 2 * (n - 1) * ck[1] + for j in xrange(2, n): + cder[j] = cder[j - 2] + 2 * (n - j) * ck[j] + + return cder * 2. / (b - a) # Normalize to the interval b-a. + +def chebint(ck, a= -1, b=1): + """ + Integrate Chebyshev polynomial + + Parameters + ---------- + ck : array-like + polynomial coefficients in Chebyshev form of function to integrate. + a,b : real, scalars + limits for polynomial(Default -1,1) + + Return + ------ + cint : ndarray + polynomial coefficients in Chebyshev form of the integrated function + + Examples + -------- + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4) + >>> ck2 = chebint(ck,0,2); + >>> h=pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x),'r.') + >>> pb.close() + + See also + -------- + chebder + chebfit + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + + W. Fraser (1965) + "A Survey of Methods of Computing Minimax and Near-Minimax Polynomial + Approximations for Functions of a Single Independent Variable" + Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314 + """ + +# int T0(x) = T1(x)+1 +# int T1(x) = 0.5*(T2(x)/2-T0/2) +# int Tn(x) dx = 0.5*{Tn+1(x)/(n+1) - Tn-1(x)/(n-1)} +# N +# p(x) = sum cn*Tn(x) +# n=0 + +# int p(x) dx = sum cn * int(Tn(x)dx) = 0.5*sum cn *{Tn+1(x)/(n+1) - Tn-1(x)/(n-1)} +# = 0.5 sum (cn-1-cn+1)*Tn/n n>0 + + n = len(ck) + + cint = zeros(n) + con = 0.25 * (b - a) + + dif1 = diff(ck[-1::-2]) + ix1 = r_[1:n - 1:2] + cint[ix1] = -(con * dif1) / ix1 + if n > 3: + dif2 = diff(ck[-2::-2]) + ix2 = r_[2:n - 1:2] + cint[ix2] = -(con * dif2) / ix2 + cint = cint[::-1] + #% cint(n) is a special case + cint[-1] = (con * ck[n - 2]) / (n - 1) + cint[0] = 2 * np.sum((-1) ** r_[0:n - 1] * cint[-2::-1]) # Set integration constant + return cint + +class Cheb1d(object): + coeffs = None + order = None + a = None + b = None + kind = None + def __init__(self, ck, a= -1, b=1, kind=1): + if isinstance(ck, Cheb1d): + for key in ck.__dict__.keys(): + self.__dict__[key] = ck.__dict__[key] + return + cki = trim_zeros(atleast_1d(ck), 'b') + if len(cki.shape) > 1: + raise ValueError, "Polynomial must be 1d only." + self.__dict__['coeffs'] = cki + self.__dict__['order'] = len(cki) - 1 + self.__dict__['a'] = a + self.__dict__['b'] = b + self.__dict__['kind'] = kind + + + def __call__(self, x): + return chebval(x, self.coeffs, self.a, self.b, self.kind) + + def __array__(self, t=None): + if t: + return asarray(self.coeffs, t) + else: + return asarray(self.coeffs) + + def __repr__(self): + vals = repr(self.coeffs) + vals = vals[6:-1] + return "Cheb1d(%s)" % vals + + def __len__(self): + return self.order + + def __str__(self): + pass + def __neg__(self): + new = Cheb1d(self) + new.coeffs = -self.coeffs + return new + + def __pos__(self): + return self + + + def __add__(self, other): + other = Cheb1d(other) + new = Cheb1d(self) + new.coeffs = polyadd(self.coeffs, other.coeffs) + return new + + def __radd__(self, other): + return self.__add__(other) + + def __sub__(self, other): + other = Cheb1d(other) + new = Cheb1d(self) + new.coeffs = polysub(self.coeffs, other.coeffs) + return new + + def __rsub__(self, other): + other = Cheb1d(other) + new = Cheb1d(self) + new.coeffs = polysub(other.coeffs, new.coeffs) + return new + + def __eq__(self, other): + other = Cheb1d(other) + return (all(self.coeffs == other.coeffs) and (self.a == other.a) + and (self.b == other.b) and (self.kind == other.kind)) + + def __ne__(self, other): + return any(self.coeffs != other.coeffs) or (self.a != other.a) or (self.b != other.b) or (self.kind != other.kind) + + def __setattr__(self, key, val): + raise ValueError, "Attributes cannot be changed this way." + + def __getattr__(self, key): + if key in ['c', 'coef', 'coefficients']: + return self.coeffs + elif key in ['o']: + return self.order + elif key in ['a']: + return self.a + elif key in ['b']: + return self.b + elif key in ['k']: + return self.kind + else: + try: + return self.__dict__[key] + except KeyError: + raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) + def __getitem__(self, val): + if val > self.order: + return 0 + if val < 0: + return 0 + return self.coeffs[val] + + def __setitem__(self, key, val): + #ind = self.order - key + if key < 0: + raise ValueError, "Does not support negative powers." + if key > self.order: + zr = zeros(key - self.order, self.coeffs.dtype) + self.__dict__['coeffs'] = concatenate((self.coeffs, zr)) + self.__dict__['order'] = key + self.__dict__['coeffs'][key] = val + return + + def __iter__(self): + return iter(self.coeffs) + + def integ(self, m=1): + """ + Return an antiderivative (indefinite integral) of this polynomial. + + Refer to `chebint` for full documentation. + + See Also + -------- + chebint : equivalent function + + """ + integ = Cheb1d(self) + integ.coeffs = chebint(self.coeffs, self.a, self.b) + return integ + + def deriv(self, m=1): + """ + Return a derivative of this polynomial. + + Refer to `chebder` for full documentation. + + See Also + -------- + chebder : equivalent function + + """ + der = Cheb1d(self) + der.coeffs = chebder(self.coeffs, self.a, self.b) + return der + +def padefit(c, m=None): + """ + Rational polynomial fitting from polynomial coefficients + + Parameters + ---------- + c : array-like + coefficients of power series expansion from highest degree to zero. + m : scalar integer + order of denominator polynomial. (Default floor((len(c)-1)/2)) + + Returns + ------- + num, den : poly1d + numerator and denominator polynomials for the pade approximation + + If the function is well approximated by + M+N+1 + f(x) = sum c(2*n+2-k)*x^k + k=0 + + then the pade approximation is given by + M + sum c1(n-k+1)*x^k + k=0 + f(x) = ------------------------ + N + sum c2(n-k+1)*x^k + k=0 + + Note: c must be ordered for direct use with polyval + + Example + ------- + Pade approximation to exp(x) + >>> import scipy.special as sp + >>> import pylab as plb + >>> c = poly1d(1./sp.gamma(plb.r_[6+1:0:-1])) #polynomial coeff exponential function + >>> [p, q] = padefit(c) + >>> p; q + poly1d([ 0.00277778, 0.03333333, 0.2 , 0.66666667, 1. ]) + poly1d([ 0.03333333, -0.33333333, 1. ]) + + >>> x = plb.linspace(0,4); + >>> h = plb.plot(x,c(x),x,p(x)/q(x),'g-', x,plb.exp(x),'r.') + >>> plb.close() + + See also + -------- + scipy.misc.pade + + """ + if not m: + m = int(floor((len(c) - 1) * 0.5)) + c = asarray(c) + return pade(c[::-1], m) + +def test_pade(): + cof = array(([1.0, 1.0, 1.0 / 2, 1. / 6, 1. / 24])) + p, q = pade(cof, 2) + t = arange(0, 2, 0.1) + assert(all(abs(p(t) / q(t) - exp(t)) < 0.3)) + +def padefitlsq(fun, m, k, a= -1, b=1, trace=False, x=None, end_points=True): + """ + Rational polynomial fitting. A minimax solution by least squares. + + Parameters + ---------- + fun : callable or or a two column matrix + f=[x,f(x)] where length(x)>(m+k+1)*8. + m, k : integer + number of coefficients of the numerator and denominater, respectively. + a, b : real scalars + evaluation limits, (default a=-1,b=1) + + Returns + ------- + num, den : poly1d + numerator and denominator polynomials for the pade approximation + dev : ndarray + maximum absolute deviation of the approximation + + The pade approximation is given by + m + sum c1[m-i]*x**i + i=0 + f(x) = ------------------------ + k + sum c2[k-i]*x**i + i=0 + + If F is a two column matrix, [x f(x)], a good choice for x is: + + x = cos(pi/(N-1)*(N-1:-1:0))*(b-a)/2+ (a+b)/2, where N = (m+k+1)*8; + + Note: c1 and c2 are ordered for direct use with polyval + + Example + ------- + + Pade approximation to exp(x) between 0 and 2 + >>> import pylab as plb + >>> [c1, c2] = padefitlsq(plb.exp,3,3,0,2) + >>> c1; c2 + poly1d([ 0.01443847, 0.128842 , 0.55284547, 0.99999962]) + poly1d([-0.0049658 , 0.07610473, -0.44716929, 1. ]) + + >>> x = plb.linspace(0,4) + >>> h = plb.plot(x, polyval(c1,x)/polyval(c2,x),'g') + >>> h = plb.plot(x, plb.exp(x), 'r') + + See also + -------- + padefit + + Reference + --------- + William H. Press, Saul Teukolsky, + William T. Wetterling and Brian P. Flannery (1997) + "Numerical recipes in Fortran 77", Vol. 1, pp 197-20 + """ + + NFAC = 8 + BIG = 1e30 + MAXIT = 5 + + smallest_devmax = BIG + ncof = m + k + 1 + npt = NFAC * ncof # % Number of points where function is evaluated, i.e. fineness of mesh + + if x is None: + if end_points: + # Use the location of the local extreme values of + # the Chebychev polynomial of the first kind of degree NPT-1. + x = map_to_interval(chebextr(npt - 1), a, b) + else: + # Use the roots of the Chebychev polynomial of the first kind of degree NPT. + # Note this is useful if there are singularities close to the endpoints. + x = map_to_interval(chebroot(npt, kind=1), a, b) + + + if hasattr(fun, '__call__'): + fs = fun(x) + else: + fs = fun + n = len(fs) + if n < npt: + warnings.warn('Check the result! Number of function values should be at least: %d' % npt) + + if trace: + import pylab as plb + plb.plot(x, fs, '+') + + wt = ones((npt)) + ee = ones((npt)) + mad = 0 + + u = zeros((npt, ncof)) + for ix in xrange(MAXIT): + #% Set up design matrix for least squares fit. + pow = wt + bb = pow * (fs + abs(mad) * sign(ee)) + + for jx in xrange(m + 1): + u[:, jx] = pow + pow = pow * x + + pow = -bb + for jx in xrange(m + 1, ncof): + pow = pow * x + u[:, jx] = pow + + + [u1, w, v] = linalg.svd(u, full_matrices=False) + cof = where(w == 0, 0.0, dot(bb, u1) / w) + cof = dot(cof, v) + + #% Tabulate the deviations and revise the weights + ee = polyval(cof[m::-1], x) / polyval(cof[ncof:m:-1].tolist() + [1, ], x) - fs + + wt = abs(ee) + devmax = max(wt) + mad = wt.mean() #% mean absolute deviation + + if (devmax <= smallest_devmax): #% Save only the best coefficients found + smallest_devmax = devmax + c1 = cof[m::-1] + c2 = cof[ncof:m:-1].tolist() + [1, ] + + if trace: + print('Iteration=%d, max error=%g' % (ix, devmax)) + plb.plot(x, fs, x, ee + fs) + #c1=c1(:) + #c2=c2(:) + return poly1d(c1), poly1d(c2) + + + + + +def main(): + + [c1, c2] = padefitlsq(exp, 3, 3, 0, 2) + + x = linspace(0, 4) + plb.plot(x, polyval(c1, x) / polyval(c2, x), 'g') + plb.plot(x, exp(x), 'r') + + import scipy.special as sp + + p = [[1, 1, 1], [2, 2, 2]] + pi = polyint(p, 1) + pr = polyreloc(p, 2) + pd = polyder(p) + st = poly2str(p) + c = poly1d(1. / sp.gamma(plb.r_[6 + 1:0:-1])) #polynomial coeff exponential function + [p, q] = padefit(c) + x = linspace(0, 4); + plb.plot(x, c(x), x, p(x) / q(x), 'g-', x, exp(x), 'r.') + plb.close() + x = arange(4) + dx = dct(x) + idx = idct(dx) + + a = 0; + b = 2; + ck = chebfit(exp, 6, a, b); + t = chebval(0, ck, a, b) + x = linspace(0, 2, 6); + plb.plot(x, exp(x), 'r', x, chebval(x, ck, a, b), 'g.') + #x1 = chebroot(9).'*(b-a)/2+(b+a)/2 ; + #ck1 =chebfit([x1 exp(x1)],9,a,b); + #plot(x,exp(x),'r'), hold on + #plot(x,chebval(x,ck1,a,b),'g'), hold off + + + t = poly2hstr([1, 1, 2]) + py = [1, 0] + px = polyshift(py, 0, 5); + t1 = polyval(px, [0, 2.5, 5]) #% This is the same as the line below + t2 = polyval(py, [-1, 0, 1 ]) + + px = [1, 0] + py = polyishift(px, 0, 5); + t1 = polyval(px, [0, 2.5, 5]) #% This is the same as the line below + t2 = polyval(py, [-1, 0, 1 ]) + print(t1, t2) + +if __name__ == '__main__': + if False: + main() + else: + import doctest + doctest.testmod() diff --git a/wafo/polynomial_old.py b/wafo/polynomial_old.py new file mode 100755 index 0000000..fbe9c70 --- /dev/null +++ b/wafo/polynomial_old.py @@ -0,0 +1,1207 @@ +#------------------------------------------------------------------------------- +# Name: polynomial +# Purpose: Functions to operate on polynomials. +# +# Author: pab +# polyXXX functions are based on functions found in the matlab toolbox polyutil written by +# Author: Peter J. Acklam +# E-mail: pjacklam@online.no +# WWW URL: http://home.online.no/~pjacklam +# +# Created: 30.12.2008 +# Copyright: (c) pab 2008 +# Licence: LGPL +#------------------------------------------------------------------------------- +#!/usr/bin/env python + +""" + Extended functions to operate on polynomials +""" +import warnings +import numpy as np +from numpy.lib.polynomial import * +__all__ = np.lib.polynomial.__all__ +__all__ = __all__ + ['polyreloc', 'polyrescl', 'polytrim', 'poly2hstr', 'poly2str', + 'polyshift', 'polyishift', 'map_from_intervall', 'map_to_intervall', + 'cheb2poly', 'chebextr', 'chebroot', 'chebpoly', 'chebfit', 'chebval', + 'chebder', 'chebint', 'Cheb1d', 'dct', 'idct'] + +def polyreloc(p,x,y=0.0): + """ + Relocate polynomial + + The polynomial `p` is relocated by "moving" it `x` + units along the x-axis and `y` units along the y-axis. + So the polynomial `r` is relative to the point (x,y) as + the polynomial `p` is relative to the point (0,0). + + Parameters + ---------- + p : array-like, poly1d + vector or matrix of column vectors of polynomial coefficients to relocate. + (Polynomial coefficients are in decreasing order.) + x : scalar + distance to relocate P along x-axis + y : scalar + distance to relocate P along y-axis (default 0) + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of relocated polynomial coefficients. + + See also + -------- + polyrescl + + Example + ------- + >>> import numpy as np + >>> p = np.arange(6); p.shape = (2,-1) + >>> np.polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(p,1) + array([3, 5, 7]) + >>> r = polyreloc(p,-1) # move to the left along x-axis + >>> np.polyval(r,-1) # = polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(r,0) # = polyval(p,1) + array([3, 5, 7]) + """ + + truepoly = isinstance(p, poly1d) + r = np.atleast_1d(p).copy() + n = r.shape[0] + + # Relocate polynomial using Horner's algorithm + for ii in range(n,1,-1): + for i in range(1,ii): + r[i] = r[i] - x*r[i-1] + r[-1] = r[-1] + y + if r.ndim>1 and r.shape[-1]==1: + r.shape = (r.size,) + if truepoly: + r = poly1d(r) + return r + +def polyrescl(p, x, y=1.0): + """ + Rescale polynomial. + + Parameters + ---------- + p : array-like, poly1d + vector or matrix of column vectors of polynomial coefficients to rescale. + (Polynomial coefficients are in decreasing order.) + x,y : scalars + defining the factors to rescale the polynomial `p` in + x-direction and y-direction, respectively. + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of rescaled polynomial coefficients. + + See also + -------- + polyreloc + + Example + ------- + >>> import numpy as np + >>> p = np.arange(6); p.shape = (2,-1) + >>> np.polyval(p,0) + array([3, 4, 5]) + >>> np.polyval(p,1) + array([3, 5, 7]) + >>> r = polyrescl(p,2) # scale by 2 along x-axis + >>> np.polyval(r,0) # = polyval(p,0) + array([ 3., 4., 5.]) + >>> np.polyval(r,2) # = polyval(p,1) + array([ 3., 5., 7.]) + """ + + truepoly = isinstance(p, poly1d) + r = np.atleast_1d(p).copy() + n = r.shape[0] + + xscale =(float(x)**np.arange(1-n , 1)) + if r.ndim==1: + q = y*r*xscale + else: + q = y*r*xscale[:,np.newaxis] + if truepoly: + q = poly1d(q) + return q + +def polytrim(p): + """ + Trim polynomial by stripping off leading zeros. + + Parameters + ---------- + p : array-like, poly1d + vector of polynomial coefficients in decreasing order. + + Returns + ------- + r : ndarray, poly1d + vector/matrix/poly1d of trimmed polynomial coefficients. + + Example + ------- + >>> p = [0,1,2] + >>> polytrim(p) + array([1, 2]) + """ + + truepoly = isinstance(p, poly1d) + if truepoly: + return p + else: + r = np.atleast_1d(p).copy() + # Remove leading zeros + is_not_lead_zeros =np.logical_or.accumulate(r != 0,axis=0) + if r.ndim==1: + r = r[is_not_lead_zeros] + else: + is_not_lead_zeros = np.any(is_not_lead_zeros,axis=1) + r = r[is_not_lead_zeros,:] + return r + +def poly2hstr(p, variable='x' ): + """ + Return polynomial as a Horner represented string. + + Parameters + ---------- + p : array-like poly1d + vector of polynomial coefficients in decreasing order. + variable : string + display character for variable + + Returns + ------- + p_str : string + consisting of the polynomial coefficients in the vector P multiplied + by powers of the given `variable`. + + Examples + -------- + >>> poly2hstr([1, 1, 2], 's' ) + '(s + 1)*s + 2' + + See also + -------- + poly2str + """ + var = variable + + coefs = polytrim(np.atleast_1d(p)) + order = len(coefs)-1 # Order of polynomial. + s = '' # Initialize output string. + ix = 1; + for expon in range(order,-1,-1): + coef = coefs[order-expon] + #% There is no point in adding a zero term (except if it's the only + #% term, but we'll take care of that later). + if coef == 0: + ix = ix+1 + else: + #% Append exponent if necessary. + if ix>1: + exponstr = '%.0f' % ix + s = '%s**%s' % (s,exponstr); + ix = 1 + #% Is it the first term? + isfirst = s == '' + + # We need the coefficient only if it is different from 1 or -1 or + # when it is the constant term. + needcoef = (( abs(coef) != 1 ) | ( expon == 0 ) & isfirst) | 1-isfirst + + # We need the variable except in the constant term. + needvar = ( expon != 0 ) + + #% Add sign, but we don't need a leading plus-sign. + if isfirst: + if coef < 0: + s = '-' # % Unary minus. + else: + if coef < 0: + s = '%s - ' % s # % Binary minus (subtraction). + else: + s = '%s + ' % s # % Binary plus (addition). + + + #% Append the coefficient if it is different from one or when it is + #% the constant term. + if needcoef: + coefstr = '%.20g' % abs(coef) + s = '%s%s' % (s,coefstr) + + #% Append variable if necessary. + if needvar: + #% Append a multiplication sign if necessary. + if needcoef: + if 1-isfirst: + s = '(%s)' % s + s = '%s*' % s + s = '%s%s' % ( s, var ) + + #% Now treat the special case where the polynomial is zero. + if s=='': + s = '0' + return s + +def poly2str(p,variable='x'): + """ + Return polynomial as a string. + + Parameters + ---------- + p : array-like poly1d + vector of polynomial coefficients in decreasing order. + variable : string + display character for variable + + Returns + ------- + p_str : string + consisting of the polynomial coefficients in the vector P multiplied + by powers of the given `variable`. + + See also + -------- + poly2hstr + + Examples + -------- + >>> poly2str([1, 1, 2], 's' ) + 's**2 + s + 2' + """ + thestr = "0" + var = variable + + # Remove leading zeros + coeffs = polytrim(np.atleast_1d(p)) + + N = len(coeffs)-1 + + for k in range(len(coeffs)): + coefstr = '%.4g' % abs(coeffs[k]) + if coefstr[-4:] == '0000': + coefstr = coefstr[:-5] + power = (N-k) + if power == 0: + if coefstr != '0': + newstr = '%s' % (coefstr,) + else: + if k == 0: + newstr = '0' + else: + newstr = '' + elif power == 1: + if coefstr == '0': + newstr = '' + elif coefstr == 'b' or coefstr == '1': + newstr = var + else: + newstr = '%s*%s' % (coefstr, var) + else: + if coefstr == '0': + newstr = '' + elif coefstr == 'b' or coefstr == '1': + newstr = '%s**%d' % (var, power,) + else: + newstr = '%s*%s**%d' % (coefstr, var, power) + + if k > 0: + if newstr != '': + if coeffs[k] < 0: + thestr = "%s - %s" % (thestr, newstr) + else: + thestr = "%s + %s" % (thestr, newstr) + elif (k == 0) and (newstr != '') and (coeffs[k] < 0): + thestr = "-%s" % (newstr,) + else: + thestr = newstr + return thestr + +def polyshift(py,a=-1,b=1): + """ + Polynomial coefficient shift + + Polyshift shift the polynomial coefficients by a variable shift: + + Y = 2*(X-.5*(b+a))/(b-a) + + i.e., the interval -1 <= Y <= 1 is mapped to the interval a <= X <= b + + Parameters + ---------- + py : array-like + polynomial coefficients for the variable y. + a,b : scalars + lower and upper limit. + + Returns + ------- + px : ndarray + polynomial coefficients for the variable x. + + See also + -------- + polyishift + + Example + ------- + >>> py = [1, 0] + >>> px = polyshift(py,0,5) + >>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below + array([-1., 0., 1.]) + >>> polyval(py,[-1, 0, 1 ]) + array([-1, 0, 1]) + """ + + if (a==-1) & (b ==1): + return py + L = b-a + return polyishift(py,-(2.+b+a)/L,(2.-b-a)/L) + +def polyishift(px,a=-1,b=1): + """ + Inverse polynomial coefficient shift + + Polyishift does the inverse of Polyshift, + shift the polynomial coefficients by a variable shift: + + Y = 2*(X-.5*(b+a)/(b-a) + + i.e., the interval a <= X <= b is mapped to the interval -1 <= Y <= 1 + + Parameters + ---------- + px : array-like + polynomial coefficients for the variable x. + a,b : scalars + lower and upper limit. + + Returns + ------- + py : ndarray + polynomial coefficients for the variable y. + + See also + -------- + polyishift + + Example + ------- + >>> px = [1, 0] + >>> py = polyishift(px,0,5); + >>> polyval(px,[0, 2.5, 5]) #% This is the same as the line below + array([ 0. , 2.5, 5. ]) + >>> polyval(py,[-1, 0, 1]) + array([ 0. , 2.5, 5. ]) + """ + if (a==-1) & (b ==1): + return px + L = b-a + xscale = 2./L + xloc = -float(a+b)/L + return polyreloc( polyrescl(px,xscale),xloc) + +def map_from_interval(x,a,b) : + """F(x), where F: [a,b] -> [-1,1].""" + return (x - (b + a)/2.0)*(2.0/(b - a)) + +def map_to_interval(x,a,b) : + """F(x), where F: [-1,1] -> [a,b].""" + return (x*(b - a) + (b + a))/2.0 + +def poly2cheb(p,a=-1,b=1): + """ + Convert polynomial coefficients into Chebyshev coefficients + + Parameters + ---------- + p : array-like + polynomial coefficients + a,b : real scalars + lower and upper limits (Default -1,1) + + Returns + ------- + ck : ndarray + Chebychef coefficients + + POLY2CHEB do the inverse of CHEB2POLY: given a vector of polynomial + coefficients AK, returns an equivalent vector of Chebyshev + coefficients CK. + + This is useful for economization of power series. + The steps for doing so: + 1. Convert polynomial coefficients to Chebychev coefficients, CK. + 2. Truncate the CK series to a smaller number of terms, using the + coefficient of the first neglected Chebychev polynomial as an error + estimate. + 3 Convert back to a polynomial by CHEB2POLY + + See also + -------- + cheb2poly + chebval + chebfit + + Examples + -------- + >>> import numpy as np + >>> p = np.arange(5) + >>> ck = poly2cheb(p) + >>> cheb2poly(ck) + array([ 1., 2., 3., 4.]) + + Reference + --------- + William H. Press, Saul Teukolsky, + William T. Wetterling and Brian P. Flannery (1997) + "Numerical recipes in Fortran 77", Vol. 1, pp 184-194 + """ + f = poly1d(p) + n = len(f.coeffs) + return chebfit(f,n,a,b) + +def cheb2poly(ck,a=-1,b=1): + """ + Converts Chebyshev coefficients to polynomial coefficients + + Parameters + ---------- + ck : array-like + Chebychef coefficients + a,b : real, scalars + lower and upper limits (Default -1,1) + + Returns + ------- + p : ndarray + polynomial coefficients + + It is not advised to do this for len(ck)>10 due to numerical cancellations. + + See also + -------- + chebval + chebfit + + Examples + -------- + >>> import numpy as np + >>> p = np.arange(5) + >>> ck = poly2cheb(p) + >>> cheb2poly(ck) + array([ 1., 2., 3., 4.]) + + + References + ---------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + http://en.wikipedia.org/wiki/Chebyshev_form + http://en.wikipedia.org/wiki/Clenshaw_algorithm + """ + + n = len(ck) + + b_Nmi = np.zeros(1) + b_Nmip1 = np.zeros(1) + y = np.r_[2/(b-a), -(a+b)/(b-a)] + y2 = 2.*y + + # Clenshaw recurence + for ix in range(n-1,0,-1): + tmp = b_Nmi + b_Nmi = polymul(y2,b_Nmi) # polynomial multiplication + nb = len(b_Nmip1) + b_Nmip1[-1] = b_Nmip1[-1]-ck[ix] + b_Nmi[-nb::] = b_Nmi[-nb::]-b_Nmip1 + b_Nmip1 = tmp + + p = polymul(y,b_Nmi) # polynomial multiplication + nb = len(b_Nmip1) + b_Nmip1[-1] = b_Nmip1[-1]-ck[0] + p[-nb::] = p[-nb::]-b_Nmip1 + return polytrim(p) + +def chebextr(n): + """ + Return roots of derivative of Chebychev polynomial of the first kind. + + All local extreme values of the polynomial are either -1 or 1. So, + CHEBPOLY( N, CHEBEXTR(N) ) ) return the same as (-1).^(N:-1:0) + except for the numerical noise in the former. + + Because the extreme values of Chebychev polynomials of the first + kind are either -1 or 1, their roots are often used as starting + values for the nodes in minimax approximations. + + + Parameters + ---------- + n : scalar, integer + degree of Chebychev polynomial. + + Examples + -------- + >>> x = chebextr(4) + >>> chebpoly(4,x) + array([ 1., -1., 1., -1., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + return -np.cos((np.pi*np.arange(n+1))/n); + +def chebroot(n,kind=1): + """ + Return roots of Chebychev polynomial of the first or second kind. + + The roots of the Chebychev polynomial of the first kind form a particularly + good set of nodes for polynomial interpolation because the resulting + interpolation polynomial minimizes the problem of Runge's phenomenon. + + Parameters + ---------- + n : scalar, integer + degree of Chebychev polynomial. + kind: 1 or 2, optional + kind of Chebychev polynomial (default 1) + + Examples + -------- + >>> import numpy as np + >>> x = chebroot(3) + >>> np.abs(chebpoly(3,x))<1e-15 + array([ True, True, True], dtype=bool) + >>> chebpoly(3) + array([ 4., 0., -3., 0.]) + >>> x2 = chebroot(4,kind=2) + >>> np.abs(chebpoly(4,x2,kind=2))<1e-15 + array([ True, True, True, True], dtype=bool) + >>> chebpoly(4,kind=2) + array([ 16., 0., -12., 0., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + if kind not in (1,2): + raise ValueError('kind must be 1 or 2') + return -np.cos(np.pi*(np.arange(n)+0.5*kind)/(n+kind-1)); + + +def chebpoly(n, x=None, kind=1): + """ + Return Chebyshev polynomial of the first or second kind. + + These polynomials are orthogonal on the interval [-1,1], with + respect to the weight function w(x) = (1-x^2)^(-1/2+kind-1). + + chebpoly(n) returns the coefficients of the Chebychev polynomial of degree N. + chebpoly(n,x) returns the Chebychev polynomial of degree N evaluated in X. + + Parameters + ---------- + n : integer, scalar + degree of Chebychev polynomial. + x : array-like, optional + evaluation points + kind: 1 or 2, optional + kind of Chebychev polynomial (default 1) + + Returns + ------- + p : ndarray + polynomial coefficients if x is None. + Chebyshev polynomial evaluated at x otherwise + + Examples + -------- + >>> import numpy as np + >>> x = chebroot(3) + >>> np.abs(chebpoly(3,x))<1e-15 + array([ True, True, True], dtype=bool) + >>> chebpoly(3) + array([ 4., 0., -3., 0.]) + >>> x2 = chebroot(4,kind=2) + >>> np.abs(chebpoly(4,x2,kind=2))<1e-15 + array([ True, True, True, True], dtype=bool) + >>> chebpoly(4,kind=2) + array([ 16., 0., -12., 0., 1.]) + + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_polynomials + """ + if x is None: # Calculate coefficients. + if n == 0: + p = np.ones(1) + else: + p = np.round( pow(2,n-2+kind) * np.poly( chebroot(n,kind=kind) ) ) + p[1::2] = 0; + return p + else: # Evaluate polynomial in chebychev form + ck = np.zeros(n+1) + ck[n] = 1. + return _chebval(np.atleast_1d(x),ck,kind=kind) + +def chebfit(fun,n=10,a=-1,b=1,trace=False): + """ + Computes the Chebyshevs coefficients + + so that f(x) can be approximated by: + + n-1 + f(x) = sum ck*Tk(x) + k=0 + + where Tk is the k'th Chebyshev polynomial of the first kind. + + Parameters + ---------- + fun : callable + function to approximate + n : integer, scalar, optional + number of base points (abscissas). Default n=10 (maximum 50) + a,b : real, scalars, optional + integration limits + + Returns + ------- + ck : ndarray + polynomial coefficients in Chebychev form. + + Examples + -------- + Fit exp(x) + + >>> import pylab as pb + >>> a = 0; b = 2 + >>> ck = chebfit(pb.exp,7,a,b); + >>> x = pb.linspace(0,4); + >>> h=pb.plot(x,pb.exp(x),'r',x,chebval(x,ck,a,b),'g.') + >>> x1 = chebroot(9)*(b-a)/2+(b+a)/2 + >>> ck1 = chebfit(pb.exp(x1)) + >>> h=pb.plot(x,pb.exp(x),'r',x,chebval(x,ck1,a,b),'g.') + + >>> pb.close() + + See also + -------- + chebval + + Reference + --------- + http://en.wikipedia.org/wiki/Chebyshev_nodes + http://mathworld.wolfram.com/ChebyshevApproximationFormula.html + + W. Fraser (1965) + "A Survey of Methods of Computing Minimax and Near-Minimax Polynomial + Approximations for Functions of a Single Independent Variable" + Journal of the ACM (JACM), Vol. 12 , Issue 3, pp 295 - 314 + + William H. Press, Saul Teukolsky, + William T. Wetterling and Brian P. Flannery (1997) + "Numerical recipes in Fortran 77", Vol. 1, pp 184-194 + """ + + if (n>50): + warnings.warn('CHEBFIT should only be used for n<50') + + if hasattr(fun,'__call__'): + x = map_to_interval(chebroot(n),a,b) + f = fun(x); + if trace: + import pylab as plb + plb.plot(x,f,'+') + else: + f = fun + n = len(f) + #raise ValueError('Function must be callable!') + # N-1 + # c(k) = (2/N) sum w(n) f(n)*cos(pi*k*(2n+1)/(2N)), 0 <= k < N. + # n=0 + # + # w(0) = 0.5, w(n)=1 for n>0 + ck = dct(f[::-1])/n + ck[0] = ck[0]/2. + return ck + +def dct(x,n=None): + """ + Discrete Cosine Transform + + N-1 + y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N. + n=0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + fft = np.fft.fft + x = np.atleast_1d(x) + + if n is None: + n = x.shape[-1] + + if x.shape[-1]0 + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> np.abs(x-idct(dct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + >>> np.abs(x-dct(idct(x)))<1e-14 + array([ True, True, True, True, True], dtype=bool) + + Reference + --------- + http://en.wikipedia.org/wiki/Discrete_cosine_transform + http://users.ece.utexas.edu/~bevans/courses/ee381k/lectures/ + """ + + ifft = np.fft.ifft + x = np.atleast_1d(x) + + if n is None: + n = x.shape[-1] + + w = np.exp(1j * np.arange(n) * np.pi/(2*n)) + + if x.shape[-1]>> import pylab as pb + >>> x = pb.linspace(-1,1) + >>> ck = pb.zeros(5); ck[-1]=1 + >>> h = pb.plot(x,chebval(x,ck),x,chebpoly(4,x),'.') + >>> pb.close() + + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4); + >>> h=pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x)) + >>> pb.close() + + See also + -------- + chebfit + + References + ---------- + http://en.wikipedia.org/wiki/Clenshaw_algorithm + http://mathworld.wolfram.com/ClenshawRecurrenceFormula.html + """ + + y = map_from_interval(np.atleast_1d(x),a,b) + if fill is None: + f = _chebval(y,ck,kind=kind) + else: + cond = (np.abs(y)<=1) + f = np.where(cond,0,fill) + if np.any(cond): + yk = np.extract(cond,y) + f[cond] = _chebval(yk,ck,kind=kind) + return f + + +def chebder(ck,a=-1,b=1): + """ + Differentiate Chebyshev polynomial + + Parameters + ---------- + ck : array-like + polynomial coefficients in Chebyshev form of function to differentiate + a,b : real, scalars + limits for polynomial(Default -1,1) + + Return + ------ + cder : ndarray + polynomial coefficients in Chebyshev form of the derivative + + Examples + -------- + + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4) + >>> ck2 = chebder(ck,0,2); + >>> h=pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x),'r') + >>> pb.close() + + See also + -------- + chebint + chebfit + """ + + n = len(ck) + cder = np.zeros(n) + # n and n-1 are special cases. + # cder(n-1)=0; + cder[-2] = 2*(n-1)*ck[-1] + for j in range(n-3,-1,-1): + cder[j] = cder[j+2]+2*j*ck[j+1] + + return cder*2./(b-a) # Normalize to the interval b-a. + +def chebint(ck,a=-1,b=1): + """ + Integrate Chebyshef polynomial + + Parameters + ---------- + ck : array-like + polynomial coefficients in Chebyshev form of function to integrate. + a,b : real, scalars + limits for polynomial(Default -1,1) + + Return + ------ + cint : ndarray + polynomial coefficients in Chebyshev form of the integrated function + + Examples + -------- + Fit exponential function: + >>> import pylab as pb + >>> ck = chebfit(pb.exp,7,0,2) + >>> x = pb.linspace(0,4) + >>> ck2 = chebint(ck,0,2); + >>> h=pb.plot(x,chebval(x,ck,0,2),'g',x,pb.exp(x),'r.') + >>> pb.close() + + See also + -------- + chebder + chebfit + """ + + + n = len(ck) + + cint = np.zeros(n); + con = 0.25*(b-a); + + dif1 = np.diff(ck[::2]) + ix1= np.r_[1:n-1:2] + cint[ix1] = -(con*dif1)/(ix1-1) + if n>3: + dif2 = np.diff(ck[1::2]) + ix2=np.r_[2:n-1:2] + cint[ix2] = -(con*dif2)/(ix2-1) + + #% cint(n) is a special case + cint[-1] = (con*ck[n-2])/(n-1) + cint[0] = np.sum((-1)**np.r_[1:n]*cint[1::]) # Set constant of integration + + + return cint + +class Cheb1d(object): + coeffs = None + order = None + a = None + b = None + def __init__(self,ck,a=-1,b=1): + if isinstance(ck, poly1d): + for key in ck.__dict__.keys(): + self.__dict__[key] = ck.__dict__[key] + return + cki = np.trim_zeros(np.atleast_1d(ck),'b') + if len(cki.shape) > 1: + raise ValueError, "Polynomial must be 1d only." + self.__dict__['coeffs'] = cki + self.__dict__['order'] = len(cki) - 1 + self.__dict__['a'] = a + self.__dict__['b'] = b + + + def __call__(self,x): + return chebval(x,self.coeffs,self.a,self.b) + + def __array__(self, t=None): + if t: + return np.asarray(self.coeffs, t) + else: + return np.asarray(self.coeffs) + + def __repr__(self): + vals = repr(self.coeffs) + vals = vals[6:-1] + return "Cheb1d(%s)" % vals + + def __len__(self): + return self.order + + def __str__(self): + pass + def __neg__(self): + return Cheb1d(-self.coeffs,self.a,self.b) + + def __pos__(self): + return self + + + def __add__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __radd__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __sub__(self, other): + other = poly1d(other) + return poly1d(polysub(self.coeffs, other.coeffs)) + + def __rsub__(self, other): + other = poly1d(other) + return poly1d(polysub(other.coeffs, self.coeffs)) + + def __eq__(self, other): + return np.alltrue(self.coeffs == other.coeffs) + + def __ne__(self, other): + return np.any(self.coeffs != other.coeffs) or (self.a!=other.a) or (self.b !=other.b) + + def __setattr__(self, key, val): + raise ValueError, "Attributes cannot be changed this way." + + def __getattr__(self, key): + if key in ['c','coef','coefficients']: + return self.coeffs + elif key in ['o']: + return self.order + elif key in ['a']: + return self.a + elif key in ['b']: + return self.b + else: + try: + return self.__dict__[key] + except KeyError: + raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) + def __getitem__(self, val): + if val > self.order: + return 0 + if val < 0: + return 0 + return self.coeffs[val] + + def __setitem__(self, key, val): + ind = self.order - key + if key < 0: + raise ValueError, "Does not support negative powers." + if key > self.order: + zr = NX.zeros(key-self.order, self.coeffs.dtype) + self.__dict__['coeffs'] = NX.concatenate((self.coeffs,zr)) + self.__dict__['order'] = key + self.__dict__['coeffs'][key] = val + return + + def __iter__(self): + return iter(self.coeffs) + def integ(self, m=1): + """ + Return an antiderivative (indefinite integral) of this polynomial. + + Refer to `chebint` for full documentation. + + See Also + -------- + chebint : equivalent function + + """ + return Cheb1d(chebint(self.coeffs, self.a,self.b)) + + def deriv(self, m=1): + """ + Return a derivative of this polynomial. + + Refer to `chebder` for full documentation. + + See Also + -------- + chebder : equivalent function + + """ + return Cheb1d(chebder(self.coeffs,self.a,self.b)) +def main(): + if False: #True: # + x = np.arange(4) + dx = dct(x) + idx = idct(dx) + import pylab as plb + a = 0; + b = 2; + ck = chebfit(np.exp,6,a,b); + t = chebval(0,ck,a,b) + x=np.linspace(0,2,6); + plb.plot(x,np.exp(x),'r', x,chebval(x,ck,a,b),'g.') + #x1 = chebroot(9).'*(b-a)/2+(b+a)/2 ; + #ck1 =chebfit([x1 exp(x1)],9,a,b); + #plot(x,exp(x),'r'), hold on + #plot(x,chebval(x,ck1,a,b),'g'), hold off + + + t = poly2hstr([1,1,2]) + py = [1, 0] + px = polyshift(py,0,5); + t1=polyval(px,[0, 2.5, 5]) #% This is the same as the line below + t2=polyval(py,[-1, 0, 1 ]) + + px = [1, 0] + py = polyishift(px,0,5); + t1 = polyval(px,[0, 2.5, 5]) #% This is the same as the line below + t2 = polyval(py,[-1, 0, 1 ]) + print(t1,t2) + else: + import doctest + doctest.testmod() +if __name__== '__main__': + main() diff --git a/wafo/rfcmodule.pyf b/wafo/rfcmodule.pyf new file mode 100755 index 0000000..3f25fab --- /dev/null +++ b/wafo/rfcmodule.pyf @@ -0,0 +1,14 @@ +! File rfcmodule.pyf +python module rfcmodule +interface + subroutine findrfc(y1,hmin, ind, n,info) + intent(c) findrfc ! findrfc is a C function + intent(c) ! all findrfc arguments are considered as C based + integer intent(hide), depend(y) :: n=len(y) + double precision dimension(n), intent(in) :: y1 ! input array + double precision intent(in) :: hmin + integer dimension(n), intent(out) :: ind ! output array, + integer intent(out) :: info + end subroutine findrfc +end interface +end python module rfcmodule \ No newline at end of file diff --git a/wafo/rindmod.pyd b/wafo/rindmod.pyd new file mode 100755 index 0000000000000000000000000000000000000000..d71a97fb1ae92d9848e653da9069f7886c7a242d GIT binary patch literal 1044909 zcmd444}6u!b?1Er7hASvU&RrLl2@ta_9lf5n}~#_DBxJey0+GaEsmvxG?0=6d&w?w zXmaHc2OAOTCOmm`jkXaf&EhUJw9D?2n6%Kv33dc%5hS#c9U2QGY$Y#gq=>fIrZ%`V zdcVIj^W47@cDCvJzWTtOdCr_U=ggTiXU@zs&+{z#-JaO=SS%Lj|HMQrwx3jgP4;{F zpAL$zyW!i{#r9tHS2ymjSo~KvwyyrfXX@8}`cwbm(;xk0{l`Cg-+iA-*MIDu`cJpt zSO1Co>YIP(?)p!DYSlgOxc1tslb-a_R4lf*qB{1?ji0|GHt)LF8?KMVMq*documE$ z`LT6ZaB*cU_P5hxebrRZ{~lnm6Zcqtnv=T%h~&4w9td#p=+~>QU9nibtEUR8&z~iG zu8G~Di@s}OBiAZ3#oypHu}e2iQT8tYzaxFmx-|9IewOw~Ahk8u2uFBjZ0X8(tomsB zqg)Ptl^?ZzE9rXaAph4CTiN%HPdmgp9l#sV*%wG_NDKbJYkJ4WKJyuYDt}6^_Z62% zs2!qrkE3TgLRT?#9s6oAep9TW=^dYNc&0;i8M_X=tz~$~ch8zneLUuLiB4nh1Mknu z@D{yuo|EF7=u}rZ-JB`L!#bzEb8e#{9(f%}J$Q6`?0hL+^|W`s`?m~l;mx$S3A`rK zD=H0^{{e5_Z`+Ne3O= zK>A+z7yUI%d*}T3804dGBiRGqEYkm2iU;3DC*LPOg|&}>x0dt|Cc&HAFkb}si{Da| z@-EV8QfA>_wR+S3+Jc{Uo~;d2l>^Pm%IdyT_mIY8q(MA6`o=rsv15m`e<{rDf!|be zS^S^f0e|i-do7=h=8TQ#3PArQfqdOtQ-^H9qs%+U)(YaC)XMT{$u6 z5IV=>jnCXa9@Hd9Lud`mP%V)eh?~P0eGq78fBeHM4(I8A00!0JimJ|ksz}cdQ`N!p zWIUiXG)j&5A2g!#Y*pq|aHRdZ9VSL!`u9dZJ~1(oz2`!3?!zBhai~fRI^Z)Jhe4+A z>q1N4J^&;Z`?@3^?WADzeb9n~bcFh21zegvm%iXg`s?F=Hut3h+N1yL-^F8dUmA$1 zyT-rVQ~2lfspd7n-MCGcb5}Qt01rhZT^ukmX&6}9H>Ckhup?wB2-5;B1 ztC^U&-yrELsV_2N>Kx_t=Xw4eJ4_?iLuF!S{o&{C2~y|B|2CU`TY-IkPzEt4I2`;a zT!i6`KrHw{<6wFw+;-HePAdkIIx{hd=B^KKs|=>^mzbUXb3Xi$-&=7wn1@j3oCpo! z(#qiVVf7tBHO6~AD28fyJz^U!jjIvwuQmAicf#9Xxs}Q=ywey_+I9x{Z?d8q_)~O! zVNs$h1N&UF(+~{SC*u<{`=B$oZ%n3&Q0jvRt>Nd@q$8P^(%+w$xm)>*!3)9AC=>Vu zO{x#CXbG;!^d&M&0KioZTIvKGd!s5Wnm=&ak+|>z7GV7G^H;`HHG84gy z!GY9qT?8wR4rJDP@IWS=L+Bq!^@((_;=n*^zeC+SkXfBWU6VuIGmu%C1Fy<~cMqg? z=^|LMb0D?d(b_hU+N#_@s@EkwF6nm3CYN-%q(cez+mKD|lx2_n!87-8IVYRiO)@K+ z+C!4eruLH5XHy4A>awYRlG<$QC`nB=HAo^aQu&1`hr=}+`=wK}v@q2#PST<(W=%D! zE;kM&&XACA8U5=zu8*ki_JSNXRR)>Gv^6xo)!EeXh>R+Ga=FU?S(OJ=`FjK+7=B0_ zwzNoBVw&1NMdcad+^Wi%R**&DFGawv9_yIPfN$GovNThiO>H0j;3a6LM#9tx<6?zF zT#(wEP6UU-SW7TXB>r!xE_m>0`r7cymf%W34hquVpT5f5Z~FCN>J0x16m@S;-lTux z#%F3zB(_tXOhv6PRoz$qFEwDPZ@^pCfGxUutm<9NSE;`6{guI%`2fPU1EXL4r-BBo z53SmQ)Sg6F0|@y>WNsAxqB!#z190s1y1G3cEVQe+Tp@3+G-20~7f57o;Mztd(#E%8 zC*~~W62{^bdH)?|)u6C#f3Rdzn3eU1spCOgcd(=@+@f(4W;Kq2)YhP_BUsX#c`EVn z?-K$AHvR$|dm;AN*5lNpQ5h+0GBvGvv+6d1r7lrW721{c?=104Z3=AQg{iI}qj4A7 zz`$xX94|+^+GsEIw67QKExHn=)UGhK)A}F@#2MtSLShBhYzBGwO%imTC)Qws>dFMI zH>y2BYB-x3CSK53tkMWllM5)>p!%FqQqQW%2@^|KVG066+0>AURR`qND817t&GD3; z#{|QSu1u!dh~$ZE>cp#2`e`k#J1lulK_#2&$hK`qDJ@x4)tqe3(h1GUrfjO4WMLLT zo0Idisa}$KSxf=%#RN1b%t#Sj%?h`eT3eIJFe4)eRxhL9((Ep3L9Yw9$eEC<2{Vyf z2)C%yfmMaKR#K}n%%~yc;^7w43ASH6r;ng#=5)q>BJ-b6c4)n{Ahok-{NHLN>iz|( z-9;q_RNahjL25A3_0T2Q<@`qGQ(Wc;)knF?52+^@wz(lSS~R4-PLZayJo1J@@qeojzpn`Y%@loGW;K>6lI}eSmnX2VkU$GwC(rO}VrXG_9{u7k3L4W} zg#Ii=k$=efmq!6&R#ndAtgE)jjF~&Gmof%q@{ zKvi&eyd(cg*r)K0;J6=!l$ z*fs|k8A$m+%)+u@#qdDN$70y4=x$l-NVCZy?p7+(4>JiHjLsZtp;9 zkIU^Iu$j;<%vUOk!&fSN!&fSNBhu?5A;MGmMueyEjRuI^n9Ia>MY1@W{^*Y1qd93=k z!1`7ZmIah;yM*-%Dr8M-k1ZGCrXs}9$PEec?}eD!^w=(8eXI!U9>Y2+tW$<{{IT=G zT3FP8n+3~TFSUBWtt*UUHbMYJEb4GOE*uueQS zD6H>2Ux@WrhBYdz2Mp`%W3|5x*3KfV|7KWy!dhuq{g15_)D8^LmV!WgigJtSDq zeiE#wg9Pj8C&7A-lVCk3NU$Ew-bCD*wyWHHT}j-`RXm$ID|0EHQS+{eesn%d zs8}u<=y#%_+_4J` zP;Dy)oI2nR6+`_k>!uW2@RIMw@kagEBF5FBHD6oeM8*dhL!_&oj1p@gr>I z30=%Rm5qP+;K=mZL$_w*|633=Il5D!xWd&d#00vq3BRaatc^$X%fj?%q@|oH{u?y& z3i~6j^7H$Zejhu-n8@j=F5d~#)7UZyV885xh2mGUqephyu^aaKV~_Lx zn8Cuf%AiN!6^Ctqj+J?pU~N@Fs?vHU>}bJ+j!leE?)F35D%lbZ+pEJxRh{eN6YVYG zCe3)6W9i=ujRlcGt-3KtCo72yZISw9XMZ*Op@$&CMS5tk-N#zobL@|z}tCc^EI2k?fl@|K`-W4{p1++F<3 zrmn4)>afa8-$QIIR0fY|6*FM#4(V;~MEL2dxu?e8qImxHjkY!EI(5P0s+P$9Ay{-g zZSX4~4C3AMwAI=E0}X&jw1nxrFcBK%_RoBG9!-4=yN?CWzW8U1e{$cwNidnEgEb-N zcb^jMY7c9_w$u1kB)X0ZwA{9&vE2?iADP_DB%`CSiR_0P%kgaZg!R@$qAQ>-Eq(pm zr_`Q-=C4*F+{B{BL+vjr+W0LQjruXmMkYkFx5YJFI^KH1yw+Dmrt`rw(-K_@ouu+b zRpAy}Y%Z>jhx?SPI2W3Eu{n@=11@QYHu1vRTZ7uM&&%Xhse0@`k!3gX6C}|<^yJK* z%s=(edDfGN5FBw8tw3WP^?o-vH#RFGSs=$PW1mKj9o}1{P-BqMij*4zFlXz9PlL~BL6%DcZ?u%XJ6BREomKGiV7Zy^E;*?ZR4}^7ZZuhE%a4}^f)Qr zZ}jGO#bep{^nuuYpQ>Lq&=mjF$3Ig)&{X-+`#<`Lfu^c8AN|;xdk31T?=jrhgM05l zeEQXPHG`{0v%JI?zJYM^rEV#GM1+sbg>c&l!^wu%%qrpr4uWTy!fY~=^}h^ILOq1KzI|TPK5ikrx0wZ z)^DbYU)tLBr1&gMj^2$(oqekU6WSSqZnsnc4h|oIzEM&K-=YSGnn>EP9`cJ50o%5NGe^mVt|LCWWG+hxJ`xK(MLB9&jF>R*_{WGAmdv078 z!&O4Sc$H(EX><+vJ?YR)gN+DlBp$HLToaip{5Ke5X+lZbQ4c3Y7Io8RSX!%VZHNG? zRz7@-+9{dfAP@gM4??2dLP%iJ|gjvJc-{k675gYgC9}D%ng`) z$f<5hgBxZvZsxuut-Xf|WA7HK@2kv&E^H5T?n~O!d;`~W`#O(J1kb(j&6l6NccA&2 ziP^ESr!EzN!;I}Tz(EZX$1Hf_aQq$dm~D;V9Gb^=6jKYk+ztix)QW<7!Il_8jy_E7 z(6Z9Z$Em%j@kbjTpW7Eahe%I+j7pM9%pTK?;$Yy#on!Aow&11w{Y>r_)r2c5!&@~E zUGMMpv|p85$p1o0Df||}Ihh|tCo@s>3!<`Tb7lxe^6^YH4$Y*b<2-?pC zD@MZh;cQK3@cr?t2c}7i&O`C0;9%pC#KZGc<-Jzpdt@`GK6g4eJpP=UZxdZdaBG=k ziHCm&u@Kv@xaU44nro51bKw`KB_25(JlC}GXL86DuQVQQ|9Q}MA_RdA*5=MjL259Z zpP5)k&~l=&Z8*{WeX(pGW|%*G9b}Ez+=<|a_x3bieCXf8C0tq^&igiIzTw|zZ?DMK zd|~``e*S+Kf(!nhreL7);D&z)+eVxw<6q14t$VwTjHhWJEz4XBn_C-K45L9vwp5Mp z=mGuqP^h2#8^$#{4(4sWRSH}&yx|!nMu`u8l+|$9&Yt)PccdDB@L+=%sP5a`Voq$n zPm_=ns=6n9v*Z!@gMcN|(e>lsk%GhP;FWmvWbkX@iZhEK7T#I4V9CgaZ-y)I(!&_Z z!<^w)W$Ne%}QNvgv( zZ94@%bgRA>BC; zAAR}XNQ~o+zgxB8>4-c{E+qe5k$)Pz&i=)w3XAm=h+Jft4#Ybp#-CS=jdP{=M`KGX zN!NJ;@vWxnJF3QN40r~g;+85sXQ`G~?G@;ih|6xSf1&Py0dt!x9iZYia+ z;6V)WKK!k$jj2^aNPwNt9Q!wdudtga#2#WNCMrIo;tx}7OiBbFTSS5PC1ZcXY-pW7 zR;dYKV(fnPw(WPj_5H@Pb?UMQ@zYf=4=CtPWM%;gE_9AmyVxg@(T$tnV%M?HCBjtg zf*Fco6J7Fk?jVRa3xz4+(i#^Y;q1TMa_y$9?!9R{H_>Hxo!V-{Mcl@>sr>zwc62~T z2DCcS`2o!}zsYD1w^-2CUaN{%$UWZ1_(){7sw`C-W)*>jOY0WgQImLhi@b&fr%xo` zhoUXa3I=So@Zz6-`HD?fhD&P04{=TFCFPT3lpiV| z)p;+oPQCJh%EY6GA&Uu6UG9~3UQIj4{sWa?9=IN=iOd`Mb&K^Sm7PCp3VUh*Fzq@O z2UW>8z2u_k&X?@|*~TN+6J=sZ8b1ZX+lriP4FlU1vMzE`zbrp-GHk0J{rJo7e&tU! zqFx$%mPG#ZrQ0yAj75JRs2lrFIrMpk-u^e8KZ_^2z6Cg3Q5(K~QSkb)ow|tbYK)CA zGQHhv=F4_k$Gtdl<4}3WnGrmqL4X~gWz)9Ql=i0Z12i@^OY~E43$^r3jC<1w zk?{-Pln;0P`0|rsMtvmhR(kDbo3FO${2jl+1TME!M|7NBI??&cRiC|VwZ{DzPHM2g-e7ey=u_ak+n<=s68Mm`{p+EJA0W)S>SIJ$QC(%SCFvzi#}G*b>UNOmtqn>a$nT z5&w?N{qM-O{A1_EX`j6YK{7(Z9UGHXok~ z?~ZrA!e-5vHJ1Ovb^u>WbZyhslIq|s+Ui?yt((^EzSBM(&mhX5Ikzus`JRFJ7hxA` zY8-4o&-Nf=!EFUH$g)@xCkxq&n)r%HGd9DeRpH|I##xcRer}(|^VEmrL=(%H^K(yC zypqMf-yc8tlWD4l)3778zm2#wl)3kgs*0nzy~D1@p~|j@hJp{nsS%&((Im-sDnTR- zM^l>=)ng+eL*>r8@b_!N-uLdNZsO4+;hl;fZBEuC`d7c^Ha*@?g#|0BIs4`MFx@h@ zZ)3kY!G}BAp@g#C01O|j){fVA)y6i3%#|T(rs+)d6En3FSy(k1U#!Ew5q6l)``UMO z9-SEfW2aNE-@SI8Ij5h&^_)hvb3=$G|6`1#rLa@GKkys9nF&BQlhWUcw3Tf;Q*l(j zH|iL<3UriZg4HIP^@}NHtV2V&K<;hGO$&n=bWb?5pDSp@kK-l7>!};q7K=MG>b6_P zPKko|b+?wpEMx5yqERAV(Thfg5sx&24#xfvv>g$%Z-`mJjVQ`LYf@Hc+1z4zf<*3= zq6|eYHm8bt=bb7NnZu0yu}7#jF>@!4Kr@-XU=e{<3fNc|KQ8jms{j1?@fsGQ_1vbL zm^p_yKq_s&dhRJUWP%~?X*xo9Su{PSK<`#91!B112%~iTcAj0XTPP30Iz4S-u$(&g z4?6poLtVjiA^o3)Z-l%g<2>*)!7H|G3BRl{9vpGIxlNg4?SB`1rn2)FvGo4n^HmS+ zvpZdEa->FxpDzr!)3L$R<1_E=x!v8FX#6~zy+4Bp{l#uP*3foh5qH`J*`%SteVY?* zTQO)m)A`Ev>CbDRvAlJ&Wj!bgY>PK07w0!7WpmmawndF~O<}~#?nsI=%84%Pe>=mV zSu%__7^)eM8#!Zl%3Rt`z{_~v5iv!qu(hXBo1PlKt;t#pBDXIp!_X5Nuo+t?3J;#q z5Zx;4q2e@m=rglP*SQl*4{)VnbU|~4lkXmZpkF3j+sN3rDD&sn8JTh~Z7j#quM0SC z&YiL)?uH}x$ZQ3Sgb3S&VDT3e^}wg)&GFp%r1lwD|1r8=w^7|G>+!$i&U3UL?Ph`q z+nU4nrf|jlaLK~(yl_K_y0nt@CUzg11#1k5Oq)BqUBsHDSk&E&2ir}!kZoyx(MZTya|ews%mPzonl zmB!x!1;xiBXB=G1lF(396K^y6mp^qSG{S1k_cgv*Si`Y!vCwE2HAJ%xUK{(>dK(%& z!MSjYwQ@;v_F!ZDj}n=$Q5L)qW(4hgVWRWg1p6XkR+k4a+;HOyHy#bMQUWW-U`xM4 z3Nn2vzIa2hWfz%niy@qwxbev#vlBp&J<9Kn-iy!NLpA(Gb~o3Fhd0B^&vLXxo=NRj zcJwzMXO1$XdH8eOkvlk|Q^gP8M^;_^mRg#VIRFt^{l^472sR@$SaO_giK}oR9AB3k z@q4%fsX@`rwjGaH$b#@3f{yMxpg{Rdklh2xFf}jSVwp--)DIsAA_uNZ~M8S3DVgYUtqNoU0Xcd8jg|3|itr3%^xCOLfpv6SUL@Ep?rJ^-j9> zQ-y5_I1<&yVX6a8Vf{{FeJ+txjAfVXm2E1k`8QHn*LP5usY7aS+ZJ$6JGIkM(aj;$ zzRM-sRW-Y08?|j+pv#EL`$WaGr%qk=2CleSwggXC9X!a1=dR$vj?j!Ou(Q#@+9hiPPhfP0(S$runsEJ4kIs zb~MK2)(VNgfy{D#9o{N(u5@KCw~U>=mycIR>jayi9)qUVNLxW&9n zR)Z+mx0JH5y*7NXF4(t_e30p(Ubs&KDa^>};5UE-*DHw6vK{($um)f*H%r9$e!|o%__vf-pO<^`h{l=Zsi3tg67?f+XWhn~Cu|kh#RK8$xl~ECmLSSCSjZ=vJUp=ml`} z$9-XPu3PHKxzf5^ZcZ+DhMc2%HU}HcC9GAhCA=S#5Ew{}Ivi*iREKHl|Jn|!>Le7j> zm81I29@p=_{rnDOj#JB7*a>n@#KBzdC^^@ZL9ks@hR8X*6SOq&3% zw9n^)NBYTykC^bOIpG$Kt>BRZ0JB-`9cK4Q)a)bHsEi;?^7>tztdl)swl!f21D9s9 zS#^1KpDZK$h*^(YS=o&YTZ0mWTs%Ep=Qkey44an3@!8*T^JwRfuXImr4m1%1ock`Z zXyYr1u3txB_PV=vU^2SV+SO^9Y3WaPUYwr(VCThn`j*a%GtzJGym&==W)X#NyE(M7 z2*`B$D*-GjqH4mXKgSGQ1RiLzsgq+UY7wVUkUcig#0HnH+71ijGi4!fVf$Vs~=vGstMJc*L+*R=s5fi%HMWN|Z zyAAB~q}NK9zbjofOPBAEE^CWg0%@<#>LU2Ro;sgSblt@Y{Qn!3KHdJMu^+PNb@#P4 zAqPRrO>&&a{wI#J@chBXvnO~1LH3cY82vzIJHPVGMB4*)^I@|(BBR0%%WWek=RCUh z`w#*P&wQmy@XYs!!RSy9PWKsHk@INZNrPt}na@ZYeZQ}rY2wOF18GS0^HpIs7=oy|Vv=)tU<+z<8_n(c2FdVmGa>lLK z;}^6oEpAoi+&a{@RS~y!xS!GcBW@jBIc{C#{=m2i!*N?r&bYm;oZIKc?T=aQcnwEw z+b(V|IVrM_)UpFPS{ZSx=gM(QlKYBr6NckfN6xtIKbE5!_1hQ3t)ZOTCUM&oaodl- z8~vKEo$2GsaqB17Yutq4xE&y8-0mpn7Kq!SALXQotfWWWzUHJL;$f_h&WX6K6cK!z+V+H#f}!>z+?Gb%wsYmU?Ifqup^P_jj@veJ#x0iT z7Fol85w~@DZV`OHxD7_!=JUA1=uZZmOqnLG9Jgk2TaBAA95+1xVch<}<1+$ut?~AC zal1OtEo$3Var=pbk3K-Xjs5Z{Y>nm4$FB)f4cx9^fveT&ippR~zasx7vv>wFOwHlx z8{HJ1Ozl5i z=Qm8o6hfO8%(zB^LkE9;LpDC`$qVR;lgF`#E~}YSRppvV4VE`@eqO8tQ;T&VFV^o9 z?e>gU^tgJaW9#w$Qz?w``02VqZ+$vb&lx`V4g)N`#He^0Oh9e%uUBR%!vLJ>;K|ts zgQMA&ig0;y{>!Hr5DRttwb&w?lZyq61zpLVs8)H^2dz5z;q1e~P!nWZLeMbj=Hyc8 zv6R9rr`+ab8cwr})130r!Q;Med~_u>6+p7dNH&)b6P{>u1Eo2+4w4NIn1 zl?uobgkF~J>b~0!^8NY4(N5JP$b+u#GoLmKdGm2aZ-KEf74uY1$YoOf} zrjv^wW5C50EKaW4a9eOxcZ-%Mmy3RLa!umVgJElOwT3#H!dQhc0BEH^PANd2JxE?% zak_5kmhrumw+wV8_W-c%l*M!bodHPlid)c|)H6MF;9e46nX6p_b|OGXj&4) zlX%UE!PCp}oARA-i=`XV!b9e$LHjasWtWR zv+iOhI9+!XykFHIi#&io*fQb9zHUwY0}CQNvv3uU}Tm!m%{9Qh#C* zOJ!JH=!ARC32*p}6vqrmxTcwZF(zWp6BAL7=Z&YRq^x1-DiP^6nn7iwBOb+Ux&BS} zj>i?F6uiPF3P$9HCY$A3qFLUiBO+qO6NJh>9#K5ejGQet`4fDU#}iEc1h6=e4r5Ve z6hJGWFb4_^MuD)PG^QaAcM(k&^@EEqpJayCd)LYW7vdp><8E$&;zFa?w4Z7*7YPu6 z5N;R723^VRqT1`irNzm45MN2%IX)bi&-F5{)y`IWXEE2BvUQ_+4U3c2>M>xe2p3wS zaAEm|d!le*X;HY~V}lM@I?Gz^!iZ&Vc2ol$e3gT@I`~!x_pVzVVbR1EP1cxH9{}$K z7bBVi3{9U5N;OQABs$Twh!<34uA~#Zw<3+Kzbf#8bwm?RF*fIH2P=vpwviWMj9uBp z=IL(i2NyJY1VSP6G2sG0D*&7Qefv(1Ac*D7skIc;TRYNA`n|Abyd<2LeZXX zW4Bk=F|IV?T@g)J$XKkN%L!M$8cTF7gXC0oa_h|EfY5Wt5OyJ)7l!kegx{k#R1C6| zI)d=KDYL%bYuUu+_ZIfGN{eMLV5U$L+v`L;mE#8bKau8bNVeti`7qvc;lom<`zho)EPGdClm_uOI^mb>s zuWm8V2d&R*aa3H#lggP(QKPNO)PsBh%X>V`I!t~&zTaL@#h|a<*guTeb~q)PN*B}q z$)?gZ(NsD_4du(H($%n7W7F1JMPa2&b0*_iHp9unl@|rj3Z~LmnT(lV-DIqurY-Yc zeuf#5>2yvRGo08QW2OcwFJ_<>FiT4#CN5hQ$ubJ97TD0U+l@lfD1cT#VX4*Aivcvt zwnFRB+gn-Sx3U=5wnx#9Tr*QMK#hhIMzJnjr#0_NsvVqt(Wc?c#RcXb%Ho1^H$(3z z^!#Kgvr(A46OgxLWfPnAs0x;hKM?jwEdy;M!0)xRCfB+tN8QU*Wou?(f@O1@s3?SR zbKE@5RR+q92la`Y|Jh#16_!xdhJw1E6#>?2lI2IIF6D1NC~I9ZPt&{)eJX;x;^C5p z5=g- zt$@w}^0dyYT37NcN%ocrMgPlqYshpTkai_URKCsa8Ssn%+u>OcWE-5UvDGna-wgKc z$(mYnq1@=Nap!_~WLC(VfKbyM7;Y8aUKgq{bRt8mxIp*#mv^0j4#R$CdS<|&5C zIwmrPv{=w!C0t2buAKBIUtz;YSqemp0wu+jo;_%21@)u-7LQjJR;J(J8J(U{ZCeX@ zE@CGC;;T*;dNfCso#>}?yY#lw*>vdih_>zHi7oEgm8%8`cCI=-vZs7IKBc z(Nqj(ZX$Kg+hDbz9hVM-R&Ss>ckiHy67@8$tDnT?TE9N*O%7U>)-vuL9xm?kp<$}k zxPzJFZg(mGi1j9qFV=txSa+$!E#y3F;o^!k?S-jjC9Li4#4>BO+_VtXYS0S!YQ4J@ zYFeD9R+Uj;r+<}E(AWz3&SA*+|(0OtEZC`9Bo{>0ZYL$3iv0E%SoZpN&-iXV#-%V z<=x5Eu6(5{Pr9oXCEJp6d)cm}T@k%7rOT{hu2sH;I;<51-;B2<&t?okVM_(DB22ZD4>JqiER)4J7ofxM4#Td~TefMkfmpmXD7 zMVL$YRFiOZP6>B=1az?@l}5NSIxgY`dpjg37^Q%JqIQ;)`e#TeR|B~kQiA#f?6svF zm5y@dsSQ&X>>)>OkOKaR+6hwXA19%_$zAm+;l7`M#3tHg-$UNhI^$@KI9mHD;Gbw6 zAcfXm5@)ft$!xU_%fPe1gDzlGPXlmFA05;o5 zEWSVFqI=J%2e5>R%|5CKe1se)An=JocgqmQMLnl*>eQ+17I0Zhi7JxSV!(uTiviPt zTMU?T-H?ZrnVd+$0MiM zic_>8yjlVighz#5H3oaoJ6{>Zdj-rntLwdCgNb2DGZ>d~&^j-N~eYglX0 zovV*a7us}T^96S;@??`_tx3(ij+w~XLF-%~BoA-B)vVKx^7-28>2NsO>e=eD3Yhk| zY~h>*SBQ zzw+bfMou1chm$X}?HNBkG(PS0NfWQE|J$#(_?0ND5*ZT@ALhNCv{Bv?*Y16%d?VtY zJdpf3@OzP8>E5b)@pYr*PVTnk)HVxyxl%D$3W7nopsRu<*=2_2i*UN^(2U%lqpGoM z4luWOFZWj9IxaIx^D9r+9R+SMBA$1IZo9*ErW{-W3%S2yhw7FRJ}UIYy$g&edneeM zT<2)Y#TC%3orGp-G+khr+oj-Ams}XumQ4sU#<3iQGUrP%@$N+snvjHup7n*68JDer zL9&2&;Mv@w#ACn87}iG%=vA%ES5D7OwNbFU8W4jp( zg54Ib{On&G>@KCiQ)^YluH<4>%muqm0(KL`7_}4dMJj#F%2OMbqFqN&FrNZXZJ{c% zr>2UzV0V^)+@llFM}f8EJ+0y>u$}@>E2(PSs#CRG6j&`Fv$ufdQD6+Pku8k^D=83J zAJmN@M1Fc$cyzxhA;o9!J6WbUE`s|=7+1) z714@~qXLbGHvBGDQLk2@axX;buq_5pve1lfhj}|<@QwY*8KNlbub4z`AFdcY31yEk z*=WD)9*1om6gUH;!;rP0uEe9Uv-_HM3gqx;TIT`N7ZZ{LSrSO{Hu+cnJNm2bGq(d z5I0}AOvu59C~?J+n)8P$)GQsU(5GQs*XI`uQSawxN;V!a(Lx(24_05*QvGI&X4+^w zDVq2-;+k^vzFYXbx>T2$zZEg$=kGaOML{G7afsy=y=Yj+y^Doq$gLJYvjBlEXF7*0 zK3gxt@uwM9x<#;2XJbs|+mdx8OjEn4l&4$?(44ok8^*nsW6-arz|+@D%AwE0TaLcd zw__nKQ5F-*wq%?H7JlwJ7flS#OF(s2PdMSzxoMoqtf+mc5GEZV5q1!U5VnmrVFj(b%Z z-KlbJqvk+V-kt1o<@;T^->BIxAd#Seev0lPKj{>`l>*Oeo2s#=plZ1(dXs?MZxXP4 zie3kJ(kZ%w0+B78qPs+@H@Ti9-@S+DV}$W9Zq{9phq zqrhu?xvZOeZnEy&W=)HL-O0rQy3LyTWQ|mQv!)4 zKwiu`vItf~GO07ERQa}K6-nNic*+-GX9_5FCNZ!*{kZBgH>$-tdNqkNIY${R&XeSw z$w)-I)R~M@;Ax*#MQ(VhVlEIK5|By)mO7II04H@O{S=n>E zlMeFUw9h!Z7;zS`i2~27n=HJ#NZ{2Bl&f_DvY#zrxieV}*vOW~`)er>*+OTM7Aclb zB$GIkm4GL6CaZuWj?C)v&ctC{&Y6gXcP7>>=S)mnMb5-}tjL)Rxtek&=Ui5+2ebdY zGwJ$ap)+a1xV^@Uok>f604#O`pqYdw`kmkT0(K`C3h124EV4!_?@Ss1`EHvhe3r$+ z&pDHN0lSk)5(Kp?=S+;c^Mz6v>WG72SsY4xpDloNiO;y)jqbnj52$hOoc)=4WWf;y z)nixxom>(}DkR0 z3g(iiJg(K1aqXc_%_&&|8na?Mo>}D(nzeax>@r2{lr?a8kVmb>26fu&t0&;XA;7Hd zcfmk!Pt~247?i3T$tN~{l)1~VENUrrk}gNmwDaJ|(#p%icvb>*ts!{lmu@ZcX2Q}E zRFIc;YFWo9Y9_>OgiDE_4^uRUuZbhbEQ#5ePR>ef{xsS{m?HJsVf-@nCN}F+X0NW| zV&P}0Sw+I5>S7dYc?k+CuQip|ma9C`^*L^C3S&5(Y&bbW$FNtbQi7wRA?WL8v+z$~Eth*9$4K%PKU^ahylq&gkHkYdFfPGH1Kcc`bKRMtPmu z1Fbsv(d;9^xh9Bna{z$Y;E+Lp4cB#fgeDm2nNXb&Y{nzE@XY2s7`Ez}PF@3{!=$=d zyX?F2&`B<=TklDr3oEX}yPHtu{frlOsqv6-$Lp zyg|lAx3aBROBCw@+)7R6Z5?mqN(+wsmFzKp)y)+#yUzJZG5g=m-?!iW?(v(cHw1v# zYFO}3fBE4v-+tkSX9Yj%;KxZ${i`|w_aot{yzv+f7|;rQn{h~6h0SL5`IS?(cw zcL0)u_M)Q$bl?q=mAZH+oqOyH`5)b2%GDMlcHw6IgLN1FQJE0T3AIIPD(-vP)HyES`|YyHaImkPpROR=LoVy+puQ7MYLV8?akPA?WE4`^o*VoI~6iEHkDnL zamn4Ymq51CD78#7_-e$5BwW6&y2QHsNUW_n zYZme8n(haA+-y*@u=512ewoZ7P(W6fkQMT4Rbg=hB7>P^n7hW}rt*s1Z`|FRm5R*` zElUU+lqR~fUAyj6E$7tiT2yl5seB|^v46?bWFx6;9Em zgzZP&L!XdTu3iIbDzDq;>K1Y$hOT(3pq?9F#lE4u8qtbw!YEqd2Ai_+#O7MJa+IAZ z3=$M67SdiDuEnub{?tEv0XikK2XsyUJQ1&KV)OstSJC+t_Ns>~ zRaQtk?}w%^si8=)X!YjkYtfgwvQ0}?(5wp)A)wtBaCF}c))Q!0FScm{bQV0@dgPF#nhNMVAXR7M@Pd+F zdq|c-9W+#l6?VJbYQMYe4&H-$Mm5|S9N2Hy6`L7kt-$R(+1?NPD6F>Qdw8QIp;N$? z(<^KkP4XTb?GnOx1XB7Vs{x}wvfVBh&50H5dQLo!fNU$NTq?ba|Kp#@&6+oR3@OWi z2$%~c|N4XO3j)_?tFG6V1g_^phKWa?tQc&fQ6e_}Z%V62(N0AlHvtdLSioEHJg!ma z!#)^@L<*ivJbF~HYToKGGOYp!n2lF-_D#R3=?2;F4K)&|nm0W;R@~C>zQ$lxdi#^V z$$#v_K3O@rKKV`iq}0F9CWYsyNICj3p7c6!avRI zf^e6{dZ{ZqYv6&p8A+vjl02ra0Lm_{dALK=Vn^P#a~7{4+b{~Mt}OaLB0%IJY?gs2*bC->^Lv0u4IU((v(-=)fU zd-GrL67{}zA^fut-gTFjQC6R!e}L+U-b>Y)@s$K)jcH0I!fYOeU5BlU!QjvXA8lFExr^LxLZ=e_bQ&M_#Qnj zA~gL1#q1JjIJu%+zngm~?)goJHvVKnm_Ldpa0{BuDx3+N%d2X2v8vWeRsZnu0#*GL zlw=?yB$=n$mlUe$eh`b)^v~SKE;Npr+%-ge)kRHbNVJ&)%DNlJ{sY~r&gvj23l3pA5**hlajxKbk z+a6@Q$*Mc-jr6k*nQD6gP_)Sx@!F(=KbgMqP{-Gvy$8jw2h1K*SF*#Qts(K#=UQKb z%4xFtBfHK+nY5OZrRFLU3RZg@>{Sq(A9x9$y9y3P-RfNIqBu1cgXVcHC9C>CTa~)( zG7p8Xm$kEdPp>JPH80Mto6;l1~6OB@a2YeiGmCqrL`} zkCW9O*+CCQu)Sny_yH0M`aBLI3PP*nDwmoKqbV*Y0^&}fPx;37c(XG(DZq;V5Tk{_1_8&fAx~&tfUU&M+3|NoRc-<}}OL38I zo1AUW_eCYT)h!{@ZG%IrBk>Kd_cdsgZH2jpYad%IXm}M_8m{MSz^NtCAG#DIZ@_lt zHN8}Zdx`p;_;IzC+Jf7 zw&aLd>@|k7pC>+sx#m5i7`#0D2f;;Nm&gi_R>F+)tI_HXH{c$@W_t+>^IC*6#}5|B#E>1-IRG-+)GyS724u{M`4dI zDzU|#fXxq7o*}fQ?BD8J)jq=J`7!0j|idBr7qV&P^x*{1*yXgv=Uk#MT7o`hTT{^Jw6mB>n1Phs+&ifR&$ zd{mL}++t0)0i3D#DeCY3L{ApH31@3Qd}Z<_HX> zZL(^AfX4rM$>h)l z5&ASfm(i!tygn^#box}2rO$6Ho;-qNl^W@j_`OV@%bh-3C)Z~SVAChWCH;I7-|mIJ z2GAz5UZ2fAOS|WgrQHoA;LP&{=u;5+v8%mOnL|yfb-+FGda_=rNna5fvwRlf)np-F zLqb8VFDO*1icqRCyNptW=9TK5myA^HmQt79X-ZWIYuY-DJh!p1S8LXIa#(BCgRMC< z)w=pmrb{Z5hMF{4{S^_2mfN1dB@yUw1ftczu^mQ0m->?pl0*ce)v_m0w+I3^I|4$J z1e+WIUFvUqCZ65Bq6nSKgUb79W#j})Cwx|Q7nd=2%{L^|5lFx3kP4bO0#&w^L`hju znpP~u#{M;^H9ClLcjwu(ZB=z%sM)|FKknz@UihL;(hItz>?zkJb;gg)F81{GBy7*v z1I#B@#jGWDMv0pPm#=lj^v zUMnAi4zF)K^x(8$Fi4#pNU3?h1e0v)EW|6bd>}Z_W0`p91dX1GP4xwB{ipR=BF^~O zv#tLpkHqpgZP_ES+%Z5Sko1hs1#RcUwzKXQTEXjnnL0Sh#Ak|v@9QK_;~tNNnE6-IZ~|2MknycCISTm$GfB`Se5?gN+&-$7b9;~%P7W^_J-y<>_yXboeg0b% z=bPHEkBpu{mAVkLT^fG_bcfr|6;?h+7%oOx7)1`GFjA0}KY+UK45UyAp6 z|7|1tyi|v=P8}AWGj;p3Xhkzmfi?S?!rl8Tf^Qdpci%E<7LR(OBVk#ycmpJ##?a+M zzdrWHDr<0M6TTe&(WZa1X2!Q7cn?H`+JthBlB$_}wOxD1hjfcpWnAfH9^8H(;fg~; zdr0^un9BU=@2T4{1P<~l@Gin1aqu%FUW5hCfD)SrnF~FPFvX0@-3a3DZ$J1OKI9IJ z@*Ng`$KKv+FY@jVvi}Z~#x7?&@H|d(P7JvPzNeEr66&ba-~ZiX7W$b>O^L4e6-czL zNTO{fQDXB?;B{H4{HK?A1pc*2%~8S;Xrc#e28X6zbJf?5X@{iLL#7&K8hwNEchIGA z-9gvayRn4D6**y)MWM3=SEHsy){O7a`MOMeA>wo zPK$4IM&+=*i4D6$DU@xZ?xeguc`#*@Ib{vzO==K$qU&e!8s5V9M$Vv*A|8ZQlGyye z!Jq?WL^+$5$li86!Ab2gvH43NUbgp(G=)u;cTpcCCbQm2y2y=!GV4ureV#5tBhnU$ zq_;Dr>VV73A06{3GqFCZN~-1bG^f3$EPwU(NwJf)&-WlFk90TI*}9H-$m}L*qK15+{!@A4%(l0$m-Eo?n+=02fz-iVZ6O>tFf@RY~foT@uiz4`ENW3C)ZuOI#-^jz<#X6b{ws)`#xSlXk|Vl-J3Uh#S(mvwO}&vr)_zmE%R0%#YE$4Fn(ndn|HqIq%h^k zDVr2T@$#eRwYPf`W17-qYEnQ0Cg|h?N=~=HFP00M#{1iYIMyxY<)s74`nDj5%=Iln zWL#(Hhu~P?@6S!;Hxpg=x~OAKqwAf5-jx{g`5$pUf6De1`TTN|`lX%4YxntB=XQid z8>OzF{xD~+;Ivd(643^NDU0ongTLGxzzCO&YknC}pfnMe(q{0<41~}mfZYqq>PHFh zXnAAYnS+Bfeb`iyO;5L|LK9MHc>E{Ca*>JUW|2M+a|0IHn* zdN3Zw4>I627<^QT4M<9W8b00&RODQSdqPMqV_eUqPvJ5iC~_H1o)}t~!toVEE#;zk zkMrPXBJ-TA!#1=P%vja{TbB0G2APsyuec8qmUY!s3QvE7@iUo&JB))nIqJQLU#oh> zMgFntiUKD%nZ$|B+JZ;w0&(1E%`Y+41^@qFV$!cu?gHSLBOmmQIgpFcl<_?o*=Fn zk#NP~NO^f_GxMuQzfBbJDfNNvpB)dPE^v>tF-k?>4~7lP3I?;E4^lRtVkmI)D^4xB9+!~_$E(IS6O=R8_w-%bqw$|oex0;Jp^9`Jz zWBDo#91N_1^UE9fDH{0Nm^I~?y-NE&?wB=A(!TZ^=zMip;oPQc&26t|)J8mPF5E={ zZh1FJ1ZRew)Lpw}CuKrpFeyoFKF)05Y`@52R7kUJJ3Y4&@($Abp}ZM6gDJan+1@Y( zX4L9bG<&OQZ`HK)OHRa|e$FwH(X8lwjeP`8uba@lgsl_%TN05#eG=5 z5U_kh;C*vKcTp3hRi+04QG>D`lAkM_ek;pv9ua|SOk56|Us)TMikEqHBtq?Q4z`(6m3VS@7T02B!k}zB% zsLzU*D}6v=X@PZwQMz2QuXv9dW34?@B^q3OZ(f%uD02;b$G;efe-!AHDmq6Y=5by) zPB#UU%M{+QK*Q?U$TUkPBXil#wM-u9m*87Zmf~-6^fgW+>)dI^6&nQJ9y4t^JT6ug_H2tMTC!zA?EQ6+mVCcyjkaTP5o zHZNgEU5?*@oBX_hZA>)}Ox0O=FFMt5Qv|cbaOd*G=SKatfA)B1LJ(z~d@W z5Nyv^Ybcx01zWUzAON#1TGu1~m|773e$e{;xTlGBRU7T@a*RYc50so>sskd)a?^{- zZ12L0xTgroS23iqyuDm-NJcj|g?OMz;GVfBNQS1$UseGEU6 zrrv5P7?6@F8qePI6jt9)v70Rlwm}N27kbP|s`nLDFVmW8qeHda=8I7>@{p5IDi#Dv zzOL`0BGqEMo>HWt{G6c1X-@b7Ge*{#4k4!w2KG=A#PyI!$XDJ^;V&6^18Poy*D2=FF^G!e}~qKj&S^ zQ{7-3n5c@%9xo{4t&enJbb|DQAGmwt*);&l51$^e@i zP5Op0D{f-2HwEW(y6x@J`^9wltx5+u#{F~9JfjdDpOZb<={Ox)n~&i0sH(4n&gVU0 zdNG3RK!0SVO8o_|5U4c)sHXu}^FKJp#Vj)X)9}y{FdC2~fui1^pwnhn*zL}hxf5d) z=-`|F$m-ym{<01_w9f|01eJ;#$f+D4JA+1C+y zgg3)>Pq0Bq!2DUhgNaAK7yR($A7aVkpfhoH6mHWYAVSTZlCy7a`*U(vW^3F7(XL;y z_sk!GT6|pY_uf`=T<&i_Q+!Q!`vVD2?_F2A9x~@C8X#7hj z{~iI=T{L(X30HmYYNxK;(FbbCoY2B{0euCL%3*JF1+v3nVD{5AQI>~JmC(BFBpYtg zyB7Z1rhjG&-5gdY zxR^(8D?2@7tG)LtT1@1kSeYDKNMn5W#cdpG-f@wzk@SXSBt>2%m-Bp`9cg5mf8B0|s;FcFv76kH5RRYmF4Cry-y5|7Ey;3&xHJj+uEI;Eewq>x1y zJh(%Slm69q#NT7MCrR{tfWA%`=U#peFW96fxrk|))X3=LnTsiH=6XJt@{S@nSgnVV)JHXj-O!se z8(C>?E%$VE;$iF^{8)(I-x}GG1z_7~Fa2?aajOOhqQoe82A1+#GGe5h#bqCt zUP^^6NU1?i!5$L*k=^TZl2Xtq4BNdMiTI@#oQg!(AMxU^(=)c?^m&zVl2EG-Z&z=z zR^!DD@6p>f4`*u{kYlxOJdZs$;=Yq;FY>|RyzcZ+3C=C!M+m7mLH_iNT~p9~Z%Lh# z_6^3fD!GHhTOM{ z^5j0zbz#<64y9!lm@2=a1ja$sCOI?tSi4|(70xrn06qG(grOKrWxQzm7 zy`S&7_xERJek03}zCOj7-~HV`=bm%!Ip?1H=XdYS-_ATW*YL!fmuBYpk9OFx!Ff}= z04L)rUdd7EBu%4`ATDfk&re+T5`XZ9>?zJtI+d@~_7}}sZ^JG8#kgB|^rb}-@`mnE zLhOjEpM9Q5$Tn(kHy{opK0hX=S23Is-is3`$AqZr|Abue3_eBKBQg6uYO#f4`}U+G z`}x$vyEuLokn8y9j`P)K(D^f!)mDN0dF?JNlg$o*t9De3mXNfniG=O)(jNUupKNHmZ(s$^Tr90dyOItWyY0HHjoVvazeFwR8Qhdt= ztaV`cVymjXH)J0>`OM3*Q?HrcFtt>Zf6Emt@%LWF+cf@{s=CvEK8Yhi72Ei>P=qo5 z!UZPSj<08jA3=YvvQ|#O3$YJ;URy)qg+Ka0VPl-Cw8q#&$&i3GfKB{9Qd(|hH3i(E z&w;qel3@F~Q;6>#_obxJs;kfbNNz`cC0%H4YkhV0&DG>`)$`%hx@io;l!MhI6W$BY zHfks&-`d7OXI-kc;K~;zVH?~6{{^Ou+*Hs2y?6&Kw z7k4|$v??oIXC{xlC)ZkyRNU!A7X4&my>(t;A4*vonDwiMID}^iIspVBGDE<+Cy#hHHr$Xi7q@aOG>dduQ z7xEcjwhYO8^u@BH2+w9uh5PtE@2#r$%MZ$`ZoSba68B_rp+?_l6N!7&FpJ;8p8|UC z;x7;oih*|@*k%vqgrNK@2LULLpxo)8m@DAQ*>t3(y{a&+3$40dWqy=+OzXX;FHv>i zbp71Bk1unE=E85he?5LzgMH!tQ?fX2KKD?M4w}2Mm*3p>`Y7JK_Sh?ZD^PHc26+_3 zPq_HQJe&i5>g3EO$8Zz&9D?frM#`mV)6%J@eh<#t`Y}VvhT)z&Jrr zj*X9zyH4y87yA$oSbQb#V#J33^E;xHrl!yo$sXdgFHhNXuIyPK;~`GE*wZ{bM8zO; z{-b=p3BEFI*MG=a_xmxFgJ}mIs1&=xvEk}$;(4>L2a=_J#YNOs%@WZomVywQZ$nYC%^6C`Ubssx(-bDs&B%8kAtJ!mztpRmI{xfG3_}xz%0e zz=!^Ic5S%C(oVqTAc}iWFZ1?G@A2Q#GYawF*juCBzJS~EgC7xbH%%-!(c!rRlRuWt z=={Sv9sb~sGGI(CN0yH4i69K zGRL0&+w50QE@2=+vT~>!BsnZ2Ru+^t_&(UM6jGIjR5o)qmM@Ol^Fb}Q^K5v|^J@xn zQv3YC-SZXqv>S8I4b0;x_BL`%M)|r7!nxSgOy(RQqE*A~^MLr%LiXj`x#Qq$w(@>! zw#>{=3|;7b-a8gwj1ji>2@G9kRz_|oGWnod8sYcs8n}DrC-yfRlG6^!m*+CmaU`ad zrI7C^%nV&e(5^r;;Tu?a-aS>vb?A5YloyiCJ7@Rraq>Y&W2|f#lGqWofCO0{Kg|7%Oh5R@+?V z7sM(~h&fL`aehVfKb3o*o;zR4)!goj*~;%{cYMFHgrgJGaPMhJOM&>k%L~pMw+JVl#MK=q*aJZdIhRj=(L2H3LYt*aTuL5VjhGw%qpG7)LcDZ3bV*4KWAl zP9Bo0D_Cv`%UvAUXF}JT?n@n5APs78(t6}`zW;mJEREV-_6@qWX3quwpCbdC_!`m+ zN9hfiIPD{4pNP=_P(yC5w@^%TR>9H-bd2%}3L4Tynf*$NFT5|gFe7xqiq=i6rhU=s zg;J?dHTbC!pO@igUnnFXC&Ttq?42>kE?z@8@(prQ4^!BtPkZg=1#Jy@h$xd){cLb& zgB~Ra6-Ri)?@Co8L8B&A&0*fa^dgO8t9}#8>(a#7Kl+xOd3Q6W4%q1@Srsra-NvRV zy`~QAb8|{CY75-eGPRnHX}=vrX~wP{=T})NrTq}Qm^R#MN0Z*RE4^d?yEGeqhG{|j z_?BZPwQ$I^NYpTz9psRtLdlQq%%(=8sq(4pj;AW$x^!f2#ykfnPp9s=J9_i;|9%nF z-HfVPT;pbRGwNxgL?_&v(!)*u(rli0#}w(l8G~E)h8IHctP*U@Qj>*$zo3mhxGcJ_ z!ig^vJ*fi{f2q5zx;r`4twbI^yY14{ydlBiI za3FWt8J-p$8|F1!fqatfrlNkqoRkomKJ$qyb0bQwhk1(bHdYbnLb`M-U#FxCY1$gh zId|=UohG_<&t4}hp$h8?!0rNuYnT|)&h`Z5Xhqm3bIuRANS5HasxuY>ARU8eaxhx(bF(!4ZJl zZEeHvDKiTkowXO9tar9jP$(j55#VkfdTy&T@Yrf_7(S|(5_pk;KQwWGZt=#${GO>g z%5SxUqJF4?iJh(=+y7>#3tfjMNtV*$q!7y2$oO`dBenGSU91*tKDBSF6$yDkI+A|! z&jr-fJ$Ivk+=-XaPnmUJ$$r(mny0_Nd5UA~PG)Zqf`loAGmD(O&Y~Py5(u5pt#8XlpJf(9ytoleXp+7aa7sZTNP8A(Y*6%8a=_6)e z?q-oMLd1RU5QUIe6NC_ieS$a%JHaCam4)C#Jj4cqhojho1cel_>PVM!JbirFi21kT)V)+{HR(l?<5^^IDk&4Hr5fNiV4<2PEB6B^kjH7 zZ5Qg+!cRVJH}tm7cBMOL*)Aqs_^uCMpabjCPPoG}pEB0;TmakWGm?R~b}Z~JHspvw zMXdfRZkZF$x(bJ{9DS3|Q|q)qS0#ZLL?HAq1lEC${HS{7Sa3+936?YyEST2h*_9Uu zdAa$vZ|-J64PsQNa7LvOgNVCkTL6$6n6r^gSW0Tvfr^aR@q?cH#{Bt5-5ieJ<~BEP zzGUite=iItzV%kl%`9CvcODNealPaa4Pb;1tkmzn!9uO3xl8ZO-6-*L!>8C#i>V}r zBCn9KF0Y-OH|e$WxGA%N;_S&PWA-5dF2{CTB&Q>A*BssV6S9g-K47`@C$oUL*BsL^ zUfpqxHgK};DZ%q?be=CvMoz+2?^3sSqjP)ZQ6~DlQea(%%j)Qwd|p=KDADV@-EOG~ zK4Ew2zH2S{XnK4lm10HcahVsJhYN~5=vqX`yvn5XY<8Kq9YYx+*<*T+}rM$E_KUnZ9wPE z*cQ6CG9A|Ga)+?&A9h1pFNS!B)%Kyu?tr|kOXS{a!NA#}m~Xq$d|TO`yi3c%#xGxp zeA`W!#2&$?x=k#m_M{Hnf+3WB-^TV3Ifi&~vO8PhQ!~$2i)bak?t_;V>5)64yV11b zy$vs9BVI^&apuLJadS0N1&BFeC=&fna$8M~1EXB3EoMy%FI0qh;#|b`do1M-JI3y{zVt z^~grw*vs#ks(yZDZUNK;An}oH6bd%%-!AcY@rOpq=R7l&kZ0x+~+ z6+hGlZ38Rs$EAC}-p4FAwfSV%fLccK(1juu<-ui-TauyE5z}U6C_zSPrfzlKenIE z@GbhTbUbJ15#X3Kv(e*?+UW5{x6wlzJX$U=yTS8~L~9gp?4BFHY^-*~Yo61E+B_2y zNzvZa0#j9hNdaeAwNmqy2#Y)5Fr-T=-AF!cSDHsbe2a_U!XtOH9)oRd44u6D20beZG zhmA`YTpQU!V?CKk74ujxw6}44BT{d6>~<*HL9??^*g|3m$YvW96EHOJh+Rn;LCyU> zXqEw|IIg+cP43JUi;y&rhs`2nGXP`WvBT09A(c|-BM%xv$!@Y1A%hYuLJH5hn^jdT zo}l9Y-CX8BM9z#Y11mp{%Pa=9nn_)HU+zY+t(?p3SeLs|B@zv$^O^<1d(8@(*Q~%H z{gi7Lyyh|MNa)^}c0HB4ZgD!eHn^dvfv*(zHO*;qyHg`y)6bJSPbubZwwSwlm}*hj2_Dka_dXW6o2}FmjE~_( zD>FQLO&xe!rE@y*Ldh~ooOgD%h-E~TadtvXWE{P}L*4RtWh@9<0%*MAg=&>Jd;Uz_ z6TO1X%qoR%-omMGH>0cA*6iokvy}vhWZpvN9rOlzZKVdy@QMO#eOvywWF%*J^F~sR zk+-z-1of9aVc#$1f11_9;2iS&&uc01`9icJyp%M)iT8%5v}-v>o1oc(4Y6<)5emX~YzIo~Q{(^iJo4>#Rwcx=0^6LerlX1ch z9X#o`1@4%s%vH`XsV$({U{d>wJ{caF<^LbI+bB?SvP`}rIawh}Jg3imR*!I!(qIm{ z*~r34O8LbL${Y4B1unmrSo8Y#UBE9luiyK|PG0r-MiCzRa>L`{KkBmOrchp$h`d(v zp!%4+S_1O=pYcxP@_NsIhI5iijWQ*E`F6hKl+-dB_LAA-lUlPUH#|lI?_u!K0+U;^ zkKMK{-Mha95PNKxrAgtQ*zkj~aV>>?YuX6Jzv-K`Q?$4E-3YctbT$#iKk-{1DZuYE z4-bmBdPR=-i-+A1s}X`NdUbw7SH$kdU?>urjHoY`{;4niEPFLifr+IC3H%!U6Ay+anyf|lr5x@+rG~rJ-Ihkn>2Ox_?tU3Uhe5D2;r};foHO((g z%o_7NAuy)3H36)6h8YhkR>OeCV33h|z)e+&FSO%6w^j8mmQmeni-lSbso*t$TKW_d z%lj&NUmYK(2!^^{Rh}?T5srvMKS(>oqq*{4;xt#jL)_tM^Q~;f>vykx%FpZ~Ye65W zawcD$u$!trVYv_*i6Ld{v`L3&?M0pljj1pjmGaK4#b!U7vS`e&acMaXs@eJ8TT0uZ zv_VG~UkDE2@Y1m!KdzAVr)-w3H*gmGMbcn72$nQNmo-Fc=o5$*a<5n)Golz&RFhBb z*{^MQ1X^seh1o48T7C>(XrxJGzVAvwt+cTlh%h|Dx z|FSHx5~_@bcxY)}QHf};J`}3_k_u+)zI2&~u_DlA;7XAfajLC1w7FVn?q;~RCl=#O zGA2iMFn6noBV|ptjJ3Bq)*_>m9tsr?Sz4|VQ6Zdav=4g(GuMxU2F41hbr_0uG_e@SB*@shoX16AMpnXETh0HAZ{-Fv>Y#5__LxcinlpL-x_QctWK`adWE8ZKi~@)BQ?6B3 zvrLP>Y+D!oTEODFc{95k>6&e{*k=p%S}5q%U}qK@V_oOKCHAuveJSZ~K;F5WJ@xeC zx!ZeAUbrj!)w!x}Js+{Lz~+_xFW1*3U(46Ll%+xKTbd+s=lq4t{LG`doy&6#Uu<1E z&$mvQOVY;&4=XvdkYkULKAvG8_d0D|+c3?x#l76$rs!aAcV^*A=F-x+2Ro^6bLP@L zFQltGQ-La1Ed9I%3AxGg+zrBQ=+S##$1jIYi99OqB=5AKy9{J6?FQpF1i<2eKTwR>O6F`M@;rw&N+ z4fgVFnM-?La3*tENlS0fWfXDG8y9x|Ak}3qFFhYnKthFS%9DRv<#vdyhlaL!HTurW zd{QA40*T2i%Q$}sne*h`9)sRPS_(~W+p45K#XZdMD#8TAJdqiB#!?U_oES8*n| zy^dZko0(;!BcF4=$LHNS>#w8ZI~QTs{&lspE4a`>rij;HgV$d(Ub6}K+=bn22>zPe z{1}(2Y-U+4B?O>VXyj^!;R2f!FRs&)UAAWQvAZsw$t;M|CTV`pTk5_)CB|A~{FwGPinT^Dxouz16-OBda&^etWpG~LbFEAbZS~k)+HY65y)-r0PRqd1 zShVdNJ&dt0ZN~QzYt6VRxZJHJk9go*J@ZwK;+G{A2=C5|bD8;IbMx_$H!zJj{2H6_ zcT10FswBp+f-<;wha?BKo$Am88ug$l=HxxsTR_hAix4<>_u=CH8hEZ;LzDN^Sm1Uj zc$3eam_8X;dD%TF11F;}y7+3rQ-uR7H|(#oP+N{| z3ZH#kUUIfp^FCM*>bSxtWmUZJe2TOl5(Q4xomHFJUyrn8zbMBP3 z=<88&Pqzc47YVN~dXmo%PcFV}-IOfm6dVaOGdnnzCTox{GNG=Z2ODO;GGf)>JO3W; zx}h;+zn!^r{5#Dc`9{4qhv>*aYR!w#)Pnr^#KnzU-4ng*EE93f1)*SF;Bm zaGTR21sH&1AYvpGV=l|(%4QLrh;(mBeX+OT)~dLy>bIq&UX%iR>$srQ|IPwjjD9mz zns!%d51nlHeH2ba3@`P-E`nK%I&Yq*R<%H z>>XpRsfWLs-7(VIy7VnyUrhWwId{g$=|jg%TS05+AZQs-ClK`0t#)dU>okTg-1AEH zO4qI9XZ^bGAbs&y_1e^*t^3PM-i;(dtYJ!t4h=*P;1%CcB zPf|LG&so`$kQC&UgBmF^iOZaeBfh`NJo_dL_G(Jvs2?I_8v`yx=4P zkYei0gp$%2C(ZaZt#g>Npd#=k%99%0B^hyt?FK^>TEhcCU1wo zSR!v;z^?0!iP{!sC6KSfKWU<-N$iQ25Jbj4%qTD@vG+wzo>|Ir**%bsuRSqmP(u+$o z*yHT&3i@vh+4~+U6} zY-t*ya4_cQkf}47XRWwqVR1vkxrmj4yH_gix$%k)s9GsVSo&rz^K39cy7!Wbi-m=2 z#zUI|hbWsF&Dk4^!$U0=TfD$L)aIiZA&)05FAr^12FoTW+bla5ITtKb4{h<$KslJp z>y1U`e5+!&M>}dN-04}+3++d2$tQ1U8Ior*N2U7NoyW47hjN+GY-S?6{cxUNx~QH{ zX&k6I{UHrK&t%4wH)k)KGh?X(4>$vrvr4o1PD4nH9kRaP$j=VhHC=fTkQ;%oc$dw0Dg2jWjr*?V0m0bch=RZpgiG{-2DP%_>6;3Y}aFE+%`Qzi`x54X418eHMceXnaq@HowIyknahl4 zGsm;rPcX=3f8zsyhfxCjlf5VXhUd3pOz7Og;=nSV{q&!!8bdO7qo8RPTO|_~235s_$`e4RU2HXiX?)%P(Y;=f z^jVk#k14SGJisS)Ku1)`HFZhqV5CPF>2M&*sc;6}wkqBT0h6E+RN>3Ht%|DXDq9t2 zl_xtkyN3sTlBh2sJ~gNt+M*Vq4?j*m#CB^YCeJu1iM_Y&d1{Y8=~xWBZfRRJU~iA{}n3pKq`E8Vk-%HAkUIPpaC*U zD}w$qG32?-!vmR*fGqgzWVl4o1G(s9^IL6K-wdy0nB^e|uDNY}OF}_S%0Q!NTZL*P z$RdKiV$t4e5katq6+MlihlN$By9;MmY*(LRXAc{z*j;jJ%}f$_og@%$V6- zt#!$&GtE6ZI=VCaP4t0;l?ikaLRt#s< zJ$)4KqZj}=()@OqlvQ=m6{ z*VNqZWy52xYFWUaoXad1(N53W$$RYivUk5V2$l%nYFsbJwnjj{M^8o^~I zb30FGGe_~k=Q2lapfPZ%k7mQktEvWst1Wg?;a*(5Fx7olQGkA@yq7lz4 zX31da(0Rx^l?WzM*85%urye-hCYLH!m~Ew8iJJ;aa537hbmQU& zTpnr3kADnC66XKyE_zcct509UasmUGLO$(R|3NZo+&R+RQCae4Xa<_4s^!VLmj; z#IN6{3|k6uZ78~(^ToCqm3H+tx^GpSf{25q%K8&tSx3Xv81MGB`P8zE`?T@J6j0m` zM5RFD|L^CLcLzl=yqnN-5uUb)+K6XIeELzB4maRP3nldHc%+sFmjcZ_Dv4R7Pjio^b--XnNNjFoP2n47~K(bup@Felrb$paM3{30dp|GXP8nrH~V6LhbY6H&38PBOs5FZ(q<=P^{(z?`YS!T@cJXVnG z&{%pI8Dv6c_@+OJdQ6i(^xTS$)Ww?CqM$dPaqTY$$ZGoC z9KQSZ`PmQ7SP$v;6HI4!o})kYkUL5bgv@Pk2>Kg;NQ2c56}zVem;r?50HCCk5y{-{ z$)JDqz6_mWW=cmAF>j{t#reLQh$o(sx2|n?Zuou08pU3E_Zr^5mQp!w^tF;pwf?w?P%HfS<4yce~QtJwi{j zW(0tCGa4Pf-btApsd%R~Y*a6-arOT1)C=TJ+l}dN#HQyj5W-2xK`2Yv5q7=)l zf+tE(wc)VzAgASHkL^4p*b0|~1?0N((MR6Rj*M=@x~G_oKE{tK84%)M9VwrvF;e;< zrDtZ6Iu0tQ+Xy>**qFvck+@{8jh1dAeS#RqlR z;Aj4($%Dii<2e;GkMWMDuApEW)@z$K2%1*enGl}YoC9hXgF7tbXg(?(vPf9kXy^rO z@{K7u`|t~mNsUgpq#VvB|0irtIB+N zQ=&Gy{cYMd!EwDC*PY1xGVLMr%L9G}u|1kz8%y`{2=u{jK|M-g;*arQD(@^0@si+_ z51Qnl)5=(6wEUp`V~jwUa8`l$rw$DA#_k8bq4IiYWzB(Z%Z;5D2D!o0hR@(xht^pa zX}QT`XxuqBcuu6mUX@t`V>v>|)A(sicc5J*s!o*{@q?D0Ev`f~x;0A+vGO;VZfEA# z&T#j&@l||&EUo%ZKDj<$bA1r~Aw{d!liy-160N~r3ppLtY=^1L)}a=deP~|il)3fok5O};U+SCzY`6X}x za)HLUilj7J(DS)mgWt;;ixpL;(PXaNLw5RB}f(-?PRgDo{R*! ztOm_xkiqIiyyX(_{}4Ib=x>ty*wo+&goiAh^b=$$vJ+~rPlOqw0m7Rq@z8Jp^T5v1 z`Fv!*`DA8rmwv;lrrm z-DzQ2n%a=&ionW+pRA&%+-JR9t8;gejgm3Wz@`51MD8YFxZZt1(#CWgGjq$c+m~H{ z3BDxKdzn|F7&+&vR#c8-&X}>Fl<&Ru%4rd$Q;2G_dMj7)wt{li@mIB3{nD#NpLGEK z0F3Wmr^R=z*gEM!gsf&8q}Gpm*Zv@_5)<~!k?c;E@r7>H^w>9KWOvWIMdE6|wCcw! zOEze*j59tX!-}I~aGrT%8(l1@O;3^00XzR>qP+LM(^b&mDyXMBubTp-15?Xu&2e6N zRv&fG$|HJKrYCtUyj_McKsIv(so#AB&XTlBeZrIaglDWiEgf5ZzMg7dZ$W+MSx0d2 zVUDlwL1BWB-}l?F)3a}$C~{Oy=m}EGn#nfq%Ns=3 zP+jYvHAXcM0;~*6&xN-dR<6$34^F^?T;@n_=R@o!$?hDR%eeNoFJR9ajx~jg8(gxZ zrDtsrm}1KaJ1p=V3YI_gS&FuDWKM8d=mq*&;e`=Na0i}RaMjVN{^d-q|tQdO96t7I{I`&oWzC|vu@ z1cFsMDC_;X+^woIXH{lzjSx)4Kf*4zcOpmC4y{5=g_G6C;0Dmi_3qADT{*{$7~j@! zrxlOqHcjRBO;yGb@-@aN^Mu!lBjM3#nThPq!*Sza3qVzB7>#g5;Q1#J?JCh?q0G?| z!{3V;H$n7fsq0^_WABMP-dtuPxAQP2LQ`W4+Z1m*gMj!z2k8%r9x~apc#JuEuZ{aZ5VaRDlW^OL5fM2HH++~*;sMPV$=s-7nH$l? zvofw|Pf)?E?Nm~AnOJq*1ua#k#qM`zR=)Y zu=p9`6AaB~Em2*!>%e2qnX^1}W44^#h~@Ep{Nmir>VKURWa>QWI`B&Cz$??A>G&Jm zm1VgPO)^-|X!#n?V3I)>K^+;U(@BHN2UpP>PA4Td?S5^ina=G#$Zp5n&hf12P}X#4 z&cgSemRk_p=caG4tMBDZ03byD3yteQfW1*&R>cTRU>^1k=xxvCZt0#%3)Pk#ddGjeat zJ&uk093jTUHLvxLr!{DXL_I_;OcJI4v)WTSOu+mix%FkR?cHy@@Qh5t`KKc$S6fTe z#OivBtE&+#lo(5CB8AzzM&tRv^7+zn8p0oO%?uJf?WV=Qv#*-mV8||ABD1E$`WRCA zyR+Tov(11S&&S=Rer_OPUGNs2E_jPOU9gE$1)DC6+o@UvZwYWJ zQ`lubO)bi7T4*zjsiCLn51eq#1H%|ruyFvEN*c|hy6&Gad{wQ^(rBVm&F5LxIak%D z1oj;m&-$s$BrafSQTniOS(rU+ha>sD3ftJLu#1Jj!FVLv#WZCDvtiZQU2N_1xcuhj z>(m(NLwkTvYY30#5M$4OuP8^m<(Ri52&?C7o}k89WSJT(OKapFG$>F}YIG2aYGjr~ zdJ%5xKjZE-K*uULo=oR_qz)X!AG^Rbl)x|@EiDIJKd=)X*0}!oYLJUAp5dh^2*cx6=(>~+_jDCYsl`Xx4rrtrW;b;q(MF`ryc@u)%z9Kqz5txAzNFZ5+! zT1ad`uXW~_t)H2mw5_fvzmD4A*-KWE znyGN`gC19Psv|h5{->mDJ}3(vfrru_fe5WYHwFb$sU3`bQh=BqM_}dcu&@;uRCg58 zRtULg6XC}e;L+B&C}_2_?ZVddR*ww31P1n`w_ZnwzP@egv7lFopBy5tywh-^x!bK9 z-NpPfItlQutnc?e@((Dy^psN;RR^fXdck7CmtGkHl%?`OZKXhki?ai``Tv7K1Fe}P zM>c`14`OJnfbV!m&ZKxJNsKFXx{(4ma=8YlTQy*j>`~R7XfW?7Tidk_HNtUDJ{rgT z!v{<&v<&O~n*uTyf0gay&r$7jRXtFbFeFF~Raq@qcTM{ACGtS0fuDm_w27AZ)Gg7A zRxJID8%|KJf7Np6d{B<1&x)lV_3#A5!vl#pt?o*dz&dE*oa3XAOpPdX?O1FWAhd^* zs!t964>LAKTH**GHP}oJ54I1m0CyG0rwo>Z)02jqU-I@U_}xWRFutA7b=pYim~xK? zN2O}~E4FPOweG+k18NR^_m?1 zPbT31Dc}|HO%+}P{#yK1k+tFfI)}ds3GER7pgp1$V6k5-iodLtC6_zIe-!yLsS^yz zi)ph)$r2ZP@#A+JIaj6^Ui^O2=sVDM8`2YX<$dPcw-lqYIDk?(P5O4J!}d~N1EX9D zs>Q521-$m1UnnWXDHpa?UZPJ^x{L^v(ID>tP*LUUC|D4Arc2H8Za zZ2-!Q{7KQWULCi63o-TMC12HHSJjBk1W>=wAj<>~CNT{;=@=}jst(`Ccf{rM*~KMF z8PBSYTRzXm1px{ODU0&B%Ow`_rBy!l&NYN*btxxjjo3c zCoK?66OnB~*^ar~MNC?&sGI`C>NW~%2rB*LgVP)_kR(?B^#7Wp#kthvX$P~o*c$3H zlsB#_VDe;U^8^K#It7uH?N>ej|L1Z?GM5kh zt#P@-xZHUST>d!D;1j0Mm@) zDl^ec?S*|vJ-Uv{>mil@@-CB}0$i7V!Q*3QL`gwyC7nR;tJt%m9fu1;0K(>4Ze}`& z?o;%yDSD61T_}mhv4@+9WT+GF$iMfr-0|4;UUt%Wrg$lz#eO@LLB|Z(dcQ5a%7ZOj z^8dV|IE_Jzf!P@yC81qc3{r~nJ)$V`>7at_(@%dRcYiyfeBF=ahU~P1%29?(slhK} zkqGR+LA`e`^Jt6Bbf{V$_xWoJ^Xt->Fn^Ah#h(O1zVgS{8y-4Q=G6N8g-lT#69XV@n9Z4}iw|g{S`TBfaOF`Ul?taNjzV0PCYZITfzcj0@qB2c~EVF%Rmf%Z4&3N+Hhmb zB2BB_Fz(t!?-wXK`$-k`O{Z^|ejp@LhC~OD7WMsFX%p_AuxVDw!ogCK@;eX0!Rq|Z ziGY!x{l@^QrC))K>&*leG*}_6ajcz+ueHezz8mg0VL29GZswz$x%uOGlWC1-@s$aJ zKAAxJ@nUT_3bujpW7K-o08UTXm*u70PG0e!H~-1E#f&zxg~{4cfD#;)h<}Xa*-t9j zH{(C635qmuI^_RUDX;Q7r^J5;b6PO(uqv%Vk0d~wPau;;RFAvg!Zt5J|MU+5T72+t zt@v-Fd5^slf3|DsegC$?@~hO6b4L!{zYB(E?VO*io%1ti;d@W3Qw^5N@4d7F_s(R7 z?eLAv2uZw+^2=ikd8^3Vkwe)`|C!97qH~#k?Y8qXWA5sAi}5q8Z?4Y1lU?N&<)<>< zT$_ET`-){?<+}Ypp4-`<+jgolS9dBq_JwvKIr0S=+SaA{GnwNKkrNJ)N!55JqjRV$ z@|lBtCVnP!OmTckFD&ZZ{G7wWV*CZF9t(?VaG6T5I2vIg^9vSR0xT9B7CP#Z>Mvs| zd0f(4-b92?_|If6lAB|Trd{3{mzVo%l=qy=Yj87DXEJA%mu=KYaE;$1K=Rnc|!wCA)$@#Mvj7sn{W6>dnVjkmsTg3lKSDfX*t#Wj1K%EN5L2Mz~?Rex8$9 zNX|a-^b@6?8jCDeRPGwHEQJm!oe7o!nS!V3;Kk^Cvb*HdHn=nu=lIwRAc@kfZOFv(S zTNTf@#q-8y-NaEQ-^3z$UuV{He-hz%mLN@cT*cC2rF7qyYmRy(N%Ogzc-HZ3;aSU5 zYg{#)F&KW)ag%*%!NCT}v}{YFrM;9ET@@t~eh6CB#L%LKbN=U;Z|Q&*T>vdw+C42h zifMU=wh6P)hcC;jVi}6Mk|^pfrD)IEC=%92bbz;7$0XD-WYyN`@)UJ@iuM#!^kFV7 zfFfNh&BR+7iuRRK%ZjoAz+2uJueA^XqMw;d9j*~`rGnFS(cz7~3&sI$4u@%U4 z6P-4rGNC+4>gI2sE3qD&bW^1PpK*|ru2*M zuF46LjMC%ElT4|0m?X97l*JdCO1_vQc5Re~%(!-agp9q1BQ#wmhK&jbv^$D&qvyZGlW?jT8wCPShuam3MR@jPI9V@d_b0_uc#Dw3DbRDL@ zmhXdV82Gs^02j9oT4o=zl_E{vf!*TKw~>9NdZ- zTv~~wNeVCFg2!QBe9h)NKbRKdr3M78eQ+I+n;KsA$s{SE_i$eGM{ZN1m*_R(P$;f; zo>|PiQj?m-<6tcq;h>g|f`H{4w zCq5~7yC$~WT1TMP=ifq>vTDt|<yG=>H9Ug#`*Ci8Ko`ClT7JWk^)Ls>3qx4rq0)k>1wnUwql^OVdpC( z%5}aU*W}k=S|kKo`norf{flf!8ATa2dw?*iTZJ2{h=hYAP(a%i#-*@$qdZ8L4drcE zkt695MUJG;xQ&^3%??ngleZU8 zifo!B$bOHwZsI(kJ+4fb%8c3A8weeWB~G8|MhkOEiB3SByEUXFcd?MVLRp3sq3GP%P+{sno9$yn&ajTRMM^=G5p%Q*@6Y3&-ET?>H zp65VH#A6u``M11UbEpGgZG%^}8L4)J#s9Ws{XiRn`U4_UsO<^9iy9_|jJ08ej2b#X z=6C3KP_WE{NvcB;jNG3mjZ!B|%3$I=opg0{r@>x*V5g-T#2U-(9nS5_UQ{4?3FuF@?m)`q#T zNg}7L{x_4kRPLJ;n>74rjKeMqv_78eY8dD~*HR3s%VD59BV)ZIONOBzD$S#|V2n`Y z_|hmE0*C@6Luw@|3CdWD4FsiKVqYLSQ-5dL)d}C@bqcb~rROqr`r$bt^ZU2gQ=0~> zb+o%-yn`CY(xQsk8iFF*3x?Pg2*%G*BcoT<7zoC9xYVM&V93oqwHvM=@ia1Utl_oyvQzy2SMX5ebXAZ8|H<`6iJg!8I}{P zs}62NX3QKIMBEW)-KJ6A65XbQBp9@j^tcM*gsEWYHVrFsENypVhi+3Jk;QIPKXD$=pewVF z2hy{E#sHy5k=)wFBgt*DWT%N%rE{B%7Tl)CW@)qXZqu1f0-ESHNl!jpP1UQK*umey zNQYYi-ph8+#q0S5Gp76yBGqSU1RoMQ1JQxS7Jm|!_gQ@Lz+)e=@UxtM@LY`{g_IP4 zs)PqY4Lnpi!Gba5-~X*CK);gA0u-(N(Ap#=5jbk`#RQHK`@<7huJ`4(J}m+b8d9D> z;o%8X<;4WPKm;-(Ajx|EgUXXk>0y$RC_Q5F#gsloESLz@f4hYTZjuwet|^6wr&N^} zQ~I(ejZzV4lpa-{WJ*tv6i^!at$tGH+9q&ANe+5kS&uoeZq=Yk@SDr9cpR~3&9Flsv0Ef_Xx@s3EqWt`w(H_m;iANf* z1YO+SU_ciq41!i=TXunv#w_SrL)6dC#Vqc0NI=})o+CES%Ob`-SC&;siQTHo1!Y-P zd9gZ<&KbLBl$5N67fD)!7KSQTL{e-fC(IJG-rBWLNR-pUFVWM|ULqlAuUnN}E=eQ( zVxmjZL;{)A&2J<~H=pJKle|k(ugH;fgCawhq?)%xm!y^igEo?`Q^CP>jS7Y?NrfWE z(v^w~U6N(wuGl46A5=(Y2iB;)b5~Br|zzvWhA>oTq|)N;8ubmKwW$aKy&aIOYxSkya`a7 zEabG9p^^L}X^O^Mq{u!IRQ&`sIVJ+LuypAwtFrXTTdeUkQCGAXhM6%PAy~!*#IH*Y zUd9JxeyrE_HSc&4jdQ;)XN>?4beV9d~!7{Ra$bDbsKqIyX&6gz&lo^beYlMym?H2oSeQnPrB)O1A{sf~qEt1v>rz{uRY6s zm8y1AY!WAeHpK>lHpA`_s{t{VB7{%SfqmCmeXBlEM{D)X;9C96YJCq;GId@N?xZVq zGFL!tRh?c|hPBqeK<3i==S6-QCwE3Af_ax%!-O&uxDZ9!gKh|Q80@AtS)CM>&XkJ{ z1kKSSqgW`p$g5jqRaZtjs8V2K^JX@5Dr#sqbH?PUa8-NbpJ?XH$Z|7hqMKN^KbpyL zy;5NV72>d{!l1p^W1LszcPq%2vam(5Nj6zuz^n?dDG^>{Ie7IXl(8^jlayEEFiV+M z^J*-lX&>1<5vEpyuR(K(1LEEj>T+36hI?_0l7yrPqfl02a$D4>1=?#wJM9%?inLc8 z6h1!#KD4Ir30gCBKl{m(=zb29fVx-U;Ef0l`}BDDewepDMUJHRDKd0FyLn4=pL$3z zXd`wIJLUJNVCa5!@T{3MaOK_4PyYwJm81Nu?%_NiO~KO{egPKJ{F-M#*p?A{D7&i6Pl=YG?a8UO zFWoXVDdI|u<#AD7##kK{+|?YQBWtR7BC+Cwt5iIy5`oFO76k~$J{r$@4}Z& z%T#ZmWm~RhGv_IL_4b~L=kktHS>c!#I?*^eT+=DxMS*(cBD11SLWT{}43;BUICz4E zvoFmO2LuR>piWh|3s=cQeKxDjfXccB8c3il_9)YuZ9aiws$ zA@&KG2k3`!ScFVqN?(69Q+klHp*6XhksKv+Y10oYHpy4*7hW@x30u{%F`oCm%TZmh zYHj76@2xsyOmM@6gt{?rOhkZ)pO{)zFJ1{#R+Yh{z$vBeh+>myn^3he+G33!(pDsc zF)uaDlGy0ph*}kX8;5EuY;@r(x{sV$mG01pE|Wjeh^~;}jp(z2$qnB;A|tw>Nan>A z85+?U-V%-IJPF?RT~t9fv#DTcM5h(WemO;kMs$+5Vk0_5oCkE)l{u|4p%Fc<$iegp z9!W;jlARH?DxDEET434@pIen_>u;*47+w6AA9b^k%+`5QY*_+=QtWx~66HG+YP_IC2>-qc>T6@!IP~VqsmV z#YKw#TrKtpDRo0sB|Hdfu}75?ELcWA^m%wco^DpsOlWXnw-KU!0$WH*BCyrsiwWFH zELEA%Cd@I4zS=2T4hkc36BdrMrk-TT_P2n4*Z5P(^8s3#(Epq&%gPN8Nw|zIB(FC6}1Exfr+cjJ4TqTPQ6i&7j%FmIK|6+Srik*(=tg_Aj4mGGe1yyBuLlF%OkohT>MG0V z`wY?2W%T}#fVjOKBzA4;D6urx`kL7dd?6)v6BHf>4y{Ta;>rxFOz0K%DU$Z(k>nLxvh!f9NIX@;Hu1F^1s%i5v^Azd=Co)>auOx+A=SBE>D2zP1~xRWaJgO9Fb(p}W&W8Q?b zRF9HqUpHKSQn1yq(LuQ8FldR0?KzH3z?ki%Hh zm$Rjzv|Y971v%FAhD6l#!ZaYg?f9yshnBRHGKrS7n*?u3_XsYVW_Z9ZZ%I28Ig;L` z$k39u@s?;w+ez>SaEA)AW}||kC2dvYSbD1>LrdDsTd^f=Av7Nnb49pDU#6! zk0eWK$^%7CrQuM5Kc(R+R;G5gP_kpl@tkqmE=D7$TD2b{`H%zCAj;2lEpGM zq9+v4aLon|mr%HN(;$G}5w?0GM_Bm99pP85?l069HDyftCfC-KAr%Tl_B`%0hFPw? zDTPG2rhM0@R#o88>P^CuM5{MNg135S#Ws2e9<+?NddC$xl0Kox(CQuGEz#;7CBYl3 zV=9OWsbFaJCKNfAKCH;l>W%VNZ1oNj=K+noGGi(eTD@UKvcI24lGU?hXZ5T~XZ4I0 ztlppf(W*@QB>Wy-)Y0{tspBj$PpTXjNRewmLM;ixkYF7_BHgTF4KESueY^Tc_87YT*{XL$kO0ucb1 z=FQD2p0iNWtfKN@3^l8$`Uz@zSOm)RdjB7;%F|x}2QX|WcOo}CNbqRxA}BOLYX?DG zMKo&O;n_w+cKQ{r5y-HOcfhvrNMvU#2_EcLf*$M^f)4CO2ez3A11pXKb`$S_ZRAnR z&nDtL#Ek?!#56(9xCBwp(0U@W(;HR*)}Ub2Q;{?2JWt}=zTHE)J5nF+}%)-8r%-kbK4t=(iU4Sx|k+T5XDtS zq%#W=Q;*~WAZeAnD3@8t?YyKFanb84_(wykq=Ii4m}LpRJ0&x?81QFf(3W#MFBd{P zENB@Q-(a;Y-d_$<6_EVpmxTyRP7LAO#dU5PU(l5}rN>PF2q~81iA7yfU%zyNE*H3r>*f>tmwwi}5Sf1ZX=DP3s8 z*u0f+Yk0jtLwaH3M~beUKsvpYQqwdidza9~W@=dGP?>Q@e^<@xdD1GWT8M?0W8sxp zxZA&=@R zlkWR;xq`pdWj7)#E#$<|?9Piwt4FRW5X04xOAY>CreY!_ku|T&ZLf*p|codwp zppy;-B^^=fOcb1tf(ub_ISQ@>!4UhUK*Rgr(wfaIXLnwfLL}VpQ;iDibn|7`LuLa( zGJ9m_2|olM2JUXG=uLA_anTvRoVDD@*}Pl18*Yl@cj@&8?oLQY z%rE`)cbq2@Wr89=Lm><=$A58};94x%XiB+YFO! zxlBV*K298Nuw32Q$F2UYI1EL3I48N@@^mVoqlU>*oBi5`N3zSU5V%PZJ@|k`H}c+K zp$155*l;R4tt>5ei1Mio-%&?ooTCsoNu(Y=xgHL=*)h2 z5+~A1!amZQg0k{fR5pqxwIe9~cXi|3trAMtaoQ_Jjk-kl* z*q>UzBfTdq9YmA5Cn()aX^->giQgKO>h`6ANYc84GS9wW*D1Wg7du7L7NL4_{kC+c z#T%_bJjtERZy290QqlnDJFejN_F}0jHt$OJ?td?Sc=mg#hq<=RgMB1ld0heIFxjBT zlH(N&P=Nq)iOPSx0`MzT!u^SdT&3;n3^Sp(qBm#EKTw~4my)TjI-_LDB{CA{V7#t45i>lo?<~_Evk^YA0vxK}a^E(602;ZPJ88mXnp!GXw%52ai6}iloB4`*7MM`Wmp`ftX zLbebTwu1KE0}xKbHiKJ(5?;4db=<_x1VmPw876}eGu)4DIGLT2RqmC97=(SLJ;T=Y z4%auh&)^gm4s;+f9NK}f!ysUOi+e(hlIsgOn-ZiH76h`zAnXD{r$NB@w-oWgowBTW z5z=LZv=|U_hCrB8bX+|ea8(B~&s80NhC3U%igIO}My?WN{;p*g%5` zFc-f=FgU85VpxE29{e+L=DB$)bwDIZg`Lr07qTgW%bI%l6!8*sw@*f@#FxWtyAt%I z0lRkWN%^i0Cto+6yDs;xN=S&K>M91Y@Fp#(9=NuWQBN-R9{d?y#ZWa&Gmt3KNZZBZ zf_re+n?Q2AAUSaLXrS|tUbTTL=Vq3!n>$bQ)T*#Ui-+D4NKFm?EH$pm+AGQsaI)ai zImb@34V9xzS>3s2wmJ5z(G!MR_eD*cdf0Uw0G26m6`J{|bA8w5Q~Oiq$>r6(ZOqm# zz5BU9qW1>mIagsoo3mQlQlqWjoapqBke?bd=HyEUn}cJA0bP=fJ7rwiA}J|Cgv$LZ5p03=k#>**Qv61U_r| zjv2iDuO^=gryhO;XiCmE)KiPJBBpwk=d(M`SH5j&>Zg|;kXi{PWAuho#u|4C2q^DU zg037Gw{yXPu9(({inCOa+lRmR$Zf~$c=r9bsQWzQuWWR+%Z?}1{v}U-hyab^y0m=H zI(VX1p+;+*<iGZ^$F)39BTadH|`?e+LS($-UN->d&7eQrn3!R z2Ra^?eA^Wa*BI#XPmv1BaHT?&6|)9;PyN0}xj6}C2c(?6E2D6~4D%lpI3aDOcFcJd z?($I(*DSr9H`+{+Dx!FhuuP;V!ggOKh&*T#mUM|C>CXn~oc;`@q_4Pii5qY8diaxb z5i(b3nn+tm@E5~78vwK!5`1m5uKYP3)YjnMru1;DZg`!&lsHa|t#oX|S)|t|YLX}q zM9WMdae@axBojG&V2?O3>KKVn4xo0b#M9U_X@+ z)T)dRYN<=ANNgoR$zqnpj&E`Z^U^IK;$=SGCn~BH=I@HyW~udECZTMwg}M38!NBXG8Cwpt5(`6W>c+LU)=q*J!b|a(8XU|g8|W( zP|oIwhifq)1vbyI{wkD}cI>XMAH>cC#&L&)v)IlILQJBa(E-(vCp$Ar5IGp;K?8d` zb1+Cp=Ulo!=X#3-7Qs;Dc)DMOLOY|QrxWdr4zTvM^{Jpc*_zrK9JDS)j@T*I-p=eG zrpV6hihy)FARRma;_b{fMdITr(%Bhpy(_XaTZ!_Rv?)Jd=O}+@XErHvB;BG&XJ^s` zi|ousqCAjh<;UGt{?N`eC~_p-sL0UH)bN&QXX;4s(CSqXXGaA?J5#C15xZmnBVcdN z&R8|h&KTOx&KMhk4g5nq9vhNU-6l$rqlJh5 z)L7*7*lj+QI`AjA*sEe+;qp;xn76R5Rw6oy0NpNER+)($jptHCwPbxPT~mlD0_ftm z@)$T_C{^r#X)d!VS8W(SIL>f|QQqd0sk{yh13N=<+?|u@>Kg8|^db7q(`_PXEgeT{ z_)|h-Em?bC8)nng%8qo0L)*?6s+^uZY=dF$&Q|5%p!1r-66L#PZMuj-@nOz~;jROnVl~L6V3*4n z4>$KcX7g`?WUe^jb%Q;t7u|07&2usP0M!_hB*5Iz)Q*(uL8$f9B z_G-#$3ffFdYVei3(;JKfhks&7HkmXH-<)*HGm>zCHq>_av)ulnCsQNv(4Y+~kh*2B8b|aP!pu4@GlP*Q%9F%zG1k63tYVz5!RA zgX|skr2?gPHk2(B$AaU&L_3*8USZxR7Nbl`rA5S4-<>F?sB!+w0Ygfe(BkaxYY@Qb zj8{v&Z;B`nL zFUAHp$}_gQQJ%F|$!wBj$BUg0$|gv#vbYl;$DII;VP3U_U()|+OmPTtak?h}1-ds* zgnHe>WYH=*{tzLzdB9DA1KfnzdBv_DEnAB6CVPH&!AIU|$SHe~tDvY>xTvRGh4-@f z<7*N+M?nHua@XCS3x;RvA)O|b<{+=qgZ&UMQoY*H5-fxGf|@YfM~$P4(_Ct&L7L04 ziRFiI@F;4_>goxkKT%gtlR!b~>J&jLn&d&fhl!+Frh|0k)}?EtN4nS5V~QM4A6I0k ztA}|@)YXSb@U@&A<*az?XRf|C7E7!TDLFLk9l>@<6 zG%6P8g3-gwQ>5ESqG9IEOP`vX@wk%L)u>TOz!qVoQHWbaik2P8;tA7aQ`Rj#hUK)| zgZ0H|ov>VX@u(HLjBVaGb&t)f+rf%gajq5%BBWiF4gf;5f@GomfUVG*P0l_v>0E3CPdPEsWkEq)CS(=MiwHj|L?#)2-34}tF zwdVN&TPYMERkcAD*KgKCK^#BHO7@qm&aa-&0s6aV2%&!D=I4XqaWvwgKgImPxfb%Oq?HEE7Bv8CHlT z3X-WzxD@1?`C?4guwcKvW^qdzo?pwPQ=!PvhlX<}UW(T=f8_@F68g2sc8QKQOkZ)! z1eBJEk-+H*7wqB9Cj+@I9DQOB!crP{f(JfcM^zc;u#*J9$T`$a8bH-88B`)^p`b3` zuyhr;E$nmt@rV%=atwbg|hixSI+H}JPwdo2CYHLt;0)dLexmTof4x0!T zIfuaZ6F{DIK$dv}lgo+>ox^$F5}m^Z5Mv-_C zJa7)}%{hlwjdKnSZRZ>s8=P}!Y<13|wbyC`IhiSBTmv}?Ru<>*%N)$?Ef++~4HKFm z<~_35C{CrlV!H8|vc!xwo}KJt(J0Ofa^#1UEmhCG1fkWV5&t%WJkK2#%ShDV=vh~ z2<0B4T8JXEG)miSj_w%8!OBf2d=%isVKj zMHbtd%cw%)K=j#2T`C;V6=DE-7<9qBnnv&0lB z_Qj}@1?6Wsf(JmnVxLnaU+62+&Cr}C=z#=^eU>Os{FkueWrA8S>vus7V)wbAwlB$fB7>IA z%s4qaCEdtkr|$b%Fqe+p=5(a@CD0*_4|XH5-&VsOMYTeyo{Jy2Y$iliOYKLUDv$9f zGjlB*v?wt24O$Nl9_C$t1SfouIt~(KqwOohVDAfkUghzzTJu!2%K2#FA>2+&@|}<$ zBUmKlCx}u3bbOK^`Hw4qDC7?*awL6Jkxt0R2^IcBgzjR${z~(m?B5g2NfCi zUW2?P3i${L9@?l1(pV}O3i&=ovPD*rp;+$WEm16cN$}A6RFD-`6%56)OOfpBQDm|G zX(KYx{rRKU3v!((!Ht#5Rvrl81fY;biMm99phSJj z1tse9F4#!WO1f^@Fn8i^EOFv)ymsBPwVm6o7Zdk=4w$;-(?SDrU+gjDRC&HmXbK}n z?UHth-x)wlFe%dMN=ut&Tu|DiOkSHj+5&HA1O9(;_df7>9ao*V>^!2Pm66&?t=cL@ zTb_bVTrjNzHc>!Lq*inlK3XalwJ21}s;prRXm=HG`#P~wORO)C6dTr|W>LEq_U@V` zyfKUV!3A}Z{}4H?Y1P)-%88YTVn9NEi_-?87Sp`n-#K&dbDuwwrKDw-)yIDB+%q$0 z&YU@O=FFKt_mzKa9YZw4;~_?Xvne^u}Ou4#@hyFs8&ZFZQlTH ztK(R9tKgGnC&bar!QACa)i$THbqiiVVev)^)`&uq=*wF^L4V1TJ$k}|O~S;QjmR0x z?%+)ol@+o<*IR5?v`=&JRVWp69TB(xUxQMa6Az4N@_CM9kq1WAa}^?0>U5~^FgZG6 z_=~4FXTWU9<)k@W-bphA5)mq?m6Im#C@3?nEKXc9v0z=8iV`By+CCa#F2?S@0YK&W#qmd9HkCZ1xOlVKQ_m-!umq1m536Y6+o^2#jQf+S~}8 z$}(ZdIY%I@c9cPR-CwB$?j)4JmAKpND8p|CN~p$|@FlK~eZ0wc_D)T6JyLByBoSTN z1mC|d+uHk)Ey?J>pPSly2!;_fHnj%;L5?`HmmswED}7>W_X)@-C7_$yT?7M?c$a$* zpn#-T>6xr6ePU{N2*~bJ0gH#aZ2-#-bvuX%NSl=(ZKnLmP}dsA({3K$;_+dq+bkfe zSU|Tz8VCl;yK_i4W=j*GP)JtkF+r6+u|jGEWRf7DTOkz$1ClZLr3AM%a*>S5GT!)pFes&=w+kc(x> z;i(7qevCMcjR*BOVj7Da$_TD*<+tO?ERQKXVZHN?BNns&jnNEhV6<^Z;A1Xx6nk9> zA9%^f#KNUp?ppfn@Z-9I$yPzN8p?68_)e$?&yP^of@8TiBr!KRmb;Y-D9!(#W4YRY zsyh-?`ino7tHl=`(G|8Ac`SFq8tcUz%e`h8Ud*xFdBgBxj^$o83@`FnZl`f|t;cf1 zur=7E?$b_I4UdN5rsr(Uf8(bMIe3c+2Zr6$U|i=%bM=q#3#7quHu6Xfkp;WD8FiHp zg(#bWf9kgi>b#n)Y*}f=izA9JK4`1X;k&6?2$flt87MtyyAqzn-Cjs)LRi{_5)ScC zPnl2!2W?d~;+lD|kz0=!c*52R;b5+Ri4(8AYRRLbd}WiPwktC?9JO^Gl<^u^e_!FK z?MjUE22it?>{PEA3P)|@0!z#tQwhml=bIn3eE~$29<>#cqHS&hrCPM$sIAzIIA(Yh z%J-U%+L|~dM{Vuxn|{<*{UX)*3Xa+$KWZzk{bKvD3D`J z_F&v4>RQ$$ze0p+L_5zDqzBCMpnjS{$)=6t{gz(huX?=r$lFCd#_V2UBxcYvO#&=y zx}GN@ly<@MPw}8MwJO*q^q~I;=u?vu1dFC7j{pitPANT$H%gCD4V1Sr0a;@d&}RuF z1dC<~M*syRN0lCJsr13ogzguRy<7tNEMb6P(JWyfpnzmh>HQEbNUl01djw>Ok_XHQ zvxFYr%FYt{hzQtrD6Uyl>y^9`{ z&rSUjs9a?sC=a%TJ=p1z#RxmSkNceMU|f*-^jIlS3#96)u`(RM6_%o%DFSKos;5$h z1GuIgbXkHO!0jW_58x^pb=Lz#sROuzth<{zB4sOarHi|El3;J?0bDO@wcc1>fy8|= z9I6tU6%|PS0IqnrmYT%}a82hq>u*xC(gV0&)@n6dNzcT}Q38lmAEnEqE^Ahp6Mkbl%|ab zvDNj=ZejMNgEi}!8+;vMt$HRL zzzymlt&s#u>zQx>w+}GG<3s=MEml|a_A}T?df8+`B$9baZ)-b%+X;8d**i4g0Lb`< zwdEJIqz>R_$wi9IJoHD&N(}2ofc%G--fXXe-sb6Oo_^kvvRVMN1AtulF3GFJ0QaU- z2_WAsscsa*w^2Iq?K}=l+OqwM2XKF$CDKp=&R64->l=X5Ao9DvgEaZg@@vsw1qM+0 z1Guh03-=owpDK3%cNIkjd&N3v)x!_qHWLc-HV(N|z=IM!#{pcGS-$k*?k5=)85-t)MjKGq z!#tf3-r?wD%2ytPip6QJsFN-G-g_U4{C+U9sf)Mb|;1h7@H1xoprW55~uT0|hG9D4^Ikj9anFL$T6)-eKF~3oCGWotVgq$O5a0t$$OL5|%3uRDqVxrXCE!DQcBo_0Ph90`@pqkL_t}^06sYr*gCdYtNiHrE|iA9YiR-nKT zI0^s-HO2!Z{XFv1Nf;e-I)7$(-Qp!C>CCW7G8z;J4Orw%74E#+vNOX<9QXRT(hOM3 zfWt@%>eG7j5<*%#GaM2r7PT*?hA~KxqQ-geJB=tMLhVN%%J9l6H?NS|$3y23--Q_k z^r-lfOiZguT6SVuM+6zg-UfoSYpt**4zQ*;9+m0wjUFE+rWpapvQ+{m6VqoQq3p!; z1`(mO3dgoAYLkiSHQtzeT^G3P=`|p2?)rClk|40J|L6e(necAe)-p*q2jUDmyMqN%LhX!A;7_qdg^Tc{ceSx+V14 zLQ3kaw0J3z(DU%(8?PfSMQ5eMJYTIL9rYRnk{TXWX^DZlz=1Z>U9$QCALOmx&{0qKT3P$2f^ zI?9T19c5&@jxsj5jykBEuA`25u*gX-;R-s+6q8TS%=?3m`r|RPTg*1Fdkr*9i&AJ) zu<)$35Kvp!Lz@08iL}89a$wdofm82`PsB)$NMu61rd;GV*$ej?{J$HGxIjnRT_8}4 zq=TpCK=1YQs;Wi-eJVOdU(m++ZVh$Ip63RSSYJ8Gvd&UxfESc*h2$z%XMl~X?!+MJ z5YWOiz=EuczETxZhMmH?S|!UN3ACkoDv)@pr+6C90Eas55$PPEOC_QvN(;1)hy0M= z&s;rK+RCmdwHyDGS3$X=ewWw0L$H8LDkWXPGLy%Es34nYy-BvR?x{dgnl}Qa<&8Vd zbdN@fycJWL-ZE?)Om~Cg#AT{=C2=pAn0oin&RWNl_bWQCvy2MrfaMNa$0^E`vX+{B z;OamIoRc7&Q-~-e_H7pPSHBVXq@;3mi#J)0x7M_?*Y$dy>eDV8U zZZaIVYi%8Zg<(l3b!KFJ6gPWml0`rS0ZkmAKrXeks~ozpfT;7=Q5t-qfpd zGbFK5#~_j%7XH87tMWov@=wsK@*=8vT7AuxcR`oC8Orr}RetwtUzeJVk>1>^;wj5H z>d_rD(46+F#EE;c0t^In@;vZcxx4T#n zD#zm}Z;4MOq|!2t>W&#Y$Rk*ef)Gr5*k5{=)mDj8P8HRT7VG1&qEn@nrN6RHl@21v zs0oW5?Z!!rCPv|Y^{JkVY!h>ki=&XGQXAiCc3P`Ri{ZMv6>5~b|6#=<*N5Evla*?;P6P8Ov z1Z=a)Nbga`WWsV@z!AHH3rVpzpRialK4CGkeZpdF@Cl2t)h8_0UTbu!NU$O%EZ=q* z%d5nxazkCuZ69cq^ifA;(eQ6`e%(M+C3xag$>_~vW2cI$T;x;{=Dbry3EZio+%=EN zsUoavbE?Dy6?qGsU{PujFVLw{E!y*_PC&OgRcZwo8{*wruv? znh&18rP+Dw6%el~4-~$=xx%+%T;UtpVdsF7yTYIH zpmq+-dT?bAm3k-HWM@dQr0{S36;t@?roqk{vbvAWENz>mY9+84|GAvD^o+Y`5J*L_pfF{Oq$-{-oRPjpLC% zk00>(&~1AJy1@u0$onTQPX$BOKv?#sb zCBXt6fWE%ub)KP}Fvg)Xsh=8qD z8L>~4F;Pc1)LGbU25>rmAk(0JAk&KT1DRHjR=dB!_~HjLjnCdo2UUXiQj;5cDN-1E zs60~y)kAlCP(8HIgWBk=&PM`m@v&~{JyhZx(L?|IrH~yCWJ;t5UQZ>IPHP*f@jX&~qzg`qq*W-t|WpI~aoCQ{r%Ii3ja^ z5~Wp|kRZObMEL?(*hQNiGIsIQiQppf)M;X6pm*xvGU;{v6|D0>dDH1(T2IG{gLvvh zaFKZGG;u(pBgtgbaaxdEbtF1H3=$nH&Wq=>G-X-wyg@|3rnAXlTLuEQpu(?723RE) zFuAql3U5YL@nt$!i3r#hl#!Y#qkmO`w@U)DTr6O*<~R+otmc>^A|O4l{47E#f1)`q z#_=QB8IQl<@j-K(5|DK^9>}5^4YAxxP|ZqEx0ampV3yzo4>k#^oIW-gmraY*Q zr9>2}juprjdLtY3_kJMpGAFZxWRa0{0q4yTebM&^YfV3kAW?Y>eKp!{ns|-0sf>a`g?J@~+%)kT z3k`K&&2k9$a5xL(*Glf;$b(Aur1};bm^)7;ocD3+)IA(|P_g?f?7;zn^pGQv9&bUc z^<4bGXG}1+NiqADaAK|#gEoAYN0^|~Q#b1^j2c6BUkw?oC-J$Nd>ry-z;M53^1acm z!l^qt8VMBK(Q(93+ZCSMglEE#b4Q1;+8rIr>vwc0!K$-PJ~yg6I#f3*GQ2JGNbh98>LT7!bt(y5+Go)Vm}73tYSY&L_qq8@}tp} zKT+%xaXiQLJpPo&2gQC=K$=}ZA9D{943x)yvcrHvAxD%RwXgKam^&yS#;kyD67~}e zNcwW_C)*1sAlaw%G`rF#WA1JN`Cz4h$+W4Px3XhyFA)J-pE7b}NEwqcw^Kll3<;Q+ zge|<4H3{2^2-rH5k+Va}n3#k+1mx@xkCaJhP&Wy!I5!Ec9zHl4Uwm*pDhzHCPI^#- z<0TKS$0WSwSu}E~OMp`&mn1u4F=i4twT)CvLCKnRg%1zNaI7!kfqjH;3NwV6w zc$`c*l2LGLwo^3xUd{4Pg$ea2MpOCjUBdi-h z3O^w~sLGC+t_2nMO7 zuOn&A?gqmi!_a@={+5b??YXv=B1*Wn&M0g#R6RoFAXw?DP^Y_8Ofzu@{OYNSnuk83 zTztibN6n+01TY$^b2iXOMtsM-n%*7F5-;C+Yv21SI*VjSknX$ZW(a+d^>I-MOB|hS z_ZKCLU3f3@v_`LlR`oXRkLiUceL}HL;$yEU1t`lTgBkh;}ET-Ojty4cK1e31UU3+V3NtfHJcY#_}jj2~@dFquQ zMZGZHg!(WTIOlciq&Q7cQ)CTXcMjS*(0M_fvC*fnla(sJFr(O2RKeSpw6oUQ)Rlta zm%(~LXk)PxE3B}Kf;u0pFr~^Drr4VlrVkG4h}Q412`1>C4K)uP=S_U7_`?dntEf{# zc*HK;!uhk6H~ytnsXz&NV*U!Mlx1+?V)0uTQtE6?2x4`{c)5fA*gVHGV6=lr%Oc7< zmgWwIGd*`mDS@*peoaY-Oj;SI6O;uyvK&n;8L5`*K6sSZ?k|`fVS9{m_vY1;cW+4F zPQec8PSr1^uve?!`VJk5CEth^4^_0rUMI&in189{gyMicP$+c4x)$?fUH|$Q)}ZR? zo6m}YvHI=MysBUbMH+X@$Dhhk}nAJ8ZLpzj@LVyIw$g+cn(qaXg zmF+fTwsalJ;pl7w_+piiaH%J|1998|ADgMQI7Y2AJOX#hW@px|&HH`1b%X?%Qb%~82InCuOwvtb`#?m* z0ulUE@z;1#iK{#UlZbydj%T^m1Bibr%7`%!`cNhht; z0q7VY{t3wmo*)_H0TMHt;EI57O~5X@1ay#KK+*$}Zjc-V#6KY!;R%u<9w4dqx4nA! zwX?|GASubT8(`T9em@cX6Se_m^i>bAZTGicJ=_g9k6R(tJuX16{F2gnW@*)?1+!b46*qQ$hQzzoiYJ zO9J`8A0JB+-uw<4CGZ_I%I!O7gf-tIW5td@cc>=$V@a`oN@gAE20jfbFfCIUY7K*J z*0o97KM(pa%+!1{kZci06~G8gLQ)SHQV8{$OjnZP!z{>WGpETLlw}b71Zssc<+o7=B*|rxQW$NSk8hl#`Q`}vulES3&n=05>k%Y%@h8$H4cuA z8T-?f`AXFFmCRc)1>2g!7ag1UqN7R}?PTsz7u6nKw7WmlP*k)PUKzh-D7M&(?luX^ zxPJq^U@Op_6ZWVXd3j}g1VCUeQdORsL)uc7=ycB#WKfD-X;v`mQ0(Quhix0*MUpf6ztXO!UQS5yRxO zFP@gFbH#BgG{k}5x?NW`BUQ8TDQd))h7^YW7=zS#92YPs4h)Kkr?&sqG3-rY*cV?~ zvCT19T)?0>FeoO*aF=5+Q#sT^Q|Ra{8@MzYK!e2v3}vR*Z*UA|j0Oya)AL}c1`LXW zhUydz^M48-@}{pLVSF*k*=Uq#5J;skR7nc3*&q?P+7C9=4M9DP8HNN$9V&-i;;kE=dVi&<9dfpd{I&-B42r@vqZ8yZNDEz8AW}(KV-Y^| zA4yQyZN=(9p14%fA)+(4_*j$bcw*FQd0<_-+um|O9Tq7M^)bdCdxTwWwc^ZrTwq3FN(fS<; zLr%1_#902vPWZAs8%?~TzHwoFIMEr4w?#(dKF&*)#h8UTt5YPV5=y56wXD!r+? zmG6u0%eFuFbhOWGwezIYA1yoW0cI;&>_lufQyY^&yvn?)U-M7mXB{HUry-cg<~Y*% z8)SosCS~D|U^WDiJwaELJu`N2M3^NcwF|a+P#`51J)Ox`{K%8(JTsjXqA=Bjf(G6YrA8jd zPwATM`U!pu@68soDLTUg?#px|l#-z9{wA5DYxbpDh#5`aPUmyYq1WO!lS*Wfo(%d5 zC|@4)tn)ltqRU&(L>El&N)AA?8;mv+Vj~VIfb;`V;Vp1vK;>PqMU6cKV|Jb;ASsWY zma@R3%OK?4rk7OU=o13|2zC z8jF+~t!TN0KKX5?wuq`&e3a!vumr4PGMfj6B*wHztkI70Y8tHv_32ve7$6~_wNLPb zurVG)N~=8*NAejgk36Z!WIB9Uz_EBH+e(f>AYo$O0TRuS4+7$!N*Gc4WF~t#LtKX;WZGZqa(X#zlh%*KBLr=9Z=Ott*^^=W%uQEASK!Ih3aR^7iU?% z@GoNr-f50C2+cI_vm)JnOH85!tU2_TnOFs!=RHdCRjE^w-ncPUYmYk%q_=>UfL$p) zt2Yjnr@z0*)H)wL*LayCZbE6?CneP-eG=mdFf0npn5UN7#`B~@L)$A7=x9;@yhNg+ z{&@uu|HR&To-lishgy}cwGc;g-L*$vRbpayA(FyjXyH{^a=Zg&ikQ6^aXYQi256hWsKmg6z{ICqz}EGn7>w?wFu#wxC_c6r6PKg%v=i&7?V!j{viB z=0{(9TVp3mMENKv>?_%a34{-3j|gqhJtIb}eZEROGi5XBYnzrr-^muWmf}=C#Ulw0 zUGOZjZF}9xIE6lseTOA4;`*Hd>^G%}rnxa+*CdGw@t`dBbnCRoO7TlhQ6AWegP+(^et zEZI|T$?Ta=_CQTvHHGcQ=8)S*-RevD{L!c&==wM+Yb`nvi)HLnDH8!0zmQ0=4 zgvAt(zSu>3HrgH>=3snhr)b9tvl4CiX=On|v6`{fk)t+D&FYw%nOCzg-?UH6*bEje z8*co96(7p_SwX}zmS zq9smZ0J3S~z`kr}Ma{wQG(%AG;bn(~e}?!G1bQ+U}`UB=cfZe07Bx z7^APC3#d%X9C`TPU1s)CGjuoeK__MC6^MlG#$v(qzF)G>AZ2LOjH;HIn7NR=S@3zOx*=G9~9{N4nd<6!rx6Q!6_^&``@-;6> zD=TF!#ZtBkBiAWqFN~4vETk+WSCq0Bz{DVB4L9q8>lA?XQsP~3orRR|g81&(xLD9f zUT7C|*CHw}yAzF<44kMPIXgatU(!pA=%Ha5(c?rzv* z2}e7>&Qt41XjOVT7jCyzC)pk^&BmwnNNFohWJ^A!ckj7f(O(?6CeI^E=SyY#gsdLf zCBgh`TZndDOTS-_c0Fs@sm8wyfr0O`YS<6gMO8NV7m^yY3(tRQ1GQ`N_j?zT3Xp*c z*iT`GPZeaiKG$~r%KOL$y-$60?%w&Od*dQ+rTmwO7ulsZr|FxIc3oZi0S$}R%5C;8 z`qJ;O4)j6;J0>bO2m0o7ZS%QZSEII>XxF8=wwcGpuOENcJ0HB3u^v$BEoQA4Ml*1> zC{XAs9_4Gr0L|>cgh)AxKO;wrTujU+f-O?TXvQ*hb&(x`b3s6rz?e#%a7L3R<&16w zNt2l=Syi&o3_c$dK>w;@|U748-hU{?Ns^E6Z{RinGfXuiYx` zYL~gvB%SK!N(W}Cwrv7bj6N=qiUD0SvenM~rFkdMnnVAdfuyw%cNZv7m}2hYV~8)?*9S!(MGauk`wLD+wLv5 zPsab_X!*v!H&WsiL=tJ3)<-l}FPcS?LF(acRXWuEurvFy(k5x#xOzJrSlAe4K5~;Z z+T{5`HI_-px$zPSNi|j-ja5s{!|bf}#WvPTMbcQS$ZNi_YSWEXI1v9`3vQ}*8VYionMJp!483+q&>{I#VqKP(t}exGCJuG<;Ca~(u@Ptn#fVLIipT44 zG{A=JAzQ^MGisv_-JN9TeQak4>-QY|41*XI2ww#M*TQn|ErG6Xz2h30@@SX(6 z9cGKhhIZ&Luy6tr-`0ai=NMfCRPhO(QX2sSLpDNKi6$&t#0KSr9&D9hJv1w%b#>m8 z6JK)UaDeDOSmpWhr+1n3=^+3~)9Z$5Nk3PO7<=TI@4k4H}YSzg4hU%ys2^x8%K273@pW z3Fn8D+Y=kM5yQs!p$pm(iPe-xByBU2Qs=f3lCayzC%diF=11^>_k<5JKEV?>-wEft zm^76XgfnWZ6|~(7N*(P>3hK6eDyUB(H8FTn1@%%;PbjF5f_9gl&I`6+IH1>RWoaF^l(Mo`P9av$EY9t9OI4$Z}fDQuUpUO(Ff1>$_JQ7Ea*iK@o(~>3XXFx$MM`~?(utg5Z~!EGOG2&&16jy^QP!hi1e5o|w-s{+VB6`-K5rrr}a z2Dl?WU#0D6@Um5ECPFxv@m|5!FNlY=t}4 zS{$1^^I)qGHrD5mA?+WZ2O4BZzId&nF9717s((#+!VY>=3z5&pk;U8Rw|UZ8J(BJ7 zI*`~)u1TPw6k9z8bUsE@xDtq7A#x^;94Xpgzg_5&Jw5ymPdFnzL8cP`180spXQVlZ zcqGP#1bF_FJm9lb57@@^VA+R9UIe!iye2L%ize8lG`Qgj&O5Y;V68(N2^tdLGho#D znxwJA*CdVqzGuK1*2UXo#l>6l8X?{f+-AhZ;{7T-`QwMRcgAOUN`h)8D^*h`KL0*qH46rmUgiC}*M9wZm?UiLxt0)?D9hpz=*-il zb{9C180c!q(Z{|E(r{WmCRb3sAh zKu*8xJz)O?BK6JY*Wd2@`twVD-|SMp{tLFzTsl)5Do;`|MuJCFzq;Dc*Lg@mKlM0$ zs)GPmd@}OwVMORgo`Wl`pVwYqiI=MDBS_!t;Xyuce9Sm z4%vD3zBf^(6UP*dQU{zYX^S*jI|5m5AyP~~xQ(*JC%P9%AZ{N)h#TNR(%n4tM{rLF zLY$z1xL~xG68DybxG+gf&H_POQxS>nfyBh1N|rbSmKI1-Rkb(a*V$^Y@ZXy%DjqyP z0wD!6W{r^M{4Sc_*b=zvwMPkj_JBJwS3d|V$M^EH;q3Ts9$U_i_wjHathPRA{HFHO zfBaLhPEQZ2>Ge0hPkDR>JbsvPuKtKadP$)s=aH*dIgZ}gMh1xtRTOr)q4 zQ2ZZrm9=DIb)Vm-7PSmwA>A(CPp0t&6>~0E|18f0(aiWYUPrfYq^*=HV#I&!&3xSw zubUUf&iC=7jH&Dg2s@%7riY|#yw;Q<{i1)y9wuRwOokz9bMV} z{Xa1KJ$e9L;cZfo%zFC0cgpUOcR`kMq*Z%O0GfciBY+&hb0ErD`7f zUJ-YVLa4o_Pq|yK>t)QA7O11-QY$nQ)=<%eEijBvdIp(<<5M0EX0oN|5?$Xi3vc%2>X%jAk?b*mxjQfLlDqx9&_8j9Z#3Hf zlT>-1vF9;nA)5W`MhfqO>1d0BHHQXy(F%Zj z>P_T)JH4XKWgnk!K`lt~;SU1kjdpfi0vVkVnU>zD%xsv;oVCy3bb`ZzjTw` zoDILpw(IdmSadpK zif&xGk3pk&?Z!Lp_^e{R8=N4>!r3W3EW3L3_{k&zM>INtXg%dCt}V}vOIdkhsSnee zDr;3#@zIft9hl{)m$D)`HuRvxRqVh!y%+1ug!TCL4Pgkm07NNJ;Gs*O+i)iIW_8vT z_BQ-kCOry%$Qwy`WP=Q*2;g;}(0gm5pEaFV2PCNJykvu5mf$uIHZfIel+NMVpplzr zU57twB}2SdtH+W>bs@K=aw>(OrgADjVl?0Q1>0_^()_|y2^6g(i)Bc`Fnw;dqXbRL z1!|y*3}^#=LTmKNNXXhJu$7*k)4(I14;J*tSHPkW&qJy43t-|Z@Hj%QKwv(tq}F<% zj(4>l?;1C1MzsVPnrsEj#|cOZFx_fp$@n=45?9Bo89z!Tc0Il&Hhv0dxLZiV@Glo` zZj%lF!QoqG_@7ee3B$j9kMZ!YQ7BZ9{Sxu;KOty5{GUoCS;z3N*@g}OVg3 z*aDaWxc^^5h^8twq{|3U$!-KFlN$l&39&$=O1lxDax9080ISZJpSntn0M*8ffL|{* z0zxyc!KRd8c&oV&#YcE-h3ldxbXT^##MY%dZoGpJ`SyZMtx_Z-@xh?DW6pyh#w@2s z?pCu!$KtycOcAh^Wz0I3r(De-g#@9r?ctXQL|@zTW$2s{>PhQj$7l6o2HFim-ZsXI3G*?{WgdeNm7lbYA)hc_ z5E~3M)i~8Q(j6^m0zDaQ%1l^_46?j+B0gzRvX@Dg&5PKP+Jaij9F>~NWM$bdeB_XM zR0{h0((5EOi7BQy_|?ZlyEa@oP^tjvpXB2k51tW1i&(4IKFyMRSNHh=wD>! zDi1Po@za2Fl`Sv84ao#?F5YUylFD&S*dm*-S&fftGB;h>z^`gV<$J=jThBGj8IM`A z-5{{p9&HCpA3CU6vs>b7oT0)*8_v>FBfzM=3}ppt4v81=k9!1^+-;yuW-@-V=25@U zF}KM~#_E^lG6!WcesXOI2U^^C+hn$33R_0wPxZ^@G8f#{8;=0mcWjp$$RfM3X${n9 z<6Vo}Mw_zgwW(6f^h%dfy05Wj_}3{VW<_2^#Tkj{Uvi^@@mI|KGk~d=~(@KwufnBcm(JGpf8GiOQj8F11$~F(}h{@H@ ziw~c#dDO2~&DEP#Rrji7hT|8VSmt&UM64dsvDo3~VviAKZ`%GJiaY1)i#z9r5xiDx z7;RYm@oIRI?>{Uas{bsu0FFQ9Q*-Dv5;m@#rHoYk!W}6nx~{ZNN+g5iqT~UJBF*_| z90h9*jS7n_8+4jDI{NMnxlJ9s*F1VTw@Io{vn8e7@X4I1a2K(%HrPNl@-8fkQi`jI z>Gqf9HpyPf-D*<&bj_oaR!Htvlj6p2pUY6Z(RHh+iBc(?s4**O!_&E2HLi?W4$N2a zK)aN#uO_}Ky}?R1=}zG`>3)%=V?1Av`I{Ghv5*5c-@f<|(x1|d1T$sq9J#hmNXD zbg8DN@1Db_l%71Ma#_pOy;8of^(`)OFYVIzuZ}e7W)#o9fql~Ls`gDQV3W&GgYLKn z{popMss=u-R1MZSpX|x@Qv(wzpR1N4P1T^E8Vpc_ZmU5`d8Kl>@_J?2d0|?4)eQY- zvEiEf2nO{s&qRTxr-ea*eIe;+L4mzGq08rLVb+(c*R(IeG{s9i>C4sI^f86W=8ttH zm?X%q3gf{Ott}xPc!z5o+h;l2_zJ8Gfk*${21JpPY99UkhR@~dtzVlwl~p!1Lodg> zfD%`qV1E3QJ}(g_$~h+3=sSSLlZ`uNSB@{6z~A7PMraKdA)8C1GaN>4-T!(7ovo2) zMz`-s^-*WdTbHh=8)(`_+c8jS&NfRqqpj>S)`X2cvSGF+u+7$Rv+~RkwKrlu^ZHja zpCK9ld*kuBV1}kI*1#^+Lbk>{PhO9OSDA~T>IUUjo;^G_^HdR8o_l$&d8RxNY1 zZ`4;2$*KwEJSB+G_gr9}T2kAq#FDSJ7XI<9uHs21fyrMLNJ(nD?N!v){NC;jFI(fE zt;7Tl$LH*>&;_u8R1Z<|%xka~qzEaY<4OM8OjTW4OmxIgE!q`^Qx4o6d)*CqSis7Y zAYewS6s21SyK{MtFO!1TV?5LV&+?>N;&^qao@Vv}2aYL&=$y<@j+bB*P61EK6%nhK zEAuf`t_D!bQwytHwXDh&IFzdlD!0|kRS8zE)z|6Z9>?$|cDYWQyL{7=Xy3}I#Nck$ zISxF@vb&dlHdi7K8E7aY4+0y(Mbh8I9U(WBhxgED>D4Eo82jWItd-bedM!m2OlLm* zL8ddeY8DVU7c_}40^zIuVOg?O2bP~-{B7{Kti-}GSE-Dw|HSD%mU$ zvxj0O^`1mYeQv{NVkISq?0V92QR>1|zL8wJ9_>cW=nwagE zs)=luBcH(M@E3h`w@M^WLTJ zi4DOL%k!0sfAP2Ibj{D{o)t^s>MTuE<5~Q>-g)5s;AwR{JEuy0!YO3-_G+&7Il2TD z>s1P#ec@>f%-YIak=s?Bdj;8cbM#|(&7tF@k5_B7nm79H=SwCRS_&+fSwJB==Wz}Z z_j|i1)8-!bix$n9{|(gNG}X`{2<5P2?}q!{!3|8W&6_x?8j8g zgJ+75>~dL9d}J3=JD0v^4OmGh_KE$g6Kz&&pt{egZg(k9=Ho`S335Vp+Gt%9)$LGi zon$qv)UI8PEvgYru41EoV-wCAH8o?THAnv~?{3C@s<36tnsEa^joRtmFr}*#bz*BD zqumakvZh*iYV_O3Q^tkjWn6SdjC-HkWTsRLExMz0X#H-1`QO51kneCTz0M>u?iAEO zj)elnb>Y#2XE*P^|fL%^>|xS{J2AShguQ1K3~ zNw~9pV}&IWg$Ezzl7vd-l?a)W!H}FbY>wphKJRte{5mBNyLoyg6@qi=wsX`>Xh2-ajM2SSn#|(+y3`t9j!~>4x zmkW{Pgk+15D3Op17!ti1lI_L{80!H?^4o<-eosiQz6~TwBqZN!Nc3h%G=nmpc)*c- zx)8}1gycU9i4qCPU;jt(L~n*%61^FcikK%Ja3rt& z=LJoCE3XUnLZU=M(rZZcW=PZ{tvViXBzF`d`5_^hX#fY=5#U%n(RG3B@0+bWd@9R8K!=B zxE;|cqFnwC!9}^20qrmk#o3vkgmT$H1`~HQ?XhG{21*Kb_auB1&cHXNrSv0~rT8kC z_$(3kJ%d&r8{G|~%91jvY&Zq%iH&a)hK)-w^k-LvSm2(`Df3EB-P}F4Xcx|i2$I@M zox5kNd49+DnB>+BRjK^?gOW@?<1+1gX8`N^`wKj<|Fnc(b7+wl*WJDlmAie2jzHBF zOnhQhkztm+un9dExX^2I6RVKDv`AWoVey&q`M)Q ztrL6o81hHBg@Y9jL2>l-DpHdIr;yt20m1-=MVnc;H@BhU${zfVfn8=84*3xc>mR;n zgUl*lj?Frrv3jT_?2A86@3b#}Ar95V1d=GxXqQ-%Kdb!RgrzcSRVrr0`9c7@k)bZt=R7-WH71dm5k>7lu$DTZxz=f`7_*o+oG~d4N;{F7X%RcvkH^ z{({H1``al!_#~NteCfn99plY-6^;V?xjnF*B!Yk9$0Iz+c!CE^?)JB%diY5!8Um5h zNgMUBD;&Djg>3#pP+$QyQ%HFO*ZKN1) z7bNWFv`NRg+$JsSkZP-PZdLfqme26MS?{JkhI|9Vgu_&8-V@t)|xqqDV$h#!^`?kgYLg6upWmO0vN3NjH6P> zdLvz8y$xTDvo=J-*F#w5Dv9#=uPMUNnceuX5=IX{Ysu@}&U2FlA*5EYcWG-@!_ zA*n!e;mmOx`QifG4u{g(B<2;-uCb`?hze21sEF=48MPgoZaZk`+tisWM%xaGuT=W; zTONz9w7220y6u7&elco0Ki#HY zTru5tN{`XDM^>oDK^5XBJX9mLatpHa>;tcIa`wS5s_BM5JMa=42)M9*{+3+*X|fSLJgT_VjrG5Od(n;cKga@o`o{Vn`)3;~ zjw|E44E16*y1GD{wJQ?C}{(r$y+bQfsL|>=H;<;I|B>$*){g4O$GdpLqmqUtZ984r6X0Qos~q*A2fk!9^S|hJ4A2_Q)C;4cUihXr7YXsi{z5spcq?+C z+>uR}rz@`zb^+GZGGECB-li+()3BtHaZOT6BJP2)12xFVo7DpszOPV#H6)i)A^oIF zG_{7`=N>2|zDC5`fL=KZ4%!YCa-Ame3M><{3P?vDzrha*CJjqfKuHR;TwHKoxD_El?Yai?u)< zZ_}04X;`WPE4D!F`3@E6lnDJ72umu!C{zK`aus+}aRny!6;|LP9s0O(PgiF6^$Ii* z@(OGwloz3`mM)uyt)&97!#rJqtKU;tfd-J4tH2)874(6x{6B>ic$q4o-1z?a^$K*+ z7A`_Pgz^>WwU+8m!`4!P*jb;hz;~o8fCzPfv|I&#=S@Wwcymz&-T|kND>rJDU$4M1 zLf!%=30VbX1|5HdpXtgIX;`WPN&*deQzh=iu~R%+)0JcVdIcV#ExZB~gz_zL+FI&V8kVZSihbZlSer{%U>w5I6*vLXaxJi> zxB{o%Us!<)uciXZJzaT{U$4L{RdErTCu9|niaCCjA4Z8ZELDLOwNSju5-RZX>csQ6 zr7D03&49FA1$L9Jpbz}b-ogsJL={kO)&%+W3N#b)3bYc+SD@X}wWMKdsX)ARmaf3J z7gb<8NQXar-@V{VzTEUX-(5ufn~R8l$EzS-Ij1Xk@GIhTw~LR{!`*~M_|A_i#J8FL ziWk|n@rq)am|vry!?{tLz*){{xPe^m^BT6V8M#N?B6AN5WzC~DsllH$EEjZcRI|%y zv`P885e50WW~1Ro#oZ|b$DN_0LcIU2{(Z?0D^_mYVP%tx_hI3Z7u05`a)N$%2E22_ z`pp?B<_G-)uUFy_H^Stnx}E&)h#20gp!gCEZzh<#U5)9kh;v)MGTk<7P246Q5%aKl zek-DTua4fm!AvN#m`2~pOUh(=ScyUtjYtlwwiGqdp*GrB-|9A2aLw*?+a+Z+ zyUe_OxjWTPJHNL7r8zF)tvmSEyOzEjeRM*#yi)>ZyH0jKvHyp1!vY3>$EYfTTW|Ed z61L5-wJ37dj2eSJYH+K0RDJ5MrT!nVR)M& zeeuf}pZl0vUM9@jqP!;hakd^o;3Tz)fKVlMDH@_`WlgbDW`rtYWoo54FbMAva4qLOSuydWbE zP+c&|ogC5S=Pt9-0RhEZ4ETbH-%8#bzF@-5;>FAT=7QCYoOpIw7RVSboU>dt z6ux9pu=o6p@_Ml>uOR|IA&ZezPRa&nx>nagrh^y#1eI<;&r#mXd+|uUn@xASD{3Bk z7Hyj26;KbL9za(C$={)MoGyIv_L-7B8v81DeC-Lg<+7I55?zlI)OvzG>3+70jSqYX z(LOUis0RnxxqM}OFJWIZ^Urw*Z@4_zKM|sp(eWP7xI2}xcMTcaA)nico!amvlE&od z1iS88Wy`XV-K0;zEF&Z(D?&9x@-?hb<+3>jUg5l$t6Tt~bA%$=`QH+^U%}Zv4Gb1J z&u?ehBzKWy@jELR2!VMtG8`ug9#&P%YDIPpf-0;HL17JklRD*Rpj@+pIN$RRdnCGK6I~@ zq~^zF79DYBzGd<4wk9YUMSH%B&AYyVJZ`EOqz&^gIUFlK!6S?~95@6eM&2rOGGL9=D=YO|^ zd`ii5p=|miq+j}OPiUw|-@y*|^0<|D`~<~EtN@?XldIQR5EMM>$+nJ93ijCelpe?o zM}<65XYSSu3iV_=d>GYPoA0K6d~^B?A3SW)Ac~-A2u1#KUDKIdW;)6|6?Hwu_ts~| zXUUBnt-0bu)_aUgBFVAV+&PyqWw`%h7jWP_EKW))r{#T)j1i z)`$IiAnIfdHjv#jK1k)IsB?D?i769SMQ=v-jXYfH&x{{dxnE|*(1n$KIRbp$2|0)487&*oIJM*gZ=I0x7t_Lp7lD>Z>mMXh zxy}P=830uPl+9_mZnRVbfCm{KCcb>BVq2g^TUjoQH|y3ZwU6cZKS|?Qh?(s z5B-fg1g%kY-Kv-bR68itb_A;kYJHiY-GQSZI&SJ&CPE&=V-RQ=V^n>L?21*Mr9Ugt zi^mk@!$4dP3D1@$TzOdVU66KcZU$_*lwQy820BcPyezNLx9B|w&3;Lx`$k2GxX9a5 zay3P947n}{y{Cg4n;AImn8AbRWeF6R2F+OEtQHZX1q!eK_v&;keI-V+`ry;n>WPdX=+^wa_U# z>oX)8zi8^jKR|8U@5V0y$!(g~Z~ZL4Xj9qtVS{fz7mNO}agx_bJ%+hJCv^c@dKqG> zfc^?ihF+jFQy-5)lVP_g~!2-%H0}$s2bCU_H)~QXGqXmVW-K|%gI=je zM6cX1Z{0UJ>`1ADieh5PV|;|V(K}SSvEgXUhQkCT8eESiK|&gO#w&gUMw}V1*269_ zGnQm{)e&_wdvrUZA>+2p3&xijvt?*POb96*N@DM%7^BP1o?%CzVKKo@5h9r@wXr+N zc3{%>5Hgkh3rSnBw)W-jw9d8sr@hu-;i zPO@`SXf0bD*`MDwxz)B!{wAiDRWh6;aN>OrBjO|xWoMe0&Y&XGz$@(&lEl0;Ne*aa zgt~?4rZWPd=ptsc<1N9+^o{#wXHK}mq;>@?V?S_6)~4IpY*QD9VuRB+hubAi8jg?x znVlmxX3O$)EHXabET=vvNGB82%e5T3U`s;@v6>UawkUhW^`=`kxnK)HT5rcL?##%$ zn_gmOIRiG`o#hBg8?c^duXmer2COHLZt^S-?^G)p!3(4S={4o$51F-&77FZso*A2HBgrfeE4N;v4`3dEvU#}| zSeNom!06m7z`c8(b0hfETc)FBU5xq(w}E982d$GfJ!i-V=1W4$-zwBhk;JJ9X7B|7 z%9f_)A^@m4&!fN$PEpgWPA+Q77{WpYHIqWiU%AFONnC*;dz-QFim{6RA!@ zl%PAr3uH)Fk`q-xb`LPf?&47(Lr<$M(-SFhdGs5d~@w zzy1&eL4y2Ub|o0gjNrW4L`nfZkFrN!_wuojWL=@&;)buh+op_M=N4m$M5ltKE37XXwv+SoD0w$;+h1rpHtW; zZN?e*DLas7Q`TZjNA#Gbqr8cwb6PKE>1f{SmQJXTs_2%^M4UsGjv@E&Ipr-K)g!ia zFo0X&0S549anDTndKvC%E|=Qx?_SM*=e9jF4$rzH@iASuCq@V3{aduAiVX}TWxQVw z#ycH2ZWQUWJbkkHO6XIPTzx5hKek@_geazOwC-$fWA4W?;RcmJ7!M^{{8^TFSvSip z(4Oo%&^%_Lx*6Fm>OD~2MS3_}RS9n62tx^wM24>F#ZNIICiA?-=JplE6ihRG`tP3R zLV*hg@`U+^64BB$CmVj+vS7Y35^g?CrW`6FHRTww zlcB}44i0OTo$RhY$2FsP(;%|Qc6@%_(lti9Z_@c#YyiJ-53V$@8_t{L!Ohhdo6F`A zU9Hp?W){1lx=FgNNTYQ_QMnQAG|Ejwymc@Jqbb6YHS+^)xvaSd78yW zx+op=)Rs?0&!kO@Q=|aN1P}ei1=>Zx(y7E9BhGCKnF9b$0#J!IbKUY~R1`%$0uVty z!6R){c$y*y?Q_AvA!p(gJxWG!kMYo7Oh|exKS-R_JlGS5c`vE?5rB|0!XsDj6EpM7 zhMK!)_K%cp%ei2a;wX0Ktm-jHM(7ygp}%r;^b;qWV*C`XM%ul+m(Z~fAm|2o@VzZH z@1_ZUqo=ogI{K=$Kyc3PCIv|L@X#Nlq9DPh5H-Q35QBnEp+;NTrudGh*I-k8iCgL@ zN{U|t@Q+?B8Gw5g(9C{1H zrMy=f6By4d?$OqDIk7H)9_sZF_04};Qq4i9euziBHm8DCS(`IcBdGK`l5&h~PRZhtA)~Ni@%4w`NsD!TaD|1{I$t>mjufpW_)v=- zEG)A75ifJ3G+24+wJAr62r~0RSrhX@0_^66u()|qtL$U8X5!|>jW~zQ3q$U=XXVWc zRU|eqO4PnoldX&yhsrG5_LCct8{kp0uIG7*$AZ+lo+l6!zZs)KYF*C@Djpx!LCK35 zDQvws&BaoeMwlI@HD?nm60X8!iPG~n1AxmFr}YzD8e4%O#aSM)4Hw3YqIJCnQh=k8 zhyG#}xmRmxlKQ+$qlzR}ZoIBn3m{*vuj|zTV_mPBhj*0qtn2CQAGBn6q-iNLHNK7x za2|x=V;Ml67M~j5kfOk?!(;u^(FJlr%QYTpTG9}kJLnWD2JzJ!x%38acCfV9 z%#NlV51!XbUTSIYz%}l{Dcc zv}^|K_FaOtzIMwo>FD#%J(atc)4j7Mvu!7)+vXupTfL)uuH^2Si0+w*+Ac+3oo<^_ z3Y`kRUvYsM$?ip}1a{rx!*)e&q^=%qJI$kNlr7v$X4vhevGDSBH{5n|Zk+v?;Z+siHJ@v{w6kr#=FoS618c#` zi8sWhc0~@n(YDv(qBu8N$L_58_PNZT%zw+1@0*>v{I$zqxx$A7m%b;TXnS#@xqGK_ zZBse8de4<8^GwwBjChul*TYd>!AJ3s(&XN0X|2Xp5iLeR zHIKs9T{Bv^bMkv@*jih8$~LcY^KRJ0c2!?Mbf&~>-)-~i94y^EpX_BjaK59Ujhjo` z7?BQbjPRDWG22&7;;-87)wWBkw(v{Kw(zSfQ!U*4^(XQz+&HXPns?{DwC$(iowcpA z`^;$FwwMLBe{U*OU2Pci*b}YRCigv1F6|2KvAtY-Oy_o8$~VV66c;vwh%amdZ75H* zL32SH^pv&%8<4FHW^AjmYnQ^kh8)oMcDRyjJFTupXJ4hOag!Qi7$?xzgk65DV{x?q z$+q)&|9tQ6S1;dx_NQ}gXD6zEI%=D`{Bu)J?mB<@=g!gv&@Ch^aZ(OsqM4;zM(^4X zwaw<*X4RW3PxA>0<~}p8ds3^umE#I{w7PZgt3$V*%{ALgwCmE&`!CfT`u_@>{IT4w z3FGu7_1oT8KFL)W`ATT-CT~w6u{58qVT~&_lah!8$BcDUm!$$AHNO{CKumGRJDt0C zQkyAKh0ax82x4b6%~KQQKRMSnKUX>9osw&2j^E9VJ@=e61v9IvB?56to$|F32)n}d z!1yc`D>yn7Vq(lLQ6*H-%t!jpKBqg6fqEJC^@`P#CH8dWpt|G3W z_UMOk32C-pirH?ukwlkbmZt%EcB9%RbN5b_aCp|)Si;mFW&d-+)WeHg%W9X8F{?DO zE)X;yKO}cZd$bEVJ-@SUw&swIn5A@#*KKxv(w0=)$Aomf3n2N57jYCW+&`rcZ|1p5 zv&3>{)WmXjsz}c6c&k`)%H(W0R4Ng*S&5pCsg)D82d|A;1FtZ~vzMy;Am7Tp`zCL` zK_SPxZDnfDQ(s2vei1Xpl|XB@m#x{on`#cd4_M55Y>_>n>P^yi?h#6^}jaxoIEWp6&|yMhmorR_n>` zU^Xv5c3MRY{xD6~!JctvB%d8gsu#B)Xw-!DG$Eeny4@VA;aS`7&+71AwU>9e@Ah0> zggy7yZ#Hv#GZ=jzGTU-t;D8nqlG~x}Qye}RvY%uR*>~^c2H^egSEJCZs^xAr4Ym8G zp&`+qnej6ayJb#^gM4gbN;+U(eU=a9t`>a;MzR%{DdRbRh#lC zw&#O&6Yd&Hne^eF%3-@q1M%l#Oh05wSa%Hp$=@}kYcQs^Q3qR~0kZHS$NkkT&w0h^!W=8;wTyT3o-C)6K7!qXUo%joRtEh!O5zJhK6^J1m_};2CD% zJArd};iXFRCc;aVCUntb0yJ7={Ox0%Q?;$lOD`F%(_z7ioK=m+8$JuZh=ZVZw0IB! zU+Daj5bv)vw}piK3wI>P5+7HBzqu@mWNS^^!9N1e7jUC(NUX?xSgip=+BD~@h;|*0 zxH!rA5bj#KM|Umxd0xNDDY|!%j#n)bc~;F*+^F60q&_!lWs0KvuW(+~-~8O-!#ZLZ zJ*;EBg_P(b1~p3CC8xnAOMwQT>)msedDe8B76du!tJOZPTsm*{{u@e3w{qLb7~3hw zHW4wi4A>?Obk7ubI!(776PoF^6MBrc9V>tIt0f#hHem}#r5~0UMh|N+asHpV%?|cP zqm8PY9h{7Yb-FV5aY?l~+5O&}D=-VDWv=R($u|5bO?Bzo2JX!fw*7CH#+c51RI@*+ zQ#<&Ky>N@2!{*4gklteFgL9)ggcb_tNjhqT}}h$Avai8in?$(Dzbk zXdT+>w|8|xm^HLeH4mohG)--3-c0-+CFPg7a=XTwQYVDTc zkRpFBQn7mD5S1T?;&@csvNGu2*!<1JV-!<5CD6GVn-ql2$h_OI%PhV0dS9k3I)@nU z9OnGhb5EfCu`fyw8g3O(NhK3#^sR=KQLR`twq{MuDd{mKRRRq;Su!<|>FjNsp`(<| zrFyP4+w9Ep3y&>}iYb*Y&li-%bnhAG@zt@axtOa7{o9u8Dp6ev)uh<~L z5UPCWE>=|)Qtk$@X;ssFCVu!Un`$vutzH8|(fhuGqF%Wk6C@q>9lvg;$IPiAP;q36kWaG7R zmp5<3j@fR^*txv_HQJK<`O)gv;t`YDp3caDQPHyW=Wx_-$veFG$KPfgj|<;Q;oH1$ zlOfv&eu`YQ?p9qkdy+6mfVOevZgln*-}0X#ert$>;mVI3umGQ3_|OfyI^2#iKzN5{ z3ai!n^4G8%bQG-tni`P>aU-ne18LGHmjh+l7%#E}>dn4qK3`e^L*vtBU_6$>h>b+E z^@6z-s&%8Osv67Q4urwny#raDf!s=)w*Zoeq-C!a0J7K2BbL35F)MuOEu>aMZ#CK5 zPFnb&noxc>Z6zc?gg^Simgxe%71Ttc!9m(0Qk%$EMCxWh{3{@JtI!{@dtJ+r+CXdx zsf_?xMiQyizlt}rR)+khScldE)gPN=>Ija$eFFx-NBpCgqd(3|>NX3z04!Jq2c^`1 z@Gpz3f-`SPtb&gz!R60j75K^;6lje~e{iT<3~ixhdN-V<`DD*G1J-l`V2=TJ189cF zeSf4(JO6(F55whc;IK=c)n-av_d%fIRur~JfXzF^B)MQYr*Avw8ZY0y^zj(aTgf4Y z8J=vwllh=X>eFU^jf7!2uxmDx%goYZLY9noe-xtOj(KpOcr$~W3*tVAmSAcRy9833 z6VZoNRDY0?iW>SLApV7>o3(A~BLHaVAs(Z5yFN_GI$k;~B4OKb^UeE_L=CyyX`T?F|jXt$pH zA$dIn*C%;Xe_kYcZ~wkR$$RgoP4e2oOj#YFEE;DZmb`rk*%6x<2I1>hOf&7c*J6gC zO(Kc>4ib!o=j||1jbOr~MoNTGWyM11i1Tt7E3u#t?_T<78lRYF`1S;R5=JkUB|Q=1 zBB>H`jf{VSzayjUM2EtmGG$DdlHf*NF4 z_b#BUMCq<{t-$YVMk21L<;xDGMs=K`otgUoNp;TCwWb;$xGvp3{1OR~vc}E-kY;}g z8`|Ts-Uo1-Kl&%F{4>3l5c8j>jP8G`%v=1Qb|X?ueu;^c>J8;hq=B#GO(g3N!9< zRxt)kF``gP?95}37TcM=sW{Yi8+9EclEZm=)Es&bqMxd(faU6X)ZwPKEL^0DxPd`z zE~D6#x}35qmv%i$a3#D!35vN=f~!yznku9ySE~YLoDx?d5A2N@8T^9_<$x8zzFiZygHf=X~= zUL4XLZQlT)3Jv6z=4o&SS8>p~H*eY%a>jJ#TSe5XRel5)PTT_d*tpGpffhy4$cA0K z_BXWOfP5I}OIfsbA&Sjm%~Tp8k>aX2ys$l*Wnd9xf4wHOUl?tCbC}RZ)&Hqw>5GRS zJU>Qr$IcwP(`CpI6t9Nh>~pt^=6SrBcLcvpsdt2J7Jm23pb&8>lKEU3O1&ZYm|1GX zJ|9q^zrj7lTfWR3gu%>jecIy=9Ngk|(!!JpS6-2+kz_LP8(9b0S99p$M0HllfY?XD z)v|qT?L?O??Il>}Q61R^bjE1r2lT4XiPm~bF6)?yzNTxK_UgMxSR#+P0!hVNgz?gE zb=q5!BIp6t-i@J9Y8RzKkeiZ}G*`K;+#v!V%6>q#xuaFbHa&_Bp_!N~$k z_NC(XDemXcwRn6r^`cKA(Rc7tGxA+-;v3WYN|=@iY9B5Ck1wbqs8~?T-s@E}^e!{m zsh0YY#^A!%rxS&^x_{i7gp`A3(8~v?;Ak)MIW}t+|PJ{N?|iCSJ^iy1DjPGrb4@ zq8z>dKY8y1UUyd2{if3d1EeNE0##E8df>K9@vV;?ZKYslCdGh30%Wja;E7tKV%3Nl zEtfb=ZQ|{DPcn^~(V_txTeWImr)t!S0n;{4GEk*JFJz#d30NKzQs?bpWinXk{e0Kj zzklbPr0qDodLPfzX79cB-fOSD_S$RzUq4QHyq{)z{Bj~0r@oO$is|w4np`#(uFcmi za4Jy|b)4>-rv25L3uAWN3q!d3raEDqI8->I;U>HAP4g?w zqCYVOx?*L^shnf~RHm~32k3>5ImYmvsWIH{oc!UxtIg1ybiMTq=Gxy?)35h==il9M z-uWM&e0kv;!{lq@f6vL+#$_j82nYJnR|T5_lQ#YLWYVT(nZ$W?xf$x+wi~dP)nb`J zR#tYj#MkBhpuq8=Y;HL>NtXDe=5p%pimYsFo@2H9m}ODl?M z8w^y-ZS$5}eM2P`4KKaXByXAZ?xg5iP z)~?uaua3<)^uEr;r1x7a?ZN+4ilNB(7VQ*4otB$Man$HZoGnGKTSsRkX{KMPP7)J| zNUMuT<$nzk5mjw5x7oG-FCibgYg@ALH*TlLp7tQq?f)fcZeNyW+8zo^HY+MnBJ{z1 zQ`!K`>killa&MUVpC6rt;PH@GJdAO6{(ZgzHh^jx>SzgOps)$S*Y$)8`$l z*DgQ>6Yb$Jn2TQ7o1(Nsbo=Y7rr;#dMNyK)pTX2c5KLY_`B_qDY-5)0hPFn#p;wIDa96Bd(BkW|NWS_b z)J)&rn`?*s4oy6>H2HR}Pe^%vDzY3zHn%^=5&NWc6+gTq!OOm7__!xq=D@-ofTMVo zVyuQcP#`!)fLw<&;M4KP>MR+mCR|EM?yasq^@Y_CqS7!f`R?q6)!#i+bV1CJZKjLl$*j2;h=jl3mx06tQ_;QBbLj9!fHYOJR`MlA9xTkmXz>gK;I86&^G$ zlR+mK`G@>E>{HoRt9T==_V=f_4m)nw`S$)GG>E6NaX4WG>t)EO75XZ-UAQ+#8sX&L z$571{KHK4z{&i(YbhG<=_u{8syLh~Chvb_kT>>HhbYdiL?ZGb-@R>(1m(8U5bb_lm zs(FB*P8U&i#gXYtB~pL3q2I)YKCiG`A!_sAdqiIL7Y~Ed?R*+?7xST-+inJVw2zUm z{8+x@W0hp-jHwJ($GNmAnw|7~<^PN-7)=8_LbHTA>sm5Hnzd(JO)VV4wG_uCkTmr1 zBuMClLa&~b9ghh+{7&%|0(2aXRe5LcFIF3SO>f*Di0jYQgO`+YhPrQyd^=WIhiJ}! zRwmf2yGRXyy@iB!dzEX46b_^f2tK2(9e;kt^j|Ap(2WpfcX*`UFg8+TNp2gdz|oAO zAKs04b?pl8CcMIocXN_pOYjc$=bG@sg&YoP)+Z4{%k-s^G>Xh~ck_WG$?er|g)qUn zy_$c*Z3vG{P|{tCUx-LPMZXbhrj*_baY_$LwKw?d81rH ze50D!+T;cmwCeMJ&mg*$gl{w_Rfx+3RJNJ?nkTV=BM{O9mLl4E z0R`InR0dbsaL8pm?l)UF(AF*BsMGc&m^ulE!Mh8uFaX_&S3kJ43-7I6;L{_8%=qxD zkQzRDY*$A=_=h$=bby(%c7(DZRjiUGlHP=6Y9Kp=KBsUG6U0cRoZ}X|(yG+*sNAX@5x9gU6vGlJaY`Pn`JHjT;3Y*{M zQ=wcS5E*`#PxzC&e8L)EFV$T>MMrn}-dD|CK3D#T$^~Kaae{iyDl}rP4x7%CtEkB@ z018b$r$QLua3~=(`B?!OT?HJsCI_8Tl0!5Ut~Q^+U8y;Jr1`I*LKAjA-4?mAABL-TnI}TBBfw zg2SOKX!N1@Au1>)n^eu?2~u?)uhdpA+!xzTt}ZFwb5hqiLTOvKY9d@Jmc|n;E?g>M1>sV3BwR0kmfc<6L#6u24?|=-#@=fA zyG!*NppgL?B+%@}aEn~0MqYK|Wt7GmelXXB7iO&WcoS_FJ_3%Ky%+|F9ptzI6-Cms z1Sm+)HM}6XibEkmSmy=g!wWd+(S&rD01dgrc-V;7B$n3*c*nsBRJLX{t-xD{S91!y zW@}b>Igj8~ZPZb=fzFpPdQPYy4o%Ayi!HYO25OKYkL6`7|A``Adf)eBF0G$|6i z+@vUOB{7CJl$p{R@g|-msTH@L?$xCl%~iPTr1<+@n50l^Z9QFk@RPWOFl|D!fVO zm!h~m?v~cBz1)SGu;+8xXLm!bt86dA9&#yV^d1khMSAC>w(7}sZ+&WSqkm*`#E|&l zV#=d&_|C;SHjj2u2_a~PIagsIxlKFuP6s#QiA zX4sg0O~uEZA>D1P;JDk+N;dmn53Ql-v!LY(;?TBDlsqc}My#k;Q4O%}ZIYethwRf_ z`n=zIbhH-!B9*oGU5lR~VAaM}pim`CVFk5S@=wpDTm7pJPh3H#M8Sw>uBRc+C>^m! zTQLj&gscgB8cE2+Y)VeNJF-?G-)DkJ^&SfRtWzlP(=(J|AmV5jJk#4?+W!i>VUku} zn|h<>XKoJ}LI1#(|E>a2=hC#Il zGiu+X;;x~6|CzO*;T$o8i!x}OY`v&*_JvqYp2b791D0ulckzjq1^aTc>%0{gtzeUA z*ofSD>l*xr&LkTA8@XN$okmkv<7$}xVDxb&BVg9z#cjC+yOI_fs@F&&u^LJ*qQm5% z+*(^Nc}`Up_#}#dbr2#B&{>$8Y!T*ot+Lt6u}MbzDirb*s<3DVcoq=Jl=&Q9gm^~! zGM)iW2*|olz<5=%Nr*iIDTU&eSI_H!k45pAc32jFOWW!Ow)arSJ za9H9T!Yd5aeH5>LX!^r=Z*7Tl>Uhx-r}eASF89iio2{O^4%rfC5X_V{9Lj=Ju`0EC zRs)&ZX~9#ndRBwkDyLbozIxt$r8s`&tiD#>e*N* zY~pOPz)_*7E|K929N}MKfurbXf%EF8NE%CIyD-HP*``pudakJ~Y4UnNq>(tT#Y>ad z;XvP2poA&~9L!Y<7_Xj{k|fHTT|KvEin|JtMG|%mP$;fKxfx7U(YUzFgedNc9Ic)& z;0dBNhgVsFUc##%qBW2A) zs=~e}qq;|{XR+PnYKP+E)pG}-NVK$-V$78=i083rso+GkR6-(JE3cl7d%`ECCc>p+ zX*|*5!le>c5H3YW!Zr65CFRI5UOhKMYw7B_6)5;6M{Rg%*cO~nb=cSu#Si9ocznCZ zht=~I0Y`J&1oYMOdb~x_vk6crWV6z35M%ct^iS%Tf#nD7`xxx6b z(DJ+ny(F|HbK2q^?Wh{bgjD%-HuH+?u_x@!az~f*u{fm#Z-t8Ddve-J;K10I0aA^? zqXNDWd@45q{mH<^)O6G1`l> z2;Ymdf?8}ZZp0I4FK*Jk+Q_l$piSO#a%F9z&8$4x!lyhbmO!dIGiekgmev;$xW!&g zja9&CbZC7+A--}AhuUbZT?&Q;C5sz)pxu<6g1R=KTiX}K_6Rg#J)M!dM3tdT?zk`tfd&N$3uA-nSx`u!mipsH5dXfZy-+W>TiR$teP}{+XK85Uawe*@^1+Zy|s9H@1%_z7! zz^Z9_#{ot6=31lPpyYdB=hn-{EjFwRfHSkB7Z`Roqry%>_LR4{Kl~}%INf}5N0w89 zG={x)1a=;j`q_a4WUEKB116`U_WrwYZeD*3Di1x?rUJ=FG}+Jq4UH(IT%^FK6znYv zaPK!$oTy;KZ5$`iB(mUG`j&`NqnEV!*89v@_S4c~Y2xWZWY3LnXjswyK;O%4_8Tlz z`7&j3xkFCvK@6>=Yb+p|ughl$R~51o|4Z_*7Qvw&s?L2sN4nnBl%+p#Ln!FWDau2- zfFnvLBueLtxzbrb&6=vk;?LY_an>r)I>t%A`Qjq}B)U}9(gf=h^noBStKtno9~l%q zsavw%RFSHUE|&#W+bUK2;t!arwVs5keb<*v5ERreM$l6mH9Lv!DoHeHG+82f^CVj5 zi4@dt-_!&Hb>=SSpv0=ot-wB#N4ElZlbwpJPhW3$yC=(dGkxwQ@8V-V7*?Te>Qa-=n~>>ycZZ*xO7Ulr+!Bs9>kB>L=WWrvt> zZSKy+3A9pFYgt7+L25f6^BH41pp$_37wl)bRm2GZP%@4anR}B}#Abn+{NpHB#Rkr2 zTEKq=;Bf#&g=wU<**aFu=xjSF>@XnZ4B2fadK3VKjp9Uw$>dm@!2W@~RAD=Heg9b@X2CULC#HxmVNuZSK`{e~Y{*r-R3-Q#22C zV{1S2MFXj11mQb_^yhUPw-Fd&W%e0f4xdzbnv4N1JZ=JsC~o5y5Ij} z8->#KB!#p%N5*#GsG7nFaUd=xPC;75N7wY;>)6t1%W;h^Gipm2>V!qW5!-{K9=5@v zdZ_I>nOm5#iB>0|TaJILDthmY(q(~p6w1h~D_)1?&GtLZ42rsfra~agbOlYs=n6K~ z2-ZkbT|p}rYdi0E-WBZ3)@fHKQqkE79j^{9_FFxv?rNwX=bpS+dn zrB_H^LfTb;XkCd1U4ITIDBDYT`6uYSTz<^5FXO$n-Qq3ify@x|cc0HH+t2JZWjhOI z%DNEBLXN~I>8?F6OD$*n#rB@Ohj}<~ZP2>OPunU+5vX;0Xx(FYqkUo>LD)J{`?_ki zc%N8BCi}#~>^*iTa6f`jQ><3@EV?Emso|eODr;csUiHyF0ru2>ua4sDmvOF z{?MF~BALMqp3CcmFnWJAE0IlRC2|LKC=!OQj4-&B$eqAI*NKz1#;DE?huQ(3#LE}P z#ABD!4uF)m!;@%<3hRXjpo%a8 zZW}-(WIaxh(T#Y880aRv`XQs6@!pz@j{I7YjDFi=SsDHAU-oGbm?gXkK~xnTiE8bmByGvH$10vRc{Bnv(;Czw8j0E&Nfd|fS4^b) zfB7h%sMcp>8In^&Qqi!*E^;4f7^cVU(}K2@lP;L_9nJ?Kr^7zFz@1wu|BFxmW3zk6 zZXcVy5pDVut!T544c0V%Ps|Tlymfi*Uq_U*Pklg^qZaLHpC$Fz_gnQ^-1!|(J(j*hD z6mU+Vwp=^OmgGfY>Z=1Ic466crrkkvoq0tm*!Hva7uSMj3D+JR5R`)j6{wM3H1o05 zLgTLx5PrKbG>z7qQ@{*3iwFa=7m1hh#P5twA+ySpDh?Lt?VKx25oSMX538DC0w0LE zb3w0fFV2#u9f%sN12fVN-;z!rB*yGnl||muc>oMYD*TT*%4CmluH{-%4t^bugWqs-ux1% zw*N^9i)`CPoVovxB8W{+ATyjVYWCs_8sm%G!*lL173_ye|HZhHq3~vT5^R6z7XC>Feb|sjzZizCe zb*|o}(#%q?G>aL0YBEc`y9jbrDW~?}ee@bXYOr;_fXlXXspjZJbJ&?c#2L$9EVC&V zNC`$Pa9u%ZtkR`r$}P|nEmjtD$qpG@Zp{>-Y@zP5+}lEsO?5d~Ddumg?gEyp`!>OS zBZ+8JiA8FTrI#2VS16=WMw{uEQ-wvTZ%xUrh&d=()y|b{rB|#RRdEAaCCk??qwveO zWyI3toI=dhLBt2?d6BRsv1%2?_M0&e6ihSIj!uA#e~OE89Q-_iR1+z#ToYLhi)7`- zohojx6$H@bskB2r<9)$~f2JCN3*ukI)q@{K@1(e(xN=;uHe69qLvs(>&4JQN#SB?N zRF=sb(VDbzBmvu*;6&}2#6}YEQse`LrrIxj<)4F=F07G}1U~}c^Y0i-e4XAPm0-pf@CZOn=&*@!SuT(3S(({XYBR62+`q0I3OF*;l$VW*#VhylX zEnl!@HLsw4F##b=B$6pg<$Y!+LMTKM@r5p1ooBr6yi2&eGIstq522oaETmk=q=*^iHEatH1jUwzc6sP+pCIr-=KEd`9vECh%T^gR5z1Am8TRp zVdfUlXp;(YWkT75m4#qJfmNci^Sp^9%UOMCr`10GKC}8VK{B)YBA)8<`h;(rn$;H- z%FVk;rIFPa;bf~Ivij0|v4u}qIo-_OimbkjgHS@iXe)2+!LJk0%)rMEHcgKjI#VBeSuc4ONn@gy9F4lY%+OJP}9ds>t>}EV5W$VEWormE`hYW(vk!TwJH=@ zfYH_tJxa*MV+at0+k;m6!JpuT7p#t+hzkgYjgC)_zi~F-@)ls$a?jsR>IY5ZQeG1f zl_%pLlgcZx08>XQaMa`IhqnT6(4Ccdg&AmdlAtDdhq#dIby&h7 z%{3hTh!9$aFCCgIGSAfKH{PDSWYuG5!P75UI|#c47$aFH=K_&ZLZcO4kd_-+fML)Q z(F^bR4$CbhT154Nuus(4W|~QeT?uRVLd5oFONWpvU35}yDOoW`Xp(4rij0mJmI}7U zj}djT6|gfprLfsdf+dOrg<>KUpK%m*0_pms$$~v@E8>COptNK+;FI0|Xf1GsmkEDc z^b~Hw`nAqhsVL>Bmm@v%9tx$>qFpqjZQ1%m642-#(Jr9kF#2$}+L_T52QGMfO08O~GZ!3+f( zLs^h|i6W)hq>bU4n#s1LmlXC72a(EkwGO1!a&{nnRS8^~Qt>N{nOfaBKoU{p#a zQJmYAF`<~S$JI%R!^D@CcnD}Haa0JH0N^Ag9uSaw!*cXEZV#RyX1#cWnDyb+4>9Y< zduw9$x?d;~vvZSKF`IvfiCH(8p`a&}1&uC1dK@QKn}pTjNhD0`V9B8df5c4WnwZrn zmFK6%)r2B3(}}WiS%M+v$6}`96ERaciI^n=dpQF$#zWx~YZF0Jv5+cST+md)3WBES zNYFm~cS@SuiIg=8&7jE@4YgLGQD5Ws67OFirEJMv^D+ZT^!muY2`_%x8q~ji>6M%% zx1Wr}c)C=+$7&29mTw2f@;wQ$rP4M76auAC&*FvmQ#eo; z%$>(!#-kQy@}oP4rbt@M+)tZBb>~oXND}DIVXJ#}=g^R_(!^WmP)(nVM5a&gdVtx* zh|efdStN*WZTkdM^V#41x6HDUZR2J&dcTX62rIL%Iy&*`1jg>` z3Y_#Hg^1$jZbnwa*Lglse08^je`FGq6D%)U!*uP<=z9R(etTn^Gak3w{myxBKWz0mg+vvm=ds>qss8FeYQYONq1A zyIMuxxJ>}k2E2sF=Xf>+a06bvhol9mjnFhxcB@MBksKWTL`G)36q7OIH9?kqWX5Zp z0Iv#7gS^^yt0(N$2P)yDqP&zgT=v!ksXe$0bAmLJ?FI^h0QZs1X*?l-?e(Y=K;Rx6 z=-VOs!hUb&wUCI{4T;1ORm>S%Bk8a)X|=S_S=q7BMW(#AKu##SpQ2?!!AyA#iyR~o zbeQrI*0d=v?c{FZPDV3DiPYGXSGwlOo~DY{{&!a$dtX;{U&SX}DbXv9^kyzQPh#x-ZBOCB`sULBWurQ&N)^~FI(>_TeoMtkEF8LmcOND zO(X2VpnK??T1bX=ZCC8gnG75E(uZ->$IMEJ#MciP%9IxGG!4_b2)S05^o>DClwcfl2YU299~*@7Ke-{L^6v^0Xg&$Fy3rZN|GqAHk%l;MHe@4`-%&lAW3PV zQ$RzZGs3|t3@0gcTtK?F1KXXFUUIl$W58hsc?_=*QN81M^<(vQ0`INuK7FjKXa@P_ zKh4e{-;KV4%uz5?*5ObV6d$EXH_asWn{pb(1Fvkmi3uQ~Xw!n$QM1_Y(;=mb_bx^V zMY~U$=@{F!Tcp;Acb`;zviqcRd~i4`?wjRoH9+Ymr}0zR#O7r0NrghFDDe#t;a_3z zNzu_<@6P{4(pdD42~#Y3M-_@Uff~8zQ7QsCpd^#rt;Y**n{Xg8$X&gF>|_ZT%bik^ zM0vBDoQE?dRuW%YVhzwxVx17M<%g4$cumY@dr)!O=KwMYd(|(jYlcc#Z0U=F&kH%V=)s4BxYfgQ%zuEc0#G* zP0r(lA~Dk@r*T<=A?C+ors5MZQ#py4t-Q%;JQO~$HW4%x3#p>T1x+QaAZUt?1a0<@ znZtxfFRsp-ml=4uBZR1V@{oqCxCJs%dNjJQRe9NOp4$#$9+_? z%nO=So*P&4*2$aqDw^~385OW>GDfZR{Kd7r!d}=qLLIm ze`!xWe^F`n{G}RC@$(m9j-HqlKYtNUl-MO4sR}tGX4yA>prRDzpT7t%c`q-M*Pg#9 zP3bB(dHy2o5pBiKUzC^UFIMfU`1y-yl!Qa)q&i%D95A6!<~ZOa5ZGurVnw}~K3l3b zw*e)!YTt|(UTndkiw8x$QNY36CI_}V4PB%@ORi|(v)%d`k>Q^iBEytIsoi=JX}k4? zFznW=sO)aND0dy=_%+E=ZCyhhqj*1|5PILOSFwryy2;)8T@+k)x4xSQ5Q-f=cwxtG z9M~ZZjn3|k;yG>h_&px4F`Cp}0*>Z(3h2A_?RZPsz5{3|r&C#2%qdIE_ErH0b8R?9 zGxQcf?ElDN_vThN@C|QE@dmz8&8E*E{4%rgWSL&p;-Dt5YWJJpa8IrFm9ZaAA}3mi zm)+@~h_>6-Q<8WDSLEHgRC{oNpzq5IvdlnHvW(W@VVJ3FvR`JVp8Z}~v)L0|cBY=a z*r0VrpfI&|u=@bzFE+%r8JV<;c?UG0syfX`f!u*l*7kpkZvFTnh_yf0C@1V}0>M<8 z{{uWJXFKpepC=Q3P~*%fbG+2b7t&X@BRGak!P@Nc-FdoGS%q+ch|p2z)a976hzQsYDI*ce7|zt_$O6)l zaZpIDNF@qMMn5hDm^bK z^(V-%W~1V~K-{ec#G2xgLM^#n3|)4(G^a54qoXrzp-pTRD%J->Ar7_*g@PRr!#ikp zArez$$5l#nZ{{XMyDgYM zjQFI>cN%<3@2Zv^puFtV4aFkU^MU*Sk!teBMbt06*rmzX<`z-u0ct^dz!h3)Ot)EK z&1JP1Z<^^yRuMPRq9=Z~wp~&*pWKK#hmt3z3l-~~;~G8|qp(WIL3S0VY z3P6f(wVynYO&o%!lOnYK0J3`&pMKFRg7uz2j&#t^;NFsAk+#qbXdIlB&M9V?0R_Yt zh}T_*cqd-)t*6b5p=ja2K^-MfhEJ8%j=*Yv_X6?Cp&7L=2mIY)=v8r#@HC~807+*> zL1kpiPze)ThKC7pCtFVK!Pio{>K=qvKxpZM7N3htX#G56R6bw8(%luh@0S9hfqL&s z8c)R>p`xd!YT$L0m7^3cB~=zBUG55YwnB@ySgg}rmPXNW^94stOLpN^M4`EWaoy*{=)9V zX=v{wqR_B51w*xsX&bB1P|07CXtZGJr%7^{<=po(`JP9vK&Yku0c1VM27z;b=WKrWz2QB}}tOR4&NzCpLu!tLB<<64`_% z|LBH)%s;_Gz%Fy#Ml!LU{AY3W8*)e<(l zwG!qmd=R|Dr9#%i<&Ci>=q{|;sJ{(c_?r>3901xpZYz$RsQ?U^z_H!^!kRv~nUc#r zVy?-hxBnV(FBR|2FS#}IRl*mx-ygpC`N!riKJt|*ZJUMx^WxlNb6=UNtbJheW!Fjh z>~lI^xHud3ayxUoZ1=seMtke2Lb{$d5x2U@-kIyNo`l5_ns^iPkrtUPgoDUz!$lT0 zq!Q_jmpd~Dx$DXy_SfzL|8%64uqQsD=kfnTI)y%#(JgaS5mafv7#k2B&;T^v=m)~OVO1$g$5U_ zO{GO|^P(keMMW=x28`EKF2AT~K=TB(moavNmL+_Ja47UDUJAX817jrzYsUFo+!t>{ zvyyC%WaPhuqaS^74hJ=&`<*HuukJ>R3wX7up|-$VJ;eGRw-UE2Pv?E@i?3f_c>Z#I z=;pi5GCk%S*-@71AIlf{G`dBiNQYryx>p<`%)g4)BQm36F1s)|nQozp5ibUdy2SyK z(Rzc*%`Yip4-hLt0!@lO!b+qf`teXiFHX8cn1F2fm=CbE4}Pq$PJKcjXy8rOhR5>% zUL>5|kUhq8C#qE-#aB|L!mFX5c$W6(e zLdq{GxfMvdSF{sWB9+{MhmzZHGTowxv7uWulZ+x-l$#$?F9_1EZlUt=s#}N&c-1Y` z7I;g##s6S3&zQE0|6L`=Y_$W=uLOPQK|fLb_3Ibc%~E^oTlA?n8DtJfff?NXrTY8o z?SnDh7zx1ry{@<_^ z&#FCm3D3eN{y6IDz4uUyesWNYMhNJ})h?&zKzQq!f7GpKh6u=Jh*TR;^+*5h(*pH* zDrti~c__d3rEAw09sxUX0cle}sShPN2ch4>dUYFVw(Ofa4)ZgMVw==xy<5XP@V3ROlO(9fPy3>H zpqoWQ{_9UZ>I>AA86M4PmmtX&PQK!Op4OQIT#vpUzC(52`jAZt-9C9q@;xM9+z{5k zby8cekJr*vGmTkE4RiCW2IRl*t(xg-QO>-4pcP2|fi|Vl3PsD6qt&Q21#W)1@*ZV5 zN0z9JH%CqM^p^}N(iWZ%{)lSWoQlf-<;JLfy2Py&P<~*&K$=422Xc6whXt#B{>+9? zGzdQgHl-w_u;YBsi~Uro#!S) z^_yZESkc_u_q10tA83YjU(X~(`=ud-D>Y@iQPH^7mXA+Ht-1!B3s~!s^uzSiigHoIUH%{XTo4i9OZr z=L-)wvdLs_wtYs}UZ20`Y<@c%AISpc*5+f|Pfl;wBD5kZ;#e{T+kPSxF`nOk{OL}+ zwjZ9}el%Uca5B@{ekc?$n%_Qh!`apL1Jm0Fg=uK}0nIChwjai+8`^#nr)FsTIh^XD z0kuB9%Ao-@N1iFg7oR7A7W|^Y%FL#Ij@eL>;RV;(A@TW?qXWtHuM4Ibm9=o;0qHz5 zQ9F|#XvZHm%*?MXvwmeq*a0xTYc{Y;Xdc+j-|2xK{)!_7^D!N(?O%iRB=fS* z6KV6Z-y&IjI=363i^OFnVCgMZDN)|N-K#ES@dt)#E5<%MZRWd&mj3n z<{)3&`Z3aHl>FcMACUhr&GL;wzfI^dmGuomzxl^N|J*eCXFy=Y?QP!}+;95cWS;ici`I3@&(yZAJX5n?;rW@OWv6O}wP3TC{6L-h!vppFy=eY@ zQ<|e?CT*9b8A@#BRp$J&Q!Tk|^5`4`b9%veomuV-0T5{`4KLmzCa*KL0ho#Si$(&vtIcfsUbS6dX?N9&WL zvkZm`71>^``AV(-*4lf1F;t+8bM?bvh+@}HrUABNO zaPFj4Hp1{WiqMU%jaxBnRD19p1bq?H)~dUUjYKtRaw^%Y9A=7)uTe2=*%;7m;w-6! zs}Y;F;?^GgH^>FmSi5G%r^Y(vaI(^oYZ>dnufu7cg12xu)yaGdcQ`5A;%$6?@8q}h&)8QdA`CXcO<}0Rj#LdO>K#RM5eiD$F|K??ft)&GyGQ| zN_0@v5?;|za1>;`284*KQ3Pg_$UN}L_g2|aS&VGC4s$kRX`v{_T9zq+C5b<>(( zQqsiK>B}1Ib(1ha!DSqV`|GA}_0-SwZN^C3B+$UYDZEfWfkRy+QH1o+j|-;uyzR@N zJWSZIB=#4g7lQCgF9gYS6bBTNC_;xE#i$&$;Q>6>hHY-37SJ%DK*flXxeW_Y1am!o z0%9H$hi06lTF6)vUR4yYwrwqqZwp(Az9DY(`-b=lPpb{_lkSxrkO~pmVkQVH8 zYVFs*BrZN`ah`&b+aq1wpHs(<2NSnzLsPdnsm(a{q<1}@o5rr08kcw-zv(`<`1*4- z;3(Gl990Txqn)e$o2`O$TWmT@vZygf-(eD|PkZZ!57NP=;$bmRX*)m9Je9Y)OEj9k zN6BKoXN{TMMwk!kg7*r-px$sR!q5sU5r#H#lzX-~CJdYK+>|gh?kkh591&a3)DHcs zYgy~_HxOV|vGzfI?xr|(Ipmt0^l-O(S()GB)!c@&u&+E7~Mfpy5^HjiWNikop z5~~S`!bhLrefTl&)i+!1vi-0QWY!Pa^wZSUt`-ScXh^nI18=$DX^LdTG^w^;{Z*ds zA5{*Ev&-~CBmC(*mtc4!r(b6P#b<3Jzax-uL+mN=Rld0}uB+Cl37`T2%ySY<6;5<%CDHCA*Y8x(7Hz z3jLtTs<2|>vq@s<#Yn9#k6FV!nALnMCl+QUhN23TmL?r|tMLYC4PJnPRt6~Jx#~xy zmylK>uHk3~gm)fqKyn3dKynptKyo=iL87XFWDW>9FX03v=kSJk-)u-uf(v*9lJfxy z67dlvGeAgl7Dq^kIHm{|Yf1wYuO=cYEKEd1e7-U_|EGg?jV>|&mYI|;ym~D?Qr}Y0 zEM*e`__}fN!i{ZMapyn@*Nxl;hC8mXzo9&+?H_-!6 zfIBUyxKbgI)YO~_92fME{;jaCg0)WSf=%W z;QlC1Qm^+`8T<05Q2qH&J^865h8l;fff-nQJ23iW!k;mXW?LfqSo?%#)&IiQq-9?G zrlIi}U z$yjG5CgDVk_vs`+lnfbE2_{oZadKQ!T^yn z@*0}Hhq{GI_2SKt-ftgzApM@=n47Cq)tfRcRYP$8ZYcGZ3YFRo?(&tI`PQOJy>VBz zmEQF%tCTQ6WH(Nz)I9ZzbT{6jN?mm($UJK%=H@E(%50@Jt5QD;rI||2ft$wd$%@^R z-%?be``(qU&~H{*g_N5LUBXd?kef=p(jfh`JTdiX8zbHApYd8nko&%UK_+eK8`bw@ ziQFL~AExwSaLvOfZX)=GgWv5|ZUC2w3EPmqxGLxdlvBjj+;JzyEK_3iOIY{*2+2i)eWX)F>smwouMAagRVkzPT-l#<3AZCX zj4xRxv%=(dcw`GqyYF_h;e(Ve-hp33$JW!e?93UVY7K4K6BAlPd-)^}t#M2tHlLI^ zw1x|hwgxfF05%x530kwQu?2_(D%~2}RJFm}W*mw$sadf#){_wA8*%ibIAI{GkcZYd z>Ji!2P=%~DCKT(fp+SPINo%NPZe&L>+13zNYYmZLts$a|T0=(+-WtN~t)T*!YYj0r zw1)3R+NTqwG%|hWl4N|_ZN79H^$rmCu^Viflv}?c6491J~L zf8(`SJv4{*rB6; z#^Y27rv{Pi1x*kOUMtO#6})yJ#e&zNR&+xe5uGavUNh+tycQh&;Da!bRmg+jO)0`z zqA!TXnm~0j*}I?wE_<_{HjzD5&SdYrVzRO)#3p;9!ep-vPm$~?pUa+byX>jJw9U~W4X6VazNF_W-p@Z$TX$&ze3Y^#p=Egi{Byl= zbQRN#;*o+0lE=68MDX69O^KV{KPR=&K0s>oC|!${rLyva0eMM}=o!%#9$nxvR8yGd zJJ2()5Kmj|~i(*Zxgvz8!MMqNgUHYQ*sMW)z zN*G+KRBxB6u!ETzU&Mu2s`>~}wkil=nnDq}1`uky6{2W-K(jbn0l&t(@6vn_LRx4uCE|9O4cf!_~5t9_V_f6ywDr1t0E@G1E z;Y<<+XOimeObUDM6t3FmD}VdW#Xn#@u0`=9kC(31f84eiG+{kVNki_iSy6}AxEOXb z)E|8}!vwI!j#X@Ysm#s)?=Nukq?2RzmhhFK%wjuYHf4zEaA*q0IK+^rmSQ3atwc!U z;8QaR5@yS_2Q{H{G#BK6W zK)q3+c$&r;kj#H6C2eI+m}6*OUVe_@#{^*}%RVkBHatNkb9nNz8?I1flh8(!rfCRk z24Hp>+C4@!CS99Ce5J`1U^32$EF0%qm0;9ny!kI);=Q?Sx)#k(lbWKE3LvNkiB>sD!vw}srrwxH}a>tf5zU^pp3 zv=w1unnCi}4ENc8dpbp={tA@Yd9EGkcA-%v+ybvU1}l_{ZryRmFuFcJ@PUE^Xl{{Olye+g}NnXCcA_w z^w`i>=gaigo^Oo=xA=m};^wH2ml?g+M!BdZoAAr9K{Txz}+; z`*Q(T&6~ls!Eu>Z0M~mQmx2M8`fb4F-m)f8HVM~7HWI0$^>lE(+;J%waD_U`x=BR* zsuJS8Rm@IG#Q6(vwi>25?_ywyqNe_9Po!WdE|9L`BAR~P6QyVhZKy<1G$QXsd01Juc;lT67pwn2{(gwi{;bp zwH8azWZ_1CCZhz+XvA$?YJ2GRo?Hu8^6av5_I+CmmmIlnL|4k4u4mBkz)7D86tl3_IDL+V$k;uxP@yK<*3HAV%>UJB*k_*9zwhL+V=L zr#C#5zak7fuh{q)n9t%(JIR)NP5*(9*pZE2m4>qR+#o$n0XJ{@O#g#pm3) z@EYcY0t|emcHranR94n=7;W!=8`5P{0~oG}?S9|V;v#1s#NM>5z8<TXS6 z=)@^e>_~VNi6ZkPb>XmLxbDkX90|t4dvp-Q-WI)}ks(1-Vwz>Q3Idb^q>h0Yug44Z zO*k~ZA!G?GAh!Dj?8xmPM?Xgi>7QAJn*t0E)0EjXZ;+z{F*AS-knDqHPqt1pJ)g?~?+6*}i3OU3I&K3r3dnedSvSXe2#3fPB9BFp*fI3Tql#oZM0BvH zBOpCSz&kckv%;Fq`kT={9Q}Z*mo(N~4Z$``KL8bcQhzpF;Y}v$!twRt*xOj%5D07j zi4CXnGj`%`_9*gS-EcY>qc~0HG4n9mw(KDvMeV`Sk4m=@+)2<%PWZbUkX4!)JzlD? z3n$@kr+~~-9T?iFjgS^7k)4+g!iHqTzaPv@Q|WJP=cR>Y(AA2g-!$7wbu3zGNyVTV zby3Dh@U10P3#is~#&DW?K11FIr!j9QVX} zq8gAy(EE^o=u)?b5$H;s=yQ|$(4}b(zoH&e+Y1%52z(6zD=M-3I_p;HZ3>FK8iYvqaO@Ow}~0m zI!T;uTC7oDBk?4FgbcqGFa?ZZX9CB2=IJq6fx;LYb5rIVeB2KfLGKAtfMXm-Kl-~M zbbW1~i5k2`+h7mzXG~{UcT_j4o%81f#7bRT{ zDh^ZB`tN*9Md>p>mI*lZ9;Tz=(XiVsX3-$ zR-)#j)B-T7^`4l9WkqRIL{l^}ZOKryWFwPyW)Y>$I2loTs%T_dMwHf*kCxqtqhCaw z-DwEJi#A9yqSOQ+%^1620t``V#93LC>PSI>+Hlqn@em}4lBfxyBnINuh@y}%|EZmNjKPoL{w|{BPeN`vdfPnXh15Gl|*dJZf>L*@5C?AFz zNebRWc*O|3qj=Z4cO*cee3Dp@8~{R^L7cGnx(9DS(if7GpdW8Q(i@;4Q4t{N211%1 z93dg14=MuVLKjmXv@Yh1Q+Y+9?hW>6An2oaTC$qy%G|?mV5{W|k3p#C zhJ-g<_ z<`JS2vp8N7;G;?UW?RO&wau`SJE2(aJ1NsAShESqUY%eZ#$yX7T~rbd-(XdGU&e`! z(j`j1^09o!V;DC53$R)fjoaH@YCcXG)+}yKmJ@nGY7c(rH`&%V^Y{}=aW5MlY`sd| z?9u|p50I2p`^dt;9DJ5wVZ|Ahj&ClJii4wMh45KuCR+z=nUa?;-jD>nGpUd!?cPqr zPYA*qR`G7uo47O;1SK$mk7r44gR$*f%qVj&H`AQ6Zs5i*+U)(|{EXlJQfGFidS(y_VqF?||CS$f$N;1Ch7b4HVxd5?%V zgT&1N+50XKD^DzOD$|+c`NbSnBEuXqsZ7fxCJA{tCaF5cq+w%{wPImpYD)a+pPIyh zvSX^OFE9}pY0_1-_xCyrqxIcfWmw<&sk3Hk^MFXCte5eE=n@V>ruE&`D00x=4-k1p zk?~AzRyjuPx<3u2rTYvJ8^DvL`?&}SGcBb@ao~VN;!S8$K<2Xo`qKRb-hiYFO0;x8 z2`G>`q4dbI(#K2pV*;`Y6;R#pcHc`Q-BANIau~u4Q#};eVPHe<1kJ5fc%``wm1}Mz z&4)abEZ5vtYZT@CzhuWF>D_=U-UwH57Cyxv^${JD+J-nKSN0UE#x&d?9}w< zzMXv!7cri1`kN|*>>SzIxA+pcqkW4FATU;u>$bmGi9aDn?ZBUqoraHObSD(r9z-Ie zyA%4mo&H@o1((r1QKa9>p>jQnjAgV_IY#aF(~b5Z+DK}wi)MNq0k=qun`U=V9Bm}^+eVTd_ss)F6^~Oa=JKVb zQpbG?>bURxlFc1NL3FkjO&G#i(H>10zP4z*iA3qOTdh_K>Ic^xft|`kiC$WgXrA=w z)yp{4aXrT*8#yLfzi(=gT4xLr92eH@m;k9spB$VKNLe|8XtEO$QbcxM+E?Xg?a*SA zG)^`nX8lk?$YMWu^G`kb2%FEFbzYE7_K+PRfWI?;#ZY0mC0CS2Ta5rk#ZKlE>kZdN zns^x05}5offkOmLSh!K5B7IMphy#T5!#n6cX+A-hdHCPLp6eUxBE`jpj#c?LRi=V$ zNW;e-&Vr_`M2>fY=MD97vI@&p*uH++%A~9AhW;%`W0$C;9$U7y@pbrvJ5fE{8%RH1 ziq5mbGdpfbwda>K0(YS$Hv9M}wlazELy2g2J@r(ow*R{*Cp?{&O*hZINx9XUWxw00 z#kQx*dAd%DcywX8!g-($sgK;O>F;N;A5VH+_zI7u%hOe|wRP(0(A9o%LDt9hlFe@E z95`Lh9J$lfE*3A$!O~k~n4h*hTAsktg9@=;CQmvL1v|2QCioE15D9^5Y%i+l$11Ru z0^2CC9ii=@0r*g7up?lNSGq|3p|tb|IWCoKI^ycK+(ru6NdaB@LQc{lka|h^LM?j7 z+B_=KM7o4A_ulSw=>Z>#)DoAePHjIgi%?SQ3$}3DzCOm>EM6C;&txz`ey3;}Fe z31K*@*V7nBXJ_@}mW<~PQ9o*Q(tcAoRJMe{L*XUed`LW{A%ca1sEWt;W@M$?rUbeHfngyMP|=i?Fu*c%))T7Q z%dD`^$|@eh!+2|>I4c$_E@zaJGDW#YHJbpaEj7F=ph8I&%*Uz8HI7q3jp0_bA4yaC zh-E1@2N$+b=)S7#RV%&px(D-RM|;%KhW!{#V~$kn%x=WLpYaG2i58^MrsytJK-z$S z*e1q!DW??&A}0Y7zaxqtj9xBx03l)njNXvA>>yviRZgkMh|^} z;0U<`F^BL%%&_qJq4wb@axgl63HyBgL}fLfUgAn6A14LM^kVtCsMIJ4V5gYlNn&uBKsWJfd>B-A()4 z5$lQe?B3?P*t(2cDbL{d_{Qws=CjzeJThncmaU1t7eq~dK3kIyJX%zfTv1K7 zeUzFg?{t;EVPrK?Fh6bIG(zysiqWDItGSBsO}WAy_64LfZqVt&*{V*es_&ubSB=^Z z-rn!fob@3c+ejp9s#6pG%8%zeK3;kE;`wM{fB!#I`IKZJXlnl;g*v#Ku3FDu^_J-> zo#Pv`ByLA^OJKTcV;YuX;B=L~I+3JqCX}}?0NH0(;%*VY!4Kf%0e%9AU*Gq9lTDQ4 z_w}~8rfb;U{aG6tKWJ>R;(VJp)s07)jApJMyRQ{)@svL*YL%ZHy^36=%oxW zRa2uAjg#!@NAKyQZ_I^V_DgE18D>vj37($cW@pey(hp>be+!8+ed4nlvc!LxHQSNP zP()AVuOw;V4z&?oq3SJ}u24g8{>>nqu2Or#D15ilrl$rTes7gsm`>W%jjx-EL5~G3 zB%bW8`j9x6Z?N`Wvqk(pmo)a7+6N!W|KpRNPTJNGA2`LQ3d51evu9WpB<-wEZdAnW zth;MjR;~YB5vv|tpJmnbLs2{5v0OW+K3x?)U5-vIZujzu@(Fj!C%6f@*rXOZ@!3c& zFdi{vl~(&A8!g!ie=i9$vhk7sD_h}D|9y#UxZ)@hj1CpM6>QU02WTem;=}k%^fe+K z8R5@#)nFQy68!0^(R9p_!-VqoB{>_}l2(t*Yy@zsi>s7`L(fK1QceF4#)UplGEgXK z`d2W>;_$M~y0K3z41&ueftqSlo0IZHQ_ zhNWwuGzp&(s$lWs1KAoJRt;XBt-*w4z4tv?Dg3j~6j8sWi2C+3P_MkxRg?S`_5K|P z?uDv4Z1?J1WlRlGxI+yPJ?_3k?T`^V1uiWVU(&HE(rEPCJ3>xJ^F}!*r}P^aHDs<{tWC0#S?qeU_nT z)#95W_@r_(uvR`G4}Di>%Ljgl*oXe#qUyZiJL2m6jS{@`6y^HK1C$&Ol$c_-!N5O1 zyY;hsznKaCF{0Utx$~~Y$GMH(Qn*9hw*hhMSNDD&lWtu#^7)JE&%;6O%6dM1Q$<(a z*_q@>R8X-iUvucL#nT}Pja02keN9P~{&c~J?7h=Y-3q|eo#cXPMf&E>PZjZYrYXzYIi?0jly|zSi@(NO1-Yi+_t3-bMG;!KLjunqr{26St7KozUc*{^Q9kO%!4Bb2u)Y@rC~SCmmYG#m!dVt zhEEpp<-|*}e3|($d{N%%sy+NQz9`6=Lt*4dYu_=^S!fV_tU0b3TSR8WmRD!l(jvBe z{S(F(B~I8PWXrPU0vNqJUcx7~q~=UE<(daRT{Txew)|X6`4U~1DCu|_bslUmZfCZ$ zUSasibk<*bah7ohCt#fNPFKzH*BGZDj}~7oz?kY#xI+{d)`;T#Y436G%<^itc=bt2 z+xq3b&okRWtCprK_fz?byA~IjlaSS!GLA2im6L>~t4^e0Hz_N88JAqrQO77GTkWSl zUR3SAb=hhk`dg~4{L@v(_-oZx5J9PixWXDi+5f9l;0}>ICQ8HLG=p{zgVR~OstrTJ zIlTHYIGxA4{NOZ{W!;Ea_ghfB{NS{qxIQNuOXXD{3_s4UnH z25!$zUggFI_RGL(4lQxqDw}ibgwQl zsbsqv({F_gHEsc@xAcC0OZfaSP}|fx41_xz8z|LUK^kZ8Tzv4g3p)`rK%CFT<(LSWSqxR;%U^B>wRw1z4W=a^}{SgYk`_qEYscja_ ztVdrm-?_qVg*R8GZkut1NqoCwQUX72Z)W`)-u-5Bz(3^8Mk~1sYnIeP^=g3Ar@r(O zwA3e-Vtw;E+OgHjMRq{BN_*ftl#S_|6>*h}Q4KnX*t;G6C`()el|l`o%UjCr#OIK- zEUVjzGgkjOje8vY^n~@R!&L_Cq^m^Vj3;6f5u~p`t~TR^u#GsxF99XgB;cSu_Tdbv zo9Te;e8Tx zYnsTXy&C1mt+Ztx(@3HF*H-HcLWd4NxUa_OGgZz`H&D27nA*@loeE9Z)yb%T3$*tY zI*yig9wnEUWAP53sZmpB;d$3<7yqHK#$*(;LL`7e*Kqi!E+q(;L*_3 z@R1!DkF5kn!qj< z6DyKE3cdOSq}W)&B|^oUnI9oDTLCIrszc`Xf;lAB!1am{xS4<+!D79V?V8=hS=anv z#5Jp0opZAu$9MjDd__vCPyq;^svyW#-s}UZJ@_{M>XL@mthakISX3hfHj40^RHK3E z^i^6dDXLlThcvFBo(dhODhrjT$h4LinygWIC9w9KM#=T~RL!7V!??=D+gJ^tzGDng zQeVVVz@+(HUX(I@^EBuvmjPX)jnIqXLN85Eri+!Q?A?+`;!fKpIjAT(Rp<15&xg6= zq#*VP#IuW4R|H*PoY?_ZWusixBwv}!^D(FSiUtz9tr2C2q;MEsMp8J4pIjmdHXKk) z7>N57V*_zCBt?4}eZ&OHlG^w{#7J>SI1X9WPTNz25h1eSxv)-EwskT~G8MM>r!`B| zQcOtW1+Z`+PqqL?4-#6VNAV(_c)Qfg1m$Am^j(XC zTvp8rQp)%P^+y5qACvKis#d6snB16~|1;h}!sJ%U_S+k%Uhs#WezB_BEw~6)=B7gJ zz&+mt0~$1tLaHC~%#G9LZ2Y=VXix-{ z*wGt%9u1q))XZSSJ__d_+VJW8m&?87t|LE`*5l}xlwASDXLVX&lcX9zD7ywPWmn?d z=pOZwbK+Xy1QY4#5w>Ea$u!5-+!`i{7(kk}+cdl3H&$epEsBc8Z4)@kirW?+ETPj5kjcN2HNei07R$P2M_(tN`%AYqwre&{+il*#GYF* z{bY6`>1Dn&FSy?_;_K-6b^^eVzxpc5ejX;WeX%XN#9^P7iY{G*OW`NA zT{F*qqc4gP$nR#+FkPj*YX336HUSd%xaFYeIzvEmK}e1WiQS9<$>Y2`oUT&HkTgY< zxW|!1C+z`A#XTT-hma_dy2c+F5`_$j#xARldmKr0J{pkZgydU1% ziF+JLbfOlJvMmi9&{? zFGAuTM-rV*1|-8m@_HdrA|ZLekSJtG1|y!h$B{(GMFGjUkW>kY5(!DWAyLSXv`3V< z$B{&55CO@okW8}A=m#1gd9EQ*7DJ+ad*g|F97(h@ACO!VlJ^OT5{Z(Bs>Kt93`tLf z#66BA+Q$w^npiB%e~*wTk&x^&Bnlal^AQsFIFe|CHy~*dk|$VJ`-}!8+YE`a7!qxt zQk~a?ZCOVWZFL4DyM*Mpkl1D`NSF#snQN&R)RVb1n7z2kiv`^y zY{_ksCu=iGPsjo8;UY0nTw5e_%34&ty>U3b;j65b)-vDKr?9ta=9#~OuZ7|&n3uGI zyE(rEq}?EXUA&F(X3>hfMeY#c%niZ(nSsx}w+eP!nvKd^XyGHLv$Y4GLx4JxwJQ%R zaCbf`2KY_N2L$p-ZJlS{QGth4ozEgnK|9oVI`0Rj!9=i)Quk5ZCJu2_Ar%O`5p9AElZSaZ;g+=1!;Dxd1KwpP0a|F0HbS=;|nJPUUlxVqij#PRk|@HH(8d)DAB>ZD zgpw%2lZdU0_c^T&RlJ}ckM5{ge22$7RPlm(Jo>g`@iiXrP{j-C@r+Rwi!b(g`JESP zRgYhTFR=gFym}Xk4=K041aWHVCEs=0Jaf0LIyY250K6jQL1vEBvlO1L()aEa8DZL6 zLp%KP_w8R=ecw+kzJCAGb9!EM^0(jr{`Y_A{qO&q??0mF5BY{l{w}`l=c`ifEpEzxHt5EX~EL6C#Ee7IkF4sRuGvxTUUId&@*ChZ7SK-4uuxwS_h63^oVH zr0u=U@N?C>2CJl~Mx zZ+IT{)r)VxQrLc_aL?5vvXPc=xNLYtgx*11T&FK(K78h${1@M{|8mXPdCHR!hUZLI z$!j9IPCng3uQr0W&SvTT-yu`Y-j|uL(4h3MFL-@QtCv(Nsi+C>k+qD|_NIVWB}ZBb z|pS*oZOOHkj zL$iTetXv)-9Fak$8!=xDzF4)MHZOf;1asAQ&!Kc8;n=iN!o#&m!YySJ);Pvy&gfC{ z`=@Gt^zCPchlj7fta|FPcgnqR#@%bdy&Bxv;5LPHx!^VicPYeIgm7JOYl2%J+$$kn zWeBeg?xg^~9Nc+x|7PQf&%N`WeNV~BfAJSySa?%qVb%Uq)vJD`qT>8J9sZs#Srw?o z@G#Q3|8n)%oaC^A8PAKZpDQ#dG;~+x5rf`U$w~ae!)J!{rn-XkZ$+Hz3U{>sKc9W) z{;yx}dF8-YdR{Qp_?HU*|dFd`_b8V&VT7I{{8y?sk$G1$J@^g z{bI#;eRA=({OO^)RuyUnlw;uGd#~g_z4*7oL%IpbT&jy6N+FO^`SvqEIsA6+h5%7V zUED8vt)t|>`1aE^6{7!5Lv6Y0S8HbRo`!u3a`!*G;+1j@_)Ci$P65cz<+Sa!A)V7LTCv;OPhp?Ie@Tdul{DAaT3rB*+QUq_tDG_ zM^C#si&ysK%zS&jADADT{&r4FZ03R1k80{$4`!a=J+}OSF>`n8N5(FRqD#aXyJB;? zTK5r=%xon)hkC=irMHbe9|dO~Sa=bjlCAZlVDq93B0`zQ-uw>JM_ch9^zk%|C&ix% zpV_gQAk!P07!p3RZI7eQbJH zYnOEN2v}+0Emm^C*xTA=95G4`w0^20cDL^5b!J;@BD2jn5u3A{*q(5k@m}lxo_h}j z-&^?gVB^B8avDdyM}k2%IsMYQFSA8nPqZFPwam>LZ;onK*HH%F3%@n4^_Oh2Hl zeB4H$2vUkSQ-ucjcW_l_agT9y5c3#4#vXY!W_GoHV(b#0*cY2~z+xQZsPIh}q!zY$ zcVQl^mf{*$@ZFGKG0hKzX)OI=v$c7@L_r_LOCmfe07YpG`s*9>f~`NFwZpY`_=X)m zWrxq%VVxa5Zilbh;U+uWVu$PP@Oe9Y!VaHNA*fS-`XRYtct&Sgz~9Ll&1+c0-J6`@ zaQm{rwc1O?forP|9IIfaQP@5|P)JUH`zfBTZU00)tIu6Nx#VGaX?wpt!;3Dm)^45* zyB{9Xmf<6!(-&ab$D8=JRX2IP;gOvgSt_q}qu`T^?;wjmarJRFEITd*GFAPuz|{i7 z)h~Digj^cV?I;h7CA^v$&{%y_X`^b{JhSE153gz)BP}N*we1;x0fAG~PcC^P`KMY` zN{b}u#B#z3j6iG6*aR%vVAq-7otURQMu!B?);)||3ps&J^!LSMDlwGGcz zfbSljN4TfHZTNUX^RMI+dQ+SbC`+W-`i*p8sro$Z2K z$1@1-MM!P_&fDUyi)ZZ3RTAqyTVf{^X=}t8g{;i~oUB|zf+fmL@?=R3;#(`kC4Aft zpR&Ve?eKX!Tu*3A4dT2-VhLO9u+0v;>@Z=6hY1J7TNva2iRAqF*#BM0`3^a4$yt3G zg6$3kW}62@V$fHX04cqu?4{1Owyo_MrvPpDK~a%=O!H;3{{KL%Isl`Bo4*plqtc&d z$7S@Ta!mUtW)>-XPKcg#2ukbCp+vx;qNTqgz_+z$xZo4>)6cjLnBF6j^4i5KlMA1bKN0Tevp>N8%TjnM5ryt5zc|!PdxeSB6 zKDM3uaf9YEB?@vSEpA>f4qXpPZjNKf;+Qm&I66wqTBBi!x5;&Z>?xIkSy+sX#;)Wc z$(brS7%nNfo|1#}TaZ}4z+<~*J<=`Ub}RUBmJ<36T(~zdWJoir0Bq-K|KPvmlksC5 zB@RcbU#U9V|Ce;|H=u^Q7UYz6??u^sb@!NSAo}0#P?q zz*Sw>r|)xzhOF35=c)yRH0skgjlG-sWPV3-ALae=$A3yHPl5XV7h-}`IWilQTPkY7 zLm(*&9o1FImjN1hrU6HR4NsvBPg&fiZ|?w1>KYKwV3_iNDF93~Q&^F4ZBd0WMX*;; zVWih5yu79HHlEOBy$(@uSFE_n?WpdUAMop&rU7#^uH1^|DX1uZ@!9e_#8Jnu8*Tr0 z3GKLnbd{H4$^W*JlZMJ(#qSVD_2+6#KAIvA{8wnxThK4v7W5Yj`aRkG=r1xr|D{aW zjd~mXxpcM2>S`XD6-yHOL9zo^*WoH^3Q&_c^8Nbz?vQ&$smfIi$I#J2+rN-1L#XOV zwn`z`UpPS3mP(O|NXuK%@HLQ9zt0C1KkdtGfXf5PUr4EcRYE{9m&ycTu`C7*s`YS{ zIhXh|BYXSIn~1bfbi2`tzeM&J*LOGhncz>!o-ie=a(MNJ-tc*`^I}u7YCLKBlq{#d z$u0aAOE)~i%&x@ZrT8XN2}XDPRX7EI${n+eH&vyD@iHY}a-+<6!zYE@07Bmo(cjz& zv(ED1b8rV+wKcybE;iL2Y}Debc+6>w))`aXmBYHHX0VDNJH?I8=*N}!fH$i;>e60H z6F8`StO50Ir$$OOR|fMtw2j5tV~wMFqcf3BPmNxwu*%dwcIw4!$cuhlwJv$CWe*ug z*ZZkH@elN1Y?eDdxi7ktrmH@JglgX1JQcR&XtSD=E#~4!^LAeKgp*w0J5~OLGs}lR zGH)bX1@qUT}?E?u~j zs)KvO9}fbra#X6_!ZX_yxIKgY1vdD}-`n#^3-DCw(`fiX)rLPxt}xzHTj5jwD?C3y zw+sdLmN6epzk~kCM)~@iCwT-fp_`jP=~Z#j?~`0OuSOY-I4$=3wROekJM^x-nQb+$ zk$QtuKan0z#&1nG4(A*-jwfV%MK@)u!GP*xRIYEzZKM+Biy=*F9VgXE&B;H?@3Te5 zk;|`573pcYv_-GGFt~;LC${Kym*`!G6Tdh_ zv&#>|G^1m;xQH=I4n?*;G?EWs)cgwD2LE^U`&Gs?mvJPv{7`1Q7CA+%ksVMY6I`d( zY)~SQ&yo1bCvZYtUd>Rw+4-;XO!yQAY&2SMkh~jS7n^?AIH}m6@}gMDA!myazf#NJ z+2lGe4=e>6!vA!(PMC8@i(Dq)EI%B(-i-@ub&~edOAf_m9#+CJ*{!Yqi?9$GZgKV0 zi|G~`BE-GkEk1l%jn!)U$kDyorA0-kBszRJHlv@%D<6V?sn8ODW0=TN+Z}fL_3om_aL%EHH%m>RIaSjncjcG*t9eeUp_xIVv_F3DKP;BSo|3ei zsr8{hG^Jlfg~<_m(n)D;V|ro%Wu<|SQFk;k%>{hPxApgnLS|FCUoyX6+tZ=H>*(2I zmcu_{pQ*NxDlO7NOjCLu+04z7_yX!2(rp>z7$VM7h7c|Ksc_vH&}pj|z{QlK?-U)} z{e$KyvKuGOTL@C}ApB;$H4BatpXhYA-us|YlF)uqr>$$z*0t#k>9HF;@$60<_6}p_ zAw*$$;z8V^xX-4$wY3eb*69bGJuUja6PHi&#Ea9iVz;`3EpkPQ&7vnv8eRT2EUMw6 z6c*iUgjSc+(=gAhot`dP0BSUo(BLwr)<#r6=Q4@@j_YP0qq#WoCTJHN#5w z)^OALy6N!C+p&@s?N2SO2fOS2A(wa*ah)=%l(d8!CxoeQh49&Qw{aA}1B?!5_f5R#@2sfB7VGEJcUAdvyZm9icG8yyZ8e9Z9R{CmiuM@~xhuyC3PSje z-QANj+@W*yPt))muWphSrn_Tzdc;StjW?BVI14=8MHy}_`WvF6eU;}3a3{Mbp&RGX z;NtV}##5KJaY*7i+&jVWfrTHF?IPo(;)j`T#m{h6!cTIvqw3IL{*yMe=oDy9wN&cX zBHs`ONXv^abeiKNeozg2xP?+`c%AsZf<&V$0Q z#4PoIvB*z(Yod6Q(~K#Wq&~%u&B{ZsFZF(A4VD#pmCq5Xh+XeB?(MSK>gkV=iIPLj zC5J#OuBE_e8IZM?uJ`F59ySWBF?|GI5JTOU?5>=c-=XF^+D6wUxRe=&b^=hWWVbbx z#_sJ(VbwUX{%UGW{FU^xSue)%49_1rDLqoKU4WjDR zu-t&dC729%#ioj`T_Y>24B+tXfAgebtFVP!Z*ccxq2D|@^Df0heNdJmxZ{GKQJaj4cvLiSX0 z8Od)v0mRN_t`f31$HmS@xVFL1b(HyZOA;hF`J+PvRWO@9IyVX}ojChWjci zDrVjO3g~rUrNtlW6Sh)E-$X`OcsgkGqPXi%q_NL}6C9x{UXdbFA9lG*uXpw&<$(-j zv+{&LFt*30`h#1l(u_8t%@c+>l;-4HT#ADscHao9Wc{cJ7e)SCGH-##}Pp_b6!3ngx$Jk{VkbgY_ zm)>qm_!MSP!q`{c+)o!4QEu4A5tzqR(H1KJC(e;@|Pw zNekPj547+<(&s2;nUC27Du+P&X@|B-t`*lJU$^MA067W4X-h$Z9HAZ$7ZxHXMZ7Dy zAj~CR-bIdzk(04J7krVN$ae|o&WseD^7`eZ&88DEl0nhw9q9CdO(&5LkrTNASLVAj z2t`1~rs(uVLNYlYI)wsdD^4pRY1SfYHfd|(Ja$hJvu7Vqd@X&7 zhZWotMnVYsOU#`Cg1*np!$P2VnVkm`fx)dDEZJ%h){S$cu06;8KE4|ucnI_a(dqgZRI`i1WDG%0b4U0xPdP6 zd(gsGdC6up8G9l3R7z&^9}xFU8HUa}bmWSC4*X-hW-&U{6bCL$%JDTR6`O=1QaPNX zYw~7w0A3c?Z7!p2q)}o&%hXnL)s7=xa?LOb!|z;?&cu@n1KM-#uKJ|QXv^FJ&x@}% zSBuCj(|D6P$UpTDG~;0YCk#RP?`8Ic4a#N*DYoQdx{}3m{CNYt#2`OU*^kmdQ`*&b z3;IdNl1%-$Q(O6fkf9#~^#8eb=Z>VYr9z({$a9j9<#ro}C3`8cWEWkCPP9s82SLh` zb8T$J7Fw#7w0KFLnIm~@(6q=(!L*H^hukvn=z%e99D$v{xY9tj_7XgVfPlU1zlf4ulV38tDH$G+Vm7p;C@GjCcDDuZC zaW+EWqnmm)3ha8(Dou_&^I`g);?RdY$@h8?F;QdT9r5zO^}=ox4C z1^HW3wa4cxx4vqTdh#fkzcW%7x-96X`g$})f?+1R^5n9n#FsSEEi zIxCp;sHVa{11ZJ&re$iNO$?#88_;BqXPsK)Qs7r77R6oy-ML0*;_C@L_BZ*aR^K=(hkI~wI8#oJ}L ze&GtTtKRrgICpt#vtt~Px7T$n3(QqknOe4+=m0b=at&6bDEs@3))o65)x1RI zn<;}A_$E4t&?3JhXT^$reN`3FofXjXel2n@3Gqjqb%+OCalc^3Nb=-`RC5iN%%A4* zD$9BI6S@iK6M7PDctHg0%K*DGUCPBDaCa02z~pq+Y9&clWUck(Gt>WM_xK~2_KVW5 zVwNK1n^Wm}UyyAFyy<;kQS+76Kjj5$C;BPi|J5mmz)~3#OGJEXmeb9+t2$nMeG5Z; z35+PUJxG!2N@sxT99=T#5`r0jva~%o`+6s^9rrsY5uz6`-p1OC?JwwqO$8S&(Q#Z%Va(iU`KK zsX~=h6J; z|FKo&@5pHM8l6f>Bop2P78E}xTH$+<5JvEQOjQD&fgNQQ0(#MW3$(~ql?8N96twk) zwa8(ETndtFZ_lUSr45Hzotd*qIw&DN*RGX54og2Db=aH zB;;0iP*~&~3yV-watg2LQ@EZ}esd1TIzy@LvvX9AQ3PvWaK_R9N9_rt#OTJ)LX z*Fhb?HWwT%NF28Tznp@#DSCRO7W$7qc)-ohv>Bh%RcnAud#OAy%h+p8;6p>Jw^qYc zd9vMW-d?tFSgPtBA)ZVU+aXI?MZM{&Sn+<}&z^p#4BDxjI z&d{RINY9yLp2J&csEmTMou@3Kl0lT(3_~e3nT3jQ%qA42R!-T853g(3=xS$BbZC828G-toRg#`7u1d{8K2je&|Y%=cj#+L(6^I+c-#3e6gR z^b>ID`J@eqVgARk(Pn0>XsWMj(I-e8&{V22i`u^?%YZHccBM$nMi?-5&R~8o4JtlStlODdP*@=Mm>GiJQwk030_tK@t zl>NZu$Z5r>@j`7j_r_#JI>fG;Z;h@$nK9uWSJllNc<9ylkFM{{&`&z`He9gY_$<7a zD}BL+MWdS2R09pJV9SzYIfwPc`Sppkc-hLVXh&$+%YGWnX>a}RDSeaII4n*|@m#IA z78ya5w@TQQd{VV9D>>EbLcd&W67Zj_qdI=<(D_pJYwu% zMG1I}!}=!Q-S;%gTUzP`ce1>*yz*_@iO=%Hr+K(bf!sJ)4NoBMieiY1ws$9Pc>|=g z6tpMt!9eNhQ#HLvTWF*4 zY?P;TjDw0!JkD&bC}t-C@!IPBz^#MkuWOO9)?+!gtt`_LTb`zz@u5qN9lFVcSjJ06 zn%U8ieD8%hC(<^}MM{;h@uv%``cFRCmw2`iEZHb0xBFN3XLAB%2oj zDw~-zL4mBo$k|o76-8#X0Iz&`+N!^U5C!)PuZ%Ps<&{K0!F*auzM7%eFnI zkXeh$l9t$NFYvZ;h5!J>$(vIhdiK6fX(j^9OM3k2(q3#5tGkuk zV5j_U@)S^NZnNWQs!VL&icqQ@hjt?h++QMpY$wDK9=Qwoz~}xk_>3$SrPY$(-P48+ z#|#!41+D}3W^)cnoRztP!1l*&0a*xL3~aRu$<1L>n%?e2bOpcG+7m`4)VgeBxn&W_85fBEAU z7@336*?BR(p~+))@G5QPYLb9wnPeecAYpYdPm9QnCCqupOPN)H2+^^-z1-MQ&6Boq zlz#Fn+Ugt62kw&?{F8Vvw&g1fCv)Pib@9-Y7JP29SZTGZZM;Yo5y(}M^W>q=UAa^5 z)2i5Q@FxtUDJ`|ht=c*#Gf2;G8RW1}fK__LBwRXTcU26f6wm-CoryiCZoy>T&I@8x z%qkUQIAhBK%c6bZ5{`RaNm`NQmK#Dta2l2)yGIk>m`t37E20wj1=Xuyb;TxuSj~bh zdw!KdwmbP3i$4SmGH}m{)3DmDe#ptNRSdrw^@A}Q{cmV!zJ_?EKu>O~s2wP0-YYcb ze%LptF7fQGfFPa)PF6*J1}(TkZ9NHa{;TS?O5-_o&m48#PqfrIUqb!ly-X=En%Vhr zvP6p%@<`7_jKy6Mr}=TrCT&Ct3$(qR9 zG6S@v8Kzv?pRdRjYyz4xE&c!;Z)~UaGCb4T>Na{n0g(t{U%*Jr`zByMVYO?ekfB;y zqYwjw1(_BZNlo#oPIfx39>Sw7SLm@apez(9rwa85d@8VXi@ktfcbr~)gB)PbTfAlK!L_`=~L-uiPYSt;6d zJ3U>c5HJ20XwmHyvX#;xZDjY%Rz~Lc z=qwCdM@e+SgScn4)!&CV?YIlHH8+ezO0Q9CMJ9j%?bW&s zUnf(JTw7Vk!*0)J;p@0XAGky&Od(sq6gRtu>Ahd)J0q6Rx`A0x17{;ULTD-y1SEcr z?F!|dy^_>`87RE5sTqyyu%NArYb)>?W6{5wIis1)>$=nR^amN8+((LP?fFcVhf zIoH;ec00f$Bpk${8}D=`e`v#R^$7PqYfx6VQzO>8DbB)ip;3ib!Dh1su+aJ1#x{B3 z*^#^;^+c!pyL^|EUeJNX;@uS-vfa%>hq)M>DSx^^eP$W`WM1gQ_>{NM*}ZP<(NdYp zSS%dBsU<#hU<{qZ%G6h?E>B(&cNy{0DJ?XjYU3NfsbO}uWT|A55Ukvlb5K9wt{S%D z_-K~Fjct_~8{`2DVH;|Z510Y>>@xSLU20n7tMDgDGbHKv@@(DSo#N~*7(oLQj!X4Q zUtfGymKLofD>D$U{>?rus(73kLc_wtm`$N`*UPM=wdQy$~R=k$Rxr7$h#zLZ!gHqKISpk34vI>8ab1}Q<1K*L~NI2%c!3W>_G^j@mW z0P9Qr^zd==Fjw&e5{vSQc*44!7j-gEUafn?4AkpPdA08x#xk8MudCFxVp8@RtE?J7 zr?@9r&@Y$IN(c?P~!^87lz((BNES*P#ob=GCJJS%thh&`i4c9K=!Qe?lIjl9xa znV?AUkLWE04kc*zMWIh9^N;zJtO9$Oakxd{KEj9t4(bFFwSvKC9@Y1wsre})sdS!= zGN`XNc!+;hUH*>a;d0M(P&?i>HLBLoCL}Zkp z{^V$5M^7tGip#C|%ekA9l{uS5xbV_=ORK45*l-?UOp}Y@rL*H$zHuHM$L=Rqs>>>e z@LtBi7@=pbm**%2!H`OF(idC{)nP92JhKvvNt4 zUHe&}Xb_WKq@qrrB~#Tov86uo=53b}mbg(+mA})&0RWnEZ;(K%BxtmRq$0KSHR@Bg;ZRn?Nk<=}G@2?8=8 zY~c~7)G#=5p0?(D^e!GzUooI{F@i-S^XTp@5o;mw-K%(QqC$yR7#&NI& zk{%VK;S@Eq>r={yERs)z3z>h-h~4gGS-BoSBv1HCmg6T(@@lJGU=*;**if;Q)gEc# zIVG54yIK0EAdq;E)nQ?vw+P8yE@S;mm@BZ4bOzYO-cGk}*G{*(&Pj%$ruc0@234h0 zl#FgN^-OUdlz&KSwZ7&nGWK10wHcQ-@0M4K9}VQ7lvi^iG)vi|k!CTN?5_d~0Tnln znMAffk&;5hTKo(61^ZDT2$%u_az!9{}$jku!3BIIf*3?T+I4`9q=0SRH z^Mbl^MA*R#8q7mD4|0x~%YlxL5G^d=NZbGoz^c4B_4$FNPNAGdh{STFMlc%|>9OLZ zmrZ~#1faOELXr7*+O)b8Xq0(?4jO=7dV{sC=2@th#3uF_*qt(;kOG!i2)RE4Eu9%N5a`|0#pV_nX&X~4 z0zT8xUf!?2cBf8)m zwN-!Li}@{;>-F*^dW7@pWR<#5=ySoSQXPXtmL_B})c$HfHbvQOgUXOodnuyg5wmPS;*5Tj9dHrn|U@ z$8xa6-z9_j0xhSwUL^S`oXB*~Vtg3LISBFQGg2k@CrOF9erirp$NUXOmwrO_^v#zR zwP=e>lr8%jFWr3SVB`HZ4wmJG-Zxs~liyOtyX?B8hx7G=d1wW(&Z#I@Dv}C$l_~rE z^e-ZhxT4K#S;_k1ZmsSE6jK%)In=hb{-jGksa4ME%?w6#`KUn+~XE zj8w3KQ!$6Ht55i%9q|{OQjXz6a%rny>yWv!}w$I0-A z=FiD#Psr5t4kE~OO#aTA2%6Wifr@RT?E8$n&ch(GwcncMj1shkd2Mem{F%*z8qS8EOlKqsO?U)zQQ3yE~zzi1rNB0XCJ4m1= z8L}YhGATyuYVvG(%OIt=_}yd@NR+*a`n*05czcHczcRU_E&%XS0Cq2c)lc z&SqU!SlFc+L&Ak9PXwN)1UGdd|8h}zF?-51@rD<$Zswf8VnOHv27dHJrKz9rRvlDs z?_5XneGCpMD(#%7k?}MExbul~#9fm~mf4$m z4qRtDoDOQMwpn}k>PWFsg1QaWccu5V?S8%*RNEp0(CRt_8x5u$Ox90+2QM(_*H3;= zi|&Dw;sXx2OxwZsYfK0kZeJ%EG|Q|Ojuru6I1&R(c^7S?LLJ^@<&%uU|JCEiYSEJj zBw9#Khb=d~p;q`@B4LTYF~Ok{Rc*>Lv8w0LpZPjvWfZQ{yS#ecNL%vEAFygRlfZ=%iB?>*Oze+(HFJe4FzW%|`njN5Gl~p6fsWHj2Gu4O= zG8-8wY(Ka+MR0A+<$`cNDkjX7ijBLbQ0P@D?8eWd zMP$#0%%grs7Q0|88_-w`7SB@YN|u@h(|e_|{srwFOUyy|GGCVh7D*x>(zWC-2Bjuf zlC%`dxy+6fx@gg#!NYbJ1_3EEO)dH$_32B2E_yFdBv(^JikUNcuNBKB(M56Fx4ui3 z`%?3m!K;3gyn4ckj|{_Pg-=-}pfdB5L>W^(umE)+#i1c~n?eoXz8Evw0mX{t{NiLWG}K z_T!@yhM|Yrj4kzDK4+VL`U2Q+8C}g4%r6-u&3C%~DQZcKXGstoJh}KB4&SEUq-)?Y zXNy*I1+`Jbc#?dQQI0A#kS1<}aUcWNfHi@+gcqdI&(4L_=gKpK5c99qk5Zt$PTtyvw@7E%CN4c=E7;QZ zjJJug#^biFarPy(Wwa3k4=q^n9XO;YU8Zna&2j?L%pon?V6 zs#ne6Ub>ugT>h1E^kaN5A#SuBXrHs0-|;CDlyfSiqjDDA&y$TCU-iHkeU;w?g~iID zhM4^QGDVbPs+kQkiov>aXr1p@Xq#DRp!|!+o1tBv9ee^m@LcpD!0=I&}g=Ya!up(C-jpteR!zgt<)k>cR7IVeo zT|}G6#aQww&M1JC3tA|n}gHQppkhn!rGHyE0+A7>;1&Vf_k67GSgXyxfyJ(>Jb*NAxBiGe6E>xeP8fb_H7(9W}NIfpU&=a425xwe~fYh}8i$dWHP` zOAgZO<}_g?>bItAa53WcA84Ayt8fwBD5aXgcmPR)L~2pR9dZOwiikLm;V!k6zwJfL0Zr;Nxn*Xb7$U+0 zGrZUdwch%D8JG$=a;V#DzDi=Pttv9s3j)-rRH@;-6MlE)*GWWb5X;b3ewj>w=qJ&k z_EGT?kQYKVKAB-q3^XqgXOE|dc+Jm2i;NarhIv#*>_OuDxxqU%x-p2~W{r+*!Xc&c z$$7@#_n1hA=eV7wi#Nuq2VwJve+@zlL~#v)QqrUdwKH^&=r^?!#azi;9yt*l_66b*2uT*P z{T9mdTK`fM@G*0IhFn~TAU+_JtW%+tr}0j6Dsi>OJ4u%`qOB|Gi_h#U42DPH4lNCT zgvgh&hgP}KxXnYo);X09sYw%9%sytVDZ;?0LKEjvC?7yr89g`~WovnD^@F0DPK?lg z+Gzfbt*iZ|EK1VZ)f349=u(MIU;X3=CZIA(Pz-ML^B*unc5$K|$=9VKc`}zV)U!eS z_F8kO+8WEQ#G0APP=KI8%Q>Y*IxtIYK^G|ywsK)ZC`J6^i)?*jD?Kgp2HXf|6p`!9 z+(^Z}n2d82*6bkI7gIP~St(xP=S@ZEKvX$HeqqFR@f}8x< zXRub5wrY_?V0q*;(=or;A#883u~YMbkidplScN*#6C$^Xspxn5Rczi0c9mw%*&=4U zm0MeVGYCSF+V9TIlvU-;i`kwHbNZRw-woHYOP=c5hKrG<1i`wXSku=KElfp6ilrlj z(tuWuDild>Q|>2LR-m7#u@cpuv4ytG44EP_ zh!K4zEg{2yGN1_2_%AnaLTOoM99ho*CB>aYD-*$PvqxOMmSCz1{z#7p=^x3Olq173 zx}4cGL(3&JonjG6i@h@qF#GMG5sdA&QGxaln$c~(TN|NgRevCNF|`&+Kc#IbTOiAe z@|`kK8dw7N@hBDQ4||`7cX{y`4kL=hVt&!G4gG@9i$|b6Lna`y zn9@0l+mQ#)7|&>@e^d}jka5Q;mu)|}cnu8S-pji$-w4V4A=*4g=vS#|@=eK;2?E4YIfr9cK|bLSxJMhrD%pp)FG%HC};G1Gz0{yp%=r zH5Wx_oJ&@f3D4Z<@PL>R?5KjLA#>?tH zz))H%Tw>lyioKsr)W~M%VAfM3HlVyO+pl0tl!r^`E#P&Ec4J(QFU_Mj2NH_8jZE75Hf&BE#nu53 z_UL@!2A!LJuIwEPselo~w@+>5X05o*`YkGRk;vv0X2YD$U<}Idh;~FLP2No5 zv%93P1jA~$WW%~pReuQeKQuOp>OZ8(HEpQeZkNRw5VF<&cVA_XVaob zVPIs3KcJ#B%Z6H%+H18I)3Yqa=R-SJ$&NEu13&(PNMz+~3p6MbV2&tod=&@wy zU>76z(L(P$qcwjg6ZsH+rY3wLXFfD?mhc~xApie1Ay4T-~AJ|`~3bOXMOSS}gn zgf%X^+&(tXZO=l{@6%-B$j?~W;emr4SCY>x=do5wvY0)a=9LGf!Wd#sA)%rfPGaL7@h{&$;-XF9fPQ;5IAlvS(*dJ@Cm%0d;|_0G(Jsr3wHW z;@82Fb@d*20=Swqg*Wqe#M>*^uT##!@v5=ED&Uht069LE^{YG{qdQ~n&{*-+z2l}thNXPJC%MD+M~J^zZi194aR>@==tjV=ArBoEIrmv@ z^r@@vvaGhphQ1TK5SPWjvs>yvC_7EKCG1PyP-`?e8`CdjjboZ|;o@&{ppjH@Cr!f@ zqz>lr?#pR6@NgYY{23nQV%zN#$i8T};N7H+LVhTzhmH;{jXGo&*Y$V z3##UK#6y8AlOxV(wo%$N%)u>M?OkWJw=?;x{`-CfpNehSRmi!d@v47{q^pZ;DnsG6g3#9jiSgP>0wLZ)-y+D9CSqxMB&ohQ5&x{&Z`-MII zP)jc4;EY=6*+lo+6xXkZCxKAfStlhddS_d`6LD4b*;ECDf><6jy#Z7#lTPRN;jB47 zd4sdj*iUGfgB?@kT{=Kpk&+YR&&|b)oyaXH;t#>)O<{O z%Pc(=Cr#>~I-3PHh(0Kqwn6GeimzU#^<}P6j?m?*?I!`^jOOKLNt$n0^HQoaWeidF z0rbs+zJ9Sh0`!W97OS_SI4m@96fsez#Dja^Y4d{Qu73Ji_$mjpa~pe_UIovjp=wOT|w-{MX!@(h5)G7 zxnkvyxVXIWt8w2WtUZ?*EsL{b!w^1q(ih`kVR(c-A2$*6P)e39JVZ$WdVw*?O9c!7 z1p6PQ_=OQWDPRrfzg`dl8Mh z%o(`NZbzLRa;r;I=&x5le%@k_b0>@c@yXucmc{=N%SrCHFtQ+kE_asO72EfR+UI+j zZKJOJsOx~i`1f1b9n*=k=m<{Us~9~W#B}%?$_2)k+lRW_47Hg#{9YolmhGzj~HYhC_CtAD|vbC9kmk zMxZfq-9<7Sxa=Ix&;iL-rZ`F9mJx*9Qa<5QSut$FHxsp9qK@NuqBO59@_MlUweAf* z9r))dC;OT+q^uZXao62(*JdduEclj{RW&5X|Dq4WlLMJCIMnz9zX=#{ct04+RY`85 zP77a>g5%r$4J$ZqOI7Y^{QUQH+z`!+YQH?cF42i7a)*IFQ2`lq{Ujmar5oAmA(Ua^ z!R~AzRVz}Kl3#9N&#!|F>I^$15y{9(tdwfAUzEydXbK+@aH$u&oe;O6iHyK=%~P1A zpm-?>AE{+WMzzLNzy2Z)s6(#gTgDN!_qO$;*zf|b2#xz*V~x;Je=yzHa@E+M@4dIa zH$Co3o9KsLOU{kEb{N~AmVCw{m+=F4^3k~K9ce}opB5L{PkxZXuh?>8`DFvST>I{a z_ht850YWquIBXljmlz3w;_~qlSuyh&jcotxt0J?H4SUwIJ~oB=YKPYmI~TiRs`lzp z`I?^0SHx~N?(oT;nVotA+b)c6WpUeacp@S-KECoznV^c&b>heR*}yu*Oh@t?+N;}@ z<=cF{+HcpIl)}FF_x+(pij0p(hWy={-WDP!>%UGzT=STwJQtt4Zol?rzW~yibENeH z!_3@a+`@uXYtsG%0Q%1wzYC#-jA~`Ed%O(cIgN4*GV)J~YO7{|5X?vxET_7R&lnNG zX*Y(VWM?=>?c~WLhzS_8x!u+)IwBrg=_6*W92IF4t;uj4FMdSg3OJR@MMTyBChL>l zSX%zh9Kun=Og`(9N%ox)c!bxC?mnUOep7ExP#_4*ai_xfH$%~9zxr;BMIx09k z>I8+1cd@8ac}QKdFLu+Z_>@zaY3GW*Wi*a?8JEYhBoI0ZKF88Pz_?#HAi$i=8jvv? zxHmzm^-9$G5Y&2xOW8|fF(!b0ER9Hk(Bx<@<|ju3kp&A71w-iAF!!_9q$COpz~SvT3`>TYowuzHEq7PUttEwf^{BT1M$LGEJsQ zUu71Tj=FS#KwN=MRY$4I7cYNaR?dY|c?@0_-MsPnD}1CD=v|{JnicxDjed%O%O>)A zV+=&tLh?n(%m%V~jq^Y}*sGIikGJ(;aPyM)xQ&PCz2b-PvFs_fjffXK@`x}gO(Wh4 zsaF310D8-Us7RKg=*NIJ*z2r#zCQ$Q7Uwo=B zh&ixP@u$)Wr7#74bWM+e5n#<7uwMeOBV#$nCe`PK?xsrxw)vJzPMOVRsXYjJJ(pT` zrQ0df0LJH$<;+ny7eA7rk0I0pe%#cSCCr^=oJP20EnJw}zhu1;7LzZ4+h^=z$(8F$ zuBa6wgiRK*CN49g?AXFnvSQpF(vlaX_?ulB;Y@hkhyN}73AwyN9W1dFe;aMaF<90dzv(GWg){Sn)5US3d2}TYBbkAu+k*zLDoiPEur(=X-(&Cdle5B%-6MwrBQ)a#VZE z0@)Lmx|d%G7SwzYEcmId$S7OytaVCYxdlbjm|8Pml zm5(A%1%X5Zo=I4sC}oMnm4CtFPmi*La9J8{oaWb}D}_n+)Spg+5ZA>fj(wVOurEB) ztR;TO=}>NLC_@GJO!UYVC63S`BR4?LT!|6rQF(4ml+oIb(?)0bZIEsxEQvv1DJwZ~ z1@2Q-$G!H5YBY!c2Hn))zno<|88d&a>`7O&;P;G!xiTMCs~ix-l_-JK#%6OiLzq?L z+p<()0~#7**Q!Ou_m%vuz-AN%5)X=M8ET14GD>^j$F50i1?Z=xi$=4ZRM$Tptetf` zI94WeY>2=kS6S3MF$%Jwj<(UOpD3zy>nHB2O4l3w!Cj%f`E~Y)e-(*S16?HJfb6F#h%W;KF#xcjg{THop^tH4lTU0I zIRwJ8epaGg+}a4#ID~@;FDE|7(U-0a3??=&jg~EeB`%El-Ph1eF4gBDPX%CDIVDNX zx!#rBYms5*%fZ$A$E#UYw&WnE8kpj9@Cx*ps)y?AX8z6{$8*}bVlFj2)mz(Rw#y3e z=}ZouGJS5ItVT#nZ;KqMvLtGglp9jI2V4B;7+V!6bbGz8me{+ z7sQw4^#=c0nIqp%`d20Hq69;L>ubTpvUUa^dy;MAUvD0^QCdx|w|Lf)=iJ2OOoOT? zj(=wFy>czcI`Oc6S&Q5Qzk|x6{O%aHd(B9TFHPg>h44jqH1fNZJ)o`g%FSNQaJO8_ za9CT{P`%zQ)o77w+R@f&#tHezM7_4ITH?7q$eQB~BhJnm{=|5Pjw_eM_)=+jrZ_X$ zYdFM(b(gH)pN1y#^T8KK_3;^@TdI#Q2;B(nvJF`yEyB_4)*=nGrk{3>>d^NOLI2s_ z!SQ8M-L+IFkbEYsC>sTyA-_}?{tJt*PENrWj^pwrCLZcQzH+Z=k&jiuIvaMBn4$NM zs*1#C)6vP!_>GtdwbCoR9bZcNWt!^xFXTO5KA8*yiA*d`jH=uZDzl6>BqOb-O~7aM zO~wkV1JUcyJ+-VeVSn`My+bQUh`jFTMTU8+>V`QIm9RE!;nVAU!B2Vc^3NFk4{-=2 zxuS7?z?7xH{7q;ZI;0=>$8U9oTN!5ax9WUF zX&p3Gj)&yy+H3D}_9gt$>pbsihiwu{T?K1N(m8OAZnlVhEF&Onz%s_jx0`f;%Q{?-u z(>Q1(`}s9SyybpK@#PUNdV9xQr1Ib5j6di+n|}s)Sc`m{Y}Lo}sB*h?7njga)i+F{ zw}*}m${qa;IHUIWjCZV4OEzPgr)11|XB=Z|@KbHgh2$FC@mAhd$7Li^9ha@W^wams z3_&(LGK`fUij-QK-aJBmf)V3nP9s93_K^LI#pE0W%4Q{DB2zxJ27c&Z7HwE?r>PT4 z5=D$7slHdTIlnvSGt{uE=uK=2gyP2d9BWwRD*0WE5voUgT%BeaLZZb#^o70*^HpZY zOHOZuP@?l(kjQ6Xwmzon2oF&gH`hv6RPFSnXb3x)K!o{gMS$r7oL?X@yU}scZdwi9 zpxUC<{iBU`rHxg)W2If!4@2qto3g^-%lY&b@Z?Z6)8>aPm(xyIhih8+uvm ztYAfLbwY$O>(?Ibkcue4jLK8_ z7G6E~qU-hJL#rmQ7yC0dT1_f*IEf%Ek(JYgWvRR1e@`GblJ7yZw05a^W@cl|g$Lo3 z(b}4%Dz}lfq>akPzbv(AD;HVl_UNCwfXP|}%ioG!Bojfe4P&%iaxuxmBAdh5uWo)< zR-QO{fzPQQcUO&!4Xy8Tah@-;#TaT{L=kC6Tj}MA>eY99>;~$R@94cb;TOcHMF~GA z2#c4nlUQ{#gKk#-hb*~hy4ooyYmR&@&}GOBmw4Zz!vohkLdr!)po>r4St%15AN?F3 zzQFt)Jxtk;#PB6BB2rf5$I=hv)!LAJCQjqIQ4$&YD zS=g>%exy{eg=dyEi))pmXgv{q1$MWnaM>Yh`cEyIpX388|d#PS~X&38q$Bef6gWfTyQb)b% zb#CL+way0PT|QbQF`w{R+dI-KjL}dHr1+Pt6OhEe&r-=a^hVsbBKY2-BBM9Iqo>8$ zBD0J8WrZp`=K8tz(w4Yqgt1MI15?*QuU$8bnZHa^ReOGkS<6?%-h_EBqe|&b0Lc$s zs=73pRr^QO3ck!;=@|V@&0WEWM52jn6CKecPP#1aQjBkaq2k55mk)v>SeCO#COdJT&IG8@ zrGF$7dyf{WCnI&{z2@h^IGXcWtaydXIF1wFC5|tTUgw6teT(mq7t6y(cCT(`)SGEg z*NsdPFcALOWtf<06hi~Jei|$Nu?xF_j!;`}fVDMOSk8RPwuZcT`QvgWX%?qIQ6S)p z9i#5hFwW;TxMY9NQMOqiq&bJN*YMCx_J)TxPgV{&YWTc=6i0(^@wOg1gj^KiInDu(5?1F3B8{y!#$!J!?Ayb7y&aIS*uR_#RVub!lyF%?dHE zwRJZ-VFtj!k9p`X-`;SaWMFy1@rCJ=Hq8B>(vJ;lvu{lCroH#p*7l7VZ--@eSZaq6 zI}F+3GCM4{!)bOn!w&Da!})etWQT=zxYQ08*x@`otX5%uT_do}w&QB-aIPJeHCnLF zw!>mOoM(s2>~OvvM(l8g9TwSPp&ib(!v%J@)DCOxaGD+7Z-?b}SZ#-;b{JA2@nteojuJZ9zWF^%UM8F{#5hfknFd%-}ol4Z1uRpVI1L` zv+YQ(ENimc(aY4==zHaGz zN$g|SBLYWJuyM&h2Dd%XE?-EYS!q47mq9!Eda7v^rrOVq%~bslvrt}nhtXQS?1Daj z7_a*UI7>1gn|69y^>Kgr8#jgjk+TbH#3hZQcBDtf%maz#)XaA@o$rAhBkWOVQ7%98 z0aEx7-`1R6Np6kE-_##=0 zf~wN0me|AvEY!tju9c%|6ELgA(_oMz?z&C-5`|;<6zKCtlp&=rd3oFLO>;Q}tD-w5 zI2&UnZxk6NZ%k0hp@}faE$gcTTsPXC7(U9$HNU^Adyd0APM-63IuDOLVU$!GGb7QR zd;g>Qp})3e)KOdV4>msS4$fRlgZgXIYiIae3qo9|b5ma&)&AU|7RBPOB0ywUZt+h5 zA}U)T4IX)28}}5&vtzNi#05)#^1K%PH=deFrE8AK6Mmvl`i%BxRqBB{PflZUJwo~d zpeNSLjH+(d(ls!fa+?a%$&BMy>q#~kg`Xq`-trVcHht~##!u$cmRj?mmY90OV#Y|9 zdPwT)uctz_bnC6DOjVM}hT^NF-DV}2_Ypt9AFBZ6^Zaq==lJ7B_+yLBAHSgta=ZME zczA7cOp1RWCDsvxRXi)^LOUeL0*UqV?g4z;aecEa7g>b&Xd8Wa7zkGSa@bXk@Yh!Dw{gkiAnJvPon^Kvx}`)sCEw2p z(g(}8@XHs-_h9;Ez<>Wjz8|*a`*=#ecTqjGlS+|qi+0F2w7bcc@Bb!8{l0V&>z~|D zHX}NZ-(*hboa)XJXr@FQ!H&JCQcK?Gyx4hcg31*776kvkMeyA7osMQDK-A~3RD~t( z=aQ1YGhL;f_Y+YeMiWN1coCH3883=9K?(dx!iOHU^nlutmf{av2}m!T;Q{`bel~wt zTT?A15G(!3+9FW_@$BuvVv+h=C_YH)6{7#9{kfjIIFR`5DGq5;llbFH=k25OeXCPE5W=&@l9%c63amN zWsc9N54LdrdPi`pu@|G^*l)ETm3*rGtp3XBpK2SAqa*W!4WX;Z!&YN`OJB~rao>5& zHZFebqUw|W@Ke9>#1Q$=UsQE08HU4Hx>q2pv)61@x_*B#inNmk1hYc zVQni`_R!1&eEvLVPvV9LEZbpMYARE))4j$9uk0DoakFvtB{iYv~ zE{G`yUl}vI5;5wF$#=vLI2(X|N<8~DC5bXUn*O$xS!Mh;E2DE)&gszk3>t ziT!46cc}j`EmrdOAjnm;d8t578VSh{Qawn)pBtNl@q`KIWwQ@=Bcs#2i@vJNCe%5c98vV1}+qtK6#c8<$J@oGeAC3># zTW{8vNm$cL{O7AEnr5jq^v7BumP}f~2B#BbTz>2uXjaarTdjqEq;E;5DR1}}fb*Z+ zfVU-$S9f?dua6~13Wa;oa2Suc$I_Ck6DJm6vapo4a6Qei@QG}m{C6yZqfCT(7B6Dr zr>{U0#gB;}lnONJ3ul583m>-qwj8U{9lPEw23$!*i?pG8L5~`y#Df;){a4RD&7j8~ zeDP1m?)LCG;yKljXU^LA%r{uC{=Ua3&|}~CO&#}rFT_%`4PnG_qW%M3@QiqZC6TK4 zV&UqTCX`dP8@w%#uqHLtT4P8rsSfs39hGYtx+oPZS=*UWb07Pt3O1`6Ulb#Wv0VFe z6Kc^?%^clSCZ2Wft9ui-+y7b0ss?1cgBE$3cMd<6yb*g%DkyRu@3#ZP#kLmLmq(nT zIk6XI1W+>TJd!-$?n%*vl1Qjj`*TnIhw1+pd*1>dRdwy1Nd^*NaDoOzjS@8~saQ#i zN=(opaY6*5;Sr^lSZ<5dw%YnQgF#40m<;By8H^Qtw4%^zFIp>9rN#%E0A>hM437!| z3M%T1Lu*jWBedlE|JOceW)efM-h2Cf_kO?flMd9<4=lYy>;~d2|3SME1AvS>KJUT~Gd5 z$Of-0z4NwOO=d5*sX-OY^NcaCP*pXK;~ck7BUiBJ-a5-7tt3>Wt;UNo;5XjC??|W! zM{W>+fUrd%dUa%ofo0PtbGIWzx?Tv(Kje!A<< zLN*1)h$|PO3rb95iMMf@z%;yP@x2xA_VSA16M0syFW?hmfm0yhKIX3Lh1RK4a0{;P z@4(C$GUY)(r%KadAJh!LXtD>BU@ze;jRm3yxc8V#xaGrQXXYTk%%9WfuOATAzL606 zkAw}Kn(b0&n8B$mv9yeT*N`R1Z3UJt<=zcMHD!9KACU(&=OmXBoHFM?0I5oMuQc3( z$oA)qF&EA`DTdH=Jl2|iEpa?%B z>gAd%lMGL6jTjkLE4e-bXQ3H300GfYUxw0;^nr?Q@{F?7ZWkF01!SFXzVv#imdZk13K-zJ*A?0SI>X z;}jLV3Pp2{>NSnUsUhba*02<3bi}-3tWm5~Q!=X{+nnO^bJd#iVl2^cpi7>p0broq z0dm8UlaM*KUL#3(Q$fz2TEaoni+m~Pc1A-FD;-O`&pSJ<^0n)^GGwJI>B(1H$CA}r z$`9kDP?f{@48nHgkAFimxbV4r-GKuf*l`)7FC3SiACwgrpxF<%xiM+n=Th^wxC0L% zDR*l~Fc6PPdIX|pbV>@uDJ9dLC-dlD^dr`R#W`nC#uznzK*oi02BnYIv%%!?1JZN! z)X1VVUQ_}`uO|<-Bo|b(vj2l(93aJb5c*7;{wV!C7Q{U~7tf+30V{*=Pc!dNkfv6% zE5hIa621r>n!wx%bZ9i*Nq?xn`tV1Nq;P|m14Y9%yY^|*0rBnUq;{ZsQn>2*1lkqf z4{0ApP7Ewbx~js#V4C^4|AQm7#|ER6yY5>2t-ibVSQbc_yN;JD5p@LM@EughUB}=^ z?t7oa-`ZnCk;j*JC@Ix9;!tv`@8UzLslIOrLj<)jD6@=@cRyGovvg1RkMr5&eX4X1 z>I9F}(0sf%ltWO`*zDWOPK;(tmV=JU8=CA%1 zN+Yk~sy#+K7Lr{*F%LV_52>OCoM( ztgV2R=Ha8bi&2rFpXP@r~gFsbVlaQvh5P?IxNBYJFZ#web8!LE?1;j`6ZBxS3w@omXe@R|0mM;@08uRVE znMf&%aL0-3chV%+q{=5wD82s$p<+dPm#Qso!;JtEhR3&7an4 zeS!V~v(P)O)v|R~Zx8nMYEA4GQIm875fJG_Jd5~-0}#w zCQ#3?S$bgatzqy|^-m(#I~DEkc+qFA6-u+AzcbiZX3wQ9PwLLpe)dssj+&cic@7uu}*Mb@eEbv z@_*1yU4N51a5^Y2n9n862%?Iff|Xv9SdA3TRJ_>@8erm{lZhJP514G%4DkM{!!5gR#cp!u8UPPh!r)# z;<|auQGh_<1&ar;WPL`82XK7*b6Z!Xs%n?H*1d9vx}qeQ@t`WO8em@T`_P_M9DCgK zg{2R&W`kn#>ix1rAt@t51jzH3X7&-uFma;fc#=7+$^8jFOh9Tx6k=B5bvk$D{U@B? z0^~^0x6#!HgAr4Uc@V!4KQNvdfn_*cFf#(|DY}{FI}rJ{UM1;JJBMfEZX4RMjL$#Q z&vktMfqtIO=j-)zF`vibIe{YB_>-ye2PbqC!US<>i$)AtTl>Bs4sb{#4!n0elVj6z)X?*D)N~Kg88pFS|=DRvJuSVB-P00M%}HPv zB2#o9;#1>Dhze8~&^(db1bsvg<84!R-$Wa4?1`WEzMzb|ZhKGoa*KSO2(rdIFm{{I_{%a3B z&5?uzO|9Z!RhFSj(hG54a>*lTr@Af;f3n8;x808-2~EUC&fLV+4QusU255-yFk znZad94X#c@0l9Z)E?tO(sJp>~>r`u9`2m78MysU)Msi!1jMNP-GqYBWh0HWIT{`4m z^f5cI*SAi&=6l>LkH!G_UNhI!0gw{tZ1km2Ju%@D(TZWA-_G6yIY1Qao2+)SR<<*G zMtn>mXx@P%4`y{QdIBHKW~_yi)FhYL>|VK1ouXU|t`25gjS;j@jDjN`Bsru&dtFB1 zh1aFyTxnHcYh{^Q807R&w%du3%ahUa-LF=&V)x3oU}GXf?^{&6o|qxT(mD^2xzoeS zCPq?7jIIi-!ZVnN=;QG@C4N&ZD%3N@A$Ql6a;Ac0g@a2y_=^mofPqg^zDb*R2J4Za z=Oidvj_5#39)@YU3@?FUek5baSyPThUFh2)l0DP~3zSYfT zSqsw)pAsa2HOo&R$Pp1&frjB&LZzrBGM7P)5%hTwC2@~21+uEE`MnefjTt1Jy+!K8 znJN)Em727dmSK=c0Ic!5hi%nemht-m2LX~J21*Y|>0*WZmFCh0_GT%E#tb~fzf0!u zZ;-8^S#vD}2_;{+EG8jUw;gAWQ0b_u#io`@+Mpbwj%Nu6l}b;p2(^a5f)$(eT&UHo zL0#`eo3C@KC9K=*t>HOZf(1LM16{&dEA*I>mwFo+G*goE1BC9oC8oI{o$4gyc4eB6lr#RM|6nr$9|3n&NclPwE5D){KvqNS0mBG`{41ciTFb_kGHgk6nh{`Q-VvVKFSH{E@+|R98He}m(U); zurl2iCH0|2&kInHjaZLrT_9UdBB}lg=5NmH_E|;u?Z>87Z8w7uY0?Vo&pN zHAxP(${z z71WvqerxY2n9pY!MKj|b;1w(Ny{Ys*u!e8uYT|?`xGE9s{ecvOq97cK8C6?&Hr(#UXRfswAHC{c{&ACFB~JzxI%|_GIIP}U*~MgJ6PrRuOZ?j`Fwu(&^3NWlbkOgoMCvEJdY1isO{#lj}~Q^)1KR^ zTjLIHLOyJJ3ex`;mC?Y^S3*7Ji~<#=B5*o8{e2W3E!r~b^R$NWd5*x<_#hfaotDAO zyj2c=;jj5$39$AgA6)mz6VY>YG++UKoO!`O#W^VO&(t42Q4WFAnLUQ^pL`4$jWbam z*+EHzE#L*D;Oh_`vnl-y+MN`>cv%7@&6HX2$^nn)jjO6CL{Q<0x}a21ELG@JLDYmQ zCMQ%eG@*)3curvVEPZD;(1#zD_Vr@>qIeE^6G0!{5+@aUn(n-(nVtnI+1&AE4_{(1#+iyk5DLkmqz z5JAg7z=Jv<0|l^w;E{TK3WiW&>25-Dc?2EL6|V{y00 zY4(4JZv|>>y8lQov;QM}`zBncG2YIZ%lI}(-7pxEu6ZVTHaJx(%>4B#JmKgL25=eQ ztyrg|6!^1tii}yFw{OC{LCi`D_kIhDFrG$Q75?l`NP~4Fvw6iEv_OgMLb{Bn?myaw zi*rZPj57f&V2eI> zU!P9xnea>cITAqB5`=FH=}4s}^a5o6kA#ZlFcXKDp<=xe6sHB9VoSh9@z`Zp>1)m2 z(T6aGa(Y?HqY055czSsT6bv5R6=h6xm@txFPUpG81;~|nQgABXWi<5pxAYJ9L2-y4 zL=7tC(E2oli7y%!!Zctd={+epY08V|;1wJ8j?aG^Dw;AadDl(s&i4`*2*wNg(AJ2N zqnCm;e$zOE-)0RLq6WFvakwQ3U33RN!I6RKZRGi764E?O`;DZ%(nzX;v~;F@A89k- zBf;AwS>5$#OQ!X9CRp&h1Mi@O>D?Jib0Y0wN!uSwOGDZeNejo)JV>L*SJV4NBP1AB zidx-)&7ha2_ki8Fq%5SFlGbjQ1+KaSUP;?v=gVRmFFcvvHo5x&cz}+uet>Oyw<{gk z)jfh0Fz{mG=0oxAKpa@tmgfPq*{G z#QaCN!tMNzSouBDn5jDd6g&R{=4WWYSboEXFYWQ@{8!oeZ(#mA6Z4O^;d69~%5?t8 zcK&ZL|HX;E+yYxl96Y1Dw_$tAR9m zfJ$Yt*5yUkX)g;Iwp(at+pAc zO+FGI(w24mT7s`=H)ue_#h#Qm0=Af>u%+J^NmkEY*AJh#Nqq7!Dmu>bv-U6HCp39~ zCYS3u!`vyh*x#*)Tm&_TwG-$c&}%#Y&TuEF;32<>PG^G}^a8HGN|dhRi8Ji_DgA7?Vu`gEbf_W>Kd9 z{gKL>+1vqxvQ!fWW(bpLjMGNvY*eYh&4P{Yd4JXrlS%3W2n2%v- zlFU@w(9OmlWX!?`1og<)KUT3>t?C{ru~vD8;?B@v^M;{z*@O|sc#yZl5nv5-!=I>? zJ?OlehX3X1L1!&)&6a1Fa2$lw(6Y3|?UnpU_jh}~Fh83ww&pi?D`un&Hp5-!^WxVr zeUqkwWl2?Ihk?P%T_CgT-&+>f@Q$uHs;w=%wv0ye%`_j8c9fq6gtxv1^W(2ggHxPI{I0e;$u zPf(_PjQ5B6{u18t%*hSk2+#?Wher*+_J9PrtVpAnw+T6G@-KGRt;0ib2`$QBO~H_u zI}X7YV1TCGhsFL4fsycR9t4LNN&ft|`i8Tw3iq0Qw_;&n={s32Tv9A6*$jm*g&dDA zVvP*LQ}C+ZV$0TkB~n{36zLEL<<>8zT{d|CQf%-T&Ejitc6iBcIAIC(T7|!ypxX6p zv#`R5ofKW9>E{eyl=X*_dAYjoF7S-e_suio1yL@s;EV>H|1ZfX68RRgw*=T<=&C=$ z&x}`-9g%dT#>dQ_k90Ba#c522Dy4s;Q-v`H3Z?`L9ey&%U?YJ)dE4gBMCu&e8uGRS zQYVf!aq`J0n1keb!^ZWhDy+Qijw4(|Rbg;vjyG`!=&S{)m-qG!hO>?)+&>!YD7@U& z+t&;CoaTO(x6>Gh5~}ooqgj=QaeEX`Apln11FF0|r!C*R-}ed{LFX=LMj@)^h=Edt zykQOjs?LE2#r+X#43#&GydKGF;R8h+8ZX0S#TDyfM%OM5mI8U(-1pMfk(}0}_)X|1 zD%&IdEZ>t?zTcRos&K~J4lCwzwh~8>u#o{V3>Gv5uWA5uDE=qW^DLE`-`jUOdWNp| zg}k`dneUpf`+g98pCo+;EOeiJ$7%5ashw#p%g-UvPcrwKW}CzTPD~ zwLN&FZZdY68)NflDcRaeD$ns3)MoiIgOl$&5>2=Gi@v-_hO2BEK)a_4^^Ny;Sg>3+ zA>Jd~j~xid^cW*mvCo9_BzN6WjGedzfp*9-H!b>|qP&WX>IrJjE~gr?3n$VQa5vgs zm29?~4%=c3b3{4?Fj&%N`A*tLEq#-$0L(Mj!bB?2q{?^BT3uxN_M27v0C4U~xtg92 zEDR;BKOb>?EI(RsW9SPuE?bV2s`R9}y&50EqeTRF;xXI{K`e#eVpXW;5{PfylJ_GM zka{195ZV&{V?OGKaTctvVS(VlRfQa_Bp_}eE67-QIrCsMkKKemLB)@=;)MuN*%ST@ zBmQ_{Tt67&X$~NR(_xRH`Id}g-)O~*1{ud|)SP#4HTa#u7|0u0&>BlTCJv{V;-eQ> zN8$aOV*^>fFVHmWg(BQMuG-H*e3r%DQUhRVbE%BvhHfLNPS7D4$(Ik{H0Ax|U;(e} zC2>3=7vL9!8siyfW$G^HK&Ax?@|6SbA6tx*p(&K}(|fW|&XWiG{;xcUV^F6xh??Hg zY!4@&UWDWE^|#it#%Cz1KgEeCPTF$J!`D`R04mTu5j zYESuKup~LxRDKBf!GdQ|Q-&InKiDW@Yw|K1jLW44_;$Ev*8APsqcUGY&Y^aDnEQ+_ z?J3snvG})c&5P0ROdg40$g0Sg&^H;k(Tl-Fo4vvBoD@pc%SpRJj=g-6T7#~`uu#3*qjo{{hMxZIQdDQJVN7`Z6FZOR}LIp3jPv;)o>iZ$~5Yd{4 zya!kxx5KIfu(ifs>2*0moL}7T{oVri<^7BdY%ZxY8b-QOj6R;cwQ~>UwHbNVuG$W} zWo(&;@rtcAr#;^r_O;+Lt%Z3d*rPqhr`Sumz4hcs!Ca zNk{LQ9-*p*X>K zEHGmL=G9)vfcxaUYA^@G3>&9XOhEJ;HNk~r^2KTbPRu7*C+5`)wAns0RwMeWzJKgL zp5ohr?65Y9ZhF-Tc+pkj)hPO;K3w?~oO3-2(M0<|DzAy&*MM8droN?s^A41dV-@xu zeiPhvUcguAzg!)3uat~9BKpNYi4Uq)Qe z=ijC2G%EfEn4Y1WV&N&_K?BdC=0(@Yy*pDdZXhY0Wm8($Vbj_E(k)=wqkoh&(F433 z!ovYjI?PxTz+#ra46dOEc-lS`xat#Jy@+?Td;yJp-0$p`!VrL4I$KEG(un9^pC!6% zd%-5OkDWD=ajszlpodt@9ydw;Vwes6j`@*2rVfuOxotcR8Q4E&mKxbb?@X*g)3hJ9&)LjBf?0vyow2Mx(7+}b zK^uG?QYJ=bTZ&d-iW|DNGVy0$>X7aa{eO^O;Qh()kA`F5 zj-~0t5_jEl0P!E|Yk2*~oW>~}yPJOwy{Mk}rO*O033-x;TUA#g^wwG7^9f?)Ambun zjLoh+4+f)a=6%S#`-OVA0JaUld)Rjg%|ciV=ZE3z z(ZUc9JfJ&ZnyyzQCkuZ;AIpX+&oCgKO}4U-J$w^Nc0Z4Wa4pTP!Dv|bIX}X6ikApq z4q;j&htNWeboTtnePZ0_TvW-fjCQH-zyVTf-mbZ4snZZ_c7iK^LRxi-IRWgF?OjpJ zKW#LrKZbyD?v>lnGzbfjbGSY}X~a-~fnNta-KgQ3aOmwaClGS#u^->0(vpQYC45TdFSrb91gr%Gn~f zXq?%>43b%Acr+U*;E)fwbGC#$Et((TE{at(RECI1emxwzvUQU9>V?U-m9rc9o$6pTrd;*5g zJB(%xlFU@4Q>Hkr-iACv-)zx0u`)c{_)$P+4eM8rS6LcuKEbN(7lH(YejW!d(9Ozc z6W>n4RaxBcF5N#T1Aa;?_QP>Z32>*t4grI!+vWQ%gl+{_yAAklRFcr8m5^dqopgv1&1(EURg0WkDeKDPwCemLx z1UAm`A5As}L0|}@`TO$=)8_6q3tgCQe1{E!V?*>~7$4wgpG`lm;-Uj1zO)VW1LMH$ z%*L9hYGqaQt6k4r(wHD_uUj~kol8Q(FFcJ859x+3vH1i2P4mwl+G!M_WG8G!TcF=D zhJjG2ri|48AVd;lnEnvGfDvi;PDLh+qQdT?=pJ`-vbTBM7@Xe+n>IH+SfIb12EqT zdvFg-SeRV|b`Z@Ijv-u$YvSfwK>VT2IAob(F)0PZKSD8WL77n9yob<3jwyBxo_^^a z4b)r;hX3t(G+Z9RQlK#_)q-UxFxr$Kn|<+3q{%h5^-il|cVHoMsRfVYFEymU#VEu+ zy~j`Umf>%SDL;@f0>e<4w7`HBQ)CF+q8T2m9m}8NSipBj14gp)J{t+xV1Q1FaWu8a z7i+Hsy0i5K(os`P)G%Nc*c${a{Du&$yKWro1xWmKs(DoJa_UFvx~B{tC3LYeFqW*Y;B?Xo|$BR4sFyoKwHeuYvv4xgRir=DYVD@kt`T{ z+*~)7zQ=l%_&!4{EihT_=fgC7r*RoT!l$7L!1xcqzGrc4$PUY)uSKOWH9N@(uOG%e zjmH5o-W^v;foU68aZXUSJVO;Cgq4m|VE3S03z#t${+6{iXQFd-;qR~Q_7Pdoe|!Hg z%EV4e36FP9sa>TmAUv)E6PJ?TYdqGpac+LEGX9>yUXboF$5B|Baf4_{>fhpV^i9}3 z9y`pAaf84Nw$TRbkL$XOeq#L~A3tlxG!;$P8<`x_RRF>QF|4R-s+`36*coo!0iWZ2 zeSgJCo+`_Rz}e5@HMl>ZLF@sVCNvpH(iyIN8C@uv8uEy9j*w?CzglJd`{vdQeCyq& zzcDH>3f;tZ`Az#gRxD{cVf1Nvqr#*93+mreGBa?c^I$Yb0n-3i4HwO2)JxReF*25W2gK!b=fPQC&0tiWTdme zYNSkz;OsEAKA+QhU{3{@cE{Xx1;`TgOFh8$YO9`l(x>jNjo0@*WJ7Z!og^z(CnxEm zzS;Kh)X|nd4*FcH{`y;cqD8T;I4#g)bgr(l=HcJTFkl?=6MEK))Urs9ZgJNFEmD93 zGb5qELr9${KA-KzKOp&Vt??O9AbWgcvr{8qCrxtK-OJBbhbJO+f>`dv*1IjOL;eJ! z!06Ip48x(fF-Y4pF5kBfdoP9giRaMXN8bHS9!a_qNmfFZBzzMIHe`!lB*@RyPeZc? zmy=u7qbo3_xI#A3Wu7u>AMBXib-XG@79$vV#TrQ0El@Lxn9Ln#^u@5jy=H_uBj*kO zu>$wKzeoO1fHE;2z=)~pkvZ#fLP`p7K$y%uFZeX_gkSnC5TLUROtHLI_j;`i-<1F$ zg92x$Fz#5wytGaZ|LSb+FnkRbT#f^%mejt%>mAi6H*yuUI8(Dcc{_cFgOigxTas^V zDMZ_JOGVljt1E^ z4XaI0FqSw9IZqW2$}@ltwfU5H>dtCH ze*i=jJ4=ajIti(WhXYpu{O;Rf0g2Oh%do~6rOhoaRSld{@caF^%LwTqL3P?GFiW6i zhS0^xKw26Le=g)ajx&I7>#x$3n6RKf=}|996z2<_&NDxUSfcJ6%03qeR2~Yvql&Va z@(oGJ<|EA1WJftw3i?7Jv2ei)hD0AqaK93J&s&D*A&%Eic@8%8U|iGl-mSU}8*$F( zaF1eWrBB$80mv#9VTOZUWl_Sbu^{F*;lED$c zJv1! zUf{e8@KkY$x^B2xR2fPkBr?i0(5ECP{4PEZ*YrdbiWK$N^;cik(<3M!h5DI1UINS^8m9`t#;v!3+(@Zl2;jD+3uaW-H{yd>Sy6OL@KVPvU0?3)Yi5)qsOGhdx68F#%W@Sf)cI!xe zB(Wo>1MqT6(dz|hyt=0wuM;f+gsw<8Or zz36Y_rLNPZ-1To_XFPGq%XG;I{fWd2pJo?k@WB%o?s!ZKnZHIZz3gmyJTU1zn)w?U zFY^JNhtAi(E>opI{yvyM^KAVK4m@}b>756NBwqT54*WdBVW< z{t2iF0=+eQR_?w@tD~_&k>5^GRnIz|!&td{hVt$@F9~FBR1#LN@y4j68vLvum6U}a z_oyTfe$qzq5|eLbL*pJ?!iYW{qbcm)f83s#KmH2siNJzFx2Jp;JOiOYwH?x;R{XL_ z&G==TUc@h2WBgtkgBP^W_jvT*g}%MW^{$0l%9`gChQ_>1rppbAuy zW6_=dec92#SA2UqFpq-BgVRAJzJ+ZQi8S5_Uy5g4C+1V1-UBaFaFQuv{SL%Xw3>wP zfLr0O92#>!)BQY*-<8J`lQ;3M(qT&O>*as{Z!y6n4$rz@f%A|m7-xB*)1(P%X(pJR z;ZUI>1oNb6=E1@-=A>zIO@i_=3=!yj7uvh;zQpeBceLbHW#08CTb;>_J_LDf0Vw-u zN@_&=t@?0yhANNaQkop~u~yg=XHrnXsRLauhP2JFDw+nHeotVlSv1XE_aMG$4dM!1 z!#NWRk!DBzR%G!`f`K-dE}sgLg%vJC{fJ(PnQGuP60-jC&EnoTI|YdH?LXdY<`21Z zO>Pj<5WbAG=lSzd6S@Xh($duqboPq#9js2*?_RvN`F%v!+S{j1s~jOE!PK>orr~&i zv3aKZo-47%+k?XO-ZD)316Ov{$1TzCn6f-W- z)Z}h;KfX2@_J)X=>ED_(I`3`YUto*pLaM{j#Gp1?!E;hqBJ?qLYvWv$M~+XB+DNtx zcTxCJ&j-GDA_Kl}l<&y!rSG^Tjqgw4J5=!cD<1qC=}m%1(~zk;=SCOU_^9o-aWO^p z$uG>Ta?%@~qd9-<(7As#$7ZXsnK>J9+r_a#I9QFpwFia)@ofC`rq$F_1WK-1Mp^T< zkeE5(3Do{^KsV<-jb~!pqK7&=Uv@3RPK2YU9{@xH7H4=v6OcH3cEMS99h4*P&TRin zSE2;J?SV;3l;>^XUm;h)mF_z78vt5A565ar(bu@T%gR*A`0#)~%7;Vq*cPYn39~Ky zQ`1_S3w^mt>A3KS&;90p0d!=J;Zq5ehm}_KLl_KAJY!i zuvZ@VGI3^az!QQTe#QokejUw*ECXw9oD)w~N%_6VqPhd12$~~em&cI{3PBA+DJu~e4%KkX_>Wbc|D^tXcLhyCIQGI?Q$EAjG&EL% zS>yesQC5*(Z$To1sv}1nSR(5HERYLtIpDApfO5jxLNaBnKKvBwWG&yvFSSV|6baTc z(O+2}F!hQl*M1>1krN|@(0B<48SMU9piyZ?hrBSV?{wDSJdKv8%wF!g5_xig$X~1T!LIV{UM!J@eB)zjA4*yl z(yorB9h9_TNGpz|{aw?rq^Y987@mRt ze7ygZd2sDH-O@`*BHc_8pOfpr&CAQAOk5ao*PV;uar@Wf^P%-9yaQDU-e<{fSSb3= zx%)(abGaJGg#gD=&ir&lJs2orj(!`Y28yh()m`5T5c%ouKr?>1Qf{9n2xi;(ZH09Y zPu1b=8J$+Rns@}mJqOLeqI1{Xi3eU)7)_%2#|vN`5F3Wj{X^}e}>9WO$~qWFH}>fACNzjPyX41 z(Tr<24j_OdliVgRJ%Jq#6;38vDo>_aSZU5%h-Y&i3&Tr4d@R?MN*6GsoUYgyf`rJ9 z%`Qm$IV8{Ak3MNtQDK%@yNaMTgc}EA7oMF72$ymYCgD6o-@ZqOYx0uZ^)H})8}|W^ z-f*_>CMAeP?}5uZcO9dRGTW$!up#5l2C|L9*(XQUf$2BXoq&#)+cR;E{@%|m$z#)l z+G0))eNp6-M?nC-frbdZByt3Huvz74xVDG}YkWBubw%DF2y~i*hZPgp4Aq#*hsM@& zB#67H{@GYSf!FXMR8+uWL`QqUJG&%UN2iqdof7E<5^NyyR( zSVe)CBw?6Nz!D0qkp!Mvpcbs3K$9el0JiFOUyWotvK=lf$9C7 zYDHiTPJ%Eo;j?yinKjaT9HI+KX=DmKhoZUxoMjr#_&Dtnpa@Y#mJl*887TS8!Yo9+JOgt} z2&<+F+Q}R+^FrEGYP@>=5wL-RvX8MH8Yj!PW6HcThY2lXb-;~50=UAS_pcb z-+KW7d$&IEJ9b-~9X!GBya~$hX%8fn*W(x9_t&lOC5hiP{G0flRwyjLF!8&F@8$P^ z^?iHdcMbnMe!t23KG<5}3GMI2?_TTsGV8md-WC)f{0n>>YJJ2Y%G5EU2?mm#+raNd z*7vE2!1ebP{2nIef!IvQ3KkCW?`scl#c%}+Cj{qY^VR=xd$C47l^L30k=E#;x}3G$Mx@7~D~8KC8PmyQiL+0J z6tdZWWPp+DKQhp_*8cvS_1(em&)BK;R%&zrQXjHYZ?#hY#MF6&9%2dx>4SEWEj0fC ztWch*YSq&iEHFDa0*iB-M6ZjB*r%wz7mjthSB`ZRIX3v$;`FcjJn)MV)pxYnH-Bu} z+_Tl)&LYGsxEnW3-b9AnPR9mBD%_1LQs(8t7{bqyKr{R1wnksHKu7l`@GoNDD~I5! z2xP$cj-~2U<1%4x+v*z~9Qz4u7iWIU-*Gz3syi}`q5h6DjC1`RXBlVtJI*vt^LK!u z_IC_1-2RSp;6T3PY(}|17hY5}iHu2ovxh@?tHX&1XyP(82@S z_)!xe;~Im^HkhZRDi5_wef%T)`@S&OM%&E^WuejISq8u^6JQ8>T9n;54c;Q6_e0Dk z=I?_?4-UHI!;~K1%jLa4avPVf{7c~9#C~?R6l5Gza33sd;kPzVLW*EN zp`F?&p?zSvv6CPsQqG3FQ1v&=qdCnWk1)a&eiv*~xB>2RNmqBVxn$ET8CnsgaQS$< zNX_9OvgCQU!x1;~aD=6G7-0;koW&dfPp(HK62S^@kn!40Lj4k19y-jVAsxs7O9M!Z zu7{gR{sD?a8Y9RZ+3Xp$TXg~lcsYKPdYn9s? zz8SO5ae9^jWSlTDnx%_;L9%ss0fADf5bO1#ef)s&KAO8VJO%*rLWVd>L1i)eNDaqt zmmr^@RAdE;*p4Ayiys@;i;s!O0(?chGSJf_NZBvj%(DvgV zKIZH4=%lqlj+?3`RGK@2SEXYFXvE)Xj-DfqbFBW+m^LyD#gvSB9UbsQGWqUU;2b$d zM0azROD_&A0yM0kue)w5hBO>FejGO%_>YZTz%5$Ma^=rTo3oZZdaDhKfsUNS8{wp> z(Uihv+gs|L0JAII`oHT=LtJy2tZMeYX}dZmR10EWG? zB(P35(3n2tzV}(CCal+Y`swu=C_}fRuY~*m{W$hSP|{gke#qPf_b#S*p>b~*TMIz4 zYT3wbTdb8}mbb-`q`WO>ZC(e$@pYi#nvh_DjzO&)?!BlqvXEo$-A=rW{F_B3K6)=! z(K<|E546asLDX}`G#(2riVOh+O}S(AdwGNK*I+J;Ga6YB`3}?l<84atF0|R+r zYka1II)L75{hfIEgGB(iJ&5kmla2_;*{qSxz27$uqpx)|gP^4j|FsmPANn`WHMMU6 zIRyqIk2F@vG?910FT>>sA$&UyLBgj!2MD%O;reTA^>$2ufc+PjpVIu*6yvy5aDDzr z_)!8|=RcO@UN|3V?z#$8mb(?!Usy+cZ1o?5(D@i1E#(_Uzgc+Yo-hr+%DW%4?Xqj` z<-l+j!|9>JI8R8$9p{SlOuaF2`3*Qwr22_hi={tuD+pV+whD>7Gl%0a%)V14@hcue znegB0FpXloa|1w;kZtTZ-sx|WkaQQki;p0$mbT~*tOO`E9EP}PA0L+_apCv|MB!^e z66z$u@DNQYAjv`tNPn2W0-rH3a6$2AIFA*L9Dtj~Z*X(x=RfQMwx7oRAh5eK%EU3* zOurOa%`sX2Y9|)t6GY5nS-z2n@htttKw+Sh!Y)*xY3aI15Fcd-UZSkZ9Xj$S7*^Q% z(YmDY)3D==+)IcW075HpDn@S8$;2J_`{0*n@C6gblJH_sx=+CkNFj1bJP%1N z-xD^GNtP5H9qfsmY=2+D@m}b+##@}vqSB|CIy07fH*zVNETMaSgF7sF@{28&$04b1&ZG1>`2QG!24*Q;dI%*rXYR5LYy-jA%_&x%HH^n1V zMZaOo*W(8<*zYDC!OOjJ{HYTA*W;&?cPaTTT<2bl)+DL%gW%MC{GfDmq1>c~tNLaQ zk)4RHjzh<7Y8be{ec&d3L5NwPb{}1XS-MIG!y<=p2Ji`pM8*9jO5{yvM}A0pjhtueoVCrx$91mJkT8>#uQ>6wCCwuf%Bcn1^9Da z=9)68z+Lwg5K_q-Jc7f2x4C30z63Mosvz4y-{lhW%Um)=(h-gWvC){vTrwGdwZCuN z0*7~bcm&g7bm2%G(UlLs4L{<+>C7sT_UN+ZYK(;rgvPET>J*$jB^f0;Nu|=a__b*| zq#e9KT<UM0wzd40NhZ3a%4*4!ekkv2)}HH3F`Z1E`Rk7JvT zMuvFd`PN|kl-VULUdSsm>sY75{yE%>NIUgRDT$EhI4bnrg0XZ2ibf0ED?5}tT9FEJ zj(JRZ&l8k!FS-a&=zMr7+aJuBNO$GiOnF26=1n?XWy}v2Tn+E#^Mjek6hZ)683Ymn zMK9L(_2t!As4K)k2428grr!ySDNh!7`C2*r5ii+nn(AY@TM`?lfnmsVOdX8yiw+e#d3ro^JJZHF3zCmEqXwIG8Vf3w*EF zuIDP(5|19v*jk8eBp-=r2&^sgKKO``1V6;MCPl{Jn_nWzB^fj0t1j|a$#yeJa5;s% z8T^Tm388!q{iBEKD%eFcO9`kLp_zplp+c+<>}wh%blG_MiDVKp=2>J`;A$_xK{ivx zwu*=&I+v9kb*Cezz@G|q5j@@+k&NwgFZ|!N1^6Q2N2Z1l&!!b;)3!xb_jk> z!?SO^g_RagR(mwAIzobp(ZO~&gUtB|_dpU=eHQN4(j9)S%A8;5*bBe&7V;R|a4Y9t zCDlgW0!s&)&rXM**oUg2>TyKw0yZIa`Z8=E*FJ$%i9`s&)b@#8!!MWMOKkt({qt7< z)VPH2@-7)=hrbGNr`k>lVgoux<`6u zVYdv*L^55v`0y@}X$gX=$u#6gQk7$zTUmJ&H2#b?QtIK_lZZ-I(gHZqm)%%FNYDv* z(7`v?+HIW7mI@$JP{CFJI)z!>q6SutWGg5W+-7aQhb^OoojQq3csjE z7Ml60(h2t#vzE1m^{d#my zcrKxPKo7FZbN2uQbh4WAB}Z-mNUY#Ga5Q@JHzgE>sUx|sT+84gvg!XPDc`l-C|^-m z%6A6v^Xn2n?3<*yky+du?DOH>=ob8Cq(m630;!811Bsis45>nth4^XVZxz3c#1~uU zwE5Hj1pV9aKb-yv>(qrmeX=Y4gRl(D6jFAm2mbWI9_imNnQ9e6z--AQ^lvQq(+xI% z+DQ5b_%mJRYT-{oct%RzRhk=Bk{shwHD}uVkyA;iARO)sg8{o89r#!8z=-98I~^c& zhy{1}UD7&IBvS$*YyP=`^zIyNiE(;Iw?d?M1s3t?tq|}=2aN5_*f*NG6sM`{5aOA% z*u=ADNUw7_T1-i^I9KmtB~@a7w*nG>Zux2=H_D~r4&05uN>-4~jc&7d{=2QpWKB9+ zG$$(cN6)b27l}V(H7e(=80jN9G!GXxf9wQ7Oc6FZ7QJ{?jJI?Lpbi3A?1+)YV-{Il z(UmN|OO{hhA+)j~%PAs2fX>8$9Mg|Thz=k+y;0OXha$3{? zV~oTc!t8MX(Mkl2)9r(P^02U! zg&Y!#$m&F1#H-CM-km@-e~5I*+cLJu7vmSNMf%sHn{RVSEV}6=-5j$6Abd96>>W7= zAVD|hA*c%{JH{~zBEq=-e=5g#RRYnx^DVZV93$h}fM|}OyU85qkEDX{2^N#3BJ;ToZ=`}}StLlhv7mQ-vZi@(A0R23 z@M%uWu@+pON3CIfj$>L^BRn4IobM4O*lyFf&utp_UAqD{#qpNr@%k}9rw}@j7R}r_ zju*zL8yLH|jN=Ymfs#G(b}z-}g1p@jWRrke#`j2+#!^KxT1hu}%Oy>nm9xttUL0ij zdAW@FZs3*jQ8d)(xl9>Iq!(?&plD4zkmj4 zj3RbL7>>;^ii;%UjyR_22njL7vt`&QX%bo}A4=j;POSJQR&Wywp1bZXnM!to)aXSX zqLGUuQklt-^_m(j_$pi+VE`BcSbSN2<+uNv^6N(l)aXN=M)Z!{uSwAtaMKaT$ts9c`lI+#i7)>R{M+oWK#y!D{J)PL5h5|>Kh`hC>5)(m(4)yc(WCJI*dskE z6n?9_{5p=QG5z8s$@69T^(Q^ZuOE;eC1@7EEWbLo+T!ci5M3QjJxH!3U^r4wVB_A$ z8wpsJCQdVKxpf8v*Z-uL`im2YsW)3BOe+j6G4)h!PcFi$MIR4!l~t=xB&)*TP>=NN zxvumqoy$*T)#)deRkw5`@?*`_c|C}#=Rs7}a;oD{FryG*Zq?S^twn)qj?f?!E*fm&AUFoXSvmpl0hy&7Qgssomw&ef-jZFaHI8>+b(`^sNHa zD842ve(QwvO(+>Q^sf3jTHnU$Tlop-+mCyoZwLNE`bIa>mVORLmtRjmm)rxDv-ES3 zE`)BkMd;4bRK})r|9LX^$O*{YKh(xq+Q6<9?$r}fxJyq!;ks$#a4XfKa6dUQg=_9e z?n>gW?198xDB8GWOBy|ECf-N{=ezx*Cw z{wwmN|9?1r`?CIxCkhGl4FbSF(!X6Rw5vOPo4{02;8LvnPMp5o4SDj2t$(|-2mPB| zU+``s3nvG{S_P+1iEaHG4uq-F2xjQ>hwe%^vI3%n!#M@TLQ%r478S9a3tOV+r(Foz zdlo^!c% z3*Uvs&goFMBM4VYu^OG8(~?NmTB^sxK(4zQZ6wubA7c^-BABt((xEj$hjzNU!>M&> z33@XR^k%ytp}yA>GxtbW8pl|DJ<&K`3HUONd-!Y9xOX|}mex#88wRY$FeGTrZn0_H zKS^sgq1$PLx9e%cnU;M|E!vrcgVnEg*t)+E5|UFqF_U=Q0LK_ zn7gDTg_%UDHNhSx`AhaN$zQ=9Ciw*RFu3E4hKjxoqWWogqqzEwp6y{Qx+hjKU)$ov z*U&TRb1$N=sQ?UMYJtzEt^3P2YO z{F8rgS-YHKl=9ZMn7Y8uC73Y}5d?8fThmrklq)h4^M;&e7L6zM$w{L*=ao4~%7{2aG$kNx!U%ZFzwsdVXY-KSo#YOteM>pM2+94I z{5&26ut)vizvO3N&sShH|0O@uIHId1%l~WndG(8!yZ_JR=l2@Xr$qUA7-^iULTY#U zxrASC$CrP}&nLED`Ir3sFZo&caomFV-zYzCc^)hO|3~@x$aCmeqWrvxEZeWZoqma# z3-e1ozI2tJ8ULUnO^q9=W{<#CibZs3&kG^+cReE2lgk6Hzxv;I;}TnN#Kho;Rcd}C z_AuU@%3s9YOb4S5i63CR@+Q~tJ`n9opTvn%i>dts7maukX-Q^pRW#Bp9vr-Gc(8bw zxx*|TimNBZVtXDc7Nhh~ai%~ihDs8^iuFyr;%xmkj6ZODoZO!u3*|zre{D8m*b1gVM zT#r4EBJcbrRHi#ZMd2ApvmBdPX7e%cC}qfqd$>c@6i8)=!?ZIz=1nAg7tVEkpILRS z%iS7T3CJgnk%~laJ@YH@1C0EtL6pEx98k}o6rcSdJV4S zpCOcd@>xumu_!parVxFa5)&! zV81{mx;Fpaw>jKP;5{t`mBM?PuGYE?ZdPoMn!NssU`Q}(;O)F0qDJ86YY2>#_eNE3 zb7RgfN1M4T?~S=*=nnxmG$ki)A>O(USI`h22{*{v;375{%ot?f!pi~>-nA`6mdNcG zEa{K=b_93iI?avI)d}*DwSI6J3l7sOhou-7tA;w1&mUBEo=VH_UxFK!?z$|jDu3lI zxSL3a+cZhK2EXPY6jEgc7zh{(4io1=53mFHz6ie>lDZP9gbb*eSES(C*G#T z@X1y9_pV1H(e*2E(+^pbB0s=~+R92i;uiWg%B8jsArCL|cp}|H%-E0~1f<-i$OsGY z3b?q&E0?Xs&-o9GCq8=+uXew_DQ$aAD&S;>xT4`57lxa-4eA>lc>p7-?Gq4_6-n;8 zI;4zYnD4*vrlkycMFy{N_WM2B3A38MD2`tjet0jL*OJY32!b^3bzG_Rz5<+EkXmpd zszKR;i`;d;z%TGK&Qwo>jM+6-}mZeFG+JxGHVLN>4q!6Rz(L z?}AEPuy;J%N&}g3IhW0t?&e^R*HVRV`_&6>JdOoXb1ciKs@rX>3EtUe9;`Xq$9+#N zYRfNgyJNszz4E=U% zy>aL`a&y2gxKI0@5Z`Fnma!V&EXQPwpyvY_;qY8&DeO+!=aCYFR46z|wfNcrJlraf zQMeI4uwn)1_kj0&7co2q+GXyoncbO%5SF!=N4H!a8*?=V3HKEL5_t%Di2u2VA~fd3 zv|vOyK{^Mn=b<-aB9rwuLXN)A{On1I)sy?<{%d-nCw4cuHN&CFv#-QE6Q{X0y&cb+ zoY;bk6Ht`%`p7X1iFozm36hPUEqLyVpU)$uu;y~$r@twO?qJrvcDz%3!F=2fj9QQk zoLk&X1iT1?SBKlrULqjKW>uS9ES{MN&$wA&eFn^5^e9xpA#W4l<7b2Zp*IP*23wFE zEZJ9c)a#!A8-B%5q~9N(R5t(b@Cam&1K)r5GKTr4F9c16p2DAdnvsvceT_l*>ol%m zc1Eyd_IIDc%$25Vm*1h$GVP(!X{_Cbf;+g{Q9{TgpY3!TU*HxrH8Fqfd)$vYvx6hi zRFEHkCH9tp2eS*~dG5fM@UdzGu9%Ke-nN#cZz6U|n|)QaYX7x}+74URMN6O!FO^N6G`=qp2=QBr78l_i*i1$_}c$~aJS z6cglKUvm^wbSsiE)@Vp)P1X7&?fMbGkw&Z}J>perHST6a%5&E}j6}ps$6RsW0M#%z zM{}(HyI*bfM~3^k@~5Imu;8^|!7PiYEy_W`La86|LXLwBd_w4ljJ=#nnRm>^(~S7( z%-)HgaBui@Lci)$*)3JNiPvtqQ2;;Ku*e>^s_15M+x7)vp`{Fq44<%)IUq=UT}I9h z4DU6nw9VXH+~T+i<5_2(a|>|GgAq%l&II$#h zKEJRX!-)=&T`0zBX+>8S^mV^_)T~2SaL zHpsRAc%Qqj2)bU=a}}I3uFdy>s(3~D8Y4c`(lXj{QSsrukydGC6M$h7WLc`&w;`Qg zC3JRT*C~d5 z(cml+X45a+g%|n-ez7W}%SOv}{MI23gz@7AX=sfPKCt(X1;+}Gr*HI|`pG!oBOi_S znxo$YN~1qDM<*M%RbNqabcTUHhB4iyx8sSCXef6MLVpN+I^T(cd@p%{lvc+{t2tWi zdxIEZ?JF`+=q!K37vsmyXswrotOUn#k*v;ytg+@}rDE(BlsFBt&f(XR;4b+Rl1z62*RHc)}{-Sq$r-eCv zoZrw#b>KN(^j8gr7e8K>#8bMyHjF0_tOZERFW)fpQVwsI-BWLsq0;z-VpHUt8mr^G z=N;r+?plXM0@AB0+Emqg_e!kHU59T%c=lk%Ddy+ySKlz-P`;+-V?%N_pSCxzaLsp$H@=j{sQHSYuo`cw$BZZY~-RX z7l+B5aZad>fTUz#BC2p^ZCC1#UJ&^MO8BFxk!SGxWuAqGvST8H^fy9`zE6HAlhssg z5^g9ZdUBD);w&PStH}oo@!XY>EAdQ(j<0V@f@ug2ii@26wI?l)JK!fisTzO=;{3pJ zuw~q;QnA5Nj3$3C9+Sc;HzDU`c?gzqZvhXI;YLS%=j0qV!OAKlic-prBM$e{I_-943FLv&>ne$0BT5br+Fn{~>~{?bVZqTzxEf_tSXU=~0< z@Bx02n0u&Tn7i&HycFkcb_e0?8arY#d>%UyVsO9zVsQ+S}KBQ4_{!i#wsTpz>PnV0<$Vj@{&z|d5<8-SP)4x_=!yC*-@y=W;R zlf)D}B{JWi!A3(gy8!RHJ$aX5d&FDK-HyKSV~Qs|lt7WB2;;7yB4|Ml z*;O?niOpR9kN|oYo07E?=^x;$_Fn{CrDv&I9L7}bBWy*MZwkCxLW2-!)h@!S&ke%c zC&qxC6dDJ>{Qwc!P}p)UwjoXDR`WRh2(v7|@ZcgojdUi<(Ui}Xcd)9LS?Y>DY#u~# z#)S2Q_`%SpAjD`|-d?za+Kai&IR>PSMWp`#^9T*Z&|tw8=DYb7nbj%EmkBbT^Ev%C z!Yv~k=r|mHS@O-@9gB$8rTbj3*G+;ngo+?nwvIVnc38UC9N{rzwYxo!P&>~IS= zN&Ry8a0@kg`sLHZEm^Uby>H)o=#fXJm}@UdO3F$qTl&b9rMYcS^4VP%KrX1deuYI_ zC6br>R|qKq7wN`N-Op6CD{uRGVA?zT*9^f-dE2d)^~#gh!G5eZ_EF{SH6I-|%iH}QW%>HKpTUEkSAq2@U`0Q%M@s)< zyx<-vn>Rem?T}P(ojJ045FOVJh2vVE+w5!JfIzL;2;tFCVq8T0@8bXdQJ`>N>-!A* z$y#6a_6Mt4)F*!A?N-?JS8#e~sew~4T{w;YnVOV_pPLbA4}s~%k_GDB5@M9dh-keKU4J3AYyj zMlF-ab$A4jX9;8kfsDxRye=Jg3H>dZRs}Ef+h79d4bja+?k1$X3?kGSb|4uEZ!rt~ zDMp84JV=`cV}R%!t%&1{9DimGUKp%B_6xAA#y1eG?5?+%^DnG5A?IJ26HCI%>3a*M zk27tFZtCD$@l48(bo@;U(~%CIpJblfkq{Y)mLXvo6Q(iY0wg5NKzSoqrvzd5ccd8u zRt@%d^fmgfN`r@M0}gCX?t*RD{~Nh8&#fIglSxTH0y5twEZGD2U;AF|z)3$xOoVFsmeA`y7&W;7O^E z!O0Q-RAQZ+i*Jej14Em*VvxT}kMJ(>D+2Z&+j>f_l_;FyN?BSY6n7()SVer-S+<7E7moR0@T_LdLT9q&b^^=(=*zE-bT4`e85%#rJLtn(jYsfM+d=of zz8};7Ut^;bY+%90#-(_f^ZUl_l6D`{9&bD%FO;=>BT-Sdywa7iQQzoh{@TW=l1BH{ z?z-E6Z;dsQ5R`=PG2t(0vBaxy94c*JET14;b~cWa1bUkE?F9Ut((>cJO?uiieqp}- zM|$Z{BHOMPeFS=y6n+(4078j;fh3E5Hok%9)^&{$`9c4l*YB^`?=A8W!x+FPGL^e5 zx0z+xUC@R5so;yo>}Tpkjy)Y=Qq>I-?eYMc0n~*1KOK(*KKATa8~@3VWRZ8~@c_K9 z`UW6GHhwNAX3eR_^~DxaQ7oLFp*#41V>W&Mq+hf2D`HL~$kh5QZr@yNEPcfsNEL9u zO6iP6I?KQz`pyUyWrHrjEACa?8LcuJKe48`JVnsgE~nEW%$VLU!V{qbLqYjibQOP; z_lxMF*huLIYdj@k@%t7t3WB{BiM>W#(g6!~f--c4eIRsop7tRRqV*H?tDtw!x(I;VS z*d}|s*8}dxWSG`uAYWdK9k>to=!&kgS-x0X`CzwK&dYF8R*C3=?)oyo_K(bR*IkJR zG75$ISZIQXDH@j;{=#g*<~$;AuX`Z{j~wdVoLOj=For;gmK6}=>F(5of(UYw8QB<5)(N=v+O~H`9 zK7_V6ayfpq{DDNf4A_G9AOy{JVK|-H!HiQyLMcX#Py@j!k9RxUNVLMTAEG{zfV5a9DLS1tgQ_h9>+?h}l<1kQ^0ZpW|05Kk-5P4jPLj?NPzsGxs z@eI63BDz;Z9S#j0ck3gT@Y4x7Dess^(36~P6vWxFpr=$VINM9>?w&QmLa5!od~IU zElQi4c|7QAN|?6I?t5QAli=3;RSa8hE9MIUlw{(?t2UpVgt5V%4I3V(+l zP;EZo!!~G4IV-{P56vS*cJjN3+LGG}2yAA+KxI znzs>PBfT~9?i;q>OS_o8-o#$PI&8hfIwCD~OO{A1k1m+(8$(+9QNEXM}x-rEj>%cUHSpOINYCO0G z%6Oo2f_K$qZ}NVF`GCpsFVdI%AL)_*BfaMTNWZ#UI_tySy$dx$j0;NyZT(hGv^bxa zmBnpu&UGpmC%3bZIa~WR2kWmB58(M6M~R$9j(dPZlW>1Iq|cI`#T>+*d^=K`rpQ8a zB|?pc!9^NjT}zs+QqQSe7_a<=VNjTefb;C(G(n8y>xOZD(`1}_bN32G?Pt$x zL+>Qm4{j(4Ew1hDPF(EPEX3a?bH!(#SDNWN{CXb6bR3qgXTgqlox-OgkRy=EJn!9@kDq0%pC) zJ)X1X^aPU}b)o5!Xp@0(eZTmkRLq_~xf3yv^?9xia@e<;*QN{08J ze5pOHy)Uouh5*T5&r)??N+zvgi=R8z+3{ExQA4kG{pZmVIQVVu_#EM$A<)qMN~fz@ zgTE24&_uCV)$W4f|>t*IneQQ zs`ckbPky#^$WF`8PT{Dst8EIA-^e>-;~X!c>fZ0PbAXemm@0%Y0h4#V$S;0|GY5%L zken=dg|5z=no@4p5=lD|3e@LvLsoQ$E6d0*C??`srGFI7`+3x9$jtU(l^DSn8FzxCGenQHSwvN}ka7O?BPxxC34E!0N06Z-`oAI$?<0{gvILq4M^MI6Kn;PFC^dN&Ho43tt zU@J7Z75SQxZp9!8;F4C#{zLTyW5(*|NuB5;W1JYBJqnlSi}~{HWbjW;?>ejU%7XPQ z#To8AW%YgBK+8rf+di8%vG|xYl6mWXrGEHFmXk;lhOStKd?_WQ&j7~#zzk}CrJeRA zlgvM=ca9hmxp6?(xw}9A+$ROre}d+gpJH=x)1dy?A4vZ%)sd-Rz4L1v0923FCp~|e zXv+`SRq7u+{i5+ptx`>h^c|0Pjg?P7W{;uv=lz#tx6^ve0E++~hr|;wJ*w060lCIRJ4^2&I=n9KIbac7A z3wak?MYm#zkace@B**ilQc`%!<6TtTRi3?H!ak|Z08ER{9NZbcn%7;5tMiSD&=8gp zB`VCu^1Cq6SkoiHbX9i$1{6y*Lo7$nOr8U|@CuEyKCsyxGuWxl=S)0&Lh)v1di7wp zy0l=uQ!V4N-vSB0^gXw?Y5rs6DUNus|HRO5IsN1XId{w;XLG!C7$y(#(o;%mIlGZI zp}091msbUt2T$o7HC^dPKZ3CwW<|j<+TcX?IMoB@9@D$O!N(;#nYoh>Yrva3I5W#p zX7WuI8+S~;Q!x}{qgH23eo2U@WOqyXy+_%6y|<3O*0VYUjxk->g;Wee1atP;;~yHi z(E$NHTe|2Dh>R8%ub&7Va-5&xnpy1FG`_>#4mu-yfikAG*~; z3Yr63(N~!!r~spUBTeug6_8rY4R;s3Tfp9X2#uq-W)Xs5vOjs`vA%jx;E4AjtCnI@ zjKgJYjfZ!^!_-ai{LMUF3H=xaM_+p1HT*vbeL7nkmhpnV7n#8j z47!j(#TC#DB0g3d7SFS+95RxM+?n}Y6t_Xz6*Qr=ivpNP zP$-5@@iiF`S#j<5IVHtgXI+cm#Ny^Th3?ED1zQ70G@O{r`b3qS%BuzdH`Vvb^D!)0hIG<$e0>x!}IJ^ zUiuSF<)CvW$r|Evep3Si{`CIyk|`(?SE7CgPrWv6cy1~|(MSxtwA4~!ilp#80I$AP z`MfB>+2CJy+q`-3g2HaptVaIYGGhkaG%*0?=rgsjnECWD6c6?$-wzcX3{Q2VOI3SQ zcsySxvYt4H?X2~e^YC8S?rN$?PPssIciW8jQyApem~=e1R;>XUW67aM;$P861xM#z zUoc5KAEuohKegwbDY)~x9)r)ekb@2XNp`D+I=&7;{LA?UyvGq`r_pa|C%A=anQGy7 zGN9QC*2}}ZT1UptbnDic)Z1g&+W;9|C zsdOKOZLArW*nKL2{F~^bZ>4xOMEU%C?%plLSYJB6&*Av(>g?)gh%aY9K(#4+`gf)2 z@h$UAKmMidYLK4zZt;v0h6QKUW0d?&)=cX}4g@vKrGn^Zg~4^(oHl2P?C6>g4@6ps zNxAE^UuI0}`Y$nG=IXC?e8^*`qenW=P9l@Bc7077UB|e-aN~mFKC2>)u1N?qpZZSl zx7Uuu#NT}L+NSYJTWq{X*M28zJaMsbwbB~**$FCNF)2Q=UTj|dZlA$?f-FydL2Xxh zvR4rp^L0YfZtEZl|7c2+^j~qAUimd>ZMVB2BX7>hDmE8nA6h7jS3OFN$!zaHll$6a z3O4_#cVJ_DTpLz*n3-5Vx^MV4D9&%B8n+%OijM{#AH`R2;Q;;??+eb$l>o*IH#bRZdjt|!t_9vQqRwa9DVDdq=7pZj>lS|46hkawE{9t{wTftr#!TLtPqJ?vo?4yJB z5wdf^oBOg(Puy4Y`5Qf!5nS{kC~@P;%6#!v4cIk(Io`cAh+D}a_l)mMc#0cgrpBf(bso|FxYj(V- zMPDvYEvD)uW5?e2OJv^FlYVAW0{Zb@RUOEKW>$D_{DZa`{Z91+JM=k;@_aQ0<0c+m zjtv#9|Hh0wl0#qmK8pK4ejQ&07z5;c30~2|&n=UF%ml)$dlS%4N#Tc9Xu90xV|_>EbkQMH!#jlm6R$8m-pZ z_c4hL?VG2(GJ(jbGv3UjXE9^+r&cf)6FvA`K}el@)J$XZBA*&u?{_;jHS^Vm{%XUt zOa`st1PC!+xttT|xGZGN``PYm3W_Ib<|jfcH2*FFdR-#4N@NYT6QPxgJ-aCp+NeOZ zsTXHA3OS+G(rJX+^}+Vv{_LXBeC<|oaq3}cfz4}xg(R3hUPB^&r({=1ER z{g7#`mLJCdZIKK`xE659F9htI-}cI zI@J7Bt z*(7fMHsJLjB)DC43w4Wh9=@k1Z}=FI)Z2~rQHjfro3a~~xPe6GYjDvY!Gdz#a~z20 zmFrn@38ClFw)krr;a4ES4Cezb5*_%NYsNgfdyZoQ@z8QRMJDi*X$eAvFusnFI>}w4 z;?a-hME_LRZ!@c&b2^Y?Cmo@hYt$Gc|EMLI$F(F+Ejit`SLv&dV-JUsfxQFh3upBc zKb?Oqja9y~I$sQJA0IFGTZBk!?Gl&eUCp%Sx_5OTCnB7G2qhyGiWuCRULsX}-T6SNf zY+Y&%f0BIQ{4o=Om@1=c)!e~Uv-t4N*M$Lv8>n!hiv&a{YJHh3PbG^P3|l=I?OM> zyIXe){W|BUO!;`He5yBB!4cdx4ttvjA}^bTKp6FIAfnMNAM2Dq;HjF_dg!!8AJt&* zqKfoj>n(K#d#MK7t*5v+%N%|WM#UL3BhwS*W+1JHatQeL!%zh6@dB;tK<%0AA8Q~93o7doWDVL8e5{O#?VagEU3whU)ynxYIR$mh zU9^Xz(`orE4OVpXP8ZLp7@z;id-r;GAL|O=i==^a&n__D36eW1#_#^l&U?KvHoWw^ zgojW9&cqTk|4b@TTem=`{AQ-wdW~98L?SiInmj|!1J^tIlC?`9q!Lw0sl~_fvkaB` z``>J$kA}2z`_BVN{D8#tRwt$3!G3pY7TbZFcq$Gf&qDW(oRaFCIcH(w>0rBAm7RPS zMy((l(}^2+XT=$j?NntYn-op(fK9ODIX>I}vh|=pLVup=yaT^F-OVXJea`8%7r52g zNp^d{B=eo9h^Z>MEmeskoc3>_*uICTp3T+%%s)S=ld3@@^d{@bZDK!FQ$U!GYPyxF zN%Yz6D=>_u^0_PcN{%SSC{s2)!TR<5oqhfF()6=R33TRHVCL0jY(HU43KBsbN8q-j}YUuMh{;e zzLVAD)vG9UY)E)V^jJywCnJI}gf&zi8ab=aQR4;5KHckg{16erh1>aSUc~x3T!Z?DL&{Ba)NR-V`4QE-a+I`o7(K z*X}V`blNMD6^i&ExG<;;e1F4ylR@XoT?Cn$4;v2F>F5(HaK`N4uhvuCk-yz_{Ar2N z$5->P?%vF#$kl1LC#J`eLn#ukI#_qKXnJ--bOE54FxXel{m5Q7T{7TdMnLw`h!Wg5 zt$&#;_8d0A1Z8r`Hf2hq)gaW-h>wPvM*P~3vAdLB;pHSHlyrW$Ki5>gC_OR!m(qS= zuQWe0pQIHgDe^Hv1STm*pSCgY5VW{RHW1UX!OC+!*kJuga%(+lPu{Nr^xhoP+1kt0 z8N*LnP2Yxi=aF4lOyiG&g(}!D{I}Bl@D~;bVjW$$_VZi&K9o7bQDQr9%jot3tUJT! zmXwdOZ@yP8?#X_CcNUD~1R2<$TQXvZ%~O9|o+p%NWDc^9GL_m)tB=d{AerzY`A9y8 zTO}iA*i6aeGTm$-@dk8nK`OMF@|N^$(jb#*fEs_Y8gHC;JkAhCXG?bY4WWa*dvoJt zB$lha!o8glLwToFFbNKGd1Kkej&(<(#W5MkTj&STgp~Th`%sER5BF8EN$$vDK7`5c z$UN=S>mPs$$;p%IB1iO=ckN(Gw+yf<%ju-C|653!7O1hub>f~g$*cC7Hxrhw>cZnv*O=6y zeQmwlk4t^Vqzs>^x7m1}s*eq5KR!g=QM1aKR_Ig@i-%gwmH-TVKgt;;xD#5{CVmWh z=MrCLFXV9rY4b%H`&ef(>a=q2Axm^~CkNR!!k0gtiZY#~B5PbkS#+QGyI0?b7>kkR zJ?_a5D6}cuH#)Ph*YsNwy)#~a@7_d3W?8d-vX(aKCwrgy$;mL0dHL%UnL9~8+^on4 zOHWK<+$x4dTP8?;;;C+b|J%E2EN^;OWbQUUSyRnVcBA>pX)-@~8RjRq%=`?Y57DlTu_4w z^%Y^1eON7TT^lD3-GPu1xz*HoJ)k-kx>HLbtyuat=nOKbHZ@J{dY1^}y@va}>2A5h zC*X0zHy#|7@4ZjkNUvFT@G&E41Y;U;)q5N>O16))qcVJgxoPj-9F|JsDIp8rN>>+r zQ1FE_YJfSsVGOV1c-s3!>_PHmDs~XDb-xg0{N4BnDB9HV#&PSf7GD?%C)heV9>Im0 z7MoJDxFl7ume0nY>lu`72M29<2`7x!-WdF$umM~sOp+O3jD3q^IkwOC$;&cZ8XY}T5Tj_a3Mvso;IFE#t ztgF?*deGI`qw;e-X^c&=j|Q85i3>%KR^Z-%gq4>>k5*Zu0rzxwTHfdp&gssyyp~kWe&P=v3r(oYLr4 z=f-n?5WlIajc-%IXex+TwMCEioBom8n?{Tp5uKSEaC*}a%vYN-y~_nEOQ0@P2u*p0 zcQzp@*m3&@O8NqWDx!yRRH6e8)peScpT1Jx&P%%0*KJVIVDvt8SFSk@^wuEQtVZe2 zoo+%!2RoixjjN^%?|H?atk6>m^;2jOA@_8aV?HvR>P%cvb)4W<lVw>W{iItt0JT|tfr61dC$xR*=e|c4C$iCI4}=HS)$Yy+pB??^Sc8F~l?qU1rMevL1N)L-Y#A`MbPd3a zMi$V)`cKu4VbPhBS&*MRi7?vr?`zF*htDWzi$21_zGS^+uhGAraA@cG>!Y3d!TH5B zwsX*HIp1P?3;z_?**zXDt#47f;#LMTv=OI4Wo}KAg9D>?-O7#JPb#h)@bLMm#oVnK zfSAG~li;mQc-v?i99iqmoHWvz3EtYU?GoOuhmTmieWW(xbcS(2#;nZ>C+9X+R zw@_BQyBpRp_WM_eo41X5XDR@5g17%3qn{o=Rb6+-ge?ISH`n&UG2581m&ZIre?8n< zhNsdyKENA|4!lewD%;j*sGWB0IEJ%|6gd!y;sp=`vmZ= ztTV1($mVC@oHKDk<#R<*!nKcz5+W}fuLZj#pLNIB&2IzfZ(@m>zZLiO9G;mZ_=6mg zHAoK<``{5vVs|hIUr%Ct-vGFHdx~DHJH<=C0_q7L)JXy*?+RaO=UjoRRC6rFf5K|f zvpKi;FcM(z>znheVDu9V+m7dfkwV%zJ(1SS2lnW{1Xd`-tm9|6MGqvf18 z$$1SqExp+6o0YxCP3piz?sV|&%>eofROJu%JRgSW!E%(pK5Sv=Y4ERa z%tXNuWpZetDO)|&pEE;=GxTiwUcZu0IFUJ}EPyX)0s2tAy(2f)xnMN@^|tcme1P$J z!y5}uEN{pvt2;6(eA=)#BB#{-{l4_AtiWboYx>YR;5|=vOTQ0jJ4M}o#jl#Pq5FvI z7Ws1`{rP6`^)!;zzo3Jo(`~08QuDr+jSfrD=~V(bT}$C&7`jiQw*%I#Z0W|7SNPD9 zIu{k0Z$ExIe)dZ-<#w2Io@hl(Su7yMl(!$pl&izm^N!E#ir2GVVDTUJF5pN{`%y^- z^=}}1^=!z6enak2L)5M9$FC0GrXl8np-2K{bQ8ZXHLwsmTt`H>4?Se4t8Uk8SM_Fvtle$%URb+3cF>tQD_H-8rhT-IkzsGxWmZ=PUS$3>1B|A`zQ}Ls z_jp)2{WBO&H}G}=xg*CCE&PGHJy{^7=*9B({=oVd^zxl)7U@6#8_*d*?NGhzz?$KI zDfuW}pI+-Bl1$k8`E$j4TioKeCeE_%7eN-Z4Xd7{NvBu+zA`cYw2VH<>xWNH4-3Ix zJ99q$6*-5Ib4sJ_CpAYmWm=)qyGT80GTy2$HSRMc?cJlG znjXF(KJqh80;Z3McAgU+9_<_uE{%5f4__PYJTH7zwDa8X<%sDxCh8m*zA)N(LHN9A z=lO`Zofn34#V@0srw3!F0?o&NY}=et#8|5a$q&YSLldL4HM%8k;tVULazx#V8CKNg zhLPDQbX*6&shDN5X(@wLUxPI&>+l(%;Ig?AeTv)QP;K-BYa6Va{txm>hXH?QkmFaW9(6F&P*=xxjl6m)0*`CiQXv;116;Mgqxu zU~S$uNE0c5LzeegBD@y(tsLD3V^3-(RBrhi&ilLZlsgRn{`wW7VFhsBBUzO2BY3Zv zMJ@M6jb!`oWwUdfW8SHvvQ)2VLMp80_^Z=WJA<+sVB2Efaz~><8-+cb7bQ{Wm3BTB z(`&MPCF{A$I>4Y+UFvPfvi)m>w`J>SbECnoX4z4LlopD#&<}5>-2zl6W#e+( zX|tTjZcmh+;wrbSA@671B5qK`vtO_?Gg~_7bsG@WP$RUk2W1Z^wOOo~USnqiKQvC% zQ_j?VvUAI3*oj&IVTQexj8TdoeeH_>^9|IyUX(yPXU-~k8~zAvezmW_I{5szy=x`N z&eV_~?-lUZ4wAy`j@o@jT-)xAHY2jDpfxp*;KkMn9(~F1o`Y&=x}hk%31UT=1qbx5 z06e-1^mW$$qHd`}?!P9=CaIKLw~W71;i>nDn;1QF6-a5^1ME7MO_z6#{RSllsD$oo zB#hEgB@)ra`r%)XvfcH`y5D;J)E{wC2ZBMkjlo8Zymz(kx1bBkEIu#%sC%{UwfJ8T zxL4~gi~n^uY32wgd}_&gv+fHn+D~=vbh(@StG@szi9tE_UkKMutI<1B_B?JY0mV5( z^|)sUqGMw$bVS}8X$v`Tu?^&n(4g)i`L_qBXQ42i_Y|N-HXyZ!!nEJ#$5IN@BbsRI zmXdL#V}4Q^+{j%3|78lewF-0B3I9b++8h6fkRL!PY_{SW%bdFk+$(_gCrC8Credg-x$XPQWt;I^|xc=%H5~PoOD0yWqM&TCyM!n z%@Axjo9N>k>CSsb(8<<7HnmbdLX5l)-=RQfSB~ihknT}c60bgtC8o-|kuUTge*Sc~ zN2ar5{g=LWb+#!|)h*^MlkbjT{dZuyUx5-Zskd^sYmAaJ?Ul55I*xVT<`s)ipDWtd zBa6-5(qAT>K?ydjurR-VV3v@}*+-{SNKJvSx5Xp<-99DYs~5u>8~zu&cPvW zBf-~o|2y@4i*va3gv*IF$x|8+y&v77W*quJ?Q! z8{m?AlhzF#{pCKVDE%srtDBx$okj+M8a8Jie-oBnCG~Ytd}50Z%wIwG%8NF}Ed{5N zGbtKts;&;7iVH4$RO*yQC(z)ZppNAAX~3rOtK+9|pSocgk<*|vu9-&PhU%Q7reA6; zHJBNA6#SqJ+6n%M&QmnMvR&=PZw^9j8ryuQNm}`mpV7;#6?~Z@!k-yPf#xQZ!J|M!QKp9Rz)Oe5~5K+b*bCz|(puYBY~3PySTc2%o1;^!Stj9+e z_cK!OD?EG-uKVjZMLzdOtv>}dYLd0SGH6`_81->}{MOvP`Sel)5r0+}hKyd0Ny`*V zdMmX|htHVXqCBg2VW4jgWX=9CB^nQ!q;}4D-_JDaC7UUQZ)5K}$k_W1svVWG_jRjt zF!?R1%Bj8Fh4+uoa;jnXYMcy!o0+aAN0xG&JNR29({X1*$d601Igm+>EDJ|?g91ISjhQCA}V?1{||o{hCatJf~i?9;S%t& zTb^sWnB%A1x_E9|JhzI!T+#beW?*yt_No(CU$O$m*K8k)KjP5kGn5-YJLZ~uawq6E zm)ym_d{dv7jrfG-{7-)tTE7|oN&4EjT^gadw@eb=Wge4?eK}vZd11QHz4wOSu%fy- zb)RHmZ(TWn<0?G`T{fg>Qy}NmQJFm^2SuR=@a5*X3_NW zC;oA5|65#)e>OXX%^#gyw3&GC)S|7<=H`$36m1Uv?v3V-9H%NXp6%dQ?9)tbNE}SGby!@Hq`84xQA%CN0)H2tdL`NAWmX=U_s5E z$Tf$IxDdI)`J$+)+3R)S#Y4JInGw#KB5&qAO%VMg5boW2LWXO~bv$k6Z!6;Wly#Q{ zI-0Eh#%BJ!7x~SLT(*64_wEIh6O)MQEHP_UT$astlk`t_iIH8gae55eFnnkbdPT{? zDrb`yJk~&Xc`wdi({b*ag@h667a0QC>i$5#ZcH_3GyZ$JS=<(k>8W&MdHEs{799RN zN)|Mdo6}WA-Z@EZ>s;0_`G<^~mQEOy%f!!-M%bOJym500UgrXuYK;pZTkX#$t4_a! zNii>B0B#XtY{!7*Wx;x#;+XxHft)b5Tma-6w|Z!0p>FBj7J9nUDSs>Fg4Gn=eSP9F zbsBgX4F)AnTe9zVEN8G5A4hEImBIQE`ppm4-=JUIk6oi*T;pG%-+saRi}j1azTD_r zY+*ASoc9uFvRzmATGc%&mVXQ#>@LxWfh2i8F}+Q`G?x5k?A)i#K)gRYA5~IicAwR> z&M%+`{N$zsbUcoW1V8^{8YsBvDKenN5qP#^2E(Qv?8S+=(bK3^1Jp=^Hg~RSv3W)z zm>Wa{A73s8-Ii?L$DZvO!gwQS_)-~dE4^*B-?XxBjYtT4xm&wBI#&(Rzk~r!UDjeg zrEjn>mT-#cW5#4tfrE3k!$*%am^$msLu=e5H|7}|liPRFnCD1vzh?-mWqGO*OjOf( zA>>!YB4lR!bQLzVW+-TqPg{Gxo$7pd-v}C(t3E^3^BP+c9PaKWx3537?X6Mu=a7~{ zw;7(M;G)+JuI%`LbcWfDnQ_%H(W1T8T|=ZY-XitEV*mTvG-_HIvaxZf;|{oUrH&|W z#gG1mXl)h;5Hdi-5m^DQ!Cuq6aLsJ*$U-0aLjhTk+sj%mIJtAnirXVz@qt>$7X6fD zOF8k(r>8VlBr@`e!Az$3z^wh=m-N>TtMRNorIF4brt>yVlxe6m8M!qz{O(HA^@G7h zk5SfkToc@MTIbZhFQEgsfzEpbo>Ys(j8XJ|Y>%k_s3gj4K-0M%9YfT`)t&0SK7j4w_u1~bM(n~) z@4qPFo*^;KycM(w8|~3*NhVcK>+xInG@pR)BxN#@&g{)6R8Npn7q zXTR%I?kx#~A1SHX7kvCNL95&sANn>=CMDwo-sXchK|}j|`s(Z6k$E%5OVydt&$FT( zS;a?cJMhl$R_=9cl8$MH6EL?_oZ&d#&o->hdBdAVho!$fSvOvWJLV^q?4F^^D$ebR zbOAP5dWfl zuLM^^(VZzPJAZv=Gt!H$Afx1{*kER?x{ zR;({Z4{;tE6xi7D2j?3dpQnWk;IZFC#DKS%3H3hoU(}S|_S7I^b(g?R|B#v_lvE9J zM-9Mb>Pa-R=zYmPT=aUwojNpdpm^t;&zukN_*bx__`sY?<3mp`*xb8nh%*#F{^olwuDg(uNjEvIwUUEnT+Jde@j7|(r8mJu&Jsh`QPbO;gf|oOEqZ$mJfC#Um#-} zBTGAezWlzyoto#oi>h;|+j|_ggu!(=Wz0*|6ro|O6U=6-@%It?0m}^{4>+&2PIvrz1;(oe)sI`pD!Px0qh(Yn(dOnf&jHx=0 ze*|L(iEzI^gS_rT*(DEU1>IBHOL zd|ZlK!)fjk8JdHX(Uueis}fj^AlF+Vpgri={hr7;_)@EyVkkM-AoO&nW`Q`7l72%- z?Lm|;BcRhB?xDRUf)&t7%j#pfrIpFhkTlaq>>96rH_W<96I z5PvTUP4uJNc$jv?go2%%Po>GoO5yfy)mVUZrh!~zfm}-w4$}jF?_SEf=C!5HOzkJv za3ZH8%uJfo@#I$qnhp39_*(2}^YtB>?ipsSK0`NVdCqIv^nQ2RWq9I-qD>9WJpZ{2 zg%<1W8eQXD{R|(v;Cu{2jyuJt()S6Sd#*|HV03nf$V=bwd~cjca^RHcuasUN9$h*(Jc4_l<)s&eZ$NQ)Md_8{OSuDjG50Di;C{tc(H|ZO)dWZ4C|L|5T_v=O|C*+Sn#44#pO$`4d~*mnGJ_ zKQ^7WI9 zSr7Yezt?jWuI|W1!PqH%SeQ!s;O|4rO=vBM?d?oluHIzRQ;@4RG&FlZgZCiDpYh*fOEP$? z+Artnu+7M0Ao<=Ez!Z5L3Ly*Ev^WX(F%3_wNkdk@l+OAYc94NMhj(1Bb3$B37^tU; z^XRWzkr@vU8Yt`J=qLL$Xd1hkMuFWZu#9<4BW0~34#GWKFJfpzrM#u4{-0X#yv@op z@`lQvwgeKs650AbVRR?D({g#y0iW;7>uQ@I7->MFwW|WbMV}~>aa5f( znBk=P*sxoH+9LUWw#4?<#6M|)bHtwL>h<3}suZWZ@@XNtlEI|&T#W#|8oi%F(dIJn z+p2?uz1mf*-zoAGQDE_vbPn1_a9iv&^KPb=qHW&&5FPT1$WW_mX80brW~JK;OyA+N z=Rpho=Hd()F74CO8a9r$x#P5=+Md<>S-tb26Y5=aJs^`eX88o_U8t<$LZTC~^PBtv z9nbp^_NF4f@6OERQI}1f`+wzBt~gY)!VRr(BP+_riID$-=P})sWGF=jcy@I|%apLV zLZrBCN+R>Bi!dn}%$Q7aCO+j(Tw#U#Wd?I2jhblun`ZQ{cOTA8jI`|G;OxQf$U*Km z^I`UuAq;o#l!n~pWj7eY_)I4chEV)PWVbs9;E|uZ0JnDvzjYy-a@pb0@8mNd*x#1d zO^3Uf^Z@L0#H1&ip=wDU_>$RrJ-3g#$m2erJiJ{1(@X?cQ1xob+|O*Gf1F48PlVnN zwn!;h-y2f$AG0{0ov9s|-(Z=^?KN*vhpzp=X?$rP12$0i0S}5?GNUfj4P=LuHfUo2%)y z+q>uV@tPC~+~+1`U9I?DPy!y%fUK{o~)BUQd%8k-?hA^*ViHVcSf#p z-mxmhmVS2DelH_~8#QG4JG^aP3Ey3B8g`tIhdI1&B>nd%zM zY)T0-DS2ybqRuR|8jlU=JKjPYg{{by%;02FhDF-Z2Ny*Rv)N8A20kkum7a4nCPfUL z;uul=I5lhGrtuM(@jJ3`{1wLs3|u(0QIAWvIqgLUlV|J#1MSIi>&(x5Dk!}yeCiZ# ze3f1v?l-0ApuI>*mhX}lA9bkiNYV7mc$Y_8*->f)6fpD=Eg)vo|9kXOhPF~q1*BiT z9sB6}_pS`IhCWu~L`l)k01umg3auOCtY~Mi$SLj`lcdHg*``~GU%$QwD;kTBc zYFyD(V|A*=j)e#hG_)5^Nj)~wMiG4mO)M?IuW8NN;+kExW8I0{b)|GD&;{o#!Qp}x z6X&E99J|K?Q1NR9DGy;rR$35TydK5&;^wT)4K*Lzm)K>)a}hl$y^dbdm!_^B)yoRY zI*HaiVdoX_im)Y>JE6cn^Dqd6r0g7&o5Xrp6AADqYNKDmJ97x;Cwzju?05Sj61;$lhA;l8sA9Gj}76eNx87@v?whU6pe6uL>?_ z^rj?kx*>4#iD|!n^)Cwc#N8d2vcGK2$X6+P*i9pU2y=Bx4OFS=gBkfp?3*6R-;&^L zh?klAnUZ2yC#n?*q|;UI#NCaoDD=X#9z~GfUy0@~Uv9_Lpx+w3=4XRjw*D#Sa)j09 z;zsV_{VqkX6L$;eeSLI1yO^{ef6aP0)(P!$?_^zRcNo$4BPW}UMvD6<>ZCQ$KjunO z{sDB85NV+-hxI6WUEk^bFwa(cN1@w`jZA~~6qUJRKtIx!Ll-b|3fjsLOgc`{T&Lr= zx^z6mJ`qT$k9UoB%W~&7YX#K8%mP=rQE3ym>#c|xS%JT^Kwsfj<+(H1IP7-I*vui% zA|343iF=xTJvse=E#}zs zx6EMdZ(6gI|0&uc_Wd5eiN{jwxo$sxPtt!SC3y$~kCf$uj9#YW^hUQTb2vssO*tll z=c4o7@!9UM;7jlDkjCFLoSfOUB~@8-+KaXgH}d7I-C7SJV`kE>=qo}qdx$yW88oZh zC|kyZObFIIt-6s6I^9HVcs|>z9=uhT2P@mW7Yzg2B2qYSfkCnN6j7F6hUZazaA6G< zvL~3q4?COb-=K1Lt~zMszF!dFnc)*bLYZUwo$7P2UM0wgfr5Ra&3xrS%v1VrNH_Z-(iNv=00k$~ zU-Eg9dNeckEt&#=tU{WR1_WaAut*S3PfK9l_2jhu?-J1a!@VS+|IttZxi#AQCldd? z&UkCuMcLP?@59YN2d#Koh?n)^8%;&>A7_(+3kk5j;obH;dz5`C*}3nnqrCSX_clW)LjcKC=bC^YR~H>*)4&;|zhfDZtXOx@>$!>rZ!l+)Bn?P^0D>aQy&5Dj3_CZgq8`sd4R*2xHh%^jfWqfhpY>=vo4eu>dnos4w22DMpa1TM}XS;mD`xe zSs+Uj{v`07EG*LzL2@B@B6e_*IeJC8Pmq~HyC6N;nb0 zvo$dRoT*^|#A`mOdrr0fHPx6Dv41`SN~m4gC;0faT1F~zecVIm-g}y^wb_!sH4**o z-sB?DJ?}n>^ZiKi=?QYPlKj_xlcjv143;mI+kY4c?C0Si;Uz8s(o7=hHBnBA8`1aV zP~{(!$si9Mlr6Gq9+y|WiY2Pf-mQqUrXi;#O+HAIFIJ?Y9*)`wKtwL- zxKYN=m8%P+jW;>r_f1-UZ-5D6@*P?VBRR*ddB$AfhN^t=HMmC0N4Qy+HmY+N4(`@5 zIY%jol9E9hs`U+BkR4w1HO${KkprQS)X1W|rx;~xc~gnJyBcy6vo{R^3!4|gn|GLX zQmM($R(5vw1My9`B0GCq^rQXJ^|y0>2@wBdDno_4T2R-2lc=94ijUB4j#

kEgJO z6lAEF+R$HWY9nlVkFsF+?{fN_#QPj<$UxRGBd<V#9ZxY2^FpI@sfyzrQzhHUbXDY4ZnKJ27QzAI)g|S!1V1(<66LCP3n>YO$^WNP> z@ru0Giah(?-3ieRg~1h@dpCQ%{Ri)o){>XM-5uVgUk^q;CW*?d<0!US`#Sb0!!^&DbfkNE81eJq9EAze&y6gj9iSjuyDNZ~tk4z% z;C3Zt`ZN3B-JiqLG8L}zBvT$-I`IDq7c)*de*8rTDL>XP+kZOTOR+y2?vp_ zq1QvGS9>F5)T|E1^agBkXj!m6rXmwp*VVp`S}2e8iRU0x7^T;u2%EXO8ww*s@ebCv zuC#AqmHE z*Bb-P(b|oH=+@4<*EQ4`k7yrIuo;!C#QI(I)=X6fT<=S{m8-kCA%r=XI7$Tpe8W zh1h>+HT@kLT*RS2`{*$X%%ltD5(xz*TEow6XySwG6e7ZN|FwO8RI zd&jl*Ez-aR>;E5dgw6}rM@$R0fNECZE#5*^GIA=?H{*;-TBN_|h;S8JcBs8Lv?sVo zH`n@>?zm^jA-p1JUf4bgkXJAd9jqX17Cm^y^U(mMF$yOe-piK zsCnHx1~aHT5{ORR!hmc6femMxQd`WKUCOGxW;^ClMp$##EKO@Aj z!}l{mV>zNPTf>`5ChiHwGf2{UCe??Q#~RM7S0#@WXibFkuZm}$!+fYHE1tM#&Or)d zgoc&@GGley6VQ9WCgwEOa41q~`I-Z|%x;v;Q(@qUkH zS@_%h&BuhlX3v7q>kYliQN~c$81y`DWDC8^fi*JWv)&XV@;Br85ICC|zt-<-g9fmsZ6tW2immqiH``B7LirttuuZd|C-_>WR((PEMs@Gf28A$ z;KTAi*k|Py4C{=(p{Ti_IeMhu>`SegNTh{_Lf%>Z?^C8ssW{{{9~szuv=>%zTe;ve z$8&aKX^XtiTb9G~u=u#QxNTOLr)fAo@|LKD6Wgr8ad$Q$&Tw{9{H6fec6kZg5rRSi z$mvD}2T)Y0f;7 zm=yP}AZ)nzpIUoeR_^JRr|82-4&7hOHYE6qVU3>B*xKvza_?jTUv)8ULs!2Je)B!jq=>3)hak4M4)0ZDUNuAKCI0W#knHDA zgmPv<-}bU=NwJWSIA2C~vsJp?2fk_s|hX$0?Bq{cd=>z>%|&)X?^l(6ZTmbzmu$u?)sh zur&p&(lA&rhNXhfEZ!jqo=sogCp^62L^z^1+eGJ-(jV_KMuP35C^*w+=~Syv`0nZmYFPjikK)T4QfJk1I83$ z$=*M)aDavgiu-w=^QpNqNK=qCcj;-Jop!%Hcdt&A?8}Ip9Xyof7;mHQ@T}&;eciL2 z*aI|wl-y{X8GTLROuTxV0Pgp$U_dw{ILWHCn_|iCitt{h&CEA)@V%|XvUzy09uQKlF+~Jpv&T$sT zq;89Cn)AAar@nT)+y$G_g}@m!w6J)MSjnk#KMUWfTW6|&Ge z7#{1Z2L_8#BS)6!x}$T-3O3qayMBRSeZJD;6DaNu&vhRm%i&^!7*0{7PHK)bj$;Z&Jy9oF@}V8Eq!4y7sUh!gseBQ7lA3zeB^Jrd1S-~5{X0Yb0 zNf?Szqz)FZCYwE?t*;}>$3B-zmrPPhA&Q8C{lnR(&&Tw^h{89 z2tkrpj*;oJ*k_#{E|qoUZ`4fZjd*D<*E}AHeghSv{A3L^{4@F51#k)T7N=|46W9?* zjEU@=+amh5`woW261Qne_nlLn3cqF=XofBDwqw4$+3;SGl>zLbMdT?;L($<$U9U=d z+r%d=ec1Vu7@k9|8P4$B#BgIakr*!Cm0@QN^3D5v*q1_sFIiP+We^yKggAebD^MoZ zGuj3&(cn6<@%n2T9(-v%jLHy!^I=yj;+2czk(G{l$g=LnfE!vIHE)0dRb|TpTpd_k zVyG@s<&#K?I&Si5Dq)DDV}RC&MCM#I*&Q&i%#QTz^U%c?yzA!9C9XX1AvZ>R;t0RP zjC1W9n%?gvKlv)S8K=-G^XRD4+xs5aBVpOUv#}cZ4hT2RGm9TuOH!JY(ub68`oOt+ zjUwETnp>Xb)YL_HpI}MU3Dt*hb|ZCWK|$uJT?q<0&I-P?lMxHP#N#iw$F`J-tB~=c z6ic}yxBRj@a%g*O+aufkK4N3K#Xy0PIF{EmL4SswI0pZs>{>G$HJyqM%Bf|Y6ts2e zNV2=5sCTQgWEOc?UCd>wxcOj?iw=GI%h4=f!M9W|%M@R;I6iTuozO5!E1y8Fp*lmQ zk`R$_b`I1+Smzq}sLIT=ryWp98S0kM$`V7~5o8^+N2fOcj@H%(W|u=W1=cf2N1oN^ zbH#(2GZ4q?XJ1IO3wF4()}6 ziVTuR@a|-L=Z5M7?*>}OME*FpMFe0cu&t}I&dqR(EdFCMQgLguq}ysVi0tCxh{7Rv ziN?!~>u;jmOv-pwr*rFZ^OE+dS>U+!q*Qh)aIjerd{b|t%oI##S&y2B~z|Myy;;-~EklN?6&K9Q`v`#)jzMFPVONVno*NUr9T@hid@_ncUZUcExv)w?<^; zztkhem&dSZ?gxPA;WKc^$euV}xjW82VIO^!hw0>swR8`q#~rzeGP{|t%Aw33mYGTq zpQj6j1N3I*g~3=I3n(%Ub0s5Q(Gfiy49=Ij0d>UK@22j{X^XJ;etRAzOiNB_$VWW% z>y?&mn5{Ea;lAX*o7&=KN27-a2Irq@VJ-xwd2cgSG?{UHxhpAW6z3ST6F4PUZ#Kpw za=aEI?ED*n24_1x>h1T4Tbs8q+QE5xGFpA8KZ{R;pG&CNxUmO0Naq zdtS&yEX}7vh=syj{9@edY^ff!;$2UnZs1QA_-`sB2k#Y@q7Em|WF>SeaxmEu&(tjl zPY<86A4K~?T^zgaC`Ug!QACHZyfN}rSL?G1OMW9== z%-A)(VtS3?Wdj+6y{YfEr~)bwX3CGrgnWBbwx}FM!irs91b_1>^UPqh0aiK}yFbjnTj78+s*i z|4&kh!TH~%!gL0nHQ`fP-d2{w=SEf#-eAI+k*TSCd0siS&=paMcOP3=!b|^~@B|xv z3LfND5vFv^FWr_Zo$F=V(vw)Wyi09~p(5(@YWpc^Ake1XP8HX+uBMjp*f#Ppr!An=Z&C7MPqI5X# zU-4_5;xF&TGh!QYvZ?mii*!W?d(>t0LGAHKeX{Qlzu6X+ML*AAfWNJ+5%*94|CHW;CC&HXfqN`3{OU-O_1 zKdys`IExO6!Lqm%p?4P`Z&-9y!7Tj_8TfU zc%af^GIwFedz_4ZtM0Y6=cQ}6*v{gca?QUNM$+UPoUhCJ#Cza{pXW_-e0UoUDCWzR znl1bWsU5r5_@H02d8eDam_+{sbLgl2+Ap)UKTQ_f_l_r!x7w38+syum&9RjZHIX7! zt-0KSs^k{b&D??taSLiVx1g@)7F02}psx0z`&cdo`kHUsnhF*6<8_nQ$N1B5M@!Wm z8yaoE!=lK)AKIRLrNvN&-yWSP(#T~t@_uOO=3s26jeOijhKanLHP%KxY9k*Z@>{{! zN*j5viBxxfN`$wBK3Vzgf3EQ2#H5Z3C7+Z~8$z_qSN?$HP@^bB|@LM@h8E@c4>J zs&P4{uVM-v4UOo}g3ike8K87$;26p@%g^LZVuE(ZhrKU~bt<-q?2j*WtA=ni9X^Th zHSVZVURXcJO*nbSjB{nozbJcBU>=%kUm=p zCtPR~np6B<{&;q{jYf&Ef&J@jdvVi!Lc2vA?w(@}?wv0hvU`;|#+zr#b~LcfXV)gL zY}B+t{Ew$~k{_&pmh!H7R(Iy(-Y)tMIooq z51)wx0amThm&xz{RWQDcntS;|N-~!#rXQt;+Lr&SzX9X#AdBa;oKV&#?^OzQE5dx~ znI8R`bop~ouRw(9m3k+5wBdHLr=2?h_bc!=V9VLFK6`&38(L1qZjp{6lGBkDNEEbU zqFQKX6Dze*44WE0I-Rwe>&}ntN_L*i)Ebt_+qLOuzGQ;XGN8abF^tCwbV`5jR$CW6 zmZJ1PV?kZ+sGR5#6c>Hy&4T%ky7J8lyj{~^!*@==n)nfOppjc#xqa3YHW9pXRu1HB z#=D|;;`Z4?qOF;Tn$F?m$;h5gUq%*9_#P$UA#r;}qHjK6$yD4vXFt$wHPJ_TXLU)} zt1qU$lwyDiJCX@WBN3%>?UC!HCgx;SF3lJo|QW_TwSUAv0c2V)~B72r-eS|m)x8#L7=L+e_! z5$a|(izl1&!sLzT0!}yo4O`hU`^kbGyes#V^Omoa>6okazNd#}1X{-G<`lcJiN%{| z-Qnyg>MVE*w=kv)G*Jx{;xUo6T!=Pejev2<>*`~3YZ4vQM z6W`rfO{(&9sN6eOnY$(a$Zy#{my(!qTw=;M!EPnuH}1Iks`Yg4UZFVo!P@kadbYim z*(-dVUEt=nD2Eoj^y0c=juuzljrxSW06#xX7Z1+6fC06Mn@DU8&Cl;RC%sf&jCD#E zz=qKL;JV0si%;IaOGA11{B&J2>R6OnkLqgY=ZCLDzS)7CvrY1!>YqXt9W6?~E;K*V zK};?{h7k@LrvxLEzD()qCLDOxh)s7OHrunGrQext(%er?x-M^dWzJITw z{~sSl6TV50khUiuf5_}LV_O+BKFesb6?lU4CC;Y{=RAh>k^N`qv%eoRYEt7e_4nMt zh0&baP4DZkXZw=g8rr)dUU8`Os_FR)=80qCg|7Z822lH(pP2oPiSB4>Oo`%)9XlTE zCGV$;RwL^iQoCmZGoAkp6=+P!0f*rx30zKE_bK}0g{ z?7$!ya%}ONzqYs*5YxY{pYb$PGHhxM#@L;!=pSO{=M;)^$1ZlUjqQ9zJw;d^z^Laj z>bW#1hlXV%EN9^`F7{7hdY|ocvaa3$x%mZ#aGtF3`|#hqtYby+y~A?C5N@BV55?z9H{B0XQ7($3G;znPlmtWLE(IR8P0B;Ef1 zkG=PR&++>I#;-dPVg|JZw=Kj7H6r7>jM%YfQ87a8l~^T0gha$vMYS=&Na^Y?DIMEI=ACk$v?IudgD!U{dqHy z3QnfT@z7`;SydZk#ch$D12R#SS|X#YO7#cpRf))f<0o*D~;+IoWqYF=sj&n9*wBJfxnDvu@f?r~^ zuZkxa?d#Yv+OLQwDPwCvzYrdwmrzfSH>h|GQ1R-b;(4Ru)kejuflyo3Rvt$i2D}2A z;R{sNX%fQ{*!2|bdb$Q~G1@1r7eFF?n2Ptuf`xtaA{#!k3w;XW;w%8XTE7}Q+aic3 zPjo#$Buc`3SRwdj_JGVmeS%+_1503jLQLl%cL)$Aj1=!HIZY}nB&{3}C*SMJkH7al zR4>jiSZSx5z-bcopJrl6{3MS)9<1}+(=>8h;(TL0NXI8?t?o<^MhV}@wl=Xa`~~_d z27MKVzVbs~pFv+v&{tM)=(d?HSYT{&T{$%#vcK5#q8O?zk3KZM-xlln=*q8eB~()z zET?v^_)TeDVDis49u?3T<_~BO1qHN%*#nwUV-15};sh2LIKV4qr-Jz67M#roLc?44 zV+$juk$MO8@r2KD8A!;QfOUDXUrLuBRq!2NiTc6FbUsM1dUA29$kfYddHHLvX(N+8 zh9L=u-k`=NC2RyLT`6f*O2z1_#W+O>u?}mi`Zw;PvkDzy8I$3mJqROlLXt2XNR7tT zCLW9Ws?T?>+DP^Bc+$zRS|kkYKcbv;ihxRKT){^5?2pLy)G@?pPeo)tKTenbyJYzh zkr|w?prw!JPnlAFv?a0$iMNL<+n`3bm|Gd0CY=LI(r4p;1zMX-q>o9e6jBW8J2&G2>t}=XXp50z`y|`V{P+_eK66 zk)Iy0222<{Pv$!2OdPuN=q+)H8Ng&!Z$>dAUWf_ZA9XZe3bHojHlr-qnXJE7@!Dwn zS0rmA&tz!BUl;yMJzsvE`-%ZeImM_G-EK@TdL&au48s1$HlhROH0cKVr(t`NU1ieO zM&p;2C{s_eBeJj?b6Ol@;uKn5=dr{>*&ae}{kLs_-)R5up(2%r#%GEKbt`UV!@RnW z-Z1lbvmj{~Op)t~ZveDB>(`qpTAdn9(dblSiZ+KwlJczIqD(Qr%r#9eI(!Z?Ty$_n znp$)XWObz{lqWCrKQ2K`Dh1iOCJ;JQ_w*^~@q?FBzmgZ*mT3@P$Qsf-Aan4`K{(r#$*FLNH7%sn^_YoIRz?b3z8fYgj zpaL&((U`RQI)#qWX=Qnj)=CUP(n{g0XO3N)R^+d3GE2;6J@dNvGB>x$+?H%0=8Hv9 zw5RW7E^d>#6Elx?3O)E*D6{>0ng2ppTJl^urHA1(&&oc}yuHOw;q;5LY@$2@`pdiY#MltWu)b(*va?uvp=lcK~0G&>&`M*Ex+H&&zO8~)T6?_u(X zckxk=F@JuO*S+=U7jdognq1!xd?OzvEP(QoD{mYsuULed3@@TPiAAUYN6v(A!=M#Z zUZH!QFz%J%uXx~&>1uQbo}ydu2wj4Esa^CavP(sw1LTR|n=k~Wr95&!WatY#lu@({ zI8IS&LIvnZ=9fXV0=Ur!T$rv26~A&R0yeZ_tT5dNLcO|QNC44hK%(Cs;_U_UAo{oAAcAZhA1N3qn*Jus&b0v{$#o!$Z~tHocq9}1|~Amm-9z!TbC)}_S`M%&lzdd&{hFnwYnohc(AAb#Viy=wlohE+;H=2-? zgk3lz8Y0Es;}K1m7E?y}GEK@bGIPi~d?%^mI&z9qE-A^2xt%6g!UOCh3$KS%Kb@=V zxrBna33+GdG$SW264!>j%iuJ_ftRa8-q}0Ncm-1=t`wavjE`{M@C2{rINQ)P;i@?x zTeO3`KD-YT|7>jHziFadCuO|s3F~k^(;T@Ar^_a>H;fgFdZqMDarW`{&GlyIbL7L< zgghs>{dS;IhF1&;a<(6lpFOKSf%_-(Ep1J`UhdnjJ%7GcRQ_3 zH0bD`5ZV?uza;LN86A2K>?omPqTNyKb6m_P;4AYbdQyCDoWd3oWS=2?UqIan`-L3( zuSAIU$|xU<;lXa&+qe(G{aTy*3Aq2B_xO+^Pjmx&GL#Bg{G4YXgY!kR;Cwb-6%CwC z$J2LS8XVDw;wQd&E9U1%6$2iiQ4)H?Qt@qA>S$85LevRu_(;=HI)(b+?mc87hfD%r zRRf<>SW#wcAoe6BSM{hILSFTfhU&;4{jPkhm-Z{dvhgO&9qT^wi|9*u82;(hUm zy%P)?FwDt`UNS9B+hxO#4933$bL=Ve_yDmrz&<_#J7Fj6CwgNA5336Ly>TeEaJ%IH z;D20Si`JY`LW$PQOsKbvTtmZt>5e(Eo{&HBk>MYR&xaujev}0}jjx1w&gCzBA6s+5lq)0F^b@ELH%(q{V{q5z=Yp3tDBQMXON$3SjbQF*(~tr^5)s$Kad;N zaAvn-L>8Rp0bDwO5prJ>XIBj3$-}ca zUdK_7l6q-R=;R~$ zhyKI-b^c-gT>mitwWPPHmL~s>|MmYc|AY_c7mGZ`qESmno9dH1U#qu2Sn8u2!GR{c zM4PFMZ<$;YGprpkGQ@Gjp-DlbktAkeympDkZP)M@6Ot4dI0(PzfP^s(VT|p0QX6~t zON{i2nOF{f9)@pKo4vo(_8BZUHLm(aF+uT5d{R{`#w>#%%otmXdShftB`@xY<8@i8k9^q_y zlK8u5AAvZaEPwaN#}S_k#TP*-xfB@k+97cM>HBzTIvnonoEYKs>qDDJpex{m{EsmB zZ`=}JsP-lQ<0Hm_|K~dYzRq~;AKA7lCZMpC8`<@u-ai1#`31{{JT{z%KjPsrjt%3# zLJUT~&GZnWK=P4CCC7+Yl&5@(JYL8u-%_3_kf*D&>2i2iXK{EEMLM0vp28kD?_NL8 z8=nD*)4Uns@FTH^Wt>Uk-Z>ulbB^n@=R#iKli{T>s?#LSyt^NC3Z07-MIstOe5cST z+@Yry&?@AeBYI@^rM_Zo8x@5O3{E%<1YfH23x40Y(8Hr@>8rxg;$&|WLzu)zAiyNI zq{tO=U0?Y86O|_P@aRMM>QF>qy(C>MalhDq9$yPhxGZHGIAO5vSJAlqsx!_KS7U_~N(Iz~w{mDf%x{eQ$*M-kj=tJ#s&v`xrsEb`Nc`-wcic>J6O@ZH9qGf|}9e!(s3%y0g?^)nD1`YSJ50b*a zvEGj#0O5WitoZW~$0kmbj)0GdQEmC{2e6PAaA*MNnT_LqLT};st;s_Yi9+!jR z;wo@q#D+@*f;=;~CK$HOA(#6rBCOGe%pd8CEf}QHl^aDL=jn&jr!lH3j++D5NB+%7=Gd! zW8Q~ca7-A4PA-V!htKeWyX)}_13?wU1scLYZlXc>s^x5lZM@;3V7l)nfn1Zs9`x9gzU5DG03$dJUqtT3_Kh> z?vfG!jfleZ11heiUO3NGMDcc)!yGl13d@Od;}1zM<3|8KS6r^L+OtR1?p%C9y;v+8 zLb|8fK(`GauRthxjg3@O%EK|H1}~?*i{morbPR+^?5i-){32OJG~hYxJJ zI{&LgtWbrf^?tY@SlFi#dZ6 zzZS=YKihAL6<|){~n(}ze&}BsI;T)JLVQLmdiM<$eKjv`kwLjuw zV}ft`1i#U6(D2r&?Y8POnBnb~$KnSBc~o};&av=FNXNhMIefAneSgFF-Jq_3dWeVF zpgyTPD8*h(%m}cHy(qdNmmg{v`Q$lo`dNpdS{|V4w&XfQXU-dI*|k zNP$C}px|)d?;^Az_((h4XBrI5uxJ#VdkEbC9B}0m72)&Uo)^X3_PXpfuuLipL&U_p zSz{c&#R*;7mBa3*0$;{nL`F87GcjO>k&eV(hmkHl+wX%TQZNj@Sb8Qh$NH?il<-H~ zv;8>P?-iZ~kK3x?d=-aj7;58ul|(!O8ZF!>%qeUy^bz43MlKG8JjM|?E5o}6hqwFI z_^KJvFmRI20*;KeFNh-_?iS;*WqZNy=~v+g-Ojrl#D_iz+F&)_=Yj_$DLjRwh@q>%IaM%M z!=}PX(_z%eFVOK`>3-BHvKzD>dolK6!W2Bd>>{c|X$BOVIsq?n3iU(eNbCRO@eFk| zQ$l+X|9kh3v0lc!Q|b!v?!5|dd6%euNf_|KJ1(!`ol|Hg#M8g=4x`|RgYSEXfn}2Y zd-}8WjxMNVX}qHXw4!^5tl7dns^f7Q_uxTqz^oA8?KVuv&_(+5XX+b$i1@28(#~o`-m)DwR?K9#Rn{E*^Q$JGOxF z6z>=TlcsnF!?o~^zIcq^&&tyv!D6#MGHz$Y_#tq<&<=Q*z$5#G{{Y)KYiY#?C&h>n zxo0UH+RpLYPW>eM_+?!k`iB*%o%M%8_`MW&+ z6bbtM8~-vQb3Sa$NE>}*nEr+y^ug$p32j#z|7r=nrsH2c*EWrRoxr1H|7uF(f1-bV zDEJhI-BWmd&%gL<2kAtho0K7ygvk-;9%XsozrMy}>0bfn6yNG$_*P<0dRSr>@xML) zj|iL;!DzY?2M}7oB?cp-GDeJ>iQf^9@QK1NOhhZ3Va7S6E-%9C=A@$ZrCx;RM&UR@ z#b;-nX0jccjh*qoV(}a)k8f;=BL$*(7@`M{z4h4{{98B+ zJB4k){!%uv>@XE`XK%}C()aqaRK1@aSJ4X%#fup06|X2%?JEu|8G!E^0eCwcRfv}d zfX#@b|RXJq2Rjt0IIPH6d=29t*n9>jc^aX&fDy(19VzCQ?|#J!DV zRe+BMYc+%)?3N^74x-N?Ivh~`Qy4$?Vzke4aD^W&+G>iqpRnecZK2%n7rK^Cq4}vO zncgpSGMz#_v1>CXK4Cdji{zx9loQ5Dct8~K3B6%JB(so2_@Lv1${B@Ir0V1m-<%1* zd9Mm5cmPG(S9O!CcLINBCnlafX3^AbZ14MjC`W&%>hd5)t)-I^O+_P*3R@TmMFTKT-Y+!wi12^$i#uS?>)7IU`!~ZRW7H#h&Z)weqJs z>lb_5J6dVp{h(&oJTXC%DsPag2vW(v@~LNSJP28PC$0plH;KP-;DInM<`+aERMHnQ zZ<7+gPZnKV$non~jHid?#E?2-jQCXm&S8sV#d#i$)AZ*+C5B|p#B)p{#^XtZ3BQ#Z zz9;i(wEZ|pGxQ0bMf$E_DCT?+c*s@n{>z~c#KI3U(i^Qdg_)}HI;C%~&JW&WD@RK1RBC$u9 zumeojpx8-Id{a&G2|le%>dh=hcU@>YVHTc30GDX-@k)e`?U}`b1{9EuLP7yur%^kk zPSr#@7b0U1E^s6d)p(>)%~iZe$N*6!%ffZAuDpvc@B`$@^Bv7_nsE3jd_8nDo*TO( zeNWKZg{Ve;@S{&6#s`f|N@|KNAFnfw7=iDhpy0MZgiRuQ-5|HNHHBXlISglTWO0vIz&H&Uh++6+`s* zK3{Cb+(crCTtDdo1k8)|ribSR25B0XOOeh+IWYtp@yGB^;<2qUvc7mmWEVfcc{tE+ zy*b{20 z>@MzkSqvXcF)Kzg>0~7hjnnnti9*N@7xKNrC6;lg!p}dyI<;A~Okvsb*A02)82A7< zlTqp298gUR155bX*06S`rnb8s*6#GwcDKUXotfJ1W>~wkk?l?yg;KMc&=QUzy+ZKnDhjPzWnck6M`pwFQ&pJ-v9 zVj-``kMwl!dI(>{LtLCDMSGyA2&s{kMHR|}nN**1A<_02nV-XzyU(fd2SWA_(7(Fy ziQgvjk6WIY0Y^%PU23!^F=NPeHRMQe$ZPMgoRO_CE3#?i&F~9TXYa#iBYmzW^ladn zEDO$Y^U*6zvxId_!VW1O&Bf@2TAEuYy&$q(y!-j#!E(JSU!-q*gRq>M`-x#s60lbj zKR@*28r|?F>JNm-n#~e;$s}F-&TfCa;duVFcXiUK+ASR&hodO}3qx5?=E%4^$ zM&`13ErY$;P=a=j)fJ~~S#8uSzId7%90lhN^EoJX?$b|EJjw5EjDHj$`1VDApy20k zNx^$##5M2#H~n?5ec7M<@$Y{VU+M7@*Xo>q%cAG}{pMWqAN+q2-@(4%JNG$%ZQdpS zp#O{bu2Kg)=Q-ye48GH|$Nvq_LZI&{fT@5;z)ZkAzyiQxz%szcj1w2EP#W6 zp+I_rGt=3lXjTUx}rNPPWy75t^* zNS9OKP4ygt3w&ww8_M9j>hDP)G{jd`)8K;2-hZs?Fda;3ZOi))*!Qc!BW(=qf(i2v z{H0%hME3#1UHyj*a}B_MW-s%wzJq#|>(RH5tN$pN-E~laD<1T9?J;1mYmdMoxar+@ zkn3=N|6Xn`Sz7xK4eUG2zgKF@qp-QQA^ouKgZfvjiuc31k1kiXS6LVH$i4wznR^Tl z9Mo&Lx!j4?tyr7oaA<1yB#r9ncvt5YPuO91sH7 z1K_OXEWixFBfw(7HoywNEx>BP?*I$nE#N5NEZ_lvgZLs)=ukif0RNc$Zw1L8bx0m< zQ`_sb@1#5*%k!~!pHiN@@sGB307xE)S3cu&UK7%LFX=EJ%SoPO`M)b8ai^sZRH^=m zhj}vt=!5h{iCaD=4!)D`$%_*}^2TeKmwAYbIEahSnU8t+j47YXvbOZ`INd+uBhA79 zmgjsl4~OK=0M;4eW4$3Q(&sjA;^i~uW!Yi?Ntfk_i)D$2yf8n@u{`mR4(YNS(|`I` z8U>02r2M2^7N7!1o3u!Syht9&3+a<4c_&>r0P&Dl<|7_nOIwAF$TxL76yOEu1gHq;5BT5qN4}|Z+JgM90c0{^_6yJoqw@#| z(h3gYfcce7*{ic%8F-cb%VfpF_PE6TiZMe)aux<%DZN`L%{#2WmjS%$ov5J~;V z2{H{Z7%(4j3&3-uUINYmengR*SPHELqyC;#QO>}ap=A{1=g)P>I0f;0tfIUtW>T)t zH7PYvz678iU?l)7DYJoxn*q7XHUoV70L}w%$;^r}2Do>D_qQ+*VGEe(vsh8$;DoF8 z>FtU;%Ju+M0%QZOZvc3u@VCD~R;dStg&?gB{!W0;p*VDB6BI~T+*MJkqWicC_*&#P zDQ1)dS)~-<0D$t(0W3uMU%?;08QP4r19Te<$Etv`2a5tgoG>1OxuX$x#(6lt%k;X? z2xT}s=>u2**biLMNH>8$uHZDsbt0e-Dn)0MU0Oj=#=>TVx3JSl;0(B@DBUn=%^Aq{ zfI$Eaz)hUQ`2tWH;0xG-XGNelu7hXB^$0j}kJ>s|CMwFMF7WH(iZTV87KsmPQIJ(Y zL!@y4e)s$g{KewMXMk8d>jK_JgU1m?P-iOZz#muGR8mp6n_$}yy1Y%1Hw17HAn{&6 zJ{~AZeD(1>5jHkMcOW6s!+1zIgKe?D;od9-*Ssfm0p0De#pJAz z3Hs^}{)z$b7067e)<;oJE`$%XHYs_3QIs4g)4(V@87b`$2WSfZB+iU*fZMpwnF&4t z+}q(NbrC2C`$301*N%rCq2uhhrjNkI6USBQ^%)&k(Q@Ifi>X56pD%fm=pKyMq6_5yzcpkU(b1E-Mqs6XPNJ;N`EH4`++DoO1CduK=>bHK~KO$fW#LL+|=JYr2WAo_16Rq z7~_k?*LeWixfY7@{dV-X+)Sb^2fKnl6czaVky3xe$9m_0%GLt<>jaw+ALEO}$NJ%Q zNyiroKO!$p0bpCy75bly&p+X1aXfc`O~@bP3-NWxol-y8emHyS_T4sL$A_$+g0jO?*(FvK#u7^2+)~e2btc`ZMuCgk=3uheZM8PuK&v$bVXVw1 z5GR(JL_BSeGW0*Ww*qelKH7lqCB83lZHtfn-S*(O z98$_V1#LR>--TcV_752U{zTtz%LbDeOHqFkpO6#xa03yq$RGWg_>O>2w!f734eAKN zW2kPAeK;g%bQ9gC)EUSMdC8w`yps6l0MARj^MH+sPx5DrkM>~Pqrdb8P=8|p$@p+h zdC4E~F}`d7kF8J%W`Q>X{rMK2Q(p3iP$|Y}l(#>?R^EBYC-G5UggM0?xQI{s3-xzy z3HoZ2(Ix;Nbt|Erf$wMFVSMIq+Yuk@8}XSSt2bobS0DwSEq^z>bzD9MPE?zFi2Q?*Qh$_}@%d|9heGCgP_jKTF`niIpSJku&(xpqTG$K? zEyxMkB!3fe?+;-6L3|N_H2@xfL3~YspZMMt)Pep|=1dAcXXJ$%#aK2NDT*bxN3@4% zKTv+2!Jo8m_gt7q1e}CTYwXwY*~&{iY(K~!uNnV{Z#DS5jg(_##%J1>{#>S%4i$ZM z{-{67%lP602mwfZW?WN`l$ZGE&vUcs_>vIs?*iWmR~?AY7yLd$~ zKOaI$eANwnqYz7LckrIU{D+wF?tw?OBQ@w5tH1)w!R z+G7eXBtG&d+w(77Qskw5>()n1S*qhJjq=1t93ZQFX_|QJdF3m*AeoQKjM@8 zE%8HN8~ryaZ%w0o5Yqkt^2c~ZeC+?xpNWt0iul-`v;Jm7Odt@S9V$ifayozLA_#wB zJf*y20Dl08kMdpwNd7o~LjH(P`k!YmU0%jN>aRG;K@`#c%6K{l_w;8rk{o}q{pbT8 ziBIw;<9(lzDe-0O4(P?e$Ku3CzSv$4Kq~7S`SXMSNqn~Tw=wWB9*{p74~WYaAErJ; zjG#YLeSm0#5O3NSpS;l+TU&a^W3IRxYd9MP<-%z9*0PMd={%q}G%OB-+MqY$4 zQ7h&tW&q<0@tp?nEEd{B#us-yV|-4_pC^#iZ=|TelR6I z#%J1>_*nngUT#2I1{qj?)AF};f{u^nWqiqw>kvR%dGEo#vi;@wL*ffZJ(2wVj5dn= z(Vy8~+Qt_tuhd^I5bXhbkUxo!^5*?4#b1bz?Fa2!XMO7WCgZ)tcM^DrPu5>)U*fan zFYiz2TYrPT7x<$;mj=`a@S66J_-J2D(+hu*@sIkm#kZ)Q9uI!HqvNBz6#&R4+Bb=h z?T5t2_JjC1USNO7)}M!ZpnchgJ~i4pDQ_L%qFpJk9m`31O_@tO8*Yw%YZzCn4}UfSYg{oS+$ z{f7>E`^);q`b&8wKAs=Lc=Zg-(_h$sp+B>~Yumoj|8C(q{blY^lW5N?0!?lMA7d8v zM;*`}j0X~5MLZ;bY~SSggY`|uEAj`jqK-&;iI2Dzf~Jfw#K-=S3qz_{8U&>9d2kn!1;KX*K*ysW7(~IXpca^ZvgVA8TeS9?FZw%=%41&+e@}bW9sQ}1()GvwhV1{z`a%8CzRo?-w*!C920o}nsRN+Av@heS?BC1&B<)0b+257; z=$}&Fr{nbcMqIS7#P=)cNqocbocIJTLtg5yBm9Q&sJ4!e^-bzeHSldkO8&+h_}Jg2 zy@-$NA5(EH<*f-^1kT@+Kgvt~C@=BV1ju+#`;tHQ??)hIeItMDA4q&sUOt!dl0Re- z>&;z|%6LzFjDMvJeDr7XNB@)fWdEM{7!Me)$e$bTn*k&~xToMn#?zs=CqDZODg9l> zgYv*n=-f4hKWPtJd@WFZDS+~_{!(7zdj_MCKib!}Ki*o?@iAUeUZ_U!NBdGScj4!<_>p*<;KPfNq(H_Ldcu#!N|HvQl$@(V!xjvptd8gM+jgR{D1XKag zHpItgjHh2C^~6K^3*!sdw`h+<_=&WyLunn~{46GAL8M-`0m=~{xDgG`m? zXK#!5Q-=P*RBM*|EK@)CYkQcQ^S(SU?suJvV`?24@qno|agv~;H7jzA_rYHlNnje6 zt)}2ZsoX>4GncC=_*7mGi&N1>R^XZ+{40hxa6PdngLP*OAQP1J-`LAArC3I#L*>j$ z-stSgouBh4-Gzohz~=A&G<~?FSVN}$X?qPY7_bcR48WgHeFNwY41Z8XBLvI{U9w5}la zK{^UFUjdeY$+c+n>Y#v%^n28w^S-EWsEZe@=woC@Kjf}S$=}1ItoSa2QhU3D@^Y!8 z5@eS{(8~pU^aIi(-5P*4fX9HkpwkHfzzRBS!>^#ez60!aLVpOdCLleBg5DLe=fMqQ zbTI2!*`zeNi+(R)(OQ#|YbIpG8T4mXW)iw2Ey{?hE$A_ZRsi${ECr28pqCR+8~R*_ z`*Fy;8gU^JvfV*o%xA{@H44Okh4t<1s4s88I~q6to7f|hh%w?N2W2Ayve&!}3hf6L z1wDi+#T9_CCHfJskX``v0_RN2`WB6VQ*YZ&E5?PN(c3ld=N{7R}74ycvtW3h+qzNUtV<^u7U5 zpKXBq1k%<>$AU%>uI-`AtB`Xj3g&>Ur^~|5^)L@J9BtPnMd?=_eXR#3C3{wra%)Zo zrTtb1B{wFZ$G{M_^e7{WDUARg0LmxnflcKAP`V zXubXn!7nFdE(xE;bqhQTLfsp^625d9`;n^JDOsV1x63mst*T^HCS*&Y2eT`9CFp%= z(4(KW0`8vxkDyD^ducEXxV_a7q{d+I; z^MT-eX+`+~j&SHW^jOBE#J;st4(~E4H{G)+4U1+IZ7Thf@}aoUCutEZ0MeU`v^ml+ z0J;rg&+%j6=4l0Ez+4e1sFDwSsgI&O*@nCiQ3pGjlyh+O4v!&IQwKrM;gU(vgA1gh zNBMdIE&y!l(e}3VsL%3f41-I-cfs_ZbyMgK2*B7j%1+rf#!i|3V+N(#k<3cxW{5Yy zX-lsR?ny5MFd88Bc^tUk*vQut3L(9qqN(X|Z;#7B;GAw!PX1|9p0Br4CS0&roH4K- zWpxn#LVBb@eM)*@PtaR|l>Mn_Kw5ft40>bWGgjDdR&LZY&{Ol8l&m{VO5thP!)DH) zcu%lXR^CP(?U+r0`9*w@^s?Zd^?~%<0HhZLyrfBeCL)EIl#b9}8|YHX7w)Rlo3K=; zw-R-n^umjplvSu7@vAa_kREB;(mR2BboEowLzq%}A>-2Gx;_s!Ma(V%KB^-Aq0&nE ziY>8ICVpm8hM@!chfg-4PgK`reUesMdI%YU9`!jM*OZU+C|?F-4hPLI{h`xF7-t6S z^j3%A*=3V*dI(}W=v7A?D3Hk{=)v?Kq}LZTwgIGkq?ZW{-h}}UpbnOSz4}$q=@qJm zcr*&*>z1Iq6MOBCf~S0T%KW7nm5C1#uaD*s^k9+?(mRZI8v(Q*XslxtT^$_78k2zmoR7ey6Ydh`+c&Qt)e(PSmdC-vzI zxrBUpcN}$(^cHp3=jQsHLJTZ|zCWDZ4RJ-%bG2knSHAS<)dF7XvnOn3E1y#?>}ddP z(u;U7HM`K|+O>DkKn z7<~%T%Z8XudOL6G^6h?$cnf;Z2Rfun5AOXzdJUjENiP~WNzd0=*C*-GKj|;C_n?oS z%OvC@J^IVSp6JI+vKRVfeP{blecICV$Gxq5Y3WslJl0HT%U#e1L_03&QNFq!x_qO9 zu>S#@upPQ)RHVP4h@gie$@CDi#G2RN(c22eOM0aW>hei?wBKEHvbrb!GkSMGoAygj zKGHjZy4Mu3XZI*6SkE4gnER0Y~O9=`xJWAC*`{xqT7%3CO$=f ztGgoPll0om(Bn1j_aS;;;GL9@eO<;g`U~wRN|{&V@<+- z1+$^PKhfivEj`-NR=%|KSpU+}`wj841mq(<{8JnXm;}AjE_O=O0DIw|+s-&DKi1Oq z$^Me`7yA#;gR6p?s|>==8Rsey~35_cJM^NBJbZqNnx#Jn5mBphr2uUUGd%PoI*W z6BM78UO1jfdQzVQT4YoTHACBvcq;vq^bjT#4Um?eKc1y0-`~-b`Xs%jqcSVIFJ^y_ z9`*T8=#7CPq&{cCXDDB>0T|2dP=r3q_QF_llf7~Q1OA7hSp+?}x6mi$OOKvyeXzA3 z^qT6)wc=}GynjLRb02l|TCXL|H(_4yjUBJIc18~={p<>B^%9_5qt*guo> zG+Yk_kj82N{YBENhKz1tNYb;FFSurkd<*aC`lNjGFy5qm8Sa}>(W8viXGH+IJRha^ z6XarjC}N|}^ytxFX0)>x_DlLTgP=$MqXY>PRmNDq0p@86=<+puh_O55 zqrZ@z^eZwB6s)+lM?D8Y>4;;5S^SrPr@&ihL_` zrk0QPqkLrsJBs>{mY%J@Q~_?vnjSscZwBfD>%+(BNqr__5tH`I0${}K`p)>$7tiP~k8z)#{gT$F$X9%bDY-tR zr3d!^6}^JFQu|AGG|p0=PWG4=@xUH?_~(C%URwYBZ_#`H0ew=w-53lozFe3E-?Ndg zaqA4p@+A&VY5!^Hbu9jVs`NzX6dULif&jP)U{zo6Ml)jqI3pgWMR zzu3x0dIKJ#&9GQsPUR^LpYM)Wa$9N{`!Q{#IOOIZ0C|}k;TY4oh@c&eLY#;s!J+|+x?|(<{ z$L=ZqVk;l%Nq@1GkK@}V0NJ0QzfivP=%uI6sqa$L%j;%R_8ivR2T2cRNY>}4(sM#% z_D|^{6bgSqm*k`L=r3vI%VtiY$NDb)o1=w->1^!{2A*z^_iC5 zK0Nzx(WCt+8|ks{R1c6IJ=wput$)&AZ0+}V@{xw5NBJZ@`jD)Dl<(itD|FeEY(Lib ze@m}1V$G+>XG<>w=&?UYn$musDqni^wp0bKH2#?$J=*Y}(qsFOR=yL9KTOZ#p1$XV z@$BEo_eu1sXHcYkq(}RGjNTKxr>{-|e2Tx=%D2S>@dfl=XV>fd|0KN<+woode@O2- zWR&sxAsWpWxc`v-K17fH`FHvpgFMtH>2a->^_}!SX1`CRR}r{u>jUlgA$sZ6huzr~ zWqCB_(>|cjwDQqUKZRZ);Qds3C$VnJ_QsjG_dQUO_BfSUM7#PYkYJih8*dC=vuQ0}!w*I*v z_pA^92|d!3^f<<)d}RP)3}es>L3$m}NRRu=)6?fam5+Wyx{@B-DJfri^wQS%kI}1u zUk6H0pOp1e>Fq}4X_-64U;dUJHr`76QFpW-?>UB{KL1WWTY6R${wMV4pZ`>!AEW0p zU#}0+KZQPRq9#B zqdslvQ9ge>`#X9^%({OrLcsW^^dwCwpDn%ipw0MV>o1swQ$B^>=7t%BEW}TnQ7&HF z(n~Af$LO(ru$Au!WVO}jhv-S#Ow-b1U*|*eNqWr@pwhD+>81VSIIuFHF<>ZQ4FKC@ z{;T_of%1cYtow{TY&S{*G{9iMGQcxHXYlf$?(fYEJnT1Nc|Ca!wmhyE0(JrZ8+&?5 zgYjC#Xr!ctYV%*+$4fmCKV^Yy{g3S3r9EVSIv=iG0eJwe0j~fT0RQQJT}gv@IcG&0 z^g~SB2^v?BMgg7!{_P%JNrSo~jhX<`_y*7$Aos2QC;M`3X;7AWfJOih0Cgp4V9V*h z-is?~(4Q&-Xn*=yGXR#|lWDX-)#iTKf3yEq(x87a=8(ph0MZx%!1lfWc+V|q(4TB+ zu#dyovmbB?Fd6Wl?6Z|}P*+k8(x4Ae4iCujPxsc&MZd##Z!Od;>IdcE{DiEJq+tP& z2Icrq_S2F^Mu061%FzqJ`e#ey-|nGJOQQ_%l12z%v_XTqIu3cbPf+gD{U`foX%EUl zywsJX!L>HhSONG?_sXJ6DC{9=NZ%z5H-iSYO8!UtW7DHSI<_=U;GTO9ZTH~*lRdH2 z726P7InvU=5L3{Q`!?C1{3rWhk^Q|tu&ks9^bbB~DzACZdPRK@69KIY&orj(%YIVZ^Q#moMJ8%zit(PDZzTmOJMk{GRpFT}$&H8w`JP?T+Pg&J}9p z7dI`>$E$lBI>lKIv~K_C*xd`3JrT2Ob#1NI}RJSUmd!7{q3HnBkKBo zrMu+4aa=9`@Z9ZeH&3d6M`T@mfZbP_XRG74w7I+a@NzZa=JRn4vaVB`T>s|U53M$< zMOWrumcPJuwV_7`x1>6|)pr9obalOKRcrqE`Hau2>{VxVa@}08z&>?YwJePXMDBZ! z-bMSMLkmZqR=?ZUxy=0FU(|D9560PlW>t4QvP5>i7_E+rYmldD%yG3;r&nc;oIdql z`CdcL%+XL%Vuf0K@4jMX%dS&{CmavyQgV~} zxL|mVgGaZjiP-~J4Jx!lJ-4Y=%(Cmd)a=Vg75d!4svexOw(5!FR`o%~JJ%hW?@6W? z(XiQ+y4N45n-eZn{>k@&T5V!}$66)st8E%SEOffZpQ_)bq{*d<+*KRTExxNy*E{NX z)A+1^RJ^HPo8~)q@ON>l`TIQ^?~aU7_ts5(;HI5c6RV70RA#^)_3J!q8(teTN!_vQ zLd+jyFMDa|ocYdEyj1dNsZ;&V z_W$D^<9mM}b=zX3YL()d^GyHtiACly?$vIO_syu>_m#zU%A1o3hvQ@_pR0F!*e`46 zqF7rmXzCL6%l+i??e%*#UVpEB|MKmt%qQ%uhsU*TxUAb#i)XEM9_!;TTk7bkYCKn? z^nBXNJ2@uRtm$AqK6g>>s|R0Mw%M8YXDW6#8NYF_?$h6^Kk50k9urGCJ|3FM+GKpu zt+AVuELFpE!)^R?ORKjnN470{Cz*aT{a#(JzgJi2`L&<*@><5cuik3ovRXagJU-)C&)!;m z&ajq#h2L1_nvQrro%hhvV|K(>1s?xyX``p=Z2h@fNzbRc>E$#>9gkMPw|%~HMV+jF zUHoBpz4DIM&m5XpALMCg9dd2+&xL2cv~+v=rd6Z1_bqYx5B?nDe9m%9PgQ^YxjIbG zrxw=BX-PUB&8*|qhEzKlU4Kt*Ysi8=g_iu4!#d}UUwBZz%+^wCR(SsKrM-1^x6WB7 z*G{s`D)r^7@Vw6~IW{{s{Jz~?%aj%^e%um#+A>E^)z9?j>U2Gyx>7Hvy6Ske89H8V zvQ9@Eq|?>DSl{VL^t8Oz-cS4NsL(IBwfNPi!{VkpS%2-l`DLF&S**E#eK&1%i;UJ= z1M8lwoW;)CBw%u4w$raI4O@J_@!;+!mVVu8P3W=UjwQpHdYRhvIcdqJr|MAsx!OX{ zr?%J2sSkBLS`Hnrwp^#9<<{wHope4VU)sf&?T$3hS-{%k_Tn{*GUv5+U3G5fn&8~l z>9_J8e^Mi-b?(r&ZC{qlW;Hj;b7Xx%N9*v>7pKHmvA5oHZvCcnFU4B3iSyKaonBhn z{1MlwMyAJ>%ysfKJ~{iArM*+`)r+?sv$WMyHHZFOZK>x|tLx>|+d3XCK*y`O=ybIC zI$dp+&WF}U=S%CT^Qqm{`PO8;woMsR*e{j+YmU|Be3L7#YXIs3ILFZ&5Co8aEGzpF z#KG|l`@R?!3Ve)H?7MTGm3X;F%=T}7&1nXMKI=jQUWdk5zdez4on= zcxsb6(|w-XZ=`pO=S7Ts-x}pM7I|VV1XP=gpd%M(0y^pNv^p_1$1~MriEv zE(3m6`}gni@XqQ}YQ=$dv}xYgRn15T8P6k)d`*pV=XdCMo_(g{op@vCyB^+;z5E;X z>2R*h4DSUUcjx?e@Eh;@3m>eSIjy>y3UtZfOWy(H!D12 z*VN8&yL=xn$85`i3=vUhHdmMvd;ZINycVm(}w|I^THS)5!P0 zD3>9Nj^`T#?_PtByFquO!N(PYuTpDuK0}A@{#eSb88*1 zI_+$5q=Z&!@xVf^S5K+oSJqB$w)mOa;%59GV-94~>bJ`<_i6`c?ZnwHvgL2&qUEuS zJ>fa|nCd$x_UBlKC+e;fm3J3=lu0|`*u~RQFu&IO{M0FjekrLHnpV25$MeeChHm?| zuh@J@eSEKdg<1n2s>7qlJ+q6j*9OhmSnk<^&$OuEFKgE8YS!8}Tr=kONEdBU*qQ## z{i|skhCIu=?dSp3R3P8mVu^pMpWk`A$=%LQ8+$V#reLmITEC}#&YCJaYmT!zNz-?N)7Gt{f2=}$L~|0wLhBIaxOt_IwP^!q%4Xy_}Gui^!hn8 zzoubT;!YRPZXc}o=kwhqG|!dW7jC&%hNSJlp3PjKDWt+uvj$lp-X*m^0@;Og`7ppdYT=>|5I*--S7o1}c zIGVJ+zddYFc6?Ut;I;YAH(TV|9Un@BoLCzci_%IW1Xe^?OlYTYl8z2TM$2 z?YUo*=eKigP^V{Tt=v0xK^;D_(c5Kh@2UCStE@1$daZ7~A6v1@I|nUdx5t=*RdZ^C zehC=(FfgAM=k>>G$MZ$BA}fm3Yg?tHR&n5fd$FID(}He3&XpKdQTyRZ;nQ~?yJ^uo zw#CjGQ(e2GwmrIZxVu*6#@O3C?t5uL);TqPn@~r4=$e1=l798IO<@_IcRtxrYgv42 z*+X}lYK5(Bv&>x5QXB7gb#YA1wd&H(rheNY@vNGmTbGrwA@OQ2bC>?=$!F>S)5(M7 zJJ@MXCp(Pq_&ket@8$80Sy$!O@>ct{!_934wBVs`F~>F+)7IOao%rrdN$vTl2``T~ zDW}yte&_Q%jVo$nx80p->hGq7n4h&dHSTk*&5Fs{%H61`oy*le`q)wr&F*NgAAdfm zY8Cwtdc{?&t2u1X{p$3#`r1IhCvU%<(@<;My6J&i$D3$-k9K`JZc1~lSO3}_=8bEm zg@(>Maid#XEp7eBeN^;f{k)%s#~k?H+_1wT6{*%J@(ok#lY;s9Tx-5SoJ*uV8t|0Q z~P8QrPp7(Kk#1x0KIBNJmZtco~OqE89%ZhYt!)<&Yb!)dc7fIXH z-=5F4D~H5*DR{A3g7@aBbt{R~d}Oo8|HbBbrshjSO?)0#dPXj$)}A$sGWCmlCGcxr zQ>yYlYDVde%&%qq@xDTIeOX$W$S})iuI}&#iZ|3i{^0W8HZl9CUiEDBq>e zHKtLoy1rl!tmuN^7c zvV3A5B-pFvU*f((9-+tJibr!YU)-fJLO#DA%9P-}H9oo=Q@`bds)+kp{sOO`_bLzG z2L~0X%T$RQyiD-7==SeS<0gdM7pWZeoYZv?b(>A-yXLgNG~dQrtnL@{X>P_ zmF}5@-r`z5%D{Z)(8t-C`gP2fm#O09<;*nL(yRp2sEq}6f0#ehmG{BtySXt{)?fLY zX_WoZT1pz=N2f;7d-fe&{I^#K;ft6gf98T^O!2aU(K)Hl;C~b((Z!KsDi#apL=fT z_UV7G8s95h8rNiM?xG02X>|&#ybu26tl&2)Z)crft%~5+ddk0v$RALsIa8%q{Z`_B zVaasszrrzu1K|I}_~WMNcOWsH*1p z?0ja_!*$OrKRy2Ayc*JA=Gr0&@Y76(X53$0N3H*3(3x5r;?x53ZXeqd5~H3xxA)q! zAsf{y!(1wU_02$as#neiZ700&e!8ICmutGks@tb6*GjFsq!!ua{afaYyHuCz+gG?Y z3svL$MszAw*iG%{lY95bGHbo3mpfLZQPoT8@KReAH%hvs&YyF?UgqETs(yd@ZGB>% zr+V$G_1(5_TdCKy;IA$%edz5!r0Tb-LwE1a=UY`g9Cbl`;dDD!pW~O*7o|V<7#@63 zt-WLZBmdk>)UJ0H)tq&+w;FhSaJy1R^Q%=}#15`D`WNqGpI;bI&Xn7GSZ`1N0wKSv zEpqq|ZQJUS`t02pm($mi)N|TpcWbkiYPT-mwO;yQgt{iE>3%QM=W4b(CtrE~blLmb zzOjDCa`pDk(JgPAp!|Ei9zXRwF@D!swZ!&re?DFvqqcWD+I>~RQMGf9KU&{A{Hv-Q z>go^{7^2Sh4Xd{PmqzNO4kdO)FL~=7roGNyf6{l}e#a}sj$2sF+o@0HxEq6qdhISz zJErraQ|h2~@m|#{UQ`>+&C@cE_eu3?=1wKomffn3cbNQa>%6(@vm>kT>^bAFp6xaz zU+ZP%)u(+=hW<76ns?)&jyrGnn(Vzg!|DgOobr4BJ|VnPk^57W4mD*H_K@ z%-yqjqSvrvllMDyedC$2@Xr~hHR<5_?M|1@Lxzs`$hk7=K+u8%>elf1b_vVQsAWq` z`KCv%(`t!%e@>XC9#DJaSf1^8*^O%N^HIP0%v_+_|2%T$#Xh6efGlm4)_Ys41NK^$ zpY2;p9rbPYr%lQ{^ghsZORoX7H+awb>B8()iwAgr<2T{r+G<6;y}O;=Q1R>iUf1oK z^{#%<&nxgszq4xh`<_nC>$Fyu_Vc{@*E1gXDxaO*Y-T}^84IFr_E5{$_E^DYcyEeN&T}r_>=uZnzd58Lf88IBD;I;@i}`HS$-uacQ}F@7Y%k zyz@nV$|jN`oGSRhJ@X18+6I>;1#(ImKdIZuIu+zAxjF zF9W^9myf?uHptC8XjO;yEw|kCy1c3D>Q}XAdBs#|`5?MaHLoSD+PVa}9`pR=aJx=D zf9dG?!{lrc{dQjPc(EeMe#KEAkEEVI?ko1i_qB7r+wGCK{ha%irqhnRntY}f!c5vf z?edvWXS9o*m5uRQGu z)2J&uuQD~i=^)zgsFfLdi~D;H4>?bZaq(l`EAgwv`G`?n25cAQs=gb~RNFMV3{$_( z7nU%;)w8_bpP4yEwBP2r;d}T#c-?0+nVLuXG!*$8AG#s%e?O%)Q@^L$Lq4~fpXuf1 z1RN0g-}#C5BWmWfFU9@0gR_b9=gR!Ra!OBcJEn2-ABlF?uTkym;{E=3(JwRm+*)S2>Yx^gAKwe>J8()8Okh)_XDSJ?|dhYd1RzJX&P@QQpVh>m&LR!N1NP z!+Yi6Jui{(c^9Fl;J#%e1wVZ}axk@e`gJ2d^M%%lBLDuD0$LpZ$<6A zI*sqmOW%IMG|J;_5pjR4&>4Ye$(%reH`4=qk=`ypl6a#AzuC%pbL*W9qP@5Nu}A1F z_(YepEU$g}*KUDt^2;US{>sB~OoJn4w_<9x@9oUgZ}tyYi8tz)d7hxRWnmqWR%#JP zI)3?94HW6YS+__pcxI+LOryFK=Zg4(3~MuLP|W{j}hpCq(l;%DQb6 z)3{di7BjW(vYR08kG1b6?sGq_!Bklpl0~FLuU`=S6q_aZjJw~zyWn$+T9~QQ`L7e? zPic8{6jSTc=Y^P>^ZvC#=x<{oP4Jzq$ZqnhERHYFG^)Kik^Cyr4SsWHy0XCLTAY`( z{VQ5+rq7De*DXe>)*q(+6?8b>BJ&vcYPkEeodc&QTAq8wVv*=~nabyC-`Z{B1|oiE`Cct*tf%%&vz}_KtE$FxnNO|MW9;<&-R@h?EV;4hhwXPP-QE^_ z)b(XdGJfM;HQvkoYOiBij;`N+-(vo&@rEWr36@Qhs&;fa9cO7a+_S~uG0`$rjpwS7 zPnJ_1id!mGczxfp&@Ow6{nopd@V6t)yP|GbzWTY*pjp;)$@GnT)p)NO`DJ&J_Z94p54<2%Osv5~6AbJfVF8tcxgu?{WqszIZC%ebz3U|IJvU+<^x_bnke z^HkS1CR+LrTORA<8gKb6{`cO?58SW}TTyRe>6WpUvDNC{KH_l3@^aOP-n&}=CR5dT zt{VANqnv8sQ4PGRK}XV6|LuDAeq%k`YOH6kGuE?>R5hNfMn2V82Um@Can)ESSB-UZ z)mTSYjdgX&mpZXv->b7PKCp~A-qnAG)8i&8WDi2$#= zmh-XO?iKj;j%9MrSGOwdx@oC!VgL600oN>>OBKE7v+uGcXF}M4l`iKjkuA2>oj2l; zC4T9>Hjcg5$y7C-t42Q6D5n~DR0FSS&`}M#s=_IR&%UsBs}V zmCt29S?<#P3@`joY*MdOD6wcvv1s*Oz{If^*PK%G{9fzZpton$L5=*?6l^zk@a;;bYdNArxt>XLCDm#_M4q1<>FBY{M^Rvfk_0jn}L#`&ANlxW+nNOCJ zcvc$wH+mTRH>Mc-Hv*0Q8#|5t8~zQK{K@?rGL_F|K3PuUk$7|M-MZ=0@kMIaGJBS; z|KnG+M1fBChx zwLY!Sx60Y?+4b1<+U?lwKG`Uqq_R;wNk1!|WV97ea@>k15v+KUC00C1xfM@hr*^(w z&VJ9X$FA3oTd~`<<67)~#q{s=-jtEoYrV@xcgd0N)2g>kOkeQmLt5P>J92WTKB46w zKD6=u%};B}$W}ky-0@lMybF`X>;GJ@?I{}b!tARyXz@MYxM9mJFKIvb?fv!}gKD&0 z3*YHBvuCX)O0zB*H7%Ul`F1(`J-Z&eUb`K;UArH4zwCb6{cao&QgmINPJE&>jvqf> zgp@ode_p_*n&Zc7L9y&S0eNr#e*E|wEyH=y%EjLEsg9!m{{4%Ae=+bc2L8pszZm!z z1OH;+v@p>1ttoB3$hoKMI#=hu7eBSD^HW8iD7W{W&~w}KFZCan)u+eFDh-D6^@<9L zLRuU^L8N7sp_9FF;_Ehjb8PsKJBmF`rd*%eF5@F$xo4x62>#ejX;=Ko~ytoSU zy^@G$8CKpkNJ)DaMLfILdiI%>W=A~x#me&pjXJ&Mc-E1sGsd26=23N4O8U7Sc5$$cY@_w<>IT6pgRGQ^UJE!yaahKD1>)&^543re- z7Ut#og1-FOY&?^YUs6K(d=+|OaWJG;_zEigrMj;;P*6r01*iLhW|1+oe3@3Eq!NEH zs0Z;Hc4L$m5kp>49LO&%%TEXvmCg3$l?8$!e;^dZk1Ol`5-Q#Pt1m{1ll~R>i%ax; zM{&S`cV_7oq2fTHgR97Q_$vx4OZ7m=F|8_Zh@-5)VK+chN2tt^G<;-PMX16bK+y_+ zbyIb*C>^d#ulgr-38A8hy3mi}X4Mwi^Vp#dIkJ}6pswdLLmhekz>tt5SGUmsoM4Q_ z0Yd7c;z*3FWm;}YS+lxAHR=l=SxamnbkdGQ?FSPKMc^d2xUhNsh+3Bv*_&y(mF54S zE@y+fu)K={&8w{md>0kx=j#E-v|0X=U^6Reda#9?S5aD88rISr zdnb~#em4g7P{f|K*GPk0EL^gcX6V(k%dkCTtMY<*{t~^Z1p_XfTLKQ-R9y^>`Khlg zkjLb)O;u%Vf~M*ro2kBgy^k4wQ$Q9OFsx&X9dyUr_*MPfo;|nm#OnS2LH*} z2uZB3tJGh0+GC3xTB#l?D$8$b9h?+Lgap<1C(!i#lS(Z7P=U(Q^6G@VvI;$+w6Y{r zZ1Of=VrFLIBwu1iDz-2MHd|RjI7Ml>!94wi{$lW32iRw@xGdlpR7Ln@Qap+~aw|iQ zP*HKP{vnk2zGq20*JKwbzH2bFdXM?-pPE*zDMvnZuXC(v=`3MZFL zoJnEKYjantj2=%jbey?%Ri4IQoViI=Iu7Gj8Iog>IaNS~2IW*)Jj4z}T4hig@@OdO zQ3GKtmShqB6$hRXM;M1gb&xT~f^Em?Rj4>F5Q-ymO&kP@I51$`fN{o|LQ1;?A^?`< z0dW?l5>Q831=V2SRKrG%q7)jS^eU<K~5M`nar3}_WnaF|! zNhmR8qKGnaLz!5ifD;rqs6J(&0y#hgWugJ|8z^%WSaU=KDzK~)%GeJDmhf1XI~@y^ z%y^(IWIXp1#)W|v=Y=p*d&JbBpd;Raf2kpZ@`l7y#>R{tluyM0hQ=9hqw=ymvRoiT znAMxLC*&#CJwcyRq6cEjhpK}v&G!t-j}2la4^_~)GDk@ngkO|!1Vcb@p`${dSy^16 z=f^=1%!42u)E%UBJIa?=UWRe%71W^ocr46(?4*FP_e(252p~ol6jzxdY(Zo(5#)tHRAck}c}4mh2!s02Ic4R96rqpCB*e!%jKxsopQYQA8D1#C z`c)ANJj6xRA30OFfDCdFV03bH}ea@BN9Gh~KRy|k>Nno3PePK`|~9%{}!$P-pu zTIhnb{C*a@vzeX6=qw&*u{VpaSsabDQmzG0zDRbCV z6~v|x^MKXtFD--g5bjojBcm)BG-ikltx&IU5HuE)l+C6Z_TM0zWW8AR6ZAwj;V;4N z%CD|(lh_VmT)?achu|GY31-2;$sB3B0Kym9hNkoYRL<55i-^f1T#k=guB5UwqKpu= zOvLz;QxeCHO;1Y9PJv8jBO~AJQhhx<<7}cHv(G#upZqyXM|}=dQ5Cb8`gRyzjNV}b zr)FD>#4%AT%g>Lfhl!5FP-!`7)5amgvuxD58kFIhQzrUk81o6hW}Q;he&RxtsiLv*MGwdy$2|j={_B>Z}tmgiMe{H*Qf)VFR>ZzSM>eHKVkD+Q` zq273K)$Ogk@2!e`XVZ&^YWjTs@YJCb->|>uVUMrIXm{=iuaVZz=fGO?ev-F)d~){h z{eG?g-baq{x2~p>@%KuNdH;UR)w5EIHV$%IBnD-oMQI z)|=$dI4_0%xAnF$`{(`K`VNYfYUcPq()wQW&G_|wwrH0uxx8%XJ*&L?QxazE$lU97 zEP5`dSIJ@Tu*#*^dP)v>dml`DYuCH4d*7@*xBta&FY^YHdMsS`4 zzVNQsub95pJL`$3=A@jx$NTb+`H#$DKKB-6e(-+9b347uw^k;wo!5DfJ+t-CE2^*Y zuImwS_KZ!j@Y}_jpI^1F9(%5KvOiTT{5GZJo8&t+Y3lmtA3gfE_H<=d+c&d*)LxBI zd%Tg*!8?6WZkJ={cJnTM>h;mHuj%Zap83_E`sSat{c?Vh)}gZ}cF3nSHy%mUYPvmo z#ifo#n)mQ+T<4!QYTK^ijxOnZK;sHB4^-{=O-p@XeuHP&-brt6 z4*cOs$r{o2{HfX6!8F(Ti5D!@-pR>icK^0ROL?I0$cJwJLu;9FUEu4wuHM04cwTwx z{vO`Nul#bPrg)!w@AKYcBfHG=)P(X<Vo<@iD1$!-p_D!n14jn zL-;}|RBoG>@)2w~T&%Pz%$4~FCKFL2FD$R{T$pV~lz@KEMzj-cSf#`U5bjD?iioJj zP_7~?66<+r<5FRfgy*7-z7+azpg5wzuzVCzl|Q0DSU`#>5a#GSAC{0J3RH({;KNc+ zM1edQJL-qchXs{}MItAGkBZ{F1{1|cMKLj^L^Ku+$5<2O&+ZY&M5`$LG#XOspGL@x z;n9SjMngxmy?A=ER((5sv_6`nB>y_R4ZdeJ*Op_9^RswfFF%<46>@>icPQ$v#Be>` zy{7zdhI;hn{H;d{zpJsor`74}_^a-|bEd7nc+GcO*=cRGG5;5I86&217Hl%Gz+pZO z8TPdF8J=mh;v@z-4HO#uMfAN{vT@UaWgk>=jmuypWS78>ksR7DGuQRXIC>T*L z`Z$9#8<&fY*WB>BVny+k_+X_|;}vD1w-vGWSg8>kvT@e1%&BoNoqFA&t?2tIvMrvE zj_(F#Pa1`Z?ac1_M#Bcalsi^%e^#cbRVWk?)Dk7Vcs zVJP}x{neW3UTx9R5g8wL*r%EL^v{}U=dtZu^>UkKH?ZZcwq8p_N)SUH8j=VqaQuZ1WmVvR(nJGXk=z%XLTU@O0u4xvAuY3XTrPSD2CWbyk+p<;I`BcF%sRgI&Hf2;PS-pE|is) z`Wu#l+a8F?gO}2ef#NT z;Wx?Gsl{LK)-wQ3z?WYkb{9a>E50;=++Pcr3E2MKZoM2po?V2r3xN85xBdmvj^FIo zH=&MSkgf%k0|o)Me+xVV?gw~L$40AOQpXy=V!(={yY<6e-E0^Dsep!d0!ktJAie7X@JGZpNM|#1=#689E^q|@5C8RN>7`Rl9^2<`2)n!M&_QZ_EOUuQdW+D2?N=ViJ7U{ zDOfjVIpWYV+-HW6zmav$Io@&DCPhJ}IAQ z&nSXINJrpY4#GcOTu_YmP4}~d?2i)o$VmBd#c&Y8*<-B(Qh$@RrxN!V@uM1@4L9J= zgSR?}`g5yK+PP%->=9C67H`;fAk1*-2kot4q8{HxHFt_N6J$h0MVf6PGl;i<7KFV- ztrg=VbD5YtAu%l}#Zm4jA-!Y|VMdL8W@9d5Y6%Xl@)qI{xjqVa^L zoB5vMW3-Xj)I0UqKol=LvuGBp(VQamFC{(Go>Z%Ek>#WJ9)7vBbiA9DIyvQZUrtF& zZuF|P2K?pay5GR6-(jxk@K%Z1-{!p+rLWC;k<58=N>b{$#IenubMj7B>Zr8lzCg;4 z7@L@OVKZMa`!qIn+}|jlk(k`f()fNydX{Q$^osiUgYvQ<9Okq1Mvsk{8U%mCao+H~ zi2W7k$gZe1>7GG05|ffrva-}62*J_)rNq_WXm8q{`}#H;ZryO3X^}p9ixb-0-KL9# z{8{`CmJkGQ1VYbqylA>;kHHu6nHRIUV?y!U}ZTWl|ib!qKpuwvI<1z z8}T}bAVi4MrFumfy)B0Cv=X#n(V}{a9f|Ai#vZQaJ&LRU}TwWVe*b zc&y%}1|T9~2q6c=ywr4XUz?3#-Jz%DByI*2X=Liy6pLw)HJOB$DiI%1iE|sa*cL&m z3Fk6+f+>sTS3>kA@nrsdD$Nqx><9@=xA_3_nZ@@EJQ3!BAkBCZr3rghZiS!3f7nF~ zxq-;SCQhk|27}kD@({=uM6^$!5MgPUsN~ell%#B%Ygto;{*zaYp+QO}<*faIzC@15 z7zXec9;3mMv8pTcFvU6qZv-+C37jAi_(14gjvcpZ#K7bcfsX{hjI`qYthiIhY<~qp z1q&62`7;Q%U1(7K@;kc0rz+o6k#-n+Lc(zKf1JvR$4~+@ zhLe*w7$o7-!>t|;H!z!!M**1*kLnmTGRb#Qc6y?3M9xSbVHp%{t^-7OA!r!XBjmt_ zH^N}z9H0ml)d?qz+NcxZaVJ9vd00QsDFlnrU$E+;n%HN?OQbH!rWxk8v?6K{(P*uE zth3CNtkH=XDOhqO@G)4NhYr|}^(qqRW~@eITU+V{*31cS8S+kjDCD4$e8q@zF2U?s zbPi%7vdQ|Zuiv0q=tEX|P9}t>dcp_q+X)RcUEc&l=Rw^LglZWJ+8-z+;X#h{%;c2J zlUIxWBv%sYhXnSSJC@Yc+?Rtzeki6;K^-B&?4Vnf8LNRvav%;=rbV+26%?LNvO_UC z;KJh|Yp99&ag0m62ysW~hBYY>NMsO_iuiE@l@YjXdafes3Lq3auPIF0eHoXSbzvB3 zz(nH;8cb-oH{p2=_oZQ7SU3@N8LO??>jvT82wo*CCLhstg_tla*pdoI;2Ok?@SnyD zoiYPl4js?RPR~FjaULj-aY^EGo31%>t%k>B?Im-upvjEHqzl6{HyOHwb#Um5 z-Fo8Z|8KyZR$p$4=o87C2dK94Dv{0roCSyh{IY+y{#-NRag=LntgG;>#Ck3u{R=qx z5%4u&FW>`!{qCC)*Bf!YKH~m*TwfeQ^n55jVQUCkkS5Q=v``t5 zPwG`5MARD5okpxY0?(U_?YCXfsoXs)KlV zBhb>)MheP^O6rKLjmoejZ=$|Ix&)z~U7QcrZ*?=mutaq5KyhhhDT0s-i=kfH!U9xw z5If^F{1&2GrxTz&7HH-@$rEtx1(XA5Zy0o3@5J*nkS@S`HmtDne?<8V}bHZRPjDdo`%57WEL=itENe#?d(MzjaT> zK^U@a3$Y@XA*~fabnug~#3DTix*oCmMy2IA>@_6|_Ng6P9;`oAl#_O0TKdGacI_aP z&nkxX(>S_2%U@AUPE+7?3>6>s4+j#0hOj|mcBv6%Wmwe#2bE=>e;~&#P-VMJ^Q@35 zYhq1eqbO9nXcdwJ4h}=SAx2H(qMc#71amZEcWw4gy5vAOc9C9E?r8Xz0TIMHG)1gO z?WknEz>l+7R2En({tUUAq!17t{Raj6x1-X^s7cV&NCrW$k%FjG4s!6t2N9Q?pfXQM z*>}(hh{772?Kk`@ojcd*Uv>K50}k|;KxCh3+@A`fy%$+Wd80ZbpG96@ZI!z%N_i?u zUgWzcyZ&#rKMG1-HWY1NR(5h~nlC3UH5-~q*wz{<0(G5TTv9^BFzDEj)dJ@68c1eP zLIe4J7|sndcDvZLvWOzYMpukOd{!|0P%5&i^qlO|Z3}WMj&%H;#!@mf&Bnkl{{Gku z^`Y6#3zrGbPv)Z+##u#U z%>)S_&L^icONhj88Y9gkJ>bDul!l$RDL61){Z1weh4Wqun3MNW3m`H=(hbzt+oj%bAy&@;8!MMu} zs!I?~%=U&hV-Rf1B0d||6uqAP7!w?X_78(>AOf%H8N`H=IM$aj7S)@Cy#7=aF`Pkm zFANwA&a4+kZlhvYib`>a)j+dF?j0i&$7ZEORGyqNGBIatwh!1CYx4xSwyF%7#ClsG8#v$YvGw`=g*&x<9ft0V+=KHH8~NTn0~uo3@vdI&U>(Y7^!1Zv$A2( z%Yd^mJDoTHvvlGGfMbnp3^Yl`88Fs~*&H$R85;)`kHY~M(4UYWe4iZ7vrtaNy3ZEPuMCI5ftaZESp9>VVvIjp zQ>6d)bAmx~Y8fsP8w;TQ^+rn20z4!eyFo6g0oFLvh-r3`9MMzz!maHk30y@kNoq(=olfAgY!f1{?Yz@X|4v;Fs~^)M`f(W7%>mLs z($)$K?EaE_`}&`z&8@4@YBRDtxo*xlNEy;kQhucccE8EJef>|Gof+A3m&J|DIJGc~qyEgO(+NCcLFBcace<%vSC{eO`t7=+ z<=N#)8FIb7nP8Xqq8$Pm7DQg#d8eD&bxn(?->xfKo?V`liM+PoIax}|&$Zw?;D7+R zx3B+c+T6N&WuDkJdAGUqV)vWOB>}tNk=J(K>85sFWIZ*mBU+wao|KKeZv1Yvds5z{ zH_%HgNiMvVhNk?1P9g#K%NdNv$Tan{g z95Hq~KU$vs?7y8xYm4OFH`Rp0zySerZ(sk@w7GRr7uV^>thPy7W%q;hr8!`iM|!e8 zPe5G+PFCiB@|oTK{|h*`#~C?C(kjJ&wk8*meKYG_u}P)fKsZ=3)%w-S3e$ z2kfz&sttSoPF3!I>bc!Mp}Y9Lju~EO8f`2J9HC7?PrYMQot~Idr<1hQy3Rn_93byC z2acgW0?jG=KT*bRpWp8a}4ZnbIGA6Y)~ z+J1hrl$1B(6ph0%aD1BfbaH{vJOl-pPOS!u!YDrjCIw=1sDH)IfHAo~cp&mMf?cB# zl4&q@Bb*UytlJrN`hd13+};Lj%Yv&~*XgT~e>>o6fCRV`c@1i^4+%J|4*|j-O#*l8 zJw_M;%-`^o)E6Yp8orVSF%tE0zlL4AzHqo!*dqJY>EHG@;TY1}a8L3s0}L5Zr?0ob zA90;D5akEe>3aZg0hR-9MczC>eIukt_=cz9)X76vRm06e!A(Zhmmy&vFlFJ}TX6PR zM$DC*katN)web}{VwH>bI+bF44vpB!&A@akUZ!zb8(UP1u66oP zo$GWvCD%>C(_NZ=*3>&B|3mA&O-M;-!r^f^gEZEJBaKo!|G$}jV70LYX)boKZIdLs zogx`nyCn|e?o@HH#bv{dLl+H0VpAK1#70ERrZ;#L@nA%Q2OSUz0{?Y=+_m9rH$E2& z+L8eegK=#{R2HJQ#2yUqeZXNX2&@IHT;k5M->+~CNx_%BktE~vKo*m~o?%Km)xL#SeuI>w-Fc1K>VD5b!qgG5~`q$8ey9A_UlHb`0diXS`|q zqX?BIW#lo4$pgF($N7Sb9Ck2a1^5gQL0KuUrH;4eQ^9`C74C{M^OL4>o<^tC!v)jY7| zOUr@pu|6!(?I7PyCgIK}PIMD}$y~l$zwo~1!BLd`3uQ^#ewq0Wi|ghXxIh`)A&2(t>ZTh z4o{vqj)plVpEu5d`)x$P?36w>nJ@q=D3VG}X?Pxv#N|hvu#7zCN+>Gf3=NwhYqrrD zywjW!;^J7l{7jBc{){4C#>W~ zwPdA?&q+zkPQ?*T>pbv@vunrWo_fV%+>KT>`D}RrQ4{9*$EZt(GLDXgQDq!pBhF*Iopxblf7)EmaJ zq?o6`N`N3VWJC>}I99U1z}HTg%P1wya>hZuFh-jw*LcrHDQ2|Wm_9UBuHpVYu@vds ziF-79xhVVa#DX?nvL>Y^jm}I@OFuQ8Cw*wVH=|Wd$~D@5(TW-PIW^@s=MQImQ%^lJ zX4&R&Ez(CTd@X{~oY>71*P#8C1hXx&eIoo5C(w3_Z;>dy`XLx+kh5o{D z5{}PrGKinVJ(B|tgo2S@JR#;4{45F1`jQj~Lfk+3!4qmwa8MpGG5lXU=kk8A6po`pY^p#YqddaZ6*!CCl>Ge;E4dxvH{)kP6N-X}U%hfLgjPI=*-&i;AYqiJDqdI@^^)D~) zFDe*t%gWhW`uQJzG=A89+PTm7D!%-!om!FcUajWvuN;wd@Aj8F_UP4r+r|B~b7s8v zYX9va?S;3+oUsqC(azjc_g3}n-I~_sj&{x(f6X_y-#JMfwo>~x)}!8)_oBAnF@Emr zzMa~UP3wR6?)Xp}_so*VshjFFXXUY%*H6mRdUq8jW-nZz_4;`HjE&zd)cOi}2d53L z)gJz8`R=KCPitJ+H%ktW`Ai$|`S;xmJR7w36D}f9Gj-!Vn-8rRP{;~6)8k_IEY1JG1+tKOX!3WnQw(2v;J1zLa{`2?)nvmaNT4#Q~mU~a= z`=f`RsJV5_=$j9X>fw!hV)XZ`VyAe!v@D<4Z~LX*qS$Zyoqxf6@5~-Iyx(EyW!`=V zr)Qoe_`TQ7Du3zuhd8h1+_N;zc}4A#NeR>atrmM@k5-<$;M;lLyS{rZ>EbT=-pP0S za?aeyct5#jWBCiWex;2m`%*UAjh{JUU%6PDcX0W^(CW**2V9@Neg4r^-suBxEPC$v zYH#=P_jUg!<}Po$jQ`}AGGCO$eg(wA~kMtU0b9A7d*zO%FN zRd*^tRZ=DRk9^rJmdFA_sWg8Yf=!L@%9dZZOP@F2gbeHY$bxX5{j3&wE3Evhk?yKx3>VPqc7z*uvFe+>^R9ES!*f+LHIthsZYVYmyI)lcS#16b>QMx9-w! zTXJ&fc-t<$F`Vk1<~}F&Hn(gmtL%348H?zoe=YH}HJ}ZEd}HG*z}bLKfO7#|0o?&T z0KEWx0sR020D}RsfMI}m05Nbg03LupuSFNJmrQzT{yxG+>vtr`Sqgl4hv1j2Z&(<+ zufzPTHQ^3iPXsJnZ$b#^6#xNn{5dkNTFswSmiO>=JG5uEPFomz!)ERG>g5^dCcme( z`t9=j&Wpdz%}ySbL+-^ft!%0W`}^74!>ivP@N=rHKKx_ypXWTt-goDX@3ehk%AlmO z$MR#(*h6f!cOC()+TaQwt-Y@Q@S0Y{9=hYWKK*|sPX~tPe_U~9wD|THok)M@B zZA~jIedW<4O1)*;{);|K^4_?vs`ry!lQRzO`(S^M3zL_;Kkkfo4$n;{>*;*J<$#m@ zC5}kK*)aTET^=+Sie^}j7evV^+wUxz75*)4lD8`2{zY65=}%EM*zZK9t#EUOmC-)( z0j|3Msw3(nkLO0*Ux(`v_nPgGL)rq*vysLior09?n^XPeTJINH@0VKd+wX1gnf2Eo zCH32XcUtc)wcfMy8>gf3T>qyEpf`akCs{Ubcgc=N6=-fA-%a*7G&ib36YB zEC0_%`Sx==?fTY~Hecl2({-JzbKi@f+SU1~qED3D`%dV&?fIAbkIU-QWAVU`^tpQv z|MJIQ6m@0abK1lZB-N4(ib_idkh9a)PlGl6^$EMR6Vt!Feyz4)&nzw@t}gRe8j0~W z>N>0cM#kxM4&6P|S|4Xy>%-o^_DE8yiu^c7N*t0+epJ;i8!cUL&C>>Jp2&J9^IMCQ ztiP>D2@QG=DWQpt|K7&>A?4q**3llMk!8NH>iZfgnL1KWxY!oHwYzEN8T9541vUR63T6JpE zk~-OYb1&JY$DhV~Yka%(eoee*b@Sik|AQEK;;PHWkYTZF+8e(cf+b+2vAB-|(16lvY{Y!O63%-SdG1ZfkI3uz zR(t9;b@SAx7<$Qy|F?Z2JKqhAf*+xd377|)&nyb9O@_#QyL)}HDPpaCAh1VBC@ z1h@fkFW?cti-4VgF9Cl6I&MbW03I+FFd0w;m;<;Oune#suobWi@GT%_OMB`(Kms5c zkPRpT%mQ2sxC5{nupVIly^iZ$fCGTv0G+qCr-lJW1EvB3fExg-0kwb+0N(>*wza2v z0BArmU@RaPVE27zl_1 z@BlX;888Nr4Y&kQ04N8{0?Y;60Jsfs4`2o05x`o2{r57i-v)dF_!4jw(CUr$)Y*U@ zfc}7C02ZJCk^z~3sel4NIp9*je86JBJ%9%QPXO${f7e177yo}=3vH>4>comdUxvRT zsAuEDmwI9#|3bZbHhwE0h+i_zs7^{ZewE#q7@Sa6oSzY@fW0Q1I}+cUxAO-^N8HMjNb8?WAOn%KhSuaUN7;=^=)=?Af{84%+GJmR_pGJOz$Yx=NUf(3kN`jm1BI5gqm;Np((4A zt4U5(o)7WU=5IS20Sy%Ow3VNV`00v}nfZ#9XMHZsD*3vVOK@Rk?XYr;ct)$#LF5@9 z;jnPlp+!cuS+~zj#+Bt)!tv@L`GJs)S=`}^lD?7nId_WE$(>Qm2aFPoQ&bi5(u|)M z@EO%p)PishDx#VCScF(06dTSb3(YDmhjWd#D{xOPe5pZvRUu@oypWw| zl=u*Lz7dthCHV%Psn5y%NC;Nr^iWY*KJ^p1PleskL>Y{YBU<|EQ9+ho6}k68yVcPN zd?SjdRg8BuLDM~x>>&EA?>XrYAU;af3ziTU}) z2g#{#TaZEFrwZ_u)W!`Q!ZWm6QkFME&nKG{j(x0dBajfk@EiFwS;r6Eo4+Q1Br?Cg z_>Ymf`0T4)nuzyx; zOdPRI`|`;zDmf@$0STpomP`2x^-$jIeAu6T#X)>3yqe-DUrA8cv7VijuXF}EIzh>l z4jrBFT+GDUeQpAmeKLizB$u~PE2YbqVrr0QG>kz4q()C^D~GeX;_&zFzS zc%mwNnfyh{r&m+yNz)fBasT%n&7wLYdC zKhFL}3~B7Gn4neHdojUKMIQMD@ZIDJA^Q{+NBMjuc|P*h$8tYDci)a zD5?xt#;4q^f}iQAdO5B_`1UtxrfZBp7vz)b zgHe_h!vla(0xgt+(N%`>s0(8-HTcvUen%B!BBA^+D&lS??gE9RwrVn>QpAK)3t})4 z#()=NRODMp`29#@JVl^g_mL~$n*3Jd{p318+Fu(J!gpR~>lM^GTp@TGS6gCc=LLCSRbap$`$+*i7i_(DF&&*2yHxAW`ym-$WnyZk5oVLnHgEaVF%!ffFt;eKJ0z=@Z8t+=}+UGjkUG84( z{@6W4eMEa(!|%=0@MK{u{pbtnx%5tY22+kv)G}W(KQQfCH#>z5v32Y>Y%h-HLfrG* zW^NDHi=WQF$}2*-P$}LaE*DpeYs6Q??cy2IebU*^dz{}od&ytP-IWiNkCew<&$vE! zO>rM}&ru&y*Q>R_>i6m(PrS$Jx!m)JXN_mGr>%CjHdrgrj#%Eu(dbVc{T=-i-HPeV z^karFOMuri*vHvFB*7U_?@-@S52|f2GdZ40&!e7Ap3gn!Ym7EtyG~oK)o4GFdNNGk zY6m)=&Z94*m(uUjU(shW8Z(iZ%{+Se@h=gK09*s#lICflQ2178DGtJnTr6H8E)_S6 zUy82)3vFako=7}&KyWsapX3;&o#Id~Q3{kf%7@AU<$LA0(%IF+HPCg1>sr?;*9O;{ zuAQzUt`2UGd!hSQtj!nPiE65Pky@_a=DASI(sH#rZ6CqZ3Vf>&bxK%+Y4pwX9rS}( zfmibTrPj`6&WD_jJL{akJGaU2%DdziN`K`-B}Gf{ zE@S^-Cv!F2K8)rj@nh+j^SJX2*(rPFQF66>mApXSqI{)Mwcz0>-;TZ&_*_X-d(HPR z;5lC5yGye4n6y^fAgyt}>pWlXC&$W@T}$1o+>f~Txc9riaZ`sWNRSluAibGRXC7v@ zuwSx$xWQaJSILK*bDZ;>FE}@1)h5ZQawpd#uC8vz{i=JDTIjjjbGPRK&*PrgJa2fu z_Vm}1HNUnyz`~q9czQ%56ce8uhU)ggw4_CqsR^k*^8Lv!HrYm3(7`ir!vsR zxJJ2VxGG$0U6gx-JJUVY{hK>RZKrlqOVxSm?`msLd(XKZ-sARUc`or3dP+PqJ=LD8 zJP>-Qsp#8t+)Lah?i=nWt_?5qiTp+U#k_9pZc*?EEyOd$#iAr7Vnudy_H_=&E_xPg z(%#rR9;o9H{~`{;-1 zC+X+t&#>kxrU-lbL*`TFAd|yh%>Kx>;m+c^a9(Z{=+Q@9Z%|i>|A_yb|AzmCpC-%^ zeivGc?ZtCNUUZ9D;w7LlCE`r68mqs(bgo28>C!yV-}TbFQl0d<^p!+82Rf%ZZ*>lp z7t7zt{geT~mdoXJrMmpC>8_`+syDgnTwl1padpPJ9;$lOJ3KFX(zQ#ph1%WPdeER2 z#{TF@yV3KHnFZ`B_Eq))t^=z#a#eYHiP^xlY;hyh)%>Ar;t1$=X zt9{hL>KyfYwV$Vh)=m2oH2N2f^0uJv0&d#UL3$D0hUvs~WBM{l%!N!YR>dslGG;Eb zfLYA^3@S}?^SRr&cepsv;Hms_{w4l1{sJLQsK(CUD*PmzD<+CT@m{f3{7h^m6-njN z9BHw1m-LAAwDgJeht$LAaX#RD%=xPGO(!c~A*U%N%00^S*xCJE)#?rE5jDoM9xHdD zc2uJ>T2No2U)|{|>96TQjLH;)9<5*wF}>MJZh>&Vcu4GwZ?FC=b#Nv)RcC>-5<9u2 zJVc%#>vE}FDbJCwlkb!_%kRq{%U^(Y9h1*c&R6;n%v&a`Gbu)WxUkQPL?f?LQr_!Z*w;%)&Qh$DD=m`-I;+4>w>n#44?@T{;(o5-Fu3h4sMSbX2_y0LBH>P9 zmGGpnLD(X^Cwwk^BOC))I7jR$4iPzVl$b6~!A`nL{8k(zO_r{g;xW6=gW7%T{LL97 zcaXcw1LOo*mXqa7c{1j@T)s@cR=!0ZuB0m$gL0Q+X0KIlQSMb9R-Oi3dQI65{(3+; zqI7WebPaGNxMWu{R#}M3>#~A##KigU6D$cv%xB;czcX#v9&A50o*mC##OAX%vA3}+*wyTl>;`rKH;fa}`yxm}bGUg} zK`Xe2xo5a7+}n`l{^DBmoxleZ`Eh&>dQ}9Px{v>!KT9}Q=qn5n5(GsU>}uud=;`f= z^RS)(_R@8pn>;H#v05$oc?{L61>(!FOE%JznN3U_djq85C%6mwU-`fI*1}nWR~Rc~ z3I)OpVJW1*M}_BwSA^}tk3x5`Kh~IvHI^azu*PPI3&lId`@}!QGo^TN<#cJPR3Tl8 zHMd$?2mYMwyvli<^G@e6=U>haaxc)91X-0s@}#8F{z-seDLwDjp?GS*833 zv}`X{+RuvSN^#|YGp}*gy54Xda{Ua+x`Vrmdw@H^Ex3~*SLeECx~tuD-HY5Wx!-p0 zb${)ip$65$xqyg7c zB)>FMx=Pvs-f*6?mov_(Ia8cDpyQW07dl^eZg=i=Qt}z{d9nnokCSi2+FmJdl(#}s z`&@3LoTGG6dMN{yVTuAtWRf8*20-8DD@&F8mFJX~jD0`AbpiAp5nT2>cOUm);9mq) zp9S8y%Kaa3#)FVfx~Z}13iVp-zh^wpd%o}-@%-XxsU>K<<_7kCnyytsuUV+wg1!8h z_J;PZ_JOuX`$GFp`xCNW4D}}F;taYA-HYx=J83Vpx~X(7X!zCi0{Rwu1^tjAV{D?iDg_6XYw+EO=8;9T5j(D_@qWzaWjxHlm+9l`EO0E3p^W3bo+X?+CkvgTi6qSIk!jv5VM8j1vXXBaRU>#Ytiwq?k*^dEz4M zj%CnVo)v4vt>R8`4`%T@@ptg{4$}EjKTv&E@=B@TFPBIKQmHgsx<H&uJqnKh zqV&4-p0r2$QaUUhlUg{>advn1bH+Obr`tKwneDt7JiEeqDfZYx=iSbg&PSckIcuDo zG4G!^4>}J!{{SCpFLwpCkCO#C5wdOu=zWp=o@=-3fa^zBUw52abB}fVu#;xF7r6g$ zpQjE`X;n~1s`+Y(xH;1-MoWiGe1&$6cB8gbdq{g+TL-GL z1vC1qMs1Iwwqh$y9)rPw!5avQiexLsTi zzCWZdBB`cA_nw4ZQ;dC6&Clf*3HJ$Si{;|`;z#0M=t4)tpT!nZ8|f^_hJB=g(ol(! zMChYafx9wjrI$ilTp~RMPW^>+Ncu@SE}iM@3@Nv_b1-n0=9~bGRXDGK&awtFZ!LDn zd(K@3u6}l&BX^Vgfc}q=^C0^KA^XgeZw41$AwMRsl{bJ!9fMBQ7CRS^_o@zgJ7^IC%buuKT zS&%*-QP-+3sIRJTs~w_-2e z4=HO6x@S$+P*pYt;t*|G1 ziG#5x8Br3)LR-EHTF+AkE!`p>5Wg3H5-F^s-dID5G)Bt73i?6%73-y!vp=Y4sWa$& z(YYIXbqBe(91rT50jao5eor~3{H3%5J(OHYnAgpi%`aTD)ypA!FNUSyJM{->XstZw zdHQ+=c`ksKHrkWsndq73sqkEiU39x=x#vHggP!j^ly-(e9~JDVL)vkI^TRPjl!YGA zgB}Q7JC)7>z8BGVLBo2Sj$zs|XG4b7m=wqq)0hHi77Lk|m~G5E(6_#34l@+n6_Uh6 zwvfF8n0%Ez8~Af`Dcm^j9$104fI?B3&?&-gIB=U>sZa_^)zX#Hb)ZaZq#EfR*nhr;?(l~c<80?V*U4aS zZFYX({M7li^9RV8XUd)A{_-$6UG{AUOW@(8vzE`>P2muO_P# z)Ty9UOVy3)HtYe#ljs@mne4gWv(@vC=Tpy@ka*Iy3EHOwzf?<#H~35kdLp!gYhYWr zm;Rh?2aT;S6ARsS5pxIgJY=t-;P4l67jgOAwcM@Ta_%v1KX;gm;oI`p^NXOhJ;Fc3 zzkpTvF24&B{ZL`Jpb2BZ&nJVM&lIYJ>%b#6KrTNlv=h5w9S#&V@j|S@JW&6ypmiM+ zyGlJl{o_FWozgg9b)j?%sQyYwO;1RhK(|^u+dE}vF05;hf=1Oj4>-Sfa`IF;7qa>s zP^10w*K$u#mZgxop9Q}5!;r8i&JKgPf7rN^p4;=sn>8AEp<5eg0;50Q)y_9p3J_7xcXYsC#d1kX8Xrc?EQ==Rganjx8xTC8$2201j?A zSBbU6L-HKK#|WJSNl+mRZxb#BpWBO(9RpvBhg`B&dIjs_8mx!&0S zMS>lwD>R5K(8hPMcaFMDX=0@NbJV)-+C_tomWI5)AH4ntdJ=eh5tG1i+!VeF z5|s*W`5e~KH?EI~ZGvuT=o4-(ksHAO#4nSIoqd!a6w2F@nAxa#%vJJT@@ka-RX$JY z2@BOwMFkZf3*C7hbh!tVN1^3xgS`JfX!y@cTUQ5H7w9<`xvE`1xPEuV0Hd4TGeLP5 zs86eVVGSGtX%ZD@v@~o9Rm|PYd)$v)jgSq_KNoxHM)6kh1#tXB;xy%Q=*SN$kHEgO zNg3^W9CqT3-~tQWH-Wl$!tC@{hl1mN<@w(8ljjc)HLay#!+92V-cFD-|Kv-B3Q)MY zpl;6ypMk!82Pu4(c$s*$c)i#`>I~|&4AR0Q;Ci|<;M^eB%3I{OAyW?rh4Q!xv6DKu zuT^Q!0O+V@fA4`k?LYJ$P+8L=Hik>*c5pv%Y2pmLIG%IIzP%a&Q$>3M=UX~yB_sy^z87Q zp$!4IDTf4j7v6i=v<5?8YDr9=)LGy$-N9ox+6C=B7xMV+^gYnrSJO50tMnV-G2eo_ zv}DLWCA{S;SoMElCbApZAne>XaBI1Ju-p$7wm?owfCjtXl?19=33_{#XMty(=LM|n z0Bm^Fik8$^wAU8)kms4{>_WCDsGo{mSp=KQRboe}O1fOSNm?ppIWK}{xySjX^E>B{ zux-92_j2`f#kz*O9&^9tJ{M9gwWcKn#~L*ry}gQF3l8`jEyAu)fVJ>3c-#Os1$6jo zb~*bg+mlndQm#z+6t<;rgrmY>@dDUw-w=1evQP%Q)~C_|={xChNF+LBikV84vOxL5 z^&O;y-tZf2awkHXCYDF47V`)Cbt&ZA8=)&MWp}}zc#!>w`;7Y<^LGZ{o*x1Wn+lCE z7dl}GJ7p29`%C%9`OSPC|23@pErpIkH^Bjlbt!xti-g;u->niJ6V?kmvAVt!+JJBN z7GuFRorWDDN7P~Uzgv6_y{!{Jg$&jW5|>+A1e??f=|Smn^nSneqx2grb8VfSU`-U9 zE@v|Q0y)kp&U|Mz=+|1N?j=u9dJ{e+*mySHRJ4;1XRSKh1St3tW8; zD)O`YxLZ?w@UK*<^VR3o-Rh_6EUbh(z!e_xbOwbh)GpQDGS~0+meemmZGT$8s#pT; z;t(w}W0{*Fw|of=y)T;tzfn5$^8j>*x7nTS9`+0NXZASTnrjcs<`C$EBByZ~(9?-z zdoyI)wcJL?weLZ)-OJIulTU)JZzlgfbo9^oub=~-DV!s87y1ct!YJ(Q`OqtF748)t z7B<2jsQdP^W6)zCE7Ab>T4mX8&_M4sUvB(4lhuWbRl%7Mc|#w zq>o@B{#v>S7OZ=qy{=I!1X$D4UAeGLZGc_!FtE`UlJ^+!nvv=_$PR_-R?kXp zHTc~#@VOl!_S}xG40~c*(4~d+BhXzwp$9YZ3=f-b8Z!a5+!vV5%v=vw)kJ)3~AKdx87rNv`c-vOM3h*{R0=p_7Hj^dL>>q`M)frmg zhY~O6Sazo;Jui9YYEQ%7)ynX34yNO1mXOsGE&GDrVF!#b;7&QQGXLIfCl=IxCs>JUTG?DaJl<0SYOXnJE}d@zR)a) zzUNj)0UJcan5G6`mAw)>=N|Pz^-*=5`m(wSvegdg8OPO*9>(K>j5WqH1zO>BP}wW7 zvu^U-3JKyd&o)mTY%Z;}_K+lcg679-3b;j@mSb4omuU}bYhbyp)wY2H?9@KizK4YI z2W;}Kh;ALTLR-&5RkTrKym;XVBVG`0ob8Md7<{0zR5zl^^M zzSGsTd#y_xfjvJDQo}8<7Oa4W^DS{7EIl2d<@SPwKmd=QFWo5J3Ld`$I!agPOxSnk zJFj;xa^B@!?R?GfzqN*@-vyqq1erH{X<2eUyg4C5k9}AE2omF0&|!a(+bV+;QJJXt z;j1mj4xX>vpxg;sOJtz0AT|A=v~aa?b#ysgsw>S^1{vr|*817)z zZaY}w&Ug1Wv{(r`?0DD@u7kJtY4>{fEADNu$L)j+dcgg?`zLo-tg={0p&VA(ShZNa zLS3%@M|~0=+SjnEK7=o2sE3A@R0azDw5L1hGoyL53!$OT#CieE@U|lEJSv`+=|p-Q zXw_DDkN1K~9i=Z|cCcT=1O6Ku1B*^)t_Rl-6!;D9Y`zD0VH|kj6xeK^=0*6lXM^L- zH!N+h!hZW9sM-K<;xz2X+ko{K#4X~Ru+SWZ$F-w$9&9h)NS&N-%O3!D`+&P2p|PB; z5czR1xKxUgsmuoM?uGvHva%W0@z09JQHQH{Vh_EfzNLN) z{ek36Mo4I*fDdlPiDd2aUF9z zvkcn!GoT%0pVWbVeG5s7V%xBt*uHEm%djfsma*&vP_$BZ7UY*3*jpfH{Kv4JZGkW2 z1MHgbp`lZTU#}-O2r~I#*lw19gFS@xT?1`km#`0BYU0^D2Uf9Ik%d)kG^}EmK+dXw z*Lne{AF+u&4QtLH;xJe<6QxnoMUd&sq)O>ptn?*@bny^;yq`e2_!`!)U!W761^J?{ za}exbQ=ESI0Pl7#cRmR3^E1vZ&UXyyVn1}xqp&r%lRLuZIT%(iR(3dOw z`{PAOBp)FX^ z4Q48qmDv&Ot(c2d@Fc&*z7PKL1#BfhvA@GI-5z%7p4PZ%e~0G z3ajP^i2XPRcIm#@6T{(w)%X;{b3pvUrJ!X?`6JNh+6kS79zuU%n83n+;1xy-8Nx-v zG@%I57gex*t~RJvN3px;fMq2?6fv(OVLO-)%5@uT)ene|VNPFw9EglxzNh#27 zbEJzU9k$I%=`z^o7J`l~HSC+~r1vEjcFakb&0^5BYS=NacisYT!E)!r&L<69CYjm4 zoZaC!xKVjrakvs)?P0UT-Y9Qn_=?uZ@visD{oGcD4!DUsz;{!U+#k4Cfx;kvv6&ys zoe4|Pcv#EhofkS+Ll|8i?0Mr61+W&{!&c93 zPdv01YE3I6hT%3?qt_$G!v(tjyl^=rk*g(9S*a{?-vL{ASM@Pt9_k(i>mRZG&4cxC4d~`R_Yrq2c(M$RY+99GP~U@Z z^mmooZua>a!`IUiULGgr#shoieXwUvg3WTV++Gn}qg^4ay~*mYo?MOE+sg1sZRU5t zQgM`TgE=O%I|BBKOxP=kq)>rzTn#Cd@Tir-Bf`_d3*b|43m*udK;Qgc_*wW%I72*J zJP*4$Jnw1Z1nlSn$YZl$I~ok@SQUJT55Tv;VebSDuk;w~h-;wpwgjh0a$n+}?LGtJ znxa;!kAWTz@+5;6-T-?TkaV~eRfHskT?u`ugkQ!#!5`u^VW_wlUdvzLLmZ3N zIGGJ22B{q+3JRW{Bqkpc#O=&l(88}_oovf?VI6E7tdnmbIxLHu4F6#@Job+xqGBK9 zxweQ9bAYd`7aUlJU15V70eR_WjOR1>-p@fy##l&2*TMGsu;)4WLB0n+8w`DM1i0BH zT8TDGyB3o8L$I|TF#FT7H8lslih-0f4AgoW^C)vM;!lN*_Y zBqWePkPu=BikdnJ$pNAXNplgjs8La|&JT4mZW_rZDrbbVPA1|+Lp9?ur|F8 zIba!1OK;D(FXOiv<1@=(J+>zEM(lh?Lnb>DWto7T)jKoCWv|BhK%sxT-=&Czlz43#Lzh#__UN{{R#rmurSx=$$ zozU;~xbwq$<>zV&{=-wK?w$3PCA1O3N(O0!0_`3zW!ZS}njU50`E zWd*dh=VQ&iFufHVeQ!pJe-3Qws&gjg&xX#fn&wAKgh<5WT-eAxoxUmK1MGg5W+(W6 zhm|D@=Qg4Kxz|mw4v2s}if^hqoH z8*(q1Rh+jNwr*eLPnbOgyfK39Sw>+k+MRY~MjZApk7dd15jiWNseK!EWHDIzs%EW& zT)1`CPiFmM))TO|`5R{WI9O55fxY7oVNG@)c7d_3p1=m2| zxD$GreFd*U6Mncr!X|I@>_I4OJ(7FRDpE_w%cHf*ogt?KAU?Ox5g zb*2aUlBblxVM|GNu@Q9JcSu>Ncl_F{j5y-ifcNwA5$B;#t#so!VBWBr>0iSWwI zO_|$pviD%-M_KpGydZmveg3bL8R_Sy?*P|02uXA#^a2GL7l3c)zAbt_;1R2H0P}xM{Wwv zl*Y{R&pHcy{RW(e|9;lRSZAKYs_McgkES7bp0)`@7#n_wBKeQ$bJ>) zkAKR}$EtZJEar~*C*q9kQD_|A&-n&+ms4{6um)O_y9p=vPvjoKNSm9t3S)L>{$Fvz zku*C6XB@=wx@O-4-NWP9_q{wjh+MJj!#@}64j;tct_U*evuU5FeGQw4U6~uRJkT;_ zU@gwcnavtalEA;nnU*^r=hXYKuMn{=?&o`bxoJV1e|!m>&B^K6>D8E}7o~5&Uhh8G zm>F3Uu|B6}pPjuS`y9!*rC!tVF^A+yJ)FNGHBSjJfxyC=bR;LEH$^ug@h;#rj>1J$VZ z9PV?Zk4jHY_h%Gi-FhY?n9-1x4|)4h>?^;SnE-ja2{r?lVs`#6|Ga{FlnilORC~Ub z_H4!^*ylZyRRC@9wXi%$!1>QCNa59x&3@*8-S2^&;5j*au~&4#@@^H{^3hq3z^W@J zzbJoc{&%pWdo%w^tiyL;FZXsq-0TIjMW>5-*FEWVnZJS^L<@A}g&2v;uoA2yyPwT2 z=Ci`L3%Zuwkge*W?Qeu7VFK3TBYAGEy>9VJDoK;l~+Q zA!=HhQI?VF_xlT>eXQ||SU1}a_0P)86NzqK^F@{imMyVaaajpjNm(gaLw%5-3bTqK z>6Y<&S_7U=((XFw+i7jxnzar4nl4Db-B@S$V5Oy<;{o(;Z&rWSL9Dump^ZNV{_mOT zok@~$681Z(ux2d8dQb`*nPsq>uEEOCII|sV^E%X=`qa%b*|zNM(4p?YYPbt0YDcig zIR-7N6MEEG?BwHNEt81TlN9V?eAv_bv6Cr;#a1cCU`0+<&N7?^)nJdmDyI==LhX>g z*5!2Otj9^)Cdh$XapJKZXV*J$?y(E!Zo9GL*^8O<6y&r0IR~)w>CJf~rysNUAnf`M zV|RNL`&*Ig#0j?-JE1rldo^yc40@Rq*p>MFnP}TQZrxIUnZE+o2g_iISpyyKDu1KD z#orFgwRKp_*ZVj4H~BaFw?a3u-QNXk#huVrc0&ui2PdjMuw2{++rC z9?CtOdnETLG#+A>bCze87g~=voI)l*_mKo`e=4+xnc%y5uzV?oR9!Z!0;}G#S=F%m zugA!5ghsj@)^F=(b-3%q(a_J4a}!SobXmHpTUzJl}r zH)i$YyzbzvL(oPZnRRs5G3ZmA&`RzA*W8ugjkEnd`Fml#{uKDj{`>>5jqJrKe?RsB z2XPv67;D|p{A2l|z**oa@WRF`t{}c3p&$`wG%2w5^5M+c4>`0D(se1M(Takqf@N3_ zYB1AR!B)5h^L=f>x`IxuZW{_V6>Kip3Oj-AunpURRe2Yz-3iUE7gm{Zv*Twc%uZx(pE}zIY1a=6gF;wNm(DJO z+*<`Hyn1#GYzu}<-9yUXp@LkK+ylr{gVY#vc8o*uH#qQ4AleZV& zxjY3+mi>7LpbhJVU4B0-^AF}7!rA>1te?m7M7}fMlkbHdIxasxKOsLcKM8umRP22- zablg9Ux?HFQfLe-@~iMwLNzqg_4%uC*58ufj+32rIGTYT-X(praa za@IrdzR9;4JCkj&jOg<1fd1WDllS_1a2mVMw;wimuR!1U1~jnm`wl|uco^2zM`80S z(wwkS@utN>0~rs?yhLc~Q(&Lx!^w$1EibJwtvIa|5_3gbRob$&YV38bb-o>Td+Q)a zugBTSCRoaEP1^>`p{}$Y(CP1j_0Vou&F+Oo-&3&Z+n;s-CojF&zPJfW0_3@Z#hk zE+al8;e_%?1*}AuWmIR>z>;JYzWHduDdAe!^LAn%xdGpuZN?5^8@|)(!tP`z_Wa$@ z*zJMNt_S<)eb_r3fEJ(^dVqdNp$B14eHc~-N1=rfnNHZEc%fH{%Z$%VfJP!IGX+`+ zAG8I2=nD$*jaMml92Kx)T!z!&n#_8f2RCN6KnJxJ-+XoATZawU18v6n#kS1tIGfsm zGmKrC-I=>H_hjzP?7=rz`(U$rAoCTRYP^xzpZR{~!OTNAKR$x*HjZVAEN4iTiib3n z7?P(lAyMUpWU2~CRm-5KsA0LP5t3CqG>Pk2y4s+5|2CGec0k736_T=gAZP6hNm_3} z)_OlAZ5@TYC1yIc#1#jbD*^h*B$m5;ki7i(lBAHOuQJGARUrv%6=blMkQBBaTIfyC zm28DpVmq||J0KtL!pX~SSU~N?*B4L0T5~_XGkaxbFXZ_CneXE}t3%kM9hrF)I%|>b z%=W-~EH*nXJ052=iT|%%z1IC7k;u0GkEPFe*d-^zGC2ibN%?X!vCGWMEzB*>Ern*@ zT6_CXAjNI?mXg@Nx@LI)M>5x7E)KrE*-f7i311kWUTfpX`~O>>+miO5j zFpop~b-C%Y6Y=di;{P|fo)V+e#mt_*x4M&PsD!3 zhrLQ6_9->ko3vn0vH|;%F6=|Pu?OiX*bbQo{oAef@?Ia_@sI41u`R_vC;#>|^qD8& ztvfkr(zf-me)dep-C}@a0n@Xq2=|%M^X#BWK5%P{K63(|iKhhF4`hFQ(98mSU}w<8 zRfnRpFlatY@X4Sf&z=!M(+ju-&v|%uCjmx5y6z8}XA^!^pE(}SL=*S3;#q@y=i}*1 zQP1v&gXWn?C-JVJc_-o(ZVQ?}1>Dlu$37GLQIFjS-_z6wzX?zioPj%0@!Y(!&wK;V zuGl{FT!PDScP8TXU(jbh0JwX7pD6%~5q%~(zVBS!XTAft>q6Y22srVapt&3J;pVr3 zW;ODyKz$#haHtoZPbGdBG=Ch6@XrR#cTqtf=!w8rfIbmV>t8)y3~?%&QnmYLwBK#O z)qEW^NrkleP_H?i>SYAEeDHcG^uu^Yqg;hw_nPkk?mpOSjs^X|$Gzqw zRDS)B&qKuf0V|)D`+{aF=>6vh&FKi^8x}N6@a+D1(0mBbuGv9yY$OiftNPVf*JqON z>)1fhybjNr&w5QS;&+y+@o^v~Xwo;*op=`ES@>nINuPmP{}S+Gh+;Ios%QVPUh^D_ zh^L~z4)Z@nFLVaY?8t!t^sTlbmS1ksdye#)mm_G)UwX~?sPE?3pcxzp&U$-<-)My| z91}DvL660A>X2}sZn46}A{}yqScB&zTR5tlAuhSa3fGz2XP$=rb~oyg1X?GawN@ZrBJdMDbY5#_c1sd`22veNCIrRGC-ff^@0Xx~$;z<5$#hIsrzD}3yN zpcw~TA>zSBOX#2K@BEjnaNU?cG;b0y-l<AXA>v0{;cC87d?R+A>ZioWKJzf8kMW4XD_VXLG&@j^Ld-|XKNjiRXcTsBs$`)n`@{jCuVko-Ka}n%AJ*Ey(v)z_Fswya3M{gkOQD z^-uNx-zQt;Y?%=>%ZWHGXkw7TA$$;ip^$HC(7XiCn&~RN&7f1<9^eb{JPf!NPwOA? zIzwDpV5M7F)@P#G#o->@5s7CD%1ia|;m%U>JKq!C$M^$yQn-H5>6z%m-MIu~ywG?M z7#9@(0NS1C-FT9J`!1wQ>D3@U@z);2r}5SGtDt!no?>s1`CDMg56?bOKM$LiFz_JU1i! zWIS8&r1I4~5j1baQvgoKBM~s!IQD3|cvA7j3Jn(m_9K1qYm^Vqe$?wsfQM19dOQ#4 z@w@o}RgX^eFO8$F`9bq!JZsQi^z78|VU%kV;0oZqLl-yJ@vn0 zJPmQ{T5CL1V0~Q(To?Fr44wz@Os41XAdh!}=L>)n3$YI2Y5m)c7eh34TIpA;Txe#Ct%KIdq{b(oRlZBWU#Q*v+ziC|bqusuXrw?>$-x}G+>;C3E z^gGJmH796Z0KQT9MbP{{o;{grob=;4g2H3|&cw6(H$ihawGZ0ucEAEpqFetC;l&Wo z-EWnz$wpCXI{KmE7QS^qD^f z*mDN>1?U3h%Od!xp!pioYe71B5vW%c?I#IvMKJ!W74e>Hj&};%eb~pGC;uk)MJB0D9`Fqf$w(q{G&pd)>S8AV0wjaqQgXW_u zX-+>AzlJy+Q(7T?81Ivbf^oeEkIs}JxhfMqvoQV%um2U}X$Z#}D_++HeP$tWEf}wP z7)Ld_J!=*R&3v?9&0e$@%5h*s(EJ|8i}kMxFNXNxO;$Sn;Il;T1Ro%N*@E&=`_t6z14AJmYE8Q-%lPy~{>8%9Je@9Q{kepCNvmXq8*s1HOWEx-lN@d|b6(^AsywS9PzM#wn;DMUOb$ zqW6PdI)wgBsztYa;9Egd{H%0~Zuzv54uEQChWo^o?W+RybnobO;Yjf@;85|o zOmNZ!6ghKUUE5@eEf~w80CeYQBWBMi2&^F_IeHY=1H%q41Ix*usesc?6t}iM(6&N2 zv9$0zlLF*RRs5q+w}WnhnR8VOz%{F>N_v~Za6~TpS(r7{NEAfessN&LU;Y5UO1tn} z9K38r3sH++t#57$wED#YEY})>AJO_i0}MQ32B9*=@?jxVYo-`Gd;s!`w`@?F54sdv z`hfeu5JLH(w)oeNKZDf}HAwezk8ZF=c&H^WqwswBA#k{Ox?u%;(UKopIO41q70?8< zcC2o1XfiPz;Fxpu%0O+qcoOKgRn2QKlIl9zL?RZzl`HB3YulS^#a#f}E^Z63v(5>q zIVXBCC)WjVrMcQ{9mqBgjX?vw6+St2N!qD>bf#Q3%JQATNa07DH6tJ8w-fbKtcg?| zH$&i=3Z@S?rh$e`{0CKt)9_~qQgvL5GFBrDoZ_yk#n3{h&_8rB0+6nQ%x$K+;aL=3 zOi@Q)Ad|w3L$$*Y#Z=cY3?(x|C9_e8jmYC4Sclr$X~HSb*5{yH46p8J!W}hr6hlnl zD5MSf0doBv1!=g%^ojXMfZh}bui;Rn3)wsp9`;bimfE@t18wlET8lB_M1$B6VrK{z zZ(zVMNrk)&111EDu^27{A$1`N@n;Cqi#&w9-$LQZgDlN)F%HFo%T<1F#CxdQlrPx; zdv~QYR0EK%q;sqgXP{pi8ei3_)s>#}PYWlE59n zl$Y{!EG|kx40d{~`?~?Wj2V{>Fy(Zeqz*-w?T9-DAy?J5tqQc$oxmb;D%F{|mrj5R zQN)EH-N{(Y+PBawRHeWQc$y|hzKwwk>2l(HwEX~H^B_f{M5;LvQmnj(1n$R>VV(=d z*+4nBiAykOsA{&$kKsUfHF#;e7>^0U6Kf!N8&YXz7v*h~yuh$ROOZn4TI`?KqA)9# zcdP)b#dh)?3sR1NSC7&}x|FnCJa2)@6Yf0Jk)tx#k`QVcLec6_TU=<}DB3M#J+63e zZN6AMVIinaT%3hiyp$d#K39lB^el!-fO816ip#^`HDWpDAYGLmP>X;_#`tJxd zlxP@h6P#4zsyH+U-(nqr=Ve|1-Wxz^f6V(6;oZEcrTt=FFqw~_L9l>|n=!4xqA$`8 zj0+|*sG-v#QIVJCP%JSUqfYS~m8aMUL~}yqG}dCA)z)8ByBgl^wG2^! z(PuTJ;vrON@g~r!0kOtmsWruRjLVJ|a4a*>(%c63?9HpiDvVCWBCWNNBmW%Z4{pOD z(r^okQ<7ElhgdO(>I0UWji5HMlh`1&a&v0{p4cfL4ilaA^iz;L0~39J=~7$Vd+eCxTm zVX`Jz)q4PAgND7exwslDE5~fDt#4Q>{)Tmx!Fq6Dtn1=j^cEu;#mClbt>E#X)-39$ zM)5NY5DvD2ONW-hG$!p$Fj|QJf@lec`s_0P6ME;tsIJ{Oh6S4?& z(jyHN7U_^SXCwH&_Y_+6*Qn9^5VYPHFYIWa^4!2dNn!Ikl6-;Ye0xVr19%Ij84I*D zj%a+56oMNU0_1(4u8_;qoB(%qw~4I)Xc{o^R{$$;J2He>%+1>NRpN6urHcz322g8| z-SUQ&0o;PwKwkOr4~zlDCMC}@q;SNEI3z7EhmeJRN}Xv7M4Fxl5$F^Y*b+x+IbkKb zx)RqAr0!XdY;Hq9UTd&rpnqrrHbsHEr#r-I{$sHEm; zMatJ%DMQK}ppufO161OiT&g-nCAF9#NX0`<6QZ_aXF~rJnKV3?fP8%@vL>rKk%A{Y zXM2rFy%V0ZqW*~aGbwj=K~Pzbq%p2&&w>Gmec~D1d5mbQLszNJWEj#{!-|W=(-@sP z3KsJKA~$Ka@b>`XFjV;F0!N?7A-Fd1s=FTj0};KVGmd%YH>QDgQ3 zqvP7LUmHU!60H|BRj5iTe&sO2^IaX`gvjBcWN`Z`F$5K1HbnpM2;y^~bfPM#_zPrC zT~1L4nNqzsidXO+RtnJqnNr8K8camRg>X~@?)1s{RqCs|(2(Dup1~x;MGj&ubqc?$ zX#t55AxS~?6-3L6@fX0d2nEIpH8R!kAqCY;Oqstph+f}tQGEj>5ByWnNk0`EB6r~G zjc_{Yr;Gu*Ek0#pi1|7qd@BIvr4jumj5b>%OBb_H5+ z!;s@DdN(EltfQ3IKfs{V1-9B|3dhxo>~RHFG}f*Zj%yU%3z%eF$F&NMMRepr$vZYE zR2-7%Sb=&7$8`!5?+UaxwX9%i-tm2vaDs3cCFdm`w{kwpIC zYC9Ez1Co@428x*c2P&`zro2P(j0n{_DqNdx$_SG~hQL*k7$6Rhv%a~5wyqAZlQYtw z$LX4hm`8(2}bU~xHBYhKxcxmDsi8*NTeabPji#rJLKMGKZJSx`RTB5kyhipnZW zii*zxsia(NvJoh$rR58%#1Cx9d5bF-6;+8J+E5g(Xf72=TyH~{lo#`8*lfdbl1s!E z8;UXyoK;k|v_#x67`+(XHm_{)+2TeUWkGorZdNHO6I+jiR0Y1tMky*QTRa!NjMDwc zhAv)ESu(dOK)rCY4ZWmvF$M}qiz|!8HX8wm%B2-m=tp$=EjB_~5&HGkWa{$O^D+H- zkQ7&)Q&EDlEG%Dqc6k_%NDw#4QxUQ|(5vP?K_ zxZ;vZjNW1qVZ+TWEviIsAPX0<4$XF$gE*uo#Bms5V2Wj=V;Z{0@e~I*Gn2saPw@nH z4@}@tM4pwT*VNk_&#XVw45oRe>lVlqkufXL6k$leh#W;5Qis#IqOlpeONYlnODMdWk`3PmJ30V;9$g z3$sKh8E=fzXM3L0>Bh#i;a)3ftFdW7;|kC7nh-ZY5T5;9Fk@nTOb7IdDof#cK?hBU zQTh(0lY&?uq9n$2thTV>x{^?kq?mehMQukT?UL&n2co9Lte|dwQRk8BC7pE$^m(`0 z!A!K_g=o4sTE3#Rz5`?5^O8(P*NsZ`yeS(X$HtI`pUN*hZ|Q^u6&^bmM!v0)&X^Xn zz7~f9b;8rHaUSozl;t}b^r`~AtHD@Rp!YP0)`N%;xWsI27M}MtGT!?NrSO3sF9|Wn z)#Z3T)WH*Dc(ju4o9-6$e5CP7F_3mvnil$?MyH4d{c#Iwdh#rCFPw=D|E!Z8zkdT6*H^rdQP4iKW=+iaq^e&~=m}=0NHzs;w zuvtZir)sh{rlGm1ZKWEN(~P-1g<=&FQ`%6oFb)X5Y|b;?7>}OD5Ea9y6ds@PF-m0M zk~9*1MAZ0=C{rv=rrYqs^Lse>m*R?H3~`hv`W*Qt)u0ai14=;=eXeAA1$Ah{^@bw) zJb4e72h9}-;HZ!F0!!7@4vXVB{P~ zGE2+K)Z4&%0`$N_0$^Yva8MLpP@ME;tt1h`Sl%w=RLUa)+Z9sfCP?3(0J^AjLZ%JF zwu^*IrJs@M(;0TUSg$TK${F;y+D)j%WoA8tUKh#PbwbX(oZ(oP(!0y-n;4FBsfz`r zU%~O>WM}mWm2K21S-_mXfP`jotK>~X(6H_DLO&%)Sif+ z8KP4enGS3fV<`xgbRZT;7lcSuNGrnCc;{R3&{8s&igpTAces?N<1A(5;)!MGVXlajH&_*COe5Qc4ja?IABesdC3yY?%|F z&@d5@YjP8S_uKoKkCE;WwP>&+ctGpN-4)Pz{9T(la<2Ne|SqEm6O zoePD0SfSz)Mxbrv9<|uUC)`5NuN0KvqJ>XBPUSErCb}At(-TPyB)RBJOUPfJ&R`0< zht^!TlN#Oatf6{_>eGO0K!tpgkeD#f+>I!aMa+T%OG?gMT2fxM0D@Hrr^G;TCmp7! z0#a}>Brz*a73R$%2x1yuTE3*BWbT4_3m|nlwdk*J%#_cSATwmT-vccJBCwE7;_U!* zcIASq63#6|R4B@jQT7b1y+ti+>V$mpF_ppZD=C9HWkux+L!5wtb4w~0BXvcwr)21& zE^p-ic==Q$fRes?KP6OLQnp}`+8kLxQN`jVRh5e?N~y4le&*7}D7v8`d*W6xad<*q z7_3)`zagPPiKP8PKy4bT&}JI3w0r=Cm4U+8Q?!apBUi{bpHvC1`vIX2yMN1Ye zvBQ-mXD>k4Nm~f3GedFgnOMaRoi51tMj`_=%ZDFQMoX%Ss+KOX3Go`SxQsH^B! zk3x>aak*?lqNAPCAtRsL`4tuJp(;2!{Nl<>j3Jl5@)ETDkMP%9~%0n{(U6w2XV@87iIO@=;2M ztGy)j5^9wt6%g%4ZIff<7f>^M->22%R7qkT334QSRu#h*qJeknIvl1&#;P>sAJ`M zX`PbeHCPy<+2wd0r`SurQse{;md04DLnSjo$16kTe6+&L;Y5wC&{!cS>iAXI#xTcB z(uif=bjm+T$Ec3M%vMQH(x@6j2{}nesOSBKoUFlBkUrUBLPeUaBQ<)b(z>3k!4~fe zluNRX)b1Tml}gdz+8Ar1szg$BtaaXBQLHHpIwp3?7(Ioia74$%^^*55LY}S>8>Dvv z<$Jo0vPpXB(+fFO!<(h|OQKKJ;kRP=Vk1F2%O+f5+^P<-(ZvoLO&vjQ5X}kSEH+y11r$euo9EM)XB#4{*1+>JsOn|({^D) z3;6qE8j*;NA`ZoHSkZ>_A)Iu|y_$kC&n7FYVJ(P6pVa7-80!q(D#mY^qZkuYPgB;0 zWSGYKUHM<~1+=MCjx#3uPFvB?iUy_X3;C2Lj3olZ_th}qYixvCSw5{Prx67illefs zI&YWHXj%f%RySiv;5-y1*AwGeO+J;#boZOhr z*gO1IBjY)x=BB1voz(N1a551>Ql9F(7d7o9roj%A_f*Q{LcXktqlt)iWg1F>y_kGW z)8dFmdq~>vk#Q+ZRiI494C~V&Mo|dn!!XE!>Pwk>$Tu~4B$2reD}?OV$Pt8G=?kE} zxSi0$?`l#kNHJ^{L9Hd^2jH$Wp3-B;j8wCO4>d9aOtS@s3D(%PcI}xlZMYepIRo~Q z5FGS4@oPNvEvUiA8k?uFEa=Nmq>}CnHCCNc33*6Q|6&YmXm;w5?57%4%DZgcLPGvY zqswA=oAGC<_8Ar4r)hE@meYCGRbi7&R&4S!naPM{F*vb-u_wx{_LfI<`Kq-(K^~R4 z9I^&e4u>bI7GFx5_r!0+Seb*FAJ0EjiFn>763343!Ia?l!FD)1hPRHq^@F)bJidElf@wW3QpszX%QY7}f$Ap<_ISGST|y((pcp zRb5>=)_y~+RBjC)Fszlztz*4n=#|Q&5xs_5sXRK$8wSP^Ei;MODT;McuIIIcl~Dm0 zs4j&UhLj6eAtYnp%># zh+CY*MTayGNX^5OcoKoL4wB~hy9pU@Y(h$-3L&7-@Cu3PiN@V1Jf&(WJH{KNMxiOC zg^dY@63ILkSD2_rmRF1RNd{>gNM^%Y4f}dj6Uz;xWo~Z>ZAyHfY>*y-4koNYoovvC zpDMvElcL9XqLQws7<7a~nK&7iHW zF%c^_Zw;p#N{qy!p!QfZ4BDa@6Z7;APS3$K<88FoMDF%jna@);hQ~mGZg-qmke-XeY0u3oKUP$+sppzUKxF`wNTjNmQ4gI`Hc z1AT>40XW=TOlO-EODQf~`n?Q?xo&=6g5%dx;og8N<3coBCWB7TlIF+CCL;^oc#A)hTF2<^tCHTC8>OWs3^0Q2g=Vy_a zz|Ueak)Nd^iJzproTMmo#botT0fWIP%~;x-FQoCZ+1QQV8|9T<#?9!lm^F}y^dP~Z z`4eMN z5||OzK8T5T8Y>WCf+ddroQpMq1h18}*miTS6Hv?tIlT$s&JU?KPt{8`C%Nh#r?GzZB$_X5Qvvm8xQg1QB()Qi zzO<-{!fW-l5or&rk(g2g=_)n0Gb|hiFX^_Sha{08z%3Cliy}{|Z*L)p-ch$saH+|1(3fvUWsH==CsSa2Cm{fmz&@$1wT|BD^k&j(dh0P#J3pCUDYn>rG4zefj~-pOg11j(aFDxalDB$~u>7Hyodq(B3qhp|!Zka9vYB5*0I9o%%tx!OV4WHiM24%z@F^Ue<&_0|vu z&3nFs8|1szTPjUDBjBK=2N|aziMZF$TPbb&fUQ~;aUlp)-)gRJN}D>YJ3}?bdQCio zh*PvZf;@u`%ciVZ1>FxO{283XG)jjYFTILC>gAxi_U}*kkv+8oN0=e zulA}b=~4aO%v*o-dlqR^j23SXMcNXZ^(Hm11;$~NLLbQ+0pm-rt+&B26lf zsL?k9=Yv)hN0>;7>`#7yzpPKF21PM^NWI0ArtQN*7;l=k4>RWIFtL8pdl|(sr1yFi zNhD(`m&7QR`p_hNl>*-tU*PWuX!LdX^xpxQh)F!X4=)Sp>H94qMv^N$&Cf zfVL}eqeZ4$3A#DK3xM-cA7HlyR_NwceixAGWIq6y7}b6X#7xb@O?!yw#77KI44waY zVb6n7l9iqj$stmK$!<>*Ml?61tVrf&^)i%9`GwS6MvRgYcvOT&Ie(6BY#%(#!s(J6 z{_V$K8M33#?$dZ0Zs*}o<1H*rVcc+{vvfp^}`21Q?C3z&=i^b$cB$?u~vU!r(G<}VsS>lr}Vu|x3(ag-5 zpJYybIp8!}AGj-iOIedI1m2apz>q13a*AN&I&A!)AuvE;OEz-p z_yzvHK{_`eg>)`ku7lE^ia$U2PM(7d%^n9N3flA+vJRJIF^gP5Zo%I%P$SaNt^pGJ z$c73bsLU8Xz^Q!~;n-$vi*t5%07`^*7}3E3mQ%vm4v^0PSYG1$s*7;EEsr2aQP7Hy zRU7b8m8$k74h~JOC-1;tidTp$kgpnNm#}O}22DQtGJ?M?H7?=GTuMj?DjmpCqkaZd z8syMRSPn%&GhU?vuX9j>jxEP7Q)(e{E5Qw0hj|c^?bJ!mT46kL{DErGB{|2u8-GtB zH*!XyO8N*7)x%T*wD2S0lGYUZ}h;<-D&3j`F@VJnu_6@9t3Emvi2)Q{FSB67ZGV3}d;i6U&Kpb~CFA3YM5mxbmLMqWn$ z>uz}RLzK^v&m3l6k5D#^K+WZB9wCw8QGj!B9;MF4j7MlSa>WW!%!1_}imb%668>z& zc$5b4WCSQdJ261UDJ9s7JWBhO#|XgueT>o}!;^W9&}pyK2&1EV9<0Tvs3A=KJU(+& z=Wi;W(Xnj4V$!EeA8MgQTJl3;Nr+ron?DkxP!4Sj8=V`UT&})-3*7vT07pk+s^<%N z+e(Hf>3>0)krFk_Yk)I8L3)RgV0PhPERGM6VC_EuaCS->WWjwg^HZLJD;_oOs& zBneGfO)6&K$(~Q-Kn<^IKiw_K_3IN&eP+@~A>PZf$}`27Mu^?->l z`rMSxy$oSZRp1u{!fA(*<|gSRaTI}mVWhjs0=|qvVPv>TFkJ_zlxn{Txg&jHCk z0=FUZLzFmFPL8Go{tAo_`|IRrYS-jAK&p#?p@dcdQ^uxuu#<&?QW#UB zDFq>uG2%~;{vF;6>Da-T%Hh`|yq{U1g}DQmJnGOa6ksm?jG58-(TJ8W=m+=z;$Ix) z&MNsgfK=m}Mu)1pakX2LC*X8=4}BHMRbvTK!}V$&9>!>EcwEiHBN1>R58rEffD{1E zuJ34Sg6zM6``zfMUqog40I9}P>9@Ftlqm;CMFXGI8+W=Tc_DrRf7M8@J5+`{xeObC zTSQu%It1`hk~`h`QvjEj0?5r&otZ;64x}6BeU^xl z`S?f%218NQ8?KYkME4#o<|yud7z(9VTMKJ{{nFS9rSYxe$ZW181Al(h_1VfH*l(I z0s3eHJb7A_Bu~v>;cpHK_9+6Z3Qpq+t_IGhmO*$Guv%qW6b*)(sj9m2GopGZ*Bl$4 z(=IEFjZ%^i=&LLG%pSzZ$hC6V$c*d|1-)&snXZ{3##vVBmwH+KLkNWp5&_AOvH_5?tFkM*wwl>wa!>tBaO&G5l zk{oDnxvy&eve?5 zOI|a2fcD{ZES`aMF}@k zKF5qf479u(Xl9-ZiSzygF_`-%p9(zw@nFqCHu_kmKnWvYG1{Sr@c_PhLYI&Saq`+( zfr$I_tcG}i$Ll)a)M$DjifGpZ_VX6uAs(SG5RB1=wP$w}tv&HL?jZzLpNFGp_3;Cd zjaohun8zc@}N7I`2Oy^t}# zrHBWq7QIn}YarriLC&#r5%Sf5srzY^WPk4P{k#Tcy({19l~1`>?gY-q(QFg#Q)VLj zLGnXS@n_aplM63@leMNO+!Ww4UZD~x7z@MV^9f9dei-?c5+^Lj3+z3x2ajHlya#i` zMHJ==go&pxCq)mY3q97D4K*2(KKCKN^tJE>J0IEaEU@a+#M7+}I5oJqSn;eT zo()d}R*Z?pF!rCqXfcQ(SC0h&%uEe!TVs5e$+v-=!Ca?RoxpU|aHl();hPqJ#xIRJ z6lHL~aG39dejA0^VqANiFucC+13gG#)*6G;2xmHaQIB*;a?4*2$*T`V+cVp0hDhF{ zxv(!+TqlyZXLMGd&N66}gP6{J1T)i#Vom?w31+4f<>)~V1`+`?(^2pqz!g4p(e1M> z#&eQGGagzVPv%nuVmk30KW@C1+76?T(I})b!!dY9S)>8RlZ;qAt8(#zf90jfv5<8F z!#UYSj8C!;b4ad>qNH3>XdQqo;&Gj9tw)P_^rm9T5k>`%Ybx)VQG6m&N2f%LJo98E zkpGj(2zF*Ny?zg``QK$Yo!~S1wU}N>Fsal+NoDH0h+?#HA~>V57j2C&=0r>R55!St zGjpOzGMS|IBXg9{hzV94O_MiNVhz$acw~N~$?9CDgd;6EpYnVw`plOH7w60mfYC+b zprSIFdF<0Hcv97W8%^6T+UnZMDvXb#!*)G(nxu;#UO6AmV$uBnHOCrhA9HPP2F|By z^fBl7J0P-GAfrQEEm=`YgR>Ax)F5Buv*=++A^!ky<=sH!zJa%epWw$a0nir&NmODr zpi(+~t3<{S;e@e1>Q_ZpN0icWT6=ZSj3>&?QGXx`_g>ZM=OHKjeFD_15~O5osaC=z zm4W<38&y$SxCCGcm!g!0(8E+r3i8+JU2~A+8sPFT#83H7U>B~(+Y1x$@HxQNbX=Li`|^XXTXW10g=sWr2tu0)0bncKDYrVsJ9nev-Ae$pl4+x zrf~yv&q)}~H!$Bki+Sb^%rnnoetDy#2LY3LrryN(R2Ma_dQV2X{z#p}Lg2gEL6$3| zs^6wUUQQuz;rFvwlRr{bEpnh}yzBgD1=q{KL8p}0mslk~=p_E4N`BBu(k7Mspp!Vh zD)~YF_EVMokIsRTf5LcGa`jFnKjh>SWR(0`vf3>krBJI}rK<-y9wL}mIRz)7SlMvS z2cBHT0gR4PRmP>PAXe(>Wtvo2N@HdzO1Bo%#b|JiMB(zk1TOzm{49G9KhRR;zebqn z@l$>f;TA@efO8?Eg(L9tV|qCaFNdb!B^fUxr-E&z;RV7}?kqf)&d1MPpW{l6ioe3o zHU54x4^4Olup;k%)S%^4jDP$YPeyQ)bK{?3VY&SmQv1(B$_uFv>gk30;Yxa;zUaaW z{aZxyr{bfaxy*?I)VT6zQ`s}{vup}}jE<`O(+D#HKjr(Jh`kVRpHnht<7E^yIScFX z^2ce&t_d$jN6oA?{H)Kt0?(yCz|SM73^L21Ars?}m6 z@JC>`hV-+WTQFkYcGCw%jx8H5^V9b&!svICMP3&|it-u+_45?}n};%d8`!*QXt?Ws zA2he(&-l`lUj!Kcn04vt`OILprSOt&Mk3DmHPRvf#p*!l8D?3b10ltm?iri}qb1#` z)P}z)J|W%+rEpIuh1fkP=0_l$BhDq4KEiP;1(Wi;J5WZ?Npd9~R23cz;@=$O1&h#s;8XKtLq6loA_ZoDK|06;ggDFt@TQu&7EzxAKk< zVNL>3j&XbmI>|Y})DmVaCW8=U-vZ2al-zj77K9;dSSe%4DZs7;ddmryX4cm!D6BBf zdm5AoN6pV)H{-VBb)ID>%+%%YF}42}n#yS%wbF8kdHl5v2W=R31}AhMf*z!VmeaSZ z_!w{gaQ|`mYRW{ZEIs{_r8K zKk{3&{;5M+f83DPpI~c!@pK&Ku6WZa#Q(BuEPQ$10IyYbZ8IRhz)APN#X(kYv=A4? zq6XTllk;WTq<%XGS(YO#=YS)uTQDjkv?DBfhu{~X9bwV6Yp~>tupD72vL`})SLC=x z(Y=6`BP<2SB0A1TX;16epips0!g7SAF!2#~M_4N11mSXi#Z?J&gk_)<|I`uI3B6s> zH7Le_w=230=7ip^zO|np*Ep_02MjCO?~f~ybp!y}?~iNzgOn?g6+EF8{J`Nkp&y`d zuRrdXOay1|JWI7-3itwY51VUYEu>$#M=i0Cp`gIVEw`}H^OjNM(~bahVxK{r8HYve zNq?tC8sbH0APk%-x~D}@g2#6(X#mMbevFa=dr3!ch?-lYJ3#D3q5BvxtciqgQaO~!0xVKG z2L*(3C<)J@Bs_-_TMom}AhuS51A9-2{6gh0Uv>@Tpny;g^TTtPAD+W}TMqED7?uM@ zooBv02PwyrzoxHTs03UG+59yrw!&Duzb1utQeeBkCWZEBpG7u*O^V=+3i)eNh}fth z{+bjaZh%1kny6s-EFubD-occCvLx3^DriE~P=8H|l8DdL!5{JUBsNK5zO6%%lcEOu zYf@2DqO`vz1*S$OqUGSPNrApd8g3yl6C+%>A$1U!bwdn**x080HSMLQC4Ws`$VX9j ze@!YSL4_ai*QAinD7(KVh4a82l5#l@pG^woRfT$2gR!bm?`aS%X!qHqqQpn((;}^c zhxaBmg%hGq{)>!m2xW1J&bQ5#ua zii~sd#jxUK?4`&!Pwqt@fZGW7P%lMBwVZ|6F6Tsa%*erXHrTY>3PVOSq~mdf9`zXl z1EP0CrR?JdqSDtsIEsRl|3k@b>KNUszOV~m+Q=s97!?U$NcifhiKgaB7vW_;5oPHjAAUheISp;^e#ry zcdg_nF&HS$I2t!Xp5l;n$?Q+?w-o^;8VC>YBDEX=lDMu9 zN*Zuv9XA=@r#!^{vJuo|>Ko^$z2-r1U3{H?2o+B8VCGI~0%3eDeh`QTe;NX%fFPfj zC!uWPX8<>TGJaA@DYzeR`1pYa(DMknib8%QQ#$b+@8eX^(8ZVuF(f$9EjwEDm>_jy zQ76%LJMt~NU6a+tAu8SZn}vID|A5j*!LsQzw%9`?k}PC85V!$?5+UL`g5fdTg8Kna z#w6(HQ8X<>H^2gOxWNQGfR=p!=_EMmcj+Db;)#^mfgQ|fEed~#< z0jj#P7}jAZLm7;(bTw`@NCdkRNL7tn4I<9Ww5p-tTLDuwwsSQ;0(6QR;y*UX=QMX} zqzIZGj8yqk<4LqcN($cXb(%`trW=9w<4^V&M-gcJPU_U{^m9FaQZ4edhXKWAQ4dcg zZu1$UjF5=-qA>&cjsGjf_=tY`@RMqhrwMd?4oBk_OhuGZDpIeJQiJEfz!-~4#}GTG ziG9 zIyv>YWe0(-ss8&nz2>h_Qo1#Y%087R?nl5(;<8WUi92(q?$x7+5|8}l40$tRr1>NkyfL8 zbkP;nAfKhzTY*tEn9Vi#qg8`aMA=7K7RhrEBc-2;WSeWr{b3nwYNeyxN*@6x2K^;7 z=;40d>q&pasHI9q89zX|Qnpbe3~sY31lmJ^Mi{?DAX}UDQgB3bs@+yfdb=7JtKAyH+wFou?RMdyc5CEz zdW#a^c552kZmW52kIb>=b~DdyYO@w@vss|lG>|uaHlUM4Of3J*>@Wrne!` zDhhP1`~-n)GkpUEx6SllAmmO8d8bV2!E>O^a10}2en!$2sywr0{FlQnhyYZ=33`sdpqEO6U-6DepD79>S`T+0|j!pzqXltXS z$e(|~J2WaV7{3H=096d_sp9?Pa=QWCM`Tloat6-b&f9D2;8u0z^yiQ^4zW<%yR|%8ve=elm z_rG&vDwX@6`Th@6d7e zysA*|YA{w6>OBpj1w(2<_xli0JEQw_4LgU;px&Hn(C`m= zba$s}vfZP*dm8LzD3ImR9SF4$g*>{uryEXmI(c*-Nu_Z63{o5%R~b4=ebHvS>sOAo zi`@8N5E5ORola$Jxexj%d^Xq&ahEO!j)PZQsQJcn-X4*V@fnskG4JiI`(qDDu#N4AJlwxS^|$T{ZJTGa2WagaKZA>ZGoP8;M_ zTSg55JEi;QFf#i^(EJ{97z2?sp$@i1ax1;w4b*8g0_2aVDu31jNmgJ)Ak!B)n&J)zp1Td8T{e&T-OL-AZy<-5! z)in91t0Uy26f459gW5rl9d%1IoK}YA&!a|@ zXkNx*tlWaXr;uP55{%M%nWuuMpwn&eEXy82*zL$PiEACjnZjIW5?3-xtzlc7wmHJP0lGq4 zeq?LbfHj2%$OmFztcm$C4(6|P-L^G9J_?&38q)LQk9vNDr6%MbPMDLBoyg`%{4GQ_ zbceT^c7M>BsA>0_PBwJEx7=q>aR6QTWv|(Wzcongl2Bs%bYf!i0gN&F3N~4!@TS>$ zD}|DB$|7RMC&@#Y@-z;mJl)zfyI+>ufn9QSo z=IkR3KQJ_(q&!|`Cm%PnSB7Nv>CnuE56Nt#Ei-W=ttes!hX4QW{?eKU^)o^jtN&Ye zncWy{(Wjse+Em8z@~ddqZ@0^|_KhJ^8RN>^h_A4zjBypcV=Y#uGRFGb8MI7gjH?yd zGL za~u~jWDDa=8wSqp>+-bl56yPnhO#zuyue|G5TdR`Oa1_;8np9=;- zE7E2y;Cev^O^6(1EfAt4MxMx8AQU7i(o%w9*=!Ucd`cu)3%Fj?d89_&2F4NseNpe& zL9!Nz03wlj!1WTGuR)uT>UvX-fT$Q5vKDZ?r4trZcx^4jSwDWyZE3^0?aq*M~Y{Vq}=L zfa@cTPl|-x8nPB}9n|O);T>u%;QCl5pp{}|h;<2>Vqa5i_zJXJ|FK>(2a5kYv9Qo5 z3B%w_JB0`@0x@j41`-OfA45!N8;RCHAkHTk_%VQ32w+o*G8~T7Qcb*c11m<5!x*yV z7%4{avSi#!c}N*|A9d|X@;N+c@Jl(`T9#ZdOEQR#!XLstO5qO4%kZGiML1rTT*Hhe zplEs{&|MU0gz*U;#E+yrUS=mBH?voUWcKOM%!UuiY@{tSaTOLML!1iGBT9@eEwl3Yl;J~`1$OG$=q7SS~3JzPB6w1CX zDNOjfq!Ole>1(b^*t!&fQhfV$$p~0Bn@;l?Dt`!E^)@GTf(uLkyJhRd+N={VHUox_ zei1S0AC&zNp;&qOewExs{9%g7OM=o{}HZKcm(B6i`2%Du4x+MjMT=E zuIU=%5mA(e%LnI~V9k`yDOldT^y3mSPWP}HSBYFjD;}FdY5*f5QadUH<~j5bSwkvs zQ9!8tJ&|;51uzoPl|3Zc$A??`ft&#HFj`oj#QYz$u&SZKSo^}N&_fnhg+9*0stC4) zRUwYEuqwi!g_R06bYWFNkGHTY%0FFLRgj?ztHOsCRt2UGA5ER~qEw)7`1kD~Ev(O? zgt0VJY-V^^Sg)d{rG@onLvR)q{-SQRd8VO1!vD%88WP_e2|?`d$*!m6Si zXJJ)i=fn%Eia2y(Rrnzbt3n^w3=a$ITWF;b@p617_8}2Gp4B@sILq(mcs-gU)M%FD z^e#4AL#xauzX_)qvyLbiwjf zo`)}sYqLsLpir*>WtD8ULhZS1v__$1g_QQqly)1Jtcc(qhE>Vt5Q09sifiM{=UziK z?l`tCu0>~FqLSTySzL>i`8MzCyi!XDSznh8@$K&2|xs$?+ zQw{=$5|YMl_ZA*EyDl9K`^<-l95Ww5z=_TR!R1_y9_H8B6%5lv8GxfH0=0);Y+x-9 zAeNShXsY<_1ElDC0Pg}kMx3g}P@+ni@F1ob#LzSGpg2;VW)njNu=_FP5w3y49g>-N z5GzDDOANgjAW2IIw3PylFn){&i62rPFSC=6o7pRJaAuzl&1|?aIJ1$q%mlfu!)HWj z-~W^tiroyhn!Z40;NK*OZh#>AMgs9c{>oZ7UJjyZ|7Ah+C+G!B5T$pUAi9IW0YOxe z2Lw??9}q+p943e=lwA;2m~cT>{A+^fJ}Uo!Ao>m`bOJ$??gaP4 zu0G<_WK53#PAsL+{3TJuII7QyrBs$ht?z%*go_;pF;ZVz3)2;sqXk)pg@m{fGv7j5 zA%PrzD;4g9hqHFc*EItGN7pT~F@5PN}8nJcju z;5x)rq5`#yP3*;IKpE z=E{!_;tO83>`n*q*fcLiDs?s6!hM%xc83Snd2V;U_M7ZXY`xTBaPmBMF}vM|gg3kS zx(lqstQp@c{shJiWavSbE8he?aREj|-84n`;naY3pw4Qpb(NB-N>FLQp znFyQepme_sWs>n{;IHJb@;VzISMsjBUV~SUBA5cU9Ztskf+(TV$n(%}C2vtQ>eP%q z&+jAG{{mg6VsTG%yppd2j?Crw@R?w&0K?DWk@-1X)iH-h`8llFIhqQ`+RixLX5Sbp ze+6Xr)9kHg_S&2qOTRyX8*^?PiFZNtT7{hGnwBioOxkMmsI(2=!0*s}s%5e-|A?O@ z^C;lsAZ@Zrg7!Dtqe(F(4+6!OsJvX3R2t{~>q-ZPlnTJ-|uT zfunU}w)r74YbO|GT3lc;6xuur#vm!>+EJC^JLieZpWrfBQ)Iq$s(qUA)#XzD)=Gsp zix5`I+Byjl{wguTGz2PCI796Czb`0bhJK1&cuzABf0#PP4D-kT*d1*EH_bX{h8|#B zd%zqHimfR8`MaYDusBGCr=EB%=n88lj>A!(F`Y%$tJBDy>=4;29V07t^CRmPip)6& z@w(1?z~KIO$NxV1c6)16^M|thOasl|90=uuQU4=I(0_Z>k6UMhQ9s{9qy8@mnH%-1 zb8ghH?zvIF(veZWvcjW&W^-0(Sn8E^zRNblC7zx%opnYSs7Joza>jlspl;j9@1gM zQ-kCW>9FB>7j%BV4Nnc2H>AUcr}Cpiy5!52eW(r3KO>b2aS=&VGY$63rH*651GRTt z!WBz6kg{%}tYYqV?tx2*)75rG^k+=BcUTm98Xom#B488K?~1S^dJP<(hI;T(yywPj-mxm5z}WyZMoI3q|Ifhj?8l zgX3oZ-L42r6~09q_8lKeZ}ey(1}|mMKj@7fN1FcIz0ntu{Qepg-$T98SB1>=M(UjF zjnqBY8z~*>jg%Gcjg%AZjZ`puqc`MJBE1og5dE8LPaGa!*g{sK^9l;s2qK#9?og9RYUNK~6E z5yp#WC@IdCh(AfEC|*!JIdQM4WfL8O`y}o&nn%&zFJMP|zkr?J`vneu@0YmW%FXZn z5)WF3aPOCRNEFNK{SpsbuN`{7z~#`rU*ILL_Y3&i`z0Q+aa5HoX8QSLbqRsp0m*UNm<@=R@{>iI;4^yxuSIJIjyueuQKjN`n;i@->$=_ul4hB>-dLcsa;z8sIR0^n>}J>!VwWt3nVcpRQ5(ZL;oj>lgS=}*F0tdstMEcCNUP?}@P7;+_P>1_v*+zt}iJ{!Th z@?$h+9Dp33A2WCium-W7jpq^s{3b&6uoKSlj2U2I-5DECukIyr8}mexKVnoF&iQVF z*Pc!<+Zj`eF})qEC?tBCucJg#Z)5uSopIs`vkhFHB!a*1v&bGWXW|bFBm7BcoG5bd z1&bXAJng3^z?1NYEwM43Mb@j+$e!#F*()6*EA9{(;7LJb&V@LQ>pEGSWB#9Y#?5Qj zZ&5UP!}<@UQ!XoVoM#8&JAzJmFVgnk?v#0a*zc729_p08A!M#oR_9!&tnRr^S?Nfp ztgLXStej}4tb*AoOAj1Aap_)=f)@YY#t=c?p-y?f2s%WkTo6w+-hj%GqS3dxD~?@S zTkqfO9Ol_Q9>;|I*^L`mn$Lx$(KcwEW8jMCrFFHdoOp;g7k5A(U5iVgL%cZ)YL?Z^ z!5!7;HglU*cR;g$Hf*5pv6HyB)&H0L@Z8>&Bsoa2dY2eP3!R4^V?;KnxRu3J>9Cbm zj(#WNbDWbbc*^(b?}VY_D*U6*4DWBP%MXqdiHE)A`?S{alKpuZWiaNE=xj2=c3yG- zjlacGF};dpSJ}p`O*rr%zO2c-ZFEa+H@JlHAdA8MJfj zdR;;TE9|WCBAaxQtFPEuy9vQOyNHdQwc|ment2vehMhI##662C!_Jy=Qh=mE26omO z5vGuG9>!C|A8TH(;0V(T&2863Xr}RQt8mvLN5DtS{$SBB~VeSlM>3bk+MpV{} zsH_%;}vlK$FS!PurOWy-ov!b$QMPot|N#FU|w>o@9qAZtlf){>~KB_Ua(^&3~1t${3k4`i)~%32YXwIU>I zGV}^nE#2cC3b`fR-TgT#HX4QSk!bB3g&ROLv0JO`I6Vhv9|CsD)8UwZ_91Y{czX5$ zySpl&#EYJN!0xU(bk8|B*xjXKm<)NLvk%yaRj;L9-r0x1rOZ3j*@wVOg%>&d5b!HK zo_)Y}uEtT-wI5q6pRDfsPMG9m=s{@MjY9={?t_*RvAcT?la{-?zs44j7o2^-?yd@U zsJuPENhFzNJL$?(Rn_0m_Ks z=l0-ap<{k;%o$VnX1_XpZ}zts_>aqA+93$Z-y6OcEWy;_<48z&q$QBPq`yJ>4`vSN zlSqF}X}aGI+D<0^C^g|#FnS(N4}TIG(7@ArwFrXm&(b^fUrH35zoq-CSqv%I3hvVn z>Z03Z7gY@}y%b*fS1FE*8OH7%zb+xTSKQm*7X6!LU3hvgY?J+6Wb9-RK?A;F^*HPF zUa~?%J4lS>*YMF72L51n-@GN9Uad{7+}eFxsGdimA4$g9yC&l^pk+6GrIopEJ5jd_ zDdnS}Y=7L(*wkhx3R6bcMohIu-S*(D$&+}FL?m%6vz1C7TiFfTj$euD_?4)RU+tiyV=m}KJ;yACR;_rhgl0W3 zAJWvjAka*b>jE2DT$AfUt4d0f>q6_AaRx}vV0;X7kIelAX5YlUIM2N|`!K}cQ;e-z z$(#kuo43F!6Y&d}8HLM0N^UHq$4`=!+*nB0Uw|B_bNnM&RwgcYoIz4I7LlZ3#lc!N z7IWOT7S82C%~)zHMuk+2qZptS9tLZ@SjJZRvkVZRBUUf~>xIw4I>kzj=Y`V-Z<8u` z^kdNShYV(G(<%*g;pydmWja_8Ai- zrol&pmP#>E6nUJq)QXAXzVjF~ymDc+){VoZx$UdOWFefw>rmcqK}40#aJwGGXmJ+% zRb)GG3ZKFs79wLt`s-1^DLe)4qwGk`2#@{_m}~Ke;{o{daSF@8;+hFOok~w#-Fxwe zH4x{zJBh4Ur;$C`A+lFGMpo?RN7gMAnR6os_^xyJVgK#*C?BVQi;J6DPW(`op_)-I z9~lDmnQa(<#h!Q!N&0UuLwy0M?=M5~9m8$^0JolB%Pm8xb8Z<*-E+%ON=KHVloeiv zQciRkN(FNn>hJO?k-Z^-EdTeB3Wr{p2^K;+ta)@?%s9jv1s1vD1zje`?=?4}!3>*e zkKboBMWSZf19sF*d%(^&(;hhZX4>QTTeQnQ0IBYNkE@h>fGl+l1yLAgjIW!z3pkw;|~=EFgup-9h1xKW197VAQ25 z{(S^q zW@2dDqM<&=-!rW}dk3C#S7E4xk#=!2{5Em%?GjApV5Fs0!&gMY2WGowBG1fH8A zVk=jeFhZ%|$L<588{`e8F9`F8c(750dEj~(+BjxLL~`eTDBw;QVrj>Nn~j`bFdFTz zW-z8I@SMZ0Lc8@FxO8`V*j|MGjOlq2%TQ1AdHi85!>)(lWyPN`72y5|sRe&$)87Ge zB>u1z!Jl+l@gjE$SZrV6iKo!wFvf~MY_M<)ypza!bsE`|9U^hnV8`YLtK^;PPg>#LNG^i|3V_f^V?_EjpFebqtv zlt^F2ed71sGI8s%7s_^P=Si_ zi;u3wmf8&#Kj`d*^X>MECuVnto86T^Kzu&`h6 zuh%4|4?(maWUEAP2pTA9>+g*u2hm8wp}Sz0>*RJ9xnSB8OuFbDL8-#K5q*S-8(0o| zf;t`YIL`;}zE$p$dTg&a1#g$5&B)ty_y;tS1xHRXu&Sh|XJL?$*TSTG0_V%!h<|_x z?M8eWBua2-H$pk#-3aAiH-a*-8*w|r6vm4vsUI4uV*Vs)MX&1`>>YdzlqUx#LD&l7 z`N?*KxdWvWdlH_W3WgUe-QSh)5d09k5(5}doL|#bmQc~W<}IOWUFoods_YI+sLJkS z2~{0JOQ_1|WC>Lr@|RGdSjQz)_1f7Is=B=I5~_OXxP+?wUb_W(8SqNEee2b4t z$GbJcH!ME>TuMO7(>Z6A^`7w>nzn7E`vS`or?GkSK>vgVKMu)txb)a%5W767NxTr%Fw(yT~p~} z%?tbjS@^+u_VjT^nsj`F+>Vnz-f(9WHPh*mfAvbMlU{8I@JPnvm@0QKh0z%_h8_urX=9GHX&w@|$Md8MB6!zAfR7CwC)xXCzmQeV_SeZ7mM z@qH!0?P1tCP$hLI)sxwT@IwN3>L~8u)(V$isA(<~oQ@BisH7i&C(>P;Qr=Xm)@u}s zNQu|Rb^k=ehFz$?RGevs($s?FJxS?!B8#(4-lo>36zPTO)x|S22jCbC2xF@z`PjtNVZR<`-3bl8Emg#tcL2&cR#%+lA!jB*X?4LS) ztUNtcpNvydym9R|TyVL)ReP%{@9HviG6^yK;9bK~#xK}`OOxr*@xHBb#uJ!V$VKJe zby{wb_f2i<5vk+dsMR`?AfU>-NvRSMB8P0eTa?v3A%l4DHtm9XBPocP_IG5wA1c38 zELM0wqGE1&Sz_yU$NTY6Au1BQvE1=~QYB<1@{7GyQNUCPeoZ98f>zCIawGt+47XmgC@a8UDRy$_}hC-inIvh z6-%#NynJcxoQ3li0#g#V1EaO;*Jrmw-TUVwGDP}N8jHjTuwvno#jJ;ObJQ`*7Otq3 z*aAmoF+yR5Bk)IFyyL0~iTubN8o}c$7{Tnin#CUpng$_`t6jDP($ys_$+fDk;}xim z_e6gPfTq9tE(Oi4ty{QAhmJl`vvkSw70Z?^T|i~k{iu~opt@_Ruy9{ZxkJ_Q+Bd53 zr(#%kPR(1gY*9UbYF4a3npwum#W|KyKVgZ!x-80$_w>(H;J(ci2+bBsO4Tf1h(-1s zy{z__g~&RS;{=%*gb7FDtBt#V8#H~N?~VwNEHAyxh?cLYS+R0?2%=;eOX?VjB^K8n zgEXdq0-<`%^Xc1H&VJw$E?9psKw01FEuo;rzw*VF{MCeC5)mhh1tuI0r@uE zl7YMeGnMk#ve53flVTGh7PxJYZ8RV3rA#Tj!M|rdA@MIicJUlPc6ryh<+an8x1Y#< zJ!9$+JQ+WkQ-X87>&;iXqwf;i*0{6L@oq5ldPxW3!A5ZldN8#d>FqJ^^&vm*HMF7| z(akXLdv+|E@>I*4K^ut6R7I{YrAHVNPLG;cZ{P7I*1wMBCT| zCBARP_LhBrUgz!IW?7})_AL#~VEn)`$^b`bWKpc&j!mm9T<)+g72fuZyq>SIK1-o@ zS$3u8-%#zV@l(lCx4fz!7G1JxnOSZv_kLy`zz`&E2D;_d{WdnhL{U9I-|_CY4g=^Q zacpSXx)n$;@8{N~KV1+pXWAQVlXQ=DE2Udw6MD_HqPcCz@3qeT=*$_ZUQX=YXZd}} zZ)n85Y7n}ud26;61>=6}*oTg5VPdBVqqzqxv$sfU!l864>Ot$!iw;3ItC{zRb?Yf^ z+qTwo9BBYevS|5keht#Tu z5X8cJ+B$cmvwXuw$J=L_UCG>3U61sVbV3gAw@xK+^0ux;uE-Xl_o6w7>~hP;dALHp z-u7TGS>|}4OPaHgZp-e=wmeMmwy)iRftLl9c)z#&$(9dP55C|JmV1Qd>S*haMu%Io zELTTEj(5P$;^(4Zx2$blj{)>6mbE};I5veG?@yLp=gGkD&qhanOTBE<#`=%7!8E#e z&?IPIv3vz)IruI#<;D}nDi14%xZx1W>yZC7tK@1A2kzTYINmT_#pfE-J8U}Xr@U!c z`D5j07^l?Sh3el^e)uIlW%SOWUQbRNYFa`PW!M3%sC~@I@WJX&vjL zj*j`c3&y4 zrD4gRLdvdZP)(JgPbx$5_J$GV&+xaF;^vM3ho+;_MHTfR$MQvdUO_9^UxrE)8W z?S{AR#MbO~26&TX zM6CQ$LzpI}Jq<2bXHcOGmfg_7axmI#J?%zNu2Ue~cFVdN;ZQJkxSWQfc0n+GX3^b(S|!N{8pqUdvq0mDw)))6GFHC$g*&cC<0r)iGI0%ZKBY+k%miPjtKr zmvcT2+R$0!ehKJ=uEz0(NaAqRmYZx1bvd2m3a($whPj+~Vf$1Yi%MHg%L1gRH{9ip z2TMHC5EyxRQS_W4c9#M({&xH(uY^OOVHQ51bX`42W@Q?IuwQ z;8lE9QT1XsU-fPuK=pndR38{pU6mdjQrfwF z49dMT73Jr@zW=OEl58i z@*VYEuTON(x=~2~`b76^b@s1MbU&r;{`HCOIZB7FPjt^!R_^*l_dMlI=wA&B>Z}hqT?hup)Y#F4A&j7N{FM9*TM~rSSEK=QaSNV?x>`4QcfXd z0G#kEgei&_Q_^HSCHzS`UE>Aa2u`4Bu#68*ux(@}2Tu4gle|2h3BUa{e}@qCxMlx5!Me3yEu$mE~zQhsH|p6^n! z>af$8QI8lUs}K8Zn1n&s_{-3+JA04lm6tqP*^S@?UfG@rpYKvh4wcWH?^0$w6F%Ri zyc8~rX~fbfcG#b@T4YqI{gy0IrJlDWQZRhJOQrPA=;ShV<)xOM(#)aGcWJ<~O#b;U zqc)# zQeV_Sef5Kj@2gVW*+oz#btlz}nT7BR0(a^t?%-|~F1=9GTqroPLid!qLM8nGm*YJL zQJ`wQCxZouLIQL5q(T(ro-w4E&H=rXl#VAAqM%d?t^!d|GUN229Pi8@;WrUpzz84; zYZ!q-6l@z$N>@WJ(2^ZbMj#3wmFa!T>H9i_R(J6(BqM2svqQpyj2Yt#%VR*@mKN;F zm}*Cwa`__N~T;Q zSR|Hx0YEawV|^lNAsMVyEaf3ch9*lqnS*3#ZADoRAQ}2?nWU^g+@uu0yrtekGW?IX zkPPj3dn4L$?)m$)@27s#&L)Ykv`NPlS2duP!~DM zLNdaR7Lwt!!V&nO0e_9`5!oA$dyj8o1Yt;qB@~ijiLfMpU)-*(Jy8t-(DYY#Q&1R^ zVTmv#!?G+S!%|`4zM4KH<3ttyR8OpEb;*ZhC?f*N@L4&qi?1$AJ0KaqQi1zUroaGR zp^%Im?L#thoFFrUFrBHLTP1vc7$QKjy!19BvapK4YK+eiNQO@cB*P~HNQTb{AQ?U* z9DfH$#>E=@fg^A(u1f&PkT-6g%S%{*pGvYA`$`c)LHC0fFmxUyBcLrLBcMAI7i`G9 zTBjmk+fR`>yoEqAa&!R6$gw&Tn_C@y{p%|Cjb>PH>XL(G*jI&QSVAEgmIxpjmJUNQ zEGrDCNLXH2n|w&d-&K|OenC|_LNb(z%D-S zLVz{_B{}Omg@xf}a}gGTWIU_#3d|zP3m_R?a*zxS;zKgVz#HQC%%u{44wBKOCV*tv z*G^;hAsO`uUJ$>G6Cpw}Zp2z$CJf0q7E7oco#sO_x?#DJbFU~QL%W4k#)o9^W6+ak zq-_eehi)-!Mh4kWNS$@!1?1iVkn=%T?VEe%9TrDJn zQ(HC{vTJ*Vp=gZwBtAkiz9}`U5~^clNjoY5uPW0yBx8eUT%EClV?Z)Ag(g^zP7|&+ zI!~A!)MgpEe#5el@Y#f9X!u#t_z1~Rhq+M)m4A&Dv>+4I627S8H?3n`)RB-36}dDc zkc`a#cnjLQM0TfWuL=fGu^%fTZc88%n_PWM=s^8`RL zSY-v0(MRg+E^SHu&s*mz`xN%UQn{7Gb|VvoWYA-*{4B$j;Q*4M%yW&z5=C67(}iI% zoq4#}a3L@U$zYNZlEIZ#fn;z^ijWK}HU^Lk^|Tv714xFlu0}Y4WN;cvNCublAZDjz zBWje%gdrIkXpb@p$vgGNvK#2+7F!kc^KA1CWe@cs&}-g7|J(0;@&j#q5vR zG{~Zxg=DM%t&oiC(PH|L406>!TSf8z6UgE!c_G_lKr+}icOxW&r6ZGrWN@y`cG;h9 z4stn>WsR`Y#=)+R$x>QA2+7cbk&#a%B!hE4S!B$EWH50!YRgTwhPs^2aoyT4X2V?0 zy8y}1#-h@e)3RW37my5Y^`K2l6Oy6jxC(V82g%?phP{6P$>8(@kPO?L zjCOToiSEINWN_F_NQRE8ZKWFP?m)ukAQ`NK84Jl^jxzg6wl$E=qNo zx5ysY)mML3Ys7&QpW3-{4%HQgOuJ(8%DFRO{c$B=;dBWMoC=|n$)tU+Te8?GkoVy*pi1x|(hN3X} zsxM2OVNTk%3%YpdUF@EKtn8NYcDu6%p-k-rUey*7Y;fg>cm|Lz-zDXAOX0TA1_nT> zli|`ggHQl$eM_1lRAPF(-u<+dd_&*|3oJencLrv>ueoo+56<@!lX;a}Ou`?eUMre$ zzdpN(X#71AaTzqdN#vEGb^M;b!S!Z+0}S^TeOte|VJkl5`|cT7okSIC@Fy(tBZ*t;Oe(Ik4+3; zWw>L`=P0Ry>)x=e#!wXvj=7Lb#P>0@Q$u8aiWTCfxG`UWn4toUYKl|ju#JxSc$^E& z!?4tC-#Do-EphsVj5pypcq2A`>zmiM0I*nZ$Jpiuk!Eo1l*L-zAWEt#dqkBs$9$LW zmBaf(SmlUH{EisUpV|Cbj30^PC=~mVxbYdLK_nLx0grI)XZB?GX8(?7&T+UI3&KZj#H#-~ zs?!9{Xy~?q#AP6yF)XY$y{a8^Puy_LzN}<#_KSFKg_qJH*qK0>dn6C`gEJQSa9^DM z1|1I(<4jv4O{4gUUX_Rd;G&Msp7v~aJTnn;2PBV|oUTgn%VB(FJR+(}$hN^Hac6>v z)z5m_Q0GVA0v7M>_Usk}e;UC@N&3Fb^!*}Oqc&rJ>zJ46bSLRn*`5&k3D6T!YF>V; zOroklRDYmM6d?YYASuD+3CBDjt1@MUd$Zf|yu*+~{m33*WRWfK^aG#QoQwyhZpSu>>pynijcqY5c?%X(0R zEh<^I0YPX7H@ALv6V3yT*^U`iW9vr8O&Uq`-JADj@4|B`K4J$@cH`?YM?sIY zjXq?Mh4NhQR}1iDm+q4Ilu7kif@oNL=j%!;s?Qq;K<}b)X)GYhm zcAsx*JW{iwjwMstv&T+t&wd-~tQzj;>Qre%e+eGz@KmX_UKZ3g9ME063HLxujZ?2l z;EmncumLL>xX+eFco#WnsFk{a)W>}4YosiE#d^4dETCDZ$NA|D=iS4oXGS7s4_B|idb2EAXhQ0ReeFj4`|z|wSeKD# z-B7ESvFk}})((5ckM;Y)?TTa0j%HBQ(fNFP*8O68wi+U~RQb7cw&c!g@P^5Eo+CLh z>q;bI1_5rv1kYR$e-Jth|0#GizX4;!FYq>^9Y3?<*54cS_dV&gYf3N$oWY*^+mJeg zz4zmMVGsT`U)YNmHBf)YnUlmv9rcCwY%?D7+4w&gQ3ZI@eddfYpa#MFh{<@tl`8Dr zFNJS@i@75{d<}j3j1gNv&De>b2?!$U(Ww$DnXjpOvwZcI!H1~V%onP65nrg@6?l<< z#kZpV>_BSGb!shEnrUauysvoZt9qJ^_`?cn%={3{`Q45MqHa0p)acmx03yYs`WW%v;4T90@^%%}UIh51+t%kHH@IAEFOJ!2VYgPx1L7YVMQ} zs~F;Qeu!WCAu60BajFQNYbeC*zetFE*CE8u{SXDCtyY7bBim5#nzQR$F~$r~7ITKd zLn5~C1_b&$0!2LWI^Veq#6#JQ@W6Fz(fkBo>Tu^s9Fk(!Az+W%HkEcQJTJnlcs}3v zJW)Mw#yMGhEgS23-w^-1>Hj3W9+}(gvAxFpd&S2-CIdg}NU^YM+xi7Bh~pYxx6X=O zuTG2HlP15&z0$GB6?Z6d-Tu`g*RMm78`z=94Sv5O=k&$t9@m-N?|%T^m+gp+Elu0x zCg%?Y#Q!K7kB=ggav=UEQQtloh~Ee6$JvnJOjVhC=H;mDz8N{byE&7mdW%QSjGQ{> z%*d&G&WxPW5i@ei3Y(ErPSlK?3Z@ykx8zeIX5?Hb^#Q^9KcoIWSpN}*I}})7eCELV zf0sDk$Bf*UT;LQsg7u@U58sU37)1Lon2}@Jeo(t{PcyCZ?Z!RK`2KSfah+O!>k`9) zMcj)QWQa@tQ5;=K6ql?eL%3mFva;j!j0Q|CC*XPsWv8t9(-1CM9WsRhE?F5Rg&lCo z>d-ysKwL5v!}@Mv6ql@COA9;VlGUZG@O^N}>ZPJEAD68B%0i1vRLx$bx*J*0t`6K}oI0s5YM{Pq>EHVLv$(S@pi1gasv8p* z;fulTYRI9E;tnovMeZt@Pfc^7;8YtpQAt0*8oc`$-1JnccGy2qtV_~u55Yyugr#>< zC8n8TaMLF#t!Bc~rz&O5gr(0=GUIfoob;JzK}=_6!qVpr!-!YRgr(2-yElI!GJU~X z&E~L~u=Ir!5rSsIdPL@A$v7p!=s#k@p|X3f0_B^$`Y)T!O5b0D$Pnp6@h%c+2&3s6 z#j+SppCru6Vl;hL7%b(3AMK`D`jJ~Tg2xv#g4zGJ*{t*vy&wRZ{^~mv6vk*;B8<_r ztPg57E8V_Eg+KKV3eU%A`Zlu2S4&#|%xqTr=^v@Ued{n62^q!uu+3(rpD#iLNS2rO zGopNqrqB22b=Se=OtwoB8me@f-PaSR#-Ywqg*#%xylt!Gq~_im;t9Wk29 z%3(DB1+!Uc$234_&v?4PydWR?{${SyDRYnd_sqybXrnkvHJz5jR9bd4h1FV@?k%S? z=5LVG>skDqV$x@sS1}X8xCiFEthtc%0#`d_bfivtp?j-rUdIaso06_`82~M7p<+`4 zMy4>prlc2H2_+alSZqpqiRE=K^s$;2yb-wcE>vtAu_*zw6k-pJO$oe}75dne^m6x1 z(YT^ekb>!zF4Gt0LJD;oJ$uqhbf2?oi>rleQ7tTe!;z=en- z3mQlt>#}_WHid(vtxkHK`*-R5b`=WB&;LB1eF}$6VEP`3O(_gvQ*3x*Q!q@n*pz^I zu8~+m(3A9fiI3(&LSj1eaIxWF&|*{4nz+>e%gV6z-l0MbF z16f0CN}*s=(r3622}8_<%s{!%%t{ZG{42ERk#w2MUL0c%aKyf0dXUR579+JnMUSKh zyX+EKXmvX!U2d~3BT6{w3YWbR_H7Fz20hY4M17z~3Ip^=dZ^2ehO-O5APjTaBXCem zs9CzwmZY*^2%aA9a_$NANFi2du{6cvGQ!HP^b4Gm9%)Nj6-u*3kEE+ywy!{s6e@Zo zJ<4Un2=s^y*q!ufm#vdqKDp4=@G&kMh9OwLQFD8%L67uwsU?M6KS)W%_@Z8*hC0#&m`ftHDGD5Rm z+Xr4mJT{PEFm9KPVOnHeJr_gN7b7`%U3>O0MDiX4UYUzz8Y3C`F?i^64c@MY%K&Gf zUGt?sW6B=D7h=t~7yi(;-oDagEzvg>4JaNScp01>) zuI?@P!>VP>V1LcGON$Ke;pZ<**}k!(;fHM$IN!l*dO&Op{wxL7$e3jOapXZ+A^C%1 z7vK+D1!Fo>y;rBIKWXw+f2E`9#csap-9CWo{W_>VFr>OFJvgMa^DMr_b^cQN-(DT` zZ$rv9?r4CSvJYi#@LPbQ^{$5gQu=VS!V`}pr~l2h!PuF+99`E2W1r+ZXJ_^6ags20 z)>nn}*9K!}tFym082gmE`)h--bCeFP4aUw@R&H%DcAj#=YlE@#RWR2E&gBMH0-8nzR zUbJvI;B)hRrwc+(HFca?9t$TR-!2R}P}IuB3s*Rw4l#8u=3EqF(Vw0&bUqVe`&OMU z4)H|fa_5o|i;>qKT~oKR*73V%N2Qd3vA zWDeGG0So*>h^+@M>zNB*46&ClSb`fxU>AqOy)tz5bS`3OT*mxmkxGF;(& zY1ltq)IIbn?uW5F8!t#tPTp(E(MpFeu1MZzv<3<{Sc47N(TghrcK*c`frEc>Me=?t zH~->_gi)(C>kC_)yi_=xfr_Dr+QgRnpB%iT@ozUIC z$!9Gyba6#;pXKE)u1G#-Ss7Joza>jlspl<;6b#m2lP_3i{>2r^7tP(!nfBv4U4u=& zWCP}1T#@{p$A))jrjp&@>b#Ll-Jt_(##~gH!wM~$aea$Kt2Fg-~A|uOK=w{ zCWDRZ*KW_!N}an|VvTWyt{0$5CyfP*$tT3P5P>69i`MR%gB)Gkk_De-#wmq;MtrJ| zqBXDDukGKAt1Rj*N^OE`%z$lcTek2tJ;6lBgK-KXl=J{l>v&fZgsB5qm{L9P0VfFG z8OS^jw!YssYu;hQt33#h);Li^H;NNh$ zXs!*{Gtd|&F$MlcjF}dTOfHCn?9?Ait247bTaV`o=r9NqK&$Yy7?b`NU{c}fLWzop z!EYH9GBvS~ij#d6M^MG$tvNLZ8CJz`ik}co@qFjz@3d!M#FS?PgzyBwNThhZq_{bn z7x}J{f_X7qt5|m)g!kX!F&n-SYh+wfssq)oGzb6Do?ZEFd-iy^9Zgf6P3< zlC*|g1bmQ!PXnQXUl|M$&UkGtb~d%3ReM^S3Ra@6czy)GKZN`W-<6Hf@4>7RNI5~R#97a-&&#bpCu?ut6iziiL`?bq$u+u{9D zN)c7Ji-;G&8_Y%l?OUsGoEB6vf8DIUO~JNp+C=E?mf7Jl*=EAy#Gqrr$KLKvq{$i6 zD>liZb^63!M%;&wfr{7t3TQYyX0JPB7U=u%zL_e&;SOC7dMK~*8Fnr>BX~XIc@U0& z!O<9aOP6TZWihq|=t`|7flt9Qy zcv|7D1%g;7PNkgPV6c3gP9ghAeB2UFt6x|?vz5qDEzCj1S!>pyB;JE(06g-JYsy?p znMZ;_nd>R@LK2WE#I=FU?cZm~?sGMK@Urg7&J_@mh?6+FLkbb%d?V;_we1vAktb=PJ<_!65b|gOcIz!=!*mV`4 zxkAk4G;_V>?k1PzkIV25&NwjgMC^rttp`egELMkobU+EW>^+vffo!Z&6BzzIQ-W2H zL~Jv7$vDSHBXQw_y4_;^e@pzsBmvvT@5?wT5!))Vv%uBfZaHhf=`06&g>qoJp95w@ zkO7I??5aVPC2Ht=xRrSL#9Q5QcrF9umd!U|*?+t=A5)ufXNdu&=;N9_%aN zE9@)fUyfN-bR#m!mKlP5rS@4~4)&FL&ayJ9RB%_ODiz$78G?PKUa&#(VPB~i?MIKL@SgFL&&VcxQX6;4gPv0^NN8{&L3;5z>Oc+zHc!^ub^5q@#uQ z!C&s-TZQ()U+!e33I6&AGMKqqx(;B~?;) zQr-B82=9U0Rql|aj^YmPNa4~8HO+;BQ%&GRCH(-a@$Q4a+^JOUFl^j8C2re&a1rpA zn|DW~8@VIWjouOIo zfWO=)4ub$_`m1kJ(1#2Da@$v{@TcCS@c$hALmzBp=nn(@<-R%wqL3V~{hT5{H1L=E`k5;CjpbPW z_&)`Ixo_=NRo>e}RX$Ykm+P1;g!YWP1!kXo==+1eaH905>fbZNFqQpx!C!915DC!h zw-}b3V%)RLD`hUAB(__{&}AzJf6_?uv?lzXEmu{<55W@K?YNgTDf1NAQ=sUgA46_$%-b z0e`uZtkuqVLEQ^ zuBcAHU+$^yZOED&_{%-Ry-yed{+fz%pPA(jl>GC-Uv8PpUYs)z3;uEk;X+YzeDIe$ z*kzZP1An>YHtQ_-%dK$P8+8DGxxsBtIq;V|)MZB#0)M%~T=ob)_{*)dB`F8~a)aBP za^NpFxXmd5f4L)VNeh9$+$xvtYYzP7j&j*B2H-Duw9D2h2mW%$xNIQu!C&rJ_phkA z7X0N-ms%p=FE_Z&Nx)xjaGR5Wzue$9Cjo!Cx!au3b}f_E;a>uOwP5Jg=L!5UWBayX z>_+g{co6;ACb?(2%;r+Ax8T73x;EI!t}~{f8z5Xbxm+hNy0PMzMVy8XK=6kVeBgFF zPM<3S>ew6xK|!6%2CP3(Zth%;n)^2raS1|3&jYs;pX#_XG|(;^Xhts33=YWsKrWk9oP@`Gxnd&7iV^%7gr7heu}R{XRUMVFE}{&+c`Ke4$bHZ%vx>@m zjgd3qWM%p|`u!tV{+Du&3+opx9feyLt~Jf7!dK!MxYKdwb=NO#q41A@F^B+0(?Y?Y z06DlZyHhx=^Ng-w2hK}3EGcZ%7NM2F=ln3_cf#2vv1+)vI~pAJv8FIjCdj# z8u4D<+pz`YV6MrTrx@%CkVBfbZXlM@JWV~^whe>9kmX-t{DdJGk?8si{k#m;P!{6v zBgO?N!{+xD9|KuY&!4056R3`D#Pz^P0&|Pi{x>^*LByT1FGdc(fM@!Nj?-#CIw4=aDR-Z1pdCx<(dPg0UR#Gz@O|Eq>9`>!{q_Q0Z(J$n(FF) z3V)a`##H%u%it=t5xj2O?Hjute>f~asA2H#4v5jF0rdyx%j67-EyEvn!Nzo^bgxd8 zezJqouXI$pxP#K&K7i8wIw(D`gVKXTN;}=B;xn9U2V?eb<}Y4ZHm7XD=!v7N%f?k# zPpO_TZfsd457)Oe@bZGSTZfk&&pRr%z{uB*hV8&%l#QJ*Y2w%^Cpc#G=rQ_#)B5$J z#M7A2^=D(S43F)RT_4Iad?kuw#o^G~F2g6EVBUVPWq22NhBUUV$IiLh-zlg}q7-y? zvDyIe{j=J^#cGK&e+0H(td{sB-!XX6i`5cm=>bOnVztEC>g->vmiUyq`xmPv&QUsa zv0CC>W#ukbOPr^i@WpD0^Hne}Rud(|c+A8FL#cQEqP^RS90X`4)$esW#}jgE6t?>u z|C+VbP`cQY+o|D(!(nvdI~Zsz)7Q1c;icl#0GrZqno$cXg7CyORpL@}xcFn|MUTt& zQie~htQSXr8z7aH$OCfoDU^Dso7>zV^EPrVHWlwOX*Bxz$lYuIi;LX4O#d0xG)cm~ zvKz|8PF2jL{4H8#@Y=5N#&LtYmQUdZTL%F&T%b`5iR8Rg6h%&q2SF=~cw*dp#KuuoJQKUc0a;zVFii3$t8GZS5?0sH zO;+AxW;nX8!YW)8--b@4C^#|hJ!1tsRNkH#_nx)Pcu{a-+}me)sp1Ak`J5#)s?dH* zmZ(C{TN0@kAQinAEVFl!o_X?5i{sY$J6LDSON%;1Dta&3fMrFI)8gLmEWe^Cd|KRl z*|Iym#R~V(pM@0a`UXCt)T?w4!z`oti~OSDE{h+US!5PQ8@NeV>3Fe2=aDW8CFX}k z(%E}e);Uv@yTi&Gp!0ulX&oeO|y z%(+anE>MI(XpvHUgnJddcdws)Y`w-LF~EweV#SHPo=`m9t-`z-0_Oo!TGI-U)VelY zj_nlB2qN3qItRl|;xSc?nW7vLvS?##9Uu}l>(|4gnYzugZW-%#4CXLa`x@)i9g!W~ zw6$$pb~#2IYqu_L+qMqILW^hH2uq6^smpR;Bl(d|@f_<=mUBR|IK^`|gszNRzY`%4McJkOuflMIirra9u2?hiyEk}i|`q~FBjZihFuR;Qg>3l zSy&N%aNtfI#U0$)!lf5#nhOP|Re=+g^aF5tJhwYV)%yGn<7(_qJqs7P9?acI#W~ng z@Roa$(t16Zd#Y0QdNB74C2?yt<+x{l5n?*K9?U&&Di&zudN9|Hs)Ulh#=SrrjmY(2 z?u9gx%-yMe5z_<(aY`zPQ{fbLr)~x1U;Pv|P2lrB#OtHn`&S?`MEX!KtPuFuLFw+4 zPublmpQNKTP2jV_XO8ns6S$Aa8S%LL_*zCVJ7k*RU%NiaePRRzK+|9Sn1aH)QkSs5~&WQ4Nr+mhL z>G~-5_vdTu2PR>@`>$Rf<-U?aDCmChY=+L;oeJoG<@zZ1)p;uNwWlaDZ+9w32c`*f ztZ*UrEgl4CaoyK1SGjL|42^<+#naN@^?!JMl>64Js>*x!Qk9OoQ~$yBQP`b21wu=? zJH;cz|LnRa>`t|-f6vUo$j9F6WG|cg;MYB2cd8457hdM}H4kEqgvU{MZ;RW{a4^Tg z2~SP~x9Yg1GP}UYvUm&@$K3u#TiUWB9z7?mqq7Q3AJ(?EVIg>c0U#+i}Y*Jy~cCRc1pSQ6#6%l{v^VXDJg4J~rgs;>lEeuq781 z`3KB3++Z874l2lT6)p|B<(9kDa>>yTU4dB!Y!f(cg=MT#hDxij;Z_&X;(>@7Vp(g* za@-*{*an#dxI-xD0cyiJ6xFDAycjc4!@F?5oFroxFam%TxF=R5jNa~rYL+#jXI9Bju%HA9e1P^ zb*XXE+gphk$IUq~0gXdYO!86YD3rPy+8sTK4bTNij+$iN#7Gic<_v?(dTqjz3kFibHNiwmd zfedL|a7kLopfC1F=OeecM_RuY+N6LX7 zOQ{;jz#b_FW-O+*87a5fg~^sQcoi;5IUDM7q{DR-Ki`MB9FlMe zK-!r~TX4#>of+d0#Om0zX9_c9Xhzrpt_#nc+$BF@Q6} zm=POmtxiQr!{XkUf}rif`l?g%u@S*E2R&tzQ?g~5Ffcc4t(PiZvb9k-Npc#o=&{8q z*~V2^oBWg7bd)BWH=nq@ zfdP1vpaw33sPI5yGJie0dalyO9IJFEy}*`Z!qR&%kkXJNw+8y7qfNi*{1v&=3W zc-&skolqWkbYRI)mbT1leEMLV3K^MXH{z7zu4?S+xl3gR9Xk=O6)0~@t)px~yGN?y zb=L7nIu5y>#r;TT$B+}*0Ut?SoT0h<&h^{so1NH2M&gdaT0QP?ksfFp)@gRtx3-)p zO<(M@uKMWG7kg`GKpZ%HAI{-g>{2QHBT!=5K$dUUU1@i>0 zu(^&tke<`!4PsfghM_oFe?|Ib=1J?X$Yltp%50RI)UiC~#7EeVho#{P82;Y?4rSvV zO#^SeiH~49BTIQ@wd_>a<9P6NR|Xbl4Z;nkJtwl52!q+8;Qd^r)+p#UQ{o&2_gT_a zjRFz?Cw5JZP!X}%Qyy-`em^I6cu4HRt1Vn?aik>P}GYxMJCIP&5-ibh@x z*JK^dWVKL(KT2B6s@t2LkLSvhu*3orD`W5#e`Lb(KyNiuSBkCqi;<#v@Xq$^+jt&^ z_gU~h7T*6N8AAW#m_W@q3;2CJZ^6sy@G|~nFo&Lumviw_iw>rHy7ue|c%BF6#|&NpX7MR_8H<%>2HFxRtem}|8BJPQB6#&avejD;<5e&IEe{s=RP zXZg%GU1=L}|A|Ct)AI%mzYm}OJ3RXlew__}gCE{G+(@I=Zt$jkocW2xrc-Xg~J^LD-pCP_l zNSSdIm`v80(j02*i9`L-FJ(*VJ4rLPus!SH`7@+k3@J?QN%Em8N*mhx*47hw38rJ_ zM8)Mhv*~~I`u6Ov@$@?lmRPOGIUPkdY{!XiH2BjymFT-t$2}1Cb3F4QZ~`tFqK?x8 zfl@~lK-8{vWH;)^@9=Dg|Fhwrnb$6Lrs<3uU9QaB%y368tpKXi+e_++i>GG4rDrnuMLG?Hbh78}VF&kfX|xahkrc_aM=uSsA+) zIH>vYn_ae7@p*o^SQw}GL~Knd&c_Czx+7&P?s2Ncr1^-DFH$QR!_Pnv8NZjY=hq9zQ{q4wQ>tP40(`I@+rqzz}dNy z$APTnFo00Ici6t}0tes9C6%CZIp&dQt;%!dSgB-Pd-ilZUqJY4q2Sncu!F*YGG6!l z)<<;ybxC}Zw3Cm>2*6Hl4Wp=jx;=Z*Gws=5!pqDd zEO^MW10vC!15(HQ%9seo!p|@r{^W8d#%jk%{w$F!hwIdvkb2KSWEn)7Osop zb0kNr)!=TTOFA~~3UZMsVj>{WsybQ*qK=XzXkez|IR&v@0O@R0#>MHv1a50>ZWG%p zGSwIu6_)49FlQifuf_8%NNcy!2C1}~f<2byc%Fo;Y7QE86xdID zxQkKNZpGuA3*6>V?GgJ0qd@Vm9asMWkS;JOIX zI6-*TP7uaOv+}B-8!n00Nvraz?6&$DXPc;R8<8~&TJ8F2d-fH`y3K0#ZPBdH1<+HZ zecP~=S^|2O$osa0{2b^-FClnO1fN2K9Jh(i_k(ZqMU`&Rn4F)qXFtzz7~GqNYZ|mj zOov_Q$J8RQjD?^zrWT3ma?p$4Kw3{hYkRuP`(6ZVN~6j@L!uq?X%u|4Kg#=r1Oya# z$_5Mt!n{@RHwD0D%#URa!!c*d`2G{%Lv2n#Yzj5FB4i(id1Etsv)95y$q3cELB<@v z0%xqGP=m`9LRFb80C?m_gUdwkeGys^D80pHhKy=lhu%WkzUiD-{RxtL6Rq0lPWvk6 zLennA&*ExuLh~s|(D@WzdrVS9bzDgudBL(w87FYcDAUDt2tob)8~+lx z@sIuLqqyzwRXk_Fy?i7T3U2&^58KaxXNLsf30&xs`22anjem)hNJ4iTx$!U2#Sj~c zcDb#wdF}cwvM!`^lHpNPP#xT<*u~#%&;AzAbx`aoC^mUL#*=cL)bJSf`VIJ#H|BWM zD|Rt>(vA&}QO0P{PIW`0+@4i$O(vTI3HgXKV7KL2Jd5C|unI-`_K+u5% z1$~jUEFZ!H8MlD3PzIBKN;F7cc;HlgsUH&4@br^ECy{Id zt)Kk)yifi@C!f3>SIYsLj&)ndoZPu0VJ}qXPNe-jeDFDlXzmzanUh7C?*+=7EXq6+ zD06C_GN*-<;cTZqy9;)E&@^v|Y7uc``M(oqYYxL&%exSLH=?(5r417Qh|fVEnJaBb zaISPDXibcbdGT)w#gAt)gSBW{fU49s(%#`7_V9$bz1d8=fCQ@k$(k*%Sjy%q8g*ceZg$=`l(CTp8|qRfMOU+Ncz z6J-uG8MJ=?$#HF`Zaa0}cAEJ*CGL;m=gI8x6Eb^Dx7~c|=i+U9@PkR^IP5|Q`x1!3 zfH1qMZ7WRG>Ev`rOq%^Q>-T0$aWnJ%@bZbVh`p&9J=TsG-(LrB7E!36&jCIB^S(B_ zVyewkr;gHQ^+ai~r?l+U8-Y&}@&x!FwZ27JC#w%mP)?E8ufP?H+5}4!#JT4;tQAWW zs@x1!&OD7+2a85CM59skf|`Zp<`~Pe&|76Svqrj=QItPh z?j}AFk_J!Em4kbjZ{Gl;mLGl}zu@Q8v07y)hQ6V7`~PF_O~9+F&bHyb_E{%66A-2l z5hTn3LP#P*5YPk&5R6F-VNlU99Uzq<1tLnTP_-3@R%oqQtCp%b)d8nU5$cQ+6%{9N z!U>0J3w0i<|9wAe?S1x1Vqg2c_I>~B`aUl9$$o}4&ug#yS-k5xD=b?=rLXTvX5jMd zzd`S1c*C9~OL~&7m!gcHXT!;oZnOmS=tmE6oVjq4(-Hh`;dO8^>hIuH6@oGJOT1wP z-VRx{97?C*Q9Z&pP^mX~&S-A_kvoabbHfi(azA*^G53S}3?43QvL*c42#*_r&EoE; zy!6hog*~!*DEJ_=olmng` zA3nlYDoH6F!FXK_rCaf+3E?^_nRv0Jjvuinxe1Rd4=z?UUA`!T$51fM;Q69#G}eJOgU8Eu@VJPB zhofH6bQ@ZK$!eDGt1=Y*9?BRp(7VZqaolA<)?!0o89o?fhDY;*T|UB|!5oQ&%SIqc z&w*!Z^%;;fQu2|WPl?p(wahD9t65SnKPx+bN~w|}cO#wuQ(sC+s-!-JWD6xu z_#R56ZaqnlP2G}`>QId0q*5sSrmqy~>?=u0^?*`79u*FMO(iKQDUa^R&NXhuiVfj|7Ft<>>jr%sqqURyt<;`nk{#^heNlPjCKv5_{B zA!ovAv~;>6+zl)kKE&m_SzjQLqE_Uoxy}R}%7E5b(RvA&5@+?q>jZ!zmn>b04X732 z6Gc=?52~ZE(9}wfb!j!no@tR|AGFM|b}e$O!*|HBLtErnj}|%BE0AN(F77ut*Z2QV z<3h2M#WN&BID6zI+E$-}xz4yFW-eZS+VYtTmo84uoG@eN0<5CAYdy1JP6K|1l?)%; zICt=3tf*HWUOY2^HAUf?e}$;U*znrlRtfTX0| z(iPM8x58?VqL!Ygw zjA@jy1MjmV)=-~^H1q|DD86Z8a;6`({$@qfk%szlE9jIGIC`f<3aR!m4(Q zHbWZvl3ZNkhMm0mI2tl9eZuCe^ogb+4SjxIlt@Fp%Z8C3dmJ5}PZq`w!Bo~KX{7KT zWL=!qBVij;JuabnO8p4?g^_&yvU(iL%BYVt)UQ~N9Y)?F4fU&*siQv9Q17$6NYtJx zcJynOl`xTd-I7@*Qg2uiIq0Je^_!NN6E#OXJ+z^IOYKDK#8Ja&t7t>L-#W~VrlAe> z+m_!a8bllFcPu;4Ni^$Qm>ut_=a5TnjNSTXa-1hin?sB3<`z0NWqXpp#j_ssgtlrq z=IUOqsLKM*aY`&8+1PeZ@+Lgn;ph~MjP2;gQI|>8UhjF-YWmf-=DxPB_9VRj6wkW| zVh@7I5@Q|P7((aEk-;Xe>3OfNY3_G3`IGJTBokSClBMv0rkRbW*U-~NDNntjUrlfB zoiB0V(Gz$shO3{^BQcjeogUo}R{Qo`q)n$pUxCPGXiC~D^O+s9`+fnR8|>G2uyaeX zqlRY)937;$tZ+2M+>h>00JnqLWXNN`aye;pcZJY*GpLR?Lh~!Q?c{Wp5!=0#J}H&` z3fo(@`W%1g8#s)m-mTVx^C0{K=UwW&uWrU4HZP^R$oxjPbuR~t!w!_5rBZvhH(awH zSE{vuy0i%BnLt1}3`q6#!wHAh!a}nRtX+%1Is^i9W?-+$b=u+6$p3_?hZWz;5FWu4 zd+)f^5FY+FOg*$1!u6T7_+f@{oo;bipZ#lyaHKk1FW;#3PpOI%wPBo{o4vr%KQnS~ z2-oKrIxvLmwT6`%!u7d^6CA>|HGDdsaGJ+DI({r1Ud(B^iu zHJjV9Hg}<>rP~d_+B%*`V0T8$!Y+1uRILcRRKw{kyUnFxNCpy@2biB!O3M?n$BErE&qRB)=X-n} z;A)V6EfGpMl9JiWmd!p*tdCRFp5bVwrhQ5DVYLM-%HU0BQQz!1x&DmaXQ$tE=ChmM zbmj}Zo6e%X+40ncW&$FM`ew&d0w=mtB8C}#@TRkynG>C9JYcGH>9 zH#eO{Jv-z19gf9}z$XhkoDd{AqyICquHyleM8NEL^eMFp8QeZU`m*AkEUBB$qQ2Sj zz)fdS-|TqYpV3Esv*U8pR&v=2C+eFWH<9wqj+;pNX2%0Joke}KpCpXnC$_ESX>>EpCg1EJPBv11cRYg6d;xD$8d$VaJ^VSk)kgq0v|I@LD&w z@O6-$Id(VBoJpBu?=#;N;|K zPHX1aO&!kS+WF%7B_1 z`0yBF;KL)T%BRDBt2$*|ZCTy8N$7wrqqe-JvTR&A`eEO*DK+KeDkfBvk7s`@AF4eN z@4IVE=J<~Ka4&MIL_-etk9jL6wzaT_qn5$buG$T$7$z{0vhmZ(s>YSqi^&e3s$zrn zL_yDBVOu<#J@1s+v{~$GwafUIsm9Ph_AI!18gH}_#5ZM~7#jl-)dOk>Kd#P}@Wn`o z4c#{wVy)b_8uIefmcTYZLRG_ghF*d`xBXi8CiS~)OnC&EfQ@p;y;)TpA_GX=Gom2J zE8NY>?MA+i0}Qd)-l68+ZZE5e#7!*kki_7MlDIMG;kAZ46+1a#;msV@WB*aHq}<-P z#CPs&e2AJ4h%IhHcJH#@=Ex*ghO8}?)h)jK3x=+7q^7~0D&=da=#QQ3^p7JLlDVjw6SV-pm1#VF-$?U>H*~Zq4OJ- zVa#Rn9rr;iIE(@bW8Tt5IOgQI4_QffN)Rx&sOQ1>0j;v^u(EEH!D1)w*OZvsj{IRO zK9ph_wzRQ$#PYk6Z$Jdx8t3sd$9>ca51|mI50XoPetyg{bHpcJUTM90+zPr-;19E= z@OD{Qw#XJQk|Wmj=9rAT+X_2VhFC=Pd}VKDmTgZA>rrT8)m> zkcI$+q6ZmsT&$)fo3V9j(*QFK`z#Ziw}po;D6B_*Nj{$xh~i=lgSq9nZ>aJ3Aei|On(V%7>q&{_&M%qhjNB@44{y1IwBuD;^If=l;#IE93JQV^;KcWoCXg@#NC^ z^*?Ch{ly1VM4Db5Ry{};x^mT47&GFq6AUmMK5xl+TlXUy$(eC;!?gRE>Li-8(C$_x z>rGNVS8V(=4}$xtA4K!dmLH}hn-fEscV}-yPRb8Di^rhU{eJWtvy?lS{R7rW#?H`2 z#YG=?N3afc+~14WnDI$?j(err09TmhA?jZKdc6F&R{`YvA&P4`e7H*0NsJ5QX6Ea- zSKAyKYB{p60Ir!gm-ww&X0Dqod$h-P+)dVfX?l2$dyN&0PZt>fudyCYiup(GK@q#XjI6qdr+BEMuqIc z#~%;PhKmEkKt_^d+rE^l$Lt1g|D{nO<2E-QFe-GgJ7e6(4y99F&I{Od=F5%>%nJQV z6!Mw-{@69$M8CU(H7 zYgpofjD~d~?$*${5Vqlb>q5*|S{I57ehltX*RaHmbs;W8XXMgu(2|j97rF^WGsYr_HTg@-iP8+fz!7=8V_| zt+UGjn+1li|b^1=*tT>p|6)0w9(dBF_5R{EZQ>ynoXvG>vT0Df3)>@H=7z6Oy= zu*btCFRVnpU`q$5&g)GVrdFxbp)EhXalUdDsXjcajaAJ3I^gz9AD=r#!G z=;VN-#p0+JrqXMQ208t{ z&Gb(a&ho_ckHlucw;TPDP%g6SJ+!DJeJKM$>2_@XY&8cM&3u~^%a+oJ({qycbbU5!6%NM3b zewuCrpfwfxvkq{lFY#On|6XPU5Z0$svz`Fw2!4i9pUbQ(>-Ppm@P*6h6@VInocdC9 zM=`55!JF&xC>09k)kq85@R8AvrpHVcdcIXCX(F>W?@9K&bx*Pqfn40%QCs;Jkf^qn4cvS)E3_R+|!n5c<(lUQpGU+d=&52C4OQjv%YE5O|5qpxuM*+nS zukUAy=B+?Y+@<*5<0{Fk<1s?!H!J~Q23dcxw7PwOz#gmiCTBxqWnaV);A_Yj$Df16 zRwu-LAlT|IVQn75s`Pib{1A`2d?4HfYLj#o5%}32kGi3jQt2u@Ua+ee2%TZnyUKJG z9_@7%EqdO7of}3abOXFM1HASS(R)?L)BCIn@LDBhpo>3KCie)co9;3BC7 z$AEJbGh_tBYth8j#cttcpwkS=nSn}XBZjM^;F*b4qZzJRq{BA~B&qnZ zuYY=A_*iX+4_jt7L3c^P%|fQtx_grsBBF=%XTdq@F8Xyh7zLDT1#|E-{2kE6OQ_Mv>gCPtxT`41Ye7h5-&hvfNELr-n3`D!WpuYyo&B4W^$wO;S7$ zoN<_xE`tq5TsE={gZL^XE1sr#;av%%d4bvj-%KKpVj}+mNev~xP$q?qAZ!Xz zU!(vT6#A^s(_ftq%vTRsXlqBd zk{FeKx+nSA7XWr4F4ql2)}nf3OULb81Hi>s95W0(88pYN9C3FqD2^G2h;GSTjL?G3 zHuN`;PPDL|dNpZ2F7QApOi=G2wDHX7qw#WpaXeH_7~oZ>EX;UqW{+XdaS@a*!K3=C zB$ZNw_IS>_-iN3VPSj*|9>u+LQ6(qQk0E$N=ghfQ!Dr~Z@u*|f)l@p3BFR8hI)e%sq5F#V^h~91q-0`0+mis5#*au`Yfe1CW(-iLg~kN)QPGW zmClvWIXiPc2kwhNnmKAECAWho{!%ar0=GcV^8IZD!v-!zJPajv36%=9?QF)dwiLnb z8a!&IT2HrbYGlWoN5JV|ul2RfkRT-l3>7cq*<%6CZ?u z8}+79>H_V{S2(gJimuG z*TEapMeLU@;xFKtnrzO(w7U-ZUoHy*@tRo61+Ij-`Tjl0dmh}AEQiX)`KF^^ARYY= z!5PNR7z<)(vj@EttPu?ktb~v%S%&6dULSy9%*CjpyWrikcvPd?3%(WJ0G>03i;qqZ z>`C^+qgJ`2DS1pJEUHt%y_1q(xYH<+LX_ft65K9`ocgKT=u1Yi#**7e$qH90Vv)y4 z^de#d1)p(mMzr-K|cC@PSOxD}zGxeN_eyk8(lJoJ4Bt(h$mHC>eMrXO-H!Cqao* zYNd_|pyQ19M<<~UblgwyhrcZGH7N&zaOjynFD9!D9EVE)M@{(*Zo{Dm!IwRxg`WEihk88DXB6vZhzC2Z z2ZZPt!BivI20?4t)}_^Kd!|LUeb6%7+O^2G4*xRSs+n!7!q2sE=n)*MuV&V%$$rj- zLobla>{C^K?uA2Jz;#MSBU7C@DE9yO*?Ku`!%gAu=YT!-bv~Gk$Xkq@-n|Re?Ym** zTDvu|4XUPh@ZP^QF?1%u73S8&&{=%PZlJj}F?9BALVC9*hJI?q-mQtDpBcG#Yhvge zLkDh646QY+)UAo3a}6hWYhvg;<1uedlt>1#bD{G)Gv5CSJLlb#81DBRBa9QWz!8N9 zyiRv+c=^bliIH7Q=8-G<|Ym%w-rFje}OBLkTS>|125N8N+Xa!vFX!h8bhV zB3J}J_6~Fz(aMUk<+VI=ZV%q480FQq&KUs`2VhpG$m*kmj;p6QYx@U;HF9KWTy@oi z%8GGy&ba~ESR8Gy7P)g?fPGBGlqooR;EB!;h{`H?Lg6@w%B!3U0s?w9wW^}d`FVh8 z?lg0L5nxddCmMOr*@Xc%j`Z-3G-q9aCtmX4eJU{wynb3)<cnR8~)S zeie}LXk~2`PEB6a3e!aR*8xdcWo7laGKt;A0k*j@s-C5=A;6w8sk)YjGRN^Qxk~~9 zFlwjP)XCLu&Tj&O%CaeS&ZYfXkz&X;De>);ue|N1h`%pTIjd6}kMu9=z3e#-|3 zWcGYW8niiF+wz2M5F8L0b$~58{cg=@n}x_4VNSIJeUdcUHF7^Iwl1H3;{$0$bjx1oZ4l|G3yRIty_OU!RXQSP!~K%_>35EW%a(R}lU5}a%mq(L@3<#BI|G~m}t?`qAg zghV{USPpcH3x)Qt)~pfIzgly?kg2ORe@pCG_Tf_z8KP+7=M^OIbLmK3_h5r_5z*>eBbo(osf_uFQ zPG_V*2B!L=*nN-z^ALkhhI~=K%}`kxL@HR2fnnh?9Gq5j+%0Cz;zc+#;>lFVH{-hv zzgva@88A*ba+V<=gJL22WLS_viI90HDvqIHd#lylt__20Zj^br%l)3X>r5M=Q0-Xb~x9w4UAZKp>;kbxzF zAOp+#?zf08GoHWH4yQW4ms>=484vfZpoczS;6HGSXf6Ukw(S3i0r|K9Z$@t!|FK&{ z&o!aHKMaRo{{34-GvNwxKX5i(Hv<{?^uKqDXu0w7qZjFAGmt@w_CW?IR{D{3gQZBF z_xbn|kw$AqnigpcZmKkby5s z&$pOtBL+YQFBtza)dc#-o<%?g(G`z@ zoM-BC^tl}fGPnw#1`|P$!7=rgT(S?AOquVj?8l9^yU^jQ|*@UK?X)A7nASiAOj=mlV}DqFzmd9 zcXY&y#{E*H02y>|2{PD)*@pocbWaBv7y&^B-J5|7jD#SA?kzwDMn;f9_troLMof@F zcOIMfK?a6TkU{sBAOj;L$e?=)WMG&C8Fc4KjTFeh2naIh?hmsb$iT=5GU(1z`rK7b zfeeh0AcO8LKn6xekU@7&<68k47!869x=TZ71~M>Wf(%R=1Y}^C1Q~R14l*zzf(#OA zAOo)G05V9VfeZ}uaIB@$K?bHi3{5l#85n+v<$E9l!yRq89>~DVv`Q`4%!UXuFmtZ) zsMtQpz_2FCLMH$+Fzm{N1sRx0Urk2`1`B~NNJy)z!#c;}3pxm6Mxq72z{GE6!p9fn zh~_Lbxd6U^?OyN&hbbNs$dMl=!pzy}NzQ$!^YVj!;t44As6bq10bjtbf###+9^;LQ z%RKfJas>JJie6)~C*cuauu-~#JVf1_9eTX{MB3Q_A73y-VqBO=;R{UW47D6HS-x7C z*>Z{BkY&=k$+Aa#Y~l-y`_lCAh%YdL@#zBN|25X5NeRD!@WlwPwZh7DA@K#q%bJAX z3-W9+8GHfPro>Z>X7Abwp<7J0^`XY zF7`^~USr4Ambb;{89%jky^Z_;zJM7V>V2=}5?^5ad=M!x_yR*eBDC==l{tkkFuYFwP-su70AFAvIkwqLsd~(A@b+Kg z3yj;`L;zp#F+Mp0UtmYksjeACv8mYvd;y!R;0rd(-pr|{6ZMie$2II9bNH3UZ8+>V66yE?DiUA7%~T&>V3=!_ zgpv*)Fro{B-n6E$PI3Dzg)d;1@%CcwN6PKR+@B%709$lEzQ8DLgj4_aV#B%`?ocsK zak&B|zJQxxf-f-g8&x8RFEGr_hDm&Zsh)R$f!l*yTwy!}wT<|KgoiIUN*Hp5@f38J znR=~k2OWvP+i@sj*B~2EJ)EAz7fb@(OYjBPpo;gh_yTf`K6^#czlZZS^dxQA9|K>& zzPSVO1*{#36uyAVWcJG`d;!<6Y!N=bz)Z)m<;+$Ok*ydBNumRM0hfE6uQkUPFmpIz z^ABda{ami(xZCShv;HoZT)-EY&LYp&(_DW`6!-#u+hdIn;tP!5d0urUzQEMue6*Dm zzJLoD4*Wj8fGZE+3v72%;F?J#h6fK{z!`HZ*Cqb|8Qa^(7qAT`EWUsx&K#63_9)xh zH8a$4OD!2Ooq3rh6P%paO5gKuU6*`0wmsT?jUQGUyDyokZ$M<)u*U>0axrD0l<*$zEC39xH^)qcn>Wk+*#@`xAK7C-k39h zIb4s}140h04Hs8(81w6TGKKdQ`)XXTQyNz(z@MG>vl=& zz(LF4aL|1GAdl!C_H((X1yBqQ@H*;@h*H=2&d-Q2+wyS)c1?uyD8!9NtLTpUINlIZ zQyKPM1ep>-KG+fS=J_bYv5HD;@_FbQ zc#~L^#asXk#IpK^d8ayRcXY@{jP(0alqDln$nbF!3B%tQQJZ`0O?K|NH(7l>?knqs z^KVj`8zpys1YQwp@5Tsg?~|bN301IX$*zpBh7>aguaX?>dILy_^3{@yC7|<>5u2oN z4#%J>!fPW8Cp46_qpph_0M#bu3`M-aa@6&aaBoy-yn{PTV(Qns_ad8f_a=w)`1XFh zypKoij||!%wX73MLi%xfDGkGn`HzgE@k`ownVcBXxF78(grFwKus4 z5&s0*C6X8Cux4HY*2puMk>|4M>;!p)9hB9196D9aDCE@n%&6=?;OzQbP#3UtXMh_0 zQ@Z^82KYaQO|wngy~!;w7^&X-4T2fe2Q25vC&73Q;2AmD?Y#gV9K}B3q;`9g zr{Gcd4tfOSpzZwOK{&|SO=LjUo${T7zNY9y{=6shLPEH?{&Q3hrJNUV3>(jb@VTgu zSLQvW1s?#f6mjncn-PIajx<`I8Q1~Ie0~$Cchvp zAwx?3JgF8NKo{f4-vvV5OA6urTmyBrr;v71OJiAd=l+@p$TKNM77FUkpt za)+CY7i~qe5Y+Hvk?I*xKM4=c-Uj<3$qN5lsiTG|RfxP84b3VzAJ~!ilHiN2z2gl=4KUPcOJ`kM5q!517e>FBeCZ?caZ2{1+*|g!H&QWUP zYq)>m^*zb4@I1Sp7nyS;GE2Z?W}PdMxd~JOu2JPNZJ-5|MCBehe+Uoy=Pz1|3Vf#T z>Q`w|Df2EX3*oXd8BiMbCVS#>Z*iP+5sPvDWo6KiF?c>EkO?MLA-Vas@+)kp?zk(PgxQoe5MW@a5Ngy7w)!?Wf zCFHVncco?UZp_P;8mE2#XD5$N(8(;;_jD! zD3f#i86;(n4+bmR1~A5%aCrP-@$v;!H8o66TE-muab_rvY0vsdsSJ*1hwW-(?6 zNaJdu?}9(YOOkNCMrd^>(!8VzHW9f}!|h7K&BvtKoZDEA3&9BSRcDHz6arHd4ed77 zv7w!n$x8Ec_*KBz365%fL>hJY(7nmFc+?G zN5@$^(90}0#LSuxo~agYh`F%|G{e;)hWmF=rp$H7EAtAeG-1*H*=9Ty1C( zLL0`Zn$KGp`Vo0%i_K9bp#@X-CMU~?)D*fB??(^I#clV{d51&N4?@Qvl7mhHZ%{3M zB(b|8-GfKnpVnc7L?goSQ zX`*}6-OxpMW2pB*5rnwB0jEXnB;i5#6ND`}?nmfNcgJ+_EL}fuDW@a!o_UWjs7inq8Qri;h2e(#3ZnE}`DxPy@s&Fc4i zkRG7lt<>)LT~Nbg@*fg%B|V)H7+7 z%M>L$BrI&%@vaT2bu|d67QSr*lB~ch%(c>wRDx#;bFK6Y=YwWHa-Q@fSCIN)(^6PI zvYey0d&PU6?O85ZUBI5iZj-AQL#E|K^_pYRTTEv^{6MH1f|o?!j=1~@kGe863sGsF zC;x;f1b6B$q1CO3>E+KT{ycO=x>)k$ZHPXgxQz~YY^ygK8deQm!s=e++P2wylMP5p zd7+mbUBYY*zXq>}Fi~o9LG%n5CV#qw+0SaNZ9LVOU z)RI3G-it>?!@nvH=8q)uR!Humw3YmErvUegN4>3Yqsvr9H01)(M2bJuPqiZ61koQT zcEShJ#S-uih;~x^Y+CLP0B{JmCCdjxwIIVRSEeIV&6d`J4A$Mgo|vEF`pPHN!#PEQbK%G+R&0@#&nqf)`|{C$X?OEQ%T9!&ndx^@{BR3E>FvicBaM zWKeiE8R#A^$Y4vknv^NTpG&}>lVJ++=NT--(;hKx=fVv3X0L(D|DmJSWh{qZ9JJSq zvu~({He{%ZM^W(nlBs@~!Cmms`i-lH&4q2fB~1u%tuT0aYow=+~CYA zHyWZztmb!T3_23@pd$YC#ZUD@uxlpcEwp~y8Hm}j%(P5>7Lrk^TFD|u4N0FewW?EC zfeX{|tVNt>3`62&UuKBRn(hG4X5NrYhV~vANWzdzW?t+uP$u(+$V7iQ87A`zGnsjF z$XJ4FX%}OWVpzWbtC$=|6^qVRF!EP$Q}1wDnv`;w&@NyGg zrZ(cG?kD(pj?}M6{SH5a{(|iO176&w%DOH1dlwjW_v7UgzC4eYX;0vJi!cAc&!92* zG25|eo3ZuSjIBb1Wk0lDcJs`xZ1wg=}sD zyU3y8tEddt5Xz?GKV^Tl!&4Xw%=r)5%N1s*={hV1V1K2ayl;fJ7K+7^4kyNR+zPrv z)|ZAZewrI!=xH%6U4o`8t41ZNp{8xCOU-t#8{;NpsOd5=%$Bdm*|@rN2~1$FN-h%% zHz!+*i7I5hxMQ{1h>gc(qGfi-HpRv^q27Fq%T(<~Jes5|slz<#o{94)Le-t3DPhf%r-A20e(M>7HcjOQ5jfxDlQ-LM5MP zNu^_(61xwAV*k_yfZf759idlAxlfC+Fo!ds7dvAvnvH;F#sYzOTpNhlANw3?nO&gz z^Vo%qQy|K0CRaf;GY8_QVvj*Q0*3j` zv7-i#-m!b8~oLwd)HARbj0&xc2W)Jt_MJ_d+nX3UKE(dpvpD^tzNMRB`3Z+4i@gBOx@4?FF6Pr$E1AMczXXynkPlqxl|5=}pn zt=ixZTdGngdT8XxZuMD57)OeT-tE+TU(LlRMo#hL{{RBPxJM<&%-J#&H zw3Rx^LnFtRnGs*rKMI{TjV7#_1E2|La(n!djeRxqIC2gP-3Bct5}po0$bcq4gFpP< zt<(wijdNuPPb|-h8%D#@IZk?#y0n_4XIdobgO*8Z*CI(B{@o-U+9F9kS|q90zeBAom2CF*-Sy zXD(&2H`5?v)3~kShNGxNt>A`v#gB&@<~zPod${47g-qdwjW~rHHu4m1 z*wAUXVZ#dIh7BhjH*7p6Zdf9jjvH>zcz+k%aAv=!8DWDP&K&Rx-L;Mz&P9q1@dQ+yC)!+bcP;YF-M0}VS$3q2m+703OV1%#jE-f}21#|3BRD|6RD@$dd74Ta*5Of*U6Aw*^z^7Y(O+_s`iV;aEV#(H_$NeNb^Umz|mqDvtKNkJ=Q=4P?F)h_wCC*D9cx|Mhj9p_y`ssJcLR)zEaS;Zo#9zB~jOD9O zA;U1y=46OtgDt7syh*aak`bpZUB?R52sm!1v*^dK@U-VohSNc3cAOO(tzHFXP|YCh z_|xXcbU9jK?-Sv8sAe!szy{R}@+`P*4b=?M#Smp`Cahyg>|u2TW?2L(d#L8vBg%|J z!u3(jK06)N?6aGrntg$XYK}c>{cVnFjy-M#z$N%!&0{+yV$D#^u_vr*3skc&`F2#Z zuhI946dF_#fZ6*XsqMA#Qb)7gY2T;wir_@)-;EwsRmsKUEkttMj z>=o-Vjtcsy=Gd#289+71_E}yE)f{`xvJxgzuUj(9MCuJoA_sj`bL>saY>sMn%fsOH$)mYZ4P2`9vkGcYWi5^SiThpvC6T*ZcJ*rhgAl{v=kq!94l}?5tSULEn^WYbmt=y zK2|x=GZT~hEY|rhc#$^vEm-A_kv7Mv*0SD+CwR89GjtU9!go47&^zvmR@xQw7bX;Go}kWT4cb>k`0WL z(P9jY7D2+E)*6v>=wg(NoKzPU7JS+0%Na+JgL|)Vslu41TtW1lFJdG;2M59RP|ErU zMlI)dRKP6VbRx6_rL0#n;>$1l=THW;DRXSuJ&}a*`UkR^r<;YSzmo=Tlg<)SbYs^8B^fj zho-MLVWyzU`bJZGQ&44nix~_IR9W92!Kd zGe`Bt)=?b{>{!OssuW8Zoph|ES<|s5JNo4@@CeD?_c}fN&mood8^16C?Vr;g0sRjn zmG!%yn$X|BilNuQn3KV@@=Y+Md}%G02vpD?G{F@z>A*ke`ujjC>w~u&FF&g20588c zq_X}v1O6eZpFK~1YpbVLAzd~8>v&pvQkE|l{JEB>DlfyWWOcCSWE|1_2DT5zVi!PL zR!wd7I6$W>s>GO+^*eB5S%%#$Fqj4X#YrYA-wefW-}j4D){c4?o_Etaq<%u*|C>l< ztp%VA|1#Ab^zXkwD(i^47;4aut1l(||1+erPN*HmpLS{(c0et7+kcsYvJ!~*lp1Uo zX6m=Nd|0b*Qe$#39r6Lq`ewDis|+(fic98pdb9c+H?PwH&H8pbb+mwHeTSsE1)y2q zsn{1b2Q=$HDi&x9K(oHfdYb|?>n)b$0h;wz%V+^;*4wNk9nh@rv+NdtW_`bud@F!v z{eXHL6P1>LX8oWQv;Z{ghpeO(K(pRqWvv66^}|-&4A86}vHaEm&H7O*3<8?r>{dY6^8258p1t*{k9vwq&nz7^1{_ganC0nPelD-Hsh^*+mN324@@TTwGW zvwll)F_#W#*84598K7Bv%bsR{X8o?MCux9Y{hsBf0h;w+m6?>4rURPw`*yjX0yOIn zEGr$*tp8@&2GFekuFU+fCgI_?;<};Nf(*pb3)iZhlIEnzhGk71XS+Qs(X`AJnX`wi%QLY6jO#uG2xy zdXr_RK+Ry8Npf>gv%ba(S_3shX#8&t)U2HS0>(j9wn7*=Gbm&H5PYLjcsQt1YhusM(hULCrq% zUxS)`wG^mXPjP=CF}9#)J=NvxflbG3w&-bYp(vz*n)P&-(@?i1s9Dc&ImK)NYSzcO zTuu0(W!%k>7Ztx?Sq;vhuuaH)aqe`z(FZl_<(6eY&H5CVi`5jUS+BJ6AgEcNW|(O+ij&(KX~>KhSw7RM-d4YE^3P_zDndJQx{&H4*93X?Yh zHS4d1YxLPGiatTj+*fYP?pViMcFi42bq}c>9;jL8x?EASTehHP-P7fAmo378nsqPN zOvyY@v&Kn!sTda2toyiJ8MXj5>%NjXX`p7^&*h>o0BY9#U9QeNP_xdn^)v-))&pFA zcuWH|>w(tq6sTDbvh_FsYS#HK*E%UsvmWenk>Z1zb%ARpmL8~C4{rzV^P_r(xWPdMNpS|=(*of9*EYn`}xsdN(Z zQdxubUzO8Fh+0Fm6=H_dPX10orIx5paoU@g8mEJKsjH<~r;b95EgL_@(4B;?aXQQ2 z3Mbphoi65Ym6Ky$j&}}`mujc0{5{?|RQ^tIy2;;ir@Q%ESrZ_$1WulWSe=D7y z^0&)X;FC~_(1~PDr`m3tYy#qD&oKj`QiBwD>ZJd)llq4q*FZxjD|o$Tn_&D%0Z-(lX6 zt~<>ej@jW3IenL#32ZFdkHEqE=nX=9_Gt7aQd`aBkfwwj{Tp%4UP!DO>Py7|wnN+S z;$Hn*o5Td?Pk)jmvi}joqK@8f9e4AVrjGuzb)Sn~k%^6&nCSZ?>97cQSScbHonnqO z@a33_DqNC|wQzln+?LKGC=2kp&~bYl3RM?ic%BaKKO2K$9~>2)+q8%mYf%aJMJjry zevcnHjqLW7S0LPGuV^?0SDW#CqT81fk$x}_(4X3f*{A5d`xpxXda~jMc<5z%fr-jw z&QtpHo1mUdL0@Y@Ku@M8PF^YoIK_j{uI_MGoy^&LS0H=`z_!3}$&`T&{u?fj9_~`5 zx#JSYEpf#Tb7;DCT;e;nZ*W}VZfM0ZKG3?OTpTV&(7(2>NBOSp8(fcasp1S$fTkkL z<}|FB?}RT?vMvejpuZhmF zt^ZE=VyoY`ukrq3#m~*g`wc05@!kn9v)WUrP2ZPUb@;v_rEPs*Qhc6M$kUnYVY@=baqPpXGT3=KJ@^h zvY-J~!ckL0O7-rC6vzqQsUg#N;|^gnKfS1_FFD z(&d-?fiTc;gsD0>%Wd8Y&SP{fcZoDMpW@-&l+4UtJRzbyO8Sg}I9oqjVldFS9^C7z{DkwhP_DqB9{XT8W>+;tlx4zf4^Tl}>FyWy^fl+l4veErgE+ zSLSa&!HW#krOx5_#NLPtOYFIaGNrl<@cM@`=^tR|ql_8VzZ2$cZW%r7&-JlewjDwD zpMyBMV_8!Dm&q&L_kR}yzvZ4wT~X+VupDV!mRG*w=tDBNi*iD7@vL!P(D_+ihs&VIjjb_hAs(v#K-G^E`6u}haO zf~}80@zitHF_Hb~7F6jC18tQCWvevaq@u&f&lc%L2TPf4kxDjL3T=zaQX4F#wnggk zU@5jOF3WAOl$+&C!I}4g$Z7kABCu~L75fJCJ8H=mmr)wXu3nVbjSnOs+*6a&?H;k1 z#?p-Y0-jIt-g$Jz(}A5N6ZZm_mB%-s%Uy!Z zH?Jo1x4Ogj4npRaAjb=f$1?LP(=y*gW!N{ZE46gjdbV=}-;R90V6d0(+x>js?&te< z8NW@wZx7`A_CUUyd6=p6+XMM-`I7JEo%wFxkni>l`EK7#zHd*6qREDi=U8$uz#~A_R zH3SC}=MQM3QXD`wzl0mnUd9D>y8$37074vtR#Nep#EsyT$bgxY3DPH^M*zI0XBd~9Kf7rWqW^YCIrH}>H{iJvO21{)Ww!CQ%r>3? zuLN^|w?k|;?}Iu@<{WR!oFn!ud>vsXEoMeNJ|t;uY}}jt9iBWWyyJU0Uc9UWk48bp z!yJj@EC9th$%GKcIH%Nj*0f@Ni5P_#%6!`V)4j>cbM_|JLHCUzFashHT)@tJ8(3py zMznyEy&%h$FPm#HH48aB^?44gl>x?BFvcOoA27hPL5zo$s*|Y-%M;^Hw(nc0g;*}? zoe5kYwHD7_ell=si$6y=xa{o47n9>*CQfeCT=KQ>9t3ZknE8U(tJRH&nm}-0% zD(?E@#{>M*ScRCoO%ujpI@1^`M8QA}eJO*=qKrYvyd&&%qC5G?)D+na@-F;ft|O1~ z)xFF1CZAuvH@OU6-3c#E9_2HSt^mvAQ9ko%8^}~14Q4bCkY)2o7;RrLc{GH1R6_!J zR7lmcNg$JixRL}isfaOujs#Ly%xHcD!Z|WkGc1;VLr85zwa7< zca)Uo2ASVp54yxa2scQDi|+L*prI#$W?TA=NN*%1jnm^iOAgBVQmI|yy9 z-$EH6|2LntH+d;ySvk~8-CI%yJD3_YsJEmH!moHW<}I1fSA#Zbe@o(dHEFX#*{|lq ztAVdFza90CM1Bq_tW?a`z#B+mwPL7`K$#Vbp+}m@vz6xULx;S?u2YOcsOf^$tZeT| zLC>TD8u(u&UZJLSt0%}Z<$c9vN@)G>R@vv>LB3Xi`_*RnmXO=$9j4mwY zw51Po+pB)792IV@`hnkws`pDgPw&HSCY)4Aj~tfj2gqmz$|oFR8*$g`3S>!GnltPO zRY<)IOTBd0C;YIm_WLINeoa%=!LQl6C%FvI*9dF;FfXicWLjgx`bK6pHmq;VfmAQ7 zZ)E-$3~P>~K5H#3@Ymdl`{(ftd<`SIAJ%8Vus#ch^;vpYpS1`Ji}Ax*TYTDldi2uvwA68=jn(cMk-Z7skt-#a zpA~7&>!|do@Xwj1<`wR2Z+OjVEqcB*>yACiA0k7B!Gy+;*lfqSPa@mtgA3y27?RwLlsA*F{h%YkDj}15j@OO6A_fV{zP`|14Oy~ zn{X{wc0JA!;0*jB+z%A@lS&aw#+1EUp=1TBx~$^qnT)2c(}`&~+IFw7*|;qYA!>>S z>{8r%A41B{Mi}i&yuoxEhk(ssl_8GXSi9c=VMf+%+>ROe7G#p-Z5%3RgB)jy;?Ja? z0^JX>yN847m`jk}@g}{GGYlkm9Fn_}npyiHL(+ucti+~V=mH2aC16TM5c1HlVkx5h zge$o|>&rdK%CGh$r$cE2d@VuAKOq}3XMuARm${%Bfur8`%I680_1^+|w716z<7TER zH_c{K6`I+6yyXfo7v<^(lsmq&(x8V zq(fLmTIQ1{Nsn*|XqMkB8I?vN2WE@jAHg?W@f^_`xw2v23fTOdE7UWPn!a^jh#|V` zCzygS1tA50h%;iT&sm_#2T<0OgFBBVKPdUT@xxTaN#{CpizIPpsFQ#p`w87_T>r;~szYyxuHcF9J=k zZxiVSpqvpw+kmVXg$;X?$KtsG(uO0@Zv<@vvQ*h225kefTB2X9938X`NS{;ok>Zi@B_*;jPmN1fix zHtgBvyixO$v#Q~2r(yX*8r8fB2hV_1hH8P7x}lG`7VYX{_(2fF6!Q6?^xZQ^Nt-<= zHU3i26S-;n5Ip3S?dn6f=og@i&g9Rj{8@ybF$W;4x)yIQ!9~@rcsOg^7)rSgW ze05*>JF~a|f2&6bQCB`Kis(l^d=#P=) zKjLKylU#|Elp=xdoI{b0K&oe?QZ0&SL$Q&HE5@fQu1hJ_(Z{a}Ftw!OacW7rCcp06 zjGRi%gN5iMieQIx*>BSnCwT&^d<>NjLv|0t<4#wpSWfb|UisMW((WN=htxi-*j8e} zu@tGkaGb5RZnkumzXcDq78Hk?n?Xs}37U<1$S1bmf@Y&y0(ye%V)hEjX|VOB6J!z6 zTf}Zt=``81G~~O`E|4u8Ll?;2W}guEHVb6`vu|iS8s4aV$drMlXw{sqyAwkEYNSr6 zyL_PIG_FF~fy-*TR41a5GNfanzsBgBP_FZIH~G3V9sZlaFJJRk>`kt~ zgG_Wv5wW&?F=O|bRXLy@fHN4%;AgLQPTQM2hzH6=qp9dIswRSZP86L{Pa?oq%e*2x zI&`-wGVa7?or=WtLSl{%t%XL>+29qO%AZC2spHRN{*>}(D1OGQg?ja6c#|T#MqW^4 zoAL4y0xaH&m+FV{gCcttf9gI5^EJFw{S7~lk@^BJ#TkR~(*Zx#-SERAtIESm=@+my zayVYz{xJ$|9W;w(;b+v72zDl-SUm+Y6a~L!9z^UTXlvNt8^YLgOK(ge7**WXYk*JH z+}cyf-ig%jkF1(u^o{PRp6)rmE{e@49|6xV2`b;~DQ|+Z-7`d?@q^;>l`sQ?2ibTh zBeIxf;W4XLg4zN%C^UW;WPv%Teo!vjMMaNMwHMTD zU`UEPHZ)=!Lb?#VqO}b*sbz{0=pY8oxem%9>PoY z)A&Jw?ZclnWWJA=s?YKB38^reO>ukvbjMG1fBZ-rI~*@)V@Kl8n$uBSzlDRMlkro> z58d5PK^tRSx41jULhvPcW8MLyik}+J{0iQg&kbX;knrl0=-G+l@+P>P1Rh*Qm`ZWE z1`KieYq+eYODR}}6h_`}G5SXL1yA>OUzY`o;^J5A@yNtFJjld(^!^s`CV9-NKY@A* z&QM(Za(z3BYb)E>*ig|cRP-2C?}B<$6jKutelDwDQ0S;^-O5VBmp+MQUUw{)KZWzI z<83z&H(XHk{-?LN%hv4JFWsgt3WfEvvumwb1DrLWcg+(^FMso1y0 z18ZAE;(k28fghU?3A1L8nc3TVyTFWjahNOvjg3@B6i>IYj;AjMe?eM<= z^t3NJgYGM4HqHeNTk^0iWH$?V-@xNq&P_MM7T6`2=HCXL1rxo1AD4h%0k1?ZCwN@* zjP*g#NAYw99Dj<&SNIL&b7n6`>UN64aUR2(SluZf(EkZ8X1k5`b64Oj$rBP~n!g&o zqzRiyyDYtV^+3jOuDN#LN#Tx`3FlK*W8Lb}wBcneqdhG#2sPcfdZbuJ!!-iJxzSPB zyKGookGbwMk{i#0GZ1Fuuy%P?7^7)7%|zxo>&rIdHRtqZ2mE=_q!BGHHD1s>34W%6 z*K=umZjWT^eV_+=Hyt=?uOt?qD`C=03>m#B3`sc+OFHT$%^Y^uPaY|^FT5;y_5pl> z&I%Z@bJQ!s3N>w9J(Bq<9+?QeDiMMWVl3||@nDZex=*A>QMv*q#U!z>3GYPkrfp)G zy{>tpv5~aYjkhHcw}3v5i7@6q9|>QZ2OD}kdvW(57&*qHjtduM_d|aWxz!>o+ss3x*{*oDCt9DIxs!Dwu}zZ2#jvfH%4YM26g zH_WBr1j(KE!gAiTsSbBtq}xd}ZHBFwN1-O+tjME?usLcnN!rN(V;OOhCTM{Bz>}oD z3@|(Llcf5}*K$=MWio6lJZPS$g+*hKzlFsW_{G2S=C%kW8jf0#-f^`SS4VAxCBm|! zv1NulIdrm@yDKEJXM$H^BD_K(yoC%zdWA&#Z=_7bS4hN*wX&T{lSKX$&?TNRLc_We zENN7ZS}8hi(>$|peX3~!o-M-DtaR2ymicptP%hq8|KIb{5g|9P5f!V&kP>x z2~FOU9EwLx*PmBFz>J#YF>QuPm3DpRg;IBhCf56i(tem+=dnxN046AD}tgh){b!`zAdi{>Ag#~^g!Z{jGEyCL6 zht)9{R>xpi9n-_=*diWV+IC6qGu7Tc}D;Fe=P0=>tn_r7`nBQI@bc*fphZQb=4oF7N4 zhLRYAXzv~m4tt+~v9~tMWD8fR`fK1ryG9e%%xY-ruAyT5*%KBoR+DpB=urImL}Hk! zU+IB$z-WZ8dxrjsKSTorOun^UzREI;$+uv_aIrcZG*8$wEfV%Y%Y?OSk+2T`Zo&?2 zk+2?tgqbAu`d3ME3h?m}Cf`ON?f+?$Z} z*oTRp==^}Ftdbz@;~)ZT;evpGUQMm4sB?ZEU>cJM&MyKi>XnUSl$;9#Y+wbfWw%t! z#mgzq`hXe(ub);{IknvRWpj2l4DwB=te)=tDj=b?uG*@yO6Q_hm?px%4oJ!>E33z$ zlo7j&1MKk?wdLdL>RAdK0_-W1s$l{UqUzf5&Lsf>7`0Pt>QIgV^8Y3v079hBxwOAS zOJ}sAmU-wV6#RF#qL$fx9~%H1ixsuZ9@5r)D{7g!>?kM}t7(}%O9{)u!(J*#I}8(Be2Eu^j|7>dG*v{R>p z7fa>by+-m?#|-36ZzsNJ&eEnO^PI?F%hB;B%PFv&h?AfnkwP^EZrbR! z+z`GKPdol(z#30x`&p6EN@HCa7o#^IY}XyP>lbjgv9NpV_&k}ggJEJ2iPK6n$W8E! zcF`me=GGuNUk1?@hNGFn_9c;rReb~j1?-|l9#N(j7p`v?&1Y*W(-g57Jn-3(xUqAK z?VQF%P0Jl$kci_W85xgSf3xEL342+OMjp3tRzEM^~2Mx}=~=pSXAU3*tp7r+M-DjY%i6%Z8EP;UmnW ze6p}ZgyrT*hawM?$hwXk)S}kLFDuGZswaxBeSYL+^+U}5;wxt_Tf+D|kyot84kN#G zrD48mnL6H>oHrYn)6R7w`z$XK=fRsKZb*x~W?2ansn;!;Wg_*4C6R+f>ByP$$eWg# z6E`0e>le>nb~28uN8Ylvr&}ENYNa5hEQ|&CC>+^u9p=WR?(%XeTs7cC-nRTcaa@A6 zAnCE+vFto2%8e_`7U~1p@t*oIaw&E!@~&GX&ux$CZ`?q2BLiGkLN*&yl?GZ`clZl4 zevr$m3D8sASVqpb;zYb*DX!Wwb!V{KPilIWVWQ=^rm=JagEz-IkplNn6bNdPlVB_& zh3@$%7vC;gtY<#r)RuLAG+v|`ev4hS_L2B;>I|kppjODs`0+|68%TrLMT?)Hu9Em@ zCt6>R+~mZtesR+Zb~;XcraBg`Gc*Is&{yNVQ-r9=<)0mD&#sarEwGuOU zzS-{5Q6ws>CsvHZkmiyYH>s=^<7s&Vxc>Q<*sBWQDW#Er?Ygmo8Vct{4kTU+4~~pZNbgZjFZt~ z42;$lh_0NO}P*eSD6Qq2?Rn_8~Jbb>27<}XIEUhpX+3ma*N zSpSTTv3z4{nwTvn7HVd7^^`_bA@M3I%^5*fxjix4}?0NMq zI?%)|%t#hLw-FP!87fOWk!$f1cN$iwux!O9wwOUFhvxYJr}R3Q#NCG9EzH3xv0Y4_ z_0A3BroF_UpGGVJb`A^hF>%ieLgt~oI8J70mO_U9Cll@`P>iG{?jsW|XvfsHXg94G zN%MGSLWkyLb;@cmpB;}D<+-UtLplac%F;n2RT^7`G|xPH?%d>ZMEB7T5kCaF^N%Lb zfRQvf7s?t*^GMEO4T}MaMlb-+{K`oS=W*vzmybQt4AM#kT4+kbdqVyj|B3IPg?%&AQ#Qa7cl9n`wq{#<6 z0aHsnBrUz?78U#TAtka&kDRv#gB{QY;u2)b0xe4jvMc>XVMY{eWY5GwelBON%kTmV^4oTB) z`;atE3LKKAY4%ITb)~CA($assLKWqm)hvoU>&s3-la?I6cri|ATf%0?K>^wdT0Pr| zN1Qy>qBML?V=pEW?H5f)#GOn%a7dcx;_-K$!%ocAiLF?*c?IuBPe;X>D!qhwndwn@ z(C*(!QiSjcw|2|?*Yl$BbW+@_!l%TTGUo3elBS36Ka93J8<+f7G2fd%;_I!pCPHP)wsnNbH5A|{jnyGNa;rKO7|1lq&WSo z8h1iuI(aFCQkA8DDt-wFqE0`nR@eFP^_}$3v1XO4Ry*luHIb*ERj+AmMSaP7Lfb#Dy?FXr3O48ZzV!4<;&n6^PCrYr_<96;SraE< zvcxkO4DXuB&BT;=EpqT&n$>hC}*EEnl9ln$69tzVBziqqQ#Cw-jeVIJzFzbcc)*=I68Cw+rx zhN!{`PAIsZfqJz16!clL`K5qCV|5{g8^zyci5pW2_d4mX>H3+dDGD@yO(@jdo3+R6podETW}VR7l-Ec2pgeEUo(qDWPWl#|v4Ob3m6Kc^eirahIlFR7%)`&Le3fq< z(bOH9>ZBt&k-J>zL)zNcvyVkJ?QV~z(v0fZKOh}Odx{#<)Sa5@q+>e%&+rC>C~@t+ zSGrZKxQ_LJo03Daq9!!;VNG??2_1KrE5`$jZkq78BB*#t9S?_}#iJai2K)?PpAhK_ zP%v9}((~L029WWhDS7x=dV#A3uVkvTea%{oW`>YXZR~8{ z(AmBTQ?rFSg<>!>X7;?OGrdUD%DvH0DO`M?D&6yCtD4|7NEWvXp+O8EDKbDkYu_8WPIL(`-NEZjJ9|D$ zT|!43ex_U147n${oF(A!Gj>_9#Y(qcYHH3@a@4$@A%B7+u1&9GTHNe%63WBRsOUm6TeSb}BE^PKjCYnM z?odQ0eYR%LyFkDs24jev-*4jR2DO0uYcvfHKTECV>REcL`@AIJ@UwXIFA$jVXnzzo z9(@{_7jlTAXpritfzH64>2HYF;I4&A;cxQj+*;Ye{wb*{Jf)%x|0ASA{V@(^$5*~f z*<8|`9w@mZW#+E6E@#S=%Vx4!=W-g$9-*UCz32_?Z$GBQ&4ZdTP(~NSAAKb*;#PFa{?^u_h znTMY#OszZBIJW?sjp}5p6{n}mKA4hCI77BLYfy^VnYv(6R;ZJ1*3P67=Ciaj&H2G` zQuZW|UDRq8zW~;;$fQ@oFg-X5YCX?Q7HNWdqwrdMk!`e=G9FzBN175ZeZEU3LfV(Q z+iHRRd4z{t$5fBr;b+prKKx7))Zu6H(HwrJ9QyDx>ClIt>1TQPnS9oVpUG!)_?dLz z@H6#`!_U;i0*G;z%p86u9p>;e>A>M<@)w7nsb3s^rXFzknR?KNpGgN63eDkX(v8E< zH&wJ$p;*MCVz4Gnf%4!XYv<^pQ&FQex@F9_?djb;b-y}ho8w` z9DXK$arl}1#o=f2m+GXU$_Iy^sRtf@mZ#-{I{Yksh5II2uOyw`?mmVVOKkx-(oBM- zAKwv8L4FvYBx)mlv-=N3D4h>=cKQ}C3Pi)Lnj@nO^-Z^~P9=MX7Y2RUIHJzLbo$@j z%Mk|G+;Q~3(Y+bT)*5_zn=Do>A=ny@o;zf&wJ7F)$nl?ibf!j2eu$zh8Pe!`Vi1ONb+$6mk+J zzU>wCNw1(!if=F?EXALcNesi@%co@UVK7pBN+lMmdu;R^jrVRGV%~eSm)vL>LB02A z>%G-86CWd3nd-e8WN6h2W7V6Z6&lqO&t;HLIcgpyn1>Qv=apcdSAuy~3FcWPP|vLS zV`K={_5zg?YFj-y!_mbyZNOPC(}hT5fQvlL99mmDxKjs2E_}fW;HL?!JZFTEyoo~% z{u$izX2=iU(vw+sYft7j?0BmkiXEqtTmBg#_x={Nkto4GBjnU{9ABdZ*Z=e#*-Hbv zaxITrf&3O@%jjravpO5mzKn!NQ}T$VOlc!X^;~u2s)W3ESd!g@aK>eEDC zy%a%Xkq2;cNaMy8n>tYOuU#%li@*6~rUC7|n|WS|C=ECzLb?7+x>y2Dc##Bf%^ntn z+n>iFo&VvI$oSQAMPJ0k@|8FOpuGe2g}Is-A_l`fVeW7oF@_f_lCN+qHxoOBBT!@( zOODbpr;KkSzb2^`^o+yr6k_qhCo&fv3nMl}y%~wAHoH^u*^Qv_{J1*>eR}9Z&%0Cd zRdv2_Cd+0}>b3LWo`~-C9m#7C!FAXq6yp*kzZ{XpkHm5KX*vV6!!!7L8zGub!9&v` zd`;L2&nch8Qz|8#DWAr}06u&H599GL^(%P50_k`0^J^rzok{*!9R6px=fJ<|4|r&L zhF_23Yr?%uPCyQv!BkRsxQ-8%c=#zF>hQ1|5BQ5mZ%5#=euy?*@O&LJ-iT2FmJE0` z-qw@32A@7@;aoHV3@N4UD5@rAfizlj-YD+)IGs*ePou~OLkfg5qXjWf!e=64Hp*i( zni$mGwj351pr3`$V$W}eT&2cwK{K|3egQt~JipmXWV{Y%<`tk{iH}Ne{tQhwowgG? zJapWZLE~H52ejAX8+tM|H=$rC;a{)|P%*+vm;8SbXk>(yE*aq_xSHh)uT%r!wxr^O zm2%|!IRooN+a#q=p>Sr&D#^I)jTyKnqKo6yK}C29gd<33#YT2T%EP_kS4F$$UKO2) zV5?nL(9j|T1CObB7WQ%v*xMV^`Mk zCWb>DM-+-Nb*!8bUB^*b$Dc(|*0ECB+z*$k<73^;|7PmA#cjsx$vQ5)4!2$7BMRJ+ zc-3$nZ--YiDiddFhU<83xQ?eQIR?9w?*;m(tXxo=zlv?%XwJ!{!g&>WDN+7Cvhqrh z>QSrTBPZVjhw8fDqpW?IPT5z#$G$qh3_=<2_h0n8gAUZo59sqe97johdU^-4GHs4i z9InaH+8`HysV6h_nx4$qa^Vz=G3|VfZ0A!zV>@3X+j$#Z$n+Z7%8$aOn)w>p%z1rK zal8*pbr^xqJmho*tMO)WPd#dR4`_!!hp+Pxw&^iEG~JJ{2|Ezx z=)dAgES?&{=s$%9dRHRMlxjTOjEAX1@qi9M{Bu20eVD109{n z`YRgXtsKG;1{ z)3uIJYchB*Ls~Gal#)p~yBHqI^9>zb;Zob+u4@=;L_&(pv_2zNHa?H2u@(%>#Sgj1Wq3f;p%`X%x}Ah}Jf z#C;86DI$be)OsW~JB8g(8mL3qf4U|cZ zq{O4IU{b#DpNN*Oi(CdeRfs|?Xx-Q*mvaibZqkJ87pu(qV!N_lY)|%!6=l6x>3e;# z>Z}(VXuX(vr9pdpCFeI--*KIrrgAm&=wpwsJ+gLU!=#4B+VPEzhc`|fKdu(XoNdf> zwy#HrSg~$o?J3*`b~>~No7=e_T03sy_3J+8N_&i8rSzPIrn zsx`GEKanpQkam7F5s&gA)s*-Jta~A%t&Qu6dxh#nlIm?-_sGEuy*+aHLT}H*Tjo_IzRtqZ*q z&uW@~p?BgrO-idmJ+Ga`s!%Uzr+uM!;zdmiU+A59N&FOL=4Cn5Pjz*#R11+@kK?9{ z#LGHjZ91@VJ@I=@4_@eR66rx0|#+WNr){TN` zh!WtfQmye9jm*1LdD9o+;nmRw3qc-C;I5S~8~Hfn;NY~g$AKiH&@tX}U?<7K6=xm^ zbAS~*JAW=^7`ORz)52F71M4zoeJT0u3gy&vy}{ zVh+EW_%#||xJEn1=eO{FxYGJL{4`F3i90?&02+M_etqfp3LJeIvaA|nt)IZDYO73x zi8BJzp@0{KiZih%b2mOS5cM_S(Q0{4!x?E7V zNRni}&CK@-?UVtU8Q|BTID>D**FTZk5ND{KsxWOKhW(Y@rb1kUpX-@}7;dI2iATj; zQ2&Tj5pD;=?G|hBL%E4?s^=EEJ3%4}MIhO?OWYShk;N6cGONs)*{-b2_GD*Pl$BYj zm6>x1<}|Kz>-2*S?Atet-GH5z2L#bCALTfguSdB(ME^_F<-Q^MXtWiZ=i1j{%Lf)X zT6q|T0~J55Eu|S;%r}v~1?0Fkk>)cbb6lH9e^WZ6abqH_ypwUY&=I*<`KRGlCeq4X zjOd<;v?7%w31cFyC{=OWL|P?WgB{YckkJ6rhbD3FNZ;kTCNM9G4SR$I){c=+F`hjM za9cf_=!^{MIoHNq<`G@Bp_`jkBI&4{QfOxqCepVeKwh?qbdaP?qyt1{A{`(}6X^h@ zR}<;!$QIcj@hx=MyzmsoCrA@%%Zc^(^L!^wq%9Xsq%CKbiL~#>Nq}b}?US=iqt>>j~MOJ2c4V66i% zX~{R%!WdsXGva)V5UFT7nn*tE!g<1Bt%A?%(puH^%hG|QoHEn@atqNLGm~C&Xd}<5#VsER03@J3b z8RP~oFVPW&+TKRuOxrmT!ts|VVKF6Sz8;B{z3s)UTH4$G8Zf5N zwzpLYJ1o3!Z>xyWLfhU}(UL{2)hNMpx&&!epy#!-SQY36?L_U_wzevTszN;_$+ERA z%sFL&t*we!TNs$Kz}8mLhZKfvZ54ThlTR?6Wo!E!YN#NYd`naU{}sw9OY&{qvQD9z zvLyei(~dg%{*)#8cd;AQSMoS2orb#KL;^*>W($mT$-5X9(bCXeCr4>_wCFy1k9HN~ zBny>>wqARu3j=1lD`gtRibykEHRhFr!0muE)7>hAR5_(A1I%Ph*ksqmeD#<8pgVf z*TNm=B9`Nh`yQT&1=Mz2cYKd@N8?cCpYFI5{wkfxxHOD)Cl&!S!lEUv3}fBNqolhy zt_)+{!_*?3~_fNu|D#PrS3x#N>>AFBFZwUP%ME8)rU_y)Q_Y; zMH`Ex{ORgLPC@)c@gt9}vnVi?EO;LL;7yVXQlaMXR_N%~b4m zUk{%+4P)IcEE4MsEefM`_iW{k#%UPqep0!T@XcT@xm7vSP9@WE&u>98F?-{zHjH&Y z{T4HzVXS+Z0cdc^8HW2A#aGd|Wf<#zHby-*3}dTwdde^sH%ua>M3e=_otO9UZlOG5 z^f~8a$Im&oWgaZ3J(@8THDQcxp>bp1p)?dVZrh+Ls*TR{W?T2Z5@d!ppa`%HY=nuthY_HWbwkWhkm0c1p%tPwn}2AN{>b=(p!E zA=^+?J8VNyP11&<+GQthimCPwyFHCa6xHy%Uor8pp{ODR3`Gs87ei6^smoP@&yL5g z={(QqbJmi1OKi6>6tzNVt6!gztJvP|W%q@rRYouW2QvyAiW-766g3WMC~6#@p{OBv zhN6aG=N~c@b^mZQaz(xEroC|<%|oT3sC=SHpM0SxIXifm`= z>TJ~(cQ-BWLG*%a+}@mwqQAKjZnjWO;I`JbAO>EZEc~P z?82>N@esgMX};+W(3BCHq6G8+9k0Gni9$sksHu&bife^+?1_bx*^XPQ-A&T1V%6$c z(+Z`mQp7qO{wH0g9y! zggZnNmMVgZH$=xX>i~vZ}G=B+;oVY?TC=?lA3Ki#CvFyr@XSbfk4iT-szQ z@^DSwXvnxVStqcm=$m}a5!!iXp)r9_F-Pc_pD6T=t=y54NHZNpbwFY1XrUuvt>cc; zgi94cB{oXO`>ZIm4bqh7Xzh7L(9>~8>!hw05^zEV3{^VJ`k;JeJ&h5Cumb5f4{z}a z;a(_?#TkbZY8taGcdn~YFTkDS&U0g2(jOcxl(t3g0+$gm+7~LbEsu~c^vt&0g*t^| z@Hg6rTZi05npR$DjF=U6_kF4gmC+~7w!GjqNVa#gEiYIt+CiCZxl7zfaE>C3SPE5V zKHg=YhuN0I*X{{!m-McetYdo9i7rJwjJ8aR8>20EsY@{qqb<#UCdNrFM{F2v$v%ve zU);AbwRH!dStyNP&C40`CpaSk(FBy-U>R-c_=+Wr(UwO9TS!UaEy6f%o6L_!TZMiy z{wj?h01N`2*G60J8rcjq+Tz3&(7N3vw5QP)=5oqt%iX90ZAVmPwB>eb($^3V&9m7} z0k_a-i!&x9vqk&gE|dT}OS^XnEy2!~Q;^8uyFkdY*K$AUrod*j*D92jKkinS$7)6f z!(J;9y#d0rpxGTLo6eJAwJsqgrKmw=buRH9nN_2!K`!wbxm8P(!MfGbTJ8;T35{UR zP#CbNa)-*|!=g$_wP7v+52x#<`G>niCRiL(;%0>ApIRkuM!MACkq13PDtDAla)eRy2nXDkZ0Ra<=Hk= zd0`u>MD!>i|C(Fy#is1f1KoS-NZ!`BQnI7 z#P-v01r0vs1BCMug4T88h9y2UgD_|e9`1$jgZPMR2RFmXnN1yjYcn`Vpp}vaOHMb4 zjXgb?+ke-SX-Blnv74!G!$#~}yMd2i0Ex-oz+`v9F@*Ddal=*c8#z!oL;0qy%Cuk9 ziiJpJ7%SsXPxfT;;1HE!9fA(t1lr)${5ln1>dx*7@Sn#p1tRQ^auRzaq7-{0>c9$I`x#hn@;z83%W(|(mrv};T#cd(L(MeEs;d{QyPcplpzi90Y?E5yjFpvFFIam! z;co24`elRkKDG`{w8mHwL$X`o8jW4&Qac0N6DI9$TRe32igs+By~Mq#r6)7A4YoKP zJW+nD`)_c|djAO?9>+(FmPQ-u$96ub>LHRBz10r9<4{IBgNl3u0i|hu4P*!D9A$Mx zT@5^95$CoiGsSNrrVKpJ1dcGU1jRD&$aykwGXvM*Q3n3F3G6yk6&#mg$92oFP2WJ+ zWAQjuj&o=+WZJY%`ZdE=N2W8Cy;ylQ-!8q*q?e55fpr=4Xxc)@B0FKyQm)(R21 z_IkAY8CVzWeLXs`=-lh7@;Y$O%l$@^dZ$#$VPEYx4t3 zfbrjJ`jC8k2{8VOCXa9mvX=nkuZrVQOF37~Fw29|1$*c-oM*JJz`4jc!ct5S;=ef& zN{Y#M;kS5QlOqoM3hK0Y-9!x8^m9spoDTmIpGv#o^B|te-ogWRasj1vZ)}Hg3J!#o zh(R8Kgn?b^E85$z_of54#sFy!3qb9Cj`r*~donNKQ$9rCyjEI);<{Co`xq-Z9N=ci zTMK(KU%;ms!9NEWR)NsidUlNLWZR?@Fz*<8;i52b6=hu?vBpcF#Y(rm)u(Tqh6`Zu zS%-vw?I z<;?}YF1G%pCvy`%KLfolZiNM?x?F7kM^EN?d|n6feD35s3+;0=2s`i*S5%wF8n!R~ z`kOhI8yAw9uE2cj+xXNB70#cLzyNQ~g%ENq*hZS3bAd)7hT0og>&>~Kq2~Ky2V!8( z<>rY$GfOla&g=u@c~!8&ssgY|&~tmgp3FVfJ-E|OI2(at2eERoZFB`Q-UQ-c>JG%| z^owkJ>XSp-w!pUZbQbl;@GVibEZt5iCB~-^a40#}6;3HnZ06R=Va{-g>)q?vPZak8E&_@96yvfLX4ESK3?d40wkgW1iFiXO5DHU zhvgDtFgdZ68bwFUVfwMiw3;U~ByZN_qsT3>NHfWPRh`1Ojzu;O0d*thg*Xp=b!Wz} z%vLHIT9xhBGL`TSgblvjD88H+099^Oj^iasJZ&L``mPYK@ek>{bR=+io3 zhlSUuD*B8jM)N#W6@6CIlDHK>p{nR}nv_s-iDyVpU!cRYhMC z_n^!`Re3p4RrF;Yu{JM&s-nNw^dWgRs*1j%$s=(1T-L^_=&Ryk)KX4VRUo?7q8dC= zgki`U+1gvfzT0s|#7+3@!Z=lUGrHhZj37l$u^x#U<#;vN`?T)CdQ6 z__3}NiY3IGD5#w0$9^I9po7};{Mfxx>5f(+)fh8pfuuzLa6=hxw|Es4astB1F)vo=_JBm0ia;d{RN|h9 zAHE&Nyd0TT=FDtYR%Uy$Gb_r-c5e7I!@_(AI1Xu?r~0Blq24xa*yW?d?upIkuub;3+ z!9+srMsbs$LB~rcMvK|#vzTjjw&Qw=M7`LxJC(W-o?#)XSE>ARzZ^4x(cXw+C6W6;iKv7eKXr8(y4+NEeGLIJz!MPaG zv1=b=&KFRy1WkC7931`z1%%;W4W@|8;b>keQ{!3=V z6Ad;%5Zbd?97T|87VD9NvsjNDp2d0|W)_PR4OF_}Su9R8P#*Ry7AG38V4+zo4j)iK zvu3fLPw%r>FGy$>>(SLLHsQ@;i#|nOFwVxJzt~PeQBS5~xNw$1Gg>N9!ZCb2 z0;E#eMG$)>2v?H8qd0N4>3XrTw%J-FX%UDaTSPDUM zD^zlCo?B6ip>{3`RgOA_c3hR=HO6@o890?q@GnQ2cd+EqQ6PcYzk@2n4W6JBtH&-r z)_~VjjLEvuauOG&(Tmb89=(>2lt8JQkVutcHz5=ct#(9dCFC2k&ml-?m%W|cWJ+m)5s zp6twuvN9{RGIN$m4EDRDK4=U!?toyhYtZl`&O|>rgu&KG*cI4S@WEiP{RLgi(AN$U zzM6|pMSN8YQDEV#`;cQ0Unz=>uM`FNifI5};pP-4#dN0OljfJfSJTC3n7qPQ%3%Ya z>0#hAUFftGzM3xT5nbUcR)vkP0DPv4nedkQ>J2}e7MyRW-oe1Q9QZ1bO^cPy8NqB6 zzPg#&5MLbw;q{TkS1j0vi?3#o7kqqmr|l%Z`WQ->178&we0A!M>H3gau4*)9)XZ9tgu zjArnaie%#}Mahk?P-@~Urg{cbQTR$_V&N+iJba~mclUy?)?yePfLR#&e04Tl zz)erGUsZ^+@so|OMuK_*I0)gcWVqepRQ#}KS@`M(kTkyfAp@1T_uwapuk6e!b7r7L*IU(A&J)Qfm z$tF|a^@i&*9xjC zJ`y^vzf+$37;Gb1!#F=Q9hWSWkHKW2KGGP>)^TA2Yc321^6TgHWFCT^Ya@pIkdEtm zkUR`V4c2ZFEFIUJ1{;Gh#3i8E7)V2tIC^)VRrIFsSFFql$K zy}OR9mC+0aQ;}>8rYN~Fn5E{k`yF#Kd=u$R#XwT^2M!{G>e{DgE|tsrR(b~Xc*xEJ6jh{3c%O=eb^GqYVHoEeUV z4`){7hBGU*GSe9ByYoJ13^x9NV6YMOjx+8PhcK9betYiY8l#zmyUsXnGM6R$KZKsQ zzbdb+b;j{dJaG^)*iX=5_II6;Y3vn)&9E_;a@ZJbMi_(52x71qd%7Rtw9vQYmr7z|eMxiA>W#n6Efhn<2UKZL<90V#mN9wWiR zV2$I#7_1YNcf(*$FwDDRussN6^kBqbb>k7s*MsdV2Aj`l`;Eb_W-9xS!QSo_gXK>k z1}nx;?5#77AnBlDu;baUD#V-UZP^&?Mo={dOEcVV@fau}3|0dljlm9Mpc1zkKRGd& z%&anJX1hcAS zPnut5<#D$7GLu&;kIG>quGwM4HCyPk)ym^+F$2-n%Hzez#9Ddmgw|`e_!zw9%45{t z*+qw)O^%hvKsGH_HaS-w?`Ae!c{~+r{g33zBMbK7t~_>=7ktF^s_i7=YC{QgtUL}h zD~}rv#>%5Cl#jS%p+3@xi{qtUc?5^&LR=&_ex@f=bVX0*C=BrPfo$~3BOg0K@(|Zz z5Pm{}MqH=BT|Lo8Tnuq4C^q6^->`Rfu?zp4VSL238qq>pFUEQtp$y{Mj3DVrh~*)PRTht)07|iXT){_f^-nRTtQ#dKd>d>5LV{(mHgr3h`}puWZD%98|7dBiw!Lf4jxi_+ihoRvvpm(unI#1}bs? zfuA7avNNm9nb|H8&TLP1X4qXH%BQfk9k%qv2<5ML#&S^7x^x zJRS(d<>4y{y?Ea6f;mfxz6N{^oidV)&}?U2=FD1kZ)>F3BbaMesyvEBpPHO&JN-2D zUV^SkkPjBapzFVw4MEp( zNVJb6=wiV>T+lV1yx@bbTWlvm*J_k72k07PKv(C%09~?BKIoE#`bdK=9w4eg7dSi@ z=puRXS{!7uz9%ydWBfu4#u{|-@l=pJ(6t1FZ<3%v*T>P0>=pw-bUCOsN&~+)s*27V#An0P8XOV$Zx!r&+mi(V2f!Vn~G#)((lw$SB z4PM3E+L&TY){T~v@#uNf-XC=%AA?)65-7DWM@|7hBGU*GIP45n(H46 zKVZ<+Ij-@5tTj4g9B0A#=m;L_`VAWYeOupOCtygTPj}%nMlf@_%XaDXPj^w?zV*HG z_pR@hJ79gUNVfI8q6Dq)Rl>Bs|GRvZ!09d#lw#lShqm|A|BU7Lt?%VEa=l#*=i4+6 zMxS^$o5uHmy80lwEF;EKna6vuSM+sa;~Jg#m^h>F6Xx23DoFmdPGPQz5DymSdWt0r zU@k?mF_)qMb1@BIuGbMK#dK(JnC6$kTt|zqFnNW!l*0x?M~h#eX>oqIF=0Gf=(H8) zI$AU%y24y{A`=U9q2oA-qs0>V?+fS(<EE}+b}A+XTzwR^+o?nW_U=y zcVp42L6*}4UF^z18^+#2mrB?^i3c`}iWszER5br2p2TxHSXve8dF?D#g?d3d?UQ(5 z!>CdTpTq+jM#Ve5oWuhgMinu15)W(`6+O#_QIT_=djK0o3v`jibD=It-w6xG(a?9* z94;L0-`22;k8?rtVAt^=Ttk9}UCZJABi)`ABSTD>0(@dwF|rrhu#3I;-x$V+U8f^j z2zD{n9SCJ$*EtCCJY)H=i?PD6OJ(N6u8R@o&x~eZmx^S=E=38$F4nAP#mH3WPem#U zcBxD(*hPW|yOeJTcB$lG#rQB_)l?KJ2)h{Px5&V$e8s>nmi!%(FlgO`DvL*{S}azN z)Xyo{#h9!cEh^(t>d1;I;NnrLn2ITbQnw(T>*4ZY*EYBSr#?FfeW*f=#t(}KIAvKe zK2hhvt|J+4w3=m>{k*SjdY{*S>fqYoqUYLGTM`;NT6i@ru}*I|$l z7V>)5CDgICU5a8OFGT_JVj4hRe?puT(;*H@^UENwMdAh~uaK8=*vM;97Mk{s ze%Q#11OW05$6-X)$cvBjK=P2+QV^~sK_jm=xZj}L zLtYFqaXKK1g}m4cZREvXd_BYX$g2aEb#AupAQg}g}ckeBl94S7{ze5Dm=5P31qW5~d%Y=pnu z*Ts@MGeH8o--;@WN2y;dR*zKD6&F+C#h9!cEh^(tD#|qSqMpe|USEOBM_yOM1+X-a zJ*z^zGAI}F`Vy!e;30%_7;d+?9~Aa2OW{=vAC0_5Gf;^;5kEoXWoK5IGqYVHoY|i2 z%!=G_W~EkUdSBOLi$7rG)p=mf@VWvGf8WLE2OjXE8u5MWyRHT27=0I?F@za?7d4yE zP{eQsYFEbj*Er4C)^{Dez4h-w-<9*wF7E5@ssT{y98&Y^u>W+(lJzptyEyx=b}K5aXR zxjvMAU9wRA5~D2CM|z3T-q(erxpM5J?*zFRd%E7fx+gOL1AJ&-*L;vX#Km1(*O6fD z>-rPj9^zt%NzH&J7UEL-oP29W?(6z8!}y4cs+$nvVyqnqWe^wlF1^TDKH_4mFyc~~ z`G|{}pMqJ4W)PQ(WFsy`2_vqrP#~HUyO`<%rn3M0x|U;L&AqSd1!Ukx zO58uG z5ZAx@PWpF2Tt=}4&^7Ek=%xDwx*E}Y_jg|x)7b02u7&o#F6FR6*TOL9S{U5dwb0sd z6#`vt09^|Y?dvk2EB6v3#WL@y2wnE!oprj`B}NrFdx=rey(LEFtS=fyUhqNJzu8W2 zi81?_)ZUjERl=bqMnw!Nx)d$2#HdJVRVW{H$wGakL6^0}2oBE$x=3D(Jzbx~QC=%B z#)tNGT@I25y0~lWDH5!GU6YTrK^H@u35pH6)IKL4ba7wTvkc>dE^2K;po_8ogir=_ zaqrUH*@)$XF2)LjE|r-Nx~TLyh0zS?Qju)Xr6_v^T}<^lrn3M0x^BhTntNZ@v^nTr zl{*dSV#zZk0X@CveO(H4?ZdvVpR!+7h?V#ulLtXp38;Es*VzoWTg<^vXo2xEkTmGJ ziGfPoJMa?(U3y=a%&anJX1hco&D_cs{U- z$-cEUcK)wHR=2jsF5oi;SaoY_?83*T)7;t`yGVJPTU%onD}QrqYwQx`wr*{WU8+d_ zt*x<7D~f$xoWS|2y&q!l)zIn~Q{0DB z?Bxkx@qx0$-R8uvc&%)leLL|ByT=Pog)osCuj9=L_MjH7GgNb9D~Ls31hIDzx6gPj z$>ZR87XLcjuD9td+^Ut#7fjppn22LDl11Vhpyfpq`Ax}Rh)beSqFWb{CGQogsU+3g z{^XIP4D4M*=8=;rwPV3tMCN&fIWw-ABYc41D?Z$*07%SUN~~7m+2O)(JZ-yuOGm`HUt;Q{F{n$!9e!nKBoVC7;uz zv?|o|+F7g$^@4Vy2EB{Ok}qmvRVsK9S@I?E2*eBkUMlBBWXYFx#M)HgBC_P~HGN3R zzKAUOiYAY6lG)e3BwrO@LoF4q&#dQ-r)18Fj$1F@;kI{`s9xa^8w}-&_XNGpW*H*1tf$_jNS5>}Yd2Z~B*OviLM?9yWd5f;L z707R<$nh4+i)lC4^-ca6;8RM1p$*T~|01#VT`wbK7F>CfV>mHvOBzbtOMEbfu>g)>0b`sp&f z+r4g}s&?aETPy2bInP0GzMXP?4KAndZ!yQ&IG`tUBR;+>evDHyR&~!W+l@36}D(uEciK)Gz+q~JS?3S3yxeM zc~Y_<1Dp@H#ez@58DPOxK^9!r3kyzMXtyi*%#^oRMl=EVLJxx#*AD8*9EW5s%s1_; z*zsJ@3_G&KFTicH)}$lxr_cX@aom&Jc(L zeC8pk)+sJSqDhpX-kANl4V_v z72t+&S*6?gcr8eM zWQ}j{g!4%{rC8ohKI`AYj?4P~Dp_eRob{AD&mh5C)TFp^_zMs_!=J#{h`Av6;^s1h z#a|-IbP`dH(4z(5NZX1{W_(kFxv;MWZ_OEE`|FQqmj3ba%$JeoafK-Vs!Z1=`3@H` z_4`0p?{E>bsW={mhA++?znI=D>F%P7@9-_{i_@4cq3=u5moEB_KS4NS*eqqpt{xw8 zZHR+L86Vjy$00oa%JF9FH?F{S-+JiQuXcjnFu8*eJ}my<$20$nPX?*w6{+??c~4;Z zwt*%~e*(+*C|!6rl=npXz9W6^L=?GC1P%f;`mf56ala6$r6SG+-=eFS$~NEjtN)rURG6IN~bV$;N>&P`-t7 zyWOj#zs&t=*|Qcg4uV*u3qTt6a}>D*MQ+@*9y$F$CMSE~oA5}(L;QDE4>Vq~tsh4! zxf&Y{)q68L@;!F`&*Pb6(ZH`EiC0lwnmuI$SDtJdn7HO7x=?h}z!ynhx+HdkOExeQ ziJcN?;K6kI4ZHwO^t;y)uwVfyHPqIud%M(uR>p=lfQmN<_GE5HD!WTU?fW>0rhVxd zY~RzCh1>W0pyY1fm*L~J@2^qd=&64D((QIH54Z0i1PQh82_TKyisC+ik7-{q=o4^x8R9ym zoC69neEIQA6*9dJ!FPEX)(B>J4`}vKQr2oRtdVGPIo$qGasymp+3M^?sygCzu;LdW zQ}0L2jb&N#^evFJJY{K`mMfMt^7IP2r99=!|3UkLMWs9)y@I}U(f2~Qe9#HLZsoXy zS(V)gn)iHP%B!7#nj64{_aKG*a@A!Jk6v%cEZ|@c6IVj7>`%`)Katb3&7hCih#_g5 zKTUg%VeP3}U^GRWRgp-$1B@5ku!iRb$1R4$BWQltoe%OpcRLT3jP|a&Lt7iAT>)GD&`RUix3*>S?b*41`)cWi23pBcM) zWA_13%`P2_+l8(`+4W|`*rN}kRo>@j#OV1~v5}@L)oe}BStU0RyxgQ#OOuJ z+Zf+QFIN7>_%?cpa$Cl?(MuJ{H@=O2T2XA{+vsH~VH)4QDPP4hzKwq7|B6p9 zd)Nk@@dsqVLS_Z=2X)Y_)mG1^_tjP}NNBayqpQ`{_(M96`ux`*Ogv{}e#0=!$<@|7 zQFSS@N7~nD#vc(I06>!U@u$R(Aiw-eDdSJ;gzeSV_%oVlt+vLW)ii&#HU69?rB$Jx z*Un;9s28-;Ht3AMsEJ{N&iG4WC(6tv>zo?R_{%zC$e=U+drc1-bjDxNk1> zW0i5BT^QQV(Q$8MQVzy$Cd^5h6c|?}x5gDq- z;*#r-Qpx4~l2#gBd|HLC;?i6A{qAMJBu`MM43Y1MN!HNc-s+K^ulHmI-PV&CzDhV} zLSVs(7Jh2THJi}%Z%*_PS3seMC77otdc zxeYLSJ97FZylb5P66!>+V_+c$oIuf0A^tqntN{-+P$&MV_${bBNfO}-7;d-t9w-zZ zLJX8pCtm3GhYt&kKuru(;?BYkM=2q4WmcIpvt3!4?a9upC@Zs4D>LUxl)`o9EG0-e z6K}nJ+2ff<@M&lmtNz!twT;;Xh;jPZb?qzRAeleVcC2n+Gq!y~)8w&jXRX=N-qEn4 zYrS*ilx6F?&gxpWcEkG2vZIzRTeBKBabwM7S^LU%d`)VaJZ59t7);vNY?&~AnM%?* z`q<-ZXDz86-!QJJVN#WFYp4>uzZ(+T+MH)mRU=M?3ItW> z>NVVGBCuTIx(Rh1d5|jNR9QF?vR3zMr`A3HQ)vFEKBa`u07}u;HY~Wf7k-DWG#D$~ z+G<02C!?*a*R6nfy;%9D;cj0CtBy;QyBN`t2a|U%Rittx(Y+eL&T&7jC{@u`Xcbm> ztXPkTm#KtnoLKaEWEnqd-hw%f`}Fk}-uwEp zIYz|wjy7?_C$`0BA0?N4BipOUJXzD65`_5aOXjg?~KzYu^LJ*ObK_!S(n4%%7-TDC-EP^B^KvnrRJwHoH)fvU4j;+ zrFy^w(Jv>{#g8}6&ynlmv$f|o4kq#Ajq}PsQ=o+V%=_*ovrmNLqq_}D{*fERW9$=H z)OYYa2+!QEy0(4ITHhUY@{^I<1f_ZkL+m%iO?+Cn&WYSEX5!IF&pxrc1A^O$d{ZU| zyw|;|ee?Pat5&s7bj0$AScqVe-(y@YL=RgYp|fz6_tXis=yK^@)B*pMkv#}mv=kq=0@r0|8d6XlEdReq4#gSVde3IiMf6 z0BAKvS%l)E^$1%SmAS1)3hEIP;waysgas;v$icg=YM%gj7M1m3`qoj9D1{IRWk7j{ zMOjmwppcQP%sGHGp;92s$OobQ9gnuZk|YDq6G|;ipPcISMvSrn4Pk zE8-~O$I*??1dtMQqLn;nvT`)P>hM){4aj|)@zn1ad?mV9T@_t?RkSZH<*QfV>u#jc zcO6|@@KvxDYjNk}VKN^2U5*DRxT~+hZwq~H#6u?@`rd(uz640sKgHJ-AXVLsjH(}k z>u!d80uR5%1OI9$HT$9l`a1)()MR}CHU(TxT1w5WCx7In=2l3|Z?-<3nSa$GsR>|s zNNOIEn(tp~cFXYrVsmv=jt{1Dy$R{@3MO0>o2#Xut!-CgQ@L)1i=uF?^lLl~Vw0lq z^XQuoQxu*St)M8ZpeU@MD6DiEArC1E6Wz-Jb5*Sq&J&b}fX1Ct z=FJAB4Cq+7{s31wCE$i zW4@D;tSYX%04^bdt~}nt`F(uSa;ckZ9Y?k-I<9rWyd^EItxn{&d2Lj;$p>}AU3!{7}8tBWLQ z6<7ywD*K4xX_Z7(Oor*}l}Wx`Kb@<5rRp-g#WZZ`#GA;nfXb5g_e+{e6{ONB5(hA8 zmTjO+F=pzk)^o~Y)KyyL9ONg2ZITG6>RARH(f}uGXL!0+7Hw!uRlKaqVGUwtI_N)q zqUAqA$4>EeRs4}UzI?S&I*4R!{+I?auB=3qism?9up#D*E91J=SicaL zG$)6r{UD8gSs8GgAcw?*uYlCMlQ3w@}*>5*x`@R zuaC;+`yQ#^Ogm@mgy=*`=IGLE-=i!ie2>o8ja&i|IG2THPiCRnGV|=WAYpzAy}lGd zkC88m%ophNz(qB9(S>#rxPdN()L<5XTx9Drm&K$pv5%z$e~wFmxWt5j7E0woujBJk zZH#k*-+0)8YRc?5OC{^zJx;1a6`t(B+srik*(o5%d@pG(oL8o3%S?eS+Np+S0y*zZ zxOqKIcC480g{X0Mj6m06Bz^jD1L-mn>`(;PIaqt?4!0Sbyg5R#_DI$7N7>%kDQTCCq3cb@8Dlz5137lA&IGKYxUSH8Sa3O-G*7yHnWDu>|n1bQmkBT55pzF zepG7rl(G;f*fO*{$ZUQ5`lLv$@SWgxFBv6@eFikFuSG5N-;!gsvmeEJwO{jKe4Qx+ zAea8|BZuqo148-O#U1D;!YbuN=tu#QQ z$`6l4C?%Ksu?eisr<$N9M-#9Y%D4YN+62AUda3T{x?bPC5iD6{1f-6e)f5yuXgbpv zy4rPUt63luO>_453K|wr11yOI_86$SMGLlC(|$_MQ3`snVUX_!3F!N<>kc7@aM0JR zrZ|MdzKm{hgEtehX#Z03%pW7d(#-VkVpc{;xH3v}RE8022Vc0qUx}sgaoW6Efe~DV zMsO9`f~zdp_Ms#I`9<=E+Uv3;J01nap}4G@56O8DBd{V+BQc7KW z(+^H5>!}f_?p5FzoTd}u#Kg)GI8Dh6yUa!?X%SbeqiClQN_3*kMl5MxGcVD;W?rIw zEfEDYX2!hXYM2{A_96xg2r&Y%Fnf(QuYS1}y-ZwpUsgG`ZDOi^I7VxiYc zVbo9*>}kcJfOeNHv4VmPDA#m_0jC*3QO>%wz=rCo9=lof=JA|GJ2(Tvf$gfQWeUv; z7a7S|Y}(4;HK~&*4K_}hY8>c7QA@tw6N&+Lrb}Sv1s(qp2 zYdvd>*0aA%&(nGi@SL(}18uEmt)CE-00?MlJ$+?Bn0p2XS%RHTvjo9Gu+xz-3<$s* zDaPPbDBQ_RPqYU|Z#HBizDG_uD6?;`wPbZtbFRfAr%3F7THayvo?@CJ!!$q&N>z?C z(x}}>Z?ZdhS&(Ur=A2AZ;WJI8Vwx(i7?NrF+Dy~WYjNpUZL<#b=eoQ;>-0CQvmd;o zSiskDTTG(#MV{0c>JMB>K{ibD6UGdmS)>D+BFJc^oB}gY5o|Q%o_ei5*O)RU$f6BF z7KOH4RRW9aBfPMxTu0(i2EHEe3CS?Xp5T{XDv;MOCf@^J4y+PtkL_U9U!>D}{mL{Co4*C9BZqmJHV@At&n-c`%{Fixm`oHD)k zedyiTiA(%WjQJyZ9V=ye6;2kh-0sAEjO4GdyRRB6DBGp zY!0q-YS{>FRj_S}jfeyuVpyXsMSY`%!A@eBGlUw$#KRQnFo2V788x6my56dyBbNa zx!o)iXyc_^$x6n zW_7EnI*{G1rs;4friwV-q@<VO615(OPG9 zEU>WYKAPDETP%#eijKpsVS#8i>M*PSAkgqoZa!o0-=vmX4YUA!Uvm4P;B7Vdrj1xH zu*G_zk7kL!d)1`ddtHp=mcke_Gbqi2qi7!^b)kS#qv-qHt74Db{;W*$C@|}N)Sc|V1rt9^7E&V@?2fU^(WJ|P7v=zCgtK-|v3jR$x2dXsO0aFjKN0hE ztB0ahXULKvYaev0VbspL*(xQn_V=xXN8IqP6(jal)y>w)Xn|tkalVk*wZa!dd5)$4 zBl6Zmc*(cgB8|21mDW@C~qm#mX2-FEpdC*}CEv6I)lzi2N}xIW-G06@uL? zJ}ZTGA1u-3)s50(Mp$ff;edLApOF$gWKn+6wKU4oH?(oI>-c&kT;H$tKYP?B-8kL4??m`#FRtU{`(gEDB z1`9tU>iwj&X5i5rcPu535g3%Z@1o|h1eu&*1NL*67-s|(wgS;T!48KFKwbw5%VDF! z(Q;_A(vlqJOOaeV9&-v$7T$yXYUG(}l>)M7nqNokByxN)6A8vP8zKX9xS34D3`^J; zX*p#D%(4lNbA%DfNBXb8%w}7`WZ#%$w~>!FkMbLpGQ!&ti4n$#XikFWQAk_593`Z& z4^lOkrr*CUp5u-SWVDkY>`f9KSatw!L32*a`5%UHrV_>x5GLtiYQLBvO=&hGnt05RZ}`z@6)7nCi%8KOv+9 zHxQcrgmhv%zo#i+&zQ`PW_q>6ss4-l*%^qc0UjZ$eqHuDiV;h1V-yEE@HG7@QkP+a zR4ET;m^D!;ICMc!X6~rga}3G@AXDWGLT9NSHl?Rb;&y5)+H7J?BRT?dDl9nk8&R$z zySbKFfzyVkc;ES^aae)JgeBF2UWIpff3=?{c3CS)?t|1xQppEIYVWpRB0)Wh&|>Bp z$EyM41a7v*?rJlxEL9Jz66~(#Aa*iE;3SAt{eE_2RB&Co5K@DNj7ABE|qx>3PRbTAqXi% zA^6DX1~+N3fR|8$mZDBqD+HagQJ^|hrss<{S@dl2#@>(46`q0neF;`i%KU+fP)p8C zSH0IDA|&r8KGT0UCf@89*$*=dVVIm2nVfCww_p^5jkGUqL`-0?4#bmeDZD+0k$y55l-;Vc`w|Q?u$N9}i9&McC@-MuKK9%Z zfY9#d^|~MGZcY`ZB?KrHO|M6~y)7$Qq0o7)WhKZ=yE{x!63c>yEbSz(v;h%jD>D)5 zuy7XzJfu)Q+;nOHLZuZ26r@K$SBaUVmrGcr01dLIQ@YGF;>p%g;+19vdp{5(N765CoCV1(iI|+DfR~_fko_RDjG@HW^}-%9`=J|tb_bB^F=h8!acB}9qaK8buD^aAo<4@qlv=;`m#n1#F19sT zC4Q^>{fOJxb!GdD*cK!y*R_P|#Ui#E&#`HZOoeUhSgZ~XD=^|wj0fvA-9NLtUA3Pl zvA)?as=Hl(i@DL>15`i3Mg-<5jn=ewLkjLXnITdcWHA?_4K^z{ALvH)g956R;_;xa ze)-!{umPJbUE!%NWGz=}K9XEeWwxdCwK225<4kg1wbvV@v&J+>f3u)wb|hH5X6*v* z%}C4Q9LT|Nn=8IFgNo*-p|;eOtEdJoQOZfnL_>fc!5(QyRz}wLm;zoKMc@_Qhv177 zXcau}SNcPH(1F3Wkvo+5W8pLc6V66I8T$HqO21%!vCJ3}%FPde)i5t{lzTD-rqNZR zdX$)JGJ!0C=^=27X0!~Rz_j%YNd2HsK#f@3|2@%4{XjV8@5`M zmoN)b%tndt^95~!^w`H@3?x6>mO!9+o4P0t%!0G-QaQHV>nbD94mIoA!^m#?wewfP zFU^81=zC-_PX_HB;~Ty@SgUb{Z?I!LVDqTDA9*Z{SIo+rjaO(oBAe&J?0KW9li3As6lVuz9?xzLrp~`kXICJMim3^qP{hc|7 z#K<9;ZGiTBIyK>t7&#O@uuQMim$a7WM`o zXu8w_26S9hpuw_TxnZ*0%YvhAnS))M*s8&Z=7c*-KL=0jL!%bX-j)$o5lVwLv%~>a zvXubVHK;u{6@e-oOU<37Gj`;Pqp5OK&3L1Hn!q`|S#9)mzn+5F((`&|$rkP4fN{g- z`>l9WN=|Dj!BR2>P8~xBAV*`PJKG3qHvaf0-G$pCtTeIPf~yDqXm)LvVoQfj* z91LskKMq5-r7_O8^L6NImy=;Hys*z+(xKQ(EynsswuQDkp`kqWJNl^MGF^Q}HAg2J zrGgygZ|H`pFnP90F&0E9T~N)bwR7m>l(@1N+^~pxsM4Kxsq|ni`%BzBffwVJs@_0# z!{c2#@*&nP4^}JC0@+pSn)vD?j^=azY$j55RM=WKTC4pS~G7hlB=;I8>?$A6_ zf_#=B6)u54qtHI+t25K=t^4}dSqy5QwREhxj&v-qBbE1JU zqb>;u81WdTV-ubcC+G==Y8ZQZd&eq9#UJhrK5hL*6>`m{wVh*do9l$}aO1vP41Vs; z_9rrtU*dkd$6OZ;5_Lh_F}x=ec{43muQ_FmJG9LAc%2@X7G!(u90reV@VM&Z$GXGH zM!G4JRxzX8sC|Z(9p?LNp9P;CW#Wq2k+Y^9xz-)gZ_3FFBAeexE@&P#cKVuaS58^` zu{YmJHb+)}KhkfL74JmEd$LTdPyX_Ak%HPtSHtE7Cw+40CudE@W2AWgDUnS}BWL~A z%`-(HM{?nC_FFtpe#M{lpQGv!@;L=3{Ht_+Ag+3a?-H z6H6m`tB?9Z=43Z&lHb}4pFi{yo2Jj0viX=u(Y?v;Nb27s?W>dBSAHc@wrOQ|vU_`E zUkv`o|T+x0Nx8Bf9ItyeXT7hGk){Uf2t%ecRlys^UgW<+;h$a z{-q^j!8Xd0BSy??Uje-Xso$I@RZUEgV}^*RrHPasxUzlhNsMVv_m#ZKi3NaoD zhK%p}{4k^PDP&ZHNxtZkH>s~^E~5UvqfhK=B1b@snq5qN<Ii(3{@ zFE8Dsr%7I#t&iF)JX<&KIYfin=;BqR>Z+4Z^SU-(vIVduZ(x57OA>T{C5P?j9 zksd%dsm)ZY6Nb`ucw%+}o?2P*Ei2jm!9$zpdrZ_v3_N{Q6lSHo2zXXki6}~~6BfEi z_$eDb%a=6^ah(DUE=w!E&fh;nO?jE7Z^UEuY1QnM|ZiM1=QNxMw{Hi?P>@32-BX2 zhe}n6Sp{FMrk*}vc|1BQUe=6GzZgrl^(5lb%abm40d1*>JPR@=+#XbEcw~;p4zd1wW9`N1IJi>EB%rU3?8 z)@(w?ekJ3jLBc&7iS50Yg`>T4v^R0d#4RN^t$(WIt@cdcEM(q6l5ZgmX{Pb+a>tW5 zQy(vydv~1^{ZtYU?a(^zvx1AD&7_^3pfGd53J{e^<=W^M< z%EIvY&GdmTmhQ?I_2dd5>oFy(0a39kpdN%1?``EC9s2oMGHGM8wh}uN?{BE#n055FYIJ%Xr|()YA$t_4Lz*9>VY# zdDr4*Ksuom+{u~Q2HMnvD}3S*Zqz7IYJa8_C_#aC7<2;w!~YDCe3Pb5`mlP|-mTkF z>lLM7%@Bj;S?FiEX6-}5(@N$WLu{I7blEGGlDu?Ly?mjHEbCWs)1W9xpb1w}comJn z8W!C}W4zUr(tNlG4cxt!2iF=V44bVJHjZ01#bq)^x>DxREmh=fsojerPbo#-3T>NJEWE7_dVjes zZOpCj(ELFA3N5Q^ud26$iu`#PI8zzzN^x)6M6V6<(Kc$HS5%7W&x*?g@u|rJhpAg8 zVqc)AhInaA;El>1g$d%ry);F5=?^LL7>S-4;%gEf5oHol)9JfhEbicdc%raU?6%N@ zGG3KaDPRY04hb~Tce)n3GZ)mzR7$_5I{Ii`OEujo3v)4Tmjo~Ld&xX$dxtrJUnwFM zDW9Jwm`ZH#TmJ&ktQ;w)(#?%XxudUlJDrkjqQbMwO2dVZPUbQpe^?fJz+)`3#=YS( z6`wZIE%GR-u#x(E>5sX>Urs3~W^$pWx0lzUp~nX^I=!tR=Tn27v`dyRljwAA6_wzf z5g*Fo>azR(fH~WCf#kC$+C|~lyF~PXO%{`4;W@U*_+K`%c0>AH*!pI zYpJgpg)GZ zcl$`b6|K}KK*hNM`T`S1cjVSlPlyPA7Vija@t0dmL5_@IM22|>rzOzlJS^eXFnsjK zJg@fBD{I`ezX$5=UlXkNxIAWfTg9H8=?xZ;U0A1y|)aV>On3mwlB`U;wkCW<8C zE3-HvA}#bto;+5193;(8@90E8Tt~BnuW*iaa_aKrR&gbGwU`n$p~y6k45C@&G_Wv} zi4~A3V=t+qe|JytfTOmrwjW+pvu&C#+7<{2r5k=#H`U7ptDF$s+&1Yop-M_}|Dt?!K)1z73L@(zFf3Usp)-fba zIyblRU}#WcYZkqh*HS?v(OxRIyqWOy$U5N+)~k`^OC|9es%Cf((m*dQ3iW>k{fktZ zAz}-sCwlPGRMD1v5ukqlugm6G?WSl^GQqk`tYp!mzZeMAkEQ2A5Irja{cobzkr15J zYq{YkCD9_5Hvm2T;0`S&dBJd?(Lu-vVAaBC6D4u8yKR`Tq@qBO9ARN^lV-g%2m;52nvtniso|qltfi2735+jD@b^s zfMC=@_vE6zvV1Y{pm3q*J+f$_s~EcP)(LYB#!+R7EU~$dPf&Nle)P&@e zvL=VCEZv$SvhZ%bp$pJJ;a;4*-voI=RK!6z^+Ry;n|4B;He=rFX;}TCL)5eWO;Nl1 z>y*E4729`9-OF`NX;wdQT^sD?}y@H;63Skk5$plGI{N&wNrO zAmumt?!6|l5e0r>JB`n9n>;prdC8%707@n` zD9Re>@jUqoNuCgXwYUJE)VrBKonCy-VBrSex6_CKCDxG~MXo`z$=U%g! z#6804MJ7)${VMF2W!-evGW=An!zy=r%BqZ%B|lPI@V~61z^&_xRxM3k8PpfgX60ovuIgtBJgvDXT_^ca z_{BWNr5A9Iy+p6(d1+TJu;PSVHPb~qbIo*IHcTS7Hvv1K`*Z#Dxh!8LWhIAdznbT# z)dA{R7dO*Rspj1qBi1ADP023?p}m*#6mj8RsZO+tna0Q$#6rq^4WYAP)_Rncs_~OFpisF z2^MKnI{qKf5c(x#q^hSWqv~n7Pq15^4&DA%>DI};UTCx4Xq}EGz_uld@XF)SZL-pv zFfF9(-OojsEEyDSK++hRVGwia6`fz0ERm>lGfRh8G60X}`$Z`Oa1Q{8RREZb{%3hb z{QD2n<$z&TI}B0ZV?FMZdFahD527sBN6+MOI|suA3%gIP^(sHO{SCPWJa52;nCJ8R zb;^AHQ8tJ{%7Ep8!GWFRMjuleeP8CC%idgn13j&@S`#LlB_zF~G+PtK%@!-oz9ZMS zwF9{IN)NvV!=NYf>J-fnFVuHv_<5z_mz9QJ-x z4Br)K*Q~T##_c|y7t|=B-O3Ya_heUC=~b|D6V?|yC>^iM9oSfXx(+<#K5~LDI`M5V zW-(GW(1~?^dVoZWf|9|icjN;lv1w^JN~!)Yg9y1%!bs87=6q!W-`6#FLdZjZ20X`Q z&0BJ>n39dTP7AHK=3_QprW>uAq8U)x!oUW>CL+X42S|YL;nbS_NKizbw(Eda~OL(KOXh zH`@4xr5fD{K_*Wez#QKuc|;uc9Oy9nw`L@vm!bRLiXfi~kPA8+Cq_4j;J<;Jrjr z^y=s5zU308jtx)+WlDA2cJ6a@U9*CDOfpXGI9>^9f z5ajse(ZP4WEE?s$#2wSyl2a_R>~?Eh22?uK+exX=EZS(LSsu|wCCX8<7A38XbGFQ( zVP0BNzjeVJ8YFD{6?F&$vjiOH8A)39eCc?VY=$pHy#|tsmTaAcok+pyY4a#8787Bz zlgDQ-XjKa)eSx=VBQz=7cPGqRW-%G5zs)`yq882Z9*Yz6JR%E;6YVrGmNJ}n>Jv)~ zoitVqL>rU{bwL}QUVkGx+#*XZd%2jBsHPt3i`3(oCp%=$HC5MQs?_qF^FHS&6WEp- z^H)GqC!rNlu9O^wcS_bBg9`qq3MDSbDo6Svw`1u)B5j=c@I$9dOU+uCG6nyi@q|Kq z3ULMj0&fYw6i2?r99$-uS0zG|w{EK4dh>WnGec;e2Q6@7A`PsgReD8Bj8B7tdJp3b zm34pnSIyEnoEt$Vb7UkhN^>kspL)i*Q{^yB&KahzM{w$5!hlp!;0UA4beowX%tyr~ zbZb3L5P=GNeCmwf@Rl#UuBjr0ddt6($YZE*IXte?&2i*5Qy)ElhC{W`D?n50@f6ri zD`MYpec&i4El)UJuyuS2eXldn19>g5mJxm+o{Yt5>sAx>IurV(aZiccrycvn)Ia5gQ8DzI2GE>5=W z-|--zy|R(P|f5ju}Qva zaIwi!{MjXomM@|-1GF}mOEjvPVge1+ng^wr@Pa^jrd?uM%<2YlVQD$u{uB)B8L1h( zn6l(4(y{95JLwo}7^p=jM@lplo5KZe`UX2z5YCrO9?$ye)W;`|PD)!gHRkExi^&gs zytfAWnuRTxK+Lu<&)Q9H$eU(GiSoLFsy)wvRsK_6=yO8Vm5Z`hq%MhCIOQiG>yLcr z+Yq<*6yEvW5-_)~({h}T#V!$s5^H*)_-dKu^5qVfm{;nED?geMPiwqXo(~1WN4jS6 zgI^uh)kioUVg+jy^cb_93J-LW(Mi3{P<0=?1`>FVc~zv5mOBaBxfM>?Fw_)b`m4iY ze0J0XYx4dzuf1O&#^sDmex?C?f9Fi#l8aXO2!W-crGgkHQ zc>#wfBE#y+NJf=9*EY`!@wMB#tBOS&EeBBOBF4xqBW2w?@-pBIerTUdO60~ z%V~KY8b44oOQdC&%aakGOE>$-Vy0^hz$~GUaI9mEV^1?>Ip2Uzz`2rE;-_d~tylEM zoTY!tj+n!*gh_cNQk}fPfI4I#K%52;@hWV?FzK3RlL~1Tls5ybT=Sv5U!(%$3kS(~ zNtQO_6v7;_@>m@nONJHa7O_hGV^1ly!xi52$8(^%s?^sR z8-K!C{nqMs5E9`rh#LP5WH)bU-6&EQa#b%iq5y?$t+Mtomw3v!TTzqksbwbpH{lbV-sBzcQ z-T8sVG2&PSO4nSiG&FnH;rKN$1Pfwd`+2zR0R8H9eWhD!D6+I-E z$s$Gt4H6i3PQ71AJvvfFoY|asXAc;Wh=@?)kt;Atn4v)Ma89tUSTs3VJQ4S}c)J{y z9LGEjpW);Q-Ia)aH~|Im8d`r;Tq@!UEhd+%M9jOVW_r}f4awFmdD)TCcj4%>ex@Zd z!nG7K#i6M=BcmwOi-Q#GrS>{38;}zT(cjfJbTJ=ecktL_1EK+%PcK#H*Keh<&8`fO zCDZc`jveYD;h+U<&SIu!xkh4E*Zf+H%eFv9>1DH+Fsl$=GJRxd#w7W%qx(!(r5p-k z4)i?Sk4TxB_VJ$l8&cm@Qrl-{J?|2p!U6t%D}An$qovaMG*})d6=%@bQ0cxvg_xgj z^V|_rQwd574KNucBYMdBgcJwt)BNyJ;BjHLI}Kbklqr zR8>{v!{Y_Po#*fHc$p1{dJpB-V`~aI=tUHG0ja!49SO>RiZz>RT*pK+d?r>%4~wrXyQ;&8 z;e{P1`DRexD$s*vCQCtPc?DC3zOki>%Ap!0Sk~S5pSy@qmaSam{y(yeOBiE9iaDS~ z@R?V)k}bhL(n(n!oU7Yl{qtp7=6v-GLeKU!ul1DN6BBSq3L3ZCS-ABL`$}5vqrNx_ z^ca#AGd#4Ts{~2}dP$a}Dv})f1}P^b80Sojo;LA8%UnzHHv2?NMpPns>LIW<6a>we zn6CF_j)kH*vm)afth*keoLII9VM8Ue%Im^EMtfzlWSf!&C6b%|mK!Lcze!#y%5&qO z!#yA5*^or5U;}`o4s09v%Pb7H&7V(t+k7YhgWn$8LZ}Dl&!b*!Sus?gJU>8(-1hW) zn1aoxBY7zAvh94Oc(VtGAbtJwDb==s&(5IzDz1G9={0dQvTi<`_wcDY0I=AM8PpdN zg^e8U>V@$&3)%LtPKO>J$*&69lwi1J77VurmMxP~J}9BRWTVM$@~^9+SIJEmx#`Vy zLhrdpSX>#=#k5I+O%aUPz%+XbcPqUjW8!;>*jDNf6RVzJ;E$}UOD<+6H&)swETx{k z_`oS&gkM-6FYshWn2hmM0vPW@>tC)5a1k=vJlk7c*sm1hEYMO~icOILrUkr%u{p(q z7Py**rTe!aA=wQCtJN z&>U2A&GYO?v}Ey9QfrBahWh}s;hqxDwht_&^jcWJA$8Vr|8eHX}jR4Wny!E+) zeSq&JosVACc|DtHPkz0pc6*j*zUMX?Q}3ZAHV?g?i;qtvn`c2Wt->P~#e)gJ$Hg|y z!Dd-!+egfO_%vWqm5{2oPe?WcP1BlJoIUn zJF_%{_Co@BFAJxE!o8agX9Y~w0&c&bJElQwt#(l|&Z^lM_i2R(Z}`t8-@M&h=uA&t zxsdI@{};%3ha+d$lWRG!o)!FhDPpbxi(eI`64;XgB%9ijg~6(%J0W}hW5-OLx5xi9 zg+u2Z;F1RlX)A5YuNMWG2ViImJtvN$z!1ZQe{RIwH%-OHLi#IC z+`mF{cpZ7XP}Q-aIoj0mnNIb2Qp%EOn0~|_XlvjL*=>h$sf|v{vC%5KOM47ue=keh zpRcYFqc^lteQxZsne!6q0omKQx5h;ou>Uqw2GnCt&s@70`s}Ea1@oRB^V#O={m|`x z-_~UeTTz0@xQ$I>C^oqZWeUO)&bGLxB*`O>VjoxqzA`7$UPRhli+pJ)^$4f##EF$f z98gQfD3-jSYSGmRqV%^a@jA&y3(!%zqe~M$tj#KfzyMwWW)A}*wd$eoQ3mHX-k9nH zkNwU4kUL`6fdi%bSMK(xxE{Ua?D;iT)Fb4v?0kO><6>-1!@(b8BN;fG#* z0S$u{HogY>u>%dQ!utUBi!f;{t?}QIVuvErM;G|*Z1+Q-!VY~~zFzZfppWtlupAO* z>&0bw_EV%A>IJ(fDxHO&<_8+-Xr8x}EKd3=4`Rv-*o=OH6NBHve&<*o zEWFul%3e}J59dRlI2;}J3^bNfRlcosVJWotHvGuqkK%l1d}PGj0{q+7_N_Q;U~1AB zqy6VenFsEVDvK|*+aEl&)V_NT^iFJhs;)-34ioqt@B=I6+PnI(wQp0Vb6ugDoy3dv zCmq(gG@(G4IM~RK(lS-_4^TlpSoe0xEXTR2&L$LIoX2kOB z1JyFQfW;Pax}nY~vC=B1eOzd_ri(^}ZUBXsJg_E5T+`WbLSpzaG|CZJ4<4&D)XA!3adyOlDU4~RjKGz(M{ zlOzMm9EME4qS!LQ+E5HD!6J0`4s1*$dXx=G@vA7J}od8urF4j zs^x(_1#Pk=u1J}&F!mrTt47=3g+U1bwlNvUvLisQ>$rgml#YI&;tqAP_1pwJbljHx_mx}bs^U~Fm)!-s!!Q^&^IP(Fm<5K> zhPfeHucbT>dBb=I} zrdx}xben&v*e8ms?F$RaL?VnkEt`ZxJ<`>^fXXd69&m|a8*s>BhCib5qsdpzu+)fR ziz#Y?wOm{oRY*7aHzK>rvV-ll(YA#Wed5=U;&AFAlHV53$wPyvd4ylFPr{&%n(K_A ziSDVBD8V^n!2}v(P85?>Bsj@$*n3>cX13BKE;Y-!x6(?Z3^d=2vQc6(-Ruv(d_6E7 zhq_Q<`1bL@;gDo8SsD(u2EFl6c0G%7pZ1mxinkUm`0aByEn1-BX4ws>;p+oru)9LI zki;}-W2eORT=LuA9ZQ~MTzagx{$W!<6ERiB#6f9rMz5K0Lu)$mAbM8%di&^rJwrmzbntMsR#a|$QTru^;;$0V=pMUV;{!Ywx2n4Idc9gBotPoY<2~?AvNg~_o$UkBP#Dxoq06#`0Q1QCa0!DC z^IqDU%u}0)t*@2ykqAHw~6(igKRS?kmLUz77Um5g*%OCZYXF_$E;^X?e_De z?D7OxA?)q0R%y!-D>52kR~ORYR!&9AYk28g@rj9xHvJ;IeB_+H7pd=Z%ty%eVJTP@ z1?#i;6=6i*u3>+&%{_eJeYKfxq`VsDEE7f~ej6t0@VgL>cM^RXX5LteUmIX$EYV#( zDoHDEiRBJN%G}`82lIE{MG`Ps~Y9eg8=j-1?U%14@TAQ*6O()g$|Y| zTE74Kzj^4mBz0w4$_mHA)HHWW>Z%M?3)JNXtE0FHIhAF`*&GvLGi1hHrTC*P;3>Af zZCtO6jdSnA#;HI}Im9V75`>?}?U$>zD~I|c@gXEy+1@I+;`b#Z0Oy0dH^22ftL`AAJlekCmKsN#GROo8jUcr<`;5hqx^3&hh;7|C3!y z+rgQ-ukO5SQTN%Mb}Ijz-AO3Q2U=%5^1X+3s+XjBnORV`z?KY}J@ZCrew=vxSZ4-S zQCfh)&8jqck}E*7hEp@xfEehsF4njYX!FF9iPO}@*Ij`!JI;g6wntdSWvvO;grk)0 zRPoNo`-!h0OkV8*S%`(~9t+!OGw=u!LmF5R97hn|fWvYC!Xzf?2T*!hrsqNN243?Z zkuC1wrKN7{2$1si8Ya72diZbgWP{&|10J=nBP>oli`o_x+o@3J6JgG{oHYF0v9<-Z z{u1Uqu2Sb1R*1cg!GZ2PO6+vfxURWC9o7*((s+j;_HE59t?*RNDN`rq2n#1Wf|Ih+ zKqF$K3Sf?U1LP=}NSG1QgMTjIpOb9UFi(SnLyKbIw!yWBa7cm9(rx_2Lvb^~?q^e2 z%W8$Q^ylQ&X7%MvlF%be-hIY~auj`r45ic$djhl(Y~dqJ>_<9I@gu6l$2zANg>u#8 z7e*$cS154{7y-fnDjMJ<~GQVJ$s5DQN3C2@ZromZP)-v)llD^HeHzHG2Ll z@#w$Sx!DKo?tED2;^!A|tm0p0NDh!1GHjWlJ~A!vDldRJs1@ZlOT2*J<<-C8!7c{w z5TSA%iv2~$#eSQAmSS(~T6UpaO@8d%5s_tR{v{n2Kps6nxa6_QM{w0*z5?7kAYG%# zpJhgp9dNVZXI`TFbF1WW7r3ASjioXv*2Re3JGSC*g2+sP6pwQ6$jlkvfhW$j%>F)? z*^3N}Q5kxWF+P#YIgcp?8*}UN{5!?%su8YA{LGv0J;cJrb8G4f5Dx&Ur{xwg2z>Gq z_M58D1y?58r__2Um+>lCt3s*u^ct2j-sr)=KfQ*r-4ACVhyg4T+yYYX2}AK9ao4BT>5*|KUMPNsd8u1*v{D7^ z+9{aOlQN6tZB{bC%Ojll2@)eUiAj9Ka15G&S~_gCNFs)DO$Sv;V;wYTyv&scRos=E1A>CZTk0Y^7H_ko`j!QrmWt1Kix zaczGO&A2}A%Pg_<+!T48^=v=kJgalnf4++D$MI|E(=yx((;bW2P9jylsPe&|Mc*9a zgJ``21BQHZhJ&=qks!Ne18{!L>Jddr@}jPeuJfKM^n3|kX%T}8EyC^*N%+KRLiPb1 zX%F{WGNS1wFJ0mVK?k>jC$vPj!%8ztI9pY6xSq{KHi4o~*$t~b_hFGp_vPdKtEyr@ zws`|l@5S?cA_6r}vOGSE!(I*;dO4?^qojwN@CC*Fhq5kKd&hipDJASufCsVu$hPiSfr zN!v0#bQ-*AAEeC004qs`xoLq9ZCnhV;YHQPJf9*(1QmH4Lr5Dd3PdJ~kj6yA_&{my z(YY>pe%l^B7U^}+*CF%{JA(9!h1Fw**XVFnZ+0w6fqP1G&75S>TKYWiisR*? ziEa^wvc{#iUOhdEMq#tp9bnVbW!OyP=Tz%-1Q26CRfHTc*t0#UOxrIp3K$d3@F1d1EETUcAYzX* zv-r;*nva1&e6~Bu(h^dU#LPthJHn*hb~=&krNgq59)dIOVcCG!A@(5kcY5e@zsDm= zgmro%@*qZ_%yc(hZ>H%sxQG;$)!<+Xu5YpIs=<07136+f0JJZ|q^eoayCA|!KCG!)$s$a(ZA>J}F+o`6 zx#i()w8DgY@8-;UuFa9e)! zmxzJlE^ehr;cl|Po#k&M2t_G3R`1 zid$hBr~H$z8{F9bt1XoV$_7auKcoaF4x^+-5mC)nc?a+!2WVLxTEO{!v>51VJOwr* z{D)~Sic#M>1nS@ip#KXv*2fvVS819qk|#^t$Wq~yFAh%Np=&XLWiVP>=J|T7cydi~ zA-$3lprZ4gC8C^Z|H-_%L^umGnc2BUc-trVmQq~}W(v(?6%A}Ih2{#1x5JRo{FuN&n84%N#h_6tT1bzVbPIrn@o3d<7%cc;qbCLy)5#onV`%k%eV&i{wRprNPcfAt zhThThot}^P;m0=o_~Lx0c;0ioSe$?E=3`+#)QK z<#B`NVJDxwN0dL86kl2i4>S0+-C76ok7SDygsS0I{Ku}|S5@sn#2UXmDY(2*eDYU` zFo7{I)L0@f9%T_r_TcPN-GAyMFtqPjq6)`G8Q!N(sA*%_T6Z^WNZ4-!1ji}z4wFwZ zUo`{BfKXGC8Jyp#q|o|&GoRvE?nl@QoP#VZqd$Uo!Aa$9Sf@^Df!;gYd>M=uucd5T zeA)DSsa_bT>B?CqlgEyCCU#}@mxcf?k4(arMI3(37!j! zV=R}$Ul3Y;F}viRJ=iUtfN?8M<(T|YA;`q=s-wJpiNJYaK_SN38_zZP9`BoOg$*g< zPYj+Of1?%Ahm4|tzF6xnhBB7BN~67q(={nTqeNAS7>4)03@;Gk9#xsp3ZkKjQPZvT z^$Iur*T8zFLvbg-r2`0+gh5BZ=fuWAp`5gNtr&P}y7l5w7+-Ojc;4ixX#+eJCkpgc zSW966W}~o>r`(L)`DH`kq;$YK&4c0g!WJ4RU`?hacsHQ3xDb*<4PpVl0;AHJ6=wQ= zP#vOMrXre=N1f*+J~Q7wRC+P9)KgZCdE%f7eS8Qn;H2#40;*f?rPl`s8uxqX@#VmP z4+op+f#p7Wf3Wj~8W;mdA8n0?Fx`^Ed;hzKIys8RkgC!GZt3a#`hrc6w?Qrs10^4} zM3&kMl(+_8BZ#uBd-gwf%a@g&;%@UeR2~;PSERxu0)`Wv;vB1+LAVDU1A z`1z8{1@bb`<5@#a13OS<3dmKUKRENkcetBUV(~r1t=3CRL%mm^WS!WWFmc*MFtsV_ zX<=m%vQA+8!rOqI2*7ayZv8tUCa(7g^KH;b!QI_<^$f~#8|T3UKo}DU6eJQf%;^O$ zv6z-kjY1|e-cx^hmjFf!$P(Av4 z6q)tt??OR*xQkUSB@-)z5s{mHEW6?;Z?Fw9Hn`1rI>c>OqS_&xYQE)@JgrZKlzPR|ZlVC5D`8ok%O|%W0sG9qR@fXjLp6*LH}+M@OyS zBO>2;Z!(iJq-V_MM0G{iE>(tq!|7 zi1i!LBJ@^19L1Wi1fM1sW!zM0pMeiDG;j zFX{`6suQrkFjFDo3Z=J*OQG9EoPz#-QS5roQplc{!lJ6e(in=O^WaG6IuJS#pIwE- zzq5y>CUN~!Nc_4};*sZ&2#-VWj6yLeLAc7nD6&F9kiwrt?oMbww|SCiiZAO;_~X9~ zp#fXDScRDyk{{rhFa2W`{RloGbLkPVBQYhu^skC}iJlNTcc`rpp)9elTI}V>qll_J zkY@W@3ssRP=5h3c6D!}c@_Xn?#2!l6DD05y_UC)|K#!^%I^oD5Kr5y_Xe&p&DbAR%5+REbESh!tZJ}-|p9dI~p(2jXMHDqg zR2OQDm_BIR4^Ji|zwkW+2xv+JU?J?Z!u-US#jNS15VqMb(0nJ<0k#d$O=bDpqU7Nn zt9%9>f6)VGx^L(CEXU@7p?$p8U&Oi%RJ|*#9t6%UYTnp%`DEiUF=*pgB|AiM@{QK# zvF0L$j_dF~y_?ruk#aPFLs*(&2gxVe$JSP%dLYb;>OQ))8D}9aFzHqlOUjED9tpS+ z+sDWBF2z6>m?;^tJ)Bk(e+PdJH!r7HFAKJM#2bglEw*1(bVUnY6f0&y)C*wS*@Bpm z2&e!_2cJwi5pO7f-mr<#PZ%op9u(zk;JWMG3ylj9@3KK75d^WnKLJj|0cdlS zNvX#cX*)Z2^~b;CxozV|WL@YC*3`k%=l2*c3{o$bV0zuM%Q`)t8w=oM0Pov7xo)}} zM%jPMLr@9CMYxUmKEuozQ|C>VP9gh!0DJmJ{| zTIxm!zUH989N!6WBm;|z!@nvTiU`+;+HR(0X8!D3wE&7nC)t4@y@Ye?riEcW5Utu^ z2db1)Kz>jf2E9fdR0~M|Fqpmv#|dBN$$prseV@mwGA~5`@1dIUN{G$EX>--IDx?LF zQrA|-z-6#y{2m(xJi$b9t0c!rXuB!c_CqkRY{`>xh|cYF)poAhw$j#kZCiiS$rcG= z@X_2m>jcNUV{5i>;1yCz*CDnj8;MjCs14R%9@7`wV-5=ZlY5fmhRDy!{l%lug~_?n zBadP*@M9W3454p;b6D7~#Gk}R(7AF~h|_sRUql|p!+*aAZE`*KadHCo;i5$z-IrQ8 zzHxd^u!**aQ-_!_><|)eQK*iCgIk10C0Xk^XN!=wO^vzH;wcaj7Bwe|x&0m?`6}m3 zk4jEYX4;<<5K*VZR+DFDh!2fLsW;i#3lY5#ncZQg0qpZAE-CSdq6#tSfEblN%0Aa3 zE_$FrSe3``7Kq!E<7yp#uyF~f8ayEDagYhMf_SH3{?r(|{rg!| zz?Rg$#KP%Oa}rA+*^I@;(48!b#euS$uv`2X!HVwZ*Q1ZmwZW1c=K*9?Aq`vSqiL;B#nPu}ypyhiHoMfdfZm zZw0&rFjAu&8#Y6queDJDf(!n#0Yt-AfY7QiOhGJGaQXdt0T+_rP&_K|9!c(ukYF$i zQ~Ysn3Cs!s+W4Hcq$yKOY`l-B<@4Jf5O>{-7^ubSyqED_`ZVT!*(ccV#G2_!GsWuZ zN&}u#evhEwV3QCmfPFSTTY!cGY*6?_4zr{FZjn!4aCq&FGSC2Kq;AVx7hMj*8WgqC zm<{}nwRK+|?=3$BDn~lo-W{TRSC&bK;%a#A7h8mUX}V&)xg9pLF4b3&uU6 zZOzZ;U2&$&fj@6+pF%KqcTweGiOC z@NQMlN-2JTTm~9$hG>mX0S{59sDW8FB?Xd2L>h?Mz{G1kTr>M3dvv;HT$6?YA zDDde|2=hAnhK(a|`e74sCZl}GF!2N(&I3jIPKt#|bU#Q&U*>wFFN(HOK=R!JA-|6G zPi44)V~ID*l03aplp)?#EM3?PZBrdGu4HLj+`-|&sX_`A(7bvm^I6+E+iOX(@a-YE zoaJMl&M)$Og*Dd~(p{2Gr8q}^1MvP%LGZ3?gYH$fbP$fXebC*;kIj$*pnz%eoS zQ7SQu*#$_RlfYiKB_B)36!9b0-UEsiD>6@0sy7MC3~a#-8u(h~RSi7D??I)VIQ*Ns z&9a@>^{#wp&Nnb#%iOh=RX2T|h{bJVzaJPqLhR#Z-pI?0SaobMTNCd|5ruXS<`R_o zSp+Cyk6_??**G-J$FIeS)01gL3-mUIlN>P z<+T`9hPVDcv;o5=D1MzO;1RFpw#{#yY=f}+BuplrzhTx0YQoP(I)M1DnWu1$$I8u+1C=N%wK~=*Im=8DY^Xb-K7u}5=S+zhISq!7 z&8N~aci2|KK)4rx7Pb?X7~Ty-|F>G7xs~3{yPFF(pOp*<*U28ZTysb-pIb=D1e z3qfDi!8zy$wwxUkz#5tMMzKv+lw@|r3DXQ!x1eK#7`UZjdjM>3KIY;L4u{_{I9Tic z7A|xdBeqV924=2e#DqzB+;a6@TYniU*JG!ZQg%zlgu>#;)2tOn&;r$^q1J=~ycMgy z#d_l#Vjg8;Kh&b+R>I^|*8K;&LZ+rU+WfRtUiq_{rgSz(VT>qS26lFjB$Z~SV||~? zXM?uabg3Cr5KPL#0>-q_RMt!AW}$tK}md(uO%29E3yl4z~-g5fs&rg zwkQ?sUzOB_x+3W&z#4!G3F7Y7-MjYe2953buW#u0H}=e(?OmBF@ur8w#C>8~k;E_JkX?@s7({*t+?;(1V31E^_$E`}OH z80Kzi6qyf{kls)4<<%#b9xu%-&Bk>l?vDS$+kXEYXES3EbkSqkA@&@g3E0?zUO$P= z$S-{5n8E-JsH3HbDf&@fU5R|@Fzj{;=r@w^?}5oBtajG&6-s{uH7%q`EltzeSmz5E z!%H}xL2$|Dr>p5IxKg~7R}V(-g=xhuHh}%X2aG}6(gt$qi?6}tzComVB)$XYJ;;QZ zm54lfzavvPX1pZcq6@L95yk?UuZw(4VLksxBU7$iloE>j z(51!yk7plD8;-Dl-&iRaAp^hHv#tL@9jyOD=KpETP~Ou?5e}ohTwTH>PAq~8!JLrW z>3TMzd<0%Hi6xOCAG$IQdvF)DBztkvT(9#d;xH8V+XdTE^mx85Uh=XFQ47BHe1(G; zE>9i&HFoDyM721I`|8{Q@iNYJ{cyFC$6~p@1>2K#AK~+-2D$$EB?aALgmT0^oJ-Ce zA+sYR2g}s#r?mS#g_`q@;x9T09^^rT?%@i$ww}ZI|8)T|L-DIQ)TQIxqsZ`tB>fH( zG715RrbWA~6Heb4Q)-=19{H=A74c;lgeX}Tb`E0Xzb;_168RwW3g2SG4%#HLC(-{H(-XnpmI)rA%dZuCS5 z3>UtxS-cwC6bt+^R+)Hj)W;cVbkK62m^Y8FY$;MBWiHN+LZD0-9kzu^M6`&79h0)XYJ!n6iQU1*2wuue>+^j;JwF-Ai=I090QekddE;8tc=~5jEKA zcNKhoTsX#F1v45I6$<>!BVD0DLkA3?e_P@(<>$eGlWWfr1By84dC#ijZ@%QfZA~VZ1_gdJ zDR2}Ed)Jh}7j?0*;M^!dmskMtUrPvj{M(|zq@M>3!n6J{G-%ouL<2-c1XFM_Q;2Bl zga;G4WeLE8xOO~XV!#~124Y~aUTpax9$*jIi6yYDT~#NR@M93+-W+U5 z5&k{t!TJBL^kB))ga)&d|Ji5&fSw1=2@Eq!FZsoWL*h-XtFwBGd5~Y&yV7rg9d+V9T`9PJ4EKqG#!uD_ zJqOuEqZhtrx^ZPjPKGf#b*002z0K%qyXw@KvN&ax(Y0iWF=f?~6`rMzAKnvr=2LQ3 zPVrIr!uHPa7`pDLQ&vcp2}Z{R_JeZ#V^^xO>iEzvfHkc+_1WmwX)>giqp(1xP{EJc+bo^ zbKql}9ACO&&YYa9)v~ikqbx#G__ij%%FYJ!4RieW3pm#DkY>Kga0ryCZg`ztNz2({ z=F^y|W8kEu8k(eCjM`60uw$L%6s;pu)Z>`S5p4rGt{I582)6ER13_euc(Jr?B+ZJY z2rOD`?c?!k#&hV0<0*-EDdX`5$AgRJ*&LH&r1c1z!05(w9+yAeZU2?y z8hKM3%52H=bDggx+cWYnf}kB51<-b3mEmpagzcpP-)4O4`CE8KLbGf`con!#*5hICWm<=q5xTc62fu|#bYDKis* ziY@RtgVX*1J??~nk6qkOa(L~qg>JTF6wEXp1t=}+yvjV?O}0du=au!rVb^{Z0^)!M zh(yZKD?qIB0j`~$pr~X70~B{(3s|qQxUAEo3g$J@nDO)g4QH48k~a z9&D15aC31e3RRkl55;0I&aj=iMdK%y1lN12awhOmS7&KIo)Vs!@EN;3bv$!DHU@I0 zc_Q5)dkzi&jK3vmo)ivI45*O>A{iu%ilvD*0vPgtaKy;;PxlC>@CvEOny@76=mGq3 zgsh2Xx~TarP_hJ|_s)Fx#)Q)dU>*D~F+NQ(l2p7&D*3Fqk7Owf`UzzKAXzu7tGVlD zWZ)jiVJ5O9b(J&4WlWho^-7E?$Ay5$hD8}Gd0@(!=X@Z>B~nD3eWJ@^w@)-$jYi{) z2qix7-AcF1&ZXNQ@+@VVmMr<9UX`bh)0Meqkd81&wS95<)7=(hL$dLPN#iyn5QjpL zU-{R76tw^#Jp%*p8vDdu>;Zk-l=xZfWe;CE9gO*6aoJv67Co8gi`#1|fFp<(n{n^+ z$n+g8u+Z!(QH)zni%%bj5>3kMdiY;6j`g=;9LF#YTx5h(CCjzOi5LgmV?Tm#_sP6w z8WhWb!$BUgZV)viuP&~_1xKO)Zmx?(XdA?#ff^ywV!SsxVM6kpiHK0>je7%Pm5-y; z(ZzuTg-$p9YerYO5Tk41(Vfh7;>fIzAs%;w#Z?r*9@j~)Vn8S0hSD~~F%So_Zk)Ov z{(RMvUwQV!hPMFP^$Awv>GCKj7^b#yIW5xK;jnx285pf>7zp^zT*_J80n95DPHf4D4ko#+!5Hb6+a3)M_f1c!cnhto*rfSuWUw>qXpj~Sgs#H zJqDZ?HsE~H>A3*@%H}pXa`7E1b4`00749VYuw#_A44&0I{qQCSk1 z@K_T_{$A5>0p=wDr~i| z0)s1idl@{d?WZB{dTriy-2eHcM;iZCLfY&D^b55=^M~_NwztVK7iB|b@T~TohTzc= zo$~bf&3}5_`{u=WsGg>66}}{_>kZm63ViMJ69tpmuJZM$!+(|VoxQo6`OzyS0LOz( zjy>8jYUWTa6SK3)!NK1`uy#=Z`NVQ>9dUqX0Q9s(oSXJVFy#SuEwOo zqr*iy@0_Kb^|(vuPiJYTZ24gaO9p4^OK)#-Jc$?fOl5q3XmZT&1}{SEfcL&i+gIB< zsQK&he$MV9Uyn5Y(;sVc+z&!}COFDoZ*qKu7dTW#gEMMBQGi2__CjSk!7&?fjP4@8 zD;m!2yn?y$f!^J#t<#Ana+xHU9a^`-ddc|&=Ag#`L5CNv9@kozP_z~C3edfYy0nF z9Ebkg=-?acLj7yXbT!8e_hsknbZHe$4)(nW*1I9ZCpquPZA}h?7A`!i^`fvPxUN$k zkC*FJ!f^2kZJq`fIKK?>IkV1?e-fsu9e80|{ZQXa4m-wa>*HDNI~=j)Z`bB&=92qP z`l8X%Cp2Ej1)bKC%dEe#Yx#il4)twv+^TIK&njH&kvF58ycpcYJh@X|ck5CsF!#9T z+5RKS>rv(;%EyE?Ij-udt|P{Emi6a)m!W*^sYXXW49L2|8?{VYOQYk4Ztzc;ceLXR zZ*s7l9crg--n$wjxBCF<#K8FX7Hu8PT5!8uCLCqPYs<9ZLU-+c%XI)tthP=ky1`}m zy7^1AW$@fxo3ncXCva{0MG$;KST$JJ-{@*zJ57Xn|Bu28J{iy(0teL4cdAd+Qj*M-EUX4 ziO0bCe8+EBFmWE=_Pa^jwgx7BTYbLf_m|z2QDNj;ekCogwaMga8+>=J0kkMIkD7i| zIQib!uGXF5RG%-qoUhH->_fSIzT~oAo8M`CY40~V zHimF1zHg6C_4y{q-=3j9-vPPo4EcNsq*I%J2L8tHU?Gr>Zzi0jt%GM?PtM~D3GdM6 zX~v`Eqwb0>^7TmLe7=5gjW%C{Gin*Wez3!sHDy#d_@==Q@=PZ<_^QDeZ9i@KY9D;* z;393lrVk!wSNfT<0e~NuS%HMLz5CaO@|KJmPB z8NT5z63-#}h-Wpgw)f#5w5{gxJ$K!~#24Om&eON`$2Z?C*7m2F1GR0w?XEN5Q1kfK zyUycP^Z53=&i$%+dDN@>Q7lD!k4zm)bU8i5C~D3w%)Cub>`CfeZQDL-`$Pt=c|cjn{dO^{B)3 z`Hs9@-PBiMNWy&Hq%G4nKDGTATn zlQej%X+wp9Z@(L-?FY|l-g>m(T^`?sHz-uEoo6!ad?Vi2P#)%1(`Fj-I^&o+9=;=Q ztF~Ted_dhvXUOLZ@}_o?ua1Xr%ImIgz9X;0zQ2tgt9ALZyv}v?=!?h8x90KrUx+?v z=24K-(R;pBx`iNHhjfgSMr)VPkhr{`y6+C=lIUK4*O!jtj-bNIQN=%3>rCy;pdy< zc4}d3!%02ra6Vtmc3PXS8DDq&dNvpW-z3(Kk9i>)!Fha<7)0+5YtG~3Jib!w((dy5 zH+7UrQI5yS_4rz`x3%>&w3zex=CJwNd^~prKerbSqRls0*|p_0^TzpnVbu(6zJ``@ zK3`UqafW=pt!lY8UqcJHKHpFE;u-S!2C5Eg-l;y{In{x8c7l&@o$8J^bN_tz)M{=2 zo$B)?Q#W^!uSc2!KW>t0(dKuenOuf1iMmjWTbeTJI+R`A_QTgEZPDgy z+F+dGe)uM!c0S)u*OYN0kI_6x+uP+zWenJhT^Y&?zH@57d@)e}ZeUmY5$jC->&eH`zym_@D(u*EuGPfQ!T@Hz1-IgOgx|54&S>Hfv*rR)66I5^A#*f+I&qv zY8!kT%P4Ib4Q_B7d@D-_o#~7q%~$L5RV%;gqCU@!0wd0xI>3l@eOn&it#Ut}L-1?h zQ_IxGV(;6{T&Xbdg(_EQ+vzk9e6>o0b}lt^Pwj`VMKMG8ITI{=G02BnSTyaZu<+#_ z=WEMoXbsN?U%qj77qF`J`QnXfUF559@(mmhY2T49VBoth4s-#7+D0wzqxklG%~&;U zsAc%d1y?t^N3{&!aPXqGpRU@$8qdR;7b7FwC!|Jh9lztN;|GD z%5XII4s=QbPgn0O?JBN;iY7V7my!eV=v? zJHgCtaOCV^XDP!$u8!NozR7oBDN959+Aj)mILz>c9Q>%oDZKh^fr zMHvq4e5#u=D!d%bnXUIieQD^bf=|ykIb2=jtMkM`oFlaPcvjoyV9vkS=4t4i()Ke= zjF3NC>)Lq@+fja+bn8S8GbGwYrb2s}8dA>8`MV%op zyo;UGY)(>_-2Q_m_}yge2%>NL1-R2zQ>%;F*TQWGY1%=(g#P#oYGAh6%G!4 z*%h9L+SuLXcvFjuoz{b4;eeAn&QgX$L3TJt@1h-!{5ZZFcvW~fh~pnHz7S4#(GCY` zd@ii(GF`0+<4pEg$V!lb@zvfop7m{c9GmZ1ZCPjt zgD-_Fw(PJYM%#9qT%vEw=jd=|tz4mLm&eC#aHO^fZ5w#jt9dsyIV@+OCrbSq(1C8& zM}?E4hOO1|`8K@nYHSSGNx;S7tx%=IysLQ}>S{vum*XV3L+MLmuvbVB=1oCQ9vcPHv`xS7pAvED1F$3aT|_!H}Wi+UW@;>b^| zHwB7Q4ubGg`&)r}>^1-OPwejj)MF3palO_y+5(u;PIFj-%nq^c+_K; zyU3r|Um@zT(-jBT>yFNH8TP2UU0X(Tp2PUVW!RJIVQraCbcxHbztm)H89eLpkMk6t zDeZfusjrq{PpF+JAA+?DIN0-PueMAV?XYK4(b>wtXQqQLsf%{ll_~Em?Xbhrvu7#8 z4oanGDWlV4zj>DVVIQMkpQRmkDZ2J7?XbU4)>+zN&!OzIlwl8|2hUQ5{f5rAUhE>& zL2ss6i>_!W^Qa^PJ|4k7MLX6u9>sK?^VwylT^|(W4_&p#)Tzu3$O`gmy1X(+-Dgt_ct5$*qI@sn|dhnFZmm{aG~m@nzGQdDh1a= zr>44fi*wwLjD;&4PPZ;2#kC4gt8`0oAMeUVE0kvro2FZop1vq&;fmDMw1pXIIJt8< zmnco>oGB>3Xr)7!lDg25o}QYn>(I^O6xTw>s--E5(57c)+QKEN=?xE(2M0qP+D%P!r=+gRK)6J-xOCylMd{07gY8UNm6DPC z|JZvEsHw`U?|YCDk2>m&V2Ld#mS`*}q9PU$3zoz)Gdg1jgj*!i1V*tJ?1^RMF-A>{ ziY=CiVoyX6OQMNUu^Sb|u2B(t{r9Y z!(9|RVQgdku=avV)9?K)44rV)m|=&GA3J7jV?r|B#ss1!4jwmjyo#ULK3!O6? zv^ay)QZ=1bj)FvYy8;8nBiW?*h2>Y zLMxeWQQ_dmA%|${W7%Fdi1nk#V{C6*#~D3z(%`X&9HKv7pzS`oy%4-^ zA2V$1aQ*0U*kN$C!7Zybe4_2Vl{9Ybgpurq@2j1umc8n@5JBVMQ6tB+r$6wV>{iF{ z>^Fs4-0=2ZIyDotkNL^^UczL4g9ndpOw_G$xE1b!9kk*fVM<*tS4y97bkFz z%yzte(!};LT4vvjg`S$x?Gq*p9nl`Hc;5ftEU0B;k^|6EPcX+tO~&>jU+smhS3cn& zXUkaWX%C#f$$?`e7hB7wN!sl=xT7WqKF`~+1iFvc-6T9{UdzHNXt^wc%D%sGL1SKa z;0zWzxeS6i{r4;WfAML`kL>?w8jD=Ymi6zrmBH%%k55y_ocUyulf-#R?#JVO<9emf z0REoJyV&;+(-H0b2xQtbIi>&J-PgP7?Px;FAzkD;{WnK0IBNNovC!R`kj^n!-2CVU z&i`BPWk0-uL9rwCT$H`p=PQssy9KR5FP~z^2fiR6e0asKwoJ>Oo_E9)6&2dOr!uSm=4slf%J-hc(8tfa$qk#Ix@qW5y0|AMD3H zD5vEz&M&dNwtP>5f?5)!1utx|7Fv17)zPn|(O>zsht7X%b@L5vsUtWlfeb?OrEe)! z2jK@Yb}Tf^Wlti3V-c5PzO31?&Q~=kwc~ltH=$*mAKHg}5{sz2<$7yLyU0#?DcO5* zK3tF{U*aFCGCeK%q6FQ)e<#(~0E6{=gN8OnO>8|ILH?F2q2o02l@7-7`-i@W89DUe zQSJE`h+#-J(O{&G$$wxH!Jg*BXL}#ChU3|R>Uac#fQ8@EvMO65gOXeP`8Kw=J5DQT z%s2E0`lkE2$RRs^5#Mo|+1g~&8LTg4hfdVj!a*$yy~KXt29~dTP*||?>DTVOsp_jq z`zkc}qCa`Apay;MTHs4z`@*&5D}v-Xq@}`qm6%HUlrehb82>1uB{nFh<%Xo~;EiUS z{_=TY(O>VTV-)_kzrH>4P>s}HNWUCysWaW;!1;gd86zD#-_Nj$?;n?rM>)Sj^9;ed zhsnNwM_+hgcp;|imER0oc2aLG-#^;Hn5~C*?BHSg6Oj|Y|4CL$&g68oWXVrmi@W1u z1dacb>w2MY=0VO53-iD7bkdR~-SZY_a2e-&n$J7mU3~?bd^DAR`Z8iHpO=l(;ueyN zc1-(-p%X_Q(XOj(ygq01FFcd0e)w4Xz~}oPye)JAIxg~<(WCg3aq#E~BL>^2S1r@X zE6zSbOFQW6nL>N|(b+;jbP3L5AcOq*uC^SR|BWY{v^dR1-}E%T{fNP1Msb(;;mr-o z`TpB^b~Whp))6BoPRQSSC$x{Y@X;+_vi+~z^7Ez54?}Qj(px&8A0Iq&Vqw(5d|+8P zx_$gu|EM!L8U6unA*rur9g|CMqCOFM|5zyC32a4I@}a2j;~cTP!rGXJof-5_-hOkDH<$o4q9 zJ0CH0RHMV^hr!1DcbD@xU5@&Q^2m|H^?n%i3rfq6Np@YQ+r5y_&;PBFv zc@XD?&xrm&^*oXK(P=Bzd`Doc83`T2tw+(s)AzpOH$I~Dne2>eX&GPNf zp2M<<`J>~1yQcXGYZ+`&>zfVn1AWtNZ&_OZAFGxz(zw96kVDk5l6*6=I$8#5{qQ`< z-Leb$h6NG%|2a1QIW~(vHXU!j z`H9J&d-R2*{+Ci8H0m3Pf@9{l=Lz~M#@qOi(!TT>HCDfOA9wa-5cF!f`6u6+qxd8F zMj?HYPPdlmjs*sd`E?LD^TQup9L(k4PMc@Q7o%l>An~HAv#&+-Rb1F&$q@l=mtJz1s3#*^ag;QCAtWf!$n3aDUVJY=~Xk ze9Z#W-$mYrJ?x4*kptVCKY5S z>96wjw)FLFgyURhz3ZBb%;q9absfRg^$Y33lg=;9zTMiJ1-P*G`@Ovgzc$?{!7i4o zS%lp^ZwY#id^Y#dNB&NQY8on;Ry$LzZ^=3p>YoZl3#{jX^;MIU3P}6>NrB&4pEwVU zSIh#ln-jn5d#H@1fWurz@MP2ZAtiRS`I-fIluV})bPVO!gs&+hE$rz!g6o*h)ADP> zUy%_D=edsH3JZz-z}lMyxQO;5?cd2d70Mt9<(J0TKbpU`=9uQiG*WOF`F-V&%P0!Y zaUH?WOy?6I_GR-m3-A+Jr$P-ZEc7i8Ey4w+8ztzm`KbufMx^~%regt;wApdzx2K;Z zqgpuGbp&^@ODeCH*h{RvS%8nqlomW@?nVT=s2k@|h>{GjkGsK^i5u?ZZqRW&eslZd zGFwS;j_U|M#li<~E5ze!8z^*i^xzUL(-n@dN4v1v}Y?Bw3mW* zehrBI3)|gN;B=X`4|ELWSKZ$%qXanJbp-#cce-#xh<(V~n+3SiI+hl!B_kAm>~3(YGHA;H z$y7r+b#lGxxr&e^N>Iv^HH#!mYRI-Ms3FR0sOQ}pZFKukrhx&2D|1_3M0R8RNCST& z(|s#VpsPMsr!%d8e3S67%TI+RYz~!n!Dm*4)Bx4!rt^S63Q6GIYj-G< zFHH8IqpP*}5{NWc2M6=<}$ZBYB=oH=+xK3tj$JxYXrk z!WAyB6Fzd8&yJr~vVZ*9gUe-{7dX{*1V1yKA46jQXuf6v-Y3&igQr}AXJi~5_)m9( zml8L8-QD2L#0}qbH+VmB!%y4|I#$GZPkS?Cyy%j=Z@47azg*J)Q%a}Zz z;5vd$)A{82I}dBhh=n~}NAL>Mt+AWQr^NwHlhq4^OI@Y~khGtJeN7j_tbs_e29l_bxw5}+zTUdLu0I!m1 z>A)Y%-H715?gq0HHzZrI&_S{y$xf2#EdnITN^q9DL6WSLC(GVBf@BfNlFGBAG)cZI zEmJ&0@CxHuSL^ra$+SpM3op3rtva`|TH}Urw96TS&mcRD1;rn1eJb;W6)dnq*KJ+y zD%4$)<#Lzl%KuA+?Bzo;vUiW^-p>MKy6@#O@1Bi5R^89HDb>K$vMz<19ka!h&gWHo zU2+x6Q3LCntN^d3cD3ZS?gc)@?CquhZ}c1SWSkB-&~*e~zNqzd5WA1HHw!RQyY?HD zl2Ev(yTORW4apXqjv!f)WJ_9e4J64*aJaiclB|>`%Vxpf#5r8XEZ_v!5u7m^e|{?? z_Eee91XxkcDr*&C50|k(r=VE+TxNYLMYWWywX(cGzu;})Bn6#mfi>{D%lCzqEU-rW z&s;Lju`VwWe8_A{*Q(FG);-=%t%EEurq7`+(^E!rvTBaQ*A1 zQ40F*vq9c>pEN#bAJQ{#AM$HyYF6$ccZtb3L(+an%h#0Y;VX5`)yHzL*vEDHI#ZnI zI)eYDUsk2<{N%xA$3Yg^H zu)J@TLKPR);+eAISCQ*y)}cOGILBq$m$3$#E8a=i%_V_eZhXF^mz!PO{Pm?-GEOX< z?K*;+>9@d#%R%f*GA#$#Sk1x2^VSNjy{t96Z$2*9tJb#$HnG<1kn#7O$}*~eRo4-m zVLIOwVh@n13UG$W>RAGjK|%acsHTjhaEj{)j_UBxM(h zn0;dPie7$Uu6P9nZ(! z9#{d7T5J7v;eD5BAb;DcDYNAer?`&bsWJY1bYd@;X>>4ZPg{<00+HbwtMy6?%$9?` zPn)Z}xjO7%eakxvd%8SSxWMK0!e3oJBE02tagFgK8z(#X4=CYiYpnq)QEf*E=bNld z6>fGfAe+AC0WX-Wtf7R5TGARg(PXwYPbfbn>bZa_$G8N^P3my>%6GyVmb9|9;6qgyYG3z~X+5i{vb!+MWx98CU)BO+`cz%!f!RD*+obs8C4Cv{ z&q?|+Sed?u*`+!67rGj*XvYdsjmE@8fA0q&o)!wHEW{wnc9&(TchQXt2d zHb%1ums5<66iCvQ(sXi@?HHMkX9Ya`ht>s13uua)y&*`1JHD_GKIceual#%eHG;O@aJ zRwKn(7SrqwlZ9U`SorKytF_fmo@7;zbeZnUx>;+T0gkfP?2xdaeauzaQSda`dInD( z1a4)4@y=OboR+MMHXV<@k$1CxlIePvX{NW-hhQCp;m3$c?b)*q`I7d1 zek4sc#qP74NIGb0Sz4MUT}$f!RPL!rq!*c+V(=-WEps+*?v5%QTMYx_1_7z zO~x+>|8hyDZq_{pWYb$!x~6|q_h+pBc!99A^{M2gwggUf z9l_yxO4kX^wuIP+tX&@kiyI~FaG+^@Fe465{LpjcZvf=D+jA7*Gcs)(NYa(kbaInz zch6RWd&}eo$snb4kYMkFF(Srz)yAlRWQ?|aj7l&@8)Hy$a192@N+f&7lEvU-nbxN} z{KDNJ8KXPwXUSra%%gigMs_<4#%N=V4XjrUB*|8WecTO_WGlmi-3^i*%l%O5k;uU%duTV2+K{0*&rzEt9GJb75=_gCajm3XdYtg|>r`ilHcnCUWD zr#2-_)@iupM9W`i4#|=+hySvg>JJOdMGMJto$r!LeS5PTBCD6|qd~a^+!6o)mS@28~ z|44rpK}L62bsfQ_R%z`{?4j1)EWnFpI^f_kb2lPLx8U6K2YOGEF#??II)ePCrWPQ( z)f0QM`I-fIr%b8940AUkNVi}F{>1N^GP`!go~|Q!&!?>;5Zl+)CZ$=__pSavx!Tm!pK!U2-AMb@{sRiOVmA)pYDt_by$BoE^=$ zn~rrKndBit!(`=c;S=``(n;CJPD|x1;bxaV(%oZgyMt7=7Y=fnUeiB(oR+mCQUj~_ zX#swQY8}o{ciX=jCt#{ewz7+DM2)SS;*y=Z+9e1!?f14GcDwtTEkZ3{gxWM+=rd%R zIk?2uqqgv+*(+O`8cVaXEkX=dH(6tqxD)6hh*kQXORlopU9w=lO4;L3n`XY1Ekd1I zyns4Gu@icePM4E&dZbOTe4%FK_wzD%$R?P5=|~`_SyMVwEq=Gp-d$-u+*&K=XRX;& zCKo#uY25r$t+V)k&DH7dmr0!!pK6)v6O`!+tD??<@#V-We@i#nuVh-5XVvJ&u)w{G>+Jv7&;Q!_ zrN9+&tb5N9rn$ULxYy;w!t*X)7nZi!RMr-@bh)cA%;llNc$dcsXSuvU;GIVo-u(h^ zJlY_8ADVC8A;K?QHiSto&lIM(d_;KO1A52MHrx9w}Vl@?wEQ zrW&}~x3!I^aJ66LlDD@jUEU-3PE|P4oM(089N*`1Nu6cRvu44OKHX$?kl5A9wtqDq z13KIG)cOm9T!P(9#=!Tl#{T`mcB;l(_GPw8HP-Dlm#orMn?j9Cg$q^3%APE&?iv&0 z>XDa;ao{AG3D>M7hjXA!AqHHt^5%1_F~^78n@=n|u9rQe|BRLKXa=Xcj^N2p;?E!c zh@B?W5`hs9Bdg$0leNQy7auh*Smz&B3m{eSU`D3DTBgds)aNVfo-Ou+YWewJtnXm8 z1j(mZVC~baPi?2aY0fgux%PyFJ#bsfP8 zrt@V!Pv14$l(8jnit7meRDZ}Q%uDQA@@Xn*(L=t`_w&f;4u`pp;H9R6q27D8y(zPy z#3`;LI77d0yJaZ(ZnE}f0lqBLB?OB9@=&;pOm5II1HK;K{D||C|L@iLYC0l|ZrwN9qX$_O!sbCJZ-OVVtL20v|GdS27rKyk*K3u>WHE>Qly| zz=5tK*r(XKufz_v_GSS-F4LP0*simO!r?Nx!4ZiY{@LB&i^L5V*C2`pt0&_@#+Ex> znPBK5L$6`UY9JZ9ln-4ChA!np*Mgx-4DDlN*H17;#2902j4DXx(FXtKZjj8QEl-xc zk+Ud~MOM-xwdX&V$CoEgYm}F|JZq(EvJCR3Q!f-)3Ev^u*>wc_Xq52S61%RoHw&y+%4xSLFF@JQl@Z@L?Nk+|XF8c@+-{bX!N9dd(3lvJdoTdj;bNXjU| z^JUs^kd#q^K3*NHF4J5~(8tS8M=1NXBS`o-8{C8_Gqr?lM$! zsmm7y79hCyT(6Pl*lgm3_epnfzJj{8_U-lUv+bM8xa?qW*AaZ(bbj9=_Av7`3vhJO z4v&?oBrr8`Lr;-^;QXO{^Q~P!(caj}#`md{B7SWiJi6jZFPV3dgxji@jeXJ!yee z;@hpYN+1IT?=6h+H(B~EZbXwheVr!!ND2F^O$$0f2j>w#j^Jr}rwi|J#C~Ay`pFk@gLiGhV33SZxUaiG-y{RvL#E{c9TS%oI>dU_ zuNVI0@>^j`>r|&doq~6z*Hpk=7FfMU=wq$bJTQAVSYEATEHEZH!CJPz3nl9l=f!2K zGVYK1Vo%1Zz)7wn_}iOW@B73~w)SQL(yn=?TXlq756Cp;L&DcCzZEvNz_^z%%H?R` z9GB+_7rRU|%{@pzq$Hy#IL~zim(|~C4!4Tf53F5Vm9z&%^;%X>lrmDm-mW9qFr8oE z)2`F!7BXVtbk`9ac75xx#LlqxW&y6Ob{%i9MiL79xf^VoxFOksi{Uc;4cp6Q3=F5b zj^IlDTL&igMr&^t;O(*{3Y95Ez9pF#cgnip(Dy8(9|!|@@vMv$gfGj|;J2l}l4aR= z!SHDSdST@-sy=dz;B1*@2FRyz+Ta)N24uyZX78{LNwN}52Fv~*jOw411zqmd%Qwsw ze=hhq+3Ei9Mt!C%V`1R}*AX23N2??I9G=*s`I-etdoWP1Vb8a3Dzk$m_I4e?{Y>Wv zsco>{ie<#YZmuJEk?GdhpPH{(fP2gIW?gob?Zb-J^i!%mJk`-Y;YmPyZ ztOQ568zjj}u;FfyRGEEJ9VCuOyqASmL6W!)9_nt8ByNLVWpurkT4DLAnK-74$07>jIgU>004Nmmo<{g7>-`%r+T=u9mje zL)geA*wkbUeBA7*E*Ljr+&@~XI!Fd<%d5>EEKeMykEUg;2b}CWf_IzFkIQ4r=qn-_ zv2c#-2(Gxn*5zLUJY2q(La;4IU5-u_?cK}bekIM8(jCz#G-=YIWc`ztbH;XKz7 z?5ii5mfN#@?^}Db0Kb&!_6)itp>SiF+@Me5hGYwF<_w%9E5gq#Ss6s$s{}W+US*IZ zE9J?`>6^?a>c!A{yINXU(dFg>ChwNQRxZ;%=}19Mxhu=uUteAgkl9*_16@b($d2nS z-x1c{EWm}e-@iDynnie67u(|!Jk4~o2&XLNe%NnmkB3j0Zj_8A_b(={Z@N)}XC!{O zhSyhuTbgbbVNzFiLtu_c-4XnaOlt-<^dZ|ICCCku5!+xNncN^r+?Fmei9eNT!X-Gw zC)^$S9p zrLSH6ILUKt!u4wePOW0o11p&xD+)N&My;`IN86~i>xG}$sI`358lxU%L)92{hD+9! z?Frs)cgeQq2j-eyr7GnA)oF8}ceh&V2MMe~FxTxgqd)mtvY~q{X|1D#V_p7QxY6ZJ z!Yr4&YR%bsWn%MLkRT~n_WLqjwi{~NY_lYI*kl=8Z7UofTMJ`MmY)#bb1(4YPzFD?lTqGX z@arqPTYsavyI9@j<%Dfra*?xTx~Mqsi`#O>3smSpFKdEI;v!Zp=@}cKA$PRVD|-mz zT&8!@4%bMsY837jmpQf67yN%a%lo7)Z%i@C@)G}zC6Bu(-e(!-Q_BjP`SG*uvt+yx z!P%}OxP6B=bz)z$_GSSN`h+*ZDtPxZe@};W3+^95uOhuhTdx|JEz>Qn1pn#oYn0$0 zo~-nom?SR2$37=<4ZJO*CtTIWtAS0t;u7>SvO61Pbh7c95lj-d!I74&8NnoT8~h~k z!xcPr8}x-~W?vUPseH>QkG7?+aG=YR1g0Y|Gn(V_8G$i_Eqs-!e~POhlEs3Nb6!X5DKegwZDB^Mq+GmsZz{tb3d;uewo>7m^)@Ej7;rWNKxa ztfFMTm|5UK3OdXJE1eWXaBy~aQOj}GTK=u-)Vw?RlQgQdU2e{KmXh@SVweCsosnxK zps=gSc(^dadzBEZMC%fw!!51fM{iDWVSamo>twaQU&ui1S z+R4})IK_1YM|QP`mh4I)_8Mz%7T|L-UDDtMb2lRRy1T)|pch zf6|in;JOQ%i+OW)Pi<3=uGU*0Vu;;bN3fsid?aFjY`$gz(jHuYZJK3Q8HWgVa~;9` zOb4m-dQI~+3-G5hr2@N~yAi>fyFtecKap>cHD_~KS1)%lSG>32owF-o6S=mw)-oV{ zaKjs-mqTR~4~Myq;Hjqb;wS0#2{LsDru}tObgc&Z$w7YfBZt`?rNv-;Vs{rY!cku|`miXbqW;#$~@f9vi`jw!^=D($B zsC?(if>XSMUgDPP^zXN>u7o>TYi+o2uFKyGqz-O3(^NgP)_Q*|eCF~Pbw5oe@3TTr z>mIKyoNBVlkmtAr)T~(6xWnT9G0R^i|9DGUEh)Z-cMme9GY_tydlmGNCucv~toV3C z!M8T9O8S(t<2FqnaNI28xWVbJBlx80{NSFb*C%;<5l(g;!OKnOv9Vs4y}bylt|K_n zbRIjmkACP;Mh$SD>j)mBb>M)c=a1NrWxUsWU56 z>`HyL{xZoEg|l65qwxmGJm_iykQ|eYB?XZ%%~68Q02b}Z@TQI5&PPx(tcO7xE>j=JQ{qnrT{=wRt1^Bs4O90mS(jJr}xSvdJ@UTnpxl7Qdyb1t6aS8gn z1pBxISGojGx&&0F3}6vO7Af*8E3yKX)7ZK$N{~WzQRnqm@_H+Iy_LM)N?vazueXxd zTgmIKnadMiP_*`sB!s1fykYxR~vvZ!r&k>$L|a$aOPFS48$S#i0e%VahPO&nJ6{ow7;2hJfu@9I}zr|`H?K21I134MF;B40se9m;9i`c)LuUUY! z>!JZ2L)&)MBe;yTu$$`$u5CI`OYG|AYZf5wN}JxC`)l?Cd^L)2pz8?UWI9hpY|VVl z0=!YCdmiW*T9I$KHCMqQCTn1nd%-d81=qV5+~D4{z-jIJk$0JGhdAAJ1V1yK7f9?Q zGR^N%;Z>LK3m>~olRm7Me=}Egj_`@gw6#Z@ejA;PAz@F~5xmfJJ|wYyWEv9eV6wWS zu!noW;qILv&_8$-+*>dAF;_fN80RuAq%chjETa(E*>wcFo6ZY)>`VP$qKsHL$8`kj zU*T_!eNTQB4Su3#)wH2NWKbSSU$emMc?#Eu<|>2rtwSyEn|+zqV;QZY%vMqC={kZF zOy>m=ySYpSfqhL@4;03_OjjfitPr@rwbltd+$A7;@B}zUFFj3m>f7e&0+LZ1?B+Ux zUEgS3EMixYsWz~#$?Ez7k-=i+tud{eTVTAiFv#UzLe1s=!htSF3lm*lBwXh59^pQh z4+(#B`MB`3%NK;XE?*bkaruGpvCA)nZ(T0?n!a~mrYYkx!VJ^oB4VT9YlU<%6obB>_;X;@12p_ooSop$aNvr8Anr+iM zDt|qjLT!NH%UJ8GcptTPq~uZ7Jv(;WD3CSRT#0ARC0TaXT#{uU>hetCY?pTmthoYM zcGg^yWoOMLS$5W3l4WPjC0TaXT#{vH%_Uj(#eCuV2z_0S62`flDzN5?W!YJCNtXR? zm-h+}yL?WV>ypi2Clt$OuoIGO#tJT17q)h}tHAy!fW=~eB-tYNN0KdKeg&Bd~#rWe?dvN%oKpluR$x%k)L;nY#+^NZjxr=8hK#0|t0*Sd*!e5yGX38{X*dSA;`%@Mw6H zOwr(`#0_V<8|*#Mqu~e{xrO5sH$2naRq$ovUP-ICk?+KCxQ(r9JVdxJai^Qf3cp}m zQDs*?amlW<*;-e@%D(Ji2loPYLG^%l+zY;PFId^uzY6;JR)DwN%dRYDi&$mjS!&&K zS!Q3_Dk%E8fqhL@S=qB(ULdfzs^K1+Pz>^Th=OA&sP|n>0WS|d%+sM zs9-abG1$(%U}yIN-t1lY$?C6!3)~CXAx#r}?cSm`YcJu5&N&t0}v1pVY2CV;dY_q3yZScWR!d8+k343s<_lNqE5JdxF<(CumeY z)M+ly5vI6Ik5w?#*4oEGw!2~XH1KBC^G~a(#`*iyCFifR^{M4|h3uW+GW{mG%Vl;0 z5~sS3;4IVm4XCZJ-h5>CKp=K=9l?FK?(je$-zL`HEWp*(t`A#4k0cb*E%;c55t3d- zxS323DIggj`x-L{jR@Vv)A;ZoRV4bKc~o_ei6L%e9)h zsuWDl;Bn>{wVq));+|P+c1WI4%Uo-%gAYwsz{l8Dzb8HR z(f<|5*aFzobp%)0w{;7M?Q8A&B?#iVGOaZ@-`x77TBKXB1v@3p!Lwl>xz3j9=0JxF zU0y2O@A6sUHJ9%SU%E_Ja5KF;$6VEXylh4@)bbZ=t$-vAc-y^cnm=W(?8C+(TA-ma zRs#-m9l=XX=ZBZrvF2+Q;5jl)8~m5K8xg$7-JoNJ@$#K$&GE?s(OQwTyh(a_wz;yY zU8a|p%k0_`r@D^dT+?}Z#NKE=eUr2Jl1$}+j-iDM)FdMEjaAUE5T%$9xCW`gmtPDc!JAxEtXTzFbgab*uz@Od0@7I zt0`z>3(U^{8hW{@xw56DtcjK*TiWS*`H;Ed7lc<_rsI#(%cQ!CB^R@4WEVND4eL<5 zFl)_kh;mJ{)~uu}^pXLC-R^Otu0xq!hvH9MN3fsid~1pAWxi$s(jHu0AKswv*p`tB ze(pMg-K<-lir7Mu3ep~=8uFd42N|j0FxL@mH=Uj?HUoyV@L*L`Kd zS?IB(zHpV<0*F0bN3d-vd(g`Mn}gUZWLm#Fg-2XIEf5*3>aKDfX025)-ed(F>t1ky zd%?vf%iwC0b#R+|!ISP~s25FEKM}q%Spl7`fa(&$QYI_F%gPR0VS7zo##~`%*AX0S zI$tVcyP2<9fU!*1F{qlm5y1o84LWA{k$kIJa|QG>Sq3|}7wqa@KsucPP*w*!|?;Su>BmuX|(6y9;UwW4Orf-^u65y1}j*Kdg%AY&Xj&~*fl zF`bV??Cvsk2ct|@#|THcOfTm){SMr&GLph>t|Pd;={)IWhv<1mMl77_I)eW+-5PtR z`I-fIpG?Joj-hkqdqqZCIL~zim+eqOf4v@HKCOW`&~*e)H=UP2?EdC!7T_^59T#w% zxf>Cro80Mw)b;Xcb5&_Q)np7jFgv*)>PNNb`;TrH;R4qY-1}ROLtYB8k@=bh*hi+# z23wlD5y2hZ4R%i4ux39ma^t}ePKhF>0BPu%g1G`ES%#yg8P2gS|YLUT6?nq z`>9>a0=7*;A>D%2T3Ro6HdkfWtTns2znSFJR7v@rOlJTrX??0|30u1a3=kZ6ZWUc+ zb~eRst|K_gbiTsGt}Rn{u)E3X0m4X^>6+w$6$1CO)*6AoaG3_~sh9hjD?U{4G}-&+ zWBLV|kIQUn#W}7cc=hu5^V&X;??ahtTTx9b$tY96Bu5FOU8bXtdrCJI8TsLHt|R#A zGp$>9u6)yF%5=MMpUWqOcU^+dOxC^-mVeq}!RjV!pqG2W9_|Ho_kx4m3x>ECjC1c1 z!X)>CquqO~aI<^Co$dwqxEIWE@7KaQnwe&?xv;%UP&ZivN4poC?_O}Bd%;caO_%X4 zP4_*Ud371(Kgx!xo-6#w0;^jKp1<0VWNCxD@Tuzhuy19`$UAAI3*AYD0bbe_N z`xEmu3vh3lvVwMVHzGL6-JoNJb>%zInqwlzx=d^7m$g=C9dE7K{b`8qL_=j%3WvFl z;De^~N{Kzne9Z#Hnx;%;zg;)Y}krn8w|4m4N1kFcN1cES6{zmW7k*`?ZlL;dHg zjAG$H*AcwibY3j62b)j7V?mrG(~|%=#@vkv(k*yE2znLib(A&NLDH*~_sYJEJWI|0 zWs#NJggafPOFUdJk2F_xs&I`mW%uoK)O?RcRz4RzXLf@+My}hewNBr6Tz)Ee zV76da$#tEzmTwepF&P8;=|=LhFwZ4;!(w+nEnE#OBD6^8vKCqeNoaOA z>A#1*qLJApDDLDsg1eZ`C-&h?RVyPFE^r;euT1B$YI^Q1kPXwY0to5MRlzFlOxTy_=q za+w~{ZS-;{bHxPJT&Arvm)3{=GRlOrT}SW{(|MVX>Gk8@UW8A%j^Hz<^Vqpskym8o zg|EAg;G3rN*dD#~$(oE<*wb|cPd42eyP5f#1$ekjy9*lTZba~ScY}@@ww7;uYp#L4 zO~zondyf%LaG9>sA$mE%T-iaGtM5O0MP?He=edsH$ENe53w&>peXo%o8pO`7Be=Bb zJod30^~JG_yznX45q!pU9y?91Z}#>gobEb;517tlFVls1xnGz?IMsCo-!$DCd#m|$ z*AyR->2QIk&E1F~-Q-Rei4l@sMR>n8$KXL3Cl-3L7(AJ{;ZrhQRC(U)N(%BuP7&E9{5v=M2K^GJ{s(+00~H@HE@ ziooga2FWb56`83kbCzGJML64a1fMgVuL!Y!H=n*QPkc(IazV$?%l@RZC*w@RsjegV zsp&i|vD0Nr1@1Iiy;~qMxRKwMwZ;pw*6h#}{;XgbL&DCkBeDKkD>n$Y zxfk5w-n5pPdO1r*emL881oyVj{PO(7J}Fav@T$q`8^WjV1zW09u)Mr1x4K?b)I3@G z>#GK;xgtwnr=`V;Da$AgR$c37C-ncErt{K>JxHd~((WJ5)#HSW?r?$Y2sU5ApLZv= zvwZ3fb~0JrRXEY*DFU5>nbGGvS^67)&~&zG==TYscTQjH52B*Un8u?|3fj{lIxYj_ z^iUi>&j7bK-H71Pi61U(PD#IF(61EqD+c|tM>d;-@@Xyl2|Kz>s|yx*MYXIV>r#lP z6!kllm{2u%oo>Vsy@d?*x0E6r<~o8mna(%jBE9~DEEwiwy}Z#}*_S*0^>ToWt%Uj)0~ncdE^i;dXNt-V=*g|uB<&2+N>*G>GeSK^1;Cw}O; zo9QAHg4{)NCpk(%j$)9b6yzwTNyzb`*B8O0{_MU>-mhg^JwT~CuwYG-G1$<(jMdNO z0D)A&;r>+JH!@d^z-?Tnbu3Wp#^$Qix~ zd+X&-tV5kNV_oKHvIn;|-Ke|T&04b*ySa|w)~53^Pt*)gvYG3L8O6!2BY2(ZJhs37 zw{(F0FRISAILLJbtEThV^Ry358A}DHxQ^iMrt{cwdVRRJ7vTig5j@p&9y?@)u2>m) z;V{<`TwuC2c9Qv;1$eDY2MJtf?nVUXyBl=OaJhWfSabY{@S)3eLkg;`lh;~=on1$8 zGt+r3#4c~XW&y4%Q!U^p=59ogZoygau9vHrD|_$gp&Hhdu>i2A>j>^+IvOFL3bT}5Ml9^?I)dAoZjD{VeEJp+ zaZQ;j18bYR5y5`$28+m0B*R)3S_4Uj65Ph!Ajy!uo2)Kh4{MG$6MU>}ony_e?6WPx zs_O{0o6cv`U)=}Dm^mEiI)an#!`~WPvv&O`g*a2DnS=Yy-H0IFf`h;aS6g$l2=6xC zD8a5aLbC{0^wCPtN6vp@kQ~X#5u7E{%?BhSx8);epOZ1#^%hwvB?AOsxEJnK4w>z_ z*x7XiFPPanb7EJqcI~-1L#8Q$`^?>lAl-tQ(`$e=H;XU{Ey33lKU~R2E5R*HH;XW- zBHQ(#iij$P$+Qa7gnM0rWRx~I-`ynk+OoCTUM&-?wfqO+k1k&kiVD_ONffY+%bkV2 zT^=YL=`y{QFteG~z5brSSbE>-EBKJvz5PtJUSfeUplnsYqym?=KH2#lsFumrT44fS zP~~6+O|-!5ORc&3D(Mv&TL|a5j^L)H4o@NSeQxb~3K74P=?xBaPD0^oGP%JbGDKu3 zSZI}A8@mKaul(tOajd!4McBk;x_I-|x{SH9NqwlV(dNsT6kOmsf_o`EydsHR+P2U*CL$bI)d{}=eMNuZq_5ZjKzXeTu1N))2*@h zn6FuY&&hOB!6HJ7gg$GbHIRg67bO);lj#eI2tFeV?g1z2e-BTRQ6QY`I)X2o&I=^= z8kzRwdf|4L>GtHU6u*)ICZUq)^4TGtW0!*pKT z5PfPk)IUWl!b4q0@JQ2n?1}1olIJSIGh9dTLeqKdhkE#$?+;@|xWIJ;k6lP?C-XH6 za21)>3M?#iLk}&&q&?fUSS6Qz3Po6T9l--k=OqqNDMP)iA{^#Af^V8`jXm6a%>q12 zrV_!zLVxR_MVPc_CC*gYvup}_ei3K8j^NH6N+kAiYi}0dJ2DLm78d%ohZbSdo)4@4 z@tY;%P{7%)BiK!!vWB;xnex43?acyQM0+u4&&E1YAI+TPAJY`!WY-aV(R9AD#7;L~ zvj97`KeoP>Kt|ngj_U}Xzd>u=#C~V(%>s1(>55xh>X?;*qV5vq(Ofx}!! za5eq(XteFP%w?GWSJtNjwzAe5eNJ_GhQL6<*NK-a@GkEI zUUvyTa`~CCx^=JQqi46d4b`%xwN|NXqDwH@WDHJmFQcFBUhrr40_LKLGMyLP3+B2P zwE5500SMl@uQ;OqKej3Q&~VaaMB8KVUEb2muFD8apKj2cMBDCJ{hZ`b!L@9vhMO0Iof z-YmT861-_L235;iCDWrW(-YG}t^F*pvJ-(W2PMM?59d#5$Zp;W=%-e?(ob@L`p{33 zaYng3TsYC?8N&H4|0vw;GA(3omcLAXuc-{YrgC0WInQ4v|1p-SO#Ta8-Y@t>v;S@x zqfAFwrB!ge$r!L~y0T^pFS>kB_`oGu{%J{L@P^4M_{hEBYxf%LFvOh%KNs1Dc|E4- zD^nTg6!vr-!Tn9=w^m}eFrU8GUP$}q^6e_X=edsHXQuNyrfsF=kr4~0yN-j++}X@s?{FW(56&K5YzWDLG=@7Kb?HutRJ_2i|8V(* zu#DAG*;Lrt<#1t?%X@^`E}s+LahWbCb#E?9|Gvup(o=)iOqFhFd)hA^podi%8v)OC z9l=XX=hx6>%j*3}Ml77_I)XQv&SM|b>&Lyl2uFHV1?}aX> zv@%M7b6iKT)MlHV{olZ2^1Wp3%>w*DrnG=i$#fA4w8-oo=C(aHoHQaHtR1m8BDS4!+%GA-ME!ecJy z2+z2DL3rI|x<$Xy%io);2JSUk1vA}Crf1y?o^vmm=D7rKn9S}`AL`|N8AZbdt|Pdq zzCk*?2NJuCd@8z4Sl;D|!Wu5u6V`W`7EPb;WZDMM-CC>kS;r-Pe(EyqQ|P0388yMq zt|K_XbiRoyUzyIw zKToeOH(#>=?~-YKz&+;HH`$4gxEplLaEE+;!WS;nO38V*xvJ#(+-2H2WSZVq zWK;@=xsKqPH@EH{u?=f)7T|Q5mIT~x?nVUPbT@b>aYM2N3m7CTlI&KQz6=3LvJ!mD z-5^O;%9CXez&EM+7K@DM2yeI~a7i0A+nBj}`HD?TPdnl~*Ad+8me%PK`?(`}o<@-jay1S~WyG(K= z;m0nw73d^ydg$o$f%U0?$Xcs_6iKEP+zZI2%O7muUeM2EoafJ0tCx0bQ`Dt4?cAmuc&H+vxrxV@No~bp)^L@X$`|UDmEIa>Xswt}#L1 zBoxvu_!!_mMSd;|p6V{!K{qNHgTkqj*ylW$OVa_5hg{5qxd3TKHVwlKX{?^J8Hnb<&W1gmEq>3J^0aHkbDazp#w;hTzGw|DNlik1W@eQ8Dc4 zI)bxI=c`)K>rUQYgp0e5U{}+5?6e>2cj3uwCB*5jBe=qvt@kftXUMb?;Bk}Hr-TE0 z;H{o6{Flp{gjp^h5WaBPSsBS1u9~|4-7;0c6DDhb#M(-*mUXX@^gfq)(rj7dyp`d6 zoUFC0TwZ3KGOv~C_D06pF7w*5ML%&F{r8ZJ#etJu>knkk%y>+eSo^Rh;rtaqpH@dt{c+KT|!hDxql%>@AYyHT?SgL5mKgE|V zYZ?4}S$7{IULwd$8OvlGV1ea4WBx^;T1H!Ib~Ja? z%RS7Mt!)42^d2H(GH{^l2p()YpA50P%2YNOVlsOi!nM1%R)m9GraRF~Yq+V5abR!P z5!^pJDJ7-2bioLB%JQ@9ASOSU;U{-|KPCisn!V=7#}B`=8`@axx7NS)#aar zf4F>Fc;4k(!h0^i6qdLA`m^tPv~`)zYA>}?mnywXNRp}(W9>WIpyA9i*f!8J|iXQNkVeb0l;_E+rfI)Z;U-5NVUKFt+WO;+myk-@A; zx}UkS<3DpZ-R@~*Agcn>sgU$_OPa4dFD-eQ zaV~QCps>K@MH=TW8?u~_UMBhZmOQ&NZKC)=)~9l#u!8leZ6FMFNhVV0ag;gqw(d15 z-pM6N&oh~o_nOMP+LG3(=_l5`P9|T5I?J%R^{JC-UzhpZvp3`A6u7Q+uXa_?W)@g2 z3ssk=3-k+4(CHfTT3PykvFPjUwZ2(h-@c8WlfKqp21ozXUi-Iqqglo-1&?Pjc97X? z#iM_3uRR`pMfzIp%#jJE@n|+X{eF1#`oU{fV3*+a&!i^=uh}tgVjW|G9J4+w1bzFX%P3rJrR}*Mi{n_8NmdP21D$NMEPp@+Nq=j0*xza2>%L^xPI+ z_QXz+={SQOSG8+>knp_A?}T5iZr<~R&TE+5Re09r7s876P+09PFhH=^dHxFdU$&v@ z{grfQ%U@qtNw>88_4|b9U4~Qf^2*>*>t3V#PS(AacdzB$vs+L)IzO>M|Bkb#oTLt> z{KRV1UZVX{kRbAd}{Gv6h}u4xs<6g%D}#a`hu-Qiw)>Ag_K zVTHY2N3c|DJ*>p;B-3F9e>GYCyYPm~cZ7a>6Hwh=pnq@{^X?V8|I+%@?h_t%Nv1bl zl4%>uRLe7ED?CW8BP=i;C5&|mjxkvQXSkQ73tWOPO;(D^y@}5!AqS1mi) z{dd)avy2Ub16@aO7rpt1cN1dwlxc&&Fq73ognzhvLU_yNyFxE}c&PRkNEPf=MXd*0 zU`+QTT!N!a*1$3DJz4mbOY%SOlKfpQY5Zeh6PFCNh0Ao+$aJ0csnKUsYpvxqWxIZ2 zAAQm&Vx2OcqZBZA+!8+@0z;WGBW%2m)Y@m*@3 zAq$^BKGg$|jJn`#*Ae`}bp9wcQ?Fl?sXO@0WcDc4rVFO4U3B_tP3-16g17J6y4S?6 zBU2{O%Vc$P;p}~EE1LqHf?dt~ROqv*^{LV49P3k~&pOtpHdOHL*#@kyK!Wwf@*rV% zmtY^0m7&4~?!8dB*d@5eWM!K0rF+4ub*mrz#AIbtVMmkYorT?8g25(ZFx3foB;vvqh+XE}U=0)*lqUa!D3a=!S5p;Jc9B5LVTY=i2D?CDiJp z*H@PG(d)w`>8I}LkmtqvR$CcI6i#s+!F?;O2aDJ%WI9-2rpfATp=%j$wYyMKC&}dm z`Uht$@18yGUZuWsEKLlaH(7a2_|U!JGxvTYEN@#S)t`Mev8sY@vA`OAma)L>5}2uVoh7qtU7YPYf`1;` zx{$;^Bhx~HXg^!0k}%BW2;mHuzY^#lEM(rjLieRCuuk`OmvleNW!^p8^1OSQ?n_!= zjqdBXr2CmJ^X}P1pHrV#WV+VDYbIl`f%PfV{TC)tva*pd$Yc!mGFcuWjBziR)A2Gd;LBHZQ@+-I`#i14C&Ulv|< z2|h4c`CM4)AlsIbu$)Vc! zE_W67F&Tq)la(>TQ6|ga0+TVg*u8%crn?u+b}x9@WCgrxG6rwE_kCf$d%@@K{YF^A z?gix~g_29~Ba@Z2gw5T%h0xa}*x6)dPhqTkFBSa8l6|D{*p9mHWZc8x9M=)tQcqyv za}=>}%CunM*qxBo6NR^2z9($Gvw61@=pWp}^6nM7A8&o?bbrSs-M6vs^}Ks_56iok z=|0N()ad@QOS*sJGVh+|&*ZWlY9>gsOYN zekLn}g<&RRaJtFzuZ7>b{G)KQ$r#*evNB7!-((p)|!zod${-KLd_*O!DM`maFa{$CzEAxpL@YW?)|IqcbDK9 zlQHbqU@x8H4%mT_Aks(qJbz?j&?ES&oE~OR%EJ7_92v)rECjf(=Z@z%PgF z%HseZXQ!pc0e;)%hT7|Xw(Z%;9ipd>p)xK}ILvhf*VLDl;U!A!F*04E;B=Fh$@i^{MB5vWqeAlg$U$aCPAG9r&Q>Mg+agW;$Zw1jU|a z<5VvazI6$fQnZQ(+nTI`UEK>#cQ3fgz2JHGQt9h1)3F}Y$MBEK>;@;!aUH=mmTX-; zV!xHCfPWVCS&vN5%`0`$mmxCAQ#0+PToU_4u%= zlBF**(i<)rX>}W^+*8=zWj<*6pV^>g2K~s!&vt-8Cn*y<0G~A7h~TWn-4B;lUJea> zSQ&|jOb0(4Y+8TyT0A-N!^aapT-fp@;}qd5HfEy)nS{nErjyY)C024q;)lujC76s; z493a6H(?v)nq?_E~2uZIZOtNMRMb^D!TKEW_V7k!;J+_&BCo{3$-Ymgn*zW1D%F&W{kmYK& z!6bI&Ahs>6aZiu!4wKl`g4paYMpEOcvfx7Mv8L`GG8Pf`bREIN*7ft64n^#CGHvY6 zLe*v1x{tZCuSMzLuIw7Zwbfd7RtxYw(~Sr&)zkfOskMD<_>Jji0sej+_rtGEHw&jID-A-EBeL5q1CAax~gtQb!cjk!>6K zPV;;v_+O?Q-Ct1UYZZuhDAw5$W{LGTp_7g_9yi=H}>8SqnAV{+Jtc_&4EWrfVQ=cRgS;l&%hCnt2 z&J{RrlHVpLD(KEscCezW6znTeJz4TpE4q4}@RrM~mE|VORQXC^AGIjycIpO`uYY#0 zA^&!sAM9wde!uYjp&0RW8>$|R%HZ#~msR_n&8o`eC_Svb`t zILl=DSHcwcf=k`|ci|r{!DlAxU}AS00vuTANeHplAaLN_a`y1B5W%Y2SiX7iDI_fUnL zx8U8mM?PwhpG9NEfPnSSmykS;RW_CHS0~!#OB2Stdj*Bgu%}*!Rj2`#Pj4igwgm>sU%l zRfr`CYD#UbC2EWP`+QyR>$>l2GKr{fAD`d%kKa7<%IkfA*0&c zU*WB@z@3ud+fB}i*W-)C;_75O3lRKo(B~$KzA!O^Lr?c*WW}FAE19?&w6=+1Ocd#9 z=hL7_e>d?B$bvSAzBa8Qt?b+z6sfO?A<`=ty$ZrxLe#u22*<(hMQoIc{u~^1Ds^cW zE?E&OdDX6}%s3_+XoSQ)P0oogb#gj?vfULhLLxOsGm*A7q^-#sOIz#H*5s_-+{{}u zfT|ErGC3!{*2!rVvOOC_sZ&*hS}u02rAwi!O$=kwema*Z;MN0tyU986?q|B)mE48P z_BlYFPtV}O2%?l~UB{^!wt$KzmY}^&d<1&NM7j4OIv4h>Atj1#d=%+vm#1Ea^PNvJ zGHQJia5I?^KjSP*B3Wwzi@$MRCDDTYSQp(!uDPg6w>Pm3Qi*hF9;6si?-YIsrz**3 z8xuqH=zJ-opLa7`5EvSz-fiaMt%E8pD)=PzN=dcrsMEwxAw|Ph)Z4_LLF=0s7KY-#>f+a{(si7B zz2X;5RCyM(UXfOG?#arL`-4C$N8HCbRYVG>;Sq0XYLP-qEndn6tB4d^YVk&<4kfDJ z3c~H)FQ8MLSo|%d+Rz3=Rb1_=DsU)&=Hyq+|=ZRN#Hpd}+d)#RLb;>p&_P=IW21C+N6O??1j_tu8AH8}~%_k8DD zFM7#|Wf`vQ!ju)Q&crz4s~Bp!#In|?i???&pWuTRtn+qk?{*0)qM1%CidMmz`x=q2 zUbMbxMO!$rDB9MvAwhIIG>1s$-k{cIXPET#T3TnglqFG(Yc0us8xzxr$t={~$4480 zW3A})r|Oi+Oulk8L&k~-ZXuR1)UF-6CdDAOQNxWu`Y-YHnqq{ zC?r!vmre$5`M{@|oD;X7y1?>5R|TvY(KV+?EL{(MZDIz8(E#nGko==-WGg<8IQItm z{K5G&h#oUh?pf#4P=IPoTpL>7#JK3kT%`JEq32CZgVrl(rwdxIpi4RTdIjxcqJs7} zF%Ehak+fLF54osCks@o|il@7<#Tk(GpeTC8v?3*xv16B_xCEr+QY-VirWR?8oV71Q zgY-3^imdnwBGR50Z{}>PS+Vy^R)PjrLlW+YH7@^*jy1#@kukdz7bC{IVZl*$?1kK-piMb0NIL5Cg;Qxot)aX-pQK?f!mMpsV3*d*E>12?fe4| zs(@_8ZWBA+8KKEl)@UwpE8 z72$Hgrq792a0$vHUrs^1rKv@}oI)r^p7F5xp~#Cz0B&1Eekf|hjiwg)GHb+Vn_A?P z)QF2NcfH70pFCf_E~Z82RaV?46BX-H6GM^F$w9^Zk83Sm1buFzI=P-plw4Rt)pX!O zjGl6a^`e<3{sYQeadPi#qM{5lF$_x`U-z&r&}tHIZ*orDlOXX~Shh#Fc7916zW#P= z7vJXOYDT;;zx~WFD;^J63L+mOA3~sxA|y*encoGPP;nbsSZg95p&+)z>72{WC(euS z0i3u*9e}>oh@UgH$VaOY|H&mOiT(m)EuLd)k?&|S=M6;or3+S3jt5OtinmQv*e9KT zMWN&$Z5jF8?+i=-fUa?d$(*b80oPi787jKg@`2E`CWa|({E8>tfTmPD#^juM_peExSuLfi$bjIte>cef{OUk)FPk0Ag%>ii+rL&NQ7GX z{8%M7g&HfLFE94($?R9ry$_ht`Or5eeh1}Uu1X)DE1L3aY5f-neUtT1Fbl^T2bCC( zL*I2*aU0Mai*GkMC;ruG?&c_&W7$3k=vM6B;ZzNxC%U(qs$TSlYfaYSn;h;(3VN|W zbiIio@_V$-cMfII*G_B@t?UfT>q7@Qu|YK6wC6*rJ9_4;Z6hA_19ee6-Q=7&w{h1l z%Jx>*&IbqJyFjlDpNi8m*1e9}zvA7cX@%mi9&;+H@${yXw}Ac>{}r4I&@7gmn4 zYGsO*fb)(>@yJsU|I^eWMU^^4j~*bXZ$4OF?2{$S?jdx415EF`kOfU=`T@?(z%3N` zc9V1B-VfRa3v<_w?g7`%_g2G?gQVX&_!9{Imi$6&po31JQ53%gg7G}$uRsz_2TC6d zBrmKSWz{H(m4I;(DV~N){DrASiYj%89*v^<=7Z(MK3Ot~&!BrBFpBdb3!04Lfbo3p z0%#P)o0^;x*E>1A|E$aNAREY5yuHae@fv)IfyO6{xNI8%Sw+8eVreSWVd5juY$p~) zubB34&}XITNi_2Kkog zILyeO@EeC8lQ;=_!9>(nOV@7-;_hX&9opR}_VaR5x=t*guVH0%SZ64tOfsE#2jsEYEnS^VV5q+N-!s%tIFz0t(f zy)1X@Px4%JffMZtKx!gASXTwojKTv z=R*n=U7!`I)qRPC z7UJoq7O4wTi!XM)suv9!U~2JrKpN2uuNME#)S{2PTAUl`tVO*T2*noncVkm88t>I& zjTNy)bvF8W@$PQ;>P0iXT5O|QFA@|xtoUf`avGZ{u8Sp+?|DIdt*J#1I4}0Yt00U(GFpqUZ=GHnc*2HE|a7qKWGI z<8Bm+qL-c6Fp93XxKU`B1^wGZ(U(pvEZ-`}OGZ-$OB zQK=@nZr5K0ePW`r9^z8fE9)I5Dyt1f{pKX!&J|FvaXH#VjmxJdri0=3m#vQEtdf>h zypIvEWncOm;&*Obipx{odalBv*0~lr3;cen`@&UNRE0xbS;g(4Jxo-wSDN@1w4Bwl zGPIhBqSc+)AnI#c^=1zzM(ePs<*2nt;ys~~6N_4zr<+zQ^A;1eGPNwR4ZHstda{=5 zLc<5tVtc7Uw5Cf{5-Bt5MMJrZiRVKaN3@#H-`axG_E^isZ_o+IYDv~s=Ok{wfi588 zH%!inr|^;n+b+2=lkFFPJrOFE>T9QJ5N+M!`mr7K#8FN>atfcgJKBjC9D@kx=sVC3 z$2sv^=+hIN_{@oHzmuGJ8FaIW4?~Ze_$s8LqM=d&LncdAFPdPY3K;EbsaF9f0Sr{Y z?XG}iHOajPKDtJUEmTo7-i0cP6ix#n-qnRIiWFLE@zE|tQKU3dr|F8yy5MLonWQW4 zgSd^0TULsf-O!a4cD@_B@VXL58NYNs?m+t=sL<{>W0zd467ZvelS7x&8$I)`OwW`HBk+f>b*g{NH_cB$F zxLGT{4}D}}=+wH*@?&nMEu~pY%IYUD&012{1?F-X8>r6hrHYoZ29ZHYcS5o}mtsJE zZu4+%(&uEtwxng0wW>B*M5|*zx^}3Wu*5+-|F?D$Xov1GQ4{@{h3U%z+sGDKmaG0j@9tQv2$I)!TzWdLdB5ErsmZXl~&F^VE9 zpp+I6FPpT0Qd&SMEufSZP)ZAkSCE#k)v~Y^v?T@X38L9~o5NlQ|#>duvS# zN?LWL7~vLVqPmCK^=E@H!!vn3>sg@duy~fqIq@3zb$!x7w*PkR)r@#m+ButvzQ;5t zQ{P^Q)A~?(@lRc-ipZNL58hj8J{hP&@u?=~#E&>Ry;Hb^;|{v+QH}q$8na>z1~ulz z8WBG*1HD@8OV5gZ>G`PiY*cz)rO&a_vtnO*J}Nz{(lyLVD?Z1`)vVahX7VWgGxD!Z zOqThEkV-&296H9t(6KM+%j>TG^4q><&V#a_>p@zOKCL%Ws9%A-fLok`qc-@3qju^$9UJf zisGnhMtT}##V4nk9vE$F!*E_=n1oS?Pb^G`yzmk!y_GlDpA6hd6F$r2oOtj5>3Uk1?VnwHH6yO4odqvi(6lGIWnFV|9cXkZg8rk<86E{@j9S7#M4dAiMJimwGP?d;nX>(}+17}??dp+ja?xz&nd>8gyEed+OwNhVb#i*q zEOK0L?OAcjRIk#$7?6W1aS!9*eyA{K`sNj;xIdMNeBBLc7Hj8Y>xb|vBJO!|sMO70;_XBx} zpD?v(j#rD{Hnr#ruNL>RkK~AY`_$sqOfCAJin6NcUcebgTWN3#yJ$ zJfH(wJ>o}A&WZbtahH!|j%529U|vK!jh0y24cf=V{h>=u{5`Y;{unF?DO9wg(nt-8 z^tB6GuES?%=U!IOeN7CNuEXILPSqeoS#UW$8?xZZji91+52M=5FgfcfqSUOYvEzKR zhV>espSXcZrlYtA zFWLf4hqz>NPJG&)U8h5~hr9M_M*JC|DA9bUZpn$|hB|aA^2*9YDGzt1ub=s2mx-;PNyK#%ObA*ieMj9kxU$vLA;7 zoT@YkDw}u;WJ{t;nLf3mDHLH;fkjM4V!&^>gaNHi@unu{#FsfaJ)z5X7pJRc#8UuK zMKX=*l;!q-xyy=W-AmsD-BOsA)xiNEe6_RWk+Fde6f_t}J|Q}md=f|^>fp@CK=RqK zfetQ-3?!@MBtjVAsEc{kISMdQV<78oQKWFu^cAn?q6pj$hf5~s#H-J+%Uehw+Y?=T zH6#9>_H5Li?o@pKW&U~bmeXDQ8u1QJuI9znUzuKfpOdS3vCo(6BGu#L6{2{3qIiWU zUY{slA&S>0^sg7W*8t%eWM>tlFr=sI|$m&CA4|(sW zAH7{%`<`y)**Q919>48e9BWrh#ai&4ZngNt^@jM%qOSv7@f7-3CaU_!O#B2=0t`YQ z5JUNh%J!8R^ri#q1lkb)DC*aIb6OXj?8Krdzo$JLwI|C}{w?O87yre{yt5U4 z-s{CTU1`fzJlDz9yx8YUmh0u%-U`C>{~lSf!m(oY#xET2j$Dn76|*;e4DDMYm!jh^ z9s3jKzy;#IOvPGoIkn>x*B9dd3jJe%X?Yo1o=}J*p>ZZE!3+}> zcOr=nXDtMFTzC#P^}Ri(d)dh;A)gI`Og{=-T=HSGWVPhD47zbxTex zw`gfaURik!1FTX}KTD7o4|85ckgoEBj9qloB14}i^f20GZ5#5e7SQC2r<Rc=Xi z9MCya{D7%N4|}!v1yhUWc(wR_Q;R20PVqa?=IKV%6-r*6V>VOOzc5j>NmFP zbAySeKNHjrE?;7)DusV3*dpEx<~n{2Okx@uPZ8^8%g^ng>h6fmv#|K3bvk!A|EX2d{jiJd!ScM z4CCB9hnHr6f{G`ZoD<*jO4m7&?TLV(qB(OVmR^N6!V+-+bfk$bko=?Tm)y^E?hT@< z6U(BTOe>n}f|eC@W9MF0(1|9dL6h@O8nj+PUv};lx%YQI6}e9`F?CN)w2k9=6&a}e z;xQ)Y#3wsB9n(f$OdJKAEj-5LocQWW*P)VaeNnn5U)&|kb zW+?i?v>Q_OsjdSJnx5F(&84*FWHTmz*DEdl(>(Xl>J z6W`|K)V6Ik;sO^Jo^EnZ{P<6$?`nIuYp-U+qiARCh?=~q_zF{tuJLNIqD3oh84j0q zs^sL-_8V#et`>N@$vN>1C#SVE-bj8RTk#l^bK-}c+|~9dr>kbf7Xg-~=piRoMBn3; zmDdB#G&yCefGXeumJ@sTa1 zT#s_a{Z4URtr1^)s_DhP&KmL7K=xvvrY5A3KFX8K)4zO-=vlGtNO2V4g!)%nUj*Ea zi{3P`H}Pu$+Axbhr)4wOTHX!X+r$qb6~?2#VE8`$`qH(Q6lP7=T9VNgOc0xGALu|6 z5A#zNZNZHhigN+AT@3xiYA8LRj@=rI#Jp$|6ZyshUW{-BR75{> zVp-&SC$jpBU#ZcRRU8f-Z(``x8l=&%QI^)9CIB&vH)1eUrK>x`ie_>XS4iay=(i?D zW1B{*97@24T+qs!kR~-6{MLz_l!3O8_*9c~;@lLsZjyTp*`71Wt&@znwZ+=S=R3KY z5x;(v>BS#7xtb9#EZ$8nUo|T}j+kr;kq@00p8`;eeB^wHj5-ROY#|lu1Lwr!UEqqy zM<}EbDp7=F3n{|2m}}{aUv_d!jd&FbkzVZUtPx-3^hHf*l!%t4M zSzg6`3p&gC+Yu_8cqjB{6W1g2V3)mkCsgZF6-A?+ST9m$7MsY*tA7%4meUqXWZl;l zP^?1Fm>4?xG-h$+l3TK5$Mv#|5s4e1t+8p%O(%wuK@re}e03 zUOd9dEj8jlooIToud_zHAJFm_`!qEnjr38TWLwl=yE%v!WD_aw04##f$?zSZo1*2M zVR=(%3lqZ{YM^zL8BT&uG_f~EDlFP8%Q6H{xz>`x_|!70FhNvt1k_^UY0&j1svGy2 z7*g&*q?_Hi7Vm@}H*sAGA8y4z4Sj6l(q!!8vKB`|&zd+JvhwQBqJVQdF=X9}fO}fdFr3kaL)rVe)=H1WH@W;4ILoi#&h)%i2(M&vPOSNkm%40MJKD`> zM!fg2)-E3HO~Pq>u6> zOT9m~^&nd6r<39tz!cWdvbt+6iw2mu8`NN8SOF6#DRli zwWKgUwTzBtf~aCDbcu;GphrzqH(oI@q&$pBPXWq&0eZ{C9VvWYEBVHiEH@QlSn~`Q~m#TOabccx{>j4Bk+~SAfjF!5xk8rJ(wG-cDsSh}p zDuB-F;!RD?iI<;hOF86`?dIpX`OJt<{H3*v&vkM&BYyV+(~CcKay27fSiF5*zG_z7 zkC;rB$cN60TLEg3kDL#YQAdH3rLIDK;GB3>7q}ww5ejL9N)#bk>Wc6`m}`lO&vkN3 zjW|ak(u;kaHR3D0UhLD+WppVML>0e-?lkc+=yem-jjv1$DbFX; zzW`-^3N2+7H$lgkxGY6%>Iy0D3hiU!wa^N#fMOrW%B%kq;!~!rkmdlFs(3Lp%fyiN z1Y-Zv;)mgkmb$V}aIKYX6W?U17Y}A{11)uN$>f}Pm&0tyhCH&}Z@io5jQEZT)-Hb7 z$<>T_ZSN=U@8oJmys&u3xO~;Dcmy$-ERheL7vBX?i+tpKh>SW4oGf(}>I3J*!(HHt z$VVuo5h_uHWT`8{5twU#Pya^m?&RQxnq2KFX6U^)s+-2hmdh zBPnVQacgKiEl0Z6vZ&R>o1oiF3^Vf>_OqN%`Auk^iDzS^!lK1+82#GHsY(jtQ_JY- zLtPc`Kp&X+4fIo{joQ?W!6t^3w-RX?N+tNp(0V4G4qa~I#uQOXnU(^ zH^|DX|5h58wRk=>&BUjmyvte)S+6GcZ!LZp&Zu|Fey(e+Oi6r`rQX3K+J}Lby7*C( zbK-vI+ENaAWc%b9Zk{vZ%g?rU@vog+&4`!ue&Q9JT+N6V7Vlk`ubLI#M@$y4$cN60 zuLP(?K5{-pMjZuCmbwb{fpg-UT;PhxM<}EbDp7=FsVl;3m}`lOe|o0tYK?g2S*91C zMp4}3)rjwOGWXfPeIR`*a>OMqHVYaLvb9Sw$q_YO#BpD z+A6*T`h$rtL;o~!2pMO&ti`vWeO%Ux3OL0?k*1osZ$a;xIEey|akUh0gFZAdtj1-D zt+B#Ki%z4C7zPKF@(~JYgh~`4*#L_04CY$6;$_CVuGWZOZ!*3328z-K5YKjUH81vQYC;;t ziSi^HU=+6UjW$3(Qj7&m;U=^Uajgxa9Zb9mGM{9%{~}Q()BZF)*qaJjzE$W-6Q6Mnu7Kh+=yDUEg_ftDXkC9pMvWCJEjo=lVi@GeQ04v0 zl~*|-36pGq0{8AKxche=!on+=oD0E*}qJ;bn-)k{0>UdGT0)TI3_=LuAxZ;A8`+P#-ua{sQPBEaW2;(g>9( zLb3rAVH4|WUOd6cJcNZ`yU-0mUhM0v5uXUO(8WGYO-LhslqcB${jim9v;j^b#a)0Y zT#lAiTx&(Nu89?>(Zq0)8&4@m1IFVV=wcK5V`RaTow70g+T8h;6y`t^Wpo@9#8STu zy2iv?{gg!;;4s{u0@U^b^p=S`Qtb$<`0r5GWiQr3o0xbM^tp+m&0N;9NJTI+qLHQ* z`QC}F{^AzYvaKttcnoyEiJ|)kkX6G*Sz3RZ0K_ofh`~^m?(YmMn#m(vO_j%?4@`{4 zHjPxdg@E6=pp|vWtVxZY@GNpaRuA0c1-N8#PJF^d+ajR=+3t6^TPGRuKbx&x{JE2> z8F9t?iN`pZ4->-+i+7C6$KwTf1Tk3zA|E<0eh;7)`N;VY8Fdsm*+MGR2hNFyyTBEZ zk5EV>RH6vU7E**GFxS!--|S=_FTi_Ki1cD#XN`ENBTX;%X=*|m*++SjE%YlNBicgG zl4AQK+#;9)wVJpahWh~4!8?7AF5cy=O7eZnMENbr zT(NJ~fYvc_ke|J1H{FW+GL%Y^m7(=aJRQ2+#Gg@k_kKK!*7u`{RClelU;MXk$n^|ncJwkoT^j4==2jc=heKoYc7g> zKWfB}nOfuvPNqT;CIAX3h<$r9(2BYbVBZ`DsUL_}Ku?$$#ypH2TOo8DQHIw!!-n5L zR(^7iP+W)W8F1G#xMXrp{JE3Ud6Mlor>kbf#{*6aqUW8uB`1Et)S`t&IM10@v*IV6 z+>#f+?e${sm&`$wIj78OkDkDcn)7O&>6%L-Us#R!LsN@B26`+bwqVIScogg~*IX@# zeT{v@7Oh$k`x=vJYC-obV70yp%`-7gki2kx6)m^9)}s3QPZK|dtditB+q@=Ee*w*n zc#_FE@pLDrb0gamosQ33!)F0TNc26XS(#qwOzTD7G#U5f&|T-6lcL($=eGeBCBEI{ zocQ)N+^8mxA!Pd(*Ivztm!h4bM8EW=;tNbI`kn|`MR*pl+EZl8qt~jrvntx+r zIH}C!obfEse2Zt9oD(0scGvlq?HjJWni2og$t^kY*MO}d>g(Oa^#HYKU#}K7nOd~4 zBw1%#&5C`rym&LO7yplwTk>Ls*ZE!S<0UI0Dmtg4)gGPSqvpJt-*o*bihTEK#Ctif zqR987Mm)yUBA+*zPX+!8=(I2P?a8z#+1r585xwKYN*F)18xqupuOceDRApry=fvdJ zDoh1iFANx>+y^?thRq@Cc5+?F^d&RUw2OP1oD=`f$?3UAwyQW@H6z{#ut`PdIdw}; ze7>ng3yZL`Gp%ODBb?ll7ncChM5lPQ_*y4dv*Me*UVJOST;#JPGac2LQ=MvOAi_$I zn)7Nt%Qcroz8f{-8%!(!BP8o4sv)Ncp8zIV_3AQ?vevm(Jjms$hksA%Ma~hdHrcbdhOAzJ`MMHB*ax4as(h;^q}s^)Trw z=UNjVh8{ODjGS5@bE*dQ>unQ5Yn8(pPF0rg6DGa@y=P)DJe5PMxFWjAwH8J4<1!?A z)QJ_5r7Vj6WZJZI6?N{PPMfTzOf6>tpxG4nG&v_8&P`W*7L)DITzfSmURZm7YtM;? zI=Q7FKE~_Cr+K}&-Rs4F^m=h$m%Ex1`#i~fsE&=CZ8a}m)#|Jfn{E2}{Jykb1(>fk z=v5QL=&H(VoT{SMXH1M+cXq0>XoM4sqO(ma9~H}~Dfq0&p=x54i z(Vt8!n(xGN=tXqa`I?sH>0Go6J3e3q0L`2DQIm7xJ(=Qo-ef!5wO2FZrQ8x|5cT(_ z;vuFMEiA$t79ktC?G5PJ((2RsCWdjwT-*N>wxA_Jl*7+xHtFF@uTC8aC;Gy!tvf^2Q$rt%xdGV*F7WrWLG+5HdHky5~ocL+yRTO!z zf;j6+D2jaFl6C$7&2KrclG1)+;@6PXoebDK&K4g54Vd_2lXK#W-Q8b$mnGZf?T#=b z9s%g%IB2qo$3ed|QS?0lvI?+ z;ucejeBeIf3rsEYr6o^cM1gA*xYn80i+qID)6(jr(vo}b4xWO17-;InkD8nlAHkU_ z-Yc?w$+cHA;<Oe>;sKyxoX%+w+uA(`dp@cPo_E%u~& zMQ2$Qt>wf9(K=2niTayXq}n)*i$*!IC{jLFlxVzZ!^u|tvY_>f)X%ln4~HyL(nC5M ze42SEdL+HipP@$lps7VZLbCQVH_eF0ZYkvBam4D@B_ZnEYAQF?>uhV=?sUURLbH=!EWT9T3Cun0mJ8P0Qt z^`Al3n#`tJdpL)NUWsq=@ccwtTb*z5d`J~h!a}N%;RUX>A#F{x6M-K&@DUN{Tg7^?5OGG61*TnyafbiY4rnP=(k~nLr(#a-@j&ovzsLhG> zD&S2M=R+I243!Cnd~4jOgH^1{1@T%S@zjB@BU!iuaTpB3{ER^! z7agniOQYjFF;)PHa$S|7{RG82LGen>bbROvt+A!n|i%{&#;T^S>;j>!-7D z$r{prC3{4z-I%!R@3-`i-0uYxN{6T?f9%LRzHXT~U#RRt%@do;vV# z6vSHZNmw2DI+6{ftLNIlUB!yivXc9`W72V~QieqBDo4vZ*h_A9$7U~C_fw(06b5{OphRDm8FtxJ!Rh}IKJQR|U=dsht_Pv4HxJ{7f5E@N7a-`z?8Z;BgBhS5EKdJAzb^77 zcn5q5f_<+EbDJ8$ao{`<^lKuo4YmUHU_CGZ{LuEo>2sS_0;__4Aoxu~z64wjZjSVO zuD}nWfD&i|!Tx0AGr-y4%1HkNwXDlHjQ}H~@fv`>F>l=eNf+@2kN`VLVed*sP7sJ^<6pD_W?kC))<8N|E)M#YS|ws?~3GA zp2<<3r>XbvAk?F_lRzszXM<4B54D@#$-67TJK#MK{P%u~mv=zzXN)^I=TqJ+4|V}Z zf_Fcm4c-fG0V{zapyOlK1!({GoTfH-*AM9fc=Vrq;ot|nrSTo~$did(eEa{qe9Ao* zsBaGd^-X@j?1 z_U8S?v~{e&J4-<`xC^xN_NV*F(e^v+LG!_U*CD8F;yM5t$$0}9KrK^1`2eSS&jbDFZHdKb*}Z*_5|lE z#&-bivMJIw354;^zCXL^C!mqn=pF>iBCia7X!}5Hw*n`EJHc*XcM$v+*Zvf?FMzel zT>`;xQTkn%;2kpHsGiIns34C7!EbTxWAQoM`+fumzeVYn&Tu{kbv;;TU`^!pK=4~! z`$qT-^}dh7!EaIeq2JDK+6GJqZ-QXIDE+S3j06XP@sa(a^ue|n+v~i~gvf7k?eno+ z;yd2o1%3}geT&kshD{mF17CpyK_du$i))v!e3a`AAm7m-_%E(~mv49n8)yTaAowjx ze+V|`fIjqd9dIG?MUmg)+T|-B@|eRp=#hM@VMvzz`3Hbx!-g8$;$ z_ri8RZ~-0J%qj;I}CKF8|^!4xsM6*-dAFdgOgU@LOE_By3Lr z=YtDCD>xej|HZZ6jP0GWC-*=Q{1&AT*O#eWBl`8^eEtn@TLDw?)%mZEbIFjb_9=`! zfH~AYoCmai>zGTei*{b^)%?r^>UYQ+;y3@6H_LGS=;U5*xsk+Kj%zw-=b82~H*;Rz zhNt!GxUSvG3qsfq7{hNKfgGSyhcIdwuk6pOW1T&ZA1q1wB;fF!p7rfX97R=lE z_3WnM(Rw>8&$IL3N^k?X7+eN|-*d=o5^n^U0)jsDqmHqN^&fxAIDo#N&2GBkbM^_m zCMbYaK=26V>n!dDI~Bd*WmFW=tCVH*eXsl zV{$k0RBRV!SI0H*LQnu(fCb|e@Y@eGg4020Uw#;mr@*MqdF%y(zW4CCO`CvLuw|qV zb+w|qdMmEgjQjJT6OCb4Hk4T z_jAC4c79i!f+mM zZH^uHe5>utd?H^7+CV4B(1*C5khk_$)&-b%3-{A-=-;rV=QbS=UId+Bar%|mzq^7G zsDNOaGGd}9!3e~E8d2eXhr0Y9`o^sDhZKI;MsJJCN-OCJh9 zArG~U1kIdt-lWfU+(#Y<3fzBg1KP&TZF&WCg5@}_180JHoD=u{miYktDlV}O1v9x9 z{WbMBzhLz?)Ao}L@xZa55&OqMsQ>Q%ypj%H1+Rgi4|O+h!s~hpc}V%>yD|M>3QSA&`01rY4Fe2BRKLpwNE zg1;g6hC}-Y%kY!7pl6;wgT?8;V$7Drz6kaL{lP#`0R2Gl|DkqIk7V68GA^T-8!!Ou z0z#a{wKwAX9+2-cqxmQ!^2(9_;@Zc&&isJq!FM3!U6lS9Z0-PegL@>_11B4Z0})qVy|b z`!mprt!m1EH6p*owTFFN#~#`l%WJgJ72g5I#}yZftlbX&`I0dpq4#( z3h3k-_ld4^T+@~TGjHYHIG`Q;5wsEWZP1AC-Jk>CIiT%6&O;z`Kl1=O`|&jjoFkgQ z=DWc_2iTi)SrHx!=5_M5`hO=5F@Fc@zeL0%zCK&K4AA9^8=RIO=4qDOu z2GntGErF@n-vye%>7emJJ_`&o$b&#F@;;yg*_~e=<~ue)k>e&%hkW!S*mHi-d8U&- z4a_rs^hxK5nOx&O0#k3}{i>jqbL(rMZD;lpXk@IWfL7#7!8~d@9xkHWA2f3OHt0aN z6UQB#Q&(b~TN$5M!OWj?pR^%%+;gtZb-0c5ip~eM?L4mnI=ANe575pUUxI6G-Rpen zmTPf=weR*T>nvWsVI35=GF+ClqZR!7@{f6zhj)K>~>mc;++U*%<@br#chner7KX?b8 zBLP#QKJGuSQ%CNoA) zg7M%`Fa#U~3bgf(;>kV-+GvygxnL@g|LGv){h@Xt&*k_kW)(~Wp^gx5J@)q?a4L8h zEKa{8HhY31I61Np`+6$RA-)Udfq^d&&+pTzoKwC6jhr*qVn23*LBHpGflU+8z4%Zb zpLBBWs%QTUp#5afh^+lMm3{IX_Cp(MTI;utHKcLs7|cBe=mZ~u#%=iOK+ygO?-_iI zd80b zgDXMst6Q1t73kHQI>1iIwX3A2PxJlFCx z=-6#;(^n(#XP$?E4(9UGC%9e{;}&uZU=H$S;xXnsW82C)Tb^r9$7g&Q4k*xe*S@Tq z;@qZv8;FN||0w2fhq+C|@M%Q1mgbXOYc5T^UAex3T56xL9*@&`?6M@e8o4JqcF(k* zpT9zU@Fn;Tg#Kr^4_Fc`1(pUuUqD_NtO8bz^cS5xx9QIybLw1vV};iYPMOP3oTTHw zxb`V`aGku9eE^OGHDDMBc{|u!SKQ9^6!gS4=nvrD;T(`*e%1g}k?+^B|NG`UC_l@T^9SAzX%Kg(i7NtK8yEah7whZLcKk{2# z``6eOHksS>yG`dd%>toci_(vt%xmE-bDMtN%4^)<_>&kvFdQ5X+D>F`ft^7!c=?36 zO>co=paga~c5c(R$MO38G2Ewtd%>$9zIy@rYF^~4`6#118H6}L)J}6f z4D82zOaV&)&HZJ>eiLZU)we9r8fYb#`nWdG8kotPYYa8#S_6Fq3VSY^ z|H9FB9P%xgXL0dE|NdKXo}iv5!He`Q?(c$i%)#cws2?A3{0Y$bw1BC8Ts}j$){n4T zADh1=i%4{ zqbq|@=MS~J6`yvnsD8NE^y_|X8X3#7XXpxK~(D*MFWry%aPz&uzLE=(YRZ z&t&~fq<@n*m!R7Sxs|mwk^6&Mp0k($T9MniPiRKI5ESp_$96$0*Zk{2C)e6NI4*Fl z*Zn{p*MD928^4;7Y&-Mp+{P7^QbI(-|>bM8c{Xjd{Z(a8b z*yuHhPHNJ5a3-4ly3~_#_ zU12)+H(=hcxUZW*KjGuR4(KW%#QULkZCCI-A?Uo4F}aHQf+v9I(Y*meydP?}>!rM& z2%ZE_gGay{OTD9{>NWSJkaYp zKBxxnq3yA#J?xvAH}E{wjjSWqR6p*;J4W$*_!#d0m{ZN?0A44(3>2^D_js6(&dYf| zgK?}Q<_L5JYF0nmHspOzJfGD{+i==K9V-v!`5`b3{2J^C_6PrIyZnlgU#Ne;miDXn z8QSy<@%nLg{oH!T7WTX0A(dw)pdUcg?=A*?=&yb% zQ@`vP^p8%m-}(zb2^aMG`MEoQemqV;R2TFij(#stKW`ZHo1Vb{fgiO2FB5b^cX1VOKFlAi}E2ibSd z2Yra6-v)^7OI5}hgsd~*W&cAtcE0l3w4}HIp`d(^MNDrq(wV75U)1zN{xxYhV1L?+ejam$Va8-x{HBGSIgh z=yUt}e7!!KtxsHckV~Ip)<j<~$NUl^XP+ANt^|KE&C+9Oo4f+V#Q4 z{eeF0pbxL!uuc?5lgBz(H44Ot)2Q~ZlS9T)?`-+yY~hNI$z zj||0e^udcuz^b&j!up_vKKq~#QG`F``yqC!SD&jW5KABVP+UG>@&Et*mq(!gxbcT- zQEFbk{VtO^sK?kt4;?dc^1%M-Dj7NQh{KzX9MpeL{oq=`*4 za@1rOW&j!&M@{Z?w2iPd=5-xM9bU6Uraw+DwbKx}$0YLWGmzqNt1%k)zhOk93~t_V=Xi`8e@(*=&!Y@rT>6=#$2+Cs{9hW=0+{ zS|3r()Pl6{PjU1YmaVG?nRnWORx10xG5ipl0xmW_q3`CUemz5b4M_j~lfKvDw#dFu zOb1c((6h(rG)W}s!*yxj`yVo9q8ihlhB4d{t&QQt@rRE+>NreS)bVIK@#3FfW4~0Kd~9q!0RGZAt0FdbiM%zMx+P-zRs40?Mm;9uw1)tLQ=Z(E+ zuvs2=#Kg%HM;*>yXc{v)ndMgXg3YQCThuI{gUwXpq$73_ns)Dn$lr8mW{Bf7x1niX zrOSMwX{9ZVGfU2E#5VsxQ`bfFEtdEu)79*9t%atIOR_WynaOO4W?mOf zJ(`)E+RP@*m-Ss^cYY2zZEi>QC&iXzIP^l@6zlJLf_jsvc50G#;?_UA@sfLo{&fA`@P84 zce?G*Msz#*JBMCO-R}GQejPU19Yas$dJmfF9|%2Xnj#Cq z?ZM2*@y&`n;NV1~IM-ow(noPUe?ZgzVi@_6Bp)#k=J9`OnoWXNHY^nTNlmC zXde7Hj{Gs2Xq~Ep~B%qhGg0{NwQPV@WI0}wVXw*9>qC=IG-*Z=QCdQ=4XId{7Oam)abSV%We;^DpDb_Y(OH9$uw=e;&E+!wtT`7=XH6XEGBooNjmBsAkU@iWTWz^UI>pdT<8nzoV=x&wJkybAG&?hhQs1WkuLc(rlW^CgUux+wf{n#yMOs?A)vC#a15@LIIM$?$?Vp&Zk}fx?eBm z&EhoMP95&@7p@nNp|$J9A*03|F`6reu9E5B1N36%KtIk4xmJdLnT`5& zOzP~V(63e^yAfMh9DmQ&7Oocyv+?(1Gl^?8Pnt5Sxm(GZS=7AyphefLvfjn!@L=QW z{0`03L=*aDan!H)5x#TC{I~lxpRm@iapSx9ipPW8M?B^$T-1H$TG(7TINle7(R{nP zX>6s`q1k7P*rtT$wJl@Kcr-il1xM-bJ`v4w+Xl_ZDF^i*G-%Mk)`P>|(U@F_O-C2a zRcLC*$2Px4bHa8Zj=b(g^H(19q`Cfz=Ixzh&EL`7yGyM36wPmTi#5HL&Saizh&8LC zxp)6qvoV^l4h))+NB7@!&}M@($;!-(oFdJjOzS~$&0FJj=^?>OH8-I7=19}ns2+gk z4j#6ry*Luhvpm2`HK(K5=FwPl6`J=Si#4~RdFk<3^8lL3PsEz%(A@H;pb2Z$)`r$< z-R0cHblE`*S*r`4HZsY%CE0_!sHI_`RE$-GG~ zvVZZt=u&N(@+)ixKO1@~{faySsC_BEt6T%kfG(O1&^$Iip21DgJe6M}nu}f0WV(3m zg{II&GZIZlmpF%@Ig|&e>71U7X8D6+&1GornjC9xL38$TvF49xmOVb!yozS46JpI5 zXnuKmtXXau>fwQ7n!PWY)2@#-TcFwP_pxSQG$ZefHO*)y{vpxSo141uX7h? zxxyN=`O>^kT((E%FJ0z7Sz}?udMsr9glDK;@H5z>uFEx0GaS}fX4SC94(^i2+4yV0 z(_Plsuz?GnH#_LXj2=C$7mHY9v#_~n32&p|nRn0}osBi$p!o@3E0~V_iafK@@{?Gz zKAMTk#+o`bcdZa>_C+(hi{?l)`4wZE^U$2SPOP~B&BeoF&BJKc8Wn3^L9@p3vF39$ zr`;ZFR#=wDR*%G*erWdmORU)e&99%0H3y(6d=YDoLNjc|Y&06@qxpTGSTh67uG`0& z`_K&8G1k0*X1iU3hQ}8J2M-%M?D=!!o%;bcPrez}p=Kw`-P!M6jWs_-bM%~8vk987 zmkc$B)oV6dy;pPYeuFDW`WIGjXR>~9Pj0iX1@-od3-QRW54E~z1T{J_F;%wqIK6~wt z%3j+o`zu@sy5t%>vs?Dnx@F(sM`f?;mi_B)+2?i3eqguk1AbKY&AMg(q+9lPx@F(3 zTlURaow^X{G+n()h&CWTlQ?Xkw2$f_U0dz zz1S^#zFT%ZpzbmnLtDFLKl(>y-=|ylnr_*1-LhZQEqm*a%09ST_Ice_-9Ng``wrc* zpY@}%@6s)Mwp-ulcgx<~E&J3Tm3{wi*}1XmI?IE3DAQFl^onlTFZ)s1H|UoAAKgZN zcDKH7)Gd44kIFuvTlV+5W$)~keamjyZ~Rf&H|m!Coo?A*>6U$Pn%zGtc@-P~OwOnY zOT#0~ZaI7cj|pP2Nfxoae9!dJHw;4O zdms3?igJB?LqW?QC2G}*1%p&9|3ccPZHk~NZJ|hkNX!4?W|Q4COOx!fyJ=HI%te$c zRjVSPB1ElPl`EACTD54^UIpZxP`_fnd01CaYa(u!$7Is^N(0cn|P<*?YBfNcJhj}$5ALq76WAfe^o z52Ssafwyb`G92{#CdzrhFSQlO$d`R&2arx2-=kEK{BxFii;p}?1i@E0*>WzQEtP9c zZ?y<(_(#gQ!bhG1G8)J^0OzM#f;t}tq{G$upE<{|&NHE%=|KFO)bMj1e1X3q;$SfY z&MQyH&K#mqm`;y4oZTihtcG748xrvCJa8mNk%PlaDXAMAiBaU7kix+I3veWA)#rSM zx=b7+2UX4>SSQl=z>zpspYs$r6357SG9f{}z7%KCB(jkMmq=(^;J_C14 z!I8L14trnQ`9LfiCDM{}3OJ$r*j@d0RMm{H2Hxd6D^!GUGayIev(W`1+D1#jk%&#s zc_s$dxqB=QOf}?f4100F-zL;8{+rg3fiyS(JuFpN-$c#qL4^r#%FgP;Dk@H`vc775Znf1uoo?4#+5GG|F zB|B7j?9DPG@+FCpS!`4nUS0$QaKNUx%$HeP`=b3U;jug9zm%M_G&`a4fnZ=1Lh%) z&fofLzo${^_G|sCoBiNK8+O_|kCgpNAj1LYNFdv6FB|of6R{{vWO(xpI^>&u|CG5$oX#|n)4NK#K*`vOtqbI9sozY zj+`$+m#)u~;J8uH(8OXY9f+p7@zv0z@(H{W95>?X^j9-DZY($GH5BDAt}>cRT;;Pe zaK%JoTxB$sxOxae=Y`;fiE)+DRO0IUk*O#d##Kg1iL1Tf=y{oOmC;nBF#w_y))FvG5KEO{A}ZBfddSGjg@4Uw|XtLe64v z)RH8#&ot{l~&xVVX#cnWgzQX11c?k0cnG3}Ysa zLq;)^`4E*zjG3c=C1wsImr*ZFjG1k4c!`-q$b`WXi81q9bhX6H?TOs@si-PA5;M!C zHQ8b-{tFhCr@=m>c+kh3?$g!%r`~g6Be-98JltI31|D-rNsJqd25j889)0mD#bVsx z`bOf$k&vTBz1g*$K6ZhUL4dxo4V@*vfgqF7p^U!q$v0TvXo4b+!!Xe|PDfwJeArAR*aS|P?0ot`=NpwmwKrETWGijHbF77Z z+MoK@@{J4O7~&gm*9Js0=^GE#tZ!TmPns1r9^dF2Gcm-)H$D#|hobD9GTaKk0Dn@$ za7c(GzR%f*oO$S4j@U5Ke|9bxd^x7KX--|!8hwaUvd7^pBw5cb+=?&0}uKth>qhl2hmXG8kf+c2uNk4-tu+K`-6p-a!Xv%nFnlJiqY)*Ler0+v{JIXHTL zr>`zO)%xm>;3W^ojfy_eSJyjV1-Xu|j-aLz>ljzjv_xX8n~KV?#giItz~A(F@J{Ee z|C5jq`zlZB$~;)DmCAmUlOk_|ecBI*ye_pT@I$@eG+NGHnHm3vAt|1TM-Wny@yu(i zXI_KuYf>zF=4UWrif2xN9CU-1tY>bR2de|0WKP9+gy`e2vluyN1J$dzk2#Bxa}1>^ zLG-$f&g;%czV-xq-K);9UdNpQ&U|5_*Zs(O9aoInM4Vyq@N49CGr-aHF*B_5x+ZY+ zC}4#AG~+ZSG}NDA`5buUb;Zl#mt&xmq_5FFHrDCt8q&SsbXv|{@j5>@;Wkq?yNyMZ;T6jpPq8oAm=q+PW+J`^{n$K zUW252)cww*_|_9$XL{80P!yt|>qz|7&8J5_JqC~3F$Rx16PDZ4oI4BkiPrPE?p4{9 zg@Hn)*d52S12M9PkB;^nbajo9rh&8BuK5kp%2EMxI*^V4xfsYO9u|+!f%E}s3OH8+ z+4Z+S?cEKd$SPIu8mlw+()4wR;Fo(4yHCtZ$>;Tz{69}*@t^n{g-zBM-4 zJ|*X)s4&NHn5H+`UQX9Vb~`xI@8qP{`66({6Uga9UvLHr6Gv_bs(`@)4tF8+YKL>d zLs)Rh?j@fYy$ZZAapWG0*2u`sBU4e#YPl)u$w>{IcgPMC=Ym~sc$ zc6=>WZD$QRI~;I}9bf-}S@YF|gT(Rm0|awflWj;e;G9lNx5=uZ~gl)#-3^@zqTU3Gr%qt@Bk})~!l< zD&7uqIP}cly|2y$r``JVURk&B-5L`4kFFc}@4U@=CfBp`ltt*7Kf}~7p822X8ZByx zvj#0cMadx0>#RXe2?#D)5{c1oyYr~}>z4B_upadUBL4~32$;9MQ_og zfF5;&^Qb0pw1?B9?sXoOg?++gqu)c$qwprN{#^VDv55W-*k`jnWvZkI>HXj|p$_p1 zeoOnVc(p&I@4r zrnmXXp+JV;>LblSMsX=ksUrCeKt=*xX9DRA_iEn}Ccu$+YWN$T`|C^#G8O0QobJ%sVV+Z_F}0QzB#euVO}4-AkNhPP)&I zE1RL&qc;?LyZk^e-y?94dB&5SR>XuMtNdMD(F&r?n_ zu14OVIC(Th{E!?BiIh6u#QGS|BqbKF!2!5~Q_&T+>e_{geBUv1bq?%93q3crfoo@`I0)Sq32moD1% z)1k0WlRY7zt828L1kSD-_hzJR!yRskv|mlFBO~oIur|jKPR<}6AlN1nBkh};ZKS0f z)q$B#XAR1M(vj&4T(gLy1i&U>N@1=h)j>-+XH3Qv=|)S ze0o#|#511B8XNAFNc5;3@L5@hHz7BD)pRRHfp`?}PKL>PR6pt?*NlaM)x}CFdO@)x z-wOM5{$9ML-cwOq!D*apJ&Hwt0)#JSW}is?e*>iH&ygHbGEV`?Uu!wpfo!3#Sgmb} z5%V4ES`Qh>7jpxN(~p0JoKeT2ttfE3!LZUUzlEiHMoo>a#kSoc_9Jc4g*I<6FCn6K}b!cQVx_2ih*M9xQ$tL2;nj*KsIE&)gT&!ynVh$E*bm2(x<+ql}W5yn{vAWr7F z_37m}ZqzxC^kK+xaib3BGvK&LQit;;a9r%I!}%^aF3#8CJOGZ1^L026gX3n0I-FhL zxU=zfIM0FO=7KsL&iFGhb;^v-=Rx%N;*9@BbR~OxQo|JpLmyDi${GJY3>TU4JHb>G zIpd09H`&P9gumGCOeD_uyP!yB{PQ8?lmtW0xbmG}GUMN)^6iX2g8Ime-_teNV^@wb z{rN}1pI;?&LA^7shk}ziG~$?|twd}ogPabeeVWhd0@8Vyj|>6X5XkuukZnP!F96x) zID2Czy12>CL}%z>i?(tm`U{p=Z~=J2)#xj1pCuA!qAOeNO!NuJVSk5dJ6bB1r<^mx z%;?)FIAVEnuE7`WQO}WM`huLkRL&ts+ukAPvQ*AIaHPM;VPw;~mVqNZNY3(9&T4R^ zPswQqN1O3O;7Bi%lS}1rR9=N4Afs{`D#P&*CXULxFk#B5{26@xXCVRKI4WmiLf9Xl zCpEkee|5XK4sSwf8I{;zH*EaROB|I;uLa6a zZ~(6+?@kK(BJ9(CVzlzq)iw03wBcqMU$U76?r@6aBgt|1iO6|9kc{2KCy+S@$c~TsrOH4y2gtjDj0CN? z7D#7MpPPVe3+nS(mioNkif;hP+~OlY0W$hZU;Cedl%Mc9`yUI*0rGMn9RYF#kX<|c zQpW@73|estk@e!~(ih8tvzaHVsugfv0;DP690p`tz&VzszUa$20Z2!{Sp=j# z;GD%$xB8_n05Tf%dmhLx*Y9@MdPlHpJpj&zkBc1f%y$DBc2_sqfs(QH&dV|S@d>}b zv$jwrv?SOe{|HKr%=6`J0n!h?2WnmbFa2@_uurT4JyaE`^wkbxqIpfnaq=369Khd94x95>Fwai%t+25$kpw-8624_$>|11 z>$(*jnLWuVfuq;hKLAJOQ*!XK`jn@%9;O^K!;*u=P>QaGS%|%6&aKZm92}X2$>CL< zZdW@vGB1;JWGd$@aAc+?C*7al435m*r-{z4vwq}>dW~yII>P4rwsP~3Dhy64IEj4kb?_} zlsc~fN7f|uIhRwHSxeOCd=wm6w~(_wwLaefN7gOm9F$t0U$H)BB}2~DsdApz3jcBS zd1or;7;@Y->@sk)4Nn6{)<4vBF*w>+SArueB67Z^blDx(rHiGsJQ1&B)cYVu)=`wR z70&Yl$O_XZz>$>|Ijd0NX(0jMz6Fk~wa7`oM$Xyb=yCCy zIT$-;g+|VIz|rkG2^?9ok#hqSy%xMMWx1NqT3Ui;HQwY8TDyI4xaV``!FSldjXgH9mB4%r)50iT6ab3KWD^;CQCD&QkS_9}qC zafIQONW2PIbh5n)xDImkh+Bo0ish+`ksqQG=>y=1<;h_b39Doy(xZ#Tev=x0laL@^ zZ-pG`FUmm!BWwHQpORzxi<}dYr5rr-EI87q~xd&s|%E-M5nW3G@ z=Ez-#rpU-$0z|iqBewTuUgFD54BgdW7 z!~1`#g-R_m>h@Bo{xB>OTLL+Afpq>MYK5ucLLl3&lX*UOXQ${5D^5 z6Og80zoiXG#vywn)*XD5jdjcPU`OQ`>-vXntXpwB;+Ps3jCDU-Xk*<=;I&gsKl*>p zLQBP0>GK!(S?+TV9Pw3h761=b*;u#Z6yzgUVx}wZKGbMc&ZIp-o**XI;+ z%xEI#QgF1KW#Gv8BIix1axMi&MjSa$g2UM^Om7EAMjSbZK+ypq0pC6Yj*LNaE#UZ)2abzuDepyR{WzaC9%ARy4Y1D)Rc+3vKgATunIG?-g=4&1br|PUJ_{xD={)2s zikVM$U}(yGx&_i+s&sKaEwfHW7k}aIe#PN@+J+b;^XX+uk)2Q9@8(mU9W$?T4sM<8 zgnc$2y!*RmJiR~soFCPHgHoBheB=*68V~T#eQ`0>ez(tg0g#rU)HEO?_gRj;TagLg zEZxjf_`zN?;~P7?4#>9P&C;g;$pkan+2r6=mT{?WAmyNjLqJ*<`E`CLkoNgLaxIYI zVCC>dAlrWJOWq2k@f5$*JwP_J`^e8&>NFqu6_6cxiA`L?KLF`G*+>3HPSEyOo`gCF zcMM+#r0GR|sW$=HypNA`1L<`4H221w+l5VdM%+maf2cd>-hHc`b9uUJyYgwyxxam* zopb+)Tj0pJAcs#}hUzUX4t~xxqpFiRn46krRFZ>>=ajZLfg|IT9Q@#8 zN`K7-M@B9=aO0F6m=17cER(}uNqGhIg{d1H8QtXYd2_u6SPhPhcXHkb0lHlu21gR&XRrkaIWcgKkZv`>4yr4RW4EG(RoD$YlNt9El|4 ztVD&mBOj(G!I9WP&Nrd!Wg!9I_IrbkHsqWMJ2xrLk>E)DA*XTgch7`z_}+*xaqfNu zv%1XPTtn)1nQLK8+%k9X0tbo{iF5ZBge94~+fe69f+6S7ZhMKHyZQTJVX|}gQBWk; z!fPtUntpY~O|;>?(M+VIh|JG}lL<~=e;r7<)1Mvgp`1Y<*$HI(<*+&mOH6wV$o&EG ze?Ugo`kYDa@YOC~&Qu^91I~0HBZ2lgKsE)O1we+&zMQjwG(~4uU{a)RAj6mXoB<%^ zfO92~j?amGq||jR^(i0u9FWn^`pDOTG;Z{f2Z6MI!bhF}()qX`VxRv7vbpNlXTJro zhHF>0R4e5&X!|tF$#w~{`QNP^yZ&hj);}+Toc3oe2O=^@0onW+zdk1cX*|?QCTAIt z(QY5<1hONr#$`Z;1LXZcT7n)N0aAXMFXvX4dcCjx9v~yZn&feo3Tl`+8GR8TF9ot8 zK#l^^5+El5X>`cmShp;jW!Ehk#4(+?SFqm`cHQ#FGcuVY_erw2ZW%q_u3MhPSzDBjcT%Cy}Y=++Twu5rCZ2!PzGi z!fy*9$HWA3T0qcizeaE*N|5vFR5?e3BXOfXXAyOoNK&8kW^g37kkb!clUU0j4S^%k zhMZigeQp3p;tx5z>!H^zw}B%OiJT{(Lrrm+Z-OH+ikzpw(S7k_a3n^N(+iI7i&4rk zQHz|FsT{5|C61AEI5?IuF1GDBU z5}NQ_GB^?s$+;dvcnKS(v%rxENe+f`ijS4Rk(f!&$*G+6;7AlDX9GBTT#SGtah04I zXgJ4Vm~N*o6KTo$F*4D#MEWr}5_`${IE>64iZDG(UCxHQX3~A}^2IhjQ%*W(7C0OB zAcuE}TlT=|0jF^foMCX>3Z%|H(zW2YHAx-LXTWi*lm@s@O8N>oZk1Ap^F46fDy0tR z=is;*zo98blk7DuM;0R!d}H6V=M=bJ9sZGBuO5vV=mS_Ehl%UeIS2!?Ugez--KXZR zD+u%u9KheGg;>(yPjG?De{`C#kQecWsMG^QijYkF2Gvg_4;D3bLme=#iBW-@wz z5Bu!6K3X{_DN?n4PJti3&R<Aom7q(H53^D_RL5{D<*Q0k6Z?1^j$vkK_Kn#_mNKnX}sD;z5-Xod3N1$HhfGc zu3Mg-zfbf;#;lo{%>OD9*DX5>cHQ#Werfa0uh3HIQ~KC?$Ot>uu5Gq-M!nN;13Kuv zO4nZ@NBW&|9zwqKqfb2KRO<=ktb(HF`Pt_4(cnnGlhX>09`h%GBc4D`FUo1oMU-QF zgPeOo(DTj^IN~kjT$jqZ9vtx>a`;vyUFXfkW z=^=m`GD;kcV_GmiEdNuu9B%n05~IX-R@o@=UD!i=?^~V4DCfw81o?WsvluzNGoqX& zbBD7bIW=&!uKS!-$+;v|4!w5>)e!H!5uC~R7bbe|)}c>guLCjyLo#1D zrvlk#Ba+d64v?W>e&?@V4hN;O;4}ruB`kHBFL@A1XCQ~amHG5rEXV%BW?P`0zrxub zl;SUSwz*QQ;@cs)J<#<&AejL9D3B3XYHy70O()sWeXN+;SU3K|(LHI69o^R)mdT*m ziNw+Uo_;&JZ^v-c^VcS})OZx+HMB!Q=vHH*C0o{j&e>!oex(u zURR1AlEeH^7Yp1AIpUe*oP_bPK*{+HImTDXIT=FqeEJMH;=Sa&1;Z8wO{AB+5rFOY zh8g&xBhqWYao*C<1di?w{_dOeu{yukb`&_yGwaCVJGz`d*O9~Ds&k{D4rdCywQb*4F!5Oh}qoDlHnS%9(%pf}&Mq!_6QF z&6($iLh#M3e~z{@2sRrt7`TbV8D!r>> z3o15ZCR{4Y4tgXA0lj&_-s zErl-AgXFvhoG^+u=jGS*de`uZo*d?fa_lU#0<#tUOWv}A56Ofzlz0L;CnGnENcNZe z&fkqLisVcr{zEy30}1Ox&UCa(Jc=AX+s^ifX%RSWb`;b(#gqfbjh#B2OTlrYsSfAg zz;R=z4rc>6ZtT?IF#7Fs(eGI_h}T_VGSP3kjegtE_Sc65d}H)G%|*ZUK(q}R{cbqW zuAdp%7%RiX=r?k-jeZ@-Opksm;i9sB-V_SJHyi!VcG0g3Z+EX%a^2yb*E?XJ5xbA1 ztGid;vO8~~jT`lUlcIRDjT?9vJmt2`q$UX5{?}OFI2N3646<|R8+=;}d%NDVob-)d&NrIC)Vk;!yPR)K1t*Lx0L-r+9z4zZ z#vO!$WPPLTe8c`)QyD%|aC@D9fPFe|h-MINzP;ibixyem;LegxybAc{r>t+>hK^`b zB;y-3>l=qcjuv&$8Mf{0uN-9PzMyYRJIeY-TPlaXkwK`GRnyC$=txx``o=S3@QucU zY}{x{)kWW!e2k47^?hTz^Nsp(V}tVz`b4%E{EQd09|!yFDF18uMrpD2jegyss55<| zdW-dqtI$GpULw&qUa;Ew#w*e3p(r~qukVLnpsc*PDp&>-l-g>RzHEWp^(G6w%?a{jXfrBEP|xa#gZ)W()O6S?uc zvl*3^x=9{_}r#SpVrn3(AJf9vmRA=0qP)oaXLmZ{#a8X&e z)c2nq3I7RyV=|L@7wofZ)xVbioQ5HT=^K4fKmMHe4eLMka6QOD+Z8n zI6aBpl&>Fi_Mx0#*7YC0gKSU!Q$Ei6&*P|1Md_peTr>v%DUZQ_Hjlx7emw^N*_H60 zS&8`bW!R^2<-eByeCf13`_Dsn?b&~3UT*zo|GNIOeGmTgJ!c>K&uCr$d3Fr`a}jRV z%lfCj|EwK@|7;k8|2#bg|M}#r_8fm2acS$#UzKG1`4#Nbf=$$hOjBl`FvOeju{ZWx zjyQeK{*(Qo^`8nx2s$s3IDegRh4r8M@#omm?&Hs&oqcv6e_C-Z^8(aick|aNv-j*j z*N?$}Hjlx7+K;vC=lbiP&Za&4PfO@O-AVs>$(h&%J^x?Jf4En&r}^u?hphh$*7ctS z!`6QetQ&u>-Gl$U*4c-?@pRqz(>DhHnK^gQ{&U9|{Ab4){Ab-5{O8ca_v}9%q5o87 zwuBSd0@!EU;J=ptJclvAC;vI+SJr>l)b*dGS6csheO>=~b`Sn@uCovQ2MfhI*IygQ z;6KymTmRvUPH=IUNL>H?$oUT@m&BT%bhEcJ2LIuk9J%{AiAP)NTz~Pmg`f_c`s?R% z=s(>_|G5sh)FPfG}-2a(++@AgC`d9DSe>Q~v6aI`l^nM)n zX&nC7@}Hkzt9(!KXWrA+f9kJ)?tZ8BpZfbh_wK=e?r`>@|J2|AnR3jY*FT57!TL}A z{ht>dJcj+BG5AmC82o4X5qtKZ&7uEvC-)D30Q+=Y{IBIdi_YG&|9lox0GftAt-t2>2z>!rJoKmYCQLtV$!jXz7r;6FJW2!VS*&IJg0aPCCn{B`^o{HJ3K{gd-k7$F_7i@iIFQXjyS@r!d!Xz4Kt_TZ{uhx4d^t}6*%fGi z!JDA#1-|wfK+3LNd*jOYi_7fD{hOW^VJzguGH}EX$@xqw=fkwB=|OU4r*gJ|Bfd%wpPSI> z5pcwN$+P{!ecoaFf{hGqL1RNO!)Dq&U>{G zAcw*SWyF!Q2yzfE6X`^7WWYSi>3>+6*8njO;%s%s!FILt5h&C8c(qk_vlab^Cw{_Y?xeffssloJ#T6#r?fSl(tsW0E z@y*^zZ*j9#PkAuBP&Z{>&iU)ZQOwlUHJoF>+3e1k?Tsk984iGkz!UgRU7Z+3?`g78 z^i#MLX;maf(Gxe=D2fZ86z_e#vj%m&8XT?ed}j@EUIaaQq|l=}o9+4;6IF`$(xYCR zw;pvn6rHH*Opp3aqxC3U(52Le9>re>LZeY1dalgZzA$=J`|yo!~sGTrCXdOUG3T_~Go>wJxQ7PLF14ZN8MV8LV?Sn9Q$70Uf~i%X`aM`IP7__9nzN6NE4DrrSD&8TDmr)~F&>tVvhfg0>%{mXeI_`I&$n@PN^!^OHLV4;nyebzhs^cA}>A=W02iWAXVtwTpdmf$NLgAXO*!>3&DsK79ra$2MakvA=%r`s;(p zP1Ly}l|HC~HX&Ee_a=nkE9bAxZvJWk655$1IDb8a7k^>F139Y*sl@r~MVKO4(@70Y z_#4&-fZ2a8kD*UD?V(Q}L!Y*svFCY5IIPc^sxlMltL)PQFR{E1}8^7cLS`%~!m;WPK#@4{i*acCrwCc58;FSPv* zW2Pkb`DPT{f!vHoNeVvWG#yQJ{30P^<2IC)a>^yW9av%dTqZ?*9%C< zXTNv2es2Pz>%;iGc?|u&!}a?R3H3em|#fzn90*?>olO?@KV1 zaHX2I<6-;#0ywEi}N{Qk8O^W9! z636m>AF_SATICbq_}bv?JQqmV@2c&3m7B5G1+HD0<|1eO>GPg~Ravh|7Ma6$_ytJo zCMXP$x!=LW9U-;CPz~iDwU+<8v_Gn}Z&KQCRN6Nw?YqXM{eGqWTBUuR(mtfLKRqt( z2O&5IR-JRN(!Nb;-v{m#T0Zlp$mjnq%a5wIk0|YYt3*)4x!0<;Pac={CzSSEl=cy& z{Whh&aa`ItEe7qHvrTE|zDvNF`-sv$bzIsXRBh)QSpr?Hd{0||%)L@+ZyJ|&zWpwc zJZG!YzFBGCskF}+m-c;?<+m&CTaO8fmvd;7Sw?^4<~EA1PV_N_|$l5uI@skGmyv~N(_*DLKEog zDb^nC78W5#Rv>zJrFS6L&kdJ&zUZm-;BdSW($>`csn070%UjK6=&vNe~Leo(+$qHb0Uu0>y}c~J__T$ zoq}AN=$6iKEge;Lv@QLJYw7B08LyqHg^kS|a1Qp7E~wv9>*2y-yXK=kp}GlcS2W^2 z<<)s0rP9+-=kjjqOoJcqb6oF8DYoJ&aKa6riEaf?xko;h)`-jrsA1;9`j%%amiipm z3Ms`_90Sh(zkTsl*NUEUcVDhrE%vPShs(LBVask>;rz#NSZ7@HCDKG&etSxteYek} z&K+Z@vvB@7b^f8NGu{qYEBVzm)~ce;<=xboq_=|O_UAKM5fqnl{v&eOuJ@o6V`ZFl zU!+9Q=w76|?hakh2(za?CgU<%qA?zJ&V+B6u`!BQZP7?!+si|~gQ3*bXjkT<-H((H zfb;YkaAUa!;w!p9}AE;$5(4MdQWN%V|4Z z=&sC{!0EIc0-5gtDZe=?WsqM2Y03J?GeC9($o@EC(ca~AUIAoB-bdyD*;eq8(}6Vh z`bZa$(EzCdX>xtR3S9xD^Af+*`+#KneB|RmItF}X3y_hjAp1D)75lJH?`cZD!N87O zr~M!7(-p2yc?E^7UN6~^JJt268F2aJOD*q4D@NZMwIU@-P~^|RX}ZF;l*nUjyF;>- z)n}a!wB>ESef|PY`;~sF=bZ;#tHsl??-yN_h;~|RW>Y4E%}p;^i?!PRN~xjRV@%^j zD^EU>BC+m#uyBLQOV(o3oyAt-?L)a>tm90D0h?~BZ!z00;jmrHr(`l`dYa<%029@& z&Na4OTs0jS>WbEEt*%}DU5MdpydyG(|049x@NH2Krr0oxVts{yOa?Clj8E9U3Z>jE zW8|~|=?FNl1G3KENzYIY)py+C%UK4_4US`NDD|NYUyE)-1H3do-{8IDFxh@@clKF> zLms96uAt{LnN_Ia=BUo~qTgC@+P`Gmm5l_oeAyzlT_T6=`Z6rdYrHu9J?+|LEtb+> zwq0kqcIEqv)nu>Zq#^2Dwlz$V!h8?zsby|84IGZiUbjnYFj0VWVZ0S~MskG>~KwJ$?slNc( zVtdCR`{S1KwxHBBAdPogi;;8`kVk`3vw?I5oCQFf#f;>oKxX_bI(23cp518rx-U5o zq~#kvQUHPB>vKCeZEL0f>kHp-8(qZ)~;5|LsV5i}Rmqssnuktr-5# zsHJuM=U#AjSdJ0D6G;1atbGVQ24q`+{2!2x?^=!>JEDvB`5eX$Zq9ni+9!U4oR=AW zv@>Iy?TeH;+qS>MwS8rw)>}v}@H6}1j-OnGhm!1y3X%&bw-5; za_Wthji~dk@9(+J!eO01P&YRcV{Ps}j1)M2RehWqwhXW_8U!|2uUq~Ju` zd84cI%G7aj6zbggqxyAbyXJvYzCYr)wV#w?D?XuobD~?(jPn3;b<>;2?{ycGS2v4M z!)>;Psy2uu(Rx)ltTQ(u)93Dg*ju9YYUf($ftE=Pub>fwWb4!NV_KCwWifaE-9-R< zw|(Av^eO8e-+x~OCkl{O{)%0I%-t7pIzl3Aw2e#qu+rY9wDY&HLhZj$_n_OyrTs>w zeYw)UL}@=-wSCFBv|p>Vw1 zQE7jn(mpgU?KddxIJ#onC3nPH7b)$pR@#ThrG2x~jt!xN_7zI|3Z;GBxU}D{v}0o_ zp}kXS?@`(}j7$4ErM+EgZ&li#RFU?EacRFwX+KeE=kN6e<6`ckO8dyTv~N?|hm`g{ zrTr>p`Ay@}zC~#-EA4ruy{xov9+&o8ly+>LhIVc}UuoyFIbpQfGA`|RDec2bdrfKo zNUS~Dv*Nq*WX+~eK5#K~F4t_PhP%JJEgY_+!W{_8P^+f2wO@2k!L6gxIMIq|`?xGN zqAYg4ve;5(v01UjBJKB%OZyI`eVx*NxzhdxrTzYKY2T!@cPj16mG(tS`_6G`zg%f= zRoZ7L?cY~1YJA#-o$tm7Bjnd(?a@eCwVRP*&j`hG>=_|XSL8pg6=@zGJz?|@ zU){)zKdS?y&$P?j2MI@}JtK6iwMN?cpJ?UKWbKp2iR`oA!Sy4Fy^{JTw!L+DcXf`= z2(909+vnYH{igxLA(2$ObgbLm72-h&ubZk@cLfXrPo*&&ffJuuL0eYtG~bSBe;T^&bjejJ67(X^X2f19;N+Il`(^B-&Nlg5ec zbHr}!W7o$2#J0EcPMwJ)X?3=1{yn#S-gfIh4OsjqlD(hXg~wWD=cIcr?%EBkJPwCi z3IpyJi!Q;=$&6v%|B-*0%vvD#UT4oJQtUf{3>)8Q!p;eiFj*T4hr27U0D%(YG*SLT ziF|V0)j7?EmvrO2z1NBq4)Z^XcCFaWue{lIk;@d{SsT5^+Q;5o_ui!=JveVmye|>; z={kF@XYanX;%5gEbIJyLt>^AD8r6Td_D7ZWElT?>O8dKUxFEc88K3qJ>zTHtbDFF_ zTcmZ09R(JdyIRes=%f6b+weFeq}slGg4*7swC_@Fe?+zY zy%W^-yOh`6ptP@7+J84eKEFt{eTuUDWM%n96J&Y*4qfCw(Rkmc+J3ug`{yQT#7$Ri ze@bb8RB69yg8F@@YCC>3EVM@Jh|+%U1hu_IwVjhs&=;*wDeVtVP}^IT_I;K1ri2t9+ow-Z+ovh*Pblr9O8ey#r2TxQeTK69G-dhg zCdl$jmG)^$d!y3cJ3-nHQrh`;QW%zNB#C~lJCx;HC&=>KRkXQQXqy&Ss^3qtc$AAni{m?OT=h%}V=?6Qq5r z^7%)V_MJ+5?*#dLyVBmM#{0f%yf;tKcz;k?ev@kZjjHXhpCHRWqO{+xv~N<{YZIh> ztJ1z+X&+YFzc4}3CZqa&htj@XY5(g4wS9+b`-swht8MAi0#RNHynH;Be_Up7H)pQ5xsqT2o-S`})) zaDrmpzDoQ3O8Z?(d*cLYKUQgfR%zd*wBI#B+Gi;3Pb=+DDD7J&NPC;oK3RF)vr79u z6XbRGsu6diYWoJIoe#vI`CNJaLnH1frG2~7zC~%@Izig+SK2o!?KddxEfb`Dh3fZX zRlhf>XtT-nJ1Umhgx%CF(Gy0fI?~sHJYAHXQbB$UWb|qu`8AN?AImdh!ubo3V~1t` zSdc^T)>6C56{Ho&)~JSpv;%o0K$ZfrC#(0tdj{n7Bpvo`>ZXPlf^#B1(SJnF01&3X z{mmj*k`qY29>|uUUAF?U785z!BRTvg$d7>Jqupjf9tL6~n;_2sx%>g&8ZW`)+*bw2 zYk`b78)kbdg#vWUaP7+G2g_`MyeX>*+WC%!?*4M7-Eo*dA9DJlQ$wQtOdw2g+ux>; z_bKF4Kt=-l+y;dAtuPfvZT}vSM}t=U9LT=WTq)Wg1;P|-e-6kEL8-zRFxoa2V(Ec3Niv@MIiax zKqkWxBguIEP-UQ$X$mZVA2@QK+Uj}?2vc0=L-7E-eI7(~9Sx)wSc7i>9lcB}A)K>- zObx7hA&^k=r9kYpgOplNPNT2=Q$X5-QTY`hyl*A#qQvh5Sr?4=$0!FWZpB{=(&Qm8 zeKYzikaH9eN{ve`2GSX{;yfTtm-sC$1F=b3aV3yl_!y7n>wwr*lW_h6$X)l_-eLKB zfvgL9@G&5Ae#7?8UxC;pavHPnd2|mN5_!uZKx`7u(Lfdjk{1K9QC&FaMWy08uOl+# zN5AVMPHdlBf!MRDBInycMuK)d1f=8bzQukAWH|7jhEDiufJ^}*C*^G0j{>qKXvG{L zb|oy@&jvCYaNZ0gA0U?lk#m(+@&+K62fchV5PQEsB;Nr zwx?Rl)xfatIy2;l!Ld73BKdDX_6=(IiX7@3&4a=@9SDt=K$v1;D6!gw*K*E{v$3X54TJbQD zxX%2vi%2lKCwFBs4+h?HIFKg-In6*O2P19?5W5oIhk`Q~1GzRRwF*dk;Jt4FVow)K zsSQAO2BmHSvMWG73uIG(d>IH+JPPgs(uvnl>;shlAQi~@L8+&J$hlM77tiZ9RP#ql zO$E~a6F(;KaopixeqRjae8AzEBRt@1urnnV10i|5H+)(-pJS=$Z2(f|tw0_PYWPDSJDjd;wpyrRMr#Q?>QTyxlE`@)NaKTk z+h3H2hfngO=%GM*on#ho1u}yF$Nqc!_E`3S^UOJ76Aw;Zu?4bVkFzM zrc$gGGM&L(c{wlBr3rJhw&pUx^1ZQ9TlTuFs z!JJ=+Yd8r@tEqu~4gq4H5|vU%0+G{(w!anwiAP*ES1X~bGV;Wn}oR{^nCh*HBgATyv-bfN7z`tznh@)_X7ag5sGt(o3{vkIIo&g-y( zH9=k8`fF`?1vpKv6>RATf!HU@q&}YjB2SIkQnvtMif#B!AlHKaJfKqQCyMiHAUmQ{ zF~a#Hk-!@JuS67e2%>slX-%ObPfl6wuLh^XT?J&b3(sDjJ!853?IDre0?stoU)i3X zzQJm5rX{e?8^CD_dS^M1$-nZ)awp{k_NfBdhE~Qte+`h!1J0*`j0CaeP9RqWoSy+< zify<{AXP*??v1?z+lfz$bRsU4zmu8QBy!kWa@hjKm*&Mi(3k*@%0 zkNay)ca`r)k|(fizyAQ7$w7bp3W!Z&jsF9(A!x-x3>-+You>i0D;V#yf!L>~Ma}{s zTZ7g6c|h9M+jddn01&%}FQwiMB=$^lJ`98@*8UlVd>P2J=xmtC`7V&Df%cyQ+35U- zQ&WE_UyygFTl@S5oE_KrHGBq0sQnHVsI~IZh#O05Td_{%jySP}%39sMNU# zWPM=y%YifnbMAYAY!5u@lR!Fywci~;wgsGffE*Oq=f8lA1nZVR0zn16`aBPw8Mf;X zAWMT99uLIcfs$67s!Cl9WJ(~p0^}g)tJE=0w7PJvT>iT0aA1I z$yN#`l*qH&O;Ni(1Wrd#!;b@*93Zy>3AJwpvTx9e`+$rFefltva?oFYW~rbRFYJdk zTn(w?5Fk?nWEPMq&VRCnA+xtL97LoJaO7zV+pa8-)T$kaglFMw=xF(I490n}(U$QnQw zcc^+Rne&|=Vo%1*DC>fjJ_$K(K`Ra;!$t~khY*c*8rL7tdXr2R}SR*GV+|bwb-Y?=?f%(8^|sv8NbfRIW99bko+@n z!rj70fou#~+E9Y`29jR`M${A(tre zBOs%$T`d2&D)k&WlYOgBfk)pE)cJ7Z-m2J zvMGoy9|nR#p03XTxiM(P*MLk9>~lAeDX!mHum1+}RG|G28k&WnMJ1m2qiB8mGXFTqC)$V6HVj=i5E{q+GL_DOa@ZU*vT zAo)KiIcVuUKsE+--boHpJiZ+Tx%eeyI*1OS^Etl4?#E=_<7|R%MhyV`Zx9d?# zo^7`^{3MVEgZ0=~fZX8xhjF!gO+F*P9KllAY_Ftj=B<0aosS3dtn;X>Tx4hDH-l^|UKf?Zn1cVj7;?1#EC)xP zZ?dIU0UdNFD{!`L>MbnNO-x2Mj`c(27?8i6zrpc*U_K@YNP@_6>YvNl=RAF9fpAc^#3r zD$aYziTxSts62R0?z)NB@BO9Kh2g+gH={MDUE zB1WP8$n{)=MryJH_?KoarWfJr=E5u7SF)mxbW=k($khLmv8tvVO->_ELLlU3hoNCVth?C(0n0* zHy3&>qi0rmZ5F>6Q_EuOC6DX!Y_+$vCfi*az?R!Ut(wVp=gP(Gsx^HO+&pjIoVE;J znpi{eQh&C*w$yb=#+Agq&Qc|l)gmc6A*gL$OD3By4R-Yv0$I8+whQW3XYTAdtWL2O zRX$RVW(-1ZKi*(k%A*OkX@Yw-L|4K(J)q=E-6<7M=&nOb7%ZJ7HlRTB_LOWjx7z52 zT}tSJGZ(=lE4j6(9M*|&8rZ$BFaCyQ1nxP|x>2@koCWf7feU%Ph3-|^94@hXibL6a zvA-}-EuuehMMn*xxg%+)mx%9Jdx}73bzM^Eu4T_GtXWW9U^J&>WwNKt>R7v|2;#Cr z?KDKtW$cQTxS$J+0(T8eY1}uL&y~3ols)6DMcG=V!0`i*4d8sSr>CIdp20r6HdV2^ za@EQpjFu3R%OeA$Azxgb8yaYyHD}%|#X-4&N{U1*12G3_iKu!eyQWlG)!aIJE}Sr- zvT9mExYAu2%ol7k%WG@BIhZGjS6AnGLPO)_Lax$Xsu&Z5qN-~!Fb7QCbVkJt{shjB zO~Jd0165>cvl>(3Wfl7!fjl#^eDjRDjRa;nYqX3c?|-XdR_ zi_a)ou3n0$G;8k6w35~SN=nV7o~~8%<}eafbN%H$D3~+X)FHphZ%clam6XKEiY3iw zaI})<&zZ|QRbhxypS4OXDa1h9VSBU87v(x)O(_+tE36)9m48zxRF!7qPRyDR;J zb#u%J38f8UKUfK(>znH14s~v@xo!STR7z{B^;f%$>#nMxt*dQY@huvo3J1$Ib^e@L z=+mgF_yQNh&OAE1t!*wW*o~OAmY~plM5CM#hd9R-qs?&z#?;vitfGRQ(bwbAt#NHB;AEPK1WkRh5BC zo-t(Qs^(d0pu7V0DglbPj8!OpdQt>`MpHkJ9J! zX4*&q8|RDBybaUE8U7@!GNQ>gz|odGXIqT-q!OFux;|E8v+5UWt)JzbF_uRISG$X5 z(D8Ge)9($eFsBQVxF~C}FoWNsMUu|Q$IcNe$yHXC>(pvqiuDWKy(Qf|I*Tl&lZJ%L z*bIht+ljG%Yt-1B!_JcJ5DeX@uR!8TyX59Ny^8fIuZRjOjcs%uZe$cO_EXDs_u?|N z8y9StW%|ptwcN?U^0|3-Yuh}owX`%>BD zQss4+IbPx`?=9A{g;I}4PY6roxSDY`tdr-%wgL8{%4>IRZMl#&zm|&%Vo6#lWC^8~ z?k-_jSQtvp;|)bGqbNJ8*)ClBuL^MPm}RSIYuHz_=g;JvX^ly9foF>IA`hkfSX@(s}=Gl8|w}pwxWvu zTxAs<&=<5u1PP~W5HfuMvW4td-7AabR1r79u)$r|i;U)!jx_ZaJg%+nNnF0+Fp-mK zJR4WE`PI3B?gGxup^;sExq(&kF<-#MCm(rJ&Vt=V+-#FC&hW;u&B?R4MZ{PeyNMI- z0Qq}EvKzz)Po`sU5GP8^LnzZdQMLgtNYrQ8P*I=ZhW~E#IF5vfq%ai}G(q;N{LmmA zHwtZ=bS-R@ND561Zxbt$92GG%!N!ebPC|TYyY&fa>IUAx9Vp3gZ0Mt!q(H7m$P(L?waz z&?JZ#8lw0lxEbuCIto&P`+>%*MKWAz;S#e1j{}z$D$z^uc$h}>VH8y*R|m3WDHl7i zf5=^7W3X7L4I_STN@SB_Dd8RSH_0X z2qE!H8D41Gz+bQnb;KL)`Ryk8!Y!CGCA3zErIRh++ZIULM$22Dgl|R zb34)7x>Qm@e@Wn&Gr3rHykJ*;BsN?^W5Fc{f@0 zrB=|+`nBC{CiIzKP?~OR5p+9~sp?+|l7PUcB$&dI+(k zR4evi)z9@BhGys(g9A0}$zw5H8NgZ}_k@C?X5$>n261u5_ZM=d+T1#?C0y69?CH)9 z;a5q+qHC*i%M{_ed$7Vyf4Lce9o8H!LLg=qcbBXuMfK!WM^Hm-AQmd=4daDQ1TumN7=ys4&l~K(>Sm8{;MWSDRNel#!DZr`I!el2epB6=HCm>Flhts@B?)l{C37 zVCpNzPG;hiNMQ10KG$r4;gbZ{RA>I(GxUIpyMhzZbkAXAq}2089-YY+Tk)Tk8E3^# z2j8sr=5Psyn5*j;=XoXi`*TC+pq6Ya3;7v!@M=&%X$j@&Y+tI%4P|?ksp9w0F_L)w z?$^=41B3mAN)h*j^#UO-l%8pe`kHWY70d`cPBb$`xZ!EBhMg_vaF?*^9LukBl*J2) zV3P81O~=g`O0AhS3=xIaH^JBBOoI zct-a#dvjH6<>he1BIrloI+5FYJtAFauG&P0UVJ4wM@pF9GCkx;@CIL0VfK{}{A$4K z&`E;(&KMP{w?^=4nO2zN&9_sEe2?N;OB4Od+BIdekD?W%*NqY4xn_hUJ=4Hpw*LAzrG;xL(D zpV*FSZ$KFwTh2u~Hx|nFqxE*~Y4QZ`O1gf&gd;XsoiYeOT=dzKM%VSX9dNe=8`oj* zGs|+TMl@!trNK%!6qvkfp&WhcDq$O)_u~xCfNO3I2rG(ErU8y9&7^?-T&=s8=SmoT z7#wP)RXEuxHOErGw8l6icI(+1uig&fWj!xZt!6{C-^BQ$Q7WUm!{o+|6@qV5U8J53 zH8WvJAwZcmrvT2T-dAfc4+>l5n^;JuC1E*fI*ct0&*B1jW)}edBNq2W`eqN{gzddN zS5>pVw$_b2R@T^kxoQoeA-eE1-pW3gOwV}*aDFXcvE$7cYNTV@@V?<`n#FUm$)(Yq6}uFp(`!~t0~Iq8d=gy#X}>>yKS#hvl&2WUtomA->CWs$=h^dabfWaSm?~mlVm-z}9j{u4;}q#lD2Q zlX%+FI9X5=E`D&<(qx!F_BQp(!9Glo6c_M~H(`}vTs_D!lLcIh4(-*KvosFUtNlvj z71?4BZ!}}|Ghi;1FckRW0Y)0L{-|boHY09DA~(#lgD48u^d50NiFU@f7|Y}hK-*|Ui+<9sY`3i%Id$CSy^CMn*ZWQ-)W+M94B}6e$@@Wb)KIJPLoA@fD z(@E2DF+D2^jxH14&pqp6bPgdIB86uoVH77r&;-j6f`bX*g-ro`iz6=D;F+2k1x?AL zugKum+%SGheh@@;ksy@n>@c9}{2;7Kwh5E5^YW|LW9(1g^O)`TAoKn2Mw$(}qQH!f z5F*ROwV2`Ch$XyiI+35v?_RdwHOas%@@-&?qO*X0F-xFSUsD=qPx*CfW>v&dyM8tN z*j=9$+-Od#sTaq!6hE5lTtBAk-1NvUJUpBehj(2x4DveP3-vnF5BNG)B6u?F3s3U= z*k7-_GQZdYx-HQKmf)70T7>iqTpUOYnuu&Rf24Niz-$ zN1sw|N=Ce-+2o<^88Avge{Zk3sH+H!30fidCF>?z8z$Xv)j<<%O5P`%GW<77hPV-)`_`@2qejd z^gwi(kfMlJ7N#)Qs(kD-`ZCngJbQNA>{)>{jx#r*Dq+TPiNalRueFF>Uh{Y!KJ&>t z_XSf`^o8>5!Y6M<%21~ zJy_lYR5Y=qk%nh}o6*$+g=PeQww7K3FnX}ni}^IUk;QV6OT@h-F55$W`dKK(ue=k* zMzHO1PgmUS9tg6%oVMB>U<6q&kTNNKY+XSJetlEOUUwSlzE_9<e6B5t zg&XA}FK64X*f<%+vr9#DM$A?^x)Ws^%LiXw4+v+VfCv49CoF8s@cdnLsoc|7%GII> z;OuF@lv>j(vn!!U)zJ8>HMR{<^ckrM{3$3DRy4>;c&8~J5JVzFzN!Upt|>6QLlTuv z;n|qx`>i;+c3#0nmhoU8@Z8vkLnrlfV(;|P$SnoZ&9Zmir4k%u^_Z8{&B5iHn%PBO zSKS;NmUNA*|JIY4i)1=i7NTo_xw9%*iJmSWyW)?b*Wi|_xOY8$#YjS`r~A6a-Rp_5 zPQSbSNK@nxk^f79a1dxAVWT2JzHw6rgq9<^c^O`(OEEa=Wu-k$5Xq}s#vNV=B6V~@ z>BsBDH725V5@}V)yd=Wt=8bGKNg+IY5U-?H=lTY*OfK?#ojn`j9y^``m__gf zIfi6i))&OlZs&g=Hw7xWd@)==UoaTR{5R z5RDnU@3zI-75sMVTq8_cUnkSrpiXvL+%Q7zK=+#xSf!3Y*hV&-{B8~XPrBW668xTk zdAXLa3(Gh27z8$;!k)oSK3-&rS7`_A2-B6avQu(A4LY~m>Ct(VX=+fzU39)^Q|=lS z@;EGlhg%bqAOfOXsN(huO}iHRYQdC<21O8G!Hoxi`1FT+7E!)&gH}G_MM7d3zB_sC zK)0ZUf$kDEJyyy$Ebw@)&B&4MW%+D7kQvgfpalYX&CpGEjghRNMM<`6SJeGpO&sFt z86iPCEXy@B0%8+HfU{2Y-9E=@S{-4YZ6n0DhVM*xH$$2CXmB^*RF883ujtSoJZ;d; zt6m(|3Qr&-I^l_HtbXvf+g$0GkE^4Pp0o2xPN*J;m+j!Z{}A@p%)RpX6Rs)oULCna zwPhu$k_5dHiVHiW;;d?D|F#xF)x(T4h5SdP%*);CJwrogZI1qB<%1$vS66e)hfj1XxVr;rw%*Zmo*Y_fmeskOFz%k z4ZFK88##)d_Ha@WBL#cM%u@XB)LR3hIE|n3l!O(J6^W{Q-5%=p*>Gt-rhqj|K76=6 z!m%afPi&Ts8!N>ge{QoG*rCNq5j=1mT}``cS%OhiH<#+_W{OgsjrXApqPq1m`gBIr zIKQIitgM`RvQ<@0KqSV&soiADnT<%gDjwne#Q`q1R5mwdc;rK9UXNOZQZPDe9#qvQ zN7m4gze40*W!w~>8&%TwV@ejSrbdyiqxeyBjM-e{P4zM(pQ@K_YZMu-9?kc!dK}No z>QMq;Q>4)2>SSBLQ`wP;J?~SLpnK}IICPkLtTeAn(HHoh$`6F-&bL0N%1MS^y(j!n zl}mbIJ%ae6nL6tZV3}xjb|zAS%Qb|+YO%YDUwiW7sM)zG^JQ0d15S1#@rICOeJ~wk z^?{!SQ#r0k7SDwgXSdCD&*xPNxUVSp8}QoCQg&rusS7(~d8{$GJ>@~&0`bld&XwUj zK5jNdZwKW&LCe*`V7_#mk#`&~_)RaiM4E54t?PMOU=9;%YI)&09&@kRu)Xd3fK$A{MM7j(pa`?olLX49IL=f-ndok zvQ0^I*$QK(<=L&yutY(_5yBSEoS1QERW5~hMH&K%*3K!26^B_}p(X0go z=#024Q?=jmLbwEh{gB7CK~HgYq1qL_bgjP&=$h_qcNu%`+5RqGNEDi9&Y8*A;o+;v zg}q@4IZ_)_TIQqM(r|fI-kNTd?e8*@@uN8Ai|M#a2eG2=xAo**5BNWyWzJSsN9O>e zHVq^Jyd~3?gIjgGFI}_pf>Tm-TG)JCxC}MqDFXS12e+2-MM#c@``PYYWha{(Fh(^$ zaa6HVC(F@9gO_=fijN53BDjM0iQ<+!5Yr#Cx@^t()>8Yqui9Jeso8J+d{scywqjg> za4sLU0A5mBGbd)2TjroU=FB!jS?*;<68Pp=cB7S;8^HDZfc=Ksn#Gd+QjL}2BCi)G zsv{Zri1A^+;f;;yCe$aLLeb-WppdS52sMZ|UkQtT7=6vE97Pm@feA z$MuMdim~jXg7(^RE;l!AD?$}K1>aK};1xVHU^8Bqn5N@?sjp~3_1sc1-y!c74ob*-7i)cZlEK;1 zNI0#!=;VdVmZCpTURx_H9%@IF>sWgl9u1XRi=Kt>h+5$koJCvEK1-&r;9al%d}F1x z8n#s;qeZoZv_gemUC6`ZaN2fdfoeqbX>QJ6hW!Eiy;RHO=-7 zF6#YPf};{WrFy+1%H@Yjlv|i-I38zsN4Xmgc+idpTE-RC%IrdOk+EPPkE+=Qxy)1W z42JNKWu6TzaW9jX%UIZQ&Ndz$^b>|J$VoS-a?IH!8cvtsIx098C}WQuW(Pp1j*tCR z@Ct6DFX3XGr22E0a93@x3-5Wrd#$s$HZU*LAV2amzR?qFc2*=>$GN~XFt`$dff<+s zvqODJ7wcGi=3svp-W&)&umYWt5*Fm8wRv2uR^VfD=AEW|U#wK)JiG>QAy!1oOJ`sb zDbi!xc{nZ2iKE(J-Rc}37Z9teH9q_$HO1+0?BKdaijyxZ^ykXGn6nqO&%~{DQ5=ok zGYfduNP^!&_mIPag8|B2pM{xb8t3f`L+MPB5Lx$|5cbDbtG;F&*XtY6O#*)F`FDfU2P0r_p^ zWbc>|ldV5(+qH!eVeURM4n;Ezdp`SXH%pec)Y-C{IaAD1HNH7vDpAEumJ$%C9m4j=Nz!RY84f8#CsXdjky zpVt@T3)hIseP7S-I&c9j5|bVoOeB|8zZ}79?6n!lwZ$;68|l&LuSHH)G?|| zFrbGDco!|JXyR_!MYCj;@zWOa{#&CIb}+#@5QV9-$aTJ&dUE*H0&`^`W#vcTK=b+< zS8JF(@J<~yZRmxB{1R!>rNn)MMI{yyDaMZ%i^(a{KIx8^Ual-;`5Oo_+a=8C8$y1B z#2dMcMA)BnYZUWqBvo0B;8G23=esoG2?G~H{4pTZ(-@~??HQOmPr=1hjMychw=#?7 z608{f-;nU8cY979R!-D@fX9T4uIN|P?N?k5^L{73sv>3tL0{|#OjKV09L;8lA&&dpZEXub#=XM!!YnaZTkalu>rwe0(9?1lIEj>n+9vrHvfKi zM~aqcIj>G^ixfp3kCuo-h=0BPdj!@Tw&v>%p!eF4G$6&tMz8a@J&%r5u3}R}K${bO z;1;8w28sj0SL+(Z(gD)zNOa)BK@KhJ_%#BI`MxE@l!F;@^;WGEs*yfGKMZ8LWS`o; z?|gS&XBI7cbBQYV-Y66wy)f}xqU{U_BPim+GlHw-#!>|mP%NSHW|$=#bY{6X__l?v zc?9BBF*JNYZ)TFAnL;qHAUJ6H4v#ez1)|ltRwGZSb#Kk~Fv`#m1ST77M%3Jo;sAi4oasBIlVGh;0@|*qqUEtTuuxM2mi76z;qER%*Ee^ z)#pwbdRlcyBx5tnppyLHnY&re(=)n^g190TW|9K7!L4t#kBVbyRLbBt3YS%f2S8jR z^_Mla=VL|b07O@Xt*o+ubP-{}K8t}J9bdfFO_J*C{lt%aD+vY%HhCR=MK=YLEgQ0~ z(qgTpPCaKz`n8j<4PKq3;@?FSPR8QNn|&C&Sj@n|CyZ>G$AD4z*iKV*Hz5=SLgU^N z)+egCfUJh(I}SbW3+8{)?sLm$dx(T!cbsZ@?#27#WqlS!14+2<7Jh&@NQnEZ6IZ~N zw|OifJ>qCh2>22;x`kAWZgMh_Pn*9os)2995lgg_)?l?znoDp_<=x)7k9Q@jI}8E5 zA*vaAm7sMYes)hLA6enm4z$i>Y#6dlLcItlBSAF^3`k5x1;Q4E$v6HdNr2c$*;^Jc zi;1cDQf$yv+@4euXIF|qKS@<}%(fr8^?WRM#*QGNatFGbG?Y0PGm+$3x?U%X>M7dt znoW5Ep07znyJC_oat|0&l4u;pR0gZ9Z?CVxJ=`qk6*(cRMA6(+vsa zFRynxX#Q@w82{KJup}w$T}fyw4Wn8ISNB4lT`S;A!Vq>xT&m*l`ov;{%S-E9$a595 z9AU=6fZG%4Q8#*=VH!fO9+ z327)i{Ph`UA%2=CO)86IATNN({L>9bv}aPn)5M13`I(Hi^yjT#W1b<=i${VVlsiAr zZY>$19Wnm>nOWRwlNS`b^(8mO8`gvcnl#&p3l^zL^Qt#@IS9SZn}#RXb{e3# z$etMm%1l3xN&Z~nWVC`hqrMH@SbG0UtT_(>aBMJ7?y8~#Vlc@L8d#$SQH%gh9>09} zU3{vVOmnk!1;sPxsfj|Gf;}EhH%Q&idk#c!?HI{JX#$W^>?L{lNO+=>#Z6ZZ)^}kB jbG^bDJAJa=rKyTu(oj+^Fb7rwvcay(;CDe82TAoG!^RM| literal 0 HcmV?d00001 diff --git a/wafo/sg_filter.py b/wafo/sg_filter.py new file mode 100755 index 0000000..4c6216e --- /dev/null +++ b/wafo/sg_filter.py @@ -0,0 +1,84 @@ +#from math import * +from numpy import zeros, convolve, dot, linalg, size #@UnresolvedImport + +all = ['calc_coeff','smooth'] + +def _resub(D, rhs): + """ solves D D^T = rhs by resubstituion. + D is lower triangle-matrix from cholesky-decomposition """ + + M = D.shape[0] + x1= zeros((M,),float) + x2= zeros((M,),float) + + # resub step 1 + for l in range(M): + sum = rhs[l] + for n in range(l): + sum -= D[l,n]*x1[n] + x1[l] = sum/D[l,l] + + # resub step 2 + for l in range(M-1,-1,-1): + sum = x1[l] + for n in range(l+1,M): + sum -= D[n,l]*x2[n] + x2[l] = sum/D[l,l] + + return x2 + + +def calc_coeff(num_points, pol_degree, diff_order=0): + + """ + Calculates filter coefficients for symmetric savitzky-golay filter. + see: http://www.nrbook.com/a/bookcpdf/c14-8.pdf + + Parameters + ---------- + num_points : scalar, integer + means that 2*num_points+1 values contribute to the smoother. + pol_degree : scalar, integer + is degree of fitting polynomial + diff_order : scalar, integer + is degree of implicit differentiation. + 0 means that filter results in smoothing of function + 1 means that filter results in smoothing the first + derivative of function. + and so on ... + + """ + + # setup normal matrix + A = zeros((2*num_points+1, pol_degree+1), float) + for i in range(2*num_points+1): + for j in range(pol_degree+1): + A[i,j] = pow(i-num_points, j) + + # calculate diff_order-th row of inv(A^T A) + ATA = dot(A.transpose(), A) + rhs = zeros((pol_degree+1,), float) + rhs[diff_order] = 1 + D = linalg.cholesky(ATA) + wvec = _resub(D, rhs) + + # calculate filter-coefficients + coeff = zeros((2*num_points+1,), float) + for n in range(-num_points, num_points+1): + x = 0.0 + for m in range(pol_degree+1): + x += wvec[m]*pow(n, m) + coeff[n+num_points] = x + return coeff + +def smooth(signal, coeff): + """ + applies coefficients calculated by calc_coeff() + to signal + """ + + N = size(coeff-1)/2 + res = convolve(signal, coeff) + return res[N:-N] + + diff --git a/wafo/source/c_codes/build_all.py b/wafo/source/c_codes/build_all.py new file mode 100755 index 0000000..03c43b2 --- /dev/null +++ b/wafo/source/c_codes/build_all.py @@ -0,0 +1,19 @@ +""" +f2py c_library.pyf c_functions.c -c +""" +import os + +def compile_all(): + # Install gfortran and run the following to build the module: + #compile_format = 'f2py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + + # Install microsoft visual c++ .NET 2003 and run the following to build the module: + compile_format = 'f2py %s %s -c' + pyfs = ('c_library.pyf',) + files =('c_functions.c',) + + for pyf,file in zip(pyfs,files): + os.system(compile_format % (pyf,file)) + +if __name__=='__main__': + compile_all() diff --git a/wafo/source/c_codes/c_functions.c b/wafo/source/c_codes/c_functions.c new file mode 100755 index 0000000..ac37a56 --- /dev/null +++ b/wafo/source/c_codes/c_functions.c @@ -0,0 +1,615 @@ +#include "math.h" +/* +* Install gfortran and run the following to build the module on windows: + * f2py c_library.pyf c_functions.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + */ + +/* + * findrfc.c - + * + * Returns indices to RFC turningpoints of a vector + * of turningpoints + * + * 1998 by Per Andreas Brodtkorb. + */ + +void findrfc(double *y1,double hmin, int *ind, int n,int *info) { + double xminus,xplus,Tpl,Tmi,*y,Tstart; + int i,j,ix=0,NC,iy; + info[0] = 0; + if (*(y1+0)> *(y1+1)){ + /* if first is a max , ignore the first max*/ + y=&(*(y1+1)); + NC=floor((n-1)/2); + Tstart=1; + } + else { + y=y1; + NC=floor(n/2); + Tstart=0; + } + + if (NC<1){ + return; /* No RFC cycles*/ + } + + + if (( *(y+0) > *(y+1)) && ( *(y+1) > *(y+2)) ){ + info[0] = -1; + return; /*This is not a sequence of turningpoints, exit */ + } + if ((*(y+0) < *(y+1)) && (*(y+1)< *(y+2))){ + info[0]=-1; + return; /*This is not a sequence of turningpoints, exit */ + } + + + for (i=0; i=0) && (*(y+2*j+1)<=*(y+2*i+1))){ + if( (*(y+2*j)= xplus){ + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + goto L180; + } + + j=i+1; + while((j= *(y+2*i+1)) goto L170; + if( (*(y+2*j+2) <= xplus) ){ + xplus=*(y+2*j+2); + Tpl=(Tstart+2*j+2); + }/*if*/ + j++; + } /*while*/ + + + if ( (*(y+2*i+1)-xminus) >= hmin) { + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + + } /*if*/ + goto L180; + L170: + if (xplus <= xminus ) { + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + /*goto L180;*/ + } + else{ + if ( (*(y+2*i+1)-xplus) >= hmin) { + *(ind+ix)=(Tstart+2*i+1); + ix++; + *(ind+ix)=Tpl; + ix++; + } /*if*/ + } /*elseif*/ + L180: + iy=i; + } /* for i */ + info[0] = ix; + return ; +} + + + +/* + * findcross.c - + * + * Returns indices to level v crossings of argument vector + * + * 1998 by Per Andreas Brodtkorb. last modified 23.06-98 + */ + + +void findcross(double *y, double v, int *ind, int n, int *info) +{ int i,start, ix=0,dcross=0; + start=0; + if ( y[0]< v){ + dcross=-1; /* first is a up-crossing*/ + } + else if ( y[0]> v){ + dcross=1; /* first is a down-crossing*/ + } + else if ( y[0]== v){ + /* Find out what type of crossing we have next time.. */ + for (i=1; i v){ + ind[ix] = i; /* first crossing is a up-crossing*/ + ix++; + dcross=1; /*The next crossing is a down-crossing*/ + goto L120; + } + } + } + L120: + for (i=start; i v) ) || ((dcross==1 ) && (y[i]>=v) && (y[i+1] < v) ) ) { + + ind[ix] = i; + ix++; + dcross=-dcross; + } + } + info[0] = ix; + return; +} + + +/* + * DISUFQ Is an internal function to spec2nlsdat + * + * CALL: disufq(rvec,ivec,rA,iA, w,kw,h,g,nmin,nmax,m,n) + * + * rvec, ivec = real and imaginary parts of the resultant (size m X n). + * rA, iA = real and imaginary parts of the amplitudes (size m X n). + * w = vector with angular frequencies (w>=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ returns the summation of difference frequency and sum + * frequency effects in the vector vec = rvec +sqrt(-1)*ivec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(vec)). + * + * Install gfortran and run the following to build the module: + * f2py diffsumfunq.pyf disufq1.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + * + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 22.07.2002, oct 2008 + */ + +void disufq(double *rvec, double *ivec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2, iv2; + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ2 returns the summation of sum and difference frequency + * frequency effects in the vectors svec = rsvec +sqrt(-1)*isvec and + * dvec = rdvec +sqrt(-1)*idvec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(svec+dvec)). + * + * + * This is a MEX-file for MATLAB. + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 + */ + +void disufq2(double *rsvec, double *isvec, + double *rdvec, double *idvec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2,iv2 + + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix`Hps@?uD75Gigdw8&k|956IIr5+N;Zm72Ehkbp@D`u=P0 zb0qndgtm8nGvBrOZJl%WW4-p;YpuP`gR=W}3Q2+>C{Q91L3jyA`m?j&Fa8-u^NibG zo+0eN_O;tzN+^Bp_DXj{o4%#B`To|rP5Sz}rlw|(e!WZI>TS|DH0g_$uh4I5cDm+I zpFYhXfnNTzc{{HQF6xuZ<8R;EcP*}GoRE)q^i5;erF}|vOzBhM*m?X`c70uNVP87C zPGQ%b$8Tf(JCEPQjuj2{Zh}3U6GyQilqM*ILI0eka@!eU#_iW7Or0jwqQ=f^?GNCn zL1|&v8g`Crk{A8SM`0f>s2~0k*)J~GwS454_J;&v8QS08EC>$PZ-Spaf}ol*L0epP z3*gw}u8Gc%`xmy}at`Nb*^npy}CF-v?YZdRHr| zBNfzp->k(`o!skXl41v(yBnE zL0_?P3i=tt|5OU~4*L&jJOAJ{$qcAFs{oN{fcqsNkhB2w=|BqfN4b{6#Egk$$`utG z3#&kAnq#91SR(Jdp_!X0hF+k8)S8Oa5htb7E)L0xFr-Xlc4?19ZXkmzM zmnreOBr5jAr~vlCWgsOjgpuN6WkofUy8oOqlwxp1Dh*EmA)O4sqlB<24UQ4>h&R$fPSGqtOC?8)raQ^bxa?Ye|q)$@V}6romd}+VpRO~`e5t)>-AyB zxeh254;x2wpL*4HGA!y9+yLaJG-nGV1 zS%KwYBb$VaMieJX5sFl!yQQ5}Q}HO5ne&ed>-s zC1Kh?j9Yjd>K*7XY{x)HxNLY#&tFi_QiI7|f}Z7pU53Zevm$)Q*q%>OPe{hyjh=*B zTOPKJMeX6JbKI{o)DW{HoIJK$8OK}c)^rixN`tK;{Kv6Kzrm3z)qCMZxk-ja-k5*^ zr4_KAn6dEGC79nsT5BJ!obmSaBist$MtK#G$VR!yU<4aRGM}T>`I85)U5>+D676(o_cU& zA!BCM$>9n+b(#VbT>t;QNmAx;39*aJIa!93IUbeQyjqu zptF*T3InQS7zyeRsHGB1zQaIkhs00L3RSjpT$IpRdpQ>BPPF>ZXrc1O88M;vL@(yWL!;N&Qfk4BMJpTUSa z3fGq)TxY>OV(JoWqd{NeQAf%Iw3I1Ua+e4Q`n97$tOHIx6GYW445ot8ZA-N*hr?L zmM$Adn#NZ_25OmUWarE@z8!#RjJSm-$u#=nO`{K3eW1n%OukX3v1Z31Vw9UkJ;oAJ zQ+fF5k4GB3es#y66-*;wgwc&mBZWs2gqs9aR zldW(RRjC2IAX1kCR6CY`X;+6~7srJq#jQYlcvc)PUp%g4!o>sTTHulcq;YULXlF4> zbX~jHGT`=@JD1w<3wBw8+=9dl@kdc>ybsvESct&(-PD7yHo6rRCx`8@##m9zxFPOV zb#*f}4BLQ>1%B2K$o+dQvW-!9=8%`+yb0fm=S{Z#tD}O1t0aG^f%59GFQ_U9wo2yC zDh+PVSWEci0>C3vYP|?AV~e-ZwAvlzyGGiCTe86w6Yq#-uUl zAghSHjjD2gf+e#N|J-S8oB180sRetoXN|ZPhn{J~IcDRsk361Ei&0Y41HrHBi%LZI4C|qE+t4HCmDlyHs77L@mPTi;!LPd=?c#9cUGbJx zxOBK5$8~k&E%$C5Q9D%Se)=C-4I}kAoJW!?(eqh~y2NYzhfJgLGS9R?x+~3pz+Thx z3Y`a@g7}51@UgpK?Zs;xfbKt}DHdOAI7)LY?x0ScJ%N9wqxZeFHLEGZwNgCiKRfI{ zXAxH_SBPs~O<%%Q~KeagVy%4%$Ov2=7FoVjqQP%PGY%_UgkCx>Y+#Y^ww7kIO6LYmAPfF(dj15${O34j)n(6w96Pf104~J_~CQ zni^QH4Bo`hdsU%?V2y^Idu|L(<<(OjzByVwPNnuO{xX#Iyjg^Ub=dwK#+gAgjz1#e?Ss-I9}K(L&X?41=F z2rO2F3Ml|F0;zG}5WpHkh019E4*)SZlXII)-4jCzqk9iWd;c@_E+69E)uDk<;Sj(Y zWU%3AM_QJ_@-w_6BjZY_@XScS{@*M7e^mNEvimjO>R^GRZSQLqd!M3^Ls94=4IR0t{d?Y&`~v17Z*%5fPK%X`~6TLQA%; zM{ljaCz1Mz$3uk@n+YBprWev@#6LVMlt5F#aRk{k(ImlC7%*P9(BGHn@6}jOz_S>9 zFAq*f=EgK|ijTE~rVe~K@csv9LIXhUU5z$lc-yDMlWg}NO!W7&xUk!G{m13hoM|o3Ca8|WBVm@kqlQDwq`O(N=eQ*|CO?i0g zPe`!`SDfkzUGvM2sIKVY#Vq@0J-sbgjF4P|+9B~>HrSIaU9-WDs1{q#`$B`)6T~SD zP?uNuIRPZazDMj!J?I}+kTliZGf4aUJ`Z@_)%Y((yt9H;O!X4H>A|XD4({f`+5Srj z-kYVSLZ}9BD)fG%tMX^Ul8dKkXtGqB;LVV@c;st?CK`E*-2Y*zrO-P!un=n?ZY<+F z!D|jyDLK}!4bI_XSxe!=7OADsduL!F6e>CvB(ot2-n)WT8kyufXz;D_n1{7eQ=xZS zU}2Ix`k=ypSZ{qx-JQT!g_cy#`qtLUoy5?MK`j$+f_Hwf@?D9nl)>8xa*EVe`0({| zTcLNVBn?c4VWIVe?`7zT5z3HTvu^F`J}3@dFF_ zQ9wHFVlm~qZ8%kh6i3i)RXBm|Yw!HNXb<%C$cIcmHD zDP~GRl(6wah!Wf;GKwX!;e`YexRs;E%Ge~_%Fw+WQi8unA1oOHN2VwVL;*kyjRKK? zdsb26HKBVc8ZPno>Pd!vh*OUrhdzSToVxS3S0a&Ik0DJR_#TNLS-ya(9|uY&T1aCQ zq+BM-(adP)8MSqX?hiJ#W35y--E~#*b;W<*Ez%LZgKvf31)uK3|M5L3_mIYU& zy|~(ggIJalQV=K35RZEUifIF6)hU@^lXWsU-AMY;Vc3o#7)ghLU!@-NUr_*oDmYz_ zW_9;_h)n`T$8{L$26eW8r%y*N#RKj2YG7)0UHjQW68AIY8QhICxJuv?z>g2VEl;M{BSI6JXF` zN!y$zZfJ%bX zLW&!LO8nqT8&pvx-5t}11T>Atued3ca?=>xQ0+L(id#b|w*m^SmC=~53Edi6s0=Pg z{735!zvu{_iBs^bq`J{K7Y&D2Q@3$=rga#HS?)O==Ecg;I%Q~~Ca4bCHNoo;fm}zZ zIbKb$gi?4TWt|kdc?_q88X^RX-rujs62|iNAJh-@!jDA-k6{GZ->1i#AqLpgJaP9|Kz2F4Uqel}<`vqcLi!I7UwNVvbI2^idvHiP3?R;cf}Sf7;D{va!?P$!N8s+LGpcF5T8k~}?)9GmE;np|DVZ>s zym%O7))FLd3=;#S!3aA|b<(?5a>#4c z-45K|khWf88En2~DO%7&9XNX(2KG`6Qf5SafE?{GK=F-Y&}#&*8nHJ}o&Y#b-hPHq zYiX-y5?7`Kw8scVK=qoENO)Jh_x0XiDUi=PN0%$Lfy#qQTeGcRo<_C?!UyH^HM`r!Rrd0i2+fs0-er105_Je)vYY zt|$DHEHoWp#0_2}#gUSY1Vy9>!43|FKtmPKd6;S$Tcs9;pG{?j$wDKe}* z;kCd3y7X|0!Tk&o1WK`nNp_>BkIK;4@?_&r_hOOhK_|ghcOM}0!dC&5pSf*BDKy6` zG?-geY8lxP3jeg?@l-NFIe}%Ddp}B~n??5C4-=D4LiybCdV(KEcasz#pmqrm*vA+(ay zQzSAF0{;!F$advK;V5Q?Qf7{TBRerbk!%YEiVHa*2ndNRxNJs`G75+FjnN`IB!Wy{ zqE`=^xzQtNoFs&X1dIp*Z$nX7yk8t=L!oV{|`H8JtXq74siYqm#IDw;pT*S9h-@`EnkPtX0BCtEv1N$D6IP5Um za^gi^G!v$ICRL{`w7xs=D#oWtK}Ia-=m{3Rg>EPVz8@eSlnt=8R~>lj8n&t_a-*dJ zKptt;Fne4Jqe8JDG<%3QTgcRt9Y71)f6!wgJ<8N$(4Zc4f#o2j8KfN#UGJ1k2etyz zDuMywfh3mqe*hV+b(jHiS*Loj#E1@LrR*>m9Ske_oIzdGPROeqHic4F?Wc|n;2+K$ zp;Hnc14jprqQZ@Nr6nxehZ0=55t=z-W`~;zwpydsLR$5wd(pieRxSKo23xo|HwJP0 zmP%};0-g>lv;;Dej0{0zwu{pbt|ZVOO~gv@Im31g0tj~CLV!VmQDiK*fq)ZDaWu#x z+cpu=JP0Sc&!q#Vd}+kw(!JwaZ1{)+Oc)_U#se`rh4WBQOs-0{MdNd+?hYoxPgVBO zED*mK+8(Gpjxb&mD1C$6i<=MyJa17fPc$NyCrzOsKj5J_9#3?=hrk^{cZvAf*l1oO zh4KiLNcUn9y?t~*}8ijuG8fImKr zmqUChj88)BI3|pzN(#zGhVe4gkzu@C%PpXMC5Q12Nxx|WA!8mlj0exK0As><8J--R zkHfQMHAnXx5A*n8yqn`45ys2V;=_2kj)n2<vMjZ;fFTsW;1?Ct$f?b4MkJJ;X!>I$J^b8wjePsSp3P9IPl~bB)l7_u+ zg^G=FIZd(HrtYj!g3_`azVR@r1NB;5uhogY*j0!p12&e}^uZ`!>HVFe5Zef5cDJSk zeEmwCwg-HDx~>CE<|5U;p$n8Ar`e~;5X)3-+n}ThCY~~7ph!ts%SsIDMi)qfBpuzK z!ka*FZqdh+h+>%`q_`v=gjX@38v@u4T2g!vW{EUF@k$ghZvKM5K zXToDjEPs|3OJEwK3Cu>q$`Y7#Yh(>ZQ|{D`lqGDRyf>u;CSQTL&qaF@Dx-3kDj3y) zpnVugWMm>#xzVwTTmVc9O&v8(&RvqH9ta|LNqNiVBl4Cq%862!d?+5BU!}y|pXC}P zAo}$%f!uI~5~4JZpSZ*_*7Id7cLe=IsKlgghkQY{F|=xkvVumQz=VVvVc>Ar>j`S7 z{8*VPpt^(}YanyvFyWXl;kjmL2zC@I^e~_;4JM3s6h=T?BjqEIr$nEiYARG1OEfC2 zqN&4ZNDGb06&I;te$>=xTn?&nkW-i5e+6Ag(A#*%vInGL+FR6tAq9w(?1wD_T)jwC zcXRzaz&AlY7QuK1)d0K-a9ZSi2`ON2Ky@RcPPSXZQ%gv2Ks{uYjOH#`GY5y<<);)E z9blF~PG2gMfVNm8dQ(!*2a1L%jadt&M4Ypo2=b-`ijL@@&HHc_D0)kmdRp`)=0px%ZEWbob5J``g5%)9BrZW{Skf@_A50GC_V5m1tO% zbUNT0R>G1Xm&xqf(~QJG=@C?>pp|DeNkRZ>zM0g}~9Se`5{DQaIV4;S> zqr)Szoc$xSoE$ojkoY-G2uX$}g~vrE0w(7=YokGuk%A;+aLG`p2D#3D%5}oplOtoX zk`8%t(k5;`R0+^~+RJ__u2jK)AgVuL*p6nLODfz*IZq_CShPeM8_>R$`T7_pYuU^9*t6jYJO2r|;)JVt`G;i+*|ur!IX&}oQu{Qaao z6RC31O_=JNsP9-!lEZsBkS?;Kua){5?_ud;$|;Sb)9TLqCs;s0-z*zz$?gS~!Ilx>h>ba+77+{W(}4CJ1S^7k zi}fr+o5F6fa+4k?MJysm9w~@Ckik^%y@G9V7<~hk({$i(6~!>PV~kCwk^+NWERzlFi3e=g8Q_tr%~%Hw3|0r@5ADmZLRn1ygOtp)!)_pn z3G<;sCB0{b9TdWlSVFTM3C(~u7gJe_(KPiKMo-zazzq|TsHLUFGMWb9p*nP-jHYS4 zjAm_odQHw~+Q;#Dv5Y2pyAc^pb}uF^7|TS;8O<0R*=@x#n&dS`W;E@};N6tktBqzM zC(dZvM`bh#+K7y%eJDuxjAF3(_Ao|K;W!yhOao;!0Sw8^TFPkJDWlmwBBLn7Q;L%t39O;GwG~ig$2NUN=nFX~*qR|y5lWHM zyF>hj2B=;IrvvT7-XG?p2VDlIphG+5H_3ibeiPzl$xVVYBDqQT<23Qf&64=!W*FV0 zmO@_VNNq}fTS^AGj>~j%6JrWGK|9ec zWjeorZh}B`PvLa)OA}_r9Z*e`=94%`?Wa)Qhxf1$!JvK*#>p0HLJrm4DvI`3Qfi!7 zm2R=^!zr{mPqPR0~#Oi%i$BxfFjwIv(=4T&NW9Q{b*1C)k%!#|QgToxDfj z@qYh^cppzS#Erx}*YaQ=CnO0r@o|wpXNhM-`FS+nFQIt9L{5sbc%PzFDcDEY&lgO5 zVib9UYnkW96F4dCJ{IL?=;lHr(xmZw0RFrKY3Wyw`b$WM{}xfdETHkCez|S5N*CP* z{kV;y{t_Pb(>)^=DMd4(Y$q#4{Uj+w{_sQ0<+$<7EdksTi~Z?!s&@E@-6R5O8^Cjl zJ*c7FC$k&8gA}u?!!83=~D9p#?Z7{E;%AGy(%z zLX|h5odTga8i1SS__%L`SEF{oH?pKBg5#tsw3qOp-wCt;2|c#3M%{TdKJST1$9w4B zY#f#1bR#|M@9(v{U%~_Zcs(GEJteP-zCM66de4A=r2*f%pcgz-~%iG=40^0|B9+=Y_eVjpw0;Vf(9q#A5=~p@c?muz>)BT(%x~@ zdkHtodYnWuaqWmCrx20&DuH;59%tp^ko#5eU3K^xfxU}B@8{1>#9JnKv{{cwpuJh0 z5%Dm<**WK_FBgwbDY{WjF*{*ato;B0KlvTpSh;gNGPt z>Q|Oe$IGV}d@ec|-@TaXO)lx0s_y(Af#Dwx`RGZUqjJQniF|i~0gSw6i5l=`;6Oi) z1FG&=4hZbAY3rZ1&0|BNBb4*e$a_Qn(cZmRLXcy%pcttw5iT{s*|}{KK|~ zqOpJ&gL6j`RPA_%)`Y*u?#^MOr6r*moB>UwH)WtsI?Uu+ zTpCE7=)C}Z2xi@Cyj_C#RoJ?s=eQJNvJJ1sTs(F2(L0WGJwc0=KG;I~3u~n%9n&H? z+1XQ7?YW7*TGCB;>0>RPX%T^*ttNnoJj@q5BUslO^^+Bt6>*bFd`HX^`(*j+o;aR& zn>VH7s7L$6ssvorBzR}wO$C2{B9_1zbI;(En|u5NczeX7Bd&p5zj((%3aqUceLw!_ z5>6T}(4|;9UxCNP)g7nlqGSF(9AGM@nR}wt_zWrLp3bA&ZVN0^^5?nx6?2hJiHOZA zv2wlwscnVzpzrtM5>?XS0B)w0yB$?{^~a&C2$U$wpCySzb`oGn$lyPu@ee0@r;F7p zv2>OqpqN!ScrAvCr6xtvVR0wPtn*Dz0ow6;RN@pehqHL~MxjF7Nv0Sli1Zz7t(D`G zEaj1%9*D_*$RHEV-o1_RS8(MzSrC|nlvj3RqGR&ZJaH^2j#Va!uD}jo6~?a%jYIZP#Y4*rMxlXvK0}*JhpAlG5eSiRCF>n^VLV zeU~FeEZ28!#))43_!DrHlQq$hHNi)Wh9K(Bo@!4rTMjEDJI_JtP$RNggY*R$9hL^& zCA6MWKS>Y1`j1CwJu?fvt&rJg?PHy9V&5*RcKBxD1(9tE>q&2E=bPT-e#K)ndQjDQ z)GNJ=qk2r#J_c~=y`SP9kgtzs8VY3X-MU_WUfyqeEJ6KuJ20^G{jKxFfkBg)Ocu6W zR6SPi@E^3hKYoh6yU0TiE#{hiYH0PneG)=~{FBc2eQL~`?z- z?syd*TZ&|=DU_*wIxdu7=ZxN5LlEGn3?T z%)1QoP|5O0>H=KVW9q$^?AAWt8!}m$L>6OJJW^gwj1EnN5YX{HtGfs7gJyH2^C+47 zZOL@&>ZCs>VOzoye~;pB@5fXv7JdJ6XOC~L^|NiWS5%j~P2UqVvde;kj+G)_%>p;u zR?GL-R;sKAw|)&X98m2DEEW8@iCdMD***``ExoTbmGf;EwXei8zLYc0-rpJoCm zd1KmW7c0MiS-lreYkdDQ5H7J^@_pNUwDWy7yW6f4wNI+|9xSvT_kCi8VyHWQ%rzbM zLL=TnVxh&Yr>{-uA#7P>?&pCOF$88U$A2gV!tdF3yQq3aQWToD%ji+TdfYi<1r?sQ~XVwFr$?n#~b;0{=L%!3TX;M`!+R7;VVfwy9c6F4|grn zc&}N)xp~ytnoBm0gQexIKv& zWD2mG|A6xpKEL7$1lM;e{KJue?M`oDJbu0#P{v9`n{8z4*+`so$>=q0qNq8{zUz8Q)coq421Z*T2^8AA{ zHwvh$lB*DO@L+)UB?jzED#b-AQDqcYXsTf3CGSIf0}bMV6!2{K_s^GnB)#}UPqw9~ zyKh2#gVFqpA<<8&t*u!n_Fez`wqJO^>gM-%^ih1} zKaNkyRl#vEwCr<)K!{hhzoo^zlN@!Bgc}|(k*EF2qQ~QUfeRG=s^90`%|L4=T8U4f8QQdT^yN>FnZ`1mRXZXziVa+$^`#+!I zo9q8v^G(BrKD)Yu-U1h^^*er*00r3bDgAnK%~p|Fs>HFlsbn_>}GKGYZC$VJT#&!n~J9Xf!^y#|M+{?f8^_yA}b@2m5AMJu_4a!E%INQrhalK z6lX9;T%w;%#N^YDy7Ll5&jix(CpHNRSlX##Kc-IBav4rc?w3gJm!@x9NOH$qXfPL- zW>B4G+k8p2DBhCjRlibdxFPkR`jzVG<@hcQh;Cu4gAtv~G$)ZnA6p!wG^bhv{oN>t z$9q4z=Hf~JhY4gI@oy!3oopaSSVMKk_wjW?ZaDBQ2-&S*Y27^XJEbEu6vo4277vSW zgzxx-zC@w!Tm>j>K=cC`7y1;QnWF`CWu&|ga0BupGa%+3IP!@4$?rn=eqX16K)TRw z?f0GUJgV;KK&7-;v2xr(bOD+#ko-ojQnB>M0umsY^%VCSxhK5tMc;cPJEBh!RIwI) z$bZKqtdB{UVnUd9$^5|Pkws_193f}89xm#NmDSSjQ*t=!4l5oIxX`EZn#C%7o)zEg zpsB#8OTN`k(P34JxJ@Y@QSZH5E1twFALgF(|4TeZtLnp~^DopOO%_!!9t_}j$2szf zlNz^s_x;*!OSZB4j7L zv1HyNjpt#&J_Oh_@qbS&@Vo5j38s>tCj$o`fiJsmy-}S099_t{*s<4mA6SlJsn{zk z#y$9OGRH*$5YI5M41&}lx{~+_eZSzG-hUP^5}ks5`2bt253rQ5P0$h9Fo(9&A9cRD z<OPhL3+1Kd+{Lk_P%tA9+N{k z+V^T?wgs9RnQbC{EixcP@y^JdQVAh%n;)4@N4Rxyx|W)+?V7#@72f6U?ZC~G*quH1 zKI^1PWY-6``1QgwboFd4e!|^w+U_4U;;aQ{{R)EupAL2l_zBZzo+1p*y@LyY)5eB@ zNAutf;&d7yN_9`PMFe-QJ zS#<|YzaUkHe* zUsBgr0_?d#Mmdc&Glc%K%Mr2o?BLhL;&Y->yw*`3rj5$I_x6ddFg2Qc!gm56c#O=} z5#Ra5cf@;5WVRBQZW4-{Re21m@GNx2_OLJFF(|?(G2tw!HE?f9A0*@;3H<=j`-{&W z!TFA@?9ldgzw0vchi63?RL^yh6N6JBLK(lm_^e{^o$!w^j9}CfjCCBw2@Zn}UkS!~ zf)SamAufCdWrFtxe?CnD0zINPk}RNw&!>CMCPCwT1_OAajQmOfCG`y5b}1h2a)pu5 zyWC$)ZXXjg94H=gK1<#E#Ihl0*K|6)7wPb$<-n){+{kPjeyMu$Z&CvP)g++7|3^oE z*Wh^eK|y#ETbT2b66wJ5_V^tZ-?`w%D(qwGd`0i_3J0OgM; ziC#gNg_*v#as=gUvjcCrGAa5gufP#?PfJDh(z?)oj9zb9Rna6o_2uO23=2R09;Hu?v1HRjLV8mp>+ z+=^NRAuX=%1=PWW3x>G5G|~gqjraHeM;&Pt99xQ8TWc0Kw{EI~uJzJ&dworXx5?A6 z$%Uq7NbgqEE?T~RqpRLiQ`lD3+~9P0S_MN~ZRM607u^DOY>~Pxad`?op4Jtf)`q70 z1z|c`mTqckZuQjgLs_%a+vpNHB>XE}9;xeQsb+b7y|=a1<-|IaY8ExR>RN@ViH_&o3ZWfTE%R<#?}7jt zn~DF;7(<wjL{QsO&+QBT|lT==xu0pR@F6nU4jy$ z3tR86an!Z8xhlQDUfATk$F=35=2mB$@K90>x-V;Pa)DBBJ)kv7+%9uHgo$vqcp93U zkkmqLQ3J#eK@rEYTr*-kE^cj>t6iXo3z#HC;{@Sf2rg!pi=R(ytAxveN%9D7GVe@U z9}^!-n;JYEkOlTnrU9f0LLpHuO*U1mB%H2IHH%wa(1c&n=*109&N7$B-Ru-@!&q5^ zh)`LF?u^mDsJW@W&I92Txf+FP8J9G}GQY=&VsJquavt84YM8VoeVr47TG%EHeGl|W zydSTrA!IPikE!L7BJS7kvZSl*eD3kCT?hK#!^`z)GS)s z*3jg}fANVkPaV#Fl(?aV1iV35lu*;qj418J#0^YJLQXthnB6VT2zsp z&cH4}f6Rc#)w)UesZdkr+~{rd)NF7zz_OJJH8qP`T2|G!cosJ_qKoinp~l5Drp8^@ zy-kL%O{yQf6 z+r+jh`g&{|8X8?reckQSWg#v_%`y!tm%( zH@jUxpoK^gxdrJ+=Zn2f^%UXj+Zyg~s`GeTU3t^=dc@6X4NV)G_4)b@IB(rhZ`_ie z=HArMG(@7Xo1ATWBS7f&1S&cJk!zg?aDlx^-^_M-3??w6&q#0$730%+6(kAEmVHINs&8#>Ycp<1dvHRnit5NnEf`;^9*p+>&(tXB6aw~WPvFimH3H84 z69I|Y=n3e_90AAu<#5KKC3ggjO%uW342?5B-82F~(-#96U#{6BL12Qv6v_ntH0rmY zX`_rEpT!A`Dd-y4p33k@&HongEb*MyKJd_0z#Nypk@mi|@UMkuZjB2dYOjX8@#Qxn zAgOJ*8v4lg)8F`UYHJ&2B&~t{wmR84{YJe(#-ux-i2Og@9nge)b$@VGz1cK>b=XWD zzLICUdSCNgK+rso@*>JUl>I0#p&URtgz_rN2^7-bsH+*V&*0W51MQ=2Y6jx?zr@ju z2j^-X&3G`b%0W!P&s96B3E*6fvl)+l5fwXK~qnk02r};v74S#ERw8H*| z^f9yhH-Pt*{NVT^99Mo{$q!xyyszR1#|QUU_`&f3F2f&|gCJ)n=*TuqsFNesm^HzR z-1yJ!=otz6qjCS0|MuJ=XiPTGm-_(5dMGrHUEw1w$Fu}Zv^f5 zf7qS>jp!B%uzyPd-T0rD|10bB7tt2=N9Z(e4p=W)He}}-*z+og4Os4u?qE06H8wo# z(#uI<`3|?Dz`y$_IsBk^lK$+q^y@BYesgW|rH8qUPO3D{Y@a9B`n?o7nI?g4#)m-`Q=`P&d0xKTnTi6D3gVA*ctD zB&KH>SeqcsnO#3;9?p3Nd^VmS!gFCb%uUlbH6znY&smU2seVi!)V0;uHR3@dfpBf$ zDP*1%pI@IRUDp6{UZbnY*fKYN_QTGC*-m2{G-GZa;*DmI3tG`b-^QLk(zi+}`!ryiC$b0OXTu#4d1=?r?RhbaTjnH*~BTbi-c#}gfb(2TjB_fRWT41uR&T;Qu|9-i=M8_}&!ev$=nAgc}Xtp=zzIBXQyy$Ts7=aBS{WJK*uqEa(^)&pSJ zUk+Z9*GlKxS8!X(lyuD z%$~KXYeaSlw@&8G({IAlHhOp6gD$<(1&5DC=)^N|O|+cb*xjD{Au6LV+nFX{smn13 zS&o>kh{rRRLncP`0MBpNFeJD!fV?1{&C$2H?x&kNavxWF3m&?oyFDH~9)ANpu13I{NXo9|si zxQABfX}~(Apq#3|L}rX`AEeY+SMTz%nUc7OQ7KE0O<7DLjF;KYc}Vm`r;JZ0B)y@b z9RdXnBV;%Y^EiJ0xNaugKZ9H(b%5oid7?ir9!BKHy3+KdEu2nf z%W*2V>5ZG}wtzA+9-Hc#w&>~cFlYp9gR5;Wvw0KHHW4p>9X->8C?$36uC_dql+m?e z10|TDc`&3=Zlx+&5EIF8d^+_;x)(}}y4nfuw29;xm0_IF(pbJ5!$3`xv^0|N{3a)> z#?-gvuNFYPpkK>dq$;USrdkk|{nq|dK9iHb|3^vy5o-}1SWGl2O(~{3OiN7_ru$5f zn4UC!$Mme}1=B&(Dbt@!x2G4RSEf7DA4qRa-;v&z{%ZQ$>4_OPW!#mqF5{7mZ)H4_ z@qEVKj8`%Q^R?!gW{Ww`yvf{Z7R}!?_nKcfzh(ZVd6vasnQJjwmRTOO?6JIH*=zYX z%ZHZBmc-1W%)2wUWT<-KALj&fl5$PCRk`)K?%d|wZ|D9j_jvA!-1l;g zd6{{6d4+jT<~^PFOy2W(zt6jvcR4S~y1-gyt+3u}{kip5*0A+{+a}vK+x7W3<>%+G z%=hL0DF3zmi}|+}+*7c*U|WH|;E96&x8VJPj|%=+@JYdq3zjTcx!}G9bqgL_@NWzH z793gd2E7rW$CIl#++j*LWts9JyQfThO#jpL8`FQ7E}E{G^3qGv%OJnQ>6aljF=J=O zcQT&J_(8@C89&MRdB)+4*D?k&KFkPb{3+w}j3l$te7#v`)|>A%XPIs0Li2s*4Upuw z&0+Hev(EAj%a1Ku6k1=lZ_zo2%3XTd)%c%5i92?E`i`o3wu={3{mrrR>EGpCr%=1Q~I{G9oS`Mi0$ zrO;AlnVPvg^V^vpX8N;MXa7U?3)zF&-^i)SIhpg*+;?(+lbeud%`4BV$$KPkZ{E?o zQ+c1{&9Pdo>#YA^ZL)RPzGr*OmQi3YSX!{6V12=N7raAw?Rfqb2bF1=DJgw_`n&0` zW&AGVV#W<-hk2v9-Mq_u-25B!C+3-!#g_XlTP-hJc4zL-Je2vn%!^sS#eC1mxhuz! z^Ua)RbB^bHkTWy)mfTahx97R?{xxrc#9VED z*8B(aMSMBtE=#dxjpb3xdlqG8T4s6XW0@~xzLXivygut|S+{4+%d%yy$$BEI4jOqR z``6jO&rZr&mh)Incg{f0b-8n(i(7O5G5349M{?iDeK%L1Hz#j?-g|i->!a2#>k;dl z)>GCY>!;QPTaE1jTdPg9_1J!4d&9Op|B3u><^MK+IA18Zso?7cSp@|Js|xB0yaihe zUMM(G@NU6x3LFcn7BoQr-d*q+$+lJy4&l&h`mX7S>9pyx>6Y~R^o{A8(;rEHH2v}P z@1%d4o`khpoAE%#mW(uT*=F8nK5PE2<%gDkwVbsiWd6_0eVM<^yplOJD>*AYt2xV% zU7Ec*dwq68_O9%wvVV~MdiFcncjdTpl;G-v-1fX}dEI%t^1he%!@PgVdpYk&-fQ6N z*LmT*^LdfH>#REKt=8Gr`BsZ{k+s(9vHs5b4O^Nm)0SsjU~}0v+uCjax9!Ka1GaOv zOSWtBXXdZVcjnW(C-mZQ5!Om&`YPBOclwLz`_f5ia!|i3eRuj~K>iUvuOKC|>O|9Fq%4Mnd)L1HOEO`$tvsBlXxn@k6 zGC4s;UEmOe#ZlJ_&wLiMPf>OSRzX-wi5)nNbTh`WM-VzlL4V?7hTGNX2F{iR z_(u$ptRW$AkE0lWGs;TbCAhZ|j{pdhaW28BIH4hu4SfR;M>OJM2BYoM7JMp6Lz3_7)3)u;2(3*>kl^%Q@&|)r>(>Lo@sN3x6?DL+<-PJ>(0-1%tt%mwmsW+`x^L z*cXV;7KAP#8W3B@&@SI&f-G-gI}`t-=HWQvv7K<^20Sxn-Ajsqm*>r0&jSqyNq^^jE-GApQBXQEEK;JIM408~J+kbn z;ghhbw#`sMmtz>Wg1>N==;#m~M?}Xl(Q#6A^oWkrqN7)I^ox!G(Q(%2IE!{l@gb3y zVD$l~m~pXn*=us%*`?+Cr&=IY7sFk{mmvrAFeCxDyMT#Lhz>-zgJ}>UsN8 zw&-Y;SQCTUR))2ZVJ(xfUQbxPl!{=sf42t3P9@Z5W7q*&p=mF zficV@)1hMrV{l6yu#UpxMv2)Uc-+X){roEo-BDA^LgFu^L+~hit5lq|NX%l*?W1tk z!cdiSREJG1r@@)uu?NgSZE&m65@!b;4}$tvCRqHAU8rM~90!nXl%P&@L&>oXd2t9G zNF_>MQVi~5B*qBt%o1x^+!=y}F(LnbJ$f$G1zSQdFnR9;^;tzn++Xs(=bj=>q~BKZCXP08nw zVg+7tQ*nqHmhfrhk$);={(L_O1Ye0H_ z^cJH&^|)U#2Tv)fa9h|piQJ7kb~6XxdPN7%UGed$gm#6Db|s;e`QqMv!!~IPRh~5P<;?+#Ml#0;qVgkw9ZMs54BCl-- z)Bq`uNW;XbJ|b=75s9L{o<|mSm7v5D4C!qgDdJLfL|ob?dJDq*$)WxTNjXYr3dM`S zv3nSoh)(BJ(P-?0NJ1h1_uTyb?%{PL2j zD4_A66)!Q~P&Q8TlFi^QIuyRH6tphFvh+dg%cBOZSc2+;))YV`*0wBY{Te}ltmjP{ zd4+@4>qv%!*3Xf`G&1bhcL4DEdUR`wFA;vdg$lFzs2p!jq8vzg*C2x&dqg~k-3hkmdhCf9a}=GD0d_k*E<(iU>se0=17 zqOAvLF}0W-jI{va{tUu{nRZ(eQj!n~<@$O32oS$OwTFJ(8Z^(o0V|&Fa)$0zx(}Mk zDZEll_-IUke$r+Q6DH>nbg$(dM@Ie9e@G@&Z4=iYK9!804wLw35x)K~oU{=~Y%W=s7XC z6?H>87}_0Po@vE;0-Fs-lM8TUbUAhbjUailqzxEbTTL$=ZN4N7-7Dqqvb|@!D6V|V zAQeS-8EBY`x#0=Ai0%`HoXlfl{;nr``zDP*Ccne-?%?|a&zZi%W(JOwMPlKu%ubW< zesai#yChGBR1^=Krk8#VqJF~(EOu?b3?{`bm+(L8RHm0w{=xx&QM<|K1r=NOt61dC z7JULW$94n$`@M88I|g|@E66HJ+X;>2F-wjZDL>k8IO8|;=Jp*D8NBaMU$<10(R-q= zyZ3nCi8IH~e28mzZ%2RrKwmfiXL!dS|4zT*ZGZgRb2Axh>v#HlCC@I&kup#8Y|1<; zdUl(9`A{40h%$ZuB;j#1>U&b*ZZ46OA1^s}ft=s)wv?Y?dg+kAaF6)5RG884XcxW2 zr|G5R(muMu#Ha7L*mt8>W@E~&80DIDy0VO_4fuHyCqLbCX~5}<_VHxlT?@@I(B9Dm^QtQC55MskZH07 z2`Qf&((w%+`yGk>`4)c>h8Vk~!g#--Q!0#ut@s`71UGd0i#lisAD-MvmCK8Tbn8Wej?!M!cdHhT_qlWhI7xnV??axOg zf6+0&gH^^qGN67>BK~av1%FWw;yx?VH|YX;1n&;t%`*@$?R~#Rg$}=?sSk$V3oO0; zE>t)Mou31rCm;gI4)q`DpJFCXPXgS1=0hsyY41A$QvmAianK-LY4AycF2p3-&qASW zc~Fff!#|0k=st5C*4Llk(-#0DFRObTy}N(IfY^!t=3~8&S;v_}{VptO4e);FpLB`b zma;ys?pfTJc>f|whTgtI66-6_#vz>OT74Zbp>AeE)ZL&?I>}Iu!={)W9f$oeqmjE? zzu|p<{QJ3?=eZc`H<6jJc22=c$)-%K%c1A}2V9BV7#<9=&;P~RHQq6xI{`Cc_S4?)*wc>^ z7AWWZne%8zrAbkAdj>V__C%^EH@JVh5vf2?qSDrV0i`w1oRAI4OVwaBANRwgPEd0b z>Hccy=*;gG-g_ab14ftV_Y!`;m+(U3-}JrdFKX@oxc7vA61f|a5|9Cs{|)HpDkiS+K@MNFeWso&ew= zfcd+@KYXLu$=&3cPq>#5JD%uU2k|)9RQZGhEJfu6aeKCLQH@vAH8f=@{v#utmzxA~QH{+VojO z+%Mt=@-D@FD;yGc@~kBiSm?({02)N-Pt=6|bWGe)LlgR`c_4U1=r7y|=|+kBpr*uq zsyJ5Mx1zQ#?#H8o9QRW+ai0g66Qc%xgbW_|GlY3+N+^O8Ie;C!X0(AD$>lY@EQYs`oes*yD-w z%rtuZ@jWn=H~sN%=45^*GQ8`*&qKYwhxu8wXHDR-s-rzcceQ`_J2t{oF~jQ5w@UeV zI&1l&cuzRKAl~!Fw|+sqNB-5udyEvXCEizClqSCRc+YuP;=T0>@t!;lw05=e9x{v- z?_ax9;a6n6AMxIi9gg?p-^mq{QHJ6@Z!`+|$Ig5r9)tT+yrB~1JFevZxE09p9sd3= z$Nw#$IIs49cT=4Iy%Oi)5=M*jtL`A@HhP@@5fJccAb(!~4+|*x6-Hx4;bsv}4ho}1 zq^Hm_L3i*2TA6HLfX1iQiMAbBerfK=rZt8%&`_2{JlA)(qoV{5^YtA5lElzZ#C#L< z==~ZjlVr2Cq*hR%r_bVH_Z`7lqms%syG>oWM#N2of1~)Wm>Vtje1pF~^EDfu;xrHA znO-!89N>6Dut$#%%ext@_eqAqbnt-3q&LftNj*1&7Fdaob22CFd7k`!R*_L!X2$zjH%Jrc z$?636O(H;37Qle;npNH)vmX3|`D>E2f5NrPeDtO!yf9FK@}9(E3+A z*hG10u9?=J@8c=kd;D?#_IU7*F&&=bZ;8R}P$DZDEg7z3&9NaG>w|$$Zl~6A-yQT) z@u!ZGrAe>RedcRa>&fGU`ged~havO$ljp*Sd|MI#M+-#nA4rAB=+Qnyvai7S0%-unsd30? zHZ$zauTk*{rWPAXilshhw6ypRLl~dbatA4mIA)8z^rB2qkYefj)DhCwH^m-$OGJY3 zcu5M&*1=c-tb?^}dyc>d*jbLT)aj-E;|0Mfn)*B~F z2?V@zw%oybro5``%S+}xQ`H>@?*&d``x{JQIczB&ls#b4c2QpOWzEY98AY!J74VAR zvu_js)Xy2i1}=K28rzvQu!N^vn9$MT7opG}M|@5-BKc2R{uEy|Xo@MM-MK`Qf->AU;Uc=TkR zuTHbU9~C}#E0nn<4zzu*5eG17vYB9P9W_0(X}D@>3p3~fqv@Hgz*EWK?GSB0{Ub|y zDB4DLXpA~WeZ$9A7s&e@2Y&H2!Y?`cUoS&xbe0<_=NNK)jb+q_HsJOs${jxV7!)e; z%5GS0JX>cEY(YL*7_G@Szm|mm=r!#54c?S8B(R4B!B+CwRO4u%8s$v~ADO}&AaS*S zJ@ArTfkiT^e&Snssp9~32hV9}z2!!_-A5#ldgkX`X@PjulD1d@jp}{nX~M-{OCa2V zPydE<_pfM1&Rx_&)DxaaCk20iTxs(@UKh+Vb|i(JSLM2oqVBv*M)%2Xs`e9PP$Nzg z1{0A-Cd5MY!B(oeJ|UW7HK_=i{0_9k&uZ^t9s!!UgmXq6(@T zAKj$N=vG!XBbNAQTjSz zu>UeG3*t!d{cL(EWNd#4bRv7xFP6Cm!2lq4!d6}Jf_^K{(Pr-I16D$bc~3F!`}Dg zw-rs^d^|dwRWxk!#lcFu9A~LJA=><2;8xop6^=+tF<9&$n$i4u)DuRm$$RVIbMaI! zmV80sNS9$F892Nli!!M)@-3;gej z`DZD6{Rb@Fcr#w-Ld73_`Uk1-EU1Zwzn|p^m|7m98XE%bNu(**JoO%OQtBaZ?kyPa z9m!(6vZoHFmW}YgU5)|pfW;SR=ZQNc$B2||#+#w7c+JMv(VX>il^GMoA3 zJXU8wT}Ljx6QzmfJBYbwk7}Xs?l12`>~b z8TQPh{!iuA7LY?V@<%csjee5efI6>Gc?BvLAQx{GiXp@ks0Q9Q!|isFlMIERVJb^+ z*OKlAe+Xy8dm`w4Wx<=aJ0 zxroV^OY#kF17KEBzBH@%8z3M73pDvlx@T(0azz^%ij}qFA+r#iZivOQng2-F(EQZ z^DMifJjPuZysyG!6C6p5n3Nr#3DRC#0yp{ILWRo*V>ZYGXVWhxW#Qh(#$Vo3=YPEM zdQ;0UiQB?BX)X|&ye}dJq~11MeLgl$i)ub(@U;g2@P|Kq+H+UuQy(_ra1Vak+0-Nm zp6d>MY;Ha@K{(}OL&(?NmTFIP-^7Cr_ylg+A@RU88br2RrcbxL>cZD>V#_qb*%!QTL6q3As(;IW4Oz;-zdB`XsiLAdj0H$)uOXkpF*#`k0Z;lE^Xx zhG=|R^a{rZBcZ7ODYH-d8qwr!#DAF>Ug|=EGi|%brNFR;56Zzfm$Laoa-CSAh`R06 zr>AV)Pj%i5W2WxRBr-CI9C6{U6$7MPEK>{F3QbSm4SX5zowBJ@%k6*--im*rm4U&{ zpZ+DXVqfzUQetp!Mk_V{Fym1qK|bS?|)O*c-ZWl8*ILG!&;aJ zHNgVhKbGQ~`@7~#6V~3uVan(=2X11Joq%w9*`}5j>ancL zO^w3sZ2D*NK1G!n<)(EvJ>d56;s*C5bZ$(#3*!bK0MkqqKmv)fEbey(@1-D780TXz z1H4{Eb_*MbErxZnq3lZKriyMbl*KTf8aA*P(`n|^X+$}AAMBMAMcaNrn(hd%X-TY| z4+XAk9*Jrmh(dLF_ROq9UI&srA$27@G036mv{B08CZ?J`vlhe)WHl5P(7cQrgKT~a zK$vF1b1}qJ8CT2yka~bM*C;(~6myIc77Lf*K3dF)mU7MFvS>7wi13*kBQ7&b566f( zF;Z@vxGY9`I8Mw##dvX9ob+(Km=iDMTEu1X(!&-p$0AJ>ms#X@{5#MGWwqnQM;H!M z{ooP0dn{gLFW3zJ6ic%0E5Qx-3FwIAEsn|Fg1X5^SiQhtrjWZMdVX>>{zx+XQaA-? z#D_fzPjK%8Zxr}3@D2S;JTo{8jBun^g;DX!uTBHEz$|u7J5(-iV=j2miYd$GgNY!+ z7F7@%3UJS3!}%Y}wn_owAITp?T5HS41Vz-zj_1MV+Sp>=l!XPbg`iPWJMC?CY&eJ) z$7|)-@M?{_a`k>st*1c_Cu0W%atSi$CT}>fO{MkN+4RrU@@4RSZM^cpRs)8>>p^0M z1vZL9Jg_m=RDlh?OO9$J817jNbX&^lo`P9>y}P~y_bj6AWkC%+Y7!MRhENZhEfybVprRe{K07<}{+`XyY#!g%hn2L*D3p)XGC)NSR@ zcf5sER>`uR8k|pQZq*^{7+j049d^McuN(LV-y|=!NG3t9+2q{{5L;=G<9Q)WlD|R8 zM*QAvG$kfafO@G_E?|6>);P&?LPHr>KjUGThzt$WKHuqXu%=z)c5B!m@tvD4IYfuho>#&o&m zHnGP!(ssstE{0KTxU|eDTP##%2)qw%Q^N(pDjFk`(Q)4*ZDEy^sQ^v4nWCOL!fc0s zbxHHG`ScK?<^NFaLOcX9wb1Nd%4bs_ynYKdDRlFV#>jn;~i$UctcZcDAp|H z-NG7*i3deXEw?BQ_Q|=326KOPY=wE>q7K%=nuopz$Iw^BG=B=mgu%m_`It53q9umj z!+1R3oarO6AwJg`f3X=s7UIzeT7^co&?rbt7K(M`11iHD33GRljEI{R*%VFmxV8H7 zZX-J)^9*jjk*%a{Kxf3Fw6y$21629Uzn}w)@4gO>wAlZPFP1XP8~lv?$9!fNXbi1c zh@FG~MSel~e2+;zn4$JRa5CiV@w}CIfkgyk1@uLz=5XWnSTm#-UE6oauB|N*S*rKp zk-vkGVeMv7^dOB(S&7$=QhAKvR7E-I*GMAe{Y>`!i=Om~`1}{ozk2XQq)6IGL#yBi zcqAO0x)lpBbloXmcgxpp@^!C#?UAn?@^z1VJs@A(qU=^MT7gYB=nV?=r{-Z} zn^1v=s2PI$R;BW)tstufXVYU0`dF*m)rbN81Q|rEkO5F2^=X zb~$#?MRc^cT|h>cV<(61;?M(aml$+6hwkCfj<(ATx|b)9vqwf<6}72t6?!8fYZ&D3k>$mxJrTk3MIwVPF>gETB-Tt@|KlkiZnl z0$Wj_E7y<#3t&p_$~Bq`vDDoPX}cy;Q9OsI``kp_3u10en;CXUbKKY%y2*`i+rjc_ zrV_*?SIo7x#UV$Ejc55OZF`U}F3XT&_tH&nR$B+FKm#>Y$QE-KNU;eh+h(B(%L-VN zi@A%%-n)*m{a_L-QQd}|jV)iHLE@ry|H*VNvJdZ>miZO{Otm6=2cPMaZ@|EH$zFrx z>SP~p${KBwHQEx^=tdtK1~B_;VR{|GJ4VO2XOqdFfpJCg$c63$_fup% zEPk2H#FuM$VSrtYF9=T|Et?G1hKwkd*(;v&{Cw!=0X+Uu_Nt*S5}eu(f^;2_uhao3 zO$|&}Vkqp7;4g{>uYW~({i>DpSxmhe2i?>4ugCwQ2C!iXwF4dhi(Fh4Y4bg>n;1)J zN13Jc`oAQ;ziKJ%xy@3Vy^7oYRSEkSQfQv1rqo?oTVrXcTwPP*_SCy(PPSO;8y<6& zCRMWk^=0gy{##~S$|@T?<&WAE>vNJSbCT93ty!B?k+eFgrn<5Q|4JH@s*`G_O?h4DQT2D<` zgC()%E7jA$M&-3uSbNn3?zex{MkLl;dzFe1k@BkA5;u^n)A zcTM(o)rD0i5ra5zE6&?-#^byb=Uq7O!I_A2I?nrXs;X#i|JeE%v4)OpypdL zhHlMimePX7W799r8apq9`2XQelROqvlTgM2kymw@zuy1=&4boaBusTw8}69mh3vrcwI>@o{aP zdUQUnty7MUVf6OVdgK^(s^DXju|Fj~8o~bw@v-^CwcuNVV+@(E zvTu%|#?kxx)%DL&QI6WqSLu64MTmYdD$c9)zoX(*8MIL2sjgc$qqMf(HKW>7<*sDY zY{8kcbZO4lojC;yL4VXD7MUvw;?;GC7lMHO{ykML1fA+S7Jy1tmsHju>>%7X(6YhQ zMv6JP(}C5p3NsWp{epm!i5y190@&0>fe#ldYbwD}RpsL@`Y{1Qu43Ji7|8<1Fil8U z>Uyk_NY1n*2u`O=!s&!8>{kn9T=%Jv-A8mwJnq`*t6ep&diu(OFEf(*HkWfU{* z&eY6w`?ML8mANQitU&ijqF@tR^!S1)=pVmoG6Qmz)s{jgl@K#r_4T!?jrOzS=Ly0; zvOnQjs8n_7C`bb+toOf3_Va0)U$zGyL{bf%mpxn@?mY7*jL!jCV>gq-}6vdFpZ3WY8t~n2pJZ<>e7-Y5K7Wd=*1q zmAM3bPlhoqU)q8>6I}4rxEkxQmcrJhu<*o?&a~9H);bCO?5Sl*meury4y{UYOTn#@ zXGyFsS+~l?7_Kg_YD7bT6ZhM6d3Nem;xmqj5-W!zWb?<(bo_RFSY zfCw&JHLUMfd+6P07ZInfPpY$GYJf|btGu$tRfaxA?KM`t^2$au1zJaiU~1XebVe_4 zNu)^+HH51XnnO#dTu9j0kmc666H7}fTD%Epel}Lk%vW7QT4;+Ij>ARdziz3M(QD3Ln!K zFPu9+H}`AF_UVoV)03w!TeNu5^!dvdES;XeaLIgtQFLvx-Pur4g7xP*cm4DSs3|S8 zXS3d3Tb_tAPR9c0vIRLy9eL9T^Nbny<8O6o>Gb3oDKk>(?taX&$}3mjUzwbdc0ce< z=lG@r;S9DeG~eaUao1KaDXDhlSQ1Ncn`CLgA83I_!?bCZyJlOgVZQ%g-m%}_0RcPS zN}=^E0j%#f~tmz5jyWBWe?b^(t5b z-n!cgSceLh0a!m^Ju27;V8eiob!>YcU(?{+i&Hs{;QkcOew=4<{ubvYoWcwEnIoJr zIPbujh|`L5CeA#ZOK>X3Be*YCr7Lj15$6t^?Kn^39Kd-Ar+Fv*HO>s23vjN$S%SlD^LT$sn4oX}8N0}O9WXpk}dY63=^rPXzU&_{O|oC?Cn6Wk?K zs#b88G&EpEQ;3~VvWg}`MxkI`PW@_UK}mgsYq_Vc%9T@7_MmIs+S>Xu8kF9F{M?7w zqdI3!!y~noWd&{;wcn|N&#SMkR&o+l@a603z(4(j7;qqnR=FCT3ak*YJQ|1RxvCbr zUDeCj2w4!mrof>}HGHK4U*cLzIGsv*nYLU7;285eb1~o{KC9&PyxRKe66mW&P6Lgj zvDC#z9)#~v8U9ddsiz(hmSFWVtbm#Z=@vN+k_x-RE`l|dI&+km&n6sbD;d6!%{Mvl zkPKVu!6ypUF1e&29GBsw8wGeuhCNbJsr*j^D{I`E1@PSO{LD zloEtOr1M?X&UwtT1i?jVR@4bCQ!5BUBVbEB)vH|fPDX;{-x!7goglo9v}_8@(B1VR zH3;v7^8gft-f)^X`GkUX%P{?M)s(uNxfQO`HG*)x8YZ_l(Y=r0%pPEJGKsH*VY#(6 zr6q2dDNIMOhv8&~A%-%;a7O=8r0K@Fuwj{Jm77^+g976m3cp6$IoDHJRmQX~d`M~P z-uW(fMQxdIfzk^xtl-K^AzpJPIzvh!(_Bkw=MwaJu;L-j;@A;BA9O5T;#iz)p8>}} zSuw~P?^)gOSZRH_jiE{e9y%G!&9P@8{g-mqt%Hhd?5T=g=yw8p1wpvMdW+R&U2J{c zdc^uG>&-TcZLY1r_I=wf+ezDbo560j-)_IxzQDfHzQ(@ZF50)*|Hb~cJz$ScPEO8C zE=c}Ha(VK`Tml4dkIrG-cyv%Q9KA!pA%+|~wW$w)UdFC%N4`&W$w$D5? zvv=l4Gh=31XDyypF>B+j6SK@&RapnKUVC8a9Os;hIgieHdd_#}JU{29Ih}L5=Jd?@ z1FdFQ@Eef0q*-$zRiU-mT5YYjK56})^@rAN))%dNt%t0`R>5|iZHg_%cAM=ETY}AQ z%d$OaTVwOs9=A2yp0Vw;y=dESJ8pZ&_Mz=A`&aB)_FVge_OIDX>=pJJXyH3{pZ%Zh zJMAyqJME|K|7rg(dr9)Dl!GbPrOi!iNZXTkJ}o)@t@QaB6Eml0J~eAq*1u&%Juvfu zH4nV_z;7OyHs`fDf)#xqJf>UETfc0(Df#x~dy-R<9mx+Se>=G@`HAHH$sNh3lE0Sn zM#`DZYD>8~RHfKa{9 z%>0?HGmp+ZF*APFqFKIK30c`$zsPz$>v-0CS!c5*J@7XVG|qWy&h9z;=A4}KHt8xG zV-#Er);O!(nr>ZXy&szR2ekcuY;u0qmSXwC zHu!t%bJl&<{nl>lh;@Q(vh8Nu?Y6sZUqK7ZgxxK&Ewz2aw#xQxTfOaR+YfBd+g`SH z+D@Sr&e+Mh5e_(%}wZJL+hxT*!3CTAn-<@nvo}0Whc~x?K z^3%ybNPa%~<>XFi^26kF$rDm;PDxM6OL-`zBBeRSm-1Z7iz%Hc@1%T~@_CAodUI+{ z>f@;`sasQ@Pkl4>H>ttY*tD;v%|v@HN?V$?GOaT0r)j@TJCJrP?VYrNv_RVDX+pX& z{Y&Y$r6;A^(!Y`JO0P@*yY%m*e?NU&`p)#9r5{TFF#UJw|C2r`!=5oSV{XQxjHMaw z451ifN$6X!?zZlMCAM43Y!$XDTSwXvU_P1FlXg0-H?1EO&H}#y6r$73=`rbX>GA27 z^n~=q=_}HU)63GE(lPY;Baa#7Se6A2><55P#spz?6dY!0z1zm8sUhqJ`7R0_Ya-fl zv;(e$9aMHAyTf*Q?1xCh5Ntk9;$x0!5hh@igr7mhn9U4~GQ`P;aoHh=@=K|xgfhS! z<-#R~lA%NSl~e*uz&RR+$}gW%8OBePg>E&6qK(@C<=TKM8r+`pa;-XYkYA^8NK8c> z3eUU@@pA)8XbWBo&lc3?JVy{hQsLQ#d(JbJsn-$%V|YRjm(@>Hu0+3-^L>fgsnZX-y!WK`30tLXhj# zWo7`<17(KG&`%EZ!1M@0d<(+20LjLc^Q^Q*6QKA*TX?@D2+!j#eCXRE2~^|51#qX> zj|KM(a}-IaJ(OSJB`EcPiBSP+c+H`-*8_mcJ&wH-sqS%DI;Ynp1vB2hW^xhZ5rSYgZk?d1r%0NuXmu3Kilhao$tBgGULiIs%ympQki zA6!`Qts9(}ij~f^DVIB2tI_gb2>Zf$nE#snYfG5#tHFd9! z`c@tF$uL5>mfY@%aj(L`U5^F6w3-^$s2NojU4?I_eqYqCTQ)_Z>Rw zEjsG`x^^EQbwMZl9v$_~I_l(nwC$cfF4?1X)M=|qjUA@!&{4lbM}5J#s2g?E>9a#E z^=&%pF*@o6Zl@U+v+yXogF;n@67e^qJ};viTqvW0lt$DWvy7~t z$X-DApSlt-m4f=>1f zI0vofd&WiGt)m{VqfQeUjW*I~!(J`*fpJk^ucMxzqi)nu->joPGA`;pI_k7pp+?e_ zl{)I#D4>;Hm^+^Sen3aPOhdfP!-l3yjp`*T7NByjhx@BC{H|wZp>8M+D z)MIqit>dD;OGmvxM?FPHy-r6xdtB6qb<{WOs5k1Ux9hB~U|iJmbkv6(ST-3MfsAub_C+Mgr=xlz+xTqKCs9%btmC~=Xx^|t_?HL#KMjdsFPIf~iKWQzx zDAO@6>Mc6zNjmCg9rX?!^`3E2U!bEt5=krNv`+IIb($X-7xj%g>QI_fbx>X&q~FVImJa>ovYuPbkr~FsISmb&mI@`fR1{rj=Ec?`CU5A7mSN~v5vY? zM}1f)yICiD@wlk(&{1EYqn@ObeX-8w>&8WWrH;BmM?IjE{nErx#Ftlun#M(aKu3L} zj(U|&_7+{cw~mYYF&*_f9rfip>Si7F9pj?DSV#RrB(0QQo#uDwG{0wD)Hms!|1HsCVe74~&cYULEz7 zI_lXv>U(t5N5)0{h>m)dj(UNP`ehw;A#XhKeT9y?prd|PXY&ISBir3PF6vD>>WMn) z(K^|8g>7D5CB7ZC##$v-R?)-rL1h(PHD{Eq*P=)Pnvut!dKEoO(drde(F2O?Q4l%e zkXPDMPKNM|QbyJfX>~09C_VSjD0|BKFP1BHt6~Xb%bq@>*iY1y2h&S%TuWmD%&?a#11LVzgK(gKsCCL`&!hK@{8Ict9)aUs3BuhF|%o z?-#_CRsp(qMWW0~_0Uy$M`%$<_PPd_r>u5*y$j!Bgd6Q=$RAKR)RJMi6rOn*;yDp; zI4sqn@NB+{_G&^sl4#U73FY>BJj62*=|(DiDEycmvVR_pXW4$PjUNq}5J5k{BR6r0 zxzzO3kyE#fDg{-&8AUCOLzH2-?!%=OcT9E$q36aS4jIG&$PP`JrGUgKT4iO50NJA{ z^C%!48pzXtSTwaZQyH0`38B$NSckF5PiFX)fBH6!Q?f!=#STMqMP-Nbl$+4|Y>Ez} zUQ)6`SEWs@3%^woRq>DtB()!W z$YVD7nN$a;YanTlK)c#;U4|m*HBnE|Q6JDzKcb^v9HuV!ukXQv$BJJ{d=E>Z#CMgX zvJSHqDMo7xxetc4I$D{lX)mr-d!i!O72;yy@GxeTm3W2 zo^lLqGW!`@uGF(%EPHx}Vn0#Zm_u67$#qSZc^d3#Y(909!jIBZQtA{b6iC`$=vmt@ z7AO{VP1JjI)Hmv=SLvwl(oruM7xj}m>Mc6z6*}tM!qnwn`Pvn%PU)3lJW8)r(UN=R z3PlQV5qT(H{ZG{^2|sJWEA+}HMH^#VZ%SDR&)B{4#1-_TSnr=v_7wM(c;;R!we^c- zPw!Ri=L)0lcS5p{{@uhL`1oSh?xT-M6#eir7|mSayNN&AHcH*K_4xGG9kN4eQ@t^E zg6BPWj~*AAB;)u1x5~2se8VDt5X|4E!>F5;`8~?eds1X|9AW}`hhIUO<)uWmxuMK$O)>PU{9_Dju6dVyU=%aL9c+NID=!4d#V_?9u43 z1Q2DdlH+*-kR4HKe!d6DWesEpAlVwsuK`k_fxJUyH2V1sAasyMI4yePUfVBjg?%Y& zalFh_K(v~l4M?$u)>1&WX*etfWJE)~f$+!&SvdO?U$8Q5SY&>@DAU6r3Wr;?wP=q3 zw%?b!O@Azx;jQeHHv`~rL@Sv0qfDNLXL>@VtQK-f2LMR~homMBInOZD?)nO3f)SY- zJES?2vYNqb%>!hChSmxyqtQ=(d zVF$`6Z#D2*{|<;*(-t2CqC5fTWdwW!)TAk60z~o8yi7bGBVaphKhpuJTcAjREMXQP zM?#W1L(cxw#7u0jjZs-{f#EkqYZag3mhG8^TPARs*&jopN0 z#R3iH1X^fh{E&@dZH{e9VhKSAvkhgmqk=hr?9#}!1dsz7$VxyuLOc_mT0jyt)FnWg z7%fGL?Nm#H=S4usk%jexABPGZT+-8kWWxheibKuKVxT5*8v z3_+ZHGZlfaOOSr(pkJjnXfV$Ogfhd{`z=6v01W$$HGpJk$~;N6Kr3A4p8zSItF$t5 zg`WTtr>S)WkUg3*Zv&E~Df2NP%7HfJo5To-IfPk};!~7~*VLMVwWtCO=C1&!3+CV-dSE*-{4lhoOfc=qi`axswy9A`MFD%FLRgFyFGQ; zHan|a>umUT)wi9rR~x1b*uK;$?~doh&VLO8+cq==#+SvR4cwJ4k-xA6=r9C)A5{!5 zXe$?B#+E*qqtsSA>(=43UrNNONb=z zunG0Etsd2?4G97=993y8%wb6$FDf`?8)BA2+TwfdmdR$cx~g_nNtLsV&7H|CYn?KP zPp6&EIu~tv=&a|PFFDzB9PDpcFQ^~vOlM6CVQH^L+WpXp@7=*WQPFI_NaB}Z4`OF{ zb5wm9XhkSnYj^VR%AM8N60#9b#~29vAi;!S{m$}I=Ni|#8FrSy-bSt&$%3mwX1@Wh z3Y$-s&PY+isC=p#z^bL`IS4C?@s-8W z*>bi&E;dVc!Z>JuE6tu&PG^Oyq|8}Wxk}!G$XP;0G)g&!0a;<216492604r?!t2ai z{?O7#kyLz?oHTtQF=6eokSCR}F0mmz@G}88$vZ0E3(YCUchp|ae3IZ$3<3foF(6Evl<>cR}c3b5Nf2A9!MYMHkP*JxCFSYyrhW9f)_mQU$kW z`@oR=REckKr~&aE6cvLi4VxVJQEzY;sx%st5pr{DmG@!<9?gz}G9u;#8({!gFf(77Q^(F-h$snReNzRo<3UMyA;hGE|#y^cUJCk;>}#dJL78?N8m8qb+ z6s2S?)bi?@RJ8%BbF@IO?0YJUCa?Yx^H4Nr18vO)D{{vetp#*@JId(Tf^38jR>wu& zKipy44h@p!uBUV?oq2_0X~>hH9cfM}la^NrLrundha6-={Zkf+64J?eX@N-qMMA5lsAR_Blvteg=;JU_DU*oExK|Zm> zVq~~U)ok%R9lPO?r)E^b?N&2xmH8NZlU+2mmdVgKP}{RK(MB`GRJp&=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ returns the summation of difference frequency and sum + * frequency effects in the vector vec = rvec +sqrt(-1)*ivec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(vec)). + * + * Install gfortran and run the following to build the module: + * f2py diffsumfunq.pyf disufq1.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + * + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 22.07.2002, oct 2008 + */ + +void disufq(double *rvec, double *ivec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2, iv2; + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix=0) + * kw = vector with wavenumbers (kw>=0) + * h = water depth (h >=0) + * g = constant acceleration of gravity + * nmin = minimum index where rA(:,nmin) and iA(:,nmin) is + * greater than zero. + * nmax = maximum index where rA(:,nmax) and iA(:,nmax) is + * greater than zero. + * m = size(rA,1),size(iA,1) + * n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2) + * + * DISUFQ2 returns the summation of sum and difference frequency + * frequency effects in the vectors svec = rsvec +sqrt(-1)*isvec and + * dvec = rdvec +sqrt(-1)*idvec. + * The 2'nd order contribution to the Stokes wave is then calculated by + * a simple 1D Fourier transform, real(FFT(svec+dvec)). + * + * + * This is a MEX-file for MATLAB. + * by Per Andreas Brodtkorb 15.08.2001 + * revised pab 14.03.2002, 01.05.2002 + */ + +void disufq2(double *rsvec, double *isvec, + double *rdvec, double *idvec, + double *rA, double *iA, + double *w, double *kw, + double h, double g, + int nmin, int nmax, + int m, int n) +{ + double Epij, Edij; + double tmp1, tmp2, tmp3, tmp4, kfact; + double w1, w2, kw1, kw2, Cg; + double rrA, iiA, riA, irA; + int i,jy,ix,iz1,iv1,ixi,jyi; + //int iz2,iv2 + + //Initialize rvec and ivec to zero + for (ix=0;ix10000){ /* deep water /Inifinite water depth */ + for (ix = nmin-1;ix v){ + dcross=1; /* first is a down-crossing*/ + } + start=0; + if ( *(y +0)== v){ + /* Find out what type of crossing we have next time.. */ + for (i=1; i v){ + *(ind + ix) = i; /* first crossing is a up-crossing*/ + ix++; + dcross=1; /*The next crossing is a down-crossing*/ + break; + } + } + } + + for (i=start; i h) ) || ((dcross==1 ) && (*(y +i)>=h) && (*(y+i+1) < h) ) ) { + + *(ind + ix) = i+1 ; + ix++; + dcross=-dcross; + } + } + info = ix + return; +} + + diff --git a/wafo/source/c_codes/old/findrfc.c b/wafo/source/c_codes/old/findrfc.c new file mode 100755 index 0000000..ac0b7d2 --- /dev/null +++ b/wafo/source/c_codes/old/findrfc.c @@ -0,0 +1,118 @@ +#include "math.h" +/* + * findrfc.c - + * + * Returns indices to RFC turningpoints of a vector + * of turningpoints + * + * Install gfortran and run the following to build the module: + * f2py rfc.pyf findrfc.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +* + * 1998 by Per Andreas Brodtkorb. + */ + +void findrfc(double *y1,double hmin, int *ind, int n,int info) { + double xminus,xplus,Tpl,Tmi,*y,Tstart; + int i,j,ix=0,NC,iy; + + if (*(y1+0)> *(y1+1)){ + /* if first is a max , ignore the first max*/ + y=&(*(y1+1)); + NC=floor((n-1)/2); + Tstart=2; + } + else { + y=y1; + NC=floor(n/2); + Tstart=1; + } + + if (NC<1){ + info = 0; + return; /* No RFC cycles*/ + } + + + if (( *(y+0) > *(y+1)) && ( *(y+1) > *(y+2)) ){ + info = -1; + return; /*This is not a sequence of turningpoints, exit */ + } + if ((*(y+0) < *(y+1)) && (*(y+1)< *(y+2))){ + info=-1; + return; /*This is not a sequence of turningpoints, exit */ + } + + + for (i=0; i=0) && (*(y+2*j+1)<=*(y+2*i+1))){ + if( (*(y+2*j)= xplus){ + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + goto L180; + } + + j=i+1; + while((j= *(y+2*i+1)) goto L170; + if( (*(y+2*j+2) <= xplus) ){ + xplus=*(y+2*j+2); + Tpl=(Tstart+2*j+2); + }/*if*/ + j++; + } /*while*/ + + + if ( (*(y+2*i+1)-xminus) >= hmin) { + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + + } /*if*/ + goto L180; + L170: + if (xplus <= xminus ) { + if ( (*(y+2*i+1)-xminus) >= hmin){ + *(ind+ix)=Tmi; + ix++; + *(ind+ix)=(Tstart+2*i+1); + ix++; + } /*if*/ + /*goto L180;*/ + } + else{ + if ( (*(y+2*i+1)-xplus) >= hmin) { + *(ind+ix)=(Tstart+2*i+1); + ix++; + *(ind+ix)=Tpl; + ix++; + } /*if*/ + } /*elseif*/ + L180: + iy=i; + } /* for i */ + info = ix; + return ; +} + + + diff --git a/wafo/source/c_codes/old/rfc.pyd b/wafo/source/c_codes/old/rfc.pyd new file mode 100755 index 0000000000000000000000000000000000000000..89343f3eb741f32979aac812c48fbbb2e536d6da GIT binary patch literal 16384 zcmeHu4|Eh&nr|gE(8dnkYKLjZD5Z8J{L6Hw10?AL5<(zgfbJwDAW9R`4c!=$(5Vul zO(a`s9_=M8>vQ+boSpT^;?DEUc#b-&v;KQbLjnQB6&Xi^5XBv4HcW5_2Zg|(^?u*2 z>P~{_&c65doO$O><=n2S?|%3Df4}?P+nps3>=wodf?z;XRY7`xHce$LwXh{h%F+G~7)Aj|{wsZv4kQ1>@oYXl*v5&9+!4tIb~ z$w&;moE`ao-E)o<*dhV;{5|*}`AFBK5_rZX3c{M4u)kia7lhRD0FC-G~!u=HsUJLOfv%V=g0qS3)BWJ9>Jn! z^ppq|c0uVeL@&u>mBZ@l?z&($dTP~-!_+mT^cbV6Y*i=7X>5U^R`u9`?BkehnZccY z3|O+cPR)1^59r#vWfka}fn8^)Q>zGj^w>Rw5RFT3sFvcJ1R+J5#?twiTUf?%(D1O- zAi;zA5W}NpoaS^b8cUxmzPkGuE|y*dcrBCcCWz(UUuW)2OA!QC+yb!Iqkceg$Ia0% zU`XilEGJ?B+k050-PB)V?7y8E7sZT_(_`>xa{68c1z~kJ2(t9&Fv7jRnmuT@NkvJ5 zvXgf{&pV~ZhT$z>@?w(7+6~0?WxNlXf}JDG2}>KJm!x@W#;fRL^X-=ETF=1uR8>`a zOwl+SC)p}u;~>;hnA%ImTa}PXgVzGC88zcgP>9Cmv3usjpw+NcobxxX;zsIUU<7%S zuivI?MOGWWl=I@A3gGvT9Uwt!?9=<9sd7Y(&9@uSOkHRmP?#R8v|G_^U6ppDH`wA8 zEWrpqs(RQj2G z(NpsGR9ype^fE?sErPp2S=R)kt>ABk#a8LmEX&!$#^7n-ctJ6{YT(kBDhaIP!GPw@ zzX2@_v(?tIA#~ZfmYxlj5TerV@NO78u;*4_z!6r2{M`v5WFN~QI|jun=$5qQUBDe;3Krhq=k7*Dt>U#vus08L-GA0|R^f<1I+dVC? z%yQSKFjU??dhYsLvR&=KRp{$s<2<0Q^jON-+o2;=l&}s$ipINMqPzUTL%vm%0hY7# z%Gn|1d>&hF>`(1lY&?B?b!{Cy^zoTXJ*BMNCc7$rFzvv*6a&-QXQwETC3`mfr)D@H zAEIiY;=6*-KXwRj?0BrkZX3+SXLfQFjTwb+vcc34_YU20p$K=iLUpUlXb^%Wgb7u+2CF_?FL zOoo&&mkwP8J$u*v@%~cV=}DS^Pndyx+N+5xPwemOT43lewLrgYFwE}j0mz7Q~Oh{#~w;zzeL#H3mUq)zpuaa0?67EWCxOnJ2>JQ4UvoSRe$N3(S()X z8kB!CD(6a+t7AwLbC(Ob6RKIFCn8HRk;E?3t;kk(c69$IhB1eS#eUS05P1S*NEsFZ zgY1iyfmG!jXn>o2>rq%66i?UK9VASO)JVp6BSN;W1-4a*rxG4}tG`rNGes(b$6=Dx`6Gg}1Y$!DTv>!A+HY&@et<8?Y3yd^P*deVJAQDsw7})~KzgCqVlzahswgPKAUq+GD zB+$Zws*ORWK)zsa+K+)yRPEJMIPNAtAW{bF?ee5NVJzu9B43$yK#BWFWYXHBW@M6( zl`!6&BA&eLLhy6wU3+Mpz;hQZLs^*7%UPpcRK8T@Sy7c80y+5>onY`9@XvKZi6n=* zF^7Vd<+S=C{h7{%(Z`;$_dph2Fjc9$UnZ4@*dgdJESh=WvUKmX0~l;g4n`d@Ue2h9 zjWu?**tuPJ1`t+Rh{}xDajesRnDmcp;x+5iKsUQaG;;(|bLTQp_&J*3{$2YF zJ|rnVt9jF21u3#e4Y&))3*BEvelZd`I2}0W{tNN_w0(2evvxcs>@du^WE7!a0wuxO z+2yyx_ro@rb|AsMa@3$_FzD;tJ-`_>B^*(MH!>eLJ1R!0iBsO4R17*jn4n7iOGovy zh#kY-y^l;8El{0j56uZBUJ_ixN9$9SU>Of$DZPC1jwAOTjy>@_bfTF^@r!(7r5Llaa>RXYopd`@ft|#cieD*B6@057 z;sn`Nqw7*sjX_-Vt}1wiZ8Wi8vO?CKu)pnzw+bi8nVm-@>k}(d@Zw96Cm_=)y{VW2 zXI$~Yv3JCkKCC>FjkE@HaY4rcTB6;TBd?shf``y0zG7GA7?dljx$`4{SZB_QxFJ=f zx#CG_BKAyIJbI*k64p#@{qHqQK_XXKvx(K@7)q4=2KRx;Z`nfAm_w-Btlr==cc4`8 z7^}J}4BowD5p_2ahK1}X7nGq?Ii1y+Smi`RmtkV*;7u6HDjkL~huChiS@eW72mL6g zQpXAcP&Ducp^EK(4*hsg;zkdjYhG4i^s2ihm`UleCxqsOq$==R0+uiYoRGOM4o45$ z)AGd8!il;)kw}gf*6Q{=biF-g3;d@F_(+i5cZ`#I;*Y0cj_!dH!4|ShBD|<77NH8l z%5@6Hu6BJoXw==ko2Rc$rjGOEu`yq~mV+C+cJUtuesxtQ$lZQ2@*2p{=0OCjOqk75h2&3Joya4NUGBRhe);&l`;&^jr`c$c@E_1k zo~@`Ua;}G!o7fKWC3r-L$8xL`wbc-kI4V6>o!g-Vx9a7=HQXRuc)uwDr}Y9t8`wOP zvc;gv^=t=^(IfKhdyW%fV=xFF`7va|p zQo3wp5ikEh$|kbBJ7WjYO$`=-F6QVkU6O?^*AYyJ6YVCYXqWJKN=d2vXyo&eD=zaI zYgvmiw#mp^Ofip9AbgeV*$<`$F3w zZFl&7k1a8|PnvgS&@_2VrTNS=bbBe!&(`hH6KsivnK~j9l`ARj2KT#iW%Puc(QDX_ z5yGG;dPE-k8a>8L+nIGc$eCZbTH@Xx=_XGjfZY4Ht{ohwGIt)simg{NbyUji0KH@>LsK(B4;*#goNwhwz9aGE2yAjnvx$>})$|uo6LqR? zkE8NZ*u#{t#~3n$X}kG_D<$sk$U6zKW|CN3Rd(20M~d1W7@_D$hM?}P@&pGU(4fnu zMvqXsZ_hwtVecyWDeWl>mAGNC{5gTy{HL!)-e z!ouz(v(V%gt0?Kg*a?#bkAo{}2zV`D>B)rg^^=$Zd9{qAHG&jm)^vJrwyk zIXWACG`ie`l^Y9ny!{@UJJy#t23Dq$VEzac(*pN}$VZye6skq&^HSYt9HA~AU2%jz zPcKwY7$CTjWzboh$E!YB0pn}624Q%CV5+WlU2-3iQq|)lt8tvy7~CHvs&V(BSeZp0 zx0=(&AWN*(Sm3CWtn4x4LiUcfX^%Z-EXYfd&$IiD?thlY`!sC#KQE7!nP|&m-Zd87 zU7zAPQ}ZvYMsYpWpbV*9MN{R{k^C=!fAo^M^Fw%I#E!t+c?1A`D-dfp5e36kcE6?8 z;~fmKzvSuqh!kZ1MC-fKYgE3vRbT$)yRciZSB$y9YJO_0^5W>?RupVx7+U!UZ`mLK zR+|8!=+KG*+LzdIdRN2BOw5$csx7tNyxV*N`95tbK!Jg%FfOs9kE-JsV zNJdIupBV(9^Hdvu{xzQ2^L%6?gY(Tph4l$fI-TV)Dhd|usIlM1Pe7BqBrQ7FJR=?L z9yWK942YGC7Hu7*1J(b@#YvT$F7>9!AsnFvIE!t+D!Fv3_Ks5>-Be#GZ{b|C77GVw z%a3=#5Jx+IWrg3#jy6~#hz$;{ET}IAaI2~vc;pHlgc@lf_n~e$gzB}UhlJ?H0rU4E z1X9ye+HE)8a7dXQjIZEu5dfyIv;3$JxN*R6cBoASof3u8DdM^iYn(Lh(n4{JRKS+; zop6EI8kqrcNGgwhuNycs#HFHb-9lvJQPi|8Ao$sWJL~u?1YM{A(pf}Wo&*_fBljv@ zH3nPoRp25S0Ff=sWLT;rcB}h?t@m=|mK3Jy`;V$=hw8d24Px-LMjXY&o}Hwq5eJ|) zsMMSSc##l!#dwN_#v_`7$Lk zR{1imJzE*NnPBMzyP06=?N()ILd2yESsu?(zMK%5qI_w2+$pmv^1n0KlN`+IGFg=sr#n_DTQ@(}AKm^)nbs=rv_o*37?d!k zio~_B$1~YNZn7n0vI@47Pd3y!kuv2<(X8;EO902xe)|(L;;sEnQyozDoOT(+-&T)unr@ zy5>XZ??Y&hCUgdmoK!MBzPPw?F zqcp2N8FTT+J{*%J157Ih@Y!*mRz+H0UL?bm8F3`&z346@MX0uLv9DUmQ z{2$n_Ni85(-qFkVhy#(Iu`--a$is(uWftjC(Cz_ka{QB|!c&|TFrie&GnC-4M&O&W zt>0nkKcv@Nf&#Wq!{22jv?49Ku^xv$`GAV+JXRpt{ta$y!ZaQjQ_9AL*UH(?$mtrS1uli|p3A z4JrCT0%n)pTQyLGjLQyVQ;I4aJ3?s()eMU)h&^l7n1lQ@!wV^g_lSclIG>3+AEFOY z1U9GC{Z8aFP)(eHp!!7Bp&fppQa-I2E25VqCQEnNkKTI%HLrNOl&EZ=S13wcR*!_h0ulX6pBDOyf8296gXpI*YKpq4Hs&))dL{4%hX%F;$)Ok@k zd*NjKB=XD0*kXN*sf2BUjl@PeEc)nN^hDcTCo}ELWbgP4YHsV;j|h5PIW7Rrs+YXm6Zzzeg7P>2F?fW8m|O!*3@aPD3?t-6k&ZvfMMnTU^( zr)Y@J0R;WV#I_P)>9z#RG~Ue_Dod`Zto-cYcUk#)W@I;cyaQBFu3Xv80t3|PiVsW! zKj?T&&9af=#iY0@k5jXZcny+Of*ge3FAPisE`qCDmF$Lrcj07ykkz-cq8lc%kcs{t zVJ8zux$%Fh}Ge>w0Y3?mvM(O9j~*sal^ z+aE<^EzwZ3ETl!mZcLGHQ;Nw8DDFsJHA6s;=Fs3Xxq`*N2LrUjFaU=W z|IMoe(`6gx8>V^k!c_U%C618$Ec7obfvro2(XwHGqz~cj2-uIwCxG4P`v1Ylje@7G zJRJ5dXbx|zmjq!yy>DsoRmn|KXk!3f&0$0|pk>R}ZU{6;zS7p(=8)ebh4B-}VQ5WT zOMt#&^t9<{3j5))=S{3*%EgZPkHIa-gXp-~*RMQeY#zHxgPF3^Y6}2n7V={C!-!#UyX@ z#+Jsw77ZY5fmBQ7jcWriKw~rMzX@Xq*|(^*T3#!0t^O6`c(*?4ec<@!$)QGnZGEF0 zz)w6qZKdJ$K2LqPHBcjierc2c{y^L2=CHq2*gVDu^rg*B0mvdZfJc+A&(gqVm^#oR zg_@giECT5K5DW}ckWLB92N}aaBJ%kIeD0BX{$c; z1IVX~3kY)B@H^M{Ih_v0WoWG|C8B$ILK28I(()~BP^>9;W{$tHQ4sc~u4`<@WcX3) zx)w6#I-xAZ7iwOM-vpAg*3z<~p+#B{Y6Ob#ncxfX=VT8zwdiQjPl9yyS5 zYoZO{{XE(Qv}f>(!>hOpLU>(6PD`6#AQkXDlF*-@g(i7pOIuDub2yN*QErq%_2F=R z8|>mMt*RuO+2Be`-W56%gudfd^wMyb6fp9C*fS9#KY+fgp&AWyEEd<{ z8E(sNb50L#3^h$jt3nP9A-{_C;q~&yK$Fx;Bifu|A%?Ypb-2Fi;TcYJLzC>u{>f9s z%^@i$u5Ff^{HbW@~O+#}N>?L8<5uGq>LOXFyn{zVRcEm_gY8K1B zhow(~aGIh-YXnC26fqalCy8Wp+tI&hOy>Wgp)-ROLCW7OV+s<5Z;&S#^7{i#;u;v_ zj}c{Q2y`^J3Bf8<^ZKQ6_|yH2Tj8f$1-2q8@4RcZk1uL?X8qFG-k+Uecr(t(5V#`-{0AY3mY}7l{ml*FNpT<0 z3O<1^vmz$6pC(dPYZ~OsY87XQxHnO#H$a?6FzIO3;eCQIIjdpv3_NQYBMX(AAWX+? z%5;(bp^2}EBsjsph67k@LwzF(Jb`$v(>oAurbh--7=*(>rwxlEPr+@ zEIy?W^RF4=LRMgit-R_J!+MIFj*QZPY}pz>dVDlM^r17=T0T4`_4hTjG$Zw3?G=P( zSainbFkA|fI&(4HEaRQeaDSjNAO)aT(+sS|t)tND6ZHk?z*g%LsTm;y4I2fX(-Sl` z4avJ?BkJcC)w}tcOfu571}C^y?NK;x)8%)*F*0zI zl-*F@5DY|+5Cc;p&AbAxZ`3mIj2Yra)J0;j{*i#_4|)cx3tG|^OP<*VX)m?~Sy z@=q6NA`SBxF$YKTnW9l9Jw=e$mN(91EeRx|iV|A`>uC{8-~_g`V6#K3qa%gc2*Nx5z;&ItWzHfk}2 zTBBYHVV=?=MPM-ecjb;in#THuK!kfr*W&Bef(jrC1!A{Fw82;_!9>lB{zzCpHc(&hh5o-`pTN&S{UYav-GJFspY)lP^! zB+{g|Iw)a?Z?fTyNARU$_Ed5Q%8=43IAN@pSL%+pHbr>C)j(Z)8995179FIA6IsV46*YRV= z0mn(l?;LkK=QwMee&@r^u(QM2?L6ju&uPd_%gxU%&Rw1x&3!WWzvVui`$q0>bJJW_ z*X=IRHQ%+ywa)bu*Nd*7x!!Oca2<7>bbajljq6j_kSit6m}kzrGw@%~M=GWz~&R?IuDSvZ*H2=x` z@8|#b{EPX;1q%z76+B+>*9FfPoG6%FxS}vpxTo;_!mEWw_jLDK_XhVS_g42#_w()# z-7gjGE3y^4iVKUYi=QrjzxZ@<_MBC7HqZI_oVVxv>zq&L*yc`}d*9raxtr&<&lN;L zI1YDCcJw$-K!2O_9_JKiiF2{j>wLlahVy{)l+%)%kvl2(czs1MZuWDyh3l`UMo6VG+6ZeqPvQ-iXSh2rFaE&`rh1k=6*2u%-n&wU(EfI zPC6X|_T_?bv%})}uH!z(G{-E*JjYVUDo4E|=-A}g?AQ)p|C3{?bAz+R+2(9_D$f7m ze8u^u^Hb*)r;zJ_mlwm&f1mqYE}b#b7m^02(P?$soOWlnvk{}{e}6^5Tbz=!B{vfh ZV0THgw$0ixYv-)zW})NH*Po;X{ul7sZn*#e literal 0 HcmV?d00001 diff --git a/wafo/source/c_codes/old/rfc.pyf b/wafo/source/c_codes/old/rfc.pyf new file mode 100755 index 0000000..e129557 --- /dev/null +++ b/wafo/source/c_codes/old/rfc.pyf @@ -0,0 +1,14 @@ +! File rfc.pyf +python module rfc +interface + subroutine findrfc(y1,hmin, ind, n,info) + intent(c) findrfc ! findrfc is a C function + intent(c) ! all findrfc arguments are considered as C based + integer intent(hide), depend(y1) :: n=len(y1) + double precision dimension(n), intent(in) :: y1 ! input array + double precision intent(in) :: hmin + integer dimension(n), intent(out) :: ind ! output array, + integer intent(out) :: info + end subroutine findrfc +end interface +end python module rfc \ No newline at end of file diff --git a/wafo/source/cov2XXXpdf/bounds/cov2acdfb.f b/wafo/source/cov2XXXpdf/bounds/cov2acdfb.f new file mode 100755 index 0000000..b6a85b4 --- /dev/null +++ b/wafo/source/cov2XXXpdf/bounds/cov2acdfb.f @@ -0,0 +1,450 @@ + PROGRAM sp2Acdf1 +C*********************************************************************** +C This program computes upper and lower bounds for: * +C * +C density of T_i, for Ac <=h, in a gaussian process i.e. * +C * +C half wavelength (up-crossing to downcrossing) for crests h * +C I.R. 27 Dec. 1999 * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansrup + double precision, dimension(:,:),allocatable :: ansrlo + double precision, dimension(: ),allocatable :: ex,CY + double precision, dimension(:,:),allocatable :: xc,fxind + double precision, dimension(: ),allocatable :: h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,ph,def,seed1,seed_size,icy + integer ::it1,it2,status + double precision :: ds,dT ! lag spacing for covariances +! f90 sp2Acdf1.f rind50.f + + CALL INIT_LEVELS(U,def,Ntime,Nstart,NIT,speed,Nx,dT) + !print *,'U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + if (abs(def).GT.1) THEN + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + !CALL INIT_AMPLITUDES(h,def,Nx) + endif + allocate(h(1:Nx)) + CALL INIT_AMPLITUDES(h,def,Nx) + CALL INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + + NI=4; Nd=2 + Nc=3; Mb=2 + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + + allocate(CY(1:Nx)) + do icy=1,Nx + CY(icy)=exp(-0.5*h(icy)*h(icy)/100)/(10*sqrt(twopi)) + enddo + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate BIG' + end if + allocate(ex(1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate ex' + end if + allocate(ansrup(1:Ntime,1:Nx)) + allocate(ansrlo(1:Ntime,1:Nx)) + ansrup=0.d0 + ansrlo=0.d0 + allocate(fxind(1:Nx,1:2)) + fxind=0.d0 !this is not needed + allocate(xc(1:Nc,1:Nx)) + + + allocate(a_up(Mb,NI-1)) + allocate(a_lo(Mb,NI-1)) + a_up=0.d0 + a_lo=0.d0 + xc(1,1:Nx)=h(1:Nx) + xc(2,1:Nx)=u + xc(3,1:Nx)=u + + if (def.GT.0) then + a_up(1,1)=0.d0 + a_lo(1,1)=u + a_up(1,2)=XdInf + a_lo(1,3)=-XdInf + a_up(2,1)=1.d0 + else + a_up(1,1)=u + a_lo(1,1)=0.d0 + a_lo(1,2)=-XdInf + a_up(1,3)= XdInf + a_lo(2,1)=1.d0 + endif + !print *,'Nstart',Nstart + Nstart=MAX(3,Nstart) + + + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + + !print *,'loop starts' + do Ntd=Nstart,Ntime + + Ntdc=Ntd+Nc + ex=0.d0 + BIG=0.d0 + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,-1,R0,R1,R2,R3,R4) ! positive wave period + + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + !print *,'test',fxind/CY(1:Nx) + + do icy=1,Nx + ansrup(Ntd,icy)=fxind(icy,1)*CC/CY(icy) + ansrlo(Ntd,icy)=fxind(icy,2)*CC/CY(icy) + enddo + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + if((Nx.gt.4).or.NIT.gt.4) print *,'Ready: ',Ntd,' of ',Ntime + enddo + goto 300 + 300 open (unit=11, file='dens.out', STATUS='unknown') + + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansrup(ts,ph),ansrlo(ts,ph) + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 continue + deallocate(BIG) + deallocate(ex) + deallocate(fxind) + deallocate(ansrup) + deallocate(ansrlo) + deallocate(xc) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + + if (allocated(R3)) then + deallocate(R3) + deallocate(R4) + deallocate(h) + ENDIF + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,def,Ntime,Nstart,NIT,speed,Nx,dT) + IMPLICIT NONE + integer, intent(out):: def,Ntime,Nstart,NIT,speed,Nx + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) def + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + + if (abs(def).GT.1) then + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + else + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + endif + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,def,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: def + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + !if (def.LT.0) THEN + ! H=-H + !endif + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime,def + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + if (abs(def).GT.1) then + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(4,*) R3(i) + read(5,*) R4(i) + enddo + + close(4) + close(5) + endif + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,shft,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! For ts>1: +! X(t2)..X(ts),..X(tn-1) X''(ts) X'(t1) X'(tn) X(ts) X(t1) X(tn) X'(ts) +! = [Xt Xd Xc] +! +! For ts<=1: +! X(t2)..,..X(tn-1) X'(t1) X'(tn) Y X(t1) X(tn) +! = [Xt Xd Xc] +!Add Y Condition : Y=h + +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + + if (ts.LE.1) THEN + Ntd1=tn + N=Ntd1+Nc; + shft=0 ! def=1 want only crest period Tc + else + Ntd1=tn+1 + N=Ntd1+4 + shft=1 ! def=2 or 3 want Tc Ac or Tcf, Ac + endif + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1+shft) = 0.d0 !cov(X(ti+1),Y) + BIG(i ,Ntd1+2+shft) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+3+shft) = R0(i+1) !cov(X(t.. ),X(tn)) + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X' (t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X' (tn)) + enddo + !call echo(big(1:tn,1:tn),tn) +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + +!cov(Xc) + !print *,'t' + BIG(Ntd1+1+shft,Ntd1+1+shft) = 100.d0!100.d0 ! cov(Y,Y) + BIG(Ntd1+1+shft,Ntd1+2+shft) = 0.d0 + BIG(Ntd1+1+shft,Ntd1+3+shft) = 0.d0 + BIG(Ntd1+2+shft,Ntd1+2+shft) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+2+shft,Ntd1+3+shft) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+3+shft,Ntd1+3+shft) = R0(1) ! cov(X(tn),X (tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1+shft) = 0.d0 !cov(X'(tn),Y) + BIG(Ntd1 ,Ntd1+2+shft) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+3+shft) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+1+shft) = 0.d0 !cov(X'(t1),Y) + BIG(Ntd1-1,Ntd1+2+shft) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+3+shft) =-R1(tn) !cov(X'(t1),X(tn)) + + + !call echo(big(1:N,1:N),N) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + BIG(i,j)=tmp + enddo + !call echo(big(1:N,1:N),N) + enddo + !if (tn.eq.3) then + !do j=1,N + ! do i=j,N + ! print *,'test',j,i,BIG(j,i) + ! enddo + !call echo(big(1:N,1:N),N) + !enddo + !endif + !call echo(big(1:N,1:N),N) + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2Acdf1 + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/bounds/cov2mmpdfb.f b/wafo/source/cov2XXXpdf/bounds/cov2mmpdfb.f new file mode 100755 index 0000000..2d9aee7 --- /dev/null +++ b/wafo/source/cov2XXXpdf/bounds/cov2mmpdfb.f @@ -0,0 +1,356 @@ + PROGRAM sp2mM1 +C*********************************************************************************** +C Computes upper lower bounds for density of maximum and the following minimum * +C*********************************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansrup + double precision, dimension(:,:),allocatable :: ansrlo + double precision, dimension(: ),allocatable :: ex,h + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(:,:),allocatable :: fxind + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,seed1,seed_size + integer :: status,i,j,ij,Nx1 + double precision :: ds,dT ! lag spacing for covariances + +! f90 sp2AmM1.f rind52.f + + CALL INIT_LEVELS(Ntime,Nstart,NIT,speed,Nx1,dT) + Nx=Nx1*(Nx1-1)/2 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + + CALL INITDATA(speed) + + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + allocate(h(1:Nx1)) + + CALL INIT_AMPLITUDES(h,Nx1) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y= X'(t2)...X'(tn-1)||X''(t1) X''(tn)||X(t1) X(tn) X'(t1) X'(tn) !! +! = [ Xt Xd Xc ] !! +! !! +! Nt=tn-2, Nd=2, Nc=4 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! !! +! There are 3 ( NI=4) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0. !! +! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1)) !! +! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn)) !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=4; Nd=2 + Nc=4; Mb=1 + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(R4(1)) + XtInf=10.d0*SQRT(-R2(1)) + ! normalizing constant + CC=TWOPI*SQRT(-R2(1)/R4(1)) + + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate BIG' + end if + allocate(ex(1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate ex' + end if + allocate(ansrup(1:Nx1,1:Nx1)) + ansrup=0.d0 + allocate(ansrlo(1:Nx1,1:Nx1)) + ansrlo=0.d0 + allocate(fxind(1:Nx,1:2)) + fxind=0.d0 !this is not needed + allocate(xc(1:Nc,1:Nx)) + + + allocate(a_up(Mb,NI-1)) + allocate(a_lo(Mb,NI-1)) + + a_up=0.d0 + a_lo=0.d0 + + ij=0 + do i=2,Nx1 + do j=1,i-1 + ij=ij+1 + xc(1,ij)=h(i) + xc(2,ij)=h(j) + enddo + enddo + xc(3,1:Nx)=0.d0 + xc(4,1:Nx)=0.d0 + + a_lo(1,1)=-Xtinf + a_lo(1,2)=-XdInf + a_up(1,3)=+XdInf + + + Nstart=MAX(2,Nstart) + + + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + + do Ntd=Nstart,Ntime + + Ntdc=Ntd+Nc + ex=0.d0 + BIG=0.d0 + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,R0,R1,R2,R3,R4) ! positive wave period + + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + ij=0 + do i=2,Nx1 + do j=1,i-1 + ij=ij+1 + ansrup(i,j)=ansrup(i,j)+fxind(ij,1)*CC*dt + ansrlo(i,j)=ansrlo(i,j)+fxind(ij,2)*CC*dt + enddo + enddo + + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + goto 300 + 300 open (unit=11, file='dens.out', STATUS='unknown') + do i=1,Nx1 + do j=1,Nx1 + write(11,*) ansrup(i,j),ansrlo(i,j) + enddo + enddo + close(11) + 900 continue + deallocate(BIG) + deallocate(ex) + deallocate(fxind) + deallocate(ansrup) + deallocate(ansrlo) + deallocate(xc) + deallocate(R0) + deallocate(R1) + deallocate(R2) + deallocate(R3) + deallocate(R4) + deallocate(h) + + if (allocated(COV) ) then + deallocate(COV) + endif + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (Ntime,Nstart,NIT,speed,Nx,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,Nstart,NIT,speed,Nx + double precision ,intent(out) :: dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + READ (14,*) dT + + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + read(4,*) R3(i) + read(5,*) R4(i) + enddo + close(1) + close(2) + close(3) + close(3) + close(5) + return + END SUBROUTINE INIT_COVARIANCES + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn + integer :: i,j,N + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X(t1),X(tn),X'(t1),X'(tn) +! = [ Xt | Xd | Xc ] +! +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + N=tn+4 + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,tn+1) = R1(i+1) !cov(X'(ti+1),X(t1)) + BIG(tn-1-i ,tn+2) = -R1(i+1) !cov(X'(ti+1),X(tn)) + BIG(i ,tn+3) = -R2(i+1) !cov(X'(ti+1),X'(t1)) + BIG(tn-1-i ,tn+4) = -R2(i+1) !cov(X'(ti+1),X'(tn)) + !Cov(Xt,Xd) + BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1)) + BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn)) + enddo + +!cov(Xd) + BIG(tn-1 ,tn-1 ) = R4(1) + BIG(tn-1,tn ) = R4(tn) !cov(X''(t1),X''(tn)) + BIG(tn ,tn ) = R4(1) + +!cov(Xc) + BIG(tn+1,tn+1) = R0(1) ! cov(X(t1),X(t1)) + BIG(tn+1,tn+2) = R0(tn) ! cov(X(t1),X(tn)) + BIG(tn+1,tn+3) = 0.d0 ! cov(X(t1),X'(t1)) + BIG(tn+1,tn+4) = R1(tn) ! cov(X(t1),X'(tn)) + BIG(tn+2,tn+2) = R0(1) ! cov(X(tn),X(tn)) + BIG(tn+2,tn+3) =-R1(tn) ! cov(X(tn),X'(t1)) + BIG(tn+2,tn+4) = 0.d0 ! cov(X(tn),X'(tn)) + BIG(tn+3,tn+3) =-R2(1) ! cov(X'(t1),X'(t1)) + BIG(tn+3,tn+4) =-R2(tn) ! cov(X'(t1),X'(tn)) + BIG(tn+4,tn+4) =-R2(1) ! cov(X'(tn),X'(tn)) +!Xc=X(t1),X(tn),X'(t1),X'(tn) +!Xd=X''(t1),X''(tn) +!cov(Xd,Xc) + BIG(tn-1 ,tn+1) = R2(1) !cov(X''(t1),X(t1)) + BIG(tn-1 ,tn+2) = R2(tn) !cov(X''(t1),X(tn)) + BIG(tn-1 ,tn+3) = 0.d0 !cov(X''(t1),X'(t1)) + BIG(tn-1 ,tn+4) = R3(tn) !cov(X''(t1),X'(tn)) + BIG(tn ,tn+1) = R2(tn) !cov(X''(tn),X(t1)) + BIG(tn ,tn+2) = R2(1) !cov(X''(tn),X(tn)) + BIG(tn ,tn+3) =-R3(tn) !cov(X''(tn),X'(t1)) + BIG(tn ,tn+4) = 0.d0 !cov(X''(tn),X'(tn)) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + BIG(i,j)=tmp + enddo + enddo + RETURN + END SUBROUTINE COV_INPUT + + + END PROGRAM sp2mM1 + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/bounds/cov2tccpdfb.f b/wafo/source/cov2XXXpdf/bounds/cov2tccpdfb.f new file mode 100755 index 0000000..9f77d29 --- /dev/null +++ b/wafo/source/cov2XXXpdf/bounds/cov2tccpdfb.f @@ -0,0 +1,504 @@ + PROGRAM sp2tccpdf1 +C*********************************************************************** +C This program computes upper and lower bounds for the: * +C * +C density of T= T_1+T_2 in a gaussian process i.e. * +C * +C wavelengthes for crests

h2 * +C * +C Sylvie and Igor 7 dec. 1999 * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansrup + double precision, dimension(:,:),allocatable :: ansrlo + double precision, dimension(: ),allocatable :: ex,CY1,CY2 + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(:,:),allocatable ::fxind + double precision, dimension(: ),allocatable :: h1,h2 + double precision, dimension(: ),allocatable :: hh1,hh2 + double precision, dimension(: ),allocatable :: R0,R1,R2 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Ntime,N0,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2 + integer :: icy,icy2 + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf.exe rind48.f sp2tthpdf.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind48.f sp2tthpdf.f + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + + !print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT + !Nx1=1 + !Nx2=1 + + Nx=Nx1*Nx2 + !print *,'NN',Nx1,Nx2,Nx + + + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + + allocate(h1(1:Nx1)) + allocate(h2(1:Nx2)) + CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2) + + + allocate(hh1(1:Nx)) + allocate(hh2(1:Nx)) + !h transformation + do icy=1,Nx1 + do icy2=1,Nx2 + hh1((icy-1)*Nx2+icy2)=h1(icy); + hh2((icy-1)*Nx2+icy2)=h2(icy2); + enddo + enddo + + Nj=0 + indI(1)=0 + +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !h1(1)=XtInf + !h2(1)=XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + allocate(CY1(1:Nx)) + allocate(CY2(1:Nx)) + do icy=1,Nx + CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi)) + CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi)) + enddo + !print *,CY1 + allocate(ansrup(1:Ntime,1:Nx)) + allocate(ansrlo(1:Ntime,1:Nx)) + ansrup=0.d0 + ansrlo=0.d0 + allocate(fxind(1:Nx,1:2)) + !fxind=0.d0 this is not needed + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !! +! = [Xt Xd Xc] !! +! !! +! Nt=tn-2, Nd=3, Nc=2+3 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !! +! !! +! There are 6 ( NI=7) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !! +! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !! +! (indI(7)=Nt+3); NI=7. !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=7; Nd=3 + Nc=5; Mb=3 + allocate(a_up(1:Mb,1:(NI-1))) + allocate(a_lo(1:Mb,1:(NI-1))) + a_up=0.d0 + a_lo=0.d0 + allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1))) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:(Ntime+Nc+1))) + !print *,size(ex),Ntime + ex=0.d0 + !print *,size(ex),ex + xc(1,1:Nx)=hh1(1:Nx) + xc(2,1:Nx)=hh2(1:Nx) + xc(3,1:Nx)=u + xc(4,1:Nx)=u + xc(5,1:Nx)=u + ! upp- down- upp-crossings at t1,ts,tn + + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(1,3)=u + + + a_lo(1,4)=-XdInf + a_up(1,5)= XdInf + a_up(1,6)= XdInf + + a_up(2,1)=1.d0 + a_lo(3,3)=1.d0 !signe a voir!!!!!! +! print *,a_up +! print *,a_lo + do tn=N0,Ntime,1 +! do tn=Ntime,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd + if (SCIS.gt.0) then + if (SCIS.EQ.2) then + Nj=max(Nt,0) + else + Nj=min(max(Nt-5, 0),0) + endif + endif + do ts=3,tn-2 + !print *,'ts,tn' ,ts,tn,Ntdc + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + + ds=dt + do icy=1,Nx + ! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2) + ansrup(tn,icy)=ansrup(tn,icy)+fxind(icy,1)*CC*ds + & /(CY1(icy)*CY2(icy)) + ansrlo(tn,icy)=ansrlo(tn,icy)+fxind(icy,2)*CC*ds + & /(CY1(icy)*CY2(icy)) + enddo + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime + + enddo !tn + + 300 open (unit=11, file='dens.out', STATUS='unknown') + + do ts=1,Ntime + do ph=1,Nx + !write(11,*) ansrup(ts,ph),ansrlo(ts,ph) + write(11,111) ansrup(ts,ph),ansrlo(ts,ph) + enddo + enddo + 111 FORMAT(2x,F12.8,2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansrup) + deallocate(ansrlo) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + deallocate(h1) + deallocate(h2) + deallocate(hh1) + deallocate(hh2) + deallocate(a_up) + deallocate(a_lo) + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1 + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) Ntime + READ (14,*) N0 + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + + + READ (14,*) Nx1,Nx2 + READ (14,*) dT + if (Ntime.lt.5) then + print *,'The number of wavelength points is too small, stop' + stop + end if + + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h1,h2 + integer, intent(in) :: Nx1,Nx2 + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx1 + READ (4,*) H1(ix) + enddo + do ix=1,Nx2 + READ (4,*) H2(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + integer ,intent(in) :: tn,ts + integer :: i,j,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! +! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)|| +! = [Xt Xd Xc] +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + Ntd1=tn+1 + N=Ntd1+Nc + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1) + BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2) + BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn)) + + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn)) + enddo +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = -R2(1) + BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn)) + +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1) + BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2) + BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1)) + BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn)) + BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2) + BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts)) + BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1)) + BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn)) + + BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn)) + + +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1) + BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2) + BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1) + BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2) + BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1) + BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2) + + BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn)) + BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts)) + BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts) + BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1)) + BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn)) + + + do i=1,tn-2 + j=abs(i+1-ts) +!cov(Xt,Xc) + BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts)) +!Cov(Xt,Xd) + if ((i+1-ts).lt.0) then + BIG(i,Ntd1-2) = R1(j+1) + else !cov(X(ti+1),X'(ts)) + BIG(i,Ntd1-2) = -R1(j+1) + endif + enddo + +! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + + BIG(i,j)=tmp + enddo + enddo + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2tccpdf1 + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/bounds/cov2tthpdfb.f b/wafo/source/cov2XXXpdf/bounds/cov2tthpdfb.f new file mode 100755 index 0000000..c925525 --- /dev/null +++ b/wafo/source/cov2XXXpdf/bounds/cov2tthpdfb.f @@ -0,0 +1,497 @@ + PROGRAM sp2tthpdf1 +C*********************************************************************** +C This program computes: * +C * +C density of T= T_1+T_2 in a gaussian process i.e. * +C * +C wavelengthes for crests

h2 * +C * +C Sylvie and Igor 7 dec. 1999 * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex,CY1,CY2 + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h1,h2 + double precision, dimension(: ),allocatable :: hh1,hh2 + double precision, dimension(: ),allocatable :: R0,R1,R2 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Ntime,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2,N0 + integer :: icy,icy2 + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf1.exe rind49.f sp2tthpdf1.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind49.f sp2tthpdf1.f + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + + !print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT + !Nx1=1 + !Nx2=1 + + Nx=Nx1*Nx2 + !print *,'NN',Nx1,Nx2,Nx + + + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + + allocate(h1(1:Nx1)) + allocate(h2(1:Nx2)) + CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2) + + + allocate(hh1(1:Nx)) + allocate(hh2(1:Nx)) + !h transformation + do icy=1,Nx1 + do icy2=1,Nx2 + hh1((icy-1)*Nx2+icy2)=h1(icy); + hh2((icy-1)*Nx2+icy2)=h2(icy2); + enddo + enddo + + Nj=0 + indI(1)=0 + +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !h1(1)=XtInf + !h2(1)=XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + allocate(CY1(1:Nx)) + allocate(CY2(1:Nx)) + do icy=1,Nx + CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi)) + CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi)) + enddo + !print *,CY1 + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + fxind=0.d0 + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !! +! = [Xt Xd Xc] !! +! !! +! Nt=tn-2, Nd=3, Nc=2+3 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !! +! !! +! There are 6 ( NI=7) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !! +! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !! +! (indI(7)=Nt+3); NI=7. !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=7; Nd=3 + Nc=5; Mb=3 + allocate(a_up(1:Mb,1:(NI-1))) + allocate(a_lo(1:Mb,1:(NI-1))) + a_up=0.d0 + a_lo=0.d0 + allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1))) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:(Ntime+Nc+1))) + !print *,size(ex),Ntime + ex=0.d0 + !print *,size(ex),ex + xc(1,1:Nx)=hh1(1:Nx) + xc(2,1:Nx)=hh2(1:Nx) + xc(3,1:Nx)=u + xc(4,1:Nx)=u + xc(5,1:Nx)=u + ! upp- down- upp-crossings at t1,ts,tn + + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(1,3)=u + + + a_lo(1,4)=-XdInf + a_up(1,5)= XdInf + a_up(1,6)= XdInf + + a_up(2,1)=1.d0 + a_lo(3,3)=1.d0 !signe a voir!!!!!! +! print *,a_up +! print *,a_lo + do tn=N0,Ntime,1 +! do tn=Ntime,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd + if (SCIS.gt.0) then + if (SCIS.EQ.2) then + Nj=max(Nt,0) + else + Nj=min(max(Nt-5, 0),0) + endif + endif + do ts=3,tn-2 + !print *,'ts,tn' ,ts,tn,Ntdc + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + + ds=dt + do icy=1,Nx + ! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2) + ansr(tn,icy)=ansr(tn,icy)+fxind(icy)*CC*ds/(CY1(icy)*CY2(icy)) + enddo + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime + + enddo !tn + !print *,'ansr',ansr + 300 open (unit=11, file='dens.out', STATUS='unknown') + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansr(ts,ph),hh1(ph),hh2(ph) + ! write(11,111) ansr(ts,ph) + + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + deallocate(h1) + deallocate(h2) + deallocate(hh1) + deallocate(hh2) + deallocate(a_up) + deallocate(a_lo) + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1 + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) Ntime + READ (14,*) N0 + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + + + READ (14,*) Nx1,Nx2 + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h1,h2 + integer, intent(in) :: Nx1,Nx2 + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx1 + READ (4,*) H1(ix) + enddo + do ix=1,Nx2 + READ (4,*) H2(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + integer ,intent(in) :: tn,ts + integer :: i,j,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! +! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)|| +! = [Xt Xd Xc] +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + Ntd1=tn+1 + N=Ntd1+Nc + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1) + BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2) + BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn)) + + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn)) + enddo +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = -R2(1) + BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn)) + +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1) + BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2) + BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1)) + BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn)) + BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2) + BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts)) + BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1)) + BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn)) + + BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn)) + + +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1) + BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2) + BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1) + BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2) + BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1) + BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2) + + BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn)) + BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts)) + BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts) + BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1)) + BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn)) + + + do i=1,tn-2 + j=abs(i+1-ts) +!cov(Xt,Xc) + BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts)) +!Cov(Xt,Xd) + if ((i+1-ts).lt.0) then + BIG(i,Ntd1-2) = R1(j+1) + else !cov(X(ti+1),X'(ts)) + BIG(i,Ntd1-2) = -R1(j+1) + endif + enddo + +! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + + BIG(i,j)=tmp + enddo + enddo + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2tthpdf1 + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2acdf.f b/wafo/source/cov2XXXpdf/cov2acdf.f new file mode 100755 index 0000000..2877fec --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2acdf.f @@ -0,0 +1,445 @@ + PROGRAM sp2Acdf +C*********************************************************************** +C This program computes: * +C * +C density of T_i, for Ac <=h, in a gaussian process i.e. * +C * +C half wavelength (up-crossing to downcrossing) for crests h * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex,CY + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,ph,def,seed1,seed_size,icy + integer ::it1,it2,status + double precision :: ds,dT ! lag spacing for covariances +! f90 sp2Acdf.f rind51.f + + CALL INIT_LEVELS(U,def,Ntime,Nstart,NIT,speed,Nx,dT) + !print *,'U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + if (abs(def).GT.1) THEN + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + !CALL INIT_AMPLITUDES(h,def,Nx) + endif + allocate(h(1:Nx)) + CALL INIT_AMPLITUDES(h,def,Nx) + CALL INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + + NI=4; Nd=2 + Nc=3; Mb=2 + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + + allocate(CY(1:Nx)) + do icy=1,Nx + CY(icy)=exp(-0.5*h(icy)*h(icy)/100)/(10*sqrt(twopi)) + enddo + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate BIG' + end if + allocate(ex(1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate ex' + end if + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + fxind=0.d0 !this is not needed + allocate(xc(1:Nc,1:Nx)) + + + allocate(a_up(Mb,NI-1)) + allocate(a_lo(Mb,NI-1)) + a_up=0.d0 + a_lo=0.d0 + xc(1,1:Nx)=h(1:Nx) + xc(2,1:Nx)=u + xc(3,1:Nx)=u + + if (def.GT.0) then + a_up(1,1)=0.d0 + a_lo(1,1)=u + a_up(1,2)=XdInf + a_lo(1,3)=-XdInf + a_up(2,1)=1.d0 + else + a_up(1,1)=u + a_lo(1,1)=0.d0 + a_lo(1,2)=-XdInf + a_up(1,3)= XdInf + a_lo(2,1)=1.d0 + endif + !print *,'Nstart',Nstart + Nstart=MAX(3,Nstart) + + + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + + !print *,'loop starts' + do Ntd=Nstart,Ntime + + Ntdc=Ntd+Nc + ex=0.d0 + BIG=0.d0 + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,-1,R0,R1,R2,R3,R4) ! positive wave period +C CALL ECHO(BIG(1:2,1:2)) + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + !print *,'test',fxind/CY(1:Nx) + + do icy=1,Nx + ansr(Ntd,icy)=fxind(icy)*CC/CY(icy) + enddo + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + if((Nx.gt.4).or.NIT.gt.5) print *,'Ready: ',Ntd,' of ',Ntime + enddo + goto 300 + 300 open (unit=11, file='dens.out', STATUS='unknown') + + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansr(ts,ph) + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 continue + deallocate(BIG) + deallocate(ex) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + + if (allocated(R3)) then + deallocate(R3) + deallocate(R4) + deallocate(h) + ENDIF + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,def,Ntime,Nstart,NIT,speed,Nx,dT) + IMPLICIT NONE + integer, intent(out):: def,Ntime,Nstart,NIT,speed,Nx + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) def + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + + if (abs(def).GT.1) then + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + else + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + endif + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,def,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: def + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + !if (def.LT.0) THEN + ! H=-H + !endif + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime,def + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + if (abs(def).GT.1) then + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(4,*) R3(i) + read(5,*) R4(i) + enddo + + close(4) + close(5) + endif + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,shft,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! For ts>1: +! X(t2)..X(ts),..X(tn-1) X''(ts) X'(t1) X'(tn) X(ts) X(t1) X(tn) X'(ts) +! = [Xt Xd Xc] +! +! For ts<=1: +! X(t2)..,..X(tn-1) X'(t1) X'(tn) Y X(t1) X(tn) +! = [Xt Xd Xc] +!Add Y Condition : Y=h + +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + + if (ts.LE.1) THEN + Ntd1=tn + N=Ntd1+Nc; + shft=0 ! def=1 want only crest period Tc + else + Ntd1=tn+1 + N=Ntd1+4 + shft=1 ! def=2 or 3 want Tc Ac or Tcf, Ac + endif + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1+shft) = 0.d0 !cov(X(ti+1),Y) + BIG(i ,Ntd1+2+shft) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+3+shft) = R0(i+1) !cov(X(t.. ),X(tn)) + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X' (t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X' (tn)) + enddo + !call echo(big(1:tn,1:tn),tn) +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + +!cov(Xc) + !print *,'t' + BIG(Ntd1+1+shft,Ntd1+1+shft) = 100.d0!100.d0 ! cov(Y,Y) + BIG(Ntd1+1+shft,Ntd1+2+shft) = 0.d0 + BIG(Ntd1+1+shft,Ntd1+3+shft) = 0.d0 + BIG(Ntd1+2+shft,Ntd1+2+shft) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+2+shft,Ntd1+3+shft) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+3+shft,Ntd1+3+shft) = R0(1) ! cov(X(tn),X (tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1+shft) = 0.d0 !cov(X'(tn),Y) + BIG(Ntd1 ,Ntd1+2+shft) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+3+shft) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+1+shft) = 0.d0 !cov(X'(t1),Y) + BIG(Ntd1-1,Ntd1+2+shft) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+3+shft) =-R1(tn) !cov(X'(t1),X(tn)) + + + !call echo(big(1:N,1:N),N) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + BIG(i,j)=tmp + enddo + !call echo(big(1:N,1:N),N) + enddo + !if (tn.eq.3) then + !do j=1,N + ! do i=j,N + ! print *,'test',j,i,BIG(j,i) + ! enddo + !call echo(big(1:N,1:N),N) + !enddo + !endif + !call echo(big(1:N,1:N),N) + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2Acdf + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2mmpdf.f b/wafo/source/cov2XXXpdf/cov2mmpdf.f new file mode 100755 index 0000000..6046c5a --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2mmpdf.f @@ -0,0 +1,357 @@ + PROGRAM cov2mmpdf +C******************************************************************************* +C This program computes joint density of maximum and the following minimum * +C******************************************************************************* + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,seed1,seed_size + integer :: status,i,j,ij,Nx1 + double precision :: ds,dT ! lag spacing for covariances + +! f90 cov2mmpdf.f rind51.f + + CALL INIT_LEVELS(Ntime,Nstart,NIT,speed,Nx1,dT) + Nx=Nx1*(Nx1-1)/2 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + + CALL INITDATA(speed) + + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + allocate(h(1:Nx1)) + + CALL INIT_AMPLITUDES(h,Nx1) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y= X'(t2)...X'(tn-1)||X''(t1) X''(tn)|| X'(t1) X'(tn) X(t1) X(tn) !! +! = [ Xt Xd Xc ] !! +! !! +! Nt=tn-2, Nd=2, Nc=4 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! !! +! There are 3 ( NI=4) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0. !! +! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1)) !! +! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn)) !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=4; Nd=2 + Nc=4; Mb=1 + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(R4(1)) + XtInf=10.d0*SQRT(-R2(1)) + ! normalizing constant + CC=TWOPI*SQRT(-R2(1)/R4(1)) + + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate BIG' + end if + allocate(ex(1:Ntime+Nc),stat=status) + if (status.ne.0) then + print *,'can not allocate ex' + end if + if (Nx.gt.1) then + allocate(ansr(1:Nx1,1:Nx1)) + else + allocate(ansr(1,1:Ntime)) + end if + ansr=0.d0 + allocate(fxind(1:Nx)) + fxind=0.d0 !this is not needed + allocate(xc(1:Nc,1:Nx)) + + + allocate(a_up(Mb,NI-1)) + allocate(a_lo(Mb,NI-1)) + + a_up=0.d0 + a_lo=0.d0 + + ij=0 + do i=2,Nx1 + do j=1,i-1 + ij=ij+1 + xc(3,ij)=h(i) + xc(4,ij)=h(j) + enddo + enddo + xc(1,1:Nx)=0.d0 + xc(2,1:Nx)=0.d0 + + a_lo(1,1)=-Xtinf + a_lo(1,2)=-XdInf + a_up(1,3)=+XdInf + + + Nstart=MAX(2,Nstart) + + + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + + do Ntd=Nstart,Ntime + + Ntdc=Ntd+Nc + ex=0.d0 + BIG=0.d0 + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,R0,R1,R2,R3,R4) ! positive wave period + + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + ij=0 + if (Nx .gt. 1) then + do i=2,Nx1 + do j=1,i-1 + ij=ij+1 + ansr(i,j)=ansr(i,j)+fxind(ij)*CC*dt + enddo + enddo + else + ansr(1,Ntd)=fxind(1)*CC + end if + + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + goto 300 + 300 open (unit=11, file='dens.out', STATUS='unknown') + if (Nx.gt.1) then + do i=1,Nx1 + do j=1,Nx1 + write(11,*) ansr(i,j) + enddo + enddo + else + do j=1,Ntime + write(11,*) ansr(1,j) + enddo + end if + close(11) + 900 continue + deallocate(BIG) + deallocate(ex) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(R0) + deallocate(R1) + deallocate(R2) + deallocate(R3) + deallocate(R4) + deallocate(h) + + if (allocated(COV) ) then + deallocate(COV) + endif + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (Ntime,Nstart,NIT,speed,Nx,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,Nstart,NIT,speed,Nx + double precision ,intent(out) :: dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + READ (14,*) dT + + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + read(4,*) R3(i) + read(5,*) R4(i) + enddo + close(1) + close(2) + close(3) + close(3) + close(5) + return + END SUBROUTINE INIT_COVARIANCES + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn + integer :: i,j,N + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) +! = [ Xt | Xd | Xc ] +! +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + N=tn+4 + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,tn+3) = R1(i+1) !cov(X'(ti+1),X(t1)) + BIG(tn-1-i ,tn+4) = -R1(i+1) !cov(X'(ti+1),X(tn)) + BIG(i ,tn+1) = -R2(i+1) !cov(X'(ti+1),X'(t1)) + BIG(tn-1-i ,tn+2) = -R2(i+1) !cov(X'(ti+1),X'(tn)) + !Cov(Xt,Xd) + BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1)) + BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn)) + enddo + +!cov(Xd) + BIG(tn-1 ,tn-1 ) = R4(1) + BIG(tn-1,tn ) = R4(tn) !cov(X''(t1),X''(tn)) + BIG(tn ,tn ) = R4(1) + +!cov(Xc) + BIG(tn+3,tn+3) = R0(1) ! cov(X(t1),X(t1)) + BIG(tn+3,tn+4) = R0(tn) ! cov(X(t1),X(tn)) + BIG(tn+1,tn+3) = 0.d0 ! cov(X(t1),X'(t1)) + BIG(tn+2,tn+3) = R1(tn) ! cov(X(t1),X'(tn)) + BIG(tn+4,tn+4) = R0(1) ! cov(X(tn),X(tn)) + BIG(tn+1,tn+4) =-R1(tn) ! cov(X(tn),X'(t1)) + BIG(tn+2,tn+4) = 0.d0 ! cov(X(tn),X'(tn)) + BIG(tn+1,tn+1) =-R2(1) ! cov(X'(t1),X'(t1)) + BIG(tn+1,tn+2) =-R2(tn) ! cov(X'(t1),X'(tn)) + BIG(tn+2,tn+2) =-R2(1) ! cov(X'(tn),X'(tn)) +!Xc=X(t1),X(tn),X'(t1),X'(tn) +!Xd=X''(t1),X''(tn) +!cov(Xd,Xc) + BIG(tn-1 ,tn+3) = R2(1) !cov(X''(t1),X(t1)) + BIG(tn-1 ,tn+4) = R2(tn) !cov(X''(t1),X(tn)) + BIG(tn-1 ,tn+1) = 0.d0 !cov(X''(t1),X'(t1)) + BIG(tn-1 ,tn+2) = R3(tn) !cov(X''(t1),X'(tn)) + BIG(tn ,tn+3) = R2(tn) !cov(X''(tn),X(t1)) + BIG(tn ,tn+4) = R2(1) !cov(X''(tn),X(tn)) + BIG(tn ,tn+1) =-R3(tn) !cov(X''(tn),X'(t1)) + BIG(tn ,tn+2) = 0.d0 !cov(X''(tn),X'(tn)) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + BIG(i,j)=tmp + enddo + enddo + RETURN + END SUBROUTINE COV_INPUT + + + END PROGRAM cov2mmpdf + \ No newline at end of file diff --git a/wafo/source/cov2XXXpdf/cov2mmtpdf.f b/wafo/source/cov2XXXpdf/cov2mmtpdf.f new file mode 100755 index 0000000..6cf7c9a --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2mmtpdf.f @@ -0,0 +1,769 @@ + PROGRAM sp2mmt +C******************************************************************************* +C This program computes joint density of the maximum and the following * +C minimum or level u separated maxima and minima + period/wavelength * +C******************************************************************************* + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:), allocatable :: BIG + double precision, dimension(:,:,:),allocatable :: ansr + double precision, dimension(: ), allocatable :: ex + double precision, dimension(:,:), allocatable :: xc + double precision, dimension(: ), allocatable :: fxind,h + double precision, dimension(: ), allocatable :: R0,R1,R2,R3,R4 + double precision :: CC,U,XdInf,XtInf + double precision, dimension(1,4) :: a_up,a_lo ! size Mb X NI-1 + integer , dimension(: ), allocatable :: seed + integer ,dimension(5) :: indI = 0 ! length NI + integer :: Nstart,Ntime,ts,tn,speed,seed1,seed_size + integer :: status,i,j,ij,Nx0,Nx1,DEF,isOdd !,TMP + LOGICAL :: SYMMETRY=.FALSE. + double precision :: dT ! lag spacing for covariances + +! f90 -gline -fieee -Nl126 -C -o intmodule.f rind60.f sp2mmt.f + + CALL INIT_LEVELS(Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx1,dT,u,def) + CALL INITDATA(speed) + + if (SCIS.GT.0) then + !allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + if (ALLOCATED(COV)) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + endif + + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + + Nx0 = Nx1 ! just plain Mm + IF (def.GT.1) Nx0=2*Nx1 ! level v separated max2min densities wanted + + + allocate(h(1:Nx0)) + + CALL INIT_AMPLITUDES(h,Nx0) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) +! For DEF = 0,1 : (Maxima, Minima and period/wavelength) +! = 2,3 : (Level v separated Maxima and Minima and period/wavelength between them) +! If Nx==1 then the conditional density for period/wavelength between Maxima and Minima +! given the Max and Min is returned +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn)|| X'(t1) X'(tn) X(t1) X(tn) +! = [ Xt Xd Xc ] +! +! Nt = tn-2, Nd = 2, Nc = 4 +! +! Xt= contains Nt time points in the indicator function +! Xd= " Nd derivatives in Jacobian +! Xc= " Nc variables to condition on +! +! There are 3 (NI=4) regions with constant barriers: +! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0. +! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1)) +! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn)) +! +! +! For DEF = 4,5 (Level v separated Maxima and Minima and period/wavelength from Max to crossing) +! If Nx==1 then the conditional joint density for period/wavelength between Maxima, Minima and Max to +! level v crossing given the Max and the min is returned +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn) X'(ts)|| X'(t1) X'(tn) X(t1) X(tn) X(ts) +! = [ Xt Xd Xc ] +! +! Nt = tn-2, Nd = 3, Nc = 5 +! +! Xt= contains Nt time points in the indicator function +! Xd= " Nd derivatives +! Xc= " Nc variables to condition on +! +! There are 4 (NI=5) regions with constant barriers: +! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0. +! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1)) +! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn)) +! (indI(4)=Nt+2); for i\in (indI(4)+1,indI(5)], Y(i)<0 (deriv. X'(ts)) +! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! +!Revised pab 22.04.2000 +! - added mean separated min/max + (Tdm, TMd) period distributions +! - added scis + + +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf = 10.d0*SQRT(R4(1)) + XtInf = 10.d0*SQRT(-R2(1)) + + Nc = 4 + NI=4; Nd=2; + Mb=1 ; + Nj = 0 + indI(1) = 0 + Nstart=MAX(2,Nstart) + + isOdd = MOD(Nx1,2) + IF (def.LE.1) THEN ! just plain Mm + Nx = Nx1*(Nx1-1)/2 + IJ = (Nx1+isOdd)/2 + IF (H(1)+H(Nx1).EQ.0.AND. + & (H(IJ).EQ.0.OR.H(IJ)+H(IJ+1).EQ.0) ) THEN + SYMMETRY=.FALSE. + PRINT *,' Integration region symmetric' + ! May save Nx1-isOdd integrations in each time step + ! This is not implemented yet. + !Nx = Nx1*(Nx1-1)/2-Nx1+isOdd + ENDIF + + CC = TWOPI*SQRT(-R2(1)/R4(1)) ! normalizing constant = 1/ expected number of zero-up-crossings of X' + + ELSE ! level u separated Mm + Nx = (Nx1-1)*(Nx1-1) + IF ( ABS(u).LE.1D-8.AND.H(1)+H(Nx1+1).EQ.0.AND. + & (H(Nx1)+H(2*Nx1).EQ.0) ) THEN + SYMMETRY=.FALSE. + PRINT *,' Integration region symmetric' + ! Not implemented for DEF <= 3 + !IF (DEF.LE.3) Nx = (Nx1-1)*(Nx1-2)/2 + ENDIF + + IF (DEF.GT.3) THEN + Nstart = MAX(Nstart,3) + Nc = 5 + NI=5; Nd=3; + ENDIF + CC = TWOPI*SQRT(-R0(1)/R2(1))*exp(0.5D0*u*u/R0(1)) ! normalizing constant= 1/ expected number of u-up-crossings of X + ENDIF + + !print *,'def',def + IF (Nx.GT.1) THEN + IF ((DEF.EQ.0.OR.DEF.EQ.2)) THEN ! (M,m) or (M,m)v distribution wanted + allocate(ansr(Nx1,Nx1,1),stat=status) + ELSE ! (M,m,TMm), (M,m,TMm)v (M,m,TMd)v or (M,M,Tdm)v distributions wanted + allocate(ansr(Nx1,Nx1,Ntime),stat=status) + ENDIF + ELSEIF (DEF.GT.3) THEN ! Conditional distribution for (TMd,TMm)v or (Tdm,TMm)v given (M,m) wanted + allocate(ansr(1,Ntime,Ntime),stat=status) + ELSE ! Conditional distribution for (TMm) or (TMm)v given (M,m) wanted + allocate(ansr(1,1,Ntime),stat=status) + ENDIF + if (status.ne.0) print *,'can not allocate ansr' + allocate(BIG(Ntime+Nc+1,Ntime+Nc+1),stat=status) + if (status.ne.0) print *,'can not allocate BIG' + allocate(ex(1:Ntime+Nc+1),stat=status) + if (status.ne.0) print *,'can not allocate ex' + allocate(fxind(Nx),xc(Nc,Nx)) + + +! Initialization +!~~~~~~~~~~~~~~~~~ + + BIG = 0.d0 + ex = 0.d0 + ansr = 0.d0 + a_up = 0.d0 + a_lo = 0.d0 + + xc(:,:) = 0.d0 + !xc(:,1:Nx) = 0.d0 + !xc(2,1:Nx) = 0.d0 + + a_lo(1,1) = -Xtinf + a_lo(1,2) = -XdInf + a_up(1,3) = +XdInf + a_lo(1,4) = -Xtinf + ij = 0 + IF (DEF.LE.1) THEN ! Max2min and period/wavelength + do I=2,Nx1 + J = IJ+I-1 + xc(3,IJ+1:J) = h(I) + xc(4,IJ+1:J) = h(1:I-1) + IJ = J + enddo + ELSE + ! Level u separated Max2min + xc(Nc,:) = u + ! H(1) = H(Nx1+1)= u => start do loop at I=2 since by definition we must have: minimum u + xc(4,IJ+1:J) = h(Nx1+2:2*Nx1) ! Min < u + IJ = J + enddo + + !CALL ECHO(transpose(xc(3:5,:))) + if (DEF.GT.3) GOTO 200 + ENDIF + do Ntd = Nstart,Ntime + !Ntd=tn + Ntdc = Ntd+Nc + Nt = Ntd-Nd; + indI(2) = Nt; + indI(3) = Nt+1; + indI(4) = Ntd; + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,0,R0,R1,R2,R3,R4) ! positive wave period + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + IF (Nx.LT.2) THEN +! Density of TMm given the Max and the Min. Note that the density is not scaled to unity + ansr(1,1,Ntd) = fxind(1)*CC + GOTO 100 + ENDIF + IJ = 0 + SELECT CASE (DEF) + CASE(:0) +! joint density of (M,m) +!~~~~~~~~~~~~~~~~~~~~~~~~ + do i = 2, Nx1 + J = IJ+i-1 + ansr(1:i-1,i,1) = ansr(1:i-1,i,1)+fxind(ij+1:J)*CC*dt + IJ=J + enddo + CASE (1) +! joint density of (M,m,TMm) + do i = 2, Nx1 + J = IJ+i-1 + ansr(1:i-1,i,Ntd) = fxind(ij+1:J)*CC + IJ = J + enddo + CASE (2) + ! joint density of level v separated (M,m)v + do i = 2,Nx1 + J = IJ+Nx1-1 + ansr(2:Nx1,i,1) = ansr(2:Nx1,i,1)+fxind(ij+1:J)*CC*dt + IJ = J + enddo + CASE (3:) + ! joint density of level v separated (M,m,TMm)v + do i = 2,Nx1 + J = IJ+Nx1-1 + ansr(2:Nx1,i,Ntd) = ansr(2:Nx1,i,Ntd)+fxind(ij+1:J)*CC + IJ = J + enddo + END SELECT + + 100 if (ALLOCATED(COV)) then + write(11,*) COV(:) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + + goto 800 + + 200 do tn = Nstart,Ntime + Ntd = tn+1 + Ntdc = Ntd + Nc + Nt = Ntd - Nd; + indI(2) = Nt; + indI(3) = Nt + 1; + indI(4) = Nt + 2; + indI(5) = Ntd; + !CALL COV_INPUT2(BIG(1:Ntdc,1:Ntdc),tn,-2,R0,R1,R2,R3,R4) ! positive wave period + IF (SYMMETRY) GOTO 300 + + do ts = 2,tn-1 + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period + !print *,'Big=' + !CALL ECHO(BIG(1:Ntdc,1:MIN(Ntdc,10))) + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + + SELECT CASE (def) + CASE (:4) + IF (Nx.EQ.1) THEN +! Joint density (TMd,TMm) given the Max and the min. Note the density is not scaled to unity + ansr(1,ts,tn) = fxind(1)*CC + + ELSE +! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd). + ij = 0 + do i = 2,Nx1 + J = IJ+Nx1-1 + ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+ + & fxind(ij+1:J)*CC*dt + IJ = J + enddo + ENDIF + CASE (5:) + IF (Nx.EQ.1) THEN +! Joint density (Tdm,TMm) given the Max and the min. Note the density is not scaled to unity + ansr(1,tn-ts+1,tn) = fxind(1)*CC + ELSE + +! 5, gives level u separated Max2min and wave period from the crossing of level u to the min (M,m,Tdm). + ij = 0 + do i = 2,Nx1 + J = IJ+Nx1-1 + ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+ + & fxind(ij+1:J)*CC*dt + IJ = J + enddo + ENDIF + END SELECT + if (ALLOCATED(COV)) then + write(11,*) COV(:) ! save coefficient of variation + endif + enddo + GOTO 400 + 300 do ts = 2,FLOOR(DBLE(Ntd)/2.d0) ! Using the symmetry since U = 0 and the transformation is linear + CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period + !print *,'Big=' + !CALL ECHO(BIG(1:Ntdc,1:Ntdc)) + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up) + IF (Nx.EQ.1) THEN +! Joint density of (TMd,TMm),(Tdm,TMm) given the max and the min. Note that the density is not scaled to unity + ansr(1,ts,tn) = fxind(1)*CC + IF (ts.LT.tn-ts+1) THEN + ansr(1,tn-ts+1,tn) = fxind(1)*CC + ENDIF + GOTO 350 + ENDIF + IJ = 0 + SELECT CASE (def) + CASE (:4) + +! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd). + do i = 2,Nx1 + j = ij+Nx1-1 + ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+ + & fxind(ij+1:J)*CC*dt + IF (ts.LT.tn-ts+1) THEN + ansr(i,2:Nx1,tn-ts+1) = + & ansr(i,2:Nx1,tn-ts+1)+fxind(ij+1:J)*CC*dt ! exploiting the symmetry + ENDIF + IJ = J + enddo + CASE (5:) +! 5, gives level u separated Max2min and wave period from the crossing of level u to min (M,m,Tdm). + do i = 2,Nx1 + J = IJ+Nx1-1 + + ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+ + & fxind(ij+1:J)*CC*dt + IF (ts.LT.tn-ts+1) THEN + ansr(i,2:Nx1,ts) = ansr(i,2:Nx1,ts)+ + & fxind(ij+1:J)*CC*dt ! exploiting the symmetry + ENDIF + IJ = J + enddo + END SELECT + 350 enddo + 400 print *,'Ready: ',tn,' of ',Ntime + enddo + + + + + 800 open (unit=11, file='dens.out', STATUS='unknown') + !print *,'ans, IJ,def', shape(ansr),IJ,DEF + if (Nx.GT.1) THEN + ij = 1 + IF (DEF.GT.2.OR.DEF.EQ.1) IJ = Ntime + !print *,'ans, IJ,def', size(ansr),IJ,DEF + do ts = 1,ij + do j=1,Nx1 + do i=1,Nx1 + write(11,*) ansr(i,j,ts) + enddo + enddo + enddo + ELSE + ij = 1 + IF (DEF.GT.3) IJ = Ntime + !print *,'ans, IJ,def', size(ansr),IJ,DEF + do ts = 1,Ntime + do j = 1,ij + write(11,*) ansr(1,j,ts) + enddo + enddo + ENDIF + close(11) + 900 continue + deallocate(BIG) + deallocate(ex) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(R0) + deallocate(R1) + deallocate(R2) + deallocate(R3) + deallocate(R4) + deallocate(h) + + if (allocated(COV) ) then + deallocate(COV) + endif + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx,dT,u,def) + IMPLICIT NONE + integer, intent(out):: Ntime,Nstart,NIT,speed,Nx,DEF,SCIS,SEED1 + double precision ,intent(out) :: dT,U + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + READ (14,*) dT + READ (14,*) U + READ (14,*) DEF + + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + read(4,*) R3(i) + read(5,*) R4(i) + enddo + close(1) + close(2) + close(3) + close(3) + close(5) + return + END SUBROUTINE INIT_COVARIANCES + +C********************************************************************** + + SUBROUTINE COV_INPUT2(BIG,tn,ts,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,N,shft +! the order of the variables in the covariance matrix +! are organized as follows: +! for ts <= 1: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) +! = [ Xt | Xd | Xc ] +! +! for ts > =2: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) X(ts) +! = [ Xt | Xd | Xc ] +! +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + if (ts.GT.1) THEN + ! Assumption: a previous call to covinput has been made + ! need only to update the last row and column of big: + N=tn+5 + !Cov(Xt,Xc) + do i=1,tn-2 + j=abs(i+1-ts) + BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts)) + enddo + !Cov(Xc) + BIG(N ,N) = R0(1) ! cov(X(ts),X(ts)) + BIG(tn+3 ,N) = R0(ts) ! cov(X(t1),X(ts)) + BIG(tn+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts)) + BIG(tn+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts)) + BIG(tn+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts)) + !Cov(Xd,Xc) + BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts)) + BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts)) + + ! make lower triangular part equal to upper + do j=1,N-1 + BIG(N,j) = BIG(j,N) + enddo + return + endif + IF (ts.LT.0) THEN + shft = 1 + N=tn+5; + ELSE + shft = 0 + N=tn+4; + ENDIF + + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,tn+3) = R1(i+1) !cov(X'(ti+1),X(t1)) + BIG(tn-1-i ,tn+4) = -R1(i+1) !cov(X'(ti+1),X(tn)) + BIG(i ,tn+1) = -R2(i+1) !cov(X'(ti+1),X'(t1)) + BIG(tn-1-i ,tn+2) = -R2(i+1) !cov(X'(ti+1),X'(tn)) + !Cov(Xt,Xd) + BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1)) + BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn)) + enddo + +!cov(Xd) + BIG(tn-1 ,tn-1 ) = R4(1) + BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn)) + BIG(tn ,tn ) = R4(1) + +!cov(Xc) + BIG(tn+3 ,tn+3) = R0(1) ! cov(X(t1),X(t1)) + BIG(tn+3 ,tn+4) = R0(tn) ! cov(X(t1),X(tn)) + BIG(tn+1 ,tn+3) = 0.d0 ! cov(X(t1),X'(t1)) + BIG(tn+2 ,tn+3) = R1(tn) ! cov(X(t1),X'(tn)) + BIG(tn+4 ,tn+4) = R0(1) ! cov(X(tn),X(tn)) + BIG(tn+1 ,tn+4) =-R1(tn) ! cov(X(tn),X'(t1)) + BIG(tn+2 ,tn+4) = 0.d0 ! cov(X(tn),X'(tn)) + BIG(tn+1 ,tn+1) =-R2(1) ! cov(X'(t1),X'(t1)) + BIG(tn+1 ,tn+2) =-R2(tn) ! cov(X'(t1),X'(tn)) + BIG(tn+2 ,tn+2) =-R2(1) ! cov(X'(tn),X'(tn)) +!Xc=X(t1),X(tn),X'(t1),X'(tn) +!Xd=X''(t1),X''(tn) +!cov(Xd,Xc) + BIG(tn-1 ,tn+3) = R2(1) !cov(X''(t1),X(t1)) + BIG(tn-1 ,tn+4) = R2(tn) !cov(X''(t1),X(tn)) + BIG(tn-1 ,tn+1) = 0.d0 !cov(X''(t1),X'(t1)) + BIG(tn-1 ,tn+2) = R3(tn) !cov(X''(t1),X'(tn)) + BIG(tn ,tn+3) = R2(tn) !cov(X''(tn),X(t1)) + BIG(tn ,tn+4) = R2(1) !cov(X''(tn),X(tn)) + BIG(tn ,tn+1) =-R3(tn) !cov(X''(tn),X'(t1)) + BIG(tn ,tn+2) = 0.d0 !cov(X''(tn),X'(tn)) + + + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + BIG(i,j) = BIG(j,i) + enddo + enddo + RETURN + END SUBROUTINE COV_INPUT2 + + SUBROUTINE COV_INPUT(BIG,tn,ts,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,N,shft, tnold = 0 +! the order of the variables in the covariance matrix +! are organized as follows: +! for ts <= 1: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) +! = [ Xt | Xd | Xc ] +! +! for ts > =2: +! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(ts) X'(t1),X'(tn),X(t1),X(tn) X(ts) +! = [ Xt | Xd | Xc ] +! +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s)) = r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + SAVE tnold + + if (ts.GT.1) THEN + shft = 1 + N=tn+5+shft + !Cov(Xt,Xc) + do i=1,tn-2 + j=abs(i+1-ts) + BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts)) + enddo + !Cov(Xc) + BIG(N ,N) = R0(1) ! cov(X(ts),X(ts)) + BIG(tn+shft+3 ,N) = R0(ts) ! cov(X(t1),X(ts)) + BIG(tn+shft+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts)) + BIG(tn+shft+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts)) + BIG(tn+shft+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts)) + !Cov(Xd,Xc) + BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts)) + BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts)) + + !ADD a level u crossing at ts + + !Cov(Xt,Xd) + do i = 1,tn-2 + j = abs(i+1-ts) + BIG(i,tn+shft) = -R2(j+1) !cov(X'(ti+1),X'(ts)) + enddo + !Cov(Xd) + BIG(tn+shft,tn+shft) = -R2(1) !cov(X'(ts),X'(ts)) + BIG(tn-1 ,tn+shft) = R3(ts) !cov(X''(t1),X'(ts)) + BIG(tn ,tn+shft) = -R3(tn-ts+1) !cov(X''(tn),X'(ts)) + + !Cov(Xd,Xc) + BIG(tn+shft ,N ) = 0.d0 !cov(X'(ts),X(ts)) + BIG(tn+shft,tn+shft+3) = R1(ts) ! cov(X'(ts),X(t1)) + BIG(tn+shft,tn+shft+4) = -R1(tn-ts+1) ! cov(X'(ts),X(tn)) + BIG(tn+shft,tn+shft+1) = -R2(ts) ! cov(X'(ts),X'(t1)) + BIG(tn+shft,tn+shft+2) = -R2(tn-ts+1) ! cov(X'(ts),X'(tn)) + + + + IF (tnold.EQ.tn) THEN ! A previous call to covinput with tn==tnold has been made + ! need only to update row and column N and tn+1 of big: + ! make lower triangular part equal to upper and then return + do j=1,tn+shft + BIG(N,j) = BIG(j,N) + BIG(tn+shft,j) = BIG(j,tn+shft) + enddo + do j=tn+shft+1,N-1 + BIG(N,j) = BIG(j,N) + BIG(j,tn+shft) = BIG(tn+shft,j) + enddo + return + ENDIF + tnold = tn + ELSE + N = tn+4 + shft = 0 + endif + + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,tn+shft+3) = R1(i+1) !cov(X'(ti+1),X(t1)) + BIG(tn-1-i ,tn+shft+4) = -R1(i+1) !cov(X'(ti+1),X(tn)) + BIG(i ,tn+shft+1) = -R2(i+1) !cov(X'(ti+1),X'(t1)) + BIG(tn-1-i ,tn+shft+2) = -R2(i+1) !cov(X'(ti+1),X'(tn)) + !Cov(Xt,Xd) + BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1)) + BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn)) + enddo + +!cov(Xd) + BIG(tn-1 ,tn-1 ) = R4(1) + BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn)) + BIG(tn ,tn ) = R4(1) + +!cov(Xc) + BIG(tn+shft+3 ,tn+shft+3) = R0(1) ! cov(X(t1),X(t1)) + BIG(tn+shft+3 ,tn+shft+4) = R0(tn) ! cov(X(t1),X(tn)) + BIG(tn+shft+1 ,tn+shft+3) = 0.d0 ! cov(X(t1),X'(t1)) + BIG(tn+shft+2 ,tn+shft+3) = R1(tn) ! cov(X(t1),X'(tn)) + BIG(tn+shft+4 ,tn+shft+4) = R0(1) ! cov(X(tn),X(tn)) + BIG(tn+shft+1 ,tn+shft+4) =-R1(tn) ! cov(X(tn),X'(t1)) + BIG(tn+shft+2 ,tn+shft+4) = 0.d0 ! cov(X(tn),X'(tn)) + BIG(tn+shft+1 ,tn+shft+1) =-R2(1) ! cov(X'(t1),X'(t1)) + BIG(tn+shft+1 ,tn+shft+2) =-R2(tn) ! cov(X'(t1),X'(tn)) + BIG(tn+shft+2 ,tn+shft+2) =-R2(1) ! cov(X'(tn),X'(tn)) +!Xc=X(t1),X(tn),X'(t1),X'(tn) +!Xd=X''(t1),X''(tn) +!cov(Xd,Xc) + BIG(tn-1 ,tn+shft+3) = R2(1) !cov(X''(t1),X(t1)) + BIG(tn-1 ,tn+shft+4) = R2(tn) !cov(X''(t1),X(tn)) + BIG(tn-1 ,tn+shft+1) = 0.d0 !cov(X''(t1),X'(t1)) + BIG(tn-1 ,tn+shft+2) = R3(tn) !cov(X''(t1),X'(tn)) + BIG(tn ,tn+shft+3) = R2(tn) !cov(X''(tn),X(t1)) + BIG(tn ,tn+shft+4) = R2(1) !cov(X''(tn),X(tn)) + BIG(tn ,tn+shft+1) =-R3(tn) !cov(X''(tn),X'(t1)) + BIG(tn ,tn+shft+2) = 0.d0 !cov(X''(tn),X'(tn)) + + + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + BIG(i,j) = BIG(j,i) + enddo + enddo + RETURN + END SUBROUTINE COV_INPUT + END PROGRAM sp2mmt + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2tccpdf.f b/wafo/source/cov2XXXpdf/cov2tccpdf.f new file mode 100755 index 0000000..3582432 --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2tccpdf.f @@ -0,0 +1,498 @@ + PROGRAM sp2tccpdf +C*********************************************************************** +C This program computes: * +C * +C density of T= T_1+T_2 in a gaussian process i.e. * +C * +C wavelengthes for crests

h2 * +C * +C Sylvie and Igor 7 dec. 1999 * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex,CY1,CY2 + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h1,h2 + double precision, dimension(: ),allocatable :: hh1,hh2 + double precision, dimension(: ),allocatable :: R0,R1,R2 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Ntime,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2,N0 + integer :: icy,icy2 + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf1.exe rind49.f sp2tthpdf1.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind49.f sp2tthpdf1.f + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + + !print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT + !Nx1=1 + !Nx2=1 + + Nx=Nx1*Nx1 + !print *,'NN',Nx1,Nx2,Nx + + + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + + allocate(h1(1:Nx1)) + allocate(h2(1:Nx2)) + CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2) + + + allocate(hh1(1:Nx)) + allocate(hh2(1:Nx)) + !h transformation + do icy=1,Nx1 + do icy2=1,Nx2 + hh1((icy-1)*Nx2+icy2)=h1(icy); + hh2((icy-1)*Nx2+icy2)=h2(icy2); + enddo + enddo + + Nj=0 + indI(1)=0 + +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !h1(1)=XtInf + !h2(1)=XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + allocate(CY1(1:Nx)) + allocate(CY2(1:Nx)) + do icy=1,Nx + CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi)) + CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi)) + enddo + !print *,CY1 + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + fxind=0.d0 + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !! +! = [Xt Xd Xc] !! +! !! +! Nt=tn-2, Nd=3, Nc=2+3 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !! +! !! +! There are 6 ( NI=7) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !! +! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !! +! (indI(7)=Nt+3); NI=7. !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=7; Nd=3 + Nc=5; Mb=3 + allocate(a_up(1:Mb,1:(NI-1))) + allocate(a_lo(1:Mb,1:(NI-1))) + a_up=0.d0 + a_lo=0.d0 + allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1))) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:(Ntime+Nc+1))) + !print *,size(ex),Ntime + ex=0.d0 + !print *,size(ex),ex + xc(1,1:Nx)=hh1(1:Nx) + xc(2,1:Nx)=hh2(1:Nx) + xc(3,1:Nx)=u + xc(4,1:Nx)=u + xc(5,1:Nx)=u + ! upp- down- upp-crossings at t1,ts,tn + + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(1,3)=u + + + a_lo(1,4)=-XdInf + a_up(1,5)= XdInf + a_up(1,6)= XdInf + + a_up(2,1)=1.d0 + a_lo(3,3)=1.d0 !signe a voir!!!!!! +! print *,a_up +! print *,a_lo + do tn=N0,Ntime,1 +! do tn=Ntime,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd + if (SCIS.gt.0) then + if (SCIS.EQ.2) then + Nj=max(Nt,0) + else + Nj=min(max(Nt-5, 0),0) + endif + endif + do ts=3,tn-2 + !print *,'ts,tn' ,ts,tn,Ntdc + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + + ds=dt + do icy=1,Nx + ! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2) + ansr(tn,icy)=ansr(tn,icy)+fxind(icy)*CC*ds/(CY1(icy)*CY2(icy)) + enddo + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime + + enddo !tn + !print *,'ansr',ansr + 300 open (unit=11, file='dens.out', STATUS='unknown') + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + !write(11,*) ansr(ts,ph),hh1(ph),hh2(ph) + write(11,111) ansr(ts,ph) + + enddo + enddo + 111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + deallocate(h1) + deallocate(h2) + deallocate(hh1) + deallocate(hh2) + deallocate(a_up) + deallocate(a_lo) + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1 + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + + READ (14,*) U + READ (14,*) Ntime + READ (14,*) N0 + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + + + READ (14,*) Nx1,Nx2 + READ (14,*) dT + if (Ntime.lt.5) then + print *,'The number of wavelength points is too small, stop' + stop + end if + + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h1,h2 + integer, intent(in) :: Nx1,Nx2 + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx1 + READ (4,*) H1(ix) + enddo + do ix=1,Nx2 + READ (4,*) H2(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + integer ,intent(in) :: tn,ts + integer :: i,j,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! +! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)|| +! = [Xt Xd Xc] +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + Ntd1=tn+1 + N=Ntd1+Nc + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1) + BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2) + BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn)) + + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn)) + enddo +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = -R2(1) + BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn)) + +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1) + BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2) + BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1)) + BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn)) + BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2) + BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts)) + BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1)) + BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn)) + + BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn)) + + +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1) + BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2) + BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1) + BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2) + BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1) + BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2) + + BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn)) + BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts)) + BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts) + BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1)) + BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn)) + + + do i=1,tn-2 + j=abs(i+1-ts) +!cov(Xt,Xc) + BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts)) +!Cov(Xt,Xd) + if ((i+1-ts).lt.0) then + BIG(i,Ntd1-2) = R1(j+1) + else !cov(X(ti+1),X'(ts)) + BIG(i,Ntd1-2) = -R1(j+1) + endif + enddo + +! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + + BIG(i,j)=tmp + enddo + enddo + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2tccpdf + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2tcpdf.f b/wafo/source/cov2XXXpdf/cov2tcpdf.f new file mode 100755 index 0000000..094e339 --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2tcpdf.f @@ -0,0 +1,440 @@ + PROGRAM sp2tcpdf +C*********************************************************************** +C This program computes: * +C * +C density of T_i, for Ac <=h, in a gaussian process i.e. * +C * +C half wavelength (up-crossing to downcrossing) for crests h * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + &NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex,CY + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(2,6) :: a_up=0.d0,a_lo=0.d0 + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,ph,def,seed1,seed_size,icy + integer ::it1,it2 + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -o ~/WAT/V1/sp2tcpdf.exe rind44.f sp2tcpdf.f + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,def,Ntime,Nstart,NIT,speed,Nx,dT) + !print *,'U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + if (abs(def).GT.1) THEN + !allocate(h(1:Nx)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + !CALL INIT_AMPLITUDES(h,def,Nx) + endif + allocate(h(1:Nx)) + CALL INIT_AMPLITUDES(h,def,Nx) + CALL INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + + print *,'Nx',Nx + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + print *,'XdInf,XtInf' + print *,XdInf,XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + !fy(h) + allocate(CY(1:Nx)) + do icy=1,Nx + CY(icy)=exp(-0.5*h(icy)*h(icy)/100)/(10*sqrt(twopi)) + enddo + + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + fxind=0.d0 !this is not needed + + NI=4; Nd=2 + Nc=3; Mb=2 + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc)) + allocate(xc(1:Nc,1:Nx)) + allocate(ex(1:Ntime+Nc)) + ex=0.d0 + !print *,'nc',Nc,Nx + xc(1,1:Nx)=h(1:Nx) + print *,'xc',h(1) + print *,'test',def; + xc(2,1:Nx)=u + xc(3,1:Nx)=u + if (def.GT.0) then + a_up(1,1)=u !+XtInf + a_lo(1,1)=u + a_up(1,2)=XdInf + a_lo(1,3)=-XdInf + a_up(2,1)=1.d0 + else + a_up(1,1)=u + a_lo(1,1)=u !-XtInf + a_lo(1,2)=-XdInf + a_up(1,3)= XdInf + a_lo(2,1)=1.d0 + print *,'a_lo',a_lo(2,1) + endif + !print *,'Nstart',Nstart + Nstart=MAX(3,Nstart) + !print *,'Nstart',Nstart + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + do Ntd=Nstart,Ntime + !CALL COV_INPUT2(BIG,Ntd, R0,R1,R2) + Ntdc=Ntd+Nc; + CALL COV_INPUT(BIG,Ntd,-1,R0,R1,R2,R3,R4) ! positive wave period + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + !Ntdc=Ntd+Nc; + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + ! print *,'test',fxind/CY(1:Nx) + do icy=1,Nx + ansr(Ntd,icy)=fxind(icy)*CC/CY(icy) + enddo + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + goto 300 + 300 open (unit=11, file='dens.out', STATUS='unknown') + + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansr(ts,ph) + ! write(11,111) ansr(ts,ph) + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + + if (allocated(R3)) then + deallocate(R3) + deallocate(R4) + deallocate(h) + ENDIF + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,def,Ntime,Nstart,NIT,speed,Nx,dT) + IMPLICIT NONE + integer, intent(out):: def,Ntime,Nstart,NIT,speed,Nx + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) def + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + print *,'def',def + if (abs(def).GT.1) then + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + else + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + endif + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,def,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: def + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + !if (def.LT.0) THEN + ! H=-H + !endif + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime,def + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + if (abs(def).GT.1) then + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(4,*) R3(i) + read(5,*) R4(i) + enddo + + close(4) + close(5) + endif + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,shft,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! For ts>1: +! X(t2)..X(ts),..X(tn-1) X''(ts) X'(t1) X'(tn) X(ts) X(t1) X(tn) X'(ts) +! = [Xt Xd Xc] +! +! For ts<=1: +! X(t2)..,..X(tn-1) X'(t1) X'(tn) Y X(t1) X(tn) +! = [Xt Xd Xc] +!Add Y Condition : Y=h + +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + + if (ts.LE.1) THEN + Ntd1=tn + N=Ntd1+Nc; + shft=0 ! def=1 want only crest period Tc + else + Ntd1=tn+1 + N=Ntd1+4 + shft=1 ! def=2 or 3 want Tc Ac or Tcf, Ac + endif + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1+shft) = 0.d0 !cov(X(ti+1),Y) + BIG(i ,Ntd1+2+shft) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+3+shft) = R0(i+1) !cov(X(t.. ),X(tn)) + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X' (t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X' (tn)) + enddo + !call echo(big(1:tn,1:tn),tn) +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + +!cov(Xc) + !print *,'t' + BIG(Ntd1+1+shft,Ntd1+1+shft) = 100.d0!100.d0 ! cov(Y,Y) + BIG(Ntd1+1+shft,Ntd1+2+shft) = 0.d0 + BIG(Ntd1+1+shft,Ntd1+3+shft) = 0.d0 + BIG(Ntd1+2+shft,Ntd1+2+shft) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+2+shft,Ntd1+3+shft) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+3+shft,Ntd1+3+shft) = R0(1) ! cov(X(tn),X (tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1+shft) = 0.d0 !cov(X'(tn),Y) + BIG(Ntd1 ,Ntd1+2+shft) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+3+shft) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+1+shft) = 0.d0 !cov(X'(t1),Y) + BIG(Ntd1-1,Ntd1+2+shft) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+3+shft) =-R1(tn) !cov(X'(t1),X(tn)) + + + !call echo(big(1:N,1:N),N) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + BIG(i,j)=tmp + enddo + !call echo(big(1:N,1:N),N) + enddo + !if (tn.eq.3) then + !do j=1,N + ! do i=j,N + ! print *,'test',j,i,BIG(j,i) + ! enddo + !call echo(big(1:N,1:N),N) + !enddo + !endif + !call echo(big(1:N,1:N),N) + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2tcpdf + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2thpdf.f b/wafo/source/cov2XXXpdf/cov2thpdf.f new file mode 100755 index 0000000..8d6f01a --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2thpdf.f @@ -0,0 +1,569 @@ + PROGRAM sp2thpdf +!*********************************************************************** +! This program computes: * +! * +! density of S_i,Hi,T_i in a gaussian process i.e. * +! * +! quart wavelength (up-crossing to crest) and crest amplitude * +! +! def = 1, gives half wave period, Tc (default). +! -1, gives half wave period, Tt. +! 2, gives half wave period and wave crest amplitude (Tc,Ac). +! -2, gives half wave period and wave trough amplitude (Tt,At). +! 3, gives crest front period and wave crest amplitude (Tcf,Ac). +! -3, gives trough back period and wave trough amplitude (Ttb,At). +! 4, gives minimum of crest front/back period and wave crest +! amplitude (max(Tcf,Tcb),Ac). +! -4, gives minimum of trough front/back period and wave trough +! amplitude (max(Ttf,Ttb),At). +!*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(2,6) :: a_up=0.d0,a_lo=0.d0 + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nstart,Ntime,tn,ts,speed,ph,def,seed1,seed_size + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -g2 -C -automatic -o ../wave/alpha/sp2thpdf.exe rind44.f sp2thpdf.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../wave/sol2/sp2thpdf.exe rind44.f sp2thpdf.f +! linux: +! f90 -gline -Nl126 -C -o sp2thpdf.exe rind45.f sp2thpdf.f +! HP700 +!f90 -g -C -o ../exec/hp700/sp2thpdf.exe rind45.f sp2thpdf.f +!f90 -g -C +check=all +FPVZID -o ../exec/hp700/sp2thpdf2.exe rind45.f sp2thpdf.f + + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT) + !print *,'U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT + + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + if (abs(def).GT.1) THEN + allocate(h(1:Nx)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + + CALL INIT_AMPLITUDES(h,def,Nx) + endif + CALL INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + + !print *,'Nx',Nx + + Nj=0 + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !print *,'XdInf,XtInf' + !print *,XdInf,XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + if (abs(def).EQ.4) CC=2.d0*CC + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + !fxind=0.d0 this is not needed + + if (abs(def).GT.1) then + GOTO 200 + endif + NI=4; Nd=2 + Nc=2; Mb=1 + Nx=1 + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc)) + allocate(xc(1:Nc,1:Nx)) + allocate(ex(1:Ntime+Nc)) + ex=0.d0 + xc(1,1)=u + xc(2,1)=u + + if (def.GT.0) then + a_up(1,1)=u+XtInf + a_lo(1,1)=u + a_up(1,2)=XdInf + a_lo(1,3)=-XdInf + else + a_up(1,1)=u + a_lo(1,1)=u-XtInf + a_lo(1,2)=-XdInf + a_up(1,3)= XdInf + endif + !print *,'Nstart',Nstart + Nstart=MAX(2,Nstart) + !print *,'Nstart',Nstart + if (SCIS.GT.0) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + do Ntd=Nstart,Ntime + !CALL COV_INPUT2(BIG,Ntd, R0,R1,R2) + CALL COV_INPUT(BIG,Ntd,-1,R0,R1,R2,R3,R4) ! positive wave period + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + Ntdc=Ntd+Nc; + !if (SCIS.gt.0) then + ! if (SCIS.EQ.2) then + ! Nj=max(Nt,0) + ! else + ! Nj=min(max(Nt-5, 0),0) + ! endif + !endif + !Ex=0.d0 + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + ansr(Ntd,1)=fxind(1)*CC + if (SCIS.GT.0) then + write(11,*) COV(1) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + if (SCIS.GT.0) then + close(11) + endif + goto 300 +200 continue + XddInf=10.d0*SQRT(R4(1)) + NI=7; Nd=3 + Nc=4; Mb=2 + allocate(BIG(1:Ntime+Nc+1,1:Ntime+Nc+1)) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:Ntime+Nc+1)) + + ex=0.d0 + xc(1,1:Nx)=h + xc(2,1:Nx)=u + xc(3,1:Nx)=u + xc(4,1:Nx)=0.d0 + + if (def.GT.0) then + a_up(2,1)=1.d0 !*h + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(2,2)=1.d0 ! *h + a_lo(2,2)=1.d0 ! *h + a_up(2,3)=1.d0 !*h + a_lo(1,3)=u + + a_lo(1,4)=-XddInf + a_up(1,5)= XdInf + a_lo(1,6)=-XdInf + else !def<0 + a_up(1,1)=u + a_lo(2,1)=1.d0 !*h + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(2,2)=1.d0 ! *h + a_lo(2,2)=1.d0 ! *h + a_up(1,3)=u + a_lo(2,3)=1.d0 !*h + + a_up(1,4)=XddInf + a_lo(1,5)=-XdInf + a_up(1,6)=XdInf + endif + + Nstart=MAX(Nstart,3) + do tn=Nstart,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd + if (SCIS.gt.0) then + if (SCIS.EQ.2) then + Nj=max(Nt,0) + else + Nj=min(max(Nt-5, 0),0) + endif + endif + do ts=2,FLOOR(DBLE(tn+1)/2.d0) + !print *,'ts,tn' ,ts,tn + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + !print *,'sp call rind' + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + !print *,'sp rind finished',fxind + !goto 900 + if (abs(def).LT.3) THEN + if (ts .EQ.tn-ts+1) then + ds=dt + else + ds=2.d0*dt + endif + ansr(tn,1:Nx)=ansr(tn,1:Nx)+fxind*CC*ds + else + ansr(ts,1:Nx)=ansr(ts,1:Nx)+fxind*CC*dT + if ((ts.LT.tn-ts+1).and. (abs(def).lt.4)) THEN + ansr(tn-ts+1,1:Nx)=ansr(tn-ts+1,1:Nx)+fxind*CC*dT ! exploiting the symmetry + endif + endif + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime + + enddo !tn + !print *,'ansr',ansr + 300 open (unit=11, file='dens.out', STATUS='unknown') + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansr(ts,ph) + ! write(11,111) ansr(ts,ph) + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + if (allocated(R3)) then + deallocate(R3) + deallocate(R4) + deallocate(h) + ENDIF + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT) + IMPLICIT NONE + integer, intent(out):: def,Ntime,Nstart,NIT,speed,Nx,SCIS,seed1 + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) def + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + + if (abs(def).GT.1) then + READ (14,*) Nx + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + else + Nx=1 + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + endif + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,def,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: def + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + !if (def.LT.0) THEN + ! H=-H + !endif + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime,def + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + if (abs(def).GT.1) then + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(4,*) R3(i) + read(5,*) R4(i) + enddo + + close(4) + close(5) + endif + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,shft,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! For ts>1: +! ||X(t2)..X(ts),..X(tn-1)||X''(ts) X'(t1) X'(tn)||X(ts) X(t1) X(tn) X'(ts)|| +! = [Xt Xd Xc] +! +! For ts<=1: +! ||X(t2)..,..X(tn-1)||X'(t1) X'(tn)||X(t1) X(tn)|| +! = [Xt Xd Xc] + +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + + if (ts.LE.1) THEN + Ntd1=tn + N=Ntd1+2; + shft=0 ! def=1 want only crest period Tc + else + Ntd1=tn+1 + N=Ntd1+4 + shft=1 ! def=2 or 3 want Tc Ac or Tcf, Ac + endif + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1+shft) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+2+shft) = R0(i+1) !cov(X(t.. ),X(tn)) + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X' (t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X' (tn)) + enddo + !call echo(big(1:tn,1:tn),tn) +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + +!cov(Xc) + BIG(Ntd1+1+shft,Ntd1+1+shft) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+1+shft,Ntd1+2+shft) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+2+shft,Ntd1+2+shft) = R0(1) ! cov(X(tn),X (tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1+shft) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+2+shft) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+1+shft) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+2+shft) =-R1(tn) !cov(X'(t1),X(tn)) + + + if (ts.GT.1) then + +! +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+1,Ntd1+2) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+1,Ntd1+3) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(X(ts),X'(ts)) + + BIG(Ntd1+2,Ntd1+4) = R1(ts) ! cov(X(t1),X'(ts)) + BIG(Ntd1+3,Ntd1+4) = -R1(tn+1-ts) !cov(X(tn),X'(ts)) + BIG(Ntd1+4,Ntd1+4) = -R2(1) ! cov(X'(ts),X'(ts)) + +!cov(Xd) + BIG(Ntd1-2,Ntd1-1) = -R3(ts) !cov(X''(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = R4(1) + BIG(Ntd1-2,Ntd1 ) = R3(tn+1-ts) !cov(X''(ts),X'(tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+4) =-R2(tn+1-ts) !cov(X'(tn),X'(ts)) + BIG(Ntd1 ,Ntd1+1) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + + BIG(Ntd1-1,Ntd1+4) =-R2(ts) !cov(X'(t1),X'(ts)) + BIG(Ntd1-1,Ntd1+1) =-R1(ts) !cov(X'(t1),X (ts)) + + BIG(Ntd1-2,Ntd1+1) = R2(1) !cov(X''(ts),X (ts) + BIG(Ntd1-2,Ntd1+2) = R2(ts) !cov(X''(ts),X (t1)) + BIG(Ntd1-2,Ntd1+3) = R2(tn+1-ts) !cov(X''(ts),X (tn)) + BIG(Ntd1-2,Ntd1+4) = 0.d0 !cov(X''(ts),X'(ts)) +!cov(Xt,Xc) + do i=1,tn-2 + j=abs(i+1-ts) + BIG(i,Ntd1+1) = R0(j+1) !cov(X(ti+1),X(ts)) + BIG(i,Ntd1+4) = sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X(ti+1),X'(ts)) ! check this + +!Cov(Xt,Xd)=cov(X(ti+1),X(ts)) + BIG(i,Ntd1-2) = R2(j+1) !cov(X(ti+1),X''(ts)) + enddo + endif ! ts>1 + + !call echo(big(1:N,1:N),N) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + + BIG(i,j)=tmp + enddo + !call echo(big(1:N,1:N),N) + + enddo + !call echo(big(1:N,1:N),N) + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2thpdf + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2thpdfalan.f b/wafo/source/cov2XXXpdf/cov2thpdfalan.f new file mode 100755 index 0000000..95e8c22 --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2thpdfalan.f @@ -0,0 +1,632 @@ + PROGRAM sp2thpdf +!*********************************************************************** +! This program computes: * +! * +! density of S_i,Hi,T_i in a gaussian process i.e. * +! * +! quart wavelength (up-crossing to crest) and crest amplitude * +! +! def = 1, gives half wave period, Tc (default). +! -1, gives half wave period, Tt. +! 2, gives half wave period and wave crest amplitude (Tc,Ac). +! -2, gives half wave period and wave trough amplitude (Tt,At). +! 3, gives crest front period and wave crest amplitude (Tcf,Ac). +! -3, gives trough back period and wave trough amplitude (Ttb,At). +! 4, gives minimum of crest front/back period and wave crest +! amplitude (min(Tcf,Tcb),Ac). +! -4, gives minimum of trough front/back period and wave trough +! amplitude (min(Ttf,Ttb),At). +!*********************************************************************** +!History: +! revised Per A. Brodtkorb 04.04.2000 +! - +! revised Per A. Brodtkorb 23.11.99 +! - fixed a bug in calculating pdf for def = +/- 4 +! revised Per A. Brodtkorb 03.11.99 +! - added def = +/-4 +! revised Per A. Brodtkorb 23.09.99 +! - minor changes to covinput +! - removed the calculation of the transformation to spec2thpdf.m +! by Igor Rychlik + + + use GLOBALDATA, only : rateLHD,SCIS,NSIMmax,COV,ABSEPS + use globalconst + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansr + double precision, dimension(: ),allocatable :: ex + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(: ),allocatable :: fxind,h + double precision, dimension(: ),allocatable :: R0,R1,R2,R3,R4 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(2,6) :: a_up=0.d0,a_lo=0.d0 + integer, dimension(6) :: INFIN=2 + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Nx,Nt,Nc,Nd,NI,Mb,Ntd, Ntdc + integer :: Nstart,Ntime,tn,ts,speed,ph,def,seed1,seed_size + double precision :: dT, EPSOLD ! lag spacing for covariances + LOGICAL :: init=.TRUE. +! DIGITAL: +! f90 -g2 -C -automatic -o ../wave/alpha/sp2thpdf.exe rind44.f sp2thpdf.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../wave/sol2/sp2thpdf.exe rind44.f sp2thpdf.f +! linux: +! f90 -gline -Nl126 -C -o ../exec/lnx86/sp2thpdf8.exe intmodule.f rind60.f sp2thpdf.f +! f90 -gline -Nl126 -C -o sp2thpdf.exe rind45.f sp2thpdf.f +! f90 -gline -Nl126 -C -o ../exec/lnx86/sp2thpdf3.exe adaptmodule.f krbvrcmod.f krobovmod.f rcrudemod.f rind55.f sp2thpdf.f +! HP700 +!f90 -g -C -o ../exec/hp700/sp2thpdf.exe rind45.f sp2thpdf.f +!f90 -g -C +check=all +FPVZID -o ../exec/hp700/sp2thpdf.exe rind45.f sp2thpdf.f +! f90 +gprof +extend_source +Oall +Odataprefetch +Ofastaccess +Oinfo +Oprocelim -C +check=all -o ../exec/hp700/sp2thpdf.exe rind48.f sp2thpdf.f + + !print *,'enter sp2thpdf' + + CALL INIT_LEVELS(U,def,Ntime,Nstart,speed,SCIS,seed1, + & Nx,dT,rateLHD) + !print *,'U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,def,Ntime,Nstart,NIT,speed,SCIS,seed1,Nx,dT + + + if (SCIS.GT.0) then + !allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + if (abs(def).GT.1) THEN + allocate(h(1:Nx)) + allocate(R3(1:Ntime+1)) + allocate(R4(1:Ntime+1)) + CALL INIT_AMPLITUDES(h,def,Nx) + endif + CALL INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + + !print *,'Nx',Nx + + + indI(1)=0 +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !print *,'XdInf,XtInf' + !print *,XdInf,XtInf + ! normalizing constant + CC=TWPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + allocate(ansr(1:Ntime,1:Nx)) + ansr=0.d0 + allocate(fxind(1:Nx)) + !fxind=0.d0 this is not needed + + if (abs(def).GT.1) GOTO 200 + + NI=4; Nd=2 + Nc=2; Mb=1 + Nx=1 + allocate(BIG(1:Ntime+Nc,1:Ntime+Nc)) + allocate(xc(1:Nc,1:Nx)) + allocate(ex(1:Ntime+Nc)) + ex=0.d0 + xc(1,1)=u + xc(2,1)=u +! INFIN = INTEGER, array of integration limits flags: size 1 x Nb (in) +! if INFIN(I) < 0, Ith limits are (-infinity, infinity); +! if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)]; +! if INFIN(I) = 1, Ith limits are [Hlo(I), infinity); +! if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)]. + + if (def.GT.0) then + INFIN(1:2) = 1 + INFIN(3) = 0 + a_up(1,1)= u+XtInf + a_lo(1,1)= u + a_up(1,2)= XdInf + a_lo(1,3)=-XdInf + else + INFIN(1:2) = 0 + INFIN(3) = 1 + a_up(1,1)=u + a_lo(1,1)=u-XtInf + a_lo(1,2)=-XdInf + a_up(1,3)= XdInf + endif + !print *,'Nstart',Nstart + Nstart=MAX(2,Nstart) + !print *,'Nstart',Nstart + if (ALLOCATED(COV)) then + open (unit=11, file='COV.out', STATUS='unknown') + write(11,*) 0.d0 + endif + do Ntd=Nstart,Ntime + !CALL COV_INPUT2(BIG,Ntd, R0,R1,R2) + CALL COV_INPUT(BIG,Ntd,-1,R0,R1,R2,R3,R4) ! positive wave period + Nt=Ntd-Nd; + indI(2)=Nt; + indI(3)=Nt+1; + indI(4)=Ntd; + Ntdc=Ntd+Nc; +! IF (Ntd.GT.5.AND.(INIT)) THEN +! INIT=.FALSE. +! CALL INITDATA(speed) +! ENDIF + !if (SCIS.gt.1) Nj=Nt + !if (SCIS.gt.0) then + ! if (SCIS.EQ.2) then + ! Nj=max(Nt,0) + ! else + ! Nj=min(max(Nt-5, 0),0) + ! endif + !endif + !Ex=0.d0 + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc),xc, + & Nt,indI(1:NI),a_lo(1:Mb,1:NI-1),a_up(1:Mb,1:NI-1), + & INFIN(1:NI-1)) + ansr(Ntd,1)=fxind(1)*CC + if (ALLOCATED(COV)) then !SCIS.GT.0 + write(11,*) COV(1) ! save coefficient of variation + endif + print *,'Ready: ',Ntd,' of ',Ntime + enddo + if (ALLOCATED(COV)) then + close(11) + endif + goto 300 +200 continue + XddInf=10.d0*SQRT(R4(1)) + NI=7; Nd=3 + Nc=4; Mb=2 + allocate(BIG(1:Ntime+Nc+1,1:Ntime+Nc+1)) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:Ntime+Nc+1)) + + ex=0.d0 + xc(1,1:Nx)=h(1:Nx) + xc(2,1:Nx)=u + xc(3,1:Nx)=u + xc(4,1:Nx)=0.d0 + +! INFIN = INTEGER, array of integration limits flags: size 1 x Nb (in) +! if INFIN(I) < 0, Ith limits are (-infinity, infinity); +! if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)]; +! if INFIN(I) = 1, Ith limits are [Hlo(I), infinity); +! if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)]. + if (def.GT.0) then + INFIN(2)=-1 + INFIN(4)=0 + INFIN(5)=1 + INFIN(6)=0 + a_up(2,1)=1.d0 !*h + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(2,2)=1.d0 ! *h + a_lo(2,2)=1.d0 ! *h + a_up(2,3)=1.d0 !*h + a_lo(1,3)=u + + a_lo(1,4)=-XddInf + a_up(1,5)= XdInf + a_lo(1,6)=-XdInf + else !def<0 + INFIN(2)=-1 + INFIN(4)=1 + INFIN(5)=0 + INFIN(6)=1 + a_up(1,1)=u + a_lo(2,1)=1.d0 !*h + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(2,2)=1.d0 ! *h + a_lo(2,2)=1.d0 ! *h + a_up(1,3)=u + a_lo(2,3)=1.d0 !*h + a_up(1,4)=XddInf + a_lo(1,5)=-XdInf + a_up(1,6)=XdInf + endif + EPSOLD=ABSEPS + Nstart=MAX(Nstart,3) + do tn=Nstart,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd +! IF (Ntd.GT.5.AND.INIT) THEN +! INIT=.FALSE. +! CALL INITDATA(speed) +! ENDIF + !if (SCIS.gt.1) Nj=Nt + !if (SCIS.gt.0) then + ! if (SCIS.EQ.2) then + ! Nj=max(Nt,0) + ! else + ! Nj=min(max(Nt-5, 0),0) + ! endif + !endif + ABSEPS=MIN(SQRT(DBLE(tn))*EPSOLD*0.5D0,0.1D0) + do ts=2,FLOOR(DBLE(tn+1)/2.d0) + !print *,'ts,tn' ,ts,tn + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + !print *,'sp call rind' + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc),xc, + & Nt,indI(1:NI),a_lo(1:Mb,1:NI-1),a_up(1:Mb,1:NI-1), + & INFIN(1:NI-1)) + !CALL echo(BIG(1:Ntdc,1:min(7,Ntdc)),Ntdc) + !print *,'sp rind finished',fxind + !goto 900 + SELECT CASE (ABS(def)) + CASE (:2) +! 2, gives half wave period and wave crest amplitude (Tc,Ac). +! -2, gives half wave period and wave trough amplitude (Tt,At). + if (ts .EQ.tn-ts+1) then + ansr(tn,1:Nx)=ansr(tn,1:Nx)+fxind*CC*dt + else + ansr(tn,1:Nx)=ansr(tn,1:Nx)+fxind*CC*2.d0*dt + endif + CASE (3) +! 3, gives crest front period and wave crest amplitude (Tcf,Ac). +! -3, gives trough back period and wave trough amplitude (Ttb,At). + ansr(ts,1:Nx)=ansr(ts,1:Nx)+fxind*CC*dT + if ((ts.LT.tn-ts+1)) THEN + ansr(tn-ts+1,1:Nx)=ansr(tn-ts+1,1:Nx)+fxind*CC*dT ! exploiting the symmetry + endif + CASE (4:) +! 4, gives minimum of crest front/back period and wave crest amplitude (min(Tcf,Tcb),Ac). +! -4, gives minimum of trough front/back period and wave trough amplitude (min(Ttf,Ttb),At). + if (ts .EQ.tn-ts+1) then + ansr(ts,1:Nx)=ansr(ts,1:Nx)+fxind*CC*dt + else + ansr(ts,1:Nx)=ansr(ts,1:Nx)+fxind*CC*2.0*dt + endif + end select + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime, ' ABSEPS = ', ABSEPS + + enddo !tn + !print *,'ansr',ansr + 300 open (unit=11, file='dens.out', STATUS='unknown') + !print *, ansr + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansr(ts,ph) + ! write(11,111) ansr(ts,ph) + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansr) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + if (allocated(R3)) then + deallocate(R3) + deallocate(R4) + deallocate(h) + ENDIF + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,def,Ntime,Nstart,speed,SCIS,seed1,Nx,dT,rateLHD) + IMPLICIT NONE + integer, intent(out):: def,Ntime,Nstart,speed,Nx,SCIS,seed1, + & rateLHD + double precision ,intent(out) :: U,dT + double precision :: XSPLT + integer :: NIT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) def + READ (14,*) Ntime + READ (14,*) Nstart + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + READ (14,*) Nx + READ (14,*) dT + READ (14,*) rateLHD + READ (14,*) XSPLT + if (abs(def).GT.1) then + + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + else + Nx=1 + if (Ntime.lt.2) then + print *,'The number of wavelength points is too small, stop' + stop + end if + endif + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h,def,Nx) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h + integer, intent(in) :: def + integer, intent(in) :: Nx + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx + READ (4,*) H(ix) + enddo + CLOSE(UNIT=4) + !if (def.LT.0) THEN + ! H=-H + !endif + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,def,R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + double precision, dimension(:),intent(out) :: R3,R4 + integer,intent(in) :: Ntime,def + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + if (abs(def).GT.1) then + open (unit=4, file='Cd3.in',STATUS='unknown') + open (unit=5, file='Cd4.in',STATUS='unknown') + + do i=1,Ntime + read(4,*) R3(i) + read(5,*) R4(i) + enddo + + close(4) + close(5) + endif + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2,R3,R4) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + double precision, dimension(:),intent(in) :: R3,R4 + integer ,intent(in) :: tn,ts + integer :: i,j,shft,Ntd1,N !=Ntdc +! the order of the variables in the covariance matrix +! are organized as follows: +! For ts>1: +! ||X(t2)..X(ts),..X(tn-1)||X''(ts) X'(t1) X'(tn)||X(ts) X(t1) X(tn) X'(ts)|| +! = [Xt Xd Xc] +! +! For ts<=1: +! ||X(t2)..,..X(tn-1)||X'(t1) X'(tn)||X(t1) X(tn)|| +! = [Xt Xd Xc] + +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + + if (ts.LE.1) THEN + Ntd1=tn + N=Ntd1+2; + shft=0 ! def=1 want only crest period Tc + else + Ntd1=tn+1 + N=Ntd1+4 + shft=1 ! def=2 or 3 want Tc Ac or Tcf, Ac + endif + + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1+shft) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+2+shft) = R0(i+1) !cov(X(t.. ),X(tn)) + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X' (t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X' (tn)) + enddo + !call echo(big(1:tn,1:tn),tn) +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + +!cov(Xc) + BIG(Ntd1+1+shft,Ntd1+1+shft) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+1+shft,Ntd1+2+shft) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+2+shft,Ntd1+2+shft) = R0(1) ! cov(X(tn),X (tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1+shft) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+2+shft) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+1+shft) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+2+shft) =-R1(tn) !cov(X'(t1),X(tn)) + + + if (ts.GT.1) then + +! +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+1,Ntd1+2) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+1,Ntd1+3) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(X(ts),X'(ts)) + + BIG(Ntd1+2,Ntd1+4) = R1(ts) ! cov(X(t1),X'(ts)) + BIG(Ntd1+3,Ntd1+4) = -R1(tn+1-ts) !cov(X(tn),X'(ts)) + BIG(Ntd1+4,Ntd1+4) = -R2(1) ! cov(X'(ts),X'(ts)) + +!cov(Xd) + BIG(Ntd1-2,Ntd1-1) = -R3(ts) !cov(X''(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = R4(1) + BIG(Ntd1-2,Ntd1 ) = R3(tn+1-ts) !cov(X''(ts),X'(tn)) +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+4) =-R2(tn+1-ts) !cov(X'(tn),X'(ts)) + BIG(Ntd1 ,Ntd1+1) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + + BIG(Ntd1-1,Ntd1+4) =-R2(ts) !cov(X'(t1),X'(ts)) + BIG(Ntd1-1,Ntd1+1) =-R1(ts) !cov(X'(t1),X (ts)) + + BIG(Ntd1-2,Ntd1+1) = R2(1) !cov(X''(ts),X (ts) + BIG(Ntd1-2,Ntd1+2) = R2(ts) !cov(X''(ts),X (t1)) + BIG(Ntd1-2,Ntd1+3) = R2(tn+1-ts) !cov(X''(ts),X (tn)) + BIG(Ntd1-2,Ntd1+4) = 0.d0 !cov(X''(ts),X'(ts)) +!cov(Xt,Xc) + do i=1,tn-2 + j=abs(i+1-ts) + BIG(i,Ntd1+1) = R0(j+1) !cov(X(ti+1),X(ts)) + BIG(i,Ntd1+4) = sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X(ti+1),X'(ts)) ! check this + +!Cov(Xt,Xd)=cov(X(ti+1),X(ts)) + BIG(i,Ntd1-2) = R2(j+1) !cov(X(ti+1),X''(ts)) + enddo + endif ! ts>1 + + !call echo(big(1:N,1:N),N) + ! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + BIG(i,j) =BIG(j,i) + enddo + !call echo(big(1:N,1:N),N) + enddo + !call echo(big(1:N,1:N),N) + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + END PROGRAM sp2thpdf + + + + + + + + + diff --git a/wafo/source/cov2XXXpdf/cov2tthpdf.f b/wafo/source/cov2XXXpdf/cov2tthpdf.f new file mode 100755 index 0000000..c0230de --- /dev/null +++ b/wafo/source/cov2XXXpdf/cov2tthpdf.f @@ -0,0 +1,505 @@ + PROGRAM sp2tthpdf +C*********************************************************************** +C This program computes upper and lower bounds for the: * +C * +C density of T= T_1+T_2 in a gaussian process i.e. * +C * +C wavelengthes for crests

h2 * +C * +C Sylvie and Igor 7 dec. 1999 * +C*********************************************************************** + use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb, + & NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV + use rind + IMPLICIT NONE + double precision, dimension(:,:),allocatable :: BIG + double precision, dimension(:,:),allocatable :: ansrup + double precision, dimension(:,:),allocatable :: ansrlo + double precision, dimension(: ),allocatable :: ex,CY1,CY2 + double precision, dimension(:,:),allocatable :: xc + double precision, dimension(:,:),allocatable ::fxind + double precision, dimension(: ),allocatable :: h1,h2 + double precision, dimension(: ),allocatable :: hh1,hh2 + double precision, dimension(: ),allocatable :: R0,R1,R2 + double precision ::CC,U,XddInf,XdInf,XtInf + double precision, dimension(:,:),allocatable :: a_up,a_lo + integer , dimension(: ),allocatable :: seed + integer ,dimension(7) :: indI + integer :: Ntime,N0,tn,ts,speed,ph,seed1,seed_size,Nx1,Nx2 + integer :: icy,icy2 + double precision :: ds,dT ! lag spacing for covariances +! DIGITAL: +! f90 -g2 -C -automatic -o ~/WAT/V4/sp2tthpdf.exe rind48.f sp2tthpdf.f +! SOLARIS: +!f90 -g -O -w3 -Bdynamic -fixed -o ../sp2tthpdf.exe rind48.f sp2tthpdf.f + + !print *,'enter sp2thpdf' + CALL INIT_LEVELS(U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + + !print *,'U,Ntime,NIT,speed,SCIS,seed1,Nx,dT' + !print *,U,Ntime,NIT,speed,SCIS,seed1,Nx,dT + !Nx1=1 + !Nx2=1 + + Nx=Nx1*Nx2 + !print *,'NN',Nx1,Nx2,Nx + + + !XSPLT=1.5d0 + if (SCIS.GT.0) then + allocate(COV(1:Nx)) + call random_seed(SIZE=seed_size) + allocate(seed(seed_size)) + call random_seed(GET=seed(1:seed_size)) ! get current seed + seed(1)=seed1 ! change seed + call random_seed(PUT=seed(1:seed_size)) + deallocate(seed) + endif + CALL INITDATA(speed) + !print *,ntime,speed,u,NIT + allocate(R0(1:Ntime+1)) + allocate(R1(1:Ntime+1)) + allocate(R2(1:Ntime+1)) + + allocate(h1(1:Nx1)) + allocate(h2(1:Nx2)) + CALL INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + CALL INIT_COVARIANCES(Ntime,R0,R1,R2) + + + allocate(hh1(1:Nx)) + allocate(hh2(1:Nx)) + !h transformation + do icy=1,Nx1 + do icy2=1,Nx2 + hh1((icy-1)*Nx2+icy2)=h1(icy); + hh2((icy-1)*Nx2+icy2)=h2(icy2); + enddo + enddo + + Nj=0 + indI(1)=0 + +C ***** The bound 'infinity' is set to 10*sigma ***** + XdInf=10.d0*SQRT(-R2(1)) + XtInf=10.d0*SQRT(R0(1)) + !h1(1)=XtInf + !h2(1)=XtInf + ! normalizing constant + CC=TWOPI*SQRT(-R0(1)/R2(1))*exp(u*u/(2.d0*R0(1)) ) + allocate(CY1(1:Nx)) + allocate(CY2(1:Nx)) + do icy=1,Nx + CY1(icy)=exp(-0.5*hh1(icy)*hh1(icy)/100)/(10*sqrt(twopi)) + CY2(icy)=exp(-0.5*hh2(icy)*hh2(icy)/100)/(10*sqrt(twopi)) + enddo + !print *,CY1 + allocate(ansrup(1:Ntime,1:Nx)) + allocate(ansrlo(1:Ntime,1:Nx)) + ansrup=0.d0 + ansrlo=0.d0 + allocate(fxind(1:Nx,1:2)) + !fxind=0.d0 this is not needed + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +! Y={X(t2)..,X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)} !! +! = [Xt Xd Xc] !! +! !! +! Nt=tn-2, Nd=3, Nc=2+3 !! +! !! +! Xt= contains Nt time points in the indicator function !! +! Xd= " Nd derivatives !! +! Xc= " Nc variables to condition on !! +! (Y1,Y2) dummy variables ind. of all other v. inputing h1,h2 into rindd !! +! !! +! There are 6 ( NI=7) regions with constant bariers: !! +! (indI(1)=0); for i\in (indI(1),indI(2)] u0 (deriv. X'(t1)) !! +! (indI(6)=Nt+2); for i\in (indI(6),indI(7)], Y(i)>0 (deriv. X'(tn)) !! +! (indI(7)=Nt+3); NI=7. !! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + + NI=7; Nd=3 + Nc=5; Mb=3 + allocate(a_up(1:Mb,1:(NI-1))) + allocate(a_lo(1:Mb,1:(NI-1))) + a_up=0.d0 + a_lo=0.d0 + allocate(BIG(1:(Ntime+Nc+1),1:(Ntime+Nc+1))) + ALLOCATE(xc(1:Nc,1:Nx)) + allocate(ex(1:(Ntime+Nc+1))) + !print *,size(ex),Ntime + ex=0.d0 + !print *,size(ex),ex + xc(1,1:Nx)=hh1(1:Nx) + xc(2,1:Nx)=hh2(1:Nx) + xc(3,1:Nx)=u + xc(4,1:Nx)=u + xc(5,1:Nx)=u + ! upp- down- upp-crossings at t1,ts,tn + + a_lo(1,1)=u + a_up(1,2)=XtInf ! X(ts) is redundant + a_lo(1,2)=-Xtinf + a_up(1,3)=u + + + a_lo(1,4)=-XdInf + a_up(1,5)= XdInf + a_up(1,6)= XdInf + + a_up(2,1)=1.d0 + a_lo(3,3)=1.d0 !signe a voir!!!!!! +! print *,a_up +! print *,a_lo + do tn=N0,Ntime,1 +! do tn=Ntime,Ntime,1 + Ntd=tn+1 + Nt=Ntd-Nd + Ntdc=Ntd+Nc + indI(4)=Nt + indI(5)=Nt+1 + indI(6)=Nt+2 + indI(7)=Ntd + if (SCIS.gt.0) then + if (SCIS.EQ.2) then + Nj=max(Nt,0) + else + Nj=min(max(Nt-5, 0),0) + endif + endif + do ts=3,tn-2 + !print *,'ts,tn' ,ts,tn,Ntdc + CALL COV_INPUT(Big(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2)!positive wave period + indI(2)=ts-2 + indI(3)=ts-1 + + + CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex(1:Ntdc), + & xc,indI,a_lo,a_up) + + ds=dt + do icy=1,Nx + ! ansr(tn,:)=ansr(tn,:)+fxind*CC*ds./(CY1.*CY2) + ansrup(tn,icy)=ansrup(tn,icy)+fxind(icy,1)*CC*ds + & /(CY1(icy)*CY2(icy)) + ansrlo(tn,icy)=ansrlo(tn,icy)+fxind(icy,2)*CC*ds + & /(CY1(icy)*CY2(icy)) + enddo + enddo ! ts + print *,'Ready: ',tn,' of ',Ntime + + enddo !tn + + 300 open (unit=11, file='dens.out', STATUS='unknown') + + do ts=1,Ntime + do ph=1,Nx + write(11,*) ansrup(ts,ph),ansrlo(ts,ph)!,hh1(ph),hh2(ph) + ! write(11,111) ansrup(ts,ph),ansrlo(ts,ph) + + enddo + enddo + !111 FORMAT(2x,F12.8) + close(11) + 900 deallocate(big) + deallocate(fxind) + deallocate(ansrup) + deallocate(ansrlo) + deallocate(xc) + deallocate(ex) + deallocate(R0) + deallocate(R1) + deallocate(R2) + if (allocated(COV) ) then + deallocate(COV) + endif + deallocate(h1) + deallocate(h2) + deallocate(hh1) + deallocate(hh2) + deallocate(a_up) + deallocate(a_lo) + stop + !return + + CONTAINS + + + + SUBROUTINE INIT_LEVELS + & (U,Ntime,N0,NIT,speed,SCIS,seed1,Nx1,Nx2,dT) + IMPLICIT NONE + integer, intent(out):: Ntime,N0,NIT,speed,Nx1,Nx2,SCIS,seed1 + double precision ,intent(out) :: U,dT + + + OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN') + READ (14,*) U + READ (14,*) Ntime + READ (14,*) N0 + READ (14,*) NIT + READ (14,*) speed + READ (14,*) SCIS + READ (14,*) seed1 + + + READ (14,*) Nx1,Nx2 + READ (14,*) dT + if (Ntime.lt.3) then + print *,'The number of wavelength points is too small, stop' + stop + end if + + CLOSE(UNIT=14) + + RETURN + END SUBROUTINE INIT_LEVELS + +C****************************************************** + SUBROUTINE INIT_AMPLITUDES(h1,Nx1,h2,Nx2) + IMPLICIT NONE + double precision, dimension(:), intent(out) :: h1,h2 + integer, intent(in) :: Nx1,Nx2 + integer :: ix + + + OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN') + +C +C Reading in amplitudes +C + do ix=1,Nx1 + READ (4,*) H1(ix) + enddo + do ix=1,Nx2 + READ (4,*) H2(ix) + enddo + CLOSE(UNIT=4) + + RETURN + END SUBROUTINE INIT_AMPLITUDES + +C************************************************** + +C*********************************************************************** +C*********************************************************************** + + SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:),intent(out) :: R0,R1,R2 + integer,intent(in) :: Ntime + integer :: i + open (unit=1, file='Cd0.in',STATUS='unknown') + open (unit=2, file='Cd1.in',STATUS='unknown') + open (unit=3, file='Cd2.in',STATUS='unknown') + + do i=1,Ntime + read(1,*) R0(i) + read(2,*) R1(i) + read(3,*) R2(i) + enddo + close(1) + close(2) + close(3) + + return + END SUBROUTINE INIT_COVARIANCES + +C*********************************************************************** +C*********************************************************************** + +C********************************************************************** + + SUBROUTINE COV_INPUT(BIG,tn,ts, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:),intent(inout) :: BIG + double precision, dimension(:),intent(in) :: R0,R1,R2 + integer ,intent(in) :: tn,ts + integer :: i,j,Ntd1,N !=Ntdc + double precision :: tmp +! the order of the variables in the covariance matrix +! are organized as follows: +! +! ||X(t2)..X(ts),..X(tn-1)||X'(ts) X'(t1) X'(tn)||Y1 Y2 X(ts) X(t1) X(tn)|| +! = [Xt Xd Xc] +! where +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s), +! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have +! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result). +! +! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|) +! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|) +! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|) +! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|) +! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|) + + Ntd1=tn+1 + N=Ntd1+Nc + do i=1,tn-2 + !cov(Xt) + do j=i,tn-2 + BIG(i,j) = R0(j-i+1) ! cov(X(ti+1),X(tj+1)) + enddo + !cov(Xt,Xc) + BIG(i ,Ntd1+1) = 0.d0 !cov(X(ti+1),Y1) + BIG(i ,Ntd1+2) = 0.d0 !cov(X(ti+1),Y2) + BIG(i ,Ntd1+4) = R0(i+1) !cov(X(ti+1),X(t1)) + BIG(tn-1-i ,Ntd1+5) = R0(i+1) !cov(X(t.. ),X(tn)) + + !Cov(Xt,Xd)=cov(X(ti+1),x(tj) + BIG(i,Ntd1-1) =-R1(i+1) !cov(X(ti+1),X'(t1)) + BIG(tn-1-i,Ntd1)= R1(i+1) !cov(X(ti+1),X'(tn)) + enddo +!cov(Xd) + BIG(Ntd1 ,Ntd1 ) = -R2(1) + BIG(Ntd1-1,Ntd1 ) = -R2(tn) !cov(X'(t1),X'(tn)) + BIG(Ntd1-1,Ntd1-1) = -R2(1) + BIG(Ntd1-2,Ntd1-1) = -R2(ts) !cov(X'(ts),X'(t1)) + BIG(Ntd1-2,Ntd1-2) = -R2(1) + BIG(Ntd1-2,Ntd1 ) = -R2(tn+1-ts) !cov(X'(ts),X'(tn)) + +!cov(Xc) + BIG(Ntd1+1,Ntd1+1) = 100.d0 ! cov(Y1 Y1) + BIG(Ntd1+1,Ntd1+2) = 0.d0 ! cov(Y1 Y2) + BIG(Ntd1+1,Ntd1+3) = 0.d0 ! cov(Y1 X(ts)) + BIG(Ntd1+1,Ntd1+4) = 0.d0 ! cov(Y1 X(t1)) + BIG(Ntd1+1,Ntd1+5) = 0.d0 ! cov(Y1 X(tn)) + BIG(Ntd1+2,Ntd1+2) = 100.d0 ! cov(Y2 Y2) + BIG(Ntd1+2,Ntd1+3) = 0.d0 ! cov(Y2 X(ts)) + BIG(Ntd1+2,Ntd1+4) = 0.d0 ! cov(Y2 X(t1)) + BIG(Ntd1+2,Ntd1+5) = 0.d0 ! cov(Y2 X(tn)) + + BIG(Ntd1+3,Ntd1+3) = R0(1) ! cov(X(ts),X (ts) + BIG(Ntd1+3,Ntd1+4) = R0(ts) ! cov(X(ts),X (t1)) + BIG(Ntd1+3,Ntd1+5) = R0(tn+1-ts) ! cov(X(ts),X (tn)) + BIG(Ntd1+4,Ntd1+4) = R0(1) ! cov(X(t1),X (t1)) + BIG(Ntd1+4,Ntd1+5) = R0(tn) ! cov(X(t1),X (tn)) + BIG(Ntd1+5,Ntd1+5) = R0(1) ! cov(X(tn),X (tn)) + + +!cov(Xd,Xc) + BIG(Ntd1 ,Ntd1+1) = 0.d0 !cov(X'(tn),Y1) + BIG(Ntd1 ,Ntd1+2) = 0.d0 !cov(X'(tn),Y2) + BIG(Ntd1-1 ,Ntd1+1) = 0.d0 !cov(X'(t1),Y1) + BIG(Ntd1-1 ,Ntd1+2) = 0.d0 !cov(X'(t1),Y2) + BIG(Ntd1-2 ,Ntd1+1) = 0.d0 !cov(X'(ts),Y1) + BIG(Ntd1-2 ,Ntd1+2) = 0.d0 !cov(X'(ts),Y2) + + BIG(Ntd1 ,Ntd1+4) = R1(tn) !cov(X'(tn),X(t1)) + BIG(Ntd1 ,Ntd1+5) = 0.d0 !cov(X'(tn),X(tn)) + BIG(Ntd1-1,Ntd1+4) = 0.d0 !cov(X'(t1),X(t1)) + BIG(Ntd1-1,Ntd1+5) =-R1(tn) !cov(X'(t1),X(tn)) + BIG(Ntd1 ,Ntd1+3) = R1(tn+1-ts) !cov(X'(tn),X (ts)) + BIG(Ntd1-1,Ntd1+3) =-R1(ts) !cov(X'(t1),X (ts)) + BIG(Ntd1-2,Ntd1+3) = 0.d0 !cov(X'(ts),X (ts) + BIG(Ntd1-2,Ntd1+4) = R1(ts) !cov(X'(ts),X (t1)) + BIG(Ntd1-2,Ntd1+5) = -R1(tn+1-ts) !cov(X'(ts),X (tn)) + + + do i=1,tn-2 + j=abs(i+1-ts) +!cov(Xt,Xc) + BIG(i,Ntd1+3) = R0(j+1) !cov(X(ti+1),X(ts)) +!Cov(Xt,Xd) + if ((i+1-ts).lt.0) then + BIG(i,Ntd1-2) = R1(j+1) + else !cov(X(ti+1),X'(ts)) + BIG(i,Ntd1-2) = -R1(j+1) + endif + enddo + +! make lower triangular part equal to upper + do j=1,N-1 + do i=j+1,N + tmp =BIG(j,i) + + BIG(i,j)=tmp + enddo + enddo + +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT + + SUBROUTINE COV_INPUT2(BIG,pt, R0,R1,R2) + IMPLICIT NONE + double precision, dimension(:,:), intent(out) :: BIG + double precision, dimension(:), intent(in) :: R0,R1,R2 + integer :: pt,i,j +! the order of the variables in the covariance matrix +! are organized as follows; +! X(t2)...X(tn-1) X'(t1) X'(tn) X(t1) X(tn) = [Xt Xd Xc] +! +! where Xd is the derivatives +! +! Xt= time points in the indicator function +! Xd= derivatives +! Xc=variables to condition on + +!cov(Xc) + BIG(pt+2,pt+2) = R0(1) + BIG(pt+1,pt+1) = R0(1) + BIG(pt+1,pt+2) = R0(pt) +!cov(Xd) + BIG(pt,pt) = -R2(1) + BIG(pt-1,pt-1) = -R2(1) + BIG(pt-1,pt) = -R2(pt) +!cov(Xd,Xc) + BIG(pt,pt+2) = 0.d0 + BIG(pt,pt+1) = R1(pt) + BIG(pt-1,pt+2) = -R1(pt) + BIG(pt-1,pt+1) = 0.d0 + + if (pt.GT.2) then +!cov(Xt) + do i=1,pt-2 + do j=i,pt-2 + BIG(i,j) = R0(j-i+1) + enddo + enddo +!cov(Xt,Xc) + do i=1,pt-2 + BIG(i,pt+1) = R0(i+1) + BIG(pt-1-i,pt+2) = R0(i+1) + enddo +!Cov(Xt,Xd)=cov(X(ti+1),x(tj)) + do i=1,pt-2 + BIG(i,pt-1) = -R1(i+1) + BIG(pt-1-i,pt)= R1(i+1) + enddo + endif + + + ! make lower triangular part equal to upper + do j=1,pt+1 + do i=j+1,pt+2 + BIG(i,j)=BIG(j,i) + enddo + enddo +C write (*,10) ((BIG(j,i),i=N+1,N+6),j=N+1,N+6) +C 10 format(6F8.4) + RETURN + END SUBROUTINE COV_INPUT2 + + + END PROGRAM sp2tthpdf + + + + + + + + + diff --git a/wafo/source/mreg/build_all.py b/wafo/source/mreg/build_all.py new file mode 100755 index 0000000..6575b70 --- /dev/null +++ b/wafo/source/mreg/build_all.py @@ -0,0 +1,35 @@ +""" +f2py c_library.pyf c_functions.c -c + +gfortran -W -Wall -pedantic-errors -fbounds-check -Werror -c dsvdc.f mregmodule.f + +""" +import os + +def compile_all(): + files = ['mregmodule', 'dsvdc'] + compile1_format = 'gfortran -fPIC -c %s.f' + format1 = '%s.o ' * len(files) + for file in files: + os.system(compile1_format % file) + file_objects = format1 % tuple(files) + #f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m mymod -c mymod.f90 + + os.system('f2py -m cov2mod -c %s cov2mmpdfreg_intfc.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' % file_objects) + #compile1_txt = 'gfortran -fPIC -c mvnprd.f' + #compile2_txt = 'f2py -m mvnprdmod -c mvnprd.o mvnprd_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + #os.system(compile1_txt) + #os.system(compile2_txt) + # Install gfortran and run the following to build the module: + #compile_format = 'f2py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + + # Install microsoft visual c++ .NET 2003 and run the following to build the module: + #compile_format = 'f2py %s %s -c' + #pyfs = ('c_library.pyf',) + #files =('c_functions.c',) + + #for pyf,file in zip(pyfs,files): + # os.system(compile_format % (pyf,file)) + +if __name__=='__main__': + compile_all() diff --git a/wafo/source/mreg/checkmod.mod b/wafo/source/mreg/checkmod.mod new file mode 100755 index 0000000..cd61cae --- /dev/null +++ b/wafo/source/mreg/checkmod.mod @@ -0,0 +1,46 @@ +GFORTRAN module version '0' created from mregmodule.f on Wed Aug 05 19:15:05 2009 +MD5:9338abc0e14d4bf13175cb874e9f7ea5 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'checkmod' 'checkmod' 'checkmod' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +3 'iii0' 'checkmod' 'iii0' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +4 'iii01' 'checkmod' 'iii01' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +5 'iii101' 'checkmod' 'iii101' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'iii11' 'checkmod' 'iii11' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'iii21' 'checkmod' 'iii21' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +8 'iii31' 'checkmod' 'iii31' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +9 'iii41' 'checkmod' 'iii41' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +10 'iii51' 'checkmod' 'iii51' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +11 'iii61' 'checkmod' 'iii61' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +12 'iii71' 'checkmod' 'iii71' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +13 'iii81' 'checkmod' 'iii81' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'iii91' 'checkmod' 'iii91' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('checkmod' 0 2 'iii0' 0 3 'iii01' 0 4 'iii101' 0 5 'iii11' 0 6 'iii21' +0 7 'iii31' 0 8 'iii41' 0 9 'iii51' 0 10 'iii61' 0 11 'iii71' 0 12 'iii81' +0 13 'iii91' 0 14) diff --git a/wafo/source/mreg/cov2mmpdfmod.mod b/wafo/source/mreg/cov2mmpdfmod.mod new file mode 100755 index 0000000..b04ec1e --- /dev/null +++ b/wafo/source/mreg/cov2mmpdfmod.mod @@ -0,0 +1,151 @@ +GFORTRAN module version '0' created from cov2mmpdfreg_intfc.f on Thu Aug 06 03:39:39 2009 +MD5:983e75e1f187678a4601b92db2a3f449 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () +() () () () () () () () () () () () () () ()) + +() + +() + +() + +() + +(2 'c_' 'cov2mmpdfmod' 'c_' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +3 'cov2mmpdfmod' 'cov2mmpdfmod' 'cov2mmpdfmod' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +4 'cov2mmpdfreg' 'cov2mmpdfmod' 'cov2mmpdfreg' 1 ((PROCEDURE +UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 +UNKNOWN ()) 5 0 (6 7 8 9 10 11 12 13 14 15 16 17) () 0 () () () 0 0) +18 'covg' 'cov2mmpdfmod' 'covg' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 19 0 (20 21 22 23 24 +25) () 0 () () () 0 0) +26 'eps0_' 'cov2mmpdfmod' 'eps0_' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +27 'eps_' 'cov2mmpdfmod' 'eps_' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +28 'epss_' 'cov2mmpdfmod' 'epss_' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +29 'iac_' 'cov2mmpdfmod' 'iac_' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +30 'initinteg' 'cov2mmpdfmod' 'initinteg' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () +0 () () () 0 0) +31 'initlevels' 'cov2mmpdfmod' 'initlevels' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 +UNKNOWN ()) 32 0 (33 34 35 36 37 38) () 0 () () () 0 0) +39 'isq_' 'cov2mmpdfmod' 'isq_' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +40 'sple' 'cov2mmpdfmod' 'sple' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 41 0 (42 43 +44 45) () 40 () () () 0 0) +46 'transf' 'cov2mmpdfmod' 'transf' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 +UNKNOWN ()) 47 0 (48 49 50 51 52 53) () 0 () () () 0 0) +9 'ulev' '' 'ulev' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +14 ())) 0 () () () 0 0) +10 'vlev' '' 'vlev' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +15 ())) 0 () () () 0 0) +11 'tg' '' 'tg' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 16 ())) 0 () () +() 0 0) +12 'xg' '' 'xg' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 16 ())) 0 () () +() 0 0) +13 'nt' '' 'nt' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'nu' '' 'nu' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'nv' '' 'nv' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +16 'ng' '' 'ng' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +17 'nit' '' 'nit' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'uvdens' '' 'uvdens' 5 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +14 ()) (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 +0 0 INTEGER ()) 0 15 ())) 0 () () () 0 0) +7 't' '' 't' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 13 ())) 0 () () +() 0 0) +8 'cov' '' 'cov' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 13 ()) ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '5')) 0 () () () 0 0) +33 't' '' 't' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +34 'ht' '' 'ht' 32 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +35 'n' '' 'n' 32 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +36 'ng' '' 'ng' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +37 'nu' '' 'nu' 32 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +38 'nv' '' 'nv' 32 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +48 'n' '' 'n' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +49 't' '' 't' 47 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +50 'a' '' 'a' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +51 'timev' '' 'timev' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +52 'value' '' 'value' 47 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +53 'der' '' 'der' 47 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +42 'n' '' 'n' 41 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +43 't' '' 't' 41 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +44 'a' '' 'a' 41 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +45 'timev' '' 'timev' 41 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +20 'xl0' '' 'xl0' 19 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +21 'xl2' '' 'xl2' 19 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +22 'xl4' '' 'xl4' 19 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +23 'cov' '' 'cov' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ()) (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '5')) 0 () () () 0 0) +24 't' '' 't' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 25 ())) 0 () () +() 0 0) +25 'n' '' 'n' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('c_' 0 2 'cov2mmpdfmod' 0 3 'cov2mmpdfreg' 0 4 'covg' 0 18 'eps0_' 0 26 +'eps_' 0 27 'epss_' 0 28 'iac_' 0 29 'initinteg' 0 30 'initlevels' 0 31 +'isq_' 0 39 'sple' 0 40 'transf' 0 46) diff --git a/wafo/source/mreg/cov2mmpdfreg.f b/wafo/source/mreg/cov2mmpdfreg.f new file mode 100755 index 0000000..ff9d0d8 --- /dev/null +++ b/wafo/source/mreg/cov2mmpdfreg.f @@ -0,0 +1,651 @@ +C Version 1994-X-18 + +C This is a new version of WAMP program computing crest-trough wavelength +C and amplitude density. +C +C revised pab 2007 +C -moved all common blocks into modules +C -renamed from minmax to sp2mmpdfreg + fixed some bugs +C revised pab July 2007 +! -renamed from sp2mmpdfreg to cov2mmpdfreg + + PROGRAM cov2mmpdfreg + USE SIZEMOD + USE EPSMOD + USE CHECKMOD + USE MREGMOD + IMPLICIT NONE + real*8 Q0,SQ0,Q1,SQ1, AA, BB, DAI, AI , U,V,VV, XL0, XL2, XL4 + REAL*8 VDERI, CDER,SDER, DER, CONST, F, HHHH,FM, VALUE +C INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201 + REAL*8, DIMENSION(NMAX) :: HHT,T,Ulev,Vlev,VT,UT,Vdd,Udd + REAL*8, DIMENSION(RDIM) :: R,R1,R2,R3 + REAL*8, DIMENSION(5*NMAX) :: COV + REAL*8, DIMENSION(NMAX,NMAX) :: UVdens +C DIMENSION UVdens(NMAX,NMAX),HHT(NMAX) +C DIMENSION T(NMAX),Ulev(NMAX),Vlev(NMAX) +C DIMENSION VT(NMAX),UT(NMAX),Vdd(NMAX),Udd(NMAX) +C DIMENSION COV(5*NMAX),R(RDIM),R1(RDIM),R2(RDIM),R3(RDIM) + DIMENSION AA(MMAX-2,MMAX-2),BB(MMAX+1),DAI(MMAX),AI((MMAX+1)*NMAX) + +C +C The program computes the joint density of maximum the following minimum +C and the distance between Max and min for a zero-mean stationary +C Gaussian process with covariance function defined explicitely with 4 +C derivatives. The process should be normalized so that the first and +C the second spectral moments are equal to 1. The values of Max are taken +C as the nodes at Hermite-Quadrature and then integrated out so that +C the output is a joint density of wavelength T and amplitude H=Max-min. +C The Max values are defined by subroutine Gauss_M with the accuracy +C input epsu. The principle is that the integral of the marginal density +C of f_Max is computed with sufficient accuracy. +C + REAL*8, DIMENSION(NMAX) :: B0,DB0,DDB0,B1,DB1,DDB1,DB2,DDB2 + REAL*8, DIMENSION(NMAX) :: Q,SQ,VDER,DBI,BI +C DIMENSION B0(NMAX),DB0(NMAX),DDB0(NMAX) +C DIMENSION B1(NMAX),DB1(NMAX),DDB1(NMAX) +C DIMENSION DB2(NMAX),DDB2(NMAX) +C DIMENSION Q(NMAX),SQ(NMAX),VDER(NMAX),DBI(NMAX),BI(NMAX) + INTEGER :: J,I,I1,I2,I3,IU, IV, NU,NV,NG,N,NIT, NNIT, INF + INTEGER :: fffff +C REAL*8 EPS0 +C INTEGER III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 , III0 +C COMMON/CHECK1/III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 +C COMMON/CHECKQ/III0 +C COMMON /EPS/ EPS,EPSS,CEPSS + +C +C Initiation of all constants and integration nodes 'INITINTEG' +C + CALL INITINTEG(NIT) +c +c OBS. we are using the variables R,R1,R2 R3 as a temporary storage +C for transformation g of the process. + + + +c + CALL INITLEVELS(Ulev,NU,Vlev,NV,T,HHT,N,R1,R2,NG) + IF( R1(1) .gt. R1(ng)) then + do 13 I=1,ng + R3(I)=R1(I) + R(I) =R2(I) +13 continue + do 17 i=1,ng + R1(i) = R3(ng-i+1) + R2(i) = R(ng-i+1) +17 continue + end if + if(abs(R1(ng)-R1(1))*abs(R2(ng)-R2(1)).lt.0.01d0) then + print *,'The transformation g is singular, stop' + stop + end if + DO 14 IV=1,Nv + V=Vlev(IV) + CALL TRANSF(NG,V,R2,R1,VALUE,DER) + VT(IV)=VALUE + Vdd(IV)=DER +14 continue + DO 16 IU=1,Nu + U = Ulev(IU) + CALL TRANSF(NG,U,R2,R1,VALUE,DER) + UT(IU) = VALUE + Udd(IU) = DER + do 16 IV=1,Nv + UVdens(IU,IV)=0.0d0 +16 CONTINUE + + + CALL COVG(XL0,XL2,XL4,COV,R1,R2,R3,T,N) + + + Q0=XL4 + IF (Q0.le.1.0D0+EPS) then + Print *,'Covariance structure is singular, stop.' + stop + end if + SQ0 = SQRT(Q0) + Q1 = XL0-XL2*XL2/XL4 + IF (Q1.le.eps) then + Print *,'Covariance structure is singular, stop.' + stop + end if + SQ1 = SQRT(Q1) + DO 10 I=1,N + B0(I) =-COV(I+2*N) + DB0(I) =-COV(I+3*N) + DDB0(I)=-COV(I+4*N) + + B1(I) =COV(I)+COV(I+2*N)*(XL2/XL4) + DB1(I) =COV(I+N)+COV(I+3*N)*(XL2/XL4) + DDB1(I)=COV(I+2*N)+XL2*(COV(I+4*N)/XL4) +C +C Q(I) contains Var(X(T(i))|X'(0),X''(0),X(0)) +C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0)) +C + Q(I)=XL0 - COV(I+N)*(COV(I+N)/XL2) - B0(I)*(B0(I)/Q0) + 1 -B1(I)*(B1(I)/Q1) + VDER(I)=XL4 - (COV(I+3*N)*COV(I+3*N))/XL2 - (DDB0(I)*DDB0(I))/Q0 + 1 - (DDB1(I)*DDB1(I))/Q1 + + +C +C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0)) +C + DDB2(I)=-XL2 - (COV(I+N)*COV(I+3*N))/XL2 - DDB0(I)*(B0(I)/Q0) + 1 -DDB1(I)*(B1(I)/Q1) + IF(Q(I).LE.eps) then + SQ(i) =0.0d0 + DDB2(i)=0.0d0 + else + SQ(I)=SQRT(Q(I)) +C +C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0),X(T(i)) +C + + VDER(I)=VDER(I) - (DDB2(I)*DDB2(I))/Q(I) + end if + +10 CONTINUE + DO 15 I=1,N + DO 15 J=1,N +C +C R1 contains Cov(X(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R1(J+(I-1)*N)=R1(J+(I-1)*N) - COV(I+N)*(COV(J+2*N)/XL2) + 1 - (B0(I)*DB0(J)/Q0) - (B1(I)*DB1(J)/Q1) + +C +C R2 contains Cov(X'(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R2(J+(I-1)*N) = -R2(J+(I-1)*N) - COV(I+2*N)*(COV(J+2*N)/XL2) + 1 - DB0(I)*DB0(J)/Q0 - DB1(I)*(DB1(J)/Q1) +C +C R3 contains Cov(X''(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R3(J+(I-1)*N) = R3(J+(I-1)*N) - COV(I+3*N)*(COV(J+2*N)/XL2) + 1 - DB0(J)*(DDB0(I)/Q0) - DDB1(I)*(DB1(J)/Q1) +15 CONTINUE + +C The initiations are finished and we are beginning with 3 loops +C on T=T(I), U=Ulevels(IU), V=Ulevels(IV), U>V. + + DO 20 I=1,N + + NNIT=NIT + IF (Q(I).LE.EPS) GO TO 20 + + DO 30 I1=1,I + DB2(I1)=R1(I1+(I-1)*N) + +C Cov(X'(T(I1)),X(T(i))|X'(0),X''(0),X(0)) +C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0)) + + 30 CONTINUE + + DO 50 I3=1,I + DBI(I3) = R3(I3+(I-1)*N) - (DDB2(I)*DB2(I3)/Q(I)) + BI(I3) = R2(I3+(I-1)*N) - (DB2(I)*DB2(I3)/Q(I)) + 50 CONTINUE + DO 51 I3=1,I-1 + AI(I3)=0.0d0 + AI(I3+I-1)=DB0(I3)/SQ0 + AI(I3+2*(I-1))=DB1(I3)/SQ1 + AI(I3+3*(I-1))=DB2(I3)/SQ(I) + 51 CONTINUE + VDERI=VDER(I) + DAI(1)=0.0d0 + DAI(2)=DDB0(I)/SQ0 + DAI(3)=DDB1(I)/SQ1 + DAI(4)=DDB2(I)/SQ(I) + AA(1,1)=DB0(I)/SQ0 + AA(1,2)=DB1(I)/SQ1 + AA(1,3)=DB2(I)/SQ(I) + AA(2,1)=XL2/SQ0 + AA(2,2)=SQ1 + AA(2,3)=0.0d0 + AA(3,1)=B0(I)/SQ0 + AA(3,2)=B1(I)/SQ1 + AA(3,3)=SQ(I) + IF (BI(I).LE.EPS) NNIT=0 + IF (NNIT.GT.1) THEN + IF(I.LT.1) GO TO 41 + DO 40 I1=1,I-1 + DO 40 I2=1,I-1 + +C R contains Cov(X'(T(I1)),X'(T(I2))|X'(0),X''(0),X(0),X(I)) + + R(I2+(I1-1)*(I-1))=R2(I2+(I1-1)*N)-(DB2(I1)*DB2(I2)/Q(I)) + + 40 CONTINUE + 41 CONTINUE + END IF + +C Here the covariance of the problem would be innitiated + + INF=0 + Print *,' Laps to go:',N-I+1 + DO 80 IV=1,Nv + V=VT(IV) +! IF (ABS(V).GT.5.0D0) GO TO 80 + IF (Vdd(IV).LT.EPS0) GO TO 80 + DO 60 IU=1,Nu + U=UT(IU) + IF (U.LE.V) go to 60 +! IF (ABS(U).GT.5.0D0) GO TO 60 + IF (Udd(IU).LT.EPS0) GO TO 60 + BB(1)=0.0d0 + BB(2)=U + BB(3)=V +! if (IV.EQ.2.AND.IU.EQ.1) THEN +! fffff = 10 +! endif + + CALL MREG(F,R,BI,DBI,AA,BB,AI,DAI,VDERI,3,I-1,NNIT,INF) + INF=1 + UVdens(IU,IV) = UVdens(IU,IV) + Udd(IU)*Vdd(IV)*HHT(I)*F +! if (F.GT.0.01.AND.U.GT.2.AND.V.LT.-2) THEN +! if (N-I+1 .eq. 38.and.IV.EQ.26.AND.IU.EQ.16) THEN +! if (IV.EQ.32.AND.IU.EQ.8.and.I.eq.11) THEN +! PRINT * ,' R:', R(1:I) +! PRINT * ,' BI:', BI(1:I) +! PRINT * ,' DBI:', DBI(1:I) +! PRINT * ,' DB2:', DB2(1:I) +! PRINT * ,' DB0(1):', DB0(1) +! PRINT * ,' DB1(1):', DB1(1) +! PRINT * ,' DAI:', DAI +! PRINT * ,' BB:', BB +! PRINT * ,' VDERI:', VDERI +! PRINT * ,' F :', F +! PRINT * ,' UVDENS :', UVdens(IU,IV) +! fffff = 10 +! endif + + 60 CONTINUE + 80 continue + 20 CONTINUE + hhhh=0.0d0 + do 90 Iu=1,Nu + do 90 Iv=1,Nv + WRITE(10,300) Ulev(iu),Vlev(iv),UVdens(iu,iv) + hhhh=hhhh+UVdens(iu,iv) + 90 continue + if (nu.gt.1.and.nv.gt.1) then + write(11,*) 'SumSum f_uv *du*dv=' + 1,(Ulev(2)-Ulev(1))*(Vlev(2)-Vlev(1))*hhhh + end if + +C sder=sqrt(XL4-XL2*XL2/XL0) +C cder=-XL2/sqrt(XL0) +C const=1/sqrt(XL0*XL4) +C DO 95 IU=1,NU +C U=UT(IU) +C FM=Udd(IU)*const*exp(-0.5*U*U/XL0)*PMEAN(-cder*U,sder) +C WRITE(9,300) Ulev(IU),FM +C 95 continue +C DO 105 IV=1,NV +C V=VT(IV) +C VV=cder*V +C Fm=Vdd(IV)*const*exp(-0.5*V*V/XL0)*PMEAN(VV,sder) +C WRITE(8,300) Vlev(IV),Fm +C 105 continue + if (III0.eq.0) III0=1 + + write(11,*) 'Rate of calls RINDT0:',float(iii01)/float(III0) + write(11,*) 'Rate of calls RINDT1:',float(iii11)/float(III0) + write(11,*) 'Rate of calls RINDT2:',float(iii21)/float(III0) + write(11,*) 'Rate of calls RINDT3:',float(iii31)/float(III0) + write(11,*) 'Rate of calls RINDT4:',float(iii41)/float(III0) + write(11,*) 'Rate of calls RINDT5:',float(iii51)/float(III0) + write(11,*) 'Rate of calls RINDT6:',float(iii61)/float(III0) + write(11,*) 'Rate of calls RINDT7:',float(iii71)/float(III0) + write(11,*) 'Rate of calls RINDT8:',float(iii81)/float(III0) + write(11,*) 'Rate of calls RINDT9:',float(iii91)/float(III0) + write(11,*) 'Rate of calls RINDT10:',float(iii101)/float(III0) + write(11,*) 'Number of calls of RINDT*',III0 + + CLOSE(UNIT=8) + CLOSE(UNIT=9) + CLOSE(UNIT=10) + CLOSE(UNIT=11) + + 300 FORMAT(4(3X,F10.6)) + STOP + END + + SUBROUTINE INITLEVELS(ULEVELS,NU,Vlevels,Nv,T,HT,N,TG,XG,NG) + USE TBRMOD + USE SIZEMOD + IMPLICIT NONE +C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201 +C DIMENSION ULEVELS(1),Vlevels(1),T(1),HT(1),TG(1),XG(1),HH(101) + REAL*8, DIMENSION(NMAX), intent(inout) :: ULEVELS,Vlevels,T,HT + REAL*8, DIMENSION(RDIM), intent(inout) :: TG,XG + INTEGER, intent(inout) :: NG + REAL*8 :: UMIN,UMAX,VMIN,VMAX, HU,HV + integer :: N, I, NU, NV +C REAL*8, DIMENSION(NMAX) :: HH +C COMMON/TBR/HH + OPEN(UNIT=2,FILE='transf.in') + OPEN(UNIT=4,FILE='Mm.in') + OPEN(UNIT=3,FILE='t.in') + + + NG=1 + 12 READ (2,*,END=11) TG(NG),XG(NG) + NG=NG+1 + GO TO 12 + 11 CONTINUE + NG=NG-1 + IF (NG.GT.501) THEN + PRINT *,'Vector defining transformation of data > 501, stop' + STOP + END IF + + + N=1 + 32 READ (3,*,END=31) T(N) + N=N+1 + GO TO 32 + 31 CONTINUE + N=N-1 + + CLOSE(UNIT=3) + + IF(N.ge.NMAX) then + print *,'The number of wavelength points >',NMAX-1, ' stop' + stop + end if + IF(N.lt.2) then + print *,'The number of wavelength points < 2, stop' + stop + end if + + HT(1)=0.5d0*(T(2)-T(1)) + HT(N)=0.5d0*(T(N)-T(N-1)) + HH(1)=-100.0d0 + HH(N)=-100.0d0 + DO 10 I=2,N-1 + HT(I)=0.5d0*(T(I+1)-T(I-1)) + HH(I)=-100.0d0 +10 CONTINUE + + + + READ(4,*) Umin,Umax,NU + READ(4,*) Vmin,Vmax,NV + + IF(NU.gt.NMAX) then + print *,'The number of maxima >',NMAX,' stop' + stop + end if + IF(NV.gt.NMAX) then + print *,'The number of minima >',NMAX,' stop' + stop + end if + + IF(NU.LT.1) Then + print *,'The number of maxima < 1, stop' + stop + end if + IF(NV.LT.1) Then + print *,'The number of minima < 1, stop' + stop + end if + + Ulevels(1)=Umax + IF (NU.lt.2) go to 25 + HU=(Umax-Umin)/DBLE(NU-1) + DO 20 I=1,NU-1 + ULEVELS(I+1)=Umax-DBLE(I)*HU +20 CONTINUE + + 25 continue + Vlevels(1)=Vmax + IF (NV.lt.2) go to 35 + HV=(Vmax-Vmin)/DBLE(NV-1) + DO 30 I=1,Nv-1 + VLEVELS(I+1)=Vmax-DBLE(I)*HV +30 CONTINUE +35 continue + CLOSE(UNIT=4) + RETURN + END + + + SUBROUTINE TRANSF(N,T,A,TIMEV,VALUE,DER) +C +C N number of data points +C TIMEV vector of time points +C A a vector of values of a function G(TIME) +C T independent time point +C VALUE is a value of a function at T, i.e. VALUE=G(T). +c DER=G'(t) +C + USE SIZEMOD + IMPLICIT NONE + REAL*8, intent(inout):: VALUE, DER,T +C INTEGER, PARAMETER :: RDIM = 10201 + REAL*8, DIMENSION(RDIM), intent(in) :: A,TIMEV + integer, intent(in) :: N + REAL*8:: T1 + integer :: I + + IF (T.LT.TIMEV(1)) then + der=(A(2)-A(1))/(TIMEV(2)-TIMEV(1)) + T1=T-TIMEV(1) + VALUE=A(1)+T1*DER + return + end if + IF (T.GT.TIMEV(N)) then + der = (A(N)-A(N-1))/(TIMEV(N)-TIMEV(N-1)) + T1 = T-TIMEV(N) + VALUE=A(N)+T1*DER + return + end if + DO 5 I=2,N + IF (T.LT.TIMEV(I)) GO TO 10 +5 CONTINUE +10 I=I-1 + T1=T-TIMEV(I) + DER=(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I)) + VALUE=A(I)+T1*DER + RETURN + END + + REAL*8 FUNCTION SPLE(N,T,A,TIMEV) +C +C N number of data points +C TIME vector of time points +C A a vector of values of a function G(TIME) +C T independent time point +C SPLE is a value of a function at T, i.e. SPLE=G(T). +C + USE SIZEMOD + IMPLICIT NONE + INTEGER, INTENT(IN):: N + + REAL*8, INTENT(IN) :: T + REAL*8, DIMENSION(5*NMAX), INTENT(IN) :: A,TIMEV + REAL*8 :: T1 + INTEGER :: I + SPLE=-9.9d0 + IF (T.LT.TIMEV(1) .OR. T.GT.TIMEV(N)) RETURN + DO 5 I=2,N + IF (T.LT.TIMEV(I)) GO TO 10 +5 CONTINUE +10 I=I-1 + T1=T-TIMEV(I) + SPLE=A(I)+T1*(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I)) + RETURN + END + + + + SUBROUTINE COVG(XL0,XL2,XL4,COV,COV1,COV2,COV3,T,N) +C +C COVG evaluates: +C +C XL0,XL2,XL4 - spectral moments. +C +C Covariance function and its four derivatives for a vector T of length N. +C It is saved in a vector COV; COV(1,...,N)=r(T), COV(N+1,...,2N)=r'(T), etc. +C The vector COV should be of the length 5*N. +C +C Covariance matrices COV1=r'(T-T), COV2=r''(T-T) and COV3=r'''(T-T) +C Dimension of COV1, COV2 should be N*N. +C + USE SIZEMOD +! IMPLICIT NONE +C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201 + REAL*8, PARAMETER:: ZERO = 0.0d0 + REAL*8, intent(inout) :: XL0,XL2,XL4 + REAL*8, DIMENSION(5*NMAX), intent(inout) :: COV + REAL*8, DIMENSION(5*NMAX) :: A, TIMEV + REAL*8, DIMENSION(RDIM), intent(inout) :: COV1,COV2,COV3 + REAL*8, DIMENSION(NMAX), intent(in) :: T + INTEGER, intent(in) :: N + integer :: NT, I, J, II + REAL*8 :: TT, T0 + OPEN(UNIT=32,FILE='Cd0.in') + OPEN(UNIT=33,FILE='Cd1.in') + OPEN(UNIT=34,FILE='Cd2.in') + OPEN(UNIT=35,FILE='Cd3.in') + OPEN(UNIT=36,FILE='Cd4.in') +C +C COV(Y(T),Y(0)) +C + + NT=1 + 12 READ (32,*,END=11) TIMEV(NT),A(NT) + NT=NT+1 + GO TO 12 + 11 CONTINUE + NT=NT-1 + + + XL0=SPLE(NT,ZERO,A,TIMEV) + + DO 10 I=1,N + COV(I)=SPLE(NT,T(I),A,TIMEV) +10 CONTINUE + +C +C DERIVATIVE COV(Y(T),Y(0)) +C + + NT=1 + 22 READ (33,*,END=21) TIMEV(NT),A(NT) + NT=NT+1 + GO TO 22 + 21 CONTINUE + NT=NT-1 + + II=0 + DO 20 I=1,N + COV(I+N)=SPLE(NT,T(I),A,TIMEV) + DO 20 J=1,N + II=II+1 + T0=T(J)-T(I) + TT=ABS(T0) + COV1(II)=SPLE(NT,TT,A,TIMEV) + IF (T0.LT.0.0d0) COV1(II)=-COV1(II) +20 CONTINUE + +C 2-DERIVATIVE COV(Y(T),Y(0)) + + NT=1 + 32 READ (34,*,END=31) TIMEV(NT),A(NT) + NT=NT+1 + GO TO 32 + 31 CONTINUE + NT=NT-1 + + II=0 + XL2=-SPLE(NT,ZERO,A,TIMEV) + + DO 30 I=1,N + COV(I+2*N)=SPLE(NT,T(I),A,TIMEV) + DO 30 J=1,N + II=II+1 + TT=ABS(T(J)-T(I)) + COV2(II)=SPLE(NT,TT,A,TIMEV) +30 CONTINUE + +C 3-DERIVATIVE COV(Y(T),Y(0)) + + NT=1 + 42 READ (35,*,END=41) TIMEV(NT),A(NT) + NT=NT+1 + GO TO 42 + 41 CONTINUE + NT=NT-1 + + + II=0 + DO 40 I=1,N + COV(I+3*N)=SPLE(NT,T(I),A,TIMEV) + DO 40 J=1,N + II=II+1 + T0=T(J)-T(I) + TT=ABS(T0) + COV3(II)=SPLE(NT,TT,A,TIMEV) + IF (T0.LT.0.0d0) COV3(II)=-COV3(II) +40 CONTINUE + + + +C 4-DERIVATIVE COV(Y(T),Y(0)) + + NT=1 + 52 READ (36,*,END=51) TIMEV(NT),A(NT) + NT=NT+1 + GO TO 52 + 51 CONTINUE + NT=NT-1 + + XL4=SPLE(NT,ZERO,A,TIMEV) + + DO 50 I=1,N + COV(I+4*N)=SPLE(NT,T(I),A,TIMEV) +50 CONTINUE + CLOSE(UNIT=32) + CLOSE(UNIT=33) + CLOSE(UNIT=34) + CLOSE(UNIT=35) + CLOSE(UNIT=36) + RETURN + END + + SUBROUTINE INITINTEG(NIT) + USE RINTMOD + USE EPSMOD + USE INFCMOD + USE MREGMOD +! IMPLICIT NONE + INTEGER, intent(inout) :: NIT +! INTEGER ISQ1 +C dimension INF(10),INFO(10) + +C COMMON /RINT/ C,FC +C COMMON /EPS/ EPS,EPSS,CEPSS +C COMMON /INFC/ ISQ,INF,INFO + OPEN(UNIT=1,FILE='accur.in') + OPEN(UNIT=8,FILE='min.out') + OPEN(UNIT=9,FILE='Max.out') + OPEN(UNIT=10,FILE='Maxmin.out') + OPEN(UNIT=11,FILE='Maxmin.log') + + READ(1,*) NIT,IAC,ISQ + READ(1,*) EPS,EPSS,EPS0 + + CLOSE (UNIT=1) + + FC=FI(C)-FI(-C) + CEPSS=1.0d0-EPSS + + RETURN + END + diff --git a/wafo/source/mreg/cov2mmpdfreg_intfc.f b/wafo/source/mreg/cov2mmpdfreg_intfc.f new file mode 100755 index 0000000..d156065 --- /dev/null +++ b/wafo/source/mreg/cov2mmpdfreg_intfc.f @@ -0,0 +1,559 @@ +C Version 1994-X-18 + +C This is a new version of WAMP program computing crest-trough wavelength +C and amplitude density. +C +C revised pab 2007 +C -moved all common blocks into modules +C -renamed from minmax to sp2mmpdfreg + fixed some bugs +C revised pab July 2007 +! -renamed from sp2mmpdfreg to cov2mmpdfreg +! gfortran -W -Wall -pedantic-errors -fbounds-check -Werror -c dsvdc.f mregmodule.f cov2mmpdfreg.f + + module cov2mmpdfmod + IMPLICIT NONE + PRIVATE + PUBLIC cov2mmpdfreg, EPS_, EPSS_, EPS0_, C_, IAC_, ISQ_ + DOUBLE PRECISION :: EPS_ = 1.d-2 + DOUBLE PRECISION :: EPSS_ = 5.d-5 +! used in GAUSSLE1 to implicitly ! determ. # nodes + DOUBLE PRECISION :: EPS0_ = 5.d-5 + DOUBLE PRECISION :: C_ = 4.5d0 + INTEGER :: IAC_=1 + INTEGER :: ISQ_=0 + + contains + + subroutine cov2mmpdfreg(UVdens,t,COV,ULev,VLev,Tg,Xg,Nt,Nu,Nv,Ng, + ! NIT) + USE SIZEMOD + USE EPSMOD + USE CHECKMOD + USE MREGMOD + IMPLICIT NONE + INTEGER, INTENT(IN) :: Nt, Nu, Nv, Ng, NIT + REAL*8, DIMENSION(Nt,5), intent(in):: COV + REAL*8, DIMENSION(Nu,Nv), intent(out):: UVdens + REAL*8, DIMENSION(Nu), intent(in):: ULev + REAL*8, DIMENSION(Nv), intent(in):: VLev + REAL*8, DIMENSION(Ng), intent(in):: Tg, Xg + REAL*8, dimension(Nt), intent(in):: T +Cf2py integer, intent(hide), depend(t) :: Nt = len(t) +Cf2py integer, intent(hide), depend(Ulev) :: Nu = len(Ulev) +Cf2py integer, intent(hide), depend(Vlev) :: Nv = len(Vlev) +Cf2py integer, intent(hide), depend(Tg) :: Ng = len(Tg) +Cf2py integer, optional :: NIT = 2 +Cf2py real*8, intent(out), depend(Nu,Nv) :: UVdens +Cf2py depend(Ng) Xg +Cf2py depend(Nt,5) COV + + + + + real*8 Q0,SQ0,Q1,SQ1, U,V,VV, XL0, XL2, XL4 + REAL*8 VDERI, CDER,SDER, DER, CONST, F, HHHH,FM, VALUE +C INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201 + REAL*8, DIMENSION(NMAX) :: HHT,VT,UT,Vdd,Udd + REAL*8, DIMENSION(RDIM) :: R,R1,R2,R3 + REAL*8:: AA(MMAX-2,MMAX-2),AI((MMAX+1)*NMAX) + REAL*8, DIMENSION(MMAX+1) :: BB, DAI +C DIMENSION UVdens(NMAX,NMAX),HHT(NMAX) +C DIMENSION T(NMAX),Ulev(NMAX),Vlev(NMAX) +C DIMENSION VT(NMAX),UT(NMAX),Vdd(NMAX),Udd(NMAX) +C DIMENSION COV(5*NMAX),R(RDIM),R1(RDIM),R2(RDIM),R3(RDIM) + + +C +C The program computes the joint density of maximum the following minimum +C and the distance between Max and min for a zero-mean stationary +C Gaussian process with covariance function defined explicitely with 4 +C derivatives. The process should be normalized so that the first and +C the second spectral moments are equal to 1. The values of Max are taken +C as the nodes at Hermite-Quadrature and then integrated out so that +C the output is a joint density of wavelength T and amplitude H=Max-min. +C The Max values are defined by subroutine Gauss_M with the accuracy +C input epsu. The principle is that the integral of the marginal density +C of f_Max is computed with sufficient accuracy. +C + REAL*8, DIMENSION(NMAX) :: B0,DB0,DDB0,B1,DB1,DDB1,DB2,DDB2 + REAL*8, DIMENSION(NMAX) :: Q,SQ,VDER,DBI,BI +C DIMENSION B0(NMAX),DB0(NMAX),DDB0(NMAX) +C DIMENSION B1(NMAX),DB1(NMAX),DDB1(NMAX) +C DIMENSION DB2(NMAX),DDB2(NMAX) +C DIMENSION Q(NMAX),SQ(NMAX),VDER(NMAX),DBI(NMAX),BI(NMAX) + INTEGER :: J,I,I1,I2,I3,IU, IV,N, NNIT, INF + INTEGER :: fffff +C REAL*8 EPS0 +C INTEGER III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 , III0 +C COMMON/CHECK1/III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 +C COMMON/CHECKQ/III0 +C COMMON /EPS/ EPS,EPSS,CEPSS + +C +C Initiation of all constants and integration nodes 'INITINTEG' +C + CALL INITINTEG() + +! OPEN(UNIT=8,FILE='min.out') +! OPEN(UNIT=9,FILE='Max.out') +! OPEN(UNIT=10,FILE='Maxmin.out') +! OPEN(UNIT=11,FILE='Maxmin.log') +c +c OBS. we are using the variables R,R1,R2 R3 as a temporary storage +C for transformation g of the process. + +c + CALL INITLEVELS(T,HHT,Nt,NG,NU,Nv) +C CALL INITLEVELS(Ulev,NU,Vlev,NV,T,HHT,Nt,R1,R2,NG) + IF( Tg(1) .gt. Tg(ng)) then + print *,'Error Tg must be strictly increasing' + return + end if + if(abs(Tg(ng)-Tg(1))*abs(Xg(ng)-Xg(1)).lt.0.01d0) then + print *,'The transformation g is singular, stop' + stop + end if + DO IV=1,Nv + V=Vlev(IV) + CALL TRANSF(NG,V,Xg,Tg,VALUE,DER) + VT(IV)=VALUE + Vdd(IV)=DER +14 continue + enddo + DO IU=1,Nu + U = Ulev(IU) + CALL TRANSF(NG,U,Xg,Tg,VALUE,DER) + UT(IU) = VALUE + Udd(IU) = DER + do IV=1,Nv + UVdens(IU,IV)=0.0d0 +16 CONTINUE + enddo + enddo + + CALL COVG(XL0,XL2,XL4,COV,T,Nt) + + + Q0=XL4 + IF (Q0.le.1.0D0+EPS) then + Print *,'Covariance structure is singular, stop.' + stop + end if + SQ0 = SQRT(Q0) + Q1 = XL0-XL2*XL2/XL4 + IF (Q1.le.EPS) then + Print *,'Covariance structure is singular, stop.' + stop + end if + SQ1 = SQRT(Q1) + DO I=1,Nt + B0(I) =-COV(I,3) + DB0(I) =-COV(I,4) + DDB0(I)=-COV(I,5) + + B1(I) =COV(I,1)+COV(I,3)*(XL2/XL4) + DB1(I) =COV(I,2)+COV(I,4)*(XL2/XL4) + DDB1(I)=COV(I,3)+XL2*(COV(I,5)/XL4) +C +C Q(I) contains Var(X(T(i))|X'(0),X''(0),X(0)) +C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0)) +C + Q(I)=XL0 - COV(I,2)*(COV(I,2)/XL2) - B0(I)*(B0(I)/Q0) + 1 -B1(I)*(B1(I)/Q1) + VDER(I)=XL4 - (COV(I,4)*COV(I,4))/XL2 - (DDB0(I)*DDB0(I))/Q0 + 1 - (DDB1(I)*DDB1(I))/Q1 + + +C +C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0)) +C + DDB2(I)=-XL2 - (COV(I,2)*COV(I,4))/XL2 - DDB0(I)*(B0(I)/Q0) + 1 -DDB1(I)*(B1(I)/Q1) + IF(Q(I).LE.eps) then + SQ(i) =0.0d0 + DDB2(i)=0.0d0 + else + SQ(I)=SQRT(Q(I)) +C +C VDER(I) contains Var(X''(T(i))|X'(0),X''(0),X(0),X(T(i)) +C + + VDER(I)=VDER(I) - (DDB2(I)*DDB2(I))/Q(I) + end if + +10 CONTINUE + enddo + DO I=1,Nt + DO J=1,Nt +C +C R1 contains Cov(X(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R1(J+(I-1)*N)=R1(J+(I-1)*N) - COV(I,2)*(COV(J,3)/XL2) + 1 - (B0(I)*DB0(J)/Q0) - (B1(I)*DB1(J)/Q1) + +C +C R2 contains Cov(X'(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R2(J+(I-1)*N) = -R2(J+(I-1)*N) - COV(I,3)*(COV(J,3)/XL2) + 1 - DB0(I)*DB0(J)/Q0 - DB1(I)*(DB1(J)/Q1) +C +C R3 contains Cov(X''(T(I)),X'(T(J))|X'(0),X''(0),X(0)) +C + R3(J+(I-1)*N) = R3(J+(I-1)*N) - COV(I,4)*(COV(J,3)/XL2) + 1 - DB0(J)*(DDB0(I)/Q0) - DDB1(I)*(DB1(J)/Q1) +15 CONTINUE + enddo + enddo + +C The initiations are finished and we are beginning with 3 loops +C on T=T(I), U=Ulevels(IU), V=Ulevels(IV), U>V. + + DO I=1,Nt + + NNIT=NIT + IF (Q(I).LE.EPS) GO TO 20 + + DO I1=1,I + DB2(I1)=R1(I1+(I-1)*N) + +C Cov(X'(T(I1)),X(T(i))|X'(0),X''(0),X(0)) +C DDB2(I) contains Cov(X''(T(i)),X(T(i))|X'(0),X''(0),X(0)) + + 30 CONTINUE + enddo + + DO I3=1,I + DBI(I3) = R3(I3+(I-1)*N) - (DDB2(I)*DB2(I3)/Q(I)) + BI(I3) = R2(I3+(I-1)*N) - (DB2(I)*DB2(I3)/Q(I)) + 50 CONTINUE + enddo + DO I3=1,I-1 + AI(I3)=0.0d0 + AI(I3+I-1)=DB0(I3)/SQ0 + AI(I3+2*(I-1))=DB1(I3)/SQ1 + AI(I3+3*(I-1))=DB2(I3)/SQ(I) + 51 CONTINUE + enddo + VDERI=VDER(I) + DAI(1)=0.0d0 + DAI(2)=DDB0(I)/SQ0 + DAI(3)=DDB1(I)/SQ1 + DAI(4)=DDB2(I)/SQ(I) + AA(1,1)=DB0(I)/SQ0 + AA(1,2)=DB1(I)/SQ1 + AA(1,3)=DB2(I)/SQ(I) + AA(2,1)=XL2/SQ0 + AA(2,2)=SQ1 + AA(2,3)=0.0d0 + AA(3,1)=B0(I)/SQ0 + AA(3,2)=B1(I)/SQ1 + AA(3,3)=SQ(I) + IF (BI(I).LE.EPS) NNIT=0 + IF (NNIT.GT.1) THEN + IF(I.LT.1) GO TO 41 + DO I1=1,I-1 + DO I2=1,I-1 + +C R contains Cov(X'(T(I1)),X'(T(I2))|X'(0),X''(0),X(0),X(I)) + + R(I2+(I1-1)*(I-1))=R2(I2+(I1-1)*N)-(DB2(I1)*DB2(I2)/Q(I)) + + 40 CONTINUE + enddo + enddo + 41 CONTINUE + END IF + +C Here the covariance of the problem would be innitiated + + INF=0 + Print *,' Laps to go:',N-I+1 + DO IV=1,Nv + V=VT(IV) +! IF (ABS(V).GT.5.0D0) GO TO 80 + IF (Vdd(IV).LT.EPS0) GO TO 80 + DO IU=1,Nu + U=UT(IU) + IF (U.LE.V) go to 60 +! IF (ABS(U).GT.5.0D0) GO TO 60 + IF (Udd(IU).LT.EPS0) GO TO 60 + BB(1)=0.0d0 + BB(2)=U + BB(3)=V +! if (IV.EQ.2.AND.IU.EQ.1) THEN +! fffff = 10 +! endif + + CALL MREG(F,R,BI,DBI,AA,BB,AI,DAI,VDERI,3,I-1,NNIT,INF) + INF=1 + UVdens(IU,IV) = UVdens(IU,IV) + Udd(IU)*Vdd(IV)*HHT(I)*F + +! if (F.GT.0.01.AND.U.GT.2.AND.V.LT.-2) THEN +! if (N-I+1 .eq. 38.and.IV.EQ.26.AND.IU.EQ.16) THEN +! if (IV.EQ.32.AND.IU.EQ.8.and.I.eq.11) THEN +! PRINT * ,' R:', R(1:I) +! PRINT * ,' BI:', BI(1:I) +! PRINT * ,' DBI:', DBI(1:I) +! PRINT * ,' DB2:', DB2(1:I) +! PRINT * ,' DB0(1):', DB0(1) +! PRINT * ,' DB1(1):', DB1(1) +! PRINT * ,' DAI:', DAI +! PRINT * ,' BB:', BB +! PRINT * ,' VDERI:', VDERI +! PRINT * ,' F :', F +! PRINT * ,' UVDENS :', UVdens(IU,IV) +! fffff = 10 +! endif + + 60 CONTINUE + enddo + 80 continue + enddo + 20 CONTINUE + enddo + +! hhhh=0.0d0 +! do 90 Iu=1,Nu +! do 90 Iv=1,Nv +! WRITE(10,300) Ulev(iu),Vlev(iv),UVdens(iu,iv) +! hhhh=hhhh+UVdens(iu,iv) +! 90 continue +! if (nu.gt.1.and.nv.gt.1) then +! write(11,*) 'SumSum f_uv *du*dv=' +! 1,(Ulev(2)-Ulev(1))*(Vlev(2)-Vlev(1))*hhhh +! end if + +C sder=sqrt(XL4-XL2*XL2/XL0) +C cder=-XL2/sqrt(XL0) +C const=1/sqrt(XL0*XL4) +C DO 95 IU=1,NU +C U=UT(IU) +C FM=Udd(IU)*const*exp(-0.5*U*U/XL0)*PMEAN(-cder*U,sder) +C WRITE(9,300) Ulev(IU),FM +C 95 continue +C DO 105 IV=1,NV +C V=VT(IV) +C VV=cder*V +C Fm=Vdd(IV)*const*exp(-0.5*V*V/XL0)*PMEAN(VV,sder) +C WRITE(8,300) Vlev(IV),Fm +C 105 continue + if (III0.eq.0) III0=1 + + PRINT *, 'Rate of calls RINDT0:',float(iii01)/float(III0) + PRINT *, 'Rate of calls RINDT1:',float(iii11)/float(III0) + PRINT *, 'Rate of calls RINDT2:',float(iii21)/float(III0) + PRINT *, 'Rate of calls RINDT3:',float(iii31)/float(III0) + PRINT *, 'Rate of calls RINDT4:',float(iii41)/float(III0) + PRINT *, 'Rate of calls RINDT5:',float(iii51)/float(III0) + PRINT *, 'Rate of calls RINDT6:',float(iii61)/float(III0) + PRINT *, 'Rate of calls RINDT7:',float(iii71)/float(III0) + PRINT *, 'Rate of calls RINDT8:',float(iii81)/float(III0) + PRINT *, 'Rate of calls RINDT9:',float(iii91)/float(III0) + PRINT *, 'Rate of calls RINDT10:',float(iii101)/float(III0) + PRINT *, 'Number of calls of RINDT*',III0 + + + return + END subroutine cov2mmpdfreg + + SUBROUTINE INITLEVELS(T,HT,N,NG,NU,Nv) + USE TBRMOD + USE SIZEMOD + IMPLICIT NONE +C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201 +C DIMENSION ULEVELS(1),Vlevels(1),T(1),HT(1),TG(1),XG(1),HH(101) + REAL*8, DIMENSION(:), intent(in) :: T + REAL*8, DIMENSION(:), intent(out) :: HT + INTEGER, intent(in) :: NG + REAL*8 :: UMIN,UMAX,VMIN,VMAX, HU,HV + integer :: N, I, NU, NV +C REAL*8, DIMENSION(NMAX) :: HH +C COMMON/TBR/HH + + IF (NG.GT.501) THEN + PRINT *,'Vector defining transformation of data > 501, stop' + STOP + END IF + + + IF(N.ge.NMAX) then + print *,'The number of wavelength points >',NMAX-1, ' stop' + stop + end if + IF(N.lt.2) then + print *,'The number of wavelength points < 2, stop' + stop + end if + + HT(1)=0.5d0*(T(2)-T(1)) + HT(N)=0.5d0*(T(N)-T(N-1)) + HH(1)=-100.0d0 + HH(N)=-100.0d0 + DO I=2,N-1 + HT(I)=0.5d0*(T(I+1)-T(I-1)) + HH(I)=-100.0d0 +10 CONTINUE + enddo + + + IF(NU.gt.NMAX) then + print *,'The number of maxima >',NMAX,' stop' + stop + end if + IF(NV.gt.NMAX) then + print *,'The number of minima >',NMAX,' stop' + stop + end if + + IF(NU.LT.1) Then + print *,'The number of maxima < 1, stop' + stop + end if + IF(NV.LT.1) Then + print *,'The number of minima < 1, stop' + stop + end if + + RETURN + END SUBROUTINE INITLEVELS + + + SUBROUTINE TRANSF(N,T,A,TIMEV,VALUE,DER) +C +C N number of data points +C TIMEV vector of time points +C A a vector of values of a function G(TIME) +C T independent time point +C VALUE is a value of a function at T, i.e. VALUE=G(T). +c DER=G'(t) +C + USE SIZEMOD + IMPLICIT NONE + REAL*8, intent(inout):: VALUE, DER,T +C INTEGER, PARAMETER :: RDIM = 10201 + REAL*8, DIMENSION(:), intent(in) :: A,TIMEV + integer, intent(in) :: N + REAL*8:: T1 + integer :: I + + IF (T.LT.TIMEV(1)) then + der=(A(2)-A(1))/(TIMEV(2)-TIMEV(1)) + T1=T-TIMEV(1) + VALUE=A(1)+T1*DER + return + end if + IF (T.GT.TIMEV(N)) then + der = (A(N)-A(N-1))/(TIMEV(N)-TIMEV(N-1)) + T1 = T-TIMEV(N) + VALUE=A(N)+T1*DER + return + end if + DO 5 I=2,N + IF (T.LT.TIMEV(I)) GO TO 10 +5 CONTINUE +10 I=I-1 + T1=T-TIMEV(I) + DER=(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I)) + VALUE=A(I)+T1*DER + RETURN + END SUBROUTINE TRANSF + + REAL*8 FUNCTION SPLE(N,T,A,TIMEV) +C +C N number of data points +C TIME vector of time points +C A a vector of values of a function G(TIME) +C T independent time point +C SPLE is a value of a function at T, i.e. SPLE=G(T). +C + USE SIZEMOD + IMPLICIT NONE + INTEGER, INTENT(IN):: N + + REAL*8, INTENT(IN) :: T + REAL*8, DIMENSION(:), INTENT(IN) :: A,TIMEV + REAL*8 :: T1 + INTEGER :: I + SPLE=-9.9d0 + IF (T.LT.TIMEV(1) .OR. T.GT.TIMEV(N)) RETURN + DO 5 I=2,N + IF (T.LT.TIMEV(I)) GO TO 10 +5 CONTINUE +10 I=I-1 + T1=T-TIMEV(I) + SPLE=A(I)+T1*(A(I+1)-A(I))/(TIMEV(i+1)-TIMEV(I)) + RETURN + END FUNCTION SPLE + + + + SUBROUTINE COVG(XL0,XL2,XL4,COV,T,N) +C +C COVG evaluates: +C +C XL0,XL2,XL4 - spectral moments. +C +C Covariance function and its four derivatives for a vector T of length N. +C It is saved in a vector COV; COV(1,...,N)=r(T), COV(N+1,...,2N)=r'(T), etc. +C The vector COV should be of the length 5*N. +C +C Covariance matrices COV1=r'(T-T), COV2=r''(T-T) and COV3=r'''(T-T) +C Dimension of COV1, COV2 should be N*N. +C +! USE SIZEMOD +! IMPLICIT NONE +C INTEGER, PARAMETER:: NMAX = 101, RDIM = 10201 + REAL*8, PARAMETER:: ZERO = 0.0d0 + REAL*8, intent(inout) :: XL0,XL2,XL4 + REAL*8, DIMENSION(N,5), intent(in) :: COV + REAL*8, DIMENSION(N), intent(in) :: T + INTEGER, intent(in) :: N + + +C +C COV(Y(T),Y(0)) = COV(:,1) +C + XL0 = COV(1,1) +! XL0 = SPLE(NT,ZERO,COV(:,1),T) +C +C DERIVATIVE COV(Y(T),Y(0)) = COV(:,2) +C +C 2-DERIVATIVE COV(Y(T),Y(0)) = COV(:,3) + XL2 = -COV(1,3) +! XL2 = -SPLE(NT,ZERO,COV(:,3),T) +C 3-DERIVATIVE COV(Y(T),Y(0)) = COV(:,4) + +C 4-DERIVATIVE COV(Y(T),Y(0)) = COV(:,5) + + XL4 = COV(1,5) +! XL4 = SPLE(NT,ZERO,COV(:,5),T) + + RETURN + END SUBROUTINE COVG + + SUBROUTINE INITINTEG() + USE RINTMOD + USE EPSMOD + USE INFCMOD + USE MREGMOD +! IMPLICIT NONE +C COMMON /RINT/ C,FC +C COMMON /EPS/ EPS,EPSS,CEPSS +C COMMON /INFC/ ISQ,INF,INFO + + IAC = IAC_ + ISQ = ISQ_ + EPS = EPS_ + EPSS = EPSS_ + EPS0 = EPS0_ + C = C_ + + FC = FI(C)-FI(-C) +! CEPSS = 1.0d0-EPSS + + RETURN + END SUBROUTINE INITINTEG + + END module cov2mmpdfmod \ No newline at end of file diff --git a/wafo/source/mreg/dsvdc.f b/wafo/source/mreg/dsvdc.f new file mode 100755 index 0000000..9330beb --- /dev/null +++ b/wafo/source/mreg/dsvdc.f @@ -0,0 +1,613 @@ + MODULE SVD + IMPLICIT NONE + INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60) + +! Based upon routines from the NSWC (Naval Surface Warfare Center), +! which were based upon LAPACK routines. + +! Code converted using TO_F90 by Alan Miller +! Date: 2003-11-11 Time: 17:50:44 +! Revised pab 2007 +! Converted to fixed form + + + CONTAINS + + + SUBROUTINE drotg(da, db, dc, ds) + +! DESIGNED BY C.L.LAWSON, JPL, 1977 SEPT 08 +! +! CONSTRUCT THE GIVENS TRANSFORMATION +! +! ( DC DS ) +! G = ( ) , DC**2 + DS**2 = 1 , +! (-DS DC ) +! +! WHICH ZEROS THE SECOND ENTRY OF THE 2-VECTOR (DA,DB)**T . +! +! THE QUANTITY R = (+/-)SQRT(DA**2 + DB**2) OVERWRITES DA IN +! STORAGE. THE VALUE OF DB IS OVERWRITTEN BY A VALUE Z WHICH +! ALLOWS DC AND DS TO BE RECOVERED BY THE FOLLOWING ALGORITHM: +! IF Z=1 SET DC=0.D0 AND DS=1.D0 +! IF DABS(Z) < 1 SET DC=SQRT(1-Z**2) AND DS=Z +! IF DABS(Z) > 1 SET DC=1/Z AND DS=SQRT(1-DC**2) +! +! NORMALLY, THE SUBPROGRAM DROT(N,DX,INCX,DY,INCY,DC,DS) WILL +! NEXT BE CALLED TO APPLY THE TRANSFORMATION TO A 2 BY N MATRIX. +! +! ------------------------------------------------------------------ + + REAL (dp), INTENT(IN OUT) :: da + REAL (dp), INTENT(IN OUT) :: db + REAL (dp), INTENT(OUT) :: dc + REAL (dp), INTENT(OUT) :: ds + + REAL (dp) :: u, v, r + IF (ABS(da) <= ABS(db)) GO TO 10 + +! *** HERE ABS(DA) > ABS(DB) *** + + u = da + da + v = db / u + +! NOTE THAT U AND R HAVE THE SIGN OF DA + + r = SQRT(.25D0 + v**2) * u + +! NOTE THAT DC IS POSITIVE + + dc = da / r + ds = v * (dc + dc) + db = ds + da = r + RETURN + +! *** HERE ABS(DA) <= ABS(DB) *** + + 10 IF (db == 0.d0) GO TO 20 + u = db + db + v = da / u + +! NOTE THAT U AND R HAVE THE SIGN OF DB +! (R IS IMMEDIATELY STORED IN DA) + + da = SQRT(.25D0 + v**2) * u + +! NOTE THAT DS IS POSITIVE + + ds = db / da + dc = v * (ds + ds) + IF (dc == 0.d0) GO TO 15 + db = 1.d0 / dc + RETURN + 15 db = 1.d0 + RETURN + +! *** HERE DA = DB = 0.D0 *** + + 20 dc = 1.d0 + ds = 0.d0 + RETURN + + END SUBROUTINE drotg + + + SUBROUTINE dswap1 (n, dx, dy) +! INTERCHANGES TWO VECTORS. +! USES UNROLLED LOOPS FOR INCREMENTS EQUAL ONE. +! JACK DONGARRA, LINPACK, 3/11/78. +! This version is for increments = 1. + + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN OUT) :: dx(*) + REAL (dp), INTENT(IN OUT) :: dy(*) + + REAL (dp) :: dtemp + INTEGER :: i, m, mp1 + + IF(n <= 0) RETURN + +! CODE FOR BOTH INCREMENTS EQUAL TO 1 +! +! CLEAN-UP LOOP + + m = MOD(n,3) + IF( m == 0 ) GO TO 40 + DO i = 1,m + dtemp = dx(i) + dx(i) = dy(i) + dy(i) = dtemp + END DO + IF( n < 3 ) RETURN + 40 mp1 = m + 1 + DO i = mp1,n,3 + dtemp = dx(i) + dx(i) = dy(i) + dy(i) = dtemp + dtemp = dx(i + 1) + dx(i + 1) = dy(i + 1) + dy(i + 1) = dtemp + dtemp = dx(i + 2) + dx(i + 2) = dy(i + 2) + dy(i + 2) = dtemp + END DO + RETURN + END SUBROUTINE dswap1 + + + SUBROUTINE drot1 (n, dx, dy, c, s) +! APPLIES A PLANE ROTATION. +! JACK DONGARRA, LINPACK, 3/11/78. +! This version is for increments = 1. + + INTEGER, INTENT(IN) :: n + REAL (dp), INTENT(IN OUT) :: dx(*) + REAL (dp), INTENT(IN OUT) :: dy(*) + REAL (dp), INTENT(IN) :: c + REAL (dp), INTENT(IN) :: s + + REAL (dp) :: dtemp + INTEGER :: i + + IF(n <= 0) RETURN +! CODE FOR BOTH INCREMENTS EQUAL TO 1 + + DO i = 1,n + dtemp = c*dx(i) + s*dy(i) + dy(i) = c*dy(i) - s*dx(i) + dx(i) = dtemp + END DO + RETURN + END SUBROUTINE drot1 + + + SUBROUTINE dsvdc(x, n, p, s, e, u, v, job, info) + + INTEGER, INTENT(IN) :: n + INTEGER, INTENT(IN) :: p + REAL (dp), INTENT(IN OUT) :: x(:,:) + REAL (dp), INTENT(OUT) :: s(:) + REAL (dp), INTENT(OUT) :: e(:) + REAL (dp), INTENT(OUT) :: u(:,:) + REAL (dp), INTENT(OUT) :: v(:,:) + INTEGER, INTENT(IN) :: job + INTEGER, INTENT(OUT) :: info + +! DSVDC IS A SUBROUTINE TO REDUCE A DOUBLE PRECISION NXP MATRIX X +! BY ORTHOGONAL TRANSFORMATIONS U AND V TO DIAGONAL FORM. THE +! DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X. THE +! COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS, +! AND THE COLUMNS OF V THE RIGHT SINGULAR VECTORS. +! +! ON ENTRY +! +! X DOUBLE PRECISION(LDX,P), WHERE LDX.GE.N. +! X CONTAINS THE MATRIX WHOSE SINGULAR VALUE +! DECOMPOSITION IS TO BE COMPUTED. X IS +! DESTROYED BY DSVDC. +! +! LDX INTEGER. +! LDX IS THE LEADING DIMENSION OF THE ARRAY X. +! +! N INTEGER. +! N IS THE NUMBER OF ROWS OF THE MATRIX X. +! +! P INTEGER. +! P IS THE NUMBER OF COLUMNS OF THE MATRIX X. +! +! LDU INTEGER. +! LDU IS THE LEADING DIMENSION OF THE ARRAY U. +! (SEE BELOW). +! +! LDV INTEGER. +! LDV IS THE LEADING DIMENSION OF THE ARRAY V. +! (SEE BELOW). +! +! JOB INTEGER. +! JOB CONTROLS THE COMPUTATION OF THE SINGULAR +! VECTORS. IT HAS THE DECIMAL EXPANSION AB +! WITH THE FOLLOWING MEANING +! +! A.EQ.0 DO NOT COMPUTE THE LEFT SINGULAR VECTORS. +! A.EQ.1 RETURN THE N LEFT SINGULAR VECTORS IN U. +! A.GE.2 RETURN THE FIRST MIN(N,P) SINGULAR +! VECTORS IN U. +! B.EQ.0 DO NOT COMPUTE THE RIGHT SINGULAR VECTORS. +! B.EQ.1 RETURN THE RIGHT SINGULAR VECTORS IN V. +! +! ON RETURN +! +! S DOUBLE PRECISION(MM), WHERE MM=MIN(N+1,P). +! THE FIRST MIN(N,P) ENTRIES OF S CONTAIN THE SINGULAR +! VALUES OF X ARRANGED IN DESCENDING ORDER OF MAGNITUDE. +! +! E DOUBLE PRECISION(P). +! E ORDINARILY CONTAINS ZEROS. HOWEVER SEE THE +! DISCUSSION OF INFO FOR EXCEPTIONS. +! +! U DOUBLE PRECISION(LDU,K), WHERE LDU.GE.N. IF +! JOBA.EQ.1 THEN K.EQ.N, IF JOBA.GE.2 +! THEN K.EQ.MIN(N,P). +! U CONTAINS THE MATRIX OF LEFT SINGULAR VECTORS. +! U IS NOT REFERENCED IF JOBA.EQ.0. IF N.LE.P +! OR IF JOBA.EQ.2, THEN U MAY BE IDENTIFIED WITH X +! IN THE SUBROUTINE CALL. +! +! V DOUBLE PRECISION(LDV,P), WHERE LDV.GE.P. +! V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS. +! V IS NOT REFERENCED IF JOB.EQ.0. IF P.LE.N, +! THEN V MAY BE IDENTIFIED WITH X IN THE +! SUBROUTINE CALL. +! +! INFO INTEGER. +! THE SINGULAR VALUES (AND THEIR CORRESPONDING SINGULAR +! VECTORS) S(INFO+1),S(INFO+2),...,S(M) ARE CORRECT +! (HERE M=MIN(N,P)). THUS IF INFO.EQ.0, ALL THE +! SINGULAR VALUES AND THEIR VECTORS ARE CORRECT. +! IN ANY EVENT, THE MATRIX B = TRANS(U)*X*V IS THE +! BIDIAGONAL MATRIX WITH THE ELEMENTS OF S ON ITS DIAGONAL +! AND THE ELEMENTS OF E ON ITS SUPER-DIAGONAL (TRANS(U) +! IS THE TRANSPOSE OF U). THUS THE SINGULAR VALUES +! OF X AND B ARE THE SAME. +! +! LINPACK. THIS VERSION DATED 03/19/79 . +! G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB. +! +! DSVDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS. +! +! EXTERNAL DROT +! BLAS DAXPY,DDOT,DSCAL,DSWAP,DNRM2,DROTG +! FORTRAN DABS,DMAX1,MAX0,MIN0,MOD,DSQRT + +! INTERNAL VARIABLES + + INTEGER :: iter, j, jobu, k, kase, kk, l, ll, lls, lm1, lp1, ls, + & lu, m, maxit,mm, mm1, mp1, nct, nctp1, ncu, nrt, nrtp1 + REAL (dp) :: t, work(n) + REAL (dp) :: b, c, cs, el, emm1, f, g, scale, shift, sl, sm, sn, + & smm1, t1, test, ztest + LOGICAL :: wantu, wantv + +! SET THE MAXIMUM NUMBER OF ITERATIONS. + + maxit = 30 + +! DETERMINE WHAT IS TO BE COMPUTED. + + wantu = .false. + wantv = .false. + jobu = MOD(job,100)/10 + ncu = n + IF (jobu > 1) ncu = MIN(n,p) + IF (jobu /= 0) wantu = .true. + IF (MOD(job,10) /= 0) wantv = .true. + +! REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS +! IN S AND THE SUPER-DIAGONAL ELEMENTS IN E. + + info = 0 + nct = MIN(n-1, p) + s(1:nct+1) = 0.0_dp + nrt = MAX(0, MIN(p-2,n)) + lu = MAX(nct,nrt) + IF (lu < 1) GO TO 170 + DO l = 1, lu + lp1 = l + 1 + IF (l > nct) GO TO 20 + +! COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND +! PLACE THE L-TH DIAGONAL IN S(L). + + s(l) = SQRT( SUM( x(l:n,l)**2 ) ) + IF (s(l) == 0.0D0) GO TO 10 + IF (x(l,l) /= 0.0D0) s(l) = SIGN(s(l), x(l,l)) + x(l:n,l) = x(l:n,l) / s(l) + x(l,l) = 1.0D0 + x(l,l) + + 10 s(l) = -s(l) + + 20 IF (p < lp1) GO TO 50 + DO j = lp1, p + IF (l > nct) GO TO 30 + IF (s(l) == 0.0D0) GO TO 30 + +! APPLY THE TRANSFORMATION. + + t = -DOT_PRODUCT(x(l:n,l), x(l:n,j)) / x(l,l) + x(l:n,j) = x(l:n,j) + t * x(l:n,l) + +! PLACE THE L-TH ROW OF X INTO E FOR THE +! SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION. + + 30 e(j) = x(l,j) + END DO + + 50 IF (.NOT.wantu .OR. l > nct) GO TO 70 + +! PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK MULTIPLICATION. + + u(l:n,l) = x(l:n,l) + + 70 IF (l > nrt) CYCLE + +! COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE +! L-TH SUPER-DIAGONAL IN E(L). + + e(l) = SQRT( SUM( e(lp1:p)**2 ) ) + IF (e(l) == 0.0D0) GO TO 80 + IF (e(lp1) /= 0.0D0) e(l) = SIGN(e(l), e(lp1)) + e(lp1:lp1+p-l-1) = e(lp1:p) / e(l) + e(lp1) = 1.0D0 + e(lp1) + + 80 e(l) = -e(l) + IF (lp1 > n .OR. e(l) == 0.0D0) GO TO 120 + +! APPLY THE TRANSFORMATION. + + work(lp1:n) = 0.0D0 + DO j = lp1, p + work(lp1:lp1+n-l-1) = work(lp1:lp1+n-l-1) + e(j) * + & x(lp1:lp1+n-l-1,j) + END DO + DO j = lp1, p + x(lp1:lp1+n-l-1,j) = x(lp1:lp1+n-l-1,j) - (e(j)/e(lp1)) * + & work(lp1:lp1+n-l-1) + END DO + + 120 IF (.NOT.wantv) CYCLE + +! PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT +! BACK MULTIPLICATION. + + v(lp1:p,l) = e(lp1:p) + END DO + +! SET UP THE FINAL BIDIAGONAL MATRIX OF ORDER M. + + 170 m = MIN(p,n+1) + nctp1 = nct + 1 + nrtp1 = nrt + 1 + IF (nct < p) s(nctp1) = x(nctp1,nctp1) + IF (n < m) s(m) = 0.0D0 + IF (nrtp1 < m) e(nrtp1) = x(nrtp1,m) + e(m) = 0.0D0 + +! IF REQUIRED, GENERATE U. + + IF (.NOT.wantu) GO TO 300 + IF (ncu < nctp1) GO TO 200 + DO j = nctp1, ncu + u(1:n,j) = 0.0_dp + u(j,j) = 1.0_dp + END DO + + 200 DO ll = 1, nct + l = nct - ll + 1 + IF (s(l) == 0.0D0) GO TO 250 + lp1 = l + 1 + IF (ncu < lp1) GO TO 220 + DO j = lp1, ncu + t = -DOT_PRODUCT(u(l:n,l), u(l:n,j)) / u(l,l) + u(l:n,j) = u(l:n,j) + t * u(l:n,l) + END DO + + 220 u(l:n,l) = -u(l:n,l) + u(l,l) = 1.0D0 + u(l,l) + lm1 = l - 1 + IF (lm1 < 1) CYCLE + u(1:lm1,l) = 0.0_dp + CYCLE + + 250 u(1:n,l) = 0.0_dp + u(l,l) = 1.0_dp + END DO + +! IF IT IS REQUIRED, GENERATE V. + + 300 IF (.NOT.wantv) GO TO 350 + DO ll = 1, p + l = p - ll + 1 + lp1 = l + 1 + IF (l > nrt) GO TO 320 + IF (e(l) == 0.0D0) GO TO 320 + DO j = lp1, p + t = -DOT_PRODUCT(v(lp1:lp1+p-l-1,l), + & v(lp1:lp1+p-l-1,j)) / v(lp1,l) + v(lp1:lp1+p-l-1,j) = v(lp1:lp1+p-l-1,j) + t * v(lp1:lp1+p-l-1,l) + END DO + + 320 v(1:p,l) = 0.0D0 + v(l,l) = 1.0D0 + END DO + +! MAIN ITERATION LOOP FOR THE SINGULAR VALUES. + + 350 mm = m + iter = 0 + +! QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND. + +! ...EXIT + 360 IF (m == 0) GO TO 620 + +! IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET FLAG AND RETURN. + + IF (iter < maxit) GO TO 370 + info = m +! ......EXIT + GO TO 620 + +! THIS SECTION OF THE PROGRAM INSPECTS FOR NEGLIGIBLE ELEMENTS +! IN THE S AND E ARRAYS. ON COMPLETION +! THE VARIABLES KASE AND L ARE SET AS FOLLOWS. +! +! KASE = 1 IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L < M +! KASE = 2 IF S(L) IS NEGLIGIBLE AND L < M +! KASE = 3 IF E(L-1) IS NEGLIGIBLE, L < M, AND +! S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP). +! KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE). + + 370 DO ll = 1, m + l = m - ll +! ...EXIT + IF (l == 0) EXIT + test = ABS(s(l)) + ABS(s(l+1)) + ztest = test + ABS(e(l)) + IF (ztest /= test) CYCLE + e(l) = 0.0D0 +! ......EXIT + EXIT + END DO + + IF (l /= m - 1) GO TO 410 + kase = 4 + GO TO 480 + + 410 lp1 = l + 1 + mp1 = m + 1 + DO lls = lp1, mp1 + ls = m - lls + lp1 +! ...EXIT + IF (ls == l) EXIT + test = 0.0D0 + IF (ls /= m) test = test + ABS(e(ls)) + IF (ls /= l + 1) test = test + ABS(e(ls-1)) + ztest = test + ABS(s(ls)) + IF (ztest /= test) CYCLE + s(ls) = 0.0D0 +! ......EXIT + EXIT + END DO + + IF (ls /= l) GO TO 450 + kase = 3 + GO TO 480 + + 450 IF (ls /= m) GO TO 460 + kase = 1 + GO TO 480 + + 460 kase = 2 + l = ls + 480 l = l + 1 + +! PERFORM THE TASK INDICATED BY KASE. + + SELECT CASE ( kase ) + CASE ( 1) + GO TO 490 + CASE ( 2) + GO TO 520 + CASE ( 3) + GO TO 540 + CASE ( 4) + GO TO 570 + END SELECT + +! DEFLATE NEGLIGIBLE S(M). + + 490 mm1 = m - 1 + f = e(m-1) + e(m-1) = 0.0D0 + DO kk = l, mm1 + k = mm1 - kk + l + t1 = s(k) + CALL drotg(t1, f, cs, sn) + s(k) = t1 + IF (k == l) GO TO 500 + f = -sn*e(k-1) + e(k-1) = cs*e(k-1) + + 500 IF (wantv) CALL drot1(p, v(1:,k), v(1:,m), cs, sn) + END DO + GO TO 610 + +! SPLIT AT NEGLIGIBLE S(L). + + 520 f = e(l-1) + e(l-1) = 0.0D0 + DO k = l, m + t1 = s(k) + CALL drotg(t1, f, cs, sn) + s(k) = t1 + f = -sn*e(k) + e(k) = cs*e(k) + IF (wantu) CALL drot1(n, u(1:,k), u(1:,l-1), cs, sn) + END DO + GO TO 610 + +! PERFORM ONE QR STEP. +! +! CALCULATE THE SHIFT. + + 540 scale = MAX(ABS(s(m)),ABS(s(m-1)),ABS(e(m-1)),ABS(s(l)),ABS(e(l))) + sm = s(m)/scale + smm1 = s(m-1)/scale + emm1 = e(m-1)/scale + sl = s(l)/scale + el = e(l)/scale + b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0D0 + c = (sm*emm1)**2 + shift = 0.0D0 + IF (b == 0.0D0 .AND. c == 0.0D0) GO TO 550 + shift = SQRT(b**2+c) + IF (b < 0.0D0) shift = -shift + shift = c/(b + shift) + + 550 f = (sl + sm)*(sl - sm) - shift + g = sl*el + +! CHASE ZEROS. + + mm1 = m - 1 + DO k = l, mm1 + CALL drotg(f, g, cs, sn) + IF (k /= l) e(k-1) = f + f = cs*s(k) + sn*e(k) + e(k) = cs*e(k) - sn*s(k) + g = sn*s(k+1) + s(k+1) = cs*s(k+1) + IF (wantv) CALL drot1(p, v(1:,k), v(1:,k+1), cs, sn) + CALL drotg(f, g, cs, sn) + s(k) = f + f = cs*e(k) + sn*s(k+1) + s(k+1) = -sn*e(k) + cs*s(k+1) + g = sn*e(k+1) + e(k+1) = cs*e(k+1) + IF (wantu .AND. k < n) CALL drot1(n, u(1:,k), u(1:,k+1), cs, sn) + END DO + e(m-1) = f + iter = iter + 1 + GO TO 610 + +! CONVERGENCE. + +! MAKE THE SINGULAR VALUE POSITIVE. + + 570 IF (s(l) >= 0.0D0) GO TO 590 + s(l) = -s(l) + IF (wantv) v(1:p,l) = -v(1:p,l) + +! ORDER THE SINGULAR VALUE. + + 590 IF (l == mm) GO TO 600 +! ...EXIT + IF (s(l) >= s(l+1)) GO TO 600 + t = s(l) + s(l) = s(l+1) + s(l+1) = t + IF (wantv .AND. l < p) CALL dswap1(p, v(1:,l), v(1:,l+1)) + IF (wantu .AND. l < n) CALL dswap1(n, u(1:,l), u(1:,l+1)) + l = l + 1 + GO TO 590 + + 600 iter = 0 + m = m - 1 + + 610 GO TO 360 + + 620 RETURN + END SUBROUTINE dsvdc + + END MODULE SVD diff --git a/wafo/source/mreg/epsmod.mod b/wafo/source/mreg/epsmod.mod new file mode 100755 index 0000000..f8e3033 --- /dev/null +++ b/wafo/source/mreg/epsmod.mod @@ -0,0 +1,25 @@ +GFORTRAN module version '0' created from mregmodule.f on Wed Aug 05 19:15:05 2009 +MD5:67523ef735281684c8fb9aae15cdc0a3 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'eps' 'epsmod' 'eps' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +3 'eps0' 'epsmod' 'eps0' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +4 'epsmod' 'epsmod' 'epsmod' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +5 'epss' 'epsmod' 'epss' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +) + +('eps' 0 2 'eps0' 0 3 'epsmod' 0 4 'epss' 0 5) diff --git a/wafo/source/mreg/expaccmod.mod b/wafo/source/mreg/expaccmod.mod new file mode 100755 index 0000000..1cc59bd --- /dev/null +++ b/wafo/source/mreg/expaccmod.mod @@ -0,0 +1,23 @@ +GFORTRAN module version '0' created from mregmodule.f on Wed Aug 05 19:15:05 2009 +MD5:2d868304b34a40918a05109c83ff1871 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'expaccmod' 'expaccmod' 'expaccmod' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +3 'pmax' 'expaccmod' 'pmax' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.28000000000000@2') () 0 () () () 0 0) +) + +('expaccmod' 0 2 'pmax' 0 3) diff --git a/wafo/source/mreg/infcmod.mod b/wafo/source/mreg/infcmod.mod new file mode 100755 index 0000000..d78bd6b --- /dev/null +++ b/wafo/source/mreg/infcmod.mod @@ -0,0 +1,32 @@ +GFORTRAN module version '0' created from mregmodule.f on Wed Aug 05 19:15:05 2009 +MD5:806a8e6bde038d8bc47688d3b6e5277f -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'iac' 'infcmod' 'iac' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN EXPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +3 'inf' 'infcmod' 'inf' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '10')) 0 () () () 0 0) +4 'infcmod' 'infcmod' 'infcmod' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +5 'info' 'infcmod' 'info' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '10')) 0 () () () 0 0) +6 'isq' 'infcmod' 'isq' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +EXPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('iac' 0 2 'inf' 0 3 'infcmod' 0 4 'info' 0 5 'isq' 0 6) diff --git a/wafo/source/mreg/mregmod.mod b/wafo/source/mreg/mregmod.mod new file mode 100755 index 0000000..0cc4c8f --- /dev/null +++ b/wafo/source/mreg/mregmod.mod @@ -0,0 +1,97 @@ +GFORTRAN module version '0' created from mregmodule.f on Wed Aug 05 19:21:17 2009 +MD5:35f9c2506fae455bf63c0bcfadd75d2e -- If you edit this, you'll get what you deserve. + +(() +() () () () () () () () () () () () () () () () () () () () () () () () +() ()) + +() + +(('fi' 'mregmod' 2) ('rind' 'mregmod' 3) ('mreg' 'mregmod' 4)) + +() + +() + +(2 'fi' 'mregmod' 'fi' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 5 0 (6) () 2 () () () 0 0) +4 'mreg' 'mregmod' 'mreg' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 7 0 (8 9 10 11 12 +13 14 15 16 17 18 19 20) () 0 () () () 0 0) +3 'rind' 'mregmod' 'rind' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 21 0 (22 23 24 25 +26 27 28 29 30 31) () 0 () () () 0 0) +22 'xind' '' 'xind' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +23 'r' '' 'r' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '40401')) 0 () +() () 0 0) +24 'bu' '' 'bu' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'201')) 0 () () () 0 0) +25 'dbun' '' 'dbun' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +26 'db' '' 'db' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'201')) 0 () () () 0 0) +27 'sq' '' 'sq' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'201')) 0 () () () 0 0) +28 'vder' '' 'vder' 21 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +29 'nit' '' 'nit' 21 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +30 'n' '' 'n' 21 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +31 'infr' '' 'infr' 21 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'xx' '' 'xx' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +8 'f' '' 'f' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'r' '' 'r' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '40401')) 0 () +() () 0 0) +10 'b' '' 'b' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '201')) 0 () () +() 0 0) +18 'n' '' 'n' 7 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +11 'db' '' 'db' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'201')) 0 () () () 0 0) +12 'aa' '' 'aa' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'4') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '4')) 0 () () () 0 0) +13 'bb' '' 'bb' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'7')) 0 () () () 0 0) +19 'nit' '' 'nit' 7 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'a' '' 'a' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1407')) 0 () +() () 0 0) +20 'infr' '' 'infr' 7 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'da' '' 'da' 7 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 +'7')) 0 () () () 0 0) +16 'vder' '' 'vder' 7 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +17 'm' '' 'm' 7 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('fi' 0 2 'mreg' 0 4 'rind' 0 3) diff --git a/wafo/source/mreg/mregmodule.f b/wafo/source/mreg/mregmodule.f new file mode 100755 index 0000000..976b59b --- /dev/null +++ b/wafo/source/mreg/mregmodule.f @@ -0,0 +1,3044 @@ +C Version July 2007 +C +C The MREG module provide 3 programs. +C +C 1) MREG +C 2) RIND +C 3) FI - normal CDF +C +C MREG and RIND are explained in the following: +C +C +C CALL MREG(F,R,B,DB,AA,BB,A,DA,VDER,M,N,NIT,INFR) +C +C F = expectation +C R = Covariance R(i+(j-1)*N) = Cov( Delta(T(i)), Delta(T(j)), length RDIM (in) +C B = Covariance B(i) = Cov(Delta(T(i)), XN), B(N+1)=Var(XN) length NMAX (in) +C DB = Covariance DB(i) = Cov(Delta(T(i)), Y0), DB(N+1)=Cov(XN,Y0) length NMAX (in) +C AA = Regression matrix coefficients size MMAX x MMAX +C BB = Regression vector coefficients length MMax + 1 +C A = Slepian model coefficients, length (MMax + 1) * NMAX +C DA = Slepian model coefficients, length MMax + 1 +C VDER = variance of Y0, Var(Y0) +C M = Number of regressors ( 0 < M < MMAX) +C N = dimension of the problem ( N < NMAX) +C NIT = 0,1,2..., maximum # of iterations/integrations done by quadrature +C to calculate the indicator function +C INFR = 1 means all input are the same as in the previous call except BB, A and DA +C 0 indicate new input +C +C The program MREG computes the following problem: +C +C We consider a process X(I)=X(T(I)) at the grid of N points T(1),...,T(N), +C +C X(I) = -A(I) + Z*A(I+N) + Sum Xj*A(I+(j+1)*N) + Delta(I), j=1,...,M-1 +C +C where the sum disappears if M=1. We assume that Z,Xj are independent +C standard Rayleigh, Gaussian distributed rv. and independent of the zero +C mean Gaussian residual process, with covariance structure given in R, +C +C R(i+(j-1)N) = Cov (Delta(T(i)), Delta(T(j))). +C +C Additionally we have a zero mean Gaussian variable XN, +C independent of Z,Xj with covariance structure defined by +C B(i)= Cov (Delta(T(i)),XN), i=1,...,N, B(N+1)=Var(XN). +C Furthermore XN and Z,Xj satisfies the following equation system +C +C (BB + (XN,0,...,0)^T = AA*(Z,X1,...,Xm-1)^T (***) +C +C where AA is (M,M) matrix, BB is M-vector. We rewrite this equation, by +C introducing a variable Xm=XN/SQRT(Var(XN)) and construct new matrix AA1 +c by adding the column (SQRT(Var(XN)),0,...,0) and the row with only zeros. +C The equations (***) writtes +C +C (BB,0)^T = AA1*(Z,X1,...,Xm-1,Xm)^T (****) +C +C where AA1 is (M+1,M+1) matrix, We assume that the rank of AA1 is M, +C otherwise the density is singular and we give a output F=0.CC +C +C Let Y0 be a zero-mean Gaussian variable independent of Z,Xj +C with covariance structure defined by +C DB(i)= Cov (Delta(T(i)),Y0), i=1,...,N, DB(N+1)=Cov(XN,Y0), Var(Y0)=VDER. +C Let Y be defined by +C +C Y=-DA(1) + Z*DA(2) + Sum Xj*DA(2+j) +Y0, j=1,...,M-1. +C +C The MREG program computes: +C +C F = E[ Y^+ *1{ HH0 defines integration region for X. +C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),Y1)=0.0d0 +C For NIT=1 only (Delta(1),...,Delta(N))=0, i.e. we have to compute +C a one dimensional integral. Finally by conditioning on X the problem is +C put in the format of RIND-problem. +C +C INF indicates whether one +C has already called the subroutine before and ONLY! inputs BB, DA or A +C was changed. +C +C Observe the limitations are : N mreg and rind publicly available +! - All commonblocks are replaced with a corresponding module + +! References +! Rychlik, I and Lindgren, G (1993) +! "CROSSREG - A Technique for First Passage and Wave Density Analysis" +! Probability in the Engineering and Informational Sciences, Vol 7, pp 125--148 +! +! Lindgren, G and Rychlik, I (1991) +! "Slepian Models and Regression Approximations in Crossing and xtreme value Theory", +! International Statistical Review, Vol 59, 2, pp 195--225 + + + MODULE SIZEMOD + IMPLICIT NONE + INTEGER, PARAMETER :: MMAX = 6, NMAX = 201 + INTEGER, PARAMETER :: RDIM = NMAX*NMAX + END MODULE SIZEMOD + + MODULE EPSMOD + IMPLICIT NONE + ! Constants determining accuracy of integration + !----------------------------------------------- + !if the conditional variance are less than: +C DOUBLE PRECISION :: EPS2=1.d-4 !- EPS2, the variable is + ! considered deterministic + DOUBLE PRECISION :: EPS = 1.d-2 ! SQRT(EPS2) +C DOUBLE PRECISION :: XCEPS2=1.d-16 ! if Var(Xc) is less return NaN + DOUBLE PRECISION :: EPSS = 5.d-5 ! accuracy of Indicator +C DOUBLE PRECISION :: CEPSS=0.99995d0 ! accuracy of Indicator + DOUBLE PRECISION :: EPS0 = 5.d-5 ! used in GAUSSLE1 to implicitly + ! determ. # nodes + +C DOUBLE PRECISION :: fxcEpss=1.d-20 ! if less do not compute E(...|Xc) +C DOUBLE PRECISION :: xCutOff=5.d0 ! upper/lower truncation limit of the + ! normal CDF +C DOUBLE PRECISION :: FxCutOff = 0.99999942669686d0 +C DOUBLE PRECISION :: CFxCutOff = 5.733031438470704d-7 ! 1-FxCutOff, + + END MODULE EPSMOD + + MODULE RINTMOD + DOUBLE PRECISION, save :: C = 4.5d0 + DOUBLE PRECISION, save :: FC = 0.999993204653751d0 +C COMMON /RINT/ C,FC + END MODULE RINTMOD + + MODULE TBRMOD + USE SIZEMOD + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(NMAX) :: HH + END MODULE TBRMOD + + MODULE EXPACCMOD + DOUBLE PRECISION,PARAMETER:: PMAX = 40.0d0 +C COMMON /EXPACC/ PMAX + END MODULE EXPACCMOD + + MODULE INFCMOD + IMPLICIT NONE + INTEGER, save :: ISQ = 0, IAC=1 + INTEGER, DIMENSION(10) :: INF,INFO +C DOUBLE PRECISION, DIMENSION(10):: +C COMMON /INFC/ ISQ,INF,INFO + END MODULE INFCMOD + MODULE CHECKMOD + IMPLICIT NONE +C III01,III11,... - variables,counts how many times one calls +C subroutine RIND0,RIND1,..., III*1 are also modified in the +C subroutines RIND*. This gives us statistics over the complexity of +C numerical calculations. + INTEGER :: III01,III11,III21,III31,III41,III51 + INTEGER :: III61,III71,III81,III91,III101 + INTEGER :: III0 + END MODULE CHECKMOD + + + MODULE QUADRMOD + IMPLICIT NONE ! Quadratures available: Legendre + INTEGER :: I + +C BLOCK DATA inithermite + + INTEGER, PARAMETER :: NNW = 13 + INTEGER, DIMENSION(25) :: NN + REAL*8 Z(126),H(126) + + +C COMMON /QUADR/ Z,H,NN,NNW +c COMMON /EXPACC/ PMAX +C COMMON /RINT/ C,FC + +C DATA NNW /13/ + DATA (NN(I),I=1,NNW)/2,3,4,5,6,7,8,9,10,12,16,20,24/ +C DATA PMAX/40./ +C DATA C/4.5/ + DATA (H(I),I=1,61)/1.0d0,1.0d0,0.555555555555556d0, + * 0.888888888888889d0, + * 0.555555555555556d0,0.347854845137454d0,0.652145154862546d0, + * 0.652145154862546d0,0.347854845137454d0,0.236926885056189d0, + * 0.478628670499366d0,0.568888888888889d0,0.478628670499366d0, + * 0.236926885056189d0,0.171324492379170d0,0.360761573048139d0, + * 0.467913934572691d0,0.467913934572691d0,0.360761573048139d0, + * 0.171324492379170d0,0.129484966168870d0,0.279705391489277d0, + * 0.381830050505119d0,0.417959183673469d0,0.381830050505119d0, + * 0.279705391489277d0,0.129484966168870d0,0.101228536290376d0, + * 0.222381034453374d0,0.313706645877887d0,0.362683783378362d0, + * 0.362683783378362d0,0.313706645877887d0,0.222381034453374d0, + * 0.101228536290376d0,0.081274388361574d0,0.180648160694857d0, + * 0.260610696402935d0,0.312347077040003d0,0.330239355001260d0, + * 0.312347077040003d0,0.260610696402935d0,0.180648160694857d0, + * 0.081274388361574d0,0.066671344308688d0,0.149451349150581d0, + * 0.219086362515982d0,0.269266719309996d0,0.295524224714753d0, + * 0.295524224714753d0,0.269266719309996d0,0.219086362515982d0, + * 0.149451349150581d0,0.066671344308688d0,0.047175336386512d0, + * 0.106939325995318d0,0.160078328543346d0,0.203167426723066d0, + * 0.233492536538355d0,0.249147048513403d0,0.249147048513403d0/ + DATA (H(I),I=62,101)/0.233492536538355d0,0.203167426723066d0, + * 0.160078328543346d0,0.106939325995318d0, + * 0.047175336386512d0,0.027152459411754094852d0, + * 0.062253523938647892863d0,0.095158511682492784810d0, + * 0.124628971255533872052d0,0.149595988816576732081d0, + * 0.169156519395002538189d0,0.182603415044923588867d0, + * 0.189450610455068496285d0,0.189450610455068496285d0, + * 0.182603415044923588867d0,0.169156519395002538189d0, + * 0.149595988816576732081d0,0.124628971255533872052d0, + * 0.095158511682492784810d0,0.062253523938647892863d0, + * 0.027152459411754094852d0,0.017614007139152118312d0, + * 0.040601429800386941331d0,0.062672048334109063570d0, + * 0.083276741576704748725d0,0.101930119817240435037d0, + * 0.118194531961518417312d0,0.131688638449176626898d0, + * 0.142096109318382051329d0,0.149172986472603746788d0, + * 0.152753387130725850698d0,0.152753387130725850698d0, + * 0.149172986472603746788d0,0.142096109318382051329d0, + * 0.131688638449176626898d0,0.118194531961518417312d0, + * 0.101930119817240435037d0,0.083276741576704748725d0, + * 0.062672048334109063570d0,0.040601429800386941331d0/ + DATA (H(I),I=102,126)/0.017614007139152118312d0, + * 0.012341229799987199547d0, 0.028531388628933663181d0, + * 0.044277438817419806169d0, 0.059298584915436780746d0, + * 0.073346481411080305734d0, 0.086190161531953275917d0, + * 0.097618652104113888270d0, 0.107444270115965634783d0, + * 0.115505668053725601353d0, 0.121670472927803391204d0, + * 0.125837456346828296121d0, 0.127938195346752156974d0, + * 0.127938195346752156974d0, 0.125837456346828296121d0, + * 0.121670472927803391204d0, 0.115505668053725601353d0, + * 0.107444270115965634783d0, 0.097618652104113888270d0, + * 0.086190161531953275917d0, 0.073346481411080305734d0, + * 0.059298584915436780746d0, 0.044277438817419806169d0, + * 0.028531388628933663181d0, 0.012341229799987199547d0/ + + DATA (Z(I),I=1,58)/-0.577350269189626d0,0.577350269189626d0, + * -0.774596669241483d0,0.0d0, + * 0.774596669241483d0, -0.861136311594053d0, -0.339981043584856d0, + * 0.339981043584856d0, 0.861136311594053d0, -0.906179845938664d0, + * -0.538469310105683d0,0.0d0, + * 0.538469310105683d0, 0.906179845938664d0, -0.932469514203152d0, + * -0.661209386466265d0, -0.238619186083197d0, 0.238619186083197d0, + * 0.661209386466265d0, 0.932469514203152d0, -0.949107912342759d0, + * -0.741531185599394d0, -0.405845151377397d0, 0.0d0, + * 0.405845151377397d0, 0.741531185599394d0, 0.949107912342759d0, + * -0.960289856497536d0, -0.796666477413627d0, -0.525532409916329d0, + * -0.183434642495650d0, 0.183434642495650d0, 0.525532409916329d0, + * 0.796666477413627d0, 0.960289856497536d0, -0.968160239507626d0, + * -0.836031107326636d0, -0.613371432700590d0, -0.324253423403809d0, + * 0.0d0, + * 0.324253423403809d0, 0.613371432700590d0, 0.836031107326636d0, + * 0.968160239507626d0, -0.973906528517172d0, -0.865063366688985d0, + * -0.679409568299024d0, -0.433395394129247d0, -0.148874338981631d0, + * 0.148874338981631d0, 0.433395394129247d0, 0.679409568299024d0, + * 0.865063366688985d0, 0.973906528517172d0, -0.981560634246719d0, + * -0.904117256370475d0, -0.769902674194305d0, -0.587317954286617d0/ + DATA (Z(I),I=59,99)/-0.367831498198180d0, -0.125233408511469d0, + * 0.125233408511469d0, 0.367831498198180d0, + * 0.587317954286617d0, 0.769902674194305d0, + * 0.904117256370475d0, 0.981560634246719d0, + * -0.989400934991649932596d0, + * -0.944575023073232576078d0, -0.865631202387831743880d0, + * -0.755404408355003033895d0, -0.617876244402643748447d0, + * -0.458016777657227386342d0, -0.281603550779258913230d0, + * -0.095012509837637440185d0, 0.095012509837637440185d0, + * 0.281603550779258913230d0, 0.458016777657227386342d0, + * 0.617876244402643748447d0, 0.755404408355003033895d0, + * 0.865631202387831743880d0, 0.944575023073232576078d0, + * 0.989400934991649932596d0, -0.993128599185094924786d0, + * -0.963971927277913791268d0, -0.912234428251325905868d0, + * -0.839116971822218823395d0, -0.746331906460150792614d0, + * -0.636053680726515025453d0, -0.510867001950827098004d0, + * -0.373706088715419560673d0, -0.227785851141645078080d0, + * -0.076526521133497333755d0, 0.076526521133497333755d0, + * 0.227785851141645078080d0, 0.373706088715419560673d0, + * 0.510867001950827098004d0, 0.636053680726515025453d0, + * 0.746331906460150792614d0, 0.839116971822218823395d0/ + DATA (Z(I),I=100,126)/0.912234428251325905868d0, + * 0.963971927277913791268d0, 0.993128599185094924786d0, + * -0.995187219997021360180d0, -0.974728555971309498198d0, + * -0.938274552002732758524d0, -0.886415527004401034213d0, + * -0.820001985973902921954d0, -0.740124191578554364244d0, + * -0.648093651936975569252d0, -0.545421471388839535658d0, + * -0.433793507626045138487d0, -0.315042679696163374387d0, + * -0.191118867473616309159d0, -0.064056892862605626085d0, + * 0.064056892862605626085d0, 0.191118867473616309159d0, + * 0.315042679696163374387d0, 0.433793507626045138487d0, + * 0.545421471388839535658d0, 0.648093651936975569252d0, + * 0.740124191578554364244d0, 0.820001985973902921954d0, + * 0.886415527004401034213d0, 0.938274552002732758524d0, + * 0.974728555971309498198d0, 0.995187219997021360180d0/ + END MODULE QUADRMOD + + +C + MODULE MREGMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: RIND,MREG, FI + + INTERFACE RIND + MODULE PROCEDURE RIND + END INTERFACE + + INTERFACE MREG + MODULE PROCEDURE MREG + END INTERFACE + + INTERFACE FI + MODULE PROCEDURE FI + END INTERFACE + + INTERFACE C1_C2 + MODULE PROCEDURE C1_C2 + END INTERFACE + + INTERFACE GAUSS1 + MODULE PROCEDURE GAUSS1 + END INTERFACE + + INTERFACE GAUSINT + MODULE PROCEDURE GAUSINT + END INTERFACE + + INTERFACE PYTHAG + MODULE PROCEDURE PYTHAG + END INTERFACE + + + CONTAINS + + + SUBROUTINE RIND(XIND,R,BU,DBUN,DB,SQ,VDER,NIT,N,INFR) + USE TBRMOD + USE INFCMOD + USE CHECKMOD + USE EPSMOD + USE SIZEMOD + IMPLICIT NONE + REAL*8, intent(inout) :: XIND,DBUN,VDER + REAL*8, DIMENSION(RDIM), intent(inout) :: R + REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB, SQ + INTEGER, intent(in) :: NIT,N,INFR + REAL*8 SDER + INTEGER, save :: NNIT + INTEGER I,III +C DIMENSION R(1),BU(1),SQ(1),DB(1) +C DIMENSION INF(10),INFO(10),HH(101) +C COMMON /TBR/ HH +C COMMON /INFC/ ISQ,INF,INFO +C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 +C COMMON /EPS/ EPS,EPSS,CEPSS +C +C III01,III11,... - variables,counts how many times one calls +C subroutine RIND0,RIND1,..., III*1 are also modified in the +C subroutines RIND*. This gives us statistics over the complexity of +C numerical calculations. +C + XIND=0.0d0 + IF (N.lt.1) go to 99 + + IF (INFR.EQ.0) THEN + NNIT=MIN(NIT,N) + if (NNIT.gt.10) NNIT=10 + DO I=1,10 + INF(I)=0 + INFO(I)=0 + enddo + III=0 + DO I=1,N + IF (SQ(I).GT.EPS) then + III=1 + else + IF(BU(I).GT.0.0d0) THEN + RETURN + END IF + IF(BU(I).LT.HH(I)) THEN + RETURN + END IF + END IF + enddo + END IF + IF (III.eq.0) go to 99 + +! GO TO (10,20,30,40,50,60,70,80,90,100) NNIT + SELECT CASE (NNIT) + CASE (1) + CALL RIND1(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii11=iii11+1 + CASE(2) + CALL RIND2(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii21=iii21+1 + CASE(3) + CALL RIND3(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii31=iii31+1 + CASE(4) + CALL RIND4(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii41=iii41+1 + CASE(5) + CALL RIND5(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii51=iii51+1 + CASE(6) + CALL RIND6(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii61=iii61+1 + CASE(7) + CALL RIND7(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii71=iii71+1 + CASE(8) + CALL RIND8(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii81=iii81+1 + CASE (9) + CALL RIND9(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii91=iii91+1 + CASE (10) + CALL RIND10(XIND,R,BU,DBUN,DB,SQ,VDER,N) + iii101=iii101+1 + CASE DEFAULT + CALL RIND0(XIND,BU,DBUN,VDER,N) + iii01=iii01+1 + END SELECT + RETURN + + 99 continue + SDER=0.0d0 + IF(VDER.GT.EPS) SDER=SQRT(VDER) + XIND=PMEAN(DBUN,SDER) + return + END SUBROUTINE RIND + + SUBROUTINE RIND0(XIND,BU,DBUN,VDER,N) + USE TBRMOD + USE EPSMOD + USE SIZEMOD + IMPLICIT NONE + INTEGER, intent(in) :: N + REAL*8, intent(inout) :: XIND,DBUN,VDER + REAL*8, DIMENSION(NMAX), intent(inout) :: BU + REAL*8 SDER + INTEGER I +! DIMENSION BU(NMAX) +C DIMENSION HH(101) +C COMMON /EPS/ EPS,EPSS,CEPSS +C COMMON /TBR/ HH + + IF (N.LT.1) GO TO 20 + XIND=0.0d0 + IF(DBUN.LT.0.0d0) THEN + RETURN + END IF + DO I=1,N + IF(BU(I).GT.0.0d0) THEN + RETURN + END IF + IF(BU(I).LT.HH(I)) THEN + RETURN + END IF + enddo +20 CONTINUE + SDER=0.0d0 + IF(VDER.GT.EPS) SDER=SQRT(VDER) + XIND=PMEAN(DBUN,SDER) + RETURN + END SUBROUTINE RIND0 + + SUBROUTINE RIND1(XIND,R,BU,DBUN,DB,SQ,VDER,N) + USE SIZEMOD + USE TBRMOD + USE INFCMOD + USE CHECKMOD + USE EPSMOD + USE RINTMOD + IMPLICIT NONE + REAL*8, intent(inout) :: XIND,DBUN,VDER + REAL*8, DIMENSION(RDIM), intent(inout) :: R + REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ + INTEGER, intent(in) :: N + REAL*8, DIMENSION(NMAX), save :: B1,SQ1 + REAL*8, DIMENSION(24) :: XX1, H1 + REAL*8 XMI,XMA,DER,SDER + REAL*8, save :: DB1N,SDER1,VDER1, SS0 + REAL*8 XFF,XF,X,XH, SQ0, HHB + INTEGER I,III,J,II0,N1 +! INTEGER IAC,N +! real*8 XIND,R,BU,DBUN,DB,SQ,VDER +! REAL*8 XX1,H1, B1,SQ1,XMI,XMA, SDER,DB1N , DER, SDER1 +! REAL*8 XFF,X, XH, SQ0, HHB, SS0, VDER1, XF +! INTEGER I,J,III,II0,N1 +C DIMENSION R(1),BU(1),SQ(1),DB(1),B1(NMAX),SQ1(NMAX) +! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX) ,B1(NMAX),SQ1(NMAX) +! DIMENSION XX1(24),H1(24) +C DIMENSION HH(101),INF(10),INFO(10) + +C COMMON /EPS/ EPS,EPSS,CEPSS +C COMMON /RINT/ C,FC +C COMMON /TBR/ HH +C COMMON /INFC/ ISQ,INF,INFO +C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51 +C *,III61,III71,III81,III91,III101 + +c print *,'Topp of R1:',sq(1),sq(2),sq(3) + XIND=0.0d0 + +C Choice of the time for conditioning, two methods +C +C ISQ=1; INF(1)=II0 is the point where the SQ(I) obtaines its maximum, SQ0 +C is the maximal st. deviation of the residual. +C +C ISQ=0; INF(1) is the time point when the probability P(hhXMA or X(INF(1))EPS) THEN + XR1=R1(I+(I-1)*N) +c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1) + SQ1(I)=0.0d0 + IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1) + ENDIF + ENDDO + DO I=1,N + B1(I)=B1(I)/SQ0 + ENDDO +99 CONTINUE +C +C *********************************************************** +C +C We shall condition on the values of X, XMIEPS) THEN + + XR1=R1(I+(I-1)*N) +c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1) + SQ1(I)=0.0d0 + IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1) + ENDIF + ENDDO + DO I=1,N + B1(I)=B1(I)/SQ0 + ENDDO +99 CONTINUE +C +C *********************************************************** +C +C We shall condition on the values of X, XMI0 or +C +C b) BU(I)+x*B1(I)+C*SQ(I)XMAX in GAUSS1 - stop!' +C STOP + END IF + NNN=0 + DO I=1,NNW + N=NN(I) + DO J=1,N + XX1(J)=0.5d0*(Z(NNN+J)*(XMA-XMI)+XMA+XMI) + Z1(J)=XX1(J)*XX1(J) + H1(J)=0.5d0*SP*(XMA-XMI)*H(NNN+J)*EXP(-0.5d0*Z1(J)) + ENDDO + NNN=NNN+N + SDOT=GAUSINT(XMI,XMA,0.0d0,1.0d0,0.0d0,1.0d0) + SDOT1=0.d0 + DO I1=1,N + SDOT1=SDOT1+Z1(I1)*H1(I1) + ENDDO + DIFF1=ABS(SDOT-SDOT1) + IF(EPS0.LT.DIFF1) GO TO 10 + III0=III0+N +C PRINT *,'N. of nodes',III0 + RETURN +10 CONTINUE + ENDDO + END SUBROUTINE GAUSS1 + + + SUBROUTINE M_COND(Syy_cd,Syyii,Syx_cd,Syy,Syx,ii,N) +C +C INPUT: +C +C ii IS THE INDEX OF THE TIME ON WHICH WE ARE CONDITIONING. +C N number of variables in covariance matrix Syy +C +C Covariance matrix Syy(I+(J-1)*N)=Cov(Yi,Yj) (is unchanged) +C Covariance vector Syx(I)=Cov(Yi,X) (is unchanged) +C +C OUTPUT: +C +C Covariance matrix Syy_cd(I+(J-1)*N)=Cov(Xi,Xj|Xii) +C Covariance vector Syyii(I)=Cov(Xi,Xii) +C Covariance vector Syx_cd(I)=Cov(Xi,Y|Xii) +C Variance Q1=Var(Xii)=Syyii(ii) +c Obs. If Q1 +C 4.5. Under we have a table with +C exact values of FIFUNK. +C +C x FIFUNK(x) +C +C -5.0 0.00000005233 +C -4.5 0.00000069515 +C -4.0 0.00000711075 +C 4.0 4.00000700000 +C 4.5 4.50000100000 +C +C Obviously the tresholds -4.5 and 4.5 can be increased. +C +C + IMPLICIT NONE + REAL*8, intent(in) :: XX, SS + REAL*8 X,Y,W,Z + REAL*8, parameter :: SP = 0.398942280401433d0 + IF(XX.LT.4.5d0*SS) GO TO 1 + PMEAN=XX + RETURN +1 IF(XX.GT.-4.5d0*SS) GO TO 3 + PMEAN=0.0d0 + RETURN +3 continue + if (SS .LT. 0.0000001d0) then + PMEAN=0.0d0 + RETURN + end if + + X=XX/SS + + IF(X==0) goto 8 + Y=0.5d0*ABS(X) + IF(Y<1.0d0) then + W=Y*Y + Z=((((((((0.000124818987d0*W-0.001075204047d0)*W + 1 +0.005198775019d0)*W-0.019198292d0)*W+0.05905403564d0)*W + 2 -0.15196875136d0)*W+0.3191529327d0)*W-0.5319230073d0)*W + 3 +0.7978845606d0)*Y*2.0d0 + else + Y=Y-2.0d0 + Z=(((((((((((((-0.000045255659d0*Y+0.00015252929d0)*Y + * -0.000019538132d0)*Y-0.000676904986d0)*Y + 1 +0.001390604284d0)*Y-0.000794620820d0)*Y + 2 -0.002034254874d0)*Y+0.006549791214d0)*Y-0.010557625006d0)*Y+ + 3 0.011630447319d0)*Y-0.009279453341d0)*Y+0.005353579108d0)*Y- + 4 0.002141268741d0)*Y+0.000535310849d0)*Y+0.9999366575d0 + endif + IF(X.GT.0.0d0) PMEAN=SS*SP*EXP(-0.5d0*X*X)+XX*0.5d0*(Z+1.0d0) + IF(X.LT.0.0d0) PMEAN=SS*SP*EXP(-0.5d0*X*X)+XX*0.5d0*(1.0d0-Z) + RETURN +8 PMEAN=SS*SP + RETURN + END FUNCTION PMEAN + + + REAL*8 FUNCTION FI(XX) +C +C Algorithm 209 from CACAM. +C FI(xx) is a distribution functions of N(0,1) variable. +C + IMPLICIT NONE + REAL*8, intent(in) :: XX + REAL*8 X, Y,Z, W + X=XX + IF(X==0) then + FI=0.5d0 + RETURN + endif + Y=0.5d0*ABS(X) + IF(Y>3.0d0) then + IF(X.GT.0.0d0) FI=1.0d0 + IF(X.LT.0.0d0) FI=0.0d0 + RETURN + endif + IF (Y<1.0d0) then + W=Y*Y + Z=((((((((0.000124818987d0*W-0.001075204047d0)*W + 1 +0.005198775019d0)*W-0.019198292d0)*W+0.05905403564d0)*W + 2 -0.15196875136d0)*W+0.3191529327d0)*W-0.5319230073d0)*W + 3 +0.7978845606d0)*Y*2.0d0 + ELSE + Y=Y-2.0d0 + Z=(((((((((((((-0.000045255659d0*Y+0.00015252929d0)*Y + 1 -0.000019538132d0)*Y-0.000676904986d0)*Y+0.001390604284d0)*Y + 2 -0.000794620820d0)*Y-0.002034254874d0)*Y+0.006549791214d0)*Y + 3 -0.010557625006d0)*Y+0.011630447319d0)*Y-0.009279453341d0)*Y + 4 +0.005353579108d0)*Y-0.002141268741d0)*Y+0.000535310849d0)*Y + 5 +0.9999366575d0 + endif +100 IF(X.GT.0.0d0) FI=0.5d0*(Z+1.0d0) + IF(X.LT.0.0d0) FI=0.5d0*(1.0d0-Z) + RETURN + END FUNCTION FI + +C Version 1991-XII-14 + +C The MREG program. +C +C +C We consider a process X(I)=X(T(I)) at the grid of N points T(1),...,T(N), +C +C X(I) = -A(I) + Z*A(I+N) + Sum Xj*A(I+(j+1)*N) + Delta(I), +C +C the sum disapears if M=1, j=1,...,M-1. We assume that Z,Xj are independend +C standart Rayleigh, Gaussian distributed rv. and independent of the zero +C mean Gaussian residual process, with covariance structure given in R, +C +C R(i+(j-1)N) = Cov (Delta(T(i)), Delta(T(j))). +C +C Additionally we have a zero mean Gaussian variable XN, +C independent of Z,Xj with covariance structure defined by +C B(i)= Cov (Delta(T(i)),XN), i=1,...,N, B(N+1)=Var(XN). +C Furthermore XN and Z,Xj satisfies the following equation system +C +C (BB + (XN,0,...,0)^T = AA*(Z,X1,...,Xm-1)^T (***) +C +C where AA is (M,M) matrix, BB is M-vector. We rewrite this equation, by +C introducing a variable X_M=XN/SQRT(XN) and construct new matrix AA1 +c by adding the column (SQRT(Var(XN)),0,...,0) and the row with only zeros. +C The equations (***) writtes +C +C (BB,0)^T = AA1*(Z,X1,...,Xm-1,Xm)^T (****) +C +C where AA1 is (M+1,M+1) matrix, We assume that the rank of AA1 is M, +C otherwise the density is singular and we give a output F=0.CC +C +C Let Y0 be a zero-mean Gaussian variable independent of Z,Xj +C with covariance structure defined by +C DB(i)= Cov (Delta(T(i)),Y0), i=1,...,N, DB(N+1)=Cov(XN,Y0), Var(Y0)=VDER. +C Let Y be defined by +C +C Y=-DA(1) + Z*DA(2) + Sum Xj*DA(2+j) +Y0, +C +C j=1,...,M-1. The program computes: +C +C F = E[ Y^+ *1{ HH0 defines integration region for X. +C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),Y1)=0.0d0 +C For NIT=1 only (Delta(1),...,Delta(N))=0, i.e. we have to compute +C a one dimensional integral. Finally by conditioning on X the problem is +C put in the format of RIND-problem. +C +C INF indicates whether one +C has already called the subroutine before and ONLY! inputs BB, DA or A +C was changed. +C +C Observe the limitations are : N<=100, 00 +c + IF (NNIT.GT.1) THEN + DO I=1,N + XR1=R(I+(I-1)*N)-B(I)*(B(I)/QD) + IF(XR1.GT.EPS) THEN + SQ(I)=SQRT(XR1) + ENDIF + ENDDO + + DO I=1,N + DO J=1,N + R1(J+(I-1)*N)=R(J+(I-1)*N)-B(I)*(B(J)/QD) + ENDDO + ENDDO + + + END IF + + +105 CONTINUE + if (idet.gt.1) return +C +C Renormalization is done +C + CALL R_ORT(CC,PC,PD,U1,V1,W1,AO,BB,A1,A0,B0,DA0,D0,DET1,M+1,N) + IF(CC.LT.0.0d0) RETURN + XMI=-C + XMA= C + IF(ABS(PD).LE.EPS.AND.PC.LT.0.0d0) RETURN + IF(ABS(PD).LE.EPS) GO TO 102 + X=-PC/PD + IF(PD.GT.0.0d0.AND.XMI.LT.X) XMI=X + IF(PD.LT.0.0d0.AND.XMA.GT.X) XMA=X +102 CONTINUE +c PRINT *,'XMI,XMA',XMI,XMA + IF(NNIT.eq.1.AND.IAC.LT.1.OR.NNIT.eq.0.OR.XMI.GE.XMA) THEN + CALL C1_C2(XMI,XMA,A0,B0,D0(1),D0(2),0.0d0,SQ,N) +c PRINT *,'XMI,XMA',XMI,XMA + F=GAUSINT(XMI,XMA,D0(1),D0(2),PC,PD)*CC +c print *,'return',f,cc + RETURN + END IF +C +C *********************************************************** +C +C We shall condition on the values of X, XMI +# Microsoft Developer Studio Generated Build File, Format Version 6.00 +# ** DO NOT EDIT ** + +# TARGTYPE "Win32 (x86) Console Application" 0x0103 + +CFG=mvnprd - Win32 Debug +!MESSAGE This is not a valid makefile. To build this project using NMAKE, +!MESSAGE use the Export Makefile command and run +!MESSAGE +!MESSAGE NMAKE /f "mvnprd.mak". +!MESSAGE +!MESSAGE You can specify a configuration when running NMAKE +!MESSAGE by defining the macro CFG on the command line. For example: +!MESSAGE +!MESSAGE NMAKE /f "mvnprd.mak" CFG="mvnprd - Win32 Debug" +!MESSAGE +!MESSAGE Possible choices for configuration are: +!MESSAGE +!MESSAGE "mvnprd - Win32 Release" (based on "Win32 (x86) Console Application") +!MESSAGE "mvnprd - Win32 Debug" (based on "Win32 (x86) Console Application") +!MESSAGE + +# Begin Project +# PROP AllowPerConfigDependencies 0 +# PROP Scc_ProjName "" +# PROP Scc_LocalPath "" +CPP=cl.exe +F90=df.exe +RSC=rc.exe + +!IF "$(CFG)" == "mvnprd - Win32 Release" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 0 +# PROP BASE Output_Dir "Release" +# PROP BASE Intermediate_Dir "Release" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 0 +# PROP Output_Dir "Release" +# PROP Intermediate_Dir "Release" +# PROP Target_Dir "" +# ADD BASE F90 /compile_only /nologo /warn:nofileopt +# ADD F90 /compile_only /nologo /warn:nofileopt +# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD BASE RSC /l 0x414 /d "NDEBUG" +# ADD RSC /l 0x414 /d "NDEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 +# ADD LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 + +!ELSEIF "$(CFG)" == "mvnprd - Win32 Debug" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 1 +# PROP BASE Output_Dir "Debug" +# PROP BASE Intermediate_Dir "Debug" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 1 +# PROP Output_Dir "Debug" +# PROP Intermediate_Dir "Debug" +# PROP Target_Dir "" +# ADD BASE F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD BASE RSC /l 0x414 /d "_DEBUG" +# ADD RSC /l 0x414 /d "_DEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept +# ADD LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept + +!ENDIF + +# Begin Target + +# Name "mvnprd - Win32 Release" +# Name "mvnprd - Win32 Debug" +# Begin Source File + +SOURCE=.\mvnprd.f +# End Source File +# End Target +# End Project diff --git a/wafo/source/mvnprd/mvnprd.dsw b/wafo/source/mvnprd/mvnprd.dsw new file mode 100755 index 0000000..10861ae --- /dev/null +++ b/wafo/source/mvnprd/mvnprd.dsw @@ -0,0 +1,29 @@ +Microsoft Developer Studio Workspace File, Format Version 6.00 +# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE! + +############################################################################### + +Project: "mvnprd"=.\mvnprd.dsp - Package Owner=<4> + +Package=<5> +{{{ +}}} + +Package=<4> +{{{ +}}} + +############################################################################### + +Global: + +Package=<5> +{{{ +}}} + +Package=<3> +{{{ +}}} + +############################################################################### + diff --git a/wafo/source/mvnprd/mvnprd.f b/wafo/source/mvnprd/mvnprd.f new file mode 100755 index 0000000..0dd7766 --- /dev/null +++ b/wafo/source/mvnprd/mvnprd.f @@ -0,0 +1,1099 @@ +C +C f2py -m mvnprd -h mvnprd.pyf mvnprd.f only: mvnprd +C edit mvnprd.pyf with input and output and then +C f2py mvnprd.pyf mvnprd.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +C +C f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m mvnprd -c mvnprd.f + +C Altarnative: compile mvnprd and link to it through mvnprd_interface.f +C +C gfortran -fPIC -c mvnprd.f +C f2py -m mvnprdmod -c mvnprd.o mvnprd_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +C +C df -c mvnprd.f +C f2py -m mvnprdmod -c mvnprd.obj mvnprd_interface.f --fcompiler=compaqv --compiler=mingw32 -lmsvcr71 + +! This is a MEX-file for MATLAB. +! and contains a mex-interface to Charles W. Dunnett's programs +! ,MVNPRD and MVSTUD subroutines for computing multivariate normal +! or student T probabilities with product correlation structure. The +! file should compile without errors on (Fortran77) standard Fortran +! compilers. +* +* The mex-interface was written by +* Per Andreas Brodtkorb +* Norwegian Defence Research Establishment +* P.O. Box 115m +* N-3191 Horten +* Norway +* Email: Per.Brodtkorb@ffi.no +* +* Charles Dunnett +C Dept. of Mathematics and Statistics +C McMaster University +C Hamilton, Ontario L8S 4K1 +C Canada +C E-mail: dunnett@mcmaster.ca +C Tel.: (905) 525-9140 (Ext. 27104) +* +* MVNPRDMEX Computes multivariate normal or student T probability +* with product correlation structure. + +* +* CALL [value,bound,inform] = mvnprdmex(RHO,A,B,D,NDF,abseps,IERC,HNC) +* +* RHO REAL, array of coefficients defining the correlation +* coefficient by: +* correlation(I,J) = RHO(I)*RHO(J) for J/=I +* where +* 1 < RHO(I) < 1 +* A REAL, array of lower integration limits. +* B REAL, array of upper integration limits. +* NOTE: any values greater the 37, are considered as +* infinite values. +* D Real array of means +* NDF Degrees of freedom, NDF<=0 gives normal probabilities +* ABSEPS REAL absolute error tolerance. +* IERC INTEGER 1 if strict error control based on fourth +* derivative +* 0 if intuitive error control based on halving the +* intervals +* HINC REAL start interval width of simpson rule +* +* OUTPUT: +* VALUE REAL estimated value for the integral +* BOUND REAL bound on the error of the approximation +* INFORM INTEGER, termination status parameter: +* 0, if normal completion with ERROR < EPS; +* 1, if N > 100 or N < 1. +* 2, IF any abs(rho)>=1 +* 4, if ANY(B(I)<=A(i)) +* 5, if number of terms computed exceeds maximum number of +* evaluation points +* 6, if fault accurs in normal subroutines +* 7, if subintervals are too narrow or too many +* 8, if bounds exceeds abseps +* +* +* MVNPRDMEX calculates multivariate normal or student T probability +* with product correlation structure for rectangular regions. +* The accuracy is up to around single precision, i.e., about 1e-7. +* +* This file was successfully compiled for matlab 5.3 +* using Compaq Visual Fortran 6.1, and Windows 2000. +* The example here uses Fortran77 source. +* First, you will need to modify your mexopts.bat file. +* To find it, issue the command prefdir(1) from the Matlab command line, +* the directory it answers with will contain your mexopts.bat file. +* Open it for editing. The first section will look like: +* +*rem ******************************************************************** +*rem General parameters +*rem ******************************************************************** +*set MATLAB=%MATLAB% +*set DF_ROOT=C:\Program Files\Microsoft Visual Studio +*set VCDir=%DF_ROOT%\VC98 +*set MSDevDir=%DF_ROOT%\Common\msdev98 +*set DFDir=%DF_ROOT%\DF98 +*set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH% +*set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE% +*set LIB=%DFDir%\LIB;%VCDir%\LIB +* +* then you are ready to compile this file at the matlab prompt using the +* following command: +* mex -O mvnprdmex.f + + + +C The rest of this file contains: +C 1. A Readme file provided by Charles Dunnett, the author of AS 251. +C 2. The published algorithm AS 251 together with the two other AS algorithms +C which it calls (AS 66 and AS 241). +C 3. A driver program (MVTIN) for either multivariate normal or t. +C 4. MVSTUD for calculating multivariate t probabilities. +C *************************************************************************** + +C Date: Mon, 10 Apr 1995 16:49:10 +0059 (EDT) +C From: "Charles W. Dunnett" +C Subject: Readme for AS251 (extended version incl. multivariate t) + +C MVTIN is a driver program for computing multivariate normal or t +C probability integrals over arbitrary rectangular regions. The +C correlation structure is assumed to be of product form, rho_ij = +C b_i x b_j, where -1 < b_i < +1. + +C It requires the following:- + +C 1. MVNPRD (published as algorithm AS 251 in Applied +C Statistics (1989), 38: 564-579; see also the correction +C note in Applied Statistics (1993), 42: 709), + +C 2. ALNORM and PPND7 (published as algorithms AS 66 and +C AS 241, respectively, in Applied Statistics, and + +C 3. MVSTUD ( which Studentizes MVNPRD). + + + + SUBROUTINE MVNPRD(A, B, BPD, EPS, N, INF, IERC, HINC, PROB, BOUND, + * IFAULT) + implicit none +C +C ALGORITHM AS 251.1 APPL.STATIST. (1989), VOL.38, NO.3 +C +C FOR A MULTIVARIATE NORMAL VECTOR WITH CORRELATION STRUCTURE +C DEFINED BY RHO(I,J) = BPD(I) * BPD(J), COMPUTES THE PROBABILITY +C THAT THE VECTOR FALLS IN A RECTANGLE IN N-SPACE WITH ERROR +C LESS THAN EPS. +C + INTEGER NN + PARAMETER (NN = 100) + DOUBLE PRECISION A(*), B(*), BPD(*), ESTT(22), FV(5), FD(5), + & F1T(22), F2T(22), F3T(22), G1T(22), G3T(22), PSUM(22), H(NN) + $ , HL(NN),BB(NN) + INTEGER INF(*), INFT(NN), LDIR(22) + DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, SIX, PT1, PT24, ONEP5, + * X2880, SMALL, DXMIN, SQRT2, PROB, ERRL, BI, START, + * Z, HINC, ADDN, EPS2, EPS1, EPS, ZU, Z2, Z3, Z4, Z5, ZZ, + * ERFAC, EL, EL1, BOUND, PART0, PART2, PART3, FUNC0, FUNC2, + * FUNCN, WT, CONTRB, DLG, DX, DA, ESTL, ESTR, TSUM, EXCESS, ERROR, + * PROB1, SAFE, ONEP5,X2880 + INTEGER N, IERC, IFAULT, I, NTM, NMAX, LVL, NR, NDIM + DOUBLE PRECISION ALNORM, PPND7 + EXTERNAL ALNORM, PPND7 + DATA ZERO, HALF, ONE, TWO, FOUR, SIX /0.0, 0.5, 1.0, 2.0, + * 4.0, 6.0/ + DATA PT1, PT24, ONEP5, X2880 /0.1, 0.24, 1.5, 2880.0/ + DATA SMALL, DXMIN, SQRT2 /1.0E-10, 0.0000001, 1.41421356237310/ +C +C CHECK FOR INPUT VALUES OUT OF RANGE. +C + PROB = ZERO + BOUND = ZERO + IFAULT = 1 + IF (N .LT. 1 .OR. N .GT. NN) RETURN + DO 10 I = 1, N + BI = ABS(BPD(I)) + IFAULT = 2 + IF (BI .GE. ONE) RETURN + IFAULT = 3 + IF (INF(I) .LT. 0 .OR. INF(I) .GT. 2) RETURN + IFAULT = 4 + IF (INF(I) .EQ. 2 .AND. A(I) .LE. B(I)) RETURN + 10 CONTINUE + IFAULT = 0 + PROB = ONE +C +C CHECK WHETHER ANY BPD(I) = 0. +C + NDIM = 0 + DO 20 I = 1, N + IF (BPD(I) .NE. ZERO) THEN + NDIM = NDIM + 1 + H(NDIM) = A(I) + HL(NDIM) = B(I) + BB(NDIM) = BPD(I) + INFT(NDIM) = INF(I) + ELSE +C +C IF ANY BPD(I) = 0, THE CONTRIBUTION TO PROB FOR THAT +C VARIABLE IS COMPUTED FROM A UNIVARIATE NORMAL. +C + IF (INF(I) .LT. 1) THEN + PROB = PROB * (ONE - ALNORM(B(I), .FALSE.)) + ELSE IF (INF(I) .EQ. 1) THEN + PROB = PROB * ALNORM(A(I), .FALSE.) + ELSE + PROB = PROB * (ALNORM(A(I), .FALSE.) - + * ALNORM(B(I), .FALSE.)) + END IF + IF (PROB .LE. SMALL) PROB = ZERO + END IF + 20 CONTINUE + IF (NDIM .EQ. 0 .OR. PROB .EQ. ZERO) RETURN +C +C IF NOT ALL BPD(I) = 0, PROB IS COMPUTED BY SIMPSON'S RULE. +C BUT FIRST, INITIALIZE THE VARIABLES. +C + Z = ZERO + IF (HINC .LE. ZERO) HINC = PT24 + ADDN = -ONE + DO 30 I = 1, NDIM + IF (INFT(I) .EQ. 2 .OR. + * (INFT(I) .NE. INFT(1) .AND. BB(I) * BB(1) .GT. ZERO) .OR. + * (INFT(I) .EQ. INFT(1) .AND. BB(I) * BB(1) .LT. ZERO)) + * ADDN = ZERO + 30 CONTINUE +C +C THE VALUE OF ADDN IS TO BE ADDED TO THE PRODUCT EXPRESSIONS IN +C THE INTEGRAND TO INSURE THAT THE LIMITING VALUE IS ZERO. +C + PROB1 = ZERO + NTM = 0 + NMAX = 400 + IF (IERC .EQ. 0) NMAX = NMAX * 2 + CALL PFUNC (Z, H, HL, BB, NDIM, INFT, ADDN, SAFE, FUNC0, NTM, + * IERC, PART0) + EPS2 = EPS * PT1 * HALF +C +C SET UPPER BOUND ON Z AND APPORTION EPS. +C + ZU = -PPND7(EPS2, IFAULT) / SQRT2 + IF (IFAULT .NE. 0) THEN + IFAULT = 6 + RETURN + END IF + !NR = IFIX(ZU / HINC) + 1 + NR = NINT(ZU / HINC) + 1 + ERFAC = ONE + IF (IERC .NE. 0) ERFAC = X2880 / HINC ** 5 + EL = (EPS - EPS2) / FLOAT(NR) * ERFAC + EL1 = EL +C +C START COMPUTATIONS FOR THE INTERVAL (Z, Z + HINC). +C + 40 ERROR = ZERO + LVL = 0 + FV(1) = PART0 + FD(1) = SAFE + START = Z + DA = HINC + Z3 = START + HALF * DA + CALL PFUNC(Z3, H, HL, BB, NDIM, INFT, ADDN, FD(3), FUNCN, NTM, + * IERC, FV(3)) + Z5 = START + DA + CALL PFUNC(Z5, H, HL, BB, NDIM, INFT, ADDN, FD(5), FUNC2, NTM, + * IERC, FV(5)) + PART2 = FV(5) + SAFE = FD(5) + WT = DA / SIX + CONTRB = WT * (FV(1) + FOUR * FV(3) + FV(5)) + DLG = ZERO + IF (IERC .NE. 0) THEN + CALL WMAX(FD(1), FD(3), FD(5), DLG) + IF (DLG .LE. EL) GO TO 90 + DX = DA + GO TO 60 + END IF + LVL = 1 + LDIR(LVL) = 2 + PSUM(LVL) = ZERO +C +C BISECT INTERVAL. IF IERC = 1, COMPUTE ESTIMATE ON LEFT +C HALF; IF IERC = 0, ON BOTH HALVES. +C + 50 DX = HALF * DA + WT = DX / SIX + Z2 = START + HALF * DX + CALL PFUNC(Z2, H, HL, BB, NDIM, INFT, ADDN, FD(2), FUNCN, NTM, + * IERC,FV(2)) + ESTL = WT * (FV(1) + FOUR * FV(2) + FV(3)) + IF (IERC .EQ. 0) THEN + Z4 = START + ONEP5 * DX + CALL PFUNC(Z4, H, HL, BB, NDIM, INFT, ADDN, FD(4), FUNCN, + * NTM, IERC, FV(4)) + ESTR = WT * (FV(3) + FOUR * FV(4) + FV(5)) + TSUM = ESTL + ESTR + DLG = ABS(CONTRB - TSUM) + EPS1 = EL / TWO ** (LVL - 1) + ERRL = DLG + ELSE + FV(3) = FV(2) + FD(3) = FD(2) + CALL WMAX(FD(1), FD(3), FD(5), DLG) + ERRL = DLG / TWO ** (5 * LVL) + TSUM = ESTL + EPS1 = EL * (TWO ** LVL) ** 4 + END IF +C +C STOP SUBDIVIDING INTERVAL WHEN ACCURACY IS SUFFICIENT, +C OR IF INTERVAL TOO NARROW OR SUBDIVIDED TOO OFTEN. +C + IF (DLG .LE. EPS1 .OR. DLG .LT. SMALL) GO TO 70 + IF (IFAULT .EQ. 0 .AND. NTM .GE. NMAX) IFAULT = 5 + IF (ABS(DX) .LE. DXMIN .OR. LVL .GT. 21) IFAULT = 7 + IF (IFAULT .NE. 0) GO TO 70 +C +C RAISE LEVEL. STORE INFORMATION FOR RIGHT HALF AND APPLY +C SIMPSON'S RULE TO LEFT HALF. +C + 60 LVL = LVL + 1 + LDIR(LVL) = 1 + F1T(LVL) = FV(3) + F3T(LVL) = FV(5) + DA = DX + FV(5) = FV(3) + IF (IERC .EQ. 0) THEN + F2T(LVL) = FV(4) + ESTT(LVL) = ESTR + CONTRB = ESTL + FV(3) = FV(2) + ELSE + G1T(LVL) = FD(3) + G3T(LVL) = FD(5) + FD(5) = FD(3) + END IF + GO TO 50 +C +C ACCEPT APPROXIMATE VALUE FOR INTERVAL. +C RESTORE SAVED INFORMATION TO PROCESS +C RIGHT HALF INTERVAL. +C + 70 ERROR = ERROR + ERRL + 80 IF (LDIR(LVL) .EQ. 1) THEN + PSUM(LVL) = TSUM + LDIR(LVL) = 2 + IF (IERC .EQ. 0) DX = DX * TWO + START = START + DX + DA = HINC / TWO ** (LVL - 1) + FV(1) = F1T(LVL) + IF (IERC .EQ. 0) THEN + FV(3) = F2T(LVL) + CONTRB = ESTT(LVL) + ELSE + FV(3) = F3T(LVL) + FD(1) = G1T(LVL) + FD(5) = G3T(LVL) + END IF + FV(5) = F3T(LVL) + GO TO 50 + END IF + TSUM = TSUM + PSUM(LVL) + LVL = LVL - 1 + IF (LVL .GT. 0) GO TO 80 + CONTRB = TSUM + LVL = 1 + DLG = ERROR + 90 PROB1 = PROB1 + CONTRB + BOUND = BOUND + DLG + EXCESS = EL - DLG + EL = EL1 + IF (EXCESS .GT. ZERO) EL = EL1 + EXCESS + IF ((FUNC0 .GT. ZERO .AND. FUNC2 .LE. FUNC0) .OR. + * (FUNC0 .LT. ZERO .AND. FUNC2 .GE. FUNC0)) THEN + ZZ = -SQRT2 * Z5 + PART3 = ABS(FUNC2) * ALNORM(ZZ, .FALSE.) + BOUND / ERFAC + IF (PART3 .LE. EPS .OR. NTM .GE. NMAX .OR. Z5 .GE. ZU) GOTO 100 + END IF + Z = Z5 + PART0 = PART2 + FUNC0 = FUNC2 + IF (Z .LT. ZU .AND. NTM .LT. NMAX) GO TO 40 + 100 PROB = (PROB1 - ADDN * HALF) * PROB + BOUND = PART3 + IF (NTM .GE. NMAX .AND. IFAULT .EQ. 0) IFAULT = 5 + IF (BOUND .GT. EPS .AND. IFAULT .EQ. 0) IFAULT = 8 + RETURN + END + SUBROUTINE PFUNC(Z, A, B, BPD, N, INF, ADDN, DERIV, FUNCN, NTM, + * IERC, RESULT) + implicit none +C +C ALGORITHM AS 251.2 APPL.STATIST. (1989), VOL.38, NO.3 +C +C +C COMPUTE FUNCTION IN INTEGRAND AND ITS 4TH DERIVATIVE. +C + INTEGER NN + PARAMETER (NN = 100) + DOUBLE PRECISION A(*), B(*), BPD(*), FOU(NN), FOU1(4, NN), TMP(4), + & GOU(NN), GOU1(4, NN), FF(4), GF(4), TERM(4), GERM(4) + INTEGER INF(*) + DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, SIX, EIGHT, TWELVE, + & SIXTN, SMALL, Z, U, U1, U2, BI, HI, HLI, BP, ADDN, DERIV, + $ FUNCN,RESULT, RSLT1, RSLT2, DEN, SQRT2, SQRTPI, PHI, PHI1, + $ PHI2,PHI3, PHI4, FRM, GRM + INTEGER N, NTM, IERC, INFI, I, J, K, M, L, IK + DOUBLE PRECISION ALNORM + EXTERNAL ALNORM + DATA ZERO, ONE, TWO, THREE, FOUR, SIX, EIGHT, TWELVE, SIXTN, + * SMALL /0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0, 0.1E-12/ + DATA SQRT2, SQRTPI /1.41421356237310, 1.77245385090552/ + DERIV = ZERO + NTM = NTM + 1 + RSLT1 = ONE + RSLT2 = ONE + BI = ONE + HI = A(1) + ONE + HLI = B(1) + ONE + INFI = -1 + DO 60 I = 1, N + IF (BPD(I) .EQ. BI .AND. A(I) .EQ. HI .AND. B(I) .EQ. HLI .AND. + * INF(I) .EQ. INFI) THEN + FOU(I) = FOU(I - 1) + GOU(I) = GOU(I - 1) + DO 10 IK = 1, 4 + FOU1(IK, I) = FOU1(IK, I - 1) + GOU1(IK, I) = GOU1(IK, I - 1) + 10 CONTINUE + ELSE + BI = BPD(I) + HI = A(I) + HLI = B(I) + INFI = INF(I) + IF (BI .EQ. ZERO) THEN + IF (INFI .LT. 1) THEN + FOU(I) = ONE - ALNORM(HLI, .FALSE.) + ELSE IF (INFI .EQ. 1) THEN + FOU(I) = ALNORM(HI, .FALSE.) + ELSE + FOU(I) = ALNORM(HI, .FALSE.) - ALNORM(HLI, .FALSE.) + END IF + GOU(I) = FOU(I) + DO 20 IK = 1, 4 + FOU1(IK, I) = ZERO + GOU1(IK, I) = ZERO + 20 CONTINUE + ELSE + DEN = SQRT(ONE - BI * BI) + BP = BI * SQRT2 / DEN + IF (INFI .LT. 1) THEN + U = -HLI / DEN + Z * BP + FOU(I) = ALNORM(U, .FALSE.) + CALL ASSIGN (U, BP, FOU1(1, I)) + BP = -BP + U = -HLI / DEN + Z * BP + GOU(I) = ALNORM(U, .FALSE.) + CALL ASSIGN (U, BP, GOU1(1, I)) + ELSE IF (INFI .EQ. 1) THEN + U = HI / DEN + Z * BP + GOU(I) = ALNORM(U, .FALSE.) + CALL ASSIGN (U, BP, GOU1(1, I)) + BP = -BP + U = HI / DEN + Z * BP + FOU(I) = ALNORM(U, .FALSE.) + CALL ASSIGN (U, BP, FOU1(1, I)) + ELSE + U2 = -HLI / DEN + Z * BP + CALL ASSIGN (U2, BP, FOU1(1, I)) + BP = -BP + U1 = HI / DEN + Z * BP + CALL ASSIGN (U1, BP, TMP(1)) + FOU(I) = ALNORM(U1, .FALSE.) + ALNORM(U2, .FALSE.) - ONE + DO 30 IK = 1, 4 + FOU1(IK, I) = FOU1(IK, I) + TMP(IK) + 30 CONTINUE + IF (-HLI .EQ. HI) THEN + GOU(I) = FOU(I) + DO 40 IK = 1, 4 + GOU1(IK, I) = FOU1(IK, I) + 40 CONTINUE + ELSE + U2 = -HLI / DEN + Z * BP + CALL ASSIGN (U2, BP, GOU1(1, I)) + BP = -BP + U1 = HI / DEN + Z * BP + GOU(I) = ALNORM(U1, .FALSE.) + ALNORM(U2, .FALSE.)-ONE + CALL ASSIGN (U1, BP, TMP(1)) + DO 50 IK = 1, 4 + GOU1(IK, I) = GOU1(IK, I) + TMP(IK) + 50 CONTINUE + END IF + END IF + END IF + END IF + RSLT1 = RSLT1 * FOU(I) + RSLT2 = RSLT2 * GOU(I) + IF (RSLT1 .LE. SMALL) RSLT1 = ZERO + IF (RSLT2 .LE. SMALL) RSLT2 = ZERO + 60 CONTINUE + FUNCN = RSLT1 + RSLT2 + ADDN + RESULT = FUNCN * EXP(-Z * Z) / SQRTPI +C +C IF 4TH DERIVATIVE IS NOT WANTED, STOP HERE. +C OTHERWISE, PROCEED TO COMPUTE 4TH DERIVATIVE. +C + IF (IERC .EQ. 0) RETURN + DO 70 IK = 1, 4 + FF(IK) = ZERO + GF(IK) = ZERO + 70 CONTINUE + DO 100 I = 1, N + FRM = ONE + GRM = ONE + DO 80 J = 1, N + IF (J .EQ. 1) GO TO 80 + FRM = FRM * FOU(J) + GRM = GRM * GOU(J) + IF (FRM .LE. SMALL) FRM = ZERO + IF (GRM .LE. SMALL) GRM = ZERO + 80 CONTINUE + DO 90 IK = 1, 4 + FF(IK) = FF(IK) + FRM * FOU1(IK, I) + GF(IK) = GF(IK) + GRM * GOU1(IK, I) + 90 CONTINUE + 100 CONTINUE + IF (N .LE. 2) GO TO 230 + DO 130 I = 1, N + DO 120 J = I + 1, N + TERM(2) = FOU1(1, I) * FOU1(1, J) + GERM(2) = GOU1(1, I) * GOU1(1, J) + TERM(3) = FOU1(2, I) * FOU1(1, J) + GERM(3) = GOU1(2, I) * GOU1(1, J) + TERM(4) = FOU1(3, I) * FOU1(1, J) + GERM(4) = GOU1(3, I) * GOU1(1, J) + TERM(1) = FOU1(2, I) * FOU1(2, J) + GERM(1) = GOU1(2, I) * GOU1(2, J) + DO 110 K = 1, N + IF (K .EQ. I .OR. K .EQ. J) GO TO 110 + CALL TOOSML (1, TERM, FOU(K)) + CALL TOOSML (1, GERM, GOU(K)) + 110 CONTINUE + FF(2) = FF(2) + TWO * TERM(2) + FF(3) = FF(3) + TWO * TERM(3) * THREE + FF(4) = FF(4) + TWO * (TERM(4) * FOUR + TERM(1) * THREE) + GF(2) = GF(2) + TWO * GERM(2) + GF(3) = GF(3) + TWO * GERM(3) * THREE + GF(4) = GF(4) + TWO * (GERM(4) * FOUR + GERM(1) * THREE) + 120 CONTINUE + 130 CONTINUE + DO 170 I = 1, N + DO 160 J = I + 1, N + DO 150 K = J + 1, N + TERM(3) = FOU1(1, I) * FOU1(1, J) * FOU1(1, K) + TERM(4) = FOU1(2, I) * FOU1(1, J) * FOU1(1, K) + GERM(3) = GOU1(1, I) * GOU1(1, J) * GOU1(1, K) + GERM(4) = GOU1(2, I) * GOU1(1, J) * GOU1(1, K) + IF (N .GT. 3) THEN + DO 140 M = 1, N + IF (M .EQ. I .OR. M .EQ. J .OR. M .EQ. K) GO TO 140 + CALL TOOSML (3, TERM, FOU(M)) + CALL TOOSML (3, GERM, GOU(M)) + 140 CONTINUE + END IF + FF(3) = FF(3) + SIX * TERM(3) + FF(4) = FF(4) + SIX * TERM(4) * SIX + GF(3) = GF(3) + SIX * GERM(3) + GF(4) = GF(4) + SIX * GERM(4) * SIX + 150 CONTINUE + 160 CONTINUE + 170 CONTINUE + IF (N .LE. 3) GO TO 230 + DO 220 I = 1, N + DO 210 J = I + 1, N + DO 200 K = J + 1, N + DO 190 M = K + 1, N + TERM(4) = FOU1(1, I) * FOU1(1, J) * FOU1(1, K) * FOU1(1, M) + GERM(4) = GOU1(1, I) * GOU1(1, J) * GOU1(1, K) * GOU1(1, M) + IF (N .GT. 4) THEN + DO 180 L = 1, N + IF (L .EQ. I .OR. L .EQ. J .OR. L .EQ. K .OR. L .EQ. M)GOTO 180 + CALL TOOSML (4, TERM, FOU(L)) + CALL TOOSML (4, GERM, GOU(L)) + 180 CONTINUE + END IF + FF(4) = FF(4) + FOUR * SIX * TERM(4) + GF(4) = GF(4) + FOUR * SIX * GERM(4) + 190 CONTINUE + 200 CONTINUE + 210 CONTINUE + 220 CONTINUE +C + 230 CONTINUE + PHI = EXP(-Z * Z) / SQRTPI + PHI1 = -TWO * Z * PHI + PHI2 = (FOUR * Z ** 2 - TWO) * PHI + PHI3 = (-EIGHT * Z ** 3 + TWELVE * Z) * PHI + PHI4 = (SIXTN * Z ** 2 * (Z ** 2 - THREE) + TWELVE) * PHI + DERIV = PHI * (FF(4) + GF(4)) + FOUR * PHI1 * (FF(3) + GF(3)) + * + SIX * PHI2 * (FF(2) + GF(2)) + FOUR * PHI3 * (FF(1) + GF(1)) + * + PHI4 * FUNCN + RETURN + END + SUBROUTINE ASSIGN (U, BP, FF) + implicit none +C +C ALGORITHM AS 251.3 APPL.STATIST. (1989), VOL.38, NO.3 +C +C +C COMPUTE DERIVATIVES OF NORMAL CDF'S. +C + DOUBLE PRECISION FF(4) + DOUBLE PRECISION U, U2, BP, HALF, ONE, THREE, SQ2PI, T1, T2, T3 + $ ,ZERO, UMAX, SMALL + INTEGER I + DATA HALF, ONE, THREE, SQ2PI /0.5, 1.0, 3.0, 2.50662827463100/ + DATA ZERO, UMAX, SMALL /0.0, 8.0, 0.1E-07/ + IF (ABS(U) .GT. UMAX) THEN + DO 10 I = 1, 4 + FF(I) = ZERO + 10 CONTINUE + ELSE + U2 = U * U + T1 = BP * EXP(-HALF * U2) / SQ2PI + T2 = BP * T1 + T3 = BP * T2 + FF(1) = T1 + FF(2) = -U * T2 + FF(3) = (U2 - ONE) * T3 + FF(4) = (THREE - U2) * U * BP * T3 + DO 20 I = 1, 4 + IF(ABS(FF(I)) .LT. SMALL) FF(I) = ZERO + 20 CONTINUE + END IF + RETURN + END + SUBROUTINE WMAX(W1, W2, W3, DLG) + implicit none +C +C ALGORITHM AS 251.4 APPL.STATIST. (1989), VOL.38, NO.3 +C +C +C LARGEST ABSOLUTE VALUE OF QUADRATIC FUNCTION FITTED +C TO THREE POINTS. +C + DOUBLE PRECISION W1, W2, W3, DLG, QUAD, QLIM, QMIN, ONE, TWO, B2C + DATA ONE, TWO, QMIN /1.0, 2.0, 0.00001/ + DLG = MAX( ABS(W1), ABS(W3) ) + QUAD = W1 - W2 * TWO + W3 + QLIM = MAX( ABS(W1 - W3) / TWO , QMIN) + IF (ABS(QUAD) .LE. QLIM) RETURN + B2C = (W1 - W3) / QUAD / TWO + IF (ABS(B2C) .GE. ONE) RETURN + DLG = MAX( DLG, ABS(W2 - B2C * QUAD * B2C / TWO) ) + RETURN + END + SUBROUTINE TOOSML (N, FF, F) + implicit none +C +C ALGORITHM AS 251.5 APPL.STATIST. (1989), VOL.38, NO.3 +C +C +C MULTIPLY FF(I) BY F FOR I = N TO 4. SET TO ZERO IF TOO SMALL. +C + DOUBLE PRECISION FF(4), F, ZERO, SMALL + INTEGER N, I + DATA ZERO, SMALL /0.0, 0.1E-12/ + DO 10 I = N, 4 + FF(I) = FF(I) * F + IF (ABS(FF(I)) .LE. SMALL) FF(I) = ZERO + 10 CONTINUE + RETURN + END + DOUBLE PRECISION FUNCTION ALNORM(X, UPPER) + implicit none +C +C ALGORITHM AS 66 APPL. STATIST. (1973) VOL.22, P.424 +C +C EVALUATES THE TAIL AREA OF THE STANDARDIZED NORMAL CURVE +C FROM X TO INFINITY IF UPPER IS .TRUE. OR +C FROM MINUS INFINITY TO X IF UPPER IS .FALSE. +C + DOUBLE PRECISION LTONE, UTZERO, ZERO, HALF, ONE, CON, A1, A2, A3, + $ A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, B8, B9, + $ B10, B11, B12, X, Y, Z, ZEXP + LOGICAL UPPER, UP +C +C LTONE AND UTZERO MUST BE SET TO SUIT THE PARTICULAR COMPUTER +C (SEE INTRODUCTORY TEXT) +C + DATA LTONE, UTZERO /7.0, 18.66/ + DATA ZERO, HALF, ONE, CON /0.0, 0.5, 1.0, 1.28/ + DATA A1, A2, A3, + $ A4, A5, A6, + $ A7 + $ /0.398942280444, 0.399903438504, 5.75885480458, + $ 29.8213557808, 2.62433121679, 48.6959930692, + $ 5.92885724438/ + DATA B1, B2, B3, + $ B4, B5, B6, + $ B7, B8, B9, + $ B10, B11, B12 + $ /0.398942280385, 3.8052E-8, 1.00000615302, + $ 3.98064794E-4, 1.98615381364, 0.151679116635, + $ 5.29330324926, 4.8385912808, 15.1508972451, + $ 0.742380924027, 30.789933034, 3.99019417011/ +C + ZEXP(Z) = EXP(Z) +C + UP = UPPER + Z = X + IF (Z .GE. ZERO) GOTO 10 + UP = .NOT. UP + Z = -Z + 10 IF (Z .LE. LTONE .OR. UP .AND. Z .LE. UTZERO) GOTO 20 + ALNORM = ZERO + GOTO 40 + 20 Y = HALF * Z * Z + IF (Z .GT. CON) GOTO 30 +C + ALNORM = HALF - Z * (A1 - A2 * Y / (Y + A3 - A4 / (Y + A5 + + $ A6 / (Y + A7)))) + GOTO 40 +C + 30 ALNORM = B1 * ZEXP(-Y) / (Z - B2 + B3 / (Z + B4 + B5 / (Z - + $ B6 + B7 / (Z + B8 - B9 / (Z + B10 + B11 / (Z + B12)))))) +C + 40 IF (.NOT. UP) ALNORM = ONE - ALNORM + RETURN + END + DOUBLE PRECISION FUNCTION PPND7 (P, IFAULT) + implicit none +C +C ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3 +C +C PRODUCES THE NORMAL DEVIATE Z CORRESPONDING TO A GIVEN LOWER +C TAIL AREA OF P; Z IS ACCURATE TO ABOUT 1 PART IN 10**7. +C +C THE HASH SUMS BELOW ARE THE SUMS OF THE MANTISSAS OF THE +C COEFFICIENTS. THEY ARE INCLUDED FOR USE IN CHECKING +C TRANSCRIPTION. +C + INTEGER IFAULT + DOUBLE PRECISION ZERO, ONE, HALF, SPLIT1, SPLIT2, CONST1, CONST2, + * A0, A1, A2, A3, B1, B2, B3, C0, C1, C2, C3, D1, D2, + * E0, E1, E2, E3, F1, F2, P, Q, R + PARAMETER (ZERO = 0.0E0, ONE = 1.0E0, HALF = 0.5E0, + * SPLIT1 = 0.425E0, SPLIT2 = 5.0E0, + * CONST1 = 0.180625E0, CONST2 = 1.6E0) +C +C COEFFICIENTS FOR P CLOSE TO 1/2 + PARAMETER (A0 = 3.38713 27179E0, + * A1 = 5.04342 71938E1, + * A2 = 1.59291 13202E2, + * A3 = 5.91093 74720E1, + * B1 = 1.78951 69469E1, + * B2 = 7.87577 57664E1, + * B3 = 6.71875 63600E1) +C HASH SUM AB 32.31845 77772 +C +C COEFFICIENTS FOR P NEITHER CLOSE TO 1/2 NOR 0 OR 1 + PARAMETER (C0 = 1.42343 72777E0, + * C1 = 2.75681 53900E0, + * C2 = 1.30672 84816E0, + * C3 = 1.70238 21103E-1, + * D1 = 7.37001 64250E-1, + * D2 = 1.20211 32975E-1) +C HASH SUM CD 15.76149 29821 +C +C COEFFICIENTS FOR P NEAR 0 OR 1 + PARAMETER (E0 = 6.65790 51150E0, + * E1 = 3.08122 63860E0, + * E2 = 4.28682 94337E-1, + * E3 = 1.73372 03997E-2, + * F1 = 2.41978 94225E-1, + * F2 = 1.22582 02635E-2) +C HASH SUM EF 19.40529 10204 +C + IFAULT = 0 + Q = P - HALF + IF (ABS(Q) .LE. SPLIT1) THEN + R = CONST1 - Q * Q + PPND7 = Q * (((A3 * R + A2) * R + A1) * R + A0) / + * (((B3 * R + B2) * R + B1) * R + ONE) + RETURN + ELSE + IF (Q .LT. 0) THEN + R = P + ELSE + R = ONE - P + ENDIF + IF (R .LE. ZERO) THEN + IFAULT = 1 + PPND7 = ZERO + RETURN + ENDIF + R = SQRT(-LOG(R)) + IF (R .LE. SPLIT2) THEN + R = R - CONST2 + PPND7 = (((C3 * R + C2) * R + C1) * R + C0) / + * ((D2 * R + D1) * R + ONE) + ELSE + R = R - SPLIT2 + PPND7 = (((E3 * R + E2) * R + E1) * R + E0) / + * ((F2 * R + F1) * R + ONE) + ENDIF + IF (Q .LT. 0) PPND7 = -PPND7 + RETURN + ENDIF + END + SUBROUTINE MVSTUD(NDF,A,B,BPD,ERRB,N,INF,D,IERC,HNC,PROB, + * BND,IFLT) + implicit none +C +C COMPUTE MULTIVARIATE STUDENT INTEGRAL, +C USING MVNPRD (DUNNETT, APPL. STAT., 1989) +C IF RHO(I,J) = BPD(I)*BPD(J). +C +C IF RHO(I,J) HAS GENERAL STRUCTURE, USE +C MULNOR (SCHERVISH, APPL. STAT., 1984) AND REPLACE +C CALL MVNPRD(A,B,BPD,EPS,N,INF,IERC,HNC,PROB,BND,IFLT) +C BY CALL MULNOR(A,B,SIG,EPS,N,INF,PROB,BND,IFLT). +C +C AUTHOR: C.W. DUNNETT, MCMASTER UNVERSITY +C +C BASED ON ADAPTIVE SIMPSON'S RULE ALGORITHM +C DESCRIBED IN SHAMPINE & ALLEN: "NUMERICAL +C COMPUTING", (1974), PAGE 240. +C +C PARAMETERS ARE SAME AS IN ALGORITHM AS 251 +C IN APPL. STAT. (1989), VOL. 38: 564-579 +C WITH THE FOLLOWING ADDITIONS: +C NDF INTEGER INPUT DEGREES OF FREEDOM +C D REAL ARRAY INPUT NON-CENTRALITY VECTOR +C (PUT NDF = 0 FOR INFINITE D.F.) +C + DOUBLE PRECISION :: HNC,PROB,BND + INTEGER :: NN, MAXDF,I,IERC,NDF,N,IFLT + PARAMETER (NN=100, MAXDF = 150) + integer :: INF(*) + DOUBLE PRECISION :: A(*),B(*),BPD(*),D(*),F(3), + & AA(NN),BB(NN) + DOUBLE PRECISION :: ERB2, ERRB, AX,BX,XX + DOUBLE PRECISION,SAVE :: ZERO,HALF,TWO,THREE,FOUR + INTEGER :: NF + !DIMENSION A(*),B(*),BPD(*),INF(*),D(*),F(3),AA(NN),BB(NN) + DATA ZERO,HALF,TWO,THREE,FOUR / 0.0, 0.5, 2.0, 3.0, 4.0 / + !external float + DO 10 I = 1, N + AA(I) = A(I) - D(I) + BB(I) = B(I) - D(I) + 10 CONTINUE + IF (NDF .LE. 0) THEN + CALL MVNPRD(AA,BB,BPD,ERRB,N,INF,IERC,HNC,PROB,BND,IFLT) + RETURN + ENDIF + BND = ZERO + IFLT = 0 + + ERB2 = ERRB +C +C CHECK IF D.F. EXCEED MAXDF; IF YES, THEN PROB +C IS COMPUTED BY QUADRATIC INTERPOLATION ON 1./D.F. +C + IF (NDF .LE. MAXDF) GO TO 20 + CALL MVNPRD(AA,BB,BPD,ERB2,N,INF,IERC,HNC,F(1),BND,IFLT) + NF = MAXDF / 2 + CALL SIMPSN(NF,A,B,BPD,ERB2,N,INF,D,IERC,HNC,F(3),BND,IFLT) + NF = NF * 2 + CALL SIMPSN(NF,A,B,BPD,ERB2,N,INF,D,IERC,HNC,F(2),BND,IFLT) + XX = DBLE(NF) / DBLE(NDF) + AX = F(3) - F(2)*TWO + F(1) + BX = F(2)*FOUR - F(3) - F(1)*THREE + PROB = F(1) + XX * (AX * XX + BX) * HALF + RETURN + 20 CALL SIMPSN (NDF,A,B,BPD,ERB2,N,INF,D,IERC,HNC,PROB,BND,IFLT) + RETURN + END + SUBROUTINE SIMPSN (NDF,A,B,BPD,ERRB,N,INF,D,IERC,HNC,PROB, + * BND,IFLT) + implicit none +C +C STUDENTIZES A MULTIVARIATE INTEGRAL USING SIMPSON'S RULE. +C + double precision :: A,B,BPD,INF,D, + * FV,F1T,F2T,F3T, + * LDIR,PSUM,ESTT,ERRR,GV,G1T,G2T, + * G3T,GSUM + double precision :: PROB, BOUNDA, BOUNDG,sTART, DAX, ERB2,ERRB, + $ EPS1, F0,G0, HNC, ERROR,DA,Z3,WT, CONTRG,DX,Z2,Z4,ESTL,ESTR, + $ ESTGL,ESTGR,CONTRB,TSUM,SUMG,DLG,ERRL,EXCESS,BND + double precision :: ZERO,HALF,ONE,ONEP5,TWO,FOUR,SIX,DXMIN + INTEGER :: IFLAG, IER, NDF,N, IERC,LVL,IFLT + DIMENSION A(*),B(*),BPD(*),INF(*),D(*), + * FV(5),F1T(30),F2T(30),F3T(30), + * LDIR(30),PSUM(30),ESTT(30),ERRR(30),GV(5),G1T(30),G2T(30), + * G3T(30),GSUM(30) + DATA ZERO,HALF,ONE,ONEP5,TWO,FOUR,SIX,DXMIN /0.0,0.5,1.0,1.5, + * 2.0,4.0,6.0,0.000004/ + PROB = ZERO + BOUNDA = ZERO + BOUNDG = ZERO + IFLAG = 0 + IER = 0 + START = -ONE + DAX = ONE + ERB2 = ERRB * HALF + EPS1 = ERB2 * HALF + CALL FUN (ZERO,NDF,A,B,BPD,ERB2,N,INF,D,F0,G0,IERC,HNC,IER) + 10 FV(1) = ZERO + GV(1) = ZERO + ERROR = ZERO + DA = DAX + LVL = 1 + Z3 = START + HALF*DA + CALL FUN(Z3,NDF,A,B,BPD,ERB2,N,INF,D,FV(3),GV(3),IERC,HNC,IER) + FV(5) = F0 + GV(5) = G0 + WT = ABS(DA) / SIX + CONTRB = WT * (FV(1) + FOUR * FV(3) + FV(5)) + CONTRG = WT * (GV(1) + FOUR * GV(3) + GV(5)) + LDIR(LVL) = 2 + PSUM(LVL) = ZERO + GSUM(LVL) = ZERO +C +C BISECT INTERVAL; COMPUTE ESTIMATES FOR EACH HALF. +C + 20 DX = HALF * DA + WT = ABS(DX) / SIX + Z2 = START + HALF * DX + CALL FUN(Z2,NDF,A,B,BPD,ERB2,N,INF,D,FV(2),GV(2),IERC,HNC,IER) + Z4 = START + ONEP5 * DX + CALL FUN(Z4,NDF,A,B,BPD,ERB2,N,INF,D,FV(4),GV(4),IERC,HNC,IER) + ESTL = WT * (FV(1) + FOUR * FV(2) + FV(3)) + ESTR = WT * (FV(3) + FOUR * FV(4) + FV(5)) + ESTGL = WT * (GV(1) + FOUR * GV(2) + GV(3)) + ESTGR = WT * (GV(3) + FOUR * GV(4) + GV(5)) + TSUM = ESTL + ESTR + SUMG = ESTGL + ESTGR + DLG = ABS(CONTRB - TSUM) + ERRL = DLG +C +C STOP BISECTING WHEN ACCURACY SUFFICIENT, OR IF +C INTERVAL TOO NARROW OR BISECTED TOO OFTEN. +C + 30 IF (DLG .LE. EPS1) GO TO 50 + IF (ABS(DX) .LE. DXMIN .OR. LVL .GE. 30) GO TO 40 +C +C RAISE LEVEL. STORE INFORMATION FOR RIGHT HALF +C AND APPLY SIMPSON'S RULE TO LEFT HALF. +C + LVL = LVL + 1 + LDIR(LVL) = 1 + F1T(LVL) = FV(3) + F2T(LVL) = FV(4) + F3T(LVL) = FV(5) + G1T(LVL) = GV(3) + G2T(LVL) = GV(4) + G3T(LVL) = GV(5) + DA = DX + FV(5) = FV(3) + FV(3) = FV(2) + GV(5) = GV(3) + GV(3) = GV(2) + ESTT(LVL) = ESTR + CONTRB = ESTL + CONTRG = ESTGL + EPS1 = EPS1 * HALF + ERRR(LVL) = EPS1 + GO TO 20 +C +C ACCEPT APPROXIMATE VALUE FOR INTERVAL. +C + 40 IFLAG = 11 + 50 ERROR = ERROR + ERRL + 60 IF (LDIR(LVL) .EQ. 1) GO TO 70 + TSUM = TSUM + PSUM(LVL) + SUMG = SUMG + GSUM(LVL) + LVL = LVL - 1 + IF (LVL .GT. 0) GO TO 60 + CONTRB = TSUM + CONTRG = SUMG + LVL = 1 + DLG = ERROR + GO TO 80 +C +C RESTORE SAVED INFORMATION TO PROCESS RIGHT HALF. +C + 70 PSUM(LVL) = TSUM + GSUM(LVL) = SUMG + LDIR(LVL) = 2 + DA = DAX / TWO**(LVL-1) + START = START + DX * TWO + FV(1) = F1T(LVL) + FV(3) = F2T(LVL) + FV(5) = F3T(LVL) + GV(1) = G1T(LVL) + GV(3) = G2T(LVL) + GV(5) = G3T(LVL) + CONTRB = ESTT(LVL) + EXCESS = EPS1 - DLG + EPS1 = ERRR(LVL) + IF (EXCESS .GT. ZERO) EPS1 = EPS1 + EXCESS + GO TO 20 + 80 PROB = PROB + CONTRB + BOUNDG = BOUNDG + CONTRG + BOUNDA = BOUNDA + DLG + IF (Z4 .LE. ZERO) GO TO 90 + IF (IFLT .EQ. 0) IFLT = IER + IF (IFLT .EQ. 0) IFLT = IFLAG + BOUNDA = BOUNDA + BOUNDG + IF (BND .LT. BOUNDA) BND = BOUNDA + RETURN + 90 EPS1 = ERB2 * HALF + EXCESS = EPS1 - BND + IF (EXCESS .GT. ZERO) EPS1 = EPS1 + EXCESS + START = ONE + DAX = -ONE + GO TO 10 + END + DOUBLE PRECISION FUNCTION SDIST(Y,N) + implicit none +C +C COMPUTE Y**(N/2 - 1) EXP(-Y) / GAMMA(N/2) +C +C (Revised: 1994-01-19) +C + DOUBLE PRECISION :: Y,XN,TEST, ZERO, HALF, ONE, X23,SQRTPI + INTEGER :: N,JJ,JK,JKP,J + DATA ZERO, HALF, ONE, X23 / 0.0, 0.5, 1.0, -23.0 / + DATA SQRTPI / 1.77245385090552 / + SDIST = ZERO + IF (Y .LE. ZERO) RETURN + JJ = N/2 - 1 + JK = 2 * JJ - N + 2 + JKP = JJ - JK + SDIST = ONE + IF (JK .LT. 0) SDIST = SDIST / SQRT(Y) / SQRTPI + IF (JKP .EQ. 0) GO TO 20 + XN = DBLE(N) * HALF + TEST = LOG(Y) - Y / DBLE(JKP) + IF ( TEST .LT. X23 ) THEN + SDIST = ZERO + RETURN + ENDIF + SDIST = LOG ( SDIST ) + DO 10 J = 1, JKP + XN = XN - ONE + SDIST = SDIST + TEST - LOG(XN) + 10 CONTINUE + IF ( SDIST .LT. X23 ) THEN + SDIST = ZERO + ELSE + SDIST = EXP( SDIST ) + ENDIF + RETURN + 20 SDIST = SDIST * EXP(-Y) + RETURN + END + SUBROUTINE FUN (Z,NDF,H,HL,BPD,ERB2,N,INF,D,F0,G0,IERC + * ,HNC,IER) + implicit none + double precision :: ZERO, ONE, TWO, SMALL, Z, arg, term , f0, g0 + $ ,df,ERB2,HNC,BND,PROB + INTEGER NN,NDF,N, I, IER,IERC,IFLT + PARAMETER (NN=100) + DOUBLE precision :: A,B,H,HL,BPD,D, SDIST + integer :: INF + DIMENSION A(NN),B(NN),H(*),HL(*),BPD(*),INF(*),D(*) + DATA ZERO, ONE, TWO, SMALL / 0.0, 1.0, 2.0, 1.0E-08 / + external SDIST + F0 = ZERO + G0 = ZERO + IF (Z .LE. -ONE .OR. Z .GE. ONE) RETURN + DF = DBLE(NDF) + ARG = (ONE + Z) / (ONE - Z) + TERM = ARG * DF * TWO / (ONE-Z)**2 * SDIST(DF/TWO*ARG*ARG,NDF) + IF (TERM .LE. SMALL) RETURN + DO 10 I = 1, N + A(I) = ARG * H(I) - D(I) + B(I) = ARG * HL(I) - D(I) + 10 CONTINUE + CALL MVNPRD (A,B,BPD,ERB2,N,INF,IERC,HNC,PROB,BND,IFLT) + IF (IER .EQ. 0) IER = IFLT + G0 = TERM * BND + F0 = TERM * PROB + RETURN + END + +C * * * * * * * * * * * * * * * * * * * * * * * * * * * * +C Charles Dunnett +C Dept. of Mathematics and Statistics +C McMaster University +C Hamilton, Ontario L8S 4K1 +C Canada +C E-mail: dunnett@mcmaster.ca +C Tel.: (905) 525-9140 (Ext. 27104) +C * * * * * * * * * * * * * * * * * * * * * * * * * * * * + + diff --git a/wafo/source/mvnprd/mvnprd.pyf b/wafo/source/mvnprd/mvnprd.pyf new file mode 100755 index 0000000..2398238 --- /dev/null +++ b/wafo/source/mvnprd/mvnprd.pyf @@ -0,0 +1,23 @@ +! -*- f90 -*- +! Note: the context of this file is case sensitive. + +python module mvnprd ! in + interface ! in :mvnprd + subroutine mvnprd(a,b,bpd,eps,n,inf,ierc,hinc,prob,bound,ifault) ! in :mvnprd:mvnprd.f + double precision dimension(*) :: a + double precision dimension(*) :: b + double precision dimension(*) :: bpd + double precision :: eps + integer :: n + integer dimension(*) :: inf + integer :: ierc + double precision :: hinc + double precision :: prob + double precision :: bound + integer :: ifault + end subroutine mvnprd + end interface +end python module mvnprd + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/source/mvnprd/mvnprd_interface.f b/wafo/source/mvnprd/mvnprd_interface.f new file mode 100755 index 0000000..1f0715d --- /dev/null +++ b/wafo/source/mvnprd/mvnprd_interface.f @@ -0,0 +1,87 @@ + + subroutine prbnormtndpc(rho,a,b,NDF,N,abseps,IERC,HNC,PRB,BOUND, + * IFAULT) + double precision A(N),B(N),rho(N),D(N) + integer INFIN(N) + integer NDF,N,IERC + integer IFAULT + double precision HNC,EPS + double precision PRB, BOUND + double precision, parameter :: infinity = 37.0d0 +Cf2py integer, intent(hide), depend(rho) :: N = len(rho) +Cf2py depend(N) a +Cf2py depend(N) b +Cf2py integer, optional :: NDF = 0 +Cf2py double precision, optional :: abseps = 0.001 +Cf2py double precision, optional :: HNC = 0.24 +Cf2py integer, optional :: IERC =0 +Cf2py double precision, intent(out) :: PRB +Cf2py double precision, intent(out) :: BOUND +Cf2py integer, intent(out) :: IFAULT + +CCf2py intent(in) N,IERC +CCf2py intent(in) HINC,EPS +CCf2py intent(in) INF +CCf2py intent(in) A,B,rho + + + +* Set INFIN INTEGER, array of integration limits flags: +* if INFIN(I) < 0, Ith limits are (-infinity, infinity); +* if INFIN(I) = 0, Ith limits are [LOWER(I), infinity); +* if INFIN(I) = 1, Ith limits are (-infinity, UPPER(I)]; +* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)]. + Ndim = 0 + DO K = 1,N + Ndim = Ndim + 1 + INFIN(Ndim) = 2 + D(k) = 0.0 + if (A(K)-D(K).LE.-INFINITY) THEN + if (B(K)-D(K) .GE. INFINITY) THEN + Ndim = Ndim - 1 + !INFIN(K) = -1 + else + INFIN(Ndim) = 1 + endif + else if (B(K)-D(K).GE.INFINITY) THEN + INFIN(Ndim) = 0 + endif + if (ndimEVnWFQNz252N|yB4i(-R)wP1dEpb zac10(cc;zsY}qYt)po5e`&m}IEACSeF@;E4?79KFl0s5~+g&rJyIcMU1zGZbf7iM1 znR{lEQjqt3-uHd_ft>rCbDis4=lXZ9^XI;2(MS3sGb52ml>a9uBauC%`j@c3C;qdZ z>a*T(*IAJ}PWz_|_f#$XrwbRa`1B1;t3LOcKm6Qvf70}c>#o24Gd)co|76qWdarN# z^z}{cAH1gNPd>B!lNX(N=IL=Cb!RdXSy)vUS@ovRT@l%JT4ZHiBr+B`<-#+nX0%4$ z17%0~|Ex%)pYn+Q?-aF*SK0FnM|Tw^qTl`{PPa@?<_sHGB+}&Cse#(_&yr&^BOkC_ zG;;fy_AvFIx@aWvrm3rbo6?JVKDoLF1Wm1sM+9lCg+VyX%Oai2E?RzF&vj&XH}FSe ze;w)jNJIY;k!AfCea-s9#RnT>+Q4=;Jrspr%6_^H^!U%Jpx3B+-A-CmlZH z5xk1P>&V@u@QFxE;-XJGILAWBsLRyA$-J^s{T3+ngA(^M4tS0`!O zzpm`RrH(du$(q6Tcun2dwW~;@5z=flKK{)QRz>#Tm-|OS=I;I-B`1WxLGY>LRp<5J z*O$BFEk67;siRSEmT+bs>Uq~rb&~6Tq3w~+H{@=Ncr!EoJvEa<4j?rVZF}U#iEMp* z{I%d3tX3M-dsFwi|Mlb!@`+L4Q@$EU!gm8~v3eq{x3`S~cGx3$a@IS{- z4Q~~loc)k`zpCfc>fszpG=ORfuf7^Ky+)-?5Ciy*2d`Zzn`r-hQY3c-U9 zIs|VQ=(~Ib0~8v9(*RS8$swfbtTZcZyfVXzm=u>@OXOwOx zuWqoyiNE(QgM>}Ahkz@sV`{sOWcqvGYgM(-L)F>gs#rP$A(OLicir}YFuNumot$+C z1#|lIA4YYcOFUT)PbO!LQ=Yv)^GwfACTH!?^K;oJv%}-ZUYwkS>?ZG&j_fI!{#d4y zhV-g2bvgp`XR656_vQ+96JOfdiJT`gHvHp8M=bqE#eSg=0$;FxC%&BPc}vJX;s1uC zw*!z%-sYX(%m4?IN7MjyZO$cklf-k$JtR%J~0(2X+H0F{6 zaI`jYHCo>uZ^$JNkksdr2TAH=*09@4)&f(r(rM!4tTo1&o>gAgp0=O$^yHEo@7zS) z_>KP!oyjpTIR^h1ddb_`?(6xK^kUXgu`GGJKWYc?HZQrm?Y>xgNW>I@?g#_*zRS5m zFL{LjHVlYzQ#r=>!rwgc&|q@YqK|jJe_|7Z5uzs#4FkG5m+ZT9_GcN;w_Yd?sQ1cwy$56I&%yYDW_?nbK(q4K zlJo5wZmY9=i;7T_!DOE!cdL>69nT1I^dj6hC?;t@fH{7t*)>Emw&MqzSs$t)qU5c*@yW~=TJea)A5Sz8hVr!Qb z{I3ij|2s@l=6~bpwdtwvf8$=)?YJwfc-x)r)Qvy$Y{*@`rNU=ol!M7_doIXK3?{c< zwdber$6y}`dm?A!Q#p`L#QDxs{=z)v9`ls3^e%HJJMKK9?mr*uK9*i)fc3dE zK@Hs5asyD0hkR-*{T_qbEvVH7b;q5n1@(gxsCq#qN5m+eBH85K+2lblITRul@1!ZK z;PM`M4RGc%&9|4iOxhptlKaGCX1oxZLi?|(y}8WwM%QfxmnmO~%apIgWy%-gGUZ2^ zJk13$y^{m6Tym}a==?ZOM847}*^^LMXjb17ZuYQ< zzav=xnE#!RXzPB>`jk{tzEWGgkwz0PrvF2bOwMXzs`%zIO0t7H>-8M}kVX8Twb~(h zZ_}o`9Fpjt23`A6DD&F{in4PfkZqSmW9ida>;+;;%XwsWQn1?{v(R*=W@M(3v^KN<&`I~yLUFEsRN#aNi%(uwMAw+>&Li~d+8=->FR z^RRl*dZ##>#aNGcU)CyX!~Ob8P_r*!bb%Fr4bCFNZY5Xb-$cgbVUziKktMn3kI1M3 z5sj7dDc=nO)^h~ip8Bibxn6p@-hy^WV2yTT#LB#`nrxqnm)>XVM;uJ8%DQT^$r_W4 zx4r`v+CMo)y<4w$)v#pudh5IewW-z7$=(ic<8F;>f6vD}>w-Ck#Inzqh@GZ$`qj8F-i4(AbNVNC`0LjVN9RK>LlBJ% z>LBHJj07zXwt}95bG@2NvNan91n3s5woSsO15t4{(}-4P`qzF^Z1`FenZZm0e;Hw9 z&ZPIb+BuI-oG<@&`374$JE6||p_;{Ve*qMNXAE9OZKV)zc%N4Gz5gr&_?l3qj!$}q zx%Y-2r5VYc+T_U|e(KxUKTki(sZ46=$`a7|qc^Umj7=dc>pe4N{Z+-%2UN7gwoFj; zRdPObJ~^uq>j)2#{Tl0XBIn&>(wbz&LR&_9&YXvAebN5sH4rzspzYq?r*g?7*>_55 zB*z?qB}j9ZMP)8cO^eOX{<+YkZay+2mfpydSiYdvyF~-^7S=_*@9U}Rm}lyhc_@}S z7nihCi(0SY(riQii&A+ts>}Z|kF3r=O%fQQkIwYTym}hp1^YwU`&~n;kgdbsA7zi_ zn*)>~Ixfj;xwX^x7Pr9KY$i?#8&`CGbq$M6h}(QMt~QrxrhL#efDuKqnWsUx^B^Rr z`V)gDP**NSWxp2XZ(b&C_L+KdGM2dnS!GBMkg^;Ze;Z1ci_RR3T>qJ-<%5anXFhR5 z(_o_Jx*Mqb*^g+bFx*&tf=^!lgeG<-6CDwaIYxKT9NkCtkAnf5N(|`vCZ93C=PsIz;|k| z(fgr>ix8{sf9hMF@xr@#B%7%R!0TdpdC>d*Y@V~X)ah@gmcNWO{h<1pA0K}|B&GV7 zXN_p52-*%jPJEWV?|$$bCJFe@B?VMT19=Utw1)d3eb0F&FZw*|z`T##L!WjX0L>1L zkAN$7&$Va5Qnr1xgpGbfxUjPQRLMKvu5q2(kv&zJr)*dOp+A;zo{4Rdk*Vv=G%?}a z@QLdrhv;>myFYPCB>x#maYnx!$ow3Q7VwX0AZuK&+v!zA&~c~hIMe0^@GC{u-*ZuCB>0 z1pB4hE}i_d9>$lCgU`D>ia@mVoP-+D{!JGB-Ywcn2>AA`;s`cVDQ?{iaOy>zN`^ju z1hU9P_2q3ZuDwYZt`ml>KMbSzP7%eGhNAaDB=`p!n7IL?4>~2L0bsq1>}Jk0;@TT& zkiS@`TYs9pA!2nff&Kx@w)#hFjgdO_RI*Zpu#fA%p* zy5}EgB&yWeorL+3?BG+o^6!GS@cNzI)Ov4ejd!W$p|iF3$=aLPJJ{*WF0I))jQdIr z)PHp8ljZSUH*c=ai-_D?ep-Sn_y)&8Ct z*$1-qse}VFsCAFD(aYu(NWA%8YO*S}W(5EZF= zqlxU^w)tjti=O7W*)t1G<)B~V{U&fmcAdimf0WM{6WZqY?jZoj?8&TI9EY^ zYW|mJ#J+Z4_OZlpgHP@zNtG$>tj9+auUH55WzapS<~h zwjlQ1!L}!Re?2eBn(tYv@g5D{J2k<WKZ2OJZbzt3LCMnze)d8bGMHj(J zS&tay6(Ui#ehpPMpImJJ+t+&c~oA3ss+fZ%ZDD zZGK+3Fv7VTFv5}S+*J0-iC<(7dA&zanauvxCWoQD&%fc>7h~T&mW_I>*L&XYEgkj) zX>+by2@ZoWMXvA17gvnBH&+<(#FyZR0&31`F3*1#*M=I@1rv(+J-ZBFZ#h2O)m`YO z!X*GtY(Vt2M#2XPm8h;9KAxi0bRdWj%VJ@DB|__TWK3ptB4Q*PlGf6yDDEg z0unZ{4nm`%P^+E`zWhh2wod$+Fd#g?fC}H2o~biSs!=6A4m?-mQXdK=X6 z6uHOCu#Z?~o9dDcUQQ91*V#Dliu%~*TjVt?IK8I_op(fM2W_?R)VIEJ%EnW@MGfAE zIY;d|{h3ReX0l@@Qm&|PGc>U+Ulvvi&R}qK=RRhnInRW)1vU(bM>=msV;I7`S;m1( zUe?lECtv%|jD5~SbNaO`tW9AFU*Egoarx{-)dOwEdM7jvZA;}W0KKPPblMp2`QnQ&rkJ0sHXMZcGN zWaedZHldex9xtR_8`?hBjt?hx<) zRB-0DKmSf))-UT~nO)*vqS5QFN4#RacUc{#L`LY1gqhTN^*`85c#To|#lX8}2`wC=*4J{e+0O z6*+mCf$a*Jh#b|=%1<2fy6VP1!5*y?_1|Ps&*Tr2$bUX_8LE}B=~`9Cgz&o%Jg ze@Xo^8cY8@#op2e@0g55PVx7`S>I760@ ze?mn5(6lSYJaj@$9YnkC*#SYR$7b%i5RN`Oh*%KU|HAy9rB=^>!E<)+-u#T)W<2$+ zo-;n>o%N|~>`v9)Mj(DI-F+o`*2ZWozmP}cKO-6+`?ZN6qlo?4!6u-4XUWKoCEity zZ6B$RrN0jrxv_-bSNc4<_YLq^(E#5{>+Hjs{-<`im_T?gX?k-N8uDKKiDl+U6Y)Bo zjqAT~*85`VxDfx$ySjd!E!2A6i`^Sfh>V~7j(oV2(uizJ|Ckn^{X>@jD7i9ic{lfrH-pO zS>qmKUrtbLD+Nczli!KmlQF-G8OH9p^i1gZnnWh)ik3Cd608#b=WG;Z@_Dfny^L+` zf3v(6b_AgKDx+)U+031^)Xvd7$aj81*a>4uN^Rb@d=E-*us2q*)cY2$jWv07MVZeI zM)(^`Kds)GC1A~h8t{a}&&0bpLT~eF9s@A)vE_-RMcS&9LsygqQ`YfGaQlGu5 z-n*tDduhFQNkjIk2Jf22?4`)CF?&^`cTH3F(njQ&y^4pX!hYjtL{DLZ_B!P>H8s6i z%g^`fPj8Rx6jVPmp=ZvNvoa|=RvSmP1iELg&(1q96uYzzdQ65#=Tm~87l5-*>cDpc zo;{qux$<%YFef~5A@%ud7cu}t7*Qw`beEtl1xcnJB-uQZ7{D0bD zW*%t6pPnXcQu|o?OJXLYxUy-(<5J}f&pCxw$Y-Ov<=!+C(+FAfPUnb%WW!`6e;QBN zVrqN_=9s#FMrv?Iz6-D&vgdnt@@M0zm+xr;fBqd}UT_k96isq`b&J@&$I1H?h^rf( z)8AO;(=^K8giaC|maO+S9JT1u-;10J1RApWMsx!^AUuA?`$(N!+wyFKY77gc{rQI%~a! z?}=viv%T1F@jUH8IhkM?^YolYtDeuH-&aTX{$hsO;WX^Z*P9@hfim}AQCqdIuy>gL zAz0b3-ir&+VT34#@MBhxyFOd44sL7 za+Y=?!%YMGVjcc>-g@JCfA7xJzR8KNm+;q}Hx>9ZwB~7dQ_USz5>ps=;F6cp?hpNq zzn=*}heF5nONp zQEtDfqf2yzax-1`%&^0!GVGimqz0CNUBPr1|1Z7Qf?kwyKjV??^R{g9z9JjX-tTsE z6Pf+J|B=0+CiP;ZXHWKvwQIj`CtYlEB*%!Kj}Q8{#U7rR^{Kwg-N{7T7uoFnB}kAL zyYXm4*TDs`^ouIlDAVBF=AheF%yu0~J%4u37iDNHZ{2L!1c(CL(v8W5#f?enoc4xo zQDdSBN4)HgB)PK}OPl;zMY~zji?$f3DUY)pyC%an1btbbR|K6xmbbXCMw_0p-^K9; z6r!*%D#g$ZV!Fw%mcre9L?)_BKnx!g+XaHQK!&(d!u1 z-8!83kG?+P-*9xJjikxzs@Jv-Q!+mp9;i3*2b( z7R{#HMhY7SljG;%6$g{Yq^g6-qb@lDZ&(%&xw>Ijc+e$wS!FP}$JO<_!n<8^huVqZ zURSf1jMGaUz0~Fw?ap=W%dy3+bvb@U!~DjXcI(*rvtWI#i-?*6&&dv@j!o`8{)P*O zI5R~hHor}=FU@}bMmE+5r6hB;Fg+u?&j;MMcTBgwHXmm^0{lAx+GV>l1o-+u-s@DK;X#eQrkByBU zdS;+HmRX}t4z)eNmfp=Zxl1MmHrhCN=mGEMTBZBdv~h6a41b$;ba?d8ysm?>^a?sy z;3anfm-{eF!=dB!gUJlNpwxP^eg>nP=^|pCJw}^pNl8}$2Q)B|wnw06QBCer6uWk` z{Xt0D3rUMa3gkELEuqIJqnw7^l~rLfz8;W~{!dxOG#u$YbujvMjUfAz{J#Uoj+oln zMb3x)AwKMe7;%ieQv}=abR>kOj7Fy5v*a;nKYYFb2c7#c0axwljM2tN7*!Xe8rG;D znW*j)fA3O{*`GM^y$MAe9rh3<`-MwePe9 zEB%$`!Z(=~`b&xCMK+xpi9Z^&S|9(9chebroF8gJ&F06)KR~)+K>F)KfoTS$^C6#A zd0jj4^@uGYB2~U1JW$^ib zFl_N9==1pa_o^be68oq5ZBG=}IKJRQRs6jp(n>WjM85 zY~r8z*bwI2cAs;<3s*v%>vWtO8m*Sl4(%6B>yISYzmSNzTR;wFBI{CypdQ3|4 zldB){W)NX#(+5_af?jPs&_gmcaBT=!uPOn&SRQst%yl8)X7=;}o=p+}(|MU_vgxgw zQ}S=-Pf#Zk5nErTf8C{CvUxPZZQB-KF_y$zeXtH@ikWtEJi6YWN-t}PL`GJ|TSpeg zIX!6}ZODI3tPPD^XnB>T_Z>O~#uJ8V;zL1;j_F(6PYY=6EP=3H z=>X?0;anN-1aF7oby%y%(25H6>N%&x44q}R`HE4gZNqp3dX~JUe2dJi#Jwq05hsH4G4)waphzM)*CSRL>MK48dhLvea zU-p?60RiK@tyWG})ou6kl86&x$7p&$dWC~fa(I7uaL)`Ri>{*g%AiR(vfe9#nyHbw zF^5p~oL9;!jS*HYBx&;pRw)hLa4Bsz?3#^`z?x+YO#gW7r=*Xpmu#{tS*Jd@%gS=; zcsIpNNwcXUX{JQ&G=cHhe1<(X@wfv_ls58c)akaUV;-gTJW4BgtmDz_QehfSR`yI_ z%cJ=L!crbh6$q&=h>50p>B2FjEoL8g>GpVoteW`JwNNfgiyarqgGW9L@N=dP#~B)6 z8deY6a`!p-S&C+qf9DZVyt<_m?sNyg)9Uq`11#dZ?pbvKFr(O&YQ{St9E9Y4k;EZRR!LfsC5Y>n?Cp{_;3+8UorLY*nQvo`9+ z9Qq?942pFa%UvYxN|%#3#zVczMqC4p6x7H|-KP2#dQYt<4MjZ>6%O>(Q58`j!9P`N zHmQL?o~XnRt}f8lG%amS<+KU()u63CzFLHR1j68Vo!GuLUa#KL@qN&TEDn%R*XimO zySg13k&_y}1>HhJH6Bx~V;Y!aI7x&Sqty-4_Wg(VQlMTA??p@ow>{nsc&Q>a$xyb& zEUL3Q)eCf%tOiFCNaPscLL*e_soqMeaTix~L| zC0pYwN%B_^2>IHK`U+Nx-7%Q9Rg1;*u88QNWE2N(Gaen#4nc`#qLS*Mz&B-zd^6_( zb5vT?;XaTsG^fK_#h;`O3-r~{lXP4Zh^ueMj9{lIAvvxjEL=%DEZiLo!}r*+%wjk= zTHS;yR19!^c!0Y5dXfVa=&Lh8QJ?{S;4~YVsckx5^HSP-n?#8lbKapxpF0w^`}S`zQ}w%cH` zhxR@`qv}w2NZ&uFDl)Pr-i_Xia0oJ`z9wk@FoG_x5AR68`ybt9Of50d1 z1T>^AH-(A66(bFRLLp=*bm1L0VEh@l_dF<6{4meO9BWRq8JR-|VUbxP%jy>7SJ7AR z>8ZPo3$xa`MyEUQh&zzRNN06{BB=(JSkvJ5(1q6Q~W-u!(!4J!Coo}|5WA?<|_eei-V+NJzq zs7?pvCaVK|STs;uNy;(Uv<4x9%zuc^5V67-Jg;;W6;sZ~tw3B`RVdc)p7^EUJ*L_Q-h0LAVTU!;TTESHWtN4s|X#IP31u@t21+3 zMl*>$=-t~o;1p=U)X8~pMs8u4PmV%<(@TJza0g7(F2I2K~d3fEd7vUZwQIogel#pvI|XaB{WJTdU!vpp(SydgBs#ym&8}-5J39^ zx%Rjn1Z;c*bhXD<9Nupn9J#~RDkj4r#uhAT^gLCUnIAaU7IN^hoZg8R0d#zPx^^kG z1IAk%UxN(78v!mb$Av6`)6Hyu4>Y*~7>te}U0cSUYT{XAIxQV_7~67?S;p zu_`)*{M2D_lkw?9Ec54Xb|?U{F)BcHUkdmqWq|DW3Q#na0=Aa{YLAWxMO4Q!zZ0so zO-yyn)eHQ1{Cq~79%v$ATC!y80as|_a-l>KzWq#tPmpMWRl)>I0*m^33yq#mQO zEk{rT6l)VXPMT&qkX*-a{4#bQgTmB!HPq~?GweG^z;4Ob1FrDokqkfrL+U31i6vVP zsIWj+aid9eYDfHi5SqVQ;&s$I@fG)BO@^r1O5npFp?zJG9w2wqQy3()n`?3dPJGeFP}TdpMGT>KQb4s^K)ayLP{57~ z^?NCG`i9$IuTZCu$9QSADFyBqu`j6}Z=~aijL&Lk&|0E4F*oNAJ+FC_$Ih{8z1U`$7s%Pd_Si*bf;q5Sk%LBL(J##5?XPFi-I927sNBdHRe5{7 z8L7G%IPbG-im7DX$BR>I*`#5PkXvpux7w_e`c?I4`k+`qR3-O*#c2CMo81RgIPDzJ zvjdjMbzvD(&BV7;6^!w>aA6~;xR0hdj^d11ESqXV?1zSzc2=wDV&X4fiQ)+VH2%XR z_GK9O@)alGTBT+@DwA6hZz$>0wWX|Aqhg*VpyaZR>z+gaSPI?hBcy^um?113sNm4{9|RlEXagre{7A$A=CiZ z-;iLdj=Q!gx_-_}&Q%LrBgE1zENiEd)^aB;*{wFr!-GALpisf4s0bp-GLU5`C?LyE zXy{*82wy|*8YQ-(^G7|#ww%p29|V-HBUV!dqt=j=R;+gwX_8=3u#IQK$i@(lu`T}^ zF^njWRmIYN=%-vrM^=+HCC~$d3#xq`QBPK_hk~F5dlG^cm`{J9sqmacQ-RS`BSc3; zRG^A%R4OYSc>_`N6rzl6`F6y{?#qg3&v(b^g9)0F71O73+=NgfS}U>v19j34W00Vy z!O$Nede{^f?S?_1(;9Cqy#(?D1*kNDW4aE2y4dOZ=GSQ>ak};2t<2U%Ut^2a2CoJ7 ziBWBLIQDJnDuL1h2v4DjDUf=x#3a6r(NHB;`M~|IL|8*52E5VXF}{w?NR7`tG434> zQwey#E1L>?Um5n7pj=yMKIM#w)h5K80Q}9kYilEE}+gFBPl_C6v1}byLqaKi6 zE84of$v4!y?J>6Hn?O0~sfv}exYF}E2H@w#k)DtHd6tKS*K+XT=~5Ia+~&q}T9?KC z&~1PVfomXh4mVg2Md1eTqCuNaQBfDwUWWEDG!$uqu}*UJt6d_Q zhk6$~LeSyf)gZ8;B4;EMapv#1vN!!CrdL6xwOU<~eQB%xrJER#zPj{nyA|7(YyydG z`DOu1%JUMo?Q2p9%9M0Rq||BxmG`?Y0iOm%$nZiAq7*?t-LM_#v^xalEDL5+by9v| z8Wd*D&Tr0)Z64F0ltbCuvA$hR&iXvEZ7v(zqMcVK303y&%_@Bu@!zac z`IofHjk3xI+3JDnVuKS{r8U^01|dp|`X?OHzssFvmYCk26Pui?9<2_6`4(1ULZRxZ zOlJx#W+~JA5azS#?dbKY_4hN2qm&+Kln?uM#9W9>&%$t~wW=pdEMdC2P+#3~53R-l20s0l%psyMwhK6_j?To4vX@A6@kwR7yjctCC;=oE4 zVkJ8mTb0V%;|m#|vav1yM1kX(@&zl|DmVw@TS+XvzNE}7WmOSIoai!_%;az_P`7y zhWj&{Zy3^SH(P|j#6llT^Lc%P+PeQy5|W| zyiK0qIq47`xn;ROwGpPO%=Y4T2bIJ73R9v3%llwp*b@NxX!^~`=;Get2S%&+DfhtP z$BXd&0sNtU9saON)5B=>kU{!$ZC)jYNw=;<5IyZv!daC|#9F(yW3?tKKt(bzzT1<3 zI=t6pVO|XYkqbbFOB5mm0E##O5Pbk7T(YbHU@J@NMTJg3uLSvg`eo5?BYXF z2NviCfG9>LPNNCOKI;&EEz!+mogK07K3d(a(Qp|VL9+JU_g@T(yQ5<3GBNr&?Qs~m z?o^Xu!Ax5+tz;5qe_rsoUkE zga(o?NDuEXKj-Sy(TkVs_Xy`y7#H6a?i#k~}M+7K69qoczUGe!^T@Qm#O5I8

$49;68;=&FV{U>x+)W24FA;7A^G%m{6{ z#4=xn)^J}Vy~hikEgc_Cj;r$yIt>&s)VlW*48+|<3{HY1>K4!UQ^_q<)|Ky zWxJln2Z3iQhWFN{dXH35gEb+S>Q&bo+*Hhc4_`-&^jv@%PY-kMPIctXI>=u>D1;31 z=VH%nIn!oj(J}rTMT*rM9f}HL=r!ck;Sm#88bYvVO-gzdq%5|6+o8u zbIxzY`#3g4bR$W|GBjFUBMYdm^Gm85EZgL=j-ru285+5H-$=55dRIcy~J0cw4~Z?ihVxpP!V7_csw+&0gWyl%j@u5eE!c0 zq4t=i6t!`p)(o7cJ~=^~uo+xn!v&}NB`9+&ycf*dv-z2nddXv6*V9@5qUKNXn%6lS z^hY-ad6lf_w$Y4>blB$ja7;P)a6A|gvc0*$k{WxoW_5Z5upy`|jC|rl2B1ERc$<9i z<^UXXFFv-~qcuzTfE__?0q-=-tQk#?$ymqy&$98m2wew9ll+p3+|q`lM|5n<%ShVs zJ;<|INI}u(>30cCAU8boqqa#Ka~f%uP)s{Om#_ z3F@Sq#%Ph=eN^zQ-gwl7bJ2=gj2{@}C3$^;ZfC!Fqyhb16wLXpfhF-77{q zjgjN{4(&0N*`>lu05XES=t0P3svOhN+Z#cS-n`Jw9oBrKl z`qyGHXQ+r{r3QdlTsM}&QlZOgROqrAw!Do*|9G5_TI(O)i1FbJw#Rp;dqg>O!MLetmsJB5{*gS64_PnxPY12N21>1(kW6AKTJO zj@U=JqS6O8bL{=o*$lAaIu_qf0#qwo<5cw-|w@)eKd6?qb~D-(pTEew^10RCImN%657N55uDOQ+ATC%Y?QRqC`%~b=&0Hx za?%G{^-ioMTvWF*10dVO6tV&VY@w)^r;%!F0r-; zny^m#jFaRedhiV z(9%Pwx%@8Gw*}RD;3W)ct*^?Fb^il+YsRfw%8^{N5_g53I<;Xex4XI!A3`%PU@IJ$ zrfX1iC~?N9Fiis#Rtwo6sEKEagp4sOM`432R8tC-BTP)NoF$@|!X9<@k$+pcw8JB* zn3T##6P}l-6I)I&^X=@wF?h2U>aXKr$%}<=AF)v+Kw>WzwrT*?YU5873~`4lb=0f} zzeio-b>=@{&cL~G=~~f_1>=l=z+8c|Ct!Rl5#@q$raxegpghtDV4UF(m>U2O3>2Os zAFVGl`vG$T&VK+CvMlS%jDEmeKuP2h8kaM(0W-Q1y@D6Ak&#`_HE)mil`=%OqD%F% z90v*kOMr3eKyx*4T9FKP&vXRw4L;=>Aa_7;TV3V9Obtr~d&8m@g;v0=r2~;{P{;$9 zO#sf;fun&3l+?7->7#C71)4fV-#Tz%Im-Ce6jY5urB_4po1LxKQ4osRMOT1R&+MHz zPMmm@J$ma%@K7f<_#-S`DoDfN*)G)=mlO%I`H%BCy1rn?bNS94wwBq&U&4`Amdx{s z=C!s^#T14&B>$7FWrcn3-e0|e)2;`PchIuk6X}h-ZUa zba_kS3t9IkU`nKovxs#cvpYy3Sk=62tD%L1fp&bX&rBf{`KbwQkVQeCIo>t zPlA+v#P6xCqq#!mdS*>Q?Zn09q~1gi!ai}H|I_jdQJqCam?Ks*#$8)WCAL z=4AtF0AIAT&lF{={_-t1`#w{+$gP8|i_z*a#(!vR3hikzvorlN82fZk>04`=n88TH z+T-()-F$gWc|)g{YKIrKKCDQ)!+>l9q@>gx)s0IO_+DxcKY=e6n4i#Sj~cNOcZC9C zr&t~A$BVmDC#cXalpqn>_yDK)91*q9c(;Kca~&uXs8ndzGnUb>YO|cS-MiZXGF3^( z^%&doXXuUFy;I)p-r19O@3a-?ld36L04i<{Ht|-=2m2Ma?^gif#ij#PUEYzb&xQ$vex zQgKdXigUGmsn1K!Hy3;wHo!*Gd|WMEFi5e_#Rqg%$n(}_;bd&XfYdNJ7FmtxgN?op zbao+lI*8ww#Fz23jP2jGQ@O9SEHwz!A&U(w8n1LsBI}B0P$91nOUtzj1i3GxhZQ`t znNyu0> z@3fX7U(k*(xQlMP@dfI3FMx!9@@EZ}*9GBPxFr|b;R9)JTa~VgEgSm+&RGH^tkg@5 zw6J1*`zUj>ru|?fzI&Sgki=r=q6VG+I6!m(gPTBIY2j&m2c>#U<8j>57?;7F!-5*MYSQ7ljj5w z4z@tT6fUD@c~K@?XzqYprv{E?Ru(`KQ-k!>6NpkZ(t{i%@_d`$MEpb%;&xgl_V9}FVkQO{=_e~R*K z*WC6p<+=EuO`c8Q^5wZeCAhp&dCHWX9r3GzvI{n(MJpQzma;7kgK5_hoPd=$lJlhv zYNo3Rk_4aJpa8?v_u%GE+io0Z;&->ox^u1n#rdVF`}$vg>*yH&|TJ;DHl2 z=&opR>$DAUz{C3H;eQra<$AmHI^+nk9q)vJ1zXpY*}{A<7l(vvQXBUN^|IE0q&-%`v z2{dVI#JP048{;jE&o5cBu0b55=W8?|4M18;Kt3!GDv?@3>EXw54(E^Q4O>mqJ%mB$ zk2?ejTzvaCkCDmFdOCzNAn$aI>ipxO8VG7l?X3=ff+lZ3kzatnx}orw@b3H?a+>m4 z=+^&uL|CFf7U}S!85YlG2+dG1n|vXJHKq6v@#`_9!r{acM$w$b)Bp)Vj{hQkBTL6c`i6jNiNaKCMr2glrIEtR&AK0D-w4nE zG!Je5I-v|ZD0-Xa9cr(NTzA!!ZG)>KZurGz7fWMlf!|giOfRFx-7v9wVC}tX^~1BR zRk>eAbEweeNAy?k@#rzOCgXt73 z5LnHF#PefxL^d(9+%A^2@Z18j?eX=lLVdPU@UpHM`MBl5X|8WzjPV#u`=QyP_XE_e zr;bF>Q-Qoqcil=E#{n4?GpK&xJ{58vVw@nrvPEewu^+j=150 zPbi0JX$d<^1>~5Ty4@JgOFY(KWV!T|=`)ZUh&F;;;?n^2Trp+$@&##m90TO_FJQ7W zv)4qurR7SY(!iR7%b0F3+9i7vvx9ksdCmj%z8<7)UT$Q5KK4P zp05QX6`is4dj47oj>QIJyHcWcmtUhd8_PW6xaMR}Z?Qn$56ku<1^V$GR`ve9%g}_1y|8TQQv}LwSvsOe3u#{Fz0?f@ z$6%0tFx%a`9CV7vLn10&%l{F7MZ1$mL*a`fE-12n z7ky96eoESM+N{*X-#~oCr@W98pIu+~Cl=VVNt5e%Q9_As1Wea>8|~s}!)SEhXfz&p ziO~K|@5P4IWY|bV)0nN@=1O#7v?*I7^r59{9gCh@Y=CsYJ(XIIjT24E{KOW!sZ|di z#}wM`UHe)q&2`Rnu)*G`wJ0Ae;UGR;ZoFBe<4l=>DEO?WsD2(L>#o-mqt=E^osD>j zMoh-WH{F0Mee4IUO}8=0jdqFwejA{;A+FQ#8ng8qDQUJ68?Z|9-<7D10uD_bK6vhbjz1sWnh)o%N3&p+Rkl z&Qu8v@_aNB6Ex;=$3>OG!34tO5Fo^p{*w9*t7qq-5#bjZCm_EgMC-cJWT2NxOdYP%rp9fJ`u*kKMBFIy6l5$M|id>aU zBbgJ)Rp;ciRx(X%F~2BR5%$t@EkddFNy;@C^9kh^270A(^CUOLaK10ac-#y9b5BK-K8OSGD3spVM_5>^8{N zR=+tS9mQ##QOKGDDQ2CHlOLvY(_tgBP(V)}qsK2V4BRadi)J_fDshflvO0*+RH)0d zc7to+V$*7^WfJz%2<5@ETRKV?vjENPo*_MoQ|ZnMnnN{%W#0;Y>QS5IhF%EtdXcn@MkT-ME=_heLOpY)6;gZAQk}MFQ=n_GdSp)h8d*1|T3tV`S8fv1Riaf) zze8&TbN7c*(2CBHT`tE}R**ovl4*z^1|H%^Lap5i3Dh^c)=H*nJ?2_#m%t~?tzv|g z^@*^u?p(#Y7(FHRW3FE9sORkEz#be5gc!~hY(Me zl|YHd2Bn8!jT*2|pnj(|vyOqee2wa4QCy=cuQjTE`joY&Nroa{Y9%wK)!C+k*65I^ z&Q30|4x$S&Jr4X;1TWO(YjKMbuuRVkTi6a`&uA6Qku6Dn*i6qYVNg(Ey; zI+A<-5|X5rEFfjU{;hyQ3vzX2P>gEKmwG##y0glB{QF9p3>ma1|`UUyD5>>#9oqP zPta{ia%~>~yn!%H;|-3h%55dWTz;MewNe>KmJv~IqT+1P?OH3DrnQ^_trhtC zggK`ttT;7cWhZr`G2?)aGE1P;8Ys06xjwap22~d4BJn_DZgO*xcm=sFBsLf6A;g(w zjx#=#IBigR2xhE+i2?{ct+= zzMUkPK+md#>X>Oz3rT>o+j8SSufWyfpyrb7`Rc8=-g?)qx9;bS*!ZyPV}ykF2ZFD4 z@KZPX=Ow%ShegeMRN%f2V|Nu6%`PwDP*&gg@D{cDw;6)F3-eumQKG!XqW1EVsgvt?$as^eMi;WuL_oG&8m^RjqC3O$i-@(*Z~OI*!&^K*iyD zPm4P~@L!4v9bxx0OmJ1rMQX5)%Y%{pNAzP2!@;oh(s4ZDSl>=kJRhE7k3N=Zq_NS% zWVQJlpwrhwtppl4Ilc=Oj=`h`uAZI79Ec!gB;Yvq5aK$94LSJ)h}AELu{T64rYy4DlkpRHGpd7l#;T{TZXf z1&9R`KlPHl{%8nB8;7{#BUB-utt>u!t1&l$OyVYt4)?AK?-f&zrS*^mqN4x@??g9W z(A%w1cnsTJH(S)&)=L2mh5Ig?emcy09~#}Y_w-$N?6)}Un?e(MK1dib2A?=KYT&V1 zNZReknj73>9i@6XoYGnzt(SKDM2`)ncq{vA-Yc9~^s1rzF#$XuEU~jEk)o6A*;=AC zTaidokv^mEgl*R{77s@Iq{)m}jYu>&H*o*f_1pZq(!)6WIWP&YfJVv#s5n9*`M5|? z5(@R$>Gv3v*}XOOjg~YjS;W1{C$fv5h?YQzc|b@H6lh1ONsA<2jaoJg2ZmLkzkf{ZO z)m@pz{5(^N_Zu36LU@#%?d*AJaO*UvQ-k(V`;{(rW<1x!iA=4VVad+8jpIKI@%i#9 z{mIqicUyE#2feYCTc2p>{*M2ZsKQ}su=rQ~%RBjHEwbB?I&Ix11l9ZOq?EWznp5fO ze>c!=wVcW@Pcsilr7irx!6mjE(MdU$y0C9>B93iYK&4w*NP2QTH6c}X>cF)&ewmVL zxNWsgh7?ADg~du@Te9@(P$_SB+ZKA!ZGb)P+6sjgBdK9y-=9RuN5co6oRfZ-KV= zvpUdBtn-#~L2>kH<){v;n&P(t|~SX1|oKWlLDe z0118WP{MoSDr6(t)!pIh_PM$PB=pe)3cu&$l=ywTP<)IOdp_!yx?f6EKuC`Y2yN~L zSv}8)R%IiEm4GEBm)YVGE9&490PPG8H#36Ql+iLB0*DnRIT zj|vcMNG?Dy1{4E?IUvh__0=SAC##QFjl9JmW2(^oPMkAS2JG%;TqGKvO+@QmzQHA8 zfEDj?`F;|%r~I6xiKw=l#ernCs}+i{IwYh^0#iL;tuARGDTXb&Mf3|eM}3Q{SKp=e z_flVucw|>x{n_@F|4=>bOs#T}(R&r>MKyQG42JBULO1Ti!*AACA2a>EZ((g?{-x(s zuDi<%(6tKO=TB95T!pg7)bZ2THV3F3N@v#LC|fP$L4py;+jn9NvQ~vJLZm&Yl0x5# zE#&G}cNM{qHM4rjkov_+78Qb}>EZy$T@9pmfL>WF;4@{bv4O8-q>i7qPCs9+F`lEJ zFK2l}2b$c)z35u`HTg~IjcxccW}>!xdyA70M6EKScu2U1mvuvpX4_~M#3u5#6v;|W zLA1Q*>jx%!ovBp%UPnq43TY<|Bxz9dN@a>={>C4O|Hg#6f&bRwk8U((s^hK`fb5SEb~jLmy0+?cG>KP)7t?W zcrPnY5Op+gE&DKq+AH zj?R_11Ax^k;K$rZf^!+a-d=0{OPGrS)mXLdB8LmIZsl}f{gU8yeTwo1h)QXg5= z?Dq$V3vnwDgwT{!uWbn;?tXwqtB;wBs+>cdd#X0S<05o*IfZz6wO@J?#LA37fQ)Oo z694Nql!{DBN0cmTb{kJlH!0l(EG*ingqQKu@&vPqP`#qrL>d|lU(Xf8j%EJdX{$J> zWwvG#*&IF6l66apPt0$zBes{f3IUI_MRC&?0Y!wA#Y5`YiAY)t?-80>cs1^t5II!W~*H~NJgLtoJyqPV} z{J9d06l=X7dQ1O>M9*t6cqwqW_~}INf`Al_XUeJUGFUK0TSaAmL)Ao^Veq#YxV{|( z4?GCxlqV0djE)_GZHYpQmo=fo5nD<1D!giC*u0e!vW?I-Yb+x%x(#F)!yBw(gafb8 zsNN44Sp^_%WlX`B-rp%7Xa%NNT4!Ju>}bz=Vl8GA+D~$?BBCp(mpqU(jV}}Faou~g zeB)b3{K&c$Xd}8SF&ceALDY8j{@F zpMAyRW&!*U0X)V$gy&mj6Gq|8rVPvTZ!W{Ks0_=k4olAovD{IP<VMJ#-ENf1PrMVo-7t62=o)2FNudWij+y;dq63|{Qqjoc zLLS$<#}2POzJ?-w2tmE_n4oAi>3oXRp2t>-dPwJz>RTAhl=?K+Y%O5hd5Pquzc|m) z2at7aE0X9nU=kv~S`s3^nk>3|@xR(GoVw&_!-@|6DW>8G3ySu-B8?;{`i?7FA1eAw z6)~~^#B=%8LH>&_-xK8j*yUG|KV7tZlsuN~fA6Jm&bNC$^fvJpEH5(J3(&Rp_Tv&8 zie8kgv3z5El+m%;;Rt$^_j&ce(CtlTJNKgGWqDw}CC~(pR==_J^9ph3a}#y^-%=5< z^uC^AeN?EmqN?YeQ15oq{a3q%h3^V5B{C`_&%dmu(-PhV&)=Ow!_JM@CaaMtP z-$=)P!0SUA7GYKP#p~)XudfNz5v;)n8SHXdkv`rBG9rT)*CEcy)lSWChfF&}OZA^R zoqv3!smufXUZ&J)Z#vJsY_}nr4$IbZEWbpD!?u61!?HwJ8nVOF;aOOY=Nn~sCK`+y zyfr6}*<;h;iI(HJwhYfV9UlBO^AURA=`FH5jNwCby(+JN*(LG0cD_1qVSMho*XM4U zS57O?L5bqL)lOmVMUX+MWaIvw~V3hO#e%Tr%-E?@=!a%IgyTS!{{LEkov5 zYVn0)T#BDXFPl-ZWx>uVj-ZFP5^;l?CIhq(?R!CfI=Q^uT%r5+g<1!j>>)nJ;pPltI-9^sCr1^t=*N+L$D&tWWr`ozdC3l8M7 zo%;DVNHmL`{7=Q{Wm*l?8dr?A=Uf}D?qu+_lI*>y2WId@*o;VmX?kFtP3whe`wo|1 z64dW<`R-sE-%1|c-!LFIA4J*a_qS63F4s-iH@Q+5q`zeD|NW4t4Mq#shhpH^-x*Z!tmcNUc45k$T#UC zIAXs0^ZXm;483(I)n6?Itlq;4X}bAmigjL-n~_X#K8t)u2#eA@${9L}8T=YXT{a9m zDABhAo!hXPM6nl)MEKczXBIrh8h(CuCff&+W{!{b^3rr8X$NToX*+2>X)9?RX(wqd z9;F7k1VL|)eK0(Z7j4&vEfhWRE1LQPlO+5SO8IrVP4V^gW@@m)v2{6Lm%=%NfN%d* znw8!zP?J%oKl&*FWhdraYqc8guWWTep*Api&P>AsWO+|pzItU#S(wwF>0is_*TkMB znbYpobXYf)Laep(Zxq5tS=luXfX|=E0q|8CaQG|;Y`Xu8zD>)71DnwPzbo3A_G6%HEU`4pCL; zn>A8(-w2%Q*1vt^*@d;h*ax&e`K>ok2BX@?(|d{clW@a_(glValcL< z%+yOpI)YXO<8uh%*$<>x{Ll9_&>fK-2oy!wcPd#om{6$!xmKN1wHi_@!kg)^4pWZ~ z1RqLVhRQF8fkF!d#WGm1g3^`x+BLIG&AK-*#9Zg|-ll^G)OhPbQI=gif+>wGOiYY0 zKJkiQSNk+g{M-exEg#iEfa4>km>TD+aswsbs!*Sy`kCJ1frTD0h_FM1a1c}mGD9f* zHVH#|no2AXS_W)LYtr#m4o443r40ETO=rR1NP4X+YhQh6;%&i0XrHW zZI3tlLXv?GG((0--R_>)(^T@`J~A$*IoOV>{$ekCMX?;Ckin@Eq&qt$Vw z_bi?S6p5w3%wIQsxe@4@X^&XgR}T{LRYeVxo6Ky`7#o27^yxc-o)j=DXk)&p;wf7f zbP}o{l5`d3MAn_smwzK+Q(yjD{7?>9RhnRot?JMv9l6>cL!z=~v2re_7Mw@>fezko z)i#=%;3RS#&yhJM>){145{|7ZK%NgHJ7s!gsqyNfz4?y97te6NIR^QsLeDRdk?3gS zd~0RT|Lyne`?Kl0&aHZO57hfUxv?eJ`I~8da&a`dj*_8G#V4PMj!*JFPeKmJfy7BneP zVSZj2S{B6pWkI~SENFfi%YqQBTNW5@0%o@+SXuDo^r|(1e*D3#KVTCi*$=JQM~PNJ z+$v&o?Krz@jg=cuCl&bHeh(oiOlbEfVhBKI2;%jltz;~M*AmHv?+V)$zAJ23_^z;B z;d^=5p8d53P#(4`)WZKmz5OD~GCzz*C~u>yL@-EJ6oqx1UV$YzEAzLw?#qOx5VKb| z;NMUFwGe~Wca{{3m$Fg^mY_a~z`a6h_q^P|9li!p`{}Fvs9gpWMD6aqrPC~SijeSM zA-rO%Jsq#1gn77@M4D25ml~%i2>(6l=U(=Ndko_Shb4Altx^nU64piOLs9yKj=Yu8 zztCe4I@rrG`{Y9SZUo7mTYmnQ@w?8r=r!+SC_}FNpvwLCmG0Cc0 zM`8CwbTPqp`@aTiWOh{1QsZJ`86XMjA-)}ON`euwn*-lRCQA3VizbJUJbyAXj@fc*bZfu4VSGJr@tR`EPmd$Ucz$nZ055>{AmLa%Up8MccFX zx>ELMZ@n)&oPFTgM+zX^co0#bRdNOI=LqSQqwS1+yX*T7E6O!qV5PxU9&2z{U-jtB zP$P@)#Sy-{Xo7##jQ|Z;ajaeQ zpXsap6a$dPK|_e~&GZA~XS?22pToq;hF+8~oj8~iXo1n&5JoujBoIcYhe7d!ZWS?4 zp-ED{5Y#Crg2FG>IOdwsaBGi2m(2)pumhX-E#S1!8tSMx$n`%Gx6lzB3!N+3y`(&9 zxy@h4M<6{hmqfgqEhBh$xonjCU#T&y;v zs;+a@hNL@x9LcyO9pQyoWORa;nn~vVq5a?y;UnA8Vc8Q7!Ry&Fx&bp{m(I3ANB< zLA~#HUKuKBhfigI>gHF7O2RKg^^RAFN{Uj3>X&aZB{&Z2k%*gdn%ya-<5h60D=hvC z5x@9IQiCYV?2KuteD7kDB(Dfe5Bf(--%yJRmJA{a40R!B3l^#E2(w7rjxZFq9U&mB z^bu#5A%cRB?+`0@zTDgSwzSdCc(A8oNXWar4EZS>mxyrhF=#L2s74jqvMB6j7=@vV z!d`~ZFe88G)Z!FqL6FM%v6LyMVT;(zZg&7L3JotP=g1FOB{Q(C>EW?>Hg)Co9p{zBKx$K)=VKzx#yfpRPoI#!I9B zHR$^tdi|v0^vrpt68-5F=z}OzF-R$MqgA<%|DZ2h26Rsmqp)@7qEO#qRCk)fXpM59 zJ7{R(>(q$lW$1N4A`MjG|6=cbz@x0ry#JXn!GO^x)~IMxjdir7qD@?ElNvQjg0TjR zHE3FcrSBqTSGHw!g4kjR&cyO`7|8DHc7407#ma8&uHCv_tJGRd012pVBUnv@U{I_x z47Tx40iiYT=X=ic%uN1(*nO|x`@4SEkLx1mJm=4S?sMPwxzBy>^Jjc?WWkJG%c3)e zT_SXj*gaW0M}t>Dz6N+!wn9gRr}mEqZ^DOy7wwbZn)dX0|zEcn$&1wY2%<0mD&6^t)0qrhuycUbWE9u@o;s^g>&1~1LD+=5?`3*ML8 zvCMQkj6O)(hZA@B;2XnMKdN+&QGVE99>ZQgD!eg9+c0>?jgq~ijUFrQ>MtIQVbU(^ zkn0Xhk44(;WW&@WK&hV$^0V0Zvb6h+?{D;EnBC3bhya@w%QiJ*qWB)O8?IkB^UHxi z@{XIc>tW+5n?x$hwGx6Oc*<1b&-RoBR2kVZFq%-GqY;;VTu)i2P2WWD-|>h&LVdbof~;Gj*QTn2*dHd7S>IW0hd?ug;_Ar5nkL~;%Lu(n2^YW#4-<(xHCjsC} z(17Q0k6@=gRWLupRZD>}*ygM{9w64)WEf_AMI&Ib?Z0V0%2@?+k7Du@6r>oNq{hqs z0M@VG*+vb&?C7@eOR14)^7x!4R33w|&xxo<6g?+)!0yx= zVZl90;SnkW=G8O4Jo29}@@IFX|7d|L@VqHfCQeMZ;YRaEr#d+8xM@BxXHo@$Xe1b2 zP-iO+kV^HDN$lH-*xi*e|U_30V)J95=zObp53?&eQZ4%R zXRC|knK%e!J{5SL38R{fXF^oVnU4xG`mXl5`D}tMK+~ySrbwdx0H8Vqkt+epIby+s zqqU^YZ&-DD#9BJ-a-Rji`l#R!jRvoiFCPH@@aS4bOdxD8&1EMqR`ByFJEHSCK%#Qw z>^v%VIz}>DBIVmSI)V%TuugtMYi#J0j82s_n-)hJ8zXz7vofO$jIkIxjOX^;%yQeO z6~p^9qTm<|oiIj+M%0qLv{~@6qk=y&ZAU=-)97yMpw39b4zD$eum_GzSUXl2IRcUT z#QqPxu+mD(JKM8tpIpDgP7j++0?q(x5&hrTfY-Kzbd~~txnMV%##~9D&v2z+Tu!0_ z+Ft7qrak|flWx@5-xEi|DTt-BlYseA)s9eb&=!1`Aa_B)<-{ClNn2;PU2!yIXGvo zsH!;80LpVQRsbRa!Q6cQS zd-!XNAn2(cD4sbTE6R~B3i+m*gal%n4rETpnwG{g)l4Hf85vVeU;;WF`$senr(^X4 z-XldzI-G0Zo66}@6XlWTX0<-NT%!Ik_=sd=SQYRbis8AbqsqNMA|;yCYRjXr>@%+`Aj%9KBY_El4c?qsc-~V$~aa{`Q6P z5lA0?|Si0(Di>FJ#*4)EzOU8 z>UD+r_4CZZ*PI(W&0#J^c?V(b?J08>cD1>t<*fQXAo0;;j>GC9gKEfTE^+CxC#sTE z>79tJ%$|s?wkKle9?M0!oU%F*n+0#XsB^I%LfI2n!a%2E=WuAp_mmpv?n9yiTZ{x~ z0)L{N%+xmpx0_yNQHf(Z9?Cn|esK;{sFwAwakpzeN>=W)F|K(Z!)aUFLs=|-$5svT zWxZiyBciJg>b~75YIs-f^uq|kKnG;K16itK5A5>hkD%DP-o-nma6-3+6S_LN%MOz{ zx!dTS+|^0mktcT_PomVkle=DWkJftI={4jK}FcfM~4H|quX4ftHW)i zlcHd(Md;UH6PNRR2SetR0!z$GEO-lT#Kb~&Np3bP&VZ0blid*sSle+s{Jt%pf} zeusYwL!2I~_0#=sSln}^z&j{hBZq*VzvhN$?hU_2|AyZY#dzE?9~Wk)!`|}~Kk2l2 zf}@v<@<`9JO;SPr{>QQCq{y-Aq`X%~=%iURnR|ElftQR<(zxS@&zv&}eM6U7Ldi$c zO(xGjls`;2EzZ$R@>+YkNzo(gCgo~N^#gSiSLQ$X60fJ5RMzSyAAHR8$?7J9P*ykT z)7MSbGKm<$Uqkwzt1tx9Qy8YTRo6ibt1v`A6o!(m!ca^U@KE#~Gi_5oyTAkt&Nc#u z=FE)vYs+HvkeUq;f%DahY0D;gYDFoi6R8iW74{8`TAAyqm9g&e&fy0OQ&H+2D{uju z0`O+S$zCI2uhCM%Ii!~$b(0>^!7_V!xH#@f9TyYGDr_Q)Ng($=@nb*Ds<-($>MiF! z@o?IjE5&O-+<4fu6J*)D*6a$QYjP%uu~eJQ%UCyz&(1C2ug6%k ztDw2LDrjz21sVAnEv^4)UNZPlSB*s-Uj@y&d<+$&tHwGb&QjXGkf8g@ z-A0f*QY(27+I#}VmPl}Ep{^w7O$oaaR^`OZ{NY*N2BXOuKRnB>iTxw+Gm1UMQ=pf^ zA`SQpdTCIDiRb`<{^2y}wh^1H{iF>40g>B}5m&s~Jo&UMY5D1k@P*UtOMDXqJE$ zpQp4Pca*x_p>VUFIeQPXGxD?k45nKKMnuzY#zQW<(1)eV0tO=~)eLvyGcr`M+4aMY z|L>#=UOg<;J;T19)7J{~+n8`*9baMwFJLO_tkT-SYBm+r?c*Lofa#M3010|~&`V%z zDhDg_lH_3k?z2Ty(#!@K#No_h`n!bsf;%G9&h6BX+4_QpauqaSYsizgf`HMgubped zZTf2Fy#_oiFlDtJ;x^lC4ygc<5BrLhj2BUcmIPs^tS3FS!0c+8d5AjAE#o1dvZMUBUxL!Dbn*`c_zf8Zrxf!+R%oIRG>4 z%oQ?7E|m(&&09TI1oR&7>=Mei37qAW8#1pU`J`HFHL>P5oMDDq_fa@YEerS0B-lX< z%7dt{QT`OC{S^A-^_)Od9iz~og_J|rF$z6PA@g3>O!JpB`sS6ei1!|mV5Gn4lkcds zS!0_U6PcE;g67c>X_;=DAJsVZgo9^PK-2u?*b-w1h|{jA2Ta!yXg}X74piR&34xXi zJ$mIz%Ge^6YQg&P>IGX)LFZO-{-K(}M%Slq$Y$r6Y;!y!ll>X8sZ&p#hD@SvIn%>O zZD*`>F#?S=j}SbQ<|zd$c+rQAcFN22Q3#I-sf%pRd!`ft3Fc`fHtvL?6W@QS;-jAzhPs-!4~8w`R5=e?Pm=VNr%kmL+trw=)l^J zxmS3Nn)%YVW@zvUzf_G%^>xY^%BiMLrtb7-{R(=<*yh)(g8yM^k6qVH;+I&#Z8_b1 zW#_%DOf#=NNjDhvl6OsixuvMDB=an=iXnL_ra4o)o165x!UUt|NBb(61#fTXb=ukj zWS=Tm!tiMged%dPno%~bsQi(LZ(aoxie68hSd0(q_A1~U8i9RETlj8KBBulh#=v)m zoy)~li=K)f2|av`%041qKlL~lX!!`t^1VC8Oib%=*8r7+!}5%sm~QYnJ}l1|ioA%3 z_?zQXNEentwXYhm6g(?4(~@UePV!rxMEMe=5{I)f4e`dz|8Nt%kx05N%n1yEt-+hO z!~ZN{ndw`PB&w*4KtHi5lvRKkqs+i)%J=)0W3Jhp@qRC}IrtA`tb5yh(S0@InJ(G> z|4(_w|G)E;XLMf^GxTm|=$xmx->q@lzXI=BDc4^N(|yjPkGTJikWcN;ui@8NRY&sO z-{<{w+eCb%`EASx>8ldF^+@T0ejX?LK?T-NFCx|uOT#4NtPF&Zc939%PURiL>Z@7o7x)#fxrhoMQ*UyLR1PaLSw*PN z(5z9oYd2?qKGs1MzG_%Pm-m0{J`2ETfd|*{;hwTK2d3XzU%6U)C?^MmDx+QbxhSnu z*FW|Mh4@vE%wHaB_}DsCtYaBkA1{7-g+4-03w3BQ84^#S3-&M_`oz~O-mAKm)YHtn z*zWnw9!%5?f>rW={SSTt!rv;Nos8Ed=yPQ1v(&3hc>>Cf3VCYdyEi})>`S*49Rg5|||Y1E7JOs7qQ{kz_xhHAbC$uLe} zx<5>ZUlW^%sX7C0Hde2)|(pZ(^1a;ks!074?0axzVhUU|eei3@cD zJ7)}VEnZmd?w_6PuS@plSLzE2)+p@SIfJD7Y;1q-?Y_8=dS&v-H*K)POeoCmHO^Rg#7( z{Tj$hHd>#J&df%eve7x&=zJ43O)OLtpo_D)ZQ1DZY_uaAy)PSG<3}^tr;9v=)^=r$ zi$RqhYU)?#n#i%v|Olzxmkw-8U{|1~U&J z^Ri9@his4$nZpvl2NsYWKV>n0-RGSjH!v@rvXBoRjl-8nH*qOFP-)84=9a0>ltBSB zjnJ${0X$G@YE8+l6+T)mW96c@YQ_}ph*9bE9;YCMDotz-v;BO{K(kq;kyFa|9DUE= zd*=e4V22E*6EoAFB(G9=6}IeTzH9V-wk<2I?3FcS@|S{;PV2y5YHy4Z=s5F+v_CaQ zH%07EdPn#9ddde>I1HM4+sz4zhN z620=&n>X*<>U~>}Rj=Xc){&VJP<)h1kAQQ^FCb!|Y(JEL(|4|CY!y{Mc6C zq(=WXniG4_up*c8EYe0<8xfZAUKxMu0at}}S=5>RNSiAgbnkq+xueSNE=T-v88Ni*?=`xLGA4AH#>TSWFAiO(j-QniB#1*a^ZG z9`P!l`GFFCM1|Qag0h`rUi2=P8XW$5AI}vlQ4XZ%(2a7N@GMiK78b>$ipptcKyr{d zTw*|$;_nz$jw8GFDe;BC3mbTo*%=&Fu2P9=S{pEctTZ62MJW8qpw3aa@YEyyh{NR= zTEmW2{r$(4ko~!wU5^>ZSWLhL(*C$jzA+Kl00(a7r+41@#Ryo_N5J}f3v0O#%b-^S zdNn!d4g2k!H6ua3bM|obF1H{b_CXFuZy2n`k+6O+0@gb}HC>g9cHLX^Ut9jfPY>?V z%WG>$V7Fy0f#<>`1~n#oo1-F2qMC%lctN}=v>sUsRK35nIB|oH8;EjlVUOF~6Plh* z8XD#jZ9Oi>VGKBF1Xiv_4be#7g%%6W?7y|I{o<>aEsAeON^3xD?hgZ zGcwIDM0U~?y{~kBY~Ag!*c>FXnhVCT*uy3rqtOTSLe0@@uCvyxca$V`3}%x($hZci z*vIKmK#$moGEuvwym)73&$Nl*Zhl#PRT(rj6!ObrKnAlZT1n z%b$Zv6R0$gjY^XQ>qqY#6DmGZb{i#?&WEO!o<8%my)p*dJ?4E#TN!d$k~Tt8qd#;Y z&Fs^SW{4BJ*6?lYN=IeoqW?B4|K{yKgMJ^#SbnrHBvF*u=)A`f{IBFWP3Me=_3T6eQP3+$AG&aSa@mM|DtZ z&e4a#$JM+h$zdwb?k0h_MQ~U#P%6Ud( z52HIee+vyu=bOfPFtqiX9vV8=ZxlzU;}SbQTjqG>naVUy#XwWIeq?J>%^wzZLGyrm z^cba>oY+=>NV*%&zt`@VW~7*NdYHRMAFitn(rH#6IefE;k_WGSe-)g&=4kcEa^zui zB=u}6@-l)bZKu%XiWT?7^Wt9!vE!@HVJiIyO8dyzIkC8?_y2%mf8otz8~fq|3}NYF zl#S*kPna0_QtDc-d1i*cX0t|s)@|RmFQ}=8Z%$R8im+LW(N8L~Ng|)0bgE6#fF;Qs z>K;cDjV;@x6`Oyk+xWV4%P|>E<9M6Bg(a50UVL3&_?ArG7QS}=O%JC|W^6HDF5~vP z&eULjHD7B@jR7oU)&GvE!DhhD8NJp6y%SHTPD}XrTh{F>-eB`=vff5B_ih;n|7YG!~fiNEk3k-yXbYc{Q zh!O>%S`aWd4)n1xm-)>+b3LSnEL31E0XktSf&R%T;IpaJn!7@j&pCWTdX=9`6u`{{ zWXvScKcbDLCKgE8R3V+gIJ45D<|c}1HS9ghZTz%|y^i(>r4Ml*#T4g$zX9m4%Vtc; znThOA_Jk2SmF2jGdTS0wf$$3I=^uSu2wsvwNHyPGVJ3_C5)8FScmcNC9QzxEHht-} z`c_RIx;+|M(Bqfc7mIqf@7G$*vwY`|&%6<_T;oc7Ix9v9k5JE3i9sga#9K_Kh8A$zdpDNs zx&cnEB^hiw6xain-T9N*CNK-W{BmOII&78fJ~)-{?tJYj}W9bvlsz1J+H$+yaM+lwkZa!Bz@P{}h7?;}YfiymA}6s>qKfj6V^wOon(+9W~3`$9MW4)(d4Oy&b( zF?k-;g+N`P8IB|mYD@rP;Uxq>)s)89LIo?r5dxr^FQDEhs2eTGHdqGW6lXFk<%fey z+z8jKtV$-SnCO}S}R6oY<#gp^(4A6qZK=tUa7xuuih~d}NT`G!{lvp`M6`ai^U4@%Y66$=5_ZM;VaN0<_>oMn z8LB7h2UN_`IyDnP!g7@;2O`%3+o%KZTlF=!7Hf!e zipip-qYC`$YN~e}1!hb^luc1Pq|GA3D~O9q6>aH%Q)xS(%=>8egr7a$a)M+oeu@z` zbN0pXDt?047(d1E&p#5w`+0!0=UYzDP>7#m#=r+wTSGNEs@g7nf9OTi_n9OqM@j!c z5`CXJqVJCc%$<#FPXEbmkl>EUFkm8$RzW-VNQoC66ag z`jHO1mSt;K9r#xo1&tmW^g7T>)a$@bqFx7H@KUoK*g^_5pCj-(@KC^Z03j6e_;d&~ zf2u{Inm<*GXc1AbzlB6S2n#f>qxdM zfg=r9GXPN|)n24U2xn~HC9;7-;k5+GOTNc&GW)CR9A&m_m>R4?tFcjx{^`9uD_bdt@{nt zHIox{|IXCam+Bhd+rHAQ?~UUV(S6OMJx}}+y8KQ$hD$_lD|}O)+luW9_rQTyqIVSr zBIk{EoawbP`OPGpp|Ejng`jo4B;Oq*CiNX)r&1^18u+f^Q!9~Lg$cfo;Bl%APvIxx zrv#mq{|p2wOctQH!cIU@TUMOpM$q){{qO7;vQ? zxKh50y%NQVP#&L?+(Eh3i{%r7CUOy(gh|9eLcFb;DOHB%*-hB z$Z118@l*7bxH9yhNxd?}XiRP0n2=ToP+nuID1LFE{>FvT_lF`EwC|6coGAIJzUOre zog7VvqQ48a>__3unS=8E>mR>A6x~#$J4%T~fr@SEJa(T{YUbwhX#2rhnd% zc=SBMe_-;f;P1W;DxujM=XK1+!$pc@Hys7zS>`u?-PdPtC=93r6phbfIOdD?)a=1WTFJVJ>!M4p7^Xi+uvB;wSDh|Lwv{Y+T+gJ zx&00IWhK!i(%hHhvj?`nNQjw;K<UUX6~UXoUx9KTtLj^HwcF#qOm}-K zwnaHQck`E#H7ie5y>~SD6c}i^uIer4o~P(URj+gR<6^*|d&sZRA$lW^x%BjiIe6f$ z^!H7^8uBZse0( zyFEFf*F6-Uy_3`fExqnb+h03y%bu#2Zo9Z@<82p|Z9M%YGF*zehXD8LgdTk!+P>Fs z*?pz#SEqNUE`vl>FSY#o{JK3Koz2crA5guM5+oex; z*1-1Pxi3p5UX9P*V+F^3TXHi1t0gus-d2vN`BD?AdNERJgyx$P8q04_tW)!q1b>Vy zY4G?6N@?W$8#;H5r$bkGVW$_~=Y?y%@KG=9@WMyDaGe)E>4gt_;X__{uNSU1VRT;u zn@BVJIaa3A?jOTy*uN>*(!xt5mpPBuhA(T|^NyY(spkEWYD$*&{gK#ZeZMntvnIL! zj&JCrcXwZY5xUFH%=fnxd}DlXelZFC#bJ*37bWEZ1vX`iT2AWEpJd8vue`tS{zW(H z20-$29Ov&2oDClhcwR#h4#QqU;dxN=6pAd2O${4O%cNCkpI|)Gcm%&b+iz2+Ts$wG){eGP6-f#}1rflneF!slQLj(S0S% z!eKelFasvzP%CD4s8rSsQ$!UFm>oMVW}%y8qpP+rddOa*Z)ag<8uRbfq)Ok$Ei=W zI!ZqH>hgwGHbsOo{?zbP;l7D!o^Lf=u7=lqf=+CR4jdOfIR1{pp>X?TSjpyG=TP+3 zg2?z~&qAX%aezjPqnjq*#Qa>bBmFA%OB45fhg@ReuGdaGcW7v7V8X`qmU$h}DV**E zNZZo%&p;Y{>cK----J)Khfia|qi1gxr6u;G7bz9`G75VpNyISMY)w3~x+%Av& zQ|Rg(+tqRk8<8eN%mRTE_z~r$Knep%kV~Vx3nB%}8ceA+jnL?(YR_Kt>kt|k>Fuf{ z`*viG0FhU|Y{Oqbl&)8c;o|RyCTw7ogwy}5T1ToOR8lN#hp_L4ml<4|nnU{V#Dhbr zYe=*ty58N6{mJ1Jw`>3AQVgbPC6`Q_)OteOZ;M(^j-MQ#HfecbUUb@|V02S~!XkEK6i?P>Szb)|q$ zzN_7i8wwIv4z+Ki>7{SLLSx5tPe&|ScbGYDQNZ1vx}MKyGDs=t?bm;Fc>R_)QlF#P zJnZAAZ**T0O``h>dq3OcM0In{45ztky zw7i*vUhC<8yVb+n72bup_Lql#`iI{9Y!UZszpod}vb}D3BfZRhDK!_&{q;a}A9~(h zf&%-sy8uf6#@kXU?Y^RrVndN@H$&135}F^b2w}XR?ry{ge67@ZtoD>Zbl{Zlmb>!YEz!<1qXUD< zf7W5uy9N=Ov*Mo*k>b|vi*3F0r1t&J@&}l&xvbc>d#PI=a^H&IwQoY76Vpv2w?q@5 z+zbU1;TvHgK_K}Gr*Na4<;#zYb_b7CCjAElaHHFU!TDm#WAPb-?qMSat!KpR_62*y z{8p!8+vd>8xy%YHbpdA43=>81Q zZuIi6Dp>j&pkrGX-?0DbVC2rt05E-GG##Y2vwmE1A$8Tjo2WaQs1Jc(`i1E3nn-H%xKb6~ z-Em+?^u@q|U8!c|$JqaBi&5podPvzkuAE}2r^AGKDzpzn9bv!_HZ$ zoowpScdF)ge{brK6n77&K2P9}2g#fJ>l=_bMn-%_LG<9)-MXan51r0qJ#6z)oXonI=HqAeu#mAoChI&lBN^RYx_rhf&SSHC&OV%&R=#|E zbaSw}s&ztQ+Gi%#y|R4z5QUJJ7vgn2&X0Pw@7>>38VPBI#!{47rLL!C<0UP?TP8W1 zQQ*D};zF}-K=LNPD+{P`bpvHR`rgEM#kP4J*m4;;ebLl!_UaF^3Q}J-I4gPBG~m8e z*4;kj-dWH(StN+C4lme$Wqv{A_~`HRSc$LPtQKYz#J^a`QK03|@MX%KfG===O@4vX z{x2l8549dIM zj-~r@n{|t z1d}Ip)}Cc^LPMO3OnqJQO3LCwC>Hw;Uz@4EIhcwYkp!NR$8NcVrbHJP{mD+2^P)?O z1Ce?0tBTxP20XEP@OO-fx_#Ys`yguoeR`HAWasg#ile_Bbf?-m{lqVrNwjWf>!lSt z%zE2dA3BpII@8cL9n`GbX{XZoEdxGP-9zgx1Y+_h*%pii zDP*~5QCC$x&dQsKYG{$;tZcIBsIiro&?vQSM(lDj+IO^E6TcyJV1qDkscHM|c&Ggn zq({G25bW@0@~L2xt90L>+cB+VC~yG?B~PY6N>g?g_^Xnx8$#(Hxr50^wT+5ArB5HL zzscV)i-EXj9u+QSId9Dj$S(D8mIX{_tOx1JA)1nV z*E~6xoB|%fuNAhx8R>A-u-(sYBpWGQ{QFdk?bP`|B|muy8L6oNvi6)|L2PU0JN1Zd zqg2JgCwaWehcfxI+~3^z#8>Cdn|H(Y=G-DyTH?+jiIq87sWE~hZ?Ah0#ocu%uT186 zD01G7{sErWYcNCy3MTbnKJT=$5)#AFOV;)>(E(=+HoQ-3~&!>T1~wNXUkr8 zZzxFra9+oau2BXv<4s1bo(Uk@^3SW!r$6O;g3863Ad zoV--r#gFqesw28-CiK|2e^X85i)vnw41Vi2J_XNjLvH4EC__t-iv1PaQW}okHTnUG zz|Zw3^}N8nC*a9($cZ4|nuRQW8-M}=VL6p~E(`6z1((%O_ag>A&Oe!=Gvf;jWm8I( zK+pf9^zWl(VKAEh-y_H4hzjtR99CBw*5=nLeM&GvlP!;}a<=VEFVK`1HER zCyft{lSV?VcV`l6fK2xJG}a)wvVtx|!i~$`H-n_xiA@86==*)x-pH^74*;$n! zx__F?o>z&L4Z70`@rWOClVa%iFn6*H-TnKK46P0)n;S%KyY*)HRinGD_Udu!2}rEr zcdL5kGq~IizmJN+#y>IB@b^vldlG3DnRZ}AZ!HXFarsMxOCvmeO-_TfCqNk*0sPL0RHZFCVsE;@9gbI;Al z1X*^Ic>9D6ZkH4LA!OlkQ4r`Xw;nHQV2JnyZIf>a}d2RT# z^eyofrdIq443X9o;;YSE?`L|=E@y%oP>3aWT%!hsf-x+PUqyW^vDWfI#P zCue(!L4LBaAJxF-ybHY+qK5-_Oo+Z0bndxTY{*c6{y*Fod_L`NnHOCUE)P`_DgN8k}8OD$45MB#c#8!mb^q=d8$lhJkvqSF+d<+Ua$+aN}Z?n8mnNvr1)G-$D9v4y))4e9PcJE2a-AFKw)IEF$Zja z8L8L<*yzS2D9kYl3R_;S`n9v_5WxKQVJhxU5FUzcbCzF4WBWH_qJEV~^i^!srNY(9 zgf*jP?4xrwA%3N`51NvdO7vv_bFB4p7B+d2DzBg<;mQJUJvvyYpCHowb|VpoL1oWExRUUY^5YpnH=Q8ny;I{ zO@naqGStY>(mPIc)@}#}JMGt^w|{n`r256O_uP$LyYto=g|y9i_?@8hFB_i!-S&a~ zX05!TqBFShq!-)wGZLhFr#Q=Bqn@*NS1`E4Pg6rbb4XTeW$yuQ#A=&l2G^8SF|RYu z>+pJC_G|YW1yn8FzZq+ONamj%wu!5TST#>$O|X~5OnE!Setz$0YIzgx6$Mc1x)5UI z{!Gw3p}7FWl9Q;G`l(WB&`7lN6r(J)Jg1<{>E!QI6kMTp@spMZQ>7Y89;8wg_>~IW zs%jp#4JawN9lt3AJxUq%=O%cY0UzD;3sGQKNvmuQl&8Ky-+c+avoQVA0fv~=Sj+Q? z=I~V#H>!uzFZlX&$+ETPJXwIXL;O+mdm6O31{5#}m*AF9-uo4;6`j~_(wz0In98FE z^PF#O%|4bmFoaPC6?Fxg#DQxN? zrIzle-ytVO=_-L=m=csPZ2HvFs5}eo%C^>K0t3ylYwQrjTFXub4 zTgXV<9qeRyAQkgP88=O=2v*H;Ls~!0Qb5?$b53HT` z--G^7f-(daYfh}w@L7Hr-Ashq617+LFvZs)h=TTYsNh zMDPW9GVs{_DmRA7D*zy0>v%uEfPC?}#`Q8CWm^8J9()Ky-y6ru681&k%X4B4MB?KT zw}v=kcjzppf9Pm_a)Xx|=tlHCc)gei`jLzTzjfoLQErjsn{QZpJdVOK^fE;k8Mr}1 zkJ!g-BlscT8#k}RiCqO8NuBss3q$infjj*AZI{9MIaJ9Z0ipzq|Q z!hl-0SVi=FM;h5#nB0us6xdR#h+_KzVQLz{mSTtSe$VSru5L1zTtc5@JIOWlgnyfe zQ|{i{@F$%1SK$z(`X;Bu;GeU+4v-aZT97}WpnK5mH%cO%EW!>J7T+b=(ED~VM)ZEi z0D;cnjxvjYy)@rKZsD6Eko!`RZK#C{+lVT(UTEc?p%K zbM;?1u`dDMqn}Ym5U-F@>W{BFoyW!QCq!Dy&RjHTYGLyGSmnZgCo{UJ^ix7ZB?H`c z_%YI=hl0+x9w0)CWSJJ!ACz;YE!9D0;)?fm;{To*v>3l+-S<(LPcRm6I7bR)<@de> z0M?lxW${T~GetvuhgS-Dt?Jv)%v{%$O!e4*M7-osad!0*lpQ(3iVhIiX(Oo zG?J0pjmXf(+~d)y%tQc8E$2`45K?*ydD&rD@g`#QG%Hp#)kXYJ2ANq+Wq?_3f1e^* zT>|b#k)$>vfbrvV<(;1eOr4?Tv&vwe)dqhB2yqD6qzM>Ygu$CLea^_ei*P<4fo_#_v(hOY=r+&-KkysWadtUTlRMSqAv!aOsIB!{P z_=Z4Hs)4xM`^1m3C|%>B^i!&eYV8vt-%rM+#t}G=)BD_kmHH&0ou@>TE}h_1gaMuU zR|>Z+34el#P!4rpRUK#!PfdMK<9oeIN;hYEdplKNTrCuhpN!fw@bcWxh2TPJvY7!# zHvS{&fMFBQehiDJ?xi!Sr^M@nxgERB6P%rt@kgGo=+={F&oh8RC_b|&QD2;B>?me_ zz?0r`Mt6__Iuz{+RXuaZo9l|`l7Bu?i=&`TG4q8vyjK+0j&y`mHD5lf>u~-hH;1^* zf0&bbubtI(Fh6=Y812OcTa>r~@8vzkRU2+Uy*tk|upv~{bH_VngVE$EUCF#e<2}5f z7Mb|7QW`Al+y2*ojBYA&2j!%c=W5wyj1h+NR)w3>_nY>$lVeX<-E81D++Q4Lg*DXj z$!;mLK$Iq)zhmDeHy60Qcb(Hs^HQ1YD1nbV7~NES)6E<8mFIupPS!WuD_^0V1U~%w zLavoj8V9Re7*2%RF~p_q3zElghv;kt?Ml9WDav75QTl$)%aJ8#lzsxmcSKF)L_jTS z2pE&F39DHg)o?sOKWSHNApMlK&_`=sX1zYi1QpDudppsf4dK$()3EH%B4*m(Q>XQa`!v}kOHDShVE8K4N=;X~mV`_7 z(-Nh$JUP1itnIIz)BLSsANxh@yHRvb`;P9Q*zB}xOG~!eqkOHODFnbceXY)OH6c?c zQo1C1XCWjLvK2c-gYs%R(~I2JP^uakuH{rky-p2Mc}~Ut?yDsEf$lsX9zZ4;>_9B+ zo57s7S9-d+{sS-EDmaajMu)nW@y8(;avakjZ5|49dXA1>H7c z(ET3cF9N>%F##AK_}t%wp0UMJT0Ir}5A>qLF@wdU@a5p%otjM+XOGV#@ceOGAQpoz z4z;$6<*A9PO>eiMx@aXFef2E2J2Jtnkjr}bh2^V?)|Y~a^NZSV6-5WnVnaGMo;vMs zwv3N|y*T=M5bY6yya7{8pbkI~R=iV#seY-Q>hStGWG5He7N&yNHUOCMDgW`Zeda~b zShx}>eZS*UlktI4g%x2rXPz>X{zydsxWcP72%Vi9=Lg1#wpCr=+_RD_@L8fF zgbNk6Rh2ujVrBu>ylTRKY2>CN*DkxA^`}PMBHa8429EWiO^$- z$h01OZrZH0?KZuE#k5JqIXfd<#nojAl-L9IkU>)kNu;hOyig37S9OUVm5bggFfABtUe;>-d$0 z(SdRDWyJ128E^+#7A+@2<$JZbM}8u}drmbT_P|E++&>{IY9o5Ms5SrR8s-#QM^Lft z3o~Dt5{_;vh#sEMf3K0t)=%y%>~DJJ#)TEzDD@IL=D*Mzn{t?O9oGuqS$uwdU_WLVq?yUv(m<^v6tFI}3lahL*e$!D$w!{SnZs z*ze^hVqv|LNw*4#YFH9AKZtT$r6G!PgOA#r?dMBwteog+QeS*NGlQZGtl(-}&V#wZ z8$Zaf0K+22IVGnRB&JS0KN6mcCexnC3t9o%(Tq?o&XlVORc!{FMkjGA67N1s>y3D( zot3@xfC?HB5?|0r&iyQCuC{%#ITUD9YgA%lu$VcqlYo?%9^|Cs%JD?KafKdh1j}k+ zIbGZ%C^muBEyCM9DWxT^^Vk)^>Lw?)hho)>TaHWZAmVmq<=A=bx?tO(@<=+i%?<#7 zGNC*oYt)Y7)aOxbzCXAzyx@3Nb1ko-rQ4&FjUK+%iLFND%y@HFEtMD^zS=AAw11g0 ziPdI^L#a?Hioz`kC(mKVmxOD0^V@C`ZKG(<@$$!+eB4lWlm_Xp@0j*a-FdJK}xh> zig*LeNONdn^x(xj?PCXR0XT~^7)^|HF&aQ3K=QlTt`M&M%cvjr#D1trXSGqfWAx9` zJ+%^J+v-1niPS)sO5k1>#)+k{v;GTM2me)wbZqx^mepbI*s3crt;f6|96dOJ4pchd zDwoLEpQB@TTo8oFQYq*i=?t1w%a|~7v{$MNvk*n%Q#@ViwF5q4VUC2Z|6(xxcOL$> zN4WRdgRqBU(73YdPqR%b(#j&Cs`cfvz0pGjOD8US?<}^#-Dg_!pHKt}VH-NJ*I5A{ zcsaGpoKkaQ7a^Zy%~aM86<=Yri7(k(FoLoRjEhb1Q~L5VG|<-5K1bude5(u6@9^{hxbv2wMt<)d3yy3tBtE) z>SV4yWA?=@)axvL-Wy({;#j8B^|`{{6Q}NHY+W;dPAj;?Vt?0XJ+!)O5X+3Fd5~yw z+ta?eN*Pm4hgpLjdakZ97(P5JNw7+jf^AgAs4szb#C+8yVx<101*ox??ltyFMQ60N zDBygrGy3YmVCRIMhsq&{W_%~MjiS*lHQsk>BcC+aC=!vc>2EQ3n1Qy!3>>HuQ^o>j z8jjAf;wTV>?qI@co^+>dT3B>iF1fl&=eQ-pmrh+AJy zs{M&_%;#xEDqEbpFa%UJc!iRCH-W4-z15hyh18`L!+vkaq$_@9QM9X2P)08?9})x( zR8U7Vdv_>oI{mA%XDD1h&QA2ndypV->{K_bKJGevmizpH?KmmUvFYc~Q+DP&5oyMC z`)g-;E7L~sEoRetuvBNyXZt4j_W3-f%uaP<>v+B!gFT6<1&JwKx~}?NYo42|+QQ#0 z%+Z`MYMoftRkpe8X~l5`)21sbI*BTXx>9nPkSiUTt_MJjdr5QUZ=A75N7Z{D-2 zVTT(PP5mzxashy3$*UpFJD;RXBpkuYHzxuGKwVyO8pWL08JbIM-NeJ@2V-elWlVj# zaL#8~OLbx=4wBfH-^|o&Zm~Ic7lxQNd$oZ7HTDm(-b{&%s=O_ac9y_pXO*_i{m}}y zM-Nk!w9z|ubhpb&NPS$0F?B}=f)%|W)9l3l;&_P6@yQP0d2{gDwCLeoA@9?iQWE-- z{j*fyUgG)(^2-Uh+}ul7O-okFq30$tXl5oTY$1wMY9bOj*ID&7dY6cWrHyG_MzAz8 zQGP&4)k)AC6Ua$a&pk+UKMMM0~P0~L$e?NJL4n}I3Y&FZ76;p9u~4oiT3O-Six&GnCC zuE0Wd2HZ53$K7jsInH*Sn+(ULeBMUi=IA1v4ZN0j5EKDH@Qt z-{qI6QQY=LD+BZ=^it34(kq$_o()k_d+E6+3+4*9#Gwc>r1s%FD0?S$7ubOV$r6D; z@@jYhRrL{!E(k9UigT6`$-5XeqHK#sk4ldn$F4fF%_$;nQ z9S*jBG{IA=wciOjPj2DjGm*r!p{gy;s=ucwTwjbvnG5QW0qoTqtZh*TT^UMl;*5dU zsnlv!u){*^{u5;3N0=GVJ7?&T6^)VJbLVP+&kFQ)@y@1ht2+1S!V8aa+5&nah_o*1 z()OGQcJ@qN0qDMb)dl07Tl==2J`{a}E(A~C8r@xl`7PklF2$rrcqNpgf(4Rupr}zD zIYX8vv>57pGOR;UUfYl|5_BGqnY2f_FKeHn>3i6`Mzh1d{K=Q9?6CdZnc`Pw?C^JD zFEKs^gEjm|B~oY?#`{zcdjDQ?1NgS{?2ZEKA?c5xIp1?WUG*Ts_Bnbcp?`Kp<)!`= z$?}NxuVCGK!5k6M63n}Xj7N!_)D~Y}ydl9L{s;@O)NiEiBo$WH%C=|b7Y#EQ>=|r6 zYi+UAO&V}!zdmv0IOi9Q%R+e9q9NWjunxAwixfybO3S{~YY?u%iA?vb;3Gi69Kxs8 z3MB7QsK%U9DByD^^)DD*(L*}Zw}51pu02{PTl?CqLvoGxFL1G}JhI!}p1AVY#(3AM zOM18kl%!VVE+O~Eb4n+?;tvB@N z*Rb+)`zrQpJjKHMfEi5{xf{5!>9n1|<+M| zzcCm&k!5MA+%5MS;Ljg!`EBaEl=K#4W_bq_v>emF5evc8MmvpT5wj((2-Cp6M)g+7eTvg>>{GZEGbgsRNszQ4?kqtERW%U>X?ZxmF7GpuYj;> zIh{ey1^e8A|E<>~#Q`#aq$vxQE&)s-t((QO^_Ia(x%dkxButFGiTb>%9DEOs2Y+L7 zw}*tbb!39V62SR7(svkK%BeDX^qjKzXFaK@{r1e;67Fv>hEp+}vjY$AA<%Fn72(^7 zRX{XG*>JDd)RA7V*hGruNYVBE`E8yQ{ofLyZ-9PQgeKVWog+wdMhMb%ls62E&DYp{ z^gK~2H4RPkgwDU6Z#@NxD^IPmE)r+ei_p�nZOeUppzw116l-80|xWfrXyzN>(Tt zNNq%ZDZPLVr1_p4bA!$kU3OSFr5b01iz%zk175s*!uU^w#=*33+L1SWD*I-^OV})k zoXW(Ho@h-)4;3xlYuw&b0_oit9FNeL+8OS=NHm`OK3Lf%m@IiAssOpt2y#{pB6C!! zqzTYnAaoOTD1 zkkZBE=;6P@3k>5x> zIL=gl@N%&eyVYu7dj`W(v;_UgR^}S#^#G-i#EmhvKIuLer@9q$-7M_FT*{&;7be zOMa_taLpk&DP3gbp%tw^Lgc71wf$w5o2j2k{%zU;ojNsG)hXw@oGP+}inUY2>($vr zHIr90gzJ~g^4i>wpT~*m%!bxcKcI+Lal3wf#%^Ud+{0G0DE*3nWj3^*zay1Huhdhj zU|ACTEnQ3hb53sh9t|*EogZRiWOqLZJt0Xc}SBzqYn>o#<{=`KU%DQ=} zFy67uOA$6=_xD!NK4SDR0UT{02*mT;r}Z|(>zElK_mj@I-eyu{qpSlH4DL52ydQIe zgAAKwq{PTpBlIXrH00?AUl&tsiTeywP7HWDJJD0IWtk2Kp%3-A$Kd4`T+CR7$4l62 zU)+1{lfb@i=LwwzJM*{jcSnew98P-eJfVlLU0totOq;axgkF=tTQBn*PI=6e*~$Wj zXI|#+VDp!7UYu9`nP!b){jEzTqKA6jEnNe}!QSZmr&4$cU7aGz-*K**?+^V!YDvbk zGDL&>7ah;#TmMU4gN|ieoaN^M4G5KF6|11GJ{@2s5{z&JAQG-7eUj1{JW{h0oO|xY zrh_T^(mzfNUmv`&Vu#UgTXOV{p#WRKF!qjxH+3Oy5WVCY}3>SG3Hw7-E zXzS^Gt_ZKuC(PuU1X#0>=3{E4S+u(eNfos4nV9w-&(OAmKg_R#soJolF*UE2Ep|4Y4 zy(bK+vm6sw&o~OUxG(=*QtW)(yEVbNq~834q##2Jm;DtIQZr6VxSt%ab<`hiTm&ZmnCU5*Gr5IzBnpAd> z0~tW-ww}Y}O=laTR-3aW^{vIUR_(H_tVQY9E%bU%?0DKSO4llMzoFWk)Kd?i(~6m^ zkcrU5Cm6KsrQtf~un0H!F*%BZzu|8slY-bx#bSD`7l`!ep-#jZbmuX-5Ep`?ik?cU zB(C!?MqN+0`Snn7iY(sSX_Ij=nQ}%lrou|fi{i1bLvbjqCn9T&&leFMZ|m2JM9h@D z%I>s({6vGd&UiFx#0&1XpnhBI77P&YCvo?@6pRJB^ z+FuZg5>tDwsZLf0)Ho>iXSN*F>+U>>67cPE4Jl^0CD1ga*D6}I|nTRmuQFd~cs!En%EZ&UTlj!<19t)U2;&&OTrDSyw4 zSO%Gb87y$9yL(cJPSDfpDjL~ExQNw}2+ z)2=Lo5x{|odC~jKu9Sgk#@z_GPV7Q?V=Np7TWQPpA?Q>ouJLe6O=?gFBR5OGnUg4~ zdsxdePDI0@aAGZtq=;<4+qAuw*@^-`R*q{a#e)d)0ik4rhOERYgQ@AHb-2Gtht!Dk zSlv)!)=+g-%jvj78(Q9A$Tx6?*0|Al&BJ_l28|9`o+n&VL#$eT#vrKTN$_nrA7-#J zdvG_()AG*BuS+)_I??&g#?*gtbTw1Ua+1!jyp$54E+8I%qlZsq0jgPoYDi-#|HG+> zSDoZQ`Y8cYEVYEGo&)07cchLpM`JmaxO|o|6kuqTwGf@y4$Km7plcLJtU}ljMiKwd zGdz9bDLp6l9MXtn)KF@8X-35@lm=4ss61A9Xv}1th1MLkj18uKhTxk0OwDqd7SLox zESTKQsXvf)gB3;VrRDLP?{1jD^EaJkn^Qm3z4^Bfyj;eWa%d`}p<1}70<3!Gb(l4d z?wVJc#O;*M&dxe#g*267pCMY4oE5h#0n4MTn~s&r4&iu%N1f%biv=FO5*1*gCp2!8 z)6wtrt2T8V)HRy9Y>UixTiRK9Ed)Z5df&mPscY(|KFaZIgtL^z{Y^+Mr{n?GdxDHC zGZ5?pkWO?J$r36$Qmc*-)+fixP~+niSc>b34~;45N0ImrAhF4U-W>Ox3q ztiV!|CM&5gKS^7ud@T`~#7G{_OW5$gm{7zt{x_$tL1|etj-ta*@uibwV~4#tu4>x!p4=n60w=)MC&Lo@)9j<5r`rGuZ>lD`Nj-iQ1GpY@IQh zRq~vb>*XCng==Ayr%fZIAeScyO~7UFG~r^=gG> zu~|drF8pC5CT+3jE3kY_A7|`YrfVLsW2}18!R*u1@^9jBf6$62;?&jmZ2xQQTJ5<1 zj{mW1x3{w0h#RH95Bv1#w!4PP6Lmw8KWMzZBWHdm2T8RCwX4qtRE)np)&9EXyKle3 z-{`BH-*?(CA~*GGzOCl8>r$gbHE9=Ab zIFmHN!no)+FjBBJ)Mxb;xa&v8YnFYiv$qHO%b{=Aeol z?fYBJGCso*n!J|EBfIX!m`G6&0Nmb-iqOh4RIj}CSM(;%Z9~Zv@@DY2Q*-!w& zrVfJ!OSdY;e~Vg)-&U-Xt2>CISuO_^m;%fl?Z$p-oyFu(V(mcZF>7Y2>Z9t-P*vnn zS~M;5=HQpuXLH)$Mu36z2kkvA3S>m)3lP&3Ox+~1ip}^hTTiiqv(||X;8;$~EJ=0C zGhI^*K{}})`F6TL*Tu+twD7y!-CnVcg?t1*(`I}jmF}-wPH}r+e>szk1gU+7bDN3LG5!z_2%*uHT)hz`gzYEA%C%6g4B{Y0*APC zBlKrdh7N0-7uz<5%u{!hY}=C~e-%Fsm&IRlTIz48TQ6y8DNbMA;cf_S9CsRf9QE#L zi$2SRMsnp&s>c;%F6QuET-N8Zo*qp87#ZbZ+h;GK`0Xbcd21Qpt*0jg(M?m_UgM&u z*pZEM{uNO8O!lf&`ov+)Zd99YDz`=3-sQHvZRrOx@BNCNMr=7%$i1XW z(?1c^^g14hTnJqYXjM-DLsR)xd11z<>YL2AhN_9?@OkMC^E#fGBkDez88YTIt;+VT zx`Q8XIe8v0cm(eF^750-`aHU+@}`aOOF;EZxyOCQrDza_&hq53toHK(Mn4sHx~w|#Rc5cxbTtzvjD`n2=-sa)2AIPR2i@)TNulf6&b=1T0- zZhGIF#{Dm|9#d~wrTb}WGWz>qw{U~$ImxsQQO_`P^)p&u5;{E)ImfhpKS&H~UN1}1 ze4kmD0xqRF#MlS$cM|+9mE{qpS44VjZ>2aa8Mum=Y&64zch+h1)bz_4{#kl8Ls`A6 zwGhL+Vw+B$t@;?eNbu|DWXNmZz!^32qZ^8&U0OFbD1+2SQX`4RyLI%nI?llpp6MiO zVSLHmAx!2K!wuXNhCK?HJVQdsk81nTHQtC{}3fbv7PEnj2HOyM?~EQ>}R zJVzH~{fiA1JCKhOiUsu3Eg=9j#Ak@llYrN7K9}Y`+8iz^d+YSW{4U6@=x>AW3_O&f zD(uDEpQ6Z2AsFop#hdRA@p$7!iQ>E2dv0`l7L~*&GWZJ8#c?hcwwxGUfSZVQC^Z{z z+eb|yz0kd)2mnj~&2Enw!6Y_%*fxM!jW8puRS0srhd1TGEwTZmd%`9e&ow}5K)MM3 zb97toZGjFx^l{oAwZ<5x8IxFy#;iS zN15~%DP8>E?7a(ol*RSD&|Y`&(CM?Y z9h=zvkCeMhR?q%YG$)B~VdT&OL5W#z0k-0YTIYLNZ6mJp5ZCzz^WSe_cT^|NqQ4z# zZOZWHM5Z~6w`IJ!UQCy8PAeUxI|6%YTDsv1a*S7mE0+OCRB!N*W0L^$Fwu(gX3~Y% zxs8s3t%36*&L!xjX^|T^k?bItK&CSocLqP@TA-5jz@U=NcXk@OlcIYpf=82C>Em1A%+R*RxwwJ*3w*g-bkhJjNd0x&;P?Lm|mK|=1BcSroq z!d_+CUVV;n!1emN;NGFwM-KH@LnVFw#8=pk;3O$N*&8><*t74t8s^9?ZY}ZSpn7|L z&a6zc@`!vB%z|x$Hh)NTYrIv_QK^rX45KB53@!xK@b=>U2%YRZZ>Lt;eTrXr*qJ9a zY$O;siJL!ky$B$^1uF2lo~6CGwUkoepF6w1Ip&DUfm`Cn%^&w8Xm?uTAGuA&CnuyAfoJU2&#N2Tm)8!@pay zO;wyEc*_hzZYdu-f|W@rHi3yGHAvE4l_ciwN95-R$)C+@xr*t1-%;-2ma?LVMVvQ9 zoNr1oVZo@*sw$G>f8o2~$)3z89BTf7-vkXfJc&j?qd}p-IW`_QBr8^UjJ1Jhw-?Qj6H=_Og;?~%^3`JrX1V<_)P3My3f?kG^t6uzlG##wQ=GsshW%l?b3VU%Y z-Js5}(+BJxwSAgltiGg+YT6EFaJSmXJo;NcC4TG>{HaFB`$ZpwoYlj(J{*3ZgWBkdm=y0^S4uE zL?qPrfA#XVjB(QPZ7L$nW4f|j92aiC`QP=cY9t$$l}_WI%!tr*KZ>GcXF5mh6v-=u$v3Vi zx~*GeM8vr(WvY^e4X=wIqpcL z;s|QmX(Df#jZHW6@-Vgp{9i!NVN{TB+$J25&zek6$fym(O;BQe9%8*OV!e-3=}RfH zeK_|?b-^%DDJ`}eMVEs}N_==dl0?h$Q-Ny!a|K_Jv4TRNc0QoY)JUBNtNUXlBcCk& zlMHI5$c9CC>b@+q}nJLX6WYNJ|vce;U!q=#goqm9kj!Z~%*iXaYGH^;?Q`tLS98bM{8YL7G2!B9)#J)PWU>Kb1@v4^v=AcLhx- z0XuILhFXJvm|Syg4mKKvceb%s#_rORhp^qOn<&5S%PzPh3_+x#pcm zWXE{F-<23_^EX}@fqw9~2m4##Gjh45chJOa{x-H7`(U}hz;ZI*Seq*6Vx^VtF{(Wl zCyTCf%zPsKBPyCmQ7^;C3v&kF6uJpIRfGUS&E##g_&>3vv*XT4H+bN0bM&LqDvxW~ z>I1hBkeJ*N&%o0qCtt+LbDPkC1+q-`c_O3duj_ZfU!dxno1a@+msS4_sG!z^pqmFY zuQ9d7L--apKo$RaSrIFqV?FG(!=sdoG09KfFEEUKO^}q2BaElv`LUH)CSd`ut%*dG zeL?eQw$g(zSsL3p&F=~?5GHxA?Pxk3akV+JE5SV29T*sICVk^kf1#PlR6(4H0}`Sn z&A-Pe%%^3}*r~`-d2f$RrM8VnjdufEAi5FLBL;b;wB*=@m`@dqTdf(@hz9;bzp2ST zz_y*tnZHr`q%%Bq9rIveeiYuKGLb{h7>Y@^@n-ybrZ5e0i)>X`i25(Ept{00ksqCK^%eQ)`dPF>MMoRw}dESMZTg7Htlcf?RsX zwZa`d?46etJbdH)jNr<=k{$l{i(9RTHhmRh{Lll{z7GI?qw8~EwOrvFwhqO$Vs4|; z^tmGeMsL_1so)_0tZx=1iZ?|nK9|5e*E>w-&kW~-DAOf70{bG_50<<&d!XPGl@8zp ziL>ObIr}t~pU3=zw)WaZ^04q1DOKriJKU$F(`cVNV4h6dZmv@L+t5IHWa?w?$V3kp zc$T!yy3{<==w!TkEcrlEu9{<*UiR57GBzjHTHjT3jm_rNpLvYV&9Tk9Fvo9CJe$;C zwf(RV{_=`ZgE1iUfcR4lkIV%HQ2@}OrBe--LVw4EO+L|KoG>lh`Z=+;#jMSMx|qR1 zf}0bc7t@wqeNdQiUK%Pcfj%e7{5w}rO(Ecm7*E5Yurf;WxnPVl@xJbcnwLu!eKf1(^H#vk69->z(@OW@Ra3qv|P=QM!9F+ z?8umYuVMlh{>d zi5n@w6yUt9BsTYLCLe2&ZP7m%?Y}~5O|)p9)#JG^*32@fVPx9hx#*a%ATNrA^&(g3 zX80XadW-j)ME9yrkJP0TdLeKo7LDTlN*{2&=$6P{QMg-zGIY6KT-nglxd$+=Py_Y2 zUUV6U<&udu*NY93PV^wX#_La-l{N60@mCtIOcEo;OT{%}%-D&~g%j;A(e`0Fk|>W0 zU(y;5Rr{}PICO`9EPa=2$R4Q|LvxlZw36C_M;$|U20!eJ{IjfsBc=+ts{kjM{8MUC zItn~PegPMFj?GsGr{K#jCioHy4|O14nb%yQzpH|+7VZc!BY1Gg{7~e28d~m%j73Fg zmR4cyI6ILi%T(vD81IqkGR1HxA$dz#s2 zLjO1zJeWD}R2i=u4>E@NHGegr)0tfuM(S|GX!FXFgRTeu4l!N#|C+zB2(un7%qy+Vnm0mZ z)vHfJVFMH79KFvu-cml2og?efQ`kO=KY~cL^dpQsI%Lx%r3Sd}{~RDpD;EHfot|u2 zJB9|*U==#%F8T+N=n4&xly$Q5A1_sdOO?@IurZkRZDyc8*#Y?jwW;p=p~LvpNF@2y zBwd>yY`)w}ptrxqXQ}+xIwC)D9LqmFJnRbn7ugyP6#;Ucj>RSYr{MLM zLo=XnGybYiEm@2iKO%F^UoU2EE&1H_z!~I9ZTMz>tA@)=q#7=+y|mNwYPAp>9_i1{ z4@JgnNgv+}JfVp3Re|`3DIc<*vzc7LfU;Ogm?$n6twA3em_r>J?{sxSNs>rOOQ`!w z-Yni<@K40B0<;00f5KwlNOxmlW`pwkj>Up$x~MEp0Z111P^d4frNKQb=7pIZIbsJf{2!=c98 zN*b$rhe^H82mKkr4YI@FDfs+V=%ix|Q0K>e6wyXof#>5AToG5^7KM`#i9BD3{?n0o z%JpKq@wPRbq{CE&@o$3xxvR0bhC-AUyv;k^(g8!BgN?qDtt^i#B+F@`L+MXBj2jaa z4k`EBmAt-suC(PEDUHPt7vk_`bOKPTUi~g#NE~JeM+-O8ozgA#1mcbl5iw6^C>N0U zBzjr3{$g;7e;-M5phFt$3VkB|PY0h;#In#8p30~AX3|(wgjZ2DTUPV#mz4_>5BXG= z96;TYhCQWG8%^Nt_^lM=yK1n6(2ffvDZp{bckL6ku#1ryu2zgbVs*3{(+i4`2^!+|$~y$eD(_F;7w@jNK)gB?~nBjrbkXkC7UDrDdk z8Byse{+G=+ZJhZAZ^~XXvzfhArUx;shn}K9Qrx@3zvpN0V4mx~odSpgtf;c*y@gdT zYu1?Hq0IT^Euw##L)D_PfRhNq5;+AOXqG`I#Lmt)2XY@o=jL5%o!PJ5bYej`Vr<@= z092NdGiN)%M!YOgTnlDta%TrWcY>4N1S?*HUL*@aw}oSPy5wS!g+^A(+^-_PD=klq zyx`{u9?F_O(9CSxtU?kXDZ~(ukI=|BkE#Xu1Li`}wCkld*GoItm)mD-Z~N4J0iramE$()# zuyTx)w>`b=Xey#`V8=Da8^uwpm_vYka4pQ&tzZ z$qrSn>HMYZrPYz_Q;oH992i)ix-HmjWXXN|ORZS{q z*Zy9$gD-1W8b*8VwJQ{nL?m&O94&+bU+>uQ&H1V`a|{%YzH(ZhwLsz*tkikQh4!-d zG+fryqVO|r^2OfC+Q3*VGNMC_bUDOQjJyIvMMekRTnNg*(#9TH>_j|47C`OJ;3u-M z&vu2{$Oz1$*YkKWz9{&oIl9ql9Kwk26vJ0`ur&+*_RPLcerO9H+1A?g~w=? zzdz@5S31SN=L_5{7^DSV=xbPL%H4s?Xt^@T0pWQ2D24{l?6n7I5N1hkxdx&;Qs!v; zJUxQKgT2D}Fc^VN$=bj^p<-m}t2v2ZCD&`yir45BuRdcpeSxQB$E-8WO7U#zml)hE zC+-3${A{D-m295VWvpg}%V!Qr-gL90jlG?owX?jvTm&&+S;P`v1+8svY83U__2O6u z%m5nLG50+8U$5LJ8Q954JK^_HuQYt!_kAgKc3+T>heUI8_XTCv^Lp!9Xg!Bn&uZ&A z+Ir5gp2Mx@2v@ay9B(~uQ_teoc5v`oX?Ix9D(gAky5qgtdfs9^ z=UUI{*3)l2tE}e;>p9$dUT;0itmkdk^A79TU_HIobB6VtYCY?$=VmlcWy6TP05>uw`ZXIn z8p?9=0wXF)-kZMGGn zgUeZ;z|~cOeaNnM|0q4bMx74|D&>sjFIkp5-llfZY`DYJ$4X0Gnizi)_X>MHZ=c^< z&`!?87U5`Wu$SM<Nb7Ljc^?=iSxG)XnmagDtTwAquuna_Zq(S zrRuYPBn)zG%Z!qDFy?B$OYv5tS*I?9y!kgazQNvw--rnam zpe259(bH;R&0;DHzAmkH1WwZ!VnUr^-#F@8wo+}1MVwwx#4C675|9Xs3#7p-KNm-` zy^&ngj7VC^_$A9-;qUSmgow{P*)lf|J3ym2iUEuJkI|-*!<(V|e z&NN>#Sy+6FZR+|w zF{g&tn{afw!3%v`GBvzBaIeko-cmhCUUDtl*!Dqs!REwU-2Z4%GNxA5lk1*3X@APv z{iOXFdqkC=-ZLhqyhypB18~j&I?Y6O8ZF{_6w( zon(C9t;hEvdwlNzJbfoX8Q;3^7~k~WIBR_Wi5zVoWXP~yavRx<@GbmJ6uev8@UD+O zQ$w7AZN8ws`qsaDmSbP3%H;nJ9sX0@;p^XL5v~Rh@Y1xX(8K-Dd@0_Pp}w8IL_~aV4E%BWX_{)=l_8?iVT@#}03=}?RO$#uUuDTh2ujuZ}2_TJ=ppFu6LI~5Fu zvix#|77H^RJKm@1dKlI^lic}i<514G>-2~Cb&7B7`AIYb;g?#E(N@yQ`Rk1(YmE0% z8utCx^^os#*U#I&G2wI9ibKfA;*ypAOUQ$(ad35a!Pbc9bXFT@Ej+W~tGvLa6OBWO ze&rMOuXAzM+J|C)@P?bzs+jotTbYOpIvgw2fJ<~xX3hsU+;l+umfG@1oJfwvN9OtW zOV*qar7J<{a!?wTMCoBr%4cc=rICWtX|_FnrE{WAz7X8@3T`*vp!a2zKa4pc+t^yr z!75B6*aCz(@7{QWji61hLNfrdAX&EQ^O*HH=7ijmef2*zv|F*#hiZ0n{dvKAu|9Wd z-C>70VOPn~d6y|00{K{qh-&dM&e5nA1xFo+jey(MyK2z8w1TmM?|d*otS9j~5*2^Q z7hmd^pUan?e>T2l7QPd5lPDV#wv_C1MHVuyBH2m{L-(7oTbdxM9DHTe?23(1=y8wu zZpTWnuZZNnu12CPk0xxF*h4-P>6 ze`uD@l0_@j;BU4f)1s3shVPc^4@bf=W zJ&buQJ+UaZ<1$B@!B*O7L8@Wnld+k(0FB_GuyVl?D`M>O1@wvH$Jjkr3O4G7Gogv5 zho!$kl5t#G?h2{x9(Z22bFg*1R(CCmrD_}KKL>Du|Pj6@-?dFMk?bbtKv<{ zW~&^k5*OH_(Y%3m^peHqs66k*qjCx8iV#(5P4Lo-zsD$s#OvF%`Aa?o7WUlpKznN}W6-(o|}N=!u|*~u`K(r7*^Qdujxw9vJz zU8{0R>6ED>QoCN$o39uqob-2=shT8RUh!kmPeW!zsf%r*kD5zF?Q?83RGQLG1x{dw zO)(UY`UZ#p$EHHZtf$gW*RpL&suXNZ3{8#?*nqjT)YsrIN3k#`ka1(dR#8J#p+lx8 z=r~$#c!Hvh_}`K__Bv`xc=Y^Gp`6govvfD;<~FVp^px{gGMfhv;eg z*4B}7JvQ?Q2_tjlHGBk9vr(JX10lZST0TA_MM7dZay`&4xtk>+yy3XqWpu{KoD9jm zg)H-ijm%?95wo}y%437U75>F>h31Um<1khKTt4p4$Rwo2ak)17h~eHFw-poMw_e!3 zQzf7T&v3B=3)cPVyvn^oEr-3jR^7XOlPnYbMR!nSM2n zI20LJ`d1#owEp>V-`8CO);<3izp`Hc>!psg*b|onzeXH&l(a<<+%AH^XjFm#w9;ai z+}o?P8vk-YB+oosDYH8R6ZKMPXY4myp+$$*jef>EOQG!pzc74VM$MP96zXy{{Tz_C z=9Q(jw($O)BLZV1w{rD+t+@T#nnD(*j>4^z{7aA1FZL5ZD%?7GvVVb{cMmDmabf=+ zeR#XdHKp$9lWIFF$f2|yRkfv^-3*W(Vrh9NCu~$>TLZUfrSK)3E%hqkOWJ4pvS^)N z1=u?N+c|+gYf{@&rLnI2^rZNFQ{%Hnd_&a|t&b`)$!{JvHpO>>3R^3`g5 z4yjX=E#7WkUk#z|@sm<;&z{sC)$-Kp*YP%0?D>4U>QcC$^BrfI_1VD>yTmrq>I$C; z<0I;qv~lSiE#(02lGY34&C!PJv)&_4N0sY=XLQ!ko$}n|?;A~*r8FwRt>&04rm-ql z_ysmEL7|7MdTWql$?qvi5O znUVJLMCXH^7@{%87@n}SlxAiH_QWsKqa>SUdaM*N4<5gk_e=GAgS?-w-)G4C8T!3k z-cR8@MIzYzldJg$izZ58tzsP6yB7{wNyJmd1~#)0?bMl`Om}p`IX~8ULx0r#G9a4C zEX7?@@>jecu1WT*zjwc8=mWH7W%kR`z~W695X`H}BhIKf!YIM}&tMy+4UaRYzYm!b zyI9Kpgd1WsH@XCvtwo7n!J@s?$4%iWz)Hmfyp-C*d6~ZBK*NJ%*`j_mt6H##G3dF+htBAbyECEQe-^XsRy~8 zGu%3*?$MKS%X{QV;T8(&{uesi{jcA3|Lb?%|N33`KkvQ!U*^vxOz}XOvH%Xb;ciAU zYamh4eOaQfeV-J*UL59YseXrx(qixPo&rl=t@+poJPK220EGlpEL|5=RqVe@s?e(d zYN85fN)_ArN=a44++(WH@Q(rgKf1s`!S7ecf&QKTs<5x;J!#9g@CDeDxtu*Pec4au z@vOCN{i)yC#8K(gFZpkm-|^4=Cuu)fBGuiEhjG%JKPU6aB66#F@P47MLDvgt^$&PV zXC4Z$j>NlfmdUj=4r73uBL0~KFu-5P7~qj#*PCOr;BjL>j{F*Hj>VVAX$;7dUuEW4 zcko~zV?e(A`X)!ECBE+2!{pas^Tr$`wQ=@v`Gtu(_sJ2wVYtKK?YXJ8-BhL6MD7xi z*LCr)p0fags{I7n?G^4u(dRzxV+$>LJQCC~ZaL(AjD$9=>WMPzSu!dJjmB^Iq zUp|kYObOfe{UKU$edpR~cLZ0tZ~9JZ2P%HaS`*(rOm`K(MSqwf%iqhShOf|qm7BqV zjx^x9!k?mS8@?75Xpl6or2STNuk13O$^4rZ`%>+1wQ>U;+NQ>$i( zN~}ulp>AO{_bOxqeQ@7!#DUhYEKFViW3vj!23P1&phYIMFz;`Vy%z$q24t`I*zav^ zSMeFMTRR!V6@_Z8SuqU2O78rAD6S7VqAw|aBmZJ6|E{+r|9G9h%FchcuKegRC8O4U1C>{8dVFw)3x*{IgQ?A8FInnIY7vsMh(X+WCJe`7ce)zs1U* zr}7u+{KM`1Ka~6lHg*&~;&zhG!1)!FUYd(2lVK8m8*rArV^9uL2&&v-tz^en@oA|_ zYqj;K_;Sf^@w*HjAjtI(!5BBmI%Z2quB--z22bZg3~OK#8_ilk(p#+bJl)f=vg;U1 zz7~G*=ww`_#Up@{Zj4!6)vCyLyKdHPcC#MNC2Nk(npJpAZ4ww|XI|h!p~|V}BPJ@Qh0d-dnlOXbU*T65W zEQtrv_sfOs-PLlESy_!>C+P?OooQ(rC)}0;72f`40kCP>$+Ku z93vY0;(FegF*;%~-Xf#>rYjzi)D94q!@J7s^HS=N;>#Y?d)=3xhfVz3)iaSHeVX|z z1Zi9)IICqZv2zoPw7i-rj*`J>x;WQ{<}gbpJ}}PiDM-20f-{?S{?F1W68{$2JHpc5 zw8-lp^O(6J-4S=oRGa)~k2e%LwI3Gnm=olD+ZoDmOP6Ov${j(pwwqDg=&zE^^JkMf z7q1at7m&I!)nLhyH?~Yld@=uZW_`@`bvX_S)7Hn(h8%C<19Hy7%q#l_ayYEfivP)2 zNBNc6eFJ^)bD94|$#(xZN|+P&INHpb7~X@tMFDL3_LwzY1)Zh7-GSFYLJs$UMmbdr z#gGh9Urb0q)difO-yN@0c*Mx-Rau4ql|0F@+ULtQ?IwD9H!(*QDB0|KK#a+v**wNG zrJYpvj%sJkJ0&%{{dbx5*sQwP#i|i3F{!Y9gz$-!HAhA_ql~He1GGHP%q;C2IFpvq z^!}_LRys?w7wER{rR`Hx+kr*%rR`Y1_Lx3E?J_6C92*@`phF3^AtuC1eeVRG4X)x0 zYA;F%mb--zM$J1a&JYA4mqmkQXY*py!zs==_1Te8+~$xm?+1}=SMYBc1*_@Wi@4pb zq3nvhz}?qiY>apuk=!#9r!34cwvHQHmKV6?8WtvdL0QUun>Z7VbI)+(@h>ne;>;wR z*^c1hjCljiszZ?*<>+MNA^GT!8J&qt_y>7;7Qs}m&LhOdY5ZPzUH7#Ohw}n`tHcVm z_hyYUQvK#+|H(Ejn}MBGb>{`k8uJ3Vk*Ng%bg0yNk7IsT;)aTnTF<;m=G+}lbNCJ{Y_)`&=&I*d zc*DV<&Q=qRZURNf{xap7 zT*}lHO?&D#loRV5CCAtUk(Sqx4#9eN+WbB(Eg~oY&ZPGxud#n%o>uyeR7E}CE}*ZO z0(UE|0Yogd)tE~C6W)OhO)RPowyF!%qA^c+162Vr7ORy!OrA+k*ppP;DizO_ic|jC z{8K3W<70C*2YMOHbew3;eHYizcXJ@*%~H^!C9kRER9mq$ zTDD<#?@AJ~W>>iNu9qtCJgwg?MEtW9+iDKvOw{FylFuANN%JHPQk47yR&K^>q)c44 z)Pa`xMLZGI(6dK%@JE~En$E6-zMS})M?RB)6bmX zmi=iT;aCF$tg)>58C%@vW-SufUtk=#w(di$4vwwiHS-27yt(_z9RDbs?fQ(!b^Aw@ zmu#HBf8w=weVBLy564#}P|`fv>t2|9CHaPsub<#6d9zjCF(pUm@8q!U7>6EN8lis+ zpPC$0fP#s29|1p7_GfDHm_ti*{1t*tNp7?MN>u~C{S)u{;23<&+*ims%*ID@pVbSW zN{x@DFCBwkQeNfasUak*7ezqMrpiQnDO#)17yaVYXr>-c`Y617I~|SC9BgD7HEyF8 z?>@9n?bkVTQnE83fz8j5PPzo==KAa^>Z-duSQcczJu>y-gGy*?DU+wfRF?#6V@A)^ zoTn?*{pS^Y{2z&%A4n`hTNET@asUZX>A~Z@YQe*xY`#V2;5C8oGl!_1 z<*09u)F;zn{T>JVz|05Pj;Qo6-kslB=(_S0zlX^sb7u31>6%m;3}#a16eYY&Fclc>9Sr(gRlA>E9i2( zC3?V{J$gVAZ>4?+-VuejHTMH~xkcZ`JR7Rma>*Fcg-IsgeODxE}-$x^>%=R7yRd&>2VtE2)ou)6b?G*Dc? z470$D0nCa%WWb-8WrlXEyOl`|6wfm!anCE8-;+G$7f*8Yx*Xyxu53Rq64u8`cZr@cu*0sk>3&4PBd&@`0$ zf_R>pwS0M7oKZ7W8pees>$Mx2xY60Z7MAm=E93{J0_AJqIHD?&c*&fwJl>Do!o={e zMBG#6T%_>+w2Z(vP6|q`ua8POgdX$8IQ`I_+K?9 zP5`e!;Neo_HYdmlH5;tl=6f8t<`clv``z$rK=JA&;`1@+yPErCzOzAcWJ;!V!BBWh zGh%R6o|y4c$E)35X{=XHWH=pQhSvw+v_DM7I1T>$n z;}cVYb&OlBE-5XU`B>iTW0IJ>)DSce4r1=cXnpnUW2_+-f92Ranf~m=B*oD&4_TK! zfjx@Z>hJdUzI28&zk$@)BOBCCRo&mgQOOp&OO}TCEI7?02m4DsMQT)$$^K^~E9~8! z%vzy=P4Y)<@Fk>7j^ASqf|LendEU5ZI^7?6K~6o2%NeUA3Ps7)zf@k(u!9XA0`&QWu8kko2J-3N)81==Bv-k+ZsGHZR6cfj%$!^kDUJy zeL?)^Vi#Nk;l9e!n-i|kQh)@%>hJdjzjFFd7uw~#iXBpS{G%8XC5b#~!dvwy3vZtj z`=AOCBL@2~fn#iS?RgZ8-kEoidFNHJ7j)*pW&mZ40JZ>p2s@!w$B^yH{-*|7HC9fz-~t`U$_4|r14+~MDygByJ1eCuvwE26ErjuGv6V;m*twKEc7Klj zNri3$)Ub917fm4at-x2C9&6%1i`WCj?jPk(TAyt$s*|RS$~JG{09+;qOU^NeaM{SD z?9xeD^D>M{sBQM?dcFSXB=F6FuLv0KTDBR~SS+y4k@4}tT1bHc-wvOy)o{6=Z&bE1 zNgyYFpOj~o{mTqW)nvX?cXm&5GPJUE@x)^MkP{nJgET(*4A-dd%W8l{d=kS^4M<@N7$7^iDxU%% zFZMRym+WHx-F#TleJpywLTA<}gT2aC`O52rY$@U)sh{GHisdBB*nw@R-z&m9Gha=^ z;<1}9cT-R7Vg3sF7YJa^JVVU}l8j7Kr(Ex}S{wB$`DQPDQ!C@$=8rN_))>EFq42-8~R{i_r#=PiIxl5um7s?Rd+$DzS{!i=_gm^uHn@oHO3++01$u zwD<{E}L+Sp(EEr;-zq_vt zEk8!fphFRVv=jLO9b`JQxn}ImYE+!kxJq&-JYrvU^H4j_L=y{e=h$@yYCwvGOrXJW%BeAC&ZpO4?DGox7AYf&)15ia&}S9>@2DO+o`1 zN=N;T{nAsPq4xF`(EyCCv0XFyB`VAg0k#+Pl*SOtxu5ivK>WU~IOG{inyFe9jP?6I zovD7ORCn(qn#x(s8nWA@XEda_${3r}0pjWvl>%gznG2twz$imKZ1p8DnT@j06+o~m zc7;JD&0P2tf5k%j2dI$z^f&o*?-Ts3GSox7+X^WxvcTVuU8bRei&l6nJeIyGwBYQ9 zG^g%Cn+XJAK&K@&nnv;^@l}D&ZF_-gs1aT)jGS!Vl?p89Mg*)Ygf^#Wz@yu|SIoQ8 z^=Iq4t;$`Y3*@T}D3;0BY7HQM3SX@HdZWK-mD1XDw!rsny0O%v-iSsmiPQ@!vt3=& zMzS2+-X7$d$=uW6rv==L;H?IZG$Tow>oimwY)CBN7Lu_FzS(V%!!fB`GYgGQS783~ z2>>fz8fU2Y*o(=J@eP;fZ6l*apNF5F2-xj>{I7gOeP3=Fi*^{uW#x_eJ#Jm9|`rG{Z{ZZD{j#fnc5bs z1;Rq*$Pj9+nf3S0AR&#k~;1o;Okof_GQkf7Y>5kR?FHNYJ9`!00 zuc$W%#4Ys)`^Eew1>b^U%ip9F7)djkF28B-e=5(F?rKkRY=m!yT;{`10CTLN9t4Zl zf^L2j6cYVyfY~hH%MJCgrCtSAQNIl*5HN!xhRn;z|BGbxOC>2Ng{utpfE6AWs_%1R zE?FYy7u9-eSetahw7O?gTi;9MoJtN6jynVQ+b+h?EAkf+tgo7ofHA=DiJ+IFj)qFP<08vl~hJiE163L4a?2O$^TTJycQg$U9P#u~5 zBiA|Roz^0wpu?G&=PlVDI1rhd-rbRYb4NM2X-w5>Us;_Nv8IiUTO$f#k4>OryP>L# zvjl{mt`!x^O4ZY7Ax2N5?`KCn-j}RB@>T0|fh@K{E-)(#rPs_HAy5&R5#DZRpvwrL z+p{NK8_y+8zv^X+l1CCiRjm24-U*%4N_zmJ3_FifQ&cCBN<7r;#;@diV4DSm@|JwJ z99jG$wFArLX0voD`u-_0%P7$!0@Z1!Jj7SBD!CYc0dtSm&-Jn{$uyc@#6D4RHfM-@#nbV4lin?fqKoUjy zR!J@w*LNfMEX6ICp}RzLe13C3XlG!+7PWM)W3?6i2-RYF!I7Oy;ip(ICMeT2WF_5JK+nK+mR{)|M@^O%rdh$&>5uRe=&{zD?M zC=ei}IxaI9tR#(kCi_5T$ zXxryQaf#S?uylC){4?>7l~40Oia0ly7Wq$I>ZOp@U)vIEI7p%1t?>%JGLvLAeB=$B z-SC9a{{5)8NE%AcHSuYSp`=<5tcf4SkFTc*;HTslHUr#mYTfL_yJ!21)%`mC!y^^$ z4(U%6w z|C%HQ$vPgfAupvMpy?;)oXU^j)IM8cS&0`z_X2W0ehnSv%ok>hRg9$x$mi^E+ImRo z3_n3gC3a3EDi+}~7$~~nb}2ZMf{8b+{z>ZJNZ-P!ceL;|TJ4WaZ@#!^ULr1J=cV#R zv+xCC@(ET3O0QMJL^m@vpJF}o)sfG3W2`)hB8+k@;{ve9LWq@|pc)NDO6Y2n9aa`}mcT>?FkyuYV*w>rm+-_q2A4H(i~%l3(5)?V3&ozN9rnLR4l z>NX~@xfd&$(B;3DgAL(sBg?3Aa+92KN0xbGwo$vAn+gKYm+W;t-cC@3+TD$xNCU$= z=RaGp7snLWG9d3^XRvmUxMf}D*kD|iSgPjBFoS!KZQnnz{oIwx8H&wlW_#9p%@*2v zpI0X(X_>+w(LSQ(ONY`uUn}CTeSv7(vd6O2%OAu%6GoGG3dRQFLrmoGv26b#c9-79 z=V*l*gGrfcNzp1rNn5m9GF3VS@p*EYDszYB6za@>3TY5~vIt41O;JdzQD4EX4=)Fb zp^Z|^9<;_OSw)(y`HR*fr5<7LNd%=!E+WEt42z|*2$l9oug6CHQnlyIZ}w`BM%|ht zPS~D*vmpwQGyhp>$c{@>8&Y@p#0`0<_||Xwg(Rl z4Se}zGc7Y~kFXj^F3au*3@gjJ4XL6i2QpWm%{*wCscq#6!v1y)(u6?YEi+h5Xmd0Zl-`d_nySy` z7$&C8oik0}jtkNdb0gCjz5aD0(;9fJ8kv^I!!Ehp@+n?NtyER z;WPN(!RNtm+4$7#;G{DMH6B(Nt>Gysweb|3Ugill{^t}j`~btiQ;Gjk^6h138qB2@ zwX)WPhQ^W<8rHnr_t@`0==J^IqHks8zd_%&V!J&_`U>_v^p!Teu8E$h$Q)Rv$@|A7 zd6VlCvESOoeo&P!kqJK$WvYqc_1 zA98SvQH7;*bSSex;3< z81bZO>JoYl4<<*ej>dHWGe{kc)&!qv_MIs)i-`kd5nYUi7SZSO8mLGm`WWq6WfR?# zO7x2%x?@w4><~RN{ANY>x1syPiBrCw;wPs!7M`!??{ohndMEw`z1Q(wf*?Wg8LVWE zC-@7;5j;#vFQSXLrDFLMs@wKwMnhi}F8ZXTADv2i_+7fqCjFpP(hI-i$=RFsk15)3 zhxUsT130hpAM<y0T+Z?HW}yAZq5DhVcF15=YDg*a&6?IppC zKqzsx8jn5mNrRv9!hGT^*ve;AC=@Be-rr!gZCQWC8b2^_u+=t+G_%Qk7Ajr>zTSMqJte#L+0!f>KB z#RNODkCA5ACi@88_U7KwELYZ#CzNODCzfX~X?b>+bdMcx^FNno|L^NxyS_M)Jp2Fk zFDv}x|LywMjJ>IY!UZLn?_AIK^4;`$b+Z0#x;d&H z=o9?lNOI$^*Lq$2k?=RH=kSvcpCLKoIU$$Lgd$v&xZ-xo3}bKk7-Px|b?jgEqjB_? z;HG%T{OUe2AMAE?l+@?W`K#?NBpCx-qS*l`+x1h`sOLke59d^>JW7xi@yb-S?joju zYy`@h2G4VQOR{1HXVksnO-98GS4d(KY7d=f2rF?mMdet}DbM7|8GAoCPgpt?lOPr} zWy*MGgtElsnuD$vL*W4R&DtFih4GOyvB(|mGyD5u8Fs#`3dXj5hEk~a+oT~AR8tSr z*cC`)s?+tm7O!mkfZL1S@7Jkade~Ou+;O=az2=3(+_|p%u12`oL=pMeo&UlxYUvI3 zz#euG{zvPZ(A7GHAr{cTV^QW*7SRa~#s;$g+K(tP1f${3<`1|gbZYFMpW+tyLz&D# zQZOt$O2Q2!*!xer{`pECB-0p@VV#udFB#PSmqvsmKOE?d*IPy;o0)jhUrGN^JfRP| zXRBMIZletthX9-w`yGM)y7R+xNt)Rl$yKXMbxcYrxkNmBYGpbrOztEMZb}fb=ltUO{R;TbPb{?g5fxPS`pWaoex>EP_0Hnf+IB}<>DXcO|6z>H zH^=4{tR{McW3}2L()`=Frx3=o`O}xx&?H-o=?zcFUhW%Fb&P;FoXMXO1^3=(c^7V5 z@T>0bS6g0Gw)pV(0MX1~jb$x@t77Mtoik^zav|@|5596WCFEP~6EJ}Iv&KH)3_#h{ zu8`RC0oru$Lb4>@;FDQhZB~tsO=5q75Bu*GT%3WYjn3Ggq)eedx9n1XPFbGcQ`X<_ zE*s#_F6-ydDm&NjEGy;eDE1m3eMhX>f!!J?1uwWB+=O2NzrR6R?QI`et`<0Pakq`0h zQcsCUs?Vv|R1-6B*`6iyBI_DJ^#MC)71-JT9Qz z*c_?<1bawDHCKs>qeEq^`WM~Z3Vf6A6B+CfRFxV=sghaa=Wo_-*ckTD;pQR*G+L255% z)XqW3Jr^_>bgs}WUL+L2C~;~sYPQ5CzbCT*u0mUk#^>ou)4}J`QBGGlAPx6rzs!Du zoGf`S7%e2&&AzAEgC~V}a~}Pes~>82Kk6N(el;}6gMZP6kbWV5uDk{B$pMXtLI(uk zh%}ecrD&HOEuSiEX?k;w@;c+*`*}C+mBK_pKM3h2s3t&C>8>OV5g}^EmL@3tg(MgL zOlj0gJm(pW%LUZx*ogO}_FN!bE<~7uzo3pLM}r$m(p*h1QNPXml;sRi%)cH;oY=4e zqY@(16_VQ=CEMRynUINzK(=>379tX0f$lflPN4JSr@5>mAJ}K@?9C;&lu}OB6j`_w z0q_kFQSwrlBfL$}s>vb@4+v|1IiI@X>jVUi7W5f0;SFN2EoD`1X>!C?3f{v23ctaJ zXhoTjk%snhgNfd#j=kJ9-1e+@Ux2gR3D~bCe^_|Nd|@%-ILjFb2U9`5pI+c`|&Ux!uj;< zr9yt=-Ub0&?u?eJ)<)HclXim{;h(6|Ycw|TJ8np)I`i*uV=jL8_liWpPu)hdbVvMp zKK9UtARek^`?o@yN}1#YyX7e(z-nLkF*4W=)qy`Q8TrQr@5Xo!Qot zAM?p~byp4FTT;L4ae0A!fAgp=e=zmChTliN%P9|mU-m{y{Tlv9kMccieGjF6*YMwz z@3>SEqj0@Sm3NKI?n6)qYd_qL2Vh@^P5;5hALtlN%!-q%`g}`Cegt&$bFH;^^;H z@;&xX2#>Itlou%<8r;D4)cw>hd%ANmpzJDdN=_@#haUN99{?qrs26Vp}g_ z>aHIE1SW?8{+s5Ph>P|)oZIqig+*bbo3i8A)OH88iBmJ=aynrIwO_XleR4za;6Q(I z@Zg}pO8fiwtnbgs_dnUGBdpY4N$MkZ>e*ImSW@p5=yN0mA_f1ZR3xoGz!j!jGj|6yFI6hm{YQ$aKO7q3aYY=KU^j|OAwFY5fPaxyn75Ci@j zELS3PTrS61*91mI#(v7#z}epl9zK&}%ZGFQ!-9v;@}D0(e2)K|;Ni3VLxP7ptG;`RSiG%b0z@W0VNPL%>;I5E!YB=kWJEg5MbGds zC$Yx$4>meE{*h^V8S?&q!4U%jUm7bDUB;y9=&12h24Hg(FfNs>$Zu&N`eEW>mf6Dj zX$065qN{xDNIljm!+UpJwg)WzG*vZa2|i`Ief#9NTWEHGm5v;V94M#Lo8St zg*@Wi{`T0PHiIS#tz^pZpD)JM|CYH<4!bC|Ay`+)4F5lpRyTKyQ8$-`SSAI(&0@3n zNt=D`vM?^w-F1)OcE+u!6WpT}N;}rbxI(`I5fBP1**UgMUPW8Ad<-omq@qZqxddr7 zmFz?1W+vgznS#|N(Rtr64i&T^9y#Qy^j*}XnES74LTcI}=!%+NCs)@|ir`*b)T%i) zfGj1xEd=f-kD{<(2ZbT1M6Qe7k4~;B5|1;&n-#rwilBalPLja%Avvgq7?9EcNy_!u zf4!;1l~aT?6qFg{J?;9a>NcAM0Pd=>rY#D;Qq?S1Sk~?F_54xuZ+V%_ssE6y!3O@y zua|i0;C|0|UEyW?l51_|2v+wL2}-9yrHB>$>R#bJ+gwtM_~!%!3xKLRs%Ar~cug!u zugm=NX91w-M8{~AF8-y6t-H$vs2CNJtzNWCK0xn7#hYSL0F*@iD)1+jCFP?KaNHwF z0zN|#JJ8`9J#N`eDrRDQAz!%<3VAx>dWpoX(QYUphvd7BQFB!wSgU<q0do7^kb{ zuzJ+>z@H^GWxUpI)Z;Z=O|ufO#eTri7!y+X?~>t1=3cz_))KyIG878708*n?keo$p z)krXEI(wL;rn6vW$ziTLI}GAlkT5`_otoV5Q)&Eup}B91@MZkJEGe;IQ?jCVaS}LQ z7KJp3Ch0Lf#*{2lM}AY5-!gwK6*p&zjhE#=OPSchgWRO}owe;Vo0q4D2Z=+p{|hl= zrP%LORCU>1k=P{6aQ@+8<@@ZcmQms7K(iW=GXD}>Br7;imT@vv2v2t~c8&mR4}O*A zx_<#_u23zN6>s8n72`-=*95;}(fK&9mhnxNes}Rx=7bqMP2X;MJKL^#0z!$sU^%sR zff5yWp08HVVmB6E-gh6`3FfDdQ2teWRMZWoZhh(^e)d?QL!lkBMBR7ON}1T=`{+h> zIOaw`i6Fa>IU(4puKbE}z?K==widl7mB3Qf|Eutm*LVBLzzGaY5X*44B&=5ney^~p zERfVd3n%kG&1VQhh{v~LOE@qS95IkcUh8CXm(tVL!Rl^Hrd=o)K%OMb9Ri+#y? zpZEg;Q3K%Wy4Wt#xU(*PhfWsWA)cmu+0Pd`OiB_ZaKbK=Fq`G%68{GUk9@I>WKu&) z0tvnoKh6H$DfG@?V9`4)N75;^MN&^qrru3zi>M&4zRidDYQs;HqAl{v?UhIR43*}r zR%xDUelaYFQy~8J)Ym(ni=x&F#J`T`B0tx}JI2@pqGvp?F+FaCdCzb-d669P<;G<0 z>u{|Yp6M^w05>78&^crtEIB!&)i{ht@yrO=zbtGmF zLh0)BQWe8rCN0hAYgUXfDsv*!iXxST#x|pJ7*RGVWoerht<<)lN~NB{Ejm$4&Pv59 z(aJ(eq>J$D}{7JWX3s*G|Lbb^=i~@YgRQG(VK>u z*Lyf#bSlch8BD$AO&m4~d|}naebn(~@CYA2#ZYWidT~?$Zg`s1HB0rw{&_Q`4_qs< z>4CK+UCAEEo^0OVB6zx z$%Od!+&j@+2`@R3Tbzfe@!hm?q?DSS{^zTk1`|wl%e;b04$~oPPg@BX(If&pC7D2i zlx^;C_RaG~JUK+i{E|v^ZNaA z8w83eSy$iJSX;2e(P```SvP--tY4W?RZeD&A>Btsh7~a4J2^5FiFgLvQZo-Aq8oj7 z^k{edrw~iE$9Ow_So&?Pb!B+3@xywC1Eh6@8U9Pn<`Cse2iIRYd95xh83AQ5K`A`dJ=w%mB z((sa`^}^76TktZhz_lLEz@_Hkl5PHSN#ABx-OduruXP>b9xI)P*4sR(^!dI@`E&%g z19RZR?+9cd1Xchc@h1AO)ZTMwD)!DPWI%O&xIuEBW4IsnACQV$evtmyCXHZn{PZFb&Bv&Xz$`}cI{Fw+4 zMR2a3W!k;zL-3?^{dMcId59h897#q;(^uHdN)oJW)IMmN|UnBUH)^y%Ea8936-)pn`2kY0v zklzLyqs`dtdTO16ozVKv~}QSvu0IW_t1i_A%{yg-|3#?ENQa~ zACxAqHg?EW=4R~{T2;ZIjE@rfi^g~JZD>vY0K)KZ<7ha!g<#uW*0ut*mleno9qx^V z&}z66(cqI7d+T#i1azZp`>cw|s3bU|TG>X)NoY_-h0mA~k_BX)Dtg%>Ij#?0#`_KT zbmtM$uaSOqDOcAq*FdE3n)#o_A0dzMfARkKd%V&uf&op@IoKDXHDlsa^*4c>_(1YY zOAcBsd00$t+Q{_}Lve*>6m8;5Piah#%(dmmcHw7PyKRbBu z&7aScQr>VS{26R55cAz%zB<~iYE*WJ^=!Bf*A~52=7mlm%?8qz{1AP-O83$GR z!v2cXo~m+7sw@HM!u}11^89-m4$(orRSk#eq92hAtwE%_p?+1GOKsHyoHW5gxOeiM(_XLqZ1HDyY(%n9omT_Kq$;15A8{*GW(ahuv^ z`%++msf3Beheu@&D<+=iDcA;iCz=yFjSZC@j$5H;)5QR2>~>v*E~#$2ds%eaOf*gEyAjPi9gDxh5h6I&BIEMJ9#$)t4!Z& z*Rq50BE>ANNoEl)DH1M;UnpM$k0N1*_zsFmx2&Nl3;S~$xlz9=_<2#Vo8FMN5BSCP5nIs+e?wXd0hmUw_#Iz~AzsXXw0 ze2v1g6<~CN8kXigcaSbt0G(a9>-6|{Fb#;jl5y<{PvVybjOY`jrNcX9p!an6v(n-J ztOE?Rq-{f?U2%6}d2x4KqGKJmo|bjJ(iiJJy(U^2$6NOcA^bmFm<2Wg&IIlri^ht^ z(?9V|{pP>Wt3LX>8V-FEmZm)oho<`Pn0Hmfp_zXE`2Dxo^7hCpJu` z9!;+I#9`@V`o?;WsvWOyWFkyb<*zIB4{GnxHv|Rz*<_AP>;M2a2jm!Am8M45u=_5| zjy8}j+>VA83miPEwT{(V>o@{9(K@#C?9n<sO%8n_J)M%o_r0A!(&Gt7l&>Z$UjdwV(*rjkBg^+}H^aHnW4bJ`gsh+eankngKp%NUtE4%|w(YVJ%h_PJK9GuD}b z*0!&P7Hk;ue#zlEi|=%nbj?}hSUqruS-&0{Ai~zi2he|!ah(l^9IgdFuB ze11VHMtaxmTPYYR5SPzcnVekmU{N){sV|wX1yWJsH~7=ArkZnG@TllRSQTYmG0_zk z#r7{n@wGB&Ym|eV^tg1W&441w*u@&qr-$sp#6|HJDG^L$#{b0gc%9`^ppS_U*53qT z;seo#a;2Ku^-3GcNSsz-sW^*7$~BatLj2|G_|?1%L)-cZ`&Fz2C4N6UDg*S+hu0Mj z3O|_*fQE6tXNTPRk(tQ^C(CHj@0Eo+_V6v_yrP8Q0S}bH?P6n8w$6eBhI*Q(H+;-a zy>S2~)A1Lz`gm1VAIFSOJ(-i(B0;>hx_gFLd30s6__^y3j1b>0nJn$h;5{vhj6}mzn^P{q4gDWCF!sTQffNxs=!0zCyA-*s%o=td0|1tlt0qNt>z5)(8e zET9;TViXmWK9BNfYg;P2h=o9KvzW_eF>S^AyP(w4N?Tg7jffZ^PXb6KAk|c*(bLPyMGiT21=fk-aQ#B5!BI=J}CMJtP7)`}5 z4BLcM8x3|NJBoSi_bEZBXrt8$tlQYI*YICDMzsS`M+@q|3D&sUg_mOP>B;?y#fs+1 zldH|%r&+@%erdXBc1D)J*dbzGiXcT?Lw;(RX+H1-VB9BQ?^0a4*>o{-Umvn!XhTNGay}lMOkLg_qW-mdFSwL+f#HY%OhVkKMM81?u3v< zB_xvJ$#)hNp#|9=RMkL~nz{021L$2ACBt`vf6%M77ll@J5^zr_I?+Fh%8yOJ3IPp5 zVxv9MnSB<|u&R~nq~UP@K2`@R*Z__9i^Vr&+uZI08h+f)nqM?-MhES`VPy{nVmU>h zSNC)(a@rqrKF3*|oj*5@XLrIri2VArs&I7hetuhsjx z_rBk~STCW*H(W8riR?dse8ZLOW8yoH*iRuT+H*?$&i(&B&@AcKetdbLS&NqaIB=j@ z>M8s2*@5Q#^v8RD{oej3pPb;VyEr2wKcn)gCnr2r*!nAl!?kFBQBH=RVG>oFoly80 zuDoMn8vTCwx0Ckpq{G=6Y;2FK;h=w>xQ1&By>R+ zd7QLnw3r2AdN6$U$uj&ItoNM5P9NtM97zt6uiLTF^F@zc?T7E?@XP7rr%wq&KE2lk z34XQIr(=!uUr@iED&tA1zLg9Yhhsl*$7l0%7mmPioOPAh(uu#qQOON3EpU1>)Rs#c zKd6l4Q;HWLr63-fFpA2o)G%Lk9ei_&1)*mSngqIj65wIX}qc!??^%O$MNsrP4 z+1LJ1IqxT@bGTp~ez1AxsyV9%p6FU*2bxFqeAIB5n@MM%JEHy^dDVLl03#|*a6LhQ z%o7mZ9!K2ixG|SU%Hz!g{0bgYT0a5MvoQ|2A13Bym_kP?L^Kh8E zCZ7Kpsq<|csull3BD~?WjKruSCM)6`BD#z~RfA@yaS|OroE<%3MZfsrKG8la%!}MT zl36Eqqc+B?K~pE4zxRq9<)(Pq2Q(N65iaD7GW@ zU+igujIp=c!*+d%kH|Oa8ySQY^B^U^V*+s=AVmKSPsW*Ka?(BbupA;r%Vw7~oLY-p zlEc#HL@%0sPs3F6`7?bEvb(v4#U|=eMV-*F*?c_4M>w$rWKUY(a3xUZ9+r_+^z%8l zG_*ZHZw_}vKMXJYH5nTA@(q7@vmwjmlX+C^J32pYXfhFUc@=GF_!S?se&4Xu#Qj)t zOB=FGWzw3(hEvf{lO|KJXk9~p<)7Pdmx+`4U$|DLHw_C+MAAguu86|`G5)k0h8b`V zo1{@ny2(W7q(0UL{9UHyM`D}pu$l3eKQ>;&wpTG;)?+z7`JayT!BvbMMEU%);RV7Q z*Eei6KlJZO`@J;y{;dh5DF*l=Caf^6*+J!?Zsa0y_9E#^ZbJGLglOC2}4hE()*+BHxtA-4}SXRNcotrXt$&y9hFFIvHmUPgWwBT6^+u$=$End$(+*k zG#hVYB!>+d#;1`lQh#8ZPeGGdK1x6M{%>EH#*_{C_%IG)HHjKyJ&*E6bmVSz;<_2B zu2rcyo!*H4P8LexRw!T-=~{sAzt_UyM#Mbns=l%j{oprDr1eHPnEPcW0Oy#a6Vvk& z_NjNFq{teG6p{92DWE?7&0fM_728l6eLT2Pn}X%uBK!vo2F~4sd_~QHV==sRl#lZB zrkiR4L3_>l6(?6S@NO2as|0p@cz(F{3IY-o%Iq=Cb!OXOX-U@yoMsm1VMXtS7ic3; zAU#-CKFuPVaX|RNF1FP&7m4I1OD;E~PFJ@R8<>(!X^DJzT%YF1#~DC*=m=#K9kV|` zTP6_}J1WGgceq;Ce!M?F%10MXYMp&gP07GMF;51DMSUS zU22jYy9!;RLRGnJtJ#{UO138gy7%v$Jp`YLm&8QhGg}X#Muv~}$Ro9(OHS=SoP+d) zw>`}iN$GiY)$_W_gU2*}sbd}`y)7hk8_;g!$={ReBNlyN}8>gax*yx?!6xa;}rGoL%{Y|!N=J4}k|H!f;r)X1k zzMETYE}(FU0DPE(y!0WT%%=)A*>g=_c@P^R6MLVU7Gm9~9)Jv^F*vs7!>kxDQ0BOg z*AayWLi3x}5ljc)(o$vlN{6S>p)-TNXSRZaLa{ZdCAzXf@Na~H(X5ivNN`#737|V$ zq=axgl@RR@6`N}_*0*<82%y$L$N~aKkUCWFnjBQ{;SWr*?Af~}i{oq6X|~Bazzh)U z|N7&BFMP%W9T2>$DrckjPtJQxj{lJUm;WRE#s4FH(f^Si>ymE#Z7t9UF)l0-wDsoP zcu_u{U&U>&%yTLpPHkr))6-Gm+RMZPxPIg)k<-Cz?$Prn{bkUbExm_17(MQ4q&7{F z1>|ap)EfpDt4C$FXsuPUITZ_%6~8nL3X=_xnlq9nh*_Od&Tn(gaL!Zg1?5n))~jCc z9qCBC|02*5d6@rPJai)q z3f2}JITOz_XN6a8x0q+S?+=_<_c$(*7?+72* zOGWBQ$?$%_m)g_Z7xlN|S;dfw}_aiG#tK2-=|0;ZmLmS6LHsTc*x zsk=GKab{wJWe=)5`>GK28~MqH$MKYAv5H*}AY_9cPIa5r=GAEO02AJ)^b-MF^Q<

|;}3C+Gj9nCcHN(bT_=b;3oDj^1@F%2pBy&SnZytP*@ljV+YR1Qkjd`S7ahA2i=K+CW8;r*gdXT{p$`*5* zaycz`anBB=x#fc-fYa>M;(GNXoG?~6kHGQZTU@l5Jrh~)R*UI~x zJ5O1C+ck#7h-Jf`p-n74CXHl#aj(!1e`LYw+b&_~lAXwxT^PXenCO$-Uuh@edL=l- zb`BX5xne-)xwb$5+(!h~zryo7HoM7DgZg6+Abq@4N2Y%D&aZI*P`%4KI_EDFZP`A% zN-gK=jK(imrSjP(v_I52Rtov!)v0`|&MTdMvGG?uC|O?GTwa<{_r}=x-$QZZr#iIN z^W9W?R)N6(h9~}%_D{VMMz1O-5QUKQM}AWGPwcWP2KCufp$jbf(9z}TH5s;wZn@sP zOa1R+NDlW7Qc`#+w3$JxJIk~8Yq2hW!SFQm*44$_jwu?SZ&ZY4S7tu|a%yMF_UrJ5m@qi3aVnFk4s8{n)9ZF0vAcE;y(Mjbt-XcIGi{9t!{Nx?d2yo|m6 z2qg15SI{)`o2E~*LCuvtCWd#*=qERD-Eo7QP05nsm>?uejxVm}EJfOcqP5}VJIcX> zv>lvtotSC4_8}x+v_yKc|$S-O5A<0f=?&LFJv4#a_W;x1A9S5r1arsX9 zFpPhiopJd**^9mG>>hfKoNU??Fg!YndiSj(9ibyk7j_}#gAl>|_r27}4GswC-qMA} zvJsJR-K?I)Rl8jsBf+jmMod)**HZ>Avv4+f6EltJr*@lT&$#B`jSx(b;D z3e}r&KI0C=gVwm1N6d4k4NkN4fPU=zd+3;@;OIr~JBR=2$j7s_VVNN4yO9|T!JrEn zR8$Vlye3NGO*9SlEbvUG2dT)NnU7&fwab)T7`APnjFn+ea-Zx@7y2ue_gW^&`%kZe>0e z`JC1LLl~6eKYAS1*@Z!uk8#=_UrHK5wwK}Ba|jfjwvt+`ePPjQ4JN$M#IH8tCkeZK z7b6WL5^OmkBjZ_xUE@%k3e4Kl_5|HDF#zT$GFVuIwdIdP@%%O|fQt4vUFqkA)nrW7pG>emTNS$e<2Etgzs{E6J690BJMRGH79*fx`W+9SHR~#+{tA2=#Tx{BP7^BzzNVru8KUQP<6-g7_yx!)vxVtJkfAGp%u-5(3=v$;nBzV)N>E?Gi``vaEhW zZC83Kvk;8=Iw5Jdbr6-|zG#q#Q1UEIo7-g2>OV+gy>njkZ9=TmO8ZoL(c$nzV@V7z7{LFcJ>hwI{06;9 zNIr5GsU>v5Et{+!+@K!#i`Jj8Y4t89nf;L&o{aMgLoEpn5q-#bIb&V>u^5(CKp@U0 z=dV6oHa|~^DA=uB;XY+(Kq1VXy5i!%+wrX# z2madLVDW{kszAip6!;B)(v<0tT551X_M=dFFuy9tx$1@R^F_!9Yk zQ-+n}j&Nd%NO+N8aLSxTsYTc?p=Z3!7Y9WOBA2Jd%`hpMktM09FFD;;1Y2L%lQ%wN zD8?Gc_YvU;T8%N%$ejC;k$V!KshY|X7VU8DVZu}5uP9eW*ttw8=A~*W9ft4)d(^9c z*{c^>Ay`K_YC`|pM9UKcQz*pk?TU7K5Whf{t}5SvZO^AtOCqB~}oQ+`*FkWa$( zBsfPJ7~~9ROf)__%2sGd7m%goxm$UHYVW}WgKE!K>&ovaE*l*6jfe8XwecphSk89MDt!obr#Cm5zvv9po z9oERb@t7Ss<0yrZ`!>^{er}T}*DQHveQGfm9RR{`$lOSOo`c90?5CyUS#0cgc zJ~ce#Q^RqDAAIGm_$Iom}jY9}}dLMOoCqmiS3-H-*ld00D z{6w$rEv?;8-Rj$dqgq-hC|YlQ0uXW&m-v0wSZ%cr$mN>eYFzK9LYT_*_9qwa+Tp8_jC)J$|=?sabOi zZRoEyOv_@>>W+aBlNHN2flkU|)%YKBUr|szNi)ACvRw1;Y@pY)L{^Hd!FEezg zY>8}8Al{hC*^NR@q(M53NSi*`{@b4&G@7rSDlSg_=px8hx2cDcVET9of$+k=i+~R@ zV@mi;CUVsPR+2NpyNbR4G)vE0;drSKGVTr}ZD-mb%<7JF6QXtBTas&Lhx?N{RVIHk zPC`^s_@=YyU;Mg;a~2-%{bqEO&1!a6XyP*Cq{2IYs(Ex3k8E>scp+*GaqV^*luonv zf_(b#GWNA!hz4g4a;N3T;h76{lSMbbzcLfIgp<;D+Gay_Opn^Fn#gkT5Kg>LIRuBp z@y3q$HkJ-GKWMy})JfA36Yt*3rSjLE15R=`xzNg6?uXwEcadT^rZT?=KH_?l!3^hx z36s*|mYGfBxe37QLOr-$crA5{bZ&pVJ8y`v{CYdT^e2K(+W}n-R^oaRnXlo6e*+5w zG3F=`nacGPxrETuXo!Zl+a-#N!Ifn;Qvogx$Y$+83?LgMefy;H5NH`34`=qoK<88u^qs{HV!xk`jL_AlaPD#(xP6-26R5gCrZ!>JrB|6S!#b`$sCONOLb=2@HD zMRh8xW%m`z)&y(#BYg1q-Q-ayFDvtms*bb0aN=`SFhedP5=TIu&!lU_%|7MZa$qs} zoqW;NJZjJg!*R@Sj{nPQWxi=VBMM)g+LyKBd4Y%zwRDv`h@miJ8kYeRKypg)kD}pK zfjRRezHmK)74fNql$$xxds@HoQosBS>GC=bH|2THCMbUeToZ)=*)n zF&98J=`CeuAia=J-6cmY-Pa>~d;g#w z9aDTb$IRQra=?lLeXksO-b6AG;oSmLHv2uMLdH>3AzP51B_sU7Y4z&;C9)sL0ZCZ_ z8+o78KW`S3>|58sKTfpX6-Fy1keJ4iW?{*JTZ z${~b@Py)`x67%56RHC-7Jc`3Tay>05B$1kB-JRjyn}x&4J*iic5K^%};?Q$i)OJaSuKlDM^?@rZYwxiq$ye1tT>fV@JJU(~MH!$(Uue?*4lX?qA ztsooIN$cfqesqpgnVo7>G{Jo~!H(yI9RJH!1ANXqvYa>IS0}l-MJLTUsrpQJd`^np z9x%y#3u8C8D>b?VqfFWKglpIFfA)wG()@&LoA_Tnv8AVM? zoNk9aX3Y5^prY3sFtJxsi%F&O*bBBnK+UL6xhi6SJn5d+q|V$=jME%Hcz*O2R+E>% zMWG`@qHo5J6i1&P9ZuX!{qnD2?ZrAlS=T3i#}5EIykI;34eW5Dgi=dt0ROBI)?Sx7 zDX2G`$XD7ZqTP$t09HJ6{#)>_vj<&FVRJ$A65%{KYG~+L1yXNarj8&mMk#49nP~#t zOc+AISjG7GF}O9TO)a669i#-NGaacP8z`5B6N^RvW{kjDhVcv4<#TL0m31-0D^k%L zgQ9n)6E(c%T1l!XNIa_KkI7qKv~Ttq&Ysb!JJ8+~?F%m$N_+KvgZZxBWw7Y9m8Z%T z@osoQSQ+@f$b6IGh`^-(g88t1e~pelu>xnz{^w%3GK&54R-N#4|5JV(lkCn)iCmpF zdt!PdHH;$3%KbHm3#aGQ#peTx34?v*+z+IZ=@_(V!_OH3*-Ilza09gV1)}XaY={ZU z18^l;#r0R%iUvK3(A8fdG47s(QaK5Yp^xhoP+1g9h8N*MSP2Yxir;}Zn zN#l=#LshVM^q+WM{@mg~tm7;A^Yz#3-H`)yAS$EVGqLWBo>p8o*7uq9N_T1b8<>x| z$H>6`wBpf2Y@T69<=J;NdBzxHd@_~TOm`iX>2)&I6ldI@&*4__=ovQCqeo@>m4Sp0 zogS)gsLizDs7yK(aL3@IHWWQhjW^CT9%2aNvn4ycNN9hL9^3#KgXL;ww1+c#81Lu^ zCc)t@K5A_2)$SOyI3@#mhx$P@AtiqBE|enigS}L2vO8wD58)1XOh4_@Ywv*y$%#uU zkt2G`Ti;|#`>%O3o)V_4Q47o3zmDp}tK-P4_9iMdoRT-b-y>d#WC!%gZ?KeekjOQoJ_Qit`j^>+1Tsnma6 zrB>m)wN_qyw03v(W~m%+lf$^^vFqVza~Nkf(#T2-lh&+`O2%(SY5a;F(PLUh_fu@k zXla2AO0)mciBb;VjWDAeN0pE2QTDEhI>%1kO7$9-_1imvC{r*N`Kp9wmcK|dUzI2q z)IW<9Hm<3nd2q%ve6GcOi|-!HdCC->0$w+JAfA2kUwJq?*3ZRSD;2KQW_xqiJs;q?>`mZ1$+@!)tK5yip;`55li@|CVw-ux0S)yP3Zeoo3*T zQVXkArkZQnc%Gn-^=LnMGTp6O=}a5yj31tiG#T+83_QkdEA?DxRh#%R=yixMwHM^L zg0#thdb36=_b#&F$DV_1^9W}ke>&x*{?Xd`ltuS>w|ntq#8`|hZ+DNoL!ph)UUK?7 z{o0luQy;{MQF+!1M?cxQ<|k*e`N^GXe)`p8aM)6w*Qy_|l+U>BLw(_t4~aKTl>CIN zBY*$fBjY$wS)NsIezNn;Pfn@%$(?F``mM-Omb^XYX9#`3UNQiqF1C~pX1;Zpo_c2z za;w_BZ)gho`tJDddmLQpqyJfqQ6a&{cx@9ge9t-zL>fzmb&*(Y#BL$ zI1GfW!wjhk<}UYhH5S{=ion(YC|vg(A(sj&?=ZUUV*u(-T58rdcEGipm0Z2l_mSzE z^Z&W;XXQ%+ekh9*B;~JI8h@#lj4-iN^*y14gNb9V!e2U(fvY3Pgfs!y9Jz40=FmNM zI97g>1icI|no>|S#VqMar4T@aY&65Y=?*DOk+;pW@Sn^;h5C{(%06tw5@wwo>~sY} zM&wpg<5PfYU*JwHfwU6o+nGR60n;?K>u1jc<-dvKzHPc&?#PLF!0?R+$L5;{=t-|y zY9B1f4<|I@s`n^nlp2nRs8Ja?(cFA@uZ&8i@u-l6ucM0#-Yxjt89Tt7MKgwvbE@fm zB=#Ww9mLiWTk}g%#+T;KK7L_e>pFi2$XSfD1xCUNwvLWRbD<`6d4Dj9)ns&d;o-tP zz1KwtV&kC;V={m^WX;5#y{SLZaEgpU5Na9_Obawyc>G7d#G;mMg0MZa;c5y`J&d@(@(Hs#stI+UtUeiTlI^LyyeR; z%3<(h<(*LMQUH|#4-x7Yh)_!m2=Et(SRWw~Q>*z%e+p<%z<^_7NJMy(vlZ)PJGdqusRt1%pUKs1!D(=Tllm(TPDH zATxO<$MIcdG~1u`cvN73Pi!eSN-48hvEys}i+)_75eUT(-#YymV^Y`tHzeGHY=0Xd zpp5n{4PpIkFqv18*;&^htycW-)zKGL92-A;eRMer$MOBHEOU-^#`jy%r~OHjccIOD zqRCqseQ?DI@x$YzHSR_3xPI4+bS`qn^;?naeUGL$^d*m(a}B2|bhF~lQ0Q8PWC`O% z6dI%u46LIeU!g*U1}LP9ai-E!Y^A3Y89#gt$9W{IU|k&_uI)jvTji&D(iod!9}G7A z5*LaeF2~&f2`kQtAFhP|5p+*-r}evPv~!X(t>22XJl$Y0#h$mt`USOV^Rxoz%D04T z7ad*f8{Pv%HJqvD&QM6YUGMvZ;;Erdd0zYR_3rq*WZqAbqbghZHWge&1!77$Fh%$@`l#Zo=eA8|4?~2Q-RQTtSojiLL9avMnGXsC! z9~`MOFtkzu%1D|2SlZFSz9gJj3QR3sJDz29v49TOeyny3kI%e=1^JO<38P*AvDO?M z?H07g?`L6Ow9c~E_-Dr)c>9cX@s9lPgGDs9W6&!Hxz-=(D>o1hY{qh83}$2l&WTFh zszwKgLT|Yh8@QiTR59SbGt#TH-oc7~Zt&JBylpTIj;(fQP9EdT1aGa_b_s7I;3F1q zAE=EufngkwF{?HQc=Np`WXI}`!da(3KjUE8%5&HmGJrpiwC!JOFxMu`y??}dTj+|p z7eJK3+y(FiVeXk{0?f71Cdq0$g|h0MU9g6+-+w~fylu=oRge<4fOmb|=%+_cRoC5d zQA+?tYpXMHlr}Ev^rQWtEh zcd(4-bT#)4zmAXqv4m^?TY0K?xsf(Ew&PkZFks-wLr3UYaVc(`4e%&bP^b4lpunF$ z6wFrcRL-f~ zv>63kd?`#<)5g!@^k2h)rEx%TZJRmEsov=vihthW z&d$XqaOMo>^@6wJ`#aVi8F+^32_0}|&cKgF!KUP}Z#jG8dpp=3ow1kN?2ve}#j-(i z$2Vo!Y35x=G~Mf3byotq7g19P?eyuKhGAT$bfrh*^wsts-!ZZ6V>EYgocAVft+*t{ z+zCJUE41a_%hGUL0(eW-86)HidElIraSG*gMNz_ioM<5&ykNW*?2vrc6=PR!0nk6i z5|Mve%J1qvJTpn~2RSBdkZvS)x&iEa5&c>c+x;5A#oGgVvF;7e{R*fzerT!nSjO|~ z+c{UDD%2d?;g47?x;N(`A4Ur!@%0q{lwkB04BL)pfDs_=)b27KLQ&n#I4o{ zSYTBGR^5s+rkPN9UN6>IzL^y7+E7+F@fU=B=#Dv)xJxBR<43}bh#nY3Vl(nP++Y|} z(=!j88`fTX2nb(~mQ(*s&P#x0>BVN>r0m^>Y8re6HlKLjbUvuHD;<0rvkmVbP?bO2 z^L!Yh2g^||^kMwZe}pkfFhrRgT4>6SpX$$#g4D}@~-r)tk9;SgR%FVecm%Xe2z$ezFB-dj%4*8=-{#+Sj63{=6x-V4{xEelw7SBI^?p<6nw@X7l@V8pANAn!X_ zy21~B%YGv+NU0!Jx6EJ49-IX(?0&(of1L9A%!zr{)P*^{{XL73H`$HZh5#xT+S6^f zZp&5f3pD6`renaQg1&nlMEd%fay!)NByKJT1l>%t{YHcr4rifMMTT0wb|9AgLH$>8 zJG~#Ic=x6c^qby4-SnfI{EuG&;{wxUyX>Xgb+wv|e|3N5OUDmWg`>HMF~eEwPK$;P zIpby&d>-2BjGLu>v?PVPKar)|O5&!Ai;u^vce2>MC#jKzYFiAoyNu#2t%xoKZ?QJI)hm0jLRRmzdC#ienb_~loE5J9siu9rhLK@! z*lAW*3SMOXGy{wVtMG?^q~8w~J{@B$=@F^XH1UMcl&Jv-o5CJjjB!Vbzm0>6md} zotW4CfQP!CA*!IOF zpCfa#;-9j8V|#ybW?OX3~0N_m$V%7^y&JphfQCZL{nh=E59Dj9MY-dpRRM@uI zx7^Wa(3YVj@!}-HpZu&v^qMSR$y%+f0}NW#r5=VX+kBCxt8lS&4H@eVb~VeSa%H|z zq=|lbGyTr|Mo6bKThF^D*PS-YiS6`6=>b={b`^O)=@N0dBA)u3otfFvL9g3@poSWu zC8{ep#zFaq6X`W}Ht<8^)I4x*?vtHcI>S!X0thqetze7-e)P2~{&VZ8cbzDKcFvqt zum%1IY<{(`z&iMhE#9SCIcI7}ka-IDZwEU5u;;JbkF8nkko&Wi(#b02)-2_}RCrPvo^uzYXRZP% zjeCHd$Fk}2)_#K$161OlZ1Gx*(orQ^;t%VGziwr_>XUW9b;R%w*vi7d5pEN(Q6ukN ztotqKg0hNEkN(KLSod1|uY25!b(h8ey3M^#FunOK=+r7q4{4&USxm+;j`;~RxUpLS{+j@}wF-0B2>*qR+8fIfMUwaL z`E}jjUfcmewGx&#={OpJZ-;^W)N>qVZbvQSm`JMOht*0z7BTCsXPjdK!NuQn z{rxPQ*qn4fYh`+2F(-;S#;>UE6rzuAq&qLrU&|^%t(1=tBd^1ED8PFcL5@F?!``E+ zAYOe~PE4hD1z+et{QT)|KbX$`Ut|c-b-yX1Q|%z;CX?^RaP4Jejx+wsYBxZd3%T{s8d^YE^nvXLE>tS|o3BI0u zFpEi3v@SY2SvJT%io)&lw+b6MspY~gelVinre2>y*U-%l=InX=;1)@G8S!;l?T@9ksOk2Y`^ECt!QyvH*j@|Y z+xzY4_a!>cqg-?8DH+Kbr}*m>>yWs<2nkhzs2vRxHST!&NXNDD#-Vk`{HGkB{G3Z` z9B%b~JGRQKUa|h_0_PlhuZG~Oy8j(~U+WxfKIVL4P4blb1MkG&R5K2|tM)j1dbdS) z&?LoS7GTDy6lCM!T(Kvp5^aNaR;iFQgG&+F>{{(d;Z{FS!+%$f5{1olUyTq{* zp); z2_H4FkP=Rhxb-&jmDX6duxX6bKU*K3ZgkR^dZ$07MH`o5SfUm`JAq|ZDR(}41P7s7 zbMb#zUbxNdpXQf$;1025M36->JN=r|fHJVl%JJB_Nffe^v z9L_$68LLKK4pC=D!Tqff=d)u;wgm;ojEI+@pxqy);kWcu#&j0nPVH#=c=A+3AEV50 z4dRw7cU?JJyKe}Olpat2)9)SJcPg&*Yd6L|^+#CE({sb8B%77rMwlU34P}_DNn<{uy{8IvSxo6h{i*n)U2NIj-TnStu|ADZ)5K} z$k_W1svaBI`|^}HCcnj%xz*>p@cs$e&Uo0p8YctbwM;LQBU?F+bt`imjETo*x9=bi zr~dSd7GC{huC>wk0iUAx~@yIAwHw!n0a!(k`8-`!W&-(4=x(o(==oQ+U%$c9e zxhk1AU*A2GEBpLyb^mK!jDI#cL)U(AT;V3-y%P$zI-Ayh(6ew;_)o8`ZO`Ss`(%!T zU$Kv~v?&1@1^Sm9a7y@3WAQh}Sg-v!d+pzILtA*C!@Sb*QZh&0WHNYYct+0J&o~-! z#^xlmz7=Y_HMGI3ooXrlNy``MJ%&4Oa$R2bNN3#SU?Hum+67Sz(QyCzHcplma?B3I zX;~JUU$rZC$pIrS#4dL}FKk@vW$t_afUZ+!M6;*JyEsn;#6Jo}do&-D;hJ*okDK}1 zjQBle&3U2rMytQEnLo`Wzj-0cwr}q4-GFiuEFfIiZ1VgE>Ig66-S~s)ICs?o!U**X4S{TRf1+PEp&GOq|6jUU)EZ9QM^B99 zXaQN>io?lOHPFEFq%Ve>w(^v!L%O+`BI&n}Q6F*lPVRx?bCe0;yoeOBHmAnAi z!VnrJs!qRzNzwgvf%_DJw0!`N;MVFC$LzlhXP1N1*R(<((*hb zSdHH;4#7v`h@THMMpRdp6iE3ud_P3uUye^tRD{)5;q294z*7*L8Mut{S4h z76Y8Rti^nwZ?G^Haf<0<#$;20{d2X$M~^g^I%~|sXWS$=<{2AO+ux=!OGt2kXb7um zSta>y@+nCv#49USIp^z+}$xTMrdyZJF~u zmMbOA`7oLDmQ%62I266VxN1-Mp$7!5Vo!3|7M?IlB?oNbgEu-Odwlxp<=&WeCB{qR zv*Mp-$J?`u4psBu>mIjaw_BBROf#I2xuxQa#OZ#HVQtQ9-ZVNa{pE4G@iNjeKS8qF zS2u>78(Pu@*kqMqJ>9;{%461^PxM)eS-IJkfvzQzK^6J4TrC!{vxK*SWN^*xA$%$B zu_CB1tBb!9Y=ELW0xLVaK55J+<+x>o+^Yr@ZK&?k`QEPcy8EMHp(EH1wih(J#YIPE zq09|6V|{Ve5a-@Op$+YSaV~2AG%Yj$kNprL2E5HosNx%>JW6kyst~cdO5mn{NKFz- zDhIh^2jDXGSQ=UQj$|J$dcEdO9TwVG^!A)joOki~SMX-hzB%V6hn-ZgsYm4yXX>En zHZca#mb@u}jL{2@U~QXgi{lTreOtP5R$h?*DtQ`|CsEy(FgF{92!HO#!A0xlgmD~m z-JtlMj*V*%4m_iEeQK#2IJ25kZ{1mq92{ELzTK=>BXPFX-kh$2{?L^!{;d8#`pc^r zU)N6ku&^ObX>113YCIY zIm3FewIz&Vc-0nb;Lkdfk;+CsuxV53ZR$3gs%lc7+!~|`pDeuTEq?G?`Z8o$V`OQ^ z&&Yf1`Q54goVQSQ4s&~4gDqirO>Qak5_QEg6qa@6jBW2I_iyr}(9-}j4Yfb)h<%O< zcQaACf|r&f11y3+1HZ&sKfiuH?PFJ5++3qjM$O?qSWwp-K90+%Sh}s9Z?4*|eV+$O z=E(9*@)=&h>U`~#*$>S(*SMVKWw|^&I?jy5-E{jvb19j_iIcPtgW|chd?N1|Q*|Ey z2q*Rv;r@6AdEI++ito)1C+8|AbAHy)(e|nPdvod{AJ?rj23-mEFdgn(wV>27Ki)OO zu-;(g=Po6>=2<1qaSnvG%n#R9d|bOR`i=OJE9RUiiFVrL`BfjwAker(j_>@erF=5E zGpseA)9j4|n2~oS5RENE>%w)tM1@)>L%>0-d1LwTN#_rJR)ox3cvI?=k)1dL?_
umv6(84CZ5J&7ROjvzpE`2qS8WGJb?T0f zOL1#B&8;FsbC7bCB}KuifX~%~TyMFS@NRVM{!nBb{#~=0VkkLWC-iisW`XEKNxvba z8f8vElqY=yqpPaz-mzqv|5Hgq``4AmM$?$VD%r|v)s>b5ACi*mRct%y@lB;GLUpF> zANqLG*{ZdA8_10>_p3AghpX-GV|Q|Pe)F^{6`c?teq8iK`~+Z$I-s~bYfhPeTefmQ zab;HZFg$v~)xzzU5O7PmtjlNggw#unC4ov&%=WUvw<-C31ZB8m)HplNX zW-U=;h`$qsCi>BBJQO>6V!_*-Po>GoO5yfy)ztv$NCTN}fm})v4%0(lb}eOH^V(7; z2m8rYoXF`2GmGZ5Kk}7GG0@TB#H8|&8c z9On!aTJWb;y2jZsl@DETK7t{~E#gz@`vhg-HI0q|rn`)KpS-bfV@prnv!y8+$qB7` z%w=F1yY1xFV{!bIX``n9!#Pfw{IU(YAq;@}RXtQ+CH3jf=R)dRrE4S&xB4y6ef?Fs zw%l;HpXWQoq{$&o53`KX>k6l$A$9lvLcmo`{(iMIoLEb7?Ma^D*Nrr#9zCpAD3c?1 zl=KhJ`@JHon%oCg(0s=4_?FTf^@In+Aw8bhTB)y=$ZGu*zS9yB6A_p?ylTJxcV<(? z!*v_lzv1s!N=8JlDj6Id&ArdElCz_iqd2^v`KgxDyWV=7gim%IYW@I_TbEf2qaBVe>V8&$Cu2kU$4Z-xQ$w_oZ`%|ly5^WwoRhfS?!JrO%MJX%#Q|P#}^K{r|T7}`)NZ;7e@ zWec9?qj}cdQ2FDQK%y5y9AVR5OCQhCJgN-n<9Z4*NS*ZI-nrasV}Yp0@Rl8DqFVWT za1WP@+d^k#F%kScsex>cH1hBlru^57Dymn*==!+R@_5k!pYO|Rsv98~X+YxDD?{Oh zA1RY@RGq#3MHs{=-IlTfwMFvAx+5L-*2KSQfpf^7=;}4zU8)p+xAJKrxst)8^IVMp zy&AorL(%3k@D|m zty21A&T<@AFg6n!4s>CORo>^T?U_D8be}$6qauO3N48T{O?8pRx(BoXxIMgIkQA?8mLZSj%i=Tg zGNkiys}>h-RL@;%RXah6WR17o$O?ZZM5IFIT72R~);>@FV6!V)Og;N+Bzm$=KBlx9 z$i8!VO|P#*@b8RVadWBH=%U!p*%vasQdiJme^G1V^ulQgugSVd z)b~feidv$7AyZAAnN5Kp6UbXvx73)0R^zcAeaGu)qp%gZkQtmx$*@Q}`tZWIVK&>z z#lUAL;|&C^!la0yQye3zAE#dHSA?1)AF6SpqS@s7;c@$OH}`haThIxWKX z0n!#SV|FQp-)e%YaRR{n8rMgHC2Ik~0}U-Z2R+z0C{T*%zBI9<0KcYHtBb03RA22* z+O8|5!+(z2DSTS*C25{^i3qVD$7^K{b8Cgj|_~CWHdw6a3rn;&R?aS!0;nDL< zC701F`qJ3hqgq*EStrq&C+xgJUOoYeJRJFmgVa7X)gNVq6Mv>ZCR<`XA?I`7AUt(B z`dEfJ@h`yJoMJyV=XgROD_m=%J_O9qi5e5{Kv``zExbWKnzx&Fx>scvZ3sV9NGkG5 z(ZTQntv2qB*+pB!3;Gkp6Wv26@r%3iYjQY#0>yPN@U6i$ClnPs05ejItzw4*K&~Y8 ziZ|yLRb_`C`UTS$ESDuBzcc= zW7|=z+@o4*I+4>_7PR7#&i>f8e2{L7Rl@xuo%Oq9HJyrGCUB!W!OczQ8ABc=E>@xi za7Q}vTtD&o&e=XDop_v}Tl_N~rh6lOJMG!Stxs_1N?oUC-xlt~LZX9J+knp6_KysD zwpvRQxo^xiUWb(L;?5?&p3e6$`NXCJ{wez=_N#Bgquq?+o~3L?qddQ0&3KlK(nc9R zeA{qnw|pW~tX31RrCh76;RyWL`;Xrx#~v-bdW6fJc{O5ga!d~`c&YkDq?x;s^GIvX z_-3*+5{R;Xk(R>;jDPhl` z-x|HvFgK-P37pFj7E+4p*(v`ipw~$|RjQW&0_CZPNqgdJ*2Alv$PV`w)|EDg5q&3i zoY`mu+`pwpS_AztS5op1pqqq93#GZNNAb&gP4A6)w$j^&x|wWbhG|bxktYW97-EgF zbIvVjEk!VCKVEa4j$h}}@kpzIg!*{LRc>kC+_hQ(wJ@{5Rcuh&r0seuVn%l8OBU!0 z+{%9L3^oos-BLDl$g@ZXJ9Xk79(~@}tawW<;do&A# z)8e}aTuM()KVXZw_WUg?ocL!C;+6kV+9LLCJXSmqtmnG@_(Mtm6_n&53_Mbn4KjL} z_LJ(}%B+zX5jEzT2%c}w$IF{LJp8*icu3>R3@3MXb#Z0(oVLPkBaM7HYp2#jbQ{d1 z9r2fhX7&&Ww@kw}x6CM8vV7TD1G#|=I^9HVICs_&)Ye^it1b^#w0h4Q2DDkEaQb|M zVh>9opI=7jQGIwp6&124n86P_o9P!(xjR=KG;-fBO}}UN0STp!>37iQaIH$3`#6kp zr5WWN@WkNAF8t7gnHG7GrVs~{5(6Z)Yrcv84oy4KQ5rW*9zdGZsY7=E&s=kjj1F@QlXq9>6)(nK@tp~Y6sP&FkijZi*lra?7 zJh)33s@g1&WrL7sl46-=U^P7Jxqaj`<7pvTn#nhsiqu4!N`+#3BfIQ*b}9R6vUA^x zJx?Kfo~|8K6XDuFgxBy&8hvoybKYpb3;q;(TbMapQB1jy{%Q8X)0kJd`>4z=*vbP~ zR?^P3=(bN_>}6U|qniB=jM)&yKB1;!$9}66_pK%jcN^rhKiWnmM!QT;9-uB7CEk1= z=!dbX53`Ca0`AT8R++V?RYl&`JqarN6dZA_QM*sTu-Dt5GEF~(D8?%{1kNU4N9vnH z;52Xgh`oC-h#h8t86fwwPk2;aXuHFcp zYF-%oJlTwc4qoa^=ED7Y)zc>1+wax4Z;8` z^QJ;PktTnApP?^Sk!VS>>SJe8L*afl4V*#xJC@O@zhjYYD&UXyMBhGf} zr3Pa~W_olbsnUf<>ZNhPUC?S)2%~ygW&%CXu2j`KRmPQIBOJu3Qn+G_YNvnhPZvy=IbYxwqopqtC;O+454i{H6-TRS) z=b%aGa>5J02`uOERZi8z-L<1Fkrjf7ic~-CXPW+3uXbZA$G8>CL$5o8(MH5p7DZNv zlXBPXMpnAxvqPQ*e{ zTznbNf?E5`qN=9pPhj&hZP41CSuStn>JpJbws&M#B%fZdAX}fK{FnVOKKfDMdoMCeC?KV z(FK*oi+ed$E2f`BtYEAMhDiT0j;GunFteRRxD}1=bra{$btzPGrh9KRTq~2}l5=9m zw3J1KCzp4n*syo0X@aeZ3E)hP0w7uSQOy$7`dQGJfY>h}XS{kv&+tQ+Y8ffd^KlQI zdwMwFlxRhy64?TalXeCpPnFhD#?HCH#LC|l)>_)a>LI;p}jmDB)t6N zQqh$rk@T7XE}|zD z?&tW1mo=N3vx)|faXxp;2Vs{7@X%p5E96khRA6j!8Z}5?UZTDzI<@j12B~B?-5y)i zOilRX7@fS~`hvQ=;bV%X<=yuSz%*xF23`yUNRXY?W2{*{DxOqxPFHtYlujSay315n zKGuv&Su>`wK*Y{zze2{&6%7T_#+#h*`$jFlm%{`x`Hn1xk(}yQJ!!6RLsh=``n%7x zd_>oZLA-Dg!@=D;Cg(B*QBpEU!?eDk3$nwDzJ~c*Dsmtcks4W)*LFD^^9z#`dA9*_ z6SFrB0SlWJ!kgbzYL!w`pRDNU=ndikEXEA6lAEF+R$GxwGlSGAF*Kg?{fN_#QPL%$UxRGBdxKNeHHJrdHxb2LfEF{n&w$EHEx%-W;AbkW-F#-yh~Y2UjBD|@a_q!)#UZ>E<6Pa zQg#10(zQNw9zP2a8cI1)@^5UXu0TQoC~R?Zf=3Qsf{g8$PlHMs)uk-qb+y^xEn-%4 z>APC2P7zTiIqFmyXxCM&Ox;C2^D9UR~&PX(bXkvL4z0xDdMN> z2w1euULw{uzcdtY&a8{9sVmEbG~+4!Zyqx}SN*wD%m}i}xg7pCC{fF&IX}0sV>vX) zz{NrtaivG>WcT8$b%41)_901BW*tYd&DztxOBpU%V$zZB5+?Eo;>rt=o~MC@%zt zEsuZUgoDWD$g2_5t341hsv5!xy#ZSkSsJcQsK}&-n(9|k3-x1t;yDNvM(MRM#%8YO z@}aR|cn9lMQ_^c_>|AW#X8jYpw=>dsKa)%W-hXMz8~m`I?qK;`c#f9OitPwDdIYaE zw3b~If>mfM*Be7??$_J!M? z!p_F9V;*S=fhb)ZpM&g-s$uE)Ep`bC&n5ivy*GUhU)nF+0MGL zCVnXKu3l9lb zk);RPiXywh3w3jyuTp(HbUYv22{=~bYt^oTt-y#^@4~b5MI?l4Q_72_v>o^YwCJr= zdm1{(__|T_x~}R~?+DDG=1?d;X)^<|83fjyY)Wl5XLf;Ad)0Q#*LI;jB~QUtgRsrG z5bQ*o2+8|{xSu)Ds;x8ZY=g+t7!%?%fQ3`C_uF@rxL#IQr$S)j2D(KpdJdsOkHUEyQ~Nm|dO`q1)N#d-D0RNpCD6XE-(5og95hty>z%R<`tM6gPkeM(`Y_(Suk%+S!% z;>h;cKSit@!GeWW4s@?7p41wCNS-Ex>Pc5)Xu(f$JI&Mdv|u)-b1D#O^X0*E8dQq) z+X2PLTJ_@nF3qy&xA~us34hhD`H@%aGRsiLP}ey0JZ@|=y~~9)GU2nU#fbbpU_RJ| z1^Tsq&N?ezY7VK|G)HWUQdu;IwxqGFEtP53&QPmXKJgKO(jwBz5Y_zB2uA@QA*+-S zS2K23`bRq6Xg)0egMC(P#<0%l8w%GJtc@S)J^Ng1CK7Anp^!Hk{%6XRDdh*ewTA|- zJ)DUZ+*U5Q%<-JJv9v|r=Pk>T{V+Ydv#51el&5JpKJpf+g_ByX!EskMADm{3*E+h=ln_Fjv6E(0)aHKva%iH4z!{G-d zt{~0~csj7R7mHc_q}6BTl2QH4z7_KF>y?y#5bp%yMt+5RQs$MXdH4&HGk);+aIINbN9TG?Y5p=A32-|-T2Ef}h+7}mLc!sA zdU8^IsQm_?20!Oev2lY7a+uv2?FsA^JMo1CnUN~#)`phSTr+{DQqt<@y5#Sz{5jq8 zgPl)&?BtUy?0j-FwH^rC+oe2rW-?Nn*MY0i@VD^7r)Z~!>SU*q!7>&5C@gbt>*t(2 z&bh6hd7%JesHc)HWYPs{SWu@6YI+2MUZ9@SUH`{^Eo4I0`BVt8P#D8;#;w$r>P9Qx z2nuxpuZzN|Zzv;*`*KTB2U91*keu>dj{Kx8mKCL^htuGv0enzy`nzMTX_+)~m3iH3 zl4WJRD5Um2%Ek|#7Owri3FPDPNfj{eADak#Qr=3SOS8<_)%dV0w&R=HTTKo`$l`1I zg&!(|A9TrWT5`Rg`{aO5X^%?gG92!0d7-xpHgMT|bU&}SOI1SCDSkmb^i*bn&nxk< z`mmM;>x^m^3M{C zMrTi8(tG>FFZZNUoYERa)JwKhm!6n8Ue^e|RgS!?b;E{fkQKcIl;>--if+=%6s|2) z>DzK!M(2s9HIWzdU{ZQ==5pHtpCbHb7OR>5Gy$h( z2J}@%L@$~;KFd1{KH@2qg&~~oLB-Y9^KoiK7)UiVBlQFa z78;$ce7M)%f%I!1k=5)KgOvyVkDn7F=#x>MGYysjnD{MIi_WLAJY?XW7F$j@Zo*kH*oqzOeqI^1&=paMcNa?_;l|B`C))5`@F1^} zFr_1Y>DHiho|k1y*RX7P=h_lkBI?s^c!r>AVFl_C#rGl{oUhK^Z4PE$muX7s=2qE@ zm7E7-XAn!y$3BtYnnRdf+(IC{W^1yn732T=rqvv}fYWe***KMgh3xqP~ zLafP=f8n5i-WL?Fb7ksdybe$83AUq{^;mD$_AzjYjj0=R>18v}Dqhm7yryw`%mPi7 z(Yl&LSB7ilFQ(?u-Qil#1inv8Y7Sk)UW!8;bLEoa3%8iAe4CeVXhq3L-p}CII@Mj4 z$ulGyaMGprSVR26{oU#^@?={wR-0;mjP|spUTt7l%O@Mjc9_wtX8ay~O24yAKXhQF z*{#c&7}`K<*QSniZ@uh^w*qK7D*->By{_g7vx(;*W6o=}|6z`aUJXJ8X4M7!Gom;A zol-AR3P%OmCD)(|5Mi~Yo>SBmqIhpe`);CsYG9XusNU*2cna}rMll7{nnPUUe9r`6 z_ivg27diiI0<7sxCeS-vE5WwrP;t2S4+N&v*CnR{f7RVIiAsJ8pI?PzL4}`Dc!~|{ zsl53nrb4I53qJXVAC$_Gcn`er^Is-8IkJ@ttPjc+ zi!J;bsqH&g`Ji91c`q?}F{yeQbE?Pv+RwAKKTa0g_x7J6Z?&a*+syum&9Rk!v004~ zscOx|in;MOCLj$lPS5-aKvSWy>YMSZak-N$kX&{uui)-+UMKYmcUR_}4RqowNh z_4PL3ML@Q_U&4Ebrs{x#q>-eNci70gp`k0oiMMU!wKg(JM2BA_=suy;1|==QuD7LWs{HMoEHNiy$`SpFrWm92A+=(+9iLc`xWPj?26p-g%YTb#q23{7{%hk2h()-BjFuzNeptsH`CJ9;eP zOWd&~ywG~88(aZnEny~PnAZ!;{U>)kk6px0!RT*Ws`U((wDO7VZ^sY!h;8OLNc&+W z9CMaUSR3&B`0gRjn{K_~tLr(Ym~Ah9xIe82I1c+xwFZ06=XE)mrH=6i7TBJIw)yPZ zIbL8 zS`@M#ALKe9Hrw|baJRG7_ZzT(U1n@>{DV-ee@k5LRe?^AWo$~X0Kwe4YTpUJ44ezJ zzi#P~JtnP?_$rAk{W{+-KG1G_msd(rTjUetVqiX-@-crn&$}-eGpnB;B!4pHL(yX2 zcQO|cu}Fw~k^23qkYVJDxVhISq^y{5q@(?V^iZ3?*WAxE_a(D=j>Cy$Z}j36>QaRI zx~Gr(nsnU6LmXc(h>v+0&Opf%_GBPq5ePUZ1`H=T;#n&%TxuHaC{ro*il_ zXvV~4sF_Wy)Vk4HW@`BLO&mLMUFv>p18|8QAD+eAcj;$BbcE3~pujv)h)W~xJ^j5) zZJqR3q9eCz&K`2zvAOX>=q7v8oB0nq>dH+M@qJ%s!?#St8tHzc5Xmd5*gk6tn+RS> zDFbp2<6T}fY5VLU@#ZWfNatYcIAl+!7bABp=A($QY?w(BKKMpsL*SGB#UDzEw&tehZs^cvdT z6uma*8fPyz)%z80v-DTEaehv&lk-Sf(c7_o$-GD8P;}Dvg1_QA4mG^i)|RXX)Vfl< z1AXD$P6Szu`!vhHU+ey43gcj8Ip+Q9Rk`8&g;OKla`PzNupS1HUb0RV*mTVuhd}Eo=5RX_A}Lrck7d z-Ee_dLYvY`o5Usosw~B}&{9xb5f?;7#T`%-5v3qfKt(`SS*(iKS`~0XHsSw0bMH-V z7dGE}|IhFJ{{~Ly-dWC^IWu$S%$eoh2y}FEkcpMu(;tu6jqlPtQMpw#$~4TR@xJj5 zjZkP&R|%515dsZcre;>|R-KR7ieu%h2q2LNB*tTljUa_UBUUr8IJK6_xX$+h4gtI; z@9j@OGoy*mdxy|5pAq=EU3G$O5omZBCfT*owYl%78s%4gm;;!kuo6sFu={+Krv{*^AE1KFQvhi_EsOkTmVj%KY8e^n^2)b z;ARAFw9QsD^z;vvM;;)xTtZl3n;rU*Z?>dg^zdVu+{d3+-&ZgwV>~LEHe2B}LciG! zJ!c2$f0TbNvS`>q;YQnRUjux0!p;+g=TLU2F`mMgP`ICjw-EtqQzq1=RH#i!KsOR- zg@b8*a4;>}YsB|%e2><(f1{Cl5QS2cZZN(Z8Uu6#R0C7lsUjEQddB*j!G3=>XXl}! z*lk5nB1uiW?{#_6{pCA`^0D^+)JYgdH`7PV_SPle%jTNp+fiqDrlnV^J4!rsV6Ds%p!@2 zTWreIs6d+EEMoH;=G{;|UsA=bD}?&MTrvWcStVq38m~WMUp#u?V|WZj2%Hft12Fd| zFuAT`79oVUimXzZV@Pb$I{fj{_0dp~*mXEW_OZHc;2oUyEheV{gk`$@M||3$&dYKQ zEk{qHG>-{Mx5D&;J^JOh2)=9aTJbSzJq)$p9kt#C1a$&oS3_BDhYM%Q{~}Hw6Utm? zoh#)38mf@p_}LnSvoG@q5s=S~h$7=D^z~!&#+KFXu3{;_faR_#p3V2Dm2?5msFj4n z3Pg)c{+5H*l!I%f*tduSU6VaY^+_5bb}xTicLw$yp%F|T;%@+TFG%)YVY?FAKcb;; z%p184>o=jZK0$Kn6m+m}BsJ`^IweuLw=ROHjP+Al4P4Z|@28=!N&Ef?n`UNiAXspBsp>(Hb09nb4VpmE*M5!x&i)*AGRCx_;Ic8*O$w+RzF1U~T&PT8{AGMkGV*CVC~OyrJdPzmfR0kHBrrY6IvJ8lxkd4V&%X#vT;HO#&sS zFx%&u4`%xUcFgt%!zVDeX8HGo7qo;}fxqZ@@#uKN(D5wjct&(QJw&ZqPQa$O1LZM$ zN8tnuA6iCY3FMyrkjOO+^1UmLPgpNNiG*n?!sk}7`rU zbg79Q2XtKh0@OmusgBD5IYu#>L;`CA)#gcSxJX_Yo&03`E_r= zjwYFdgenLvBmOrr46!Ty+4wdu=1)`5IQyY2Y!WuU-Z@C<7;RH^Bwf}mHD$#_LJ*Q_C~j*tCPg@Uu@GARQY@EV5~X) zVk40SL`#9FaTADN5vYMd-n&r!-b^sadmF0VJBm0qyyO&4aHE2~W}&_rKk38{5RL{y zv9%u9Osy5Rr3ogqIa&r{WvvfI=V0TpV9q;Ve-1&ce~@H)d=|s=AV`%-rcUC>TL;^3 zQ_0j9(~$a2uoR#-zYSCZQ<}1r7*i!!8rPE!jt}(+XXKc&3LYh*)1m;^BV#yUEI}La z0BJxdH|no~y)*vomsf*q5>rAFZ$(xfTK`Zbkb8c*MOO&m{|WPZF{C_nNS z%MXc6!$k$6)zw`ilpkY>G=$Xk-6@$0nPi4q%uIo0J3*4vX6sx)+a!M&sr+&zWm%xs z6L9A`lN9-(WykRVZp>WWw3+mlC4g;If%VLiQ!tix!-K>CeBlgLUAjr?bAqL`9-FyY z{R>92mySY~vU;IrguJ>UFO1VhHqwm=oxKv?{?TI88>8KlF|WX%61|R6?th>4ijBA$ zKr#hV=M`$5ObqQXio>dOm(bnC9YH){H`LDjg9P(ETqO9Kgn!17b36$R>wDjR`Fk0rnM{JajOhXVL zjkHPL_9dsBxFQJog7EBSk%MHB<0*1(X!#MLl=^0ocVb!~VMgISj3Si&ZuWrUyV(QE zKY=}f0smqT;6Mg@01M3QA%XJB4=tx1s32_1yG=`xC(BDJMWPV-nP!orWsxP!3L&z) zS>$VEk<*C`$b7aait)5rOkN0=K$`}tvd&K3Ok;#nw|zrU9+lDz5{f_eVVJNK>8Zng+D3$2Kn z6I+Dxwj)dU`==N$R=1} zR3875$VqrgQuG#39AIkwK=4S4FA33sphlQ*!CX_$zLM2sh3OX{6uSGKdSp5ZNQBo- z^ty*=VEV5C^f#t?&np3%r3Sf1DE-yVBEKq&JV++KsU-|$EkTgD!a|c+JvNXaEqfT~ zS@a)_XMtPwDG&)V9?)$bvRC@>Xh2^t{mE2A7Arc7zgx5()jeckntNf@^{|Lfm?I4B zl{KX&XG}`?h}1gR@Z!(UdAtD^GSeQIZ4iOS&d+(kg_YGlCk>mtvGJwn+WPikOmA2H zzOd5IE^39WwL$4$i^B|bf0=j{y`WFy9jEq%%j!vo@eHQJv0Leme8JYC`^TiErGxAKH|D!w(Dk!mxYBH?S?1o}Upq zD-X?R=K1s3g)?b5-1BfplG~e`lt}LRR+HP8p2Il{9?$b;bK&RDn<;katRe8g8H>tT zxWeroV|Ui~z)R`5;Lry<;i2Kp(sQjsA8bvJua%w)34M^h_R_GFDP7RFa9`m}a~bYN z3YvLH;k~-1we-CCV;KHvu&K+09aYfLB>l{U+97+UV%~>Xub~Sm+F`{awlA!%#F@Gc z8N#rmMLe8FpnC>0R|6I28C*I&EM!tQ(yShwElk*d2o3ay_%Q6RdL02G|4+6OHk5nC zxE~HJ)~9T z$KGKxH?VRDw@kC~N=#pZ>A^=--{N~I-rtnH&&2y8ddEi0E;aEXL{KASbuJ^>+B7 zAuHV!#5jMN7x0Bv^rC3-Y)?}CwRjHnubDr+4y=_Q8@7A1aU!IW39UK>YFSv)#f5m4 zHP|Cs*AZT%onX>{X-+3-$yC!+cfUUjO__#BnkmrnL-Ylz_}4Jen7M(_iz|3oRS@3A zOEradB>hEuqV=^JYZy{+HC6>V#J4uIhKBQGw|ByNLbrzFVt;~s-i)H)Qg>VvaG*5$ z8sEuIpLDMYCOoC5+Icgl_bJ7A6;*nwlP|1hSf@eouNl_mX6DdFeQxu|rKdu? z!>LROv{4bWl+hji?GZ^}B&Q@W*T4~zz`KXw-C6JkBY+9tLmAeIcFrI^tzjWPRiA8u zM<{QX4-B|XjLveTw5#fX6~xvb=;2W}9bKAjj|MU5duH+*kc7VM|3r|OUQF7vZdBtG zHcD|aF_1zQ|3><5K-~?E6AYpRHGu?(-}rk413wU&leZttafdMRkkQ8y&tZwB?+<*C z2!stg<@F(~S3#2hu!=qoSJ%UUwY=CdxL)dpDz>753#Nj$RI)_~NcI9+IzS~nd;>`k zpObDbe2C`j_!L^Vh9v(heVs}0o^HSq%bBM+AfMiPH92g$Nqd`VVFXKGTd21HMWZ#v z+cu(PXQeB>r12Q*2*N3Dhz_pmVafqmNOA~Q;H?ZKp+bURke~Bx!f{-jFGkH#Z$JTV zvov1XV?4P?{61G0|2VcH%37Ad@{8bKcZKmEy2AMOD~zwYaD2ANBQ6@Hw38PS9`LX z4#_l#F&fX$r-h)s?2}r>e5@Y-S%I@IwG^*nLnS`+-KqVi_vwvYl3(hmZRLGVRbA1g zElxeu7X8_POY#mQd4!-d;LOk4Le2Q=hwZPxjlb5u&=}g{B3oMY5zh!tJBBtXo`F1{ zay7oD{&h`kUt|WwgvArekNp93MFXxZ&gg`1=F#YyORKZVW2%Z%u&Q=P>6unOSJl|C z(6@f8^x<0%Rkko>mN73*x2N(;C^WX6k~}@mE|F?im-ZdH+X*k05qGMp=X4lZadj(v z%zg47!wu8ICWQt4*076>k3j70Pv1?jwF`Y~Yu$}VB`pP(o@wn{u>BVV25qiP3~Q(g zee0M^68Ot6tcNzGf09UlLJCf}|!{F_hm#&5Z3QM{3#_kpL1CZQ} zkt~)+MtS9NI(*)4cwHW3F!Z*dV<-wrKKWCLV(80Mo&kaKm=RS9rSi;1dB%nX?XMgg z#x7r=B5iL{pR7E%FITt^6z9>{ZJ;FK@R2#lGK`O+i4cU-I_=KVlQ?qpJSsJ`j4bbl zjiKeVPKzW}BT)R%^2K%c@;rIwTP5I{HO*pl{q_2>YnpndIw*S2Db`0TCD!Jf% zNL&Q%z7ET?ONqWgpf9w13bZCer7ac>L;UwnH7R2~DJOn;e^_+3Tf z;W>%lRwRBuC-Iw##3OSOYjG1VT|`a}mA%#Ng+5C)%&M>QSHspx!IfKZm`&Io5LkG}jRdEKfeSJ% zwBi8emNq7+rivXQ4_X(ov64Oco~&9?MuCa75$DP`SF)GT@~!YhF|eOI*BH!dr@kUb{110Um~xi+AsV_x^piQ1j}Pc%l)_dV{~m2V}aP*Bm6ONe}Xs- z@;4gPH)}6n0=KaHA0z({qeyk}cBtr%<^i>L?8k7I1yLK3+J}kV?@Kc8cJHmFXRuMa z8=A-4iqca--f1Og6y8ifLg?HXwRMjGXGM3qpqK8_8AF!VW8fp!&FE|kp18VdV34J% z8^@AJJz4DkBgT+`p+<;1x+obwk%>7k+r3-wgp!NQ@!=E%(C&KNP&|Dgd%!^GqfImr zUr}Mf*v4DA+dA_I4Z12DG!JKfKT65Ixx0+NKz zqWyp?_=-;Pr5}gTHHuMH(b3Zm`!<(M`-<~|BP=ns17ch!A#s;Ekm4Ep@dJn_nqcC-7ImdFl9*XjwEKaCvO$xo$I-0;TVb zgF*Ygf9mU6XoB_aOTP)icZ?5q>3i@Qvf$KhRi8V5Vnfiua(W9bA5CeeRYM^Q-d9_7 zD_yTu{sJM64)e9GpVNWk4({Fe%f8JAzxlfM;J%W>wvw|}TvYhpoQ(Gb3ua};l7sjF z5nc5ePc|01$*A2DIw{A_6zv2k}(#o+Vl^IWnw^%?L`pN_naOGS`4;&f&u{T|N zvL57aKV7*|wL4-X4*Ec7gVZ`v-?i@DY&hmSg+2Hc>p&-OrX@Ki`DV)-keoLKOv6`Kmn9zdneyAz7{Qp2aA^RmG8 zgL@C|t)C6={SmA?^do^H>l5e&q2=QsIhwYQ8Sq0NZCjs-%rD*i_f_wQ-KlX0c(Yjt z*#9Bxe!YjX*0KK$q5HLkJiSEg5EDL*+X|Yt4iQUPNHhM)TgMo5vL>x#Ah;s54yk9e z=AnakljcDe86jI7mPPY;nW_)%cUlGRbfA`jTd1Zj^*4@vt*M^SL@LkB3%Tk7jiUgy z7N~0)|EM(!^^F$dV)Ce23o$oJ6-a>=G8ifLZfVv!-UZ=-)-efH8fYCPu378Ihc~{z z(Iviqt!#Z{+M22vZZy8~(eSLND}P!00k&z?{Wu#=nzI?XsV^>lrTN<$;U?R<7eJ(3 zN|6kPWZNvJmcBpNqBym^C!B$@EvcV}Rg+7_sX)8AR2&Bt3H-f8`w}Iy9vAU6ZC{d@ zeww(W-P9} zw^L0p*``scl_R^Ltd;k6r%}GjwuCfHx~8d%IL3qix)oRx$9Eg5rp>J^hUs}R5xA%x zL~tPDU~3{_@9{=Ncps~O6kVZ7m~H94&BB<6Vd4a(rK)HPXmxNe^v%VUQ*fCsBMc)Q z9U`7zIYJ<;sq!IkwFeP~8}1V4R*rO6Oy&r_tn)e z0c+uWAvocza_Wx~in{t-R3My(;8fY5_@Hwx#w`>vUD%m3)^3`0;reKxXc{!k-@WVU zp8kDxq%ku+y9$5pM%0SnV--%xwlqzC_UBFJH7N&H*az2sT;iBsyk^dEBI}? zdzi_GwI;|4x&#vT+TiIEr9I0EV5Q#a?FHl0311xMfhz{W(AjpyU@}*FOV6~Me&@Wn z-Y09g1ZQqOPG>vwy~Xol&tj4@DTPAYSETp;Q?S=cpZ<#L{a0=cmt@~)4NhvPm$Dil zX4M{9`M(k-L``raYHq_)pgP;IiY6Wqu?{{}LHO2M<+}FUG4|skuJYgDH!tyJ62)W> z0u5Kkzze)NkLz1)^NC4AK}7k9O53BDEN?WNoEBVpj!itVs6Q?m>|IX+xCE)9r#%|_ zU{_=Z1M)H4^%$`UBY|yhXvH}A37>j_#(s|Qld(X!qee-u85MQ)VKjhOAQ`FGWSc_n z;!^i63bQ>5`4v;Mxu$ac~bzBxgX58beyOHo91opHMU zA^4&I5jE`aN|jB1=ON1j45-6*O^E?x=Mr})cVf-Fu%57J)O|{U#G2?PtXYkK`c^24 zL^5kSSXW+10T?;`_Ks1wjj(bXP7i%r_sTd3*Tk(<+dYYmbl^uYBGy@EoIignwtSpv zJ82TmLxI6cAi~n(dc!f){I6`#1|meqjkeKUSTp8|-#{G1{hbB7tZjE4znH2zvJZG|_608wp|hs9r$AQZ(9(2gTE`xW=`33W zcx@#L%j2zo^dKAs)3)O3Zo^7XxAPqZPCqI^%|WgW6(9+peXGdWHYejq zMaK3y8Q)iA?3j~rxFX}rc^TWpM2$(UPeH?w%3nbD3gSC9iQ6#4d~hJTB(BL)?Uz}G zW@W*1qiv%C7l}!xmp zo@KpoUPhf^x2Hr}ueyF-VqJViC#zv=(Qow=z>$(^8x^5tad^Ug$wWJJVRjkxLks~- zQwW-qxM|MV8kpef)f5r;G}%6j_>|f`4J~NRIb!7g2$qDsLS#Z%cj~UVV5?fjUUuSX zPDwQycZF>u+qqBe6v@wT`y|t?*qG@~Ih?^XWb!*UCzCw`-=TY3bh>-nb?I(vy6_Rh|Lc6d68bu#9y$ZA19Sz10d5AU z0fa{$ZiXMli2=lm;qg9awm0A9RCw|yIPG3vk;B+Qp>P+CA2i~*HOM|_{Ghv>Ik|)E<2??yXHdSQD0@(zGka`Ahg8QszWgFbj>29v z!B^;TdOd^`i4;afzSHgVDvIpRiGx)LFR~Yh_s{7cp_rWS%~P;EJ&JH=1mfGTDE9a( zh@I@FBHIfZ(}%JsjAn&WBr)IVB_deinEw!^QYD7v7P#ybN@Z@I222nVsI`sar#ir2 zr@}S=WHCWXE1T`Gsze%lSWBp%K0R>#P`FE4q=@ELaG~qvYS+D)@I2-IEl5@t+&FiTF6tUvi~*?L>bGPZ+&d|FKjp z_qTp?@9%`qYOC1C@P<6WTx;j{-6-C;xE*HZK6fsJTnj^P=WIE1}Fw(bWC=L}mc^j`a8LnyiU zF@B9(-_K+g-dQ#6&R-rCz%ZDr+NxbS^eKCxbr~DIZqPK*8u( z{Og{3rTQj6{G@UTZ}Pu<#g_ed{WhB)W_@MJq}LYn&oAr|{Aat@`R{Lv-1V96ZNBpD z0|z_rd5?c^=F-1D<<{_r29JGk;4^Faog?zM-(p$Ex4x#peqa20er2y;T{qUR=R>zo z9oVi9t3Q^__XGOp7aTas@BMW^8_R&B{Kn49mhAiZXa2VpPycJ-n+^Qv z^WPtxvMCDrs@8DNw7%*y{@ha;_r4mvoj%zn`oXoAe`%rpW#*?ksyZQ&d@9AekjO)JT$N$yi_}EkX_{mofsa)~I7C*g%jQzSD z$$N-Dl=sHIk0!p#$1K>q__{6c@s;<#@okxQ9skGrq(MD@|Ac?|v+(QHZ*Jz7z5Vg2 z^p2nLDPL_EGW+0XeEXOi!m78d<_mH&U#lCkozJ>sm{_vxGK_(zZV60WQLj{p3`eYd`}Wk27(B;od> z3qJGHcTZRi{(r;YNX|V!`TZph=ihqt{%h^e^2+DWmUj7dBY(i&D{bYV9em#B&ibx7 zyZD1$t5&GF-Tada>GwXr{`!J-*B5-lcOz%r5fR@p{@ylEeW02C6F+dJDdwkN5A%nf zzh%VBJ9hc=%V57|Q7>67xcg{V z$8Y)IHLG-kHuSM>Q*7A2cy@|){F2vZMZ8*Mec{=Gw=BYjvOSx|u2WV&X`Sf0xleeT z#nuPT?wE0x;Sp=s+p|pWUZb1zS1EUn+jVHx@43^4T7UTb{IdLlvDQW2itmdymstBh z^ZZW_WGu7>Ut6eKxbhY2tZSA}UDRQ@^}~*v`89`Lwc4}3WcW`wj=eu+&X@eEetoYw z9J+@eTGru-XL?lgD?iyiH*U&&-t^r)9shdF#@Cd;)BVgl^PBNuKUa~GJ~zbr#<7gN zXa4+)Hw?PgvhZ*%|HHIt4-Gr}Cck}km&L>TWH(DEm7x2G(Qdl)W+LWqd2pri+KT6o z*PcILjg*p~4t`r<%>ERHUdgYec*nl||K2&HwP9Z94YqZOE*RI;~o&ga%5qBMZY`X zQhq72Ft-@CQgrF#SrRRuiGJ5U$Z%To5LU8DD0{fz$Gs`KM5h&WR)fw>qTh)50xc9) zE0$rL=rVq!P-MHDlN?1}So^&$1q8(S0tfQSwdWVWE8i)F=Q}4TR35M280$BeZ_{1f%cYqmK$IEmez*D)`{&C?DR0 zm+$chB7|k3fM35UTzpJ=%qXLx8A^}B=bY$tO?E0A&YXNZsTUWHTafSdf*>L0AeLv2 z!;3{UNSK`b++4^#r&kPiIy@eQ9V?7Jr#HWlL{ZB{R)}1NoWU{|>HGT;^(XGweO}k#2@a>D z$W8@e3!u4bcd;T|Om0+14Cx>(@UbP-%Uzd6`!_4ag;}$b7B1QHEc_q^;Gx#i0xMw? zR--PmN+@(o5s4uD#h1oQWM&nuAc|{ZW>rLoAv7YnvcUs?v4=pNbQN*ppu-xg^uk6U zj0l{a8_x-OV%(yINv?4|^eX1Up_m+XQ4Xb|dUh#trR8i?YqlMODQla#;xHntyb|x7 zE-wqW(`W@c^RvAmR3ez`=TQt+;4jy|Uv~e&oUlyYFNYfhh#16D1Gy`kDh_gAKrdh) zl5G^ms<1M1Gu}EAqAA~V88zZ*I zfhGBS9UZu=Y_=lnDB}9%42D3@L92GMepu*3r^E=Hn?FSuef#CGzA*uX>zC8vg7Ib1 zlvry=>>NjKzSEI|=0^R+=X6YQ3%!e#oDpJFI31I-h$M5roIwi8LkMK;7LQVxBD~OE z463M*g?4ALBDculK%u~6hbMwE`1kO4;QW~FQyd;6imC{A7v*_n zydyOS+XFzfV+!Hya3Pxg{E#tV5Zm3rxD+635OHgWGlzMj3O(k#I8e?h#tI>l*H{o6 z5Hi#dyu>^&1YCHwJv+}aH7`HM5i!*j*usD<6oUsVSYybuPjX0=8E7aTf2#-w9|p5$kmC4x4$)hH)(df5ATr0FJBoYJyz`xy zUP^ffGG=|%1!+FP=kj?P(L_N~=Y}2{h{EXh)6_C4va(S(7i0p)Ji9j^Qh{_C@n96EMEJ2_E66b{eLL(;Yp&rf!K|gqM5yl$`0I3{BU;;WL^38$# zL+v|V&cTi;m=MTg*}V`OK;__UBvT#`m&jGkz2izNw;wvP%wwr*_IX!g^($GBC!#Py>G60H<|TYWaU*2g0g$mRBRzlym* zpQVtin6WI4+}eomRpjE=#fm?R7cM+S_!f`d@(H<$F?GUv`yU%(dbm4ZYDe*Fmp|8&T*c0wl`Q^%Q(NgfcN~?6epH?quh&uN zhK}Nr_~203A<8D8meE)2h1lifWwQ{*tRWX;8rdLG|zF>5nvu0<;>1CQ7X$e7Vrv z6l~yifkD)b?|MG_defh z{R|3kIQL*o;Zws>_F$b-TIZA2{iO9fVg2F^6*6^*q zrx?!KD}q=*fZNw9#LE}m1Z$6RDIc9!7K#%C^gGJv;J7=a@ap4v-&N4Qj5mjWb8nY7 zj|zCL4_eQ@a(qYP_!R!WE)-J6fAHa+eY8J9S|46hxp%>e9Z#DC_jS`_yKkwxYDi~s z{j^$K|J}uRX20cYr`*sBzc<%@{u%wG^=XB5#9M2g4D6F=XBFd%#y=ni7hW+;Q zy~`VJBYE_%ho`wBo_xW2*fwP1j?`MK;=%Va!U~RA2l$?vWhppfz43>n&-ZTMV*RZ8 zx|_ysU1W8}_N=N{GS2Edx~Lb)tNdG^*fRa@cdV1%Tt3xy%>nC2zvsLami9ZpA=upW(;*$LclR6L<Td-YYFfF_1d||WB9e*UYmZe;z8be>`~3Nf2`*>mur4~_}U}9CO7rSlpUw}geCDG z94+9ikF0%UxA)8(%YfQDKHKO#Yq6ybYu95;I{!mbbdQ*UPw`)5q^kCv-oe|J^p1b& zfwO$8l-bT7zv^ne<$KFIl9%(>ojkra|65b-`_@0>yOdhidb1M-jrq;8=aXj^tl5;n z4~XxoJ~in9{!Fa4d&8`C{ER&{$zQ6z;}!ay8fjnD!iAf~b|mgADp6E(>=!1vRvSzy zqNw1+=OPCLQ4W{p%Z4K8$@LXL=cNsiT(X;{KqT%w#V~snDuijmFnbP^W9UDmXD9@P zhfBgE&Y0`?p(2|H(t^0WOT1+*^UMF0+^ z!8S4F!r=+ZCn0!+_p=3mhyhJqGaNu8{jBNbD)W(-hdx{l#b||3^2U!Cd zKftvNY5vdjmuy##0~4+eT)a3}6X)-W$@U^A>eQ&kZF@KwqU+61TczoCzOifyBF)hUvBNW<;CStDIA*IMQ z0oH43Fb-&1X!W$gyZ}|C2=C{?B)Fdkv(1Y{LugvU@PtvL$cay}k&|W{p2;N?6hM8W z*_qJ3pxAQpv>_YKWH6g6v-Zs_CTiG&_ZcR!aoz$TNgzKdIBA1iN$Vv91e6nc3 zR>Tc%@du-Thcz0~LAhZr7v^eC1(zn+AjsqalpRt9+nFd|sB3zRT!)qrl954ys_a0M zS>d5Wtg8_7el!)*MHwBQvgHv$h^Cx5pc0x|D8cJ`F?P!LaXR@8GJ>LISru&Zn zA(#(Z3FI^{#`~q9rF3!}wM}r!!{pDuit$4BH>QE&xGxij9G~?3pUU6g57W})5|Xkq zk`mG}!eH!!F?u}Ox;GDoiOKl|1!ORDldN(&1rryhSm@!-96O{NvvhO_Pjbnkkl@IN zQCplcMsV`1k~7l(ZeEz?<0Qdm1*8W{JRi@6R7xhzby=XxM6Na~V(7e?Y7S*{sL7>wg>skXQ*%yYp$j*_Nk z*kF7^lMstU>73(zY&{_dR505;Ycn3q)M2c}Y6ZrP2@VC>Y(N~Da9@^<`)(^u-@Ty6kycH&)=A2B&I+WOHN9HK4yz+L~DTc zjao1%KOR=<0QCXHX(N(HXJKxik=6*8n@L?70-ac6R`>-VPjK3`)$rn z8C@!6q$X0Uic)I>OdXYwmY$VnONmL1Nl!)>K_7A3(S}j|sBvUT<#e)kB4h_b#J&Ks z?8USy?zMw0WFQw=PW{FWE25_ZRR+XWA(2nER;q1wS&=LF1YSP~i6&~h?u zsiIUOx|oF&GY{4_n=0*|K#|bZlT)+eG7?i_lT&TfR^muqwUf$DYYfOM9CA=nT_f0h zM6M__MKvrY_ExAyu?&~kHqc@0it+aBiCEUpz9d4>0A<1rD=0Bhta5uUG$%z&TxLvC ztSu`kIbhU;LWqqBq*2BB+?WfJ=^RVBC^$|s_TesO+JihL#fd79Ru<7X!S+JT1<4ik z30hc$rqM6EAEuLBVnPy^7;`)3l|`r|Ny{PGM>aDwc+#jmn7(=PT)qOV%dk<$!z|`$ zH2TPP1zb*|ILrk}i}n_~9c(@);$;?pHnYk@tD!9ylky>TAT@KL6=K-{Vvx2_c(6#C z#q5QW#z~m4X4W~=JpnKda0j40;8dqfcM;rC$-@(3V@7eYBhbttj8eH&mD=S(@j9{CzfZrzX4d^&2-nU6#O^AEd#jWmjNgN9t|MxolJLMKrNmh16UDf zCEh#3T?QO#fP`CtXAaQmgG~1it25o(0CDeUx?2OtmEzI+u~nJwy?||au6|1h`yS7a z!Y>101@xov_ka_4YCuy8o+bBDJTHO2TMUzMTk)O&pt%>Dyo*8*d`nKT!MY;Zcl^`6 zK#htbj*GQBX#t4po?3gMAf!a&4w$VNotlsi=_AHtgEsYWCd*{e(5l%u8_yaaseaT? zS<}o&5{y6?iN*0;>`Tp9r5*c4x^2`Uk-1WZO|M5@ec zC0dCZVMY0s*d(dg21o_7 zGp^bNHMB85o6~!F=~|%mvJz6A$Jt^N5@SYPcAZli7;};?Hvz>THYz6R*2_#F&@?I` z@e1On#Kc`@Z0rM0PBTj#9X2v?7X}m~Eabw(&^Vaw^`J>Z({!@_HAs<;i4c=}ti8v? z#@f=-%>6NzIP8VA1l^=>Hp{bd*A3*EBwsrgM?$H)OLCFKpE%w@Ug2JZoJn>ko52Y3 zv)JL`oGy-8);Ok$a-`aG9-o^;r3YJhTx8LA6=4S|+egAVeb{<)ucHXtdB7HLk;|Ru z;O_Ccuw0D{zzQzw%}n?5*ZyxnTalK(-U!e`e!twM#Q^N zS+7Ibf!Brb7vVYqIeDS&u@l-4ABR^vHb_I?Vy{JaT2H;V6T;rewhOr>)m-~w7t zK%t^`mLd=Fi#k{d+3o@l_EbT$gs~Lcxco+IwNj~p&K;}3C=u5Pfvk;lHds8_z9npt zlV!r%Hbfd`(rhVSlsdUC8hR9RY+Q=i!$?e{6=8^;oS%c?K_pYAK+;(2WR~lk{0THU zmKHp)UIS&ECF8hh=Q7;{%Op52yp!Mecs>SDaHHL|GUysK+Fge5ci|U>a0yaG|0VF} z;7=fhN$;0($06+k;8sw+fQN!dySs@X(JH;WTa9)%g%1%oLiFDXdR)Ne1|EVbcy0<* zj;4P9sdp*|nPw%ON8CAs^#j~T0_6a;mxq0PGL;)LE+#21IT6!pC|mOBjeIKXpJ|C& z+7K>=?vP$yEN9q7eO3IB}46L}CeF;sR`1)UPnJ zfP#}ifi#hCI8h-GiH(5n!&Bd zmIotguZG{;NVn<*c*MQYd9<70P7&nKlHcETC0rY1_$6E|`AP994n3D#CP?v*AwB_j ztpM_8$?xyF60S}nZaJQo{G|94PyQ@VccEvBuS7b6XYfoQf0q3Iu6wz-J`?ko$EWAZ ztrv-Is!IZiUiq`+_jg?h7qzFRI9l?P;!|AtbJMgfy;FQa-k{Tonp~hOk$%%?DChd# zFxpM;_r)o?Edh`uYyOI{wUtn8A1OMX(=f7)#+FY-&g zQGmtZ2LZiH&;PD_xww`g&zHr#$qkq2AX+X5r1)?zMspkBBDh$b|7Mt!|NjM^OXZZ; z5j{WH=kkEkOXX;aL&E*^ITMYL`@tK2rIY8+y2VMp~g3F2f--sjSPdtI09rO4p zq7HcB(P&ba(Qbm2>jaQLOMZXXy%eqzF;5AF&NA>*Ii5;r}wAE#fx9BrWuc*E@qA>{4|O_V0v45wJl6YpMQ-lr7t{(8ylp zU%O$8uKvj4(Pd!8dAs^d_m~C&Ccq8(G1EqE)%e+xxpmMFH|OWgG* z3Q!*_ER|!E2e$h)4X1ZvT;rlkyP7Ek`}r{m6wdQaz}6;QdBV2EP8Gz`k6`rRNL5O=8>&ge>z+RK#0`wWt*p>YMlWrR^k3W$o_0{p{#gbi;dOY($`z=tgw@aPf$af88+d z+em0~Y(sXUBe_wKEMQopfR5PZj=f~k>M)K4VbPUc3;~)`q-V4toB;;4WD~~DWT%2P z3bY5bUfQZBr7u$Sx8cSZIB{47PLr*^HL|hN#Q$O`GXe+t#b{pFM4SNaH&8hMeKz=H zru%t7*Hc*YI+5wt%7Fa)4IF&4Mm1yr4(Nzaqa65*B&6;D4yN3e#UNuZ$1ORIb9+g|xeEVVIK@z^OA^9a0$~s-SuADa-BlcyZ-Y#WhYSXk;Q1I}4*Rn`769rP@@g>f0 zK?YDvhyeU@yzapk-w^kZ@dda?B8#@4VfV7xENnc}=!Slvxgv~NnmWH<7T|7nOJZKC0mBbg1h&I{;*Ss8!ePlOy*d<25^prd*js^hn zz!w*1YrLmOzrIG%_^KhT3eCy;Oe(N8|lcSB|0ip0O*(VM~fl#$lh~vYNSa zB;ZGCat3zW1uEPMW)?(A)*zx87tJp>~(q;nt+gnJ7mgpSBvNm zbm*wj@hL&}U{t=;-f^37Qn>&OLPl(3Zu1JD{)KU^SzWdeQ;5e7lLt6@fp|^(Yzxs? zzD?!Bh2k~tzs+M2ZO!{=%kf(1hs`5Od`Y__DRx9^a#Hf8PB>K!GCRn*k>#Bc7TBaOB5Pj4z-Dev zpb2|K(P48qVYe&Cv^Qb)K##&xU_&WHl%x5s(iZlp`n z_YB+d$zXuJ=5+mA^X;pRx3~IdCY!3LCSR;%l zfwRXKJfKXqLGu`CK2wc*Wxl34%@-81I4{G!1W*mw2$(6plm9*W8Sbut`G6+?sp32N zTkpm@paQTA@Ckqekbg=l4(r5c*=|osPQtj76^G;Y>1iAn&N(?BSAc&J$T^&NAAv6$ zCt-t6F41Bw&v2*RFMvXPUN z#eS_2*c#9lK=*E34Y&r-8E_q-D}cVSLYI|?0kGkc!*M?DX230gaKHe-U;r5uQ~)gi zKWm^*3H|B%%pVrL)oQ(oh2jr=;G6N6+Bar&bt_OmBILfE;qDK(>sE z<*MfGv99cwXYb(O-ZZW%e9lJxO!2cR*TsFwhn$}F%=LpGHL33$o7x|UcMize@6Wh(%dgaPhkHr6htA|=8Mv}yWyv-(J`$c}z_qF<3g-GH(SGdoL zy;poJxObmqZb{h?l3U!iYqObKwr2rz9iM+rt|Du3@G!V_lSV|6`~0Il3*lP7e_HuG z-1)sWtl14$d&?gaua4!!@^g##mXFp>isd#XO(=!dE7Uzs{<7hTU3Qnm~YqUCjWRyWlqnV90 zCfRSe?0p=b``^TI63C+YA4BleMtr-wVfm(t%TrkB#a@T3s_GF%Fme#6Cdw~FZ`|EBH;?9+!09=q@{ zS)s)aT>MBI{c&LcyEceUqT-Dng7hm-ysg< zzAy6eBax3%|CLH&o04b80WvZG({&MnV>yjZMo6)nyLlr1i6VY#?^M5TxYYipz$F<} z3YTPJ)8D&dyZJzDM;n^7pT|UePr{|DBRp~(pNQ|Di{abhQvSQ(QoaY_UaTL;mL_o9 zDZ9mpUB>FKk4ub9^7Mk35yS;fMbcGjoMbn6AIp zF)xr#pz@!;|BD=O-&{13=vE(V#qO>}6*D&+?}GqJz_=TsA;E3*HHG3FHaYO$uTDt* z`Tb9EU@AvaQutY~4&kN-hj7}UfZt;HX#qbLY z3A{`Gk~;-qj{{x@Yyj*A)B(8GAzXLBEdUE(6krUX2v7!i7_bDe2Cxlq1aJ~?bsOXd z&;o`5QUE!CNq|{^#efxn^?)6KBY?AjPHjWDaDWAn1Q-u+14;n%0nY4v3z!QMy z0j~qz1ylnz0k#1S01g9w0Z6}-cy7}HujY2jB!u0Za!} z03HTNzo+s1I$#Z8BVZfgTfk3%lK}3j5Uw4d6QCy`9H0i60P%nnz@30xfE#cxpbQ}W z{;B`}|JHvyE~Pl8XhK$sy~yK8$8|}L7-!C{!bhGwTrY&iCXc@xo9?n=JejWioD^>n z>@ES{c-*%l`S+Fir?XpyMv{-PgE33+$$(EBePtugQILQwTxo)O#*LQzhdaD-|1pw( zl4CM%3y|J$os~RR9{jN?lNE~t>P4_u3UBe^B-1Ir1BDG2-U=6ja`%Y7$=TUHTc1IOgCcYsnk;tXwGbK9tz?C8r5vGnB!?CHXNV07yZHyxL`!Wz=ln~Mqp%LpBem8@wa@~~ntJMK0L z6{r=wkV66a;RfF9n4BDTMF;m&5EV-Ju2Itrjv@^C;(Im|9XZr(u|$IQ&bDN5+%b7* zoCBXE5x)CzT<-6W{=3{4cV+nK&#RAd@uTa8s>Zj4xuS?Lt06R(_May z82qw?)pOY8va+e-$m*PxXc< z5B7*yzYO+xi?UH5ZXZ2igCoZc!UvHGva{&^U$-6SyOnq^9G?ZTnT3m?InD)6;?slp zbXEyCnMao_a9bGPvRs~AG#}~?TuBgd=1tl33dUuL__*BwloJf#j3}Sa zo6X%C47TI4Pt0>r4%+YtQy|{%!JBgeVJW6E6k_KbR}l=Bvm(w97H*g3xF=XS@*tO< zp(k*aZYp_>o}HBMJHcL@h@b2z;#T4bTg>oO6FfQF!%9q=5$Q+&JK!#c*mA0M?6Z)d zybEamPr|LX)Fj&|jatGV4*Y)y3O$puu?d8}Z^@Z}<39lmXQc4a%oO1KZ-AU`Y90Ua z9}G+iO!zx0yDH5}n=)Tnq@1ICR(VX>P1RRbsd`GaT(wHIR<%WSKy_Rdq;99~p&qEV zsuR@X)o%5R>hIN@CQLI}!)t7s+cXO`OEe#9zR^6SU8(&@yIp%s+g10xZmYg`!!|A|H=j7WrZ1Cy`qte~sj#!lN8fB~edDy%DuG>XWGLQ9TTO4Q7Mg z(AlUnT8y_Dw;4|u!=i&s&zs&dy=SU6)tY`ZoiVjDcQW@dtIfQ5xH-jKZk}s?*u22J z$ozu&Rr50Qdh@5|ugt-g?v|kzlO@iQY_VJNEndsLmKm1WmWM5yEe9-zEk`YMPYRsxInY;K&s9yXvFrcA6m?ohDy%jrIfWH`=zkX}b4x$925^e*K&JPLU%b zr$yF8jx;)r4;t4Q8;pu*Z}e5BPNus|<4hH%M@+Ao4xnsZ%=enB%xlcs%v~&ZSaK~> zEo&?t_#FN#TCGz;r-IW-*;S=i@v0H36qQ}&R=uP$tKU=`HFGs`FFF4zCe?LZ!W_rSH7iOsr*D8 zq>0m1XkO8Ls4dpb&@I$Gt6QO4rTbL3UH7BzoNjW|(x`W$eu}!@pfbE>SZ>&BIApla zs5Vv_uaAByT4OSq)6E6uOy0@QBA$+eRtm?bd|dgoa+z|wa*uL^suVroCDrSy(<)AV z9a{cE^=fssdZ+pi^%=EEU#MTA|5*R2{zv^OeXGcuB4bdVyvWIsGb48xTA|&JH9CxC z#utpQ8Lu)&n_Xs~`Em2p<`I@LmisKFmKQ9`E&DCsS$?+km>rtYlirpeOG*1V?Kq}i(ZTJwvhgSM0Q zdTnoQxORv(Qft;0XuaAQ+H&m!+6CGdwQp)yYpb=JwO?q@Yt_18I=jxLo2-1mf_vpXX|Exc$=OXV!t2qhY^)qG~zcSVue>VPR zY!iKTv_3j6dSrBVbaC|W(dVK=Ox;X3nv^EJ=^oQ?a}Mh5YxDQ!v*>|6EP9L0@|9&8 z%E-Q;Rl;GG1Fc8-u5zzB9#rkpw$f$jyG2Gvx*~m%m60z+z8<+YvS*YcYFJcm)Pks$ zQ6EH|iMrL0ZOAu#Vc2E()=+0SW9V%hZOk(IjI)fZj6WEso0dZ^bTJPyk2X&*Pc@ez z|FdSbWu)aE@OzQvO-mm>2|ar*{|;ZrbMraq#`q}*Dx;OjN~dzV@(1NnWhQF;L)GW1 z;poe+sQ0R`*4(0bNwZJ$gXVY5X-yZcLCd3ECu;B1+O-d9mur_s?Tzlj8~KT7MO*o= zd2TVsL0#fh%6=-F>Ta~1_f_rHf2nWM56&~ZS_P{D?_?rgt5^0wsF0&HRRnCQ*ZMqNV9F`AWN7f$1=t8h2=y3J8G}XI4&K| zHOg5^uj*MRoDsoWN=%~d}Z$8 z-F0T&zjUR#CA!V%YoU6j{x1Dg{mc4I`eXXek(EgKhheO7I@r4|+M;<;MVK{>8i`K0nk<#nn7n(>-vwHjT5E?-xv>!Oc~d?fObs5S<#VYz9C zX@L2V<%p#VmHU{mw;}}6XQ1k=x-V*Hv38I4yuKI4m+vEIN9}-I%QHM~xWo8kbg)Uo zzFZZ=@*1Kk(wMc=w2x|E(?;o1b$O5)kL#A{w&?B#e_WBfqJEDmHkgfEbeZXC(;sFi z!_X5r?sa92@-EdBRiwHM{l2dzMN_Q#T+>(ku=csg^^u0Ckm#^zohj3_%XEXK)^f&D z$>V!<7*wrDyG?aob(4C6enaH&s4Y?H=2_-yb9;-~GTO2S^1M6W52KEazngdSlQ8B~ z@elLs_&rR<2XUVveS2lN@^0nB%D0stfQm1bUn?7we`4GTRo$TKuhKyJ->Mp|nyB)q zW~i!EFRI$9yQ`xyI^U)q14&V&o~Eu)KcapPZTTJbTJ;w7E_JPXx@M8)b$JaV&uN{I z9FOQ0>y~3=+o1bF_p|P_u2%o2{-mjgInM0BD7?!2ojJr(YX zZ=>HHf1Ba52#<$tk4u{mucVAZbYe0YuoGYLaE-;t<-y zJEQBM@2S5@-(NpepN>|3xBgy?KEu2>EF<=(y!HT)gRIy(KqOS!#Eop**Wr? z$oWx^Lz{US`pnx=H5hBZj5-u`IO@kJpJ9O^-k1bA`Y&Uy(HcEBdP{V;No6vdY^G6Y zK{=*E)4iryrUy)qnVvPhVS3lJ-n7NE-L&6SZ~E1A&eX=-(cI14&-@bqCjTz~5x)^K zXE%Qcxy*uVkDTOdsz1*bhTG8hEnOb=z5{VBlS<{U(v77kBOQVbu6kgZV$?NZnPtLTdnb&**QB%!to(Buj)RF2q^az#4sJTbe zUE3d8X>Z*g!zn{I;{c<?Hbs`{-`biT@9K?*d;{aqW-K>~l`u z2>}B{h!9AC00B?V`<(<59yUS@d7wp4fFzI-lG8j85NfKZsI&rI)pZ=?55UYkGH zU*Yfc&k8;sa)j9+XM4cP*Bsw-Jm`4X@x0?zhvrOkj&V+KPIb<5I>667l%vLZ1!lj` zVRqW=yw3S$=hrYk?{VJe{JHZt&PTDnKj(bO`3BbbzdAp5Cb_b(&QF4THP_{FMO;_8 z{_2?ynX=y7?cL?I_@?^i`#$Hp**C!-@Yngb`j7cPz{)*0urTmkAT>BUSQ*?B{8sS8 zU{1&xx+1hG1oH|z0v^ZOC%G$@ksAY2n}32zGD6aFdW{B*2|I7KLAVv^Hc_K>~F-e%tk zN$wH*zuEt4|JXjGUrk`*P}N_Ld&FF6RA^)zJmJoJky%#mMl+=I3LjANp+z`4NL zcQF$yLG4+ozQz7$Le6`&@|Lj~bEVQ;uR{F!iFcx8A~-)^Fz-u?|r^s_@45;>W>B<3_cP(7Hon(c6VfdzHiE`b!?37LI=AR4>_ zrLqW(Z&SE8d{g+#;ho`chQAknDDr58HA?;$l&p1L0lDX5&j!yQJ(@4o_ZR;^{5u1y z(0{z)J0q_UAJ`$%hsPI7o_E-tOQE-Hb>8Vb>^$u}=d@ycO+@aWb+x#W`x&Fk|n^fq7~_`LTE&~d-w z{jT>u?*kYW&tpaSz{@c<-M(_)BHv}u!&dtC`fZT~kO9C*uk1q`(SJU4PIO)4I`3|R zJpKjG`9N}TRj@s{Ie266E5WzLxSaMVrAT*;h{z(CQ z;5&gQ0y)88aCxvZcwO-8!TW-Lgj^pAEefp)wPRg67eA!CoRzhJjHW;&KQx*WS4S2}NT?!~-z z(y6)fUGrRTxf)_OY7a$8Zm_j>w04|;y%c?5O5IPfgw$X^A!A_qzj zm$H6MtN|a`%bY!~t7>(bvtlX|!Gd?`C5$CL|wy3D@7US+?^ z{$t2d7eH%oD!HTN`z13S^BlE~4#-H~aO`zF>3Gv|-fSeU6+E$W@fU63cw5xqeT)_sx*GfKR$$lT?82sVa#*Gcy^o^N`%cZRpxyWV>X`rMze z5_o+Jd~f<)!G81aixWjP>~k5G~4lip8W^*?T&XG1I|UR3$T*ThIW4?MEd9|^n{I2+W$h?H*; zeErt`Gso|+Ql5eqbERv8>t@%5&_b7cTVXZ1-+RObIr*Pj|_3w{H7&7Xt0p(UZ# zPz$U8Z=qM)BAJovB43I)O6Qf&o+P!DIR$q!Q z!q1!F z>^`3__=iRP7uDzIZ`k`qZa2!@o0YtM1l z3D=C!k-d?9k$%W22Vi486geC@5;+__bbkeH4`cN>I$d&+(qHu|&nbFf0Q5^G6HNk&O_Nlr;_NnS}lEcfTIk};>% znc~cFW;=77xv*jINr`|i@Vpo4fg3B z?mqWU_b&Hcux;#d?{)8kb!b0q$_L$tVCOjEKI$HT_3pU)gnQ6^(tXN(+Ik#4-eFkRj(P^5YaRET@C$X=+D6Nb`H8C^IQEX{tSOMbjDnN9`wdSe-U&? zyWi#a`9uCPXxEGURrqRA>tF6);cxUe!PeL2kHJp3@&6}l)PFXo|M$(_YeQ|JSg0FT z=`EpNSZB6F6YdM`gpKB|(C*Nl(B9C#P=9ED=s@TozR?{H9SI!`4TPSB_I?7E`IDhj zq0_JcpADUZ-onDxa7s7>8huVUH=GyF4;O}upxfKSuCOm03YWo-xCplIYJ8aMa((U+`(Fgm% zuF|_ocbD!d-HY!l{rI|Zp!8trAxN)B{-f2aAA7oKJNN&?YgbW8afux^0AER{q^zU@ z-!iLUv8^px4qHtlw6wL5rDL!UY%JMQ(hKX&cGz$FU@h1Mo9^zCJtcebg{2=BodeKj z4wW1(IZ|@8WT52PlH>SZJqRn$DcE_=l$qRcCUHMAOuzQEj;E8jzc{bkipXvnp|D!VgssBUi^j|u^9kQ?k_(t*RWq|+s zI-l5XF4&(!N<;kbU;VRvInaOee8tcqU4|C92zq3-p-KLq$_9NSYMQ&Dp&W$vku7wN zBIp}F=oV|SGWB9b+J%*<3@gWStQd!&Nen=XV9*$Hp(&I>GpL3}uol`tFSLMNkp2fF zWteA|V}2bJUzgZ`v~iR{Vy}j@-Uvy(7t(njr1HJc@DD)}AAl4-Xg`QqrPzTP^#9X; zTfjZkUHn?`VH^yW->ZvdAbqu~K1L>>KBTAb)Ma><S7Pj zx}^Td-leg3Cg|b$bLwNC0j}|UT`UvNK0M)?koEn0T}*uT0sIu;GvIRtp88(~3aPO} zQ*}CLGH_o50vm6xkI}j4!QaE*9>MUrN9XwM&q{n5o)oY8n0%g@SRY#jIJ=@gmP7II zr1WK|4~mzMC;1D=23?{zfOHLb+VQ0G;Mv>iWA%8(@Vo-g{_*f{i09y8SuXn{xIY!} zA;3hx@!tB_ckvwPsgL2fD(lA+mBIQl8)Dd6$;z&*k73&;+kJO^>?+jzAm~wh^aD@N zY)5^Jd>E7={&YO^@g)8RZiJ6PJo`}()QS55lj$d>!eiiHd^%TfKVTo|$8G|Dcvhoc zE<^lAl&cBP{Fx20DR{EYvK(iQ)W@O#W6t{6cs%Xs5A>{7@FDQE18_d@859oqCOrEP zej`0m&&%+vMtQEpbNAT#*u!{c7dFHWBL4yOw{>XKzK!)UGTZdelJt8E>ti(p z@f@5|AKQg^19|na5AoFh_TWWh$I(S(zZ-ZAz8!%ZEP+otJo}!3KSMkRK$prf*i|3v zLB40^Hi-NV&1i^S416`7)bIN66ypU?YWK!R;R6-VGSH=Q(Tn~?{juzi^|9yh9Q+o_ z34R6@j$qWsLwHuB z9Yj4K9`&#O>9XHdKMp^wfOl__?Kc4U1Hg?%=vUw;HWz$g{Pq8~K6VS9eV|YMupdwI zhhfLK^5B_&D}4AO{+S%rKk=k+{g3Rv8XNy@o$uZmvYmTTp9Ki(L%Y*>(EsxAqOm8? zEV4baQQy=a`kxCg8k_nfJ)D7G>dym{>thG-tVaIbc=jP5sz?2=7B3q6=;wO6YK%{! zTZVap#z7hAOvKZUXBwVoZjtphfN?kvaJA~!u_WY&_SgR;zt0`g>GsWoU(jLUFXGdx zEKj}%evXHQpB>P{`vUc`eZ#^nFX-Xf{*mZUc*O`W$K8;_(ocCy4=)Rilz#U6dU&6A zr1bOtu7~%dz1oJ+U(UHIU#zq~cGs}*rc^!rP&l!C`%#e^ZvWQ9cPH1!UIs2ZQ;wJX zQSfsOxGW9#OXJy_0)NqDZ01qJiemu{-UKhK8o+sP2U*x}2 z7yAyyPp^;pk-qPAUF^$%dqKAXa17~bJ&PgzMm!H8{@r-?rAqo`phxqy{wMp>gc&;D zWtgXyAaEeJK6WcTC!n72%m%y}Pdi{5-;Ed6i*>LM_%gtU0I$ST|LX=X8vAZUryHBq z5F3ZU-V5Y9dPqI{#>n|~P(5Q<4{7`k)X4RC;EDR!R7z)4{Txp>;Ihx-zEC`?i*YwL zo^~t3k!SwLSg!#OVEtTxXKyyfDaLg+<`G)AdR6})n1=g-C>{8q`Hf+`(KG)Gm`6Z| zwZq3N(&ewLk9~*e&S?;5)B8{kYU>#0%}zX7dP5A88OB{h>;#_KFUWPUY*a(+L!|4Q z-4Oc;@Qsx?=MOlB@TURWFK&pv0=T-kA$AyWb!~lYKMmv`U|vPO{V3-z0S;Q=?-$R$ z`|4xg$_D+u`q--|U?0Nsf$v8+%|H6z7QATe;LUoyH%^!Hci(X-=fqGCIfzsCJGDOj zL9R=^KdO&$%#YQ$XL4>b=&E`e#QL+C_*_;W`v=n5G4Im)6vML&&%rC}V;cC?{|fP< zu}#0w^N*pOrc${vKbhy#CJ}Ga!+JdSBz)Qem;b0-ryJj{i_HbyvcK1fdSrjAi@5>Y zKZHDmcxUiT2i-ErU#|h~eWNZm3E{g>)x~}ey#6QodGk3vpRx*B{%p*vBxmS-@`)Ylx5zl_y895ct z-N2I^nf=51*f#(Vs`}lHa(@eO4E-pG@EF!9>fiP+!5=f|4T4Sx{bCUQ{7+CmsgU#V ztcDzL8^uF>Kc0thKiNHKzcSpt^ElC&&=5P1cI>q^#MYol*|=NaA>hl7Vtj*MBkG|U z>H6Nn_ye5(C)^*8_V5*lx*U9IZt@2q7cs=mFTQHv>eLvRy-{Coc z{z`SA8HV{?7%7qW{2V&Yq^#@;xr=U0vSrVRK&^t%xC2URb9m*AcP)Wg6w zlpFNym?y76yX${){r~)HI-Pv@;#i~y;wi(|y`hK45MDAYoWH4u>%KhnC^EhGv>vYe z>_`k>_`V*l`{vNYKkai65m9~kBOUBol(-w0Wp=gU03jU-!{MbjfP;rs+%<~RkU05= zGgM8iIu*xOd)m8O*EdJ6UWqeR?Q5bqY4#A%xHlqNtYmis z=-Sj373Zy{rYoYG1i9S+*EF{`cgC~LLFXf9pkvV8ocj`<}-UJE`9!m*WfJQRPlMoT^O7)JH$=rQD$4QJ2R$8hiwXY8oxU2G1z z08Wzu-@btko^4Pt&Z9+f+k(8|Jc_eiYr5C67gV6au3y=?4yV25V$=``o#YO{@~m1X z`#SO-nk8}f88ng9UULJCm7#Os3|ds2J&Sg-YZKtB*{X{eBL|y0A2TMQG+j6a*Su~e zIh?FiFzz(LflN3&14B5fwsL(Grwr*<2liSVrOqB6&BvKQTzs)9YSi7To|YDr=j&4` zd31w1$QQxv4^Tm~3egrgpJ=3FrPDx&nugBeAy0NI5V)`vr|)#k3&6Ctn-B%FaWJEu z+A2!r5-esGQzYR%Nt}F?XArM8VI}4T69)M;G5?%+LV27O-jCQ}6V~iz(=j(5Te%B; z(1hv|2aV}mE33Fz)w=Q#d>C+(IA<%EW>f95ZE?6&AmT+Sbf`)q&t=r#*=UHo0+B{;37j)O&DE%3dX7!eS0gK1#D4jwkw^$)H3F12SF18Z@RjB~} z0-yyRU$IW0omXNS{ScF4S2vEX$5B@!JCh?@Dib;fczNy+4*R1F@0jaIOdOqL-C_*A z3eiX}ACGAN92N~j5r61ah(+4@D8%~9uvn{czM1|cHPX^YrY7^0tdXw%39Mnz;!j2+ zl|2oao*AC0j3)CW&3)uN&9O*-9|vL|4s;xk6fvQw2)vPRncC$J_9`ZY1` zNvYpA7Dv3Ojiq}9^e9~0eTisDa*Gzlbw=%~VFirEw6$dudjwplB$(!-NW2~gyH|F) z*hldYK}@0l4IM!xAd(8Z4gFMMC1HhcL~mc&^f~yu!w45-Gct5co5CCfMx`}nzcG_0 zZ<>c_EKmt#`WgsLv|!Vuo)C~a${+*pk~9g(1f|(S6R;0~QfXyW_5tQo#V1=mMt^T( z&*D9S3r4nGl~%7XmX>4Ss05;K-HQJjBeTU#u)=Nxofa(LLL^|X=#V_>-wu)@5RMx# zX+5cf@}&C$5LcmCOF5cZKp4KOF`;7~Z)4p$63zs>J3BV9-{=UMYy~^N7afJH9TPvp z*aMh{h13agLQLei44%y>G9lIFEbJR*Bvq)m)}EEjG{rU0QMlD>X0IYlO!93V9kD1~ zY{Y(mi5`9rXu|1Sxk+D#o}W$C25A;NPR6{BcM{Xu*SAHn(nXt4lg|U)*^DmL)f~l4 zOw-^*%=l|Dr8jr9uqfUWQ!zJW1)y3xq(~TTBJbfhCnDL~fQ|ACo|q5w3%L)83R&lN zj8-E8bvNA1$1ZS~kXWwT*loZFp(naZt|<@`NaTrjwJVs)=2+GA)VfgE5 zTx=4?ybk%;OC|`@=x&U1gFfIt(iqocqjB(uO2Z%}+e0mO@=rgc%*-pMu~+FoOIAwBJGRmECe9qvIp;eKR|5 zymzn)w~k-M`i=KCwivRjjK5M%pjBQ2!#;*GBtu)-ZRo1~VD9A*GT56ED$|;+BG&<3Kz6n*p@2)t@n9v8Ro9IToZoNp=kfia&sbmTD)u5x15} znNZwRz`la+DgyN4{RDF%by5=WXd1i$gGNN?T-nsRk^L1zMu1Jw-5~q1E6`d3(Z=4^ zUsp;wRH~@der@cYIVxHUH8?{i=xJmHxfMMv<3bvT@@f?Jvk72;v{UlHf*L?uJV zKQtWI#V-o+8&hiwW*hvGaYtih$nZeO_`pKpO|2W6S~2U%E;yyjaHa2BHRD{_bF>&1!gc*A^xm< z;gY)i`T4H7?z#4Shu!YCyBsC?Mey+h;f#DPt!$f_|5^B)YG0R+RZ!e2m|x=ZxJ&$3 zGX9@jcBbq$7YhXzSDwuetXL0g(2BJk>zh|BSiWKnrf^!~Rb- z$j`cstjSt|H7U9ZzM`1*1{s`^6s4<7nDs^(o&gx93}(Ga!r4fUJczt?yF}%HL{AG! z$E-I?Om0%Ndwr}$$OP6~B;h=kY!yseZB$;3E=Xe5TgeV>NwJaBB3x~Uf1)z15+N(b zCM!k&Db}Wr9Pe}Sys!o#u1fE zYuFb|;F1bsU(0Sbh0QCkh%Oc3>=qOH(#6Y` z;RY@}=vGruc~wnidBx=js$9Z$m;#7Y-IB$%>`Nvj-OE#6%f4(vQ9OB(8oSMe#$7X_ zj{8hFL2?1IB4}w%1>0o`0HUU@x)$w-Zu1ROKvg-~ z_0Ad8`PFa|W5B{wjFBV|8v2jZf$?XXEIMfqV2_L7sg39;D= zFRZMIx>!osRXfq?~FZVzr7Z7D3ITq!)QU#y5j@x-~i3N-r6{!9 z1Tb-zk3l9QQ(DH8A6Im}l7riH1TWN@1qDqKNdMws_K_%oeJor&S)sSuiTcL3`Hi zX3&L6XbGxr6wO3w$`pt`ko*i!!?K=Hoctoc0^)ZjeJddTS@KJYFeB#i#XulmR!D1R zthotyIkc{3$%6`)lBpZrlV4G&49V213e1*Fy{16aAl88>U2V&fPby??rc`#|K~7lX zlV9f#qa<2EUgn54{Ny)O!u-rt9X+^K0-cClN+!Rl@P(OJwbnH2=u-+^#L}pzn!X)S zb-c}+QA^p@WKH`9sv~t7M%|KHyfl>8EWtd+c&eCIu_ULNzqznvi`I< zD;gcWm5m`TlI_}YaDa4_pR@i_NKSzm?K)Vz(@MRv< z#rLTk@)5|8lm;u5bT$^72l7Q!EI7Euhns6t^fmr)Vm`woPz%vE$OwL41rhq@l|$VW zNhzO)fE%YieldPn;MjPsf1xsc7USnkMT(9Tfwoz?@yUM>H0dK+uDE`l@pGa@ZWmX{ z7?5?s#FZ%DKPHplHl7Ouubfu+PE$s$QF91w;5>#O2|5$f&^O2%A>T=_w6E_X>H+*~ z)RZ<$EiTQ#h^DSHi5nmA_=W`HaXj%z`$FHu?*@4ryHTm-ZoL>Ljb6Z`iDbamcT?DPa9HS#P1~}cw3ZD zbcr&em66jaB|2r`@Y**ikqW5$KcTl=UmuV9w#cpj0-?HmV2JcjSjk z{`?5NMg`Hhq;0T|<5vfQyFoBV)bjJ3s`-n+$^P@a=qpcAreKVLC{^JM)KRl;3FP08T;^zM68{e;dLc+HMe|PpFcC8wCTq3D>f6eQVn$1~OE}=YWzt+$eZh zf`Q8lIM!$LhgY6v&a*ZCu|qEkKVqgBM~kh_*lv@8w%u$HJEDlO>F_ASZUBA;D-u3e zt#?u^&S(AtnI@0p%kiK#;(V6=aV_~6$CzZxKoRk1`b$2|XW&7LE8@v{J4@>YinJj_ z5;OZ~Z4V$CPn?gG+4vDNdv;i6?+nju)UeFPm@;EGqp>u2kNuz0FCn;z&pl#Xw66Y_ zXqp>QcUNGr>YAqI*dKxUbeg8FJ6d(!QM-<|$JvDLs9jI*SdVQ&cht7sEkLVH>W`RuM-G;h zd}1h)RHi=42R6 zGNl`)f5j8R$elDNeP~L;&Ygf|$1<{_mMTB*3E%0-$@~LUUD|6HZW+n5`F12rr_Wsw z_L7Tv2|x^<^fn=xLlRXOYkH5u%vG2amO(U(Z3{;t4B8`hxmJd z#?Ur1ysM!(W~>B{B0bDHW3G^(%sVBWJ_{l8*N{*v$Y7}?70J&^LOVv#y$AyFFt5U* zB8kg)ur7&*c>?jU&a@;RHi#!#3sB{t72&%KTJqhX6-lHONu(7q(eg=JrTnBpOTHVl zN)u_7CekW3(YjR9D&uynOtOsf-Jn&LNUJQ7R+)*`DoLw?Z!u`ecY{_%BCU!u&Kx>h3P|WDiU9mu52n2EFSX$O-fI53EIar z(%hnhn3}Egz~Ke7LZ>F!R6a)Qj3%4P5~vmFW}Awn#EAL0O+_ND>1LaX#HFO0Y$_6! zA(?trF_kTudQE|-L9b+9T3-4m*;Hi0{PdwV6^SoQA7WFH=pvRnqD|#; z)KX4dXAyfkd4X9dH}n}9wi8{G4jO*=m%5k>GsErB)W&vo^mJl>6fYpC5!i97Veo-! zGVSX?Xt!646BmmDF`W>W+xK2OPOU|JhQ#c+cD%&c884z0VjL|Gd?vkGdU~(T6`~R2 zvk37+G-7U7C$!Dk)Ddah={VXk!FVw(J(iyHUl1^TWZ-j%WlPVwFXTdPo=es7J|(B( zz~09%CQJ~j!8j7d7`MwDw_Q74Y$A}z5<;R=(IS^c?>|5>)B>2b4+MS+_(C>8C?ndP z6w3L;?FfJ}l7|On!g-!a895As3&A|%(cu~>BjtqTt- zBj+P!Hh#p+p5;R`duMoNqqL!!jWK1$o<^N%>^)3!|1%%EhV<5di89iMnj|gwf0Ysa zqn7q*K4kr8viv8D=Z4@sOhz6q{C)luQ{bVQPFO zw4PK+a#IsmLhI{FT*^xwaV50Ap%Uh&Cai?kHx<4x)w~i~PbqW}%NR1ZKnu0L&7VUp zWnv{9;p76}Zdwq@gf~(gI$ggGza}gtS)BHv=(WP{G9?!q^5ThuB z@w>#Ljn71q(1_*d2ZvG}IU1eve-OWe$bwE)WMlUX;|D2+Q$VRK66>DdGnDp_aB>-N z6u%3wfYG50N%S5fS_+gRs;_puVJJBx zJWq6!tQ3;P^+O+gx`}dY)IgI9gDM=?)UcesPh_dX5#{NWelDtr@hv zgI+Uz>5uU>m?yGK0$BPHF8imz8UmPswo+t605i}jS#s{z1u!EZBTEWk>5nVA*;$DK zSo)JHASWKc(vJ$pAb@3=1hDj{RMfnzAp)2YlArZS0+|yly2wniT+Ua5!7O3nz%FCU6vUMlkFVGg1FR8$UleLqm zwTmyUWGSQk+S`houFmaZqasFTE#31`FgmCv*(epv zp(3+dx~p(hv3&LF=B_RoR;I!-R9FL@l8`~=Dkuk;)pxY@tj86hoj4LI@4RKB=BW(x zvf7E4WiZiDA=#+;Dj+`|fNEi*Dippjt6kDq+ERssbKt#Fg%rsYi|JgIq_seW6q`Z> zv4twY&eHya`Wm%J`v`S9mPU9K^)@aaEtkw}uxHUB-8{{H0@x(#2TUtDk9QIrYODOu2+YKO-KKt;CazMI6XjUq&(XSR^`+=d|Uo2clCQ#L%=N|chV#BhpLd-UgkQp?32 zv*@zQ%j&RAZ81Ku8aTPn6q1LEQ(ld2wiS>&^fa~j`gkd`=y2VVW!07Q7cW?hudh}m zhp20Cwa06b88SUOK0{<6b^+7=**Mftv$(cWL z4q73iav;;VV}Qi!Q07~j1wEe9z*d?a%EksR&)1(M|16GXCd$^4}iv`4+Jb^(sb z#^H*}1?6>BwV)c0Vj3knm(A_i+(>7pwGY1`>7M%>j+Uj?EUjCDa#b6z6|{ANE4=8@ zngW(ome*8bJGVu_^c5e<#5^p~R)wmrSvnsKEnb3-Wm7nFA+a|?41`YF1k1F4yf0b# z=VQdmvc(IRM9mZwYFS-%H8Q4MsxnGd-7;!*if$%uVQGRm33brs`4$k(vuerwZ=#@> z321LDcFAHE5W8emd~waSmcn0<@zZ%E8?nllUA|<#>I3p!^aA;6&K5gnMYb!uHqpA2 z!BdeubC))OKZyf#5RP!oGx(XvNth$y1oCAY6i24z3GD)sJt zqL5`0$+RgdWyPqUlTbQUfs3;A!7S5FRq3k0f;h)d+cmWUg{@Xt!pMTwLdy_ySfN5J zmk3F%P^DXug%KxF(-f+aP)wVqk~Ik>K%1_>wP*ujl$D95t3+)eE>6Em^bCcL>1d|S zPz1V1-A2VMQsBlceK5(CMJnZ%EYYnca;8993VON3GHs?vZYkKth1$WiSqiaTB4oN* zD%}pAB|6mF&W`quo-P?UTLtzd1~P57BDE7o>v8OkjsmR51>~Lb0G>97Uxq$;Q4gem zEnM5iZ^2P&p+`hv30wuqU0bBKUqf|aN0*gi0(MMB*MpM03 z5bp?j$a0OQajk&*0y-piddu;5xkf9tR?scRFw<6P-xNyO#w_8IL@JJP^cK<>fz&b7 z8%AA0qL@r5`$Bi;dRcrOiT)s_2*VQ)(^iX&ECuKlt2T8vQ+H^=!E)VIP&@*920A;A zp7r2^uC_+hzolR&CyN3kk5-KoHcP=S4kf!4(XbxGRHWTV+6Lb+NY|xMdyo$8vO!w{ z$;VQ#7mNu3=4utbkIR{BlY;xXnz}X%#nMu+9|#B$@ONN3aIJ0C7NWH*1qTp{{e=)z zwFZGWr$Kgn9kXU;nKoIpnK60gYa~n3^r?$uQ#2CvsFy0SYN|$p8Ff=NjTETng0dwf znL>?ZBBB3M&+5jc(L}|aCfL^sa^!S2T_Z_{>?nG>&(KIDArpX@XNpwE$(QrYOpWYr zT0vnJ3MtROXtNZ_qWEkwTXm{pIhzz~w61Ffc71-BqtSw_6}Z&&Fju2hQ7iDtiGXPr zYqT(F1tGQI$m1AViPneFnImd4TMLVkkR_@$qSSkaag2$#RPkh`Dr8!j0#j(#W?H!d zGic4M5i>yQlBH4ooEjEHoCi~f)*!Dhz*a{Cre?btBL7(0GEYq@^uAHRK8$fUhUOjZ zI*l4uXoi~+V-jhG7EY=mHf|SYw=T(r3WB){_EnbsxmlD%s5xX}W!dX$1OmEYcT^1V z?6!7+Ng_-;j2`P)_Ik3yqWuZg)7peDC=!uIh&6=hkcbRIbc&o}GN)|9hz$u!f zPom+n0h>8)B~28)D=F3qw?X_%67(gt!ygsqZ~kS82qlqo3z!|`=3w3@(Pct#gLg8i z$n&pIb4}r9e_(uek}z%Y6)5`DE(VyE5mo?Yloa@Cp+Q?VA+!+vty%?2W&aWxxK9OM zLV?p})3CaPnq%7E#4GW_rpHZ5vTV^9vwWG0ye%{0fy&O*xk*fYmak|sM(PB()BhOc zfT8!9H-Wxor|A8&&|_(WEa*~3g%vW*9K<7@R|uYGx3;eq4nAm2BH}cMjJ0x09imO` zp?7)%tt(NA8Cc68Xbej**(zz@q7qG(iDq=Jyjpx#Wjrj)#P?AQ)Mr?{fh_f{8R$+b zUY0Bwe^$lI(kKNh<}JchLQb!&vsB@6&b}~8&cLj*s50@6se!!AS!Yo_qeOuoIrMtBs<$&vC>l)wZ%-d#VbS_Z81|;>s+c<*{J-_qAtjF``_@} zhvAtG{{k1I6o00Q!%-7vr`i?W7F&l!*CY?`>+m~{=;S%C1kpbb4MOo9R6*qYea5l+ zm=y~ZIn#4q1Ed{*b30y^;>EQSFYa&S-wlA=d+~A@FU*mOH}V<(CH&q2<~NkQ5XcL$ zqB%?O;=_w8j2HJp{96vleHmUh;Dy<#%_O(q(FC{TcRq;UP6WTJxc!cl>Zo)gKAF*| zZ}59${~;gs3-LRIG$lBuNhQ2T)IUn-Nunv|2b!20Z?{Sksy^?N>B+Z!1AeEGo_q&V z`up_s%*(~3bzxG%S89^p^d87*J|oBYHE=?ni}jWq4*EdkLNSk20OKbylJSX2#Kw(; zAhVZ(e+f81bB~7fY54I;Nw0#BUH12gM0foN0)2 zisDR78XC?V9z-CY{e}4b8}cI`h>^>Hq)t#OrbFcpk$VzLN;9P%L?e$p{s-~^g&5o z+J^Z9vd7YG3XAdk9%7Eom;62;Vm}288@86ng=DKtY^gyCxsYr%EhN{fg~UMw>6(TX z{QeGdn*lq0_&04d#%={(mf&T0CUP2MmhY-;evFtho9~KjW-$kmqMIL{z^@HNjskXm z2mf{v#d1EfhfV&dmN51{Ar@UF@dx}K0xi!JYIITOkLt4rRp}8~rE|$gAGunTn@t#Z z@Xw=7=@N?Bk6nt9@?@}aw85ApSp{_HZK6z~ds#0Z8Ng4c@5O6xi_yS_)5WqN5l8ovENxB*1 zS^Q2ReDqW>DT3%N=K`e27Gu=#cZr?2_gguw>U5I^hd1dNh($h2eLWOJAKb9l<~z@if*%%UDXit zlaAd@r)n<|pW;psTU0fl5#W2om5|}dL93AA|Cub=RIXZi>o6|$5Mq)p9(e*k4JykI z%}loHOfFntu&_?#$*boO-)(|#CKhsO2;hGgUv}sYlfU3M7bMA1>^wC6-)SMg0*HAi zBtZI_^K*a|@BjpmzKi?=V5K+~&iF@!m;hB}5ozZVYywzGVgL#8=V^Yu4j7a*(Ge|w zI&oAD2_=D%E?2o9zuidxLoiq(T)H5kkk|FK^=YYp-EQ@WdGcu?;b^y~_)(l^#CSVO z`P*BX$epX4{~156ams@3ZTa{f+R!%KQ>h3dG_}3(EPfMw%E6 zJIdrekqL>cfuExGE(5tf{CI|?2o!^l1II2QX>~WS&r?X6CHP&!qEf`ESc5BjVjoBh zB!20BnY3KoU4nP=+)I;+!z!d}RB(bDUp_gJ*pN_4L$}oY5x<|}oxJ`MwJDO?XRwXY zV>Mk!ZKlq($Ff760r8nmAU)8&dd(U1Z~e7S&)mGSAG z95;R*#NVmnkJaPLh8`;xM2ts|Si8oG^$_hYWl$wz)k;->uG?9C6Rr*dxj%s%EwHtM z+?Rn7V;8Q1F?j0*l>s1SA=J7zSCXOIdS1ovU4-Y)kYwfxG7})m_&b}s#l}dxAW{vK zjUe)FFG^hu^=0x}`{#>ztrI6RFAs`E!E&I>3HN zlK&7z{4voK6N~sT&EFUE3PaXo@p}@Xmx3B82=6Ne;bJkZyf1b)+-|KBv&#G8YpdRH zYKpp-3tDvV(WzVNV}Ap!1B$bI1!n~i;(dbJy_{yL%K?`OdiRQy-vWGTJ(AvtpP!`N z1A^ycz^itVOn1th=w>Awa(f@)9W!Mebc&oVf*v4q>J-~DmI0PIb&8z64|qu~>e`PQ zzgFmd?*Zj+m-Kr@wtfiI3o!pk+!sYct*6P~1W~|@BL%=u-r#hfoBTQ<-`@&6*d_%; z)ljP@h|oR`N$TR2|0eW<=;$ z{M8En9sox2S1a;2^H(eQ(;&JMfAu2VPy96q{-z=zOseBLP+m(sUakeNA|C6A$3Ehb zR7Mx6j6z*(Lki-rOD(FlB-!=p;;eG~Zb3NtIWLLolQCkbbp|*k5&$Pf0_(yBQM8*F z@3s`t!dPx$6zCv>6g(+!z-K&8dqXkD5A~hSXIc^jl40Sr;ES8QHrK~~4#vI@#(b-> zbdlW|sfn*wf%mn4-tV7zXf8k5GLQXwPMD%+_ly8gcy_| z-BWfGet!X7aw6{$%w#9Y+GZu9P}xb8HM)r@CzVUm$hoLcqGESJ$-{5*6s&bd4oQhQ zB#n@R?9JzG2~B1$1{2juH><6|?=zrJKJH}+&Wq}VW-3c?UQ}LU31rtIC;0qFBWGfY zK_#KP+p3V$)yRqb=F5irk;v)$z{wu)BazipfMq-VShdrUtx|@$&qgwgc6*hnGEM&G z89zKSGYN5s9lAoU7{7Os6}jt|1wWiv@WUe%T>10ocZ{5o9xNIUMSc*!2~!y(|NpYc zcZfU|04IxlhsfmffMt=tI;6;78==Ui8wB_@BQs)-Ld?(|dE-#v+mR97Iv|<3Mlkbh zgPCgtGp7t@whm$D3npfSHAmfBz?%}eNC>0;PgnE3hF=P_0J`Kr=}Ju^e;1HaS8B46 zu2c(HRz}N^{MVTB$7dgW^i+oHn#BAQ!YF^b67a|Pb%Qirsz8cdjg1t!-9~1$Dl;)D z&{3J;w=VEai4x@}#G)MO^1)T(U|<9N(<;YJLisxlj8C4z*d+9zsZbMSXV@fkpm~60 z`LD6cdFsH{1zp|H7PnY+8GeD#9=|BG$F!dPTko*;^y43tN(a6|2=q5W1_EL8nw~cJ zqL#|(28)>X=|;q(xSi`5qI|Igxp%~{Vr{U{`#*szqg|+gZvyO`rgO8=BDp!Sb&i}? zH;D<`-+8rgQ^_|Aa1G+mS=}j7*T@*8pllJZ_aGETZQ3l6Y^CqCGrD1#kjzCSbNof* zI#qBK5gg5-C>U8VH(RJL3z*!0FVtrVrv0kmdLpD_zf{{Kq8W$~)x*DoD7gaRf497Xk_6ueZpm>V+#liX%ZTPq0sdXQ zRFA_8#4|`4UqV>lXX|6OGbPYfgu$Iegvc+8?5+v@qJ_>WKvPgToLLA$S#9-s`#}e{CL6= zl@LU2O?PxYhF=4c)^MR94ZFaEKbk<}6C%+qpTEcNdQh6`l9q!n6wB&p;AD$wbROW)SQiTu|gKQago;hpiK#L013INf);5jC?D1nA-yKZ-OTiobU=;z=*Uw9w|V4btBRj@#70@wG>J6MJ+X}02jXE z$182^6!I`|>=FvO5!e9=DYZ!~#++eqWc*Kw%Ze$4mMFT1_L0f;u`!US$NJFasY-w z25GyKLOE}E2K_629KRb6nlLzDuAk~mKgRoj?Zmu=coV^L`f2_+9(2$J@#JZZEbR@T zo7W^IyXJ_4wN z0CS$=OtCl+K;N`EzhYk9f(6*Mv25`bm5gs4Jr()o3uA7YUlr2A7HlHZdABVOD4S*N zGYzrqf1r>eT8SP_V+*h;1F`0bSm&QYtSNY10H@yV9aqBu)or^{1T_+YrKxPh8XG@i zjXgW8#@-oTW21)E*qBdIV-ttf*yLd~Hq}&P?B&s@Lspyi-+e9=mMq#sa&dF}hE{C& zoBOZuY@UKfZy5vr)%j5CvEQS?Ki&CI{lur?Z_aYv*U=ZHzd6hG^o}hp(%+nA+qVR$ z`KtVPQl6tsK#6md37AhfM`;WH1tmcC z^O`Yfr403r9!Ch@=q8YSqsKw=jc$U-H@XQN<{Ld8HV^yT4d3W-^f2G(@t`5T(c=L` zO8G{QBjqUs2&i!s#WQ@P$I<#Wv%VowvF-bI6N=7u7{1ZtsRi2P8$BLEXGWE8^x;U! z@K;Ur6MUn`6D0UXkE4h9Mvn)~PxOr*5BRjc(LecY?7!g9YpOLl&6o5TFTi?acCVFm z1nQC)<%BiPv>NC{_gV&esCz9VKzFZ|^thrs)V)^HlPbXMUMuOSU<_OD%EbV zxz{p6KH0sN5oL&bEdwvzYb8Cc@+i)jh~a2}_KfSzAUPG8iK@$_2}zyj?TU7@q-Xf+ zh?iEJ^dfg-B96P)N_t5VW+wMqNiQp;$-P$6pu)x7YbCv+P#Kb`R~48onR-ouX7^f2 zClzw2d#$9``C;&kO|2ul*GhUrB^=^jE9p&zPjs)9bV{L%#F2*~F3XeN=4Gg*QQtyknnQxwHtDd! zDM{tnXzw|9sRaZLL~q&rIiwv;|A1MFN0Rjk{2xOsaStKVQusZbZo`9XHp=Y>szgk< zH)DJ+r*#1vj#*ao#?{T@E>|=)zn8y*)E9I$uk2jCR=S&mA8(PEUk`FQlH6f|$!UdI zsjRDA+) zm;jtIy>#Wq`O@|UJoOothaKH0D)~dB+lBDKOqTYdSPxyR)v=DgLAo@~Cy{^rs5t-3 z_-BFGf(%7{Kz;tKMw|-Bp+jR)fGY)_O%~2&^e+P+@qx#%F$KSGLM6EuWb(0h;v;&Y z4O2iDa2{_89_)f! zb8G;407UKwL$guiQBmW(ekyuRqv%PmAhejqPOuw>9{hM4pZ*QNb9BVq?*X#h-goV+ ze!Qf?fQ-M3kx^9lz*i%djx%!`VzV!9h+TvjgUHX0{A#Fy7gLhSf;~7_fX>Pf&1i_d zhhHZ`(lTTRJF9mv8FN(!uHeI+ll&oGjhH*|`!-_x5t|48=N)28zMj_ju!@ zunyq2523UhlUVy6B|Z*B2@>xiLAnH%KF2(o{SJHsk@fLLb#a83VW2&Z-%>=X%#o_2F{`~OrwSTGC-BRH zf$~?NU#N%DBoqL$5VHuyChDsJPZe9b8;vbCE z;!Z#{7kw;qE&C%rdHkt9_CpY`WJ#huZJ5HD7_!d+?V>4hH{$ivD43x!XHy5Ar@|#n z{PUV%XYgCt)wdfPSYYZLAS!~@E}yv3so(HB~lf4e^By%;R!eWyNFgdhK-HmwY>5AWoj zmY>t6uLeB54*zDH0%q3d@%Bd$$6tY%A5F6bZo9DXLA26ld`1nxJ~nog>}``Q)Y>h; zOck3!@-4*Ujeu20(J$bLuL4_nFNnO2-y?|D2}0EIwi2E9fuR0zEfI0T5LWVe1zZL| z_QKmvAf+O144jpG0DaQ~20IY(QAKkl(flTn0nOD!^F>8d03R7NyJk=ayl@XEb5;V;jyNHjYBs4cZDC8uY zrAp9l#{RosC`=hJBelSIQwxOk7T~jt2Eg9L(+x4%3hxYWg;B#=Va%s)1-ATRND%C| zn1lW&Tz_@{OH4auSjYy(fp2BnvHcfZe+@J3Sg*T{I+VJGj@}K^j&<8t1*n^LtT)JD z-Lzx9QHJZL9qUaJHko#;+a)S)+Ogg&F=o?_^%hB(Ogm>VDqyw|Ub)mYbi&&6A6-MI zyYEVxPVV27`>v#!j{r!p`owP;NNN@_bzfUaYu}-`pX6%`t~Who$4#)~NatFKsDHIl zC^~Pc|8u-KnJpkI`r$ zuWxa8YH67dqNgPweJt&QM}hnon42WsrIa5_{b(FMi~OFhEn^qA<@-aseX-3;_lyPFZ9+uc$hS9FKk-BO=a0cN{f z>QTYi5W8FIQ!45(yPFa6$#yp*$`HGoftPl-)TdP*#be$=moq^7n7^1ovb+5TRd)fc z7ACj$sn77usNm7XsV{QU5aM>X)Rz=tv)wKAWrZ}^-BJe?E^c>AeMO-%BvY>{Fk3S9 zngY#sx73pgIn?f!YWR~I+3uG5hDtcZ?w0zd!YA6@Qco%Lh;Hpu-{yZnEv4Ou?v|HY zqKyG3K_got z84z-?#1h#DR?UJ}OC%l>+Qo zPKyPxB*O_BN6m)xMMgOBD8hjy7hz*X?<7v+sStFP5kySt2{z$fQ#GXph_&(G2Cr~{ z_Bujr(g7MVPIV@AXKk~Dtu|7XwXG6LL8x$mCczArOLVmBz6CN?xeZl1q%a(ymBCD6 zlMc|-Y)_E%x^k=R<5pXO1GFVbfziP(RP>|+v?ME0vXX6ETnR7Mhhl9{0rU%-0JM9k zmr)7GSS5_$+PyMQtBv->3vUejWIsmRcl6+@P!#Qcxh!PZXb-XWQwe1YBGM_x0}_>E z6K)K&19DN!CEt7Ept?Ngt^G>k^K5jfg!XG%oISOjZ7y@`|ZU7EJAzH zDw$-ZR!FkeQo)S^w&EBc(;gxuM$n`CkR(NS-ez+6rsH&nZ#t|yeA8jLJrfS!blB`@ z$;zbjD8u2~CCCh!9?gUi1_=zGZgEICd@~0shi^K{oPov2KskIPtq>XfzJW5BXL9(a z0O{~e0cJ|N*Dc-QTRsSY&~y8VklEpz0?ZEI6iPXKQ;?as&ZhEm@ce2c@n!?!rbXiOu`NNl5j!}AQe#CmN! zGC;Mw@n_0tsKYlMAsoKxfN=Px1BSyl9bq_p(-G$UhdF%fmARiThJ7W)aQG(P$kms4 zF%!^hN%(+y=VO`r%r%r+cj%@Zz8SD`_-4Q(k&8Qg3xO1>D-0c-k0HFR!RCUoyW^x^Ocf z(Xx7wnV6=CNq1AtOtbQ*CB0-GCVI55Ksb;~i93*!`AeTuDSR@bA^&u~P2?YUAeRz% zAg5kO%vpCJw-m{ftnHX{M{n1D%)bLmPr5j%N+0^P`}pDu#R8J9JJk{&p|pOk;m{Ci zC2%RbURm_CpDFP$C0%m4UlazH%%w{QZzQCV`@;t~O>*#!B(G-D(Ld+ZQgDrw-h~rE z*jo>mD;;3sK}9xK2(e0RquV<7oUg~-R1Q7{d{S&I6IsU1`yh3Q>5UrQeo znu+K`3SE@08UbgRBzF&sCWQm9iEs?oEU(`c+sSc^>IsM-Rz4Y?lqR;ccH&et6`yH` zRlp<)5P39pv|-yj(;iVF7f}c@rY~zvYD#)kh2>EgJhffrIBTwyhLz#GmJ3YjY?(Wewe>PZzao&tjO7tYb7)#7!226VIn zM|wNhS1Z^X3hBfRU@>@7*88rm+PKoClQ>8|s(v0+N!nv zO6yQ;FIUaB|ODYY%JBYp=ET zKCPW=8c*z@HT`WBlcBd1yB?Iw(eJ2!f>;r6Jtf)Hfm_DR=}7%2%jC+q@psVgsX-EQ z6~-Mte`<>IzT)8Lb#d^Pco@Tfu>4_322(H;xqI;as7d*Q$>K=_I_Nl%Rw+G^^8@xs z=HAKeikm)aN8~2Dn_Z+2rCr zydc5ktYu3aD*U>(Gpv+4WU)Ie*3luG$Xyzr`ICDnvE*3Xy&le_8Md+SC!QA)N}5>~ zyVGJFon_-cj1utv#fXI;7udv#*jP{LxbM2ksKxHGSVu=~+}&DM1bijeB7SNRCbgK2 z2Z!WHmR<$>bOuoaJ)mUNUKxuUOo>WYQoKad^OZ zmrUAy4?1(|l1aPq@zz849>&GmP=?yEFRkh#M`_)|3XiyE(zdF*+8wL8Prx;k z9I}{AR%?E2PZyqIW>U9!F8VaC!7{iFhVw=|bxoujpSMj?XX@QH$wWhi7bwXkc$uUj zUE)usw*XreU87RBO|r^(+ay1wDYs2hTf^HXp@#Ern>2y8BdT}Xq(R++c&NpbHMgO> zZIa(_L^7MC88M<%oDE?*-e!y3VUUhK)ppOjfavYY$qDFfymB%w7bW7#$s+`TD<|O& zh6ytgJ{inL!iOSr(G78G5Z%y7XXH+OhpGZxfXV&?^+hy$fef&}3)Y0^tSI4sfK;eI zPH;ZfIhu2Ge_m+G-Vt|quLYWWWzNgI#g5ydQJNcBjtDDljMhdb!}ozX>Ory{BOyg} zbdlzsk3t(3>%fJUrt=QsL}n$Mv6|aCYINOhR;;=2q646mrNs8r0&#b1g=2yqr)l(J zkN4kfY0@rnyE9Z=wjY;bthl#Kmul`}xcb|>o+oNw8TkN-1sQcg!(yy z!WBnMt%bN{%*z8fk1;?YDpjPd25R~k z+}`3yFjQrO)=64pQp(oAm5eg3efKq*D;Xh1Z0zdX?1VOH721k~isz#S0r4GG!bxLv zx7A{jom+FI$RCj9+92+o&v~|olrl#(kvC^tit)_rB8B@|1ulPA2!G>uan`(2dea1FY+qMFwjx@ITm>mjHm>hW zASIV8ZSav{36AomE{qJ`YxsZ-InIPEwKdVz$xA(-Gi8T=(y@4k;eb=kC?1Xlh3QrU zG0AklpAy~-_>i;lG900c@TfP65x(pOpeDPxDPI8ur=3OknSwA!Fx)F;YZ=Ccrz9ne z<8nh~H~RRWgq>B0a1)-Vk=wV(jx^Js$iN3ckvjnb%Kf)L5&C{a;}n%aj!hUtlX9u8&@hH|Iegl2l=yTLo5dJDpIR^cSwkMO*T z^j;(b$m?C{S^W-&7aYwn>V28y>Hzat=?9wZbpV=GM$fw?REEed9OT`$xgmK8GP%0Y)XEc*?Y+PpN*PK$Ap%L(3>?q1+YF!> z821*Hcq`5rtVEEKsvqdRNUu>=d;NA;3C8Ry~6&jWQJ4R2_U!NQQy^3geaTA z9FHL7JYX*&<$i6j&TKnbnGKN45srFV?Le>mA3VQ7n(L6pM6}J*Y?=d(K;LabQul%S zIQ#Cdva^{!%Ce@bwbk2F+qvtRpto#qL3WIVzj1Lxaw?L3h$U*-h@SY2;(H@-sH@|! zLYB65baT;GSIelY!<8rx;<*VSHjM#?xQquh^7vz*IO+sYGtH>Gmc989cBMwdYR03! zI3DqQy-B8uQ$YC~sb8xnRi+9T=btLBN0_fL+|6dHaA9|<$e4M3_a4fW_%$SN7KWQ- z;+??W&_Th{R^63pJ;6`gjvn<6o+gwoXRPT3S4uCq6qq@zkXu3Ci6O48)@3&UhRbC7 zVj#|vYp_U)d=^S#xtfE-3|C3BTxFEQyChOdahezYbl>uErd>X4o7n<=M;dMyD(#^s zahM*A4l8EE!K038{S}Bw=x6t_4U1+uP6bQ$7X*Kk#dzphKxI?#$EhHfk{98iz4$GjWW{5A4<7Bx?;*okBHtmy9{ z+Y<6PT+JKjcBlD3*vg*8nInwQF+8eRwK7m@(XOK0wGyOtOyg*E5y^!G=z&|9#vypa zc76v+wB&k4RuVwV5>H$(r)sngUK-odc3iTQ(($`-G!ZIf%cpicB zp+Hl|s~GCd1S$iv?`m|>IY_P=k4oy%NUiK^z&W$H`8WsIt4TRk&m`qZp|Gjm1a{0Npj@UKNRdXA z=B)tsd{WNUNsn>_dn~apld@4uhnegmY^TB8l`1YKudfH!x&ZC%K@iw*wa|1FB6p(g zm45;9J#;wS!2K6yExj@y+gE?DJOHuix}m=1PCSSEvUSv#`pVUjy5EI7Ucu9hj8`Dz znOK~@Bz4a&)$az>cr(xooTJ6*K72g`DYbBX1a3fs)oGZj*eXiZxGvw>&#D7J{2|vf zweV+QgxjO|rEa=%A)N6<>ZfBwp=A(=LUMM0{TKXDq*iK?@3sV!{KCH>A>5WQ3}Lve zAXXh-aa+P<{ID|u6Gy(dE#V}Fp(wIVAwH^CdjQS*m_kQKTM{_M5p zL$KTeIBLmzh?^C<1$faRt#ji?9ERgDS`%>T3Q6GWHUXG$EMb`;+yFvv)i$KpYTKPr zZF@7TEia?m2JExi7PH!5YjkTZE3_3(_={O}>S(X#ATAKg>Ql8|?PZ0w0PB2{mFf(D zTIb*ETkl?<0QZ^BuFdv*2O;b>`&0)KIZKS`mC$bH;s$EKAZ3K|7mRI zho{fsIHA)QKAF@FYvH+u?7GEoOHc42ESPT1G8ukc znHmwScbeTphZ&fIP}VsQ9kX94cE8Z<5fV9ASztB~KVj3&&k25^Is79_7?dJ7;irT# z=wNeT=Ytu5SvujTZO{=pXfQ-1S;6y*fI(Cpz$a@HjA z{f}pC9;NY1F(y5*EdHz?q*v{|sJa9@NUoigal|?N6D(AiXG_B`s)sQv(Bu1s>OHTs&%7)sa4C6Q>&Jtr&cWk2UabE z@~>J36I``S!d$gJkfH=uEe$UI-(R(&F|Jv6VvuA9*DO;Xg7vRi1|4Q#|C(jcF?$-q zw`LhaBHLTD3?e@}W6d&zK`8>)EHZ{QD?7MmnV=)GGuJFbDS#EP&o#>gDauY?vkbl@ z+pbv#EY0DWTdY|IEX(0Xr#z5r)_veG&hC-$P0~NXDQg({xMuN~Z?=EUGATJ^KDA~U zWH{TuW*J;8+qY&JRKhUzs%0wQF!h=RQG@<9%S0KPov~&;3ZAiMW%spanTQ41>1&q3 z7iFidSq5F=Bzj%5cA=JfJy?-zE^+XtA{ZS5i-z1z;G^c_4u=EqoPcGa-&ZjNkH9*R z=j7W}p-fhV{>#`(gH;kgaVZB4<`hr2F}52BxzF4ch6R5bw4VZN5a2CyxtfZ(knx|RXRg^Ga1U$=?o3{$P79E zgZ+ed)(=84K9P0B__^(uMdbo6Do}U0i%R%k*$RbxTcJ>JD-=rG3Wd_PLZP&+P$+XN z6w25Ng?iZvh4!@-3hl405OyO+zK$;b>7m`~PY>-D1P|?IjijL5_hvY7{1z)*ZWd<7 z{jfvMJXssfQIn8%PBiTi}>^qbi{fWAbRa+W;QN4$SFX4$IQE&T9=B+3a z^|sFmPZWuI+h?rpX8RoVw$FwsZ~JVR^0v>3lqeGQw$F*6C=&Iy&xu||k*K$QP6R}e zsJDGi_(hRuYWobyDSi7KeM^N<3-MU=T{R2UnGls|^gY|UPQtiGN8h)5a2)1@SHBS+ zoakTG0L00A4Sz;NOEizSCXB0C6dz(nHDi;4_J#o>I^M$J+!<`937Y*HXZ8{zU_?tT zIgv=6XpK(P=Sdp*2I&A{^k##Apy!+uout1kL54c{bRYyC;j=q#DJ%2Xy1UHNg)Oh6;&1;2y*n%p1uDm-7!VEOUko&f@#KC?77D zdxbx+xQ@kh5oEvLf;Nn_djJe$$XD><9B3_7azP$$O$x}8#z19BEb^|AFyX?Ul$eVI zp*M(%F$=*&wxPAVyJ;;H z@?DIox8)ziihUhfl|h(MJ%cY{vCiP1jrenL9k3&>##;f)$Z$!98~X&39rX(Es&3Rz z`BU$VX0tYf;gj*GlJpuw`6FR=N^{J(A3OMgs+pgW>uOHo7VU;Wb@&J@QXR}G594_g zML7lLo8fdnK^*CVs11Uq1{xTAP!;QhcB}@LvkBlJfF{I>AA%P)hMV)8K+YbT32lXn z>H|DCBZWUAU&+W(bC~Zl%!C41;#CnMNzXlmO(_e0-{9)9;Ij1JGj z@eCU6qv?vm;YOT~X={h;H*Q;OluONW(c13iLRoBY_~;hsv%U^=L@pQ7XY(D?bHrLc zzAa!l;#xioITo=eq0Te(1Yqc29euum^AQ~6Vtrk1WA&X~Dh0WGv0nf-8Pa8X1-r zkJ7iL#S4;VY4PyJ(t?YEO&+E3uVO~>z_R!rKR6A2aW*(iutWMREx0%M12j-J?+rd0 zlVHlyf_sDAicN`%xHs4!eU_HU%NCciwBX)g6D(nvdewsYhN;&q=(n`s-e40Y-O_@4 zgCE2^(Wj*a_XeAYX_gk;8*K1FOH1TUi|*CZf_sCPp_Y2pTJ>vz3wYNC9%kh6(k7V1 zx*-ZoRq6p$TwY8ab{Bs0+shp_{YKPje)}{>m6PW5ho{2f*YIrsb%amjZQ#3jQO+Pp zWj#rL*VwxKiCLcC&686*ZCG2|I@Zhg>&6C_(~lgj4xi{ z%aXxYK!`gY&kQ8|>r}!^`3}L0`5@t?d%c92V>HZ+hNv|??d@<-gJW(J4rHox19_wo z$xsk|q1po>?{@X}MbIR|f949{htVa^QJ1P+_|o$L-1_(ckY`bR+Kl#j z4#=1BsI9}@*AZ-A{5#0~7^23<5Xog7K7@D@p0|*|pOL`9-p3FTLe_$9#JR^8BWAAH z79LsPeGE~@BqfM_fsY~TZ1rbmiH5^5XmmWU3YvUXfUXiGCL?ejisJ6kqad|n8W_#W zg{{%R*O>OTrmr`TQ&nb7uh4+!wk1aU5FpfIS40W7H+pZ z1t>}d2(*KN;An#%@}*QE3IQWy)5#FCtC@aQXav3>P4vkYJ&(O5D^x&qs;Z7>sk1_L zaB(Tb5ovfmz;_-7Q#VB8rgbviZjTqEr&py!ad)(F}r-fXl`SZ$0;bG?hMY178hXkcXyAZ3(4hS0K!XXI15Ls- z2mVcp5-gu+mD;dHzcN`yr&b3qlMN~N{MDD^@r z<_T<~D_Le+go@F<Y>vuqaMMvj6%k= z{W4_$mAy1%OxrtC1P3xE8B4Q_LL4+fGc2PXrEklq7bMLx>fw!L6hfuRqcpF8jpTx5 zdAvf+1F4RD3>@Zjq(tr1Z@x`&HmjC0=ChdZQTRi`5FVZVf9sL(E3d+#BP`TTl*+Zvo~~vrU1JD64J?#% zxUSAo#StL%wyJ^j>?fjxh|sp%&Kzims2XQ5mz+7sU?3xm=b-r=li{dQ69|TS&Or#{ zpi@djV!qM*U_~5^G{*xRXjDg&$YZEy%b5ZvH{xpzhZxk`XAFWTQ5kDyKBKc#tq?mV z6LSSH=sq2Y9A^eh)einhcm#la4%zta2wDp00B5ijJw^e7W6$^55eKW4_+fHN4fTm0 zabTZ9l_T6nhTEg&;D=oi;at(<9H6*bA<&Hs)L-9*A5Q;p66z(hA-!g{Tcu~VH#4(5 zou1hMUuMq07@E!DrwaeQ8lFrspl!;25d#V!2K=}Ph4@qqSSvb}fG_L6OAMgGXYyf~ zZ?g{iZ}i%}rGkKlXNnVvQg73@sPM4_gQyh@evL7dh)z&>7}&005G}>2N-kucU=W>X zF`i%$on$c(446i=3`aaM0Wh5jcoO_$1%v2peD~KC3@qRi41jq8<2of60Acbsf&oB& zC(#H7)NA>ox?lj?*}migklFhS4r@qWHXY~E zu#o0sO-zXegkAvF6AQSu2E+m)f?|Qe1jGUknGcza5eo1o^=h=eDac00&?a+^eDG20qz=~Kf6HrPlm<$LjIlq|%!_P4M zuswWY0SrHnXFCohF@&4UaC_8;z_25_VnMW@t^~!31uGe-zvex$L9xJ}*^pi{+ntfw z-ptJMGBO+B%MA8wG@H{i{F4_8nkSd-7rCGua>0zTD1|2%{1namvDE`#M2ouW0ls6- zch9)c66inUV#q1=fT5?<0|pML2Mo%u9x#}odcY)1^}yeyC;|0A1YCSP^}u7~Kcyac zSrYmL)dQJpz6cHWs_DkbWlq+lD>(yvBo)EiU_W*Xh7DB&8e`d&1fU|g1F85V0jLNJ z#*+jhlPm_30Mmeq-~o<#rgJc!1pl}yg2ieBlQ${?1NbC?$YMEGostBAFu7S3!D7`9 z(TyZ<1~TzU0vH1hf{y}SbOhY!`b7b3?oIy)iUJ-wC<=J!bWy+~xS{}b1h#XgQ~|Dz zz;@9T!GVr|jHQVJ*v^}v8KQtk>01==f~1K89^TUtm^@1Ju4gMfW3w#F%Y!GX2T~OH zF*wZUa0%)NE@ahGN5BJ^0Ud!!*e?n|M_`aXQ2;sugA3>g3@Txmdew%=H%z@|!89F# ziIOe~Ku7Q-c<$4C8ae_KF-;VJj=fH*)zP#iFrfH=T$lXJ8u4iF5814NX7PX7>S2@Xb@ z$4GE-FquRi)5HOTvf==%tdr3_ae$cnfI$c9M&vj%V5)ZfN5Vw_@;PebUqjGofKuYX zI6zqDr?V>#R?p=)4wLhV129mW3+#WR(h=@=c!ieWKK!sVy5ax~6m&1)qJ==im{@6A74vQ$Yl1RC8z}5iUr)yH%f3L z7JL*f!Rd_di3Qx&KL*Udq9yoK9KCX|`aFIzwFLYEjnxv|!Ek%j$@odr5_}IRt0j1j zf%@y0@YAc7Kr$QBYi7GudS-hwGt1NInGNt|h6x=jsxu5{azAO~LD#fN&Cc8zD>rm+ z?q0dBb3^OOc`H`B=Z{ymt#0dB*>-68VH1G}nV*R9;Gf6=;wb>X&x4vN=ZC{<+Bl@bDksosQu|7;%uc%1G_3P2x~{-0loTSDMR@cKf` zxdAbNQ2!dA7(fSsfOde0pmxAu0@?u%n#oLNA3g+&LAPQ6WsMCI+=u}m#fRWxMh}Pq z{{sxV&pvzzIAr_wA^27T(FZG@%}EmjpdI)J)^qDau#VyOsHyl#^C36|C@Thho`L%7 z8}Jhp1FXY>WHzMN%ywsFwl^~~xDuviHo%ve6A>|BJx)=7(qcgK{t*MVKnyr%{HJ2T ze~K93E&2gN07Qa=d701tl>~l)o=r)>!H&geD!3gP1x*D8<2Mx;3`_+~1Cqe~9Pvzt z&V32~aZLp^YCV%TrUC=_C4riBNuWmAw2dTCqY{X2Oa;dw6Q3l|j76+QjRaXN1-yDF z%~D`i!VF7+L1$PB47wLffg$)T1qPAsG|-nfAsNfG6qq!6vlJN0J}m_%NT#L0;4>tF zpRkcqlE6HSc@Lx{@FX})cN)NnmGfA&v=ls-ZYePNq*)3KGH597A_<_6O8>8bjbP`jhU6b>Fo>}VrxXH&MlSM60@*+WBmp9Vl7PVk zBmoYZIZVb#0t5qg0wO*Gx|IZmAkvO zsoKFG36BJj&mk+4z#)KAb^_WEpxW=qMfAZc7eDM3K|8_y=(NwE$`Ni1!|hRT1H-Q9 zvlH;EE>;qto*R}xhevHeR~t)6y}^y?F62Rpl>_DWo)FBU=Zr(11T8%uXqy*Qz^kfnCeY1 z_>cA`{3mh&$kf4ag(qPGwgOe#o1I`Hu%7$C$F~zKVlw-%6RZc_XD7H&f`4>7!L5uQ z5DVS`2A$_)dlOFRhi*7nJ&DelCKkY(a5J#hPVg#w?;iCH{G{0l{s5E}3;69d*a-&X zCny$JZ$imzNUxdg&d6+UW@dRhJ+lG6%$xzDAjlj2zaSP&-Y<579jMBs6F(IT_OF6~ z?g8ao^@oqaqW1A`*AAR9nCwK<5GJ>O4F~QSgJl>(lnUs(=c)^E#^5`$D*MkE7>uVb zz!?LBfx3WcKq`0=apFv8Je~yqxMvJzsm)AY)CExk_@#nb=~BTgH*HZDAjW}+Zqx;h z$i$~EXq)VSJP~9$V?Y-qzq-IX91v6&c<7+Iz(c323p|3WF8IGbV?f5z)CJxGo}n)A zD1EC7ydY`n0uP^Y#$X{EDJ2!`^n;WNehLoL)de_Xa3!mjXAFK7P#5f{GX}y`N-7Yh z{-dP=ev%?xU4Tok_GLE!nZ17puInCwa|U^f9VZVv<&?63&=J6TQo#X01e66t1eFB_ zbBTKxkw*_X978=Ho?)c|1Nx305^+4Tu~NYpq`8^7+M|c$F-=)uP(EeBHH;pR3SI#Q zo##wMjxz(MYKML#JOMyH2dpRyjsTQW7L);k65vgC!@=r&{A5Z6hXMN{DjeZ%WVk)* zMEtNLy2=8aG597>Rw{Usf%@xb@e`B^{Fx2uHM89+J+r-;ndN0p z+y*dcH82=Y48Q>cgMk>pG+;IO9tS+r;Z{DuKd#l_D0LzrYc(){PYj40m43kBC^v0m zH8@Je5xv&~1{eSi;`1~^UuFa2M;?>|yaNM4Ilx1w%K;w2l>`2-4;b`rHZZ(p$N}Cd zfxhJcFG!jk;Nd;9fytvZFUD3%9WXfE4|-;U%mW5}n+@EG4P10(kU_J7!3E3)29+>O zr4ASfQ~%Ki40;AwK{HvOp4% z5Csk` z^NRu$vOe~4L&{_BaYMdi-gl21QttB~H#FqbaYI8-9XB*^;JBed`HveKOz^m&N%;TI z+lbu5g}9Jt>=uspf5n;b84Q|#)rEj*?9+u{k>7>D0DfU$QJPL5vMA_6u*l~^upR~W z=>(c_;9}9IE(D&Xpl@fwN7zUyoxqHIALz*fnHLiEEen`o_piAS2vaGYfH2jYPT)Vr znXorm0DW+uq5$c%#nXMD9n!$iV=!j145lOjLRG+eT7i%6LeRowj3i)O2)3jyBqHK0 z(0wih+a;ePpMH1MD3jv30-!25J*%9##W&AL? zpd_#Zoz_YM!x(Ol`V}x~lE64ntX80kf%@x3_~8nWI%;TL2qd#1y=JysrDwJ`GqXIM zp4k9jX3lK~V0pu={O^_opnLAZSLNH9yAR=YR2^%11(wC^7n{Mgkifn?*)I{i^pPb3 zjjy$L^fY_dPlro}qbYj3n0hMk?rnzN#nf46@lqahF?H72e8*B@E~d^p=cfX?7gJ}Q zYsl`!)LG{lx_dEo*7*kZT}+*IfkCA%rp~(1VEh+TXI*3x=Ec;)r2k^-tc#Bz-~al> z)Y`qEJG@5jNBk$Z7t-P&js}sD!f}rW7f9oL)QhU4xu3y+6uZN+lsiJSU%QKSFQtYN zKJRKE_k%Se#w!GQ2P1BxHy0wtaun0{2-9FoiRH;H1KHtdPI>Gxbw1RAao@*IVvj4+ zRD$(BcH*JK4D5aE#6!p8=7ux(V<#RV5jP(@i9KP{&5s8^b`txMB@9XtoY+&s7!>?* z-^Wg3Purj);%Of{@hAoHzCL#11u2RLK6c{aOXB?4N$eS$M`_}8OmH4pmN?%J@&@Zm zQFXcOxv|vkg0Y{d1z3f0N@Fjo>!4SSdmlTA{n94vka_#Dlh{iZ8IF4&JBht)ak04j zv6I*<7L_ney=uXH!_;dQL=Af1U5ow7B8SF?HQ4MVC0S%-aQHZ>d{QOa1UUPhRTG&N#;+&=24cYIeR z@>>^XwGa~1*pAze&x|!BCu12unmhIXVutUK^ckQABL+YY#d`$omTyV?f%M-Q1Oxnm z0ghUN=u7$|`X3*}(B2Mk$Tdvu&kU`5)(vfM;zu(q*fM0BkC+^W;tS%#EW<_C;O$5Wy^zp}F0>I)idB3&w`~nRB(kn`eW0&U`wzIuI!@=-hp_jc4a?v`R%hKx&c_A?dXc-{Th-_AenP;4~D-x{uwy8 zJCft$j&s}BbjPm&Htky>lg1OI`?}-ka#XdHPhLvl0m zsN!^9$Garq_a}&ee-qpp7fXbPo`=px61N-VSIYo8>iR`5_*4U0M$s?^2{y zoQmnDCI=LMvejh(aQzJdJ3nl1MY!`) zPU^`*B}D4efQCV4IhH`E1%Nd4aSS<%U{@=s$1}^L0b-!qNtm#H6g?{HA$OMa)pGw2$X|5aNo0|J}-mpHXueyDGaQ8T7)j;yi!Kiql|+fKGX+5 zjlU|}sQV>38G#Q2`2rsGK*k7kNz&Gf*GOAuG4XDA~nlXnv0Qk0N+@HwyY%lO7r}V?Q?bJ4HMQ7Sp zEwGw8s;_kvn+_~^SL3+^DQxk$krnh_pzI3D!SDgW)CxK?NnUwp+)dw^)9%?Oq4sjXd|-1@HFxXvzAj;f>nAuDvty5-4U=6JFtGpG1p%OhawxtjpOz@&&-q*?jj5wV`va643o@Oz2!gb`7hAuJ*(@^`i6vcNhZ0O?mh}xH;RX5_JCiKD{%Wo}d3yhNw z_vx(O+_|z^C8T?2T-Lh1h!~3Xab;{Y964+&*0>ly>o<3CZ9{ea(#G1wwbjmr~8a&!Pwvta4cnrbHm{RqCY#rYKbwvA3?)<{#P7{%NVn%>M0SwquH53!tZJRD6>uX`t^n%tmX*Ypg* z`t`a79cEy^Ue};w_Un8;y{;i7ay`ASLFDIV=yeTYP>MjkE*XPfH#ex)H9<$@X6khf zr66}7dR-HwC^ucNYw#txRwzh2iw8Je4+ z*S#M+L$90LmtNOIEXYmQ>l%DfZkk@#pi7)yK4J~M?k?0)ue#AhEazA?DuOzaFTb>Q zIXTBEnGXul_gXhJIXTBG`ZU2u#mR;pYva1E)~1%m4LuwAAtxtir3m+tF!PUuk3vfM zVF($mO&gpMy6h3aS&ZQ5$*<#`^XaCpwvG5i>J&PA(etIdwROFtr_y&CCn2*owzjuB zdK&$u;p~{Tu?t@}bo5~j0_SI~Y47P?=jiF}0uRb+Ztv_yYUKtV3bpg!z{yLSA z?*oVeck_XbgvpZ$CC+COs*>StsNV{mGXhyMsSp~#A|gH=&iX52$fMAKogi2SA*ZQW zAXR!KGU-NGiFa*lO3xr`1MfrU&euJUgOb(Oa*CrjktNm{zUGZ7P@ihxa2CEI>FCo9 z6a%$2>F6y6OgMv>jy`J(k_np+2R5#2>RyLWPj2km>?HJsg-{`6t#94zXuH@5Bv(W0 zi;qQhm&_ z>e{6XDr-`>ss;7cbC+TPuwg3e>Z)t2F#Wr6mcoN~5hiU5FRNWrS3P&Zyam-&PS`F7 zP0h{xcBXz}7BWMoPdV9=!O{hbYa0>0Dg`aCU$C@Va`T7=#S8`I&%j-8nwmGZb;79e z%(qPj|9vzwII^a)c41@fvKki00LN9=FGlJH@Ta6LtE=0aI?%J99f$2tR-p{nYd z1&hpr=>nB?iuwtOnlzr`bCZW zQ@M00>dYdR)uvF&gz=~7vdgA*^o#eI1YbTO2l2t#0;#FWB@1ALNWt~h%NL;OR0`uY zrWePbiOY7fv%AgI?`t{80Gz+^OJ=lWY30&oOB$EeF05U=yf%ecT*FK(wYGXW>cj#| z=GIp(ojV`B#Ukpf>uM_JRy$!A;m<$Iwh0E(#vXK^-*lVY_l%6QSd~?c$5u-L@m9-b zCCZ?-upMfeD2ry!2>of!gZI`syW1QNJb^MS+G5+HT9N4Bu#T#irJ$GzP=CmWL!NKShTqWHg7qS%9x~zMsyG*+DwiBvJJy!x}%HkqdG&0Lof>JLa~$d#CJPgD9FwHNylNI#HUJ9;*(#&W9XYqK33=SdIuC@VAv zjV?@rf+@_yAFDY(>cWi_l`tSy>%EYXb>S(wG}d{=bJ3?!a6(8oV5o45%3ZyAV{13o zF;=Y!7%DtRL0InEVCum|UZ5nG#_pcgZoM^2exbrk{K@ndV5_1?h|kIQ;1hIutu#ca z@JdA)8`FK8rZ^QUyjDT%#9YTgn6!bmBP!(;#Ot=GTM!Smc(R_3Q3z?g}86uLYy;at0*jn-Te*=g+}RA`$nAxt>BNOLvP zh55N{>}MO%F4rm=)^i3JbrBOpA$WsRuxAnzyvN-h{O)L6v*93vn5i2682;tpuXkPR<yke_C5Znc;RCxJVgk=a71%QADa z6eh82D84y93|C$wVh8lL%<3{`bw3cJWG+;faVq=+;L#ndEPN@`QCk^#d>71fxd=Q1 zDIASQeWB=3fJNi^XB7T;%s{(N*M$|C%vg#rb09v+fpX99a-1JoW>%0HnE9R2thkdQ zL#X2z_CcWBl5&p=b!b;+;+DeMBOfKb2+yApaUOJ|ENK@LAJvVAeOPrd;pG5FceHL2 z%tm4^CB__}?O{rH0CuyMexQDynX@4kSJ z_w5Uewh7>v&h{1#C-oxvfMsel5FAhjaTQ}QBjNRz4D$d`W7&z%M~?F`bk%Q)P6Sxg z$UhDE>u1JNlqeV>)s)d^3Tvdru}+Ez3YyXB3D_<+r(jM@Cimy-E1ePL!YhOiTCjzSIm z1yTABHg#UeG)AB7)_EZrT?Eh>MvvhU2vy>Y6Xkj6dd5*|d^ci1dH%=#j>FJOP4Fqt zPXO@&OeF}n0s){r9}Nr@F$m`>&u;_eN#ub*Z!u7RJqLkUFG`g*&V^EO(NZU;OOz@I z^F@Tw2Zp-vL$Lsumx(zz^aOs$KQK%2qeq3}_~8wO>^6CFqi;91h++Rs7Rv-;bt> z@68uFfxeL83mrP^4xo)Mbm(lpW1%&^(4lj_C7|mI9Xi*LU0>+Xd4}%#LWj;bu+JAd zbb&#oe4#@Z8jRl;I&_gqn7+`$q~8}hbnzha{n1qP|3ijd75yuW*O!W3LZ(#oa=y7Q z6@3gU`mbYZTR4=Y~&hUZIB%GN77h?eUpe4=)#Xhi3^bxQ;%&S=dWzvN{+L73^FBZCUkq^CS z!ICB1OIy;#K2l{3RYu2xR9)*_;v+DrWwi^II+yy8MvdZJ=0h=@Q6@Q;`_QiZw$+D| zB$qhbd?;q#*ic!stlGIE9laQqm3cLbmph;LQD~m1uZ2$S%3hF$;j4U<%9@(RbJ5C+ zYn`ioXrqT~WGh_bLob=X7}G9Pbc^e&oNIjqAnKRZEk!#*B)!f@sHsG|USG^6?>Gwc zyL6JOrN`D)gBPpG@!_m-#Zf+-b**=_4~J^0aY8TbqeYmRXdKj3Xc<|xo&abRT zYgE_c(EUHVfXHVlk|B<>1M+dB=%|Nf07vC^B>B^WgC%P_T3gK5l>&yN-*W_~8;;hZ zDgwxICwt(@K<)=?l1XZv0_+taH>5ENJ zU&I2LXd8slTB^$MF549`H8`<}78B0xv6x8~6Lb18fmoSZi8y)Td?xcfJpK76;tU8! z2d;|ER5{p?$PiZj*65~Y&QjDgquBOdm z8z<=jkfLE0Wgrb_t=Oxk8P3dnonbgL=nTV|LHA-fGX$UE%piI(oEbuz;f#!B8qQ46 z-VA4kvQNXA36g0zGkDK%X28yG3}+@K=mq?SGlL8o&I~S=n7}Mwu^c1}L$6ve-!Sx=1=EaXCWWDidZzHY?Js?s z%1rP~Q<=eMn92;g#L4OP2*g>amw~a^yXwDK0Ub>n&_myoj>a*9eO3<;?_0jZP7ZWa zrUEe>)!B%1KsXlFzr;)Sl4W8G!F)HbazV|q`fA8^IkdsVVtOY6#4ktrM#M^V5(*Ei zPm7Jy?A^?ZYD6bC-ooL;vux1`+H|d0u92imEjf|f*14fuPFr9E>$x(7pnxHg2r~)? z0YN>B6Pu)YCjq*s(~n%l%Jf^{NT0YN*~ra(&ZvvQQ$DNe3wV+7orn3$%!+{tabPTd zta_0pa7~Eu~S4Tqqg8Jy3KIS6l(aTE)T zDp?CK`$#w&h!KWwsr3XvY9RrTS_nc6C<{uMZ|+Kx<>=MeK2BgBu%BUz279F{`yIfD z*{@CRCwd?!V)P(t$|Qlq5u>M=S}R~IBKAr(twq2@#Mmp=Xmg%0de!7>OrO~nG~M2|!!-3aI6-L+S$8DwqPchMp9RnI%1L};&6o5(l?a`Z9S zE7hq64o7IORHqv#1}f~8YKs9A&Vfuvopn2s$?|J4t-VrRSOXPSg!W2hC2xU5C8{nq zJv|)p*(=p0$BD`=<_x##8GB_k%#^Y?rrX;vZe{r?Rks`r*R>IMlZmgglc4}3#$sty zx0^u|j^IR;=#SOcO+QAfclI>HJnE=#vI?;PHyUI6h*GO+n@%GxSUDe zYZlv~BZgqNq`qgM5fM3_{C)DF3kxDp2&)H*1SpCam)swW7Z6{34Rg(nhFR&+@G6$m zD^FX;nogXOA`%1U(OVHE+cmBF%&{)cHOIQJYr%727$wCV>%x9BNZ6WotlC&TQH{)y z=~KL52N6U_r+Ax!tU1>&IDqcHRf1L@u%e4 z#EkY@Jv$r;fYax`$%OpoSPS^gu@+^`u@>?t?y_k#;p%5CCh-?|cso1Y9BU8(bF7O> z8M<9|*>j=Jde9{J@){=SnO2QCHU+!p*c8TVOfODvYfmO_3RJo&*H!o zR_`5;=_Wg6jK`agZ{L zSAm%L2%80`$hC#x0F%L#Sd3Zo4z}@1t<}z8M_O!|Ys*t3ZR}~rE~g4CTrRMQRbXSy zOdLX%Mp>}J8vB4S98@KqBYm_5=X)kRlgwxvug01U4Ytr?>nzq$g*N_DYdcg$7O^6+ z0~HL=RLM%QCd-;S#-dhYIi36@y!6wgp-5-G8olVB-W7L$fg+0>jENHfFjZsPPtYfl6#=zT<6_OH|?o z7H@)ux2nV@1Dgb{RI-ssHg!QZ+1T2JEd}i^6Q$Qh!#rv_@B;M>HRwQy*{;^sQU9er zH^Ou=*9$=Q3~Gle8A*IN7p`_Vx(5FXNMm=}O-sy}^3`23mLR*BwstM?IH1inmgZaW zWVCi!b&ujiLF;XIa}zAmYp^tTcHyYDO?IfbGKvxAUW*!$+r7Rm32ElL7Eu5X%MLoG zGXiZxeBs>=1Q4d?f!6Zl?EuHP{O~~dEOF4)XWK3`47UQ6#9<{U)q;=4l zzezZ^a>QenJe=faoRzm+JZ|v^65rO5?4b+uhGaXM)lpAa;xH0nt#9pwiRnp;94aYw zZrIRdllqY*3?adj^2`kPjHL}0+J<%*tl)kDpJ3MBvzB-OiKthhfeW~Es^=|j5NX^) za=!-~0NexVHGt*x=QhMZhLCv}W_+l}TDv-EWqi?+2aqgffZ6qBi|kM2+A>)E8>ODm z!mnCVK1jxwgSF+T*D<@YKTXN)0Q**edcz{8V$w{uB6Zt$-?aS!W_s~z!OQ?xR2cCr zzTD#BsEiW4WwA3YRs?MQ&!|hx<^1rrnk1ucDK^J!v^ zYKDYdg&}upYojT}`-{T({jDr6a%=348L*>Qv#j%sQPo z>K0ouW~D*1$;^F=oj>7AA)ZFYi$#6KqG!5j2Pm`3R0Q+GhRhPGf&`QPS8YP`MNK1H zI*t-UywwtGf<#B%YLl$Xg`xW&>S)_UZRj^JA3`Yt-yJR98A@r>0^7BjuC=I9;H9I@ zbgo6u5-R+d{yR=z(!WO<)n}sQCW8AOJ`j=(lo!VU>vuuoq!4rku zh=m^)*pxM5V?CwKN)@&6E^XahRMf`Wt&N|Hidn=@wOOfRHp&Yc{fNs<0VS@}lsZS& zl7LT}ny<~K7Wy4WEzp;YV*jx|ZK_6_#mDt&^AJ9tHnqs6;PYuyi!Cn0r_H1IecC+a zzJ1!fU@4zAwM4HFj;&9dTBa#frhM8|gZ`j^h=5OBXl_tLIK zo==-vt#1_FUeKq_Lwi1L7Q>;RxQcRwi5PTd^N^X&Y^qr@>f4#k3jjf6Dg}|XQuir0 zHr1x7(hIn;siX~*a${577G>Pn)XAD^iU4bt zS}NtirncxW3j!W&(eU}0;iBQwM0r?-d_`->@hn=yk zHBFkMBcP*(>PwK)zzPT`>|UOjUZ8IU^GwxMc8tJs30wZ0I(=;RpJna+|(u%keGowwg zeZSPm(xsX^W-j$sMxLm-)%6_gaO&KMk*w?9?n7 zvf^N;X4`r<4t8pe<;OVKsR|1k2Rl`1!31}M^)gju`yK4E{SJ27=?-?$@E4$G%l{C6 z*zc?wJQ~gg(2ol>0Qp_u z3^sIUi21E`hMJe-oMG~^*f~&sk8_60?>uLO{8l>$ncrIHVDqxX87VJEIR)}tZ-vF4@DDRy$K5_n_hdhyWHccJwLCe(I)4O%RB6C@(r zNno^00pVN->@Fn+n-IR|{(VG9@EEtc)r*3;y;s;Mi(Q3aJe!hRfn8chKMajMVt`g2C!Im ze%Pqvtc1m&dQS*Rg`DKRm2%MO#t@etWL$zI20f3~D(SWcwv~p(g&?rJE2X?8-NsmV zw5g19Eb(X($60>_bu^7-<6Ljyqa}xlOeZ;hdGb6wr=09KcLSbu0{+|rVA5K=e1|VR zczF^p&LPUzTg<@K8zVk1On+~(1AEKBhU9ngyodyfOW+SHHMKFqn#$gU+Z0d_8zW+I z+7_PDpB1n%LiVPC=+Cjeb8Q<`GLF8W_Z(fi+KJpgz|)8XuJdxdKytj;=6FFc#|tFK zd(v{`4j#e^+iY9!d8R_Btpgg8zrgbf5*ayj&YMwegtG&Hscs6HL7f?k1pKzKQ&v^*Fp) zIQ)g>@Mht#|7MrNn}x%p03Rw%V_>~4VHo~OgbDc>e$`|6FvS_AvAwf12|XCkuzWMy z*HzkN!ts%1s3s>iBv(&rNS=-yZyL{92>4;pS%`mN$a~@MkdZ5@U<-ODV#H&w}H_Gv;(hZ%C+JPc|g~fM+Sf zJn!+bL1y+Xz#U4PFanC&Xj^!)naev8W=O_NyLTp}9=9b9r8Y$;6FZTi-j;vp@qTa+ zdMWggvJuelCw#4q3Dcm}maK;4xp?kC*27BC!#A;7-cRsdZ)3f4CnD+aeoku5XlADE zSXbnxC7B*VRUqXaJkPVRNYPY!MJ_8nbQ<6eHznFA3V}J4{$aW@SB%u#Vw2mAH<*V> zOt$`E`bZllznpq6U6o6{S1pn##!#-#Wd-4?FJx44QbTero_5fNPs9ZJV<4{uFzM%b z`5|B4z{~IPGUIK$9Pt7EsQM$qSZ`Dv%DxWcrnM8xNSnXFZH+Eo)s;3RhhV52c)H^> zA_r5}8iDha*{Tp8N{2b?e!MrD;R zIs@0v(0>3hC#ovIW>SmgvT9pMr}IrNHt}>Z6!B!sKLx`O&nBdE1yYzIyv+zP?VEus z$GkH$L`Snj&q7YKyKxw`W8)ep6j35(Z5g*bc@v(Epk_@*y*5(pqYo8AkY{us;LN^@ zIPqEA7M?S`5ew2r9##s)Bqj9iMyzy@Ua*p^JsDoV>QBhgncdZTQcqh~tMSp%r-mf- zt})A#^<$SOwByiCJ{$aE0y$OW zP%t`mDaYz*Ato5w_Td>uEwl}gRBSWGfhXG;OAc;kxTp7y>e5viq=`*Oq9H55p2})Y`NH_gFh!xUx?v3n3MLYo5&w*?i_36E5Z}yYUAPf;aKS9*Xy}VDC zy#HqNK0TQC>5_NJId0x(O5RHVqgxpPf3-Q@I!OmQmY*h0eg$VVBu_fCA-RTer@957 zq`Ayo0o)W3GDZ?d9fk5vdZJDV`)o8{HGg%SB5Mb2=K5HzymC_ae%l zktu443p0T74|4&8`Jl2H97;hDiJL2Wn?3!Rj+R1RU-GX1Ahqt zs?kOQ{E+~*BKL8>GUa>#7{A|TIwt{`*N$`AIOHn`-LrBY_JCy7!?es3o1?M6xxrQ( zWhUwIDj%gVB5in@E7Bfj>OksThLNKy{Fmvq8IzumZYsa2A^C&V4aw)g)`dvSuJN*M z)fcex+0`o)t7S3ZsodJ@Bh8TQX({e7C7COO4SOpohMFxdilGOPAh%YtW%ooUQ8k;A z&^U7fRL!P8pK~~lmYdQ~imHN%%aa|GmM3pOUauYM@-r#QR(hQLQ1`4SMOl>}0_MC} z7G*kPE+m9C)qtG@+os_bnJAagYXvOFB{ETZz&|V??vRO6F#Qvt`7HfRt5Q{4MJ0h-wN+BJv$31Sx>OvO zNL#Tpt(verIS0Hvj`(GenTz90U_CHp*cueaS+6$|vWIkw<4ow6z|@HA9sFdWpmg-O zI8$&`F?#&?_>b{kL9>INAmKkm_;Q&7UCeAvSn2e}9E z^p>6t8zB2%AnlG*po_@URY>u1Hv6_{22Y3M`U84$+B-;Yjw&aPE{bP2(%a$jaI^5> zT!Mp;)Zz?8fR~x%ZP8id0N1_;V8%4ln1|EH!P{p!IjW*$d2$3+$8m_hsoX7=lfz!W z47f76roe%d6IRDc~C{pjietwtBTPF^8QY?@|=i7XFZ&oy_%c zmK3f6xHLu}pfG0yY!d#foWe z2VB0f)69_W#`IDdGk+#&9UKUP#LI-Z>@r_G-^CD@3-xQHrlR`jTZR57&?|1{bhb@q z&x0!%Op4l$ac1Pr65a7}GssSi%M%%G{F9ZE1hPg_m(=qA7^Ox5@ zK=hHKIr=%RwqkauEM1;F2CR%b!mY&TWGOx!I3x8vrz!P42$ z^RiYSPgvxV=QV5jHo~&SHSjM1*Oug?xkQ|LRWnDut&XDPYqGe{*oGR!-u+h+e+8gL zoIsxjmlcSoKh$XxXzePXW%69enfGMGklFV}yzrlN*29sFHOtI4!U(3A4NYC^shj#% zjgCB*^DrwQ;!`u-iujiF*FOPgdegUZNQ+(pE@g{wr}WTygwflu_S}`jwP&kE zVD-5>hpW#HAf}^~_uxK17J2>x&O%>6o;&d9hjU&Bi|I4be1_Qx`W6=biJWX?ogPLO zCnMD%bbqBGMNDST!wi*=Z;=7amlGn z>_R5|S#GQBl~x)4dB76Q zH_-OVBvJ)ZIW!)>7mf8P0=a97!QBMhR306&VX!bPeqjK>5%Dp|Z$4+j2ax#=G98Pb zgS^vc!$l194#GUnFoWaibjS8JnT9rK#p6C@hoGer0Gru`eV7+X;LaFM$h%3vWM;ayuQE;&^1!Q5RGD?Uj0L7=l{ETY z;N>wq`a8NAtfaS#gqcycJh>2$-los*C5)`^r+|JT!D7^mh}MNhc??6CL__!ZPU? zxa=Cose2hsbQ3Z%6VKp~op`uB4iPH?C!L`Z{}O~3sck!${2m^CNGN?oxun#@b0cEO zsQNZu@UQkgsc;P-i=Aj^QWz|W)Ccnqz zh()9s!dtx{j~RjlW_^i*#xccw{VZN*oh0xS!pF#K6<;Zs)LWsXzEpIk-I54wG=A1L zIr_-BQh!GrW1BfLPRV49*^eA4LSr!oSXG>Z*W=iNysnZyo|bIvGSw1ki43w|#*cY6 zotJ-d*C3-kQY=+BpPe&_B=Y-Xh`$r>hZJV*0NVz8Ge@KzmTY6jr?vlat zTcD1pMoN0yN+Vp7hnE?CX^s^xnZFe-o%u@;_I0w!8SIbouanJ9z|C5ZKea1>U3d=O z=3R%E%kXk4U%rT!OYt(}8+ciEAO8FpdDqb=c>@wy_)}ntu6Ixtino75@;jOQ!uS@m|hq; zW((Mv^$YaYSt0;Z7X4Ewfe|T zca<~n4S=V&w!@QMFO>kgXTITanJ9>jdU}N=Rm^9fc?8^*uo>GT1Hjy@_ko+W7k^f~ zhCk3!&3c}gAK_2!wFtK`3-z-H87=IOmjk|pmxJ)qvK=qQc)92%Ok0!j0%2;#5%^tp z6#g9W0E}llzt@ob9iE5gp$b0-tTXeQsMnY8Zb(+#gVFO~mQ=Y^{?RU0>VF~Y|4yX5 zkZte+U)T;G@P%zL^vg&L{}yrl?EGd!GRFB~Rb(Zq@<-7R3e2=t%xUc@ zQDi}{FQ%OzM`_Ix$g9T#{ zdQ_$?&md&xrrXn#5VYEXN$*)aHz9==ycBNtQpmp-Z2lUAW1Zvdq{6twG>zSiF);rvSH1 za$8RAO$aWwLs(BA{Rk*|u?^d?0=@#D69V6tLY@DLP`#%eRd{_A@QQg8#M(xJE^Reg z82uVS-z1~?bR|qb1D?(d5L)F^*+l3@Q)p`^SQ?X%c)0CqDeLE2$_^K+rPA-zV(ITv zO-uis=B3|SH!c0PU!wH8HY@!e%}T#lr1ZU?4?*Ac23L5VQAbRzD;ZZZV(`ep6(z$e zD!x)NV%X4?2`@vU76Zpvv7Ot|O#gkySSd8=W{$D+nKuG$ z9b@UU_>Ieb)-jeo`!)ds$5{FsmK-?7(%-c7z%iCS$HEcESbC#HWgTPbb1f$77)zgL z8PhSA2pM&ZrO$6mxxb8KEYp|X)tzH3)1Obc?8h;dStua`$5>`b0)yjz->yiSyiqqH zK>q*QF;?DTha*`eKlWz^$^SpcSl<67jrLe{-i)iIf_Mu>KR6 zxzmY(s!JUI+Pf8AqFmhs8V0enyLXfrT;xT21OXlym@IjXlZHNvZbP3VPG^TY-T)~4bAt9Z{i3$AJ zCmwfv3)8s|x+I=-g!Wm2m)I_X!Tci)3qxGlV3Jz7itox|MAbr2^D6~iq2-{iO13`0eFELpESUN+IS3oHe6}lCK2;E2J z_q+{YYqt3Z@FCrBKklR2@&y`|LJs667LIN30*%b-$V2b~Or6iWnfD`smfS`8 z=gwsUbQk5j^=Q^zlz+Z$**Wf_{0ojPpd3lB%U{5{BHtq7b_>9pZDJ-q#7!8GHU|N5 zt<`;n>sl6WpvHz53Dr=JW^@r{P1l_n(lDw6U_t{|QFJM%hT93EeQvVWuF%nn(AEN% z2PoKP2CRE5|C-^gP@V$#*RfZz#)3{X)az)KT;Oz+imlkjRW%>70FlHCm#rMF8h7%YWc-0qHM`Yk`De zt4o;USkYky#b1`cl}L;j+wMaYxT0$Id{KZqfc~=l$G?Wekm&YqttHU|?JvvUvBM_t zo5f7v-}jg0@2mg=Nc!xlnEtpCtomjA&|EZ>hZ(8>iqt!l&1|DnGu|C0}`D4#z?Q4XlTEFX5nVA|FAF>zcK zddQMTsY2*W`^)l;dfDTgzUyAf~F5r;+o9c~evOpEQKf2U*yGiloD zL%9^iCdj`_agf7YYFFw3`fkOVqV0Q*!y^A4$F@k8>eQe6_c~N@+Bz)qf8h`%*g@nt zEb{Mjl+tw6VUfSpq07>NN;nYXL8($WlPJ#4-f~RfKcu!}$z>fD6-OKv`42k+9TpWw z9TxeII0_vW73VrE^0zq}9TpWgb6Dg*>d16hR7^t%>t)D)%;D*bcOJM5tjYgb!;Qg*pj z>9B6$>F;&Ai}7gK)?tzVjzdk9eO=(N$p5oL*QDvN$p4G7E8W^OY^WNJZ^SvLzfToO z*PDsG9nYftcU5;m%ueTeE%M)YLe5FsC9D6DDwU9P(eDDUMgGT%ou95tyl!e2x_>A6 zVNN>9ZiP#|PE@tX4+e|hBT$!l9qF~mAH?wiJHh44@dl&6NpWk-%`A4?o`0pV#)?nU z^ZcvS^%!mFi6XFU%Hqn?G@z%)D$&58x?nBoU#*T4i7V1>aqM5?N@#?`$buVKyH6M$ z_GVsJ@vn90LjyEXcKutKo1W)i=Lq9-36}qLj?u()*h~0fiPt+~O)k;%uXikK(~X}0 zxf2&yvpFhQMC`4oC zoo8lpn!~jZ=RJ1TO~L{XgRu#w|$)&-nQ>v=WI+-Benqxh`PWv3euF zUSHjvh;o)b_Plmxou#?J)V-I5bsA7+Yc3w)^2pU{fImuep8%If?6Me5=IhR)OFGGp zq(Sxq^r@VKrE^;h$BlI489x`Fo{y**wr-e1B-|`AmB=f7{sKvlo{u7IS_%NqM^FU1 zXZ-xdQW5ljM9u06p1)L6Cq@59P&V3U{QQgyvQ+>HiFB~f1Z%@{RFv>^fqt9q&wh#KUYX;v^H}8f)ZECjN65h8`MtDVlR` zTh1eaejh0uuG-M#t(}J7S93c@y>-yc`f2XF;I_yP7GLE@!^jOMgSA~*VtNoivHlRvWph&> zM*dK}76seW`Y`ejlRlW{one2B)Hq8}hN8orV1@KY z7dp;A4Z|$Q4$c9_>yh?Lnt$(#{O(0mL-XxOo$sBQGg`hJsE-Roabx6PCeb+%@vgAv zUoH`N;IVpT8~R_)RsbQ?d4cRA2)J-@{kyZ{mkqSLus~d!5Nb4J0XHNW-HK_-$`L z8L%@I)9NeK&-RMU5S}_m?dB2gY+T^%O$%6c4nIrfv4nHEGUcZ%lhk=!(w6d>1W%pM zSfxunbpeq`?|6(;ePn+M4e?4`-@F2B`U=ODhAeUMQk`h1VD1O6Q|?Q=psq3u3mzYX z*b6s*@#gTnRq(?a*nh)KF+(V?G!XKqBBT{%vxow(LO&zDtbaEIEgMjV-vPt44 zr2AnY-4*{_x^gR*v{W@;&FwoYb3Oi^y3X@{2j+to!AaMAit{lrgCW~-1bSVMj17^C z?Y3qsJhjaz>g+FizCM$H5lSV36!*c&1mbLyI#>qGP}IX?hT(1|i(#q}=Z9;;LNCwD zxjCOp%)t2nZ2Ucrm}|j#xYTrc9&=8UcqCMwC&vaC8*hZLwb^=8QRd2r>NAhx?*l}C z5zz-p`M$~W?Rf*hCA`0^-Xv)<;WctRA@DJPN1~0rDaRidqiW!;mpsvc_|FI_392XP z7@2GCi++nM{`mVQWA+UadxDAGPUg$#I|>7kdV-<<02FR*sqF+>-^j9c9cI}=yiii2 z6cgTXbA9FvT#@aC0Jno@g=C;a+UZo_hPp$VUJ`m8F)J1>p0{QxnvUph;K-Z_Jbn`> zNUc<$e*m)XtUT36^a9=x=?bn=8t9_dQ-^9P#M;m5GpFUj#ndgh^4bqFNF5xiSqHZR zH`JEm7|mjN7l=`|7%c)ZuOqB;;W{h(*Le7keLgH2A)$|deDtFJJ?XJEx-+h>na>}sY4Bg(zgSHf!abH2pu0lWrPAZW;VbCqA(2{W|;Nk0FAQO zIf$Y>v5W6qZ|i=HjN6wYh}{D$1@&Owml>$ML#!2!&6=m)%gu3QutG;h>#T({r^zrP zxf{&-4+t{-o@9CtB|=O6z_8;L-2n(i@HZ)ffdbK$_J<2Jp00x-)Th|vwbdOD|`Zv(*zdnPq!$X|3^@zghRD=3$^`|ks7GH3Wc~A5iZ64Pn~a`gbe*31g`2{AO<{zuK~Zq&sgKaJH~7I>{8D`Izj1M7YAB?t#h?0)`3Dm!1@5o_Ic5l; zn-P4#Xnf#iJ7@Pb2+h2x`%M423>_c_oB(LdI{f?!QA9kFlGwkhA6xNC@GauKKw&7} zC;XszMR((a;tj-y{MY(!^q;jTt?^#9+*H?>v+R_b@PiJRt2(N=_(w(!b%Y(-a2so< zx)RuT(2)`DWro|UzK%lSoh7A?pz_*Fw9+iw?MMZIT>}g|tWpz$o9cM`*s`D0 z2aF0b7MM_lkbaj~fBZwm3Rs*-O!rt@{KJL<%$bPb_l$jtf2hPzs=6VwKvc@<)x88U zdBIA&YzZ&@aFVAE;bIfl)^Vd;lm{mcax2rG-em5<;ndN2%d} z#??WL&WM5g*DGm-F8+HEqiT!9IEgX78^ri+5Tn$ayn?sM7Dr-?{j0?A7~_#3Mq;p& zs+Tvp5&h0O`pMq17}pO0@?zdIi1Z;MlN7}$k@QMU-%fWiWwGw^{ul}Ec&&k=d9yex-J4cO^Q3 z_R2^6w=eJG%KsWz01R1_X*?j;_aDQsaqBe5E{7azyu6)Hqo;kj>-)hqeZwIHdY=+= z=6BJ}^BVY^y*Z2Dx;MZDxF=-JzDz)q2i-6n5t(mTax%{@In6gMJq>v2GSJVla3P{& zxlHzEqeZm`i^fHe*E8o@Oi^9~tlAdwkij$OS;oa)+`KPY$wMFav^?)?&i^}6Uvy1B z=Pv$!FWdjKtIx6I{w^~gfD6e9lSqz^KdNqxVH(9f*Wey*{4r(AL$KjJ+z@RT7#-H$ z+6~dk{BZS}S%y=TkdV%|_i*EnJHCbax%Y76PdY;TEWwL!7r~&<%#Yl|jX&*z7Uws) zhZ|B#^7nTSHw;pmpK}j4#Fyps9&UVxOQSsX2h0~CSdr?ERvv;Q&@%2o(fMp1?hf+m zhBaRN8MRX5>PUI~MfHF|(T4YM<1abJ9))-JaN{pKq{$EO;l_76Trxknha3N+L#3@y zdmLD3g?hz-D8cX^Zv0h;EXubh3c)?x_-kqlWQJlmzr}mF@z-6%lKh-|xbZg}zBE62 z4>$g%Lzl^+WCs0?_Eb12mEw3?J%Lgxz?-JncrVB_;vE2_>gkp83gEJ&4TgGQ=xBP!=p-8{nDB!*gTo zTk05WAzCw8)k|{5dWBse=oo;V z_Ja0(1nTr5KJMU$Mjl__M*%)Q!AH@N(fFnN%~HrzvR3pv6fBeZ9Dn*2DQC&81S7H& z3%%$bq{M=+;s*=Afgh}Z_4u&=b>7@bGG*&x5{v$aLJW##p%=?F+LQuAy=DGhmpKD} z+YtN#WW3A5lNKzrjT}*Ayu2941DjB}Pk>zPb(00LxtxKO>OKJp$6>nJ5zZ^w0921) zK^)(ywgG!DItjx41D|o+UBEvaJP=M6#PL?T030YV0+o?j8$A^NaF$Z4rNm&V*g|5v znk9x?5ls_o-7K-Tk;J@5+Iv`}Y#sUEUZh~c#U~FhsS^99r3Xuu*f|!C zELCC~Eh@WIiJfaP(WOf4Jj<9%l}{uqk)=xPd<`kS{8B}uYlu$@FK^*Pls^QQydaDW zEOYP#8XCR9?r3pI0IE1=o`uJih*~nHlHvQ;f}oYw@L`-Ddq@rZ{}0>K4Y=U%>U0Jhb*02?4jdx>^40%RBz*!J@SEFZ*X25oq)h?YJdM9r{E2(5 zO`>pa@^Dpz;U*TU9`wxCTsnWD)TsJ{Xqnta901;|)p@uCIJ zEn2=ME6@T(EWrr2PhAaLM zZ5TLQ@rUT7vpx$f??OU4Wmo*k#~t6oRPKsD`J^MX&l0@kb`cCK{#0bepM2T{ElxFA z@rRTWyoqELxHwPCvAhd|l%{f4{2{(9#T9>YhfAY8{|UD60IbNL7X`WE_b{Ee;V7HP zE^(93sQXy7<;fRS8XNdjxZ+Q~zf)#)Aj}Dc#LhW&2 zp%v;C2ciVS6@T(ohb&6vuK1I$xu#Q`YH`J%eBDJXN#(5glW#bDX)3znPrm8UFdgAY zm%HLmzO6c;lrW>pz!uH}+&>p4^-*dG%P25p(_h1zq;@P5LpFW1x=+Rv6gBn?YnI4G zu;qmJMlWsKlrAquENWb_fSV5w-r-d2euQrKL)0Q5ej_TAZ=a3I z+c`Y!^z^rsWGmKT)r!XD^YPjzx{X?{V(s#=(1kvJIlE@ZwfNYM)H^Mow;J|EEBWn( zQAXog6&0&?G3Ic%V2nAD7{}(u7~!cYDz?tWn8G29F{WIZO=B9ry|%o_x*T&apMZs~ z?hLKe7DOu&my`g{M8=Bvd`|dHm+1i5xjREIewKWBZBZq;tguK>K9ru0)%g)t!MCtF zKV)^GWz{8Hj<$*#SIE^ceWkW#IR;#9`ClpJ-_>gt#YR}~B5VjFtd|I#c~m7A?eyuA zW>>HHgr%$DKv|ZA4e(*P0(&_;VvTpGP)bkMXMTvkzutp|I9Ty1Ta=Zr2z0*}f2+|L zRDlf~H;mIm-Y!y|W2$6ZedbvF4MjkO3qd6tQKWr=n1esnHP&-8n~>K_;bj*tNE8KV=gcd^Emr0>K9KLxfzykZ-864fwZbg>XTy8;_n)KuITogIjv^Qm(LANexR; zmM=v;rw3IWQY$~M%Z&WAF0%^KrwUlP(kfrlTv_}W$ZmK^m`q6Q{0qR)IRx-}z`%$ zdLJSiNVfeiJ+G!!n2pOdmtd7Z+H72|N!&?TvSHza?z7prLb7o-pw705|42_qaLH3X z5=eH2xIfWbQ4(ck_>SgjAV-_c2(%r4YK#5|fqLG+O1*+V-^NdQKpu1#pj(j)&V4xA zyo)GpK0>q|dI-|%`5t4u!Jpsbr#v7J@=)>5N;E0KazvR(k)GFObMbGsVRT2P3pkw5 z2RmsPJ+dW=)fXOwk0>jGHbFwg2X&d(@b?yy>5iL~>|VvP2JCQu(9yd~N0(9=g`g)< zgc9`}k}A8XNvZVXs67dRZeXBZc$*Aj&STDI8kYzxsf4$e-j>+uNm5d)1^XCY9} ze*o8$hl6EBT@gH5Y-vbj2(0|PxpxH)fc`)R1@Cp zpg)!Y`W8S^X75A9lbFerz7TSiUCKgeT4tqh)Mf5vpf>s*1d5c|^9&v-vmYSjM+`Yg zmlYOg%PelL!vGzb*wDWgw_I?bY(kmUW9Il9q)fK6<+fPytJjunxh>5tx8s|X+X+p| zZJCtQ*U3O8w&hLBZH4sh+YrD`;wz+cTSnH zr;kIRB@A?q`V#_0diq8NkM#7fBjgPXd9^Crf`5Z{7B_o1c3sES6|z3q8{*uxwF0D6 z#Yvb~;jZm={KFNPQbPlsUvj64V;ad5-C)I68E&uG0df0)aH8`|w$f*TLiGrk-N-;~ z^tK>(r1&82zmE>Nj;chmS1(h1hb#7kldy8ge3b@MI3ZZ0pO?bm)0cEF+cYX$Z zUTiLcS#+>bvg8jw6!I2$OKZcBBWzTecmL4}ioj%>3&4D2$dPxRJ|6%AIkw@dt9O=$ z`&OPJF)y|o99t@{PA!(#u4d)+PV@3=-K@OYeqnier*_A>%iA>izplt!IfQj`K-8C` zyJ1~d54oM1F1GUtG?0H&eW}m#f%;N^)6xU= zr9Q{P5%s0sXi-`9r9RhUqUuY1o@Gq+tP@*9)A#2T*a7_? z0g!VDo7HTZg%UE*Y?>u>?Xll8TDV0RbrG6)vbjUFTvXM}N%hrD!p)dfRqLsoaAPMO z0gviYW;K&$&aA2SVo-bX$-_Vakat)gB>T^fh$D(sDcewS+Vcj<)&35UHPv*1Tc<;I zvgn$6!+IFW=OF0~YbRwgX3?^haB&k$hDuC_Xr}tykDk-=ohHvbCqC_seL;Ri^9gTQ z|A0jKl#%LV+{CvkQFz0m_AIp#3od%Y`Ue1?x9M?52i~wQ1c(;wXT4!rjPbMHuq-C& zrO5-{uzrp>1*R1_b;WSrnm=)`&?MT>8`klF{JmYtmY=^4*&^n`45p1ZF3(me4*+@Zb%Lff{oyxzuT;0^0t)Jw!0)^{LNE9T)Ud`LIkk2kC~^oI2+a}X#I;SEcM zbmSrMhLtag885%7hH8xmZ&>#rcH9`OklH8U2WvJyl4J2GeO*nB{c`6-7`uV4nRdja zaaA=KwgHTrST((B+|26f82te9L~l z&^HBcpC|T~ooo6eX~sK10z2q4I$3Adbc; zlBIL1=*Vh9{5~O_G7247uC6;sBc-I-SRfr8k|<;lVJ*J1ey}K7r=Otd!4K9RQ1YxF zEDFvtLu-OxI{y?4n>?8Bdj5I~B|%*XBdrYXE;te~=m)EF&c*4tAtw`Bst10dN}yEBbAF-N z%9w+QUnrZV$-{Ga@?wO4i*2{4`<0DwbBCJdMRdUipIpp}^$TV3#d(~X{QD`G?p=~ci`-xJ6`(Xvu4?-alnYpf`r@pJZ4Qbr zZobNlhZ%H!p@>8e+D5l#$rk)V1-QU3Q~+1i)>cm)j~*4onTd`x1zpO)byH{5R*#!B zVN&&Y&$xwAU|IY45l9S)ZcjmBhX@hBPyr+_x1sY!h!({JC44l2VC5AU>h8GDCh(h? zOkiwH)zl-yp+SJJRZpMBp+SHsC+$R?PhZrYzq1<{K+{n9f-EcZ)3Z7h+J~C7b$%vWU8=#8=IniDFa%DqFIFxNORv z|KdZI;qE152+1Z%NmYqos4N`#h00>W$_(SQBzD$R`IYua0LAk9n@p&wU#I{vt%fo? z>eT94C=&{LL?T!)rx7OR#_x6VtFj-qQ zzCk<)$rrr`$wxE;K`Dtv_&cB4*!xam>?VGpLU`P?DO0MXO2xM|}jO+BKaPW(b8LwJ1kgsQrlncy0tT4I|u(f;59%lD&Wpb1P)pH??@ zd_!Gr_-Xw@IlQ!J?SQG(Rnx0y%tZOxNXShsb~j_ONihypJAK+X2sCLb8djdeMWu#L@Yt9G>-KvJ^-5M`zvGv|`XgI}oamR~|0Onw-cSReS}5W+9z zqFARrNmYzsNZ(gyNcuC5nmR5>UA}GF^4Vg_);>P1Y7jkczRoQH{X$&AC}2K?0v z=HbY35yr-qutB~jT+MRPDh@a9b*N%L^b2K^F2P#5sb45dDfOH9g|g@}zqwy1Rw+Dg zbj{idh;1SKLOp>ci1iEAHP!wRM%#Hp)8Glp}Mx@ z7s`_97pg0Fq@iCZi>F_xuFd^ISt9*HbMCY_p3)MzK&PBhA_=RHUr+*i(SZzi3?_|lSxM^9pndt#iIz+?blf3&Q<;(jt|%q1%9Ep$>VT=eWwS%P-Kl2pQJ}0P~VfD zRR+<6C1QXp_k#wI>lf;)B5{RpSH2!RK-m%+;V^dDe2uc}=FwqqmX+(Z4t;2Vre7!< zzcM#H`h~KD@wo)c|2oHLq967Wepur5j#!gRq+ck@vep;BP(58WS-()+nbI$mF9Vv= zwiY&NKkEL8exb;NexY&*Hf61uZTf|BBdp{)=CGR`mVTiulRGu^9}AW)r&|c)aQB8d z%hR~n_Yuz*OoV5i!)|d{`h~JQA4U$i!HhfjF@bHYxQn%2`#FB0tkl1DSo(#symo1s z5$G4nBA&Mh%Pr}+!7o(YaH8sd3L2sKh2m@^s)UGNDBJk4JEvc$UN}SHbQSo8veQ@6 z5B)+}MB0z~g|Zw9(U`M-p)9U_I3HRC3q3|zN|EdPQmX;77;L}LFO-d2;z#^K{TU}_ z@RH-E(mHLYQYfmH&0CBt)$5BSKsif4oLOgSE->L2DyZj>GFx-;2)|ISR)b0RD9wEW z{6ewIqFKzxd#{8~vLk7by#ReG6-Uy!Er#QUpX(Qj@#zq#3sr{JM!!&g;1_DNAmA4&ZfY=K#?4s}Hg1L? z@m8FVI5dd*$@zt<0&M+4U5*hm@C!w(4bM?g!ao2m)EB2Y9>Xsb$L2Ql3&qyq2fNo2 zZT*xJBlpzc7m6EM_6WCa?4|9RENR<^2ft9ZVWcIC9{fUa&&NeuQ@>Cw9Io23o2|Z@ z+c|1*gJ#xGbKeE?A3Io-xprC-syX2oiYFdy@ibhqjd6hMRAoVPre7%Aj?2+kvVNhs zi{b1a`i0{51Ad|0a57lil_jQ!z%LY+&GZXpSM{z_4b=-!uvx!Q?1MfH_}~|cHO`q$ zhQq_1V1@-szfiUel6Ek!a$uS(^yxD8B&SYmfbv01`LJD>83NE3On_o9gxN$cfbOH! zJNRLnx3$R$fuss6$7HEg(- zfcR@@lo4(W0>Fm592jca5zZ=#Tj_6s!sQ?Wi7L5`o`gWGJcX+Tx*$AvwTQxkX6LS!&^}Axxhn<3tX+_M?rMV;7c@V2wUm;AFF1F# zK}rjnp1WFnS%EuuwP1OxhcLY2+|_~=t)7j7Ja>Hv61M&XeLnZx^>mbPn&+-NFh3MT z&s{AikHTlqT`kfSM9*CQqc6=)#6JFnw+~@^#0CWe~(gX(H0_|%s)yE#Egk-!W{!1^~n!yAaMG9>ZQ&xXjpCbvuOO|q@*V&U8uhZonrw-vUEaiS-6Pb8rU|97|JMgV222nK`3c97D&}0i9!Yu=Hfdz zX-pkV(c1k9&AKqvxE&NZX-uu7NGvnEluMmrVSCb;T5lnD(wN#{!L-+&d{Sqg4K^*E zG^Wn&2PKZ2G^X4%BarN-Q|HgK)f_!(OkFTi&I^-XhbAYDogOfDs$FtCXbn=$kakow2H&dCwzkl+U+Sv&VAnCI=lhJ`a zc}x9nu4VqhKgj$)KY2^Nc)w-1dwvQG!&9^ae)5)jr4RRPhrG8Ri(~W??SK=Rnkd#W7{m)!d#OqKZd{7T ztXCi!$5f4G1l-{$uo}k@kuC@|j;Se*Lm`$APUD!G=5Xx`f)hBWk_#zC1@^>(8pjY> z47U5%IEKMW3IdH|YKA^jBrYwG^Pg0mX8FPseSuYur0R941Sl_vXdF|sG&>eFj#%M| zW;xI}reK9mj*rkda*?#mOU>6G%H(%aft=k0*$dF8a>)c_5Re+j zf{4b^#izy*%Vei<43Qg^q!LjmrWQzg^h6(F(^7zo6c>X|A+^4qu-(mLXBhUWQW{rkzVQ) z&HZVt_nkmA(>SKq>-$hO)HoK1#xb=)Zx@7U9LJ#Drz=xEr2Yz=PB2xXIg7KoI-Ovu zr{)yPHfwc)sa~2>A{(u}{*mhKsxB=;c&Sp&*$6tpf*hS-s*i{donS$z6HN8hoM^ba z2pU2^%^87I74RGzUiL1ZBbQr3Pz`PP+H#0;>~D4bdDRn(72oL-mK~xkc7jeCjaiB?Z(8 zrp8E}umq_SOdak7Gb~UqRq4Pa%fL%jIWWz!Yr2dM|B_B{EtX!LpTiF;w#%tlyS2uG z>>vPLIVPpf)U4)Wl~uZ63|S_c7q5wCu*D$Tu;jg{u|9J%{yy3Y2ad2$=|;T`Vso)u z`XB;C+4I6DT=%*Z4#`m!W>d%w#YE;JfwS;84h*l#CUOW9S;<5?)41hUP`Z0PoOY1m zlq$IwxcCN(~#j{QVW9M1M#aKg%kS1cf5<9;G<^D3JD|vmNrTkW5nAd*~gm&`O>dYmX*#ZztD#Uei34=+)f-fZR&)YN#kaE=SFB_aj9>b(7p2_=qZzC%;3#BM>;=3s;c2O_9&35 zr+ODe2xL_^b<#}l!U)n{s`S1UK{1@YTIzi}f)37^E{foUm#`El6?e+VyW?B5d?1{@{YZU;Ko-^hv5~jAx3c7OZxFIueVP0kS-p&rb?7> z+zMS&C3=cY*?wJeMlGt6hwNjI&Q)vY7c4>12r~3IHNwkpwJyMBom1tvI|s-EpaGBC zStUPx2TW5DJ1cmY>Vl4%YG!AZOsNMMHXw|ENlmh~dJZ`MHlBUL9n~K&xAMIy+FrpU z)hvJ*g40=#R2E~>S&vi}lk^J610Ja^L7Y~mH938Zze4`Ry*4J%c5d=eMHOD!dZaoO zUNVGzyVZ<&sM^Y!!2>4N@CpdWI?dbd0Il9LZF3MYyaMU(NF-sHy|#3Qv0{}QfvV8FZ=R!CipNIRDqWyz2Bul^> zoB@H(kSG|I=;_D-0Q?r&pvCDX2LK_Z1W&SI%38E=RSV9LY~)hB?6hcJ<1$Y9*z|=_ z@y?lbhGc`4w;RQ>-rg@>N z{}82IoGjC)Vn5~{o=f)EY_9BG)N**q0S-3pJl4rTZQDvx9=1ehbmTPNd|bX-OhCNk zAbmUBoVexwFiRRKrcC1&q39p&3OfsB3YsT#x3RX%QIXBVNHDrWNOXaUXKsy zt@|<2!rMqkskfMe;B3SHnv$gp@*rm${?Y0Uk;izc<|bPH9CaUJCkzuynAX@nc1)O; z(dm;$mn{XD58EqiuEnqHgaRNtlK{xh1ThAb8O87`m`bd6B6816wax2BD;uD`SDQEF@9LAi_EL4h~WD!4$3Y8`x_V>c;m#iPKz5 zucP2BGkb`lPqDCx(_Blhw@?yPm}}_`7Q_`D^3iAB3^sXD)rvFM(&tXazB*2GE$x=x z0?9C{&$sQ{#3SZf`hq#4M@V{Ia}H4whMe-k3#8UuOJ7rtyGwBa^mS}y$U*Vn(G~QK zwy&6YV5y~VvCS9N?ku(RZ7f69JXH|-b_*58Y3?QJC4HAgwTG)rIOfv#+BvHTr4Y5$ z(!aF$;yC9reLrQwz1=u8R{B@N1Sqv{Xz2$=3kWxChI44bumTchKJy&rO)RzaRwB`P zw%vs&`7N9m1-Rh6D1Zawo&biul2~d5aMYrqiKUi)d6 zDA8GJ1*m8OfeDmTlj$9g*#v$wmkC7AiyUArwHy%T6d3hb^_t$<9}FPrv-gux^t{Lc zQA;g{a+X>SiZTzxw5mG&yH%F?3$1a{Ex+k`kwxTKY6YmQ5mO*8Td}8K++i8+UPFdW z&Wo~eV5ybGgq0b_X-Vu*QK(-jK>{e2*WYJCP0x!0gq#-zfLLk;KxnBIAVN#601-{U ziKUi)>s*`q-jPu24GMZdV|&{9kPR88SLhNVt$P9)1V zy;;R^XO7#Jh^3ak!>u2a_Ss>5r(_26h@Z*w$SYISR7sihxvWLj!< zTM$}m>Bk(NmRjAKSZe9V9g&t=-JGSCe!?MXsnrcD`{nbj`cOaV2(;Ad7EZIaiS2MS zT55G`VyUHfIwCE#y5(AG>E|4cmRj9fveeSQcOhu0)lE7=)KW|1zLgX+EwyYO7I}KN zL()>KTaKlc-s4EL)UxkRv$Q<@8k}RYJq=4|Ew%LP4msStA!?tL^mMTI!K1%;G4ePr z#JGjhZ@G3d+Tq1gOTX=~hdQiXX#Gjql~$$0+SQP!_qsj*crsEM-C2`shr zpB=g;O-n8P7iAZHwe8yAvasH#($ec@VxL1JE&Z-MU9Nl2PUjkF>Gz#{bJEsGOMj$_ zBluzPK9^t@xldQ~6!$=D=JNKqE(vtU{wbHg0Hfj65^paI8SFD78 z8?9wqOCzluf=yY=CYVNAZg7>th&k+LhxK&KF}YKRuV8EAaQB8d%hR~n_Yof$Y3V$N z-QutwFf7Pe?}w2Cu213)eoSD?EAC=#*Y;U$i%mG}uN~IY2^V*lmdOA{(hl*wMc8;r z7w-j)M#wp;&%~WkS!; zAJCf{o-(%sah>LpfL+I4nb7t65(!Yw(hsMtS(D=DHDACS0us^X*ZZ zTLfI0V3);cGGA{N-ONdL5Dl^ypikxWE1lb7IBujPS0-G1UYVdW)f#Dq$c;);iQI_L z3nV>WnTW7yDZoXF>N9s`LNAtz;FSsLBTs-@TT?&7D-%%B*(($9k%9q4?Uf0= z+M%vNJT#28nmbTlnV=F3Y}PsYEh-&enb0RY#$MVk z$C9>vfaDrRTC(WrQqAq2DBM=#6~Q%-={VRc>poIAT(D*LS$#Eka@6()&8(m1mJ1g$ z>|jym+G$Cs64m`R&-U2jLnAFc!0|2%nzN?|x^`TSzTz%q=yJ^s3}*>@Awv(++YrCk#^kA2~Lo`>+ypUm6!md*d)qE7Yx4n>|50gHarmj$rks4pYbkBN;W}N*N(YVPSY)j4YNxcDBP)a0m59&}&0`KnM^LQ- zaI&b}V$V6^WD?7GPN64LkJfM95|ljjJ(JnF5X)*6$B4QwmM*a@$1qkuTXfVc^;^L~ z0_8~EnAe{r%ontVgWwJyWL`9mKoa8LX=rt}nW6FfFaz0+|{Vb`dCs&{L4CMVxV)t1A zC-0w0ltC<8d{a#}=%?t$>hmOn54y^JGl4<77{<%r3IY3IEWnaj)A`IuInr<7BE?g&d=Zk8Ex_T?$(}O#th{ozWtC^Yshv}C_br5kq)-lY(tZUT zWja>*B29V5KDC?5XEhIAx?;hq2C7We&io;H%)s7!)FlO~VEQLEE@b+flB(p*`ph@p zs?U7uLA>DI%kzdxZElj%`2}!8(Rw!}IXJd{h$XxbYJ1sts;iQ0A;VaLS4#;Vg#g1u z z?%qz8K-N)bp{>;8V-Eh*>&bzaNGog4nvijvETzM0ul;U(3zA#~8TZ(Jf@nW-^l+}5hs#WbFD5>*V zP<0?4vH;Kptldih9r^>t{J6`r^_j!iHP_?gB-Dj^`!XamuoNh7%tb&v3-FNatKOpR zeG&`~=NR$ybM=|m@u#*7d<@{g`}uPxen96iu@1P59z@}fUAV;J*7lct!*#M=dEGSm1cZiQf=5%pV^JS*$8}f z$lyF_G-s1(5RxZIw-O;Wf1WgpX8{j`%lr!j`kWBbyHMI#+il296@^`$nTJW!Q)wlF zY`(HS^Bes2K>*b!5IHR(e-${gXeA+60vh#IR~W=0)OgMwG#0o$%!PJz?=Nl*j!0$ zMdRTOcW_Iu(W>yK`pk{^I|Ix+_6>4+jtFxraLnnsBFtVugI6uIXCdlRC87*L)RFkZ z`20yrqB!pAyE&p%1#i2@@U}Z!?QXp5t_IA?R6T}gB_PGP@NIX5;4r2yCeCdKfs?bs zi_Q4T@NM^4(#{dJ8xl@x_|m?=s*x5-ry3U=ITFsw1%{s*FD?b8~uD=C>fV>lbw0iHxfr2Z*>68Fc`F zLsl%rz&)9{m;unM7Q1KJFL>&Bm3g2(b1nW(1Z`}{>UgsH5rbDb`!VrnvlvIe>M2`h z6&KcL5*O8Heu+>;WkJn7B{la3a1&(wcuGp;&?f+&!coD((*Uz(cSy}%MhJ5=&fAHi zq<;qLh%Ow-cPKKCUHtdchG9U`5F#Xos5F=Nv zUAPL)bx{slkNQ@9#;t$BScb?2UKOVa`qgW48mCZ5F- zIyDjFq1naBN|_u_lX$vu&M>SHkjK*n{u}rV!(-N1KnPsmD{$5{zBn(g2C}y{)Mrk^pSmd#>F-{J zEIOz}k){Eq^zQbvGWT_yl{p!jw2cFT!qPDo*0sRdW}#y&jaLCPT@z!vgMS^=xrqgJ zK1mu)o`ik`^pSi3HB4@LthmFh%t$WPLfn$rK;o=3Bu|Zwb%HRHWkza@O~?0zUH3^;rZ5|SYHch+ z@~Ui|2U2y^(vJ7#&&qt5nw9DD3?9uG7?f2<83QH&$FeDsG2kLVwm%eUTQ(P*J}ltY zSyuj^B8biBbiE5qrC5R>_4;6-j^yZ_z{eJ5y-W{6nh_}_180J~5r3+;j*z?><%aL@ znk$}+NaS3SZXTevXMN^n{FVL&^J194YUwz&z%hSENSnJ6kQq$ycC12r`Bq<1?9e|%dAX%r{`TaC@9XgQk=tpvrTWUl-44^ zO#UP(-fIEb;yuX~FNPaT+IA1V7dNaq+*oMfZ_x~~>s-B*&q&#+|6zSyCs*R3K(Fex zMZh^24%E0D`K#^@0i_`&KrO%@9)Y>5Jf|LnTnkb?$v5a-xn!xu3`ozj7H`w<<&wv; zeV+yLX2yO~4?;;aY2TNFvWe6d+V>XVpCs)(UBj5!_AO$?I?u}F<4@hMPiTR>1*Bh- z{5^eME?F8^5i-vLP`h#(m#s<;NZ8nN;N2Kgm2HqvyIGkA6!$L%2bH-|#*y=Zvz56~ zMusN8Yd zw&Pney#TT-#hUE-0T)c^qe_17`Vj&f_?H zF(BL6JLd)CY^6Oq!uF+$#E3P%e_Ev+jo{6;t|4mV;+4*0q&hQiaxt1WE=HgaV2$`* zUS-#C(4o-v@lgnX6&sd9%T}%g>nrj`;;;aoR36ETcSBeJ!!SkX?Ls(P=9#?BAlSNi zGjAFLHLh4EMjKP&mw~@D?n_Y?KVvJJ9Z#Vsnl$cfLAjaK78-XcSPa0QIytXDV`dw- zR0R{P!=HL9FG9)=-pp2s)f{Zdo0WM3!}qd3z$eVmpgu|r>*G@3h6d}I62lsK4k+7V zOXNCM#}{mk^pZR8b%1P*^fEz>aJAE0!oL0z_9$WfSRCsI+g?}p7a0!rc$dtqiQ95T zAulx7C&NNsX-))S3-%oIE`*nc&5sZ9r#70eAQO>HOF@&{xACX$GOI~G79)$yl2bU5 zoB_%{4nZvx^ehz3T>Pn9%y)7bOF@&AA$d~^ZQhyKcxszbg%|;z!HS~w%Q)~E9u)I7 zDdt0fbIpF66!JhOkb6SlwH0&5-9Xraek@zi=opVnHS7UZX3bE7L|!cf z7`$-hGCs-jnvpNG*>{bU4~ZH4srxLM38wD*GKlTi{l(arpju3X`Jm7yBQk0*zM3799haLa5d&(9Db?`;;IrGn{Pc+ zpP91T^Hz)qs_g3+EgxxllTx37#=Q&v!}d5$X4QolJMw10%0rh!Z<7OULZJ{ zeLK$4tYi;Xz9)L>qWEg?;-r1CL>mJ<`;dh;0y=^xnd&=nYQbX{Z#sSCf@KTmt!PBb z{S&oMVIRpS-0h*I`XGMV(-5Cc?iS=F2`#AlWqjZmzypW!rw@Lnl>uEl8DFuB?>h~W zeU*ilFlQkfHE?FttcW}{BzMWwVwkz`YV`>I9)--aMK}A7|rZ=5hGgi;ubtK4zYQpAN4B`YxfL;OBTiwKwBKH`dI& z7yteZh?x)KW8@q7cn%-m$4C8Z_^AIYeg+Md<8`;b@p*SyVPvp zCWwml<9w=EParI6)=xx5dK%z~qH6s_l$+2suzCMIUnXl1Md|nt(XW2>ZOjGs{)gyt z1sQ9+0h@u9n3{?ETyT#f;4sODmtsEl0iGoLOADX)Cn~;h)f&sv73j)v!U!Wj2^wp> z@AOKm?$s$O8DouC0AW?W0cO+bl`B@RXgFozs+Dpv(_LmzF~{Q0)2$-b_hq4Fm&w%CB)naJ)pA@u?SM@GsU5ONU6 zi}9x#QmN4({~EY~594Q6K&g8H5EPDc!6btq<-AKO1KW($RuG1Tw=O(2Q!w`-^{G5FSCWo7iU)HDGrXLtT% zedZ|qwF6vEjfT@Pz*8}z-JPPI!IQb$LtDL+rTTa(BA!znllxILBk{zlgxp0<0+@GW z8?tbXV#P+bgdO~xEnyStMMu4|Kea&XW~I{54*Q-EW$@8q-DF9&4D>muKd z*H@f=g!GxtK4Zo%-nG7x$J^56yZKc0V_X`HJ*YcI5#{Y@f3h40oZ_!SvNE-HoQU-C zr)K))U=+!{G`IO6ZDzsD_K(aZ&$%?}`M}z0*8Pt(#@3?Z29(uFbO4qgj@EeNmRYzf3`{y~e8lf$gvuMH~=^g1e!@{lQ`g zE|;y=c=4T2qG9~|cEkB-L@n42^If#SZkXRVqYmtbe=1>>R>G%C(7;h+{873cTd z%FrZ_qLFQWuLqdemohR=9kQ2kqejLoDm=+=E#1livn!c z9NBNTDL{rnM|*zz+X5`j>KeeZ+j_3K_v^S*#FDUx-AA6cZ1!MeHVh8I{6XS*v?%7( z8YRnCu2@_Gx17*lyG+_QBvYSOBIT%UGn`U $JdFk{(l^#`ex>cFs3+vZejH2^rD zhYRV{K-HMQzi#W8DpwzZhH0YURFG4H9B2wYAUN28Nv{=Srz+Gzh}_x~lE-)P*M>iF zudPY6o0~dRy$r}&H3M+-Pr-$Zd8oRdO(V2w2ErzcD`vQB0+61{VHnWNsu`pofRr%I zSi8}wN7cbtWzkR>ZZzZ$Na`_V=OMv{R?Q(g*Qz;0H??XG34v8}>T$=nsa138Nk@QP zLU?MP+Ae}Mv1(2|?SeM5Y7Qy;w`vZ9G_h(9@z$z2wZo-RUNDYj9e@=Dv!Woank!Ls z?Kv$+teR8LsK29t+m)wYR5e&eX04i2FFD3htLD_p4jHj(PVIKMtW|UBj}Dc#LhW&2 zp%v;C2ciT+tLD_J4%yVIIrW-rJ^Qh0PQC6THnD0>z2We=R?Vq59lAxU=G5D27D~y# z3T0OeXHk1uB=$-m{6w)4qPJLE<2M*QQ`A)`f2UudF6DN%++X?UhTPd4?8^AQQQZ^M| zOJiuE2GcV`Pr*0Wveru347*%lXQgb0|3W}#rEEt0TEM_c*^K&=z=4&r!L=E33#^pQ zXbTs49c5HqgV3GihXvD#11$>RMJWc#WJ6H`8;VB4L8uKv=hQ`!ES*p%Ru;Hy3h9(l z=)i6fEQ3(eY%GwT4M`L-i1043ft9j3n4%RujNM_OX*>p@#7fz$qu?wvdo#zJVqt5g zY}Q-ISt*+h7EF7c$;X`80c={bQa0z_%LHhpY|e87JRwosnDcGR&aqN97i>ce^a-zv z)k`}CUBZx4Q!8b2&E>7YU-q!(I<_+AAbeEP+-TFxnkt)HZ0pUMDx2HvWMEB|&FvP7 zm@1pQEUJCiqoGhR_u6@=sim^{rNvuIWph8}a+b>GSDOTImdfUV>jb2wGUvsFVI?HY zcIG?Ow1}m$*-9ij(6-*K(SiOqmdfVwt&k6iZa>>5dY~!`X%?z5&U5aC2Q-fx6w_=4h zGiWyVIJQ}XW^=DY1qRLL7Y@*oSt(wjIPRPKj*?gpaCL!mFm2rdEW}A-{ zJHNAPo{#R|Nq(4Zk37c|lmp!9p z|J$-rGl&$ciBYqOIc#Xu3=9Q<-|EnS*)zuBniw?$Z+YezHJdz#-4Ylz17mqQqh=F# zaKxw?ILj-?sM#bOHZ*Dm#_|e`noZInqDIX?T5e+0%z3KhU2MlrRpxA&jB<>c%|!U( zuq|=5XC~C zjhf92{VkE$88w?a&DBHJsM*x(3JH*7)NE#HE<<&5qh>Q(bBWo^sM#E)xtj=$n$3Lu zJF0ej=NdJK=+LOyVVW8>hv=wLbBJti)NB?=diytO4g=&EHJim!5m}>Vvs6=&lVj9u zGA_`j(5Tt0b|`DqY}RUSRqS)*n% z(6!@;QL`!6-0NhGn#~~1O-g9gYzAw)undfv%@EDSbyK5eGgQY=jLxXp9438GjGE0D zsd1JdFX5QOonY3e*;G2v8a10L2d24>pDtt1zhu;$fEuKbZ+EiUI0a_Hj04b$Bc3@^ zvk`&!Mtx3CEa@jqafh__GdMqkqe&3BJ*pm0KZ!6HCPLgu#pIK_a^Q^x;7xZLo#`@= zb&eHx-!OUn27X*D%f)4hBF@SLOlce>}>j~Xv6A2qdA)8SgVK!E8M zXeGdGueJO;1C3flo#C~yAGKav`!RDm-8!`sU~JWRxS%84Uf^1OtSg(`) zcdA!pKfdO5mXB#(7y0*VURU{df>$j6R(sv-zf-;L_G5K8wO&6j<!Dy`Kn4*BT2XD*ZI9EE7->zT_X0-w70E%Wm~o400R0|UXIgCaY1C4S^KvhE|F zuyC8VX6f36&S_L1E=2mmcR)XehGZWiZ>83QfSIhQ0FS*$7FeiE<~pSx&jih668bm~ z0%kIqcx71$V1|HWS3OFr6S#WsQi@x(a4|7T3T433@C$yOMrj6V8hNy*M{DuJ9Gm4L zj}9ZdFGL=#FKHn%4ruiu8kdWa^!HutL&DhZ3$YK;4B`z`Fik~~&0o4^k(YOcl6^^R z8zY`Xm}kcWRxBP1X$fWf`h z2A3C?7MHrUMWwa&RS?D3)?&3v)wi0iqX70UDh^oTrjda1yuJD8C@&rsEEn*06B-E?; zi&YG66-c}#?1eB|$_{P{yOLUB;=Q9l^P>nq@wZ)r-|8AHL7Ag7>8e4cuxn?mUAr2# zJ_5~COKQVhlB0KlrFV?cEDfJ#X}FltVR`i~mZIah&F*3*8^?`ymrboUj$7?6=HqeP zY4&+J1?WJ+6UoRcn7ktd#jf^$CNE)j;@%}u}u{bLN-7NN+5 z%Eb1rBORTNIu!M#u85CuXb*^=lwpX!$0Pn8kNA6d6jH?B6CnPc0P*((h`%R5d<|#f zD>o5eyFfDS0#&t35g$bch_4V(#MjXj@wJDEuiT3G+Ren*aX>hQyCS}Zwt)D`sffSF zp7^`5AbuVwo}D{`h+i5*e1*!yPrHtEbh@s|P9yj}(EZ!v4Bhv6bl>OEeIJkCithUY zbl(@CyVAoH)9(w=UBj8~%1w0FF3?@OKzHp@bl(?4cZGnWyN;&lu02e5y)Zvv9X17-s&NE6?NJsVsNYvOcU;G3F{gr)d> z1SF>LWv6pE@MZ*B`MaS!CLzlL4%y6y-R$kFtbAIJ$V7lj5*2TTEo(0&DLjM_1>Goc zRLy#npw=|HRK~h3y5?zq0ZXIYpiYb{4@N}0bY~TZN|bk zopp}aSm!8#-U6_rR~R0QiCVJnH!@dqaE5u^!Z9{eDxgGL!5I=(7;-UQr5 zMpkzsOGTp$qS5mJDH>%EjXr|cr_ne1sLUTMk)-<0p^j-QLQdEE~exD20K#b}f!x}pjYXCN#TXP5Nx39yW zr>+q0V1}Fbo?$@cKM#KDOILE}o8;rpX&_1O1A=;7#oRTLe8BK3=DgYP85D6)g)WZU zFA0%dTooNMqbhn8g5NgyA%H0PAYkYX@R9oPGWl4$*Hc1$zV9!+B7Gz56znVKZrlR6| z9BJY%L>j}Q=_ZyyPy#*3tt@@4i3dH%Pg#7C%0YKJ_p+D^Gy@8M1#JNOFP~KveHK`j zPB685h1($f0sQDtuW%d8f=_YGE3D98Orb1nUtv67BEOoUyeb-zRr3*|w<9QEu%3N(Wwh7du$qY^B`lG{%zn5sT7vcoOX?%`_D~5(66WpqxMyBe7*2IjSt&fqh(bQ7^zNP^W$PU5>I!CK)Dw zoSFQ7z=+8oXC{9ezWFQ`A6HwCrf!cjkE3qHc29EH(2t0tnaaQA&?*3ETK<&kYNl~l znBg_KEA+h3t!Gq5UjR|skjv!B2FYYb@;bl>$z(<{^<&c$lbPdBgkSZiIXG!7*0QL zH?Sm3NvdTtDZuJHi>J(ZG_|cHs>1>;URPM+o-UdO;N7QHM%Sa}51@=*d1f%ZhlYUv z2B;V~-osPA0T?OzIaETvAJlyaDtjTMcN;?#l68{1t zkocW|lvfjupwbSm)dhekD(&DpCrd-69ZaPL_=zG{a_BkmS(8_C*1J{KY3Ei(&%^Kg z2>PqedN*hN7$7R^-JJNukjZ*CXZ<7iDeIqb=)>??lY_PanT5twMRV|b1EI}RAvc1y z0jX6v%5?ewpmKFqU15!?+0<0fv8xYDITGTtdt8@*_-jornoguONNf>H`q0YWx zVSR$qRnzX|b;V-93ZrT0!^Sq}t`KcGiwe?qn%A#_rDSm{4xZtrGNNX3t1JJ)o6)c0 zkZ&q};+{~>qwwcEK%YJM;GYp%=pXNNCAk4l+gcf&18I6cG9Oi7aC?U(_uGJxpn8Wz z_tH4{K<9T@cJCk`_t|%tht5VO7ss~@yvxfQHk@d?a1BG(5CVRC5) zfLFq^=z2I_BFB&5_$xW?hod_b(M6BIF`67t!!f%D5PKVr-4QsBz_G{$h7#*_uy;}J z;;(GGZ%cU!17?*E=fBHxGx4{4GJBTf&cWZ@#q?Q0;Pnh%R<;d)4%*1^e== zIb`0V7g5g4cwy!I435QA<$F*QD;0#H1me`o*`!SbN%oQI(NZ@C$yE-P~JQJYHUr3QJ{yQvJ;%8S0AIo_LYT8Fn zi1ZqAKPfseV;hMH$8D(fcV=p?wfnKK{2gH6TKH(Fc^f_!o$ynqZb{I53;%5bChg## z!>gD>B%cP`UNna%AwxOXZY!$fHB03km546LOE}7($!nX#B&}^`^7`j+xzEDd!?hsF zm?HFQQrGP{l6H;6@k_pk#elT@s;GtCI6$A6j>d6m<;tSZ`?P@gd-^<1p9A!{2cNmGX*;YzD;g|`4uMk{f5P{wLC zuJ9nCNGATo37m3r0cwc`M#>w!lxYBP$_J6MoKlJt&`GHzf%vo%j`*sSRVMDsUfgA% zEGECS^OZEQDmn~55YYmebK=lZEaz1EtftQr`plK$Go;V>}AX-2+GYFY!T>{T6>NCEyEil>Hf>?tS3<8yvZD*kwSmd@;h%6ttIl-IS{60m6QtokiHwl3w9q ze9CB9?-t}#PD^{RJ7LYG_)jA~Q*fWH;^u)$9QQ#lE}Bh6{u4-3jc{bHB5yU3U#2>! zHA6HSZ72>!+&uh1#ybg-HGs`Cz_N|-eSkD*G};)X2HQ=Iwm{}QMiC95?04`@N}`D1 zMYvTTn;~ft9(^ngeewE9XfVisdxo4m6D55Iu$*o5*+`#S`Yff-0{TqHr?3do%WsB@ z8|=sIK!fdtV+jh&{RJH5kK=;|JA^;?5%4WI%09$rBHlR94WrxS_M*=qe9A}S!+mT# z9Oz@y@F#m3n(JyL$T=CGCA87~2yop>xZY(yG6Ml00akbm0A;k*a6e_Nwi^l$5{f5M zW+!mU6DC(h9mqJObf}h`vIqc9`6N=7Q%Y`FD(OzdKUKw7aj!6O-}T~B!=kxp7yEtm zuMm&}5$h@Y+X0(rfMs{Xm)MV+i*~N-&{QW;bIp)Bf1rp4Q1%9VLph?akkEEnZBw=- z`h~ifNqC_}m@Z$0-y|d-ILjy}{aA5Y37DGP^$U?;hqk6v;(n|wU4-B~s7}gvD|`hs z<>Gx8So+%H=|;SBCwhDq9+=xgJIVzT&mfN*frOf~_h2NTHYyx?7#!xag4Tm^z`UIb zb-hBTtXT3A)YTr=KbPGkG(Fi%wXmktwm61X44`(wQ2jGV-dDs?Gx+=dn0L7WkO&@|S zFb7J(JBZUX*A)CP7d$8#1?k8XHyi%xbUH&k9HI+wYbku?iuI`7BO!`#g#l<2tB>#o zdcgoR28`O)*0tg+$)k)inZGJ%X~QDYW7@xa%NWA2PCYwtkf8;vaQ;Te=-5&~HoTN& zw8t3(*|uxT6t;|pX9O7XCJLK^TjRCRb)RHvBn`x531;Ikclj*?3dnAnLgp!*%RMS< z(&^O-_|qJdjA+qRbI&qatrTQT7*R4y{EjP&?Mj&RV!(5%_Ed8+ zENO|~hls-V_W4uz^@Zn|W*Nu@)MG8&d>jTKy7;fh5GSRy=S4wlS7la%>}x~+`t{ea~ugj*Tm4+sFHTN&wbgWyw$ zw=&|V0HB0R8zX-wMKHz)73c+kxKmkTBge7Z>eagSsj3SYTZEf*=<>PL=5eztqj!x2 zXSRoOt|W?ln?CLIX`@dwKGk%rXFMX-<0q;@AC@412sO_DHNlu=!>IEp{KWE5XY%@E z5iO04>T11~0uF7#?jn9Yj}g`dpqvu^qk;>zqk;>zqhc3qN2y6fV8NEePI{N6Az(jB zdJexSDD4BUwDe$U>A}*{V@pdvsx%0hfn5~_xP@793VsbJt8Rg**}z~~1A}D^j4f;6 zQDs5o_35fCz^_G}_Tsl4Wj*GV)hAe1pI}*iV$14tR9P6<-LA?4d@IVi8ozxgE5Fp# z%MF(02Fr3|%W}Q467M8ofE;{dZVYRZ@Q0?50b_4Ho)G;2oeg~i@qSP7 z-V#ryVmGD-$KxfT9`W||7@QwQuSO&`2GPqt84!{_0b_4H*YOgr5Vik_91^0ctYu^a zF*H!l#GhxwoJ9vgj*%Jo^H;{OTj&piF%MXX@%VFR}PWv+he;fw#8!7JA}W;EvB{@y%Fv3z0=a zY?-IY_V0j^!nIMTS8^MNjf z+mheHh9PV_h1rM^e<%=fJhx4QHqIS~N8C*aYtQIk!1EcF-NFqV(^z&3uX>x}ewJmo zZlSnI9kyjTF=pJ@vRf=jTXu^9F0LxButW@KM#)^uj)9bxELlQzg_c1NKkFA*thhot zev9H~>W5UwqJI}kuwEiEfqVqFvflBtB^CDz3O z5XDnZ-do=ZfN@uVxuGKf<180j+XEmfytcBqbm?sClFs0A804E%T3%&c8VDh4U5m}0EyX(TDQU6*E}m~-O@-< zP%v9f>y}Pqh;K!$+mPNEB0irLH7EZGN*ilMt-ByLjREFb-MjswGjM{{z2}n#=$S?X zH2x(6^{uFN@AIAkdQtPN?nyS``k6M<;NbXoCw)PgZD;cMt0G-66)0;K3|5QyQrKH)v#Bd^Gi|dprC+VH0OX& zQk5n60RJU?-yN++sN=x*D$zdjW0)n`8udNavdv@lM$DeAIbZ2PF9c zmh%WBhO2TB+{VV!9#o{|JgTFnMpoc;q_!5CJ~ynx&X^aH7V)9Auqh02+k)qkf>DM= z%;7HtulAFUiZn(WEax#@Mn>;2HI(sY_Z|@RP5=!XK)OCOsCCyieu+_jBht}yy)vBV z#VOGKA{$q%Ya#qC=MOq#i;!QtQ33y`fuTsWp?(D(r>(P`LmK8p%wXZXph2!e>P78M zR7ky~y`Ui7(&01b&dVB@98nvJwQE+aI~m8-omVvXq(<2WDMHDEcfY51@Rw4SC01AbkDM_Jv;CLy$i+5kEJB+dYpdaMNPQk_wDFQ~r}Wf#pE zZ4(nxw^6J#M*Bm({{RKn8EX@3;?h$@Sw_y#!EU5^EuPv^yfe-o!JM9`farO)>MThB z(95xwlWC`*LBL6tOISGB_P1!2@FYA2Noq`w^bFt>Pdr}$2Y18Iu#48qiPVVAR0F#a%pi1Jp-Q7^0_55F{Ih#nK`d`5ysQmiy+wH#Q<4q z!BQ;WQmiPQU2TQ2@7HR%V}Fd2LXcJsE7n-4ZuYlOMwl?O+?*f5OLq98Lohp`^me*Njp|1ZFdiEi7)2no}(r0zySoM@(Oq`9Xle<)0b z+1)dh&p~KI)N;2fuWKb!K5qLQWE0YtAn{7^Dp+%GUAM_{-3#8J0?0<1t5s(9F`K*J zQd}MiQxZJU(YOZ9`t1)0S=dM$pz~9Y7{rArr;xX>#v??AdjlB}3$w?)iMWhvU=|B4 z_Xn!mgu-jE1WGTDySo%8qwVSGTL@71b|NG-KP@A=KT*C!&V--EbMI83q%beVx_7BT zDVfakHMek&B?05^Rq)g>4OZ?xHhDHQEsU4;+^W4&6z|DXxG%I}1I^q*;QFv=CiN`lcqVd*~ckjm((6DXsgku>co z#--;ai^?nJ5wa@$*rnw_-PXQf<_67rJQsi_e6}|-1(v_RoiguiBuxR9mZ=%R5|B|C zkWX2IF0r!ZKEGCFcqj=g(@rNNX};eWN%J9IV|r=2Lfd<0+=c#hxOtnomsLFHis+9>FPQ)vGS`M>(r#m z-&JMY1y~JSYJ+JQmB@g+bqDQ*-M!vq0 zH0_*KUR8$76r4HQ)}FH2xFnBxlhl6HrUG-c8JJLqG^k=x`Ai^Gg4_I7Si^#qjMGF{ z54*d6>rkkC+DNDzZ6r;B7B8)+K*5Wt*`z-M|VTwRFz*h@has5= zL}IL;xx2*=us})kl7RIy_YSQfIuV8CPq{J}MFQkq-ns;x2+j+YbNhjbuWKTE+2)p!HVa(|_PWc@4!ao4QSSv{-+ z$og4|H_WQWdrXIs^|KV(mt_qXlQW{;6FRUj1%j>|#yMN=(>jc-pQVsS&wHN@>!1Lw zfbDX~v)}0$Wc@6KxtiZB#1-2XY=OGZ>tM2ers~jWxra26te>ScW!HjUOeeJci#mv` zpG9!z9P}WY1@0^2Fq#Y2&mx4r9>HGK!10(Ykqrj@0+MScHxnY>!$PdWyrKCdPs7<{ znENLUEznScm1N*l7=xAeSz78rXSJyH&lu0iv7&Z8-0xqsH+(g-Vl|1Ff} zR}t~7pSg#{?cDX2VBUjzS?)XHP6kv*u*$sx%O2`sH_LrrBe|^iYow7L5qmk_a`d{> z8kFrb_d`KlpKYI|ij&d#`|*eB(T{a^QuO-W13K~tqT&=p8q_PzvX%>X97zYvk=Cps ze!f=Fq>rX~n1@>Kb(}S9pK*DXd%Y-vsDcG2Ag*Vi9xNk*^(=0FUTr{Qtw#>u7auXk z*%77pTJ8;+J`*%VDa|(sr8VbyeVO&v8#TDVfGzh%oxUixJj=aF2h55MQ2F1aGnyCi z`Up8x;LSR)G&az3Z`N5>MA|I(Q}M8FBwSK(A-5P4SQfKm08|xu;&1D2cS z94eoJhBb7*hFWe|r~f%>Kq^X{_8(xsN)@M5Jz__ANLJ8p8hTJeEw`Ia`=rg|0Y*0s zct!zKI!C92@w2!P4O7Sb7F>OXaL?wkh?f>>ah_x)X6x=eTTM_fTesX2`w_&X!HSKa zxuv!myqw6o=B8DcUm1WKiLPs2yRNwvQ?rFSheR+lX7=<@r(3RJN#1Cv7F_(0WZm<* zRZa9%WQ(mPG$^E2iyCfdgwiu{6D=)*k&E|W+{HG%@`c%v9!Qtkq!m!tX~c_fs1hEA z<_H-?eQ)HdvPr$Phpsm5?1fa@q&mX*nQm1xat*qm39WN)SRm1sHvU- zpFtxqcWwnCxe?(T7ic3GSJ3I@(6a@tnd}_Qv8J|m`&vJ$oN?xo30{s2wEa* zZEk6!0i=l=f{dThn&Ziq+icTn4H-YfG8~52mL|)M>PXij>FTxXDcyPvx&i4x#SJ!1 zLdp0UEp#E9jXHdnh)_c)#@nQUyA{xKPt)xAQvfiD!5G5x`&Js=uqVMrm#b*G!)%)Ik;;alx@B!EaKb=ixx<+_q_g=`tr0d&=4eINu-QnPW?e9T zri8^P&8KPJvZp)RroB1hc+e8+1To_no%bli&RF2me4K&4Qn!}0CCkmQX%0hUzgGOm z*);ip@iQ$>GHs<-Vt7zmZ8$!uT2grRAjIDg?&Ql!J_)b=Pu189#G7?Dx@dy--X!QTSeG{@xGy3Td8Lc!@!J26F+|8w?0nMLqerXVmcPJM^ zf2v$i`0i9LW&F(jPdjOdMg2z^KXZ4m-&5VLU~W~~Asat)ujJ$;h1440Rh)qK0oJc= zTSwF4t9311QlakVT9OD-_RrjXI(@1cj)wcXJu01aC!g-<%V%J zaVE!5*lcEOM&NAi7KH&YS1xNL&3VjB)7*4_Sa4!dkCIj09u`+%j2epCKg>baNNOWB zu@cV-ogA^M#75hcV;@#i>;5jcDKJVzgaON!5{%sSB?2R+B4-r2)Uy~ldl zjpYQY-eUvxR&L6CoFHPVdS`NM)e2dv=4gd%*bJZqF- z-o&}^PhyX}8Sw6CWwhXw%IF(7@s>6mCr+7TKas?}eFqC`G%)x?5~nVJ&l)3W|4+Y> zT^(~OHxO_OG{3DlI(a;vd)s$z?TY?#k{p*DMVt~eSCwiUu?|blO zYilBZIv-KP@-0{n$&RjQZ2{rmyof>3$MD!Y+W9Ri^EXJ62`drG_c!(t*)(A25Cns3 z-X=t5!jpr1{!CjUxsAM|FTx@bxaBstfL@rZiDBXi;5*(K4HILiSOQn!BBaD9Jqjoj zT0BaJtv*y6{!COY=v@xKLkKIrDmo#dD*7`dy=kOrvpbm2UIdKn$K4?)BzY)&=y`WA zUmXYEByI+^yml}A6VScxWL}FOCalR5fyQKHPxoNNePR*v$U6nFDGd~W7Uax1{`^Rq|X!h zj6a{U6OaSDDVGQw&yu4*9Iy^)O-+YmEFAb37up5H`V2&}LP7R*%y=Wl#IR&c(6#Gu zIbnTebP4h}XB6^cX*-6NCbj}JmN{<>o%r}6d6`aQh!5&U2y5EUk@_M0CLm=to6*Rl zsP^{d*0k3Ee*?b?FKim`Qo~%(w8MbEhu>;1Y}R5<*J4e#fQ^lx%5VNO4L6;39oF#B zaaYD(zU7XqgR)PqjDEZZ4><$Fzk+U(>fl2NK?q69Mt!$`_&K)hRd&-W4M=ccT68;;sTm>Qe|{3+N=#Y{Rw3$QGPeE@^t`ZfU0*BCx2a)k6@n8n1{5D`yUcl#G#Lasej=YEQ86QQQxgWwMD)J>p|EY9A z?>C4uH3g1W;K&~i2RZ=hKW8A<4$AcwF=Z|MM<}y8IPz-fvk;&0cOiW0>2M9pLgI7a znED-j7Q%;rV}w3Sq%2g5^I{qt7i?8Od(~#pdy7d>%C+?z*W)JCEe; z4n)XM=ddhs9%(Kw1EQLd4-MyJ3#)`wsL9A~E`DN1-o5bV-HwmfU(o;`bRir8UJeEx zfL7j&d``F|NkA4s<7(d|7bZ)NdS|6IOHAC&mptTLCw0I~< zCguGJ#mD0L+7_JAP^OK=-*nn})bT#z6H3#@g9!`)KIVcako{5dcXr>0U{w$Xw%YpU zre*|vVzSXFG}M`pPjyI9t}^KQlw973YlmQVs8?h;RlF<55`^^NRvI;O|y7hKB z51#p4lT#%3{fj}vpWuhf62n2lK;P%!ml5;{1rL?8VuL4>bS`hIj2c|sH- z@FXx0;(d$ay(Pw`LI3E^@zf!(czYf|zd{*^#K**X*&ieBcQ~{1+L<_%yKo7%8n{Oa zQE?YavZJc3h3_DyJ5WB0KeV8UEYgvidyL!*$i!@d#D!i*iiHUjGhJSdKeU7>L}_ib zj<<7quD?+Oj;>h$E-UurQ5Adp=!zvARk7Y*v|=eoRcvseVya3*{!x{z^N3j1FXz*4 z=GS~fZgx@^t*P3xDfTDzuU*_`TS=2FG7=9SGY%bF+VO&S-i8@C24dK<^* zE(_ec00*dlS73ZO<22y?C2mZFLbcdqYhI0&Va$VS>CT+xfRoHkim-o^;%0#3^i2wK zW5ps)-=w&ey`eaBlR^bMacVv!&sE_r{OTr!@+Ts>cauVal8}YDNueOgalxAuD&tff zq+ldtZ&JYg15QbNuA3CUA%x9Misvbv9bUf*w^?Yd$Fgg^s}l_z)AOzh+f+tKzcwx1 zQ1J0-2RA8hK?HuW99Ir-Bww#UZixlyn-noXb(10n#5XBoAfI`Yq7cQR_!+l{P<-c` z6h44&QUttMrrY9s=_Wi<~-lJ|(_+fNc!MjP}gO9pN;RkiPN#O@jR{AD|5A<$Q z_#les-K6lrX8pJ$fH`MLH!1vRF*hkXfde-w{E)y+ilc$%CWRjobCbdc$K0gw!JTeW z_yL`6QuqPpCdKEuJE1R2P-Pd2pg%!AHgGWBJOPk+3ce zz5OvAnw@Z2&`Zyi{|Xo;l7tLASB_)(=Mrh@SpMVPK-%E3e3h|9$ot3g6)+SZJeIFu zPQp*qfx!zJ16LvRqV^^#gkI8KP%n5SU*(V-ueMN+K9V0#D{t%DR_btYi9V9A5~js> zK9aBC!{R#~$yeYmpDK6$Bwhf8dOFSrqCd2)csjITIY)HMTJdT{(D_i;08f15?2KX~ z%lSyW1@iS82MW-6{#%hj!bl>=Xq$K!!y;N5Dy}m|`$GxGQ1Dn=F^&^&PV=kiZhXvX z{*|0Zq5{%sel_ML0YJNkbeexFM@hDN6An1dKN=|Df+P<`ZTu)gLp={lrk z-p+lN{rZh@d;Ev&)o+a36B3|0;^14HIzMku8pD3`#<)GXi2de`aXU}>ldUAt7em|~ z$gD4a2jAH8tGk;4J~l%W)b zF!fU*s4oCX%p!!ONstY)r@JRB=o z@5`z4^LU5`IduyW!gw0zK{7%9KlJFf{ZKCyhC&~CQWfeQ8D|uN=gEPQ7pTvZ8&L3I zr#YytxA^VH&Q%3GehhY!y9dvcYmYilu06q=%%NU&G{Ao1HI>m*r&C73^W@qSJWsAc z`aHSz1v58js$&NBv)RZLWcdBBDf71`5qaWfPDP(p=h}EATgAsC*%Uu;{#(20{I_-ni?wyJ>LiSfN3xN;=N0xqaX!w>VEp8xoOX(! z@t($bQqizeW7(-fjpL~a%_N@(2_rE+bwY zPg2mq8k()4mOWUfo)E7(cAEC*v0tT1)2RyLSym}vx&{_0pk=4)l(Q20rUUUI+B+}a zoLExnhUj#qK!MI@E9g)StMgQEtF$JKNOtqC?&bCmX;8gDw2 zN;yiWJR{yelWC7;Af4t@Pzw;kjt=s%T5H*3G~j#%P??R<>Ao%EgXdON;8-2l5gTaP zV|7-S3063xE7n0T#pz$Do*g=a2~gM*GkXgI%s+N%7{cgVN3YkmPuE zHk?j(deKvn?Ps6v^rEGq9n|Sgd$IkSeuUw$c-5Klv@JRzPIt0?ZCBdsIXHt^$MmKu zn?ya%cA6G9XFKg`o5VQIc541JDQavQv2nJO`!Ftu+D9<8#lyDod`8|>&VbLL83}+U zB6CCFY^P4ISi+p`^nhRsmK5HM#x}0Eg7#KBg#rAg?e!3zJ&WwY+;pA{OS4I(Bq?gN zvUHpDJz`d^T@A5GKO=6{(qyP^HCM~MVK%8oIQ0}CbMVq0&gkRdrIKnRY*Kh=x^9|( zq)nO$&Ri;SGfMMMni4moZCb%29`w#z+GBK4k?qgs+QIO%e|ICLGXhu?^;OC-A}8TqV@VuR~?a-IPYWqUnk zyBD5eG~XB3Uy88Ai30C)HZ+`Et8M^^G_mi7%IF9pMjafR@Du&TYD68{3fRy_`ka7| zHIm|dAK`aXoSvd{IPfIhqg#l?-l(7*ccN1fY`Cw$uN(-tIQKd_XvdvL(Cq|MJ=T(O zYH?$GXw2B49e2t}RAh9v<4y+{tZ@RC+m(?EybctzTj~c8NjhMy@Yjnfqo)Iv5d&fV znMs!+h;}yvmI>Nr2yT-}!pdUeWeB3)&G2Wp!GK{V2Tz;~FIpo@gpuuu@Quac6keUd z5jD!%-d-`haYZwB*w3?nTV5F*UWX%lEo69dtNk$iO!s%;a4JC4vG&WLOlP`|Af}js z@OczxrTq!TVa~{T`&d{@LrpSpkP43je82;8Hf${z_Z`5A)_w4u1ax%Q$X&6ThRaQA zpca?d;^5ghYH)64^!JE=hewi2Y$A!1r$};%O(ZFRPm$yjn@F-9{_$JK;zWhVh`N`KmJV+yf{UNFdq)?A7dQU_+)>wH2Nc18T|#ao{(bN=V3ldQ>l zuaims*0H2Oocj>n9w^Vi9~#pEi6FXtjC>OiqBbBG5+q#~ z;}4CWLZs3fUsJM_x{m z)8XXECz{B%m9Nxsj+@iQajSogxMgtW^EgMVjF!mT&SA@Oq>uB-r(Udrigt0(6%@qD zJY}6z&ZR38VR;BA|9lJ%0mgL;Tls1fRC$#j;mG?BBJx2v^GPM=Y-)PrG;UZ{Q#Kko zrDSvH@@x)G_HghtX%22G=isd-n5j??7~>FU^$=KtT+t zO=kNX73_r6CbNC63U}eBO=kN%x2k0aju5s=)dCbflpNQfH~p^IG#A(ikycQ zeI99Ct0xZ>_EnUZ5V1b%5+b#AV;OP&17NBsnCm+HlnF}3v;ixWJ|jayG&VP7HIL7m zlvTH>X=8Is=8E-ezQhp=a5bI&C|;bFo0*fBiGwj>YcB1RSa&m4U&ql9zZ!JN<16&X z-5}K`E0;#6ZUw^M^hb51ApLw3O6g-FeP;4_2Oyjsq`!~+_=d|(zH82lI!`g?dQlJ3L0y0BUt`O+(<4= z>f|ml9Zt)gRfQ!c++vrva&|pyYuoCZH(=US-#oz*%cWR|X!13QwJ7xa<&wPdIOnWg z>!6x1=ir1Egs+ruBW6N9BGf4-jM|BMNeCp=qnkCzY=o*t5^d7giF^f=>w%-FLv(w+&IJhA7`|ZObnW zExt6AumSP&8I%OX3OMC{#O)Uc4F7;`{0!y+Vs@ziMELuUrB6CO$wvSlPz2Y&1^9Gp ztG_gaBh&*b;YnG6&ojtlz-sbs#AjRqOr5vGQ3=Pui{QY)^^_~{x0OP^562~N47d%B z0e9h(@&G=&0ZLBJfbTK*o}rk(gX6Do(7#lYaMi1pz@Jc_e2EB@`Z z7^`k+bX@(?sC^a?{zhtkBQ?K~nqOXOw(M5B-VYjwrEL4+^5{Uyz zBwm5MSR@W4k@yIF14$&#n65?Qt>hq?xSt#(6W@Ttmx%*NCibV-r3R8b{Fq{qJRDf0 zO1&e=ztPEfVUB{f!p+ zMYTv$nOTior{tmOTzQZlzax1F)p#Atym~bg`}_x?I;1|0~wD zzU*u`t`SC>)oS9X)4_J(&{_C8qC2tb#c=kpBFvoPs%`KI5$o%IGJt#Vb00^1+?%Ye zow=lZQEh3-;w81Umi(dfLrN8v*1W1H0%rvSe`Era5Xc?mfA>f962qN75$U8jy~HB1 zG%gW)H+DbVDVQ3`kCeb}5H4{>BGV89Jv#wT=@2yBM@T0Up-2MWxSn2$JnS!bqlgsE z2?;+^_fd$Hie361I{z?5iKzV19DP*WFlE?NXNV}2VLZI?C`@}3Mp%?IQRmJndI6(& zE{wgsQHD+dL7XY3yIiI4c}31hx1>)m(Hqa+Q%Ol-g*vjfQTM(RV!Zu)FXXY8O@y=Y zGfCE&pwc$b#SEGY*WQ8H0JKtcPE427KztNB2w{Y*j(<$2a)Rg%_Ol^$(=yQxlyao& zW0M|;18jz9Y;+BWdbulN`00jetSBPV4G*M)cZ3ineTZVTuV{_(%b4yKxEPFd9gt~! zNgo9pqay`j))!;BSUwBK@>!hWvu;5?a}1w#5As=$SpJB_GMF1=m!6a@n9fuE`e6lNO`0@1gb{K(rs|!xWu~x0u-j zv`^KMzJA&pqBudKbdRNPk60Q-6pe`L#JylRbooq6chX?*LNjzCq|dJj0WyL?69Zn5 zs+VS8qAI+-eWH=Kk7?W_qNwThh^r_{P12d7rd@&*rRL$Dt0_zOQX`x<)oGo7V>UqO|y9pbSMkRmyf8Wie-I7OIPgz`Ct^TyiaU|k>1CrwuX`A~h*J$?yO`Dq-7WT3}s zkbp*Lns6if7#Ab>*fSzir&O6i{OQzz+(&6vV?Oo-AysP(q=q%tPoc2M@KA)@HYkiU z9hTB%22u1mJ}bcDsA{&KaZtSE_?0Do%*_-zfdOxP*vjD^F<}B6xF1e`s7p-pYeC5- zGm^R!bQ(1C0wo~j6d!fUXzCzcV0EO1+by4p#Gx31lagWJg+TzG31-Yt^mLCt=xd#d zE(&0YvWh!J^=UOj1=f9>_8|Y&k0lrk>}C?J`XVN>MFky?bU!K}}#e^6>t zXIUIT5EJh5%k5udpwUH#jXs>Fq-Ghh@rBTVFv4OII zWJYWc8)rIBrs*VEeoceYFgs9JpqJxwD`A_9Zo$2}7y96MpLoF>CJX{bMs7i1`aNlq zaZ>8Z6phG2;tj?~sFxYZ2-Z=(Y$}S^GSyR)^G!tqJ+DB=^AZ*syuZAr@s+w-u)q9| z>(V1Y%D%on(NFcu{;}OQIjBzzF#5#6pgxh}t3HuP&xji#g(1~+cVF9JS#%6%?sLzA2V`N&AWXo{B`;sDnX_n7}D(y(5Wsaffq-l8N zq8FLIZj=a`ae0x)lJWsvgCnt~;dk0`K1S3H(1}zm)rYeJeT`{>PDK4S$8@?})sM#q zRH_^wNikqaQ!DL-3%gQ|8Ls6!5$}89*y-uXC%@1IKj#m&U3(d<)hUu0h zV5a#L@e!O(dH8+2DBxuR6bAv=VKPF;s1;fbm=%b|%rHCHMt*T~fTM0Fs_a}NN1$dH zCyA62k|Fc`wox)<0RWw4NU5P-K!z+dFe7}*{G3SaldeJeKyzSOM6fS7dGR>^ACKN@ zI^vk&x_fZArm10IIzpqjrVMpXR}I%agW~7&&j>vpidCER*dFBg!1VB6HaYxyXlaP} zbxpU89)eX5%&C2jQM}hn^Gr}9G_(uC`WW6ay!Z7G<8!S07uC&$jzu#BiQ zp@Dv3N6m*){4%Nkc3xQw$RpAYmE6T5B9)mI3?y9Axj^JHghI5;M6#iVCx#JE4EJlH zcw$5sJTX#73i8AkWPvZfFk+hetIHSDa%u=p&_h29xkSx6JR6|yK*EbXy$zZA7!^LL z)4WX$0BHM84eAdJUSHD~`$8JJO!ctuAvsyL<)T@7plW1BL?jNn)wBpw*l_4ss* zMney4gJ}YsW||bEE>JV8%-kK!`U>bk*vW8;r|Htta_8ZV z7FBqV2n=sV*ZKN~ui)SVu^ZfH=)BGulo9CQYW>SK{Ls^IXnar@eZ~r0Cmu0PPaQQN zXo#RBY&91WxdUQ`Li-Yx18dBx)6!~YXDXY;=C9CcKc_kz=T6vc|7K)DulUTv3*X4mZ{(;t^6`!K^o>5sTgCqQk#F?T&#jMs z@o9OGxZTYR=u2$b`O{mo+@0XhmSfhcuyyCpp8WL}TBxEq56{;7(2C1HJEfyz(=;kL zGl$pApJ>L5IhRpOwRb>ZMuy1#0uEH!P8-^^fWs3pHFY)%I5hJ{N;(>*M|kocV`got zRC5|kPt$3J9>@yYdclo<%+b|y5@zQ#^~bDS`Gs3j5NrIWauh|ys7u*(88)@E7SF%?}Uia)`XIf{;OFyZ8w^XZTgMyv%7;4499<=GX zIJg+YB*E2)d9w#iT?^i!v0Q`QXX44gq9k?4Amf6yaAqf_G@rvq5$~AQC6u6e z$1E)cC!XGRbbxm<3_qEKUyzx;xGW9w)n^>2^_rhsk5;<1OrZUg&IfCQEt#M=GST#_ zUPevmZG<*h%Rgt4q*lrM205u8vE-LM`K2*MD-foG^g1h;%-^d$#_ZMN1Q?d#h-I0{ z(>yO%Iz6~oJH*cj+!M>&!~Eq>#k_R(%bQVQFIKY+4m{}HSii*~2z}N!d_CIdT|UZS zWKzs2FcX>BN4E{6VXU-TSo;9_+l}7)Z4$2?!wOw)tk{ z!^W&?GjBJxqz@g5S{Tg2Kk9{@UTz>NrGmy(%KcciEwqTVlf@%i}PF5ZD@p4mkn6@3+BieCaIBeD0%BABR{!Lki+NtHGZITTmwZD47E&x`%s;pb`g@{muhEQrS@tn?f>Z zDl-ncaegNpg4lN!ZAK(aGa|u1)2c+5k6Q4o3CojWrC-koNDb&PGdqi&S=74&f=u;p zI=aeICD4=S8d?TmbevUp9hJ}=Xa$87AaL%42>S(98*iNDUhtXcI!#~v%BL9ur<@dL z!f*vw5cR=|fH8rW{opja8CVF6+t|sYJ6K-~M zNsDEhnV_==({od%QO#0-o@J&soir0O!O?n`*H*-6W~vi&LY5C&P={A~59T+-b2umX z86wSWpHl%KGHsu03XqqkI>rmhNT)A!YmuNF8IT$*P0VavG5VNbFywiFS2=cuVP{-N zQ0$yZ44UQlA0-@UV$Mhen9&@q4bGZ!ee6_1(nEEVP-Ozs_EeCZCha;j6`l0!VejA^ z>fhwD7^xZmn+~{Y#_cRD1Ls_c7dxN(@EaFwOKkO(&VFd7S8VlvjZ>76`+s2-C#Fq< zx{Z-{kfPM8xP=8d=eMP50B`LvAP~GGLIIdr&4FzDQY}aH{+HiD_SAWnft?Qr1_!l& z&8#9gC-{GE$wUcof7P81uxpvF4zSa>!6R~42iQqB8>`W#ZJj(x?5qaT9q;j*D=?&5p&yLWIH+qsJ^&3Q#4jo?yAe=sDHOLHJ;~gjBfW z(m@JZB+)IU#1yTNbXIu06_S8_J5eVD1ysUXoe+)uzeV81E``ulIj%WRq||u#Mc0T& zfTUk^83heM7lP@|j_yJ<uJ-5hT z$?@Y9Yq16TQtzfkUtJ6Gn%g)!loow;Cnn(p@%9-LE^pC9O}OR;B^6eHjjSlqg;RBr z-~0f+@GkJO@2nP=l5l02W+X5cfsI_kEgVQHq_0qt>DX97w#W#w#Q~&vKv)t0ut;A@ z09^vdpgX?Yo{CslB328>)q#kdvc~WZ$?1PH`S&>&lD?VLshzN|x`^ya8Z(z;;Y4?Q zH7CU^K*TIR@II^R?7sE~8Tc8UE+7i2?~d^zs_qliUZ4;LyEz`Y_xd$blI4Ve5a@iD z(HA4ZEX~OR5*6rtX6=IIHeCv4nMK`UypmV})sV2A=wS3)!m>5zYBPYe`RdJtVtWDEk@lewW7 zTtcF2ih2Z538DI#_Wt+LsFYsxwOU;9x1nG_h=%-r-n^B?eSfW}F%Ku3lO6+tlTCkf zisgQaCtTT^YL;pTnWb7|P9UKB4E9_7v+Pg#F^IK0UnWysz(^G8e~2_Z*yZ^2h8Ze} z#d%TF0Q`OTPRdD8pn#>v(5UO3+E82{JEin`7uc=SsVq8-q?wM;%YxVR7I=;D(0Y%5 zE!v-a`7*%>kWQuf5xkR13dc#*Tg+~|*IQ`6y>oBz)UQAfGE+>TraDJ(k_oEBE|m2a zZ17Dj$dipX>2UK!cR;FmX9?UL06WcYT<9Gwb<|U&YwjXZKiY_V9Z&$=={S zDV$KzfnLplv6UD{`O4ELkzw z5m~X(N@P{rtYC3PUqB3f&ESZ~Rcp?PI<3qM5F+)}r?t-isko0_$-xn*uumI3_Z5?}+3p0dJ!Jew1E7|7(W z0l+#~SD|X;Ua_vpb2qPr6O{(IxusRPGqX-^ZmC}n5B||J zJvvVSVCpy)Kx2;;whwKnjLMz1kR#J%O?BpUnYUBUtCl~vcFKFURLcX_Q}QnSeZ*>) zKgHi?tUaXnX;l#Jqj9=W_)9<=r>C*Q1Uxu0@X(QiTYXRMtzp4JvXFY!2__g_*>KV|yFrRSE6 zJtxbA9R6r&R2~tc*~z+d=Bs-RIBh)=TqZ>8bZ6m)hf3|?Nixzd+p1-cR;NjB>VS1{ z&Nw<2@%{>f)t9YmE-b65nYLiPJS|g38s*w|Wv^OUf z-BXvIP$~O3)%V(tigRdaRaE|`5GU=sW~}WhSP`NAv=rymU0NpH_HBQea=eVr2O;un zWLrngw)afL?Egkh&XuC$^6M9tom7~gB@?P^DrEO|S=s*T0_XTPXCr_)HL~}7xxTSR zy7Ogiqa5M%MjrAwC(YzjF#!c$Xp5$rTb&8V8E6O5={3-)#>tYW?U@Bq83ZZhw-mwz z)KKevKo1Dy;@rwH7lHR|tK=*6tfTtNm+xv>=%N3lKmC(n^QxTJ-I`l!qbur8u5D^) zX;{}>=XE^pV5;A#K8Vgn?0lR9=pC*IF6WXL!&%z%gb%@3ehg#-i#bl?FmADU=_#r(Xj0`&Qva#5rF8=U9DnNTg?g!6JZ(bcCR z(&O;n2Jd}as-0qau_%!5Zr&+hwRXunw;Yh~A@m}ICRfY#Ps!KeyJE{uJB$u;3HZsj zegj&3S$X{xxauDZWXqyw>+nh+J=aLjf&N35h;3ak2DNV5ICRDHg&1<(HTWkt?#zJDDg(%!+gjNSZ?h&G~@Fz8+P512hJAgLqURPf>4D#2l71ub7S-@w@5`E(<&dWq*aOiLv~_4( z`@Te9Z(jTP`rXlk=hrF>I`{T}*7A5v>{Qj<-2Fj_rq)&K#^I^H@ww>t=7aMZvUVrrAObQimP~><1yy*gQ>kZ_Sb$+HcP~C%bam96O{U zET4-A`$D3icVbNunst}$6=KZ($5!ZBGE5$xu0u;hv-0J<#(bT|c|D_zks zEo94|wc;Tj`RhnK+_$z?!~IOe&JbYwS#~#tN8&8R|B)*Sic;@2$Y&GmXMhDNR79io z1Fjf>(R_kIGmU`zT+y_Bu;~GbM2u&pXxuJ)K2<(#^mDQ`vt~(+NpX-c{u}6W$#XJN zP;sF=HEp?UO_T1s@}$g~l?JP9igsrh9e2SwOtFvz?Gy33viy5UwC14KkB2OO$QhS4 zZlaxts&IrTMYt|3TC=Xpx#c0}x+xEva(DMf$b-mmnzP-&4*eXkTyfp;Pdh_bJy~j6 zCi@ovKVXTDT-m)Nze#TFaHiXZeQWX;9G5W!$~dbz`zh^j@xa_Rujb2t0MPB-MaOE{ zW4==gJ;T}7BG+S(=xL7;SIVXWllWj8V*b(*n>IMdWFMAE1 z+VHQbZKK^?m2oYeJC|>TQNdTLvR3C66}{>_>s<1_Jv2#Pu(`2`Vz+IOABdOb?lays z-UG5#Mt3@;o@Pb_-R+2zoaxsdV;X-qm3&PnU}7$SmpdZ8Dr?*{k6J}ktE-_@IS-kN zrV;3JfP8K`h_|%mleTD`F?GYjru-VGLH3%TS0vYV6gk-&r%c~IZChDht}Qk3sBhke z*wb&g?OTS}9hAj6V4A{vzk6$8l|eO1g~mq66-;Hm7+ph?9><(cb*0 z=-vg>3~O4H@EvG(K9;*F<`1A~Hnpvm3GbrioANJpvM`Uyo;q#&GP6ovQPNfoIxi)cagp zG!!|7!HryqW=*)Yf91AxC35f3}RUU9-zcbBg?!SH5uJVH8LFhfm~ z#|zn{V4vFwSV1vAj>N{?PrUS_h}c=Qz&T5HpTA7D9(bwzd(Innf~tHPW%cujSmkF< zNiNk%jy*xP9eAnCX|@Nc_#ITrM?F-Aia^DdfNM&FfvFo$ZVZ&C+D zfOBg}mQ2f(#ZH>+`R?^{ZKLeDQ}%5vl_{-q)d8p2xwW)S{^yqJr{%*|^>fbCXSW&t zK1lPZL)}D2vrOE1yS#l<$9X?Ka`xG6a(^7O=XQBYwM^J0PjTj>u>7o&8u_!$2cDK! zgJa&>yz4gTJp=#f+$V2`n0RJ$!KY@p@+;J)pxI9jrdh5cbvoVF5Vc2K)7z8|nsnRQk(Y6i)skaWUynT?V$?hK_v;$3%B@-KEw4ii#NXm~-n~z?7ez*f;-~J7)fczrVc&(EK z;Kw270Q_g4UI5Qqp@MU-f$yx-+u^$?Y>ySDs~<{7zPI$i*dm`ftzC9MfCzVlcOk>; zHWUE({ZJ#^-ZY$Bl|5I#yp;n&*- z769~z({?$1;Jp|GlKm<9U4S$>keF-arl(|@GyfUPvQMx_2)KLy3hoo(c1kGxG$&0t zHo>ugopx`d1f#C^y;W^22OFW$eYI7luWi=yMK#@qmJQA8*0z|r z&AR56PHRh@roOQXD(DakfZAC{x~@`^q1hr>xk(#6_)9eKN0{=Mj&djmfG2FR@s);4 zj84(<8^G=jiAyneeahLk;h|HYl49x!{h>o9Iywqf9Cdkn&kQd*|R{de^>TyY^$nq`rS3;@V4WBHtf&m@4Z*9+VhDn z@^B`^;p3QuWj*Wklbd$c8riykBm&+SqRk#cyMk)KBiQ|bRTbJJJ!l6(ufT#;Av6pf z^Dx1-+R%*lE_ANB%JlQ)4+81yX>IG8g}>jw@oafYqfF?K8ylf=nWRNTX)NEg7wuix zR`bZc8!-Bufhp+PoolXdGt}QoTL1G>?92g!pMNF^lq0q?ztlNhZhT61uQsD#(eDuN z6Dc4mP-oc;HOA<6NTUfut3)C99$^V8|CcAs%y5Lh1CT((`0_Nte-Da zvEWc}g6zLjHseq4owB9CYlZJ2|93*9tnXaZTq7e+hfLmCBjX{P-?FOZWn0n$e>3Ha zn=>(ScA)QH3-?Yru2uGFtZ~k{R*u+Jv$5$^3_WeKztcNQzOuRf8d=yVKiG_gj{C68 z^2X+O#@QzLAT{U<7TWomh1;Bb3T;IwO?eV91+=Yg|6k9U!i9!#bJB6UDmf^ zmJ7&{(@2%LFuZe7+o{kYorl^?Srw!r{~z|g1R&}%{eNa&s#o*CvurB|wOav?N`*n} z7SK?45zseCPX}anNdy-*5lB)|cm*_j%suect3p8nUr423a&1sE#qNMHwWu2BN3!}xk zNwL*&4sku^2I6_7VUd$RZ{p8U>En=2{k4{}u^iskoW@SRmkWUvrxRmTTpWb-N>{_B zThwT&H=S>Z*PFV%3=u2y-k5#OVEv_tZV!N6c z{Aa<~e`RqskfX|W34eZJ;abVvRq+@NV?<{2dY1Jv%UbA$r2jBLpq`RX=G(!9f7G!{JXdjtpyHNenQf%{c(0d(b zj9~f9#zL~Lf}^(2Y|NtjD_U)ro}Gu5I!QEIlk!-w&rE80cd{%kz|0hUuiH4-)V0Ch)(TP{RgC*9+JXPV#*yRxifDy%L2094|Mv8fwrVl06|To^ zow6UseivBb++Kl^rVv|{uh%PBu6|*ouNLL&$t4^)?>ddjKe>dZz24^K(3Zp8n^9=A zq3@E;(2=beB<=fUGQ2%kAsOoPDgmCW;CQ@Vh0r8qU;KD)DT8=WFz91T?ZEFug(B`0 z*)GbxT%R<0*<2j4ajNME%o{h;@l!aCFgeC@efJZrZsnJ|OC5uov3#XhPWv4o9g47e zM_)O5IYK*jD{Iu95zg9%704hK=+AA^-ca4pSY4C4ehO6STi>XL{WsW#SjBl9QlH)4 zhy<94vHdRpP#!Xz()E}7x7~kKSNBMNgw&*J?GKqLF|GH*tBX~oH_Jpxw36CGcHqZU z{Lmt+&k5+e{xnm(&QMzhZCKv?Ke%PEFn3{Lak)O4);gwBjiA}DEV~HNyxg=7u#BVF zVb%pLQvy4QUM?0SV3Bc3oIl_HhD5MgKKj3z6mzhfhMo1C-0zkeCz(D(a$pQCcs$%jm$uCQCT>&%N8GCETz}&J?9>qI;*JKB}_u zxBoYb@xtta!0b3|eg5`Y!IV$s9>jU=Ccxqr9Yf?dGCHeez%=WUBMDmNyhS?7zT z<8o}|qy;u|j;w~$!&rC9tQ`?pmEOzkfV;5#zNyNI{HV{&z%_1Eu_U21PV+m$=_ zU%dTivFN+|#bZy}8tIb;)SHvkD*xV^_bMdX1y&K+TCg2^_OdE;%RYUD?4L2ALJW}6 zV!jh=RbqZL|CY$;_2VX-m#}QYgcap;KjfBuH%ujxMInZbPX2#!6IT`rR6?`A`>s9R z|9(OjjQX|-{VnT{Khf=1oHEfH#}~wnVye5u{B)JxP0x&*Fu2-CY*(1XE>wxl9`)ZZ zv2#Yoe%sXk7R7q}DN|S`sAAnA=EsWxUiDX%YI%UgdTzpSRj|L-&Z108j>951Ho{c# zjuvHD)zQlLE&tBt`&&08->rN{jyrYg|6PsB%_`CVOwo7I&iMzXaAN%TO5x*Or?B2J&ii+6IKFiXf47Fid*$~^?Qc<@ z|E*JdHtsiIU8JNSr{te_NdpJE zx%iT01O_y48a#v)Xj}eqw==j#(0B&&;V3pMp26t~F)v-5=MuS1ld**>M~OU-_<_Wc zx*Kj1v$1Q5oy#-ZM0xz>Z*pdm(YwBbTw&?8L5fG+;cSolv?5i)~fu*aC5ixOVY$l|A;xO_z<_UaV(W z(H{}UO8Az^D@%vVjOD44r+MzFO5e$VKEt;863=H$kTR#fMrZ#6{NSv(cda}+d2&h& zu9$R>PbuGyCHdqcEX#sUT{?!E@PUhT+B7#~|b^T4DDP^2D;#A=E-#UPii2ujvYnPD5&&m4A9 zASdNv+1y-`R;8~_76r0QW+2C8zY_Q7wzD;jcQDyhQb*k=`w!2UxdeNHj*{u?RO;3v zi>?BuXN$v9@r^P z)XRfU_D_b;ishG$tkv?n9;>`IOWF5nGYkL4OKsor{L#q|;`@bJEY3M@r`Fi&=kYmQ z367Pb!@Q?)^L#vfezjLJ@JFoZI)>}QXAgo$oYi)r9Vq=|%D4%0+;Zr+ znfmD^FT;+-{(WQKzUl_Ob=yHtLvaB3(80Ls2H!r_x)evUgs%M0Eunh3RLBA^vN)hipZSH6Fs^&W1cJVpmGgCxqr%Xw_G{%wV zs~w*|_1K?eqHwl~b6keMz0=_Dy?)k(a@UVVPdm1TOH(o`E~uDz1yB*0G?OSl(Bs@U$XcLXRZwnwc@M015KiWZc^>z%cSRqUI){Yo-RtGkp-eOX|p&#e$8{4wlV!} zm-L_E7!i|@S@tVz;5FT!oQq^{tciLGr>pxKN=EXaQS0ee=LFF=T`a;)fSx=wc8@L~aj)p#jw4#b`ZtS)st)X_U05%Mb?%m> z2Sq>buyRb_R0=hUn-EN4huC3}(G7+^_H5{bp}coq?S}UrS~bfZhp|N8;|FC;S;6zr z=ayC(i{YDei1Q>a2_j@1kJ%}&lD?bGQbr(|TY6c&W8Onou%b8~-NIjbvRlybzxM2W zZvO52#b6Zi)@E@|d`jL!$=k$qoalB=trnBoMZ8B$@}Lr&9sQp8>dd64#a%9(qdbZc z`%0H|(!)Aaw+b_i^09DztuaraeT_$gzCwndxz-Rf&IC@sR;6+ z1q|}Ne$tzQIT2ADb%Pvn1h)t!x*0oQyoGNa&iQm$VGepC|rkX>oM z&l6eROk5NdMV^@>#C+`*uaYzSTFBWlz`AZnqZm>zvRfTc#512dt{;GDYPKf>4qwls zgJ%FE`^`L_c>>Wc7U0ZWy}0c(8U3j6+{$A@hZWzmvU0sJ&(Tj~i^!|VrWwx3qMz)G`k%!Cg62m;(L_x>9xU(hh#(_zjI2s|NS0xNz zap}AAAafxZ0=%Z)XrvB1%G*`ScKfP$!4__Cvnv5Kp*JkqiL!{1UXYq`N zSYO~;xl;V9pI59A9W$5nv~pQ8&I*d{mFQvG=EV&*e6+N4o4C^^<9%YSRbB6RJD-WR=`1J8SApbNzt2y{SumSe+q3;S6tiZy94n6B z50^W7de-7FZMtl6uTQ|*hgTe_U_<_MoK%B8G0PK@cjd+Tj>m~=Bh zQ2@5MJSOz~HVAsGKa10As&GDmD@*Hbwu`OectxwIMV*oFYj-qxTEg;kq}iIYaX~dR zL)Lt?UQXD#(h=ug?)z$e!5VR9=Xji~M|O4Ve76*a6@H0+VW$NNFwL{SS`?y#?UW6; z?&#i$izQAGB|DCaB~WEtZOb-MT)z!xK($2_Rm3)PjIwtSh8yK^$+wE0-jr&0&4eF` zymWDXv$h6ta@*JXn5%en?MM=@Mnnz?)2WU;CeSy&f=KfRI8w|K-$SW9^J zH28aViRSMy+ps}?kKH_(99SKo$HNg`F$Zjyc8aN;;!vfuw}|l&vD_-XjgH)?5f1Ti zC5{X}h9<3Eyl#(%PdTY`WMiWvCt@4*-7WfhM0Ozj4-mdA#I?Ajn(>)# zRGLhM#h! zOAZ$MaaHUK3o>+FMMr~tQ(Od9uNF^Lwt}x!48=g<;R@N&EPgL!YlEn+KuWd<>Dh{b zQKz`40`eNGWZ&I5*z6D+ZMa@_CAIr{sf^!_c(gi3R406@?%1h15a~r>-PzmP8aq6{ zpz%O%USn}Wfhemm%KhrfhuFHb6X&aBM~f^KgQ8`bxUGr>=>=FTvv;77q2## z$K&Aj;+nO{BbPXCWxL=RpMT?S+hzS_l-z;~E$PR8Cm)xCnr(%BF!~cesZ2*;dog~+ zk2YLR8sPa=Ld-$gawH)J3yf%r%5Y`HgTMD#)2Z%GcqkRGaIOOB-I1ET+FI7+m+#-R zlcRjxn30Y9#AB7V%dNKIkypvH@mHML!M{!q{!ZlJ2Jm)qZj;Dt6EVmlYvr$-rgstGO*p$`8 zC66$Augz@Y9;W;9IJf4$P3MTAP)iEBC$w)?HvNpE4qO zU&8u_MR^hjdYpd*?xHPw6ikgaYxw~&EU$Fo2AOM?xW6iTHZKcf zYK;D0fp{5x^Q>9Io<0i(ur%mS&w_cZSu;g<4wwew1fW7zRq5ETF~gfBKBxqLUi!T+ z`Bu4cXSrwnEUc&B#3}(JJH8zc!F_wO7~D3Cqjq+dP{5HMQ^H$`xKy3%+Lo2FJ&Q{U zZ5D+1a8;`|R77-Bzd=m4W57D9;JsS0Nu-O>E>XX!=V99e>6r64!EQ{<%14!H4KP(rNhTI zV~0%0EOyL`%fQmZ%|~lX(P?{qrS4kM%PAAwVnb!Rd!0ij%=Bf-tFhcu4sUrg-Rm+P zWyEG5t#yk*xC|wu@2PdKdC$=x-mYMvc}P(7JhzE<(ZAIV^F>Itj=HC-w?MxaEMD=l z#p7NjHdeK}cdRXQ&vM@^hPAsz4sH;>Qh`68TGQP(`EcOb%}jA40r2PibW?k^Idn+_ zY5xH)fVWC(>)PS@F`1j>C#7<7T+HRNWqd69g0*AkxhK^*QZV0lHi;#jwo9~i+|=pt zbrdE!Cghii!7lJ73@jB{o`#e%@yAM6@dD{s>kzB0=(4*dRbyHt8`S&~0mkyK)hb*S zO`KdB^Rv{1xtaPMts+uzH?@92bM>36bk`4Vg6nbwB~~wvk4xA$2?r4_aLJM4%`;k2 z3Xx#_;xSv~4fXMfmnMo^qDvQ}lPg_PUKW$*P8gnW;92RIS0t(zvp;(E3}=1~E;RkV z%vIV@BA!L>_jZ{_te370;@z^QxP)rT@8wF|C+oK5iF|ZHv@0_f4R;sU7rwnUpi}H1 zba~MKuJ;4E^FaKVC4F74^yUrv#`fEItCHArZ5wY>+`{ApHzv~6I}gSQuOnwUEX zMOb~}0W=fH^Hp-Q=A|4d) zVRh7KSAMQkUElcc)AbqK=qFDDefQ<>xFZqj_1oBOvtR{%Zs9_$Qwv(x?jpUBy!y5e z5+$(9gDeT!)CtZLzx_4KZsf@wHY-e@$mSU_GA7p{^Ku=wO9!4iO7EZSzXH!sPUj}d z{z@k=-aU-Ll~pZjB4cKMhKzYcsI&9qN44N2_%Ey7M=QYHhC6Ro@jUFc*wA%w#`!Yt z2ClC_$8p%!Iw?=wTM;h~*`h}YmuE5>gZpvE?Q@&$N^4nu!1v3z-+W7x=+>5u?x8S# z!-}Y7pzX2Nt4mWaRH~Ws&#Z0oD6dUDukTqV{uxUB2A8gEVnY?R_zms|>Uf6*L&39F zB=4HMM@DU!5%tPz3Mq-Y4L2@tYCZN2IG?KGBFqsBEh`+s2voDwfY~7~n}YBM44=hx zEDy9kDN0(O)US_P{)AwEs)BVg)N|4kZb%pp5ty-BMU=;O8G_AMp~<)`ah>aFoDeAy z6QbcXOiYZHGiY*B;^YYYOy$DJ6;$Ans(RVL_}v2ql9U3Y5&jg9OnK+$;u7ev$j~A7 zICQ}7JN$L1`+SWRUhzxpg<<(HLUNtw30Q^T56Zs{R|IY79kghDvs9($Z*Bf-XbW}I z6h|oZQ6=;pT-(F-ii-MuFfl@@+aql8yhQkt61!cA^(nEh+uF73Yzv{cUFrQ}%$3B} z$~IN8QF;<-XYm;&_(di7c?y0)34SyJ+E~RqO75dd?nWi|85^=+U6X^{cqO-yav!VI zHd7#X*(Z>DBwVTVs8YES`HRIv3-jd;tSSC}DW*^N2`8q6PQd7xG8W2x;_%XX+P>&i zMN;#62Q2wvJ)m3XL6{TxQY(-vtcWQ@VSK}-n|CZ7AqBGWF!VWOGu4uxIUaTA?YkD- zci31~zQL_ftPHAKp`J?5aq%Xq!&Y0pconr|EACsqT9G6kLv5L&bh%S`x-GbR%+s{- z+OSrtL~7Y-?J!#!d0urp-}6p=Xp8oD97XyTjp09MH+?~2&iwx)a|X4uehu1JJNEF( z0{iHZyexL9)jLu2Y=tqpd2x>F(&iRmqGyse=6OajoZAjr&V%88~FW8i&kq z%h~t~t0jwfV&*W&<0zRRZuE!?JTS-rYZF*UvWnaL;AWe29@U3UM>rejsj4v>U~<;= zuFQnhS=iZWZFv@^$NIwG^QU`d6nq{oZ_j8D4^_$dAD8-S9iPUzK|FlAw1f8Ba!>6p zajmq+CCgc*q7OTtW9p>KUD#cCY}1XRKzb@@%;HXU_~sa9(93a5EnYUPYQd-h+hP6H zhT3hqJ-VVs=+ywLe6h9eWPJ#@>?1g?Mmj8a%l_4J`v!g9wRt@Vcfx=W7PLGtex`e9 zq?9LY*1DO)OEbjv9`RS~7C&3%JpQ^{Tp2AU#V>Wcr@FB*d1jJub-GjB_#eBE$K4{` z%X#|pDz84KihKm3RtoEyQnxsc@#7Y&Q)D*LaNk)jag!G^&WFth54`TL^lC>VIA8c6 z%(S$Tqg`J5k9nY>;^2%t+bnJ3S;TGAHXJg-#wCyT^-97

CldH*edj+?)bYBs;dJ z<;$ZD-(Y@?!va_>)d!kIwC?a3O&_hVX$YJVioFZ2uVVBeFDS50IxA+y+gFJ)+8#cW z7B<{T$s=$`VW?-1Jk%@?h-osqasS*OUNt^e42BJ_o!Gs>(ZT^(IH_$Ek;GxyZFbw* z{Nefe@(?x`>QyuuN#@JndRawxFRvT-bUrjo48vl@J2*-CC@#RJ+r`CLfX2_U3FC46 zfffsOPd#<=DUAGwcL4Rbe2S+PXGlWCd zXO&~5*MSB4rr7bQw)xmYj2F)>#pXw4ym$sB>v;?T@5OpO*443|f-&LCx4Og&5l#{B z64P6eY|{}7tl3O-V?QuS_->8Hey6k4_nBMFLd39%o8c6W&VbpzBi#`Gx(Mrr3~{)^ zBi^++#X}g+y=#j`bx7JRdOO|Xl6tpW*2;wOnV`W82zbW3#C7pve7czGUEa7I>-%<^ zJ%?F#+9r$^xk zvJHf4Uq)D4r@$5<_NS__Xm!+f#X#RNq;kAfTw5>Vyboei9P42Vni_qR#Zyb$#2(>v zyKjFMs~zi+Z#5O|Fxr7Qq-pp^NWKFVZ89N{pwC%5!PSWcxTc1!vKUMFOOvp{?{v$3 zVw?*$w3~d#Y-0zZ-TWQa<_-zjrsWJAkjZd#VHodh$iumpfR&!aKG1yC8P-=bL?4gn zSmK3ULZ|o=W8tA~KXr?XQLvYE!d{6JH_KgO3rgn&@i0P)#Z~E9uu){g=4ZMaJN;{x zIK_(7p?x>m5d(9j`Qi`d$lld(!iKO*tbE@g;VUT)v}XgmfKnl;mTW@5SCt zJWRySLD-mJQk`hA+}19dD(g2i)Gh!0z2yjN5T>3{qK~s-%_oaXVPrCCyRTZLq4;;; z4Am#yoNk|O$N=bl0JV5nJ&#QEg5Ex)?NKy4L#(wpvEyChJBkHJ_1UiNzu)-fcNKkY z(N^1K18Q+XXoz*cjM~P<&z-2qO=4afBw+47LH2d;KZb5b*1s!efKBvl!!`#I6n|Ji zZ@>ngM~N2a*+yF_WUh4D&esxf*=b0?Myw6abAMGQA7A3D5igZDiREWFYh^Rr{v(xb znb?tJGjs0}=`j-c#Y(5xb_Py|%D(;tUXImU3&+{yg{23-66d0g zdJNq^-iq*u&1lxUch}F@b&{+`@mus=IB4=3HUY+T!WQe|_=~YNe2rL~p3*oz zb}^67^zhUiQ+xd|OU1Ar!UiUqd+FIMl3ij@y1Y1fy_ktwcP1hT=`b3x80!grk%B`o zM1uJ|*Z$QzQBbjRgr_uGtI!^w=@orCWz4=f4E@%;F6-oZQ*C3<5$?{hDRP+@*u)gZ zwrx4KpG!Obh^o_x-WNSoF1n3B;XRQ#7=)$jmTT?rAzA){6QelwkRb=GY!II>ZQ5BP zwxd0iw|_31Wk$8wu@DVf-+1u^Y=-Ub>ueFd+QlDk_2#{fjn^8Ou=Ymakd}u7fgYaX zp?PBy9hY#!yuVkb*50!b)}9Vy4*`~<+5CwbG!uhb57PWl6t0#>i^%#jP$M41_W$SkA^Nhfz&ph-|HuXQAFVq5@&pxHS$^aF#?4 z8J{4&THq3I^lfK5lzbSybQ3n35$PyAsgTYsb*ET$tL%Ghe8Txd5Ipxn-cac)GnJ5JT02qff-9Mlb%96JXihwV5?^%Bqd7EbaEkRKx;!aB|TZyUcD0I zZ8VqfqDcPSF`^-(T0Nig6&@3^S)TgOo${3x7r6X(kQAEbTu_L8TkIG3pZ8IdK&)@; zlR@n2=Kr&9H+ne($|^u&Dd=VDx-Lg^cX$AIkIyUnzV3$?%Tuv;bu zr;BX67#v?TMW6R==2q~bGpu=eeAC43ULu^);w+p)mKax|{lV5MV5CbFBmoX^>Hh2^ z;qN6FNgR1}^2l)`(W#Bm?`_? zLS*fk@p>m-G#WvUuzK$i?FjD?5Ze*n3ogj)E>yJE+$G> zq0AJqmohiQ+g@1Oe%poa!~eiRDx-N1%v_Hei-C2#sK2#C48>^=G^Md}z_Ftv#lrSx z(bo&}siJSRSd=7YrLU8jj|^G1QATZ=l^|m?MnwH+*jRDCQ#7MJeC^gIH05}2$g6sr zXg&**iO$ERS_JK6<3t4cF;1qAlKm&p{g6n1+K zi98&B*Ym_%jUut-bl99fm{NT-H$#s^>{XBmyK`Qc2amr7U3UC(4D33^SnMr&Wb?{P zCdSn4Td}2dtLWY)^U#LLSlL|8eFm1N%Vc}a@@Glo#Rf0M5Jgu9v>N zryVuIjb6c_j)rg&NG+D1Zq19!+ZnKjx5ER+|2Zw#@kj+6zY1|oCFh$koIkNf_M0s8 zn$b~|8SCgvLA{rE`P{R`7;o7gT&sHxg9c3Hl2m6Jo&Nxzmg=3P)<^IcV=lW`WX~)} zY522x^1v=|@OWT)4GscgUNy(VbDKDm-dCi0kJjizp3OA8iML<8^P2AwS77;i@(P)O zaow|3o{cy~q@Hhq$c?*PzVy#|-pw zDEXqLLye}dZIw}hu=euI#A`V5yS8!u?UNjfVVqcgm|7+ZaDXa(*$^CmyQO~SxKSyX z_uB){UtNPN{SA(tW{L9X%P}^D(ZgYqyZ+D1YOLL)wTdB~N99(1VI=Z6!ng--Th#Gk zEnms-g*fm{OTn3>nnz5*BT1n<}gKpD{v#u`h%FFHXZ=#A}sa$0swZ>|i^E_O2jWoEDa0e9AuU2t+r#LT3PQg&G3DeF_oTzK%$fgv3*>d6}SQCx4#k<#_ zvY~YCwK(&Srik}#s6mx&q8Ano4vEXXR|(jxtoi7sDKL1c!uEeJ*i-Wjf9bc6>P&PnNZ=*`2xnzPB$zRmLh{l!Fro{QtMgj=az0gUQVg%oE)@ zkakJ#W|<}SR`R?{n@u_&#Cnz-)VRStxwK9mm?3_S<82??JQ=fO!R{IF{TZb@Z^n(A z^YdYDZnACoK)GqRY+iyJ6`oC4aY4bmxZhwLA?sZ~8K>8qu$rS1r5#hGwLC-98{eS{ zfBbPS8EXbh+OUWEYeW}U-Y&7i#B=BRgz+g9)&$F*sBf=VxWwH!lJ?h1iAFy|oR1-u z19iC*dyjQh7^nUkYlcYMCh>EWjnznpIY`>~krkz|)G*kw)x92VsSCTf9j4Q@V^Bb0 zyth>h#Qgx=d5IVE;`z5{>rGf_bczfVknYl1w=yf@G@SL1&OlLV7EQJXt!H6fqYX<7 zaDQKO-zb_ejkndqe%m*dTq^Tm=>H9tW;|A|p22N~?$!#oCb+cud7{aKDdRVoC;-E= zIdxWBq7||aXtE!|qd%RMHatf~IpJhi=(3fp%gnO=YOy)2xI_eTuP>F{GUW>^ktkPi zX;_MrnS8iln?P%W{I?D3iRm$qRDb7?Y{>&`PuqISN3a%VtFS)&2qJ^yBA1j*o7)zZ3VY~l?LceRXi=#&peA&)mot9NtS_}Kj7e761NO)~bF ztc!C`3iLyNg#SG}Q_}|(GG64u=oOEa$qQ=Ta(RpFw^I%&9+EM`Ab{* z)?#FHAtr{deCd-r8*jvH@ncIgyrF9J@aEm-$WL~o<=bz;dnaxb^yg3!a7uo|!*ZR> z*f}XiPRy%KaSwqJ`hB7dH^=O5QHqW!eeuya9PNr(utxqd85{CAYJ?tBC7fP=3t$BaC22^v;yrv5<{ zr2m5B28Z!D&JH@R4{@}x!}w{4V03j((6QoZ-^I$sWv;PB_dHbkyf$GaP+}W!m-P4(8?}WZXAr;CiK;cY_-}Fc)Zi)zw%Nz#7zr*5+pY7>T79q;3_~x^V@LHTmQDrh#kAEoHUO zl>6=$KS;vJ6&0uvedxK^E8?3L+f$lL8)LWKwp>P)U;$pFw&~GqEJidhwYs*cF)F5X zGhJdR)~e8rVZz~Z!9*y!+A;c(+}QbG|2V?B4h#6=L!1;Edi{!XvHOuOljCA+7n~)x zigzo~B7JR5!r|Xu7#V$8;hAvWgapxK^-jYezm4lpjkv#<<0*6GkKZpFMRQe>IHv=v zO>H1t!O^z7gO@8ri?yj*%xuSEK37{)J&xH9-o3=t){mK-UsQT)wqI8R`={x8i?d@6 z)cYTysduekyO(LHT;?Wk!TL=T&VFLC^HYni-s&n%JshY-{v43AWbA#hau;t^wqWSB z+tQQ_I}@_;FaFy;)MQ;%dyUM$PP~H6Q6!gNoj9r=t2bu$dC=r(E4r68`JYTKl_}@m zdJkHxBw2b~6nbVOn^9VD{}5oFM}KtaNESTZi_O2WYaDBtuXj~B%m0EG@k-a<%B7p0 zPTXWj$LI*-$RrH=n9VDg&FR`JPTN!51+pf?jkH9|{8Uxo)wQC55X|jYU*`CHac(Ep zZK99xVO}g@bB!<>S3r?l_C`cu^p!WEbHBsNvr`8uJ7e??Z+0$Z;9&wR{5lKJN4#9& zPv16MItHtc!{qrh*H1ZD9Kg^0VkeFWl^(-B9*oP_u}p|Lic`?yOQ*=`5a)SuD$28a zPfIC^L|^n(E{v49rsQmli{j%^!`q|8AD21{q6Uw{fuxRO#Yj6$EAePmcPK5>4?7Y$ z8^-$IE%wqnt`~RI;-snbIlMkv-#mMYZ_^<}Wbv2Upd zj{st<*Q==+`#@MSf5nn+iy3(C?u2VcUM~{bGGLz`<33A!hKOp~e}3JyVw@K;kX2_k zVSt#VO50{MTK~~jItq(&{ic%jM)se2rXln|3Y+m%US_?=YHcVjMv;BGiZ2jy5w#l-cvMi&Tpd91zBwWp&S?vh=ZzA@maNhc7RZVN;;!pDA z;*kFv#0WG32=57X@?bYE{!Gp&U0RLO4aet{MxBZm4t9y;uPFUFrIkXHX@hQ4O2K`Ix`T=ozc` z%hCsGg}q+9UD=-BaHyfQVKHtAx`Mw*|L_07qW-W>N3PqkPHx;OhGRyAivBo8u|M!O zBMF;CpEfbKX&>I~X{)tebQXrm)#4{sS-%l)ZQ!`at-QJXTU5guF{<;xc%Jh30xx@6 zv99kFi#nd%Ca%Q0a4%H0qlfTdPkudLJ~`nJUIFpD_2tp@uh2UF1*c@;_&QqsesRfh zj*Lmk_d7D7T@vm*Ex_%7OS!V-xJ3PrrA#%sL!RudLHgICeTx|ZgFIfjM^0D_rM9bQ zQC@;l-CViuK5S7+y0P3_r8l^s2C=I?Gt%)b1X>qlL>3THx8qLnC> zrhFfjVsZ)>IScY)3Pz8;0_XM1^YAimbau%?F0wP&A_jYbH7Yq{WS%1~t{O`r zxSieI^9+dIgVhd^+A4jyju_wZow4$OGG_Je|4uwCIf%z6hzD*=;VmS`H8CR*4{Q*9 zgx$>}l^vpA5*5c5F;08o+(>0xa!VeT(wamK7#^y^Nvu4)j_Zi|*@Vf%^V3G+wQEoE zF05aA`OcC!ziF}>M;-XziCyem#IBREJ5u4q7HyB{6r4m&ZmGtI)QNFH61Em$az%^c zFpOW2Z**OT742=-dWF|x6kCnUO~VsnjyK2RT+c9^h=)~{bW&C1idEzm;O_~Q@q}Z? zU0mHTYNxsgK?_+Z`+0K~jL2~n7W2(||Kv%lrugyy*FTt{viuMJ;a%&cvPVQjA8ECm z?T_LIczS_vg-q-v`N#kSf z*PCfq8|g(|lz;5=k1+E9*J*sMJyf<%BQ&TLuqz@cznlwjyb%LvPPZwc6)y_ z4{$wPzTw`bPN*ZH;p+bQr2Bv_Wb$qIpmZ{Y$A{f#bm5P$xep4Vu?(m3q^XGYnnVmk+yNV5S4tW%Ge|qdcQLsQP?{u!D!P`O^DZv)?dj%!l4X(^&V<7vI-+ z;a}H*Z@u4W<}sCV>c9uz&oR@1+wqacm)~>DG?RY1d_MMGXyyrtBOiOG{ro^%V3MJy z;Ri^=&^A%0@k#ftXnfhdUm$Fw{ip7H-~GY>&1nBg<3sPEWlWC`Uwp4K`wJ-#n^DI{ zorKQk-p7Wa>+#{c?_Gsmgz}wW_Umu|b-#T2J=Cuq{3;*em)CE@rL)e%r{33g!K25Y zueVPPqk~T8yX|ws&~+X8Ona1>4&089I`X-8qdo-pU%Grg-JS*3Ks>I}`aoSiA8=(E$m+zUswHg zVt4p^C9Q~K#z36?I+4bQtS>Xu{BgCzjdVV0eZ)*RrI*gbhpU6ivZ-I!dH7(p+nhHh zIgCHU;%n65(p{(XQR*18E~Yk%{!>AZKM9>rRR@igL;UmE>Y#qtpZ+>bgI$p4g{r-k_Eo6bKyiGRN4JntlQKIiN- z)BW)eSGE|Z``B1Orwp?nlTM`b8R3a$x+zYi^9kXSlhFBw@O(4flqbqR>gw|+q4Qnf zp!yi%pDzIijcY>m<6FR8jhh%gUj)9z9Day@KK&ci&-m$f_)+@9f2Y~Msb1(je7g6X zK)#>YpHL1T*_~&ei-d&3$81-d>85bl{!<3uXEnxPMxR3(pK0wA(9;<6lg8Itv1}F8 zzUaF1xz^rY=&py$hgR2z_}6KBK?@BxTzMq_@ZJ^+-y?-eLAnHJXs3pDLE{^xp=0N+ z!dZiG_@rlOo7xrsOW?O44@1Xkb~ux^cW_$KQ)azPd8702nM&6wc)W;vQ2jQ^=}NcR zAn<9&(6}(oNaHh)p<}TC4RQKGK&Kl5^FaFJvyW)f{P|#%CDQo*V^Ey~pDvTnKwcH_ zXY{Q~&o0JXr12rh3(ft@Df&h`!kC4E#kUZbeMf(5;E&JwE&7iB_AtEhX+=%n(O*Pg zl(%u;UC(&>o0wL#^gD*K{obbWdKzOD)#xg}7zF!hF4hR_!k%#Y={JaY}tPA8x?4EYQ zdXyf9dZEM|?=X7s-I06EVT93x?~H6R^MsMZcSM$-iU;pdl$?Tx4~JBqf``w8Jaq~l zJ_pip3ZA`ZrWK7lMf&hXj~|~x4j=Hi<`i=HI!D-UDYn zC5>+rjPHWR=Lx!^@r8n*bpn%2zEKcLv-`v2D+QhA@Jw;gdH5nh(E7Zo?(2H<5rQFR zIly%qUm^%MCSZK|B*En&{+K_C23uhlnQ5l^0O_fCncx*O-84=mosSTl)k}o zp<_Hfe7-htomsvb?`vz3l+OnTdYH$frv5^g&j$i#m}LOhX?zDDDuiaoZ_3__*8n_b znn|{9}cT@Qor15E8AeRLi^0

$1vrChWTmAq^o|6y4Xj|D4KE# z9@@))yo)&N`p_zVv6;uDkDe|TSaMio<_RemG_nI1Hi{1GZ}fG12n@j?&E4Df{LL8H1sb2&df zTpP}~-Ebb}Gq}MQRJTkrNvA#6vM^z??vqXTwmfu3lV5fTsD@x-YaBY#a{bd`ra1|tv9zYH~o?0|=C}kbaUpw4)fbUjcqQKGJAJG1?rDkn|)EZ5p1e%~5*50O93k zIi~br+{i-%flmMr=n9IESP+P4J8h zL)Z1(0b4u|ncM3yI?(FP&M-RYGKyfC=5OXU-6TWjq4AYGoYM~EO&A{9I(gn4P8c3q zD4AkT*DyS^1d?lxv#Ffw`p_ImvRO_T9@@tEkvU#rcxcxlXl>i1Pq;eEa@_v{l-UQ< zib~Bo0@rE0seexhjpaf4!!`97GtE>sN#~XPp!K8>oyo&H^k<&p z?`j^W>&u(!LGwUUyG>nqV?EYfmrT0o>A`#EL2ZgDt$5wMD;jT|hthPtc=>#xIUPgv zT88WA*{6srEZW_Z5)E`qlrwrcd&I?1= z(=ZbAoG3FLxGtO5x_@n^g_J2?+rH48N2W4vhd+kTE7p6ZNxv}h^y0?uJzb2ObvcR1 z>&a$a!pPx$(W_3u!<(btQ}O&Ut?1&@Pp&gBPQDY6gT6S7KD;ftzKe38r$6sJ8vVVo zFTk|p)yJ-AyaCx2jTa%iqVYatC@oxj#4_-}C0M`4HM~0m@q~W<`k>Q!2k*Twbi3a_ zZ`aN5A`NsN-jy5E1&NA*QdrPdYUN>{ADLx+*ExS4jpj({s#CDq#N*X z{C2os1AZRY?`kclD}PJjkH_OjbfJG&{vL-v9z2ig!XKpm_g_c~EX*w_$)$P((;6mHgnf09D( zSqlmai?T|Ja&s(s&K$*PWN}tji7VUXE(uO^U4ftwObQy&G*mQ^7iKTc@@FOPIhE!X zyKu*&xL{G9Wf7ILC|zmW-GYLK%aNdFrR>@gdutH3s3#$;xpTXCVzvNLM58OyOv1mSz_hWY1af z9om9GK?*J8;mV3BM@|UZIM}!7$SJ zyALCRqV&I!$p2NIquKwayc*UU4ZSHrf{Li#82-1|{I}QyW`qANHm95}22~_IuV#-)NKergAa#2A^K6pzC-Nl%3`&S6EOUf7J9QAy=5Cw32+R z%i;Yiiba`UP_R%XLhiyMS2>nV)PhFX!KpbAI)mC0Y zmU&FYoR73wOutXQ9ukyVm|`>Ml}dm2`iPdSl*M(SpjqCj%bjyk;oRIT#TQ&eOob_2 z(KA{A6Jt=V)XP{<#F48^;IKs?G{?2~&sBy8t7cSypa7NgiR(+I95SIMpGIpLq$={L z3yGnMnq{4O;lRXgG|5I12a!!_d&)qK90@ckCRs)#Pa@M0q1Av`%lv{8)Olk`+$>Q= z)xXfFFDYpY$>9_T>fXAD?#bd9UZ!5iau>UD7imkTsJP#%cy*zJsf-xO5ooVX)Dw~- zw6d8P!uN8a#VvdkO{pK`0g3hRx1?qydLT)SR5m4UXj*nrrNvMw+AI_u8HvT@uXS28>2oGzxB4Cylg!cFQZfHl>iGgbP+(khBgAcuc5yN_(nr5kkVaAO4TLNxL_ZAREn^lhD*W(g&Rtd zcd&BvSqMotDMed^U*MxC!lN242`|T;4Ricxn=lF=c?pMVxFmc_;YP6JjaF_x3*jn! zR?BpPA1i0KBz#nJCTR9M6H*$u_4v~0;Vt+WFky*?OTt46Hv%Sag>v&*2v^`c!!oTd z!rh}TfmrD+H8b$XFYqzigq!f`%ufT~jV~aLKN!5uKs=l}4Ao}wNy0jO zh#3LpA)H9UotiTNrP5iK9+D1zVLb@_f${E>`bX^_z-RJuH-0{;oKo8Wv~U6iiPj>s zRf%;)5awvOB>c6)jf5qyOS$1+flR_8C~UqWrxN&u z^&q@Qb0+W$>p}RS=1kz%vPT%fl7ed#>vRIY;7G!IHD?09;7CGE%Rq6boz0Q>n3RO0 zHCz(L!?vY4Dao6n=spYKQhdl2f@R9tEeYw(lvyTU5%iUd56QF`ph80l`~rFq-mN(k z)G0KT;6u&z2*B4Gs(=bC)e4}68%TdsxRT*kDo-;A{DDOp+Ro4umo`PG;$wOcPSh>yI4S8KQ=JbpAd|HzxE=spW!2R>vJLEIM_E8$Xna8B<0QBejypaezuSQrRf zG-rY*{mz8%Yt956erLiyPy<2;2KhB2yi#)}nBaFNOwybQrum%-XKBs^bN$YQ9?h9x zwcnZW7n(D{lYVEyr!;4R7yZtJuWHT&@A#bw|DZV&gr?;0kYp(;nbNWl!-e=zq&I_; z@=T3D2AG(Ta56FKh3ylFnW4l?`zgRig{Gbce$7uR{p2d|sRT@W^ruERf&TsoBsrA# z8T7MAG0rd;1Ld1`XQS}3ybxw-xFnpfaHDL|4sEvTm(gMa=4iMiT&Qq^mv(7=8a;xr zPQxYPFBKll`+#!uSqMqTK!xB0R$S%x;iI~Qbs8=S_bA*X7QgG2o6kbH2_M7~kQJz& z?lgw`JU&V#d{M(C;g7*;ZuH3ehNAl{gqLfg2(Iz75>C;a2~Hv*f)eH^)@cNO)fX6jl68=fyM#j({a5g^j66R>QB%H5sgO~P!Kg35~!jCmv5?=IH za0-z3OGWot2uU{$H%;USlK+ek?GVA&_>h)82sK}U4)H5E{S}|pGNUKt^;R;|2nHy0 z2EkdHD}m-cP`^HhSBgMsqwqnBF?DEwF_3_>ap^4^pGp+K91WL*cPZRR6!MlRH=l)& zbW=o4_~}+osbpHAp*ofJmPg{FnuMb@ToT49+)$JD zmnUlU2*PVMToPWdaD$ijn5W{ST*4n|xFnpRaD$ijnZLkCUc#dqE(xc>HegV#AWgaX zEQAyBA=3%2RnBfnI7M?N2$j$sZoL&bjo<=>rV?DGxh4bLsG)i)U4frhE2ls~puy-q z_^32tKMj|J!xU~rkOrhjYV-)g(HbrZ;}mZ2CSoW&Q4NjJ;R9Z);gaxrg&Vwf{EpJ- z5rjiEToPWcaD$fyr~7CXGlH<6hD*X33J>NTrrdlM!Z>_Z%T$8vl(SnB(i@!hL}Cbj zUlD|36gidP3VbZFgqpBaf@}QFgxBIjr849OYLZE=q}&mTa~gqPn@GY*nlr&sTA-onJ)FlXIjjTc0!>8&BU_T9)gieJU zV#zxcA4CyctkCI~0+16`UC+G>0@T!;05wo(XzTnId<>GXM8hTFE`=LGlD8Tkf+Sd_ z(CMoIwrQvyBn_l*!AGHlTQyt~zN2tMC=I56h>yI42Q^$0UiLEGgL#j^9SRV10~w{{ zT!0G{no4ky=Bn#LgX<&lQ9j{l4VQ#3E8LJz-fQqdKEX7FPEP}HYOVx7*Iae^{P}#a z(`5Xdj_-6!T3y79x`?g7UoidFz0%J6^Z2M5;foqB3Ex(@p&EH#!w1!L?=%IUjgQ_5 zb2MBMT4DOYoO0wXp}QrO;0c9Je;VM3h8`n;CsVKw=`T54i4#Fy5aXAe5PPJ z!FHZ<3e;Iz=-;AAi6Gpn;gWEd!i|zai~T-)44tq}!zJNSg$MKgLb>@Ygq!_z!aaU> z!gjwq;Rk+q!q5Hggqm!ho(SsY0Ke=ALcfe2CK(YX89hugaGzEC$G9}AFnp5GuYaK3 zrQ9ZbNIe3oiULdUhUQA}zUIoXey5>d08o^va6g2fzgA9ZWcUwO%&)+Dg8KnL} zLvRSN%+k}bT_<{w-p~E zOyB?+Q|O-p{6<4R1fVC=T$_HLP=2QE1^BIo>Y=}kpZ6*cGbrY_8fu6MsL2-^KGYiS z2*QswToQIaJ6KJ=*sw*#91T9;Rt=Yg?<(Ag5?^rWgOAZCJX^yh;ZTJeyopHoiTG4X z175A+lF+GegV&DVQ5rphaHxh$!pjwI@bblnH}Fv|;aeIm33FBk$Bn#)72RhcJR5Wr zB!YANtc2N`GeM|?K5#orkyGOUW^1UPA$(n8i#BVFAl$0qlJFyi8+w!X1?A?m5Vqrk zE(H6Pvs)6VQ=sqQlNCM{DKr{@bs8=S+Z1jDO5TT*o6kbnj1STYHYsN` z)qpQ(&IF+nije%bXxR}#Sfb&QaJj;b(28!yfCL}2hOk7#C1H!ggLzjgH=l*jhYy+& ztWnNxN%*MdOmGqj5tLA?Sknmn5_%9eY0dc;O8X*T3p&8l_6z8<102FMRxbu;c zTkxqo2Q1NWNqCxyrIAYHU9ITIbHM0TDvAW7@UihEq&HK{>1&JTD}vC^+Jo>%%9}5O zaHYcCJqRE2yA%4g2;{m+3rQ{B!iQ9_gEa;pPy&A_k%ZZrGX-n91=3~{{B|h+QwM>1 zzG9p@6~LvTRG>*ip9FYWLth0rq@j9K!kEP>rx~*V7#8}ShXJ%818w`C!FZ;krV>zX zs9X+ktLCap+zQ5{O1Ei@fTqy2H-UC2#=uldy&Qs@G5gzpudPft@gY(K%ak)Vg#cSLXM*Sa&V-Z(Ze14&Tc^lA zN$3wO5EBMafe$78EW(+FxcSAw5tt_0gPS0kiA;addC&lGi8aOkpO(@$BK`+$dexcT&SUX_88P@q+Y71fkY$K zs+^`0T&&PE0*!Gh!DP)!zE#}!i})VTdmxD7Q#?E-=|uS zj|G%)qlQbuIRk?$8hKw=bf1NAKR(o1g7=lPTN2WnsVbX%MbMXDY9KZyx+MJ#d}vN1e#PqzAB{ zhD*XdFqLg?d&nDw52c2nO`+3&2XHPpkqV0emT9P2e!OCwMsQf6Y4mfsVoVzgz<|)r z>wcz!TA&!G5v!Z)vzBj0>4`lJ`?Z_gM%lW~u@~ zP>qktPk4vsOmLUqnQ-|m#Z7PrK5`Q>5YxQg6h;KYSgM4j5%|OCLAY9TCh&*RgRn-0 zkw)MTqlXbjAkU6L?yX9|bjrG2Lq7!QtNc$VI7^|a1l5`=C4HlzdhVyf&wS;5nj3)9 zFd|kwMHeNKTzqF{(#;Be) zH=0)RKBU|**A7E}0B(=tLzUSM(59h!Qa0gdt8$wDBEU`!)v22=#T*D9^&s4;;gawb zg&TVC>Au_Wk(aPq!zJOH3J>P>DmSd(hN0gHw+Hb-=N5n`H1v6ZUukGS!AGDVKBXYw zRt=YgrH|6x2$b&!zJL!x2}(dV^$(=(P}FGzE=5fvpd3@-j>XSW$|*Gg;3^F*1Sr-} zT{pf*_#r;(M)CHPi}~x+}G&jRA<)(7OQYH1uJBRt?p&lX^!WA;euz&M8NiPHEFsRNbnXKc76$dEQ^2d+xdChN`aV8D=yNc+X@4K65Wv)cPb~36oW@g2@K>qkF;j z?q#UmP1X(-jx?Eo5$-)f80lW%WrfqvU(I|`X3Hwhavi}9)@?smV&_WF&<%Tu1PKrt_o9Uly%;dl}YTNAP^p?PLFJK7G<79xGEZpkpY1 zkhCeI1USKU1Rpk?r{#~6e(CLHINx;yH`O0UX}1RQEor`H39c*CaRKX_yDfrrD?A%7 zu9xeWt48Z4CS%}%;pFmnP!Ez(HXPzQf{&Zd%O>_j^EFFwvP}B{t}}OA1n+V;xF>bP z8SVxh6CW?%NNbL-5dQ8m+g$z>Yk$8_mEi!_5q#QoULvvknomFZE#4&4vVdF6-4;Q* z6;|tHy}ZX<$^D@R|QWKZm0Z}+Ws=E8ON1JZZ8HK5;KtM5~~a2o^UPgVo%dE#n{+u%FdZJ5~7D<*&jy zmZ^55;Q4EFC0W|SUHBWV>=xdK%)TVE>plEf>&D4E3N01hA$8KtH?uawx2tzDlZh|8#5 zm4fbRDD2~I&@sb@>b0UZ$3(8@FwS?f%F zhVY`yR!W@ZI)crUI;@m@bFIBuf<4r(B>`)up|Ig@uutlSWGgHn1Ef>J-(}gwH5&Wm=d}E0Hv-$LJD~^z9 z0^oRaw?*(D?gkw*@CVm#moXZ=({%)2GM$e`>@=CS9?UWsE;9Z!`|UEzB;M&df{U%y zew&D$VeQQl{6?m_!H?!{i(pyZq57AGQQ9qpII)Y!C z&g&=kPV+TO@E)0#1>9%uwg`UaZqPBqOx5wCjM3mM*Aaa5nf7}_?1wVV5uBlBz5kyn zoaZuIqOa6C##{|rC%DX72lv$dMaGbDi0cTBT&Mkz#GYgA%@SNp?HUtwPD3Hx!ll&j6vZD*AaYu!}fzdBHs$~X(iVYXqL>9FQb>Z3vYc>rs;soNDl9G z9l&BhnKsK;I*dn z>tu>v-|p>Yc(>~aK4LnL?X8baHk6SU_HiA-!%Vl29bmp@3GOA+#)5s!-4;Q*$qjxZ zLzxVO>u!TwZ&qR!c-`e(!IOs{>Y3N7dykBY;e6K-Z0ft6#Y<$Sd@p)? z8NTE?g72EncVLv>0Y=+TQ zy#j}rZkA!%uiY4PyiL2D=w{vbGj@rn^C!wJs}tf@ z-O*&s4c1&o@G;Z*>Js}G^EJzGq)ZnU7-#Ob3Y_Hb>xAhpL7FT~xR5L&*<=fC0D9^| zX@QTr8>AV+)W+-FH~l)$rl-ymVr3FkiC-r^s|MgSX7x7Qye`4Spj- znGCmDXbn6eQ@s`Vn!8E%txJ$53zILD6Ors83ylFinLM25ZjfeZH~Dlz75KV^)nt{&?-Y%ywR^xsKpK)A{oC(|;B2Z~yUFpRtJpTt{%A=|Zfop#C!Q!auo= z;J&8w*xq`*p|_XeX09W+h3PzY-nqK9%E$}nyN=-Ux<9wOwLY#ZRz@tGEiA45_`6_H%o9swd-mDo1~%e2zP^{ zQ#T}A;Z5reC3s7w`)PJ%kKazmUq&r(g6jyjY~Q{XVsEwfW(js|-)4Y5Qj;nDufn40 zUKr^u_2_A>^{<7ctTnt%ZYdXT-L2@`q4ibu?QN~eNy3>XdLOt@V}E(!*No1a9s!D`^`A5ut)<-NI$o`l{0Ou{6oa!kH%HH$$J8uJqFq6sn*Y z=2KXhmz9aJG!A__jMK8Y9z0|$4D8}Mf-FSwCPHj4YuB%GT1flD^1Uh3YMidFXUYl- zv%gxdx7PY`Y8hv(;g~$A7Th`}^zG0(NUc+>Z}Nk%s0GH`3*ILN^wYcxLsJ2hD6B?Z z-ASR6 z=Ui(ItIu$ykh#nmA81#54XV8`~K<=b}?o6!PcC3`;z^Q8s1=DVa?I<$VT zzPnp%a*=SE$@m4q`^12Lni*KuWDF>yFyC*Li4>YIeSUAPVZOt*)q{?V`N9#dBUsTD zRGcrd7g&3<1Ut5`-cLUbBV+f0U4UWtA5xEvthN5JFyAGCoh>jd%&Kw`p@L~$!ms1( zxZbBUU92_PS2)yUe52rfVqnATAkgSl0O~C)%stA)SQ>{u9me4rdPK&;z!|P1c$9h; z7lzokt-V=-9ovuIMxS5Gv@rXs>p?QfY(`6|WstSjcTvkwYYnS$q*{8rYYTx0ofy(| z2#gds*wQ373h8)@g+4J|>8B+qR6#M+TUeOI)SVPs82TJxt>MI6qX*WB_5iETbHz!n zBY1k$eqo5c-`blcxR}~C5LhA&h0D1c?3KFVKzDE1)rt4;Ffq6(C zAzbD%Tk~w~bSY#Lmn3kw1tuc}vKKDO?#t-w9vS-td$^9^lcw{1BDSyjnkBfKOj8Bd zn!7E6lidv#mSH~&ZIW7wu0eE9nb3nRv;WahF|PU?BA`uS%NRiR1`QM4TT5FxJ?uiw~+WJOI!tIg=;Cg!Y-Df3ev<~p)W{DCd$}vILUPcH(R>>eiM7Awd?z=;sd7JBKVw4mj?Jcb;H$_LT<2j znhkE^Zm_UH{%aYUWte8Gz{pZG%WyT*Z52p*?(ZJv}~qsM=#3Qb~wv*1W#{izwN|+VC~Hk{7I%I z0{f+*aDSQHU||_nw9sZ5u57xk0(;2R4J4@>9%H&$h9{?fc&bd{ARQ&_bfM0OI%(HJ zWGB7QT%mc8HP=8ojaGPqyFof`EA(XHU4&$x%h+9*mfjV5wq^@VYYe;ojbitfU;FzP z;Y64D0O4JP_2_G@F-vf)%WT?Ofoxjy=IS?<%h*Xc-*p7rK4||7LWy0>e9aQC7%yVH#6s&J zP27@K85V4LHSc7RaXxH(q&y5)Sgf$h!R7D2kn9X2fQRi;-@Yp#Q|S0(QirdJp%qSqg+R}9i#EpRt?gS6W4 z&b5?${j9mRbJ|?^4#GNek)W_p*XXt}QD$!q;w0A*T-DBgz7)hhVD0+9&EkhLopJDq zx!WSRqPocqej`Jf3?Ip~Y9P%}fn6;_1Ed+kxhd2Tk>N4RkbpEatVJQTLg)t;S_A1| zt#Ab!tOn8y;r4#Jn!mJO;Yu9##lT_1Wvmw*;W~mn^{c#f^uwbQv6otVvjpeLv@m6b zEpEU3yS|jLTG|Wta5wmkWMz^~v1AE&NX8`xUvu{yfrL8$fMkWcWTCK#Tu)i28lX7k zYJn?SuNp{;Y{`>_yJR6*g=BYIvKXYjTJv7*){$uLtwtNGv51hC&=s!aZjdJHnkNfa zTcLzjlBH|cExQ^&mXBj+LWo$n*Do0+d!fm{T+ah?Q zyTQUT>}a9Qa-mygQXU&lcww}N(YBDOaIm$>DmcWwAg!SV-sWzQ)(|d-Lf#5_sYmw) z$~nemQ@GS+wsN#yY_5cP-Rm-IJxDLx%vGoFWiBTRQ(b0(HNEtT8{i~sjRF1iHUuV^ zYyclJ2A8`xpIn2>{5ti+beyms)bW##Q-L3QzgFn6&2T2ZR{K%%YrlpGx46t! zmnx4oSA*7nxGc7=Xs$X~*<=j%b}xM>R=1|C&wI*9O*-X(0n`dMwZLSz&?lkmQKqX9kU~fH3E@Teej|M6k`k6~e>e-NDx~uMH7a=1 zI@Rd^gUf6OvidZ`th~ZfzM$autV5l?Ke}8*zwgWU`S@sKLBeYCpG8`e0$Sj17ciTu1OR9hc$;5_^-iH%st7nJNJPHg{VDzi>BL zHq8LnlqnkYP2F%;cZ0f1aIK7?A!Vo|z&cjc$$ZTSF5~Sj&{Of!OM zzHmu1!+T_UQ>(yhEw-%{dTf44Pf`0Hi| zxBi!qNVmchaiLe4UgNAe0hh|OycKw@yFr?)0^e{qcuPh!eAnF|tukD|h4CWBd%;5M zAWhtoR~fFCi`6{CB5V1u`J;}W>W9m0mBbOQBlwZ&!Yb+YS?1F!iPy`t9N=Mdw?*&? zcY~)=H~h%mVSDs4O;(1Jtho--WEJ?hyFr?)k|zsu9H!B$|U$)rh6v%NyeFh%UXtH6@i3`03?$HY2I*>3WY`F?PZ}gKyfS#9N=z1 zLfmkFcY`!>SjIx)3W>jy={g2!hSt2axKLX70;Q0lg$%uIum(s=>k4;pH%JqAg$KGD zq@{(AFbauVNj%R=tAaE`x4g7!p|tSKJzgI{Hf3x*oZvcw+v-lG^$A}n5qq7rH%stF znQqx&sWcR}%H#&Wk)ce66)dy?`pVdQxV5`Mnj!4+Kh^6Q8#kUMyyp^pX)*!xP1e9K z?giAQLk~7I83V@Ci2|FuH@ke8mnW@~=|{^{?W`cr6lSQ&W_|kU%h3KZmJ<$e9l=XY z=gUd#;pS_W;IT4YNubT#Z4tcC-QYJel*ur{LK`5>P=Vv!4blu@ISVyJWJue?*)OzL zXdiB=Y9Jk<6<*+OkY)&Hzu(GQ5t*%sIKXuTFECwL5xuUPuUUe>(O#x~ADOPieT9)O z!6`CM5+s8n!uIH8IzR;J$sGV5Ez?edG(!s<<8E-ajA(eSyFprIShJa3^;M3H8N*qw zBe?HMmLgnI#J+Fs`uh*!`fAr11skNHkZy(hHN8IZUS+tphgP6>YnHQatVA~b-PFF9 zrHbpq-Y&D&nZH-vGOJshq@l2{yTN9u8rd9)0BNsE-Ya~@v5%S$vB>01;jb>UoEz)qPUfnO5KeFj&M+ARuOmFo z^w#ojXiKgC{Ui2q9l>Wz=QAaCg!%Lrf5a1IT4->#x%HO_MYhRGPvPZ#8E!ksR` zJtkv7HU;EK!|52TlYNkkqYQ_*j^JIU^ED%OtofQHc%Dp)1IC$K|6y3X!`+}`hBM?l z*P3G@C%DY^e7v@_DWeuR!F2>@n$Bw>_FD7lPn?M_$W#mH7&={}JR&14oZ&ixt7~C& z-G{4{*q5xmS%RzD!qvfVgq8_?Tc!#?8XE2?~`dj@Ef5Kq5rbb1f-$ic0OIcM`X6p z;tbajTwpq{fY=w!r{D7`elJr6;5R}eLO-z31f-#%g7M2~UNS0x6I@5|4byoA#9nJY zogncAnJNG?&D|D3x)t`K(5syHN(#Lyd9SctgMhC;f@o!vj^MTkDFC>KI2St$Nu zY&t>&(+a{#xhn`O9t>W4l?KAW%9ZzK72|H(onvufw5wX3x@))Y2&nFls@m4}ptPd7eQpAF0v z=YjE#Auzmw%zQ>mA+x0rXSt5xSElnzj@Y-%*DS%0Wjc+ZW9Xaxg z16)V&aMOjN^ms=*KDZi`?a+p7lnjSOWnr0rqX3nN5@_OOzL z_DZ2We3e&dZz;5g4=M`nt%dgRF+}%Y^nE@Vs{wnsj^KKx^PQThzkvFpj956!bp%&f zNbD!p-Ymf`YS%u2j-jLUV;!Sqq=jQ#NAUdR+HVN4msxwW1V5B1E%?gZZ4rEIS#yK2 z%AhR+BvWv9A0yWt)~Q*BB;kv;JXy0$vb2Vt~0B32&`*|HAszfOn56!n?;{J73H_Lm^>ZnNm9X(hBr>)DMsxEaOHb9PaWc z;b@n`gkxQf6drY%&n|rZ({iG|0+n%IU>DaBJlu4CWQkqXe9aQvNT#I*JGcZp$++y{ zZtezqq;5FS-Jp@W;ePH02c&LzsJlVOiWqN4Z)S|$U6Qx%l3e?{r2kUWX9D6{KToaH)#$(rqd{UovP$+S42znXQa>>%vnGAn?I~h;TFj5^^M|2;bP6Z~W zn`M|zGu(m4s_*qO9oEN$|G4~0Ad9>t*wrQdk8qjIw{*0EWVX#>C)W|2G_3uK61#%6 zH%stLnU)TmWA3&H{=?m1QtF0eD=c&&S(#)9$@Ja?(qt7l(cK_TR>_lvcaB1`h-7Ky z;V2D~Z>(jCuNJ(*c;Yeonp>ttx<`1>Wf#@i)oP6g3j4UcTJRZ!!#G=+wzEFT4B;D> zbX~>zBx?(sx+KeJm)XicukIWBkc{lzW4fU)>9Qis9|0`$4+iWOluYJzPg{+QIEl2eF%3yMFRX z{79z#2A`R`ErJ`Uo7`ZhGy^1C;dB&|l}YxoOfv;(vI^YZdeuRitdb|oXR*HiIETz; zA@*<`!K3v%mWxlh-R0XvrZWMaFj;#>_{n8S9q3dnRxPo$CU*%_T|O$%ukbdopyrXhcvvLm}nvXL$>$i@4{bhRi%3S01 zv0T$WuG6PW;snnYIZ0XtMUJu$3aUFZ~2M6}E^z(=9N0Qh3f}{Ic+> zOS&&&eG<^qWLQPI-)e!?y9Cb^iho9~pRKjgNBy?3zTw`)So5tl{zh2fl0Yvv-cHiX z4dV^d>I|20V&Mqa`n7C&GBKUM`4W49Ov?e@HW}W}^45gb+146r8?BcYnX3-oahYvO zX-Q?3*?WW7$+dp`MVEl-yb59~GF1UKGg;e0AhNI%{q*~|`^!iQ2e^)4w+;_nK& z1#?Z-J{GzvvP06L)*3z}XzJw+=87K|-f;=&uZ-C&TVB&6w2Xpa7uOLy!gM}MV%L(X zJJ`x(t)Fn1%VJUwOu#nQ+88Jt;4%yBw~UrUX3HTCa2>%-mc^fsPHa`C(LuKsTZ8Tb zk;Uau>s}TZmV>@$nXCG~@RiH2gd>!;Q8MfvO<)=hF7f|J@)~5l|q4K1Sf643R z#d*@kLXwVEriqp`xlMS%*V>yUxMbQ6dzjXLv=z5X z{m^qXv#l(V<3`U>hSOv^QXoxN$T`yUo%wyEjX027=nW|uld&%^GOEUe>C7JfMOyNEGaLY~+2y2{=nZ-&$aez%CY8%LBuMz@-YBY=Oxe!Y3}X zp?h!87`CB|`M^G|Be?8_wjALbxy1IDX+9w8jjUCKK`z^b>s;O>(7$k^>As_N537l5 zPjgklF(&I^xO>58?)_CLTkF&3D({$!M9B7cNB{AQ$JiL?FT(a{susfBRsYY&z5Q1 zK$@7KLOL zl3i)ZVsNcYm9@ef+zrw(TH&Ye2I)Ln^D)BPMPZB<#(3R&)j^u9E1c_YkS6O2m$QQF zAly$BMYDdQalrrEl|bjMl?^Y2EwC6tGFm@aa+Y?1M2C+A|tz9B1|#q0EPnz_P7 z$AUa+t}t8b|K41o=EChM-b>%elG%Y2Ypx?$-lzRNkJw?>-Ymg)WjY67uDRPHNVnqg zkSpy~hVRK#07!dP@?POGy}>{njZL)@Mily>nPj$p0QZw|6P%fRN^$t*kEz4^Tl~y znD>9ysh_G%*Xd%(YpwVOb4ZtrIXq^gHWmoXMXSehJ?fH5eS574A!b3^vI=z%}aA7Cc5!~;F_6L{P zrDcWgQ}nIO+wGg7`dwb)ovtHzg#E(K{6Mgj+qa3#`3af?d_FRAALK6w<9Q!uVVD(>pRofD>FtaQ$iRMZLRR})DPcH{qXHOJRUAE-PQ^hyVw12bJK0Du;=~m zhufQOYlUY%;C^_mX}uGP|FhDY6}a?6#I&`-M@=^?@ZHo8eNOp*17c3M$uy@Hm@Y-v zY$@;;)*`&u(C=~Y*9y~>?FN6g9c{M4G+(zuzScs%@O|>3T9cDyde{QvP1YBGSkI}l z!l!y{;}0_JQD@~}Sti+67~&Ef=kiivvP&@4Wb%bTnddHB-hx58pJ$7D%iJ(q)o^ITpp-0E_g z!12*&p9q{D;Ks&_a;V{KRKoPaL2J$1J7c$aKtCtLD5JGFvKP}sC(Z02^md&p(J z2=(p{>i3??G)J(c&Ah(wrFkqYO`WCrtF1>2#+j_MO56$b5X34iW$RJrDqGVf3+Ag7 z9*0J0=GWUIG^oW3XfPBzp*QJlIXR~v+O(^SYZ`t(uYyf&R^dxW0y)i^(hoWyezylZ%~-G;V&WHduVW<{EVO%cQ}Icd-?3%+WZ@SrrWqj4wy1e2{Lk zN6NG;JF9hfU!iPXZ2Nz0$OOD%G6rwE_XyoSuChBx3~qJ#oba|wklt$8;AgCmq^C~# z9(K}WFvJgin{c7ai-q)30H3+{7oq!o6r21}*udo$!Y(cc3Mad~Sh&vR{lYAluL|$E z{9IVza#1Y+?>x%8vA`RTHV7Q+-kHMdF6Rm#x%@%sq&Fk(4#F-j2MPzeJVH3nC2v|! zyL>@-&ET-R-cPimXbDq_WbG(tA<>VxR z^Q>8Lq`z}-aaZTt{?&O57-2hApCa7n5W+lf7cbbd=*Q~tx9P7++Q=3gapIEqFTgL1A z4>BIjU>DaB{Oa%aln@^Ni0v-Z5`kAPLe{{mChKnqyI*EraEZw}AXVYPj7*zbreyyK zx|(F#jcl>|s^wv8t^d1y@=g|5KP>dA-+i&>EYqByxKhuqGRZ8{mY3*Y$y9M4RZ+8o z;^BYO8I#F7Ubx2PWZ_1aS@+MC?OV$j|3eeF)g}>cJ>&IQ-IUo=tvJDT1bGrKJ~vO% zv-0is+^nZ~@lMwfoMk$H#vZ(;J_MDK7Y=b9!Rt)7k3CsFP31Jj=&w3BoBZUl!hQ zIa`?P@(W?U%kPDsT`r=*he_fl5EDAF2@Nsy1ZXte-yxCu|JY*5&I*_7O_8)Y!Uk-$ri2bay4O1m%W57T@Db~ zK*h3$Y@j52$OcMgmumcrKBAOyjlr7h2%fg6eI^{h0n89t+6YUU9v0FU4o}f z#^5XW0(L=J!IdU!;3oHir`!wXx))qw%U@$x?r_P*v(&ofvdq4;HE@@CW6;@_u*S-6 z;c^Fo#Z?W53d3Ep#uH7}z|HOj&$<`9;$E=1Ep`pWzV6@!_k#D_3%+nK_}0C^_oW6_ z^MwX%jV82}u!DO6J0vf-*}ZoOPrC%)nyi8E-3u16%c2GrH5r4R?gbmW7wqF+;8#<) zaK~!X&bIxF6K%v^z9$njh5LLqRSmV5k9wfc=JM}?*KH@LTRv1@m)i&fTxR!(!cd=R zcfYrdE_TlX4^lnnTTOM&-@jaP{_eCs_57|7-U+7Y=aO!>pJLKerg*382)<}Kf0LiR zhMpi~+^pan*AZNMO}n#%n-#IYT6?nuKmQ{Kybk8cc+iD(D?EG`dX=rW^-2~=Bh@Q> z5L*b12wllSWAKYip)Ig%1H>RLu_arsJ=8p0R=7vrtCugDD{S<}dij~TY7|V)!sE=Y zdO65k@%+#l`d%m36l-mO=_V8Kn0vuo_hwc7thq3z24O5;pzz5?T+{o7%-%1=n(GMe zvRC^pAa|cUl6`_87W1prHNM- z)^VB5=wJmsY=O0WyfC9L)bhQxCLm1%RH{nO%nB zHtHrf7?fs!WGfu@uasbjC1}vOZmkUh4|JKW#s3sIzyhlTmaMg!2Zjy&Nr6jSVA$qg zL-NOa6=p=*LZ6U zC7q#{3|QFhVZ*hxGTT~lgzE@ibZq-QI9a~GT6^2^@M4)#fi(2^tnf%(SCXlDlyJ7o ztaS;!+|yjOfx=jq1d*q(Q3MV)SM{*a8Wx?_;ntd*5L&}zzff88yuzOaDq46o1paD) zNnUG6Lkk1xn=5&1C?RiMSl<=YZ&jI2r?HpU0MZ2;mMzIJ{cXnK{HPFUL;>(%ez0JPyJINy@TYbtPK&&W8FT>>96eo(S7j-Z0WBWxR_CRZImf(vry-$N}7I-K;L?$;lK6S&X?gl@kZn&rhQ8ZX39S<^g z;TfPXbeW-7wPbaW4qeHIt`~-`!Wa=_9BpINKst{W_?){zI**n- zS-2OnD3L`bS&`cQJ>>D_iL)Bzr7q8!ESoNayxCDKeW#U>*%cyoavi}c@(A{F~*jbtPavKTHsUe2I&|r(36E@u%28* z>n=kzSG#;mU;zsEo|`n%ESpWd@IKiNeyN~k+xPAL&A?$B%Ggxc$8`kfn$GV<#2#rr z{da!xFKIhGMW&L#q|^;PMKdd)G*7-StzEy(U!3ncfIwf1HSUS+y1f^VmO_?b*4gRW@`=;`v32djO&EGsFC$zEqAj?%CDA1$LqIL37Z zul}h0suKGTYj2j|zh$~&z}Mz(i{Q`h1|2itTjN9PwUbbDd8u%{%aVqy$dq<-VRx5V zu@|fRwH8<-eiLi05y(J=_ZG(ZyDa;EfJBozdz~eGR0&(urUe}!6zaLgyb18q;wh4a z(h?gnya!#QmlI{IBb?+qf_1&i74LAwPP6uA2`-Rn!l3KN9tzi%$qhQE8DKYi&rCqa z#H%Z`xAkhAES%@^1z~aP)Sy3|3hzpHY1DHpur^Lu)LLtKV0brpPl4N5U`%p?wQN@j zZ@SEj3#-y^dwqf{vkO2R;5vePnJ!!adcC{(nk7iP2FSLmWi36v%SZ*gxQ^iIrt?(9 zu4z8Kg@~uhG-c2+^bhiFY|S;$*JK@Rd%?->1*f<-D{y?9zT+aJKzO<92;O8m zFOb-4%-1YI+O^eLs=<1BkTvTmPyDm%2#ztGry_Qk`SkOpX?r16_mA{&DWfXb!*vAD z{1|_pir8KtS7A{4SZf)HYu${>|Ah9Y1 z7rB?D8(H^yo;19vO;=Fb%5XkTXdSIqFS9|JT`f(6jD1|@wT1WGc`xZln`A5wobNh< z=fB#1afq$FY>NZ>nyhUh?C4%Vr^4I`?CPx-y`t|8$h5YLC}1r>^>OFGuzY^-6|=nFv^>k3D>j$qSte&~oDE7P#x0+TgBWTBW* z@98^KGLphEt|K_xbe@#hNiuc6LAcrFs{)Z7lK#V733$_F4R~OOspblIvndmmL&jv_ovtJJAJh3{h`nE?vcXJ~;kJzHL2rFjc)?}1 z6W3@BC(0NHPI4W=n-yBT{E59)rg6Y?CTlMU-?{unxWe++{wC1BaM-7*b&dtbp9|l* zq)%rHjF%JEaJjCqt;-#SU0eG-?;X?YpWaUH?m>Hkc(+cSNXFws6@(Ef^(Tt{&0=Q`}Ke7DOq zS1`k5?MZ>i!mO^5>ltee$A8$8`reIKj+LZo$oiXr^{3um}D|sOTEYG zO-)87*vEAQ7uOE~6<40vp)zH?5s3vTgGZWdX?mhSn_aZ`iHvTXPJ^!)b&j3UcXX! z(IuHkp^t}|!z7nfe78%ImMm!~Z!aZW!MZo7>2jB3@?~hS4A)xs2AQ6Ana@4E8K17M zms=vs_LR7@)A%dH#g_ds_a+6yYA1mn!#lmcOx)lI~*p!|}?ySLwcu^{LbSZkKuY zdfq+Ug0k-Vp9LlQcbq-tq;)Xm?Ys`k`Nd^P<&aljhfvw?ZJv!C!aPHviMkJ$=_)); zNUI}hFUwRX>CZ0nq;--Gv;1|IbcV}sg&$lp6f3N}EHW!BIaB!B<*$OTd6@N)8g-P_ z68}}0N781yok^brnqFPna>%hQBwT|S`lU$H5~vxWICna!eBY|Ly9 za!IjGt1zb6_gqr!a&|z%&2x6E-Zy1-Sj9Q6BRF-1_U}=|ek0Sp7o4=by)m6CTl z;Zv9Y6X;(&i=lf$_bn~3eylLkC7CXBNv6+S=9$6@f3NNd6tEzy31i2YTj4FX-%to2_( zINjwL!sRaiCd_s@M<7*UuNKkE<;)e+eNC5OZIgAdu6s8UwsJ}Sb6t}E5tsiK-f_uL zAGpj`jZFKPt4^PHUFJ1~U5{7SciUyG1gyD^;5(-CM;2mFHJ`qLD_$Yf^uXWD-4?;; z-3|Voy5U>y1|1WhBi{wq94?{WdLG(PMqRLv>j(}to!3R|?lSEVINW4-l$x&Xe?&$m zIKy=W5Bq)ly(ac0nKFUdCTs5tTd!nW*gwIY z2E3*~g7ql%z3`(;5Uq$eSytG=WOXND7nh)6G8rt~=w9%w$r!w9GI>|{+GO=xVS!7q zOjm}8L95B?D#AMM-9Xsiy$1`Yxx7Yr%OzM~G6ui8_jj7=k~ZC#neS|}x{I*8OR$g0 zWQcHud;cZe=n_md8H4BD%i3*bOCN)p$?!exv;G;L5lJwCVUDStu>YiO={g&15T##|F-~iVV?A)dO!6G)1X|cgD zleH1TBQ75krY=W7ZJI#;!WqlEhsWK4>M+Lo#^79&$;HAo?giJm_ZH!9_cG3ZT)r-J zvLR!zgvq2Ltmxj=gg?4mPuR@mw!(ofFBAUZa+)yH<$S^G4_EWE8tPzct<&crm)SxN z)4C3qv5;_t>j)n8hxQ9e?AbCcB)HFHZK}{^Wm~cph0R=UCD6aHka_on?hjb^2Hlsp zJ`K8W;WFt4^hhim;D1vM?O3NAJogV)_l_upIh7;I>= zN~QrWL2NSFTR6tO!-eBqg3%_EbA=i11<$zmE#Z5UF(`LqeX1)8tD1~KPxpde?gf3_ z3pR5v*xkKgFO$js!lCX3e>NF|u_lvo!aeSNM0m_4c-Ca{U*Q##Rq%;>zZRBS#rA$> zVKtLg(A&LR3wyc*`B}{TJxY1;Cn{bzVUl!grSq1B^YC~)({K;ej_BL4sgIyjh z9O@DrYce@m80X##g^OH*f0#_J7anl$RAHJ+@SMryC1K6gY+HH?>$(J+nN0c%HTMn_ z2Dt=>noN!sM!EM4;Y^p{B9qDAgj?Kun{bCqFwJE0l<>NH-xS_)2|hEKd?Os!-HNYk zTA1iwaJ_qP5$-ivy5UnfxlOW_Oe79)jOk!u!uC{Xpwz z8TT+a#4hobBH6!qx5t zlihoraHo5x3e#PJ7fr@*3-7rEADXOwEPU<~d}lHSKe_i8VKF;0Rj`4{xFH{FUhLvJf-mZe-{K`o z?7A{tqF_^#^(}<+6sb=uE)eJ>Snkr<)2GXfg)px|d2XahZ+PPoK>9 zx6kqQv?~s99l;A;Z2tiqu}90adb>TZuh(RHZa(`3eHJH^{QBSed}XG|9fb)l_fr~D z6`!${^}JrA|@Tv#Ty!_Rteac+nYth^lt|464e_~5kg8O~yW5AK7n zBkI1;ahs*qN}ju|mE39Fl|tQN%h|6x zWqLn4P|LT3!X>lF!n@QB3Sw9F$rAG$Ad@^=IN9Y}!aFX%5Ei&xLUUeUrr2@9MJ}^5 zLDF<|;Q6cM-^03B!P6$|FA1wy_bLnNnX2F+^VXjcUUAt|r=p9dqxxAG4uB+k&)P_4 z%Tk!&WqBsDyyKbX3S?7YEO6W;k5(446}mH(J8XSw6znTe`%3Z~tH1VpWg28jYb&U< z)vUbaNP&IS`efUw8%)0b;a)?2zqo4PE*q+`@j{1U#P4j>MqyM2-^U7Quxd-$RBB9) zA~Y&sxpeshU#eQZRE4s_gGl!`^wU`~?hmks>j<{l_uBIN1F@UR3U3y@$Le*$4KBflCgZP!Z(M=}CaXUQo!+$Zz|tnGTMOH|1c#e!fcM=CK6fwp%Dqd! zrT>8?)8c@BCaXIMd%CO&2b+wC3n#mGpSN`{km*YfaJI#P-8&Q_^*v#_!)LTxYMSC`AG z?lCrn+O@)UF7r9on9adfY;CH*c`Lj-kIzRf*QoE|EzQ)w5g zv`(g9U0$dvpS4Qs{}HHG_XD=e^VccbccV_FYg?stR@f^IUja}6$4qaghcMO(GBksc z0L><*7gYFP)kmw}m9oMG^`W}7SW(GFLVuShg`&b`_J~^2b2ms8QB~n>|3JMw(OlJw zgeP5Q`#F9mJrv07p+KDAI)XR;$?6TyHN?JS?adPG*p6?GOmp~DSbb-c+Y86LTwe({ zlNBa;vRYO)SL0ZLl!e;6PgWY4-IBx}t|NG<>B22ZuLsDKd=KGpmtd&NVZsQPBZV<8 z&lN6mnXL(aUH>* zc4|LcV$YCioXKjsNmdw=)>+n?d@7WzHR&WQ>hf6ObeD9$*X0)i1L-}!SktMNsY>AW z)*4oZaYoAY@K=JTTVxFotqqUhE!L|BI?m%Ig}!OMVk({QGFBudYD(7#{{%9|qL#7NS=iVm!(HVvoBNLn>}#$n*u!L4nVZ!*&yv^4_^nH@ ztp&!wD-ZY2VSV(CAQ?LhN4SpQ*&DatVPY?mY2v-r)K^wm16pTUYcfx0vDT!gu${{` zVU){kKJ*!9eX3;K$y&o+(t56py@VH9WE~LAUc$|+R~>Y$c$z|ISg-gcp=6QqDgqr< zJoV72Fc12yZ?1aY8rF-!KeCK+f zHJ&Uk&(PaYLWp-U9BT41t)u$9Y$h4C&Y3uIF)c+%y+g;!i=2ZQ|MENPWWXSpPQ z$pWjC=Siz%depte?nf(_lLMc!{tZAnP7eIc-GJ1%;XRhD0mzLTzUl644CYM|J)SP9 zmW`}6K0u&0d9y$&?%&=uUH#~#4`?!waAGY&ZW)%~AkWA%0C_Lrz|F$N1Yq$x~cWdiV1!tSA z6Zp7Gvdwc@%s5UiwhI!?s>AuIA9k#BhsOc^Ne8^#*fkCpNw6A6I@5|4b%A>H?g;y zuUUe>(O#zgUYRaYkcQ?TvB;OEis17WS_A);X{}q}tL_GAhVY?EZ_Rx}J0?0lVjtHL z9K3yp<0D^xnT`+GV*s+22sgW&A}ps)^6n(izwjQ(P{&&Lgg!&9PXdl}N%y;4P8S|? z`5)mGm*HF~%W;;eI$9X(GEZ71>3Hi?CFwmbN&1valD_S-m~=N~;;_PFENcwN%(;a% z>lF_adtA zgW_WgY|#Bym-PAEWi~qTt?nxHA!q|TOO5LFY2?;lFNz(M# z0*cXLW<5W32^P1Z5)LxMrH6T6_hyyO*0uDmj0+ylaUB`Q+NBr1-kW}ge&>jcSUAIV z1m82A-yG(hs{g$vBNong9l_;JYo9k(->T;-!|K4d!2OYDi}YnI?0X*=}TW;V4F zv4gF>S%!znv`irFR>``_opn1-&1BXY0VkV`!4&rb`W5;N(aYP+Rl8ew&}Ei!)G7L2 zhK#jHp5Waa3l6^>h> zo(lCmXaiS4x)iN&rn^B}W-I)`-5?#L6;8LYt01jDd|rNuLZ@4=I(c7mNv_4MQ#~tE zCnMWhikW7CwX%W^x4;^cywqhekgR&{T0|{dT5A>bbGesric7j*?2;_kxy&+68L9V5 z8K()}={kZVGy*s0V(dHCu1{#h<y_trc$PZjfecg`3$RHL#UTE71!7 zWE?+8-C1yU9I2fWITVo5 zb$$v(v{1wm?gr`bEpWWMK{`-NHjt7qUbtTmj&OZ0LH4WU_7gv4c*`R{7I-a6F5%_bA@xO-m_R5k=uL_Nyyz$6 zu)&>VS#VW)KUv7e3x>}E&F#Ig-YjDkVGq|4Jlk}>io~vOzGeybm4$ipVl!DbZ}bku0A9p0 zRuR@^S@2-#BV{2QFBm=xKrgHuMr9Qt187|U`B*ME)ZKurxU=kqRb*~yvI6GCPZ67uONo&~(0vQ~s-WR2i}GPS+6}_mUNuzoW`GQ>IbD zFD7dxMfH}c{EdX2O~zn1_wFGa=3a1wdyf(rpfKytl#mo!l;g5ybau6NAEnbFv(q8= za2>%N_1LM{P%E)RtzEwgQ~bN>wg~=|`r-Mby&t^Gbh89!rGEH3%iS!&g^knS^OfQD zGCk*jG(`ozN}5s?q#44~0+ps2BDkAnh(Vg6CC?BSGK5=wAwwn4kQ6es<{6SghH#z+ zX|Q``*;kSurnAmoFRht(lVz{79obBMUY2PS=LkF4ENiUgM3>;-E-8T=id{Qh$im)} zg%kx>S9R!PeXArs$|Whbw>05Hysy=dz0~a(ENg)==xs8g`*4>}2~?sp%yu#{Ns>}j zTASw&ADi8;q~}%M^;ob*s6;df}QX)2*rm7gkT&UWRYT zba=ssGL>F|+gqJg@TN;Z*+jrDR(=&Q1>A5^neu^urf&F}yTS55cr;v1rf6_b>V_w} z8=RnpAUC|))}{(xOWlyQQW7xbXOD(cWpaalz9|*xt6Bx=+JvjMuyzq^^P$bW2GW_g zz-4UaHPFjs3>LVTHCWLmTLW90jKOa1y+T;Z=2ru(g3bom*}Z^8kQbb=09gYknM}aV z?!8mkzz$E1!!yDqXqv2p3v7LAz*jH^H@Fu(Z!!koxEHXVTKN_@#MZI~E-)E`$?m;L z_|#=5t!gAw!RrYdy4+OoWe<;TbJ8`{BwyCTy={w^02WYQ_WoR71@Ml^WS+2%ufhOf zN0&^!ugy0GyP8a16y~}dpeYdR>_;xy{~xW` zI)(Z^)hYHutEGOiaF5F$h2B;`oeGD$WJkWWQR}QMN3w8h$=9ViS;IVMLse%BAG>6z z_iQn$73Dv~hN?2^>n<5}4I8S;sJFYEG=OV;I3tEHMRhFxENI>KEgFDqVG zb@;Kb?IC%Ll@*^ZT=26$R))tX|=?4;WRJnOyOLY;Czz_ zxY)hS<{^`Xa~N|RIg1+jVPS^Jn3MU9dpVii{77;#IhKme-tV?m`AwTba)5Gk5$R-r z3ryAkBg@ND-skdXfpwIZ{an?CO1M0lF1Z1DE#Yj9*LM}0GTuPo1lJKIlox4Fq}w~&-6;Bw*XElu9KmA)apjmguu z)pt|-ncP{}*X3~Gc$eb@iYhD>1^hqq-UB?Y;(GsIAq518Ai#hD2iC@PV}v_>=^bPn z%ce^1Hn!zOvW+2xh+=w?>7hk{0Ye~Bz<>z^1UR7w5jvrWUP2MQCi#8dnLBsy?Cc`p zFaJ2t^S_Ud&fIt2In&ORdw1{Mw@d+sORZ-LFkA&#eTay|Re-G!f-1mxQ-Ii;l>Co~ z)+lLfs#v4HOk^l z({wd5yU;XU&2FUM+myUUrY^KWwPHEV$DsXP+=?~1R;EsKYmV#cv+5wnerRgA4f94nWxju=Bn(p3$n z*Q&2TU1fu=QqR!SvrJDXn|~Z_t}dYYFGfW@(M0>H3qV(*%~!L{za~mu0JO^;Rr57MV;~p2Gxe3TTvg?n4rd@+K}K_l-iKsG*r|-#}QO>f}VoP>naU< zo9oD2t|OIe)N8q1N9J-Jnag!#F4vLDHR`}zt|OIeUSGaL<9C{|G+J(~Mx;@4BO!Lr z+bP})rqQdni|ZVB*ayU{W_w9x6C*M0twd}uo7VNAM*a~9tUA;b8&pSMXU#l~ddUVC zVeK*BV!}bhztIw%@jIByZZWe$(m^yJ545hJ0cmH^(Q-!30n}O}YG;I?hN=98pj<}& zLa>0ZOeY)7JoKr?nRuQj z#IcVM^O=p!6)29?O7Wd>$QYVJ??$tM>*35vT%IFZhoyJ5;d1G-O*pp>i#yI>yxkam zI>Kxw^#jy$QKR_EWVVs13h6VAsnJpqHNJT7^Zzd%i~!KBe|3^Cr&DDBFIHC$>v6CACy zN7`UA?V3PZ`la&=Q3kfINm8TK!)#D$Clk!&$hZApLrl%kZ`g3Tbh*8djki!8V4om~ zxkS+C1{xui{n&Kom8ix}6KqEP<#Q8!7$uX5wM)r+nKZ+9gt)UwGrSezJtj@O)e$iR zQT3G;Ta7M#w+VBZj{Y*jrPuz%@}>7T;o0TVV?VXH^c$a9JJQNh_NCu3;o0TVpGCNI zNz^3Lwt42eE=j43<7^qrq}3Rdu|ircLcOJ~ieTxe=w*qbS0svFmMD6KioUlkdYN=o z^om5$%T#nVv$B=`)`aJmNk_dIU!_l?iOxfqNiRjI2n1h2y=Q~2Vn>P{PU$>&j5 zm!7weX{2~=5ceAsKR+dX0`WM!R6cbe*bXMTdL(MJ4Z2LfBk_p_iYwl}8$N@m9MVtO zaJlqRd-&xL_gxdugShC2b~ojadJNH=A+2PIc_@*pOsO6=scNL6R28{YUb#w*(fQ@l zOH6onrL;{p-(+@(En}s$EpP4vZRH%b*ojlR`}%cZwJO1RHmV&dngq!nI-*uc4>ZZ< zmq|yt#l6{tmz-cchP&eElWe$L`cNK|NtR69^G*Exl=SrogIVf68Zx3rp=8!P5I!Sn3B#RHhQWZ}O{=ii%Moy@Ih&BNY{+LV6PmOGU+~ zklx+GQhOrQr9xVHCuXw;u=_6JK7dgjmxtocRk@85=c?6iiSzvl%cSGG8R>59sLX8s z9hB|E1sx*qk#4l%a_N6;=8@qVd5|qs6B0P9O@PuybUE&36IKI z8X-$J8A~;tsIP2LMprax;yLOmpnsa!5h9Aga=J}yJl+V(T4+XPv!(DX3Z@q(tQAEo z?AqpP3|()s87*Z?SuORoMOB8CNXWt`JELsy(8yF`In0%P`0m7xF~s3&pFi24%QE$I ztRZGXL6_Qax%8k_{q7KVeG@-FC4C)2o>B`9JiA<4$r43Lq$*RYz6c#EwV}jTn&{0pJY;CKhWG>NtRnzzs3{e|O547QO>F;Ow zZ7A*$CVqZO`Um3667lg!Rr*J5`U>e@(~bQe(tS;MeueZ=Hs2o7mznVV3h5}ncoZe< zRVM89OxUYT*z1|FSDCQa(>35bl<8lHTc?(zEVAX!W$T#4`2~baDVK}in6UD2=gQ-E ziSu^Cs)LJn`Cd+*UzvREd%Bg+CMF+y{xRV`CY?Q(P1(x-rdtYLvb@gzhuBUN$BHM@ zC)=P(zrY5cMkxabt_}oU@d+xoe^|m-C{+T~*{{LA`kQH8YOD!XOLbWEb5v9SDHQ@2 zRJHmVOQY3lzp+7AIgGslqU;h`wT)u~hR9u|AF$za>6(eYyNdgfiJza6{(<2+_`Lhl{oK* zjiV43FPmQ_&U;bcfryKD-LXA3c1+lj-8;;=b)On+Of`1wxopZ-zB@IOCRsjb|77q5 z2;FiQ>SG(+2`hUbpvqvL4a)8aB+-R$N8LgPtJOb2a0aQF#?olnzr_ZnRD1|Bda5xx zS`EF}1|LU#V1uq2iOog&NWQa$$Xld0wBd5;E$~V92Jv;axCfZ{`6=nU5lSu9X5iW7 z(r;N<>b(e-t~8E5QmRK}SX!ARs-DQBOnF3Qh&?V5U#|E+BkaSaqB2xUzinZus0@|T ztC`Gdq@prZ=E@LnWfFN*D35!LvC&dd9zCSrv9MH>M-S=MO&+7AqC9%!@`&%A><4q9 zF;Kl2^_mSTeT7M1ol6rh=Gzf_Frpo=bOXYwEOk}{OIx!eq6u$wnccV8k^g;H%}QjL^~QuUC2*TPa!ae7GGO2iX)Inn(M zbNKbBJ8dvm?)b87CNVOb*qLq@LFxfFGpH0-8d{viaS7VZgrm|-NVG_tT-ZO`N=3$c2>VriYG#G&oS}yQ_`a+sTL!p4n;I)N?&1N zsjDJb`Zfzo-5J5sk6T#k$q1I7GS%3YYDQ#R`fdwL-5bHuDrush69p|(LANk@)JR1I zt&qOb!ctK|E2M9?uvApg3hBRDSSl)Lh4dYhm358O>QhWXE2PIFz*2vYVCk1EEcJE- zORr?ARU@^EtyYEfF&36OJA$Pzv9Q#F2$r^OQzLbM1WUhzP!g$9+o2WGw#i}-Rg+Dk zI@;1mM^)@0ZT%p3^Hc43FoFl)NVWfNT43}uQ44_XMU^f>2wsM|)dp4RS8eb$lmP6#=~srBV{CM6GUvJ>qi5gW(j)tuAIkkeY9T)l$2f5{?*&QfD(sNS$a= zDRmRcq-tz%3~HVY-iUhK2Gwu2EF*Fa7cVI4;p+{t#&t-dwF$a8;CM(k8)7_pR&T*O z84wLV>5(>EF5PUxxm}33ha=QOYN82_oPs*r23PnmS%fhL~{>32+cewp+vn}3D$%{HGh>BmiY zc7^nxO`YeLNk{p|n-bOkTGKxB%cT#a47h^S0u!u}8cAtDr4BN|8kKKF@&}b#$pmXw zK^-aG|IUWB^V25&$qQKA`?=6#c9gw!d9SR-|g306y; zZ&6vg&IYAqjjVD;;{lj6I$TCCFvQVHe!UIm(!`^#>fijfH=>G4547QO>ED(56&1I} z#LrJj-~1o_GVn;LRzyp^^p_Tv`X+*rgU%;* zAk*oFSfiv5+n|i!xtxsGtPOt`lO}GIgNQxW5UX=(s;9xf%%rJqLEUJBi%`~5wJdFJ zbC<&@GEyh!MUm1MCL?tcm9tX%dBkO-a8#^Hg62>~rz5z-Oq7xkycZ>A zVvJ7&Iugmh*`l)BP8hC|&O*3IlKQ0yj*x0G!Qm>vTQ>MLYD<&D=-p6z+904gcHzIQ z(X(SvhuPpcC{;Mo-=}aY80hDi*wC1Xcm3;ex|4;J$=-f!&hp5UW6N<`#y^%PjPNH(ej=MDp1|hD0#uJ{DI9J&(PMlX@V>QI_i89BQ{8v$N zT5VWWNP-P0m64z;4M6~N{DS{mAPf&F6$J;Bl_?gLmD6od%32yB^&5*`j#_AgucB6` zV9fTptZH196KlW*5QmyHqm|WE8&p;&*`Soo)ns+4MU_>X4L*Ug@+i8<%rX2@0ssy-EEt7Oc4U{U^?;{^VTfy-MUl`;&I*@#@d;xVGwf7t}N z*f_0hkhI_!5j}s5^fcW0De3Ky6;jOJdbC?7`;FAPJA$fta05?1&RlXW1bC%`uSwVlXh( zZoe|Ynuk%(o8U+(m4QJl-CUN6*CJKI?Pn`2l0 z?}4}}XD(sQx9(gE*Zjo!I#}$5xOk$>q4Fy&Re1?z3q3+*Pzq4P;-83f5QbikSS{k( zhUg6{m*~Hw`_+xgN;>9n6MQZo7#zZfG)U)nqq2j)AC*n>iSAQKb_*`(kUDrTBOQDp zW2L^Mvl+M#BUK-d%5L8|DqB5>N6?UF(!YshkQ0#9=WNRnS1p%shBRM%7UJnGc^3du zM;T@y&Bz_n{~DEj3~3{L4!V;v?bna*phm~4y?BE*G6)%hI6R4Mm%!(&!t)166EY8R z{F_eYqrubIydyt5om;BtQxO+`#M9g*L>iGMq$_;dQ@qj{X+xGES0Yy-O~_@4OW$4I zzi9Ja52c+CBkkd|6MC+~(a}|WGiiH8X}2T&284G{r0**JsT;YSi0t+|J|9C|zQyqO z;P!>L39@;D|88&6_TeU6U&@a-JH_x7;jWF8z*U;r8*<@^xO82`??&4Fk!IvR#HAZf z_)w%BSuRh2I9} zUSzfP@d3o~9|U_E5!T)f{B^h=Bh{2eWm1|C6Y08&cjLK}U%USbsbkDcLpuIWpX1+k zdtw)VSOSl357kJ2DkT%YrM(S>$-|)%y+4w$oThWgo&CCIxA(_K@ zO&HR0E&X&IcCfWlPk3N2B9#O9*cQpaorI*3!ALu|NX9dFw9*EzBh8#Ygk*`+{F0^Y zzeiGp*F;(gzk3Gpq|rQ6O`Wbn>Zp_EiS%aNP()J4ax)U?e25<*co_ab<|CwP5bc9h z6P}E;QKtRSX|R4s73X&#&0uSB-b_2cfmBnUn~|0^d4^#v>cd?A*hZ9}c}4R`Hh7(%pFHzwHm=H%Q0U+^$o*QI{s_(M~zH zqI?~V+%LpWI{WkGzpZ%tR=GLtizx1e9}$0a ze{O&we?V?QoZXpQ@q5(B74+weh{K0f;iE_$nBp8>LU>hVb3}0tzw2Js3uO5HHQ9@i zC4}3N?#3V1Mn5C7kt-3Gt{DD1IJY5{_fby7@$UqC5a|RYpNmw&75_UpDYVjm zp>T9`m*?_X5gW2uf|Mez9M0aCJ-98*+&2=Lk938v31@vIjSNrl-Mo=v93PC-Ay*;o zX**8qm>(ZS+L=q|GajpteY^Z4RQ5zbo)0PClm*UrpJUAkCEZTg2t# z_|>f4qmT^O1EY`(X%9uJkZqC9Gbkf%($3nyI&*3@Yw1x)c6sj6uMpa6-UYweEyUA9 z_*7$Ph&OM`10CCkc;z;fnYjG&R_;u@lSe+D!A9E-A>K@$71+w>x6)U=C{sS3-3dN< z7!_Rqq2I)jTK^7y=B8!mQ5SPBYyz5t_omXOwL$*PB zAZsDcj_cnR`sml?a981*m`Hk6=079@w-IR~?j&rr5I2l+v=jI1O3L}xsO)U&)%oVA z?0CX0#H~+U_M=hRO}SQ0e>f_8FVem;9}tqZ`GZl}^*L|C<`S?hY2HDyq<$3hJHzR*Q^6Qad&vg#c&K~m6bZ-b_u456^RdrKcRX5dDbyHn?Q9sr3U)Ww1?b`Fdo!@O2 zaG&Zz){e{g)-7@raw9VEV%84CmFta5@q6&!UQT@xhr9JC%a?dgL7LX!OZ7+_@-5Q5 zI!_`X9mp1(XSd|Kxvp7?dzfpJrmBql9N=lb zCD0FP=N{);=%z}>0k$jW!bh6e!(4^5Z^SyVF+aUSo<}389^4N=(#KQBUvpm1{w~Y; zSnd;zLo?UavpzIahuxT`vxHyQda*J%lHr=Q7j`RO;B{|EhBaXDYW53ZJ2PL_F-Pks ztFpxH#5`NI6>py5*IlZK(>z+uc+|X+y55eTR_byjd##RATeoKXT>e$rOncD2&BTk- zO8irZYwr&Zhj#?yu$K2xBb|hQj{Y(6KTo7jrYnTc!ge$A3i5g)pJKT4hdSE+dZhVz zo_wNBvh>Z#NQOQ7gGlo;+;2gee#aNMsJmY0cl^&rXIp9GCy@^Bp=`!AKs7$H4{cXP zcp8#LbZyW%U<{d#Kk}T{;2GWNEQ2>bC8z_zlC%+ zzT}^yva28mAoGxQkzR;P-&Oo&aIZx^MK&aVm#!GT_c!E)%=wnR7c!b~E#lI36+eMA z^--YJy)3cib%8tD-d166v~%{~GRcU$Xy2Zb4l6is9?RsX;oC?~o&qI>e>x zDqd-oMtQw~DD61JrSB?!FFsoufwUkUh)Y)tKN8LvNKfjyA#xt!3lizNidR~tQC_Q& zUTH5vT)th!f6leZw@BvQQQ0eze-ZxKJGt~-#rK7~IZ}%>Ayvo##O2>r{6%nE#3%2q z5tptQ-t#@i1X9VIQG@g*ycy!sbrruW-2IWmky@l0IT&&2yNdrM+<8blQj(aris5cP zOg+lyYe@R9JPU}_kyi6xhPh<0K9^*S4<=kiA8H(SBJ$r1eJQ_aqF>ZMEr{yv%IoZB zxL0rxQpvrEUnBYP&9iyd5~)K@LR|c>p5?wHQu!PY3?UBB5N<@;kmXoY9KOYx{C*+Q zgq({we1(-pXIDWgk<}50XM6JAJLHyixJQjR{DkHCi8JJE=%$f z5#H_bT>f3fr(WVd8}c(`WyINSeVO~vh<=K<3Avqc^DDV{_iMvnzs7x~*K>G^a4E7p zlElaD#q|eLkIX_`KCVB~@3OyokNv_k?3ZZ2Yzz0nkS6SOAgx#NIR?@Kb`!etM(%qd z9jwJAn~%=6;43>&_bhv%-&L^BxtF~zQgt@#J9`${=tUkKJ@~D?wYbl}BA<8B?$y1y zZ;DjGor<&(H)&n=Q|z5qTmw6Vr}G|!Cf5FUNK*;+BsMbSb~#&0AN`$=6~ZITD$PI6O;uHZlj%kHR{u~*u)iH>Et4co; zrC*HFPib{G{+;9OuhX>tifaT!KT&f%;?nCEQ&xhLK^hT?{0hz=}$&pC5>L#?$Q;*^}6c6A=O{fPKe_d!#{^x39k+L zYn0~7M7plxr+uln&CC1r0!zJpRj+r{n;XwYT)t^uB&zuD^XzwJ_oqs~5BcwpxcpuDtHDl2 zTt409Jx7`s5!X)n_0Vfx&!E1}?oh(x5%C8`?O8`Vb~nC+v}K6W>P?PHtNvIXY-_~X z=`K%wt(Su8?U#Bl>h0K6-|H2XdSj`3->6>7DIcgpRL8&5|MCI%!d3ODd_eEwx+Vw+3?W*^dx_;>d>zgP~cX@i#vii=w8CAX@ z-*9ga%~Ce`L>f_9^@>&bgxE`8(M1Lv!WqF7I&C)FH*{VQgbxFOIFGJzYJL>GTp>wWsQTI=nw1CnKjKN_RB! ze@%BAHeN%Nm&TlHXJ@yo_~m!!a|@&$soR5lYv`Mhm5>U=*@^c>*YbG<(z-G4p5nU+ z`bBm9@Vf5h=m*91K2iOyw0_4}zZmO_L>xh2V zQ9s{UO;|s-sNd+*exUVOyY9Dh4@AGRrL_8WDE$5=5s2dpXJfd@3gWf(0)Ka z+oE+}KPjPmC3@w#=0UwhR_}Q2ByIp&FHTjN^$t$G#!#;#)O!cp*+c1-dwP|fURkHt z)ai9}dIjBjh+Z$J*U0JBae76ZYp2YH_I*2ADx zUr`nJ(eyqc_kJVUkWFW&yS&b6ynhwZn@_$#s*ytxy}M*6;_P*o*EF8}64Ew-wnZ|? zzKGs#@c`oNb(gnU9s5G$MnuomUybM)erKnvc%_|(xTou7qjIdZA)C%lcXQ^j-wL-9V4c>#=-2>8vN3T|VXW*#9G~h#s$VxXWJ;-s)joJ(sHI zU-f{g9wgNRk$NgokIN~Y9&6LXX)e7Uj5-X_m!UL1{sgIePV zqI7DxBJFf6@s&s!Qi|9IPNXeTJ9d^aQw3t|D9Su1SBDm2Q(eVbTZAl^>Q5q*wL!34 z(n$V##wmC7pD=dT*ywaQbSaGdqyMYgT9(YiO}8qw6NWLz$jL`VQ?fU$WX)9CWT#2ZOXzyqvexfMl@4U*tbiKsr`Pa^}j; zib>>BkUB5bO+r?2Ew9|~0?D9rxwnhsA+Lkz$mRY8NRwxIJB& zFu5b_(^Zyd&dm`BIe*R&wtcE`_=oGS;lQ@PCe3V^)iAamubw!5 zRy+@6D1MsZZCXC6wQnhv+6PV(pec`uJP4#ZN~QXA=lUzIS4rAM#oG1Pet56#uS(wtOxIsW5KfM-+Nt%k zCN@kOJAPvSNiw(@2HIUMiuBh|I4%A1Yid)e7JJbFS{ZVOt7%7E(_EYjxtcZum>w*U zyQ}G86|SazUGiAFnm!1Utf{SEOiS%SEwqm3yk$7Z^W|>DiFqhUhlflCdDlZ4Ksr6- zIFPSB(IPDi3)U1h-7o^fizs zuY~^uIn6`90%`V;Qkv=#52*xc@sM>v7JA6WAgvy54jU0;~`5x_VSRw zfmC_Oiy$3dnco6w_mEByUXhycpYK8DddP~5`6dtP0diW5)Q;V{|G=%cu4+yo1B7gS zNdg%tWI#&-86;%j!UQr{$e`8)GDOJW#R+7nkRfe3WSq%;=tBuaxewU7J%K3q0Rx^- zAj*Bfz>Wl>+y@MLH-RYk0fRdeh;kn=Kwh=O{JVt2n)cUkorH5<^ z($hl*fTTTSdyq|Iq;|%f##yr`)b2Xj&5*LZ2b?xE-4=P~aFFV_gutmoLB@EzT($nLd2a@)XD?m2&kn2IJJmeOTVIFc1NXA1R0olt#o(5_0%JVA7 z*KXz~CY5>*B;}?05~SQiN=Q-ZAuEH#tAnw#7D&9N7$gnyE|QyRH|MM~MryN@X4j9e zO-!>zDQ@e14S6F74#>^ZC{i4}I{gz+;Q8nO-J z+)6uyRv&X*R13KINA1}DTMyoPNGd~Kw!dn}2^p4B?h!H`q-tQQC5KE9!V}u;eEZ7aKa$?_nOcRge$kW`#|?a`C_4;V0b=%z8E zRC~i2!Oe->e)UMD^6bn4$#}@GLF!_}SROQNU`ve1^67A{xFTu!cS^OAE3-*8v}#yO zj40J@aN0cNUXa}vB<;K=JKnzKpGp-Y#`3Uj2BbYZU%*NIE@?-z^$`yxk!?VRJd#8X z2kDPv=i28Ckma6EB8xyK@#KAu^A5=3SChyZlsRh|?|0MEj zka}+nUJO#hEreWo9s_x3iEDW`L)zI!Gvwa9;NdYfOnkT*GH$VwDH^Wc;bzFRYr~Rq zLjK`q$ZF;mwR&lZ)?5E@B!$XEFALPDhsdBFf>i%Ys`jeLGDj4Ro#aLx$DZ-%WIJCuX@Ok^Mc%8TB_Wu zg51l4+{=U9j}LNxbE$GK4|4Aa`n@CQ_f3P`KUk{Vdjz?E5aj+rkozt{?w>DJ?wba= zYYXS~@*pj*9x|jp$o>1J%Dr!p`}aZJzYpp@A;`U~dTCafRFM1gLGIf3`gQLaSIYq4zt+2h8D)(MN?w<#_e;(vMBFMe( zQsv$+$h|D^`Le+0=jL*cKKr|p5=M9a$4=wgIeAQ}A3H-(Znc^;Ys&2UX&||pMs3*7 z)dG9@N3d%u#ECwki}z85ICdX3V0$t!Jy@bo!zfDPaC@zXTnS5Pmb@e44ALIk+9|+^ z+DD%Z6>A^2Km0G&eNYeAr^V|vxQFwE;+&z|JO3$R!;p8lI|FzBK;4~haAP1EP0lxt zb0v&Fz5Oq?&j3}WE8m#wN?5#o2I+eRUHQf%KhQqQ!Z-T;kUvM)ApN=?7eg~{4_Shf zj8)#;FUYXaW*)kq7Pz}iik1gSU(>GN4J)>@@Av`j0rb5~)`3kI&#({}G2?rOu^BDQZzz9EmWzA=nQ zOywQ&4S56#J5>-4$zxdGkVjbG=u0Rpk9?zv80#BpLSbI=4S9t1jh=+c5dV;GECI5< z@q{1Ane&awn78Zc_?a`Zd@rwdW_H%pne~m4Z(NI=^e>`yCoHb9`&T%1AGlRU(90mr z9#TSKn?Fo))(2_xIDx{%ICaNF9Fx;wARYH7_nA}08Ja{+0I6D%Om!wm#zTGsQvE=Z zvjC)X<)odvK`I9&k*7hbJmjAs8E;3uJiENKhonI&y;^Jz((dIx2&BqGc2cTY$r6qN z$$H2Pkk%EFB|I0TV^K2IZ$YYVOCmRew0WF6LF#^!&If6q zlg#T%kXGk)#-nZkY4$jaK(d~l`-ONt*bb8NI4^>gZ(dAA?kTe)ug&UEJ@r zjoAjivN$QdPV$PZOt*86Ox8UO(z)1KuC1SGYVti_e^k%#?dxMEHVT?D)*(8pB2{+7 zq@4pms=TYVDInDz=LC?pxaDiP&s9J3==wU(@^9g!Jv;Zxa-2%JzX;OoS^h?dH{w>~ zf~VT^gv~%&ewHlrz95x7lI?RaNV|7^+6dA-C7J3Bkk)mR$kiZCJ(9>0aW1up_3-CF zI#x?^J_Bjzqnc%R#X5?0*{<*Z2^TopS?haSAGf~uh&KYp*S|HB2g5_BV$F2_I;K~J#zrwNWg*b)V=M6Y^1u0&hGQQJo z*A#JZLHsZO=nKcLGUBM6L(V`rcHI$YbV1H8aO_GX&N>A-Bb1j}iNvXa6T0FIICixX zM^_tmOc98WGvL_uOPr0s!!q9j$F6AN>|2oYARN2KiE|;Guskoqv8$dq>MyNi{_#&Z zb{!PwDk4M9_i*gWD9(X!7?63#I$ZSFl~Eiv+Xd=17>->l#TgGL%xiZzcJ&lTv%Ge1 z{xK1bT~Eb1f(Dd-_{Us0c7+v3cVNQ2E{0>*+~S-&;Mi4I9G0#E^?DYLU6;k#xFF{( zICiBLr?5YN4#%$D;+$Ww%w@QzUCqTAP>|CDj$Ply83rfx!@h9riZ4##@(dNntncFN zSTL`B;MiS3aXSaYvHJvZhS6W)wbfMRWp)nYTv(7Z7mnRah%=mwq2(Q?!LhpwaV8Yx zTnxwVH^k{(kaH~@y8{tNV=(le2jSQ~i8%TmXgCI6f@60e;xLd3lvy{n?4G1JCk@B$ zQi^kSf@AkB;+$2mJmcZmeTz6+4Z}7(UF9)58F5Z6Xy-;ac5frjDFr!Ch+}p;;*5k7 zwxO=e?fyrc!{LO!x-w7N*d38L_Xl~oYwB4vuTqzmT*m)!jv9y^yN?n_pK0kT)Iaus zV|P~KOryZzUA{?h>|RTp?JyA5>m)dK_a%<{J>*;k$L`0(838987Z1yh*`bN^S2$t4 zUV~%zY~ox(Mw`I%k5Z~(cX8r;0cS&>z}W_H;vIEK*bhpu8Ju{JUF6Q~AUN@Exg?yw zWoK77@wHV+fk_^Y?iDmsQuR`4Nh_P1>+(XIz417kh9Ib<62dPOYI5L zbid=&W(}Cq-ML&Fj#R2gV$SrjjkB^d8=E{%Eu1ADG8LrbY?n%Q8-;ke&jV?SuWH4) z9Hc!i^Rl>`dJv;Y`*vo(f>VI5ww^!CU2VO=-JnZUaPQF7)+Fwg*sHB08Ihdi9XG0` zrZtpTIID?%w_412xHwyYs8{^sWjNNu#pxt6oN+!@UdA)U(Ms)C&8;An?7$Smom(c0 zS$;;Gt+T%KUU6nKF8cIrg;p0D^r}490@1%pPn1I5hsqO ztdO$>oOoU>SwQ3L>XpZQuc>b~H*XYK88g_4=Zzwq1K`9nNfFNBaN68#Q-o6wC!Xhv zaDD|Rp682jPKOh(4n;T@!--diBAf+qGF_BeD}ILg$FBH?(GlVJ(u#jsKeyuRTeIf{ z&Z-sv3xRCQm$Xd=a&y_b$Y?zg*zB9R^&4tr4)p1fB%^>X_=L&I{S2e2a>~uXy zUC(5yzkp=dPa-dYEO6dJN_J-;H+jexAeVc{a=j_@ACe_p6J(Lc=?&8Cwb;%|b_Vmaa%*lHp8UdIWrwEzM!fZKaT+0n z>&|y@tj~)xP1XWK=|0#oqd=Vdh!5An3>-Ty#L*R5NnmFj96M6P*@$>~wtxIm95Z&r zsUb2fPmA(0BSoB};DmN=hGWNp(9l6EJ^BSCZM$*H~1&&YQ#B)@UyYXdx z6SGzk&RTHdIkU)mx)GdsW-IXBT@_F3>E#S$yPh`FKH)w}>*+c}-Fm7g1LwcS1ZJw4&D2c4F*$dTfx9TTl0cW7pFe z6KBk9I41w|_91=QYpos4&w&-2?Y`o~SFFNnL7L;w^_ImPzB-pmb`IaKV5v2SuYIMP z!*9hA`vh&MIs6T-dF&j%GIr>gyrU^@ANjnPes*qt*2<^U_LGr3Bb;6qx1l%;fC72l z7PqRi={q~`l)>jt>@y=Iu1#EqF9AEb1wMx96XMBSFQeX0McSXYD zE|c&39l>_k`r#@CN@PEEePn_2!!fi%*cbA{kGKZ2eyENJO??&DUA_^n$!aF~#s!G= z4fR*J7RWb_*v0uqKRBWP$T!+!-_Y6}mPfvE8vUi-E-gv(Kg>(M(UVG9-(YiFz<)H4 zeH#15ZE*a<`Nn+mvcAzci?2dV_8fyGJylG%TMmnBjP`@m&hnSL3fK*#I^K(lbO=bZ zn-7miL><|*&)-s@`y8vysSrw!>c(8T%*l~ z)6=fbL2PYmoML3%M>R2f4?Dsu2)vDAfD&}tRV8}f~-_jJCYw?Z@7GEzA=pHiwaSmH2=fAl=R-j8^tL{`uXDaJ zbwJWLHl}^j8~<d~=lX&iv*+)I zZ?x{!wQuNsarSypzC(6-hkRp9H+&=A4c~aE8@{1;4*I?^e(S1)b4;Lpnm7O7@{QRn z*D-Q^oM739b_9_xm0+_Sgy4ZSTM!+D41jkQ*A zzM=TAJo1gX-S7>)bEd0#V;)n`7DD#(#Ap5 z?~re7-woe*Yu~PYV?yj3IBkKvG;b{KhHp&ihHw0*8@{1?o_TAE=No-#pG?31E#H{N zot&=eyw>P2KQ~yO}V% znm29?d}FHT8xv@s=1u;$eB;mQu6<*RPn>TQUsK-R!udwweP&Z!_aB}&Zt8|_lpN5t zZ`>05M)5V}>u&hQCEf6iW8ie<8xMuPk^I@0)YY_4tNTPOoKly`HSDTfc62pw?DCEC zjkTCJdgrYKsg$l^58CpFedC_E?(&W4Mc0%!yWtzF9_W0dld^=@P1=h--wogBxqR2x zu&v$jjUhNjSHAIf;2RCzbxH^AlilinYu*^keTlAoV@yejxx2>ao<-M``};fJD14pr z@3`*rjmwMrMlU``qdVXfzrXRH*f)w_r~Eti4K{g2_8Y^x;TsQi!#6(bhHsRSSKfZZ zyH4rDn%uVK|CVpu%6*Bhd}G3j&NqthHwITZ-za>4W2d<8>i6Q;um^R+H+l|t^G0#s z*cdNf(fHUVMSVk`&_bg;Y5o_!_tnu2-)Lo?>T2E?ANvMbrKW79|H)$52VGjvphS3cF)d6Af3-7Q|%~(*W>0s zQ5_A^^6w-v3uGZT3DuURDq!jyknAf-&dng{my^ijAno5Jkq+CB{wA5%*&vy?Ud!T>teviIsUXb%D9P5YTTwjp$ zZ?&rFL2(8aeoMm6*r)RNYxo^;&DhTlaWnSS*wOC9KenN!w&j)A0e)n3HVTeyd2!AJ4ZEm8 z9MjI?OfSee7mn>6agHs>xe1Q#FL5p{$ax5k?Ll!4D#-aK9NVYjWZ;C&xDuT4voq&tGQ9B?>YE~8tD#vmCF*-gmUq@7xj>Rw5t5v1z#q@A-t(jO&} z8$jAWOd@R{P554}eO?5qoZ=Ao-KQq+yHB06vu5&X+<${qd9AvxwmjbV4+nyz>z!pa z>%QU~kwj`i{FZN2s^N}PJG-&AVdB^c>0h|q3nc5=sT@T6Y>?!v2U6WD ziS!q;o2#kHvj<4(;$-dzgS2|S(E!r%S+Y;h0BOE5nd(ZA%BCc83rN#pj8QVM^|}`% zb9fSYM92{i;Vq>T^dibktwU78XJn@?iM$Guic^X60Z6k~=G0(n5tn&ctY5>oaO>C0 z!45@b*7|kTj&A*0Z(rVJ8cfhyzvgb^)~`8Cd2IRfjy0&Moug=@l5j2*eFHdljuL0v zJPY=8XE=7&D$W@X$IfHoP-MI||2P$noyUrETH)AvOq@^iO_=j1;nd?AjR z>%{3(kh2Qwzn%TW33tItv@skzABuy~0>?h$m>E(W-2(}aX>jbEDb9lstmh}0^WfN7 zRGgpDfNTx(j%(rAc~u-;ZG`RoARIf>in9kC-+kQG&89Sq8G|K%V_7{gFDKq+j2$~a zo4ha*wow_+?${YyoYB|__fh)(p`F9U>0PkQY3$fpU7Qo)gn12wW9NBs_AF>;6dXJA z7w61^W7h(4hSPvyna`6QvpR@#4RsIq8#l?0SsldrEq2&63m= zj$QS{SyHe(i^VbPpg4=@tTa6TcovRb8O1q_Mqb$`aP|=#yH<+xCy;O~ufqIoS5I-O z;e@`i1suDcigN|?{N6!cyTP$5tT?YTDX^609f!+~SqH^Q6C3)*(Qxd_D9(ljIn8k5 zwcC70F|>0HoOl&3!ns{`>c|JGEssL}@mDzUuAqpW=frUVW(YIRp z9UHteU>8!=trhJdgR)l0?n~X}Tdqk5yV^3_?mJkPy?RXqN!2;aD&icFs`%XqLe2-tddTe{9o!zV z*H+77m)oE5p?R^iHJ=_Ck1AP%C0IKH|JW5f*5_rXKO=T0pTL=RU)B%B=?xN=`B3aw&lG2G z2;q+CSmkAWRh)0J6RuX5z_Few4h@z2;QPQUX1Am4S&l2X10U_;3IPv^b zk`4(VO>p8_t7OB1oJ--v^G`{-Am=98aWhiMMg=(!z=>xq^WM~urj>E8U&JdTzOimV z(#rVwb#7%miZdSB$~&|&?#Dp3E8{$3LqF8YD1u!Xn>f+kbN|rFc*$CBW$cL&ZO8mW zE8|9Mx|Q+dAS1WN{XMtFWoL)C-cv8qK3R9~E3jho{79Vm`N3r|)Ar*Yhn;CJELcX( zw8z}(X4-3MToU9RnrUx7(9N{lV<+gqlwQJWTSFtR51cT&^~5o)Acu5N z;&6M3imhx8yn8kgn+s0Ij`a=M(G`6-&!44w8Q&0RFnNWXo8VY)5$84%Fm&>c2jN)% z5l3$b@yjgw>ne}&C~@8Z2|53UV|`2#msxyi4 zRgx}5N!7uLN1XY*I~?MTaN@CC!gNvK&d)MF>sPHLDrqjuWV`U%drKFe@L=6*LPuwu)##?Fjx$5|%dD%ZUU>rsCySVno& zWTs{7QS0LhTiK!~{+qRFwDTz02|a2EHMOmw-dQh^Iu|@FZVhoZ%ta(Z@~9rYok#6Q zOkt1u`ab7T7r_ZVSaX!#9B4gicQ_@9Tx?LgxMAJ!s4?B}s4KW0wsTbRPyZi{JxXt< zHXr&rXEFtvNBg9oFTRTtNq4b2y}MY=q{{LdwA|;pmx46?J&D{1(mFqh+z!&>rTPm< z<)x0}?lpCI_nMwlD!0!xWquPR>wO0Ou@LWlmEVC>{mNNZvWi_;(YzA&7E+e{?074X z&To>bb^xhf%_7U0+z$b%^75Jp(zblkP9sQ$n<2UOISC}YQW7}_q=^^E=Qx*wRF)<= z3uWi-Bxeaoom*3EYk)MrkmP&|l72LaRO||8s701rCUe5cT=dvE;gfK1Q4h@t^Y|{7 zofEc)y`;ocFY!-v!ZioGIYGZM8;<#nsj2m6jrWPzfR=aYzLxc8aV}r3&?++oJJ!R+ z>5YY;IH}#?Sf3ZC4o+!aPV8jh*ij%(pMrL#!Lj2)oC-41jy!j`eeXj|lgfc_Ua>nl zDrm=FW5=+bhI|xB>Qj5hgBSjo8 zSPIyA7>*sM;yg!Rg#Gm@96NHw*`7*q!I5`-BaRu%;_xN#6cx=oDt2?DTbvc(g!{t{ z;Mnml&be3!>$M9UI|GQb4VOif;iWe^6s^~(xg%o;n-P1oQE+&x8@zk!m;y) zINx)ZXYV`)-wuUiXA*HHm+|>dz_|>Lom<4YkG#0R&O3e&$Idq596&p#^BAer6L9SO zBhEzP!@7R~$IeLN>|4-I%hJ8OxvF1``AkJj$G-frz)L^}`h zjc}&xi*xRGYxmYP&UL{SO>1`Y0^hm$I-m)7pOcNBx?$=p|4oNVvZvbc!f2iktXQK5!D)4$Z5e2?QuR)* zGL0a0Lz2imkT;K@)kz`Ya~Y7&J){Ms?a(CWCXnogNjvv}Eb%yxgH(IDzXI}*$9W&5 zYU`w(uR)sm;bg6qG$}{L9&iREIctM-c$_Uj+8UCnb^_^~kwiv|^!*m3Zcws3zX$1v>s32**37Y#yYek-hhJJ8XOZ-r7>RzvvC{hv-k+5F z630>9{|=JQCd>0SNKGbNpEl5Y7WU9S|ypqg)3`pxX z$=n-3+Pyu=1xhtD$+-cf%|q@1NqM#SJ4lPic^jlDMwZ2Ww%I$oeM^DGlnQ9ya^LQ5 z-}2f1e9y`{s5&7!v~Rg+vfHuVfBL zkX5Q;FE`%Bxws&wFC04qh_e-(aPk-o$Ic1jTn>Q?iM(S!ICi{?vo@Tca@USmVhht|gad7Mc9PKmhJSI+WI21eY zxBxqLW)tUSV#6~3QF)nJLL7}Pe{U?4kHWFDpE&L1h4y}L!?E+BI2U7NyS&n*QeVTd zGo&~S%;qBRxK??YSyY_$hzBAip;#4CPDxifL~@=A&+97G#M4|S4-*8uurvLtzOyPy{v-JH{Xo? zb{6;N?cK{UD;E0AU+q`#V5@8QtKSD1x&7+(q>er@+5iRQ7@+0gQJ?Yu+R-D41@4$6Eb|1p(! zXdY{#`L+7l=a<92&~9epJS!>l9P6#?yLs%oAR{-A=_aI|$7W_H=Kr81 zR@-TxYWM6?V8v$p3Y?Dk?zg+Mo$;>h-iOn?t(zs3?mr;yvn*npYLx@uzJqn5fPvKyR?ha9L>hb1|OfHZk_^juQU7;#TCjq!5V z6Hj$9N9EB|QDY8ITAqUCIxnwTAZZV20%?m=EsI(7L3T5C7VT%7T9rv0nnmB{+8l?$ zGtXQk|f!dptx*a*8r-?5Kk?BP8FPZ#1-M}3@1}(Yi!?r6#CEYl&2-;q*I03XN2-{qq0a|jG_Pek&7B8}p0yFS-WEKl+brY!tRB1dXbK zoJmusPb98qT;|E+#~1h!irXo3-4B$xHrs#e!P^YTl}8z;9wt?@OO>jvt(E0eXN-vR z5}de%aoufRD)Y^7G{feOu$>VM%Tbv_ zUv_0)(vAMo=LTK%*XD7V$2ZJs^dD+*{*yLkF4FH4#?Bf`bNsmSgmbfN!vS%5)W%=X zV!7j|F3hxIELRj>DzBm&TK1#p)E#Ja*luxi-|ik>_JSq75@~nf>y* zvpw+(-9OeUT3T|8gFUVN#!+v${l>Rg47UN=Z&dx-?KjRReO{RxY@sV^$j9Ur_Ng*8 z--_wy=4Z|GVOyK|nU@8vYV1r?vf$AC+?%0i=jSx>etDEY^RwRjZFl(M_<6ZLJuL3i zNn@vJ(#kv3KGWWI?Q;>aVcpcu*RtoZ?c5{Jf<09mJ`lIz(SUxLoj+&e@x=vn-tl9` zdsn`p_8HTS_L&>EPhp?$fzP*g!{;qWeyHbs{o|*sm-^z)xG!c0c`0Z0X~{dTPlvGC z2tNf@e{I|3eEuO)g{I`syT$&j@5cK+29VNs0$RqpaUo7vYKEHG9 z^BWYjqduMc1AR&&vnP4p+mi^*9d2A)&_%zmPrs)|c0Jcwj{1GepyEGuzxSt1b_`Am z@=^`e??XRu{a#7Ghj$p%@5`Ow`u!DBg{IW+$91FMpC8+GzxUX|^*bM}7C6-Jb#cF^ z3zkRyen~g_y^1npioTc|i0cAas9qr(ed7Kg6sE}Nfnw>zc1=WzgLdyy5EOoT)&Sh+V4%>==a6l==X(jzh{f~ zdmkFm-k}QTdAByzjZ(j>PXjZlpSn-~Il}eneIcybbZQ~9(5^~cW5mC`9#;J zbMj*Csm51J+|EM){mKP(4{Mro*9GyKo9aJRJEFcrmsHqtl{#c_3%#w9#>k)+GW3uk zSF^E+km#yyifj2Fm3wQD`&mKm`uyC_y&=dwyHvTq8RXs;ZUl8QJAjtiuAotUjD);Au-1RLszwV2I+}nfPo0ls0 zMM3V(LGH~#?#BhWU$RuWKON-W8sy#@BK_MD3ILf%b9xg#TjQ2kChRTlesugsc0KuIoPZUFSa~R50&w*9H5yKM;XN5wubQ}Cvl?dC zCvK=yu37`7Qf)O|U+-9s_Qo40YGi{yS-m1Ztc%OsIDYK(arOO2=CZ7{P^z;VWwsoZ znT>MZ@l%(1T3qHijrCc6O?{UCI_E)LSEjgpD|SCz#oIHpOf;+nR)f-+}*pv)p&4=4T%C{=3>r^0}pmlba@S1-#^y$)i6=7YDy@l)5U$+fE4 z=~02i;p$b!wT!)wJ!2f}*U|oto@X@Zooa3XnUPYUooh)pePVs8{g25$-J4VyhLWzc z?1(!ABz;SgGf|dfj_fG=^sPzGui(_h9M^`nJZi&DFz)Zgm#z(~5-nqcu6-)w_Bom_ zdCZ(K&g=P9>OxA`6qUKy>~{^EN^T&Uy?UxPGL*W_A+BE5j_P#>Ev+ln-0@@T#lt$b zoum=8P+00Xr($-EguL)z(YMLm zd}CwS{gf;|Lf?=zzth~zAGdr-vwz!!6z+S1fL^Pjxbf&Lq`So)gLG#14X{2p*_SsaG`=n7&27Nn@% zrIq&say^3lDL@Y5Dks6QeMfkaef~ZwVske5v-UagAx1_z?8$9WBD2-~NvHc-I#^GO z34ZMnNLc$uweD7C!6BKyg0M#Kzxls$%bYlwA#kUz-X8e#koncS_m^34NaoMO&N7Nw zsmCpI=48%?>Y7I|Jp-99{pS5;795iKDq59V*Z+-M=7E!Wt+Zb(L*}<%ua=o4s{`lQ zw+xQU{iGIY@g?P(;*S(W@&SWA@#r+Y*o$e%vb$?x1 z{@_U5R}}ZdiaVVTkGX$CaX&l~_h%IMCB=P7ai`t4xZNj4;@(r-Pb%*Ch==7RCspS5 zDeem+ai{waBdg9{Qrs^o?w?iMkB!9rlHxw2xZ_%pSi-sYRJ)%UiF;FVUr^lX9DZb< zx%UwPQo3IniTm@4ds}gDEACg6?&~9Q ze^zn7sJLHL-03~~xWD&C;(lFmZz}Fh#l5At?~KHKM{z%=xSvzp4=e6hN8)}%abH*5 z*A@4k=WcdX4}p%X8tIb{l!#nK*7Ph(h}q2^S(D&U))eR0L__5*WpvDrhRbBia7<3} z+(;H{D~lad7CWXa_Mo?z;eKNz?l%?pp5jjP+&DsBQ`~Qk#C@Q+pHbY;DDEFq++P@p z`#Ht^pyGZ|alfr1{}DPf2dsU{aEyKa)gJb-bD7^q-DmLXztJ5E7XIuR zp~3xipTA}Or|gVSu}yWX+hdNlju~sz-)GMuct((!bMTS~GIs(mb{UA_etV=|*;d?_ z6!#^?{WFUD%Oi2Ws<<~5_om`b_ff^V-x-Pf^NRa3iaWNyEH5)tIPK338q2>n689a& z{i5QI4b=koFDc#cj>P@C;yzH^2a5a8DBa%}iF;FVKcl#xQQQwH-QOCC`-USxL;7*uPMvl8;Sb`#r;vm z{ZYmJZKeAMBXPf`xUVbjI3N()XYO64`vY%`vKIH8;@(r-dy4yh)#Dx-iTh2({i@_%jeBVG-35B!!h=u z(`!|8BAfI7KI%SmZ7-Qcui0z&*M0t$^`Ely;YRl-=mj+LbT`!YAM za&l&sc3|W`d~X4e+XupvX)gh?#J+J5DOIiu-el`*Vu>zqPY$w=X=J?gy3SA5xZoNLl`qW3v3KO847J z_uESMK8|&a!}8x$++SAQUsl{dKPK)UDDLkn?(Zt@e``!$_p;)COL4!YxPNj?x<916 z?tR7meZ~D-W73^YEgJtZvF-!K{R74QJ7ePhsN#ND^|-^T$Nk!vdfau@?$0RQpHaH+ zj49gGlUp7iu>xAxWA(;|GKjL>&o&EkIC{k758Tq_h%LN z*T&S}Usv4kDDHO@_d8=6W!_NSUsc>+Roq`66ZcmX_ZJlR7Zmq%W8(gr;{KB2{*vN; zZA{$1tGK_VxWA>iFOA9PA6EVSLDk(%nELxmO81*e_nS)hKRYJN-%;FORNP-w z+%Jxa`whkYs^WfCasR@YqRpF%`)i8(Yl{1K#-#g;iu(=4{f6RBN7Ui=G++LqW|0%h z=O0!+|FH7;t7G!{=auf)l+-QQHYzo~RTF{W7e zmg4?R#r>O#`}pHk`xf%o0kL~7f^!29tEoV~ zY--UjfxH69ezQg`kben?jYyEE)lXAkzwG2mn!_G(mYcE;f)3qs(AezN?m8SQ|Bs;a zs5vzxlt$zpz zjA87Yw7YAQ6Zj@84gkqJYk+jtp5E-qSy|GZ{=SA<_I#8;ejAWWjt=461H|ro3eF#Y z3h!4sk4loX-|uv5w<8;V95}M$Y^dM< zBgj7jL{2_fYkU`N$r9gsI7oZkY(o{tio{{@JgB(#)2 zinl-Q*>A!5aX{?egg_1hB7X;K8Sjn42?~Fo0?xZ8W>N&m2lWANmgZaCEUzblV^>9l zavzWn@aT1a4v=Gx4l(%(AoM2|OIp3*paBW_G>fJD8^DnhWft;ZOfB!3|A#0$J12wg zu-8lb^6r4GMOQ@>qA?(^Mpm5w#LGiZpCm}sQ$7QT&5=aY4M3iY=3cZ# z4{e&|^}%2l-}bVRjmoBgBWHW84S&wm^1MC^h&{6nI`la!)RY?|saBHY=>QQ@-XgJd z)+6r3YX^{5BAKrNV&6~`YkVG%Th6LUf-h+#2~`es|7AnjdK7=xy7pcaMgIwK?8>cB z{yHEpMBKjxh|NU>=R1HbftUB^{|5;Dd29R_zDR?(-t&;31mscYnN<35K;*2NwZ=)R z<$Nru54sru^3IXP`7ChkTVoeI{CRn9144b!_Z|9*j(s~u z==>%iFFR`_o9Skww_E!lvf;Ohvcn-BzYEA={Oh?tgl_@)9!GTG3$=TW4)O#FBsIBP z)oS`PsC6Ks{3$>VI~!64veUyj=tg1U{upo;A`ia+2>p58HvzG0r=scKP&l6l#O`Pa z&X)ms=|GM9G5mSZZFjfRzPz7eW&UTtxfjX&HKL5vfubq(g2g9RlJhGIAn7gtTfliR z(5uxR=IgaP&ORjl+rW7pS(C3t-_6?}@%la>g9!35bc<&q$h>rvz#8WjgZ zNZ;|Ze`1ZRQ7uGlzPj%nCv%e2+xQSsJsxxaHfp`(C@1YaO*i1HQMCCYaBevq;`%Zm zk9hlRH*&g(^AsTV?1A940r?=J zdK&W}WJa-6!KM%PJ$h*Mt-upX%v>o@PpR#Mp+mzPM z53Zs~BVPLfdEeC{9)B7T`t!X093ZF^Ku!X(FRFDB5IGG_yb_LCs1-%6E5MOc(^j5e z0K~qh`4Q&&JRtNZ+;Pt;j#F*bON1IXQo@)^RxpSS!|fV>#tTvj-L4G{Y_H#~gUX=k{8T5d|W z?fy%^xf9WO(a<4&sMYIk)6=1-7yMJ;+>E^CUjTB;X+eFkvE8i6?cBsGNgC^Ub|pO+ z)%tDJy6w1AAM9XRMBeJP68;b1T#DM__W+TT)fVStEs`;`&paUSxb{jU$*uKV1R(51 zQwx5D_WE%^bbDO{j+`O4ymCMY&$q=d8af_w6Oi>t=6?XlyG|bB{t6&3Mv!j+axj9t z1;~Ej{wV%~neg|&0ii$7>ko633Lzf{WGA9C6XB4ZDNlGKiX@)~&dX8jG@@F>bqL5a zuDuBIe1tC^a@x)AR(d$1{32>yh$Q?CK<-44{}5A7cQVR^AB^by4sdQn zwf-+4$0Er7b+ljv`DsApe7H!sF-Wl%C%5R^Rz41#3D<(i+44N?4{DCP+#22P*c+jx zb(T5Dk-^%l4s^#RNTCV`|Lev&_0g-n- zY^`?yv40}rJwWJ<6_7F>^%Iy%opkm|8trb5{&hX-DU&qa!k^dcQ-IJ(cu(iA0P>!r zL)aTpt!?}|(o9!}Ye~Id@2sV{{n;C?(p~xPch+fjZCQPFwV!U;UkG5SeQx#Xetkm` z9&I0Kj5JWgCh6cyo|rVU3ni_rpZi}jN0yS4?e=+m850wcUN=QJPX#svDUAGv` z?r^o8;#YSw>Fst`pGI%l!d2f*B)hb@+3jN~X{xuI;QshQP}J+McDnt|PP5mjC74KL z$;NgYypPP!ADzcaMQ0Gv+=IlRgvQ*|QKFFzoGeBPNHv7Go45z8+ss2*r6dp*%>>O` zKx%dyd+A^VxDS>{iCI9x?>Q%VeT(Ts`!3A$*hzR)zrG6ry8Qtf9Y$%l{VxngSi2!( znqsGd1vDk`1-egZnwSHE@R*vICw?p& zo(;U00f`tAJyZmj!8*1~2x^&6P0SEBBmxjj2HRfimb25~vI} z>%c!c4bmdiQNm!&r;bjMhL@*^`O#@uiDf-H1=|_sN2iIS$a<8z0Ess}F$pVOCT*uD zCIF;rcp}b>I?XaOyXlDq(3QtY;@loE_T)533mk2r%4F3 zIyp&C44a}-BQ9!Kdrwc3saV44d9dOZ1CUI`w!||O7Dm%#9AQ5@1@hUQ(c&Xu*S9vQ;>nSd0LHbKc%2}{_&I4w*e_BK&Wjsb}9-8TyNHUgKR5Z zs}J*hqu=fH4aw%@X1%cv9qFGVlM7@pvJ#$PTox9O5OFUWm(w=-?w%OE94W-!C>w3C z*(4BpDWv`k^-iuovv5BxHmC(z0BJMgIxpj3 zwf!z{P*ZWOg`;pW=CyDX&A+Ft^|c-kl+}dOI_rxeEnVx^2MEQJG&<5aM81HLb2aU+ zv76inXFD6LBbBIcs*8;`%B!=7$3z$)cqPSq0T zl#_5bD+E%GmsHQFsd`tz2V;M+g*upCMz;ppHIrOr_$W}lledw7+oU!q>vRWMD{HXA zn3pz#iU~e1G(ZNHY}fl8Bu2>KgVHR?*Sp&|UeFlAp!9Af%^{9pd_w#R7_7A#$qw#o zkAV4Zj^##7D3P@{hJ8x$B=tj9TVKOBnr7xHVF<{uoV!H{`IAoNijh(KSkqHFJGHod zW2NG%C-Y#O)~zj%8n_E^)Z z(VRAz$QEbFg$Z;#ou;|4Z+Wk2uin_uaymcdVqcF;lns!eZuZc(ux(A@fkKz<*R(4` z`Rf*~ixj}f#FKo8kcVL2Owcvg21u{ss-|$W-rqbeqbQ1B5ld$F6L}Z^vLwg zQJT2MNEU}0PS&AA1Ue7mgafZ8_Ro#cB0>^~#F|k7)`oB>sH{rX2@8n5v_3tFdC7rH z%M;L8nxN*9E752E5KCE0`NALnqB36Z<(4y=QC$I&R~aBZ3NWzDutO2Yjoh^6ba|Nd z)5Pr7g+{VPL`0j=mR6T2=C%rQluaz&q+#Acp+h7YVj*&`@+QP>gu%~O&C|=n6zNN$ zH&E24%p>P4(EDgJZDZGxjS)32h2J`C!u9NsL0QY%uwBPeBgjSg>`fT@IrWH2h7`@= zTIA3{DiPg1S$Q+lVPrsHCHkqM5j&}Hc5AyV*cBs6g{26C{BL2xhu1YuJEp~ZvXSz2g< zrj(JdNaxnLar~6>D2VDRQ7F~LaX{7OQCO8?4wEzx`=3FJQG14-N7!KtQhE5Bso9__ z6uEcAAj0Cf<}pGWQH`LOoG2`&-$AiCLvQ2{8>$$lg`16#CRPhDtY#62N65Df=YHjZ zoMqL0jII_VjO5i=CZ1O#1W{chg|S_ih7n$umdAO)i-Ntb8i#yc9t3_}7>0jcD)GEH z2ne2(g(E>#eTP%xT`oqL5Aqzsfqs+n?$U-JfA8WDzM9?XZg;S)M^h#Cd#6Qcbk4JjN&7~Qm7>Xj9Q z(5AXdl?^o}+o4DtzpXi?hO=q#)7mQl#ae|X79`drt|zL)*n$yQTmZbEEM^w~{6{Pv zkPOWpfeW?|%ABa|=hgtmW5xOLA>To-OIzjC71&#;&4Zuf$O3SFEk9G*B{sO7B>aWr za2fp3)Jn0vV&YZ5+eNQ1KWHik4-EPR`frx6CnOcNSGMY%Mv7sDX8i>;S)P*_7fBrz zONg?=TS$M{gPti4A>|pZKaeEo>)l=PcAf}El<3_n_G4b#DPcsjL#|9+fsS;TA3NB6 zn_i#|wm>`bSZb4UV(cZv0(~7Tmsux~87`h_zux^ox?z40J)4{xzN~r!+fH#F&vCKa zPa3c|^jC^-xq?a$Bja*9!PN>Wx-SUVag1KIjoq;xP>`P7X2zr7JK&3hLZQTvZ<}!d#!FJ$f8K zp@WAdva=IVU9A?GsJx_nW`KKPTtej3*!Er1!*`tYhh;Sg@!%cTZdB|Mgc1@? zHUImIkAp3NQ^x%JGxrrADAn~F_pc9>>iYMuzE|zCaUs?(UI>iK`X9pfgi|ejv`*it$XWS1x{Ja5qCOM$VKm9@fnYVnb*VBtI4#3pe)Y9@=oj4DfsU1gy# z)y4JZ(?h6HRnXQ2M(I#cI$&WIHm#^i1uXAkd4G>$S%NmyRdoZ$89CZ2Q^j^=L(oc$ zE*0f0NGxiIY^csrM8@ZbWWnNdpFLd3?)-@ies#~9{ zD6p%&K^%z`tmJ3gyb?itk%#We4lIMSF0L8NAOs@>=2;`h_iVk0*w>|%VcGt30nk8Y zky;`5QzU4b2Itlq%&WDE22ve5B9ArFu)`X@W>T+dmF7613dN?06saf_bt(!)sfxmi zg=n^Ds9;5Pt7b(pE9(s>$EL8-$$1p7(z*8XWq3&ur>8=j`Z9{eb?n<=Wl=VG#5J&T z%I8{3sJR-+cGg6GTcK3m1}*LJtt!yP}B%G1)a)w>p>aTJn0~a6EJ9Rgi;*y zik5{4L=%I~W}6mo=`em!Ap==NGbHzzrWL0k>sZW8yL3i482CeCg%T&3o)sjvEUdz3 zsibPSfK*ZgSvbequ$1RzS4`Bb4f$8+yeK^ti7?Yi1k!Q z6J3sc(XMD>_Km|2?RsZ}CgQvtid>K%X))IV8yVIc9(){*bp9eSnyjH;`R=X}bf*^_+lQP^S_<3$i$u$!KoLj9 z0*zoJLb0SkzEmzJJv&bs1&g7pTmLeVqF6bM7g81ljUu|U9}-;&9n~0cFrA>pVWe1@ z>?pycq9h0(f`JYmJF;DoaKT0Jq6j0PFw6)f=;n#U8iBJ=!aCZZ4TDA?MKSbf;u3!Z z?t_s04vBJ^YST=1-OMhB)WVunDq>NtRzZFwUSU(Mz36aAADqQ zHH>j)yS0f^d^VC9kPCC>w-1J{4$i=H>@$EKJc%NtSw!M9cv1dQUVsdvtU!h{&fJm? zt^zSzpJJkT%K|v0K2$y2EiN%3ca(T*?>CHRZHg%=6S%#qr z_fqibCv2FdcptC;>tLsgwx{sYrRlr0FH0w;)&c-AS?{)Sd=;;un7J-eEPBQ@Tp8X& z@|E4#fn-+X)W@^9uUH)$xNryStZWv^ifG+cSK?(*Ly~+b7?Qw>)<{j^dL4UuW}iHe zCbW*}7D0=M3kHIf9m6wIR@I!eC5yw6{xVFl0iyPiVZt@9^=}72 zdkcz@z2GkyLdR;q-lunZ@Unl%Hj%U+2ncT-JH%=DNW*m*Bm}1Kz7df;*B{?>2=-d=PrwC)X zbdN?(Oad@C;3$)Yw38k#W#e@^3}*h3LnLkGK~JoUVY2Q|7%@i)jhBbWoLU(zQg8x9 zTL-+@A;tZ)2MHoe*@Fg%{9FY>QNR{en1-DX2}L)rF&xNjcBq$Uu4Gec9#YImh%?VZ z18b`|Zykw2BToTMEXmYxo5K<8jpI#6WG7@_8s-2rHy8vBPbOztRL=xSsvxZ-E$f;} zeiquxH>9aZCYII|K(R>$N|F`ZRZ7?@ws8d%wXlG~9--P< zP<&$tgl&rlAm8i(5K`DaZMi!DOK817>XfuGU;F}B5QI?P66BycnR@6ILO{8OrW-p5 z9U!7rJz5pSxg#2GDS4vnHfZd!OD~e=nz_)RwP4oK;oS75D&FazpcfoB>-mQKz`~w= znTlREmx?yt60w;80ndWqZR~5~1z#z|ONpImo6XKXk#t)O$QyJ8fnF(rbxUBYC9twJ zv%1w?aY6=6FC=FCdZ-gg!jH8E-FM(xKyW%KUigiU4_M9cuCh5j-fDO20}}z9JsDUc zHF;&S7Efb@75l3-wp}hHpOIqtQ$#KnG%6~1C)bY2{e&dDMKhUZfS?mbc8pZMXzX5bdIW`R%J=qY)Ck{iCPq?&CDx|*9K(c z6ry$!f;?W5XNNOigiv$~dNvPI2+skCHubma?IF50mr^fu1IG;RnW0o_(7`BzA1GlY z>#`vs>g{&?58+&)UvFkHUk00%s7N3#h~vEQjIeBaf}#@KvW8(Iw)ckudJ9N9Ga{QI z_-!@Tt`O?2OPQExUr}gnP*GeKH<+mH=%Ff+RVoO=HsUp5vl@``KWX*>j$+eMGI8Lt=9# z-|aL6nsyppoWEX^Ur3H<{fp_y`$_U_mFHDS?#z(}Vvax!Z6BwM6xBnGir7vsW4b^R z2XS&5NTi3wa%viYH-P~->zLn>?F=lit$~ErNU#W*O)t#3TMzmvX3H|+!v%TWWUbv@ zMT*kI6p-?R0Mrl=Z4KdFSIluS+cWp*(d~J?JRLT>pI~~Qpoq(d5$ICUtl6Rk8Eorr zHM41Y8p3<*qle;f#@cqWmE&GKL=Pk#!6U9lF{QT9LOi;EO0Y21z?%xWobd{NQ7S`g zzysPdZqXfK^K@g9fwiHM0V2K`AWhzro>^w(k1_;q+0utIRW1$ZHD1RCgR$+QXopp)`)DBH7#BG=<)mpR{GS%hlm3>u zY{BT%DFSebt*r;QYPcV(Q%!*rC3AxTKQ1mqLW+{|3%dl%bfCha;r$Fb`wQ+Tcm~X@ z>4|z333Wowx--0oLlL}9g~7R>ZP6~lL`&swgHHfa&m=$82k z1gS3P4GQ|bZH|3J^0Ae(=T9X|%cq_^`FQfgsdJAn`kO>? zGgy)=?Vj3cBu~igN2lZ-(1c591clK23~lI|^CVfPO3Y{Q ze3QyCOyh+V@E>Qn!*P z%=M^?6oJzmK)xR}HZn=RXhd1zV>9N4%%6>K$P}^VGdo5HtN?|zkLRE1X3ZtO3MUz~ zac2pw^0GQC|JnTHiN)n}Fx`pWL3(QE7-GcI?pees;VT>#VemnE8n*)+KSp;&Iy2+k zzERPzN6oZP?VmQ$cz9QSEhUmd=ByhX7tyonycT*l4gTB&Xh8NvD>p8Z&gn|Y)U zFT%gN={ByLn3~0fz_@0&lPoQs7-ntm-vU7q#}T~8f&OoTs_Vb#Cv@SgYfrWtOpD=d z*oTF8u!_e%T`H1E%}ocl9g!TwcP62jb*bU`Iq>|GcCaVEhA8LxrbdZ2$9=fT<(hX( z09{^Y_O|Pl`8bd%zI5A73M|Fmhn~CH!##J2{3Col{bjz41+S)>FoKc~ZEM%fosGH0 zs@mgDoT+m3^9-wS&tS8=#u^l}&JB!jF2 zzqZ~Y?FNG)ox+5zS6`!bJElXY2Ji|#4dHYXwYrUQv&oY;#-;Cdm}>S4C)d-C=dlaI z@Jsz}<9M@)9-mWW)DY9VaG2EgF4rShy0)7hn}Ta0s^Fd4#~bkJKJV0u+2rdtkez#C z&wS&z#aEx&xXvnkqN}m=| zU~AYMCr@zL#6>r`k1+5n>J_;A#|;w^OqdgHneU!^Tc=XB9XX1ayd*k%*SX>7cn=PS%DN!Na^c{u-x;yAJk-l1RA znUK9YCE>0g)mqvmwl=J>L{DIRN3*-|D_6{O(Nj48e7f6T#+0_5O4paHr0kCHX!J0; zQm0r>2d?KyKWNx~fIG-(Qz8;adeRb2t-U#j&LYI5sKcaX^D=LlD}Zbd!<(A6r=k&( z$1tq}?_uFaELuM6wpwr$OAbv(pV|o*rh>N;U9T!r8-Y7)0TCZY!-Rtz!HoT^ryc2n z?2VOKlTVWXTZRdWM8t~Zp}DD7Q>X_Pg{Rq(WRWh4w+aCf344&`R5YcrCViF(=!oA1n{Z+^^2&%fr3|fE`o59R5IP#TR)*^zBE@$PSISX#PEB>9(W3MP&doK-M~M{JcHa{j973=DkwUv ziHbq%iTr$(06a8GbixUO#4~zR(PZE5s|tmfrg|xa!+?7NftTpJ8HO8b;Q4qr#rBSt zeGiJAoIZeLTE8kEv0acO7Mdy=N%h>OLX{lWr$Z| zFjM_>x=U9a(Lx-z0>Ps#Z0;HN&)Q?}3BPyx?=WocGz$ z*z`Gq@yKArs7^BNd<%0*-(qg6$GVvhms=I2Guc$bPDhHX24?QT`(o@@Rr4s^z(DJ< d%&96~yD EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* +* MVNPRODCORRPRB calculates multivariate normal probability +* with product correlation structure for rectangular regions. +* The accuracy is up to almost double precision, i.e., about 1e-14. +* +* This file was successfully compiled for matlab 5.3 +* using Compaq Visual Fortran 6.1, and Windows 2000. +* The example here uses Fortran77 source. +* First, you will need to modify your mexopts.bat file. +* To find it, issue the command prefdir(1) from the Matlab command line, +* the directory it answers with will contain your mexopts.bat file. +* Open it for editing. The first section will look like: +* +*rem ******************************************************************** +*rem General parameters +*rem ******************************************************************** +*set MATLAB=%MATLAB% +*set DF_ROOT=C:\Program Files\Microsoft Visual Studio +*set VCDir=%DF_ROOT%\VC98 +*set MSDevDir=%DF_ROOT%\Common\msdev98 +*set DFDir=%DF_ROOT%\DF98 +*set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH% +*set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE% +*set LIB=%DFDir%\LIB;%VCDir%\LIB +* +* then you are ready to compile this file at the matlab prompt using the +* following command: +* mex -O mvnprodcorrprbmex.f + MODULE ERFCOREMOD + IMPLICIT NONE + + INTERFACE CALERF + MODULE PROCEDURE CALERF + END INTERFACE + + INTERFACE DERF + MODULE PROCEDURE DERF + END INTERFACE + + INTERFACE DERFC + MODULE PROCEDURE DERFC + END INTERFACE + + INTERFACE DERFCX + MODULE PROCEDURE DERFCX + END INTERFACE + CONTAINS +C-------------------------------------------------------------------- +C +C DERF subprogram computes approximate values for erf(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERF( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 0 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERF +C-------------------------------------------------------------------- +C +C DERFC subprogram computes approximate values for erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERFC( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 1 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFC +C------------------------------------------------------------------ +C +C DERFCX subprogram computes approximate values for exp(x*x) * erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, March 30, 1987 +C +C------------------------------------------------------------------ + FUNCTION DERFCX( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 2 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFCX + + SUBROUTINE CALERF(ARG,RESULT,JINT) + IMPLICIT NONE +C------------------------------------------------------------------ +C +C CALERF packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +C for a real argument x. It contains three FUNCTION type +C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +C and one SUBROUTINE type subprogram, CALERF. The calling +C statements for the primary entries are: +C +C Y=ERF(X) (or Y=DERF(X)), +C +C Y=ERFC(X) (or Y=DERFC(X)), +C and +C Y=ERFCX(X) (or Y=DERFCX(X)). +C +C The routine CALERF is intended for internal packet use only, +C all computations within the packet being concentrated in this +C routine. The function subprograms invoke CALERF with the +C statement +C +C CALL CALERF(ARG,RESULT,JINT) +C +C where the parameter usage is as follows +C +C Function Parameters for CALERF +C call ARG Result JINT +C +C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 +C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 +C +C The main computation evaluates near-minimax approximations +C from "Rational Chebyshev approximations for the error function" +C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +C transportable program uses rational functions that theoretically +C approximate erf(x) and erfc(x) to at least 18 significant +C decimal digits. The accuracy achieved depends on the arithmetic +C system, the compiler, the intrinsic functions, and proper +C selection of the machine-dependent constants. +C +C******************************************************************* +C******************************************************************* +C +C Explanation of machine-dependent constants +C +C XMIN = the smallest positive floating-point number. +C XINF = the largest positive finite floating-point number. +C XNEG = the largest negative argument acceptable to ERFCX; +C the negative of the solution to the equation +C 2*exp(x*x) = XINF. +C XSMALL = argument below which erf(x) may be represented by +C 2*x/sqrt(pi) and above which x*x will not underflow. +C A conservative value is the largest machine number X +C such that 1.0 + X = 1.0 to machine precision. +C XBIG = largest argument acceptable to ERFC; solution to +C the equation: W(x) * (1-0.5/x**2) = XMIN, where +C W(x) = exp(-x*x)/[x*sqrt(pi)]. +C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +C machine precision. A conservative value is +C 1/[2*sqrt(XSMALL)] +C XMAX = largest acceptable argument to ERFCX; the minimum +C of XINF and 1/[sqrt(pi)*XMIN]. +C +C Approximate values for some important machines are: +C +C XMIN XINF XNEG XSMALL +C +C C 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +C CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +C IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +C UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +C VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +C VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +C +C +C XBIG XHUGE XMAX +C +C C 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +C CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +C IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +C UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +C VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +C VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +C +C******************************************************************* +C******************************************************************* +C +C Error returns +C +C The program returns ERFC = 0 for ARG .GE. XBIG; +C +C ERFCX = XINF for ARG .LT. XNEG; +C and +C ERFCX = 0 for ARG .GE. XMAX. +C +C +C Intrinsic functions required are: +C +C ABS, AINT, EXP +C +C +C Author: W. J. Cody +C Mathematics and Computer Science Division +C Argonne National Laboratory +C Argonne, IL 60439 +C +C Latest modification: March 19, 1990 +C Updated to F90 by pab 23.03.2003 +C Revised pab Dec 2008 +C updated parameter statements in CALERF so that it works when +C compiling with gfortran. +C +C------------------------------------------------------------------ + DOUBLE PRECISION, INTENT(IN) :: ARG + INTEGER, INTENT(IN) :: JINT + DOUBLE PRECISION, INTENT(INOUT):: RESULT +! Local variables + INTEGER :: I + DOUBLE PRECISION :: DEL,X,XDEN,XNUM,Y,YSQ +C------------------------------------------------------------------ +C Mathematical constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: HALF = 0.05D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: TWO = 2.0D0 + DOUBLE PRECISION, PARAMETER :: FOUR = 4.0D0 + DOUBLE PRECISION, PARAMETER :: SIXTEN = 16.0D0 + DOUBLE PRECISION, PARAMETER :: SQRPI = 5.6418958354775628695D-1 + DOUBLE PRECISION, PARAMETER :: THRESH = 0.46875D0 +C------------------------------------------------------------------ +C Machine-dependent constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: XNEG = -26.628D0 + DOUBLE PRECISION, PARAMETER :: XSMALL = 1.11D-16 + DOUBLE PRECISION, PARAMETER :: XBIG = 26.543D0 + DOUBLE PRECISION, PARAMETER :: XHUGE = 6.71D7 + DOUBLE PRECISION, PARAMETER :: XMAX = 2.53D307 + DOUBLE PRECISION, PARAMETER :: XINF = 1.79D308 +!--------------------------------------------------------------- +! Coefficents to the rational polynomials +!-------------------------------------------------------------- +C DOUBLE PRECISION, DIMENSION(5) :: A, Q +C DOUBLE PRECISION, DIMENSION(4) :: B +C DOUBLE PRECISION, DIMENSION(9) :: C +C DOUBLE PRECISION, DIMENSION(8) :: D +C DOUBLE PRECISION, DIMENSION(6) :: P +C------------------------------------------------------------------ +C Coefficients for approximation to erf in first interval +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER, DIMENSION(5) :: + & A = (/ 3.16112374387056560D00, + & 1.13864154151050156D02,3.77485237685302021D02, + & 3.20937758913846947D03, 1.85777706184603153D-1/) + DOUBLE PRECISION, PARAMETER, DIMENSION(4) :: + & B = (/2.36012909523441209D01,2.44024637934444173D02, + & 1.28261652607737228D03,2.84423683343917062D03/) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in second interval +C------------------------------------------------------------------ + DOUBLE PRECISION, DIMENSION(9) :: + & C=(/5.64188496988670089D-1,8.88314979438837594D0, + 1 6.61191906371416295D01,2.98635138197400131D02, + 2 8.81952221241769090D02,1.71204761263407058D03, + 3 2.05107837782607147D03,1.23033935479799725D03, + 4 2.15311535474403846D-8/) + DOUBLE PRECISION, DIMENSION(8) :: + & D =(/1.57449261107098347D01,1.17693950891312499D02, + 1 5.37181101862009858D02,1.62138957456669019D03, + 2 3.29079923573345963D03,4.36261909014324716D03, + 3 3.43936767414372164D03,1.23033935480374942D03/) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in third interval +C------------------------------------------------------------------ + DOUBLE PRECISION, parameter, + & DIMENSION(6) :: P =(/3.05326634961232344D-1, + & 3.60344899949804439D-1, + 1 1.25781726111229246D-1,1.60837851487422766D-2, + 2 6.58749161529837803D-4,1.63153871373020978D-2/) + DOUBLE PRECISION, parameter, + & DIMENSION(5) :: Q =(/2.56852019228982242D00, + & 1.87295284992346047D00, + 1 5.27905102951428412D-1,6.05183413124413191D-2, + 2 2.33520497626869185D-3/) +C------------------------------------------------------------------ + + X = ARG + Y = ABS(X) + IF (Y .LE. THRESH) THEN +C------------------------------------------------------------------ +C Evaluate erf for |X| <= 0.46875 +C------------------------------------------------------------------ + YSQ = ZERO + IF (Y .GT. XSMALL) THEN + YSQ = Y * Y + XNUM = A(5)*YSQ + XDEN = YSQ + DO I = 1, 3 + XNUM = (XNUM + A(I)) * YSQ + XDEN = (XDEN + B(I)) * YSQ + END DO + RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) + ELSE + RESULT = X * A(4) / B(4) + ENDIF + IF (JINT .NE. 0) RESULT = ONE - RESULT + IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT + GO TO 800 +C------------------------------------------------------------------ +C Evaluate erfc for 0.46875 <= |X| <= 4.0 +C------------------------------------------------------------------ + ELSE IF (Y .LE. FOUR) THEN + XNUM = C(9)*Y + XDEN = Y + DO I = 1, 7 + XNUM = (XNUM + C(I)) * Y + XDEN = (XDEN + D(I)) * Y + END DO + RESULT = (XNUM + C(8)) / (XDEN + D(8)) + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + +C------------------------------------------------------------------ +C Evaluate erfc for |X| > 4.0 +C------------------------------------------------------------------ + ELSE + RESULT = ZERO + IF (Y .GE. XBIG) THEN + IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 + IF (Y .GE. XHUGE) THEN + RESULT = SQRPI / Y + GO TO 300 + END IF + END IF + YSQ = ONE / (Y * Y) + XNUM = P(6)*YSQ + XDEN = YSQ + DO I = 1, 4 + XNUM = (XNUM + P(I)) * YSQ + XDEN = (XDEN + Q(I)) * YSQ + ENDDO + RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) + RESULT = (SQRPI - RESULT) / Y + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + END IF +C------------------------------------------------------------------ +C Fix up for negative argument, erf, etc. +C------------------------------------------------------------------ + 300 IF (JINT .EQ. 0) THEN + RESULT = (HALF - RESULT) + HALF + IF (X .LT. ZERO) RESULT = -RESULT + ELSE IF (JINT .EQ. 1) THEN + IF (X .LT. ZERO) RESULT = TWO - RESULT + ELSE + IF (X .LT. ZERO) THEN + IF (X .LT. XNEG) THEN + RESULT = XINF + ELSE + YSQ = AINT(X*SIXTEN)/SIXTEN + DEL = (X-YSQ)*(X+YSQ) + Y = EXP(YSQ*YSQ) * EXP(DEL) + RESULT = (Y+Y) - RESULT + END IF + END IF + END IF + 800 RETURN + END SUBROUTINE CALERF + END MODULE ERFCOREMOD + module functionInterface + INTERFACE + FUNCTION F(Z) result (VAL) + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + END FUNCTION F + END INTERFACE + end module functionInterface + module AdaptiveGaussKronrod + implicit none + private + public :: dqagpe,dqagp + + INTERFACE dqagpe + MODULE PROCEDURE dqagpe + END INTERFACE + + INTERFACE dqagp + MODULE PROCEDURE dqagp + END INTERFACE + + INTERFACE dqelg + MODULE PROCEDURE dqelg + END INTERFACE + + INTERFACE dqpsrt + MODULE PROCEDURE dqpsrt + END INTERFACE + + INTERFACE dqk21 + MODULE PROCEDURE dqk21 + END INTERFACE + + INTERFACE dqk15 + MODULE PROCEDURE dqk15 + END INTERFACE + + INTERFACE dqk9 + MODULE PROCEDURE dqk9 + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + + contains + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier) +! use functionInterface + implicit none + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result1,abserr + integer, intent(out) :: neval,ier + double precision :: f +!Locals + double precision,dimension(limit) :: alist, blist, rlist, elist + double precision,dimension(npts+2) :: pts + integer, dimension(limit) :: iord, level + integer, dimension(npts+2) :: ndin + integer ::last + external f + CALL dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin + $ ,last) + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin, + * last) +! use functionInterface + implicit none +c***begin prologue dqagpe +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a2a1 +c***keywords automatic integrator, general-purpose, +! singularities at user specified points, +! extrapolation, globally adaptive. +c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven +! de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose the routine calculates an approximation result to a given +! definite integral i = integral of f over (a,b), hopefully +! satisfying following claim for accuracy abs(i-result).le. +! max(epsabs,epsrel*abs(i)). break points of the integration +! interval, where local difficulties of the integrand may +! occur(e.g. singularities,discontinuities),provided by user. +c***description +! +! computation of a definite integral +! standard fortran subroutine +! double precision version +! +! parameters +! on entry +! f - double precision +! function subprogram defining the integrand +! function f(x). the actual name for f needs to be +! declared e x t e r n a l in the driver program. +! +! a - double precision +! lower limit of integration +! +! b - double precision +! upper limit of integration +! +! npts2 - integer +! number equal to two more than the number of +! user-supplied break points within the integration +! range, npts2.ge.2. +! if npts2.lt.2, the routine will end with ier = 6. +! +! points - double precision +! vector of dimension npts2, the first (npts2-2) +! elements of which are the user provided break +! points. if these points do not constitute an +! ascending sequence there will be an automati! +! sorting. +! +! epsabs - double precision +! absolute accuracy requested +! epsrel - double precision +! relative accuracy requested +! if epsabs.le.0 +! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +! the routine will end with ier = 6. +! +! limit - integer +! gives an upper bound on the number of subintervals +! in the partition of (a,b), limit.ge.npts2 +! if limit.lt.npts2, the routine will end with +! ier = 6. +! +! on return +! result - double precision +! approximation to the integral +! +! abserr - double precision +! estimate of the modulus of the absolute error, +! which should equal or exceed abs(i-result) +! +! neval - integer +! number of integrand evaluations +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier.gt.0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! error messages +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit (and taking the according dimension +! adjustments into account). however, if +! this yields no improvement it is advised +! to analyze the integrand in order to +! determine the integration difficulties. if +! the position of a local difficulty can be +! determined (i.e. singularity, +! discontinuity within the interval), it +! should be supplied to the routine as an +! element of the vector points. if necessary +! an appropriate special-purpose integrator +! must be used, which is designed for +! handling the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behaviour occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. +! roundoff error is detected in the +! extrapolation table. it is presumed that +! the requested tolerance cannot be +! achieved, and that the returned result is +! the best which can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier.gt.0. +! = 6 the input is invalid because +! npts2.lt.2 or +! break points are specified outside +! the integration range or +! (epsabs.le.0 and +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) +! or limit.lt.npts2. +! result, abserr, neval, last, rlist(1), +! and elist(1) are set to zero. alist(1) and +! blist(1) are set to a and b respectively. +! +! alist - double precision +! vector of dimension at least limit, the first +! last elements of which are the left end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! blist - double precision +! vector of dimension at least limit, the first +! last elements of which are the right end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! rlist - double precision +! vector of dimension at least limit, the first +! last elements of which are the integral +! approximations on the subintervals +! +! elist - double precision +! vector of dimension at least limit, the first +! last elements of which are the moduli of the +! absolute error estimates on the subintervals +! +! pts - double precision +! vector of dimension at least npts2, containing the +! integration limits and the break points of the +! interval in ascending sequence. +! +! level - integer +! vector of dimension at least limit, containing the +! subdivision levels of the subinterval, i.e. if +! (aa,bb) is a subinterval of (p1,p2) where p1 as +! well as p2 is a user-provided break point or +! integration limit, then (aa,bb) has level l if +! abs(bb-aa) = abs(p2-p1)*2**(-l). +! +! ndin - integer +! vector of dimension at least npts2, after first +! integration over the intervals (pts(i)),pts(i+1), +! i = 0,1, ..., npts2-2, the error estimates over +! some of the intervals may have been increased +! artificially, in order to put their subdivision +! forward. if this happens for the subinterval +! numbered k, ndin(k) is put to 1, otherwise +! ndin(k) = 0. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the +! error estimates over the subintervals, +! such that elist(iord(1)), ..., elist(iord(k)) +! form a decreasing sequence, with k = last +! if last.le.(limit/2+2), and k = limit+1-last +! otherwise +! +! last - integer +! number of subintervals actually produced in the +! subdivisions process +! +c***references (none) +c***routines called d1mach,dqelg,dqk21,dqpsrt +c***end prologue dqagpe + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result,abserr + integer, intent(out) :: neval,ier + double precision,dimension(limit), intent(out) :: alist, blist + double precision,dimension(limit), intent(out) :: rlist, elist + double precision,dimension(npts+2),intent(out) :: pts + integer, dimension(limit), intent(out) :: iord, level + integer, dimension(npts+2), intent(out) :: ndin + integer ::last + double precision :: f +! locals + double precision :: area,area1,area12,area2,a1, + * a2,b1,b2,correc,abseps,defabs,defab1,defab2, + * dres,epmach,erlarg,erlast,errbnd, + * errmax,error1,erro12,error2,errsum,ertest,oflow, + * resa,resabs,reseps,sign,temp,uflow, hSplit + double precision, dimension(3) :: res3la(3) + double precision, dimension(52) :: rlist2(52) + integer :: i,id,ierro,ind1,ind2,ip1,iroff1,iroff2,iroff3,j, + * jlow,jupbnd,k,ksgn,ktmin,levcur,levmax,maxerr, + * nint,nintp1,npts2,nres,nrmax,numrl2 + logical :: extrap,noext + external f +! +! + +! +! +! the dimension of rlist2 is determined by the value of +! limexp in subroutine epsalg (rlist2 should be of dimension +! (limexp+2) at least). +! +! +! list of major variables +! ----------------------- +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 +! containing the part of the epsilon table which +! is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! been obtained, it is put in rlist2(numrl2) after +! numrl2 has been increased by one. +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation is +! no longer allowed (true-value) +! +! machine dependent constants +! --------------------------- +! +! epmach is the largest relative spacing. +! uflow is the smallest positive magnitude. +! oflow is the largest positive magnitude. +! +c***first executable statement dqagpe + epmach = d1mach(4) + uflow = d1mach(1) + oflow = d1mach(2) +! +! test on validity of parameters +! ----------------------------- +! + hSplit = 0.2D0 + ier = 0 + neval = 0 + last = 0 + result = 0.0d+00 + abserr = 0.0d+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0d+00 + elist(1) = 0.0d+00 + iord(1) = 0 + level(1) = 0 + npts2 = npts+2 + if((npts2.lt.2).or.(limit.le.npts).or. + & ((epsabs.le.0.0d+00).and. + & (epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)))) then + ier = 6 + go to 999 + endif + + sign = 1.0d+00 + if(a.gt.b) then + go to 999 + endif + if (npts>0) then + if(any(points(1:npts)<=a).or.any(b<=points(1:npts))) then + ier = 6 + go to 999 + endif + endif +! +! if any break points are provided, sort them into an +! ascending sequence. +! + pts(1) = a + pts(npts+2) = b + do i = 1,npts + pts(i+1) = minval(points(i:npts)) + enddo +! +! compute first integral and error approximations. +! ------------------------------------------------ +! + nint = npts+1; + a1 = pts(1); + resabs = 0.0d+00 + do i = 1,nint + b1 = pts(i+1) + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,defabs,resa) + !call dqk15(f,a1,b1,area1,error1,defabs,resa) + else + call dqkl9(f,a1,b1,area1,error1,defabs,resa) + endif + abserr = abserr + error1 + result = result + area1 + ndin(i) = 0 + if(error1.eq.resa.and.error1.ne.0.0d+00) ndin(i) = 1 + resabs = resabs + defabs + level(i) = 0 + elist(i) = error1 + alist(i) = a1 + blist(i) = b1 + rlist(i) = area1 + iord(i) = i + a1 = b1 + enddo !50 continue + errsum = 0.0d+00 + do i = 1,nint + if(ndin(i).eq.1) elist(i) = abserr + errsum = errsum+elist(i) + enddo !55 continue +! +! test on accuracy. +! + last = nint + neval = 21*nint + dres = dabs(result) + errbnd = dmax1(epsabs,epsrel*dres) + if(abserr.le.0.1d+03*epmach*resabs.and.abserr.gt.errbnd) ier = 2 + if(nint.eq.1) go to 80 + do 70 i = 1,npts + jlow = i+1 + ind1 = iord(i) + do 60 j = jlow,nint + ind2 = iord(j) + if(elist(ind1).gt.elist(ind2)) go to 60 + ind1 = ind2 + k = j + 60 continue + if(ind1.eq.iord(i)) go to 70 + iord(k) = iord(i) + iord(i) = ind1 + 70 continue + if(limit.lt.npts2) ier = 1 + 80 if(ier.ne.0.or.abserr.le.errbnd) go to 210 + +! +! initialization +! -------------- +! + rlist2(1) = result + maxerr = iord(1) + errmax = elist(maxerr) + area = result + nrmax = 1 + nres = 0 + numrl2 = 1 + ktmin = 0 + extrap = .false. + noext = .false. + erlarg = errsum + ertest = errbnd + levmax = 1 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ierro = 0 + abserr = oflow + ksgn = -1 + if(dres.ge.(0.1d+01-0.5d+02*epmach)*resabs) ksgn = 1 +! +! main do-loop +! ------------ +! + do 160 last = npts2,limit +! +! bisect the subinterval with the nrmax-th largest error +! estimate. +! + levcur = level(maxerr)+1 + a1 = alist(maxerr) + b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,resa,defab1) + call dqk21(f,a2,b2,area2,error2,resa,defab2) + !call dqk15(f,a1,b1,area1,error1,resa,defab1) + !call dqk15(f,a2,b2,area2,error2,resa,defab2) + else + + call dqkl9(f,a1,b1,area1,error1,resa,defab1) + call dqkl9(f,a2,b2,area2,error2,resa,defab2) + endif +! +! improve previous approximations to integral +! and error and test for accuracy. +! + neval = neval+42 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if(defab1.eq.error1.or.defab2.eq.error2) go to 95 + if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) + * .or.erro12.lt.0.99d+00*errmax) go to 90 + if(extrap) iroff2 = iroff2+1 + if(.not.extrap) iroff1 = iroff1+1 + 90 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 + 95 level(maxerr) = levcur + level(last) = levcur + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = dmax1(epsabs,epsrel*dabs(area)) +! +! test for roundoff error and eventually set error flag. +! + if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 + if(iroff2.ge.5) ierro = 3 +! +! set error flag in the case that the number of +! subintervals equals limit. +! + if(last.eq.limit) ier = 1 +! +! set error flag in the case of bad integrand behaviour +! at a point of the integration range +! + if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* + * (dabs(a2)+0.1d+04*uflow)) ier = 4 +! +! append the newly-created intervals to the list. +! + if(error2.gt.error1) go to 100 + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + go to 110 + 100 alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 +! +! call subroutine dqpsrt to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + 110 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) +! ***jump out of do-loop + if(errsum.le.errbnd) go to 190 +! ***jump out of do-loop + if(ier.ne.0) go to 170 + if(noext) go to 160 + erlarg = erlarg-erlast + if(levcur+1.le.levmax) erlarg = erlarg+erro12 + if(extrap) go to 120 +! +! test whether the interval to be bisected next is the +! smallest interval. +! + if(level(maxerr)+1.le.levmax) go to 160 + extrap = .true. + nrmax = 2 + 120 if(ierro.eq.3.or.erlarg.le.ertest) go to 140 +! +! the smallest interval has the largest error. +! before bisecting decrease the sum of the errors over +! the larger intervals (erlarg) and perform extrapolation. +! + id = nrmax + jupbnd = last + if(last.gt.(2+limit/2)) jupbnd = limit+3-last + do 130 k = id,jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) +! ***jump out of do-loop + if(level(maxerr)+1.le.levmax) go to 160 + nrmax = nrmax+1 + 130 continue +! +! perform extrapolation. +! + 140 numrl2 = numrl2+1 + rlist2(numrl2) = area + if(numrl2.le.2) go to 155 + call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) + ktmin = ktmin+1 + if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 + if(abseps.ge.abserr) go to 150 + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = dmax1(epsabs,epsrel*dabs(reseps)) +! ***jump out of do-loop + if(abserr.lt.ertest) go to 170 +! +! prepare bisection of the smallest interval. +! + 150 if(numrl2.eq.1) noext = .true. + if(ier.ge.5) go to 170 + 155 maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + levmax = levmax + 1 + erlarg = errsum + 160 continue +! +! set the final result. +! --------------------- +! +! + 170 if(abserr.eq.oflow) go to 190 + if((ier+ierro).eq.0) go to 180 + if(ierro.eq.3) abserr = abserr+correc + if(ier.eq.0) ier = 3 + if(result.ne.0.0d+00.and.area.ne.0.0d+00)go to 175 + if(abserr.gt.errsum)go to 190 + if(area.eq.0.0d+00) go to 210 + go to 180 + 175 if(abserr/dabs(result).gt.errsum/dabs(area))go to 190 +! +! test on divergence. +! + 180 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le. + * resabs*0.1d-01) go to 210 + if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03.or. + * errsum.gt.dabs(area)) ier = 6 + go to 210 +! +! compute global integral sum. +! + 190 result = 0.0d+00 + do 200 k = 1,last + result = result+rlist(k) + 200 continue + abserr = errsum + 210 if(ier.gt.2) ier = ier-1 + result = result*sign + 999 return + end subroutine dqagpe + subroutine dqk21(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk21 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 21-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk21 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 21-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 10-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 10-point gauss rule +c +c wgk - weights of the 21-point kronrod rule +c +c wg - weights of the 10-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 / + data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 / + data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 / + data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 / + data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 / +c + data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 / + data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 / + data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 / + data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 / + data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 / + data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 / + data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 / + data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 / + data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 / + data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 / + data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 / +c + data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 / + data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 / + data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 / + data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 / + data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 / + data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 / + data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 / + data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 / + data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 / + data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 / + data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 / +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk21 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 21-point kronrod approximation to +c the integral, and estimate the absolute error. +c + resg = 0.0d+00 + fc = f(centr) + resk = wgk(11)*fc + resabs = dabs(resk) + do 10 j=1,5 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,5 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(11)*dabs(fc-reskh) + do 20 j=1,10 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0d0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk21 + subroutine dqk15(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 7-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point gauss rule +c +c wgk - weights of the 15-point kronrod rule +c +c wg - weights of the 7-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.129484966168869693270611432679082d0 / + data wg ( 2) / 0.279705391489276667901467771423780d0 / + data wg ( 3) / 0.381830050505118944950369775488975d0 / + data wg ( 4) / 0.417959183673469387755102040816327d0 / + + data xgk ( 1) / 0.991455371120812639206854697526329d0 / + data xgk ( 2) / 0.949107912342758524526189684047851d0 / + data xgk ( 3) / 0.864864423359769072789712788640926d0 / + data xgk ( 4) / 0.741531185599394439863864773280788d0 / + data xgk ( 5) / 0.586087235467691130294144838258730d0 / + data xgk ( 6) / 0.405845151377397166906606412076961d0 / + data xgk ( 7) / 0.207784955007898467600689403773245d0 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.022935322010529224963732008058970d0/ + data wgk ( 2) / 0.063092092629978553290700663189204d0 / + data wgk ( 3) / 0.104790010322250183839876322541518d0 / + data wgk ( 4) / 0.140653259715525918745189590510238d0 / + data wgk ( 5) / 0.169004726639267902826583426598550d0 / + data wgk ( 6) / 0.190350578064785409913256402421014d0 / + data wgk ( 7) / 0.204432940075298892414161999234649d0 / + data wgk ( 8) / 0.209482141084727828012999174891714d0 / + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resg = wg(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0D0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk15 + subroutine dqk9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +! xgk(4), xgk(8) abscissae of the 3-point gauss rule +c xgk(2), xgk(4),xgk(6), xgk(8) ... abscissae of the 7-point +c kronrod rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point kronrod rule +c +c wgk - weights of the 15-point kronrod rule +! +! wgk0 - weights of the 7-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + data wg ( 1) / 0.5555555555555555D+00/ + data wg ( 2) / 0.8888888888888889D+00/ + + data wgk0 ( 1) / 0.1046562260264673D+00/ + data wgk0 ( 2) / 0.2684880898683335D+00/ + data wgk0 ( 3) / 0.4013974147759622D+00/ + data wgk0 ( 4) / 0.4509165386584741D+00/ + + data xgk ( 1) / 0.9938319632127550D+00/ + data xgk ( 2) / 0.9604912687080203D+00/ + data xgk ( 3) / 0.8884592328722570D+00 / + data xgk ( 4) / 0.7745966692414834D+00/ + data xgk ( 5) / 0.6211029467372264D+00/ + data xgk ( 6) / 0.4342437493468026D+00/ + data xgk ( 7) / 0.2233866864289669D+00 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.1700171962994028D-01/ + data wgk ( 2) / 0.5160328299707982D-01/ + data wgk ( 3) / 0.9292719531512452D-01/ + data wgk ( 4) / 0.1344152552437843D+00/ + data wgk ( 5) / 0.1715119091363914D+00/ + data wgk ( 6) / 0.2006285293769890D+00/ + data wgk ( 7) / 0.2191568584015875D+00/ + data wgk ( 8) / 0.2255104997982067D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resk0 = wgk0(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(4) + fv2(4)) + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0)) + & * 10.0D0, abserr) + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + + end subroutine dqk9 + subroutine dqkl9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(3),wgk(5),xgk(5) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 9-point Gauss-kronrod-lobatto rule +! xgk(1), xgk(5) abscissae of the 3-point gauss-lobatto rule +c xgk(1), xgk(3),xgk(5) abscissae of the 5-point +c kronrod rule +c xgk(2), xgk(4), ... abscissae which are optimally +c added to the 5-point kronrod rule +c +c wgk - weights of the 9-point kronrod rule +! +! wgk0 - weights of the 5-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + + data wg ( 1) / 0.33333333333333333333333333333333333D+00/ + data wg ( 2) / 0.13333333333333333333333333333333333D+01/ + + data wgk0 ( 1) / 0.1000000000000000D+00/ + data wgk0 ( 2) / 0.5444444444444445D+00/ + data wgk0 ( 3) / 0.7111111111111111D+00/ + + data xgk ( 1) / 0.1000000000000000D+01/ + data xgk ( 2) / 0.8904055275126688D+00/ + data xgk ( 3) / 0.6546536707079772D+00/ + data xgk ( 4) / 0.3409822659109930D+00/ + data xgk ( 5) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.3064373897707232D-01/ + data wgk ( 2) / 0.1792626995532074D+00/ + data wgk ( 3) / 0.2839787780481211D+00/ + data wgk ( 4) / 0.3342337398164177D+00/ + data wgk ( 5) / 0.3437620872103631D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(5)*fc + resk0 = wgk0(3)*fc + resabs = dabs(resk) + do 10 j=1,2 + jtw = 2*j - 1 + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(1) + fv2(1)) + do 15 j = 1,2 + jtwm1 = 2*j + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(5)*dabs(fc-reskh) + do 20 j=1,4 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0))* 10.0D0,abserr) + + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) + implicit none +c***begin prologue dqpsrt +c***refer to dqage,dqagie,dqagpe,dqawse +c***routines called (none) +c***revision date 810101 (yymmdd) +c***keywords sequential sorting +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose this routine maintains the descending ordering in the +c list of the local error estimated resulting from the +c interval subdivision process. at each call two error +c estimates are inserted using the sequential search +c method, top-down for the largest error estimate and +c bottom-up for the smallest error estimate. +c***description +c +c ordering routine +c standard fortran subroutine +c double precision version +c +c parameters (meaning at output) +c limit - integer +c maximum number of error estimates the list +c can contain +c +c last - integer +c number of error estimates currently in the list +c +c maxerr - integer +c maxerr points to the nrmax-th largest error +c estimate currently in the list +c +c ermax - double precision +c nrmax-th largest error estimate +c ermax = elist(maxerr) +c +c elist - double precision +c vector of dimension last containing +c the error estimates +c +c iord - integer +c vector of dimension last, the first k elements +c of which contain pointers to the error +c estimates, such that +c elist(iord(1)),..., elist(iord(k)) +c form a decreasing sequence, with +c k = last if last.le.(limit/2+2), and +c k = limit+1-last otherwise +c +c nrmax - integer +c maxerr = iord(nrmax) +c +c***end prologue dqpsrt +c + double precision elist,ermax,errmax,errmin + integer i,ibeg,ido,iord,isucc,j,jbnd,jupbn,k,last,limit,maxerr, + * nrmax + dimension elist(last),iord(last) +c +c check whether the list contains more than +c two error estimates. +c +c***first executable statement dqpsrt + if(last.gt.2) go to 10 + iord(1) = 1 + iord(2) = 2 + go to 90 +c +c this part of the routine is only executed if, due to a +c difficult integrand, subdivision increased the error +c estimate. in the normal case the insert procedure should +c start after the nrmax-th largest error estimate. +c + 10 errmax = elist(maxerr) + if(nrmax.eq.1) go to 30 + ido = nrmax-1 + do 20 i = 1,ido + isucc = iord(nrmax-1) +c ***jump out of do-loop + if(errmax.le.elist(isucc)) go to 30 + iord(nrmax) = isucc + nrmax = nrmax-1 + 20 continue +c +c compute the number of elements in the list to be maintained +c in descending order. this number depends on the number of +c subdivisions still allowed. +c + 30 jupbn = last + if(last.gt.(limit/2+2)) jupbn = limit+3-last + errmin = elist(last) +c +c insert errmax by traversing the list top-down, +c starting comparison from the element elist(iord(nrmax+1)). +c + jbnd = jupbn-1 + ibeg = nrmax+1 + if(ibeg.gt.jbnd) go to 50 + do 40 i=ibeg,jbnd + isucc = iord(i) +c ***jump out of do-loop + if(errmax.ge.elist(isucc)) go to 60 + iord(i-1) = isucc + 40 continue + 50 iord(jbnd) = maxerr + iord(jupbn) = last + go to 90 +c +c insert errmin by traversing the list bottom-up. +c + 60 iord(i-1) = maxerr + k = jbnd + do 70 j=i,jbnd + isucc = iord(k) +c ***jump out of do-loop + if(errmin.lt.elist(isucc)) go to 80 + iord(k+1) = isucc + k = k-1 + 70 continue + iord(i) = last + go to 90 + 80 iord(k+1) = last +c +c set maxerr and ermax. +c + 90 maxerr = iord(nrmax) + ermax = elist(maxerr) + return + end subroutine dqpsrt + subroutine dqelg(n,epstab,result,abserr,res3la,nres) + implicit none +c***begin prologue dqelg +c***refer to dqagie,dqagoe,dqagpe,dqagse +c***routines called d1mach +c***revision date 830518 (yymmdd) +c***keywords epsilon algorithm, convergence acceleration, +c extrapolation +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math & progr. div. - k.u.leuven +c***purpose the routine determines the limit of a given sequence of +c approximations, by means of the epsilon algorithm of +c p.wynn. an estimate of the absolute error is also given. +c the condensed epsilon table is computed. only those +c elements needed for the computation of the next diagonal +c are preserved. +c***description +c +c epsilon algorithm +c standard fortran subroutine +c double precision version +c +c parameters +c n - integer +c epstab(n) contains the new element in the +c first column of the epsilon table. +c +c epstab - double precision +c vector of dimension 52 containing the elements +c of the two lower diagonals of the triangular +c epsilon table. the elements are numbered +c starting at the right-hand corner of the +c triangle. +c +c result - double precision +c resulting approximation to the integral +c +c abserr - double precision +c estimate of the absolute error computed from +c result and the 3 previous results +c +c res3la - double precision +c vector of dimension 3 containing the last 3 +c results +c +c nres - integer +c number of calls to the routine +c (should be zero at first call) +c +c***end prologue dqelg +c + double precision abserr,dabs,delta1,delta2,delta3,dmax1, + * epmach,epsinf,epstab,error,err1,err2,err3,e0,e1,e1abs,e2,e3, + * oflow,res,result,res3la,ss,tol1,tol2,tol3 + integer i,ib,ib2,ie,indx,k1,k2,k3,limexp,n,newelm,nres,num + dimension epstab(52),res3la(3) +c +c list of major variables +c ----------------------- +c +c e0 - the 4 elements on which the computation of a new +c e1 element in the epsilon table is based +c e2 +c e3 e0 +c e3 e1 new +c e2 +c newelm - number of elements to be computed in the new +c diagonal +c error - error = abs(e1-e0)+abs(e2-e1)+abs(new-e2) +c result - the element in the new diagonal with least value +c of error +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c oflow is the largest positive magnitude. +c limexp is the maximum number of elements the epsilon +c table can contain. if this number is reached, the upper +c diagonal of the epsilon table is deleted. +c +c***first executable statement dqelg + epmach = d1mach(4) + oflow = d1mach(2) + nres = nres+1 + abserr = oflow + result = epstab(n) + if(n.lt.3) go to 100 + limexp = 50 + epstab(n+2) = epstab(n) + newelm = (n-1)/2 + epstab(n) = oflow + num = n + k1 = n + do 40 i = 1,newelm + k2 = k1-1 + k3 = k1-2 + res = epstab(k1+2) + e0 = epstab(k3) + e1 = epstab(k2) + e2 = res + e1abs = dabs(e1) + delta2 = e2-e1 + err2 = dabs(delta2) + tol2 = dmax1(dabs(e2),e1abs)*epmach + delta3 = e1-e0 + err3 = dabs(delta3) + tol3 = dmax1(e1abs,dabs(e0))*epmach + if(err2.gt.tol2.or.err3.gt.tol3) go to 10 +c +c if e0, e1 and e2 are equal to within machine +c accuracy, convergence is assumed. +c result = e2 +c abserr = abs(e1-e0)+abs(e2-e1) +c + result = res + abserr = err2+err3 +c ***jump out of do-loop + go to 100 + 10 e3 = epstab(k1) + epstab(k1) = e1 + delta1 = e1-e3 + err1 = dabs(delta1) + tol1 = dmax1(e1abs,dabs(e3))*epmach +c +c if two elements are very close to each other, omit +c a part of the table by adjusting the value of n +c + if(err1.le.tol1.or.err2.le.tol2.or.err3.le.tol3) go to 20 + ss = 0.1d+01/delta1+0.1d+01/delta2-0.1d+01/delta3 + epsinf = dabs(ss*e1) +c +c test to detect irregular behaviour in the table, and +c eventually omit a part of the table adjusting the value +c of n. +c + if(epsinf.gt.0.1d-03) go to 30 + 20 n = i+i-1 +c ***jump out of do-loop + go to 50 +c +c compute a new element and eventually adjust +c the value of result. +c + 30 res = e1+0.1d+01/ss + epstab(k1) = res + k1 = k1-2 + error = err2+dabs(res-e2)+err3 + if(error.gt.abserr) go to 40 + abserr = error + result = res + 40 continue +c +c shift the table. +c + 50 if(n.eq.limexp) n = 2*(limexp/2)-1 + ib = 1 + if((num/2)*2.eq.num) ib = 2 + ie = newelm+1 + do 60 i=1,ie + ib2 = ib+2 + epstab(ib) = epstab(ib2) + ib = ib2 + 60 continue + if(num.eq.n) go to 80 + indx = num-n+1 + do 70 i = 1,n + epstab(i)= epstab(indx) + indx = indx+1 + 70 continue + 80 if(nres.ge.4) go to 90 + res3la(nres) = result + abserr = oflow + go to 100 +c +c compute error estimate +c + 90 abserr = dabs(result-res3la(3))+dabs(result-res3la(2)) + * +dabs(result-res3la(1)) + res3la(1) = res3la(2) + res3la(2) = res3la(3) + res3la(3) = result + 100 abserr = dmax1(abserr,0.5d+01*epmach*dabs(result)) + return + end subroutine dqelg + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + end module AdaptiveGaussKronrod + + module Integration1DModule + implicit none + interface AdaptiveSimpson + module procedure AdaptiveSimpson2, AdaptiveSimpsonWithBreaks + end interface + +! interface AdaptiveSimpson1 +! module procedure AdaptiveSimpson1 +! end interface + + interface AdaptiveTrapz + module procedure AdaptiveTrapz1, AdaptiveTrapzWithBreaks + end interface + + interface Romberg + module procedure Romberg1, RombergWithBreaks + end interface + + INTERFACE DEA + MODULE PROCEDURE DEA + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + contains + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + SUBROUTINE DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +C***BEGIN PROLOGUE DEA +C***DATE WRITTEN 800101 (YYMMDD) +C***REVISION DATE 871208 (YYMMDD) +C***CATEGORY NO. E5 +C***KEYWORDS CONVERGENCE ACCELERATION,EPSILON ALGORITHM,EXTRAPOLATION +C***AUTHOR PIESSENS, ROBERT, APPLIED MATH. AND PROGR. DIV. - +C K. U. LEUVEN +C DE DONCKER-KAPENGA, ELISE,WESTERN MICHIGAN UNIVERSITY +C KAHANER, DAVID K., NATIONAL BUREAU OF STANDARDS +C STARKENBURG, C. B., NATIONAL BUREAU OF STANDARDS +C***PURPOSE Given a slowly convergent sequence, this routine attempts +C to extrapolate nonlinearly to a better estimate of the +C sequence's limiting value, thus improving the rate of +C convergence. Routine is based on the epsilon algorithm +C of P. Wynn. An estimate of the absolute error is also +C given. +C***DESCRIPTION +C +C Epsilon algorithm. Standard fortran subroutine. +C Double precision version. +C +C A R G U M E N T S I N T H E C A L L S E Q U E N C E +C +C NEWFLG - LOGICAL (INPUT and OUTPUT) +C On the first call to DEA set NEWFLG to .TRUE. +C (indicating a new sequence). DEA will set NEWFLG +C to .FALSE. +C +C SVALUE - DOUBLE PRECISION (INPUT) +C On the first call to DEA set SVALUE to the first +C term in the sequence. On subsequent calls set +C SVALUE to the subsequent sequence value. +C +C LIMEXP - INTEGER (INPUT) +C An integer equal to or greater than the total +C number of sequence terms to be evaluated. Do not +C change the value of LIMEXP until a new sequence +C is evaluated (NEWFLG=.TRUE.). LIMEXP .GE. 3 +C +C RESULT - DOUBLE PRECISION (OUTPUT) +C Best approximation to the sequence's limit. +C +C ABSERR - DOUBLE PRECISION (OUTPUT) +C Estimate of the absolute error. +C +C EPSTAB - DOUBLE PRECISION (OUTPUT) +C Workvector of DIMENSION at least (LIMEXP+7). +C +C IERR - INTEGER (OUTPUT) +C IERR=0 Normal termination of the routine. +C IERR=1 The input is invalid because LIMEXP.LT.3. +C +C T Y P I C A L P R O B L E M S E T U P +C +C This sample problem uses the trapezoidal rule to evaluate the +C integral of the sin function from 0.0 to 0.5*PI (value = 1.0). The +C program implements the trapezoidal rule 8 times creating an +C increasingly accurate sequence of approximations to the integral. +C Each time the trapezoidal rule is used, it uses twice as many +C panels as the time before. DEA is called to obtain even more +C accurate estimates. +C +C PROGRAM SAMPLE +C IMPLICIT DOUBLE PRECISION (A-H,O-Z) +C DOUBLE PRECISION EPSTAB(57) +CC [57 = LIMEXP + 7] +C LOGICAL NEWFLG +C EXTERNAL F +C DATA LIMEXP/50/ +C WRITE(*,*) ' NO. PANELS TRAP. APPROX' +C * ,' APPROX W/EA ABSERR' +C WRITE(*,*) +C HALFPI = DASIN(1.0D+00) +CC [UPPER INTEGRATION LIMIT = PI/2] +C NEWFLG = .TRUE. +CC [SET FLAG - 1ST DEA CALL] +C DO 10 I = 0,7 +C NPARTS = 2 ** I +C WIDTH = HALFPI/NPARTS +C APPROX = 0.5D+00 * WIDTH * (F(0.0D+00) + F(HALFPI)) +C DO 11 J = 1,NPARTS-1 +C APPROX = APPROX + F(J * WIDTH) * WIDTH +C 11 CONTINUE +CC [END TRAPEZOIDAL RULE APPROX] +C SVALUE = APPROX +CC [SVALUE = NEW SEQUENCE VALUE] +C CALL DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +CC [CALL DEA FOR BETTER ESTIMATE] +C WRITE(*,12) NPARTS,APPROX,RESULT,ABSERR +C 12 FORMAT(' ',I4,T20,F16.13,T40,F16.13,T60,D11.4) +C 10 CONTINUE +C STOP +C END +C +C DOUBLE PRECISION FUNCTION F(X) +C DOUBLE PRECISION X +C F = DSIN(X) +CC [INTEGRAND] +C RETURN +C END +C +C Output from the above program will be: +C +C NO. PANELS TRAP. APPROX APPROX W/EA ABSERR +C +C 1 .7853981633974 .7853981633974 .7854D+00 +C 2 .9480594489685 .9480594489685 .9760D+00 +C 4 .9871158009728 .9994567212570 .2141D+00 +C 8 .9967851718862 .9999667417647 .3060D-02 +C 16 .9991966804851 .9999998781041 .6094D-03 +C 32 .9997991943200 .9999999981026 .5767D-03 +C 64 .9999498000921 .9999999999982 .3338D-04 +C 128 .9999874501175 1.0000000000000 .1238D-06 +C +C----------------------------------------------------------------------- +C***REFERENCES "Acceleration de la convergence en analyse numerique", +C C. Brezinski, "Lecture Notes in Math.", vol. 584, +C Springer-Verlag, New York, 1977. +C***ROUTINES CALLED D1MACH,XERROR +C***END PROLOGUE DEA + double precision, dimension(*), intent(inout) :: EPSTAB + double precision, intent(out) :: RESULT !, ABSERR + double precision, intent(inout) :: ABSERR + double precision, intent(in) :: SVALUE + INTEGER, INTENT(IN) :: LIMEXP + INTEGER, INTENT(OUT) :: IERR + LOGICAL, intent(INOUT) :: NEWFLG + DOUBLE PRECISION :: DELTA1,DELTA2,DELTA3,DRELPR,DEPRN, + 1 ERROR,ERR1,ERR2,ERR3,E0,E1,E2,E3,RES, + 2 SS,TOL1,TOL2,TOL3 + double precision, dimension(3) :: RES3LA + INTEGER I,IB,IB2,IE,IN,K1,K2,K3,N,NEWELM,NUM,NRES +C +C +C LIMEXP is the maximum number of elements the +C epsilon table data can contain. The epsilon table +C is stored in the first (LIMEXP+2) entries of EPSTAB. +C +C +C LIST OF MAJOR VARIABLES +C ----------------------- +C E0,E1,E2,E3 - DOUBLE PRECISION +C The 4 elements on which the computation of +C a new element in the epsilon table is based. +C NRES - INTEGER +C Number of extrapolation results actually +C generated by the epsilon algorithm in prior +C calls to the routine. +C NEWELM - INTEGER +C Number of elements to be computed in the +C new diagonal of the epsilon table. The +C condensed epsilon table is computed. Only +C those elements needed for the computation of +C the next diagonal are preserved. +C RES - DOUBLE PRECISION +C New element in the new diagonal of the +C epsilon table. +C ERROR - DOUBLE PRECISION +C An estimate of the absolute error of RES. +C Routine decides whether RESULT=RES or +C RESULT=SVALUE by comparing ERROR with +C ABSERR from the previous call. +C RES3LA - DOUBLE PRECISION +C Vector of DIMENSION 3 containing at most +C the last 3 results. +C +C +C MACHINE DEPENDENT CONSTANTS +C --------------------------- +C DRELPR is the largest relative spacing. +C +C***FIRST EXECUTABLE STATEMENT DEA + IF(LIMEXP.LT.3) THEN + IERR = 1 +! CALL XERROR('LIMEXP IS LESS THAN 3',21,1,1) + GO TO 110 + ENDIF + IERR = 0 + RES3LA(1)=EPSTAB(LIMEXP+5) + RES3LA(2)=EPSTAB(LIMEXP+6) + RES3LA(3)=EPSTAB(LIMEXP+7) + RESULT=SVALUE + IF(NEWFLG) THEN + N=1 + NRES=0 + NEWFLG=.FALSE. + EPSTAB(N)=SVALUE + ABSERR=ABS(RESULT) + GO TO 100 + ELSE + N=INT(EPSTAB(LIMEXP+3)) + NRES=INT(EPSTAB(LIMEXP+4)) + IF(N.EQ.2) THEN + EPSTAB(N)=SVALUE + ABSERR=.6D+01*ABS(RESULT-EPSTAB(1)) + GO TO 100 + ENDIF + ENDIF + EPSTAB(N)=SVALUE + DRELPR=D1MACH(4) + DEPRN=1.0D+01*DRELPR + EPSTAB(N+2)=EPSTAB(N) + NEWELM=(N-1)/2 + NUM=N + K1=N + DO 40 I=1,NEWELM + K2=K1-1 + K3=K1-2 + RES=EPSTAB(K1+2) + E0=EPSTAB(K3) + E1=EPSTAB(K2) + E2=RES + DELTA2=E2-E1 + ERR2=ABS(DELTA2) + TOL2=MAX(ABS(E2),ABS(E1))*DRELPR + DELTA3=E1-E0 + ERR3=ABS(DELTA3) + TOL3=MAX(ABS(E1),ABS(E0))*DRELPR + IF(ERR2.GT.TOL2.OR.ERR3.GT.TOL3) GO TO 10 +C +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. +C RESULT=E2 +C ABSERR=ABS(E1-E0)+ABS(E2-E1) +C + RESULT=RES + ABSERR=ERR2+ERR3 + GO TO 50 + 10 IF(I.NE.1) THEN + E3=EPSTAB(K1) + EPSTAB(K1)=E1 + DELTA1=E1-E3 + ERR1=ABS(DELTA1) + TOL1=MAX(ABS(E1),ABS(E3))*DRELPR +C +C IF TWO ELEMENTS ARE VERY CLOSE TO EACH OTHER, OMIT +C A PART OF THE TABLE BY ADJUSTING THE VALUE OF N +C + IF(ERR1.LE.TOL1.OR.ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA1+0.1D+01/DELTA2-0.1D+01/DELTA3 + ELSE + EPSTAB(K1)=E1 + IF(ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA2-0.1D+01/DELTA3 + ENDIF +C +C TEST TO DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND +C EVENTUALLY OMIT A PART OF THE TABLE ADJUSTING THE VALUE +C OF N +C + IF(ABS(SS*E1).GT.0.1D-03) GO TO 30 + 20 N=I+I-1 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ERR3 + RESULT=RES + ELSE IF(NRES.EQ.1) THEN + RESULT=RES3LA(1) + ELSE IF(NRES.EQ.2) THEN + RESULT=RES3LA(2) + ELSE + RESULT=RES3LA(3) + ENDIF + GO TO 50 +C +C COMPUTE A NEW ELEMENT AND EVENTUALLY ADJUST +C THE VALUE OF RESULT +C + 30 RES=E1+0.1D+01/SS + EPSTAB(K1)=RES + K1=K1-2 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ABS(RES-E2)+ERR3 + RESULT=RES + GO TO 40 + ELSE IF(NRES.EQ.1) THEN + ERROR=.6D+01*(ABS(RES-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ERROR=.2D+01*(ABS(RES-RES3LA(2))+ABS(RES-RES3LA(1))) + ELSE + ERROR=ABS(RES-RES3LA(3))+ABS(RES-RES3LA(2)) + 1 +ABS(RES-RES3LA(1)) + ENDIF + IF(ERROR.GT.1.0D+01*ABSERR) GO TO 40 + ABSERR=ERROR + RESULT=RES + 40 CONTINUE +C +C COMPUTE ERROR ESTIMATE +C + IF(NRES.EQ.1) THEN + ABSERR=.6D+01*(ABS(RESULT-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ABSERR=.2D+01*ABS(RESULT-RES3LA(2))+ABS(RESULT-RES3LA(1)) + ELSE IF(NRES.GT.2) THEN + ABSERR=ABS(RESULT-RES3LA(3))+ABS(RESULT-RES3LA(2)) + 1 +ABS(RESULT-RES3LA(1)) + ENDIF +C +C SHIFT THE TABLE +C + 50 IF(N.EQ.LIMEXP) N=2*(LIMEXP/2)-1 + IB=1 + IF((NUM/2)*2.EQ.NUM) IB=2 + IE=NEWELM+1 + DO 60 I=1,IE + IB2=IB+2 + EPSTAB(IB)=EPSTAB(IB2) + IB=IB2 + 60 CONTINUE + IF(NUM.EQ.N) GO TO 80 + IN=NUM-N+1 + DO 70 I=1,N + EPSTAB(I)=EPSTAB(IN) + IN=IN+1 + 70 CONTINUE +C +C UPDATE RES3LA +C + 80 IF(NRES.EQ.0) THEN + RES3LA(1)=RESULT + ELSE IF(NRES.EQ.1) THEN + RES3LA(2)=RESULT + ELSE IF(NRES.EQ.2) THEN + RES3LA(3)=RESULT + ELSE + RES3LA(1)=RES3LA(2) + RES3LA(2)=RES3LA(3) + RES3LA(3)=RESULT + ENDIF + 90 ABSERR=MAX(ABSERR,DEPRN*ABS(RESULT)) + NRES=NRES+1 + 100 N=N+1 + EPSTAB(LIMEXP+3)=DBLE(N) + EPSTAB(LIMEXP+4)=DBLE(NRES) + EPSTAB(LIMEXP+5)=RES3LA(1) + EPSTAB(LIMEXP+6)=RES3LA(2) + EPSTAB(LIMEXP+7)=RES3LA(3) + 110 RETURN + END subroutine DEA + + subroutine AdaptiveIntWithBreaks(f,a,b,N,brks,epsi,iflg + $ ,abserr, val) + use AdaptiveGaussKronrod + implicit none + double precision :: f + integer, intent(in) :: N + double precision, intent(in) :: a,b,epsi + double precision, dimension(:), intent(in) :: brks + double precision, intent(out) :: abserr, val + integer, intent(out) :: iflg + external f +! Locals + double precision, dimension(N+2) :: pts + double precision :: LTol,tol, error, valk, excess, errorEstimate + double precision :: delta, deltaK + integer :: kflg, k, limit,neval + limit = 30 + pts(1) = a + pts(N+2) = b + delta = b - a + do k = 2,N+1 + pts(k) = minval(brks(k-1:N)) !add user supplied break points + enddo + LTol = epsi / delta + abserr = 0.0d0 + val = 0.0D0 + iflg = 0 + do k = 1, N + 1 + deltaK = pts(k+1) - pts(k) + tol = LTol * deltaK + if (deltaK < 0.5D0) then + call AdaptiveSimpson(f,pts(k),pts(k+1),tol, kflg,error,valk) +! call romberg(f,pts(k),pts(k+1),20,tol,kflg,error, valk) + else +! call AdaptiveSimpson3(f,pts(k),pts(k+1),tol,kflg,error,valk) + call dqagp(f,pts(k),pts(k+1),0,pts,tol,0.0D0,limit,valk, + * error,neval,kflg) + + endif + abserr = abserr + abs(error) + + errorEstimate = abserr + (b - pts(k+1)) * LTol + excess = epsi - errorEstimate + if (excess < 0.0D0 ) then + LTol = 0.1D0*LTol + elseif ( epsi < 2.0D0 * excess ) then + LTol = (epsi + excess*0.5D0) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0.0d0 .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif ( Lepsi < 5D0 * excess ) then + LTol = (Lepsi + excess) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn12e = ( Sn1e - Sn2e ) + + Sn24e = (Sn2e - Sn4) +! Sn1e = Sn2e - Sn12e * zpz66666 +! Sn12e = (Sn1e - Sn2e) + + Sn124 = (Sn12e - Sn24) + if ((abs(Sn124)<= hmin) .or. + & .false..and.(Sn24*Sn12e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn24 * zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24 * Sn24 / Sn124 + endif + Sn4e = Sn4 + correction + +! NEWFLG = .TRUE. +! CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn1e,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4e,LIMEXP,val0,localError,EPSTAB,IERR) +! localError is made conservative in order to avoid premature +! termination + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) + !if (h>dhMin) then + !localError = max(localError,abs(correction)) + !else + !val0 = Sn4e + !localError = abs(correction)*two + !endif + else + CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + endif + acceptError = ( localError <= Ltol * h * eight + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(6,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.true..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,fx3,fx4,fx5,x1,h,S,SL,SR] + kp1 = k + 1; +! Process right interval + v(1,kp1) = v(3,k); !fx1R + v(2,kp1) = fx(3); !fx2R + v(3,kp1) = v(4,k); !fx3R + v(4,kp1) = fx(4); !fx4R + v(5,kp1) = v(5,k); !fx5R + v(6,kp1) = v(6,k) + four * h; ! x1R + v(7,kp1) = h; + v(8,kp1) = v(10,k); ! S + v(9:10,kp1) = Sn(3:4); ! SL, SR +! Process left interval + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) unchanged fx1L +! v(6,k) unchanged x1L + v(7,k) = h; + v(8,k) = v(9,k); ! S + v(9:10,k) = Sn(1:2); ! SL, SR + k = kp1; + endif + enddo ! while + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + Sn48 = (Sn4 - Sn8) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn4e = Sn8 - Sn48 * zpz588 + Sn12e = (Sn1e - Sn2e) + Sn24e = (Sn2e - Sn4e) + + Sn124 = (Sn12e - Sn24e) + if ((abs(Sn124)<= hmin) .or. + & (Sn12e*Sn24e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn48*zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24e * Sn24e / Sn124 + !Sn4e = Sn4e + correction + endif + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) +! localError is made conservative in order to avoid premature +! termination +! localError = max(localError,abs(correction)*three) +! localError = abs(correction)*three + else + !CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + NEWFLG = .TRUE. + CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn8,LIMEXP,val0,localError,EPSTAB,IERR) + endif + acceptError = ( localError <= Ltol * h * sixteen + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(Nrule+1,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.TRUE..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,..,fx8,fx9,x1,h,S,SL,SR,SL1,SL2 SR1,SR2] + kp1 = k + 1; +! Process right interval + + v(1,kp1) = v(5,k); !fx1R + v(2,kp1) = fx(5); !fx2R + v(3,kp1) = v(6,k); !fx3R + v(4,kp1) = fx(6); !fx4R + v(5,kp1) = v(7,k); !fx5R + v(6,kp1) = fx(7); !fx6R + v(7,kp1) = v(8,k); !fx7R + v(8,kp1) = fx(8); !fx8R + v(9,kp1) = v(9,k); !fx9R + + v(Nrule+1,kp1) = v(Nrule+1,k) + eight * h ! x1R + v(Nrule+2,kp1) = h; + v(Nrule+3,kp1) = v(Nrule+5,k); ! S + v(Nrule+4,kp1) = v(Nrule+8,k); ! SL + v(Nrule+5,kp1) = v(Nrule+9,k); ! SR + v(Nrule+6:Nrule+9,kp1) = Sn(5:8); ! SL1,SL2,SR1, SR2 +! Process left interval + v(9,k) = v(5,k); ! fx9L + v(8,k) = fx(4); ! fx8L + v(7,k) = v(4,k); ! fx7L + v(6,k) = fx(3); ! fx6L + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) = v(1,k); ! fx1L +! v(Nrule+1,k) unchanged x1L + v(Nrule+2,k) = h; + v(Nrule+3,k) = v(Nrule + 4,k); ! S + v(Nrule+4,k) = v(Nrule+6,k); ! SL + v(Nrule+5,k) = v(Nrule+7,k); ! SR + v(Nrule+6:Nrule+9,k) = Sn(1:4); ! SL1,SL2,SR1, SR2 + k = kp1; + endif + enddo ! while + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0) iflg = ior(iflg,kflg) + end do + if (epsistepSize) then + Nk = floor((xup-xlo)/stepSize) + 1 + dx = (xup-xlo)/dble(Nk) + do j=1, Nk -1 + Npts = Npts + 1 + breakPoints(Npts) = xlo + dx * dble( j ) + enddo + endif + else + ! Compute candidates for the breakpoints + brkPts(1:2*n) = xup + forall(k=1:n,rho(k) .ne. zero) + indices(2*k-1) = k + indices(2*k ) = k + brkPts(2*k-1) = a(k)/rho(k) + brkPts(2*k ) = b(k)/rho(k) + end forall + ! Sort the candidates + call sortre(brkPts,indices) + ! Make unique list of breakpoints + + do k = 1,2*n + brk = brkPts(k) + if (xlo < brk) then + if ( xup <= brk ) exit ! terminate do loop + +! if (Npts>0) then +! xLow = max(xlo, breakPoints(Npts)) +! else +! xLow = xlo +! endif +! if (brk-xLow>stepSize) then +! Nk = floor((brk-xLow)/stepSize) +! dx = (brk-xLow)/dble(Nk) +! do j=1, Nk -1 +! Npts = Npts + 1 +! breakPoints(Npts) = brk + dx * dble( j ) +! enddo +! endif + + kU = indices(k) + + !if ( xlo + distance < brk .and. brk + distance < xup ) + !then + if ( den(kU) < 0.2) then + distance = max(brkSplit*den(kU),hMin) + z1 = brk + distance + z2 = brk - distance + if (Npts <= 0) then + if (xlo + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + kL = kU + elseif (breakPoints(Npts)+ max(distance + & ,brkSplit*den(kL)) < z1) then + if (breakPoints(Npts) + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + kL = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + kL = kU + endif + else + val1 = 0.0d0 + val2 = 0.0d0 + brkPts(Npts+1) = integrand(z1) + brkPts(Npts+2) = integrand(z2) + if ((xlo+ distance < z1) .and. (z1 + distance < xup)) + & val2 = brkPts(Npts +1) + if ((xlo+ distance < z2) .and. (z2 + distance < xup)) + & val2 = max(val2,brkPts(Npts +2)) + val1 = breakPoints(Npts) + Nprev = 1 + if (Npts>1) then + if (indices2(Npts-1)==kL) then + Nprev = 2 + val1 = max(val1,breakPoints(Npts-1)) + endif + endif + if (val1 < val2) then + !overwrite previous candidate + Npts = Npts - Nprev + if (Npts>0) then + val1 = breakPoints(Npts)+ distance + else + val1 = xlo+ distance + endif + if (val1 < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = brkPtsVal(Npts+Nprev) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + + if ((val1< z2) .and. (z2 + distance < xup)) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + if (Npts>0) kL = indices2(Npts) + endif + endif + endif + endif + enddo + endif + end subroutine GetBreakPoints + subroutine NarrowLimits(zMin,zMax,As,Bs,zCutOff,n,a,b,rho,den) + implicit none + double precision, intent(inout) :: zMin, zMax, As, Bs + double precision,dimension(*),intent(in) :: rho,a,b,den + double precision, intent(in) :: zCutOff + integer, intent(in) :: n +! Locals + double precision, parameter :: zero = 0.0D0, one = 1.0D0 + integer :: k + +! Uses the regression equation to limit the +! integration limits zMin and zMax + + do k = 1,n + if (ZERO < rho(k)) then + zMax = max(zMin, min(zMax,(b(k)+den(k)*zCutOff)/rho(k))) + zMin = min(zMax, max(zMin,(a(k)-den(k)*zCutOff)/rho(k))) + if ( one <= rho(k) ) then + if ( b(k) < Bs ) Bs = b(k) + if ( As < a(k) ) As = a(k) + endif + elseif (rho(k)< ZERO) then + zMax = max(zMin,min(zMax,(a(k)-den(k)*zCutOff)/rho(k))) + zMin = min(zMax,max(zMin,(b(k)+den(k)*zCutOff)/rho(k))) + if ( rho(k) <= -one ) then + if ( -a(k) < Bs ) Bs = -a(k) + if ( As < -b(k) ) As = -b(k) + endif + endif + enddo + As = min(As,Bs) + end subroutine NarrowLimits + + function integrand(z) result (val) + implicit none + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + double precision, parameter :: sqtwopi1 = 0.39894228040143D0 + double precision, parameter :: half = 0.5D0 + val = sqtwopi1 * exp(-half * z * z) * integrand1(z) + return + end function integrand + + function integrand1(z) result (val) + implicit none + double precision, intent(in) :: z + double precision :: val + double precision :: xUp,xLo,zRho + double precision, parameter :: one = 1.0D0, zero = 0.0D0 + integer :: I + val = one + do I = 1, mNdim + zRho = z * mRho(I) + ! Uncomment / mDen below if mRho, mA, mB is not scaled + xUp = ( mB(I) - zRho ) !/ mDen(I) + xLo = ( mA(I) - zRho ) !/ mDen(I) + if (zero0.1 +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION, INTENT(in) :: P + DOUBLE PRECISION :: VAL +!local variables + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, ONE, ZERO, HALF, + & A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + & C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + & E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + & Q, R + PARAMETER ( SPLIT1 = 0.425D0, SPLIT2 = 5.D0, + & CONST1 = 0.180625D0, CONST2 = 1.6D0, + & ONE = 1.D0, ZERO = 0.D0, HALF = 0.5D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( P - HALF) + IF ( ABS(Q) .LE. SPLIT1 ) THEN ! Central range. + R = CONST1 - Q*Q + VAL = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + ONE) + ELSE ! near the endpoints + R = MIN( P, ONE - P ) + IF (R .GT.ZERO) THEN ! ( 2.d0*R .GT. CFxCutOff) THEN ! R .GT.0.d0 + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + VAL = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + ONE ) + ELSE + R = R - SPLIT2 + VAL = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + ONE ) + END IF + ELSE + VAL = 37.D0 !XMAX 9.d0 + END IF + IF ( Q < ZERO ) VAL = - VAL + END IF + RETURN + END FUNCTION FIINV + FUNCTION FI2( Z ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +* +* Normal distribution probabilities accurate to 1.e-15. +* relative error less than 1e-8; +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION :: P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,XMAX, + * P, EXPNTL, CUTOFF, ROOTPI, ZABS, Z2 + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = 0.70038 30644 43688 1D0, + * P6 = 0.035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = 0.088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) + PARAMETER( XMAX = 8.25D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( Z .GT. XMAX .OR. ZABS .GT. 37) THEN + P = 0.d0 + ELSE +* +* |Z| <= 37 +* + Z2 = ZABS * ZABS + EXPNTL = EXP( -Z2 * 0.5D0 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS < CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1.d0/( ZABS + 2.d0/( ZABS + 3.d0/( ZABS + * + 4.d0/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0.d0 ) P = 1.d0 - P + VALUE = P + RETURN + END FUNCTION FI2 + + FUNCTION FI( Z ) RESULT (VALUE) + USE ERFCOREMOD + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +! Local variables + DOUBLE PRECISION, PARAMETER:: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER:: HALF = 0.5D0 + VALUE = DERFC(-Z*SQ2M1)*HALF + RETURN + END FUNCTION FI + end module mvnProdCorrPrbMod + + \ No newline at end of file diff --git a/wafo/source/mvnprd/mvnprodcorrprb_interface.f b/wafo/source/mvnprd/mvnprodcorrprb_interface.f new file mode 100755 index 0000000..190f081 --- /dev/null +++ b/wafo/source/mvnprd/mvnprodcorrprb_interface.f @@ -0,0 +1,33 @@ + +C gfortran -fPIC -c mvnprodcorrprb.f +C f2py -m mvnprdmod -c mvnprodcorrprb.o mvnprodcorrprb_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + +C module mvnprdmod +C contains + subroutine prbnormndpc(prb,abserr,IFT,rho,a,b,N,abseps,releps, + & useBreakPoints, useSimpson) + use mvnProdCorrPrbMod, ONLY : mvnprodcorrprb + integer :: N + double precision,dimension(N),intent(in) :: rho,a,b + double precision,intent(in) :: abseps + double precision,intent(in) :: releps + logical, intent(in) :: useBreakPoints + logical, intent(in) :: useSimpson + double precision,intent(out) :: abserr,prb + integer, intent(out) :: IFT + +Cf2py integer, intent(hide), depend(rho) :: N = len(rho) +Cf2py depend(N) a +Cf2py depend(N) b +Cf2py double precision, optional :: abseps = 0.001 +Cf2py double precision, optional :: releps = 0.001 +Cf2py logical, optional :: useBreakPoints =1 +Cf2py logical, optional :: useSimpson = 1 + + + + CALL mvnprodcorrprb(rho,a,b,abseps,releps,useBreakPoints, + & useSimpson,abserr,IFT,prb) + + end subroutine prbnormndpc +C end module mvnprdmod \ No newline at end of file diff --git a/wafo/source/mvnprd/mvnprodcorrprbmod.mod b/wafo/source/mvnprd/mvnprodcorrprbmod.mod new file mode 100755 index 0000000..e57be0f --- /dev/null +++ b/wafo/source/mvnprd/mvnprodcorrprbmod.mod @@ -0,0 +1,45 @@ +GFORTRAN module version '0' created from mvnprodcorrprb.f on Fri Jul 31 00:49:14 2009 +MD5:f40d97ecb7391e1c401b4b2027719b7e -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () +() () () () () () () () () () () () () () () () () ()) + +() + +(('mvnprodcorrprb' 'mvnprodcorrprbmod' 2)) + +() + +() + +(2 'mvnprodcorrprb' 'mvnprodcorrprbmod' 'mvnprodcorrprb' 1 ((PROCEDURE +UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC +ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 3 0 (4 5 6 7 8 9 10 11 12 13) +() 0 () () () 0 0) +4 'rho' '' 'rho' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +5 'a' '' 'a' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +6 'b' '' 'b' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +7 'abseps' '' 'abseps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +8 'releps' '' 'releps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'usebreakpoints' '' 'usebreakpoints' 3 ((VARIABLE IN UNKNOWN-PROC +UNKNOWN UNKNOWN DUMMY) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () () 0 () () () 0 +0) +10 'usesimpson' '' 'usesimpson' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () () 0 () () () 0 0) +11 'abserr' '' 'abserr' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +12 'errflg' '' 'errflg' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +13 'prb' '' 'prb' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +) + +('mvnprodcorrprb' 0 2) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/adaptivegausskronrod.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/adaptivegausskronrod.mod new file mode 100755 index 0000000..7d21c23 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/adaptivegausskronrod.mod @@ -0,0 +1,112 @@ +GFORTRAN module created from mvnprodcorrprb.f on Thu Dec 04 12:55:42 2008 +MD5:6d500af6c301beba9c314ac587f06931 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('dqagpe' 'adaptivegausskronrod' 2) ('dqagp' 'adaptivegausskronrod' 3)) + +() + +() + +(3 'dqagp' 'adaptivegausskronrod' 'dqagp' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +4 0 (5 6 7 8 9 10 11 12 13 14 15 16) () 0 () () 0 0) +2 'dqagpe' 'adaptivegausskronrod' 'dqagpe' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +17 0 (18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38) () +0 () () 0 0) +10 'epsabs' '' 'epsabs' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +11 'epsrel' '' 'epsrel' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +12 'limit' '' 'limit' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +13 'result1' '' 'result1' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +14 'abserr' '' 'abserr' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +15 'neval' '' 'neval' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +16 'ier' '' 'ier' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +33 'elist' '' 'elist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +34 'pts' '' 'pts' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (OP (INTEGER 4 0 0 INTEGER ()) 0 PLUS ( +VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 21 ()) (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '2'))) 0 () () 0 0) +35 'iord' '' 'iord' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 +INTEGER ()) 0 25 ())) 0 () () 0 0) +36 'level' '' 'level' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 +INTEGER ()) 0 25 ())) 0 () () 0 0) +37 'ndin' '' 'ndin' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (OP (INTEGER 4 0 0 INTEGER ()) +0 PLUS (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 21 ()) (CONSTANT (INTEGER +4 0 0 INTEGER ()) 0 '2'))) 0 () () 0 0) +38 'last' '' 'last' 17 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +7 'b' '' 'b' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (REAL 8 +0 0 REAL ()) 0 0 () () 0 () () 0 0) +8 'npts' '' 'npts' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +9 'points' '' 'points' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +8 ())) 0 () () 0 0) +5 'f' '' 'f' 4 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +6 'a' '' 'a' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (REAL 8 +0 0 REAL ()) 0 0 () () 0 () () 0 0) +18 'f' '' 'f' 17 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +19 'a' '' 'a' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +20 'b' '' 'b' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +21 'npts' '' 'npts' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +22 'points' '' 'points' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +21 ())) 0 () () 0 0) +23 'epsabs' '' 'epsabs' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +24 'epsrel' '' 'epsrel' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +25 'limit' '' 'limit' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +26 'result' '' 'result' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +27 'abserr' '' 'abserr' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +28 'neval' '' 'neval' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +29 'ier' '' 'ier' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +30 'alist' '' 'alist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +31 'blist' '' 'blist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +32 'rlist' '' 'rlist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +) + +('dqagp' 0 3 'dqagpe' 0 2) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/build_all.py b/wafo/source/mvnprd/old/mvnprodcorrprb/build_all.py new file mode 100755 index 0000000..8b96b40 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/build_all.py @@ -0,0 +1,24 @@ +""" +f2py c_library.pyf c_functions.c -c +""" +import os + +def compile_all(): + + compile1_txt = 'gfortran -fPIC -c mvnprodcorrprb.f' + compile2_txt = 'f2py -m mvnprdmod -c mvnprodcorrprb.o mvnprodcorrprb_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + os.system(compile1_txt) + os.system(compile2_txt) + # Install gfortran and run the following to build the module: + #compile_format = 'f2py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + + # Install microsoft visual c++ .NET 2003 and run the following to build the module: + #compile_format = 'f2py %s %s -c' + #pyfs = ('c_library.pyf',) + #files =('c_functions.c',) + + #for pyf,file in zip(pyfs,files): + # os.system(compile_format % (pyf,file)) + +if __name__=='__main__': + compile_all() diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/erfcoremod.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/erfcoremod.mod new file mode 100755 index 0000000..62b1a08 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/erfcoremod.mod @@ -0,0 +1,51 @@ +GFORTRAN module created from mvnprodcorrprb.f on Thu Dec 04 11:05:50 2008 +MD5:3ad89711ff6ea0f8c745365231e1a1ea -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('derf' 'erfcoremod' 2) ('calerf' 'erfcoremod' 3) ('derfcx' 'erfcoremod' +4) ('derfc' 'erfcoremod' 5)) + +() + +() + +(3 'calerf' 'erfcoremod' 'calerf' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +6 0 (7 8 9) () 0 () () 0 0) +2 'derf' 'erfcoremod' 'derf' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 10 0 (11) () 12 () () +0 0) +5 'derfc' 'erfcoremod' 'derfc' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 13 0 (14) () 15 () () +0 0) +4 'derfcx' 'erfcoremod' 'derfcx' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 16 0 ( +17) () 18 () () 0 0) +19 'erfcoremod' 'erfcoremod' 'erfcoremod' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() 0 0) +11 'x' '' 'x' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +12 'value' '' 'value' 10 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +14 'x' '' 'x' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +15 'value' '' 'value' 13 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +17 'x' '' 'x' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +18 'value' '' 'value' 16 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +7 'arg' '' 'arg' 6 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +8 'result' '' 'result' 6 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +9 'jint' '' 'jint' 6 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +) + +('calerf' 0 3 'derf' 0 2 'derfc' 0 5 'derfcx' 0 4 'erfcoremod' 0 19) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/functioninterface.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/functioninterface.mod new file mode 100755 index 0000000..f5c7ab8 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/functioninterface.mod @@ -0,0 +1,27 @@ +GFORTRAN module created from mvnprodcorrprb.f on Wed Dec 03 15:55:57 2008 +MD5:2bffd45d12c9c1718b19499dd55e4953 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'f' 'functioninterface' 'f' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +BODY UNKNOWN EXTERNAL FUNCTION) (REAL 8 0 0 REAL ()) 3 0 (4) () 5 () () +0 0) +6 'functioninterface' 'functioninterface' 'functioninterface' 1 (( +MODULE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 +UNKNOWN ()) 0 0 () () 0 () () 0 0) +4 'z' '' 'z' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (REAL 8 +0 0 REAL ()) 0 0 () () 0 () () 0 0) +5 'val' '' 'val' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +) + +('f' 0 2 'functioninterface' 0 6) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/integration1dmodule.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/integration1dmodule.mod new file mode 100755 index 0000000..698f6a9 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/integration1dmodule.mod @@ -0,0 +1,241 @@ +GFORTRAN module created from mvnprodcorrprb.f on Thu Dec 04 12:55:42 2008 +MD5:2001ac092337caac013ba2fcb5e647f3 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () +() () () () () () () () () () () () () () ()) + +() + +(('adaptivesimpson' 'integration1dmodule' 2 3) ('d1mach' +'integration1dmodule' 4) ('adaptivetrapz' 'integration1dmodule' 5 6) ( +'romberg' 'integration1dmodule' 7 8) ('dea' 'integration1dmodule' 9)) + +() + +() + +(10 'adaptiveintwithbreaks' 'integration1dmodule' 'adaptiveintwithbreaks' +1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE +ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 11 0 (12 13 14 15 16 17 18 +19 20) () 0 () () 0 0) +21 'adaptivesimpson1' 'integration1dmodule' 'adaptivesimpson1' 1 (( +PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 +0 0 UNKNOWN ()) 22 0 (23 24 25 26 27 28 29) () 0 () () 0 0) +3 'adaptivesimpson2' 'integration1dmodule' 'adaptivesimpson2' 1 (( +PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 +0 0 UNKNOWN ()) 30 0 (31 32 33 34 35 36 37) () 0 () () 0 0) +38 'adaptivesimpson3' 'integration1dmodule' 'adaptivesimpson3' 1 (( +PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 +0 0 UNKNOWN ()) 39 0 (40 41 42 43 44 45 46) () 0 () () 0 0) +2 'adaptivesimpsonwithbreaks' 'integration1dmodule' +'adaptivesimpsonwithbreaks' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 47 0 +(48 49 50 51 52 53 54 55 56) () 0 () () 0 0) +6 'adaptivetrapz1' 'integration1dmodule' 'adaptivetrapz1' 1 ((PROCEDURE +UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 +UNKNOWN ()) 57 0 (58 59 60 61 62 63 64) () 0 () () 0 0) +5 'adaptivetrapzwithbreaks' 'integration1dmodule' +'adaptivetrapzwithbreaks' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 65 0 (66 +67 68 69 70 71 72 73 74) () 0 () () 0 0) +4 'd1mach' 'integration1dmodule' 'd1mach' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 75 0 ( +76) () 4 () () 0 0) +9 'dea' 'integration1dmodule' 'dea' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +77 0 (78 79 80 81 82 83 84) () 0 () () 0 0) +85 'dea3' 'integration1dmodule' 'dea3' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 86 0 ( +87 88 89 90 91) () 0 () () 0 0) +92 'integration1dmodule' 'integration1dmodule' 'integration1dmodule' 1 ( +(MODULE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 +UNKNOWN ()) 0 0 () () 0 () () 0 0) +8 'romberg1' 'integration1dmodule' 'romberg1' 1 ((PROCEDURE +UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 +UNKNOWN ()) 93 0 (94 95 96 97 98 99 100 101) () 0 () () 0 0) +7 'rombergwithbreaks' 'integration1dmodule' 'rombergwithbreaks' 1 (( +PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE +ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 102 0 (103 104 105 106 107 +108 109 110 111) () 0 () () 0 0) +78 'newflg' '' 'newflg' 77 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () () 0 () () 0 0) +79 'svalue' '' 'svalue' 77 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +80 'limexp' '' 'limexp' 77 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +81 'result' '' 'result' 77 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +82 'abserr' '' 'abserr' 77 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +87 'e0' '' 'e0' 86 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +88 'e1' '' 'e1' 86 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +83 'epstab' '' 'epstab' 77 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SIZE (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +84 'ierr' '' 'ierr' 77 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +89 'e2' '' 'e2' 86 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +90 'abserr' '' 'abserr' 86 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +91 'result' '' 'result' 86 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +17 'epsi' '' 'epsi' 11 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +18 'iflg' '' 'iflg' 11 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +19 'abserr' '' 'abserr' 11 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +20 'val' '' 'val' 11 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +48 'f' '' 'f' 47 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +49 'a' '' 'a' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +50 'b' '' 'b' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +51 'n' '' 'n' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +31 'f' '' 'f' 30 ((PROCEDURE UNKNOWN-INTENT DUMMY-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY FUNCTION) (REAL 8 0 0 REAL ()) 0 0 () () 31 () () 0 0) +32 'a' '' 'a' 30 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +33 'b' '' 'b' 30 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +34 'epsi' '' 'epsi' 30 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +13 'a' '' 'a' 11 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +14 'b' '' 'b' 11 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +15 'n' '' 'n' 11 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +16 'brks' '' 'brks' 11 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +58 'f' '' 'f' 57 ((PROCEDURE UNKNOWN-INTENT DUMMY-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY FUNCTION) (REAL 8 0 0 REAL ()) 0 0 () () 58 () () 0 0) +59 'a' '' 'a' 57 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +60 'b' '' 'b' 57 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +35 'iflg' '' 'iflg' 30 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +36 'abserr' '' 'abserr' 30 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +37 'val' '' 'val' 30 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +40 'f' '' 'f' 39 ((PROCEDURE UNKNOWN-INTENT DUMMY-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY FUNCTION) (REAL 8 0 0 REAL ()) 0 0 () () 40 () () 0 0) +52 'brks' '' 'brks' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +53 'epsi' '' 'epsi' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +54 'iflg' '' 'iflg' 47 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +55 'abserr' '' 'abserr' 47 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +56 'val' '' 'val' 47 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +23 'f' '' 'f' 22 ((PROCEDURE UNKNOWN-INTENT DUMMY-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY FUNCTION) (REAL 8 0 0 REAL ()) 0 0 () () 23 () () 0 0) +41 'a' '' 'a' 39 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +42 'b' '' 'b' 39 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +43 'epsi' '' 'epsi' 39 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +44 'iflg' '' 'iflg' 39 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +24 'a' '' 'a' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +25 'b' '' 'b' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +26 'epsi' '' 'epsi' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +27 'iflg' '' 'iflg' 22 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +28 'abserr' '' 'abserr' 22 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +29 'val' '' 'val' 22 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +66 'f' '' 'f' 65 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +76 'i' '' 'i' 75 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +12 'f' '' 'f' 11 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +45 'abserr' '' 'abserr' 39 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +46 'val' '' 'val' 39 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +72 'iflg' '' 'iflg' 65 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +73 'abserr' '' 'abserr' 65 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +74 'val' '' 'val' 65 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +71 'epsi' '' 'epsi' 65 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +67 'a' '' 'a' 65 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +68 'b' '' 'b' 65 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +69 'n' '' 'n' 65 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +70 'brks' '' 'brks' 65 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +61 'epsi' '' 'epsi' 57 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +62 'iflg' '' 'iflg' 57 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +63 'abserr' '' 'abserr' 57 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +64 'val' '' 'val' 57 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +103 'f' '' 'f' 102 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +104 'a' '' 'a' 102 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +105 'b' '' 'b' 102 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +106 'n' '' 'n' 102 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +107 'brks' '' 'brks' 102 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +108 'epsi' '' 'epsi' 102 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +109 'iflg' '' 'iflg' 102 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +110 'abserr' '' 'abserr' 102 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +111 'val' '' 'val' 102 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +94 'f' '' 'f' 93 ((PROCEDURE UNKNOWN-INTENT DUMMY-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY FUNCTION) (REAL 8 0 0 REAL ()) 0 0 () () 94 () () 0 0) +95 'a' '' 'a' 93 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +96 'b' '' 'b' 93 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +97 'decdigs' '' 'decdigs' 93 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +98 'abseps' '' 'abseps' 93 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +99 'errflg' '' 'errflg' 93 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +100 'abserr' '' 'abserr' 93 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +101 'val' '' 'val' 93 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +) + +('adaptiveintwithbreaks' 0 10 'adaptivesimpson1' 0 21 'adaptivesimpson2' +0 3 'adaptivesimpson3' 0 38 'adaptivesimpsonwithbreaks' 0 2 +'adaptivetrapz1' 0 6 'adaptivetrapzwithbreaks' 0 5 'd1mach' 0 4 'dea' 0 +9 'dea3' 0 85 'integration1dmodule' 0 92 'romberg1' 0 8 +'rombergwithbreaks' 0 7) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprdmod.pyd b/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprdmod.pyd new file mode 100755 index 0000000000000000000000000000000000000000..3b8605be86fa88b2e2246531473a8d552b14eb3e GIT binary patch literal 697588 zcmeFa0eoFYbte8~JtfbHk|z?GDpUyq1UTS=4Te~?DN5p-2(ZAx7I+~l4%n%)4T+mP zQPZ_-rSIKVx7ROLclBD)T2$URUD0(HZR!*yv4ZS4kqk~zf@x)<=PF>@r%F&IF^K{$ z`hVXy_uhA(^yC#b~X~}$1nft z^*sNh4at|k@zKj8hZaBmrv8$3Prqs7wma^v*?!O6zje=TpRf7cZFk*uccSLATWjuV zxvS=myK2^cY(vfG@7}WYU6);UNv&7(dMgrHS5gtV{>ke;6#2cyk>9v15*d$N^rlNo z7Ojdb0%rU0zbX>hT!9SyUqfsWVtA3ky97bvufLj0^pd>lQnd>iOg?5{9{lO2uQc*e zz6_Q|Zbh97{*9DImewqo`U@w#E3tJ)0=dtYpgn2}euGAsVmG7N@7i)(;x@dly%Z0& zy&S(6i3SLmzk0OdUH2Hk=}#eUInr;%?-ldl>fiO*d+%kg&9BF!qcENE{A*)*TTOYQ z5okqPNA4kb1a8iJOQ%K^829vtx7dgtArix^stApOmN+cgjFhIg+-JpO7f z;u8dk;isn%4l#?~y`qi)k&j)0M+M+2@!MMj?!E6LSmc%KkhUCftMGfc2;9o+1b5`q z_}PB3q2E~{p?L4H=-uyMq2RB!;b#PJzmMPb_$~Zf^zQ54tC&Me@v|9?cn5x;Edsad z{epXl{n`OI((hamxH^O1C)a`7djR)Q{9c0J!avYu`6@=u)Zj6_*wA?sehdHDoBC^V zey|}q6?K<@87k~&6CZT1u0Y6nIeqx;1V~Os>%M)@Rc@(0n0RS+#K0-?-pO?0Z4sxk zHn-#QlE{i@9ThPYt!1{{M#OFUbn_D^{}ZU7!fh!}{;VW%vy-Tex>kj=wl?NkF(+D^ z`?Eh<6mgzNPBA^+d342~{an0r&_3F7v;A^QxqF!qJKl2Biszis^wybA|7P>i@(8MF zV>MT!ng;|in0V(9Vj__Th<`5XE{f#-5k*g?b5*mmvy%^{|CXt_OZoC}?&M`9ks%GH z6@!z#=`TdQ_BQpa`9DZbRT0O2mW=>#7P6m5w&Tf}lB))vFy*}l{09jCL`VJ)^hi#{ z_Se4?)E-P+M{+F(x=Ut3grgF^x1blU09l7n>t#$^jI@t`9MFpa&5W}nC^CKMZEO$9 zYo1qrmD7CI`L@$~&KcU@cN7h1nQ=cJtvi}{9h-u(XO~PN8b$s}_QqKDjs4)Ih}(SD z1spO>H9z5017=V#&Qpo2vh{#+FKVy{or_wYac_z`D{E)hS4}?UZiw#R4zOZne;S26 zx&|$9Hr7UGmmKp;d-Lp)6vCwFi(mj}CU-OX#2#$<#$6>C}&$ zAAItW1knD(hWn-tf-sM5eoJY^kTpee?~guFT9IvP&o*^9)(OWNajcV$HR@Pnjy3LB zXVTUg)U`B?m$kLEX+*EBtw{r5ZEbZLplfTZ(#W*7wlZy<$Tsz5n~57r&#?=JtS(kE zWE}>QvqRQF^V4g7_L;OE^K*bd&aJiO98K$LV<-kpS`K>6F4;^%J!=ofQ>7@@Z5pdv zLcHUt61;+mI?=kcHJJO>zs=4%R?f9@gnb4Dy4IPxGQry4$Lo-Fz~CkHJh-n2Zrp=Q zogf~pbr`ieR*%;f4|pd_iPloOxz>qCSsFUCoQ)ROArMPjhlzb|xa*2CmluWR`s>8LW+@`7f zjcJ1Vi@XEw>cbDXYaf29T&oTAtwaz5EQO!)wAF!JA*QN$X#>0&IbrHRwcbj^l~X0WxcKfEH~4aILN^csUE~Fg6gxa6K!2 znwt2JC^BDW9QpcF#mjsNY>|g-z>6wft+W%uH2Ncpv zfeFM7p5=PR`fDIHAWA7$Az#rXAioN%G`r*+P{qp)cyWdvs0ZBsX+%Acg5;Q8atJ~8 zW5R;i?B7HnWDX=E`2A6kc>kRMtGh9p_=v~G@l=N0Vx(?j*Zz(JET-iHvr9Sw`REpw z1IfC-2XC$!f^6G-Ilcw44>0%SgB`OKAAmAYlDJ*PJ;v~C1;j|~kv%MrL_&l2AIO*4 zj^L!5Csu-_^T*djGv5q~ar?6cRNaU-zc&(>_m6t*p7;o&$u3I{qhwI+%J-t;r)HO& z!7B)a`ax>OiAZe*Xc;2%AWsPBALj!7Ga^i1`67Q0az8+651KmEVLr4US~SQAwgw}u zcrKmfI~XJP5QxoUUB%q@1SeyI4!Vk1xQ{98Y|A$%x{x=Z!Q{dG^xmQQ9iy0Eav#^^XRr%e{7{`;{G0p=Hy^Kad^C}B;u2-<>KT0q~H^#zs;mM zIXQV*sJ0H)NBxb%NW2z7VHEw&6NzhPm+VA+db_bA5g)oSMhV1u_q)!G<<7{bjDGgX z6|+>)mSOgAn`6Lu(d@|l@*ss)A$zFIn=qlg6;VSsNez{X_(texMltd9sWOuB1~+CO zZ#nCHBIbTH27HdkQ=Cnm-z;}VhpcG?Bk}t`i=tLMH*p9r$-||T*O7SYkIh>zey)h8 zj^Jm-;EGvy3Aq`aRnxzy3{l4staf%n`rTCSrj!?)On^!g!~A$F$6Lv0a*&f{j45kN z$?j421}b;6|2Y8^K)RvC$9#ZjsnTyEhj?7@(b%jtZP;UV<8=J~PL$2EHkL+{Kbei& zA4H#(jIuX3gG*Rk%l};QZ1UJLZ~9p=_+j_50{l@$wY#f49p!kBl+3tmtB7H^HE4-g zx}u-!9VD_T9R2y`T(36#G21Y49dNK`6IXarx@B=7p^3+f9wyY^J^n$*yBnzgFLoDE zurEqn?jY*2elQT!_}S;(8>Ba`hiVy)CjXId(7%aFC~EsRQ$}{M_nMzz`HH~ez>6aM zC#hIf15LoYH*hT4n%|mYE1om6Xm>U6U-7d0@tBjTL~wGcK+E0eMe2^$a>$R|ZHr3K zTZuQ%+62GvDRP=Sz;N9FbM5{Hi~ccU?|7K8O1EO}CiMF?(c}zfvQcK)b4?$93|mqV zuYiId*;VNrO|QKsHUz84?CkZ)!D!t#cE6Y}D4nTAJbIw~(faBL1#v7LeQ$bw>;X~$ z;OrbSO{Ypv4iJ1%Jhg)DZjHI0DRR_`GS9;rh$4ISDJ0sLy zTr?g^^G;46JJ356WkrCk$F4yJ zEFt$&okh(tgK*R|Js8H6igEj!l;auZm>6WRWz2p#ZZ~0d4E6ExJ8%2!ow;9)V4)Z- zz3c9pEsxy&xqE9Kz3mIP-Qlc*;MiCia}uTHw-2o?t=P&8xqpQL?REfPqPOSqRyPy> zLn^)0M$H6gb2Uof8<6Z~_?8|Z24HFO%Ml?<~d()Lo81?lr1lCkLoCVbpwwq_Rd(l$40s4$5ricq;cplox;e6PHN< z601kopj@^qcN9r1Y7D@>#*jM9;m~ptR8L*X;KQr}Z}4Z>|bHLzf_)B%(77YH~$T^ zN}#(&ANe2o=Hw0_njHBsN|?yvLD;`Q%aQY57y&_{hX1$eeHA`@Qx}o>S&~KX==m z92wEu?g8{gk%_T$RJWjMnvq!Uwo%@Jh_g$!f#FGJN5Tz~t>{>N<4-}9?@m_xCBnr-L)IA%C(JfKjTo-I*KL}1KMrMaZ1P>npOoy1)s4jM?U1?9 z`j=1^G))gh+mST_X{ed<`uJC;>%O_`*WK1Jw{kD%mFQl3@QX+7XPuFjGJ#-b2awx3 z?L=M7I@i~IbN4eL`T-s1)Xu9WKjx`z03V9FtmFFCjZ>{}WLHH02o|sS-jl!{_5qat zU8nI3lXpI^_Z?SY?TCzDdgW(s(;3v}ME}d`mRvmbG3IE^^-mdc#yEOJv5?C9&7VNu zJGMr+YIz<{wL|_6S>wPVvf^b>XV*2ZHSN~JxG>fMW5$ZX@QRO@F=&!oT30_%RdtBPd4p(2SoCuR8c!(r&|3mprsA1<{xh+$5 zFYQ{-#B~pyJ70aD0Aj3f6Ml^~Wca4|SC1m6a|E^uXWj3gV`Dd!qhU|1cv)nb)Vy8( z5CD&`x))YkAnuF60K8n~HjcaK#C2Ho--<Sz~NB{lY{Qg>vJx^OKw1>nq$!*oR`KyPelD z1MzB2B|+nM>&vo zlF%(<7@uzC{TM<+;8KNbrGI_OR1=-J2St*k{mb5uib3m%Tm6_V zjM)f9%`+}e+zDyLi1f|OQrX{00LnkH*g7DMY0YDsAHNKI--@DqeSaCK=r&c7+^yv= zABCPq6`c}0Q-MI-z7YfB<)amG`>hDH4KOnDMNqTKw==#O@vd^^d!34h+W=MFNyk{q z-_~E&ZpT^hq6TLXwT<7T2x_d7qT=2XrA6^*VhPa>nZe_!|H9gBR*Df+6;Hj7**;N@ z1yS6+siwE2CDse&{j*qX0wY(Ix%Jg`sM?OQ;`FzW;oRdVK@us>@xLuQhj3c@m;LNZ z54K+%PkoKpHdVPdpuo6IGb#$T_v1I6mY!CUJQ7WJ%>L|WKYL~5O-JwhUK{=r6R#X? zYl}o$E;{lr70DxuBG0C!LVi6_^ZAzKsnW;q#TM(eN1VggQi<%Z`L$oGd2B0oTb5r%?(=vu95_FXF#vh!N%V(qDG zSK-Iau$iXebsw&5{glD@_73;La5njYu6qM*ljW|>{=)Q&7i_XzXE-VM<+GrLbYc$o z{Ri{2FD+Xup1toF`N&(~pj+!MGq&mzU~)4aRvcgPY~88W8h?L;lf|D#;$I%Tq2x&2 zcXv)hu-jijUtt(Pw`PaKda$mxX2o%_h{j@?ta;>LF5)0ezF4y2WiWPS@_Qw~sTxb! zjkQ$(D~COnEY!gTw`?p=B`)h zip_0#DH54{#FPgn;jI6P_!G;KNZj6mr&n3r{%yRtLVCr^rWH_Yj8YE7O)Hb%qv(W% zqU5S)UwL-L@%xTm0cPfKR*Pb4kyVu+T9qi&G%KDWuW)(t-Q3l$fMD8Lcmv`leg%)f zGBD9e(Lpe0I(PPE572%IQq-VY6SprWsvoU3-CuWorIXh1vHz7r7tX{Dqb28-AReS@gS?o491|QoMcPn)D4X;y3<>+|=_^E?3L}#F+Z(U>pL+)}SCiGP@Q8z+gTs&qHU z*4LMjZ@HT`0`8P5d%_QlF#uH-YCJnOckBgFn?ju$<;2^;uclJ;?enDcVBV(Xs-KVK zE=o?9B*#mT-CI42J3Kp(CkZ)}8mlmsu@d)s!(yT3vw9E)=DRp8pnHW))MLK}RLnKU z4Nx&d%$0)rPnqf77;|rlIoHQr7z;NbT<%<7?%r78Y$!)pIha0gtaLV1xVKa~*H^kX zRyi9g-CL@h>yfeA*-+))Qtez{?cP}9Y^Zi`sd28aaZ8;IHMB03##3|^@W>ud{T&!b zq@Os(&=;zmhshQb|NSSBQMUpcBNH$XDJ|MPX~ALA2;(7?nIv$8)I0 zpBpMx`E$cd4|=@H3F6Nv59V@f>R%X(S*O0*Og29sT9T%k7JwEejl1r?_L=b9@OYx; zb9Z}l!((?P?)a@oTkdYT*PBijo)jn&Jj~;Eeqwto?Xe%=Bc8e%c>jF3nu+Z$AOu_= zCo-DYI1ibLO{j$?Hpnh-R%62u)*P6qxt(E7X8rdh?zs(N&1i=->7iFR-?euZo7fUt zelCp9Kdn`wm%*{o+|UnAzka;h@#ay@rh&YJ;l-DC@jv(j@_R9vx82CRyd?F7o3_&Z9e4|`QmG{@~OM9I?N@6UlH zjRjd6zg>^6#Nr9DHha~xAiMX(CVx%(In4r)TAm%>7><`BD{KPQv&!O`@*igQ-6NET z6OfB{bn{&{HmI!YVSKzYntT<;uYaUwc<4&m6=1bG2UxeYA{~80-3O?P$ov~m{a5fl zRF7A&uW=Q%jc1(i8vW!klsfC|vm5YJU$^#>=??Hi1BS`DFA z-cWvr$iXJ3t7GokSTwyMmM*vP9!b7>@fY6k^3iBwi7U+08_JUt(e%UXi13ZEbIv~; znOOAFgCU$jcGzL|Tq&yy_IqUa_At;a1q`@h5z>TUk#~;9Q)f9VJ-g#Nujlq?JIC!7 z@;5?_lDf1Z=5Z`Y70uoJFJ>Zxv67upr+VNHkWnUoDZu5n2zB2v@s9BZ;JWN)S<(L+ zb2niVB%b2x-fh&<$8DCq9aFd2|1p_AjU|UM$6FQtzCN2(;jX<>9i`@B?7OKe{SJHK z#W@|8c;~_dv%kdwmQwf7-w3L22x+qmr^aA9y&0>f8_^S!&p{t=tf)(~*=W9@nc4Wn zB#Y)zgANtraVWh)$f2+!9}Y3*bRN6M$wY>&#GhE`8E#Fly^4H9_MGj!RF3`Q8G z-Hn$Mr0{V#6pHM{Lpt!AIcPHl2(r<En5TM)I4kzfx17G8Tul2wi zkXG-N&TUGRz7kQZ2o9{;ObNB_p4xT>u?zwlDF(690f0D{8x*~V|(=_hw3^}NQUdgF#6gcZiS$IY@jb*LTQ_p9c zr?b{{wrr%XwBoxH|2Y2gu`;*;zLi57GCB1|G=rik!rd|Cn{k@X34Rptr;eK(Ryao* zaDW(VoX$4SWUZNO**HK?AI~hnbmCKgpSi_OA#?h=bo-Lc!+v!)aL7J_atU@zA zh~r+GNujd<=cCIB7de$X4XY|LD4Hu8o9?Y1%7(pjfB6H(0Q&TC!A|@TlZ?nQgF1_l zkAps2*7H`hi}U~mrroBqb186fK!MGKBn1qxC{Uv~PylhHz{PVZP}XH~Wy>}hP_OAh zOHxsAztD{Qy1D{;9RKO|MZiq&ud1V_$F`!orpK%q_SG#w?tKK4AuI~5@N5!Z2^k*ZOARyisG=?;P)Y_ibEu> z%$C(4X{=@1bPjw}StJOD&V9k>#-#u`4>v}GzGy4LjrDW5F*>&|$c@Wc1Go|71UIhI zThJw79)srT=Y2$dA|y780Qo-phb zFb@;BJAlW&^w?i-dh~^{f8Fhn$0qO47|#>#%b%M=xKT0pXd!cxwNE}zvh};xu-kOP zo5gZpN90&zzY&e2gCf@H31NPmp4D(tgE)`%VWvt$B2wKjZpwf169{-u$mOsH1>qFV zaA;nJt>@3sKQF_|1v6}ekb_&msUMkv)^^5fJ6j*OKaD{!WSx5-h#HK{dLw|cWxbFW z80)8g1hyfiO{SJhAxS`cxN1&rFy6B<0FYb{kAqyJ5ZB4v`yA`=eXWNVL4|0AFQWo3 zJW8#T#;+3QMf_pfnEs$o*XuruZfPFOT7w`hJbO!#mtK&RvrXe};~DJ4G=Q8m@L^hu z=KkqcWVo8m^3!t#=}$4;l4!KXPd|@gef2beIp|x)vsceBqa^MFkw1o3u_TJ8YmH;K z%tz_$KcYcb#~ANnkV_7hg>m?-aHs%8wrrGz>v{Us?A28&E#^iV+{!1XSXcB(;%a7B z*BZs9nFBA;rb8Hr;sZF~)UrRKwTIEOxwX)LvfWfV5JPUty@xT)!>(2BM$+p`@aw>% z4d#2XCwZMyIFi6-<>|^1cM%-SsWAshoVo6QHx5vsOWuPHFz}mDRFQnp+fF$fPX&cK zBS&&?EE#!b#<9Tl%&-Z|Pq;dp(UFIBtYbMvk@B|5z_34EQMZxq(|$B-3n)h= zDH_ihC2291u8DFlr&kKW#?tIpO!)?zu?M+0$aYf)%-Vdi{&qj#jA|zcahcYec`~Ia zF3M6I7v=0WW%B9c0!^f^y{R|4V+s?BDG|MyCsV>02mPch z#c89QUYP{*X)~U+RjD;@rks$P61TY+H?*6V*m9?#-28+Mr*dNtFC~ijCC8mUaw>Of zeC%QN{^=vx=26UAW9bG$pkdqbo3-^U+YIR&ZkXRo*zn(1GAMG#oQjFPKnsPpjE;%A z+2)Zvz0IgF!#nx;zC~GUWbDCBs%y+*4`!P?*okOYhrvCh#kW*T=ybSEokp@0a6o>9 zdkckGYaiDNuj6WxQe(AsxaIY3)8RmzYc5TfJ&0%R`hKq3D@UWHXLDe{6fOxY{8dP5CRlWutpgIpOROc)TkX3PBg^-w#>dBeX-S05+ow!$MJq8n> zk8**qpS%MQSb*WQ)!ll@~Cp;W|_6OktxfzQFFtJ2UVfY<5}&(WMwtZ3OvlK!62+* z-r|F>ib>rBAPcI9Y}I|oI5!&K=;YK6OmJMN4klX%BVPn}41zhx9bgWe&@nH)ZD(+h zrpIkMnEYPcX(C6sP3ZGprwQHIi}?6~qh&|N%bX)^KbUnIyPRi|&&Qp{eK_~vHsPr% z4kud=tBS*>ROm2$Ll*bAIeV!JjD$m~qSLiBDm1Ml74fLzq9fxMc~!J~RqSygB%AO= z6_}HEqf@GfxQU1|tB2~jB8yCX2v7Eenb52J3EiI(YnT=OpEOOo7Tz$E=HT;#*>}hq z_r_6O)A;UfN=>i-85t|u;o$I%H6;$M%0@>p^!*MBNwt>unoJEa!Bo=)Ci+KSDd?0M zsvXDZ(i4oCam;gF9>r$(8`H1}hB3xu-H~0d*XT*FFEx~8S=87`EYkQs{MFfiHO1kFuF6mQ~u0sIkWXn=22(7fR~Yfg*) zyK9|=2xcch0#rMd?Z8M8<$lD(10uhQ3WH%8e@@CI(8Q6nX}9r2UE}obPrBB*h0z@K zdm=1tVRJnfU^$Dhb)wFi&Xax`r2mQ<14IM7CNF2U{CmFls^wr)fj*qiTM+CL3BEqM z1#IN&qlaF?ux#$dD_1JH2lYCQDky?5_%UgfZI>+2U;abRI}{MuaIwGLv#%lAR$Q#mN#RT_{*PEHsF zVNQzf{wQNe79R}-Q%|zzmB)LR(ylVRjzKx-n2?1B9g}zn+TK_rSP-iF4with&&G;3 zJwDdhqn=gWdO>M8Bj`4z`~irW56espQ66~4X~8xwI@2l?A@9Io?(KC(^He;icxs!$ z3kT#5Ga$R=NDoCJlI`v%&)Vk6=&;NQre`KBFg+`0P@pYHU=K2etqbSs1F~b)+}($I-L#(FhlpG*+dYC`-&`>BK@tMiYf@Gm=Ors927`6evwfd0@zg*|2SFYrD~cJpCo8sE>)zSY+LrtEfYr9+6_nRWx+* zr4S0xxaoH0r}Wc`lzMs^b0bpDa*BkeXJKom7mFm~(Iz~wH#tgud(^|O-j5w;EG8al z;X<5AD1@3+{~RqGO%1g06V$?EKxN4C2@!~95CWnZHf!zAM&?ms8?wz^cm$LvCbvO} zlM7P9q@0%$!lQVbgQSJp91_iHvk}eU3V)>s6`RbGwR#FwY@aN7(X0+38tR+Wlk8AW z#YR%;&v`>jR($^DlY(`kb5&0q_?vjFu<^K>7*8yDJw4U9a2vfxM;MX5Z z^H<`3KS&X$9JZbr=5y>WJ~R99%-Sp=tC*t8TqPG@iL(@gfwvMTY=OjuwguAIgc0Skew5!|?-R0~90w2Uj>TJ9m8!wH1s0H2XB zUNWRtXj0fBXOv_2;W=a_jBqmw8}wpAk58eefY4*eu}1(uWS_*- zpvQNiw@n2xLFnDdSKCA~Y;rmo0=O#0RT${yH`>yh32D&VB0xsC8HEjcY3X$IcF8jh84n)PhqHlFl5NFr;%mIK8vTpknh59smfx4FkHr0+e9*K zayl6TxGKd}xUh?B2x%~^6(A$r48#6**OQ~1Z|X6F`z!3fVGLZ;Ja4Q6dL8ZmvoC$= zOOJl(OUFNms{|=Ixm}?Dh1xh zCA&Vv$qo7s>Z?1t3%=V}Tl+4ffp&>Al<+fMrit9tI?u_3j@KY0T-72I(bwnQ6X7q2 zE$$|4Vf*`zVT66pbo-eloMwRp7V7u^2!#yU^<*{tDJOib@H%9##gmo{!LHWp&R@r1 zLiC5JTws6PCgi;R<3zbBk(noBv&uR7$dJ7fz@`=$T;RBb*CD$B&rmIV-MPli@HeQ1 zkbYAFLSey+dRV4k5A#fZEjggpv@A{zsKPL{{=QOe^th)i~af`$-qes|*BPZ&zY z&8mROhvW&-0B<+s%vO)M0Rn-&We@Ew_h?;&is1@y!nGPakCZAzJGzi5Gz@f#fKI!a z%_!7wS(-0(jcC~t`c}{ZqapA(u&1HfL2yV3WZ3wyVE-C>(DTnSBtDe3+nIy6$7+WO zp~|!t_Xt&_Wy43PJZ(zW2A+`3y9AfLfZn|MmrzjSID2OqSWXCV>v$OrBug0+0fiW| zlrekcez0*U%A+bCcvdYjjr6>H-)0Ib+__6&VCVCbS-ib9_}3asnn_*nl}>2*F@+2s zZsXd3@k|;iV(!zT$n!l;O&WUv;+xOLHFMI~DAyd^Y{WHPdMo$qfOj4@;YaPvSwhX%iNb&LZ;h$dU0yC48hS(Fx1xy@9@k zc}q^C5VPKB*p8B%Oaf1DnY0QOp&CTMVM|Yfgc&;6WMskuOB?0v7J#j1_a>6Xa2zK| zoMX{8=vd=?7s*U(hC9f+C`!?jGyIz`sy2gXMH@ntBvAzM^2PZGRvODOv=XXsJ{BYqpuLMTf z2kE11t4Ql$o_h{LPWOZnS#5PC-cGM&x{R1Hu}*F`>*PZeaA_C0G{ZK|?frPFS_H;Q zakX`_)lf*{*;=Vt&He_i`3cc=-V7DDdj+x77j1^KP-N|eO1+x-==by!J$qopa z)^3xT$-Fu3=bgz`{|k+u^hKCkOuvb%NZT_egb7i|YeG~r^AqCP37jma+VM+3sqWM- z1*I29IbxR64f7q6ykpcSmfA)#1K=3>f??`pBWqTm6{gI zAet@f7f4pf7ZZuq$pH=UMCmMitu@%C)$<*q5Mw7fbIGnZd&Q}k`AQ*Rdp%@1ZLf!y zwH!^6Tl2UdVcJ7YB7&C8pY;jPR5F;GImc&6C-A4n4h&@{)2RWDZ6MPL#$~x3kx+v4 zBv`n`!Su+41*S*k>=uBnr#C$waGQG4(M7m2XZJ?kSG*nJaF0drdXH#i8#S376OW@?BkA`SZJ)q=4-~ zT^*=~`OJe#=6*?7den$3ePbE1HUQV`-MB;V^A^!-^dgkwLAjPa>^{cJn-B)-?Ml>qP6DKXd77|{X zW&t0+|0Wb?Gz#eiYLHPEJ8^9hZgKJ|Ge=~Kp!s*|T{QC__iJwq*7o1eEubE8|CPNm|RZz;|b zf(wagy`vwzuokO7uWt53-Au#eZ-Dq?UMMr=1`JCUs14VMabnu}w3I%<>j2=FLBzCF zH}o|o`VNvs3=v~CF+`h*gU_kTpwFoaAX}^-0+`NTlQlioYYv^HZd?#u|?#L|M)E82>$@`vK+d23Mq1#~^pzz^|QYgOs5J1I` zNi6mh4tz_J(=0&kgZH9gesUwFRws=z@Y=$V?<~b7tb`v^4=@N}BdOp`XJ(e;k~MS$ z`CNVC_1-ibialH3Qty$FTovwpfNuu5&RpZOkSt_-Vzyp#Tpfu(?pb_n}gmh zc>bb#SS&$BjPvcF-prFJVUz;(Kv{~902V^fCkbxm_b*9g~bVfHk~lg0mwc3mdEktkj1SvkfU zbF2besoXs^TdDU=Ev2M1)=M5HO%Cv>y#xhFJewioV}s2$jCw>OmLgbt2}Vm`g7y-m zE`*F#Veg#qBCBw>gA=m1mmrNoN|2{rm^CF2A}0s<6nY8>5r(j3h61qJhNnS~??SH+ z0qmdQDfG;G-9&1>HdaRgV6!a%E<}&hgNGhx6(f1vj0qEgBjcrx%@ucYfX~Pm%dx{T z$Rj@1Ux8X$jAP4;SPbwP*^SL=2E+wvhTw~zTiSy?4Xxjk1C)G`7MAk@%V}geW@*pU zI$CE_DM$|RDViuCnlOZoFqDcdG*-vh4By-S31Ykl0XNMAp4Ceq;H$g}uy>8H$q6%u z;+YFuXm}RVq>GSd`)8j38R5!B!PNp`3%uy#aD<9Be4sHT*(1GMH2=LO&B6g zD*u8s*`ady4AG>HXz9Id(F%YZB*1p|f@ z43QLzzf9+=wq$EthzKj09lK^cw#Jk!Nw)3@QQ%GgjTG49NKZ)) zloNFh5C#kd7$OBO#_Gqh+LNvAAqu>Q*{yb+$rJ@{1$1(NPfLCSDy&feUbxw ziUSDWD#LGLL$O?BARA`h_F$3D>B2d$?56HMq871^qfGEI_xdH?`xJ(uW>JbtJ>WO8V38KJSA+5*^!v&Xzn7b-2Gx%#QQv zI3ui&RIbPQV=Twk;hGx!H1Hhu+S;`^gN&bg9`#;Zy9Nh}@v{mif$*~uhp6xajcg@; zU>#qMpQTWS@ly*O3O_Ym+w3t$mTirEX&%8&ZLW5F_hQvh@(7;jNE5fM5MnL^qyw8vB#2{fxHyS;+So z-Gnc2=vX}qIm|-7$!N6B9O!2ugDm8b3duQ*$C9nbR0!;YwYhE;at7zWldZ$TWSE8g zfeIPN<}h}VgvkjOayO#AdzLo)yL)|W%q2$!$0B&MPB{;Q#&l}Ac~B>DbrXk9NsI^@ z>j54w03bs>SquMq!y320Ai&YUBCCOmn1Q#Y^>SMRA2{(#>Q}ui6NdrtufJ%S{R@=Y zhx5nCqcW#)q#xG1dCTjTtFW5G&294%67R|T1(+)#cpnIEDB__J7U{Xra}SvpyZASY z4C}^{mO&T|d3ha30!pDs#PVH=_lSo27@ktRPx3XSV4IvqCx#nY z09+_Qh7s=xkP|9^5oVXhOg>UFL!vUTc%Oi>1W`jIrM)Hx&LFQO2?IuwFhsWhD)z!0 z9UDvztYQoEiuXyDqa@v}gqg+Bv}rzkCYl7Zs1o4cg;L=e#_C9^4BsVG2N7`7Ops7L z#@B+i5+RLF49_s8Ny7~!pzgn(!w$vq&!o~KDa)F(LRh$d%|D>=ZY zXu^P@2}7jGpJP|ch4z!m5>~ddz-77KBT(oL&PdWNGHvl;f;zy`t%aU(C4548R0M1h=Ay` zPAKvjntHmRTzNMr$txl`5G4S0Q3ecs7$SZC(|;y?I2U=7RGw#gSdQ7BC?t?%q}Y>Br)n&Mp*!>n)TSOmm8&8IE z8aI|%WtsfekbP@_8M~k^&39(yFS3pn$;zb3Z(&~b(<D+_{6xc-Zu`bqJb76_o%f z8&o}@Y)}!w3jqx?jm%7H0-B7Ni0*vSoU*~gHC&6CG}FWcu>WzL{;TxoHHB zM2%1|Mr8OpOlJWvJjzYsgSDC`9N%ehI7z+7++X zg@#QX-E*QGR(+$v_Jlg^=kBeSZln=-c+svK&f90$bmcrAnbV&%ireTy+@}#~**#?6 z35saED8&7uce>q-{D|=$fu~`BFouuk`!y@*$!|Qf^#rIa#~U;bcOH>QxK)PN{(_8$ zNu~@Lr>FQ|C$p`iOXqcJMYs+@&%u#nY=o_lZwT>=F8#T=PcJ$oxWPdzK^ z8Z>DVvkiZZxMRqXxMN1h3ych1HO68p%(hy6{HvY=5XIsv-!+#s&Rg8+_H@l7nv1mR z(>$^gxy;mL*1V3cmv^-KGt<0L8Vcu;rNqq4v&&e3rvWG&EWpVm=dnUGAbH4MhbMT~ zn=++6*04nFM@f6EzU^ZzIOUGTkLP6KT?PJ_gXZ8y+jAz<3Dh%>~?7kKvFExJw9<~8`8rqQ6OKyTa zs&w}%*r4c5V)ZtpWn2Z9z>6tRfA(d2@WnBL=0`;@6rbU&%>-sDL%yZa{Z9#>6CtY%2zeNS?hmWsf zF$e{8Z0o2#Q80?5*1W;Q8XnsUQyXkzBVp$QxEWj#8gWpQn)XayuInYn$67}4F$3OS z(hhr8_YP1H2{di_{Jfn}ws|tSxB^I^B1S+efJ`z4+bZ6(-(hs)+TBsC8M=)83AqHc zRKvuF3!~;Qi7@zZPG}p-%?=FxGM`T0L__95!JzMvE@G z&eFb%n|rNkb9@U9jVXKpGue7JlK7mF?YzJnHx@!RLeOKz;arW|IA$9Uy3kU2=qvFK zS&1P?sSrYs1#eV26)Gej3FTIi9C2;X6ef0`BTF5`wATj*|Aut=lWH5;a#4NBAlPco z7%LdU$YS8q4X+e99?XX-O*j0+aH|mu;c+_`+KjjK`d5%)?$`qvN4aj?_Z<#-AYkN# z_vI!}NX;#fVz%Mm*iIt`Ub9UQE{h#Ig&KzJc04ZzRgwb?#dg=ZX$DHuOvVXkJd?Sy z^GiAcO+Ieg?-SyJ=#TFR=;B7|2J zEaPivtrb44U~FmzxNs>{gIpelbJtR4G=l>c@L)+o8}mI_ZbdQP&N`Pud{y7bs7BT8 z_Es*1whN5UkRjb=Ii3d#^yUj+3Yj$zS2V$zhc8<5&=JsE^WZ92Zxy{0sZ`93jRI4W z{8drRYO7->EFT?M@a%EZ1k-}&1g#rZ+Z;g-L3`B#u+43=R>vd+vcJ^9y>mQsDYWKk z#H5mBd%z3Uf#<9PaH->>$5@s44U1oB3DfB>VVXKckX0I2TAy%D;;&D*R!L)5lm{)L zJ85BZ7(ZB;&~jMLZ(Q;FR^Gzo56=>1EljX&=PgX27GU$_zExX zcEOXImS&$2*SK~t!ZuHW6r+*NgkofZcBGu$0x)2PWIDJqzh@SEYnVwas}E8Fc|Shd zI5Td>u6)`0Gk^cK+@qJi>vg|jT(cZ`bNR>k9|0`InK?ogE}=@X)f^DN@Z!xZgS7jE z&uguwNzywJWOa=_T#vG`ME8$7V)=!A5)f&~YLleWOP$rW`xBm(x(xtl0Pvii=3^C5 zI=T%*v|$bB`S|;W>wVd2fWuV|&$_0zy#Cwl3Uf;GHS(C8H2CtoK&)ORY*L}8~42{5<7X&wO@U2uXFAy+xHGylrNjPRpPxEC=) zRy&F8*L78LfLKKEk#cWC-^sKiV)9o^LJ4%~f&}PYgl|dA!XRa(wDxJ&y>^I3J7Ih( z!4-qJ=ML|_J(^=3%`CM7NGztzw_(a+VvpynDe%ZXQQfqv1U_T~#5j_O&88WcgiRL| z4Nl9WGvlfK5DIivi{HNs$3PLfB)&JH1EJ_M94X$zBgLg9SbnCXCCS{C0cQRRhjYHy z!SjHjKdJvsYs?0!ncn>o!>M!>D0sW%;^jlY)#v35U&w-cPm4p^v{aqT%;t#Pc^SH0 z!jHTjZc`~-4TCnp#gK$2WSH=69kQlbkclRc5Y z?6m+cIuAhB`|J_f$?SW~5#U&Kf;$)I*QPS4wOo>HosQtV0hWKp^m09hXIA^m-qFhm z`n+gE-h6urM<=n!m+yhsH;BOUA4}#6BWi;qn-L-dFPR`A2U?M4)9hG!=T~_-*tbj= zXM$Wu&9Pcm278y_<*m#J*fn8mfc0U}=o=wJba)y6s|0H-Y5~16T)B?+PreQ&PC&!9 z36q4P(#G*yCw4R|>BJ5(ggO)puA7K@S5RR0=VDwiJn;??a7ezR6m)6h@Ij?YM;4`5 znM)E>FnwUCUGZCX<=8w+i}Z*=v6bXf6#LV+|03m(FAK~0n_s9L_E}*$zx@l9!!9l? z=Pf9Q+kc)Uju?Zqh~sNA;r^`lzIJ2v&0%e0me~WrK#Frk$S{IflrUtxDHzYC7vufY zcGSk_6oyS0I^MQi9avy^`wR1NtenMI;emM%mF__lpI6Cne3Si2ZKIzFws{iBZ;*xg z!<*1>f|Ec+G+3x+%BkXw%}20#vyWF11cwYidt5awu>Evu5A#B7Kb*OaT`c8+a+n-B|q+kD^3Kbg%Hwtp=VTkhXPafiw3+X-Jj79<*@ z*ZWQRmS>!slM2h1wj{dn`A&T|9NOH(@6NFPp8UQ>&%_o+nZu7|H4-%VBuSwEO;|`q zgSpAW{n%ihZun7H&L(r0&zU_6b+aHR3}oqsABGQp%+cZkNCHk5)^XW|)xn%EKs^JK z;kH2zs0ENA;ERP-lwWuiFX6^ORl%K_^Hl*CkGz7D%w2lnRs6WXtL;3kc)75OOU_$` zQIx}kj+Uf1{cs`u%2&o@c*&M66_0?KJ$;;|VeSvH21;WWOJ_4zY!qV798d!ab9nU^ zncnBNMau@KGb^Q!WkF{sT2?Gf6r*aqW?87eXjzMY?y{1D&_p_5=5*{6kYK^cfue--7Z>!G)^D#-mWIY2ES*Qe;e`WZ3^7CYIG)r}k^>AyIWQO~RR&y>iLeF+BVS`+ z5Cj8*hkEu*?7$Ug+SAh9I7g>}f|TF&fdLP@KCrdJScs&o&+hX=P+RbJx4ja1z_tbr+s{N3$l2AD`0}sMM5+| z=|h3uyT2UfwT0YZ3>lw5o~F*Q*@?p2@va;DMZE)zwj+q_DbI9rvN40iE=~K`p<5CxV z3RpAuc?x_Aa_9@3iVA&kpbP9V9P&%ecE|R!UP5Bw$EWAl2i$C?aVxql>zPiB*#O4z z0B?TM*JPfalbMCh$xMaWtHqA6-t*VRRYZY~Wmg~*e2wum-}b^4bc(6Q6E`QLMjFSG z0}Ne4rvwJzl)#^4E`|Ypf@P+j9L5jCH8F?bZ3;iL0-{sGKB&oSFktR$-M0+Hj_-Xp zUU(9XJ_)q$By&+{6Kb{Jea&s5o{8_x0t@yIuiy#iEA#Rp%@}7;F)WREg2+@xo@PJ3 zcE9F8~SJcMgEjvS;uxx(@0xW$J6 zww{@N2#3vR{=G?LLNYhGi@#jt<5wQr{4iG|;8tWM*7!0odk`qMU*dZ_! zvRt%*vBNiyR53piYLr>Yas}&+VBjErX2nh%X^D8-o3XxrfAM@Q-Q;7# zO}SGguC3;aPQ*yc$fzbULI zSl}yn@ddtes(8)VV>V$KG=3dkMg9VRpSJ<+J9iwo-~~P<*Y8IudT{w-c#P!b4(1-N z>o=oiW@W84Gd>PVCf!alU}Aev0rQnP8Qd0F*Rzz@T-W!`krHOr@2~57xvpn9*u0x) zgJXa!EWW>D-^Aw`B^>bKNpD@BpLr)fie$7F>-rwt3l>P|G*=CIDQ84~Sk4rP{(Mg9 z!dN!UKqi=5&k84rJR}$0Glg}~1>yqgV9r;=*RGwfik}o#LASaKtm3DIIeiY$+-*Gf z(c}9x0~WUGoHw;DKq8_KhnhJIMr*(YA%+2xfPlmVCWLM*Dz3;W-<-| z;%WR!&NF8d2!17@zNV8+==C+bKF=lUmTC384!zAGKo~I8^IB@XM)UowK6`OiHfQBc@HE}Pkh+0^(lnE?V!_imgPo@v2t@au z9>>}@@hH|RKi~3%OA@m@xo>J4+)96$uDzHP^2%zLx63=nk#{rXkLLsmfWRqN7fa6l zbZ=XM_Pj$96EmF|Qe!d~jY(d~SJ&(~>PyD{8lmr1OkbHpctRax|JnVDIn0=_xyc?> z{4qhc@hplxte6vmWYylaDfWosPYO~WF0)4!GlnP6!^iKx1=9jT@Up#`6GT(514XuE zMBIBZ6h&ecrjrjqZTBKCT_1Vg#A=JB(gCAvm2Xy)8j{wkDWGTbblNxq_V_f`CNU zF#TNyr6$y?vGQq!E6gZPE%Zt8=@9oX>~IRNjs+b~4+1M+=u)|zo{1!GHyR3^LVfiFpW@EDo#Jv) zf(N?~2a72uC?{`&@I6n-h2KQeCVrb|!u);@#Fhqx>3{Deoev_ZiQ{-0EUBm2Z&GC{Vv&-ls9xk+aPH#Gc?d&XMak%UP4&dB?v#CvEg+RP))yIJ)Ve0V)7BMIf z_}TMZRrvwP1+>dd1K~2chP~icVR)S@L^!D2rgdQfm34Y6lDl2`Et)$$m@&e8#fy4xHXsK+>wqV{H>tYMyQd}1 z6^jnC)ezY1j`2XWTpM-T!rWlvWVE)?MJ{g0DYMWwvWj&W?@f6oX^+x7CKeoITMwY~ z+_kj|$>!Le8NYm&_htnG<{APWWUJ(>R$=DuAam(}x$VW=GGKrUG32tu!?0WhFv7dm zQ36)poAfjEuRRKmY(Lpd;xoz7!T+SW6M){EfoH7_`q6`}cLQBcDDaa5e1^O?pJq8m zx?AwW@x3>v7C6W@RqP-e4QIxg)6BmoVI2T+e5q?X8Q(jMSN{OpHbk0bkvS^KPk|b? zaCG9$Kh{RCP6?=;pD}_8XCb#UuZ|F_Dkt&{$0ebzcjw;^`EZ?x=#yPu9r`={HaDj0t`UJqmyG{HE~Kzzozxh$+Un4jz4YP2@MlYT3eIn}IR)1*(*r&ai#hKk z*$!T&;D?hs1qUzFsWfb~@-pR7bR2)%haY&EcHn2Om+5cfqH@p6v?uT~l`%A^o>r57 z4~93hU|CdfT_x*RSbJwVq8+&1DDi&A(zyBzDsIT8%IFkeI_>A z!9~LbxunAC&y#eGQ%<9Qkl9Mnr1Q0p(Iu7A+S?4cZ>pBP3&~5z`;f$-=$4d_H1*vn z#1^{R%E?dydZK%QGsuDv97VU82sjo(f-%i^iSDH=P6wUkc+ZK#)#VOunqfyy_>P?L z7Z!|^{|mXb2cmlufINA|+er9ogfv6*PD#r?CDC1lWOM33qPv=}p}FD0uE3)F_b{9* z`;9o2=;k2>|MJa1bYHTG(veAK9`vrir0C|fsJ_v`1d8q-Hd1s`9(l*D^JkE+U^z;H zbquSXYbbRC3I1~(Ma~~VrhE?E@%bX}^RNV$6!z4CI{{!k^2sAkW(S|T@Ln^*Y6U65 zcOn52oas1Vh-c_TG7FqDXpICvPbOKoW>qXDxbLs8DMBv$LVcdg{wmhbq34~3oqsjS zYacF#SUsaY;@HOF;-@(9Uh{AD(K0k(kso~Y88kr@5e2r zbB;HE=_{n7P7(Z{dAzwJ5Xwc5H#fHNRCpkib!h$9FIXsh$D48c+??Ab-uz(-Wy;|| zD6b`N;ASt}UcG2HzS@R!>SUdXKe~kR!Krlsq;Y1zst)cNF=l*SRj&N$^<@Rgl(OEL zAr_xre^Ej5awV@6xBDtxrKi%x_=%iEJ+2ZbDnk~>Hjs%8@fU$XZAJRIssn`&M=$w> z`zl;=wvPK~re5B)0d?Zk!0S=j?XJzAL*=*QJCF#R`fEO)YaTrH*NpeFfPl*4B@Ua! zWb5FfmR0Aip7~((=26oIt=J7Vk7KKFp?tVz_b{*7Exi;fXu$@s_QJ6xK*6Ql@S_`) zA{g|7+n8@XlVFw3y|HBE8C>Xh48Z!*8lH#vX%3s0ehpbYq^YZyI;$tX_dn_+^dWro z9@@?!I`H$Nk3%p?g!{`Haj2IaF09^&eRI;yzd<^{&73>)w!|$h>q6%^j5G1rgOq~i zLyg|n4NM;GCXr`%%{DH9_{Lqr@ZMU{%@JiOzB!`&UYP_N10$it=A2Qi#~$P?W;_u+ zPeNeRVG>zC_wS77AK$pE=YPtDDMhhSmg3kbzgH%~d~Bw%-HFpm;o|&z!0TvYw5E$C zUE?-FD2mLykN{a*oLlWlf4YNW(<<;x|?omi9yAn0TF>@rO%b zk(2N?-k(tzfIN&Su%ozN0GpL9!HHuT33bmOl0`cuut;y zhZYINYvH?Z_We#h4{M*#rgO0UTQm*eB`t3-ci$t^>E}rdBUo{#*W@RK?pw^4k^FSC z&uxHDAEBkRYw}%LAs&FRdEN{9v@i$YIci`I@Z|42Z()4=wAyW~@~njB_K)z;%L~_F z0`KAC{7%qg5lpOcLd7~Yd>m|+)un=${HhBCvP z{0rsQjJMhvY(WbuLZ4DGEHz{uK<`3%JQ2(+C4;N26a4VS0ohRSO&A%}4tkd>`tu97 zH8H>JhUR!c$H#gR(7X+6cUby_r!d@|i?306S@Y@-sF%RxbOLDNu7ajP1g{-IwSAo8 zbZKKSt)26#U4v1f+WHo%Z5G*;m$P8FqY}qJPhFMZ`>1KHCrxK^r#kTUAg*_WlKo@U zoXO4VxKLVN$C+Fk9#e%kSrZDMS7tdHcfQi(*N`s--R;#HQ?2F9$zI1eLNh6qBYfKC zNuaRQ2*fQDirIH?K0rCU2|(U5=XI*^K@xm0##g7FW3ZY_7^7d6K8Np>gd#RY3&l%b zL!lbDsVq#1aOW%aqCyel=e_S3^;Dy@CZ{%sO;mkcoA@N zY8!U<{uonU!DnUS_NT!EL)N+XK_dAafIG=_FCxB(y%guUn_-p1GM3Y<_a)p*vt^qw zd%|`%xgl+x#PTx6buMoAdh!F%6GmY`Oy=GPo%g=h!;8+%&bHD8lmRHa4zEyE7QZ?; zf_is^-Td{Eh_^Y1kBVDUrN}a5fv&CxFf^61mhtS>4a|sJ_M6T=upU8Y$woztV_ol~6lH_1-o$vn z23}eg!r>m_uo)2WmkOTnx4n9sO2fjd!L5994PT;95?2RT6gG`{`%yYQj%`QpKJKMh zl5w6~@9j-ar(th~>F=LE1@RJiE6(70aqbQ2`Xi{dUgid6rs@a)6|)J&gvFJw^FpJ+ z=IZ9+sfi_i*T4uRPMEk3T!JiPjWf99lNRf;Z3aQ~`H|H~(ai#X zF3#9r0jDW_hbf_~jlb9s214!mU`IaKl@IphgS}pGRE72N?KnQtmu~_A=s7NCptwcW_(Trt>#1WRGA_8o<#929aMRoL zTLs@hs4D(~>gdXvd~j(#xI7-AA9YD1lY$2iHa)x z9N?RLuqGc|nh!3|2Uq2T^$H661_n{+`h4o9d~kCH%*(V2(X6F`h@g*5GfQtk5gVa^Hrw;S-C zdGN#n;8f8tsTF18#QT|oh7N<>`8$%fhB=FT3BDKj)I!=C;hT%MvCsFSQ;6&IB#gtO zjK5b8ZI=B zY*`yS6P4$X!pagTh(ashMP55q+IPo;t4#nXF6tP))LG}^d%s3q0UrzDa%d?n zl*I&ZJoO&Q7SE+i$4>lAwb~^$1uRn->(qC1{3DmKG1Zvktt1r^p zaCxf=X)9Vt+X97jz%oQ_9JZROynO6+n&5(AP^?*?4HG^9DZ@7Oprhb0T(tW0eXGOY zZ^Bo5aO0+&n2Hxt^wJ-Q;$B$ChqY&gyZGZxK{o1IyG_S zd?>JNh@Hrgr@Z1rnr=R$0brggvn5JN6$sFC6rdl1Hx`%vx+QZ-VuxX)~&|T$%=;rg4=bY~KDy9}VHNn*b)40rnlJo@o1Lq;?U;xOnXoAS3Y23qIkPLtltCpphKllWpu~!0A2= z0Jf38X5L^3zDG!9Mzj%2Ox#D#rP+hXJ7gcj)3lNAYGVfiZiWeJ zV<%tJitJ|CNfXlPCIC*>^C{rMHntPSv~iCB8G$=8_=KU1ZA<};`H- z{55T4$g$TTl^M~-6o1)96ccKrAiDWv8|zt`J%YSL_DMWV8~Ls_wjqEIapI{qrudpx zWH-Z3nvhO60q~t5J_TIZ#vOz)ZQLn9M!+YUPtT{N9cbVlDLmCi2Au9O0I-exHEm=F zmrNp+8PUde+4a!I!h7`v(ak5@*uc{4apc8^HSsiU_&(LQCZeB?w8R^(j0q|))D1?BzDZ?m!FybBWpbJlj!1xS#Uw(|`q#5Zn?h}P@ zG8O(?g5^_WQ9xv22;ULH6WE^%0|W-vj%S8LTCMWz|XcZ86H?+D?E?+Edk zVb~|j5jk+JBILJ|-;X=pYg8U1;JvCa5s+uoJ_M2je1^!f99JosFAm{suK@To-w{GU zWJxoMo=sO?OR{tcjL#5RRcj)AWPr~Qg)V;&(P1R+qZa_5q7VayLJW~YFW{;rM>k(22YLvW_x*Z3%jssM(|jz? zINK3{PYe^5E^!KoEDT`-1W)*GGg+~G*LbQi4Zy3$Q!QW9itJ|CNfXlPW=?D{@R?!Q zCySYks|abvQ#A{)83Fq7*-ZqFe1DPCeGma$B#38-EUzp_b8JRB_DTWpDY7tN#uGyv zPv3nT$H3 z0G_JGaNBA{?EF>p{WaVzyAQYR0|Xm0IA4yy* z|3CJ=20W_jYIi1?z@URCXwaykL`^NJSV@bO2-J`;fIu|-1VM~qt9-Vl{rs81s00#c z26H$J#8#BHq9C^VRVwroZi7FVkeC6bHGst^sPV5o9%9LicN-{oEnl(b2#YjE82hWIH zF2}}1#CKH!aGc1K{Cql=E;7PRcv08$VfUSn0nu5)InZ3+qq=I%im_qmbkJ#`v4%gj zfAKEVM@de9}E>wJ>{Z`*CXNL;`pL!PBwy7OR$Zs+LUDGSzMhj<5)Jfc0@mY={;mSPug0 ziEsT-g!ffFh>MtdH=i}emLCVO_XIFL9ZPTR+x%&X=EIYL4cSD2Yzm$NS^fVKWUMk4 zGUN(*bwy&}Ig?;O+m;&=$=d_ZBdboq!snToenjMKgD`D)Hj?Uc<4(%%S8Ohq?YinL z19E}m7vMPvdEmYuZ<2Z4P0TFUUq!@4wCV@gjKz&d%8fN%;@0UkanDzRFzrikW4CN# zWa&aV_N8NTzhg1(En9uD>?>;*hI!C71HkVXT$6BW>43$i&m>U`zAJv&C|T^!sRoQt zr+ik0wi+(Df$6{=UepiY)g3t8fH&D1`zVM36Edt~{nW9Hg(P!{Y9}OAxf+x$&2rcX zKakxhwZDm@a?#k&+!1FH8ZC#9Dh(aHG#rApMjcSV`;Bmf z{*Am2^^G1nFy)8ca)q_~4M)1TRQ*pufm_iCg8xnH1Py2(a@e&~ih29jS@mWp20FkS<-lAI-55x6^t z=IZ2ZC50cB)xlyRK&qWT$^~=oJOw>O! zOMWT&4atwi38}&s8Yx_z6wsz#*%k42s=)xX5A-;-Rcp}>3%W14K<#Q6i!)K7I_gl~ zP7F%uq^9!jBFU!oQ-w4sSDK`r`FQWQN&Ik(CP_}qi;N_b6tuNlB?#w4K65MYxt(G>BN&6Aw=8xOY0Vj zv8`Kr=nxZxm<+rsfo%+Y_NKn=J^bQU13V)kAD&<*s7nkhOBY@+vg4^NT?~d6NaPK8 zs+_tcP`Om%-d2*iOnD&i7fs)GjTFELSi1Pc#E{lJ$6IVKpVD5wV6hSj*k1ms_VNvP zgIgKV-d9)v+lyk7?KPPo#AIl%1hz52_IBeJhHg9~p&*{By$ma38D5Mv{Gg0w42CKs zayFhSr!EN$DMcmj-QFoosoFbT3Sb0`Wqe|52HWeB_VOw1|w4@1D=u4eR!%iGAwN@!HcnmAEb>F84RgNzN?(N zB!CyrMB?6U9K)2VjpL*MM!@ogr#*=C*smI24iN%18R48pu_8<^al4&|Seo3bp>9G_ zQy7(thyVDde3Iapm5aDxzxrc7^#&~9+8b2eMB^F{o*bY;45rF(dpS)$^f%-{mB+Zo zY$~%X?%5WQ@{xAKP^;Q&U0`iHVki45sS zk$8vKZajtH!mPy-UUnT0^&=kCl?-7PC(|9?-JJNw0*q}eKAbZOr!MeK4UQ=@Dc9hYKbKZnf^aj5|3vMlLc`kFC#$C*_tml0+!Dh@Ne46X(F3&5Dj*v4#9IRV3_ zoy0sW4FpzagTMk}{{b)Z_*EbXoPe&*1KtA z5bu#J?xC?_u=;>X;nf09v5?9O`P++=g1FDbR*Aq}6-EcT+{OxPvN=zerXq-V_@4Bpbc4T~cvVRssz^DVR?| zgS;Fc4fD?;8g6C|3k}R9Xkesl{Ys*NQSbtRCl=Q6OhLn`ComeWc$2|M4C8MfV+YbBXrJ2d7kV5Sl3V^dWy_y)C)@@jKBZvM zT||;g!SBD-`9{ar9ncwG!@#@+X|VzLBpy&xAuKdVeko-Q>v$t?r=VAF*+3%72E)z` zY;M?-kure0Ueag3 zDIbhbPn|*5S&OQYmS6Vg>B;tJEE5ds4XKxZ69q+3pK;rUnGm$WWjy5 zV&Sm&&q|kk6h$SvBm?M@+Unnf)_u0ms=lPQ&th|Xzh(<9c+yvA?Y9#{ck~`2H$`*F zXx1c>BH%snfrtR=oJtKzRbA{u6W_HbV#p)2uM}00dRjlGoF`GA>>@7NNF=HKy)DL2 zDkl=JZEoKnTYN{Ok97hLC6szWbgXWvwi$o^M&2iCn=#7e*q<0^EJp zie&3DWwL^yDHGio9bwZR>Z*-saT2qcA!1h2$QI~&q&f6Erb+B?-X=WiPZv{H{ueMO zZZf{AH`ja!F+pm>I{*p}JjW+`m3nddeiS_qToI@_M8ic=miO}vsQcEcO4H1Wa z#|Z4yH@qX?$YqB(f-SS$i(G&s=o4XfHp)j@8?V&?^|f*{IKQ6HuiiuA2uTZW;pjm1 zNpH5eM7Tp($U?S7388?!gI&C8Tf5RNt`%|_i=e36&47*VCJ5VoW0gV)V$1BDj zzUh@6IETw{pr*s21%JUW+#JZkY9#^@Il(FVmRP4*jJib31j?~P2Tf;OIP^HA9SlMU zM?x+<`KR2m_rqij29#ny|9Sdj}e31WU)$e)Hv?|xpoT~0tYs> z$fhvDxI*CJ;-7+%OG66AFYu;d{M3rGVdT;+_L||TV5A3{d~g|l@?ZqTPr@IK+$M(z zbc09n<4M5fCgTD;C|XZN9ogpk&6tz^8&3Y+0Dx2>a7Obul8jI#&*H<1|hh1f83lN609t*Z$CgDpl{FS6feJ?BDmpogm7 z0fsHcs!}A2q(XZf_H-~9Oa_t}hcP3mNABnO#Yh%Il99y4ad$d~l1e@rY4)&HpNyrH0`7lu9acIFmNb|(RjKlCXaI$`~ zQT3?4j^3lh(u!Yco}3Ml&C6m|hMBdGSs4vmX;iIb!(imEjd)2@Ag@*#Qdx6lP+3v= zj`a>a*NNU(UaMCHmB(!~Kz56%224R3dz&GX%Qgsg+c>&}sJh;@5pS!&SaqLXwF}0V zh<7V%j(CMx!``iApX)u)XzBO$JuGO|Aib?kVX+GqoK74b9P52=Nq4*)hX^|pJ_Yb4 zP}2!aO+^;#fZ^W4W*zk$ig-JuUaXtr+I6lm?Qyn?$(=;rV^m?iFc%gcwbpY@^DUEGseBupB6=nkpaU;=k}#vJN|`QEn!dl9;?5 z?v|On96ZWXyVgfCgl{I6xCQp|2BqN0f=!nlTh$QuphZm5ZXm$sy<+4vQ0335w?9-O z6%P7>N8s^t1&~(g-4m$U1JAd^(5C1<$j7=?b}X#2H1zt5e|>FBW_CjZ$;ZF=*B?&{ zZ%GS3m=HK!)56cDg}3bNjgPLh za8p|N=Cp8YS~!>%Zb%ESO$(c8;aAea9cf`#8vF~=zVAv4f0`ElA}!pV7T%f`UX&KT zFD<-2Eqp^-_|dd*eOmb0wD5ar;o7wD%CxW}4IfL=zBi_YtJA_gY2nVa@J(sq$J4@_ z(!%X&;XP^LLup}OTKK_U;mSte_b@uYZ&bSLj;uP(;qa9%Ep7Z5adk(2&fs^JE^3@| z8G{cnSfH)ijc(moEm3P3HKg%T3H$;9Ewlk&t6Cb*krH%%|7h9Oja#6929Csi?`x}m z%j_>A9NOnQ(0B+hbw}!v&i|vTmW2(C4@$-cW^8P%Ltx488yh9=UdBDzct`?2V~#PX z$SpyG-|8DbL1|0s8cQT@CE{RKfxv3KK_bEuaUCP}0phBb@M1@!M_|8CK27AOizH$V zBK#dF|5<_jOaC4u_nq&kG=@I@C=mwezp-IGUV*uDc0yMOWj%_J|CB~3<&Mxk|6nN} zFRr2{l*4fb!V+uJvjSZ?#^6q7t#XHU`)&&z^!>Xr%Z(CmGRj<7Z=cHH?)$KMZ)|{@ z1ZZUQpciK28-6@SnHxWDql}7^31AU&nL+G`-oVtl*BxlhnO_xsXPU#Yuz|h{RnoB~ zR?>M$DoNP>{tC^tQ(lCWu~)+MmgERO`wjj8{yAs>TWyqkut*!I$;n<^s{iSkwa7K- zfbU!3x!G+c*^cm5Z0N;+-HyHZfu2E2GXqTnrv;iuX`5bjHAh|bnfk6l?f%X{Yqs7& zWesY+`%z@TuWL4nLgSX<$NcdJP6rX6tp6$k0BziDRC-YRncDKFSkeCN0zr$<7ur{S zCnoDyK(5Kw544q>=?Fy5jCi{Rp1cCx2i+XC!3iO2gI0l+`iZwY9ajRp`hnPn&~J*; zYNtcrtGDO}1~vN|jjC?_a}aJ|_{w&DlDm7H~N=3|bSWxwxkK_(ZmwGhxNwovIeuup&-VAaylQ1%MU zGDAb9LtGea@{b0!$kShn?-Suz6!jtNf9WEK19q9+(!a2ac)#?O-7O}&u9fkHUK#f@ zNd<%5Ao8)xl4=O@!+0n-p zm`}nBm+sAuJrvlLf#Tf$rpNRB&&Dnd?8-zi+y8q6e;0%MEusMZQZQkZ$(EG6FNb=X z86|4XzZ^!(9r}RS1Llv>G}5ON2>(`4c|&);1!x>&`nHZ0=4AqXf8=))6@Jq zO0iIRrxZltaq=EtZXk(f(4%;hXiy1k;W`930$AK!=DnNC%;pNFtH0PkUG zlnc`eQu@&grL?j9YN~gk6i!rlT` z#0K}$KLy@g^J0`|)|LRHm2Pq0s?b(KaOSBJ*bU8fC?P#R_y@Um@Vim!)+2$x4)lE^ zJT<52po()EGrlM(D{K!md-R=wkK@fphM&`}ZSF2Uy5wEGTet;?Ps%Iw3$&vuJbUJU zg`sGd<``46OA2=-^QNlMfFJeOb$!9w(P@-Z{R)r1h6D}mgPTR*(O8qszA@8{vlnY} z@EYjs8J`P?wct^F)>eV`Gi7 zd}CIwY6Xic%PZU&Xz{SDGm~Xa49kR14~E5Ve_xozjorqk+h(f?pLLuQ(Kdfv944U4 z9t*{_(5pm=xLj@S830OHD^(cY=bY; z5>+A2<&2dDAOAvZQs775V&gfQ&Ge57KerG|4~UL%O=E0W1N(RBSRs(FT-*Fo;h!QC zA0VSR^pA|KYlt#q9am4Z&2Jj62TH=D&oox5R=6H0ZuYf=4r`%l_#V?DB_5Uw8KZ8O zkY`;h3ljz&pHDUlwjsQ1{CKwno8akU4%Hgr&R zS~!0!71j*AJy4e}t_810LQ8BSap5i)cUMh8oDOYD$%}O&F2us6#Lm9hIK>a8MTd)} z$1ELdOvpFp<(6D9ArF$9Ww=mAWa1iC#Dmg*^q};Y;y3+mr4;Fsb=eF0bHqNo&+BN9 z>d{J!P$CmvOG3zw*M3Eaw)s^N8A-zB83&O_+sR&4!Z`FDsC`>BAfM`)y3_;Ey^h)a2h%X71p(qdqj>jSc0S- z5zEF|f`rRH+NynsvU(LA30b|Wi*lgGBOTQ)CHhz;zk^y@@O;Tjxn%XRZ!)jyV_W*m zd%;!su7t>+k!xw85+b)+LSzZ@#BS_U2gQSQGo*(&e4iaVz5J5v`l&Rw0L*9Sgh+S-Iiu4-g+AG@ z|9(H&^KO6^bjBM_hth4rviQEFz@=^e2(uvYCpm}%+RwXC?zxa4wxm$Ml~@UYx(^BB z(BH=<6ud9PJNDw>4KH}(ghRb?R-)b-@dm1}A=(glVyaKyQhZS>7HCb$AeGB&c2zRAV}ci>3oMz+&;sWHJ5IO5vK zrur^4=E2sHr4M6seM5~2Ie{YsHnPP&w=p4iV=LZ52mRS<4sJ*?Ozyfl4a^_yIK=RRCn30q7 zU75eZjse$Loiu+y>iz}*Y;gPxbIgmo#m3RCw*+>_W0?(@ZFdyznzD3QIOk-`y6@?vBmYx;PIWw`OF?L+r z(!ZeP{IcvXVb`C=j`5weAs@K}6r;qYKmvWFd{E#TkggQZ>irjdFT?u= zAyN~xf3#!=1J7fZnInw#BsG8fJyV{El=_jvo#-98MNMt4%>0t#oy$IJn>h4Qu_Syx z9B7!7J$}I$XSNo63k8hNm)91&0*p2m@(L1RV@-TcwlOIu(3WRa@G`$OvVZ}YU+YNy z3Sypt*om7P5RHfrm}Cv!!NQBB!Z9%jfNKg|WmLhD!dZqCw;@H{(O+`D{>{MALAM{^ zB>I%Jl!KV^@3UiA;z@ar*Gi z!fl*oj_aL1#Pqqn(<^(R-)#(__Hr^>sJEbbU)Q_MFG09;U|%0bV8N+kAAKf_5@WBV z%5RYuu-;^{xMvSI0l)8@6^?O5zHf}1=R0rQ9lqh?M)^jJyTVs6?x()|NEs)-4j52r z%gmrGfr(VzG?ECAcnq+8z2TjY3IyKb$RsIfBhk#N_r4#GZ+wr!y2+OpE^`*`2EVPS zhzIxiiffOI^cB<|$@gcL#JVC`%(4m%iDWT7!LeG{0NQr`-dPfhSn>^(5SG|mNqIMC z7EWDsVS5oPy#|$%jW?{PoC8xc@_|2tYuE=s$z1aBcah2%$|TruDZl#1s8MehtoGs` zl}vwMAG!s}=geAhQtjurEk1b%i=(xos->u@epkF8)Cl+?-!lMx;}*Q*Q}kLS3j8TP zU++db8DF#=AB9Vu^EV23jMaARE;@)!xG0Hmn0fo;Fa}0AyIlnM2CfdyN5rYx1=R)5_=w-Wl0QAw3 zz5{`yV|~9W(?b6a5Q>^eTj)D%8;gk!M{I)`gC;74VFHZ^EJUC{L#Pqjtp%Hr5`$*9 zz7uAxqV~deV<_<%o}J;;<<0yp3LwZ235p6)MxbXT&Klz-DtK0?eE|h&E8oD=s_k{a zyn#F@yc0bi=|MKZt)SMNLCAzip?8tioFElls)-92)ehjy5#{cjlpq~As30Z?j%YE0 z#cwVhVc}ozC^H|&p~T`hwUrZ4CBthaT=QO(<{Z6yl6em!KG9Z+u8Z*P5=H_I3C!)# zsKFDOa;qcwl$z+QpuyzCUcMdyxC#z(Qgjl&qJ5AzBF`XCWdP{f3k5F0CwfaHi-SEf zP|95!$s#q_NIlNjgk#)^_Yfm8@`3@kjpr+9MbG&z`ViNN}J3 zebxml-eb&@X^GUd>TE%4O-m~Eozm}bc83o8%8a=lXx5{ljf^eJUUnvz&StswQjgwl z?kDXLmc=Jyl1HE8(P8avH=pJQgg>!9&Go1kC7&vxkYVj_mcAdFy`wl|Sx!xXG1H^( zGI3fI1u`)PAXsL1neB-xuqxCJ!d!=lzVjXMM*&wW%JM*EF?&qC`>8R@#i1kYh3$|>U>(#EFn5d3%*DVl zAkbPsYPkv)OoIs7Z`%B+#zQI?qp+3)d<`znTy{pyS;l-I&;JP!Ty$8C6d)@o5<6rB z9!2RTWW<#hp_(=o!OD#Q=h`3|>o&g!jfmrtj5GH9Br*O@lELi*jlAzaB{FFu+iKC% zP#>SeN9ax}(1bv7i){$To}Wn*t<=5vjr|RIY8wa$K-6D$Ix2|5cC1nuRbQxypFLh! z{j7iTQJK(WW$WRIQTL97FfEzPc(V}LRDk|(eBK%2vIBINgy95TU5 zPz;1)f#x^=0;w$=x85oMOTtpX$y~0u+D#_hufJv&p}(&0jcra@PYiVBLhAog^v;ak zSSNL7twg~@)sugswl%Xlib^@TOmHAo$-8ZYu0^Uqmj`$h`6lzVJcu$^!4?8|2i8~g zw(TSFUeu(2_Q@0a*CNYV1Hk2)rw6Yr*v%btY@LLy)^+_6C#D5Dszl3KB~+;L4Zd$; z5Xz~=j;L@>1)loe=C@tW7q@?76LgN*6(?bCbY%EvpX+n7^`T6wcN;^=&gNZ^!yEY) zzVTD?Ay#O^4-p!2#46N=_WITvQWJq8kVHj5K3#Q{FUW*z5SkU04PAZKo230Ct@ULa z3BHj;0=J=J{Tg@>bPyRQj*7SU02RYXs3a;5Y9Y0a4eI$6qhypmXHjGTL1s;U)MS*n z1Dyl)&wZ{#&uKdB{5_2D7N(vu#w@AgtuGUykEa+im`N& zwmCxA-?U3sxew|Sb-VZpe}T^DBXyKB zEUk9KD|j9a?8=YSJ&QN~Me3U5mv4>MTfG#L!UalAPVmCrxYRw=G(!uDnY<4_+$NuA z&eVd-z)|FhI>b~&Z$Su{i?*xr9=(aI%{s|V+(tqS--ym03#k4=X#hn5EJ?y4mB&im zZ-+SeqSLW42Z=YdL*j!IK8W7CIXRZ{X<5hLE|;9XmQz@Vw zqajSnhOCZQ4FSk($lpO_yCMGkqTNONo*|a>j{ThzoI3-b5BGnn56uU!sZlbpk{?md z13(Ceg+HdUHgg(*1}jMrNiZhFej85Yx?bhd>i>kUaqOH^RnF++>_Cak1$O3LRI5{Z zRPSmBTbUn0DqFv>#-lbRJN3%$5Txc(u%E1_4I2f08%mC=_&Zo_9X2`{y2%(eCKX{!#iy`mER9sQm1wu^1=Hb2MoOIB%NMmXp@YXghi$XYhAxQz_zs^ooI zhzs*bHOm+;BXHb*8YL2xP>xG58&SV96dKrSOG3C%lThNnaNRD@OxF88N;00g4<9D$ z@{^$KwW#1f>k>j@U%i8fD@QfAKd{lczy9%3qDE9~G| zk^t?#MRB%h9Et26E4vn)$ZzGl70npPC zQ!m+P_|H=aw9zNyV}hxE9-W24`?hz!s(Yqyrw!~65pz}SDQmu@ddB-))QMh)5i5QE zQ?w78Px-MFAI1I%-GWv1X6>i)??8_*MN2DiEihyl`yhFZNL;~m`@9eHx@Gg00|J8yz z-jyvW``w0*h(APvG+lh`J!f7$f%-J4|W4%obeJ?>=P+@u0d=?^cRRx{6K`b zfy3y0MlFUdgp!h|Di&F+g+k1oMKY*ZAwr01Jmq5~i(!6=()}gvxtPz`DD=c;3ctyI zwGGtzF|+)ejT1j+J9b-In*}G;e@n+iq9^_*QUD#vEZ0kx8NSDmrFW;jN)3^on5rs+D2;A^R7|GZ4-^Mk@}0yonhDa^jRZ|ch(#X zyNX~eI7u&?XeW1F8Br>oUN$QBOsYMdy(>_ipP}8a{Cn673~GMb2=0cd)V9A?riZQm z8K@o|_u;_MNNjkxuc>HX{Z74|`?V_pFgK3}?!@=OM(N10rK6Z&cRd!al)atx8zrNa z{TS_4;gP+`0Vsktn`>t0@(ES86~~SqbQ(EdGbnZYE_0bH&5ZyOO&nzfV_ub?#(}xH^}U^CI4M{NXb5=%t{KMIq+4X zlnnnVMNLYZR>e^MzRj3rn7`QdV|{ zZ|s?G>AQF(Gcst?+qNeG!&$Xs9R5==RALb-@G@-m`Vpnl0Up#KD)H0kZ{VWWfir-a z%V_*^V9&sBHcj>T^;q$VnK{GehnWAcFSeMY!9FNKZ_{5j=OR`=Qo#}0G8mzwB-%^* z6N}$Ry}P44N~}hWo-pEEDJ2)x*AF_@bQ~u zR++VEazr)uWM6qidqiM-7y1o6V0wTnmjhUmTDYhF7I_-e@zsU+xj zN%R@8NhQ~xfuG*nx7VUMU>eaUIo_c{%rLnFeKv`3IrbRnJGT$TJ9y{SPo7{KuO6+J zR&bwuX@P$AxJcYYv{s)yJu=zda2=XB*;6uuKiS>a@+YVBYX0Qr zODJ!B6+;!M4FsBQDV#>-vjj=tiIkG_<552zl&{$862&ocOr{mTfnK1eGz@?PVHD2h z=>ScJM3L3zW9S6N&`&9O_xT1!N~ZUchrRRjlX+mWonM0g#{7dN|L*ksGMdVuA1y&L z@{jZ{Ip2|OOdE+EJF^O4tSsJJb82KDN=HlcxcUi#FKp1;joZdKyNjEbz008x?-+GP zV&_bIW?6;a;`?Jb2fl&33tz;zl!4v!14U+m<*joJ559nbHl@5o{i)-3PSilPBENk0 zNIw1eBe`!9x=fFw=4JCps~XB*GQ06+4dsQe<0UziBLKb}(ko8&r{j$8&spQ8C6C$+ zCnVBK;~n|fidhq$G@BM{ykl3CF{grrGbR-j_be^4%(ME^0z_&^2){WLOlAYRs8Noi z#NGN875bzxz>8oRt~9P4=X|aBtWfjN72+;%0_f1;q!JXvQ>fkP{rDt@;~F{aEh^mv@^RSn8~CVb`~D z#C&Yo2rcw3z8YmyXl4m0 zrdIsovNMZ6MsNSPcvsD3g?sgB6ZKi6Vh;=cfSTy1n6>Ga{6qLPgp2mkeDIk5If-vR z1`9;A3Yb{f0Hl^pj6L6{y*QtUA|tMrzzzdLqLqQ449fPfh4$+6#Tj>j*k>h@hs zfx!+5)nE0?ZfgFteEoqK1;6;4(dCqSY}*SNfqtNNTdVPn-6!AhOZORIcb{3)!9?=_ z`^jjHbdbA|OS(@^O80r=WBKa4iP{Le&UBt*nKr^W-T5LqkLow*Kq*}(pZiR7@26OR zW_vjH4Yc6(odbOjdnqk(YBl)sCUR}Q+Mp7_=?Dx6|9D>Us}!a%mC&cCpFkAYTt{dr zRuto1GXcY_Z=Nx23dF;?_-0MbFvS2%TT`(duD&b%vUl!PTgbM)U8(s-$iT+cQ)V*f z1G2!FVHkkH1FbprJLi{HiL#s+9|0fFX98K9E$od&#}(OGmXMvZVY2|p!2Du49~Uf< z4l{)48iQ~16&0&m=G)VsgghiYvoTLqrv_cz5V06Jbakea6BW0mcJg)5tfHDKNzm) zExlRoZ>{SpAiv;D!8-bcGVXrV0TyGacR$WIiyyeYiejaUdQo0oE3;81On!zo0y3_O zv-@sheo@y&6*#*Iv% z9bvg+$UNAMl3wLhvBfBLaZ>q1m{auw*k`g+?;iB}pdK8nFGOcB>e;NZ<=OsqMkCu* zyxZ7DI6nD}WxD$CiMJo z)U`?z)Jog)4k#G0U7*+Vjyk;Uc%I!n_J@THkYzcMNiId(lpN-)?HmUN`%W@1m$$F^ zf0tJ25>@F3mxA@M0lGR5+Do+b>wiS5U*?(c{tirT<3O*Ew z);VO~Vp6_X^C3B9Onti24BVNQsRe(Jq(-G_c)QH+lKt8OUt&k*D#T*9Cd#pPtQ5rq zUploQPj?m_415X2I*eCCmN-LP6X6Nlx%@o{X8_g&@P%RwFDM)5A3*7E3QcYuA$rAG zNJ;`;1j&fHNr&5^;#lxngKM6$tVDkTZca|GKo3;#1t@Q}J`OC({+Vy1JdSy#Fo*`4 zSSVi7Aj&bLy&;nH4m`CUWBfDO6+1rOhE*s|7e>%2weskfZxX98!*!o z_y5_v8FrVzm?8d`_+cYd+}N27p~KZ5u@!R*7`X!}pfT&E`G(gFRJ(Api*w&di7-s` zSA4fNG6lxKE})z}=xxyl@I~}XG*<6^nno%1_UKP=)(<(*M2C3`a!5kE2pphrM3<^E z$<nh=6Shkhdk)Ppr&2_#`V`_;j(#;sIXFC68Hn46*B@BfMw{S@QzyIGUnz}ls)zu;ySqX&03Ga5Jr=tvNm0zVR7ezy#P|jKhdC5!)dt|P zXwdHT^$Un`)N&g8(nXwToQZKj=?@#$w}893mhqokIp2_Qpb5v75cM#ktO&K;)lc~0g|iyQ((T0n2IPdX#?@FRYd49f^F|;3XVmRB-MVa3exHenDdyF`#F*U+~}8JHfrVD(4R5OsSLnRZIRNDS!!KD+Fa-C9k0%B_UeRG6^oIT=)efk>nV$()!0cvM| z`BgfX2w}(vrz-elQ*N@CJiEc_C6=Kot(W{xKC_q1VD0E7&mg8ET85CapIQCYr^@kP zX*X9(>m~tJ(pPnpMM!3M6KS8-aTCorTa`1@cfZ~ALd498-J>YB>0RJgws&2rc6mj= z4LVzg9jx=V(Z`-l;%j7zZb zwvJg(vgz3Y6%4r%SC}1@qGWkW0g>Ei4AI4QTpXnmNyOMfm-9yqT&|c zw*nD2OY=A3&Mk0=YX$e&f{E1k<~5s8k?2v?;Y( ztbfoZqy&Z8-s_v9snEB#z5*CGPQkW1U~A)C{3^z<^$BArzllMH*YSCbp-iJAmGqy= z4L8YWWU}q~)PE`uK{!?83-AthREdCyzu`D*+IlkdyWB`t3DN?S4)Ynz9n7|UcnrA< z!IjVV9ypi=9Y>P3*NJYoRSsg?@XC5oUDrs;Bd@!5%te^rAa!`nN9adfZ`@vj;3rQk zq~*MAa)tw1BT<@(4Cc}csXdcotpF7BUq!w@AP}CInZXa!5+5cOWDAjGVbp_jF{1Ch z%5JxqiG~p~xT^V3*vS;ag1`S zNA8q$8@79<8ho&QqimD?lgbTHi%b!UcH{CW6hJ6q7r`nC=Voa>nP77O^p-cKt*PFa zia#^9F*8gCvRjA#nA)_>M|6p`yfQtZ{18z+`xupkUC-euqsmIy3G@(E3*gciWjRs7 zPP{)eT@LO34%_F_5~Q+yF-Z=&HBk9Z(l$5CHS@VFNt{&R_;E&HCwf?;N>O608HJC| z1L9_hFfRP(pMaXa9{sX;3e$(FF_Bw!=}$c4;ZHuiRJnY)Y)@#!wQMDUX80wsXsZ&_kydXC--@N6UKHNB z9ZeQTTElJcH&@`ei|y_v>>>kVZ4Wz{EWbCd)g|H4uN%q^iNMfN>A-2rT-{>I9*D=)>leP zA3lZp=T`{oYHAubB3OdSR+hFtLxcFlwq!}RN@ z5viGhA?m&A>PUdEIKr#?tg%isY3ftP6>fc+8)ofUILPZU;ECyq9Go3z7oL?}qEE{) z#QR~OB^NrhWD`xA)%br9c#bG_!f|=3mgQ_qXj$i~`5$yGCiFp@Zb|A|B>*YuU@&KO zY1lO%t_0zL%knD-r-Gtul_Rg*xCqsea*xBuDHX;E*t zvwJ9_$D#X#3CfU(SQ1|B7wk;jUx! z-?#hp-;Cq--;87R-%RPPF7#IL2#o^psob}>R@sDI)Qhkwy*1D7r_iT*_tT7i`|0wu zeoD)FO!O%=ANptMtLzyzeg9t{f1Cd*+wz(|IL6rfj&x2jUo>Ny3r`hlYDZvF5x9z3QjEs9Ttn#b??x-szw&fUpH|DrxnO zQi7MW8d5>|c7+U%uNr6P@oKA_~ygFD_k@$dU3s`x7ZzRbEzh8oWQEprs$k!!WY#jQ2z z5rY#<6f(*xLzJ>{-~b0a!n^c=?21>pV4ScmPp|6b9&ye~3F2RXTgmb3^j(K-$&%F? zactw0zcH5I0Qt&PzDq^_z5fdU1%aaGHP~65us+>i5+0YF*W3^9-Y;;U#!r#Au9e6a z3xqlT9xR`G{=rgk#sth{uNs*x_xDO^&uDG=Yt!%B#eUFFPttFxML%vA5c-LD4Ax1s zqTijCk7klONx$bx0Glp@mF!`_nyt|9V6lvSihg&b`e*(c@+au`tPFv+f99j&pSeS2 z1^qCQWh0Xs(yItT^-)Svih4xk>K*8mVHcGU%2iQ_sys#}{3jVui0J!MzXD!)JjN^> zFvx*3D3W$gHZ&oSR!V@TR7F9XaJ~Hfz;i@|(|3I@+NOxub7a1Rp2&2hZ*Mt!V*1c* z|%YRT96(h=RVtu}>zS4nhl`8pPH$^O}o5B0B*uQVMc`sXqH zrxUSCzV1Wnq+n&!lK|p(l2A-aR_+5O~C7qO+ah^y-mMM zddb&8JhjqGwkGWhq}^`HR@xUDQafKKgkIS5UAxy=t872Iw_n0p0``Ra-@m~4*pE3- z`k!scPxe31PRxG#WUkNj-wXe*jE}>xU9|u4apUTK$#}x_`&W{m9Ff%8j4eNvEkQ=c zzVegFG4eTIP2OJee@lK=K^^H|e!d(2@6qpHp#K^F`ugd*CCBQ2=dJuF=*R8M*7%1L z$}+#ePpW=8Nuqm?e-|L`gvLKId_VJx*a?h(%&Nw}ogDv^1rMv*>@ZsJA;yVH+{y|AG&eQ7#IWZNaCVVGpMQS-a0>D#^pmfgKfIr$5A16Zgi_`Y3G)o;mYhF` zU8c|cL1qgsSYi^h1$WwP;RbuQ@Pl4NOPMX4XVL$d^Mw<$%iI8PQ%QIsC?WF&wb8u(DzRUhsEHEkO$x?~A z0LzT}=d>>MrlYyMFC8uQllu{9!l~T^d_+oQixutyLjWP!l5B6>viDEX|BrRT#4p!D ztzuRjwwy=o%<~lOEAH@(4#jb^R2Gp?!`AirhzAe9};AIpG!+j;ZbKtaT~rNb%yNI za}|Vh#_;fx`DgfYP0$GkyO5{EW89gIOScLmh0Xe%+4@wL0eJ}r7%0_&s!+~ZIuP>O z*i!f6OdVUrfJk*IX(3O-hh0O8_I-9ZTztu zQnVNCquX&UI2Va%D6|XLGteg5sjg-b>@(^6Rju>3Mu6a8d+Tt6ZYRVW^M|jXFp0-L zR=Pre0}*t4ZnHo6U-`E=?8uaju@l8r4Ca~HKs^7`w+c4^LfG&i8TV_(8+d9$j*Xmn z{*2@0hlLx&tIR&^%=8xm`Vpv+E^An$071kP3Z5&0yY=|J3Id!@^S{#AfGvcvKdSwf z7Jp|)yj{#sRF-Fhh!KWFB75J{f<#pq?Bn-Dye2ODS7inwp0Yq&wq9l8!ujIz_m)mGhNBPbU(>I3;j)}ilRn37T=|85g~z|Wc)#|r z+7}qw4NBLOZo-{9Sj^iM z=zXz{EsvzVWLYRgwGW~tM&o)sL-D1TDzoC@qTR96jEoCPT@$p;rJlgfY-d~X%S+G4 zX^yCoQFO3G&p`iJ`W9xSl0nai?YDBO{m6Q5irXL1Tdo5&G7h)8apuXJYfK&a*^PNl z=a3n=Wv9RUt9tL3Rq__{s`d+j*#HSxG6F>WEbO}6n3@l~gk5#KP$);QfUo6Ty~3TI zANAvOlAjj<=YVU9_JybC##cBmuXmkZTD<@Ee-Mh)^SsvnVfY`Y%41&}R43;ZMxuJX z%{;gleI7cbN1yBtPjWKBE=Emuaq}v>fw+8fnUB<>FCq4I+zQ&}8U=BbqfbW9%+)8u zCsE+tG5S?GxVW$RXr?|nS04^0o-Aw4(!c#uWWF&uhXX9?xB(I1O?`4fWbz0=;xICB z#^F1I@m8xpP1Iojh<(>?r8_b?A5o6TWZBu9lI4y+lEd#7TvGlf@TuQ9!p?6A4BHSdnB&_ z=COsJ-9uR;9N18c()5O4qD*~DJ>KEuKxpIrGXDSBdMfv;AUeS;b$l!wi97RP4F`=elBlbC+?5L+m^i_ z8~l;DUlvl(|9y_8Gu&`~v%mT1fI#P%<{s=OpyUno3|M?64)U?tdF9yU?I|#yV6)Y_ zbY-^s#*vh}??rIgsFJ<%w%|%$Y}ta-zGF}nxaoP3Z8*s%rCIu}TtQ2X8vZh2lP}9L zra|eNB`XR`@6l!cWUtiA#0kKoM{MKbLadPbLfR#d75I>t1mxXsEg+N@%f*Y!+Lc9e z2Zbe0-)TY4IVf7r;#!p#d96iuQ5|6&f&UND8!=ylK*REZr95&0Gjs;y)w7jLJs%s+UzkXS?&Ir~g?0&W;aZ({Bcm{5?G~`POic{NXty^I6rMMY~c~LCvpe!AiYf9lbTx zZ?W)gTnLTwoGj$4jGq|%;EpwGvD|HN8@R#V!G8sc2ZP*)D2pE&e~kCtEseVTENp0; zt-{yX;f3B zk;4N@>yZcp5w#Si$JG-d8v2b@(&;BGK%dRWjqF;GBWmEN8sL-!ssyzfE!RqJ&kGM2NvNG(MM|BR|VI1K4A?w4vx7wM(df!1-N za^gIpw@Z*-3Pg$g8_m-S3E^}vgp=8Wqp)@kLls_9ARKNL1Geo`Grz}z4d_c%9eVp` z9V;dd99ZuePaC0ybCYrWT8;r&a!H@d?6e!cgD72fyiy)m{8NzNr) zB56|nx9~m=xl6++Ksi{ZhI5b=H)xCHQj z5c^P-db$5C?=6is3%hd{?hH-tIMl3$TTvVlL!`y zv)8O@$8VL_h2@MA9E5ASjk_gf)3R^IZfH=kP}htVjD@}~zgD!Ba_PA7bjxuY91jsB zBrav~=ndjeM!JJ+aB+Dz?c4y;qvFkN4OQuNKlGx#>f*rSm6 zpq*IBAJLCS>g9*vMnjlVZxeom%Y=8pb5pb+ckw8pp+T-0SKq+(WpSKdb%@8ryCdFC zB%u<`pXj}KSn{f{1^&$RmckCG%etUf^*~WCOzIYT4}7RWmckJocqTqmM9mv00X>Lc zcESTz3shh&nq8jYOm@p?$B1= zh;C^qI?)AqH_8ve%rUjPc$c=EW)OIyMVnBdy1>vtJ4>sLlZ$sPS%^uP^VL_)%q|GCfgNDDW}wTAQkg&0bG>vSlFH) z9MXqiW}ce=7Zh@*rDV21noYw}`G^p)?tzv^&irvJNi%mBGG=?B0!6ha1} z_+YjHYN+`wFpYN?bqI*i_|K^W1>|Nbdp?WapI+X9?|)T!u49*H`Ok7I?h4#FGSfGO z++FU0|F`cL8P=Uz9(AXd7UI02?#@McmS~~>#80HOngM%2u7=}cWEWmNy!_Ajl<&Wk z6Dl=hFr$A1(cu6_X$@Ac0f$>%{z{}WrY^x0xI>@1L?*brD-1n}LyPpHQ{~|H0vpx> zr@u9ok;!dj7;-O4}}xQmN7w<_I)=Y*m-G+y%1qL)4otvv=4aE=8~Px1{2)O0z0 zCy6r`QA(|R5NwiF>F^#fbAR?j8UORhtZ*?Zy_hmV3(6AV)zyYp{8G(@6brm?NekWy z2D4D31y>_Lu7kH7hdx|?&FbA$Vf}YNi@?uM^l}+ilEVc1wz;3;7Q=gsuIan1Y&+O9 zoIS>^OPp=uxJJKq2}|cRjJ8tSt`7#u!MReHbEV0mYT5JUo=o2=NHZmq22yuRa*T}6 zWI)T7Aw%?d=@kBjIALFW2FwT#k?QPJlw|rDR`w}Npngt)j7qH%^iQR+Eg9+;!!rdZ zfJiN{8Co=I@e69PdSAQheYgmvR3;;7G77Yfo8Lo8tdfOENeu}>EDY955MNy_mv5y) zWO1E&*l$4;l4w6moaV1dKnXA~6q_QT}b zU52+6M@<`Ln7&6;vnHQQ|M;`lZEI7RaoqwKT{%EuT6Y<=yg(1;j6Wb-^|<|)>FwdF z&gP!sdSxdjP_Vd#YfK?NwQtTvb7KoogzhylR5z>azFcI*O=T#fu+;HFEvm)|Bj6tDk^v79^A@4Fyh@q zppD8_qkNBXx3my8O7AY*4x57&0J=(*i4TYYGgKwf0ck*VsI?@hEF26Hzy{x!?7fCY;YQHq2>j!~*R?et zLF1w0!Awo8vdz{wJ2N*r5VbYfFt8^Qr=d;YAsYs0*SHnFsuRdmQ{qfaiHBHI;yD<$ zl}IKU<(ADTw@O23M`;04Ty;W4DVq19Nc4y7Ks=ua?C(m!{vOO5?Cwn5YatDlMgMN~ zH=F+O0%y}dmH5O3RyHwK(OIHhPOe+{BFEfn|Bo@2Cj~Q_Q(RWP6EB;s5H6AfDitNDx?<~VC(|4t4oXo^c_6K=py z5E4=|EztvsnY+wHa!3@+RWNr6``-&s%thbo z=A4HOz<;3 ztvo;miOVri+2-{&1M9!UUOUE2)Zn; z$Z;6+s%;HG;+Bys)&7n-c%^l$tRAGkobkQvb()Cc%eBxa-~!cKd(2CS4?(6f=BbuO zd6$$i!Ls%ptjB#fTJR7+nWlv>oxxHu8oQ(iX`}(hghg;4s86VtF)YWl$V zPbp1$6*0p0$@q{*v(gBwj2R=N7ZBzNE*j~WE-U`e`B*YS|M)DeP1#E~{kt-g^*MfJDw3A0MpPR2Us*PI~6&@(| zA6oi7fQOr^0loRg{m5N;sPJPrX~%$PF_oyv@%@zc!A;Dp5Cl8&j79KQfyP0!^l6+H zdopn{~>KP+-vi~yZ&h#I-3ZGztj}|1*6MFi9J8E zQHKr`y#TntHR0X7Cj4Wv0}m^S0sxbr2~yHhV<|A;&d>+MoghAN2c|`#sQ}cNw*-vh z{Dk1lTSCee;A{!V6uytCmFQDkT9Iwh9aV2Z)>HuHHe7VDt9k*rA}y8O4U3pcijMx8 zR?WT)8VxhPv|9IeD2ufj#;FPDBq;!yD;SmJF{6SV4LYWI3qQbTa$(0bqV+`xVsxEjR-0 z-Aa1~#=k8_9Xo|FV}#z^{P}P_L!S!Ge9PflPU@k>@;tIpx#e&M2*_=aYQ-E(mbWla zv(<6O(9gVEX3`o0`cTtC z(~-RvC2I9@zN2!B@}>n4=N9m=?SYQPy}Tz;bxZ_h;)nR|wpXyR^`=%;nt@ zXcRLA)N$60=Blk8zu;hJR4gjmZQP6zYw3W(kM-AR^v$F6!?$FO1oE=iKm_87AXt*= z2@odGx`0M7%BxhO0{e3HcO&-OSxFkC1-2$|J`(^}f1QKHri+z5r+f=X$FF0&k3L6= z+AWTh7V9Z4XRMeWBBFOR&wUBY|z*V`P$v@r8dA$|1;Dq zMnBQFk`){G604fEZwD@sg?$5^N9*q<6WS0d`jZ;Je-$P5b6*zNoA*0l?MCCsAX_TH zsRQM*LEi)}v@M?w4B~gyc+k<_FCm`vzIZYvi^QB&2O?Er?^_P`e+}dMR0S@w@t=M; zAnfMLvBo&HtuSyT!@n*jc1M7?>R!7v)%tivHnj=dv&FW?UPz^mh$+Cd0tVCAoBizX z=rAvXa3t7~X$t(8$EAZ$e};(`3;6Q^F~FY(;1?{j?>nmNqKgT5qFb{SB+|oM@Z=cw zkOznkH6cVE3mnPPg1>@q>=mm>fy2!Z1i#0Jz>Yl#I#-CTT3fTT`JK!_=Vyc3>m?!_ z;`))UCca{TG^9lI?uSFq;M3t|r|;a_=lF`71p;q>Nz$S~N4->o$%gqqK1H$tkTs zW3^UMX8@Ii2{RLNI1I#=R9dm3#Y$VOyaH_m!6fi9L8*pIHC%!bsm^gyjetoA6u#eY z?Q>=(fS>*T&!6WZbIv|{uf6uV?X_=fKVjU81ppeOjCx!Pv|wB^z6nZtIa32WW=#y0 z*Wii&Lghr3|75z!*dQ36RNIP%S#!nDC@1gv57B1np9zPvh1+fkroQekpskVt`DSzaBL80Z1xge! z8$4bYp)djzJ@k|EYX~>7!rCj=L~HE2(6ZDVChy7mpacVTT?nRR(_BLLh4xqQLu-Mb z`2fw7EqwljULa}}WylDM*ux8LT}R0a{{$l+_C6ek8s)ZmPDcbs3;>NP;t00k!~{#z zfnvW7Ca!jb*KYtDxZY;@_f^7-9h(0|kTwQuc6YpC2rKOb1RNU`SQG{dg}_?09>BFOpM5%C?rQ0Nc{lGw}E6xbibvQUyG0G72WC^(HE!tHmc2o zmfD=ee3TJw;3^8KP{g9AbEr@gE688&SM>DJ07vQB`rlyx3&^(lM{-m350*M=e(vS| z0rt(bs!L;a3x$0!W~0%#A0_!9%qN*Qu(~yuQmSqB*ZkYTecz4CF=szSTlfZ1w;=}} z#cCty!u=LM&eUG3QNurBxmEuj<;TU6a(w%tlN0`xgYBccy-067iI&@f1%td z?JZ+%XI8(z?^Ct$(vPUP_{)gwkEzV;zoNF8C};Cebqga?G=B-H7!^K~Z>svd)Zk>y z$r>ALKowu>$=Z$~7dBv@L`TL4`gUb@9rzV<+@LR{u~m1!bRr+7=*n46^K&LL2LE+= z+l;^PHHO>kxR=Qo`xQ3*g;}@hFU&H2PjI*D@)NffC>9qcsA3)Pw5&_!-f$C}w*(^r zuk?*h@Nhof&eRuBQ30CWB?`K+Xly>fAw*Q*+7L<;`-Qj}t!V=PCJ z}KtC!y`zXzCqMXf7VHs9*^HTNlHN<3o zJW&6|F}6OR%K6a&u=z62j4t*zW!C-O*$)Vyz)535+WfmuY6}lRmi4+|&d5k|R;T9Y z=xM%VG$I;}+~oPjdu+Vh^d9@UeNCpLHnKCo#FC5-f%LCYpc@%+bW@ zC#7N=$#^AI#$Bn7V_35nA;4z#-z>)`M?L1!Y}pE+22T4;q{hXOV8l?$MtI9g5TXpQ zE0woKd@%A41!&MI1>3QCF2x+vhBh{s@6dt&v3_iI03fdhNUK-S{BB5tR!%9fdItA8 z^?+g3mtca@?;lgpfqwzqPk@1C&wmV$^?v04r00 z@$bZ(u}US2-L$~{hoObhWb+8S4Q1%<>R|2xqL&yx@wzNEdTKam{~5*_3YG(N8({R0 zs>(1giY1Xa;y|I;r=Y%>t|;VG9xF_i8X!N;A>$d`>N63~d<)3@XrH&F4E6h%^T&ku zCfwO%-p!msOjz?|FMT=Xy@nT!V*5cp4w%A;dOkMe(Ms`I9?W|nFG`S4*`I?wSO~$7 z>+W#?!hIbYJ8u~Z>fhz&>+-~dEx7Oz74e)0CdfL%W#19w{y05TG-&3>_8!X9=clk9 zsO~${t6FLP`ePzLunSL^->`Bg7K1=Nz@cqfO; zH?#BEK=|x=u0xwALYrAB?fcRt6?iDh4ME36hcPRN44HH$PkN0v~IAiWq3 z)CV%d23Bn>BL1w03q6=qznJ`My-n>2(mB4%85+K~5IN^9MNVap1$JARnw#k5o0S86 zE+;;@SW(6Edcvyl^lS@Zsdox|(6&%I_G++Jp<2jWPkiy;2ujPa8D}qE+cshJzY#;I zwoR#8AVP=%5{tv8Yf_k7a4utMI6b&7R2mVQ#{~Xs-;@9nXn_G7hX`>(b2*ljs)W|o zP%n3~E`vB0NPu#^nruT4m9g^$suloyHSj)tE@_H zaKoQMsf@#3$v_)Y{gAI790gl#rTR=BpO|XQO2ZXgC*2Si&d@JrmS=LXPkMaW7hW%} zQp~j^@>P+@y`JHaMA?3c-&6php9mR{U$jGh(P$;1TVWT~m4q?_5t_@HX8tpOOH)0a z3nGDk@KI3|LcYWj@ubr%#ND z>5GYiq9{;Louc&9u=I2N?dTf*15PV5%IV%=H=yn9pbFMotakVlfEd-gCSJWU`8u1$ zd0@x#hee=nVJnn?qsRg@8bzH_Bh1t-EMl+-{Q;3mVbkrBE#--6nC{BUVP9_K<#H(w zWy8yV2aqCdP+ncMSo3!RMJzZ95C@r-FYK(QepM#F^>FoT2*K z1P*pKaIdECWP-MEI51QQ7{3xjW7!k8&e{2_DrVGzUZ|g{J2p0ZgC#f6`uOGygEhKV zAQ8L~6!3K?ecKUcq!E14gZuE;P)2M6Q?Rs-xn!C1t35HqP?LXaxADtb$txF^YHwq& z`KLyJB^;l$zai7aRmbtB2RfK`h|7U00VFzm7CtDvnMYfgPU(x9h#?STO1<3FgX~i$ zL9nVQdm^AlIaSuYjhbThOr(gig-7v3TbLTPl%aCk!et)VLdgxcRVM)SzJc%PH(IG} zW$eu{0NTeysVS5zmQcBP=4PfxrN72fO5kUuooeSU6!Va832epg75=`YFqQ49I56xd@Ylv{td6G z;P337yvB1L*V|*n4NvV#+_s5;H4=p@S<@5oIt_!<$gczNHEI=V0gb4N=L9FE`$j-l zo|AHlJz#EB`urx%sx(Ap(gV^D-kxsUGE}b;Ar~p+`nHI)+FT zmis9=kUBY8cC`5~CVV9pe-ph}OZevV80|)Rm0GRZobq5H?BhH?*euFB&&ww(7F%f* zWKx1Ta9$^H0RWiJE>MP9P?~9F=Piyxsf>d%QlQY9aobP8g)xVD1^#rk*GE)Gl2R%5 z+O6#MblYAZSq$8TWMZ#r#yR)4k)<*#v2lJv3$fpQ-4 z`46B7KDKnOCQ7FUp{5X@fMGeSA ztD_d(q`hI5X;%4(@rsM`-(#nec>~LzyAm_PW)lpu^0$?V74bCkW{bhf+^&Q%v!Q3L z=1+^ZKdKP`cw`-5sbRMeScfvugyd*_jK9g-|5nM->xyaD#$2#Q(?F)x}JfnrDHDcK)S zHTW|7#)B{ypoz3dPd!a*Lk;6U;e*8_vC=RVZ!!C~tVY_-EbqlbM3(u?vJF|X0@QqM z?qr~9ZYLH|-sQxbOH_OZ%Pc{e*(q7lmuS8nY@i5>)gz+IlunTyr!XzP`!tt#@mehO zqdU0T#sU7wD0RB*=$H&W7o#FZ%N&W(Hk;K21e&#)Ail>(3n^)faaupFHYQlCq=7np ze2n#NC)c;JWcSw#V4E5vgUtjlId`C}u4h2U$aDdmEkg(%1 z$o^pjr@-+Yo)_#dE<2WTG4qg|>$9SMWEUlCixvP0qoh9v>jocj7Twjt#%1jBeT?I1 zI8)t{RTy?Zip@#b81Fctds-3V1ZPaKZF|k7Yy&olT*i~vp0xRiqq=(r>e~@_m^bUq zAMF@D%GuA;4KXz4e4DigXXS8I!FABliT%QOD&TQu9A$JI&FIhz!r87C&uSpY<5Rd% z5U5&#RC3>Er-}2P*!KNPpvDdQn^SWo7y3W7zf>rOCZ}PFt&aslQ3bOx-+~5c{#BTs zxoy?~#wjXDc6=15DLr@oq?4n1yGH}#ZX;99agWT)YM9eD>9*&-h^$BE%r*o)c?bD8 zb2C5XT4cS@&e~tHj?MBU&)FYY7#!!Y@j=KBd5qhyApF4m5Cg{moyX)*pyvr3B>}Zb zLphL%jq<1_n3Ke?FyYJ^M2bmATS-X}WmG>;pGX?}dr#WPwC?VnxmmSy4rkT7N1~kL zGe;x$8DhJ9hhslTp`C~koG_2L1LH-K*Bc4~rZL@f_XK=(ih*X+!R(5Z9KE)|3<=5^}B2K<oyY@sX8S`{56 z&p^IS*!kCi^3-gIqOI8w#V|$jWA67AQ4FAHRHg0x;)vA)l}QC*p(nTt^)cV<%H!#t zp9UvZcIZ1Jy}(>kn6W1~qKdg9+x4B9ZIKU8*Iz_S0hgh|drPm#+>zPl%Sv}A zM>2gmFQ$7kXym@vKgl?Zee=#&L(a-{z{<<|WabfjUe~gh`X^ZD!Zo7}!L%0{N!!{0 z6J9(L?p~W`qn-Wq`hmMAS+9k}-vZ*#`bktZQzDlmg0s@fbmLo@y^zN`iU$Am`3is(Ssr~dGwFeRrLs3U~B7_c6ae~YQ;AHay@z>aX2n`e#v)saD z$Y&a?c-9FmsH48%AnejZ2h28MH+V)nY!mCKzJX@D#jzPSj;{LQ}ZlH7!};SN|qT0WY$0*0Ld z6Yk8@68HH^em+fq5f6dF7Ej-+f@w+KoZji~UXhEePIrLnbZz3UiYKl`R+G(0u23{3 zH9^xDLErw#nfw>Am$100dLyhNH_9dlQvzr-jD1ShR#>vbf7D*8(|%PmtWMi_2vRaC zt0>uhJu~O(d*B`*q8MC;qO_pXfQd(6cfOJAJDTnpF(K01SL2+Z-Y$ic^PPV99=%ay zU)?7w1{44wwJI(^Eeg)u+rBrN%@W*L{~-8+^$>~v3?+sYKo3aVswZ+McM9yL7!<^X zDM@q8IV(~$&hWHmm86wUr2BB+e+C)u|L|Bm0`uWKb5<+%F5#ekGWOWshY%pxQcjLh zC}4izQSZTcUXHcY1!|sKGY-+s0Bg<~+B3{=wZf#s=#GcE2qh|Uw}eF5LmvYC$ms`Y zZnYmnwZPUn-KxEKU==vr_Z}X@pWI|i1tifDV@pA@%i-%mnit zj8^wqnL9$x7b&N(%rlQbRrHazu!66u-o2%El@+Y=XQ)!}h?r-RN0Eo!N*=)59}t9_ zC2-~9jjzvsWw$p0_=&xzwdRoLYR*Lk{O6I=x( z(58i3uNAHviNUn%GFsu^JIQhm{3)k({0h$Z|1r)#hRQ6?%lO37C;Epl77%F2Xz5+v z*&6QYzCDKj(YYSCkrZrLfh!96M&% zwq)A$!y&O&#|JpPYIST}lB>p7j74fr>500GS71-jt%%fPZ~)nYV~2%Oj6V*SJd28{ zfojsp@mcs$0Mrj>ds<6#X(X`yD^52j;G+yRS~E69kv$KX$MpjJV)$ZVjvYjbUV?s4 z5iFVDJ*g2BBQjgwhwm;qWSn~(a~;Ko>yW_45jb+VHN=5GDgeI)z{o)vAAnx4%te17rOfxCx?P92 zq$lD9ZZT4^-)vHHZF6_y{uD<;&^b5g#3gleF<*3`ThO1{^xnYRc#yU`PFOeh$;587 z+OPX&*72R53Z#aO4K!MG#2_5k9!V#qZKv1EB>0r<)N=r!ov>77E?Qb1vuyuto#{$lbJzt)}T zOVb?*zLwNKY)1aAm@iQBQr0pEW>ES!we(@+B}?#T&a=9ICU@ke<{A@HGFmbCSvUom z^&rdwd}1tw;AOiWn1xq({Z|>I5pi!&uJK&|j7DEA4lQa6FG7AhnwKn9t$Au z9;=x1fg#{tYX(|+Fd0cG7m!PYg8li1RrHTgk+FfL49TIr{c-K*Nk)LVd81EICYmKK zUgX9m30T-9p#&TI?79PUo@(hQI0)IB`h(u;-L)nc$7r%TFwR{oHMO~aUhTacJ)Q&7 z5DJj0(!@X-o~kSP2*7DZ+u|DgIoFhzk7&%#WZ4g0!3u5b)@#ta!6~ak8Q80D0$Vz>HDs zWxTfNDQ3lK)7AJIN}_^<@Zj4Lso#qg8LNE502z(nL7+;)hdXV?yO?<5{;lmsDo`HlWh{( z^j`@@57gX_<5*|n;_v0_lqsN09M4uDb+Y*yQgD92;_PC{dFQNGe~^cBkt2?WDA-Cr zav)q$JbQt0SX0jr^EpX9kKuFsb&}^&K1c9;2L4~E_|G2L=6_$sRGa^hgdgNTFKVXq zUxeRKcgi3-j|Yu>i%YMO%?LG$Yfm#8d>uWsg}9a}A?Vq)jtj=P@}L2WRQW0JxRa9L z)N|g(*Ll(t&fHsxvE6Q8vtxeR1>2A2!@B#9rB^I=kTITvkc9iAk{~DYVv>M57`Z5O zD{9f}^$)gp0t(8{_b0M&h4ZY@93dV2pC0;QkE)0j_b5- z6dWjEfSV}JEUo4k8Usr}I^oUO0`iS|76Cb+o<%@DQO_bEAK)1ijWPSc^O5N>N{BJX zj_PY^p0_9iekq~4inkjBlqN^pmN50%~hr8U)`*WmBHQi`qOn;`S^0VIfK}zN!hfq?gwz`k|0mK@9 zy>}U~wdRucYTlP^_NIj#hEXJPx$PY&0579 z0M%3!ZgPcV?Y~}RsjaEMXQC}lG5jCyFY@I6)#>e*FO(&$2u5Xz`R|l?C^l85NWQ7F z{_uko$VHAgSrUKEqQhi>w*5EwKeoAhSoPfFu%4B4{?QpeV!T2JLfuA+lmE4!CmM3obM04&%EgE{k?kf$_m7WQ zbhj>T8^)rpHJ`o32gLw7Te~lCoXBeQgsgzZSTV9x4F|Y@t1WD5{$AW5%L&TZvJPk^ z=xfsmm|o8s@p^JCKSwRQi900Tn!c9KUbZY=2S=>Z0=MJUigfIrZ>SK;@eYv8zh-Pv z6+~WvS+SYzKG(9JU(p<%s`JJ2l`_vwF?N~hNS$o{EiUDLl~1ea4@7=Y(#9iKoZO#5 z-^*G!ZDslEWTWk`6Rwh)=atlSP-?hg?+2tt`Rh-^U%$J5MyutoABmTkrKkAotOEYJ zu*`UcvcpX_(}+)ysL)lXIWffb#N{&D+j}@SCHF+@!WSeWg?DYzyN+CMJLu99@u&BW zZlkbMT-841g;%fJUPeVG|+*$Bo@}0)B!#Hl3h%~rbU}%$(pU#v~k}{N!*Wi%_ zFO!0vP-xz9P@n(oshP?`TsQGA1oTHx?U8-leU02fxqAMf?0n~(Tl7Y(HNzXv&L32o z1K@Cnwa8#R7`e$hU)=-38$bsey6?p@z`Jb&X$wA=D z0R5QBm5WQR!VDf#5$$nSvOY?pgk!E5VTSWkLU~T$%Lqxa`*0+)K1v@M*~M-J^1^Du z&gmdscO!o&{L}oQA)*GCb|_}oiB0|>lj5n?qt$%~sro0155vdnaD9`sjj6eM5+@3` zY7mExbT{^5^~B5(7vzgJVOIZp$?s`E3U1u7{3EoV@Nhc~$a;1tUnV2u+ZtJa$60{J z@I2Iwvs<|iU&p;O`czY;B72p*<2-jO`swO{ObbAm%-X{!dC%}A1B&!}RglCLu#H;%E`Wxh_J z{~n9QxAS80%B2`1k)Sqi(2&|HS?qjY=RKM~z+&;WooBL=>Whf(&-ujRjCntvf_V*k zern{bN+X|>RKYRwE*0$Igd3QJfl$vG%|_CA#AVJ;%k{mG>VTjyDyY*ONMIaBnSJ@x zjZZ!Bw2`b8D2oBb7ak56+PvQQ!rD@~Kj5_b9zSz^fi~18n}iXn2U*(hO_ewERlHPl z{m`t!6DErnRiDMTc}(xarxHF<-^^$6WF&?1Q}F`5aAJ8X(gP^KW~3_DqA|>PH`qq( z&dO@_9JCX8{+EeEv$nWDj?#b_VW&)j$>2NHm++}Co&2onw5K6_9l2*ZOZ=T_JSN_hA_?vsMe7>j$N)b`H2R8;Cxm39nrpXKYgz}?f= zF+>YgVvA5nMF9`yM|>TcHV+|qcp*dDJ-CoTRwdbqthr0=HYHU#f8GJ5uv~1(J{d7bq>M!p;{sz+ zTK+A#L1|K&xeo||y%iv89OG@e04{A}croEdX=wv|tbbKbi z#>441A7N3%6KoA

>SI8K}V)d%Nl6V>%(7B0J_)U8|(Rh1)xjv8V-eY9tJfj&+9; zK*cb#2158563x7fdVyhkjPydU_gIv5ICb0>7%!#fF_ftEbzH3ZAH@@TB+Y-nJPg+S zg?OMGd@2daTHsbZ#K9J}JxJJGb7;m?nn@#KxSF%arfG`~K+@yrCYW%(K-gu=?c_8m znJU}@Y8l(HX9O3&UtngiGK=gaR6EAn(TYIPuK>z-Y!GgOK|Q|rmxCzSqwnAg>3kO+ znEeh+@lhG8nY{zCTfPPPjB}S^X@bXQ9zr&>5jnAC9Uv0S|AE%V*E{EwdY@twUSf4D z|Ewqg>I)OB@KMi$8Q@^*B&r>4SNj)yXGO@8$C*_>&#PqTrD?%jJka#O0-427u;NOT z>nY`&2ve-e#gSc1j)~E@c@qsxYq$v*qRsAJfFBx5|2m#a7Xj1oI%H?n&|>TghdSq_ zn)OuX*6^z+4bzD7KY<>kGxzKPbl|W{mv!Gyn0S!Yj|P}v4%C>9QvTDyUFy1!r6*Z+ zNiC{IlNK_r38HP6s(hBow2-3Ei^^2;%#Uq0rQ!Y)i%q}d=Z?YdhbZrF0}u#P9xJlcmZUV3 zt^v43LYURiT|B3<_Lb`SL6`w^nR-6XXWA6xS<5^Xcn09Bq%x-mk;RpK_BV4-C2|d= z4Ez+i&a~e`o&Qv8^nn`VckJje9iE#4-@zqZ*#&FQm1rx{44nO+LJnCX$(S+%Fp%GVGHF8{?<|ryew81%1>86!}x-jG_lvVqw#f_FhHf~yS_gt0Y>+I!D z)EjVTCEduvYVoo-2$xZzf1-+2&f>*u2A)DHuIv_9doL>h*d=rYpf456P}sYSB$%UrXn0%k;Mg=j2?X%- zezl`F&l$KSDFOSq^>Svlihl`{Oa1U2_%@o~C`n*%c?KS8U%0xon9=881?d@(!y!_##JXJO0C91j-)3e(=1C zzNyX2#-)3D!;X#vB>E~Nye;Bsrwqnvt4|$id93rEaj>Oo!JB}csbz0vyzf;%|Amh44d#PNnMkRM+#al^9eqH#+v}}!+ZDe$fKFDbIxZ`B|Du8?(jZa}ru z0S`@j15J938K{4DvsYMbK(_Pk_B;oSEbMRwB`RM^UMdO?8%wC{`WCoH0}Z9zg@-HB zl5&-%+hRaB0-_qe@Lo*E-^vno>Y^N6nA525Jp7kP9Sli~|7yP?;A2|S8%BQGxj*99 z@HO-AulM0^R$b{pV?Dp(2B30u zdF4=qALVgy6y+^Nw9RG$Y>}$aVj_mp%$Mw+T>icnJ&&Imo zT@4t_RI)&A&gED{LDrIoku(^xi68bJO5(^QvT^|m28$MRG{3b6@^IWBS1mYyh1r4d z8@OZxb;;BAoT;0un-HiRCkVww3p9D9r)v-SOM9Kkbm zY?fTJTk^PX15t*HCwl;2VFL}{GGG`iT3~a`{{Tn`b`9u`k3xem;|G&-Y&qE`TgBBk z%2;zB4&H=v*1%~-!kpwRS+{&t3LM~Mu0+rQOwPj3@{cxcrDwqg=Cp~yHQ3+o!1|r zs1Uhu2twV3P=wmP7adLe{>U0b_@V!rGMl* zQtjst;KIPh__6Bh3B6 zosd=Tl=_XduBa9E>sGxGOS{w$PIB`{FRC$cfm30^Q9fSf?o%PYy7dh?&qYr5x$Sf}t`L6_X9$7R z#%74EjDWF&{O}v|yH{X^ZKAAfh|gp7$BhqK{V_0R9a~%7ba3w&hI6o%(ju6KPN{zsKO*}U*T?9zTPg}e{vC*gUl@i6Y8yv_VnSE*56}d_ zSiA}2hh&5e2~beIB_Ahf0Wl{92ko%8oK1tY1WX{vj9B=zGGZ^5kk)^(Bz=UkZ{lg3 z?<4|19E6#H$QV<3F3gza%=%PYa6P^n$ywXAMOW|%U-Of*LfV4Cc*C9Bi?GFmsR$l< zYYHw7N39jVLK4R)^Q{6U&Ew#>V@n3sDNCAto3I>!YjWyw|0*vdT5vm!TWdH1$xJ4^WwMp1)NxC^V% zi3%*Y!$?{qB#+71%WNm{ZrnukBfN&s{f?TFjFv&!TKHrB@;LoxOuA;dKyuE1nrrdL zTM|leXArHb)6n`$99puITFTR8uEdvI8X2z1!+4#W0IEPr63iPx0ZtB-;l)=HhA00j zo~Y+o1DFWhq{5pvKFHdV`KcsDN*;d0bWrMC&8(pAlnU0IJYiM9^_q=dmL>_!>(Q)@ zf3X!H4%ix-EJ8h^;=a|2+*+C!DyJzEy4=Z1MVhjwCTspbkx7^{RUcpGn}??#25%h1 zI;mx5E$p+1m{ZSBHv0(x)re5iB+nC1V8$#RsvgQueq>g9F(%a>d*q3Sw_p|290H^i zV^8syXX7&LE#dpWjhd}%XAZM$QT;a7P%dbfEjMH0j zQ+Bu-%tzibPK}o@Lk7DySO!S!Yy zO2wLXYj_zlW^VO;z}#*aGnx+W8^G%&afN5xi%NHs(7-oyZ?x)%P_@9hixuwHJ5i4F z?dYGg@HmB?OF26i5evrhLpP|}dnrnoccH3EtASTOZ1oQ)cs>f6wN`!b*Jb=O8{Dk? zcN}@j>i}5={6VCw&+uZDH{kDhS*&@N>PH9uFMyhpFWYAPNC3*6;-6KpqX zyn%o><=`XNv~tix90krfxOnF~{-$ewTGX7LSg++TmSlJHHyc5^@vCj5bAA}qkV(V? zNb(*Vrt-kR-t2iLHlwpTT}`s2MhcbKTJ7)u2>pC^RlOBT%Uj~ximm7h=hf-quTfFt zyeJp;LV|4psQ6IZcnmNejVnBJuvNuDRDtpSv2=H~_h>J7qxWbZ_s&XH>2C;g3;8>8 zH_n!V|9~*EQ43_DVqvVCIhGe!M(a&Nj+|@U59D0wz88b&J259P6%!e^VK9AbPPW@p zodUEbrZdnL+M*6HJABbE7AF z-Hoc|WMqu7R53KooQaZ(IyP1cck^R>5E(%o{{Xj6Et+bMMGiE91HRdhqUYLajvz1@ z5u*MMh^N^fDbOFK4`nS2h>8qepcrq0IT(2MF5ApxF*zvq(AUu!s_qfk9!yVBP$vKd z?=i^ug%qlVy+vFh%A7exSTK1l#!RC;xDhWC4=8pHpxGdL2neXlO_B+)=q_+p*U#ZR zWDHRWQ=qHe%Yau~bLxL`c1YN4oeHlD} zUb!bymEa#M76eRUlXH!yE@}cas4j-FigW)9=>*dEBU{dmT7ZqQxi^6TWu`MN#)+uC z0jBQWrFWwVo}ttS1rMN}1w`{@Fu{B5YR%6RVcuicxSONjzW`0_jzf`wR$s7DR$ulh zRR;6ha~w0bM&7jLTXINuq@)|Iz_4XD&2TyAMnK+xwr(B~Y`M+1F&1F6z5 zmC(}^)slZeRP{y#lve{=c2wB62V^l0PC*wXll>J_grk|jxU0lm18_EvFNV;ug;zsX z+!^4ldnj$k5bv>`?g6CIx!@)66J7==uQHxjEk=iNwdzRreH9hLGPu9sSuyMd#A+)_ zNV83hrobz9w6{UV(5n96P|Rr1VvPT}>S#~kqKi{I+CAue%|!SWYW{DpNk_#Rzex8Z z6jiG78&Z^{FkCpu2@(P{VViB`8vN8 zQG^my0(fvLhDeXh7-owC?rZ5P25}UZ{dN`?DN z3za&iNT!Ey&lbEz@3GMc)rbeXwVFQ%%=FdAX_h7Ymm+cI`ZeK{Cf}D;_)=n?N&BHUaeNH_yt<|h-&3oD5Gj~s?x7W>9|^!qac9) zO9@D+d={YBYV#^$KnMNOk|!JT8dab`VRME1w;1JDt-C^1`w~7zey8+@j^RAK+m7MA zuzT!2$Eb=^6ad)%w~;_s=}rE^@^c>}U8R@!3%kFFzcBmr_zQDChrd^8{=b5zIago? z8^1OJ{ZOH~3JH}Q>J&ljR$pztOSMzfXah&he*ggd7f^VC2QfTG_+P~LrXcVl1}bj zc|coN$paeuraYjvzn2Fz*N}(D2>%vDutr;ez()sS7}miu#xRs!lda*m;xfD@8EgoQ zRSXCV;xc$8gPT=M(*mGctA2d#|(FCfjcFGXiwM`mn%zhU4w(CbPKBLFwJlw zW+DdD=J%(~KZiE|EZTek%0`fS0J6GWx5f;QGwUPF@F4m3D7dojF(q0#0KV=?^*o%< z#p-z|p3$7QKx8u?@WkF^LIPqWc~{L<{SMa0oPiOdWgo-(=b};R?!)L6zeR5tQ7nHN z8R>z`Y@+!XO2A*TEks~H-ho`;58$+IR9;1iVi3ff1`L!xF8qB5dC?jSUgZJYT!sf_ zJtf9#6zaLaarM=N%ME)%TS%<=A7odOn?vlU0K9s=imzYdE81S$9217Muqv^ZzolBf zEH1-h$q-{w=1FrJsD%rpNZjy0@fpt#@p&trZIaWznv0Q9P!mT}J;}fs{!JHu68)J> zSff`PDs@v|JHbur>mmG#-`EY3jn*i;H?x!)XXpMV zxZwxBIjvU~7bpA^_${XZ4AaLm*gRT$DLoPi1cN*-XB_R9n8(m&+^lDthGAjzBX07;>GhF^ubvnA-)c(#>u z9-d`+zu2=3eE#7!%S%?Czl*)+#czOa6mMQYy6vPoUkiQZg!++Priih4l66^ECNv z_mt0}dJ9AUQyh7-gMSe@%{+XeI&(j!Z6;>ngP4g+@DUl41(wabYL$3+A2H{`k93IF zxC`O8-wq2^0Kfef`0XxOs?qSKq4v? z{UYlvI$o<9IYTP9F}hS?^pHw?4Dy5?h#UKX`$U!KMk4x*kwtkcfWbE0uVW zB(g!DAi>m89`+Rda){sCy3DtA9gpfChtCB&F(U07=VU7TirTjBC8ZQAW(=`aQ1f%H z;S@DQY`z-tk7rMh`p4mSA%&I)M=#z`CJX*6%qr%d7NCmXAPasTkea}Q7SKK%9VCrM zvL%$~@9-V?&R3U>r9a$z7-V zC7*)Tqei`;0Sgl9l#_3Bj?@v7Ia2?Tc z{gC!{gI+%x0R;?ak1LX}u7w1w+Bh1r5x>sWGJB6v*l5fpR^z>|bC=68UEbijE*uGq z$wP02yAX=P)u?s?VIR2$A76@bl9E2|HN<(Y%vVa&b{W&t5S|Hv({>@0nygY_xp%@) z>@^)|jo*zieVzHbv#+l%RlaBKFTKi`-52PEjGVrXke<`mhgZz3R1>7LZ}ynJ$#b@5 z*5soEf;{a+z5aF(ABg#?iN8Zz$TLtR46YJD4^#Oxc*pM1B>~M4d5yaPFZM%QHs{Dx zzwkuqmyw7`q#Bg4;>-@lphF@Ere(C|B8Z^*l+<;Qiwx60fwUm$KB?{?q26dE-D2g! z*PHN&s3?$R3wv!r54>d7m|6J2KL45bqRM@&5-cbR8*`h{imXkgi45k|Xn@C_7RMH2 zE?2)ekdmtl zlPFhY5L{c}Xs*MbN-UpYe2-<6W>#hGoP6^XK%T#ou0IFL(JIk)2YPRCArxJejr_j2 za=u*tyCN4o9?TxBVa3~&Vyvh(gyvFi_%B?nG{85q`;4E&7&rcmjC*`8Ig+B#Yb4Q! zeT#|{K*S?LL`3Or3_Cd@8uuSt4#=*)Xa!FlIds>)V7^3?+>bti!Wn|72w6$q9Nb^~ zuM^mf>Kt+j^)uEWqV~)%9DRJ={58;~zLNl#;2C#&2c74znm=Re6K2#y>SCMgGxrQ!6(hXl@O_E+*HH?)U2h1l*-fBPjQpc0F~fi_X)srFy}Va8@I0Sr(HdE*emh-k~J9mW8W#p?j#SaJ}vO zdZ@Q^pjJ*d$|zW7lpP0rbfafsaT`xCp4gV{ITUiO;+qvz09TKwx6S+^yhe04k$%b^ zprg4D9nD=i!`#zyE^$xxmb`rp763}#zS4a?{`PWTgTLvR;468%r~6|3?Sp||$=liP z^R$hww^X>QIKyO^LeVNnG3C^ z{12OA{8m=L+dOIJ-(iy}e9YnWYxY9x{M=N^WT7EIeUT757x$ywTApv_4BFm8LT^RI)b;I#BJo%qM!?n!n&)hE=B}+DrV6mRe zqROc43-=%u>*3~owBiM8^hZ`?w(+tPuy;LY1?n^25!r6@q?&&sHE0|#d&0+<7@TbGDh7|NFu#LIq<{WCa?UT?@|NsG)(^<=lFjI550c|!rH_3Od{VYewm2FE zOSs$p{n-{B&5PN$h`c_sB1Uq}&#H{VrA8vV@zs3E6?pf7-~z88S)a&wyGuxdr=sw7 zq8Zqxj?L*PgF`e!jXTnjAN|%67#EThwS+(3YuQtdy$$U8DL|0Gs0?G<_AgLjyQw=A8x%3d4zl(P!3ATl#1_f^9^8GTc+seSn)zcj5ZgNe`y}xR7VHYrmM;q* zgw2w!gHfc60=NzP^n&+rpOUYn*`fJMnW~y}(8h2wd156FwfHCZP9crd{(Qgmm*XA5 z+(ZP8WYS-+LA|cU%z)b2V;Zi-{18B1qi`|$%mL^#Ck?~yEC|h$a9#xI!o}#VoJK*t zr8Iy1So+9G+=ej=hhfD^!9)$mod(FItkh^)sUNXV1duySch$q%{R#+>J4dfZ*EAM% zX5TF0Q7ByNi%J=z5z80k)N7!F;aP&6U;m)S(!NGZX04c}3?!nIRbd-ElBwgoj1aX1I> zfmAqjNd-!VKL8bi## zw6(>R?5&`SpQw&mydUedapM&cnA<^V16w!#1DhttxN-gz-u+a_P$k9z;qm`~@=gBC z+j+svR%NGsmPt+yFZd9BCqnxshc7}dTH{_6y~1SG;>i0PNKBq=jGq|Z{xPYM+%}iE zI6ZHm9p7w2nQPnwFwEYMifI8-~~h85cjm z@ppPBYp%xbJdnt<575t5~02>vf;3${`OVJf22NSZ;na6=8gWx;c2!t=UYJVNS>@Qf9n_U5yEIf7qqtjx* zQvE%~r(Aw(Mjg5Yq|vL!(3nUt8?`6w5<-3 zcuXF0-2)7P7;8=0X4b>~(MFJEjIu_&1J1&6AQDdZ=o|qUf&q8FokVKZ2iQb|j>XrR zr1?K)4Tx)w&`mI9Q|#WRL^xxm$G?Z07e6l&h}7J;xaj|GxI zQB&frtX^i-Sa~lpON%kGmcb_#Rm8aehET>vye+uD-aF`X* zxDq(A1;5&bnDnhi;gPMICb$PvJg0+Nu+boDLOAO)kR)NN95TRaC651W#V!QvRw3>E zuJ5>LV}}I#i_N$4ekFY;p;99#0$)7@5vY@a3hy1N7?4?G-=}2L1LtR34KFvy;YN&) zu}98*C%PE-tjw*e(}T_|2sb=V32gp507L7Bb78NjqCXCn!?8)nl$YFxl9%;q={fVA z{VE)zM-J-eY0axRe{|NTbN*d%zJ1ha^<`Wh#dxdq&CDJ0h>Z3MQJ$j~xxa}lSbb5X zQAQ8wyx0WiKTn*Dycaufo`bnTy+Qv#|0t}3t-*plXmAQc8;NvT2Rk+*8t8g%A=ONMYpWOpKF>|713V*4%*X|guq{)0_W7_?V>!aqaM^blH% zt9`bqE;-dRKI1S6oKDa*4jAxHVR7_NfEFAygao4{o`_U?R+Qs|)y_%oMToRzSoV=6 zG7b|1<<^G>q5y-rTXtJ&0CGom#=-d;s!fQ$?*`|y^^c8SzN6>4OMOQNxS#VK9q4u& z_wdS}#MN|Ug@~U$fTnCgQ||U1ODz4xsdZGM4h(O{pf7so3gqhX&Q-o+Np83ASaRt- z!7&$fgc5FfviLFVtAFw__jAGg`z+&_3;t6aN|^M}mfXZi z5!0^fauN*9xkQ>{9eY$+Z+Q|~iz6!l>Ug9Y)J^6{mQJ&4GBEM&*D4-IU1|;05?DT>hxY15pb1156fll&Ae|{Bq8kO97e0ak!_mV7!UD1A3|Y zL#`hkf&z=6I=Z%Rc#*L1&$jTS10L}VH`uGC;)jyf;Y`>|p|JT|K%4KVaD8*hN#u`w zS#0oH0KDNfg1hK4x2|%SZe+6j*DkHHC{d0YKnbJJ@7PH~p|NZNX%&7P-(n=P)cg@7 znsB0{yU!@I7O*USgO_TrpG?KgFc4DC(-+|kPl|V_BNexy;K(hvz?^>G_|*K%W+qzs zZ~L$Er_QqT4>@CgwSStv3~ug1!13t_@r`SQ5NIVeeAQ7jX*(9tTuU(m9i`XzZ19Z0 z1hKPtqk|$OHm(952Fyj8EmG-dJNcB0ovrp>S13=#a7vpaaEvy=kUjopGnC4o5$Ss9Svl?Kt8w}4f#}>*g&92Z$p$h~|Hu z{l9BL=E*GA($Zw31npXofsF_lPiEjS)Pjr#T#MyeqE*zQW{#2pVVZK9(~%N>{v*o% z62~TANhM|)45Z;H(c|2bbVa^&QE|diz|4gUIJE^B9I#tG(HMNNY4O@VjL)nV)6C+L zJ)%*<-Az__Z{4-b#2&tr?R$LNNga?bp?x>#!v_`AOL~DVNmu2IgA~`FP*lZcLPg*E z2ZV1Xg-_|DjE`t9;prkO5OP}fa?{<4VD1}`ZY%nD5(CN}_5cjU10pd1qfdm4?^);T zbRarj^C4f&w2CpkZ9{sx{EB>CN%@+UiUwBPLNTyMu8gnXz6WHq@yI3~?4xeXE=kiC z3}t4lD;&e+AwV`At*1HQ`q1Y%XIncYS(oaUD(| zxJ9if56|QC%r@&x9J=D}WAn4xOWkOjH)nV+&vzIfUoVCT15x<#f5tfk+&*99UWpvI z;tn?}5CJMazCIyHG&^wRm7JpyMyiqN(^f&v{}e^As2Mkve3w5~FKW)*TdXH$wa;0A z**gCee2l9uJ6bAB1o!kRkA4_yUL|g$GT)}%q0t5jEOGm1TpnCe2=X1KMxlEQ@4*2a z>IF=2)LIEyp|J~5Oaio>wqEgsURZ-0QYb90YQt4S>xKEZ!Zq^?QVp=PrlMdqjuIME zfG^@wH}bx}yVKCVipdyRB1p0|@drB2W~*NVBaDLgFe~J%#q3+FcUI!n*o1(*-q|A) zAJGDgT5lA-7aTJxiMC`h;-q*>RwsCH#THf!rQ~P^RVb*RKi*M+penn3;X#aLU;Yt5 zQ&ujV!MXL#~kj;bvp5Wr8G*hbSZILB$4=;+yW(0uPY-1r~M^3_7H#6r7fO1ED|QV&O6s=5rk+QWbdgm8`_Fbg3jFdI_R~M87YbrykLTVLJc{OEEWv zrA?M|Q#JoIwx=WvW{gr#VEIFM!V)D6|L}Y{q*e+W)uILO2RP*s)GK@G3>P9?S1>JG z@7R(!JU1`P)iS3IyAd*BL+c&rOj~fjkOP;hZVo={@KtXE8e&QleKl8BAcELFtYi1f ztRcU*j7f3~&&_h}oAW&>fOVi|d>pAC%Pwig)pSM8G)92R?Qpbx`w&(&tEjoOZ_s&x zlusC*pNj<4kBRaV!uH$oH{IQ5e!Lh1D+5iqWvsNnx zzDEW&{EQ;MQhGM%K57JW!;hmzw8U~Qaf3(UN_e~YBy$YuXj{%fiWE(C#-KMuoctW&1u-B+u19Y{8 zDTLA3-k4RVEzF0E2lE|xT*Un))LU$>!;`NwL0gcDoSJ_NUJ(io;hWHTSlU~%YcR$M zzM3(ZMMo>m;hb54;Vs;jB()&7R&hNFD&>dCvbEmqhOFMBXmu*fU>&`nb%N};(+l@) zab)sDxr%mbwqq(o>9^0eXYZi}SU8o2rZ>!$3h2$p|XsN-89E5y9u6 zNreX|=v=X(9_rk3j74?$xZ;jre@YRCUcz_t;{Sz)%)p?eI#rJh(9gAE@vx-sjFQwT_)K8VN3 z7b(1t$TzbsE7=w{!?L^RK}j= ziI`2NVKMK7?_5bI(PVr9%m1Qkz)gwMj_~e1@^gS$HY2SlMb9M4qlm-DY{aZnnj8F7KxPul7WXcxuhIV)=`?4D6jK>9q zo_!gIphF3IA;hl*IOC`-kcO(Eg)nxo=s&x03x2ioOVK`LO*aSQ0o@PadbXLvp=$^o z5Lpdjv>;gWXkLd;jLO*pB+!BtaV>Bq%hsS=y}cq4G77mgi&3rK;MgPB#i8?WmPTLx z5{iQq?8^tB)l4d5lImG{h!X~@>Ao34q_@MS?}MR)r_gMsNP}ARcD%LtN?M#+;An@m zQE&IvBv~|rNih#dvX#@^g*V72=g0Id^VTk5$!h@Pl#l_omN3Yi`=@J?Qct&qbJpc}+zX^Ih{~qECM@89Q?ykmPNT%(rnwW%6#u2k(Nr}OICN!J;gTkBsu`fAeUGAj7*axB z&uR)t?&hXf_zO9~Fk7+dZfxn<{f+v*$Na3>W>R1dGR~L37N5Ll`wK-mqo9enDf+APB)=vBu--AQ zzaoK(J7nCMrmNUMLJ{KuTlUsIj7mVzp(N-HScWwuo4TOJ2t0wWaJVz;GU{we>_>UP zMfACiecUsXQnMOnf4{p%m4cnE*og5Gi2Kd%51I~uR(skuyAYZmT~^~IPawP9inh&& zyPV8n)&{Cdg1b*!x8)eoz~ya2W>s^p3Uh=VXqYTlNh*jD`bWL6S}%N$HUaVN$Mm|)JsEWvX7*HQTm0{WJ%@+K1#fjJpJTTgX4GYVz@qD{ zqFu{iB58?g>(+gJywbGBJ{9=gUrUR?cFW+AT3eHgFnj%iQ_)FbtXho~c5NZYV@-{b z?)abB)Tr<0Ulq$~J&jeMW>!z*mFdXj+mvX?tt^II?Gj2DgwMvf)Qm zBGGt8^p=}}LUSqp{AcTxAwt5PK%T`=EVYS9btVGbQZzR#lBHxI^+`*aRKTlp!c?fR z8$6r>3&weU*sLBn3_>U5QRo@R1E^JOHSO|xoLDy}Q2~`dac6&}VR{t_Va!a^*G}Yv zSHM32i_R5PTQXl^Er+bjW?C(YM6eNyGsTr%cwf@>91L>94!ayeyj1&OV$+rb8uACko! zNcd?gL?J9Dy1R{FD&U?XgjZT+PLbcbInX{%Y92#(*R;E-8zpi72eu^cF50}?wb?RW zmH`pT%wu*)<_b#Y*};5B=5oySWqX!s3%R9A-){uSm^fMFtH|OoJQ!8{dx|WAb~rvS z>P!0kUj-4py0{K!5JZ8mEPk9IcK$mih_aQ!5=7=UpMljgVj_j5G9^;?@gXKs+@oNN z)CBA)phyixnjRCWOU}d_JD`_V(E<;g<}KDAia^ao_iPE282YG8`S8KJVGinu7pq?) zRl$T<-Gz@@MLqjKi5q5AF-62`rCzv-VkK&9-RZREQpy-7AAZ2n9fi!EQM&2{cO#ev z@TW-E>NA#sSZ$Uvr;3&3EyN2{E;B-)*2DyA6=q?wJu9_^x1mA`6xk9dP<$1EA`7fb znocopbMOT+^_i$4nfZU0DKF;D&md3&|1^R66ISnS%SOS_ErDWg^FoY#n!3$`GBtj; zPm~IlV)s_tf&@15JM1;3PrnOcg9ei+Vs~)ugt3;&qEGK1wYzZK3M-AZ!rQS{qP{W+(#S;>zf2 z<{9!E@%fLETiwK0Q$x3SE#D8(WPiHFHP2zK2B|?I25e^GA-iPM0pf-!@)sq*3i#tR@VVr6=`aXObfl{EnosC%B^L{(tJ%L{D|R}6e0-sR z_>LyKpDNAvAqdp%zN4w0pI{I7mCWG^Uo1Z@=oJze0UsxeYOxiq@f+xf!18U*ols6?V7e<@yv|;K0W4Z4!vN7P+eD($vt3SsaB36-bUXn8c ztvF5_ei!*M3jajXw||R?LPuwq7cikH&gN#I2F_fYFCt&`{sEllSpi@4|M2$i@ljXT z-hU<;AYk-6)`(G~L^~>}*d~gWk!S-U5ET?ESgLRy&N4QSy6#_Wn*tu&3ud|NQhtW@ca3 z-h1t})?Rz9wf9bq9iE!@m^bNRuXas}a}m$HL}_E&-|IGyZmRv*jiK=V6eSQ9&>q!r z!BOS@%&kDfyG9qU!3m$P*BgSoZi@yVdjhw2d-go*ADLFfE#jvs{lrJ|@}Aa&HP!CZ z`Kree zh&M5|VZo~g@-uhSITdCx0TBb<#%@w6R5FEeP~JXrM}B!M$fkBBF9vQq`G zDE20;bPu9NOjF9tM^iVHAWEI(Li`wT)1(J zSIql^8(u(XbOjxT^ z3!AG`GoQq78G47G-ooZs?M7$$IR?g~#+UhU>f4+yP0d^#>WIx;ficio-UbLWSpHl6GPf1TH8a<}aSzf2ySG?D1+5&Aj{@Xp35J=<{ve^#54Ke@m43SfhEJfxxOKnD`oR<`W#-op(}d=3`>)9|nw_ zUWEx-M@pX%p-g&g>EgFQSL&x7{H;3MNn~Nys`I!9Pl`A6Q~Oxz%2I6BnS>gd^q6N# zl5EH=J?-PbJEVU6BSqYWPYiJG(UlC;4yM~gW3BX?H0EhVmFzd;#|MXAPtY)!rb6!N zZN{NDsZi0Dko~8RlfiLQ7}Wg!Gru)kQ;O5YKT1zs5egk5g10!Dd7Mj>T*rVr2XY9=-jU87h4R6}iX-^se7SK%8eeQ)fV7{^3Mm zeI@%1p=i=eJhuxn${`112EVimsIlAiuPw-5=nduB&5bqgq+Uj z=+MG_sqvGM=jP>|qMvcPkp;l;kGYBQD-@3X!^A~zr|$X;FwDxC3XTIb6ehszbo7xK z1AbWN-u3o8&3csg%qwbY_ZAI!r)Rp63)$UZI(MG2s{R-8Jp_-HvTn)kv;knmV&d#} zALc7B4d^4~LL&6WUQTas)qjk`6-P*Q7Zw%NpZr)E@7uaUAbq|%u(v$&KE_Gd!SLX) zi=jY;;+$ra4Qm!Yl2H-y=sS-Q8MClxz`Uz9*4G)27)duHq$U+(bLh+*&+ycmZJ!&N zTizYu?tEu(hrPsq0!QIP8)6Gfox8t*5YFieNCQON0pPKoln53?D{u{HSJ~g@fIo~b zmVJaUDb$HiI7cqzc^R=Lb_reKyY_{{!AI8wp{?~D9ZUGY2VUMzxY2J zD0mYmm#tO@ef^F6@&8T!x&KZ6!2c%ygZKNiZ{u$X=psbFHsUTUE}3_!_sX-^u$3G9 zX8hdr^pXwLC3(SoHg#OZ^Y3nRh4c8Pf)>A^sldb(W(dR8wLLT2n7P9LgrPKp5kNq# zm++Cf_J89~H~jR4_NwQ_j<$DBdV2MS>gs;&g=~AF*ZiP4zh86f`!_d5&AtB<96I)W zDaF%6+U~QDGfAQN%%wlpfv)|nW%bkDce|U+FDL}=JR{BB`nai^vFt z2t5dqo;x2v7IhZ^f)cw(T`ea~<>niL_f&|xCclRQtRI_9J_Y*ZoBGi5BI^H|d}10* zZZIC|lfoUt_$*U=dqzdGi~H*LjF&@`ETPC4kyn0vY(oj3;rNC8Ev)~N7xJd?h)z^} zA|(_*U&PZFEgzs4SbTUPTkxjbm!=@$D1J@6;tVyX+e&u3&1dRt^Om!qzuMjDcyt(3 zTj+kUM~*+9`nJJ-E8$lKc3rMeg=w#&lYFW1^0Ihg_Trkx(Pi~t>zVXA4@yrm6Q&6v z0>F@pzQZ+ILr)aPf9Deu6{7)|EMyJJ{6Jx5qma+IZsIC?s#<^T)Z5$NzPfvq}#=zSH{{dK%Q- z2_<*GEs0BSgmUS>0lI&|0_`u85;;j#>y}PA5?~>D$fOpg7R#+*B1Znm7uKD7>zpK4 zXY~BO!XPK9O=Eg&M-@?ryY+RR#8zQO3`v9Ll%gH}v|snZ2xq>T)47)(#fV_=geJ>Z zPj+qk%8tf^m)!P8j-Kkq-wN>S?mEw$T)t_AyK9iYm|{$)unSqmm(?si$v#tyeJYsd z><2miTKGCKx68Rog=KwPzR;oGKyD@_901?G{i&XFPt$*nrAJ6Qm?Dp5UTNsI}}hsyz9NgMDptiQe8Swm(e{y z?En?Jqt1pLZ%a4iU#T}Yh=E)4vnHx{4M<3oc0hu{cL6oBB7ye6no@vya&1lX! z6cYTkbi$DT z;I{bM@kj_JF^t#@DYQ2wgOxbmYvjV*OIo?A*NEg#KvCin#wq*%SJdwd+;ysGP(Utq(OJ z6Fb#+eKhM;sqn|)4Z^OgBklnrS2Wp2aanvi{xI`4TsQbU9kgl%WB$!51{rU;pjS@` zo`k!%rR7frXgGs6Ap))D66ZyfJ+ZfL9q4grg2NVvIjr{$$x|(b+FQb`*Z-XT=b=>n zp7M{An;TA5E<%^nSD>g&eWJ{{l*!@5+mc=D9WXC>9M$hCbVjDWDDyJJ!U3~(>M3Ay z9e-W!61~Db90W@ZXYK+K6k^&Gb7U7zyQZdN_~d4OlB)g08<=SXSmkDS)X?~4?)nN{ z#A4LVzU4os{MLoI(>lF@3MCsKW;1k?H@+}aldD|cMjM57eP||V{|ApAC7U2=xwL}y z73N--zuDf;(-^|J6RS3(_IA^rc~=)i96jI0{4U--8;Zfmks8~FKdLdA9>X7fRg%yM z!y?>E3)Y|`nEp)ZBt!k*k`U0Zv=b-!APIH#`=m~BMKewDjj*)M_8W#i-GU?3_CfcL z819C=?^LJm)v~3`AA%EOU}A>jT!pTK2RM@L3&o-}9Z;Bx&7j`i?_Vltw!;EOHVMbmd*Q4m%!^h}2H(85 zQs%qsmzB5E>}|_~Wq+k5?7)^?U$CLztEsf=6LgT2{m?>F>lOkYZ2^tltG`a-6RZ$5 zOOMMw2m@O7$#sZ?u8+2k%Kh{XB2=zm#lACC79W%yj7Cr&uD+ta+e@wn($a`gAuj`5 zdlJ)<@gW&4QqM85K%MGy(4F2WPyf}Vuj%oAuBxef_19UK&*G}bQ|>kgRb-y?wqVUl zHA+O)c*%z;CEYnLRQ-mu^tX?s(yGhZknGu9E`@$%0Q?(i>F{&u1!FtB&a1{~#aT%C zrDM2Ry8bP9tssTsXPNCZdvEhQFaBos#iLy}cN}dP(^K(G1vRt3OKx6te0DTIuS_o( z(-E(%S;~UFu_ml1Dlhc<-{+6r&)fHiIpi2cBJvuUjsmv@cLH6u zQO48YM>RiUZS~vR$4A9xLCHXH_LI-Ne@?A2r93M13YSmB&(;C@Ge(cCI{II6Ck4vQ$m! z=n1oJp}J!Vby0{B>HY>FRoFuFk16z|DZ~M)0rBJ2c^pyponvZhm1 zV|d7q7kCp!rp6ZuCSON!<64k9kxSTuuakKtJoq{_HNGnNdUI<02wX<01~BA;fiQz7 z+>KRqE|{jIeIG>1*J$KG&JM}4Xgo~8YE=06F@yLkq;2|ZLa2=Vb{mQc?1*;;g}q=B zT2;8AFyH1z7g)^ZavwFhWkK%E$K>8+a-%`+W5?v)Y;uPOxx0_az0%~47--uaxv+n` zBTQ}uZnU%r9Kx7?Oo<_s@aKq{O}y=daB8w~ezNE;;!FkWY}h^$-ZO2Fa2|6nFW`*n zgc7DOuYH0cWg+%mTsJwyQb9|ZN}!(gOlD&9>xVVT<7uAXM7ID9TDi_ z7X6qMac{5UhdJI=A8{K>@v0`3g8_1W5!hSSTLi~OxBri1%;<%;PP--pT(v@&uU zm7`+H*{2*e8YSlr<*1l)4k}0O3@0bvx1F9`J0k`<2^}ah#Z+g&zyN?|_U69r9H*RV z5p$d_UgBO#;b|m6=iC=kA88+N=1qV`k)?-fBz%Wrq-iogIDR<>wgv22tjCV~e<{)U z0Y!gpdRCYkTV_aNY*dQ(By(e4{L<9P9T?4dq%=G_5|5@%e*NgLp{bK~e-ukV)02Q0 z9dVM6^QqduWu2i<()I%d_g_092eb7{ylN4a8cT0L%#Z1f@ewcOi@H3%Oduw55Z-gO zbfgMKj}JS^CaR_H9PxBSN%iRR+xGp+s{wwby+$DddF?e(`(bFSy~fgU&2XC-w;%KE z2OCCOoi7_zjX`o@eNjc(_ic}#(Gf!7$LBUdYv z<^zAmHH1QD|Chm%F4PqZ{=A`gKU2v~1}oH)6Lker0o)1FQ*%lQtG{PJARI}jJ8m=pAwf;lT3ogW$yx6~ilOnoYlQFQaseqxDa{y@W0HW_!T{P^L{2{EI zx)j>)b2NRd<-X(+fAToxFx0I+SywIjf`F;oynn<$Sgq z^1=7B$bS|f-j5pr(Mw86J@c44SrF|B#ye+wHE~}TJ+c2EkJdp{ys9x@7jV~4fcC;P z7ln+CLNV--j1l49U~{p{jxpP} zJYi6S&*h+ag+XL{jkc@sS3GbJ?+0|XSF^zXrKThtty+YOW$#a*Z#NUM%;^7sEbxQ+ zHrAl%yJ&(M$dDbN=z4zi?#E{JA^JcLeY%oDcn8gp`>yoCkl#@L$w7YKwLUOU|55q6 zZ$T*QyV?iv?^XUAL4M!$Uh^?BnyFX*AA|h9D}K=aH06VK1HbQ@AGCk5^6P{AzAJvv z{>jRp7Ubsz<4;MG!FYP$$7GJmWrBFkw^r+*@lNGm7v!($qfP|*tCg=87gX;&rbZ+B z11)MYt}IJW8RovriP=mC#FU;gC5;J~1Q!c%M`n%ErkVtf?de=2KqWM>)B!Cs;-w=! znL#OFu^Jp7pS*~(a{2Lp3T|KE3~8>fEGk&$jRk4A`f~&QaSxmrpX?quxxPc;1}b?H zz2khSM*Ss#X4mC1GT=m)?Xa^rxRi`vum(;Wo6*$hQ!**Fs|66 z_e+%$FQLb!C+*RRt;GKkE3krTMHnBY6*IUVF7=R}+@xHyLa?J4;@(*YUnvb2xMh~f zQkr=Zska<2mhxRL1vBDvx5BIjfKuDd!ea7!$VZV{bsP;~$JBWbx}d>q!P!jpQuY57 zxwit(kq%V8jRX3h_aX3dX{kqn);o`dgZQx^db*h{)2ikYl&GmYH-U>XMp_P>7ombKLnpY`@()m{@GbtBF|Jm|MO<nqn^sL)kxBbxHA+^V;6+GlM_h5<*R-g#GSZfqw2Y~{zny!X#+ZbSLEp=qq&c}( z+p$_J&i-~{8J^>dF2S((%bxfU0<+cFVuvyYZi90Y7w~1#Rp?!8j=~(}hI*P_AdL&a zj1G5^zE4|C)BrJ4xk_Kr7xY2Sj&{&O-u{6F@$=mEvrMR^u94iukTfyPi!JYVuYeu` z`EC319b^-?_*93r`1}lbX-@X<$tXxA0CZG8kIVrK;EElC3Bj+jYGFlhg_V6OoUICN zR!TBczWCn!q%>bPj6E-1Xl6rN)X$8&`@sc;R2d+`$u%HLGpy zqgR$$Np^FPUS{VvbFR{J_vClLO?l?(Vyj<8?hEMk2}9qr?Raj^jb{ks@ml>eXxf%9 z+-A%7wmKc?{%J?^^N#7&DDoKrGQclVDPmNylB*fo$m}BKTU>h_SrYbN!8_+45&lek ziizv+{yej_C>O8d?k;@f;jf^(j>?Ol(t}p3AL+4SG|OM=E84Bkm629H*m#ogBONDF z;XqHkoSRA8;wSa`mwJkSuB@x-5#P~@pXEm~chrC0^X(gEwsD8#Wv`Q!mmN}_DoyGu zAt0Y**9CzmYt93WdD9;0U;@2Avs8s=w%xRX5L;4zsl==+d)(7|mMTA69QeDYgo!O~ zDGV*4SY+`*<<8wjU`OyD{bk$GdrWkDZDDz9SM&bXP<>cOF}#j!e%A}HW#XrFz0kSw zu~7Wu*D~8)sQ-kME`tocZSP9HFh750Tjynan9Z4OQ_`p`m$3-s%{_UsuTOVy-Ua$J ziMM6B@n&$Ix6^wmg>y1Ixwj)n`(x}CC2V@6P7x7G*z@}yk5bGeB&dF9Y{$H_xg-DW z?)~oi5_~|Fn~5E7i*?Q$u2j-Yya!jR9cM68xw(5kVGrC>*UgPFneP4Bjn3KwZuhYI zQ@P2bGHr+*`wFF>FSM-$3KaFR)m$b z7RO#8H$;J)3yJ5bfoOV%zK{HcjNLncWvY9h$2D#IJsR0C^?U!@<7qw)G|iid(;)3-lX}X6Mree+Ruu+ZgD~1Zy{2WG=tc;4YEwo$)4`-Y~upL*p|6pCVp|!HZGdg*{+~{;#3Z9 z**Us4bL;zt{!D=@{L3j}aFp|Zmjw5Y$X&oLA4AB(V$_5=$)5QQ-acB#lTRRVB(`PV z*X&5M$4mZ?Ubt=EY~h2z`AJYipD=-5+Byco+#5cLH@u;+eNfs){_gWya`-SIGxUZ2 zara!Z=k_JtJKVSOx~FBj-|=rH(OLVJ`|&Vu+MfE;XnXG9(KB~Dci%}yfLK$=JFs-p zo-I3Z0$a@P^>%m=;X7MCA|0~Z@)wASt>u<1zXxv+Ns3AX)b2;`uHD)F7cOJnGWX0l zw-9k-ntwWN$bU{jK*#pnnz8$N@~$vfFB*LIoHMJ9FikDt=D(hE798_?#xcKdJm&YD zV}8ev`91%b-;KxoUUtmyrel65j`=bA~~PBynh zI8Su~>Sk{6sBoT|7#-zpTKsNaBT8R{8y^;7?W7l%I8RNDj%?W(K{Abtj!@EtN~*{u z4d34$ihmnDgH4EgICN@rcZb`o)m69fgn>VsmF)@EMUqPSc_W`Cd`j;s=2QAqB(370 zme1jQ7G|F06qCEY?uItj#rSD#W$I70UjC`k=wko!YFvvCi#{uxvn#D@Z(=lRSR}hM zSRl1q$YXwJBg$^IIJF>J#tu(cr9`~h^x=OMrfvx@HixoOUoYRc_^>t{w|xzF+sP)_ zVm3+w3W9$p+J5*JpU#!fzQTUjL>KG^aO%lu z7|kcOEUEx@jEpOFzI|ou;0~72B6C+-dRerCK6`vnA)PS4QY)i{RPYi}J?W7i$EJ5# z)NHa6QN^fnkJ;n4+PLWa%4V>)!2F$K{>IJU8T?%t71ILSDENt}?3eKS118y7cTtUJ zzj7x`t$XAgPEo1&p7cu7nWoyj+SnTy3W}rjOLb`|oWZNr6M*oZ?+2v**$uUHm)a_u z;bJj6Dgp`<(QU$q?S5*FfyOA6SiUiIIMzCEa8QO|bWDPpNM0IVyk2Mw%x9HEIuUli zAX)_g4U9!?Ty!$Amd%h|9Z_g6pyW*?H6E>IHph`W-B~rLClQQSh??qV%G?9f=Uq=% z&q+UN23i~Y)P`b?ws0Mn{a8=>0n^Lu@x7_?SOaf@5Tlu*Yq96CgUEz{7OCBd_k6a4 z0K?%hCI%J37b-CB)3d_Nk8VdRwQUkoxy%edv^SXh-r<@>*=R17{29gS^)9>N_zdLbccOeP6K6R!OzOhr<4 zVShPA>7Gyv)lYR+4Ro^=&bmGBk*_tJ;~t4EDhp7V4*x7YV|+(YmU6bxqODMO;u;PY zf|5FzW*j7+K*;rUZ&ivvm#?r(UuwEWD){sM5^|sp(J8NB+b`jiLR;oAxA7GJj++>r z!=3Y*#Oda*=D0#R-VWtKcTZ3qqSv03Ga$~Y=I+jxBg4+30_YlV1Bmg-q%5D+jA7&7=?RbYU_NxO+A zO()D`j82%$xi3+_%4u4{7AwbALu}G5B++15&_M~D4-7*UM>7`@ehEXp$w-8dix9z+ z@tGt`8J%j+KPv#%AApnik?nES?H>gA_@?kN!*C4v;7ic?rkRL1x_k(x(Gcf<_b9}Q z9FJ#<3`Q)&*T$ab@i9iI;*aO z9(`nPIqonp@ke-S^59pT(+`av-`I(rW8Vh zxvS3Je^fG5UF0O1=}pxoSbPgP5(O3J`QH-?&;$HxKA(F-!flOVH2+NK;h2_E75>e% zkMD1=u`n`>I!I!MX#RZK?_a!V>u{8tStvZSC{)+ov9&5nbPqzH4vaoP>(nph>wWfX z315v(%Bm)H)sReGh%ynQ*6hsZYf)ykWI`g^NFC(1DQ`)8@xi=C#fDuabFu{r)19y8 zyFN0ynR9qN`bz2f3Mn zv@aH~1H01)cVdSzA|O46qmuMUUC|vv8_GAhNB+6t%%>IKB<5iE=9{}iE|H_tieqV3>b|>~$5C_x2sb zwl8CK7auxJA`B+RaNoL0F!#zBmR0@Cz97O`N50l!VR42oOWvldkNQz`AHp$VQR)8) zwXkj!L0}@6%*s!=jbM$L5z$0IE_|3?CCY7!BD?>03b6|TI4ZZ)AbB_$O05nBR&QOk~{tN2Ry2AAIrH)_N zq<}gmLLL3&Mq&+Y`Cm}S94kA6RSxQ~Gz_7P^8YU=x@m=->%GT-+@Tq^WkE(j`8+6y zrywVG*ImfOw~P%mfb1G5sf<~aKr>?dUBHVq7>p%M%aMuO5kk(YFVJ}MA4xw(5bHfP z)RhV3^rxP1idn56L~{>=8!-zX-bdxHFhAm{&?`nKbD&sf$zc8(-^H6C!{}r;LpxrD zw~uoS-t@5lZGQeudDlqI{tfpbTgLVOF7KFpQEy*i_u}4O>iyfo?jJN4Pa5JX-=J0* z`f$TtfrvyqX`GK&>0WN6M)*nMISCK(pB_KJJ@{EeVXVbjzLDSV?C8{dAWTQ*$Q~Vo zMMaw(@vz{Dx&2?USeQ5L{4cQ#7&KmO(D)qPFlaoDi4_{n^>$V_1m^s8(wd(I#d&CF zQsW?S`4x3*{d~z3Fsi5hH9y!;o7wi0s07CT==I;xEVPXr5=U!ih+qBtHtDHc5`+Ji zORo6oIHvY8xu-6{0pyi{hZoKO1*Z@IS z*dmV~gUSnS$y0Tw5Htt-PKPHRYDR^zLM47az4~gP6`;x2pYC^pIlF><98j@US>iX) z;kx-H;K8iN>nd0*-mDI|FZ-H?<221=4~QD96y* z9X5G6)hhZ-S@L@yQ@pgFW`B(->RYn^oKB@iXdAAqLl{+E zjlx=W1uKPCl=|O5{w5a+`mR7)lJwfK`hr+lN-_T`I0~sZ6Uxo8-s$31dM)`U77gT}C!e@!@+eilVa5wp z4lv`*KA-#jDVO9i{^PWB3sCZ|O-=4E>c}=uMX4M<)48n{r30q#Wd50xPLER z>rdQ2w%`;KnPPLMZN>4dnrPb6vSsS=jsp?~$*HI@d3;@6Cc~hWKz;gqw6My$n`(BPEjm?qrme_y%Meejl zNnKaZsQvdf`jJt8B`k1EhmW(}s>l&P;^4qvDD}L5y)@bWW7uJHz9nOA|8cLkIp0%G z|2n_6IbT6m976&tY|a98a({4s1^+`Dw+ZMdLRT@q4L-F;4D(s$L91OT{cRKj#xA@Cp6heEd7ZY0zv!`7BeztM^#%OCc?e3|g*G%MWqpoCqrJ3pp_Gwv#bc zueci>IWMpIX#e-O7RCoIei7DdgmFsgUa7l&_zi7%c;AQ4quCvlZ(NjpOQTW3050~( zTl^leyLl};PZ`{nT^o3w?1zHa#swWLS{*r`$ccC_TBfEk;zA;F6$w3))yYG6f_ghy zK_{P}lQ*^3pdwOa_)T6xOD1xYSCdb~7aw8!Yhd6XR{xK8o~psI$2Oe&LaZ?r?)q^z z{6m`s!e5jp{;~q{7ddoOJ5n_Jys~>1ne0ZBl*?7g?7x2@$&_q1wR*C5)3@jV`Ki>V z|4oF6LBO?m)_2Q_8+isO+y!{jyrF&Vt)a~|>9LX6#(Dc8yUdYMj2$miq1zn3p-uKf z;ZLY30oRdKJZjGG{|C@f;#y@+X$oZr@j14pDL>I%|0#M+zBlxGdG}3ys)kc_pQR^% zW)`|FJH0Ez9=A~u5aZ9{aIXAS?(T^cyOB=L(s}W5(Q&D%(Q%c{u_+N}*#v|d?cR8$ z+fq!eabAb_G7CeAZamqb^QihaiidQD@;Q=cK3FYNd1Jjd6>-5{9RlKC6?cdWkeZol zT!H3hjWaK|D(((YL-VEhcs```a19h4V0JVruiF@sM(`8q%(pVN*UN7}9K~&L^?9kn zf{D?xlb}e{di;_24e=StNi?ebl~doM)sg3m@@7QKPG10n*5|p;hlz{W8R8|osX!FB zk}>Z$bYvVIC`lJBr^)KnsYFy%yM8#fS3l={#f|0FpOf<^u!pSQo_t1Mdlq!m2kVLSmJ>exh;j=zUlvcLqn<((ZGa;4Qf!xf{a9 zvo(r=R`!^&ZT@dYrSUL@c4Q;w{RjQ1PKDS{ByW>ArpF9P1B&gPceaLfh8+r|W`@Eb z7z%cgR6Z7~_X4EM@~)2fmjEEgq?Pt?rojSJo``EO zqPE^t`5y)4t*<0)O@}7B0}!iKTWGAt-(3)Tp?WkEwV+!A+B(wUS043h%_1FC>AIE! z1K`JW(GuRLF*noO`$NLyUvd~PCHL-CMUrB!B}njFj_Qq{IwuUXfCoeVR*pdzP$ zV&vDJn&_j0=dkb1!?3&O8%*FbB_6=)vEAQpV9LgrUDqiX=y8@i;M>rM6 z9XemNnq^b(ZArA@bveQL2}V4K>0V5DPU1U~_lWG{CPpXofE2$1tX1xRE?*s3z*+#d zK*=nw{+E+jq0Td$@MCPh)6zxB81{(!4s-_8-;*wRR23)>>N-`L1@2`p)Gzq zn&5-&OMyg_i!k8w=tQ)Uq^?cOiZu{+o>M{{#*ComZ&VMBJm}mVVUoHwb?wys%l!OT z*nkHSELYJJnfYe0ENaP^3<_p3RbszxJr^SSJi&ReHQDMUqcQ=oDj}h@haJIACyvCJ z1EPnsI!z16C*&+Y6@)Vtv#yHGh|Y1AEfH~2uzZKcX6)_aT&L--BBVmtoKB)qrG>^t z5v?nW2<;VH0GO8L!sbsHK$5eHHvtH~_sb-{&OX0!q-$%zgc#NA1rSrCQ)#u#dt*a>Wi7lg8H7hY7J*Z!P9H^8=Tl-tax;I2 z;{ZVY7=bu&R&7QiBxgd&RM9!;%==$8-LBA(JNeFzTf>m(-AL!Ey?iK4t0&6G;9%kP z%2^tvUr^BWWN<;hwOT!=8xHT!^J7XLN2|JytLFUeA41tJtb zi=vZTb`8UB@nCZx*d@vis7?6ZsBIbm^8xOgWf(iu|#Pd1d;Q(w=f_{uf^|X0YFq) zVPm3dwVaxTFgL`Hg3|q0*z9?|`i#0WT0KoHW5TTj?Rr6$9OZPibnffd1&jbq9p4OB z*j2pq#T~nNW59Mm2JxU-g-$+r$0PL*=@xz_u9=NGy*E;0C`8WVr^T!&n*ZUN|0g9A zkVll^CSJacaFYKBU)wd^cE$gc{&*v?$B$rsSDKY`@S*xMAvdX1m79s2-xETlR^`c8 zj!5kW0t;MIH9N@T9xxS%EVdfh{(RhA=aF$#1ahR_tcA&cp`Jo4Zf=@n1Z^$;93jI= zXrZT%6_qbMV|-QOaw6zG*dj!)=y-*A$uLsl4^&}*+6xh`wAxfCGNLT=`uV2t2=Q0n z?0}j7XtRg+*pUM=YP1HRNuf59WiR#;w^>qD=8K!vD^CZXk0Z{al47gyRjV zYU1)8b7hJV+p0#D8fCWo3K;Z?qsMe9b5777O^p9th*hVx?#V#IZgZ*sDxWkrYOMbg zzIAV<_6#Du5T5?CG8Mt4l^>QXX?Ap^2``)DH!B0&cufA?Ux6Whghj||Mpp66o@<;W zM9(4k03pLep@%5?DWwCv&_o5}j(XWz+P9*RMdB@t(qKkd;W=3tDz?l_-vaFwtK_NM z52cGxbR&{Z~KOV%3AZv zhC0x<^@E5@2`E5Q%%C@y8wybW#TCg%<;oPvcz! zN|6nf&Ejqf%?g;a^994z1Q(Nwu08UNCX}yUHG12l(MARmXgS$x#Ury4$cYRQ0{tVsVJEOfraArk%t^}Al|YU}*?@5zEqJ9c-y_%~!h!gfOv3nSzkTpgjmplYgrk0e_cIKY4CBz$lnIifiW^%ioH-&38kppKcW`V-AW z?K2a_>bD`k!pqbi$@4F#sQvb-by3ZMs7hd7voDHT0mYY07?{WAA^ zkDWdaLp`$n?dElIW+k?5Xdpm@GTOVrCcCl;Ijz4L82Jt+H!is1=5z8?;%j7PO zNH~crF^P9=lA*@gR%G@9-eI-|T}FwvW@FfeS8>Tns=VtY*1@d@{d4?7<4l z{|a!0Mc!=I6HWyZ7753MRUS!imZEuprmkIv%*!{F7~$Un-KsOWjk1wLm*(V9pKe@Y z+q&lyL>P`Fgaq5jo8gD|NC2>eWu3G9Wx8TQm?3i`Dl6g#YyF=<4~D%1t>hLx3hNS#ZPA1hGXYTjVbcpaof2zqlhzxpLs1Ue*V5+^-c`*s1oZ5~+q)z*&9u$Y)IuDo9~6tsFJN~3 zVV1qR0+jkD@!N`Ne2e2?dJ#asC*%V)M+aJfkbJk3Az6YhE#O$wwvmu zFJrPe(-%qKS(KhulrFNQGRBa~DFLZC+)bLkGm_@^M~GyMh{Su-kcl@U>TS<7odvhv z5V3c^fzmV&xmDBoC9K!7=GLFop3k5OYEkz;Gze;|^YZPNK+pvKEbD*391r0|(*H25 z4{on&^s@@IHG4`(;!Mizbf#h?Gc<|~lY9?oK{{;phFIK0qe)Cb z9?{gOa_yjohhAfwj{AjwQD?bMe2Tjs+-4GUbr+)l@iQV z#>`S`_9pDEf1!dH*HK3mOb1&}&1GpfLr+S~INTefCBv{5r>5RjtUXDIbP9GsTmF33 z8-r&@OEWKkOG?j3e%P)S^PJ=mfwlunoM@YguAQt7%M3+_v%{Tb1C-HcME86Z60-?~ zW{As#P{7E574ZuBHkm0b)UM5gDmH5qMzh8tPCWrG9&GMTdFo7)Rm}X4fTb!Bs3YOf zQSSOG8G)FscqgBATvf(G{%zQw@njbNy;|(Wr5~_aBVcGNh~-SoLsbwTCnjzHTy=Ss%M8j)3=urN-S= z+|;!tqu9$jq@#+UV&j7|$1x>Nf=e5EDqqmr_YSf5D=2La{_W(8v+f$2;u85^a`4DK$o28d z`NEaKuI{kCtVoF!^(P(0zU^B@{KNE^SLwom!k~TU?&a!*U*YYjff~p44&`bMrJ+(| zACbOJk(z23X)#WR)in4m>2E61d7QKE${v*^5INTHR{1{e!bXrT#&fE!4 zzwW^+*a?!p`fYXi56n8stjg_@8{9^!(olr9nJF`{kIyA3VHn3l+`m_1ejdXO zl`j|(h=@>R&}<-yADC#BE4NdEh74#!kUL>!OfKKUSL58%GuUG8gdsp)KS^g{0wM`r9-18P`Y>_+E8j)&zXgYUN##z(+%*FgJZzV(h zheBt=^1@Q8C^=cgV5gGFE)8uWMgWU~d+1{3Tg72}2^vkP^I!}3Dc)A}hP-3s8#JLR zAtwrHU7`=Yh+F9X6RUyfuukhz27|(ZP@9zaBMijra{uJSPu?DWSy0&Jn`%~Yy6^4b zet29_^1~f=(l)bU;`RY@!5xji;H8)>_ww|@yGQ_2V0Bz)hBf2|qpbQpyLh4S|D&E(+c+?XqK(_yA+3(8s|`ly<)6B=sE{Q6|m_K4Kuh6xe)P5&E7!<33A ziB;au#5~4VD70w~IiVehEy3_U4W=0$*YEO;>7tAH-pKcA+DRyF?`Rvwzwk@YohGKd ziy$hSNp+P8wWs3)@?zcIL7b?2V?KXn&VvQjcP3!8)_0A93Mz5)5aeBU4v<4}|05dd@RDF)0a`fCQazu|N`sIQtj zs++*`%WPvKd)+VEomE9M7u(t+lON)inQe?oBh>U6Hhl!Gj5L-BYoQOE+v+g{?P1NH zT7pc)_QEX#%cskdjp}dW!dIGr5#F+BuZ1~GAIF*AjEH7l74#N{IU9+mlh&yCR&3uJ zKI;0>Qlc^n{SvD!D9iJG(O4NEWBm4-M<(!|Fod z*+mt87?+Z5p^hjGO5nH_S=@N?YmTRBCLovt}dL2#w7h>#5^tRQei; zf?PbQ*?Ay)to_tU%mx=`vq2bGU{lR-<4E0hd?L)}dYYn>&H7komirKA{XlAU{qdZ~ zZY14VrW0svuqUSzxo9m(#MR`%+Gaa_mjuWL;3*MYF1wj34JUZPm37||Ic-SlCW!Y1 zF;N#L0pju4ir+7i2!zj_5vIc)M7##e@YvY=NJFu+cIxV4?z~|~^sK_XVyzA3G$q;> zmYw7YG=}Pw|uMXJZBBxx>^XhFlOkxZXW=8I+bM&#dn_zq2<;avmQN8i}d&bHO$&R zoC*+>;jJR|3E~zD<>`CilKKP{1?x;^H=n-VS9jLcgt&_W4RT2M)7nYJbxZuz0J-ra@3VOFM$SBnN`X5NIJ_So%yblzk_gBPybZazg z=k5~hf$+}^1`tpGK-&Zx9UjkKZuXOzS{1veK|>}8EgkmK;qjDWd&1viAOpZXf>Pf` z*VHcdpB-Q$PLR`l&h9n*&U@{O>@fH9$f8q7Mtl5GNKmRUOa=C)E8=OKDm1yMixM+?pkQXtTCr=;|tK-4uZ2x1-n7JL^Z2x_Jxd*@JBo;Gl z_u#)d$uls;ul=J`uRsq+T8X&!oo*-hb4--TK(q6HR=2kMzs6C+ zxxG{vl_X7A{nuPhU6}cj;+g}Qa$TYSPn2TV5bm=35Fk$CEvOy}VIJgu4QD>){vdI+ zsI_arYInF0Vi>}9w2V*N+D88yJ_N3XNt!$yT`GDe3qLX+WNY3(q1S{LSl+A^K z_4JLMMe<*5AM1J@a?V}XE2$Hz7`M6tc*u?>J_ND6Gw7{<31xC}4KyuCN&36dONMHt+{%WK zIUlL&uj+fSjJN4K=5sBEPw`#CKEmoF67x_TpYKXKpT8V-%TCu&OQ= z*6bP(Y#k{sISvk*`B**Keiy@-NC4KyqsXe%Dq>X-e=QQx$oGIq*HNP@gJ;lCt|k1t z8s$;2hj|BELyTXC*`fR$KLyJN^J%wAFo0FcD!Fydd()pq0Rw+E3anZ+U3y4EUlwg7 ziMN@9p4poNq&8_vW=qKqsL&DsJunq)_y?N;QI`L>&;>q?+wfL?;6dpCJxpIt`h+vL zpm?z@X{LhwCv+0SgRlEN0xbHScym}~yE}~t_y*9kpi(tFtAJ+FSvF3N!h50Yb!E7ni*O?c4*^rH9OaHI@Udu{d$iG%cfoyaB zpOEVi=#3`mbGH8z;v)1j9UzE%s-SJUt_`{*CK)^F68eYi@4b(DpND7*=0LCACm+{A z!8N8RdtRbC{ri;?G08cfo7EunS&IvHrW@n(YJTu+wD!`v2eN7cS1t zrrq>f$%0dS@_(`E^#{V_!EV@S7|gh_$ly3(W(>M|r>rz59MFt|`O>bh1fd|6(EkG` zP@hJ5$ty>77>Zog?#EfSg2~xdWb6k3P+9<)y0}T81Jfe+t8g2FHPFgMkGTQS89~6w z01{A*V)4~pk$)+TZSV5WW3_hD6BtE63oxr>a5{V(6Dht!{aSuG%Mj)`Wzd2?#5_56 zhKCPG=L!KOFw*RDmUY1dlu&;mVA+|}&6b@7bXdLV?%ei-=_I!505Sc>MGM9BR)f&} za)o{qTmrz?0r(7ZP0{UKguSNOcgT=^?GvB^`~mU^RW7GR^`DgY`S3QTuPw%KpRQUG zJLI^!{|!fDYq&bT=Q*<%36zeN(MC$gRvIbnJirczAqiy8(_@^a7Uuq%Vr>8CAzZ{b zivUU4M=46`)iU3sKcg`_ z%m2l~6tEZ`Z6}!$4y~+NcNVD#UlFnK(I+pXv^$?MCoke#&XY3BKS!;W%Ik15NN=S4 zmBCsJQE3jC$8e??OfV)*hQCk3(IU~9LLmV4f#HcXa;GEgYbwA{7rd|gf8Yozos&{C zI9OkP4WJytoJ1QrPn&KBrd2tgsF5Ju3jAPfpd>R60`ga@{-1`$zqA@Xw}<;bhYa3W z?IeA8j$Y80+#LXBiQ#=0lVtUlfI-Z9m!5j62B(g)OjxncZxN1vGHp~l%Zg|qXg;?V z2siE31|}MXK>KSrt8LH!-bmkpB#=~VHKqJClf z$@>|{eX2{Lo!xp$fP2`;hYrmRkLx1jS^^pwbvKk`&NBtWSKa>CzQv3_0elwm60iLc zfs{;xj*A8I+u9l~q_>#qd5DOV3Dl0zh;F7d4WVD<;?!SfyJ0|Z+>Z+NujVqI?Vk~U zCHrJLyeJ)hUY!)B{F(wfBX}(AC(osA!B@wOQ`HdqRi=0$Hi|30FwR>nD8@;(J)dwn z_4d;~@1Z$!152*Wlg&tJxxyCDCN#J%(|g~6j;tnT&mXzFi`>gpAwSNO;ze!gaCHt2 z5KgcVOor_*_=H4-qd5LYp%YwXej-jO{bMz75S|sO0xxWSR5oXRMuP!MdY$bxY}KKf zV{qZ^HD;zQe@Pu*p%bXZYiT#HWmkc>@q$KRwj3x3bzD{kiQo41boe#z#b2tJcWaog z+*z0z^*?AL9ezVCYeH^6kJ|{^vdxA*I9yq%?$GUX=pRawZjeZ}LcZ=m>d*p;rp*O0Vk(i%tSeX5=l*u#I`RyNvgTGo%-W=GyQt`UvEs0 zJ0makt#E9D4)RsA{Bm3@)ZsDZ<7tYtal(PyteN4xlXUS4YE{KLvd6b$(Sb`hgt@S% zYVKaOs{jL_kBj^uCx>f7w?Rmp#I9@28>`=71ikIx;ofH5cw;U5)<> zIu_i*z3UOOcvio zB%Ho<+tuk&b60tTTuc*TfK*^r8|f_hftCzSI-^Z)PFJmH7<$tR_pjm9*LC|kk;=MF zuR3qhZVDL8c#|W!Be1>pO^bhBva6%MW!@flXF>gqEl2X>(^8i;@_d2(l=pyxZmvkh z9sA{D=I^y5@e!$EaMxt-9a|*68yy3*hBIX%5x%z(6Qwt^UOQ6%Iwas_3{8@g3Ma+r zX3t>`XJ*nAmnNsaJ1;5g6Jfi08k&a z!~dy>W02R@PXF1SJq3OK0BtNYh4f!)h+cb;wa(rjj0_Z(nbVPkj!X~hQ1+3QBLhNv zs+p6L)Y!soK@GS2@O@FYctQ3=a*ClMOvTJ-1NXNF`(fr=udzUVE#W$;to6HLAss5f zZxeA_i`~BrOOIF*w}FEA2M_n-Cl2s(-@0VR;5}X_bsu zJSLL5E>hl6|JC%ji__tIHKufNNqXYI;y(25`eAn$Paeeb>j(4x`<}{Xg3fM0rQI0f zK>WPmyt|@^s=@C#4~w=)$T1XJIl`HFKjd3SOC7ST|7($c}BhIMS4TjoO>@t z1gDGdBC9MlAp$!CsJL=}I(#<_RKnh#d5}Lq!c?rqdk6WIo3S&He(IL;y{8_=@5Q8r z-48;1mWHV^$;ep}=eAR&gi{}-w@&Fl9~NF=P#-x!oewy}PIL4~Ol+#nebfCgoSMmA zqyDr2fVm$Vwk*r##6PAllG{-$u5pQ5aSeqEyO~?0Iy3Y@f}#v6nM%DSS*fGm5in^( zm;8;eT)+OhyR~ZR*u6x~2yj%2pesw?tZM^G6qdLk`C01g#--t`-Qn&VhBXkQ8n2Rj z`Ofl3Xpf8G{(9SY-RyBnkIyzmo4U$7d5d97Q_Gg@;2n!!F&<}jj@*>?*Lel0+dfld zTi6t(bK&v>Ti&JUM}t3RZnPd7T@OQo9G#`iY?-@0YVJ!we$i6u6tz{q@+jcHS8p|D zxjgUV@=luA<#nLB@A-y04eE;M%(p&E*PN_&np#ZBEgz^sl~zZ#>>B(gs3?RYOVpuU zM*?|o^-C=diqkW9ndjEG*HCu7_H?zD8%3H$y;crZ_bf7w^gK3HB(;24%yk|(%!g!Z$hO0Iwov*+I>aF6&Y{xy^lGc zk1GDV&nP~^oPzWYctaV5Wl-p!kr~a_S+l8qg4r`{*#*dN6`M_8`rBpkUmK{2GhVh} zM-X;;G2LL+LjvR-0Jc$9a-g0rQ!n2v?_$394sP+TQC!ShEh1o%t?8fNY zxI$a8AEyxS{^dV9Bwh-Oa>VVCX$|l6kHN(y>*0pdvRWUaH|O2aNEjA9hw@#am+n@D{|K4hjQ=JAcXr}F=N+X zX?Y{*rj~@**vP^Yz>`jqq>CN|5SN*VL}f22l04LeM2zG^B%a2X2-gy|I8SW}b+q`AbQM>;T+W36*~mHA zD)K^IT=0?(;|N~-XZ^m(8_&ff;g%00s3k>nf2(c)P}-zWgO9y<34JPxy_x-nrH|s& ziFVa0cAjeO1;5LJH^B1+G}k~M;H@ZFIy0eFEj)T`Vf;Lr2%8PC=GB|pWQhyAqS1Fn z`u+6XugYF3G`11X{Xfum?=<>uzsP^n5NQ7cpvpoghHjae8S1I3P5sP?gj zW7lDo$-^hzaIxDqn0U#jvB~6l#nJH!x(oC6Jd;^y-ouL>@md#buZexM;6&+F_Qnji zZAk2+g?}yo)cXkhQ@@6~K`nb^QQoa6!@1gPt$*ieMYCU0ym^#CR6tWB)2wMUX8dt~ z&@#-OO~N}#c%UMghopX41}i0jr;8MO@(+>n&X%16(qWjb;bh5F-Q57)ZCfA?i=q&a zP>yg`-qFOMeHtzTXe4!})Cy-^VKsa-yvA8~l6$DS!Ep~=zi5ctS{CqkY*T!j(J^vi z>_k8gGN#*h9Y1`*Xm{#Ujf8jz0vFc*c{>Z_O>&c0bdryT$g- z-3LhaH|m^+L5szMg(Hk8D@@N-#)c;ufyejGBr*P}RJ{w!7 zI-Sr+VXBmMyr^yAX6!HVms7=0HFa65N5_^7FT!-xhqF(y@$3X6ValqC%J;LcO!J=q zmiN|m>+pr;U8`Z5sE+atEg$5U?-T#kq9}T;y!Eq}*J!5koL|^wEBX1{4-BK2_cB=H z8ZTS%E1tfx51;}@!f2Ga0i{T0(UD8`GhM^t1u!RJu|4ibVTeFzMJ`G2^7h#+R%(>g ziU~Z_fPo|G4?~f250p7~|1)0zS&T*%ah9PjRuYn)XpX3;e0c@zD$xR%)2hSRj; znYW!*OxUyqZPyo`nSa-r(6Tc;xWgN0n_1gezhai6`N#=jT_j z{5@&xUCg15P(&LS9M3T%;V;T-PUhAj#Ab15d*xPV6=e94v#PamwPrrA>9zWQH5}V` z=&PWml)Eg2w^h?Z>H3hjkAh9F1x2k|(0Hfs1Gy^%G*Sn>zvlzL00-T}6Fne_CYY@v~N<6k@M9v-yl z0HQV1D5sm0^$pyHv7y-98c>2heLhSwsOqcnPu#<0JTE|746~^VB6U_Z3Wc1_Mbaz&zzOO4X;7Cj~IEL+T9lO`6O zT<9!&P}59^cMgqZxY|aO+3?Ti{ZP~r?OY)0@;0EPr_iV5hv{3f73>9+;acxwv^j6D zfq>XGo7j?M_=gCQmxV`ZD8tL&@mO2m!p{Uzjk9k>7qjZ0t;Pv7#{81+iER1ZXN1MYS{I(1Bl}*oUQ9=|JkiKF>J*Q@vT)Htkztu1r)^ww%ZvDw zK0u#_Yiyfw>|o0Jl$oZ+WCOB%qd&=r>4Nxd^;ey}o@+!YFwq2S1nNd$2k3rY=yVbS z4cL-Y$>8nopF{p}z@Wqoq-jl3D2m!uR8&@rvVw|Q5nWVti^7U7E=5rhaYaPM6}2iVDk>-{tEm6qnR{<~ zo3>hT-{;wV|8Jh2&Yd$eXTHyzb7t<`>(NH1QF7`{#Keh@`|$76>q)o68{9a7fBUCD zQDS_$1ZTk(e|msCG__Py?T1gi#zEcu11wP2|EtqHJ#pbsgo>L{cpFTtEZuP2LH?M2 z-u2IyT>lz!)13I%hPpRDd5cg2GWgYkTVqabnKKowFCR*ob^MKrjs)J zoz$!iw_shtBTRMIpZ-0mH&HXYmB`I8+udP?A3*DgDqS|KX(gwxsY8N&fUCe`b>3l;qbX`B{=bBPsvP zB)=xfKRC(nP4X8d`AtcFTatfjl7B>!KRwCsO7ag)^5-Y{wMl+ml0T<|AK$Z__30D% zJh8N1aR2x4OS1r@@t3x!O2ZDQG%fV?So{dr0$i))C!GA#>2NKY^pkP_scyNIX*2_w zrtvJXUjM1(JeqP%u8&m4L$wiYEHpdfkJm?oj=oxLU9=+8Ul9vNqnV+qxYkXGNNuzx z5~!=ph*sBT`ZFssFQgcCvCL>NOiq0)SP>2S=hW4PB604Gg=*?zwUJq4`W6Q-sSibi z0j)neyS^rfaLNUQv<_`3Qdb|>M*WdFPz9j)B>W_P zrd}Fu1|-B#IxWsv9o!a!_)PxfU+b{$!;<6vPx#+vi;7AYr+6PZP*#1{_df~t%mJR; z_qGY2Tz>hINk<+PUVSRPdCFOpLU(z87d-G}!ws(q8%B;eVeg4=3KJLhU4GZ8t-|`} z-dLQ|&?LA%yrln6f65hJxMtnpAJ;W?qVw)!6HQ;`yW;g18zbJWkE|%3*LSJ+ zk?Wk3=Gz|deww|@^JCs|-uq@*rWMSa>AkUd*`jBc&GQZ!Fso$qfCs(9p4DH_^ui0B z=*s1N{oQL1Rb4*O`^n3{w1mR5ym!YJeH4AM(L4ICmHTfhyWOiEP-DJ*{e#|XPguL) z?!IfiPxpUO*!b>4Ucc|PD=)O)>h)+oPkX)p2ZDOz26N_?v%EXBTV8FxuE<-l>fvk0 zJQVfbch9&{ci()Y_sy-dHtSmN@Xo0nepW`GX75c$cJlNm&+xhG&Y12I%X6Tcavl&a z?Q`efj92Uz#;tc{?f-hO@b1b{Q~$j4^+fzTZl~Xq!ZW9YH=h!IUl>Hr=8uKYIbU5h zz<-aRTY2Q_^sk>6_V~{zS)aL6sD3%}>B)iDg?CQA@i7B?Ln!0F*CqGc1l_|w&TVOU z`75EoUNv#X#xI4xUDgB+Z@r@BE#Z^*TKc~F_8uYAF>=ty)k}nTs~>sm z?{gj!vX;HrJaF3+!u3}@^1(vWX5rgs3NnWrdQP}yd&Vh-M_&|L9)I>`y?a9%H*L*I#aqowB z-t*Ka!iXR4N^xxdK&bfX)PuAB^_DQN--PQQTfQwpr!M~b>jeUnf8f;}V5ynJuf*Y`drtUY0?zk1eIVfTvtFTFi>n{eWB*EJRH*d|P` zx$2(pZfO;Au619s_TyIt_qY!WKB?U;JTTGK_U5L43LlLf9SZOHO4$AN*gl@IUkT5j z)UxWWXTK1>d2Gc+w?F#1P!awiUVmhtu>Ac$4tw(Hj|A=JGrgy&KM?j@tU9iB3tgml3 zKQ3JV_?~x8dh-e4=0B|d=_R&Ncz67)o5$U?N!T?t^y(x<&wKw5!N8#UV%$| zcR#|~Ku-(UD}{}o(k@#xn^c-6gxMtAU6Ol1k#2*8^G+4h9a4k^B;4(ADZe&FSc??) zt>o@eg!Ri4X%&mE_b|e|Qr)YiurDPSWSQ5l(j2g=G-+px=@v;Yg|)cFIy6hT&2UNF zV=&Xmb>Ac5`kf<&r6|HOBplH?mR~F$2t^qF*Vf0$fk?yNNi1@Vo&55JsUMZyaq@cS zfHP;U-92D!^}CKgoq67AFFyJ7uxTY{4B3|?vwBg8XE*)wODjfsuQ8PDE7Y)?Z1|}%UvM$jXW3+}yKszTme_m}gpv@378l$cBM@GlB6+vxf zZDejR8i$Y@uhn9>RfL1ct2I}ARv-D(&!p|7m*aTN^X{l6hBZ~iJ~V;I{^&1HcCAy{;I^$$Z`p-g=z(MJzG06)|ZloD&t5i)9_Vt)iQ|G zBV*d}S~hxQ<>>KDR2fGGSSEl;^hE7xLZw6UQ!yOjU?ih%jCt&~rIahc*(N=Ogm&k%3I@Y!Kl!68jL3a+o%w#y=l?h6-Hc zkIdIrMT0>U5Umu9jiEj9Zs;dyD~M%sg`4LXtg0gAn?EDQgh+rt20}G4_k~Q0M%B*B zq%uvAQL~U)q7?pyV9bG7+KhHWV=}dgno6{PrF=cCKUzO99wq^lA{gQGv8EoA6D@+w zX*yEV>0l~=gGD$L2?j9QslU2QR~2eNSD<$k1V#qB&!_A7v=qQ{fQ|?@pykjLiizDm z|Dm75?vYXHudEJ^5xbbmrX4@Ny{-IlZ5X31t__BzPD@mbk8P2s636O9Hxz+@vjDb~ zu)i|6K$#2WAlg{u_CjA`@X1Xkj_LL?(}0iDz-lk=g6dEpIA%d@yOjh4K$a7%_RkH< z4c^{4u>}1Lw14KWwh1qLcWu&jQ}A{ZYeif@oO|Hg{&)zpkNT9*Xx{+j0n{c^8yO#L zfM7w>Tb{c9IHo(AA;@aMCCAT;f>|qqqi9i#BI>2~A8kO$avSYbXT{^enmVinwOUN^ z+Dd9VKc@6-lmzYKuYmz8&R67MO>K1k1U8Mka%5Uo#HI%=lI!GOS9H6lsx7LG#dyuB z+hzx&TB;E&M)O!9W(ElaJljNhsh%B*97eAP=F7#xwBUmz5uYOGRu-OC=^xxyv7Yg~VNW7NLmC!8eNRaz7F zjg$Cq?WTs)&cN@{O)qb!pKLeKdZ+$n;~ihWd8w2x%`3&1>ND8;q4UbByPH4W#Ov9p z70cZ?Nh*KarcHg%WY13>>V4BoQ3f2E-P^G$!hKJ>9Lyms~1UtMvkS3jcVrQL_T zUh^OCA3Cu2Oz*dgSHAH219QBez7T)#?rZ0GU*`1xDh#=NQOq*vh;Z|+(+<{Xbl%(V zH!l2sZJBpS!&75Yua9~g2K_MQ;m@x27A#x-*ouEFlG0!173;HCNFDv%nYZ>&@f!K> zZQ;yoK0kNE87~MI-Ew*Dm^<$C?#-PrXJ>JnS9|jlWkbUUykqO{yw(%`*n9dX1uyS@ zb(?p4>%d{N{&BZAl0D?cMXSoa^0iR9Yo2Jmz@I0~ z-k%%(JZG6;ow?!3hrj-Z@K}9G+V+w|!WOlA$V(IYdoLbYk^cR_LEbypZksyqngQO6 zi$DD-`22UmUVETg=s&=dG5Wntiw|ZAn+836#iiPt1@D2S#sS|xBfNNx@#|X#d@LBN zia&1H`Gb(RYVzN{3N!Dmn{It0{^Jdvv2EvXe?D@=lUp(=?bMm2!Y2jJQ?th1DZElv ztbgl=okH%aGbcZA(-EOp(RGo}{&})@)JLApYwsQ6ZQ6YJ;HJv0*Alr` zZ59-W{b~2;NRufwj^4$oM$q9WB)4s6RTtJqlG! zn>Vpgss)>l#VZI&qB0o7ehDPq*$|b`Q8{_Vx!I*!Kkpkw`6(%{T2Smzv1U{jWsP_@ zqy5_JNEi~6>nmxmNL%g4LLUs0M#|d*tyUJ96RDjSkt$JH8{jKw7DO8?rX*@f!v{jX zHiK8g4QwWFGVC;s9vK@A8S1yhWpcJ}MrmP|Z&KN0UrF8txlE@F%IgqBeNSClQ^&=QI%(<6)W*;TSm7s23bvG& z*boqrq0=M>&GSbi7}#Q9qWifnB;vYC#LMo`GA`S8J;!)rN{a!55g3xkA({cYLqn*h zzD66X$95eJXKA!_6<3N- zl8D7|0vU((EsEC8j{0k81O_1(VY1MEV;DUT8662ra;KcfN`kYACxAK^i=fT_T0(8c z$QTs3kug!q7dh0Ff-!Ob;K7U5z&+Z%>avbB;W@p;Tl=rjDlK4 z6q?H+7{?@)Xbe+kRajPfta(8@!@+^0$t<_HSj-IL_vq`!Cv%UpD=W#RrbL!FhmHw_ zHCbH3wPLwRp-MEH$R~(jlEi`aF%cq0p3vTArPGSAq%)R-;}n%~Xq2SQYGaiUv?{Cl z8XB9R)fPhgi$Z6Qq2Gd9q|pYuU~_%*s(6@WyNZEbOpIeygCBOhfFjqj0xXP^bBl9x ze9!@D{!`N8vRoL3FeIcZQMyP)eN|NuM?FvqZm;BHCI(Fu1~y0qVKB6ymQ-yNj!Y0R zlwwHrMTR6fQe^;@B<%(KaX&Q^23#N%gJEMnmW@zNO%U8E9t>lp#V;|K6h$n8$WvHQ z0J$eOr$brWo4&&cCLtuoYu#S@cETl73#a>__m-7(pjF4YE{Q`CKLoS{!9x z#PY*CI0k8{4ic)OT?>myz z-D@Xj<(K3th-2d^t1Q3Nht|lK*M!9CFRkp7pvcEiN9mP@(X?8~zU@8J*B`hTCO7IE zzBaW>nVp*xspWF%bylO*q_-JN?TwnBS5oRL$t}t%&MGa$aK;>|^J5I7`_bdblIj`Z z<3!931(D_giUsQx_)i?xd9?d{nMKjOse|<^)|Wa1?5c)}UyDT)7X2E(qC^;|eza_4 zHp#M-MA2#(Ip^gTOI(S{6{i6S37?P6WZ^j0UL{QR!eU=e*|ehU!s1*SD>)=0`bjhn ziqdTc_@FEgam@s~Ag}-tRws0zg+TS3EGC-K9g9VHl zQR;Gk6|@X(R?c}@1=+d2g2HzD6BrOSureT1<HR9l_RO%Ineb;+>Ot#3vzueR$W^k4uBQFI>)5X9{ecTo&*On+T_V7xT=3c-uz#jou1L^=5gR=PAkgKoxzBJkC;{mig^X4xl<4ozkh(v_W*XEN|OrE01m(}3-+Q; zOFTmwQj&gt6OC>R0o#9`J*&R#nBxNO50v6k+DzCxI?WmKd|chK~viLL0Lt!vY3#| z&JyVesj~0CsM7ouuo|#qt4dS(lIVW+j7md5{$fBDKnM8iHWA+pR|ohG>E3?&ab77njuekC)Wnjx-mi#;5yjWm$s%vW0uZB~ zAqr&$qJaggue63sycqTvXvoA>XfAY!sOVa1Ly>pO4F^6=GB#F3ZYYC@KqqHAW!=Mc&?QA9 z6g6UZX%ejg;SD=|SSv6Z#V$hmatn)-%BGCpb?LEqgCAqPh4JNB6T?cElvEl6BzF0E ztNKOJvtxU9E^p7$by3zHC8R#j$<5B2mX+V*KBqJ=lN9tc0mYw`pH*;94-<%G%Fmm2 z6!D9)a(Wm$d7j8Skr0Nk=LWMv$7#g(u_CR=_p$SaW88tc z{s`9~L|!&O7-NxIjIGL2@qF5BxGMPNAGc#ME+n#rQk)x-<3Jc^vHCh1iqFGq~j<6yw0!6=oFm5Jr+4Odw{Kbk2Xt*xsLvPdhGh{&=PgSlFg zTSV=jcsQoNSAOLxP1V3tJRvNfExf)dI)aB>#nXwgdI_d;m^Un39t}wDWDEe z1(4IuR6G~sd8)#H5}rRwYR`8i|C?|VGAT?T0W4DOQe(ToN&Qo#3`s0ku zfn*Lvht4idmJIv`oz4hdDO-z`KBof#g&e?gp{?-qDmc!i$OL&72eB-{0>Y07NGnHG zEr}0WB{fzgaY~Jz2k;7L?Eo!;-FQw0sz);J-{q%zkV##ZTcwja*ki$4 zIuP*Cd(}81r%+jx+ySyvL$x0^7RZm?D>)rgbo8Zm^d7aZjKn`^wb177AinFV7(#x7qw|S8$sK5N1;O` zP6Q_f1nnaUB?6F7jl%Jw0PhCIzsSLHNg z*0aKlUlB~U)gxMOvXhL%n$2aPex?`YD> z@#S+l39~c31Wyb^w3##8aJ7cOGfV{Kvy3}dSEe;hL0_iT6;6&%ap?K@9)cXd4)F;Z zB~U)gxMOu?T1^W2GOey~a(s%Te3sMvnoIFpBp3^qfc*0F?{#}h>)a8Y^QN>t?H9S+ zr;Su=2(AV_0_C%eJ62bwm9C&K)9MN*$3K>GP+D52!nL!pX&IKzTy`(SK(Glb_DvN5w?lQhBoE-M= zcDu@pa7`0Lkn2fG-6;*+b%6rZ(ldjeF>p5#>y+62G1UdNhV&i@>Y zI|7-G@>#|mt9vxGsI4hJxix5edj1q{Pk_qTlf2|QA8UPnZ#p@DDyy=*%IDvk$I;SK z#;50hqRo2(a+?!><~P`oMkyW~mUKpiRsp^4fF67e@XbUKl+QBmSly$cr89`-Aa|+s zd=1>50F|#Nc`?u?$l}Y@T2RGa0`k7oD#9YT^#H=14_9l$ z9)bkh;g_Fx0$1k1UIV}k7zQ}YuGX9cNMu4Ka%gM#!Ouz*)yIJpQR*N;~`(b3o*Z#SGJSAjZc z8eNHi*+3bN7imfdL?|t7Jo7ifN%ib1Im;zGA8&f`ZC`1BDmkv)T5N(_tvS`H*2peB zcLyK3x)19v4dK(IJPsi}?X@&#LzkN*!rCNP#{WCr+oU|MgIi1osrbahp*QhtE-WCZqw5}SI;WF2NVXJIrwF#VWkvRd=)6x1DHoQgRINCWJJ zzg2=##F3vXP+Zv_O1WY~r2YIA9pmLUPvC$9BEgu8GuqMGIl&0dCQCsWb9mJr+0(WV z-U^6l`5?mhL4oO*tV}Md9i59CKH%iwMeGvA4r&McDUG~eOR3nfk)p+UfkuwgjYSLe zK3}bAo}t#fKOHi78Ei47?LhdEL-j1GWjV#$fyxegRqvjK>xm4=4R-Ru?&XW z4o#gH=KLHSwRh7c*dLFpHUEmKHF~%^;GPl1{v+_Cm{vOxUyP&<@`;7TE}D<0?Re^t zG3#8lW+&h=z!bnLKoj6s-d)2PR!*wpYiora-c9T9+S;TJK~#E%_d6Q_+AQh4=}q$c z$q3s-5vckd#s_d`&WG&=&`Gjf;P$ZCgJ69!V}#N??TF%NCWvi{+^_~p#y#| zy)u~;jop5kTGJC~SpeHiH=wy3W2Fn|F8;q8-v@bj1?_EwEe+Y2A+-;tDGndu-~pN@ zF?8id$}5!aPmvleNzj%^@V@QP2VKR(6c}+0`g>u|V9K>>%}mLbBO87r|NTZJDw>_I;E;SD@+`dR)db&p#751 zF&+zzj%O8*oL|K$qdy z76pP4+%A9@A?A}U1ZV5%SiN|_o`^E>;3d7H6p&x?>+rgw$a^6B{O0=@{7$XPFd7IM z@k8;QJAmdF*5*!q*+on-9={}^y+yl;mpo^?h{p3x<`3P)>o|Wq$D*=zo}*pI>tY^u zjwrWF$@vA@Q;Q1=3V)l=QyG%yW>>JNn8gajahozFOjw? z?4QjK*CnkYic^?bMR-{TC&p=pwZ9-E5$jyT_7^FbSSIGDw>Sd~Tem@f4HZi9TX~gu zhWin?bcTB!TsoKiH@LkN@wiMTY8CXD&@T>4>3@>a_qtk4FDF%=7uO+-@MgHm^Wxx& zK@>9S(6~sUR7!KclqLX|$|wKi!}3j1yroh+Ib3;GzD0`j*Q7W&6VLA-*p-Cuj%Ixw zqj!VBZgD;mul zPkJ7tz{z1&;N-aPJ*d`v4WO{U!9D$f-v*gZPuwS@{QvwHF^@_`d9G7D_k>o{QN+I& zagSfC)=>Tj)~Gd<|GE|tC+C%qaC)ACuqBV-oQl+Tgo{aGe@7ZQ{^P(?yW2M6JRraY zm;@Lg`3XYk)Lc6xT)HU>!<)sIMfQe$Yv4B;pzbI zyePsK&*H2(p1*;6H(bQ$KN{aOx9Kc2U6Ruea01{Yz(Bys0J?{nzOOSBa3a^5F*|E1S6uFSX5-oF9ncVYKVg5OHh z({Q5O)3`&Wat?$`6>9&<_n^!7<4O15;hsAlXVJ5wd+}lJHZGh%^Oo%xP|4keZ!Y6* z@a31u)%u#%li==~JJm|=%B4eU;Ceq=p<4;J>5MHK-+*fx_3fN~*{re6I{(?MY}UN{ zn(3yw*=%dU?3&FFXEXPb^1UVr4-4ml_1me;5CdF4Q34(Rfq ze9xZo&#PY_{#~Bk{pUkDKb?5L;jU$iUrBrF!jajvYXTX4w$iZZ`X}W-DAIfV`VF^E z{uWol^(wSYGn}sb*VK7eUEtajyYijFlk2-qjPaki3mi96^UJ_HT>;)*(*JMqSM!*)pcEE1HUci39 zApqOfi=_cHfT4g4fC=CNOa+tz~a(vrzIQOS!mgHQ^d6eK^Y?-i3|K=^fX{BzzwK zHiC%UEa9Z<4W*cv>JpyXMn>+GaC~1+LVf}qzdTZE#r~?I`67Lv=uG1uU|?myJSWG}Xd<;6;)^+fp1b{rxy zw!7UgcC)%@ehI%7t1{@zt`1htfli^sNqtOtk0v}H0~lsfwqx6IFk9i84h&5U7aY4v z#HFE^D5Sj|&-1?oetPib#qdT_oR7wsj1x=9-hkgXsXi1A@RnvDkbg3)3Dbh{>e>K1 zME*SJVqyc58pE=B`4SC9!*L$@eFd-@p(wc6mEw$I*{~Z2r^2{K*MP7bmJK^qJV>^0 z66$A2{*qvgzpffLTmd-;w;j=K>)CXXI`;ca0yjAk|!8juJ=UF5?X zktfYhWXaB@aIxGX5_yCPhs#7OvjPEr6$8q$UquxZzq65?$yW$N-nguMPB1`|7$zo+ zcfNgxr1(swB0MLE%kSx(P{s}_@rne8lz7}7EXO}yogc)NPRZG`x$0uHi9Z%hG!$cB zsY}AaU>zIVYq~!a$ILE)eLfr%hc3$0hxy28&&NK#gAsszjA@y#inbr9%p;j^b}(K! zk0$w8<_pDe{V=K8M&=90ftP8>}R##QQ zj7Fa}Vlj1$b8*v^YSFdAh)O2SRmCGvPp9g9aRd3D)a^o(o1DDEug6Zf9*T#ILXQ;0tG z!Wz-W)pTV9p11M#^wq|yFf7F3&KgzJMi+B}_ux5>i+YLt(<x)AyUZ9xrnjv8HrOBX55C8%3uwn%F})uRUI9DrY>Mt4Y+ZBmOD;!^zO zye`$m{@Gphj20)Jd@nsm#7h2|p5vI{_^ngN@fPH~ASGCjXB-sZ&x~a2{{pC+4^|a1 znE5xLP=|Ds`S-#(xy1#!`9_0GGXpe_7HVR1E3pwsU#4O%r2lsSr)kx5qD7$j?*?U= zX>9z*|6q9)rq^r-1uQy;U|{G++d zQel~6iCeC=+-Z5x@>k0y%T~*4mNv^rmai?DRp!e}t)E(du=ceLvJJEOZ5P`X*siwSXj^8x*S6aBsBNR|dE3jj_iTG@U)$97 zbo*%gczeWtsr_pEQv3b(hwaDD;Z^|*AMzTti=gxC9?>1pjna?PFVH`v|3bge&}=xx zc&2fz(P_*v22FEKyUp*L`&mx5WLor=fTh85i)ESR8OzPq71r;pX|^FYr!B{}%C^C_ z&-RP0z2gkYUh2Hh`Gj+i^E2nq&eL4uT-Um8a(&|(;VyLt z+*{n=x<`4+JlA@fJ(#%8Ky@pO^$mU zPdauu4my5vn4M2M-*O&uj&eiETRf-}P@IP09NoSCjku34@}T^9Gb?rYsk(9e2L zy~ifZqVkuEcIPY2OU%vYfF){KW4Xz;-jySKCNM0dT8d)0+7LBeZ+g=9k#msC>AK3Z z&2yXZu7HJ$s?S#GKGZ#+|46^u@QL9O<9_2~rh}$+=5NePY^}EMZ9m$x9Veo#C%Wdj z3f;@xH+YU0rU=hd-c4kqhpenC(ci4MoBm*W$#mHCvqfjkx4mTBV>@gcWPjSe-tn#D zPUjh}Mi*-q+d4Pq&m>Znhk=14CPwRT?FVjD5xWHIve8+gAsSjquR7f9ww3i#n#y)z8&8fv4md z%D_{q3|C-QJpit<&am0A)o{Sj$7nT{8J8FzH@;?k+xW5Zpz(+?)il7QHD#ELCXXr4 zRBG~>E;cPNEi~P1y2G^Alx7}mcAE3d=bC4tyixPz=0)aP&G(ugG_NynGH*lq+srpu z9w5Y5* ztb=WTwtZ#$!ZqBzn}0P%#bzQ-z2mUs66eFtkDRBtw608-!F9Fk&#tdrzqoq4PjsK^ z9_b$E4!Un}KMH=($J5Vqibw0o^cXy0&l1mi&rhEI!a(74VYFZr>_SXfj@b#Kv?GYW z6kWP*h%Q%mjjl;|r|x^*&${FEqxBQ?c72t;M&F>n-q2*Y3*35-@e`xQG{`i}6gD-R zHkzI>y!`?K#hUrFo%wv3V(Ggfmb*1$bo7MKN?PIjncebBxkJ>*0 zXPV`xa$MrL%yGTr7VwXU9P1pjqcMI0F z$8^u=cIrOReXUdL2k3|C4Orod^%eRk*0@{rEA@}*pV9Bsf1v+buQm)Y3^N!ElMKZe zm-U84hCdlr8=f${VAx@J-|(g3TZ7tolJN}VNTbC#1$?=}c!}|9<4wjD#utrWVcef? za+m@bksq1%n}(WqV85d$s+-+QAeA4(VX2yHQZ;X9R zg6Uk-d8QD!$+e~>rrS(UqA$NR{b*8Q4%}c~i5c*u`Azdj=F==L%*ay9MOcrousn>l z_*u()mV=lBBdi713TwoAt#z4o3r6i*)+1JpEyHHF722+}J#Bl{R*6;RHv1j+X8Wi1 zevWj9(cyGlfIeL0Snk;7c+K%KMs#22aHrmRp0nP0ne%S&htHiVjO=393|Gu`xoeYa zi|bX_8?GN*$GHc)ufpp4ynCm+&HbtS8}|`+f6oBVV9!{O$-}%VwgLU9(jBME(aq9* zr=M#0*l^e|!kCE`KWKc>{2iojd-KVl@Jz(p#~ zZ_hG5WIWz&AIyu-QD+2-8m9E-8`lhYHW{qXI z#bcRn30W3d)>-~$dD-$7WZ#39pDaVH!>xL22}W-Wyz(CF#h5a&i1M81iR5b16=KFM>V+GDy*PwXw6;D^WC%E_3i_nGX>V9W-CyiYF$KkneHjb z+H3W1U>=&F$;AyzA#Lq495SS16}tp0SB5Febb)EHdAv0aJ#3YAjdhoG56acgX12L) zRgk!s+3vAzv2C{Zjz3KeG`2%Ft3ur(!tNFQ(?pNwkeLYs?ZTi`UO2}|a97xlm=Dg!G-7SU% z_K%z=xUO(LPPAIZHd>+^tS{9s)X#x-`mEt4!yZGa@l)gDrdDuKz4-$3P3H0T5@<#- z$8ny~;0^nzZ+58pITW2PtlI>+{zT_Z?)C1Ig*&0|ur@W<2L|b~b?@o=f|H+umE;w0 zj?*#HcY#lcb8EWpTHQE(s(B>xxXb)kNSoi7`&-6h-se~@wA5R!wLERvhVgQebu^bP zAHfP#>TGf{hCMSB;dV>9^-1)n-98<&`+ECd?B_bxVsw7!Oc9O~&JsomR>9Ss#ZZ&Q3Dam?_1SX6k3s zn9{+oheDGWff1i+(wR&q8>|*yQ;un>Dc@8C&0>aWCN!UbsT#6zohfc=fS%C^uDQsx z*wkcNYFchu0hxJ~X*IZgi)kG={zi^0|@r<(K4MdniT49MK&=771{95&aPPV)$6?PA4--;^G@+lM5z>Xh!cajgj1V#))#zwW6k!io4SPT8 z-h|q=p(Y1R{ZMi*%2^E zcyg>$p;;Bd$};5{wYb=D2m zjnKfhU?tcNsdSfhH~3K-tU~*&`>h9{ksXGd%4{jNH1H@5*3H4Tp*Ag6&kS3pO=mON zY&Mt83+u~N$k|1%bGRH{M~-8vBi~WvD0R$m%yg7P(x`^SR_BO28XOB8 zjo^}tz$cp=OCdq8z<6E-o6s6Z3pnQn$3|F(wm7yrw!^Nn!?g>V{T^4FYp-jcYd@?i zhg^qUM_kOE;!bn-b8Fn`kf(>bweAt_40k40f0Mi8=qQD4X{Ngz7M^N%*j?w2yBpjK z+>P#q?nUm!?xqf-XN|kXz0SSCz0utYd(c+*cJ~fQ!MojiAgS+l?{n{WA8;RXABM!v zJSmG35Ty-V-K`aV^k4;yExeujRgz8tH4wLT0fFAfcPfxZ!I$RgNWn)FNc%OPKE)o<7D z(C^~BvQ592^UDMJL$Hb-(KADeAP2< z->$GVLnfBxgbk1sS`)IuE=UV|67s?UNDPM)GDAN|4e9p5lH`y9*+G|(9&#W*JE za>x+X2`S>giJ$Ls>~`#dq`ud&&#@nR!Xa2rjyRYz#hC`Hm&Tdy9PAwG)H+ANnw{y? zIZaL*Ecaf>(o>!J(0EIs^UidZL+h`0hGFfFI~$w}oQ=+f&PC3}kSUismpfNDn_&fC z?Ofw*ajtW2aBg(AI=4Wc-0s`~{a`oj|835_(3xdv;s|8&6jz$7AM7CMuEDOMuu6__ zWxz72bD3N=m&@gK<+!H8x=`dQg*|7ctK1cUt{jHtIPPk2Er6|hp=*(AF|5!_VS!lT zYId!H9b%2E#kJ10!L`xV3hU2S*LK%`(rT8xa_L}wvUyw{uO|olLHV8{PpM~yXQrpz z6MzLM?5Xp_Jq?}(o<>+w7I_wXnmkKA%RMWwTe8Zt+Ox*f^1CIkp00iig+;<*=)p^2 z`&}V43#)|H!W!(;tP?iC7TgLe{#IeTumc*(ZefqmChQgVVMpMAa7Z{T9O3#X&J;qv zW4aVwny#Nt1Do++-B6uYH$s=8%hc&~CRjdPIxj46Q?W0&K-Z{Ss9U643>(!_?Axr+ zHS1RCR!f?~2Hi$oD{Mhqb=!42bh~uBk8wqA)ot>*u}^|`5oHq_EV7t(gA;p~8&@PBG$MeqFI?|)$n3`L!2 z8NjX~|6eprrRha4Zb?5eya}&wiQ(mAR2t>WH)44IQ{?bAgg1y$IR!EN#$j@J`2>|_ zSf}uBCdlDU29>6tSRh6EXDo7fvkCMSZx4y|uZ8(bB&rounnyKq>BW71HG2(37Q=TG zsx%gDa`@=S{{|FYp+yk4t7d^`1nNlA5@x+ox*<^D2KOQ)fN3Cr^(^13%d&c zez+Xoe632ep%eWV#>wI3i&UDoJB8n4l*7F@bd|o=DTlMgD$UwX=?k;v@YX+em44Vc za(Ls-U4^Sl0 zyByyh?KJ8GhB`s^3XKX5DgC(ggaljZOo{neUmIS{TGKJ5ZI zTzi6A^9R~zkbYwLA8wVyTX47Ac6uqbL-EI+YR$`?${+26H=}rpqD5-WO9SN8 za{e2K$>Ew6xTmo_SSsJjk#cxB!s&fj`6rgoFiH+@M))b6+IQGEIlT2Qyf@q_JVhsm zx8039Zx!KkKL6+b?`(mcsFpb0X^p=sjWPb6-Y{M@po8W(_WUVuxUmP{nh`&AinG|b zweUC`F|V$j=fhEPT->k@-iCOspXsqQ&#tQUg~;ru$1?$Kt;uGbc+}tj>@Niy>vjbnZVQ{AMuzrY6NiuwW1nb z4q0Xm7Hm3du4AM6h)?1S((+g&yIg^Mrl7Qm?D0`@I*Bh+BKf5{IZk~f5$g_4iKLiU zklz+eb$U_VM;B?}^$MK+r}r>otREF5Ncaf8j~r)ZlE22^;KTi(;`cRu;%D921}RX& zO5b?yPc;AunPe^e;;H#4I|q3uXGwLK$xBBv)E2yg--N#6rIYVcjWHkf8i*>c%t(~6 zFFK0%bbIvukgw$YiT+vO7ivZ_*tGGukygtX-98Yj_J#eph*A6;Xb`VH(3g7Im1j{f z>WKSYee?xne!~+Rh!(D|!)>uapLn4Z-dp(#aP;PaFVQV@n+!K(c0QLI~@(deN;?pBX+-<8i@qaQWsWaG8ov7$U~d9PFCh49F!FsBwN=b?x)KuvW(hFVqVm9bL-r>ca`YLTGQFEZ zUr%Sbk{=&p!&^JJ0U$vVFS1a_un*f&QvFP4CL&2Myfjls^Y=}LqoeSuOMHHNPgUS+ z;dlumZ3LzA&6Qr*xKs2>zEpG(y%>{7#f|{OXED9-L6`gFk3y9CI6lrIW9|lqe_KpO zd@+uinx>*p9#`xjIwKU}UySCj+=#EcT!>DQu_ESa1qS&A*y)(Ua+LO~WL7J%iaEkg zfgm8qmhL9HQ-M<4T$G`c`bfHvY&HA={<0P?H0uM7L{k@UM{z`ZReBqxMxxK~5o=_h z1H;Ewyw+D0V7HpZF^hr9`QJa_=iTB9RdpOpCaWBRw_c<{y%h(9Fq4kfeT2UN=M#AiWn2aJ zXd`&h4ny^0sOHYjdE#|4`iad!Dqt$&z0)b4xEPDnND=(0%Nj%_YGO@EA?&86V&O*e z!jWFM1LXdp%v53)Q8D5u9+4Ep-H5oWi-?s{<-t6}u%Vwz60i(iz)8vaJh}Vmpfj zNq2k=@m}pBp44q3K~f^SBdE-nl*#VmDSM8T%J-1*dtGEK_KDawq+GtsRv4d z_`Wbc)y-d7WDjwZ`ss^T|T*)2eG zi6UHETj!%|w%K_Z5Ng4g!8D@&`Lc*}Eu;u6dh_sdDf@@`Ok5^X6ZS!f@&!UQ>{`eY z(IA9CNEhIy#LBh-g;a`|Ooe3(s8Fpa68ZvkvD|qbk?aZh6ZPWdV12M&(d){b@v$LT zFA@=Gk-@ha*qurwmcB4M1!IV>ioOaiv|I;2t%<%^6|2CS!k>8%zgwFv#px?vcS*3D z?-px~myd&DNwBxss3Pi* zk`n5N26jF$qKZ+A>B;L*#gmXl>0U^d{juKEM27>1yC8JMb@SHFKP&l$pm7(2#L2XEY5|tuMi?EMhkI#EAftTj57(`U2 zaUx{EGT{}ZYfxNS`J!9!`Ruw3Gg-b#U&L&LE|_#neqtVO=LE^(b@pW3zXlE`a)k!= z7&w&pd?`BvZ6iL{vKtc56)bJMj1RG~6XfSG`%B^(Mgr_VC(6T#u!Y`E1rh^V(MV!G zxPNrQq=YBJRwO)CEDii!ipAoIXOXX5&+9`Lx<6+^!hiIdur)0BmI(xRiPMs zWkHvdIq+Hw zcQEv#@OoS-5D0;_<0pob>B;gp0K8UAuL!10)a(>76 zU0PV|%g-w*_4(Md9FwEKP^SO)`!8#O#o({#N&He&Qwqwo*;>;C(*(R|pu_PGi_WOc zpzo+)-NLOL{_q&>g}9+4GDi#9g@33-tH&EzM&m4|`jro7NXEK}TtCIvGqN2sYhV|g zsh^;mpx4c;uB{2qoIGP@s3H`Z88X`}ljIjhdy^&DU!>CF zx(2YyI8(pzJbb-UQtKmhfdlUK#sp@))TvN7qj7BqtlH1j)|;-ozy~bwk2gk&h!7j5x7aY; zla>;wttW$!I?*Jd{b4!Thhl$Bqc zo0W4uf^rMkVnqOvDl5nFicTNM1oHuExm9XG^<4iUt0YA|xw6zc4$C8jRhh zKEcELgqiM8D^M?=m zUaGXj)Zqv<28_{w3D^5fJ}Tk0n8M4`6ebfe1 za*KT?)~A04qIW>rSf7Db8CfPr1vY&$QBFzWUrj+4y(C#k{H`Ixy~;8|8r8k}rSMY7 z-oc3oN_1b^ub?_|J%cWJN=;MMA*&#lqE}jL5e!Gzi8?<26H!L=mo5?~y*AvQ zG^2kNHPTiokIWND(nxr9Cy>mY@S4D=s?l^O61VCr?HXX*q;6AP4?S;Yn5aZGg_XSrCF`zp8H zSn7|ec}Reizo=-J>9~?I{v{hEn4FcDUsjw;N$^z*mdey?5#b~#Yiww$R_(__e||AP zOFc_XBN_`A`XA7p z;TjQ12ysGQY|g} zAt?X;NK6?{Wh7x>!EjL+pe@SuO1e)=W#f$xL7$ym$5akJJFpnx;%Sw#HTj@Yz0)zD z&Jn1G8j;B+z@I>bwms8nJgUT@v>CWlXylSLS@kZ@TUE>kskpgYoY1Pjcc_dqq!nai zBUGAyfy|>IJ(%v6Qaw$NBQaf0r7lrzqPFebt7!=?eosxIz8s?Bd#$SG4unM>fjxg0dcc9zv24b){>wzJ<<01PEChnrThX#8syr%_1voSJM_Y!-%nGh(` zN{YOa1jQk$#Qv`8vJM4k$5SCt1I<3bdL*KaU@F9=*PsxjP9zF(DbZa5-9;?KrBsO5 z;XN%9oDEYwuIW-OpmKamIF#dZihnYwoQ4u!L3PRlP=m|+%&OcDg=)tiKw)N$QfZbT z!STl!b9E7-=S}-dB|)!3}^th(J5or`P!LjdP~@fKv7D)kvKp zjVy6rTlIApV@e95S=$6+Lq@AKX_y|g2Yv?c@`EbsbM+Ewa2@0W$%H7_bi)uhC^Gpa zY51_AG}gZ1QLy!zw27{|SD8QVsq3)CuF@jw@fj-3T+pWd_H>?oGtYh{aOqY4noxK? zQ#Et?yMY?Ui_pxAP(&SjmI@2Ga+h8;QkiEcv7ILwNK`sxcrl;ie&P(ed@~{qs#aj z)C$p()-9I$QOD@X;k1HNq4=7Ss#eyO2E3suG@k{0Q@f4ey+pIdksJ+&RmfnZX0+Qecrfo7Uqsx6dN=ZA{mS-BaICVjR5U3b6{u$ z=)6?i&qabWacRZS|BZq7Ql6DQMtECjes~y z1%`(Aydi9nd1GjJFBqho3JeYJMT5&r`G$t~l0l_~sh16y5vDd95G@!O8r~}g**z6E zG`v^U{oomfMk=SF;k{-GmZV~ahPTDw%dBM9giOQy4Rt7*qiCIXuX{b;TQ55R_&r*K zBi6+A03)@#srfSC?{#HR=cTw(iS$3}5@{OEWu)dI zmfA17X5d(0t(lm)4t^d=bul$pv1aI5UHEFMidpT|uBmw>!8Gla^tIq=HL`ZKx@oy< zUrQ=VbmQAe+R@n?Ly9TLJ+1S3ND z1%ROtPP%!GSK%YbqnECB)?w2p!Xr7ge%c|Jc_TREl(SR>S2u0{DK&6w+7TSQpmm@g z604bZ;PkqQhgxm~S37aWl!GVMT3!TKGkN?B_+%%}z**e%JR-=-^7gn1oNY@@VD2F! zn7t<=33OrOw$yEmRO7b1L%;ZTxhaQO3B^{4xhaQQi6qy+Vn{kPf0K=*Lz70Y&dDaB z-?Qg(jMhMN(MhIpn7Zd>OwIOih6F&e??3r^Y+An@ko|tia%~);VL>d5CkFnBnc}|D z7$IgFl);STNlzJObr^}dglro=Yr_%&{1pnEkZl`$y zO5J${oa&MJ5)`x%gOH-1LL`~?Y$NGLB!T#7HG#546PMp$U5JlXG2)|rriJ+EfOx{q zN8^Il78ojiPIVrq18)hja4rNwB&a{Yiyj>*f_1R5n989);Pr&czH+p z9ncyVr!_84Yg~lZ6rok4ngd$$JD^n)r&SZDRTH6gw9u+m4+ga4cR;H)POCOft2RRG zMxixHjH8oCaYJ}EFLaR=FC!i(2 z16p-)T6J++brD*339Wkdmw=Z14rtZKY1PMR)kkQ3Oj=yr7z*zbzS_X%z^a6ZB#jMh zjsWd4b6|4>=)8is%@HJ|3xdTBp_?g)+ZIgkBz;6f$)761U3g2H-xZ7=EKDeLAnKj&4I-Y!Q~bBHU}0r1eF%1UN&GxnA&VWv|wO! zU~xl=bT5e899Z0t39Uy#PMZUZ8&a^OAZBwUw-|hx1zRY`;>I*IM{(#N)H`I<-ccO62I7Pd(ENg8>l(;Gxj`>>rF2=INd#HNN3^DSb;pc&2zegn9hj>#0{2qH0jD9#G` z`+U5Z5p{*%0fEZ_?`G|8tPiFtwMVw~u`RD3IYBYs`e@JVHwMfhTULi!+w%HxXp^b- zyna-{kseqd?YaKg!mvK(YwM!}MBSHSeV8!towq-@rTr{yTd#uv3+<2J;N^GN{G?2m`Z zf9M2!NfYv&fV4lZwqv%&|B(IhU2ygv*dM>-NV-e7$V@gEt&*)BbpunYLwrbi$mt zefGy6!ASm17^Ad5&P1_@{joPdd^{2RLoiYMLol#ENCWoAXq4$dI@<6M>!Zj`W_;_T z;}gs`N|_I{BiAeeK8pWfeRRA*Ktpvqtq%|vi$jP9)`t)u9Vb3o#fV3(k2IPVw8Y{N zT7mT;w8q3~jfvBWS|7cImRKA@E3iI<*4Q|$v2j{a>tlq_5{pA<1=feq8W*QEE>0_I zeM}WvVsQwq!1@qcHE~)saavL911Ctby~N@WT7mT;v})tDYU8w`*2lMnmRKA@E3iI< z)}%PCNpV_H>*FP%B^HO!3ak&IH8oCaYMfTo`Zz^siNztb0_#I))x~Mm#c4&Yj~@vw zu{eZQV0{R!`Z%rnIIXDl@d;_QV||D~YGZu}x{dWA=p5FEBt)zaLFBMLBw@R(56PO# z`jC{ZS|5_7t@R=J!1@rdqT@rHOx7y_D?2_F1%2zI6XkPT>m!rX`VdN4)`uYD)`#F? z)`y_d!qm%#sf;kS*??KrhZMKVs=zgy3`YHp;a=3RtaM#y20ca%0{?Xr|A`weF%R5xNF3~ z7)GQqFcR(@RMou$>!3wdC_=5n&B$^p;Ly%sDpmTdU9H=)Ggudj{g>?Jw&GS+bV(1H3HjyS`7YBL4+^zX4d8|3(y~kh>R6S3nnA z+DtHTvAG-6@vv#~%H2)s2bk8vWqmhru|<~k-4{%&M3(j4z{M6U>$`!AO_&N?Y{FFF zVv8*6yMc=>Ygyk7Tx_|Q_1(b57GKtPLl;{*Yx>}OzoCAG=I8(+m*apLbxFk2#z4GW zc{r0igQqJZ$qE(sy!jqRbz`Ks-iaKfY(ar{@k~G=9$Qny6iaWq6JIG1d38X=kOEfZ&mM9s`9AnDT|_tt9$> zNYocx>ZojTLCPEu*#q-$$3pA^C!wXSh#)wUgvJ1s2{InZ)I~sHKA*(>|}na%5&D->}0xVx1pOO zXhGbDT>`hE+fLAeaT~6~wqM&?3!%R2#W^k%Zfah(bSK0(&#&x`Gb;ZLea;u-?#@IE zI+2J$Cmu2AWJL@*SrLOyR>YvwHe%3e6EW!Ih!}LX7BT4jhY^F(XasNIL{9SJWva(^ zs#y*7)9NQ$XT(w1A9e7=tb8*M89&_wC}5|VE;?b#{w6%Z$J9-kH47V}9Bg2csZ!46 z@`lkZnRLDV>M&sQvUkCS2)zp~0&*8z2yz!(1mZ5Z2-s#9T$nZ?x(hBux7h_3CS~n{ z3lm7n?1BrC!7jKE#eBgoxDXxgf(vn)BzM7uD81dy-vyV2j_iU9Q|QGsyWrX){atWj zN^BQgh>q=o3(;A-;KGEgU2tK-_U?lFG8M;^o6N6DtW&#T9*?fgCW3fSVgto7K*zl! z0Xo||5+wNEkwg#=8ZN==jc17<9yCm_5|3%dvesr3K|E;o+H8>0zIPhzE_V z%_f3)&~R-w5yXQAYqNYiv7!#KjY!XyVFsNoWB>;lGO=Wyo4hA=Gua97ZX zpJ_17ZNw*9YF_~}o+u<$LaNxCheKV|enO}_dV;?)>Ry!X$Undg!hZ?(`}o_5EU8gM z4vt{?TYdMUUsW+!OF%3`dCH0o4P~&3WYkiESTHexJY(f zstrmPw&uZLE*5f6XiRa_a!Wm-_+DMG1aGM)HM+~9rehWbz>+4sfFxL5^?7wT@dqcD z!5xJ2n!X8|^u$cydj*@BYKiXNWT}ZnTf1@OeIKaZU%-HyX6>Qi8^Vb%Eep8m#%|KJ zIveKpX+hL$?P)W#`!BR6|33s0&_Tp2l0fv;jen z7Pq(IAGMe7;yD^R=S84X0u#Ve{DqiWbmzlpQ*IA}*%2NWsSb;89?4E#3xY4=xd=qJ zfK(q4JzNw0F;&}M`UP6R0yZ_MT3c;F-Y16RK`KwKES1i!(LDbHNWQ^D4fQ$J|5cp9 zR-Jsb^~Wf^KT4}QyYCRdearBtpO4*ZG@!jE^UrMj!M}3su*!WhrW)_Wl-+joam;Q+ zl@%jY<~!hnM`{|Ts~vX0Q$UjG2^!LDzKQ(1BfpyDMA-DPn$5k*W(L}?&uVYkb{J{- z#(2x?y@!$HN>uROeN|=}h+G4v`lIFN>y}ps_rdsCpoi!wNG;=6bTP8uLY|ISeOChR z=OYGu4Un_?`ZMYtjzhJySc|&e#Pbv6cmnkeM16;F^t{O;gEV`H z3$oP5>OExZRfW1bS=Qf?buhAiTy+qoJZpsh}=AZiG+X2+=l^S z2nV0ax6~YDy$sJeNS%)CBz}WWyqBFjI zFi+rl6`2OXXyx1enk4dZ$WkTFQo@GCWlNUKwbaubP1VGL@J13o8h{Y~+m$3dROXEn zc@(R9Qzng#NGKhtGB+Ua&7fZ@sc-1FdIHE&%qQ6Ms7J%^0QbRhZI*gV!yXRnD&s8o z7N~rLN4=x^z5=-KM*jH){#e#feL#|#m0VjFtVE4nN1wWo6p z>K@SxebAlkeQMu~`uk1*+;{|uw-qZ1`3B)X`iUC9qj#inCc+_jQnOUP}iK;S3 zt;Ne!k5!o;q0q-5$dOj+u%}-GrjPcA^mWMN=Oim*&EHHN%7U{MiF^;wSa5d;W<-vd zvqad)Y9%Q)9w z4@jv|*>0J{Hrz7&u$3C^yJghinCS7*WzZksU)c!%%BUabf4^s;&KE$xebcamWP?ENzUjvYB{DBK8|SfF$IF<^;BZ!&MN5flq115f;Kczu$? zc<~IX-;Y}lLg#=v`zS zSg;cMf_=F95lSaqR+exR46iEWkm`nCx?&Hq*cosvz`O}q_nBQ+C%?@6X(^(^ZKnXj zZKDp;80(C!rc5yVPCd(>hjSkXu?`o0EnYEE;_Tx=@$|SKr?KHg9yj9*D*=YOSPKvC zwVdH2H0*l%J`l?pA#k3jPbPQvJxC{~JsytPXgO7qobmX^ma`u>q}Zj!o*ZfGjJ#UI z-BB8Kjrxg(dRSfcY_~h0Zu-y1Xdbl83h*X7?ocCcMX(z zbbeUQ4IgQ+9IZylmvGra33pFogBNUCx^S80+(;w_|IH`B(#RXHk9ljDIq{&`I4N!l z#&m#_1u%RGCeQfkI0ds7i=2L$S@;GHgoHu5Ia zjjx{?eAOB_eBz90{Hiq&rDPjc=PlMIJDF@23un&x%K5gc#8Pldu zCbN=$(Cleo-8N8^xX&i8V__Hmga?qL8SdXm;#?_hkmb@@XfuPDT_2*9r^C%->z4kKW6Q zX3iQvYxc~@_I-nxR>w*VP(Seyw21*`*31|`t7bAri$TnoIK6Is4bGMI5z+cFm1@@u z9a~?kcwc<55e5hX&%gKjL)Gvr%_3YN^dL=p>e|{@1=M?$mdMW+XM7T%LNi|ar z#6J1y)2OV5FsAVX$LlVY^e8_*Isbfa=jjAUfuY~fl*Py1)m{tRZrqpAsc?K7KNt}kD8@-taPFl_jcL^)6oKIF} zPT9Y{AxgoZX3m~I9Tm?6SCXY}_DuFVvqy>hBZ|>Smhv)TNcj=|dlSX^j#dUKt{9&2gz;KWvnl)8T;XxXQUq z{TP1Y0{^}Y%lW!G1YS%kW^iUTW6P;5FFLE$_i%zbEfL&zfm(#1WbW82$nFYQ>KSnu077`qwiQZ(;6$Spq zZ9W?}D-H#_v=UpV^%?j9-``dIZ0*uvNWml;;J>FhL))cQyUSfCJX%qohwa>|) z6!$Sf@8Y`}fpMEj-h;`sZVeZ=8~pCX%cWxUnl4_j0)y}lleilbaZSg9Ws5E6PJ`^O zDRI%okXmaJx-lUT=Q0THF=<_O8g7Bnim)stIQN;vE=)vE=rmc*aUL*f#Z05(PbHn# z*DP2{e>rA=hfI#n%%P_S+#pA%y}l{TdBh}lVzPdRg_iS}L3RYPKwr_vCb69Lit4vr zI<|l})fjR3gh7r&kiv3Yo97SoC(SUaE@+v10xt7_8U+pCa(-p-wFZxk`(X3e20Phc zMRj{hiSAZsux6pzdD@u$(=pz0{&6G7ZZxP_+Ws-kU^&ki^q~a{mq5k(jk;fdlSdZd zUc825Td~aUJge4e+#J|IyyC-oPW@6N<`>{(dt6Qe=0#2St<*&Y5(weEtbV0)F2?7G zBkbf=HY+OFPU$5I3;Hi(uIQ%!@J+gD{W?&OeI5CAWa?23b@Nc=RB|$b#k6DzhwVy5 z6OeNYqE;>EB*nQ3>Z7jDa!yu<>+ilCto!Zj<0=aLUe@ywx(flJ&M7L5!R9~%;ogH2w|AZsCS%Y3eAb(rKYn?P4ms{ zt6%bLgIpv?%Q@RnSnSVhmUE6lE%#AE?;KNfg_-9xy>kt6r64WmTvPZ|&h3_So(7%L zGnJm}b(!;Y8K?9dRiH(=kU!sGFECikIp37ML}`g&ITskjDnUrO3rx8yRY5C6t=f!H z>y%!jAp9uI@=wFqTk9OH1(tR%aJ_6EEOw{V7Apr9yXBPG@Al;2aSIkNSctD_FIyyB zUO_V=VYb>2Gkwfyk7g>@WqAOwSs+XZ`FwKo-|Z zpjR7~E?X+nhm*Lmn*D4g1rTIhg@PS#|5S5aW~6PUEz%bLEZn+)R~lkZ))^}Jf#KU9 zY4hW?OBc($=de~Lb4MZvt2RxD^iJF`W6>`FR7jcMuQPSsU}*SNy4*Olpx z4~gW;fKlMDOQZG1>DF^fF$&<2fF(NKrkjN`4qR#wcvM0sn@s3(?UF#bsRnfo%Hh@P zZJM7>>Gc>)+G?6+($}a0ww?@~gADR!L0ZlX?J{yoZv}!LA!oMzcQm0>dK-t+QJB4Y z%GA=JU9?!hyA7i);hv#=IiI6S?Zn{_)J~jU)}HH}OVlTTdto+yMQdTb^oQ}f#!7xp zTRQ(kphXXGniHn;mg3~uvD*1au_Ft7TlHf_%a{|VZ(ROc(QM`5H8TGbqhY}@EQZ~u zMj1)#nb2}RQ?&4?fHuZSU-WU%0f?y|Ub196P z)uOpAat^AD@e5*K zJiQ;g*>`Kf@3J*5XLkeU;VVKg8QWwJgTj|jcS;WfW~f*X)YC>@{j>%@SQsihuBI^e zXTUcx39-HbY@>sJ4yR7SJpw(N=G^2QVsl{iZe9lM7#9WW*+!kIhU3aEi+}ncD&!3Q zD20xQuz;`Wl!W^cDEOuH7mCOvoph`zv^-L%S*P@-g2y;Ib(!vG>vCpA=!|v<^_gdW zSY@Hdl0%F)^;(Dy(Pf;zVWPM*xo4BN4%#iYa$W_+ekbC+>}H$4@v8iQ`(hkIu{6<% z9kCHHiIcDQTDBOGB^hD6_wtqntq4%S2a7w?7=Oj-+1dyB%2!reY9T?-SRC4GUxC=?PW;##sa1H?Z!4bxh&f5goq@*AGN1HsvP=h+ zoAGqO#FZ)qhx1opusx^vdq3bXRqz(@3Y<>P`{C8~dKj){{S#E?6y&%GIS1m-I7?ke z9&Z7P!%ze71K=>cfx~bthv9ONRNooL58wj+y!CVx*B`*XYXF-BUqfL$25rd?f~)qT;lYSerwo`b;2h%)KAZ|JT& z4VY@a^&}+U$CtRqu3QfoGivq}sADhvTc0g^F(%{VKuowgPA20v^QKIiCz-dnHORj* zGHIS{CQZ{Zro(@(duJ8+`dSU5C&B38zU&=Dg|P>o0AdgZ(}V1&zu_6rH~TTNZ{%w{ z{yCt^qw&WYPcGj=!ta^zL@B6LUIx^@c_1_NT4u4vQd&&r$Fu?8D`Smg1|Y7+h!4LU zImpK46Rlh$gzHvYQD-}k+PC0S15T8*dqRWU{vUCVl{~6`#jEdG-(~!++&K$w1Tbg z^pmLriWpwv+rW%MytJ~{p=BNdR6~YdV3n?Y2=WRu6F6?}oTM`EF{Q*lo+*0l=#-WF z;~oyES89xXagd_N+W5&TQ^J%Z{IOQc_T*^~bgY>E@1b-fm4L?|)TzvGz{efsXi^M- zJ+yHA448?Bv2KCKlz?x1@I7_8BLQ&&+*9Wr)dp&?&%ht6hFZlcmY=4s zWYS@P_q~VWAVe(dZtLTlCiy!@&Z$iQtvWF zkL34ASVpquej+lJJIFLgbwZm-rpZ9~+*1viiA;0wsClY_nb^}-4Kl`fxa8&Za6#%mGsEG8_)yN7hog5bh&_zw-zBhU_O`48FkV{q7~m!fLtMVXWjRPn z3JGllkyr8T)f)$w7(z=Ugk(bkzve&3>4XU+vjrqN9Ef{JK;{mRktyL%dP+D0I2plz z(uD5?Y}IO$Q@?cs!mE#ysWSr-MTn046SAD%U#9S5_2=5H4S)@$j=o>nEV#FIuYb9#G_8L%R#O3W8f^^RnG#OsYl8xdjeB*SLu`zV2@$S`Sy`P z$`p=CV%IU{L|cYhcQ+Vnn32L4!jyDpTu#N(GI+te@Z114-$fNQBt99m)LQ!`R;dU3 zoRIib4xv@d@FRaJ*)LL^rM}%>ZI*8Eb*PLnr%#~5ssR`*5GZSOt8%auvi~LnZM3;^ z4vvP#xme@2)Pcxa>#@9Zv|&F8QvLIY{@C*gex?`NITuEV5Sy*|nOYX12|)6KG%}dj{F9>7$|R zTf859R|iwC+=*c7jTqF4xm$~MhE6M(4u6gH4x__B#-uVJYE_2Ph zKv3aju6Y*7~BW42QZG*LfhJGJNl77b#y zZU6q*WYaq+m*?gWd>0u~Z8z@6QD)%<9`0Iv&fg)&bv$tdg)FH zE-x+UQ%%jF{Zlz30ln#Q9;%AP?hdm$bl{=+`Pq&I z9j@91rR~~7c(roj+ZKSN%Wo^`w&HiOJ$Zb6Ekb#Ut|XN%`ljVsQx2SH86aFZ z|HQgwC)UEon}sRd%8ay+BtcX^|HR2~d50;ZObQs`ea)ImX0&|{vUh2ia9D%Xq-#Jl zzl5Ukg6LtHF?I(i0w6dEy3zO*2vwYiaN8CuGd8Gf;ffj>Em#Z}HpXe@AnghluBd~9 za=Z=)l(cG-mNsdJV9n2PKi(u2qq2jSEpA=1U?y&fpS!qTRu(f8OocrPmy(y6SU~4X zTA3P?P!cAfS*%R0!Iu>-6&lkP)-^3X4!ln^DdkdP3YP3w3av>dr6Q7|iS2I^Dy{sj zv{z=by%}xVl^=aI+O6AP&~r%y{hGjFZ=Yv?O+*5NyovooBR(HjL z{|;*2P5)^E(-?MSIq8zc?)pO|ZJhzwzXe!wAjJ;H+aW0ri0*m<7!xFM$nHiE>0Ap+ zx}`xb@+1V7pPx6J}4EG;sz) zDg~ZhA7E5UM|?qtwVReT=nxuj{M9JAJI|)dct`gxK(8>g*qd`WK6~9AI<(kp6xdBL zwAfoH5ITdQ#a@$uX=@MC@s4{DB$F*M@TTOamAZG9L4r#jTu zhogaMS)sPxEkmW!AN)fq4Wel^3mP(^wxAXynowIG6|KMz-7~A9-tD(Y1#8D)K{gc) zwKaf*+8Q8A$&cKVRaEb;JP<(h+;cq%MMG^35Dm38C=+UHpeS*lO<9rkesYiyzyB{J zo*il{h*+qtk7^r4szYtPpWPt@ADoG`;8YMcE1|X_?1$Qhn4mL*GP&3e)`Pu=xzLSf zdGuLUWWr@<`!{9z2pwwc13J{!2ZB&r9}$Gw`iN-#S)sPx9Kp{Ub`i?^G_kdr!V2rJrhK>8w!O05+kv0i27RA8PA8T?SHM=r{M1WEe-QLv2Gi z2(=ASxyS}9=H9a>3f)bUVa%q&P+Rj;LTwEop|%DHLTwEk4Yf6>XrQcTa8YjJp|;)& zPYWxre3z`W4Yd_i7;0;>=ulhv9VPC62s+f(d-ZV8MDxADI5w3tIM#cIr=lSD zAG&A2NhCPd{MI8t(9tUWF`%QTEbotRfl7~Sybmsc{hcrYY2H7m!f`%@BDol5qUC)k zid>JLmtm&${wXS1NrLNz07W4y>p6gl{}QMi(=CHsb%2TYFDX%xkkAc5ek90BgS5Pl zr0B4Oe8(RPSfxQJ^05>dosc+ME^~VS7F@O9086pjp1dr<`$VA03IDSdLZ3*XI@C=i zNRXcja=JlU-ltM{R>DkGp9y@Zz*6WlDRg84pOs)f7t9=DEbntEGhgfd9vpy>I(F$I zD4;sHLyBOn5waH%Nibt1s8+w4GU(+#+VYeku%hT(zMgHsm4*KIA_Q$y^3=jGvdnWd zlA%a~h5JtzX9SwIG%U|GhzkTE#9UME5>*(Dx|2lDB(91lTApV}U8$^m1ok4_0)9uV zoWNPfZcD2E7`dH(h~`-99j#u+fg;*W@T1baQai9&Ew9YJ6(K;>Pj!Tcx0lTVv>hZ) zBtWDKgQzsG+)&8CVlq)_UVnotF7yMr&9YXI(!DT@N(+!ZK(_s;v>;mvxNF~c$-EPgVA6M zOE8)@*<`vBMHeq)z^^yepsqo=7R#%*E1-}t7_CqTqj}Rz`WjWFCzgW@e6uQ)sbz*X z_85m&r~{b1+4dc1HXVnSbiap5t3$Q-kz!L8ny4`EV?`y77L~6D{aaDP;@~m*%qNN( z5l4^tus>DQY!IMdC{xd8ipmJ0!U|(iVczG)WG*h!lZ$0j#ehSjNKbvrrXqlVutNRi z+cqUL0(rx)*Rd&X?b0&&dR?2M5@W*u9zB~f4zXb7b4=J2G>8S0*&}JwpN2TF!XOUJ z%hPR!I57D(EiYwLBrpyvUptZ|4$LdCd1g-+i39Vx>CsupI54lfv8XM4Tlg@8I54)K z0YQc@UG~?&YTUrLu_`e zw#S|Ua!=Z0j-o*ZYrm{x(|2*|4WtXbnO4VRJLwkD2skvYj>nZ~gv%WI%j>v!l*S~8 zSqfLfaaPAA^m(HHiE3?{kCSx;kx#@iL@X0Tnuumy({iaPLyX=H*ztJnRV^(h2DUWJ z`Hs!6=;G>B> zRF}%^P}Xw;q00m+?|BqnLw#MKik?4b+A4u6dyZ$?YJr9&*tO~kp;@H`+zD6&x>69M z6Uz~GXQ^)pSe?L@ie|+1s;dQ2+w&8W{-!{a6PU*rEd!6&(UP-E>w1o4T{nnmo1SP{ zLQkG-Qo!NRd_TK%mh|XN0CbOj-b-)xfx}AdY_*2{+GCcw^mI7w+|^$8tNoXUdeLssjQ zDE&PmP$a4Cei+75c)b)Z%@Nt>F|x0m`C2XSY5fbf?>(riEO&gLhxk5S+fk;_i&6-2 zkxLMPjBV15vTbyPl6==PUqiz}y+Y^=*A8F6`a=XrT2|>oteR5?P%ZeZe`45fcK8eI zaDh_CR$F~JRSlMY9mGxx+DvtHHF`RV9**ayDE>WD9JlzQHMn%G%ZL|E z^>Ot;o`cNC;&~edo;L-02L%wpqUQ^YiiUa15Y_mzM6B7eQuzYQLF_U-9m^1wiQu@w zc!B#9e1S2*^u;=cdLUt1C@hY>Lx@;xkGM`H@l_yvC!R$hwb~GWQWL+@C;n?8Ua9nq zd~-6!FZCRM5Gjt{wIKF0JU>G5O(4kTzDa-5Y_AF(qsd_-G3n~|9OS}O5?lvjPvUtE z1oy&vG6~)m5FBy?K97w^ehW`QU&MJJ%h3CPlh`TTY^n3bHN8rQp`!vPvuLOfY?wxKLf#Y4Z)`Zf`c&CX&^c;#o1rpSBl(CD zA#lE)!hQkFU@CO#d_^DaKS}Ul5DQVLj{bz_BP6deTs@?@>WeU{5&9MMT>Y?| zz0$hU8nOjr>^+qE1W!G3J&1Bc|6vB6ZaBuyf;VY7YbHh(o|BRFucnF%b<2GZ7&DPT zqFU-bky+Kq+>B=lOZ`=gjZc7)rv9rI5_|3K6A=Hs>Mk?UnJ9fdo+hNvGZeb% zndmB(h-?m!_c@t(Pu2?izK~3`p@xv~8dUNjo^>Gm zG~lXp@#oI~_PYWrxONh%Xr16)Ig{HehTI)y;)4O^lf4WlPL$ z7nZ70mG~N0q4djm9s-5eL81R5t`b>l-xJU>e*$te;VC!`qZtR5a*watk4sz5>IcpU zX)d1&0j#EIid#Ufbv6!-9e|MZQq1sY+8Dc&xzIQjsIjJk16aWsMCdb2r;?e=0gj`d zlR){dc+`Q_7Xhq38GjgQYF>d7?+9JlnaFe{9)>!dh06Lf>2Usf2N)~Eei@_#06EKJ z=SKI0qV}~0WyT+juLZgCFe?v6G*`C-Q~Fi_g82cEEFDIWWr^TBJOji&G?f9QAp#DLv#f*0a$hayuPd-H7LMl)Mg{4V0Eg zG@Pf`YFAqWxi8{QuLV5VtKDJzvT*}5PUG}g{y}oUR``(yp8+^t+Xi=evqr+SbE*-B zCM@|J{iY2^ehLY$0WKk(iq6-IE)_JUR9uDiq$aA$mk0vlWA24JQ%}}G~?fqOz7<+YIUkvitY8cEWJ491k1k_-$#ssk%i19ty<%hX6hwasq zN&j${LZg=Y_FJGf64cakxB51~>~p=XJgD~ScpJwP`O3>t{5CxIqp~{4jbW(a8jmUO z0K-OXU9lVyfg+=ER&1PLRw~P_1+_op`3U8|WhkDjDfS%oCMRqqJ5U_1dXgCv!bhPRBDJsmmdQC{`cRbNwn{25PDJki+#&^p*(4ha3vU$C2C@ zqvc_pIBW&?l|ACHTT_*Yy#6_w^Hvva|Cm$#7JgU1gg^Ul0cP@h__g21_|pR!@sFZf zcsfcX^_k$O;&7E2jC2nYhddprW#SRQh@?JJk*8|`3sXmGN&O4JzN9`{OX@d(5lP*k z1!&hH$l*)sIa*TB0ZJtGTrGdD1Z+*g@Y80Lg>#x!CAfJB&w3y%mTXPU3-LxJg)?9b}`+&DlfQDYBP5s51%HN~(HYd)sW(&V^ zWKe9utKM=XqR_#@s}QE_09#v`?mm78*t*{r0hSK1^{BWKFh_-}Q%C4g;ptIpH-e+3yH!IKrd$axOqs)q{YmF2f&d5?i`E=5CemRNsx?)wkl${#C&2_aJ_C z9flw4@nZyj9Jmtb^%VSX1JeMERsST&zJX`I7lAs1DE#BgMj{f_Oli@zc-^ayg7JWC zheLkym1pS2eGM4t(HXjdy9{TKT56VV*r|Yq>;9ju;U>WQUjtr->8&4@TB6aH11)v8 zFg8KGDXQ5T)Y$WA=)g#R&eZybuJw1o3`A7-8{(u~?G8qjZ|Dx&dxSrv-_r0bz$1)$ z`nF_mT|Nw*@Q%%IIkVKGMe}sP-*9k0W^r#3^5RsP5yx10x^VP>1Sp-M)Sw z57m9V5-`aR(|!C5AnE7frk__xKMUwpVXkFAuRvX^@TfzaNFQs)Ld*AVX_ohp?}7## zZH~eZ7~byE%`%PT=zyq3@(es`on1Yj@Sz+snw(KZk9M?zy$YHBi04+6eAm!AO26lG zz+i$l_t;Ze5bNr)xSVT~&M)>oP#ir6+RlDBvKy+!z(!2)+*z(J^@ZKwg&~S6zyxHK zadfGcS4#l%l#xSqo~9 z;wc{qqY9cvjpp-O%_q!Y3VcgltGR;wKx_MSOf9Q(*J4sx!$wel3lFuRp9eLpir26z zM-3uU&d*(eB$EDnpzY38nKMDZCq%Bi!Fh4|=jEU;3Z8ZbjmTX|BnNBCpq6jpxeYbl zikhTPhwGYN08R$Sa9x!%%J0H`O&9*^G|^?MlA_B@k2GfN9QWFp1O`xfRk75sVn(j z@XEciUb!U4E4M5-z7>Z_Y41uRHzUz3WM(=Tc@xhsQBgS+2R&9j&CK5dW<1SI&(VJS zC$pHzi!j4E1Do2KTDTMMuW^r8EKN@tsCsN86l9RT71bN_b?Qb_dz-Vt%bJJW^MiaHmK}XQ`vi`VRV_D z{@7BDx8xt09^Z&7obBXdjcZWby!r6Cf<84T*7&-oz35{A3Axv`IWnFIJz2c2O_8~P zWeR)KllOo0v=J@5jN&cN=<;H({lTNT_cde(j5~M){wZKSpDzB1FkqUZ2o%_nk^ z5S}m%o{Ri_8=D37n&hB?vPJ)V6shoCFkl4d!eL%6?$RCwDO>2^(G=utC={m0G5NL3Ir0{ zBLKB+<3s3vZQuDjHgOG5yxX%j$+?DrymjYO9Heup22^T&tyaW;NH zZEV8N-?P{OUiF#yy}y+}hD-44He{H5J$_8S9e?nT(jObXU}v(GPRXr|Q)202JdZs(RikOEYUg^8-BhBGb=F z7gTQ1CfMu1$X9WTUa3h>09EMs-`CE!3P7TI{y@VA0QS9k=;hBu|FN2IzyqE|NbL)y zlGH!d)UO1FD(0u6w~31RsdG1|+=C>lc%N$(?>Rst^v7xGx3ODKm3oYrHcMU8QOkGn z{0-T!Fg3lXYudBMHzi-x8f9QgzNi(-u}EfZFYDUQ1SAUOW}{H9gwe|_mk5oJ>tpVY zFTTXmwAcX`kK=g=q(;hWUqjQvtQDLwaU$9++cwumkm++Qe6%1nii$CsZ?twrbgMO8 zJXU{B`vPq1*o+=3!ZGBW1{%I^^HMwXZGPSOHU|kG7$$muXbU%po+Qq%O0e-Eo;j=- zS~sWDm3jid1ekpew5jkVSj)YD>*yt}L-vF4sPhwBP;vFWC17$IeVfzqO{fbJ9}>G; zA7JbFcE=&_b!`^*R#C!!XQ9r|Y`^!1oSXIp7-$=y7?J z^W3I6CoX-iVwr8lbyCTkA>-hT~Q zqo>!rZwY9Y<5AyDY-A>RUl!fSqTfrr9~6BrQgjf$*x@KPfkkgk6o8xR8NgvvCjQO_ zb{l7VYeNySY@ulqi#>!71UbGlLZvdt~C<#OhI)$qPoI z?v>W1DsvVd)tLAhGljiUj+|;i;u&JYUa2N_QQ~jJ>RvgN1ZC{#URlKq$0a)B6(qyj zFoW)u`%&BDtZ_+VAT#M+(QSYHGOR%0QH%Yy?@A?wCX3z^p(KK10bq&XND89W&)`@i zPQo@5^;zP4pgiaFIwzB1b{)%ey`Rm-*$B&+>vo;%6y~}FKS#7KJ#Oi;6Jct7mRPTo z&SFv}9R6L`DKs%~2U#=p{^GoAe+@{fnc4e`)7#iz%!viX{0+nDcJ>!ndpcY8{^ImD z_7`(^7@6Y!;&i+Fi)ZQWPwnh4rjuEz*^&LlhULgEV(;_#cJW9OUC`h_D+GFPvFF6^ zCk#{g$@p0%tS^xxt4`rc6^^R95wB-kMa8>vPchEUXOPrj1QRT4K4~Ym7H2RMEW~p% zzD9p*v9sxMe45+0wb~g?iS+&GI3#WaWdz$RC`5UoXUPI$j>3bCzsnVSliXyg%3Y^;iU&f6afYv)t>Hebq(w9~*v1;5 zU1o-Im6bcsY~}Q~u?G3m`54^LcHKt|-AsOb8>{=MNhl5zEcY?Z7@|J&BimTr$4%BA z`Jz2w$l#1#M8O6rC5XrLv2iUf$WoRc+r}E;%k#O7)m?Aus3`a$)T98cEVwrc@@kel z&~#}IkPc?1!)|VO1CHIm!bZ8fN!{e4X@hO7?(>GQMdr;mR`&&ibn}C4tnP~jmzR$y zB7Hca`;tMWg{hYfm=UHn8xSoRY-M#{G05)uj7Dmn?{8&wUsXQ^&xoMS&$*S=ea#ds z$)CrQa9SF0#0BD!-7N-RW_8G#viaU`VEG0C!g5>}<`t|N#8yEWXV9SWoHKUA^9Tg| zXK11#=<_2NpwSo%lhNwC&euOyo|?NxGiM2k*WmdJNKAzk=?HnYH{WXa{SmVTdIOjX z#DasH7%hoAM|4c7s*O?3oreUbqYBP$BSG~xRwKo0Skpq_tj^!WjPw(v6l1$6W-!aX zmid(Gnk_QjZHP>Mb13GEOt&48`6DfPx@NV%EJ0WZD7QtIny3As(s zKAXQIQtB!VhEhtBLn$Tcp_CFhCZz-wl~RIQiwUCGDZHQ5hv@mzkq7O3-=c3ayBYl7w_BkWqrjq}s?RNhl5zD5J<2WK=3HqaF*Bs1GD;{}WImKpf^<_+86~*9R76GzDlJUCY?#UjQ=1Kl7L3X$DbhXFMn*jV zo*|=B?a3%9Sdz+?QGzeSrCaf1i$q5K63vnO&;q&8JD6=Ob$m=n=$on|ss5C*8e*XE zdVKM_W8N>aGDZp%X(`b0Ka~PxUa5}Tk^=YOEs!ni4Yw%;*w-l5t`y*ei1ckr0nR%L zXS_zQo%NOr?-~Ev*+h%jX$kiwkhSh9KzCXLVCwF=lahR^Mix_dLSCE+S#dx!LaKX$ zX(KP(ov~`1h*jgntr{oGs&TTc8Yj!DaoSonP8+Mn$zjzvTeE7M9kyyKk>@pZE&T9;>|ryV?T#-zGwhgercQh5E|jC$Nc zc4ZDEE)<$F%epF(GQO^ES`E&5!ucfMh@j;-g$7=wdvydobMmwqytuE1r>tBPNdRKT z?CG=gp(oZiBMEimai!9=du{)rPhKyowe8!rcKnXkLu!PfDT1Jpkl5S7S2(px=V_HUlFHcj;NCuX0hu=Y62*An?A4frI z8E>HJ3TX*PE-6iJP`q-tpgg%rJr9E+9cUTJz!E0&M$1SBmT)@IGLnHM3~4Twa5Auj zg{i<27N!DAI2~#k$-oj$$F+=PUCgojAUpDL;HyxjtDIy`G)!k%~6n- z{HyAb#Cz+->*RZ;8?Cfld6RtKnA5nj6A{89@~!0G)%$3xqG!>`=iw60LFgHv=;EmGLxK6hbKKH``V{!8W}+%+}9RgS1}NJ z?`N`~eT~l2-O7-QWVt;EOmtL?QPL}WBd}75u6_^LPJZ0daMs;PClA-D9l3>QX(Rk} zjR^O&oAk>%W8f$6)X>m!@({~jq>B(38UbLO9XNMojk!6%UPM#d>daQgO#+pc+Dj9% zzC%JSSn%qnsk98y`{Y$W*4?QEi~Aa1tQjgNjV|=rcYO;ycin_PR=2KYM0DeyeEdQ9 z;5y(b`R~N@^ZhMr1JJuM^B(~0#-hcOk#Bc%B<*sEm0uZC6XhgYlf=nyEr=a?JT?ZP z=!0;w@4@C!C-5iS9XciyAohAK*@2G9u4RKzvfA?ngcWmZ9$#X;WmN7 zFHx_q$Wpbs-UAG*$44!**Ak`coydAmHlWThkr^HU#_COf&olYhHENY=P2ahew3RB$ z*7TFx-0Bi!068VtD-)BUO}uXDmj`Z;t@kP+pm;()FedxN{PobV_ANs#N#Gw8^2PJ(!O6Q$dct( z3h?4rN~||^ROGwR!~?K0zc30?~eH)C=gZyz;~*)e#d{=vPWSZwN>I zN{JT?GU8WCyl8NtUn%jDL8XPMmkpQ^rZyWe>Q_prNpc1C*ZkVzf$5gQ!vY~ zl-OeMIsHnBH`G38j@*8w`81^*W44I5Q zd=Qs7fkVfbSHvXbb{FGZIvdYtkb1?6+xq7=D&^;nTx2b_^J%T?IM6bhhFbLlf5c4IWdJ3zjNM_skM|8o!aFaDtwag!`YLBP+V z2tVkzcw!|;Q{EbCE_@4+{P{(B7Ptf4^mo@vhNKb*E_$wS5NAwC>n@13c$*u zeWM^%zNf)qhTl%oOuck=ZBQ4pY3by96f8J)Si zf|!AV`QY@>bC5_DRxM-EQsmKs9D(@3Xl#Zp5P z&<)-tD889}$mG5U8hAMmHyTFNVMHO)W;h${6abz1R=h`R1TjwQt*2v{oPeAKtbkO_ zN1kxg05beE3vNVKx{$h9U5zf#5s*^dvW5M&Tqvv)#e6-WJr~Mz=qF^$>O*T=E)~2Jz!i^4-g=#2aLH&8Un>cp4Cl5w zc@CA^#S2!J7(^yOAZ%qGPBwGWuIAhay9XJf=w!tDPZ;a}SjnsP3?vwaJkf zpsoiPvHlYk1`}BSiGcz_0dgK^m>w13hmB2E4=)_CNI5k%*fnEg+v z@3e^Af2WQ8FPNzPFPND9&(C8b>4^PLFlPS~(TH>-_vu0S8bKrX$>fthEOMWycZu@l ze$n)HKVzX~#c@hN!9zLNX@HMt-7_;tKQ z&9noj*G)W>I>4R>^P}FCqW=nf$Q1n_qN0fCzY$9&y&9+qQ4PRYpUvkWG(vd$29Oi zDf-FSe^>N#3vfjA-yH=h`qzQO9HReJHZ4W}y}Ls6Yoa@Z;2?zbGd9-CZjB zA45;=favFV{sKk6gaCYssKhT*^fwLN3D^H}i2X6AsmyQsekJ;MvFK+Az>pDGQuKPR z-+tHsP^_+fd9MEl@Llh$>z_2X>iQoOb^Qwv(FBrXvNQo8xX6h84iW+|W-G4$p%!v~ z6#}qr*Z(u@q|gcQaulQ{@Lvf5&`gDzfMzO}Ch)%z0)V|ITXX#*nXZ3-g1rf%w5{v^ zX$n|h50K^k9SQ;XE9q<{1fau=Ko8(z{Q!ay*MF-IhpzvtiSqS;p909K2YeL*fU6h7 zb5M;7KwSU(m3+B+K=aOo08~Q<=y3+lTG{I>Jzy8>0qwi~0~bIWYhU{W^r8UvO7#7J z>cbc4`hOeq)Xuv8Nn@+7|JtbQUx0|zPt;~feIV#s^rb$)&oxNwg<7{uqpUp!*Z*zaTo>y8g>% zM&$lZxc+NNXDhD%c}S1A{?8;Bas6-b;n4N}XQF($UpT8BxxW?HKR?d@qptr?pjz2h zYws^t?l%sp+zAIj350&fuc-|0QVC=Ko>?(Alna|98NCULk}4h5x@$EaLqCHbBZ}6ZMaEf5AkZ|AK+@pEMx+ z@8PFUI>l5d_{U%OuUCzLjPqZBsPL~>>(C`()PJJh)MnQG>v4Aw(<%H{fPO^yWAt0d z-i?)U;h(G5S>Asc9~v8+?U8s`3A)X~zo2t0{7XV);a?Cr7XBq6YvG@awe|i>)?5q! zlCsr>f63Bz;a~8TeO3H!&wKjQ_o_y4|Z@4pbv zTKE@aeBobkv4wv@rG=@N4O1CmYO?{OVgHc+QY6R1zYLys!v3-FF9q8!{0qLlh5wh( z9BsV+7;Rg%`Z*l+Soi1EeIY`B55IWm|0mQ)!Rp)ne*q%y{})Wu|1X%B|DRvq*`y=# zpP~UiTa!<%6~Ra@7YoLPmI%g8$mi{Si5c==vEr56R`Euod(~zAJ{}BC~&w}mWAG6a}q5nG*@<;zZ zMz`hdk;W&m<7Ys}&Py0#CDdp9?sjPmpuYofUwlS%|5Mufx&U?n-j4U7xDIy!3MSA6 zk^@a1=mMkx_y0Oh1Ef=eC(S?p4#3fB8Oh5IKmj7UKyq}JBLE1g&A9(Zs|<>ZE-(p| zM0A0sAr^9%vaTxZ0OX_)RRw~rdvR4DK*v>q0G+K01PQ(>@E`90Bx6~sKoF$gMimHB z+E)dFELo~RfN!${u#TM+Isy)kf>Z^b0wOyQ06PFLV$*U5;4fmTz!$UwP%{-e0yI;( z906ax`~Ph;N46?}^PINk{zo#0d5M`{4}c{7D`aJ;1`s-d^3_)Z{sBZ>4G>IJ4G>IB z4dBP|4bl-cfM84wAmTox8#Ta#9Nt9Gr~#VEgAFWd08tZ&^4$RQ0c5-XwHnZhoCU0a zRLw`8a0>ur_-Sf4z#f1?H6R0s5;sc?_=0u-K8t?Jp$2Sg2OvkYuLk5gL@7H0a2q=S zKf*iO*1M%&t{Tw1Q*MAQ&;cGe2U`FKfcHQT_{t4{(}0^-=>34vqX7N~+yLQ<0FC~E zEBV>)NbJA%0nEX7Lm$9DK*g8)i2eT-z=+(34?r-1+(+!cU?BHN13rMe_}!BZ_vxqk z$M*qDQrydBd;kJOHDZ ze#3_6dm{K>klXD8&`gCs0L|3@h7TZD1RzJ-Rz<(gz_IR6sy9J?z8w?(gr25U^@abR z+6aHaM1{X#V#1$a$X`iEgg?QU@F$|fA%XD!H)cmCj6f?wi^Cl7Y+XxAS(Uq zvaJ3@T|E51E)xEqwfx_R<^Q^`!vD8p`JbnB2kZTnMYl%5K=}XtKM?-%*<~#N2r@4G z1s7WY5LCKIGZk9>nyFk?|Chh~pG){-ux(ZLGo4}d{+#+_NYA$6|8G#H`l5d)!vF0< z1JR!|{J#Y0k?{Yq1dZq?lSlfnh<>6@C(5_`*8m7bKRe8v{Iiwt|6uw5|6ch2ub|%8 z)`EUtn&@v`st=pmsldNA5d4Q;pfYm@MTP&%xtK#QISxNFz{Lo=U&e;=~GFGlkJ z4y5w#Hj;m5?0(YNs@-23wfhB#O8#2)FuEhM_Fo&f`)eb1|14-eQM+FU{sm_LPr*sl z-w*p%d-ybCS{(kKF7Xmq!{v{!6>7R^c`TJp^OV(Uwzocx{?3XNU z&3?fLX1{83?k>QsTU-~}<5*-~Rx?M9lvR!9>mffwaD> zNk^OigT(y5_4MNTa{Aw3B92D75&D%h?$0L-2|t8Q@C*QSKTY|B`zV;m@DtNk{fmH% zRbTLJWPJ;8Xv#Bn2TXa^iDKJY&VLl`k8If|`E6?_KSwE<;z@qFcJfoIA$^<6`4k>l z&VNqJ^Bed2vgP^C1@z53v!`3`6eDke&{*DOr>ogb&bV&{c zx}=8!UEr8N7gSWB3nnhmg)jyBhx%1w0{t_hc1WNVE6}$ozGLP-efxth z!6&(W0e!y*`*|52&=%|E^~ zzg{f>6a@4Uhzj+3^$5BoBGl`Zp)Jn*dX>;67|?eD=tqRQ3FzC6l~pCyDT<~nsV?KA zjZ_zO8>uen98z5pB2rxtIi$KIWJz^0)>f)Z)?89uQno79B}-eWF8DyI3s_O~9(!rM z60ox9<0wd}PLF7YpG#b-e~nGc?fmy=OLd`?CDjEPm+FFxNp(S`g{hYfQyF1uvjMZD zx)jMF)n)LsFV&@BTd6Mi_N4k|G)G&ht|RugF4lDxe_r(thjkC>r{y|-3<1K(^{efu0^^p*ZKMVf-vPe8{u^T7y!os zpKyN#CNliW3Rv!SK;}~}_ztrE8E`1qnMx6wwLZTs7d`7lv2Drq4d?-6`%mRM$0?a= zPp(tAA$^;2oiYS+UF`H15%B&cZPWL)!<{*!ry3&tUl*%P?GVg5fmr{_PS3qSzl-ej z&>H92e0BURcWGQ6&gRp0x{D8BXV>RRW2<(0P1H^oAS%*pvhDPmxSd`TvC~JQWg;S7 z&gT2dPWQLv2gZLO(Zw9CDB6vk6x!*fQSiTJr)#D{J6$vNKW(Su2%fDAbe_-WPpBnF zWZCI;Kt$~H69ESDd?)Pmt4U`ocKW?Y_vJb5^j8V{c6#}dTAoMjbbexA+38xIZ`O8t zXGE}nx$=Cc4&JdYQJK3gRhj#SekIShz2SbR})y0}tLQ z+2s-*k@s4{52S=gP_!N6!I4Mg7mf-?i@l;TPA zj~{tIMm3YXMBWP!k?=S<=V8n;q0tV6q3s{M(;3Aj0&fZ`iAeY+eeg~{)>Vbb`zN92 zM{Rb5%!`DJ+w1{4ZnFpIY@0nu@NITP-V5Dqn;m!WNJ7+R$K5+*EX!s`ki2AVW3vY- z?c3}@mMoh+z>9=OsJ+xtQ8a;_cLW#O?6`YJP-$T*l<=CVToN9U_fjO=X2;z-GIrXr*>U%d6wI>OlUocv zr_G*xL;W7j(bi_i**aSn@W|j#ut!34u7_2t?REaR00<-Bp91(JfPs9cTRU#A3npr> z3npf-^D}vtbVR-rB}k(C=sU2Sz`uS0JL$aVc)LLI;B1?1p#h92ohm zz6^wjLf1QW!>{VUhlwDn&=dVD^bnn`&_i^tLJtXnLjRAC)+tzyLJxP>eH3~~8Cao* zNpci=i0`vyKY}kQqtJV!AQd`qCC^ppiHGd*qR?T4zXKUE3Vk~rt&30@g)Tz%r_kY4 z*S|u?b^2RW==iF>UxkkA^cCN)LdSLbPop{dDsOQmz54EbEB(g|j%bRuSg9;oytyw5`j2V3@Q0O0lW zOZi0n0SJ-i5R;GQp9SPTnirM+8^9TrPHI0YeQPH89F;!Mm-6%k=|`n+?P#67G*Ic= z;b>jA>}SB?{Nq*W+Y~PMM5^;mHhtsnpQ!YYVaq;u4nL+J&wf3yhR@ovW4aym@om{p zz>wJ1EjxK^am&76bjz+lM8hNAZMKF7f_sKQ!vh?6%P!$^KiRSeM)`ra>=*JSWi%^ zLN6KeKotD1>30z-qu)iS|7HD-@7}h&fk%R1f=#c;(eL{J5i!ZH2Dm-+`x)f31^s>< z=u!Rt2;o4#k7_iZ==W8){iHwr{*0L9-@!LyAM^fwTkg6u7ufVQ7h?ZD{}cVbjru)v z*WF+m#%!Xyb#;47b5YZp#x8)#-u5g+GGEG*KOqU%<(aJQJMX$PWcQK!)CDK*KX>Xq zfrWkK#GSEgsevrrT8Z}ao@*&f$W33?g&KH`#!nq zeIJRP8*bnCkz4Kc#C<6Wi5TehuDeMrizn{%tc@Dz!=v*5_K7ws|T{b7J#0T`xqkd7eY?N93dGonV%SJP}WU9;kPYJi9WY-VX$Tmwy!SiTD!`BFzEjGaoPLb)#6! z^M3=JG0&6Qk9mGOow)xJt>2G%erqT0?4yBszP}sn{=*aZpNo3mz2xIo@7s2V9d-K= z7u)pIy`%d5lP}-;cai@e`0`D(zeKf>JM50e*!xg-*vV&aZ(|7X!2Ms~66kZ>VRsF{ zh(5<1c8Ur0IqtAi4D>m9;K2Pm$m5d_jpr%;2|jyUVpjqR@312f(dW2>?q19)84o%j z9Pi)`yO`wQXK%d4C!){Y9d`1K9Y1^P=fs^K*|4BjXfP*CUL(AmZQ*dIIcYUDD;prutE=$}_-uq(YYy_r9OK4SeFRjH3!2ci1U1;zEZ2_KM56&>?`mqEaeU=Cd~u>VM<2xBgGu z<&wHBt8_^cOsXfWH0JwgX;JEYxDg1a)PDr0Ca#gz$fDL)lYMj`ONn`AUBldvo|`72WDDHrKISv`|M0Unb))OR_hTRLo_(9{rt5@0pL?lIU%UWw-zRQ#|7AD2J|1&f zes#Q?u9ahUJKj)J%wfBY(P_wIi*9t4Q8zjTqFTK&XP1uK=Ca)ADkE-mIXBecIxwXE z#EmX6!b7R+?m1NI3eFfZpD!tM$i9CR43&D{8)^nt>V0?VQ0j`zR_cn&QtFCIsZg0+ zx(Ln688SWzQBcb0dwCGdI#GJ#!)k2O4f}uenjc^&q-IeytKyHtaSTV9ALaG zOl3uVePy|c8Lzj!wWpz}qy5O1F1YB;+s1e|t5-FJ;h+}&gq7Ov2LJ`}!g#*VeRW$L z3kvL@TiY903zN9V>dO^ubYHFLI1{&Yb>*Z^rgYKY*w)b5*4v$7lS;L9G!b#H^_TDn@AGnArK2HVit z)qjhbY;vKv`lrbQcDJPL_wI`4PdQ{f)!EYA*xu9HWU#N+gvnIU zrLeD7R7!<<#(`-S>RAVlNb!`Z;pmpG4g(deSw^MU3SG?&Ya6?cXo1P%dHZe1>=lnq zt!-S_(A~Sz(eW}?_pCASWY>&Esg)hQ?akc{O>0`3jxg|KSNudXBiQmk`N{m{_K$2fxeON4 z<{xThloz8rwybS5`G?tQXkVC=%#el#$lKM@h^qDWw5)>^`G?!h$eoB&(nNeX-q_H1 zcMsC6HATs}*8$FB<2N-N)zH{ulJj_94d=@4Rb4GDCb|2Q0>|^3+B&)c@1bxque+t? z2$S6NFG5b`^>p>NH<{#oC8zT!gh}o-l4j!K5qU>-we}$Q-g^o>3b|3%g5?5@HNz}t z%Dcd7xcte-6NDXse-d$uI80iQyd?p!yhlf|lt8oHkGTybD*a*dW_Y)}lGsAS34+dd zorwP{OhuVA)gZERsdffd3!s!rXB!S@cI4j|SkE$TCuRzRWOBw2(mT&W`R@ZQpw~X+ih36oPSGeQEu&I>>ckRrT_!45GS{g*a+e`Es<0 z1M13ZOY6&)qPI9iZFx;)X<5062Z(6-dG4Kb_cZoEttB6LTT6fFt1P{ybaBIBmZsLV zjcq3R=o%B#w%7gtmr(6Fq23EVs~@Z$0%rOPTghB8Saqa={BrM;;GYlGD$ z`9uNuLDVOIMZUGw%c@YXn(%QkTiZIk^k~lkRpq6%<#qLFU(JNt)L_lEKbB5$hpMTq zE`vZ7Rp@JZ4i~K?bcQUkx~Py$@~K7@<+(jmD8H`afU1Tl2ZyR#R#St5se&{~<+3`y zbtaE84|)`Jr%68l2j%^03wd)MK|Rej^7@g;y<;UN!dsG`vw1_H|D=re-nA>C1Czy`YF_9-lbq;1 zm*zYhPqnqI!ZbU@V+OcLq`F#HuZbX1sm`v}4ydB_COOq{NMkVoeYui-Z&!yKk!tGg z>S}54Y0!m0hB7ME-FRe6a|6a&200dNTaIk)=6pI@x+uiT8YQD^@_3JYHM5#*1LK0CBY0XRnUd^_Nd&v;?`i4AdXg;?q+5rjYS&toKENF-MPybz(92R-toTG5VbWiMQ!UqHJ+1A% zSWPAuO6$dnH&`xkF*}!fT)4!F&#_qZVQS)-S?Us9h^$;uAm4!wbt&?p>Q&wkpnhV- zSK1W(%D|@D(XX*7ww^4JlLtHGwTeW)^tgtI6<-eo7QrUD%zGJ47%TpUg&O@Hn%7^H ze9N*~Q-Pv;+fuDUK?9>R=R1}*p2EORZ__X1_+SN=hSo#q(2c z*cEsjwO;W)W{3%cVD$;p{Aj+0f@4OqG?slaTAK2#q9SlcYA$F(Z~(ZhTFEV@b} zejr}zC{7m1?y>oC#GFStg)xE4KD$vh!Q>u#;@RKFPtzNEJMj;{cW%4E0_|<)m&!N#rWL| zUh{^jT$fX>KLIfg_5@=u=d?0-75vipI_#CQgf7;)w{r7qC-*Hu2_@isHh!~^`wYi@ z61g7^#5i^bJBc+p4PelmvePiOx-U;h;TYZsrhmKKrf)$;Z@7wGMaIvDjH}4_U4Y}; zTaJ>VYKR%T8W@dUaWFZR12(QUM0a(pH+Jv7g@-f)8x-wOO~_d3ir$MwpGQs;882u# z(38yMhSrXi#=D$}teuj3xyIH`1^IT6ZEL53N5v&s&fd~&?MqzlvMJO+mtk&3T|nRJ zWteP2Yo|7p!Ax{ey~*#CDGfQfOGfvRP2BrlR(nQB>`O@OmMI;W4`Q*bv>6JUI7q6x zBhgP%p-`pZhR&zU&^gQxadpN=YS*M|b2khs+hW^9f9iU{rr+2P5{KuL_u(CUXxrwQ zcrk%(lh52@HZ;*$_SEwP%-A-SoUv^xJ!9KcILo%FsHkmIG1<0FWlY=V>r$00+vZ=1 z`e3%r?@-{twn>kp0d1R-GGp8P4bx`XHjhDv%Q8oPJhsg=iiK%)uahxala&?wm)F)- z*ETGvsKpBZxD2Aay4D;Y0kOq9Ap=$)7|mQ=XEscU5Nl+k2$SuS$_niA&y3La$7ZTp z=;o{l`k;!sI&N|t>Ffxpw32K1!$2ypGUr4HWVNiSqTZYvLF)e2d@+JzI^E@)^CIX# zFK>+Cgk_!C6hX1@hC@m#mzA6IbJ5i>NiV6aUT!XkPV=F$iOh}vZ}^>~k1hg=pRRF>ksUOt7d zylF>FM$+RJ*B@3>4q1XNHZAOmbC<UF12KfAi z4|B*;fZ!s$c_uk%4>UyZ zP-K2=faQTBB<+bvTX=9jwg9+D@0bMk1Y%#CZU^I8RHMm7jG4WKd!_0J;q!~m8 z@af+hc?QRakj-WIrTJ$ttgHFMHs>#};v%eG{R^y{q*G35f_yt>NNzKlRptc&_Y@tQ zKtB`A=+!UPXzc20TrZU&=}M3iaaLs*{rbzWKZzb!z^`BD>+Iu-5S@Ko5u$UCD?&nW zT!EYPlyB~F1#Z$)0*vj!IflVadK4_@xB@QtnzYYxMMxR=xFSrFb6gSP^|%7x;cFQ) zeEN5VV2MvB@et&3MFk`rPW4rgIj(?TKSPxdqhEgsc59jA3i$Oa0slYHec%I9TnxI0h#%K!%yxI0gi=NwSvzu@o_ zO+n5gl1BqC*%fGjVafbI+g{eRy>Tsu&l~Q=nbeVuZM{JJ#W9H+_?0$jOPTz?*-s(Q zhjLNB#tl-IxQ9YeAF0i-Y6-9jtb- zr+p}y(u?9II&v!2+Of8KwO9i3CwUW)RyN>78X$DIjX)~yvP}MD?|n%!$_%0u`BS}b zK_c(-Ydagbi!GQ?3z>$n30LAl2J#ThTm2lz3`-U+x7V@;!EsFCp;i_qsDm8G6dq>J zkiyVheUD=b54T4lcOuTh67h%dyu*;!(F32slN6i}#o|w&h3$NDf1J)bt9X4d*Fui~ zolzhFG72C@nkbSup8^d61MSKl0!P$?$``ZEsXFvWP z3cIr(f6pDnRuG*1`16(Q&VKy876>^w`|-6!B{o=CpVszO z9mf9>k?8B!P8*EA9voABv`1V1*B*d;DD>-RX`!;N=89BA5NMl@w)~s+0b>+!%P&~K zhd48vop?S8c7 z-*cfBbl)1-#xkc-!MfX>SA9fBTmA#@Y3UEqeE**wZTUYv2D#8kkG#p;+v8}A8*nZ-oyXa{yWY zTa$k#563Rb;C;ocAjbIbYwBiM!28B+;MN4kDVoJt&C}+eOQmcb*y&%zBCN~Q<3CK$ zbKtsEaE_x)JeTWO|12hp2`Fc8dbR@$Wr-EzuuaZm{kTJHu>PqmH}0~WWBpZRk>}uz z)*r2~GQh=4T)^`~t+g#ZEnQg3b1jf>2f>J)h`);!)QGr$sXY!oNyk}T_z)f$*VVx6 zI&7o=MfB#XVnCfW5@(@u}M~1?WrdArM`T*P0q}P`C;m1Ye~2m$|}p z_r!w^|8j>aN_8L6+R1f{LrjF%Sv!yS8@drWxdoJ~9c5~&dsPDtSK1p|$n+}?JtL(D zzI4e`nXk2+O?dd`4)H?Db(S+f&)}p}hWM{qDtVm4jm0@~OIJ60^(q_$8~=JsLvh@W z$C=#NRjplke{4qM-{1)2ND!%-JKEZCwSxb3N7#td+u4R*Wc+VB;%E{Zd(b*<_(<9zM+v8nwQCz4 zt6LmlBnjb)P)@=9TODmjp{;Gh0UlmDJS*AWcRJz@B;rj74N|}Z&i|gHjUbI%MQ-b0 zwQp!?Z-nD3#`6zdis4Kl=MFfnh4rhYs~sL9{=JSojAW_9D&ybpkVApgV|O-*@gKCW zz07OtcJ)OC|Z&T#48>+{VXxx*Km!h3$^R%l7~u6)!Z2lhOdZIb7#0*a28QDx4|Kx z#zf6+a9Q9v(u=j0Jsz(zR(vVFJE)2ZzX@G6^)3;9zWhlsO~zpKObaTW?GQD>nLxn*aeFj>Y~$e-nXNhEg8LVk&- zx-xJU@^|xQNdo6Aun-lg}#-Dmq9wX3!^kK(XqpciEg|p+U%cW zuLeA!)A-NHifMwZ8($QxrsrHE>3;|=JPsJd8P0#ja<&^b(f^Zu3n_G_`*S$cacsZg z2Gm%Lbe$C5aAU40X9-8YD&zmvZU(1ei~P4NdqUvfc->FKjPZtTaR1xz_rQuoXcC0PBAf0 zmqHVDbsYD&fz5a{`FS39o}ovRpYXW-!=g%87t5iT zCkSyljmaYoGB_-YD}Y19YMvo7mpalW+;b%kP4nfs4#%8J;UUH}i>oUuOKVMm0QII& z|E)E?K2(~NJXF@etF_7u5};Or!2%p=hRDBlaE}*J>&#GnsKN1rVCrkRR~{|^4vpco zO?ZUBHD(9-x5DhGbTd-_tumwZ;czor9;(e4`S)V99ubh&6$Wqt)=E^-q&hCqT?Igx`cC zjK4vjKs{5RP_MJ}scB7X8)|Wmmz-!ggxcxyJJD|wI9yb%mEOu}N7ur}ZHDm2r>kO$n*EDXMNT+w34OlHJT}-_8vg>9zX&rcD_fwF_!mpn^W*l^>mZ;Q zHpN{(`;&=?(|(ko{`;EVeNN#eqiG!yLn`8xF)@7F zjNLQEMfJq)t|mV79AhGU@Agb_@|xUi>|QDE|0lz}&poxm2~MbHO5o?LGM;1EY^E2y zr-~qFQ;unCjXhTgyROAIapE^Pp+ML8*HDZ`V~Yy7IbWF!^-%VJV#I3g~K5jz=GSRQ*_1m{N>*z0zM7&OfCm{jEp!P9gO7kg-o>pL{p zXs{SQ7$VQGk@nTDZa3ydoX?`|@92x*r*#~DKVJ=ZKQNjp5}ubw3Eu;57Ro;_PYzZ# z#b@(AFo3eK+?0$K*w(SS73K$HukF9UkbWWx`#yeC*Fg9wL4jY90_%ZefnUik@GJcl z$XzKE6kF=1{)>#H*o*>U>`0%00?rQ${e~2JBXBcO=r^R$7YXsS2(WC}T8$}bS=-sO zK75(q%v)EA^RC#&%VTM?n`KvSXzS?cgzW_THG6h4(&DYs)1zeem^4KBD}D!odCgR| z0XJ&)%p@02>w%n!LneS+@?A?1y{Rkof465Pndvb~CZ|~ToTR*w-sTc?@^c-qrbOIB zjQwI#7RJ48S`WNHm!cD$hos#s=cfksw@}AjV{gx{Mn5T-)m&xMZTP(bVZ3Rq2}km6 zNp_#HpLZ3xO)9bvz}a3tI?!!N9(Q`1l5-&L9U{!9L7dYB2{6zVvz{1NgFB@LmjGkt z_L)mCz7%Pl{W>`BnVpgZt^b28})`#YS%iZf3i3nv|ji{8V6O z)8WTXPRWVprsOPliD!sO&2kPuc8W`roaHF(%#3Lf^{4S(#xdoJKVwSDSt?4NU+GE#42 zi%`_WFWK}l;CIdRpw54g7yLEgX0rY85dx-zKge7CHIVapPz;#U=le_~1N)CYn`Qi3 z(0R^l|LD`8y$~>ZFMX-(pCm;CFeN>>zwr&9jbLjgOOyOXpvf#RG+)@iN?$Q^@iB~k z|6;F5*b>NlCw^ywk)099e0hTJ={6S64Whj~!A5-^@LqROoGTOTcKPk-{>{B>*J40i zm5@;ij5b?11k}5}CAZ;n=$j$J@9`@KgF`|wnx*N!(1)q9pB{)GS^{kLzQ(4%gKT$% ztPU4ezXopa+flU`63oTVe%4>`e}Js*vIoYb{+@sIXdSm;vFFNk=a6FhQgXIbB)4tFlzK^ z*G^>Zp}o-9C-V4;F(u#?H}+s5@ryim(W{7P?a)5>%RJ6iPXJ|xu;|1rx339+wBpFGK-+%7m=)kKUu2sbBky|P=3rXdJ;s!;0h0bp6SJ}VC2SG$ zU3;xfPwFzJadz+)_Lc5?FmT#^_m%E@1z^^7p>*E61j0~M@C|~k^Kj33f+KHsH$mLD zQktL_<6#0CyTA1E^?>%}{L+GwkHpU&mzaXW7uVGB^pDFC&9>iQLQqDU*2*X2ySW@l6{)6w{Lf``v`S1uS;E&ZdX=81t>L74DQ) zSP0xAu1WcctNngr!3sQ=9tvQOBb49%T`gbeZ3Rz#sXZ~VA1ngDJMhC-dS+%x(6ZgK zEWD677@+mC0^2RG>Q*AL+UeyAOHt1Og^y4GaR~{fvd?v#J$hqg7~8br1U1L(3rNf{ zO=d0+ePGh&B>=`gleC*5!n0qs>36{D#!!r3iSnM(ixSyVd|R86Tb)`>d$r zIUHcL>f7gp-cCBY)31}{rKR76r!saqGglT6T6hC5jezKd1@;9Lzwg&<`ebA-+AU~_ zf&xyF-=qk^iAyMVK>?@B{{wA~6VET8c;-l!BIhG3`N;%SAWFmN{-U*uP{OZou<24bm+-T(0J#GXX3b{Kw5(@BeRJc zg?KKBLB8;E1!Fe}^_lFf5&HQ;AF~eXU~j(A3#7-?0>bPxe;io?t7om$cH4WFr3!Wr_$OHVAuJ|D`MO1r$5|Mw@;cS$CWl zytGTD=*h=u(U)cyeQ9>lmrKzHBQ5lSZabyl8@nL;+oUWS-+2kjJ?$Gd-Hg0vgk|q7 z9cCkN^JROvxAceS0MF45vyZ&KHOHdB#n_zlU>bwwj>uxQRmTC*RA(De#@w52`gvqo zxjVi~lfA+1?3abd8M8!+xt&{q=fM!>HuUK%p`&{e=1wxJ8h4R(V zaK6l=6Q%6)3y7aAb-z$%%*nt*DPL4TrAz=S`QieqWKQFk6#Nu#rs5K0${C)Y>Z3M4 zwbc}6INv~)5;#hgz@r6r1sd+yTQL|=ulwf*jrWKMKlvoUqB|mU9;!ZqwaJ z)3{gA1CEj@=}W-r@Ht9U*6#r8@HtAfQ1UdqYth2wixs`GM+>2i1ZZF_F4BFJd=bd1 zVvmuj?kT|8DpoQYn~K?MAX~*9HXT15`;EN=`3hvgRsx*r*aBIr)ex59To~hY+X+}z zY@t}}U|&!b>&I?KiB~eYs91%62e|Y>w7Y819b&3MKf^J(qZk6IfJaK+z0PpD)IzqM z@Uv56Ij?ZPfFy52bZI4WNgp~25B#qzg$>xFj%Wh^Mzn4I)Twi@$5pr zj>)P&&M7<(1oNpZadpu_f-E{bGn}H%Q0rMB%{L3Pv_+(8VL`wvdhz=J^jPH9s!`!l0*$9Mt8Ku|bdCyyr+}pGQbzj6T@E|kX zUbx^NcwX>3{3(4Cn1vqdeKnXaOyS|*eAo#OL(js)bUZZTp?Xg|)O^>bYp%g6`cag) z@DN}w0%^~ccjy(=zAa{w=Ydmpve3{s zesM0h2<;j$dIP@^=isZE{en(&kuX~X9GWED6a;P3&<$HWyteGQG0VKgk72Eiv==T6 z@}Dhp*CoK|+;z6hT|Wg(Tlm>BbH&cZLR1zEXSE?Xz@I%({=&cFp`H)#;^789Bqkg493JqW z>_o0Z0S9xVJKgs8KA@8FYzbb%N%$o;Vez{tcoFMl%|8b?wNbAVyN|ai&iAlRwg8_c zQ7l~R+#bMLsMpILz}u8o1)|^vq@L5#26st&jL@$KLMwl)n3>F6X~(dy=vmya6Luqn z`|_`C`fguA+;keO}ByGtNgB=#^K31B(|Dvx?XSuGiu9qF8$> zkpxC9F`d4Ypdqyvn9@tp$|W70sN-J~bmER}+IajNyyqj0{ab=w4i_L*ble$xL+&7P z`uP@!{0M%JBggKg=(4iUxLyVbjqNgabvfOW%Ra=&4`-g*z#&$sD<2W+#(*lkUJiK0 zOs!nqC`nu2lB6#%=@VqMlJ~#yTSQ|!ci5kWq?Tn0!O5Z0j@(UXi%64vbV!q2#~mn? z6+x~c7h41e0Itr|ySqJV09m^%_im4^h4GN#5y7PXXp7WqD^PoJMw>A&`CE21Shki{4eJoyj{> zF{2U&z6~ zVjL1uKE^Vyd%V~2P5a^3|KhWlyw4FvWC$jCzX%3DK_9;2I3{M1xH8fu9qZ#BsOT-m zA*IM4=oaHJ$wWWv7UK{<)#ok7$p>8-Gg1jmy&+hVN=HGw#rP>`xRAV(1;bm6lg~NiC|@^Pfz>PdynO)U0uGlxC-QKY&zHf&iR7`*(FcobygbQV_gur6 zXjPJiV)MXn7bp|9E%=(){wSgfoMTCZIs}vOITCYhMiDo?Xwxr)%@FL7M$Dv!ew?Hs7qS>ksrGRe zG+V%K5#tHcS1W=Eo?wE_fJf}f?7z4kL-I|4I}{OolBt(o1WPxsadhw+z&nfy$s0&U zH6-m<0hp0Nt93UuVmq))bcGN!nUcu<7Sv(sOV|V=D^G7mNj-`zX>R~GS}IZ`<1l?O z=)42bP7wMEz@zb=39};KC0!~q!Lla9F2TtOWGj}`a|nGtfQ|)}5f$CLbrnwR5A09a zfJl*QAnHHxy9L?Lfg~#KQYqkB;8fhDBF?x=192;aeh6R{w?gQ>q>H$p5^=u_cqeK2 zN=g4T;4#|rig=3&r0EqNeVNuzp*;a*dQs42-5A(n#|_f3g63tL-UGiC;FgEgTcrD* z1C(@M;_mD32Zk=?6T1CI3SGe{14_16Gox(d5)Ao75HJ4nDfm7qQk z;&(sTT!|H9w1@u%xS)qq=tHgyx{UVluL2HwIO*?`9_itSUKQ=(>j;HC{9ZsAv9%Ki za&4iX2T3UUV-WkqS8e*AV0E+~h_1bTm#YKOms*O}3|I%J_Vz1<&cRtB^t(xq^!DEX zj`sHPU&`t23xSCC_68=vJJH^L93V5+Ha3607c)d4bUJJN<`7wvR zzW{X6Pw;ds65_uJPR_PK&VNTIcNH_Fr6J-5{LVw(`yu8C5%WDNt-FEJ0r?(Z&wB(# z$oKdL7JgYf?fayi1VBW5lOiVjh?pMiMEofd;=c*OtW7-^i21dsm`)c)=^G(t`ZqW! z1dn=@qq1Gc$HM;?NPgYn04oW~)P5bM`yxP<{Hv7wF@PLy*ONBvD-b6?&d2;XYdyhY z0n&u;U7Q4})$O@a;rdNM(O$uC5;)F5eTVTtR9^B~v@qt4?trDMQL5h=Rt4xUaB z-I8`+P{!~G!Pp*|Up@^44nB}oVXwDM=u&#GOe*V{2T3BRJAs;FAZ`VIlf({sm9U%2 zzBUKQ#rWAT<&N$t0ZAsIp*OJ4^?ljKZs9e<;)>Qj5$ub851kAabwjgXa1C(!g4x45 z2|@JW1z#ytLZto%ki1|r$^UxR3!X$U^Mb1YqIVvKgoEayQFGq4v0He{#!}e!KiKrS z;IeF3&inl?kiq-qn8|*>PlKBMey80y(ED8mO89;`kh*~g-mlmb`o7;y%#;0o9|LNN zfw*P(1@D*HBdX2d1xH7tQ)=jg$nzWghJC}BAET;)I%EF*fQzcL&k=U&jPK(@z|^Ix z&K?4k(NQ>8?^_<+*WN%`&40vY$4EVAcrf|A$KuA{q%YrC(Myd4RWGryO8|265xw*@ zfZQ1!#~slUv*vQt6J^pyRs2mH-=o}|S-cu(H;Yr0D*&<|2DA9Hgk=_|D8p`6D*C0& z;!6q3EKcegKxR0j@3>v4n-%fB2lv-`v0L!vKtJ?g{#nM=Z(i&gq?-0iHp>XOdzk5B zpv}8{1R!f?kiEHY9!ig&(5>8wZ{e%-&!ia*Ts;HC-72YMP zLWOsU7Gw;DiSRDbf^35!!k*m@nPD(2=+|I~uxDCUQ9+i$F!6%JPvk9_S;tqb_e*v& z7nwN6puMoO7oV_$z44mlI+fT&%#VW`8n}}4R&sU#0AT@;f(T|UOx#Qgft699DGD?P z0A2u7M@uxG-scm$T}x}jwK{FayUdj*MO+?8!XiR|MO+b3ScCwSgaThh2I-+M#j*DL zCH|y`{TY9Uy~{rZC~6olgr+QvvC&PB%}LT$h5?3$uvk0gKG27-Ucn=Z3?5OSKBm*d zP6w+GP!#m5rDYbAx3LQ%>ZTQ!6*)Ag<^`CVH$WXP$cJ`sf`idMzkndO0tJu6J3NdJx784s3X&2WlcsGmCB-B{Mg+lnal{iR)~9O4Qu3b{m!-EAS$l{%zAgs)5{Y`4NBeAyoQ9 zE^BX)|;gl_o}JM|)vGRu$HX-W>3AF`UODY{XI`mE6^S6PVQ$1V`?ZA-!KP&eZgtWxu5+W-&k?H-~t7;@MIxB zzyXEMZ}G2@3B4Za&ON@tvA+^VWC%R=r(jsc z7e-d`IHA|1V+;Ep`zxiWa0|!&nq*>O?yxgM%K`44@D8=2P%vr99r)g1_S-UX#7%zRJMg{3EstCi@j?uiVYzgt~5v-PFSe+MP6+8>8^Fmge zl+})18o;svqZW4S*ak2e3Gd%-&I}{r@!9opgX5+-0lY(bBL*eL3{DE03!j zk5?i*t`r_cw9vXrccFD}j+zaj=CnCTSp;EU{VR;MsKuZZ+5p?MZ(2TW1ZEfaJ^d|q zI54qI-#DR|jtur&4u0eKVrq8#Z3o|aeDP(3zax`;tarolyU2AHw>tQo36q%m4q%uN0{Ae% z6EP@Xkr)0|KvM0uz_W<5zUDoETw3i#K)7m4g+`*#bxgElEUeIxC^M%57%yKMxB{TQ z0X~U;;Uff;zB3xlRp4rm3#_rX1{Jv4Bk@GSQUQfu0n7?qBNf=~Hgp^vN?-Phk=)x< zsTD#Q8!78oJbH#}g>K1IX!97dGDr)OZjl z@VQ_l%gynb=H#Np?w>WBg3&}u8cp~&{JxALevj-NPNlLqdKeh(>t)i{$HG7*tuhM9 zO&TJU+iy~G>D{A%2zocCATuUM4MnQRm^>V;76E7X>?<{T=7fHw2En|AtAOzP7i3zFk|=eNET)U^2&CRc z=I&L1rL7Z4zJf(fv}2G%rCvvQoYd4o*E7LnyNC&%WLrPXw%*KCzs|JvY_NKYDW_zl z4kuPf*On!Al(HE)Uw+4?*F&lk!GUrgVfl0&Fu|0&HfPFh&zW*Na;Dr)H^pA#rra+$ z_}XB~?UJT>ENq%?X_~~HI_37rlsg)bG}O|!ZTd~t?lfD5e_W>=mfcV_fDt#dl?gHp z)yY(mhPofDHZtYcf`&@OpOP6WY!r^1fArs8B)x&gqW$9_NOuD`vBCas`LrIGpuzr` z(_sI~X|OlL2Ad>0>Md!YYso=$)Z4DXE)5#&9UZqwpd;X2838+fR~zg-X|VkOO{0#w zo;4iovGUqj58^54RUE-)I1=pOUCacT5nKeU8^N=vpB6FIZkf60O6VqMK*IfEh&*i% z;Oa0hwi)M!gSa4h3JhhE$~UuRt)nyVUs!%#?8IGTX+;M+2_?TZ7zN>s@{m}1C{vbb zR#95kP6jbKv>V)a3t2YckThn?Kq1eeTp~q?I3tYuEZ+y2&9~2=89P{cKHfG z*3Qc{D{k#Plgm|P3(SfGooBv-?G2LUto65gp2=Mgg&OEQ^C7%7&_lE0KWLdj= z@YRXeDP04GM!A03j9K)N8X7xhvtw+7d9f2i>wWz0T?SR{%xJMEH>2_&(!A)M%<#Hu zUi41kGmHU26j#Ov&X^ay)07;T7roP!9+(%sGZc=P7rhON%9t0uGZhmxFM4MwW11IV zld43_i{9CPB5F(KMUR(3Vz(Hdd@}_OqPX4-AnPNJjO8)jA}IsQV|>laOq&(Om0`*y zyd}b&A{?l@@%Dsl6ykdxQl68pZh2{q(J-4q*8M9Ea6vW$Ol3uVePy|c!7Rz!3WFVa z-nQK8>pEtV#H>K2%2uVW(WomG$~llr!ok3sY&~M zDicx${!}JRlJludh}TbL5F=B|m@({Id{F^dGVHM^NSoO`kZ?Gsj_e4U^!*vi2%5J; z>0~~Y$^SpcIQpp!B4}!9kxyk1K~r&=Ph}8AQ&A}u>KO;7Rj6kj82wZx|2c=u{Zt0= zG`05(@Tm;qX=+(HpUULF;P3;*(|iieAt5pUgnDl=B<5pCQ1~}ACqrUNP=-}a7eQQzI~WZOVM@@fjI(9BOx$7G--AS%$T1Ci z-Mh~fI1>U>;V=Ydm5?(bFqIsJ!0ZunCIse%0tX>5Zxx6kF!^>y0vaiQ@*yNz;tTjE z5vPbdTJ|UMmIS~ShgeFW*S&>} zSW2mM@*K(R$bUJonGl#1b<~&f2O%)iSoFFOm{cUvm@WjS!a)d3g~AY+3L*q1`S?dX zhywbCzNjzfAE#OiT(E#>9L>fG{TJKLun=OlrDBoGpYPq{N01kX%emBGLJ; z?S_T!V~dG76osMCum3^|-TpB#PuBu&83zm9HpRsJjWW8GVOh6(Ow1B6MKj#>FqvX4)q?)CRUHrrvJW1?CKJ*tiQ39s? z^nT6#$o??vZKs%+F|dL_k6%WXo;5ji9LFbEi_2 z?Hm(xFYpBK7at|>ZH|d~k#c*L*4wSe#C%y(|E`>=OFwK(%%R8){fWs|0veu5X3|J? z;X@sEii%=D!=Vgl_#JpW`N3T<3}{$CQWT6I1WAwu83G!9Wi;_|KRckIs*R+tvFu=! zL8;I)zFt-0&a3>3Ehj-lxA1utNr1h?a`1S?ZuJ_VFSVZ)CZqgr++q|BXsCth@|Bki zA)uk6iu^F3p&};Y1N7X0hDw?0=L9rV^b9|^!zB>oTFb7$*gL`fEdk{^%VCQ!JfQH> zl>q-$%NZJ>c<^}!zLU%fXt){c2MuUACOe>^5*W~sXNBp^I0hfdxqya>WI)3)u%Sf)8Y+PS4abD) zJP2s0GzK&r!>jG(+918#69EmC$bg1p`UEso8Uq@R;X=QkfQFia0S(89DI+JKp^_QU zQ0pK84He0NhCV-omd`90(C{_Gx3!;78N+~vid=|m2C@ShYByQrcjLZa2~Q>Kp`W=9 zxY*(0=YdEu4?FBqht;LqBUaaLl@6;*D+V;w1zZjKdl=AAQT4Lli3BuM^r5~BXn2Q= z$7S%v$Yrg*C1l73g~YTV2oB2s>5S8E6E z{#$Pl5>Yv%(S@POaM_$e@Iu9n2vw%~DrG3pWHM{Wn+=kW1>2S*Tk%#K+B@1+`|y$w zz11w_TI55K$<;&%iTGWSc%sv`C7x5p~`R#0t=z zyfQ_GVu0!K_5MR`kpR1n2G6x}xn{`nSSccN--4}UvizAkl%@XDLoI%JML(4j6xKD^B;kK0eiNAz*% z4mQ<}ehuP7^QtlFItM%CwTd(dlBhlIdLVe$6M`iE4Nd5RBp#00YiFHW!XSw^pjRd0 z=RiaRk4BM$sW8|D#acApjN6PLiEjZOFF_Ky3L7s2<3+)0dQMxCoOt9aNcnNlW~2GEX>evU36#bahJtgcBC$zrz^LjV8Xz4Xr3;L zCZfMKbuhj%Vsv}ljBrMG13b^;E&}ll-S|#;T*`9-4~``Ke2+&VTwL*M679!Hd2Lu& z>7-{6PIhdZHRi^3R(94@}R)=|zB2unR@{?T4wM@NG)#-V~q45Z%fHEfoh z914S<3(c_(bTJM&bNoj!4(U9Qh<_T{Qkf6xKr@E;Jf&UdMr=3d79W@TYp6U}?j{*{a;QSdzssO4;a+_MS)9?~iGgo+K68mV1tyzm@M&X^E#$Jjd3Hf6X0~u~ASXpgAdA(lTpT!N9Frn86uOCK&>3;Sivu}P;w<^9=@<)U?*1R~ zS+Y)q+i;p}-nZ$826^e#%OP)gntU%_!G}IgJ_9c&I8Ej==E&eQ`CI{mZ)LsHl$<$D zR(j?%S>deHWJN_!lNFPFnyid@n*3X-O4e!e8$^Au)8uba;NUd*`v3+!O_r3I)8to~ zHtRHbJvv?X(Q$QEx%tRXlLw>N{CM78CqknoD=YRdudS`FZCFxKTUT$6%OJ|DYt8Wy z5J5&y$bi)cMl)B}nGI7S#2T^F;#_-4Wkp%NIWt1r9~QT2p_{WJ=z}Wi5C-;ufOK|* zR9cCzUKSq)5+b;s6Cse*vZ{)Db8ZBw@h{C6BPgaTEu%>0ya*a$QQ|t*oprgUA4@wf#9bc9=Q$#*YG$milhU<%|L$C4g~L`j2s7oe?Y)~9SB}W+QO5u0-yuI zZ=uK{4g|b7feX8g1A$_q4g`vU0|9x!f#6!?fdc_KC7|Di@K45pU>Ts$fxyj)5eI@> zF(G9+5IF9E1HnH_Mk z_~YnPIK`O065w`sBNzgv5jTSO0A{-pjM80d=tjVhW0-65WY3PcND7B;1QkNgxDhBh zbR*~xa>k9|Jb?o@f|~`R8v)a&%0<8v_~6+OT;PSj+VWOyd?p!3 zb_~)yA+bqYLlR%YNP?iV|0m+rVJga`3_KJSr0Nwqi=~uGC(n`0j{Fw^n{gwcsH66Q z*l;88u}61q1XL$n&g$0CZ&EmLBTy)GBTx`-1mxo%@go$_*Nxy+GIwqS>>%VGaU;;a z9(5zo?iY0`JhMX&ZFF@!<@D~B;Mj-kw z&K63(E2R3nCabw~(mse#F)s>5RbgI;<^5tj~ z2h^3-me!Xo#RkkFYRhXXOUuelJU~R7Ezf!226nXv_D88`w}<{D)x>__uyP*Pen2;Z z&6@j>ePIpTPHqJMR+f)nNS52tjo@JLLq(t51)qfcm)!_%P*I*cfud|@H-dTKiE6(1 z5P5I28^K29_Ub$2#(g0+vUplvTT#y^>w1%(yT10krvBZcVJ!Q@x)G$1I}u+6r6+C# zCy?3J-3Y$9BlJ$xji4H)LoUa1-3YFRaf|zpY&QZ`8yPnOR=7Vm0#1T`-3T~%`f(#T z6rytElMA$i8j_+D#U@13?@{I5z^t=eiLnHrI_n*KU2?2y_9L zmz9th{9tUgWr;%uEC04U^Bj98baUfen(OUiL0P-Mi7KsjW&5h$vU8-ZrcaU)P<#En2Rhi(J}bKMA-r>`4L0`2nHr_+t#9vs_HqXljRs^KDT z1d7OZBTx?6ZUl`|#0uJ7O+z1pM zbt6zrt{Z`3v)u?3*Pj~!De~e6awE_Lxo!lkXOZRh~MM^mH77V{E(okwwgw!Y-a3Ty_tNh2>E;dvSdTXe076zKI?9X4qvJ zmDhM=V=L}I+4FO|ki}S6kn^ju^P2^YEjk?NjNPk4z=?TcAU1aII)S-MzZSzK5kCoS zpNRhpZ8?~lkYh`XVa`9|VZiDi!R2M(A3?09=X@;b=^sIZc8Zz+{t?s);vc~t8u5?d zmY*6S;~&BOI7emZAE8Ufh<}8xvNHY=+`9JXAEAw!?H|EisVpr+{|Ig$BmNP(B+c@V z(A8eHe*||~S^g2+9!32lxJSwHkKo~6u78Be81awb9-trph(DuYGyV~r2Lk^H*8>Cp zh~SvO`9~<28<5X>?BmHL2e~g| z^)c9=TOn|FQogtWr(@WbGv(pswbj^=^AR=;;^PXG*H%<7HhBV+RUdRvsY$r!N*t2q z%X1x$wU(NsJTI=UtSqfH1p?HYLjAYa`1(+ZTkKd!Wld=l^i zo1Ns}C1$MrTW)sNf2+(meW)|z<>3HRB>z^L3G#2L*+u?cY>MUIrDmf1i^EJaNhxJ! zvOd({y7>Y(hv{78w|GzE?F~)&z25im#{8pm6Pm+YL2B$9*QAsM{lq~G1q+tq~T=ybJ2;~D>pQcF%mdc%@` zzRN#0*h?G#0>`2VgNF4jP+|OwrS@Y>Fofa-cKW`UmGd-w#0)-D!?+oHW|_coFi7KR zu!ldK#AVi9XhxHTolO!x#*@FF$KT=l$b_S*(Cj{(?k9*!fm(PQS6}@AH1#EVE5_$y zT=ex$j9R4_ddxl1ec8SnyAN3Ke;Jb!>H%P)gv-{BRbuRjxTW5q-$)03C%_YFP%(Ut zz;bw;EN=v6GT81Amvna{?G)SF&O4X`&2@A<%LOW%*a@zu;x`UCSA+9Zae`VOr{K5+ zcPa{6FRT&b!Aujj^41Z!gT-$|)_ska{uHu5g6z9Wy*gN}BZ1m=4SYn6?I7t(gnLBA z3j71W)6obWqQWKy&UCc|L2l|&omR}>wyP4lDGj3qo zSBPkDS=}f%&e7r2*sqiM9zW2MZY1z|0%{Ys-=OB7`9u7fh|ne>5RBMD!d!Lmi zyamOdT6>@FUANa58X{wGHo=#P;BGNcz?CMxa1m-O#>tatq-V($h zZxuH|M7@56h?OlpN6E(ZKB~1DA9&g?#rPU05QAI06q-i}@xT;1fROWhbEr@6X4wg#2!}x+VgAp^8_;P`7J!WiwFES#YX$Nu|LgzW!c1QzX+<%S5mF>7uU_s%T(i70>`cN@Xr^HVWN z$mlwcgX?=h&0N)psOwzI|3;w(HnKydA7BDD)A?+rVt{6^rViZm0rz2OKD!?^LSC%q z)3LNH^3O*BqCO^=z35Ba-UIjDFZ8x{!JpQa-3)48>@g%Beli{<$9+ML(a3?&i5<<6 z9E)F+9JhT2Ic^Pd{4>Zg(d-4UdCW(V9Oc8Ov5bw(@mi2$DsUpzShH6zs@K`l)PoOr z7$Cg`mz3BgOC?h$GmXMyR-$%Den6`vs9^$HwnXyd1FqA|UW_;&Y~+?+EQvR=n(cU$ z#5V?sch|&g@QD{{%i&h>V@aPT^DFSUS7vwS#{H*$t0~A)Ds>@-*qgxZZ5BAs+dl%b zcAx*$^Ogf0*|z3+dw0Gh`%gV@>B2&x2J*bU7v0I)eZ@Ot0MA=aCf4p3@w`=$7c?}i zUD<$x1qrc`>U0(PVE(u?9zd=S;*a~e=}el4Ka7Q~X4r~9E-en$E@JqS*7 zL=is^;YWl;yUpEW?%cVbHFnml+4{dEm<Yj&p893_lnM+X#YUAbHD(~goD(~goD)05ZRo?4! ztGw6Gt@7TMZk6}8eye=u+9$d7H*nOwAC(!RyfB{c&rfW&ys|VEx!XGt-tA3n=w=wA z<3wZfln(_>h)%jFH9<)4kdR7YRO8dS#JzGi8#Z34?7O`a;oaUDf=S#jg24uqirnpu z2t5}`=N_BNx!XIW6r~2b+dE7$F%{g%C!fEB_^B!0?VSiN^PVy263jOtSTaaHG6|@3 zGdvbeH~0+<+aYd}*9blHW7tJALeCfS(6phOAtLms@P@*>yS)*iN0ISVc(-@rX@^T9 z5{`!SPW;NDQYutxv-tC>r-0h7BJ<54h3f1iBV!)g(T*GV-p$B^n%n)N!{od`3 z2tAsyD3x`$HzM>XexezYqpdVT&jo0XbUg9Cy#e*^*UfN9PuF^rFrJ(Y#MLi3>rOL2 znZMlri_I2X`;#Bu0*>B+Yk%?&vvbkD*zPlu4^H>wLqWaY88;9eZXZH!xPYOXB;q?K zU@{3^>XLJB1{`&%OU`=;7|xY?Gf#5&7X%Jm>XLgX>|E-Sd-A$N8ic7InoM%OlATLk za<2){}L! z*h#UJK(jrHNd~0Xgv9#p1pZ253k@d-I^T67ZUGFF_eYsD)kv~(sip{>FOE_wojiv# zJMtd@Y~WIt+?S$`_&P>MI{CTpgCZ_<$rbO(*bH3il1&P$OI`B+v-cfvR#nIU_uTjP z?b~CduL9cGiOelnY%yb?=$;|ST>8mTSy7`7w%+l9BqJ>_+MGM{2DrV^$#v^02YU^_>U|iMM=~Jtx&#kHo z0Xa`KHYBdjoAgR&#IWEZ~v=ie#e>2{HuGaN#D6YGD5TO`a3h^ zL9tMF?CdF`ffc~BCLA;cN1!GaVNGt4{ zQ87zDkVL5{{h_Taor+~&K*cQm+mki*BcCvJ<%IE5rs111GiUHnJ%aTtomzt$9;ZjZ zBi4(ClYVr&X8FW{IP~9hDrV^?n2 zTyh$t)!4eQfAZ4O0P z3|PbZbT5l*Q5YzZ=|aH?LrM!H!}<`}4%zPBus)1dRu~x8r~A6MNR7J|iY8sU!X<5S zFIT9B_38fZIEhfsrOFB?J;LSWh8yuhaVQd0D?qQ}!Uf1E;@ZOKGCRVq$5PcA)`wXh zCq=~U=F=mkFy4sAGHEQrsfOz@YgnJ&PpHQmaV~I|qw`%ZTzDgnHJ=*RrzhJ;7a*w` z)~Bah)Wt}L-kk0}i0Own;)P;ZpPpgEuQY|BVSV}li@aKq;7gagyhNAlfS?6-danCd zkkHWx|EqvEkbDv zYgXcLJ)LkV2;DAS!9CW@J)LwZ$;d8h=AO=TDS~i~E6ZIcopLD$+%6U2dKury<<<|^ zxP_sadpa#dgyLVJ`229v1ujP|uW_5oaI@U#xh*lEO4Q6fT_Vg|C`2w5s*{4aO>@$% zU0p~gNl+)<#)4_EwVJu7+gcQcBFx;=?JS6|4kXikWE_8?Yuu%>NScdIEv2wXALO#9 zTbt-)f){ggJmKURyEhtz)#qWvoA?cRz;TYiZFn0VZaAhJCC-t+Wo6HGKQ1_I31hR4 zN23z5W3iB(_Qc~PWcaJ7kTERe1{Ttmj>{iGNIR#!J$7R}V>;v>yM5O85Sb;C1;=i? z`yS#+a!%DDXCvdJKEvRhTRK*X$8M=cKE(VG+Jf-Vary4Phse>3?=E;7*E;W1=nZ-6<52pdZ!e_p<2ao3=OCK zq_6oBMI7|EfWVh&u!%^k%Jnh%$iZ6Yhb|(5KI8Wny>^yC=fRW+5 z21kbP8Xg(GE1YHcuBf=-yJE5p-!)?zzP~9=$ufL@m#EKY_I7* zzQ4}6S?6iTf$#nU=V{GQEDhgJ!Jv%{x%V2r)BJxNb{up6-!yzjmoF@VG!l-hoOAHZ z2{Fqdp6V)&X8V&S%);g)!d166O`p#g{}B#ZR=~CmUl~pNLqUoxB#rSW0=egp zhqai%oBxFfODdlF@95k5Tr3Jew{kjWjDI_XBo%`~Z~iv-z!?7=B*)rTTas;zeM7~^X|jxjzfMor1sDS7?_ zwi1mQ<7+0LYK*T@8XDs(J~YNxu)O$TtVCgquV6(nKSvaTJSCro8aC$)mTin*kPp(* zoBuc@$TG&)oS&v#sEYGxK-7|!u&B~d>ub=WBdgA2+V~IBlGR) zo`xF5jPZK_+k~whiWeD~pJt4I3?jvi@nx}rHU!4_XGwi_XN+Hk)Tty3OC_(sJB;yv z51xW8VDDW3_qZ|sHOMr)Iq(KvfDLE-=D-`I2J*qpfj9WqvLy{}4!j`>hsO9XN^o#< z;0@E@&=@}@8`0qAz#GwB;J_GvqChmpXCM6tS(V7+d{h$jNC1&avWl$?xr%v91YoK8 zt60`RlhuKH5cFFKB1s+OuR-jD5`qXP|KolkjKw->tV>XC5UUVaEr7MuaOPRUF#TOv7(@qd62YmCq7giGwe7+>MQ7+;~#7+*mc<1-&``60-rp)vkC=%)w9 z_+${|-liMlpRQ~kx5HP?i`(I|0leqoHs9N4Vn%!A+5C5dUy^t?t<{Wf<;O<%@Fj_N`!6-~I}TyyU;UEAyR!{4LbLC>n;C`|9((+f z#Jgv?7Ifc!I0yKqFG;)yp3>4EI+3M+!AlbFx3iE6M0(^=rVcJazRD$u_vmKL@`>&^ zW!iI>B;J#M(tMx3mHGZBFG;*-MxqL!+6&EKtFmV=NxU8RYu+y%#=O6>9e!uzf||a1 z4s-jAD;MuIe(4dh-*`gG{<3!Xmm@Vi*kCFYJN#xiCi@(A_#;a&g~aXfpNAa{S7N~x zimb@s&cAm%;&birb=rvR@Y!I@GipT@I=a8mPzcgQ0mtMa_9DZ<(}*4ZUnG-;cKBLY zmL0yL$|5^_MKorIuOSWW@D<&d9X?qBXYhf`+OXa~G#s{#+2K<{<2b%;q?9Ro@7{Ih z*H}6vO-CHfx6O9vuK~2fZ=2)JUqfhz-?o7}e+{D@e%r>}`D-xk@Y`m&^H)6W@Y^O5!+#Tf(!dU1kqzzel}*Mpu)|k; zt{uK&bM5eT+1AhwUl(v$cKC{FV27{h&<=k;8Iy+q zW|`n0gAU9!!PiJxCisd9P4Kz%%re2(@Ej9-MaE3PNt-`^}kX{|KOk+~X z{@|)qvJ_QJCC@;SO*mJO1?8luqtlU|{7(X0CZ7Dc04o#k_b&-n<5O%&d|ImWw6~A~ z6PD@}o?@xaj*MBVb5l&g8Cj}x$4cf6E!A~#6|+>=bx35X&dnWHUs);+@Z?XDaQzjk zICzfBeH+hT1CL|IRiQhc@?Mx!;?R6 z<8m$4wT>}Mb*_>z!RLDNzY2uy6ngUKa0x8c+0Ue)oPD%*ZWT_2 z)fKds>XaN`NX4N_&OQEwPA#N(f~7intFzjbs=a0gx6?mIzFoxHs=&xQEc*%!IShP4 zS2|s}l%na->cwm8SHqdZuZ{Gd^GTTUzA)u|lCoR(pCYXL5AZ;VOph;**3~auCI(q+ z9CJn*Msyv6f;XjEa1Yoxotfs!!RZRS#YNRjrv_Ye(?;+|g-PZ}lAb(=GIP=-G?O2w z$@gK(qv{vq@Ynn}ZFs4@t*Kk|Fw`SHK@MtLcD>~A9&o+T;_K6Famju6 z6(Vg%;JjkD=oaL0Rv9c2r4!B}DgFplKORY%^T-4H{04S^R&~p4rbJsw4640_wLS|# z{~HSLE)Iu#*`sehZb(prARuqbI_bolKK5M^L-`r zwhyDW-~)wz31~2jnurXlSkx&dh4iuFB>3kDx|_kPO}Fe|sc12ZX7Of9c16{Uw>nnW z^H5hr{5gKFq3nmlx}Ga_E&iR-a;lJ^(ts&>6gh&ooluuUaOXF(KRTeuuDL(T9<761aKT&weFkf%ntxLLu09@nKC5o z)ygeu^9Zb(kywX771K@x3W_YIib?ALRMakB=a}gn>gNJ^P@`QL-JX} zMSyITbacGFSy3s%%DsiCF#>G^Uuv=glwUxwBpqg~yDmYpihQT!BOx>PtdpH~%^6NHYc z*_h8I;|l~uM->S6(}zT8IkX2`xdtu^Hs+Jn+u>?%)Qjxo)AC6vcT2kWq8c=DlO((Y z!M!n8qE%-I;(v*Nu`#AnfoDFAR@T<9SfO85G-nC6H`Zf%Nxue0#{5o`Ia>l&Avyzf zd7!w>#Gx0?5k`Lx&=6J1P9o+0V%h83GM1l8%7JS6iV#kXC0@UelNn} z4o+-DX~Oa$t}bx_alt6rFR`wZTcji8xWvtPA8|KovWdgtsKm=XFdSY7-2Hhxq@k}P z_22L_zsZt{B2b4S`Dpx1Rl=ZYF+xaE=Dv-=$0uSzj?#$q#2lzdO6N(tUkA+I*&fY4F(b!#y@D`whr0o}HQbQ?lC1%}{FlG^@J z$)9xrE&fSf`&Z(Cu5Qu3SAq^1l+QW(HYx4z$W0pi2*RJj&)kssTO*CV5J8tQ_|B}x zO44B{W?%f^(_tTE9wUYXZ$%JmV#<>=c+U+kL$2MK^O)q)MuMM5(4QIHJ$YJouyjIO zP_+|&#!1F9ww%D_6I9|l?A;4)D94}J#T)^yt z4I-9*3P>4sgB8o0HjscPO5D3%KwQWqg+2mQjy=$tnj`VyH(e_I*8K!!3)_YjdegnX zJ8%}pmsh!f+vOgP3JT3;BJ@D~%+v01y&BT&N(5cQ;2YiVW(SM(-%fV_nftTspurpo zzeB2>O!;?rCxf#`!w!VJ!q7%WgVVz;!udv#+2S?@{bJOX8c#$}6@%|{`!*8%7=m74 z@ORy5*}>9{2ch9?ym>BbQqr+R#cjt-%`;mOGtDlZT=z4eqFi~VVmqSebB7;7MJ;ICu4pnd>U`O-R!Eq)Wy z+?IEBFZ3EBplbnlPi@@C_N>` z)eV3S&8zY@^IewvZBtWOKz;2xQ8Yg>bwBc#etQN@f13n4D|KCYgMNDzA#XCYk$zi= zEY{#>ev9=Vpa5jFXUFx;$VCk42_r>7F&wMv8mNHuEuxI8ZWp+LhJ#+g& zx5)pK?99;*8`;;Hd}O8E(XjFn=2~4+W_gHo0|+f4722c z68FPb5jX5U#dUiPeHC`iuaf_+(5`XJYsnM%uKjRv(isr;!w-@(04VM6NWO~(2u=91 z3qNyb@_n#btl`oZ%@3;}89UUf3nQ@Lk|~sSU#}q2r@O zP%9k5M|4{L4uq2ZgNW?tlnT?K-Z;pZjE(iTL0QY5hrhq2{hXd{fdnhbfGm^m# zf>?&{!UmX+faxtCU@VkUkN*o+gs8EdZhXnNH`}rhOG2EOG%27!yav(qq@$_8I|<9m zvq<0~$jRP|WHaAPO1_o|47p-~5^u#yQNNzeC7|~zbqLg=fTMaEq7A93UAVfshHKbo z3dYp4ac>vk)Py9Gv!kq&qi>~+*$B#XAsuVvP^O2}V!0e5^pGm9NV5rJ9p<%Cj%IWz z&vg%*u2pa{(qoUIw>pl)dIfc<8U%XEn)GAou?Kqx7#qe|#cz8%9|A;}hwR zO@JwtOor3Qt%O)lH^auf^*4Ze2}@)`kVF0sBtN%UOea=IP9&xqvT2TLx@Lq8`e$V(Q+?YJZEjXZ zw&8%O?Dp*l9%k5ip=A(cu9tP>krP^mVbH4*O+twa1_wi-#G~-q3>;azwMW+80cbdH ze@z>Y7ZZss*KHUsf~u{@l!+}b9zTKBt-{tFJ@UU>ziLQyuq!8sBfS1H;E(a%8EqYzoB@PN~G;j+aGmsg8xBlF#q zEH}(A5U%Ikm!{aBE*gAkiucN0gqto+iP(@cmCI6GM>zWk?eso|-nc~GufZ+>ADT1w zq)Y{6F+oBjg`onE)6 z$mz3zAj$7dk>nQcEEip?SQQt$``I!yr8xoCG4Aj4k}i@2J+5&T<(y6 z(o%qL|AGgK*4DaR7-mcpq@ zm^O2-CF>r$>QBDM+$69`Oc(NR%I883XSlohoR5{bET_kH| z%=BEl$j|x^Fqs6&0=vlFeF%6~TB1=-^RwPz^v|%1q!K?XwL5oYzef9wnIZb=yKzTG zsbkE{z$6kM0@f-|%W+3$8xpgI{FKiF^V$LRip(Ls-5N@AWCl?`!x0(pU5%L*IU>7K z5YEJj=w)Z*R4OlhjgH8~z06mzm)r{eK5o5RbY%^yYwacTp1ucN^d;>jlP8~s&Qp8I zX_L8Y(uP|=RUNXPWdKYU3 z+Hrl8{>SnM`6xC&nLm6(62AJL?IDN3KUlhL zC)Dh-oZ>Nd{~?Ut{tq0500#~r*ii;Nz#)SOcDjP0^&#B(1ZJN8JjRs;`#r?8apTJV z*i(^iS;zrSCVy-$a*&hpXXYY@Ihp3w0dj6&u?cL8+5k(_Q`m53+IPo7VfW^mQUQsJ z)ZG#o#fhSXJ%=cRFFu^NY9%EO?tn6V)-l7vB;3X>4Pqop!!&WUwoYw23wFJMs>N+O z3-ZiAK$nI#ods$06yj!PdAKSq=w({xLo0*F@bFPv(A(UI@*(UC^AKE6Zoy>XQi6Rf zn09=oF6d{TL+mEWrp#j~enosVfs3~M;_U?^aan|{WtU5Uy#zHBd(;5TEfC?6H75{S zHWYbqwFHnp%o?-iM9>HXrIKt%@vwsJ<|Qn0;?|r6_ZXc}1RGj&hUjc-&Jdkz%^3y+ z)|>_R+I(}ZIScNy0dZ^2f?rF;a;!NE9#SAoFAJqw;T&toANS#uWr!DbAFtk9aX;2DdI zS#uUVYjKe^XTkqkRH0VtISUqPrJlE7+?uoC1&hqJ<}BD@xo0=loCSZh33IGD3tqJN zMy)vuUN#?t94(RspO_XP)b6c03mo@fAWUWuhC#c6GMCnc)|#`RlS{rNtBdVGL1zmm z3!ftKySU_5e$GG^*9Bc|aNL@+pqqQIjKjd169^qYp*3egclUcTK1v;*wJ7N6mLdDl zn$zoa55T4z29M)KM&@p;Ig8VU2N^m83#~Z|=NVZFp$%fqS$MGNCWSR>%~^Pec@0IR zk}NEh9FCk|&G|TZDnIG>J|Ey7w&wKvjzOlOHK#wYFU}j{)|~#JDZp^es(v8-!PNo> z)|~zjg{?KGKlE4$4y-x-VH#|$IsM^RN^oG!>5tehuv&BaBVQDV)|~94@qkL?(Fc_T zJ-&xOsU)k|O1O%7O9WtNgjm)utpL`d)Bj#40cp|6 z=`NKdf#66J&m4d1o>WipLu^pi%$RL?V8)Gy_=J0pZ;ZK|FtHF zg|gqEM&FlpqUrx-6jEdQ#6qY=(!bc;$jmLu=9L|BqpV8(4Ju7a9t|9E(o>BE!LxYtf0SQ0fQg z3T{J-PXC97!?uA%r+W-X~d$_|FI2g+@jO} zi4D%N==5)}_{JGN(YQsYf3FRWTXg!rw#XcdPX9skXY@(7MW_E8i_Ed;^nYvFWK6b2r~k0UXIXUm zzq8mZi%$O$qf56Oi%$PhyVs8_I{n8iD%+ydf83(gqSJrEyd+~X_GM-NN%LpH1!kT8 zQ|7ON$TjQqgRN;`*6BZI-j$efvrhkc!}YZ_>r9klB`goNq(qk2;p#Y8A{QW1dpcv8 zXZ#8ZlfbOgUvIeY<4%ueo&GU~vI@(`LRoSiYfhG7AG7N816-q4o&LAYK-kG}gz8O~ z;~!@Ulx5WktnLo8tvdbVEjqI51WK3ExmKP22{xcHt4;)J{*766`WtLuu2m-jv@Ege z^iQ;{SF29{Bukqdt4{x9n`nMRt4@SzHR4vC{wWq2SakxS#YR@0{;3v~ZPf|1<`=i> z^fy{$VATnP=BHMj{%HbcS#<)(jB>0x{nITrwCV(gS&2cP=;HaCEFx~z38dyGR-OLK zCIKF>R-K&7GWUVUw)#iNe3fO@>34B;kAq#h<9BsSaN!kNb^1MAo!|ni&JYo^>hycs z9AZ|TelLq_VAUCh#H~6*GyY6O9X4x z>5p(Zc5|&dLv(1>8Dg@mIzw#Csx!njuI@@fS#|pR3H2hYPJgW19I_+J zs?(orBSlu7{#1)nt4@Eq%iU*W)#=Z$;a3_jbR+E_V3C1Ur$0-MiReb!6I(!kuG=15 zVXZn(h49L?>U3?L` zBG#(Y|JZPY*TAaN|HMvJF{@7Bak+PkS#|oxhxV#7jBVNr=M_jO%${0^ph_4 zB9T?6pXch=l4_#Y7<#HuY0UlU&`uQ&J4702{{j_u&)>SI>9KXQjN;%i6)A!s7 zAgs0O^h;#8h*hUwYL5fes?%@n-Xc@KT6OwuEErjJ`fV*rtvda77Nk|D-$x|J7qaSn z4W~M(;K8XsZyzwHh~fo?R^;GULm%DbwNp z*Whht6<+W;5Xu%@lDb{zBWh=CAs5!KSg>}n>i4_74Rdgw#X}U!++OmU{pne^7gq{h z*Envu#KtK-Bulp_FX)-$KGPlKnigEzwCe(WtVM*Gu18JywwiB@lACy#;|_7n7$!d0 zCLR(dwr@y0#ATG+#JKr%hr4DGQ(t6L4-Zq@H>4i!GK$mFR7>NJtXaFnNt|g!0v z!u5oCDcfVs+I3FiEb}VwZ`tVoX7p;rud(qFeR&j}L`VKk;#3>I2h9=@ z{ZzwyT+M!C6koD;5({kXxs1)+=iBJW{m3Y`&3%OfdnT>@X*T=KhBv^P{gx=fl2r@w z>5MfsOO8RBDx2o#HcgdHgEFQ?Nu)-Iy~f6VJ*d*^DEeBBzK>`i!TQ6R9*uU5)2$m? zAj)#1Tyj(|4gfPsZm)WA@Z+7#;n>76v*4XbeqfmV?~2J&Efri|AoX;#2BRSYB z8D3peg{k`#x9EH*%%!_SV;|8^7>H8t2BKW_B2QpxWBvsrcG@v9(U}1H{*KCh_-#jl zeMHsna)#ZEFsI+JmKYgfz(u^6yI%rkBH*1c;Ed}L@GJu=mLWj1*?c#UZxQMASNfFCaF*k2Zf`l$kZQ+u)k{$f?Qx zZqZ?g`{yvX6C}4yzzq`WpCHt~maz1|3DN_P0Uj*2U8K-1LPBBMcM;S1Jz!A&NmBk8 zLQo4nN$NHmkYj5U$XYYeHASdPi>Xj6L->XsLF*<+eXave>oY;>^8jI~&jcy&RlscT zBq?vmQBZ!=JJ0%=L%Wl4rbx8G_7lqc3)Ey6)I3`;bgIh&-7T|pZFwF5SzES_>bZoL zOzz9Zl%a~nRc_HVr0&|&R?~gSkYSGjZom=;5JN5^Btt?q)qy5$ZUcJIhu~}rzX2Gu za{nYdwNCE?g0e7S_T))~Ymao?S0wQj03p|VA^YaDP~vc-T?-q6((F$?g!nR4b{T$8 zBI);o3Y!w4>nFes5LPb{l63q4aBbjtKyh<{BW+tNFLe%v5>;oQA#Oef&zjczU@kzU zTRDJKsrXhlwkw$AXN)o84HVr~2Fu-KeP_h`A>w|ry)(i?9vb6!95v2J1)k#Af>o?G zNDBSPtU`kxp6(W1gvy=V3*%LW!UybxUjbDP)3guR2Y&)ES{V5Q-huy%Vbb0YSi4>y z0_3_GmOGarm(u|Efx+6xtnpn0U|;eHW2QdBpn{IA0Ezk&H|!^DC19Ug8Wh;DC5YIk zRvpD?>{Ef^Sa76&uOS5fG@_{S9w22w*Zcq#NNl-i!x*)4oM^_fw@!p`F!^R2Kg2xl zPCP2E1ZMoBc{rMpsphd|5{1SNRAScp@att!NC+sE!(x5@ghTHOvr-AI_52trDU%?2K-|v z<8Az&KoK2!qe9YKZ_1c)w>T5gTW`vcfj0C+km^m9nqAhb4az#wF@J2VEZ{3p&H?!K`UI>MmbD{Z){b~t zJF?5#5td~qwBQ>?W;*!e_3~ggoGKae^XOA0H=P%!N@m@KLRFGecV*>ihDM(~z{fLW zqU!-Bo+%M}fP?i-rJ}{w%2qOnW4Sp9v#e}Ebj|_7$34Kqv!n(+H1%v*6b==6I!Bn< zGV&E>J& z;i^9fu}%gKk{AvVCK_C^9Z&FCU3lxRqn)p1A3hhf(Tr28vF z_C-X>$G@@5Rs#qtu>fn0Mk)dHc2r>9Y`5rGM6d4`RHB@fxCSUzqMVi30YD{nIVE*j z0%1~%a@JxIz&`5)?o0Sqz+F+Teymo-dJtycg{xN}ui+a}hP$PPE4C4g`8rdASp~pX zOr1XRoi~f<4ulnHOeiAFb(*uHqoBmMs-9M6bqlZ+nq*EyD~>o zz6}&w;!a>oE(I|9L=V-Nz}o$sAdlzW2|O}+mY_`k6Inf&qB^4s89I@9w#@^0x_}HF zMeynnEKH&LsFveSX3lp5tl~W6P9b<;K0=}0xj$3>O@Q^QWC7_; ztjGjWXeqS9aStT+En;Dsvq;k(MBI^{(VO=w$a>BS56skk}dx35oO=Bb@~!+jykcb0Wd2KxqwLsB@a)Pvh}iNp%@pn+u&O>8RzU}a61(@<*eTKrHd^#*aU$kn7G2ul3hV#L2KM*Q1i#J?>@e2W+2>pO{W-#{|^2CCXOCH`%0ocLM+ zCBBWO#J7MDU*DDZ_Faf?6Z8nP#}IoTw`SC>B~0Ieg7c=-M58w-xkt+o1DEU-M7W)zAZ-gZ85rUi_zWUh3@)J zy4yF<-M)eD_D$)&EsO420j0Z*rgXP}&|Tk^?)F{iZsUONT6d+p#ggv&s&wDxju--3 zSh{PuBRT^!ZoSa`WYYa?OZNsS(7hqfZn5q3^?_?n#N1W65}pPiQQsPA*GumELij4+ zxO079h`$1mY_|b(GQN_boO}UOM*k7;Fp)*6gj{%U8FPS$p!@`b4{2hY14Q&F{Np0y z43(Zxc&Lb|bb=yksEDzG#4Q-k{pjxas$tk5ai8dRPjKk}35jR%pv{>NpBeZ8KW-=p z^CEB)0%YZzfbMLD!kt+>&hrk3Lpl5qxsH)c_*MpB=XoDsKbjWmbo5005PZW zF_w?PeC)$Vdp?@;QNYJXNK-Ma6id9t0AE5zm34U8Sd5or@Ul;HyqtoU6Yw%=GhWPL z<1fdb@z>)~c{?7LA!PiohI>Dzc&(b71xKg3I`Wo}WwD^b|7Ak3r! z$U$@H^glwJJp&xX;{ia67_4{?h)PPwE0J~*C8RkFYe~i}Z7p#%-WUK9@2+?}jkqix zadQyyc|^1#m)*1t_{k&Sz(BgGUxFv3rg}PsXhj+!N0FOxRn1>`&*f5u;dN99lO z*o=_z+lac4kH?7rUp!tfMbg*svY|D|`8Hmb*0@E}d0gzYMNPN4=dz|8JQY2GsN^`i z4sq>RtC$Joq>qsfL}#i^n(F>A)pbFt`;lrAN2m~;aUayUn)}Wm-YfBVWLKWsJ_}ae zNp|g*=m5fws{?LAfUGo5M#ZDxud>L<(kWuAZczKgA z|H8|8?eIbm1Fzs^l8+a3d|Uh(-vf`zL3p_B(N|-LqW^>O^N2qZkG>s{v=%Q<;AQqP zc)6S7XkL5AxpySWIt>_fDK8y10f#y85};-Fs@MudB`3O6M-0 z35E8jhX_3l5|=RtCPbs^N)-CbwQ%`{IGy$j+B+w~_8tt}0Es*&LG7z80xwwt%YMhq zN!$pIzKN(K7py@8=SrN%1B7+)GB?3((eTd384SmF)eG0cb-_V0Lp@F$K8@~}c>?=g zjJmO~u3!!p>|oh%9wLQJL5#t4p`zyahYGTWNU_HUiwNe2#K4%W8r#pq1@i{8hJONV zn~xC0U|Q>IWvT^nVOPXp)^tjt4nO8=Ol)u$B)a8;ixFk;LOM7&GQq7}pKh@vj#(%T z#Zn#4RK&f+B0<2x)~afHlXA@B1PSbJIdHIe#91Qrnuc5uXDvJ>IA*D!67|2>Fqkxr zRc4t?&POA%h6Gj;mk!E`Ypj-3)}&d$r{TO)arbUu&~A|X++cR#+k!* zs|&E%$!k_&bIm)WU28CVgE7oYiE*XfFfI%EaPY8u_5Ns#?A4p&peXd^Ashy;tI4dB zh}_`q$aqUVJlvu9k3+6onIzX80^H!W{T)-6B-3pM*kdjHG%46)QT@u5a1^8v?>|;0 z$%sE^Gzkknu56ByfWf$sSuLjI4@Xh7ht?!d18)u!@~lmY(rf+v23|LG%y1Ob?S`8$ z=F~BE#cUiIC*9SVgp;5;VRtZyBMj4B$EYKGEL%lmq*F$$Mh4^d11U$2pDF|$*?`2u zbA4Y}!uHMnKy;4t3mfT5koKda-J%!K;_YLDL0vADE$o32s}(Mn3XdZKl`fY`pGHV4 zUM>~C3y8TQT>41m;r?Pk;Qm4}e?bfxP&f*bD4Cw@GP=L0kTEcpUAzne*bGaIo5QwG z;$t))6?}BXV-{~79aOqMex_;Sa@1RBG@-dgT3QKr-VEFmj9A)`JHvC!#W)#k+SrW@ z1Dthm{fl2uRJQN9;5@vENL+g!-b5DS_B_0aUS{k!~O!! zUG=2jX;2n~`}>WZ{{lZBSN!ySSN7@quJH6dIBUig<-3iQ z1^kI9=TiKhL0K<`WxW$G>z#O6?_`(tPFPm|y0vvU6}?XHf38H9P(vw7?qi&hl^87O zu50B+tpb=q++qQyq_`Wf9$H^3cBrNo7$02zBMI#U$mxHiWPOijU4(4up<@t&F0@&1 zm#pUlqgij4#D52@S#OuD`}fwY@0HL4069(1$K(6R!d23B#vGL8L#D|p+mM(K8UK@bfi>_Lzdo1`s6>i-MLuNw-TIKppU9}G zWS5Rm|CR*eNyblQ3*RV&x}L1ws)Zt1o30rl2enJw( z?{y^e|BEA;z-ddW?b+z~&+W7&)&6O6JO+d~ZAo>M!39v9wxl{;&d|_lORDo5%=~jX zZOPy7H%y!Dv?XoGmRZOFPCEZ5xyV6I+P^awIm}5ne<(o4oVKJ}JR4xe$qEv;-+~F? z^EquvcXKgfKEr8Cy3fnZ@C!R_$=@{x>EcdX^7F9f0cz=zh2s1k`#1F;n4dQLA#SEq zq2mb;Xfzp}EM(FSnSaS8p+WEGF#~GLQUzW+Kw~$tKL{ zI{cdQ(ZnfA<~Q4(Khpdgkh*RGVC8n;x&@ePkan~*R_ZSu7f(>1_gy?M7Eg?GBbxRl!xNgb6*XEn+x+VWU8xVKh zlK*R|SdQzK{0D5*2CiGeklnj(38Un=ZVB<~x+VWXTSj>?KlL4g6~%YQLAq|42hufv z4LuQa-ID*1X@Mh(Wz4c%EHc-1Oa2baJ-cz;lK)4WFvoRE{)-mhsOy&emrWhW(IT1uiP?yD z@7{GwzT+-Mgv`G|&UX1_ZV8UZtm~HiPA>V9BS~DhAtZf*OUcTM9Z2K%JU!7>vV`ZVggC3A>52&q#^7M4n0k9W9kc?>)S z>kgpsS>E0mRB;bGaPj)yj*>zLF5bW&qKvo$7jMvZV7OLP2QJ>=rv(lixOhVpwhmmp zp>IoY;K0Qjroq;Mi#NOkG7omyd3r43jTkDhI&kqu9wZPQxUkK4AgdC2T#ibD5G{a6 zC0Rv8Ku0lei2&^VA(l1JWC`#Pf}WQk61Exg*C2L92|#UwaAl0UhhJkVsbsWc$X+%J-B$^WyP!q7w@w31+X4myzgBiAU(Kn z)`JTjG%c09ixdpcCE<*}&hf4w63l;fE10EyLmphbYi~vUQ0VpRw9q~6!Nt2_A7qRI zw%)@6zPtw)@1`>~qgy-RBzX^eaPe+`QZv6}6*K?p9$dUTE07VIeb?`q;n(NE#k=Pu zE$F_vMJVVS_Tb_@@E0xpp$l317xdub{dO5rfk=l6^#!QugeFr;o2b zc*1PfL*A#)0EP86P94`$XTh3dY8N`*Uv5R}R5A@=+al>*Ybt|5O*Op&`z^o5AZIqt3>O; z#rq$_1~>5F;$3Jc1amyNco!KCo?H(usJeryH}K%%U1AH1Jh*t5T2z^*9$dW3ETU_! z2N&;h8t~O+aMm)H9KQtV+4LrDb*BDA@SQ@v16a2-i*We>-YX0I~ zXSQSgpdMV>=;t6vM#uY+4WI{?Hu|}mx)r?f@~*cb^x)EFaouW=94=|(!)@M=Z5Tbc zw5hGb&Eo>`R%1WX`x6^X4=!z}1#4?@gT>Q>OPiWnYWS*qRD3$j`>7422bVVZ1SdY& z;&?Y&Bt5vaLEM!KY*t%s06n<038!=MEa2U0!|1`KP58kSd?f*Hc)V>kkRDvxtXZPY z^(AM=`-Kgo2bVTH$d()2#jEjUg#~cly2$bFwlV0zrHzP&8h(ul%DA<-$o1~E!Svvw zZCK)XzqZI64=&z=<~8(5wg(sQHx`-W!NvQnWs@=49$dVKEk4VGi}yQ=&GO*lJz{k2 zmgB+2d(>|EBM&a#V-}U|!Nq&rqSb?o_k@`zV>0H!#e32mA-KSUi}#dSB#2xOE?%%h zT~_R2`Q<%lz9sSE{#(4~4VTw+r{J_T$3Rk)$b;=Dk=1p$I1X0G8xX184usD$UIj%- z;J?LNZ@BrRWTF2S?-)Z#g~cPR`SEoj?^x?FDdxZ>#5L-`#rw9oUTPdVaPf|_^vQDI z0<7*4vmLm2$6Ivdzy&B>O6NLo@lLP-jX7{ZpyuD00~c?D4a{}mf&eW`9JqKV+SaQB z7w;rXoE!%(-pMvmBMw{;rqzf$aPdyD$iRUM5L#^Hz{NY&qOu*h0Im7O9k_TKEi!Q6 z0)*zL4qUv`1k7^a0vt2Sap2;eZn2>Q7hsr``0fxTcyE(M#2vT*skw;*7w=_rEO@{= zaN$&z;eKzccZ5t=Sq@yhF0Srzuvd4yuI{!?NY~^Y$HVuT)e3kr4C%Y=`J^)kpmZRh7FH9aPbbX$iRV%H%ktSA_p$sT=xRd z*gA0e0Me_y`i8P!k4h!?2e;vZ5>-qkuRxJaIERo0<=m*F(_y=Jwz(8=$5oE^f~>(h zuEIxQy_W>5@hP?>J{`F5?6;5t(|g5Gcs3j3?K14hz=4bRzTv)@g3~&1@jfuzw32!4 zjQ^osUj+_aypQZs#5!>CJ~rInHE`hKePU;-m;)Ejak+JiIdJie%RN@$z{PW2UAILJ zT)c#a^T_>xLhb> zj&}-V4Zx3KVMu%KFF@EbamCZZE0N(M4qUuadnl+5T)fuq%`)?=0~fE21tSM8UR#S& z2QFSa3(|p$*GDAB7jocoIAl^P`5`*BkmAWZ$R%$fufyH(Wmuf=b>Q+}?!d)c>|O)G z&c}kZ|cCsJKMb>~vxc?MJSA7+K~!3z$GmXS*ADNA&LI zCMJa8aCga~3ltf9O7t!;rR=FCrIK4AYPuR~fWYsFS&^-w5}>K!QE&{tt=8K(x1+3X zQr7YW%i0WFH|RVqhuakR$pGYZH`JT4AMZLeOOrDeP=iUm2$}vHKYTO783di{9%L_b z2y+??R8PuRe7Q`&5-8{gfZm4-eRCKynAFGMvy{-wWs)lZIK2(O92PK8j!A1)kaMhC zRD<8mNS5x3!heI=%an6Jumh+bQc5{*Tho03O4Z6)&NP7KU6FDh{BB3J)%C{+Ms>H$ zcgkl1KMTJn!>}=OMYLs^Q$7#)L-G527&ft&q^ouME&zTZewtrZON$RWXf<}n=%kyo z^{u3nY|ttsUU9rzv=TMk*e&R&t-=(S0M`xreOnDfeh#RgG#D`21pU1VY2j9xNuOn8 zo9Ru0*#%60A;~Rv8x3 z-%r?m!`;ijjZdEbZzp`y4#fB!e&${?4=o;A0B#-n0Ro(19APIy5Smxa&~Zc$7QH8e=2jYQ$xaLCY<_{yG9VnrV|I|i$A`D!Get2<%Tl5<0`F{7HFZP$dDDJO) zvA^`i06^Lofa86!zmRAaf|c@BLiyEzh0u;sgj+vT2@jh*i%Qp5g79OM?$dA?|p9lo&ImAJ_*orD{h4uSCDh9FE2*(SKmppJ0i8D_Z>< z{LG=|cW87j(RY&Q$2TB)1vKTdh~8U85|rBS&5|F&?7)(+B`3K>_o66+>1dVlPnVJ}#+R3^L9rVXfEZ zpNKDH+S)+r^WBEE0k#Y^`73_=Bi-WcQA~`VcPIdhKz=Mlb2rWpsy}(2Qhrj+68Otk-~;K=3lIPJ%S*Ctt&w_ z4*&Hsm?Z`3Q5$=ObVfes70?-+vT=4>7RsV+deHG}Wa)M!*gR z1Vay$oRY1gDI5W`bBbyqmJc<~%e{i(HrZtx<^f01H`!$`tOryfJOLPaUrboILN{pl z0Twy4zbu!B4byR>TeX7-h2P^=+yTRZgORm-(w44>NYYE=Nc&awDhc^FLohpLA*YQ1 z5(lG8Yu2Jmr%A**;uZ(E>4N*1IIw|k3`dUy#K9>IsV5Y4j-vXH#yAdgI6z_zT(fZX zg0&0rk>yz~36FX?E~WMQY|?s@;c>bA0eqAg{tGH??jIt^3G#5qAtViFzBS$#+1zkAWEL zjI*D*WUw*gbJdVP>rrhIr>qUEY7=YNKpGSy^Qsoj0*ayxj|m`c$A z*^QbqdC!;$ftoTtb*WVzm!+m$xXLz!ODFpotWWvWC67u_FMHiohZCXQswpojXVg^k zQpjXY@EISx0v;PWe$}^#&-1fUzc&$Ti z_o^u`rI$=+ubT3N>6OlgNUM3qR4n&H9p@RdvAT$XGex@spYfbnHD&x9=Zsj`IDGtM zhJ-t3#?aHI%$_}E`lKM}tXR<4Dqg4_jGzhAowH*B%xdoRDRZ22Vo0hqjGg108$&VP z*zv5Ab6yOM7EPRj+v&|QoMbuM*%Cvs@ahA{R?VH@d?yz@e2!fzVR znm)G5xu6lGR``EnA!DnmW{k&0Icj%d3|%>8)`anMswd2t6Dm&5|9#^O@`(jK2nF*&A*{H0ZmsX%-=w1Ri91Kd#K_w%XuHmbQx z1>{W9OXjDNd@ZEf>klwT`fJwWj#O{6Lw!}jHlp^*$o#Ck+7C)9H-Z?YfukRe#ngkN$C zL8`rSdC~MWOv>46uZu8U7El7KPz51&bFIrH$wq~Id zsl7J2m_>#vuUer{*7Nmi?_a~+a)=i(PFS`>lo2>>>s4sgtVmCRA6zb%PYJC?6oexjB z(3Vv=+2ltI?&2yhrF~smb+y5TeofuVHA|HXySZb~Z#aKbq!Ve&0>N#O18vzOBuc4M z%sN0@whgKPgCw!gsTY5FixTIinE+RWTA3>l+q^sQV-TVCp@gwV8SJHqG*hskqSHb6T63C)3CeRekzd=KG)2+RQvNU#s%M z5Zo&7S*^{?jyE;$R~Iqw&(O2Xyfz83K$JIr#Mr7(`Gxf?Gk>W^>e7od|0pYlFs15R zU9FS(CueF-PF!!{8pX-{OXufyt z<~>bRp0{A(!o_RWC~}t~D=gB6y`H>=LTBMWtNE6S=TeNruJ}#d5SmAjJ zYod=e(P4Sej!?`eikVN0ller`ERyA6#?kZrF3YggsD)~!I$Hr+)2zU1cVW#+tjp??ZP_Ios^XLrh=?jj`Kz3ShGtAlBz9=butM_PK_p6 zkYc}K5t|gD>5?|x*~S+Y-DRumYU}E4FXq|6&DnuYCeLPdfsqyDss*dz)&>fWSWB{P z`Q}crU$fb0#n#Lb=C~GEe#xN~T>2b|)o&)$a`M+WnXc}{R^+p!FIrBS9xfB$e%4=I zvvk>7Cqxwbt5(<4t*%*njFagp2c}#l${8`w^E08AlOL!B>!LaeDfQPZI2w13V3-Km z4%sd~x`wT;t*c$I=;#Ht3;9_^wG0Y#Ekidf(t**}EtVR0^+lO9Q{i%GLy1II!I}Q< z_gfMy=c0dwlNsT1Wd$84A0KRx%?@?~5qcH30Eii3*81WD7d-^6uQ2&~Z1`5M)Vc>* zf(JO1!~KJk87YMcBSe`r76E(#K85m9J@#aoNXLoW#N|$Atjkq1b)2wsQXQv^9-$|? zT!5r2>eet_q~qkT08OX6zr@;yI!^v-c#w56k&aUn5iyZ^ldrUl)SG-!ipk7%t3X_< z-ZTQ@t8h$ammx)cl`xPVhRZn!GGIj6IP-zwT8liS%0`(F4cA6wB0Ii6GF;<8>)Tfe z^s(WxM7A01_q7<%i`bx0*{F%g7&!KqXy6>Zk;xdBs{-g5`62^cm(w&a5?uv zaOyZtx|}z`9l^-Vb2;IWKSaeSlX5xhxLqn#j)dw({;~yYbZeYRTXr9&qtwY1xSSty z)r&HodospO8&xmLln9^t*ql3=P`wDF3_~Q5rd-GzMqFI9sg`zhGH$1pw zQ=e3W4YPK)9M)mUf*RbDp5-py0!LhMUbdjN9!);god>w<@#kw@x~*D(lLYgj$m-76 zUkC3?kt?ndd0_GeGVF0Erjw>l&jl+eN{>+)ZZ2}oDm3T^|AQ~EApQYxUa5_`&}F0U z29Axo&}F0E1*DC-&}E}0kA)(~Cfo>h);e4*ms2MIi#tOjXAWRO^H}`0563XJ=&dM| zhxykc{u5!jk4m{u0@qu}_qa&e#FniaI-?#>NIlBNfqDyZ8Th1}EX)y5z8~?F=+_wh;@)AX- zAo3?cTjGvl+;Y5@i(KO2i(^LDN!Y3&pK^*Q4VrMK1igN0kStv5 zNXn`oNpR7|cn$6XPO6*dl&jRzyyiSDk!LdUPw`sLWsPKW#7+shI954bsz~VKCUE|l zm-s~xDm3W=oD_m9;c$H-(N~O?=+85HbG%CQSwZxaQ?APviMyso;?89A#^JSG&dwz0 z1b#m*FR_(DB(8i2gsUnEJ?#e?%C@kd%4PMUVdvc?VQ+=?<+bA@!1ZzZ+H1#O0WzlF zm%DcChZ;=+af`u6R&6n|FK9Em>z zzQkSP!i7%JWte&JYkM53npCGi$^5JXMc2(=v#f6Q+Olk{NzsPMNszxV-Ilp0e;Z7f ztX>7DmhLHh$8sfEy^z;(r``xLh_yGHg>FwLD7NH@ zs}p3KqA++-T|LaK95>syidz~+kXG1OX?zxLRUNb~mtcbZbqe3x!U?18<0mi|JPf!1 zT6g!Q81gYN1yIbnFGX5*7;l^mCaL>VKLccDX5d-!0f}c0bzuDBIDbHzLdUlvg?Sm{ zoK507{}wL)G1!Rgv;{w~r~Y5Ny1sU~Wz&FZu@GNUv$S8$z+prBEj(uFx|-U)3)ZZ3 z#*a8`<(gyG9M->YMc@7vhb^mHx%jY&^A4*yvZnU1n!&?{^jWpA&q{1n)(sqRnDRaR z;m$1^JG*Q^-~L1U4z6&_iEnZ10d4O8;!$@c$n&%BVI^}ss=9a7>D~P|G3rvYr|2Nt zLWWPx4Z!b^<5QJ3@PEz$uczh);Dv8cnB|VwFFisl55lgt9(#~<;u`Zf$0NUCf%kTJ zhs-PxkNzQ?bTaA0Pt8sQ!a^!>qq%}_EAUantxyj|wF@f`!t{mHuEb4}onKvDzo_PD z>=qW)45Fi5e1s0$%a;X`#$Ri^c72_BwNso6)J|ftCyAzL=Mo`0WKI^qan_ohAe1~#qzf#NewW~ zp}DKjgMeC~v=tJz3s6f3#a=0DUCCDc@ZPE$A8qj{c?{^%5qK+|z{gBHS|5tX*h=HH zUV@i%_;M6p-sj74c$qx`FQ?<>I=*}dFAwtNdw6*pFQwPvrSxV#eu+n$t`G><;n(^% zfRYmt^C`S^#tZ+orTl#f&1vVfxAK>bgZ$kg@~&>)f3dvVj%Gb~xm)!9UU?@gsc&qR zu~*&&QttmDc?aRXs0Q+GoyxmlaE*bac#!fALi}ivX)Azfj)p6AHlP-iaOpD0jrGZv zlyEI6;aXC{wHgC-2_;+!C0q$5Tqz~oFOja460XH0yimd|=L;p=ZG54GGn4T`3D<%z zlyHOaQbGw=5=yv9K($(rQc5Y|HZUe7-1qRpf2}Fuoc!LehESG9t9j0bR&~o`@R7T z7jz1Je+mQ~tb9f%WhGs|tZ6-B?wgdA>(Pj|pS-rjns1CGuh<^~i4t)$gp!$(ETKd! zp+qd9L@eC~bZbh))|7~?DG}RHB2GrSHk63p;|nF?<9wk+Y(5n)l!!mz3nk)he4#}A zJziQC6jZqWE!3C5g^ zQ%mY=7wUOl?|Lv?Uh>;`rcD7S>P>jfIG#+@=F;N<8B?$rf3Cr=@L|L-I4G(fKWE0Q z>Z&QT=TuiiAf_*5JX|(3OB5lnG9Gws5cmoLh5hAWnwf6t=3XM*Hr>n=n<5-EyBM?S z5#C5|3LH`;y28c4z6i%qXo}ZFn%KPNCXx0$Mlt|XewbnyHPslA(b7p1MJnitNbPWs znX&ojF^Z@8qfN~+~Q6ghpSp zU!gQ9@ANV09)(kyv#DcJEU87FRvlTpXnV^+SzxOeh`@ry-aZxw*>#B38DK|%mO3n~EUL5PbP7w>rbl^p zj-^7ma1;x(Ig7K^?qFlmA$mSh#o23r8jTwN~f`<8>z)AgpX%etu(>NOzW%FG#<-6jL zrpg8J-fV8W#_~anh-SiFu~76>E0VP&ilQVeZG@~}2MOb2GaZc0f;eF_*@X4730oK^ ztgnP^5)ig&Kv;Y~j`9QNNpZp!XA`!$61K&s5Ej<$0r!!T!N9bf8Y3ds6%j>cERxD? zBAik=7M0rUR%Q#l}SlYqQU1M(Kd$=fWOyv0i1NDSsmuRsV|t__5sC2ow?S?o&U zmUahmTmMHX98dsaAd>&NLLi$Uo)Ux{Oj#=vk>A&`lSG_4kPJCY8A;HlF_y$=E{cJm zOtXmNNGN;-US(->5-TPblpO<-$JsHYyJb-d_iv6x1F}L0L}bks0oi2rm8?zTWQ9Dn z^RlcIidvc;g`85F<;ff#%+p{snWwcsI7OF9{D3p1i$WqXa;s>f)Tkv9{j+2M_%on= zn_$?qjXE_dt6g8q4vK;stO!vC3D&`unAf9FOY9gSBCaU2)!>2x9rh^`a3JS($1~TC|1nsUn-#`)BOxrx|KGARQY4%8MZKrn`nQbu8t)%ok-z)UEDsLN%<#v)XkE>R8Q~TzK%mreHl9=e| z7-fMqDpKhFL00P+B$7QAy}`ie@>JHrtXh|#;|O$(MkOO-Y(yNUyvc_b|jDUVI+{_?eu%J93$mz=p9ImSO_>SA|fr1I% zk5BO2Y1@I$A>K55f-lkuzFAzF6o+C%`mVVZ8^Sp)x`Ui8v&VX?U@|TVCgajb6tz}S z)F#YR_@!-J6hYWTXA13Y{V<+c-42o^rpu0q6w0HrXc$EDrBlQOxCG7>DP1BCRFTp( zLIjecTh!Z_m;-j8gz6C%7!zncZGj?BA$YPDoAHqe|6YOQBb#Ho4nUDbyFJMW=50Ip zgLxaPm3Z#K%*|NHy+SG?f&e_49kqX7JCO9GWB?@?mox)W!I#f&I>;%5fp&T$T)z?u~`R|VGWfao#dG$&|o3^zB37YMAcV|$_E1}^jT z9H1aBZZg^8hT99vSsc!VDsKGv%IWiO$3m9U{al=Tu=xna6#1h#q8~OPfqZH~(gs@& zFqV=w*p!h20^HX@wSZh-*RD2bB@Sw^b&Uw1tqeA=Uw11%#~D;W2rtezh1q<=%7SU!jCchW(> zCS_~87zoa69}axTtqv+zI;vbLi-`@HB|8OO+L>J%TQX~xb`8dQjBz=I1+xGD3T6(s z2|6n`u^S9&Ki4YZjv>a;IBN(fQyeTgnun5Hg@a0FoXbRP0W!sp;N$0y=%-dW83fXW zcLcT?L2BU(tyzGg5N{ptKO9g7vK|MM+!*9CLNr3jCLLlR*ra2y?kQu}cZveF>pKSs z+x5&L;E%6+gvVv~7dfa8x~wqhGCvRmP2z%JHw)C9ZVY;dbdL>k%Kqj7ZLo3xSz<$+ zp)EyK|XBT~Y$1J!b_f8_d9>HQl599XAJH3wC zJ6Bkxi}3VB7CC$TLVPdZIbT|tU@z_V(k|R_#1*CXj@gm_U#yLz1HHYw3hGgCfA#rx zWP2$mN>N{8UA&iadnu?p@g4(YklE?j5b4W3)DY`>6NT znc%wNOWZrg?>w@NRJ!9jp*T`^fwcgSjay`^yR@_igScY8{xGSj7t5JqCAdydKHAgT%#?-i3zOO{_mO zX|gn3BH`3EI6mpdOBO27*uAt~S_S4N@r`7lz6a$Mjr4Wgyf@Aj@jh)tdoys6VI#r}@9oR+0^{u|7_9iQcP87XOTZ9}a!XQiN4w6Qio$Uk7 z&JMzTp(a(wK(n(fuG!fs$^xoX*$moHk;-x;$`j4aK%FVz*nkft9Ew!I#c7~*m90h< zF%8@RMv68;Wa>`Yo@uB%6>(x*a|&GDH>x79wWu*=Ga(r0I-`OFp(GVFp~2vRj%Pqy zj+TK@1*5VDWe>{1fzAN*rg#lJlz&(bbf&^uATMZ6#laD=%Vem(jnsiiC8=1=N5>;^ ztG;h==e(bkf^0=|Gt}EueS>jPwd40$EkqX=2P|b!4n|4gI{S$2ytSp&isbj&( zfl?E7IH#y`1=OUVB!vKJ1p`D`D$)p_Ms>33K?KK{kpa0FZ)TuF1qCTsc!4G{B`MN# zb|<8yPE?lA2^FI3O*yrg4-BXn!yRN3f(gEaAfgcXVp^SX=~EDhiZ5ZA(QrI9jru4{ z59ljhW@dLZb*R{ZwxeU$>Ew#Yrjn9ATLY0+l>q}IDimts<0-J|;z&d&ExKZnVMv)Z zFry(CDb;{2Fu`%0byQx5?WC&gL}nYx)=}!t97V!`;5`~`1Z9G$x>AR*fnF#%%u0(M z!HDY_AB&E&PcR|;ANIZkFskb6f8IMmFRLS);sRk+A(=^76q1=Fpmmufh#O1-7$C_^ z2FOD4CJSbB62Pj}NdjtHodn$4IxO1O>I4w2Z3AefpKSoOU#SMvYWv{;)@s%N@4T5e z^AbV?tA3yV7R|i(?z!u^=bn4+x#ylcnaNUT@)@G8IE~zNB=~hqeHvx`%SLA>v2C~* z(MB3ngyH6ZAV70G#$k}hy#PZze)MrrEt-TEVr!!JxULLG_2fFTBYvb_zT zCAlzKFXjptY5j09_k+&LCe#m__@kFezK(v-5BFX+Lc<`hl$tz!0m6*v*ALCovgn=N))r#V}{$g1E}$ zd|8BJs51LxeQXSN9Sy7SIE{wmH5xWWGk`dv8v>}PP8_)iEliA7^dgL_sZ7SxqA5aT zJY9>VV<$7TurD>EMTEY-H>tmrXdPysszI=xyuX?w$6tYH9j;(heEv!gMxA2yq&pwQ zoKQ383(v8dv8T#m&uo3AQoW8a_(XrWgq zDpYQ)(S-WZ?Ep)Zed1iH*1Jqby44qdMh~)tWV2{GZ5hUV8eB*_NT(W0M`QIo%F=zZ z)ubAgNWtth0f9?4MX8SSH*1RnFg)#*#r#A~y2mNgZqlB9PSKySgTyyIBx}sj*lf3z z7K)x3$*QO5$BQl=3OvYAsU&8u+QB)5g@%WAGDR;VSdp;jxYEw30E6H3xcdJ=!*$YH zL6aP~bI^+yYEsWd+)FwKDj{TRqMg2%BGTPA-y?c~uNUpo|M@A9i5rMlwM$WLP;^GT zNK+_X++CqGT2m;E(JPc_T##?%X_|4UPz}nht0puP<;Sm?g1@ zPLV}fW?^9wFUr8W$(9=XVkQTY(w1f6&p16JiVqjug8^!)q%cvk>=s59XQ;_;VW@U& zz8`b8sUZFH7+T0~MvWeXP&;0w`~MABXw$tpk8d(oq) zeJ

t#qOTtmj&;2es>Y5IaR-Qe*-LDQc^^@Tca)FZ`+b4+?*Rt({^Ng*8`9%X+Q` zsx@gN6gx4IF@SJ*MTvZ(9<066jgX%EXHnwiK^k!y#G{1W2B|6eLv4%Zt*B8il zY>$GH1)VyEDQAKfr$Len(M`ZX~xQPgpzqfniWxep2r?Ip3_Sc-Ir+L19~5is0c{g}|W zzt0MjpZaljWGgD##O`8G|L{NzV|Rcyyg~z5f1VC3or^tqz|arL!BI-kP?tEnHMZMDdjjz%Wkaj4tc z;b}lS{2WH9y1S+s14R8C@Xm(1tA-6(O#+LaUf1ZiceTrZa6DW;2Z7V^rXnQ+6@q7cL?psH%;A(7VpbEhup=P8W)9`V}m_9#*X_anOr?4UY!51hC zzgDUpVYmcFCjGT>Gk{t1z@GdndMY^D#?(Q~%Kz1We}Knu*>Eu?I!XEj-oGULL!SKI z%LQ||MpVHy%x2s;r??99ai5%-?~^l!?vpd~eRAfj?Pk7DPQ5$PRg}BZotJOOO)_V? zimq8;)&fqQHylo$bg!LOEI@oCWBAixQ198r#f+$JnS$Gv9i{>_hToT#IwS9{V!Xob zKZ0>>M(EvSUg0XrE5ir=@lAK(JQ08!0J;b8++gS@&l@Kh=^0s~OJXU@Zc3$@KDyRU zFB*Kbz0OV@hE940&zB4y`Wc=F3;{|rQGuNX$>SwbIK)FY+vsLHUFspbof1qm&rZ`l zlo5h$uQSm~I~hGxVyBBtlxL^d04=f8K0{y$e_ds#U7Twu`i~I(01Dr2aE#AQ%xvA- zbaSRTK8reQEETz_Z^6RXX^0;B*$BEa>qt%w_>E*P_w|-_~>J)1Rl?3TK@&rjq z5x3HL9hB>7SxCc#eJ6ct@GsxdI)(0*MXc+V)VX2=^|x&n6;$G&b8K1UHf3!VW@@Vw zvECJ%7FI5|CY$LTd)7Sa-$nC1N8EI-@MO^-8x=aTXsC@G4yqDeG|8XUfOOeG`g?8A zi9Duf(^3?XCCop+@<==73B{H5^c=h`7d~f}*enkM8J`8BkPUxA*PRJrgFs4MMP;ts zvXg1{%M!a8BcurY3_;~XMRzBsVnz%aTj3# zKu8}90OP$o1HfF&4B!xB`BEuB=Xk~W&2a@7eR7&4<_c$hzS}9DZQ5L)-{7t$rIQB5 zX3{DP4fW85IuHGi!Anhb7Caq|^(*2EmeB|dH!2lgv1Nb5wFRlv-*e9oD-MsXzhw;# zFny3t#TGIuRAQlW8?CGJx#Y;(m;B*COm3JH3b34R{6H=^vy!B`^I5U*7?r5qA1JfZxR@Sd1B;UHE(u zpY!c>4l)mZRB5CBu~cE9 zA)bOe^9tzPPAYbQq1vc4AdegIhk~TW(N3pIX|Gnaj;$9LtE6U49?S6}#5SgrI%@+o zPM$8&9k{FVBXs_)c1mJ;J!)`}7af1Kokoiw-3{<@fS2*y=chLT^#SU#(?9SEs-^3B zHuQf;ui^VKd~XA_{(%F2hk&gJ@FU<+Wb-<*NwrfhYTJO%Pw_d#PA3rSF2s7#U|+IG zo&ci4EkNL8zd1vmt_dq&nvm0*-x-R2tVsw+e+~eWH>Ui4Jv!ybUwUmlyrM25f4V7i;oeUwF?iDtDC@7isv$ zq}@Z{122lmglOnVxbGeSo{!iF!z_!Gxjf^BUb&CjrlXJQWywnW4ILGS^PB02^ZP?yOYW+G}uCAK^p3C zFUS%jpBZ9hB##i!kL_7SnlP8h8x#QIQ4wp=%PY_TA{pqJhFo=lil~ z2$1@|!A|SzVs%dwy;*Cb2PI)i8Qq3=AH^#)%#kH_w9zDAR)w>YjCMDjCx)8oaIKw= z8-nz1Z4mfz(2-h410yPsmEBCUJ0VvJKW1kUOQTR;fByk$uj_iBZt2<*KXyR_{?><| zJl!4m@Bn0P5nI0dp@g=K)~u}ikLP7=N}@`8EA{tL$7-7bG&@~WMEq^P#ROj6Nb@=w z^9>@I1C;7U`D`$=0??dnSapW8rK`9PQ8GM$zA@4DOa?6OP*y^t)u|Me#^XlvX;VWZ zOqFj3nr-vzrBfNoJ3pFbsx}Y_Ym>Q@|ER!JP*2pqGQ zH@0udD-ad4TpKXjyco+V*0L10+g*u2^&gg>wA%5=6|L1+Teh}7>_U!PrJ#HTmvVcp z@IYb^T?qV}L1{(M_v;|!;`42TUH!5&y6GGbmD$U+9Np#Caxu0c--%fDU;&7>rml03 z8`2L}+L35lERlkEZyAD!w&{za{n`-Rh}&-UDsCQP~W)@kJkj`$>%%4Z*0^i*_=!Q18rMg%M>Xt$oPo&E7^v42WxzE6?%&f z%k~(e=jBj)_tbO%xTD4g$VN5dn>8HECwC&&oA{Ne@wSczx-o#z_v9`yj26prQV5X; zYq(OOxPMjS-hP_{={}F)YTkYuQ`>skL$PA$9%us=qu<4&RMjO>ib7cB9V` z?-y#*cGp-!X^_i%vKWewpVtTzEeVQ8k>v+9!Zvn+DP;^*3d`7de)*?Cu@qFHcObu1 z#^TfCop!~vHKMU~Ej>`fwD(si2U;6i+ZyL>oQwPh`kKWs8nT(>I8J$y2bS0-L; zL&%1o{u}Yy%0754SRlADcxQ+m>iBPj=>iy1p@9MG`0`i7i^2ONstvqr3>>e^mX@*D zg$kA_OIcM1rqA4Z-}T_u??{rP01^*D-E> z0+4kDy-a*4Hw2~Qq1}*nc zoKH!tkP}B*Mdij>sZA*jb7w9pSw#Oc&||?U+2!_HtZye?T=xHvhaNWGBYzA+RTj?yn7I%GMEC$?4f~HFlgP;;H|RF#X-2}jWyk#d_O?QQyVHKfMb&uT6{iHgOos^JdwK}PjEZ}bt3MC8OTWd+ds?58+`Mzype`XU6@nxl?B+)M= zdqx&r2!@z%p$kn^<#Vp4^|hFhvrcTra?55Fqi72Fvv)b>^8sLL)hN(tSw1tZDJ5%R z(~l{~jupC+z7X0~Qi2E2(Xp5VgWf_UtP=KxV%&bHPZ_G4%3ko@O5Chr)*0tYy|5mM+G3 z&|(XXH__r)8Xt>gctEl4*x%T=bIrvIugjt~+3P_8dxg1$4)ycz6)!Jc3`+Y&nGadL zIH+p__^pD;pkNHS#n2uvTk6D6UmEon!9`ToA*RZ4=dpeYBVlg9mnQzPm=uJHt(cP% zB?NrDNDYuDj6}#~(kAFH#B$2*@TJO=&TqKu$)$_wlNtxFr!D|e6L|Cu5}w`3=EFM= zi0@-|6=+@>7bQ9 z8W+r<3l%Ep5VOVR45;tcT+lxrsM4l?@o($f{*m!EuUOJh1c3-q4jXN?&D zLIxUUPc{Q)h%IloS2<*B>A z=RzLhm#R?@fzb}h0F2etIEvjPluM`>8Rt7qKJkSxx0@z89t*u7TlY&ia~Sv*T_ z3%zUztQRe_QZc?<%&X27ru5nL3v8@R^m<)wH*Se*Y>GcY>w1hq5%@PCN}3zxbg>dRh-+UX;e$KbqD;BbnRLK8Zy4Gq5?n{UqA43$_T zjq^COo8xy=P6rh54k*}s*;!DoValVlASTi0MYEVBj~|Broly7rvoN{I1A((b6=$EG zAd6%|&39o6?bw}R>8>Y{rWx(xZiHrf)JIU6~b=ZCR z4IT}=*%#!^zFDL=u-o^V$jEY$kvB_NcjTb5z}{J|F%9arOI=0#*!o%6b@7+!Hu#`; zt?<#MegTA6eESeS^XozQK6e!1`PK$?zw3!!F@7Y;m5=2Zc8;)HYJ|>C{VntCot1iV zO1|#ru9A;a+toiRYcMKHPZL8Zyl0zzd|H?tG+anMdE32 zk&ZAae+$|6)USt&l-zc@7$2^(ZJ23=*>>>llM$|*ifym>){%ATX|wGw<{fD@Q6zsO ztlFWXo7WU)vTpj{6iadw6Hb@FzZl=Kb=~mIvPkbU3vR+2dw!j z(xFZ9s{)_{dt>GbHt@==*c~?T>d8m~Va}cVt)uMHuadG4d7?-LCpja^KGB1&!=iRK zveqWZ<=;Afo%s^iAu-u1ey(J`C2UY&T>Oob$cDTeEoot=UtD0Q4B`dSWk7XWW zQh7*3vMy1veeB!8uEWNDU*-JRwiftitI+`#vq()5X<_@lf1b*G?~a1das~^?0F^m5 zLK3M@4XmbJ~*Qnc+XJ>C50BO4@%xs;T-mviz@UL276@ zWBlX566?o9JilX0L*I+i(F*hXgb2S6EtuIx^FIIAu-1jArtzW1@tWm_m=+fyF%hb_bOy$`TD*ta4?-}?#6Wt>7T|i0fS?i+i|)Ivy(RNy9eNmWH-Bh*xze*rMx?x_5eC` zs>J6|UN&@1nCw~Jwms9FY!&JG=54gGjt$YVhX;$OAwihwZEMUXPhFSSxkgx9n?yQ| z?Pw8uuyrbii*hk6*&1(7PNAV)S;+}mDOBVW<63dp`LG(EmghE8zAru5d8~0i%sw$%G1g&%?x?j0yO ztPA7iDZ^ln7k*ppXt{NsJaHH-_vjD(f;7O3!!lRl>&gQ8vh&L`sJugDOr2@Aro>sD z+v8GZzz8@lAui=%v0Qw&kmHFq8fa1vOT|)|O+7MY%E&OsTeGPu0JDaL^lpsbZguac zhjB{EigSw{Y%e9 zP~XWmDg7`*$eThSrp% zY+3~?O4tXxkH16b`sk?Afnz3XR!m;BY&pfUEvShufe9qe=0bU_&~Tw_g?;8UT5ZcO zf1)+nT18c!25Sio^)7!soBGS+B&y(QLuKD6Up9P!Gv1uC?$`Nl8qo1Udj41{^UxrL z6x-Ud&*bCOKnH9SO+REqnOFgfRfT@Ax)WyuhuWzK--A10Wjc8gEw|A~J1sZyuVSM? zcKV>7-wQlBrf=Mvb`OsIKlNQ2j-y_%A6?q{7+n}BcYf?{r=R1f=I|h00gL@BJ!I{m z)t&~JT$-q3p#2Hj0RxE_2m0w33gEj8!l9UHe_6*mdK~BdM+BF<=|%L|CbreJw2B1! zF;4ym7P{o55$M!61_+CH>dk4{c^P>r4I&lho+kXEe!_A59T+oLB2%M<96qr^Y~Z*4 z0dHb%;+@Uc*Z;iv?-VTYdvnk$GiYRhrYMhnyir_Uosi^`FB{bsmqLRaTSQ6|EkJ|% zLvL9SI6)a*eC}t9`0Z;rI&Gr49-4|GK8JBHy$(i|g&9LZXY4PhztjpZ+YF044#3Ly z3I`oD0JPHMZi0QJg0n0*11@*27l|OCWG9XCz+(ap^3woE@uU0cS3@mVKbcR@6xx@= zt}{L>nSR#~2ZK_wH}lZA!LPkNSmpPmZr>!2AMx>4K7T&!j~h2qz9NRtYez?P(GnnJ zB8ppRp@}APq1$i<{MBk$cHhSYE~dW$Gw2QS#0!qlL_b~ZKj1z{JL@_q4otVd-J0G8 zRN_cqIsK%r3+HaUum$%aV_O56VZcmoSfYw)e4ZU9=GFyf_+PNm`Ti|9w=qF-3#&Zw zJds5f6z5%WeEsYDzPsr)t8gZp%_3udN+Vs2+T~j4VmsNv;O&iB;-ifj`!7E@Yay-h z;uK+k0zlK{e#*hwMM^+B=2xTJ(9F(2%xv)y+^Rff30 zoZJM9WBaUB8i9k1=)KQly6Eq#J@nmv7CM3FU3mU|b$~7rmNnukdE&?>`f;6Yca=yH zH#R_Dy~hCBALtPqaWu$hMHT@NfsNMm6Q(EVv(*k-jPprjJ9Pm`I4rn32A(u@`6G`N zB50*oSBZf4yT~P$#}^LQH^()sS;L+wV#UbGX)bi2+TNQyJ7|2DGdU~XIvrRD)Yn}e*`-_0S`-l1WY@3t4P)-c;uLSoSB|86Wt<>FX*g^Sa`B{OXNl~Oc8C$X*X=&o{?VqEN}$eE4hup5hsn-- zYrJ)jXb@MyBF+!@DnN6(2fQ6ebyI`KkBPB#O((c^5Pbavv3gB`TYR6=vI$5yu^d&!WE-gX#x>y9(c5#BMQ3Y`5O- zT-&mr26>!iW*Y68;>w+e16E)ZHQ;GEikvlSjmRp%Ztaa|uBVlrCDiauoEY5OP6yC^ zG%gsIr!3ka>-Yy&j)3^d_tSTc^;(EvN;@gzkz2cV;4>)1g0%* zOq{Z#&b4uhYsEn@?fzc(-nRdS6A75gThU&}>-1=i!Wpj!SFTCwq-Q10;cvBQ>(6RB zo7S|iaZRzNhzw^FJx#*)$tO6DD28s&%Z@9U&a)1m=qPNU-{WZ7CQL65`W2rp0g~Za z2QJZmz>THl{Ijb2&xZ#7{-BnB6F|4;Fe_We=N(^=@VoaI`nWSgB*>SHV3M@cuVv5` z-6vth|DaYl_R zrN%n+8SRk7(1N5rq8hVgYaIyX_)fYQ5n6zaOC)*fc~`6`_y_VFPjA$sO+OP8$!LO_ z=H}H`R81|JT}(r8#>x^p_fy`s0nE!G(sNU-`A#{0__27illDj*;vW!3fVqLlSY9uU zpu6k1UC*FwuH~>GPi8pisld?z00q=s%W#}K{}hq{ZR0>1)I|@~q54gA$b|ucmyU_^ zk?{=aI9)HNN%G9|Xh|pkmWo)l<}}hDdX{#Do(F*8PithGM6Vb)&p0p(3I^c z2sc}SXchfx6~$0TOQed;8BVo|o`Q_l+qsI0TE#%ODhf}5C=JyS@dX%fV`L17OLTE21Nd_CFMubGnATuKkuLAIYQPa2lFFdGY(Kt@#xFjY^3 z9aP+zob}kk>GU^<9}nQ{UdqgrgocH5t{;XMRm&{$BIska zQ16+R$t8;2YAG#sm}|W|#ZJ+>zifUhIl5Gw&l6+IHct^*8Q{)nws7ANw>dsL;a0FD zciH1OsKi)PPb^=eYNC2QGjqDU;MBUIi2uHx+NVC0MtrctQR0qQFzEC7XfFQcmbhJf zh!}MR2rMGR7Ebcw0C;!Z0ob8>Zs>0q{Yg^G?A**Lsk1WM54X1;-h)0HgSA5NWeko? zblgwsl(m_uvo=mibsxjO@{AX8@bIa+pfzQ5mWrxRROTA@<(X?Ahyn;62fs1(p1}Zp zO)EM}OF%*^>WZO^htr6El)hXYqPXxJ6Tb zmTVqLjWK-U?v+{xJ7joDV#(>=8XH@&G^T8W2}^x`xrn!B;S59x#6CoQTH?cXdur{G z_us-r#4w0mg#jAog-<_vxW)sI2ap1Oh|`;gWfQg_6x&7|V{U~%grF=Z^J%;1)Wgfa z#lm8h=T+=c_|x+@Q?am%%h}Ed5jJAI!9EKv#FC2LT?Hr*WF&Y51|iAwroJb2;O=81-$kT1Wxsyh+68(A5?$s*F-i2%12%?P38tiUh{u zk>px-$dJkh4L8<>3yW0?v!JZG9x?6@kJDu+s|bI0LoP+cfXwF(_tg0I(=Tc{Wm^oq z9Y}QOHufsfrn-3W*DwlxCi~z30oV!E|Hn8COFyes(1(JLd%h%d&7T3npM{^V-$*7i zJ)>s$WQ-gy0rZNR3@0dntV4QycFHE?ito1}*9T~jC24Ayt{%cV4^GXX=TZsl zA1Yz3t7Wu@-tPiovA3WA6k$~4$;8sYM^DN@dZosKX8=zdZIewfDPbaRP@8-wQ&dMT zD5@j9j7nmmV8dyr08am7?kEb=)?v&vdfHmYwDmF+KD`n?R|qsC!7Cb94*t>bz8;#4 zVGwEyEi|l)UayA7AqvouY6qSw#d|jHr@vJD=yAf-70F_KU6kO<+{rj0gk#AHe6zhU zw*Gre_E0<7^;K)C6J0W&8rrDN6ko!R&`HeybSIXc3BS=jiD zJE>HiqwYM@IqF-xu~b}I2>%_LXWswaZo;I9zJ{2BPVeE^&G0#TuSH1Xr&tmbA%30@ zHw*U0mOWX8a3fUk9q!KG7y{PAbiAT->#Wq=)Sp@xK#!ZTesf~uf(mj6s3N$(0Um3h z_@7phethF9=<3-M9J_3=AgyAbUO{)t3LF+dTlxuH0jvS%d=3hXN8zY*Ih@--*EI}# z9W2ILu&f#2qX}@+ss2{^sMz;t2*yhuHPRh*+S?!Dl7L=?<1@wgz>AyjXu8hI?$>tI z`QB^VbteLv<5D(LUI!h52B?y=f&#*4F5_(xxIM^M+H*3t=VY(~)DAtE55CQW-#fM7 zwPv^%u~VXwLc6NH^e`ztW+7MBFj2@Pu7#tvM$LJh* zD(#P@$=>RYf+l#fz#3UtcVY{VF6|I0Pc^v9&B@t%9b zF=rWjOvP6#G(9G0%$(&jqlSThz5!hV0V zd;RNHO6oe+3^n9A-llSQGt?KNfPPuq>Aug38O-C(wpIwZ%vkDg$`)5z-J+7ew$}Q& z8YQR(JhF7s@Bm!sqWCqMaNabiWkzrWRDt7zMzTk>!-* z+nrGX?XFU~QaCqQG238Xg3}Lley~H2FuL<;qe6B6iBEFy$Dl^>H{D}-EIEfze@+Kgj1=U()^`g9`}(2%vUl&_rdvN zhoIknaxVNEpJSm_a8Pc7wy%S}({((qprG|bh@MU{tkEhO+~QIz_O{BEZM!khM%mii z=z4e_@MHVHN)^x;K2|Kc9&SF|1Wkw{j~fnsH008*E$gv8GxXQxV$um3)m6Ty%}tMk zrR0?#Znlc5Ss*!GRFUwO;?!cI!m?N zeS>>FoMqY6sxf$#ZLgc)ercLQ%e-zkJZbsh;-*pRTwmTqCm>xv2`8D^KuwU&Q?SB8 zYFH?hc}}?LK&_X$j0+by;W-bugO22G9$eu*6L(1-OF|K4D$Xxk2LIvj7?*sneI>0u6# zZ-WhyVKKw$Qnq?{#pzD zSn}a%q9?HOqo4A8RtSNi6gunUyhjEPgsrX44sqX@1P z7Yg_=OvbLnH5`!Fh22Tdrgz>sOi$N!y0IJ4MQNS%aJf87^3HRURhV)%U>l-~wvaC& zDa$RIvB6@Y=c+xJfi2jIaM1JQfV=Pj{Qfn;>0p3S02oBra4*Wy@O79?ws1_!;npfD;mLlEEF`n-Y@?mnWPbiE2NHVd z=l%TIaapaD9H4tvqh24P3ZGVY1=hmzlNWu(;)a|svZ;-d<;x}djzU)N^)MI2)W6c+ z)|B}Y{jAzVFA*~T?oKy$rh$ycnjk$2^eqVBwUge&>%ki3Km@hVK_=liTgl)0M^Rc% zyQ{ICK@K;Y)XY*KSNT!iv1)l57OB($?)6@EfZmRD)lcfM6Z>AZLPyEb+78!9Zh9$3 zSOPgf&DE%P$;@r3~hpmZUGnn$roM1OOesCj@Rt4W?R!VOQWT~k|I*1Z2fRZ}CV z1fDelt?Q3eHp804zrCpeS{|Td2=|3NbJQ_x8^_We*gZWCwz10)Y-T6DtD9O6sQ=5U z!$U9OU-JSt>@w`~#1YLjxT~?fogKZt096R2Uk9a%p-tP{=pFX7Kd56ZoXlXq{eyD+ zZ0+wye0Kb6qieg+ja{5Q*jfNtHR99!{je(9rX6u@Eq3>M&ug0sY9MLvgu<~8~Lt5Lt9(KVmhbmC-egl>BnaUA)EpQ z#lXODVC8L$nRMZJXD#on+mKXjLAnf7@{g54g7+&Ejgku`IxmR5Q|2){K)FryVwERK zIDxY~VBBu84JIqc;moTETYP_aH?5<$DopecK3d#wH;H#>KR$mf99Sm(z5)&Y>}&@m zE02c+o1q9bFMq`;Uvj>jb^*DAv#_NAhH1x&1Z4#O22b2>$_J8z zSXv=hF$vy-g%9obW{DB&*stL6>cH+Y`UPRH@E`vpPaYnVU5`R6e{-Y2uw~ zF61$o$y}zo@Es={%@4yIq>W;ETKsdZMYO*I0|$RHWCrkknB1h$$GDhgEtVl4!^h?N zVeIX{3)2(`8uN;m7eJ2Y-6^x&*km4nJ!UMCQ`(S)jlKuj;CNEXW|7s@CXQH>5hL8F zV)lyO9uq{pF2@#cV}lrRePael*Frm2dguidwiAW@6NQz^voZ0F7WU`MTitE#AOOBj z2NNOd*($pl=;akiFx-Ctta6~}xM#bl60XC?GB!hnOd|rV4V>cHy5L9T60y7C!(Awk zqwBL8=$GZ_SHGB8e)uDZYc~45!G27=SYsQuXRyET!G{Arq*_D<8=0`XK~Ua!DY>=4 z&Emp|mv&>numM`?V;dp#!E(h8yP^VdYlA#(6wH*afjUUpf+jwKIqzMAJQthZog%&Y zu zf=;O*q{rcP0{aU8U(@~dv9#EBEtVFa8KgCtu$daVnKjHeo9I&bhXqZYk1L^KS3-~D2ZZhOD1L;k2h`ETspr~jLlq>ErvU9nK1K)1bFnP zVW#6h85hU9Di>o3!kdXOa5T*jN9Mzx5&S?g!LW7)yc`b8cpkfp*=%`d#Muvjdi-Hg z2z~N`XpK&YPMqzJo^ENqItvwP3GalFB%ycm< zKa1X|=?WBDG58&8FeoNSY)Cf)@~>ZPUU%6vbDKzC>t2-cQ!rkWa9YdE<#E}<`7#~D zL`au9SlDcIp-B+(EV!Y@Pph%X-kG)9%|>&t8iJy!0TP%SoCW49U9jYSC?y`w6fNO5 zxSNi?dFghD&7Z?#`)9QlYr)PvYuYm*;KC<3d|Os~)}Zb?*^#5zv+lCl<^%iJwyxd& zlyGLBfYb&n8LQw8ltb0Lz0yWO_JQk1{cvt02shrM%abOonZnI>T~EVeY5f~?Ioxh% zt{1Ih9Tp}Ya855cT`aj`Gg>l$ZQ;H{q}Qiit!^>Irtytl7up)JmIQN9AUJ!m&II4Z zMD-nyFgM1?^0<+(feg?J3x3UP*D%5YYh!*n&oUc^Y0xxv%9o9NI~VHpprDnz=v9u+>`~6wXKKvDz;BkqinuP@~Xg_VzL`eBA4> zjYUo`-}w;4N{%kE!#K^}2ra3q1`YBRYO}jAyPMd4$y9EQPk$bN8zEaj;3hE?rhsUr zYInj4*%nw#!6=GNsIf17q}r1Odip*b2=|wtl_UhcRc&%3=t1mo?ve&0;Ehn6hY4bf zyibBjnxEVq0CZJjHbT?@Dfrq^jrE@T#V~wL{thQyPA9 zvQQ1Yr%DFL^dCw_`7voY{zh=}&64!1U!&kIcmS5ipTj}%(ou2VpYcb3l|Z>@fovX3 zch+KA)ZFsDdp5w8v{#-q1dud1zpsPjK5jS+BO!SK_wp4($XkoMiV*Lg25(Do3=Fz_ z2~I59hKiwX_v*t=%2Vh(JH#V9tX-?1?4T+?elEftbgubjSqbwCRAp<|o&#b;vimwH zt+AR1$AdZ6@8uCg?c|lV49@sUq({ZYYNbHgQZCHYI z5muP2vVbXZ*DktT*bAJ=kl(Crv#+=ww-?x99tWZv1l5bP5ex;_k9n=PyBk<^#fT6M zxOxDOv0`4nwIIViPQGMV!@X8ml(Uo!hJbwuxaNR#ZmJY!Rm5HCbjcIW5s&e(fSD=o zf&v@gT@CKhO1$77isD}5O@`gIOhm8pO06Bj_HIL`7)|S77Ric_CWy`dh--U$`7kTR2p^UAsgv9jTSump%X-#g?-URB#67v9-%K>E$jk4nsEX!|&`8Qa5VsEC( z13%A}+jxH!X4U1mqD6t$kq@wxfxO|}+Xr(3_Q;8m;ZT||_d)Km^W-reP7j#;ObkUF zwl4mY+;M;NmZXepQ?5-o0qZ`;wu_)L^I>bB*L-(jHwsfAY)Ej&5cB|#V%_>Wlv$5T zv3Oz&>nX{5C*+t8)KauzVU_Etu)bw2xHbjnRyITG|2=FkJhFm4A>5+*agFH2){yPW zlxCPuh}iU&$0)TE=`M##39Z330vK+%MQAI&&Q%uhv8DHFgIk_y#v03x>C>;P>TJu- ziy#1aFdk9UdMxcNU;^XLqw63Xq*!QbQ)z*EBTCCt$YY2TSOdo4sn5#0+e~z z&rB;&QCOO=vHAE#&)?7M=<*X(>A^U^5zHHyEQ5T=&*hy*zypSExMGF1C1pz~EI*Hl z@}zj!v3IdU_kgeyEyt3$bdqCIs#_B_eiK^Fud zVc=Am7k5j+cpUNnj^|txO|_i3_&!MF9oXXYqG!h@L%?;2%&D`?DY@fmgrBK+Warzo z%HLSNAD!Jn>!mJo`3sW9U7L6@*0ZJqqgyVdF*b31D{4DXbT)4uBj(>)P@2((lNAXZ z!%RwSW8?mOzRBp(v12gB;S$FHj*Bb@$HwA7f$GAdvcF4JJB0jy7xq_NlHa$F<*&wA zq^}Lad3S)fJt#@7<)vb?TiobPoRxV*RJ4nV-J)U-|5l+3ZMd^+VS}~Xf3s-}AHe!y zoqxTkJmM6UJ^qJg72^qNh^+GJ26AE}2-=6r23%_}#a)h5eGRz9vkMlvm{742P%RQ# zUfTQeOIRj!{~H|n7MEwWz3>XO_BfO0h5lk7#IUt|{MG}NigoJ~)_4|AD#GUhP)dK_ zcDK_><1Gj87yF+t-z$csYw4+9ket1bMdP$Whzx=^xU=%D^Kh|NMHgM@*bhNW*-UTMVpnAo z#7GI(Q!)Y{kc98$Ha1rn3JyS1JF?1Bpg^^}NLK{+L#qvW2ZCi6rit!R%<=Ja*9x6@LOa6V)eD;sDmFRfD(*NTy1K>vL<8Z7UV`-8ia$a@imk-i z&5f{sz^>t3XyyUHp@<7uU^O?$d=dEFu+fzb4*Z_ZVR+ojeJW#F)zm6C_hj!!ywlF% zss*uX5d0tp%Zr0yPIa%<{6s;4`I@Pdf14ifR5#O$)%w`Zv_9tC;v$F3X?9JUc{vP# zs+_oI$h5SqkQGW?<`OQ`ER9XiN_1MYvJ%ZHX0v(rSoP{;w!i*{QP9TK`HR3z;;D6* zt5?i;*O>aEOylv6{#&^v-^`qV^4d`-mLhe!&5a9XWc32 z-??mMe6CVl%9o3WEiOXi6d(Wj_wRrKBO3WR{^6qdYB4A#hF8YJ!wsJ|PBQYbirGWN z8u^;R{j~7<@scqWan$f@2lqQa9Df(Wf2xJg8Qkxx1~Oa}hSg7yjBXw5I}I^w`6^Bg zZkQ+;-_gOZZs@l*W*r%{ypIB2sDpFfT78yGl8lpeFfH7R@H=(kT3NA|NXEfhyHHQ9 zEG=EarIIm8mre^WLHNzRgzrQ6>|VlSabf&4U3hP}<~prJU6vs3)w;M>hTG3&GkhE1 z6Ls)Y<@F5W@vM+1;!5Uf9jv#uak(9c%hxx<_&b6R z&Y#1#A^b93xJIuGI|SIfI+#Wy++PgeH$yTm(!u92wO-TEPlG314tfV(wLZ|&N6NmU zJ8f{;8tf=wW?kNTSnN#6m~sl(62MG7U|M~=fL)`5Y2!~T^AO-UI=CJeX|p8bcXco= zt(Nybz;DvQ=jg^Z<0>IZG9J<3;1}2SfX60F#_u7XiYw5OmR_sdHmhXxYU#s#MT4cK zNJbV>H9YIg2 z*Hg=PUYcZFp@V64(crrPpWh3d+o{%TcK7kG(FDWh0d})4tsb@wusbvu>dP=57o09_ zj%3W#V5qNF7cav3DijTG8tq2lS4zfst-p{?gKKr&^&QE$5X@amul0%Aj_bgabucZh zR;O(llJQ)v?C_k!>GmOfh!&1^Xz>prJYEaewZWJv88N9v>d>J9G7jl8T7A9qp#Nz!1VJt=gn!n2v6720H?qOq@R#{#PCCa zZ_wbnF{ibw{+8~2sO8&+a6O%$gv0rg@p@gp`nt9Oc7YD2<+%&tdOp{)u4xM-7^Z7{@WHw#<%-O-?q3ro;2KR>0@t|j4$faYxJ+t*ipbA(82XI=FQQ~Q)oNGw0w^O zmZ3|h<*UKdmPp1t9bB7lBmDq4zpMDx@uz*K2tV2*T&urvsbsuI%LjG5COr3W-?ahO zUkB6DY(x0{x^PaT!R9TKj4h{t9R+OeDPU>2l5ueln1+isz+TY7G+9}Lm*h#t@9Suw zC*0_O>~o5_P^I;PlVv##&uxI+tSeg!H@Ld51tRT7_$|8l`mwqVu=8{)O?mhS~}tcj@37UV57^xi0fCsq!_U`aajfV-Y@HR~IdO z9>PcJ!cUdAA9?fjn|c}lRB;a=Zaw1aP{mN-BMdSE-#8-P6BfYho(<}mjZ}@xT4AOX!hOenRlX6}}8oqVy zOv?EPY53l-m(QSXaS&Mf8mu!ZX9?2qRZbtAK{@L=&FzwL`x&I^KpMVS=S=GMPo&{% zV$LK@0t7t1>V)+VnymCiw3CN4d{f8kXOQLrq~ZG}&ZL}|kcRI_c=8O&F$@C^;N$;H z%9)Nd?3n&c(i9*KJ5xWCG!G&TI{8s;rC@x#u3 z_57U2JcpMcd=1`J`hbk9@lP$C;rqR(OF+0@p4QT7`Fa88yR$U9)8IUBa=8Y0oYl+x zJa1x{_p0~&i0hB|R;`}kjhqFC*PkMM7s4a5dzhDUeB**qWzd>g`N=+bHV9Yy#hx^OK&4Ib;0j4{37QG+M6>U0Tc zrDqk!3TF#Vc=;c0Dt#2_wbw5hAMT@GXB=FLU4o54$ z{%4Ry`$*sRv}F8oFYVUS&-;aBY&z@Y@vOm*?vRYX*X6IZPs7c=U6Qdwm%kowZO==_ zc|Bl}d;yyVIZopvJ?SA~pJcp2msaa9Exi};b0I_ZOs~~z+n;oL9E=}*z4igNNtZXn zdgD=?*MpALu{5ufY9uw8)tRR`18li}O`+_Fb&`bYrt8y#6nk*Zasn_C2g~`$%8%es`YMGykK2D}Cf&@>j|D zP%rS_Xp!mdQv4X<#%)S3bs8Rqr~Qvkrwh72RbC46VxMGfy7IL-hVx>$;b`~$4-Vq+ zG=x8@;|cn)%kZN?$#|ldI%?^U9>-c!mtK!IPH+6XWPD3kFOBDD=?x!A#!qx`Eq$ck z|B#G7*TJ=PyAVEJSMEvm{zNjC^#bn=hg{Y(7emhaOfs^FsPQ2#i^IJLFV=-?b?hxK z9_ulzbpBkI1~MCubuNctC4lj}z8ntsB7CzhT+d$^o@S7{?K^0F%=J{$13p4Gzx0G} zBiZ<0r*YmU_F3_Ou3cKW8hqC|fa_>Q!yES{r(ZHu?j}$2 z9HXW60=B4^Hfw2*0zOU$*XAy@Uc+SLXF3?uh?XvPxNQ8s4yG@27hrlFde8R6j*yK5 zdTFngcfv^7nA{_84ORk}UWV7#cN<{({e69%jsiANSEhzT4Nr#iW#bVYj`g&~xHx)& zY`h6Vxi%(xwrO6hYwr4HV+{B4&af8E&V39mQH#w%i? z_3H`WHLZL7dcwUkkiL)h?Msr4*F(R1s`kguL7(=4zl5t~W2~-z`n_Vt?>ro?>`eyi zZQStK>j2U6fy{D^PQb&MMmRj-I=T1#a=?}Vwna;WIZNLUoYrWQPq|iNcx<|C4EB*e zHbXXEtAp$36HZ?O_#!!qN39>Uy6>CYeJpEZj?)^hKQ%0&7Z}qvr&|KpyQiQ{hR?e} zHZJX>&bt8rMIY(wZ<39lifEg9;T-;0hv_3IZ$ldnK^nDWB2P~}**pfbA^}WC} zT(tpKsB244`ZD6kjb8Vl!FwA=+&<$ZtT~WIZwI3BRE8O=e7$*!bSuY!>>gwDx{k9FV zafPnVTAO;SGxNyzk*5)6$MbY`?kz62@BB+qf5aWxOZlftlYumB`g`FSq^U<5wx~_- zB@L?apMPHw1`6}b%9c9wVHBKGvb1z*VZM@Inv+{xSXf+S$a5E#;Jq~8;Bc+XF9Oi8 zY-#Qa+$oluZ^+9p%Pn=4z<4+(&sCUTROafILKl(G*z_K~*x`VmRb4rGOO>ViGX906 zk-F<@5(z`8Iq)g5)V)$MlrJrHEnT*R21Z+zr$H_n~}ueSh>_$h8QXaaGat% zzf>`V@=_a|1M0vTC_|yEDAb;!WmQUknPFwIQ(vRrXsiS-Jq-Cpxy5;0I@g3VGn5pU zxfG@-H6sK$^kfokP;ZUwt(a)M2=e;Qq}Lva=Auj7Ti5+3;+eCF|KPDtF8VD%PlQ25 z$-gHLi;f%Jz%Fw+i_}q{2YyrthQu5|W&J&qM@oo{VpnlaeraiOscsTs=dZd+MB`U@ zDy|}Tex9K;ACp>MPT|th75Sy$IYq9r0tA;8yGt>#g?ZW1vZ|uog3{umVsQQ5SV~zz zaVdK{<-EYaSGo$rZRllQ)Muu~!laWEnow6REn1-ll@_~;^3=EdVn@z$OhL$1#fQdf z!_zWz>b!hIn8&iyTSHO)%KXBzC?D-s-|(!YW*y6R- z7NYgjWVqhy4xz3rKQ9N@imWh1=*n5lgj)jX!~mR!2(hSeC6A<>!ZPPc4U15#E>ez4 zc-0@(o;1>} zruy#b1_(EyeCbMeezZR{*3cVyM*6BZl8balNNnu0PT`^>Y>B&0WmFp1?j{UXB+}>S2n*!{_(z&Y-nQhC>1UlZq#6B;pG*DUN%i z8rGyf^TKd`7KFq3*)v@U!d9tpC5E46p?ASg-jLHboa3^Q2{)Xd2k<8uZsJGi#(1~j z=O>|Hete2Q&Viqt8)8QqhtEW{05lHIX`y$)Pu{`Q7o33a6g8|#eO`n2vkf=4#JC5w z#PG*;_&bXOZfJ?&_htGB{NctQ=g7}${ArQv@%~->MRMa0E?$ek@4Z!rO9dVTKeO$3<8wBfeV9k*Fj~f)uVGuvVC9oDs{l`^ag+Ceh7b(;Rb$Og(#9?0Y7e4UvJ0_Cqk%} z=1oMLiQuygH?_pfZ;9b|R&uIs#W%mt)xqcEJ%p@Kd@Y|ggm1(j_bopk4!sM04#vii zzHd4178Ty4J{hhXX-0gWt0qxm_&F@}j$5bU;ON zH>zPxG5qAqeZU9#akm=m9>mYKP%uBjISkSoxesB#!yh-2pRb1A1wa1?&8@zX9QR!n z-lRS!0FFlTrRU7KB0_ zcsv+-%DR`8PxWHRMviu&Fp__-k*&QH#U$ydvc<7=2Y1lXTd zxDvz9w?glNpBG@p(PJtW-(%GJ^$#L7n_A_<6PZ9?ch@>OMKzu0ElLN7@_t(K9Nn zHw<%BaD)lMP|a|q8pM0(>c30zI~#vG?#XPF_e;4x{N&_ZAAY*k_h@|z@U7rammFWG zYz`kW*Q1}~j=&!`ho1~5gWFrn0RFcYe@?Io1U^_>j+b@+kG(emv!c5Cep@+UsjW8B zDn_FqYMh858jaBe1ZRzBNX~J#5se+viH*?COrl1`fg>hrGzy|djROS7I0T%>2%>R} zf@l&GCtl|`-T!Z`T~)hV?3?#}?sxBfzUMp7v-|h2wbovHs9kmHOx5W|qe2IG_@!C+ zlL|jbbGbr8mEcoVB-2nya`GUE&y-~X>zOQp9o!1`b1R?^os)W=hK7@rDfDng+`}1J zr$*)xSH=-nPS_wH!zmf;s}2Ho_%u#q}E!e+k)Lf;$V zbn9>p(0?UvgipE|Fc!?Pr?poDj0-c|#La*)Vum}q88BYVaI~9&Kc{yz!r!uSK6x9VMDE0r59a09I83vm-Y1Y=DlLJx#(_uGud#UO6Fc#5U3hR-eCQ zD03^jUs@xjC83_KTJm0&NwAiUJ$s=tN!3FG*G!1U{`E)5YO29m6Am+-pEbKX!yeKl zwnf_`%{Hz8N4ZYmFHPrpTeLmaY;_}k9V?(~=rq~t7CNo~r@Kzzzrg=QB=(^S2#LJ#0{*9mOY zx`=x~>}BS!8~GWH_CNTenL85rs++;v!3@c!Xd8?EJRp-tmiemaXDS*^PX&2kwtybZ z0*n970*gHNcwjNj2o+#Mfm(}byBg31OsAnVX}h=k3$Tyt1b)|aKJlAsdwZ4Wf^Voc zhp8}YaJcIPZmzcDSsN-FH@VOgJqYerNqZpp9iytWL%v6%mcTJ4OW*{zf>~|_H@Ox3 zNre>f88er_2PP}v6SuCV?rox?HUQm;_R1h_4pw1caER*!o^3jx7h;E-t!_L;S|>fg z>vrY(08p{=8Ct9ZjHX=selxTlH}Tc%SP8@-!At+Pm6b z=KcbF&vgR%USrqTRn1m!fLq$rKotx$b4LQH7Cncpq|GhNRKdHQ$s+K;Z05Rq$#}WK zDbm`*;50LLBygIW!TG@qf9qz@HE~t81I=ALL73<=-MPH>oT#wS@wwX%2#B*5G{XtX*N zKvr4v0WWr)z+-!L-p@D4Hb+G>^o;PlOJ1zL<1$f&9aN$z?D|sl9LqT_fvf5F z^6@&lT(ztK16ia_bwy09`Mr4`86l3fRuABZU22f}>1Uz-exMN_f^Kc*kS~ zeBf5VG({)Ok2L`+SqG}$6wYyZx!@hB?xi~3RF!7DdbS*XrRp#E95S=fbhcTh3NsK5 zo5X5e|F0)>x&Dlm z)hu|=%pD0VsG7{6Yld6pCWD@D!CfYc;4QaOpGwga^23?8jQ4X3%nogCnb2E>{=+`5 z6L`GoXezb6rP=DnlC(Ms4mWd00z2Fcx@P#6Y-G@}4~Cd5f)=+@|5%sl4C6h(OeMUe zj7CS4E)J~!Q0EwQ0=cq_PaWE{cbT;N_(JbM6`kb1BkbmKPhnq^MZig10e~Yz)qr0% zW)rCH*hQ;`#5L;>3#@=`O;*YOL$`wc+)C0Pxdgm-p{dkgd$j29NEP-9JkoUnXPVCU zN{hDJRMb7ddmNgd$-*?37YS5~X01h=UZ)JWm{sfGIFn^?s$0RCZUw(~Yo0WliP`eZ zQK8dtuImI2T%q%>Aa=g_>&6Y`R}Vn{5DKXlO-pwd!n{zAcQ&!Z%vLx0#cL7p4R%7| z&r~#XplgPjYzLXUdaQ7Ch)MCI}-T5n?ctMYNlZY6f-uKsrU#+YB9(TZbTCvc=LBIEr*EO$)P41s=ftAiU0 z;bJ~roU6#>ZwO^iW9>4HQK8Rptm_2+R#yO>+L4X(Ebn>1ErK6*n64Yg2Rrl}iVu$& zvduKVjt_B`>jZwPXQ;TnWwLE6n+CJDfLk)nG*FwEqaED9Q-q2g4q^}22|R1H&dG^g zUqzD!?l4)sOL$*5^3!41r%~7RswBCWaG1-q^}KqS>LGi3>c)1vrL2&04dqhTN% zi-pZBWo0XY`q9{^ew3pTm*7h9t7vL?f6L^p5Ja(S8=exfE?{l5Nw@i1AU0}Alej?h? z@OKsMOF*b3=%!X7uT{=#m7`i3zdznpre!LO7ry5@f$yx*d0`Oyg^CsixJe&2Y0u0R zh>Ug;fr)v`V7AFBfe*WUNANmaKGp^aSGi8$ji&QiC%K+T{16d!zChdCax@+vf7-MgF>t&qjeWAE@vkMh zt_q=Wgo?~yk6?ymi)Kq(X|e*z++D)VqeW$;3gd;NT-)2jd@vXHYm&AnyT1U>aGk)j zOy}dBrftqXjZL%70=nbvh}j7lp;95WbGhfoJ&40 z^~L^2h3~nf?NKh%K)wjJp_wXR z3-^MWTd8x5%e=qY^ZbhP>~G#Gfn#0ff!VorA9+gVEshr2Tplm@3>4E2O_FJ{3Ns9+ zxYmCV^LLBm87B5@6&>4PwH~(T*AUiqnI`S-;%_U3#z_Zhd$8H`zP>obbpnqvoi9mZ zcQ#wy$d`$9MgW9HCx`AX8LzMmc~)X4o2_pAm8SyTgchiBriB*4R27Y@5qgGVlp$Nu zv*n&+p?ZBN&UKx@$4%!QBld2y)r}8GYwkhU&;_zBv`~FqCoXcGz)f|j8qYYfFRLgO z_`Au<8v>Eh)6{F3x5x#wd$W}@NT$J-T02f0;yQs-P3I#acDRa~1bdjQfW6$hk8qM( z(?!I)-*pvMCY^yv8pH@*{0N;wz!ud?-sYqGD zN+z>wMDDNFTZO*BKCTmZmFc`M#BQvjOkf+6mG20{|vk-R#w zyoasoU=z8uS~eG2Tpl4%DOy9+c||4tJ}H{Yy&5zoeOnd1sjAqvMvDGcx-CDN7Sj6Y zk*QztX_IOFcwDNaY0;IAxS{Ee1RfadaCu`4^$JnF#;9H)s+S$tjN@-Anw#~Mc4HOE zw0F^jf2g1@RMIbhGN2(U>2^ARNwQ5=u@ke%H`1i-n`uv)&Uefm+I~bOYUT=UK4GTp z$)mgPul-Y@@j2pMZS#_o*5P}u6ZmtzLmkJqYnzVTK_lIu)0Boor>VBhUKgEz-r%&AlY|aqIqq&sNrBK0z3%!j6HXTqkf9y(1Fu z7-D~}q8$U~o2=e15UIC%(y1fRKXE97do8e*2WFSkd0>gac@|h9@DZ0E2w%EPlb@zd z%<5U2{=-??%eK`28~H+_g&{OLO`MX~Ztt1b&h|S0h@!U&^8x#~PT;dTdB^iX>}KY# z8_$$hQ{WskcO-CkRg)R)9Wua?ZU#pNGo+EIzqB#IlGO_^ByNP>A1-zL5%njbUsF|d zV1Q7q3GQhv)IjJ@6CCAc5c<=U_b1z9yUFbXDjp)~gUD9X!%EM4beg4>o5e6=Eol#V zyKN8IwN_~IaF=;A*$P@yp3sZ7cIl9`Elu>P5`C$n3o+2s5*5K}Cd;Hh$gOD|-ql;8 z!mfo&T_^A%y&Vm)Uubcm5WtFb{B%>jdtr z_toNgAa<$w>&6}B*OCG|g;2P+n?W}j5;FZ$MJEstLYvZ|zAoE0EK>z+Zn6k=a4Svi z=`yWD9^QylO3=%^G+U4rdR76B=umwo(ufszVy0V}Q(*lh0_=1;N29%cTz@qTIT zeDIK&I}-T0n?XaGLF5LniU!L|e1~PI7huTN2t77G#-mOoN6G(yijF1_sx`qc+zdh| zn&6t&i7E)4$R__qg}!37%HUO#MevbZslTe#&kpy`>ywH<9v;c!Y+iMGCTWEfrXT?RX6ZpL8 zyxGOtUgG`&TLX2J48@AA+B4F0UyeoEcn((BA14se~oUzpBEOYA;os~fxV7l;e~ ztgUw0##ntF9O78l34FqI-WIX5%vLvc^)HZbq4~8(#YL_Ycz$!|=_0mfwz_e7{uSL{ zfWe>joBF|@M1CDI{=l}Hiv4aivHSpSeu?xkQ^^nyJhu z;@(cSS_a89ScNXbA+8g6tm%A0i9Nt(its zECNzRlR>6LX8r#2qVeAje%ok>9{O+iO9U!7l%(w);WcGX#iQU(1^#Yvc{ziC9u)|O< zTR>60gnB=>*p4PhU9FHPMM8>2ZU!M+lcYV!wu_3!-U#QaXk`QML`O4x#?9ba745)g zNH#_5uRRv)?-CV;50|>OuOIQBUE=+|SiaBAUoXHR@~i87>xXaeNPNxi1fks~IM2->Wau=?(DO$4dkd|Ckf9kq23ux-3sn-EA2e*QVHzAq~f)C#7{RnP3m727b32l5JhyJ z)Vmd>Ib)S&@zh;G*8R}b{DS-WMb)3*AUF6#gA zKz~BDx;xOj`j@D)YgtRhy9D2poep%Lw%YIH^)6)x`irXj6RTSVewrKBsy!yW<5EU@ zaBcpKnX1%%+huSz^wuU`TSaMZ+ejlgctgZB6QYRxRzO@)+^M2vw4qXc+gd1{CU{5x zqbC#=V0SC3tN%4Mc$w;`ua{2vy#xWaA%{Kamj67nc7c5Sax!|2^0K^#nyCs}OqPJ3 z3aj9Bw*uPI@kvWOy+()X7s?cRa%J3;{6ORdSBSVKj>xBw3!NuaG=-ddI9#=Z_ZPg~ zGN5e*q=SuCfNIKP>#G3cwbu1eB(}fBF8@L&T5FFf7uBPdSZiPZq{3SJ`X>t3TK7)_ z(G$fr@x@C%QOjRzJW+T@|D(0`-<=YkEBo0zeBHI5U(zk_+HZ;Kh6TfPK5uE*-S+6K zO}tvTGvWc~chh@baUr6c=gx3FN4gEHh0++|zcD4ZE4=IB_YF18dm*q*Mauwm6IviN z__J5B_siyQ5EQ4Vm2<6s*%Rt$d3QEb^(0}cOM-53DZf2>>+g1EvX}WkFj)eJxfSrz zK!*tM+YZ&pbgNmjXK4n(v}!!dgil=VsG#WoV;+bH`~zXDw1Z=Q8y&AM7MG@{zEj zc}rEn+q3&J&NXWp_zS)4a|_bQy4V22nD%1aLS6V-|zbe#^#9c0#OIZp6P ziz-3B9`bmbAAY2Q%NaGD#az)4o841VR(+xEY*EcZ0`m>mD%lywtoQx^Q$l+n#_<-yZe zco~v*D!TH(`x_N~oI#L(lu$_nnY&BOTgCgZ%hcN@@zpDj5eoA5N`On7aQ!pSWm+A| zvfQb;Pmcd^YPt!vsR{m0Q}cl}UE~?fhu7)Zb2sZ}ZL)B&OM>RRq}M!{nv2X-#p`3s zo?Drkr&ToacLZN5rQr(n_DW!eRWAe1Jc?Cl_K;<{Q!~Kq`9~Xrv^_Y)!tGoq@D|gZ zWBucqx_wOZd--+LfEz<7q?*k7YY$oowF>Zh6+S={LaoNUR(7-uk-Nnr%aa7pnT>Fi zOjA{~liT67DtcZ4A!oa!J?81}d=)O<;eDmX1ih9j&|Jzk0xj_J#bV|?&?eV&TKC-~lIr3a>-cstF zr%mqEWIIT_&vgPnG9B$8Z9i?cy74V(H3Z%>vu=_nzVBwxH3O}xE7lt9;o9Dr+u3y9 znl>9&H(TBKJ!!2n&^2_ZY{OI-1RU<#ZZACEbe?vowtr|g{f1FINkwTv*U(9_O;#Z- zoZ>oxkD1QXPSW-TW~&?Tmev(H_>-AC5=b?f_17Mg^f%NhK(AGdYBlDyidIE`CaHv4 zNnWcQ)oRLXWk>A-)mo^+Xy78(cJJ&ztbjcq4Y8k^zi#X+zfN&rd7;>~jth|Y=9Q`u zdTjo?k|=FL`jD$h(jN0vhf}pJM$u3I;}W=4SYdIjzni49Mfd(f>W|LS92INZLM?q$ zAbYf5mSo<_dh%>$-t354nt7|#-Q2wS8CRQwRTu;u;@bX&5;wny=XsE}e_*z{abIb5 z5_Ao1k!_@f>eF>`lP4QUl8ieb_?_aFOYb zM(DBm`is&gq~~O&6Br0-v!%FLwk0a`7A|$2K<+>h??qzIGh5xrZKUzTdxIS=uihc< zFTmi>=99d^pG5vneGLA_$lshEB2oRO$gi)#`UC&o-hMNjp`z)a+lyVMk?(4AnF_N3 z-*as@w(k0$R)}4pK&B$#_H{}+Rv=O`PTJE*ntE)HX@B$yP;YadC?41peN1zV3*<)NK0y1L8~-^%(rl%pD25#?7E>hS{>sQL$An z&UKx@f1A!*Blc0V)r}uXt2NLyl$-gjph8;M!*v43>rMpmawN9d{B`5<{M`S8Gd4Wd zbVnnc9PBXE%a$W~r@KFaeyiz@CU~gbiJ_jrLEfJx=sEI#{*|_&UAeYGhpI>(6Cx$k zy|$~8(h0q8ymG>|5@fTDG}t!c@EG*`jA$6RlQln&95r9_r4%)}>lm zsJT2?80qpS!p~fCqYI{0S9@unCuwuC3abNhFKp=qK5IH(bi|%(wz}~OY0W#h#U;2+ zg*65JZrMd}PcXv=R8$c>6wL5(H-kS1GknI)plgq4?^buy#@#N-`=Cp5J>io2e{q=( zez7)}s4#fA)O7-n(06R(Lxb2aRMc;9r*5aArxkFI$s%~mt?vpes=fkx3Z#l&SCQ$z zEK?bThW1H2)kBq6w>(8aTJ@t1KICQ)YPF@cz9HMy=B_+0yy=pTtYEEI=*T86hY8-N zY;B#cz>BR;k-$C{SmZVvp`q5aAtFPc_9t{h74?sA_1R;*{F78=Nnt-&2CT;wwC8-Y(*V7Vd>5mATUkq47Tn>~5X(DqET=?8h@EY}JA+;l!O#NMW& zZh*&4Ru%}KxJ;E z<$4j>X$Q)-u8O(|I#xqgj~9OBl3T1k4(_H3Bv(q|BH?pK95C(E^I_TlDaiN z`nIsWOF$opfS0%#6x0FC+}2=C>r4@Z=CY;mqr8o_pQsvx(;R}3xb3<;TiY5+!I+e} zEgxI<{CqmB$A@(lw*Nw~b|Hb_U__FDaM)*ds!%$D7_6K=Cb$0+*K-bV;$Tr5@+2O$rCuXY95}f5af&Vg{w?ynsW~&?DkXB2eYv?_) z%{O<}Qg^p8-nDny5MC9+|M&K zLT)gD9Ud3#kUK(Phi9nh`~yPcjqq<3rX8yX- zZ^uvttEmtQr>U?*gz3Qy$rjCgl&nC~&{#Gd_@D8{68M7YjwX1pb*!Gilf08n&~xM` zk7E?Os`aKu$GE414(8uxoynf$eyzZhWY!SIz7*W(^sIpY2^CEzeOcKORmeHeB^YY5 z2*{<_MS>5zl4hd%bC#*NmU_IEigs5?IMyZOIL9S7Uigd4w*}8sj5E;#^|OUOe;V|9 z3f)NsJ9)zdwOkTXU{7;gpq_+rx6KZnmA@_ZH|TAg6;$k!M(p7_fz4}M8`-l3u^XDd zZoE)h`x`uB=8gn@cP%r6omA9X0uOOBI5L>w^=<|?1v8}WXf4rn4|CTGkSt2v2-|`k zP6>ASez3zZlx*!qLrEACcZtx#0bwXja7R^@8HAxUb^5EY_u&B73EXL2-*;&)Vz*P#Vg|uIB6fez++`5lLsK`mgqXYzwX2T_+~h#= zZD9>P(@P#M+~6{;Q&pXtJ>{*!UtI#fRYLh-RlnXcmC5vpOA>BvnaU*f+a8o(lKj}M z>uF@0t3)qK7KZ$q_IYbw^e=EE|MH2+*GUmI)hl7SR zrI4t_R)+Mdn?Y#26@F-ADuU3DR(Onxl7P^q?AkL*-1cFft?j)$MO!qKY%R=CZ0K`K zl%r*B)eAjpiKe4veBO3TIvvdQHP*FqYD!b7x5q2fMJk$=HaJT~W)K=^qk;8R2!Y?S zWJSQf#C)U}rozU-j>QgNRZ&L3PR0y3wVhoAVYaeS-&oxs|9*7NMNOYDIv8W`9}U%}P!!kq^W zb9uP%s>|1fl~i8=s|ci$O!ozuMp>pZ2o3H3Rd)&ZMJk%X78u==VL>p%&s22X3x=v? zqG7oI0SIkmb1^}o17z1(mB<#CcMD5hrk$Cjz{gdTvmO3TMH2`ZI%X0ub~G6nJUUHr zavpo|_wv|-quA_KZi{AWqzXF(j&hyAmG#;|d9xit?8)Y@8<*$5%KZfx{Ecb9s6XHR z3H;o2M-%ke`~oLxtBE#$t)lA=@Ea9%t1tY-%^+m!n`TpV-0)PZRd0qN!}{R1c>tGP=cWNk@9alc~j>}1iT)V-}i-LX{c z<2r#eH|o3>h~3`&b>rRA>InFgne|b)NVTYc)S7DUdI4T*x}y=!4t5w)G{Wt^Nz3&D z+{JW9BRqIRx5HnW?r4OU_H#RY!gNO?Jk&-|FTgOGY)y=k|K}HYs9{h^Accz>F{*PGt|SXDnq1^aXTHF?%t$NumeDoPE!7x|m8Q8R5(Gi^~bZM*2E z6Gy5jbsJ5FX4)=PGa+Bwa=JY>$~QL3H#X|_*yojRbMN+8@;#-ZcE+ap*h_b*=scFD zlT5Qoo~w@aQ4+~?Pe@*&lpm@{j!{N3OQusVndVnNvsp$N*Q22+-%T?Armc*gyM$e6P&8DL8nLN4ZYmY}3*6 zfwrfbt!}(dTB$(SP`2k-sAf}~>pFo;x9!|N}q*Y70DJ zvUvCqy;4(=^%~(OmudUwe@nmLQ_;l)c*x~d*;q?&ORl}S1#Bez+~wKAoi10|LT_`Z zC_`1a(B-AVGM8Z0EiGV>@MD(;3MaaJL|Eo>g{^easG?+B3a7iADm?CTJq>C{8(8T~ zVWG>`Z|mf*qG~gRRkk*{weTaC2M9A={!=(nv!~c=geP1+C2TU-tXl{_c6pX?i_1R> zue&^A8-49TMH$W(E_HdkaKFpN!sjm6&t|{$YsvXG`=tkkk6nH)tYK@ZR1uDMIbOKJ z~F4LX1vG!6}VRwyZC9r?BtnM058(|IIm93#O6h6gPZjBv#qe~WX#dcwhy;-vP ztufVaxMZs5+x*s;-*asGYE0kOHfJ?jW`^`E&+IU2Nk+VxisXU9kuK@j6)stUKH?f9 ze$d92UB|qnqaX}t-uM$08iq438_rGY%pBX=6F6+U&Zj0~dzr0n{DHJ48gvtyQ04m;S_L7rDeY>MwVBZ1*AtgN_`dSaR=tv% zirOrx&}mq4oxqVJI(M4baVk2Wf>U>}#rpJk#F;9x|5li_bFg14K@P3xr?b6IlAl6Gyf4XzGulQ-}doj-d`({|nc1vuSx0=L<< z^Ar+$r}=f8NAYnLjS2kO%pD0Fq-rvQt{Ldz3M%X{*u%AbHCKyD_Pl4>wA*y)NypfY z-|o?+iwWhn+j)i1MpEz?s-oGlX5nzx_SIc}oe?)XRK79huN#-=zt;T)__^thM%dqS z)$RY`g?gR(Q1p5UJVHgY1X|79(FFPOx6FVqf2(IraC0||8Y zI@CzVLcL~%*kh>va*e8bO)&JLFFZNeVaV4PdY9_frI4?$%=S1}e?ymBd*|(u&K{@h zZ}7LRpZnW_+rI4IQ+Az6))BUJnR@S+cv(fuJRMB5;s+^sunOx64so48ev=aKU}A@x zP5-v|Yy3ZTe*yCQNY!tImj^qX8|?6wV27c-Y{y6K**`JdRWVwpU@xoI(FAXIGvG(` z?09&en?XpN?f58hBLneYrBpyj+zjtf(TV~gaWlN%%^)PsRtAX=QekDl;Lr9njqR?Y zD^IY8$=ad987|KemQH0Uq3j^1-b>bUy$Ob1^o5@VI}8Kt3%yHq>r&`Pw%XRr{2i^Q=l#r1|Gjd5 z+w|O@tw#QrrswZyKR5Sht8tiYKULA0ARSJ0QkX5z92Iskoa@^Dw;0 z@ln$q34BRKPe7m$s=>i3GK231Gu+M1V0n$aW{K+s7_v3OzA9Sb1-P~8jz&m&>@eiZ z)=$*wgw99*5Hs|@32v*ZI$%KPXcHXnW)Ko*>nBRwNa6=ov;sj$+zhv~3>6R(H^UKb z1|e~_z)1X}3a2d?{Mmw`v4>RjBmo{ana#XryO)ys#8<)g)>MsFcQu*4hesy*sP&Le zwIu)LzPAOIzah|kv|x(bEUBe>ScR9YB`|?_@ieL+*f<`MtFzmj%Mho@@ElZN1MOi1Vb14LLWuF z35G6YyJ=kJ?`VBJ_h-lT&vSpjs*5nHJL#-846^2Mn$~_Awwf9ScVD+8L}lB^&ugH|C7}c2pO8-XDV8` zAY{nSK-b82ow>_kj>#(UTxGzoEOe$I)vG4Upr`dKI}zL~6A{sI-lT}$DoiKr<2r%U zOy^f0#BO1>y0Ip$Hi7@&)Q$w6>1NPPh60)Px6m3085-ePZU!MkHl0x)5;E*yp+&Hp z3NH)bK5hmfLpGgJhDI_}EwlncADZDAZU!MkcINIcoBxa@yIv)vu41cFobEb-N37Ik zRmygk`SrC@aU=P){5BST;Br^tP?unN3HT?jJQu>HraRgoRW%9iFx1OVHFPpGoWTCp zL>16Da|gfgW)QM9!9&~(LgH*nqr{CQeojSe41^5LX@6vVr3WRpbRO=VXf8)5KgQ!rGvBUN+(bCPhj z%XEa>XmdX^m0N^SE{_$?a+wBhq)mpX^CLLQWCgUkHScDXZl3D_Y4sV}u{E9 z``5+%li7IIiG9HQb>s5<{4-*WIDwmc{U&&1u)`CB9sV`gVaS)wAniTn?KQ%MUauK? zY<^YssQlZ?u0vr@fz*=eD4&*hS2I=cp5-$3KBovx;a`PiF2M&Ti(ogaQ>FT!U8dFf zLD}OfnyPk4V@d@U2Q&PKo58J0Kr{@=Kp1~}n)r6v7;E$_%Fl?t?zc-b zg9I+m-_QMpy+!_AuIe{V$YZmEB+8YLYi$*+dq4_ZP;4U%b1VPJ_h^^o{H4ouRHWKk zh2sLwFx`99JahV44uZkI!_5>JbvI6`^ zTGhO3ReE@-2c*^M)l3yTF2q@`6ZrP3Hc{G<{vh@N^Xs_y8h<~lqvJx{-0L^NBZD2D z80_%bV27c-{J2mX{IH7|gpYZ>X6UieaUuVhgZd3QBa1#jJDIx>UYZfxQZPYBI!6TgvG%O|KVm32AUlJ?xqb(1CV z2e(rHUYFoGlO?d&t!ZE0)#fr4TM!~YCX-I!Ijf=b`66~Lv(=41l-3Zz;U+7ig~@IO zXQ+?>k}O)vQLX|xk1%(Q1gE$JAwgrFAX^bpf`kNHTCEBQwVLu;+46{LHBxJHt5pP{ zR&!pf7*A49h3NFq1jEGSM}j7%xBHu6@VBM)q26(3V!!g)ARh+BldMz?`tBgMW8k+` zbYcJ@^cYEdT&BM_smR?&S=LjD&g(Pe`Ga}Oxi@>Af2usw-3v(7Da~>Mm)FRzRBwjW zU0x&C%X6EG#?l7wv&bTNAeiC9ZU$k9+05~I4WD{3b8v`j`}Av=>3n&ry2jwKP;Z-2 z&pv^jVY+jyPDG3u`0%syEYUMnXcf+Koj^XRi}%-JZ7(sKem*ZQb#4DK=rnbqYi!RI zu+xJOYu_|z>#Oq;Mr z9x-i#`@I+b5ncIT3jWeNb%>hbemCmhbYXSXlqA8AT&C5hX|t}vWI^5mXWHRuddDK3 z0Ag=4zkX^bu48YCRlu)Q2!*$~89W@!aCK$VB@);(B!)kBGvF;Tl0e#4bllC*bOAnK zZB#*MqY>_AwW=Vr(Fi?Rwm_nBBqW<>$!Z`ZYl7=rvKk1Iy+01eDGy( zzlyAYbeez0zN=-eq~ndpD9_iu!FIJ?JayU?ioHpNwFp<&OLLu{!907l-jTpwswOkw z9S$<<(&l_l=jRM@-+NglgMq}PaC2FHFZ=({m(U`Z9@7KJIgf{N6 zHfkWW(FAw4p4C7YM-%i8XS?FYP)jpSZ`QO*<&rSkWxARe!UZateCqJdi6nKtXMtI- zqrEdmLFZdw_6mKrg6F7k>_A@cbL_zBx=x9A7_q#BW{1Jmf*<}c*x|t{I<0{-%&g~M z(bLt_0W>U7x>aPie@(1^F-+CdqV2R!>Q5{367uU_-d>`YR&ke!?PWG~SzJB%VL900 zp(^S!m}=&Z1bVu>%l9c=gY3N;)L;EKb&Ae&Z5wvk0B`FPMOsq!yy1a66fXsc0x^|42UAOl4js zkxWfqAT(Ot@@_)eWm;#NHo3yI^Sn6SbprWqcswRzZ!v$}=og)3&^2^pT`w(D(Sh=T z&~J5OxypRDmTfbVO}`_F~T=4oq#w#^&qINuuCVHP~WUhn&?P1^SVm9Y-pCi zbUTfsw?pOA%y1urt4)?(5#DkMsH}jsLaTbAL#ne?WPMP0%4BxLlUz@*Hj7YC9%#Er z>0`R{MT+_$f4u?XS62PCM?d}Tufh(216=bx^oH|H=c)Q>`#WZ<8_$u}OC8WPbQ{@5 zn7aaYGg$@uxD_1aRxs7A;B2?*Z}y1CsEYIm zarQ+lzNHj*iP-&AG-IH{WaW6_ESGW8ikZsbSd;b-Wv03WWRKS2Xl;%&Q<03^mS63h zDR}Z?ntYl}brm~~b;->u zUv|m2m0oxGf$*8j{<^%~%C2;a+&I#|7i8ak1pV93X7wa-gt{%hQCjT%ITJ@w76`5SV+(bT?h4Y5AQ^P4zy(r?EOKYqh$j;+w5b zc0o)XreDi~uf+Y`Wp53+j}5!LhcM0M1HwZt`4-L>E{7=pVK%^Wt8kS|F0Su3Sp-kI z^*Ldc!!(8$x1>rJkRnL!5@Md{>9DU%V36nv0DUVRY(F)Q_)@pmj*Mu+sqa4Y%s%j z%v|oH>#LC}B!PS!qbcAY6yQB; z%#h0`nZbp@46iVA1-u%}@Iy0~dH?ue-)-5cmwD$a9XijjuX@`2R@hhlT!PI^7D3sq zfPJH(f`7Xetm<z{WnCfM+NLFtJNqf)7mE zhb;Ts1XjR7CW~O2Tfrr61$;W9WZ+S^f{)z_3N~X!;Cr9~4s|Q=9Z&&hxD~Jul$ZJc zvrEAH?3yU>saru$I{=Dc2a^@xcUmigR=0wmnJj{1-3t5=%Fbr5Y5)D*c4hHiP0M3G zHTS8ht-N}A+KU1Y)Fijs)E8MDT>|GT+nbiL%Hrr{d%4Quc-{6~H9wHEbH+5K;j;jH z>Jz8CPT*yYwu03$e-L}U`Rm4R`~~7}Qqe?$5UPZEs=s@x1O|Uo>gN`8eHE>}lbX2d zKiW*$h2|nfeXOEJz*O^A&lSigYg+dWc~|qgyee>SmSz{3_VxzXDrRq$-$5^QF&2)L)3`V1zy75F>b74RFk0&g-K6z|~kCbC|^S7YyP-D(Vq9)XW_T zJl4&iYlf|48*J`ueN58kWEDC9r?^hwqo(uyMeMK5RyRH@tsMiphF&b&b>=Q!FWl}D z@B%Da+gE(m#C_%-vZ!o|nJ!(wST7+tbonk z3eIrrT1w4-7t<^b5hl2l&mMQ_FK^3h$Kau%=-@d{-Un2)Zr&C6m5n4B{f+NxUMHLU z8S>6lu{A2ra-F~(bheF$Nv!{Z!mjr})u!@)F05hKltplZ$tvK&Q&R#+rC9aI9#5$b z^_0DxD^;S=ye!{M1wBE$Jm|$@=uLZ?<4D;~P|?|ousd9)-pBG5j-y*^s<3{j~nlv@`Iuetm$!F!lJTWuv%=vKRAX!T;r&{Q^;Ty?3~T#7whC-7p^(OhbK zWfk=lY;Ll$rLd>Vy@k;(+XU)IvqqihQohN&rFDfCmxl{KHCd$kFWq{kz}FzvD)6M) zKxfD_Q-%J+S*{cKq3OK;#NMu=Okjb@>LP*2cx`Lb1Ir-f8Jo=+SGOuQXJQZ63FK3O zc%3)M)~up7!Elq6-320}*&%R!^Oix#leM{xYqPP zTe)5N?k;I+oXIjxO)*&n=a?*kS#F&p%yS9okDfw7^di)Im>n`J%liWhtdM`c%X}!= z1TL0mi3$@4m%2_MU#y8Ikl1zYm1q$>qL&@|+~Bnd2!9Py1XMG7x^k)4)9RI@dW$DS z!HXxv!K+$u34~-XWq!Vi$L-9u7k@9j;&PzcEvv}NUBqX*q=7!_jjZ1nMz|a$oa&O- zJG7vHw0&N?Uv5b&U`xwXBR|8`p_z}iLVoUAEo)UEnb#rEq{5rMy zgVt|SlkykfJ=T1Usous?htaj9{(a=XA@A|HyqDu_?rKco0PhW*+`}b1kF;u)taDs) zqv`FuFFz4ZahY~Yv1zMY=e;^2>eUgcpEp55uUjL3YwGVIKR0~WsM?t5W$HFM-RI~Y z>J!~WUmW^~W?9iC^dgZ3g=SHO*=bALVRkAidLH2mg{PY=o+Hq@tTeug%~@%vFx(~B z%Vc>!VS-!P_5R-qO4mrPX!Bd*;Mm0FkAw*>ne~A-sU>Eeai}$>;(nJe3!l1V);Cg7 z0Arizk|Dn4k`Xd81*8KTq|L#0NbBox;t7LHJ!kNm2`^buiP!ncS#4H zbGfGC*ReVkTCKVKrEs>(^92&?{6ub_wMv?w+b@6JU8h%Dr}GXXwu$(LBG_UroBx5r zhb})62CQw?O@%vLa@$=}Mf)nxR8BjxrZOI2$xGmHlVvd0WCdJpvIuT4S)MH{G+B8; zc-v$Nd|bCd++=P237LH(6mQe$VXE_asM|wFE|+EOW!>liWI9_@&9> zxx#PVdbx0?TbYc+W}wJq>}ax76OJ}n9w!`YvIx#LSpn1C3T|{OU>-FJ@TkcmSY)#N zhLG4KXEVyQFelpaz10_nEV;F?jZ5%jlQnRdTfsQDf_vNwK5{Dq+sIn2fQ?PoMhlEc zP0+)KT>e?0YqD|&WWQT^kLv`U z;dh|TPA^X$$WgrMpIiN zv{_$jR|`+NBoit04846;y_TKaLekEdJ?+jk`RXdHE;!wF0uS!r`OHY{)hb$D;CYkPmxS&0 z2D_Hjj>6$Cj})jMEwsFPnd*2ub>$ivXIst+xZPwCJm*$GYg#IyOs9$wf2jE z`zmYPbfwiLIND^HZ}FewR&aq^FBBHJ6};ru*M&FS3O+Dd1RJbxO@J*;7Qrvw3eGiI zzEHTrt>7NFf+yVyUNl(*AGj5KX0qJ#n>zKWXh2{+ljV(t1KbLZFj)kbxfQ(bR?uSu z%K%m}Szbd}*Cp7_WCiTx)*lE}w}M05+9Dk1RxrV>lZ9v93SM^W65(UFf-l{=qHYAc zuH6T>0{WRO4-j^AD;Vb15kiYw!BK7|S>8t2*<=OmYqAJ_?N)G= zTfr@E1%EVI26wv^-0#*$gvZ?q7P<8~;Wf8{f4TK-p{E@P70_t1yoTV1M|NIep}%13 zxb`n$2U}z{)-m@4*U4nE@VLuog@*Ob+E+Nm<*7o|rl$4}VO8ruZD-*~m!pMmSO;o* z2>ZI^)25oshVWRp+`e3$cYswMTBSvrQx9p8<|Ju`HY90=HY91rhh0mXYLRKA3MU{q z%5?%S+@$jfh}e@=bOHi>H$qm|6Q;O4U3l8%vjX*_6Hs2gOm)1SPC&W86#4UK!U?K$ zx;0+`+<{p=0S~zqEOIMY$$C zTfvuZ1*;DrSp{rpvIr))6-;p}ILl;tx^SP#3RqyW2tIKuC~Rz92OFBKfK5%7w-&Z> zE7;YoKNMQs3XXQ`IHB%VFx_MkT;^7Aja$KOZUxV{74)#(TLG(>EUzK-HCY4$Ojf`q zZUuwf3U+iW*ww9IKevJd-3pFyD>&M%-~_jVGu#T!aVzjOm>uP;iFIsGRoLyPxO_lZ zbGFg38*hG;!mNpZp6dhK1oicUs>afZWo7`W*|FGq(k#kc^RLgT_eg2cY z4_aX5d13cWX|Vz-CX3*7w}Q*v3Z8T;c+0I|V{58HQv+S56Wy-OF)B7jiLSQB@0s;@)cmn*BIq1MEM%YH^uW6V93`Pk0<0yqI^wJ zz9h=m6y-~ze0np;AM|grisq*ghWTlZ=BJVQ8EJj$Xog|DjWG02uL1LXBYa+);Ezpr z^o60{O;Nx5M*VJz`rVg)dzfjv>E27DH@MnLHOfbjbXZq4&aKW`*Rh^G%`A@ z8SLLIusBWY;$jsoz}dn=m(L1sx?}>*Q&GSr!VH&blPtSmtLS~fBW@PMlpN93ub2Ha z`lgBwcD|K!zNIgLH%wN*H!Xb$Y-+MX``%~;ykgc;gO=)^9D@y|nsBsB7O)?zrCl{w zeqfc-X;W<1ZmHX?_p47~&$kwpJ?ypCQPQm{#2hQ06!c^Cq{bzc@BbwZ{XnnRZC6B1^W-MIYs#QVgSX;C_+tPHi z)!8{JoDJbz*9rV`h^0&7*oS1-UI!O^+fMv5CL%6Yk)6BKzpiR}LYOfT@lO@m-x5e? z_OIqElP~x$o%mIM34i0(R{x@jh}BhefeD7Dc0}3jAmqEKQ@)qg2~K@*sp*ac`dI5} z(+zK_!3hJc!J8%`PFK-D>cX|D9kHiItT`{kgH$xanbO?oc6U_Z$EgG1 zV=4mrZbe4740bqhaHxP7uR>?xX(}2JxIo2{B079lD)4v} z#Q^SVuc{Szy_y;U6WGjkIv;Ug z{xEN|C#LhJUe2D#oRGpcND}sR{*OR5%In@7*S$Hed-KGo?#Fx1IZ;wZMdpy$HvyrClXddsHxJ?*}Z7>)Xk8SK8hGQFFXoHd1Mmi4L zNPCoKRWFBrHzY-;InilK^a{#GMs%7Go#tbIgqax;WrL51@;?BP0rt9-}$m7T|l-Ov1W;|-=e z68Hxd9r4c#&u-_{;NMhaenaS*jZFN53%L&x4tF_8sJpybc**5Cs(+EEN;^(V$C;_} zRLC9;t4Uq&ZQa+K;bI@x2^_Rz=V1}Mvx+(bj^Ex^>AVSu@hY-kEj+YCup=H&<9^&zq3;n09uwcFKTm$bWw)|K8>=f#AQZlmA&ccp8G=P^YwP5_qT@ z#18AGI}+$)t*2dRpbv+rkBTk8>r8hvLjKhQcKD3vXoMk0Ax$z-?J*%5{~D^cmWpKR zJwThcnyHc|(tg=egC$S2i`X2j!peg~Tqkg{>HKR}#O`Lcx^bekp2a~op$SzcSZEc5 z(5AGjQPyTcgI{l1`C|{+##{CLaFJ&P6+2wSo~{#ktm(Yd+HBZRMUw+`xJs75?rsHp zx&%z20s!r)8aU9cV3b?IXt#o6+zRMHbYZHk2Aw`+D$}aYz{nwjcc2XRaVzRFX#(9xI3b4NqguLHGBy^f2Lt*`>8~0gmE3v*~FlJ+SxQoo0C)NfxF$@WpJFyV(fKO3CuTdb$vB4KqZ>J3+1`NycK>W{7;w73hHZt73yr{@>@cS z%d{PS_B%#}0YPq#Bb~s*dvqQUu`^XPpihPH_5C=Ld&{}E9DB!G-4f`f)H+jRDhRy?{=?-e*wO-uV35gb z+CVhr{G`FFm+`h(U^Y_zx52Nh$qFc#w?h2ZF7u4pvTB!SjEe0AajfeE-flWS?1-(K zt#0hbZ+9-bPO*A^nIqid5`~MzZjs*G;>S^i*`tu{pS1-UXJa;4fz2_*vF!XGq zX`5f8q~DmN&7w-WeX=w|Nw*midD88)1N;hx->7KUMn6?KRF?bPN=Krf_HP37YP;nA0<5@BAopTo9j85*r0vP>FTg3T6FAd!9y?pxbKGBmb6qF!Vr7i;68p0G z_0Esjw36*w&{u^}$bGG}#{s|U#tcWR$PBtkTp)4qX9rKza1!~mb5P`OjQq{%ggmR9 zi&fHtiC(s-q}yrt((Sa~1FG|;ijDxVmJO^*?fy2HDi!H$bcmcJ@7WfZtq3M)Z8Oy_ z5x6C@p6=3#h@SbzlwM)w&I^uM?vurd8Fu3@;Qx}ChN{6+WlQK!a#@Oo3V6^Wi{Sra?`^=NDz5+W z4G9`GY7|7RR98erMGP2TRMe>Wj=B&9RB9GTfJjKzyeL>n;%jYdYY?kc@!MEY(bBrw z*rpcSXt7d78x@r**3_b6i#5Jf{Z`cf=QA_s-kF_UHtv`DJpbqU&6ATe_jAvjb7sz& zxi5S7?iZ?Bt{56wGdUP%z`H4ZxO@g5pzDR?PwwctTnucC+K;aqgV&k;0*SICTtB2fXDnv8~^hqT-Q!eAAWKcebQ#pHi5IJr?*Os;h-#t7&_9p`G< zBJws>ZyHE`m%+)6j)CG5Y!+EQ1ru*S$o>$79H$Dt)&f8c2JWAix>^N^fh$>4blIiJ9_ z7e31JB^wxdGP8Svt?Hj@_hd4&yUgDGk=i|pjJq)-Rs}PH+TR2*%gK#Ec!!Y!e62DB z3doH>c(auPTeLtSxe@rKV`9)wN<$GjU%87RC%au$r;y#Ti$eK)_z}CR>PWCkT_x*P z)hT4HSbU*@>_@6Ph3w$n6w2>WT)exgk|jVG&Vl5Iq4#J{`bY%-G{dT5oIT`&|I4k$VK{gJv@P-_4zJCv~ zI_)L!W7G&YCC&q10u#i^8GqCh1QKkIZW`W{F1N_7DrCIK0BRB8D~AXGVM3>2yikp4DJxeOmrCYb()K{+Q3 za||f$(>AK%gbA#EJM3M}sW5Q9vNf5^1gmCD*wLEGu%k7S6X;M4zf5o)h;{PYK)BUH zX8K?A0qUQCD3S+%b_TI-jZ4khz)UP^tTC#QF}f=BcKU+Q#pz|Ci_;f`E>5>xoPH;4 z-w$HCgBiD`)2)ANn9O)My)g7}y5-^Y389D6Ef1%Qhl$X`ctz-8{HV~w`25hrxaDEI zGjuEdAJokV#Vz~sQ$zc4%YIz!Ukm&Cg)=d}3g$r&I?NSqPnA%yi{aEV5YQ)$f2hWc zd#HXJRh?!rrrB|70f^Do6(9)w2yCgYiq!|9`=3hxlu?k^>&F!7o3;G%O)zFMRelLW zltdC#a;aHp>d%04*&!|}SQlgLBKwB?BI{7qax(osnn`44`f!z;t{jW;U6}`~r7<=U zjIV7$XR5(!RkfV#5>=f_)}hf(Ftc{@+fCn9LpPaIlJf(T>N7B|18|4Ov>SAlBgn79 z!36tw3J7-}>cOs1)fjuoxeJu@wj2Zvm0+B^sB-!;Ng+VSJO#@9)U$cAq=lK-$E%P` zmZShG1ICv(nH6)c?8bo3mHpjl`5Z`{(15?7>xJYu4^@E(&hsey76|uWHOo|Oun}=H<>JTG-_dk3NZx9 z<}#xW8_QbuLc>iUY%FbIg__hJ>Ny*vHdy(--bgmHvPN$#ZDHlMZx}IFKE&rKXp?Ma zg%4;e)vWwOZzP*pX^WaYtni6oWrvmX^v2Q_R(_y2lFh6Gb``O9#%fp z8_QZ)$wTs}ZnLtZ-bgmHGC*%EYhmRmy|J`~m4$jE+04p~dSh7&D-X&ZR+yJcH7ozt z8_QZ)8Lo4DX$vbe^+vLpm3gvFRSYbZFXfl{Sdn2KS zsr-+TnWVY7iP+K1FL0Tb9nDsTbu?FndDPKtrA|k)l@lG! zR^&UHt@w5{TOsXewgT7DY(=D_*&6qbW^1TBnyoSHXtsu}quCmdj$k}4#4MNzLce9Y z$I(?iuLH=MU)`#YX5w@=KM;1f+wO3;-QjM#!`*g=yX`)9+kNb|yVY&?q}%REchD2d z$F;VPYn%B+1T(qU+CHweeOzn%xYqV@t?lDl+sC!Gk85oo*V;a=b$onJWm)-SaH>sx z`JwzotT$(Ya72-mL6r$Jn=3@5T*8Q|1QAt|t5c zJPpy;XMtch@O?qQ_3oBQEaFRiGr^Z*burflKokCU$f~FNMtc=wg%Uf6} z(;MwAtgHk<6PXFgnr8O$TGi7jWY>eBX?Y7PTs@UqnKEcB69!e8A*kkICE-GaDksDp zx=Lo2p*1QdH|iB(O*1Q89w47)tXA7&wYvGqFojmzDYV*7q1AQ@t+rEWwVgt%?G##V zr_gFUg;v`s6h3^xc$yUAV#A4uTwwZeJW-X^z{-%nAXIy+y|Hi@gUNk2_WlusB_JHx zVDGzL8o zY_0#j&DN41zN*4H~uZMNOoY`eADc5Ack)@IwS&9+;cZMQb3oBsTU zXu;kpV7~%;Ojl*l5IgB4s?tR(qWtRPSt|6CBbXtBKgjUAm}7} z2!sZmEv$5CoQwmY6tQxE>eUo7bCB7j;`DRX#VKS-kdkMGXH>K$Sp{2ij)baY6smF( zgDSJ>Z+d+oGbbaPRM4*1>%*pIR=Cm z(N3$4c3N$;(`uugRvXi$74yg}2{L7@teFXyzoTLtI|jqXb5`rPe=gcy2?7)jW-!zD z#-0=O-f(<_y(Ks`uLGeiPoECfXB1C?t=Cnao$Buf1#KuaLhqFUF2v$yPOLiZv-M7U zHSV-e&^zsO^3G=KG`zE!sloM*IoE8RQg=36r^lW48F6Q`brRg!JOIhTGcBdSI*09S zwoY3+?K9QRX6t;kGlg%CkK&(}($L?@Xb3c63)m)ME*d6Y%JKSS; zxX12rkKM-}yN^B1R=0ZWp7hu~3EwMa`MAOMaYOS?p^qDEA2--OZm@maVEeei_Hl#l z;|ANu4YrRPY#%oSqfH;pA#xy``WFb3V9CC?aRWkCF5^&@gh5pUO26W+w})kY^8>K{BnUaQzL}M$^v22-R@Ul`WD6@VfVet=eW~$|7FJr6 z*Hg%@1wm6s3oF;_jbsZei}l9J7FIq7K@*utoAqko*Qpslh3sWLF_JB;Y|tAWEv%?h z1pGo1W-QMKphvD5QI+|DDl_NzAXLe?-l$G;@LKdLy1tne9={+YBWb13I(w|vHGc!0 zHU6%%Q)r!?LhI}lT4$%wIy;5d*(tQnPN8*n3aztKXkD}Iqkopg^r3%93z;@nhVVP+ zLqS*r!(j|2_gL(?Snmx-HrRUtdVVg*T8`T>YIlOvr?KF7>3SjgoCDQCFSuz$*_9wP zC+mmZaI8NVB`qH*xJC(1Ci_rTV`QJI>Lj-LhH4Wd)6D}n+5G)f!AYUuBpJVlAe67v zObNXRG9ZCHmw?zc@&;WmB!5rU!>1r9tG{v@BfAHLT)Gczldh7nku`K|bB%%~lNpr> zaV}Iji7L(R8hiJhz|gHe z-$m`8L}vE4JNqYK2Zw-s`-8P#;=YtK^fV5hbVNwp}2Po!sLsh zM;sW)(#KbIm5iOn9c(g25dz}u)zEJStJ4ldryYn+I}qXL`t-O1gw9VSe+GofM)r<@ z=|0s{#2Uki))-E-#&Dvz#XL7LZlJ8my$0ED4HivsXfP~~U>rCI)>__xQQ{C`crFP? zO4NK8d*4*!7@WfF45;YAs{2XhA-VbHX)xw(z!vNM1>{R~y^#EVRS)$hvHhUlUqJp# zT`wemO4UQzZfrlN_ZN`ApzDR?|4{W%winy)>-`1fAL@D``L~Wp$q`^*sQrr--yZw7 z=lf-wik1{`V+W8t@yPlRTYwvfgAl_)@=}lpk3;Ffe3n&hZj8 zfGrKdc(Fr9LlL>L5R6wdu%Cmh@!~+{fjC~|`MS<;F+{$r>fv}{Q~ih|*PsEYSA(F6 zY#xXMLC$6=7I1;WZWWLl(IRr584@SI284c*8N`yF4*{$guCZn5g}Hrniq87eQ^X8kC& zjW==QecY_aWIwjgMg3CQ#>>W8U!=Ank8Rd}D%+4>j{2|FHa4)IU)`CBF%WzFZNjD2 z_HR&UA7sDySqDEaQ~ktagke8Vll}aWnU|Cu{k2NLt#;G8(QYMlW42D?kBXbInkKSc z*w6mrt{J;|k*=}_)DD!+pM-{}(r>o6?y&8L=KKXsoaWIgzYT}Ai_ADao&0qT{~e6| zhA-2}*>6abturvWHW3pK`HS@Zm4X z5=Zf^>@T34*&ikz+W%I!FCsVlgT#9g*uL9^fgFMQIo5U~>i1aNze0Ui_$YxNhWb=% zTl&af5c!2_=LWhI_N*@{(It#0**?1G)5)VCz+}eZ>7w{?h|(alrGR zh>Hq2zi5GaA^EL{Di1-@70TYJ_T&B#_%7H3tz^YUlzgIw$@rV+)Ih#K!(^8mn4CtS zB#n&%+Aux@`SBxSAavn=u%D}HjO^DMC3{j;%gLTs)fickvQ$pSpLB-?dV7XO$XK`>6nUm8JFipbAKGr(jqt)YmV+ALS8>}l0%aUr?U zP)t5hHCtRrZd4SD3LIF`4P7jUis;a5AOw!gs2fOrma<$uZG>Q)&WB(T*^gdXcr1|!EqH{?B)I^AgvN8pIY#>Qr)CM3 zH(go*Ua5p|<^_JWt{0L&v#T2-%C1rS7c0J%{RNaW`-5C&`}sRj=i);0Z>xG!F}aov zN1w8vXj?_(`)b*N2&p{rz%sOscZU{7k4>~)R)4Q#?L%ANDTzOSpx!5-GtQHbw(Aoy@C z*!NX+@*Q9ux+(+1uCkxFfxCRsXQ;4yYJ)%j^0;hpOxarPxfd0VpxQ{IXoXTV5>2o~ z@mDK!2d2J+>R9F9R5JPq6)P6eQKNjtqBWuN6^qg+Uuk=}a?v2@eO4upP?8Q~7wg^oq>aG*LCaiG{axX`hP zm8W%w$qKbM9gA2Q1cF*JMo7uC!hrz(AeeEd!*OT4a%Yly&|Qg6;_!V-SNT&ZRD!U# zfoWaAr5Jxxh4}$nOBb>790(a5Dww>~v{E86`VV28I@Ii#!Xe|F#rh{x7i%+zX^8SG z#>sk(s+Nb-r<~J=$pu+5et!oV$V|F*E@I_)g-_vJ;-ErW#un1d#cqwh0QS1Ba=hPG z)pD|4RgIB-pi#2@kP4XjWF}WS7qN1r!pq6VtLhZ8X(05!a}g{2mII78gE5O0&I)rG zI2k9S!dcN@-YO^iyB_M!MXcy>$H?|p0h&T~tg6PyOsaM+Vnt8g7#TyVw1=^cNuDU2 zL1wmKv?OWZn8ePS->VkA21m@STeWBw+L+8+6=WEj;o1ait$*+5M1_ZEr<6sHAs-{d zqY(6gSEOaSivOzcM1o03rQ~#ur@Z8M;8F}nvEa~5*^59>O7YE~WZ%^&*>9EpsnkDEHJ?iTlXaE)FVodfe{gaY z>YqgYk0?!3sA+&|GliNa=_)l{s;i-<;Nzoq?70)f@gcuU*9*z_Mf%#~L)mT|;&Cuk z`~h5oa6kE@s=iq9{c$EtoP3L_FIL=~k`$76VIorx`RA(MR7n0!Oi|+G>FjqZ{}vaJ ze+ruzbh0hVd{Ytmflv?l5HM=6!om(11%>3sKrx0;6<(8_pf0*%WM}H?n@Es%K}ZV` zoPs?|w8`oGeR5-dI(xemqUinfXTaH%^+NdaTM+B7g*~2b^)k4Iq%3`hZ2W)1cJYhC z5s8Z*QS@(r6(zjD0sH`6FC?Fgi2)t(Ko`m$4njA`{;H}|{syL3t116Rm5nfw>^A(e zBNl41=Tx@TVsBYRDw)bzftl2IE>g-U~EfsSaUlgN0=0zVVv?}BjrAT#bK#FaW= zdflDM-5)B+sYUQt`y9-TIG`D-@3_bXpQY=ColS-0 zH`+V7QE0T0Q*+P~`+~w-Oi*7)zCTD`zzkfXeplT1Q!LU)qEZTyd$@Fg2PE0P3iWHO z?T=Ca+}cJ}6+}nrLC%atbpi-gGSi_1`JXgQX1bD)u2{)N#}8JLG3q*2SFORRp)MVS z80RxD^pGaAz*=>cE`MKFmxCE&HK8%KRs~NfM-BlYNPKH@gad*lfre)on4G!+lhJ!h zOE2KL=p~H3sxZnUK}dfpJ4sjR`31U4M%6~`V;UuUR#jtUjF+{_TZ1tDA?!9C3l>-o zTZwL60j9lHieA(x{;R?vqXdRc1Nf90mA4f%nGvRHxMuJDr`j6}_Xce#1$m5%Kil{r zOX?KZSII7pkf+;k=P+f09JU%116PH)cQOd$M2F7TRkA7&Oee@|HM|gPsjl7z_L#1c z89x%JszM(Q17V05$8owET8LQ|YG~nNEkO(S=<3s8Mr{qMs_cpXCxDPP%!$)gbu!h? z)M%(`3LDjH0cxcxYo0K5$AHkoY2-S^l&Y5uO#T`OeIWZtRm=YuY!9U?Sc5qLS}=gD z?oIE(Zqtz<*Ghq%4Z>9w{;P5({!awS>JdkMhPB;@dXu${swy;f5eWJA7MSj5kb0IQ zbKfz$?U@D$Ez>98nb?tr;W+!Lt956b9SxGiSRj1OO z>oocx*mJtdH2qjt$!N{Wsu6&!=5&}>@?dlg)&7vzubP|!K$S!Ae+&rGs3E5}$SyJ- z8witYU6ZNHbdix#WjOxRafnVQXKrH}kzHY6a%zEMYS;~KP?~&C5TwZlt7=2ET@snrBlAWwkGCc@f7gXW6Xr;jfrB^27;@>bWU_Y+p@sIntfh9wtZmk~FJOv~n zybyKHLD@!C6>6a@I>|0*w}QE8*;ryKzJ96bDDZh8 zDYu}$8uS$C1q&B!XaSZK5cj>DX8$C!|19uxK%+rpL8CyWAhtggl-i!Uz6ABdzCw_c zJ5m2L=ta<9EnKh?jCm`F``${ke}>urE$|A^37}I!$AQW~Y(EB++WuZ(uYg_$y#bPP zBVu?5=yyBd1|mqxG{kr|=t^MRCuM)sj{uzs;yx)m?TBR$bXyS)A|QU45(P<-{cFtr z)!=^w-3NLAbPtH{m`ZK80y=nm^a;?vEPaB%m4bhU?fyGqIRv$Xr0jtDo(AhlgFgq1 z_%onCgB}F^8uSZL5=341fTSFV`jMand}f~qfQEvk$o}t|{d^J2cR)ixl-m!)n;BC6 z1zr8HJsj7{-vjLr8VcfV0Nz$D0N*J^ehb?0;-2zscPvN>^>P0~v%d-aGSD#~%8dgZ z4U!^uc&Cv%#lGz4`;N{9T?J|f@%=8XAl~Gx2E{=$K~g?OJr8FI<)HBOTsXKJe38Ky zg7YmpGeLY|QUz!RNXkIe_XR~klPvsrkKzs+wTu=>YDku)(`)2t2yHc*iwaNED+u?S}4xr~z&j*)sJGPgDo&Y@! zlER;ujDfEHCa$wVQUrg{;6DfF_wsH6Ed|{OS`3oHHzV*zRwo0at|tcTH!P&?pJ(>Z z0j~zFGjh*?zW|bQ6Lc*D^?-J>@OEt94~hb-N`p@_IKSP04rnBZZ&cv>7D_;DcMwR* zub}G>p#9+seW%XL)9gRm>>mR@4%BGmE&*?_zT6Z$x{L${`KncvTB#3jj7`zAAAk?K$?q(x*EB1ekeg6xh{D+`_ zVqbr7w&S-le+8o6TS0e$q{x2$7I;6?j$hN3l5IbAQlkl9)B6kpE z4gp0$2Y~v4`h(d1OAx=u&i3r{M9@m;;95g{_gVTVzX`;jn`S#HnQ*=dgFk}&IcNuK z9&paJf^OX(7db-^Q{+Zl6mt+cRs}i{bEFj{MdU|8mh#(!b_9Kj_66Y7vmP`bI;iJc zpg8DU&;_8+p#K=~yTRWDZOu*$esTXXAStw;4j28jdnrilO1mz!wgMjqA8_&{d%8K~gf|PeA55P!H%0OFk1`fNO^B zK!u>eASs#f6%ZJZhjjpS7)VMj>J6ZNxK=t1v=H?x)9f!X`-g*%0PP0a6SNDc7?j$s z6FRyUq}ntl-BQ{3!5aKtn)7LHmLB z2TA!2bo?3gGUzWLDVcDQo;7&@Q0Vb|Z0(a{}mG&=k-FPz)p`+x{xZ@{P&#>DwSFd*K>rUr_5VxQ_thwKA`P zrO5tYnEm&IuLRu)`Vr^`&<{bW?W&;T63{~+K6}J#W?n-}$+n-*555bcPoIILoPsr? z71R#uvDS-skT36nJ^+0LlG3<4uCYN+fYyPe95xW`K~Lfw>>W@er~@RW9p^^(fL_Bn z*4rQ{^M;^bpvyq~ac?Q@hvWPZbRXyekd!A;e+KjdsQ(B-Vb|dQF*x`C6C`Caj#=k{ zrhx`p$F&!+{Q)Qsn2jGi68FzQ{KZfH7NwLsP>+tnwf&L!@E^oqUF5F{N?DBh&7fOB z+%JVcU^xMF8;EVr1M!CmPX(O;l5+bP^c%!q&5MEVL%nRQ?8RDO_8(;SQ?3y7rjeuk zYal77qH;Ru4A40Og2zDTfu?}Y2T6&eQU#g~ss>4U6}iD*PvKW1k{})rNV*8Upd@hOY z`Qslv?nsgSv{wp}k_qSfI|u8H{8WL+55n9Z3M#|gKM%zFa8H1wWZVBPWcgNeJ}g8X zQZnHp%hwGT?=I4zj#T{7VyvT}cF5lcl9CDMn|ApY+#d|puPl`JL5{#S-&!QE{5$FZ z%u`Svh_5@7w<8{hxyu)D4FMeq`e1*YgM&{6zX`;5+VGu7?YNi1w+O~?4aIvlQUp)6 zFLqPyWwT@J<(n0^mEKp4|1W^Q2$FIYuIG47l+91Rh?3(WWi{G;0+MzzZhhU)_j@h@ zNgQNcegte4NJ?Mjq+b$$#*aR;-#c6S`YOkqiVVViIph#yAnzRHtDHUoF_#!)=F$L= zyiJd}#8;>>mzZ13rQJasJHB+SEs8Y_yc;>h+!+GSoC*q#HN-R7O|_TJj;)t3R@_#4 z7s5ySc`|g)2R{n@c+kNhzWz^&;4*&4qVMcK+qL8%_c7Y=rHXwW2l3;0w3%JxJm#ikCeX34MCf;K@txcAJLO-zw}4qE^%XjF9J#FtK8l= zXZ#&VUM(W+|I!clWkI|aeiQWfeB2WP{~7p0Abt(|L(uD>9*~q=+dYMIB>qkxzf&3m z@f)Wvfto>Afi4Fv0`XhAJ)mw7?~_RRzqbDs&QCf)zXh!WNjV?qDtzu(9xWDpS5yuI zoeCP1hq(-XJZL0{r@=f`$0>GDM1D39%Cp@pP_}kFRT>9s1@UwHx!{eU>7Y1>=e6g9 zjscwsk|OP{2Jltd@f?}@+D$t!Rfgg}^*=}sKj?cK=xh*ukRoy&0JbJ~GWPR4{Usv@ z_Wz1C0wZQut4A1_H(z{-bMm~(nwnYljUz{JggA$n9*3Zpt>hS{rZsn$>6 ze?okwn`z3cz`8^xBK^{>=riX8mL#ium3~FhPWQ`FV5%eP!vSJs^7HohghpIEtDa!k zFBuJ9M(fd-e`#%^zH)vY|C(y5OpbhLbcLg_9eUXc3X#LG6@^@w31vWd$98KORgV27 zPOC~FadaWnTn~hIgq0rU$r2(MNS#rHehQ=vTw9ls*VZ{2O_1hl6c&HvTVVqsw~Ay` z6qp`)`sx-LdG668|0J1HWSn^~L67t7y86cY8MSpYFRq%^7|g^D^dbhCa15Uyf-7m& zQ`FOy*MRer$#672r6jJsLu6+TCzf&|+P!^&@cKDKh5?B~EVMof2%mKbWljRpg{$Zg znFJ&@z(#nNJ&v^;&v1NV;r0igkk$CBzGG04lg8q+cEB_>3t#F@O^Ygm! z-#Tz(OX3xbVO|udTO?lWCPyMa?=E)ODH5-9f$Dg1_s?k7DR%&gOD{O)DMk9FWoV1@ z#ub!)mB9<$uM{QNlzt^pSJ81*s0QLQkI~j#uB)6?S6`o~pE&|23>BA*7*l!_MqX@1 zDiT0&TF@FIGe?X$5;9#OG6M)?dP1af#F$Y)q8NVVbEIMx5S)U<1B6cf5jzvZOqA33 zOc|c{J%aPbFk3zaG8m^lA+jq1wH~r?05RhMWW-UWqgOb#_J+)+Kn9h_P#}B>N%IpcGEI^c=v13YG1B5dB zLuSA!ww{xKv^z30yU#dBh7msYIa|+9f&Be>8~GiO=nFRT zDv;0C*~ou@RA3r}J>3_v`sH72 zM=$xgKxlm*AX9&1Bm8VHI$sc3{qzdJ)o;jKkw_PZDk%Qy7vtbM#b5pS1tz!1s-A=g zm>#edL4@5R{>hY%V${;0JhS|=%p~^Af-HhJII)J z9G4AZ&T^AES?~0$ukfs|_N=ezh35!@Q9%&dK_E&-xnA`bN(>e>mHXdo(BOn>_35J?kHN)=%@S zm*ix9qi21cXT8_6KHjrlmXr0(p7jl$bzb2(nK|ZM&w4B;>--gBNAu{Fp7k}J_4QuP z$8)mIC(K>z%RTE|p7qt9^+ZnAS9{hwJnOusc03%j*|Xl7ll5-TdY5N?gJ-?ai+fv6 z)_Xkb-JbQ$p7m1CdV5aR*Lv1hdDho^)_IL@Vqxy`@h*(H!!ToBm3#g(w|2&SLg87; z?8doGwe#?teP~P0QluBqms-5DrgSpqUR-bXK3YO4c`d);D|Bc{Si#=ku$s_3oUkukx(( z>cz2Dy20!FI0(4bdvdZ~<5^F5)^G5vFGupb)_ZfZ-sM?e?OE^ftWWg%&RhSS{9o;A ztJSl9jc2{xv(9I$+`bp*Wc>!udYfl`rDy##&w4Z`>o-@ad>DTD>p7oDB>q*agJSXeC zKkr&Ekd;3;#zno6zs4K+L{8SHdwq|4eZRu%dzrV|wB}@ewP$^eXMLk*eXck1Z8=%* z^{jv7S%+dbI%9Z$)x^sjoru~oNlw=JY?6DFS>;*hXKjwmn4#WETb7gc9?$wl&pOk|wf>Q3J(iR8D?ID1p7mv3 z-#_)TE}oNhzTMa9*XSEO>nl9#{H}m$WsWk5oUCv0tn*Ua@uzgKH}Z|%I^UX;^#z{w zE4;oh_4>Za8~L`Jtao_UJ3Z_8sLdUXF$2Ac+I$v4q#yy#n^^ZL3 zpL*5@dU5BIldkoyoUCu~toL}vKKp*Lcd$-hA)P$@&V<`by9G8qfNA&w6C{T#oN+J?q_`_06938@#v|=VX12XML?_eUoSX z3eS2pC+q7y>wNy%%qD%kT>7bJeT`?mBq!?$&w8V0z0I@U>E(P`PS%%t)|YwKJ3Z^I zVb+=ZwEP*VO!sN!K6ZFDD)+IiD^_!?j7cweikeck^?hurS5e-|eeCHn8e6%Ky&%wo zprjOe%8O6bWf~v3-}^Q8y>zG?K{EGibfKJYWR@Arw_@or+&QJ^cnZ$s#=Sw`tLp3P z>Vu~zr9pimo=8-2k4E~Xi96+f2$|LaT-hL_8vYDOmxDYGqz&yE1-Op#99!XF8Mb-@ z2w%7wBA)>1b&w)_J{HHL`jpXnz6qq&(acw;w;37jPZ^LXUJDs&<_{8;;6^}*GyzFC z$YLPf4st*B>@BVQ+{nj~eyZx7{L5`#M5VdIA7fiJ8Fo>rB`YdVE!kGGnWwJP|tlm6TCtY;~0Jm|vR0C^NQT@aG`>_iZuCQS8YU zWyV%V`4H6HB2ngff{t=^ZAD_nta%l4s%oq1t7n-tj?Z`WNCbUXf|zO<`pk1#j#OB- zbxir*6CG3jY^z@w)1C1>Lmks*ID^M+Qwn3s?}h1@R$~-=Rg7sTU>(y^Xn-k*VtNN;vc;6|Dbg{WRX0C@?^jjS zB^s;iY8%WvZ9`1khGdQ@Ohg`pOpnMAP`@JA>mZvU6FoqV-IU>5PvZ^}1ro*Smp&_y zmAIzpf+1A-ohbZf8Il&JxtTJ2pOY7(i{P{E1T%=A)VYd7nq0!lLHuSiv z$MrYJO)Z8MgL@dats@hAd>+8(d&;sF73~;-NGM;TtTliLV`%(F^Jxd^oBB3wUyN~Y9qyg3>94sJ>7u}ksFB| zD4AJNSv8v|qoXx*>z9xzIY?xPJPRawutv1cuK?+Fkc~j1!)%!kfW#eyfp2q=oq_Z? z$UZ>I@Sb+g9c_zma_tU~iUd8v7&`qL37L{ZrBy}EjE2TUT|?55ITkWq4st4xC?3xW zZA}7_#H+JIWEPOJ5jJu;WdcNIx6TB_D{ldE@M`U(`R~u})9cc zVo-kGG*wUi$20uR0QCxRNb2t3s`grRTpv@KYOBMq1P1cAz*h7KlN-LfO71Smw2F*E z9t6^D5DXUzpKFelXgwPF1W1>I48Qt7#z@kUIR!FhqioF= z0ckUcPM&!{8ZjcYtP#G)y6s52)e<0Gqiy7VAdF<#>Q_Mcldd812O#quq#H=|D7zPb z2U3D2;rjC)kmPvV)~*Otw}TuAq{l&y22y;it@$(}$J=`1K)M1%X0DDPv*i~^n)_8m z)e+zDvSo%wk< zxTN^Q7M!_V;Mry_=c}H%{&$YBE5ezJ8#!j?UPs6&a_rt@&)fyx?Wo9Q$b@dm1b6rX zeM=xyQfBAR13+R1(KF>yAaMs-10>eg!0UqCK0sfb<$f+j<^I z1UC)xU|s9k0Hn-8-U8Cvy81AnTLRMImlYJI@PxI3XsHUw&o9kBpqaD9Ep1! z@BX%8-vY5zJ)YegXPBfZpP5S-7?ubPiZ*cdtA))T?^ z^7xQmK_^Qc#kIj@g;cVs;3y?|StFb99m9gjD!dlq@rdkf>Jk9s%b zK;nwXQ7;)B_3)M32o8=ZMO}^J{8=CMN>IBdMFQ`Hf~|iKk)z%-2Y3Pic+}%J)xqHN zeF%{258Lpl*8`sIsJ8;6g2e)Q#-$w}9`$aAdK@+&Q|uX%quzFCtP_a)?q~{zzE8k^*B?qTe+X|af0!G53x>{(%y%=QL2k^%O>DgAWS0Ap z#X1aGLZa-u65R9DGW6M>TiZJBC*z|A9rw359A07EpX!vjABoYVv|AYWO2kyh{bTI( zJI9#vy~XBC7&3ajwKXxOi%*r94!3s&b;fi`5Yq#J`?eU4_xZ+*V!BW02zqk6IrkoXKaUJx1yq$faR1<;zA2~VLvOx3V#>r6OokYvK! z{*b~fGvV{!Nha`l%3+~1rp8RT0B_OLneYSX@l`Ps)(4qz16p$KxrLeVXpjjf=u=-; zL>(Qz9c033*z4P3CX@l*+U(}tj2;N+qeDE!ir(Z3@IsI+BRv^8I#dVQGJl4=Q_B`U z8BvbS+FAj7+B+7|A3;4NktA4g^jWJ+d9_DZhmelb^nf)RID_S|xnG4%_NR=eXCfnK#f z^Mj5i%+-gVl3Xpr)-X>IbMZBIC=SMPriD7BSpr%e=Hds z(MEW7M$FQB)@?-(8*yG#;w(^U2j1lDu`G;U$EC%X}abCm$ zZ*5*M=lM+>dXcZ5?QwmPoWDBAdHM9Vy3}4J2jK|QE7{_^5*+ok3~jvtDOd2TkngkF3zLDFg^$2zc0p^wgS!;)4hV29s)gXk(lxtLZ9UZF&$^ebQEIR zU6pwqlQluh(B}=__-yN#o{lrmY%%@()$B37VSkC~w>_UZT8!!RKE(8qvm~at36`cX zrkD32rtN5*Ev7s|>Uo+uru=0VH>UN@JUtsRO=3w=_ifU6EHTwGU(Y63kkX-^+w zx}*;={ihex>QVOEdp%;Bn3p}KT81%w#v7k)z4m^N^Qdew{q#eLY3AeU^SGeX=VO_V zr=RvArgu%s9@BpXG0l8D<>5Np+RHbVWLtat<3c`V?RAc)%MsJE`PpNtWxk$ydQ>!f zO!-I|mNVp7=C$`EEQ30xbzUCwu*kJ{IPO7bJ4gC-vcxp=@pK@91$FQTMl-Cv(LTiV z%|66*KQE@UMwVC;^)bXWiY{k6o@yET{Ju9n+j^ch?VmlSpW-&5jww?={qgjnVG`4e zJ)b3}{G20OOvj!pF&zLse&IRNF+ogWG($|w`ViAyu&!pCr$>1)t#)1*{yJldr73Gn zl?-FL${U|;9n%Mg^dY8rr=^bR_8DV3_)v*y!t3LCJc%hjMoCi`(^)}G zGq1hzKE!lvA7aX1k4#y6oq75hV%k%mJ*HZQG5zmf%e;F)_LzQ&DWhZhIgVuM=jjcH zNlbaKzz+vwx~2~?y$c^e;MN5Co_U^rH;8HGdD_~Cn8y1M)A?RZXF12yy>TzIt1){_ zwanKO(?br-9@8!RNK7-I_kK8BVp^Lqrd#?D(_i81FWF-HU=Y*H$J6#c#Pqv;i0OCi zm^Rg_?*Y_XQ5}PrwqKe(rdozE<#Y3J&MMn_?XAM{rO$hh_9qwY@;=fh2S`l2F;DSv zK}z9$q!}Y5rbyZh^Rxt?%w{{D{s|BF=$NLzuf?@@eGt<_;EC_Hx<2hgOdsk)Oz%t+ zQ~NCGJj6763V(RjMFeJ802F)h11drY;=*E3K5fO!;vTrZeIm#ea9L1E8MeD?q%mo%ixrp@MTH zv-a9|9d1TUBUfaPsg|KX5B}HZ=>Vj9wwTr(BQfpCI8QrANlaVevp>anjoybm$uyZ%#SYTq4v2r=zils%?e=IfcKXC0P3rstd_F?}Ip zOvjZ6AXibcgNynA)GVJ%^aKwq%c~mic;O z`W>9FW}Bx&&XkyDo~J(>EiuhJPfPm{({&eRkLle(Of%2ZcpqZg(ubHHkS?aydGC8X zo?e+frdsCfiRoj9XOC&W^6W7^3}1@X=SZ1jI=2roEskf8=`($ZX=@*1x}py;JvLoT ztvg9O?}_FA>g+MqGK^{afBks+8LmOH&C@sV9IQU?eLdsa`?GNpQyg3(>5r$&`ViBJ zGbE-sF-uc;-uv%9#I(H+G375|W;;iknkJ_8)}5ro5YzT+vd2`*Fs4tVU+y{Ew!S_c zU6MVfkKx%K9n%*x#&p=x64T809J>1u)0UYM)6Ca0--I&=E5_$g{P#nzu21_A)Bp4# zrkA9NseLEuOvE&CUG|u28T$N(|9VX8a1D}ep5B7n@;auO&yj99Mq-K!@HFGh^WFm7 zR?K#ebla@#F+DYi=^+_o+S7-a@>rQ|p0))sojtQ@w)KIGSwk*HOv|p%98-#2$+(M* zYPS?f*WQ+3Ne!N}iz5)|oAzm}_#SQ2pE1E5LoYy3yG($X#lT zN#3EV#@%n7E$b0)9NJR~?@;Y>tYpg@8M9?vkS$%%z~j1G`1IPtm69!k5pTb6RZj%j zQUihXD*zwy%68?;_b}*e@%toCI`Q|$^i>jnn6hDZRmzK%K0*Y`B!a#xssqJ%8nIPm z6fzu0mxG)EBzQ7S$y@}a_y)-hLJNUJ@X)OKbVilzqj&8g@TTk|5w zByYBn?^Dl@Y~;t(;~@6{>AA(0`3+m$Y9nhY^J5$NE0DI^G@^U)AIdn$06hIya=R^a z7?8GQHgY_WGCar{#^ORC@jEr5N30e|>v9`e2&DZU8@T~U>|R^Xav;4ww`G0}q&sQL zbW;y*p@h~qv6Vrz^?W?_2QOQ?!#19mNNj45LJ%J37 z6RF2R&H+;9w7LLDk%LqLN&eaPc_EPQ00~wLNHOA2<{%@0l&rI5&IHo!AQuB^ebJV=8c6X=HnI#zn}hrYNIS-egQsWZ z3vBhW-Rc7%y$-Si#wY2t`X-PBQZJnE#{!A|#YUzBX??{;E~U(?HgY5NY_O4^0_k;- zhbi-#$jGeJ(P1Y104IEI;(e7_8H`3=6l3BS&dSq{l37`w@tkDer)5^|gwN+c@)U7a z&OTFS+7Tt>5^HH!8)_$kz*uVa6+D@a1B4CN3vxh#$|{n z#cWx6j%3SW(BrFOCJaMtbtX)N4u45xCS3o3WCEW%^$Rm$C_)2<@i`R#eKBT2ybqZ$ z4SIAY-~=vBVJ3_ZG64sdlp>ihHOK^<3J`_lqk56G$&EBEq$<3P|!GyF<|ZJ;Z`;TU zAoy~QrRPy1@7T!mK)M`c6Oi72ij1s&y6=ovK0ZGGk?M>5^Yb|>y8qMDn9n~&zc6U1sVBsI{zFXi`AdKGGv7H{zm@MC$qLyUtdN^MI|Mi{ z8iRR(*FmIt)`;`sUrCu4cOxVH!g+CaFfSHEz)v*Ji`G8Oi$pLl_^y1va9;3NnIVQT zoa70}yr>W6MNQqTd8xA^68RF@lK7X&7T;Z^cklghRv7%6g3+h0LdngDfP1(<`oXdab(_Nb*Cw)lwjd;kL|5 zATbA71*F^2^9+zSN9M0UiXG%#AP+mp7i{$(li|weJ);=;&urufATh_*F+hqPWFlK_ zv0GIEX+_rQbzW9lJbPfvBfC&^dZW(LYI#6;hrst z@&`eb`4&ud3r_;9+B^}BM515lxtwW*rwPn* zR-Sc%%*s;SHMlD;^hVb>D=+$%%*qq7X1XG>K6lGeFRvY!Qh)U9aptxKGj|-07p1AD z)H{pT1~d0be>$NBXYOOc%;lM<>kpN3=JJ$~r^)$wQT*32LM14?JID7->8rmUUkN06 z{<9kP^z7~p+Db)c_n|PP@6KITU)|`wlZLVvArq1&6Ee;2dCZ@q?EJY5NZdiL2U2{r zEpsc7=rJ~OH<9s@b+rB)APIwD*ilvk=|0YuSq~&~yp3!IQsN+y1K^K?30f}B@BlSSq9pp+NU6opFi9Z_Tiy8Y`a>bk_h=vH`#89% z=lf|?=M~QP4v?PjpL+XczVpgg&v(AX&^eH+HU}_UOeXa6-BmJUAX8jzXXZp8k&A7l z5=g>9zD;DlEps!F9{jA4z6zk~dx1nRv5`lB^g753Kq3tyBe|-5<~Tot6&8mBt8D9B zjl?8Z?_wHxg}M6lUnE!W#nI&+PlmbLi%SYDGXDa_SM+}Omxz!ty%;}_=Y8$quA00MsSnX6@e$kkR{%jjG!^p!v}b9LoT zlB>9Ro>C-NTZ3G!OH`%4{vB=JLMFr(=uF6TZ2AZ??INS?9Eg$sw&V|?J%A*xF?y8D z0YH-1+A?E+#LhFZP%GW`5B=^z(SkAqYJ*<5b7N&wm5ApF#IRe;E6 zwMzqp4)Jr?goE&N*zpe149&$3@;xBklWps_07(Y@lKG{_8FG0~Bf;)hBOw2__58XE z9wI$p>!5)sloXbN9%0oe%Iq%RL`%> zcm9vZ!lI7_4W2tPzrGjDugaR5G%qE)3z-o8zL^ESyTR4EmSMlRnz?0L<%amo&(HPo zYtF1$X?%VFJ_q+jBZ(0u%AMeDs@hrwnUbyai$Z^fOk89l6%`et4O8Oo-^*oW-6DPeY0&pXLse5{-Qo3BxHTOf!{30ub3;-zKi^Dr24 z4`JdnKZEAvOSi6y&pnV~kJ8GRU#7c1@Of5!V}pBpRmQLwAFa~ew0bIMG|s@jujUWE za*K@NLxDfs|2al1EZf?j-e7$EWla288~9UGJrgPIyv_x#?S^B!9-nC1U+(jLj-izs z{I3#Irf{a1a-{f~!pT!)eSV0LSGYc}!p{<+`-tgV=sZ_Fw{U&l=L%V$+psgmXLJ73 zD@URrN^`x;_4)Y|WqqE=edp-$gP9H(;Nyit}r)VRHUc3K@SbE6`GqkpD3O@%j*&_~PhW19dHOt*_^KGw);`4a zQGC3p?*rVHai0Dsh$$vo8e3dfBim&@4zib=r)^P*Y36x)$5vu0$BUA-ZF7Fumvfr~ zFO+yKV>i6QcnumY@%kI)1qLFea1P$rBJrwE*{e4>clO4WG#K)b_ZQumdVTkgAQ3qa z5Be1up?^z#Yz;=Ae&q`?I*w>NNa+7I3dtI6?j%s|h2JSXc3&w8b2z16cm%(I@z$@&$Z^@L{~Un@!J`$W%r zYfjc%J?o90^)}D?G|zflPS&sStS|7a(_YJ+db>8p7oxbtS|7a*Lc>i z_pFzB)_ZfZ-soAM>si0XvtAlnH+N}%4n&_>&7Lu@N*|%*|J>Rc^9hA(=Iq9~_$4U3 z={mG!ju(-||NSGiImV5`$&Q}O>izR@#VST-G@tEK>wKEK2S%o}QN|~oj2WNbZe@Jr zNc}bTy>#W)eAedxqua9gee5#HAO0|6N|CefCxX5=);HB!w;Lf}p&(RL+_!#p9FEV> z6ieIg>R5b!GVr-!){L5&wIlF}f)tVYQy{}VcONAC$wlVrKt}G;M7_H-e0PMNJL5Cn zrFl7!p?23+g?2Gg(uXnBGCX7C=Y4M3R#z_4_rC`|*VNZFg-`X-YK4X(Wqt5j%h2ar z(Q22n-xmy^)9V)H_Tl-ClcY}Ui+EAOo@AfphUj$!^Oz7!DzqAZ(;i4_|?ENd; zwGPhSF{e|D#Nx}q=lS@Zq01_4$7d(1M~p(l;0`%It*F5dl+5Tgy-0Uoy`sD}(bR~Z z-lVUW^CNSs7N}24R^#f9m;3pV(}0Xb?Zp70e=lQv;&>7x{M7y*M1CfStcTh<$LIFF z^>rXy>*B|qS3qv@u5QwekBNIUhh0ElWBK_i>e>H~b^q60o?n~SUr13fYya!jRxbvOtgU?##>+yO2z-Rm_ zR%4w##E}XOMY^}*GxNCw;~I>i8soju)1X!G$)iTtuO*O5IR`LvFwm3kcWU|)3waU) zcU<+_G8nc})-iLQaD?0U!~!c=y6-iWiIrxiq{$8Gdod2jdJeMl2cYjktDx^1Vc$Q? z*!Mus|FQ4MKJ0(&unz4&?NzEkEn$RtIEK;#@Cy$*6Akm6sYt~OdT zM`Jw(E`27H$f%|n`97^SCd&N1ExnS=;WBH*7)Qp63I)cJnR_ZLq?V!2f5ZnW6IFlZ zpR6SRXP-^>b_Wr}2Q*xItRgGq`9Z(bG_6eiLAz>1wG9hhkO~K zJePkmVwVRamNw-h526>rIB2$qVtsYHjMec`vp9h)te~JvPF9ed@Y$MkIiM(qgZ9o$L zvXR@_>OC8|2S|6XAd*pfoS9Kyz*qOm#Gix3FzhZK{<_hIb2Ycfvqo)5ST%R@hPg^0 zE*W)gkWq8erqnOdi(cu4r$yU+3^HBsdp%XH*wcYtJLxGiA=`ONo5ai0687T8pcf5I z-WQ7D&uK^g73R-}nSG{TZ$hU1BN=%j z9{`E|+eW?wl5mh+4?(;FL^4y`V&CzwYlPPrVcFJwUlH^jR{^y%oM$a7CRQ}et)AT& z`&joP(~9&>^rFqk^b5{XbSw5^O2*^zw#vGPf?mw2YUJh2tZ>9wI}9EsKg}FL8F?*3 zp9gG*Prn@{+j`_DW5(%oiMf^PoAj2`6>}Tack8>q*!svHg?>f8lpK>@=vM5-W!R05 zSY?~_Le4HOfF0=1PxGtI;!jL@NIB1X@JUv%w#esJW23myLEpnqvWjr9aFEhr$SemL z(~V3ph*?SEIa%jp)sE)To6$`NDJ}G@*Lcp8J16T~JOH<8`G_vU21(6j!LXT8|7evN0Ht0hmWzS>GV-m^Z;i~9u6deocm#W`6o z@vIN_tdH}oZ}Ivb&B=O^XZ=%et&vGepAFfzMtkm{D`iJtXwp7pkztPk|8^Co~h^89wDgN#XraX0tkX2KtHS3lz?*WvL( zKDoAzDdzmJU3!u3YSi3W`afT%=ws!m7}jRhudRG?y;0Vmbe~FVJ*B)<*LpB?DMjul zyuFq2ku&qJvG1kRw&t_>QkR@(r z4lWE3V?8Mu^_8rbc-Dt|*6|2uiuDrDdRI=?2YS|vJ?q0g>r1x}{4ss+&dK^<&-z}T z^-|Azr)Rwt&wx>7MnZH}btXSwGja9`mg8vrRYaws_Vf@>aL6ly&1g>!qIc zm}foiSuf7X`gqU!IM4dIp7mDGdNe2N6FuvvdDi(I3wPvuJnJPnSs&(EAL>~z^Q>?2 za=t7l>w9_D2YS{^JnJhw>#>}ymwDF5d)B9U*7*%k6AQE2#B;J9^{fx}tn-r}H|}e_ zz9(|B9`meE^sLYItbgS7y)`H6Lp|$J&-!@J`bMwsZ8=#l^{kh8)+c(_CwP5t&&m2} zp7jZy^|)t!O=#Vmd495$Gb?#!GCWqwnWuF;mGcDY1#G4k?@nnt8S@N7aPKsoj5+hf zM>jg3w{qrLB%_h}?5mWYU#WSKPR5K+e~fdcGjlofOn!ZRFHLOCXLIIxZuY*9ohJE{ z?ioDO_dSEY&svDj@oMKBj&DC#h0oBPfjjoW)r1QARDL$0Mk9*5=&5<2w`(BNB{IP$ zEa4d9F)LmYSY?~#&&9LU*H{9d)5M)-uZD*kf|&BE#P3QQWHx7!xdSrAd+5)Fb&q}t zBmsTYsgXYe={27_Xyji&mZQqd)JWl>cvqf@sYV6@k-Mq=@H~=!0I+0Nc^4&`MutFU zJb0*Q3|s9+8PR+O5l3?c5S;p1ts04-(6Y9EHIR*_?;5!Y$VybTExbdqiqBei?IQkE zR5r2Ok&-s~e232w&6=NxL>-^+hn`-OnOgJjjrA|T6zjb}x{K{z@MZ4pPQL~LsdRdA z01&w|pf!&KvdWPe4uc*G-NC5RvGtU3V(~r@`GiI5`2t9n z)2}^-BZAl&=0*t+zK$at=hJ~)4=~KtDj@CVb91fvN+3Os=9{P|61DWK1VSC5<~2%& zauU;5sK@c=6HjJ`!_m_lm_O2L01zqKp96r%)s{w%19F9Q7nQ;|BdQ}8P^JPHv z)t^N01|SQZY*`9quA}*3AnlIKV?g98K>PDLWg@(@Et)?BBKPaGOg}uPlW;We1w@{5 zN7l`5Xq?fA(FkS}M_~kHI-FK#0$J}MRn+Xns}V@C${+FP1|Tdt?iG!7O^HNReTn1q zZIE$Stw({};Pm||YTn(Rr|YTN$+2D_-HwO-@s75b6P-PPEORs;0Hi(e5S7RYK$bf) z6M@t?$OS;6jz9B(40mL%1(I}ndMgkq82Rdk8I6q#Bl=r5GGg~ZrZ`xU@cT1WwP?~7 zM5m&np{fyU0*;AR+<)U}rj0)VxyJE_zpx!eAi{b2cOdcv4*aRWJ8vo~l!M{?de3Oq zNX2aRPQ*yBvu+e%)k-+Fb_253iN%3HV$dC09|xp0=qb&f4g{q*v_1`pe7X&FD3z3P za_nj%#j++;%xJ8u2B1IXlu`XLWD1IG>rVoaPw}+omwK_)&(RwTAMA4sp`VGR(u&KxM603x4==~m4^S{+-r0SV*9 zR`*elGd{njOwf1AJPD-CncXh~nH%`b#czIHWmUV=(>Ebg;%NQ^i2lS`X2JHQumiy$LU zeV{SQ#ncnDBC-HT#2M9Vft2lN&$v5*xMy*{0bs5+K7IcX1Ak!T^l|Xnn53_fXLWrug#{V0Ew4xOwOo~K)0%V(@XaV(EDT z$OgyO3qV#l$lri;2S~+?nRWGzSnr&X-wc@rj;+FR$_f07Mym661?P2zTfPaIMyJ(L zK;#aU?!_rUl8(#;lyOG28VD|2BH>xV)j)b2nKmF>!d^7h;v1UtB3;g!c_(Dr9X*c# zk%C!}sJo0?ZBB+i37L{TWG-_y&AO~I(i>>5sF*dEzkHydHHw<(yoOc~F+OuP)#7qJ z9?T}%`4BSlbPYsN@{d9*Cl8}Q5>8K#1(FPVs!vWM$-p1#IUO=FM^79GBNXP?0w63Q z@?9YE?1A=YDUgo97Nzett-@G552VqN=>f7O=sR0|3}hg9*lMSv(NkwM_5{Kb`g5d* zoC##2W9tGS-NBKF<6MKQhcYLEmq4b+vGrXbn;bn$f%FD?=*Rs);!ZD~0n#4CLj48; zyE6DsD^?>)f~&tzv=C z)bnE?$pC?#S+lAd8oC2Ll(`2o;rTp~H9+KUD&}B$O;uH*4EJey9xiL$Um+t;1ZnH< z0=eGlX&!IZnWANOBjQ~B9RQ?LgJzzd2qYTzeO66f18%*=obic6W|h;bnRFR|r0*nELs{3u&QC5eQU7Ui&fezx8@+!05% zdg+RC-W|E3$z3RRt7lxaF5t?#bvvu^J4QCj%Rd=<)vW!*rfD3gn;cb;0C)q@<%btZ;eIwWxgh&9& zqk~TuERSGg%KXXU1CdzNS65W4vhJ#;2C1^P&2|Z;d`}Fcpz;PJ{&b^FVdi@ByCWe< zQ{+wCq8yhGu+;M`FOTP3YCNN+s^@Z%ZM*KNZR*y>DNfn!aFZY95^He?$d7dgSH`_Ao{mq?&n}MK%i`%5 zKAy`XpM>Y9(fIMS{M7(lUcB)DE-x+(z~u#?9z@~E_ka6F`yZdaeS_|YJDsA1p#AH` zI~z)&2W|fp+JN=vkcN^tL@-oi z9wJYdZ!hrJ)a5arfP{+H<=bBzLD}0V8tGgx4K2N-0DdW1j*;Ml?mkGmLE|SXbv3bD(T)qX#c!o_+ z<@n-K7^(;V%3q3!VJ_ymtA>T$t}`#BE%R+lW2Ht6rZ-zuIpAKBn|io{+HQap_FHuc zO*A$a(y>LDU~ifZpD5bEL}~>bplF=5F0N>Ru+YnUZizb%rm9le1cNGGnJ zJmMWcOE@us8d5+>@#Im%%*n2^{AsjeTT4|{JAG2pfzoiY0-Oqfs*S_frq@_toV8HL zQ$oT(bWZZ7e#RDHSiH(!UAKi~!6zsj_+zo5kxsf=e zL(k;<;A+U$lXT|Pxk0s;*I$m$&o6MY)-z(oD9r(2LL&}=wS^9Z#K_m}_>BEa{{nSj zFNBBfld2m*E7QjnA#3j^} zgBlunb z&*CAh1a(Fe5=#!BglrlyfK`Vs1c3@CtW7IQEj=hjSW?S-;vpQf+4a0S+s@~r41o%N zNmaEYSl-^(8C9--n`7;Sp-AXd0wBE4da#Dyb`zk-=NE4-&IaTIBS2ZC>&XN7fDr~L zaA0YRob(oJIaUE7!e_xGX!~t?S&b<>PsMr0t9D}3AvK-vhjVN zc+_%;ukAUdB4VzZ544gN1FWdS&ZYWrP@A9@WFjr4i2-IwA#oa((R_+ysYguWj3u4a z^urN@t4*gMT1n&ky%%(Bspaw5DQ}7$HJ`xbnH< zX-DceNsuXP7cdt1n@glg9-r+o!kIMCrcvR1D{({^5m7nitAAR<;prHg12uiAdwGP; zD6kogrUK*;I|^;08aj1GV*0G^;y@h&AQ4t+zxGha{7_}82M16O4VfcfaT=kNMF(IH z_RJ>+HKo=buAaoocb}kzRZmdEYNrTk)rUbJ#(RQZ9_uNJdBjrSbJ#i9lcBdG#b(7L zPLg7^X?R5hVGcH`dNVh? z)IWeqfOx}#|H6P^go3!T%cfZ)iMdQSdK&MS=&*O+D{NM{X$vDoupq7OB}*pGB5nuk z)sovGhMl7h6=;oJB2)qNXR5>o9kHe9_RIm>1bp^2N2rTN3~2jEc0`EHZe5zQ4&OF% zE?d}5Ist3|cmJtchuw@&NNM9*7#X-h;=;{juiq>PSKElQKZGv(#zxCF*qQ56tDCM$TI_sWVS@yAs`yzBFw;_ zf*#T7il(kuKUm;ve#kfjo|s1Ga-1kalSirHC66Ad&DgAV?Jqb-IXFj!9t)8xJVW!T$Ju>_~+l0wJ#~ zF;dAuleHXfvQh`#ug;3^TcA5tvD~k)$&nVml96TGv3XSYrhttj0*I5<5mb#-r|@EG zd1utR?2TmQxI4qp(_VGjJqDa~j4O;t`$e&YGAPu~@W_C{nq$$sD(?mnHLA$@dK<&k zBIui^s_Pu$u?6;W2#D1s#A32p|!k2FAsdnre*Hz1rgN9MqL? z-I0WK<~5Qbtp_>6YZ`FbE4I4Spd!mS=Va*2`T~y*!*8MTVJ8{*Lo5u3sDrW^1ZT*q z-ayNV-9SOjK*=I1;2@995>ZPWa-jqM#ldCYA?OKAQZV0(P@5|D^U9GB45wZurbd-c z{{BWOp3y!nZ7e-mj&NXbS)&QGL|_}vaC%jp%|^<2s@Ml76dtI#SB8@%iyqCF4Hs6MCNH`uS`qv% z(q4;XDI&mu@KT+OIiT)-1BFQ5jsRNW7zI<`%^Hq$PWfCGAH>P@_<@(NiS7A zy(I_P!Fl5;M?fF?+KL#=z)nH@KYwtbZxj@Ll3$_F$E@4cxjvS4-XM;@unG;52pmm9 z({eu{sjv(v$$O$FiohE5Bo~Ge;l;9BT~_Ds-h|^s`4wi-d-2aQ zKf^t<6aA0T%%>CmVM-Pu+3Exs&a1@hM*7;xLHzCf?z8Sz1V!g$36xF#r7S*#o z+EYNpPD@V&Liu_E_5OH5T_iu5;=&JP5R9}LEAl@^!AA4`rxnsyzQH=<_W;7vQYhX& zTlnzi?21+Ouz-r6pIK++k1bP@oHU&yeW;sRGC)=1)P+V}>#%C&pnw8|AXVoZ2r>oo zhzQ$VKiHmR&G;pEhtU0P^~{4Di4jUG*&OCP^~0rH>j)kE!0mTvV2>f-?|#$ps3MKY zkTE!!-^8TZv{&%tvZCxqqIW1+YaA7W2`i6(1TF5f^ zYNjN9K=v9k64RVRM^OZ!2dRi!d@OQ${O0oV{1Q2m6k2=fHBTjqDV)`$86G|%W+goL zqb$Fw8WBYv!f?O-{<+UwBYx-)A7APQb2Ft8aY$| z{fv0U1hew6uDX9VRdFw=5^l4^(I7VwGC7&eH3+*YZ*gRC_5SP~fcUu}oNZIFVeS}i zrr?$Z772%Hi}F1?2$;K|{jVX%49Y>48DaO^cBm2`z2SKP`NIKh>vlSMZOWT2S?-mqB8N?Z)T&glpY zleRb^W}5FR`_7Yu?F=RcX|9ezJ?=jw1sI>KaIecD<-;TfGsLksn)685FBF{pr*0!> zp;o7tkBs)Zgb(E^TR%dpU%fv?nxrm^@es0WQQ~IR0)k`uBrrZ0jET3Nj0d2Z(_vEJ zIgD%2^O#g3@JQMkX9Tvn@uq}Kfnh&NR-}sLRWFm^XI}L10Km(-Rd6a7!lBKwpqLGL z^nQ1@S|fSP=|4I^59mS8|B#DeLWP<@2BA^J;|a13pN5GSWLlM(meskNGaSYMjWML> zB51F5%%(!F(AFmFkPE)+S54t^TZ_*yU`Z!9yAbbC0P+f)Erma=51e<^`BhiAAj^H* zik)YgiFz!##(T)t7*VLnik=%Pee1Cb2MqmhN~bhO@NG92m#)h4<8 zohmUnRtTz!S404}@I-gWvaj8lyTt$Z*S~G6rC1^@Kf4?P5XfT(Xv$jqIgVQZjdVvs&#Fy6p@E= z6XZ>$DEBzwJ_Psb2|6lQ_XwBo_X!?5#@-GR zBe+El**yXdOPAx$Y7n-u%Nw{xACp><0(IcMk|dwD%y4%yp(D5FV8}2Fy#k2Vs-vlB zI1~m(6|_K@k3x?~2bS_`{F*m9dR*x{a#2BR^4`Rn8QFNp2Skx;Jvs)~3lK`5V_*w6 z#1CyT3@v6gLk6CWr9cC>oAMSA5Pdz_18M6jGHiS65*9#=A0q;(;@Pu=hN9^^kT5pn ziqh{TLW0xI7QcF7Yi)Odffaex^H?8nTE1fr)AFKc7}(Cb(Qi9*#vwses$gK!UBwm&wpThU=8A53nS%*8n zEfzOrWLI!_ehSaN(s1NH(3KuplmiL~Tm*GaT9Eye9s}MR8g?y~GUR=& zWbZO5?$SGCK EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* +* MVNPRODCORRPRB calculates multivariate normal probability +* with product correlation structure for rectangular regions. +* The accuracy is up to almost double precision, i.e., about 1e-14. +* +* This file was successfully compiled for matlab 5.3 +* using Compaq Visual Fortran 6.1, and Windows 2000. +* The example here uses Fortran77 source. +* First, you will need to modify your mexopts.bat file. +* To find it, issue the command prefdir(1) from the Matlab command line, +* the directory it answers with will contain your mexopts.bat file. +* Open it for editing. The first section will look like: +* +*rem ******************************************************************** +*rem General parameters +*rem ******************************************************************** +*set MATLAB=%MATLAB% +*set DF_ROOT=C:\Program Files\Microsoft Visual Studio +*set VCDir=%DF_ROOT%\VC98 +*set MSDevDir=%DF_ROOT%\Common\msdev98 +*set DFDir=%DF_ROOT%\DF98 +*set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH% +*set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE% +*set LIB=%DFDir%\LIB;%VCDir%\LIB +* +* then you are ready to compile this file at the matlab prompt using the +* following command: +* mex -O mvnprodcorrprbmex.f + MODULE ERFCOREMOD + IMPLICIT NONE + + INTERFACE CALERF + MODULE PROCEDURE CALERF + END INTERFACE + + INTERFACE DERF + MODULE PROCEDURE DERF + END INTERFACE + + INTERFACE DERFC + MODULE PROCEDURE DERFC + END INTERFACE + + INTERFACE DERFCX + MODULE PROCEDURE DERFCX + END INTERFACE + CONTAINS +C-------------------------------------------------------------------- +C +C DERF subprogram computes approximate values for erf(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERF( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 0 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERF +C-------------------------------------------------------------------- +C +C DERFC subprogram computes approximate values for erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERFC( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 1 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFC +C------------------------------------------------------------------ +C +C DERFCX subprogram computes approximate values for exp(x*x) * erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, March 30, 1987 +C +C------------------------------------------------------------------ + FUNCTION DERFCX( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 2 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFCX + + SUBROUTINE CALERF(ARG,RESULT,JINT) + IMPLICIT NONE +C------------------------------------------------------------------ +C +C CALERF packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +C for a real argument x. It contains three FUNCTION type +C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +C and one SUBROUTINE type subprogram, CALERF. The calling +C statements for the primary entries are: +C +C Y=ERF(X) (or Y=DERF(X)), +C +C Y=ERFC(X) (or Y=DERFC(X)), +C and +C Y=ERFCX(X) (or Y=DERFCX(X)). +C +C The routine CALERF is intended for internal packet use only, +C all computations within the packet being concentrated in this +C routine. The function subprograms invoke CALERF with the +C statement +C +C CALL CALERF(ARG,RESULT,JINT) +C +C where the parameter usage is as follows +C +C Function Parameters for CALERF +C call ARG Result JINT +C +C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 +C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 +C +C The main computation evaluates near-minimax approximations +C from "Rational Chebyshev approximations for the error function" +C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +C transportable program uses rational functions that theoretically +C approximate erf(x) and erfc(x) to at least 18 significant +C decimal digits. The accuracy achieved depends on the arithmetic +C system, the compiler, the intrinsic functions, and proper +C selection of the machine-dependent constants. +C +C******************************************************************* +C******************************************************************* +C +C Explanation of machine-dependent constants +C +C XMIN = the smallest positive floating-point number. +C XINF = the largest positive finite floating-point number. +C XNEG = the largest negative argument acceptable to ERFCX; +C the negative of the solution to the equation +C 2*exp(x*x) = XINF. +C XSMALL = argument below which erf(x) may be represented by +C 2*x/sqrt(pi) and above which x*x will not underflow. +C A conservative value is the largest machine number X +C such that 1.0 + X = 1.0 to machine precision. +C XBIG = largest argument acceptable to ERFC; solution to +C the equation: W(x) * (1-0.5/x**2) = XMIN, where +C W(x) = exp(-x*x)/[x*sqrt(pi)]. +C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +C machine precision. A conservative value is +C 1/[2*sqrt(XSMALL)] +C XMAX = largest acceptable argument to ERFCX; the minimum +C of XINF and 1/[sqrt(pi)*XMIN]. +C +C Approximate values for some important machines are: +C +C XMIN XINF XNEG XSMALL +C +C C 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +C CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +C IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +C UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +C VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +C VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +C +C +C XBIG XHUGE XMAX +C +C C 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +C CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +C IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +C UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +C VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +C VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +C +C******************************************************************* +C******************************************************************* +C +C Error returns +C +C The program returns ERFC = 0 for ARG .GE. XBIG; +C +C ERFCX = XINF for ARG .LT. XNEG; +C and +C ERFCX = 0 for ARG .GE. XMAX. +C +C +C Intrinsic functions required are: +C +C ABS, AINT, EXP +C +C +C Author: W. J. Cody +C Mathematics and Computer Science Division +C Argonne National Laboratory +C Argonne, IL 60439 +C +C Latest modification: March 19, 1990 +C Updated to F90 by pab 23.03.2003 +C Revised pab Dec 2008 +C updated parameter statements in CALERF so that it works when +C compiling with gfortran. +C +C------------------------------------------------------------------ + DOUBLE PRECISION, INTENT(IN) :: ARG + INTEGER, INTENT(IN) :: JINT + DOUBLE PRECISION, INTENT(INOUT):: RESULT +! Local variables + INTEGER :: I + DOUBLE PRECISION :: DEL,X,XDEN,XNUM,Y,YSQ +C------------------------------------------------------------------ +C Mathematical constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: HALF = 0.05D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: TWO = 2.0D0 + DOUBLE PRECISION, PARAMETER :: FOUR = 4.0D0 + DOUBLE PRECISION, PARAMETER :: SIXTEN = 16.0D0 + DOUBLE PRECISION, PARAMETER :: SQRPI = 5.6418958354775628695D-1 + DOUBLE PRECISION, PARAMETER :: THRESH = 0.46875D0 +C------------------------------------------------------------------ +C Machine-dependent constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: XNEG = -26.628D0 + DOUBLE PRECISION, PARAMETER :: XSMALL = 1.11D-16 + DOUBLE PRECISION, PARAMETER :: XBIG = 26.543D0 + DOUBLE PRECISION, PARAMETER :: XHUGE = 6.71D7 + DOUBLE PRECISION, PARAMETER :: XMAX = 2.53D307 + DOUBLE PRECISION, PARAMETER :: XINF = 1.79D308 +!--------------------------------------------------------------- +! Coefficents to the rational polynomials +!-------------------------------------------------------------- +C DOUBLE PRECISION, DIMENSION(5) :: A, Q +C DOUBLE PRECISION, DIMENSION(4) :: B +C DOUBLE PRECISION, DIMENSION(9) :: C +C DOUBLE PRECISION, DIMENSION(8) :: D +C DOUBLE PRECISION, DIMENSION(6) :: P +C------------------------------------------------------------------ +C Coefficients for approximation to erf in first interval +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER, DIMENSION(5) :: + & A = (/ 3.16112374387056560D00, + & 1.13864154151050156D02,3.77485237685302021D02, + & 3.20937758913846947D03, 1.85777706184603153D-1/) + DOUBLE PRECISION, PARAMETER, DIMENSION(4) :: + & B = (/2.36012909523441209D01,2.44024637934444173D02, + & 1.28261652607737228D03,2.84423683343917062D03/) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in second interval +C------------------------------------------------------------------ + DOUBLE PRECISION, DIMENSION(9) :: + & C=(/5.64188496988670089D-1,8.88314979438837594D0, + 1 6.61191906371416295D01,2.98635138197400131D02, + 2 8.81952221241769090D02,1.71204761263407058D03, + 3 2.05107837782607147D03,1.23033935479799725D03, + 4 2.15311535474403846D-8/) + DOUBLE PRECISION, DIMENSION(8) :: + & D =(/1.57449261107098347D01,1.17693950891312499D02, + 1 5.37181101862009858D02,1.62138957456669019D03, + 2 3.29079923573345963D03,4.36261909014324716D03, + 3 3.43936767414372164D03,1.23033935480374942D03/) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in third interval +C------------------------------------------------------------------ + DOUBLE PRECISION, parameter, + & DIMENSION(6) :: P =(/3.05326634961232344D-1, + & 3.60344899949804439D-1, + 1 1.25781726111229246D-1,1.60837851487422766D-2, + 2 6.58749161529837803D-4,1.63153871373020978D-2/) + DOUBLE PRECISION, parameter, + & DIMENSION(5) :: Q =(/2.56852019228982242D00, + & 1.87295284992346047D00, + 1 5.27905102951428412D-1,6.05183413124413191D-2, + 2 2.33520497626869185D-3/) +C------------------------------------------------------------------ + + X = ARG + Y = ABS(X) + IF (Y .LE. THRESH) THEN +C------------------------------------------------------------------ +C Evaluate erf for |X| <= 0.46875 +C------------------------------------------------------------------ + YSQ = ZERO + IF (Y .GT. XSMALL) THEN + YSQ = Y * Y + XNUM = A(5)*YSQ + XDEN = YSQ + DO I = 1, 3 + XNUM = (XNUM + A(I)) * YSQ + XDEN = (XDEN + B(I)) * YSQ + END DO + RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) + ELSE + RESULT = X * A(4) / B(4) + ENDIF + IF (JINT .NE. 0) RESULT = ONE - RESULT + IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT + GO TO 800 +C------------------------------------------------------------------ +C Evaluate erfc for 0.46875 <= |X| <= 4.0 +C------------------------------------------------------------------ + ELSE IF (Y .LE. FOUR) THEN + XNUM = C(9)*Y + XDEN = Y + DO I = 1, 7 + XNUM = (XNUM + C(I)) * Y + XDEN = (XDEN + D(I)) * Y + END DO + RESULT = (XNUM + C(8)) / (XDEN + D(8)) + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + +C------------------------------------------------------------------ +C Evaluate erfc for |X| > 4.0 +C------------------------------------------------------------------ + ELSE + RESULT = ZERO + IF (Y .GE. XBIG) THEN + IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 + IF (Y .GE. XHUGE) THEN + RESULT = SQRPI / Y + GO TO 300 + END IF + END IF + YSQ = ONE / (Y * Y) + XNUM = P(6)*YSQ + XDEN = YSQ + DO I = 1, 4 + XNUM = (XNUM + P(I)) * YSQ + XDEN = (XDEN + Q(I)) * YSQ + ENDDO + RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) + RESULT = (SQRPI - RESULT) / Y + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + END IF +C------------------------------------------------------------------ +C Fix up for negative argument, erf, etc. +C------------------------------------------------------------------ + 300 IF (JINT .EQ. 0) THEN + RESULT = (HALF - RESULT) + HALF + IF (X .LT. ZERO) RESULT = -RESULT + ELSE IF (JINT .EQ. 1) THEN + IF (X .LT. ZERO) RESULT = TWO - RESULT + ELSE + IF (X .LT. ZERO) THEN + IF (X .LT. XNEG) THEN + RESULT = XINF + ELSE + YSQ = AINT(X*SIXTEN)/SIXTEN + DEL = (X-YSQ)*(X+YSQ) + Y = EXP(YSQ*YSQ) * EXP(DEL) + RESULT = (Y+Y) - RESULT + END IF + END IF + END IF + 800 RETURN + END SUBROUTINE CALERF + END MODULE ERFCOREMOD + module functionInterface + INTERFACE + FUNCTION F(Z) result (VAL) + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + END FUNCTION F + END INTERFACE + end module functionInterface + module AdaptiveGaussKronrod + implicit none + private + public :: dqagpe,dqagp + + INTERFACE dqagpe + MODULE PROCEDURE dqagpe + END INTERFACE + + INTERFACE dqagp + MODULE PROCEDURE dqagp + END INTERFACE + + INTERFACE dqelg + MODULE PROCEDURE dqelg + END INTERFACE + + INTERFACE dqpsrt + MODULE PROCEDURE dqpsrt + END INTERFACE + + INTERFACE dqk21 + MODULE PROCEDURE dqk21 + END INTERFACE + + INTERFACE dqk15 + MODULE PROCEDURE dqk15 + END INTERFACE + + INTERFACE dqk9 + MODULE PROCEDURE dqk9 + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + + contains + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier) +! use functionInterface + implicit none + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result1,abserr + integer, intent(out) :: neval,ier + double precision :: f +!Locals + double precision,dimension(limit) :: alist, blist, rlist, elist + double precision,dimension(npts+2) :: pts + integer, dimension(limit) :: iord, level + integer, dimension(npts+2) :: ndin + integer ::last + external f + CALL dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin + $ ,last) + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin, + * last) +! use functionInterface + implicit none +c***begin prologue dqagpe +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a2a1 +c***keywords automatic integrator, general-purpose, +! singularities at user specified points, +! extrapolation, globally adaptive. +c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven +! de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose the routine calculates an approximation result to a given +! definite integral i = integral of f over (a,b), hopefully +! satisfying following claim for accuracy abs(i-result).le. +! max(epsabs,epsrel*abs(i)). break points of the integration +! interval, where local difficulties of the integrand may +! occur(e.g. singularities,discontinuities),provided by user. +c***description +! +! computation of a definite integral +! standard fortran subroutine +! double precision version +! +! parameters +! on entry +! f - double precision +! function subprogram defining the integrand +! function f(x). the actual name for f needs to be +! declared e x t e r n a l in the driver program. +! +! a - double precision +! lower limit of integration +! +! b - double precision +! upper limit of integration +! +! npts2 - integer +! number equal to two more than the number of +! user-supplied break points within the integration +! range, npts2.ge.2. +! if npts2.lt.2, the routine will end with ier = 6. +! +! points - double precision +! vector of dimension npts2, the first (npts2-2) +! elements of which are the user provided break +! points. if these points do not constitute an +! ascending sequence there will be an automati! +! sorting. +! +! epsabs - double precision +! absolute accuracy requested +! epsrel - double precision +! relative accuracy requested +! if epsabs.le.0 +! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +! the routine will end with ier = 6. +! +! limit - integer +! gives an upper bound on the number of subintervals +! in the partition of (a,b), limit.ge.npts2 +! if limit.lt.npts2, the routine will end with +! ier = 6. +! +! on return +! result - double precision +! approximation to the integral +! +! abserr - double precision +! estimate of the modulus of the absolute error, +! which should equal or exceed abs(i-result) +! +! neval - integer +! number of integrand evaluations +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier.gt.0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! error messages +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit (and taking the according dimension +! adjustments into account). however, if +! this yields no improvement it is advised +! to analyze the integrand in order to +! determine the integration difficulties. if +! the position of a local difficulty can be +! determined (i.e. singularity, +! discontinuity within the interval), it +! should be supplied to the routine as an +! element of the vector points. if necessary +! an appropriate special-purpose integrator +! must be used, which is designed for +! handling the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behaviour occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. +! roundoff error is detected in the +! extrapolation table. it is presumed that +! the requested tolerance cannot be +! achieved, and that the returned result is +! the best which can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier.gt.0. +! = 6 the input is invalid because +! npts2.lt.2 or +! break points are specified outside +! the integration range or +! (epsabs.le.0 and +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) +! or limit.lt.npts2. +! result, abserr, neval, last, rlist(1), +! and elist(1) are set to zero. alist(1) and +! blist(1) are set to a and b respectively. +! +! alist - double precision +! vector of dimension at least limit, the first +! last elements of which are the left end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! blist - double precision +! vector of dimension at least limit, the first +! last elements of which are the right end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! rlist - double precision +! vector of dimension at least limit, the first +! last elements of which are the integral +! approximations on the subintervals +! +! elist - double precision +! vector of dimension at least limit, the first +! last elements of which are the moduli of the +! absolute error estimates on the subintervals +! +! pts - double precision +! vector of dimension at least npts2, containing the +! integration limits and the break points of the +! interval in ascending sequence. +! +! level - integer +! vector of dimension at least limit, containing the +! subdivision levels of the subinterval, i.e. if +! (aa,bb) is a subinterval of (p1,p2) where p1 as +! well as p2 is a user-provided break point or +! integration limit, then (aa,bb) has level l if +! abs(bb-aa) = abs(p2-p1)*2**(-l). +! +! ndin - integer +! vector of dimension at least npts2, after first +! integration over the intervals (pts(i)),pts(i+1), +! i = 0,1, ..., npts2-2, the error estimates over +! some of the intervals may have been increased +! artificially, in order to put their subdivision +! forward. if this happens for the subinterval +! numbered k, ndin(k) is put to 1, otherwise +! ndin(k) = 0. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the +! error estimates over the subintervals, +! such that elist(iord(1)), ..., elist(iord(k)) +! form a decreasing sequence, with k = last +! if last.le.(limit/2+2), and k = limit+1-last +! otherwise +! +! last - integer +! number of subintervals actually produced in the +! subdivisions process +! +c***references (none) +c***routines called d1mach,dqelg,dqk21,dqpsrt +c***end prologue dqagpe + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result,abserr + integer, intent(out) :: neval,ier + double precision,dimension(limit), intent(out) :: alist, blist + double precision,dimension(limit), intent(out) :: rlist, elist + double precision,dimension(npts+2),intent(out) :: pts + integer, dimension(limit), intent(out) :: iord, level + integer, dimension(npts+2), intent(out) :: ndin + integer ::last + double precision :: f +! locals + double precision :: area,area1,area12,area2,a1, + * a2,b1,b2,correc,abseps,defabs,defab1,defab2, + * dres,epmach,erlarg,erlast,errbnd, + * errmax,error1,erro12,error2,errsum,ertest,oflow, + * resa,resabs,reseps,sign,temp,uflow, hSplit + double precision, dimension(3) :: res3la(3) + double precision, dimension(52) :: rlist2(52) + integer :: i,id,ierro,ind1,ind2,ip1,iroff1,iroff2,iroff3,j, + * jlow,jupbnd,k,ksgn,ktmin,levcur,levmax,maxerr, + * nint,nintp1,npts2,nres,nrmax,numrl2 + logical :: extrap,noext + external f +! +! + +! +! +! the dimension of rlist2 is determined by the value of +! limexp in subroutine epsalg (rlist2 should be of dimension +! (limexp+2) at least). +! +! +! list of major variables +! ----------------------- +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 +! containing the part of the epsilon table which +! is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! been obtained, it is put in rlist2(numrl2) after +! numrl2 has been increased by one. +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation is +! no longer allowed (true-value) +! +! machine dependent constants +! --------------------------- +! +! epmach is the largest relative spacing. +! uflow is the smallest positive magnitude. +! oflow is the largest positive magnitude. +! +c***first executable statement dqagpe + epmach = d1mach(4) + uflow = d1mach(1) + oflow = d1mach(2) +! +! test on validity of parameters +! ----------------------------- +! + hSplit = 0.2D0 + ier = 0 + neval = 0 + last = 0 + result = 0.0d+00 + abserr = 0.0d+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0d+00 + elist(1) = 0.0d+00 + iord(1) = 0 + level(1) = 0 + npts2 = npts+2 + if((npts2.lt.2).or.(limit.le.npts).or. + & ((epsabs.le.0.0d+00).and. + & (epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)))) then + ier = 6 + go to 999 + endif + + sign = 1.0d+00 + if(a.gt.b) then + go to 999 + endif + if (npts>0) then + if(any(points(1:npts)<=a).or.any(b<=points(1:npts))) then + ier = 6 + go to 999 + endif + endif +! +! if any break points are provided, sort them into an +! ascending sequence. +! + pts(1) = a + pts(npts+2) = b + do i = 1,npts + pts(i+1) = minval(points(i:npts)) + enddo +! +! compute first integral and error approximations. +! ------------------------------------------------ +! + nint = npts+1; + a1 = pts(1); + resabs = 0.0d+00 + do i = 1,nint + b1 = pts(i+1) + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,defabs,resa) + !call dqk15(f,a1,b1,area1,error1,defabs,resa) + else + call dqkl9(f,a1,b1,area1,error1,defabs,resa) + endif + abserr = abserr + error1 + result = result + area1 + ndin(i) = 0 + if(error1.eq.resa.and.error1.ne.0.0d+00) ndin(i) = 1 + resabs = resabs + defabs + level(i) = 0 + elist(i) = error1 + alist(i) = a1 + blist(i) = b1 + rlist(i) = area1 + iord(i) = i + a1 = b1 + enddo !50 continue + errsum = 0.0d+00 + do i = 1,nint + if(ndin(i).eq.1) elist(i) = abserr + errsum = errsum+elist(i) + enddo !55 continue +! +! test on accuracy. +! + last = nint + neval = 21*nint + dres = dabs(result) + errbnd = dmax1(epsabs,epsrel*dres) + if(abserr.le.0.1d+03*epmach*resabs.and.abserr.gt.errbnd) ier = 2 + if(nint.eq.1) go to 80 + do 70 i = 1,npts + jlow = i+1 + ind1 = iord(i) + do 60 j = jlow,nint + ind2 = iord(j) + if(elist(ind1).gt.elist(ind2)) go to 60 + ind1 = ind2 + k = j + 60 continue + if(ind1.eq.iord(i)) go to 70 + iord(k) = iord(i) + iord(i) = ind1 + 70 continue + if(limit.lt.npts2) ier = 1 + 80 if(ier.ne.0.or.abserr.le.errbnd) go to 210 + +! +! initialization +! -------------- +! + rlist2(1) = result + maxerr = iord(1) + errmax = elist(maxerr) + area = result + nrmax = 1 + nres = 0 + numrl2 = 1 + ktmin = 0 + extrap = .false. + noext = .false. + erlarg = errsum + ertest = errbnd + levmax = 1 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ierro = 0 + abserr = oflow + ksgn = -1 + if(dres.ge.(0.1d+01-0.5d+02*epmach)*resabs) ksgn = 1 +! +! main do-loop +! ------------ +! + do 160 last = npts2,limit +! +! bisect the subinterval with the nrmax-th largest error +! estimate. +! + levcur = level(maxerr)+1 + a1 = alist(maxerr) + b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,resa,defab1) + call dqk21(f,a2,b2,area2,error2,resa,defab2) + !call dqk15(f,a1,b1,area1,error1,resa,defab1) + !call dqk15(f,a2,b2,area2,error2,resa,defab2) + else + + call dqkl9(f,a1,b1,area1,error1,resa,defab1) + call dqkl9(f,a2,b2,area2,error2,resa,defab2) + endif +! +! improve previous approximations to integral +! and error and test for accuracy. +! + neval = neval+42 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if(defab1.eq.error1.or.defab2.eq.error2) go to 95 + if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) + * .or.erro12.lt.0.99d+00*errmax) go to 90 + if(extrap) iroff2 = iroff2+1 + if(.not.extrap) iroff1 = iroff1+1 + 90 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 + 95 level(maxerr) = levcur + level(last) = levcur + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = dmax1(epsabs,epsrel*dabs(area)) +! +! test for roundoff error and eventually set error flag. +! + if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 + if(iroff2.ge.5) ierro = 3 +! +! set error flag in the case that the number of +! subintervals equals limit. +! + if(last.eq.limit) ier = 1 +! +! set error flag in the case of bad integrand behaviour +! at a point of the integration range +! + if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* + * (dabs(a2)+0.1d+04*uflow)) ier = 4 +! +! append the newly-created intervals to the list. +! + if(error2.gt.error1) go to 100 + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + go to 110 + 100 alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 +! +! call subroutine dqpsrt to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + 110 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) +! ***jump out of do-loop + if(errsum.le.errbnd) go to 190 +! ***jump out of do-loop + if(ier.ne.0) go to 170 + if(noext) go to 160 + erlarg = erlarg-erlast + if(levcur+1.le.levmax) erlarg = erlarg+erro12 + if(extrap) go to 120 +! +! test whether the interval to be bisected next is the +! smallest interval. +! + if(level(maxerr)+1.le.levmax) go to 160 + extrap = .true. + nrmax = 2 + 120 if(ierro.eq.3.or.erlarg.le.ertest) go to 140 +! +! the smallest interval has the largest error. +! before bisecting decrease the sum of the errors over +! the larger intervals (erlarg) and perform extrapolation. +! + id = nrmax + jupbnd = last + if(last.gt.(2+limit/2)) jupbnd = limit+3-last + do 130 k = id,jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) +! ***jump out of do-loop + if(level(maxerr)+1.le.levmax) go to 160 + nrmax = nrmax+1 + 130 continue +! +! perform extrapolation. +! + 140 numrl2 = numrl2+1 + rlist2(numrl2) = area + if(numrl2.le.2) go to 155 + call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) + ktmin = ktmin+1 + if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 + if(abseps.ge.abserr) go to 150 + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = dmax1(epsabs,epsrel*dabs(reseps)) +! ***jump out of do-loop + if(abserr.lt.ertest) go to 170 +! +! prepare bisection of the smallest interval. +! + 150 if(numrl2.eq.1) noext = .true. + if(ier.ge.5) go to 170 + 155 maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + levmax = levmax + 1 + erlarg = errsum + 160 continue +! +! set the final result. +! --------------------- +! +! + 170 if(abserr.eq.oflow) go to 190 + if((ier+ierro).eq.0) go to 180 + if(ierro.eq.3) abserr = abserr+correc + if(ier.eq.0) ier = 3 + if(result.ne.0.0d+00.and.area.ne.0.0d+00)go to 175 + if(abserr.gt.errsum)go to 190 + if(area.eq.0.0d+00) go to 210 + go to 180 + 175 if(abserr/dabs(result).gt.errsum/dabs(area))go to 190 +! +! test on divergence. +! + 180 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le. + * resabs*0.1d-01) go to 210 + if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03.or. + * errsum.gt.dabs(area)) ier = 6 + go to 210 +! +! compute global integral sum. +! + 190 result = 0.0d+00 + do 200 k = 1,last + result = result+rlist(k) + 200 continue + abserr = errsum + 210 if(ier.gt.2) ier = ier-1 + result = result*sign + 999 return + end subroutine dqagpe + subroutine dqk21(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk21 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 21-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk21 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 21-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 10-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 10-point gauss rule +c +c wgk - weights of the 21-point kronrod rule +c +c wg - weights of the 10-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 / + data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 / + data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 / + data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 / + data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 / +c + data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 / + data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 / + data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 / + data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 / + data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 / + data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 / + data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 / + data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 / + data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 / + data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 / + data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 / +c + data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 / + data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 / + data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 / + data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 / + data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 / + data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 / + data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 / + data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 / + data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 / + data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 / + data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 / +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk21 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 21-point kronrod approximation to +c the integral, and estimate the absolute error. +c + resg = 0.0d+00 + fc = f(centr) + resk = wgk(11)*fc + resabs = dabs(resk) + do 10 j=1,5 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,5 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(11)*dabs(fc-reskh) + do 20 j=1,10 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0d0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk21 + subroutine dqk15(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 7-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point gauss rule +c +c wgk - weights of the 15-point kronrod rule +c +c wg - weights of the 7-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.129484966168869693270611432679082d0 / + data wg ( 2) / 0.279705391489276667901467771423780d0 / + data wg ( 3) / 0.381830050505118944950369775488975d0 / + data wg ( 4) / 0.417959183673469387755102040816327d0 / + + data xgk ( 1) / 0.991455371120812639206854697526329d0 / + data xgk ( 2) / 0.949107912342758524526189684047851d0 / + data xgk ( 3) / 0.864864423359769072789712788640926d0 / + data xgk ( 4) / 0.741531185599394439863864773280788d0 / + data xgk ( 5) / 0.586087235467691130294144838258730d0 / + data xgk ( 6) / 0.405845151377397166906606412076961d0 / + data xgk ( 7) / 0.207784955007898467600689403773245d0 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.022935322010529224963732008058970d0/ + data wgk ( 2) / 0.063092092629978553290700663189204d0 / + data wgk ( 3) / 0.104790010322250183839876322541518d0 / + data wgk ( 4) / 0.140653259715525918745189590510238d0 / + data wgk ( 5) / 0.169004726639267902826583426598550d0 / + data wgk ( 6) / 0.190350578064785409913256402421014d0 / + data wgk ( 7) / 0.204432940075298892414161999234649d0 / + data wgk ( 8) / 0.209482141084727828012999174891714d0 / + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resg = wg(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0D0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk15 + subroutine dqk9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +! xgk(4), xgk(8) abscissae of the 3-point gauss rule +c xgk(2), xgk(4),xgk(6), xgk(8) ... abscissae of the 7-point +c kronrod rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point kronrod rule +c +c wgk - weights of the 15-point kronrod rule +! +! wgk0 - weights of the 7-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + data wg ( 1) / 0.5555555555555555D+00/ + data wg ( 2) / 0.8888888888888889D+00/ + + data wgk0 ( 1) / 0.1046562260264673D+00/ + data wgk0 ( 2) / 0.2684880898683335D+00/ + data wgk0 ( 3) / 0.4013974147759622D+00/ + data wgk0 ( 4) / 0.4509165386584741D+00/ + + data xgk ( 1) / 0.9938319632127550D+00/ + data xgk ( 2) / 0.9604912687080203D+00/ + data xgk ( 3) / 0.8884592328722570D+00 / + data xgk ( 4) / 0.7745966692414834D+00/ + data xgk ( 5) / 0.6211029467372264D+00/ + data xgk ( 6) / 0.4342437493468026D+00/ + data xgk ( 7) / 0.2233866864289669D+00 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.1700171962994028D-01/ + data wgk ( 2) / 0.5160328299707982D-01/ + data wgk ( 3) / 0.9292719531512452D-01/ + data wgk ( 4) / 0.1344152552437843D+00/ + data wgk ( 5) / 0.1715119091363914D+00/ + data wgk ( 6) / 0.2006285293769890D+00/ + data wgk ( 7) / 0.2191568584015875D+00/ + data wgk ( 8) / 0.2255104997982067D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resk0 = wgk0(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(4) + fv2(4)) + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0)) + & * 10.0D0, abserr) + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + + end subroutine dqk9 + subroutine dqkl9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(3),wgk(5),xgk(5) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 9-point Gauss-kronrod-lobatto rule +! xgk(1), xgk(5) abscissae of the 3-point gauss-lobatto rule +c xgk(1), xgk(3),xgk(5) abscissae of the 5-point +c kronrod rule +c xgk(2), xgk(4), ... abscissae which are optimally +c added to the 5-point kronrod rule +c +c wgk - weights of the 9-point kronrod rule +! +! wgk0 - weights of the 5-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + + data wg ( 1) / 0.33333333333333333333333333333333333D+00/ + data wg ( 2) / 0.13333333333333333333333333333333333D+01/ + + data wgk0 ( 1) / 0.1000000000000000D+00/ + data wgk0 ( 2) / 0.5444444444444445D+00/ + data wgk0 ( 3) / 0.7111111111111111D+00/ + + data xgk ( 1) / 0.1000000000000000D+01/ + data xgk ( 2) / 0.8904055275126688D+00/ + data xgk ( 3) / 0.6546536707079772D+00/ + data xgk ( 4) / 0.3409822659109930D+00/ + data xgk ( 5) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.3064373897707232D-01/ + data wgk ( 2) / 0.1792626995532074D+00/ + data wgk ( 3) / 0.2839787780481211D+00/ + data wgk ( 4) / 0.3342337398164177D+00/ + data wgk ( 5) / 0.3437620872103631D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(5)*fc + resk0 = wgk0(3)*fc + resabs = dabs(resk) + do 10 j=1,2 + jtw = 2*j - 1 + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(1) + fv2(1)) + do 15 j = 1,2 + jtwm1 = 2*j + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(5)*dabs(fc-reskh) + do 20 j=1,4 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0))* 10.0D0,abserr) + + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) + implicit none +c***begin prologue dqpsrt +c***refer to dqage,dqagie,dqagpe,dqawse +c***routines called (none) +c***revision date 810101 (yymmdd) +c***keywords sequential sorting +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose this routine maintains the descending ordering in the +c list of the local error estimated resulting from the +c interval subdivision process. at each call two error +c estimates are inserted using the sequential search +c method, top-down for the largest error estimate and +c bottom-up for the smallest error estimate. +c***description +c +c ordering routine +c standard fortran subroutine +c double precision version +c +c parameters (meaning at output) +c limit - integer +c maximum number of error estimates the list +c can contain +c +c last - integer +c number of error estimates currently in the list +c +c maxerr - integer +c maxerr points to the nrmax-th largest error +c estimate currently in the list +c +c ermax - double precision +c nrmax-th largest error estimate +c ermax = elist(maxerr) +c +c elist - double precision +c vector of dimension last containing +c the error estimates +c +c iord - integer +c vector of dimension last, the first k elements +c of which contain pointers to the error +c estimates, such that +c elist(iord(1)),..., elist(iord(k)) +c form a decreasing sequence, with +c k = last if last.le.(limit/2+2), and +c k = limit+1-last otherwise +c +c nrmax - integer +c maxerr = iord(nrmax) +c +c***end prologue dqpsrt +c + double precision elist,ermax,errmax,errmin + integer i,ibeg,ido,iord,isucc,j,jbnd,jupbn,k,last,limit,maxerr, + * nrmax + dimension elist(last),iord(last) +c +c check whether the list contains more than +c two error estimates. +c +c***first executable statement dqpsrt + if(last.gt.2) go to 10 + iord(1) = 1 + iord(2) = 2 + go to 90 +c +c this part of the routine is only executed if, due to a +c difficult integrand, subdivision increased the error +c estimate. in the normal case the insert procedure should +c start after the nrmax-th largest error estimate. +c + 10 errmax = elist(maxerr) + if(nrmax.eq.1) go to 30 + ido = nrmax-1 + do 20 i = 1,ido + isucc = iord(nrmax-1) +c ***jump out of do-loop + if(errmax.le.elist(isucc)) go to 30 + iord(nrmax) = isucc + nrmax = nrmax-1 + 20 continue +c +c compute the number of elements in the list to be maintained +c in descending order. this number depends on the number of +c subdivisions still allowed. +c + 30 jupbn = last + if(last.gt.(limit/2+2)) jupbn = limit+3-last + errmin = elist(last) +c +c insert errmax by traversing the list top-down, +c starting comparison from the element elist(iord(nrmax+1)). +c + jbnd = jupbn-1 + ibeg = nrmax+1 + if(ibeg.gt.jbnd) go to 50 + do 40 i=ibeg,jbnd + isucc = iord(i) +c ***jump out of do-loop + if(errmax.ge.elist(isucc)) go to 60 + iord(i-1) = isucc + 40 continue + 50 iord(jbnd) = maxerr + iord(jupbn) = last + go to 90 +c +c insert errmin by traversing the list bottom-up. +c + 60 iord(i-1) = maxerr + k = jbnd + do 70 j=i,jbnd + isucc = iord(k) +c ***jump out of do-loop + if(errmin.lt.elist(isucc)) go to 80 + iord(k+1) = isucc + k = k-1 + 70 continue + iord(i) = last + go to 90 + 80 iord(k+1) = last +c +c set maxerr and ermax. +c + 90 maxerr = iord(nrmax) + ermax = elist(maxerr) + return + end subroutine dqpsrt + subroutine dqelg(n,epstab,result,abserr,res3la,nres) + implicit none +c***begin prologue dqelg +c***refer to dqagie,dqagoe,dqagpe,dqagse +c***routines called d1mach +c***revision date 830518 (yymmdd) +c***keywords epsilon algorithm, convergence acceleration, +c extrapolation +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math & progr. div. - k.u.leuven +c***purpose the routine determines the limit of a given sequence of +c approximations, by means of the epsilon algorithm of +c p.wynn. an estimate of the absolute error is also given. +c the condensed epsilon table is computed. only those +c elements needed for the computation of the next diagonal +c are preserved. +c***description +c +c epsilon algorithm +c standard fortran subroutine +c double precision version +c +c parameters +c n - integer +c epstab(n) contains the new element in the +c first column of the epsilon table. +c +c epstab - double precision +c vector of dimension 52 containing the elements +c of the two lower diagonals of the triangular +c epsilon table. the elements are numbered +c starting at the right-hand corner of the +c triangle. +c +c result - double precision +c resulting approximation to the integral +c +c abserr - double precision +c estimate of the absolute error computed from +c result and the 3 previous results +c +c res3la - double precision +c vector of dimension 3 containing the last 3 +c results +c +c nres - integer +c number of calls to the routine +c (should be zero at first call) +c +c***end prologue dqelg +c + double precision abserr,dabs,delta1,delta2,delta3,dmax1, + * epmach,epsinf,epstab,error,err1,err2,err3,e0,e1,e1abs,e2,e3, + * oflow,res,result,res3la,ss,tol1,tol2,tol3 + integer i,ib,ib2,ie,indx,k1,k2,k3,limexp,n,newelm,nres,num + dimension epstab(52),res3la(3) +c +c list of major variables +c ----------------------- +c +c e0 - the 4 elements on which the computation of a new +c e1 element in the epsilon table is based +c e2 +c e3 e0 +c e3 e1 new +c e2 +c newelm - number of elements to be computed in the new +c diagonal +c error - error = abs(e1-e0)+abs(e2-e1)+abs(new-e2) +c result - the element in the new diagonal with least value +c of error +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c oflow is the largest positive magnitude. +c limexp is the maximum number of elements the epsilon +c table can contain. if this number is reached, the upper +c diagonal of the epsilon table is deleted. +c +c***first executable statement dqelg + epmach = d1mach(4) + oflow = d1mach(2) + nres = nres+1 + abserr = oflow + result = epstab(n) + if(n.lt.3) go to 100 + limexp = 50 + epstab(n+2) = epstab(n) + newelm = (n-1)/2 + epstab(n) = oflow + num = n + k1 = n + do 40 i = 1,newelm + k2 = k1-1 + k3 = k1-2 + res = epstab(k1+2) + e0 = epstab(k3) + e1 = epstab(k2) + e2 = res + e1abs = dabs(e1) + delta2 = e2-e1 + err2 = dabs(delta2) + tol2 = dmax1(dabs(e2),e1abs)*epmach + delta3 = e1-e0 + err3 = dabs(delta3) + tol3 = dmax1(e1abs,dabs(e0))*epmach + if(err2.gt.tol2.or.err3.gt.tol3) go to 10 +c +c if e0, e1 and e2 are equal to within machine +c accuracy, convergence is assumed. +c result = e2 +c abserr = abs(e1-e0)+abs(e2-e1) +c + result = res + abserr = err2+err3 +c ***jump out of do-loop + go to 100 + 10 e3 = epstab(k1) + epstab(k1) = e1 + delta1 = e1-e3 + err1 = dabs(delta1) + tol1 = dmax1(e1abs,dabs(e3))*epmach +c +c if two elements are very close to each other, omit +c a part of the table by adjusting the value of n +c + if(err1.le.tol1.or.err2.le.tol2.or.err3.le.tol3) go to 20 + ss = 0.1d+01/delta1+0.1d+01/delta2-0.1d+01/delta3 + epsinf = dabs(ss*e1) +c +c test to detect irregular behaviour in the table, and +c eventually omit a part of the table adjusting the value +c of n. +c + if(epsinf.gt.0.1d-03) go to 30 + 20 n = i+i-1 +c ***jump out of do-loop + go to 50 +c +c compute a new element and eventually adjust +c the value of result. +c + 30 res = e1+0.1d+01/ss + epstab(k1) = res + k1 = k1-2 + error = err2+dabs(res-e2)+err3 + if(error.gt.abserr) go to 40 + abserr = error + result = res + 40 continue +c +c shift the table. +c + 50 if(n.eq.limexp) n = 2*(limexp/2)-1 + ib = 1 + if((num/2)*2.eq.num) ib = 2 + ie = newelm+1 + do 60 i=1,ie + ib2 = ib+2 + epstab(ib) = epstab(ib2) + ib = ib2 + 60 continue + if(num.eq.n) go to 80 + indx = num-n+1 + do 70 i = 1,n + epstab(i)= epstab(indx) + indx = indx+1 + 70 continue + 80 if(nres.ge.4) go to 90 + res3la(nres) = result + abserr = oflow + go to 100 +c +c compute error estimate +c + 90 abserr = dabs(result-res3la(3))+dabs(result-res3la(2)) + * +dabs(result-res3la(1)) + res3la(1) = res3la(2) + res3la(2) = res3la(3) + res3la(3) = result + 100 abserr = dmax1(abserr,0.5d+01*epmach*dabs(result)) + return + end subroutine dqelg + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + end module AdaptiveGaussKronrod + + module Integration1DModule + implicit none + interface AdaptiveSimpson + module procedure AdaptiveSimpson2, AdaptiveSimpsonWithBreaks + end interface + +! interface AdaptiveSimpson1 +! module procedure AdaptiveSimpson1 +! end interface + + interface AdaptiveTrapz + module procedure AdaptiveTrapz1, AdaptiveTrapzWithBreaks + end interface + + interface Romberg + module procedure Romberg1, RombergWithBreaks + end interface + + INTERFACE DEA + MODULE PROCEDURE DEA + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + contains + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + SUBROUTINE DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +C***BEGIN PROLOGUE DEA +C***DATE WRITTEN 800101 (YYMMDD) +C***REVISION DATE 871208 (YYMMDD) +C***CATEGORY NO. E5 +C***KEYWORDS CONVERGENCE ACCELERATION,EPSILON ALGORITHM,EXTRAPOLATION +C***AUTHOR PIESSENS, ROBERT, APPLIED MATH. AND PROGR. DIV. - +C K. U. LEUVEN +C DE DONCKER-KAPENGA, ELISE,WESTERN MICHIGAN UNIVERSITY +C KAHANER, DAVID K., NATIONAL BUREAU OF STANDARDS +C STARKENBURG, C. B., NATIONAL BUREAU OF STANDARDS +C***PURPOSE Given a slowly convergent sequence, this routine attempts +C to extrapolate nonlinearly to a better estimate of the +C sequence's limiting value, thus improving the rate of +C convergence. Routine is based on the epsilon algorithm +C of P. Wynn. An estimate of the absolute error is also +C given. +C***DESCRIPTION +C +C Epsilon algorithm. Standard fortran subroutine. +C Double precision version. +C +C A R G U M E N T S I N T H E C A L L S E Q U E N C E +C +C NEWFLG - LOGICAL (INPUT and OUTPUT) +C On the first call to DEA set NEWFLG to .TRUE. +C (indicating a new sequence). DEA will set NEWFLG +C to .FALSE. +C +C SVALUE - DOUBLE PRECISION (INPUT) +C On the first call to DEA set SVALUE to the first +C term in the sequence. On subsequent calls set +C SVALUE to the subsequent sequence value. +C +C LIMEXP - INTEGER (INPUT) +C An integer equal to or greater than the total +C number of sequence terms to be evaluated. Do not +C change the value of LIMEXP until a new sequence +C is evaluated (NEWFLG=.TRUE.). LIMEXP .GE. 3 +C +C RESULT - DOUBLE PRECISION (OUTPUT) +C Best approximation to the sequence's limit. +C +C ABSERR - DOUBLE PRECISION (OUTPUT) +C Estimate of the absolute error. +C +C EPSTAB - DOUBLE PRECISION (OUTPUT) +C Workvector of DIMENSION at least (LIMEXP+7). +C +C IERR - INTEGER (OUTPUT) +C IERR=0 Normal termination of the routine. +C IERR=1 The input is invalid because LIMEXP.LT.3. +C +C T Y P I C A L P R O B L E M S E T U P +C +C This sample problem uses the trapezoidal rule to evaluate the +C integral of the sin function from 0.0 to 0.5*PI (value = 1.0). The +C program implements the trapezoidal rule 8 times creating an +C increasingly accurate sequence of approximations to the integral. +C Each time the trapezoidal rule is used, it uses twice as many +C panels as the time before. DEA is called to obtain even more +C accurate estimates. +C +C PROGRAM SAMPLE +C IMPLICIT DOUBLE PRECISION (A-H,O-Z) +C DOUBLE PRECISION EPSTAB(57) +CC [57 = LIMEXP + 7] +C LOGICAL NEWFLG +C EXTERNAL F +C DATA LIMEXP/50/ +C WRITE(*,*) ' NO. PANELS TRAP. APPROX' +C * ,' APPROX W/EA ABSERR' +C WRITE(*,*) +C HALFPI = DASIN(1.0D+00) +CC [UPPER INTEGRATION LIMIT = PI/2] +C NEWFLG = .TRUE. +CC [SET FLAG - 1ST DEA CALL] +C DO 10 I = 0,7 +C NPARTS = 2 ** I +C WIDTH = HALFPI/NPARTS +C APPROX = 0.5D+00 * WIDTH * (F(0.0D+00) + F(HALFPI)) +C DO 11 J = 1,NPARTS-1 +C APPROX = APPROX + F(J * WIDTH) * WIDTH +C 11 CONTINUE +CC [END TRAPEZOIDAL RULE APPROX] +C SVALUE = APPROX +CC [SVALUE = NEW SEQUENCE VALUE] +C CALL DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +CC [CALL DEA FOR BETTER ESTIMATE] +C WRITE(*,12) NPARTS,APPROX,RESULT,ABSERR +C 12 FORMAT(' ',I4,T20,F16.13,T40,F16.13,T60,D11.4) +C 10 CONTINUE +C STOP +C END +C +C DOUBLE PRECISION FUNCTION F(X) +C DOUBLE PRECISION X +C F = DSIN(X) +CC [INTEGRAND] +C RETURN +C END +C +C Output from the above program will be: +C +C NO. PANELS TRAP. APPROX APPROX W/EA ABSERR +C +C 1 .7853981633974 .7853981633974 .7854D+00 +C 2 .9480594489685 .9480594489685 .9760D+00 +C 4 .9871158009728 .9994567212570 .2141D+00 +C 8 .9967851718862 .9999667417647 .3060D-02 +C 16 .9991966804851 .9999998781041 .6094D-03 +C 32 .9997991943200 .9999999981026 .5767D-03 +C 64 .9999498000921 .9999999999982 .3338D-04 +C 128 .9999874501175 1.0000000000000 .1238D-06 +C +C----------------------------------------------------------------------- +C***REFERENCES "Acceleration de la convergence en analyse numerique", +C C. Brezinski, "Lecture Notes in Math.", vol. 584, +C Springer-Verlag, New York, 1977. +C***ROUTINES CALLED D1MACH,XERROR +C***END PROLOGUE DEA + double precision, dimension(*), intent(inout) :: EPSTAB + double precision, intent(out) :: RESULT !, ABSERR + double precision, intent(inout) :: ABSERR + double precision, intent(in) :: SVALUE + INTEGER, INTENT(IN) :: LIMEXP + INTEGER, INTENT(OUT) :: IERR + LOGICAL, intent(INOUT) :: NEWFLG + DOUBLE PRECISION :: DELTA1,DELTA2,DELTA3,DRELPR,DEPRN, + 1 ERROR,ERR1,ERR2,ERR3,E0,E1,E2,E3,RES, + 2 SS,TOL1,TOL2,TOL3 + double precision, dimension(3) :: RES3LA + INTEGER I,IB,IB2,IE,IN,K1,K2,K3,N,NEWELM,NUM,NRES +C +C +C LIMEXP is the maximum number of elements the +C epsilon table data can contain. The epsilon table +C is stored in the first (LIMEXP+2) entries of EPSTAB. +C +C +C LIST OF MAJOR VARIABLES +C ----------------------- +C E0,E1,E2,E3 - DOUBLE PRECISION +C The 4 elements on which the computation of +C a new element in the epsilon table is based. +C NRES - INTEGER +C Number of extrapolation results actually +C generated by the epsilon algorithm in prior +C calls to the routine. +C NEWELM - INTEGER +C Number of elements to be computed in the +C new diagonal of the epsilon table. The +C condensed epsilon table is computed. Only +C those elements needed for the computation of +C the next diagonal are preserved. +C RES - DOUBLE PRECISION +C New element in the new diagonal of the +C epsilon table. +C ERROR - DOUBLE PRECISION +C An estimate of the absolute error of RES. +C Routine decides whether RESULT=RES or +C RESULT=SVALUE by comparing ERROR with +C ABSERR from the previous call. +C RES3LA - DOUBLE PRECISION +C Vector of DIMENSION 3 containing at most +C the last 3 results. +C +C +C MACHINE DEPENDENT CONSTANTS +C --------------------------- +C DRELPR is the largest relative spacing. +C +C***FIRST EXECUTABLE STATEMENT DEA + IF(LIMEXP.LT.3) THEN + IERR = 1 +! CALL XERROR('LIMEXP IS LESS THAN 3',21,1,1) + GO TO 110 + ENDIF + IERR = 0 + RES3LA(1)=EPSTAB(LIMEXP+5) + RES3LA(2)=EPSTAB(LIMEXP+6) + RES3LA(3)=EPSTAB(LIMEXP+7) + RESULT=SVALUE + IF(NEWFLG) THEN + N=1 + NRES=0 + NEWFLG=.FALSE. + EPSTAB(N)=SVALUE + ABSERR=ABS(RESULT) + GO TO 100 + ELSE + N=INT(EPSTAB(LIMEXP+3)) + NRES=INT(EPSTAB(LIMEXP+4)) + IF(N.EQ.2) THEN + EPSTAB(N)=SVALUE + ABSERR=.6D+01*ABS(RESULT-EPSTAB(1)) + GO TO 100 + ENDIF + ENDIF + EPSTAB(N)=SVALUE + DRELPR=D1MACH(4) + DEPRN=1.0D+01*DRELPR + EPSTAB(N+2)=EPSTAB(N) + NEWELM=(N-1)/2 + NUM=N + K1=N + DO 40 I=1,NEWELM + K2=K1-1 + K3=K1-2 + RES=EPSTAB(K1+2) + E0=EPSTAB(K3) + E1=EPSTAB(K2) + E2=RES + DELTA2=E2-E1 + ERR2=ABS(DELTA2) + TOL2=MAX(ABS(E2),ABS(E1))*DRELPR + DELTA3=E1-E0 + ERR3=ABS(DELTA3) + TOL3=MAX(ABS(E1),ABS(E0))*DRELPR + IF(ERR2.GT.TOL2.OR.ERR3.GT.TOL3) GO TO 10 +C +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. +C RESULT=E2 +C ABSERR=ABS(E1-E0)+ABS(E2-E1) +C + RESULT=RES + ABSERR=ERR2+ERR3 + GO TO 50 + 10 IF(I.NE.1) THEN + E3=EPSTAB(K1) + EPSTAB(K1)=E1 + DELTA1=E1-E3 + ERR1=ABS(DELTA1) + TOL1=MAX(ABS(E1),ABS(E3))*DRELPR +C +C IF TWO ELEMENTS ARE VERY CLOSE TO EACH OTHER, OMIT +C A PART OF THE TABLE BY ADJUSTING THE VALUE OF N +C + IF(ERR1.LE.TOL1.OR.ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA1+0.1D+01/DELTA2-0.1D+01/DELTA3 + ELSE + EPSTAB(K1)=E1 + IF(ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA2-0.1D+01/DELTA3 + ENDIF +C +C TEST TO DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND +C EVENTUALLY OMIT A PART OF THE TABLE ADJUSTING THE VALUE +C OF N +C + IF(ABS(SS*E1).GT.0.1D-03) GO TO 30 + 20 N=I+I-1 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ERR3 + RESULT=RES + ELSE IF(NRES.EQ.1) THEN + RESULT=RES3LA(1) + ELSE IF(NRES.EQ.2) THEN + RESULT=RES3LA(2) + ELSE + RESULT=RES3LA(3) + ENDIF + GO TO 50 +C +C COMPUTE A NEW ELEMENT AND EVENTUALLY ADJUST +C THE VALUE OF RESULT +C + 30 RES=E1+0.1D+01/SS + EPSTAB(K1)=RES + K1=K1-2 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ABS(RES-E2)+ERR3 + RESULT=RES + GO TO 40 + ELSE IF(NRES.EQ.1) THEN + ERROR=.6D+01*(ABS(RES-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ERROR=.2D+01*(ABS(RES-RES3LA(2))+ABS(RES-RES3LA(1))) + ELSE + ERROR=ABS(RES-RES3LA(3))+ABS(RES-RES3LA(2)) + 1 +ABS(RES-RES3LA(1)) + ENDIF + IF(ERROR.GT.1.0D+01*ABSERR) GO TO 40 + ABSERR=ERROR + RESULT=RES + 40 CONTINUE +C +C COMPUTE ERROR ESTIMATE +C + IF(NRES.EQ.1) THEN + ABSERR=.6D+01*(ABS(RESULT-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ABSERR=.2D+01*ABS(RESULT-RES3LA(2))+ABS(RESULT-RES3LA(1)) + ELSE IF(NRES.GT.2) THEN + ABSERR=ABS(RESULT-RES3LA(3))+ABS(RESULT-RES3LA(2)) + 1 +ABS(RESULT-RES3LA(1)) + ENDIF +C +C SHIFT THE TABLE +C + 50 IF(N.EQ.LIMEXP) N=2*(LIMEXP/2)-1 + IB=1 + IF((NUM/2)*2.EQ.NUM) IB=2 + IE=NEWELM+1 + DO 60 I=1,IE + IB2=IB+2 + EPSTAB(IB)=EPSTAB(IB2) + IB=IB2 + 60 CONTINUE + IF(NUM.EQ.N) GO TO 80 + IN=NUM-N+1 + DO 70 I=1,N + EPSTAB(I)=EPSTAB(IN) + IN=IN+1 + 70 CONTINUE +C +C UPDATE RES3LA +C + 80 IF(NRES.EQ.0) THEN + RES3LA(1)=RESULT + ELSE IF(NRES.EQ.1) THEN + RES3LA(2)=RESULT + ELSE IF(NRES.EQ.2) THEN + RES3LA(3)=RESULT + ELSE + RES3LA(1)=RES3LA(2) + RES3LA(2)=RES3LA(3) + RES3LA(3)=RESULT + ENDIF + 90 ABSERR=MAX(ABSERR,DEPRN*ABS(RESULT)) + NRES=NRES+1 + 100 N=N+1 + EPSTAB(LIMEXP+3)=DBLE(N) + EPSTAB(LIMEXP+4)=DBLE(NRES) + EPSTAB(LIMEXP+5)=RES3LA(1) + EPSTAB(LIMEXP+6)=RES3LA(2) + EPSTAB(LIMEXP+7)=RES3LA(3) + 110 RETURN + END subroutine DEA + + subroutine AdaptiveIntWithBreaks(f,a,b,N,brks,epsi,iflg + $ ,abserr, val) + use AdaptiveGaussKronrod + implicit none + double precision :: f + integer, intent(in) :: N + double precision, intent(in) :: a,b,epsi + double precision, dimension(:), intent(in) :: brks + double precision, intent(out) :: abserr, val + integer, intent(out) :: iflg + external f +! Locals + double precision, dimension(N+2) :: pts + double precision :: LTol,tol, error, valk, excess, errorEstimate + double precision :: delta, deltaK + integer :: kflg, k, limit,neval + limit = 30 + pts(1) = a + pts(N+2) = b + delta = b - a + do k = 2,N+1 + pts(k) = minval(brks(k-1:N)) !add user supplied break points + enddo + LTol = epsi / delta + abserr = 0.0d0 + val = 0.0D0 + iflg = 0 + do k = 1, N + 1 + deltaK = pts(k+1) - pts(k) + tol = LTol * deltaK + if (deltaK < 0.5D0) then + call AdaptiveSimpson(f,pts(k),pts(k+1),tol, kflg,error,valk) +! call romberg(f,pts(k),pts(k+1),20,tol,kflg,error, valk) + else +! call AdaptiveSimpson3(f,pts(k),pts(k+1),tol,kflg,error,valk) + call dqagp(f,pts(k),pts(k+1),0,pts,tol,0.0D0,limit,valk, + * error,neval,kflg) + + endif + abserr = abserr + abs(error) + + errorEstimate = abserr + (b - pts(k+1)) * LTol + excess = epsi - errorEstimate + if (excess < 0.0D0 ) then + LTol = 0.1D0*LTol + elseif ( epsi < 2.0D0 * excess ) then + LTol = (epsi + excess*0.5D0) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0.0d0 .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif ( Lepsi < 5D0 * excess ) then + LTol = (Lepsi + excess) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn12e = ( Sn1e - Sn2e ) + + Sn24e = (Sn2e - Sn4) +! Sn1e = Sn2e - Sn12e * zpz66666 +! Sn12e = (Sn1e - Sn2e) + + Sn124 = (Sn12e - Sn24) + if ((abs(Sn124)<= hmin) .or. + & .false..and.(Sn24*Sn12e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn24 * zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24 * Sn24 / Sn124 + endif + Sn4e = Sn4 + correction + +! NEWFLG = .TRUE. +! CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn1e,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4e,LIMEXP,val0,localError,EPSTAB,IERR) +! localError is made conservative in order to avoid premature +! termination + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) + !if (h>dhMin) then + !localError = max(localError,abs(correction)) + !else + !val0 = Sn4e + !localError = abs(correction)*two + !endif + else + CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + endif + acceptError = ( localError <= Ltol * h * eight + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(6,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.true..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,fx3,fx4,fx5,x1,h,S,SL,SR] + kp1 = k + 1; +! Process right interval + v(1,kp1) = v(3,k); !fx1R + v(2,kp1) = fx(3); !fx2R + v(3,kp1) = v(4,k); !fx3R + v(4,kp1) = fx(4); !fx4R + v(5,kp1) = v(5,k); !fx5R + v(6,kp1) = v(6,k) + four * h; ! x1R + v(7,kp1) = h; + v(8,kp1) = v(10,k); ! S + v(9:10,kp1) = Sn(3:4); ! SL, SR +! Process left interval + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) unchanged fx1L +! v(6,k) unchanged x1L + v(7,k) = h; + v(8,k) = v(9,k); ! S + v(9:10,k) = Sn(1:2); ! SL, SR + k = kp1; + endif + enddo ! while + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + Sn48 = (Sn4 - Sn8) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn4e = Sn8 - Sn48 * zpz588 + Sn12e = (Sn1e - Sn2e) + Sn24e = (Sn2e - Sn4e) + + Sn124 = (Sn12e - Sn24e) + if ((abs(Sn124)<= hmin) .or. + & (Sn12e*Sn24e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn48*zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24e * Sn24e / Sn124 + !Sn4e = Sn4e + correction + endif + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) +! localError is made conservative in order to avoid premature +! termination +! localError = max(localError,abs(correction)*three) +! localError = abs(correction)*three + else + !CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + NEWFLG = .TRUE. + CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn8,LIMEXP,val0,localError,EPSTAB,IERR) + endif + acceptError = ( localError <= Ltol * h * sixteen + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(Nrule+1,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.TRUE..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,..,fx8,fx9,x1,h,S,SL,SR,SL1,SL2 SR1,SR2] + kp1 = k + 1; +! Process right interval + + v(1,kp1) = v(5,k); !fx1R + v(2,kp1) = fx(5); !fx2R + v(3,kp1) = v(6,k); !fx3R + v(4,kp1) = fx(6); !fx4R + v(5,kp1) = v(7,k); !fx5R + v(6,kp1) = fx(7); !fx6R + v(7,kp1) = v(8,k); !fx7R + v(8,kp1) = fx(8); !fx8R + v(9,kp1) = v(9,k); !fx9R + + v(Nrule+1,kp1) = v(Nrule+1,k) + eight * h ! x1R + v(Nrule+2,kp1) = h; + v(Nrule+3,kp1) = v(Nrule+5,k); ! S + v(Nrule+4,kp1) = v(Nrule+8,k); ! SL + v(Nrule+5,kp1) = v(Nrule+9,k); ! SR + v(Nrule+6:Nrule+9,kp1) = Sn(5:8); ! SL1,SL2,SR1, SR2 +! Process left interval + v(9,k) = v(5,k); ! fx9L + v(8,k) = fx(4); ! fx8L + v(7,k) = v(4,k); ! fx7L + v(6,k) = fx(3); ! fx6L + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) = v(1,k); ! fx1L +! v(Nrule+1,k) unchanged x1L + v(Nrule+2,k) = h; + v(Nrule+3,k) = v(Nrule + 4,k); ! S + v(Nrule+4,k) = v(Nrule+6,k); ! SL + v(Nrule+5,k) = v(Nrule+7,k); ! SR + v(Nrule+6:Nrule+9,k) = Sn(1:4); ! SL1,SL2,SR1, SR2 + k = kp1; + endif + enddo ! while + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0) iflg = ior(iflg,kflg) + end do + if (epsistepSize) then + Nk = floor((xup-xlo)/stepSize) + 1 + dx = (xup-xlo)/dble(Nk) + do j=1, Nk -1 + Npts = Npts + 1 + breakPoints(Npts) = xlo + dx * dble( j ) + enddo + endif + else + ! Compute candidates for the breakpoints + brkPts(1:2*n) = xup + forall(k=1:n,rho(k) .ne. zero) + indices(2*k-1) = k + indices(2*k ) = k + brkPts(2*k-1) = a(k)/rho(k) + brkPts(2*k ) = b(k)/rho(k) + end forall + ! Sort the candidates + call sortre(brkPts,indices) + ! Make unique list of breakpoints + + do k = 1,2*n + brk = brkPts(k) + if (xlo < brk) then + if ( xup <= brk ) exit ! terminate do loop + +! if (Npts>0) then +! xLow = max(xlo, breakPoints(Npts)) +! else +! xLow = xlo +! endif +! if (brk-xLow>stepSize) then +! Nk = floor((brk-xLow)/stepSize) +! dx = (brk-xLow)/dble(Nk) +! do j=1, Nk -1 +! Npts = Npts + 1 +! breakPoints(Npts) = brk + dx * dble( j ) +! enddo +! endif + + kU = indices(k) + + !if ( xlo + distance < brk .and. brk + distance < xup ) + !then + if ( den(kU) < 0.2) then + distance = max(brkSplit*den(kU),hMin) + z1 = brk + distance + z2 = brk - distance + if (Npts <= 0) then + if (xlo + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + kL = kU + elseif (breakPoints(Npts)+ max(distance + & ,brkSplit*den(kL)) < z1) then + if (breakPoints(Npts) + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + kL = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + kL = kU + endif + else + val1 = 0.0d0 + val2 = 0.0d0 + brkPts(Npts+1) = integrand(z1) + brkPts(Npts+2) = integrand(z2) + if ((xlo+ distance < z1) .and. (z1 + distance < xup)) + & val2 = brkPts(Npts +1) + if ((xlo+ distance < z2) .and. (z2 + distance < xup)) + & val2 = max(val2,brkPts(Npts +2)) + val1 = breakPoints(Npts) + Nprev = 1 + if (Npts>1) then + if (indices2(Npts-1)==kL) then + Nprev = 2 + val1 = max(val1,breakPoints(Npts-1)) + endif + endif + if (val1 < val2) then + !overwrite previous candidate + Npts = Npts - Nprev + if (Npts>0) then + val1 = breakPoints(Npts)+ distance + else + val1 = xlo+ distance + endif + if (val1 < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = brkPtsVal(Npts+Nprev) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + + if ((val1< z2) .and. (z2 + distance < xup)) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + if (Npts>0) kL = indices2(Npts) + endif + endif + endif + endif + enddo + endif + end subroutine GetBreakPoints + subroutine NarrowLimits(zMin,zMax,As,Bs,zCutOff,n,a,b,rho,den) + implicit none + double precision, intent(inout) :: zMin, zMax, As, Bs + double precision,dimension(*),intent(in) :: rho,a,b,den + double precision, intent(in) :: zCutOff + integer, intent(in) :: n +! Locals + double precision, parameter :: zero = 0.0D0, one = 1.0D0 + integer :: k + +! Uses the regression equation to limit the +! integration limits zMin and zMax + + do k = 1,n + if (ZERO < rho(k)) then + zMax = max(zMin, min(zMax,(b(k)+den(k)*zCutOff)/rho(k))) + zMin = min(zMax, max(zMin,(a(k)-den(k)*zCutOff)/rho(k))) + if ( one <= rho(k) ) then + if ( b(k) < Bs ) Bs = b(k) + if ( As < a(k) ) As = a(k) + endif + elseif (rho(k)< ZERO) then + zMax = max(zMin,min(zMax,(a(k)-den(k)*zCutOff)/rho(k))) + zMin = min(zMax,max(zMin,(b(k)+den(k)*zCutOff)/rho(k))) + if ( rho(k) <= -one ) then + if ( -a(k) < Bs ) Bs = -a(k) + if ( As < -b(k) ) As = -b(k) + endif + endif + enddo + As = min(As,Bs) + end subroutine NarrowLimits + + function integrand(z) result (val) + implicit none + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + double precision, parameter :: sqtwopi1 = 0.39894228040143D0 + double precision, parameter :: half = 0.5D0 + val = sqtwopi1 * exp(-half * z * z) * integrand1(z) + return + end function integrand + + function integrand1(z) result (val) + implicit none + double precision, intent(in) :: z + double precision :: val + double precision :: xUp,xLo,zRho + double precision, parameter :: one = 1.0D0, zero = 0.0D0 + integer :: I + val = one + do I = 1, mNdim + zRho = z * mRho(I) + ! Uncomment / mDen below if mRho, mA, mB is not scaled + xUp = ( mB(I) - zRho ) !/ mDen(I) + xLo = ( mA(I) - zRho ) !/ mDen(I) + if (zero0.1 +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION, INTENT(in) :: P + DOUBLE PRECISION :: VAL +!local variables + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, ONE, ZERO, HALF, + & A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + & C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + & E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + & Q, R + PARAMETER ( SPLIT1 = 0.425D0, SPLIT2 = 5.D0, + & CONST1 = 0.180625D0, CONST2 = 1.6D0, + & ONE = 1.D0, ZERO = 0.D0, HALF = 0.5D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( P - HALF) + IF ( ABS(Q) .LE. SPLIT1 ) THEN ! Central range. + R = CONST1 - Q*Q + VAL = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + ONE) + ELSE ! near the endpoints + R = MIN( P, ONE - P ) + IF (R .GT.ZERO) THEN ! ( 2.d0*R .GT. CFxCutOff) THEN ! R .GT.0.d0 + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + VAL = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + ONE ) + ELSE + R = R - SPLIT2 + VAL = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + ONE ) + END IF + ELSE + VAL = 37.D0 !XMAX 9.d0 + END IF + IF ( Q < ZERO ) VAL = - VAL + END IF + RETURN + END FUNCTION FIINV + FUNCTION FI2( Z ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +* +* Normal distribution probabilities accurate to 1.e-15. +* relative error less than 1e-8; +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION :: P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,XMAX, + * P, EXPNTL, CUTOFF, ROOTPI, ZABS, Z2 + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = 0.70038 30644 43688 1D0, + * P6 = 0.035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = 0.088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) + PARAMETER( XMAX = 8.25D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( Z .GT. XMAX .OR. ZABS .GT. 37) THEN + P = 0.d0 + ELSE +* +* |Z| <= 37 +* + Z2 = ZABS * ZABS + EXPNTL = EXP( -Z2 * 0.5D0 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS < CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1.d0/( ZABS + 2.d0/( ZABS + 3.d0/( ZABS + * + 4.d0/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0.d0 ) P = 1.d0 - P + VALUE = P + RETURN + END FUNCTION FI2 + + FUNCTION FI( Z ) RESULT (VALUE) + USE ERFCOREMOD + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +! Local variables + DOUBLE PRECISION, PARAMETER:: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER:: HALF = 0.5D0 + VALUE = DERFC(-Z*SQ2M1)*HALF + RETURN + END FUNCTION FI + end module mvnProdCorrPrbMod + + \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprb_interface.f b/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprb_interface.f new file mode 100755 index 0000000..190f081 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprb_interface.f @@ -0,0 +1,33 @@ + +C gfortran -fPIC -c mvnprodcorrprb.f +C f2py -m mvnprdmod -c mvnprodcorrprb.o mvnprodcorrprb_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + +C module mvnprdmod +C contains + subroutine prbnormndpc(prb,abserr,IFT,rho,a,b,N,abseps,releps, + & useBreakPoints, useSimpson) + use mvnProdCorrPrbMod, ONLY : mvnprodcorrprb + integer :: N + double precision,dimension(N),intent(in) :: rho,a,b + double precision,intent(in) :: abseps + double precision,intent(in) :: releps + logical, intent(in) :: useBreakPoints + logical, intent(in) :: useSimpson + double precision,intent(out) :: abserr,prb + integer, intent(out) :: IFT + +Cf2py integer, intent(hide), depend(rho) :: N = len(rho) +Cf2py depend(N) a +Cf2py depend(N) b +Cf2py double precision, optional :: abseps = 0.001 +Cf2py double precision, optional :: releps = 0.001 +Cf2py logical, optional :: useBreakPoints =1 +Cf2py logical, optional :: useSimpson = 1 + + + + CALL mvnprodcorrprb(rho,a,b,abseps,releps,useBreakPoints, + & useSimpson,abserr,IFT,prb) + + end subroutine prbnormndpc +C end module mvnprdmod \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprbmod.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprbmod.mod new file mode 100755 index 0000000..6f23eb4 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/mvnprodcorrprbmod.mod @@ -0,0 +1,44 @@ +GFORTRAN module created from mvnprodcorrprb.f on Thu Dec 04 12:55:42 2008 +MD5:52cce08f767867c5bd7250c82948c098 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () +() () () () () () () () () () () () () () () () ()) + +() + +(('mvnprodcorrprb' 'mvnprodcorrprbmod' 2)) + +() + +() + +(2 'mvnprodcorrprb' 'mvnprodcorrprbmod' 'mvnprodcorrprb' 1 ((PROCEDURE +UNKNOWN-INTENT MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC +ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 3 0 (4 5 6 7 8 9 10 11 12 13) +() 0 () () 0 0) +4 'rho' '' 'rho' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +9 'usebreakpoints' '' 'usebreakpoints' 3 ((VARIABLE IN UNKNOWN-PROC +UNKNOWN UNKNOWN DUMMY) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () () 0 () () 0 0) +10 'usesimpson' '' 'usesimpson' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () () 0 () () 0 0) +11 'abserr' '' 'abserr' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +12 'errflg' '' 'errflg' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +13 'prb' '' 'prb' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +5 'a' '' 'a' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +6 'b' '' 'b' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () 0 0) +7 'abseps' '' 'abseps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +8 'releps' '' 'releps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +) + +('mvnprodcorrprb' 0 2) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/AdaptiveGaussKronrod.f90 b/wafo/source/mvnprd/old/mvnprodcorrprb/old/AdaptiveGaussKronrod.f90 new file mode 100755 index 0000000..4c65537 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/AdaptiveGaussKronrod.f90 @@ -0,0 +1,1802 @@ +! f2py -m adaptivegausskronrod -h adaptivegausskronrod.pyf AdaptiveGaussKronrod.f +! f2py adaptivegausskronrod.pyf AdaptiveGaussKronrod.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +! f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m adaptivegausskronrod -c AdaptiveGaussKronrod.f + module functionInterface + INTERFACE + FUNCTION F(Z) result (VAL) + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + END FUNCTION F + END INTERFACE + end module functionInterface + + module AdaptiveGaussKronrod + implicit none + private + public :: dqagpe,dqagp + + INTERFACE dqagpe + MODULE PROCEDURE dqagpe + END INTERFACE + + INTERFACE dqagp + MODULE PROCEDURE dqagp + END INTERFACE + + INTERFACE dqelg + MODULE PROCEDURE dqelg + END INTERFACE + + INTERFACE dqpsrt + MODULE PROCEDURE dqpsrt + END INTERFACE + + INTERFACE dqk21 + MODULE PROCEDURE dqk21 + END INTERFACE + + INTERFACE dqk15 + MODULE PROCEDURE dqk15 + END INTERFACE + + INTERFACE dqk9 + MODULE PROCEDURE dqk9 + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + + contains + subroutine dea3(E0,E1,E2,abserr,result1) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result1 + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result1 = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result1 = E2 + abserr = err1 + err2 + E2*small*ten + else + result1 = E1 + one/ss + abserr = err1 + err2 + abs(result1-E2) + endif + endif + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier) +! use functionInterface + implicit none + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result1,abserr + integer, intent(out) :: neval,ier + double precision :: f +!Locals + double precision,dimension(limit) :: alist, blist, rlist, elist + double precision,dimension(npts+2) :: pts + integer, dimension(limit) :: iord, level + integer, dimension(npts+2) :: ndin + integer ::last + external f + CALL dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin + $ ,last) + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin, + * last) +! use functionInterface + implicit none +c***begin prologue dqagpe +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a2a1 +c***keywords automatic integrator, general-purpose, +! singularities at user specified points, +! extrapolation, globally adaptive. +c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven +! de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose the routine calculates an approximation result to a given +! definite integral i = integral of f over (a,b), hopefully +! satisfying following claim for accuracy abs(i-result).le. +! max(epsabs,epsrel*abs(i)). break points of the integration +! interval, where local difficulties of the integrand may +! occur(e.g. singularities,discontinuities),provided by user. +c***description +! +! computation of a definite integral +! standard fortran subroutine +! double precision version +! +! parameters +! on entry +! f - double precision +! function subprogram defining the integrand +! function f(x). the actual name for f needs to be +! declared e x t e r n a l in the driver program. +! +! a - double precision +! lower limit of integration +! +! b - double precision +! upper limit of integration +! +! npts2 - integer +! number equal to two more than the number of +! user-supplied break points within the integration +! range, npts2.ge.2. +! if npts2.lt.2, the routine will end with ier = 6. +! +! points - double precision +! vector of dimension npts2, the first (npts2-2) +! elements of which are the user provided break +! points. if these points do not constitute an +! ascending sequence there will be an automati! +! sorting. +! +! epsabs - double precision +! absolute accuracy requested +! epsrel - double precision +! relative accuracy requested +! if epsabs.le.0 +! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +! the routine will end with ier = 6. +! +! limit - integer +! gives an upper bound on the number of subintervals +! in the partition of (a,b), limit.ge.npts2 +! if limit.lt.npts2, the routine will end with +! ier = 6. +! +! on return +! result - double precision +! approximation to the integral +! +! abserr - double precision +! estimate of the modulus of the absolute error, +! which should equal or exceed abs(i-result) +! +! neval - integer +! number of integrand evaluations +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier.gt.0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! error messages +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit (and taking the according dimension +! adjustments into account). however, if +! this yields no improvement it is advised +! to analyze the integrand in order to +! determine the integration difficulties. if +! the position of a local difficulty can be +! determined (i.e. singularity, +! discontinuity within the interval), it +! should be supplied to the routine as an +! element of the vector points. if necessary +! an appropriate special-purpose integrator +! must be used, which is designed for +! handling the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behaviour occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. +! roundoff error is detected in the +! extrapolation table. it is presumed that +! the requested tolerance cannot be +! achieved, and that the returned result is +! the best which can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier.gt.0. +! = 6 the input is invalid because +! npts2.lt.2 or +! break points are specified outside +! the integration range or +! (epsabs.le.0 and +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) +! or limit.lt.npts2. +! result, abserr, neval, last, rlist(1), +! and elist(1) are set to zero. alist(1) and +! blist(1) are set to a and b respectively. +! +! alist - double precision +! vector of dimension at least limit, the first +! last elements of which are the left end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! blist - double precision +! vector of dimension at least limit, the first +! last elements of which are the right end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! rlist - double precision +! vector of dimension at least limit, the first +! last elements of which are the integral +! approximations on the subintervals +! +! elist - double precision +! vector of dimension at least limit, the first +! last elements of which are the moduli of the +! absolute error estimates on the subintervals +! +! pts - double precision +! vector of dimension at least npts2, containing the +! integration limits and the break points of the +! interval in ascending sequence. +! +! level - integer +! vector of dimension at least limit, containing the +! subdivision levels of the subinterval, i.e. if +! (aa,bb) is a subinterval of (p1,p2) where p1 as +! well as p2 is a user-provided break point or +! integration limit, then (aa,bb) has level l if +! abs(bb-aa) = abs(p2-p1)*2**(-l). +! +! ndin - integer +! vector of dimension at least npts2, after first +! integration over the intervals (pts(i)),pts(i+1), +! i = 0,1, ..., npts2-2, the error estimates over +! some of the intervals may have been increased +! artificially, in order to put their subdivision +! forward. if this happens for the subinterval +! numbered k, ndin(k) is put to 1, otherwise +! ndin(k) = 0. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the +! error estimates over the subintervals, +! such that elist(iord(1)), ..., elist(iord(k)) +! form a decreasing sequence, with k = last +! if last.le.(limit/2+2), and k = limit+1-last +! otherwise +! +! last - integer +! number of subintervals actually produced in the +! subdivisions process +! +c***references (none) +c***routines called d1mach,dqelg,dqk21,dqpsrt +c***end prologue dqagpe + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result1,abserr + integer, intent(out) :: neval,ier + double precision,dimension(limit), intent(out) :: alist, blist + double precision,dimension(limit), intent(out) :: rlist, elist + double precision,dimension(npts+2),intent(out) :: pts + integer, dimension(limit), intent(out) :: iord, level + integer, dimension(npts+2), intent(out) :: ndin + integer ::last + double precision :: f +! locals + double precision :: area,area1,area12,area2,a1, + * a2,b1,b2,correc,abseps,defabs,defab1,defab2, + * dres,epmach,erlarg,erlast,errbnd, + * errmax,error1,erro12,error2,errsum,ertest,oflow, + * resa,resabs,reseps,sign,temp,uflow, hSplit + double precision, dimension(3) :: res3la(3) + double precision, dimension(52) :: rlist2(52) + integer :: i,id,ierro,ind1,ind2,ip1,iroff1,iroff2,iroff3,j, + * jlow,jupbnd,k,ksgn,ktmin,levcur,levmax,maxerr, + * nint,nintp1,npts2,nres,nrmax,numrl2 + logical :: extrap,noext + external f +! +! + +! +! +! the dimension of rlist2 is determined by the value of +! limexp in subroutine epsalg (rlist2 should be of dimension +! (limexp+2) at least). +! +! +! list of major variables +! ----------------------- +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 +! containing the part of the epsilon table which +! is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! been obtained, it is put in rlist2(numrl2) after +! numrl2 has been increased by one. +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation is +! no longer allowed (true-value) +! +! machine dependent constants +! --------------------------- +! +! epmach is the largest relative spacing. +! uflow is the smallest positive magnitude. +! oflow is the largest positive magnitude. +! +c***first executable statement dqagpe + epmach = d1mach(4) + uflow = d1mach(1) + oflow = d1mach(2) +! +! test on validity of parameters +! ----------------------------- +! + hSplit = 0.2D0 + ier = 0 + neval = 0 + last = 0 + result1 = 0.0d+00 + abserr = 0.0d+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0d+00 + elist(1) = 0.0d+00 + iord(1) = 0 + level(1) = 0 + npts2 = npts+2 + if((npts2.lt.2).or.(limit.le.npts).or. + & ((epsabs.le.0.0d+00).and. + & (epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)))) then + ier = 6 + go to 999 + endif + + sign = 1.0d+00 + if(a.gt.b) then + go to 999 + endif + if (npts>0) then + if(any(points(1:npts)<=a).or.any(b<=points(1:npts))) then + ier = 6 + go to 999 + endif + endif +! +! if any break points are provided, sort them into an +! ascending sequence. +! + pts(1) = a + pts(npts+2) = b + do i = 1,npts + pts(i+1) = minval(points(i:npts)) + enddo +! +! compute first integral and error approximations. +! ------------------------------------------------ +! + nint = npts+1; + a1 = pts(1); + resabs = 0.0d+00 + do i = 1,nint + b1 = pts(i+1) + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,defabs,resa) + !call dqk15(f,a1,b1,area1,error1,defabs,resa) + else + call dqkl9(f,a1,b1,area1,error1,defabs,resa) + endif + abserr = abserr + error1 + result1 = result1 + area1 + ndin(i) = 0 + if(error1.eq.resa.and.error1.ne.0.0d+00) ndin(i) = 1 + resabs = resabs + defabs + level(i) = 0 + elist(i) = error1 + alist(i) = a1 + blist(i) = b1 + rlist(i) = area1 + iord(i) = i + a1 = b1 + enddo !50 continue + errsum = 0.0d+00 + do i = 1,nint + if(ndin(i).eq.1) elist(i) = abserr + errsum = errsum+elist(i) + enddo !55 continue +! +! test on accuracy. +! + last = nint + neval = 21*nint + dres = dabs(result1) + errbnd = dmax1(epsabs,epsrel*dres) + if(abserr.le.0.1d+03*epmach*resabs.and.abserr.gt.errbnd) ier = 2 + if(nint.eq.1) go to 80 + do 70 i = 1,npts + jlow = i+1 + ind1 = iord(i) + do 60 j = jlow,nint + ind2 = iord(j) + if(elist(ind1).gt.elist(ind2)) go to 60 + ind1 = ind2 + k = j + 60 continue + if(ind1.eq.iord(i)) go to 70 + iord(k) = iord(i) + iord(i) = ind1 + 70 continue + if(limit.lt.npts2) ier = 1 + 80 if(ier.ne.0.or.abserr.le.errbnd) go to 210 + +! +! initialization +! -------------- +! + rlist2(1) = result1 + maxerr = iord(1) + errmax = elist(maxerr) + area = result1 + nrmax = 1 + nres = 0 + numrl2 = 1 + ktmin = 0 + extrap = .false. + noext = .false. + erlarg = errsum + ertest = errbnd + levmax = 1 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ierro = 0 + abserr = oflow + ksgn = -1 + if(dres.ge.(0.1d+01-0.5d+02*epmach)*resabs) ksgn = 1 +! +! main do-loop +! ------------ +! + do 160 last = npts2,limit +! +! bisect the subinterval with the nrmax-th largest error +! estimate. +! + levcur = level(maxerr)+1 + a1 = alist(maxerr) + b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,resa,defab1) + call dqk21(f,a2,b2,area2,error2,resa,defab2) + !call dqk15(f,a1,b1,area1,error1,resa,defab1) + !call dqk15(f,a2,b2,area2,error2,resa,defab2) + else + + call dqkl9(f,a1,b1,area1,error1,resa,defab1) + call dqkl9(f,a2,b2,area2,error2,resa,defab2) + endif +! +! improve previous approximations to integral +! and error and test for accuracy. +! + neval = neval+42 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if(defab1.eq.error1.or.defab2.eq.error2) go to 95 + if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) + * .or.erro12.lt.0.99d+00*errmax) go to 90 + if(extrap) iroff2 = iroff2+1 + if(.not.extrap) iroff1 = iroff1+1 + 90 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 + 95 level(maxerr) = levcur + level(last) = levcur + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = dmax1(epsabs,epsrel*dabs(area)) +! +! test for roundoff error and eventually set error flag. +! + if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 + if(iroff2.ge.5) ierro = 3 +! +! set error flag in the case that the number of +! subintervals equals limit. +! + if(last.eq.limit) ier = 1 +! +! set error flag in the case of bad integrand behaviour +! at a point of the integration range +! + if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* + * (dabs(a2)+0.1d+04*uflow)) ier = 4 +! +! append the newly-created intervals to the list. +! + if(error2.gt.error1) go to 100 + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + go to 110 + 100 alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 +! +! call subroutine dqpsrt to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + 110 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) +! ***jump out of do-loop + if(errsum.le.errbnd) go to 190 +! ***jump out of do-loop + if(ier.ne.0) go to 170 + if(noext) go to 160 + erlarg = erlarg-erlast + if(levcur+1.le.levmax) erlarg = erlarg+erro12 + if(extrap) go to 120 +! +! test whether the interval to be bisected next is the +! smallest interval. +! + if(level(maxerr)+1.le.levmax) go to 160 + extrap = .true. + nrmax = 2 + 120 if(ierro.eq.3.or.erlarg.le.ertest) go to 140 +! +! the smallest interval has the largest error. +! before bisecting decrease the sum of the errors over +! the larger intervals (erlarg) and perform extrapolation. +! + id = nrmax + jupbnd = last + if(last.gt.(2+limit/2)) jupbnd = limit+3-last + do 130 k = id,jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) +! ***jump out of do-loop + if(level(maxerr)+1.le.levmax) go to 160 + nrmax = nrmax+1 + 130 continue +! +! perform extrapolation. +! + 140 numrl2 = numrl2+1 + rlist2(numrl2) = area + if(numrl2.le.2) go to 155 + call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) + ktmin = ktmin+1 + if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 + if(abseps.ge.abserr) go to 150 + ktmin = 0 + abserr = abseps + result1 = reseps + correc = erlarg + ertest = dmax1(epsabs,epsrel*dabs(reseps)) +! ***jump out of do-loop + if(abserr.lt.ertest) go to 170 +! +! prepare bisection of the smallest interval. +! + 150 if(numrl2.eq.1) noext = .true. + if(ier.ge.5) go to 170 + 155 maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + levmax = levmax + 1 + erlarg = errsum + 160 continue +! +! set the final result. +! --------------------- +! +! + 170 if(abserr.eq.oflow) go to 190 + if((ier+ierro).eq.0) go to 180 + if(ierro.eq.3) abserr = abserr+correc + if(ier.eq.0) ier = 3 + if(result1.ne.0.0d+00.and.area.ne.0.0d+00)go to 175 + if(abserr.gt.errsum)go to 190 + if(area.eq.0.0d+00) go to 210 + go to 180 + 175 if(abserr/dabs(result1).gt.errsum/dabs(area))go to 190 +! +! test on divergence. +! + 180 if(ksgn.eq.(-1).and.dmax1(dabs(result1),dabs(area)).le. + * resabs*0.1d-01) go to 210 + if(0.1d-01.gt.(result1/area).or.(result1/area).gt.0.1d+03.or. + * errsum.gt.dabs(area)) ier = 6 + go to 210 +! +! compute global integral sum. +! + 190 result1 = 0.0d+00 + do 200 k = 1,last + result1 = result1+rlist(k) + 200 continue + abserr = errsum + 210 if(ier.gt.2) ier = ier-1 + result1 = result1*sign + 999 return + end subroutine dqagpe + subroutine dqk21(f,a,b,result1,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk21 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 21-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk21 +c + double precision,intent(in) :: a,b + double precision, intent(out) :: abserr, result1,resabs,resasc + double precision :: f,absc,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth, + * resg,resk,reskh,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 21-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 10-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 10-point gauss rule +c +c wgk - weights of the 21-point kronrod rule +c +c wg - weights of the 10-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 / + data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 / + data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 / + data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 / + data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 / +c + data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 / + data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 / + data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 / + data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 / + data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 / + data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 / + data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 / + data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 / + data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 / + data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 / + data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 / +c + data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 / + data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 / + data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 / + data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 / + data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 / + data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 / + data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 / + data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 / + data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 / + data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 / + data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 / +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk21 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 21-point kronrod approximation to +c the integral, and estimate the absolute error. +c + resg = 0.0d+00 + fc = f(centr) + resk = wgk(11)*fc + resabs = dabs(resk) + do 10 j=1,5 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,5 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(11)*dabs(fc-reskh) + do 20 j=1,10 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result1 = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0d0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk21 + subroutine dqk15(f,a,b,result1,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision,intent(in) :: a,b + double precision, intent(out) :: abserr, result1,resabs,resasc + double precision :: f, absc,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth, + * resg,resk,reskh,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 7-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point gauss rule +c +c wgk - weights of the 15-point kronrod rule +c +c wg - weights of the 7-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.129484966168869693270611432679082d0 / + data wg ( 2) / 0.279705391489276667901467771423780d0 / + data wg ( 3) / 0.381830050505118944950369775488975d0 / + data wg ( 4) / 0.417959183673469387755102040816327d0 / + + data xgk ( 1) / 0.991455371120812639206854697526329d0 / + data xgk ( 2) / 0.949107912342758524526189684047851d0 / + data xgk ( 3) / 0.864864423359769072789712788640926d0 / + data xgk ( 4) / 0.741531185599394439863864773280788d0 / + data xgk ( 5) / 0.586087235467691130294144838258730d0 / + data xgk ( 6) / 0.405845151377397166906606412076961d0 / + data xgk ( 7) / 0.207784955007898467600689403773245d0 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.022935322010529224963732008058970d0/ + data wgk ( 2) / 0.063092092629978553290700663189204d0 / + data wgk ( 3) / 0.104790010322250183839876322541518d0 / + data wgk ( 4) / 0.140653259715525918745189590510238d0 / + data wgk ( 5) / 0.169004726639267902826583426598550d0 / + data wgk ( 6) / 0.190350578064785409913256402421014d0 / + data wgk ( 7) / 0.204432940075298892414161999234649d0 / + data wgk ( 8) / 0.209482141084727828012999174891714d0 / + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resg = wg(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result1 = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0D0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk15 + subroutine dqk9(f,a,b,result1,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision,intent(in) :: a,b + double precision, intent(out) :: abserr, result1,resabs,resasc + double precision :: f,absc,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth, + * resg,resk0,resk,reskh,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +! xgk(4), xgk(8) abscissae of the 3-point gauss rule +c xgk(2), xgk(4),xgk(6), xgk(8) ... abscissae of the 7-point +c kronrod rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point kronrod rule +c +c wgk - weights of the 15-point kronrod rule +! +! wgk0 - weights of the 7-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + data wg ( 1) / 0.5555555555555555D+00/ + data wg ( 2) / 0.8888888888888889D+00/ + + data wgk0 ( 1) / 0.1046562260264673D+00/ + data wgk0 ( 2) / 0.2684880898683335D+00/ + data wgk0 ( 3) / 0.4013974147759622D+00/ + data wgk0 ( 4) / 0.4509165386584741D+00/ + + data xgk ( 1) / 0.9938319632127550D+00/ + data xgk ( 2) / 0.9604912687080203D+00/ + data xgk ( 3) / 0.8884592328722570D+00 / + data xgk ( 4) / 0.7745966692414834D+00/ + data xgk ( 5) / 0.6211029467372264D+00/ + data xgk ( 6) / 0.4342437493468026D+00/ + data xgk ( 7) / 0.2233866864289669D+00 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.1700171962994028D-01/ + data wgk ( 2) / 0.5160328299707982D-01/ + data wgk ( 3) / 0.9292719531512452D-01/ + data wgk ( 4) / 0.1344152552437843D+00/ + data wgk ( 5) / 0.1715119091363914D+00/ + data wgk ( 6) / 0.2006285293769890D+00/ + data wgk ( 7) / 0.2191568584015875D+00/ + data wgk ( 8) / 0.2255104997982067D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resk0 = wgk0(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(4) + fv2(4)) + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result1 = resk + call dea3(resg,resk0,resk,abserr,result1) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0)) + & * 10.0D0, abserr) + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + + end subroutine dqk9 + subroutine dqkl9(f,a,b,result1,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision,intent(in) :: a,b + double precision, intent(out) :: abserr, result1,resabs,resasc + double precision :: f,absc,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth, + * resg,resk0,resk,reskh,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(3),wgk(5),xgk(5) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 9-point Gauss-kronrod-lobatto rule +! xgk(1), xgk(5) abscissae of the 3-point gauss-lobatto rule +c xgk(1), xgk(3),xgk(5) abscissae of the 5-point +c kronrod rule +c xgk(2), xgk(4), ... abscissae which are optimally +c added to the 5-point kronrod rule +c +c wgk - weights of the 9-point kronrod rule +! +! wgk0 - weights of the 5-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + + data wg ( 1) / 0.33333333333333333333333333333333333D+00/ + data wg ( 2) / 0.13333333333333333333333333333333333D+01/ + + data wgk0 ( 1) / 0.1000000000000000D+00/ + data wgk0 ( 2) / 0.5444444444444445D+00/ + data wgk0 ( 3) / 0.7111111111111111D+00/ + + data xgk ( 1) / 0.1000000000000000D+01/ + data xgk ( 2) / 0.8904055275126688D+00/ + data xgk ( 3) / 0.6546536707079772D+00/ + data xgk ( 4) / 0.3409822659109930D+00/ + data xgk ( 5) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.3064373897707232D-01/ + data wgk ( 2) / 0.1792626995532074D+00/ + data wgk ( 3) / 0.2839787780481211D+00/ + data wgk ( 4) / 0.3342337398164177D+00/ + data wgk ( 5) / 0.3437620872103631D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(5)*fc + resk0 = wgk0(3)*fc + resabs = dabs(resk) + do 10 j=1,2 + jtw = 2*j - 1 + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(1) + fv2(1)) + do 15 j = 1,2 + jtwm1 = 2*j + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(5)*dabs(fc-reskh) + do 20 j=1,4 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result1 = resk + call dea3(resg,resk0,resk,abserr,result1) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0))* 10.0D0,abserr) + + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) + implicit none +c***begin prologue dqpsrt +c***refer to dqage,dqagie,dqagpe,dqawse +c***routines called (none) +c***revision date 810101 (yymmdd) +c***keywords sequential sorting +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose this routine maintains the descending ordering in the +c list of the local error estimated resulting from the +c interval subdivision process. at each call two error +c estimates are inserted using the sequential search +c method, top-down for the largest error estimate and +c bottom-up for the smallest error estimate. +c***description +c +c ordering routine +c standard fortran subroutine +c double precision version +c +c parameters (meaning at output) +c limit - integer +c maximum number of error estimates the list +c can contain +c +c last - integer +c number of error estimates currently in the list +c +c maxerr - integer +c maxerr points to the nrmax-th largest error +c estimate currently in the list +c +c ermax - double precision +c nrmax-th largest error estimate +c ermax = elist(maxerr) +c +c elist - double precision +c vector of dimension last containing +c the error estimates +c +c iord - integer +c vector of dimension last, the first k elements +c of which contain pointers to the error +c estimates, such that +c elist(iord(1)),..., elist(iord(k)) +c form a decreasing sequence, with +c k = last if last.le.(limit/2+2), and +c k = limit+1-last otherwise +c +c nrmax - integer +c maxerr = iord(nrmax) +c +c***end prologue dqpsrt +c + double precision elist,ermax,errmax,errmin + integer i,ibeg,ido,iord,isucc,j,jbnd,jupbn,k,last,limit,maxerr, + * nrmax + dimension elist(last),iord(last) +c +c check whether the list contains more than +c two error estimates. +c +c***first executable statement dqpsrt + if(last.gt.2) go to 10 + iord(1) = 1 + iord(2) = 2 + go to 90 +c +c this part of the routine is only executed if, due to a +c difficult integrand, subdivision increased the error +c estimate. in the normal case the insert procedure should +c start after the nrmax-th largest error estimate. +c + 10 errmax = elist(maxerr) + if(nrmax.eq.1) go to 30 + ido = nrmax-1 + do 20 i = 1,ido + isucc = iord(nrmax-1) +c ***jump out of do-loop + if(errmax.le.elist(isucc)) go to 30 + iord(nrmax) = isucc + nrmax = nrmax-1 + 20 continue +c +c compute the number of elements in the list to be maintained +c in descending order. this number depends on the number of +c subdivisions still allowed. +c + 30 jupbn = last + if(last.gt.(limit/2+2)) jupbn = limit+3-last + errmin = elist(last) +c +c insert errmax by traversing the list top-down, +c starting comparison from the element elist(iord(nrmax+1)). +c + jbnd = jupbn-1 + ibeg = nrmax+1 + if(ibeg.gt.jbnd) go to 50 + do 40 i=ibeg,jbnd + isucc = iord(i) +c ***jump out of do-loop + if(errmax.ge.elist(isucc)) go to 60 + iord(i-1) = isucc + 40 continue + 50 iord(jbnd) = maxerr + iord(jupbn) = last + go to 90 +c +c insert errmin by traversing the list bottom-up. +c + 60 iord(i-1) = maxerr + k = jbnd + do 70 j=i,jbnd + isucc = iord(k) +c ***jump out of do-loop + if(errmin.lt.elist(isucc)) go to 80 + iord(k+1) = isucc + k = k-1 + 70 continue + iord(i) = last + go to 90 + 80 iord(k+1) = last +c +c set maxerr and ermax. +c + 90 maxerr = iord(nrmax) + ermax = elist(maxerr) + return + end subroutine dqpsrt + subroutine dqelg(n,epstab,result1,abserr,res3la,nres) + implicit none +c***begin prologue dqelg +c***refer to dqagie,dqagoe,dqagpe,dqagse +c***routines called d1mach +c***revision date 830518 (yymmdd) +c***keywords epsilon algorithm, convergence acceleration, +c extrapolation +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math & progr. div. - k.u.leuven +c***purpose the routine determines the limit of a given sequence of +c approximations, by means of the epsilon algorithm of +c p.wynn. an estimate of the absolute error is also given. +c the condensed epsilon table is computed. only those +c elements needed for the computation of the next diagonal +c are preserved. +c***description +c +c epsilon algorithm +c standard fortran subroutine +c double precision version +c +c parameters +c n - integer +c epstab(n) contains the new element in the +c first column of the epsilon table. +c +c epstab - double precision +c vector of dimension 52 containing the elements +c of the two lower diagonals of the triangular +c epsilon table. the elements are numbered +c starting at the right-hand corner of the +c triangle. +c +c result - double precision +c resulting approximation to the integral +c +c abserr - double precision +c estimate of the absolute error computed from +c result and the 3 previous results +c +c res3la - double precision +c vector of dimension 3 containing the last 3 +c results +c +c nres - integer +c number of calls to the routine +c (should be zero at first call) +c +c***end prologue dqelg +c + double precision abserr,dabs,delta1,delta2,delta3,dmax1, + * epmach,epsinf,epstab,error,err1,err2,err3,e0,e1,e1abs,e2,e3, + * oflow,res,result1,res3la,ss,tol1,tol2,tol3 + integer i,ib,ib2,ie,indx,k1,k2,k3,limexp,n,newelm,nres,num + dimension epstab(52),res3la(3) +c +c list of major variables +c ----------------------- +c +c e0 - the 4 elements on which the computation of a new +c e1 element in the epsilon table is based +c e2 +c e3 e0 +c e3 e1 new +c e2 +c newelm - number of elements to be computed in the new +c diagonal +c error - error = abs(e1-e0)+abs(e2-e1)+abs(new-e2) +c result - the element in the new diagonal with least value +c of error +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c oflow is the largest positive magnitude. +c limexp is the maximum number of elements the epsilon +c table can contain. if this number is reached, the upper +c diagonal of the epsilon table is deleted. +c +c***first executable statement dqelg + epmach = d1mach(4) + oflow = d1mach(2) + nres = nres+1 + abserr = oflow + result1 = epstab(n) + if(n.lt.3) go to 100 + limexp = 50 + epstab(n+2) = epstab(n) + newelm = (n-1)/2 + epstab(n) = oflow + num = n + k1 = n + do 40 i = 1,newelm + k2 = k1-1 + k3 = k1-2 + res = epstab(k1+2) + e0 = epstab(k3) + e1 = epstab(k2) + e2 = res + e1abs = dabs(e1) + delta2 = e2-e1 + err2 = dabs(delta2) + tol2 = dmax1(dabs(e2),e1abs)*epmach + delta3 = e1-e0 + err3 = dabs(delta3) + tol3 = dmax1(e1abs,dabs(e0))*epmach + if(err2.gt.tol2.or.err3.gt.tol3) go to 10 +c +c if e0, e1 and e2 are equal to within machine +c accuracy, convergence is assumed. +c result1 = e2 +c abserr = abs(e1-e0)+abs(e2-e1) +c + result1 = res + abserr = err2+err3 +c ***jump out of do-loop + go to 100 + 10 e3 = epstab(k1) + epstab(k1) = e1 + delta1 = e1-e3 + err1 = dabs(delta1) + tol1 = dmax1(e1abs,dabs(e3))*epmach +c +c if two elements are very close to each other, omit +c a part of the table by adjusting the value of n +c + if(err1.le.tol1.or.err2.le.tol2.or.err3.le.tol3) go to 20 + ss = 0.1d+01/delta1+0.1d+01/delta2-0.1d+01/delta3 + epsinf = dabs(ss*e1) +c +c test to detect irregular behaviour in the table, and +c eventually omit a part of the table adjusting the value +c of n. +c + if(epsinf.gt.0.1d-03) go to 30 + 20 n = i+i-1 +c ***jump out of do-loop + go to 50 +c +c compute a new element and eventually adjust +c the value of result. +c + 30 res = e1+0.1d+01/ss + epstab(k1) = res + k1 = k1-2 + error = err2+dabs(res-e2)+err3 + if(error.gt.abserr) go to 40 + abserr = error + result1 = res + 40 continue +c +c shift the table. +c + 50 if(n.eq.limexp) n = 2*(limexp/2)-1 + ib = 1 + if((num/2)*2.eq.num) ib = 2 + ie = newelm+1 + do 60 i=1,ie + ib2 = ib+2 + epstab(ib) = epstab(ib2) + ib = ib2 + 60 continue + if(num.eq.n) go to 80 + indx = num-n+1 + do 70 i = 1,n + epstab(i)= epstab(indx) + indx = indx+1 + 70 continue + 80 if(nres.ge.4) go to 90 + res3la(nres) = result1 + abserr = oflow + go to 100 +c +c compute error estimate +c + 90 abserr = dabs(result1-res3la(3))+dabs(result1-res3la(2)) + * +dabs(result1-res3la(1)) + res3la(1) = res3la(2) + res3la(2) = res3la(3) + res3la(3) = result1 + 100 abserr = dmax1(abserr,0.5d+01*epmach*dabs(result1)) + return + end subroutine dqelg + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + end module AdaptiveGaussKronrod \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.mod b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.mod new file mode 100755 index 0000000..00fa45b --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.mod @@ -0,0 +1,112 @@ +GFORTRAN module created from mvnprodcorrprb.f on Tue Dec 02 13:32:39 2008 +MD5:5f0b454993ede1db4c4b6b9e47df36c4 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('dqagpe' 'adaptivegausskronrod' 2) ('dqagp' 'adaptivegausskronrod' 3)) + +() + +() + +(3 'dqagp' 'adaptivegausskronrod' 'dqagp' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +4 0 (5 6 7 8 9 10 11 12 13 14 15 16) () 0 () () 0 0) +2 'dqagpe' 'adaptivegausskronrod' 'dqagpe' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +17 0 (18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38) () +0 () () 0 0) +10 'epsabs' '' 'epsabs' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +11 'epsrel' '' 'epsrel' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +12 'limit' '' 'limit' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +13 'result1' '' 'result1' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +14 'abserr' '' 'abserr' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +15 'neval' '' 'neval' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +16 'ier' '' 'ier' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +9 'points' '' 'points' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +8 ())) 0 () () 0 0) +5 'f' '' 'f' 4 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +6 'a' '' 'a' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (REAL 8 +0 0 REAL ()) 0 0 () () 0 () () 0 0) +7 'b' '' 'b' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) (REAL 8 +0 0 REAL ()) 0 0 () () 0 () () 0 0) +8 'npts' '' 'npts' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +18 'f' '' 'f' 17 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +EXTERNAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +19 'a' '' 'a' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +20 'b' '' 'b' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +21 'npts' '' 'npts' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +22 'points' '' 'points' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +21 ())) 0 () () 0 0) +23 'epsabs' '' 'epsabs' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +24 'epsrel' '' 'epsrel' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +25 'limit' '' 'limit' 17 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +26 'result' '' 'result' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +27 'abserr' '' 'abserr' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () 0 0) +28 'neval' '' 'neval' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +29 'ier' '' 'ier' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +30 'alist' '' 'alist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +31 'blist' '' 'blist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +32 'rlist' '' 'rlist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +33 'elist' '' 'elist' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 +25 ())) 0 () () 0 0) +34 'pts' '' 'pts' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') (OP (INTEGER 4 0 0 INTEGER ()) 0 PLUS ( +VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 21 ()) (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '2'))) 0 () () 0 0) +35 'iord' '' 'iord' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 +INTEGER ()) 0 25 ())) 0 () () 0 0) +36 'level' '' 'level' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (VARIABLE (INTEGER 4 0 0 +INTEGER ()) 0 25 ())) 0 () () 0 0) +37 'ndin' '' 'ndin' 17 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (OP (INTEGER 4 0 0 INTEGER ()) +0 PLUS (VARIABLE (INTEGER 4 0 0 INTEGER ()) 0 21 ()) (CONSTANT (INTEGER +4 0 0 INTEGER ()) 0 '2'))) 0 () () 0 0) +38 'last' '' 'last' 17 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () 0 0) +) + +('dqagp' 0 3 'dqagpe' 0 2) diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyf b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyf new file mode 100755 index 0000000..03410ec --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyf @@ -0,0 +1,157 @@ +! -*- f90 -*- +! Note: the context of this file is case sensitive. + +python module dqk21__user__routines + interface dqk21_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod:dqk21:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk21_user_interface +end python module dqk21__user__routines +python module dqk15__user__routines + interface dqk15_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod:dqk15:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk15_user_interface +end python module dqk15__user__routines +python module dqk9__user__routines + interface dqk9_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod:dqk9:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk9_user_interface +end python module dqk9__user__routines +python module dqkl9__user__routines + interface dqkl9_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod:dqkl9:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqkl9_user_interface +end python module dqkl9__user__routines +python module adaptivegausskronrod ! in + interface ! in :adaptivegausskronrod + module functioninterface ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90 + interface ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:functioninterface + function f(z) result (val) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:functioninterface:unknown_interface + double precision intent(in) :: z + double precision :: val + end function f + end interface + end module functioninterface + module adaptivegausskronrod ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90 + subroutine dea3(e0,e1,e2,abserr,result1) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + double precision intent(in) :: e0 + double precision intent(in) :: e1 + double precision intent(in) :: e2 + double precision intent(out) :: abserr + double precision intent(out) :: result1 + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1,abserr,neval,ier) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + external f + double precision intent(in) :: a + double precision intent(in) :: b + integer optional,intent(in),check(len(points)>=npts),depend(points) :: npts=len(points) + double precision dimension(npts),intent(in) :: points + double precision intent(in) :: epsabs + double precision intent(in) :: epsrel + integer intent(in) :: limit + double precision intent(out) :: result1 + double precision intent(out) :: abserr + integer intent(out) :: neval + integer intent(out) :: ier + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1,abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin,last) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + external f + double precision intent(in) :: a + double precision intent(in) :: b + integer optional,intent(in),check(len(points)>=npts),depend(points) :: npts=len(points) + double precision dimension(npts),intent(in) :: points + double precision intent(in) :: epsabs + double precision intent(in) :: epsrel + integer intent(in) :: limit + double precision intent(out) :: result1 + double precision intent(out) :: abserr + integer intent(out) :: neval + integer intent(out) :: ier + double precision dimension(limit),intent(out),depend(limit) :: alist + double precision dimension(limit),intent(out),depend(limit) :: blist + double precision dimension(limit),intent(out),depend(limit) :: rlist + double precision dimension(limit),intent(out),depend(limit) :: elist + double precision dimension(npts + 2),intent(out),depend(npts) :: pts + integer dimension(limit),intent(out),depend(limit) :: iord + integer dimension(limit),intent(out),depend(limit) :: level + integer dimension(npts + 2),intent(out),depend(npts) :: ndin + integer :: last + end subroutine dqagpe + subroutine dqk21(f,a,b,result1,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + use dqk21__user__routines + external f + double precision intent(in) :: a + double precision intent(in) :: b + double precision intent(out) :: result1 + double precision intent(out) :: abserr + double precision intent(out) :: resabs + double precision intent(out) :: resasc + end subroutine dqk21 + subroutine dqk15(f,a,b,result1,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + use dqk15__user__routines + external f + double precision intent(in) :: a + double precision intent(in) :: b + double precision intent(out) :: result1 + double precision intent(out) :: abserr + double precision intent(out) :: resabs + double precision intent(out) :: resasc + end subroutine dqk15 + subroutine dqk9(f,a,b,result1,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + use dqk9__user__routines + external f + double precision intent(in) :: a + double precision intent(in) :: b + double precision intent(out) :: result1 + double precision intent(out) :: abserr + double precision intent(out) :: resabs + double precision intent(out) :: resasc + end subroutine dqk9 + subroutine dqkl9(f,a,b,result1,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + use dqkl9__user__routines + external f + double precision intent(in) :: a + double precision intent(in) :: b + double precision intent(out) :: result1 + double precision intent(out) :: abserr + double precision intent(out) :: resabs + double precision intent(out) :: resasc + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + integer :: limit + integer optional,check(len(elist)>=last),depend(elist) :: last=len(elist) + integer :: maxerr + double precision :: ermax + double precision dimension(last) :: elist + integer dimension(last),depend(last) :: iord + integer :: nrmax + end subroutine dqpsrt + subroutine dqelg(n,epstab,result1,abserr,res3la,nres) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + integer :: n + double precision dimension(52) :: epstab + double precision :: result1 + double precision :: abserr + double precision dimension(3) :: res3la + integer :: nres + end subroutine dqelg + function d1mach(i) ! in :adaptivegausskronrod:AdaptiveGaussKronrod.f90:adaptivegausskronrod + integer intent(in) :: i + double precision :: d1mach + end function d1mach + end module adaptivegausskronrod + end interface +end python module adaptivegausskronrod + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyfo b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyfo new file mode 100755 index 0000000..31ea5ed --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/adaptivegausskronrod.pyfo @@ -0,0 +1,149 @@ +! -*- f90 -*- +! Note: the context of this file is case sensitive. + +python module dqk21__user__routines + interface dqk21_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod:dqk21:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk21_user_interface +end python module dqk21__user__routines +python module dqk15__user__routines + interface dqk15_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod:dqk15:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk15_user_interface +end python module dqk15__user__routines +python module dqk9__user__routines + interface dqk9_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod:dqk9:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqk9_user_interface +end python module dqk9__user__routines +python module dqkl9__user__routines + interface dqkl9_user_interface + function f(centr) result (fc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod:dqkl9:unknown_interface + double precision :: centr + double precision :: fc + end function f + end interface dqkl9_user_interface +end python module dqkl9__user__routines +python module adaptivegausskronrod ! in + interface ! in :adaptivegausskronrod + module adaptivegausskronrod ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90 + subroutine dea3(e0,e1,e2,abserr,result) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + double precision intent(in) :: e0 + double precision intent(in) :: e1 + double precision intent(in) :: e2 + double precision intent(out) :: abserr + double precision intent(out) :: result + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1,abserr,neval,ier) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + external f + double precision intent(in) :: a + double precision intent(in) :: b + integer optional,intent(in),check(len(points)>=npts),depend(points) :: npts=len(points) + double precision dimension(npts),intent(in) :: points + double precision intent(in) :: epsabs + double precision intent(in) :: epsrel + integer intent(in) :: limit + double precision intent(out) :: result1 + double precision intent(out) :: abserr + integer intent(out) :: neval + integer intent(out) :: ier + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result,abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin,last) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + external f + double precision intent(in) :: a + double precision intent(in) :: b + integer optional,intent(in),check(len(points)>=npts),depend(points) :: npts=len(points) + double precision dimension(npts),intent(in) :: points + double precision intent(in) :: epsabs + double precision intent(in) :: epsrel + integer intent(in) :: limit + double precision intent(out) :: result + double precision intent(out) :: abserr + integer intent(out) :: neval + integer intent(out) :: ier + double precision dimension(limit),intent(out),depend(limit) :: alist + double precision dimension(limit),intent(out),depend(limit) :: blist + double precision dimension(limit),intent(out),depend(limit) :: rlist + double precision dimension(limit),intent(out),depend(limit) :: elist + double precision dimension(npts + 2),intent(out),depend(npts) :: pts + integer dimension(limit),intent(out),depend(limit) :: iord + integer dimension(limit),intent(out),depend(limit) :: level + integer dimension(npts + 2),intent(out),depend(npts) :: ndin + integer :: last + end subroutine dqagpe + subroutine dqk21(f,a,b,result,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + use dqk21__user__routines + external f + double precision :: a + double precision :: b + double precision :: result + double precision :: abserr + double precision :: resabs + double precision :: resasc + end subroutine dqk21 + subroutine dqk15(f,a,b,result,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + use dqk15__user__routines + external f + double precision :: a + double precision :: b + double precision :: result + double precision :: abserr + double precision :: resabs + double precision :: resasc + end subroutine dqk15 + subroutine dqk9(f,a,b,result,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + use dqk9__user__routines + external f + double precision :: a + double precision :: b + double precision :: result + double precision :: abserr + double precision :: resabs + double precision :: resasc + end subroutine dqk9 + subroutine dqkl9(f,a,b,result,abserr,resabs,resasc) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + use dqkl9__user__routines + external f + double precision :: a + double precision :: b + double precision :: result + double precision :: abserr + double precision :: resabs + double precision :: resasc + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + integer :: limit + integer optional,check(len(elist)>=last),depend(elist) :: last=len(elist) + integer :: maxerr + double precision :: ermax + double precision dimension(last) :: elist + integer dimension(last),depend(last) :: iord + integer :: nrmax + end subroutine dqpsrt + subroutine dqelg(n,epstab,result,abserr,res3la,nres) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + integer :: n + double precision dimension(52) :: epstab + double precision :: result + double precision :: abserr + double precision dimension(3) :: res3la + integer :: nres + end subroutine dqelg + function d1mach(i) ! in :adaptivegausskronrod:AdaptiveGuassKronrod.f90:adaptivegausskronrod + integer intent(in) :: i + double precision :: d1mach + end function d1mach + end module adaptivegausskronrod + end interface +end python module adaptivegausskronrod + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/dea.f b/wafo/source/mvnprd/old/mvnprodcorrprb/old/dea.f new file mode 100755 index 0000000..be04810 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/dea.f @@ -0,0 +1,390 @@ +C f2py -m -h deamod.pyf dea.f +C f2py integrationmod.pyf integration1Dmodule.f90 .f90 -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +! f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m integrationmod -c integration1Dmodule.f90 + + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + SUBROUTINE DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +C***BEGIN PROLOGUE DEA +C***DATE WRITTEN 800101 (YYMMDD) +C***REVISION DATE 871208 (YYMMDD) +C***CATEGORY NO. E5 +C***KEYWORDS CONVERGENCE ACCELERATION,EPSILON ALGORITHM,EXTRAPOLATION +C***AUTHOR PIESSENS, ROBERT, APPLIED MATH. AND PROGR. DIV. - +C K. U. LEUVEN +C DE DONCKER-KAPENGA, ELISE,WESTERN MICHIGAN UNIVERSITY +C KAHANER, DAVID K., NATIONAL BUREAU OF STANDARDS +C STARKENBURG, C. B., NATIONAL BUREAU OF STANDARDS +C***PURPOSE Given a slowly convergent sequence, this routine attempts +C to extrapolate nonlinearly to a better estimate of the +C sequence's limiting value, thus improving the rate of +C convergence. Routine is based on the epsilon algorithm +C of P. Wynn. An estimate of the absolute error is also +C given. +C***DESCRIPTION +C +C Epsilon algorithm. Standard fortran subroutine. +C Double precision version. +C +C A R G U M E N T S I N T H E C A L L S E Q U E N C E +C +C NEWFLG - LOGICAL (INPUT and OUTPUT) +C On the first call to DEA set NEWFLG to .TRUE. +C (indicating a new sequence). DEA will set NEWFLG +C to .FALSE. +C +C SVALUE - DOUBLE PRECISION (INPUT) +C On the first call to DEA set SVALUE to the first +C term in the sequence. On subsequent calls set +C SVALUE to the subsequent sequence value. +C +C LIMEXP - INTEGER (INPUT) +C An integer equal to or greater than the total +C number of sequence terms to be evaluated. Do not +C change the value of LIMEXP until a new sequence +C is evaluated (NEWFLG=.TRUE.). LIMEXP .GE. 3 +C +C RESULT - DOUBLE PRECISION (OUTPUT) +C Best approximation to the sequence's limit. +C +C ABSERR - DOUBLE PRECISION (OUTPUT) +C Estimate of the absolute error. +C +C EPSTAB - DOUBLE PRECISION (OUTPUT) +C Workvector of DIMENSION at least (LIMEXP+7). +C +C IERR - INTEGER (OUTPUT) +C IERR=0 Normal termination of the routine. +C IERR=1 The input is invalid because LIMEXP.LT.3. +C +C T Y P I C A L P R O B L E M S E T U P +C +C This sample problem uses the trapezoidal rule to evaluate the +C integral of the sin function from 0.0 to 0.5*PI (value = 1.0). The +C program implements the trapezoidal rule 8 times creating an +C increasingly accurate sequence of approximations to the integral. +C Each time the trapezoidal rule is used, it uses twice as many +C panels as the time before. DEA is called to obtain even more +C accurate estimates. +C +C PROGRAM SAMPLE +C IMPLICIT DOUBLE PRECISION (A-H,O-Z) +C DOUBLE PRECISION EPSTAB(57) +CC [57 = LIMEXP + 7] +C LOGICAL NEWFLG +C EXTERNAL F +C DATA LIMEXP/50/ +C WRITE(*,*) ' NO. PANELS TRAP. APPROX' +C * ,' APPROX W/EA ABSERR' +C WRITE(*,*) +C HALFPI = DASIN(1.0D+00) +CC [UPPER INTEGRATION LIMIT = PI/2] +C NEWFLG = .TRUE. +CC [SET FLAG - 1ST DEA CALL] +C DO 10 I = 0,7 +C NPARTS = 2 ** I +C WIDTH = HALFPI/NPARTS +C APPROX = 0.5D+00 * WIDTH * (F(0.0D+00) + F(HALFPI)) +C DO 11 J = 1,NPARTS-1 +C APPROX = APPROX + F(J * WIDTH) * WIDTH +C 11 CONTINUE +CC [END TRAPEZOIDAL RULE APPROX] +C SVALUE = APPROX +CC [SVALUE = NEW SEQUENCE VALUE] +C CALL DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +CC [CALL DEA FOR BETTER ESTIMATE] +C WRITE(*,12) NPARTS,APPROX,RESULT,ABSERR +C 12 FORMAT(' ',I4,T20,F16.13,T40,F16.13,T60,D11.4) +C 10 CONTINUE +C STOP +C END +C +C DOUBLE PRECISION FUNCTION F(X) +C DOUBLE PRECISION X +C F = DSIN(X) +CC [INTEGRAND] +C RETURN +C END +C +C Output from the above program will be: +C +C NO. PANELS TRAP. APPROX APPROX W/EA ABSERR +C +C 1 .7853981633974 .7853981633974 .7854D+00 +C 2 .9480594489685 .9480594489685 .9760D+00 +C 4 .9871158009728 .9994567212570 .2141D+00 +C 8 .9967851718862 .9999667417647 .3060D-02 +C 16 .9991966804851 .9999998781041 .6094D-03 +C 32 .9997991943200 .9999999981026 .5767D-03 +C 64 .9999498000921 .9999999999982 .3338D-04 +C 128 .9999874501175 1.0000000000000 .1238D-06 +C +C----------------------------------------------------------------------- +C***REFERENCES "Acceleration de la convergence en analyse numerique", +C C. Brezinski, "Lecture Notes in Math.", vol. 584, +C Springer-Verlag, New York, 1977. +C***ROUTINES CALLED D1MACH,XERROR +C***END PROLOGUE DEA + double precision, dimension(LIMEXP+7), intent(inout) :: EPSTAB + double precision, intent(out) :: RESULT !, ABSERR + double precision, intent(inout) :: ABSERR + double precision, intent(in) :: SVALUE + INTEGER, INTENT(IN) :: LIMEXP + INTEGER, INTENT(OUT) :: IERR + LOGICAL, intent(INOUT) :: NEWFLG + DOUBLE PRECISION :: DELTA1,DELTA2,DELTA3,DRELPR,DEPRN, + 1 ERROR,ERR1,ERR2,ERR3,E0,E1,E2,E3,RES, + 2 SS,TOL1,TOL2,TOL3 + double precision, dimension(3) :: RES3LA + INTEGER I,IB,IB2,IE,IN,K1,K2,K3,N,NEWELM,NUM,NRES +C +C +C LIMEXP is the maximum number of elements the +C epsilon table data can contain. The epsilon table +C is stored in the first (LIMEXP+2) entries of EPSTAB. +C +C +C LIST OF MAJOR VARIABLES +C ----------------------- +C E0,E1,E2,E3 - DOUBLE PRECISION +C The 4 elements on which the computation of +C a new element in the epsilon table is based. +C NRES - INTEGER +C Number of extrapolation results actually +C generated by the epsilon algorithm in prior +C calls to the routine. +C NEWELM - INTEGER +C Number of elements to be computed in the +C new diagonal of the epsilon table. The +C condensed epsilon table is computed. Only +C those elements needed for the computation of +C the next diagonal are preserved. +C RES - DOUBLE PRECISION +C New element in the new diagonal of the +C epsilon table. +C ERROR - DOUBLE PRECISION +C An estimate of the absolute error of RES. +C Routine decides whether RESULT=RES or +C RESULT=SVALUE by comparing ERROR with +C ABSERR from the previous call. +C RES3LA - DOUBLE PRECISION +C Vector of DIMENSION 3 containing at most +C the last 3 results. +C +C +C MACHINE DEPENDENT CONSTANTS +C --------------------------- +C DRELPR is the largest relative spacing. +C +C***FIRST EXECUTABLE STATEMENT DEA + IF(LIMEXP.LT.3) THEN + IERR = 1 +! CALL XERROR('LIMEXP IS LESS THAN 3',21,1,1) + GO TO 110 + ENDIF + IERR = 0 + RES3LA(1)=EPSTAB(LIMEXP+5) + RES3LA(2)=EPSTAB(LIMEXP+6) + RES3LA(3)=EPSTAB(LIMEXP+7) + RESULT=SVALUE + IF(NEWFLG) THEN + N=1 + NRES=0 + NEWFLG=.FALSE. + EPSTAB(N)=SVALUE + ABSERR=ABS(RESULT) + GO TO 100 + ELSE + N=INT(EPSTAB(LIMEXP+3)) + NRES=INT(EPSTAB(LIMEXP+4)) + IF(N.EQ.2) THEN + EPSTAB(N)=SVALUE + ABSERR=.6D+01*ABS(RESULT-EPSTAB(1)) + GO TO 100 + ENDIF + ENDIF + EPSTAB(N)=SVALUE + DRELPR=D1MACH(4) + DEPRN=1.0D+01*DRELPR + EPSTAB(N+2)=EPSTAB(N) + NEWELM=(N-1)/2 + NUM=N + K1=N + DO 40 I=1,NEWELM + K2=K1-1 + K3=K1-2 + RES=EPSTAB(K1+2) + E0=EPSTAB(K3) + E1=EPSTAB(K2) + E2=RES + DELTA2=E2-E1 + ERR2=ABS(DELTA2) + TOL2=MAX(ABS(E2),ABS(E1))*DRELPR + DELTA3=E1-E0 + ERR3=ABS(DELTA3) + TOL3=MAX(ABS(E1),ABS(E0))*DRELPR + IF(ERR2.GT.TOL2.OR.ERR3.GT.TOL3) GO TO 10 +C +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. +C RESULT=E2 +C ABSERR=ABS(E1-E0)+ABS(E2-E1) +C + RESULT=RES + ABSERR=ERR2+ERR3 + GO TO 50 + 10 IF(I.NE.1) THEN + E3=EPSTAB(K1) + EPSTAB(K1)=E1 + DELTA1=E1-E3 + ERR1=ABS(DELTA1) + TOL1=MAX(ABS(E1),ABS(E3))*DRELPR +C +C IF TWO ELEMENTS ARE VERY CLOSE TO EACH OTHER, OMIT +C A PART OF THE TABLE BY ADJUSTING THE VALUE OF N +C + IF(ERR1.LE.TOL1.OR.ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA1+0.1D+01/DELTA2-0.1D+01/DELTA3 + ELSE + EPSTAB(K1)=E1 + IF(ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA2-0.1D+01/DELTA3 + ENDIF +C +C TEST TO DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND +C EVENTUALLY OMIT A PART OF THE TABLE ADJUSTING THE VALUE +C OF N +C + IF(ABS(SS*E1).GT.0.1D-03) GO TO 30 + 20 N=I+I-1 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ERR3 + RESULT=RES + ELSE IF(NRES.EQ.1) THEN + RESULT=RES3LA(1) + ELSE IF(NRES.EQ.2) THEN + RESULT=RES3LA(2) + ELSE + RESULT=RES3LA(3) + ENDIF + GO TO 50 +C +C COMPUTE A NEW ELEMENT AND EVENTUALLY ADJUST +C THE VALUE OF RESULT +C + 30 RES=E1+0.1D+01/SS + EPSTAB(K1)=RES + K1=K1-2 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ABS(RES-E2)+ERR3 + RESULT=RES + GO TO 40 + ELSE IF(NRES.EQ.1) THEN + ERROR=.6D+01*(ABS(RES-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ERROR=.2D+01*(ABS(RES-RES3LA(2))+ABS(RES-RES3LA(1))) + ELSE + ERROR=ABS(RES-RES3LA(3))+ABS(RES-RES3LA(2)) + 1 +ABS(RES-RES3LA(1)) + ENDIF + IF(ERROR.GT.1.0D+01*ABSERR) GO TO 40 + ABSERR=ERROR + RESULT=RES + 40 CONTINUE +C +C COMPUTE ERROR ESTIMATE +C + IF(NRES.EQ.1) THEN + ABSERR=.6D+01*(ABS(RESULT-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ABSERR=.2D+01*ABS(RESULT-RES3LA(2))+ABS(RESULT-RES3LA(1)) + ELSE IF(NRES.GT.2) THEN + ABSERR=ABS(RESULT-RES3LA(3))+ABS(RESULT-RES3LA(2)) + 1 +ABS(RESULT-RES3LA(1)) + ENDIF +C +C SHIFT THE TABLE +C + 50 IF(N.EQ.LIMEXP) N=2*(LIMEXP/2)-1 + IB=1 + IF((NUM/2)*2.EQ.NUM) IB=2 + IE=NEWELM+1 + DO 60 I=1,IE + IB2=IB+2 + EPSTAB(IB)=EPSTAB(IB2) + IB=IB2 + 60 CONTINUE + IF(NUM.EQ.N) GO TO 80 + IN=NUM-N+1 + DO 70 I=1,N + EPSTAB(I)=EPSTAB(IN) + IN=IN+1 + 70 CONTINUE +C +C UPDATE RES3LA +C + 80 IF(NRES.EQ.0) THEN + RES3LA(1)=RESULT + ELSE IF(NRES.EQ.1) THEN + RES3LA(2)=RESULT + ELSE IF(NRES.EQ.2) THEN + RES3LA(3)=RESULT + ELSE + RES3LA(1)=RES3LA(2) + RES3LA(2)=RES3LA(3) + RES3LA(3)=RESULT + ENDIF + 90 ABSERR=MAX(ABSERR,DEPRN*ABS(RESULT)) + NRES=NRES+1 + 100 N=N+1 + EPSTAB(LIMEXP+3)=DBLE(N) + EPSTAB(LIMEXP+4)=DBLE(NRES) + EPSTAB(LIMEXP+5)=RES3LA(1) + EPSTAB(LIMEXP+6)=RES3LA(2) + EPSTAB(LIMEXP+7)=RES3LA(3) + 110 RETURN + END subroutine DEA \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/deamod.pyf b/wafo/source/mvnprd/old/mvnprodcorrprb/old/deamod.pyf new file mode 100755 index 0000000..83b9ecd --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/deamod.pyf @@ -0,0 +1,6 @@ +! -*- f90 -*- +! Note: the context of this file is case sensitive. + + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.f90 b/wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.f90 new file mode 100755 index 0000000..138a8db --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.f90 @@ -0,0 +1,344 @@ +C f2py -m erfcore -h erfcore.pyf erfcore.f90 +C f2py erfcore.pyf erfcore.f90 -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 +C f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m erfcore -c erfcore.f90 +C + + MODULE ERFCOREMOD + IMPLICIT NONE + + INTERFACE CALERF + MODULE PROCEDURE CALERF + END INTERFACE + + INTERFACE DERF + MODULE PROCEDURE DERF + END INTERFACE + + INTERFACE DERFC + MODULE PROCEDURE DERFC + END INTERFACE + + INTERFACE DERFCX + MODULE PROCEDURE DERFCX + END INTERFACE + CONTAINS +C-------------------------------------------------------------------- +C +C DERF subprogram computes approximate values for erf(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERF( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 0 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERF +C-------------------------------------------------------------------- +C +C DERFC subprogram computes approximate values for erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERFC( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 1 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFC +C------------------------------------------------------------------ +C +C DERFCX subprogram computes approximate values for exp(x*x) * erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, March 30, 1987 +C +C------------------------------------------------------------------ + FUNCTION DERFCX( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 2 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFCX + + SUBROUTINE CALERF(ARG,RESULT,JINT) + IMPLICIT NONE +C------------------------------------------------------------------ +C +C CALERF packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +C for a real argument x. It contains three FUNCTION type +C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +C and one SUBROUTINE type subprogram, CALERF. The calling +C statements for the primary entries are: +C +C Y=ERF(X) (or Y=DERF(X)), +C +C Y=ERFC(X) (or Y=DERFC(X)), +C and +C Y=ERFCX(X) (or Y=DERFCX(X)). +C +C The routine CALERF is intended for internal packet use only, +C all computations within the packet being concentrated in this +C routine. The function subprograms invoke CALERF with the +C statement +C +C CALL CALERF(ARG,RESULT,JINT) +C +C where the parameter usage is as follows +C +C Function Parameters for CALERF +C call ARG Result JINT +C +C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 +C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 +C +C The main computation evaluates near-minimax approximations +C from "Rational Chebyshev approximations for the error function" +C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +C transportable program uses rational functions that theoretically +C approximate erf(x) and erfc(x) to at least 18 significant +C decimal digits. The accuracy achieved depends on the arithmetic +C system, the compiler, the intrinsic functions, and proper +C selection of the machine-dependent constants. +C +C******************************************************************* +C******************************************************************* +C +C Explanation of machine-dependent constants +C +C XMIN = the smallest positive floating-point number. +C XINF = the largest positive finite floating-point number. +C XNEG = the largest negative argument acceptable to ERFCX; +C the negative of the solution to the equation +C 2*exp(x*x) = XINF. +C XSMALL = argument below which erf(x) may be represented by +C 2*x/sqrt(pi) and above which x*x will not underflow. +C A conservative value is the largest machine number X +C such that 1.0 + X = 1.0 to machine precision. +C XBIG = largest argument acceptable to ERFC; solution to +C the equation: W(x) * (1-0.5/x**2) = XMIN, where +C W(x) = exp(-x*x)/[x*sqrt(pi)]. +C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +C machine precision. A conservative value is +C 1/[2*sqrt(XSMALL)] +C XMAX = largest acceptable argument to ERFCX; the minimum +C of XINF and 1/[sqrt(pi)*XMIN]. +C +C Approximate values for some important machines are: +C +C XMIN XINF XNEG XSMALL +C +C C 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +C CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +C IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +C UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +C VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +C VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +C +C +C XBIG XHUGE XMAX +C +C C 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +C CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +C IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +C UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +C VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +C VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +C +C******************************************************************* +C******************************************************************* +C +C Error returns +C +C The program returns ERFC = 0 for ARG .GE. XBIG; +C +C ERFCX = XINF for ARG .LT. XNEG; +C and +C ERFCX = 0 for ARG .GE. XMAX. +C +C +C Intrinsic functions required are: +C +C ABS, AINT, EXP +C +C +C Author: W. J. Cody +C Mathematics and Computer Science Division +C Argonne National Laboratory +C Argonne, IL 60439 +C +C Latest modification: March 19, 1990 +C Updated to F90 by pab 23.03.2003 +C +C------------------------------------------------------------------ + DOUBLE PRECISION, INTENT(IN) :: ARG + INTEGER, INTENT(IN) :: JINT + DOUBLE PRECISION, INTENT(INOUT):: RESULT +! Local variables + INTEGER :: I + DOUBLE PRECISION :: DEL,X,XDEN,XNUM,Y,YSQ +C------------------------------------------------------------------ +C Mathematical constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: HALF = 0.05D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: TWO = 2.0D0 + DOUBLE PRECISION, PARAMETER :: FOUR = 4.0D0 + DOUBLE PRECISION, PARAMETER :: SIXTEN = 16.0D0 + DOUBLE PRECISION, PARAMETER :: SQRPI = 5.6418958354775628695D-1 + DOUBLE PRECISION, PARAMETER :: THRESH = 0.46875D0 +C------------------------------------------------------------------ +C Machine-dependent constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: XNEG = -26.628D0 + DOUBLE PRECISION, PARAMETER :: XSMALL = 1.11D-16 + DOUBLE PRECISION, PARAMETER :: XBIG = 26.543D0 + DOUBLE PRECISION, PARAMETER :: XHUGE = 6.71D7 + DOUBLE PRECISION, PARAMETER :: XMAX = 2.53D307 + DOUBLE PRECISION, PARAMETER :: XINF = 1.79D308 +!--------------------------------------------------------------- +! Coefficents to the rational polynomials +!-------------------------------------------------------------- + DOUBLE PRECISION, DIMENSION(5) :: A, Q + DOUBLE PRECISION, DIMENSION(4) :: B + DOUBLE PRECISION, DIMENSION(9) :: C + DOUBLE PRECISION, DIMENSION(8) :: D + DOUBLE PRECISION, DIMENSION(6) :: P +C------------------------------------------------------------------ +C Coefficients for approximation to erf in first interval +C------------------------------------------------------------------ + PARAMETER (A = (/ 3.16112374387056560D00, + & 1.13864154151050156D02,3.77485237685302021D02, + & 3.20937758913846947D03, 1.85777706184603153D-1/)) + PARAMETER ( B = (/2.36012909523441209D01,2.44024637934444173D02, + & 1.28261652607737228D03,2.84423683343917062D03/)) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in second interval +C------------------------------------------------------------------ + PARAMETER ( C=(/5.64188496988670089D-1,8.88314979438837594D0, + 1 6.61191906371416295D01,2.98635138197400131D02, + 2 8.81952221241769090D02,1.71204761263407058D03, + 3 2.05107837782607147D03,1.23033935479799725D03, + 4 2.15311535474403846D-8/)) + PARAMETER ( D =(/1.57449261107098347D01,1.17693950891312499D02, + 1 5.37181101862009858D02,1.62138957456669019D03, + 2 3.29079923573345963D03,4.36261909014324716D03, + 3 3.43936767414372164D03,1.23033935480374942D03/)) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in third interval +C------------------------------------------------------------------ + PARAMETER ( P =(/3.05326634961232344D-1,3.60344899949804439D-1, + 1 1.25781726111229246D-1,1.60837851487422766D-2, + 2 6.58749161529837803D-4,1.63153871373020978D-2/)) + PARAMETER (Q =(/2.56852019228982242D00,1.87295284992346047D00, + 1 5.27905102951428412D-1,6.05183413124413191D-2, + 2 2.33520497626869185D-3/)) +C------------------------------------------------------------------ + X = ARG + Y = ABS(X) + IF (Y .LE. THRESH) THEN +C------------------------------------------------------------------ +C Evaluate erf for |X| <= 0.46875 +C------------------------------------------------------------------ + !YSQ = ZERO + IF (Y .GT. XSMALL) THEN + YSQ = Y * Y + XNUM = A(5)*YSQ + XDEN = YSQ + DO I = 1, 3 + XNUM = (XNUM + A(I)) * YSQ + XDEN = (XDEN + B(I)) * YSQ + END DO + RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) + ELSE + RESULT = X * A(4) / B(4) + ENDIF + IF (JINT .NE. 0) RESULT = ONE - RESULT + IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT + GO TO 800 +C------------------------------------------------------------------ +C Evaluate erfc for 0.46875 <= |X| <= 4.0 +C------------------------------------------------------------------ + ELSE IF (Y .LE. FOUR) THEN + XNUM = C(9)*Y + XDEN = Y + DO I = 1, 7 + XNUM = (XNUM + C(I)) * Y + XDEN = (XDEN + D(I)) * Y + END DO + RESULT = (XNUM + C(8)) / (XDEN + D(8)) + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF +C------------------------------------------------------------------ +C Evaluate erfc for |X| > 4.0 +C------------------------------------------------------------------ + ELSE + RESULT = ZERO + IF (Y .GE. XBIG) THEN + IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 + IF (Y .GE. XHUGE) THEN + RESULT = SQRPI / Y + GO TO 300 + END IF + END IF + YSQ = ONE / (Y * Y) + XNUM = P(6)*YSQ + XDEN = YSQ + DO I = 1, 4 + XNUM = (XNUM + P(I)) * YSQ + XDEN = (XDEN + Q(I)) * YSQ + ENDDO + RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) + RESULT = (SQRPI - RESULT) / Y + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + END IF +C------------------------------------------------------------------ +C Fix up for negative argument, erf, etc. +C------------------------------------------------------------------ + 300 IF (JINT .EQ. 0) THEN + RESULT = (HALF - RESULT) + HALF + IF (X .LT. ZERO) RESULT = -RESULT + ELSE IF (JINT .EQ. 1) THEN + IF (X .LT. ZERO) RESULT = TWO - RESULT + ELSE + IF (X .LT. ZERO) THEN + IF (X .LT. XNEG) THEN + RESULT = XINF + ELSE + YSQ = AINT(X*SIXTEN)/SIXTEN + DEL = (X-YSQ)*(X+YSQ) + Y = EXP(YSQ*YSQ) * EXP(DEL) + RESULT = (Y+Y) - RESULT + END IF + END IF + END IF + 800 RETURN + END SUBROUTINE CALERF + END MODULE ERFCOREMOD diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.pyd b/wafo/source/mvnprd/old/mvnprodcorrprb/old/erfcore.pyd new file mode 100755 index 0000000000000000000000000000000000000000..4d78a999deb064f8272708111d627dcb0816753b GIT binary patch literal 50047 zcmeHw3w%`7wfC9H1O^zG5rU02#nA>0ErglLB;*N!Bp^yOl0<2RPC_z)XkI2W5?WrG znU?7>np$kB*R~+G#a_In7BwPjcw7OsZJ^vXQG$`uelsR*qjC|II^Tcoea_4|a}v~C z+ppfw^UKMcz4qGcwb$Nz?R_4*_^Ta4oFE7WoZ+w_bmEteeD?q1|283e(iM9r346x< z`pQn-l3!n0wz{^(+SJ^*s=2b>T2II>~f?qmIaMBfB15R@5aMCY3 ztVmH}yN>B42v%N>3Q!pw>}Qi8Tt|rxK{z{>E=D-E2|^PY=o3CtJ?>TyXr^S~9|=Ud zMwGxcjtcyxR#$o|alK~@{*~Y~;>^XVIPwLdE47&;mW)S61x^#rLY#^tAJv+=vZaMU zo5*NQbfrBu5j{7j$7}=u*;=waF8Gm8^lCXCvmtEBhXz=cKW;jr|8Q;ngWo*tLFk zCOLpqRTc@afq|6&sPsSNC=dLpv~AEJPK7gA{Kq}>#4lKI6*$+v?;2v*Heks5UGrsP zoWINScDS44F<{F;yXR^lkdPc~g_8E;0Y>7mA(@H=%K%$;>xzS*e=`_ZM6aps1D$74 zz>{nci!6b{WTRMQ3>cDwFTzlPgKdM9Z{Bji-sOMQyrs*3z`MwQ&TA4UGQo~|7usJ9 z^t8Lr-}maB1A^3TO zf3PEZz#eUb#_hXrhPAsqbI4p35Vr`D1`e>!_a@ZBWSI3ZxK5U>I11ru3eivAOA#iwm=Xaoh_q@2&kafUw38@0w;i(q@2FcI$6&U-j z=p<(rSDY1rheCrZ4hE8d^D@H;yx_U4FCSRqm}~uAfid1=;zC2fnH(-j9C$%2HEj0) zZ8+Mug2>**&>&EjYzR+1Ayd05Jasd!$)az;0RrcPi%=*2F7J;d4xXCu)GZ9#Qw{{N z+{h_B1em=mR0?e3dmc&f{auVs-UCedGn~K^NZ7jwB|J3MSAGVEq6P&yx%Gtq4+0iA5$}Nj? zFTDzmUk7Zl98`kA#J`8bfui$b(Rnz{B(dm%SbpJXp!*>8N604 z-E*w3s2|k!fLh;jQpx~114S1GI(d7BBqZ{{F}Zzxs6KmSeV+VS`kaXBbM1wHC4KhE z`h21Cgy}-4!{G7&IF2r+#?d(ktj?~AjcptJS1zm zRjK6=_re~@3lA5)Ow_c_*vXVV(_YjQ6yGCdhs2^GIO8Q^(ODRw?NCLa8w1tBnhyAy zaV1%%zrCnC_%#Kx=Xb~}V|kGA<>1}SYMhYgDL~r2B!>~@AOMY<3U~I5JzO+IvN67% z&EkqPdq1FF^i|I-+e_{M!+c{_fx&Yb)1<(_RG>b8FObmJdh8fweInEq3z9aqPOSDM zi1`*qqV4=8Yo>&g{oN3)Zw&gkzQny`mOwd|&FuReNI>=<0YPp*XG3}b8TzZ41HWY# zy%-;GalNs3{fp+Oie9XlD41#jMMrw;kG!_NtGE6|v8XGc8+aHvrNiL7dO1)Ad?Vz( zwqh@`L3ZzEeP}u3-TPPYdL{H)|BuWMbeSJKVC>$k3(eZ>Rl6YN8U^&8=Qi=@N2zAr4&@qN4-f9G9@U<_)Y;l27Lx?Op zk|x>gp9mHqI3wl^_i2WUE*b=W z1p*Rw&3OSaE0*^1NV+y zB``seX-D-<^lRCXw3L1mR_r)|3*Hg)_>spu;9ptcIbM50=da{WE=rq z*z8SW`9gT=StJp~F)==n#0XFIaU@eU*-=J0$dG;l7%t#7goLUw+F4uxnvXH`4uE%1 zWCeQ$Xui-YPPHP5cy_M+RcSnJZzB-uC3qUfCc+|v+;xzGUoMcuf@h!xUIGiuJuRIT z@F5Z*_-CnX=QEN}6pu2wLiO<3sJXrl{bT(Xp*>tyEH;YeCP+CsfayrNDS-4u((GvX zb-0VMvqvJ$nhrG#$efDCB%9bf_Gl+r{2=!a9@GvDXxj_Tub@Fc^Gyrflwz8|LC>`C z)J@>WQUw-|`EY@e8ZyPjuLKHAf$p#J`O_`-Fb!}s(cZ)rMo6p=cWddrVD@FAxPscs{ngMOWVG#z+l3#&412NEPW((Z`}X6<-enJqQ_1^LQ`SyB=H2jGrcG-*Oe;1DX0lnE(aPg|D}*G9@Ij5FZUATFRTHhjMaBEWQqJvYh-hB%hLkUWYz z05k{}4RLqMDIPN4y9Km~R#}{(?Y*$sKM!@L>!I4LfU6KW?=S7g+YZg7A=|a$puOul zaiU6out*X&nA#20KM1<>VqqdlsMH3Uuvvzsb8=J_>UE;(%x5}$hja+dfeikzXR3#SB7nBcqYTZ1AAzO;`}8((he|$Xd4sy2*V+D35Sp9d(rJP&+8$+Yd(z zV}8#OrP{rKC6UfI(8)ZF;Xnu+e*351@!aBJVc>Tx_if6h#!I-;7=aeT0Q-oAud7$Qh#EaG3T<{>{8MQPL6wc;oak2FQ#)q@8@TF` zW=y@J+5ZxC<_}PbP#0Z#Px{Z9{pDB|&33N%XphF^c63B9d;oC>e z!FvK$_f4S7Cx``7_x_R_Eoee1@c|p4x}K*e6D@KU77rVPuOW6N=^leXTsj?#Yd6dx z10O@KxaA36Rw}ah^RhTQq_TIQ?7}R@cjHki_8>B-5@!gZ6y%W^c*Ja_qU(}PG***| zV95=@4b3KVFt-ccgOvkWH~;4d9*LeP)+O>eD1zcfsIwuePB4Ls<9`AaLVdIV0bDbH zBPxIT^IZAeK-MaM0=XkA|5K@~2W6GYKZpA%mBFpZB?HW~HauO2RrS4<9(Ofd-2k`8 zQdyko1$ev=8jr$J{W2u|Zsmnrsw(TKWf&@(fjveDoxFg);Z;Q0yd|2%P1N7Ph~cSq zaCkCvfOT%@*@kVaSJ3?Rl~5vn*g}jV{>Pwnp5m<)SV_Ae-ejW1;IA9P-Z|pk)V0I! zmx_1u?$vVz1^TT1(BlM581)H71OYEwnZ$B!-*Y~y8PxIiT@X!*#VKwEn!QUx?A%F6 zXmZ;rxE|=0)@#}L);5@nVFuIoK>48m)x$+Wc(Y*k7h}$mvtrQPo{03}qBGQ-FxtE? zaIb9E7fd6=)+Z)eNFtP(lTt5^rh!}O|XT7xXn8JP#C(yg@vVj|=unp*k z4K!~T=I0a-uD^n+!tiaZNSp6F0qMn}Gob%Up!f`BuX~-PTPKS}K@|MKJ0FPUXTU9B z_->9jX!hMmCDsQ!_i=L?sr4|6(F{}yd2=p9gm);H$;#p*vu`u{-@`@ykU_AYgLO7c z!zu)p4+2FeJH+yn_O7HmNsKh172}t2S zNRXORXHt#ioMdXavI&;tbBq^12MJECpUtIYKJ(N7;`#$({p zCUbcjCKsR=uM`?XNG5O%{_Ik8yN9WhG$czy&>-Q$3z_Xg-$!S|^<%Ys-{t6>7G=G^ z@y$>ob;`vk9ziDBsTl;NMk=?^9%@MI$k5)CXrE%jy=X#*;jw}4K*GHPeKb`O*Y{Ju z^vq_e0%|3&lhQ_0N#p;5R%j~rF4j(z`u!ZX;QH;PPI(2>uYmLmJp@3`ilFBOG(=)S z)SutS*%(62AW0_eyg(4xI<#DdI9CBuhCmHas@YH-dMg67FQOs|oz;Xu{U39&B@i0J zn&dX_sgQR%NXha3OjuDYPat!zH=R3xIE_Md>aicN;KJ-LK!Z4Uz+(1K$Hk^+2`H?E zH50SqDF!zCt^!_Unb??JR_R-eaxzw)Mt6 z*MdhNX6z5_n?XTjr*+mW>oaaV4H59oAex=E4Ncy?*2V@m07(p^#k~sG6c%;XyBj>X zcH$ZV`konVPV>+V7D8^BL9y6o-;7NBh!2pOT=A^y64rl}OI*_-el(eRd59}6NPzK8 zqMzyu!!HuX&Th$*f|IZS+0J5OYVO;2M@L^;39}!+>k#>oG{Hf&W=&+i;eQ!U&fA0i zsQq|W?|Q3z|B?oa?+fN1buG~C&w6Fu5IT1Mqo^x11H{%;;cS)3YCp^}I1V#?=n!4qnG|?}+#>Yv@1c)c4rzFwfQCrD#j@3W+@WUj zECLV&Gv&NH!ebU6sXr18PYK7-8S$`Zk4(>$9Bc=@f&U1c3gti$PV^&DlzZi8Ww-fzOj#~G*9kWA*wBw_J~q7l6UkR;fOwGlgII6%y+KfnI{8U_u=#jm zvEGyo3lIx~MnmI_W6H7NIghofQ5qYbY4Fsp+Usrfwn)Rt$b$lP36kVye{^7*PV2FG z^v~@30_6U9vhsng0RlnR=SUbfu+ccg2R0^}VqinxC5>vN7_QkE=&{z&H4SE+&7S5; zT(c2v4;%DQD>UA1-ZI?4=BfTz5?_2+J0m$(aE^)B>(ZovG>)>-G}7N;;YIH6%-{Sb z`TKBvUK8*0qCFw?cXvu7@kjDf^K&dXV!n^2Wa8qRpIb0d9*K>$yln-26XeRn$Y2QF zaUSgwUBcod-eZRZ>IfrujU3c$rMq1Ia>A9faF=fprMXu}yd$&*O*`5JoBbZp3;l+A zsp}*b)HR#^TLEG#4f696a7n&`%p!h&KB^LvCqVsFtI`Ux*lZk_#o}{X7C^5ht>g2B zcQ#F{`-m=%$h@}HpM8@s7L4544F{UN30CF2q-K29;Ty^F=K*C;aFGli`yVAbjZ zaK-hOcEjaac@&GVV<}7g#d*U473=*x_I9Nwqi=_duM^n^!In|C8}7?CSi(=?fya}slNuT zPPRNvqr7%5Bo##O$Nly;#hqKH>_t-j1Q0-~Zu- zZ^e{@FUJ=}Zl#l27O`*&t0<-(0xr=vMXsGsG4Lwl@nTC>JE;xzxy|^^QVg&W{QjyV*S z?m2QI?pDk{G124R+Fp1WTaAT#hPO;$D{1S|7_lfVmQ66gl=uD=4LI=1^N>hQ{V#m6 zlzCq0UFts;F~2}%sNEuPAoLgN7vvjIOzTjlvj0IRL!CYDx1uO{M0jc|!Yr8PVCz_{ z8PeK*r%meGwr@k0;{H1Fw-GU{-CSo1(X@nNJbyFcBZ5<)a@Nn1M)LEknBP+C0cSi^ zhWlT1V{e7HnL?}Z>$o%A8*jT!u+SZ^E#y;sk{_WTU-CBm^a;IPy|4Gi-vdssg_^7S z;yZBFd-T;%U$6OFr_hD;_4LJW1MJk%lj%G0+jptBC3z=Nz~t8Rxt>|O8Ia;$-(Bcu zfZsDPnf*86%E+$teLZ&_BJQ_-?O@+4y+?cF_n_2kA@kkKNQn4Oq^ac$V(-zO7XfObtCPND>J@NNnB2-Te92ve$FY3Lo1_E~X&Ho-*vu|K#FyMHWwS&_ z6t_pl-5SO1moMYHAQod5e*{;j-i7Y>aNRF!dmsAFfPH%R_e|_YE*^&IJ&Nb;Y&fkr zEx}~m^y-;-f@pO09PRA~2H^R@lZbV3QPNkKoR8Cn+|#{BPaQbLaf17he{u=(%NUOJ z)X~06foH)TB|ohM^~GCIpS@kD{&?yDSYF!u*Vo=aZGH1zxDdEZi&(n%uP7MbLjt_` z>KlEpnA>(y@gBJXFDJQr@>m7Np9dPMz?VD(^-&8}phjxJmwX;jsUlL4!|Y4*K&dWl zge}*FQAWs=5#sUuxP|ghQC-Fxk%BejhrsjH>pgGwUCPXPnhZapIsa?y@aAkMr(2%9 zY$S8mBOm5m26GZl#GIjBuorX2E?78ztE@k@8|dFe8p&ShOD>@#3GYj8Wm@5ad{@$c zlYGhB%1f|hJhhfn?@m3-=dvrkG*V{Ir^W;;lnZJ38GUBbU$7^rgSwU^3 zFFpmSzG_^!3@ti>A#*fau!Wj091QAB z3$3H9sBvL2?xh>XD9tJt&6J9g-$ngX_TbBTZvLsGJzdPCAu#wn81%*WLuu}9Enn>G z>5UIkns+C6w?k~H(oyB1_sIUeA)1`y(GNTeZrlXq_OfIv^`9aHM^_r0iu!$T0_x_tI)sG?s(@;dy4AyeC-Bzl5h zEW;unXzo7j6_w2%pAYr={7`d9n>qaBRoAnCcPvk?Tks6#iXx| zNteW=m&c@+#iXla(iJi3)iLS9m~?JTx)Z~lQojo^>6c^Do|yEBnDpkD^p==3t<)*` zosUVMiAe`z()2*QvV3<;nxbrFesxSfJ#eke-xHJH6O*QA{gn9hpr10mF9yFUCcQN# z{YXrDbxfM>7Aon}eMM#ZNKE={OxhQd?ubd#6JSbu^bD9XeJCcqE+$P+awzeKV)E-^ z(zKwZ#NQp0rnNC;{>hm1U`)C-CQad5w0wCdI(q>xrQju<4jhQT=zW)Mcx|OEQ}BEa z>-SSB(Z0ZdS5kJ+rT@4$goi@;V`;#r=bg4&7NWrUuxADZiJmEucrKjqL(00|dk)=C zMIoLkz3%03_$zo)4#9F>0vm>;vk6=`ik%j^EnI$ z6Z3&mBNm<8Lr*)O?X5ri+WKH`{W;uf7K?)c{Jr>EeXwU@A<$0kk7VN(ZQG#)=s{MC z9mUp|_#RQ`^{JZK++=Q0ehDyR*kz@oIgYySXN% zvU%0aW_OFX&NK72+6K>z@k`xzcx#*8)mG$q>E>|@VIyJ9#x3V2FIL{`8Y?}3@nQ@- zyV2{Rtmevw+h^H;-CVggh2hP-ruv#0Kqlf53bD_?#D{{Kk!!iV$!NZzPYIR+m;JWTk*HZVY+7^$yxuCAHrN!M6%bZ%Yz?wDx-zxCFNN9Ff)(Ne`jq9?h z%{Ml?Q>9;g@gtR$5=O{KnPIi#AsM;LvZBGzw?nRBpAM;NY`D|ijOSae9z5aQ=v`Uo z7OF48r3wO%z^CeCGa6Z$s@99}Y5mxYpgRmm9l1b#Eok3(ZxU;qu^p9x#pKFruH!`j_no!GF58+cxLgu>mkWBZulGoFu8{~`L;Nbep2k_L+zsw# zX6H4vp4HYGN7Gtsic~z?;Y!b%ZOobvsu_D;1u5DOlo!&B@ zh}2ejKt-nJs%mP4lewD(VS0;omQ}cBdet?v1RnoPuNG$F6eM~)B1x^vmeM3pcAdK+ zrD;aq^siUXonD>Nf?Al74JT{_Tkr&iwZ+p+?3<;qY$htK3LRyO8{yp7-Q&TR#Afv@ z5td>fvO0Y{2{xd&T-*ZQZ>f<(LHIer1#g49wF!X|i}w(;F{0Vl2KO2lkHmvWvprM_}4KF&k}*H<>IwbnGd>A^%;$=x!8-Yyz}euTDy*i05ZGLG(= z8j2*@H84^es@Y|AZGB7Lt%4OswXT>+GNsC(6<`*TqO#T9k_{|tN|X@Zbckpw(Y}a$ zA5ni;zj_uN8B(|#So^E@(zBXwVouGEOlPyEP&HJ$Yib+Z)$nhsuaU~t)VA^luOKkJ zdSpJs<5Q1aSw|J&ZiVGg6N;uBZSUl{4W5*$%Bt1w8N7-~HhR7^VyjAzwGQ6qvAXM| zN{cAQd^_4hY3SBAU{Q{= z2gT^PX@p~F?$;g*KK0cPew=&NLHk!b4j-O(`Q#O)`zJq||Jb*37Oc(uX+EC4o`*Ak z>M~bu)3jUW-h1Kr##^(#n_ubr9s5Pze4Ke-+q>AL7qjzc-8ARx562zYxa^&cONc}L zzbz>F!^G3`4*T~czQ3nqUhW_7nE3Yxisl{Lo3L%sl~wZ|`~e-0f`vaIR34k~iK9)wRYE?y{&ZP@eR~fgJ2vre>5)IunS%68oHm@B zE*FHk_>D%_O>3(Kia(@5nX*1RK6Mr->xhc%`#$6-1 zLY&KS*5O=-vjgWNIQQV}#(4(kS)BBqej-jA&O)5aae8q2aBju96K5yRBREgu9K;zp zz9$F?IOQV+*O@pAaW27GhO+`^9ZnCLmX+^sGdRt{Jp#s7uwy2T!MeJP8~1>qJMzR2xS!k5eN8{BKC z9$j*}RE@V9aLhGa1qifA&N?Z*u(7$m(u297lm?li)+#rPc!=H|68y%hDsMAZYzfvZ z!AdY`KvBUbrNL4bSJ+9g)+*P0Io4nk9YJ_pf-h!sO%B{I!IpaQsCK^22ZpOkS=!D zgPNPwlbg~E)dlNQ?Vv9J>;`ZBN_Vr1u_n80j>14r5S~X`auJjxOGL~g{5qN^n^E{f z6b3{*(GyK`1@t9rOEE=rH&nS@1*_dvw+q5pB~0=SlI0qLGv9%GN^HLrg%vb5R8@N5 z(r`1u5rvZhBSL0H;f((sNYjODaZ9OprH6TOiwxru3cp9%wZL0jSIufjI8Et=m?RXt zJ*zPTK1=Dv7>>C?oh0l0I9J3_{A5S7Y^vnk7C@i)k}nHpi5+mJ03@T<+%PhDOS>=v=jpD-jv!G4nwBHhoP^owsE* z<+bQ*n#i4NaP7gh*Ha~|)zef{5bn~~P>jrcVVAxhQ`$yaz7rnT*SqVhn%2_w9=dLE zGg*JFZ;8Tvbo(gkHMFWSp+)d%mBxvuQ1=u)&ee)?gui0(7AB`l6*b6fH?} z$nX@vMtjz`+*#E;$1am1OYy@Z2=q|jINKDP-L}N`uTIKSd-c7DV8kn>UJY3DmmUHXjl1?ktP*QKvbe?0wg`mywP(s&Dl8Tmvc_c8Ju%@W=`h(OlQ`8SzEHYvbwW^ zSs!GL&z_S#FMCmTNp@}a-PyadpUi$X`%w1L?B8Uc$UdDtnEihC=X0j#d?_a_XKqee z&R247%h{0gt(^OFj^(_P^G42_Iq&Ag=bCdb%}vVvQm!+%DEIo@l3Z7AbFMG<`?){N z-I@DX?(?}X=T6GIJnxHn&b*?$>+^2QYs%Y@w>PgV?|9xVbALVebMu~`_xpK6G+VNA zx6|4FXnV_+Y0tN>uy3^g(Efz|ls#yF$G!}9+u|^#rKLTZ_F9_GS?ug^zTkYxnUsEA zdV6|uMt;VV8P8|DnDJ`HnT+_%OEX)u?#kMg^+eXoS;w*r*@@W>=(;j{c1~{2_i}dT z?9F*K=S)sv?y}s?xj)YRYwmlw)92>Ry>@QJ+<%8mcg*|MJi&&36Jqt*{%rf3?Y!+0 z`@b7khQGnZu@&dSVg&Hi@wce8(#{Y3U&*l;LY zpOc)EnzJD1x*S)|135c#vU3Y_SLSZWJ)RrRwdP%&=gYf4@4>uZ=KVVF>bVVbTjxGJ zclX>gb0^J9o>xC_{k;3;{e0fBdFSWREOHm*xW+cyHpey>{`I)+fbF>LG_0hzPqtrW zcfiw@+E?0};cNHXAGSYkKVUy@KW%@@u6Im!T;*^$7C4qVRyvv;cRTKPJnVSfalmoh zaoX{gL!UM|?W#0K+JdyDX)Dv3)9y~YKkebP$I}j^9Zx%*_EwtSIoWxY)8Sm;T;=pQ zH#)aEf8~7E`5R}i^DXDt^vUU8O1Gt#rhh&Cc>3w|gbZs2ecw70vI@4{wmr5^+iH8A zy~%EMBs)?ZJ&u!(UFmz$_oW|7Ka&1(`e6F`bRollQrj|w3e1yGtlM#d;q^PtID%*w zLyohK^NtG+A>^R=fi ze!hd#<-)q8x1puFrn;7~b}$smejVpe8A?IfjZ0li7MGS`J^dhq6e=M9P>DYy{z+Qk zeN-O)a2RxpZYZ}FSe>cPRGZadvt`;cY-w1A$32E-S|j&V*3Gcqipa6ycHGh6H<7IN zvTLeU5N5Oc%2fnfRaGUW9H~`8LH6?cmbER*?Wwj@yKVXE#(MYih0B)L zuB>fXUYnkoF{`O+Ry|ft*Q7a?a~cA5N%u>SBa7v1`n$h@P{-hE!Yn}FM%Vf;B3VTgeZPPW^j|a>Tq|*ZM$r3t zw$b3KsjFNi=)cMHO-SSBouK~~Pg_tNJczu0GY2JrgtrC@?t(tRA&CZ;r@pDCp|TzY zzs(6J3Gs%LU^!;t;w43bUOYqWjq&W(5&OsWvdx!qq4GN%1als*+|^|Pm-kNg;Mf+^aiHh7)N(9G0B!5 z&KXm2Z~UZqRT&G5U@$ zes!&&d(%L08iyy;H43_OEGd|h0GxOiArB*Dz4D*6ZigcRPZ>%)(pzOeSM>;Bu| z`g9`rhu{BC++U|~f1TR>busR*i*bKljQi`f?yu9hzit@!*A46bx_?FY*EslSU3v`N zx#gYCm%VVfc*8gF->4f$Zb={08ZS&>ZmD~4JyJT|I5&Q1pf$Y=44p91 zIAKEegq#VwDQF`Tg*YQ67Ej5JD_F?BUaN8qao4yVymR~|PwPM7?pn*6wN z`fGG?Yf|IJ8Ef=oz?~Lx^lalDjXWBb7YjL}B7p0vm36bKJdMpQYKf{yy#LP+EdL1f z_`gojtuvYo?DK_*l1-?hXf8N^lF_d(oETr&hPOpOJO0;MfZC;A@EGVfo?jd3m+D?G zcrgy}BMm?4IL8P#eb=z`yL`bw%KPl+(`kWJHk-ki3h_S(qpQ?mmA|UlV@E%(JSwGx zPOu7bfQMGmzO-E2CccqjQ{Yky8s+m$zy<}_9@;3L4=#!gx)->WFuSi6q*7zGB`RGETkV~O=7sQJ~ z<^qzhf~*2$8^nv^bO2%nEv6UavICHQ6@*^k?8bR9&wL5_L#k4*0Ac|zR*F%61CU)R zna=}K0@hKS&qK65DjfRCg%yw}PB9?+R5-T+GNi)U1jr#3&b@$i!K0#deg%jP0b~^N zA|MqiNIxK(BnU2X{DpoXH@BGVW86Me?^6(?`WUACPwQhRAlYO&oBhgd$BGoAtRrix z5820T0COMv9#CWGNWIN1z~LSxJv%2qUn`OPJG8Jwv>@OlkQ_oBPS#+1FG`ropR0jW zF;T){8S??zrh?o|5Oj7?tF8j1Uj?}X5UYy&HvqAqBa4>02at+Om5>Jk8B#&^03u+4 zoypAPc>$1;tCgkx07(CrWE{D^xTaKJ6VVk>ZxcP_`s$bcN7sc+Bov2SUlAMXtcqNI zDc4swYKa7m)9s+DRUL8T=**C*u$qVJ#q4D#!zXtcyToYjDbB4KGR!KVJNgts(7ByNz)t zi)idDXsjymyIp#;a;fWzFEV4 zXjI(yXt>jNdO$qthfexBlM0ei_z7`8q~U(8hI^)ld!2^6V5ffLe$HQY-y-19Zu z*J-$0M#a5H!+p7i`w|WJZ5r;@QE@+^;ZEP~2XRHc(-ST#NX8ZociX7A_iMOUYq*zb zxOZx}=Z}i}Ne%Z34fhfa_gxz9C8OegM#FuzhWj!N_d^=)6{F(brQu$v;qKIMuh4LB z8Ws0W4fk9Pcls7O*hT#?V@Z^|6bTO^Uy6h)Z+9c1I99V8h60O4Ih`8MYTSLrydcU; z8Y?%+T7YNlp&7e}!;$udzi5oaM{`FC7%+KsGz+I_DSF5w{!Cdy9fFvcL&9;=u34PU zFgTKZ(m`h=`^XW|KT&t*@{7qVMLTsLuKS#z>_0k8YGMwJULPy^N|q@{qA!{ubN`Vo zzY`o)kPIiPK!Qjf)ggP-$Kt+P!=1jstK#J(pI1RL=rizY?%PJiJyXM-ZlI}nIrnL} zcW89qJu2?~V5H)e?$L0s)^I-|drM?RsB2W*^EJAk&~QJb;l4+sd-tfgpVjETS;L*) znOE5-BOjfI1d+V1e^lIQ8l<9}zD2{`r{UhJ;XX7f?nVvwhcw*p(QtoA!(DKUCibh= zaHn-El{K6}4R?>G#aTwhy+p(PjE4IO4R?cvyLD9D%QW1B8ty$B?zD=a_Bz|BxX;vZ z@6vGJt>I2He>L~~QE|`JaPQV|@6vF8M8mygRNOadxF4uWZ4>JZemaiBU z_im6?QBJRp<>f5X=-w2SQ0i@(M#a5Jqq`wWSm;&?iCvDT~YhU!`S&*XVwahWk1V_Yw_v+o-rZHM$?saPQP`U#Dqt`J>`q zq2Yd3!~Kkg`*KZhQ!*;yGNtDQB&{dHQYNj_1-lq?#ngYhcvqPYq%F`xOb0= zdymHQbsFx=HQaYb?IVxxqvD>Z(S4VO`$HP;XEpUcG%D^%8t%I_+_!1C8#O*JI7c(S zFVS%C*KqIFa6hZzZW$H#Yc};U3iZeEz7on>4y_({S(5aNiyEd1-~b2=a`yLN4DyD2vdM?;t4V%TmiNk+pyn zv4-U95UvRpVlb7h<)Uh_J5-8PUDB` zm7Xa3*vPui@yY(9!vjt+hphXGi0*i*vmRfYj6Ac)3%m%kaovZ1s!D4gQw%3O6%#v` z8Lr+xif>5%e0xM@yg4|G%)f`sHt?Vtj}w|wZA_x*Op20!L}mr^=i&7toO8hGka6(V ztBZIELlKCqJEsF)y2nrokIyL%t?ne1+5noFoz9}5z%S+cqPK&1TW)G`d#f8~;nSv# zRnbbrn=|Xz#(GJ-^Uq{wPmq%P!H_M9#9 zs3$|xt&(*kGjXQ{Mk0GhAQ_aDAo4tARNS{}xF>74Cuq1QM7c|S=5HhQRWssKA5ksj zm`$Onq{Wb|h1xAxt$kwkCBiq*}$P#iM*GWD!`>hT2J7RTL6*onsLY~!og*< z6g^W(2jz1d5s)NFW)67}klm6;K_31wG=V>FO!By-Pn+3P56@?9wIi zqV;n5{tm~XXA|VLI1ZTxh@jFdjUdv&aTWk#lkSy39_dqW{F!8ukd7OGBd>IEh#L@j zjhaK~E-}3T7M1V^fb^@l|D13Hs{-c`AXNX+QvD2v@MKNj0;D@)LxPV%5HX~Jd{GhL zaCy=-kRm`fsY=}fi2MW&FVzT$yc)(K_W&Y4UCbd{0pTN>Y@c0#cvO@R03zSB;eTTBdBIZ~zC{h|{?gkZW;C4#6Q`1Vr5m76M{nvl|(wjOeIp zrw)*Ql{|L=B0odUDc=W({H!B~JP3$YMfov6`&f1XOIATI&(kV@v$L`OO}ueYdF#9Po(*k>jy zRQ93ZdXI|E<$%cdjyauKfNWOb5Q~a?KOnnQGQUG~fF8B;cue3bRFtOyazs@s1CacP zXOcWi06DM1sRTrRqMpms2#EZ&4~O^xsaA3SE+ACz(bn`+Kz6Hie-e-rDqbf5DO1ro z4M?}D)ZYM6j}8V*LoY<=xcEm%g(j6JBmqZ$?t+bI4b@UlLRxbz(tu-CaWAF`uF5{k z0eLyXi^?_wvMtgIu!>YipE2cc&{!qP8-b&a0onm6RPlNU5c$0cF3-;a8B*2zvw&<< zaqk7BLuH=STN!UM0^A zK;(ntWC5~CMY$M|d==zYKuS~+)&kNI(cOy_HY!``UFE98CNrzB_nDMz@~)&eF(T>O zhMGn>uX5!|d<#!b)zSVQQYq|$gU`K53F;EC#EeyVbWix;0X`zv+~Scxf8fGbm7|Hm zy1HU4MHehBEA>=1d%R8gb_W%{t|0QsMWnDe?rN6yYQq$Qcu7!fq!a_Ey_yiivu)Yx z8>?N|&PHHcDzOaOmqgB$e>oPmdi!W-P>yzJ`cQJ%HtoX^v9}Rqg^5UNY10%ExkUm& zHhg^m0TF%p8bJO%IoP1F-qo}gZ<5oeshO_$rH!Io_{yC!yQ;FO)^+=uI&9yPnx^2R zD5fwKL{Sz%RYU|EsX&#gg#DwGpdG!UQrSMFh{{9=3%yOUC@_vxmiFdQL6w_z$Qdqf zOcde!W<{;K&>?*=A77tWd>9{J5XYzOXm^R+MlxHZ@|c0OGpX zEhAS8cKYGID05%s_Ea)bG60HVTS9DcRCT)xpC_kJlVTe$X~QPeJ=-}*S+@~Iz=o5m zYJ?lzP{>iKjVKyI@r{Kp*_N6Nv?F-ouwd4hW9Se%`8Roo!qn7~IB-pKrLvl!ITg5A z=0)-%o1x7jenc8y>1=VZ_wrp*55oEl5`}LO2gjhT&s?kO8dp}3>TJ?Y2N^JGpM*qpbN^oQnOh5VU|#QFjnqCRo$Yp!@Ou0IYNgk_s5W*I>92; zCQPI5$?C9_X~@dQXNEx(~`adDBWq_n8K@J83tq9r#L z$ltbgxv+Vk3!Y7TE~xfVaJg2yE2~|&A0d5O-Bn2~K#Ldo1V7)8K%xlLXaj=DsYPIf zMt@JLsXytb5<;;-gG=kBio$2ZJ@ZRcRxHBHo|J zU}BE~cQd*YGF*M-ZH?IC&btyHnZ-6Aiv0~CEI#7nYORaPD_5?x;lyHm2R2r~80k5Q zS_KIif)!dOfaEXCgtX}bq?alh2Bm&dHmJ;8HY=Gz-ql2Q653XQ_Qoh?L!Puj114+{ zDOKB?M4-cM#u3Sk>~tYjFo;D&WCFWzvtFSfQ;4ra!Gt3>7O7Q6XhBbqrhVtAPSIGJ z6jdrKFPVmIav>{?K^yx@NGY1kMSUr<<%X0C6%_kaA>}^t*>0=W}gsd-q3>W8L`Km3wv~~YM^f@ zGw4Eev24!=7xvA>SyI4u_Mql0?*-wil-hHIO|iUlN(3T%PIR9fSZbI}ZXyMwMyIgi z$kj=WNm5z4??|*RR83dHlqKTzS)$sZMC#*Y8!JC(Dshr`_i!-}lo2J;L{c*RNP$VT z&B>BeJtKaJG&$Z_tK^E7x3^Kcp9~}Q3i*~d5kn9;RWHsxiSPX*yHQot(O@j)b}JD& zOwgFPO8tpflq6;dwP+V1q*Qz2AkBM($i6uezCu^cmNpUYG(?fcU_c`#w-uY4NV~g8 z#LyW4Rob#BQhFH1+UVzzdQaJpD0E3L^$ zddbzrhl=4_IrFyYc04G#m~E`2-rz`LK3oSK=?0am$5x}t=&G;yN|fcjbEKrS226Uu z=3F9GE%FQ+W!OHHQl4gap_p!2IezjM;)(ijB;Jqd^&-Ov-!KUzBV%r)>p(Tqii4~S z-xNqn4IgC;6Sm03hws{GH!4`W$@=8%9_F`jN(xC@<9> zQPCLoc6W1wyDrT^L9B}pf6@9>3c>R0) iflg = IOR(iflg, kflg) + end do + if (epsi0.0d0 .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif ( Lepsi < 5D0 * excess ) then + LTol = (Lepsi + excess) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn12e = ( Sn1e - Sn2e ) + + Sn24e = (Sn2e - Sn4) +! Sn1e = Sn2e - Sn12e * zpz66666 +! Sn12e = (Sn1e - Sn2e) + + Sn124 = (Sn12e - Sn24) + if ((abs(Sn124)<= hmin) .or. + & .false..and.(Sn24*Sn12e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn24 * zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24 * Sn24 / Sn124 + endif + Sn4e = Sn4 + correction + +! NEWFLG = .TRUE. +! CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn1e,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4e,LIMEXP,val0,localError,EPSTAB,IERR) +! localError is made conservative in order to avoid premature +! termination + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) + !if (h>dhMin) then + !localError = max(localError,abs(correction)) + !else + !val0 = Sn4e + !localError = abs(correction)*two + !endif + else + CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + endif + acceptError = ( localError <= Ltol * h * eight + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(6,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.true..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,fx3,fx4,fx5,x1,h,S,SL,SR] + kp1 = k + 1; +! Process right interval + v(1,kp1) = v(3,k); !fx1R + v(2,kp1) = fx(3); !fx2R + v(3,kp1) = v(4,k); !fx3R + v(4,kp1) = fx(4); !fx4R + v(5,kp1) = v(5,k); !fx5R + v(6,kp1) = v(6,k) + four * h; ! x1R + v(7,kp1) = h; + v(8,kp1) = v(10,k); ! S + v(9:10,kp1) = Sn(3:4); ! SL, SR +! Process left interval + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) unchanged fx1L +! v(6,k) unchanged x1L + v(7,k) = h; + v(8,k) = v(9,k); ! S + v(9:10,k) = Sn(1:2); ! SL, SR + k = kp1; + endif + enddo ! while + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + Sn48 = (Sn4 - Sn8) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn4e = Sn8 - Sn48 * zpz588 + Sn12e = (Sn1e - Sn2e) + Sn24e = (Sn2e - Sn4e) + + Sn124 = (Sn12e - Sn24e) + if ((abs(Sn124)<= hmin) .or. + & (Sn12e*Sn24e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn48*zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24e * Sn24e / Sn124 + !Sn4e = Sn4e + correction + endif + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) +! localError is made conservative in order to avoid premature +! termination +! localError = max(localError,abs(correction)*three) +! localError = abs(correction)*three + else + !CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + NEWFLG = .TRUE. + CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn8,LIMEXP,val0,localError,EPSTAB,IERR) + endif + acceptError = ( localError <= Ltol * h * sixteen + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(Nrule+1,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.TRUE..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,..,fx8,fx9,x1,h,S,SL,SR,SL1,SL2 SR1,SR2] + kp1 = k + 1; +! Process right interval + + v(1,kp1) = v(5,k); !fx1R + v(2,kp1) = fx(5); !fx2R + v(3,kp1) = v(6,k); !fx3R + v(4,kp1) = fx(6); !fx4R + v(5,kp1) = v(7,k); !fx5R + v(6,kp1) = fx(7); !fx6R + v(7,kp1) = v(8,k); !fx7R + v(8,kp1) = fx(8); !fx8R + v(9,kp1) = v(9,k); !fx9R + + v(Nrule+1,kp1) = v(Nrule+1,k) + eight * h ! x1R + v(Nrule+2,kp1) = h; + v(Nrule+3,kp1) = v(Nrule+5,k); ! S + v(Nrule+4,kp1) = v(Nrule+8,k); ! SL + v(Nrule+5,kp1) = v(Nrule+9,k); ! SR + v(Nrule+6:Nrule+9,kp1) = Sn(5:8); ! SL1,SL2,SR1, SR2 +! Process left interval + v(9,k) = v(5,k); ! fx9L + v(8,k) = fx(4); ! fx8L + v(7,k) = v(4,k); ! fx7L + v(6,k) = fx(3); ! fx6L + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) = v(1,k); ! fx1L +! v(Nrule+1,k) unchanged x1L + v(Nrule+2,k) = h; + v(Nrule+3,k) = v(Nrule + 4,k); ! S + v(Nrule+4,k) = v(Nrule+6,k); ! SL + v(Nrule+5,k) = v(Nrule+7,k); ! SR + v(Nrule+6:Nrule+9,k) = Sn(1:4); ! SL1,SL2,SR1, SR2 + k = kp1; + endif + enddo ! while + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0) iflg = ior(iflg,kflg) + end do + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0.0d0 .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif ( Lepsi < 5D0 * excess ) then + LTol = (Lepsi + excess) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn12e = ( Sn1e - Sn2e ) + + Sn24e = (Sn2e - Sn4) +! Sn1e = Sn2e - Sn12e * zpz66666 +! Sn12e = (Sn1e - Sn2e) + + Sn124 = (Sn12e - Sn24) + if ((abs(Sn124)<= hmin) .or. + & .false..and.(Sn24*Sn12e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn24 * zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24 * Sn24 / Sn124 + endif + Sn4e = Sn4 + correction + +! NEWFLG = .TRUE. +! CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn1e,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4e,LIMEXP,val0,localError,EPSTAB,IERR) +! localError is made conservative in order to avoid premature +! termination + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) + !if (h>dhMin) then + !localError = max(localError,abs(correction)) + !else + !val0 = Sn4e + !localError = abs(correction)*two + !endif + else + CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + endif + acceptError = ( localError <= Ltol * h * eight + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(6,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.true..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,fx3,fx4,fx5,x1,h,S,SL,SR] + kp1 = k + 1; +! Process right interval + v(1,kp1) = v(3,k); !fx1R + v(2,kp1) = fx(3); !fx2R + v(3,kp1) = v(4,k); !fx3R + v(4,kp1) = fx(4); !fx4R + v(5,kp1) = v(5,k); !fx5R + v(6,kp1) = v(6,k) + four * h; ! x1R + v(7,kp1) = h; + v(8,kp1) = v(10,k); ! S + v(9:10,kp1) = Sn(3:4); ! SL, SR +! Process left interval + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) unchanged fx1L +! v(6,k) unchanged x1L + v(7,k) = h; + v(8,k) = v(9,k); ! S + v(9:10,k) = Sn(1:2); ! SL, SR + k = kp1; + endif + enddo ! while + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + Sn48 = (Sn4 - Sn8) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn4e = Sn8 - Sn48 * zpz588 + Sn12e = (Sn1e - Sn2e) + Sn24e = (Sn2e - Sn4e) + + Sn124 = (Sn12e - Sn24e) + if ((abs(Sn124)<= hmin) .or. + & (Sn12e*Sn24e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn48*zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24e * Sn24e / Sn124 + !Sn4e = Sn4e + correction + endif + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) +! localError is made conservative in order to avoid premature +! termination +! localError = max(localError,abs(correction)*three) +! localError = abs(correction)*three + else + !CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + NEWFLG = .TRUE. + CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn8,LIMEXP,val0,localError,EPSTAB,IERR) + endif + acceptError = ( localError <= Ltol * h * sixteen + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(Nrule+1,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.TRUE..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,..,fx8,fx9,x1,h,S,SL,SR,SL1,SL2 SR1,SR2] + kp1 = k + 1; +! Process right interval + + v(1,kp1) = v(5,k); !fx1R + v(2,kp1) = fx(5); !fx2R + v(3,kp1) = v(6,k); !fx3R + v(4,kp1) = fx(6); !fx4R + v(5,kp1) = v(7,k); !fx5R + v(6,kp1) = fx(7); !fx6R + v(7,kp1) = v(8,k); !fx7R + v(8,kp1) = fx(8); !fx8R + v(9,kp1) = v(9,k); !fx9R + + v(Nrule+1,kp1) = v(Nrule+1,k) + eight * h ! x1R + v(Nrule+2,kp1) = h; + v(Nrule+3,kp1) = v(Nrule+5,k); ! S + v(Nrule+4,kp1) = v(Nrule+8,k); ! SL + v(Nrule+5,kp1) = v(Nrule+9,k); ! SR + v(Nrule+6:Nrule+9,kp1) = Sn(5:8); ! SL1,SL2,SR1, SR2 +! Process left interval + v(9,k) = v(5,k); ! fx9L + v(8,k) = fx(4); ! fx8L + v(7,k) = v(4,k); ! fx7L + v(6,k) = fx(3); ! fx6L + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) = v(1,k); ! fx1L +! v(Nrule+1,k) unchanged x1L + v(Nrule+2,k) = h; + v(Nrule+3,k) = v(Nrule + 4,k); ! S + v(Nrule+4,k) = v(Nrule+6,k); ! SL + v(Nrule+5,k) = v(Nrule+7,k); ! SR + v(Nrule+6:Nrule+9,k) = Sn(1:4); ! SL1,SL2,SR1, SR2 + k = kp1; + endif + enddo ! while + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0) iflg = ior(iflg,kflg) + end do + if (epsi`swmtB%4?ggLkJSCn2R{1IkG0nQ_Puovw0*Sh zLm#bM|IRz>KJu}9?tSf5S6#8fFM6YuNNgy%I`QDHH@q#eYFXmjS0)nEiOWl_EGb=^ z_-<(;@!x=5O(N0pB4ns$CSu!Q{75F=CHT)@{f#bDzKk*4>t-c=4Hqx^2uY=`%$do7AfJTWc0N0QY-vGE< z)|mVa#H%0aq~+W5;Sf`L%dPbS{4o1*2r~2|l;m@0?^>0&KIOEXcN4e%*iGF2$LQPNyW@5bKM&mX4d9;0l&?TD z61RTa*|efOH;^q&q~=Rn|G*w?z1mM&nE3hv{+vk{#k9;jXIqYzCvM+|B3h6B-rH~g zEIkMFQ@d}+xE^i2>-HP*({>yMaSq)2W2Y5$H28IV7N#S_n&2GFis1@kf)|$&!Y`o@<#Q&K2 zm+2pmRV4R~z6`4@a7lJ9LoTInM*6A841^Vj_#;39VybB_+cKZE=Cc)B0DAhdY)j6y z=H2G=jy3HxpUGG!NxfA2$+BIqcde6++4aXermWml)4U)RF*s#SD`J{(K`jf`Ni_6Z zSu2;V*vhhxOf^krt?6vVHib_A#I>rjHM2EnkPq>gpJq~AtJ)=HuO?jLRPOZC%An}f zd}-2NiTUIsTfRc9;|r%SjtG7FF~QDM07Qh?jyj7FiZe#(9Z~D&+~#wOTYvek+tm8b znQh@-S$8(AU4G>2fT%J#ZeS^uM#Gy5l|dZ%?wP7?s~ss?Q#6`*k0iNn-ePwnD#0L_0Es z9~7D5WCF@{YFcnJ9PB>+C2g-;D%-aOg*lY1m{w&b^Vbo*RF*$CY1xV#G8ACax|}2J zp|5{=^P@kU`nO#gX|o^Gtk=MPjDzju{zE*B<;JbZHW;>)g0<-_r z4=~e7Zq zYaMp1lSpQkpt`v?2c$iEFLJkxX01_>He;PFL*9&)KOu$yk*(Msx~G4Vy>VEjRl12rclq%>43r-yu4a98tx30e z%CUx==7U*lNaNtn-DfF9V9{Pzjb(g22U*`%@E62zH06F(!*1NQYTbmlu>`+PwcE7Z zAED%}T*Q%tVOHfWpKwdvcbB_O)tU@S;)?d*E!btCOMX>Tkno#PRFQmDPWdTk)2Xmf zXW~fiB_$J2%sUoFy)rIf(ghPFf_1DhrK5SSHR{-BfOp2~McWdt0`*pJa__%kQ{-Ah zjgEB?KdD@)V-3TjhK1NW)`ZiHF*BUsD95Jo<)qicb*+Po6C0JdL5UM?^GU}hn|9K7 z!_C@Eg>ciiQ6Vw#M;MpwTdf$n6n;9g%0^JGy;<92pg&l;DD7xv>pGgX1(c(hRGv&5 zF=^QZM2jjvr(X)erabm5)^>x<)FW(8wr{QKr_1`gf_(F;ogl@#K34RFCM=>SWL7w3z5ZS`5J3)7}p(u*;^TuVeYi#r6jF4tO~t(nP~4qn_jThIQxXapmnm_K!+uhh;(6DXz&DwG+=D~gA4GVhdMK0#psK{OERL|@MS}442a!SXFT=Ysz8|W?Q=1iC~u92KSg;-&QN8)9p6zGn^%F1Vl63-zqFv zz1%Ha19mR1aGQ0w?RvNQaL7&~oHJIxm_+kfEb%sLtPM*@KQ~ZdCs>{aU2D*>tATFF zRTuzQ+12P;{i#u~k^y))xU7Nv@dt(#vb6!n>UUKR8B!eGR&XLPI8@#GLHaPn$6h&s zst*{(W-pId&HyW4hYnDk2bQXH0R<>;L51L$;OeRQvR$t-{GGU0Ye(ib)dVQ#G5gsM z0U`^U)MOi~PtTlsIto@Ycp8$MpPmT9n3sTeH&(d~l`PjR8i-i#HefBOao$qtybCNn zs`)L|&bzS0EH|4&yAEx2(ktL*?X7ex5-+0otg2AwW7)nMB^sCD@v$0CLMCL3PeSGF zBLIh>YRuN`9^=}0SBsIbwqt?gR&_MhKAQM_jE+$Z4vr2Cj*NA{1O_|KEU<^052U`E zbecIL+-CIopwo=?dpa$M+VTrXJ^s)YD0)sn@l7+-A6{;&7_{u&Ow0 zN`(wFl(7z)z>uoIOgN}2_PLg3g_d>9HpHWf%Z^N6=2y|>SFy(hlWc~IDzGN+LZ{Sb zqz9&_p`2rV=527<6J|lL2^REVNvvbml4R$n0P9)^VI|GERt~Fg#+vr$QGN6DuB}S- zHa^dRRo?AbXCX;xgw|xsCouJc4vKNLw%3_VjSFsbEx?`fPy3~yQ|c&ojMXs*gdv3dShYTAU;7<01z$j<9Ed%TTh2J(ql9&yGUNW>(AK`3e@wGfb&(WrB(8I$jf zYn{2xI=2hs{tUOz&BzSFa2%NIYIdz@6;Zs2g$(!|%+UCJta;=0)}j`D$+gab1+x>t z0cxG)UBE~YRYAne!y>?{6<67sJMsqUgi8!}?quX>o z#Bu?C>qNaZ7m-@(t-Bn&y&8R3IJUsp#S#K}^d1bOKps8# z@0hVIg9vh`l6yqKIaEOw1U`dBtD;i8K#PYs50xY{QM3jdB%6NE>V}Ms(XcR)Z5hf| zbYQD7)igwzt75b7H_N=$LB3X-t;twZ9Mh@xsnXNhw^%` zXieSQV-`(Mi)K{WC=)Ftl6iSzVNv3EK*muQOHk+IVs`r;C$|eyv>EJtoI;$l@A0#g z#jMdO?0;H@fe`U%6duDyVgOOp4j;!Yewx+6CBB0VLpy{%lTZ{Ed+1fbyH7tx{*8vK z#o^*K#kI7A%(J3fg@Jlq%xd_ggiwMbzruAYU;<+0!!{FBv<5#=t9NkI>8Vio$~~(K{gZnI&ZO92#dC?Lv>66CA*;=V z>>I^ErJw+%#xTdMZCpmjc}}=IGhvD4SvkW3Z9xKikTI@ZINy-$Jf#tbN*5=L1_{}U z8ee)qcI=w_hKQ#px9=d4%Vql}@EfQL=HE<0KowKvRIPCCh8Ex*W7vV4e75qXna{Du z>84M>&Dty>tC*sVRdR7zgryh^OlNt7B_Yvb%-yUtn60QYG`8kW|1e&>FP68q#(iwJyo|6vn6N~DC}&upEl7w5BoA75J% z@$q?|Jp~h>fRC3Y_dXx-q-mcI_AA?eJsY1E9>v*sLd_h;)GJ`)Oj?Rx#ZE26#!Jbs zDjI#7RWvZGy_S)70&WpDUY^|hOh7U$eH4huxC&|ZU&F_X(?uv=h%WhDG}(D0NwA2I zb7VnLR-BJtp3lcw*9+t0v9px_3O@dRoZbKbosXx!@qhU^mYQH;D9*<>fvE@bIF7%; z$9n>K{5l1f;Ny@xipk@nhEuh4Q@{vCx_%t|h$r>qpfOu9ANZk>nhu%x2_uZ3024PS zJ|{}B`JR9(P?D7LK#>o%VaL?HT}BG><(IIcAtpj%k#=jbpbl|*LV_iC(U8Sgf+;}a zUWK0^Wtdu|&d2AlHX`L5mq>63YZ$8=Hc7-|T6hdXl}1KA>0{R)#7;973y-95Ah{=)~pU88tR+QtfvfAu z?Hhyt;$rH+*T~+KLn5=AX1@P4F}3GX#MBVzKT%92M+?Q&&KP^Mp2=fxZ&2{(WN*Rl z0Tu|dZduIkhDs^6irp1qaTP^bTtaz%p)8I{Y%nsalNYf#jvJ(K$Sh`Yqrzh`i`x>! z7P2@dEj8Uk4d8-RgvEgnM*7TWafOul-)3=nl*nUo#VKJ}ZP7M|NtfE@Vl0jWWJwlx zMJRoW#gV=~i(@n5ERM(*VR2XFEiC_su()pE>Uwhf_Q6jU*N@*|E*0*?j~pb6Qx4gf zxM}8d>>j%5UbtDCC1e#-bepT>;yZDcVleP`;)IRw#6#|dlgcG`;vrDT;)eWUfcl`2 zGcKcxqR50LcH+uuR1we+NE^X}3v#uP#g)UX!nIc5@WMX-(}ji92;Ic*Uy)G|dpjJF zGs>}t;AZTDOjazzJZ`WD;c?SU;GskM0E2!c{U)a)09U0L;JlLvub+@Q@9+jx03+PA z{06-Q4(w7RbcLQgLWDlY9tM2IJ`C5O$FR`rQ9(=)dc6$VCX#-W(@7J+RVl9g`RH{M z(xA6bfQ-O^qHEBr6?$}qo;*U2KF1yfWX2wYYtUm@=ykD(G!um09tLd_Nx#YI2*6b- z1~?zR4ni9AI#mE8+_d}#y>g*PSLn$j^ytH~5BQ9I04UT*PzF+ z(A%tnm>~4-X3#c~^qZVcngFg!apliPZzCZMdYc5u2sbT1&OtGAmkT|*LQfu{N1tO) z13qJ)fosrXSm-sXASMXC4Gh{Ql75rZNfW?TDX#qao!dZ2gWh@pGQv&EPxN^FZPy4x zy24N%VMw22=a401pM`5MWLOxkRas0BhU*x#O(gv$r;{dtt5RI~^D$gaNQ2=T0W!i( z%O7G`Eez=jLwSTDeU3ecEE)S8T!SIQ!f>U^VuCPS#h`5>={Gr@Gyzw@j#dU-< z7_JZ?BiuCo!S?$2B-fh;tl+^8`)?To(=^{2Ye2!t;Xixmp@$xQ=%L5n>|hfO4ZgJ| zLzKbgR|lTWzNcwruzLEoux`_;#W6UtqZzi_wAMeI502v3`NkFvi*q!sUmRm?2x{IK zc>IB3oy^K~D%=kA)q&jEij~k|;|K}>rOkv&(_ULa9_bSLbY zv9}HkM?>i{HCF;_(^Xo?O|1n+CN#(fAz`YPm?_6ypP-4b7sL^FGmfx>bH_Nsfo;0| z#C7ZdAc2kggFiqa8M}c)P5nZ%)4sI`X6*HFsmT!RZ3^!AHB2T%zn#Jb&c|&+7Mvfq zR+$o+dA4#vIcL9?vDX0D)B=SI43`kh*o|;wwJ^A2otx%wSPLP8ri6sTh8Oj)%%C3T znf+>NM6GFCmKsroacVt@n@K$QHKVA}A4MRA?EHe!)EJnQkVuZb0mWvlJwj4}dTUQ| z?}KPbwqiBMM&Cw2xYi!WzFQvTx=r34Z*kL%3L8Se!tT5_A4 zT}Rsr8elYr766k-nAh%S}rD$z3ZZc9frk#XnnveXY@?nbeJb>4b(IQ%vFEHmwf_ zo=GD`Ty-B=USM%*(%1`N-*lVSElOjf+;lnJriNG=Emk&gpu%EBgf|6XNd%}FC$0uX zee<4Z-=zUI`?I_;WQ+sSyn_Yn4ad7DHj-=xFh_RX6;cGIHL%BN6NzcOwaTA?@dnc} zcfFVjx5%KG%n%^@u(U<^v_9fCZ^lN_DdjkxI5J&YLdRQ?T_2H6npVLV4^4@YU5ZCu>@$8m(&fKj7wOjIISMRMH+4#7ci;Op_w%GjLsN19|>I&MUd5@ewEFskb>h$0+l& z*8v@4_?NK{Af32mw8w=9K5l*$XKe8@_6}rFk~P5}Y!lcZO(#bdsgCS@A)hP$ZkBJ1 zb<(ZyXRL8kT)!z~!2ArFA6&{rkxi?7J9?Ti!lWJ9Fv`tvY|wDTJs;e=nKs9&1teUNQLlzAF&r(T?phABD7X$m zO#eWQE~D;zb|n>9TDrhkwy2hz`iKTdt}Gj{4`hst)SdJuQR3pOSh5qhS`(g5o6Jhq z#Zq4QN_N}-;;9C05f&FSY~rdtd*1k}JXt9L4i+tHX0#xln^{YK&k%JF9f9@ zO>)MpriJ3G#CgqvnpJbi!g-JptfOo!01A%<8gR3A@78qM4&6l&TmVKi?m{GlAh`sK zw>VrLnXtt2sGNNQu;u#8NZwUe1l@p#VsvRl*8W_9190m((dz{YI=)P-!&XAlKi5sE-w59T}@Iz_n@v0MZ+lb zsFHbJ5|=oG%tRAf$Gp^;e~xAj$5K)3IIcC)$m0v8)*!Vg>Jf6qhiQz>vw4-~&UZEC636O2QAeCo8x;>7HPBl8c$EPz4KU(tbkv zY+odK3}ZRfK9NY;Y50OGJR6z6uaOk9#u{$3#&^BQPcp1gNj^JidrgdaX_*Cl@?rB2xs-e^lo(n*$SlcB8JHZKj<%^c976>X?eMQzxWv zr+!e@{Rg3O$4sCg=+RT(G`#B*u1Fk-m!fB^CF`SgTQt{N9ZQc|dN((wDy_lM4+5;k z8ji%xVThX^RQ_lUfcRqqnogCh~fJ~ zh{QpST!Iy4q)b?X?<;4Y0BpH3W%1j%4OkSAB56~QHT}iyB36J2NuU(#Q}eJQ=@gYN zSwfFX<2z6zawisWXL%`cn`7S>Yxj+QjnG|C4UqZpMkxee`>|wa^?#69>?vIP7AL1# zfYQg)Ko+|-H&JHoqf+J{P(Z4EUs)TLFThW!2j~T}5m)e+GqcKZ%No0ae7>RedVd*? z#hzvZnX5Xm%{uUW_#hMjZ(?pb_hl5G`a<$CgRF7*& zP!QvKJF1XznG#1S6c3c8_PdSd7q3?80F+J(w>E*P{=%__^=wE5!gI&r6NaO|-F`kF%UfmSeW|yse{s_C^8H z6;0$3P3Xfx7)r$v8mnV$n&FP`1CM@qT#pI7tLF_cD60aTUBhp3Ld~Ig=E4yg+u1pkMZJ!!rwDHPR)34Q54uL3eXh=lzS&vQKJ+u81Iyh(MnsISWUF zOcoJV!zUtaB%&S@M1)PkTajt{O-^4%Hqx5p<$P|?NJvA34Jv>Uc%VUkA|P%skZK=@ z5uyL{B*K7`UdPHu=!yvR7$VR|B7FWq5}`lU-X9~vUo*SauM5GN3-_xSx}tzQq5ys7 z2@ss%GFcR8fKL=?AeJ5zM1l1}T9Ik`^Bxb8wipM#0M4htT0$BMtWyDuaMQ+51Vn)Y zsrCag3ViMnQs97-Ze-;nbVUJr3YnJ64@I3tfIPd{fdPLc5g*-vMc>!42MlWomIsrI2n z>y>WP5F0YPrxZBjO_+nJ_JfRuwf^!Ixs!};I_ESEr`m@ZZ4GnlIKt@WIj33I>RHHP zjRzHS*1yotLPlB0UKNsan#NM?V=4st!4Pz`G5+U#^Eqdk%Y+! z7V>sP`|m7m2~LQI*7+yI@oNz+^jOr$?UgDq~Ip5E~nLd4k0;I1$YvJEu zT;dKk1h^VlWH)dbGqk{5caX;te73U6lsODC8y_wM;NNi3GKZHa6IZ8k9c@@;&f!Ww zw08yD>$V%Po5Ndf1qrRcik9h^CwLNq?}6ZjBDR-B`X=-|L*~OS!OJ4!daQU_I}1}Llrs)83#%PdAONrM+mpp}%NXMh!MlnS-jqZYx1b=q3`Ec9~2?o%UN z9>hT85d)zQ#$cGyMwAr;QCNcagr@owTnXMM8H@?oCZ~~!VMZ1L=QEIT#QO~7gbHAU zIi)d+kA%z^tBeHi_v}Y2#6^uHn;JQTyy7JE7*0YThyD8;a1vb`OpUB%QzOCq{VYdG zdRqxAi=$;THNrJgG?7O%p%3<5C>54rtd6m1hQ(Az;c-1Ch^dY-n73CVq>+hX8OBt} z$N4lFCX8XKhgAS0{JoMe6HUmBQzLX^to4q5qQgid$)-lmA+KmckD&>Dq{)BlB2Bm; zz*2_gL^OE^%TW@ZDAQ1J%sEVYrOIBVOmsybc}NMHK1W9ku+?SNjP>T>j&ax6x z(@FnuH9dq>*E>k8(u8z8=8PXy35S(F|_ANok2m;Vvz!?nm?q$2vfn&p`DSzcn&n4xUprs*2F0ai!wi$0+MB2mPV z(#}Y~hCY=56n*;Do+<=Ip8+*Yk=n#LX+k<40o<7CFP}a=$mP?gSLHDx*tiiD(PtAY z8KE1aPub^4A4VD}I5o1I0HhB+hCcL>K9_xp^x23|YJ_fV{9MU$%qc55B|)5;Z}Eqje zEeLw{AD+1P1gI>-8#E4Y9+60RoRP1Lf{cerrZfjmee-xkrg7@BGqC^C$l{Ys4`lr- zjbTUn54rH@*nf|0JBl$!PQ`>ZX?KdrYj_ZF8*_#Q8c2)|Nj9ip(TK;Ox{lOoP4ZL& z4?m~=p_GC$1(#Ur_MgLq_)+Mq^f* zT{#QsW+B%jdhx{-bO{i28>$?sRegOcEKhwc>pC=P7TlD->ONn9A-iKn@JY-JJvGK+ zs?D)lL-H%W0TAJy{U7F$#)8eA$5mYG2pOTPU7yyGH4JKLGJ9SpO-M((KeNmi+uW@r zj9F(_sXRuw+Ps?qKpT1vk_%`d8j+l_H^3#EH%q3Z$2yh81WAu87>pmwGve84PJ{a9Gs(R} zAYou>yd9CQmOi7G<|7xbR!x}KLxZN0ZnL^}Y{b}3e#Po^y;fxLmRI_dUDK&>3e_$F zu4%YnbN4Cg9(K-{ciZf&t8;K)r+o#%a1r(bf-^j#&CiwI1xC)0C zai6~$)IECSxtH8J@yZE49V_)==`Ni5?a_%CG>6T@MWlzqn*vr{%#^?k!K@O9T0^s4qGELH6&tWt%D{o(~X7Q#p9qz)xR-N*Sf_5YA_mZLMmD}Mv{ z?8NZ!i|yG*-!=S?xV}KS$Ze{N2_-rJYpPuwW7Py*9-C2onA1Em*yET-3Tfz{r`j|k z4Dx{NffOPuwO|7t*8%zxTE-gWXo5bfY}Z=oplD5E4K{jGu40tHiYXL-db9n{g6{w{ zniYdsqsCz*gajO@!=>FNZd>{?m@d+wPr?Yi(&hsX76OwgW^E=EElZOxkE0F)6i57U z&D)K*#iy7txDY7d@*)X1C47~;*0>%$Z*!HB%3bE}JHDP1y7RaekIu*04A@N!;0JOA z+}UGP^d%qs5e^{XdvS7a4n7R0lF?@;pQT+kUNBJOgBG{+AQgm5<;qYzOG5D~7q3({ zk14T~c}qt9tcYq*hGl*PXH8thm&_J*6yCwRnv))#MWzK*ki9gO3$i1DQmnlXbw4E+ zJ%TcO|5+>4#rl}bpN7D4wiAezL0uUyoR2mTD8HwB|CuyY-4eopT#3m~L%2)G|G1yO zQG{UtZ|EYJ*N}B5r&D zGlLh!W*o$%<~_4l<7gfluc@{PeA|Gpmvlj&)wdlKL;_V?!Fb-rDBHM9E-nBPsE87f z0w9x2!M2L`^>>)vcy@OZdxjpve_|#9ZM9JG;Yqu~EfFRk?g?#0nViIw!sv&W3pjid z5)a&%{B!dxHI%iSi&p<47KcL^&C#Npu5;Ay;^kgz&RpMuL1Sm44eq%_>+cxe&Ii2l zVj*}V7(G@TuGM&rW1;DQi<3iM`f7cZw8UVf6bK>5VrLV$pSO#l z&3yAVK8p;C=N`y7$$ew*KXb|h0mCP}D%&8=2WDZP72`8P64n2V?KEuQqHO|mS?1WC zs3Bu_!Mz-Xr$*?j+*R*-^ptr_#tmnP>-U4`yM@zV?|Uz9 zpwBEXNCYw(Lj-i0VUHIk12c#Wdw_h#?uKi~K%dA!PnpMLoQlIu{%)RwyQcb1TH4qumK7Ar}=+$Utu?(rD!K0$Z`IkRcvjZiT3o zFlxHkMgv^c-wLgT2bbmGYAeKzmz!3kN546Ray$Z@T=p9I)~48 zqO6Sxj_v%73B&@d-WERZq-VgiO94?|ZJoiI!WQLiQXnZ567QCKAa1N+m^$zZOh?s+p@24+cHii_zT^(=(dxPx%R%hxZFU_!Kjzfxh08-rb54k7T)P=z8(hZ;~ew&=liM{K_wdjLer zSRLY23e;O2yMEKxQg;C03;>>zYd%&1p`*_Xhz{)Gd>j8jaowAp12|0O;MO;HMDlY7 zIK~$tWNX_O9t324_@=>t=kd8cMqqe0 z@co?a&`L*Nl{rg5diNZ-45}5uwQ|9uXBIkLP&B+PkIqbX?gvw#sao>Eowx=H-xbNd zt?;SOaHV(;uN0S+VEgHnm!xvnhL{CA94_*H2NwWCep3IN)|dlSWBU}$m;{#6Nuc1L zl4~p<1g^nYPBXwExc9V1NQbtniwCp0B6q<7-6iJ7u^w+z8B7hsHo?S@gePR2@Eshx z1x@qmu(%&E6&g)VEQ(%p2anT@?ZjmcHpt4KQ_0Sk8Y-qnX*?OPtqeP&+_j4dSqX4s zOQqaO=N^j~I5wRa zoy(%VsT68$SESnK61Z=G?VnM-yam%UtCL~>>g5b=UUVRDzP*I2li1|T_Q3BOL}2@m zE%TsZwc(Y`1d)N2Oqh@Ztw^&ub}X&)hx{DuTP931L8hZw8RD`s=(_|jYh^}2uL)fP zv=5_3-iRrp)M>+3kT9wo`1EsNxxybrQzxkLm2gHE<9De;pmiNVN(YC?amzB`RvLG`Q zEvqt46eDU}v@FzLw5(+>xUAGDB#~~YIUV~1*=sO!AZX!bLd0b3lW=iz1390*%3Te( z#|BTCGPr31c~#XWvJt3n;BYenU;cPoP`=r(<{{a*Xi!{ahDJlwYs9#dHJrJ|l;3-? zvFtT28rsRl^v&C#<>kce>Cx<=?Oc9q@>{WJf>vL872pBgs$$vBg#2^SJ1~2vOnc0pf&UB`w zwQ-S50|6;I^??Epr#{fNL*?Y_+J`&epTPaWTuGh^%AB7DDyX4;G$?%#u8hyB$t$6P z8f1iRT!IvpbC|G%3Q9Tq1YpaR(SEjK9OW0b0xBpyBt#XIJ{0JOgY7V%E#v`XO!)-z zH1CV6oyfc$|GBZB*E+yRJF=(>&nodzHQY8hBsr)B=VwNHZ5|H5V+Nc_MJ)!j(lW)o z>w)DbJpJT4Z(@xhek^GeN&aU!GggmARC`Z3Z3=p%TM!60CG&XZ?TkV9YKR#fbZ z13efX<1xF`Y+vPm)=Nli{OJ02eZb9T8jqqovcBrXs12YT5Ao(FeNE=MMVVRHqRbSS z{aWk<>%DMY+(qQcSavls!PXeA`L-9Hpi@jOT)do&8mSyhjnH=mjS}dAQ38Kbxk^mv z6D+gy_&9#Ru8BDmZ)fqdARrng^g>KthY7R0y>}Ieo!om10z6#A+J^_@cs5!NX+o_I zy04`p)-%bySzy85;S)UZd=-8^q#5N5Du$*JE{IHF4_2ZD!B?YJqOrbWg5K}}OBq2#$_{~{5FY(W-w>!rYM37hb;_({ znb{cKhP+XkIqD@s!wMX(_+JXHh;66x)fv>QQ=Ji6Soq)IX1!BVyJ!2V;SY5U&_gsJ zjNN&a7d#aP1qbmnJ9gqoO~lJziv9H)isxhLfJQzx+~iy9=lj7;pdLONL#|<@Z1a9x zuv)|#1M3T;xVMTJqrv)O09}Z_&^DibcyVS(AD&l5b=>Cjm+=~rKE1*{q&D~ii#GVm z5p3}PUVYtwLcrTlaJ1lIgI|egZtzE$U>lb}K~q>yxWQNM;v0PBRPkD|r)P(uYUj?7krGxdhqySe2zqX2Wt=a^;^&~v$NKo86OJeAl*hXU}1Yi z9`ltsDcqLW*Rzz1?&}8^aS5~Q5BBwg+}E=l9Nx`zz%W1>mcU+dXyzk~5)RS6K3aKa zegny9E%x>Oco!_>&>nXU5tlQpKh9_JSbvmLvM{y{^WX{Q)wBFXB7)?mdp^Gonm}Aa z9nATY__J#ls^Yo)Dri=BiBSv0_?4Y(x4 zutMR@6Ab^1Jqedbp{Wu2uAq4hJ!Kw~aS0Hvu`9X2noS_smBjj*MmDkFMY}#4CF+(r z^}H^wnV)+*EAKwTR0HIN?j*&ev$S{sy7>*8e4U3GX)RfdkQ{q>$)io!M`jT<5M;Q7E zmap_dxDdzKfA+9q4l^dMZn8%eKPJcy-bJy;6>~z6+kv$IY>GXh_>+Ph=A9IKQZZ9- zc^^Lc;JdIazy~YaU*`hRJm^4>Et$~hy&Qrfv5M0v0HCycnV+tYJa1;T#Zqa2Q85vy z)g*>^+BHSAoAZnzKyY@ByV~)RC{+s&zLRKf7vZ=p4pHVqP*O#00d*&f0^weEkzzt& zk~J+V2WCH$Q#ixowRIZV8XA!VA&IPU+PjQOOqf(-Wzz~%m`U7P7?R-At;)Y)%i5=tXQ!r_~wVg_Ym~r#$*=gDKOrS%`7s z(TXmW+3A@?>wQK-p;2fcp5Rm5k=ZF87bSRj`f#9_aDs9o9YkPx%2D_&G;QX0c_%FB z)sSszLYV&dZ_))I;+nXQr^(X!IQtEIHo*rVEXAvehBdp4HsbL@i|6#0Gw9CFffvWi z&Km(-8*n$Zc`6@>kF5qcup}%!{=^~%RpEH{Emu{32yzMSGRr``OzvSXxmB26=kpN` zD-S4U49+gr@(H*3WPU+2kKn@|!4mL_J^KB!ww=uSnvP{w$rGHI~ca!y;&PLSa-(#lrCWB_C(r2CyFxU1>EcZsT-mHel zJVPMs&E*Wn-bFPz&1)~_l>q~sk0G}uzV&963Sfl)tfNqo^(O5MgJ+Mz_s2GFA@P~y z=;FWsCIGEB*CSGWql~MwXx^!HcG1QJsTO;=~b68TWqUlu7XXq;rWv3pUZ?4 znyix=2UbTt+On56T$uiBDR03Atv0vdhNXJI=V7tto#e2Cl_|!@pBvp+2U1Cg9yF!!H-k3>hZ(x$z+`$7ug?@3~O8dfdVF=yzm<@5l&$X~szYzm!>f$htQJ$meHd-3)@! z1l&yesMr%&3X65u0MOhz5bLgGFt#>a+7nph|2~F`dB0(&V%_%uDtLS|WZmiakvlTU ztb_jZmt@^s7S%Vpm_XLu^H#EM@+1Gcb@UoZAImYD8tWW(JuhbCLk|9et|CWQkjbAz zb9@G5eIDoF;=;Z-a6bTyMLx%flip5O58i7A2M_G^wM58dU#J(D?5}10oO=Fk*utktE`GTfZ1s%#h;tj4i@(W%Vr%OxeHQjMwMPi=TWLLa$5w>`i3KwIdo<|eFfvgTk8PuaA&}(4c{6uYJ5FauKeD{io9fUSz}b}CtsGAyjsa?G};4^ zZn-bgRq_)#tqpieoTy|h&TSx5nc*)yqdJNVa@B?cAFf{V3->j6)#Y5gxZoY|da4+$xnfB#cALNyMP@!ofHJ1| ztprYn8Y$%Z@o6qvVXJew#za$Di=r;lFcG%+O|^OILG!RxKqNvNQ)Y8=30m-IKIkN> zwf)Tnh(!H!VAai(IO^esLs^OwN%@Uox6HKzB0=rc0r}W0Rk3rvqo zG%S+%H%P>bg@?EX^S1%Nr;q5FMA?IK3oto*?*(b3t}7_J?R}=>3KQNERJ5oX3i2{w z26Zdu@%&MoaN$Gxot(><(s(F!*mh0e}|?4yrk`y&D;0Lboyx$!!TC7={5Tvp?kCWGE$Ik&bbZn=_AyX_RPLE zE5t((HqQ^BPxEsCp0ft(0H6OBSPSFhr?q%$)7KK3*FWM@FJi9Y0^ZNf`JdnbQ7wA0 zl(wecg2iI?BWl&FeHfxjm{Yiqz9<_bFuiBjF~d&SHe>xW4P}N!`IpMA74J4{v<)q& zj(tkS45^GYfZm1hcp_X`N=9$9PVmDQ1Ja@3n=n$S9q=Dl4AvJOYhr!b1<7$h*T)9o z(Yg(7cbxmgmoU7Yi?31nStIcW)N94!bOLDNt%BxJcwaezYKOSQ>Cwh;Sv&7nyAHEL zwGAy*+XAvHFIT~MN44U)T1=$tK|ueSr1pA}bY^#`17m6IA0y_>Zc)d@(jpmWc71$K zB7!!z7PtjY;EsT+`%AUgaN@5Y4%k$YwB%x3o+guT+M7;BrdRab;3G(h9 zqnv7l*3{W8aTS+&6)*n84zSTHfdBU)VDPyA4?YB(I=eMnF}V#(UfySAlJ;E~0~zc5 z>%ozN5rF&o7Dqs~B3Fw0+%3?`VH?Y3*8dXjmD!3pte()_&EDx*C$YV(C;cc7U;%l07Ful zYMaj9m}5q~vfq5};W>Dn>&_`+8vFVHrGHzE2HiN%_@D+pS{B3MXRvb3-kA6}imez2 zoN-}qdt)Wyu)}f_jqdW}Q!JwVIB|9GL}Bxke;%dV<2ZKo-{W413|uF3MkCoW=Rw~L z)!+YoAJ|K1tvHY8#d$WQ=Z_%P`k5P*nWE#o4o~M$NSs*(S9-1sNRKP2>gky`ViX|D zRMR{tPmOfNyg>kcdg2z4fJdt1T(X3_N>5x{M5~eP`~pUj(kqb;idR(g7YDvL&8>;N zb&+>vA{@;D0i!Xc?g}0_7t_gr8ssmij;3e|+3YlgI<>n%QxyU;oc@xXSiYp^;b>QU(6-l@GnfE}};q=h63I3G8*arX_ zGXYs0oHjmsgQXS;MYc6~Mc#i#&rl-Zb9uV_War;tpqnWl%m_Nt125gU44|s~V zf3vvpVJtNm78n#eiNy)V)j!BE_PH`9;o-^!n($*(k@-MC?=Vqb&on-uH1vTV>^&?~pYAAs6i4Y3!XSvJz0d@fX ztbvVK^8jpC7OhuixezZzWmq-- ztz1+p8B~|F3tdGyQ1=oXs7nW_0ZZ$^5c6!)ho#tc)ZYr@ZmU+fXnyusCylE?WJC7UyVK`HXp~LdKV9!=&U; z46E^iVO6NLY<(c;5YCrV)7sS+bZYChg-{r>vEjr4dCD(7J{rS}27q~L%#kNKRmeck zlYzbs)>how8(Amk@bMdJmUs;%M`m8cWCRJtdlC#E{Ir@mYs5G2+)Ul5LiPRp#7!$5u z0Wt#Lw4e*a8=9$g0FBfLUAD209;fdx0N6(UnstLd*cKs`8PP^;A@MFX+K6IeZ4^Ww zUAA#MOS4CjH)D^%HEm>AZS01}O*27l+{d7&$UgcVkC09u0dRAku7LB~*hLuA#ytXL z1m3`)3ndxb*a1{AC+aOstK9=%dRvHn22% z0(mp`Nw}ts46BVD@Zdw6aMi|620cag(eHSKbovN@?*P#iaDE%N6UMZ0hX5G?n`gSd z%}N*0z&lZJ)kb=pz9|5(jr=ujqz{isB9$4@#xCjY(8m0C^99jImu+lhY4$Yo;=`G6 zO&b|j8@IuOZ(+h!8(SIl6xm0=;}O#7BLM8^=?XZ%javz0+IYVJ8G#1}=;D2C_TwI) zks6_^Hqzttodp2f$Y0Y&`f&J%RAxjQ2l&f=L@}{`6ht3gw(%a8X3rrnK7ohm;OkmXV@JgE`7 zF|s@b<)HbZ5bo{@fUfyY5IiD_$0%AZora9$=uw5#NDsjx%cW;nP9Gy3Zj1bZvlU?+ zj55}~A14QK=x{A5 z)Gsi)F$x`FIemSweh=1ltqe$J@s>k!JwtKT-xb3k=X&(heQugR9pAU^bL6|v z?Nh|F4axMV`2b&6`4tPQe?fIGc&u#Jy#P*=0KnZpxQU&&`%eU^9iJ{Q=^Smn-XPfM z@v;0dR~8~pZMR>%smf#S*+(x>$&@Ogo7nlL;2k0o>(k|>sN|PSCAeong}|8WO(4ms zT2u?O&wlL!wM+v5uYABw?EJW2OP{Hw47I#HXbP^Vh&rJ9Ism(pqD1vhP(4g5(j)vH zRWClYl;3>TIQyv!Aa+KG(M{}pps@Mx2%C?W3Ifd53$sSJ!mR7(!i-hU+O9qkZ$5#T z8p#n2NZa}XBFA=VO(}+IBMvri!1lvjqtKxBHUZSp7jK&^Gr1}`?u5d{9XgX)Gs{^YuIpQIg4_FkBaI0jr=az z-q*`+Y(fL3H&6rMT`@d8BJ~wCHU*o+Wal$_ca5ASNRBHo>}e&NLdV>4Jo7RM8(q|o zx2Y#_c>z9|z7C)>phAXLtVkWZSV)vhqMf?X-v(kryGDb-QUtfkO_e>uy#`?Ix^CXFv};OGf@%TN2( zZMd?vYGVpy={97Z=SjfK81c5>!Bu<)arOU40Vr=2Y5>Y&r+ zfk5ywC+z`>_L~d^iu4<72$bJc7ALQ17(es0ha*d-2DH8*ISVM1?Bp?DUiWA_uQA5_ z7wBRb8ULcXcue<1igvLf?nOE}+4-AN0xyNn3+?PR7sF@f`}isTxerwkXM`WsD80%D0V55t(1{DxDEkr`xyayg=l z3|E`CQ$Lgto$lDtNb{eP!$2wh>hxq zL6hhiYuYRZ==;=sN%FxSw8O{lc^*)gci)CPPxfxgP}VdSB}~$sdA&tojYXzY-%bo#29kMTq~W!7Ox+z8Xda_y)P*nYc-G^HOy1XD7Y@hRZ;H z=hDQM6P>4FG5uk1%KvenFeOn9LF+G#D=UAQHLazxKj;ZQk00mW1su9KI?2vYUBZ~V zz)JE$r*+HsmRw2HFi`s%pF)_a96B^j>7&q4-;)2i&}8Sg_^A|}vB`)tHL?;^mn1|F zC82qI)y{1ib9C7$HL}W2@1w`TY1kywadalbwA9GzAU{3KKdk({j_$VlZ`e|=Nn3vA z??L+RF)Dcjd#$zL2wbXOiYp*84_(gCaF!wP9Ho5`p{b8d!ji2CXXEo2IE0z|E@3e4 z6#A5MK_k9AeN2JJ11ya%qy=?K8&GQjy-lFfvCGWGqWbLegrzzAr%=wf3? zZC>JE*j~D7FFiP{1OVI1U(;Ut@a=CuBiehC1+cv+CTeev05-wUUIh*@!1m7J7m9AU z8M_m%X)nV@Sq6`rW`a?cF=%g8WCa8_;8MI9#{U)a)0KBpp0_V4JEg?-C*Qo$TK=TDRSj2g)*Q_s7#K3GuxTi5g zF{7p1v~!B3neXT5(?(_sV{-9wAARP{5nQ7xXCBR~n<+Qo05>pytt1)KRdBgL*$l>c zcwpD2PsWHNvhK8a}WKKQ5iZ6>U5Yl6sHf zUD%@Y7bpYxsJ_)eA2!2u(`(@3gIlNy zXN7PL)o_ys{-Pt63B^Wim7lXu046^Sy}EF>f+j2-_!y~?m51Zo!c9PYuOtwOFuFDp27j~obPBY8M*r7Sjay~kqLRU5q~rB~JWzDQmHv+&A$5p8XASg!mr?(> zS>@0*`oE`H&UaXjk{+gAP^N;mKnwWGRIG;2G<+?5LBrPxinc~!!|zeSbk%Tq3LD;b z^=u99#LZQs)~iq}m=<&RWMC$dfswLkipanyTsMOYy*%6)8OClT85rq!y&?l$k%1mV z2Kq>bOa;lXRpro)k>Lc(QPRV-rpi>%f@%SOnTmVhGi10QzJLtd1Vy8)kPNLVn6Ahm z&xOfw8EOSzXAYkX%p@`}Ql?)K85o6E9^m3&9d3*aBef(0BOR|_WS}cD&|}CzAIUIU zPBLs)Ido%WIL>mE^f1lNG8Hs6TfkqYq7gnrhK*69AKoOW4N(kEj8!mQkwKmdlVRak zNQMsP@X5eTA_F7$H=uZu;d3k|%_t|m2QJPt;l{}DcPPm980mNeA_HBKfgVE!`bdVa zm5~fxDu-^24BucmN_v=eXDZgiUBDmaGS+(l2b;h&1NF_*JFl7PMe)J-evJyCfC1gx zwCl~or^QH$@u!!tK>7=`&zSq!gUAq>{7uW`ujDA61xCCp`9%dwb`d96!QcCr>Fngo z5|9~AVPPHuEDV;e-~}`j!a;-btCTeB$krYed7WeX*@-eRoZipodR3*d1-$%Q&Zcjb z&-8{E9$SnZ;EN*`?AaVshN&Yur=M6))W+A360LE&fhH0Aqhx(~;@R zG)7M6w&&4h+V^k>8!00YtJb1lH8Qkfn&%;KRD@W_2l1Obo_VMgE7WiOGGrRN2USIy zXE!}3+EQqVX`v5M5^xS}LUHE3QC>Wd2HHHH!~o@V~ARp;F54i@rQZ=hqG9?61?eQVIIa9gy02)P#7^&VQJxrZ~jHC`dcw* z#e4mLOO4QFVTb79L~KA|ffAvkKpIQhNAQ|orh;a&{0jzUU_YxVIe?Sq9WzABC4FfLVdC#Zg`kPGWNa4-0LWuC_ed>iTyJ1U4uEc1V&3u zOJipIlWgt38#7~+%e6l&m+Pd*ayjlzOF0ih$@>z@-3)^vk`b^;}p~eVY(r~R+*&0rW=U_5RTjUkEV!j?~XSZpU zZ+LAkp!ev@-%NcuQ>`gIbd>BI!npU1(fv`P(V-#a6Wi|z^*~_3u2-{tt8{s?#yJCWkGf!9`?lp*;`ZD99_C?rl#T4Zhwy1*iwMy*3RSIm-ip|uQ z_&lp(ZMcK8f@KHGF2wvv)JtAKB?bNPV(p>NX`aMATZU8ZlZj;KLrkG@AQ!7W2xN3a zQ}ULy(=5h(BrFG#!$Jp5XPjpbg4;nMgmA_#hs!_n+)ADQp)sr(d}BqD3?6flV2AZW zaxNAOiTzkHIGX&S60I6HKgm%$!~ucpCPOj`BaZm+F0kO?pTUtwLk7q5@EIJ>`Edb` zJi3Lg8C-)SUzn-GD8o-Jl%V(t-<#3b;t+vpFo2(`5U)xOT%ZR*YwK7;A~*UK>`6a} zn|=2HAyWt*n;8ViN>eiK8>k)+xBh%Wn8#+!!#0L|mrzmN?~oAP!7$?Fz}UewQ4Hq7 z?2VWv!Q$krJOB_(6^(xki&efy7D;v3|K>`r!K@LV!hl`#lM<|T4Dm164t91%fhgm6 zwGYA3|I>M9WM3*HI~Uj4`S6n}=_M>93HwiiWk|3b5OLUTgcVZ;?8Aa(h=04ssCvEY zw_1)hJKuxF?-=5I9i7#mYVS|*nXrEI`E99Q(bF6j{>P7+dk73A6jZ$hdO641hnx3U zLiV{WJ+LZl!AU(&j-Y6T%i7J!sZq2d${e8@MJt2e7P@_U-O6K5r;j<~=dFQK&R7*u z?GTt03Xl=zWy4f^RU+B>RW(m4W?Xh}$0O=jx-A1vA76)(rWLcpXNO%9@)yjTV)DoOi(Olib+U;k0y`7q!sMf+2~!@GdR#{2Yet+ z;jjxDoM~Jhyv;hZV{V}dmk6iBHv^E8YM%zB-i|E(1;Zy^dBj0IQyFVg_2S$dpH=4> z(}|J^sodGgC)^gC7uG-{2yw{t`-Izss7e!6jN@Lj06PY2@-}NKx%ZQ3@9e`SV^mhS z*YF=mG&ME%^6+0{E2<*^b(?bGQ4+!N(2BsDFh+SR*H7etXni-1xP^ODw-Io3U~@Kz zZRz%^&?16NxCpR$C*9@U6#18T1qsc7sy43?!k_>|d!=4TtT(tC*fZR{`@&G zozR*erguSc^n}GNZ$NPqDDLEfxdHH`(N~+5V=Ed>WN=OcA6f_>r!eEl$rl;iWTcx@ zR`dB~OeB+ulhS0Gi!%UVankLyR9z#RQl)YTsK2C=DWT}-ZczL+|B;dg@Bi+c|(ZnknbRT z*xe*NU0&cseBE85awSYVMC}KVH%fgOdYgR#^C1vt6jh@_7RRhBUmh>$igl!9e)V-M z)ZCMhudw=q?=uwy)&E{z^`F0<`N?%m-;qa&qI#3hbi)QePJPE6qIn1ro&{iDg?ghF zm>pzZBaUGg95u;@{qD>L@dHmG8)F#M9TY%+|-;`tlmjp+Eb!bZIGqK$afqDJh>YecOYQG=RIBPa@+o>&2& zX+*6b=TVJOjerp#;VIGxrsp@JKCcm9uP^o0|0Y!bShN^mQShL#Nu8Nn`1pCO48M8jyHaPX-1nBdx8^?k z`#2RZBRhBqw0G`aQBD=h2r$X<69K8Qs`uVH3IWdh!1;KA&BOOx58?28Zgb`C=N<%R zt#94=*5U6WZufJaW$<-7?;l?KOAP)ggDa8`K8E%WZ&g$eqplg=r@%u9B<=l3Z8p54!N0j}-CEywQb9^Rvj-OM;V z{BZjAbSu84Isw%@Fqogig-UG zjsoMBW8Nnd!{?Q>Pf6>U^b$2Djfl2Mlz#w4rk;Dg?F7JEU!G`ouiM;7f&u$i?B574 zD0kCQh_!abCWP9q9_A#pzuk6~%7>@?)=`whNs4uy;&bZka`&okW^JjoA8Y-D{Z#A6 z+&e2#;#T*La+rp^o!$7>-$^7MUX52guz7ed21zy2@Kfd9QHh^Q_YTVVlR%aOD0k2A zLv|;$V^yZcmfzJfbM!Nb#C_d-M$>@4y2b~s2dF^U{$hnz29QZW&Ytx6a96@R{0jbP z)TPcsj;VB;s$fr$YF}Rc$+tTH`1LO2TJ~h?YrW0Y-)yK(cn3L863zs!jilz6?JP@; zUjB~M=<4Kwe<(jPQ{GkPj4zvLn@){YJCod3V47AAAOolCdK87meGEUjyKp<6gpcZf z&u@Z)*f>_Y%~h!VhUBOImKA;HYr^1IYpeb3?SBBh5^NpXtDPsm*>FQ5mAN5f%?Y2{ z6;3O*k*E#tVX`)@Ou6;jOA_w{dR>>p;-x6WTQR|$C!Ax>lgo~@4ZAIK&QH*BmwWGA z_~x%Kye2hP>x|#^Tkmf4>mWI}wX{_@r z$egkWkeK&XGA7fbfAZ^*%E4ov+Z&A`o(0729z54e+JLG%je}T@QWdEklR_?yN z4nwJA_vt#QGb#fAW5(te2RkFzG@`W z&weg7UW(!>+eQcL+78eDT57xu!RofZM)1qCcnOXqz`PVC+&g4F_1oRpNtMlzw7E~t zfSD(p%Vz&H_q%8s`{$Us#Osqz6xh}lQQ#zGK~9t0@8T5$pfE!bA?(lG%TS6>%0Ey+ zWF9{S8O1zafr4^>_%4-3*(vuamZoWM`ZxDIL?AyhC2#OE{is#&*CL$zKK!2PSL}e< z)14;u)l3~Xe)ZJ<%ig>5HD?| zw&m+*Wd@@rByrC`Hrs*NirT7G1gov~gI28p6?4H1cnxSZf|uBO+2f=dK_P-Q=l6Tp z-g5~c{7=t${-@{p^Jr%8wb$ic?`^&ByKdajq-qX5kCtqHvw}!Q38&9crxebzOgBlMJa;*W5~Y>WOfIfhfK2t|y$B$dU&qf9fwjX4&eT>7;gZ$0f~A$UggFy*<@(%XTzswl2&caF~lnCxt^H*A62q04@W*X|A z4>>X(b0+p7$FdAWUHjpjCO@8ltlg@uZ8IbiJHN@ES;LSb5-k;RP35MKAi?56n3Cqg zbXh)1yE<^JZn0_*PI{sEBmVhVPs5MCMdouEcrd=m``Sh<593S;)iy^*H&MPz3xzC(x7F7k+^q$t<9k#K z7iX|u=ood;iTrKY#L9$$C*_ch0v&j-n=~n1UY;Px@wBQyLIZ*EHcOpv;hDpd8bLR|Z?t2fC`}Vs4o1h^XX5T%adJG=(C~WNn z;UaUW$8D^+v|u@EMY+gDB>e$u`Rq3dJ&!yPE1cZcqxYtyI7$%uQ}j;{K&Op|Arza3 z>1BGuTHr+V90C`>w!##1TDq}0u6NcGDJzEKudR1BOF{$wiry&$8;IUHPadFm3h>Zm zY&NgRfYb(eD51qUq@}`|`UgV{5pgYWEi&3_6PfciV;*ApRHPZOrj)+8U(|&JW0l(3 z7A;czP+G9tD-yG~&@9O@FV8AIy(Al&n{~KRM|ko|RmFWGKSn_0#rvMWqm(LLiq^eg zJf~EL7Tk{hD2Y~Tgc_Of+8RO@XCF|7XlvgRwLx8GD-D_eLRO4WZgs>ahfd=Istzg( zQ`Ypm+RdlfJQRm&#r0;fAt{D@hZ^xJHB#-UkyYhbONPm6F$C-X~gE0gEqY=8BMeaH--3Ga$Oz$Xwy=^sQ6C1E;~UXs}@u zxkvO!ldVWPkx*A;D-zC7YRk7F$(Aafd1Xsg5A{H8h6tcjOXQQ^@;j)d1x}H&)JwLE zoyM|C#v~p#u~(N-cgXfJx*el3o~k|SF+TyY?Xo_YZ6H?XN| zR-uqmjVFt4BKC*&Jqq18@<5gJKE(VKli*iW4t*!k6UJ&?`ec*t$>pfRWt+P zpU_01(*8-iG2q{nZj8JEAH^A|q&>I(D?qqAZg0VV(QDJ)zD)d0_niQ3Vi z!h;r|Fr66XZ>ab5*gM)2|6JVL;I_rrm@a*1myVxvo>w8mI)2;DMF-y|*y=kl2 zPv3cFNrt}Hy_#M1oncOuDcRuM z^}-!=*N-TnQ-hlWQmi|$o+KfSFk7`uE6B{HRkmg!=k^p?IA4hsOkxB zam;5}&uwx5R1YFA%2#>v6apNVANoHMTrumRJ5$W&2k|%9zxcdo*yV!V1zVy=o2jRl zx=XaRr5Spg$JOC|ZSg5!;fR@9u%p;WEi6r6{JvT0mI6j<^mV%==u6i(%kh%HKj0T} zx6IVto6@m33`gor%inWdw#zkQmYZ>*{q=(i#Kqwyun0xfbJ%Lavb5rHAmW~o`vP-X z4)79kH(-lfRi=UCud1?)%JhNd(f&M8jsX^I7|AHu7MhXOzsz+(qx+ar@9Q^xMJN*W zi|_+OU*a&OAsovN?)EKF;SVmQPcuEeEQo>Vm)laO* z&9BhvyG?LO`Htb!xMiGEUU62;f4^jo(XRL87;mnkY6b3p5ib9d+RD_)KehXaf&kJuYYT>#g_$1qzV>w#}Eqx9%o^tld8dNs>e5@DS*E!#aP#fXMIzS z(5C#$=$-q=%UH)R*02Qa2()qptlrBI82v*nj1$hWvVY*eOQG;V%XAhP%>rp;MTA@P z!zc)#irJZz&@)sK>vQp^pk>!%VV$qzGfM!5XD;G?3M;HH!GDJq^#73DIg76P>#h3+ z>)jJu`)~#j2U@*v@S=;LtEq@;pl^9V%XD^IIgVAhhK=7c(Gb3Pv@kTDEOywD<2H|y^=&UJUicwvN z_L1XdBKUe7pa`NfTbr%Np0=syq8qn(T4y&sb5U$!^)c3)8GF*hg>bF_<`&nGJ3$T@f_=#QMq%AX?YB9GwF89y=jrR#lz7G<*P*HJap6H296 zpW$c$FvyokviYI;B|L9wZ;r?h=3kyv@6S5#9rCcB{wu=P9o3Iub`@at_M6C&KwORl=^k zIG1E`62Z3nwao9)KoewXUYF6ir)$~dAwwG7N0;h*)BT^z(E}ewC=biZKWQwtmX&|p zSRPqc{!wH3r_0JeY%Gsrbqp+x$ccnYBC|353-#s3bcYbbEX{%f&NEB%IY9s{`^TE4 zMZoaNmVzyft-&q+6HMuGxRl|-6zIcty)VuGY4kHy>jnPzO??f%py<&B+l(%27$gf4Y)`d*E z5{oLZG|C47wvDoU(3jfyfo&Kf5d@`N1NkV*q3$=BL6j+ihD~fm2)7@9<{RzJ9uHc% zuG<=S6{?Z3DCEmM-fSdO=pXmGwi@zi4>HY6W^jX*n#D4z{@^kqLJKZolHedz+iTt? zIa}&Zi~hJtrEFMscFx5`lTrZ7!a>daf!zkVpcznuej#!w;^2EKkFc^f*L`X8rwyzEZv|#|?Uw$+*3D^dS1(XaWcAO=zy)x=KPHrR#yifRWq=ar zaJ)9&3hws1=WleUK=pQ6&w|>)e*b7^tXGP#%W{7MN-@K|WCuZ}*-VK-<{eIErGLae z$~R`dW4z^P2;s*xE%0~n93nseLOG>0H0U++iXTI(2e+^T^WMQ6b~&zJ=*An3X#PYH zr*rgGUb}&rxAwd)n9GKsS4p6l7hIW>ZuIf;(#%}fWmZi4p%b|V z&*sc`OqV&W+Phg>!qLW<$v&aNl*p<4jDD6@n@4yz*UZPKf*r^TNWeY#RbbFu>XrU* zpwG5xJ4Wpy{TG&8izJrzHr8V%!A-}?}yY=>O0RIPg8)4F&+&mc?Y1z2&@!H zEYFF2>xqQIHb_&e^R^mO0cbZg^Y0T&a2)`b8!Sel=^^96 z%d}l3Muy93T(1{a^%|Gez&aqRl7T@=zjaCiFyZ1XpixogOzMy1`~=0?jdKZ{p3`F3 z4GKmW`KEuW_!FiT+yS#e27zLXHU1N^5IZ!p7nTQgPF1#11=q=AorX4?x)2KRy^R%t zX};I-caX2b^k)Zm`?^iPr$EJzLo>5NT=JN1?S#ab^RnPo921%``u&1!Vs9q+6;r&m z*^3@_y%&9H>!)UIwhN2Hvy9s8=wtiq_gt8#yVKIJNd)E`RN(GMfo~Xue1+iyZv)g2 zKbstbXE$vKsL=jj(+1Kvkp6-7EjeU;?t|AybwdA1ahHBeewuG8xqD`YcXRF8 zW@_P}0Q8J6qi|3oezoB9sH)+X1^8R61^{5ewZ*u#q==4vkfeYMaOsf$GcV0VqF$8Z6CCPzDv83-B2i9Dd ze^VkOliSG1PkrEsd2|gcT~293z49BqcL2|UyZWu$Py|iNBAfOD)p;#46tqM{Re(x> zJ?`(I$x`*X0(DVQ$NgKIUtu%@$ElO@0g1NaRQxqJ_7VY0HsLQvDe5yDVOsEbyx2hq zs29;Gw8JoPzzz#l?c(@@u(NH7jb(K-#rzji7k{6x^E?zCnI!`TvTS`}Yp3eG?M7v_ zNwmXjUn1z~GUOM+V)Thp!g#Q(YFGW6k|6j&K}-hqMw^TL0l zMA%qDghgHiz37ABV$7ZdZQDcH5pCsYTZALf@xpmM+7dU&asZ+h^jpgSL?j)brG0(l zW;EgQox5zw8+gEqg0l-+>T7om_g$xNd|W=A0n-f4k80s9YR4JU|HvA^#Qv&c`sVaT zDIaY^v1;j z>$N>D-!L(<#3;4PL9t0u8ZZ5o8DM65v9`L3tq&4@%_g(fdK@{+$KYQ%SRR1b+U@m?^_bTJZku0Hd|8dry`F)?neVeNFoWQE)eM7Y5}V35qsST?gMTe_@x_elwh!8rCU zhc;6>3BkVJ1dfsMnHAWv3>l&)iBS0Gn^nEuV-ZI99jQ*Cq9!wrwTn-!f%!QVIx4YA z&_9vJVg!QC$GwYXX>wNr;@(tvT&(5BLj342-R=B_YQSbwp1oH zHN_OMFj$fzzM?wv%L8+rbrd};ZR1F%Jg#~FlrU*atsFlHE4ExgiJ zg&0+6XI(uqfWz|MBt`x*gIv2A2WuKT&1M;84p4CG z&WDw!_rYiU5!tFQ-G9E(8JgGK+Be3)_63{^GX);0CB&!oO+L20oJF zNkgM>Bk1zm?c|{u!annx(0SN+2vZZQ?6W=2&d!Pq0qL;?Lcu^uBu>?VyfzH5u5pd} zylx;$_t5OF1KESv9xnFP|*r>~?le7va^0AMVp-)p`3c$#Ge= z|K}LXE~tHj4S>NE}=y#=7GBCzhG|SZR>x;cTt0ezR%@*SA3VZ#CO4- zrfg6Qz6yMokpIKbf>df6G5 zwjxTE&23}Z(TC#eS8e;XHr>3N3>GfU#NQNi=^FfHCk?)-fYk`{=svs)v(sNT`Uni7^Q z@?};&JVY(PRYI7rS%~>zEpQR)GB2-oEC5NXBc}_bflKhn=vezXuuLytdQ!Yj6IFbH z7Tg6cP}16GolATOGF327^)&K68LGsN_U&kFN0Whf0LpYMuR_I8k$qN8AM!{C%#sD> ztbC)STE=iyE-;4x%&O+HyuV0oB2~l)`zPZ=Hp5Ee>^f%UM^0yv5;uc%%$Jjx&)uT$Fx9%o^N zAjFYpEy!zQ=b&2l>zo$AvWXP6e3Yz~o9Sq_Cm9e1S-A8p#pykylYGc%Yohlac_k`x{ijJ`5nf`$m@MGv8Bt8uI zSK4-i#M!vB4pulkmcZkDl$IfTY5oqgvIcTjqmrUe+x3|@jmN6Q08b@#Fe#RhgTn>z zifvZEVgcftScjAp;M4*yu$}#dVH=h?b9^t)5UGKtJK8J}p6I~H=EqLbwJdlr+6Ip& z!WSjk<6!iDMy>DJ>Yxq+6geHZn2*@s@L?V0JJ|_ymRlJB2>DqcB_lPq0R!#~eoEX4 z;`N*176qqqJ@(}_U=-Ibf^&HdDYvFX$P~JhxfAHuU+J;wj;7b4Xrh2|(+UCH)9Exp z0GAEOCBrguZDlU0I`S~1n(`P{GZ}Vzi0P%(JWyOB*4A)<1)C%RAZr+t;ylK+${2yG zx~(sY@uAJ=&BMmsuEl9E7O>(0s7Nf`U)3!(7P;|2Jvk!|ql>V_1o=)>{@sH7j~IiS zwjf82MAH8A6?8{n{;%Wy^d}k5!1%Y$Y@kq>v&I>%tzVBZQjKY_%-8L%r&A9r_GEsn zS|{sXkL0t=n1ji(=j*jkrrbPo4>nsPT?-WAFXY==_%d>puM5{RAjf~o^`X9cg>O~s zxE1X-T6U!WlUS@rZkd7N^{7#6I!2^$b|BkG-_5k*W3oR1`Xyc1wKJm&a4 zM%yxh`%$+Re3qrk*Xhj?rhqxlTG3tQhy8|womsh{V2gPJMy$ny^L83 z2-qTleCg3Y_VpLH;>IYV3?If)3o3btVu=@Yu_Zni9vl_I4f7X zot{J8(87`&?Ka+P5HD%xKOa4lpr6=V@rKPi*bU9T%FQUv5%$%)_ch)|CUhWD*dR4Z zevO)V3WsfZI{r4;JCn;Bx-5+&gUsE4Q-_$9`7lySIMMcf>=onh4|D+Ute21-J2h7_ zg^-|#r2O_wXg!&vzw@P~Wi@RwuQ?=paBxh({r(U(D5;NGDrDa)3V0=rwG2>y%@ z`bNlhiffs~sC;Qq?+=kZ=`l`nG=1JlsgAW zp0fb{mVPV3@@@lXG=!#nt@q_DI!0Q_#sna$d-ElSYp^=NgGBSLXHgH>W4(EQ3z4zI zcV1}9r-)oGnxyw1=bNbaAMZO`@6Yy~srQfe<>~z=_;U6BG1#KkpW{1D?;q=64*C|oFE4xjAnI`49rHi`%2 zn?van13P>tC{{o;cq*>^1Dm@h;lF>vCID(@oy)eX$mfx*-Tt zycxNN<_q<&z=z%fzR1;7Qx5Y5Qm_G1-9==EgzaI4_HH2OS>Nwg{wMuVa|v0B>N#f! z3ShC_O2UYdJVWsujbkx!CgeWhvVJ}o>x4PqX505Gg&0^Re+N(-ud8M--r&MYKT$)5 zf&}$&zZUl{qptIz+9Q7?3^AamC)Kj?aB5kfidy6n6yPIXlPjsFV^EX+9MO>K`;)fh zEPPb27*-#Sy|{fBQEXbcJ^{S+z-E9J>)<*vsYs!XPj{|h6Enykzo+o2Qvt{D*?Tz9 zA3q4t|DM!T0=TS0w&64ySD(Uw0<(4CrtKf!Dx@WS;LhbHO<`1g^&L369|Jx1AICe}ZS_1oO9 z1Ou&=hRRnCK zvF^YX;CieBz?BTohCP7iBa|D^-v+jJVER4%j%w{XCC)d@v-k`*Ke)9$hfuI{2i;CZpcr#>YX&Z~5_MzUk)N= z4R48*1vY^ekx{Hc#`}a35(6?B69aOUop&Ph{u4Wc2I_q~-x+qk-O#9!7m&}M-`9d1 z3B+1q{0p-6>kb;CEvTOV66`f$=E(Wb7g&9H9@f)~nl+0(d0|66mSUQm!jRWy$ggeb zcG{}gNfog%UNoycd3z%>p|!-m6aB*`6)z6bf>-T=6vmPxUvk(`ir#4s>K;`L6U9gL z0DcjpF^hoV_u*@(y0DwSL2~Ks>T|S?K&vUGwBhOhVq*sr}e8{EP&!$>5-m70m-#NA6 zV=jfo#%tCr@Y`XV$|9LU`4Z{#(Lv*QW_XTGo3b&L?Qo(8G4+#3zsk{SO%RV7V(fF@ zGswC0KD43qvDCf0LB%G9>D5Jm=QP4oj2TrtKf}6O{6lw#G1WU8Ht6nf4%TY0Rl!=g z9^5ShoEegyVKL4Qi~+mb;r(xf3$?r5qXna^F-T<5QTiUj22Q6~8b*)bqdE~@$^`z~ z)1CqpXu;#?hX^^sx6zkG-8QamSFgCz5GRfWQXpIpq&u~T8#wp^RJ#IaHtv5z@3(_YCq#4F-{2*AK8sk~hAfa%3v=}5Lvc6#rQb3ot3ByYHphC}oDMNzd6p4(P z4a{kjj&tID*+xS%Q#MZLHREdnT_W$snlVK?$drQ00ls!3tvQ5F3;YF~ zCR5bz_8rWYguoo~YZd23A57Cd2c4Gmg z9^lC6I+?_fHUF5OVxbs1QfzcM>S_jo`wSR!?E6dHKxN}b2vk8!sCM0YvXk-LCV;=| zF>Lk}@L7F*xO^QxLASVYuqy>_R1402Me`|GSBQ;FOv0(Jn7F|;w0yx`)#|59{q(4x zchCuZ>t;zTNy1-Yu`=*4yu3ar@+{;)92e_t@u02XOewm8s+6F)K z7%i{~lr}a;?v4$^wjkb=W7g#wPobRU}`FKF605E?gipJI_K8enIS2Cj( zs)zWgw&T9p!z?LBvFLTLn1*qCy@%vKS*o&;m9B<~4>noG#Sk&7rP3B#?@g|Lc57kXlvGQ5Pk z&~pxSq2z|yYOn%~zQHeOH`=MY8#tQ70eXjt(o(osZTObRX=D@AW89ykWKNV32kQ$7 zWG}L4%THk2QY&TnCyBj**q_XdVPur$6U9(Fig(!KzcPpo1dVtKK3Kep35kjaRs8)4 zR1rWGs&5bGl%zzC=4%7Hdd(Sl^?<%LL-lV{w56PHk0W<#A~>g_{WM%Za^$ z!l~xh; za3SZng{8UZUJKNdNfjHGx=qQ4H4xLZwOmh0M+$3pCH`^}>sM^?SCNaSIL=0H=}VxM zCrkA?qvb^C$E5+_NQ8H3J)i6q4&RpIc_{~W)*Czl6-3-gwKV1^En6(L+!?E-DWR5T zsfF5%%YK68@Hrx<<4>}_zSyp*7jT)SKBcd3aP+kgbtsgHzNQ+}f-lkyStlMNZ3|Gq zW7)MlNO&-_En2_EspZUsTGEV$PO0Ts!t*c3pLAH%(`?tYfHjp|FEv5#)$S|n!x9I@ zgh$LSEqEW{xsC8BDwSY8vlgT?ZI;}?$0OuXyxo(=(k|5kzfE;2G81X_fdfxWwmK7S z1n}6-b!hBPR7e)RGm%9h41eRto7h^+#&|q&WCD->g;_4P%RfF~7+%Sb=d%1rp41U} z7YbR~+e*a>dzz&+qOc0KDrPL`9NMY{GGqOZNdy22!1Z)A6*4P%Q0JKgLHbye(Y$VyX z!EMwBy%o?0U!th3yq3liqY!L6ClLE#BGzEb)Zku%$O-5oHPYuNU`Q3{Q6sf;`kgkB zL`y?e%w+b@*^JVi$dax2O6f>sIgMFfMi#GJ_MqKX2~ZwsCg1 zt(Wt2SWoNBf8+ZP@Lh#~x~zxr-JXl)M7V#rS)2=F$~PPW>pNfP8LBvs)}Gb&f1cO} zC`*}lUhyZV3e0&!PMyUU(N+MHSb)dbTGuAz<Qg8|oY#=P%$Lcs>Q98mlh@|01Bd z`g;5(f5&;WNW%fXSo4YfU>UehhwmQee1lch@;Tvr0-TRyJ$yViYd7KxT;J3!?J5&E z_D^@Y?1ORQ@eREv3y1t5FaKFbK;o=pj>4Z+m{+sDc{-WA%;W4fzhDla0Y7!MQaTJ z!~KL*f_mQ!@UAzue~Vlr$i7i!bvTK7joFb29YyZ1ZSv))(AmZQJ+G`fd;J!Z@d! z6o9w)d$h7DoL(ex?_|5ar9Yb1g#9dCd7Gy$9v#X&!oGdMtg^QD6=rrU{)d5$ zZunUDkC6L4q+(@!p~rV4_J`OZUEA8sIPJ@b93-&&Add=iUKjTMiN2WYP{-8{}JO3q)-{8`EQ zWBXeNQ}N9G74-|ccQU3CWNH2YV7HGZun-#bbWzGPGf`vojl}i)_IRZZYtKM+sBG-A zl%fLPsYRFjPAaPO3Z(PxZzTBc;_;SK!SyWFrAe{3csnjJn0z51_EA~R-@rC*+ z8Q#b4u;KNFE2N^;L^FGGExxS26EA2#8@n+JwgBE`mHmNjK5zZrd|z(;-W-2gakM8q zh(#_$N5X@cpWxU%Yyxe&|LiJ`hHd?ZMhHvv{kXov`9N=ChcM(BjrKGF9I)}K2dU@O z+F|PxByOM#fRb6{;|?U4Bbf#3wB^^>i587c!DjQZe#x9=!|K0YxabIm zi28ZX)V%hBmd4Fk)>IAnaef&Ft(4{)@QhE9tB^^5wSTVBi+p0gY8$@@mAdAx7Vwy= zZQN3@BRr@DmGfVyq;um4RDmPSZ+Z~;3c2qs4P9B%scjsFPe@(#Px)?)W(feGz$Y^Z z*c&*GHCNj0zXvEc&?{`7Yo{&idSB3{s0rQ`noHd$&T3l~4i9OQ- zZTP!*(j-=ja0&j_UWx0WpgL)vSg#Z*-MekHQc0zNg(@f+qQXkG$7@ z7#Yum-U@3e6Lx90=h*Lb{Jgu6K|_MI9x);C1meiaEpf?Ilf{E;XFghCiPBf&MIA&ilgd3Gv}srMevVUFpWC(017xk9vyw_G+4-T9cb_e%RJDe zqm5Q=V;h=egG0Sv_;c#_p5Z^fWZ8(oHvdO#3%<}ElWo~5bwG2DqO~1_Dy*pIiFr4q zV*;!UyIQa^a{{c9!ZJ_YD2xlnoOGi!!|1eLC#~@=mn)bR8O9|U22L~Yv^MYq-gnub zurWsRDE(9ggA8|D%rRca$(1SI)Vj>tTyu5?CRMPR1r;(g&s4zKzgB0g2^^5u3Bp{B zgai6#Ja57*!*;X9G6hN%f6`BsJx*reyFMRdT$+7W!~}I#gfAZ(E57E&ihU_OJZ_Gg zLr16_XJda!bw(Qj?g4g&V&E98%PAKyR&w&8LUyfk_*0FCG%&gY;ItjS;oh{mV{4By z=K^{DT|jWbZZ%SXte{Br9d!ayF&Xi8_zl?bps!KQVWsk;e6lCZe*lY!nJjgEVKA@#U9wXgB3;KLELjtSn8?0!~|n*B~MfMOsVE3~FP0Ie+?_n=(?j;WIhj)1jiT#-&DeBF54slwQ9Y>lo> zSRW35)g1odEn;`3ZlRAj=yp_0bf3A5*4FImNTPF2s?e0Y%|U1ua^Zv|=R8t%o&i*u zJC`v^>t-xqFgn)f;~DN8)WxWD&mYFTZO4 zrhU4Rg9Kkbk-z}ur@&u9i=czZIDAxGi+$ zr_}>~eko4pnX5}4L=WwwFC(WTxfW-d^x88=S5I|TU}8fc`+Dvl$%*iVwY9GsmrgYo zFVNP8>11GIidj2ev%R5Dzmjf z9lnz%TqsZ}M?e5`kxn(wQy*?9IgT&B=nrtn-gRd880L48wLFPp616xPcW z*2@&u%LMC2*@AGHBA+|A#SK}yD1dQTse1J34lHjmf4v6P7)t5en?RYBd~z*vJBkJe zpMzGbc+e5yC!MTTgis0ph$Q$GsNV(uVFE4{xpO-R_+5G;;9cVm3^=nA@JEpwWN{Ng zB=qL1k>A#s>foSNJgJEtA#+)Mh&7`lTRs1;cH|XyAx!85r0m>mV#|^)|t`udUuJdP5*j~|4SJ8=$aZO_1lR6)N?E-$zkCYRF+Pxuu|gJ z)SK)qZe+oj5dC8)R_X(w5v8=oS0Ne)FZm*}p`;uE5ih*PDZH6x^+B5r*@YiMF2}yG z$DqRL~qd%6-SJVwJ1e$|_d3ny-ec8Ea8^@eFd!F(=6g-0we{ z8VLrb9j~K(WhykV*S3aGtO!cff}%hcS?`Ca$$aKcz%a#-ABRQ#SD}GFI1Sk62gqr> z1bPd*VK=S?yZNTGlBtILAd5`6V>jHNF-sGnzs-H}Ljg&_w#f0+SkMOG5z7Tw$Q5@C zB+n|UEAq|f4T`i3I@$hM=ow+EBFxw0qv+dfSf@Sm#u-YN&$FR#i}9V4;ddaV(sVi! zJQvC4If6w*h{uB+%_rCqqw7LL9-KoV9eBs82K_TuNg?1Om2k!QwLrdKsx?NxlV6WR zHuCEW$c6n)HsG;7zf><+neF?H)9%|ysl>5EHrjqG88FWLQgOCe9I@iJ+r_oOY<{-O z+{G#)#Yl<4&Ix$u^G&Ld*2o(k4oZz{kqZZB_hbx2Ou7`Gg@iuInYFqa%uDl+h07j$9R+cdk=Ym7X|uw7~u0%RQ;7W@Hf?$ zTF|e~rDhuU)pIF^S5yM%AEiXVuObl@;Dmq|E3U=TGW|9M3hYr!B(4< zst_SaGoJc8Jc#f77r7oujOW6iaZs2Moh|$(_pz-a$>3T3)4>U6@|?a*R?t@eb08*S zl6V$!0LSqnAJjve3RIUuMtt-R@NX5mG86#P`AZo#I6J!M{8Kop)VUdkVJL z*Caahymh>}aI#sJZ@lPg3%P$_%*pq*)$Rzn3lJU0bpK^s^5a| z!*NVaVd;2gz+uY9W)*K|`&dF7J5OG{=O?|hdS~-YGJHxqn8j1={BS8T!#J>iSgo8` zA5{Sr&U-^K@u>o_j=yi~BNg;O)Wx5n-wM#ZX4yDzudmo)2cA1@mgP{`@=(bJ47T8< z>Z6Q>`NqO=VP#oMU5sx?++FMsqbxr;bs+ui^HsBP2f`>EZ3~UH!#^zg3s*-Tt%pjZ zs{v+lf8C-%&HSO`C7@v420(c)oh*3sHp^cP=A7vEy=?s)Png0qN0|J3y5uM1T_M8l5<`ZO$Gv|ymr;qo(=o=fu2hLxy@i9t(sID^0 zCYy7{8|8gwSuRe2DXRp7&g_Fi$^zt&y9wsZK4#eL>NMv}Fv`a9g4-e9&c$g)*#s2E z32tR*69m|lD_qBT2cL;+KHKog&_Si-ymMNMz@8K;z1Uk?iHi$5=S9wD2E>yeR6^gQ z-!jAH`?yIePUaWP?=zfHp5ZN>P@@^8>g=p7sy*xYn_x4iV2&zw>t-_l$o-!H${BMef&Z%l(WNjlWX%gpr<-YTVL zoCOr0->{=e?J=b`ykHv|FgjIOi(GQOs;By6hj?s+Ale&+F2i>efpWuW$t6Eq8rzJ{ z7`_=FVtiqOSzL+g7%N}}IjF#T1u=#J@iW9*c|$}c=L8Bu^EN?1-(No*nGyKm{1qZ+ zdw|nm%bYow@5C_#yOz|Iup%Rl&`fG^Q8+*l4 zCOl|CjLcz+Sh;^YaE4@=UBfR2_Eh|O(vS_m8O)B~nES$a>lXkFcjdx)n*jDf4Ol$! zmeqwCjlGo|q3wVX0gavC3H~9L|3Xw8=sXDrejM-qD*8~QOpyxcBx@sE**dhP1mj~JcQC*23RaX~16BR6(MFm}vqIY;fF3c|2fjA7SW zjLp`1d#Y$9LAP6yr+~ZS^UuJKeV{Ob1w{9tVK9vvUlh0CJ`vuqdNGM`0oE88ZRM!=6oYKoh@AaHAT#00J z=Cj7E3205F*;_}ADN{|Q?8l~&vBN`p>#>f){u-X*E=F&SDKo-T(mQo@aY{zLpFf`Q z@|KxX$G5C&ZsSjOcLRSa(HgKY!!|h0s%Ht3z!NSd=l4ha_(T1Qr7n>l;W;T@Eb>pl zfiNm(s{);qAyIU-#k)1kk!z@VxA}&Ii)SS1L-2zjMwRC$YjCW*y#9pchfDb_1Ix>3 zDuaHc7}=D)#QUu=cH{iq>G@c(Gbb0pO7GU%qqruDJ5%YI{8>R)0tLQX|(%Z31uFG4|y+QTuQ}ZnL|Wpf#o3z8Jw)Uj zbk4Y{2u(#FmUmWmJQ~M+1(93HeKGw&+bo~N1&N1D>K~Jma?=oV`V6cdyB5~PG)&II zm(v2A5f^hMi{>$OHyX3D;TFo*U7(2ZHT7hdHHG}OaGZIpIemg_r~Y-nF=reMX&56f z!Wfw|!8zR!`oWx230^W6^5~yqz*yclYcz8@I0&~QbZX20$y#yE1J1#>Rtt>zaVqw+srQfrzF6t!WWa@gg|E5 z#L!IKf<{u)Oan?L!27@`(TSC8JgO26Cx8&Cj?sg{vNLYrMSh7d&M+#}RXrMn9-%)C z=tN{M@RDes3;#Lyjh9stw?NQpB8d3aZoh|*n$hdpY)+pjcwP|{^wByjGlv)p$HP)I zk3|k;N#YdA1WR&GZeC|$Sy5dk&PCp7F02HFH(`cXdfo(tMn8cS8gi$4JL<+7U!-Z? z7wblOcS72C;{5&daeCME$;O=V(FX*7KuzRJjFX1#HsJkjyccX^_}~%aYq{g&5kw#& z^MHx@O+aed_h*;)P6r9H@nVYJ8*kZ1K67S(i7rQPjzDij zKyE`R5ueNi@p*TreDz&VYlNaR1HlDz`Z)6#*NYGyB{vYD1kuUi8X}|oOH4qMAvpF8 zvElWNg}sNhl(ssxw~lT3Ik`5+z6b!DbTA-1j5PAARHiVMcz+Mi=W@7?&{C}^#^d=9 z#lFkU=~JN|PQ*9cHG_)*mbP87OwPV5`!c!oduSFU+MHN!oD6K7J!K*52tqq?GzMVs zz^2T`wz;MA#8_7Ln6md}eRY?$*2Z2T1XpxtSxk3c?4fGN0p=IUxbmb}Y1Jc$u8H_I zS5a|Z`&`HUiRnY-s^UT>xy(W~VlP4oT;M~(H_!k{sRO^Mdw|F?P`4lc35&tw3K-U8~;XeD$%7x2fr1PuQb@A!CBb1A@W*u?ChE&Ib`sO_O+6}EYy zD?4Bty=SyF{GH}n!(N&_zA%2r!Ikw62F`m`3ZrH z^T(m#JLYiUa~&Rh0L3@ThI54KumJ0Sg#8tOqxU81tHZ$GA{i|Xfxm0}z7v1M8}UcH z5r2epxC0-M>wiSS_MpukF@GxtpF>ztCyHG`+wD-s1>2w;k4>QE-*66&I)mraF^b+I z&1!vXLr*UG1$XA&-v`926C*`Q-S%h-%GvzD`BhXaBI-wd4VzeuI$_Uz7h(itT$Sd? zZp^<>=MjWt8zaSbWiuJlR)bWMu%=Fw>U~)iXnzHZ=eQ~yX(Xn&^Oe|xe!dqGslMk~Z8*5J=#Ro-p>~LG;Vcr|; zymOIPX=GG$)B5PEN~iPX@n~z)^C@~t%Fw+E5DpRb1QhEQ2-J$NFvKl(r@_uYwPBNV zK{?aUr@+97ZU()cPier@#^)*K(Wi0#UQ2amxWcVyn^3|^yN=_)aNjWN>mT#!1pl7~ zG+Lt?Jr0d>0d#dX>LCWA0jq;WUg}poBQ})vgw!%z3)0)tUvnL}vRA%Tm1&Jd$c75h zyA)Zs7}qb#zK7o95CD6+%F=Ji#&*X)Bdb|undLp!_sM=8+_-uBa-?FlChDR6kADUI z`nTA@`vg)7cIe;2u*MQaXj4vc2016fQ}i$6?+zb*cB01m3g$KI#{LIT`ZS@*jpM|w zI1X7!z|TQIv`sqPjX<~!uRXYCtH?^^zrf9L_X_kt1J9zMl?n8y^)qLoJ}v^>_9Ni1 zMUD(Sb||p|>qs2S?c@}+atAVyy9~gFco9VR$mlsts73;`{{)9U2wf@|fZrD28!*$? z@Bf>X!xkov@V~?ls}T!`j%o_-uKt3(xGa~67a|8NW*jzZ;vS4@H+Eyv_r(pU#7g8| zKHCeKp4cfE2JomqayPz+eTmNE5J3i|DD9E|`dmsdm$eEdB%@PB6B8DzItA-jBSFpB zcf{sT+__SCGCs*n7aHT`m#E`q;_>Al+IS37^pV=h)W613A42NJzag!ek+aC}@VcM= z#r_2_FS!d?p8g?N3AQM1H7drb;W<=gkGzevE-rnu=VRbJa~2Qh1H;y@J_+Z%)($Rc z*#dvu)md0Fp>CH^k`Iq(7A$vjR;3HEOVZ|XpoO%_z?ce13-DvrT#E>PqCLU*>p1Gv z@^3=r-%v@~fZYZGG1|m>g6(y@iH~A%iYJe3)(BK3ni{dF0r6C1lej)y0y>JcfTjK9tl-e?I{sL+o ztsG5R`W_vPQ5Xl5{jlodUxB+hmoXa!=Qqi_-cl?{=Of8Z$dQCIkzf~$>+jh90!YNz zh&Wp^IXcMd|0Fik=btK3LSK!U=IyP!1-{bf&ZOGbgD*$;4DCr6x%zSV#E9y0;d^XC zy&GQ<=dOO3#3g=6TykrCmj4xGLBp(Lhd)rz65YUP=uV4A4FlZA%{0-LN%T_ouq=$@ z%8p484a{bouDArjR%=|mTUro^M|%k?97314WM1H9HdiWUW=4UIkedUVvJoy z@DYOTtY``pqClK#r>Tmx##|&HoN`Aa8^D#@H=O#Pzgh_HuZh>)K!p8W}<(F zh5=GgSvVdL99^@#{lsrChhQUjc8dfLtwS7bueg#FbNpOY#B1 zycJ}>T6SF}1Vpnd@YyNzFQisRYLSvO9yj#BsZR;rzXl!PsaNp!Ap&yDAb4XO+(d9u z22RAq6oVb!FMkwlLv?12LXZhs^8)Hfw^ zW{BSvV^@R!g|RP=ac`C?xe+B3+9ZF~lfOs`U_#gmucD}qLf6QTE!FL6T}XvmR^!mt ze=*kukp{6=s$;8j0zaVG#a8EV|7Ma9(zfuTC`HAKtdV@YP;EMhT{BO~%e@1+Lms$vD{>a- z?Cge?^#k)F$6gUr`|$5E-q_>U=a;h+zEoMmP|4x+UqH*i@g13=wFWDHn8OH`mBjv` zK8)(|e|T4xCU$?G5X$h>*LZNC^@!+EHvcax`SyY$Y>S)b|B4F)?DY+d*Vks6=VIZ@ zg)BbPgLo+B0TFL4=YrPdHDnN4u&6M#Kga*ym?bpYqeGjPm3}*o^-V{8pw=tsk+&U( zYKPNVo4*AI#F5H!UI3U_O`%!GUM*U4*vyC}q^ndXfdp-RjRrkhhec`srC$nsizz!6F) zlVUt2>+@E^O@q>T9v@N)wuFP@@XF`t_Yn0m7iO`7vh2Jzy*+~!6tRNIAyvbZA*tfd z5bN;nF`r^#xTJEFYRR6iu^rmly@sTEL)rLN_n3J<^Kkfw-3v@Shrgn=@}Y{2Acro( zJKhYkYOeJ98}nr{u8ea6x$(rJD)xiH9*{;T!p2%gLLbA(UjNGBUfd9C6hg=(9lV{r35Gx?_AVw>>f zyT2hsA$Lds`y#K^yl*8zHr;m@hbH{Syj?-*zT4aCdx2Zw!P))MBf#h8QHFwAdfTvx z6ck>L3oD+!lfDmt3ZySgbw%P554Uw|%dzG>#dzre6h2(~mjAo-4GDd5niAr>K+nGf zJ&?E=h%->g6^Vtq=2@igd&r?k8p?QqxwW-zMo0)9B0F&7oY2|`k-mzu^Kl*$-^{_h zl@2W4Y|L^O>#aD$oh3nAm3e;(--xM(Bnr2!N0(EC!X<^mrM?TXogzG0PGv+F$bgtT z!b+L@gx^i~3Q%~vso36dufQ~$Q23{4Ii^p^#kk2p82Uhj{!aS-2g>gP9K-T|PJ#77)Hc&rvqaZ?3Z5W{s zLreeSFtjvI2TRb>uZRo})Y5P7ucbwXkEDHb2u1y!^lbte4>x{lXIXGR9cShf` zB)SeY2GaEMB${sF$V-pnkR$JR($kUG|Df^q9nSy$pYb+kSRI7EVloDvwB;2O?@A?? z+4j`E2bR~EHAU+YSq^3`!y)_*X=UO4t!1Wq#d?9YEQT%5raTHYh1_-aDFXdp*u8!q-zJW zrVnaQEBe;~y9dHPFHRQXtwsX&RL*14wXV5D5Y1v@hhGB~9sB*hHKx;&*;T{Q5FLj7|T@q0p z*C>=RIGP3hEc7gee$IQ<@sFU;6WyXwNy_@VOn&JHiTui0Zs&h?5c&OJKlx4lPWeqenEc{aN=U04(h44-+Y0}Ee`%fP z5OzTlVH2b^+mTb)Q^|6gdO$f{GC)olxs8fFbqG;C2z?2)rnc%J5)3`MrnBLOFbC}fmXfhgtmV}pQ;SLP0(C|>GDaKec^y=BbIfOhq& z;L|nwbL^_icQuy1O3?wqCx3G^rwRI%xqRn|{d<=keNui6R_?~s>|Mp7qPSmkmqeei z4&WCk+pvkq7mLUmJ{fVy46JwnCTFNc({`}&A7w7Aj)~=TJX%LS9r~T+^@Dy!oPLXK z`emU?p`VyHfd)xd^t;8TA88t=-*a*L$sD;uza3r~`xO0dPNd%nC?BKWvoZua^xG%& z>rzEQKLi@t$+(5|7T#d`C?hGsJR)+9E(m4FO(TSQRScqe8D<*J=P_Xr@oY)sLY(@N zVa~w<_Dmc$MABa3fh7deN)51-=26j-x-xeDP=8KL1mCquv`tX4W5r*BBr+fAo2+LK z&mOvX0DaFWWt@4g9a3{hj0J!ULZ{&4KoSq6??L60OJn{&E}sVo7gO6JEUW^Fin5rs zU|d+_v)I6!65;Y@*ITw^&UYm9x`RvRDfaxyf#p+0hX=~%Z(?T9LFMzmiYcE@0oMcN zvkYGb5-%ZM?8v90AMICLzs?mwOqXSw3G};El9TmoA=2XV`M<7T89Iu|=OOj$Hsp@$ z*C+87%1jD5fOZHiB#@5tJ(zTwPx__K{|*9P>k#nTgA>qR-|f)v+$8-vl)EC5bZb1m zK-z8L8Y{*Zni5E2t@{Cq_kBm|Y{j|^sR_9p#cKZ^w*37EjE@Hh2a5bTf&94qfp!x1 zGp2BU=Dar{#eJVa|~MdE&Trin|F6tkg4YTFwa|CXheHV&cT zq9*ObqCpdbHf+P?t4cCFRnW%Y9Lg9XK^x}royDNdYvIYtt-x661a0U|#Dg{*@m|KQ z-8$w+5=daRoQs7PUkn)T?nPokrh)oV`42Y}`}44dPzzw=oA`ej$@JkuX1f0L{~Z6} z!X*0qulo;2qI}FgIi&yaQJg-AuZ8iJ;6KE|Gs*sg#AWvLAH-X5BN7wy7SacJ3qN+e zg&!pmEx}tj$)^87{e{De%lsH*PoR$VuX7-8^cU1Z3)>~M{e@0^Ovo%2%Yo^+h}2T_ z#P%zpC$^0w`U~Rm+w^q&d5Y!%D4Hx(VmPc_Oi%`|Nz=5W%u`u}b0(9rvGe7HMnsBeh9*AV3RO7i^_-3Wc}94&AI9?hf8g_+YTjH8W(nd>~V)3`$MESKKIQW1bUx+qX)K?}9+6}5B#r+83pmmE2}soUUZ@4W#rwK3()cbs znn##(GA}4KjxgqAt{WZcMv@e}Q57SW^u1*mL0Ifm0smPROYG-K5jG;l3RN))r?Isr z78|ASy+RA{q^+dZj*YO9<`W4nPuFVZaSD;E@DwV=K4(w#$R->$9CFu(Cd<1tu$?RJ zKrA`jzuQckYNUbi#rmxt7Z_z!3s@?0JS(Hc8yUf;L44vS;f*A%)N&_kQKx`wOOL=8 zw&vmbiT&F9*@4>&?nY~}`$G#njx2lTdgLwg0A8B82{p13PX)W9E1Hkw+ft?v=M$H2 zH&fms3-M&8h08eDKrY2 z^9|HFzbUcYx`E{$Ksmi{Fcy1)gY>>5wSesLsK|)$eo(cZqyjsKy3wPB(uUqQTnk(V zUs_x85gKP70%P#1_W?hrqT$F6lmv#*t{{mLVV#@Qa5R|kolI^WoAf|wtmb5UIk ze&Cy&VfB2CzE@y;!=hTW3pAL=7?qiJ85zx4Ja7FhIVb4#Lz`YX_)L0DECC*_V^Q3<(`$LrJH5}X1zWJ` z$>}=jn8TVd-X!u)3$eDl)Yde+Q>0;7uSo%g%j_!?%^0Qqm*T0%&<#UF{&4aY7`IjU_Pr z9xQ^3H3W=)f~xd=*;?R8w4*=21~|fwOc!5>=gaWG>^R%JlET=`?0ti@z~|sAb7ZBQ zyMuW&WRtlBND@^`O61Rw+QfG22DJO%?84n_jw=HeiU6QJi`5DpA^hReOv)dcEpeKC z4By!hvXpZ5e&7PMQ&^g*g^KY&)dL2K%!hzs{duo7RLZ$ESssIO31}CU6X7|tKcIr? zwcZ7U=(BGa@`WorY&jwOiGbAFfb47q99 zu_+;^u>Lo^6mXvK*c^AnMRv5(uvJ8R(+?K0mIWyU)b) zgX+146s1l6k{FJpre#tfbMS_Z4X?{(!;-+rq&X zB;XNyHDD3vy=h)Hk>q7c-s_>2a(ghW)xvSGR`*pJ;l+cVsl+!kDAv!$MPCi;t4gzQgUwDfPZtw@uXSNEPTM=Ml(wkNq*}=F`N3c~uTJ9?lI{0r+1IKN za+pEVwn3V$UxEN}=YxE_Wo{VfCZj$eV#Y$Lzi6aPg&-J3qhL>ka8FTTX6U!L^vL+_ zAbb8`8*F$PhKOKTQ9o4b_{vZ}L-~VgRN#Fja~D@L?n=qtnbYJQ8R+zuWHmwgLC`o>^RB}FXsK%#dKlhW zPFLCR=)_&v{BFfSc~=VZ3f@!LI=4RX!>CQ|;_Q<9NFyd*J1OWsqUgvj`sbU^;e=mh% z3?f<%zj+^zqAD-l!f-W#kB{Ppt0&w!t+O7)8YH&-D!w7gNS{tcn03$bd`bpqX7_9m~v5F`r5`CnaZvvucf}QjJM01M8c(5D}#&pemGe0Y*pH zp4@`uSy&%PCLtSST_lS)qlMi4vv;<)h32@lHK*Av-wUI)d=SPa=A;xjg%1{f zlFv}V7>8D%ns*Av(#9l`&bXUJaE+_`dJ?X?;{8jePIS<%hR8CBJlS)w9)(Ff&Nbq# zD(fGJ;4@gUHLDoENK*eYln~rSnN7&;;fGxXWombIyFahs6Bfj{@D&tY+=At$`OKwO zbi?z-cEfi}+u^CK^!qzI{U^uZ?Kvdy0=>s?!3$cUB3>xqj_k#v0@X0)<4CSgxSU7j z05o=r9Qos5gn?v922THn$6e>@*M|bL{uE%bgg(N0S2ATV(|C7$j-STmm^YNtR>kT8 z1ndJyH0ne7f&%!#DyG_q_|~!pbloa8EbM2K_|KsPQdz`LXQ)=vo}#ENAT$&9!0urK zgf8|w)z_~gSL1-Z&%>U1UfrM1$vHCcRk43y6~`*$z|f^XvHnz#8_oRdKL%Wax41I6 z8^8Kz^MVqn^fNx_X|G=>0F|Zf{*!&QC3XIj{ooeeyAhCjv#YkbSMS>3V#&HSBZ!eu z)}tz`{)yaeb*Wll1p;Q#2y)_GG)g~|uLU|0Fn`aM;W2ckhyyj`<2ELxSZJ*GMhe!FVEK_RQY>VQ-&6JhUMX1ik-eo^vwRRyijVcE5=b zE*@p6^`7=Vm4dT%86_X%MQ}Od{ma>odBz8(zZC)3mdYd$0PnYD=qGNPcVT@J-eGhZ z3khmx{{rR>^^<<++pxqVDIq8*S-sfhCXe9re_tb3Ftdeq`kb4M>2vHdcvpyC)(T{~ zMr}@?TWCz5YsqGkr-i7JB(@ybOaA}BRNttD#Gqe}^e-j_^6k>5p)}#Y=y>)Qc|Ch% zX7;|w9oIn&N&rx0KW;w#5p#+gyGtN3)sTAL-20%znn#QR2g(0ncvjICYoPVPrm}o_ zj7Q3EyB6jD8<16Pb@{%*W^pT>y=O;%f;OTH2i<3|4A7e|K zpN-4#^@SZV9wq1X@%-n=seWK{EwSn2yTXo9&#fhT|AM6Rm~^qX zFt3mINM1kh*Ff4*2(wBXQmdFH7)C7U7gE=H1mCK(e8LGnDD7b|4L@}RyV&`EEe9kD)v? z=~Xmo1p&w(r`fA){RXh}o%TEljBM@(9J8nhVhwE)r=Po%GOiRjF zJ>3xln$Zx|$dUItJKwpPIqHmsk~3^H8M}`CHCo4ol{5Ea2BCZm{r(8xsptNTUsG@9 z-{>#Cai4bBlmur$gbS83s3Y^w zhgd(yB2`7y9&&RR?5tFOA%!5tO@^=s)ru^5mkU&5FuCjPcl3B z%XqofAF0Kpn7np;@g+mc6eBWrWmu`96nMkuZe% z3_`Kg_I(&=+7Cw8DSjBwQD(FE!RXu8txaf$!z2oDq#;dpD2FX}0ch=wS9W#^lcIs_ zop`@(Uv`^yBO8B~KEK5%ZV3Am$WZ))8s4RsB||`-O+xQ{4R-)zmS=A*LESIj1zFX% zxI@2})|IwGf8A`9G=@FwAKc{Ok5O7VlQeHejv5^eu%BC z0Aa1+*sC~Wh8^ZxWM@w%vi5j9{RVqH2F9$T-t%FC|HNq6|9YoOTjKc$JtlB28`+tt z1!UU&M>dU){muBr^n(`Q&p;i_HNy!74?LKG1)_%^eQ*ZWLFQz5pTMff!;d{OVsn|A>Hze97%_HUK{#4xR5JQDmTvV4=UA&^s2Q+}6fP{7UN%ThKMvQ3=z z9D7wxHuqXyikRT|M73l27fM)bB%A9>t&xtSBn`{Ol;%Vhnv`4@EcsBY7zDi?eK{en}og7cIwusM(1Lr6tOL-97LHjF4Byq>F zrh;zLf{M?HWK1S_)vEO+qrk2JN!25sT`$J53*sn}sO$%`6j!S6hBro{D)vhhBymlU zJVtAQ15VU_ep`GUF){!ral;-wti#UM!XN8br)WQ8(;>$Ll5_pvdJBL2W#I&G7SS32 znLiV)s}K{DBC1WvPcIj8s8cVCz>@zHLhR?*1G@#d zNrg9VZYB|unN*e{Igh<+xhQp>W>!$ptpazf0`6CCPH=Fwu1B*rU&X@M0pbc<=a5CH zM^wBw>tm*2xn)RsL3klmnb74pgU zACfwsTSE(%Bgq*JGEfo+xwqkI7(Y&PW%9aA43t~vis>}%R|(*V^Y{p&nS!wb9Q0PC=9E_ zt&!yb%-)8VPZ0J(nNfAnZw8;2#bus#4=UY5LIdCIeX*(^K-E&tbXK^>=s-U1H(`9v zLGU&XE(`lIxx>j`F%utIgsnHT8ws!lM<`&wd>8ns$*%IH@K~fDyvNtm#U!kJtc`+{R zg9JMQ5d1*fd=j`k6qkASV7rP3^XQ-9Kbhgp^`GeDZStS!=iODMGOQ3EYl_j9W38zBw-!ZzD<9 zDMo9$`V9ICbIc+s#oB)}D1~3m2j+Z8JIp2>Ux^vfdS_;2+srBlA!vvZNzR-WXr* zhB2zW0)e}G%vv!+@_fIt%(uyAtYdr1>y=(=E|wI7)xjPoQai233#=@1qdM9xhTykqL&nb?t-IEfJRv~7r3fh z!Rb6?OjCx&NpuZ@8~6rUEo{T})#Y=l%!M38a4lu)Hx^fQ@muH;DzxN@rRZ zCt~^rn0ot`--RalGT9$gc_`{PC{Zqu_Mf~)tH5>$8Zq44983QkG;szFMFwhp!A5C) z@zbjc6}IQOW^aqW=E%1|$eck*H(G%y-dw8Tgs^yv$v z$|LNAz5}sd@(+lr(NueUh<$q=EDHFo0$I$1Q_$UHb0K(}a5NhjpD8iJQJll$OCfY@ z;Wgl|Hw(P=W>R+y@t^GNy?|620A2z=;bnmGD)V{OVhkA9sDWhvmoXvyZX&!VAX&tGKt z5sIp=@_SO0q%b{xth%9OO!Q*}lKZoNIaP?W1kDF3{eX(~Domod^<>x=^IN3I$IGz*=e3WbMm#}sMCtf7u5;3~{B#UPI2GM?7RdhMW_V&fkPQ3Sa~?HZ8iB806y zTS1G6r{~$)v-ZL>_^HMhee-r;1*`E*{KSOy&nQ0*5pDA>)Rqm|@t=Gc7t@1c{*x26 zidE93BI(jX)g4m==mFfe3WM8!a;#QyEdow!wTe72Q*VgtS+?-^Ks?(kRbk}Kq@ZFx ziVJT^Jn!{FxO=syw}5-LI$xJxn6Tj*a;!D-of3@@;N`RcGxBmb`>3RM_@ADdFno3Xe7wUcv&7f)C zRan8suYeToVUyi2$IXwNe{e%4wAh zay(ougWOsPps}w>0ImI_1khYl0uQtNiMZ7VZ2I~ zu@W(uIzOE{|6J<)bExxCP_7m@2L;)~u2&<#F9IG;YYZhjRBA>`(d?r0A!+Q*);SllK05{oRkK$Ksy&jNkv_|Q@+2!n!_Fcf(tbu(gs6;;hRJeq0a|#)4y(doG zwuwMRa}i)|W2Z|;%PNRpscLuR1CGbopNJ%abZX49-Q+|bL?3WtPDZX*(SDJnWfFMQ z+XLO-cRq4YQ|NHu0{VFvx30slGj72}@61s;d*2yVsmaV*2p)=hl1MLHjvBZQV2{c_ zABRzS4Q`z2Hm4C2CvtgOH{4N7-9hNVN4?2;&`(7%?iu+L)SV+i&mrt| z&ZiNU?fsdy{+%U&5lxU`odG&?$9lnAr|mwaWUC!%_TW|pvN&KBD^aK2iH-wA_~(pI zX{v_T4@h&b_Fjqw=^@VW&<<@C%{&ACFrrkK+KUiq_Z!I>lS}RC3?PO0cUAH9BMZf5~ zHXW~3jhrQwI~ZNAFnT~mJ`8!n2*iUe!2K2#=|v>Qj8muukvFKwClQHp;!72IiA1tN zA0xstkRSRK<8qkkZD;IH+xD4RN}lR>8G~ zZrw2Yp3S9G;F6>N-+>g`796d3`&1|FSEyC2JuN~NzXu3@?vt9pgBH*}5}PDVK(sBC z=kL@H9ntG@vGs@NL*?>rEeRdMtjNqT-99%tDIl#MMuuk z0z*{nC-_7s9_}3knMemdX^@Fj$V3Y8N``S1Xgf`W6;mV0s*wI*y0S%KVdJm>K(PKI z^F>tr`2k0z*z+cF1dHr>KVr6ALi*)zT9oIj3-nQ(T zLgdIfIByr~t!M}FftbFY_`9^lJOfC=6yT<|%;eMw;2noY^}Zw=L+K58?kngmTk~Y8 zUwESWmzjt~q@#$H?03m@4vRt|n}&SmyJsPbM`2^N$_%mvM8Ma~vH;JSq|;IXd- zm&z^R?iZ)r_6QkypdDbPk#e}=MnY*9Wi?SyGZc`#XPf{4;SV{&XO|`hYRdZ{Cf^Vy zQLe}!n6|*t+JHYePaDDf9@{9*tjhMBY;QZWAm7`hYh--f0TZoXxnqSCAuoa0ci# zk?86DP;ml?=oKR3z;IK<%^A`7|2T3$c0G<(@YJ2l@azv2id*jAUK9ZM@DwPrlDv7D zk)8mZ8Fml3jQz8#K}79|q424G%6blHv%iz(mmzGH><_umWi=a+7i!c;>cUHON^;f? zvm_lvMc+x2=9Hu=65DMcuW;KwkbdtZ1p>?Q+gKud8i@zmeZcQosM&iFDl&h5pIObT_F^Y$(;lIVjnM=FAn=xm$&h7ec zrSY4DZ=*4?ZVwBMVN@}i5;GL|k|wv|pm)S7!B-cpq&HiA5l5V^2Tsz}tP>q7=2FH$ z6cVg28FS`%$o&e>a-(FKQM@#g)5KbqcS#aA4Jb)(P?9{$BkOl#c&H0{*63el`a3Sv z7SfC|i6&Kyxn! zn(28%z0>k8^G@-Xtr?CDfU-4Ma>3s|-r@M0fd#&@HNCx;;%`4p{L0qkde74~d)81M zI=-X14`sVN@@paD@<=Zt>{){~@#SooXHC$vGq~VmRG+<*aN`N*ThE@k*lx;yvnl2u zWCy&>mu9^UolN-?sZc9TCe9&&KidmEq znvks87fvKVA>K|eIAxAK#ogwD<3_=E)UGGzeuk!CC*}jd1i*u>+Mm>;C3s@HWUIey z=Ve;pZKUZp_Rs?FbCf7s52x)UgD%#~BNVS4Bjw6A!1+k7S7 z6*oYb3%r=U z*YdrH#m2LBFSU5_I%CGF>^5_(ECyeA6u6WuhYAq|4QcB`uDcNp2lSL14Q$x2)N6+5 z%{aeTM%ZX>=7hFXn!X>-igyQ?p*PAw;%g_g6W=>_3k9r zXTBk_-R4WR{)^P0a;fKMbuxBG# z753ENukcjntY-0goPJ3%eQW(?y8!w=8D6#(!|Y*lyhz5_=83kd#t|{#YZfo1xBHqG zZ8}<)a%>TKow2Hm`vknD&8HUE?*uw44oxI z2UhqYMlc)p8^s$9PmNyI?9wXA8LOJ~pxq>E3VC8ju5=4Nn6~dlm?gJKLVa&{PCEb8Hsz zP+YqhmGT)JY+sO57o*9hZz(*%vg!@|0tn}~_7c%Z+fs+Yzu*uD`fi2F=I?5#95B3V zFd7E{c)vcy#Nl9b-Wc3qq9~mK<%Q;_Seq#&NY{{#%t6mCrR}ZfIoKB0K*V7jY$Pnt zSaM)L$}R-S&)#NwmH{zlr@w)yB{Dkj0ftSBf1pqYLi5Eb)BqistY1J#V(%ky2i)l` zo@9TJCVrwiX7OIvpdIq8B?1eMQ`*4RYj9rT-K}T_t^31-%kqQ4m=bQ4WzvH6W ztx8Ypwn|QpEcyUr=Uzfx0w`+ZJ`}x@WYyy6dz?s2nPN`3C9>lqQX{!-0daBrUPU{; z*^WHJy%%7bHxSdjA7S)82cvHvO!Io?<@(m+eCb;eNNA|673J9Gk?(Qzhz4SO#OPqn z>*1XT68ZL{bahIyWn9ohfS-5) z0NwoOp8?fah2Ceveo~14Sl=pAAHN*$)HBR7p-}pc_<-#e_hm5uw^c%NAPr3cp zj5-Xt+{vgOM`gl;yq(G?`#r6R|n(!-)n1i{62AMIUj5 zk?PQzT=93;D%b_g7ndU^dwbsj!2aG$JhqUJ7SJ#K-po|#NelJ^B=piWHVYt)(w90$f?>Zizf#K$M9&PcZM>Lm3385uvapsRjA>pCaJ5_eHPnql&Ht`VAT)p(l0Z>Q z?i+e@xm{!Pj{vN$!QNuZT^m5&HhMtZYYZ#MOEj!jat6o$@BOR>K%#RTgwOYJ)r2O1U_rRcQ?5IHleXRw-^T+0V zGVkl)`OZptD0%;Hm}mH_=6JUJ`AR*#ibI);jH9aCO<(g>N3# z28~AJedEK30k(#U_oBfmyxI#^1qTMPbN+VxbmzPDQ#Cw|`sqaPfbx0o_Qj`u+U@QA zW}1FF*_#O7dm33qHmblop4GqgB zfF~gRa?rrj7#cLhk?&=Qbyh`5pEuo;z0csLIn&mU%#n4B7$~zo@=Ijs{xT?#ON%e( z@2EB*#3@c}JvPPo$n2w^IL}+IpSZyLq<-Q;uh+ag6;~1@zDYw?h&Y^0sYg@p(oZIq z|B{%;T7f#&evZMb(>D%d(HmC*s@EG=>nD@EUj1Zp`Q4#$7ab2LOnh|a!|F$niHx4(dP_pu>$9jXO89kjh3gJFJEMOn*-2fpseSXek;hmEZ^85+I1Z`lnF=Z?f zLz_FHbUZ`0X4;PY}oDeT*67Ra_DJr5X>pe{>WbSOnE|X8ZhU!ot5e z!jnN70ncPq8&?x)9m$5i6bf5^Kxvh(pywNTem45WOw%>f;8!Q4r-{dI*19Y&fNcBq zj8@r{_;a&R!Yrx4g%{|dXe^sRT16_6)0+Xhp`+>XBO+p5plLS(M$G<5^aY8&A-#MOkn}zd1QJg@feeQr8x}tO_d)CZG^X^ttPkt}2uvDo!|l zMc|S}T-rhzoUq#?(Gny$v{;svhFf^H&v?@NW-(-`Zr{zeXqWQupnJR z`ySAT0d=XJi~{vZR~M=$)K!0Tcpy3xyxD&M;Ik=wG5x0WB`jUsiUskt_2s$!6~VkW zAl_;G1QG+CJyMNgC>{`r3o!dMC#UwV(>q+a9kThTUNbE?t}lG8MUkE@zan45C|`3@ z(ZJwDih(n8<^2lYyFo?=4>J{baEuz0Tb8CR$|Nu>u#;I^9HiLAc!I)3oMg)(IW!3S z2C0g3ZtORb*283yIy3A!(yvdw=U4)Zd!`lCgXQsAc3arfj4&^K?O9Zq(_ZdH+x&SW z`uL7uetf+sB1}YK$9G`+)2IVNs{vsaH@g}H0d{<(ZiFF>%_LV7^gR(2Myi=-Y0K6iyB=U85< zP~1>C!4<@%D!cW_ApLkRZQ+L~nygrH3#L&eTgj!5k2vEEBFqK03X*#~q%)Ep?ASn( z3Z5}8CRGu%Pz=!S=d9DTBj^)iWIcfoUdy2enPu? zUl$Nz<-%E2KDWnw$O2R(g{K2JCq!d7eh3YEnZE6l4c~T%QoU!F$3Afu_Ha@L7YR&v znv;AjSj|9Va+3az?HLQddQGC?S#A27VB##k z5)oLZrF~<1wvvVaodUTMm7D;)vTM)}hu|=3c8!1Z2ybfiLNy*2H~8~hBYZvbbHekE z<{ZZ{Y#@&vVl4Q&ptI5a%#zhEDElV86%2~FaPA+Y=bgs?>k#Xq7@4ylzx zN4037pP)Ep5i}@$>5jaLMUGHfu5r9RaYTMWj;Cc_8@v&+F*j{+VK8km@QaI@wuXM= z($|XzHdSe&UNbC+8}#;LAA4YS4f$O^F3B|_KgY9w-oHr!>;p9;ag=c~x2(AwCSfzX zFiNF699AeI!%%TfX>)o1kozLZpD>~@9}%b@3+1PU?NjkL!`rX2cvtY8BC~Y$%|o-^FFw=yv=M+*q+;S$mq znwEV!`lG7K#L%QpCOk?eVnTUyeZq(*Eoh$l0#~+Pwi~y4u0Rq(7hwm7*p+P`Z#Tb3?6pxE!#a9^8~$S99GfMN^1mHR-kxGwkJs~fYyT7Bctm4P%}=iw|W57e*&#e zWghIK7q?Clk2|Aef4wW4C(6}rzg9bzGF1Q89euVDEx`Vfqo%aLPDI3%qv%wn9C-~C zB$13@hg{7L$-aoo7txbS4o@<;W5a%E(B&AL>acOe9D#pIDW+b+cdHPq;#eQT0r+x2 z@wg~T#m$=M?_?)$ay5j;B|@DvS#NXM1tg+9RV*EhQa29S>3-m8$@<9pv((cy#K7T$ zN;gi`S6qt-_6M;z`5~G26ZvMgWi{KvX4rZcqrB&^wOW>Zw)da{9rGdX4%QaJ@C40Q zql8YYza+0iQ!6gOjzpJEr(&`0gza2KBhljh0=E6dt^u1Wu6IOou&@V$xwcp);KZQ& zJu`@Xhem`wsXs@51Qq30%90ofTP-XU*?k2My5h8d3oDjRg9~9Rwt*~J9~(zQMeIP9 zxR5ut!&2Fw(==~_vDftN&pL`elwg!V{92GT!Kww)=xS&olpQqs&&Jf_S6g^F+6T}K zYcK*Beo(G&yEOuR4Oa(5--IyQCD`(4U56yzO4|Y?(1M|HE$}3ZYf!$?9!!LcLN2YD zoM$w;_6l}!=zPuG7|YK?c94Q&d7rONOO%UIYGi3AA*eOIH{r)f&0}KD|GAyNI zyE?Fg70D~luwc*G6OcU3dtTzNd21RjA?>Z-1aCEhpMBbVV2}T>$A2mx z*DO4Jpfp(Nd0J-9h6kHrOE?-d1EC4TECYxi!0H6nD?*-z1KfyE&jmxfzcLqXxhX@d zc%cW-C|P3qs*oj>QpAyj^Ac0;9kX6RtM_H?sgd@`v^>_Rl4a78PXKYC$@DG5Xq&jF zS&+y3YG@yCE$FZC-*zVMf!SzgWi|iKKZL11PCw2e(Q5Y1<>up(kgtJlNd5|q*|!Pn z58O22Mya&Qcxw=VIjh+BTWQC>*9n4ydZ-krU{6?z15UA4Av={4r<>L;R4De#0oQ@* zQLOh2W|b^G08TZcXldU=XdkAOkk@k#1O&SIz)SpvoM4)**mPG4*`(652sE-XZhOG(+7DBos04OSNV1tp`yF2%1TP_VR*c z0%inQxfyr_e_?QE*Jaf?k~om^5Xr8|Z|e75abZGEwDUjlKz+4KH^ zL!i~(wyhpKO@Se+>9Q7pJFRHjihIYCInCO{u9D#G*Vcn~G{EF-1F)(&UtMzq4>T;6 zt0;Ae5ynTOWW7n@6D>iG_$ut+vfin z*mHV#O7J#AEXK7*O*87U-)GhhcGffVU?FL#YU{TB{Sqd#X-)l-@q4hA8iDPW$s>Dh zO+K#K8yLDBgB0ef>#@VGE#`deKvT3Q{wE%2G7j>uy36TZDyu-voZjY3j{!*El4vS+ z$dl&bgh5C)$ERjB83m~}`LKBiBo&D!@J4%io-(|E;?I9hzcNKg=n3Rof{vw}h}2*r zh1(s?3yoxVGLX8{?o8^!tA#An6le~ETONnL;<`R`)}7cBq!IEE`dRlW{k{({s!wJI zRQAN3>8ghr)iN=ioo2js3pwbQ;_rh-=MJhPnZIH!M-6#d%xJYG5|@qGoS9j525-!2 z7DZ{C1kG}w$r)v+zC<1`0fm)3Vi-}e5XWl}>o0pcUKTGzlo?=YkVPJK(SpN;(1L3< zV?-9=L%EW&xQfI!)HOOK%YR4~^C018bs-AjOrpET45gynZbCTB&eKhP>*k^NaZ&Rm zhPwlM4)mZT9(>=C#66{3_jtD2%F9+DBAEpQhh(mzWd0~r2+3TDwZ2^6a&0kPs*HnX zfQ*TgMShAb4n;t{FWgNQK|36um+njY{9gqTqq;m%^*w?p|RB z(AE>sdS;hM-A@cDQui{@B~sJy>4?+?SPi2{Wg;$4q%QkD-Z&R}X~7m);8bs29{s%uxLe!J)T`L-(qJm z9!rnuT^Md9RpwhG7;PJDO8=>j6w|x(kjg+&k-o&v*39FWOJ?2XTT&r(?ahw>%hR~V zrW=;Z&gepPCVB=DWvk*4B`pO}GNC)7e)#Kk$MOss#;}|LJH^3LXlP?8wE@dle+ew7 z1Is-%`^S))HZ8xh2gonmiCxz)s0O+?Jkd&p=VNE%=~%+uQOyA8*#zBylL`*153(>D zRYG&{>i7jvef{6Wr)f+pP_=FlOe=5q&z53uZs#MG8!2f!v##;Wue>ta>5(`*Nd3tM8+ zcC)}ePdjr|v>ww`YuXX1#S!lO?>ajV)>=)7HN|+yYPI{Xe5p92D9!o=Xqua*qp?}- z=3CNtbL}Is(vEX_ha~Q4OSrbLy>H+sN)@(vgGskMXbFT?mj=F zZ^^}kThpD(w%1(_P+3F7E)vd5az&sOCw(LD03NgOkGZ?ly5n0c6uLShe1HsDaW*## zxwvv|{SI)k_fK%1XBBKwvtX!MvdSo4Zg@7DI2W;DJD_Eo^oU-Q8}uC2b71iP0Y)H9 zKy_3j2`VqUE%FDbfRS%iZZ z=5*Q2zl!WM>xIQi|XaUw$C9F*bIb^pjN?? zodleiW)v^cPrx)SVNB^t^PY65Qf+Y&KRqkMo(2RG-~s+vrkS6Clbq0}MuT}SPjQwt zj5X4Ff(AIsnV;2&rtYT&PsNSlNfFV8bex3a6f2v`7GPaz8Q#5S1An~Ob}Q1QV~=|Ner zN)cz4-e7HH@Mbg)xvuB$Uf%S-Dq?*?NnGWZ*BMgH(zRfGp;5XP$989(YnHBJ$L^2J z%vZJ>E3Z6KI)Z{yysC0OHhFN4s}X60Jw^Y1gmWp== zw$0Jt$S!P1gB)kcs<&U#E}fcIw?D zh8B^F$0^^XOU$nSsHTp3{CCK=?FdM!VN6r zL(^`{$~l3n%wo z-Pze2JEp7XZGyx2NA#E(g1%~tLD)x!zawS!m^GPgordQuVU5^jV{g58wR=41#+&u#UV6<4ZT0&}wN_FvNqh<;@E+r}J*8W~x#Yj1Ly?13C<4;@ zcl<=Idt3I4(cZJ_%b%6gRo`Wy>G}2f`DfJUQuVoZSax;R8P#n)v$`FuZYx$x>CjL5 z>Mit()ZbkVCb_(&mCx}&S6f|%Z@PY{Jt$w05cJN$A>2I<{HYH_%|iMvjGpdPIrR6F zZQ$qF6*$C9n(L}HCe2mO_+sBFP}Nz?{5iRvl(H8LPfE1frk{fke3*}?&XWDYRIEHY zefn!&e4QD{M3imy4+@|zoVyn9f6)@!%DTi_`kEx^I}^s{?3w!wIEUTA6ePG@a6ND# z-Z>wDB;=ikA^`CfV%Kw%CVQvzo(c|wAiWa+7(d>ZbO6MqOMb}mJmmii(&5t}sm^*@ zX$oR+$1wIRO@uZOG&(=tz6bqrXc9vxbPUBS(OXcSj$gO;TKrA+{m5_`Q}KvSCUHWH z%X<}tC!Q=Hf8fkN43`3&=>&pyL>GOO*@@5VJYm@aa zTDkFur|y-r-(j$sj$Jp>RiR`zY?2@OZ_Mx}N3SpR=VthZcNXu)gX+b?Fc6TZ6hu@Q zMz7%*+Mhjs#&_Zs!v;tabPbI8p5Q8sUnn1=WV;*;!O2&c;lzZytGv@6Cs^Sa!BKb4 zSd@?BmL=;e&-HiUYOXIS;2t@5DV875TzgvE>Xn@<@nbB=Ep!YIY{vXy3ci;$-8r#y+zN)DKE<1@ZEJ9 zH@inp>Bc9v=wFS1Y0e?sQ-i0W@P=Km;Y`6+@-8Z@JXbx_jP)s-&CxHM{#CXc zKDUeI8hg)v|D4VYZ&FmtM?S4$C(7}U%J3d}<0eZ(nCn~6FCzc9oF)Hbl>E=N<^M|_ z?sprf9r?$xRm%TpxbT4V{rxv(czZ`jRu!Qa_^!U$*N$P41OU$B4?sFGjPZ)Z7{Jvr zn-~zu7^&p!Riqa!PaKgc+0ATykPW}s4na4F@}Um=*|tN9I|o;_2t71PS<l3w@OC7<(DtKJwU=r?*s{K64wG$JJE&Y$68`qv3V)}L)rQ7kaz*VIU z7y7p69GSfsa=mwUkS~uUl{TE~gFU=|JapzrI#E)dxBZ|zmvRmf*$KW@Pkz(Wz@Z5owm6BydN)y@awz27lJm{iQE!LoYt1?u*jau) zQ=xQm`U)h;VQ1&kEyAeDi<4cJY0}uzy!pKL5Nvu-fvyXS8 ze$sZ9S_R(OD(DD~pws6_4V-FBEt`%#xzg`U&v!=8NCFDW-l>lo=pCbP9l?uO#N3RB z{~GZ7%CMc*Wb~vfS& z-unIlln&rdEKh{>wV*zER~m%qI^PEV&Tn}H5`#q!vmma2j2LxR|A;q9rebuG!D~IJ zhTefre-Ukxfz}#C*z!y3L<{^85fgmJXinjZW>kd`+|qWckQ?>@LL_Y*xfh_h^$9cb z&1w!?Ozb}e6E1p0fx}z>iaK%d02|5bg>K3k&uC1;nt@NwZ}g|y2v8g3$Q$0?b4_^^ zoF>e_u#YGD!;zB8zL>%u3{DOhd}2zx_;xI38^^+dmB1e0c+rZNkTYa_VoF%I zGP1&`cJ^X>*iQp7Aw~9DwlAqZ=^8V{{BSx5aQ#q~#@ba0*wJR8Io15DReXn4h{DRg z(LbUCs_x?;gor)g>>K5L8YiGsCSt_?tt-RZE7}_tfzO>k(bsMS)}y4#R52mPptx{g zH6n!Ev?BQ&69%aBEiCQ>8>aDJVd&OQ<0WP_tNB;koQT1dkEcAn2A{O(l8s$h%`*K| zQH4feIihJhcu6XBh=kBxr_B)a;%rFt5?n3?`$!6S6mcQUy_8|(z13LDi~q}7`d451egJS$w_DinRqgp^ade6fKKdaO?N#6)fbMetAaZPj8&F{DhHE7RNlB(6*#4xJa;|%F(s%P36 zwTcP=nIb-1#>t>bHrW;J8%)g~d#hGKr}E0Fog8bw=F{PS6l>z7%i9z7-ofY|()5iH z(H&iqkUvq0ko7TW)y0A6m+ax^76S|E_o0B`C7Qr`7!qWwfyVm8tMld2X{BOh84rHW z(s1h&wBq|Z6b&84f@is*MR=0e`UU=|`Mi3M7>68js>X}g$mG}>ul#}9>UTA;+G2mC z;v;8^??AXHlR|Gp+KTfG{j9ePLawoc@Tky-xO~EU2@lW@&MlaLN7JA{Mod)(MkNgl zjI}px#EMi;?4STRB-;&mXze1ZWdwTA<>&; zj2~$hrLar{N8!dbJN6b_!e$4jm_@9oAFTyRKX6AW0p8 zMusTh5RBv9AUfW`y)2JWn#JFCyxW{2o1c*0Td#!lVn|Ytgm;#-lIA)3jY&9TIzAmN zObCw`Q6^#ExUh?`$iShD5aYpXQCn3LymX(QuXpd*i{WM1q+aKQb4^$u{@C8FR{Lj6=`x?t61oOr6T2Prm(aOr1+Ua zFs2-13MJ++EQH26?P=YAPIqnPbrG|@yZ>(<=@#S~{Dg8xG+=wh-`%ml^hoiRgqrxGe`Xl;*UOu zYgC0opD2pwX2BO^9LZbpEN2V}(g_2;F>Zwox@ls63Wl%PL}eim4YxbRq-c?lMu#}IvqI>!!T zKIpif1

pz7tvL}adQAj~1BnERN zSwt8BS)f{G*C25IL}8mzlwl5(ryA6HBLoBK(4);yp|E~nB!PDgP{RikS;!)2Z+qo& z{hKfdL~BA`O_e!&U*zITL82~US$8?J@)+S$vbTN|$$9j8t`c6u|1w^M4?ogSgAv4kyG%zjXeD#>cVKy z&pTxv&dMcve`?>pfHR~Ht{7CXGB0Zf>BQ$A;G-Y!@13F_AK+`Gy8$7eqk1fEW~+aS zLZh3Vgr7432w-M0kqNIl2_u<+Gs9@o2qwt&HY}=`3E1g|h@FQ7*^2GDUuqEiCHS~> zaVt-3Rs0vb0!A>72t}EwMH=_fbsSAGhA~w}2#l?L^xsZEzhWG=z*T3NLZcZ^BE{hF zVkyGhQjiw6-2~!G0gMgHz#{3LNQWWy_bX8W)-ieB11PXDyRg}e?1PB^m)JUTrt>^d zxfdJIKRXr|XRbtPF+Lu@3?FkdFBEP`t>h(0!m4f_j_w94!QNk{UJ0UjP%L>rC>CQE zP7i-_l6XW$-eHnuH{(f$A}3D5fV_(4Rz7FZ?`8|CiowlHjs zdk`@b_a1p_1V{^BAP`#xqJ0Zp6t%#|7{G8gI2Pwd+_Mt5KNgpaxTzA?9E;0GT#Cef zw;o1T0?SK9To~#K=Y6F{#$_OGfy6~5Z(A7mI*pZx1{?PbEg&b?JdNu);4-H4RN>tOl-L87%o{4uL1Z> zIhn3x0QMlxjy9r(gtneZ-YfL2_lv6~uaW!;O(J9Rr>nmECGOp{*<#~z{RPCu%y)C} zc@gD>aI(KOLMIiwpf3A7we?Qnb4ueq=pjYJl+X_aGezjX8Uq0t2mx{Qaq3nZzDnS4 zQScKS_zi^rC$vutewhvbbAiuO@S_~~O2RLRhxgj>BM8565sA!xxR71U$u*6+ij|H_ zy~Sz3-OS*RWvGbDa49n++ZhJg86J@gRj~|9;xZh~LxwH?k*<*1dWRy>z06QFS2bad zgG`v96##|*>bT6*1{*j}fFD!9UI+LE0v7@}MxT{7e7eBjuizha;D15*&Qo#lb8Yz6 zyNJxa3Vyl+Kbr9G#=}pu;Wr9=zJed;!1p0M&9fLj!)*8}fuEw_r#bL@a{-?d5AU|& zrwIHA1wYb({|n)dpR~)L|2h4ov;Zk>4!BoLF7%`(r@R$Y9+%sBm(*nM4Axooh{`}fRIT8X@9kFW1e9)F(3S4*mOd2eXaRJ9l|m@^ zsA83z)u4{ZSMd2}ukDK@D*KMUpxfk3@v;6zvI@5wje0Zo8Mdm=Z}mgi zM{H0ZpYHk9(Phi-HX7&S?)8j>+g@6B_e4Vkx6&4Da9|%FgHLB?KmQP#({Qiw_Q;%vA2c4hdIQ9N82j)ofle>>16$^Q*@>QE zl<`GyT=3U2|BFtv+`x4(rMPzk@Wn0uf3+L92%@9`R(pT#ZzV0*a1kF0kzXnBTND^Q zEZ^8~gq2bH3Mpm1M=f*aKcsVg&`gDU{N&`?=APzHQe2H8_kxhS0Ds|oai~YABK5$= z3vcCJ+t>)JZSI%d$P?`Sv+MZP17DcfzFk{urH0&o=5S-V7Afv5{?XpvRU1vk{SrmE z=eV{xnWdv>KT0_h%*! zvObZTZ%#_dYK7=6zKtWF+@S0niQ8ewc@o_Ec{L`==3RsG%_q~dn(({=;kl|E9#_4N zh!`8?hFqgUP7M|0RI`eC@0(KGiseAd2my17cwj#AsguB18?WGJK% zc7FOge>DRq96OtOOaT%WPdw?H*k%{ja|W}$yj|)5s)$)^)oh4DHw%||D6$1k0Ug;m zG(kx-#7}JTe1{){5fzH80XOo7Qfdu3Ky5A(D(8j>hNqd4R*)+c_v)sAf-P&=JZ()w z$o&t76v4Al0;`Dr4w6IRioEeV+NXEoiF8C$tWa3z3d#|+&`L?Y;|{$1!(=%nBCr-> zUzi7~R@bS+GOk80R>VFgXwUqbp!?Jd3}LRMU^z&-3AleNm$aLE!L#Q{ieFJ0F1O3i zYM?o`_#TPD-ND+LE$p0RTS8&TU5EW=sEFTDZeUay^A987?SU2X=s%&k9yiC^MV`X~ z#;2LL#)@o33Fdga$n)ZgG^I2Yj7O+`$MTFRZrr9co<-s!h1)% zoIm{_599uaXqth43-d6?JoIQH8t1|7P9VZH*-Sv|h!6hy- z#&;N!@ROJ%T*f-OBms5wLJS@-gC|gf@&1kul!E+~6^YCobe}U;Kat@({NKIcVt8kY z(V(rVGjA}@ov3fYp^=69iB2Qc_l4O{6v{T=zMq)vrJ zK>n`6A|QW37=~7te&BpFql*%v%(0wxE!A_qQs9>(oW0Z4)c+{Gfl9uEs{U207NjS- zJy>96)u!dXQNBr`8OJ%;(w?*Bey`w zTGx^OCyj>7WT+}VjH3sEeV_iSSqr|3qTqLOz!T|e|MenEZ3ohQw>Z+&h5t&d6GD%8 zpFO+%l0sSf4OP5DFT~zy;rK@^=2?Neea6h`IrGqoVsq-`RARTTj$2Avn|X>Fcz`6a#2%?YYQx zI;Y7O);AFYm+wM{D_UR|aCL-D+3RAZ*+x)Sz4DxTizb(tLF>fo$+ztsWv_}kB-Wa` z#VI#Lb1O7*E!KY!fB_`5tu*DXsxu5AC@&b>^@daseJQTLufyVkjGOeFJ&WOgmQ*sl zfyuVauSM(>>+f+fe^hW6({%K)8FT}q;U99_BvYwxe=*hxk_rDQc`oA zQp5H5ACMYluRjiZ{jT(^R$F4ei^9!S%OPl%|{RHr&o7i5Lp z_h@VOVx%Qn-CS>S{4DJLe(X`yxIGMTXy7}ah>qnQRHs|gcITVPg%<{+e|1G!>pYx45N*jzEp zy$fkUs;f4}g~S36x${93I`Xg#tfR{PJdP}lTuAwYfIa_x@^`tU-U;J;PMoxjK} z-X(>4ro7|8H!$za+N*zro2Mc;T#-`}@jhhw=rZX#jaOGOA8@r|?bcqu4D2h%4Wx(R zdRUn_x~K2L|HIq6z(-kJjsKglXn^3eYLuW+R=X%s#6(fE64(t%ASjoppr}xZ5Cj`8 zO?CklLU0q!(`AubdQtIO+gfW|Z7ra3NdgkU8<&cST%_V<9~UKn5-tkA@0ocvB&+S) z|ND7Ae>D3%&s@%&IdjgLGc#vq%q@&jnK?-NSzc1!_0DsHod;?A<*7@W@g3?Tx)b;_SnmnEN-<$;~7`OTCJu7sZpNtE5A`!Ib&CV~e<)CXNqh zKiZQadOc6$M{83fS=Fs$96UaqmMOzBvX5|7hXJd}n$$>cCpp)XW5;SXR=TOHP!ghC ze{QgQERFi|os)K2po`yIKmU+-gItoaFXEKG&xu@@&T>}1Pw@M5@2lv5=2;aGQZ%$9M(0OzkY3w{L)ULTfwzTjhE3KQ?~ zZVoPEkJR^>j^a_c4$XG=E4JH1LYrLQlQ;3C7ylWq#rz@u8KUEMbe7k}%=5@u`utRaDy%$p}UIpDsr{jQ>Qj;ss%O z39}tNZNS;VuCX(D@ur1N@!dq{dJ_jvNs~mCsm!&t}_A1c!bM-$E4gYY-mlZWdF&B^H*nn80r5@Nfp~- zZp%I#d#mI9BqF~u4pt=G!LHz~*@r`3*>08{%Kf=Jm?=u`8*_W+q3o>@=hKbO#cp5? z_HLj3HA1F!gKi&g`)Oj?FLQGw?dQ^K+Y`^xPv(g|7+f7s{{8a7owe_JIDQz!pL1=S zXr{(4!>2||rCaq2Esdv1T^dg>X7(r!(e5SklFZZ4LVKlf=9T*5DG)x_JiY#7=Bc5J zOWoF@P_~M}Dc&Axzk@UeGsoOsO)?r8{!BxQdrue1uNVXS|@1C?f?p zqNdgkm=`t2w^aJLmAamJaXCpF9}EU~(kdkUXf6p^Pd%2@d^z2YkzGf7E^q_W?`;rL zW@u76R}sX@AFTyRlMAAA{<#uxi zy2dWHJKghiryD2kg!aU>$!bY8nl92b6>36L!A%qN%HSs0@p}lKSu>{;Urt`0FV}OhEehKbv?r= zGMmx=hFG^yo%06$bqN#p2h2lvm`#fJxq=6^uM{W%;9AuU#W<1PJ$py%j<#gqTW?nQ z()6$d+ap;CV2%(Hx0uN?IiXrK5C< zP#2BKn%!+C(ef5LiT~9DqQFPERsLdBseb&!Y&ezn5g9Z2ixf<4{}yC)#Xm z3rIIcV`{4ne)Rj|UKZDKqAMszQhSAyGg|^@WN&SB{#^JJ%{-gkFR5luoLOmCUG9!b zmtEu>De@MIRCvU!AL2*F56zk%Xxo3o2!n(XypqZ%XGW;&WJb`MNgFgDT==t;D)`{~ z8)7cI8T~itpi5zfL*}8o%%(e(Oi5c5rjoNsvq6KMp6s(fY~9h8?vy_GH|;N1E&ZRi z{}=y#`)i5(-?aZD?b=^N_?!!Abv$I`3=`2|qSK;&ydD+LM$)d%RL46=lhdf`-ja`J ziu|PCQC?PE^IyVY{$w=4q{?HKIw3w|Rb}`EKU!*iQ2;y0`7$+s}r{uKKqzE-vu8 zl}(!)tFBl5TUG9P^l$mz-SfYpyzwrMMVGSW%Cu98?Xy{Nt!g%#ElHa)H^e(OadAlj z0W99Sgq}#eH`?_tW9U{C*E2YPw=nG3jLP`q(7Xx?md$S3#VP5d=yHlP4-E*mRQg3p zum!4}Y(7q;8fvs~g-smU9$?fDgK27MdD<5A92N*4>$o zG{+I>ancn&M?NBhop=uZR$h@Li@7eXZ%EJdsPoyy2L|Iqax#!vQ)jLXoZUw6lW9*% z)Qv&hb39dZ20Nl3KK9+o+Zn}iN8rFEL^)zz{o#xnd4*_S$5z|w!JdzNwn|onKBWtH z%6)AX+KxruRhW|5 z&|G)8At~sTqX*5+vE=5BTcUv;oPxaJg`~j2EzzADgI{y9HSU`*2%S;&*QQ7^_Sr2#?=Mnjrph;ov9c(N?U4 zZQDL;Ep72`tGM*?!j|*L?8{u=a~ru1Zu`P)l016^D4@Pj_nkA|4es);uV{{K84!#b z56f(?Ius|)y-Gf9dj$Gm?{Ucs8(CAh5eed4#rXyK2vJ+r4-r3)x|>H((yfO~t|jC5 zIH&4;XtLZd^CE>!vo6oxn7xApZGrMmLMHo9CA8(;CSE%E*ie3G_Bu6z#VuEBH2u?v#!)Njdd6MaKOBsv&w`X92Cct&4=x_#kcWR0)e?Fd&EAo z1r9p|r)}W(kXaw6hdLqxT)>aJ)@n}P_h9Sp&J_JFyYc>(jIZC?=%+im+CX2O+vTa526>xCtS zOKs8~#?Q2HPwVGgKDw>^Li}7ta6_1NK4st!EeQebZK;SV`&iuLVBxy+M1wu4IAQQ%1>owND7UCk1~PCPc>7I@tHOw*^z zr#E+QLGy7qJf5siLDOAy&+bMx9g3q~v z&$*IhG6+q^#7YB|v>n`l!Smd3fyaeR%KTq*=dS@4Tio2)@#B1l90U5)tktns+7yHp zo1qUDvP0;ci*}TGiq)+M#_}dWP2t9hEMxg_PmZ~XZlsEi&BYA|^Kse$i))SLqdooW z_qfnZ1)jbVbd>~U#e@1BZcGZ?zF@Bd2Zzw{q@H!Hn;CPFR&Jef0>6x&J_|d6pbS1I z@l5AAfoB>|@gH$lcdMoR2k4K3}Y>#a)DEo@`p$re+*=gaq9=AQja+zh|a92urhI4^<_&UPZWgc2^ zT;671$jQx*fcTsE;LU!qhUs9VQ#brR9YAi(g=WZz9BhP9@6)Wr;ojh zeT(*4uy3Cf@v6G5FTBv>NS3({HqEk>v818PX1dW-bvIaKp=UD;VDcbCq*{H2mv~ah zU{-tnDS-tzc`x)Rr{Zc)6CvE&^^(q3;F*(M2leKv-p?9?=8yaWDky+o9oF1fK-f5t-w>v*+O-&U6B~@*u}#M4S4*tOaZZDjb*2wthVbb zgc==+x5dU0hD;-ns3H7bD&N-g2@H~fiI*8kN}ksJ$SF;2}P48h$GccI$*bbTXj{ZtSlGJ z{?uYcfe2HzhgCcW3^|rrVd@Cio*AY}abXxs{rqpZNTZy)rNxW~f3H6A3-8)p!r8O* zR{>J3cp{`9DPdQ*$Z0K-h*uS{C}gy;?6goU%UInKI&o!X@6ZYFe78-?i1UfaxFMVE zw4~FC=I@Y&x={u-9_J}SXbNO@WFAy&-60`XIj?5_4%{^ATOpeDATc&h*&A)F#QkZs zXC`eM2=mu%xMwDJtV<(~Rlm~4SrTLJmN@wCWhwyESM$JU%UD*|+Ejm{*F|K2T>azo zi(!C5{NVVOfm$zGz6DW&e(`XEOUEiz*7W;#Hlzm*E4zsnxJMgeer05IhNqq83;oF z?k@1;G7~Q47x7F1Mp5Q)PcC`}Qyg zZY<*k9E9t%NVC`aOgv-(JLhVf%iHTuBqJ-LCAZM~j!}JWH=X#t&vdGj3l#xu;ekSm z-pe{E;7HQGu1b+fV+^QPk>zhwSguj~AdaSIG-tjVjAq~V@ja5 z+XT596r^+X z5^MQJX01=aBc5n%>@{QAaL;IPReUl6y6obzPdlg#XU)cNIy-VxwXj>W zsZ$uGLEHIbkDt;ExmO$2bzqZwEjyf2I06(dbXZe`1lR$VpXZt}qTE(0L9;G|9}-Fm zXIWDypLNbIYDW##D1s%%3C~|n`5lv|?&yPYGXaBV0*Q)RH}A;xaGC{5pa_aC70JaY z;q^EAHJ#Tb`c+JmB0nrsltdbrGHX~ez($F#5S>u%sUjhITcy{mz2K;$ie91mMpzC+ z1SmpxxfI|0m9ou@$Lnw#Olbf(@`&`S-oML=D@Y1#KjFD>c2VY$Nbzy})e-Q@i)d&+ zz4Gay=xL-85if$eW4ko5??9=5NFJVNU?iwez3law>q93dR$lm;oaZ6J!RXCWcb~}3 zs@qlU{LfJ}xu}|_wFVmQP#VaneucFYiYTV_rPC0?R_Y*IgN#OEG>g}cfiqAFzd%{p z$(3}p>q#H5rB5nWQ#XGP{8YfFkzSI5?qxQtW+%`JYlm74~12ArY`Y+$052SfJT{`8>E9M zhEx4XHajY&K=c<~E{wRuQ$-C1EK&S!RR4-F=|QM`5xvP+2=H`+>WR9r4I?SeQ~!oL zq+g+V+H=QqI>_dZ;c!O>y-~dqvHUmOF;nYKyO)DIG!MflIo4kw(d5Ottq&xC+$}Av z(?SfJ^NmHHbXL{X4Sy94Uq9Hk0AefQBsZ-n3Qei)j{z^DL1i>!YKg4A4<%$Q`yP+i zh-+bjB7TM~kC-c*Fz`Jsh1dj7r?_XJjR*@5^Q+8vX&;fPq<57~X27w=gI)Mld-b+M z3}ur|fp^R-^AP9unPZ*S?R@^AzN;eV|E<2G@r8TaE4#N2v~lkbE4v>{TfC~6D|0>6 zq(L~!L!`@Akys~HbJ#`sOKxCB`H99es!h~?WJu@G(QhkLy!FPS4Sa{nJfo9=FczI7 z`>(tJ5#HP!a0)yTZtHh+7OyiLa#&~44Ja~>RAgKO8j6hP(Xc{Bb)B2G4S_jlwOGw> zKw<~hnV4}fxa^}-)|s{X8ylE#mhs@IIIxT3z=rbzn7ORMz0x|)GiQy`*vK5RHrGMO z+}LAwNB6oY4EogEGNUE}i-v;UadxP^3WQEo8*~w9x?zj&E2Pnj~$3~D_fBUxl~xaqlwf`NsmBoBmpK2S>{}2 zORH_c2>&8A#TlEx!P7a^kZcdARcl){m;`G6+w3@^nWqamCK4?pL-vv1tAm!u zgQ)y%I%pY8CqN25swapLYFlKrNQYwd(9wyN zeHoq&iDWn;&b3K(-VK#4vGa_-9=D-kWjL#n>X_Bl(9I2xwH`McomrH8s@DzVj;uL6 zf1_&R3vAX!$Ek1Y&Nww7 z&@i3kr36x5rBn7iLUX`#i0@cr;^{g}7_C$SmxEP5+bY1451wx|K{?%n9JIMun=FAl zLAYp6I&{#TMHZdKcE2rsu`N;^qjo%Fc)PwadxUZWL8|U;(qoTMnD_blm#S*p6Zq_Y z9lVHaS?!vvW~%s=W^}OZN2#RNsPD&IqhnHpjmLR%t!sp`HbeE)aTPLnmLO0$O$R+p zkUi+R9vKX4JMsqyJ!11wsn_w*J$uHN5)-PE0iDb`{^o5k}49Qi+ZO zmzgT5RYi=gT40XoWp^OzXgX^c*1nl#-3#vVkw}qs1UERmjp~rdv9={6iBU$mBQaQW zhtX3=j}rVd>|X`vQ)cvo+m-eZbJ+S7l4;9#e1c<_!|L^ep_{3Cyy)T9Zt$$xF{g_n z_!d5tmCo!1mVydfB^BwQ!&3nL01O&$he|GY!$Nq5POD==XE>deV)~K#qrEU2=UUIS zQ$ro+Jm#qQt98q(xurfD>bF3J>Q~sDtt|0-Y3A0Y%IviE2|aCw_=fx2K%^Wo`#vJF zx;%%u5&Dg}R*!aw>}b=6^l#x55Se4WNcE~Jldj@q8mb>!pR5OQ>10db@ajjd`ArX6$t zO=PVjbN@nvlQV$A49;X&(VbosOIxgLnd&jS0f`C8(eS#1*A*_A7}OfbazR!#2doF@ zuj(coO|k?9dbuuVpYTIR)q19m$re4?u@`D(xry5U?tA>o=3tRMd)nA~SIE;b>q?z< zp8)Nste(>`51rzdIJX#U9FGZ9YC6|y1m|Kj`7 zsV61ndUk4UeIm8*@3EF30tpCr(`aSInICm<jVz-hOya^K%25n}#e(E9R)X4) z%mT@0Kyq?pJ|-eb`b;)E)kj^E&HQAxu=8;0uhZ=HVZpzb}ZPR%f{A z+eq=Zs-xSs$GpL5a{ChgUDgCI{zz)Id^pJ_f#d`^AHBd+5FYI*$gcC=7n8WR7 zK}R^H({PXbY&a6Lp7lu94OugiMWUR{cYA(7sr@e(&Ku`(pFbA?4LU+^I`NCxlazhZ zI~s^0twhZFGl&#`Kzbx~5k>mLJ@KgUhb*V}fPBunEaY_rd&k!k7{mIVlA6AwfB~$3 zR##B+hf{DI*ehfds+u>s2+R$w8?KgjgE3W-3V9FAx>%}ofvyUy zrm8|Es0#BU;bi7C_u536V2*TI*8(6eeV) z>pin8iicXz%yJ^(!{T~_bh{?7i*g*)#-n%>hhLcaE@M?eI4#t|A;h5ux7h=7qyzX> z4Omuf%1ngdpr3;D>Ymi2G{h+YYKAY+mbZbtu?8*G*ff%U4cbb^aH_yg zDm^ERK@llyy`+ECPG7Co2O@gv@HMw&Tk2UM4cVa`gnH*|xdf%GGxhW?O?g$eCnH!Pg72-~IR zKH8K?C;XK?>5cg=AmUChzm_cF5tG6Y!ch?(81b&(3>z?yj#iZXpp#c6M)30k~6CHh*Q{w@?{(rkJ}6KM5Qu z=I$7cCq$X2@+spXIZGAij$%Dc&w}CO4Jn&hHOwT;=C=6IpeRys6(@qEB^5duT@{}@ z+hd~&S&DZ#cU6_dJuy1ph&&f7)-TFDVII2Cs2#+>n7|wrD9et;aBHnsrk6k_yDmvf zs7y=sXK8Pxrw)2_RZhuxz_&JCRINhnh|ZN=LocZSF7J$oY4_u~o`Tr}U^&T;TzQZy zRb~NU>jZpdt^Kkf|eF?KoM6!IQk>k3@ZylLk(&*0CgX6QqE z4Mca+t|f{cn>Vo@e(~Y8N%)5y2z1+-`b`xHS!J5E<#^<$Nx@HTO##|0w+4oCXK+kk zRlTG^EvQa#$atlJU2}Rqa?u!8vYR(Gb$5tUaM)VNPAapyo$nae#NAUWP6mC5FjOj2hy@|zQH4kp}K%($5( z1yHJb8I-~w`&#-&CsplZGGFlF)fzHYNjII!$tXHRN?S`V35otDi!X5p0Q<~CM$HF6 zvC)j~%T~EPr0q{hqBi>jSsCO4eXfS?X_F?%F@pR$y-^*6ajBbusOA|-BxkWz$Kq%@|glZI0#nS{l0jio#wX`#WI3ZA(;~F9HZOFkd zK3xjr-9u}u>BJp2!i0_6O-`L}z%(_PSd#jP{JCRJZy5`sD0FWT6;>drUfk9%Khc z;i}6?(YIzRzkOH$!2IZoIxv=PMI+RVhm*-7=YB^&>8H@nk}5ax&WKy8A*y!+W%~QIO!Pl9vc~q$!2p5 z1|jWiJaP-kJ4_vjAX)fm7432wQ^KyD-h`5YW<8LyDe22@GRCA*x_WBxh^H*lnUesdDR!z{DgesVlkz5 zgi^GHtmg=sI3GuZ5?`b2jjyYp#ipv>n{ff8N9poN|rx(i8dPAm)kkafgGbO0Z(_gul&9v$y0@_I9KYSSi@hCGw z+A`9HXY3NSNP_nqiVqMn@sMJoiXJ1iO&5yDqTU`eR!I3;71Bw3z@#*k5vtU7qL2yR zg{t}H%2+X1R_YGJ>B1;-1gj`yGSg$QylO1k!S@8+WH0|bAOikjzTiO9C? ztPhcEJEHnc3UBV5iq^`m6X_<=1Y0kHNW)( zx}aL4Au7Rm=zgezN@$k~+`j2517Sc6Ea-@egHR5M|!bc9!pi#(dav#bhP zJ=CK+c4q#LFVxG+l)!b_LZUJwvRI~~F^!bb&r6Oa_x^(FOg4G1O&Z6v3YLvE0}fZb zE1a3;i9Hc-JjLaz;p{QiE~jd@oqC0&t@+~ZHuPp&*KXumolSB2ZdS{HcHFNXy~dY)?nn+Vn;a;PiVp%`-9=D(eCwibWpp@~jOq`wzzn1*HqN=E%%^09M3B zR^1(mK?7G;r4DUvpmAvnbP8G-TrFVd%xy1hcRyMQgd6|0K^_n1zPuuAj-mf&p7 zMFqr#RdpAzPxLv|9-^>lKfuK;a*FCtI0YBCNF>H7>FF9&S2PRIFceXSYr ztsoO0C@Vd5eOwQ?^%8cJbDC5N`3KI?+kM*0p%;2fH*5A%HCyj1g}P@~Jt zPi4>LwYCSFLNG?Sx6m3TnzG5t6S8Y#YhD}7T@ZTFGe8s&ZM~W*2ZQf2*_K-C5&*a7>-tsKw^&*7vI&i@q{0e%$R zJeRdWM7Tyy2-W;l?UxjNB?TRP=mA$!<=LmSyO2X&f5=&k_{e;w&{k&!#%D9t{vM2q zbTz)#+w)x!4tsfmJf$4Y{&lUM`ulnPiy(UoOK?r3g}bz}>~38NxE(@*X!H z=_VN6>yo?F@6PcM4EOPMDlx)EBEdR)zyjZ&h+sOc)8b;YXB)WvvK6$`>L z4F$rnKE}e%649I1G1j9^|t1()Gj)p<3XtQ+F>3eddGn?Q;FatezlLb zdig|>R&xz71+ue@FU;Bv5-6Js_V7aLDjvq_PN5@L7!OMq%q)2wCThHIon$tNbNU`) z#D6tds^(-S+4)y9oDyqOU}FcW0$)|21T`L+&u{4HFh+ueuUHEEMKsHSof7t|6AT%ovfp<58Jg>OnheB^*4rV-84d0#4_nt8>Z8X%~`OJbj` zM6cKjf3Jx~p%n$F)q^x~v9MONKpOhaFdq4v&Y2r=F0+{{*LsSu#c**71KcXIQjkmJ z(H;>Wyo8`?B{(MPes8+^Opu1`jY}InqA7PqS0K;Db^Bz{so42Dm$|>P^BO8BEbGtSdUNqdeOWS032_N-kDaOCdc}Fs{5HUXup-Jbca#>G%$@tzZ1UJVdol;d_WjOSoO-W;CByGY+fEk6*v1@2=Nsicy zqLBtQo~nmFX**Njm(?-i6`3%V&=V>TAV_KS4z} zTKr!|;GA8~cLWNfe3eZr&d}Z#?n7rOO4i|y8xb8@Ieb@VS%N#|e{qvD6yq`rPR2iJ zR546!nZIC@TG_n`&zv-JG6NuBBd=y9!97hf`y=1;-`v&2VJ&i|3VBGXA+%+-(<|*> zO?tukO3<;v#r-cB_%n1`sn*+QNm=!?tIw349Al)pmJ|W-~R?+1>`Lye#QzzLA3(V@kECL)Wl3^^s>i7tBiwsG^ zGFjLeHbrJqkRN}T?GFgzI1IE@rG3&o(a1%_Gc1l2rNV!G*iSC&Zt4=UXkMC%>mSaS zF;9OKOP_W_U537lcHQ<6CY@LkrkbthkW_Owx@m=}13Lu+Rele8PPB{0ly>}E#B^`Q6UOd;vR}Of9MNz-ebEOVqDoaRoick}m1i%X~X0Av7FFJHO zfv__zo+Dr?dMGeC;HxTkxbl1ulvimwvMa~)fx58%ZObn*I?MG$uhF^t*L=ycOqrTY z>MKQGpu_u8N`Eyop=apz%nnv&j?~0tHhXkBI+eK>P8nD{gq$%66G+$>0OP5 z2#3P4Kw;C@6Mavh*Hg_hG@k6V#>CfZ`z|I~hC zI%yhZMbg4tgJZ1Rz%fExhof7%h^OElsN;t*{$oPJ0Y z$a>&OAhcXKg)Eh4nD!NIw+TC~uaT1=J`sr3MNR@>9+RQ?qXm6D#} zNiC)QWGt5p67jlgN+fLtpdXu6xp)+)EolvbT&erc?knhSc`It_{St4@^*CIpY3PUU z>kN6CBuY;dKYR&{7VmFVfAkV1g7H!*n7+La8DKgkTd9H*%q=41kav4Y>T66CW@n=N zcv_8&o{ZJ`Nt{K&3Lq`2mUBZ#=0HPi=|2(@FRz_dyv(1Jn-%z~n$BD{E?BeLb}!hY zg0|rcItueX_*1c~doWWMXa_~v{aFDE+ZxN-csQN;K;&l}6$nIrD#HZr9Uh1c5;rkc zI3(F4l~QG#&>~JV;v7OMh9~?cKn6hQL>J@XwV)>DGXJw1Y6Ng{n#10`%2&)S!(zQc z-?`@ZAQIGCgbac8=a{*KFt9~b@mu-imt%SJ_ov$1B zJEkbnfnr~+fx%=rsnmitthqr;+tzygSC!L;+d74!qDiZ@{i`lxPKlm%fszZA`PLNc zZcUh0Qq?az5Us5X=I~YRo zDruQdDofhI5Nf9dC^jV;)h_|bSX2U4b~Q_MvQZNRH%1mU(=?7nZ3}Y7Lw86}6I@ZS zA`5uvj#?f9kyEENw$`u#(vC$}TxqddeLP2x;^FlKnk-x4ZGR^3L?RbcV}$ z7v=F+30taokwWVz)SI7TM1G|Ac?c4#e#=jzUwFV_zN9!cI@J@O-m&=@rnUCM)*|0V zWRmP&b%9V#_W}0Mk>sMsp+Oyw6~+2p zcwTt|&_A9cR<`sa+61vyp%ImSx0!S`Ihv!a3@XmmjQ>!TtSIQsyj}D}j8(+6L*_?T z7?HQzQxBC80Bw|IbLyJ8-I_oG1%Cwwtdy!ydRnT!&{IWFW_=tpeR6=9P0}P~Vr1J~ zs2KnZR0i$-!JuFr*{zp^T+mZ38&>ea3d&~4L-WP8k25+0!;4`_9T{Z(1SFYwu;hFX zn~GKwt2y+tTxB6Dz(;!PmjLSkr5XEx?omO(rNqWgbxhI~#$K>TSXOuV!X7SJ$K}0Q zM6;ApnDve56UC@`Nj3`VX*$Ndcy(HjONd?Q zMS8BGOsuod0V+HpzLDZ^@Su~5SijQ>K&jSST%kQju!%c`HYD3+ypUy77t2EE2EQF* zUirOI@CuT390lj^>O6swCga!t{|3KTfrZ_gdeEyi3yb3Ze>3Q{ zPD9A;(Xg^GXmK?o!@>zIqsZ0PWEpYgfMsmAmyG(-Q3_%bT7PE;>T4J;j!aC4bJ43Z z`Y{$Rrg3(rs`&!|NSFEl5nBs`=oWHKIy2F4Rf- z0CWuwp!gNU=ZtHf5KY$CqgYY;nyA5O*>rj^*7}-ns*vu?-PP2+E_F5*{Y1kQU|v?V zjhe8~Q0to27ZHl`6(&||^fd!X9hyU(Yp&)kzLGM*>Mf;a$g0B>h+akd8|=OqrjjBg*5BEJ3UXr9bg}!F7XcI} zm{Gl!nAa5A_SC8@K9QrEaINs|xZPn0k(UoZ6_CE_gBbQ+Gex zeV)N0XLBA?$ehDQJbb85cwD`iSj|BFJ)!mK(T7z+=Z*L6Z=X!r6TqhvPd6K%6_BFS z;Nvs_dAke^=YcKL^nr8<8A@&!g~-X2svzvExSx7|iclcf?nj2;d+~_#J4OWFjlCLi z&W||X6eNXHx@zRU2m94aC|lqQVro%UG5Vh}RHd1t81}t-zNg}(o@6WD#$nx8uwqDY z>I9Z}ndhjQQu1P*JXS50YgX7>27J_h{}DG$ga%565sz!!gLKmMQD7X zCoC#73b6htqyCFd=7uZ$z^p&QEkpy|u=wojBF-)5TfdcLW`z?}9!QDi{1-(; zobOA?(jbqe^IRLNQ~bg9%@jcgw0nc?J7UY+;^fjwsf*c(0y5Mqs}Xlv?@>*8k%M02 z_fM+*nSIq-uZ#`-;WGaGuF#ulu(F$wBH4SL&PxH^b_V`JoG`#@D~+x0Pa5H1dnDiR zTw3eDjK3bG&vlU?#oTWE^)0Rj;x*~rPP(U;;|NpF22A!23{+VI&H#D0Sty$&(d8bB zNT2&B@?><`9Jqkge(xPAT->DBfc?P61MPRH8rBDJPe_)W|%hg`FH$-_8>XeEcSwCF7iv5}BJa(kG&g2{12ud?Iv*t_`@4_VPz6>=A(mCbJ z%+o_mO*jFP#jIL?H$z5D|?&QUx{m$@pa{4-+%5s{X-!Xq52^3|_ zVpn_%Y}@>%roSArD_ectW=m*Kr{JXe6Ul)w;eq~YJ}E^eJwsw0Svw^CxZWk1| zo$@)|hxhrdA`3E~NK6`B#8fdYTFLqC_IQ}~ZWPKnxE!oVOjho;mo*!4y3BWl8qz|a z_lop=FrXa;Ssy&!L7v#a%X#afGrF{xN!%q`?-U@|rg)cp<^7_3H_*64!@N4+L}iE` zlCA1#MeO61N|;E;5wRoJW!NYA3M^&Zs(X&TUkJF04L=lG{?FLU+;zt(d$5NKbrHVR zmAN_CFLFCK|NK(w#65wL;isjwfq7w?C&TjZ*5T1Z2U!mgWh$b@eFw?eTbXAdyyv#e13izk?nR?HL!Tw_ z%y5!rgwnGFmN$|mon0Rp6*qNk4-GHH&W|1-&u8pmr#LVYAy(PSw}-xThR4%g2G6qr zsPnNAOLsgba1dOy?~YQ}EQxD%4TlPKqcg;Grs}o^#Tb-eGPR|or}mg9prm$PvgEqb z4)})lNv|c_?nUMFg+>`DI(KA>92<}>Zi#biz71cemNbl2yF-V1F&oIFTIhIJGuc@5 zEah=9-2U13gks$!JW!^R);4E0aTmk3+WKv=F1r`Jt5%#DIdW3k{#l*Ev%eM3Hm6Do za?Z>n+dd}gS6vR$Hqsv}TaSqZS?J85W!<559(7&<`iqjnJ*2GQl2d^HQ@#~U%Q?)0 znN1Y&g}E8ay~QU;L%LLux$WCX{y9=kZM{ml?K3G*QVSy6zUZ4H!k5nJDD z`%*dw@zayBrYqjRZNbYm{`s94IknUhWMNs{hX&mRlg1k$b&5h?u zsakSkP3SFd(iXgjrZF>5=_v?FU2@Hr=B-Y1y*bnsyp;y)6A8U5lPfZLlWZPje?F%8 zE8mj5ui6D^9x>0Q7Fs~ze`=;ITVv&>#-VD=uI>e{VEf{B zdJSmM>PZ5~JOXTGti(aR<`yisXExK`2fEaoqr|W63v~*k%umwHKun39uGub6j;*V% zt4-qKpbZ?R651zxr)Dt#oFUChG3oFjYtQv3J40AkXl)wf47RA=j8AK%Zzz)XhEYAA zQo~)>Na2~SW~#?Lu&u8r*3;I9sh%zyxVOC%ifpZu6+CvJ<4pTS`JS-TQ&VSl3J$aV z*`T^?;Y`n58_C~Se+2JaOrzlGjf1r)2|CjFphJD>9@Exp-6-4kfp;*rnwQvXZT+RF z!xR)so-1+_TJS+{Lq*@veQA!MeX0m(gx0zVJvZEy?U*gRr5Y=flj8UFpoBXdF{AaN zSb6BLZ5y7klf+1s?^zbmH7mHkY z9+OAe36a#N0K{P?!lE)?k}CR88pNeEA1d)YUR)eYRBtTbmbAIvaz%1E;$;vA0>oUs znX7OlHFLmA#K}VNf=}gpvN?o0U9r$9q)u6sb5y4$ z9Mp$~bi+-a2zTdfX#GN6?32B5%Q4Qv4aVZkRKhgzf~f0_BQ6E#{XNunYpYx=4Iae(cI@s^8N&;zZag&k>y}XE(riJLigo zc`yhF$V53y+^Imjd9V}93AgWHyG@20>` zWn;wM*ztfoP0^WRs6Y0L2#9b!?0-Z3vCfge&*L8X84q%?r_A$dQ|QC;gWdxb@$OoW zXWDEx?}73|fRvjXLC$1Ci_U}Yz==81v2B%nxo|&03h_7OAH4>d0JQ|5q z;yYV;o{V^A?V=RrHmyPH{v~``=woAO{T^qR&E{#km{slVD_U6=6xEI8-rbzw!4&Ox zr|b2y8gZHx(8fc51_K%}XEE^BJ5AB{M5NDZX=E}RocTlp&pJRFZo=k0hXrDZh&jV& zgX@>Cb(SxTYJH7ULQ%mSDQ1;4it*4{XbNc=s+0Ytt_wF5K|bpU*4k^%4uDL?OCOpo zQ4dkE*Q4*?ieQ!Tj&4Z}ecH>Yz87e!ONN~3YF;wa+7`Vi*}92{(2-09FTMjI4VMc! z1LA2CXK{0{nQZLDQx>PGRo6Br_y^TKxLLY$n)g>67aB^fy za@CyVEV{o})qEFiC|f8zRdc(u4N2(d;Wj6A>JVx(EooQw4r3W?_?5A&p=yP+yrXtY zaGH|Xs$=~iO9p3I3f-2CNs0uM%tIus-C`%zW`8980+gf4P$+pIyE32d-`&OAJavDJhsJH)lh#t8H3Th-BrK0bEbHr6@+tSdrJ=?hA~%6k&6kl1<_ZoFucX#I zh&5*(P!LeNY7m=V-eT>Xe3K<|07a8> z>VpB#NNFku_lU!Lk^B>a7*L{(jAIds&Z|VZ#+zQS-HjE(-s&`KzSLJ3_E@Icx&nid zZw703nbOU|DcXolx5kiCxf!)e7IDL&wlR4ZUMP2&IDRc})Ph7F1vdk*@S1yE8pT4=WUpGNu2H5$a)QkO7}z|1>{K^a6`)cdBTQn zD?r&S%`HmhDfR$3^^v-5WnqV@tZ!&(auh3&nH$utkl-IE6MO~PJ2*y^1jCiHhHY-x z^8l@H3OTvsSXVVYoZe+u=+h*t8_1BQj|q*=m+aD-q+}uLxBOV9jP2OLjR*c?)_0Pb zt4r_&TWGb&hlo~Ek@tvEbGr6f)Y{ESM+VnA(afo5%ZX;#8SUoNSzdX)j`eb-`WZ=!r%ZG?1@Vqog5&kK z;*rs3Plc+~uWuzP8YZ;e6>%qf=RDf+{=0&N@2rIHR};SbCwxyx`0ktVJvZUIHsO0o z!uLxF-%As|s}sH#Cw#w<@I5Et+n?|~JmLG9gzvJ1?-dE(;}X6%Bz#Xw_zom|FHHD; zKH)nz;kzi|yEx&yD&c!w!go``_sWFtmlM8!lki=a@cnke_dgT9Hz#~gN%-EGaNpv~ z3EwLczE>uEFHQJAcWsvrhn{Uf=RE-<#m?^gv^H0K_kudvP1^%D@wD|rr zxEA02r#tqW?@YJOne@JI*E!+8UFF#B8>9ZcZ$H0j zgL~xote5A!v)?z;JNe47E5Gu+G5?t}22bDTD=PPWUAZypThbC7cJ`jVzIP5kaO3Yc z?eKM}8a8(SuitLV-zD$-jJi#)`^qNY`lo2WExx;MzhOh=%gw&eKYF?AmK{5NeXsA` zy6Kxy=l46eDKd7SNE^?ebX?q?|EOp>3j6;KIdNbmyN!c z|GxI<=f3(>*JGGzrx8H1PgEKSm{ylfj z{k3mh$pbIGbIHrT^=U=Ft={&!uRc1&_|nnf8#nKh$p@c()A!058%m~(-{5Ony6>$W zmu>PHT^?RMYV#)FZPOln`tYN5zJiAa{`8g4w)h5KzIWv3Gn#zAzcP2v2Wvj`eR|oY zQ_FVl_ca~7?6g6b?f0!e^X2E8*M8|c^tYuye(WzX-`!=$0>N*izTf;Sa`9`cKJ~fl zd-=~#{@Azk-lQ&dD|h&=d-lhfV?NmGyZ_^#&nZ4*Z5!V4`ul1(?YQ&M!@j}(KR!R} zPtW+Cd#q=2YsyQ$PcOdi{kO0AyU+al&Ru7Iu-x~^f)~Df%dyh8`-<_8T>j)5-#?3{ zZnZooPx518cU#ip8wu{TL!ye%&M(0xE+~e~c6M*@=9rwBY6!?3_<~cSKcf<}G-$%oI zrd_@{c9)uC)IsRfl z1FL&%xbKM%+Iq%$g`ln+aKj$9<&gwP(m8P>^nX>!(U-r87{Ee@zx_HDb z7oI1$b|}~1;mh$tg3gubwQEkEtb?P3=JGEq`>Lz^UvuqsIo^`HCr&Dz+%6z*aDGAI z5S>i@;;Z5K31v><8PDG?+TrIT5q^hw+&F|^d-6B0eZ>Fry=>~;_e{L^u8Mw>%E}yf z-7xE}n@jJRS`jEM&o3*fs3@&S1SU}zaN78@1eSj zXH-;7y}PW`J#~7Z^q$gk_l#Mk<&(>1%yx_lwky63->K8@>4L^CdiX;*q>*PYf>pp!>(Z#+p~tkH5Oum%I0;-M{-~p>NCUY0nJ3 zXrfQ|$A7f-p2I(S@9&;i_ssQm8m`N6MSe!?<7>~e1)6Ln#k`m&h9+U|INbZ8sGo@ zPyAM6;Ezu|^b`L(3hpxBdGl&3uI=%y?~#9=e_)y`%m3K#uC8uY*3SQcU)SRk-|3eg?)8iAPXE>F-wt1|n%GS%E^PGu_|bVY zG9Uk~|C7RgKiPWo9>4pMJ|Fo`)0R#Cx9iTnc>KFh`KRZf z7p{GNfz{n{_V>$||I`2U zhG4&|&iaSH_3sEOG*zXfkedHa^Hee043p7&P2?*4mw-<{Tab`Sp(uWTxsU2~TI-kYuOO4lFued3)o z#n=6;L47X$XwAX{dA>D0{#1Ft`w^eNWy#fNebeCESabEkN6-4qclG3(Kby1lm~Ytg zL*Ce5=J5Yw%`dhGj{j`XWqWRad;Rop2Nm8jIHl*f(Z0_|4(OS8`4hhP#@w9Ud~B<) z@cCXte!u8jU#H@Sr+@L`IsQvN9aR6yv*-C2*B?2sX6nbedtURm4oM3QS`(N!tnau( zgFblk$zQMBFwA$^kaMm&I%|>dcz*x%*hBTc`5!cn+Lpc7=f3uzR~Obc3*S8R*kc=Q z{&8x4sdCp5&cBR0^>AeP3wSxHKiYod`Y}*i5x8sGtm!k$XH1$nqr7}(`Q7~{JNR`E zET1yNJ+Q<*kk^vCD@tcp5L8;Gp7LE@?jESY6;7Wd+H*20(qX@smjY~(5KK2-QLH*jW@I|i3ba#sXU%+pFm70(QybR8q6qA(?8 zVnqIo>66Q*PSju$BIyl=fCySrYs(okOQ)kMr%rd5OrH^$g4zvEpBiwCnO+hIluVpL zl=>br>gEx7qit-4O&3y>P7Jv7@<$IFHPT%%vvlIr$y4b8Zbk*WXO>h1+=U|xh722C zNX1lDAw@o!g7h=N>62%aPXj){D@uPFq)Jmu$~1kXqO(fMf~D?B!E&jbVCfhcoK{*s zbz)nO;HJw_5sqQ>73FAhjhR%VJUIP|z|?7_Zo0+tlJfgbC6S7_hg~_!u7%^a@~QN6 zrE?~hmQJd0mz7SxCon}Cs$kg7h54i1C8}-O;V)TL)k<}P>Y52I?Q5i(8Ty^7qlC~% z<-v(GajAPsNrn6F($eW}AtLmEYGbDVWcrNR)9p%3oH40XI43Va9j2GMd$+NVyLW}V zkE+H%Li;L`xd*y0?OkzcX4n5Q{l7~hYqkCQU8(;E&FMe6QcMae5GXI1ekB1y&np!t z_M7N{Q0_qk-9v}u-!*phsJy!dj~Q~;EyM08bY!)U8rC67+FqJ;+DtcG=ALPH^?ltH z&;W~Kh%QSSPqm#Y>w2o&^?OmXOUkFi7&@}8`3pr%bl4ANvf(+Ts{cmDRA$Kw!@z-4 z<9rAi+|x?tOq~{-=B^0dZ8y5+mLE!MCzw`J{*%&j$1TH#4k<2l3@MwTr22}PGq7$H z&uJMZe%SEgj$vhGm|JD=ujUgG@2#_OAfh67YfhW|k`XsF*S%ST+ep#rjj6I;CX# zB5J7(Qy~u>8E?j{Ks$n^7W#H#=^|G;`#S8c{sFaI8ZB+%>&qT4@J}!$yuS97ue)S2 zIt#ooZ!4ss+X}ubUT}w6Q#M>t0!(;AR3f-eojwzrSZ7q7gMLN0P#w?u^BlAIo5J5> zU!LPfgZ1-8Z=OT`>%>+m&M=afq4!$aQ?>o1l|wi zGREfbR{mW4Jv%_>7Z{6qZ@E5C;iME5RJxnmg7c{2LVAjLck}}-l|O3at%Wy_cI1~# z7bPKd6;7L`)tuc?QBn78HxC*h3k!5h#VIf8^K8PpC+Y(3MtjFQIQQ(SbP|k?;LS1yS&}~958G`Z@c%9JHie~- zJyn42Y~ahg@B5F)6-z;(G_u)*Q9sQCrc0Pwp&6-Dw)bauLD%-ClZ}kaBJSk{6hLaG*YSXFD=?3VY{Xk8rtb?!ZD^4{WQ@wOe!=PzgP5s znGY4JJAK{P{%~1s)F`1}oih`Ah~8f}5%?93x;fscHg4_H|1d;MgOQ`iE1li{HZxXH zLROmxN@mV1Em2f0achn~B`QCN?|+x?2XOtbGD@2l6y^^bkvIImZga^)w>0v<%^>Lq z56>HU=QA zD@x~}3$(e~PS$9*e62!671??p-7#Z&$)s5&(t;_B!t#C}ALHe~9{Xh1;1iZ@P z>VM`g+3p1bghfQXkbuY<_6R84EC?keF$scbdkM)6q=qDB5pbo7`vz63bwzDI?dRTV zwL7-jTD5A`s&%E-Zq~Ng+E%S?|G(dvnfJc;CXucE{@?dJ&GSs|%sDe>&dfW@IcGLw zm-_*Joel!961hP&au!l=**I@!#%b;8Qe8bA9O$~BqqI}EXzxtGoCPtG)|tNla>nAQ z6;K24%RGnU*ZCsCR<5n>TxtBrd( zewoizmWE5)Uzr^qx(Lle7~z{Z@@$|?yaBoie<6glpo&@Gab4pY$8oMcrfNlOu@xwf zobAb!Rv(DjX&1xnva0HpRe5<(%1&v4L?gP@DGi-1%&u!*o|@9dfRE0~RFnYW3=m43}C=p-vT`bEiq4(Cz~563)UsO8B@k^{zB}DjUCrDHV@5K9gkK= z0P~jLCP;-bwYFtl!qls3ZRzfAO}Y?tLUx3%jSU_AHedb}WV!!CZYOx9^Yi>;g!kn7 zO6R8$OQh5E^HePuj@pokKMB^3$PzLGIu!e+m?UC`Z;ohQwFzld9*jPi z79nbQ7!!GFs?O?{*T6)fl#vBtkvDQ&BMe84>qQFgni`8$W1Q=3!LTD58`5B`>^;oo zEp3hwhk=8FVHbvrY2DD$5$@?qLa*_@)QT!7`im=SE6{wQvEq+OYgbfEra0+}#B^7)T^&QhCUbmM{vXa56g@3A3FIuBoM~ zqqSi(q}G-V8Xiws8?2~HD|d&Cx)egG4#0qB2W;D4Ho}^g^rj#Az+F(PA?UUF>b1ItCbW2EqNWn$ z%|LDpd{Ff}Fr|yyFZ!dQi~1D8uoP~<@GRAAhx^##cx7FMk2n^t;wvia6R3?!Hz#=3 z40ca+SZnxVwfh8emWs`2Ip%dX1^Z?48k#;0!HANJ%uO~i+H3FXL~6&^^y0ZQ=gyj5 zGGkV%QY)9%)hFsIYG44UuclI8m!x(9WtklVS+bmM(oRfvV8r$Xu+^}c+C+B))R2a@ z&2ETdzv*az+>^(Tf#GTc*@q~C$Pk@;9N|+ppk~|F(Kg2P)WdK_5=AJkCaMk9pjnfx#{evGHiLpsOy0<4lWHlV9FqoHCw#j`5UC@!9fwq6!P$1YDJ;Ior} z16Vt0tD6@q@@0ZNYm-phF@wnxxz((j+i6~j`KhTIt3}cjf#C?k`o@+fSduK8J_97} zNo`_nZfaS_Ny#lxV0{HfSxJUCJ7H6W+v42ACQR4^@c#tv?C(O}^|?R8Ul05${N@1f zT=Dk|d@o zOW@CREJr5nUlnFKs1iB59zKUGP_-tTVMT1{#MfJ&?7{?+*7{^-Mtba7_VNme06?fDnaTSxk_r)kkPW8#;+mENnD8`x^T<Syz=jH zdqaDdFK@q}JUz3QZVlr3>xT-A>t-mczniJscE!bo@Jq+A^B?H%zR=oX^ZwNvDLy&? z+Z*Tjj{PjI=p5gEzk}`X@7~h-m90O2eERpM9E?N$7=NsFj$ekI|3H8Dm6ks~{cHBp zkx#~VZEP6)bPPNHf&T6bEq@!^A3m6u+b3d2Q?n+|0mSSnP`AGs7k4+xNyo7BALy^6 z^{qZ=_62kC9UrG5-QGACe;4A@?Y7SEcd-5ab+pvaQ}i9JzF;ms*-|t}i`@6Ta9=7@Wx?`ZV}bMg0w z52ocj)!M!eMyFQ02e5x327*niGy0{v9OwD8DNVihYskWIORV$z9c+Jp_l4Gww+$cs z-S!*fUxVMhapZ4b^75DG&%UxdcwaDw`&a+=l^0>^_r|&W7x{oPwy>bJ0q;d?MX zf43k^|2F*YjU%6Xlh-q#O?RN>+TZjp|8JnZ(K$MPzk}`X@4nDtT{Av^U;CZ$ACG$9 z8%O^3CNEd!{VmUdrgQm|S3kdg|AFSQueAK}>Hh@kd~ckqbB@nAk0Tpdv4+7N2UchF zX%*1d*1U^x4X*JI#`*mYw!gpoLTiWRgTJ9a8lL_P|K2$Aw>NopfF9lcmghjzx%|ni zpI^WKK=asFTK@R-Z$sVhjdOL*c829TtXXZcazOtx{Eqjq7ZvX0KN;uuJJ|mI?uph8 zo2R4ikMH+8{Kx$=KFck8u-Tp52Gdyk+D~)G=eRD}Xy)w-fC&^!oG|cu5xsrLY4$a5 zpPH;)dXZC9VTbv1Tt)tB-1~ott6#to_Cx$`1AM1-3w-|4_v7l(53tq%_eHqR!fgla zGjLuelR6PAdOvky_t#-<7F!>@ zjBV){X2qo!-R|Lb=^sGbir+%MU(8q7L}fpuab{- zrZ$Ozm1hXK*zU;>jqQUe!&zn#$m4Qsc)@a>cS7>-Y@Aw#C zul&ujdHfZ5)^f*4wiaP@G-);)qa&c7DyI(sK`#ezs`e>%5ew8*gn*_{Go zF80`Twx5)2!`>2$lC3`LkUf`$u&b*rCXEQ~2MlwYgCo}&JG|m>Hqyh(56Aut-wJA) z{gf^5<5Kz-Y;3e{VQAc>;)$q%o{^<0AMV%@rD{t-sk&`w$`L+p(v-rP)2B{MdcMk} zVkMvitud*A0eLZXl*0Fzh|QG!45YHFn)R)wm#WKVmZ}!Go8cD0T?W`_xbZ3$n}!!f z_<<6JS*)TZB(2+PU{1Fvb=&MxRXV3sjfHy<{sR0exQ{tYg*^yDD*YH$b=p~}v}07I zX(-_y=NY%a#p3pS@ORufTwuS$7;I^2?E|pOOG?#lI9$~#{$l$}I9-hm-)qAT?tTd; z-L$iLE)(03kCStIZb1j*y*xkUkyJ6`S;~gb%Z4i zXUwqmgKmn=+1Qwjs_~kxtE8pXs)A?OTsT9}wj_FggTCUS3tU-_?_IWc?!k&uwE^)* z;`el$j_LQt?QI^SeXHnE?0c&>f`k*>e3GhWE@rMl_p+RR#CT) zX?P^)<8w*pi(B^gCB8k1n|45_cRA7_MjnuJehsc7U_z^|Ea#x_c14v}q@TIKs=gdA zwnB*iEEPvg&Iak(p#Cz?dF&63^s^lMPNDaCmVKvDQB_ur&C$pBzRbQ8L4DL#ufR#5 z)W_N%A{l3G_J@S()si!))Kwh2qN1vPDUJcz(_y{8u3N|5bBjf}Gg>vb9k=0BtT|)T zXVXz~j679UBEwQ`;Ncv5rmr_sXo=lZF%Y&THzv5b*G=AbH{xQhj`Q3!wj?Lb-e)<( zV-Cj)!kv&8IM>0kWdynmWh>|jZ8+^7>+aml)pcxF<)%cl!INo~5RfgVO>$rlo3zum zo13u*vdXm)U3gh$i`Fjt~9C zOYgtEW0AMseYEd*ee}cL5na919bZ+pq_(=Mde7rLdC2UWeGz87jQ-bGG^w9GkNoEQ z)l}Cl-Sd|*arb7{B9C?}vu~v7&1Ua5=uYCAyx4u5rLT8tZ$9OYZLbKT$D6kA1`ak} zb|ao=_O7R}ZI-*Wy|m4(4eMm9T*fTo+l3jg!C~U^7*wK%i^Jn{y$;nG?DICwPi>mF@Js&OpF2#LzuJ_e0KY7U`}3bAEVgmxWW>Rl zK{-EGp8@ZWW>1IW*$xc1*dK{w(KMjIP>h3g`*0A^GPu?9biU1-b;I&qf-vj;+*y4R+E$fo}$ep&vV_+_~t z!!PT>{rQjO^?P>DMdt5`rX1P$W%;A{CH)cj_0wh4zW#7Tth{iQ&pUoaT!AuM9i8M_3q5kbROa{*shjSlU&2KSlTYTHo)SRnfjOtf9mwK7UxTw zS%y8`Cx#O;Sod?Z+;tT2WbvTeQA*L8)p!$GBGO-{^xm+|_`&xC`O0 zwQ&x{?-^V7>>QoF`5keg;V1ht^ZPxU7t{XA=ieJzyZ0f!M!qLqUaFXX&BdjP`4=Ee zn9J)<>%Z;NQuXe(QWZwo9qu`cJJc6{DDeEd=Gs#ACAjP1Zh`BxVZ!-$;&rHBxDjxt z!Ch;^g!2!_P#UVRn+T`0Te@*y9lk5SuWBf3Z@lgNXBU3uu{9S@xaj)}|F-$2nxW;- zEew5l#tp-#T)AMz>SIykFQWO_|?wY&#d+{>0NO z-gf&>3jeb7$fIt1ul(!4b*Q-&DyP3 z2i5i4gX(r4>|Vfj1NN2=)_P4)P5x{uU1mk@0&X|)R|Hi7++?_NxO%v5xC`K}hkFR_ zCAi&iIadZ%46X#O60Q}l8_xY*0{=B|JK*kwdkF3kxM$#Ag?kI`9k}=5)Kx(hg>!!+ z;hz9k0=ES2M7Z^E-EdprE`hrS?oPP-;da733HK7*TX65eeFT^DxuD928wnSKn+!J# zZUNj9xEi=sa7}O>aHqpv0Cy$a^>DYt-4C}D?n$_p;NF7U4fhdT4(hr9&i(zT9uK@8 z$Ez~fKaxwJBto6QnOao_eXBc38x9A{RW@9g+|bam9w%)9JPD_rappByhI2^VPzbq8 z4yc}q%RaE`l?hhY-GXqS^vL*(rPw8fl1$8X(%iEiJS}kA5 zvz0KCh&MIK6)d3hj$Ud`k3q7{%=8byffwAkds4EAhjgJjRctb*AtY71{rK`^W2c;T zQtDkl+?U`zKOA>7y7-YmWfE7pWoEBV3DlyF8oH8R#VPgk08TrvXoG2-7rudbQtqik zO@LGI^oKxQYckoPCI(kFv~(|S@2rDesx?_Hn-qZ0QVANX_?aL_B$}WXs+dYN)9gmr zIF-OUd*eoGN)uJ0r3=?UQskMb60KdyyX#CUOmeQb(I`v!Mq4 z4q*^az&4O@YkZ$n31jyJy>|FP)vKi%sVNlAn1^)F^T>!sEC2-JRuJTcjOIZ`` zUCpLCfmXjkncLSY^(mczhHnUL(aiSKQr@lNHyqsre>W~WYy{?8I&n%DZXv~5S~KYk z3pA{Sg;R|Vpd(m54u!wH1@#&*kV*Ju9To?go1q%>x@xsB(A=2>qjCNMyDWejLX8mD z9>9VXemnR(y;z-$-?nvzug(DVu=YmA+Z4b>(2X4;scxo!1J?WiKb3xzgmKOcbl~D< zJd_o{XR`^n1Cbp!o!Z31+3`f+TVac-u+jkSU` zSo*u$Me)8r(2bKs8>O8-06!Mn#IHE-{fpePirT7*%9%6du5ILB0J{6?HguiR2;($w z>sAwx{{NEm^UiPapTGbAH9&nVAZ*Y&q|};!E>acZGye?!ov;$?ky7^pAM_nEHu%#E z9DZk3T=|7{ga6=QhhLN(SDQ>$l7Yc*gbHYYJ0m#j(+mH`EQjAcD6XQ0VPE>Y7dX5c z5?3>P1u*n4-s13!R>sv$+LVp|4gQG>9iDG8Z1QO<27mc=4!;H}*WLM<>0f=!;q$xW zYECQ@UmVu9d^K0%?#mR~=Koy8;qL_=mF@kR{IiBQ{7&E>@5TSO4{`WypNp&Kdf~r6 z&fz<*iK|z8;h&n~@HN-=nSQpz7hm63`iGBl`1~8=>PNlk|FFX0ciq%y`sEJ4^Jd%; z+AICTD?I$IarMn!_{To!@LRsv7yU<*4!`EMzVJIYIQ*h7;eLr;^tbgmyt*TFy0fqJCFeT)j=OR8xmWs;mpc5Kd;3cN+bbPD_T|3tPh9WtyS~yF{*Es={Ei2( z=e1Y<7v1Ubiyn-tCwk!%_d9(4*W&7Xz3?;eNld5R_4T;A+-tqAf1UZV!*_fG?U%+O z`)AtsVOas2e$nH&>(?RiYw+C%Is7)@|JtknS5EctFoAq#UW$N8zh#}n$8t*5lQc5f zKZAe#E{ER@lgW<;Ijqb7a>z@w4>x5Dj>_z{E zp+Q^z-JdR1mk!9JfBOW7?>H4U$Q0Vv&t;Pwekbs>pSeF%zC$NFygIE^4e!O@!08Sj zJH1pL+zY>Zw!<$vqf{;P;axue`Tf6H10%q;=}w&Ezl=^yl}F0*te^-k_#qR$bTJm}p_( z`v~BX0$jxeHK;6N$!rz^-$8I49u~lLUM{1VFe!5~$c_}*! zj9U}b<$j>ul}PIM7TTcvU!y?6(Dy}yc#vr7lHMJ<0I-iKaiTJ8ji0hEA@%BG`y(u5vFA!(bcTh z&bEF*$@X7$<$POqTk6et)PtqwrQ?Rv#|%V>2d7f=^(QECx- z)m3Z--8~&GO^N27HZf7jwfD?hj2kVD30gK_WKlueHpG^30s_$7@kL3>2y8??AG4&6o7YNb{uhy?hFqXbh|(gRb=nJWd7v9AsX!fCpQwj`(5^KsiElcJsmg)g5t?mFc*WHT-d9~!w(h8w7&7;V^v|pyz(9$ zW*dSw6PW7wVbsr4AX~m!SP!(3tVwSNKeSk#3h|-%zS!o}mogWGs+=OGN}OUXLD!j} z4Q1mK$yI;u%c+k5kx77NF>c$b#IR;=gmjP_0g-zc9N>48Sk)ZK<+?&)|6P2HmNvO7 zUyO=o!`bCbFPLmJyGOtLb4K83J+ zmPAW)dSjY3*I{6l~ze-Orb_3Jm}FLlZ@ARI&Sxg?hjrh8D!4qWwO` z*C%_?>NLbmwC_XT{u`n_-78w7KToRNedjsDmnW6)e)2S|6$xt(LkCwV=Ci%?gguvk zrl8ctvk~vLUh$0RWT;Ui|9hV$=(N;KNvWClQ&Pj+IAM+o`ZFN+ls{A3H#<#4^j=gj zHT9Pe@%cU?HrkvGN$TwVk~Fn!ibCam7f9~vgQTfvLy$`RbBOojKH}NWW(ZQ7?~kBA zV`}yN#q)nTYWHs-<2U-q*nAUHH`MZf(hq~~tC*rt-|x35CTomFsBS9$l^D^(m`&^j z)#ywO5MYl7#7wcc9KRKj5tJmf1>B60b%0E^?DS?hR6jx9#%sm($H2CTjyA#thhu%A zf%2dQ{1O1k!zSZlPsu4RInk=HVkq8cgH*u*#0Ui#jaw6P@at2MSyFH-_8AnZtQR6Q zJ-k$a%`1r9jJXG+KBb=$7c}$Kvo0v>P_tklkhl~R)cG!C)-nR%NRYVO5w9M|N{Cu6 zdC`n9>qw=}Mb%)G5lldowAnhKXSd3jY z6P)0>Nqrf@hLJ!|Rfpm`7=OFE$n&pNIhef+yhTmK6lMIa>K@MzeGYqZJbomC+PbJ0 zLk6)EAH>kWF5ao7UZ71~?**DwPML>L-JZXR#Zec+1r+Txw_yfehoOi?O>9yR!b@RE z4wtD}s5zgGWy zjmvF`8mu70Y%ePWSCMv4YOcaLtIB`5U))^MO)0`7#QYMs7!-c zCIi4B*8R2Yg}OY>%R32GsO3>H8eF#F|WD)tkz;9sP`Bx#}7qk3#)L)gMk#e8pW z8HX?~WXGbK45ZaU9tFgvWhpFl%>eo4Fl0~~U@=Yl8K^{GZ1oLPO{us};paV1R!jSgRiM!{bOkSQD%r`vH| zY4Z#po<_gjA#5WE65oS$;ieV{c=$8vY4m$Dg>Py(#o?hsfIf|WL-5s2dLNpZ1XN&t zQ2h*9|CeN6hHKapaw~g6eNQ0eJ_s}Y&)@&X8u&FnFg_RlLYi;il*MLEoi(*MhP$mx zisuy1j7{J5nGo_<(3i`vkjWcJQ=zBy`)+E39&qcx| zwgF%w?^eMVzKw7&l-+~f((BACq<{vpp$>HNnNUAeXR#})5VueCG^<$P>~k=-g%cg! zohon+{eeOR8{4{7VC#hv422VGvAabD&Nb+qaDqomRNy>=k0MOHCUCw9=Oa1tAo;)r z22=nNJLccqHh*OGH{V0JX&Ri-jbq(F=?p)53H%c#qSW56Xqrg90kTd zB7-3V5Pu+SiYkGe5FS9M0v^;^w&YUepw98C!T@rzQ#3u4As&+Rz{oaeWuce_@ zOEe@@TyUfp!4J+3W#^QHcIq220OiUk$`b8_9&77016 z;gN~v8dG!VyOwT#E}qoIbOs|9Co2_t#3Bk(2o-u%7z-4R%*E*=4EpkReCP)@>gZgf z%Hk8sdnC%k#Bx)wl%%V{UX-F-dj4e;7JZ>3!%;qr}vlu#_3l`(;Ctq+D zTE?xYx(J&`)SAW6^h1y91iEa_gwPB68jRn$eASfvtI&&CUB%5%D zcT1xR{nWy8a-G3B^s)s-4O6e!V7_7MRU1SNqPr#JMX%6n7C16D-4Y#oUEd3y1BIh= z`?Oz&-mnQ{xoi10L>Kx_686;4E(~({-;UAaT^VMM4QWd!N&xoM)kW3?IXtyjxvR;EJP0Uswc>?Re5K;WIx zQ-$)<;&^bDS!;C(M3;d23ljbN#(KN@;yw7gzhgf4nS2F%NxsH*WXJr#3*Sd*@5cN9 zzFJ#PBh&&^70#3eCk0Rmp-=*2GWH|3w0W3OfMe8@(J}01h|t+z12{`&h|oFoV}{6* z86vdxI}!|KnHeHQo-tF{>0UFP^5fFd7vnPGogzsmzLG53w^lKczMD+V5BbcftN3>tHU9A zhq~B@idXV2#N&ags8W~s5F{l}j$P^lns-#yWj+w&nY#|uIp0! zIK;@Fz~X^(2AJ_5_9hWnJVbPW5m>UnYw6|>NEcYLAF+sn6hdV`DvUv38Q>FGvVUNs zjvkO9uy~l*fc^v)FG|sXG=ar~PZ&UfCHpa($K-*<7&5$I@xU^Fa25ut^{Bc*9If(F z6L=!LzMdq!*lKqkeh6Z>7OZHDKEN6fdSh8QXpr~Q$ z6&uVqOucG@s6kI)$$rfOM-E6ASh8Q&51}LwSO)Yduw=hs6UGLl2`t&WEWAkNWlY}a zFWGPEvrrxRq3jR!^(c349c25edU#gGYpXEEDV-}rE@tIC|2_(p{WrZ436S!in%f3) z>sH9EF-WjDzO-@$-UmYx+#sQ{Rp35E7)+IZbapJz0Q<@SIRvk=#{}4-F>&Gh!w#7} z)`mj^xj`zsFu-;mD9jlk!bEnFMMnp;v~TDVGmpw17YI;8EX+4R0?e#b0D$bE&mJE* zRHBSjTxV3-69TV*BTUnx3#927L$xf!`?iqiBhy8oUU>3IVc=C|HimJ}NdcckRk}nf zza4oF>ri^0^p49AQbV=BHbn~7uchbHI|9GZE@X0;j;ohIg!@Qkw)0SST(yqazy}lDIy_v*oG8(!_b>T!4xxWAKIB+oVTZ7A1;WS^lf8f2l^*BMvn91GZ zi(Hva8H;QgL!h6wU5k6T^k9DuiQf2UK)wj70gcVv@O7wMyQp-&rD`kE1w(}~JUOg~ zXsiaY^`sG0`k%fgl%AQ=#mMDkIGXCYk*r9n=N~d`ZdZn`a&*02X8MnQk}2>OP@+n+ z4%BY+sJ&~csd3*&Gy4+Yq?( zo%nRKvvFH3_;ng-@P)@v+P%|AosQ|VLSn(#vqIAEvqD}W!ITx!pi@>zgHKr@O*qX8 zX+VA}q=BScAq`<#A%8DL@#&a>i)ky^dmS^7zy()goed=)B>!G;{WAy#|92WGW#!78 z*$apDE-;$29L0`?C+b%*V!#&3mylI>l0Fwfe4^Y|kpWeBvW0|ldn{y%h2*F_(g;t} z*C0(K6eXn(;Rf*EKs7LwJ*XtSQ_sizWs0TNe(ePt7kIDIKS${5AoZspX z(lQ!H)eUBo%}yyA;m7sgQNM#GgkR8eFvF!Rqv01VVZUWG{E`LwETiF{T3E_58h+V= zqK2tgY%t$2^{Nf}Eu-PrEHKkD8h%}W9X$7I84bT-6J}UO!@DfJNM&aX*i_8l)RdD3 z?F>Ho+?1mBhvQI&1B>w@+Jp&F1J zqS>{Jl`iy8ZWcxw93HbUJYIo8oub50A)xeF2EGGe0ffRLw(hqXU`nOOF(tPN6^KYU zp22)bz4*RkkZdpuV{)FZ^pTl4111TOD+lI6Bs>qPhS{7;m^0+8VJw<1Vbs9(kj;4> zgVoF`dM$X`j;O=c2x|-`6|F~R&b#3~%)2ZclDT;|+|RsA(*~ktd`1=C!@SD|O{O^S zhWnUzITHcz8GXb3OuiiOG5MYf;S8($;N{;p`8s1T>?pEdP9)Tp#sipyd3^ApNL*bH zzEhL%Gbs9gPr_HBKHO3u{k}=~ItivGVS`Rh!Umt3giSbY5;h?JBy1q*ldvJoNmyoF zzo9p9@jqC)y*BjvCt(VLzDf8c1XGi6b||OuDs+MzTItH`kFTkKMRHkH^~$O=m^I2N z?Tc4geazA_m^A}F7_6X`pq?UDR=vEYvSO7A`C#Q0wM&nyC|6-0tZWG$aW8|R6zBhG zdBiqz6+ZY@aJHwlOvau*htUt=ku{&$QtB93Yqq>w3f|wsXPQNFy2{e5l{DZCjBMQ0 zkOrhdlPYr>kOoa|iVz^Hgm%wEIv_H7#!Nxk$|3g9%ZSZfb4?Kd$#H*W@mRGk9f0G% z&vd<(W>X2VjVEi$Zy70lwKk0qBTdamZwmIkhMVgXkFvx1*I*>?bdH+Y6ZM%$7O~<{ z_9T5c`(&YtSn()(vW0{qRy@j{Vj(#yN*dYI^gN^)5E@8I?9zkyZy@bngLh`n*S|n$ z$SsUHU)!!ZWV;D|7e9f*(2!G1(Bz#H;ZTprG!z7|XDXL=3Nw?*`VLSx0R`d!@^EN2Sv`%17%kL+fb$vPaAK zJz7Vn(>gkx*3mv%vka|;nunT98I9kgwJ@F5!gN{-eYBPuT4lP^qhW>PN%ilN9!d+YneXI zqhLJ>&QSsmhjNCtJ5jo5J`gWzG3QB8$=EI7dK3jk&#}D8)iTo9qDgz!z7GFG8Z=tyhve}Nak(~EN)bz zIto$-LOJrNkMK+Bn1YS*(BLk@*y|*?wUE6}hEa4_S9?!qBXofY3|$83@J8$jfgNz- zMgW4_?>%d{yZ{f#Bm;Tx%;9#{(UT42p)*Gq2o#hloC`*Z%s-Xhdq8reSR$03M!@R= z=!9jrm`yGlZY1|&D?Oc)%&{)a-C=qLdF~dQ>l$1M!7JV`7K%p&AxgcyZpHZvH8 zW-vky7aHIk0?~XpoeiY_d=$)1bpvk!fzKj*kQ!yR4`Q`GI8*!Blhu!$AeqxX`m_2S z1!fT~w@`Uh)8gmkwdg8Ij!nLz3v&u0RufBf75J^iB-bASK(2XD99gZ}XWispElB3mKaM~UoyVtt7>Hm0Fc9b;qyhb7 z0n!X09Z@`t_Aw}wo$s`d!LKpid~G}C;3rM+5&S^=7<``zTB>`geSo;pI1F)5`!K{8 z=rrOBbQ*EL_7O$Zf|k)Z3@uOlFtm9mecr{&i^ z<``N=<1n;5?ZePom`-b9IxWBUvCPmi8i%3fX&;7GSvsw@HX z@^o6|>9qXX$IXV8(Krk(Px~;m7N^r%oKDNHeY|XF8I8lx^0W^_Ygsz2W$Cp1+Q(^z zmeDv2El>L}v?|kSRi@MOYad@Rw2a1KXnER)p;eVmt16wAU;FrowEEFL%!JfS`!L{M z+J^!6p?w&HPx~-{KC};m*emVBMD0uaFqn_kK1`I}+J}LA+J^~F9{d~!lgG3P77u>Y zA9UKs5YErNwU7KhwGTrnL;EnmbnU~y(zFi)iW;U~u}tL~re3wd4DG`t=|lT416u#u zhe_C5`!Mj2(>{i#v=4jbN0;>@?3~rdyLK+aD z7BbA!LJZ`+GlzLvh=Dxh^b%?z9JWUoErj0r5O_y48GT?H0iP6rs2#*K(aLHL*T zao~xJWi0FC%#w-PYgymJ^uMg{Mafv!_u$@vCzHqIym!!lap1`Wi}Pqq^Mah@9sq|C zLemdCoeZ5u4m|xghPBkPJ`Ow?O8#a2&`TERTh_;cClfKXtd9dv1{5_+c_uc)lxJc~ zKk#IdWG?IDz|(iZbHB^_IPhc=W-RN6c3F6T2cDipbqv5H*T;=v`Vya|jT`a$io=m) zdVX9Tj~Qd2=E-Ce^;9 z)qwm)xciU=Z!^os@qMMg%^Y3>$Yzml$JAfSq@97^0)pR!%NdADgK5bSy`4m70c44~ ziA#Snlbnay2_mOq{H;f-77}Xf!485GNoWf|`Ch~miM@lgvqHoU)b7GHJ=sUSCEg?+V}Vb~@i6-am!!dUD;%r}sBs4B1~LsHUu zSmso|r_*c963JX~`a8YGQ+Ha!ESqKnR(gC|5i`;3sX832*;=NCiP^BP6Kuw8ILtE} z_IHBKnhk$ihB{LJ1q1HC&uoZimfc-(2QY=pJ;W>H>VC+TsVV#se7^lQ6!NU0GZfPA zGZbDf!IYuUpi_oIgHIU>O*qX^Xh42Lp@F0u3JqZz3g4EZq!|kTNYKY^R0!}wGOU?| z#(#wj+rSarrV#WWXZG)5keDeO;;$Ij+enxl3QswWQ-iThRpAg;eWI$mszRNW4#KIb z<0>-Z)vb)z*li8=&B8?K(qrtV1_!BJT3?R?*+Cq8G6Sr+o-sTtAK4=NBhN-N&&fPH zmjcMyIbV=x=TbqQo%4lwcFq^E(7d4JD0-H_G!<~^#;1Lb16*P*|`)r?d)6%oN;z8 zg~&KNmqNI+bNJ+q!!cp`Hn9AEw_5LwomvdjS%*oVc82M!F`P+0=KLOaPuQ)4*$c(Q z&3@*r(z8^~0B%Z4GgX(UoS_u}dgkU{mgU|i;|%+7KbByVO*OMu*&p!o%Z$A#e??(r z!$;-;zb%NH$IVYP8lQ%#GBS^ycak0mKSt4LYR8I!grcb(D+ZFI29N-EtRT(6&>)ie zJX}8i4OD|e*+XbE{xw2T*?ozC9i*eK3g_#uVuXa`&aP|ILC_FzEymKh(^6td;`dj_FBa^h=LS? ztN3ILDn>MY72iZ19qqk}Z!odw$E@O;C`HlCReS@V5VfoLCOA1#!w>bCHo@XZ!XKoH zu@oE*<@A+qN8^&-5Zcj-p>;?7tN4bJBJ-(Ld;<(c{j2x}mJ?}VmM>clqK2VYY%t$2 z^r{V__WUdOhQi3mX{7MFZ7-vveG1VylxU*IqM7UV2Hv0LYz-=4NKW=2bPr1^;%4@4 z`{7j7T%?u#t|cC#&T4OAP}zUdpFo-do=f~9JUQOE#GKT*#9VtW@q9$cy9)*3xkMV= zqRo7qm**1MjM?$rxkM8VMUG~%3j?MNvwyr$MZ$weUzs9)xkLk7J8Na`IN{FR%n+6vU;- zd8@PtCMZJ}UXD_E$LsSYGgKFD9_U^#w}ox!!TUOpck)*2jYyppVrE&P$Kf9~=xwyX zSKyP3vmr}FCQXG!E~gX{4Bp^0K0DSzOaVBx?Gl01w#guIvi&kdpWAmCR)MwMDl(OM zgkY)UrKhpT%pW3;Fk5nCVk3`RMP|JP2xZAGUZtlZvp%=hu22IgOBi z-v*PYnGyi9LS%8cv@g<@2!OurLCJwh)`oTj6knViF70);hvMfL!65J)cC$hUd$Guq zA@B(Db+O`tXR{`k2G0*Rg2|D-0Z@5W2o)JQimZ+t2XubqQ!fG&ZfV-2B5ODaNoC3< zh>=DU4uz9=-#5~1La54aJcAW!F~O)hh;$++T@ErKc1O9?Pd4aJj(lbZ^x;u4M%c>s z0pg?n!H~UpC=|w>sl4o0MJ_T;Fei-Xi*TU|GQ89b1ko_J*GIOQP=1(KY~wnUlT_pi z11cD`1T$jfb7ndkIqEEiK5s&!!b2^58SJ)?@;aHj+(pprN* zW`$TGS)n&sVP1J!@EDqk+(aPS`WKFX0-R%B@WyMv$F9J^=%v^}?7@uWhK6tBm{+?Y zox3#kX!6S;z1Z-Is=AtrvZafcR+OudmDcU+Tanv-0RE8ae_v!WS(wbksz67W;PJ!+y@ ztZkL=ao-Jw(EZb)>F1PJR4!d^^cfe3-^!` zij_;D_h?@Xd4e50dujZcIJUi8rXvquX)=0beLe`A_v?MT)h(d9l9|{*RmDosw}HB{ z+IW5060{ZzsI91}jF(klbGili^T)_3--Oc$UNDIK;O{2)$G^nfYoN#+Um*pAuZo|Q zAU^?DOC1~$pEwPvP)Sd{&(!5;qsy@^yr!CRY$}XVdwERwpUtHo3msc!~uc)jC)l?K;FL7KZ+i*IXhuS00ML`d&zVI69)>f~m zLb+-@Z#mBfXbYDX9k79_ig;}WE*A;fFy|ns+@;W*Ll#t1TU`c*mR6yyg)PiqNNoO> zO7G-_P%83LlVRnxc|(wY-O^*K5`GF6RJWq01{v3ZD-)%1MIFC7qx*@w7DZW0MPC1d zq5ZRSNjqMCT)e8R!hTa1lJDvQep0U1?B(++^5!y7L8blTtE9$Jg*Q8>91b6H$Ac}H zyvrB)<>yW8-~3JTt~J(x>GNC15*ZmEN zk4&OU3lpG_?(OM2g70wu!nU^$Z4Va8uOvGD9R_Q=J|e%xFOg z1`D_7sBQm2Nf<2LszpJ-8BzDl%dQhrg)z!f4I%HeqGJV@Ykb<3k zR7Eb=5#0HKW*5bE3Z1wk(p;Dm*{+x1R%oiacoOk4b%<~&N_o*&9VuhtxYAzK=i$$_uY$ANXKoLzXU6_-4tf#7YL$meZlMtc$g z=~@elMY~RF>7X2A0Yy;b+BgQ{&60*j+)*64(PAb zxL|a1ODDb`t5HS1WD$oFAzU@Jx3=PH%gBFQ%pt^pRj%_i;rUuTb`iP5;zkqKhBrJQ zsk5xM``u~L2NO-(iRI!h3m-+ec^H8(&)=~zhBAiCE_emQ?MYXW?^^T_qNNPYD)OiW4hAqP&y282ROB)JHnf01;n7h( zQe%ggA6nqTXlJqmPk*?E{)BBNi=th4JXgjV=!7crq=lDTIE*A<^G6oC#6m^#k36M~ zxL;|Z+-$;0`e{3))S$iNipxfjea3?7MPs(rpdvrE;8oG)4Up2G)h9}yJTY=G$DHT% zS_!U!!ps}mBhTyg0%(fj%2(Vq?XDA#ylDAbZ*2pSS9F`iY(-DRd4E%iS2eXU4oK<{ z{UnBo5%Q0P7$M3SRSnUloI>?1A|3ik@UluriaCx%WG36B?No+J#ay>pbBu!K5fL5b zR9z$8eFE5qRwLEwV3VWn2^#m@%pxC zO=no}0tZ%+Gi>@r>G`S1nHEu=jxhAkw1k$3$whQLb_Ihx%OWe&kt%YQC0P?~K~vdc zOJ5(A0qrxkZdREw|7;s~jhPb8wltd}GVPvYgX_&`t0L#v=&fez+G>LxW@6iFqj#ev z;?taKgPY7KMu3?uPv;=5BIij^rZ8`IJx|hb5;N1>`8IrkH_e@IQ(fYwxeF`+)0j+i z7uY0M>SzySEqx|FWw7uXjj4-MQQmCuc5mcUGTn$dDS_40wXo1c3Ij&Bg@s0;fX~I) zh(giUWHb80;Q=#0ncUvfm1t{kGjj)rU~46D(P9u2nv8%pHE@$~Tx93U;((beVeS+w zT4Z`)szjK~Zi4PRFTnm6C~P&OmSf9-J7`3d4&@--kZ|x}U2qdD#GTfX;9#cSG7Gu}>F@!o0yH@U3$I7h5ly+;;&(mN<$V!KG19lQD^P=P}8(M<=aqGKbB85IHn zBeTWK5EBd-QK-mB$Dsff*g)X~C-sH{)I0-)ldaI36`=YDp~^_)*#R#0Qj%KV&}FVx zj^xO9hZGfUFuGB0fT|T{Z-slBu_wlMmq=hJ-kBOJO`#w%LV8zJ+Qmp~ImS8=tz-uU z+$s&KPen%AU=I2n-a%(29Be@tD`<8bZG-s~q^HP0lT%fla0{c*FzdYl%vp=EuIYvG zN>S)DVl0c}6As{L7Fii!;{>fw1}+#2S$y$wyQXctZn+WG86YUASCq@5SU>=xmj}g5 z;|h!nArrvS`)aD*Ol7PMS=L{P3rDlXUx#JRC3sSZamuSJE912)R|54a&-~V^i1Ada zsCX)Cp!!#-0TQS+fq@cOr3T4w9j^2cR_oMY&gFxzQsUZ)Q02Ym5*h`|sY8vYP8}wmV^mCjE7chJ z#hcUeTaHUa$k-B9B)|BEYMjB8sqw~BqYhWOcI4=8KZ#8y8Tc)}-jHadC-4-$SahR8 z_i(ch8jK5sqL7?jAP1EYIW6!W5jWWboX9q?W8nWkjai9&jKuE=+ zk*>g2#2JH`3Uk4xzzrZf#)*t)30q?*9PvfR$hng17_fQ1&>Mqc`2ynu_Cn)Bxh^uk z#`P_&D8(g#oFc_8)W+Kviz2NO_Jpbp(pov}7+F|F+9WxL9b+bLmjt+QGV)oLx5E}O z%9;H#DIy0Pt1EuiCLZl3S{SQs`WQM53!7^=iF{6qo*mL#zX%4!Xc@1EO*7rD?6Yk8 z5yr@A;#-?@Ajcoq0@0;lFtv1z?KzYd4~>@wX&4VV|0G1Y(dUl_M}=>UL8C_PWG>Tsv48y+vwtTxpH+7pD4i^<0k*pqgtASU8X z25tj@;Um|`_&dl(gVM2FiX262olg~-M}DAtLM?_dz&1dATu`f_;}KQpuLw$^L2yNo z(DB&bwles(Fis5_x-L%MS_mp;Wl)N8vhz)1chReY>|v;`gFs^FK(IX7+%D>WycG8l z`ZlTg>)&(*&3#%&!SQvR%Ry+0aCmu`9P%CLsmTBGuq>=>4^3Omj4uyM*WRAv&(J-L zs=v^8h8}(qGCKqAeGtb;Vl%u|GAzQ>$qa8z&+yj1GNe|D35qp!SKnFsVr)T%Pry|p z1HRE}N_nSbO7rv-WO}D$dLKia2N7m5e}!h zvHGGMCfWf+vB-k@k{tOWJx#@E0h_hp6eg_XD;1 ztLeq)BL@{LTm{hk`k-~M9u6qmY{=2bTN217LGP3zO8Hcm@Om9eSl5l0-~NB z5tG99&{Q*q%!!zWonspIT$uC7S9BURZCw%(L1=sawB`O_0h&DwQX+%uHzK}|jqYy2 zYrskp?p0*{7}%M*k=62ggnrz}g?gtDEOfXhnHClI?5~~>%^=w;Mh7T=5iSQ7OuiCq z3Og>!N}mPTls0)lSdWX+0$vZuG;a9OA~1U}JnzwS2s|-d89L{1c;-&W zKYi@n`TVKvRd%KSkXe zUAz}jrBCROp3?V%%!hF2AQ>N(HYHjur0xN1-d9ny?;*mU;PfXW^It?bZDO)_(>>Mq zkZrMQ1m=i?;_79P{L2)V&66@*XW_+mJ6=8+=6E?CfD)OQo|F;$QwUGx*e@UZM`3gU63q8kWkX*X@~Ct;3N zw*sUFF>5~9Eqe7pjMt1JtxxG$LEmuEBKLS&40jQ2K`p)r_de*X0fiFbZDx?Pi=dFt zz_2ts$e3S6NZK!LJxU*)rFS7+)4_4|XJ8tpxvy}PG~Y3!T=P9jn(s*nv#blH@m?e$ zbVU=~$zaPYr59zf=lxTHB}&J$xQp=!ytc-Ppj2AhWD+M#7^nZvPVAxD;b_;j0^M*?vqKAr?NWo0IIs8r%POpL#oFjJ+T$<|-X z(j6f2F5J&S`97}}9+FxZ1U+>TWm5j>Z)MG21Am;KY|cprTH2X3ZzY?L+8q@8ff|j| zA8;i|Kc(2!Y?p|IO@#5yF~~Of4qfu8wh{-@#Sh)TWNJb!ahsVatGI{@%If{i#>6dfZTw{lD z5=d^ueeg0J&tM0m`B}dv_@jwOb9y6(v`p?_hp&t~MAb|YAdCc);LBEEJug@9K=yx! zt3~42bXOC(xf~+T1Z;|1aq;-h&E;@;8*no$dy!nS_Y5FvrZH5~(1s}xxk1Ue496f3 zjjNktarFV>{KL!TQq5e(VF;N*JBYqiwy>RwaET1WmuhaGdK%#wcn?}AI|=M^*_rrz zqSnLMnU35h$WOxB;-yR32laNr-a%|CsSp2I!M_dsk-R!SxqU6nVRrqRvg?k(@)8$_cu*<)VFb7Xm%WDD3K4Zr~IFP~fHKT8CkCw=A z_PQ8#s(>yL>BofI5N2Q9CD?B>)OD&0zKY<{zp>ny*7(~1ISOoF#c}2x(RX(vmh{iT z;CT|9{wR>yKOIW?=R$Vwfn#k4p9>HF#5Oq!#HDc$!o=w5mZr&UQu@1nPck092Dx7c zw+1w?^J?y4nPx5ljH<}P>8i-XP8B&)YUz72kUvPCd<=*ULVv#R+zoOEvi&XG<48Ju zmiuVeNY;O`SznW$^)=~PUn^OUff)evfl)ixih)_r_dkNwV&oC5b<+4OEqpifttgDk zTe0VRdC!vuvj+4^KCjX4=1F_F3*i~2!7Px^SAtfh%AuTdVH%z0!L-@O19Lj7K^}h^ z7gu*9$=caURfulzRkq8Q;TB6aU!^KQ`LF^Dv-S@Cud>A-1K2V01fhP2)GkK&2z(F; z90OhWp|`=w{fvcq=W9&zJOhoLtzb*ShmJ>>CQAKv3Q+4AB!?mxe1n6=od7K{Qq(xT z3;d!kr3_MC@~*Jb^Zobnx0t@}$8*P|8Xs2$6XNPg5RA-m-*cXfFz*9qMwoe0|6Nc( z%?LA3Mwss*d?YPGdVyHLkA`wLqm67ReUyv_Ckg~+hNERL_-_Q&MDxudaBgVmJc(-X z6}f^9ejWK6L&Ilf94(U3?X$UrkC(DvDI?~1z%eObmCH$)0ZhrC%jJ~JVf^acC-7yK zUX4T<-SZQ@rp-_6F@_q-FOW6~@WEhwsi$*w3>CLv5;_CQ^=OH!yr+cuzW_Ex<__N& z`IO87!=OwR!*ueDSYZM^OJ=}iV*;~)nz6x&;s&-Jup>`nHUC(O{~W^0j$!y8xlbGs zSC#y3oVoO_+#%p%{%jWg2>gq$0(4;QI$tKR4SneI-@3m82%QK>s|2Z_i}w4=b&7| z@f5@pj-RB59ETvcr*XWBb?{K`xh!+Klojs)DwVMnl7!`n*y@Wc@e(;$|-o@25}mWbS+?`3`y;PneMYurmU|aY`V`znT1|L*i5CQ+fCEW zse)JlIiEAI$y4p2$8q zTnvGnfJaE$T*#yHH68|kufXXE!HiFMv_r|)khyd;Qpp!N1|I$urpabd^K-TSF-mC$ zkt3uZj(4KZB4(M~ImL`A;Bsp2+aS91Tc9wBBe$-SXlm)xfQX3v2`e5i zPtO{nWlo;fXU%t6XXkOUC^7?dcHZS6HXeOEH;;pf$B_;4jED^OCTzIMlSEb0&2P?I zdMrpAo=OCvmUaMQ2E~i>_&LU#`Qwtj%YjgzNMqLs9Yl!G5l}

SSX*bMOiAw&-o6PyaWm@k9x1M_sbtIB!3w=UuXO>c zvJK(*GXN|+6~20mT?;RSXB|CP!SfV7H^Xx%WZp{ZDJ21MQj2WFu_;z=KmS~`M<%x_(Om!44~X?Ai6LL&r|dq4A0N#nFP=D892H< z7oPm$xT;wbgcOY&7aj*l5~#Ur;R$SCuWGIV>P@1`0eJu@qfYTYT0Jz+u!!C4jz!>S zHn+4jv~t&tllPQt5bYLl%a49BkBi&X{bw{{@OdeZ zGvARwAASF9+-W!`j%iR9^}Uf~te6D(k!jn*_>xSRZ}gQ+BZ(im4VMvZomvV5i|_7&t+2c;nslAy>M?K;jp7!qq$0mO z%Mb?f&kBLJ5E{?*lpgF9qOrv6sMA*nc1c?jr8YK{uJAn-c!mqRRLo;0`i9WY7NGg@ z(Z!`;Z9JZyR{AMPr{-}9XKOsJcEjmALi3+Qc>YfOi!Wk(djYCkry&UGU&fG?6bNgJY@aPSSmS4@^m6y&E4PehjWYK)S_?+=tjCGJgP*-n1C| z_9n6W;GqV7hfSgaOd)c$L2?ZAEYzDt2MBD>Hxq~nu0re?$yRKa)Tar469A_0r;C|M z&6Ij{{YP%jfF_xxYrtH?adCAq61?j%__~-n9t3QPw8~~~(bTVt+2EX%IqX|e(nIvm%-hF6zIlks^}TFO9!E`UHYyOr@J#r81Ocvp0P5no&tqU zpkU0JT|(hQ@-c|>*!jR1W5ysJ9K0GqI}g;l&9Jyh0`}8;fe8nn98;!-GEJ@95G&ZV zPYHIn!wRjRJ6b_iE9W64YRd-_biJZ>05cM}vv}F5VSMM6XPg)z&ALV>?HOC`%wpxxt=L zj{GxSb@rje0JyaA0uG1@hhv31cKpyFs;=B6f&Tu z4fuCn?%`e};S=HqaJ$DMbe1<(#nr?SU|IIS;)UrK9>rJK@7p~t!nbp`d(e-K6z&?} zZ4yk~?qSfW+dT|Eb-RZNr`_&hK>pi33?%(_4?~!@d;C_4l6Jetp9uQ6+da~*@JQX! zvDdc~gbov)-0cLRF}I@JA9FiF`dtL!0e@vR5opiJ;&F}eplJaMv?pm3B`Q3WF9D{- z1aR2#0RHQ5EyxaK=agja)Wb2}`>zDcdRUt;AW-kTz6Vaf63hcXY;d6%N%y zrLF|adf9@ahN)L(|l5sr(+SReg%S!R5fv1~%j;@L<;t1pl56Y)Ea!X>U1rC5yfgx#b*7OJf3)(n;LJ zn{ngSUMJ&NS^>8JDo}x3QP$9jTLN^gPmh%Q$qcv#QIl}%5q$*&PQ3QD4o0wJr8nWR zF9ab&9ZM91NHiY~Y6W;YwHpt?knRaSx-ED#)xkSJ^kTRxLHO6){72_5B`U z=9m>?M#FV;Pit!;xe04$4O|hrI4zG1BpKR-iOfbc;y_MY4@ALx^bWutg?k6^ zk-XB43n0$`Fa)#BNN9>nvz0n%5x&n00Pcd*SB-MsgZX{&hg!r5D6|5PpY=X|@ZHjp zF_7kDRu1xyfc$8dv{>nN9J4wAJVXqrCleRk{+lxnZQKaU?8#CLVDn9pC9DRspZ)|9 z4`cHQ;3x=)H72+tUg>45v2bt|_6-qyiUn7)3d6zm1gBVTVD91ICPH!MsG$odyKp~& zSEvMDeZ@YHcD#nB*BZhXAnxF+kw*=rte6^OCAtccxyEKnbb6+*Qd$z3Xp-dhWuRH; zq`Itrq`EO+RqMh`sV-{|FS>EyLNbx+vif+@?NQVv@Z3(wPN%Z^c~gO30`imWK~fV3 z{ZGhG$+lBkI@=FKgxZA`x2iF&J~a~U#EMX%19?t0c=n~J2O~lS&!OKFp@Lhlkf0Nx zg6A5v6QP3V8N3srg6EsCPlO6yU_dDmDtMuR_(iDTMTRg%sNdu31^q9%1uy;!LHi*> z@tU&=^r!SY&HhKOIeQru$7{|i(Zo}?VJ%)-i__j`qyYc9=B%Q&wz^g>l}H>HuUt`q zeU_=};i>S%|D|ir_9V3TFP8u7Md;j6b{<9OgD_3_AFj&s9?K=vFG8D+nSOP=7d!Ln zcn{&Oj)w?syMO9^Dmjk>5!wy{DTIOuO~xQX`yZ}?v}>aFx;oy&^nZ1{7bWBBcn@x_ zj)#zJ@|YaG8H0ltEROE<2Pr}y1`Y>sKpJSLGF(ao5&9K$>O6|j1(>l@4_85iHiVV$ z;VOvG2I#vw9wM}XrLK;L2yH-7!<6?}u3^f1EZ6sN6+~#0B=hQch|pgL&k&*eez*!E zv`Lt8bv#69120koGv;KL`%OIu)iLNnRMKcY^Hvl+EYqu=Wj>_B{Wz^X5G!UIDk0vN zgAill@B)-#ie+=YA;D-Emr`TlX08e5>jn6@+1q#RgqlK70xK^7R8qJDC3f znTnsR(3kLk2wBqe3CPRQcj&*sgV)WN+nu&VN?r)VmT%4Z07om-z~rXJq*$F$Hhs5# z5{ZU(B^x>$*PFBW`f)9Z6<^#cFywwHkb)M-oIlho*D%~{rt}j69=0AwBE7%{98I$b zH5_LnxvSrtk=JEfeI7JNz*t?%a*c$Xh|Tv(mlHe^%XAe4tAp6`z68*ym(bv<)xnTY zJKGu|(lx>)9cYnUgMT5ZM561|=_;_E)hB@&z5rG|mN#rFgYB%LGYL2whZ+sjKZ@$k zw&=gw(jL-*(^?60KnI&Sum_6!1bFSyI(*s&08W6tN$LYzT-OB1sf1>@&@dEWt-#e` za=WtI0I#*C^zsY1TOj~n1UfP397@w?wl_bFIvr!S#-s7H@H{$HkK@yKQV3BWdN&9j zbbMSEi*|w3SP)$;ME{0t)L~M9F6dgVC_#BZ#}GGnbzBX^5=#O$v_kW7%Y^570I~!X z5*qty=Q|$oqCC{~JfuD!PFDuTO-FcK5&n&L(8CuXbodhfTY-Q0n;<%re+w4P)yYn@ zx_G)}k2+PK@z`eb!Eh_wufRuM#AA9THoCb|O|{Ne=YejsuUn3{;1Z<3nV$BjkvPD&Hq32YI2(G%pK zJe{n^Z9;gw15El1Lc#6VpLN9L@cahx@i!TKB-|@^t7Nv=jl2p^#7)qM!Q0NJAitGt zJrl5wqNWOaxNcGD4|Or3CEykV^Cv`|hNvI7hGt@}ZO2LY2C(@9y#_IFgzH4?u~9?# z`;2{Kim=yJZqz#v^(nX?0$YRVBz}V-Jc?UB{5}EVwPe{=~9&8}qsofMO*6lF09IET7(icA~#^JR(~% zQWsC@Er8^H3ROo0?8L0LACW{g0L5}22F82b4WXZAYdV)u5PpV)Z$-cm{^Ro`Jj09| z8{0cEzWv+`8u_5z2=^xNUjY3=gMCv2RHClD^;C|3ju zN5bh}>T$0jJnk9(`yT#rVGoggXb(Rzfpoi#eNg z?g4;pV=IZg%K*02NnqS!*HEr}87VDskLEhP8&GPlWr%o(rP)lH?EsMGdeXd)0nn7d zFFcx?mLjD(i1WiYkXB~Iff#S>P?hNBRH5`>P0Hb*3YMvfAbB5l=Q6wl=7@>Bl|avTr_@jVQ~Afv;~G!I4d z{noUg%uKDUwCv#{vn;hl(;~`On)wb*?P=M+vb5Ci_gib9bI-YR2h>6G`#z{Up0)Pg zYwxpP>#^5f$6{|KmSfD|2L_QTIhILpLx{G%|F_$ON0@+FWYOQX=*>h+@Im-PIY*U} z#%sXgtK?|zScJgQxpJq?Z#tP@OpV65TO^XCS4t!zwPLndOc^k{U5yrf4HT!FgTyT3 zU41Pe$C;6DcS#M2Z`Jwfd^N|J8JJ|8i7_iqfUZa(SJFEh!RKe>iGXHnW*G{@Y#0yQ z3Yld#V#XnTt7aLFnByGO(6DAj18!WxPjRhDcWC<$YUpSZm-wQt9}Z%+RN_glkDBq2 zAk4>h{vd5Q2yoB2(vRb><(R`I-C6V8?r5#G-6WsbfcC%7W1KUmFLQM~BH;IcBj@WJz7b_}fyGdN4n5gY0aj6of?dBDEmB{f| z;^TiIYD>18Ah>;M?_1bl9H~;-*!L~~v6Hb}aQjrVp^0Y>gFXI#Gr0ZMtUlovPK)-G^#i6jbqZ#A(Wo!T%bKzdl+#-eU0eQPL=$=zJMv zc1o0xQUVNXApew@(nNaDhT<8{5Jl4n>8@oHEr-e~I>xAP`! zgdteDGrzYRf;6n%j;`C~6^ukAmVEIhrvn{4XiV`F4)uYYVXgSrmT=UtR{W$zMht7k zPgz{fuvYxEMP;;6&seZj8}+OOqu*pKe$FEE4Qs{E+u75HVXgQ#wqTxNt$4G=7mO@l z{G!9p?F~*8zvH}s_wGA5e6ew<4haHVzK&O<)~iaCmQW5(b87aCmP@ z88DQ^G&sC>z*K>Q;PBp5g>7(n@4&+)IS3B#P19r>9NwFLiX;cY;k|=CE3gKK_h#H7 z5QD>Ww1xv3Du3QY_n>FG(biOgO&lWgi?k&JuzQDCwm^$Lfq8_anUciL@fb%vyKTCERSMbQ@Lr382o6s=-bp`41^L0@y>nhAaZx0^^Ep9Co#rMn zXnPmwtj~pr_b%0mmd-uMe72W?`Rul$!KeUeV%R|Hm z6fNHS=|@m2`fbze@|w^V-b1u_@8=t}^h4D!k8G1@@!rEJkV1ogNsCJ)6nsCU#e0v@ zLIk=`jD-awi0Hm3eB6%F;=Lyswg^pm?jkltL%~Pl&0Ey_iWcuZKNB=T`-NYUb`TO? z$25T6b+mZz#jBLs%N}ezTZ1hO?+t-W6Wo$8xHqzFH(@Y-5I#%U(%J)VKEy zo5E1v!{ed8y>HqyhWZ}fE7Z65Et||x-@~a5>TM$LCW~jN@8Nl&zP+1mB13%-x1qkh zTP%{HzK6@9izRidO<<_+;UPQMNpQPOW2o=p4EiJ&YV;_<`@T(NsPEzNP~YC&HjSaa zhg0y+5B2TcV{e(BsPYw}pXxqVf`i9I-G_a1XL2yQuaAl^pu9(R5s zh?Rak-nSQMsjGc;gz%nmejzzqu^fYV-`=wh1#F4;y}R=a_KKnMhi@`e+ko;!>ozJ7~;r?_*A81SwSddO6T|r`sNyVlm>;1FUL_)51kAVlV=HO9N&GXyct> z%g>J2XS_3Q!rXX*(nmmWA+*2`mjWL&5uv>$u{NG)yt6FHMLwJ_ytD1w*ZZ=wont%a zNM8cpu7(>X!b%(OTw7>)46ijIFu2sT((bWe_zSWh6qleE34iBPzIH@vRH} z9ENw1EsL*R$TwWPi!B0i!sWu4P($!=DR+hA_ZaU*=UL2J8!Vj6Y{34|^l$Z!7ltL~ zg&pNeKr)Qu z0>j!r$mQZiuyEb?f@THi4mw=PQVcNNzTOPh9tp5(VK%fe!$Xp%OBIoj;NA?WOa?wj zq)-OL3=htw(R;I`_ZT_cmuq5P)}@(+I}S{08adosU^8LJZRBw8P>Z?>jrtbfFC&ejIkMkv0ghUcXHx zzJ=MAN}MIOoOe*A7;!iS#fY<~*<*uune$)3dtx_!PNc9sWnsJ^Sk2FEOY$>(I4!^# zZkXOn4mZz1v%NPQ4y12meS2>@)Qq`t+F0M-e;lfy3-tHEKl}{;igasM;+Z!+2#(N6={X-aaQi)?Qq8aW@-ZGaHYgA`Dq+>+Yl1~#j zXFCV%foAc~Uhvd7ix1`a91Pq7&XE*E(*%W}l&nyACP~tXwopf;P^YAf;;}gW=nx=` zd!P9fv%+;o3_^P$*p57yirnWcImHm{3od(?J5t6QolDejT{2WsXZxuzg}ILRJSgrx z4)5i5x_ri~asiLVJj6{U>zz2raZGwo_-?f$#sF75K=*o^;s0*pwmf_saUTr?qUd*`Lzvc*|Vgp0s7Fd}zPocKw z*c=(GH`svW0&SfD(*cyj{q;W_pDCPt5255QSsMR4z(Mee7IVJ9zV-)~t+^AJ12==UP2+-g{-Nu$r+b=)HF@1V4cXoGAGNzP zA=zya%Y=lcqlG9)32jwp`x-k%f1cm6-dSj9U56I^2fx?QhF$hTtI&W=GRa2Nz}=F^ z7tSwa!#N)C47B+{Y4hoTW}?#`lDyJuH-OC7@pEwCbb!;-0TzRG7wp2$UGWC>N;l2$ zD8uh+P;O>RP}iMO*H3^k2isMu0<$b!)Z{Eji3{*6`Uu>kP-;9%J;qL*0>tE7@X&(P zwfH%|s(ch6_9RE{WW^+Kq{cmX3T0UbDlg%;7^I8K(L#w?@VLY0Gl9cau`~AUaV>3K z;$eENOvBe$|0>*?LyoT?Cjw)^Yxx?s@y|eUkq9vLP@RUK=QKQo)9~Mz63&-raRHP< zM09RE6UAi#95@EBo&1xzkd8wItMPMg(M1%%b`ka7Z**}R_w#nUc><($ySY}joBcS1 zvH{rn^x3@Oi>958njggPO1#3<3LUyDW$5k$W;WmYLL~DBpmUX5xe+jS)ch?_d@q9= zo5pR$W_%KeX{%1s&A8XTshj4h_APD<^RJC;ny1-K(+-S%p&!cVJc4%Jdjh;C(a?#b zIXdtP;|P@0V$Z^4`Vj}}Kmb|3+3U!DBwypF?*OVi9)C=ht*iiz4krAp98@Yl0n~x( z0PlY_vzSB3EgoU|CahQb8s|;FGvd>)Kn}L!5!CWlOV)e@?fEn6(HVHU%)pa@o7p1f zE$2*mw`s8OL?V!%CAzQM(=mr{;;hb^-?KsMolT&muQHpjG7%{TLL40C^gYS|*!RG! zkYQpq@U46&-s)(QIWcRFSp$ZEW_@{Y-8vwM;U!)HW(NGF9d`qICUKZCRcz35R+(^@ zA+I)O4(H8ZL1rye%G{4KMdpsAeE+1ZS;v%v-H(SUGS|*&&6*pTa!fGS=CVH-IXG0g z;ScIaCoM-C|JVT^VYK7sG3ZiEfZc^TRsmC8;(?CB=K`Jq?lMx!eF+dZz&#}Ij3#g% ziT$eZW~9#RZ01MB;gdaom3$x6In+tCWz8IR@=2(61KU{U)bA5an9V@gj$XhG;C5vC zK7J0Op)k|Mz*U}wKc9WDkez9ycBCImZ3ciBXu@2 z{n4}A$O6ui^HKH@{G3MTvn(sGQ^S{R9C&#C9!91M3 zuaVeCv6;* z#_AS+qAb^AfthM0LFYu-N-qFvCRT8(Kr=eA4D|5_NLcU^T6G7={R}_n40jBuRlW(F zk)hh96XBikbJn?Ym?A?ZDa(QV8dENEj}235I46lUXdGO}by{4Pn-6SR3 zilr?AjlbddBAWRss;DAyI=VZzx=*u8nRCC-5kHhuXjm~ad?(mSrbntX&X@YC4cF2q3w6Q*hVVX}asTqnKC$x_1cTL83`=EiVxG&D8hGw8-SjQNvZCH#=b;HDtH zW_aq0XA+%%lJeDCJstz0^%M-m%F@8;qHm(Dk! zs~u;dINS7b-<-m(<17k73Ar6IK#p^GBwmnH7xT-Gq|opL*X&2muQG?rD5>7FFqS`; zz=1{f&0%&CQ=BEevr7UMOl04H>}JtS$ol5bFq|Zu`E^Uns>-HJm@=WVZ2!v2X_Zqe zCzp+3obk?eLe)hIi*o?Lzo#>uJJmCxqg_RgUz2|3%qE zq5+2kEv>lZ5vB~rxWUC!ya1D&qcDM#6`lJXpi|;{U34CwVNFUkG_}F4^ZXwOm`K5# z+0|@{F3{wnl%DkzU8w09z)+h^(M1ZEqBzc$NWSP|MGXdto>h1|Q*?=9hNT)1kZzSM zu%b(q@Ccl`1XZty)V-u+KZP9$5~+fFEhC};vl?BczdVjZ!I z_m%KKI375eg(k6oT}Y1YgbtYigFv2>HczaWw)hdr88~SdHw)1aT>TLi4SlxVa1>fz zLAj#Dfbp*)LowZ5s}|NBQH|(Zb#ie(j>5;%kEqVew`5s%5rTb2i_WQ;Z`>HBwx+(m zw%PqB)?m0!l9T`Q0{=EL4GAKRhK5^*v_nPhTwcd?GZ)R2! zRmFUFrz8KUR`^d#oX zKn2$@hnXU$6;=6(Od_35@NuVUnGMbXkjG1OvllrbbFZWGPOza*Ylu!TGdK2l?jn0( z8mCJgumPGdf2IW64H5TQx}_z!q=rv2A-IYhVr1^O34?P9Ci8$a4EEC!oCo5#n^l_3 zPi@u_B?wuB7GSC19xd!pVMKAv{2_i!$trx) zC9~1iF>c@|(MKUzIq-8)a0*u740K&7m*IfiW%0}==U?pFF_|ZvaS*Lb!gx!WUt7Y4 zjmND^yp+j2X_1MNj^>s45?D)<$vkCoMFW4wDxbDsMjP~u1xvL-&sq?@hf7@zr!{xB zo6K_-IjlsDMnUNBOz6*ALPisYI_5yoIW6-WTd=HT1=WWxOrd6kgU@WX_zE*1kB?&M zXI^v`qbmj_GVeGm@y^9dmR40&^P}j+^RhLyOBYvzy9}USk}>W)WY~EWSlft9nfng_ z1E1zgj&eC8v7=)AAb)1|vT$Nx3zN%T&Qo}^mIy!2RM_N9NzR)!GunMjXp}0_0HNFE zU?AvuU^08Vf0Hc3%r0z0W{gV@nI>EJ-PW0e;u)82zHy2ydz$-{)*M@mDwbk`ChgF-R z(&;W8giBVQQrmvYTe3lcEIGWRlY~xip0eR+{8=#wCWkPfA0Y zCJ$;7co<5ft{LYEG{OwS)kYXSQ1fo`rv;71v}2Rg2{v(D(XKN=@f#*p01SvqfC_2TNe0lc&>#5l#`@r7N+ZE4pJN+z?PMakid(9F{0@uPf< zO3TW%Cb|4*@?Z{!xE3dy6i%dgUpKi*Aq+-0E|n)+6wH|2Nhf*IQy`g6kQkbF{T29c zaaMM^=yx(hoc$gq8mD=(ix%-Sscrzsy{ra9=j1TqV1{L)l?2TWPa=}{@}L{ta{ptjDBsmKK!~et0Mu14!`RuZOR5%U z>#G*v=++_@S1+o~R#lrsfQZ(QZ>!3fSa-YRPgkQ>)V^tO312gCwUsBjWXeO7K+sD( ztxo>@6)pWx6HCv<96c;s+puUMznPqa^;5|lQcW*J&bk4be#dmW|TPfB%ePTG|_!8KPInEjD)~qqZggtI&c}uxypkf3;98 z>Xx{kLg_6+ z2~-c)Fh(nak#pG6&RERcotNXiZ%rQWyf7FNtL$%x;;;gOd9vIMbykzCaBqYqi}I;> zcqI36S%A8O`iX>yOiAdKmK&UTMj(7B{#gaO75P%7iJyN^)LlA#w!B_U)Ax zW-G%mtkhL8!R?k7SCr_2t#rAr;rAoDQF4;&N%A;qbFC(MkW0agGeGNzpgVxaIiSZ|@r)8xX)TW35M4UiGyCO0~bV^Mf zT2m=8;+Z|@qheKs;sy+KX{hsqI-is69l9H8S5&v6Mi2#N!(2UzDl>c5mpPYw3PE6z zhzM%z3G&@la0a_fcfYccU%~4;m+S6OG4d=zpHOJb$epnTIGNm=p>;m3G^YuJV^HEN6frZ^0k1oJ08YW#DTKA@?8cGvXB9DbqR;p(^*Ku4& z)H^qR9A1FZA7795$2YZd+aKT3_p<$QlR~yXZdS&M9Bt84aFkcVEb$P=2yB&2^ z6!z~+!oN>yJI)q*N(;d+5~0>lfHkCvb|T|Vbu{1A%-7JMCmY@YV(QB^150n9$mDlyl0^#P1JFnz(EW9%o&sr^g0y18o#$u{HwM& zf_$Jicyujg)QaZpm5_;i9Ws9dzp;noL+G}^sIUOP=R><3W<|q_b_CkGD;4Xuyi~rx ztswRgen)`d6!;2H#0%V+;tQM$%xIirICrOP59NyE?hrf{`ywu>B>o5p{}sQRKx(}u z{&OMzR6zVeC0^;sj(mMO)?Ugv!6b4xdtU>w|KRs;6n_E)+1+1}CC&aCCq9}HZ^)Yp zkPB2D1keOQ)00IwiL9wu43A!%CzIf}LV}Y%kL6LyWc(H(OEt3W|9v2}I_^{W95rmZ z_@r*Uu4odwq7oEl;CDKxtg{u}8&(t!TzB`W>R9lrI62$(VKR5m*&sI`zZ*gFx0dAN zy-C`*FwSoZQVder8H+&d82law!71<9KB)%&_i#aiK`LK*If!-QhmRp)rk$*xzd%%eKxZG4Zm^7{s6LbE`G-4@|a~XcmBKepyC2)~!VMQ?9Or${PT;$M3I}`9^p8~=~4vo6afTzffR)a6i z(h7P$Fb7bJa4wZS?2<7(Y=jLT!V8_vS7H!j> zn~iLz;CBzQ{?%4-iS*o`fUz41&F#)>%CpW!=G*Yw^$656N_*_ktqMC5XS`u~e=7D`%8DhO%pSQKIN-%r-30Jr#Y4Ai$_p;_fxYbailRXfWp|-^XN+9 z9C$K%rV_}RglpQUl*wV0ai;TV%UgfR1#-M&q_Pdj^f-R+ zpyauzY%G(G=F@&hp+qUiWr8>Wa+k-=jbSN=(${8`Ip;L27UU|bz|4d<*U%JGP6TEm z)DM7c(iaG_ED?N%AxC58QdI^_i%}imDTwO1o0PtgP|Hd<h5hx znT5xo1?+|I2si{_R&;}JC+iP_YUj=Ftg=lCTJ+0aEecXda5Eb7CVu;ZQhIcxL5~Iv znj^c5wBa$S)LAr|ZG2qXh}Wm68BTHI92B41d8wSb=3`lN27XIX=Y_0O{C}M336bZ~ z1y<$*hD}5_RLQ+9oud*|hu!rHNdM>rnZ{ho+ZCX68h%bkV)nNHvxDVYd06dd z<9!@Y6SGBQSW6^Wy~bQd#abP#bp!<~YiK z!BV_HD4s}))o}lg5|6!}W%eIAFk4k`0~i0+in4?f_{ehJUB zpT?j0tFZ+wcnwd}-^8CrWW+zRYHibT%BeS?J*{VEO*hh$W3)}j3QxQa80FN*I&9N# z0BfU;6;54rJVwBB>f?n|?*oi->IPw;$1q30sh10A~UW4JW&|-ZyhRE9|t@I_f0~j{$;829ziqK zGkfeegxCdQ7`Di_fHW0BGa6Kz8=_`w=Wl2PwYgn|kB^cHcXdUZ10xwKa*%3s!{qrR zFQEVxy-Jtzi#e3fGvt~RciNS906d)(Wq8%!ot-r!mmBl^zB&M|Xqh#@=m5Af?l%F} z0dQqjJO!AuA|a_$WmY6*R^ZlycCvy8H)6f)w7W5FY3KoB`hK+weU5M*Nw-0hsAO!qYJzF?}N*K8A#q4KnKY9 zFBSM^!1K${mMMCq?yM2?uYuOOyXc$X{8mM?&8YFXbF;=Y8S}WU^+l<595CbI)%~Ix zDc2_^qRJO#z~BgBr}Rq#e-7|eJLzB6>^&V*FbJ=>Tq6%6S>9TmB%H}Q#>-J{#d%qi zS!v9g{q%+Rmoc6OjE?dC9>wAHfOU-bmofe!V3MCAV?3mpwewc#0d}0bb(|Ia2$JV= zoNq^ckKpGl^CDv`4a;f1w`sRjqFo#DgBP~B+qUi7(k)kz91Rd>Bl%PKIUC&BD>-G3 z7MHr^z*O1+G92w&gWYOI(mOYf$AeEk zZ=9>8Rs5`8t|nW{`ogu?RMt=m>J|8X4mJERtYKZehIIvMP?mC0;R-a7^eaJoE`ASy z{>TZz8(bKte_;XoD&WbDqp5`}iR55Si%`q+`27tv-H4iWOb?KnMy?Jf#{p8+0>C9oN9SQ#`XDUCT0I9;4cY0L`1+W+ai#uP;wLj?nu+TcD9R{Ynv z#VeL3TL!8=6Tfpo`bJc5)sw%7dU7+6s-FBs)RTw8`d>@w5)Q`yZ>ik)+Z*7j=R6m$ zKbFS&&qm$P;rADiPEA7n(4C$Y?PvIj!OK2xD|_t>%r3gN;-{qH|xY8O97@lw*t z@~W@>AxU-bC&&&M-{4XBZNO$iXY&a?tqfKrdf+o^RlOArs<{+agOhM)cYo9>UsHcN z!RHmgO@5j??bC@Sz*hp+S@3K^Tk-odM(a-dob2IKI#1ytAuM46ZbJUiO`VGRjpm?& zvRNLBThXX=f(|2y3x|EVf*10&abMBKIX^(HqohS&mKKd>7OW`aT%X_^7Pys`b>{|Q zG-5{ns?dk9*s_);cBfe7XeT)t)QBh&F%uyRpg9=FS4ee_5ER`efH3@`-vu`|@fo1_ zu;-;x(O86D{mNxob1B~QPpDaYc5aeA`#s>aXXhr_vrhmPb$6Z&_v-{zcT>a>Yw&dz zcE+>;7>(nS_kiB)hXBt%5{T(f;pr@7nf^OGe31{Y<6$EnAU3w(v4h1vlAL`up66f8 zBA4OmZ^*FVT0AVc34id9+#eUdpl7m|PRnQfxg<{KTk&qc!SC2M*c_+e{a6-XN0H9I z7|1C!h<_}>34S9%(mY*Ke+N*Nuc+vGqaMv{2F)p#Lt96tACfMpd`(oaz1soFs`#3m z)Eo|Y3gr8*i}CHFfK>GShQOZ$99Z+vuD4bGnGMPp;&&5LM<1Zn-xBIi0YeeRN|dUdHc0WdF3S=_#qH2^du+ zpAv}@qJRpNPl-Tz9+FwxGg8|FtW5;UXRScF7D_L#T*5V?v$Gv*;kNkUODs*;4qB1^ z1SFG>(o`n~*M^o=c_%mr$BFcjs}y8b;D>Lrm>E;G`(}zM;#gp0h!2tFbUMJ^w#H~s z5zZm+4A2N{o0msyo1e6{%?a8LOcS|M($#=1?^HE@b)XqjKbbW*u;K&J6l~yYWdnZ{ zn8|JeQ+{oVwY&+qmR91+P-H!R&PA!ssCf2w%h1S$505hDNiL9!Q?C=d+g`xd^6kEf zyw5QI`KjGe!|X=j=KmX67qsIED%B{|&o)fKD4Z#EPv~Sq(92=FaeyA@M|tmMoY^4r z)cUMh1_B$W;g#?@pAwSi0ds)7&Zp&do&>y**4|Pdjs8sPdu-a>fai|^VgW6^_I;Ow z=4$+$8&Z!jlfEyD9?7C#P5mt_x;9dD0#P~FX7*y>a48diKLhNSnR0b% zG*d=0MLO|D61^rhgIMWAY2^lDznD6fSZU>xxvKOvGRW|))EQxhN+5#QU|SwTZJSx+ z&8g2aleUG!cImpT`4xW7O{s5(wa#VAE5J@dcRF87XI!6&Dv?b-23WabwG|hxC2z*3)>16%t-tOpj^%tA%WIGs zoEes6F|57}aFM;0-=12?W8vlOjn35B)A6ELP>EZ}nRqs_$ELnStjxlz*he}GWmLZV zsjRsVKc^{m7c=EXnl(0xv8(Dy?qq|k6HcOo41;AjS{9vo>!^aL3^Gxbzl zGjZNdT?ACpJ7j#7DP?x?<+(P<<{~yiJ9FJ6xn?leWq6#5`=@Q~r(lDAJGD`g<}iu& zw;>xGEOy`yH;d(danaQe0&<)s`S*)6Te)A%jRnPm`^A|)?iWjl5obx>y(p8}%Kc*A z4r8Nuzc|z9{o;DL{?y0)Vj7tpXKCbqv2AkX7IE^O_;v9}5>3!(fd~Y0w>as=zfYJ; z;gSims#{;GKvqfNNtNT6FXHuFa|x#R2Y06!S7hiUH4)AP?VYFg<7)9DOy#fQ_uRf{ zw7pvFJ@Hd4&3AXTIJhjF2rdh|=U#@fNy=qm_dGtk2skg7h28T%C1CKKCienO4!+am zUa0B8cbeRb6pnnS$-P)nx$iW&mnbIsohJ8ECCu+My(+H~`A(Dj@qZGPe_1$sJvesH zH+OS)Yj{ZU-8f%z8GXRqt(r)5DOSg1D{2FWGew#2jmtYbPNWH=Y+Q;9vs4U-U1JULV+QaVYht6VW1PPnVp0fJ`X@#~ewyWGbX|rMWT)IU z*2E@+-GDphn8Xv#S5RO;c#SpjYfIR$@%9>P;z^543<$5WCZ4jmB3v2O@1G`~wy2CY z>KO}`YNMXDAbK#o%9?o2B8Lrt4F=z!46d>!o_BtLHp7ENcjH5i=%Rs;=MQQ|r_m>& zRK$15H#SzDlDnXpb2*Bihu>t7I25|>An>z&`BrF&*%|cqV=fR212@rI5?2ewr_`An zqg*%-39LgE+}+Ls)o-yHEndZ%z6qS!<#X7P?m)_5To*;S1LI!Je2z0DpJgVt!ZNw$ zP%L1Xi9T57cZBl{$?JcU*b2+!Ok|_TG7|+@CO2%PQHTQ!{-HI{%E`C298|6})@Y3&_OMMbO5pXF!N4V5y1k7k#fE`L6~}p$W*t%7n@4F%S@9NllxC?Y&gW5z zA5(03l!D_1bSqO*uyVkeQII_97PQdk^vJ|`)JfRgipZm`M}gufk5Wp8jnDBYMJ9@) zJW6pz#StE*sEju18AriVZPc?CL=Q%Jl;#;$+>1xujW&Zv75BxXv|w3rK95p-g~{aY zk;vspSF#g$oRNuUvqQ zcbq|6;{vziEs!nm4Y$e#IMyiECl}y`i1e*;0q#4FQyTm1Y_db!UK)IMHr1tiS}O50 z$eP<>*l^7aBew_3(8JVz@QV%L6_;L_H9y=Bjka1%qCZ-V7tw0GxK`ukX*FJ+R^#Pq zHC}J6#_Ofkcm=c?Z%bN@_rA3nXcE(Zf%&-OBd*nE-9EWqn6u*}t|qxB#oE60S~vcU z*3?dPLfQ7pZtpLxri+|iu^A3Xq*Dn#_|wuGoM*9TXChKYI@E-T4W*0_ogg}tGD38b z<+Op65hi3ZDrKZYO*j*mGSZc6(z^)yWe!}@R6oyPFWu!w* zn2onmMmp4lGoh4`4mDwLbJc{?p(d=23N>MERHzAOa#BV*)Pyr}DI*l*_3KMFRti)5P>%7EbK+RgOow%L$D8mKkC2 z=?a^i$>btErAND`3yo4m!rj+ZTi0M9By|w45VbWSs9zHtzT6ghS?}N?I&G41S4$BB`$qr- zFFLGoZI%6UfV-Niw%LWf4F7^kJGU#>)yEwhx>vbEDah% z8oRDTi6Jkc%|o8RA2W1F1rbB}X8`^nP|pV7$@%|^pW9>1CZKm?W<-`YyRqm|cre3l zNZJm@G{7-hOia{Bv^I&G-)kUt?PqW?07ZWUBm3^`4(DV(!rU=}uW&M7;d-P4($_ed zukkD~m=>`0pK?F4k3AWsxDK@qhAedontv#c2X|*^csTdVv_lUN)VDr{*}sBpBf1!*_87j~ zQve48)EvjjY`_2nHP4IH9HL3640Te5+x-;ye4t*b$T)LZ?|k3{miaN4*)JhV>aAwI z_gGLeR5OFK7X2`a_MS&UZ7)+UlD>B}X**6uzNDXiSN5KYK+;e5Vek1J+5+l%yNpS1 z#oojHmW`slC*7yLXSD1aTQ>D1Faun3*`6Py+u8&94!!wBoF?{da+QXF`SbO*!vG!agV9wg3$vJC}rsu3Z3dgKHii%o$6ce}h zC}CQA{w}W)v-bRlsCRAcaT|i@qKW3a+5Qk*{VRa){>UN>@0r|_O@0rO-X1VOYFc!B8Yd7g}7LzFMv6%4| zQ)C8^MtY)iFUt6&!_cD{{wXm#CDJ7u(uX)5B#*CXG#U$#xV;q#%sm(&1ji^|Dc|D* zLhCOoUWpGT0UU(l2#tZ!osUY=3_{x2+1ZGDV+fdeh*QD3ra?&k8CnuGg+aR1$r3k( zh3L2`EJWvE@flAf#$S)D#9Gl?}@?g+ZRwti4QOVM^bourN!WDJ;aR zDGXAn)-i72LmZ?4tQ`1c6r_;)Fc76&JL!n9w#oT8yOu)g{n%@BrZ5PpN;ql?gOIAo zh$#$0s^W5{FbJuN%4nmWv0$k->RAg$O<@pHwMf1x3__~Tojy!q5K^^Zo+&K7+2Siq zI*)z86b2#n6?Dg-+yRN~yHmjVV=Og18wrv*&4UfL3M}z8aGIUF+Iu>iAdZYB)DA2J zHk>dUXWZ*RcCj>P7j@_ z#CSb7o{4F4GIIK?fK=@wPbD${O1U)sFCr^Npk2)nYwQ~Y$Z>|gR}p}9qS)3%fX6XT z$d)&TTNME~o7t$oL;&(bq=&}7bRTj6*$$3;R1Vl!ww>jGY5kA`Iv@koUY#{}O~B5y zLk`f;;6<#X{>lNQu|+vxR#Xm9ASwsU z%9jIX#pQrmTaW{$ne?n3azGe;yl*++UmT>I9N=Ih48i}I93YL#$pO-+53d|BZOd{1 zlF3hl4fZOq(%y2w{baD)Kn{3`bhaP|xTk@u=j4Dgf)P33!~o980hbXK$N@J4*dYhJ zYdPQ_kab*>*lYXB0iFG^2P}dNP=0OJOs(7@2ZWz6`C#OLtuTIs)~;=sVv-}}lP25z z(;ZRmKV`LlAG?1hHP-n%M0e=TqH?76bFKv#(f(88EGE?cQ{ycL+COQeCgNjNkp4+$ zAojit|5)umRplHHNVR_pM7TaMaqS-ntzWf&fbU3isQpjFQ$+jk1jDLwc4l4EQX8B* zz}lkPf2y$dAEM*he~8Z4{=ppYx_s?FwaGb^T{|ZAgmW7TJVi*8WpD z?Oz&|%9m-e69iuRxCL;Fu{QTtE5=uoT7*Zwitwy6FyofAFSP=5{9xjCl) z6Y@S5;rp-j(*G3`)&CU})Bm|V%1KB0KEas&Pec~!mhaPo&_K}geKzvz0jzwVsGk!R z@cmZ-6y*CWk<(`dq-vLWD)ClXsJGQuy9%-XDOdqy{jZ~<2pwJ~^&je3+G6-eaTmqa@Sg?!2RB8wPgL@MS*S3`lV4h)-R3vaIpSgqdW3hKPKB2 zSwGV`(Stp8-06rF3YM5N{S!J8*ihyF0}yf3zha`SUokP(&*ia}bd>cIjIn+qu0*iGDmx>>`sV;B$ofw}PM;N!s$J%(#5({=xj2RO4~((?#0Sdy zAHYbx57y85ybW2un*L9(*uJd4W&eJd{!793pZg-*Tqf^e{U0#vrwhQOsW?(hj@oQ9l7KX-kR);=}v= zYIh<1|3d8k{WblQ#uiQgbEBqz1tMHOH8+pz13}Yb!1V#XBOp!xi}4iE|2yFxF?WaQ zKRod7+w^}82Pwz(Z-|2bGt<8`D#!JuQH8kvhs5;1l@otVMw#frhWZ3pXK&NLdsc++ z_rvtR7wK%l^gkQv5!3(i1S6*Z8v{6J`rkxU!1wy#t___#FTx%sT-8kXMP_0r)Rb@9Pf0583|Q9e^hQzWX}> z?}zbkmCeUa3no>XpK{KlhL|G$p{G3&olin{&d;9rpuw|^Y`D=z2ukAr_jWwcSx zSg=$Z^{fS>ZvWu^S|s1?9|!+BdHQhs$HBiA%yaw4!N1}Qy8Ywe|7mnbFY7;M+ZMHc zPDh#R!M?id*~a`HcJZA3pHLRqQ1AZ>5OMpzVxsnc#l-CYTz!qCqx_$s*K=LY^`D5d zkZ$?^+oFT>_jUBY5o7f}?Ejq6TeAO?4I({s z{qO7OpWFtn|DId{tQ@m_`G3o#{;+?r{?l*BnnMr7?zF@8zdx@3wC`hfo8;~pE=4EB zi}lSb%bHd^gS? zP%)t_kREUIKo%eknEy9$8z7xB{4)F#+yI>Ew3EEv08}6%3#4b}83KUN+N}A1rc;XI zDhtd*B@tPmWs*Vea@I8sHvqXQL`8w{>RwzF2+?s-AVlYj0%1ZR3cTkVfNWTvC=goe zdx-*JO5dVDm?cjX2=Tpc0KUpW${7Ow6$L2@@P=T%BLKowT*|KH4Zt6xKu#3cMmGSZ zQ8`0^G^&sxVEdc@Uq*N2ivoy8uqE?9k~z&c*!^|PImY}IyfP;S5UK|@6a)SVL|hC| zOjHa|OiT>m;^-zF6$1#y!~i0$M7k9NlHkL)6SQIg8~Jtss~A93*|}B>pzqxr068&$ z7%K+!Ag9j?NYyU#RKf>P%B3l0fZYM*#DG#j(3knh9y zUoqhOqyZbix4G^~hxha|{1ey!<~hp&SsQ=?5x$?A=WKwq9kBt-3uvnY;5>XKo$0gz zFyw56?_=s4lox{oZ2$#409DnCGyc?ew*eIP0MxeiV*DS74PXdIDQ5#Hi-KhQ;sMy( z2GF+$V9>F-_*C!R1|W^f*#M+b9}XKpArC;#wk@)L$-ucDY^vv+Ys|~&=^XPXbQ7>4 z^ZyeNaptd>DDziLjQMl*JxDsr{0YXGKM{XIx@G?VK`q7S<(NMkxlaHq^Czl?sK5qr z5`Y}@=Wtu*zX~~hRzRwDrKb{f@h|226dM39{O6cI;{+67{@cg~@B#S%zDFB?y8que zcKb5_rv9A$F9+YB`E`8O^Pnj2-w_6=Fz@eI7@+ra1Q4_Ex&@B@?d*(v`~pY+Y*?PXAIiOEEu{8qO5gVW zuyCHeKg5Se|4M1xz}3p?6|5ZC83oDt??DSoxl-as{~rTKkfZjho8hQxCH=)pQ?N+aX%VS$|WXR z{ZoLfR_}iaSziL2Q{|cZK2&+uiDFwj&c7f1k8Jso{I+(JpR<&WVkEypH~GockiOO9 zd@>Il=RYp|e2?+lo1gd3q0f91pPT(w)+7#&GW19A>hGJO^MfS;L+5jZpOO7z z6E4G&e0S>n@6r6C)46b=&cBIb5o7*W0Fv+K9QqU!HRdY@#(dHMQ~w?}1JW6S4I;xo zfib_%X$BNJ^bv?M^*ZN13`xY8U*}lbYRs>5Qc{A({F6aH!qlxp-)^jo#(c7-Jg%Bv+?Jw3N#w&ehLh*YZ05o!BpPr}*INN-2-4D>Ba26&K^`ipprCp0T7# zwNcMnFpsNikpf&@Cr{s8T?_W+>Wc4+t3QkG=*`u|V{glBU9trG>Tkg^H=w75uk&Hx zg&|-63BZE@hJ5`|AmV&oF;Tv*m>6H@S~;3@M7N(nkVf~AuM@Er=>cEo^7|5D@^yB? zJpeEPP69ra_(clSfUC@BxfcN0rR;whS^o?;$Jd!k7MgcHzcmv*>qN1w@%2p@0c3lx ze4X=@jp~c9ler;%t9+e21bkif^dl#1Z@%8I*nFG8(yzKXYq}1>t`i>6@6gi=8|gnF zJw2z5Gd5o>m*ofQmxtJVqNm@$HQUegdD7UTo?aEz(-nxa^s0P4y(+G!S4H&ngU~Y( zmaeh+cIfHBwfw&I^gB678?6ppIglDz2>#FXbZJyhPnSl0sP%M&;Mp=mXMDb3Lw)9&UN7Bhu@ktznis#pKtxbeZTm5B=F8ANPvBx!3%q@sjIJ^U%j}2 zfp^M2a1Ia8d*Sd8VW*+zeHtr2P}<>ne=8agQQGnC9mRx7J3Q|d1Erlb;CcUJ?hK?; zj$ej<0?+${olcTh&wB+T93GK#?!_*XQ`&*Bw1dDqyP&vw;MJg#2#0Txz&m@hu4(YR z|2gFRsLl?Tc{RAkb@mV)*V#jKzRn&d1UfrB@0D)8&W>;IXhKwH$G3Obusod|PV$+6b%>g$S$>FZo3-zFX9?*w^L9_s5vJdE^!zjGP>n{dG2=UgKEeJ${*#N%j0DHoW} za(@71SFzaP{{c9suQQdZah|@uHGg^z28spxdSCwZJO@Fxe0_au{`8!qY*b%g)XBHQ z_vKG-?eGr^fByx7(r@2$^?t?FT@Kzp?6#~qA&VVnhrYg*i*^0t?|n1$P&LLS^sIwR+Nk%6>byf`ZrT4~<@{S0KXB5fnGh(1GBc-7u!kp^vx=`D<;a)6%%9WTqv)Sj3!Xl|0(*v088K6(K=^o zz|yzD(YmVasr|P%OYhg`a?8NZpZreNJUwRzOWzJE`{ez3nSM{s>%KXBOl8M*yVLel z*~_rg_g7^njV-F|heTC&1tJ_C-@A=-cp#`V1RNe<-zvL&E_a8@9vJ2OR@o2WAmvo{ zSyAwRrm{<;avWY7RfxlXSXB0{GI(SNHrU(1I%6vP^FTyY_TrC6_o76I3)?8@I~BdGlLRoPqma}RDac>7h~&6=aG;f6v9b zD}lPX4P)J5R(-%eb-{^yC#Epf_Y@3tkrQ`*yOta{7wb+j(Gz#Y;KZFYz~1je8J~3a z!Y{)=!HN4!=c6Pa#JVF8W$!cd+51fSc5bM?&y=Y4dg8tSl|&5m8tZN}>*9$!J!_)| z`tYdye|_T4hUFRPLruGvfj&&>+dv;?$urQ0_+BUO7e)Db<-qk(knH^tv@qX5j}!OH z*tI-ye;{U{-$p0y(x@DJmqvX!*!%C$9lZ_o2xqrt_Kpm}{yO$@V`%Ue^E@Ap0K%&8 z4+1;~V94H|1R`#pS4`AAub7y5o=fmcq@(PeV9Z0Fi0>giVDDUczabp3_kBMh?EMtr zQ;EmWh*B;vpXGiJ$gW~B&;K28&OFc50_OQ`bmIOi^nL;J{MJs~IY$HYe4z+-@A1U_ zQLGWy+>Vg&+n2rfFNPg?yZ?i%SvDW750Bh;+y!KY$#9ePU#Tk0)UVF8w z*NMC4E^y+m36T?bMdZ8CrS8vN+G_4->}>3A?=-0gq+xjs9f#veqZdODQ~GA;VU|3G z9^%6jcdcXGz*{*=xodBCMnN)kIdSiO?XB+R~DoT)1& z%G4DTW9nQhkCTovb%HUbPQ?EqJz(lwe!G9tGIb8bbO4wDtAS4?=&N7KRpztY^MLG9 zmTPZxoXatFrWRo8TRU@SohTN#(QW55_xE`1P2K4JGIe`1^?t>sEB!&%Ja%W+Jg^|j z(<#op@7wG=q6luY^BEiXj_@=LQQv1o`p}K8m&aVpua2?lTDWGnVT79dEm!Z48y#tE z(T%P)>PDwPl&ja~Y3YbINAI6NO9#j}_o}7mMX1r(bUWPW0wX+_y1IvjOkKfo1D{eZ zu3+WB-$ucZsrQah(>GIBN_k9Ok#VN3xENDcR7M+>)6%6;g|ze!jT_xot?-Ob7woBP z!7XEMbk_qBaie<}V93(@;YRmY(ovRP(2Z`Vbvc&agq1XvaG%O>^o)*Vzz&9dU{Ly#Mbtvllt+Ena$we?RRC(!5=|uL%n=Me|Y!>5gyLx2oL|b zfVqe?nw*PBqv^SbGz!Ne(kLn#kw!7`h%`!=5ounLSBXWW`3q57ib&(~3rKKqOYD6M z8*G7n?*ibt$-*kTK4{jo3rAm zY<G%ZY^i2|tu0VfRm1)f9XzDn09G>?^)ta7%BBDcb3qWX4hC zG*h(8oj~?2x4d5wMXOoJ>P`BM0obgHTiRAOuWjf)wF95mOFDl?1B=;Ye)Xrdxy>dN zNof56=^`j0ICJU-Xg}vX5g&}7J9AJ>!tYtp-qW_y;Fh0aiclOhaOQ9e z%IuUVA*DgE84l#15>uK;589BP;VcK_>#4&G$1V^bbF8bm+aUQi%uZM-{FU1583A>l zyEM`r6sJ5RZ_?P=*?6kF50eHX2|*RnyMuV{a2E`Zc$1YaZ4I0h2ImgCRseJE#C?`-soxb?BO1`Z1~>iea?K?e-1K9^V5abU zx|$obN`oT;%{szIz*@9mMbD~L&7IBY-yo&T&tV%nI-4=a+nSrYqgg8amCdUf!)Uu< z(J}riPJxZKj&VD`1ra6$D|a5jaSKu@(cFs`?!v93*y@ki4RG#o20C~U&mF!8ozy?2 zv9pcsH#m0)IyM(=7dQPBneaQBS2nhFw=@~t^iy1sAFNQ^^ixzu8}*C@OSMtYT5zz> z4^%ar*4)`{;5Mj5hWYG;&Xo;o8aq#F?lidRr?Y2-zov0*Ls!oVn~uRap?kH#O+PJI z=F8me!pv!II?1FrTYQBn&bv>>_kPjgccTU;((gEb!Fv}iSz1+9y<`dYq2~*tAfDZ0#Zp2vhbaT%!1CDk!pmZw1%2J74(3)M-34gy6@K7`d+yBzqT79zn zCHfQS+J*CLso+N!NH&8V_^T8`S9Ujd7{5iqjM+`*(n%XpL87g3O>=8YSGRJYasD}fByrjB{qs3N zNd4r-&IV>Q{zW>=6UjBrYZ^M*yKuQhCtgvqyS)c%7}Z|Rw*X&Aa^v;aDO4&%;3R@E z{j{P6Cn@C_|H|`Z>SD~m>e^(1af|Rjr}z;`vK#*zHq0$AOSYoYYhM$fBH7lw7O(yJ z*99DdUL&VVCD=o$#O}m~FWAzysvX~&A`+AT`Ys<+J}cWt!;$rsGN_7G)TU=9LEwzP-ieiO=idGN^SB*{GE$!&!n=aG}Zrvlpg20|gm+YeD7xX!2T6S1!o`O*@K3hB9(`sJOY3qd?CQ)Dr5H4K zReL80-gUVW{L%h9p*&hvBR!Q}QnMrqFRorzgQ0UGIfB6q%S0;)nvMD0qWydC^IFmU zx3Qun_1XHROVF-E>lQAn%OMulvJ#tGSG^2QybzRlMxixk3 z8M+-m78iZVlsUIo~#&7EB>}+o9R&n27?|fx9;uAi2`Wk4EJ@~Mi ze}$C{i+p_(gy}=A;4{ALT@ZhDwOr|N6LiZg&h?KnEvN%Wh%Z3qq{nkSi4SY=^zsdL{&)DZJfXjT^)_s@DXsyri}5sRy9D5 zX=`XE(XUwaINuIl*t+W-P6fBT5?X_-u`uNZhs)M2pMn%@q9OjP4tHp`eA@8NX6V;l zU;_=5Z;gMWvjOr$!r9X;pE-P0ODA|cyV3Yxw+VYNL0Yx4y|oo4eg7LaWh7J3R4VN& z?bi2An>K=JZTKiN**~UHaKAXHVljR*&8UF!` z90a7_+K8@~&-(fsomVg>Zuud88`@~u;m<5`7IdeMW{|KG{pWU?%=Wt)Pi|gGg+t__ zUs(KHi-*pNW91OY)%Q#14q21O`pxaD8cyt41A+1}=ZAt@4xI<@W&FpT9}8lo-@LY?5f+b?(&xqx zw9?i7$&IZ&m;ui?Ka-rTP$o}nZqQeG)}esym0#wV-JK_~R}7Uue3PLfUx(sxAR|AI zOd}>D{Yb~JU07@vwyWDD@ftG-sKt`!Q&G(7yq0oF9y` z>_-@`E>QTGQ#_mmD}Bly)MQS#Jv7B)L^A|dHN$D)A{R0E42zx_ppAcqEk8S6pYhMM z33KBKO8-ntXn`Lt1wLrvSvIjYo@o5DEXhTF3+Bw(_U-F^+1bvqopYq$$nAY~XM0;a z<&JZ0q2)2W)^x6|X{FtLb|_2qNQmbhflZmp#?^V=RSIOkr@c6@25d7B@I#nQB+b zrGS&kt|22EWFG;t%_p~DR2$mb+m!oo6SrD(kgd!IBV&AA=<)6kq{S7M+g7^DZDGF> zD~dnKT_738ae-m&ALMfJy5+69?*+{Y&>ge`$x;k3-TsPGyPLbv&+L%^yOst|t6B!Q z)1``>5ebUDR3-zTBT^^>W&wCvcS~Cj_sUt)dtNza0S_yTpLMAUbH{-R4GfP$=mMJw zLoOx>lsnX-u0lDCW}Qp*(<{FglS#Cug*N><$7k>9)H&QDuUDk;7mJC=E58v4T7dke z?%&acUir5;osP!tHBz^h1~JJxsl?YY+fs?k(8N^Yzo@c=T!d3ltVMg8JvR84Id1^o z6T9(qB8BZK3*!aBYJP58lK&o1p~W}D4by+g;pRDLw*Q91f%F4i^-YJGF*nXYx%`hq zwUv|C^8Ei=39BermTy^MBqKYa@!xi+;ZXzw%WP}!Mw`G3jQ@`1RfDmf&>a#kl@Ygmj4pfQCtYe0ZuvO7zEdtm zd2Zl=!P8H>JPM(3wYsqjtcvrvNQMo9m2P^*FLo&^gQ1&Zkpk@e_ubvmv1KxngZ-hh zTznbUVb&A~OFa!BySafK9UW@?;T9~yLh9)fgURj|g~d;c$_NXVQnns1J4aF7!Uk9$ z=G8!HldjHVbI>+xvsc@+Ht zsjch=wTXNjupSWzyWti-iK4>+fGWBXmQ5hkG7x=S@+sJpHX-k5vp4EmVce_l0pvLQ zyw`YU+>uc%aK!2>o|y(F+b7TdY_{fIO-no*)mJ>T4d^$=86!sK0dAzT8p4p|w5~bM zz7174lsl~64Cs&r1EMsd+k+YZooLw>Slq)T?!d?_)3md_9kb2zBK5SWJR>Q?aVG3w zi+KanL<{JSm?}^}Qn*nfD*EU5!&)%egFfK1WZek+ahlwL>2}bjta5zo+eAq+-dU5%o{sRJ{6NLb^yG6PLp|~ES*SBKN}pasJ3QK z_2R_~7dOnSSqwAK897At!o}vy2najiSvhbaW=8~CVlLh%0xlA3A`Z#t)z-iid`Tp2 z4lHg9CEZ*aK_6DLWC<-{HtFM$q--rsGe;q*y3YJR?0pBE71b5@y|a(^-tN4iD@c*0 zE>c%|5oMQMiY`TpC^4=G3vMX80&7WB>|%+68e7zu#Hg`E5*tyYpje`@m)K*E#uQCr zV)y(1&$%;i-rKig!Q}gWU-Fn~jKz4W z3N~lP*x_SgeT*kr&M_NeEEZn7PeskVYI9aTdnSwkCfCfIZ_bW|@Kw<48PJHIQ-G-z z{y{9HqNZl%B&ghG&M@c3*s4XZWiOl;W6zm76Du4P>@#Oqne$@-V9cI3YcBc`Pr3_Y z0W}rq*9*(G=|mVaAdvZ!H6XZDM(!6gAb5b&BW^1|1A>N*fWWPZF$01dups3a5V+h!1A>1^g$f!F6eH(kf~^q)0vhwvCLm@& zpv$9h;|2uEZe~EB>;eV^8W1xeP(}d*0u6uyF|;h80Rb!4+<-u%7BV2vkk2(B&?wCf z2$UZg5GXmQ{r>Ez`>c}X?U%$!8W7xs8g_USJ&|ibz>oWh0m0QskYhlgIbr{gx3-62 zw+O3(r(O2B1_T;0$ACat8LiZFE>&Bt)bozaGa%3;1q=vu^t5b1pb48B5GcPT1A+%3 z4ly8j748091A@B|q2v}^Xh6_}O?B3Qfa8)gi90PC5Gb8!|4YP%0f7#RtO0=r=NS;3 zCWAj_K%ny{Za}aceT2bfGOPs*2>ymYF$042s8egU_EOx)%=|n9f>+prm;r%2*wKd2 zfZ(4}pOy>=Zba&2f`ug$X&gm&NG2Y`n8I6(fd_%4CBSwyBWQz6V`c=OfXp=`=qzW_ ztQo-&p|fTLN=Ie{(tXUz!C6go5`xK1dV5wMTigX$!gk0BJuV>v39 zOt6YOT8=8_EfK)o8TZO%4K&%)7(ECYAwd*reH6q_=tL6X9RJD0%qSM?q#1Z9DvZ@6 z;VhQ5)Ntn6iOG@v2jFJS2w2t5>kt`c1U}B_&WwPM6K-eqXy`9eIy56tDl#Kb5@rO< z$6t0A3TSRd@H#VhW&|7{%spmCpkqC5MxetlZbraXWX%Ya$}uBQR%Aw?50~a<1j-N1 z2v{-bfz^!QZ6P8vf_H_a8G$_S5|mIfu_L*WvelUpkcq*6*-EG?LKA>*+>9WD!cgc{ z4{M>aJ>9Nm1jlLt8+U>#?ktxJ*%YDpTOayeh{FTiJ)@g>f z4~Bv$W+brv%?O^+g0^1Ef}%J7|0y$qN|Xw@-TzlaS58NtuBDle>MRn$fxW{BWeU(t+U1oA{PU%sDt zhqeORry=zv%m~(NZm)mD+_q^(@S?_kYhrtr{Z-8fGDwZ@3ge+CW&~@Q*|yCHez7B- zJ8?6DnNS^aJC<)oa0!%K&CLk(v5_?+V1o;p5pWS~Zbrb#Q^1U1UsPR`*m-6IT3C)5 zfwD^d$c#W4eF~TnXh<_N0%aF6Bj8XdY(~IoTgZ%nD|BHq0xHW2nh|I~Au|FEDQrfd zVJ(^wXmE2g0_C@0MxcRtW(3MCU`C(;h0O>wtOYXy4J>R%pkbe9MxZfTG$YX9JTn4i zHa8=96MfRmj6j*q%?NauOmr^<@iM}h5hy?3j6k{hW(2x-Yi>rM8@L=Z0%bKbBT#l^ zMsONb_g?Q@GlC7miQTufqS1U&e0ZIO4EM_8^^aWjJ1GVgQE2$a{78NmxuoKpDAa1e!yx8G-T& znGtA6o*98Mw`oS8(Q?cPzArV-ni1&JHfBc9O(JB?2sn8Qm=P#DZbqP-d@};&=9&>G zuaFr5Lq6AxKqKUv5wM*(W&~8OWkqHLJbvbw5omax8G$lmW&}FGVrB&Q zLWItYU>;Vl?u{5ugNprH%f+^pGb(TtUbf_9kTDv@d3Jc7#)3wNgWpH4V$~ z8rzOMw3Nv*IK|U~%Z_5TuszDnUQ8dtu#Rxj2yGJ^mPJWAw_14U!usXLjy|9lv*_ju za&}dA%wl2VhzD~6j?g@%Uxw+DOdKn!seeP3t@$M6+!AG&vyXTX zwAx2-dl}kCkgM^z9!q@MM^K@i;gbON5qv6$eFR5n%szrgem)Vh_7Oaf=h#Q+)-h%u zp}VZCeFTrLh3q3#sJZqLJeB6!NAUOgs%yleT0%Z_7Td8>?4$P_7PkX zzm$E%jZj!66GM?K!*v(-5u7wQfPCBI7*9{0?mS}kHZ=2xHv$59I;pM_&rVMmVuxNN zw{#|eQGG&*>ePi~L<+y2{_lrknh&Hr@5_470P|%rQOWW{N45 zzcr?({H-v(6vrL&Oc59ffMSh+440^9!#&7a&Ly!4~ z8UIjEhb3M|Wr>6jOSUj14Qcq_^Im6ya4&phlnMq^M|nCf6O4GASKL!`K0b;A8|siq zn4L5JYOe`#dcZmlc0-4Iry=Jap`qH?tP3BFpE~wc)yRoT5SuTCI@GK2)Etf?pCJozLtd;T4mDYDV5>qHqYzI!j zs;urW*Yerq@2y=QOO93jgN31)dUIQ@|A4hhCHXW>_7n^rEZ3o|kHyNNt& zn|R<$$n~H2?TnO5k#m1Bf;u9>ihCPOe-w0tWbJK8m|Y~L^tx@dEZ*E!VXnn*Pb7Z` z$p=Wg8rZBu!5VNd{UL1wgMLJMjXYw7z8&;H2%$k9;Ty~#6m^K?nUt38B9ahGbvs91 z(rrXRpWycbQugZ;7B-uO6`u`qIXnthVbt5%oOQ#%8obEZxg?f=FuS<hpA5P+*sGZNs2^xaSCjY- z3ALrS*Sv`m2A_*dAAr!onLDfiTpNwuYDI*lDE{yFRG57b@5#RCTj_zjEPLQM@cO9? z@0Q40z!;)JREF2IydUzqM_M!Xd_->wslO)wiBa2lkT=yU()4 z`yj?pS4DBouuF@|V{|PH;tnsGiu#r>sb5(yW`g#NqPb)oRJZ0Zx|E1nI)DayZ2>d# zi&yssdsNW^vKuAVs`^Gcwb)kPdS*cDQkVJ%-Xq{(9J{jJ4)Bs(Be2{+b8m%deP4w+ z6>Ye=Uns?kWdhy=9%szOMT^nOr%0`U2js$~*f3sP#C@gxAw+dp{bD$H+8-6M8+(#d zA5tSoeJ7-*kaBi!E_x$bupYd$h^zG(poXaD23f36(T2@OsjPo2lm1Rb(VgCX2;G$i z3`#^4&F>9X zCgz#PJo)VId?K_edSus0+LdRa0C{}$G-GK?4BxR;b%!+76Q;pVx(=bOie?R) zWI7y&TR9eN4O8rd6m>ANr*BG_qUvQyF>*Lk+z_VtSD2!Y84Ig=Mjok=4~B~uTFdD+?H-B0p7DQ(+p*cxnVa`} zzNs-FWo;CJ@7@P*oEh&dZ~p?y+TFgaNz48F5ji}TLe~ER!a8}IuVxcI(*dd;lsae?2sWt^}j?I3Ip+_ znD2b;G8AA>Vp6+gRl|zfWq`K%8iu+Pv1A;N-@da@@5oU1e)QN^Hq<>6eHj|+@}67K z+C`Xv-U&YtGHa--!C6CH4bK|tDxG7ftE{-8u5xk>bv0ue>b@gQ$uZP@pR6xtsQYVH zI5gC~8$^qSx)L*MsQVYj%`wzH*2CfUKM(t~BZ~bRpMHn|J0N=M3x6hEI$!RGs7cM!`2+@ZQLRc;F;w8c1#gY(fyN8*+ZaC z&qO#y_<(UJ*sPf$;FOh_$V50rfKygpIup9>08Uw18LiZFj%=%ydft(cV1!cyxBsTtLaV*hzE);=ZwyDm{-pM^!y#WB_f4DTus^8< z_I{*>2^eNgGSM9y-*%BnU3&O+pyMWW=@IvX!?jY8dD0_a5;`=gOOI08nbf66eeAyE3f0ZDw_GW=BC8H^X@@&hc4z!aCRoMx zB0=UY5x^y|lX6)DP4+Mr83er{L2PeVtDO0uiQoTcsB%ttNHpB}zGy zx^%sg8M6cPNiS5ahm#}&zO39Al0NF-mF?`;@`rQev1SP;rvH!${B zGzv@q=@_KmkrQxZ`T*Mouez{{0g$M3tWWp$^ofjTph@@f{wQy?5}D<6BTtukOaOg% zMjh)TMkW(E)~EZs9NJzMPzq9COuvX;~Vi*{>8UQ#IY>&Zzr`lKmt&oebm+|)-hFud@Qrvz9P86FUHGLo6FJtW_jb(7 zl!m4|sc$$#HW}f9Cdv9W#-ed)jzh`MHI6 zZtiL8af#;6lWy*5&*Pd2(;}3nFk9&&j|-vKyAMW>b8}B8Jg#IME(%nYZslml4bllP>l+Yxx?tjZ8N;8hvjEOsG!k z=AP~(gEvDr_jG5GIwgp=X(qjsryJ=61!~e=9GS+jRyX%_SI5FsgqwT1n#$76#qOX@Gewt z7~7XC&Oua4#;zmq(7pVFl6h4l*YBy3J`+emIYGtQ6I5$yD4cy;gYl zqb&%JyxWs4=-xPct?d!&-cpS+e~>b!WlOj0_0HuHk+WL1bc!MZqZhuiD(yscO{hxa zJx?@Fm3EqtSyh?_XH{t$o>iqOouf)qR$P^)oLp6!X8b<{^)H5?-tzZZyc|^;G19+D zRoZf_DS4_i?c8RnG-Wqar763BDoq1osx)P^&1%d-RhkCmsnS@n=BhM}T1b_qA)l*C z(DoqnMSEVVxB~{uf5QnJJ zeuQ>^t}5+VL@0=$EvmG?P;4<(+I6~~MXI!2K3A2t8L1-#ZK!vS&2bvgpM-hug~ zmn}m!z-q%42h+=lhx8v)rSXGODD6`iD0JXg37-qgbRB02D5i-2}b!PZYs?s)SL0ju^3j5Ei(mvGE@4uX-e`!_P;YbA` zJ@g(^Zy#0KO`7FnH8^i>PgPp6>X@E-mihj7RcQ;gDld%2NpgFu(*CS@zh1|@x2Z~- zidg8sx2|IBudGTt6sdP?i-AN{TB`!8G=1_qRoV+U6;b~Ys?wMsN0p|GTveLpkgG~l zULjSQhUBTzl(|h+nnue}rO~^V`jJqTM%m`5(#A-HtSXHUw*sm(Wye)%%E?!yDK}S@ zro2L`G=_YxDorEgtJ2uc990@OF8Qi7jg+HGQ&yx(yB&|8995cz=c&?^8B?Wk50Rrv zdle#dsFRKF)~M$rge;|(l~1isM7o#RT>9x zs7li_Zlp@njdY|+Q!+=DrmRSnrleD)aUOpuRob^@le8C-b>?CLRT_JGCrf<;kNtlGY8$weST zaq^f4bL*MSYwbcfnqEStlb{T`7YRM6y(rEZ%=jN*XvQ;`afcsMXmy84QM1SyP7bV# zQSH5%)Bd2t){wob;RtwPH7`60n}uSjhx#rO*0`d_vgpg1Qy;>4&IdaS=gCM!&Ky&_ z1_1LTLZr)WX*bzBNVYBQCO^Z3X!+X9ZD}`o%4Vfn(r#`>TM)iY?IuMC*w2`D)7ATn zX*W5RP|O$6Zc@Zy)NSZB`AC6YvwSQDhpDLehV`2Afg!$Y`#Q=^45)VLN^|QRR5?;^ z-i=Q9%F4}C(KDfPllL*@=6WHs%1sT`IvLFEudCN$!mpH`i!$;+M&CyT3xbSN&sx#}8)|}#u7%Pr1~S?PBo@*b$f$DS zAfw6w$SCsw$mn>a0mvwGx){GUyktQ}{|qVu8FlM)3}p0XERr~CWWQ4Cat}d9zmMcN zXlP4vzfyWBf|3cgMnFcV;Ea+7GOA0qa3kwqe5F*`%|J$#T>xZM17aYf$|wLbssVW* zqpTRtJ9%Fz)u@F)Mm6MfK}I!7bC6NxM|5%mW$KBn3c5b@a3h zGO7uigN!P_C6Lj@5Ql(_ewW9o&-+U0{)kZWEG`5Y&0soYK}I<)Ig_~cBgm-IiT3<% zBS1!VP-HAsw3iJ27|5v3pE$^95&8&&%Vby!fQ+7mKQWNeGSsOxTRR#zGBZC9 zWb_EOAbiJyuawGW18oRFMo*Lav;;C*gVf0c3ri+`gnNLDK8Y~}jI)6sfZXmNqf`?_ z7SaCjb8z~PzsB)LDDY=!5$%t>Tl53rYaD-+((W~mKl&vJ4qxN=V>CDd8BK~-Ahd|~ z$Mq9B1R0$y6hTJWM?Xhao#b*hDhYWMfsstGiaT14D&{Q_z$K!Aa#;gS)_~E2pa&#~ zA~ncggV+h3NFto$A9mAGEY?Y5U4U}KSQ&7&0M=5&nP(>^NBTkFhOcq_39M@8Gf+o> zjQ#{64rG*%6K=6XkWr;WkWr)LE$75*HU=-_@ZQD++T+0;D73km4C%0s2>WwYM~aoz28{**LFb0C}88&Ea0oZ zvGRYpMl-r04UO7%eq-g|{2R^umIciG>%Xz`Z|#DN(CpjqV20n^8!LayGA(H99#DDx zr{7rl_dcPe-+v5C|B`R4{0C+u6@>KA!%V$B-dOn$uh%Re>j%Zi_IqRHKTef6s`}Io z%=f?f#>#(sJgR`IywDE1!|nUV%75`5&HLs3nRkdN`jzoTdm$Ip^!4vEw{5)t^51CG z*l#^1Wq(zC(MymT$lQ1o3chGN=o!BNzUcT)c!b39MV|*g5O-psX}Ijj@R`zq-N?`X zOsPILviPEGFrG8|^(=UAho33sB1q^JnEyuH^DHM%0esOvNhUyL%flDd!gBCMl~tO> z7ga_fd{GT)hA*n@LinN_3WSJi{+Uuv+d}xFT%loR+%@ZLPRn9`ru1%X9TZ=*Ywl-C zHGue{UGqLusv*P|?b_@!r5Z+j(XNF)Q>wwl7www!nNsBwU$krU&y;E)@kP64KU1nq z;)`~LPC53OQVk%!XxHd*9)6}&!-y~1m7f3=#{>1c$7f14koclqn|-EK!-y~1m8$3h zpDEQC#24)-<>upy z>b9*pzNl{Ca_~i!)eK)$*%7|z9x^BQZ(qlK;N!Mh$QZQfUcx8ww0UV=#7H=!qY! zMqem>P3BrIw5al0f)-UA)i|`M3MU_0R8NJ?phcCP11+lQ3qXr%Knu{Kno$eTq8eBL zT2!+Pp+&W&5wxfZr#ZB!COWX-7fQ9HJZMp6#-K$tha6~8Wi^8q)uegQqRNaxi)!Ks zT9hP>0ODULWt!&DqRNd!i)z{!w5T%jphY!Z2rar0qt-!-@;O%WA;un|Mft4ChZfZ# zkJGsUv}n`L9Ddm^l99$p1pAvg6RA%E^ZoRctT9hZx9B5Gu&x00KW(-R-dXoAr3Wg1t%jg;L$LIduF9XtemM zG+R6zRN0!k6^#ltVy{Uv{=k*M;Ja3`J_->AiV?>z($q-(kO_d3cAZpVkdzt8>7VJJ zJyby{9*foiX%9e%D)uu(Nad)~eUDa{hmpr=r9fDdPWV1W@ex=)atu`e6nJLN zCDpFyigpS)sP+cd`U()c_GfHk4??EH?!y`pgS5MuBiUSrpV z_{~6s^P>_wNTt8)ve-dlo)2mS5pfSk^rP{!-EDkeiZCK%7-J`3TqD*Qk5`zRkhG## z*qq%Y^H*HvyG!PyFGp=L8I*bk)JPU}6Ee7sMICRGNFOUsf_FjQL-Dh#Y~S2qspxSC zV)1rbZbcQIur^lLGf`JW+~tW1<6U9Q@1nY%A$1)B9%Z>+>be5dC|H>3Cy9S#r7FKf z@|#)KukFSHRVhWz%-vp?Tb1Rtjqo&e1G&Mo<%n|N=o_LEJ zpm$!1Y@WmKK7^eZW!1o}{>kV7+Y^jOjQ-Vxu_KP>eyLphs%8;hLWbR+sxa+;Zp>Rz z<-!(%|1(NZO`WwOWEQY2h}-`NQ2)F*7*TBf~&v4<;sUhSS#$409{>)7L+?mu2n=Y5Q@ci@1;}eI00u_$e91 z50k=Ub_tMv!Qwy|dQB*Tr>u(LgtY@#82fw4?gWGmJk;2yEnmBDA_Z%(kbdb}EZv}Y z1uU(`7}Nk9b)a5hm=$~bJY9h<;)6uH>5!&{%j=iav+R>o@^0urwCeglVE+BWm=F4e zEjvL5#}M!aaEP6d;;V{VNW%Bto|xj6@dJ|Ldk+Ttsq=MUXgS2WTCo~XtS6?}!Z8Th zZ9jJMNh!Xg@;0OgF0Mxt*Ga;s5IhjiO0?<}Vf>2>fGFZoD)jP=XywYL<;xww>uJIr zi2azpq+bp2L;%tmd%6Uij_3^3=allUArHOqeHrK-e~Gn(mBelU(=jcBB=uZ{>4=}b zAr&7ayNCiN8WAN$b~EI4`pXsOFUX~Pe>7S*9z~oKJN+sg4aG$i%D$jku3z*vX3Ke? zbhP_L+STjUPLQ#Zk=R47H)as=e52y_D|!#5$&inD4MmBUzzb)|9z}lysWarrqF$)j zxI0jj_cTN!nL1`b>v%v1t3N#7w5j>xWDKj&Y5j{X=49Zm{$NgRW=r;|10^+UN^r{D%o!jvn~(c5drp%L8 zH?*)9ezsq$iwXoEg`ndZJiOJdxxrHKr3kv5!Rg#V&CQ|ga2gH*mbzaoyF&9`g&F-} zg}DliAGvEN&~!0}^;6&tpfVv{Om)VxJ3)rH>*-?Z6HWzd{G-Jf62-+#{d3aCDSfKN z5&SODSCB3#re@#>&;x+;ge_}{Wbj*I99+K?P}IuVX)7nn3M?)eDfI%-WvH=x+yuqU zcOcuc2wOsEOj;MO2j@;Ele2mop)+@bmYru?p$7>q5!y+~caec9*IuX|_ryxk?-g~B zfPsw)bl$O;v$`J9M%Axew5qnAd)TLoC;pX(3K@1(6g5t8XmIo69( zrc7$FOq2*^QpM$IHlgAO=CwjpGrE=MzK2cMDwq=Kv5DxdGi{~Wgu2v>fIMYS`lr=HAnt+5F0XoRQlcI%K{6mxB^*&V2tx;i za!MXRYCx^mez$H_LoJUXwPH(%VJTTGK)7~8;LA=?RXA6bjHJTv6i90`es)~Rd&4l( zx}3bRowl3usb8G>O}|R6nA6Ew{Y)m*uPpHv^SM36S8LV>88>=fu8|g#yRAU zZ?!<8!}FkobIZs&-?h7%ETuuqjtnFo3k+A^#hk*f{_HEB66 zrN0ApIBxJyRR65ZRGM!avF2uF;o1bUmiQg+-O- z7?ikhWH=Q%`CPoN0gpp_C;x2}{2{2ZeEVy=_N920hL?`2CTgDy z>mEMGzt_|_Dy!HP4dOU|SDElf_y?g_d7AF%Rhpjo*?s(}$S5YT%I|~yEPeywWp|KI z)$G^@BcU9E$RdS%O`k;v*DYFBE0FE>he_FP*xL}UdhQF8Y)@|uzA(x6%DrVYU6_<* zLv$(^CAp6ald`FUNpZ^djeY|d#f(MeJkJrsfj`RjFDDpd#6#4a}u)y9Wksk%69k4a2 z9k6ljphe5;7OreU3A?90LB$5ar?l36Np9y_3_Bd` zY1iSdXv6Q0MtOTuFk@^10pJ@8xtgb!J!;H!hxf)>Svw=&BQmvPE+SigI0p%mg&vWq2Xmu`{Ml)V#&xR3A~bcQTx)EQu>=Y3|uH6-RD`8l6i z;A;oeE9)ZZw+H~onHfeE7fHWG=r_K1wWwJ1frU$jVJ1&TFPqwG8ZUi=A6PgHAML37 z8vc@{7~g*$U1>h4MRlFOWUHsPpo_kuzhvULlhAqUFPS)=_jrM*U~q{OP8TxtmrR_f z!J)ro;v@|Z{UsA8D;@KfOsrE@)?YGligM!ql8I9_WBN<}QJNC-mrR`YH?qEnzhtuC zMpjt;C6l|{2BHOj$z+|x4E-gO2fxO+F@MR_;KMy^pyR!Rm_FQ zSzf$3^DAayYZFgeIc(_qd;FD~_;g_hklr2-NcsrwdT7B~NHNj47N0hJ6sj2UJU_#D>K z(!~u;(8!vi&P7glQ5t7!>(r;S_=C4lwYX1baVz^z$fdbYXK~s-fw(0P;1QQ89$?N3?I8_5U*JBCKdUJxIWy6pMua-cTA$cKhP6UlZP%^=Gv>#Kv z*}jZTPTZTbc#G8sif|)u&WN4s%^9)ty*Z*nzy7&$h_i}V1Go8Zk?QygMAIX=^b#WgT9QWod?(5wt z^Dy-01ViUfGh6WHY@g1|xBSRK zNIi3FlyDEj66o)QQQF{vL2cZ_Z!> ztJ--mhf8q4Zh`aW3=ZUjM1(1(JHaBQ)tfU|qLlOI4CmUDC)uI9H!7 z`5v9Y1wq*uU%& zB>4|vkOo)mhQd(jRiA00+uNfvxb~M?z{Y89IHPMSX6#ivV_r>7M9AmStqYkqW6rGV zNz*1z1NMgJ4m4`98~n08GC)mlxSSbnUkuXV=5J}{x4h5HzrIIjaO)<`@b+)R4)`1N z=nS?LqX39yt6;j#nOiY;-kcadiet>IslqwZ5i_di;|S@9Ig@5r%$+n9+h)g@T|KL& zVp28WP#h!PC#_tcI6LRy-c?%q{X4f~Gr!#De1Zqw(bNyEVCwDR(HT5E1X)2Gk8Nd^ z)iWl|tilKEYv;|KJSI+8RZp&%S2Gtf$wnzK^rEk71dku9`93wfJ@WZ)dUOU)KciK7 z;W}1j&a^2rYG=)!ISEagHUrZp^k1AeYu4=QIdjBL^KWl zv>Q_6@rjL4$3$?xy^fhltLH>Fkx=H$!Yb2#eQ<_-u@g2jkw<56raiigJYRA>I)e@N zLB0&g_2>-Faoa=Z(HZ=}vcb(fI)ig97r{J_&fq-D$&>HViK?%YO!7QBg9}_?S&z=( zLdPm~9-YBOj?v7cGq}WsMqcgbH@e6r$2ETBDagWa6I>*fS z=nOWxfC3(!!3{2~kVj{*$pseh=nQUiVJ&)e26wm^g*`fhJ6&+xqcgbMG4nh+gZu0s z(I>ecoxyJ%GtZ+lc)$&liMbw~!S5VD$D=cN&~bA-I)jI-Zr$=cI)jJZSwHL189d@x zxgMRtqmHc}oxx-FWto%v`*jUVYQNKj_a?#P_K(5~-8zFO>|cbD@75WFN7K-)GkDJa zLt@6=I)mpe_t(y?v#2w6!g66tI?47r+8u{mt-|&(BU{ez+T&!}$Gkd&kXO*FGx(kz-kljlUY)^_PCz+co#5)}FxRUyILfiJ zUY%g+RyyCSGdS7>6!Pjspypr5t20>Z0`t8(5ujy>S7&gHYrT4P2FE(t6P$Bn!?!C_Y7(5DaOb&e7D>I~MobmG++ykd(m2Ao$XpJgQzFvd0p2gvg( z$E!2w?dcf@r*sqa@jBs!SLD?hlzIAq3%xocM$D@-=WrA5 z@6{Pa%X)PNL%dh<1{^@mzHS@JJ$=}QUY)_N-YSXUygGw%9_MbpS7*eIygDOJj#p>I zjd^uOyk=gV!FVaGWv|XCLXKBwu!l%5>(v=lcpb2IWn5y=n;7d36SzWV(n~XVBTH1J$cD*vY$I z9{uXo8FX=E)~hq<>R9U48FX_by*h)zvT}SWug*81)k!8!M5hK^o`U%v#}@MXw)eYI z?9L}ocdthEHbnWf62Lutbrqp7ag1S1Q5+P>EfJHzPbdNG&Y4xFl@I{;oL*s)?!IQ` z43m=kIW-k?rkb?eSIw-cshDkwg_vtf^zUrr>rIWx$W6_xirLjOOd!N;C0YxyuW2KH z=isw6tQk&S?eu1rX|FePXY;_*L5RwVsyRw`6nd7~LH?Aic zO&9sQz;u67` zYRDwhPj6$?4oA5`nP9Bry!~Ca$47Bim>?t)rbi}N?cIksrL;UZ!QtM^7&)cR zAtYEU)hfjs!MdezNC{4qQcF?IlO?~>WhPjscL+U2@6fJO^={F@^~=$U)4iHrm>E5n zhzD<#u;HG|1)Z=-8s#&0sg8PY^9L29`e zoaGXC3(uM+INPN!#dKj~i?t@fxzhAh!s~q^Dwv*AJ7eaIYPp#{Z3fQwIP2HWl7l`i zI+m`)OH!}Tfr#1*R$q&nmM>gWr}q8cK+7D=Gq{LhnKwXg;eEAmP5q&DYM1E^;7*~> zYU2%(*wE5rW$ByE3nu<}pXrV8EI-Ut)D3Qi{T7pEy0ZG{ZWZqsB|q^P_w2L4Q1`;%Pu>n+~^YxWzm36?Z2 z!Y6@O*DpB&X=+@WU%NClE)B|4++s)&M8o&u)cayhQ1339{&%t3_;+R|TJ4n7yl>Bd!oc`(W%ItxK+~LsAED|R< z_$yhyx~2)!x%gf8FeX7iSnMPE(ZjKccn*v~Vi$QdOWXeuII+`@iHR-;F=PT#&A@Ln z3LGq^c9$^hA%vNsS7MLwOcZb)U(CHC0hTT@hm*YCKG2HBcHm1-xM}nH=bGH?;s1n?G2aKRlb6bGBRS*+-Dm z(Z!YKaK!y%l-tpg+hyR55a}N+(!Yze^uW>51AhiRQhd88p&cFrB@(887dg9=gYu7+ z^7khN8{A{1ZVjM}t5LYt+R2_h26Z{1q|%&^@U>-O>#C(bTfx)%R7-tcB`x)-mh$Z5 z+TJNr-l#*2ovQCVn`VtB)T^B)(MBFtzjzHC1ojka01}Nklc9TgEYRC9Tlbb{f{?xC zPT6`cp(m5~3VeG}#pC=+Q;*br`nzg+FIx`SAAmP(i2=os>q*I!a4X`=(uIspR_o|%KCXj-$umR1UyqNULgN*l@M7|Xy*7X6%zQb&kIM!;{!iS)9{1dtL zwGn?kD*H5ke?!tAhZVM+M6O+*L=|PIcM_3|C%rNR9#GyP;BhSNq+_X9IF)ER0}FBc zDaNebX%{>T5a|X^AT=t!fsN~fL2?sgjC%`3_mRnR2Zz2H_hH1ihr`~C^O1+fc#yNk zj920b&Mi0tYlEcFPwY!*&~B|O&Go35&PgX5EEn|f5dm- z?Vk##_D8JUWRkRbgXhjg$mJ)X2g70QQ`Y!d67Vnij4^xt9)lV-wn7v&9kX^18CF6L zUP*@n7j_&X4qmCRoiz5P;BYP&>EAm^VSHLK)adwhI0QZW6I7sR!+C2b>Q`tc+Y0v9 zJ6IfS%2sa0edVpVl(%hb%%q2LH>4~B!)E*{k+LcS>5W2mX2{tACJ}!7k^LDW9z^!g za->^M7X4N)B&+&z#QGI}RWE?Gl`Q<*QEEnUbfOqKQK1kjrYLGTuKfx(GDRjvL-4!C z{yEnmSbGfoiRh_?`27_{>^u;1m)?3?<_tdMGa0@0woDmVLr;dN-c~D?4e7};Hs6+^ z4_oM{EJ*u}LS=#9h;laI*X0>_6-8ye9xv!VFc@)u8NMkQdC7@95<03W?D)!CFfS{w!)5%WhjEQY87ta}^E+phvE|{yhV|p=LedBS z5lH^mZ7amVRqB;V#D+2(m&B;TfZhJx5r7Rk3o z5xF6~m(Dw`e3*8FA-caXWC0>_ef%rC>%xLqBji*+HjXh9FCrxds}Q|NxKDTqqY@0aq%ol^X`bo8itYv@zQ!hcnKdlLQD};N z2d(%^*GjVtX`bBGwZyAtOU?reE%B<^lAAzG5Z{h!*6vA?RL^_W*Q2cWNXp}XGOM@a zA3&a1g3!s#b2LfA$P&6Q$?g%^|0Pr()iT~x=KLJU8a{`-X(U&@jLUz+aC)?hb>&-2re&3TKtdcubc_tUwtZEW>ExTNx57>Z6=S({k7GN7JY` zjMK0VzKQ3jc#DK9;t^k`Y4(na#XlVz;9=z2`&p^sp7{plDSka$k?`W12Ne}=@f zsc38LQE86C5B$o}5X?*9Rfo)~w?X~>Z7vG4sm}Xew@Pyceu&(_$iHOdkXdyrs6R>M ziWjj=&T5Y}3c2n#3^AwkQo+keUUuQ7J1-r0Ddy!9q$$6$J+^OkAU{DyRSmfL@t<*X z1a7MTf}7)Ub0Kb~tjCSrf6^uRGwCW^s&2+*6GA54Mb^W-JV*ZPxV-jP+`NmMb$>Hv z&d0bpsjSirZQH?^??NzBim?vbZ_W4vmb0ngVR_seY*_}&4+f)(tK)4*JB2Hx-5+~N z#$BgzHQvTB-m~#|8u96PMAOk__&y@KC70dQAN;A~aNLw`8d^jRsjZ#CMf6exc|(id z9g9lM7>P?IFQa%Fz{}3OwC5$w%cn?E`FC8(-$%l#1>o)Y4sI6X=33sY#7)(^_#KX$ zGjKEIMBG4}XXDSLA2IYAT&_XLq)lXP<>e9bpT#Bd58S+gn;+t4&bzqzeShfgs4i~Y z0X5y^oxz%N@|2$sMiuATR>XC4t$Z_>Q$9sH2%V|k*HrgJsXFiIQoVvyQ#eCK=!`oC zK`23UKQN4E{uztM;Yz*jwCQ%OogvuD2JoswX4Mg(c1AK|W>WuJiAgYx6Jcmk z<)e%kGOC^jHCrN@@^vUs=h1*7D!}W&pG}SOMkM_WlMg65m1XVDEJ9}0G*A=XV_CDQ zuI|5cr5S@CBHzr&Z5cUaR&@b2OCnc%YdE%hozUO`MU_wCzVd!vZs+A!yj;%9g}kii z{FY zmv%;4KInRVfS7#PNtZJ2R0JWe#ydESH!&X1R50SYc*Koi!~+n~Jv}L5w?fN?+1~8g z%~+gI9$aY-L9_#Ra|<*8s<<7z7(CU0-Xu%%J)}hgdXp^4tv)nw&r7j~gQvwlFU4L1dYF2sKQEa+ zzzAH!?ep?f{uAiE_rX5Sz9`z>(vMK+u0)8?W2r#K>{BEbRc%q|;1L+ih|_bAu)TAO z*xn}ahDqePMYO)UR_G;5||nevqt#7OqAE=SiHugbWAqGOvi6&3PYVA^`ZV zcF`I@7tEI@)L+P3*#vdSzC!Qv37)+%D46|(J5tV{3#70*#285k6?Mn|mM~8wQ~dEU zM1-@295|EJ;`sS(;k5b`Sp%N{$L0fsF_PZ;TA5m5{E9J{HC+)D@Z&&@i39G!BAST( z6;VbmBEZ2xMR@j_X`jWC7`sRsimf`pR0LjPu`mFz)hJ(dFt)CU0`@lSGg1(7mWaIS zkqhFi0aAjoONCX`blcjIlxeIo2g}3xEJW6j&}%}gS}&m+8M+2wF4EBN2=6ZN_NGga zT~(`Oc_*IG*14*_VqdJNL!B%=pbC;G{lHN8 zi*lI*73|`tu>jjKMU`{e_9?tf;H8|GKDf;0o5w~}{Kxp&Hbs}9-Xf#w;~mqw=#2~m8j<=`{Hjn{tbtA+-da{%rw?x}8*!%(Z>=x0LVb8^ zS$X67aIP-tf~6r~JxaO?zebdHQB+zgURo+%S}M1+RI}3Xn6ZTl1AimRxgWoaP*!?U z*fJ9@3swbCYPgo+B^b^Z0C!bQziCz$7WWSe>3_k01m*k*zxz$w?ViBE$ISV;giZiu zc0EY4-lAC_gKUY=F$+QGx~w-#)<=S)S#OraeycF+&64$W(9HTy30(oov^g7>A0wB2 z%zVL+NnFT0t=%^tBc^y87&1H`B3TFuQ``cE%%3qT5G@}=rg$3|GISkgrHCO@oQjW8 z1%KaS7{1?h$hEiy3>gaB+65toOr}w~&f57o7&5IJT|;6RGQnr@0_$sIK{O&oy|NfG zL5mnNsmY9*O!V#n^KVHYNHRf-NHVnbWc3`9OqOCc*pY|##Ra>Rv@ZRG-0`^yle%G%FiNXD!$%SxdVK98`x+Yn>X(XDo$ikf-V=B#}7OyK`au9-RC zoE-}xSjg-d_$>W71(@*Gn>N?{AQn8hxA!dhjdE@JoZXq&}F7baBv@ zR4eRxz*@Rwk$~Uh{HFMUskGe#aZ4`5(YVqz2k9AZf+A{Gf&=Kt84h zIZncFa-6}AlQtRVks4|zBTbNK&77{puMID)P1{7O-R9JI`)^PR-2%d`+aYudIKRT8 zNh8_Ca()0qYoO3AAkRngLeMP;x*9>r1Y6T?Olq?wK3yETCAG!s5-!{bx+P-gLbpWh zeCU=aAcSs7-Rbhphi*x2bpdhcmek!+u{`LO)V(fhGw7Bmq-E%qC`ul5OT<^`mehT& zj6v;(u%kkg>Fgx-enwzZb?1u zm@(*<)H9Bkg>Feb>sT4B)N_t(tCf1*k#Xpj)C-Q858aY_(T$!Kpj%RZa0&CETT(AM zenIG#)GM|D;^>%2eP&NYyIY2CNf~b`B9t^joZV8TUMFln9dt{or^j*0nIzCHsa}pw zv|mc$_x3niBj}b?9~T^lZb|j^2Fu_NpA}2|6qQO7^v~`9K>4x}{`4d#=={AaqN~0y`h6 zlL;165(7!lZk&v zu~;XKbs5SHV|52ti)Ae}oOyO)a-^RCZV2GwPheF$Pr;?Ff57z!X+=P5|3E%eM3@5L z;xAHK0bKkgN;v=*zg|fIxG*1o*)n9458&b-`~3i!%i`~!zyZSCLsg{lPu3Bi1#t0C z)j^mAaPhy-R^S=Yib_gfAIxE62XN}JwWK7Y01RxlwhQn#CH-JjQ=AtG59aru{8#N#iU8VU#Oi^z4yH8 z8FQy$dl&I^s|J0Ki&HUc79DWBkcN9ub;We-id=XcupxoX6LB6FF2a|^@LkR;Zb1D| z=v9Ylq1zk5#lLnJWQ+nfZeamm9l^!_<*Ay{4Ld`VyqytT{F@)w%x`IA=3gJd#lMw6 z)@b(aPclP#n2BU7=1iLtr)O8spN6ipu^3@zMrq>R7vgPXzaF{eSS@Jlytc?V0$tf_ z#?1LMvW#yC!NtG#Pg?r@=d$!KiQwWta4=FqNDsZv)Y}8W#eev6&GNC`+9AsTa zaPc4iK=Xa-e&+k%L~!w+-Wyeb)LtlSkE$p<%XUI=@n3vi^L}|1^ZuF$F8(WHkPB-1 z`cIh~54N9!;Nrh=lE!}PO(}cMelsT3?pMv}qG&ENW^&0Bc6>^B;fl8Uh?R?s|EC*} zI+;jgvF(`f&$neALLo6Hg>uP7aA~*RKf}(&JK!vWi+`qlZzp-cgkE*}SxkR}t-@O& zoLvZnbVAf{TBi<>bjna6#1#sxA)1c>4pN zIymk$tTO%uuCOeEi+^FXdtJS(z7ebXMd7y9Zv-5F{YtzC)=x?Lm$;Bz1Q-9Oj@=Bw z#lOsQC=@_&@qcDHZJQyu_?KI*(C{?w0ucPVRjculHFbaSue6)7e^3OMF8VnLiqZH# zcL79j>7t*jX;{uTUj9`sga|HO>KaxNpm=e;e7McO+JzCprOV0&ym?$GZB>JH{~8xe z1eY$ff_1gH*71qp(xrYSEqwK5I6fWb|H1_l!KDj6!HEyH82>uQB!Wv9#9gt_Wwp@- z5W%HO^f(t}0sjUUMg*5Ge6vhFDZi4yPTb@IiQv*@^%4z}oQ;2*3nPL{7b>#l4Q|~k zd|6>3pjj6i{|*;}2rgaZaV}qDf-&w&yvX(MbiqV$(KakG{@sq5hv4GhXWu}d-n7hj>L=OxA@OnZm$Wa zV7l5Puu^oA3)|62cGuD7INTwxMWk-?5x%eW%ej<<_$~h7mWMwc_lV!(A7QytVe{zg zj`O{U|Z2*AZZ(#aI^$7yo$2 z3;|rg&|O)S%mHu#j~V3wxcDbKZUo>0 z4zuE5!;rwo)ckdh5eIMqQ*#pl7ylLeU5o(-;KD~)$*CB78~p?1ag_t$;`jFSjDxef z@%wmZ?9Abpz?Zt=7~q$A`g{ukTp~scz{T(Ha)<%A_yZiT8GuU^5(jXJn4b^e5=F}b zxcEc71yW-N;Nq8i`m7BBT>M?Vx4N@Q4#349=W+7p1Gq%&2*4%cQrQHOs}b z-9-Nb%Z>~IT>K9$&&6Cg9e|7fk>#P4gV#OrKX&`85WvO%#BD_!fQ$dB<@v4|fQ$c` zds4*!Tzup4=oSNT@vX-*RtVtYd!FvwvH&iAk*8at7=VkP@OTu-0=W3CJf0yU02e>$ zaU&lGaPdP$%r2sB|H%Ah{#UCsy$CmL}buq1#>L=eCwBGQ1f z@xSL?hXn0uqvjtOCBf=&lpB-@#yZY>++}-w6bHwHkVu%FGyZCCkDgdq#Aen%+}jrk zdN=?Vf2~xj2i_J6fQx^kl-dK;JX!MVu?&w>y~8H_6urYE_Ef!702lvs?;ezZDWm`{ z{&Jy102hCSj8@&j34n{gQj&8a5&##!K@w1Bzq+Am)gs8E(Y2BoF8&$P$}EP9f0j$1 z#c=V@c3G5SZDe~LhKql$w7zE@jwa!8Cvw)u=K-;EFdciraM|G;>}aV^?gd*O)iax( ztfBkJb(xiIzFEiw;yT;U$~~g@v%h3QI1cxdEPBI`vA;y`4OhzkT2eBx5lc-UD<>NO z5G>C%4-DC~@Hk=&zOB~EnwwEpUny%@5zD#;yuPq`S_aq@;ADU@{VeTf+{e4Vm1A%i z3#i9K{TO7rbS%t5ldxxk&2<@vmtDY|_6Dmz_fPn8nSLcu*sp@U3pe_9e`c^KW${@` z*yS?Gtsu-m%P)t811Qg>H7BSM1wVt|Lr9kHgTgDB?I4~9J_M^wN*Tnrt$orUrD}s% zPCdv$=OE<;_}z?ZEA+=WM)fuvXa;Qt|4#fKkHRL(E20etn?d)1{{Vh}i^3)kkaR1} zkVlyYKh3XZ2geUPXcbP!=%ioe8n{U(xuBPj`1#!`%_*qiiG9P4+9-qKM)3O5zRxn` zNl-(j!JyG5*zc7~3pdJ>^gTv)nf_8ZI}}^9tBB-!OUaJ}Jq+Cmds}6^0LE}KYGLQ9 ztP+?apPgvhgv&6*yTMXIpD-SV<&FBtZkoI6b(Fi3JCq<-jMSTCq*jo^SiVWBcnqn- z@cq1-if`!bucUhDCdX4JDi(Vycg%>?{l1-CC+Jh~X8b@WFF zFk?8w-l0Y5Yj$)c*<*Magv;3ec%qG~!QHrhaKS&k=0fTYze7SdQ6eAzy$bY16!;SA zG;0s|UHH~~*e~phJ*6*(fXBYrQ~F{CDD4Z-@xItoM6?pYD)}0b{28D{(8emmYnr8k zhfkhkrJJfC_=zg_=_2%Zjvx3sOmdg#)tP!ePD=#CRFzTbyLa%P8M+n#eiB5BJ^0kTVc* z0Hm{(TdMNb*6b!j>y1ZH5Y`ka7e=4|XkHs|*P|xiuBbFikZx@Mur_~ZZO#IVwfQ@1 za~}zm_;;50CJ0?r{?5vDY=a8Gu=t-0+Y`hDxHi1UkO^4d|vO( z|6<)YAP6h4`wW=6a@%z|)y@rL5eKsJm6hgaNK6cu-9?-yvjH%})rIk7E{u;NLjQxB zmMp_()b72?!(*1R$xoNiM+wqXr;oNiM+ z_QE-!%4JM|M&37&mQkSxw3k53I?&p zAnrt35)HJb^;wYJr(jf=O82Qt23tER-%NR1pSolxAX#Xp+|s8mzl|}BX!&N!sco1k z(@chyYUxv#n=xjstr8267R;16_N=WA&6M$}ORaKcj+t_%(KUoyC-)hw&-v6PRVApG zoG1BdX4CSgE*B4C)MVm9oCq|*Ha>VsjfScPSz-f#&v;I* znKo&zIVBcGL*SVbZcdG{r%#&$Y}zSd&}p%tiW4Nt1?( zx#o-*i}5NZi6QWrF*aHxHogC!m??h|!{nGH@>e!BrUCIKunKP32DrJ!?-w)gEoiw* z1LTr~pGYMWyv@+;^(S~n2CLWL9jU&}j_g&1Tfppnn&5S+MViP$wOfFX{-FlCF~QrK$%d`Cc!IH*06WO^AYP|`EzlbbveP^7c z*(v0n!R3-f@lw0xN0TqZ?a~utbD^^%8bljgT}hW3s~ zSFdp&05_?B*z1u7=H8##*4Q_FuD$F#h}rIK^aJf>FG1|qPqI^bdSY7N+o1C~D0?|N z(YhA}*xS>wln!)j)yD;Ag8GIPtC#91?CVWLzd`?|Op~>i1%t;T18dm>BuZz~o^^n= zY!_4k4oTvz(G~e(bWNj3d@bV`Z3?i`5NWEta*^aOSxK zlOz3Z;D%PJB@syDPZB0C350}w4Ld@3Nmvv~ zUcx3y2#PBSpe!LT3A@RANkF!~1jMEF1#qd=1aNH|7Hw^9Kt*e7KwE9q0BWs28<$qw zpGLGURsY{JbML$NJr)7cpZ<#Yf zxB$(l<3ca^21LBg^CR8}{0C-S=B`jZS~IUUho9y*6FjrQ?5;Yu9t!!Kr&~x*qs3 z8UUof90vA0&0d?XU%##zZ(PHTe|@h_*X|q^B2lhKTe!iH2j*$_+H^f0R2@AzAE&3^ zw%4ZXsZUhz`|si2Ptt4C^>ig_0ZD&6%(YL4*QV>)hg6e)o`M72)91D6dS0MCfZBYB z+x@@v+H@V9qd@t~**H}`yzcHWN{t7=!*PG{~6p-@wpK|F_{8FClAAZ#C za+~XLN)m)AyRI!=qPafgm6{hP*0*qsqPad&>vfN=0yO9Pw_15qqWOC=h_Vp_ALEHO zjghX8Rl;C1L9W-Xk5#4AXyvr751Lwl`b1S78O^>5n(I>)9WA4(%BQMIRGL*ML)s1iR{iPOwP&Gosed|CAT zqDA<)xa$iQ&sT9(=?hh9Ry4dLRLYksWe%rkt}j)c`BFV}Y0AFeuLP>b61Y~X$5xQ6 z>MVk`TUfdndO2TjaOr09GAo&rRC~U*U3oSPGg_5keX3H`#5WbBzOpi*jPLfTM3RZ@ z+M-f57s=}E(Igd8>^IDW4Jtv^i!$ros3**27u}MwrAwCj%T;EynHdbv)LhYKQ=4_E zK`xtHhG%Wy;0Rrk$JR#Q4f1RM3?^xp>neR^2dH1tXoV+z=0W>)g}j^+$~9MiV^Sxk zv#12=<>VSVg;QOcuUvUJJZ`4w}Q6tYvUdN3u_Y6_-dzG4iw zkt8ARpCFw{UFin1Hk?SL7VOF}w(>J%{Zd)!U!=Ll7_3>r$0-3HY_Nf{l9%xo0442$ zz6ALOE+zq9U!m$%*zlDtR}n=oHRNe(cFywvQ8U z6BlZ(aRzJ6?Bj%;lk#zLDHA&N+l;Dop+s7#ZUr2UcXgmVlhkcw9%H}RXGq#UY zTPb2}_of7eOWVCEK{~~_E;sUkT+_X248&LbSl1^yV>H3M7UTL6mYf>ZHvl)>vJsKesSXoD9#rVr^t=!!9T z)q#tVk|QDaqJ)yU>38aE$Tcn)udT${#t%UUJ#Zv^2M6v)0`&Py5bTa)6W?rRJ)EZ8uP37T zl~cxRe?p1(xysUII5oMCgP$XbTey!~IKPXo_2g};e&4?ly${h|IP6(ydVT8y^mlV{ z9vBnFYi3LoQ(SKy&yFesi#|O3JlM|Qw&$S#S1-l67aBbT2e}jpLx#>k^z5o@DF7lv z=aP3K)<;5-p)(k-BHq`J1DFvq`wNa@SR-{7ii5i0ga>DA>P@OqIyY_9&g$izTZ(hi z8;lpHjn{hN@v^x~{1|eL(S&&ae_o)QdalH{@Myxqg5Ouvccr zEGO->!E+a}C|#~(xPGglzlH%NT|QphiSifYKwS;$7J~=%GSYZZw-`LAcHON(-D2>d z<|BUA$2bw{t6;cW9!}kkRGb;=(&hjn)Sq*n_Q4EecAbJg*_i)Zl>c+6-)CjN|BJMt z5`BM?QkH6Wt?3Im{w(3h>H+K(;xO=eX<1k%qw@O^FG!!gA0t5<$fl9k(XJeLl$L5L zF0h+v`oK?-5lzzyCTQ)rZ&|nUi zTB?#-s;$eKW#Q+z@D2o1S*?-HT=kyJ=`zFW#ZpydZc*EAJj^UBSK_1}(qtz%5)SDn zviKs8EIx~iCnG3}Ut$%H(NdM#BFmPS%CgUK+3^UbO52&tTFu{&i>7pIX!1iKtX0X} z_1jeLEL7xqN|oA+%Dd@NnYSneFCRPp5oyCTw|VUNTf}rd?bMDP(*OY!OPErR@jB9W z7~#=UaqeoFUv~tq%9z6j(sF^`p;V0 zM70s4WA^HI5sm^JM=3Fn>k1z-HFT5`N{-^fp`(;gvM`SmtfQ1rMtrO~N{M;GY&S7B z{3s>nNi(B^ouS42P6CFblvu}6O3YJc(H^l8M=7D46nKzZ2Q1-7DWM|$W5bS8Lg|BJ z`6wl($?PN5H5A%xD4OmX<&5%C%1?p1I3|yHQ^?_&tC;s0oOa0J!t*(YBlDb*LT3aoGN@vh050w9 zQ8Vt4Fw(D7Z;Nni6W{OnvDu&O;&uxX?jjW7E`DO=a2GPdkTAe^as!F&Uys5@{YCsF zCjBpdlm5d$vFIwP6Mh&L-h`C%BfbM999lmtZtb{RebAH0Z^z@Zg6Pr;qC*u-OiWsj zrcR(M9IZ(IUI=eZ&kXZwW8Yqx%%XWWMDxF($z@`_>`(~5zN{AjNVlH4){&7Eh3s_v z)ARbGKqo8O`Dx^xheBPN5itC-y8Ms)o8S3e{4GRASN7GlitA^!Uyf+|Mf@|He=gyl z3HS*$DF@c|VW5m_4ZuI6-o~gb#)+L7vp+xwof*47V-Og__`*wPMsgDp)PLO)p_X7o z3f~tpdf$|p7G8=pN^sz1wn7W$W-q$o6>D%WT?=5;-HWOUi%czr;-&Db#m?v!^z=hy z_tbis&qQ)zUGE*K2*rHGGm+dPs#%Iq%rO+99bg|6i(oA+<}3WKSjaF?tO&&%<(WuE z4D#84Aa_PF$Iym&!NU`^MQl#e-oF^r^v%7rxWrdhii5|(@-!Ge<}Y3RHPnySFp+;- zFkZW>9B`ZJM^y8E4Ehw+4+`*nDfNS@&81MOA5?QQvS2ugo-Lp1rgbXYQa@m&<>IZF5Nw)ey*Qpez`a##LhFSf1PY%VQe$WjcbJ7W`9|kz2bVU(lbac^g82(VS zIxuP2F~SehNXgAPt2*MP3e;PMOEq{IuWhEj@HFAs1osFh<-0x ziRF_zF;u?jf5=zq3*P?1m% z6T*9#5Z=QCM-ThLdnm&gCg?Y)9wzD|v8h^ zn55rg_n;!79wvqNFe$u;Nsb=60_Bc*C<76SN%}=-IdQbutG@?D!{yN8#pAjXD>5~t z#fOrkxNt~|4TKq>qU3-?YZEP)G z?AIS;)D9NS`a4+lT_G)A955T!7e=!rgxWct~@v2EWJzPiC;>BOhiYcxzEnd84ruWy{M5r2AA;jx?0)~53 z@1R6sOxMqcT>|5Qf4@$uirM1C6z*i!Vn-=?hEdDfOhR&Wx zF;OlsOHyQhDL>`q^)FFp6viS$Cq95pmbEowp>&)=Wd@*wU70P6_)0szu=GP+4vdo6 ztA8;hHWWUX=JoY><=h32nPgbNVLn`E%;jdw%W$X13S)KT2s2Da+$gwKhO{L3Muj&O zL{pdBP2J>Z$_mS-ZVEM3tD5RmrVjIF^SvaWP8-ljXINg#Su%9Sg|PBp04H4*&n;i5 z>3$Atp(>*_y-=q{v&KA@R$ODAqsIL38Y4CRGM(NvYh20_lxtkN!S3U74r^T(mX_nt zM5A{nz z>AgtjnvddN9SSZ+g`UMg`g$bn!9Tq>^|}dh92wXXsi;I6$BgBMn#!H1X%Rq`B!G_Q z!IH5;A~xm77W_+88+V#*v^d(hL$;Bk_0e$#%X;VRGGKS7^Q;2PoSm~5z!uHMM*uL2 z1dO&DwrM+b4t<1_zUs*&Tq8_I3e`5O>30pIUTtw1kQZO_-?+NJBGHHBlGLX+uIfk}|4QfiU4VFhoCEw?;^s!g1~O(Zyb>E3 zHqbW7L%d!=qz$?N34`VHi`rRCYiqf{v-(Fk&*{Z3ZoPhjpFvx=)OLh$&cLYlTs2Dn z)%4d5)*k+i#BO-Fh~u1DmV!7;2v+`TPJ@mHG$x4YnK8&3#ZsMFEP*^^H zJX~9Kjoo~hoyJM!XarIetxu4&9za}TVD3~%2_OqHQc(1Me(A39V@|+`~ z24(g+D%8kW3y4Q~an=i%rsJs(hB`$m)7K$I;kvJs-OpH1uSbSMV;GvoRXjO!{c^;a9$JJD2-OAfN34hdF3wA>?u9ys;s)3vcX5QsT@oR3mqv)(Wu}PTVv5|W&G_Ax$SsqoIU8Ll)RarqEJB<` zu1|{GHHb-~YyynCcy#OZ2>{F_N=AV>y^JVq6QAlIl* zB!XN6(Slr~J~a_`n}x8?6yKtNLfC&K2dqS#5%#%6*xiVo#cR|Y9${N!8GusATFYoK zk;NSRFc;`(+`1T)#%NvP~k+TyiB9Hw45L2J(?(^XZuXzBVuWQz9X zXgwp;B)-wClRg1C+-7@LksO)uSBR3C?;$hc4v6K2C^=jkAtUeStSF9RR@@J{iu{mS zQ5?gp$c8LkA7ve~8p|YU=(^U1-M+MamwiiyM)j@=KZjwO9>0do@jdX{s;cqYwkiz4 zw5?I|i@?Z<*&Ge1y-WOsco+m<^1-GgYA7yRYf(|N@jPPbB6yjFa?V0J4h`jp&!d@K z;GL8b9cV&w%;~ z@kCU|vy$9=^ahpG0ZsV57@Zbkly3sHu{vPOFbf4*&W?sC4AlA3_<{*B@Z@Q4K_X{Q*`VmErvQ1FSv_7{50bZuL<` zkNElnOgAd$*k6AL6^Z!zLnvK+{Q+hk)lzCa-%1EY)8lV;|RB$jH%a1H>goYfvaYml+>hT3d|u*Lmt*g0HeZaY+B zk=lRZcpbfN#5v+j`H@Ml&3%pL8K(Q*mK^PGQJC2)b~xxm!Hy4K-w zuKvRPV99lecKjJfo4NFhh<0KRW;6aFXWt#l?g+~3gki|CBbW?3TUaYEoQsk7b*|3v z_LB%zS=@XI#_%xyU5u)Y7)KX5jud?EQPWl-tt)D1dWz)3I}z`)i@WY4^ZzOHd57Ic z=1&@ed^wOlI*+6t@os>vpDg_t#}-(z*r85P;kRGv#WzI5UjMOxwK5r`y#TdnF&-g8 z^&6q0DR3{49h4$XfqQ`j=jVtka3{!86My=4DMe1`zKn9hC=Hg->$<<^5yi2 zh&ag?FNz~IA&hO*agk!eW7D&<_g(0D^OEt}QndaC+H+9#Ph{_ss=5E&GU}k}4^)Dr zYA%rH4x{QCL>*N90-{c;KFrxRRd+~pQ1wVe!l~K<`IxkA6<~~R!FWb59j{%2X6}GK z?WFM4NV6!Mf&LrfP6{89&iRVMIsZn)ofQ5C;x>gxLs_vY{32FeLd>X$*n;agbZ!-4 z(8mJo_wcV8O|5{*%}MP$k!DdlgZ4h+PHI1ExCQ!To%1h1T!F5r-G{i7+8YoLqxNUG zfP>oKrsSzJ;Xl^_~|_u$tn8~iX90k zH8#^qI2T!Pe&H1E5qWC?;>Y;c19g7~2s=nHKj%g30wgJh{G6xfdX7pUKW7X-gD8vQ zFFCL6C=`>M+6Hn2irvPsQd8CSA}?7(S*PhC_i)p zchnLL+GSDg zW!e46=_cPDg~^SH>un?ql%r5_!@o%8%ijG`sKjKU4vILE&O_3mWdQd#_%}elx^|~* zZZOl@HYENM|MdDu?jB@iNg-5+R`|cj$=3AaOtU7(@gABF`p0VzpovRi0CZ09Uy!CI zm?`XYjsbLQg3t0;6U@0j#N-5XBbzxQM=2-xL5|uJ{4%1T&H@xn7y+b4%(bQ;XO>}^ z2e7YJjMutlKvG3kCJc6pUYYM#VsO~I_pJL z=nW6VA=*%B9F4xc17fAi9Nhr;Q7mFh{FTO0HV!aQ$1;wx@d^1~ zX&hzL>v*LR3~Oka)4vH*XklTR+nrX7KZ{D|;m`0>uzMC3YRgvOY#9GuSP4)~TVGV0 zkTp)epk}lwFIigVO9@Xkt(Rn3FO9%877oj@GC(xR00(paam zMU=8$8tYYlJmPG>!op>O6d}1TQ804Rl_~B=%`oFWsH0# z%($V2yN@(mVz{9XTN_5S8lxQW(caL(wF=`1Gi6kidPUMWwm~xVd21uw=4ptKBcf^} zX5u9I;Xt~Zm~4*pQw;x*uF)k_Uyj1`W)%8tT#m-m+Fr2n?_%^}Xv>=8juUk48N_38 zl=Nf_=Zr&2EbKT>#xO4DBIbhB`h5)FBhaV0U;=nbmeXfy_|l1{9YCFUc;>@k4Ig`M z3sin1BUk&Ur1JTzU=#p3y^nt&PxZeK7m^m5WNHyDG*oYCaa!q!(PyU>E-$VuUE-cw zzF3j+7-0AL&^jRfK7Z=T%ls~I{Lk_?U@i=FL9@t;bw$MQ`~#3$sXmJ!KA^I32pU9~aIA-K+nJ`4R4h8p1sg zW)IR5y!c?pqcoSG9r}C7#OH8mCwy8ETC_-`U3d!|V8>6Kj=PF@+JqjE&EevVe|~8N zu7=NtS1(+N_484T{s*gZTX6S$;%Hm=e3_v#XzcT4cDp6W_tIM^*={}x6suranWmQz z1JG_h7_5|r$RKnIGq}V~@EK-?q*?nGcD0$uJ$pbI-zc6kIp-D)5d1cXA@ zeTbdUC0{_G2m$`DJImky!EkzLJx%$`gM<8iRm!`fg72`rOTn-*S3$8~eMa7~CiSgp z8E533CFTA#pK zvV`l%60RdlxK3k{+?gd@XO?iCS;BQ;38$S8S;Z1=ItN(7?ce}QxQ{u&5^mxJ2(W~k z&H>kz!I@b z9#lG(h+SDCc4M9IY$SDg4ZU<@iFg%a-B=>7M1cR3Iv;=Uz}ESA{E&!$!Qc(8`>gM< zL=3Vt#J_oKzpg~o9hN0M+_I!cSeEn%%aR^pS<;WREa^vBmh_`omh_`qmh|t1W$9FR zsxf?ROWE^=`ay8fQP<#C=&`&|Z$Qwc#mR+QznvZ0bUl_|$ha5(;-5hY+^v~Cd%|TG zT{1gw@}-x}o{cT7xP{B%v8eaQbLK>6=6zP?-N-!te>is@Ad=%qbQkUQBs~#+MF#j- zjET#Pn+%&c^~X0Rvyl(>NY+Wj#c_^~oals5vC(ioh-rs{T%(Pufzc)FvUD_;jx|e1 zPfq62E=1d+B{Lc~P~)ocX3t2)8I4=diC2IOil3a!(2b4Zrl7)D@EK^Tovu$#=Jdoq z7;5{Gq0F54EF5wtnF-O?jun%WRT`hRpYW)8T!g9^aX12E!V%EMLV$=;|He}C47spJXnXahElL|86iRl(m&pC(P%`UhoYW8r0w7BM= zc)RtUjxuPjmjh-*dn0O65Onn2LOrXY+imuB)Iz`gx`1Txq=^&k0Tw+CWO^E8 z1EFYVu+@=+p3Xv=gvF6|QZyD$SjXfnCkcVOoKqjkUrtJhW6A_~Sp!Sx18z%0N?VHz z+d0WFF`Vw&E4oVx;Z#w9b2gLBsWE4>gN-vuU5;GLR3}DjXS;|(YnP*-^_xJUlQ)IM zo3T#By223~7tWL{qD-=bh*F4cYazCsh1f(3v0zXKdxj%6Ss}K=aS)4-I)+3Y$kk#@ zlffKFgi2&%l#$+*vE0p0Q&_gx?v#b$2@>k*#j=IowibHZS?Eo4qPKlGdXp4-Z7~=r zy(}SUQmrKfP2@Uo9Y(H<+%5xw-2Yn)TNwD-i>ziXvJTk}$q+%5wgheGAW3j@q9Y2- zIF?^VRFXAy$xMz8xuD3=Lb;P1LwGl3DGT@Sj36*MpEa2HaJi7+lnZT@TySb8O5nD) zrY*@yxRxMruIwF|#5#4XYSilW^SHh?zQjCAW64i$D(w3ZK{YGquUemT;{+h98fH-Tj?jFO@8AG!LUXCl&+qm#@bn9=i1?3mFDTqa?(2SAhK zbOtat4&f=tkof0}JR3kRFcrFrcA-^3(=Kvh;9PDR!_FlxmP-S0a*3lmAmh?LsCk*4 zrsU4$W`a}hT!A#%ze9(cZk0QwjYEhk&22<-A*+HNbeNUfJINdl`uKk((|#F+RSe^*wsP9nEP%P z1w(&fitiClagiGZdw9$=y)Dv6VOr>8XDV9gYb7|=n|@}RlRmz^HOL|eD5AFR7^#Mu zvL5o4C3%9Clq9yFxtChssD@uxhlBC2nFE@&OEbT~2@X$idaWIiE+%_OsuatBj;^+tvVVzP^ z9&40BSa>~afigv<+b(6d&C8Uz7CM(Hvr2|3BjZ>&4!4oyglz*AhfX`8D#AvR{u&9;eTxO^-7XMf>GSeEgLy+ZoQp~TS{nEl8PIc#HK{WTWlf;Xglv1L<&6SExq1efy zwpxd}Ax&(M%~#+TivkpLo@Ljx1P(JxsP0f+@lTLV94&)=(;Vz81z);i;0%j_p{_9l zk8qZQ7fCp2kBVS#n*q@I;$WU6+YYer@Mct?Vq{|TY`G72@%nouXmtl>F8o@7Z1oM&4> z78)0DW0rVet!%P00eYSTbr6SB?7pG#u`HQtPo-L%FSO9=kR=yc_;aL9v&vaQ=whp- zQx!P8gFEe3U(*g}E$|7>1)ipnr1hCt5?iPp3-6F6&BAgFL+IZj= zN7fQ2cT$TJR9Nh4z@+_-0Z|~$#Gt2M-i@VY1$;G5IJ9|DHkXSKiQ@n zdsNtKvSgaVTTZ#lG@+B?Z>qJOywF-KF0z~FYSS!nCwH7-yGNh>g6R^-* zh=_C2O{Cc~oNn4Gy0N#OlC2V*D^q)$I&2Z0WRrzFxKuP^=Q}LNpbW*rcHOR=Z;h^5Uj(<}gzP28BPiDRBQwj@k|g}f1@ZX4+X33fNnEKk=}9H)E5 zDSF_W=cV6}vzF!EAkS57N#pR@;&T(n5fn$Q11NdQI)KkqEcg4+nTmDI&3UH6E?bdj zRF*3~oEVg0_nSDh`mZMp_UmCM8cFph?aLSP#(Qa6lrw|Pb9^_$ zbPwV|k72&DocTh0WqHdu`O1Tek$h$O&0vJzHeV?(5tntodkUxhPPHridh$TvB*}I% z!#z><(&`Wr>+<-#qbbLwcT{QFZ5BM!Psge%FYpan5o#2XSE*yIcFQ9z08q z`vMBty)622xR&6s-{OTcGvc^oeu6V%T?BJX1g0U}O#?0$${)Vxac0uG_6_P_QD9Ar z84dHrfX~0;=FpuErZ#vK9%I$)Z&Ag`t%>Fe|7}x+lgqx3UhFLLFl+2B+TC_Ov-PAN zmQ#CADFQ-Hq`fSs_TEmX_7uAbOnbPL=xeWT%3;)T!voroool(C4`3gnfr@rQnh?_t zFKi(d(^}TBzS^sRwWyhEq~$YeMpK>3(=fB+h-J~bhiFoCnz=fdQR^O}8MQ8WM9T{v z$}P!p;m|1pM>^b;u+WWiMtRZ37x`c3EcexkYPmko7S_BLPg3Q0 zl;=ws12`^VjpYi@f||cQHnJZsPqQ z$OU`kc7fw~lcQnWUzQNcX<`{6;e(8@1rTI}65~=rz>nM#6z5r@gRduB<3gLbo~(2b zTuf%gA5P=P&=zt{{P3Khq9r)YXr2ulqibpiB&p(F7>Y^}DZR>h)asfJdzG8wj_<9Q z#KFy6!u70zEY2>qZa!aT4WAc+%N`uSkEZ3o9ZGJ2)tw`4hE>k0 z_?;AD&W*t7d4}aXZ~IZRXG@mjZtuhPzczzK?(ie1-6@0k`W}-a6F5lG+T)v1HUv3x zt(&f9F2vd~xG2?@T~4V6s&!i&$`@rU9zZ(o?}eg(Bf}zD1yPB5 zq?qmOv?SoE6x#^h)l_;gKfD3qYi8oD*Qdf=e zES*LAO1-w;qLUhVhsf)t)~zy`domAM*xfjp+p=z%?2G3~EatY~Gz>Er^mLE_Ho7ow zF$FoEv#=m}m!3teAQcLDQhQYcd&PwGVB`I*;!@!(nuYjC6 z#911bVx0rvd~-pUHhV?GZo2_o$G4e>rHW0lpf}WIV#Ip=8cTGr>v5 zj@`*Atbj~uCwIBqN#e1V+&P5@TI_|!n&@^mONU(tgp`SpD^9}u3Wvw=wTg+JsRM$6 zH95zHDvsLEdn!ARvm1Wk)1oUB#l1R9s&mb5*2JiG9n{acc+>M33y)+1>x}}71r!b9 z8Baw-_UkQ?=PrFi1t<_mZ)ao2s87%q>$Dw0|U^=xHX;WBs43QVGW8X35)mJXg-~x+A?PsYhydV8| z=?soLIFSn7o!1#CKa5nV`k1)o>2N+71%>A*G<@XK&8Lg&zIXHrN#f9G7=4|bn8w3g zjOi{4(~@qb)K(()D-K1!QL62z4Z{19u@>LBSYE|N&b56h$`*4u@vKIi`R{aL;2|_* zXt(26*FVD>G&=s{2>w6HM+d$59!c5UC0gN_w5g>_&YzxEx}=XPvegb$`5N=<-Yl)OWh^to`ds?ya?lq4g4)avmYcd zFj}-R=gYAgxpd*)vh}f927~z`su@~O2K2-MPs8UEeWi;}9Nr@adK{!2JIne~qlG@L zsH|*hSqKYi=n4(^3Uml15<9>MBWj6HVaJ`euyo1%azyZ7II8eDi|_v>Ez>-09}?# zm*vyo0OjXXx|^ou)5rkjsk}XF+_Wg45(Bg>pL)1yem^2=zO2%?N^vFwSH&qWmD6J6;Si4tjfZiw<`AK83Q^{T!8%fNk2%S#K(Pn|gOUi~PmnH?`Z>7FGLKlCPQKQ>N0@S(Fr@o7V*Bf3+ahuF1k*Z_V0;sU`EMBiN0~ zL{RKFP<=s34#ft3^pnar`mDWt9l6}^Pobq*l<1>nSyYir*RHAa(`|Zy{<&HtQMPfG z{ucdN%c31?>gX{DnkO~U@D{{Q7Q{{+{br4i5(FSX*-z2$dZe|>r*{y%89|7h*jBn; z57PaJod-E1^6B5mybe)_m^4IN5WNG@EAr__DA>BXj^0GlRN;P$iURZj!aqdz)%nz| znchb1wl#G|GzjfVNof3e_>*BdYb}YSm+uIn`Ir13klNljlhhKtH6MEDUCo%Fr;o`_ zElI0-yWErZgH+Jlq`_3>UZ3gluc`J|QB^L*rch-TwGEV9Kfi?9H`7ut1ZpmoH5z?8 zzF0D*rdM&Xq_pQN>-($~Jte7mGW&435V7@crsma+)YllP(*}Ha^GeI$ zOF>Nhq!9|w=|zVK@e0+7x8M?@DaU)_`Qhl0=2%#34cPu zP9!uS;T|;eGMdTBr$Rtmjp*lyw#}yxQR)VidQ!`uGt1}?qQbYWAjzIONtyn&3GCRC zNz)>}=YCvK6fRXD%vq|u*A7#CgRb|vGh<6V{v(%2@_2d|P_JCC=kDUOs95BdP+TKb zHB($2E%)9-cdzmKil?My7NmK?{uRsk2I`PYiyEhjiDK-_mjcIi-W=-NLRSeNrPPTk znkAa#3R#A&gQ59Pl3h!eerqdZq`r5Yc{p~K*@&jG#$E0$vh~H2U1^=mNBC4?fe2eq z%8Psp7B5o@XtA%PY#2T!K4LiHZ8S~x3Y_!YYe|^ z3`mA9MlVLUk}F6RzKMuUC^63JQjtd$O(Jjj=rm7us;78QYWAoK2#564?7PGQaou7r zC$>-FbOw!#p!+c_Ss(&7{9aHROBz2k0(r2RvZmrtwhq#veXV zT>J+t65dHS7tH|iG;KOJr=~2uqU3-`8+U15acSBZk0;ZUo+qGNHj_V#VzVkr3X0CA ziU8{SD=QX@;%xfTC$j2B)>eUDuMxY&3ek5r`F!+vY?IGZU7tN>23;KtcxXYufB0=` zUq|oxnkcq$-NGTW<}IL50wWf-bcRN^?e>Ls-{bt z=xX8q302flipZkwKDvEHGuR|4pOzq=&`h!ULuS!}TTIn2c+=KvmnrKC!nigS5O>y}@ zr$>BVdNQtoe(gj4UQKv?X>_2x=~}uEs&B{E1%7%GGqx?hiQ=;AMLPWyN^s-MQe#X< zOzJBxkrf<%+1MHL^X6w)iySQUZu|p$!h85_kw;Z%G%<_3bz-5onM1LS!HmL;>o;Ds z_Mwgcrq*Q*!P%IVQPioChWhUPbgMXfW%`&>j zLaxS{JH#Jff)?SX3j;J9U3|G3)AzC_px5_Dba~)F1^r{S2&RKP#D;@ovgsTz9nz4s zDB!Q9Bm{m8Rp@4;d9%m>0c93b*8nyT6yHED@6vk?(C?D6COuF@4=>JNK>ple1)21x zXp!X0p0S--d^BmjUoCiOyFYVD-_>!voWCCn>3(-dNv&NAEHOsG*K#6pV)lQlr2DI?nY5T zKU>p6Z$Z7;h}ldKxz&_rr0V3y-bajJ)h;%e>6xB}tw=6)Y1l!Fkl_~|V?bw7Kw0Q6 zxbX1im!G?C+e;o%oSBv;@~+6Pp`L)QFpGNTQ+^{Bxtap;@z%TpXCFFuCM^t7N6|=) zK-1X`G+Vg+l#X#s%cAsr8tdIJrcpZ6`JWO2M{uF&J0|@BF@+vklY7fK%kxCHw9H!a zi~MtQsADd*!|Z(-)k6PX5uod$v*<(oy#as!y`qr@iL7;EqA{RTE&X&&?!M(BTU=6| z>7o4^Xg@9>w$ipWbsjX)2qMU(beK8<7$X{JUlcZ#j`q>ULec7> z=dTux!RydU3iB8A%#Eql>(=omEk$%1GPV>GD93wg;1TNAQk+>Z%rg>LXk3%OVW)US zB!kSbT8*A1ch^vIeF$W+GC)6H(;!|!!*%qLCh}`DJfw{@Da?}Pp>X)zV=$$);>s2X)W|?L$vPPN3nI4en0J99sIDC)-JB2 zwaH%m6-xY2Q$BkPa*X`fg2b*uQK1jG0Dy*F)ktad1rfl&4F?gY*i9w1XaBB^r!@ooO6O zjuH?{bz;MVyXhj4ze}tyhTLnQb%qG;siDLMao8Bx?VcyAM8CtBuESW-8|jl(#z5WZ z*M+>oS1jH#CUl~k3>X~H8}u%aOCWnjftc~}BckKJYxf=6{qeRqUCe<1qM`OT2VEuuv1Fx(x%8_m>7wA9k=I&?yx zr;0j@r0VMW>iU|T%XtS8=evcLLL~aO3lB{N8~8kaGyh!r*HTcu3({58{X^^%1H~TC z4~o}sIzaJ(;_@`=6&PAtIE~&hAShNrrp@*l1zp#Pf)Z%3mteSodio6k!q-=dq^Eb& zK};VFXgyf{*#6>7|DpOV#WWGyBf0?_rGrdfBb(`gHK5Kz2aF+I4?*p0rb@%DA3OjB zcYsdgT4kyJ&6JBm96ki{!>V)WnFCa6oFo6*_>vpdz9qP#zdBwH#D-yY%eFl|UB<-0$Bei5CuR0K5ixyYY3#&xqHY_h*`kn5> zkcQ|mGT}`0b{;G(;Ge6*e?HPU{{CwIO$Xh!V^KEG7_8G1I)0!20CU`&C(?~U9hoHa z>GuZcif+-t@wcxQ-lu6H_j02yQnn7=F0!#-M9$Tm){lSwtcm7Y`cf0Ew?g|^Tv9x& zSKne$co!WqgtxIIS)-sz-nvpV%{nTx=$b6M-kN zWMhL7ppMPA-YRY@_((h`rbhmwCp1WhQKEym@Xh51#jI-T)QSe(;*gP^Oz*C2py#!g z9n_tLbq>|6!JN?}x=1P+vtO*lDp|hWKoIfQ>=AF}(9R3rjvhoBimO)fm$+ z#Q;il!+3SsigT6^Up8(jwauccEWiA(V$01CUS2V!Fvn9=Yz*u0!LYPq+OIc>PoRtd zb8%?c*sOP?8`to-9!B2`WpXPoWUw%wNBPHPBkyWhR_>Rr zv^6|B@Qe1Y=J9$_CfLTv2D?{J$)w3XpQq;0eU#h;&1<9Z@4H#}pT@z8uBXdA+>6kE zzf~i_u{Q{s_La7Dr{*7~=!b6u%pKj>>Cozj>e0$uuZH>tif3#b zwvT2vLD+h+6|S36P(X3{;D@oT*y24dHj05pzhwMhTu)0I3ZSPOalq3xuwI|Kk^Yno zE62v!N$kwDq9qljWlKYc6)>+xnC4+M0)mfmaB(z~CrShHYI{}4wow)29o1|3!2Mc7 z_s{{Ysq&4Yjr6A85X^x&qIuT5u|KJ(&rG|TVtp`;fso4rSP7G+_nE#G>S)0ZUh@*0 z$RFU{_S<^P%))*{bLje2?q`Np?3T6OH+%(`=g^N=25)|3_a4#j2Oq%Np1WZ3%o%jI z5jePWPqEx_VXxInNnZc-0@3N=zVB7f{8j&dZP@)NwCOLX1?#;pO=O5pSV5uU!OTum zeE#VkQc`a5$wl(q&%ijRm@n zVV#>#sabSYgNOQL(d-oJlMkcd^!g8eK$%zs&dZ`qFU=294;TltuB6T|@8C~T9WBAW zRBIVXE9x#O1qnm#=~7n!0h|O|RX%NAlj8X6rq@@y=?-0FW%t^Ga2=R|lD!4uku5Z^ zuAs8G3L9TP>k(=6#_D`JthLhLSGNK`UV3x2x0(^vSTJKFjcdjU02HGC)u2;$MSrmk z2Wj`3mUrp$mL0?TOs~ej&E{V=OdkB`AQl>tQnByO^euVy1qHVro?ozS3{~aVL+7KW z6}dj3xwv$w7^lzb%veHTqBntw^D zPua1;Y!_ft%XY!?kdGYIp_<}cFsgM-aWn%uSFsM?!lfo`B4IK$WIRFZ%+hlT!O}15 zdSyi=7Q}!j6ZYz?ZJ;qPf`5bAJGPNen6T5uHg#x9Mh4x4ld%uA+_XQ?^89Bn&lpO7 z!*>{c+5SC;#eln?tU5HGE^G;mFQ!MX$)%>K+%#xau$he>PRoMi$`{Gv0lK_7;CW;D zGU0!VHbU9-fuXjL8w~aO%9d*SLT~kXHf^at=zj?t-QTQg4Q5QG#ct}H`vzSZptLNy z7$%jBESedlzHV9}vfiNc0l9}f?u<3mLd{Xe;wb&cQN}1S1&vnmGJp5V{9xLF?dWMc zx$CJdrBy|Y=T@qsF`=4Q@;{gTz&mrrD$=d z-fEn~y+CUTz_u$|koYgnSC6D0vl@lyTUx%1W!3npU4Y8-E36j%6`l&wr@E*ZrPe|O zpxC-K&HMeZQ{zlDRLm+RvQh4DS}Tfe`>JBU*IKut+{E0Q`V8BFYGd+6n$fSlC^iP- z2RWauG=}Oy5j}3G@$O&Mgv>`))gfoAEcp5=E>&kVqtxs8)v4y1CK#F;k@}9& zg6-^;P`MQ%53ORLRM~&ZvOl=Si+W#1F_=HNhN*2c_CP5jX+O?wuf)8IduVx!F|sRl z6)F2A&FsURquj6M(Dtp$QgzVEJBCO?s`Cd(hF(^_unuMQ8ODMC zXuhnH<(M5?-FRpH*NJd+Wpznxnl7@2KMk?3r zAzCF&@(d{mpFczU#eb2ktvZgZg$RT+hU`?r)**jGLKm6J*#QFBA(u~&EQZ}Wq?aLV z32+4G%`IoOORfNO*{K3TpQUx857PQ=UH6ti1ER9#`LImq`C-YVDxasE&TY<`2zq;h zUXE_+dqp~g1^?a}9q2dIowIQF68UEzJ*($KS;$_@KTER4_IUJJ4pDnAG!FO3T{5!7 z>#6NczxNAw-z$72r7Ogn#gECe*8u%>mGA{e(Q^01;gsl2qowYPpl9W6d!m9CG*O2v zTEqfB59Vh|t@CA68X28DqH628Iknl<7ml8_Y!>}*Tp$ZvvezHX^1PMNbIr%}SEJQi zd{qst@O@0ZTfLqs>p;)1tZeXQKpz`HzD8qUSLz~yzO=0w_wN&1&)wQH1H}D93V5?c zE!9*tZJl{Q^ecHG@8;lewjCCOS6_p8(&^UKty2w8$AZi$GgAACi;Amz)1Elks}_+f z7kky%fT&(V<?BQMsjbLF3NsF;`LlT*~*+kSw|)i-x$X#o2V@HH{(c zH>amzWn}cv*apkb3@QmwC*KU5X7O>uqI8abrqu<954o@cc3GS$RF2(VgQe0#rGZ^( zlhecu=;_tNJhaJZ4lck3`eX4&`q|3H8DrSgTujZB1^EW0P|u>9R%d0yt`*#~@s?fU zz|>l5TUU^sJ%)a(=jRnrcL>BH82jC{ysmf!ZH5Iqv*5$+uq)+yL{}QhR@DVq&s`8| zE74(M)`HPvYqJYx*8Y@c^O1ya%1qej$k%!h6P|`z^>fpeDbz0o2d0fa&m#wFY93wJbLQj%+G5~fMI=8h(l*g+ z(G5?FKg_)nl=kcLIyCiUe9O&{w>~TeCB0!RPKpS?G>}v`78aS-SybL6h8wA!VGl?G zCtTQAH&%RdCHaslc4AG+(2?-zESX^R?}U`I^lh-yi3L>HRF`86>{5Nh19PvW&sKSP zKh+ILO=s?l7lD15X>UAwQ2ZFHD^51Rr&*)Kr>5UivYR@1v6#RssTJD-_BKk+r^NyO zO$btZY?dddQHq-`Z=ywY)VDQ{t;;1%Vw~8X2M4Smj-1)%cAy3}dw1{=Y@wf~UsVSG z@W6vRYNpU{fZlcu?7P6f(1DWkGt+>zU#)IBfGtXZ-dWwS1t+K79uhad^YaUf=?krS zA3assNPiWgIg^&SQDZXwqB8%B&oF?EZG`VY^#Ry9`|Hay_f0LXp}SW5KsKq_7tTq; zF~*3Q*}HM_2KyKm@dYKqvr*gyT>8cq2v1&tID1VgJ#~$67rz06T0>58-i#SHT-&{B zd+#fD_N0eg!d;g}@j-ghV3ptnKPy@9wh6*9BySNCZmP=Nh?Gy;zd(M?m3^nPWdT-HBp1Iu@3uKsjo15_Pa-V7Zk_n_2a zU?YM)V}-?Ez&0uBSLqLrwGn~6P(H__^)1&3)*fz%c2j;G=xxLn$PYC8a25A`$Y4^w zA(~;Ut7=9H)UpAL0R?rFg!+~$-v9nnhBwJlN-eu7x~UpPAFP5wj+L?jtds#5w+-G9 zs9R|DZ$?YKk%axS|H1F zVUee|VPJHva-;{pOCy~JM=u=R7are3E__R=RH0+ph;}g!-qUn?Nzam_zD}AXd!3}t z`Axc&e5K(a&2}DShs9!x628*97TSknJ0G^~J_3W`38s3tmvJ{r&nliG?i@#1`9TkS z(7Z2h7r$XwfIn!Bn*|&Oz+a^-t8j`xWgPt)2bu$d!O|_4>`1Mt9rhugx7Tly84hbFI3KUbpu{qGU2mz^-JA4j;D z^gZo%8{OX^eb4*eA-V80B02qzQ%17LH~}frWRmjtP;3wXW~4}B-HBqngB061K{ds8 z>sv=6+;=Roz3_WS)@3Iww!d0-yjE```CAdyUWsnjk56U~@PDb66lSEKD1m=9zV~ho z!#C?9M_(BajwwllGJ++J*F?BzmAAksz{}$N>{PWd7FLQrN+$`FPr;c8E<02<*!svK ziRtf^0+?~4h(1B>+fuggvXOq=1@fS$NFp7U0eH(o0rcXWC#{mNl@wO)Gq06I3X(=s zau1F& zvhCe^es*ytPT~STT2m>~PK?A?O0n|g_lm?zzoC83mK~>pe=lEdXBDOH5hwmlg)nlr z(<{g#2A-6rh*|nQ6zivRH$P|Bso>nE`41g9KS8Pfy(IY)7BeTOkf%KO_0a!cBXUky zb38fxzxIn$!9R?&Uqh=|{(Thr-_VA1%R?uPe>{`G_HiZin|4$me^c7a$MQZsB=6Ox z>HDQpp4Q#z*k7MC#-Ybcm6FeZ92%vm;W+oEks77%`?$KEu&DWJBUj>YP664@jVja{ zpO|THosO|h?bX6mJ|jfsTP5C4!N2^JZ+1jh{ED|(PU5=9SDswsah0Wo3s2NwcElmH zbHNDDJk?A1uQg)U2k2Rz(t^JS$5BEfZn7`P^i)@D-@$j<6LRYfJ|->0`K_T{kEuEt z1Mv6uwFLMVEQVj_@m?5n9BhZr1k9JGcbd=|dVrHD&dnn({4Cpz+1n)aenYb|GG_Rx z3*7JWYc}mKSPb{_lJj^vpVAsVZ_we&=AGx}6z2TGGacTAd7HOq)J(4=eg+r~Ft;PHzpj_q9Cz+fx`81U3>rVfp`@`Z7vwE8#PTZq-|ZIVF|U+lS2TP8Bq}ZeLy{E~Wd*7K!4UJ@A6@)w44wCckyHXbR>4rsOPI zoS#N*y(QVHxOY{7hcSE=E0$NL)%rI+@(2p7sM}US+m^QkvrDFKN&CsPY9)16$)(|n z{}!pkFQLu$mMvX8o1f=9W$6G& z_un!B-g$oSw}bW|qkXu}_Z|PBwe%knSg>W!R7eCdr6_F|BokkFf`1J>Z`-y)VDGA# zL4h?b!Qyq`^IAN6(WhyX*blcRTmi2T$x@PJQ&LMoW_m$3EvXZI>%qBi$n>%E{b^KG zHzl+9gPH^UYJ$(RrT74xzl|s?=GpQYq#ypb%swpfgMR>t{H#6R zplg>!SK|>$H?E;K(RnS0Q%g$fKf)!7Vv$_q5!HS%*n>w`Dtx>4L6mmQ-Mxh_g3n=u(QY(yfb5G<`g{5K|@57FMXqb z3cZb22!iYU2mRvBD!jJScyk3FAYq^OULs}F%+v}$ZUW-QgBNekBn>Sa~(ucUy_W-WP&H!p!sk4u+ z45BvnbLD{#{d913kXnq^AWns+iL_O_r&rTU*WlTpnOI}-KwRrS6sr~KVu#ocH~GaP zX={0LTK#Kyn+8{tw^r9+>3%IC=*y{iw_=KXRVhffmic_?limAONAMF*lXB^`Rc_o!@ZxSBP0Hfmi*qZt?7@X$JdT*l zZ;!%j6z^0O<>I9`(a3(+Eck#m>u4d8U9dR%2MSE-TV8lA8 zXq$AnZlXL=53J6jpXzn^>!zRUxIXs_)>sxpB`m`&g~R-K3+^7)*B56_DW+;XMl=}r z74YIsQZXL5!s8uy!338mXA0b2%*4&i^EqLD3!cphY2dPnNykRq_^ZWr!$$hu zH9mSG%1c>3y0o#XmM+ER3}|xWYH1{3t-Z!gA4GX8YX9NK%W^3+ua!Kll+YR+f%jY+ zA)#>x^D*4SF-GfKFt`-z<*mnSH%WMwqT%*hYS+k5Z_%b`FYSO%y&r^qqwa=JNGwcNkH>gXF+dMRH_S*asHeYktcW&j4M#?7UgfLo%#&@a;2M|AvAv7qkddh1u|+@wbDI6-}FWV zo9T4~53TYY459WhXq{YUCpFanMU++0zLj`qgS>uz>+M`0H0K8N_rXeIgif2O3DWDG zm5uaPXsUj;22TXNv(iWJk+*&~E=Bn1nJAIfI2#ChzbddL)X~$p@%zN87W$3Rs%9BY z?Og?gJY3mC+mQJtkiB_L!!|qyl~P+z!$is<&z*Q!riFSp*5-k0ym-wFTMX(Bwe=pn zUPAx!yJ@4#TTp8Z?dZoH>z3j5o7TO1+w$5PPzn5y8|yc}S+x;YcN+H8R^w(c(9xFX z!WiB41H5OHLK|?U^)ST7UafT_U(a7rTYpggZ{&1P0rNL)x*s=I@{Iu?Vc_4Hot}%-?Sd?l${cz;CC zolW`+w}c31C&#xi-9$ebl8!4TCdk0B0G3H~|UdMC-tyC+FBC zAW9-+(g1vL9OxtTF7cr(oO8?n$}85EpG|8C53bUYjxO#53V>3+#2m#!}!xNL$u zsy+AU-gwghy=dPKH*bd-ziPx_Gx)NX>vE4fB)8-+H@RaN7S+XoS&4H_ui+bopUhqRT(kQ#7jHCw{`cGydzrdb?$c98yHEBk z0@k|E^{nl5_h0GmxT?s#83W+Xt7>1y%W8|Tywg3A7ECwrGF#D<{^QRmDL$QV&i7tw zj_tg21s1O`9Z4?4!IuHA!Rh^>E3s}?Pj{9nTDS-{m8S3G?f{%x4=)+;(C|W2Yzl{u z9X@jBb6Dm2A6K=cxP%fj`5xA9J3(IF?`LXnU4b<#I^6;u7T;?vGVA_`clcM1z?=c& zKGuR8>HZUohhL2o&41$U*4uh+}c~88#yeAH%j-xyLy;YkL-kt z(e6!{8+u90$T)*k$Kn&4d>(he7X^Z(*q1*KD}?adU-f z*tT=*Dt87}dRn_|AuWDBf5&HTgDH3ptGAez@1yC*FLZx73+=kn95ZX%XPB;yc3*cY zcgo_&tLGz*SDkij)Z*=tC1xyFKjVvr=z0BfMl7pOa=P&83(vVd@hbk_D|ar(qz_A~ zRbs)rdUMIb+@Xi!MB*G=@N0PpMZ6!!ypNpR^RXJ!W;5p2Z4G~Nt5Iq+*dQ~*oP=>? zkbA_^^!2Ue(%{&=d1>%_|5MH&X3uPB@!rM~a#C&MbX+RLi{kvu0InL=>yHZm*9m_obj9ljf>2oi^ktE-%V_lwcL{Je{k#gzT`o8$F#j++qf~N zSIv0$-FaKrPA$gHU%MDP#nCxj;qg?=e^;7S*PJkPaHkn_b#mg^M=6OwOYPzEh?^m^7+N<#$kes)j;r8>)iImi2X^v!fBqr z=7i|rx8A&Z+0~E#*wjt<6tgxg-&Sn6Ajg)ue4(?`-NCotS0X;#<=TM-Jj~Yi5>q_R zB)Q<=PqCEVZST6LVZn`Yx0z+;8l0H4W900>NLS!C6pURm7PW1X*P1bHC1<-$1#W&p z3BS5<_~=DAm*hILm^gRfJQL$C_V;hKo571Bxw-ug!s483-OG#ccd&aIpa{$0k~p|1 ziWL)aEpc=12?zaQGR`l|(eCdt^!|d&rEn2dtX)}z;RoJ+fMrJa#*4NHpBGtYBQr$y zHZDVAS?oHzu)O&R_tf@lH|8GQ>nJk>!_eZXt4;AW_2%Y_xh`jN1lI4p%#@jno-$KA z?;A62))F(j0vDXek0>5u8a7s}F^8JL>nbjuSYKZ^JNNj5%!DV*x)tu1^V%1#GG*>T z?F{&!TKUVBGOyk^;qk}5J`RT)taOJfuy`+TDGs}viwD*tYtx;%=OWqM&e(q_Ot_M za_(`JST(V75w3&Fh3*~v%tdr7j_!lFu->3q#RJDYg|r-V3rx6O(-Uh{qLf&-7mEU+ z>o37leps!KYy09=_z&l{k4JyH8%qc5o%{2g9I!r^J17a(J?@U&^*Q^2@viEua4~Jk z-IRm15?8v(4G?Udi=z=#*Sam(dSb4=dc79w2+7t^%AR#M#k>Ex{SP2(V9s`P@Owz^UvtoN zQG(pT`?=S*;r%mb`ev#j{GzFc)pBDE{upcr>_T z9SAej95-@!J*FXBP2bzi^T}cTig_Don7cQwOkh~s!i5dZ%XK3zKI7ywO0d(o9XTzt z>W5Ew9xtPFxe>PwQ{wjAm7O>R+3Mm9lb0;8#_iVi?rEm7zHS8OZ^fO_(=WifMU_~$ z5uGv*mtN`?VL-trB07o}Bo}h(iao+C#G*rhz9v>vTt7D1FZZ}!3vVgLQpcPnV?e;2 zCp^fE+4-P3X0S|g8|xZ!k3PVBkGlodKgD|e7{;HQi_v45%M<>d$nG89MtZK5o#-{5 zsjb6g`#EQ`Inuob>vi(NM+(#C&j)n=;qmwT6~A`L{pO~)IV9yyz|?7;kr~aI&%0wc zy!~4&ZH*ZYP$xeG>yd*CQ#esKbIH9Q#LL z?4Pspe@#3(e`Wg;etss^JYXu80LN0Yn>|L2Fmn6w_Nv@!z4m{~eCq!j7h|`djv3RR z_r&_1rX-a#>r&|5IK_Mmr^{Z6cn2Np{m#NT z+=8o)Tv@#t-5cwAEOqmW`2I5XjM|nIj(wPSRr27`ACHK#`wgNLI$ZYl_qiMHy!D~s zW6vFVZsDiyJFT^=`{0t;K*>Vmiq@Bq$Re}juz59Aa8ag*}L zIUUzy9anogWpO>UoE{6TU3xg)Wl`YO!&UvF)}9^Qhxe)!VSKj)dvxcN8w%#pXc zk7EBBv*dg3sLilD4VRQq8Z01$-3{vpK8&p%Efri(|Ie*E9(wFnoMTnu@VU|oHCps! zA4~w+u|FcxHk{fQVG!tduzMaR2P2Ez(js?cfm=Fyq`T2+zjoB(Ai||{9v?nyK%sey zUsu81%OdRmTvT!Nh%tz9e^k)*$Q}#*_Zu*>-hIj0JjOk=NP>J!!m7cfZJ;27B0W_lRi(~$@A!0pSp9}v7g5=c%vqpF+U_;w)sPh0X=U&{qo`^ zBOjVMZrG@uX4dff!eoP4lpJFg&U2@a#wDPoSkM$>>(M*p1bZS^HOG~j+72B1^G(6y z2xsW&7rT>cvHg&XkoQ~bHzH;i56Ob>wsV3 zI^g2g(f44Q`3RO_dl^@m*TClFKJIUFD{*BL>-C`heuUHP_n^HD7qq?u#Kn;dF-thT z9hcQ{asAVEqu#__ZMSZNd)QjcFz~s94y-DPRgIzlAHeemxhEHWdc+-=k#E3F+zzyC z-w~ML)|zoA4;wska)0;0mF&d_ZT^EhW96b*Z=$g`xVPnObsJXJ5AS#GkRxzDJLs(= zmmKaMHQHRT4AJguHs8AHC{un({mikQSn|7&8iU=If<=qotl=7l5A;0>hd6v_XRUb` z>!J7L$w3P)T@=aicf1ULHUCqFzv)di!Q!z0g(r;N-2z^J4#u{7a&nfg=gjQq`S%Jm;b^Q@deOq-w0}|eD1I5>yYpAxX6AfYXXa%5$CXv=Pq+** ze%9QDZXIp};p)Sjg;>z&q~t7oZek(6w6qo9RloriX9Duf$&wc~zW4%86VlUu!L~VV zeCN|Ig0H94_XGw$g--o#aH%y%%c+=|0Qdcw-|!aER%HGS9O z`Xwk_=-cXEgv(YV@O~-Q^PGTrMhAAZ%@_$xE6x(y&DHKLIe0dMXA*mNm>0|_ya{3o zYLa6XE?Yiku^Bw(ng#3J>UL9iZ?S1y==SBQ^{63Nn}f_j@0?Ncjw!MJfoBeVp374m zxOMo*tI=8Z?-)OeYk-xuaLHa=y?g$V`|vT9&AEm9d;f>*pR4}|`W#<`Z$}j7{NnQ8 z;sPmdB}Q*ugeP2Z*YJE?nTG(YbsxqF>)?g*`NrcgO5{3O7wkFn8-7c&nIL|r?-_h9dB3AMnhYJHgoZoWwxKYEFpEN4D6TewwpTQZ~ zkLT|w9(m+=Sy@tNl>>HnSPef2*ma@(ZwzHVR{3A{2{Q-ZGMX}dsy?ZaHnMe5wWvw| zx|{uU9%{dv$71o|jI61B5vu=|+?>iGV~39##&4OJq)F9`&mDY_yC}ltzFuyveJ95j@BKg{++T63#|uw7-Uj%2$r5 zS%m?k(wxQ@L!q!77ZA8$>fu;sjBD&}lz{=049M=D&t(_6Xsu8G)oI7{@tWtyyi83ti!vAb7?0AF$r-TAU9IKiTV7_u_&kzI}&pKuO2?Tsqb@t*myX zZ$QW5QssEmqr;unJ`Q&`m%3|mcepR(nT0jEYk{NP)wzQ(^0N~!lpF!QnG{pl`!0owr7& z;!)16?r-K|xpPc}Kb%_&lpf!{{7v^ybC}k~7lWa|bSYc8nUsD~Fd=x<|C*i zb*%aI#qMN$7YyfsyqJo=a+z`8N}P}vF1O3pYMXLCD7H%yRV@p$R3!Q#thE8W8e-8?q;g#3%g=&f0N=@)0^euyh2 zMANf&Nf6?#W9uZu_WH5Q7BIvX32|*&h^D>X%+we$C7Xs&vxN8k`IQ|{qAzx0w^-GT z&b}>Ytr=fY4%WS`9FCsP+1zoP8FLgDv0T;KLX|giD!(##@Bkk?=(y~}l0GGcru=d& z#a)XfeJ5P-@JT}+pXnwlJIu0cJ{+*>qG6*>F{U@=p#2jyvWLT1ZcS##Oj0 z+wrk16ks;0YzG#aZNXFuUy4(|13bU&6E0YM(vVwcx+{2VCYpO}uW=XQ;>A8|$6hfK zHPyy@)|>)3JlPJqoyv$)OvP zceyqAIubwdTHK7KO1B}h+vnlyMu_Y$xs?;#i`wx}6ehkMQLIpV(F8p4h_4{;Q#tmE zPWOre$#YrD=P}c_dDTf~{8&z? zi#klQY{0646ACZEWyxgo_pt&eYfUChH{$4@>(t`!H+kb>^5iaOK{BhGJbBmmkU85U zKlna*)0Nm4pV<#DW86|a_(%2igU>nn#FxeltdmD^r%ODecQ>BFlc!IsZKxaEF!YSm zFc-a|4y#uWs&1a@e-nK@^BkPhcg*-9b;aYy4;egi@ZiDGzVhj0POSf%tH8Mm;rz+q zDn)y1?cn0NQDe_{Kf_a5OL0N#eOwV)+FBsE9V^%4dx48`M!Tuj_Aw9DaZUbW^rXf7 zOejA1z3{w|;|Jn~(ehyfq5~$B4;eXb+L-6vnLFG`?YaA-N#FkOFI&M}lu}XC+$P8(WLU;2E%XT1m5 z@qB8Rz44nIal_p+IQ7C*pzhMffs#`7PXGRW(;CQ!;=l02_txi{ zyhwyMFOK(&tNvBud<*nhn0)OW$vGS1=>BGLZs~q|oVjR^g^{aq7M9JvH*89fR>PjB ztzvY}etY=*El$)K1-bCg-EWUWJpF>4sPl-=Mz&w9vCv}8ViJNVaId_R`9NYvTSFBjtU^YZOF_J}&e zEjypT3H%GQ@C)~hqDH*>fInZq4g8@NKU-Zhrj>|gJ#^2ubkFq4PhXVh?-g~9vE*I( z`V6}KUi=))y8XsJ&-2xl%>e9y{P1_bZ)n4qs$jz}NC)K}tK}xYBp>x_#p>(Fz&|bv zzYY8%i_bQvpY`Ccv-p0SQ`Xia>ddud*~-Rz4f;60c3f=f`uvhE_-){ivGmzS^s@>4 z_btBPZ+!XsUQwsflKXAw%L{u)oxYa5)Y}LAc&Z@BMUtT1e0~%7r&@g9-)ivf`t<$z z@-2`@&>#GMkQwjx1EbEhmS5kV_0RIQ9Tas=vgH2$OxbG4I3x0XV}Hip>d5{qb$)Qv znTK}r<$fRZ%hYyg)TyxSgP6fzlqF_Arl!NA&H~HMj>+j0b!J;KKTqFx8{~bm`1a+U zM?{^AE&I&+a*m8T%d9eG$~z09&iz^J{n%rD)B6=;_hp?~WPV)RA^Wx!w>@^Uu4Db9 z&Wdj0a*mBUy}OYY9FKZ|AHS_K%T;nx)H%2t`>KIa=LcEJ?Z=-#DC(qeO|L8et51nK zuUr28^7(bsaeCC*VEMP}t?G=Z6U&hK`L2d+=>B28nf+n=*-@v=vdt`a?3}36AFIyD@X$CqD-MftDZcKjb%of4I-bG1%vKfWME= z_m0`r?*!jIe)#&Ez%TXnaqME-;WrTNGO(V=-wyr>mM?#w zrL16l)cMGg*=<01{)DJA(UO;PR&dTjiIegs$dlH-;oAp!UzC0f_S=ZIg%hLBV9U2H ztAcD~7qU*s24%=tZ}hndvU4n%-IpmZxH#%evgCGMv_W>ACG%~4-}#qBorER#$7^5S z1o?-)9DU+kYmUXdt0qOAoBaI@$7|m{sH^Iz)8X5D^EY4Cc4<`3$o+lTj(a;~^_HC< zcecL5Snojx<;V3V_%>&y$3ppf$fK70OmD2DEPo1)Exyc))A!o}+2xkZkHwceHBqNL zi=5?@xFEOp6TeST)&bdtmaQ$@4%xN74CSGW`xx!oYNO6LU*_#&Yq0xu>i1ng z)=hO$XQ1C+u=C}9tj=Xo=OSy|_S;0tF%@%POXl19F>PQmtLTgJCdf(q z_2~0Ez(%r4g48CAN64G6O=o%qRx%JJfojc-U0b{ExF&fDJz^E zb?73q?n}TwJqy1L{FAfr*MrY~@B3jNr~fVB+xx4(&rwz~2mRl&vE%B5%-)abn>L%k z59ao0OVmX$Z>7B8il}qD<04f5l=*!LLg>bdFXRet~6-UYvKUR16JNE@7|a{>A(0l(FX&o7%F=X%Ij zb|Y_UjXFQO7mJ9KQeUZBgeB-PmtgkX}!j@l~})oo6h2zyJGfQ@Akd+-1q_ zKDG(6;5dbSgEBv^!bMSMtYzo>_2q4lPqF0w@iu4&$b-IQjZgWDv-1lx_MZF(R(MU+Ill{88)WwR6Mg!1u?4cHEjxcc z>C0DN8+Gos`aq^Uc0J}kT^tLguiv=qT+XlOEs$Mk`p%K z!iFFFcyTvk%SQwA+ZDT$&snhH_ZL3ijeO?NW<}I_d^c=X!iKBi?@nx6V8gZDcgLnT zc3iGc{@8BBb}n~zEU*2W-LRPp8!i&PJNc}J4Hq_Evm5zrg$)h9RI!G^1LcJ4-b9)%6po!qz^Hh+W-mrwlVH?+a<;q*Bab%{Jd^_Z$ zv&gg6BkN~1Ccs<}E4ZfR&4KSf8tyg7bdzYe@9NKvrjkm*Xfoz1y+3abxQWb z^?Q|Oy)K_^zv2G-7hJUAd-b#YeuDj*eT4i@@Uva3rEC*q5BWCMbr04P|g5iwe0{06ctQ-67JxiUhaIHC8-=P2PhnG6fpdo#E^cr_GZ%_O2tshY8 zJZt4|@0+ym7+C7ex8(M|LwWw7Qs)S3-^i2~o>J<((w+UOrOw4!%ICL9(`lt?*J|uG z>F7qbx*OT1Ze-iD$o#s>$D5H;t+HgcRU71uS>)OFBbM(J4E}uE(!K}bkExWkol%;0 z9mbY54J&mTti1g3mUdep`_k&?cAJR2sMKldMjjhg>YSdXO;``K?)-LuF z%C{s+os+GYGwln$UFuwJ#q5`3SS z7vH{ZN~!aOCHL)vxNAzCpICC=uB5iq>2Kw`OWgIPPIDG{wmRg#)_Dx}H9P=*ij^0~ z66Qx);pL^yUoDv*r!OyPEKR#+X`esPem&$5WU=@2Zkk%^oMy@GyjMfE)skiA-8rrM zyi2B+I;*>}-wt_juPo!Z%h=nRN}V~~*gG>yowjb|ZIHj-jl61RX?Q;*Oa5CRzpoqn zj^G%qmTLjwRE+YIbRt*Td7_E)SBkz>be>{Z#$`}dS><1nwFZG(3v`Q`ZOohuWe|onFgU{ zIHjg}^2~-NJeNCZO2gEeY0V937GVxk_)edbRegGGZF5bFmCuywmTEhX{|(bDWxe!@ zmYU{CjWx9`PIE)uG*BpG&E$ru)r~?+Zq+kqR$noxar*S8NzF|)lbyQS$&-@P8d{v7 z4jQIUs+l=+`b;ZsE(C7HjfeSX)y!;hfGrKvk~LGDnKh{QDU+sF&%C^5CR|NxXs!pl zd3tgt8Ucae{Ya;}`HE?i>t{}%Ha*##wLzNer_bcN$n=HC8ylv2WysPLwlmS1RXuZ( zwqaxSw9ADxb9!>x6rpOS*G{?&Rp!@+gC(|W5vkV`_y*LJ8fTi+AS&-l&^3)UQ=6Td zX_Kc#j{xuv=V^_JOwX&u{(OR8bY^huMks!2=szCShDQZpxP{H)zKGpk*@%9MtgEmutP zx_MLm70nHk(bsnA_F*Bk+Iv`4Z%&xD&4(z#LnPKA8HdfcM%Sa9Qz0Yex z8nYqT!=^S&)6VR*WaIQYJEF9@@|wO0OXY>F>^pOUR<(Aj?wd3$WVUQV+h9Kn4YJmL zXz_2wEc^eztH(dY{m<+@nS)c#W5H!w8&YRzw(Ipb}bjt?W;fLfz02W=_pDQzl`(gUg-Z zNLn|Yhw3IAVVs&dEqdskHnov+he=bL>vpMy;P`AQO_D=xTIuaWSX0x?npu;kHD+xZ z-_1(oomX((F%$(hBYMwie7^W!jT{I+@fQnyY8k zOlrn~7GG(p=8I$gWM-O|L)J>I@r2VcbHiG(v$GZk)zz{~&7?(YH&2?tE5fYm#$-*{ z9{yw~+hjUut885^XbwH}XZG7{SqFz~Hl0k({Fy>9i3=JvTbAA=Fcf9&JeM~#H(OI- zZ=!-dpk^9o`ZC2QKKtaF`~2$9db z<~U^pKAK84aX+OE@moSC4Iud8EL(Jm6u{092Y`|5r0epwd9IU^+vk+$$b(N{Iu0(p z%ac<%cy9sZjYuH*Y}%7bt_OUn|0GDisTE#JwzuHAucU(sPjlWo|G&Ux9SCc()@L)-my1 z=&)jmO+u#(k-o_HeNx}AGM1S|122#0_Kd*wZQh6C8DQ_}B$hkTF7qa%%ziC`srPGDgsRgKoflKhkwqbjL$|J;uN*m%+LWjDWu>Fe4BgEH~HbfVXLfA1dZjAZhwM2;MouuWh*t3NW z{bExdqe0mPkHa?l5g}9c2=Gcp91Mc{WAjX5mE*7cj>q39k~MmA7%f9$JVcr^9%54H zFrIpBw;);O*y^%4e9Jtu=y*64yp+7PNV)4IJ6h?4zpIhzFie1XPwOlY*Z3QGQ0=ek z_XO%ML;WJuVUANy4HuNlFq*lqB##1_eT=l7ycqN%*~zgin+te2&DNiC-(5&`s=-ehBz1 zsr?Fq7keIYi3D6hVEk~LM|@e?1eS$t;vSM;1%c%vn|O?}2`nSo#No;&u)JgwFH<%_ zkLk%g;&+ryU_DTq_^`4GtP`?{Z!4R?`XQV6H)Ru8S7Z}eIo9F&R<8kNU-ad&0fGE} zjlbWO8Y@2w?z5g3^8HCsH1 z3uU$onD@8(naGB(!QQ8*4DlK$Un7~6z316s))Gb;r-K8f?0iE*er@>cW$<9DRrap; z5c>=&3TsrV5m)%r-3WVehHe$MtA*DRAx>7>5U&wB^jn4PX5pm-DaXD-$W-kBFD0ri z5#kc14eGA*6E z*v>Ws+NEkMPdyR&s5qF=LsFUEy4Er!b=HW1sZM%nW}BzEkL4M;zFejaih?o z+cs?9CcKp36QEI*gkK0dX^1qlYPb!Xo>hdXRx!&eFSH73(Xuk3Rot@553Pbm>aHXI zIESSSOGDi+kXZM`Lm)@f6SAq257h|q`$8x4h^m{yXrn*Nt)W}bSH3S_51XgNz9mBZ zrP78tAfu;Km+!kUL}EAch%ZMG{H(UYgwqZ*#t{HoTkXQ3Q>6(`n{;$e__iMe(sJ6K zAhyBms}P&Kj=^3-9ICWj&nOc*tY_+u5?)Gh9B2ed$W*NYuUb?wR01a}ZHP5Ohi;p& zJwxRYVzbhQ_<+#qy7PsXa){l?Bb48Qgqk9Fs=+`-@r@#mQGBbAL5;7*<{Bi{3-J-9 zfR!}l;HiIocOfICuXy|SmhC-ClBhAemyz9Y#GSYV)W#Bmb|y$ zPc8d=OU|d>Gf;wGQh2HpZO!6*(~sI(#e zNa(O7se6y`Fc|fL^i)4Wbd@&5d3&XIN9y(#c}g&w{A86!h_i%F<`EZoe4=L;bVvGKqH;sL zTj*py@sd3mL&^{fHJ*H;`UtPY`FWrz4}xk563CgJCP=^4z6GZYLgu+Y06}lE;VY-j zfT?~y5(dvOi}+@6j*~3n42;)2puo39=nbUr3#6Yh&0ED&`Qd?Ld8iolN-EA1#l#6v z8N|N@KS>JfkwR(exfAdXGk34h>t6q@TA8k{z}<|XFWFY z1!WUn^4P>TlugKti240g#mwUgCF%FqO48ShO45F_l7542!RC8NGExISP}&fu;BEi3 zks7?Okx*d5I-IoNY>n`wkTJqvmAf5~3wtQ+0iY}E%#OM45KnP}m(f^1C>O^2i=P;Q zZV^W#@mXaPJgY|E>M-!WC*s5lfWIioKyoDa1Oqun$tXZ$3i{U7P`q1gVpQxUim{2F zBJ!{IGoq#!Qzcc8LV~=~m(PQ|4GFv{MC$9Ek@_VOZd@mfE#wr0)S_KhJ@+dp3bJLww>k6|h-pL;P6iu&YzI9SN;X zSR-WO5dbxQ#;*w@?U`-P(XD3QkrNg*o;RJBSH zDwZ_{(%{^y4Xg!7vP%OODs71O;3g*O6ji1_>UJO@B*FxUQMgM0cPVKrzAB3G1SHh3 z0{S~7WWjZC@a)9)a^d0b18{}XhWM4xVHni?84|)EydY#^6X0_t{V+nsI2B(KX~j0c z$4dH&Yp}UaSmlHlm88diD(Ne7)tww9X+WT>v>`6T$)jCc)IAglVG@$KmVy0x4&Zhr z?*hE4fLoNj6+o}na6qTM#c7-{OUx_i^bRHI^fe{vv`Wk?=(I!0&}nex zl1}@H(=virkcobw&jjym6%+P?TQ=PRz+)w+vO$2;l_W3*Y7oDxY(fM9ki93crvwut zc-aMA;lePF##)%MaHvCq=eY5Qp|{2Z;DTj>=f<#X!SQ`Oyge(yCw6*{(P!!GHu0OF zuUC|0g)vBLkEOX+;Cd^9dMko@R<0L8yrc}g&we6z|U#NP>> z%p-o}@rj-tO07To{X*r2c&g@`PgLD-u4cuM&saQP!RZ6#8`W2Dq8CFS;y*k-(aWO` zu~hO)^(K1$_#%b;SdMp*FtPDNv*tK2LE_~QbV*wLMl8xd2QUL`pQMx)I9sJZSEOZ! z0#q>=YeU62755ay_~C(KFgJ{WRffc2hL}*=5Wg#QI2uxSlJHW3cY{WMA!Mpf18;_i zgWaPOo6C`y6LE#ohWKZp!qk$5eN=;fYAJXRt}MTlOxg1w>vy37i-=I02{%RgDDsrxK0TR1IblB} z3}J@Yp=`nuk4>aEtL80d5jyoU3#xf(Z_CcR=wfuu+8OcRev_e^j9SMI=-wW7%6ACFpaYl7tc=V+8tw?rQ)o zcEa~W^S8uP>_9|3013@i2AHKJ%W;#EuK+eH`8R-iirJnR0goJv`3sLe9I8b~-NT#)bkxDAnb4!^&W z>=JZPEk+5yJ>G|8Kd?}^CL*)LE;hD4gtdBqy*hd2**Hz7e@PrMBY6+~djWIqnv;L${81r;mD zdKT$@WfQ#2>xuu6GQ|j99QDMRNN_^%LJH=dmgB~Mgx(r=hAtYdq6B@R6S`i^RhEyc zgJ9=HRAp61)x0q8D!)2d*AGf)ai8V8LbP+>=`JMHN+WRv64(SUgGOf12Z<`g{d;E|CX29(5-mp9++vO%_jaf|pU{uHrI^??OTiRuO-Qg!~DcJT~!5VV4m~ zkTbQ3XG<_Kf|o~77p+k3FX9SnRw?-e-~%Q7VA`Pg0up>S5kEvi1rk_vvgv?jCruA5 zJZay>+)#Joh){Q;r5l{(R-vY!EEveR30IE@;pB- z+CQaoL;OnUWIj=K!wHU+S3dK+0}1mE!gr7m)*-~tl}+%x9pZa~ww>_}VwLJm^gQ$- z{@CLaJr{k5dr9F_y@_5yKoj`6IM;~BE%mEoy;Sy_V`54 zMIQ0gBbak4LM#l=6w!2%XF$-cz7_;)_Bj^N5#72~rWFSDK(tOon_a5_U4j z`%MbNsO*dEysRt#2>KsLsNzay{j_FXISb}DA(8)9UsRrCm#icnh6L9HjUv1VYh}}D zWz%S7(^z^WrXNUf-N-DxY#Q%GHlDx6EMYfW{+ca+%~sgWZ^PdS8g?`Ny^4f2x|=z2S(x} zN*m&$VQREJ(#AyFdvz#O7MrE;fj!{%I!6xirNG|qO>7?a7udM)O{5RwMkfYJjrsxY9V6; z8d;q=w29MZexX+BJQ8;zp$8IZ#j2j?S19dXki5zWo_uwh{2mx`7$hziI+;h*xWmUE zem)RS+#(?_!iz%2E**+9H6(B!1U#&ypZ~4L;mI*1Ttp*0tK4HI>0MR)(^tqj|8*jfPDrFIT&!ElH&o(mHZRnO4J^79|XLpU(oT6|ja2}-;j74R_<2YTX8r42E9YWmPb-93eu5*!5@6;0?y)zD<5sFo8v z)qFox%WH3{dU71N^k={;7W0J9iea-1i9r(+N*iMJS?NJjw*?8~DPhqW(pg`hN8&mp z@b3kzDE9b206`z<(XR)sPA9eEBu?<;+XML&Fn5Zx#BswMXAly4#mNAwS{;PetJKjW zkUk@dK})|p0xexcgLu_Q>}5zGw?{FjK|-X2FNBQWQHlu?5)}MuX+mBzr1-df4Qy80 z5N{SbJbHCtJEignaf#A~c=ET>tB|_uM4l3S0W``)cuCkvLo9?D*n~_Ej4%g@4Mud8 zmPd2<5IT&E9ixZJBg9@x8{#oShq@R89PIq!mx$^lZHQxp4s~PLE>n4gSgEujP7pfO zt-^M-@OFK4d~t?u2ewn5E^&#{@;vyfLWh30VEa9lM~ELNZHUWIF_?lGkn-Dtzn>xT zeh4vBel+ykk*s+DwEmA&vsPmm3Pwfw#EjLEOTdaEu|5=@$iQ<0DpVWyB}ge#OwSfO0P!^$Q60*Nk&ZwR}L@Trgq!sp685aAtz zgggig2M1Hg)&R z2yr13gz?HHT&Y|F?X6%tu-Vnq`+RA}ZiPQX_hT`S?Un1l!xftVl8>EQO-m(ept<}? z$%n5V;tyx&z+Orl;+aB+l|tRakzh`U3KACpLsq}RJwc_3B8bzCpHNJ zy@DG$4{Ep&k|9X4>jQ@>ZHNnn4r`dYXCc88p-sp%Pb!TQ_^hc_h)b|}nXuwl0_fU0 zig#c$g~TX``Xp?NAfzErz(? z-s%3Af%i)!l=9aAeGE0W733GnC44DlV(-0hl^O}Ugn>dP2xlpmFiE+D%alu)pwB?)I7Kpbvw-8(K=+! zTGiPoo}>n>V$(5l&xI!qI>Df`#N>HmOuKqwjd}GGhL;G#3;J?C3fn{a1;&0LpZrAM zG{jD!!@YvKBZY@0G_uGGJvqXsIF5v-BIu)(iEBaLE8GNu{-F?zFW6j;B;yNkh0=z& z=RWCOm!@k)o)X*!8rc$d3L6)IfDxF1O~~}{Q;6vS$6LbVLdFPxRW9vmWF3$<1kyOA zUx{KcLC=SB4E^Kk)&v>L|tnZm=V29V1Op|J?_g`G6S zc4ZSXJ#>JVLSk;j+m$xNLo%kl)Ln*zxCsvnS@slwUu!|%CTv%7AK3Op0{0*QU0I!< zo*op%IAM*D34(fx6Fw4doUlX41c6rvuy+u6PJz-A)PJxa6oAziiKQa;SK1J#3LUlv zbNA_Kw3WFah&B<0OEAIVQmvV@IKtfv*s0xzMja4MH ziicKl%L?V!-*$NV7>VU2?o`?k|9(Jv$Dr=lNZ6YQ5AQE6^9X>NRwGf-h%`=EEo3iR;&W3Vt6eatgfC`PUWXZ+==bw!oxlVd_ZYKd`Rf9 z))@s3BvKPZj2EQk>L)X|_djepFb6Lscpzw$pKz$KlZJSfvI*yUY$Cl`wS_I;S%gki zTt+s3RY=uHY$4)grDcJP7NNs3v|)RJ$|J;Ul{Uodg${K)u+7m&dODEP7nYa!9icm#I8LOek%L zmkJ%~Heq{)%4NOBIZ7MidqSt{UMIYiL*(=eeVDLO*hxd=nvY-;y73U9hv!7KoZxxL zBmQ351kXb_R)NRMo@@)^PNfZzQ!KmAwu85)%u-^6@j_Ny1ZYu`D@N(`EF4*2V?-Ly z2b`=V6|YnheM5es^D;X3@^13Q^wCo+Vy6H`D9OAhE9on8Da@mUl^~p`QbL7tX){yF zFy7!ep9@K)NXx0%tYoMdjICoKDHCbzGC-q}a{yWcF+ZR-uofV(hKUQ6Hbh<~wriNW z-ck>Q{UAom9{@O1N#ALAlfMBOP7AR;M0l8N1BWVYh;>4TU6Q)R!b=HqIYo>J1gctt zLw8fg`@}=&mAVUrmlC{PT@kubjnL#eQH>F9Ktg5Z5!FM?@(}ds)ex@{Rm>oOk0@=3 zF9;n5M%^cbmlFIHXpF0bOw~=`y&|euun72?(uQ~}rmA)`QulXAa7Flokcp1~)U*y$ zT$)0qF;1XW8uXk(u!e|hG#qfK(uR10&|yiadnOXHB%CW`f-qXSV*ytw*Y8BU`kg{z z&m=BU8Y_-s-X(PCe?7LJQh9{_#Ojxg%^sz9JZIqNWS8wp;q?vm6kbZPl zh5rLeUnBX;-?BhMk^F7H0Bzvew*$B)C)!xn=6qS`uwj0V?dOoJZ0^J6i^2*H9^I|r z`6sB_W5jlB^OTdlinvp0L!62$)V6LDwt0(yy8f*KM#_5ycbQ#vdE)?)5}F`JXK4XY z)9N>Ls)}*K43UMGX+wNh=&+vN!8VgsPg}70o~U6K3H(55L+pby zYP+C^VVlV^FTiGBQNv{p;E75bA}^}j=G-2l@(6LL(uVku&|#$1JzscOunc&KCnwHF zLQN66F*7uqD5@0%&qF?OrLqa0hkU==EduX;5eI``X}~J;wN`_*28oqUd_-wOoQN}X zyV%tIH4nZ??W{J6dHfx~mr7D`f+z-IhWV5+A1{n1 z-w%DfE5@;Z0rdVrjA7`t_!z@DQ(Ojv;}cN)NNf^>PlSvS`iWwK=BFu1^SF{>DT00P zY1s4^X*q39SCTdfB}1E_XCDknACblwq8H|9kYklw3DDXKBIX^0Y9uxcakA2exDT#~ z*bPJ7sYqxT!c#()KLem9F7^0TM@7Bk5GOn>iWQ+^&{m;h85P%yVuFg#DfubjUrPGU z7h{ubMAn##e7z_eeff7F^Ble6sanHCduZLXM`#_idOmnPkXRqYUP>F{n;5+9`k?Od zB2Nik2O3!sZW4CV5YK@b*n}~j2V%9d2{j&@$V{wwnMbQQOGSvD<2<6q!>Nw`tauFL zx&aA02EjASC!QxcR1my)@`;m`P4ME$590}1jB7|}fnpbf)ItQkX#?Ez8Xan>>QSIq zV^w~Hyxev!_~#ZaRuNiXEaD1+XO$OP z1yyw(AxM?f3mI9yk=>w&r-h&&}Y9CCCiLXoFR9HVSPHy#W<{Rs&J2*Fd$_lvp>yu-v( zf^dS6F~S+jWme}Y>D$l`FGRv6fvc0C0!{)9R+4bKkTC*XK*2YUVY3X0bwNxhZHT>b z716E>>eh)oCHM?zG(O>3VJ8joD`gWL-vh7*60`}~9RFNAq#{JmTOLt$!+qQe!qh?j zD1eov&q&O%$Rse!u-gdYf*Agoj_;T7fj9=BlgJtW3P{G-x__=(VAY2+@-V z*%rWcUvZC-0oY$@L!2gbSX%0i6<$iP8+n9!o;=8_3A`C%kDUY9th6D%D0G+?byo;4 zC73DS1R2--UrnDj6+B?0vs9PbtlwdY_uF4}sPaecgdrxjGId&QSk+&a`d^rY} zMv6dRZf&=MzS`RM?IPgqFMM1~!S#?apsTEH+A)?r9hLibo!~7;V%do+ls3d+2c?&t zx@(ZoJqUHU>4o8H7T{(jw*mgDr0xF&v56C!MOsdq2b6pez>KW(jQ61Ux!Mqp5yd#+ zWF=1r=n5V2F!#8hCF7bYiV4Pbo05bTLdFR9E0?)*We^mJ@UC(REDN|S&S%Oce5G8% zKnXfQ(D-A103~2?WewIT@l2%+amgX+bxPg1$nnLlP~K?!`nJj=M9;q7mp6j$vZqYZV} z2@elWXOaKRlViF{@smiXdct!;#t9phOL#%KeyM+m%@>6gRKzB1zJes<7w|Qu4e@B) zjkb?6)ZHfXlpy6e@DsXGjnKrC2SeGP!21glqTd1dQb|9~_ptddVa0hzT=NNfOCeZ8 zkQg#?sM3ZwOX#pdsXJbHDZy^!hI*bn7*b>4O-Dk7w|HXfRDmm6EI?u;#Dz*5;u}JT zkx=*h!b=HuBRACh6%s~B!n0zQ%qPC4Y=Y+@h;;>cv_yaeYk`knD3|uH3K=8N-YU!% zY`%xY!Vo`D+7SOk=&&%(VK7CaF40xm5aU9p>+UDKltavv?+qT;|3Ft51UOa6D8O5E z#P1bcS)>|?nGz=}ZHUKW)d{<+Qa6bNr-YYp32n;# zKsG}1l1O6*z*`UT7&`*cS4m&75Sv4g7%_3E(uVll5$O?+25&JEVk6umWQ_1TGOMeF zj1lO{stkHEVB_u2yXFn@2Nz$ZlmPj0x5G?ZbcvXoi7s)d z(BUpX-D8B863mpBKo%AGt}ooN*V#Rrx}$}c5~LixoRFys7DO6iW^r)$D9vqmx`VUm z;=&5-u}1^@BOwGrH>we;Qf`eoh1eW|Bs&ODE2hN|-xYpXiPRk@yi|nPq4GT9Pdq-+ zvkN+qWoKwNRdkd2MB1WRW`x%fOCxS2e#A`(H=Wq1H-N-TJ#m&lwhWO8)Qeq20PW$0IjbWt@yhTsY#?2 zs{pSkDI)yg6K?gwDksbovW$>YE@7E+2|rUV^Vy`N?};Dfp%g=8XDj6lQ#O2!cR+X= z_uCrbXZtuLy^h3bBCJnD!tOs6p!voL^bG|+3u}B}Mi6GLRQ-leI6hFfujp!}X3Dv9 zws(2XEcSJGRQQ07u39FpYB4nJfM7f0J$|d|EnSGAheMR@*eG+x{ z-_s|p9leV_$romLd;w(iN$%*=L|RVZ`*k zciqvOgM8yOXWod>@6_LLM}HAk-Ho1^^7jzzfs#|~ae%gD+K#T(R`GpEHKbri{|#(w z#kQQF!)zJh2IUg&7P5@6M!C#~2L$W1Ki`u|rBco?({}XD$cy%1-rs6zr0?jPpoKa+ z9E!T5$1ew|`Nj#fgo5wj8&>MOuE^LiQ&wptqDS2{VP zScimebQD|-k{rqw12oWYbU ziG8i>g9`gv*9QvrweAlC)`8+dd-4)iRQA5c1BC|qjr!W|Rtb-l1yT=P&HZ#rmu>F% z9&Ei1!|Hrn+_1UjcL+8qMaS*53mksv`fccW8r>W_z4;v79Vt1K%>e91l{^OZ%-!!W zWX+RwVj~i|0ihe!2vt3KaC-F&czWgSd4?3#ORBp9(iPO0y8GR+Q&sz~@R1htd*Jj1yKV30d$1 z2latVmOy(C`wbZ1uShpa<==Xl90=f zb;n@?qZVDfrKBg6wq+y1^M3$xMOs!4(EQ|+>5m9EPS6v*;DS2cfSa{yy6G$bC%P5K zDxBqZ(XCFGkiS8<8Z3$xgkeIK5&kpXiX*+(tv*rm6nOg2b*nY7{D$4C8&&C6o;{f-MSV7<(gq@FYk#Y$Q$|YQ{ODwdxt2-3Exu^vfu~K|9$=L|Apaf*M9e(AI|=Z_gS8_{{MEL z{V%S&|6dgRT=L*c`)9+fIfE>++&&*P9=Ht)X}S)gVP)&jCfSLS4qg_ z$6;=$uqp^T2`M9tQ!YVAyfVTS%B3fry{FAQyd&*LaOw?n1EJU^HgUr3N^0Kv7o4oa z+(rn#VU=~GDplsmgDPW~-pqrCFYh$O56YT(Q2HGtTxX|}UgJ*qimbcuinN^44NCgb zMi9HsJkElW=2u4G)CR`|!g?irb0RodtLB#we8Z~gMpdfDlc!b9r;>GyM>H*7+R^iD ziL+t>;BFg@i7_3+sH4^a=(1mEREjJp~Dh-vW$L5`X2_gugS8SbxN3r44bB&|!ET z*iNZDLR_M>tQgB_h25j6yA%nz687a$=dLQ=>CN7n0=w4Ek|6({Hw1-azH$svYe0=--PFuZjV zqeo6$kq`GkbsqDbbFP>|VuceqLNQ|E1CfkM1W!k=7(u6)i63~HRvU-X7^ROQA$N{v z&nwB3?cXW+0brYwp8~#AvTrV4r$B<)I6z!UzH~oP$!b8Yl9vOTluQD2DS+5~kX*Zo z#RlB0-R|L71 z_k@0Lu?a>++OYc3E!F}4pkxmextA0>elCCuOF`jRfM=Eb67aQ>L*ajt6fj;7ctFXA z0esIL;SpX|?ppwTXFN_gTjS^Z;ui=R9}lQi?lizGC0TkccAUVXXD@aX60NFoDr)@% zWnB%{8YFgO;v-5MV*9@7-I%)8nx=onCWhU=1N1fWioG!yeuy_`!TlqE_SVHvnw|~~ z3@=T@F-WMvD!`9DHu2}mCd`EsY7=h}zcIp(JvMQ(vI+n4*u<`t4!Rlk+`e2;vNKN&S3@( zncPSiF_Mg1WhO3Fs>l&-qi#v5qFO;z+G-obr9>NdDm3m?v{BcV^837>XRW>0nHkZ3 ze|`P_`mNXNna^iG>silw)^+c*=j?r43or(XjQ;HB2kwC!Bh@&SFgLP0vPh^V?ICGK0wy${HQAF@FY`}qUv#3eI!vOz=f9Ee6aw3 z(niBKl^dSQoRQ^bZuXLjhc#6oe`d3ZM>j{h7C6UfQ}lR~JQAb=%S z(j|~Z1#WCScZHiFo?i>@&tyYK7k~Cl$5Ha z)XkRN0)$d^d8zC+%MQwJHOta8f&0uB))=WSlyEi&ZO@QT? z)>338Gi?TfX%<0Ix+Vz`fP69&x7WDcuB+#C-D1l>2WTz0oc!7(Kdb9GmEp6IqULR8 z{#mDm&pCKX&J%o&`p^uUE>h0*mfNKETbi%KyCpV2!h4+;zz>Zl1Ek|8Ojj{{TU-?Z z@0wb#{T9CGYM{FZs#GXe8`#&meWimtIcWzeE4`%4tM&%z(;Q2zfdNM3IIbL-M(fDdI_Yyhs3rT&=8P>yBEr#P(P z^zMEVc&G51z?TR^G}(F`C*A21{TB+eUpZBqEj^sqa4OM-*X04BvQz&c{+vW10!t;T z_f(KLqy|E@^sS{N^tSQJCrlMno z3IP~tG&|#bQ-{ZRZVakjhbK#L4o-G%uM%EpJa>-mbcvh;4;gI%u#`4+`aM&XfZ!+V zfBg6d+9n`mXYIXMx<5#gQRl<)4W`QKSfs;8B?JyW?z{m0!+0Jzw$DlwBCyP8)+?x< z^W2vNe{&k!Qll&BJ`(By`#LXxydFy%-~sxLK2!66Ux0h~T%WfGXxW{RXs9wI-u$uL%A|ba| z=mqc~<9RP&yP-r80S6e(R$ftuO%mD$mYo;Ci;U-(*97}JrK%}LOH_4^(IRk>(I$YOM^Ui6KyAKLfOxbi0m%&-k1$&@D=T*oGc4o( zZl`%uvJPCLoEIf@Ao#NL0(ieJ2-6P4c0IdGQw097Di>KDuXIBE^LY`VnCauprCdKN zS4zq)=}e55bf(6unsE~loGs4sTcm8W{Nm39e{s64>McpsU9$yqoKgYrk(c%xf_b_L9UmWy1HfW4DJNl;p#CgTB=-|8VZa#CT|Yt-_A};507g!|C-{KRq-d$%ju) z@_#E%w?%*OyX{!^b==tADp6oMS)l)=NT zw0OPMX+H(9lgDzb;B2QcEZN3dx67j%n?yA>=5vEEL_I#qA0PAkD*q;lTGd8JzoW3> zam?X;6%%2?FAp)onO1}Z=bb}LC^(ZU^iEr>hu$embRIcgaGufPMFMJTXsI-Sz%+ghhKF*Rt1YNIO_IDJ9zu~T|| zBZ&-XTbEOs_=;0nNXujp8#Y*nLu^UwseIuM&I{ltYgvb66CB&UBwFggJw}`F6Flp5 zv0zIT(o)|>KzY%$Dlc9F?zJ*46#uhRif?6QTJqxARM|(lW6ZE=oM60DV2aTaaK3AC z`m$5tuSQGn3N|tSP59r%XlbaR)wNRv*Er?XM!dF2T?PEvXz4G4w_F=rH9}6$G5_V? z3hs7F0M9sGQ}*jxnKHGuIQ@>`drmJE;8^<;zP;DV(SJ>YawP1E+Rqm-216flZk2L2^z-Xf-V6xFNaJ|tY z@N=W3If6%xmj5jHo6#oVeWRsM1*=(jO~5)vO9KR(x)#{dXql$$=Gxr_W1IrV8!fd7 zzUA7fg6|kD^7f*uTzie+H?E~K3f2QfI^(NGn_2`X87)l_oMN;He9veZnBiLB7p?{9 zN6i=DA)`g$aib;P{Zp_`&U%z?p-(jMYbX|)EV`Y*U(Zwq4mWKJFw$rlnBrRCcdi9K zbS(|r$Z9PEn;305UOYIOa!Z5w*TWUsZL`e<+bt!UyTDFHn|Bo)r}wRBY9243P%=yNG9}88 ztBaaXvg?>_rQFdRm4^!sbqX{aEgdPi)V09nuDw$5vTK1)jTV7^;XOQpfkw-~V53Fg zK-U6It_9w5E%32x`>HWtv33=Cq0bMM0az(sI3kcQ5I*j3-=(?vfR6iL-&?42b%8TGvy- zfgMB_cJQox(NsHt9P6?DSU@{W51}<`>PrG|NjcVUCfh3lqL4`p#`H0q>B_4}m|fru z=LK-Y!0OqB?e!APF5p?C&5H%Q=$}uTQePE}b~;W#`DCKy#Y+??wOa`(F9M^CmI-CNQ{W_{rAdN|Tnk+0+8+uYcP+5kwXX`^ zbS?0{(IT+H`h-&kwl-P>zT;ZpVxy%W3V!Tb;CHSC{^VNVIip43eb)k?7%lbtincz9 zY6HG(w6uxfNY?^mjTV8cT?@SGTA=R+<^fp6XlZr9dQO3zjFy3~xpoghvulB)UE3-+ z)wMvUYtIrq?ONak*S;wD$hE*{u3ce6RV-11fJURGjRjwIEwHC+_Yt(Z7C6qe#|ysF zXdZwqj240IjFz?+eBEdnIM`?r_a~K+7<}!A|*aQ;XA@kRI(dmh1BXnB}2XYNR^F zLXA`>N;T9WN;T9WN;Tf>mRMD*RHGzpK;RhX1@MQPR&PMqo+;4=1Ps^++Wcj~IZn?L zJmK_d0p*hoC@)^3IJs3DP@dnEm z;9jF;V3E-x@K4tQwVU9#2yAGy3~Xk!w4Gpk*8=;x_7K5%*8(TGc8Z|lT409JB5<{9 zfg4;4-0522N!J2>ZFtMTDn?7I3kDc10vj7G1Dm=Q80=c$tF8t1buDnHYk{L&3ygIw zaFT0*(_IUk?^@s@*8)BVvsKQVSl33X%&?#B^ghAkPUE_`MH6T}Q?)Qv&UMQCc+%Osw#}fOo=k&YFXvWCeLpo|3UNFg3ry&QA_SKi~0A;z26MW&kFY6j2g>8*=P|s&$Ylc zt_A+&THtNh0-IP>WvbfNY3%5B9iA+qd%(%g3*b+;sqP+ZFOaBvfGf7L>?6RNBvLOC zyb;tNqT1R`_6FVC5vvN<4*bi)O#|OrxKrS}3-=Ek94?XjLj@tIBhm(RSx_Y)WFMAh zd(2Hh$S$VYty>Uer3Tz;OAELFo@cyb*y)WbfWNjz=_iqek9q?O;NOGZ(1S0~=#z|B z3`70dM;5v?_^VC))g}IF6MuF1JIDRig27*1+MeLAkoc=l{1p;^^@+bi;!ih&JQ3d# ziTbAw4E@uP^iLiAG|FP?XaGZd>%b77J_F|d_VIqL2M;&iF#rs4*C%lgNaC(f;vPWU zUT38~ud`zSb%y?_PuinT5S}hp8)itffXf=Le@jH8WwNYk>}zINoUVCsxkM9ij^I(J zPYaehr2{UJ$lwaWET^$brri%D`lLE`t}t}T*zWoI*iWTPC0gu!W9?FN-vqpAvh1C?hO}5>`QrP1cD5fy- z}8rk{B%!9N$0jD^RtaE`GZ7}wSoPuSThg;YfGkQTXZ)^!QLuiHw15YUI0Ja!Q2&6 z+XtlAr~{V`vWz%2ZLPvvx*+FC)R2nc z#;AuJpcbpoOW-#pYT+$ikne^J@Y0xZqsTnZD1#rx42ZX>2oS${f;0^FD!}z6mI2u) zWPlesFN4noJ-F?VPyjMjLa^YsC2A0GnZ%qzI=olP;As-s06z|D@Mc#7-ftb{*l~l^ zC3i`*u{5Bbk2lNRp>;NZWq~~NK zy-{9vZd!J3S5kIvS5kIvR+bh#F43A>Lm_($$^ayl{@yZg>AbY1^U{{iOItcGYiX=U z{diZ`_Ms_uKx3FZcCdeFjvaie16pDSu^o00BZ^)X<iDqv|M)8uKriWr@dOd*#s%OQIc?L_2IlMY^L$ zJM4@+@?k`NfkcrHV~K=yF)UV1Jz@UDYQm(UpG9LOqOlIq&QOJDtU)wZAR7Ji@M#|j z`#9Lwc>!EyXNxP_$FV)s@+*cvH{MYIZDtoDK3PwAf zCa5@_D_HFGB9))%u43TSbgHS!j|J~Zv+5Q48Wz58h6~qnUH}JwwYpi@eqEwCfzx)e zSvtQHGF2k|^@0a>4SL8ziS&;OK8kwCzg@q=ZeEQh`25ZoG4*`a>L~$)q5K6^`3G5k z6A<$6s>**_8Jvc|FDWQZn*w-@Dnt)fjCT}3Z)+unP(utyD@NJYf;SoOr~?fpu%gWO*>84uoe7Pv6kHnUXu%B~# zUi=i}dC)qn*-)a+0km92n}GdY3mo7SpbKRHP@jqcN4XXl<67W&*8-DV3lKqaVXC7V zZ68vVs8u^KbO(V4Py&X#7XRa%;&h5r{k4P_?SJ}qOL0c6zTiW4M{+D`NtdYM0g?Pn zL(>kGBy)sz9a*iSQ4^|F({y;2guVvPab5s_VLb2aX*#}Kl2nqbO61&ZxzucFj{e>% z!8v%l^8$E`Mwo>qY6;tWBytXf>~_o3AF>~osBeJ{Raz&CjRaUG=ZxI23ByLqZOIK= zq_p&e{=O!W$A1a15aoOP!+@_fOo`{#tRCwONe3UoI3X~5N^;on1 zX_ab}g#H1?IJcK?k6odQU3rTn~7zK>~_m80X))?3=_GoY69-I+~)OF#m17P z_kO6HpIdI3C+Pp`v_VD#%&<(Ejht>SXmuK+;4zVtB{T?}?7RSu?pxg;Y-dXp=Es8Y z_5IY7=a%x^Qkpx}$~FNj%C&YXTnur_Q{+@AZCd6L8MA|fxMc!@n4^!y(usMk@_#B( zF9Gw77J+_NK{F7d2mGP_W?*YGC<23xHpdE*F6WU3FJ23M?doTeeYt#V8ha6^@6qJTI-ADyAcDIU>-vy68X zKyN}Nx~?If!^~f$7W~wG*MUECAGKg;de+g@&C@9H8skUy9)JIae8?6!$tf*-#HqYnpviT}R25&*a+_l_k|i)*x%8Yy z?cA=IZwE2H$+F;S6)C^h1$j~;|AZAve$Pts*n}BD{%$pvV?3sh9(h?rD0zNb=lR(u zu(gAQ#<6}AUJ1xp0Pi%m!3zzi~`vBV)EMIqig!L=g&;kP_n1UC(8sLowsKMhU znh3yh9M|GF;dPi2-$v;u&& ztzpfS9%zkerXay4OXOS1{hk>XqZ>MC9aFVjA=taHUDRJ{Ys|zw}WVG z2dQ6wmZc03m*ye;{sW_B;BwajjaG3s0?DdRD!#0X=UGCBc)6z-xmZ3_coSNUF0gi78un8_M=#iRL⁣$;Ir7BKmgdmbdaJ~%v!J6h9 zMg94a<`^NlA*$9n;vtgOH2-_jYn*QrtZ&tnHy51XG#W0_AwNRTJOp_pL%aa;4cv6& z!ZJ8n=527~-& zD+ZsqK>-W~w^voM&Z<^L9eBQGjk+AT!e}#aRe#g+{qXHpH#$Tx)+w;eXfrTPo3A_o z-#6L}Y`%tRd5+@vHH`x85_M+-xV2iZa=`9Jn}O3^3*6vZ;P7s(%>5uvAV1t zyi1}!y}1jr!fM!-0pd43^D7IhimM|({VS>58U)Pn~~ECaG2WPpE^ zs5anLiP=DinA+kj7^rZz^vHm%jTV9Jt=r3he__8FXmu^HrFT29tR-oW8NQt`#5J6_LjA-0 zs?Okhc;at(Z08i&(oKq~d~)7~^1wTECUIu8rSlKho+d z0b#J(cFr5xHa2f)TbvVWP#X^uoF{>UKa%KH3lQ4h_7Cw7C7AS4JgZ6INx!rmB3&4Z zwxo~RVjrEIM?2!QJj4-0^AJazmWMbZ330@1)qRtM=`ILijUcS|T@8c?M-=i1MOVp=Xk!kh~+W?Bxb*4lH-xthu z8f(2(zTYzc&D+b~_mAe-wq*O|ElFW9jr~j&VW~+lmaXRWz#kE^?Vyh?;IT5ANZT~O zfVoD?fWND$2?)!FU2=p4R;<^4xVdeO#o+>8X{5$X5KJ^$22M8G0?c*oJVDqydAjKW z>$(z4lJ%iQ^|63`K;dvs`<_#JkVoNE1#R3|TpSi7Pu zUnZ#x0OqN*%uip^cwI z*L?5+vN>^O|6C#eP0KF<@2o@AE$<5M+}P;j0!m4n)?e0@pIQo>;&k)1^)*?Ev>yu^ z%~KPec3;=DY4LYd7gs@`yD9<6^FFv!qYEIvAg;ayaE%&V-Kr=7RD&8^&#Ef{-FsuA z>cFA8U{2@I;7$iub`4O$HzYck*#*Iq<>2QKi5)=rVQwAF>4ZG!2Q#}MKl)NIgS@N% zrJ|ElOLmC~e82tR+c| z3)2`EcJd%XSlkQK7#F57E=*%wn8vs;jd5WbRqG%ki`6~L96))YQ{pmi5_THGAbjyQjw>;Q+ zglcb>Xr4dV37PB%v$`Ps7`Ae*>w=sq(M1L@+x0heK?Yg1&A^Tl+27Cw*~Jg8>w*mR zgIQgWnXK{|yNq*G`?I)xUbQ)odtg%+e! zXhAxK@-JU7o?!~H*{~2b7nnZur)b;_k{R->hRS~oy_k1nwzz+y-1{Zk0`i{Ca{s0Z z*7MwaMrOIm>{`~j`he_=x~wxfJ1$Glfy+9RGu^WEe73AJIUOxaPddvwlXJ$h&Sd{z z)|qVi`Kv0Du$FcX$irHihP5;eYiSzR(lo54X;@3su$HD_EltB(nufKsx8=_hqP6SU zfc;W%x6{~Z8oSs?(b&XfM0xb_U>o{UjaJAylHS++8=VVP(<>6KqBlArulvEgF36jH za90;(nMBJ0SX%+<`fMn8nFZGj{3xiwt0Z!IR~O_aKbY4A`GthS;2ep30=G$2U|ttw zuIm9hz#Ks~wpKL*;Ux2hjnmJqiOs+qiP=NAqN1)it5jFKMiPxPN;F=?h%%dA^!)({ z7b9=jpq=mg!yBCtc3au^vOm1ixvhFBMEFWNtzJo|)hp?=dL^A!ucXuJm2_IYl1{5v z(rNWdI;~#mZCWvp!j=%1OfqXmE9CFk7#DX}w{gvyoc9k?*|Q{4<(-+W^!1dpr|0JV zo8=DHrTIw`mF4njbHAc^NbrnPu1@{gpsWl=gFH8Oa6y|}xUia+UaikdcjI}T$p!kn z^qPELXL1=nual|4e#e~aOfISCbtad`^U^Egd7a5c@Vw5oG^G6%^u?7Yt8vUOg1 zr8=)OxgMRDjnEZp=8vnJx|*8mpNFyzNp`IzX@i$^uAnDf!zYp@X@i%f4PKHqcuCse zC21R%q-|W%nKWxj+L9${OY-+hB{42eV_e+1Y98a_G{(hgjEmD47pE~UPGel0#<)0* zad8^s;xxv^S#J|#I7K!nsJ}_H2xe@c8#fZs_%Tj2P8iYnfkQM7qG+6&Yv{6SbHB7Y zyiuP_B)#vr&!pY*Oy@1C{Q-&Q&@-Kohy38?F33VZn9~J$T*B@o_{{ZlyC7W_bu;j7 zi9F5if}HOMbGjfEKe)LI@^6Ve0b$xaV;%p5t@vi(XN^dUY?i@0o(8NxH@n@F?==G~Yr z?p>5~yyxaUo8|7QmLDcbw&Pjqwb>H;Z>;cI=LPV%P3@$Y-891XW{HXeD=1rm^%G#3 z#E9X8W>^B=HChBdGTKC$FIkx);Kj2rDgI7(!=~J@DfZuOGU{t?n)4{K8PKkrlO;3_ zob0>+{@r-~%?51!k<%h@y+m{AM!_3S0SYBuN11a?RRV&`_8465vI&#qev{dGzGwZ!p)$5jU|^|)%m5SQ+7dzun_t5a|8iVp1{da;98)DB|VGxM@@(z0{9 zlCpEUlCt?@J+G^MA@+S9&g0rA`uKQdYdUUlsU zf)y2r3eZKZp+5-q+)wTO<9Eipdl6rj<%gAFi>GKj&RBmbeZ=A{EM zFCB<^=|JTF*C*n+5;cA}_=rS{4R|xC2_N^EBz-tM>BHek9}bUUG0(#oPsTRPy~!~@ z=`5(hv@^>TG!DAxdnI_gr}(7FaNv|e|fJW;PdTiBAf zvL)sg6?K!fKyOSImYo;C&16J--&5?7RSmCr`6JpDta+^J~Ew&I{m8#&f@O zbbPDl*Mhe@FMtmj&utg!_)*WV1s``_0RL({w_T>=cRarqeAjsaJbJrsb40pNEx%&8 zlJZxo(c>x|bu(%?SXmOk@d)22HQ-=diN>%1?kI`IyNd5A$-Hqu_0a&{TR7CJDO&)k zK${&vapp>NBX!~-pF(O(@K6Va8uX6@PdxGa4M{TNTXi@}!kPldI4^(;jpu!f?L^a6 z3{Mr$TFAlalGsA{rKtf2S4rqE@LEYU{;BvJN#>0Ms*eWn-ol|)`U|82bqqjp`YXDT zI`NS87Yzy?>cCJ#)?b~{{aljt7aiG0LVtmMo%0k!%>~Bu{?eiSz$tssTH+HVas`|q zp(8+wb*n)iP-s>y7)#qf_8h38lbQ~AhA zwP2{c4jdHpV5q$gJS6DBP<bpjwguY zGuq3QrN{O64T&z3T%qp>%Iqu&0|lPrya2vwJRc}*e_%TOdX(@XiCh7gcJn%2DrO3Z z^-4U6*HJ&CHWrQ1#q#ku4J}kx2ZnI6wXsaPcO--kzU#aIF0J+15`AGiWCaVza5?$4 z*oFLTL@3X*MQTtT81k!P3HkL&zHYI4dR=8U&Q|(yxI)?u^9?SkZ@jLBU2g>Ksozd!pSRcRJIWsx_l{jsP`7zFu6z8edPJN9q zZ|AU>&yUPJW%c-Dl~JFRJ7ST_-7Mc)tw-D$>VZew`O2rgx@$%=k8w&1@GdRE@2!HO z#7&&Z9kvZse4s>^dDP0&aN4_o5cml2FRp%BK)Y4{2#|Km8h9e8L9e11Bm7LG-On5p z0dnP_EoLv%@jIr|#1p>jya2YYWVYGnhV77k=qiTG$*;vO%fqoO}rY$LxQ@(U|hJ88Wu^*S^}D?NfTQvTjHRC000cqh;VR zqeY<3YAOS(8Eq!o16>R7D=6|yu&1~dIMubpdXCW|aH-KU;4R1&(cB%(jM*S4x`#Rt zZ%L>)d)P`<3SjV14>nk_N&yTm>Z1$ok7|aeB%nG1dS0S|1A@B-@L;RC3X-s9lBgen;A~0~&y*O$2g?6cqSj|yQ!KuczR@|OR{LV&WPIXe{ILpYqC|zq zgY=PK{h$KqR^#IA3s;(IW6=d6Sk9c6JKvWwZ#q;#z=Tlhx%au(Qz;@J-hO z=ehP$!S{_8uMphe6!^8#(p`cFTnqfgwJ!?x>2Kj2F1XO?b%HybZm;n@T%s7hEx6EV z=_LJ!(OFOF_7M?+LZTNJ-q;SFec zN^}>CuLU4Rxwv5}fd=O{OnoqSe#6vWoZp;AdGpkDuz6n>Q7*hv}PHOLVHNW8cb}xwy!+j|=|dl>UC*Xc<^$vgbw#7J4OwS-QThv=|(kQSvcFFp_YwGg~ zB&@o-rjAjWF!S!pW*Eiv*+hG7&wD?6nLfWd#a1nreG$-CA&7xbq(hzRuO%)dn1nb5 z364u%@G5;2(^)J#HDh~>L{5QUDHyfpw}Lh8vs-x`0Uu6cXc2hcwRn2RDS$Usl{?M01p;xWO#qiHinASj zTcYy^5W;Vdp`0Y0@4GEzziXB)b&A(x&ele&RHLlz`j9Iek3a;y09KgiQNG{X`P=G|{Jn@A_B@<(K> zNlHb&Q-0RJ-gyEY`FI+=+$|R~1c-ClXTh+0**8?;gEgc~^&1vjYPBxd5)J-1K7DTP5FDxmi}Ww@PkS&YcpquMND{EQ`Q>K@C3WY9KVRP1Mq0wP}d; zklvOj+`)MP+|ziz@F*Zvuf06W^wqXn=d>B{=4Z)8_9tcBM)FMux?&pj>C@r$O@ zZ*>Y^c3uF#-M4ydmq^!7A+qs;v`$MN=x+LaT?^i4bu_#(41_xB@;b^%9d&sf z<)n_fypDWa^EwLD@jI)d1qgN2gI~AET7b}wde8&ThJu^bSgWUrW=$(pY7!jpG|ncP zaG4pFDRY-o%It22S=7ns@b;!l&9EuDnIq#{B@7sNyYm7#!>?(w>k4dFG+o7z+pR1Z z&~FJ>40#!kwl(1VU;?_kO02nNk=(5!eY}T{i*F~#u}sX51($bE^$Ne7k{3_du4p=i zEbJfh!BWtJ$4C@1aG|L?3ZT2oL*{)xHPWwGqkm4d%&3hv@i?niHnYu-uC;~!LL2=w zx%lDX8aTCm&TK38gVNj|q*uYE5`_h<6^eoGA`k1g%D>l5qt{lMjj|%THWH3;UI5S0 z89v<;vF)<_is4P-ntwod(<#!Ort_7S7@xs;g@-7xP@--BvQEe})sU>hout}RqNc?7 za6ZITrEvnBsmjX)byl{tpP=M4mYJ@@io`Y-;SA>muy43pOKtD4{7MbDM4}3S?xvgQ z%IqD97RvjAM!VoDpCS0nY4rJ16|R>`&AhG?!p$)qT-gaZE#^QdZ8=61o0W-<#;KZD zC2`tNEr#(p+7azgo}@+*eD<=^P}wcx*vchrFc%~z!s4CSg~Uy8Cx2vzw;$>TnC1L8j^tOl7JdyVri)U@^Mh*>cJ4j0PxJ92ZO%>podhk zkU|{X4Y72w{)UjpuaU=zJ4@&3Z^&<3KhJLq*)o78Z@U3q-j1)Vzv~ z5skUayHI{mj?w|fc5l;F413F;;Q6)S`Nliyz-xjYyglf_JAxhz{<48j>MKz1z7ow- zfG?dWw0h95L5l!)SWtuaN@NWL$JxLqj_Yu|pP80{;J5({H<*CnxB*-s(L@7+<7{T& z_?r@D1{m_Qk*2c!CE8_yVMbecm+<*cFA~rdG60fWQ1`hujvJncQ9~KKTC^g~OxMm9 zP<=Aii*)#?gvAU#?z{kY=vqA;YiwV({EFc}#nqcYb1(&4BvJ#td05FzE4AQo;~jP2 zgrEmQxop&vnhQigzP88MaI(Mb#p^)-VogT_=&m@~c*6Ft5{3f|Aq)V$6_t80gpdu> zd$J9!Y&$B?&lcR6r-Ok0lxyU^%9>n9eoRG7wC&4xBID-4Y@I?{!`P`OZu_ zW3YY4^7Vd}&&mIqmC?_{3nzK`I&fytgTZfA41B9cgIEAxk*H&VH%#4851yu?QUhn2 zw~l&nmaBo_INJpXI0RIe1k{iORF?#lEpo~&wwf#TV2EM>_({-%p@9QH52<1yg*dX= zwq};!G5)+f&TRYVo!DN!qm2*8p?o$QSI_g?FV6F`*|?{46C~ORVsnyBVUBWcl`zEM z?am9}FnxGThZx&?EnlzO6h36UqW~_J=&S?OhGO6liPXSuK@IZGUa5iJDtW~mS8BoF ztqvR@(LAUHw=>>R2jU(*82n}PCkfi#Ieni6S_DG;_27;wss#gtK zgY6j0uNa;#u1*GCG<8P-e96^7Zyqi+Q++=~__XnkI`F-q2Sd4R)RUSEL_mIW79sn3 zFJ1@!%6LZu=&tg!2)4&tex)7^Aq)V$6_t80gpdu>lq|nv{Hu9>wysai^V|NB=V$Ah zUiynf1NxSL7i5d79!r<$@GesoY5#{#W3DyV219p_g?*hD!1Imgrw(k_GhM}yn_#L4 z;9G8tCrGiR{-jhbrH{7k5)ew&<)yOAO-ijTVKWCqEZJVQnRF*ew3Ac%Y^Uc6y!!0+ z&2Ca1Wx2)JX6_n&-d(JM?w_O+6Wi-0io@_}bJYSoYwC^yxT4*5X#tkwp%zb1N)$B^ zJk)`;=AjG(57`t=VkqF@cjlo92p;OePh1TI57`cMgLF4pb_uxEXfxoxO2AXD#nnqj zOF%!1E87V8Vk8#HIsiAKL39PVl$c*wdl@lc0{W-~1VA%+I< zd{+a(L$-4dl#VaGCOZu#6$#x4`oATo6u_}|+b-`$Y`G=KtOPewzLwl30&Y5r?knJn ztD-<}4u0$oYQdL{ceH^NRVTEApG{ktMrgZR-btxWxCgEfVhWu<7C7-X{D!%~?`D5d*!1s+eu>iA; zqFsk4OBfPxvhxD?qVar4u>G#-Du#2#)dc`wZe>pa|LkgDIUZ{9bcdO?0Kr2Y_?)YO z;31pYNel%%%rw&?aIJ*V0dI6Q5IkhVka(!W1NVuwSpgx22Jl%|1HnT!3};FApk-&D z#Fpvs9SPkCzU#aI@~v9>CXNEOeN9&}>@9y?&#&EEc!Kecy2-*|n{`LxtAI~#ZmTiC zSBw^com>k9XZ7GTR|COs)=Bu?OnS|vIxysCT`*L-aS~m?d`s{>r?G|G>+n!hm0AU3 zobsLJ?>dc!yxpHBY8C;<87%|jU7Ls5OqdtDK`cH?hoAR){P%P>Iqh|9?~|~ffW756 zTA4}#3}0)g2ge0Hc!u$gdeColSL{Z2@R#)<^*!eG)q#(CxdzZ}^Q)?dl)t0&+Q|+O z;94}c@(JbcYpOE2-*uYiJ|hct;q!uboC5C~Edu*lnP!Ur(P=FH8|5yPsH@sRDw8W< zNl=4txElDS9AFIwXFzCwdvrWcI@+3?MQe1&ypM!M0`_%Y0B0HRkpGZ$?Ef&(19P8~ z-)LnjwFe1#p}wN3>&$JlMMAy7R{>l{qD2DWLMN#01$(;oL;>%~mjOP%<1|KvtL-GL z3vib4j%;0gL&uXOS{Fp}Bd4+S?mBESRf%dQJN=g63a8O*90rd7G|UTmZN9^7SD9_dpMx5%l2G zK@W!d@^zs)9`pL@z=yqD1L(HNx={X((z7lExK7uFa`!b=ncRxg*auH2_ZbQ6LcmV} zhyw2$Edu*lnP!SV=rk7pjdB-CY+VR($GQ+K32N{SR|BD;*#cN5hwn)2lpuW9c>z35 zb2A+TY*#Q{#W3Vo`C8fYYr(HeG;M(vQ+L#X6iY6*@ES@Lz$VLX0Ya(zyi~T`tgY-r z&9Y4HD5qlt?mqk2(Js}=5*i3jc3uF(7p1c0jO}@rub+As&Xs5=fnS@tqX6nFUF;7Xo1xj6MrX?WMTMypvY9M&X<|{w@@LkI;0~Mo9z-_Lj z{5?*AXN)!h{vW%nzm`e$j>IN}@LlHx@FM;1scJ$LisxfVEI zf&&m|GLC&fy}?&4IM%XTaB#L$AULSY9b_{iaZtd4{~SXZ2&L-tQdP|j)z*Rjdk#e) zlxoOJ71Ln*$wb>qJs3JBUkPf=8lK+(hWxfz9@HIY>ts;(gW&eRK`Kc*S%=|kVim*X z%&6rc#8WS7X$Sq?Q4$~ZC4{|_ZpmPLGh-D%P}ZTRv*C^EZ`aEmd5X-*0GLZ{aW zLS=1vWt6t0ms!?qDbXN}2k8)9s!;K$pa$_RH9+)O$5trv=ohteEit-7BsyQ?Y;UJT zew0%H*TL=Gt_A*Rv@*rj@>4XutNfR2zKU^)*ZG$Dc>=-HVsLj!nuGL>lbQu;h zbcJr#h`es95+jW3@ zLmM?5?-tZ>z0-#U!ELrNtt;K0mfg&pIKXHLx1(K~yK1J;Bsah-u99`a)ZJO479Iim z6f;*(1vU7*L~Q`xGg|(qU~Ti2O)NUV4Kr2Jyb(*39U79&wH>89M3P*I9i+qIlDIpx zijPW;r-*kX$D)>~>KKXU+iL=EXLf%y31s}6Av;}ZQmG{U&~x$~q>S#9uhDEPHQ@G= z7%iNB^vS0En1ioLZ~*QriN34s5SauMLWH_`&UphUI+U*nJ#@J?V~utdMO(`>hY-mc$|arZ{Ub9*bJS3$|(`P4KX?wVBkx2zV}T|Nr#=Sr44I zvhK@CZkNoL#PoUkPER3WcUiFeq4Gaa-ajSSzbko5 zdHsZx|^EYUP(;RZZp|z zDQT2!ELlO)PeS?6B)n^z^0axlN%s1Ru3IHB@yiU@Z!cTySCXtE`AFq!h4^_! za-w|T=V(c*hDb-{ZsELl2~snH(%ujsvX2U zTS9EaN*h}h2W_OTn4Y$$OB-=~YmTV)bm#iguLv_C+xl8htgt)GdtSTX{mlfYXCB*rtB&HAKn|g@rWXTuB z70dDNXZ-)SamDg4t3ThA5NEq&o?^OJ@^9(ZN#grY?Y7uLuceU89;^rFB{7}5ot_wx z%$6*Z#58nw)%!Kg<-K)Mm;7Ka^_^tdp0W_OenWjFiRqnwI+v}ePd$=dBr(ldNqd8Y zZ^Uy4{4R0+l@ikz<^NrVToMkHY%7Ur_6nNg621WSm?WmV#D6d0%UKWn2l~zWYWyYJ zOHPo)^aJq)627qVc%qNGO=@*rA|dbTUh?@O2>Ay~4wdk2mt7>=OLmk{ek)1$^7#5p zvV!sol9*Ev!r|ZpGx;< z$zLQdNn*N0V|bP1cRJ^MoSb)#&=?;pIZHb7Vj3vEo#Y@1c`>cJimsg`KdRFnEol&M zl*APC9}M{mgxsOKQF4pqdI`U0+P&Nj@^PEQ?q(NcNY+^nWckU41!2GEQUgwB!fknr0-ULB8$}g70 z6!R%JOA^b){HYof9=ez>;Z+PVb?BPvHpv-!!@Ysh7<>31wy^ z`VFKTA~`eYj}=aoaBYSCbjeMU^CbM<-*`!zq(#yy;kOMBmBe(GZg6~8vLe@0lE=jR z3S+uL$Ja^jlRPYmX;;}4CFkfI`G@2@8TGdY{m+H`2E?V3nUYH+6-i9|3fDMENjiMp zr}Hkq<`q-SKOy8FC!8R8BG^4Dd_1wgRKBj1ERn2{=x6EpCP|}o<9g9I1wFqcb*N;B zgljZ@+iS3da+^tF`lWo`E8$v<*ztKrFZo{$`8x}Dl}rhCCkrPh_Ma&4Q^}Vab$*bH z*R{wbNleFxqnjrANiX`@-SoHVm}@Yu%l4DRv_QH)O3+R3MSp70PZoAaS|mqH4wE!X zC^uXZ(_;Dht7MsU#E#F|z2vW~Jo5WVR+3y3?5-4Eo!IYHqdi0Nv}Cd54#|U(n8^Q@ zqViD}B3+Dj$(NuH3zv~`2ZOCHeL zep50-va2MftHc|(*B-uu zzS=MOM0_7%Ocn9VBtMjpAJd-LNq!`u%;Azw$^Mc9B{5yGv)V0LVK?n3k{iW`?hTq=nv=2PE}l9)bEKV9eI<8+NSL-K$mrgd~K+(a@|=f1-^ z2a4a9oFBg^|83c>qjDQd@DbDJ>7y+_VO+mvw9b8W*Z)@69?wZ;$^J%3OrNLc*L(S8 z-HSHS{FR&_nIah^87+xFBe>hfTBnje5`IGMd9B&kB;Szmqh1?Hc98sIpw64Z7U885 zekX_DS(>GDCcoEJT-VRdF|MfZUVp5&dwpM2PwJOnYy4mNeJ;fRxbR6yOlN=D&yQae z=dqzbVz~t>_n{<~i~aVW=JT7OGbC{wV!wP}y1OJX{ik-ZU2*&wKVqict0n&aQ#^@K#eyH(3?S~l09x8KUQZA0mf11yaT&^UE;~e{aW$AX2#PpxqF}Ju6 z%$#CO*sGYk%q{k=TZPOu<`#Qb{J}EzEMka1{m0y5?J&1kgY+$PKmIlxdlq{bpC_1e zF-3j%`eVJ_>-(a5QosEE+5gJ#Ao(Kx&4gP>Vp<~3J;N`GGurd(dGAP~{Y#<0-j(i4 z@)Og4YPXTf93qM15&I|l`J(*To;dDt+-UDHl9>KeyY+O<_&Z7bxsq7^*%ka*!}+zk z){?y3SNAuBKNH?2d0qMMO8z2QB8ln$TJ9lTBRwMFJ=H}CZ?S$#(kVGxa)xB8gvVT# zNES&RmBjS_w)`)3eKJq-8_5%rn2yx73hy#|U&8yuV!ApqOI*2O*#5#dz$CXV9LPJRx~X(!JcB(lK}N$t&|>x?KEf z$$X6^Z=d<8IB&s;Ddztzv($|jj&e2O9%fYiRnMJqs$5_PfX_o zUn>e@x?cPi319W*Ju@*y{nvwjH{tG*jU<~$Hk1sM#Ploq_><&m$+MD}K2INQm≶ z+LYn7I5F9mgz>L+yPxDe@lTTaV*a3zzm;$s$?6iml*?;n`b)Z(8=}2|chejuX_o9G zDN17cqWp2Poh%`yZ%JYrpuJ@S$+Z5u?=IoqGWU#Qiuu0?`8Nq~mRutFzJwRJTrBBc zj(5kLEV)g>dttf9%suCrz9>JwJ%*S*mc+D^)@)gFwuC1nWBNS(eX?P{X77F}vHv`M zt=0=`xgc3z64U4DSC_%olKmy?XkXk#xQAqjgxeB>B)a91rD%VwG}u#ajO2^TF=V?+ zrb+mJ*?8d;$p}fSg!>FfN_LkVB#9}OJ4cHDrX2Sy@HZ=z6Ij|rfAN1Ss5ppyy5tZE zF~k(@=1Q?VyM2{^faIxQC;0zU(gTBzonYTTWZr!GneLJF88d0hkU?~NRXQUa^{HvB z>8o++EnOyMQF&%#1~=&MG@YH%2$beYW@Va@qo#~IZNikA`MGA~NfS}=e_1azNG8lg z5*7FDvsigs*>U_cXzZvdqr!nQdyR0==*g3#y-wh=NlqIfBlZRtz@axzKkmc{6OY?g zy)t^-aT6wb&pfRB`C9E(mz8~1f0x9V3A2~r3s&1E;A|BR6vL)!~ziC&!?7dwg z-O`{*c?T%~)ito2h3Yzf%p{a~yJBz9v)&sgo-(n0(n({-oHS`t`=rr>*kqJeQhSHS zc70CU8>PQQ9iGpG-K6mc&Eni(?wlrn)`}V?!l2!Dw0o*~KOZHV^D`T2A1BR5Iz#53 z&zI&wofC7-P10~@E!R9EO`}TZo}ZRxSe51_X<9SQ$WxCSG-QV%yHa~zYN>3F(7ln| zbAM&dsHd2*ij!rd)N^{ldRKt6_Cmx?_ZkFb-lTyty(){_XR8y;obNa=pX0SA` zU!H3CPQ{tmq?&2c47n-Q%#!9owOA1P=Vzk+R+^}}Lz-u*Z0?q3&6`s{FH1A;=c$ID zLwdhT!z)SW+>+YtE=|Mjsb-`!<8`9T`~8HkYLup1OZu7Zx5*+@FVPJT&pNx2*J<-v6O-&r{ERY*|%4 zmT`a1_c5L#s7`So8!WY|Q(b%xt4?v(nkcpJTIBP8hw5~@G(%O|{M3v*c+Ue489B11 z_-1HVkGd6MI1{-IweuDVuE6q?wN!3tVsGcl*wRMTp$XBuP1v!s2>TqBR}xrk>34MO zEj{+cQSlTNY(}CHZ`H}Cdc0gi?fWX9IP&zrY6Tv7H33OmwCei6c=tcA1shE~*(}wl ztlHhA<{!aE8@p^Y)or#_n|&H=DBZWuQ2p&O&1zN+r&vBL^zE~^{`O4k1RJ1lA8wcT zoDQ1>8>;Nvr%``<*0ocx;VQXrp9cM{PH_ae+Vv3}H)+yIlX_f!4V9lcaRhsYVopcM zX34TR%BW74rtzIrGhLd&an@O>YbaG^Ge?@%f25`ElcxA?s^PA|{Gic9S9(jD#wyPr zO0%r0RDTWcwD(d!TSzng{Zzvf{EMnIBc&OvX_N1Mr{O2l#8v72LqGRb%`FyH{PTaC z&yBHo6*8Zh#Xg_M_8fHOF`t>m3RLk-?_d4d#oaNVnZ-VzxxZLFuyL=O75At<>HRDB z!C&V5P@&KHHaXG1AG#&xJTu+rJoh1cCgwadoy@*{p3>jycqqY~ZxpIZ*}!@>pE=J= z_c_0tSaphXexcMp=O<4%V_c6ZZ?A)xA4j=oDCYDkb#VQMac;z!;H8MLqq=Gx{WmjV zsA~PZ{Tav1grhY5eJ1SPYmCftd9LDo0f=ca#rSzK`;jV$~^*@@rE2C{LI; zvVGK;6Gk34ZsNE}6UKxA|AjhcXdJ)NpFe)Bk!*uTl*@rpNXYk+1H5 zYN_~`b}AU|u2d(+^h){hG38y9JzX)TA4%8?y1OFvG2KiCJ;P>9rzz))#+0jzFB;Qd=5bH-Vb@`$y8~!UZUmwM+F7w0xZwA-8#up&JHrg6A-s&;Zv{z})l4eeo zhL`3nsnYyXnq~b`&-103wqjcQV*FHT-j#+MX?cXJX$zUQa@36Mm^^aQxKU%51dYeM zv25B`P3z+SG&OapW)J*SX@*NPYqiv7B&GVNnn~Eyr$%a~&w*CpvWjm*Sek)CJmsInpGz-`88P~T)S2knWFz2rsHEN^% z;@HqC%^P^mN@2tQ-)B|Xu!!5LG^J)|9s2l{M=^3ME$=<`*W4ehq7rL7H4>z&)zQjhaWju&%DJy|IK{n{|eU9KEq=1 zDr7!yrwDvLe=O^siTQltv^bxK%5;k!M$G4}){XOdNBOCCHE8UVlO|2p^JXuuU^%*f zC?DNy!hOFbaR=x#s7F16#<-u$mg9#)_L))h)z`%WX_%4Ki7SV%=~7?KS3e(D9ZWD~ zUHn{wDUeM?e|ws-E|w@~dFz5Xf034p&-u^4a`=n4gi#ai_XpgDx?1IDQD%dtO&We&!_QVD$BsJ|ZDZz{BkmKmXEtblCe1Sadpkc5 z-YL!C;i=|sXGtr?j6mc}|thmt-@)O0$VHt%pX>cpW6ovZhosRGMj}RMUb@rir_R&je;B z?=w6HXIbjGOI)Wo_RjJl@os$9u0GSN^5X%!#8!&HcZnvSLNPNSyTrp6#9d;6&h+2u zW}$DT%I25>ahK?lABB{pc-E_5%jap|KC7up_RQ+U>TcKh&{sE~IX9^`&=ITqTAeU` zb+>Y&?U7jB-_X<*s1IB9w>lmQu)0yJO4&5(ud3^oIO}n)(=?LJ5#4hAkR4#Qiuw+) zWe=Np)~l6`?*JV-UG%&+I8NixS`KrgXSn8fl5FNj8`JRIX#HVc%H#j3G}Egz_e)cA zcxv;KG_677gU++0(=(fq6DCd`H)%@EvMQUkb?G#%IrX!xG>d}9{d`p#zGp}*uGt5h zmbBDpX=?OO@BAv4Cs*fJmHM_c_g85ymFAHu%{9`r9_@a-uG^#;tg2-eYX6-y%UaXA zUXZ4KRH}JTn#L;4%9`cHpmERZq8XEx+D@99u~8FOu8$zIZXa!;ngJrXPTk}KlMJ$PGHiW<_c2?{FzvTXy>f;dG! z0))*Z*-Zk1E+)YQf~+KH^dG%DJ0H8l&dv<;kq;VmRaBset5QuB>#A6z;=ij!ot6`=0Zj^FHr;zV5mAjzY#p z?p{A~FM=oZiYNHRRr!uUrXn&5c{PwJgJ>VS0m!t2yc5Wblj`F@<{ad1APWxiLm=Ej z62{l>fb=@Zaqyj#gRBHH=pZiyGUOm>Aj1|3^4Xx4%Z*POMAw2|naFGH8hHbdDF=BA zkQ4@HVF}*{WY8cw)klF$I>;x1%sL3?rt=Q+ZRRr;)&4Ue(+1Ig!d__3kx2qc7NV*8 zfXq6`c|hhJ;SzdK=N4-$Pvv@+lxg76}@q@lttDiEkUyx|s8QkeRnKL>>XM;2_81 zcGuMIsIERBsXbBTA|R6v@=74{4l)U322;(@VmAUAx;mQALCWlpBA;hI27!GhauW!` z`rxag`P>VcDF=A~$bvz%<$nRB_tnvymmd$`Fo|OqKiKOXJ|w-~4vZ9k z?X}75^|tQ$!t2*sOe1cpZ~yBH!Jaf%55HeJ;}=|4qyG5$f_H{q{a9!k-Fh5=KUIDp_MmSJ z!+_d1(C{@K;v4U^zA=K^-?$f&aW^~gZFe)mvR@Q?w^YlpJbr8~HSeECENk9>+*B+5 zle~Wm_Z?tHlxHn|krnqK?_W7fc>gsn`jsQ6J77995{8U#XL9;&%jrs2iTOoNXDp|u z#p)ublO1qc?|{?KSx#&9Dz=9=$NT5N>Fgq$ve@5*%!0_Mdi)2F={HD!p&+a#Cf_KC zv;aD1TK;RO55hQdEVUW zPnfixa03$3x7>rCa706*n_pq{4|>8sTTj>m0bdtAVHz-0wv2AhiN^51?j44GML^gB zaK%Hn0INM2X#wuH-XeQo3jI-!Sq_$`gk`_Dwgu2KEc3S@9VKct77&WNJy? zKld!*{b*R+Zvn~s#h6LcLznenNZeFrW<}nQ!RSi20R2GXTY!ywh4(9B%R}Cu1xLj{ z&~-Zg`eNjL7BEz{p_6euY_sK#&PoX&T^DL;kTj?-h%qUcea z#A(%u({12%==%1YY8i6+#K$S$=?W7;SL-!(kK)X171_nayIOY2}T~0F&rv-4Dx}iO%TIR`#)4}Jo z=k&`1!s%~Ya{6v`NxJRDf>Ml~$tmZ|?b_az``dHM=dwxLvYytQCOhD?zXMJOJx&X2 zqHQnV5!icUdrq|s%lviEK1<#9?mx9Xr(d{0IBngZ_N*07Tlc4jJK*%SuWHZfr!A+a zw~W)l4mjl}Y}>^t_fflXT6Ox<_k+{?b_b2ZWc~kx4l&idvu&) zX|Y9|_F`_(E>6GwYT>kXf6A{7wu{r@4mjmI;M#Fo_c+b0PDKLs^Wb#$t?fD0GUW8< zo_&@&P9K4*x8w8+mkOtxq{R29-yaZ8v7p_8(@h<4dfcRN`lrapKR8C>en-ve3JCaO zYUbMkr+i;YJ5F!(I4w9&i~lP*eR~I-Dj9Nmhi9Lq<}?MfwB;1T6_APY9MzK3OV$gg zSn!XrGyBuM9dNqhwZiGke6mmma=OxT+PdwX?ts(#JK*%7$7$7xQ+~H$@~_)-s%4&> zwzqg@drl9%LOA^$EE*rDpV=Us;?`ITPH*ji)7QREIBgxLms?I-$LVYboc6%a+QsP? zJx()DfBH<^P9J_}drq~?lf&u3v)Xg|B}`9roVFhKo^qaWiko*WIOR7%+V!V5y}muC zS6fccXxaA8cfct>kKT^c!%NmJn$tPNY5X08DeO^%sZnO!%51?Y*U{Q>`k`xt)A;!^+g^U{7XLsO8krbf zYJLhXP;|&7@z=E>0JS!_y#r2v9m8pKl(Ze3Cf?niQ!T^t{L2&0>B(5r)BR~{PNy2e z>HRG^J@NwKwDq`mO9!0(@D0N0iLpLLPQPY3Jqrf)#mH&015WpMz-cemn(SOg;xw}A zPy?s)H@D|h%aGG2K2CRHO|KoNW4I^YE>3ID6HZ&l>HZEl{rww-)7EjycbK({Q?3=X zi_;Hwz$w4A(#&ae)!}X6boy`GbE;*?>Bpb&IDOly_MC2bgK#?EGEV>P`NHWW%IwDu z$GtNhaC+Xg?KyoG8gR|&ik5LY+ySS2mtwpAbW;qc(bd5ja5_BQo>MLJ>jPDd{kPHQbWeW(LYcVE|@)6JICGh1>x*#W1&>44K$#&8MJDPSH>|jl-9EE^{^3Y1?u7(OZPm2V1ti4{R1r zF`!D|zovuz>0}3-p7mzobgiEW^5nSpa~*Ix-vOu94miCvhSTUu62GfC_@VZkY8i5R z_Y=MKu^4$4^bNaJ&?Kur@6HZ%?k-oG=IOQ|0euyzn z`Hff5fqJ2Fh_N&GEbVqcRJK*%L4mkb3<+NDNj7M(BKtGQ$a612y z)|^u2b&yGX)X3N!N;(y5fhs4k^c*>sx;0+0L0IOyA>mV7{hygR zlK8ZEFUvE@e6Y;I@*F`RaRA8NUqo}}_X4LJ})|M{#_Wx&THN(vGZv}h<`A4iZ*txgn(NfreN$0cMvnDo@gDkJZONaE{uy-_F)j!Gdw=K(?0s6%z%aa|j{6ot!7OR^MVR@@%IX}|K z3%8+g9~hhx2K}Na!Of7F6&Z!>0y6ZOXq!+4GU*`K0-1M^_cGOIC6%-rT01TO8#GFs zD~88Xd&}8a<?!a4mQE}ZS_;nI*nY7-*cS5K~0UejQ9Slwx z23z%~>?>2B*DUKw@ms5NUx*@K2a@<=6yY<+!w&NA)a4+L62Z_q>`$MLXE;)KMUiI$ znR1X*fJ}cWD#P!>&KpF#!6iVFUyjPW1jw+1WPwz^5|wFC29GC%<+&cn?7dOs0FbGF ziXsPrOy3tpJ_RIse-!xwkcIC>k*@?KNKi7z^>2c`I zrhgfgSq)_NHzH%BQn9SsL-e)(2vy;+)KPiig%Xt~`;98pGAg(ANmTZqi}yWvVZf;T z%yx;&7r@b75$Vl`o`X6ePpqY2R>PT}d$66q4SuHE`3(^5cLnf^k^7VPNjuN4x%vkq z_f0l((Ofi@hbb7jvuz@m&uARN{}@uC%=2!gmF<}W>spdJe=O$X!s z@9&j(|0k@b`3K|uejD#|5OB-G6pZ)z4&wdbu@diFXeRGqyq|-?s_xAn^{z|2f6vA{ zpXqlxa+T(IdW-RdBmCkjnKL0XxgzSB&j(UDGm7v#9nKOaRU1GRE8q@;Fl!I&pGUg!PLlsjFaw%ly;6HR6?L0ey6dfc3 zWS4{R{h8-mMBci2f<=&-dZXsT)@aTo{0;}X3OP?X$g6-1ImmTDQrjdSi7#zupgniP z!9D_g;jz^5^_5E{zTWRU7}PSpu6jV?>tc*&cZ7v8XY32Ml_b7awv4aTg{G!GE1uE( zbuDJa_}cXxiLcv$Jl$vr|6zRXf2PD&6%pbejIRN-ObnrAJ!j*u@34%oWC!u}C}vYS zz7S|J2jh!RB*ST-tL8~ae4TCMD_?2&T|wd0A<*+FJ@(rFk04f;W!FmXY4_nO}>y?85-!6jk!*A9~APEC-TXu!DU3tmp~7r-~;a zKoW4Orh}gFvy;RV`1F~7&=ZEOC!7TVUyPnG*nubXVm+aqC!7s8(4Mf|D~x!;ORXp1 zmDSnuM6)w|Hi;I}upHOY;$3j+?WU94qOIsZA=MyEN;~Pc?t4IHjg0n+N0>7N_)E+D z0Z8RC@hHHFKl=-`NN5vyUCXQlQh9My<{}_d+oQ-XAd~pCZa9{>ipUjFxZcLaTX7v(H64tL;SSs=<1K!1mH0Oxlls5nQG|XBB)Kb!{0_*hgB*Vf{16{`4!w6hkQoQL0?70$qcT+> zgFzH|E06^T`3R87;i$}=KoaRFG7p6Bg%2b5znRLB`7>B!7$4aSOPC_!q}l{z-jT@y znaV^{y&lK{J|`6B^B&6NqR6M1Pd;n%7Rw`%?n-!{9HVcv;8Z>eYI*k? z3E{mW{_IyfA?0~jv^@EVayGJz_IS#}Z~C?K!>~LtWj5cmeZMVFeQ(_@j=dk(iG9NI z#ON|#m7VOsJ~OsFqnS+1>)fAqD*Q+CNmTk$$~%%`4fX4I$|z2geBFQSaVBJDL?#gg z`Wt|~_z011C44SEhI}wkjvUe^SnYA|D);J+0BJhJH~!Jqy;93HvgLECIcz=&9rk>b zIVB~Gsh5;l%g~=0$IBdTQs$IcEG{2Y<|(mroQ(0GyKI>=l}3=yrR$AqPCkeO%`Zin zhdU^9u;rr$5-YfoqF?!*!f;tX0!=Gz7l5i};w>n~8W>rp~&pZHe7FY^#mxrTf^Hk`F(4($>>RKVV|sm${A1UoA5Ic1I<6|6)9!dP6^vl4%O zTXR%!+(sD{j5C>ca8&R~tRpfamh~j@*DVhKH7b}!iv*QM#?>X9{uTndH)pE9c74pW zNWZf(=i@V76PTl(Q!JEnSQ`ynfIoyXBaK3_eompJu194U!lACO#_IZGN5(A=^CDk2 zo-KTl3*Xk{{il|9f8Nb}$Z7Uf!YNm2TpNn7&f0ii&1BB8l)lPQ+-wJYoo($CAA`TA zRmWSmv{ElEL*F>wtvHe|WxdD+U(2sY=2=e{4N6W=UMZX|fY4_Wb`J9O9n05YT=TPH zeC@RH)ejlh=b0hnYtqKoGPf(I01n32KX(vc^NaAse7G7vZAaZ>gq%ZSaB~|@pLSXz zku0|7RLhXl6FuWBHK)0k38&jUU92QI{iD^wDc^&3yi<4nAgBNEYKg&r1>$E#PH*Ud z)7M`lZRV?d(vdSc{Z$8?vcbfEv27+`#p%&WnMqws$T@`5pbe+X!Rg>cdrq|s%X5im zoTcXU<1ZIZ`Suw9Ag2oh!s(yD`{Uzu>NUdYH<5{-6*-;lfYZcQ;q+ZC*1kYm0Cy?dnvCoU%Ol({wB~UnlMozHV;Pq<@mHBc3aKVX;wp zwkygQ9GMipum~S>Fn0Q_ow+jLR?e%t--Foi-Pkc(qOZV(fK%6Bi`?N#m{l2M;4x(H zApN)Dx`V9aQ$Gf&=l0fdeOfI4xU^4t+8^<>-|A^U;Ax-fO8d>8_Fk~$)U^MQr~M&M z`)pU*_j}qGyt*IswBO)qpX*BdHJ)~CS!$~LjHi9t(>~vo_9;(0zy9M|{ti$3U7q%Z zuC(9eX+PT2KI>_p^Ry?*rnPxoK7YW|evGI6E>HVmPkV1y+NVA3%RTM)c-kNKv?sgL zeygWF>1n^;(|!yb!)k)Y3Cj&*X!={v{S&D^TRiP2c-rSY?T>nvAL>f` z4W4!m&)vG;?rFb0)NW>@4C$oM={HMoV%cL2k?!T~guU8wT$U-k<0tI1>QSrX`3RP&IQ<=SU zESYZ@e}2T4xt2*6M@oI$Lv>QGUt1YoJNdLwBCI>#^r_=QR%w#nD$Rd~GA&nWjyziO z@pT2dh>58VY^Y^862>&R=~!wT_S!NRtK~-c#1z#A8cIxeP-ZQ|GQSfkVXVlpWMww1 zg$s7IkZpo{2=9Mx>$SU9s^FUsb@zdx&G3Z5N(Zw@CBu3#65R%G$?9eNd8IA$1in$R zCx{k2Un%shK?&@A2i_+t;sdqmAybREc~h{xRB6;v)2nn%mnFt>d)0laO{fl<4z#FS zfN+KG3X9-JVhHw`HK{0mO{}t# zd&j*mVtJ{n2q`S1L=NG7owZ@UlEK$aYlZy2DDw@}VnJ#Vr_1zlT86r?^wD%ky((g{ zxO_UPm*IUdrp)1;HhgypW$wMcy{~GSC#TFWvSr2>RqExai4%c_5~)SXOn*+nuGWUi z#&1JSZ7Sp2OTG__-fFFui~`wLak z%H9ZBy6(m7TnBZZ68}-fy%}}4schXf!n*&qW!-H)|I4~hcTo3&t$TK&P;U~0rMx%W{4t~- z!19Ab+Pd1pKLs-Rfz~x;b$$<-p!1R)&B z>$(pC8M@P0BgR*mECZQ2xmT<5xr#YUDuwK)%w18dUI!%cC9x`n-buvK{ywI1Wd0wJ z-Y-W}eHO^zSE9%vAQg*LQUj_DzfB^JsuK4>X5o;e3MvDHS6&c{Y&Ly@H5GX*<)Seh(|SGZQ}sIf`)!@p}+{ zKf^s_lrs5Z6FWV8s>MCTqds9hYBbiRR-zU|QVTB^o#%OwNzQpSRjF9h8$YO zNgx8uxMfKAijy(@;2pLWwT8F#8im|~5>}*yarv0BmX=|e@t|&tR(+|;{I#&mv6kOX z|M{k|YD}4F`&U9H@h!1Dk#QiC4zd@>oP%5oBzd2t63^7SSofNl$umEFEHz*J&YB*# zU=~nHJ5MGB+k)CyAzz;{C5)R*uvG6rEf&05=v1r)Hl;to3_fUUF`BD$I+HQxGXLCy z683(lHG^V#EyFVZ=~MB|Uni5LwtNz8xUqazJ#!E#bTC#|Pa&lKRhPMyIo`&?I+pY^n-JncX6w6E~A z&v&JLlgImQo_4Nt7&{xEKZp=_Ex*u}cD{Gc$$6mP)Bdnm_YGd%6W?R2^?2ib!P7qM zX+OcM`#qla-mbLY;b~v#X@AJ8`w5=*WLMgc@p#|wY47*yeuBq)sw?d$c-pV^v=4gP z`#tT0U1>kn(|(hueVeC!$kRU5mG<*J?YDZ`xzEmti*+}7+K0Q+&edHf=Yg9&?K?c} zSxAnZ z5M(T7+PdMcwBO_Le!i#u5wE4)~di_IXeHkf;4< zPx}E+`&3ujxrf22*TAHwovZtf%(|q<`*c^@cX-wwDai>Qyy8n=t}#Tr~Q6U z`;@1BdB~Ua?_Fu%=4rpf(_Z(q&w6#A>q(Bi%y`WX%n>l@4Yxu*SXC9U^%Zh#fO)$3Oz3aAt0)rUsL*h}7 zOMAbkea6#1=4s!ATk)>;;jXlw?`gl?(_Znk^Ly*A_DWaU2R-d~c-rfp_G>-ulU->~ zdfIRHwD0h=Lse7Vr@GRr+t^Fowq1m%TITueTS!g&eMLar~PQp=V!XoKIUnE z$kTqar@iiJpY2Nf7Ek+Ko_6j+GIlm|{M$Xt&vm7Jo2UJdr+w1Xe!r)EzANp!Jni>; z+NV728$8P|bftZRr~Nihd(qRr!>fA&4>ls<* z+OP4odv#BCrG2HR{h+6P*wen;)1K-|d)CuF?`c2aX)k(SH`tZ-l&AexPkYwWj+YZi z3n2Y_SK2pu+GjoOdp+$pd)kM)(!SHvexIlP22Xo3w7eO0e`}FZr96QZ_LVZ~j`XL- zh83v=O3{2Q^{AWqt2TU*QTG9{M(fdO|B%fGW@$QP)cyTM>?5P@C$aAR(-ppGKgHlLA}V2c^-j1+nL;6yzN!*R7sjzZ-LCb+1I2~jWQKZ$-72s zKx7>o`PB5|MEbsrNR#A6+m~)VA zaN1y=&{qgHZD%Gb3B77WgvVVb=Rf>Ga{d*Nowyj*;>a_xb5HFRkyO1v2Iut{KS>Mpe#XzQTXFU+v8LRWz&QytHB-I2ErU>)7jxvsY-t8eD10rus(m8+Hllck| zncZla9{`zjy!YooQck^|ayIx_iTzaZ}e!ox6FFE=WcTy;jRi;B$OL&lBMZvsg=+8<;- z4uih|GU(XnsFipI!%1}P1~92Safwz7F91ZOBphqJ!^wvU{tn0qP6Hkgk^t08&of1IWmIJ!FTY1Z2`_`CkX*en;0^fh@O3Fp-xc zO&R1D*5Z>uLa$>gu#uQ@+LmuYra#O%NLNQQ+Lw(#>mW!BT25K!A0d_8p#v9a`S(^( zQzz#~ATy-=CjsB!u?!EW=(|)>=KllaE)9zR;^>VSiCs*xN`ADiWA#;;0 zGjm=CWXkqLL^c7LF?$Q?Eqp)ar8}mdE^$hk9gw-*<`d-e#YSx`G3D@;flM!6VHLKb zWgrzNpT7hmGiY6lcL0&q42}E)kVxzV=^|c8nhx8{pjgZ0#=)0*uZYz2PNW*LC1jbu z>*Pb^KY`3S{&U1C#Ij8lkkj3ijMkzTGOop*4J4s#DB4#6dCc~w3}wF7w%7553m`LT zEfxgoMZAe#hto?TGvhFr1u|_*$dXloByB!KUIk>*@ID~(wicB6 zcOVCy68;9rf-NCsj^yLqXhuWJKZ}U953jBQ!dXNpa{-V;PR^GAnRJks0lC#8L3*TI zMgKnU)HDkjeZW3F$Kn))YdZEpW~I%C7jFcTwMft?;SCJqiIfv5?`6)m7D1)VM;;PG zj`mw2Gw;Om7lF)J`_O+fd$Nfs+e%&P`|6P%W9Igo2?y_hNqg*S}rKR4l>h@t``A0-_i97AR8>AzV?ZfGa<|9yC=%Kb3;zfHKdYNYb3^T0LV#U zK5E7Y?T*F%4l<9}GBef3fyhdr&SwtDuw^iq7_a9zYqRBHs-Hk+SEwt%+X`~k`i#}3 z-x*RY$@@Uq3#T)gT&*_j)Z#bDCmf|P=RfPm>?RzCZ!hL@mBId$Ee~Z@LFRzfPULw& z!uTTcA|PXq%rFqH?uPCBYkoqv!y9>vx$0m)EF0*TZeWm~ z#K*!j893i4zBrq!VpPY188n;o@mw{ZDOYnC6a<%Ewkg0{Y=AI9(*>l>XZE(ZkO;2M zRm*+n_M;ZriF9VH@7%Q;D4WivQO(`C(R8C$8?Tm2Rih`nnqrHKT$L-1wvnjR(E0~^ zN5}hCuU)e`5$qWqPw_ORPI0#S+%`Fk7a^fC80cRs84UEVF&PZ>BiF_1an-n_UynwD z1?XG7ejSo8o@n)e(Ryw_&QvO8y~R_pii=95M=Of$)^^XOQOW>M0M>J()ihmjbr$3| ziaEtUK3hJLtBxu?ZDjTo>SKt9^muKt45cLXYPxduqS-oH3kymGh&gRmK84QoM{S%B5W2z!_b=8jrR_f zvxx6%r8*)Zo-a^+t82}{FWl&6HzS9_V(BBgY-THaGEOcd(MvEs{uF_iMX zN*QVwms76}Q=X1>xpK9&W>-^dxf+I?RTXA&Z6wpRqNd5OTz`>^ep`7J!kP;+jMiFT zs&CzzfkZurFN(V*?#oMG<91ZhF05sz73ry(yTGO%lHD76nLMqKE*0=_v#o9W$zD%Q9W7nD)%Voydg^m_7$ajFQ-Bh%FO@+ePyp%(;7*`jPTE*1Mt7d@L z)zu3VCJmO1B6{3w(F~LZhTE6-t=F@Jv?; z7RW@z3+fT@0AB>C!0_T)5dkg~;BsjL*F{d#%tI{ z`_}fS`Z+w25*uq2%jF7gt>j!omGFjQ3=*s9eWp^0pitJ8wk3?@1s%bjG#$}qPlz@t zO%#LO>1vQIOhm30kS(lS%gKsh%Y=!bQ492B&6Tm`$)c}_WKG3#Eec!XscJ>8Aei@6 za)EjgXMiuiV1ipKu+?E$UDYT6p#W|`jTb7`9Lhq5@G86x!$*E0IT%4~kE6D@1akl{ zS0}LAoXe`q5w+Hi${~w64l{+D@ER9}A{PqU6k3aeE9Er~VkHyW*cOPzNCeSB@6m-; zrVU0KNEt0`v&9S1v~0Q1CLnHYK_hyVGw|c^K@2mhNE#072yX-;jC3S2BP zq7g9PzF00a05> zj}$R0WB{wvpiY3jOLZLfE{*a>whRwOXFvx+cIG@%aMmX3TYd`*d$L;;HCkg(D>tec z#vQNKau^M$vyn1dqBNpY{j$xZmNIow6|;i6n#=&9m>CQ9pb0m@P%n>T-9wkW)If-! zHkC9QCS#mPxh+CRLp)o}Dtr4Yn=4|eG^m!#$`jQOjGWTY9$@j{8K zBId{5RNvaQ{Trg)wD!{0nJKFg$4sf*1u|M<3Usp*vq9SFq#TR%5Ga8Udc6G;V9A{kQCJD zGSZhtYJ;Njo{f&>CLAMyLQ|JxRO6PZCM}Y}T#Bi_xngd$GOSFOl1HnlZdXO?Z4g{D zHleZ9eI;c!y|{%r1_oVhm;>e797c0E*o0~?cDT?3A?vH??J$Z$JfkR#E4>^Q{?-kw zT+M?!zR0kPY~U_U-AsoPYFdylVJCx0!KuDX zmM{X?i%tlABRpG;=hZOQq{V!s2K5b00MWs7Hi}W|1X?;5E1{L)?6<_V4ArayC~*ig z8Ud(etX#xB6D)=!0sh4ejxa$qP}S_$Tk|oqNnK+M$FNrh!$Vauy)M9&EWZhh*2uS| z&P~k|or_#w()~R8lVX5r87dViV|bm-Hq7XY+ zBQau}gR^hKdJ_Xlb;ZV{;kj9g(*PUaQPy96=J7gE#~<_sM6yV@?xNAFW0I6(u#p&y z_d&t|jLr|%^e`+xn-ONdSSGPr)cK)F(HBhYXxnQ@Q4z`58eUy?bT(Pn7tlG&*@Byig3YRwle@a$nqNWg z;=jZcF2%^As_MQ7wqxmmXfBIo7;boTtyRi#$&c+%x=1DaFk0f;hb=yO4g+x!3(Kx* zF-=xO^)CjBK2x79(WmL!zEVb?=1Q3|=K7=Nf?ga``RMt9#-&2)g4K^zAa-_@hEpa5 z!TRHcS}nlZTNV>GEU%YxYy`XtyvSz93TW(f5%5U zqV;J~q1rO1XhuLOYI&9FT3*yj{mbd>l?~+H>O#@KV9G*U$VJ{iHY*`gclIhy72tYU zfN6O-lB>QS?dBJ?mQ3J!CvAujyFdMLmy!a_E`CehcoO8>`ohw)YV8_|TY zqh}SWk}r&|qT*F}I%`j%)R(SJBsQM6YXbK^cdf>4;nk^KW95n5u8Vf=DvT6Ly9xsv z)}2$yoTGLXtzEOrWVnizYM@cf7S^iMY+<)KHD|UU=EmkKl|ydtDh#s5R&hk2zH}AX z?;0^1y>}@Fl5Yr6DDp)d_a}dWAAH8eo)r}#)!k;IziG{dyi{riI8Ni&F?jK+2DdT= zN;HpcN3{{NiJ(xz`X~qa`Wi^hH34jIardky0;(`s+zVjd!N%=|%L-Q-c<%@!uxep9 zmt56sUP-AX;|y2ixphk?#Kd4b?V`9H+Bc zDP3XBh@A3@oWqj_qQ8skh3aw@`$^?ATgd0-d}NKyHXCM(`e&?o)yW3~y+ZM7Nsbrq z+tV<)+FB&I9-Et*WXhF&q(v^KOXz(|@=L!KUVdTV3PAtDNwzSmXpqa?_qO>(o4D=G z-Pjf|Qeo(({calWQ(@eT0B&nBrp=GA|1anjaamP$_gTnBnhE7|mtXOs9a}Hm z91LyWe8r~Ag3C8=yKG~)8xI?k0yU5Zqv{-0;^uMli`_hjC-QqEw=Ql`TLRUNKy{~2 zO_=rGzD+wWvs?Z8_F(T-A9nxk4lXy_{WkJ*Q@I+z_+5ai1axz?QvxlI?DY?}=jvCK z^x|)JvusYhs8Gamjw*;ssUM~?Mb`l$1?OINXss8qp3eEbDy~Yj5d*Ax4q4?c99)9| z2Bu0Q6SduVvNTA8O?B@>n`SHT#?a(B76FAB%?&bv%4Vx=r#B*`c*`GQ#rutV=cMrt z7w;WC%RxJv?k5Oy4CE4QHAokOtG;_U{#&c>d?&5%ug757BA zCvzfwCGUqeM$lAa7cR#eYKMy2uSrYnEk?|SdpSUOV^s`^E_1wAR}1{+nttHG*hZUp zdu}3K8AAhj;o$0ZP#TOBM&WA`XsYgta`;~XTQL(sd^#m)#=|;Mq0FkQ^9VcATA+29nHE5oPo_)4#Tf23I^5z* z2m3s$V0{G-Y{FzMn9r)ofieIe88Nny8#=C0bva;TK8F^a}LNXsIM8ZYsFi%>F%CI@K zWwagxnbuBVbw(RCT@3^ey&(~7M(s%o34zPPF=bs%HM3%Kt}RYrkG0;Qpz}cUrluep zBkeETg@cB4rD8V47>4W}E_$$J%177qV^zkum!pw_wQbN2Dq|{}ycFAqE-F{It4#%$ zja&%>t9DSkOUCA@gw;xDxt7;$H*6$Qp;Lv%=jhwspj64(&Eu&gBy+0fHQGuThT(%N zpp%28P-m+Gt3+@DeaC?fL4nV-h$}<2`o*bwocnCcVfC$bGtMV7O;+Z4r>LJ5H}EcE zu|KS@ZiL+^K~S=1+G_SDp*wlOKHY-R;?2FWst;El&`F7E^T>q!M20Qe!AKl!mC>kb zC8K@1sn6oY+RT13#x9Gv6i9%tN+IP|rqf79`z!53oEl0G6!u*<(!eKX;F70#@X}O( z4@Sj}Ohj6_P;-zmBE>`0NJ4@qbYOK4Q12(v(bg2xCIoF{w;44=Cu>qPj=JT%&8R3s zscjQEV9}n2eOG8wqfIha4>2Ug?Z@!Y9}l>p^4~fqpTxr#nD3uZ%!85+LHCy24S@w;D>6^zKiU Ppj9BZ9EViL%8CC00msn* literal 0 HcmV?d00001 diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.f90 b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.f90 new file mode 100755 index 0000000..3c19bdb --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.f90 @@ -0,0 +1,4329 @@ +C gfortran -fPIC -c mvnprodcorrprb.f +C f2py -m mvnprodcorrprb -DUPPERCASE_FORTRAN -c mvnprodcorrprb.o mvnprodcorrprb_interface.f + +* This is a MEX-file for MATLAB. +* and contains a mex-interface to, mvnprodcorrprb a subroutine +* for computing multivariate normal probabilities with product +* correlation structure. +* The file should compile without errors on (Fortran90) +* standard Fortran compilers. +* +* The mex-interface and mvnprodcorrprb was written by +* Per Andreas Brodtkorb +* Norwegian Defence Research Establishment +* P.O. Box 115m +* N-3191 Horten +* Norway +* Email: Per.Brodtkorb@ffi.no +* +* +* MVNPRODCORRPRBMEX Computes multivariate normal probability +* with product correlation structure. +* +* CALL [value,error,inform]=mvnprodcorrprbmex(rho,A,B,abseps,releps,useBreakPoints); +* +* RHO REAL, array of coefficients defining the correlation +* coefficient by: +* correlation(I,J) = RHO(I)*RHO(J) for J/=I +* where +* 1 <= RHO(I) <= 1 +* A REAL, array of lower integration limits. +* B REAL, array of upper integration limits. +* NOTE: any values greater the 10, are considered as +* infinite values. +* ABSEPS REAL absolute error tolerance. +* RELEPS REAL relative error tolerance. +* USEBREAKPOINTS = 1 If extra integration points should be used +* around possible singularities +* 0 If no extra +* +* ERROR REAL estimated absolute error, with 99% confidence level. +* VALUE REAL estimated value for the integral +* INFORM INTEGER, termination status parameter: +* if INFORM = 0, normal completion with ERROR < EPS; +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* +* MVNPRODCORRPRB calculates multivariate normal probability +* with product correlation structure for rectangular regions. +* The accuracy is up to almost double precision, i.e., about 1e-14. +* +* This file was successfully compiled for matlab 5.3 +* using Compaq Visual Fortran 6.1, and Windows 2000. +* The example here uses Fortran77 source. +* First, you will need to modify your mexopts.bat file. +* To find it, issue the command prefdir(1) from the Matlab command line, +* the directory it answers with will contain your mexopts.bat file. +* Open it for editing. The first section will look like: +* +*rem ******************************************************************** +*rem General parameters +*rem ******************************************************************** +*set MATLAB=%MATLAB% +*set DF_ROOT=C:\Program Files\Microsoft Visual Studio +*set VCDir=%DF_ROOT%\VC98 +*set MSDevDir=%DF_ROOT%\Common\msdev98 +*set DFDir=%DF_ROOT%\DF98 +*set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH% +*set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE% +*set LIB=%DFDir%\LIB;%VCDir%\LIB +* +* then you are ready to compile this file at the matlab prompt using the +* following command: +* mex -O mvnprodcorrprbmex.f + MODULE ERFCOREMOD + IMPLICIT NONE + + INTERFACE CALERF + MODULE PROCEDURE CALERF + END INTERFACE + + INTERFACE DERF + MODULE PROCEDURE DERF + END INTERFACE + + INTERFACE DERFC + MODULE PROCEDURE DERFC + END INTERFACE + + INTERFACE DERFCX + MODULE PROCEDURE DERFCX + END INTERFACE + CONTAINS +C-------------------------------------------------------------------- +C +C DERF subprogram computes approximate values for erf(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERF( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 0 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERF +C-------------------------------------------------------------------- +C +C DERFC subprogram computes approximate values for erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, January 8, 1985 +C +C-------------------------------------------------------------------- + FUNCTION DERFC( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 1 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFC +C------------------------------------------------------------------ +C +C DERFCX subprogram computes approximate values for exp(x*x) * erfc(x). +C (see comments heading CALERF). +C +C Author/date: W. J. Cody, March 30, 1987 +C +C------------------------------------------------------------------ + FUNCTION DERFCX( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 2 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFCX + + SUBROUTINE CALERF(ARG,RESULT,JINT) + IMPLICIT NONE +C------------------------------------------------------------------ +C +C CALERF packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +C for a real argument x. It contains three FUNCTION type +C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +C and one SUBROUTINE type subprogram, CALERF. The calling +C statements for the primary entries are: +C +C Y=ERF(X) (or Y=DERF(X)), +C +C Y=ERFC(X) (or Y=DERFC(X)), +C and +C Y=ERFCX(X) (or Y=DERFCX(X)). +C +C The routine CALERF is intended for internal packet use only, +C all computations within the packet being concentrated in this +C routine. The function subprograms invoke CALERF with the +C statement +C +C CALL CALERF(ARG,RESULT,JINT) +C +C where the parameter usage is as follows +C +C Function Parameters for CALERF +C call ARG Result JINT +C +C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 +C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 +C +C The main computation evaluates near-minimax approximations +C from "Rational Chebyshev approximations for the error function" +C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +C transportable program uses rational functions that theoretically +C approximate erf(x) and erfc(x) to at least 18 significant +C decimal digits. The accuracy achieved depends on the arithmetic +C system, the compiler, the intrinsic functions, and proper +C selection of the machine-dependent constants. +C +C******************************************************************* +C******************************************************************* +C +C Explanation of machine-dependent constants +C +C XMIN = the smallest positive floating-point number. +C XINF = the largest positive finite floating-point number. +C XNEG = the largest negative argument acceptable to ERFCX; +C the negative of the solution to the equation +C 2*exp(x*x) = XINF. +C XSMALL = argument below which erf(x) may be represented by +C 2*x/sqrt(pi) and above which x*x will not underflow. +C A conservative value is the largest machine number X +C such that 1.0 + X = 1.0 to machine precision. +C XBIG = largest argument acceptable to ERFC; solution to +C the equation: W(x) * (1-0.5/x**2) = XMIN, where +C W(x) = exp(-x*x)/[x*sqrt(pi)]. +C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +C machine precision. A conservative value is +C 1/[2*sqrt(XSMALL)] +C XMAX = largest acceptable argument to ERFCX; the minimum +C of XINF and 1/[sqrt(pi)*XMIN]. +C +C Approximate values for some important machines are: +C +C XMIN XINF XNEG XSMALL +C +C C 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +C CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +C IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +C UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +C VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +C VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +C +C +C XBIG XHUGE XMAX +C +C C 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +C CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +C IEEE (IBM/XT, +C SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +C IEEE (IBM/XT, +C SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +C IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +C UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +C VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +C VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +C +C******************************************************************* +C******************************************************************* +C +C Error returns +C +C The program returns ERFC = 0 for ARG .GE. XBIG; +C +C ERFCX = XINF for ARG .LT. XNEG; +C and +C ERFCX = 0 for ARG .GE. XMAX. +C +C +C Intrinsic functions required are: +C +C ABS, AINT, EXP +C +C +C Author: W. J. Cody +C Mathematics and Computer Science Division +C Argonne National Laboratory +C Argonne, IL 60439 +C +C Latest modification: March 19, 1990 +C Updated to F90 by pab 23.03.2003 +C +C------------------------------------------------------------------ + DOUBLE PRECISION, INTENT(IN) :: ARG + INTEGER, INTENT(IN) :: JINT + DOUBLE PRECISION, INTENT(INOUT):: RESULT +! Local variables + INTEGER :: I + DOUBLE PRECISION :: DEL,X,XDEN,XNUM,Y,YSQ +C------------------------------------------------------------------ +C Mathematical constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: HALF = 0.05D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: TWO = 2.0D0 + DOUBLE PRECISION, PARAMETER :: FOUR = 4.0D0 + DOUBLE PRECISION, PARAMETER :: SIXTEN = 16.0D0 + DOUBLE PRECISION, PARAMETER :: SQRPI = 5.6418958354775628695D-1 + DOUBLE PRECISION, PARAMETER :: THRESH = 0.46875D0 +C------------------------------------------------------------------ +C Machine-dependent constants +C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: XNEG = -26.628D0 + DOUBLE PRECISION, PARAMETER :: XSMALL = 1.11D-16 + DOUBLE PRECISION, PARAMETER :: XBIG = 26.543D0 + DOUBLE PRECISION, PARAMETER :: XHUGE = 6.71D7 + DOUBLE PRECISION, PARAMETER :: XMAX = 2.53D307 + DOUBLE PRECISION, PARAMETER :: XINF = 1.79D308 +!--------------------------------------------------------------- +! Coefficents to the rational polynomials +!-------------------------------------------------------------- + DOUBLE PRECISION, DIMENSION(5) :: A, Q + DOUBLE PRECISION, DIMENSION(4) :: B + DOUBLE PRECISION, DIMENSION(9) :: C + DOUBLE PRECISION, DIMENSION(8) :: D + DOUBLE PRECISION, DIMENSION(6) :: P +C------------------------------------------------------------------ +C Coefficients for approximation to erf in first interval +C------------------------------------------------------------------ + PARAMETER (A = (/ 3.16112374387056560D00, + & 1.13864154151050156D02,3.77485237685302021D02, + & 3.20937758913846947D03, 1.85777706184603153D-1/)) + PARAMETER ( B = (/2.36012909523441209D01,2.44024637934444173D02, + & 1.28261652607737228D03,2.84423683343917062D03/)) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in second interval +C------------------------------------------------------------------ + PARAMETER ( C=(/5.64188496988670089D-1,8.88314979438837594D0, + 1 6.61191906371416295D01,2.98635138197400131D02, + 2 8.81952221241769090D02,1.71204761263407058D03, + 3 2.05107837782607147D03,1.23033935479799725D03, + 4 2.15311535474403846D-8/)) + PARAMETER ( D =(/1.57449261107098347D01,1.17693950891312499D02, + 1 5.37181101862009858D02,1.62138957456669019D03, + 2 3.29079923573345963D03,4.36261909014324716D03, + 3 3.43936767414372164D03,1.23033935480374942D03/)) +C------------------------------------------------------------------ +C Coefficients for approximation to erfc in third interval +C------------------------------------------------------------------ + PARAMETER ( P =(/3.05326634961232344D-1,3.60344899949804439D-1, + 1 1.25781726111229246D-1,1.60837851487422766D-2, + 2 6.58749161529837803D-4,1.63153871373020978D-2/)) + PARAMETER (Q =(/2.56852019228982242D00,1.87295284992346047D00, + 1 5.27905102951428412D-1,6.05183413124413191D-2, + 2 2.33520497626869185D-3/)) +C------------------------------------------------------------------ + X = ARG + Y = ABS(X) + IF (Y .LE. THRESH) THEN +C------------------------------------------------------------------ +C Evaluate erf for |X| <= 0.46875 +C------------------------------------------------------------------ + !YSQ = ZERO + IF (Y .GT. XSMALL) THEN + YSQ = Y * Y + XNUM = A(5)*YSQ + XDEN = YSQ + DO I = 1, 3 + XNUM = (XNUM + A(I)) * YSQ + XDEN = (XDEN + B(I)) * YSQ + END DO + RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) + ELSE + RESULT = X * A(4) / B(4) + ENDIF + IF (JINT .NE. 0) RESULT = ONE - RESULT + IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT + GO TO 800 +C------------------------------------------------------------------ +C Evaluate erfc for 0.46875 <= |X| <= 4.0 +C------------------------------------------------------------------ + ELSE IF (Y .LE. FOUR) THEN + XNUM = C(9)*Y + XDEN = Y + DO I = 1, 7 + XNUM = (XNUM + C(I)) * Y + XDEN = (XDEN + D(I)) * Y + END DO + RESULT = (XNUM + C(8)) / (XDEN + D(8)) + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF +C------------------------------------------------------------------ +C Evaluate erfc for |X| > 4.0 +C------------------------------------------------------------------ + ELSE + RESULT = ZERO + IF (Y .GE. XBIG) THEN + IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 + IF (Y .GE. XHUGE) THEN + RESULT = SQRPI / Y + GO TO 300 + END IF + END IF + YSQ = ONE / (Y * Y) + XNUM = P(6)*YSQ + XDEN = YSQ + DO I = 1, 4 + XNUM = (XNUM + P(I)) * YSQ + XDEN = (XDEN + Q(I)) * YSQ + ENDDO + RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) + RESULT = (SQRPI - RESULT) / Y + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + END IF +C------------------------------------------------------------------ +C Fix up for negative argument, erf, etc. +C------------------------------------------------------------------ + 300 IF (JINT .EQ. 0) THEN + RESULT = (HALF - RESULT) + HALF + IF (X .LT. ZERO) RESULT = -RESULT + ELSE IF (JINT .EQ. 1) THEN + IF (X .LT. ZERO) RESULT = TWO - RESULT + ELSE + IF (X .LT. ZERO) THEN + IF (X .LT. XNEG) THEN + RESULT = XINF + ELSE + YSQ = AINT(X*SIXTEN)/SIXTEN + DEL = (X-YSQ)*(X+YSQ) + Y = EXP(YSQ*YSQ) * EXP(DEL) + RESULT = (Y+Y) - RESULT + END IF + END IF + END IF + 800 RETURN + END SUBROUTINE CALERF + END MODULE ERFCOREMOD + module functionInterface + INTERFACE + FUNCTION F(Z) result (VAL) + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + END FUNCTION F + END INTERFACE + end module functionInterface + module AdaptiveGaussKronrod + implicit none + private + public :: dqagpe,dqagp + + INTERFACE dqagpe + MODULE PROCEDURE dqagpe + END INTERFACE + + INTERFACE dqagp + MODULE PROCEDURE dqagp + END INTERFACE + + INTERFACE dqelg + MODULE PROCEDURE dqelg + END INTERFACE + + INTERFACE dqpsrt + MODULE PROCEDURE dqpsrt + END INTERFACE + + INTERFACE dqk21 + MODULE PROCEDURE dqk21 + END INTERFACE + + INTERFACE dqk15 + MODULE PROCEDURE dqk15 + END INTERFACE + + INTERFACE dqk9 + MODULE PROCEDURE dqk9 + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + + contains + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + subroutine dqagp(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier) +! use functionInterface + implicit none + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result1,abserr + integer, intent(out) :: neval,ier + double precision :: f +!Locals + double precision,dimension(limit) :: alist, blist, rlist, elist + double precision,dimension(npts+2) :: pts + integer, dimension(limit) :: iord, level + integer, dimension(npts+2) :: ndin + integer ::last + external f + CALL dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result1, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin + $ ,last) + end subroutine dqagp + subroutine dqagpe(f,a,b,npts,points,epsabs,epsrel,limit,result, + * abserr,neval,ier,alist,blist,rlist,elist,pts,iord,level,ndin, + * last) +! use functionInterface + implicit none +c***begin prologue dqagpe +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a2a1 +c***keywords automatic integrator, general-purpose, +! singularities at user specified points, +! extrapolation, globally adaptive. +c***author piessens,robert ,appl. math. & progr. div. - k.u.leuven +! de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose the routine calculates an approximation result to a given +! definite integral i = integral of f over (a,b), hopefully +! satisfying following claim for accuracy abs(i-result).le. +! max(epsabs,epsrel*abs(i)). break points of the integration +! interval, where local difficulties of the integrand may +! occur(e.g. singularities,discontinuities),provided by user. +c***description +! +! computation of a definite integral +! standard fortran subroutine +! double precision version +! +! parameters +! on entry +! f - double precision +! function subprogram defining the integrand +! function f(x). the actual name for f needs to be +! declared e x t e r n a l in the driver program. +! +! a - double precision +! lower limit of integration +! +! b - double precision +! upper limit of integration +! +! npts2 - integer +! number equal to two more than the number of +! user-supplied break points within the integration +! range, npts2.ge.2. +! if npts2.lt.2, the routine will end with ier = 6. +! +! points - double precision +! vector of dimension npts2, the first (npts2-2) +! elements of which are the user provided break +! points. if these points do not constitute an +! ascending sequence there will be an automati! +! sorting. +! +! epsabs - double precision +! absolute accuracy requested +! epsrel - double precision +! relative accuracy requested +! if epsabs.le.0 +! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), +! the routine will end with ier = 6. +! +! limit - integer +! gives an upper bound on the number of subintervals +! in the partition of (a,b), limit.ge.npts2 +! if limit.lt.npts2, the routine will end with +! ier = 6. +! +! on return +! result - double precision +! approximation to the integral +! +! abserr - double precision +! estimate of the modulus of the absolute error, +! which should equal or exceed abs(i-result) +! +! neval - integer +! number of integrand evaluations +! +! ier - integer +! ier = 0 normal and reliable termination of the +! routine. it is assumed that the requested +! accuracy has been achieved. +! ier.gt.0 abnormal termination of the routine. +! the estimates for integral and error are +! less reliable. it is assumed that the +! requested accuracy has not been achieved. +! error messages +! ier = 1 maximum number of subdivisions allowed +! has been achieved. one can allow more +! subdivisions by increasing the value of +! limit (and taking the according dimension +! adjustments into account). however, if +! this yields no improvement it is advised +! to analyze the integrand in order to +! determine the integration difficulties. if +! the position of a local difficulty can be +! determined (i.e. singularity, +! discontinuity within the interval), it +! should be supplied to the routine as an +! element of the vector points. if necessary +! an appropriate special-purpose integrator +! must be used, which is designed for +! handling the type of difficulty involved. +! = 2 the occurrence of roundoff error is +! detected, which prevents the requested +! tolerance from being achieved. +! the error may be under-estimated. +! = 3 extremely bad integrand behaviour occurs +! at some points of the integration +! interval. +! = 4 the algorithm does not converge. +! roundoff error is detected in the +! extrapolation table. it is presumed that +! the requested tolerance cannot be +! achieved, and that the returned result is +! the best which can be obtained. +! = 5 the integral is probably divergent, or +! slowly convergent. it must be noted that +! divergence can occur with any other value +! of ier.gt.0. +! = 6 the input is invalid because +! npts2.lt.2 or +! break points are specified outside +! the integration range or +! (epsabs.le.0 and +! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) +! or limit.lt.npts2. +! result, abserr, neval, last, rlist(1), +! and elist(1) are set to zero. alist(1) and +! blist(1) are set to a and b respectively. +! +! alist - double precision +! vector of dimension at least limit, the first +! last elements of which are the left end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! blist - double precision +! vector of dimension at least limit, the first +! last elements of which are the right end points +! of the subintervals in the partition of the given +! integration range (a,b) +! +! rlist - double precision +! vector of dimension at least limit, the first +! last elements of which are the integral +! approximations on the subintervals +! +! elist - double precision +! vector of dimension at least limit, the first +! last elements of which are the moduli of the +! absolute error estimates on the subintervals +! +! pts - double precision +! vector of dimension at least npts2, containing the +! integration limits and the break points of the +! interval in ascending sequence. +! +! level - integer +! vector of dimension at least limit, containing the +! subdivision levels of the subinterval, i.e. if +! (aa,bb) is a subinterval of (p1,p2) where p1 as +! well as p2 is a user-provided break point or +! integration limit, then (aa,bb) has level l if +! abs(bb-aa) = abs(p2-p1)*2**(-l). +! +! ndin - integer +! vector of dimension at least npts2, after first +! integration over the intervals (pts(i)),pts(i+1), +! i = 0,1, ..., npts2-2, the error estimates over +! some of the intervals may have been increased +! artificially, in order to put their subdivision +! forward. if this happens for the subinterval +! numbered k, ndin(k) is put to 1, otherwise +! ndin(k) = 0. +! +! iord - integer +! vector of dimension at least limit, the first k +! elements of which are pointers to the +! error estimates over the subintervals, +! such that elist(iord(1)), ..., elist(iord(k)) +! form a decreasing sequence, with k = last +! if last.le.(limit/2+2), and k = limit+1-last +! otherwise +! +! last - integer +! number of subintervals actually produced in the +! subdivisions process +! +c***references (none) +c***routines called d1mach,dqelg,dqk21,dqpsrt +c***end prologue dqagpe + integer, intent(in) :: npts,limit + double precision,dimension(npts), intent(in) :: points + double precision, intent(in) :: a, b, epsabs,epsrel + double precision, intent(out) :: result,abserr + integer, intent(out) :: neval,ier + double precision,dimension(limit), intent(out) :: alist, blist + double precision,dimension(limit), intent(out) :: rlist, elist + double precision,dimension(npts+2),intent(out) :: pts + integer, dimension(limit), intent(out) :: iord, level + integer, dimension(npts+2), intent(out) :: ndin + integer ::last + double precision :: f +! locals + double precision :: area,area1,area12,area2,a1, + * a2,b1,b2,correc,abseps,defabs,defab1,defab2, + * dres,epmach,erlarg,erlast,errbnd, + * errmax,error1,erro12,error2,errsum,ertest,oflow, + * resa,resabs,reseps,sign,temp,uflow, hSplit + double precision, dimension(3) :: res3la(3) + double precision, dimension(52) :: rlist2(52) + integer :: i,id,ierro,ind1,ind2,ip1,iroff1,iroff2,iroff3,j, + * jlow,jupbnd,k,ksgn,ktmin,levcur,levmax,maxerr, + * nint,nintp1,npts2,nres,nrmax,numrl2 + logical :: extrap,noext + external f +! +! + +! +! +! the dimension of rlist2 is determined by the value of +! limexp in subroutine epsalg (rlist2 should be of dimension +! (limexp+2) at least). +! +! +! list of major variables +! ----------------------- +! +! alist - list of left end points of all subintervals +! considered up to now +! blist - list of right end points of all subintervals +! considered up to now +! rlist(i) - approximation to the integral over +! (alist(i),blist(i)) +! rlist2 - array of dimension at least limexp+2 +! containing the part of the epsilon table which +! is still needed for further computations +! elist(i) - error estimate applying to rlist(i) +! maxerr - pointer to the interval with largest error +! estimate +! errmax - elist(maxerr) +! erlast - error on the interval currently subdivided +! (before that subdivision has taken place) +! area - sum of the integrals over the subintervals +! errsum - sum of the errors over the subintervals +! errbnd - requested accuracy max(epsabs,epsrel* +! abs(result)) +! *****1 - variable for the left subinterval +! *****2 - variable for the right subinterval +! last - index for subdivision +! nres - number of calls to the extrapolation routine +! numrl2 - number of elements in rlist2. if an appropriate +! approximation to the compounded integral has +! been obtained, it is put in rlist2(numrl2) after +! numrl2 has been increased by one. +! erlarg - sum of the errors over the intervals larger +! than the smallest interval considered up to now +! extrap - logical variable denoting that the routine +! is attempting to perform extrapolation. i.e. +! before subdividing the smallest interval we +! try to decrease the value of erlarg. +! noext - logical variable denoting that extrapolation is +! no longer allowed (true-value) +! +! machine dependent constants +! --------------------------- +! +! epmach is the largest relative spacing. +! uflow is the smallest positive magnitude. +! oflow is the largest positive magnitude. +! +c***first executable statement dqagpe + epmach = d1mach(4) + uflow = d1mach(1) + oflow = d1mach(2) +! +! test on validity of parameters +! ----------------------------- +! + hSplit = 0.2D0 + ier = 0 + neval = 0 + last = 0 + result = 0.0d+00 + abserr = 0.0d+00 + alist(1) = a + blist(1) = b + rlist(1) = 0.0d+00 + elist(1) = 0.0d+00 + iord(1) = 0 + level(1) = 0 + npts2 = npts+2 + if((npts2.lt.2).or.(limit.le.npts).or. + & ((epsabs.le.0.0d+00).and. + & (epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)))) then + ier = 6 + go to 999 + endif + + sign = 1.0d+00 + if(a.gt.b) then + go to 999 + endif + if (npts>0) then + if(any(points(1:npts)<=a).or.any(b<=points(1:npts))) then + ier = 6 + go to 999 + endif + endif +! +! if any break points are provided, sort them into an +! ascending sequence. +! + pts(1) = a + pts(npts+2) = b + do i = 1,npts + pts(i+1) = minval(points(i:npts)) + enddo +! +! compute first integral and error approximations. +! ------------------------------------------------ +! + nint = npts+1; + a1 = pts(1); + resabs = 0.0d+00 + do i = 1,nint + b1 = pts(i+1) + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,defabs,resa) + !call dqk15(f,a1,b1,area1,error1,defabs,resa) + else + call dqkl9(f,a1,b1,area1,error1,defabs,resa) + endif + abserr = abserr + error1 + result = result + area1 + ndin(i) = 0 + if(error1.eq.resa.and.error1.ne.0.0d+00) ndin(i) = 1 + resabs = resabs + defabs + level(i) = 0 + elist(i) = error1 + alist(i) = a1 + blist(i) = b1 + rlist(i) = area1 + iord(i) = i + a1 = b1 + enddo !50 continue + errsum = 0.0d+00 + do i = 1,nint + if(ndin(i).eq.1) elist(i) = abserr + errsum = errsum+elist(i) + enddo !55 continue +! +! test on accuracy. +! + last = nint + neval = 21*nint + dres = dabs(result) + errbnd = dmax1(epsabs,epsrel*dres) + if(abserr.le.0.1d+03*epmach*resabs.and.abserr.gt.errbnd) ier = 2 + if(nint.eq.1) go to 80 + do 70 i = 1,npts + jlow = i+1 + ind1 = iord(i) + do 60 j = jlow,nint + ind2 = iord(j) + if(elist(ind1).gt.elist(ind2)) go to 60 + ind1 = ind2 + k = j + 60 continue + if(ind1.eq.iord(i)) go to 70 + iord(k) = iord(i) + iord(i) = ind1 + 70 continue + if(limit.lt.npts2) ier = 1 + 80 if(ier.ne.0.or.abserr.le.errbnd) go to 210 + +! +! initialization +! -------------- +! + rlist2(1) = result + maxerr = iord(1) + errmax = elist(maxerr) + area = result + nrmax = 1 + nres = 0 + numrl2 = 1 + ktmin = 0 + extrap = .false. + noext = .false. + erlarg = errsum + ertest = errbnd + levmax = 1 + iroff1 = 0 + iroff2 = 0 + iroff3 = 0 + ierro = 0 + abserr = oflow + ksgn = -1 + if(dres.ge.(0.1d+01-0.5d+02*epmach)*resabs) ksgn = 1 +! +! main do-loop +! ------------ +! + do 160 last = npts2,limit +! +! bisect the subinterval with the nrmax-th largest error +! estimate. +! + levcur = level(maxerr)+1 + a1 = alist(maxerr) + b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) + a2 = b1 + b2 = blist(maxerr) + erlast = errmax + if (b1-a1 > hSplit) then + call dqk21(f,a1,b1,area1,error1,resa,defab1) + call dqk21(f,a2,b2,area2,error2,resa,defab2) + !call dqk15(f,a1,b1,area1,error1,resa,defab1) + !call dqk15(f,a2,b2,area2,error2,resa,defab2) + else + + call dqkl9(f,a1,b1,area1,error1,resa,defab1) + call dqkl9(f,a2,b2,area2,error2,resa,defab2) + endif +! +! improve previous approximations to integral +! and error and test for accuracy. +! + neval = neval+42 + area12 = area1+area2 + erro12 = error1+error2 + errsum = errsum+erro12-errmax + area = area+area12-rlist(maxerr) + if(defab1.eq.error1.or.defab2.eq.error2) go to 95 + if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) + * .or.erro12.lt.0.99d+00*errmax) go to 90 + if(extrap) iroff2 = iroff2+1 + if(.not.extrap) iroff1 = iroff1+1 + 90 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 + 95 level(maxerr) = levcur + level(last) = levcur + rlist(maxerr) = area1 + rlist(last) = area2 + errbnd = dmax1(epsabs,epsrel*dabs(area)) +! +! test for roundoff error and eventually set error flag. +! + if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 + if(iroff2.ge.5) ierro = 3 +! +! set error flag in the case that the number of +! subintervals equals limit. +! + if(last.eq.limit) ier = 1 +! +! set error flag in the case of bad integrand behaviour +! at a point of the integration range +! + if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* + * (dabs(a2)+0.1d+04*uflow)) ier = 4 +! +! append the newly-created intervals to the list. +! + if(error2.gt.error1) go to 100 + alist(last) = a2 + blist(maxerr) = b1 + blist(last) = b2 + elist(maxerr) = error1 + elist(last) = error2 + go to 110 + 100 alist(maxerr) = a2 + alist(last) = a1 + blist(last) = b1 + rlist(maxerr) = area2 + rlist(last) = area1 + elist(maxerr) = error2 + elist(last) = error1 +! +! call subroutine dqpsrt to maintain the descending ordering +! in the list of error estimates and select the subinterval +! with nrmax-th largest error estimate (to be bisected next). +! + 110 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) +! ***jump out of do-loop + if(errsum.le.errbnd) go to 190 +! ***jump out of do-loop + if(ier.ne.0) go to 170 + if(noext) go to 160 + erlarg = erlarg-erlast + if(levcur+1.le.levmax) erlarg = erlarg+erro12 + if(extrap) go to 120 +! +! test whether the interval to be bisected next is the +! smallest interval. +! + if(level(maxerr)+1.le.levmax) go to 160 + extrap = .true. + nrmax = 2 + 120 if(ierro.eq.3.or.erlarg.le.ertest) go to 140 +! +! the smallest interval has the largest error. +! before bisecting decrease the sum of the errors over +! the larger intervals (erlarg) and perform extrapolation. +! + id = nrmax + jupbnd = last + if(last.gt.(2+limit/2)) jupbnd = limit+3-last + do 130 k = id,jupbnd + maxerr = iord(nrmax) + errmax = elist(maxerr) +! ***jump out of do-loop + if(level(maxerr)+1.le.levmax) go to 160 + nrmax = nrmax+1 + 130 continue +! +! perform extrapolation. +! + 140 numrl2 = numrl2+1 + rlist2(numrl2) = area + if(numrl2.le.2) go to 155 + call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) + ktmin = ktmin+1 + if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 + if(abseps.ge.abserr) go to 150 + ktmin = 0 + abserr = abseps + result = reseps + correc = erlarg + ertest = dmax1(epsabs,epsrel*dabs(reseps)) +! ***jump out of do-loop + if(abserr.lt.ertest) go to 170 +! +! prepare bisection of the smallest interval. +! + 150 if(numrl2.eq.1) noext = .true. + if(ier.ge.5) go to 170 + 155 maxerr = iord(1) + errmax = elist(maxerr) + nrmax = 1 + extrap = .false. + levmax = levmax + 1 + erlarg = errsum + 160 continue +! +! set the final result. +! --------------------- +! +! + 170 if(abserr.eq.oflow) go to 190 + if((ier+ierro).eq.0) go to 180 + if(ierro.eq.3) abserr = abserr+correc + if(ier.eq.0) ier = 3 + if(result.ne.0.0d+00.and.area.ne.0.0d+00)go to 175 + if(abserr.gt.errsum)go to 190 + if(area.eq.0.0d+00) go to 210 + go to 180 + 175 if(abserr/dabs(result).gt.errsum/dabs(area))go to 190 +! +! test on divergence. +! + 180 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le. + * resabs*0.1d-01) go to 210 + if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03.or. + * errsum.gt.dabs(area)) ier = 6 + go to 210 +! +! compute global integral sum. +! + 190 result = 0.0d+00 + do 200 k = 1,last + result = result+rlist(k) + 200 continue + abserr = errsum + 210 if(ier.gt.2) ier = ier-1 + result = result*sign + 999 return + end subroutine dqagpe + subroutine dqk21(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk21 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 21-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk21 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 21-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 10-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 10-point gauss rule +c +c wgk - weights of the 21-point kronrod rule +c +c wg - weights of the 10-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 / + data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 / + data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 / + data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 / + data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 / +c + data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 / + data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 / + data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 / + data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 / + data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 / + data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 / + data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 / + data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 / + data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 / + data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 / + data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 / +c + data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 / + data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 / + data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 / + data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 / + data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 / + data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 / + data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 / + data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 / + data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 / + data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 / + data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 / +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk21 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 21-point kronrod approximation to +c the integral, and estimate the absolute error. +c + resg = 0.0d+00 + fc = f(centr) + resk = wgk(11)*fc + resabs = dabs(resk) + do 10 j=1,5 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,5 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(11)*dabs(fc-reskh) + do 20 j=1,10 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0d0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk21 + subroutine dqk15(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk,reskh,result,uflow,wg,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +c xgk(2), xgk(4), ... abscissae of the 7-point +c gauss rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point gauss rule +c +c wgk - weights of the 15-point kronrod rule +c +c wg - weights of the 7-point gauss rule +c +c +c gauss quadrature weights and kronron quadrature abscissae and weights +c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, +c bell labs, nov. 1981. +c + data wg ( 1) / 0.129484966168869693270611432679082d0 / + data wg ( 2) / 0.279705391489276667901467771423780d0 / + data wg ( 3) / 0.381830050505118944950369775488975d0 / + data wg ( 4) / 0.417959183673469387755102040816327d0 / + + data xgk ( 1) / 0.991455371120812639206854697526329d0 / + data xgk ( 2) / 0.949107912342758524526189684047851d0 / + data xgk ( 3) / 0.864864423359769072789712788640926d0 / + data xgk ( 4) / 0.741531185599394439863864773280788d0 / + data xgk ( 5) / 0.586087235467691130294144838258730d0 / + data xgk ( 6) / 0.405845151377397166906606412076961d0 / + data xgk ( 7) / 0.207784955007898467600689403773245d0 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.022935322010529224963732008058970d0/ + data wgk ( 2) / 0.063092092629978553290700663189204d0 / + data wgk ( 3) / 0.104790010322250183839876322541518d0 / + data wgk ( 4) / 0.140653259715525918745189590510238d0 / + data wgk ( 5) / 0.169004726639267902826583426598550d0 / + data wgk ( 6) / 0.190350578064785409913256402421014d0 / + data wgk ( 7) / 0.204432940075298892414161999234649d0 / + data wgk ( 8) / 0.209482141084727828012999174891714d0 / + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resg = wg(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth*xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1+fval2 + resg = resg+wg(j)*fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth*xgk(jtwm1) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1+fval2 + resk = resk+wgk(jtwm1)*fsum + resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) + 15 continue + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + result = resk*hlgth + resabs = resabs*dhlgth + resasc = resasc*dhlgth + abserr = dabs((resk-resg)*hlgth)*10.0D0 + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc*dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqk15 + subroutine dqk9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(4),wgk(8),xgk(8) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 15-point kronrod rule +! xgk(4), xgk(8) abscissae of the 3-point gauss rule +c xgk(2), xgk(4),xgk(6), xgk(8) ... abscissae of the 7-point +c kronrod rule +c xgk(1), xgk(3), ... abscissae which are optimally +c added to the 7-point kronrod rule +c +c wgk - weights of the 15-point kronrod rule +! +! wgk0 - weights of the 7-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + data wg ( 1) / 0.5555555555555555D+00/ + data wg ( 2) / 0.8888888888888889D+00/ + + data wgk0 ( 1) / 0.1046562260264673D+00/ + data wgk0 ( 2) / 0.2684880898683335D+00/ + data wgk0 ( 3) / 0.4013974147759622D+00/ + data wgk0 ( 4) / 0.4509165386584741D+00/ + + data xgk ( 1) / 0.9938319632127550D+00/ + data xgk ( 2) / 0.9604912687080203D+00/ + data xgk ( 3) / 0.8884592328722570D+00 / + data xgk ( 4) / 0.7745966692414834D+00/ + data xgk ( 5) / 0.6211029467372264D+00/ + data xgk ( 6) / 0.4342437493468026D+00/ + data xgk ( 7) / 0.2233866864289669D+00 / + data xgk ( 8) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.1700171962994028D-01/ + data wgk ( 2) / 0.5160328299707982D-01/ + data wgk ( 3) / 0.9292719531512452D-01/ + data wgk ( 4) / 0.1344152552437843D+00/ + data wgk ( 5) / 0.1715119091363914D+00/ + data wgk ( 6) / 0.2006285293769890D+00/ + data wgk ( 7) / 0.2191568584015875D+00/ + data wgk ( 8) / 0.2255104997982067D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(8)*fc + resk0 = wgk0(4)*fc + resabs = dabs(resk) + do 10 j=1,3 + jtw = 2*j + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(4) + fv2(4)) + do 15 j = 1,4 + jtwm1 = 2*j-1 + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(8)*dabs(fc-reskh) + do 20 j=1,7 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0)) + & * 10.0D0, abserr) + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + + end subroutine dqk9 + subroutine dqkl9(f,a,b,result,abserr,resabs,resasc) +! use functionInterface + implicit none +c***begin prologue dqk15 +c***date written 800101 (yymmdd) +c***revision date 830518 (yymmdd) +c***category no. h2a1a2 +c***keywords 15-point gauss-kronrod rules extended from a 3 point gaus rule +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose to compute i = integral of f over (a,b), with error +c estimate +c j = integral of abs(f) over (a,b) +c***description +c +c integration rules +c standard fortran subroutine +c double precision version +c +c parameters +c on entry +c f - double precision +c function subprogram defining the integrand +c function f(x). the actual name for f needs to be +c declared e x t e r n a l in the driver program. +c +c a - double precision +c lower limit of integration +c +c b - double precision +c upper limit of integration +c +c on return +c result - double precision +c approximation to the integral i +c result is computed by applying the 21-point +c kronrod rule (resk) obtained by optimal addition +c of abscissae to the 10-point gauss rule (resg). +c +c abserr - double precision +c estimate of the modulus of the absolute error, +c which should not exceed abs(i-result) +c +c resabs - double precision +c approximation to the integral j +c +c resasc - double precision +c approximation to the integral of abs(f-i/(b-a)) +c over (a,b) +c +c***references (none) +c***routines called d1mach +c***end prologue dqk15 +c + double precision :: f, a,absc,abserr,b,centr,dhlgth, + * epmach,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, + * resg,resk0,resk,reskh,result,uflow,wg,wgk0,wgk,xgk + integer j,jtw,jtwm1 + external f +c + dimension fv1(7),fv2(7),wg(2),wgk0(3),wgk(5),xgk(5) +c +c the abscissae and weights are given for the interval (-1,1). +c because of symmetry only the positive abscissae and their +c corresponding weights are given. +c +c xgk - abscissae of the 9-point Gauss-kronrod-lobatto rule +! xgk(1), xgk(5) abscissae of the 3-point gauss-lobatto rule +c xgk(1), xgk(3),xgk(5) abscissae of the 5-point +c kronrod rule +c xgk(2), xgk(4), ... abscissae which are optimally +c added to the 5-point kronrod rule +c +c wgk - weights of the 9-point kronrod rule +! +! wgk0 - weights of the 5-point kronrod rule +c +c wg - weights of the 3-point gauss rule +c +c +c gauss quadrature weights and kronrod quadrature abscissae and weights +c as evaluated in quadruple precision by Patterson +c + + data wg ( 1) / 0.33333333333333333333333333333333333D+00/ + data wg ( 2) / 0.13333333333333333333333333333333333D+01/ + + data wgk0 ( 1) / 0.1000000000000000D+00/ + data wgk0 ( 2) / 0.5444444444444445D+00/ + data wgk0 ( 3) / 0.7111111111111111D+00/ + + data xgk ( 1) / 0.1000000000000000D+01/ + data xgk ( 2) / 0.8904055275126688D+00/ + data xgk ( 3) / 0.6546536707079772D+00/ + data xgk ( 4) / 0.3409822659109930D+00/ + data xgk ( 5) / 0.000000000000000000000000000000000d0 / + + data wgk ( 1) / 0.3064373897707232D-01/ + data wgk ( 2) / 0.1792626995532074D+00/ + data wgk ( 3) / 0.2839787780481211D+00/ + data wgk ( 4) / 0.3342337398164177D+00/ + data wgk ( 5) / 0.3437620872103631D+00/ + +c +c +c list of major variables +c ----------------------- +c +c centr - mid point of the interval +c hlgth - half-length of the interval +c absc - abscissa +c fval* - function value +c resg - result of the 10-point gauss formula +c resk - result of the 21-point kronrod formula +c reskh - approximation to the mean value of f over (a,b), +c i.e. to i/(b-a) +c +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c uflow is the smallest positive magnitude. +c +c***first executable statement dqk15 + epmach = d1mach(4) + uflow = d1mach(1) +c + centr = 0.5d+00*(a+b) + hlgth = 0.5d+00*(b-a) + dhlgth = dabs(hlgth) +c +c compute the 15-point kronrod approximation to +c the integral, and estimate the absolute error. +c + fc = f(centr) + resk = wgk(5)*fc + resk0 = wgk0(3)*fc + resabs = dabs(resk) + do 10 j=1,2 + jtw = 2*j - 1 + absc = hlgth * xgk(jtw) + fval1 = f(centr-absc) + fval2 = f(centr+absc) + fv1(jtw) = fval1 + fv2(jtw) = fval2 + fsum = fval1 + fval2 + resk0 = resk0 + wgk0(j) * fsum + resk = resk+wgk(jtw)*fsum + resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) + 10 continue + resg = wg(2)*fc + wg(1)*(fv1(1) + fv2(1)) + do 15 j = 1,2 + jtwm1 = 2*j + absc = hlgth * xgk(jtwm1) + fval1 = f( centr - absc ) + fval2 = f( centr + absc ) + fv1(jtwm1) = fval1 + fv2(jtwm1) = fval2 + fsum = fval1 + fval2 + resk = resk + wgk(jtwm1) * fsum + resabs = resabs + wgk(jtwm1) * (dabs(fval1) + dabs(fval2)) + 15 continue + + reskh = resk*0.5d+00 + resasc = wgk(5)*dabs(fc-reskh) + do 20 j=1,4 + resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) + 20 continue + resg = resg * hlgth + resk0 = resk0 * hlgth + resk = resk * hlgth + resabs = resabs * dhlgth + resasc = resasc * dhlgth + result = resk + call dea3(resg,resk0,resk,abserr,result) + abserr = max((dabs(resk-resk0) + dabs(resg-resk0))* 10.0D0,abserr) + + if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) then + abserr = resasc * dmin1(0.1d+01, + & (0.2d+03*abserr/resasc)**1.5d+00) + endif + if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 + * ((epmach*0.5d+02)*resabs,abserr) + return + end subroutine dqkl9 + subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax) + implicit none +c***begin prologue dqpsrt +c***refer to dqage,dqagie,dqagpe,dqawse +c***routines called (none) +c***revision date 810101 (yymmdd) +c***keywords sequential sorting +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math. & progr. div. - k.u.leuven +c***purpose this routine maintains the descending ordering in the +c list of the local error estimated resulting from the +c interval subdivision process. at each call two error +c estimates are inserted using the sequential search +c method, top-down for the largest error estimate and +c bottom-up for the smallest error estimate. +c***description +c +c ordering routine +c standard fortran subroutine +c double precision version +c +c parameters (meaning at output) +c limit - integer +c maximum number of error estimates the list +c can contain +c +c last - integer +c number of error estimates currently in the list +c +c maxerr - integer +c maxerr points to the nrmax-th largest error +c estimate currently in the list +c +c ermax - double precision +c nrmax-th largest error estimate +c ermax = elist(maxerr) +c +c elist - double precision +c vector of dimension last containing +c the error estimates +c +c iord - integer +c vector of dimension last, the first k elements +c of which contain pointers to the error +c estimates, such that +c elist(iord(1)),..., elist(iord(k)) +c form a decreasing sequence, with +c k = last if last.le.(limit/2+2), and +c k = limit+1-last otherwise +c +c nrmax - integer +c maxerr = iord(nrmax) +c +c***end prologue dqpsrt +c + double precision elist,ermax,errmax,errmin + integer i,ibeg,ido,iord,isucc,j,jbnd,jupbn,k,last,limit,maxerr, + * nrmax + dimension elist(last),iord(last) +c +c check whether the list contains more than +c two error estimates. +c +c***first executable statement dqpsrt + if(last.gt.2) go to 10 + iord(1) = 1 + iord(2) = 2 + go to 90 +c +c this part of the routine is only executed if, due to a +c difficult integrand, subdivision increased the error +c estimate. in the normal case the insert procedure should +c start after the nrmax-th largest error estimate. +c + 10 errmax = elist(maxerr) + if(nrmax.eq.1) go to 30 + ido = nrmax-1 + do 20 i = 1,ido + isucc = iord(nrmax-1) +c ***jump out of do-loop + if(errmax.le.elist(isucc)) go to 30 + iord(nrmax) = isucc + nrmax = nrmax-1 + 20 continue +c +c compute the number of elements in the list to be maintained +c in descending order. this number depends on the number of +c subdivisions still allowed. +c + 30 jupbn = last + if(last.gt.(limit/2+2)) jupbn = limit+3-last + errmin = elist(last) +c +c insert errmax by traversing the list top-down, +c starting comparison from the element elist(iord(nrmax+1)). +c + jbnd = jupbn-1 + ibeg = nrmax+1 + if(ibeg.gt.jbnd) go to 50 + do 40 i=ibeg,jbnd + isucc = iord(i) +c ***jump out of do-loop + if(errmax.ge.elist(isucc)) go to 60 + iord(i-1) = isucc + 40 continue + 50 iord(jbnd) = maxerr + iord(jupbn) = last + go to 90 +c +c insert errmin by traversing the list bottom-up. +c + 60 iord(i-1) = maxerr + k = jbnd + do 70 j=i,jbnd + isucc = iord(k) +c ***jump out of do-loop + if(errmin.lt.elist(isucc)) go to 80 + iord(k+1) = isucc + k = k-1 + 70 continue + iord(i) = last + go to 90 + 80 iord(k+1) = last +c +c set maxerr and ermax. +c + 90 maxerr = iord(nrmax) + ermax = elist(maxerr) + return + end subroutine dqpsrt + subroutine dqelg(n,epstab,result,abserr,res3la,nres) + implicit none +c***begin prologue dqelg +c***refer to dqagie,dqagoe,dqagpe,dqagse +c***routines called d1mach +c***revision date 830518 (yymmdd) +c***keywords epsilon algorithm, convergence acceleration, +c extrapolation +c***author piessens,robert,appl. math. & progr. div. - k.u.leuven +c de doncker,elise,appl. math & progr. div. - k.u.leuven +c***purpose the routine determines the limit of a given sequence of +c approximations, by means of the epsilon algorithm of +c p.wynn. an estimate of the absolute error is also given. +c the condensed epsilon table is computed. only those +c elements needed for the computation of the next diagonal +c are preserved. +c***description +c +c epsilon algorithm +c standard fortran subroutine +c double precision version +c +c parameters +c n - integer +c epstab(n) contains the new element in the +c first column of the epsilon table. +c +c epstab - double precision +c vector of dimension 52 containing the elements +c of the two lower diagonals of the triangular +c epsilon table. the elements are numbered +c starting at the right-hand corner of the +c triangle. +c +c result - double precision +c resulting approximation to the integral +c +c abserr - double precision +c estimate of the absolute error computed from +c result and the 3 previous results +c +c res3la - double precision +c vector of dimension 3 containing the last 3 +c results +c +c nres - integer +c number of calls to the routine +c (should be zero at first call) +c +c***end prologue dqelg +c + double precision abserr,dabs,delta1,delta2,delta3,dmax1, + * epmach,epsinf,epstab,error,err1,err2,err3,e0,e1,e1abs,e2,e3, + * oflow,res,result,res3la,ss,tol1,tol2,tol3 + integer i,ib,ib2,ie,indx,k1,k2,k3,limexp,n,newelm,nres,num + dimension epstab(52),res3la(3) +c +c list of major variables +c ----------------------- +c +c e0 - the 4 elements on which the computation of a new +c e1 element in the epsilon table is based +c e2 +c e3 e0 +c e3 e1 new +c e2 +c newelm - number of elements to be computed in the new +c diagonal +c error - error = abs(e1-e0)+abs(e2-e1)+abs(new-e2) +c result - the element in the new diagonal with least value +c of error +c +c machine dependent constants +c --------------------------- +c +c epmach is the largest relative spacing. +c oflow is the largest positive magnitude. +c limexp is the maximum number of elements the epsilon +c table can contain. if this number is reached, the upper +c diagonal of the epsilon table is deleted. +c +c***first executable statement dqelg + epmach = d1mach(4) + oflow = d1mach(2) + nres = nres+1 + abserr = oflow + result = epstab(n) + if(n.lt.3) go to 100 + limexp = 50 + epstab(n+2) = epstab(n) + newelm = (n-1)/2 + epstab(n) = oflow + num = n + k1 = n + do 40 i = 1,newelm + k2 = k1-1 + k3 = k1-2 + res = epstab(k1+2) + e0 = epstab(k3) + e1 = epstab(k2) + e2 = res + e1abs = dabs(e1) + delta2 = e2-e1 + err2 = dabs(delta2) + tol2 = dmax1(dabs(e2),e1abs)*epmach + delta3 = e1-e0 + err3 = dabs(delta3) + tol3 = dmax1(e1abs,dabs(e0))*epmach + if(err2.gt.tol2.or.err3.gt.tol3) go to 10 +c +c if e0, e1 and e2 are equal to within machine +c accuracy, convergence is assumed. +c result = e2 +c abserr = abs(e1-e0)+abs(e2-e1) +c + result = res + abserr = err2+err3 +c ***jump out of do-loop + go to 100 + 10 e3 = epstab(k1) + epstab(k1) = e1 + delta1 = e1-e3 + err1 = dabs(delta1) + tol1 = dmax1(e1abs,dabs(e3))*epmach +c +c if two elements are very close to each other, omit +c a part of the table by adjusting the value of n +c + if(err1.le.tol1.or.err2.le.tol2.or.err3.le.tol3) go to 20 + ss = 0.1d+01/delta1+0.1d+01/delta2-0.1d+01/delta3 + epsinf = dabs(ss*e1) +c +c test to detect irregular behaviour in the table, and +c eventually omit a part of the table adjusting the value +c of n. +c + if(epsinf.gt.0.1d-03) go to 30 + 20 n = i+i-1 +c ***jump out of do-loop + go to 50 +c +c compute a new element and eventually adjust +c the value of result. +c + 30 res = e1+0.1d+01/ss + epstab(k1) = res + k1 = k1-2 + error = err2+dabs(res-e2)+err3 + if(error.gt.abserr) go to 40 + abserr = error + result = res + 40 continue +c +c shift the table. +c + 50 if(n.eq.limexp) n = 2*(limexp/2)-1 + ib = 1 + if((num/2)*2.eq.num) ib = 2 + ie = newelm+1 + do 60 i=1,ie + ib2 = ib+2 + epstab(ib) = epstab(ib2) + ib = ib2 + 60 continue + if(num.eq.n) go to 80 + indx = num-n+1 + do 70 i = 1,n + epstab(i)= epstab(indx) + indx = indx+1 + 70 continue + 80 if(nres.ge.4) go to 90 + res3la(nres) = result + abserr = oflow + go to 100 +c +c compute error estimate +c + 90 abserr = dabs(result-res3la(3))+dabs(result-res3la(2)) + * +dabs(result-res3la(1)) + res3la(1) = res3la(2) + res3la(2) = res3la(3) + res3la(3) = result + 100 abserr = dmax1(abserr,0.5d+01*epmach*dabs(result)) + return + end subroutine dqelg + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + end module AdaptiveGaussKronrod + + module Integration1DModule + implicit none + interface AdaptiveSimpson + module procedure AdaptiveSimpson2, AdaptiveSimpsonWithBreaks + end interface + +! interface AdaptiveSimpson1 +! module procedure AdaptiveSimpson1 +! end interface + + interface AdaptiveTrapz + module procedure AdaptiveTrapz1, AdaptiveTrapzWithBreaks + end interface + + interface Romberg + module procedure Romberg1, RombergWithBreaks + end interface + + INTERFACE DEA + MODULE PROCEDURE DEA + END INTERFACE + + INTERFACE d1mach + MODULE PROCEDURE d1mach + END INTERFACE + contains + DOUBLE PRECISION FUNCTION D1MACH(I) + implicit none +C +C Double-precision machine constants. +C +C D1MACH( 1) = B**(EMIN-1), the smallest positive magnitude. +C D1MACH( 2) = B**EMAX*(1 - B**(-T)), the largest magnitude. +C D1MACH( 3) = B**(-T), the smallest relative spacing. +C D1MACH( 4) = B**(1-T), the largest relative spacing. +C D1MACH( 5) = LOG10(B) +C +C Two more added much later: +C +C D1MACH( 6) = Infinity. +C D1MACH( 7) = Not-a-Number. +C +C Reference: Fox P.A., Hall A.D., Schryer N.L.,"Framework for a +C Portable Library", ACM Transactions on Mathematical +C Software, Vol. 4, no. 2, June 1978, PP. 177-188. +C + INTEGER , INTENT(IN) :: I + DOUBLE PRECISION, SAVE :: DMACH(7) + DOUBLE PRECISION :: B, EPS + DOUBLE PRECISION :: ONE = 1.0D0 + DOUBLE PRECISION :: ZERO = 0.0D0 + INTEGER :: EMAX,EMIN,T + DATA DMACH /7*0.0D0/ +! First time through, get values from F90 INTRINSICS: + IF (DMACH(1) .EQ. 0.0D0) THEN + T = DIGITS(ONE) + B = DBLE(RADIX(ONE)) ! base number + EPS = SPACING(ONE) + EMIN = MINEXPONENT(ONE) + EMAX = MAXEXPONENT(ONE) + DMACH(1) = B**(EMIN-1) !TINY(ONE) + DMACH(2) = (B**(EMAX-1)) * (B-B*EPS) !HUGE(ONE) + DMACH(3) = EPS/B ! EPS/B + DMACH(4) = EPS + DMACH(5) = LOG10(B) + DMACH(6) = B**(EMAX+5) !infinity + DMACH(7) = ZERO/ZERO !nan + ENDIF +C + D1MACH = DMACH(I) + RETURN + END FUNCTION D1MACH + subroutine dea3(E0,E1,E2,abserr,result) +!***PURPOSE Given a slowly convergent sequence, this routine attempts +! to extrapolate nonlinearly to a better estimate of the +! sequence's limiting value, thus improving the rate of +! convergence. Routine is based on the epsilon algorithm +! of P. Wynn. An estimate of the absolute error is also +! given. + double precision, intent(in) :: E0,E1,E2 + double precision, intent(out) :: abserr, result + !locals + double precision, parameter :: ten = 10.0d0 + double precision, parameter :: one = 1.0d0 + double precision :: small, delta2, delta1 + double precision :: tol2, tol1, err2, err1,ss + small = spacing(one) + delta2 = E2 - E1 + delta1 = E1 - E0 + err2 = abs(delta2) + err1 = abs(delta1) + tol2 = max(abs(E2),abs(E1)) * small + tol1 = max(abs(E1),abs(E0)) * small + if ( ( err1 <= tol1 ) .or. err2 <= tol2) then +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. + result = E2 + abserr = err1 + err2 + E2*small*ten + else + ss = one/delta2 - one/delta1 + if (abs(ss*E1) <= 1.0d-3) then + result = E2 + abserr = err1 + err2 + E2*small*ten + else + result = E1 + one/ss + abserr = err1 + err2 + abs(result-E2) + endif + endif + end subroutine dea3 + SUBROUTINE DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +C***BEGIN PROLOGUE DEA +C***DATE WRITTEN 800101 (YYMMDD) +C***REVISION DATE 871208 (YYMMDD) +C***CATEGORY NO. E5 +C***KEYWORDS CONVERGENCE ACCELERATION,EPSILON ALGORITHM,EXTRAPOLATION +C***AUTHOR PIESSENS, ROBERT, APPLIED MATH. AND PROGR. DIV. - +C K. U. LEUVEN +C DE DONCKER-KAPENGA, ELISE,WESTERN MICHIGAN UNIVERSITY +C KAHANER, DAVID K., NATIONAL BUREAU OF STANDARDS +C STARKENBURG, C. B., NATIONAL BUREAU OF STANDARDS +C***PURPOSE Given a slowly convergent sequence, this routine attempts +C to extrapolate nonlinearly to a better estimate of the +C sequence's limiting value, thus improving the rate of +C convergence. Routine is based on the epsilon algorithm +C of P. Wynn. An estimate of the absolute error is also +C given. +C***DESCRIPTION +C +C Epsilon algorithm. Standard fortran subroutine. +C Double precision version. +C +C A R G U M E N T S I N T H E C A L L S E Q U E N C E +C +C NEWFLG - LOGICAL (INPUT and OUTPUT) +C On the first call to DEA set NEWFLG to .TRUE. +C (indicating a new sequence). DEA will set NEWFLG +C to .FALSE. +C +C SVALUE - DOUBLE PRECISION (INPUT) +C On the first call to DEA set SVALUE to the first +C term in the sequence. On subsequent calls set +C SVALUE to the subsequent sequence value. +C +C LIMEXP - INTEGER (INPUT) +C An integer equal to or greater than the total +C number of sequence terms to be evaluated. Do not +C change the value of LIMEXP until a new sequence +C is evaluated (NEWFLG=.TRUE.). LIMEXP .GE. 3 +C +C RESULT - DOUBLE PRECISION (OUTPUT) +C Best approximation to the sequence's limit. +C +C ABSERR - DOUBLE PRECISION (OUTPUT) +C Estimate of the absolute error. +C +C EPSTAB - DOUBLE PRECISION (OUTPUT) +C Workvector of DIMENSION at least (LIMEXP+7). +C +C IERR - INTEGER (OUTPUT) +C IERR=0 Normal termination of the routine. +C IERR=1 The input is invalid because LIMEXP.LT.3. +C +C T Y P I C A L P R O B L E M S E T U P +C +C This sample problem uses the trapezoidal rule to evaluate the +C integral of the sin function from 0.0 to 0.5*PI (value = 1.0). The +C program implements the trapezoidal rule 8 times creating an +C increasingly accurate sequence of approximations to the integral. +C Each time the trapezoidal rule is used, it uses twice as many +C panels as the time before. DEA is called to obtain even more +C accurate estimates. +C +C PROGRAM SAMPLE +C IMPLICIT DOUBLE PRECISION (A-H,O-Z) +C DOUBLE PRECISION EPSTAB(57) +CC [57 = LIMEXP + 7] +C LOGICAL NEWFLG +C EXTERNAL F +C DATA LIMEXP/50/ +C WRITE(*,*) ' NO. PANELS TRAP. APPROX' +C * ,' APPROX W/EA ABSERR' +C WRITE(*,*) +C HALFPI = DASIN(1.0D+00) +CC [UPPER INTEGRATION LIMIT = PI/2] +C NEWFLG = .TRUE. +CC [SET FLAG - 1ST DEA CALL] +C DO 10 I = 0,7 +C NPARTS = 2 ** I +C WIDTH = HALFPI/NPARTS +C APPROX = 0.5D+00 * WIDTH * (F(0.0D+00) + F(HALFPI)) +C DO 11 J = 1,NPARTS-1 +C APPROX = APPROX + F(J * WIDTH) * WIDTH +C 11 CONTINUE +CC [END TRAPEZOIDAL RULE APPROX] +C SVALUE = APPROX +CC [SVALUE = NEW SEQUENCE VALUE] +C CALL DEA(NEWFLG,SVALUE,LIMEXP,RESULT,ABSERR,EPSTAB,IERR) +CC [CALL DEA FOR BETTER ESTIMATE] +C WRITE(*,12) NPARTS,APPROX,RESULT,ABSERR +C 12 FORMAT(' ',I4,T20,F16.13,T40,F16.13,T60,D11.4) +C 10 CONTINUE +C STOP +C END +C +C DOUBLE PRECISION FUNCTION F(X) +C DOUBLE PRECISION X +C F = DSIN(X) +CC [INTEGRAND] +C RETURN +C END +C +C Output from the above program will be: +C +C NO. PANELS TRAP. APPROX APPROX W/EA ABSERR +C +C 1 .7853981633974 .7853981633974 .7854D+00 +C 2 .9480594489685 .9480594489685 .9760D+00 +C 4 .9871158009728 .9994567212570 .2141D+00 +C 8 .9967851718862 .9999667417647 .3060D-02 +C 16 .9991966804851 .9999998781041 .6094D-03 +C 32 .9997991943200 .9999999981026 .5767D-03 +C 64 .9999498000921 .9999999999982 .3338D-04 +C 128 .9999874501175 1.0000000000000 .1238D-06 +C +C----------------------------------------------------------------------- +C***REFERENCES "Acceleration de la convergence en analyse numerique", +C C. Brezinski, "Lecture Notes in Math.", vol. 584, +C Springer-Verlag, New York, 1977. +C***ROUTINES CALLED D1MACH,XERROR +C***END PROLOGUE DEA + double precision, dimension(*), intent(inout) :: EPSTAB + double precision, intent(out) :: RESULT !, ABSERR + double precision, intent(inout) :: ABSERR + double precision, intent(in) :: SVALUE + INTEGER, INTENT(IN) :: LIMEXP + INTEGER, INTENT(OUT) :: IERR + LOGICAL, intent(INOUT) :: NEWFLG + DOUBLE PRECISION :: DELTA1,DELTA2,DELTA3,DRELPR,DEPRN, + 1 ERROR,ERR1,ERR2,ERR3,E0,E1,E2,E3,RES, + 2 SS,TOL1,TOL2,TOL3 + double precision, dimension(3) :: RES3LA + INTEGER I,IB,IB2,IE,IN,K1,K2,K3,N,NEWELM,NUM,NRES +C +C +C LIMEXP is the maximum number of elements the +C epsilon table data can contain. The epsilon table +C is stored in the first (LIMEXP+2) entries of EPSTAB. +C +C +C LIST OF MAJOR VARIABLES +C ----------------------- +C E0,E1,E2,E3 - DOUBLE PRECISION +C The 4 elements on which the computation of +C a new element in the epsilon table is based. +C NRES - INTEGER +C Number of extrapolation results actually +C generated by the epsilon algorithm in prior +C calls to the routine. +C NEWELM - INTEGER +C Number of elements to be computed in the +C new diagonal of the epsilon table. The +C condensed epsilon table is computed. Only +C those elements needed for the computation of +C the next diagonal are preserved. +C RES - DOUBLE PRECISION +C New element in the new diagonal of the +C epsilon table. +C ERROR - DOUBLE PRECISION +C An estimate of the absolute error of RES. +C Routine decides whether RESULT=RES or +C RESULT=SVALUE by comparing ERROR with +C ABSERR from the previous call. +C RES3LA - DOUBLE PRECISION +C Vector of DIMENSION 3 containing at most +C the last 3 results. +C +C +C MACHINE DEPENDENT CONSTANTS +C --------------------------- +C DRELPR is the largest relative spacing. +C +C***FIRST EXECUTABLE STATEMENT DEA + IF(LIMEXP.LT.3) THEN + IERR = 1 +! CALL XERROR('LIMEXP IS LESS THAN 3',21,1,1) + GO TO 110 + ENDIF + IERR = 0 + RES3LA(1)=EPSTAB(LIMEXP+5) + RES3LA(2)=EPSTAB(LIMEXP+6) + RES3LA(3)=EPSTAB(LIMEXP+7) + RESULT=SVALUE + IF(NEWFLG) THEN + N=1 + NRES=0 + NEWFLG=.FALSE. + EPSTAB(N)=SVALUE + ABSERR=ABS(RESULT) + GO TO 100 + ELSE + N=INT(EPSTAB(LIMEXP+3)) + NRES=INT(EPSTAB(LIMEXP+4)) + IF(N.EQ.2) THEN + EPSTAB(N)=SVALUE + ABSERR=.6D+01*ABS(RESULT-EPSTAB(1)) + GO TO 100 + ENDIF + ENDIF + EPSTAB(N)=SVALUE + DRELPR=D1MACH(4) + DEPRN=1.0D+01*DRELPR + EPSTAB(N+2)=EPSTAB(N) + NEWELM=(N-1)/2 + NUM=N + K1=N + DO 40 I=1,NEWELM + K2=K1-1 + K3=K1-2 + RES=EPSTAB(K1+2) + E0=EPSTAB(K3) + E1=EPSTAB(K2) + E2=RES + DELTA2=E2-E1 + ERR2=ABS(DELTA2) + TOL2=MAX(ABS(E2),ABS(E1))*DRELPR + DELTA3=E1-E0 + ERR3=ABS(DELTA3) + TOL3=MAX(ABS(E1),ABS(E0))*DRELPR + IF(ERR2.GT.TOL2.OR.ERR3.GT.TOL3) GO TO 10 +C +C IF E0, E1 AND E2 ARE EQUAL TO WITHIN MACHINE +C ACCURACY, CONVERGENCE IS ASSUMED. +C RESULT=E2 +C ABSERR=ABS(E1-E0)+ABS(E2-E1) +C + RESULT=RES + ABSERR=ERR2+ERR3 + GO TO 50 + 10 IF(I.NE.1) THEN + E3=EPSTAB(K1) + EPSTAB(K1)=E1 + DELTA1=E1-E3 + ERR1=ABS(DELTA1) + TOL1=MAX(ABS(E1),ABS(E3))*DRELPR +C +C IF TWO ELEMENTS ARE VERY CLOSE TO EACH OTHER, OMIT +C A PART OF THE TABLE BY ADJUSTING THE VALUE OF N +C + IF(ERR1.LE.TOL1.OR.ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA1+0.1D+01/DELTA2-0.1D+01/DELTA3 + ELSE + EPSTAB(K1)=E1 + IF(ERR2.LE.TOL2.OR.ERR3.LE.TOL3) GO TO 20 + SS=0.1D+01/DELTA2-0.1D+01/DELTA3 + ENDIF +C +C TEST TO DETECT IRREGULAR BEHAVIOUR IN THE TABLE, AND +C EVENTUALLY OMIT A PART OF THE TABLE ADJUSTING THE VALUE +C OF N +C + IF(ABS(SS*E1).GT.0.1D-03) GO TO 30 + 20 N=I+I-1 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ERR3 + RESULT=RES + ELSE IF(NRES.EQ.1) THEN + RESULT=RES3LA(1) + ELSE IF(NRES.EQ.2) THEN + RESULT=RES3LA(2) + ELSE + RESULT=RES3LA(3) + ENDIF + GO TO 50 +C +C COMPUTE A NEW ELEMENT AND EVENTUALLY ADJUST +C THE VALUE OF RESULT +C + 30 RES=E1+0.1D+01/SS + EPSTAB(K1)=RES + K1=K1-2 + IF(NRES.EQ.0) THEN + ABSERR=ERR2+ABS(RES-E2)+ERR3 + RESULT=RES + GO TO 40 + ELSE IF(NRES.EQ.1) THEN + ERROR=.6D+01*(ABS(RES-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ERROR=.2D+01*(ABS(RES-RES3LA(2))+ABS(RES-RES3LA(1))) + ELSE + ERROR=ABS(RES-RES3LA(3))+ABS(RES-RES3LA(2)) + 1 +ABS(RES-RES3LA(1)) + ENDIF + IF(ERROR.GT.1.0D+01*ABSERR) GO TO 40 + ABSERR=ERROR + RESULT=RES + 40 CONTINUE +C +C COMPUTE ERROR ESTIMATE +C + IF(NRES.EQ.1) THEN + ABSERR=.6D+01*(ABS(RESULT-RES3LA(1))) + ELSE IF(NRES.EQ.2) THEN + ABSERR=.2D+01*ABS(RESULT-RES3LA(2))+ABS(RESULT-RES3LA(1)) + ELSE IF(NRES.GT.2) THEN + ABSERR=ABS(RESULT-RES3LA(3))+ABS(RESULT-RES3LA(2)) + 1 +ABS(RESULT-RES3LA(1)) + ENDIF +C +C SHIFT THE TABLE +C + 50 IF(N.EQ.LIMEXP) N=2*(LIMEXP/2)-1 + IB=1 + IF((NUM/2)*2.EQ.NUM) IB=2 + IE=NEWELM+1 + DO 60 I=1,IE + IB2=IB+2 + EPSTAB(IB)=EPSTAB(IB2) + IB=IB2 + 60 CONTINUE + IF(NUM.EQ.N) GO TO 80 + IN=NUM-N+1 + DO 70 I=1,N + EPSTAB(I)=EPSTAB(IN) + IN=IN+1 + 70 CONTINUE +C +C UPDATE RES3LA +C + 80 IF(NRES.EQ.0) THEN + RES3LA(1)=RESULT + ELSE IF(NRES.EQ.1) THEN + RES3LA(2)=RESULT + ELSE IF(NRES.EQ.2) THEN + RES3LA(3)=RESULT + ELSE + RES3LA(1)=RES3LA(2) + RES3LA(2)=RES3LA(3) + RES3LA(3)=RESULT + ENDIF + 90 ABSERR=MAX(ABSERR,DEPRN*ABS(RESULT)) + NRES=NRES+1 + 100 N=N+1 + EPSTAB(LIMEXP+3)=DBLE(N) + EPSTAB(LIMEXP+4)=DBLE(NRES) + EPSTAB(LIMEXP+5)=RES3LA(1) + EPSTAB(LIMEXP+6)=RES3LA(2) + EPSTAB(LIMEXP+7)=RES3LA(3) + 110 RETURN + END subroutine DEA + + subroutine AdaptiveIntWithBreaks(f,a,b,N,brks,epsi,iflg + $ ,abserr, val) + use AdaptiveGaussKronrod + implicit none + double precision :: f + integer, intent(in) :: N + double precision, intent(in) :: a,b,epsi + double precision, dimension(:), intent(in) :: brks + double precision, intent(out) :: abserr, val + integer, intent(out) :: iflg + external f +! Locals + double precision, dimension(N+2) :: pts + double precision :: LTol,tol, error, valk, excess, errorEstimate + double precision :: delta, deltaK + integer :: kflg, k, limit,neval + limit = 30 + pts(1) = a + pts(N+2) = b + delta = b - a + do k = 2,N+1 + pts(k) = minval(brks(k-1:N)) !add user supplied break points + enddo + LTol = epsi / delta + abserr = 0.0d0 + val = 0.0D0 + iflg = 0 + do k = 1, N + 1 + deltaK = pts(k+1) - pts(k) + tol = LTol * deltaK + if (deltaK < 0.5D0) then + call AdaptiveSimpson(f,pts(k),pts(k+1),tol, kflg,error,valk) +! call romberg(f,pts(k),pts(k+1),20,tol,kflg,error, valk) + else +! call AdaptiveSimpson3(f,pts(k),pts(k+1),tol,kflg,error,valk) + call dqagp(f,pts(k),pts(k+1),0,pts,tol,0.0D0,limit,valk, + * error,neval,kflg) + + endif + abserr = abserr + abs(error) + + errorEstimate = abserr + (b - pts(k+1)) * LTol + excess = epsi - errorEstimate + if (excess < 0.0D0 ) then + LTol = 0.1D0*LTol + elseif ( epsi < 2.0D0 * excess ) then + LTol = (epsi + excess*0.5D0) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0.0d0 .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif ( Lepsi < 5D0 * excess ) then + LTol = (Lepsi + excess) / delta + endif + val = val + valk + if (kflg>0) iflg = IOR(iflg, kflg) + end do + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn12e = ( Sn1e - Sn2e ) + + Sn24e = (Sn2e - Sn4) +! Sn1e = Sn2e - Sn12e * zpz66666 +! Sn12e = (Sn1e - Sn2e) + + Sn124 = (Sn12e - Sn24) + if ((abs(Sn124)<= hmin) .or. + & .false..and.(Sn24*Sn12e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn24 * zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24 * Sn24 / Sn124 + endif + Sn4e = Sn4 + correction + +! NEWFLG = .TRUE. +! CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn1e,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) +! CALL DEA(NEWFLG,Sn4e,LIMEXP,val0,localError,EPSTAB,IERR) +! localError is made conservative in order to avoid premature +! termination + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) + !if (h>dhMin) then + !localError = max(localError,abs(correction)) + !else + !val0 = Sn4e + !localError = abs(correction)*two + !endif + else + CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + endif + acceptError = ( localError <= Ltol * h * eight + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(6,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.true..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,fx3,fx4,fx5,x1,h,S,SL,SR] + kp1 = k + 1; +! Process right interval + v(1,kp1) = v(3,k); !fx1R + v(2,kp1) = fx(3); !fx2R + v(3,kp1) = v(4,k); !fx3R + v(4,kp1) = fx(4); !fx4R + v(5,kp1) = v(5,k); !fx5R + v(6,kp1) = v(6,k) + four * h; ! x1R + v(7,kp1) = h; + v(8,kp1) = v(10,k); ! S + v(9:10,kp1) = Sn(3:4); ! SL, SR +! Process left interval + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) unchanged fx1L +! v(6,k) unchanged x1L + v(7,k) = h; + v(8,k) = v(9,k); ! S + v(9:10,k) = Sn(1:2); ! SL, SR + k = kp1; + endif + enddo ! while + if (epsi0) then + Sn12 = (Sn1 - Sn2) + Sn24 = (Sn2 - Sn4) + Sn48 = (Sn4 - Sn8) + ! Extrapolate Sn1 and Sn2: + Sn1e = Sn2 - Sn12 * zpz66666 + Sn2e = Sn4 - Sn24 * zpz66666 + Sn4e = Sn8 - Sn48 * zpz588 + Sn12e = (Sn1e - Sn2e) + Sn24e = (Sn2e - Sn4e) + + Sn124 = (Sn12e - Sn24e) + if ((abs(Sn124)<= hmin) .or. + & (Sn12e*Sn24e < zero)) then +! Correction based on the assumption of slowly varying fourth derivative + correction = -Sn48*zpz588 ! + else +! Correction based on assumption that the termination error +! is of the form: C*h^q + correction = -Sn24e * Sn24e / Sn124 + !Sn4e = Sn4e + correction + endif + CALL DEA3(Sn1e,Sn2e,Sn4e,localError,val0) +! localError is made conservative in order to avoid premature +! termination +! localError = max(localError,abs(correction)*three) +! localError = abs(correction)*three + else + !CALL DEA3(Sn1,Sn2,Sn4,localError,val0) + NEWFLG = .TRUE. + CALL DEA(NEWFLG,Sn1,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn2,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn4,LIMEXP,val0,localError,EPSTAB,IERR) + CALL DEA(NEWFLG,Sn8,LIMEXP,val0,localError,EPSTAB,IERR) + endif + acceptError = ( localError <= Ltol * h * sixteen + & .or. localError < small) + else + acceptError = .FALSE. + endif + + stepSizeTooSmall = ( h < hMin) + if (lastInStack .or. + & ( stepSizeOK .and. acceptError ) .or. + & stepSizeTooSmall) then +! Stop subdividing interval when +! 1) accuracy is sufficient, or +! 2) interval too narrow, or +! 3) subdivided too often. (stack limit reached) + +! Add partial integral and take a new vector from the bottom of the stack. + + abserr = abserr + max(localError, ten*small*val0) + val = val + val0 + k = k - 1 + if (.not.acceptError) then + if (lastInStack) iflg = IOR(iflg,1) !stack limit reached + if (stepSizeTooSmall) iflg = IOR(iflg,2) !stepSize limit reached + endif + if (k <= 0) then + exit ! while loop + endif + deltaK = (v(Nrule+1,k+1)-a) + errorEstimate = abserr + deltaK * Ltol + excess = Lepsi - errorEstimate + if (excess < zero ) then + if (deltaK > zero .and. Lepsi > abserr) then + LTol = (Lepsi - abserr) / deltaK + else + LTol = 0.1D0 * LTol + endif + elseif (.TRUE..or. Lepsi < four * excess ) then + LTol = (Lepsi + 0.9D0 * excess) / delta + endif + else +! Subdivide the interval and create two new vectors in the stack, +! one of which overwrites the vector just processed. +! +! v(:,k) = [fx1,fx2,..,fx8,fx9,x1,h,S,SL,SR,SL1,SL2 SR1,SR2] + kp1 = k + 1; +! Process right interval + + v(1,kp1) = v(5,k); !fx1R + v(2,kp1) = fx(5); !fx2R + v(3,kp1) = v(6,k); !fx3R + v(4,kp1) = fx(6); !fx4R + v(5,kp1) = v(7,k); !fx5R + v(6,kp1) = fx(7); !fx6R + v(7,kp1) = v(8,k); !fx7R + v(8,kp1) = fx(8); !fx8R + v(9,kp1) = v(9,k); !fx9R + + v(Nrule+1,kp1) = v(Nrule+1,k) + eight * h ! x1R + v(Nrule+2,kp1) = h; + v(Nrule+3,kp1) = v(Nrule+5,k); ! S + v(Nrule+4,kp1) = v(Nrule+8,k); ! SL + v(Nrule+5,kp1) = v(Nrule+9,k); ! SR + v(Nrule+6:Nrule+9,kp1) = Sn(5:8); ! SL1,SL2,SR1, SR2 +! Process left interval + v(9,k) = v(5,k); ! fx9L + v(8,k) = fx(4); ! fx8L + v(7,k) = v(4,k); ! fx7L + v(6,k) = fx(3); ! fx6L + v(5,k) = v(3,k); ! fx5L + v(4,k) = fx(2); ! fx4L + v(3,k) = v(2,k); ! fx3L + v(2,k) = fx(1); ! fx2L +! v(1,k) = v(1,k); ! fx1L +! v(Nrule+1,k) unchanged x1L + v(Nrule+2,k) = h; + v(Nrule+3,k) = v(Nrule + 4,k); ! S + v(Nrule+4,k) = v(Nrule+6,k); ! SL + v(Nrule+5,k) = v(Nrule+7,k); ! SR + v(Nrule+6:Nrule+9,k) = Sn(1:4); ! SL1,SL2,SR1, SR2 + k = kp1; + endif + enddo ! while + if (epsi0) iflg = IOR(iflg, kflg) + end do + if (epsi0) iflg = ior(iflg,kflg) + end do + if (epsistepSize) then + Nk = floor((xup-xlo)/stepSize) + 1 + dx = (xup-xlo)/dble(Nk) + do j=1, Nk -1 + Npts = Npts + 1 + breakPoints(Npts) = xlo + dx * dble( j ) + enddo + endif + else + ! Compute candidates for the breakpoints + brkPts(1:2*n) = xup + forall(k=1:n,rho(k) .ne. zero) + indices(2*k-1) = k + indices(2*k ) = k + brkPts(2*k-1) = a(k)/rho(k) + brkPts(2*k ) = b(k)/rho(k) + end forall + ! Sort the candidates + call sortre(brkPts,indices) + ! Make unique list of breakpoints + + do k = 1,2*n + brk = brkPts(k) + if (xlo < brk) then + if ( xup <= brk ) exit ! terminate do loop + +! if (Npts>0) then +! xLow = max(xlo, breakPoints(Npts)) +! else +! xLow = xlo +! endif +! if (brk-xLow>stepSize) then +! Nk = floor((brk-xLow)/stepSize) +! dx = (brk-xLow)/dble(Nk) +! do j=1, Nk -1 +! Npts = Npts + 1 +! breakPoints(Npts) = brk + dx * dble( j ) +! enddo +! endif + + kU = indices(k) + + !if ( xlo + distance < brk .and. brk + distance < xup ) + !then + if ( den(kU) < 0.2) then + distance = max(brkSplit*den(kU),hMin) + z1 = brk + distance + z2 = brk - distance + if (Npts <= 0) then + if (xlo + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + kL = kU + elseif (breakPoints(Npts)+ max(distance + & ,brkSplit*den(kL)) < z1) then + if (breakPoints(Npts) + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + kL = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + kL = kU + endif + else + val1 = 0.0d0 + val2 = 0.0d0 + brkPts(Npts+1) = integrand(z1) + brkPts(Npts+2) = integrand(z2) + if ((xlo+ distance < z1) .and. (z1 + distance < xup)) + & val2 = brkPts(Npts +1) + if ((xlo+ distance < z2) .and. (z2 + distance < xup)) + & val2 = max(val2,brkPts(Npts +2)) + val1 = breakPoints(Npts) + Nprev = 1 + if (Npts>1) then + if (indices2(Npts-1)==kL) then + Nprev = 2 + val1 = max(val1,breakPoints(Npts-1)) + endif + endif + if (val1 < val2) then + !overwrite previous candidate + Npts = Npts - Nprev + if (Npts>0) then + val1 = breakPoints(Npts)+ distance + else + val1 = xlo+ distance + endif + if (val1 < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = brkPtsVal(Npts+Nprev) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + + if ((val1< z2) .and. (z2 + distance < xup)) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + if (Npts>0) kL = indices2(Npts) + endif + endif + endif + endif + enddo + endif + end subroutine GetBreakPoints + subroutine NarrowLimits(zMin,zMax,As,Bs,zCutOff,n,a,b,rho,den) + implicit none + double precision, intent(inout) :: zMin, zMax, As, Bs + double precision,dimension(*),intent(in) :: rho,a,b,den + double precision, intent(in) :: zCutOff + integer, intent(in) :: n +! Locals + double precision, parameter :: zero = 0.0D0, one = 1.0D0 + integer :: k + +! Uses the regression equation to limit the +! integration limits zMin and zMax + + do k = 1,n + if (ZERO < rho(k)) then + zMax = max(zMin, min(zMax,(b(k)+den(k)*zCutOff)/rho(k))) + zMin = min(zMax, max(zMin,(a(k)-den(k)*zCutOff)/rho(k))) + if ( one <= rho(k) ) then + if ( b(k) < Bs ) Bs = b(k) + if ( As < a(k) ) As = a(k) + endif + elseif (rho(k)< ZERO) then + zMax = max(zMin,min(zMax,(a(k)-den(k)*zCutOff)/rho(k))) + zMin = min(zMax,max(zMin,(b(k)+den(k)*zCutOff)/rho(k))) + if ( rho(k) <= -one ) then + if ( -a(k) < Bs ) Bs = -a(k) + if ( As < -b(k) ) As = -b(k) + endif + endif + enddo + As = min(As,Bs) + end subroutine NarrowLimits + + function integrand(z) result (val) + implicit none + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + double precision, parameter :: sqtwopi1 = 0.39894228040143D0 + double precision, parameter :: half = 0.5D0 + val = sqtwopi1 * exp(-half * z * z) * integrand1(z) + return + end function integrand + + function integrand1(z) result (val) + implicit none + double precision, intent(in) :: z + double precision :: val + double precision :: xUp,xLo,zRho + double precision, parameter :: one = 1.0D0, zero = 0.0D0 + integer :: I + val = one + do I = 1, mNdim + zRho = z * mRho(I) + ! Uncomment / mDen below if mRho, mA, mB is not scaled + xUp = ( mB(I) - zRho ) !/ mDen(I) + xLo = ( mA(I) - zRho ) !/ mDen(I) + if (zero0.1 +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION, INTENT(in) :: P + DOUBLE PRECISION :: VAL +!local variables + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, ONE, ZERO, HALF, + & A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + & C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + & E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + & Q, R + PARAMETER ( SPLIT1 = 0.425D0, SPLIT2 = 5.D0, + & CONST1 = 0.180625D0, CONST2 = 1.6D0, + & ONE = 1.D0, ZERO = 0.D0, HALF = 0.5D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( P - HALF) + IF ( ABS(Q) .LE. SPLIT1 ) THEN ! Central range. + R = CONST1 - Q*Q + VAL = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + ONE) + ELSE ! near the endpoints + R = MIN( P, ONE - P ) + IF (R .GT.ZERO) THEN ! ( 2.d0*R .GT. CFxCutOff) THEN ! R .GT.0.d0 + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + VAL = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + ONE ) + ELSE + R = R - SPLIT2 + VAL = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + ONE ) + END IF + ELSE + VAL = 37.D0 !XMAX 9.d0 + END IF + IF ( Q < ZERO ) VAL = - VAL + END IF + RETURN + END FUNCTION FIINV + FUNCTION FI2( Z ) RESULT (VALUE) +! USE GLOBALDATA, ONLY : XMAX + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +* +* Normal distribution probabilities accurate to 1.e-15. +* relative error less than 1e-8; +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION :: P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,XMAX, + * P, EXPNTL, CUTOFF, ROOTPI, ZABS, Z2 + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = 0.70038 30644 43688 1D0, + * P6 = 0.035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = 0.088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) + PARAMETER( XMAX = 8.25D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( ZABS .GT. XMAX ) THEN + P = 0.d0 + ELSE +* +* |Z| <= 37 +* + Z2 = ZABS * ZABS + EXPNTL = EXP( -Z2 * 0.5D0 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS < CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1.d0/( ZABS + 2.d0/( ZABS + 3.d0/( ZABS + * + 4.d0/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0.d0 ) P = 1.d0 - P + VALUE = P + RETURN + END FUNCTION FI2 + + FUNCTION FI( Z ) RESULT (VALUE) + USE ERFCOREMOD + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +! Local variables + DOUBLE PRECISION, PARAMETER:: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER:: HALF = 0.5D0 + VALUE = DERFC(-Z*SQ2M1)*HALF + RETURN + END FUNCTION FI + end module mvnProdCorrPrbMod + + \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.pyf b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.pyf new file mode 100755 index 0000000..fa380b9 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprb.pyf @@ -0,0 +1,24 @@ +! -*- f90 -*- +! Note: the context of this file is case sensitive. + +python module mvnprdcrprb ! in + interface ! in :mvnprdcrprb + subroutine pymvnprdcrprb(rho,a,b,n,abseps,releps,usebreakpoints,usesimpson,prb,abserr,ift) ! in :mvnprdcrprb:mvnprodcorrprb_interface.f + use mvnprodcorrprbmod,,only: mvnprodcorrprb + double precision dimension(n),intent(in),depend(n) :: rho + double precision dimension(n),intent(in),depend(n) :: a + double precision dimension(n),intent(in),depend(n) :: b + integer intent(in) :: n + double precision intent(in) :: abseps + double precision intent(in) :: releps + logical intent(in) :: usebreakpoints + logical intent(in) :: usesimpson + double precision intent(out) :: prb + double precision intent(out) :: abserr + integer intent(out) :: ift + end subroutine pymvnprdcrprb + end interface +end python module mvnprdcrprb + +! This file was auto-generated with f2py (version:2_5972). +! See http://cens.ioc.ee/projects/f2py2e/ diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprbmod.f90 b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprbmod.f90 new file mode 100755 index 0000000..7c6a8b2 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/mvnprodcorrprbmod.f90 @@ -0,0 +1,666 @@ + module mvnProdCorrPrbMod + implicit none + private + public :: mvnprodcorrprb + double precision, parameter :: mINFINITY = 8.25D0 ! + ! Inputs to integrand + integer mNdim ! # of mRho/=0 and mRho/=+/-1 and -infstepSize) then + Nk = floor((xup-xlo)/stepSize) + 1 + dx = (xup-xlo)/dble(Nk) + do j=1, Nk -1 + Npts = Npts + 1 + breakPoints(Npts) = xlo + dx * dble( j ) + enddo + endif + else + ! Compute candidates for the breakpoints + brkPts(1:2*n) = xup + forall(k=1:n,rho(k) .ne. zero) + indices(2*k-1) = k + indices(2*k ) = k + brkPts(2*k-1) = a(k)/rho(k) + brkPts(2*k ) = b(k)/rho(k) + end forall + ! Sort the candidates + call sortre(brkPts,indices) + ! Make unique list of breakpoints + + do k = 1,2*n + brk = brkPts(k) + if (xlo < brk) then + if ( xup <= brk ) exit ! terminate do loop + +! if (Npts>0) then +! xLow = max(xlo, breakPoints(Npts)) +! else +! xLow = xlo +! endif +! if (brk-xLow>stepSize) then +! Nk = floor((brk-xLow)/stepSize) +! dx = (brk-xLow)/dble(Nk) +! do j=1, Nk -1 +! Npts = Npts + 1 +! breakPoints(Npts) = brk + dx * dble( j ) +! enddo +! endif + + kU = indices(k) + + !if ( xlo + distance < brk .and. brk + distance < xup ) + !then + if ( den(kU) < 0.2) then + distance = max(brkSplit*den(kU),hMin) + z1 = brk + distance + z2 = brk - distance + if (Npts <= 0) then + if (xlo + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + kL = kU + elseif (breakPoints(Npts)+ max(distance + & ,brkSplit*den(kL)) < z1) then + if (breakPoints(Npts) + distance < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = integrand(z1) + indices2(Npts) = kU + kL = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + if ( z2 + distance < xup) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + kL = kU + endif + else + val1 = 0.0d0 + val2 = 0.0d0 + brkPts(Npts+1) = integrand(z1) + brkPts(Npts+2) = integrand(z2) + if ((xlo+ distance < z1) .and. (z1 + distance < xup)) + & val2 = brkPts(Npts +1) + if ((xlo+ distance < z2) .and. (z2 + distance < xup)) + & val2 = max(val2,brkPts(Npts +2)) + val1 = breakPoints(Npts) + Nprev = 1 + if (Npts>1) then + if (indices2(Npts-1)==kL) then + Nprev = 2 + val1 = max(val1,breakPoints(Npts-1)) + endif + endif + if (val1 < val2) then + !overwrite previous candidate + Npts = Npts - Nprev + if (Npts>0) then + val1 = breakPoints(Npts)+ distance + else + val1 = xlo+ distance + endif + if (val1 < z1) then + Npts = Npts + 1 + breakPoints(Npts) = z1 + brkPtsVal(Npts) = brkPtsVal(Npts+Nprev) + indices2(Npts) = kU + endif +! Nprev = Nprev + 1 +! breakPoints(Npts + Nprev) = brk + + if ((val1< z2) .and. (z2 + distance < xup)) then + Npts = Npts + 1 + breakPoints(Npts) = z2 + brkPtsVal(Npts) = integrand(z2) + indices2(Npts) = kU + endif + if (Npts>0) kL = indices2(Npts) + endif + endif + endif + endif + enddo + endif + end subroutine GetBreakPoints + subroutine NarrowLimits(zMin,zMax,As,Bs,zCutOff,n,a,b,rho,den) + implicit none + double precision, intent(inout) :: zMin, zMax, As, Bs + double precision,dimension(*),intent(in) :: rho,a,b,den + double precision, intent(in) :: zCutOff + integer, intent(in) :: n +! Locals + double precision, parameter :: zero = 0.0D0, one = 1.0D0 + integer :: k + +! Uses the regression equation to limit the +! integration limits zMin and zMax + + do k = 1,n + if (ZERO < rho(k)) then + zMax = max(zMin, min(zMax,(b(k)+den(k)*zCutOff)/rho(k))) + zMin = min(zMax, max(zMin,(a(k)-den(k)*zCutOff)/rho(k))) + if ( one <= rho(k) ) then + if ( b(k) < Bs ) Bs = b(k) + if ( As < a(k) ) As = a(k) + endif + elseif (rho(k)< ZERO) then + zMax = max(zMin,min(zMax,(a(k)-den(k)*zCutOff)/rho(k))) + zMin = min(zMax,max(zMin,(b(k)+den(k)*zCutOff)/rho(k))) + if ( rho(k) <= -one ) then + if ( -a(k) < Bs ) Bs = -a(k) + if ( As < -b(k) ) As = -b(k) + endif + endif + enddo + As = min(As,Bs) + end subroutine NarrowLimits + + function integrand(z) result (val) + implicit none + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION :: VAL + double precision, parameter :: sqtwopi1 = 0.39894228040143D0 + double precision, parameter :: half = 0.5D0 + val = sqtwopi1 * exp(-half * z * z) * integrand1(z) + return + end function integrand + + function integrand1(z) result (val) + implicit none + double precision, intent(in) :: z + double precision :: val + double precision :: xUp,xLo,zRho + double precision, parameter :: one = 1.0D0, zero = 0.0D0 + integer :: I + val = one + do I = 1, mNdim + zRho = z * mRho(I) + ! Uncomment / mDen below if mRho, mA, mB is not scaled + xUp = ( mB(I) - zRho ) !/ mDen(I) + xLo = ( mA(I) - zRho ) !/ mDen(I) + if (zero0.1 +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION, INTENT(in) :: P + DOUBLE PRECISION :: VAL +!local variables + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, ONE, ZERO, HALF, + & A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + & C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + & E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + & Q, R + PARAMETER ( SPLIT1 = 0.425D0, SPLIT2 = 5.D0, + & CONST1 = 0.180625D0, CONST2 = 1.6D0, + & ONE = 1.D0, ZERO = 0.D0, HALF = 0.5D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( P - HALF) + IF ( ABS(Q) .LE. SPLIT1 ) THEN ! Central range. + R = CONST1 - Q*Q + VAL = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + ONE) + ELSE ! near the endpoints + R = MIN( P, ONE - P ) + IF (R .GT.ZERO) THEN ! ( 2.d0*R .GT. CFxCutOff) THEN ! R .GT.0.d0 + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + VAL = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + ONE ) + ELSE + R = R - SPLIT2 + VAL = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + ONE ) + END IF + ELSE + VAL = 37.D0 !XMAX 9.d0 + END IF + IF ( Q < ZERO ) VAL = - VAL + END IF + RETURN + END FUNCTION FIINV + FUNCTION FI2( Z ) RESULT (VALUE) +! USE GLOBALDATA, ONLY : XMAX + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +* +* Normal distribution probabilities accurate to 1.e-15. +* relative error less than 1e-8; +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION :: P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,XMAX, + * P, EXPNTL, CUTOFF, ROOTPI, ZABS, Z2 + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = 0.70038 30644 43688 1D0, + * P6 = 0.035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = 0.088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) + PARAMETER( XMAX = 8.25D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( ZABS .GT. XMAX ) THEN + P = 0.d0 + ELSE +* +* |Z| <= 37 +* + Z2 = ZABS * ZABS + EXPNTL = EXP( -Z2 * 0.5D0 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS < CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1.d0/( ZABS + 2.d0/( ZABS + 3.d0/( ZABS + * + 4.d0/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0.d0 ) P = 1.d0 - P + VALUE = P + RETURN + END FUNCTION FI2 + + FUNCTION FI( Z ) RESULT (VALUE) + USE ERFCOREMOD + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +! Local variables + DOUBLE PRECISION, PARAMETER:: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER:: HALF = 0.5D0 + VALUE = DERFC(-Z*SQ2M1)*HALF + RETURN + END FUNCTION FI + end module mvnProdCorrPrbMod \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsp b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsp new file mode 100755 index 0000000..9c291cc --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsp @@ -0,0 +1,97 @@ +# Microsoft Developer Studio Project File - Name="test_mvnprodcorrprb" - Package Owner=<4> +# Microsoft Developer Studio Generated Build File, Format Version 6.00 +# ** DO NOT EDIT ** + +# TARGTYPE "Win32 (x86) Console Application" 0x0103 + +CFG=test_mvnprodcorrprb - Win32 Debug +!MESSAGE This is not a valid makefile. To build this project using NMAKE, +!MESSAGE use the Export Makefile command and run +!MESSAGE +!MESSAGE NMAKE /f "test_mvnprodcorrprb.mak". +!MESSAGE +!MESSAGE You can specify a configuration when running NMAKE +!MESSAGE by defining the macro CFG on the command line. For example: +!MESSAGE +!MESSAGE NMAKE /f "test_mvnprodcorrprb.mak" CFG="test_mvnprodcorrprb - Win32 Debug" +!MESSAGE +!MESSAGE Possible choices for configuration are: +!MESSAGE +!MESSAGE "test_mvnprodcorrprb - Win32 Release" (based on "Win32 (x86) Console Application") +!MESSAGE "test_mvnprodcorrprb - Win32 Debug" (based on "Win32 (x86) Console Application") +!MESSAGE + +# Begin Project +# PROP AllowPerConfigDependencies 0 +# PROP Scc_ProjName "" +# PROP Scc_LocalPath "" +CPP=cl.exe +F90=df.exe +RSC=rc.exe + +!IF "$(CFG)" == "test_mvnprodcorrprb - Win32 Release" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 0 +# PROP BASE Output_Dir "Release" +# PROP BASE Intermediate_Dir "Release" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 0 +# PROP Output_Dir "Release" +# PROP Intermediate_Dir "Release" +# PROP Target_Dir "" +# ADD BASE F90 /compile_only /nologo /warn:nofileopt +# ADD F90 /compile_only /nologo /warn:nofileopt +# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD BASE RSC /l 0x414 /d "NDEBUG" +# ADD RSC /l 0x414 /d "NDEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 +# ADD LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 + +!ELSEIF "$(CFG)" == "test_mvnprodcorrprb - Win32 Debug" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 1 +# PROP BASE Output_Dir "Debug" +# PROP BASE Intermediate_Dir "Debug" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 1 +# PROP Output_Dir "Debug" +# PROP Intermediate_Dir "Debug" +# PROP Target_Dir "" +# ADD BASE F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD BASE RSC /l 0x414 /d "_DEBUG" +# ADD RSC /l 0x414 /d "_DEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept +# ADD LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept + +!ENDIF + +# Begin Target + +# Name "test_mvnprodcorrprb - Win32 Release" +# Name "test_mvnprodcorrprb - Win32 Debug" +# Begin Source File + +SOURCE=.\mvnprodcorrprb.f +# End Source File +# Begin Source File + +SOURCE=.\test_mvnprodcorrprb.f +# End Source File +# End Target +# End Project diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsw b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsw new file mode 100755 index 0000000..95d7427 --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.dsw @@ -0,0 +1,29 @@ +Microsoft Developer Studio Workspace File, Format Version 6.00 +# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE! + +############################################################################### + +Project: "test_mvnprodcorrprb"=.\test_mvnprodcorrprb.dsp - Package Owner=<4> + +Package=<5> +{{{ +}}} + +Package=<4> +{{{ +}}} + +############################################################################### + +Global: + +Package=<5> +{{{ +}}} + +Package=<3> +{{{ +}}} + +############################################################################### + diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.f b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.f new file mode 100755 index 0000000..018dc3a --- /dev/null +++ b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.f @@ -0,0 +1,39 @@ + program mvn +C gfortran -fPIC -c mvnprodcorrprb.f +C f2py -m mvnprdmod -c mvnprodcorrprb.o mvnprodcorrprb_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 + +C module mvnprdmod +C contains + + use mvnProdCorrPrbMod, ONLY : mvnprodcorrprb + integer, parameter :: N = 2 + double precision,dimension(N) :: rho,a,b + double precision :: abseps,releps + logical :: useBreakPoints,useSimpson + double precision :: abserr,prb + integer :: IFT + +Cf2py depend(rho) N +Cf2py intent(hide) :: N = len(rho) +Cf2py depend(N) a +Cf2py depend(N) b + abseps = 1.0e-3 + releps = 1.0e-3 + useBreakPoints = 1 + useSimpson = 1 + rho(:)=1.0/100000000 + a(:) = 0.0 + b(:) = 5.0 + + CALL mvnprodcorrprb(rho,a,b,abseps,releps,useBreakPoints, + & useSimpson,abserr,IFT,prb) + + print *, 'prb =', prb + print *, 'rho =', rho + print *, 'a =', a + print *, 'b =', b + + print *, 'abseps =', abseps + print *, 'releps =', releps + print *, 'abserr =', abserr + end program \ No newline at end of file diff --git a/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.opt b/wafo/source/mvnprd/old/mvnprodcorrprb/old/test_mvnprodcorrprb.opt new file mode 100755 index 0000000000000000000000000000000000000000..015d2b28424927c9ea14672149acce05906c6a01 GIT binary patch literal 44544 zcmeHQ-ESP#6`%Fmj-52YkT}LEg$a~=6t8id5E2(c?6sY2h#kjHVnCLX+1cy$klmTp z%&b57XqNK8OFyASJXC7?7qm#c6cJ$+9$HnXed;sqOQlFfmHJSr1>E0nKJ4|f#4(8! z4Ch8?@7;UPJ?Grty>rJodq4j2=Q}_A^_#o?rqzUFT2lLTsa0#P%1eY|3-nFUJ)m!a?giZkBHxpU?*}~q`Znl6&>qlU&_2+9(04%O?LwRab%P!T z^?(k5dO-(4hd|^zjQCN|5ztXkALzTF$3TyRj)BN`9C1Hr0F(v|f`&lDpc9~zpbY2~ zi2S4xq(?z#Kx3e@pmERy=p5)ghY;&W-B-2GvCRhqRn#p{+#Wi-c{^&*zo88E!Dztf z`4@|`cFA>ersKLLH~VC|Z>nTur{)~@vR5)pH8uA1WdHD)DbF>h=8S14NUW|iRYy*D z&MQ$z)1={>GmiqUCiGe-DB-e+O|^oCG}utsBJ4&#l|1o$}Y+Jai_pt$?rk7^OUNT{veGnAwhFmD zD1dMb>ZPRy|23pu0xf{+mx!w+Q%Ykb<)8QxO4%}8<`^+urEK;9Wf6j;&uM_K-`ya- z4k?SokgRMCwCf|5Z4DT1+&)^7DAP{9*nSAQ463#QU$u{*o$Y!VR{Dr(8Il#|{~YPi zvX*h>Ic3*Wd_U8yB+V+Ysq1C<&hJx%2v zSj2%hk9Y`%t=7|W!Zk`Wmg%*ls1g5YTys!~jL)IcDU`64{LVnp@%Z~U(k#PcopuV2 z>vdF#*%XMmfSfsq`4eLPHBc+&edK)~#4^lS=hVEfpL3i-2lP-C4QeUBirTEX50dyO zF->AfRvL$LmLJ0#y!h6@s%cPV%Xvd3;26q83Lr zzVgq%3iDqBg}vQ8;5u`jI)*~_HH}HkUcaw5Me|2I_*zh>VJ_)*YVW-QDTv=f%+{_l z2S^b5Yly1{9|vPT;>FxF5ez*&8XJL)C=6zqx$B$NJg)G<%Y{Rbf3@PFy>6A0=iX*( zG4Z7b9rN;}olEd<;tJnOe4yfaC43w23c!OcQ8+?CEAcnB4GpRK?n6R2FNHi$neS-# zR=@);%*|K$uu~Hs+K}T!Vs(xAkFKHydnL3fn%l30-27Z@e-|8$Oa@kemV-qS1OY)n z5D)|e0YTuaiNGg`L<1aoiFtT2W`1+^tJz3tl^`Gp)J1^*EsO#a;{OZ0i~PTp`2WQJ zhld0I(HH+8rUtrT#Q!J$Kk@%*;{S{PWRO@85CjAPK|l}?1U4c9;{V%-y(Tsb0=EW% z7OdVFIeqFhq>2BJD>20X2j8cx|BF^kiT{t&jI95Y^?$PdZ+RW2`2RR5NDu@B0YN|z z5CjB)jf#Ny|2AsRiQR(0%_C56|MetxB-{Ak4);Z`74C=6tOZQmbIMh7Yw@#uH$S5N z#~JLR&uABe-QFHPFKR_?7TQa}zU&-!gmY)K8+^~QUQOu1{%7iqLrrnruMaV|Mt@z# z8_3*@_Q$#z-#``Z5i&*k2eI!wtCg{nE&qjfpx^Zc^gluUck_dL_nPYN{cahy3hIKT z=9(TGIx~JOwY+~<-&<#g_ufAJfR3Hx&nna3=k4#T!=g_^pchIDKiA?~pU!H@HO9;S zZ`uFNvCijH_J7O%Z%y`p%l>a}GiShxUfKUG`@h4%AfJMOARq_`0)oKT0|D{>em(kG zS}6$BL*UZ2aN+0fdM>+^K55wpd-dQDv5q<%;mM9T2Wu?!{jDwKfjUz3SkJgBD8o}+ zg_)?t)~+pcg`cTwO`Kk(ooc|ajA+aDJ2nYg# zfFK|U)I&i0fAvt2JVD^=fk5p4tG{}a>lwxW7dj8c|0nmqL>EbL?NId<6*c~#fQ;$PU>t|D&v)Ibd!VPgUeu5Ga_^aTV@vOND=)6_Jl+~z>zPW^D%QuP!^gMA zxdW~;cyDb`f|Y-j_Cdop{DqRjeYc)bu<~|M**@!$uvdMtt=}}2=jj(Lr(pP&!;4UZ zLfoRexHV(zV@6)-L$2$%aS5)jU)-K46ja_Q=o#Dd-LhF-6Bjfuwg*=u>jO^N&UyOK zys1=9VFh3)8~5uj?i?;ShL0tcw&NBd=uAoBO66siAAw~@#A3}_Ii+V8^k)o z!jQ4mykYt}?%gdHmRt7|Fm!|xGWIMQp9^(VoBC7mYzukL%qn-f;LOGHUq#WKVNq}q zwVs|)=HvAi`%SAj%QVu{|x0jGq$ht%GC$!;(~jK7u#Z%+D5(3`eQCCqW4s;UhjPZmTh5+ zYimD}z>pX`eOe!Ne0`W*8#itMC7mqE*svE^KNpN8eb|7aWv=gO#lQcxI8!B925;)fk0mgzd4Gwti?haUPYvgB<9H3xUE zABYpZapGW{I22z0{6-)d6{`K4a{i;7|0w4_E_*WN{723z5(EK3KoAfF1OY){qaq;w zzm3{+Vz(f0^9a0{cqzF5op-;V{MUOoFHj_WsSxN-Ty1!>ttG+!olhh+9b1&Ow4R@K zTpxZ%JvBX+N$V+-`8dEaXJYGe$<208gK4_Aw4kSoVNnh{ne{r1PEE~=7Tk31v|+05 zX+4#iHl1P#&M^1!yj?!}2y&J)ik6+9!|Kvhq3F$;?xS!{rS%{{6@6uaNz@zX(}#%t z)}E%dmc5{S^=|7f{mkg;r}e%XleAXa1lM7gUNT&xs9>Pp*Qbx_kL$f!s50l2>6t9K z%CtPVgS&DTT*gf88{JQ4cgE>5y0V|cP7WjMsgl>_ViSAGi}(so-ZJ6kMKLT6{M2I( ztns?=b;2r^JjY%`r0aH}Ln5ZAA(WRHKBu*6X?9X8wx(lC`aamWU)M*YO!C_Pz8N@? zgBGy41!ad^am7KLuWI7_(IQSCwQ>F`uw7T!f%8{4p$0vowZ9yEo*-T}6`z0lc|7aM zr`|ZMr{1mNjde4=RWjEj=VtUbqvw)ZrSVd-L3?AB(&1=^7`EnByoN7i*o>&h`bXWN zvQ`;=XHS{$XxyW^*#53|GV^woERG@u+`hCb+|xa^dVZ>&W%fLO@X(RNhmRf^OdUEp zG>|%QAU&KK7(R43)zj18-_vs_eV})!_eD+Xie$!PmAHKj;%!&4x?ZRr!B0quF990( zRU`;;9NXB@Jyquvjqd4N0>n;e!7p9f7(mDd{c(GTMFVWW4|YL_ + +

+

Build Log

+

+--------------------Configuration: test_mvnprodcorrprb - Win32 Debug-------------------- +

+

Command Lines

+Creating temporary file "C:\DOCUME~1\pab.NTU\LOCALS~1\Temp\RSP265.tmp" with contents +[ +/check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt /module:"Debug/" /object:"Debug/" /pdbfile:"Debug/DF60.PDB" +"C:\pab\workspace\PYWAFO\src\wafo\src\mvnprodcorrprb\test_mvnprodcorrprb.f" +] +Creating command line "link.exe kernel32.lib /nologo /subsystem:console /incremental:yes /pdb:"Debug/test_mvnprodcorrprb.pdb" /debug /machine:I386 /out:"Debug/test_mvnprodcorrprb.exe" /pdbtype:sept .\Debug\mvnprodcorrprb.obj .\Debug\test_mvnprodcorrprb.obj " +

Output Window

+Compiling Fortran... +C:\pab\workspace\PYWAFO\src\wafo\src\mvnprodcorrprb\test_mvnprodcorrprb.f +Linking... + + + +

Results

+test_mvnprodcorrprb.exe - 0 error(s), 0 warning(s) +
+ + diff --git a/wafo/source/rind2007/.cproject b/wafo/source/rind2007/.cproject new file mode 100755 index 0000000..5bb1192 --- /dev/null +++ b/wafo/source/rind2007/.cproject @@ -0,0 +1,608 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +make + + +true +true +true + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +make + + +true +true +true + + + + + + + + + diff --git a/wafo/source/rind2007/.project b/wafo/source/rind2007/.project new file mode 100755 index 0000000..269ed5c --- /dev/null +++ b/wafo/source/rind2007/.project @@ -0,0 +1,81 @@ + + + test_rind + + + + + + org.eclipse.cdt.managedbuilder.core.genmakebuilder + clean,full,incremental, + + + ?name? + + + + org.eclipse.cdt.make.core.append_environment + true + + + org.eclipse.cdt.make.core.autoBuildTarget + all + + + org.eclipse.cdt.make.core.buildArguments + + + + org.eclipse.cdt.make.core.buildCommand + make + + + org.eclipse.cdt.make.core.buildLocation + ${workspace_loc:/test_rind/Debug} + + + org.eclipse.cdt.make.core.cleanBuildTarget + clean + + + org.eclipse.cdt.make.core.contents + org.eclipse.cdt.make.core.activeConfigSettings + + + org.eclipse.cdt.make.core.enableAutoBuild + false + + + org.eclipse.cdt.make.core.enableCleanBuild + true + + + org.eclipse.cdt.make.core.enableFullBuild + true + + + org.eclipse.cdt.make.core.fullBuildTarget + all + + + org.eclipse.cdt.make.core.stopOnError + true + + + org.eclipse.cdt.make.core.useDefaultBuildCmd + true + + + + + org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder + + + + + + org.eclipse.cdt.managedbuilder.core.ScannerConfigNature + org.eclipse.cdt.managedbuilder.core.managedBuildNature + org.eclipse.cdt.core.cnature + + diff --git a/wafo/source/rind2007/New File.txt b/wafo/source/rind2007/New File.txt new file mode 100755 index 0000000..ae0b9b7 --- /dev/null +++ b/wafo/source/rind2007/New File.txt @@ -0,0 +1,21 @@ + subroutine set_constants(method,xcscale,abseps,releps,coveps, + & maxpts,minpts,nit,xcutoff,Nc1c2) + use rindmod + double precision :: xcscale,abseps,releps,coveps,xcutoff + integer method, maxpts, minpts, nit, Nc1c2 +Cf2py double precision, optional :: xcscale = 0.0D0 +Cf2py double precision, optional :: abseps = 0.01D0 +Cf2py double precision, optional :: releps = 0.01D0 +Cf2py double precision, optional :: coveps = 1.0D-10 +Cf2py double precision, optional :: xcutoff = 5.0D0 + +Cf2py integer, optional :: method = 3 +Cf2py integer, optional :: minpts = 0 +Cf2py integer, optional :: maxpts = 40000 +Cf2py integer, optional :: nit = 1000 +Cf2py integer, optional :: Nc1c2 = 2 + + call setconstants(method,xcscale,abseps,releps,coveps, + & maxpts,minpts,nit,xcutoff,Nc1c2) + return + end subroutine set_constants \ No newline at end of file diff --git a/wafo/source/rind2007/adaptmod.mod b/wafo/source/rind2007/adaptmod.mod new file mode 100755 index 0000000..26608ec --- /dev/null +++ b/wafo/source/rind2007/adaptmod.mod @@ -0,0 +1,69 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 06:33:27 2009 +MD5:4d2aeab527515248abfbe40787b2391c -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('adapt' 'adaptmod' 2) ('sadapt' 'adaptmod' 3)) + +() + +() + +(2 'adapt' 'adaptmod' 'adapt' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 4 0 (5 6 7 8 +9 10 11 12 13) () 0 () () () 0 0) +3 'sadapt' 'adaptmod' 'sadapt' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 14 0 (15 16 +17 18 19 20 21 22) () 0 () () () 0 0) +18 'abseps' '' 'abseps' 14 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +19 'releps' '' 'releps' 14 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +20 'error' '' 'error' 14 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +21 'value' '' 'value' 14 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +22 'inform' '' 'inform' 14 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'n' '' 'n' 14 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +16 'maxpts' '' 'maxpts' 14 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +17 'functn' '' 'functn' 14 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 23 0 (24 25) +() 17 () () () 0 0) +8 'functn' '' 'functn' 4 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 26 0 (27 28) +() 8 () () () 0 0) +9 'absreq' '' 'absreq' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +10 'relreq' '' 'relreq' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'absest' '' 'absest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +12 'finest' '' 'finest' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +5 'ndim' '' 'ndim' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'mincls' '' 'mincls' 4 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'maxcls' '' 'maxcls' 4 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +13 'inform' '' 'inform' 4 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +27 'n' '' 'n' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +28 'z' '' 'z' 26 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +24 'n' '' 'n' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +25 'z' '' 'z' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('adapt' 0 2 'sadapt' 0 3) diff --git a/wafo/source/rind2007/build_all.py b/wafo/source/rind2007/build_all.py new file mode 100755 index 0000000..0cf452f --- /dev/null +++ b/wafo/source/rind2007/build_all.py @@ -0,0 +1,38 @@ +""" +f2py c_library.pyf c_functions.c -c + +g95 -W -Wall -pedantic-errors -fbounds-check -Werror -o test_fimod.exe fimod.f test_fimod.f +gfortran -W -Wall -pedantic-errors -fbounds-check -Werror -o test_fimod.exe fimod.f test_fimod.f + +gfortran -W -Wall -pedantic-errors -fbounds-check -Werror -o test_rindmod.exe intmodule.f jacobmod.f swapmod.f fimod.f rindmod2007.f test_rindmod.f +df %1 /check:all /fpe:0 /traceback /warn:argument checking /automatic /exe test_rindmod.exe intmodule.f jacobmod.f swapmod.f erfcoremod.f fimod.f rindmod.f test_rindmod.f +df /fast /fixed /transform_loops /exe test_rindmod.exe intmodule.f jacobmod.f swapmod.f erfcoremod.f fimod.f rindmod.f test_rindmod.f +""" +import os + +def compile_all(): + files = ['intmodule', 'jacobmod', 'swapmod', 'fimod','rindmod','rind71mod'] + compile1_format = 'gfortran -fPIC -c %s.f' + format1 = '%s.o ' * len(files) + for file in files: + os.system(compile1_format % file) + file_objects = format1 % tuple(files) + + os.system('f2py -m rindmod -c %s rind_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' % file_objects) + #compile1_txt = 'gfortran -fPIC -c mvnprd.f' + #compile2_txt = 'f2py -m mvnprdmod -c mvnprd.o mvnprd_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + #os.system(compile1_txt) + #os.system(compile2_txt) + # Install gfortran and run the following to build the module: + #compile_format = 'f2py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' + + # Install microsoft visual c++ .NET 2003 and run the following to build the module: + #compile_format = 'f2py %s %s -c' + #pyfs = ('c_library.pyf',) + #files =('c_functions.c',) + + #for pyf,file in zip(pyfs,files): + # os.system(compile_format % (pyf,file)) + +if __name__=='__main__': + compile_all() diff --git a/wafo/source/rind2007/c1c2mod.mod b/wafo/source/rind2007/c1c2mod.mod new file mode 100755 index 0000000..de6a79f --- /dev/null +++ b/wafo/source/rind2007/c1c2mod.mod @@ -0,0 +1,38 @@ +GFORTRAN module version '0' created from rind71mod.f on Wed Aug 05 06:26:34 2009 +MD5:b430fe7101e61f66883eafc0a9944272 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () +() () () () () () () () () () () () ()) + +() + +(('c1c2' 'c1c2mod' 2)) + +() + +() + +(2 'c1c2' 'c1c2mod' 'c1c2' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) 3 +0 (4 5 6 7 8 9) () 0 () () () 0 0) +10 'c1c2mod' 'c1c2mod' 'c1c2mod' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +8 'sq' '' 'sq' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +9 'ind' '' 'ind' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +6 'cm' '' 'cm' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +4 'c1' '' 'c1' 3 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +5 'c2' '' 'c2' 3 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +7 'b1' '' 'b1' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('c1c2' 0 2 'c1c2mod' 0 10) diff --git a/wafo/source/rind2007/dkbvrcmod.mod b/wafo/source/rind2007/dkbvrcmod.mod new file mode 100755 index 0000000..6a36713 --- /dev/null +++ b/wafo/source/rind2007/dkbvrcmod.mod @@ -0,0 +1,44 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 05:35:49 2009 +MD5:a4e84422cfb5c96ca4a433837610753a -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('dkbvrc' 'dkbvrcmod' 2)) + +() + +() + +(2 'dkbvrc' 'dkbvrcmod' 'dkbvrc' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +3 0 (4 5 6 7 8 9 10 11 12) () 0 () () () 0 0) +4 'ndim' '' 'ndim' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +5 'minvls' '' 'minvls' 3 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'maxvls' '' 'maxvls' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'functn' '' 'functn' 3 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 13 0 (14 15) +() 7 () () () 0 0) +8 'abseps' '' 'abseps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'releps' '' 'releps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +10 'abserr' '' 'abserr' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'finest' '' 'finest' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +12 'inform' '' 'inform' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'n' '' 'n' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'z' '' 'z' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('dkbvrc' 0 2) diff --git a/wafo/source/rind2007/erfcoremod.f b/wafo/source/rind2007/erfcoremod.f new file mode 100755 index 0000000..47ca438 --- /dev/null +++ b/wafo/source/rind2007/erfcoremod.f @@ -0,0 +1,339 @@ + MODULE ERFCOREMOD + IMPLICIT NONE + + INTERFACE CALERF + MODULE PROCEDURE CALERF + END INTERFACE + + INTERFACE DERF + MODULE PROCEDURE DERF + END INTERFACE + + INTERFACE DERFC + MODULE PROCEDURE DERFC + END INTERFACE + + INTERFACE DERFCX + MODULE PROCEDURE DERFCX + END INTERFACE + CONTAINS +!C-------------------------------------------------------------------- +!C +!C DERF subprogram computes approximate values for erf(x). +!C (see comments heading CALERF). +!C +!C Author/date: W. J. Cody, January 8, 1985 +!C +!C-------------------------------------------------------------------- + FUNCTION DERF( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 0 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERF +!C-------------------------------------------------------------------- +!C +!C DERFC subprogram computes approximate values for erfc(x). +!C (see comments heading CALERF). +!C +!C Author/date: W. J. Cody, January 8, 1985 +!C +!C-------------------------------------------------------------------- + FUNCTION DERFC( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 1 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFC +!C------------------------------------------------------------------ +!C +!C DERFCX subprogram computes approximate values for exp(x*x) * erfc(x). +!C (see comments heading CALERF). +!C +!C Author/date: W. J. Cody, March 30, 1987 +!C +!C------------------------------------------------------------------ + FUNCTION DERFCX( X ) RESULT (VALUE) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: X + DOUBLE PRECISION :: VALUE + INTEGER, PARAMETER :: JINT = 2 + CALL CALERF(X,VALUE,JINT) + RETURN + END FUNCTION DERFCX + + SUBROUTINE CALERF(ARG,RESULT,JINT) + IMPLICIT NONE +!C------------------------------------------------------------------ +!C +!C CALERF packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) +!C for a real argument x. It contains three FUNCTION type +!C subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), +!C and one SUBROUTINE type subprogram, CALERF. The calling +!C statements for the primary entries are: +!C +!C Y=ERF(X) (or Y=DERF(X)), +!C +!C Y=ERFC(X) (or Y=DERFC(X)), +!C and +!C Y=ERFCX(X) (or Y=DERFCX(X)). +!C +!C The routine CALERF is intended for internal packet use only, +!C all computations within the packet being concentrated in this +!C routine. The function subprograms invoke CALERF with the +!C statement +!C +!C CALL CALERF(ARG,RESULT,JINT) +!C +!C where the parameter usage is as follows +!C +!C Function Parameters for CALERF +!C call ARG Result JINT +!C +!C ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 +!C ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 +!C ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 +!C +!C The main computation evaluates near-minimax approximations +!C from "Rational Chebyshev approximations for the error function" +!C by W. J. Cody, Math. Comp., 1969, PP. 631-638. This +!C transportable program uses rational functions that theoretically +!C approximate erf(x) and erfc(x) to at least 18 significant +!C decimal digits. The accuracy achieved depends on the arithmetic +!C system, the compiler, the intrinsic functions, and proper +!C selection of the machine-dependent constants. +!C +!C******************************************************************* +!C******************************************************************* +!C +!C Explanation of machine-dependent constants +!C +!C XMIN = the smallest positive floating-point number. +!C XINF = the largest positive finite floating-point number. +!C XNEG = the largest negative argument acceptable to ERFCX; +!C the negative of the solution to the equation +!C 2*exp(x*x) = XINF. +!C XSMALL = argument below which erf(x) may be represented by +!C 2*x/sqrt(pi) and above which x*x will not underflow. +!C A conservative value is the largest machine number X +!C such that 1.0 + X = 1.0 to machine precision. +!C XBIG = largest argument acceptable to ERFC; solution to +!C the equation: W(x) * (1-0.5/x**2) = XMIN, where +!C W(x) = exp(-x*x)/[x*sqrt(pi)]. +!C XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to +!C machine precision. A conservative value is +!C 1/[2*sqrt(XSMALL)] +!C XMAX = largest acceptable argument to ERFCX; the minimum +!C of XINF and 1/[sqrt(pi)*XMIN]. +!C +!C Approximate values for some important machines are: +!C +!C XMIN XINF XNEG XSMALL +!C +!C C 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 +!C CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 +!C IEEE (IBM/XT, +!C SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 +!C IEEE (IBM/XT, +!C SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 +!C IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 +!C UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 +!C VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 +!C VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 +!C +!C +!C XBIG XHUGE XMAX +!C +!C C 7600 (S.P.) 25.922 8.39E+6 1.80X+293 +!C CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 +!C IEEE (IBM/XT, +!C SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 +!C IEEE (IBM/XT, +!C SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 +!C IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 +!C UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 +!C VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 +!C VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 +!C +!C******************************************************************* +!C******************************************************************* +!C +!C Error returns +!C +!C The program returns ERFC = 0 for ARG .GE. XBIG; +!C +!C ERFCX = XINF for ARG .LT. XNEG; +!C and +!C ERFCX = 0 for ARG .GE. XMAX. +!C +!C +!C Intrinsic functions required are: +!C +!C ABS, AINT, EXP +!C +!C +!C Author: W. J. Cody +!C Mathematics and Computer Science Division +!C Argonne National Laboratory +!C Argonne, IL 60439 +!C +!C Latest modification: March 19, 1990 +!C Updated to F90 by pab 23.03.2003 +!C +!C------------------------------------------------------------------ + DOUBLE PRECISION, INTENT(IN) :: ARG + INTEGER, INTENT(IN) :: JINT + DOUBLE PRECISION, INTENT(INOUT):: RESULT +! Local variables + INTEGER :: I + DOUBLE PRECISION :: DEL,X,XDEN,XNUM,Y,YSQ +!C------------------------------------------------------------------ +!C Mathematical constants +!C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: HALF = 0.05D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: TWO = 2.0D0 + DOUBLE PRECISION, PARAMETER :: FOUR = 4.0D0 + DOUBLE PRECISION, PARAMETER :: SIXTEN = 16.0D0 + DOUBLE PRECISION, PARAMETER :: SQRPI = 5.6418958354775628695D-1 + DOUBLE PRECISION, PARAMETER :: THRESH = 0.46875D0 +!C------------------------------------------------------------------ +!C Machine-dependent constants +!C------------------------------------------------------------------ + DOUBLE PRECISION, PARAMETER :: XNEG = -26.628D0 + DOUBLE PRECISION, PARAMETER :: XSMALL = 1.11D-16 + DOUBLE PRECISION, PARAMETER :: XBIG = 26.543D0 + DOUBLE PRECISION, PARAMETER :: XHUGE = 6.71D7 + DOUBLE PRECISION, PARAMETER :: XMAX = 2.53D307 + DOUBLE PRECISION, PARAMETER :: XINF = 1.79D308 +!--------------------------------------------------------------- +! Coefficents to the rational polynomials +!-------------------------------------------------------------- + DOUBLE PRECISION, DIMENSION(5) :: A, Q + DOUBLE PRECISION, DIMENSION(4) :: B + DOUBLE PRECISION, DIMENSION(9) :: C + DOUBLE PRECISION, DIMENSION(8) :: D + DOUBLE PRECISION, DIMENSION(6) :: P +!C------------------------------------------------------------------ +!C Coefficients for approximation to erf in first interval +!C------------------------------------------------------------------ + PARAMETER (A = (/ 3.16112374387056560D00, + & 1.13864154151050156D02,3.77485237685302021D02, + & 3.20937758913846947D03, 1.85777706184603153D-1/)) + PARAMETER ( B = (/2.36012909523441209D01,2.44024637934444173D02, + & 1.28261652607737228D03,2.84423683343917062D03/)) +!C------------------------------------------------------------------ +!C Coefficients for approximation to erfc in second interval +!C------------------------------------------------------------------ + PARAMETER ( C=(/5.64188496988670089D-1,8.88314979438837594D0, + 1 6.61191906371416295D01,2.98635138197400131D02, + 2 8.81952221241769090D02,1.71204761263407058D03, + 3 2.05107837782607147D03,1.23033935479799725D03, + 4 2.15311535474403846D-8/)) + PARAMETER ( D =(/1.57449261107098347D01,1.17693950891312499D02, + 1 5.37181101862009858D02,1.62138957456669019D03, + 2 3.29079923573345963D03,4.36261909014324716D03, + 3 3.43936767414372164D03,1.23033935480374942D03/)) +!C------------------------------------------------------------------ +!C Coefficients for approximation to erfc in third interval +!C------------------------------------------------------------------ + PARAMETER ( P =(/3.05326634961232344D-1,3.60344899949804439D-1, + 1 1.25781726111229246D-1,1.60837851487422766D-2, + 2 6.58749161529837803D-4,1.63153871373020978D-2/)) + PARAMETER (Q =(/2.56852019228982242D00,1.87295284992346047D00, + 1 5.27905102951428412D-1,6.05183413124413191D-2, + 2 2.33520497626869185D-3/)) +!C------------------------------------------------------------------ + X = ARG + Y = ABS(X) + IF (Y .LE. THRESH) THEN +!C------------------------------------------------------------------ +!C Evaluate erf for |X| <= 0.46875 +!C------------------------------------------------------------------ + YSQ = ZERO + IF (Y .GT. XSMALL) THEN + YSQ = Y * Y + XNUM = A(5)*YSQ + XDEN = YSQ + DO I = 1, 3 + XNUM = (XNUM + A(I)) * YSQ + XDEN = (XDEN + B(I)) * YSQ + END DO + RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) + ELSE + RESULT = X * A(4) / B(4) + ENDIF + IF (JINT .NE. 0) RESULT = ONE - RESULT + IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT + GO TO 800 +!C------------------------------------------------------------------ +!C Evaluate erfc for 0.46875 <= |X| <= 4.0 +!C------------------------------------------------------------------ + ELSE IF (Y .LE. FOUR) THEN + XNUM = C(9)*Y + XDEN = Y + DO I = 1, 7 + XNUM = (XNUM + C(I)) * Y + XDEN = (XDEN + D(I)) * Y + END DO + RESULT = (XNUM + C(8)) / (XDEN + D(8)) + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF +!C------------------------------------------------------------------ +!C Evaluate erfc for |X| > 4.0 +!C------------------------------------------------------------------ + ELSE + RESULT = ZERO + IF (Y .GE. XBIG) THEN + IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300 + IF (Y .GE. XHUGE) THEN + RESULT = SQRPI / Y + GO TO 300 + END IF + END IF + YSQ = ONE / (Y * Y) + XNUM = P(6)*YSQ + XDEN = YSQ + DO I = 1, 4 + XNUM = (XNUM + P(I)) * YSQ + XDEN = (XDEN + Q(I)) * YSQ + ENDDO + RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) + RESULT = (SQRPI - RESULT) / Y + IF (JINT .NE. 2) THEN + YSQ = AINT(Y*SIXTEN)/SIXTEN + DEL = (Y-YSQ)*(Y+YSQ) + RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT + END IF + END IF +!C------------------------------------------------------------------ +!C Fix up for negative argument, erf, etc. +!C------------------------------------------------------------------ + 300 IF (JINT .EQ. 0) THEN + RESULT = (HALF - RESULT) + HALF + IF (X .LT. ZERO) RESULT = -RESULT + ELSE IF (JINT .EQ. 1) THEN + IF (X .LT. ZERO) RESULT = TWO - RESULT + ELSE + IF (X .LT. ZERO) THEN + IF (X .LT. XNEG) THEN + RESULT = XINF + ELSE + YSQ = AINT(X*SIXTEN)/SIXTEN + DEL = (X-YSQ)*(X+YSQ) + Y = EXP(YSQ*YSQ) * EXP(DEL) + RESULT = (Y+Y) - RESULT + END IF + END IF + END IF + 800 RETURN + END SUBROUTINE CALERF + END MODULE ERFCOREMOD \ No newline at end of file diff --git a/wafo/source/rind2007/fimod.f b/wafo/source/rind2007/fimod.f new file mode 100755 index 0000000..ab7bd7d --- /dev/null +++ b/wafo/source/rind2007/fimod.f @@ -0,0 +1,1595 @@ + MODULE TRIVARIATEVAR +! Global variables used in calculation of TRIVARIATE +! normal and TRIVARIATE student T probabilties + INTEGER :: NU + DOUBLE PRECISION :: H1, H2, H3, R23, RUA, RUB, AR, RUC + END MODULE TRIVARIATEVAR +! +! FIMOD contains functions for calculating 1D, 2D and 3D Normal and student T probabilites +! and 1D expectations + MODULE FIMOD +! USE ERFCOREMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: NORMPRB, FI, FIINV, MVNLIMITS, MVNLMS, BVU,BVNMVN + PUBLIC :: GAUSINT, GAUSINT2, EXLMS, EXINV + PUBLIC :: STUDNT, BVTL, TVTL, TVNMVN + + INTERFACE NORMPRB + MODULE PROCEDURE NORMPRB + END INTERFACE + + INTERFACE FI + MODULE PROCEDURE FI + END INTERFACE + + INTERFACE FI2 + MODULE PROCEDURE FI2 + END INTERFACE + + INTERFACE FIINV + MODULE PROCEDURE FIINV + END INTERFACE + + INTERFACE MVNLIMITS + MODULE PROCEDURE MVNLIMITS + END INTERFACE + + INTERFACE MVNLMS + MODULE PROCEDURE MVNLMS + END INTERFACE + + INTERFACE BVU + MODULE PROCEDURE BVU + END INTERFACE + + INTERFACE BVNMVN + MODULE PROCEDURE BVNMVN + END INTERFACE + + INTERFACE STUDNT + MODULE PROCEDURE STUDNT + END INTERFACE + + INTERFACE BVTL + MODULE PROCEDURE BVTL + END INTERFACE + + INTERFACE TVTL + MODULE PROCEDURE TVTL + END INTERFACE + + INTERFACE GAUSINT + MODULE PROCEDURE GAUSINT + END INTERFACE + + INTERFACE GAUSINT2 + MODULE PROCEDURE GAUSINT2 + END INTERFACE + + INTERFACE EXLMS + MODULE PROCEDURE EXLMS + END INTERFACE + + INTERFACE EXINV + MODULE PROCEDURE EXINV + END INTERFACE + + CONTAINS + FUNCTION FIINV(P) RESULT (VAL) + IMPLICIT NONE +* +* ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3 +* +* Produces the normal deviate Z corresponding to a given lower +* tail area of P. +* Absolute error less than 1e-13 +* Relative error less than 1e-15 for abs(VAL)>0.1 +* +* The hash sums below are the sums of the mantissas of the +* coefficients. They are included for use in checking +* transcription. +* + DOUBLE PRECISION, INTENT(in) :: P + DOUBLE PRECISION :: VAL +!local variables + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, ONE, ZERO, HALF, + & A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + & C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + & E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + & Q, R + PARAMETER ( SPLIT1 = 0.425D0, SPLIT2 = 5.D0, + & CONST1 = 0.180625D0, CONST2 = 1.6D0, + & ONE = 1.D0, ZERO = 0.D0, HALF = 0.5D0 ) +* +* Coefficients for P close to 0.5 +* + PARAMETER ( + * A0 = 3.38713 28727 96366 6080D0, + * A1 = 1.33141 66789 17843 7745D+2, + * A2 = 1.97159 09503 06551 4427D+3, + * A3 = 1.37316 93765 50946 1125D+4, + * A4 = 4.59219 53931 54987 1457D+4, + * A5 = 6.72657 70927 00870 0853D+4, + * A6 = 3.34305 75583 58812 8105D+4, + * A7 = 2.50908 09287 30122 6727D+3, + * B1 = 4.23133 30701 60091 1252D+1, + * B2 = 6.87187 00749 20579 0830D+2, + * B3 = 5.39419 60214 24751 1077D+3, + * B4 = 2.12137 94301 58659 5867D+4, + * B5 = 3.93078 95800 09271 0610D+4, + * B6 = 2.87290 85735 72194 2674D+4, + * B7 = 5.22649 52788 52854 5610D+3 ) +* HASH SUM AB 55.88319 28806 14901 4439 +* +* Coefficients for P not close to 0, 0.5 or 1. +* + PARAMETER ( + * C0 = 1.42343 71107 49683 57734D0, + * C1 = 4.63033 78461 56545 29590D0, + * C2 = 5.76949 72214 60691 40550D0, + * C3 = 3.64784 83247 63204 60504D0, + * C4 = 1.27045 82524 52368 38258D0, + * C5 = 2.41780 72517 74506 11770D-1, + * C6 = 2.27238 44989 26918 45833D-2, + * C7 = 7.74545 01427 83414 07640D-4, + * D1 = 2.05319 16266 37758 82187D0, + * D2 = 1.67638 48301 83803 84940D0, + * D3 = 6.89767 33498 51000 04550D-1, + * D4 = 1.48103 97642 74800 74590D-1, + * D5 = 1.51986 66563 61645 71966D-2, + * D6 = 5.47593 80849 95344 94600D-4, + * D7 = 1.05075 00716 44416 84324D-9 ) +* HASH SUM CD 49.33206 50330 16102 89036 +* +* Coefficients for P near 0 or 1. +* + PARAMETER ( + * E0 = 6.65790 46435 01103 77720D0, + * E1 = 5.46378 49111 64114 36990D0, + * E2 = 1.78482 65399 17291 33580D0, + * E3 = 2.96560 57182 85048 91230D-1, + * E4 = 2.65321 89526 57612 30930D-2, + * E5 = 1.24266 09473 88078 43860D-3, + * E6 = 2.71155 55687 43487 57815D-5, + * E7 = 2.01033 43992 92288 13265D-7, + * F1 = 5.99832 20655 58879 37690D-1, + * F2 = 1.36929 88092 27358 05310D-1, + * F3 = 1.48753 61290 85061 48525D-2, + * F4 = 7.86869 13114 56132 59100D-4, + * F5 = 1.84631 83175 10054 68180D-5, + * F6 = 1.42151 17583 16445 88870D-7, + * F7 = 2.04426 31033 89939 78564D-15 ) +* HASH SUM EF 47.52583 31754 92896 71629 +* + Q = ( P - HALF) + IF ( ABS(Q) .LE. SPLIT1 ) THEN ! Central range. + R = CONST1 - Q*Q + VAL = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3) + * *R + A2 )*R + A1 )*R + A0 ) + * /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3) + * *R + B2 )*R + B1 )*R + ONE) + ELSE ! near the endpoints + R = MIN( P, ONE - P ) + IF (R .GT.ZERO) THEN ! ( 2.d0*R .GT. CFxCutOff) THEN ! R .GT.0.d0 + R = SQRT( -LOG(R) ) + IF ( R .LE. SPLIT2 ) THEN + R = R - CONST2 + VAL = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) + * *R + C2 )*R + C1 )*R + C0 ) + * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) + * *R + D2 )*R + D1 )*R + ONE ) + ELSE + R = R - SPLIT2 + VAL = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3) + * *R + E2 )*R + E1 )*R + E0 ) + * /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3) + * *R + F2 )*R + F1 )*R + ONE ) + END IF + ELSE + VAL = 37.0d0 !9.D0 !XMAX 9.d0 + END IF + IF ( Q < ZERO ) VAL = - VAL + END IF + RETURN + END FUNCTION FIINV + ! ********************************* + SUBROUTINE NORMPRB(Z, P, Q) +! USE ERFCOREMOD +! USE GLOBALDATA, ONLY : XMAX +! Normal distribution probabilities accurate to 18 digits between +! -XMAX and XMAX +! +! Z = no. of standard deviations from the mean. +! P, Q = probabilities to the left & right of Z. P + Q = 1. +! +! by pab 23.03.2003 +! + IMPLICIT NONE + DOUBLE PRECISION, INTENT(IN) :: Z + DOUBLE PRECISION, INTENT(OUT) :: P + DOUBLE PRECISION, INTENT(OUT), OPTIONAL :: Q +!Local variables + DOUBLE PRECISION :: PP, ZABS + DOUBLE PRECISION, PARAMETER :: ZERO = 0.0D0 + DOUBLE PRECISION, PARAMETER :: ONE = 1.0D0 + DOUBLE PRECISION, PARAMETER :: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER :: HALF = 0.5D0 + DOUBLE PRECISION, PARAMETER :: XMAX = 37D0 + ZABS = ABS(Z) +! +! |Z| > 37 (or XMAX) +! + IF ( ZABS .GT. XMAX ) THEN + IF (Z > ZERO) THEN + P = ONE + IF (PRESENT(Q)) Q = ZERO + ELSE + P = ZERO + IF (PRESENT(Q)) Q = ONE + END IF + ELSE +! +! |Z| <= 37 +! + PP = DERFC(ZABS*SQ2M1)*HALF + + IF (Z < ZERO) THEN + P = PP + IF (PRESENT(Q)) Q = ONE - PP + ELSE + P = ONE - PP + IF (PRESENT(Q)) Q = PP + END IF + END IF + + RETURN + END SUBROUTINE NORMPRB + FUNCTION FI( Z ) RESULT (VALUE) +! USE ERFCOREMOD +! USE GLOBALDATA, ONLY : XMAX + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +! Local variables + DOUBLE PRECISION :: ZABS + DOUBLE PRECISION, PARAMETER:: SQ2M1 = 0.70710678118655D0 ! 1/SQRT(2) + DOUBLE PRECISION, PARAMETER:: HALF = 0.5D0 + DOUBLE PRECISION, PARAMETER:: XMAX = 37.D0 + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( ZABS .GT. XMAX ) THEN + IF (Z < 0.0D0) THEN + VALUE = 0.0D0 + ELSE + VALUE = 1.0D0 + ENDIF + ELSE + VALUE = DERFC(-Z*SQ2M1)*HALF + ENDIF + RETURN + END FUNCTION FI + + FUNCTION FI2( Z ) RESULT (VALUE) +! USE GLOBALDATA, ONLY : XMAX + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE +* +* Normal distribution probabilities accurate to 1.e-15. +* relative error less than 1e-8; +* Z = no. of standard deviations from the mean. +* +* Based upon algorithm 5666 for the error function, from: +* Hart, J.F. et al, 'Computer Approximations', Wiley 1968 +* +* Programmer: Alan Miller +* +* Latest revision - 30 March 1986 +* + DOUBLE PRECISION :: P0, P1, P2, P3, P4, P5, P6, + * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,XMAX, + * P, EXPNTL, CUTOFF, ROOTPI, ZABS, Z2 + PARAMETER( + * P0 = 220.20 68679 12376 1D0, + * P1 = 221.21 35961 69931 1D0, + * P2 = 112.07 92914 97870 9D0, + * P3 = 33.912 86607 83830 0D0, + * P4 = 6.3739 62203 53165 0D0, + * P5 = 0.70038 30644 43688 1D0, + * P6 = 0.035262 49659 98910 9D0 ) + PARAMETER( + * Q0 = 440.41 37358 24752 2D0, + * Q1 = 793.82 65125 19948 4D0, + * Q2 = 637.33 36333 78831 1D0, + * Q3 = 296.56 42487 79673 7D0, + * Q4 = 86.780 73220 29460 8D0, + * Q5 = 16.064 17757 92069 5D0, + * Q6 = 1.7556 67163 18264 2D0, + * Q7 = 0.088388 34764 83184 4D0 ) + PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) + PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) + PARAMETER( XMAX = 37.D0 ) +* + ZABS = ABS(Z) +* +* |Z| > 37 (or XMAX) +* + IF ( ZABS .GT. XMAX ) THEN + P = 0.d0 + ELSE +* +* |Z| <= 37 +* + Z2 = ZABS * ZABS + EXPNTL = EXP( -Z2 * 0.5D0 ) +* +* |Z| < CUTOFF = 10/SQRT(2) +* + IF ( ZABS < CUTOFF ) THEN + P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS + * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS + * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS + * + Q0 ) +* +* |Z| >= CUTOFF. +* + ELSE + P = EXPNTL/( ZABS + 1.d0/( ZABS + 2.d0/( ZABS + 3.d0/( ZABS + * + 4.d0/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI + END IF + END IF + IF ( Z .GT. 0.d0 ) P = 1.d0 - P + VALUE = P + RETURN + END FUNCTION FI2 + + SUBROUTINE MVNLIMITS( A, B, INFIN, AP, PRB, AQ) +! RETURN probabilities for being between A and B +! WHERE +! AP = FI(A), AQ = 1 - FI(A) +! BP = FI(B), BQ = 1 - FI(B) +! PRB = BP-AP IF BP+AP<1 +! = AQ-BQ OTHERWISE +! + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: A, B + DOUBLE PRECISION, INTENT(out) :: AP + DOUBLE PRECISION, INTENT(out),OPTIONAL :: PRB,AQ + INTEGER,INTENT(in) :: INFIN +! LOCAL VARIABLES + DOUBLE PRECISION :: BP,AQQ, BQQ + DOUBLE PRECISION, PARAMETER :: ONE=1.D0, ZERO = 0.D0 + + SELECT CASE (infin) + CASE (:-1) + AP = ZERO +! BP = ONE + IF (PRESENT(PRB)) PRB = ONE + IF (PRESENT(AQ)) AQ = ONE +! IF (PRESENT(BQ)) BQ = ZERO + CASE (0) + AP = ZERO + CALL NORMPRB(B,BP) !,BQQ) + IF (PRESENT(PRB)) PRB = BP + IF (PRESENT(AQ)) AQ = ONE +! IF (PRESENT(BQ)) BQ = BQQ + CASE (1) +! BP = ONE + CALL NORMPRB(A,AP,AQQ) + IF (PRESENT(PRB)) PRB = AQQ + IF (PRESENT(AQ)) AQ = AQQ +! IF (PRESENT(BQ)) BQ = ZERO + CASE (2:) + CALL NORMPRB(A,AP,AQQ) + CALL NORMPRB(B,BP,BQQ) + IF (PRESENT(PRB)) THEN + IF (AP+BP < ONE) THEN + PRB = BP - AP + ELSE + PRB = AQQ - BQQ + END IF + ENDIF + IF (PRESENT(AQ)) AQ = AQQ +! IF (PRESENT(BQ)) BQ = BQQ + END SELECT + RETURN + END SUBROUTINE MVNLIMITS + + + SUBROUTINE MVNLMS( A, B, INFIN, LOWER, UPPER ) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(in) :: A, B + DOUBLE PRECISION, INTENT(out) :: LOWER, UPPER + INTEGER,INTENT(in) :: INFIN + + LOWER = 0.0D0 + UPPER = 1.0D0 + IF ( INFIN < 0 ) RETURN + IF ( INFIN .NE. 0 ) LOWER = FI(A) + IF ( INFIN .NE. 1 ) UPPER = FI(B) + RETURN + END SUBROUTINE MVNLMS + + FUNCTION TVNMVN(A, B, INFIN, R, EPSI ) RESULT (VAL) + IMPLICIT NONE +* +* A function for computing trivariate normal probabilities. +* +* Parameters +* +* A REAL, array of lower integration limits. +* B REAL, array of upper integration limits. +! R REAL, array of correlation coefficents +! R = [r12 r13 r23] +! EPSI = REAL tolerance +* INFIN INTEGER, array of integration limits flags: +* if INFIN(I) = 0, Ith limits are (-infinity, B(I)]; +* if INFIN(I) = 1, Ith limits are [A(I), infinity); +* if INFIN(I) = 2, Ith limits are [A(I), B(I)]. + DOUBLE PRECISION, DIMENSION(:), INTENT (IN) :: A, B , R + DOUBLE PRECISION, INTENT (IN) :: EPSI + INTEGER, DIMENSION(:), INTENT (IN) :: INFIN + DOUBLE PRECISION :: VAL + + IF ( INFIN(1) .EQ. 2 ) THEN + IF ( INFIN(2) .EQ. 2 ) THEN + IF (INFIN(3) .EQ. 2 ) THEN !OK + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( A(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( B(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( B(1), B(2), A(3),R(1),R(2),R(3),EPSI ) + & + TVNL( A(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + & + TVNL( A(1), B(2), A(3),R(1),R(2),R(3),EPSI ) + $ + TVNL( B(1), A(2), A(3),R(1),R(2),R(3),EPSI ) + & - TVNL( A(1), A(2), A(3),R(1),R(2),R(3),EPSI ) + ELSE IF (INFIN(3) .EQ. 1 ) THEN ! B(3) = inf ok + VAL = TVNL( B(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI ) + & - TVNL( A(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI ) + & - TVNL( B(1), A(2), -A(3),R(1),-R(2),-R(3),EPSI ) + & + TVNL( A(1), A(2), -A(3),R(1),-R(2),-R(3),EPSI ) + ELSE IF (INFIN(3) .EQ. 0 ) THEN !OK A(3) = -inf + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( A(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( B(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + & + TVNL( A(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + ELSE ! INFIN(1:2)=2 + VAL = BVNMVN( A ,B, INFIN, R(1) ) + ENDIF + ELSE IF (INFIN(2) .EQ. 1 ) THEN ! B(2) = inf + IF (INFIN(3) .EQ. 2 ) THEN + VAL = TVNL( B(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI ) + & - TVNL( A(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI ) + & - TVNL( B(1), -A(2), A(3),-R(1),R(2),-R(3),EPSI ) + & + TVNL( A(1), -A(2), A(3),-R(1),R(2),-R(3),EPSI ) + ELSE IF (INFIN(3) .EQ. 1 ) THEN + VAL = TVNL( B(1), -A(2), -A(3),-R(1),-R(2),R(3),EPSI ) + $ - TVNL( A(1), -A(2), -A(3),-R(1),-R(2),R(3),EPSI ) + ELSE IF (INFIN(3) .EQ. 0 ) THEN + VAL = TVNL( B(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI) + $ - TVNL( A(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI) + ELSE + VAL = BVNMVN( A ,B, INFIN, R(1) ) + ENDIF + ELSE IF (INFIN(2) .EQ. 0 ) THEN + SELECT CASE (INFIN(3)) + CASE (2:) ! % % A(2)=-INF + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + $ - TVNL( A(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + $ - TVNL( B(1), B(2), A(3),R(1),R(2),R(3),EPSI ) + $ + TVNL( A(1), B(2), A(3),R(1),R(2),R(3),EPSI ) + CASE (1) !% % A(2)=-INF B(3) = INF + VAL = TVNL( B(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI) + $ - TVNL(A(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI) + CASE (0) ! % % A(2)=-INF A(3) = -INF + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + $ - TVNL( A(1), B(2), B(3),R(1),R(2),R(3),EPSI) + CASE DEFAULT + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + ELSE + VAL = BVNMVN(A(1:3:2),B(1:3:2),INFIN(1:3:2),R(2)) + ENDIF + ELSE IF ( INFIN(1) .EQ. 1 ) THEN + SELECT CASE (INFIN(2)) + CASE (2) + SELECT CASE (INFIN(3)) + CASE (2) !% B(1) = INF %OK + VAL = TVNL(-A(1), B(2), B(3),-R(1),-R(2),R(3),EPSI ) + $ - TVNL(-A(1), B(2), A(3),-R(1),-R(2),R(3),EPSI ) + $ - TVNL(-A(1), A(2), B(3),-R(1),-R(2),R(3),EPSI ) + $ + TVNL(-A(1), A(2), A(3),-R(1),-R(2),R(3),EPSI ) + CASE (1) ! % B(1) = INF B(3) = INF %OK + VAL = TVNL(-A(1), B(2), -A(3),-R(1),R(2),-R(3),EPSI ) + $ - TVNL(-A(1), A(2), -A(3),-R(1),R(2),-R(3),EPSI) + CASE (0) ! % B(1) = INF A(3) = -INF %OK + VAL = TVNL(-A(1), B(2), B(3),-R(1),-R(2),R(3),EPSI ) + $ - TVNL(-A(1), A(2), B(3),-R(1),-R(2),R(3),EPSI) + CASE (-1) + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE (1) !%B(2) = INF + SELECT CASE (INFIN(3)) + CASE (2) ! % B(1) = INF B(2) = INF % OK + VAL = TVNL( -A(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI ) + & - TVNL( -A(1), -A(2),A(3),-R(1),R(2),-R(3),EPSI ) + CASE (1) ! % B(1:3) = INF %OK + VAL = TVNL( -A(1), -A(2), -A(3),R(1),R(2),R(3),EPSI) + CASE (0) ! % B(1:2) = INF A(3) = -INF %OK + VAL = TVNL( -A(1), -A(2), B(3),R(1),-R(2),-R(3),EPSI ) + CASE (:-1) + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE (0) ! A(2) = -INF + SELECT CASE ( INFIN(3)) + CASE (2) ! B(1) = INF , A(2) = -INF %OK + VAL = TVNL( -A(1), B(2), B(3),-R(1),R(2),-R(3),EPSI ) + & - TVNL( -A(1), B(2),A(3),-R(1),R(2),-R(3),EPSI ) + CASE (1) ! B(1) = INF , A(2) = -INF B(3) = INF % OK + VAL = TVNL( -A(1), B(2), -A(3),-R(1),-R(2),R(3),EPSI) + CASE (0) !% B(1) = INF , A(2:3) = -INF + VAL = TVNL( -A(1), B(2), B(3),-R(1),-R(2),R(3),EPSI ) + CASE (:-1) + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE DEFAULT + VAL = BVNMVN(A(1:3:2),B(1:3:2),INFIN(1:3:2),R(2)) + END SELECT + ELSE IF ( INFIN(1) .EQ. 0 ) THEN + SELECT CASE (INFIN(2)) + CASE (2) + SELECT CASE (INFIN(3)) + CASE (2:) ! A(1) = -INF %OK + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( B(1), B(2), A(3),R(1),R(2),R(3),EPSI) + & - TVNL( B(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + & + TVNL( B(1), A(2), A(3),R(1),R(2),R(3),EPSI ) + CASE (1) ! % A(1) = -INF , B(3) = INF %OK + VAL = TVNL( B(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI ) + $ - TVNL( B(1), A(2), -A(3),R(1),-R(2),-R(3),EPSI ) + CASE (0) ! A(1) = -INF , A(3) = -INF %OK + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + & - TVNL( B(1), A(2), B(3),R(1),R(2),R(3),EPSI ) + CASE DEFAULT + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE (1) ! B(2) = INF + SELECT CASE (INFIN(3)) + CASE (2:) ! A(1) = -INF B(2) = INF %OK + VAL = TVNL( B(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI) + $ - TVNL( B(1), -A(2), A(3),-R(1),R(2),-R(3),EPSI) + CASE (1) ! A(1) = -INF B(2) = INF B(3) = INF %OK + VAL = TVNL( B(1), -A(2), -A(3),-R(1),-R(2),R(3),EPSI) + CASE (0) ! % A(1) = -INF B(2) = INF A(3) = -INF %OK + VAL = TVNL(B(1), -A(2), B(3),-R(1),R(2),-R(3),EPSI) + CASE DEFAULT + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE (0) ! A(2) = -INF + SELECT CASE (INFIN(3)) + CASE (2:) ! % A(1:2) = -INF + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI) + $ - TVNL( B(1), B(2), A(3),R(1),R(2),R(3),EPSI) + CASE (1) ! A(1:2) = -INF B(3) = INF + VAL = TVNL( B(1), B(2), -A(3),R(1),-R(2),-R(3),EPSI) + CASE (0) ! % A(1:3) = -INF + VAL = TVNL( B(1), B(2), B(3),R(1),R(2),R(3),EPSI ) + CASE DEFAULT + VAL = BVNMVN(A,B,INFIN,R(1)) + END SELECT + CASE DEFAULT + VAL = BVNMVN(A(1:3:2),B(1:3:2),INFIN(1:3:2),R(2)) + END SELECT + ELSE + VAL = BVNMVN(A(2:3),B(2:3),INFIN(2:3),R(3)) + END IF + CONTAINS + DOUBLE PRECISION FUNCTION TVNL(H1,H2,H3, R12,R13,R23, EPSI ) + !Returns Trivariate Normal CDF + DOUBLE PRECISION, INTENT(IN) :: R12,R13,R23 + DOUBLE PRECISION, INTENT(IN) :: H1,H2,H3, EPSI +! Locals + INTEGER, PARAMETER :: NU = 0 + DOUBLE PRECISION,DIMENSION(3) :: H,R + H(:) = (/ H1, H2, H3 /) + R(:) = (/ R12, R13, R23 /) + TVNL = TVTL(NU,H,R,EPSI) + END FUNCTION TVNL + END FUNCTION TVNMVN + FUNCTION BVNMVN( LOWER, UPPER, INFIN, CORREL ) RESULT (VAL) + IMPLICIT NONE +* +* A function for computing bivariate normal probabilities. +* +* Parameters +* +* LOWER REAL, array of lower integration limits. +* UPPER REAL, array of upper integration limits. +* INFIN INTEGER, array of integration limits flags: +* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)]; +* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity); +* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)]. +* CORREL REAL, correlation coefficient. +* + + DOUBLE PRECISION, DIMENSION(:), INTENT (IN) :: LOWER, UPPER + DOUBLE PRECISION, INTENT (IN) :: CORREL + INTEGER, DIMENSION(:), INTENT (IN) :: INFIN + DOUBLE PRECISION :: VAL + DOUBLE PRECISION :: E + SELECT CASE (INFIN(1)) + CASE (2:) + SELECT CASE ( INFIN(2) ) + CASE (2:) + VAL = BVU ( LOWER(1), LOWER(2), CORREL ) + & - BVU ( UPPER(1), LOWER(2), CORREL ) + & - BVU ( LOWER(1), UPPER(2), CORREL ) + & + BVU ( UPPER(1), UPPER(2), CORREL ) + + CASE (1) + VAL = BVU ( LOWER(1), LOWER(2), CORREL ) + & - BVU ( UPPER(1), LOWER(2), CORREL ) + CASE (0) + VAL = BVU ( -UPPER(1), -UPPER(2), CORREL ) + & - BVU ( -LOWER(1), -UPPER(2), CORREL ) + CASE DEFAULT + CALL MVNLIMITS(LOWER(1),UPPER(1),INFIN(1),E,VAL) + END SELECT + CASE (1) + SELECT CASE ( INFIN(2)) + CASE ( 2: ) + VAL = BVU ( LOWER(1), LOWER(2), CORREL ) + & - BVU ( LOWER(1), UPPER(2), CORREL ) + CASE (1) + VAL = BVU ( LOWER(1), LOWER(2), CORREL ) + CASE (0) + VAL = BVU ( LOWER(1), -UPPER(2), -CORREL ) + CASE DEFAULT + CALL MVNLIMITS(LOWER(2),UPPER(2),INFIN(2),E,VAL) + END SELECT + CASE (0) + SELECT CASE ( INFIN(2)) + CASE ( 2: ) + VAL = BVU ( -UPPER(1), -UPPER(2), CORREL ) + & - BVU ( -UPPER(1), -LOWER(2), CORREL ) + CASE ( 1 ) + VAL = BVU ( -UPPER(1), LOWER(2), -CORREL ) + CASE (0) + VAL = BVU ( -UPPER(1), -UPPER(2), CORREL ) + CASE DEFAULT + CALL MVNLIMITS(LOWER(1),UPPER(1),INFIN(1),E,VAL) + END SELECT + CASE DEFAULT !ELSE !INFIN(1)<0 + CALL MVNLIMITS(LOWER(2),UPPER(2),INFIN(2),E,VAL) + END SELECT + END FUNCTION BVNMVN + FUNCTION BVU( SH, SK, R ) RESULT (VAL) +! USE GLOBALDATA, ONLY: XMAX + IMPLICIT NONE +* +! A function for computing bivariate normal probabilities. +! +! Yihong Ge +! Department of Computer Science and Electrical Engineering +! Washington State University +! Pullman, WA 99164-2752 +! and +! Alan Genz +! Department of Mathematics +! Washington State University +! Pullman, WA 99164-3113 +! Email : alangenz@wsu.edu +! +! This function is based on the method described by +! Drezner, Z and G.O. Wesolowsky, (1989), +! On the computation of the bivariate normal integral, +! Journal of Statist. Comput. Simul. 35, pp. 101-107, +! with major modifications for double precision, and for |R| close to 1. +! +! BVU - calculate the probability that X > SH and Y > SK. +! (to accuracy of 1e-16?) +! +! Parameters +! +! SH REAL, lower integration limit +! SK REAL, lower integration limit +! R REAL, correlation coefficient +! +! LG INTEGER, number of Gauss Rule Points and Weights +! +! Revised pab added check on XMAX + DOUBLE PRECISION, INTENT(IN) :: SH, SK, R + DOUBLE PRECISION :: VAL +! Local variables + DOUBLE PRECISION :: ZERO,ONE,FOUR + DOUBLE PRECISION :: SQTWOPI ,TWOPI1,FOURPI1 + DOUBLE PRECISION :: HALF,ONETHIRD,ONEEIGHT,ONESIXTEEN + DOUBLE PRECISION :: TWELVE, EXPMIN, XMAX + INTEGER :: I, LG, NG + PARAMETER ( ZERO = 0.D0,ONE=1.0D0,HALF=0.5D0) + PARAMETER (FOUR = 4.0D0, TWELVE = 12.0D0) + PARAMETER (EXPMIN = -100.0D0) + PARAMETER (ONESIXTEEN = 0.0625D0) !1/16 + PARAMETER (ONEEIGHT = 0.125D0 ) !1/8 + PARAMETER (ONETHIRD = 0.3333333333333333333333D0) +! PARAMETER (TWOPI = 6.283185307179586D0 ) + PARAMETER (TWOPI1 = 0.15915494309190D0 ) !1/(2*pi) + PARAMETER (FOURPI1 = 0.0795774715459476D0 ) !/1/(4*pi) + PARAMETER (SQTWOPI = 2.50662827463100D0) ! SQRT(2*pi) + PARAMETER (XMAX = 8.3D0) + DOUBLE PRECISION, DIMENSION(10,3) :: X, W + DOUBLE PRECISION :: AS, A, B, C, D, RS, XS + DOUBLE PRECISION :: SN, ASR, H, K, BS, HS, HK +! Gauss Legendre Points and Weights, N = 6 + DATA ( W(I,1), X(I,1), I = 1,3) / + * 0.1713244923791705D+00,-0.9324695142031522D+00, + * 0.3607615730481384D+00,-0.6612093864662647D+00, + * 0.4679139345726904D+00,-0.2386191860831970D+00/ +! Gauss Legendre Points and Weights, N = 12 + DATA ( W(I,2), X(I,2), I = 1,6) / + * 0.4717533638651177D-01,-0.9815606342467191D+00, + * 0.1069393259953183D+00,-0.9041172563704750D+00, + * 0.1600783285433464D+00,-0.7699026741943050D+00, + * 0.2031674267230659D+00,-0.5873179542866171D+00, + * 0.2334925365383547D+00,-0.3678314989981802D+00, + * 0.2491470458134029D+00,-0.1252334085114692D+00/ +! Gauss Legendre Points and Weights, N = 20 + DATA ( W(I,3), X(I,3), I = 1,10) / + * 0.1761400713915212D-01,-0.9931285991850949D+00, + * 0.4060142980038694D-01,-0.9639719272779138D+00, + * 0.6267204833410906D-01,-0.9122344282513259D+00, + * 0.8327674157670475D-01,-0.8391169718222188D+00, + * 0.1019301198172404D+00,-0.7463319064601508D+00, + * 0.1181945319615184D+00,-0.6360536807265150D+00, + * 0.1316886384491766D+00,-0.5108670019508271D+00, + * 0.1420961093183821D+00,-0.3737060887154196D+00, + * 0.1491729864726037D+00,-0.2277858511416451D+00, + * 0.1527533871307259D+00,-0.7652652113349733D-01/ + SAVE W, X + VAL = ZERO + HK = MIN(SH,SK) + IF ( HK < -XMAX) THEN ! pab 24.05.2003 + VAL = FI(-MAX(SH,SK)) + RETURN + ELSE IF ( XMAX < MAX(SH,SK)) THEN + RETURN + ENDIF + IF ( ABS(R) < 0.3D0 ) THEN + NG = 1 + LG = 3 + ELSE IF ( ABS(R) < 0.75D0 ) THEN + NG = 2 + LG = 6 + ELSE + NG = 3 + LG = 10 + ENDIF + H = SH + K = SK + HK = H*K + + IF ( ABS(R) < 0.925D0 ) THEN + IF (ABS(R) .GT. ZERO ) THEN + HS = ( H*H + K*K )*HALF + ASR = ASIN(R) + DO I = 1, LG + SN = SIN(ASR*(ONE + X(I,NG))*HALF) + VAL = VAL + W(I,NG)*EXP( ( SN*HK - HS )/( ONE - SN*SN ) ) + SN = SIN(ASR*(ONE - X(I,NG))*HALF) + VAL = VAL + W(I,NG)*EXP( ( SN*HK - HS )/( ONE - SN*SN ) ) + END DO + VAL = VAL*ASR*FOURPI1 + ENDIF + VAL = VAL + FI(-H)*FI(-K) + ELSE + IF ( R < ZERO ) THEN + K = -K + HK = -HK + ENDIF + IF ( ABS(R) < ONE ) THEN + AS = ( ONE - R )*( ONE + R ) + A = SQRT(AS) + B = ABS( H - K ) !**2 + BS = B * B + C = ( FOUR - HK ) * ONEEIGHT !/8D0 + D = ( TWELVE - HK ) * ONESIXTEEN !/16D0 + ASR = -(BS/AS + HK)*HALF + IF (ASR.GT.EXPMIN) THEN + VAL = A*EXP( ASR ) * + & ( ONE - C*(BS - AS)*(ONE - D*BS*0.2D0)*ONETHIRD + + & C*D*AS*AS*0.2D0 ) + ENDIF + IF ( HK .GT. EXPMIN ) THEN + VAL = VAL - EXP(-HK*HALF)*SQTWOPI*FI(-B/A)*B + + *( ONE - C*BS*( ONE - D*BS*0.2D0 )*ONETHIRD ) + ENDIF + A = A * HALF + DO I = 1, LG + XS = ( A * (ONE + X(I,NG)) ) !**2 + XS = XS * XS + RS = SQRT( ONE - XS ) + ASR = -(BS / XS + HK) * HALF + IF (ASR.GT.EXPMIN) THEN + VAL = VAL + A*W(I,NG)*EXP( ASR ) + & * ( EXP( - HALF*HK*( ONE - RS )/( ONE + RS ) )/RS + $ -( ONE + C*XS*( ONE + D*XS ) ) ) + ENDIF + XS = ( A * (ONE - X(I,NG)) ) !**2 + XS = XS * XS + RS = SQRT( ONE - XS ) + ASR = -(BS / XS + HK) * HALF + IF (ASR.GT.EXPMIN) THEN + VAL = VAL + A*W(I,NG)*EXP( ASR ) + & *( EXP( - HALF*HK*( ONE - RS )/( ONE + RS ) )/RS- + $ ( ONE + C*XS*( ONE + D*XS ) ) ) + ENDIF + END DO + VAL = -VAL*TWOPI1 + ENDIF + IF ( R .GT. ZERO ) THEN + VAL = VAL + FI( -MAX( H, K ) ) + ELSE + VAL = -VAL + IF ( H < K ) VAL = VAL + FI(K)-FI(H) + ENDIF + ENDIF + RETURN + END FUNCTION BVU + DOUBLE PRECISION FUNCTION STUDNT( NU, T ) + IMPLICIT NONE +! +! Student t Distribution Function +! +! T +! STUDNT = C I ( 1 + y*y/NU )**( -(NU+1)/2 ) dy +! NU -INF +! + INTEGER, INTENT(IN) :: NU + DOUBLE PRECISION, INTENT(IN) :: T +! Locals + INTEGER :: J + DOUBLE PRECISION :: ZRO, ONE + PARAMETER ( ZRO = 0.0D0, ONE = 1.0D0 ) + DOUBLE PRECISION, PARAMETER :: PI = 3.14159265358979D0 + DOUBLE PRECISION :: CSSTHE, SNTHE, POLYN, TT, TS, RN + + IF ( NU < 1 ) THEN + STUDNT = FI( T ) + ELSE IF ( NU .EQ. 1 ) THEN + STUDNT = ( ONE + 2.0D0*ATAN(T)/PI )*0.5D0 + ELSE IF ( NU .EQ. 2 ) THEN + STUDNT = ( ONE + T/SQRT( 2.0D0 + T*T ))*0.5D0 + ELSE + RN = NU ! convert to double + TT = T * T + CSSTHE = ONE/( ONE + TT/RN ) + POLYN = 1 + DO J = NU-2, 2, -2 + POLYN = ONE + ( J - 1 )*CSSTHE*POLYN/J + END DO + + IF ( MOD( NU, 2 ) .EQ. 1 ) THEN + TS = T/SQRT(RN) + STUDNT = ( ONE + 2.0D0*( ATAN(TS) + + & TS*CSSTHE*POLYN )/PI )*0.5D0 + ELSE + SNTHE = T/SQRT( RN + TT ) + STUDNT = ( ONE + SNTHE*POLYN )*0.5D0 + END IF + STUDNT = MAX( ZRO, MIN( STUDNT, ONE ) ) + ENDIF + END FUNCTION STUDNT + DOUBLE PRECISION FUNCTION BVTL( NU, DH, DK, R ) + IMPLICIT NONE +!* +!* A function for computing bivariate t probabilities. +!* +!* Alan Genz +!* Department of Mathematics +!* Washington State University +!* Pullman, WA 99164-3113 +!* Email : alangenz@wsu.edu +!* +!* This function is based on the method described by +!* Dunnett, C.W. and M. Sobel, (1954), +!* A bivariate generalization of Student's t-distribution +!* with tables for certain special cases, +!* Biometrika 41, pp. 153-169. +!* +!* BVTL - calculate the probability that X < DH and Y < DK. +!* +!* parameters +!* +!* NU number of degrees of freedom (NOTE: NU = 0 gives bivariate normal prb) +!* DH 1st lower integration limit +!* DK 2nd lower integration limit +!* R correlation coefficient +!* + INTEGER, INTENT(IN) ::NU + DOUBLE PRECISION, INTENT(IN) :: DH, DK, R +! Locals + INTEGER :: J, HS, KS + DOUBLE PRECISION :: ORS, HRK, KRH, BVT + DOUBLE PRECISION :: DH2, DK2, SNU ,DNU, DHDK +!, BVND, STUDNT + DOUBLE PRECISION :: GMPH, GMPK, XNKH, XNHK, QHRK, HKN, HPK, HKRN + DOUBLE PRECISION :: BTNCKH, BTNCHK, BTPDKH, BTPDHK + DOUBLE PRECISION :: ZERO, ONE, EPS, PI,TPI + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, EPS = 1.0D-15 ) + PARAMETER (PI = 3.14159265358979D0, TPI = 6.28318530717959D0) + IF ( NU < 1 ) THEN + BVTL = BVU( -DH, -DK, R ) + ELSE IF ( ONE - R .LE. EPS .OR. 1.0D+161' + +! The inverse cdf of 0 is -inf, and the inverse cdf of 1 is inf. + if (P.LE.EPSL.OR.P+EPSL.GE.1.D0) THEN + VAL = SIGN(xmax,P-0.5D0) + return + endif + Ak = ABS(A) + if (EPSL < Ak .AND. Ak < amax) THEN + IF (ABS(p-Pa).LE.EPSL) THEN + VAL = SIGN(MIN(Ak,xmax),-A) + RETURN + ENDIF + IF (Ak < 1D-2) THEN ! starting guess always less than 0.2 from the true value + IF (P.GE.0.5D0) THEN + xk = SQRT(-2D0*log(2D0*(1D0-P))) + ELSE + xk = -SQRT(-2D0*log(2D0*P)) + ENDIF + ELSE + xk = FIINV(P) ! starting guess always less than 0.8 from the true value + ! Modify starting guess if possible in order to speed up Newtons method + IF (1D-3.LE.P.AND. P.LE.0.99D0.AND. + & 3.5.LE.Ak.AND.Ak.LE.1D3 ) THEN + SGN = SIGN(1.d0,-A) + Zk = xk*SGN + xk = SGN*(Zk+((1D0/(64.9495D0*Ak-178.3191D0)-0.02D0/Ak)* + & Zk+1D0/(-0.99679234298211D0*Ak-0.07195350071872D0))/ + & (Zk/(-1.48430620263825D0*Ak-0.33340759016175D0)+1D0)) + ELSEIF ((P < 1D-3.AND.A.LE.-3.5D0).OR. + & (3.5D0.LE.A.AND.P.GT.0.99D0)) THEN + SGN = SIGN(1.d0,-A) + Zk = xk*SGN + P1 = -2.00126182192701D0*Ak-2.57306603933111D0 + xk = SGN*Zk*(1D0+ + & P1/((-0.99179258785909D0*Ak-0.21359746002397D0)* + & (Zk+P1))) + ENDIF + ENDIF + ! Check if the starting guess is on the correct side of the inflection point + IF (xk.LE.-A .AND. P.GT.Pa) xk = 1.D-2-A + IF (xk.GE.-A .AND. P < Pa) xk = -1.D-2-A + + + IF (P < Pa) THEN + VAL = funca(xk,A,P*Ca) + ELSE ! exploit the symmetry of the CDF + VAL = -funca(-xk,-A,(1.D0-P)*Ca) + ENDIF + + ELSEIF (ABS(A).LE.EPSL) THEN + IF (P>=0.5D0) THEN + VAL = SQRT(-2D0*log(2D0*(1.D0-P))) + ELSE + VAL = -SQRT(-2D0*log(2D0*P)) + ENDIF + ELSE ! ABS(A) > AMAX + VAL = FIINV(P) + ENDIF + !CALL EXLMS(A,0.d0,VAL,0,ak,P1,zk,sgn) + !If (ABS(p-P1).GT.0.0001) PRINT *,'excdf(x,a)-p',p-P1 + RETURN + + CONTAINS + + function funca(xk0,ak,CaP) RESULT (xk) + double precision, intent(in) :: xk0,ak,CaP ! =Ca*P + DOUBLE PRECISION :: xk +!Local variables + INTEGER, PARAMETER :: ixmax = 25 + double precision, parameter :: crit = 7.1D-08 ! = sqrt(1e-15) + double precision, parameter :: SQTWOPI1 = 0.39894228040143D0 !=1/SQRT(2*pi) + double precision, parameter :: SQTWOPI = 2.50662827463100D0 !=SQRT(2*pi) + INTEGER :: IX + DOUBLE PRECISION :: H,H1,tmp0,tmp1,XNEW + ! Newton's Method or Fixed point iteration to find the inverse of the EXCDF. + ! Assumption: xk0 < -ak and xk < -ak + ! Permit no more than IXMAX iterations. + IX = 0 + H = 1.D0 + xk = xk0 ! starting guess for the iteration + + +! Break out of the iteration loop for the following: +! 1) The last update is very small (compared to x). +! 2) The last update is very small (compared to sqrt(eps)=crit). +! 3) There are more than 15 iterations. This should NEVER happen. + IF (.TRUE..OR.ABS(ak) < 1.D-2) THEN + ! Newton's method + !~~~~~~~~~~~~~~~~~ + DO WHILE( ABS(H).GT.MIN(crit*ABS(xk),crit).AND.IX < IXMAX) + + IX = IX+1 + !print *,'Iteration ',IX + + tmp0 = FI(xk) + tmp1 = EXP(-xk*xk*0.5D0)*SQTWOPI1 ! =normpdf(x) + H1 = (tmp1-ak*tmp0-CaP)/(ABS(xk+ak)*tmp1) + H = DSIGN(MIN(ABS(H1),0.7D0/DBLE(IX)),H1) ! Only allow smaller and smaller steps + + xnew = xk - H + ! Make sure that the current guess is less than -a. + ! When Newton's Method suggests steps that lead to -a guesses + ! take a step 9/10ths of the way to -a: + IF (xnew.GT.-ak-crit) THEN + xnew = (xk - 9.D0*ak)*1D-1 + H = xnew - xk + ENDIF + xk = xnew + END DO + ELSE ! FIXED POINT iteration + !~~~~~~~~~~~~~~~~~~~~~~~ + DO WHILE (ABS(H).GT.MIN(crit*ABS(xk),crit).AND.IX < IXMAX) + IX = IX+1 + tmp0 = SQTWOPI1*EXP(-xk*xk*0.5D0)/FI(xk) + tmp1 = -2.D0*LOG(SQTWOPI*CaP*tmp0/(tmp0-ak)) + SGN = sign(1.D0,tmp1) + xnew = -SQRT(SGN*tmp1)*SGN + ! Make sure that the current guess is less than -a. + ! When this method suggests steps that lead to -a guesses + ! take a step 9/10ths of the way to -a: + IF (xnew.GT.-ak-crit) xnew = (xk - 9.D0*ak)*1.D-1 + + H = xnew - xk + xk = xnew + END DO + ENDIF + + !print *,'EXINV total number of iterations ',IX + if (IX.GE.IXMAX) THEN +! print *, 'Warning: EXINV did not converge. Cap=',Cap +! print *, 'The last step was: ', h, ' value=,',xk,' ak=',ak + endif + return + END FUNCTION FUNCA + END FUNCTION EXINV + END MODULE FIMOD diff --git a/wafo/source/rind2007/fimod.mod b/wafo/source/rind2007/fimod.mod new file mode 100755 index 0000000..25ba753 --- /dev/null +++ b/wafo/source/rind2007/fimod.mod @@ -0,0 +1,216 @@ +GFORTRAN module version '0' created from fimod.f on Wed Aug 05 05:35:52 2009 +MD5:9b97aca95087f079d77ade04cc70d4e2 -- If you edit this, you'll get what you deserve. + +(() +() () () () () () () () () () () () () () () () () () () () () () () () +() ()) + +() + +(('bvu' 'fimod' 2) ('bvtl' 'fimod' 3) ('bvnmvn' 'fimod' 4) ('exlms' +'fimod' 5) ('fiinv' 'fimod' 6) ('fi' 'fimod' 7) ('gausint2' 'fimod' 8) ( +'mvnlms' 'fimod' 9) ('normprb' 'fimod' 10) ('mvnlimits' 'fimod' 11) ( +'gausint' 'fimod' 12) ('studnt' 'fimod' 13) ('tvtl' 'fimod' 14) ('exinv' +'fimod' 15)) + +() + +() + +(4 'bvnmvn' 'fimod' 'bvnmvn' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 16 0 +(17 18 19 20) () 21 () () () 0 0) +3 'bvtl' 'fimod' 'bvtl' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 22 0 (23 24 25 26) () 3 () +() () 0 0) +2 'bvu' 'fimod' 'bvu' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 27 0 (28 29 30) () 31 () +() () 0 0) +15 'exinv' 'fimod' 'exinv' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 32 0 (33 34 35 36) () 37 +() () () 0 0) +5 'exlms' 'fimod' 'exlms' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 38 0 (39 40 41 42 +43 44 45 46) () 0 () () () 0 0) +7 'fi' 'fimod' 'fi' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 47 0 (48) () 49 () () () +0 0) +6 'fiinv' 'fimod' 'fiinv' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 50 0 (51) () 52 () () () +0 0) +12 'gausint' 'fimod' 'gausint' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 53 0 (54 55 56 57 58 +59) () 60 () () () 0 0) +8 'gausint2' 'fimod' 'gausint2' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 61 0 (62 63 64 65) () +66 () () () 0 0) +11 'mvnlimits' 'fimod' 'mvnlimits' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 +0 0 UNKNOWN ()) 67 0 (68 69 70 71 72 73) () 0 () () () 0 0) +9 'mvnlms' 'fimod' 'mvnlms' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 74 0 (75 76 +77 78 79) () 0 () () () 0 0) +10 'normprb' 'fimod' 'normprb' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 80 0 (81 82 83) () 0 () () () 0 0) +13 'studnt' 'fimod' 'studnt' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC) (REAL 8 0 0 REAL ()) 84 0 (85 86) () 13 () +() () 0 0) +87 'tvnmvn' 'fimod' 'tvnmvn' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 88 0 (89 90 +91 92 93) () 94 () () () 0 0) +14 'tvtl' 'fimod' 'tvtl' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN FUNCTION GENERIC ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 95 0 (96 +97 98 99) () 14 () () () 0 0) +51 'p' '' 'p' 50 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +52 'val' '' 'val' 50 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +81 'z' '' 'z' 80 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +82 'p' '' 'p' 80 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +83 'q' '' 'q' 80 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN OPTIONAL +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +48 'z' '' 'z' 47 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +49 'value' '' 'value' 47 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +68 'a' '' 'a' 67 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +69 'b' '' 'b' 67 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +70 'infin' '' 'infin' 67 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +71 'ap' '' 'ap' 67 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +72 'prb' '' 'prb' 67 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +OPTIONAL DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +73 'aq' '' 'aq' 67 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN OPTIONAL +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +75 'a' '' 'a' 74 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +76 'b' '' 'b' 74 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +77 'infin' '' 'infin' 74 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +78 'lower' '' 'lower' 74 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +79 'upper' '' 'upper' 74 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +89 'a' '' 'a' 88 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +90 'b' '' 'b' 88 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +91 'infin' '' 'infin' 88 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 ASSUMED_SHAPE ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +92 'r' '' 'r' 88 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +93 'epsi' '' 'epsi' 88 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +94 'val' '' 'val' 88 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () +0 0) +17 'lower' '' 'lower' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +18 'upper' '' 'upper' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +19 'infin' '' 'infin' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 ASSUMED_SHAPE ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +20 'correl' '' 'correl' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +21 'val' '' 'val' 16 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () +0 0) +28 'sh' '' 'sh' 27 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +29 'sk' '' 'sk' 27 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +30 'r' '' 'r' 27 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +31 'val' '' 'val' 27 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +85 'nu' '' 'nu' 84 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +86 't' '' 't' 84 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +23 'nu' '' 'nu' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +24 'dh' '' 'dh' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +25 'dk' '' 'dk' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +26 'r' '' 'r' 22 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +96 'nu1' '' 'nu1' 95 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +97 'h' '' 'h' 95 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +98 'r' '' 'r' 95 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +99 'epsi' '' 'epsi' 95 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +54 'x1' '' 'x1' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +55 'x2' '' 'x2' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +56 'a' '' 'a' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +57 'b' '' 'b' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +58 'c' '' 'c' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +59 'd' '' 'd' 53 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +60 'value' '' 'value' 53 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +62 'x1' '' 'x1' 61 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +63 'x2' '' 'x2' 61 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +64 'a' '' 'a' 61 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +65 'b' '' 'b' 61 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +66 'value' '' 'value' 61 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +39 'a' '' 'a' 38 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +40 'x1' '' 'x1' 38 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +41 'x2' '' 'x2' 38 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +42 'infin' '' 'infin' 38 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +43 'lower' '' 'lower' 38 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +44 'upper' '' 'upper' 38 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +45 'ca' '' 'ca' 38 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +46 'pa' '' 'pa' 38 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +33 'p' '' 'p' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +34 'a' '' 'a' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +35 'ca' '' 'ca' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +36 'pa' '' 'pa' 32 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +37 'val' '' 'val' 32 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +) + +('bvnmvn' 0 4 'bvtl' 0 3 'bvu' 0 2 'exinv' 0 15 'exlms' 0 5 'fi' 0 7 +'fiinv' 0 6 'gausint' 0 12 'gausint2' 0 8 'mvnlimits' 0 11 'mvnlms' 0 9 +'normprb' 0 10 'studnt' 0 13 'tvnmvn' 0 87 'tvtl' 0 14) diff --git a/wafo/source/rind2007/funcmod.mod b/wafo/source/rind2007/funcmod.mod new file mode 100755 index 0000000..049abd3 --- /dev/null +++ b/wafo/source/rind2007/funcmod.mod @@ -0,0 +1,61 @@ +GFORTRAN module version '0' created from rind71mod.f on Wed Aug 05 05:36:49 2009 +MD5:d64139159f9b7d1a62e18500b19b3b23 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () +() () () ()) + +() + +(('mvnfun' 'funcmod' 2) ('mvnfun2' 'funcmod' 3)) + +() + +() + +(4 'big' 'funcmod' 'big' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (2 +DEFERRED () () () ()) 0 () () () 0 0) +5 'cm' 'funcmod' 'cm' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 DEFERRED () +()) 0 () () () 0 0) +6 'cmn' 'funcmod' 'cmn' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 DEFERRED () +()) 0 () () () 0 0) +7 'funcmod' 'funcmod' 'funcmod' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +2 'mvnfun' 'funcmod' 'mvnfun' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 8 0 +(9 10) () 11 () () () 0 0) +3 'mvnfun2' 'funcmod' 'mvnfun2' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 12 0 +(13 14) () 15 () () () 0 0) +16 'pl1' 'funcmod' 'pl1' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +17 'pu1' 'funcmod' 'pu1' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +18 'xc' 'funcmod' 'xc' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 DEFERRED () +()) 0 () () () 0 0) +19 'xd' 'funcmod' 'xd' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 DEFERRED () +()) 0 () () () 0 0) +9 'ndim' '' 'ndim' 8 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +10 'w' '' 'w' 8 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +11 'xind' '' 'xind' 8 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () +0 0) +13 'ndim' '' 'ndim' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'w' '' 'w' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +15 'xind' '' 'xind' 12 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () +0 0) +) + +('big' 0 4 'cm' 0 5 'cmn' 0 6 'funcmod' 0 7 'mvnfun' 0 2 'mvnfun2' 0 3 +'pl1' 0 16 'pu1' 0 17 'xc' 0 18 'xd' 0 19) diff --git a/wafo/source/rind2007/globalconst.mod b/wafo/source/rind2007/globalconst.mod new file mode 100755 index 0000000..9d65c77 --- /dev/null +++ b/wafo/source/rind2007/globalconst.mod @@ -0,0 +1,64 @@ +GFORTRAN module version '0' created from rindmod.f on Wed Aug 05 05:35:53 2009 +MD5:28b9cfd26740ee7f785bb23117fdf8ea -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'ghalf' 'globalconst' 'ghalf' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.80000000000000@0') () 0 () () () 0 0) +3 'ginfinity' 'globalconst' 'ginfinity' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.25000000000000@2') () 0 () () () 0 0) +4 'globalconst' 'globalconst' 'globalconst' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +5 'gone' 'globalconst' 'gone' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.10000000000000@1') () 0 () () () 0 0) +6 'gpi' 'globalconst' 'gpi' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.3243f6a8885a22@1') () 0 () () () 0 0) +7 'gpi1' 'globalconst' 'gpi1' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.517cc1b72721dc@0') () 0 () () () 0 0) +8 'gsqpi' 'globalconst' 'gsqpi' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.1c5bf891b4ef7d@1') () 0 () () () 0 0) +9 'gsqpi1' 'globalconst' 'gsqpi1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.906eba8214dc78@0') () 0 () () () 0 0) +10 'gsqtw' 'globalconst' 'gsqtw' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.16a09e667f3be3@1') () 0 () () () 0 0) +11 'gsqtw1' 'globalconst' 'gsqtw1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.b504f333f9df18@0') () 0 () () () 0 0) +12 'gsqtwpi' 'globalconst' 'gsqtwpi' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.281b263fec4e08@1') () 0 () () () 0 0) +13 'gsqtwpi1' 'globalconst' 'gsqtwpi1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.662114cf50d880@0') () 0 () () () 0 0) +14 'gtwo' 'globalconst' 'gtwo' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.20000000000000@1') () 0 () () () 0 0) +15 'gtwpi' 'globalconst' 'gtwpi' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.6487ed5110b444@1') () 0 () () () 0 0) +16 'gzero' 'globalconst' 'gzero' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.00000000000000@0') () 0 () () () 0 0) +) + +('ghalf' 0 2 'ginfinity' 0 3 'globalconst' 0 4 'gone' 0 5 'gpi' 0 6 'gpi1' +0 7 'gsqpi' 0 8 'gsqpi1' 0 9 'gsqtw' 0 10 'gsqtw1' 0 11 'gsqtwpi' 0 12 +'gsqtwpi1' 0 13 'gtwo' 0 14 'gtwpi' 0 15 'gzero' 0 16) diff --git a/wafo/source/rind2007/globaldata.mod b/wafo/source/rind2007/globaldata.mod new file mode 100755 index 0000000..ad4c094 --- /dev/null +++ b/wafo/source/rind2007/globaldata.mod @@ -0,0 +1,160 @@ +GFORTRAN module version '0' created from rind71mod.f on Wed Aug 05 05:36:49 2009 +MD5:56b23d8cfb1ad898b2f43426b067c050 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 '__convert_r4_r8' '(intrinsic)' '__convert_r4_r8' 1 ((PROCEDURE +UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN FUNCTION ELEMENTAL PURE) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +3 'c1c2det' 'globaldata' 'c1c2det' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () ( +CONSTANT (LOGICAL 4 0 0 LOGICAL ()) 0 1) () 0 () () () 0 0) +4 'cepss' 'globaldata' 'cepss' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +5 'cov' 'globaldata' 'cov' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 +DEFERRED () ()) 0 () () () 0 0) +6 'covix' 'globaldata' 'covix' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'eps' 'globaldata' 'eps' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +8 'eps0' 'globaldata' 'eps0' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'eps2' 'globaldata' 'eps2' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +10 'epss' 'globaldata' 'epss' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'fxcepss' 'globaldata' 'fxcepss' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +12 'globaldata' 'globaldata' 'globaldata' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +13 'hlo' 'globaldata' 'hlo' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 +DEFERRED () ()) 0 () () () 0 0) +14 'hup' 'globaldata' 'hup' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (1 +DEFERRED () ()) 0 () () () 0 0) +15 'index1' 'globaldata' 'index1' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (INTEGER 4 0 0 +INTEGER ()) 0 0 () (1 DEFERRED () ()) 0 () () () 0 0) +16 'indxtd' 'globaldata' 'indxtd' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (INTEGER 4 0 0 +INTEGER ()) 0 0 () (1 DEFERRED () ()) 0 () () () 0 0) +17 'mb' 'globaldata' 'mb' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +18 'nc' 'globaldata' 'nc' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +19 'nd' 'globaldata' 'nd' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +20 'ni' 'globaldata' 'ni' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +21 'nit' 'globaldata' 'nit' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +22 'nj' 'globaldata' 'nj' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +23 'njj' 'globaldata' 'njj' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +24 'nsimmax' 'globaldata' 'nsimmax' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () +0 () () () 0 0) +25 'nsimmin' 'globaldata' 'nsimmin' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () +0 () () () 0 0) +26 'nsxdj' 'globaldata' 'nsxdj' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () +(1 DEFERRED () ()) 0 () () () 0 0) +27 'nsxtmj' 'globaldata' 'nsxtmj' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (INTEGER 4 0 0 +INTEGER ()) 0 0 () (1 DEFERRED () ()) 0 () () () 0 0) +28 'nt' 'globaldata' 'nt' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +29 'ntd' 'globaldata' 'ntd' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +30 'ntdc' 'globaldata' 'ntdc' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +31 'ntscis' 'globaldata' 'ntscis' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () +0 () () () 0 0) +32 'nugget' 'globaldata' 'nugget' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +33 'nx' 'globaldata' 'nx' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +34 'pi' 'globaldata' 'pi' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.3243f6a8885a22@1') () 0 () () () 0 0) +35 'pi1' 'globaldata' 'pi1' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.517cc1b72721dc@0') () 0 () () () 0 0) +36 'plowgth' 'globaldata' 'plowgth' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.00000000000000@0') () 0 () () () 0 0) +37 'releps' 'globaldata' 'releps' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +38 'scis' 'globaldata' 'scis' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +39 'sq' 'globaldata' 'sq' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (REAL 8 0 0 REAL ()) 0 0 () (2 +DEFERRED () () () ()) 0 () () () 0 0) +40 'sqpi' 'globaldata' 'sqpi' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () (CONSTANT (REAL 8 0 0 +REAL ()) 0 '0.1c5bf891b4ef7d@1') () 0 () () () 0 0) +41 'sqpi1' 'globaldata' 'sqpi1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.906eba8214dc78@0') () 0 () () () 0 0) +42 'sqtwo' 'globaldata' 'sqtwo' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.16a09e667f3be3@1') () 0 () () () 0 0) +43 'sqtwo1' 'globaldata' 'sqtwo1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.b504f333f9df18@0') () 0 () () () 0 0) +44 'sqtwopi1' 'globaldata' 'sqtwopi1' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.662114cf50d880@0') () 0 () () () 0 0) +45 'twopi' 'globaldata' 'twopi' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () ( +CONSTANT (REAL 8 0 0 REAL ()) 0 '0.6487ed5110b444@1') () 0 () () () 0 0) +46 'usec1c2' 'globaldata' 'usec1c2' 1 ((PARAMETER UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (LOGICAL 4 0 0 LOGICAL ()) 0 0 () ( +CONSTANT (LOGICAL 4 0 0 LOGICAL ()) 0 1) () 0 () () () 0 0) +47 'xceps2' 'globaldata' 'xceps2' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +48 'xcscale' 'globaldata' 'xcscale' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +49 'xcutoff' 'globaldata' 'xcutoff' 1 ((VARIABLE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () +() () 0 0) +50 'xedni' 'globaldata' 'xedni' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN ALLOCATABLE DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () +(1 DEFERRED () ()) 0 () () () 0 0) +51 'xsplt' 'globaldata' 'xsplt' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +) + +('__convert_r4_r8' 0 2 'c1c2det' 0 3 'cepss' 0 4 'cov' 0 5 'covix' 0 6 +'eps' 0 7 'eps0' 0 8 'eps2' 0 9 'epss' 0 10 'fxcepss' 0 11 'globaldata' +0 12 'hlo' 0 13 'hup' 0 14 'index1' 0 15 'indxtd' 0 16 'mb' 0 17 'nc' 0 +18 'nd' 0 19 'ni' 0 20 'nit' 0 21 'nj' 0 22 'njj' 0 23 'nsimmax' 0 24 +'nsimmin' 0 25 'nsxdj' 0 26 'nsxtmj' 0 27 'nt' 0 28 'ntd' 0 29 'ntdc' 0 +30 'ntscis' 0 31 'nugget' 0 32 'nx' 0 33 'pi' 0 34 'pi1' 0 35 'plowgth' +0 36 'releps' 0 37 'scis' 0 38 'sq' 0 39 'sqpi' 0 40 'sqpi1' 0 41 'sqtwo' +0 42 'sqtwo1' 0 43 'sqtwopi1' 0 44 'twopi' 0 45 'usec1c2' 0 46 'xceps2' +0 47 'xcscale' 0 48 'xcutoff' 0 49 'xedni' 0 50 'xsplt' 0 51) diff --git a/wafo/source/rind2007/intmodule.f b/wafo/source/rind2007/intmodule.f new file mode 100755 index 0000000..b7e9e95 --- /dev/null +++ b/wafo/source/rind2007/intmodule.f @@ -0,0 +1,3856 @@ +! INTMODULE contains the modules: +! - ADAPTMOD +! - RCRUDEMOD +! - KROBOVMOD +! - KRBVRCMOD +! - DKBVRCMOD +! +! which contains several different Multidimensional Integration Subroutines +! +! See descriptions below +! +* ADAPTMOD is a module containing a: +* +* Adaptive Multidimensional Integration Subroutine +* +* Author: Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 USA +* +* Revised pab 21.11.2000 +* A bug found by Igor in dksmrc: VK was not correctly randomized +* is now fixed +* Revised pab 07.10.2000, +* 1) Removed LENWRK and WORK from input in ADAPT. +* 2) Defined LENWRK internally and Put a save statement before WORK instead +* 3) Bug fix in ADBASE: DIVAXN was undetermined when MINCLS<0. Solution: +* put a save statement on DIVAXN in order to save/keep its last value. +* 4) MAXDIM is now a global variable defining the maximum number of dimensions +* it is possible to integrate. +* +* revised pab 07.09.2000 +* - solaris compiler complained on the DATA statements +* for the P and C matrices in the krbvrc and krobov routine +* => made separate DATA statements for P and C and moved them +* to right after the variable definitions. +* revised pab 10.03.2000 +* - updated to f90 (i.e. changed to assumed shape arrays + changing integers to DBLE) +* - put it into a module +* +* This subroutine computes an approximation to the integral +* +* 1 1 1 +* I I ... I FUNCTN(NDIM,X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +*************** Parameters for SADAPT ******************************** +* +********Input Parameters +* +* N INTEGER, the number of variables. +* MAXPTS INTEGER, maximum number of function values allowed. This +* parameter can be used to limit the time taken. A +* sensible strategy is to start with MAXPTS = 1000*N, and then +* increase MAXPTS if ERROR is too large. +* FUNCTN Externally declared real user defined integrand. Its +* parameters must be (N, Z), where Z is a real array of +* length N. +* ABSEPS REAL absolute error tolerance. +* RELEPS REAL relative error tolerance. +* +*******Output Parameters +* +* ERROR REAL estimated absolute error, with 99% confidence level. +* VALUE REAL estimated value for the integral +* INFORM INTEGER, termination status parameter: +* if INFORM = 0, normal completion with ERROR < EPS; +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* if INFORM = 2, N > 20 or N < 1. +* +*************** Parameters for ADAPT ******************************** +* +****** Input Parameters +* +* NDIM Integer number of integration variables. +* MINCLS Integer minimum number of FUNCTN calls to be allowed; MINCLS +* must not exceed MAXCLS. If MINCLS < 0, then ADAPT assumes +* that a previous call of ADAPT has been made with the same +* integrand and continues that calculation. +* MAXCLS Integer maximum number of FUNCTN calls to be used; MAXCLS +* must be >= RULCLS, the number of function calls required for +* one application of the basic integration rule. +* IF ( NDIM .EQ. 1 ) THEN +* RULCLS = 11 +* ELSE IF ( NDIM .LT. 15 ) THEN +* RULCLS = 2**NDIM + 2*NDIM*(NDIM+3) + 1 +* ELSE +* RULCLS = 1 + NDIM*(24-NDIM*(6-NDIM*4))/3 +* ENDIF +* FUNCTN Externally declared real user defined integrand. Its +* parameters must be (NDIM, Z), where Z is a real array of +* length NDIM. +* ABSREQ Real required absolute accuracy. +* RELREQ Real required relative accuracy. +* +****** Output Parameters +* +* MINCLS Actual number of FUNCTN calls used by ADAPT. +* ABSEST Real estimated absolute accuracy. +* FINEST Real estimated value of integral. +* INFORM INFORM = 0 for normal exit, when ABSEST <= ABSREQ or +* ABSEST <= |FINEST|*RELREQ with MINCLS <= MAXCLS. +* INFORM = 1 if MAXCLS was too small for ADAPT to obtain the +* result FINEST to within the requested accuracy. +* INFORM = 2 if MINCLS > MAXCLS, LENWRK < 16*NDIM + 27 or +* RULCLS > MAXCLS. +* +* +* +* ADAPT revised by pab 07.10.2000, +* 1) Removed LENWRK and WORK from input. +* 2) Defined LENWRK internally and Put a save statement before WORK instead +* +* WORK Real array (length LENWRK) of working storage. This contains +* information that is needed for additional calls of ADAPT +* using the same integrand (input MINCLS < 0). +* LENWRK Integer length of real array WORK (working storage); ADAPT +* needs LENWRK >= 16*NDIM + 27. For maximum efficiency LENWRK +* should be about 2*NDIM*MAXCLS/RULCLS if MAXCLS FUNCTN +* calls are needed. If LENWRK is significantly less than this, +* ADAPT may be less efficient. + MODULE ADAPTMOD + IMPLICIT NONE + INTEGER,PRIVATE, PARAMETER :: MAXDIM=20 + PRIVATE + PUBLIC :: ADAPT, SADAPT + + INTERFACE SADAPT + MODULE PROCEDURE SADAPT + END INTERFACE + + INTERFACE ADAPT + MODULE PROCEDURE ADAPT + END INTERFACE + + INTERFACE ADBASE + MODULE PROCEDURE ADBASE + END INTERFACE + + INTERFACE BSINIT + MODULE PROCEDURE BSINIT + END INTERFACE + + INTERFACE RULNRM + MODULE PROCEDURE RULNRM + END INTERFACE + + INTERFACE DIFFER + MODULE PROCEDURE DIFFER + END INTERFACE + + INTERFACE BASRUL + MODULE PROCEDURE BASRUL + END INTERFACE + + INTERFACE FULSUM + MODULE PROCEDURE FULSUM + END INTERFACE + + INTERFACE TRESTR + MODULE PROCEDURE TRESTR + END INTERFACE + !-------------------------------- + CONTAINS + +!*********************************************************** +! MAIN INTEGRATION ROUTINE SADAPT +!*********************************************************** + + SUBROUTINE SADAPT(N,MAXPTS,FUNCTN,ABSEPS, + & RELEPS,ERROR,VALUE,INFORM) + IMPLICIT NONE +* +* A subroutine for computing multivariate integrals +* This subroutine uses an algorithm given in the paper +* "Numerical Computation of Multivariate Normal Probabilities", in +* J. of Computational and Graphical Stat., 1(1992), pp. 141-149, by +* Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 +* Email : alangenz@wsu.edu +* +* revised pab 15.03.2000 +* - changed name from SADMVN to SADAPT +* - Made it general for any integral not just the multivariate normal integral +* +********Input Parameters +* +* N INTEGER, the number of variables. +* MAXPTS INTEGER, maximum number of function values allowed. This +* parameter can be used to limit the time taken. A +* sensible strategy is to start with MAXPTS = 1000*N, and then +* increase MAXPTS if ERROR is too large. +* FUNCTN Externally declared real user defined integrand. Its +* parameters must be (N, Z), where Z is a real array of +* length N. +* ABSEPS REAL absolute error tolerance. +* RELEPS REAL relative error tolerance. +* +*******Output Parameters +* +* ERROR REAL estimated absolute error, with 99% confidence level. +* VALUE REAL estimated value for the integral +* INFORM INTEGER, termination status parameter: +* if INFORM = 0, normal completion with ERROR < EPS; +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* if INFORM = 2, N > 20 or N < 1. +* + INTEGER, INTENT(IN) :: N, MAXPTS + INTEGER, INTENT(OUT) :: INFORM + !INTEGER :: NL, LENWRK, + INTEGER :: RULCLS, TOTCLS, NEWCLS, MAXCLS + DOUBLE PRECISION, INTENT(IN) :: ABSEPS, RELEPS + DOUBLE PRECISION, INTENT(OUT) :: ERROR, VALUE + DOUBLE PRECISION :: OLDVAL + !PARAMETER ( NL = 20 ) + !PARAMETER ( LENWRK = 20*NL**2 ) + !DOUBLE PRECISION, DIMENSION(LENWRK) :: WORK + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + IF ( N .GT. MAXDIM .OR. N .LT. 1 ) THEN + INFORM = 2 + VALUE = 0.d0 + ERROR = 1.d0 + RETURN + ENDIF + INFORM = 1 +* +* Call the subregion adaptive integration subroutine +* + RULCLS = 1 + CALL ADAPT( N, RULCLS, 0, FUNCTN, ABSEPS, RELEPS, + & ERROR, VALUE, INFORM ) + MAXCLS = MIN( 10*RULCLS, MAXPTS ) + TOTCLS = 0 + CALL ADAPT(N, TOTCLS, MAXCLS, FUNCTN, ABSEPS, RELEPS, + & ERROR, VALUE, INFORM) + IF ( ERROR .GT. MAX( ABSEPS, RELEPS*ABS(VALUE) ) ) THEN + 10 OLDVAL = VALUE + MAXCLS = MAX( 2*RULCLS,MIN(INT(3*MAXCLS/2),MAXPTS-TOTCLS)) + NEWCLS = -1 + CALL ADAPT(N, NEWCLS, MAXCLS, FUNCTN, ABSEPS, RELEPS, + & ERROR, VALUE, INFORM) + TOTCLS = TOTCLS + NEWCLS + ERROR = ABS(VALUE-OLDVAL) + + & SQRT(DBLE(RULCLS)*ERROR**2/DBLE(TOTCLS)) + IF ( ERROR .GT. MAX( ABSEPS, RELEPS*ABS(VALUE) ) ) THEN + IF ( MAXPTS - TOTCLS .GT. 2*RULCLS ) GO TO 10 + ELSE + INFORM = 0 + END IF + ENDIF + + END SUBROUTINE SADAPT + + + +!*********************************************************** +! MAIN INTEGRATION ROUTINE ADAPT +!*********************************************************** + + + SUBROUTINE ADAPT(NDIM, MINCLS, MAXCLS, FUNCTN, + & ABSREQ, RELREQ, ABSEST, FINEST, INFORM) + IMPLICIT NONE +* +* Adaptive Multidimensional Integration Subroutine +* +* Author: Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 USA +* +* This subroutine computes an approximation to the integral +* +* 1 1 1 +* I I ... I FUNCTN(NDIM,X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +*************** Parameters for ADAPT ******************************** +* +****** Input Parameters +* +* NDIM Integer number of integration variables. +* MINCLS Integer minimum number of FUNCTN calls to be allowed; MINCLS +* must not exceed MAXCLS. If MINCLS < 0, then ADAPT assumes +* that a previous call of ADAPT has been made with the same +* integrand and continues that calculation. +* MAXCLS Integer maximum number of FUNCTN calls to be used; MAXCLS +* must be >= RULCLS, the number of function calls required for +* one application of the basic integration rule. +* IF ( NDIM .EQ. 1 ) THEN +* RULCLS = 11 +* ELSE IF ( NDIM .LT. 15 ) THEN +* RULCLS = 2**NDIM + 2*NDIM*(NDIM+3) + 1 +* ELSE +* RULCLS = 1 + NDIM*(24-NDIM*(6-NDIM*4))/3 +* ENDIF +* FUNCTN Externally declared real user defined integrand. Its +* parameters must be (NDIM, Z), where Z is a real array of +* length NDIM. +* ABSREQ Real required absolute accuracy. +* RELREQ Real required relative accuracy. +* +****** Output Parameters +* +* MINCLS Actual number of FUNCTN calls used by ADAPT. +* ABSEST Real estimated absolute accuracy. +* FINEST Real estimated value of integral. +* INFORM INFORM = 0 for normal exit, when ABSEST <= ABSREQ or +* ABSEST <= |FINEST|*RELREQ with MINCLS <= MAXCLS. +* INFORM = 1 if MAXCLS was too small for ADAPT to obtain the +* result FINEST to within the requested accuracy. +* INFORM = 2 if MINCLS > MAXCLS, LENWRK < 16*NDIM + 27 or +* RULCLS > MAXCLS. +* +************************************************************************ +* +* Begin driver routine. This routine partitions the working storage +* array and then calls the main subroutine ADBASE. +* +* Revised pab 07.10.2000, +* 1) Removed LENWRK and WORK from input. +* 2) Defined LENWRK internally and Put a save statement before WORK instead +* +* LENWRK Integer length of real array WORK (working storage); ADAPT +* needs LENWRK >= 16*NDIM + 27. For maximum efficiency LENWRK +* should be about 2*NDIM*MAXCLS/RULCLS if MAXCLS FUNCTN +* calls are needed. If LENWRK is significantly less than this, +* ADAPT may be less efficient. +* +* WORK Real array (length LENWRK) of working storage. This contains +* information that is needed for additional calls of ADAPT +* using the same integrand (input MINCLS < 0). +* + INTEGER, INTENT(IN) :: NDIM, MAXCLS + INTEGER, INTENT(INOUT) :: MINCLS + INTEGER, INTENT(OUT) :: INFORM + DOUBLE PRECISION, INTENT(IN) :: ABSREQ, RELREQ + DOUBLE PRECISION, INTENT(OUT) :: ABSEST, FINEST +* Local variables + INTEGER, PARAMETER :: LENWRK=20*MAXDIM*MAXDIM + DOUBLE PRECISION, DIMENSION(LENWRK) :: WORK ! length lenwrk + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: POINTS,WEGHTS,LUM + INTEGER :: SBRGNS, MXRGNS, RULCLS, LENRUL, + & INERRS, INVALS, INPTRS, INLWRS, INUPRS, INMSHS, INPNTS, INWGTS, + & INLOWR, INUPPR, INWDTH, INMESH, INWORK + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SAVE WORK +! print *,'adapt, ndim', ndim + IF ( NDIM .EQ. 1 ) THEN + LENRUL = 5 + RULCLS = 9 + ELSE IF ( NDIM .LT. 12 ) THEN + LENRUL = 6 + RULCLS = 2**NDIM + 2*NDIM*(NDIM+2) + 1 + ELSE + LENRUL = 6 +! RULCLS = 1 + 2*NDIM*(1+2*NDIM) ! old call pab 15.03.2003 + RULCLS = 1851 + 2*NDIM*(1+2*NDIM) + ENDIF + IF ( LENWRK .GE. LENRUL*(NDIM+4) + 10*NDIM + 3 .AND. + & RULCLS. LE. MAXCLS .AND. MINCLS .LE. MAXCLS ) THEN + MXRGNS = ( LENWRK - LENRUL*(NDIM+4) - 7*NDIM )/( 3*NDIM + 3 ) + INERRS = 1 + INVALS = INERRS + MXRGNS + INPTRS = INVALS + MXRGNS + INLWRS = INPTRS + MXRGNS + INUPRS = INLWRS + MXRGNS*NDIM + INMSHS = INUPRS + MXRGNS*NDIM + INWGTS = INMSHS + MXRGNS*NDIM + INPNTS = INWGTS + LENRUL*4 + INLOWR = INPNTS + LENRUL*NDIM + INUPPR = INLOWR + NDIM + INWDTH = INUPPR + NDIM + INMESH = INWDTH + NDIM + INWORK = INMESH + NDIM + + ALLOCATE(POINTS(NDIM,LENRUL)) + ALLOCATE(WEGHTS(LENRUL,4)) + ALLOCATE(LUM(NDIM,MXRGNS*3)) + + IF (MINCLS .LT. 0 ) THEN + SBRGNS = WORK(LENWRK) + LUM = reshape(WORK(INLWRS:INWGTS-1),(/ NDIM,MXRGNS*3/)) + WEGHTS = reshape(WORK(INWGTS:INPNTS-1),(/ LENRUL , 4 /)) + POINTS = reshape(WORK(INPNTS:INLOWR-1),(/ NDIM, LENRUL/)) + !ELSE + ! WORK=0.D0;LUM=0.D0;WEGHTS=0.D0;POINTS=0.D0 + ENDIF + CALL ADBASE(NDIM, MINCLS, MAXCLS, FUNCTN, ABSREQ, RELREQ, + & ABSEST, FINEST, SBRGNS, MXRGNS, RULCLS, LENRUL, + & WORK(INERRS:INVALS-1), WORK(INVALS:INPTRS-1), + & WORK(INPTRS:INLWRS-1), LUM(:,1:MXRGNS), + & LUM(:,MXRGNS+1:2*MXRGNS),LUM(:,2*MXRGNS+1:3*MXRGNS), + & WEGHTS,POINTS,WORK(INLOWR:INUPPR-1),WORK(INUPPR:INWDTH-1), + & WORK(INWDTH:INMESH-1), WORK(INMESH:INWORK-1), + & WORK(INWORK:INWORK+2*NDIM-1), INFORM) + WORK(LENWRK) = SBRGNS +! LUM = LOWERS UPPERS MESHES + WORK(INLWRS:INWGTS-1) = reshape(LUM ,(/ NDIM*MXRGNS*3/)) + WORK(INWGTS:INPNTS-1) = reshape(WEGHTS,(/ LENRUL*4 /)) + WORK(INPNTS:INLOWR-1) = reshape(POINTS,(/ NDIM*LENRUL/)) + DEALLOCATE(POINTS) + DEALLOCATE(WEGHTS) + DEALLOCATE(LUM) + ELSE + INFORM = 2 + MINCLS = RULCLS + ENDIF + RETURN + END SUBROUTINE ADAPT + SUBROUTINE BSINIT(NDIM, W, LENRUL, G) + IMPLICIT NONE +* +* For initializing basic rule weights and symmetric sum parameters. +* + INTEGER, INTENT(IN) :: NDIM, LENRUL + DOUBLE PRECISION , DIMENSION(:,:), INTENT(OUT) :: W, G +* DOUBLE PRECISION W(LENRUL,4), G(NDIM,LENRUL) +* Local variables + INTEGER :: I, J + INTEGER, PARAMETER :: NUMNUL=4, SDIM=12 + INTEGER, DIMENSION(6) :: RULPTS + DOUBLE PRECISION LAM1, LAM2, LAM3, LAM4, LAMP, RULCON +* +* The following code determines rule parameters and weights for a +* degree 7 rule (W(1,1),...,W(5,1)), two degree 5 comparison rules +* (W(1,2),...,W(5,2) and W(1,3),...,W(5,3)) and a degree 3 +* comparison rule (W(1,4),...W(5,4)). +* +* If NDIM = 1, then LENRUL = 5 and total points = 9. +* If NDIM < SDIM, then LENRUL = 6 and +* total points = 1+2*NDIM*(NDIM+2)+2**NDIM. +* If NDIM > = SDIM, then LENRUL = 6 and +* total points = 1+2*NDIM*(1+2*NDIM). +* +! print *,'BSINIT, ndim', ndim +! DO I = 1,LENRUL +! DO J = 1,NDIM +! G(J,I) = 0.d0 +! END DO +! DO J = 1,NUMNUL +! W(I,J) = 0.d0 +! END DO +! END DO + G = 0.D0 + W = 0.D0 + I = 2*NDIM + RULPTS(5) = I*(NDIM-1) + RULPTS(4) = I + RULPTS(3) = I + RULPTS(2) = I + RULPTS(1) = 1 + LAMP = 0.85d0 + LAM3 = 0.4707d0 + LAM2 = 4d0/(15.d0 - 5.d0/LAM3) + LAM4 = 1.D0/(27.D0*LAM3*LAM3*LAM3) + W(5,1) = ( 3.d0 - 5.d0*LAM3 )/( 180.d0*(LAM2-LAM3)*LAM2*LAM2) + IF ( NDIM .LT. SDIM ) THEN + RULPTS(LENRUL) = 2**NDIM + LAM1 = 8.d0*LAM3*(31.d0*LAM3-15.d0)/ + & ( (3.d0*LAM3-1.d0)*(5.d0*LAM3-3.d0)*35.d0 ) + W(LENRUL,1) = LAM4/DBLE(RULPTS(LENRUL)) + ELSE + LAM1 = ( LAM3*(15.d0 - 21.d0*LAM2) + + & 35.d0*DBLE(NDIM-1)*(LAM2-LAM3)/9.d0 ) + & / ( LAM3*(21.d0 - 35.d0*LAM2) + + & 35.d0*DBLE(NDIM-1)*(LAM2/LAM3-1.d0)/9.d0 ) + W(6,1) = LAM4*0.25D0 + RULPTS(6) = 2*NDIM*(NDIM-1) + ENDIF + W(3,1) = ( 15.d0 - 21.d0*(LAM3+LAM1) + 35.d0*LAM3*LAM1 ) + & /(210.d0*LAM2*(LAM2-LAM3)*(LAM2-LAM1))-DBLE(2*(NDIM-1))*W(5,1) + W(2,1) = ( 15.d0 - 21.d0*(LAM3+LAM2) + 35.d0*LAM3*LAM2 ) + & /( 210.d0*LAM1*(LAM1-LAM3)*(LAM1-LAM2) ) + LAM3 = SQRT(LAM3) + IF ( NDIM .LT. SDIM ) THEN + G(1:NDIM,LENRUL) = LAM3 + ELSE + G(1,6) = LAM3 + G(2,6) = LAM3 + ENDIF + IF ( NDIM .GT. 1 ) THEN + W(5,2) = 1.d0/(6.d0*LAM2)**2 + W(5,3) = W(5,2) + ENDIF + W(3,2) = ( 3.d0 - 5.d0*LAM1 )/( 30.d0*LAM2*(LAM2-LAM1) ) + & - DBLE(2*(NDIM-1))*W(5,2) + W(2,2) = ( 3.d0 - 5.d0*LAM2 )/( 30.d0*LAM1*(LAM1-LAM2) ) + W(4,3) = ( 3.d0 - 5.d0*LAM2 )/( 30.d0*LAMP*(LAMP-LAM2) ) + W(3,3) = ( 3.d0 - 5.d0*LAMP )/( 30.d0*LAM2*(LAM2-LAMP) ) + & - DBLE(2*(NDIM-1))*W(5,3) + W(2,4) = 1.d0/(6.d0*LAM1) + LAMP = SQRT(LAMP) + LAM2 = SQRT(LAM2) + LAM1 = SQRT(LAM1) + G(1,2) = LAM1 + G(1,3) = LAM2 + G(1,4) = LAMP + IF ( NDIM .GT. 1 ) THEN + G(1,5) = LAM2 + G(2,5) = LAM2 + ENDIF + DO J = 1, NUMNUL + W(1,J) = 1.d0 + DO I = 2,LENRUL + W(1,J) = W(1,J) - DBLE(RULPTS(I))*W(I,J) + END DO + END DO + RULCON = 0.5d0 + CALL RULNRM( LENRUL, NUMNUL, RULPTS, W, RULCON ) + END SUBROUTINE BSINIT +! +! + SUBROUTINE RULNRM( LENRUL, NUMNUL, RULPTS, W, RULCON ) + IMPLICIT NONE + INTEGER, INTENT(IN) :: LENRUL, NUMNUL + INTEGER, DIMENSION(:), INTENT(IN) :: RULPTS + DOUBLE PRECISION, DIMENSION(:,:), INTENT(INOUT) :: W !(LENRUL, *), + DOUBLE PRECISION, INTENT(IN) :: RULCON +* Local variables + INTEGER :: I, J, K + DOUBLE PRECISION :: ALPHA, NORMCF, NORMNL + +* +* Compute orthonormalized null rules. +* +! print *,'RULNRM, lenrul, numnul', lenrul,NUMNUL + NORMCF = 0.d0 + DO I = 1,LENRUL + NORMCF = NORMCF + DBLE(RULPTS(I))*W(I,1)*W(I,1) + END DO + DO K = 2,NUMNUL + DO I = 1,LENRUL + W(I,K) = W(I,K) - W(I,1) + END DO + DO J = 2,K-1 + ALPHA = 0.d0 + DO I = 1,LENRUL + ALPHA = ALPHA + DBLE(RULPTS(I))*W(I,J)*W(I,K) + END DO + ALPHA = -ALPHA/NORMCF + DO I = 1,LENRUL + W(I,K) = W(I,K) + ALPHA*W(I,J) + END DO + END DO + NORMNL = 0.d0 + DO I = 1,LENRUL + NORMNL = NORMNL + DBLE(RULPTS(I))*W(I,K)*W(I,K) + END DO + ALPHA = SQRT(NORMCF/NORMNL) + DO I = 1,LENRUL + W(I,K) = ALPHA*W(I,K) + END DO + END DO + DO J = 2, NUMNUL + DO I = 1,LENRUL + W(I,J) = W(I,J)*RULCON + END DO + END DO + RETURN + END SUBROUTINE RULNRM +! +! + SUBROUTINE ADBASE(NDIM, MINCLS, MAXCLS, FUNCTN, ABSREQ, RELREQ, + & ABSEST, FINEST, SBRGNS, MXRGNS, RULCLS, LENRUL, + & ERRORS, VALUES, PONTRS, LOWERS, + & UPPERS, MESHES, WEGHTS, POINTS, + & LOWER, UPPER, WIDTH, MESH, WORK, INFORM) + IMPLICIT NONE +* +* Main adaptive integration subroutine +* + INTEGER,INTENT(IN) :: NDIM, MAXCLS, MXRGNS,LENRUL, RULCLS + INTEGER, INTENT(INOUT) :: MINCLS, SBRGNS + INTEGER, INTENT(OUT) :: INFORM + DOUBLE PRECISION, INTENT(IN) :: ABSREQ, RELREQ + DOUBLE PRECISION, INTENT(OUT) :: ABSEST, FINEST + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: ERRORS, VALUES, + & PONTRS, LOWER, UPPER, WIDTH, MESH, WORK + DOUBLE PRECISION, DIMENSION(:,:), INTENT(INOUT) :: WEGHTS, POINTS + ! shape (LENRUL,4) and (NDIM,LENRUL) + DOUBLE PRECISION, DIMENSION(:,:), INTENT(INOUT) :: LOWERS, UPPERS, + & MESHES !SHAPE (NDIM,MXRGNS), + INTEGER :: I, J,NWRGNS, DIVAXN, TOP, RGNCLS, FUNCLS, DIFCLS + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE +* +* Initialization of subroutine +* +! print *,'ADBASE, ndim', ndim, shape(POINTS) + SAVE DIVAXN ! added pab 07.11.2000 (divaxn may have negative values otherwise) + INFORM = 2 + FUNCLS = 0 + CALL BSINIT(NDIM, WEGHTS, LENRUL, POINTS) + IF ( MINCLS .GE. 0) THEN +* +* When MINCLS >= 0 determine initial subdivision of the +* integration region and apply basic rule to each subregion. +* + SBRGNS = 0 + DO I = 1,NDIM + LOWER(I) = 0.d0 + MESH(I) = 1.d0 + WIDTH(I) = 1.d0/(2.d0*MESH(I)) + UPPER(I) = 1.d0 + END DO + DIVAXN = 0 + RGNCLS = RULCLS + NWRGNS = 1 + 10 CONTINUE + !IF (abs(DIVAXN).GT.NDIM) PRINT *,'adbase DIVAXN1',DIVAXN + CALL DIFFER(NDIM, LOWER, UPPER, WIDTH, WORK(1:NDIM), + & WORK(NDIM+1:2*NDIM), FUNCTN, DIVAXN, DIFCLS) + FUNCLS = FUNCLS + DIFCLS + IF (DBLE(RGNCLS)*(MESH(DIVAXN)+1.d0)/MESH(DIVAXN) + & .LE. DBLE(MINCLS-FUNCLS) ) THEN + RGNCLS = NINT(DBLE(RGNCLS)*(MESH(DIVAXN)+1.d0)/MESH(DIVAXN)) + NWRGNS = NINT(DBLE(NWRGNS)*(MESH(DIVAXN)+1.d0)/MESH(DIVAXN)) + MESH(DIVAXN) = MESH(DIVAXN) + 1.d0 + WIDTH(DIVAXN) = 1.d0/( 2.d0*MESH(DIVAXN) ) + GO TO 10 + ENDIF + IF ( NWRGNS .LE. MXRGNS ) THEN + DO I = 1,NDIM + UPPER(I) = LOWER(I) + 2.d0*WIDTH(I) + MESH(I) = 1.d0 + END DO + ENDIF +* +* Apply basic rule to subregions and store results in heap. +* + 20 SBRGNS = SBRGNS + 1 + CALL BASRUL(NDIM, LOWER, UPPER, WIDTH, FUNCTN, + & WEGHTS, LENRUL, POINTS, WORK(1:NDIM), WORK(NDIM+1:2*NDIM), + & ERRORS(SBRGNS),VALUES(SBRGNS)) + CALL TRESTR(SBRGNS, SBRGNS, PONTRS, ERRORS) + DO I = 1,NDIM + LOWERS(I,SBRGNS) = LOWER(I) + UPPERS(I,SBRGNS) = UPPER(I) + MESHES(I,SBRGNS) = MESH(I) + END DO + DO I = 1,NDIM + LOWER(I) = UPPER(I) + UPPER(I) = LOWER(I) + 2.d0*WIDTH(I) + IF (LOWER(I)+WIDTH(I) .LT. 1.D0) GO TO 20 + LOWER(I) = 0.d0 + UPPER(I) = LOWER(I) + 2.d0*WIDTH(I) + END DO + FUNCLS = FUNCLS + SBRGNS*RULCLS + ENDIF +* +* Check for termination +* + 30 FINEST = 0.d0 + ABSEST = 0.d0 + DO I = 1, SBRGNS + FINEST = FINEST + VALUES(I) + ABSEST = ABSEST + ERRORS(I) + END DO + IF ( ABSEST .GT. MAX( ABSREQ, RELREQ*ABS(FINEST) ) + & .OR. FUNCLS .LT. MINCLS ) THEN +* +* Prepare to apply basic rule in (parts of) subregion with +* largest error. +* + TOP = PONTRS(1) + RGNCLS = RULCLS + DO I = 1,NDIM + LOWER(I) = LOWERS(I,TOP) + UPPER(I) = UPPERS(I,TOP) + MESH(I) = MESHES(I,TOP) + WIDTH(I) = (UPPER(I)-LOWER(I))/(2.D0*MESH(I)) + RGNCLS = NINT(DBLE(RGNCLS)*MESH(I)) + END DO + !IF (abs(DIVAXN).GT.NDIM) PRINT *,'adbase DIVAXN2',DIVAXN + CALL DIFFER(NDIM, LOWER, UPPER, WIDTH, WORK(1:NDIM), + & WORK(NDIM+1:2*NDIM), FUNCTN, DIVAXN, DIFCLS) + FUNCLS = FUNCLS + DIFCLS + RGNCLS = NINT(DBLE(RGNCLS)*(MESH(DIVAXN)+1.D0))/MESH(DIVAXN) + IF ( FUNCLS + RGNCLS .LE. MAXCLS ) THEN + IF ( SBRGNS + 1 .LE. MXRGNS ) THEN +* +* Prepare to subdivide into two pieces. +* + NWRGNS = 1 + WIDTH(DIVAXN) = 0.5d0*WIDTH(DIVAXN) + ELSE + NWRGNS = 0 + WIDTH(DIVAXN) = WIDTH(DIVAXN) + & *MESH(DIVAXN)/( MESH(DIVAXN) + 1.d0 ) + MESHES(DIVAXN,TOP) = MESH(DIVAXN) + 1.d0 + ENDIF + IF ( NWRGNS .GT. 0 ) THEN +* +* Only allow local subdivision when space is available. +* + DO J = SBRGNS+1,SBRGNS+NWRGNS + DO I = 1,NDIM + LOWERS(I,J) = LOWER(I) + UPPERS(I,J) = UPPER(I) + MESHES(I,J) = MESH(I) + END DO + END DO + UPPERS(DIVAXN,TOP) = LOWER(DIVAXN) + 2.d0*WIDTH(DIVAXN) + LOWERS(DIVAXN,SBRGNS+1) = UPPERS(DIVAXN,TOP) + ENDIF + FUNCLS = FUNCLS + RGNCLS + CALL BASRUL(NDIM, LOWERS(:,TOP), UPPERS(:,TOP), WIDTH, + & FUNCTN, WEGHTS, LENRUL, POINTS, WORK(1:NDIM), + & WORK(NDIM+1:2*NDIM),ERRORS(TOP), VALUES(TOP)) + CALL TRESTR(TOP, SBRGNS, PONTRS, ERRORS) + DO I = SBRGNS+1, SBRGNS+NWRGNS +* +* Apply basic rule and store results in heap. +* + CALL BASRUL(NDIM, LOWERS(:,I), UPPERS(:,I), WIDTH, + & FUNCTN, WEGHTS, LENRUL, POINTS, WORK(1:NDIM), + & WORK(NDIM+1:2*NDIM),ERRORS(I), VALUES(I)) + CALL TRESTR(I, I, PONTRS, ERRORS) + END DO + SBRGNS = SBRGNS + NWRGNS + GO TO 30 + ELSE + INFORM = 1 + ENDIF + ELSE + INFORM = 0 + ENDIF + MINCLS = FUNCLS + RETURN + END SUBROUTINE ADBASE + SUBROUTINE BASRUL( NDIM, A, B, WIDTH, FUNCTN, W, LENRUL, G, + & CENTER, Z, RGNERT, BASEST ) + IMPLICIT NONE +* +* For application of basic integration rule +* + INTEGER, INTENT(IN) :: LENRUL, NDIM + DOUBLE PRECISION, DIMENSION(: ), INTENT(IN) :: A, B, WIDTH !(NDIM) + DOUBLE PRECISION, DIMENSION(:,:), INTENT(IN) :: W !(LENRUL,4), + DOUBLE PRECISION, DIMENSION(:,:), INTENT(INOUT) :: G !(NDIM,LENRUL), + DOUBLE PRECISION, DIMENSION(: ), INTENT(INOUT) :: CENTER, Z !(NDIM) + DOUBLE PRECISION, INTENT(OUT) :: RGNERT, BASEST + INTEGER :: I + DOUBLE PRECISION :: FSYMSM, RGNCMP, RGNVAL, + & RGNVOL, RGNCPT, RGNERR + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE +* +* Compute Volume and Center of Subregion +* +! print *,'BASRULE, ndim', ndim + RGNVOL = 1.d0 + DO I = 1,NDIM + RGNVOL = 2.d0*RGNVOL*WIDTH(I) + CENTER(I) = A(I) + WIDTH(I) + END DO + BASEST = 0.d0 + RGNERT = 0.d0 +* +* Compute basic rule and error +* + 10 RGNVAL = 0.d0 + RGNERR = 0.d0 + RGNCMP = 0.d0 + RGNCPT = 0.d0 + DO I = 1,LENRUL + FSYMSM = FULSUM(NDIM, CENTER, WIDTH, Z, G(:,I), FUNCTN) +* Basic Rule + RGNVAL = RGNVAL + W(I,1)*FSYMSM +* First comparison rule + RGNERR = RGNERR + W(I,2)*FSYMSM +* Second comparison rule + RGNCMP = RGNCMP + W(I,3)*FSYMSM +* Third Comparison rule + RGNCPT = RGNCPT + W(I,4)*FSYMSM + END DO +* +* Error estimation +* + RGNERR = SQRT(RGNCMP*RGNCMP + RGNERR*RGNERR) + RGNCMP = SQRT(RGNCPT*RGNCPT + RGNCMP*RGNCMP) + IF ( 4.d0*RGNERR .LT. RGNCMP ) RGNERR = 0.5d0*RGNERR + IF ( 2.d0*RGNERR .GT. RGNCMP ) RGNERR = MAX( RGNERR, RGNCMP ) + RGNERT = RGNERT + RGNVOL*RGNERR + BASEST = BASEST + RGNVOL*RGNVAL +* +* When subregion has more than one piece, determine next piece and +* loop back to apply basic rule. +* + DO I = 1,NDIM + CENTER(I) = CENTER(I) + 2.d0*WIDTH(I) + IF ( CENTER(I) .LT. B(I) ) GO TO 10 + CENTER(I) = A(I) + WIDTH(I) + END DO + RETURN + END SUBROUTINE BASRUL + DOUBLE PRECISION FUNCTION FULSUM(S, CENTER, HWIDTH, X, G, F) + IMPLICIT NONE +* +**** To compute fully symmetric basic rule sum +* + INTEGER, INTENT(IN) :: S + DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: CENTER, HWIDTH + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: X, G ! shape S + INTEGER :: IXCHNG, LXCHNG, I, L + DOUBLE PRECISION :: INTSUM, GL, GI + INTERFACE + DOUBLE PRECISION FUNCTION F(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION F + END INTERFACE +! print *,'FULSUM, S', S, shape(X) + FULSUM = 0.d0 +* +* Compute centrally symmetric sum for permutation of G +* + 10 INTSUM = 0.d0 + !DO I = 1,S + ! X(I) = CENTER(I) + G(I)*HWIDTH(I) + !END DO + X = CENTER + G*HWIDTH + 20 INTSUM = INTSUM + F(S,X) + DO I = 1,S + G(I) = -G(I) + X(I) = CENTER(I) + G(I)*HWIDTH(I) + IF ( G(I) .LT. 0.d0 ) GO TO 20 + END DO + FULSUM = FULSUM + INTSUM +* +* Find next distinct permuation of G and loop back for next sum +* + DO I = 2,S + IF ( G(I-1) .GT. G(I) ) THEN + GI = G(I) + IXCHNG = I - 1 + DO L = 1,(I-1)/2 + GL = G(L) + G(L) = G(I-L) + G(I-L) = GL + IF ( GL .LE. GI ) IXCHNG = IXCHNG - 1 + IF ( G(L) .GT. GI ) LXCHNG = L + END DO + IF ( G(IXCHNG) .LE. GI ) IXCHNG = LXCHNG + G(I) = G(IXCHNG) + G(IXCHNG) = GI + GO TO 10 + ENDIF + END DO +* +* End loop for permutations of G and associated sums +* +* Restore original order to G's +* + DO I = 1,S/2 + GI = G(I) + G(I) = G(S+1-I) + G(S+1-I) = GI + END DO + RETURN + END FUNCTION FULSUM + SUBROUTINE DIFFER(NDIM, A, B, WIDTH, Z, DIF, FUNCTN, + & DIVAXN, DIFCLS) + IMPLICIT NONE +* +* Compute fourth differences and subdivision axes +* + INTEGER, INTENT(IN) :: NDIM + INTEGER, INTENT(INOUT) :: DIVAXN + INTEGER, INTENT(OUT) :: DIFCLS + DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: A, B, WIDTH ! (NDIM) + DOUBLE PRECISION, DIMENSION(:),INTENT(OUT) :: Z, DIF ! (NDIM) + DOUBLE PRECISION :: FRTHDF, FUNCEN, WIDTHI + INTEGER :: I + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE +! print *,'DIFFER, ndim', ndim, shape(Z) + DIFCLS = 0 +! IF (abs(DIVAXN).GT.NDIM) PRINT *,'DIFFER DIVAXN1',DIVAXN + + DIVAXN = MOD(DIVAXN, NDIM ) + 1 + !print *,'DIFFER, divaxn2', divaxn + IF ( NDIM .GT. 1 ) THEN + !DO I = 1,NDIM + ! DIF(I) = 0.d0 + ! Z(I) = A(I) + WIDTH(I) + !END DO + DIF = 0.D0 + Z(1:NDIM) = A(1:NDIM) + WIDTH(1:NDIM) +! print *,'Z', Z + 10 FUNCEN = FUNCTN(NDIM, Z) + DO I = 1,NDIM + WIDTHI = 0.2d0*WIDTH(I) + FRTHDF = 6.d0*FUNCEN + Z(I) = Z(I) - 4.d0*WIDTHI + FRTHDF = FRTHDF + FUNCTN(NDIM,Z) + Z(I) = Z(I) + 2.d0*WIDTHI + FRTHDF = FRTHDF - 4.d0*FUNCTN(NDIM,Z) + Z(I) = Z(I) + 4.d0*WIDTHI + FRTHDF = FRTHDF - 4.d0*FUNCTN(NDIM,Z) + Z(I) = Z(I) + 2.d0*WIDTHI + FRTHDF = FRTHDF + FUNCTN(NDIM,Z) +* Do not include differences below roundoff +! IF ( FUNCEN + FRTHDF/8.d0 .NE. FUNCEN ) + IF ( FUNCEN + FRTHDF*0.125D0 .NE. FUNCEN ) + & DIF(I) = DIF(I) + ABS(FRTHDF)*WIDTH(I) + Z(I) = Z(I) - 4.d0*WIDTHI + END DO + DIFCLS = DIFCLS + 4*NDIM + 1 + DO I = 1,NDIM + Z(I) = Z(I) + 2.D0*WIDTH(I) + IF ( Z(I) .LT. B(I) ) GO TO 10 + Z(I) = A(I) + WIDTH(I) + END DO + !IF (abs(DIVAXN).GT.NDIM) PRINT *,'DIFFER DIVAXN',DIVAXN,shape(dif),ndim + DO I = 1,NDIM + IF ( DIF(DIVAXN) .LT. DIF(I) ) DIVAXN = I + END DO + ENDIF + RETURN + END SUBROUTINE DIFFER + SUBROUTINE TRESTR(POINTR, SBRGNS, PONTRS, RGNERS) + IMPLICIT NONE +****BEGIN PROLOGUE TRESTR +****PURPOSE TRESTR maintains a heap for subregions. +****DESCRIPTION TRESTR maintains a heap for subregions. +* The subregions are ordered according to the size of the +* greatest error estimates of each subregion (RGNERS). +* +* PARAMETERS +* +* POINTR Integer. +* The index for the subregion to be inserted in the heap. +* SBRGNS Integer. +* Number of subregions in the heap. +* PONTRS Real array of dimension SBRGNS. +* Used to store the indices for the greatest estimated errors +* for each subregion. +* RGNERS Real array of dimension SBRGNS. +* Used to store the greatest estimated errors for each +* subregion. +* +****ROUTINES CALLED NONE +****END PROLOGUE TRESTR +* +* Global variables. +* + INTEGER, INTENT(IN) ::POINTR, SBRGNS + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: PONTRS + DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: RGNERS +* +* Local variables. +* +* RGNERR Intermediate storage for the greatest error of a subregion. +* SUBRGN Position of child/parent subregion in the heap. +* SUBTMP Position of parent/child subregion in the heap. +* + INTEGER SUBRGN, SUBTMP + DOUBLE PRECISION RGNERR +* +****FIRST PROCESSING STATEMENT TRESTR +* +! print *,'TRESTR' + RGNERR = RGNERS(POINTR) + IF ( POINTR.EQ.NINT(PONTRS(1))) THEN +* +* Move the new subregion inserted at the top of the heap +* to its correct position in the heap. +* + SUBRGN = 1 + 10 SUBTMP = 2*SUBRGN + IF ( SUBTMP .LE. SBRGNS ) THEN + IF ( SUBTMP .NE. SBRGNS ) THEN +* +* Find maximum of left and right child. +* + IF ( RGNERS(NINT(PONTRS(SUBTMP))) .LT. + & RGNERS(NINT(PONTRS(SUBTMP+1))) ) SUBTMP = SUBTMP + 1 + ENDIF +* +* Compare maximum child with parent. +* If parent is maximum, then done. +* + IF ( RGNERR .LT. RGNERS(NINT(PONTRS(SUBTMP))) ) THEN +* +* Move the pointer at position subtmp up the heap. +* + PONTRS(SUBRGN) = PONTRS(SUBTMP) + SUBRGN = SUBTMP + GO TO 10 + ENDIF + ENDIF + ELSE +* +* Insert new subregion in the heap. +* + SUBRGN = SBRGNS + 20 SUBTMP = SUBRGN/2 + IF ( SUBTMP .GE. 1 ) THEN +* +* Compare child with parent. If parent is maximum, then done. +* + IF ( RGNERR .GT. RGNERS(NINT(PONTRS(SUBTMP))) ) THEN +* +* Move the pointer at position subtmp down the heap. +* + PONTRS(SUBRGN) = PONTRS(SUBTMP) + SUBRGN = SUBTMP + GO TO 20 + ENDIF + ENDIF + ENDIF + PONTRS(SUBRGN) = DBLE(POINTR) +* +****END TRESTR +* + RETURN + END SUBROUTINE TRESTR + END MODULE ADAPTMOD + + + +* RCRUDEMOD is a module containing two: +* +* Automatic Multidimensional Integration Subroutines +* +* AUTHOR: Alan Genz +* Department of Mathematics +* Washington State University +* Pulman, WA 99164-3113 +* Email: AlanGenz@wsu.edu +* +* Last Change: 5/15/98 +* revised pab 10.03.2000 +* - updated to f90 (i.e. changed to assumed shape arrays + changing integers to DBLE) +* - put it into a module +* - added ranlhmc +* +* RCRUDEMOD computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +! References: +! Alan Genz (1992) +! 'Numerical Computation of Multivariate Normal Probabilites' +! J. computational Graphical Statistics, Vol.1, pp 141--149 (RANMC) +! +! William H. Press, Saul Teukolsky, +! William T. Wetterling and Brian P. Flannery (1997) +! "Numerical recipes in Fortran 77", Vol. 1, pp 55-63 (SVDCMP,PYTHAG) +! +! Donald E. Knuth (1973) "The art of computer programming,", +! Vol. 3, pp 84- (sorting and searching) (SORTRE) + + +! You may initialize the random generator before you +! call RANLHMC or RANMC by the following lines: +! +! call random_seed(SIZE=seed_size) +! allocate(seed(seed_size)) +! call random_seed(GET=seed(1:seed_size)) ! get current seed +! seed(1)=seed1 ! change seed +! call random_seed(PUT=seed(1:seed_size)) +! deallocate(seed) + + + + MODULE RCRUDEMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: RANMC + INTEGER :: NDIMMAX + + INTERFACE RANMC + MODULE PROCEDURE RANMC + END INTERFACE + + INTERFACE RCRUDE + MODULE PROCEDURE RCRUDE + END INTERFACE + + INTERFACE SVDCMP + MODULE PROCEDURE SVDCMP + END INTERFACE + + INTERFACE PYTHAG + MODULE PROCEDURE PYTHAG + END INTERFACE + + INTERFACE SPEARCORR + MODULE PROCEDURE SPEARCORR + END INTERFACE + + INTERFACE SORTRE + MODULE PROCEDURE SORTRE + END INTERFACE + + INTERFACE BINSORT + MODULE PROCEDURE BINSORT + END INTERFACE + + INTERFACE SWAPRE + MODULE PROCEDURE SWAPRE + END INTERFACE + + INTERFACE SWAPINT + MODULE PROCEDURE SWAPINT + END INTERFACE + + PARAMETER (NDIMMAX=1000) + !-------------------------------- + CONTAINS + SUBROUTINE RANMC( N, MAXPTS, FUNCTN, ABSEPS, + & RELEPS, ERROR, VALUE, INFORM ) + IMPLICIT NONE +* +* A subroutine for computing multivariate integrals. +* This subroutine uses the Monte-Carlo algorithm given in the paper +* "Numerical Computation of Multivariate Normal Probabilities", in +* J. of Computational and Graphical Stat., 1(1992), pp. 141-149, by +* Alan Genz +* Department of Mathematics +* Washington State University +* Pullman, WA 99164-3113 +* Email : alangenz@wsu.edu +* +* This subroutine computes an approximation to the integral +* +* 1 1 1 +* I I ... I FUNCTN(NDIM,X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +*************** Parameters for RANMC ******************************** +* +****** Input Parameters +* +* N INTEGER, the number of variables. +* MAXPTS INTEGER, maximum number of function values allowed. This +* parameter can be used to limit the time taken. A +* sensible strategy is to start with MAXPTS = 1000*N, and then +* increase MAXPTS if ERROR is too large. +* ABSEPS REAL absolute error tolerance. +* RELEPS REAL relative error tolerance. +* +****** Output Parameters +* +* ERROR REAL estimated absolute error, with 99% confidence level. +* VALUE REAL estimated value for the integral +* INFORM INTEGER, termination status parameter: +* if INFORM = 0, normal completion with ERROR < EPS; +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to +* decrease ERROR; +* if INFORM = 2, N > 100 or N < 1. +* + INTEGER :: N, MAXPTS, MPT, INFORM, IVLS + DOUBLE PRECISION :: ABSEPS, RELEPS, ERROR, VALUE, EPS + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + INFORM=0 + IF ( N .GT. NDIMMAX .OR. N .LT. 1 ) THEN + INFORM = 2 + VALUE = 0.d0 + ERROR = 1.d0 + RETURN + ENDIF +* +* Call then Monte-Carlo integration subroutine +* + MPT = 25 + 10*N + CALL RCRUDE(N, MPT, FUNCTN, ERROR, VALUE, 0) + IVLS = MPT + 10 EPS = MAX( ABSEPS, RELEPS*ABS(VALUE) ) + IF ( ERROR .GT. EPS .AND. IVLS .LT. MAXPTS ) THEN + MPT = MAX( MIN( INT(MPT*(ERROR/(EPS))**2), + & MAXPTS-IVLS ), 10 ) + CALL RCRUDE(N, MPT, FUNCTN, ERROR, VALUE, 1) + IVLS = IVLS + MPT + GO TO 10 + ENDIF + IF ( ERROR. GT. EPS .AND. IVLS .GE. MAXPTS ) INFORM = 1 + !IF (INFORM.EQ.1) print *,'ranmc eps',EPS + END SUBROUTINE RANMC + SUBROUTINE RCRUDE(NDIM, MAXPTS, FUNCTN, ABSEST, FINEST, IR) + IMPLICIT NONE +* +* Crude Monte-Carlo Algorithm with simple antithetic variates +* and weighted results on restart +* + INTEGER :: NDIM, MAXPTS, M, IR, NPTS + DOUBLE PRECISION :: FINEST, ABSEST, FUN, + & VARSQR, VAREST, VARPRD, FINDIF, FINVAL + DOUBLE PRECISION, DIMENSION(NDIMMAX) :: X + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SAVE VAREST + IF ( IR .LE. 0 ) THEN + VAREST = 0.d0 + FINEST = 0.d0 + ENDIF + FINVAL = 0.d0 + VARSQR = 0.d0 + NPTS = INT(MAXPTS/2) + DO M = 1,NPTS + CALL random_number(X(1:NDIM)) + FUN = FUNCTN(NDIM, X(1:NDIM)) + X(1:NDIM) = 1.d0 - X(1:NDIM) + FUN = (FUNCTN(NDIM, X(1:NDIM)) + FUN )*0.5d0 + FINDIF = ( FUN - FINVAL )/DBLE(M) + VARSQR = DBLE( M - 2 )*VARSQR/DBLE(M) + FINDIF*FINDIF + FINVAL = FINVAL + FINDIF + END DO + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/(1.d0 + VARPRD) + IF ( VARSQR .GT. 0 ) VAREST = (1.d0 + VARPRD)/VARSQR + ABSEST = 3.d0*SQRT( VARSQR/( 1.d0 + VARPRD ) ) + MAXPTS=2*NPTS + END SUBROUTINE RCRUDE + + SUBROUTINE BINSORT(indices,rarray) + IMPLICIT NONE + TYPE ENTRY + DOUBLE PRECISION, POINTER :: VAL + INTEGER :: IX + TYPE( ENTRY), POINTER :: NEXT + END TYPE ENTRY + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: rarray + INTEGER, DIMENSION(:), INTENT(inout) :: indices + DOUBLE PRECISION, DIMENSION(SIZE(rarray)),TARGET :: A + TYPE(ENTRY), DIMENSION(:), ALLOCATABLE,TARGET :: B + TYPE(ENTRY), POINTER :: FIRST,CURRENT + +! local variables + INTEGER :: i,im,n + DOUBLE PRECISION :: mx, mn +! Bucket sort: +! This subroutine sorts the indices according to rarray. The Assumption is that rarray consists of +! uniformly distributed numbers. If the assumption holds it runs in O(n) time + n=size(indices) + IF (n.EQ.1) RETURN + !indices=(/(i,i=1,n)/) + mx = MAXVAL(rarray) + mn = MINVAL(rarray) + A=(rarray-mn)/(mx-mn) ! make sure the numbers are between 0 and 1 + + !print *,'binsort ind=',indices + !print *,'binsort rar=',rarray + !print *,'binsort rar=',A + ALLOCATE(B(0:n-1)) + !IF (ASSOCIATED(B(0)%VAL)) print *,'binsort B(0)=',B(0)%VAL + DO I=0,n-1 + NULLIFY(B(I)%VAL) + NULLIFY(B(I)%NEXT) + ENDDO + + DO I=1,n + IM=min(ABS(FLOOR(n*A(I))),N-1) + IF (ASSOCIATED(B(IM)%VAL)) THEN ! insert the new item by insertion sorting + ALLOCATE(CURRENT) + IF (A(I).LT.B(IM)%VAL) THEN + CURRENT = B(IM) + B(IM) = ENTRY(A(I),indices(I),CURRENT) + ELSE + FIRST => B(IM) + DO WHILE(ASSOCIATED(FIRST%NEXT).AND. + & FIRST%NEXT%VAL.LT.A(I)) + FIRST=FIRST%NEXT + END DO + + CURRENT = ENTRY(A(I),indices(I),FIRST%NEXT) + FIRST%NEXT => CURRENT + ENDIF + ELSE + B(IM)%VAL => A(I) + B(IM)%IX = indices(I) + ENDIF + END DO + IM=0 + I=0 + DO WHILE (IM.LT.N .AND. I.LT.N) + IF (ASSOCIATED(B(I)%VAL)) THEN + IM=IM+1 + indices(IM)=B(I)%IX + DO WHILE (ASSOCIATED(B(I)%NEXT)) + CURRENT => B(I)%NEXT + B(I)%NEXT => B(I)%NEXT%NEXT + IM=IM+1 + indices(IM)=CURRENT%IX + DEALLOCATE(CURRENT) + END DO + ENDIF + I=I+1 + END DO + DEALLOCATE(B) + !print *,'binsort ind=',indices + RETURN + END SUBROUTINE BINSORT + + SUBROUTINE SORTRE(indices,rarray) + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:), INTENT(inout) :: rarray + INTEGER, DIMENSION(:), INTENT(inout) :: indices +! local variables + INTEGER :: i,im,j,k,m,n + +! diminishing increment sort as described by +! Donald E. Knuth (1973) "The art of computer programming,", +! Vol. 3, pp 84- (sorting and searching) + n=size(indices) + ! if the below is commented out then assume indices are already initialized + !indices=(/(i,i=1,n)/) +!100 continue + if (n.le.1) goto 800 + m=1 +200 continue + m=m+m + if (m.lt.n) goto 200 + m=m-1 +300 continue + m=m/2 + if (m.eq.0) goto 800 + k=n-m + j=1 +400 continue + i=j +500 continue + im=i+m + if (rarray(i).gt.rarray(im)) goto 700 +600 continue + j=j+1 + if (j.gt.k) goto 300 + goto 400 +700 continue + CALL swapre(rarray(i),rarray(im)) + CALL swapint(indices(i),indices(im)) + i=i-m + if (i.lt.1) goto 600 + goto 500 +800 continue + RETURN + END SUBROUTINE SORTRE + + SUBROUTINE swapRe(m,n) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(inout) :: m,n + DOUBLE PRECISION :: tmp + tmp=m + m=n + n=tmp + END SUBROUTINE swapRe + + SUBROUTINE swapint(m,n) + IMPLICIT NONE + INTEGER, INTENT(inout) :: m,n + INTEGER :: tmp + tmp=m + m=n + n=tmp + END SUBROUTINE swapint +!______________________________________________________ + + SUBROUTINE spearcorr(C,D) + IMPLICIT NONE + DOUBLE PRECISION, dimension(:,:), INTENT(out) :: C + integer, dimension(:,:),intent(in) :: D ! rank matrix + double precision, dimension(:,:),allocatable :: DD !,DDT + double precision, dimension(:),allocatable :: tmp + INTEGER :: N,M,ix,iy + DOUBLE PRECISION :: dN +! this procedure calculates spearmans correlation coefficient +! between the columns of D + + N=size(D,dim=1);M=SIZE(D,dim=2) + dN=dble(N) + allocate(DD(1:N,1:M)) + DD=dble(D) +! if (.false.) then ! old call +! allocate(DDt(1:M,1:N)) +! DDT=transpose(DD) +! C = matmul(DDt,DD)*12.d0/(dn*(dn*dn-1.d0)) +! C=(C-3.d0*(dn+1.d0)/(dn-1.d0)) +! deallocate(DDT) +! else + allocate(tmp(1:N)) + do ix=1, m-1 + do iy=ix+1,m + tmp= DD(1:N,ix)-DD(1:N,iy) + C(ix,iy)=1.d0-6.d0*SUM(tmp*tmp)/dn/(dn*dn-1.d0) + C(iy,ix)=C(ix,iy) + enddo + C(ix,ix) = 1.d0 + enddo + C(m,m)=1.d0 + deallocate(tmp) +! endif + deallocate(DD) + return + END SUBROUTINE spearcorr + + SUBROUTINE SVDCMP(A,W,V) + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(out) :: W + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: A + DOUBLE PRECISION, DIMENSION(:,:), INTENT(OUT) :: V +!LOCAL VARIABLES + DOUBLE PRECISION, DIMENSION(:), allocatable :: RV1 + DOUBLE PRECISION :: G,S,SCALE,ANORM,F,H,C,X,Y,Z + INTEGER M,N,NM,I,J,K,L,ITS + + !PARAMETER (NMAX=100) +C Maximum anticipated values of N + +C DIMENSION A(MP,NP),W(NP),V(NP,NP),RV1(NMAX) +C Given a matrix A, with logical dimensions M by N and physical +C dimensions MP by NP, this routine computes its singular value +C decomposition, A=U.W.V^T, see Numerical Recipes, by Press W.,H. +C Flannery, B. P., Teukolsky S.A. and Vetterling W., T. Cambrige +C University Press 1986, Chapter 2.9. The matrix U replaces A on +C output. The diagonal matrix of singular values W is output as a vector +C W. The matrix V (not the transpose V^T) is output as V. M must be +C greater or equal to N; if it is smaller, then A should be filled up +C to square with zero rows. +C + + M=size(A,dim=1);N=size(A,dim=2) + !Mp=M;Np=N + allocate(RV1(1:N)) + IF (M.LT.N) then +! Print *,'SVDCMP: You must augment A with extra zero rows.' + endif +C Householder reduction to bidiagonal form + G=0.d0 + SCALE=0.d0 + ANORM=0.d0 + DO 25 I=1,N + L=I+1 + RV1(I)=SCALE*G + G=0.D0 + S=0.D0 + SCALE=0.D0 + IF (I.LE.M) THEN + DO K=I,M + SCALE=SCALE+ABS(A(K,I)) + enddo + IF (SCALE.NE.0.D0) THEN + DO K=I,M + A(K,I)=A(K,I)/SCALE + S=S+A(K,I)*A(K,I) + enddo + F=A(I,I) + G=-SIGN(SQRT(S),F) + H=F*G-S + A(I,I)=F-G + IF (I.NE.N) THEN + DO J=L,N + S=0.D0 + DO K=I,M + S=S+A(K,I)*A(K,J) + enddo + F=S/H + DO K=I,M + A(K,J)=A(K,J)+F*A(K,I) + enddo + enddo + ENDIF + DO K=I,M + A(K,I)=SCALE*A(K,I) + enddo + ENDIF + ENDIF + W(I)=SCALE*G + G=0.d0 + S=0.d0 + SCALE=0.d0 + IF ((I.LE.M).AND.(I.NE.N)) THEN + DO K=L,N + SCALE=SCALE+ABS(A(I,K)) + enddo + IF (SCALE.NE.0.0) THEN + DO K=L,N + A(I,K)=A(I,K)/SCALE + S=S+A(I,K)*A(I,K) + enddo + F=A(I,L) + G=-SIGN(SQRT(S),F) + H=F*G-S + A(I,L)=F-G + DO K=L,N + RV1(K)=A(I,K)/H + enddo + IF (I.NE.M) THEN + DO J=L,M + S=0.D0 + DO K=L,N + S=S+A(J,K)*A(I,K) + enddo + DO K=L,N + A(J,K)=A(J,K)+S*RV1(K) + enddo + enddo + ENDIF + DO K=L,N + A(I,K)=SCALE*A(I,K) + enddo + ENDIF + ENDIF + ANORM=MAX(ANORM,(ABS(W(I))+ABS(RV1(I)))) +25 CONTINUE +c print *,'25' +C Accumulation of right-hand transformations. + DO I=N,1,-1 + IF (I.LT.N) THEN + IF (G.NE.0.d0) THEN + DO J=L,N + V(J,I)=(A(I,J)/A(I,L))/G +C Double division to avoid possible underflow. + enddo + DO J=L,N + S=0.d0 + DO K=L,N + S=S+A(I,K)*V(K,J) + enddo + DO K=L,N + V(K,J)=V(K,J)+S*V(K,I) + enddo + enddo + ENDIF + DO J=L,N + V(I,J)=0.d0 + V(J,I)=0.d0 + enddo + ENDIF + V(I,I)=1.d0 + G=RV1(I) + L=I + enddo +c print *,'32' + +C Accumulation of the left-hang transformation + DO 39 I=N,1,-1 + L=I+1 + G=W(I) + IF (I.LT.N) THEN + DO J=L,N + A(I,J)=0.d0 + enddo + ENDIF + IF (G.NE.0.d0) THEN + G=1.d0/G + IF (I.NE.N) THEN + DO J=L,N + S=0.d0 + DO K=L,M + S=S+A(K,I)*A(K,J) + enddo + F=(S/A(I,I))*G + DO K=I,M + A(K,J)=A(K,J)+F*A(K,I) + enddo + enddo + ENDIF + DO J=I,M + A(J,I)=A(J,I)*G + enddo + ELSE + DO J=I,M + A(J,I)=0.d0 + enddo + ENDIF + A(I,I)=A(I,I)+1.d0 +39 CONTINUE +c print *,'39' + +C Diagonalization of the bidiagonal form +C Loop over singular values + DO 49 K=N,1,-1 +C Loop allowed iterations + DO 48 ITS=1,30 +C Test for spliting + DO L=K,1,-1 + NM=L-1 +C Note that RV1(1) is always zero +! old call which may cause inconsistent results +! IF((ABS(RV1(L))+ANORM).EQ.ANORM) GO TO 2 +! IF((ABS(W(NM))+ANORM).EQ.ANORM) GO TO 1 +! NEW CALL + IF (((ABS(RV1(L))+ANORM).GE.NEAREST(ANORM,-1.d0)).AND. + & ((ABS(RV1(L))+ANORM).LE.NEAREST(ANORM,1.d0)) ) GO TO 2 + IF (((ABS(W(NM))+ANORM).GE.NEAREST(ANORM,-1.d0)).AND. + & ((ABS(W(NM))+ANORM).LE.NEAREST(ANORM,1.d0)) ) GO TO 1 + + enddo +c print *,'41' +1 C=0.d0 + S=1.d0 + DO I=L,K + F=S*RV1(I) +! old call which may cause inconsistent results + + IF (((ABS(F)+ANORM).LT.ANORM).OR. + & ((ABS(F)+ANORM).GT.ANORM)) THEN + G=W(I) + H=SQRT(F*F+G*G) + W(I)=H + H=1.D0/H + C= (G*H) + S=-(F*H) + DO J=1,M + Y=A(J,NM) + Z=A(J,I) + A(J,NM)=(Y*C)+(Z*S) + A(J,I)=-(Y*S)+(Z*C) + enddo + ENDIF + enddo +c print *,'43' +2 Z=W(K) + IF (L.EQ.K) THEN +C Convergence + IF (Z.LT.0.d0) THEN +C Singular values are made nonnegative + W(K)=-Z + DO J=1,N + V(J,K)=-V(J,K) + enddo + ENDIF + GO TO 3 + ENDIF + IF (ITS.EQ.30) then +! print *,'SVDCMP: No convergence in 30 iterations' + endif + X=W(L) + NM=K-1 + Y=W(NM) + G=RV1(NM) + H=RV1(K) + F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2.d0*H*Y) + G=SQRT(F*F+1.D0) + F=((X-Z)*(X+Z)+H*((Y/(F+SIGN(G,F)))-H))/X +C Next QR transformation + C=1.d0 + S=1.d0 + DO 47 J=L,NM + I=J+1 + G=RV1(I) + Y=W(I) + H=S*G + G=C*G + Z=SQRT(F*F+H*H) + RV1(J)=Z + C=F/Z + S=H/Z + F= (X*C)+(G*S) + G=-(X*S)+(G*C) + H=Y*S + Y=Y*C + DO NM=1,N + X=V(NM,J) + Z=V(NM,I) + V(NM,J)= (X*C)+(Z*S) + V(NM,I)=-(X*S)+(Z*C) + enddo +c print *,'45',F,H + Z=pythag(F,H) + W(J)=Z +C Rotation can be arbitrary if Z=0. + IF (Z.NE.0.d0) THEN +c print *,1/Z + Z=1.d0/Z +c print *,'*' + C=F*Z + S=H*Z + ENDIF + F= (C*G)+(S*Y) + X=-(S*G)+(C*Y) + DO NM=1,M + Y=A(NM,J) + Z=A(NM,I) + A(NM,J)= (Y*C)+(Z*S) + A(NM,I)=-(Y*S)+(Z*C) + enddo +c print *,'46' + +47 CONTINUE +c print *,'47' + RV1(L)=0.D0 + RV1(K)=F + W(K)=X +48 CONTINUE +3 CONTINUE +49 CONTINUE +c print *,'49' + deallocate(RV1) + RETURN + END SUBROUTINE SVDCMP + + FUNCTION pythag(a,b) RESULT (VALUE) + DOUBLE PRECISION, INTENT(IN) :: a,b + DOUBLE PRECISION :: VALUE + DOUBLE PRECISION :: absa,absb + absa=abs(a) + absb=abs(b) + IF (absa.GT.absb) THEN + VALUE=absa*SQRT(1.d0+(absb/absa)**2) + ELSE + IF (absb.EQ.0) THEN + VALUE=0.D0 + ELSE + VALUE=absb*SQRT(1.d0+(absa/absb)**2) + ENDIF + ENDIF + RETURN + END FUNCTION PYTHAG + END MODULE RCRUDEMOD + + + + + + + + +* KRBVRCMOD is a module containing a: +* +* Automatic Multidimensional Integration Subroutine +* +* AUTHOR: Alan Genz +* Department of Mathematics +* Washington State University +* Pulman, WA 99164-3113 +* Email: AlanGenz@wsu.edu +* +* Last Change: 5/15/98 +* revised pab 10.03.2000 +* - updated to f90 (i.e. changed to assumed shape arrays + changing integers to DBLE) +* - put it into a module +* +* KRBVRC computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +* +* KRBVRC uses randomized Korobov rules for the first 20 variables. +* The primary references are +* "Randomization of Number Theoretic Methods for Multiple Integration" +* R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14, +* and +* "Optimal Parameters for Multidimensional Integration", +* P. Keast, SIAM J Numer Anal, 10, pp.831-838. +* If there are more than 20 variables, the remaining variables are +* integrated using Richtmeyer rules. A reference is +* "Methods of Numerical Integration", P.J. Davis and P. Rabinowitz, +* Academic Press, 1984, pp. 482-483. +* +*************** Parameters for KRBVRC ******************************************** +****** Input parameters +* NDIM Number of variables, must exceed 1, but not exceed 100 +* MINVLS Integer minimum number of function evaluations allowed. +* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the +* routine assumes a previous call has been made with +* the same integrand and continues that calculation. +* MAXVLS Integer maximum number of function evaluations allowed. +* FUNCTN EXTERNALly declared user defined function to be integrated. +* It must have parameters (NDIM,Z), where Z is a real array +* of dimension NDIM. +* +* ABSEPS Required absolute accuracy. +* RELEPS Required relative accuracy. +* +****** Output parameters +* +* MINVLS Actual number of function evaluations used. +* ABSERR Estimated absolute accuracy of FINEST. +* FINEST Estimated value of integral. +* INFORM INFORM = 0 for normal exit, when +* ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) +* and +* INTVLS <= MAXCLS. +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with +* estimated absolute accuracy ABSERR. +************************************************************************ +! William H. Press, Saul Teukolsky, +! William T. Wetterling and Brian P. Flannery (1997) +! "Numerical recipes in Fortran 77", Vol. 1, pp 299--305 (SOBSEQ) + +! You may initialize the random generator before you +! call KRBVRC by the following lines: +! +! call random_seed(SIZE=seed_size) +! allocate(seed(seed_size)) +! call random_seed(GET=seed(1:seed_size)) ! get current seed +! seed(1)=seed1 ! change seed +! call random_seed(PUT=seed(1:seed_size)) +! deallocate(seed) +! + MODULE KRBVRCMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: KRBVRC +! + INTERFACE KRBVRC + MODULE PROCEDURE KRBVRC + END INTERFACE +! + INTERFACE DKSMRC + MODULE PROCEDURE DKSMRC + END INTERFACE +! + INTERFACE DKRCHT + MODULE PROCEDURE DKRCHT + END INTERFACE + + INTERFACE SOBSEQ + MODULE PROCEDURE SOBSEQ + END INTERFACE +! + CONTAINS + +!*********************************************************** +! MAIN INTEGRATION ROUTINE KRBVRC +!*********************************************************** + + SUBROUTINE KRBVRC( NDIM, MINVLS, MAXVLS, FUNCTN, ABSEPS, RELEPS, + & ABSERR, FINEST, INFORM ) +* +* Automatic Multidimensional Integration Subroutine +* +* AUTHOR: Alan Genz +* Department of Mathematics +* Washington State University +* Pulman, WA 99164-3113 +* Email: AlanGenz@wsu.edu +* +* Last Change: 5/15/98 +* +* KRBVRC computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +* +* KRBVRC uses randomized Korobov rules for the first 20 variables. +* The primary references are +* "Randomization of Number Theoretic Methods for Multiple Integration" +* R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14, +* and +* "Optimal Parameters for Multidimensional Integration", +* P. Keast, SIAM J Numer Anal, 10, pp.831-838. +* If there are more than 20 variables, the remaining variables are +* integrated using Richtmeyer rules. A reference is +* "Methods of Numerical Integration", P.J. Davis and P. Rabinowitz, +* Academic Press, 1984, pp. 482-483. +* +*************** Parameters ******************************************** +****** Input parameters +* NDIM Number of variables, must exceed 1, but not exceed 100 +* MINVLS Integer minimum number of function evaluations allowed. +* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the +* routine assumes a previous call has been made with +* the same integrand and continues that calculation. +* MAXVLS Integer maximum number of function evaluations allowed. +* FUNCTN EXTERNALly declared user defined function to be integrated. +* It must have parameters (NDIM,Z), where Z is a real array +* of dimension NDIM. +* +* ABSEPS Required absolute accuracy. +* RELEPS Required relative accuracy. +****** Output parameters +* MINVLS Actual number of function evaluations used. +* ABSERR Estimated absolute accuracy of FINEST. +* FINEST Estimated value of integral. +* INFORM INFORM = 0 for normal exit, when +* ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) +* and +* INTVLS <= MAXCLS. +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with +* estimated absolute accuracy ABSERR. +* INFORM = 2 If NDIM>100 or NDIM<1 +************************************************************************ + INTEGER, INTENT(IN) :: NDIM, MAXVLS + INTEGER, INTENT(INOUT) :: MINVLS + INTEGER, INTENT(OUT) :: INFORM + DOUBLE PRECISION, INTENT(IN) :: ABSEPS, RELEPS + DOUBLE PRECISION, INTENT(OUT) :: FINEST, ABSERR + INTEGER :: NP,PLIM,NLIM,KLIM,KLIMI,SAMPLS,I,INTVLS,MINSMP,NK + PARAMETER ( PLIM = 25, NLIM = 100, KLIM = 20, MINSMP = 8 ) + INTEGER , DIMENSION(PLIM) :: P + INTEGER , DIMENSION(PLIM,KLIM-1) :: C + DOUBLE PRECISION :: DIFINT,FINVAL,VARSQR,VAREST,VARPRD,VALUE + DOUBLE PRECISION, PARAMETER :: ONE = 1.D0 , ZERO = 0.D0 + DOUBLE PRECISION, DIMENSION(2*NLIM) :: X = 0.d0 + DOUBLE PRECISION, DIMENSION(KLIM ) :: VK = 0.d0 + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + DATA P / 31, 47, 73, 113, 173, 263, 397, 593, 907, 1361, + & 2053, 3079, 4621, 6947, 10427, 15641, 23473, 35221, + & 52837, 79259, 118891, 178349, 267523, 401287, 601943/ + DATA (C( 1,I), I = 1, 19)/ 12, 9, 9, + & 13, 12, 12, 12, 12, 12, 12, 12, + & 12, 3, 3, 3, 12, 7, 7, 12/ + DATA (C( 2,I), I = 1, 19)/ 13, 11, 17, + & 10, 15, 15, 15, 15, 15, 15, 22, + & 15, 15, 6, 6, 6, 15, 15, 9/ + DATA (C( 3,I), I = 1, 19)/ 27, 28, 10, + & 11, 11, 20, 11, 11, 28, 13, 13, + & 28, 13, 13, 13, 14, 14, 14, 14/ + DATA (C( 4,I), I = 1, 19)/ 35, 27, 27, + & 36, 22, 29, 29, 20, 45, 5, 5, + & 5, 21, 21, 21, 21, 21, 21, 21/ + DATA (C( 5,I), I = 1, 19)/ 64, 66, 28, + & 28, 44, 44, 55, 67, 10, 10, 10, + & 10, 10, 10, 38, 38, 10, 10, 10/ + DATA (C( 6,I), I = 1, 19)/ 111, 42, 54, + & 118, 20, 31, 31, 72, 17, 94, 14, + & 14, 11, 14, 14, 14, 94, 10, 10/ + DATA (C( 7,I), I = 1, 19)/ 163, 154, 83, + & 43, 82, 92, 150, 59, 76, 76, 47, + & 11, 11, 100, 131, 116, 116, 116, 116/ + DATA (C( 8,I), I = 1, 19)/ 246, 189, 242, + & 102, 250, 250, 102, 250, 280, 118, 196, + & 118, 191, 215, 121, 121, 49, 49, 49/ + DATA (C( 9,I), I = 1, 19)/ 347, 402, 322, + & 418, 215, 220, 339, 339, 339, 337, 218, + & 315, 315, 315, 315, 167, 167, 167, 167/ + DATA (C(10,I), I = 1, 19)/ 505, 220, 601, + & 644, 612, 160, 206, 206, 206, 422, 134, + & 518, 134, 134, 518, 652, 382, 206, 158/ + DATA (C(11,I), I = 1, 19)/ 794, 325, 960, + & 528, 247, 247, 338, 366, 847, 753, 753, + & 236, 334, 334, 461, 711, 652, 381, 381/ + DATA (C(12,I), I = 1, 19)/ 1189, 888, 259, + & 1082, 725, 811, 636, 965, 497, 497, 1490, + & 1490, 392, 1291, 508, 508, 1291, 1291, 508/ + DATA (C(13,I), I = 1, 19)/ 1763, 1018, 1500, + & 432, 1332, 2203, 126, 2240, 1719, 1284, 878, + & 1983, 266, 266, 266, 266, 747, 747, 127/ + DATA (C(14,I), I = 1, 19)/ 2872, 3233, 1534, + & 2941, 2910, 393, 1796, 919, 446, 919, 919, + & 1117, 103, 103, 103, 103, 103, 103, 103/ + DATA (C(15,I), I = 1, 19)/ 4309, 3758, 4034, + & 1963, 730, 642, 1502, 2246, 3834, 1511, 1102, + & 1102, 1522, 1522, 3427, 3427, 3928, 915, 915/ + DATA (C(16,I), I = 1, 19)/ 6610, 6977, 1686, + & 3819, 2314, 5647, 3953, 3614, 5115, 423, 423, + & 5408, 7426, 423, 423, 487, 6227, 2660, 6227/ + DATA (C(17,I), I = 1, 19)/ 9861, 3647, 4073, + & 2535, 3430, 9865, 2830, 9328, 4320, 5913, 10365, + & 8272, 3706, 6186, 7806, 7806, 7806, 8610, 2563/ + DATA (C(18,I), I = 1, 19)/ 10327, 7582, 7124, + & 8214, 9600, 10271, 10193, 10800, 9086, 2365, 4409, + & 13812, 5661, 9344, 9344, 10362, 9344, 9344, 8585/ + DATA (C(19,I), I = 1, 19)/ 19540, 19926, 11582, + & 11113, 24585, 8726, 17218, 419, 4918, 4918, 4918, + & 15701, 17710, 4037, 4037, 15808, 11401, 19398, 25950/ + DATA (C(20,I), I = 1, 19)/ 34566, 9579, 12654, + & 26856, 37873, 38806, 29501, 17271, 3663, 10763, 18955, + & 1298, 26560, 17132, 17132, 4753, 4753, 8713, 18624/ + DATA (C(21,I), I = 1, 19)/ 31929, 49367, 10982, + & 3527, 27066, 13226, 56010, 18911, 40574, 20767, 20767, + & 9686, 47603, 47603, 11736, 11736, 41601, 12888, 32948/ + DATA (C(22,I), I = 1, 19)/ 40701, 69087, 77576, + & 64590, 39397, 33179, 10858, 38935, 43129, 35468, 35468, + & 2196, 61518, 61518, 27945, 70975, 70975, 86478, 86478/ + DATA (C(23,I), I = 1, 19)/ 103650, 125480, 59978, + & 46875, 77172, 83021, 126904, 14541, 56299, 43636, 11655, + & 52680, 88549, 29804, 101894, 113675, 48040, 113675, 34987/ + DATA (C(24,I), I = 1, 19)/ 165843, 90647, 59925, + & 189541, 67647, 74795, 68365, 167485, 143918, 74912, 167289, + & 75517, 8148, 172106, 126159, 35867, 35867, 35867, 121694/ + DATA (C(25,I), I = 1, 19)/ 130365, 236711, 110235, + & 125699, 56483, 93735, 234469, 60549, 1291, 93937, 245291, + & 196061, 258647, 162489, 176631, 204895, 73353, 172319, 28881/ +* + SAVE P, C, SAMPLS, NP, VAREST + IF ( NDIM .GT. NLIM .OR. NDIM .LT. 1 ) THEN + INFORM = 2 + FINEST = ZERO + ABSERR = ONE + RETURN + ENDIF + INFORM = 1 + INTVLS = 0 + KLIMI = KLIM + IF ( MINVLS .GE. 0 ) THEN + FINEST = ZERO + VAREST = ZERO + SAMPLS = MINSMP + DO I = 1, PLIM + NP = I + IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10 + END DO + SAMPLS = MAX( MINSMP, MINVLS/( 2*P(NP) ) ) + ENDIF + 10 VK(1) = ONE/DBLE(P(NP)) + NK = MIN( NDIM, KLIM ) + DO I = 2, NK + VK(I) = MOD(DBLE(C(NP,NK-1))*VK(I-1), ONE ) + END DO + FINVAL = ZERO + VARSQR = ZERO + DO I = 1, SAMPLS + CALL DKSMRC( NDIM, KLIMI, VALUE, P(NP), VK, FUNCTN, X ) + DIFINT = ( VALUE - FINVAL )/DBLE(I) + FINVAL = FINVAL + DIFINT + VARSQR = DBLE( I - 2 )*VARSQR/DBLE(I) + DIFINT*DIFINT + END DO + INTVLS = INTVLS + 2*SAMPLS*P(NP) + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/( ONE + VARPRD ) + IF ( VARSQR .GT. ZERO ) VAREST = ( ONE + VARPRD )/VARSQR + ABSERR = 3.d0*SQRT( VARSQR/( ONE + VARPRD ) ) + IF ( ABSERR .GT. MAX( ABSEPS, ABS(FINEST)*RELEPS ) ) THEN + IF ( NP .LT. PLIM ) THEN + NP = NP + 1 + ELSE + SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) + SAMPLS = MAX( MINSMP, SAMPLS ) + ENDIF + IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10 + ELSE + INFORM = 0 + ENDIF + MINVLS = INTVLS +* + END SUBROUTINE KRBVRC +* + SUBROUTINE DKSMRC( NDIM, KLIM, SUMKRO, PRIME, VK, FUNCTN, X ) + INTEGER, INTENT(IN):: NDIM, KLIM, PRIME + DOUBLE PRECISION, INTENT(OUT) :: SUMKRO + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: VK,X + INTEGER :: K, J, JP, NK + DOUBLE PRECISION :: ONE, XT, MVNUNI + PARAMETER ( ONE = 1.d0 ) + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SUMKRO = 0.d0 +* +* Randomize Variable Order +* + NK = MIN( NDIM, KLIM ) + DO J = 1, NK-1 + CALL random_number(MVNUNI) +! JP = J + NINT(MVNUNI*DBLE( NK + 1 - J )) + JP = J + NINT(MVNUNI*DBLE( NK - J )) ! pab 21.11.2000 + XT = VK(J) + VK(J) = VK(JP) + VK(JP) = XT + END DO +* +* Determine Random Shifts for each Variable +* + CALL random_number(X(NDIM+1:2*NDIM)) +* +* Compute periodized and symmetrized lattice rule sum +* + DO K = 1, PRIME + X(1:NK) = MOD( DBLE(K)*VK(1:NK), ONE ) + IF ( NDIM. GT. KLIM ) CALL DKRCHT(KLIM, NDIM-KLIM, X) !X(KLIM+1:NDIM) ) + DO J = 1, NDIM + XT = X(J) + X(NDIM+J) + IF ( XT .GT. ONE ) XT = XT - 1.d0 + X(J) = ABS( 2.d0*XT - 1.d0 ) + END DO + SUMKRO = SUMKRO+(FUNCTN(NDIM,X)-SUMKRO)/DBLE(2*K-1) + X(1:NDIM) = 1.d0 - X(1:NDIM) + SUMKRO = SUMKRO+(FUNCTN(NDIM,X)-SUMKRO)/DBLE(2*K) + END DO + END SUBROUTINE DKSMRC +* + SUBROUTINE DKRCHT(KLIM, S, QUASI ) +* +* This subroutine generates a new quasi-random Richtmeyer vector. +* A reference is +* "Methods of Numerical Integration", P.J. Davis and P. Rabinowitz, +* Academic Press, 1984, pp. 482-483. +* +* INPUTS: +* KLIM - Lower start value +* S - the number of dimensions; +* DKRCHT is initialized for each new S or S < 1. +* +* OUTPUTS: +* QUASI - a new quasi-random S-vector +* +* revised pab 28.05.2003 +* - added klim in order to avoid copying of arrays in and out +* revised pab 01.11.1999 +* updated to fortran 90 + INTEGER, INTENT(IN) :: S,KLIM + DOUBLE PRECISION , DIMENSION(:) :: QUASI + INTEGER :: MXDIM, MXHSUM, B + PARAMETER ( MXDIM = 80, MXHSUM = 48, B = 2 ) + INTEGER :: HISUM, I, OLDS + DOUBLE PRECISION , DIMENSION(MXDIM) :: PSQT + INTEGER, DIMENSION(MXDIM ) :: PRIME + INTEGER, DIMENSION(0:MXHSUM) :: N + + + DOUBLE PRECISION :: ONE, RN + PARAMETER ( ONE = 1.D0 ) + PARAMETER ( PRIME = (/ + & 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, + & 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, + & 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, + & 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, + & 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, + & 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, + & 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, + & 353, 359, 367, 373, 379, 383, 389, 397, 401, 409/)) +* Primes to continue +* 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 +* 503 509 521 523 541 547 557 563 569 571 577 587 593 599 + SAVE OLDS, PSQT, HISUM, N + DATA OLDS / 0 / + IF ( S .NE. OLDS .OR. S .LT. 1 ) THEN + OLDS = ABS(S) ! pab 14.03.2000 + N(0) = 0 + HISUM = 0 + DO I = 1, OLDS + RN = DBLE(PRIME(I)) + PSQT(I) = SQRT( RN ) + END DO + END IF + DO I = 0, HISUM + N(I) = N(I) + 1 + IF ( N(I) .LT. B ) GO TO 10 + N(I) = 0 + END DO + HISUM = HISUM + 1 + IF ( HISUM .GT. MXHSUM ) HISUM = 0 + N(HISUM) = 1 + 10 RN = 0.d0 + DO I = HISUM, 0, -1 + RN = DBLE(N(I)) + DBLE(B)*RN + END DO + DO I = 1, OLDS + QUASI(KLIM+I) = MOD( RN*PSQT(I), ONE ) + END DO + END SUBROUTINE DKRCHT +! +! SOBSEQ is not taken in to use: +! + SUBROUTINE SOBSEQ(N,X) + IMPLICIT NONE + DOUBLE PRECISION,DIMENSION(:), INTENT(OUT):: X + INTEGER, INTENT(IN) :: N + INTEGER,PARAMETER ::MAXBIT=30,MAXDIM=6 + INTEGER :: I,IM, IN,IPP,J,K,L, OLDN + INTEGER, DIMENSION(MAXDIM) :: IP,MDEG,IX + INTEGER, DIMENSION(MAXDIM,MAXBIT) ::IU + INTEGER, DIMENSION(MAXDIM*MAXBIT) ::IV + DOUBLE PRECISION :: FAC + SAVE IP,MDEG,IX,IV,IN,FAC, OLDN + DATA OLDN / 0 / + DATA IP /0,1,1,2,1,4 /, MDEG /1,2,3,3,4,4 / + DATA IX /0,0,0,0,0,0 / + DATA IV /1,1,1,1,1,1,3,1,3,3,1,1,5, + & 7,7,3,3,5,15,11,5,15,13,9,156*0/ + !(MAXDIM*MAXBIT-24) + EQUIVALENCE (IV,IU) ! to allow both 1D and 2D addressing +! returns sobols sequence of quasi-random numbers between 0 1 +! When n is new or is negative, internally initializes a set of MAXBIT +! direction numbers for each of MAXDIM different sobol +! sequences. When n is positive (but < MAXDIM) +! returns as the vector x(1:n) the next values from n of these sequences +! (n must not be changed between initializations) +! +! This routine is initialised for maximum of n=6 dimensions +! and a word length of 30 bits. These parameter may be increased by +!changing MAXBIT and MAXDIM and add more initializing data to +! ip (primitive polynomials), mdeg (their degrees) and iv +! (the starting value for the recurrence relation) + +!reference +! William H. Press, Saul Teukolsky, William T. Wetterling and Brian P. Flannery (1997) +! "Numerical recipes in Fortran 77", Vol. 1, pp 299--305 + + + IF (N.LT.0 .OR. OLDN.NE.N ) THEN ! INITIALIZE, DO NOT RETURN VECTOR + OLDN = ABS(N) + IX=0 + IN=0 ! RANDOM STARTPOINT: CALL RANDOM_NUMBER(P); IN=P*2^MAXBIT + ! AND REMOVE WARNING MESSAGE BELOW + !IF (IV(1).NE.1) RETURN + + IF (IV(1).EQ.1) THEN + FAC=1.D0/2.D0**MAXBIT + DO K=1,MAXDIM + DO J=1,MDEG(K) ! STORED VALUES NEED NORMALIZATION + IU(K,J)=IU(K,J)*2**(MAXBIT-J) + ENDDO + DO J=1,MDEG(K)+1,MAXBIT ! USE RECCURENCE TO GET OTHER VALUES + IPP=IP(K) + I=IU(K,J-MDEG(K)) + I=IEOR(I,I/2**MDEG(K)) + DO L=MDEG(K)-1,1,-1 + IF (IAND(IPP,1).NE.0) I=IEOR(I,IU(K,J-L)) + IPP=IPP/2 + ENDDO + IU(K,J)=I + ENDDO + ENDDO + ENDIF + ENDIF ! CALCULATE THE NEXT VECTOR IN THE SEQUENCE + IM=IN + DO J=1,MAXBIT ! FIND THE RIGHTMOST ZERO BIT + IF (IAND(IM,1).EQ.0) GOTO 1 + IM=IM/2 + ENDDO +! PRINT *,'MAXBIT TOO SMALL IN SOBSEQ' + 1 IM=(J-1)*MAXDIM + DO K=1,MIN(OLDN,MAXDIM) !XOR THE + IX(K)=IEOR(IX(K),IV(IM+K)) + X(K)=IX(K)*FAC + ENDDO + IN=IN+1 ! INCREMENT COUNTER + + RETURN + END SUBROUTINE SOBSEQ + END MODULE KRBVRCMOD + + MODULE DKBVRCMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: DKBVRC +! + INTERFACE DKBVRC + MODULE PROCEDURE DKBVRC + END INTERFACE +! + INTERFACE DKSMRC + MODULE PROCEDURE DKSMRC + END INTERFACE +! + CONTAINS + SUBROUTINE DKBVRC( NDIM, MINVLS, MAXVLS, FUNCTN, ABSEPS, RELEPS, + & ABSERR, FINEST, INFORM ) +* +* Automatic Multidimensional Integration Subroutine +* +* AUTHOR: Alan Genz +* Department of Mathematics +* Washington State University +* Pulman, WA 99164-3113 +* Email: AlanGenz@wsu.edu +* +* Last Change: 1/15/03 +* +! revised pab June 2004 +! updated to F90 +* +* DKBVRC computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +* +* DKBVRC uses randomized Korobov rules for the first 100 variables. +* The primary references are +* "Randomization of Number Theoretic Methods for Multiple Integration" +* R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14, +* and +* "Optimal Parameters for Multidimensional Integration", +* P. Keast, SIAM J Numer Anal, 10, pp.831-838. +* If there are more than 100 variables, the remaining variables are +* integrated using the rules described in the reference +* "On a Number-Theoretical Integration Method" +* H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11. +* +*************** Parameters ******************************************** +****** Input parameters +* NDIM Number of variables, must exceed 1, but not exceed 1000 +* MINVLS Integer minimum number of function evaluations allowed. +* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the +* routine assumes a previous call has been made with +* the same integrand and continues that calculation. +* MAXVLS Integer maximum number of function evaluations allowed. +* FUNCTN EXTERNALly declared user defined function to be integrated. +* It must have parameters (NDIM,Z), where Z is a real array +* of dimension NDIM. +* +* ABSEPS Required absolute accuracy. +* RELEPS Required relative accuracy. +****** Output parameters +* MINVLS Actual number of function evaluations used. +* ABSERR Estimated absolute accuracy of FINEST. +* FINEST Estimated value of integral. +* INFORM INFORM = 0 for normal exit, when +* ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) +* and +* INTVLS <= MAXCLS. +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with +* estimated absolute accuracy ABSERR. +* INFORM = 2 If NDIM>1000 or NDIM<1 +************************************************************************ + INTEGER, INTENT(IN) :: NDIM, MAXVLS + INTEGER, INTENT(INOUT) :: MINVLS + INTEGER, INTENT(OUT) :: INFORM + DOUBLE PRECISION, INTENT(IN) :: ABSEPS, RELEPS + DOUBLE PRECISION, INTENT(OUT) :: FINEST, ABSERR + INTEGER :: NP,PLIM,NLIM,KLIM,KLIMI,SAMPLS,I,INTVLS,MINSMP + PARAMETER ( PLIM = 28, NLIM = 1000, KLIM = 100, MINSMP = 8 ) + INTEGER P(PLIM), C(PLIM,KLIM-1) + DOUBLE PRECISION :: DIFINT, FINVAL, VARSQR, VAREST, VARPRD, VALUE + DOUBLE PRECISION, PARAMETER :: ONE= 1.D0,ZERO = 0.D0 + DOUBLE PRECISION X(2*NLIM), VK(NLIM) + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SAVE P, C, SAMPLS, NP, VAREST + IF ( NDIM .GT. NLIM .OR. NDIM .LT. 1 ) THEN + INFORM = 2 + FINEST = ZERO + ABSERR = ONE + RETURN + ENDIF + INFORM = 1 + INTVLS = 0 + KLIMI = KLIM + IF ( MINVLS .GE. 0 ) THEN + FINEST = ZERO + VAREST = ZERO + SAMPLS = MINSMP + DO I = 1, PLIM + NP = I + IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10 + END DO + SAMPLS = MAX( MINSMP, MINVLS/( 2*P(NP) ) ) + ENDIF + 10 VK(1) = ONE/P(NP) + DO I = 2, NDIM + IF ( I .LE. KLIM ) THEN + VK(I) = MOD( C(NP, MIN(NDIM-1,KLIM-1))*VK(I-1), ONE ) + ELSE + VK(I) = INT( P(NP)*2**(DBLE(I-KLIM)/(NDIM-KLIM+1)) ) + VK(I) = MOD( VK(I)/P(NP), ONE ) + END IF + END DO + FINVAL = ZERO + VARSQR = ZERO + DO I = 1, SAMPLS + CALL DKSMRC( NDIM, KLIMI, VALUE, P(NP), VK, FUNCTN, X ) + DIFINT = ( VALUE - FINVAL )/DBLE(I) + FINVAL = FINVAL + DIFINT + VARSQR = DBLE( I - 2 )*VARSQR/DBLE(I) + DIFINT**2 + END DO + INTVLS = INTVLS + 2*SAMPLS*P(NP) + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/( ONE + VARPRD ) + IF ( VARSQR .GT. ZERO ) VAREST = ( ONE + VARPRD )/VARSQR + ABSERR = 3.0D0*SQRT( VARSQR/( ONE + VARPRD ) ) + IF ( ABSERR .GT. MAX( ABSEPS, ABS(FINEST)*RELEPS ) ) THEN + IF ( NP .LT. PLIM ) THEN + NP = NP + 1 + ELSE + SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) + SAMPLS = MAX( MINSMP, SAMPLS ) + ENDIF + IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10 + ELSE + INFORM = 0 + ENDIF + MINVLS = INTVLS +* +* Optimal Parameters for Lattice Rules +* + DATA P( 1),(C( 1,I),I = 1,99)/ 31, 12, 2*9, 13, 8*12, 3*3, 12, + & 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7, + & 8*12, 7, 3*3, 3*7, 21*3/ + DATA P( 2),(C( 2,I),I = 1,99)/ 47, 13, 11, 17, 10, 6*15, + & 22, 2*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15, + & 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11, + & 2*10, 8*15, 6, 2, 3, 2, 3, 12*2/ + DATA P( 3),(C( 3,I),I = 1,99)/ 73, 27, 28, 10, 2*11, 20, + & 2*11, 28, 2*13, 28, 3*13, 16*14, 2*31, 3*5, 31, 13, 6*11, 7*13, + & 16*14, 2*31, 3*5, 11, 13, 7*11, 2*13, 11, 13, 4*5, 14, 13, 8*5/ + DATA P( 4),(C( 4,I),I = 1,99)/ 113, 35, 2*27, 36, 22, 2*29, + & 20, 45, 3*5, 16*21, 29, 10*17, 12*23, 21, 27, 3*3, 24, 2*27, + & 17, 3*29, 17, 4*5, 16*21, 3*17, 6, 2*17, 6, 3, 2*6, 5*3/ + DATA P( 5),(C( 5,I),I = 1,99)/ 173, 64, 66, 2*28, 2*44, 55, + & 67, 6*10, 2*38, 5*10, 12*49, 2*38, 31, 2*4, 31, 64, 3*4, 64, + & 6*45, 19*66, 11, 9*66, 45, 11, 7, 3, 3*2, 27, 5, 2*3, 2*5, 7*2/ + DATA P( 6),(C( 6,I),I = 1,99)/ 263, 111, 42, 54, 118, 20, + & 2*31, 72, 17, 94, 2*14, 11, 3*14, 94, 4*10, 7*14, 3*11, 7*8, + & 5*18, 113, 2*62, 2*45, 17*113, 2*63, 53, 63, 15*67, 5*51, 12, + & 51, 12, 51, 5, 2*3, 2*2, 5/ + DATA P( 7),(C( 7,I),I = 1,99)/ 397, 163, 154, 83, 43, 82, + & 92, 150, 59, 2*76, 47, 2*11, 100, 131, 6*116, 9*138, 21*101, + & 6*116, 5*100, 5*138, 19*101, 8*38, 5*3/ + DATA P( 8),(C( 8,I),I = 1,99)/ 593, 246, 189, 242, 102, + & 2*250, 102, 250, 280, 118, 196, 118, 191, 215, 2*121, + & 12*49, 34*171, 8*161, 17*14, 6*10, 103, 4*10, 5/ + DATA P( 9),(C( 9,I),I = 1,99)/ 907, 347, 402, 322, 418, + & 215, 220, 3*339, 337, 218, 4*315, 4*167, 361, 201, 11*124, + & 2*231, 14*90, 4*48, 23*90, 10*243, 9*283, 16, 283, 16, 2*283/ + DATA P(10),(C(10,I),I = 1,99)/ 1361, 505, 220, 601, 644, + & 612, 160, 3*206, 422, 134, 518, 2*134, 518, 652, 382, + & 206, 158, 441, 179, 441, 56, 2*559, 14*56, 2*101, 56, + & 8*101, 7*193, 21*101, 17*122, 4*101/ + DATA P(11),(C(11,I),I = 1,99)/ 2053, 794, 325, 960, 528, + & 2*247, 338, 366, 847, 2*753, 236, 2*334, 461, 711, 652, + & 3*381, 652, 7*381, 226, 7*326, 126, 10*326, 2*195, 19*55, + & 7*195, 11*132, 13*387/ + DATA P(12),(C(12,I),I = 1,99)/ 3079, 1189, 888, 259, 1082, 725, + & 811, 636, 965, 2*497, 2*1490, 392, 1291, 2*508, 2*1291, 508, + & 1291, 2*508, 4*867, 934, 7*867, 9*1284, 4*563, 3*1010, 208, + & 838, 3*563, 2*759, 564, 2*759, 4*801, 5*759, 8*563, 22*226/ + DATA P(13),(C(13,I),I = 1,99)/ 4621, 1763, 1018, 1500, 432, + & 1332, 2203, 126, 2240, 1719, 1284, 878, 1983, 4*266, + & 2*747, 2*127, 2074, 127, 2074, 1400, 10*1383, 1400, 7*1383, + & 507, 4*1073, 5*1990, 9*507, 17*1073, 6*22, 1073, 6*452, 318, + & 4*301, 2*86, 15/ + DATA P(14),(C(14,I),I = 1,99)/ 6947, 2872, 3233, 1534, 2941, + & 2910, 393, 1796, 919, 446, 2*919, 1117, 7*103, 2311, 3117, 1101, + & 2*3117, 5*1101, 8*2503, 7*429, 3*1702, 5*184, 34*105, 13*784/ + DATA P(15),(C(15,I),I = 1,99)/ 10427, 4309, 3758, 4034, 1963, + & 730, 642, 1502, 2246, 3834, 1511, 2*1102, 2*1522, 2*3427, + & 3928, 2*915, 4*3818, 3*4782, 3818, 4782, 2*3818, 7*1327, 9*1387, + & 13*2339, 18*3148, 3*1776, 3*3354, 925, 2*3354, 5*925, 8*2133/ + DATA P(16),(C(16,I),I = 1,99)/ 15641, 6610, 6977, 1686, 3819, + & 2314, 5647, 3953, 3614, 5115, 2*423, 5408, 7426, 2*423, + & 487, 6227, 2660, 6227, 1221, 3811, 197, 4367, 351, + & 1281, 1221, 3*351, 7245, 1984, 6*2999, 3995, 4*2063, 1644, + & 2063, 2077, 3*2512, 4*2077, 19*754, 2*1097, 4*754, 248, 754, + & 4*1097, 4*222, 754,11*1982/ + DATA P(17),(C(17,I),I = 1,99)/ 23473, 9861, 3647, 4073, 2535, + & 3430, 9865, 2830, 9328, 4320, 5913, 10365, 8272, 3706, 6186, + & 3*7806, 8610, 2563, 2*11558, 9421, 1181, 9421, 3*1181, 9421, + & 2*1181, 2*10574, 5*3534, 3*2898, 3450, 7*2141, 15*7055, 2831, + & 24*8204, 3*4688, 8*2831/ + DATA P(18),(C(18,I),I = 1,99)/ 35221, 10327, 7582, 7124, 8214, + & 9600, 10271, 10193, 10800, 9086, 2365, 4409, 13812, + & 5661, 2*9344, 10362, 2*9344, 8585, 11114, 3*13080, 6949, + & 3*3436, 13213, 2*6130, 2*8159, 11595, 8159, 3436, 18*7096, + & 4377, 7096, 5*4377, 2*5410, 32*4377, 2*440, 3*1199/ + DATA P(19),(C(19,I),I = 1,99)/ 52837, 19540, 19926, 11582, + & 11113, 24585, 8726, 17218, 419, 3*4918, 15701, 17710, + & 2*4037, 15808, 11401, 19398, 2*25950, 4454, 24987, 11719, + & 8697, 5*1452, 2*8697, 6436, 21475, 6436, 22913, 6434, 18497, + & 4*11089, 2*3036, 4*14208, 8*12906, 4*7614, 6*5021, 24*10145, + & 6*4544, 4*8394/ + DATA P(20),(C(20,I),I = 1,99)/ 79259, 34566, 9579, 12654, + & 26856, 37873, 38806, 29501, 17271, 3663, 10763, 18955, + & 1298, 26560, 2*17132, 2*4753, 8713, 18624, 13082, 6791, + & 1122, 19363, 34695, 4*18770, 15628, 4*18770, 33766, 6*20837, + & 5*6545, 14*12138, 5*30483, 19*12138, 9305, 13*11107, 2*9305/ + DATA P(21),(C(21,I),I = 1,99)/118891, 31929, 49367, 10982, 3527, + & 27066, 13226, 56010, 18911, 40574, 2*20767, 9686, 2*47603, + & 2*11736, 41601, 12888, 32948, 30801, 44243, 2*53351, 16016, + & 2*35086, 32581, 2*2464, 49554, 2*2464, 2*49554, 2464, 81, 27260, + & 10681, 7*2185, 5*18086, 2*17631, 3*18086, 37335, 3*37774, + & 13*26401, 12982, 6*40398, 3*3518, 9*37799, 4*4721, 4*7067/ + DATA P(22),(C(22,I),I = 1,99)/178349, 40701, 69087, 77576, 64590, + & 39397, 33179, 10858, 38935, 43129, 2*35468, 5279, 2*61518, 27945, + & 2*70975, 2*86478, 2*20514, 2*73178, 2*43098, 4701, + & 2*59979, 58556, 69916, 2*15170, 2*4832, 43064, 71685, 4832, + & 3*15170, 3*27679, 2*60826, 2*6187, 5*4264, 45567, 4*32269, + & 9*62060, 13*1803, 12*51108, 2*55315, 5*54140, 13134/ + DATA P(23),(C(23,I),I = 1,99)/267523, 103650, 125480, 59978, + & 46875, 77172, 83021, 126904, 14541, 56299, 43636, 11655, + & 52680, 88549, 29804, 101894, 113675, 48040, 113675, + & 34987, 48308, 97926, 5475, 49449, 6850, 2*62545, 9440, + & 33242, 9440, 33242, 9440, 33242, 9440, 62850, 3*9440, + & 3*90308, 9*47904, 7*41143, 5*36114, 24997, 14*65162, 7*47650, + & 7*40586, 4*38725, 5*88329/ + DATA P(24),(C(24,I),I = 1,99)/401287, 165843, 90647, 59925, + & 189541, 67647, 74795, 68365, 167485, 143918, 74912, + & 167289, 75517, 8148, 172106, 126159,3*35867, 121694, + & 52171, 95354, 2*113969, 76304, 2*123709, 144615, 123709, + & 2*64958, 32377, 2*193002, 25023, 40017, 141605, 2*189165, + & 141605, 2*189165, 3*141605, 189165, 20*127047, 10*127785, + & 6*80822, 16*131661, 7114, 131661/ + DATA P(25),(C(25,I),I = 1,99)/601943, 130365, 236711, 110235, + & 125699, 56483, 93735, 234469, 60549, 1291, 93937, + & 245291, 196061, 258647, 162489, 176631, 204895, 73353, + & 172319, 28881, 136787,2*122081, 275993, 64673, 3*211587, + & 2*282859, 211587, 242821, 3*256865, 122203, 291915, 122203, + & 2*291915, 122203, 2*25639, 291803, 245397, 284047, + & 7*245397, 94241, 2*66575, 19*217673, 10*210249, 15*94453/ + DATA P(26),(C(26,I),I = 1,99)/902933, 333459, 375354, 102417, + & 383544, 292630, 41147, 374614, 48032, 435453, 281493, 358168, + & 114121, 346892, 238990, 317313, 164158, 35497, 2*70530, 434839, + & 3*24754, 393656, 2*118711, 148227, 271087, 355831, 91034, + & 2*417029, 2*91034, 417029, 91034, 2*299843, 2*413548, 308300, + & 3*413548, 3*308300, 413548, 5*308300, 4*15311, 2*176255, 6*23613, + & 172210, 4* 204328, 5*121626, 5*200187, 2*121551, 12*248492, + & 5*13942/ + DATA P(27), (C(27,I), I = 1,99)/ 1354471, 500884, 566009, 399251, + & 652979, 355008, 430235, 328722, 670680, 2*405585, 424646, + & 2*670180, 641587, 215580, 59048, 633320, 81010, 20789, 2*389250, + & 2*638764, 2*389250, 398094, 80846, 2*147776, 296177, 2*398094, + & 2*147776, 396313, 3*578233, 19482, 620706, 187095, 620706, + & 187095, 126467, 12*241663, 321632, 2*23210, 3*394484, 3*78101, + & 19*542095, 3*277743, 12*457259/ + DATA P(28), (C(28,I), I = 1, 99)/ 2031713, 858339, 918142, 501970, + & 234813, 460565, 31996, 753018, 256150, 199809, 993599, 245149, + & 794183, 121349, 150619, 376952, 2*809123, 804319, 67352, 969594, + & 434796, 969594, 804319, 391368, 761041, 754049, 466264, 2*754049, + & 466264, 2*754049, 282852, 429907, 390017, 276645, 994856, 250142, + & 144595, 907454, 689648, 4*687580, 978368, 687580, 552742, 105195, + & 942843, 768249, 4*307142, 7*880619, 11*117185, 11*60731, + & 4*178309, 8*74373, 3*214965/ +* + END SUBROUTINE DKBVRC +* + SUBROUTINE DKSMRC( NDIM, KLIM, SUMKRO, PRIME, VK, FUNCTN, X ) + INTEGER, INTENT(IN):: NDIM, KLIM, PRIME + DOUBLE PRECISION, INTENT(OUT) :: SUMKRO + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: VK,X + INTEGER :: K, J, JP, NK + DOUBLE PRECISION :: ONE, XT, MVNUNI + PARAMETER ( ONE = 1.d0 ) + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SUMKRO = 0.D0 +* +* Randomize Variable Order +* + NK = MIN( NDIM, KLIM ) + DO J = 1, NK - 1 + CALL random_number(MVNUNI) +! JP = J + MVNUNI()*( NK + 1 - J ) + JP = J + NINT(MVNUNI*DBLE( NK - J )) ! pab 12 May 2004 + + XT = VK(J) + VK(J) = VK(JP) + VK(JP) = XT + END DO +* +* Determine Random Shifts for each Variable +* + CALL random_number(X(NDIM+1:2*NDIM)) + DO K = 1, PRIME + X(1:NDIM) = ABS( 2.d0*MOD( DBLE(K)*VK(1:NDIM) + + & X(NDIM+1:2*NDIM), ONE ) - ONE ) +! DO J = 1, NDIM +! X(J) = ABS( 2*MOD( K*VK(J) + X(NDIM+J), ONE ) - ONE ) +! END DO + SUMKRO = SUMKRO + ( FUNCTN(NDIM,X) - SUMKRO )/DBLE( 2*K - 1 ) + X(1:NDIM) = ONE - X(1:NDIM) + SUMKRO = SUMKRO + ( FUNCTN(NDIM,X) - SUMKRO )/DBLE( 2*K ) + END DO + END SUBROUTINE DKSMRC + END MODULE DKBVRCMOD + + MODULE PRECISIONMOD + IMPLICIT NONE + PUBLIC +! Note double precision is the fastest choice for x86 machines +! double (15,307) single (6,37) precision constants + INTEGER, PARAMETER :: gP = SELECTED_REAL_KIND(15,307) + END MODULE PRECISIONMOD + + MODULE SSOBOLMOD + USE PRECISIONMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: initSobol, sobolSeq, sobnied + +! BLOCK DATA BDSOBL +! +! INITIALIZES LABELLED COMMON /SOBDAT/ +! FOR "INSOBL". +! +! THE ARRAY POLY GIVES SUCCESSIVE PRIMITIVE +! POLYNOMIALS CODED IN BINARY, E.G. +! 45 = 100101 +! HAS BITS 5, 2, AND 0 SET (COUNTING FROM THE +! RIGHT) AND THEREFORE REPRESENTS +! X**5 + X**2 + X**0 +! +! THESE POLYNOMIALS ARE IN THE ORDER USED BY +! SOBOL IN USSR COMPUT. MATHS. MATH. PHYS. 16 (1977), +! 236-242. A MORE COMPLETE TABLE IS GIVEN IN SOBOL AND +! LEVITAN, THE PRODUCTION OF POINTS UNIFORMLY +! DISTRIBUTED IN A MULTIDIMENSIONAL CUBE (IN RUSSIAN), +! PREPRINT IPM AKAD. NAUK SSSR, NO. 40, MOSCOW 1976. +! +! THE INITIALIZATION OF THE ARRAY mVINIT IS FROM THE +! LATTER PAPER. FOR A POLYNOMIAL OF DEGREE M, M INITIAL +! VALUES ARE NEEDED : THESE ARE THE VALUES GIVEN HERE. +! SUBSEQUENT VALUES ARE CALCULATED IN "INSOBL". +! +! ASSUME WE ARE WORKING ON A COMPUTER WITH +! WORD LENGTH AT LEAST mMaxBit BITS EXCLUDING SIGN. + integer :: mI + integer, parameter :: mMaxBit = 31 + integer, parameter :: mMaxDim = 40 + integer, parameter :: mMaxAtMost = 2**(mMaxBit-1) +!COMMON SOBOL +! mSV TABLE OF DIRECTION NUMBERS +! mS DIMENSION +! mMAXCOL LAST COLUMN OF V TO BE USED +! mCOUNT SEQUENCE NUMBER OF THIS CALL +! mLASTQ NUMERATORS FOR LAST VECTOR GENERATED +! mRECIPD (1/DENOMINATOR) FOR THESE NUMERATORS + INTEGER, dimension(mMaxDim,mMaxBit), SAVE :: mSV + INTEGER, dimension(mMaxDim), SAVE :: mLASTQ + INTEGER, SAVE :: mS,mMAXCOL,mCOUNT,mATMOST + REAL(KIND=gP), save :: mRECIPD +! COMMON SOBDAT + INTEGER, save, dimension(2:mMaxDim) :: mPOLY + integer, save, dimension(2:mMaxDim,8) :: mVINIT + + DATA mPOLY /3,7,11,13,19,25,37,59,47, + & 61,55,41,67,97,91,109,103,115,131, + & 193,137,145,143,241,157,185,167,229,171, + & 213,191,253,203,211,239,247,285,369,299/ +! + DATA (mVINIT(mI,1),mI=2,40) /39*1/ + DATA (mVINIT(mI,2),mI=3,40) /1,3,1,3,1,3,3,1, + & 3,1,3,1,3,1,1,3,1,3, + & 1,3,1,3,3,1,3,1,3,1, + & 3,1,1,3,1,3,1,3,1,3/ + DATA (mVINIT(mI,3),mI=4,40) /7,5,1,3,3,7,5, + & 5,7,7,1,3,3,7,5,1,1, + & 5,3,3,1,7,5,1,3,3,7, + & 5,1,1,5,7,7,5,1,3,3/ + DATA (mVINIT(mI,4),mI=6,40) /1,7,9,13,11, + & 1,3,7,9,5,13,13,11,3,15, + & 5,3,15,7,9,13,9,1,11,7, + & 5,15,1,15,11,5,3,1,7,9/ + DATA (mVINIT(mI,5),mI=8,40) /9,3,27, + & 15,29,21,23,19,11,25,7,13,17, + & 1,25,29,3,31,11,5,23,27,19, + & 21,5,1,17,13,7,15,9,31,9/ + DATA (mVINIT(mI,6),mI=14,40) /37,33,7,5,11,39,63, + & 27,17,15,23,29,3,21,13,31,25, + & 9,49,33,19,29,11,19,27,15,25/ + DATA (mVINIT(mI,7),mI=20,40) /13, + & 33,115,41,79,17,29,119,75,73,105, + & 7,59,65,21,3,113,61,89,45,107/ + DATA (mVINIT(mI,8),mI=38,40) /7,23,39/ + + INTERFACE getMSBP + MODULE PROCEDURE getMSBP + END INTERFACE + + INTERFACE initSobol + MODULE PROCEDURE initSobol + END INTERFACE + + INTERFACE GENSCRML + MODULE PROCEDURE GENSCRML + END INTERFACE + + INTERFACE GENSCRMU + MODULE PROCEDURE GENSCRMU + END INTERFACE + + INTERFACE sobolSeq + MODULE PROCEDURE sobolSeq + END INTERFACE + + INTERFACE sobnied + MODULE PROCEDURE sobnied + END INTERFACE + + INTERFACE dksmrc + MODULE PROCEDURE dksmrc + END INTERFACE + + INTERFACE uni + MODULE PROCEDURE uni + END INTERFACE + + CONTAINS + + FUNCTION getMSBP(J) result (nb) +!getMSBP Returns the Most Significant Bit position +! +! CALL ix = getMSBP(x); +! +! ix = Most Significant Bit position +! x = number +! +! getMSBP calculates the most significant bit position in X that contains a +! one, i.e., +! MSB(X) = max(i|2^i<=x) for X~=0 +! + integer, intent(in) :: J + integer :: nb + integer :: I + nb = 0 + I = J/2 + DO WHILE (I>0) + nb = nb + 1 + I = I / 2 + ENDDO + end function getMSBP + + SUBROUTINE initSobol(INFORM,TAUS,NDIM, ATMOST, + * NUMDS,IFLAG) +! InitSobol Initializes the sobol sequence +! Inputs: +! NDIM : Number of dimensions +! ATMOST : Maximum sequence length, i.e., upper bound on the number +! of calls the user intends to make on "ssobseq" +! NUMDS : Number of Digits to Scramble if IFLAG==1 or IFLAG==3 +! IFLAG : integer defining scrambling of sequences: +! 0 : No Scrambling +! 1 : Owen type Scrambling +! 2 : Faure-Tezuka type Scrambling +! 3 : Owen + Faure-Tezuka type Scrambling +! Uses the member variables: mPOLY and mVINIT +! Outputs: +! INFORM = 0 If no error occurred otherwise +! 2 If NDIM < 1 .OR. mMaxDim < NDIM +! 3 If ATMOST < 1 .OR. mMaxAtMost <= ATMOST +! 4 If ((IFLAG==1 OR IFLAG==3) AND (mMaxBit < NUMDS)) +! TAUS = Defines "FAVORABLE" values as +! discussed in BRATLEY/FOX. These have the form +! N = 2**K WHERE K .GE. (TAUS+NDIM-1) for integration +! and k .gt. taus for global optimization. +! If NDIM>12 then TAUS = -1 +! Initializes the member variables: +! mSV, mS, mMAXCOL, mCOUNT, mLASTQ, mRECIPD, mATMOST +! Used in SOBOLSEQ +! +! InitSobol initializes member variables for scrambled sobol sequence +! +! +! THIS IS MODIFIED ROUTINE OF "INSOBL". +! +! NEXT CHECK "ATMOST", AN UPPER BOUND ON THE NUMBER +! OF CALLS THE USER INTENDS TO MAKE ON "GOSOBL". IF +! THIS IS POSITIVE AND LESS THAN mMaxAtMost = 2**(mMaxBit-1), +! THEN FLAG(2) = .TRUE. +! (WE ASSUME WE ARE WORKING ON A COMPUTER WITH +! WORD LENGTH AT LEAST mMaxBit BITS EXCLUDING SIGN.) +! THE NUMBER OF COLUMNS OF THE ARRAY V WHICH +! ARE INITIALIZED IS +! mMAXCOL = NUMBER OF BITS IN ATMOST. +! IN "GOSOBL" WE CHECK THAT THIS IS NOT EXCEEDED. +! +! THE LEADING ELEMENTS OF EACH ROW OF V ARE +! INITIALIZED USING "mVINIT" FROM "BDSOBL". +! EACH ROW CORRESPONDS TO A PRIMITIVE POLYNOMIAL +! (AGAIN, SEE "BDSOBL"). IF THE POLYNOMIAL HAS +! DEGREE M, ELEMENTS AFTER THE FIRST M ARE CALCULATED. +! +! THE NUMBERS IN V ARE ACTUALLY BINARY FRACTIONS. +! LSM ARE LOWER TRIAUGULAR SCRAMBLING MATRICES. +! USM ARE UPPER TRIAUGULAR SCRMABLING MATRIX. +! mSV ARE SCAMBLING GENERATING MATRICES AND THE NUMBERS +! ARE BINARY FRACTIONS. +! "mRECIPD" HOLDS 1/(THE COMMON DENOMINATOR OF ALL +! OF THEM). +! +! +! "INSSOBL" IMPLICITLY COMPUTES THE FIRST SHIFTED +! VECTOR "mLASTQ", AND RETURN IT TO THE CALLING +! PROGRAM. SUBSEQUENT VECTORS COME FROM "GOSSOBL". +! "mLASTQ" HOLDS NUMERATORS OF THE LAST VECTOR GENERATED. +! +! + integer, intent(in) :: NDIM,ATMOST,NUMDS,IFLAG + INTEGER, INTENT(OUT) :: INFORM,TAUS +! REAL(kind=gP), dimension(:), intent(out) :: QUASI + INTEGER, dimension(mMaxDim,mMaxBit) :: V, LSM + integer, dimension(mMaxBit,mMaxBit) :: USM + integer, dimension(mMaxDim,mMaxBit,mMaxBit) :: TV + integer, dimension(mMaxDim) :: SHIFT + integer, dimension(mMaxBit) :: USHIFT + INTEGER, dimension(13),save :: TAU + INTEGER I,J,K,P,M,NEWV,L,PP + INTEGER TEMP1,TEMP2,TEMP3,TEMP4,MAXX + REAL(KIND=gP) :: LL + LOGICAL, dimension(8) :: INCLUD +! EXTERNAL IEOR +! COMMON /SOBDAT/ mPOLY,mVINIT +! COMMON /SOBOL/ mS,mMAXCOL,mSV,mCOUNT,mLASTQ,mRECIPD +! SAVE /SOBDAT/,/SOBOL/ + DATA TAU /0,0,1,3,5,8,11,15,19,23,27,31,35/ + inform = 0 + mMAXCOL = 0 + mS = NDIM + mATMOST = ATMOST + IF (mS < 1 .OR. mMaxDim < mS) THEN + INFORM = 2 + RETURN + ENDIF + IF ( mATMOST < 1 .OR. mMaxAtMost <= mATMOST) THEN + INFORM = 3 + RETURN + ENDIF + if ((IFLAG.EQ.1 .or. IFLAG.EQ.3) .AND. (mMaxBit < NUMDS)) then + INFORM = 4 + return + endif + IF (mS .LE. 13) THEN + TAUS = TAU(mS) + ELSE + TAUS = -1 +! RETURN A DUMMY VALUE TO THE CALLING PROGRAM + ENDIF + +! FIND NUMBER OF BITS IN ATMOST + mMAXCOL = getMSBP(mATMOST)+1 + + +! INITIALIZE V + V(1,1:mMAXCOL) = 1 + DO I = 2, mS ! 100 +! FIND DEGREE OF POLYNOMIAL I FROM BINARY ENCODING + + J = mPOLY(I) + M = getMSBP(J) + +! WE EXPAND THIS BIT PATTERN TO SEPARATE COMPONENTS +! OF THE LOGICAL ARRAY INCLUD. + + DO K = M, 1, -1 + INCLUD(K) = (MOD(J,2) .EQ. 1) + J = J / 2 + enddo ! K + +! THE LEADING ELEMENTS OF ROW I COME FROM mVINIT + V(I,1:M) = mVINIT(I, 1:M) +! +! CALCULATE REMAINING ELEMENTS OF ROW I AS EXPLAINED +! IN BRATLEY AND FOX, SECTION 2 + DO J = M+1, mMAXCOL + NEWV = V(I, J-M) + L = 1 + DO K = 1, M + L = 2 * L + IF (INCLUD(K)) NEWV = IEOR(NEWV, L * V(I, J-K)) + enddo ! K + V(I,J) = NEWV + enddo ! J + enddo ! I +! +! MULTIPLY COLUMNS OF V BY APPROPRIATE POWER OF 2 +! + L = 1 + DO J = mMAXCOL-1, 1, -1 + L = 2 * L + V(1:mS,J) = V(1:mS,J) * L + enddo ! J +! +! COMPUTING GENERATOR MATRICES OF USER CHOICE +! + IF (IFLAG .EQ. 0) THEN + FORALL (I = 1:mS, J = 1:mMAXCOL) mSV(I,J) = V(I,J) + SHIFT(1:mS) = 0 + LL = DBLE(2**(mMAXCOL)) + ELSE + IF ((IFLAG .EQ. 1) .OR. (IFLAG .EQ. 3)) THEN + CALL GENSCRML(NUMDS,LSM,SHIFT) + DO I = 1,mS + DO J = 1,mMAXCOL + L = 1 + TEMP2 = 0 + DO P = NUMDS,1,-1 + TEMP1 = 0 + DO K = 1,mMAXCOL + TEMP1 = TEMP1+ + & (IBITS(LSM(I,P),K-1,1)*IBITS(V(I,J),K-1,1)) + enddo ! K + TEMP1 = MOD(TEMP1,2) + TEMP2 = TEMP2+TEMP1*L + L = 2 * L + enddo ! P + mSV(I,J) = TEMP2 + enddo ! J + enddo ! I + LL= DBLE(2**(NUMDS)) + ENDIF + IF ((IFLAG .EQ. 2) .OR. (IFLAG .EQ. 3)) THEN + CALL GENSCRMU(USM,USHIFT) + IF (IFLAG .EQ. 2) THEN + MAXX = mMAXCOL + ELSE + MAXX = NUMDS + ENDIF + DO I = 1,mS + DO J = 1,mMAXCOL + P = MAXX + DO K = 1,MAXX + IF (IFLAG .EQ. 2) THEN + TV(I,P,J) = IBITS(V(I,J),K-1,1) + ELSE + TV(I,P,J) = IBITS(mSV(I,J),K-1,1) + ENDIF + P = P-1 + enddo ! K + enddo ! J + DO PP = 1,mMAXCOL + TEMP2 = 0 + TEMP4 = 0 + L = 1 + DO J = MAXX,1,-1 + TEMP1 = 0 + TEMP3 = 0 + DO P = 1,mMAXCOL + TEMP1 = TEMP1 + TV(I,J,P)*USM(P,PP) + IF (PP .EQ. 1) THEN + TEMP3 = TEMP3 + TV(I,J,P)*USHIFT(P) + ENDIF + enddo ! P + TEMP1 = MOD(TEMP1,2) + TEMP2 = TEMP2 + TEMP1*L + IF (PP .EQ. 1) THEN + TEMP3 = MOD(TEMP3,2) + TEMP4 = TEMP4 + TEMP3*L + ENDIF + L = 2*L + enddo ! J + mSV(I,PP) = TEMP2 + IF (PP .EQ. 1) THEN + IF (IFLAG .EQ. 3) THEN + SHIFT(I) = IEOR(TEMP4, SHIFT(I)) + ELSE + SHIFT(I) = TEMP4 + ENDIF + ENDIF + enddo ! PP + enddo ! I + LL = DBLE(2**(MAXX)) + ENDIF + ENDIF +! +! mRECIPD IS 1/(COMMON DENOMINATOR OF THE ELEMENTS IN V) +! + mRECIPD = 1.0_gP / LL + +! SET UP FIRST VECTOR AND VALUES FOR "SOBOLSEQ" + mCOUNT = 0 + mLASTQ(1:mS) = SHIFT(1:mS) +! QUASI(1:mS) = DBLE(mLASTQ(1:mS))*mRECIPD + RETURN + END subroutine initSobol + FUNCTION UNI() result (val) +* +* Random number generator, adapted from F. James +* "A Review of Random Number Generators" +* Comp. Phys. Comm. 60(1990), pp. 329-344. +* + real(kind=gP) SEEDS(24), TWOM24, CARRY,val + PARAMETER ( TWOM24 = 1.0_gP/16777216.0_gP ) + INTEGER I, J + SAVE I, J, CARRY, SEEDS + DATA I, J, CARRY / 24, 10, 0.0 / + DATA SEEDS / + & 0.8804418, 0.2694365, 0.0367681, 0.4068699, 0.4554052, 0.2880635, + & 0.1463408, 0.2390333, 0.6407298, 0.1755283, 0.7132940, 0.4913043, + & 0.2979918, 0.1396858, 0.3589528, 0.5254809, 0.9857749, 0.4612127, + & 0.2196441, 0.7848351, 0.4096100, 0.9807353, 0.2689915, 0.5140357/ +! & 0.8804418_gP, 0.2694365_gP, 0.0367681_gP, 0.4068699_gP, +! & 0.4554052_gP, 0.2880635_gP, +! & 0.1463408_gP, 0.2390333_gP, 0.6407298_gP, 0.1755283_gP, +! & 0.7132940_gP, 0.4913043_gP, +! & 0.2979918_gP, 0.1396858_gP, 0.3589528_gP, 0.5254809_gP, +! & 0.9857749_gP, 0.4612127_gP, +! & 0.2196441_gP, 0.7848351_gP, 0.4096100_gP, 0.9807353_gP, +! & 0.2689915_gP, 0.5140357_gP/ + + CALL random_number(val) + return + val = SEEDS(I) - SEEDS(J) - CARRY + IF ( val .LT. 0.0_gP ) THEN + val = val + 1.0_gP + CARRY = TWOM24 + ELSE + CARRY = 0.0_gP + ENDIF + SEEDS(I) = val + I = 24 - MOD( 25-I, 24 ) + J = 24 - MOD( 25-J, 24 ) + RETURN + END function uni + SUBROUTINE GENSCRML(NUMDS,LSM,SHIFT) +! GENERATING LOWER TRIANGULAR SCRMABLING MATRICES AND SHIFT VECTORS. +! INPUTS : +! FROM INSSOBL : NUMDS +! FROM BLOCK DATA "SOBOL" : mS, mMAXCOL, +! +! OUTPUTS : +! TO initSobol : LSM, SHIFT + integer,intent(in) :: NUMDS + integer, dimension(mMaxDim,mMaxBit), intent(inout) :: LSM + integer, dimension(mMaxDim), intent(inout) :: SHIFT + INTEGER :: P,I,J,TEMP,STEMP,L,LL +! REAL(KIND=gP) :: UNI +! COMMON /SOBOL/ mS,mMAXCOL +! SAVE /SOBOL/ + + DO 10 P = 1,mS + SHIFT(P) = 0 + L = 1 + DO 20 I = NUMDS,1,-1 + LSM(P,I) = 0 +! CALL random_number(UNI) + STEMP = MOD((int(UNI()*1000.0_gP)),2) + SHIFT(P) = SHIFT(P)+STEMP*L + L = 2 * L + LL = 1 + DO 30 J = mMAXCOL,1,-1 + IF (J .EQ. I) THEN + TEMP = 1 + ELSE IF (J .LT. I) THEN +! CALL random_number(UNI) + TEMP = MOD((int(UNI()*1000.0_gP)),2) + ELSE + TEMP = 0 + ENDIF + LSM(P,I) = LSM(P,I) + TEMP*LL + LL = 2 * LL + 30 CONTINUE + 20 CONTINUE + 10 CONTINUE + RETURN + END SUBROUTINE GENSCRML + + SUBROUTINE GENSCRMU(USM,USHIFT) + +! GENERATING UPPER TRIANGULAR SCRMABLING MATRICES AND +! SHIFT VECTORS. +! INPUTS : +! FROM BLOCK DATA "SOBOL" : mS, mMAXCOL, +! +! OUTPUTS : +! TO INSSOBL : USM, USHIFT + integer, dimension(mMaxBit,mMaxBit), intent(inout) :: USM + integer, dimension(mMaxBit), intent(inout) :: USHIFT + INTEGER I,J,TEMP +! REAL(KIND=gP) :: UNI +! COMMON /SOBOL/ mS,mMAXCOL +! SAVE /SOBOL/ + + DO 20 I = 1,mMAXCOL +! CALL random_number(UNI) + USHIFT(I) = MOD((int(UNI()*1000.0_gP)),2) + DO 30 J = 1,mMAXCOL + IF (J .EQ. I) THEN + TEMP = 1 + ELSE IF (J .GT. I) THEN +! CALL random_number(UNI) + TEMP = MOD((int(UNI()*1000.0_gP)),2) + ELSE + TEMP = 0 + ENDIF + USM(I,J) = TEMP + 30 CONTINUE + 20 CONTINUE + RETURN + END SUBROUTINE GENSCRMU + + SUBROUTINE sobolSeq(QUASI,INFORM) +!SOBOLSEQ GENERATES A NEW QUASIRANDOM VECTOR WITH EACH CALL +! +! IT ADAPTS THE IDEAS OF ANTONOV AND SALEEV, +! USSR COMPUT. MATHS. MATH. PHYS. 19 (1980), +! 252 - 256 +! +! The user must call "initSobol" before calling +! "sobolSeq". After calling "initsobol", test +! if inform == 0. if inform>0 then +! do not call "sobolSeq". +! "sobolSeq" checks that the user does not make more calls +! than he said he would : see the comments +! to "initSobol". +! +! INPUTS: +! FROM USER'S CALLING PROGRAM: +! NONE +! +! FROM LABELLED COMMON /SOBOL/: +! mSV TABLE OF DIRECTION NUMBERS +! mS DIMENSION +! mMAXCOL LAST COLUMN OF mSV TO BE USED +! mCOUNT SEQUENCE NUMBER OF THIS CALL +! mLASTQ NUMERATORS FOR LAST VECTOR GENERATED +! mRECIPD (1/DENOMINATOR) FOR THESE NUMERATORS +! + REAL(KIND=gP), dimension(:), intent(out) :: QUASI + integer, intent(inout) :: inform + INTEGER :: I,L +! INTEGER mSV(40,31),mS,mMAXCOL,mCOUNT,mLASTQ(40) +! COMMON /SOBOL/ S,mMAXCOL,mSV,mCOUNT,mLASTQ,mRECIPD +! SAVE /SOBOL/ +! + +! FORALL ( I = 1:mS) +! QUASI(I) = DBLE(mLASTQ(I)) * mRECIPD +! END FORALL + QUASI(1:mS) = DBLE(mLASTQ(1:mS))*mRECIPD +! FIND POSITION OF RIGHTMOST ZERO BIT IN mCOUNT + L = 1 + I = mCOUNT + do while (MOD(I,2) .EQ. 1) + I = I / 2 + L = L + 1 + ENDDO +! CHECK THAT THE USER IS NOT CHEATING + IF (L > mMAXCOL) THEN + INFORM = 4 +! WARNING: Reached the end of the sobol sequence +! Next call will wrap around and return the same numbers +! as for mCOUNT = 0 +! Call initSobol to increase mATMOST before calling sobolseq again. + else + INFORM = 0 +! Calculate the new components of quasi, +! first the numerators + FORALL ( I = 1:mS) + mLASTQ(I) = IEOR(mLASTQ(I), mSV(I,L)) + END FORALL + mCOUNT = mCOUNT + 1 + ENDIF + RETURN + END SUBROUTINE sobolSeq + + +!*********************************************************** +! MAIN INTEGRATION ROUTINE SOBNIED +!*********************************************************** + + SUBROUTINE SOBNIED( NDIM, MINVLS, MAXVLS, FUNCTN, ABSEPS, RELEPS, + & ABSERR, FINEST, INFORM ) + use precisionmod + implicit none +* +* Automatic Multidimensional Integration Subroutine +* +* AUTHOR: Per A. Brodtkorb +! Norwegian Defence Research Establishment +! P.O. Box 115 +! N-3191 Horten +! Norway +! Email: Per.Brodtkorb@ffi.no +! +* Last Change: 6/19/2004 +* +* SOBNIED computes an approximation to the integral +* +* 1 1 1 +* I I ... I F(X) dx(NDIM)...dx(2)dx(1) +* 0 0 0 +* +* +* SOBNIED uses scrambled SOBOL sequences for the first 40 variables. +* The primary reference is + +* If there are more than 40 variables, the remaining variables are +* integrated using the rule described in the reference +* "On a Number-Theoretical Integration Method" +* H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11. +* +*************** Parameters ******************************************** +****** Input parameters +* NDIM Number of variables, must exceed 1, but not exceed 100 +* MINVLS Integer minimum number of function evaluations allowed. +* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the +* routine assumes a previous call has been made with +* the same integrand and continues that calculation. +* MAXVLS Integer maximum number of function evaluations allowed. +* FUNCTN EXTERNALly declared user defined function to be integrated. +* It must have parameters (NDIM,Z), where Z is a real array +* of dimension NDIM. +* +* ABSEPS Required absolute accuracy. +* RELEPS Required relative accuracy. +****** Output parameters +* MINVLS Actual number of function evaluations used. +* ABSERR Estimated absolute accuracy of FINEST. +* FINEST Estimated value of integral. +* INFORM INFORM = 0 for normal exit, when +* ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) +* and +* INTVLS <= MAXCLS. +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with +* estimated absolute accuracy ABSERR. +* INFORM = 2 If NDIM>1040 or NDIM<1 +************************************************************************ + INTEGER, INTENT(IN) :: NDIM, MAXVLS + INTEGER, INTENT(INOUT) :: MINVLS + INTEGER, INTENT(OUT) :: INFORM + REAL(KIND=gP), INTENT(IN) :: ABSEPS, RELEPS + REAL(KIND=gP), INTENT(OUT) :: FINEST, ABSERR + INTEGER :: NP,PLIM,NLIM,KLIM,KLIMI,SAMPLS,I,INTVLS,MINSMP,NK + integer :: numRep, J, TAUS + INTEGER, parameter :: NUMDS=30,IFLAG=1 + PARAMETER ( PLIM = 28, NLIM = 1040, KLIM = mMaxDim, MINSMP = 8 ) + INTEGER , DIMENSION(PLIM) :: P + REAL(KIND=gP) :: DIFINT,FINVAL,VARSQR,VAREST,VARPRD,VALUE + REAL(KIND=gP), PARAMETER :: ONE = 1.D0 , ZERO = 0.D0 + REAL(KIND=gP), DIMENSION(2*NLIM) :: X = 0.d0 + REAL(KIND=gP), DIMENSION(NLIM) :: VK = 0.d0 + logical :: NPtooSmall,errorTooLarge,numSamplesOk + INTERFACE + REAL(KIND=gP) FUNCTION FUNCTN(N,Z) + use precisionmod + REAL(KIND=gP),DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + DATA P / 31, 47, 73, 113, 173, 263, 397, 593, 907, 1361, + & 2053, 3079, 4621, 6947, 10427, 15641, 23473, 35221, + & 52837, 79259, 118891, 178349, 267523, 401287, 601943, + & 902933,1354471,2031713/ + SAVE P, SAMPLS, NP, VAREST + IF ( NDIM .GT. NLIM .OR. NDIM .LT. 1 ) THEN + INFORM = 2 + FINEST = ZERO + ABSERR = ONE + RETURN + ENDIF + NK = MIN( NDIM, KLIM ) + + + IF ( MINVLS >= 0 ) THEN + FINEST = ZERO + VAREST = ZERO + SAMPLS = MINSMP + NP = 1 + NPtooSmall = ( MINVLS >= 2*SAMPLS*P(NP) ) + do while(NPtooSmall .AND. NP= 2*SAMPLS*P(NP) ) + enddo + if (NPtooSmall) then + SAMPLS = MAX( MINSMP, MINVLS/( 2*P(NP) ) ) + endif + ENDIF + numRep = 1 !max(1,nint(MAXVLS/mMaxAtMost)) + + INFORM = 1 + INTVLS = 0 + KLIMI = KLIM + errorTooLarge = .TRUE. + do J = 1,numRep + CALL initSobol(inform,TAUS,NK,MAXVLS/numRep,NUMDS,IFLAG) + if (inform.ne.0) then + FINEST = ZERO + ABSERR = ONE + RETURN + endif + INFORM = 1 + numSamplesOk = ( INTVLS + 2*SAMPLS*P(NP) <= MAXVLS ) + do while (errorTooLarge .and. numSamplesOk) + DO I = 1, NDIM-NK + VK(I) = INT( P(NP)*2**(DBLE(I)/(NDIM-KLIM+1)) ) + VK(I) = MOD( VK(I)/P(NP), ONE ) + END DO + FINVAL = ZERO + VARSQR = ZERO + DO I = 1, SAMPLS + CALL DKSMRC( NDIM, KLIMI, VALUE, P(NP),VK, FUNCTN, X ) + DIFINT = ( VALUE - FINVAL )/DBLE(I) + FINVAL = FINVAL + DIFINT + VARSQR = DBLE( I - 2 )*VARSQR/DBLE(I) + DIFINT*DIFINT + END DO + INTVLS = INTVLS + 2*SAMPLS*P(NP) + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/( ONE + VARPRD ) + IF ( VARSQR > ZERO ) VAREST = ( ONE + VARPRD )/VARSQR + ABSERR = 3.0_gP*SQRT( VARSQR/( ONE + VARPRD ) ) + errorTooLarge = (ABSERR > MAX(ABSEPS, ABS(FINEST)*RELEPS)) + IF ( errorTooLarge ) THEN + IF ( NP < PLIM ) THEN + NP = NP + 1 + ELSE + SAMPLS = MIN(3*SAMPLS/2, (MAXVLS - INTVLS)/(2*P(NP))) + SAMPLS = MAX( MINSMP, SAMPLS ) + ENDIF + numSamplesOk = ( INTVLS + 2*SAMPLS*P(NP) <= MAXVLS ) + ELSE + INFORM = 0 + ENDIF + enddo + enddo + MINVLS = INTVLS + END SUBROUTINE SOBNIED + SUBROUTINE DKSMRC( NDIM, KLIM, SUMKRO, PRIME, VK,FUNCTN, X ) + use precisionmod + implicit none + INTEGER, INTENT(IN):: NDIM, KLIM, PRIME + REAL(KIND=gP), INTENT(OUT) :: SUMKRO + REAL(KIND=gP), DIMENSION(:), INTENT(INOUT) :: VK,X + INTEGER :: K, NK, inform + REAL(KIND=gP) :: ONE, XT, MVNUNI + PARAMETER ( ONE = 1.0_gP ) + INTERFACE + REAL(KIND=gP) FUNCTION FUNCTN(N,Z) + use precisionmod + REAL(KIND=gP),DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + SUMKRO = 0.0_gP + NK = MIN( NDIM, KLIM ) +* Determine Random Shifts for each Variable + if (NK100 or NDIM<1 +************************************************************************ + IMPLICIT NONE + INTEGER, INTENT(IN) :: NDIM, MAXVLS + INTEGER, INTENT(INOUT) ::MINVLS + INTEGER, INTENT(OUT) ::INFORM + DOUBLE PRECISION, INTENT(IN) :: ABSEPS, RELEPS + DOUBLE PRECISION, INTENT(OUT) :: FINEST, ABSERR +! Local variables: + INTEGER :: NP, PLIM, NLIM, SAMPLS, I, INTVLS, MINSMP + PARAMETER ( PLIM = 20, NLIM = 100, MINSMP = 6 ) + INTEGER, DIMENSION(PLIM,NLIM) :: C + INTEGER, DIMENSION(PLIM) :: P + DOUBLE PRECISION :: DIFINT, FINVAL, VARSQR, VAREST, VARPRD, VALUE + DOUBLE PRECISION, DIMENSION(NLIM) :: ALPHA, X, VK + DOUBLE PRECISION :: ONE + PARAMETER ( ONE = 1.d0 ) + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + DATA P /113, 173, 263,397,593,907,1361,2053,3079,4621,6947, + & 10427, 15641,23473, 35221, 52837, 79259, + & 118891, 178349, 267523 / + DATA ( C( 1,I), I = 1, 99 ) / + & 42, 54, 55, 32, 13, 26, 26, 13, 26, + & 14, 13, 26, 35, 2, 2, 2, 2, 56, + & 28, 7, 7, 28, 4, 49, 4, 40, 48, + & 5, 35, 27, 16, 16, 2, 2, 7, 28, + & 4, 49, 4, 56, 8, 2, 2, 56, 7, + & 16, 28, 7, 7, 28, 4, 49, 4, 37, + & 55, 21, 33, 40, 16, 16, 28, 7, 16, + & 28, 4, 49, 4, 56, 35, 2, 2, 2, + & 16, 16, 28, 4, 16, 28, 4, 49, 4, + & 40, 40, 5, 42, 27, 16, 16, 28, 4, + & 16, 28, 4, 49, 4, 8, 8, 2, 2/ + DATA ( C( 2,I), I = 1, 99 ) / + & 64, 34, 57, 9, 72, 86, 16, 75, 75, + & 70, 42, 2, 86, 62, 62, 30, 30, 5, + & 42, 70, 70, 70, 53, 70, 70, 53, 42, + & 62, 53, 53, 53, 69, 75, 5, 53, 86, + & 2, 5, 30, 75, 59, 2, 69, 5, 5, + & 63, 62, 5, 69, 30, 44, 30, 86, 86, + & 2, 69, 5, 5, 2, 2, 61, 69, 17, + & 2, 2, 2, 53, 69, 2, 2, 86, 69, + & 13, 2, 2, 37, 43, 65, 2, 2, 30, + & 86, 45, 16, 32, 18, 86, 86, 86, 9, + & 63, 63, 11, 76, 76, 76, 63, 60, 70/ + DATA ( C( 3,I), I = 1, 99 ) / + & 111, 67, 98, 36, 48, 110, 2, 131, 2, + & 2, 124, 124, 48, 2, 2, 124, 124, 70, + & 70, 48, 126, 48, 126, 56, 65, 48, 48, + & 70, 2, 92, 124, 92, 126, 131, 124, 70, + & 70, 70, 20, 105, 70, 2, 2, 27, 108, + & 27, 39, 2, 131, 131, 92, 92, 48, 2, + & 126, 20, 126, 2, 2, 131, 38, 117, 2, + & 131, 68, 58, 38, 90, 38, 108, 38, 2, + & 131, 131, 131, 68, 14, 94, 131, 131, 131, + & 108, 18, 131, 56, 85, 117, 117, 9, 131, + & 131, 55, 92, 92, 92, 131, 131, 48, 48/ + DATA ( C( 4,I), I = 1, 99 ) / + & 151, 168, 46, 197, 69, 64, 2, 198, 191, + & 134, 134, 167, 124, 16, 124, 124, 124, 124, + & 141, 134, 128, 2, 2, 32, 32, 32, 31, + & 31, 64, 64, 99, 4, 4, 167, 124, 124, + & 124, 124, 124, 124, 107, 85, 79, 85, 111, + & 85, 128, 31, 31, 31, 31, 64, 167, 4, + & 107, 167, 124, 124, 124, 124, 124, 124, 107, + & 183, 2, 2, 2, 62, 32, 31, 31, 31, + & 31, 31, 167, 4, 107, 167, 124, 124, 124, + & 124, 124, 124, 107, 142, 184, 184, 65, 65, + & 183, 31, 31, 31, 31, 31, 167, 4, 107/ + DATA ( C( 5,I), I = 1, 99 ) / + & 229, 40, 268, 42, 153, 294, 71, 2, 130, + & 199, 199, 199, 149, 199, 149, 153, 130, 149, + & 149, 15, 119, 294, 31, 82, 260, 122, 209, + & 209, 122, 296, 130, 130, 260, 260, 30, 206, + & 94, 209, 94, 122, 209, 209, 122, 122, 209, + & 130, 2, 130, 130, 38, 38, 79, 82, 94, + & 82, 122, 122, 209, 209, 122, 122, 168, 220, + & 62, 60, 168, 282, 282, 82, 209, 122, 94, + & 209, 122, 122, 122, 122, 258, 148, 286, 256, + & 256, 62, 62, 82, 122, 82, 82, 122, 122, + & 122, 209, 122, 15, 79, 79, 79, 79, 168/ + DATA ( C( 6,I), I = 1, 99 ) / + & 264, 402, 406, 147, 452, 153, 224, 2, 2, + & 224, 224, 449, 101, 182, 449, 101, 451, 181, + & 181, 101, 101, 377, 85, 453, 453, 453, 85, + & 197, 451, 2, 2, 101, 449, 449, 449, 173, + & 173, 2, 453, 453, 2, 426, 66, 367, 426, + & 101, 453, 2, 32, 32, 32, 101, 2, 2, + & 453, 223, 147, 449, 290, 2, 453, 2, 83, + & 223, 101, 453, 2, 83, 83, 147, 2, 453, + & 147, 147, 147, 147, 147, 147, 147, 453, 153, + & 153, 147, 2, 224, 290, 320, 453, 147, 431, + & 383, 290, 290, 2, 162, 162, 147, 2, 162/ + DATA ( C( 7,I), I = 1, 99 ) / + & 505, 220, 195, 410, 199, 248, 460, 471, 2, + & 331, 662, 547, 209, 547, 547, 209, 2, 680, + & 680, 629, 370, 574, 63, 63, 259, 268, 259, + & 547, 209, 209, 209, 547, 547, 209, 209, 547, + & 547, 108, 63, 63, 108, 63, 63, 108, 259, + & 268, 268, 547, 209, 209, 209, 209, 547, 209, + & 209, 209, 547, 108, 63, 63, 63, 405, 285, + & 234, 259, 259, 259, 259, 209, 209, 209, 209, + & 209, 209, 209, 209, 547, 289, 289, 234, 285, + & 316, 2, 410, 259, 259, 259, 268, 209, 209, + & 209, 209, 547, 547, 209, 209, 209, 285, 316/ + DATA ( C( 8,I), I = 1, 99 ) / + & 468, 635, 849, 687, 948, 37, 1014, 513, 2, + & 2, 2, 2, 2, 1026, 2, 2, 1026, 201, + & 201, 2, 1026, 413, 1026, 1026, 2, 2, 703, + & 703, 2, 2, 393, 393, 678, 413, 1026, 2, + & 2, 1026, 1026, 2, 405, 953, 2, 1026, 123, + & 123, 953, 953, 123, 405, 794, 123, 647, 613, + & 1026, 647, 768, 953, 405, 953, 405, 918, 918, + & 123, 953, 953, 918, 953, 536, 405, 70, 124, + & 1005, 529, 207, 405, 405, 953, 953, 123, 918, + & 918, 953, 405, 918, 953, 468, 405, 794, 794, + & 647, 613, 548, 405, 953, 405, 953, 123, 918/ + DATA ( C( 9,I), I = 1, 99 ) / + & 1189, 1423, 287, 186, 341, 77, 733, 733, 1116, + & 2, 1539, 2, 2, 2, 2, 2, 1116, 847, + & 1174, 2, 827, 713, 910, 944, 139, 1174, 1174, + & 1539, 1397, 1397, 1174, 370, 33, 1210, 2, 370, + & 1423, 370, 370, 1423, 1423, 1423, 434, 1423, 901, + & 139, 1174, 427, 427, 200, 1247, 114, 114, 1441, + & 139, 728, 1116, 1174, 139, 113, 113, 113, 1406, + & 1247, 200, 200, 200, 200, 1247, 1247, 27, 427, + & 427, 1122, 1122, 696, 696, 427, 1539, 435, 1122, + & 758, 1247, 1247, 1247, 200, 200, 200, 1247, 114, + & 27, 118, 118, 113, 118, 453, 453, 1084, 1406/ + DATA ( C(10,I), I = 1, 99 ) / + & 1764, 1349, 1859, 693, 78, 438, 531, 68, 2234, + & 2310, 2310, 2310, 2, 2310, 2310, 2102, 2102, 178, + & 314, 921, 1074, 1074, 1074, 2147, 314, 1869, 178, + & 178, 1324, 1324, 510, 2309, 1541, 1541, 1541, 1541, + & 342, 1324, 1324, 1324, 1324, 510, 570, 570, 2197, + & 173, 1202, 998, 1324, 1324, 178, 1324, 1324, 1541, + & 1541, 1541, 342, 1541, 886, 178, 1324, 1324, 1324, + & 510, 784, 784, 501, 652, 1541, 1541, 1324, 178, + & 1324, 178, 1324, 1541, 342, 1541, 2144, 784, 2132, + & 1324, 1324, 1324, 1324, 510, 652, 1804, 1541, 1541, + & 1541, 2132, 1324, 1324, 1324, 178, 510, 1541, 652/ + DATA ( C(11,I), I = 1, 99 ) / + & 2872, 1238, 387, 2135, 235, 1565, 221, 1515, 2950, + & 486, 3473, 2, 2950, 982, 2950, 3122, 2950, 3172, + & 2091, 2091, 9, 3449, 3122, 2846, 3122, 3122, 1947, + & 2846, 3122, 772, 1387, 2895, 1387, 3, 3, 3, + & 1320, 1320, 2963, 2963, 1320, 1320, 2380, 108, 1284, + & 702, 1429, 907, 3220, 3125, 1320, 2963, 1320, 1320, + & 2963, 1320, 1639, 3168, 1660, 2895, 2895, 2895, 2895, + & 1639, 1297, 1639, 404, 3168, 2963, 2943, 2943, 550, + & 1387, 1387, 2895, 2895, 2895, 1387, 2895, 1387, 2895, + & 1320, 1320, 2963, 1320, 1320, 1320, 2963, 1320, 2, + & 3473, 2, 3473, 772, 2550, 9, 1320, 2963, 1320/ + DATA ( C(12,I), I = 1, 99 ) / + & 4309, 2339, 4154, 4480, 4967, 630, 5212, 2592, 4715, + & 1808, 1808, 5213, 2, 216, 4014, 3499, 3499, 4204, + & 2701, 2701, 5213, 4157, 1209, 4157, 4460, 335, 4460, + & 1533, 4575, 4013, 4460, 1881, 2701, 4030, 4030, 1881, + & 4030, 1738, 249, 335, 57, 2561, 2561, 2561, 1533, + & 1533, 1533, 4013, 4013, 4013, 4013, 4013, 1533, 856, + & 856, 468, 468, 468, 2561, 468, 2022, 2022, 2434, + & 138, 4605, 1100, 2561, 2561, 57, 57, 3249, 468, + & 468, 468, 57, 468, 1738, 313, 856, 6, 3877, + & 468, 557, 468, 57, 468, 4605, 2022, 2, 4605, + & 138, 1100, 57, 2561, 57, 57, 2022, 5213, 3249/ + DATA ( C(13,I), I = 1, 99 ) / + & 6610, 1658, 3022, 2603, 5211, 265, 4985, 3, 4971, + & 2127, 1877, 1877, 2, 2925, 3175, 3878, 1940, 1940, + & 1940, 5117, 5117, 5771, 5117, 5117, 5117, 5117, 5117, + & 5771, 5771, 5117, 3658, 3658, 3658, 3658, 3658, 3658, + & 5255, 2925, 2619, 1714, 4100, 6718, 6718, 4100, 2322, + & 842, 4100, 6718, 5119, 4728, 5255, 5771, 5771, 5771, + & 5117, 5771, 5117, 5117, 5117, 5117, 5117, 5117, 5771, + & 5771, 1868, 4483, 4728, 3658, 5255, 3658, 5255, 3658, + & 3658, 5255, 5255, 3658, 6718, 6718, 842, 2322, 6718, + & 4100, 6718, 4100, 4100, 5117, 5771, 5771, 5117, 5771, + & 5771, 5771, 5771, 5117, 5117, 5117, 5771, 5771, 1868/ + DATA ( C(14,I), I = 1, 99 ) / + & 9861, 7101, 6257, 7878, 11170, 11638, 7542, 2592, 2591, + & 6074, 1428, 8925, 11736, 8925, 5623, 5623, 1535, 6759, + & 9953, 9953, 11459, 9953, 7615, 7615, 11377, 11377, 2762, + & 11734, 11459, 6892, 1535, 6759, 4695, 1535, 6892, 2, + & 2, 6892, 6892, 4177, 4177, 6339, 6950, 1226, 1226, + & 1226, 4177, 6892, 6890, 3640, 3640, 1226, 10590, 10590, + & 6950, 6950, 6950, 1226, 6950, 6950, 7586, 7586, 7565, + & 7565, 3640, 3640, 6950, 7565, 6950, 3599, 3599, 3599, + & 2441, 4885, 4885, 4885, 7565, 7565, 1226, 1226, 1226, + & 6950, 7586, 1346, 2441, 6339, 3640, 6950, 10590, 6339, + & 6950, 6950, 6950, 1226, 1226, 6950, 836, 6891, 7565/ + DATA ( C(15,I), I = 1, 99 ) / + & 13482, 5629, 6068, 11974, 4732, 14946, 12097, 17609, 11740, + & 15170, 10478, 10478, 17610, 2, 2, 7064, 7064, 7064, + & 5665, 1771, 2947, 4453, 12323, 17610, 14809, 14809, 5665, + & 5665, 2947, 2947, 2947, 2947, 12323, 12323, 4453, 4453, + & 2026, 11772, 2026, 11665, 12323, 12323, 3582, 2940, 2940, + & 6654, 4449, 9254, 11470, 304, 304, 11470, 304, 11470, + & 6156, 9254, 11772, 6654, 11772, 6156, 11470, 11470, 11772, + & 11772, 11772, 11470, 11470, 304, 11470, 11470, 304, 11470, + & 304, 11470, 304, 304, 304, 6654, 11508, 304, 304, + & 6156, 3582, 11470, 11470, 11470, 17274, 6654, 6654, 6744, + & 6711, 6654, 6156, 3370, 6654, 12134, 3370, 6654, 3582/ + DATA ( C(16,I), I = 1, 99 ) / + & 13482, 5629, 6068, 11974, 4732, 14946, 12097, 17609, 11740, + & 15170, 10478, 10478, 17610, 2, 2, 7064, 7064, 7064, + & 5665, 1771, 2947, 4453, 12323, 17610, 14809, 14809, 5665, + & 5665, 2947, 2947, 2947, 2947, 12323, 12323, 4453, 4453, + & 2026, 11772, 2026, 11665, 12323, 12323, 3582, 2940, 2940, + & 6654, 4449, 9254, 11470, 304, 304, 11470, 304, 11470, + & 6156, 9254, 11772, 6654, 11772, 6156, 11470, 11470, 11772, + & 11772, 11772, 11470, 11470, 304, 11470, 11470, 304, 11470, + & 304, 11470, 304, 304, 304, 6654, 11508, 304, 304, + & 6156, 3582, 11470, 11470, 11470, 17274, 6654, 6654, 6744, + & 6711, 6654, 6156, 3370, 6654, 12134, 3370, 6654, 3582/ + DATA ( C(17,I), I = 1, 99 ) / + & 34566, 38838, 23965, 17279, 35325, 33471, 330, 36050, 26419, + & 3012, 38428, 36430, 36430, 36755, 39629, 5749, 5749, 36755, + & 5749, 14353, 14353, 14353, 32395, 32395, 32395, 32395, 32396, + & 32396, 32396, 32396, 27739, 14353, 36430, 36430, 36430, 15727, + & 38428, 28987, 28987, 27739, 38428, 27739, 18786, 14353, 15727, + & 28987, 19151, 19757, 19757, 19757, 14353, 22876, 19151, 24737, + & 24737, 4412, 30567, 30537, 19757, 30537, 19757, 30537, 30537, + & 4412, 24737, 28987, 19757, 19757, 19757, 30537, 30537, 33186, + & 4010, 4010, 4010, 17307, 15217, 32789, 37709, 4010, 4010, + & 4010, 33186, 33186, 4010, 11057, 39388, 33186, 1122, 15089, + & 39629, 2, 2, 23899, 16466, 16466, 17038, 9477, 9260/ + DATA ( C(18,I), I = 1, 99 ) / + & 31929, 40295, 2610, 5177, 17271, 23770, 9140, 952, 39631, + & 3, 11424, 49719, 38267, 25172, 2, 2, 59445, 2, + & 59445, 38267, 44358, 14673, 53892, 14674, 14673, 14674, 41368, + & 17875, 17875, 30190, 20444, 55869, 15644, 25499, 15644, 20983, + & 44358, 15644, 15644, 485, 41428, 485, 485, 485, 41428, + & 53798, 50230, 53798, 50253, 50253, 35677, 35677, 17474, 7592, + & 4098, 17474, 485, 41428, 485, 41428, 485, 41428, 485, + & 41428, 41428, 41428, 41428, 41428, 9020, 22816, 4098, 4098, + & 4098, 7592, 42517, 485, 50006, 50006, 22816, 22816, 9020, + & 485, 41428, 41428, 41428, 41428, 50006, 485, 41428, 41428, + & 41428, 41428, 22816, 41428, 41428, 485, 485, 485, 9020/ + DATA ( C(19,I), I = 1, 99 ) / + & 73726, 16352, 16297, 74268, 60788, 8555, 1077, 25486, 86595, + & 59450, 19958, 62205, 62205, 4825, 4825, 89174, 89174, 62205, + & 19958, 62205, 19958, 27626, 63080, 62205, 62205, 62205, 19958, + & 8914, 83856, 30760, 47774, 47774, 19958, 62205, 39865, 39865, + & 74988, 75715, 75715, 74988, 34522, 74988, 74988, 25101, 44621, + & 44621, 44621, 25101, 25101, 25101, 44621, 47768, 41547, 44621, + & 10273, 74988, 74988, 74988, 74988, 74988, 74988, 34522, 34522, + & 67796, 67796, 30208, 2, 67062, 18500, 29251, 29251, 2, + & 67796, 67062, 38649, 59302, 6225, 67062, 6475, 6225, 46772, + & 38649, 67062, 46772, 46772, 67062, 46772, 25372, 67062, 6475, + & 25372, 67062, 67062, 67062, 6225, 67062, 67062, 68247, 80676/ + DATA ( C(20,I), I = 1, 99 )/ + & 103650, 50089, 70223, 41805, 74847,112775, 40889, 64866, 44053, + & 1754,129471, 13630, 53467, 53467, 61378,133761, 2,133761, + & 2,133761,133761, 65531, 65531, 65531, 38080,133761,133761, + & 131061, 5431, 65531, 78250, 11397, 38841, 38841,107233,107233, + & 111286, 19065, 38841, 19065, 19065, 16099,127638, 82411, 96659, + & 96659, 82411, 96659, 82411, 51986,101677, 39264, 39264,101677, + & 39264, 39264, 47996, 96659, 82411, 47996, 10971, 10004, 82411, + & 96659, 82411, 82411, 82411, 96659, 96659, 96659, 82411, 96659, + & 51986,110913, 51986, 51986,110913, 82411, 54713, 54713, 22360, + & 117652, 22360, 78250, 78250, 91996, 22360, 91996, 97781, 91996, + & 97781, 91996, 97781, 97781, 91996, 97781, 97781, 36249, 39779/ + SAVE P, C, SAMPLS, NP, VAREST + IF ( NDIM .GT. NLIM .OR. NDIM .LT. 1 ) THEN + INFORM = 2 + FINEST = 0.d0 + ABSERR = 1.d0 + RETURN + ENDIF + INFORM = 1 + INTVLS = 0 + IF ( MINVLS .GE. 0 ) THEN + FINEST = 0.d0 + VAREST = 0.d0 + SAMPLS = MINSMP + DO I = 1, PLIM + NP = I + IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10 + END DO + SAMPLS = MAX( MINSMP, INT(MINVLS/( 2*P(NP)) ) ) + ENDIF + 10 VK(1) = ONE/DBLE(P(NP)) + DO I = 2, NDIM + VK(I) = MOD( DBLE(C(NP,NDIM-1))*VK(I-1), ONE ) + END DO + FINVAL = 0.d0 + VARSQR = 0.d0 +* +* Compute mean and standard error for SAMPLS randomized lattice rules +* + DO I = 1, SAMPLS + CALL KROSUM( NDIM, VALUE, P(NP), VK, FUNCTN, ALPHA, X ) + DIFINT = ( VALUE - FINVAL )/DBLE(I) + FINVAL = FINVAL + DIFINT + VARSQR = DBLE(I - 2)*VARSQR/DBLE(I) + DIFINT*DIFINT + END DO + INTVLS = INTVLS + 2*SAMPLS*P(NP) + VARPRD = VAREST*VARSQR + FINEST = FINEST + ( FINVAL - FINEST )/( 1.d0 + VARPRD ) + IF ( VARSQR .GT. 0.d0 ) VAREST = ( 1.d0 + VARPRD )/VARSQR + ABSERR = 3.d0*SQRT( VARSQR/( 1.d0 + VARPRD ) ) + IF ( ABSERR .GT. MAX( ABSEPS, ABS(FINEST)*RELEPS ) ) THEN + IF ( NP .LT. PLIM ) THEN + NP = NP + 1 + ELSE + SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) + SAMPLS = MAX( MINSMP, SAMPLS ) + ENDIF + IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10 + ELSE + INFORM = 0 + ENDIF + MINVLS = INTVLS + END SUBROUTINE KROBOV +* + SUBROUTINE KROSUM( NDIM, SUMKRO, PRIME, VK, FUNCTN, ALPHA, X ) + INTEGER, INTENT(IN):: NDIM, PRIME + DOUBLE PRECISION, INTENT(OUT) :: SUMKRO + DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: ALPHA,X ! size NDIM + INTEGER :: K !, J + DOUBLE PRECISION :: ONE + DOUBLE PRECISION, DIMENSION(:), INTENT(IN) :: VK + INTERFACE + DOUBLE PRECISION FUNCTION FUNCTN(N,Z) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + END FUNCTION FUNCTN + END INTERFACE + PARAMETER ( ONE = 1.d0 ) + SUMKRO = 0.d0 + CALL random_number(ALPHA(1:NDIM)) + DO K = 1, PRIME + X(1:NDIM) = MOD( DBLE(K)*VK(1:NDIM) + ALPHA(1:NDIM), ONE ) + X(1:NDIM) = ABS( 2.d0*X(1:NDIM) - ONE ) +! PRINT *,'KROSUM W=',X(1:NDIM) + SUMKRO = SUMKRO+(FUNCTN(NDIM,X)-SUMKRO)/DBLE(2*K-1) + X(1:NDIM) = ONE - X(1:NDIM) + SUMKRO = SUMKRO+(FUNCTN(NDIM,X)-SUMKRO)/DBLE(2*K) + END DO + END SUBROUTINE KROSUM + END MODULE KROBOVMOD + diff --git a/wafo/source/rind2007/jacobmod.f b/wafo/source/rind2007/jacobmod.f new file mode 100755 index 0000000..7f4a193 --- /dev/null +++ b/wafo/source/rind2007/jacobmod.f @@ -0,0 +1,20 @@ + MODULE JACOBMOD + IMPLICIT NONE + PRIVATE + PUBLIC :: JACOB + INTERFACE JACOB + MODULE PROCEDURE JACOB + END INTERFACE + CONTAINS + FUNCTION JACOB ( xd,xc) RESULT (value1) + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:),INTENT(in) :: xd ,xc + DOUBLE PRECISION :: value1 + ! default + value1 = ABS(PRODUCT(xd)) + ! Other possibilities given below: + ! value1 = 1.d0 + ! value1 = ABS(PRODUCT(xd)*PRODUCT(xc)) + RETURN + END FUNCTION JACOB + END MODULE JACOBMOD \ No newline at end of file diff --git a/wafo/source/rind2007/jacobmod.mod b/wafo/source/rind2007/jacobmod.mod new file mode 100755 index 0000000..7281426 --- /dev/null +++ b/wafo/source/rind2007/jacobmod.mod @@ -0,0 +1,29 @@ +GFORTRAN module version '0' created from jacobmod.f on Wed Aug 05 05:35:52 2009 +MD5:4af662f7f9b6aea3cbe229e90aed063f -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('jacob' 'jacobmod' 2)) + +() + +() + +(2 'jacob' 'jacobmod' 'jacob' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN FUNCTION GENERIC ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 3 0 +(4 5) () 6 () () () 0 0) +4 'xd' '' 'xd' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +5 'xc' '' 'xc' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +6 'value1' '' 'value1' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN RESULT ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () +0 0) +) + +('jacob' 0 2) diff --git a/wafo/source/rind2007/krbvrcmod.mod b/wafo/source/rind2007/krbvrcmod.mod new file mode 100755 index 0000000..cc48e06 --- /dev/null +++ b/wafo/source/rind2007/krbvrcmod.mod @@ -0,0 +1,44 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 05:36:07 2009 +MD5:c734feac7a719b8cda518e46a6228370 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('krbvrc' 'krbvrcmod' 2)) + +() + +() + +(2 'krbvrc' 'krbvrcmod' 'krbvrc' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +3 0 (4 5 6 7 8 9 10 11 12) () 0 () () () 0 0) +4 'ndim' '' 'ndim' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +5 'minvls' '' 'minvls' 3 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'maxvls' '' 'maxvls' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'functn' '' 'functn' 3 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 13 0 (14 15) +() 7 () () () 0 0) +8 'abseps' '' 'abseps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'releps' '' 'releps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +10 'abserr' '' 'abserr' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'finest' '' 'finest' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +12 'inform' '' 'inform' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'n' '' 'n' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'z' '' 'z' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('krbvrc' 0 2) diff --git a/wafo/source/rind2007/krobovmod.mod b/wafo/source/rind2007/krobovmod.mod new file mode 100755 index 0000000..2a8be7c --- /dev/null +++ b/wafo/source/rind2007/krobovmod.mod @@ -0,0 +1,44 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 06:33:27 2009 +MD5:c2bbe88c382c1e5c407f55a156f093e2 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('krobov' 'krobovmod' 2)) + +() + +() + +(2 'krobov' 'krobovmod' 'krobov' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +3 0 (4 5 6 7 8 9 10 11 12) () 0 () () () 0 0) +4 'ndim' '' 'ndim' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +12 'inform' '' 'inform' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +10 'abserr' '' 'abserr' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'finest' '' 'finest' 3 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +7 'functn' '' 'functn' 3 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 13 0 (14 15) +() 7 () () () 0 0) +8 'abseps' '' 'abseps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'releps' '' 'releps' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +6 'maxvls' '' 'maxvls' 3 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +5 'minvls' '' 'minvls' 3 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'z' '' 'z' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +14 'n' '' 'n' 13 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('krobov' 0 2) diff --git a/wafo/source/rind2007/precisionmod.mod b/wafo/source/rind2007/precisionmod.mod new file mode 100755 index 0000000..f3e176a --- /dev/null +++ b/wafo/source/rind2007/precisionmod.mod @@ -0,0 +1,26 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 05:35:50 2009 +MD5:9a96cbd1faeb6554557f9d9308c50e28 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +() + +() + +() + +(2 'gp' 'precisionmod' 'gp' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '8') () 0 () () () 0 0) +3 'precisionmod' 'precisionmod' 'precisionmod' 1 ((MODULE UNKNOWN-INTENT +UNKNOWN-PROC UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () +() () 0 0) +4 'selected_real_kind' '(intrinsic)' 'selected_real_kind' 1 ((PROCEDURE +UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN FUNCTION) (UNKNOWN 0 0 0 +UNKNOWN ()) 0 0 () () 4 () () () 0 0) +) + +('gp' 0 2 'precisionmod' 0 3 'selected_real_kind' 0 4) diff --git a/wafo/source/rind2007/quad.mod b/wafo/source/rind2007/quad.mod new file mode 100755 index 0000000..c0469ec --- /dev/null +++ b/wafo/source/rind2007/quad.mod @@ -0,0 +1,271 @@ +GFORTRAN module version '0' created from rind71mod.f on Wed Aug 05 05:42:33 2009 +MD5:5fe7f8d121252e680c2bd7d7c177fa9d -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () +() () () () () ()) + +() + +(('gausshe0' 'quad' 2) ('gaussle0' 'quad' 3) ('gaussle1' 'quad' 4) ( +'gaussq' 'quad' 5) ('gaussle2' 'quad' 6) ('gaussla0' 'quad' 7)) + +() + +() + +(8 '__convert_r4_r8' '(intrinsic)' '__convert_r4_r8' 1 ((PROCEDURE +UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN FUNCTION ELEMENTAL PURE) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +2 'gausshe0' 'quad' 'gausshe0' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 9 0 (10 11 12 13 14 15) () 0 () () () 0 0) +7 'gaussla0' 'quad' 'gaussla0' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 16 0 (17 18 19 20 21 22) () 0 () () () 0 0) +3 'gaussle0' 'quad' 'gaussle0' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 23 0 (24 25 26 27 28 29) () 0 () () () 0 0) +4 'gaussle1' 'quad' 'gaussle1' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 30 0 (31 32 33 34 35) () 0 () () () 0 0) +6 'gaussle2' 'quad' 'gaussle2' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 36 0 (37 38 39 40 41 42) () 0 () () () 0 0) +5 'gaussq' 'quad' 'gaussq' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC DECL +UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN ()) +43 0 (44 45 46 47 48 49) () 0 () () () 0 0) +50 'hebp' 'quad' 'hebp' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +51 'heind' 'quad' 'heind' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '0') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '9') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14') ()) ((CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '27') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '35') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '44') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '54') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '66') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '82') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '102') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '126') ())) ('14')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14')) 0 () () () 0 0) +52 'heqnr' 'quad' 'heqnr' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '3') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '4') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '6') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '7') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '8') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '9') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '10') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '12') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '16') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '24') ())) ('13')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '13')) 0 () () +() 0 0) +53 'hewf' 'quad' 'hewf' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +54 'i' 'quad' 'i' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +55 'labp0' 'quad' 'labp0' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +56 'labp5' 'quad' 'labp5' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +57 'laind' 'quad' 'laind' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '0') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '9') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14') ()) ((CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '27') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '35') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '44') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '54') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '66') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '82') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '102') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '126') ())) ('14')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14')) 0 () () () 0 0) +58 'laqnr' 'quad' 'laqnr' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '3') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '4') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '6') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '7') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '8') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '9') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '10') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '12') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '16') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '24') ())) ('13')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '13')) 0 () () +() 0 0) +59 'lawf0' 'quad' 'lawf0' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +60 'lawf5' 'quad' 'lawf5' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +61 'le2qnr' 'quad' 'le2qnr' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +62 'lebp' 'quad' 'lebp' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +63 'leind' 'quad' 'leind' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '0') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '9') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14') ()) ((CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '27') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '35') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '44') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '54') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '66') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '82') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '102') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '126') ())) ('14')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '14')) 0 () () () 0 0) +64 'leqnr' 'quad' 'leqnr' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (ARRAY ( +INTEGER 4 0 0 INTEGER ()) 1 (((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '2') +()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '3') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '4') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '5') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '6') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '7') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '8') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '9') ()) ((CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '10') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER +()) 0 '12') ()) ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '16') ()) (( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '20') ()) ((CONSTANT (INTEGER 4 0 +0 INTEGER ()) 0 '24') ())) ('13')) (1 EXPLICIT (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '13')) 0 () () +() 0 0) +65 'lewf' 'quad' 'lewf' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION DATA) (REAL 8 0 0 REAL ()) 0 0 () (1 EXPLICIT ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '126')) 0 () () () 0 0) +66 'minqnr' 'quad' 'minqnr' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 +0) +67 'nhew' 'quad' 'nhew' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '13') () 0 () () () 0 0) +68 'nint1' 'quad' 'nint1' 1 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN DIMENSION) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 EXPLICIT +(CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '13')) 0 () () () 0 0) +69 'nlaw' 'quad' 'nlaw' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '13') () 0 () () () 0 0) +70 'nlew' 'quad' 'nlew' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '13') () 0 () () () 0 0) +71 'pmax' 'quad' 'pmax' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '24') () 0 () () () 0 0) +72 'quad' 'quad' 'quad' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +73 'siznint' 'quad' 'siznint' 1 ((PARAMETER UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN IMPLICIT-SAVE) (INTEGER 4 0 0 INTEGER ()) 0 0 () (CONSTANT ( +INTEGER 4 0 0 INTEGER ()) 0 '13') () 0 () () () 0 0) +31 'n' '' 'n' 30 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +32 'wfout' '' 'wfout' 30 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +33 'bpout' '' 'bpout' 30 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +34 'xmi' '' 'xmi' 30 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +35 'xma' '' 'xma' 30 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +24 'n' '' 'n' 23 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +25 'wfout' '' 'wfout' 23 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +26 'bpout' '' 'bpout' 23 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +27 'xmi' '' 'xmi' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +28 'xma' '' 'xma' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +29 'n0' '' 'n0' 23 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +37 'n' '' 'n' 36 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +38 'wfout' '' 'wfout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +39 'bpout' '' 'bpout' 36 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +40 'xmi' '' 'xmi' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +41 'xma' '' 'xma' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +42 'n0' '' 'n0' 36 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +10 'n' '' 'n' 9 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +11 'wfout' '' 'wfout' 9 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +12 'bpout' '' 'bpout' 9 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +13 'xmi' '' 'xmi' 9 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +14 'xma' '' 'xma' 9 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +15 'n0' '' 'n0' 9 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +17 'n' '' 'n' 16 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +18 'wfout' '' 'wfout' 16 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +19 'bpout' '' 'bpout' 16 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +20 'xmi' '' 'xmi' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +21 'xma' '' 'xma' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +22 'n0' '' 'n0' 16 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +44 'n' '' 'n' 43 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +45 'wf' '' 'wf' 43 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +46 'bp' '' 'bp' 43 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +47 'xmi' '' 'xmi' 43 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +48 'xma' '' 'xma' 43 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +49 'n0' '' 'n0' 43 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('__convert_r4_r8' 0 8 'gausshe0' 0 2 'gaussla0' 0 7 'gaussle0' 0 3 +'gaussle1' 0 4 'gaussle2' 0 6 'gaussq' 0 5 'hebp' 0 50 'heind' 0 51 +'heqnr' 0 52 'hewf' 0 53 'i' 0 54 'labp0' 0 55 'labp5' 0 56 'laind' 0 57 +'laqnr' 0 58 'lawf0' 0 59 'lawf5' 0 60 'le2qnr' 0 61 'lebp' 0 62 'leind' +0 63 'leqnr' 0 64 'lewf' 0 65 'minqnr' 0 66 'nhew' 0 67 'nint1' 0 68 +'nlaw' 0 69 'nlew' 0 70 'pmax' 0 71 'quad' 0 72 'siznint' 0 73) diff --git a/wafo/source/rind2007/rcrudemod.mod b/wafo/source/rind2007/rcrudemod.mod new file mode 100755 index 0000000..24beb95 --- /dev/null +++ b/wafo/source/rind2007/rcrudemod.mod @@ -0,0 +1,42 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 05:36:07 2009 +MD5:240f214ef2031c1b04fc7d9aaa35265b -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('ranmc' 'rcrudemod' 2)) + +() + +() + +(2 'ranmc' 'rcrudemod' 'ranmc' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) 3 0 (4 5 6 7 +8 9 10 11) () 0 () () () 0 0) +4 'n' '' 'n' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +5 'maxpts' '' 'maxpts' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'functn' '' 'functn' 3 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 12 0 (13 14) +() 6 () () () 0 0) +7 'abseps' '' 'abseps' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +8 'releps' '' 'releps' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'error' '' 'error' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +10 'value' '' 'value' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +11 'inform' '' 'inform' 3 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +13 'n' '' 'n' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'z' '' 'z' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('ranmc' 0 2) diff --git a/wafo/source/rind2007/rind71mod.f b/wafo/source/rind2007/rind71mod.f new file mode 100755 index 0000000..8f9b9bd --- /dev/null +++ b/wafo/source/rind2007/rind71mod.f @@ -0,0 +1,4157 @@ +!**************************************************************************** +! if compilation complains about too many continuation lines extend it. +! +! +! modules: GLOBALDATA, QUAD, RIND71MOD Version 1.0 +! +! Programs available in module RIND71MOD : +! (NB! the GLOBALDATA and QUAD module is also used to transport the inputs) +! +! +! SETDATA initializes global constants explicitly: +! +! CALL SETDATA(EPSS,REPS,EPS2,NIT,xCutOff,NINT,XSPLT) +! +! GLOBALDATA module : +! EPSS,CEPSS = 1.d0 - EPSS , controlling the accuracy of indicator function +! EPS2 = if conditional variance is less it is considered as zero +! i.e., the variable is considered deterministic +! xCutOff = 5 (standard deviations by default) +! +! QUAD module: +! Nint1(i) = quadrature formulae used in integration of Xd(i) +! implicitly determining # nodes +! +! INITDATA initializes global constants implicitly: +! +! CALL INITDATA (speed) +! +! speed = 1,2,...,9 (1=slowest and most accurate,9=fastest, +! but less accurate) +! +! see the GLOBALDATA and QUAD module for other constants and default values +! +! +!RIND71 computes E[Jacobian*Indicator|Condition]*f_{Xc}(xc(:,ix)) +! +! where +! "Indicator" = I{ H_lo(i) < X(i) < H_up(i), i=1:Nt+Nd } +! "Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is +! "Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)| +! "condition" = Xc=xc(:,ix), ix=1,...,Nx. +! X = [Xt; Xd ;Xc], a stochastic vector of Multivariate Gaussian +! variables where Xt,Xd and Xc have the length Nt, Nd and Nc, +! respectively. +! (Recommended limitations Nx, Nt<101, Nd<7 and NIT,Nc<11) +! (RIND = Random Integration N Dimensions) +! +!CALL RIND71(E,S,m,xc,indI,Blo,Bup,xcScale); +! +! E = expectation/density as explained above size 1 x Nx (out) +! S = Covariance matrix of X=[Xt;Xd;Xc] size N x N (N=Nt+Nd+Nc) (inout) +! NB!: out=conditional sorted Covariance matrix +! m = the expectation of X=[Xt;Xd;Xc] size N x 1 (in) +! xc = values to condition on size Nc x Nx (in) +! indI = vector of indices to the different barriers in the (in) +! indicator function, length NI, where NI = Nb+1 +! (NB! restriction indI(1)=0, indI(NI)=Nt+Nd ) +!Blo,Bup = Lower and upper barrier coefficients used to compute the (in) +! integration limits Hlo and Hup, respectively. +! size Mb x Nb. If Mb 0 then you must initialize the random generator before you +! call rindd by the following lines: +! +! call random_seed(SIZE=seed_size) +! allocate(seed(seed_size)) +! call random_seed(GET=seed(1:seed_size)) ! get current seed +! seed(1)=seed1 ! change seed +! call random_seed(PUT=seed(1:seed_size)) +! deallocate(seed) +! +! For further description see the modules +! +! +! References +! Podgorski et. al. (1999) +! "Exact distributions for apparent waves in irregular seas" +! Ocean Engineering (RINDXXX) +! +! R. Ambartzumian, A. Der Kiureghian, V. Ohanian and H. +! Sukiasian (1998) +! "Multinormal probabilities by sequential conditioned +! importance sampling: theory and application" (RINDSCIS, MNORMPRB,MVNFUN,MVNFUN2) +! Probabilistic Engineering Mechanics, Vol. 13, No 4. pp 299-308 +! +! Alan Genz (1992) +! 'Numerical Computation of Multivariate Normal Probabilites' +! J. computational Graphical Statistics, Vol.1, pp 141--149 +! +! William H. Press, Saul Teukolsky, +! William T. Wetterling and Brian P. Flannery (1997) +! "Numerical recipes in Fortran 77", Vol. 1, pp 55-63, 299--305 (SVDCMP,SOBSEQ) +! +! Igor Rychlik and Georg Lindgren (1993) +! "Crossreg - A technique for first passage and wave density analysis" (RINDXXX) +! Probability in the Engineering and informational Sciences, +! Vol 7, pp 125--148 +! +! Igor Rychlik (1992) +! "Confidence bands for linear regressions" (RIND2,RINDNIT) +! Commun. Statist. -simula., Vol 21,No 2, pp 333--352 +! +! +! Donald E. Knuth (1973) "The art of computer programming,", +! Vol. 3, pp 84- (sorting and searching) (SORTRE) + +! Tested on: DIGITAL UNIX Fortran90 compiler +! PC pentium II with Lahey Fortran90 compiler +! Solaris with SunSoft F90 compiler Version 1.0.1.0 (21229283) +! History: +! revised pab aug 2009 +! -moved c1c2 to c1c2mod +! -removed rateLHD, useMIDP, FxCutOff, CFxCutOff from globaldata module +! revised pab July 2007 +! -reordered integration methods (SCIS) +! revised pab 9 may 2004 +! removed xcutoff2 +! introduced XcScale to rindd +! revised pab 17.02.2003 +! -new name rind71 +! commented out all print statements +! revised pab 08.02.2001 +! - New name rind70.f +! - moved the jacob function to a separate module. +! - jacobdef in module GLOBALDATA is now obsolete. +! revised pab 19.01.2001 +! - added a NEW BVU function +! revised pab 06.11.2000 +! - added checks in condsort2, condsort3, condsort4 telling if the matrix is +! negative definit +! - changed the order of SCIS integration again. +! revised pab 07.09.2000 +! - To many continuation lines in QUAD module => +! broke them up and changed PARAMETER statements into DATA +! statements instead. +! revised pab 22.05.2000 +! - changed order of SCIS integration: moved the less important SCIS +! revised pab 19.04.2000 +! - found a bug in THL when L<-1, now fixed +! revised pab 18.04.2000 +! new name rind60 +! New assumption of BIG for the conditional sorted variables: +! BIG(I,I)=sqrt(Var(X(I)|X(I+1)...X(N))=SQI +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N))/SQI +! Otherwise +! BIG(I,I) = Var(X(I)|X(I+1)...X(N) +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N)) +! This also affects C1C2: SQ0=sqrt(Var(X(I)|X(I+1)...X(N)) is removed from input +! => A lot of wasteful divisions are avoided +! revised pab 23.03.2000 +! - done some optimization in initdata +! - added some things in THL + optimized THL +! - fixed a bug in condsort and condsort0 when Nd+Nj=0 +! revised pab 20.03.2000 +! - new name rind57 +! - added condsort0 and condsort4 which sort the covariance matrix using the shortest +! expected integration interval => integration time is much shorter for all methods. +! condsort and condsort3 sort by decreasing conditional variance +! revised pab 17.03.2000 +! - changed argp0 so that I0 and I1 really are the indices to the minimum and the second minimum +! - changed rindnit so that norm2dprb is called whenever NITL<1 and Nsnew>=2 +! - changed default parameters for initdata for speed=7,8 and 9 to increase accuracy. +! - Changed so that xCutOff varies with speed => program is much faster without loosing any accuracy it seems +! revised pab 15.03.2000 +! - changed rindscis and mnormprb: moved the actual multidimensional integration +! into separate module, rcrudemod.f (as a consequence SVDCMP,PYTHAG and SORTRE +! are also moved into this module) => made the structure of the program simpler +! - added the possibility to use adapt, krbvrc, krobov and ranmc to integrate +! - Set NUGGET to 0 when Nc=0, since it is no longer needed +! - added the module MVNFUNDATA +! revised pab 03.03.2000 +! - BIG are no longer changed when called by RINDD instead it is copied into a new variable +! - new name rind55.f +! - fixed the bug in THL, i.e. THL forgot to return a value in some cases giving floating invalid +!revised by I.R. 27.01.2000, Removed bugs in RINDNIT (There where some returns +! without deallocating some variables. A misco error in THL, leading +! to floating invalid on alpha has been repaired by seting value=zero. +! Probably there is an error somehere making variable "value" to behave badly. +!Revised by IR. 03.01.2000 Bug in C1C2 fixed and deallocation of ind in RINDNIT. +!revised by I.R. 27.12.1999, New name RIND51.f +! I have changed assumption about deterministic variables. Those have now +! variances equal EPS2 not zero and have consequences for C1C2 and on some +! places in RINDND. The effect is that barriers becomes fuzzy (not sharp) +! and prevents for discountinuities due to numerical errors of order 1E-16. +! The program RIND0 is removed making the structure of program simpler. +! We have still a problem when variables in indicator become +! deterministic before conditioning on derivatives in Xd - it needs to be solved. +!revised by Igor Rychlik 01.12.1999 New name RIND49.f +! - changed RINDNIT and ARGP0 in order to exclude +! irrelevant variables (such that probability of beeing +! between barriers is 1.) All computations related to NIT +! are moved to RINDNIT (removing RIND2,RIND3). This caused some changes +! in RIND0,RINDDND. Furthermore RINDD1 is removed and moved +! some parts of it to RINDDND. This made program few seconds slower. The lower +! bound in older ARGP0 programs contained logical error - corrected. +!revised by Per A. Brodtkorb 08.11.1999 +! - fixed a bug in rinddnd +! new line: CmNew(Nst+1:Nsd-1)= Cm(Nst+1:Nsd-1) +!revised by Per A. Brodtkorb 28.10.1999 +! - fixed a bug in rinddnd +! - changed rindscis, mnormprb +! - added MVNFUN, MVNFUN2 +! - replaced CVaccept with RelEps +!revised by Per A. Brodtkorb 27.10.1999 +! - changed NINT to NINT1 due to naming conflict with an intrinsic of the same name +!revised by Per A. Brodtkorb 25.10.1999 +! - added an alternative FIINV for use in rindscis and mnormprb +!revised by Per A. Brodtkorb 13.10.1999 +! - added useMIDP for use in rindscis and mnormprb +! +!revised by Per A. Brodtkorb 22.09.1999 +! - removed all underscore letters due to +! problems with SunSoft F90 compiler +! (i.e. changed GLOBAL_DATA to GLOBALDATA etc.) +!revised by Per A. Brodtkorb 09.09.1999 +! - added sobseq: Sobol sequence (quasi random numbers) +! an alternative to random_number in RINDSCIS and mnormprb +!revised by Per A. Brodtkorb 07.09.1999 +! - added pythag,svdcmp,sortre +! - added RINDSCIS: evaluating multinormal integrals by SCIS +! condsort3: prepares BIG for use with RINDSCIS and mnormprb +!revised by Per A. Brodtkorb 03.09.1999 +! - added mnormprb: evaluating multinormal probabilities by SCIS +! See globaldata for SCIS +! revised by Per A. Brodtkorb 01.09.1999 +! - increased the default NUGGET from 1.d-12 to 1.d-8 +! - also set NUGGET depending on speed in INITDATA +! revised by Per A. Brodtkorb 27.08.1999 +! - changed rindnit,rind2: +! enabled option to do the integration faster/(smarter?). +! See GLOBALDATA for XSPLT +! revised by Per A. Brodtkorb 17.08.1999 +! - added THL, norm2dprb not taken in to use +! due to some mysterious floating invalid +! occuring from time to time in norm2dprb (on DIGITAL unix) +! revised by Per A. Brodtkorb 02.08.1999 +! - updated condsort +! - enabled the use of C1C2 in rinddnd +! revised by Per A. Brodtkorb 14.05.1999 +! - updated to fortran90 +! - enabled recursive calls +! - No limitations on size of the inputs +! - fixed some bugs +! - added some additonal checks +! - added Hermite, Laguerre quadratures for alternative integration +! - rewritten CONDSORT, conditional covariance matrix in upper +! triangular. +! - RINDXXX routines only work on the upper triangular +! of the covariance matrix +! - Added a Nugget effect to the covariance matrix in order +! to ensure the conditioning is not corrupted by numerical errors +! - added the option to condsort Nj variables of Xt, i.e., +! enabling direct integration like the integration of Xd +! by Igor Rychlik 29.10.1998 (PROGRAM RIND11 --- Version 1.0) +! which was a revision of program RIND from 3.9.1993 - the program that +! is used in wave_t and wave_t2 programs. + +!********************************************************************* + + MODULE GLOBALDATA + IMPLICIT NONE + ! Constants determining accuracy of integration + !----------------------------------------------- + !if the conditional variance are less than: + DOUBLE PRECISION :: EPS2=1.d-4 !- EPS2, the variable is + ! considered deterministic + DOUBLE PRECISION :: EPS = 1.d-2 ! SQRT(EPS2) + DOUBLE PRECISION :: XCEPS2=1.d-16 ! if Var(Xc) is less return NaN + DOUBLE PRECISION :: EPSS = 5.d-5 ! accuracy of Indicator + DOUBLE PRECISION :: CEPSS=0.99995 ! accuracy of Indicator + DOUBLE PRECISION :: EPS0 = 5.d-5 ! used in GAUSSLE1 to implicitly + ! determ. # nodes + DOUBLE PRECISION :: xcScale=0.d0 + DOUBLE PRECISION :: fxcEpss=1.d-20 ! if less do not compute E(...|Xc) + DOUBLE PRECISION :: xCutOff=5.d0 ! upper/lower truncation limit of the + ! normal CDF + ! Nugget>0: Adds a small value to diagonal + ! elements of the covariance matrix to ensure + ! that the inversion is not corrupted by + ! round off errors. + ! Good choice might be 1e-8 + DOUBLE PRECISION :: NUGGET=1.d-8 ! Obs NUGGET must be smaller then EPS2 + +!parameters controlling the performance of RINDSCIS and MNORMPRB: + INTEGER :: SCIS=0 !=0 integr. all by quadrature + !=1 Integrate all by SADAPT for Ndim<9 and by KRBVRC otherwise + !=2 Integrate all by SADAPT for Ndim<9 and by KROBOV otherwise + !=3 Integrate all by KRBVRC (Fast and reliable) + !=4 Integrate all by KROBOV (Fast and reliable) + !=5 Integrate all by RCRUDE (Reliable) + !=6 Integrate all by SOBNIED (NDIM<1041) + !=7 Integrate all by DKBVRC (Ndim<1001) + INTEGER :: NSIMmax = 1000 ! maximum number of simulations per stochastic dimension + INTEGER :: NSIMmin = 10 ! minimum number of simulations per stochastic dimension + INTEGER :: Ntscis = 0 ! Ntscis=Nt-Nj-Njj when SCIS>0 otherwise Ntscis=0 + DOUBLE PRECISION :: RelEps = 0.001 ! Relative error, i.e. if + ! 3.0*STD(XIND)/XIND is less we accept the estimate + ! The following may be allocated outside RINDD + ! if one wants the coefficient of variation, i.e. + ! STDEV(XIND)/XIND when SCIS=2. (NB: size Nx) + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: COV + integer :: COVix ! counting variable for COV + LOGICAL,PARAMETER :: useC1C2=.true. ! use C1C2 in rindscis,mnormprb + LOGICAL,PARAMETER :: C1C2det=.true. ! use C1C2 only on the variables that becomes + ! deterministic after conditioning on X(N) + ! used in rinddnd rindd1 and rindscis mnormprb + +!parameters controlling performance of quadrature integration: + ! if Hup>=xCutOff AND Hlo<-XSPLT OR + ! Hup>=XSPLT AND Hl0<=-xCutOff then + ! do a different integration to increase speed + ! in rind2 and rindnit. This give slightly different + ! results + ! DEFAULT 5 =xCutOff => do the same integration allways + ! However, a resonable value is XSPLT=1.5 + DOUBLE PRECISION :: XSPLT = 5.d0 ! DEFAULT XSPLT= 5 =xCutOff + ! weight between upper&lower limit returned by ARGP0 + DOUBLE PRECISION, PARAMETER :: Plowgth=0.d0 ! 0 => no weight to + ! lower limit + INTEGER :: NIT=2 ! NIT=maximum # of iterations/integrations by + ! quadrature used to calculate the indicator function + + ! size information of the covariance matrix BIG + ! Nt,Nd,....Ntd,Nx must be set before calling + ! RINDD. NsXtmj, NsXdj is set in RINDD + INTEGER :: Nt,Nd,Nc,Ntdc,Ntd,Nx + ! Constants determines how integration is done + INTEGER :: Nj=0,Njj=0 ! Njj is not implemented yet + ! size information of indI, Blo,Bup + ! Blo/Bup size Mb x NI-1 + ! indI vector of length NI + INTEGER :: NI,Mb ! must be set before calling RINDD + + ! The following is allocated in RINDD + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: SQ + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: Hlo,Hup + INTEGER, DIMENSION(:), ALLOCATABLE :: index1,xedni,indXtd + INTEGER, DIMENSION(:), ALLOCATABLE :: NsXtmj, NsXdj + + ! global constants + DOUBLE PRECISION, PARAMETER :: SQTWOPI1=3.9894228040143d-1 !=1/sqrt(2*pi) + DOUBLE PRECISION, PARAMETER :: SQPI1=5.6418958354776d-1 !=1/sqrt(pi) + DOUBLE PRECISION, PARAMETER :: SQPI= 1.77245385090552d0 !=sqrt(pi) + DOUBLE PRECISION, PARAMETER :: SQTWO=1.41421356237310d0 !=sqrt(2) + DOUBLE PRECISION, PARAMETER :: SQTWO1=0.70710678118655d0 !=1/sqrt(2) + DOUBLE PRECISION, PARAMETER :: PI1=0.31830988618379d0 !=1/pi + DOUBLE PRECISION, PARAMETER :: PI= 3.14159265358979D0 !=pi + DOUBLE PRECISION, PARAMETER :: TWOPI=6.28318530717958D0 !=2*pi + END MODULE GLOBALDATA + + MODULE C1C2MOD + IMPLICIT NONE + INTERFACE C1C2 + MODULE PROCEDURE C1C2 + END INTERFACE + CONTAINS + SUBROUTINE C1C2(C1, C2, Cm, B1, SQ, ind) +! The regression equation for the conditional distr. of Y given X=x +! is equal to the conditional expectation of Y given X=x, i.e., +! +! E(Y|X=x)=E(Y)+Cov(Y,X)/Var(X)[x-E(X)] +! +! Let x1=(x-E(X))/SQRT(Var(X)) be zero mean, C1Hup(I) or +! +! b) Cm(I)+x1*B1(I)+C*SQ(I)0 + CC1 = (HHlo - CSQ) / BdSQ0 + CC2 = (HHup + CSQ) / BdSQ0 + ENDIF + IF (C1.LT.CC1) THEN + C1 = CC1 !changedLimits=1 + IF (C2.GT.CC2) C2 = CC2 + IF (C1.GE.C2) GO TO 112 + ELSEIF (C2.GT.CC2) THEN + C2 = CC2 !changedLimits=1 + IF (C1.GE.C2) GO TO 112 + END IF + ENDIF + END DO +!IF (changedLimits.EQ.1) THEN +! PRINT *,'C1C2=',C1,C2 +!END IF + RETURN + 112 continue + C1 = -2D0*xCutOff + C2 = -2D0*xCutOff + + RETURN + END SUBROUTINE C1C2 + END MODULE C1C2MOD + +!************************************** + + MODULE FUNCMOD +! FUNCTION module containing constants transfeered to mvnfun and mvnfun2 + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: BIG + DOUBLE PRECISION, DIMENSION(: ), ALLOCATABLE :: Cm,CmN,xd,xc + DOUBLE PRECISION :: Pl1,Pu1 + + INTERFACE MVNFUN + MODULE PROCEDURE MVNFUN + END INTERFACE + + INTERFACE MVNFUN2 + MODULE PROCEDURE MVNFUN2 + END INTERFACE + + CONTAINS + function MVNFUN(Ndim,W) RESULT (XIND) + USE FIMOD + USE C1C2MOD + USE JACOBMOD + USE GLOBALDATA, ONLY : Hlo,Hup,xCutOff,Nt,Nd,Nj,Ntd,SQ, + & NsXtmj, NsXdj,indXtd,index1,useC1C2,C1C2det,EPS2 + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: W + INTEGER, INTENT(in) :: Ndim + DOUBLE PRECISION :: XIND +!local variables + DOUBLE PRECISION :: Pl,Pu + DOUBLE PRECISION :: X,Y,XMI,XMA,SQ0 + INTEGER :: Nst,NstN,NsdN,Nst0,Nsd,Nsd0,K + INTEGER :: Ndleft,Ndjleft,Ntmj + +!MVNFUN Multivariate Normal integrand function +! where the integrand is transformed from an integral +! having integration limits Hl0 and Hup to an +! integral having constant integration limits i.e. +! Hup 1 +! int jacob(xd,xc)*f(xd,xt)dxt dxd = int F2(W) dW +!Hlo 0 +! +! W - new transformed integration variables, valid range 0..1 +! The vector must have the length Ndim=Nst0+Ntd-Nsd0 +! BIG - conditional sorted covariance matrix (IN) +! Cm = conditional mean of Xd and Xt given Xc, E(Xd,Xt|Xc) +! CmN - local conditional mean +! xd - variables to the jacobian variable, need no initialization +! xc - conditional variables (IN) +! Pl1 = FI(XMI) for the first integration variable (IN) +! Pu1 = FI(XMA) ------||------------------------------- +! print *,'MVNFUN, ndim', ndim, shape(W) + CmN(1:Ntd) = Cm(1:Ntd) ! initialize conditional mean + Nst = NsXtmj(Ntd+1) ! index to last stoch variable of Xt before conditioning on X(Ntd) + Ntmj=Nt-Nj + Nsd0=NsXdj(1) + if (Nt.gt.Nj) then + Nst0=NsXtmj(Ntmj) + else + Nst0=0 + endif + Pl=Pl1 + Pu=Pu1 +! IF (NDIM.LT.Nst0+Ntd-Nsd0+1) PRINT *, 'MVNFUN NDIM,',NDIM + Y=Pu-Pl + if (Nd+Nj.EQ.0) then + SQ0=SQ(1,1) + goto 200 + endif + Ndjleft=Nd+Nj + Nsd = NsXdj(Ndjleft+1) ! index to last stoch variable of Xd and Nj of Xt before conditioning on X(Ntd) + Ndleft=Nd + SQ0=SQ(Ntd,Ntd) + !print *,'mvnfun,nst,nsd,nd,nj',nst,nsd,Nd,Nj + !print *,'mvn start K loop' + DO K=Ntd-1,Nsd0,-1 + X=FIINV(Pl+W(Ntd-K)*(Pu-Pl)) + IF (index1(K+1).GT.Nt) THEN ! isXd + xd (Ndleft) = CmN(K+1)+X*SQ0 + Ndleft=Ndleft-1 + END IF + Nst = NsXtmj(K+1) ! # stoch. var. of Xt before conditioning on X(K) + if (Nst.GT.0) CmN(1:Nst) =CmN(1:Nst)+X*BIG(1:Nst,K+1) !/SQ0 + CmN(Nsd:K) =CmN(Nsd:K)+X*BIG(Nsd:K,K+1) !/SQ0 + + Ndjleft = Ndjleft-1 + Nsd = NsXdj(Ndjleft+1) + SQ0 = SQ(K,K) + + XMA = (Hup (K)-CmN(K))/SQ0 + XMI = (Hlo (K)-CmN(K))/SQ0 + + if (useC1C2) then ! see if we can narrow down sampling range + XMI=max(XMI,-xCutOff) + XMA=min(XMA,xCutOff) + if (C1C2det) then + NsdN = NsXdj(Ndjleft) + NstN = NsXtmj(K) + CALL C1C2(XMI,XMA,CmN(Nsd:NsdN-1), + & BIG(Nsd:NsdN-1,K),SQ(Nsd:NsdN-1,K), + & indXtd(Nsd:NsdN-1)) + CALL C1C2(XMI,XMA,CmN(NstN+1:Nst), + & BIG(NstN+1:Nst,K),SQ(NstN+1:Nst,K), + & indXtd(NstN+1:Nst)) + else + CALL C1C2(XMI,XMA,CmN(Nsd:K-1),BIG(Nsd:K-1,K), + & SQ(Nsd:K-1,Ntmj+Ndjleft),indXtd(Nsd:K-1)) + CALL C1C2(XMI,XMA,CmN(1:Nst),BIG(1:Nst,K) + & ,SQ(1:Nst,Ntmj+Ndjleft),indXtd(1:Nst)) + endif + IF (XMA.LE.XMI) goto 260 + endif + Pl = FI(XMI) + Pu = FI(XMA) + Y=Y*(Pu-Pl) + ENDDO ! K LOOP + X = FIINV(Pl+W(Ntd-Nsd0+1)*(Pu-Pl)) + Nst = NsXtmj(Nsd0) ! # stoch. var. of Xt after conditioning on X(Nsd0) + ! and before conditioning on X(1) +! CmN(1:Nst)=CmN(1:Nst)+X*BIG(1:Nst,Nsd0) !/SQ0) + if (Nd.gt.0) then + CmN(Nsd:Nsd0-1) = CmN(Nsd:Nsd0-1)+X*BIG(Nsd:Nsd0-1,Nsd0) !/SQ0 + if (Ndleft.gt.0) then + if (index1(Nsd0).GT.Nt) then + xd (Ndleft) = CmN(Nsd0)+X*SQ0 + Ndleft=Ndleft-1 + endif + K=Nsd0-1 + do while (Ndleft.gt.0) + if ((index1(K).GT.Nt)) THEN ! isXd + xd (Ndleft) = CmN(K) + Ndleft=Ndleft-1 + END IF + K=K-1 + ENDDO + endif ! Ndleft + Y = Y*jacob ( xd,xc) ! jacobian of xd,xc + endif ! Nd>0 + if (Nst0.gt.0) then + CmN(1:Nst)=CmN(1:Nst)+X*BIG(1:Nst,Nsd0) !/SQ0) + SQ0 = SQ(1,1) + XMA = MIN((Hup (1)-CmN(1))/SQ0,xCutOff) + XMI = MAX((Hlo (1)-CmN(1))/SQ0,-xCutOff) + + if (C1C2det) then + NstN = NsXtmj(1) ! # stoch. var. after conditioning + CALL C1C2(XMI,XMA,CmN(NstN+1:Nst), + & BIG(1,NstN+1:Nst),SQ(NstN+1:Nst,1), + & indXtd(NstN+1:Nst)) + else + CALL C1C2(XMI,XMA,CmN(2:Nst),BIG(1,2:Nst), + & SQ(2:Nst,1),indXtd(2:Nst)) + endif + IF (XMA.LE.XMI) GO TO 260 + Pl = FI(XMI) + Pu = FI(XMA) + Y = Y*(Pu-Pl) + endif + !if (COVix.gt.2) then + !print *,' mvnfun start K2 loop' + !endif + 200 do K = 2,Nst0 + X = FIINV(Pl+W(Ntd-Nsd0+K)*(Pu-Pl)) + Nst = NsXtmj(K-1) ! index to last stoch. var. before conditioning on X(K) + CmN(K:Nst)=CmN(K:Nst)+X*BIG(K-1,K:Nst) !/SQ0 + SQ0 = SQ(K,K) + XMA = MIN((Hup (K)-CmN(K))/SQ0,xCutOff) + XMI = MAX((Hlo (K)-CmN(K))/SQ0,-xCutOff) + + if (C1C2det) then + NstN = NsXtmj(K) ! index to last stoch. var. after conditioning X(K) + CALL C1C2(XMI,XMA,CmN(NstN+1:Nst), + & BIG(K,NstN+1:Nst),SQ(NstN+1:Nst,K), + & indXtd(NstN+1:Nst)) + else + CALL C1C2(XMI,XMA,CmN(K+1:Nst),BIG(K,K+1:Nst), + & SQ(K+1:Nst,K),indXtd(K+1:Nst)) + endif + IF (XMA.LE.XMI) GO TO 260 + Pl = FI(XMI) + Pu = FI(XMA) + Y=Y*(Pu-Pl) + enddo ! K loop + XIND = Y + RETURN + 260 XIND = 0.D0 + !if (Y.LT.0.d0) PRINT *,'MVNFUN NEGATIVE INTEGRAND' + !print *,' mvnfun leaving' + return + END FUNCTION MVNFUN + + function MVNFUN2(Ndim,W) RESULT (XIND) + USE FIMOD + USE C1C2MOD + USE GLOBALDATA, ONLY : Hlo,Hup,xCutOff,Njj,Nj,Ntscis,Ntd,SQ, + & NsXtmj, NsXdj,indXtd,index1,useC1C2,C1C2det,Nt,EPS2 + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: W + INTEGER, INTENT(in) :: Ndim + DOUBLE PRECISION :: XIND +!local variables + DOUBLE PRECISION :: Pl,Pu + DOUBLE PRECISION :: X,Y,XMI,XMA,SQ0 + INTEGER :: Nst,NstN,Nst0,K + +!MVNFUN2 Multivariate Normal integrand function +! where the integrand is transformed from an integral +! having integration limits Hl0 and Hup to an +! integral having constant integration limits i.e. +! Hup 1 +! int f(xt)dxt = int F2(W) dW +!Hlo 0 +! +! W - new transformed integration variables, valid range 0..1 +! The vector must have the size Nst0 +! BIG - conditional sorted covariance matrix (IN) +! CmN - Local conditional mean +! Cm = Conditional mean E(Xt,Xd|Xc) +! Pl1 = FI(XMI) for the first integration variable +! Pu1 = FI(XMA) ------||------------------------- + + !print *,'MVNFUN2, ndim', ndim, shape(W) + Nst0 = NsXtmj(Njj+Ntscis) + + if (Njj.GT.0) then + Nst = NsXtmj(Njj) + else + Nst = NsXtmj(Ntscis+1) + endif +! IF (NDIM.LT.Nst0+Njj) PRINT *, 'MVNFUN2 NDIM,',NDIM + ! initialize conditional mean + CmN(1:Nst)=Cm(1:Nst) + + Pl = Pl1 + Pu = Pu1 + + Y = Pu-Pl + SQ0 = SQ(1,1) + + do K = 2,Nst0 + X = FIINV(Pl+W(K-1)*(Pu-Pl)) + Nst = NsXtmj(K-1) ! index to last stoch. var. before conditioning on X(K) + CmN(K:Nst)=CmN(K:Nst)+X*BIG(K-1,K:Nst) !/SQ0 + SQ0 = SQ(K,K) + XMA = MIN((Hup (K)-CmN(K))/SQ0,xCutOff) + XMI = MAX((Hlo (K)-CmN(K))/SQ0,-xCutOff) + + if (C1C2det) then + NstN=NsXtmj(K) ! index to last stoch. var. after conditioning on X(K) + CALL C1C2(XMI,XMA,CmN(NstN+1:Nst), + & BIG(K,NstN+1:Nst),SQ(NstN+1:Nst,K), + & indXtd(NstN+1:Nst)) + else + CALL C1C2(XMI,XMA,CmN(K+1:Nst),BIG(K,K+1:Nst), + & SQ(K+1:Nst,K),indXtd(K+1:Nst)) + endif + IF (XMA.LE.XMI) GO TO 260 + Pl = FI(XMI) + Pu = FI(XMA) + Y = Y*(Pu-Pl) + enddo ! K loop + XIND = Y + RETURN + 260 XIND = 0.d0 + return + END FUNCTION MVNFUN2 + END MODULE FUNCMOD + + MODULE QUAD + IMPLICIT NONE ! Quadratures available: Legendre,Hermite,Laguerre + INTEGER :: I + INTEGER, PARAMETER :: PMAX=24 ! maximum # nodes + INTEGER, PARAMETER :: sizNint=13 ! size of Nint1 + INTEGER :: minQNr=1 ! minimum quadrature number + ! used in GaussLe1, Gaussle2 + INTEGER :: Le2QNr=8 ! quadr. number used in rind2,rindnit + INTEGER, DIMENSION(sizNint) :: Nint1 ! use quadr. No. Nint1(i) in + ! integration of Xd(i) + + ! # different quadratures stored for : + !------------------------------------- + INTEGER,PARAMETER :: NLeW=13 ! Legendre + INTEGER,PARAMETER :: NHeW=13 ! Hermite + INTEGER,PARAMETER :: NLaW=13 ! Laguerre + ! Quadrature Number stored for : + !------------------------------------- + INTEGER, DIMENSION(NLeW) :: LeQNr ! Legendre + INTEGER, DIMENSION(NHeW) :: HeQNr ! Hermite + INTEGER, DIMENSION(NLaW) :: LaQNr ! Laguerre + PARAMETER (LeQNr=(/ 2,3,4,5,6,7, 8, 9, 10, 12, 16, 20, 24 /)) + PARAMETER (HeQNr=(/ 2,3,4,5,6,7, 8, 9, 10, 12, 16, 20, 24 /)) + PARAMETER (LaQNr=(/ 2,3,4,5,6,7, 8, 9, 10, 12, 16, 20, 24 /)) + + + ! The indices to the weights & nodes stored for: + !------------------------------------------------ + INTEGER, DIMENSION(NLeW+1) :: LeIND !Legendre + INTEGER, DIMENSION(NHeW+1) :: HeIND !Hermite + INTEGER, DIMENSION(NLaW+1) :: LaIND !Laguerre + + PARAMETER (LeIND=(/0,2,5,9,14,20,27,35,44,54,66,82,102,126/)) !Legendre + PARAMETER (HeIND=(/0,2,5,9,14,20,27,35,44,54,66,82,102,126/)) !Hermite + PARAMETER (LaIND=(/0,2,5,9,14,20,27,35,44,54,66,82,102,126/)) !Laguerre + + !------------------------------------------------ + DOUBLE PRECISION, DIMENSION(126) :: LeBP,LeWF,HeBP,HeWF + DOUBLE PRECISION, DIMENSION(126) :: LaBP0,LaWF0,LaBP5,LaWF5 + +!The Hermite Quadrature integrates an integral of the form +! inf n +! Int (exp(-x^2) F(x)) dx = Sum wf(j)*F( bp(j) ) +! -Inf j=1 +!The Laguerre Quadrature integrates an integral of the form +! inf n +! Int (x^alpha exp(-x) F(x)) dx = Sum wf(j)*F( bp(j) ) +! 0 j=1 +! weights stored here are for alpha=0 and alpha=-0.5 + + ! initialize Legendre weights, wf, and nodes, bp +!PARAMETER ( LeWF = ( + DATA ( LeWF(I), I = 1, 78 ) + * / 1.d0, 1.d0, 0.555555555555556d0, + * 0.888888888888889d0, 0.555555555555556d0, + * 0.347854845137454d0, 0.652145154862546d0, + * 0.652145154862546d0, 0.347854845137454d0, + * 0.236926885056189d0, 0.478628670499366d0, + * 0.568888888888889d0, 0.478628670499366d0, + * 0.236926885056189d0, 0.171324492379170d0, + * 0.360761573048139d0, 0.467913934572691d0, + * 0.467913934572691d0, 0.360761573048139d0, + * 0.171324492379170d0, 0.129484966168870d0, + * 0.279705391489277d0, 0.381830050505119d0, + * 0.417959183673469d0, 0.381830050505119d0, + * 0.279705391489277d0, 0.129484966168870d0, + * 0.101228536290376d0, 0.222381034453374d0, + * 0.313706645877887d0, 0.362683783378362d0, + * 0.362683783378362d0, 0.313706645877887d0, + * 0.222381034453374d0, 0.101228536290376d0, + * 0.081274388361574d0, 0.180648160694857d0, + * 0.260610696402935d0, 0.312347077040003d0, + * 0.330239355001260d0, 0.312347077040003d0, + * 0.260610696402935d0, 0.180648160694857d0, + * 0.081274388361574d0, 0.066671344308688d0, + * 0.149451349150581d0, 0.219086362515982d0, + * 0.269266719309996d0, 0.295524224714753d0, + * 0.295524224714753d0, 0.269266719309996d0, + * 0.219086362515982d0, 0.149451349150581d0, + * 0.066671344308688d0, 0.047175336386512d0, + * 0.106939325995318d0, 0.160078328543346d0, + * 0.203167426723066d0, 0.233492536538355d0, + * 0.249147048513403d0, 0.249147048513403d0, + * 0.233492536538355d0, + * 0.203167426723066d0, 0.160078328543346d0, + * 0.106939325995318d0, 0.047175336386512d0, + * 0.027152459411754094852d0, 0.062253523938647892863d0, + * 0.095158511682492784810d0, 0.124628971255533872052d0, + * 0.149595988816576732081d0, 0.169156519395002538189d0, + * 0.182603415044923588867d0, 0.189450610455068496285d0, + * 0.189450610455068496285d0, 0.182603415044923588867d0, + * 0.169156519395002538189d0, 0.149595988816576732081d0/ + DATA ( LeWF(I), I = 79, 126 ) + * / 0.124628971255533872052d0, 0.095158511682492784810d0, + * 0.062253523938647892863d0, 0.027152459411754094852d0, + * 0.017614007139152118312d0, 0.040601429800386941331d0, + * 0.062672048334109063570d0, 0.083276741576704748725d0, + * 0.101930119817240435037d0, 0.118194531961518417312d0, + * 0.131688638449176626898d0, 0.142096109318382051329d0, + * 0.149172986472603746788d0, 0.152753387130725850698d0, + * 0.152753387130725850698d0, 0.149172986472603746788d0, + * 0.142096109318382051329d0, 0.131688638449176626898d0, + * 0.118194531961518417312d0, 0.101930119817240435037d0, + * 0.083276741576704748725d0, 0.062672048334109063570d0, + * 0.040601429800386941331d0, 0.017614007139152118312d0, + * 0.012341229799987199547d0, 0.028531388628933663181d0, + * 0.044277438817419806169d0, 0.059298584915436780746d0, + * 0.073346481411080305734d0, 0.086190161531953275917d0, + * 0.097618652104113888270d0, 0.107444270115965634783d0, + * 0.115505668053725601353d0, 0.121670472927803391204d0, + * 0.125837456346828296121d0, 0.127938195346752156974d0, + * 0.127938195346752156974d0, 0.125837456346828296121d0, + * 0.121670472927803391204d0, 0.115505668053725601353d0, + * 0.107444270115965634783d0, 0.097618652104113888270d0, + * 0.086190161531953275917d0, 0.073346481411080305734d0, + * 0.059298584915436780746d0, 0.044277438817419806169d0, + * 0.028531388628933663181d0, 0.012341229799987199547d0 / +! PARAMETER + DATA ( LeBP(I), I=1,77) + * / -0.577350269189626d0,0.577350269189626d0, + * -0.774596669241483d0, 0.d0, + * 0.774596669241483d0, -0.861136311594053d0, + * -0.339981043584856d0, 0.339981043584856d0, + * 0.861136311594053d0, -0.906179845938664d0, + * -0.538469310105683d0, 0.d0, + * 0.538469310105683d0, 0.906179845938664d0, + * -0.932469514203152d0, -0.661209386466265d0, + * -0.238619186083197d0, 0.238619186083197d0, + * 0.661209386466265d0, 0.932469514203152d0, + * -0.949107912342759d0, -0.741531185599394d0, + * -0.405845151377397d0, 0.d0, + * 0.405845151377397d0, 0.741531185599394d0, + * 0.949107912342759d0, -0.960289856497536d0, + * -0.796666477413627d0, -0.525532409916329d0, + * -0.183434642495650d0, 0.183434642495650d0, + * 0.525532409916329d0, 0.796666477413627d0, + * 0.960289856497536d0, -0.968160239507626d0, + * -0.836031107326636d0, -0.613371432700590d0, + * -0.324253423403809d0, 0.d0, + * 0.324253423403809d0, 0.613371432700590d0, + * 0.836031107326636d0, 0.968160239507626d0, + * -0.973906528517172d0, -0.865063366688985d0, + * -0.679409568299024d0, -0.433395394129247d0, + * -0.148874338981631d0, 0.148874338981631d0, + * 0.433395394129247d0, 0.679409568299024d0, + * 0.865063366688985d0, 0.973906528517172d0, + * -0.981560634246719d0, -0.904117256370475d0, + * -0.769902674194305d0, -0.587317954286617d0, + * -0.367831498198180d0, -0.125233408511469d0, + * 0.125233408511469d0, 0.367831498198180d0, + * 0.587317954286617d0, 0.769902674194305d0, + * 0.904117256370475d0, 0.981560634246719d0, + * -0.989400934991649932596d0, + * -0.944575023073232576078d0, -0.865631202387831743880d0, + * -0.755404408355003033895d0, -0.617876244402643748447d0, + * -0.458016777657227386342d0, -0.281603550779258913230d0, + * -0.095012509837637440185d0, 0.095012509837637440185d0, + * 0.281603550779258913230d0, 0.458016777657227386342d0/ + DATA ( LeBP(I), I=78,126) + * / 0.617876244402643748447d0, 0.755404408355003033895d0, + * 0.865631202387831743880d0, 0.944575023073232576078d0, + * 0.989400934991649932596d0, -0.993128599185094924786d0, + * -0.963971927277913791268d0, -0.912234428251325905868d0, + * -0.839116971822218823395d0, -0.746331906460150792614d0, + * -0.636053680726515025453d0, -0.510867001950827098004d0, + * -0.373706088715419560673d0, -0.227785851141645078080d0, + * -0.076526521133497333755d0, 0.076526521133497333755d0, + * 0.227785851141645078080d0, 0.373706088715419560673d0, + * 0.510867001950827098004d0, 0.636053680726515025453d0, + * 0.746331906460150792614d0, 0.839116971822218823395d0, + * 0.912234428251325905868d0, + * 0.963971927277913791268d0, 0.993128599185094924786d0, + * -0.995187219997021360180d0, -0.974728555971309498198d0, + * -0.938274552002732758524d0, -0.886415527004401034213d0, + * -0.820001985973902921954d0, -0.740124191578554364244d0, + * -0.648093651936975569252d0, -0.545421471388839535658d0, + * -0.433793507626045138487d0, -0.315042679696163374387d0, + * -0.191118867473616309159d0, -0.064056892862605626085d0, + * 0.064056892862605626085d0, 0.191118867473616309159d0, + * 0.315042679696163374387d0, 0.433793507626045138487d0, + * 0.545421471388839535658d0, 0.648093651936975569252d0, + * 0.740124191578554364244d0, 0.820001985973902921954d0, + * 0.886415527004401034213d0, 0.938274552002732758524d0, + * 0.974728555971309498198d0, 0.995187219997021360180d0 / + + ! initialize Hermite weights in HeWF and + ! nodes in HeBP + ! NB! the relative error of these numbers + ! are less than 10^-15 +! PARAMETER + DATA (HeWF(I),I=1,78) / 8.8622692545275816d-1, + * 8.8622692545275816d-1, + * 2.9540897515091930d-1, 1.1816359006036770d0, + * 2.9540897515091930d-1, 8.1312835447245310d-2, + * 8.0491409000551251d-1, 8.0491409000551295d-1, + * 8.1312835447245213d-2, 1.9953242059045910d-2, + * 3.9361932315224146d-1, 9.4530872048294134d-1, + * 3.9361932315224102d-1, 1.9953242059045962d-2, + * 4.5300099055088378d-3, 1.5706732032285636d-1, + * 7.2462959522439319d-1, 7.2462959522439241d-1, + * 1.5706732032285681d-1, 4.5300099055088534d-3, + * 9.7178124509952175d-4, 5.4515582819126975d-2, + * 4.2560725261012805d-1, 8.1026461755680768d-1, + * 4.2560725261012783d-1, 5.4515582819126975d-2, + * 9.7178124509951828d-4, 1.9960407221136729d-4, + * 1.7077983007413571d-2, 2.0780232581489183d-1, + * 6.6114701255824082d-1, 6.6114701255824138d-1, + * 2.0780232581489202d-1, 1.7077983007413498d-2, + * 1.9960407221136775d-4, 3.9606977263264446d-5, + * 4.9436242755369411d-3, 8.8474527394376654d-2, + * 4.3265155900255586d-1, 7.2023521560605108d-1, + * 4.3265155900255559d-1, 8.8474527394376543d-2, + * 4.9436242755369350d-3, 3.9606977263264324d-5, + * 7.6404328552326139d-6, 1.3436457467812229d-3, + * 3.3874394455481210d-2, 2.4013861108231502d-1, + * 6.1086263373532623d-1, 6.1086263373532546d-1, + * 2.4013861108231468d-1, 3.3874394455480884d-2, + * 1.3436457467812298d-3, 7.6404328552325919d-6, + * 2.6585516843562997d-7, 8.5736870435879089d-5, + * 3.9053905846291028d-3, 5.1607985615883860d-2, + * 2.6049231026416092d-1, 5.7013523626247820d-1, + * 5.7013523626248030d-1, 2.6049231026416109d-1, + * 5.1607985615883846d-2, 3.9053905846290530d-3, + * 8.5736870435878506d-5, 2.6585516843562880d-7, + * 2.6548074740111735d-10, 2.3209808448651987d-7, + * 2.7118600925379007d-5, 9.3228400862418819d-4, + * 1.2880311535509989d-2, 8.3810041398985652d-2, + * 2.8064745852853318d-1, 5.0792947901661278d-1, + * 5.0792947901661356d-1, 2.8064745852853334d-1, + * 8.3810041398985735d-2, 1.2880311535510015d-2/ + DATA (HeWF(I),I=79,126) / + * 9.3228400862418407d-4, 2.7118600925378956d-5, + * 2.3209808448651966d-7, 2.6548074740111787d-10, + * 2.2293936455342015d-13, 4.3993409922730765d-10, + * 1.0860693707692910d-7, 7.8025564785320463d-6, + * 2.2833863601635403d-4, 3.2437733422378719d-3, + * 2.4810520887463536d-2, 1.0901720602002360d-1, + * 2.8667550536283382d-1, 4.6224366960061047d-1, + * 4.6224366960061070d-1, 2.8667550536283398d-1, + * 1.0901720602002325d-1, 2.4810520887463588d-2, + * 3.2437733422378649d-3, 2.2833863601635316d-4, + * 7.8025564785321005d-6, 1.0860693707692749d-7, + * 4.3993409922731370d-10, 2.2293936455342167d-13, + * 1.6643684964891124d-16, 6.5846202430781508d-13, + * 3.0462542699875022d-10, 4.0189711749413878d-8, + * 2.1582457049023452d-6, 5.6886916364043773d-5, + * 8.2369248268841073d-4, 7.0483558100726748d-3, + * 3.7445470503230736d-2, 1.2773962178455966d-1, + * 2.8617953534644325d-1, 4.2693116386869828d-1, + * 4.2693116386869912d-1, 2.8617953534644286d-1, + * 1.2773962178455908d-1, 3.7445470503230875d-2, + * 7.0483558100726844d-3, 8.2369248268842027d-4, + * 5.6886916364044037d-5, 2.1582457049023460d-6, + * 4.0189711749414963d-8, 3.0462542699876118d-10, + * 6.5846202430782225d-13, 1.6643684964889408d-16 / + + !hermite nodes +! PARAMETER (HeBP = ( + DATA (HeBP(I),I=1,79) / -7.07106781186547572d-1, + * 7.0710678118654752d-1, -1.2247448713915894d0, + * 0.d0, 1.2247448713915894d0, + * -1.6506801238857845d0, -5.2464762327529035d-1, + * 5.2464762327529035d-1, 1.6506801238857845d0, + * -2.0201828704560869d0, -9.5857246461381806d-1, + * 0.d0, 9.5857246461381851d-1, + * 2.0201828704560860d0, -2.3506049736744918d0, + * -1.3358490740136963d0, -4.3607741192761629d-1, + * 4.3607741192761657d-1, 1.3358490740136963d0, + * 2.3506049736744927d0, -2.6519613568352334d0, + * -1.6735516287674728d0, -8.1628788285896470d-1, + * 0.d0, 8.1628788285896470d-1, + * 1.6735516287674705d0, 2.6519613568352325d0, + * -2.9306374202572423d0, -1.9816567566958434d0, + * -1.1571937124467806d0, -3.8118699020732233d-1, + * 3.8118699020732211d-1, 1.1571937124467804d0, + * 1.9816567566958441d0, 2.9306374202572423d0, + * -3.1909932017815290d0, -2.2665805845318436d0, + * -1.4685532892166682d0, -7.2355101875283812d-1, + * 0.d0, 7.2355101875283756d-1, + * 1.4685532892166657d0, 2.2665805845318405d0, + * 3.1909932017815281d0, -3.4361591188377387d0, + * -2.5327316742327906d0, -1.7566836492998805d0, + * -1.0366108297895140d0, -3.4290132722370548d-1, + * 3.4290132722370464d-1, 1.0366108297895136d0, + * 1.7566836492998834d0, 2.5327316742327857d0, + * 3.4361591188377396d0, -3.8897248978697796d0, + * -3.0206370251208856d0, -2.2795070805010567d0, + * -1.5976826351526050d0, -9.4778839124016290d-1, + * -3.1424037625435908d-1, 3.1424037625435935d-1, + * 9.4778839124016356d-1, 1.5976826351526054d0, + * 2.2795070805010602d0, 3.0206370251208905d0, + * 3.8897248978697831d0, -4.6887389393058214d0, + * -3.8694479048601251d0, -3.1769991619799582d0, + * -2.5462021578474765d0, -1.9517879909162541d0, + * -1.3802585391988809d0, -8.2295144914465523d-1, + * -2.7348104613815177d-1, 2.7348104613815244d-1, + * 8.2295144914465579d-1, 1.3802585391988802d0, + * 1.9517879909162534d0, 2.5462021578474801d0/ + DATA (HeBP(I),I=80,126) / + * 3.1769991619799565d0, 3.8694479048601265d0, + * 4.6887389393058196d0, -5.3874808900112274d0, + * -4.6036824495507513d0, -3.9447640401156296d0, + * -3.3478545673832154d0, -2.7888060584281300d0, + * -2.2549740020892721d0, -1.7385377121165839d0, + * -1.2340762153953209d0, -7.3747372854539361d-1, + * -2.4534070830090124d-1, 2.4534070830090149d-1, + * 7.3747372854539439d-1, 1.2340762153953226d0, + * 1.7385377121165866d0, 2.2549740020892770d0, + * 2.7888060584281282d0, 3.3478545673832105d0, + * 3.9447640401156230d0, 4.6036824495507398d0, + * 5.3874808900112274d0, -6.0159255614257390d0, + * -5.2593829276680442d0, -4.6256627564237904d0, + * -4.0536644024481472d0, -3.5200068130345219d0, + * -3.0125461375655647d0, -2.5238810170114276d0, + * -2.0490035736616989d0, -1.5842500109616944d0, + * -1.1267608176112460d0, -6.7417110703721150d-1, + * -2.2441454747251538d-1, 2.2441454747251532d-1, + * 6.7417110703721206d-1, 1.1267608176112454d0, + * 1.5842500109616939d0, 2.0490035736616958d0, + * 2.5238810170114281d0, 3.0125461375655687d0, + * 3.5200068130345232d0, 4.0536644024481499d0, + * 4.6256627564237816d0, 5.2593829276680353d0, + * 6.0159255614257550d0 / + !initialize Laguerre weights and nodes (basepoints) + ! for alpha=0 + ! NB! the relative error of these numbers + ! are less than 10^-15 +! PARAMETER + DATA (LaWF0(I),I=1,75) / 8.5355339059327351d-1, + * 1.4644660940672624d-1, 7.1109300992917313d-1, + * 2.7851773356924092d-1, 1.0389256501586137d-2, + * 6.0315410434163386d-1, + * 3.5741869243779956d-1, 3.8887908515005364d-2, + * 5.3929470556132730d-4, 5.2175561058280850d-1, + * 3.9866681108317570d-1, 7.5942449681707588d-2, + * 3.6117586799220489d-3, 2.3369972385776180d-5, + * 4.5896467394996360d-1, 4.1700083077212080d-1, + * 1.1337338207404497d-1, 1.0399197453149061d-2, + * 2.6101720281493249d-4, 8.9854790642961944d-7, + * 4.0931895170127397d-1, 4.2183127786171964d-1, + * 1.4712634865750537d-1, + * 2.0633514468716974d-2, 1.0740101432807480d-3, + * 1.5865464348564158d-5, 3.1703154789955724d-8, + * 3.6918858934163773d-1, 4.1878678081434328d-1, + * 1.7579498663717152d-1, 3.3343492261215649d-2, + * 2.7945362352256712d-3, 9.0765087733581999d-5, + * 8.4857467162725493d-7, 1.0480011748715038d-9, + * 3.3612642179796304d-1, 4.1121398042398466d-1, + * 1.9928752537088576d0, 4.7460562765651609d-2, + * 5.5996266107945772d-3, 3.0524976709321133d-4, + * 6.5921230260753743d-6, 4.1107693303495271d-8, + * 3.2908740303506941d-11, + * 3.0844111576502009d-1, 4.0111992915527328d-1, + * 2.1806828761180935d-1, 6.2087456098677683d-2, + * 9.5015169751810902d-3, 7.5300838858753855d-4, + * 2.8259233495995652d-5, 4.2493139849626742d-7, + * 1.8395648239796174d-9, 9.9118272196090085d-13, + & 2.6473137105544342d-01, + & 3.7775927587313773d-01, 2.4408201131987739d-01, + & 9.0449222211681030d-02, 2.0102381154634138d-02, + & 2.6639735418653122d-03, 2.0323159266299895d-04, + & 8.3650558568197802d-06, 1.6684938765409045d-07, + & 1.3423910305150080d-09, 3.0616016350350437d-12, + & 8.1480774674261369d-16, 2.0615171495780091d-01, + & 3.3105785495088480d-01, 2.6579577764421392d-01, + & 1.3629693429637740d-01, 4.7328928694125222d-02, + & 1.1299900080339390d-02, 1.8490709435263156d-03, + & 2.0427191530827761d-04, 1.4844586873981184d-05/ + DATA (LaWF0(I),I=76,126) / + & 6.8283193308711422d-07, 1.8810248410796518d-08, + & 2.8623502429738514d-10, 2.1270790332241105d-12, + & 6.2979670025179594d-15, 5.0504737000353956d-18, + & 4.1614623703728548d-22, 1.6874680185111446d-01, + & 2.9125436200606764d-01, 2.6668610286700062d-01, + & 1.6600245326950708d-01, 7.4826064668792408d-02, + & 2.4964417309283247d-02, 6.2025508445722223d-03, + & 1.1449623864769028d-03, 1.5574177302781227d-04, + & 1.5401440865224898d-05, 1.0864863665179799d-06, + & 5.3301209095567054d-08, 1.7579811790505857d-09, + & 3.7255024025122967d-11, 4.7675292515782048d-13, + & 3.3728442433624315d-15, 1.1550143395004071d-17, + & 1.5395221405823110d-20, 5.2864427255691140d-24, + & 1.6564566124989991d-28, 1.4281197333478154d-01, + & 2.5877410751742391d-01, 2.5880670727286992d-01, + & 1.8332268897777793d-01, 9.8166272629918963d-02, + & 4.0732478151408603d-02, 1.3226019405120104d-02, + & 3.3693490584783083d-03, 6.7216256409355021d-04, + & 1.0446121465927488d-04, 1.2544721977993268d-05, + & 1.1513158127372857d-06, 7.9608129591336357d-08, + & 4.0728589875500037d-09, 1.5070082262925912d-10, + & 3.9177365150584634d-12, 6.8941810529581520d-14, + & 7.8198003824593093d-16, 5.3501888130099474d-18, + & 2.0105174645555229d-20, 3.6057658645531092d-23, + & 2.4518188458785009d-26, 4.0883015936805334d-30, + & 5.5753457883284229d-35 / +! PARAMETER (LaBP0=(/ + DATA (LaBP0(I),I=1,78) /5.8578643762690485d-1, + * 3.4142135623730949d+00, 4.1577455678347897d-1, + * 2.2942803602790409d0, 6.2899450829374803d0, + * 3.2254768961939217d-1, 1.7457611011583465d0, + * 4.5366202969211287d0, 9.3950709123011364d0, + * 2.6356031971814076d-1, 1.4134030591065161d0, + * 3.5964257710407206d0, 7.0858100058588356d0, + * 1.2640800844275784d+01, 2.2284660417926061d-1, + * 1.1889321016726229d0, 2.9927363260593141d+00, + * 5.7751435691045128d0, 9.8374674183825839d0, + * 1.5982873980601699d+01, 1.9304367656036231d-1, + * 1.0266648953391919d0, 2.5678767449507460d0, + * 4.9003530845264844d0, 8.1821534445628572d0, + * 1.2734180291797809d+01, 1.9395727862262543d+01, + * 1.7027963230510107d-1, 9.0370177679938035d-1, + * 2.2510866298661316d0, 4.2667001702876597d0, + * 7.0459054023934673d0, 1.0758516010180994d+01, + * 1.5740678641278004d+01, 2.2863131736889272d+01, + * 1.5232222773180798d-1, 8.0722002274225590d-1, + * 2.0051351556193473d0, 3.7834739733312328d0, + * 6.2049567778766175d0, 9.3729852516875773d0, + * 1.3466236911092089d+01, 1.8833597788991703d+01, + * 2.6374071890927389d+01, 1.3779347054049221d-1, + * 7.2945454950317090d-1, 1.8083429017403163d0, + * 3.4014336978548996d0, + * 5.5524961400638029d0, 8.3301527467644991d0, + * 1.1843785837900066d+01, 1.6279257831378107d+01, + * 2.1996585811980765d+01, 2.9920697012273894d+01 , + & 1.1572211735802050d-01, 6.1175748451513112d-01, + & 1.5126102697764183d+00, 2.8337513377435077d+00, + & 4.5992276394183476d+00, 6.8445254531151809d+00, + & 9.6213168424568707d+00, 1.3006054993306348d+01, + & 1.7116855187462260d+01, 2.2151090379397019d+01, + & 2.8487967250983996d+01, 3.7099121044466933d+01, + & 8.7649410478926978d-02, 4.6269632891508106d-01, + & 1.1410577748312269d+00, 2.1292836450983796d+00, + & 3.4370866338932058d+00, 5.0780186145497677d+00, + & 7.0703385350482320d+00, 9.4383143363919331d+00, + & 1.2214223368866158d+01, 1.5441527368781616d+01, + & 1.9180156856753147d+01, 2.3515905693991915d+01/ + DATA (LaBP0(I),I=79,126) / + & 2.8578729742882153d+01, + & 3.4583398702286622d+01, 4.1940452647688396d+01, + & 5.1701160339543350d+01, 7.0539889691989419d-02, + & 3.7212681800161185d-01, 9.1658210248327376d-01, + & 1.7073065310283420d+00, 2.7491992553094309d+00, + & 4.0489253138508827d+00, 5.6151749708616148d+00, + & 7.4590174536710663d+00, 9.5943928695810943d+00, + & 1.2038802546964314d+01, 1.4814293442630738d+01, + & 1.7948895520519383d+01, 2.1478788240285009d+01, + & 2.5451702793186907d+01, 2.9932554631700611d+01, + & 3.5013434240478986d+01, 4.0833057056728535d+01, + & 4.7619994047346523d+01, 5.5810795750063903d+01, + & 6.6524416525615763d+01, 5.9019852181507730d-02, + & 3.1123914619848325d-01, 7.6609690554593646d-01, + & 1.4255975908036129d+00, 2.2925620586321909d+00, + & 3.3707742642089964d+00, 4.6650837034671726d+00, + & 6.1815351187367655d+00, 7.9275392471721489d+00, + & 9.9120980150777047d+00, 1.2146102711729766d+01, + & 1.4642732289596671d+01, 1.7417992646508978d+01, + & 2.0491460082616424d+01, 2.3887329848169724d+01, + & 2.7635937174332710d+01, 3.1776041352374712d+01, + & 3.6358405801651635d+01, 4.1451720484870783d+01, + & 4.7153106445156347d+01, 5.3608574544695017d+01, + & 6.1058531447218698d+01, 6.9962240035105026d+01, + & 8.1498279233948850d+01/ + + !Laguerre nodes for alpha=-0.5 +! PARAMETER (LaBP5 = (/ + DATA (LaBP5(I),I=1,79) /2.7525512860841095e-01, + & 2.7247448713915889e+00, 1.9016350919348812e-01, + & 1.7844927485432514e+00, 5.5253437422632619e+00, + & 1.4530352150331699e-01, 1.3390972881263605e+00, + & 3.9269635013582880e+00, 8.5886356890120332e+00, + & 1.1758132021177792e-01, 1.0745620124369035e+00, + & 3.0859374437175511e+00, 6.4147297336620337e+00, + & 1.1807189489971735e+01, 9.8747014068480951e-02, + & 8.9830283456961701e-01, 2.5525898026681721e+00, + & 5.1961525300544675e+00, 9.1242480375311814e+00, + & 1.5129959781108084e+01, 8.5115442997593743e-02, + & 7.7213792004277715e-01, 2.1805918884504596e+00, + & 4.3897928867310174e+00, 7.5540913261017897e+00, + & 1.1989993039823887e+01, 1.8528277495852500e+01, + & 7.4791882596818141e-02, 6.7724908764928937e-01, + & 1.9051136350314275e+00, 3.8094763614849056e+00, + & 6.4831454286271679e+00, 1.0093323675221344e+01, + & 1.4972627088426393e+01, 2.1984272840962646e+01, + & 6.6702230958194261e-02, 6.0323635708174905e-01, + & 1.6923950797931777e+00, 3.3691762702432655e+00, + & 5.6944233429577471e+00, 8.7697567302685968e+00, + & 1.2771825354869195e+01, 1.8046505467728977e+01, + & 2.5485979166099078e+01, 6.0192063149587700e-02, + & 5.4386750029464592e-01, 1.5229441054044432e+00, + & 3.0225133764515753e+00, 5.0849077500985240e+00, + & 7.7774392315254426e+00, 1.1208130204348663e+01, + & 1.5561163332189356e+01, 2.1193892096301536e+01, + & 2.9024950340236231e+01, 5.0361889117293709e-02, + & 4.5450668156378027e-01, 1.2695899401039612e+00, + & 2.5098480972321284e+00, 4.1984156448784127e+00, + & 6.3699753880306362e+00, 9.0754342309612088e+00, + & 1.2390447963809477e+01, 1.6432195087675318e+01, + & 2.1396755936166095e+01, 2.7661108779846099e+01, + & 3.6191360360615583e+01, 3.7962914575312985e-02, + & 3.4220015601094805e-01, 9.5355315539086472e-01, + & 1.8779315076960728e+00, 3.1246010507021431e+00, + & 4.7067267076675874e+00, 6.6422151797414388e+00, + & 8.9550013377233881e+00, 1.1677033673975952e+01, + & 1.4851431341801243e+01, 1.8537743178606682e+01, + & 2.2821300693525199e+01, 2.7831438211328681e+01/ + DATA (LaBP5(I),I=80,126) / + & 3.3781970488226136e+01, 4.1081666525491165e+01, + & 5.0777223877537075e+01, 3.0463239279482423e-02, + & 2.7444471579285024e-01, 7.6388755844391365e-01, + & 1.5018014976681033e+00, 2.4928301451213657e+00, + & 3.7434180412162927e+00, 5.2620558537883513e+00, + & 7.0596277357415627e+00, 9.1498983120306470e+00, + & 1.1550198286442805e+01, 1.4282403685210406e+01, + & 1.7374366975199074e+01, 2.0862075185437845e+01, + & 2.4793039892463458e+01, 2.9231910157093431e+01, + & 3.4270428925039589e+01, 4.0046815790245596e+01, + & 4.6788846392124952e+01, 5.4931555621020564e+01, + & 6.5589931990639684e+01, 2.5437996585689085e-02, + & 2.2910231649262403e-01, 6.3729027873266897e-01, + & 1.2517406323627462e+00, 2.0751129098523808e+00, + & 3.1110524551477146e+00, 4.3642830769353065e+00, + & 5.8407332713236055e+00, 7.5477046800234531e+00, + & 9.4940953300264859e+00, 1.1690695926056069e+01, + & 1.4150586187285759e+01, 1.6889671928527100e+01, + & 1.9927425875242456e+01, 2.3287932824879903e+01, + & 2.7001406056472355e+01, 3.1106464709046559e+01, + & 3.5653703516328221e+01, 4.0711598185543110e+01, + & 4.6376979557540103e+01, 5.2795432527283602e+01, + & 6.0206666963057259e+01, 6.9068601975304347e+01, + & 8.0556280819950416e+01/ + +! PARAMETER (LaWF5 = (/ + DATA (LaWF5(I),I=1,79) / 1.6098281800110255e+00, + & 1.6262567089449037e-01, 1.4492591904487846e+00, + & 3.1413464064571323e-01, 9.0600198110176913e-03, + & 1.3222940251164819e+00, 4.1560465162978422e-01, + & 3.4155966014826969e-02, 3.9920814442273529e-04, + & 1.2217252674706509e+00, 4.8027722216462992e-01, + & 6.7748788910962143e-02, 2.6872914935624635e-03, + & 1.5280865710465251e-05, 1.1402704725249586e+00, + & 5.2098462052832328e-01, 1.0321597123176789e-01, + & 7.8107811692581406e-03, 1.7147374087175731e-04, + & 5.3171033687126004e-07, 1.0728118194241802e+00, + & 5.4621121812849427e-01, 1.3701106844693015e-01, + & 1.5700109452915889e-02, 7.1018522710384658e-04, + & 9.4329687100378043e-06, 1.7257182336250307e-08, + & 1.0158589580332265e+00, 5.6129491705706813e-01, + & 1.6762008279797133e-01, 2.5760623071019968e-02, + & 1.8645680172483614e-03, 5.4237201850757696e-05, + & 4.6419616897304271e-07, 5.3096149480223697e-10, + & 9.6699138945091101e-01, 5.6961457133995952e-01, + & 1.9460349528263074e-01, 3.7280084775089407e-02, + & 3.7770452605368474e-03, 1.8362253735858719e-04, + & 3.6213089621868382e-06, 2.0934411591584102e-08, + & 1.5656399544231742e-11, 9.2448733920121973e-01, + & 5.7335101072566907e-01, 2.1803441204004675e-01, + & 4.9621041774927162e-02, 6.4875466844757246e-03, + & 4.5667727203270848e-04, 1.5605112957064066e-05, + & 2.1721387415385585e-07, 8.7986819845463701e-10, + & 4.4587872910682818e-13, 8.5386232773739834e-01, + & 5.7235907069288550e-01, 2.5547924356911883e-01, + & 7.4890941006461639e-02, 1.4096711620145414e-02, + & 1.6473849653768340e-03, 1.1377383272808749e-04, + & 4.3164914098046565e-06, 8.0379423498828602e-08, + & 6.0925085399751771e-10, 1.3169240486156312e-12, + & 3.3287369929782692e-16, 7.5047670518560539e-01, + & 5.5491628460505815e-01, 3.0253946815328553e-01, + & 1.2091626191182542e-01, 3.5106857663146820e-02, + & 7.3097806533088429e-03, 1.0725367310559510e-03, + & 1.0833168123639965e-04, 7.3011702591247581e-06, + & 3.1483355850911864e-07, 8.1976643295418016e-09, + & 1.1866582926793190e-10, 8.4300204226528705e-13/ + DATA (LaWF5(I),I=80,126) / + & 2.3946880341857530e-15, 1.8463473073036743e-18, + & 1.4621352854768128e-22, 6.7728655485117817e-01, + & 5.3145650375475362e-01, 3.2675746542654360e-01, + & 1.5694921173080897e-01, 5.8625131072344717e-02, + & 1.6921776016516312e-02, 3.7429936591959084e-03, + & 6.2770718908266166e-04, 7.8738679621849850e-05, + & 7.2631523013860402e-06, 4.8222883273410492e-07, + & 2.2424721664551585e-08, 7.0512415827308280e-10, + & 1.4313056105380569e-11, 1.7611415290432366e-13, + & 1.2016717578981511e-15, 3.9783620242330409e-18, + & 5.1351867308233644e-21, 1.7088113927550770e-24, + & 5.1820874276942667e-29, 6.2200206075592535e-01, + & 5.0792308532951769e-01, 3.3840894389128295e-01, + & 1.8364459415856996e-01, 8.0959353969207851e-02, + & 2.8889923149962169e-02, 8.3060098239550965e-03, + & 1.9127846396388331e-03, 3.5030086360234562e-04, + & 5.0571980554969836e-05, 5.6945173834697106e-06, + & 4.9373179873395243e-07, 3.2450282717915824e-08, + & 1.5860934990330932e-09, 5.6305930756763865e-11, + & 1.4093865163091798e-12, 2.3951797309583852e-14, + & 2.6303192453168292e-16, 1.7460319202373756e-18, + & 6.3767746470103704e-21, 1.1129154937804721e-23, + & 7.3700721603011131e-27, 1.1969225386627985e-30, + & 1.5871102921547987e-35 / + + INTERFACE GAUSSLA0 + MODULE PROCEDURE GAUSSLA0 + END INTERFACE + + INTERFACE GAUSSLE0 + MODULE PROCEDURE GAUSSLE0 + END INTERFACE + + INTERFACE GAUSSHE0 + MODULE PROCEDURE GAUSSHE0 + END INTERFACE + + + INTERFACE GAUSSLE1 + MODULE PROCEDURE GAUSSLE1 + END INTERFACE + + INTERFACE GAUSSLE2 + MODULE PROCEDURE GAUSSLE2 + END INTERFACE + + INTERFACE GAUSSQ + MODULE PROCEDURE GAUSSQ + END INTERFACE + + CONTAINS + SUBROUTINE GAUSSLE1 (N,WFout,BPOUT,XMI,XMA) + USE GLOBALDATA,ONLY : EPS0 + USE FIMOD +! USE QUAD , ONLY: LeBP,LeWF,LeIND,NLeW,minQnr + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:),INTENT(out) :: BPOUT, WFout + DOUBLE PRECISION, INTENT(in) :: XMI,XMA + INTEGER, INTENT(inout) :: N + ! local variables + DOUBLE PRECISION :: Z1,SDOT, SDOT1, DIFF1 + DOUBLE PRECISION,PARAMETER :: SQTWOPI1 = 0.39894228040143D0 !=1/sqrt(2*pi) + INTEGER :: NN,I,J,k + + ! The subroutine picks the lowest Gauss-Legendre + ! quadrature needed to integrate the test function + ! gaussint to the specified accuracy, EPS0. + ! The nodes and weights between the integration + ! limits XMI and XMA (all normalized) are returned. + ! Note that the weights are multiplied with + ! 1/sqrt(2*pi)*exp(.5*bpout^2) + + IF (XMA.LE.XMI) THEN +! PRINT * , 'Warning XMIN>=XMAX in GAUSSLE1 !',XMI,XMA + RETURN + ENDIF + + DO I = minQnr, NLeW + NN = N !initialize + DO J = LeIND(I)+1, LeIND(I+1) + BPOUT (NN+1) = 0.5d0*(LeBP(J)*(XMA-XMI)+XMA+XMI) + Z1 = BPOUT (NN+1) * BPOUT (NN+1) + !IF (Z1.LE.xCutOff2) THEN + NN=NN+1 + WFout (NN) = 0.5d0 * SQTWOPI1 * (XMA - XMI) * + & LeWF(J) *EXP ( - 0.5d0* Z1 ) + !ENDIF + ENDDO + + SDOT = GAUSINT (XMI, XMA, - 2.5d0, 2.d0, 2.5d0, 2.d0) + SDOT1 = 0.d0 + + DO k = N+1, NN + SDOT1 = SDOT1+WFout(k)*(-2.5d0+2.d0*BPOUT(k) )* + & (2.5d0 + 2.d0 * BPOUT (k) ) + ENDDO + DIFF1 = ABS (SDOT - SDOT1) + + IF (EPS0.GT.DIFF1) THEN + N=NN +! PRINT * ,'gaussle1, XMI,XMA,NN',XMI,XMA,NN + RETURN + END IF + END DO + RETURN + END SUBROUTINE GAUSSLE1 + + SUBROUTINE GAUSSLE0 (N, wfout, bpout, XMI, XMA, N0) + USE GLOBALDATA, ONLY : EPSS +! USE QUAD, ONLY : LeBP,LeWF,NLeW,LeIND + IMPLICIT NONE + INTEGER, INTENT(in) :: N0 + INTEGER, INTENT(inout) :: N + DOUBLE PRECISION, DIMENSION(:), INTENT(out) :: wfout,bpout + DOUBLE PRECISION, INTENT(in) :: XMI,XMA +! Local variables + DOUBLE PRECISION,PARAMETER :: SQTWOPI1 = 0.39894228040143D0 !=1/sqrt(2*pi) + DOUBLE PRECISION :: Z1 + INTEGER :: J + ! The subroutine computes Gauss-Legendre + ! nodes and weights between + ! the (normalized) integration limits XMI and XMA + ! Note that the weights are multiplied with + ! 1/sqrt(2*pi)*exp(.5*bpout^2) so that + ! b + ! int f(x)*exp(-x^2/2)/sqrt(2*pi)dx=sum f(bp(j))*wf(j) + ! a j + + IF (XMA.LE.XMI) THEN + !PRINT * , 'Warning XMIN>=XMAX in GAUSSLE0 !',XMI,XMA + RETURN ! no more nodes added + ENDIF + IF ((XMA-XMI).LT.EPSS) THEN + N=N+1 + BPout (N) = 0.5d0 * (XMA + XMI) + Z1 = BPOUT (N) * BPOUT (N) + WFout (N) = SQTWOPI1 * (XMA - XMI) *EXP ( - 0.5d0* Z1 ) + RETURN + ENDIF + IF (N0.GT.NLeW) THEN + !PRINT * , 'error in GAUSSLE0, quadrature not available' + STOP + ENDIF + !print *, 'GAUSSLE0',N0 + + !print *, N + DO J = LeIND(N0)+1, LeIND(N0+1) + + BPout (N+1) = 0.5d0 * (LeBP(J) * (XMA - XMI) + XMA + XMI) + Z1 = BPOUT (N+1) * BPOUT (N+1) + ! IF (Z1.LE.xCutOff2) THEN + N=N+1 ! add a new node and weight + WFout (N) = 0.5d0 * SQTWOPI1 * (XMA - XMI) * + & LeWF(J) *EXP ( - 0.5d0* Z1 ) + ! ENDIF + ENDDO + !print *,BPout + RETURN + END SUBROUTINE GAUSSLE0 + + SUBROUTINE GAUSSLE2 (N, wfout, bpout, XMI, XMA, N0) + USE GLOBALDATA, ONLY : xCutOff,EPSS +! USE QUAD, ONLY : LeBP,LeWF,NLeW,LeIND,minQNr + IMPLICIT NONE + INTEGER, INTENT(in) :: N0 + INTEGER, INTENT(inout) :: N + DOUBLE PRECISION, DIMENSION(:), INTENT(out) :: wfout,bpout + DOUBLE PRECISION, INTENT(in) :: XMI,XMA +! Local variables + DOUBLE PRECISION :: Z1 + INTEGER :: J,N1 + DOUBLE PRECISION,PARAMETER :: SQTWOPI1 = 0.39894228040143D0 !=1/sqrt(2*pi) + ! The subroutine computes Gauss-Legendre + ! nodes and weights between + ! the (normalized) integration limits XMI and XMA + ! This procedure select number of nodes + ! depending on the length of the integration interval. + ! Note that the weights are multiplied with + ! 1/sqrt(2*pi)*exp(.5*bpout^2) so that + ! b + ! int f(x)*exp(-x^2/2)/sqrt(2*pi)dx=sum f(bp(j))*wf(j) + ! a j + + IF (XMA.LE.XMI) THEN + !PRINT * , 'Warning XMIN>=XMAX in GAUSSLE2 !',XMI,XMA + RETURN ! no more nodes added + ENDIF +! IF (XMA.LT.XMI+EPSS) THEN +! N=N+1 +! BPout (N) = 0.65d0 * (XMA + XMI) +! Z1 = BPOUT (N) * BPOUT (N) +! WFout (N) = SQTWOPI1 * (XMA - XMI) *EXP ( - 0.5d0* Z1 ) +! RETURN +! ENDIF + IF (N0.GT.NLeW) THEN + !PRINT * , 'Warning in GAUSSLE2, quadrature not available' + ENDIF + !print *, 'GAUSSLE2',N0 + + !print *, N + N1=CEILING(0.5d0*(XMA-XMI)*DBLE(N0)/xCutOff) !0.65d0 + N1=MAX(MIN(N1,NLew),minQNr) + + DO J = LeIND(N1)+1, LeIND(N1+1) + + BPout (N+1) = 0.5d0 * (LeBP(J) * (XMA - XMI) + XMA + XMI) + Z1 = BPOUT (N+1) * BPOUT (N+1) + ! IF (Z1.LE.xCutOff2) THEN + N=N+1 ! add a new node and weight + WFout (N) = 0.5d0 * SQTWOPI1 * (XMA - XMI) * + & LeWF(J) *EXP ( - 0.5d0* Z1 ) + ! ENDIF + ENDDO + !PRINT * ,'gaussle2, XMI,XMA,N',XMI,XMA,N + !print *,BPout + RETURN + END SUBROUTINE GAUSSLE2 + + SUBROUTINE GAUSSHE0 (N, WFout, BPout, XMI, XMA, N0) +! USE QUAD, ONLY : HeBP,HeWF,HeIND,NHeW + IMPLICIT NONE + INTEGER, INTENT(in) :: N0 + INTEGER, INTENT(inout) :: N + DOUBLE PRECISION, DIMENSION(:), INTENT(out) :: wfout,bpout + DOUBLE PRECISION, INTENT(in) :: XMI,XMA +! Local variables + DOUBLE PRECISION, PARAMETER :: SQPI1= 5.6418958354776D-1 !=1/sqrt(pi) + DOUBLE PRECISION, PARAMETER :: SQTWO= 1.41421356237310D0 !=sqrt(2) + INTEGER :: J + ! The subroutine returns modified Gauss-Hermite + ! nodes and weights between + ! the integration limits XMI and XMA + ! for the chosen number of nodes + ! implicitly assuming that the integrand + ! goes smoothly towards zero as its approach XMI or XMA + ! Note that the nodes and weights are modified + ! according to + ! Inf + ! int f(x)*exp(-x^2/2)/sqrt(2*pi)dx=sum f(bp(j))*wf(j) + ! -Inf j + + IF (XMA.LE.XMI) THEN + !PRINT * , 'Warning XMIN>=XMAX in GAUSSHE0 !',XMI,XMA + RETURN ! no more nodes added + ENDIF + IF (N0.GT.NHeW) THEN + !PRINT * , 'error in GAUSSHE0, quadrature not available' + STOP + ENDIF + + DO J = HeIND(N0)+1, HeIND(N0+1) + BPout (N+1) = HeBP (J) * SQTWO + IF (BPout (N+1).GT.XMA) THEN + RETURN + END IF + IF (BPout (N+1).GE.XMI) THEN + N=N+1 ! add the node + WFout (N) = HeWF (J) * SQPI1 + END IF + ENDDO + RETURN + END SUBROUTINE GAUSSHE0 + + SUBROUTINE GAUSSLA0 (N, WFout, BPout, XMI, XMA, N0) + USE GLOBALDATA, ONLY : SQPI1 +! USE QUAD, ONLY : LaBP5,LaWF5,LaIND,NLaW + IMPLICIT NONE + INTEGER, INTENT(in) :: N0 + INTEGER, INTENT(inout) :: N + DOUBLE PRECISION, DIMENSION(:), INTENT(out) :: wfout,bpout + DOUBLE PRECISION, INTENT(in) :: XMI, XMA + INTEGER :: J + ! The subroutine returns modified Gauss-Laguerre + ! nodes and weights for alpha=-0.5 between + ! the integration limits XMI and XMA + ! for the chosen number of nodes + ! implicitly assuming the integrand + ! goes smoothly towards zero as its approach XMI or XMA + ! Note that the nodes and weights are modified + ! according to + ! Inf + ! int f(x)*exp(-x^2/2)/sqrt(2*pi)dx=sum f(bp(j))*wf(j) + ! 0 j + + IF (XMA.LE.XMI) THEN + !PRINT * , 'Warning XMIN>=XMAX in GAUSSLA0 !',XMI,XMA + RETURN !no more nodes added + ENDIF + IF (N0.GT.NLaW) THEN + !PRINT * , 'error in GAUSSLA0, quadrature not available' + STOP + ENDIF + + DO J = LaIND(N0)+1, LaIND(N0+1) + IF (XMA.LE.0.d0) THEN + BPout (N+1) = -SQRT(2.d0*LaBP5(J)) + ELSE + BPout (N+1) = SQRT(2.d0*LaBP5(J)) + END IF + IF (BPout (N+1).GT.XMA) THEN + RETURN + END IF + IF (BPout (N+1).GE.XMI) THEN + N=N+1 ! add the node + WFout (N) = LaWF5 (J)*0.5d0*SQPI1 + END IF + ENDDO + !PRINT *,'gaussla0, bp',LaBP5(LaIND(N0)+1:LaIND(N0+1)) + !PRINT *,'gaussla0, wf',LaWF5(LaIND(N0)+1:LaIND(N0+1)) + RETURN + END SUBROUTINE GAUSSLA0 + + SUBROUTINE GAUSSQ(N, WF, BP, XMI, XMA, N0) + USE GLOBALDATA, ONLY : xCutOff +! USE QUAD , ONLY : minQNr + IMPLICIT NONE + INTEGER, INTENT(in) :: N0 + INTEGER, INTENT(inout) :: N + DOUBLE PRECISION, DIMENSION(:), INTENT(out) :: wf,bp + DOUBLE PRECISION, INTENT(in) :: XMI,XMA + INTEGER :: N1 + ! The subroutine returns + ! nodes and weights between + ! the integration limits XMI and XMA + ! for the chosen number of nodes + ! Note that the nodes and weights are modified + ! according to + ! Inf + ! int f(x)*exp(-x^2/2)/sqrt(2*pi)dx=sum f(bp(j))*wf(j) + ! 0 j + + !IF (XMA.LE.XMI) THEN + ! PRINT * , 'Warning XMIN>=XMAX in GAUSSQ !',XMI,XMA + ! RETURN !no more nodes added + !ENDIF + CALL GAUSSLE0(N,WF,BP,XMI,XMA,N0) + RETURN + IF ((XMA.GE.xCutOff).AND.(XMI.LE.-xCutOff)) THEN + CALL GAUSSHE0(N,WF,BP,XMI,XMA,N0) + ELSE + CALL GAUSSLE2(N,WF,BP,XMI,XMA,N0) + RETURN + IF (((XMA.LT.xCutOff).AND.(XMI.GT.-xCutOff)).OR.(.TRUE.) + & .OR.(XMI.GT.0.d0).OR.(XMA.LT.0.d0)) THEN + ! Grid by Gauss-LegENDre quadrature + CALL GAUSSLE2(N,WF,BP,XMI,XMA,N0) + ELSE + ! this does not work well + !PRINT *,'N0',N0,N + N1=CEILING(DBLE(N0)/2.d0) + IF (XMA.GE.xCutOff) THEN + IF (XMI.LT.0.d0) THEN + CALL GAUSSLE2 (N, WF, BP,XMI ,0.d0,N0) + ENDIF + CALL GAUSSLA0 (N, WF, BP,0.d0, XMA, N1) + ELSE + IF (XMA.GT.0.d0) THEN + CALL GAUSSLE2 (N, WF,BP,0.d0,XMA,N0) + ENDIF + CALL GAUSSLA0 (N, WF,BP,XMI,0.d0, N1) + END IF + END IF + ENDIF + !PRINT *,'gaussq, wf',wf(1:N) + !PRINT *,'gaussq, bp',bp(1:N) + RETURN + END SUBROUTINE GAUSSQ + END MODULE QUAD + + MODULE RIND71MOD + IMPLICIT NONE + PRIVATE + PUBLIC :: RIND71, INITDATA, SETDATA,ECHO + + INTERFACE + FUNCTION MVNFUN(N,Z) result (VAL) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + DOUBLE PRECISION :: VAL + END FUNCTION MVNFUN + END INTERFACE + + INTERFACE + FUNCTION MVNFUN2(N,Z) result (VAL) + DOUBLE PRECISION,DIMENSION(:), INTENT(IN) :: Z + INTEGER, INTENT(IN) :: N + DOUBLE PRECISION :: VAL + END FUNCTION MVNFUN2 + END INTERFACE + + INTERFACE + FUNCTION FI( Z ) RESULT (VALUE) + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE + END FUNCTION FI + END INTERFACE + + INTERFACE + FUNCTION FIINV( Z ) RESULT (VALUE) + DOUBLE PRECISION, INTENT(in) :: Z + DOUBLE PRECISION :: VALUE + END FUNCTION FIINV + END INTERFACE + + INTERFACE + FUNCTION JACOB(XD,XC) RESULT (VALUE) + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: XD,XC + DOUBLE PRECISION :: VALUE + END FUNCTION JACOB + END INTERFACE + + INTERFACE RIND71 + MODULE PROCEDURE RIND71 + END INTERFACE + + INTERFACE SETDATA + MODULE PROCEDURE SETDATA + END INTERFACE + + INTERFACE INITDATA + MODULE PROCEDURE INITDATA + END INTERFACE + + INTERFACE ARGP0 + MODULE PROCEDURE ARGP0 + END INTERFACE + + INTERFACE RINDDND + MODULE PROCEDURE RINDDND + END INTERFACE + + INTERFACE RINDSCIS + MODULE PROCEDURE RINDSCIS + END INTERFACE + + INTERFACE RINDNIT + MODULE PROCEDURE RINDNIT + END INTERFACE + + INTERFACE BARRIER + MODULE PROCEDURE BARRIER + END INTERFACE + + INTERFACE echo + MODULE PROCEDURE echo + END INTERFACE + + INTERFACE swapRe + MODULE PROCEDURE swapRe + END INTERFACE + + INTERFACE swapint + MODULE PROCEDURE swapint + END INTERFACE + + INTERFACE getdiag + MODULE PROCEDURE getdiag + END INTERFACE + + INTERFACE CONDSORT0 + MODULE PROCEDURE CONDSORT0 + END INTERFACE + + INTERFACE CONDSORT + MODULE PROCEDURE CONDSORT + END INTERFACE + + + INTERFACE CONDSORT2 + MODULE PROCEDURE CONDSORT2 + END INTERFACE + + INTERFACE CONDSORT3 + MODULE PROCEDURE CONDSORT3 + END INTERFACE + + INTERFACE CONDSORT4 + MODULE PROCEDURE CONDSORT4 + END INTERFACE + + CONTAINS + SUBROUTINE SETDATA(method,scale, dEPSS,dREPS,dEPS2, + & dNIT,dXc, dNINT,dXSPLT) + USE GLOBALDATA + USE FIMOD + USE QUAD, ONLY: sizNint,Nint1,minQnr,Le2Qnr + IMPLICIT NONE + DOUBLE PRECISION , INTENT(in) :: scale, dEPSS,dREPS + DOUBLE PRECISION , INTENT(in) :: dEPS2,dXc, dXSPLT + !INTEGER, DIMENSION(:), INTENT(in) :: dNINT + INTEGER, INTENT(in) :: method,dNINT,dNIT + INTEGER :: N=1 + + !N=SIZE(dNINT) + IF (sizNint.LT.N) THEN + !PRINT *,'Error in setdata, Nint too large' + N=sizNint + ENDIF + NINT1(1:N)=dNINT !(1:N) ! quadrature formulae for the Xd variables + IF (N.LT.sizNint) THEN + NINT1(N:sizNint)=NINT1(N) + END IF + minQnr = 1 + Le2Qnr = NINT1(1) + + SCIS = method + XcScale = scale + RelEps = dREPS + EPSS = dEPSS ! accuracy of integration + CEPSS = 1.d0 - EPSS + EPS2 = dEPS2 ! Constants controlling + EPS = SQRT(EPS2) + xCutOff = dXc + XSPLT = dXSPLT + NIT = dNIT + + IF (Nc.LT.1) NUGGET=0.d0 ! Nugget is not needed when Nc=0 + + IF (EPSS.LE.1e-4) NsimMax=2000 + IF (EPSS.LE.1e-5) NsimMax=4000 + IF (EPSS.LE.1e-6) NsimMax=8000 + RETURN + IF (.FALSE.) THEN + print *,'Requested parameters :' + SELECT CASE (SCIS) + CASE (:0) + PRINT *,'NIT = ',NIT,' integration by quadrature' + CASE (1) + PRINT *,'SCIS = 1 SADAPT if NDIM<9 otherwise by KRBVRC' + CASE (2) + PRINT *,'SCIS = 2 SADAPT if NDIM<20 otherwise by KRBVRC' + CASE (3) + PRINT *,'SCIS = 3 KRBVRC (Ndim<101)' + CASE (4) + PRINT *,'SCIS = 4 KROBOV (Ndim<101)' + CASE (5) + PRINT *,'SCIS = 5 RCRUDE (Ndim<1001)' + CASE (6) + PRINT *,'SCIS = 6 SOBNIED (Ndim<1041)' + CASE (7:) + PRINT *,'SCIS = 7 DKBVRC (Ndim<1001)' + END SELECT + PRINT *,'EPSS = ', EPSS, ' RELEPS = ' ,RELEPS + PRINT *,'EPS2 = ',EPS2, ' xCutOff = ',xCutOff + PRINT *,'NsimMax = ',NsimMax !,FIINV(EPSS) + ENDIF + RETURN + END SUBROUTINE SETDATA + + SUBROUTINE INITDATA (speed) + USE GLOBALDATA + USE FIMOD + USE QUAD, ONLY: sizNint,Nint1,minQnr,Le2Qnr + IMPLICIT NONE + INTEGER , INTENT(in) :: speed + SELECT CASE (speed) + CASE (9:) + NINT1 (1) = 2 + NINT1 (2) = 3 + NINT1 (3) = 4 + CASE (8) + NINT1 (1) = 3 + NINT1 (2) = 4 + NINT1 (3) = 5 + CASE (7) + NINT1 (1) = 4 + NINT1 (2) = 5 + NINT1 (3) = 6 + CASE (6) + NINT1 (1) = 5 + NINT1 (2) = 6 + NINT1 (3) = 7 + CASE (5) + NINT1 (1) = 6 + NINT1 (2) = 7 + NINT1 (3) = 8 + CASE (4) ! quadrature formulae for the Xd variables + NINT1 (1) = 7 ! use quadr. form. No. 6 in integration of Xd(1) + NINT1 (2) = 8 ! use quadr. form. No. 7 in integration of Xd(2) + NINT1 (3) = 9 ! use quadr. form. No. 8 in integration of Xd(3) + CASE (3) + NINT1 (1) = 8 + NINT1 (2) = 9 + NINT1 (3) = 10 + CASE (2) + NINT1 (1) = 9 + NINT1 (2) = 10 + NINT1 (3) = 11 + CASE (:1) + NINT1 (1) = 11 + NINT1 (2) = 12 + NINT1 (3) = 13 + END SELECT + NsimMax=1000*abs(10-min(speed,9)) + NsimMin=0 + SELECT case (speed) + CASE (11:) + EPSS = 1d-1 + CASE (10) + EPSS = 1d-2 + CASE (7:9) + EPSS = 1d-3 + CASE (4:6) + EPSS = 1d-4 + CASE (:3) + EPSS = 1d-5 + END SELECT + + + EPSS=EPSS*1d-1 + RELEPS = MIN(EPSS ,1.d-2) + EPS2=EPSS*1.d1 + !EPS2*1.d+1 + !EPS2=1.d-10 + !xCutOff=MIN(MAX(ABS(FIINV(EPSS)),3.5d0),5.d0) + !xCutOff=ABS(FIINV(EPSS*1.d-1)) ! this is good + xCutOff=ABS(FIINV(EPSS)) + !xCutOff=ABS(FIINV(EPSS*5.d-1)) + if (SCIS.gt.0) then + xCutOff= MIN(MAX(xCutOff+0.5d0,4.d0),5.d0) +! This gives approximately the same accuracy as when using RINDDND and RINDNIT + EPSS=EPSS*1.d+2 + !EPS2=1.d-10 + endif + NINT1(1:sizNint)=NINT1(3) + Le2Qnr=NINT1(1) + minQnr=1 ! minimum quadrature No. used in GaussLe1,Gaussle2 + + NUGGET = EPS2*1.d-1 + IF (Nc.LT.1) NUGGET=0.d0 ! Nugget is not needed when Nc=0 + EPS = SQRT(EPS2) + CEPSS = 1.d0 - EPSS + +! If SCIS=0 then the absolute error is usually less than EPSS*100 +! otherwise absolute error is less than EPSS + + return + IF (.FALSE.) THEN + print *,'Requested parameters :' + SELECT CASE (SCIS) + CASE (:0) + PRINT *,'NIT = ',NIT,' integration by quadrature' + CASE (1) + PRINT *,'SCIS = 1 SADAPT if NDIM<9 otherwise by KRBVRC' + CASE (2) + PRINT *,'SCIS = 2 SADAPT if NDIM<19 otherwise by KRBVRC' + CASE (3) + PRINT *,'SCIS = 3 KRBVRC (Ndim<101)' + CASE (4) + PRINT *,'SCIS = 4 KROBOV (Ndim<101)' + CASE (5) + PRINT *,'SCIS = 5 RCRUDE (Ndim<1001)' + CASE (6) + PRINT *,'SCIS = 6 SOBNIED (Ndim<1041)' + CASE (7:) + PRINT *,'SCIS = 7 DKBVRC (Ndim<1001)' + END SELECT + PRINT *,'EPSS = ', EPSS, ' RELEPS = ' ,RELEPS + PRINT *,'EPS2 = ',EPS2, ' xCutOff = ',xCutOff + PRINT *,'NsimMax = ',NsimMax !,FIINV(EPSS) + ENDIF + RETURN + END SUBROUTINE INITDATA + + SUBROUTINE ECHO(array) + INTEGER ::j + DOUBLE PRECISION,DIMENSION(:,:)::array + DO j=1,size(array,1) + PRINT 111,j,array(j,:) +111 FORMAT (i2,':',10F10.5) + END DO + END SUBROUTINE ECHO + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +!!******************* RIND71 - the main program *********************!! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + SUBROUTINE RIND71(fxind,BIG1,Ex,xc1,Nt1,indI,Blo,Bup) + USE FUNCMOD, ONLY : BIG, Cm,CmN,xd,xc + USE GLOBALDATA, ONLY :Nt,Nj,Njj,Nd,Nc,Nx,Ntd,Ntdc,NsXtmj,NsXdj, + & indXtd,index1,xedni,SQ,Hlo,Hup,fxcepss,EPS2,XCEPS2,NIT, + & SQTWOPI1,xCutOff,SCIS,Ntscis,COVix,EPS, xcScale + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: BIG1 + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: xc1 + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: Ex + DOUBLE PRECISION, DIMENSION(:), INTENT(out):: fxind + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: Blo, Bup + INTEGER, DIMENSION(:), INTENT(in) :: indI + INTEGER, INTENT(IN) :: Nt1 +! local variables + INTEGER :: J,ix,Ntdcmj,Nst,Nsd,INFORM + DOUBLE PRECISION :: xind,SQ0,xx,fxc,quant +! IF (.NOT.PRESENT(xcScale)) THEN +! xcScale = 0.0d0 +! ENDIF + Nt =Nt1 + !print *,'rindd SCIS',SCIS + Nc = size(xc1,dim=1) + Nx = MAX(size(xc1,dim=2),1) + Ntdc = size(BIG1,dim=1) + IF (Nt+Nc.GT.Ntdc) Nt=Ntdc-Nc ! make sure it does not exceed Ntdc-Nc + Nd = Ntdc - Nt - Nc + Ntd = Nt + Nd + + !Initialization + !Call Initdata(speed) + Nj = MIN(Nj,MAX(Nt,0)) ! make sure Nj<=Nt + Njj = MIN(Njj,MAX(Nt-Nj,0)) ! make sure Njj<=Nt-Nj + ALLOCATE(xc(1:Nc)) + IF (Nd.GT.0) THEN + ALLOCATE(xd(1:Nd)) + xd = 0.d0 + END IF + + If (SCIS.GT.0) then + Ntscis=Nt-Nj-Njj + ALLOCATE(SQ(1:Ntd,1:Ntd)) ! Cond. stdev's + ALLOCATE(NsXtmj(1:Ntd+1)) ! indices to stoch. var. See condsort + else + Ntscis=0 + ALLOCATE(SQ(1:Ntd,1:max(Njj+Nj+Nd,1)) ) ! Cond. stdev's + ALLOCATE(NsXtmj(1:Nd+Nj+Njj+1)) ! indices to stoch. var. See condsort + endif + ALLOCATE(BIG(Ntdc,Ntdc)) + ALLOCATE(Cm(Ntdc),CmN(Ntd)) !Cond. mean which has the same order as local + Cm = 0.d0 !covariance matrices (after sorting) or excluding + !irrelevant variables. + + ALLOCATE(index1(Ntdc)) ! indices to the var. original place in BIG + index1=(/(J,J=1,Ntdc)/) ! (before sort.) + ALLOCATE(xedni(Ntdc)) ! indices to var. new place (after sorting), + xedni=index1 ! eg. the point xedni(1) is the original position + ! of variable with conditional mean CM(1). + ALLOCATE(Hlo(Ntd)) ! lower and upper integration limits are computed + ! in the new order that is the same as CM. + ! This convention is expressed in the vector indXTD. + Hlo = 0.d0 ! However later on some variables will be exluded + ! since those are irrelevant and hence CMnew(1) + ! does not to be conditional mean of the same variable + ! as CM(1) is from the beginning. Consequently + ALLOCATE(Hup(Ntd)) ! the order of Hup, Hlo will be unchanged. So we need + Hup=0.d0 ! to know where the relevant variables bounds are + ! This will be given in the subroutines by a vector indS. + + ALLOCATE(NsXdj(Nd+Nj+1)) ! indices to stoch. var. See condsort + NsXdj=0 + ALLOCATE(indXtd(Ntd)) ! indices to Xt and Xd as they are + indXtd=(/(J,J=1,Ntd)/) ! sorted in Hlo and Hup + + + BIG = BIG1(1:Ntdc,1:Ntdc) !conditional covariance matrix BIG + + IF (.TRUE.) THEN ! sort by shortest expected int. interval + Cm = Ex (1:Ntdc) + !xc = SUM(xc1(1:Nc,1:Nx),DIM=2)/DBLE(Nx) ! average of all xc's + xc = xc1(1:Nc,max(Nx/2,1)) ! Or select the one in the middle + CALL BARRIER(xc,indI,Blo,Bup) ! compute average integrationlimits + + ! print *,'rindd,xcmean:',xc + ! print *,'rindd,Hup:',Hup + ! print *,'rindd,Hlo:',Hlo + + CALL CONDSORT0(BIG,Cm,xc,SQ,index1,xedni,NsXtmj,NsXdj,INFORM) + ELSE ! sort by decreasing cond. variance + CALL CONDSORT (BIG,SQ,index1,xedni,NsXtmj,NsXdj,INFORM) + ENDIF + IF (INFORM.GT.0) GOTO 110 !Degenerated case the density can not computed + +! PRINT *, 'index=', index1 +! PRINT *,(sqrt(BIG(J,J)),J=1,Ntdc) +! PRINT *, 'BIG' +! CALL ECHO(BIG(1:Ntdc,1:MIN(Ntdc,10))) + !PRINT *, 'xedni=', xedni + !print *,'NsXtmj=',NsXtmj + !print *,'NsXdj=',NsXdj + + fxind = 0.d0 ! initialize + ! Now the loop over all different values of + ! variables Xc (the one one is conditioning on) + DO ix = 1, Nx ! is started. The density f_{Xc}(xc(:,ix)) + COVix = ix ! will be computed and denoted by fxc. + xind = 0.d0 + fxc = 1.d0 +! Cm = Ex (1:Ntdc) +! index1=(/(J,J=1,Ntdc)/) +! xedni=index1 +! BIG = BIG1(1:Ntdc,1:Ntdc) +! CALL BARRIER(xc1(1:Nc,ix),indI,Blo,Bup) ! integrationlimits +! CALL CONDSORT0 (BIG,Cm,xc1(:,ix),SQ, index1, +! & xedni, NsXtmj,NsXdj) + + ! Set the original means of the variables + Cm =Ex (index1(1:Ntdc)) ! Cm(1:Ntdc) =Ex (index1(1:Ntdc)) + quant = 0.0d0 + DO J = 1, Nc !Recursive conditioning on the last Nc variables + Ntdcmj=Ntdc-J + SQ0 = BIG(Ntdcmj+1,Ntdcmj+1) ! SQRT(var(X(i)|X(i+1),X(i+2),...,X(Ntdc))) + ! i=Ntdc-J+1 (J=1 var(X(Ntdc)) + + xx = (xc1(index1(Ntdcmj+1)-Ntd,ix)-Cm(Ntdcmj+1))/SQ0 + !Trick to calculate + !fxc = fxc*SQTWPI1*EXP(-0.5*(XX**2))/SQ0 + quant = quant - 0.5d0 * xx * xx + LOG(SQTWOPI1) - LOG(SQ0) + + ! conditional mean (expectation) + ! E(X(1:i-1)|X(i),X(i+1),...,X(Ntdc)) + Cm(1:Ntdcmj) = Cm(1:Ntdcmj)+xx*BIG (1:Ntdcmj,Ntdcmj+1) + ENDDO +! fxc probability density for i=Ntdc-J+1, +! fXc=f(X(i)|X(i+1),X(i+2)...X(Ntdc))* + ! f(X(i+1)|X(i+2)...X(Ntdc))*..*f(X(Ntdc)) + + fxc = EXP(QUANT+XcScale) + !print *,'density',fxc ! J + !PRINT *, 'Rindd, Cm=',Cm(xedni(max(1,Nt-5):Ntdc)) + !PRINT *, 'Rindd, Cm=',Cm(xedni(1:Ntdc)) + + !IF (fxc .LT.fxcEpss) print *,'small, fxc=',fxc + IF (fxc .LT.fxcEpss) GOTO 100 ! Small probability don't bother calculating it + + !set the global integration limits Hlo,Hup + CALL BARRIER(xc1(1:Nc,ix),indI,Blo,Bup) + + + + Nst = NsXtmj(Ntscis+Njj+Nd+Nj+1) + Nsd = NsXdj(Nd+Nj+1) + IF (any((Cm(Nst+1:Nsd-1) .GT.Hup(Nst+1:Nsd-1)+EPS ).OR. + * (Cm (Nst+1:Nsd-1)+EPS .LT.Hlo (Nst+1:Nsd-1)))) GO TO 100 !degenerate case + !mean of deterministic variable(s) is + ! outside the barriers + + !PRINT *,'RINDD SCIS',SCIS + IF (SCIS.GE.1.AND.SCIS.LE.9) then ! integrate all by SCIS + XIND=RINDSCIS(xc1(:,ix)) + GO TO 100 + endif + + SELECT CASE (Nd+Nj) + CASE (:0) + IF (SCIS.NE.0) then ! integrate all by SCIS + XIND=MNORMPRB(Cm(1:Nst)) + ELSE + XIND=RINDNIT(BIG,SQ(1:Nst,1),Cm,indXtd(1:Nst),NIT) + END IF + CASE (1:) + xind=RINDDND(BIG,Cm,xd,xc1(:,ix),Nd,Nj) + END SELECT + 100 fxind(ix)=xind*fxc + !IF (fxc .LT.fxcEpss) print *,'small, fxc, xind',fxc,xind + !PRINT *, 'Rindd, Cm=',Cm(xedni(1:Ntdc)) + ENDDO !ix +! PRINT *, 'Rindd, Cm=',Cm(xedni(1:Ntdc)) + 110 CONTINUE + IF (ALLOCATED(xc)) DEALLOCATE(xc) + IF (ALLOCATED(xd)) DEALLOCATE(xd) + IF (ALLOCATED(SQ)) DEALLOCATE(SQ) + IF (ALLOCATED(NsXtmj)) DEALLOCATE(NsXtmj) + IF (ALLOCATED(Cm)) DEALLOCATE(Cm) + IF (ALLOCATED(CmN)) DEALLOCATE(CmN) + IF (ALLOCATED(BIG)) DEALLOCATE(BIG) + IF (ALLOCATED(index1)) DEALLOCATE(index1) + IF (ALLOCATED(xedni)) DEALLOCATE(xedni) +! print *,'before dealocation',Ntd,size(Hup),size(Hlo) + IF (ALLOCATED(Hlo)) DEALLOCATE(Hlo) + IF (ALLOCATED(Hup)) DEALLOCATE(Hup) + IF (ALLOCATED(NsXdj)) DEALLOCATE(NsXdj) + IF (ALLOCATED(indXtd)) DEALLOCATE(indXtd) + RETURN + END SUBROUTINE RIND71 + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +!!*************************** ARGP0 *********************************!! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + SUBROUTINE ARGP0 (I0,I1,P0,Plo,SQ,Cm,indS,ind,Nind) + USE FIMOD + USE GLOBALDATA, ONLY : Hlo,Hup,xCutOff,EPSS,EPS2,EPS + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: SQ , Cm !stdev./mean + INTEGER, DIMENSION(:), INTENT(in) :: indS + INTEGER, DIMENSION(:), INTENT(out) :: ind + DOUBLE PRECISION, INTENT(out) :: P0,Plo + INTEGER, INTENT(out) :: I0, I1 + INTEGER, INTENT(out) :: Nind + DOUBLE PRECISION :: P1,Prb + DOUBLE PRECISION :: Xup, Xlo + INTEGER :: I, Nstoc + ! indS contains the indices to the limits + Nstoc = SIZE(indS) ! in Hlo/Hup of variables in the indicator + ! ind contains indices to the relevant + ! variables which are Nind<=Nstoc. + ! We wish to compute P(HloX(i0)>XMI)= + P0 = Prb ! min Prob(Hup(i)> X(i)>Hlo(i)) + IF (P0.LT.EPSS) THEN + Plo=0.d0 + RETURN + ENDIF + ELSEIF (Prb.LT.P1) THEN + I1 = Nind + P1 = Prb + ENDIF + ENDIF + ENDDO + + Plo = MAX(0.d0,1.d0-DBLE(Nind)+Plo) + P0 = MIN(1.d0,P0) +! print *,'ARGP0',Nstoc,Nind,P0,Plo,I0,I1,CM(ind(I0)) + RETURN + END SUBROUTINE ARGP0 + + + +!Ntmj is the number of elements in indicator +!since Nj points of process valeus (Nt) have +!been moved to the jacobian. +!index1 contains the original +!positions of variables in the +!covaraince matrix before condsort +!and that why if index(Ntmj+1)>Nt +!it means the variable to conditon on +!is a derivative isXd=1 + +!= # stochastic variables before +!conditioning on X(Ntmj+1). This +!I still not checked why. + + + +! ******************* RINDDND **************************************** +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + RECURSIVE FUNCTION RINDDND (BIG,Cm,xd,xc,Ndleft,Njleft) + & RESULT (xind) + USE JACOBMOD + USE GLOBALDATA, ONLY :SQPI1, SQTWOPI1,Hup,Hlo,Nt,Nj,Njj,Nd, + & NsXtmj,NsXdj,EPS2,NIT,xCutOff,EPSS,CEPSS,index1, + & indXtd,SQ,SQTWO,SQTWO1,SCIS,Ntscis,C1C2det,EPS + USE FIMOD + USE C1C2MOD + USE QUAD + IMPLICIT NONE + INTEGER,INTENT(in) :: Ndleft,Njleft ! # DIMENSIONs to integrate + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: BIG + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: Cm ! conditional mean + DOUBLE PRECISION, DIMENSION(: ), INTENT(inout) :: xd ! integr. variables + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: xc ! conditional values +!local variables + DOUBLE PRECISION :: xind + DOUBLE PRECISION :: xind1 + DOUBLE PRECISION, DIMENSION(PMAX) :: WXdi, Xdi !weights/nodes + DOUBLE PRECISION, DIMENSION(: ), ALLOCATABLE :: CmNEW + INTEGER :: Nrr, Nr, J, N,Ndleft1,Ndjleft,Ntmj,isXd + INTEGER :: Nst,Nstn,Nsd,NsdN + DOUBLE PRECISION :: SQ0,fxd,XMA,XMI + + Ntmj=Nt-Nj + Ndjleft= Ndleft+Njleft + N=Ntmj+Ndjleft + + IF (index1(N).GT.Nt) THEN + isXd=1 + ELSE + isXd=0 + END IF + + XIND = 0.d0 + SQ0 = BIG (N, N) +! index to last stoch. variable of Xt before conditioning on X(N) + Nst = NsXtmj(Ntscis+Njj+Ndjleft+1) + +!******************************************************************************** +!** Here Starts the degenerated case the remaining variables are deterministic ** +!******************************************************************************** + + IF (SQ0.LT.EPS2) THEN + !Next is the check for the special situation + !that after conditioning on Xc all derivatives are + !singular and not satisfying the limitations + !(so something is generally wrong) + IF (any((Cm(Nst+1:N).GT.Hup(Nst+1:N)+EPS ).OR. + & (Cm(Nst+1:N)+EPS.LT.Hlo(Nst+1:N)))) THEN + RETURN !the mean of Xd or Xt is too extreme + ENDIF + !Here we are putting in all conditional expectations + !for the values of the "deterministic" derivatives. + IF (Nd.GT.0) THEN + Ndleft1=Ndleft + DO WHILE (Ndleft1.GT.0) + IF (index1(N).GT.Nt) THEN ! isXd + xd (Ndleft1) = Cm (N) + Ndleft1=Ndleft1-1 + END IF + N=N-1 + ENDDO + fxd = jacob (xd,xc) ! jacobian of xd,xc + ELSE + fxd = 1.d0 ! XIND = FxCutOff??? + END IF + + XIND=fxd + IF (Nst.le.0) RETURN + IF (SCIS.ne.0) then + XIND=fxd*MNORMPRB(Cm(1:Nst)) + ELSE + XIND=fxd*RINDNIT(BIG,SQ(:,Ntscis+Njj+1), + & Cm,indXtd(1:Nst),NIT) + END IF + RETURN + ENDIF + +!***** Here Starts the conditioning on the last variable (nondeterministic) * +!**************************************************************************** + + ! SQ0 = SQ(N,Ntscis+Njj+Ndjleft) !SQRT (SS0) + + !print *,'RINDD SQO', SQ0,SQ(N,Ntscis+Njj+Ndjleft) !SQ(1:N,Ndjleft) + + XMA=MIN((Hup (indXtd(N))-Cm (N))/SQ0, xCutOff) + XMI=MAX((Hlo (indXtd(N))-Cm (N))/SQ0,-xCutOff) + + ! See if we can narrow down integration range + ! index to first stoch. variable of Xd before conditioning on X(N) + Nsd = NsXdj(Ndjleft+1) + ! index to last stoch. variable of Xt after cond. on X(N) + NstN = NsXtmj(Ntscis+Njj+Ndjleft) + + !PRINT *,xmi,xma +! print *,Ntscis+Njj+Ndjleft +! print *,'CM=',Cm(1:N-1) +! print *,'SQ=', SQ(1:N-1,Ntscis+Njj+Ndjleft) + if (C1C2det) then ! checking only on the variables that becomes deterministic +! index to first stoch. variable of Xd after conditioning on X(N) + NsdN = NsXdj(Ndjleft) + CALL C1C2(XMI,XMA,Cm(Nsd:NsdN-1),BIG(Nsd:NsdN-1,N), + & SQ(Nsd:NsdN-1,Ntscis+Njj+Ndjleft),indXtd(Nsd:NsdN-1)) + CALL C1C2(XMI,XMA,Cm(NstN+1:Nst),BIG(NstN+1:Nst,N), + & SQ(NstN+1:Nst,Ntscis+Njj+Ndjleft),indXtd(NstN+1:Nst)) + else ! check on all variables + CALL C1C2(XMI,XMA,Cm(Nsd:N-1),BIG(Nsd:N-1,N), + & SQ(Nsd:N-1,Ntscis+Njj+Ndjleft),indXtd(Nsd:N-1)) + CALL C1C2(XMI,XMA,Cm(1:Nst),BIG(1:Nst,N), + & SQ(1:Nst,Ntscis+Njj+Ndjleft),indXtd(1:Nst)) + endif +! CALL C1C2(XMI,XMA,Cm(1:N-1),BIG(1:N-1,N), +! & SQ(1:N-1,Ntscis+Njj+Ndjleft),SQ0,indXtd(1:N-1)) + !PRINT *,xmi,xma +! if (Ndleft<2) stop + IF (XMA.LE.XMI) THEN + XIND=0.d0 + RETURN + ENDIF + Nrr = NINT1 (MIN(Ndjleft,sizNint)) + Nr=0 ! initialize # of nodes + !print *, 'rinddnd Nrr',Nrr + !Grid the interval [XMI,XMA] by GAUSS quadr. + CALL GAUSSLE2(Nr, WXdi, Xdi,XMI,XMA, Nrr) + !print *, 'Xdi',Xdi + ALLOCATE(CmNEW(1:N-1)) + ! The following variables are independent of X(N) + ! because BIG(Nst+1:Nsd-1,N) is set to 0 in condsrort. + ! Thus the mean is not changed for these variables + ! in order to avoid numerical problems + ! The following if test is necessary on Solaris F90 compiler. + if (Nst+1.LT.Nsd) CmNEW(Nst+1:Nsd-1)=Cm(Nst+1:Nsd-1) +! print *,Ndjleft,N,NstN+1,Nsd-1 +! print *,BIG(Nst+1:Nsd-1,N) +! print *,'Cm=',Cm(NstN+1:Nsd-1) + DO J = 1, Nr +! IF (Wxdi(J).GT.(CFxCutOff)) GO TO 100 !THEN ! EPSS??? + IF (isXd.EQ.1) xd (Ndleft) = Xdi (J)*SQ0 + Cm (N) + + ! Here we start with the case when there + ! some derivatives left to integrate. + ! The following if test is necessary on Solaris F90 compiler. + if (1.LE.Nst) CmNEW(1:Nst) = Cm(1:Nst)+Xdi(J)*BIG(1:Nst,N) + if (Nsd.LT.N) CmNEW(Nsd:(N-1)) = Cm(Nsd:(N-1))+ + & Xdi(J)*BIG(Nsd:(N-1),N) + !print *,'CmNew=',N-1,Ndjleft,CmNew(1:N-1) + fxd = Wxdi(J) + IF (Ndjleft.GT.1) THEN + XIND1=RINDDND(BIG,CmNEW,xd,xc,Ndleft-isXd,Njleft-1+isXd) + ELSE ! Here all is conditioned on + ! and we wish to compute the + ! conditional probability that + ! variables in indicator stays between barriers. + XIND1 = 1.d0 + !if there are derivatives we need + !to compute the jacobian, jacob(xd,xc) + IF (Nd.GT.0) fxd = fxd *jacob(xd(1:Nd),xc) + !If there are no derivatives + !then we assume that jacob(xc)=1 + + IF (NstN.LT.1) GOTO 100 !Here there are no points in indicator + !left to integrate and hence XIND1=1. + + !integrate by Monte Carlo - SCIS + IF (SCIS.NE.0) XIND1 = MNORMPRB(CmNEW) + !integrate by quadrature + IF (SCIS.EQ.0) XIND1 = RINDNIT(BIG, + & SQ(:,Ntscis+Njj+1),CmNEW,indXtd(1:NstN),NIT) + !print *,'jacobian',xind,xind1,xind+fxd*xind1 + END IF + 100 CONTINUE + XIND = XIND+XIND1 * fxd !END IF + ENDDO + + DEALLOCATE(CmNEW) + RETURN + END FUNCTION RINDDND + + +! ******************* RINDNIT **************************************** +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + + ! old procedure rind2-6 + RECURSIVE FUNCTION RINDNIT(R,SQ,Cm,indS,NITL) RESULT (xind) + USE GLOBALDATA, ONLY : Hlo,Hup,EPS2, EPSS,CEPSS + & ,xCutOff,Plowgth,XSPLT + USE FIMOD + USE C1C2MOD + USE QUAD + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: R + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: SQ + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: Cm + DOUBLE PRECISION :: xind + INTEGER, DIMENSION(: ), INTENT(in) :: indS + INTEGER, INTENT(in) :: NITL +! local variables + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: RNEW + DOUBLE PRECISION, DIMENSION(: ), ALLOCATABLE :: B,SQnew + DOUBLE PRECISION, DIMENSION(: ), ALLOCATABLE :: CmNEW + INTEGER, DIMENSION(: ), ALLOCATABLE :: indSNEW,ind + INTEGER :: I0,I1 + + DOUBLE PRECISION, DIMENSION(PMAX) :: H1, XX1 + DOUBLE PRECISION :: XIND1,XIND2,SQ0,SQ1,SS0,SS1,SS + DOUBLE PRECISION, DIMENSION(2) :: XMI, XMA + INTEGER, DIMENSION(2) :: INFIN + DOUBLE PRECISION :: SGN,P0,Plo,rho + INTEGER :: Ns,Nsnew,row,r1,r2,J,N1 + +! Assumption is that there is at least one variable X in the indicator, +! LNIT nonegative integer. +! If LNIT=0 or the number of relevant variables is less then 3, the recursion +! stops. It gives exact value if after removing irrelevant variables there +! are maximum 2 variables left in the indicator. The program is not using +! RIND2 function any more. IR. 28 XI 1999 - Indianapolis. +! +! explanation to variables (above): +! R = cov. matr. +! B = R(I,I0) I=1:Ns +! SQ = SQRT(R(I,I)) I=1:Ns +! Cm = cond. mean +! indS = indices to the stochastic variables as they are stored in +! the global variables Hlo and Hup +! Ns = size of indS =# of variables in indicator before conditioning +! Nsnew = # of relevant variables in indicator before conditioning +! I0,I1 = indicies to minimum prob. and next minimal, respectively +! ..NEW = the var. above after conditioning on X(I0) or used in recursion +! ind = temp. variable storing indices + + Ns=SIZE(indS) !=# stochastic variables before conditioning + XIND=1.d0 + + if (Ns.lt.1) return + + ALLOCATE(ind(1:Ns)) + CALL ARGP0(I0,I1,P0,Plo,SQ,Cm,indS,ind,NSnew) +! print *,'NSnew,P0,Plo=',NSnew,P0,Plo + !The probability of being between barriers is one + !since there are no relevant variables. + +! print *,'NIT',NITl,P0,Plo,Ns,Nsnew + IF (NSnew.lt.1) GOTO 300 + XIND=(P0*DBLE(NSnew)+Plowgth*Plo)/(DBLE(NSnew)+Plowgth) + !Lower bound Plo and upper bound P0 are close + !or all variables are close to be irrelevant, + !e.g. Nsnew=1. + IF ((P0.LT.Plo+EPSS).OR.(P0.GT.CEPSS)) GOTO 300 + +! Now CEPSS>P0>EPSS+Plo and there are more than one relevant variable (NSnew>1) +! Those have indices ind(I0), ind(I1). +! Hence we have nondegenerated case. + + SS0 = R (ind(I0) ,ind(I0)) + SQ0 = SQRT(SS0) + r1=indS(ind(I0)) +! print *,'P0-Plo,SS0,Sq0',P0-Plo,SS0,Sq0 + XMA(1) = MIN((Hup (r1)-Cm (ind(I0)))/SQ0,xCutOff) + XMI(1) = MAX((Hlo (r1)-Cm (ind(I0)))/SQ0,-xCutOff) + +!If NSnew = 2 then we can compute the probability exactly and recursion stops. + IF ((NSnew.EQ.2).OR.(NITL.LT.1)) THEN !.OR.(NITL.LT.1) +! Not necessary any longer: +! I1=2 +! if (I0.eq.2) I1=1 +! if (I0.eq.I1) print *,'rindnit, I1,I0:',I1,I0 + SS1 = R (ind(I1) ,ind(I1)) + SQ1 = SQRT(SS1) + + IF (ind(I0).LT.ind(I1)) THEN + SS=R(ind(I0),ind(I1)) + ELSE + SS=R(ind(I1),ind(I0)) + ENDIF + rho= SS/(SQ0*SQ1) + + r2=indS(ind(I1)) + XMA(2) = MIN((Hup (r2)-Cm (ind(I1)))/SQ1,xCutOff) + XMI(2) = MAX((Hlo (r2)-Cm (ind(I1)))/SQ1,-xCutOff) + IF (ABS(rho).gt.1.d0+EPSS) THEN + !print *,'rindnit, Correlation > 1, rho=',rho + IF (ABS(rho).gt.1.d0+EPSS) GO TO 300 + rho = sign(1.D0,rho) +! print *,'rindnit, P0,Plo',P0,Plo,XIND +! print *,'rindnit I0,I1:',I0,I1 +! print *,'rindnit XMI,XMA,XMI1,XMA1:',XMI(1),XMA(1), +! & XMI(2),XMA(2) +! print *,'rindnit cov(I1,I0):',R(ind(I1),ind(I0)) +! print *,'rindnit cov(I0,I1):',R(ind(I0),ind(I1)) +! print *,'rindnit SS,SS1,SS0:',SS,SS1,SS0 +! print *,'rindnit ind:',ind(1:NSnew) + ENDIF +! print *,XMA1,XMI1,XMA,XMI,rho +! XIND = NORM2DPRB(XMI(1),XMA(1),XMI(2),XMA(2),rho) +! GO TO 300 +* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)]; +* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity); +* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)]. +! INFIN = 2 + IF (XMI(1).LE.-xCutOff) INFIN(1)=0 + IF (XMI(2).LE.-xCutOff) INFIN(2)=0 + IF (XMA(1).GE. xCutOff) INFIN(1)=1 + IF (XMA(2).GE. xCutOff) INFIN(2)=1 + + !print *,'rindnit, xind,xind2=', XIND, BVNMVN(XMI,XMA,INFIN,rho) + XIND = BVNMVN(XMI,XMA,INFIN,rho) +! print *,xind + GOTO 300 + END IF + !If NITL=0 which means computations without conditioning on X(ind(I0)) + IF(NITL.lt.1) GOTO 300 + +!We have NITL>0 and at least 3 variables in the indicator, ie. +!we will condition on X(ind(I0)). +!First we check whether one can use XSPLIT variant of integration. + + if ((XMA(1).GE.xCutOff).AND.(XMI(1).LT.-XSPLT)) THEN ! (.FALSE.).AND. + XMA(1)=XMI(1) + XMI(1)=-xCutOff + SGN=-1.d0 + elseif ((XMA(1).GT.XSPLT).AND.(XMI(1).LE.-xCutOff)) THEN + XMI(1)=XMA(1) + XMA(1)=xCutOff + SGN=-1.d0 + else + SGN=1.d0 + XIND2=0.d0 + endif + + ! Must allocate several variables to recursively + ! transfer them to rindnit: Rnew, SQnew, CMnew, indSnew + ! The variable B is used in computations of conditional mean and cov. + ! The size is NSnew-1 (the relevant variables minus X(ind(I0)). + + ALLOCATE(indSNEW(1:NSnew-1)) + ALLOCATE(RNEW(NSnew-1,NSnew-1)) + ALLOCATE(CMnew(1:NSnew-1)) + ALLOCATE(SQnew(1:NSnew-1)) + ALLOCATE(B(1:NSnew-1)) + !This DO loop is divided in two parts in order + !to only work on the upper triangular of R + DO row=1,I0-1 + r1=ind(row) + Rnew(row,row:I0-1)=R(r1,ind(row:I0-1)) + ! The if test below is required on Solaris F90 compiler + IF (I0.LT.Nsnew) Rnew(row,I0:NSnew-1)=R(r1,ind(I0+1:NSnew)) + B(row)=R(r1,ind(I0))/SQ0 + enddo + DO row=I0+1,NSnew + r1=ind(row) + Rnew(row-1,row-1:NSnew-1) = R(r1,ind(row:NSnew)) + B(row-1)=R(ind(i0),r1)/SQ0 + enddo + DO row=I0+1,NSnew + ind(row-1)=ind(row) + enddo + + + CMnew=CM(ind(1:NSnew-1)) + SQnew=SQ(ind(1:NSnew-1)) + indSnew=indS(ind(1:NSnew-1)) + + !USE the XSPLIT variant + IF (SGN.LT.0.d0) XIND2 = RINDNIT(Rnew,SQnew,CMnew,indSnew,NITL-1) + + ! Perform conditioning on X(I0) + NSnew=NSnew-1 + N1=0 + DO row = 1, NSnew + Rnew(row,row:NSnew) = Rnew(row,row:NSnew) - + & B(row)*B(row:NSnew) !/SS0) + SS = RNEW(row,row) + IF (SS.GE.EPS2) then + SQNEW (row) = SQRT (SS) + ELSE + SQNEW(row) = 0.d0 + N1=N1+1 ! count number of deterministic variables + END IF + ENDDO + + !See if we can Narrow down the limits + CALL C1C2(XMI(1),XMA(1),CmNew,B,SQNEW,indSnew) + XIND = (FI (XMA(1)) - FI (XMI(1))) + ! if Nsnew<=N1 then PRB = XIND almost always + ! if this check is not performed then + ! the numerical integration may currupt the answer due + ! to the limited number of nodes used in the integration + IF (XIND.LT.EPSS.OR.Nsnew.LT.N1+1) GOTO 200 + + ! print *,'rindnit gaussle2' + N1=0 ! computing nodes for num. integration. + CALL GAUSSLE2 (N1, H1, XX1, XMI(1), XMA(1),LE2Qnr) + ! new conditional covariance + + XIND = 0.d0 +! print *,'rindnit for loop',N1 + DO J = 1, N1 + !IF (H1(J).GT.CFxCutOff) THEN + CMnew=Cm(ind(1:NSnew)) + XX1(J)*B !/ SQ0) + XIND1=RINDNIT(Rnew,SQnew,CMnew,indSnew,NITL-1) + XIND = XIND+XIND1 * H1 (J) + !END IF + ENDDO +200 CONTINUE + XIND=XIND2+SGN*XIND +! Print *,'XIND, XIND2',XIND,XIND2 +! Print *,'XMI',XMI +! Print *,'XMA',XMA +! Print *,'xind,nit', xind,nitl,shape(indsnew),shape(ind) + !fix up round off errors and make sure 0=0 the order of Xd and Xt(Nt-Nj+1:Nt) may be mixed. +! The covariances, Cov(X(1:I-1),X(I)|X(I+1:N)), needed for computation of the +! conditional expectation, E(X(1:I-1)|X(I:N), are saved in column I of R +! for I=Nt-Nj+1:Ntdc. +! +! IF any of the variables have variance less than EPS2. They will be +! be treated as deterministic and not stochastic variables by the +! RindXXX subroutines. The deterministic variables are moved to +! middle in the order they became deterministic in order to +! keep track of them. Their variance and covariance with +! the remaining stochastic variables are set to zero in +! order to avoid numerical difficulties. +! +! NsXtmj(I) is the number of variables among the Nt-Nj +! first we treat stochastically after conditioning on X(Nt-Nj+I). +! The covariance matrix is sorted so that all variables with indices +! from 1 to NsXtmj(I) are stochastic after conditioning +! on X(Nt-Nj+I). Thus NsXtmj(I) may also be considered +! as the index to the last stochastic variable after conditioning +! on X(Nt-Nj+I). In other words NsXtmj keeps track of the deterministic +! and stochastic variables among the Nt-Nj first variables in each +! conditioning step. +! +! Similarly NsXdj(I) keeps track of the deterministic and stochastic +! variables among the Nd+Nj following variables in each conditioning step. +! NsXdj(I) is the index to the first stochastic variable +! among the Nd+Nj following variables after conditioning on X(Nt-Nj+I). +! The covariance matrix is sorted so that all variables with indices +! from NsXdj(I+1) to NsXdj(I)-1 are deterministic conditioned on +! X(Nt-Nj+I). +! + +! Var(Xc(1))>Var(Xc(2)|Xc(1))>...>Var(Xc(Nc)|Xc(1),Xc(2),...,Xc(Nc)). +! If Nj=0 then +! Var(Xd(1)|Xc)>Var(Xd(2)|Xd(1),Xc)>...>Var(Xd(Nd)|Xd(1),Xd(2),...,Xd(Nd),Xc). +! +! NB!! Since R is symmetric, only the upper triangular contains the +! sorted conditional covariance. The whole matrix +! is easily obtained by copying elements of the upper triangle to +! the lower or by uncommenting some lines in the end of this subroutine +! +! revised pab 18.04.2000 +! new name rind60 +! New assumption of BIG for the conditional sorted variables: +! BIG(I,I)=sqrt(Var(X(I)|X(I+1)...X(N))=SQI +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N))/SQI +! Otherwise +! BIG(I,I) = Var(X(I)|X(I+1)...X(N) +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N)) +! This also affects C1C2: SQ0=sqrt(Var(X(I)|X(I+1)...X(N)) is removed from input +! => A lot of wasteful divisions are avoided + + +! Using SQ to temporarily store the diagonal of R +! Adding a nugget effect to ensure the the inversion is +! not corrupted by round off errors +! good choice for nugget might be 1e-8 + !call getdiag(SQ,R) + INFORM = 0 + ALLOCATE(SQ(1:Ntdc)) + ALLOCATE(ind(1:Ntdc)) + IF (Nd+Nj+Njj+Ntscis.GT.0) THEN + ALLOCATE(CSTD2(1:Ntd,1:Nd+Nj+Njj+Ntscis)) + CSTD2=0.d0 ! initialize CSTD + ENDIF + !CALL ECHO(R,Ntdc) + DO ix = 1, Ntdc + R(ix,ix) = R(ix,ix)+Nugget + SQ(ix) = R(ix,ix) + index1 (ix) = ix ! initialize index1 + ENDDO + + Ntmj = Nt-Nj + Njleft = Nj + NstoXd = Ntmj+1 + Nstoc = Ntmj + + + DO ix = 1, Nc ! Condsort Xc + r1=Ntdc-ix + m=r1+2-MAXLOC(SQ(r1+1:Ntd+1:-1)) + IF (SQ(m(1)).LT.XCEPS2) THEN + INFORM = 1 + !PRINT *,'Condsort0, degenerate Xc' + !degenerate=1 + GOTO 200 ! RETURN !degenerate case + ENDIF + m1 = index1(m(1)) + CALL swapint(index1(m(1)),index1(r1+1)) + CALL swapre(Cm(m(1)),Cm(r1+1)) + SQ(r1+1) = SQRT(SQ(m(1))) + R(index1(1:r1+1),m1) = R(index1(1:r1+1),m1)/SQ(r1+1) + R(m1,index1(1:r1)) = R(index1(1:r1),m1) + + ! Calculate the conditional mean + Cm(1:r1)=Cm(1:r1)+(xcmean(index1(r1+1)-Ntd)-Cm(r1+1))* + & R(index1(1:r1),m1) !/SQ(r1+1) + ! sort and calculate conditional covariances + CALL CONDSORT2(R,SQ,index1,Nstoc,NstoXd,Njleft,m1,r1) + ENDDO ! ix + ! index to first stochastic variable of Xd and Nj of Xt + NsXdj(Nd+Nj+1) = NstoXd + ! index to last stochastic variable of Nt-Nj of Xt + NsXtmj(Nd+Nj+Njj+Ntscis+1) = Nstoc + !print *, 'condsort index1', index1 + !print *, 'condsort Xd' + !call echo(R,Ntdc) + + DO ix = 1, Nd+Nj ! Condsort Xd + Nj of Xt + CALL ARGP0(I1,r2,P1,XX,SQRT(SQ(NstoXd:Ntd-ix+1)), + & Cm(NstoXd:Ntd-ix+1),index1(NstoXd:Ntd-ix+1),ind,r1) + IF (r1.NE.0) I1=ind(I1) + m = MIN(NstoXd+I1-1,Ntd-ix+1) + IF (Njleft.GT.0) THEN + + CALL ARGP0(I0,r2,P0,XX,SQRT(SQ(1:Nstoc)), + & Cm(1:Nstoc),index1(1:Nstoc),ind,r1) + IF (r1.NE.0) I0=ind(I0) +! m=Ntd-ix+2-MAXLOC(SQ(Ntd-ix+1:1:-1)) + IF (P0.LT.P1.AND.r1.GT.0) THEN + m = I0 + P1 = P0 + END IF + Ntmp = NstoXd+Njleft-1 + IF (((NstoXd.LE.m(1)).AND.(m(1).LE.Ntmp)) + & .OR.(m(1).LE.Nstoc)) THEN + CALL swapint(index1(m(1)),index1(Ntmp)) + CALL swapRe(SQ(m(1)),SQ(Ntmp)) + CALL swapre(Cm(m(1)),Cm(Ntmp)) + m(1)=Ntmp + Njleft=Njleft-1 + END IF + END IF ! Njleft + IF (SQ(m(1)).LT.EPS2) THEN + !PRINT *,'Condsort, degenerate Xd' + Ntmp = Nd+Nj+1-ix + NsXtmj(Ntscis+Njj+1:Ntmp+Ntscis+Njj+1) = Nstoc + NsXdj(1:Ntmp+1) = NstoXd + IF (ix.EQ.1) THEN + DO iy = 1,Ntd !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + r1 = index1(iy) + CSTD2(r1,Ntscis+Njj+1:Ntmp+Ntscis+Njj)=SQRT(SQ(iy)) + ENDDO + ELSE + DO iy=ix,Nd+Nj + CSTD2(:,Nd+Nj+Ntscis+Njj+1-iy)= + & CSTD2(:,Ntmp+Ntscis+Njj+1) + ENDDO + ENDIF + GOTO 200 ! degenerate case + END IF + r1 = Ntd-ix + m1 = index1(m(1)); + CALL swapint(index1(m(1)),index1(r1+1)) + CALL swapre(Cm(m(1)),Cm(r1+1)) + ! CALL swapre(SQ(r1+1),SQ(m(1))) + SQ0 = SQRT(SQ(m(1))) + SQ(r1+1) = SQ0 + CSTD2(m1,Nd+Nj+Ntscis+Njj+1-ix)=SQ0 + + R(index1(1:r1+1),m1) = R(index1(1:r1+1),m1)/SQ0 + R(m1,index1(1:r1)) = R(index1(1:r1),m1) + + XMA = MIN( (Hup (index1(r1+1)) - Cm (r1+1))/ SQ0,xCutOff) + XMA = MAX(XMA,-xCutOff) + XMI = MAX( (Hlo (index1(r1+1)) - Cm (r1+1))/ SQ0,-xCutOff) + XMI = MIN(XMI,xCutOff) + +! There is something wrong with XX + IF (P1.GT. EPSS ) THEN + ! Calculate the normalized expected mean without the jacobian + XX = SQTWOPI1*(EXP(-0.5d0*XMI*XMI)-EXP(-0.5d0*XMA*XMA))/P1 + ELSE + IF ( XMI .LE. -xCutOff ) XX = XMA + IF ( XMA .GE. xCutOff ) XX = XMI + IF (XMI.GT.-xCutOff.AND.XMA.LT.xCutOff) XX=(XMI+XMA)*0.5d0 + END IF + + ! Calculate the conditional expected mean + Cm(1:r1) = Cm(1:r1)+XX*R(index1(1:r1),m1) + + ! Calculating conditional variances + CALL CONDSORT2(R,SQ,index1,Nstoc,NstoXd,Njleft,m1,Ntd-ix) + ! saving indices + NsXtmj(Nd+Nj+Njj+Ntscis+1-ix)=Nstoc + NsXdj(Nd+Nj+1-ix)=NstoXd + + ! Calculating standard deviations non-deterministic variables + DO r2=1,Nstoc + r1=index1(r2) + CSTD2(r1,Nd+Nj+Njj+Ntscis+1-ix)=SQRT(SQ(r2)) !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + ENDDO + DO r2=NstoXd,Ntd-ix + r1=index1(r2) + CSTD2(r1,Nd+Nj+Ntscis+Njj+1-ix)=SQRT(SQ(r2)) !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + ENDDO + ENDDO ! ix + + + 200 IF ((SCIS.GT.0).OR. (Njj.gt.0)) THEN ! check on Njj instead + ! Calculating conditional variances and sort for Nstoc of Xt + CALL CONDSORT4(R,Cm,CSTD2,SQ,index1,NsXtmj,Nstoc) + !Nst0=Nstoc + ENDIF + IF (Nd+Nj+Njj+Ntscis.GT.0) THEN + DO r2=1,Ntd ! sorting CSTD according to index1 + r1=index1(r2) + CSTD(r2,:)= CSTD2(r1,:) + END DO + DEALLOCATE(CSTD2) + ELSE + IF (Nc.EQ.0) THEN + ix=1; Nstoc=Ntmj + DO WHILE (ix.LE.Nstoc) + IF (SQ(ix).LT.EPS2) THEN + DO WHILE ((SQ(Nstoc).LT.EPS2).AND.(ix.LT.Nstoc)) + SQ(Nstoc)=0.d0 !MAX(0.d0,SQ(Nstoc)) + Nstoc=Nstoc-1 + END DO + CALL swapint(index1(ix),index1(Nstoc)) ! swap indices + !CALL swapre(SQ(ix),SQ(Nstoc)) + SQ(ix)=SQ(Nstoc);SQ(Nstoc)=0.d0 + Nstoc=Nstoc-1 + ENDIF + ix=ix+1 + END DO + ENDIF + CSTD(1:Nt,1)=SQRT(SQ(1:Nt)) + NsXtmj(1)=Nstoc + ENDIF + + changed=0 + DO r2=Ntdc,1,-1 ! sorting the upper triangular of the + r1=index1(r2) ! covariance matrix according to index1 + xedni(r1)=r2 + !PRINT *,'condsort,xedni',xedni + !PRINT *,'condsort,r1,r2',r1,r2 + IF ((r1.NE.r2).OR.(changed.EQ.1)) THEN + changed=1 + R(r2,r2) = SQ(r2) + DO c2=r2+1,Ntdc + c1=index1(c2) + IF (c1.GT.r1) THEN + R(r2,c2)=R(c1,r1) + ELSE + R(r2,c2)=R(r1,c1) + END IF + END DO + END IF + END DO + ! you may sort the lower triangular according + ! to index1 also, but it is not needed + ! since R is symmetric. Uncomment the + ! following if the whole matrix is needed + DO c2=1,Ntdc + DO r2=c2+1,Ntdc + R(r2,c2)=R(c2,r2) ! R symmetric + END DO + END DO +! IF (degenerate.EQ.1) THEN +! PRINT *,'condsort,R=' +! call echo(R,Ntdc) +! PRINT *,'condsort,SQ=' +! call echo(CSTD,Ntd) +! PRINT *,'index=',index1 +! PRINT *,'xedni=',xedni +! ENDIF +! PRINT * , 'big' +!600 FORMAT(4F8.4) +! PRINT 600, R +! PRINT 600, SQ + DEALLOCATE(SQ) + IF (ALLOCATED(ind)) DEALLOCATE(ind) + RETURN + END SUBROUTINE CONDSORT0 + + + + SUBROUTINE CONDSORT4(R,Cm,CSTD2,SQ,index1,NsXtmj,Nstoc) + USE GLOBALDATA, ONLY : EPS2,Njj,Ntscis,SQTWOPI1,Hlo,Hup, + & xCutOff,EPSS + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: R,CSTD2 + DOUBLE PRECISION, DIMENSION(: ), INTENT(inout) :: Cm + DOUBLE PRECISION, DIMENSION(:), INTENT(inout) :: SQ ! diag. of R + INTEGER, DIMENSION(: ), INTENT(inout) :: index1,NsXtmj + INTEGER, INTENT(inout) :: Nstoc +! local variables + DOUBLE PRECISION :: P0,Plo,XMI,XMA,SQ0,XX + INTEGER :: I0 + INTEGER, DIMENSION(1) :: m + INTEGER, DIMENSION(:), ALLOCATABLE :: ind + INTEGER :: m1 + INTEGER :: Nsold + INTEGER :: r1,c1,row,col,iy,ix +! This function condsort all the Xt variables for use with RINDSCIS and +! MNORMPRB + + !Nsoold=Nstoc + ix=1 + ALLOCATE(ind(1:Nstoc)) + DO WHILE ((ix.LE.Nstoc).and.(ix.LE.(Ntscis+Njj))) + CALL ARGP0(I0,c1,P0,Plo,SQRT(SQ(ix:Nstoc)), + & Cm(ix:Nstoc),index1(ix:Nstoc),ind,r1) + IF (r1.NE.0) I0=ind(I0) + m = ix-1+max(I0-1,1) +! m=ix-1+MAXLOC(SQ(ix:Nstoc)) + + IF (SQ(m(1)).LT.EPS2) THEN + !PRINT *,'Condsort3, error degenerate X' + NsXtmj(1:Njj+Ntscis)=0 + Nstoc=0 !degenerate=1 + RETURN !degenerate case + ENDIF + m1=index1(m(1)); + CALL swapint(index1(m(1)),index1(ix)) + CALL swapre(SQ(ix),SQ(m(1))) + SQ0=SQRT(SQ(ix)) + CSTD2(m1,ix)=SQ0 + + R(index1(ix:Nstoc),m1) = R(index1(ix:Nstoc),m1)/SQ0 + R(m1,index1(ix+1:Nstoc)) = R(index1(ix+1:Nstoc),m1) + CALL swapre(Cm(m(1)),Cm(ix)) + + + XMA = MIN( (Hup (index1(ix)) - Cm (ix))/ SQ0,xCutOff) + XMI = MAX( (Hlo (index1(ix)) - Cm (ix))/ SQ0,-xCutOff) + XMA = MAX(XMA,-xCutOff) + XMI = MIN(XMI,xCutOff) + IF (P0.GT. EPSS ) THEN + ! Calculate the expected mean + XX= SQTWOPI1*(EXP(-0.5d0*XMI*XMI)-EXP(-0.5d0*XMA*XMA))/P0 + ELSE + IF ( XMI .LE. -xCutOff ) XX = XMA + IF ( XMA .GE. xCutOff ) XX = XMI + IF (XMI.GT.-xCutOff.AND.XMA.LT.xCutOff) XX=(XMI+XMA)*0.5d0 + END IF + + ! Calculate the conditional expected mean + Cm(ix+1:Nstoc)=Cm(ix+1:Nstoc)+XX* + & R(m1,index1(ix+1:Nstoc)) + + + ! Calculating conditional variances for the + ! first Nstoc variables. + ! variables with variance less than EPS2 + ! will be treated as deterministic and not + ! stochastic variables and are therefore moved + ! to the end among these variables. + ! Nstoc is the # of variables we treat + ! stochastically + iy=ix+1;Nsold=Nstoc + DO WHILE (iy.LE.Nstoc) + r1=index1(iy) + SQ(iy)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + IF (SQ(iy).LT.EPS2) THEN +! IF (SQ(iy).LT.-EPS2) THEN +! PRINT *,'Cndsrt4,Error Covariance negative definit' +! ENDIF + IF (iy.LT.Nstoc) THEN + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + DO WHILE ((SQ(Nstoc).LT.EPS2).AND.(iy.LT.Nstoc)) +! IF (SQ(Nstoc).LT.-EPS2) THEN +! PRINT *,'Cndsrt4,Error Covariance negative definit' +! ENDIF + SQ(Nstoc)=0.d0 !MAX(0.d0,SQ(Nstoc)) + Nstoc=Nstoc-1 + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + END DO + CALL swapint(index1(iy),index1(Nstoc)) ! swap indices + !CALL swapre(SQ(iy),SQ(Nstoc)) ! swap values + SQ(iy)=SQ(Nstoc); + ENDIF + SQ(Nstoc)=0.d0 + Nstoc=Nstoc-1 + ENDIF + iy=iy+1 + END DO + NsXtmj(ix)=Nstoc ! saving index to last stoch. var. after conditioning + ! Calculating Covariances for non-deterministic variables + DO row=ix+1,Nstoc + r1=index1(row) + R(r1,r1)=SQ(row) + CSTD2(r1,ix)=SQRT(SQ(row)) ! saving stdev after conditioning on ix + DO col=row+1,Nstoc + c1=index1(col) + R(c1,r1)=R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1)=R(c1,r1) + ENDDO + ENDDO + ! similarly for deterministic values + DO row=Nstoc+1,Nsold + r1=index1(row) + SQ(row) = 0.d0 !MAX(0.d0,SQ(row)) + CSTD2(r1,ix)=0.d0 !SQRT(SQ(row)) ! saving stdev after conditioning on ix + R(r1,r1) = SQ(row) + DO col=ix+1,Nsold !row-1 + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + ENDDO + ix=ix+1 + ENDDO + if (Nstoc.LT.Njj+Ntscis) THEN + ! This test is necessary on Solaris F90 compiler. + NsXtmj(Nstoc+1:Njj+Ntscis) = Nstoc +! else +! PRINT *,'Condsort4' +! PRINT *,'Nstoc,Njj, Ntscis',Nstoc,Njj,Ntscis + endif + IF (ALLOCATED(ind)) DEALLOCATE(ind) + RETURN + END SUBROUTINE CONDSORT4 + + SUBROUTINE CONDSORT (R,CSTD,index1,xedni,NsXtmj,NsXdj,INFORM) + USE GLOBALDATA, ONLY : Nt,Nj,Njj,Nd,Nc,Ntdc,Ntd,EPS2,Nugget, + & XCEPS2,SCIS,Ntscis + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: R + DOUBLE PRECISION, DIMENSION(:,:), INTENT(out) :: CSTD + INTEGER, DIMENSION(: ), INTENT(out) :: index1 + INTEGER, DIMENSION(: ), INTENT(out) :: xedni + INTEGER, DIMENSION(: ), INTENT(out) :: NsXtmj + INTEGER, DIMENSION(: ), INTENT(out) :: NsXdj + INTEGER, INTENT(out) :: INFORM +! local variables + DOUBLE PRECISION, DIMENSION(: ), allocatable :: SQ + DOUBLE PRECISION, DIMENSION(:,:), allocatable :: CSTD2 + INTEGER, DIMENSION(1 ) :: m + INTEGER :: Nstoc,Ntmp,NstoXd !,degenerate + INTEGER :: changed,m1,r1,c1,row,col,ix,iy,Njleft,Ntmj + +! R = Input: Cov(X) where X=[Xt Xd Xc] is stochastic vector +! Output: sorted Conditional Covar. matrix Shape N X N (N=Nt+Nd+Nc) +! CSTD = SQRT(Var(X(1:I-1)|X(I:N))) +! conditional standard deviation. Shape Ntd X max(Nd+Nj,1) +! index1 = indices to the variables original place. Size Ntdc +! xedni = indices to the variables new place. Size Ntdc +! NsXtmj(I) = indices to the last stochastic variable +! among Nt-Nj first of Xt after conditioning on +! X(Nt-Nj+I). Size Nd+Nj+Njj+Ntscis+1 +! NsXdj(I) = indices to the first stochastic variable +! among Xd+Nj of Xt after conditioning on +! X(Nt-Nj+I). Size Nd+Nj+1 +! +! R=Cov([Xt,Xd,Xc]) is a covariance matrix of the stochastic vector X=[Xt Xd Xc] +! where the variables Xt, Xd and Xc have the size Nt, Nd and Nc, respectively. +! Xc is (are) the conditional variable(s). +! Xd and Xt are the variables to integrate. +! Xd + Nj variables of Xt are integrated directly by the RindDXX +! subroutines in the order of decreasing conditional variance. +! The remaining Nt-Nj variables of Xt are integrated in +! increasing order of the marginal probabilities by the RindXX subroutines. +! CONDSORT prepare and rearrange the covariance matrix +! by decreasing order of conditional variances in a special way +! to accomodate this strategy: +! +! After conditioning and sorting, the first Nt-Nj x Nt-Nj block of R +! will contain the conditional covariance matrix +! of Xt(1:Nt-Nj) given Xt(Nt-Nj+1:Nt) Xd and Xc, i.e., +! Cov(Xt(1:Nt-Nj),Xt(1:Nt-Nj)|Xt(Nt-Nj+1:Nt), Xd,Xc) +! NB! for Nj>0 the order of Xd and Xt(Nt-Nj+1:Nt) may be mixed. +! The covariances, Cov(X(1:I-1),X(I)|X(I+1:N)), needed for computation of the +! conditional expectation, E(X(1:I-1)|X(I:N), are saved in column I of R +! for I=Nt-Nj+1:Ntdc. +! +! IF any of the variables have variance less than EPS2. They will be +! be treated as deterministic and not stochastic variables by the +! RindXXX subroutines. The deterministic variables are moved to +! middle in the order they became deterministic in order to +! keep track of them. Their variance and covariance with +! the remaining stochastic variables are set to zero in +! order to avoid numerical difficulties. +! +! NsXtmj(I) is the number of variables among the Nt-Nj +! first we treat stochastically after conditioning on X(Nt-Nj+I). +! The covariance matrix is sorted so that all variables with indices +! from 1 to NsXtmj(I) are stochastic after conditioning +! on X(Nt-Nj+I). Thus NsXtmj(I) may also be considered +! as the index to the last stochastic variable after conditioning +! on X(Nt-Nj+I). In other words NsXtmj keeps track of the deterministic +! and stochastic variables among the Nt-Nj first variables in each +! conditioning step. +! +! Similarly NsXdj(I) keeps track of the deterministic and stochastic +! variables among the Nd+Nj following variables in each conditioning step. +! NsXdj(I) is the index to the first stochastic variable +! among the Nd+Nj following variables after conditioning on X(Nt-Nj+I). +! The covariance matrix is sorted so that all variables with indices +! from NsXdj(I+1) to NsXdj(I)-1 are deterministic conditioned on +! X(Nt-Nj+I). +! + +! Var(Xc(1))>Var(Xc(2)|Xc(1))>...>Var(Xc(Nc)|Xc(1),Xc(2),...,Xc(Nc)). +! If Nj=0 then +! Var(Xd(1)|Xc)>Var(Xd(2)|Xd(1),Xc)>...>Var(Xd(Nd)|Xd(1),Xd(2),...,Xd(Nd),Xc). +! +! NB!! Since R is symmetric, only the upper triangular contains the +! sorted conditional covariance. The whole matrix +! is easily obtained by copying elements of the upper triangle to +! the lower or by uncommenting some lines in the end of this subroutine + +! revised pab 18.04.2000 +! new name rind60 +! New assumption of BIG for the conditional sorted variables: +! BIG(I,I)=sqrt(Var(X(I)|X(I+1)...X(N))=SQI +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N))/SQI +! Otherwise +! BIG(I,I) = Var(X(I)|X(I+1)...X(N) +! BIG(1:I-1,I)=COV(X(1:I-1),X(I)|X(I+1)...X(N)) +! This also affects C1C2: SQ0=sqrt(Var(X(I)|X(I+1)...X(N)) is removed from input +! => A lot of wasteful divisions are avoided + + + +! Using SQ to temporarily store the diagonal of R +! Adding a nugget effect to ensure the the inversion is +! not corrupted by round off errors +! good choice for nugget might be 1e-8 + !call getdiag(SQ,R) + INFORM = 0 + ALLOCATE(SQ(1:Ntdc)) + + IF (Nd+Nj+Njj+Ntscis.GT.0) THEN + ALLOCATE(CSTD2(1:Ntd,1:Nd+Nj+Njj+Ntscis)) + CSTD2=0.d0 ! initialize CSTD + ENDIF + !CALL ECHO(R,Ntdc) + DO ix = 1, Ntdc + R(ix,ix)=R(ix,ix)+Nugget + SQ(ix)=R(ix,ix) + index1 (ix) = ix ! initialize index1 + ENDDO + + Ntmj=Nt-Nj + !NsXtmj(Njj+Nd+Nj+1)=Ntmj ! index to last stochastic variable of Nt-Nj of Xt + !NsXdj(Nd+Nj+1)=Ntmj+1 ! index to first stochastic variable of Xd and Nj of Xt + !degenerate=0 + Njleft=Nj + NstoXd=Ntmj+1;Nstoc=Ntmj + + + DO ix = 1, Nc ! Condsort Xc + r1 = Ntdc-ix + m=r1+2-MAXLOC(SQ(r1+1:Ntd+1:-1)) + IF (SQ(m(1)).LT.XCEPS2) THEN + INFORM = 1 + !PRINT *,'Condsort, degenerate Xc' + IF (SQ(m(1)).LT.-XCEPS2) THEN + !print *, 'Condsort, Not semi-positive definit' + ENDIF + !degenerate=1 + GOTO 200 ! RETURN !degenerate case + ENDIF + m1=index1(m(1)); + CALL swapint(index1(m(1)),index1(Ntdc-ix+1)) + !CALL swapRe(SQ(r1+1),SQ(m(1))) + SQ(r1+1) = SQRT(SQ(m(1))) + R(index1(1:r1+1),m1) = R(index1(1:r1+1),m1)/SQ(r1+1) + R(m1,index1(1:r1)) = R(index1(1:r1),m1) + ! sort and calculate conditional covariances + CALL CONDSORT2(R,SQ,index1,Nstoc,NstoXd,Njleft,m1,Ntdc-ix) + ENDDO ! ix + + NsXdj(Nd+Nj+1) = NstoXd ! index to first stochastic variable of Xd and Nj of Xt + NsXtmj(Nd+Nj+Njj+Ntscis+1) = Nstoc ! index to last stochastic variable of Nt-Nj of Xt + !print *, 'condsort index1', index1 + !print *, 'condsort Xd' + !call echo(R,Ntdc) + + DO ix = 1, Nd+Nj ! Condsort Xd + Nj of Xt + r1 = Ntd-ix + IF (Njleft.GT.0) THEN + m=r1+2-MAXLOC(SQ(r1+1:1:-1)) + Ntmp=NstoXd+Njleft-1 + IF (((NstoXd.LE.m(1)).AND.(m(1).LE.Ntmp)) + & .OR.(m(1).LE.Nstoc)) THEN + CALL swapint(index1(m(1)),index1(Ntmp)) + CALL swapRe(SQ(m(1)),SQ(Ntmp)) + m(1)=Ntmp + Njleft=Njleft-1 + END IF + ELSE + m=r1+2-MAXLOC(SQ(r1+1:Ntmj+1:-1)) + END IF + IF (SQ(m(1)).LT.EPS2) THEN + !PRINT *,'Condsort, degenerate Xd' + !degenerate=1 + Ntmp=Nd+Nj+1-ix + NsXtmj(Ntscis+Njj+1:Ntmp+Ntscis+Njj+1)=Nstoc + NsXdj(1:Ntmp+1)=NstoXd + IF (ix.EQ.1) THEN + DO iy=1,Ntd !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + r1=index1(iy) + CSTD2(r1,Ntscis+Njj+1:Ntmp+Ntscis+Njj)=SQRT(SQ(iy)) + ENDDO + ELSE + DO iy=ix,Nd+Nj + CSTD2(:,Nd+Nj+Ntscis+Njj+1-iy)= + & CSTD2(:,Ntmp+Ntscis+Njj+1) + ENDDO + ENDIF + GOTO 200 ! degenerate case + END IF + m1=index1(m(1)); + CALL swapint(index1(m(1)),index1(r1+1)) + !CSTD2(m1,Nd+Nj+Ntscis+Njj+1-ix)=SQRT(SQ(m(1))) + !CALL swapRe(SQ(Ntd-ix+1),SQ(m(1))) + SQ(r1+1) = SQRT(SQ(m(1))) + CSTD2(m1,Nd+Nj+Ntscis+Njj+1-ix) = SQ(r1+1) + + R(index1(1:r1+1),m1) = R(index1(1:r1+1),m1)/SQ(r1+1) + R(m1,index1(1:r1)) = R(index1(1:r1),m1) + + ! Calculating conditional variances + CALL CONDSORT2(R,SQ,index1,Nstoc,NstoXd,Njleft,m1,Ntd-ix) + ! saving indices + NsXtmj(Nd+Nj+Njj+Ntscis+1-ix)=Nstoc + NsXdj(Nd+Nj+1-ix)=NstoXd + + ! Calculating standard deviations non-deterministic variables + DO row=1,NsXtmj(Nd+Nj+Njj+Ntscis+2-ix) !Nstoc + r1=index1(row) + CSTD2(r1,Nd+Nj+Njj+Ntscis+1-ix)=SQRT(SQ(row)) !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + ENDDO + DO row=NsXdj(Nd+Nj+2-ix),Ntd-ix !NstoXd,Ntd-ix + r1=index1(row) + CSTD2(r1,Nd+Nj+Ntscis+Njj+1-ix)=SQRT(SQ(row)) !sqrt(VAR(X(I)|X(Ntd-ix+1:Ntdc)) + ENDDO + ENDDO ! ix + + + 200 IF ((SCIS.GT.0).OR. (Njj.gt.0)) THEN ! check on Njj instead + ! Calculating conditional variances and sort for Nstoc of Xt + CALL CONDSORT3(R,CSTD2,SQ,index1,NsXtmj,Nstoc) + !Nst0=Nstoc + ENDIF + IF ((Nd+Nj+Njj+Ntscis.GT.0)) THEN + DO row=1,Ntd ! sorting CSTD according to index1 + r1=index1(row) + CSTD(row,:)= CSTD2(r1,:) + END DO + DEALLOCATE(CSTD2) + ELSE + IF (Nc.EQ.0) THEN + ix=1; Nstoc=Ntmj + DO WHILE (ix.LE.Nstoc) + IF (SQ(ix).LT.EPS2) THEN + DO WHILE ((SQ(Nstoc).LT.EPS2).AND.(ix.LT.Nstoc)) + SQ(Nstoc)=0.d0 !max(0.d0,SQ(Nstoc)) + Nstoc=Nstoc-1 + END DO + CALL swapint(index1(ix),index1(Nstoc)) ! swap indices + !CALL swapRe(SQ(ix),SQ(Nstoc)) + SQ(ix)=SQ(Nstoc);SQ(Nstoc)=0.d0 + Nstoc=Nstoc-1 + ENDIF + ix=ix+1 + END DO + ENDIF + CSTD(1:Nt,1)=SQRT(SQ(1:Nt)) + NsXtmj(1)=Nstoc + ENDIF + + changed=0 + DO row=Ntdc,1,-1 ! sorting the upper triangular of the + r1=index1(row) ! covariance matrix according to index1 + xedni(r1)=row + !PRINT *,'condsort,xedni',xedni + !PRINT *,'condsort,r1,row',r1,row + IF ((r1.NE.row).OR.(changed.EQ.1)) THEN + changed=1 + R(row,row)=SQ(row) + DO col=row+1,Ntdc + c1=index1(col) + IF (c1.GT.r1) THEN + R(row,col)=R(c1,r1) + ELSE + R(row,col)=R(r1,c1) + END IF + END DO + END IF + END DO + ! you may sort the lower triangular according + ! to index1 also, but it is not needed + ! since R is symmetric. Uncomment the + ! following if the whole matrix is needed +! DO col=1,Ntdc +! DO row=col+1,Ntdc +! R(row,col)=R(col,row) ! R symmetric +! END DO +! END DO +! IF (degenerate.EQ.1) THEN +! PRINT *,'condsort,R=' +! call echo(R,Ntdc) +! PRINT *,'condsort,SQ=' +! call echo(CSTD,Ntd) +! PRINT *,'index=',index1 +! PRINT *,'xedni=',xedni +! ENDIF +! PRINT * , 'big' +!600 FORMAT(4F8.4) +! PRINT 600, R +! PRINT 600, SQ + DEALLOCATE(SQ) + + RETURN + END SUBROUTINE CONDSORT + + + SUBROUTINE CONDSORT2(R,SQ,index1,Nstoc,NstoXd,Njleft,m1,N) + USE GLOBALDATA, ONLY : Ntd,EPS2,XCEPS2 + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: R + DOUBLE PRECISION, DIMENSION(:), INTENT(inout) :: SQ + INTEGER, DIMENSION(: ), INTENT(inout) :: index1 + INTEGER, INTENT(inout) :: Nstoc,NstoXd,Njleft + INTEGER, INTENT(in) :: m1,N +! local variables + INTEGER :: Nsold,Ndold, Ntmp + INTEGER :: r1,c1,row,col,iy + +! save their old values + Nsold=Nstoc;Ndold=NstoXd + + ! Calculating conditional variances for the + ! Xc variables. + DO row=Ntd+1,N + r1 = index1(row) + SQ(row) = R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + IF (SQ(row).LT.XCEPS2) THEN + IF (SQ(row).LT.-XCEPS2) THEN + !print *, 'Condsort2,Error: Covariance negative definit' + ENDIF + R(r1,r1) = 0.d0 + SQ(row) = 0.d0 + !PRINT *,'condsort2, degenerate xc' + RETURN ! degenerate case XIND should return NaN + ELSE + R(r1,r1)=SQ(row) + DO col=row+1,N + c1 = index1(col) + R(c1,r1) = R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1) = R(c1,r1) + ENDDO + ENDIF + ENDDO ! Calculating conditional variances for the + ! first Nstoc variables. + ! variables with variance less than EPS2 + ! will be treated as deterministic and not + ! stochastic variables and are therefore moved + ! to the end among these Nt-Nj first variables. + ! Nstoc is the # of variables we treat + ! stochastically + iy=1 + DO WHILE (iy.LE.Nstoc) + r1=index1(iy) + SQ(iy)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + IF (SQ(iy).LT.EPS2) THEN + IF (SQ(iy).LT.-EPS2) THEN + !print *, 'Condsort2,Error: Covariance negative definit' + ENDIF + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + + DO WHILE ((SQ(Nstoc).LT.EPS2).AND.(iy.LT.Nstoc)) + IF (SQ(Nstoc).LT.-EPS2) THEN + !print *, 'Condsort2,Error: Covariance negative definit' + ENDIF + SQ(Nstoc)=0.d0 !MAX(0.d0,SQ(Nstoc)) + Nstoc=Nstoc-1 + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + END DO + CALL swapint(index1(iy),index1(Nstoc)) ! swap indices + !CALL swapre(SQ(iy),SQ(Nstoc)) ! swap values + SQ(iy)=SQ(Nstoc);SQ(Nstoc)=0.d0 + Nstoc=Nstoc-1 + ENDIF + iy=iy+1 + END DO + + ! Calculating conditional variances for the + ! stochastic variables Xd and Njleft of Xt. + ! Variables with conditional variance less than + ! EPS2 are moved to the beginning among these + ! with only One exception: if it is one of the + ! Xt variables and Nstoc>0 then it switch place + ! with Xt(Nstoc) + + DO iy=Ndold,MIN(Ntd,N) + r1=index1(iy) + SQ(iy)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + IF (SQ(iy).LT.EPS2) THEN + IF (Njleft.GT.0) THEN + Ntmp=NstoXd+Njleft + IF (iy.LT.Ntmp) THEN + IF (Nstoc.GT.0) THEN !switch place with Xt(Nstoc) + CALL swapint(index1(iy),index1(Nstoc)) + !CALL swapre(SQ(iy),SQ(Nstoc)) + SQ(iy)=SQ(Nstoc);SQ(Nstoc)=0.d0 + Nstoc=Nstoc-1 + ELSE + CALL swapint(index1(iy),index1(NstoXd)) + !CALL swapre(SQ(iy),SQ(NstoXd)) + SQ(iy)=SQ(NstoXd);SQ(NstoXd)=0.d0 + Njleft=Njleft-1 + NstoXd=NstoXd+1 + ENDIF + ELSE + CALL swapint(index1(iy),index1(Ntmp)) + CALL swapint(index1(Ntmp),index1(NstoXd)) + !CALL swapre(SQ(iy),SQ(Ntmp)) + !CALL swapre(SQ(Ntmp),SQ(NstoXd)) + SQ(iy)=SQ(Ntmp);SQ(Ntmp)=SQ(NstoXd) + SQ(NstoXd)=0.d0 + NstoXd=NstoXd+1 + ENDIF + ELSE + CALL swapint(index1(iy),index1(NstoXd)) + !CALL swapre(SQ(iy),SQ(NstoXd)) ! + SQ(iy)=SQ(NstoXd);SQ(NstoXd)=0.d0 + NstoXd=NstoXd+1 + ENDIF + ENDIF ! SQ < EPS2 + ENDDO + + + ! Calculating Covariances for non-deterministic variables + DO row=1,Nstoc + r1=index1(row) + R(r1,r1)=SQ(row) + DO col=row+1,Nstoc + c1=index1(col) + R(c1,r1)=R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1)=R(c1,r1) + ENDDO + DO col=NstoXd,N + c1=index1(col) + R(c1,r1)=R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1)=R(c1,r1) + ENDDO + ENDDO + DO row=NstoXd,MIN(Ntd,N) + r1=index1(row) + R(r1,r1)=SQ(row) + + DO col=row+1,N + c1=index1(col) + R(c1,r1)=R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1)=R(c1,r1) + ENDDO + ENDDO + + ! Set covariances for Deterministic variables to zero + ! in order to avoid numerical problems + + DO row=Ndold,NStoXd-1 + r1=index1(row) + SQ(row) = 0.d0 !MAX(SQ(row),0.d0) + R(r1,r1) = SQ(row) + DO col=row+1,N + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + DO col=1,Nsold + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + ENDDO + + DO row=Nstoc+1,Nsold + r1=index1(row) + SQ(row) = 0.d0 !MAX(SQ(row),0.d0) + R(r1,r1)=SQ(row) + DO col=1,row-1 + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + DO col=NstoXd,N + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + ENDDO + RETURN + END SUBROUTINE CONDSORT2 + + SUBROUTINE CONDSORT3(R,CSTD2,SQ,index1,NsXtmj,Nstoc) + USE GLOBALDATA, ONLY : EPS2,Njj,Ntscis + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(:,:), INTENT(inout) :: R,CSTD2 + DOUBLE PRECISION, DIMENSION(:), INTENT(inout) :: SQ ! diag. of R + INTEGER, DIMENSION(: ), INTENT(inout) :: index1,NsXtmj + INTEGER, DIMENSION(1) :: m + INTEGER, INTENT(inout) :: Nstoc +! local variables + INTEGER :: m1 + INTEGER :: Nsold + INTEGER :: r1,c1,row,col,iy,ix +! This function condsort all the Xt variables for use with RINDSCIS and +! MNORMPRB + + !Nsoold=Nstoc + ix=1 + + DO WHILE ((ix.LE.Nstoc).and.(ix.LE.(Ntscis+Njj))) + m=ix-1+MAXLOC(SQ(ix:Nstoc)) + IF (SQ(m(1)).LT.EPS2) THEN + !PRINT *,'Condsort3, error degenerate X' + NsXtmj(1:Njj+Ntscis)=0 + Nstoc=0 !degenerate=1 + RETURN !degenerate case + ENDIF + m1=index1(m(1)); + CALL swapint(index1(m(1)),index1(ix)) + SQ(ix) = SQRT(SQ(m(1))) + CSTD2(m1,ix) = SQ(ix) + + R(index1(ix:Nstoc),m1) = R(index1(ix:Nstoc),m1)/SQ(ix) + R(m1,index1(ix+1:Nstoc)) = R(index1(ix+1:Nstoc),m1) + ! Calculating conditional variances for the + ! first Nstoc variables. + ! variables with variance less than EPS2 + ! will be treated as deterministic and not + ! stochastic variables and are therefore moved + ! to the end among these variables. + ! Nstoc is the # of variables we treat + ! stochastically + iy=ix+1;Nsold=Nstoc + DO WHILE (iy.LE.Nstoc) + r1=index1(iy) + SQ(iy)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + IF (SQ(iy).LT.EPS2) THEN + IF (SQ(iy).LT.-EPS2) THEN + !print *,'Cndsrt3,Error:Covariance negative definit' + ENDIF + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + DO WHILE ((SQ(Nstoc).LT.EPS2).AND.(iy.LT.Nstoc)) + IF (SQ(Nstoc).LT.-EPS2) THEN + !print *,'Cndsrt3,Error:Covariance negative definit' + ENDIF + SQ(Nstoc)=0.d0 !MAX(0.d0,SQ(Nstoc)) + Nstoc=Nstoc-1 + r1=index1(Nstoc) + SQ(Nstoc)=R(r1,r1)-R(r1,m1)*R(m1,r1) !/R(m1,m1) + END DO + CALL swapint(index1(iy),index1(Nstoc)) ! swap indices + !CALL swapre(SQ(iy),SQ(Nstoc)) ! + SQ(iy)=SQ(Nstoc); SQ(Nstoc)=0.d0 ! swap values + Nstoc=Nstoc-1 + ENDIF + iy=iy+1 + END DO + NsXtmj(ix)=Nstoc ! saving index to last stoch. var. after conditioning + ! Calculating Covariances for non-deterministic variables + DO row=ix+1,Nstoc + r1=index1(row) + R(r1,r1)=SQ(row) + CSTD2(r1,ix)=SQRT(SQ(row)) ! saving stdev after conditioning on ix + DO col=row+1,Nstoc + c1=index1(col) + R(c1,r1)=R(r1,c1)-R(r1,m1)*R(m1,c1) !/R(m1,m1) + R(r1,c1)=R(c1,r1) + ENDDO + ENDDO + ! similarly for deterministic values + DO row=Nstoc+1,Nsold + r1=index1(row) + SQ(row)=0.d0 !MAX(SQ(row),0.d0) + R(r1,r1)=SQ(row) + DO col=ix+1,Nsold !row-1 + c1=index1(col) + R(c1,r1)=0.d0 + R(r1,c1)=0.d0 + ENDDO + ENDDO + ix=ix+1 + ENDDO + NsXtmj(Nstoc+1:Njj+Ntscis)=Nstoc + RETURN + END SUBROUTINE CONDSORT3 + + SUBROUTINE swapRe(m,n) + IMPLICIT NONE + DOUBLE PRECISION, INTENT(inout) :: m,n + DOUBLE PRECISION :: tmp + tmp=m + m=n + n=tmp + END SUBROUTINE swapRe + + SUBROUTINE swapint(m,n) + IMPLICIT NONE + INTEGER, INTENT(inout) :: m,n + INTEGER :: tmp + tmp=m + m=n + n=tmp + END SUBROUTINE swapint + + SUBROUTINE getdiag(diag,matrix) + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(out) :: diag + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: matrix + DOUBLE PRECISION, DIMENSION(: ), ALLOCATABLE :: vector + + ALLOCATE(vector(SIZE(matrix))) + vector=PACK(matrix,.TRUE.) + diag=vector(1:SIZE(matrix):SIZE(matrix,dim=1)+1) + DEALLOCATE(vector) + END SUBROUTINE getdiag + + END MODULE RIND71MOD + + + + + + + + diff --git a/wafo/source/rind2007/rind71mod.mod b/wafo/source/rind2007/rind71mod.mod new file mode 100755 index 0000000..267e4f4 --- /dev/null +++ b/wafo/source/rind2007/rind71mod.mod @@ -0,0 +1,81 @@ +GFORTRAN module version '0' created from rind71mod.f on Wed Aug 05 06:26:36 2009 +MD5:4c69b3be4f1e6c8e1aedc15a8c988682 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () +() () () ()) + +() + +(('echo' 'rind71mod' 2) ('initdata' 'rind71mod' 3) ('rind71' 'rind71mod' +4) ('setdata' 'rind71mod' 5)) + +() + +() + +(2 'echo' 'rind71mod' 'echo' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 6 0 (7) () 0 () () () 0 0) +3 'initdata' 'rind71mod' 'initdata' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +8 0 (9) () 0 () () () 0 0) +4 'rind71' 'rind71mod' 'rind71' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 0 0 UNKNOWN +()) 10 0 (11 12 13 14 15 16 17 18) () 0 () () () 0 0) +5 'setdata' 'rind71mod' 'setdata' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +19 0 (20 21 22 23 24 25 26 27 28) () 0 () () () 0 0) +24 'deps2' '' 'deps2' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +25 'dnit' '' 'dnit' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +26 'dxc' '' 'dxc' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +27 'dnint' '' 'dnint' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +28 'dxsplt' '' 'dxsplt' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +20 'method' '' 'method' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +21 'scale' '' 'scale' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +22 'depss' '' 'depss' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +23 'dreps' '' 'dreps' 19 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'speed' '' 'speed' 8 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'array' '' 'array' 6 ((VARIABLE UNKNOWN-INTENT UNKNOWN-PROC UNKNOWN +UNKNOWN DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0 +INTEGER ()) 0 '1') ()) 0 () () () 0 0) +11 'fxind' '' 'fxind' 10 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +18 'bup' '' 'bup' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') ()) 0 () () () 0 0) +12 'big1' '' 'big1' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') ()) 0 () () () 0 0) +13 'ex' '' 'ex' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +14 'xc1' '' 'xc1' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') ()) 0 () () () 0 0) +15 'nt1' '' 'nt1' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +16 'indi' '' 'indi' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () (1 ASSUMED_SHAPE ( +CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +17 'blo' '' 'blo' 10 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (2 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') () (CONSTANT (INTEGER 4 0 0 INTEGER ()) +0 '1') ()) 0 () () () 0 0) +) + +('echo' 0 2 'initdata' 0 3 'rind71' 0 4 'setdata' 0 5) diff --git a/wafo/source/rind2007/rind_interface.f b/wafo/source/rind2007/rind_interface.f new file mode 100755 index 0000000..a8960c9 --- /dev/null +++ b/wafo/source/rind2007/rind_interface.f @@ -0,0 +1,222 @@ +! This is a interface-file for Python +! This file contains a interface to RIND a subroutine +! for computing multivariate normal expectations. +! The file is self contained and should compile without errors on (Fortran90) +! standard Fortran compilers. +! +! The interface was written by +! Per Andreas Brodtkorb +! Norwegian Defence Research Establishment +! P.O. Box 115 +! N-3191 Horten +! Norway +! Email: Per.Brodtkorb@ffi.no +! +! +! RIND Computes multivariate normal expectations +! +! E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix)) +! where +! "Indicator" = I{ H_lo(i) < X(i) < H_up(i), i=1:N_t+N_d } +! "Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is +! "Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)| +! "condition" = Xc=xc(:,ix), ix=1,...,Nx. +! X = [Xt; Xd; Xc], a stochastic vector of Multivariate Gaussian +! variables where Xt,Xd and Xc have the length Nt, Nd and Nc, +! respectively. (Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10) +! +! CALL: [value,error,terror,inform]=rind(S,m,indI,Blo,Bup,INFIN,xc, +! Nt,SCIS,XcScale,ABSEPS,RELEPS,COVEPS,MAXPTS,MINPTS,seed,NIT,xCutOff,Nc1c2); +! +! +! VALUE = estimated value for the expectation as explained above size 1 x Nx +! ERROR = estimated sampling error, with 99% confidence level. size 1 x Nx +! TERROR = estimated truncation error +! INFORM = INTEGER, termination status parameter: (not implemented yet) +! if INFORM = 0, normal completion with ERROR < EPS; +! if INFORM = 1, completion with ERROR > EPS and MAXPTS +! function vaules used; increase MAXPTS to +! decrease ERROR; +! if INFORM = 2, N > 100 or N < 1. +! +! S = Covariance matrix of X=[Xt;Xd;Xc] size Ntdc x Ntdc (Ntdc=Nt+Nd+Nc) +! m = the expectation of X=[Xt;Xd;Xc] size N x 1 +! indI = vector of indices to the different barriers in the +! indicator function, length NI, where NI = Nb+1 +! (NB! restriction indI(1)=0, indI(NI)=Nt+Nd ) +! B_lo,B_up = Lower and upper barriers used to compute the integration +! limits, Hlo and Hup, respectively. size Mb x Nb +! INFIN = INTEGER, array of integration limits flags: size 1 x Nb (in) +! if INFIN(I) < 0, Ith limits are (-infinity, infinity); +! if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)]; +! if INFIN(I) = 1, Ith limits are [Hlo(I), infinity); +! if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)]. +! xc = values to condition on size Nc x Nx +! Nt = size of Xt +! SCIS = Integer defining integration method +! 1 Integrate all by SADAPT for Ndim<9 and by KRBVRC otherwise +! 2 Integrate all by SADAPT by Genz (1992) (Fast) +! 3 Integrate all by KRBVRC by Genz (1993) (Fast) +! 4 Integrate all by KROBOV by Genz (1992) (Fast) +! 5 Integrate all by RCRUDE by Genz (1992) +! XcScale = REAL to scale the conditinal probability density, i.e., +! f_{Xc} = exp(-0.5*Xc*inv(Sxc)*Xc + XcScale) +! ABSEPS = REAL absolute error tolerance. +! RELEPS = REAL relative error tolerance. +! COVEPS = REAL error in cholesky factorization +! MAXPTS = INTEGER, maximum number of function values allowed. This +! parameter can be used to limit the time. A sensible +! strategy is to start with MAXPTS = 1000*N, and then +! increase MAXPTS if ERROR is too large. +! MINPTS = INTEGER, minimum number of function values allowed +! SEED = INTEGER, seed to the random generator used in the integrations +! NIT = INTEGER, maximum number of Xt variables to integrate +! xCutOff = REAL upper/lower truncation limit of the marginal normal CDF +! Nc1c2 = INTEGER number of times to use the regression equation to restrict +! integration area. Nc1c2 = 1,2 is recommended. +! +! +! If Mb=0, +! IF INFIN(j)~=0, Hlo(i)=Blo(1,j)+Blo(2:Mb,j).'*xc(1:Mb-1,ix), +! IF INFIN(j)~=1, Hup(i)=Bup(1,j)+Bup(2:Mb,j).'*xc(1:Mb-1,ix), +! +! where i=indI(j-1)+1:indI(j), j=2:NI, ix=1:Nx +! +! This file was successfully compiled for matlab 5.3 +! using Compaq Visual Fortran 6.1, and Windows 2000 and windows XP. +! The example here uses Fortran90 source. +! First, you will need to modify your mexopts.bat file. +! To find it, issue the command prefdir(1) from the Matlab command line, +! the directory it answers with will contain your mexopts.bat file. +! Open it for editing. The first section will look like: +! +!rem ******************************************************************** +!rem General parameters +!rem ******************************************************************** +!set MATLAB=%MATLAB% +!set DF_ROOT=C:\Program Files\Microsoft Visual Studio +!set VCDir=%DF_ROOT%\VC98 +!set MSDevDir=%DF_ROOT%\Common\msdev98 +!set DFDir=%DF_ROOT%\DF98 +!set PATH=%MSDevDir%\bin;%DFDir%\BIN;%VCDir%\BIN;%PATH% +!set INCLUDE=%DFDir%\INCLUDE;%DFDir%\IMSL\INCLUDE;%INCLUDE% +!set LIB=%DFDir%\LIB;%VCDir%\LIB +! +! then you are ready to compile this file at the matlab prompt using the following command: +! +! mex -O -output mexrind2007 intmodule.f jacobmod.f rind2007.f mexrind2007.f +! + + + subroutine set_constants(method,xcscale,abseps,releps,coveps, + & maxpts,minpts,nit,xcutoff,Nc1c2, NINT1, xsplit) + use rindmod, only : setconstants + use rind71mod, only : setdata + double precision :: xcscale,abseps,releps,coveps,xcutoff,xsplit + integer method, maxpts, minpts, nit, Nc1c2, NINT1 +Cf2py double precision, optional :: xcscale = 0.0e0 +Cf2py double precision, optional :: abseps = 0.01e0 +Cf2py double precision, optional :: releps = 0.01e0 +Cf2py double precision, optional :: coveps = 1.0e-10 +Cf2py double precision, optional :: xcutoff = 5.0e0 +Cf2py double precision, optional :: xsplit = 5.0e0 + +Cf2py integer, optional :: method = 3 +Cf2py integer, optional :: minpts = 0 +Cf2py integer, optional :: maxpts = 40000 +Cf2py integer, optional :: nit = 1000 +Cf2py integer, optional :: Nc1c2 = 2 +Cf2py integer, optional :: nint1 = 2 + +! Method>0 + call setconstants(method,xcscale,abseps,releps,coveps, + & maxpts,minpts,nit,xcutoff,Nc1c2) +! method==0 + call SETDATA(method,xcscale,abseps,releps,coveps, + & nit, xCutOff,NINT1,xsplit) + return + end subroutine set_constants + SUBROUTINE show_constants() + use rindmod + print *, 'method=', mMethod + print *, 'xcscale=', mXcScale + print *, 'abseps=', mAbsEps + print *, 'releps=', mRelEps + print *, 'coveps=', mCovEps + print *, 'maxpts=', mMaxPts + print *, 'minpts=', mMinPts + print *, 'nit=', mNit + print *, 'xcutOff=', mXcutOff + print *, 'Nc1c2=', mNc1c2 + end subroutine show_constants + + SUBROUTINE rind(VALS,ERR,TERR,Big,Ex,Xc,Nt,INDI,Blo,Bup, + & INFIN,seed1,Ntdc,Nc,Nx,Ni,Mb,Nb,Nx1) + USE rindmod + USE rind71mod, only : rind71 + IMPLICIT NONE + INTEGER :: Ntd,Nj,K,I + INTEGER :: seed1 + integer :: Nx,Nx1,Nt, Nc,Ntdc,Ni,Nb,Mb + DOUBLE PRECISION, dimension(Ntdc,Ntdc) :: BIG + DOUBLE PRECISION, dimension(Ntdc) :: Ex + DOUBLE PRECISION, dimension(Nc,Nx1) :: Xc + DOUBLE PRECISION, dimension(Mb,Nb) :: Blo,Bup + DOUBLE PRECISION, dimension(Nx) :: VALS, ERR,TERR + INTEGER, dimension(Ni) :: IndI + INTEGER, DIMENSION(Nb) :: INFIN + INTEGER, ALLOCATABLE :: seed(:) + INTEGER :: seed_size +Cf2py integer, intent(hide), depend(Ex) :: Ntdc = len(Ex) +Cf2py integer, intent(hide), depend(Xc) :: Nc = shape(Xc,0) +Cf2py integer, intent(hide), depend(Xc) :: Nx1 = shape(Xc,1) +Cf2py integer, intent(hide), depend(Xc) :: Nx = max(shape(Xc,1),1) +Cf2py integer, intent(hide), depend(Blo) :: Mb = shape(Blo,0), Nb = shape(Blo,1), +Cf2py integer, intent(hide), depend(Indi) :: Ni = len(Indi) +Cf2py depend(Ntdc) Big +Cf2py depend(Nb) INFIN +Cf2py depend(Mb,Nb) Bup +Cf2py double precision, intent(out), depend(Nx) :: VALS +Cf2py double precision, intent(out), depend(Nx) :: ERR +Cf2py double precision, intent(out), depend(Nx) :: TERR + +C print *, 'Ntdc=', Ntdc,' Nt=',Nt,' Nc=',Nc +C print *, 'Nx=', Nx, 'Mb=', Mb, ' Nb=', Nb, ' Ni=',Ni +C Ni = Nb+1 +C Nx = max(Nx1,1) + if (Ni.EQ.Nb+1) then + else + print *, '(ni==nb+1) failed: rind:ni=', Ni, ', nb=',Nb + return + endif + + Ntd = Ntdc - Nc; +! Nd = Ntd - Nt + + IF (Ntd.EQ.INDI(Ni)) THEN +! Call the computational subroutine. + IF (mMethod.gt.0) THEN + CALL random_seed(SIZE=seed_size) + ALLOCATE(seed(seed_size)) + !print *,'rindinterface seed', seed1 + CALL random_seed(GET=seed(1:seed_size)) ! get current state + seed(1:seed_size)=seed1 ! change seed + CALL random_seed(PUT=seed(1:seed_size)) + CALL random_seed(GET=seed(1:seed_size)) ! get current state + !print *,'rindinterface seed', seed + DEALLOCATE(seed) + CALL RINDD(VALS,ERR,TERR,Big,Ex,Xc,Nt,INDI,Blo,Bup,INFIN) + ELSE + CALL RIND71(VALS,Big,Ex,Xc,Nt,INDI,Blo,Bup) + ERR(:) = -1 + TERR(:) = -1 + ENDIF + ELSE + print *,'INDI(Ni) must equal Nt+Nd!' + ENDIF + + RETURN + END SUBROUTINE rind + diff --git a/wafo/source/rind2007/rindmod.f b/wafo/source/rind2007/rindmod.f new file mode 100755 index 0000000..5b4f064 --- /dev/null +++ b/wafo/source/rind2007/rindmod.f @@ -0,0 +1,2435 @@ +! Programs available in module RINDMOD : +! +! 1) setConstants +! 2) RINDD +! +! SETCONSTANTS set member variables controlling the performance of RINDD +! +! CALL setConstants(method,xcscale,abseps,releps,coveps,maxpts,minpts,nit,xcutoff,Nc1c2) +! +! METHOD = INTEGER defining the SCIS integration method +! 1 Integrate by SADAPT for Ndim<9 and by KRBVRC otherwise +! 2 Integrate by SADAPT for Ndim<20 and by KRBVRC otherwise +! 3 Integrate by KRBVRC by Genz (1993) (Fast Ndim<101) (default) +! 4 Integrate by KROBOV by Genz (1992) (Fast Ndim<101) +! 5 Integrate by RCRUDE by Genz (1992) (Slow Ndim<1001) +! 6 Integrate by SOBNIED (Fast Ndim<1041) +! 7 Integrate by DKBVRC by Genz (2003) (Fast Ndim<1001) +! +! XCSCALE = REAL to scale the conditinal probability density, i.e., +! f_{Xc} = exp(-0.5*Xc*inv(Sxc)*Xc + XcScale) (default XcScale =0) +! ABSEPS = REAL absolute error tolerance. (default 0) +! RELEPS = REAL relative error tolerance. (default 1e-3) +! COVEPS = REAL error tolerance in Cholesky factorization (default 1e-13) +! MAXPTS = INTEGER, maximum number of function values allowed. This +! parameter can be used to limit the time. A sensible +! strategy is to start with MAXPTS = 1000*N, and then +! increase MAXPTS if ERROR is too large. +! (Only for METHOD~=0) (default 40000) +! MINPTS = INTEGER, minimum number of function values allowed. +! (Only for METHOD~=0) (default 0) +! NIT = INTEGER, maximum number of Xt variables to integrate +! This parameter can be used to limit the time. +! If NIT is less than the rank of the covariance matrix, +! the returned result is a upper bound for the true value +! of the integral. (default 1000) +! XCUTOFF = REAL cut off value where the marginal normal +! distribution is truncated. (Depends on requested +! accuracy. A value between 4 and 5 is reasonable.) +! NC1C2 = number of times to use the regression equation to restrict +! integration area. Nc1c2 = 1,2 is recommended. (default 2) +! +! +!RIND computes E[Jacobian*Indicator|Condition]*f_{Xc}(xc(:,ix)) +! +! where +! "Indicator" = I{ H_lo(i) < X(i) < H_up(i), i=1:Nt+Nd } +! "Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is +! "Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)| +! "condition" = Xc=xc(:,ix), ix=1,...,Nx. +! X = [Xt; Xd ;Xc], a stochastic vector of Multivariate Gaussian +! variables where Xt,Xd and Xc have the length Nt, Nd and Nc, +! respectively. +! (Recommended limitations Nx, Nt<101, Nd<7 and NIT,Nc<11) +! (RIND = Random Integration N Dimensions) +! +!CALL RINDD(E,err,terr,S,m,xc,Nt,indI,Blo,Bup,INFIN); +! +! E = expectation/density as explained above size 1 x Nx (out) +! ERR = estimated sampling error size 1 x Nx (out) +! TERR = estimated truncation error size 1 x Nx (out) +! S = Covariance matrix of X=[Xt;Xd;Xc] size N x N (N=Nt+Nd+Nc) (in) +! m = the expectation of X=[Xt;Xd;Xc] size N x 1 (in) +! xc = values to condition on size Nc x Nx (in) +! indI = vector of indices to the different barriers in the (in) +! indicator function, length NI, where NI = Nb+1 +! (NB! restriction indI(1)=0, indI(NI)=Nt+Nd ) +! Blo,Bup = Lower and upper barrier coefficients used to compute the (in) +! integration limits A and B, respectively. +! size Mb x Nb. If Mb=0, +! IF INFIN(j)~=0, A(i)=Blo(1,j)+Blo(2:Mb,j).'*xc(1:Mb-1,ix), +! IF INFIN(j)~=1, B(i)=Bup(1,j)+Bup(2:Mb,j).'*xc(1:Mb-1,ix), +! +! where i=indI(j-1)+1:indI(j), j=1:NI-1, ix=1:Nx +! Thus the integration limits may change with the conditional +! variables. +!Example: +! The indices, indI=[0 3 5 6], and coefficients Blo=[0 0 -1], +! Bup=[0 0 5], INFIN=[0 1 2] +! means that A = [-inf -inf -inf 0 0 -1] B = [0 0 0 inf inf 5] +! +! +! (Recommended limitations Nx,Nt<101, Nd<7 and Nc<11) +! Also note that the size information have to be transferred to RINDD +! through the input arguments E,S,m,Nt,IndI,Blo,Bup and INFIN +! +! For further description see the modules +! +! References +! Podgorski et al. (2000) +! "Exact distributions for apparent waves in irregular seas" +! Ocean Engineering, Vol 27, no 1, pp979-1016. (RINDD) +! +! R. Ambartzumian, A. Der Kiureghian, V. Ohanian and H. +! Sukiasian (1998) +! "Multinormal probabilities by sequential conditioned +! importance sampling: theory and application" (MVNFUN) +! Probabilistic Engineering Mechanics, Vol. 13, No 4. pp 299-308 +! +! Alan Genz (1992) +! 'Numerical Computation of Multivariate Normal Probabilites' (MVNFUN) +! J. computational Graphical Statistics, Vol.1, pp 141--149 +! +! Alan Genz and Koon-Shing Kwong (2000?) +! 'Numerical Evaluation of Singular Multivariate Normal Distributions' (MVNFUN,COVSRT) +! Computational Statistics and Data analysis +! +! +! P. A. Brodtkorb (2004), (RINDD, MVNFUN, COVSRT) +! Numerical evaluation of multinormal expectations +! In Lund university report series +! and in the Dr.Ing thesis: +! The probability of Occurrence of dangerous Wave Situations at Sea. +! Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU, +! Trondheim, Norway. + +! Tested on: DIGITAL UNIX Fortran90 compiler +! PC pentium II with Lahey Fortran90 compiler +! Solaris with SunSoft F90 compiler Version 1.0.1.0 (21229283) +! History: +! Revised pab aug. 2009 +! -renamed from rind2007 to rindmod +! Revised pab July 2007 +! - separated the absolute error into ERR and TERR. +! - renamed from alanpab24 -> rind2007 +! revised pab 23may2004 +! RIND module totally rewritten according to the last reference. + + + MODULE GLOBALCONST ! global constants + IMPLICIT NONE + DOUBLE PRECISION, PARAMETER :: gSQTWPI1= 0.39894228040143D0 !=1/sqrt(2*pi) + DOUBLE PRECISION, PARAMETER :: gSQPI1 = 0.56418958354776D0 !=1/sqrt(pi) + DOUBLE PRECISION, PARAMETER :: gSQPI = 1.77245385090552D0 !=sqrt(pi) + DOUBLE PRECISION, PARAMETER :: gSQTW = 1.41421356237310D0 !=sqrt(2) + DOUBLE PRECISION, PARAMETER :: gSQTW1 = 0.70710678118655D0 !=1/sqrt(2) + DOUBLE PRECISION, PARAMETER :: gPI1 = 0.31830988618379D0 !=1/pi + DOUBLE PRECISION, PARAMETER :: gPI = 3.14159265358979D0 !=pi + DOUBLE PRECISION, PARAMETER :: gTWPI = 6.28318530717958D0 !=2*pi + DOUBLE PRECISION, PARAMETER :: gSQTWPI = 2.50662827463100D0 !=sqrt(2*pi) + DOUBLE PRECISION, PARAMETER :: gONE = 1.D0 + DOUBLE PRECISION, PARAMETER :: gTWO = 2.D0 + DOUBLE PRECISION, PARAMETER :: gHALF = 0.5D0 + DOUBLE PRECISION, PARAMETER :: gZERO = 0.D0 + DOUBLE PRECISION, PARAMETER :: gINFINITY = 37.D0 ! SQRT(-gTWO*LOG(1.D+12*TINY(gONE))) +! Set gINFINITY (infinity). +! Such that EXP(-2.x^2) > 10^(12) times TINY +! SAVE gINFINITY + END MODULE GLOBALCONST + + MODULE RINDMOD + USE GLOBALCONST +! USE PRINTMOD ! used for debugging only + IMPLICIT NONE + PRIVATE + PUBLIC :: RINDD, SetConstants + PUBLIC :: mCovEps, mAbsEps,mRelEps, mXcutOff, mXcScale + PUBLIC :: mNc1c2, mNIT, mMaxPts,mMinPts, mMethod, mSmall + private :: preInit + private :: initIntegrand + private :: initfun,mvnfun,cvsrtxc,covsrt1,covsrt,rcscale,rcswap + private :: cleanUp + + INTERFACE RINDD + MODULE PROCEDURE RINDD + END INTERFACE + + INTERFACE SetConstants + MODULE PROCEDURE SetConstants + END INTERFACE + +! mInfinity = what is considered as infinite value in FI +! mFxcEpss = if fxc is less, do not compute E(...|Xc) +! mXcEps2 = if any Var(Xc(j)|Xc(1),...,Xc(j-1)) <= XCEPS2 then return NAN + double precision, parameter :: mInfinity = 8.25d0 ! 37.0d0 + double precision, parameter :: mFxcEpss = 1.0D-20 + double precision, save :: mXcEps2 = 2.3d-16 +! Constants defining accuracy of integration: +! mCovEps = termination criteria for Cholesky decomposition +! mAbsEps = requested absolute tolerance +! mRelEps = requested relative tolerance +! mXcutOff = truncation value to c1c2 +! mXcScale = scale factor in the exponential (in order to avoid overflow) +! mNc1c2 = number of times to use function c1c2, i.e.,regression +! equation to restrict integration area. +! mNIT = maximum number of Xt variables to integrate +! mMethod = integration method: +! 1 Integrate all by SADAPT if NDIM<9 otherwise by KRBVRC (default) +! 2 Integrate all by SADAPT if NDIM<19 otherwise by KRBVRC +! 3 Integrate all by KRBVRC by Genz (1998) (Fast and reliable) +! 4 Integrate all by KROBOV by Genz (1992) (Fast and reliable) +! 5 Integrate all by RCRUDE by Genz (1992) (Reliable) +! 6 Integrate all by SOBNIED by Hong and Hickernell +! 7 Integrate all by DKBVRC by Genz (2003) (Fast Ndim<1001) + double precision, save :: mCovEps = 1.0d-10 + double precision, save :: mAbsEps = 0.01d0 + double precision, save :: mRelEps = 0.01d0 + double precision, save :: mXcutOff = 5.d0 + double precision, save :: mXcScale = 0.0d0 + integer, save :: mNc1c2 = 2 + integer, save :: mNIT = 1000 + integer, save :: mMaxPts = 40000 + integer, save :: mMinPts = 0 + integer, save :: mMethod = 3 + + +! Integrand variables: +! mBIG = Cholesky Factor/Covariance matrix: +! Upper triangular part is the cholesky factor +! Lower triangular part contains the conditional +! standarddeviations +! (mBIG2 is only used if mNx>1) +! mCDI = Cholesky DIagonal elements +! mA,mB = Integration limits +! mINFI = integrationi limit flags +! mCm = conditional mean +! mINFIXt, +! mINFIXd = # redundant variables of Xt and Xd, +! respectively +! mIndex1, +! mIndex2 = indices to the variables original place. Size Ntdc +! xedni = indices to the variables new place. Size Ntdc +! mNt = # Xt variables +! mNd = # Xd variables +! mNc = # Xc variables +! mNtd = mNt + mNd +! mNtdc = mNt + mNd + mNc +! mNx = # different integration limits + + double precision,allocatable, dimension(:,:) :: mBIG,mBIG2 + double precision,allocatable, dimension(:) :: mA,mB,mCDI,mCm + INTEGER, DIMENSION(:),ALLOCATABLE :: mInfi,mIndex1,mIndex2,mXedni + INTEGER,SAVE :: mNt,mNd,mNc,mNtdc, mNtd, mNx ! Size information + INTEGER,SAVE :: mInfiXt,mInfiXd + logical,save :: mInitIntegrandCalled = .FALSE. + + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: mCDIXd, mCmXd + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: mXd, mXc, mY + double precision, save :: mSmall = 2.3d-16 + +! variables set in initfun and used in mvnfun: + INTEGER, PRIVATE :: mI0,mNdleftN0 + DOUBLE PRECISION, PRIVATE :: mE1,mD1, mVAL0 + + contains + subroutine setConstants(method,xcscale,abseps,releps,coveps, + & maxpts,minpts,nit,xcutoff,Nc1c2) + double precision, optional, intent(in) :: xcscale,abseps,releps + $ ,coveps, xcutoff + integer, optional,intent(in) :: method,nit,maxpts,minpts,Nc1c2 + double precision, parameter :: one = 1.0d0 + mSmall = spacing(one) + if (present(method)) mMethod = method + if (present(xcscale)) mXcScale = xcscale + if (present(abseps)) mAbsEps = max(abseps,mSmall) + if (present(releps)) mRelEps = max(releps,0.0d0) + if (present(coveps)) mCovEps = max(coveps,1d-12) + if (present(maxpts)) mMaxPts = maxpts + if (present(minpts)) mMinPts = minpts + if (present(nit)) mNit = nit + if (present(xcutOff)) mXcutOff = xCutOff + if (present(Nc1c2)) mNc1c2 = max(Nc1c2,1) + print *, 'method=', mMethod + print *, 'xcscale=', mXcScale + print *, 'abseps=', mAbsEps + print *, 'releps=', mRelEps + print *, 'coveps=', mCovEps + print *, 'maxpts=', mMaxPts + print *, 'minpts=', mMinPts + print *, 'nit=', mNit + print *, 'xcutOff=', mXcutOff + print *, 'Nc1c2=', mNc1c2 + end subroutine setConstants + + subroutine preInit(BIG,Xc,Nt,inform) + double precision,dimension(:,:), intent(in) :: BIG + double precision,dimension(:,:), intent(in) :: Xc + integer, intent(in) :: Nt + integer, intent(out) :: inform +! Local variables + integer :: I,J + inform = 0 + mInitIntegrandCalled = .FALSE. +! Find the size information +!~~~~~~~~~~~~~~~~~~~~~~~~~~ + mNt = Nt + mNc = SIZE( Xc, dim = 1 ) + mNx = MAX( SIZE( Xc, dim = 2), 1 ) + mNtdc = SIZE( BIG, dim = 1 ) + ! make sure it does not exceed Ntdc-Nc + IF (mNt+mNc.GT.mNtdc) mNt = mNtdc - mNc + mNd = mNtdc-mNt-mNc + mNtd = mNt+mNd + IF (mNd < 0) THEN +! PRINT *,'RIND Nt,Nd,Nc,Ntdc=',Nt,Nd,Nc,Ntdc + ! Size information inconsistent + inform = 3 + return + ENDIF + + ! PRINT *,'Nt Nd Nc Ntd Ntdc,',Nt, Nd, Nc, Ntd, Ntdc + +! ALLOCATION +!~~~~~~~~~~~~ + IF (mNd>0) THEN + ALLOCATE(mXd(mNd),mCmXd(mNd),mCDIXd(mNd)) + mCmXd(:) = gZERO + mCDIXd(:) = gZERO + mxd(:) = gZERO + END IF + ALLOCATE(mBIG(mNtdc,mNtdc),mCm(mNtdc),mY(mNtd)) + ALLOCATE(mIndex1(mNtdc),mA(mNtd),mB(mNtd),mINFI(mNtd),mXc(mNc)) + ALLOCATE(mCDI(mNtd),mXedni(mNtdc),mIndex2(mNtdc)) + +! Initialization +!~~~~~~~~~~~~~~~~~~~~~ +! Copy upper triangular of input matrix, only. + do i = 1,mNtdc + mBIG(1:i,i) = BIG(1:i,i) + end do + + mIndex2 = (/(J,J=1,mNtdc)/) + +! CALL mexprintf('BIG Before CovsrtXc'//CHAR(10)) +! CALL ECHO(BIG) +! sort BIG by decreasing cond. variance for Xc + CALL CVSRTXC(mNt,mNd,mBIG,mIndex2,INFORM) +! CALL mexprintf('BIG after CovsrtXc'//CHAR(10)) +! CALL ECHO(BIG) + + IF (INFORM.GT.0) return ! degenerate case exit VALS=0 for all + ! (should perhaps return NaN instead??) + + + DO I=mNtdc,1,-1 + J = mIndex2(I) ! covariance matrix according to index2 + mXedni(J) = I + END DO + + IF (mNx>1) THEN + ALLOCATE(mBIG2(mNtdc,mNtdc)) + do i = 1,mNtdc + mBIG2(1:i,i) = mBIG(1:i,i) !Copy input matrix + end do + ENDIF + return + end subroutine preInit + subroutine initIntegrand(ix,Xc,Ex,indI,Blo,Bup,INFIN, + & fxc,value,abserr,NDIM,inform) + integer, intent(in) :: ix ! integrand number + double precision, dimension(:),intent(in) :: Ex + double precision, dimension(:,:), intent(in) :: Xc,Blo,Bup + integer, dimension(:), intent(in) :: indI,INFIN + double precision, intent(out) :: fxc,value,abserr + integer, intent(out) :: NDIM, inform +! Locals + DOUBLE PRECISION :: SQ0,xx,quant + integer :: I,J + inform = 0 + NDIM = 0 + VALUE = gZERO + fxc = gONE + abserr = mSmall + + IF (mInitIntegrandCalled) then + do i = 1,mNtdc + mBIG(1:i,i) = mBIG2(1:i,i) !Copy input matrix + end do + else + mInitIntegrandCalled = .TRUE. + endif + + ! Set the original means of the variables + mCm(:) = Ex(mIndex2(1:mNtdc)) ! Cm(1:Ntdc) =Ex (index1(1:Ntdc)) + IF (mNc>0) THEN + mXc(:) = Xc(:,ix) + !mXc(1:Nc) = Xc(1:Nc,ix) + QUANT = DBLE(mNc)*LOG(gSQTWPI1) + I = mNtdc + DO J = 1, mNc +! Iterative conditioning on the last Nc variables + SQ0 = mBIG(I,I) ! SQRT(Var(X(i)|X(i+1),X(i+2),...,X(Ntdc))) + xx = (mXc(mIndex2(I) - mNtd) - mCm(I))/SQ0 + !Trick to calculate + !fxc = fxc*SQTWPI1*EXP(-0.5*(XX**2))/SQ0 + QUANT = QUANT - gHALF*xx*xx - LOG(SQ0) + ! conditional mean (expectation) + ! E(X(1:i-1)|X(i),X(i+1),...,X(Ntdc)) + mCm(1:I-1) = mCm(1:I-1) + xx*mBIG(1:I-1,I) + I = I-1 + ENDDO + ! Calculating the + ! fxc probability density for i=Ntdc-J+1, + ! fXc=f(X(i)|X(i+1),X(i+2)...X(Ntdc))* + ! f(X(i+1)|X(i+2)...X(Ntdc))*..*f(X(Ntdc)) + fxc = EXP(QUANT+mXcScale) + + ! if fxc small: don't bother + ! calculating it, goto end + IF (fxc < mFxcEpss) then + abserr = gONE + inform = 1 + return + endif + END IF +! Set integration limits mA,mB and mINFI +! NOTE: mA and mB are integration limits with mCm subtracted + CALL setIntLimits(mXc,indI,Blo,Bup,INFIN,inform) + if (inform>0) return + mIndex1(:) = mIndex2(:) + CALL COVSRT(.FALSE., mNt,mNd,mBIG,mCm,mA,mB,mINFI, + & mINDEX1,mINFIXt,mINFIXd,NDIM,mY,mCDI) + + CALL INITFUN(VALUE,abserr,INFORM) +! IF INFORM>0 : degenerate case: +! Integral can be calculated excactly, ie. +! mean of deterministic variables outside the barriers, +! or NDIM = 1 + return + end subroutine initIntegrand + subroutine cleanUp +! Deallocate all work arrays and vectors + IF (ALLOCATED(mXc)) DEALLOCATE(mXc) + IF (ALLOCATED(mXd)) DEALLOCATE(mXd) + IF (ALLOCATED(mCm)) DEALLOCATE(mCm) + IF (ALLOCATED(mBIG2)) DEALLOCATE(mBIG2) + IF (ALLOCATED(mBIG)) DEALLOCATE(mBIG) + IF (ALLOCATED(mIndex2)) DEALLOCATE(mIndex2) + IF (ALLOCATED(mIndex1)) DEALLOCATE(mIndex1) + IF (ALLOCATED(mXedni)) DEALLOCATE(mXedni) + IF (ALLOCATED(mA)) DEALLOCATE(mA) + IF (ALLOCATED(mB)) DEALLOCATE(mB) + IF (ALLOCATED(mY)) DEALLOCATE(mY) + IF (ALLOCATED(mCDI)) DEALLOCATE(mCDI) + IF (ALLOCATED(mCDIXd)) DEALLOCATE(mCDIXd) + IF (ALLOCATED(mCmXd)) DEALLOCATE(mCmXd) + IF (ALLOCATED(mINFI)) DEALLOCATE(mINFI) + end subroutine cleanUp + function integrandBound(I0,N,Y,FINY) result (bound1) + use FIMOD + integer, intent(in) :: I0,N,FINY + double precision, intent(in) :: Y + double precision :: bound1 +! locals + integer :: I,IK,FINA, FINB + double precision :: AI,BI,D1,E1 + double precision :: TMP +! Computes the upper bound for the intgrand + bound1 = gzero + if (FINY<1) return + FINA = 0 + FINB = 0 + IK = 2 + DO I = I0, N + ! E(Y(I) | Y(1))/STD(Y(IK)|Y(1)) + TMP = mBIG(IK-1,I)*Y + IF (mINFI(I) > -1) then +! May have infinite int. Limits if Nd>0 + IF ( mINFI(I) .NE. 0 ) THEN + IF ( FINA .EQ. 1 ) THEN + AI = MAX( AI, mA(I) - tmp ) + ELSE + AI = mA(I) - tmp + FINA = 1 + END IF + END IF + IF ( mINFI(I) .NE. 1 ) THEN + IF ( FINB .EQ. 1 ) THEN + BI = MIN( BI, mB(I) - tmp) + ELSE + BI = mB(I) - tmp + FINB = 1 + END IF + END IF + endif + + IF (I.EQ.N.OR.mBIG(IK+1,I+1)>gZERO) THEN + CALL MVNLMS( AI, BI,2*FINA+FINB-1, D1, E1 ) + IF (D1Nt then variable no. I is one of the Xd +! variables otherwise it is one of Xt. + + !PRINT *,'Mvnfun,ndim',Ndim + INFORM = 0 + VALUE = gZERO + abserr = max(mCovEps , 6.0d0*mSmall) + mVAL0 = gONE + + + mNdleftN0 = mNd ! Counter for number of Xd variables left + + mI0 = 0 + FINA = 0 + FINB = 0 + N = mNt + mNd - mINFIXt - mINFIXd-1 + IF (mINFIXt+mINFIXd > 0) THEN +! CHCKLIM Check if the conditional mean Cm = E(Xt,Xd|Xc) for the +! deterministic variables are between the barriers, i.e., +! A=Hlo-Cm< 0 -1) THEN + IF ((mINFI(I).NE.0).AND.(mAbsEps < mA(I))) GOTO 200 + IF ((mINFI(I).NE.1).AND.(mB(I) < -mAbsEps )) GOTO 200 + ENDIF + ENDDO + + IF (mINFIXd>0) THEN + ! Redundant variables of Xd: replace Xd with the mean + I = mNt + mNd !-INFIS + J = mNdleftN0-mINFIXd + + DO WHILE (mNdleftN0>J) + isXd = (mNt < mIndex1(I)) + IF (isXd) THEN + mXd (mNdleftN0) = mCm (I) + mNdleftN0 = mNdleftN0-1 + END IF + I = I-1 + ENDDO + ENDIF + IF (N+1 < 1) THEN +! Degenerate case, No relevant variables left to integrate +! Print *,'rind ndim1',Ndim1 + IF (mNd>0) THEN + VALUE = jacob (mXd,mXc) ! jacobian of xd,xc + ELSE + VALUE = gONE + END IF + GOTO 200 + ENDIF + ENDIF + IF (mNIT<=100) THEN + xCut = mXcutOff + + J = 1 + DO I = 2, N+1 + IF (mBIG(J+1,I)>gZERO) THEN + J = J + 1 + ELSE + ! Add xCut std to deterministic variables to get an upper + ! bound for integral + mA(I) = mA(I) - xCut * mBIG(I,J) + mB(I) = mB(I) + xCut * mBIG(I,J) + ENDIF + END DO + ELSE + xCut = gZERO + ENDIF + + NdleftO = mNdleftN0 + useC1C2 = (1<=mNc1c2) + DO I = 1, N+1 + IF (mINFI(I) > -1) then +! May have infinite int. Limits if Nd>0 + IF ( mINFI(I) .NE. 0 ) THEN + IF ( FINA .EQ. 1 ) THEN + AI = MAX( AI, mA(I) ) + ELSE + AI = mA(I) + FINA = 1 + END IF + END IF + IF ( mINFI(I) .NE. 1 ) THEN + IF ( FINB .EQ. 1 ) THEN + BI = MIN( BI, mB(I) ) + ELSE + BI = mB(I) + FINB = 1 + END IF + END IF + endif + isXd = (mINDEX1(I)>mNt) + IF (isXd) THEN ! Save the mean for Xd + mCmXd(mNdleftN0) = mCm(I) + mCDIXd(mNdleftN0) = mCDI(I) + mNdleftN0 = mNdleftN0-1 + END IF + + IF (I.EQ.N+1.OR.mBIG(2,I+1)>gZERO) THEN + IF (useC1C2.AND.I=E0) GOTO 200 + + CALL C1C2(I+1,N+1,1,mA,mB,mINFI,mY,mBIG,AI,BI,FINA,FINB) + CALL MVNLMS( AI, BI,2*FINA+FINB-1, mD1, mE1 ) + IF (mD1>=mE1) GOTO 200 + maxTruncError = FI(-ABS(mXcutOff))*dble(mNc1c2) + upError = abs(E0-mE1) + loError = abs(D0-mD1) + if (upError>mSmall) then + upError = upError*integrandBound(I+1,N+1,BI,FINB) + endif + if (loError>mSmall) then + loError = loError*integrandBound(I+1,N+1,AI,FINA) + endif + abserr = abserr + min(upError + loError,maxTruncError) + !CALL printvar(log10(loError+upError+msmall),'lo+up-err') + ELSE + CALL MVNLMS( AI, BI,2*FINA+FINB-1, mD1, mE1 ) + IF (mD1>=mE1) GOTO 200 + ENDIF + !CALL MVNLMS( AI, BI,2*FINA+FINB-1, mD1, mE1 ) + !IF (mD1>=mE1) GOTO 200 + IF ( NdleftO<=0) THEN + IF (mNd>0) mVAL0 = JACOB(mXd,mXc) + SELECT CASE (I-N) + CASE (1) !IF (I.EQ.N+1) THEN + VALUE = (mE1-mD1)*mVAL0 + abserr = abserr*mVAL0 + GO TO 200 + CASE (0) !ELSEIF (I.EQ.N) THEN + !D1=1/sqrt(1-rho^2)=1/STD(X(I+1)|X(1)) + mD1 = SQRT( gONE + mBIG(1,I+1)*mBIG(1,I+1) ) + mINFI(2) = mINFI(I+1) + mA(1) = AI + mB(1) = BI + mINFI(1) = 2*FINA+FINB-1 + IF ( mINFI(2) .NE. 0 ) mA(2) = mA(I+1)/mD1 + IF ( mINFI(2) .NE. 1 ) mB(2) = mB(I+1)/mD1 + VALUE = BVNMVN( mA, mB,mINFI,mBIG(1,I+1)/mD1 )*mVAL0 + abserr = (abserr+1.0d-14)*mVAL0 + GO TO 200 + CASE ( -1 ) !ELSEIF (I.EQ.N-1) THEN + IF (.FALSE.) THEN +! TODO :this needs further checking! (it should work though) + !1/D1= sqrt(1-r12^2) = STD(X(I+1)|X(1)) + !1/E1= STD(X(I+2)|X(1)X(I+1)) + !D1 = BIG(I+1,1) + !E1 = BIG(I+2,2) + + mD1 = gONE/SQRT( gONE + mBIG(1,I+1)*mBIG(1,I+1) ) + R12 = mBIG( 1, I+1 ) * mD1 + if (mBIG(3,I+2)>gZERO) then + mE1 = gONE/SQRT( gONE + mBIG(1,I+2)*mBIG(1,I+2) + + & mBIG(2,I+2)*mBIG(2,I+2) ) + R13 = mBIG( 1, I+2 ) * mE1 + R23 = mBIG( 2, I+2 ) * (mE1 * mD1) + R12 * R13 + else + mE1 = mCDI(I+2) + R13 = mBIG( 1, I+2 ) * mE1 + R23 = mE1*mD1 + R12 * R13 + IF ((mE1 < gZERO).AND. mINFI(I+2)>-1) THEN + CALL SWAP(mA(I+2),mB(I+2)) + IF (mINFI(I+2).NE. 2) mINFI(I+2) = 1-mINFI(I+2) + END IF + !R23 = BIG( 2, I+2 ) * (E1 * D1) + R12 * R13 + endif + mINFI(2) = mINFI(I+1) + mINFI(3) = mINFI(I+2) + mA(1) = AI + mB(1) = BI + mINFI(1) = 2*FINA+FINB-1 + IF ( mINFI(2) .NE. 0 ) mA(2) = mA(I+1) * mD1 + IF ( mINFI(2) .NE. 1 ) mB(2) = mB(I+1) * mD1 + IF ( mINFI(3) .NE. 0 ) mA(3) = mA(I+2) * mE1 + IF ( mINFI(3) .NE. 1 ) mB(3) = mB(I+2) * mE1 + if(.false.) then + CALL PRINTVECD((/R12, R13, R23 /),'R12 = ') + CALL PRINTVECD((/mD1, mE1 /),'D1 = ') + CALL PRINTVECD(mBIG(1,1:3),'BIG(1,1:3) = ') + CALL PRINTVECD(mBIG(2,2:3),'BIG(2,2:3) = ') + CALL PRINTVECD(mBIG(1:3,1),'BIG(1:3,1) = ') + CALL PRINTVECD(mBIG(2:3,2),'BIG(2:3,2) = ') + CALL PRINTVECD(mA(1:I+2),'A = ') + CALL PRINTVECD(mB(1:I+2),'B = ') + CALL PRINTVECI(mINFI(1:I+2),'INFI = ') + CALL PRINTVECI(mINDEX1(1:I+2),'index1 = ') + endif + VALUE = TVNMVN( mA, mB,mINFI, + & (/R12, R13, R23 /),1.0d-13) * mVAL0 + ABSERR = (ABSERR + 1.0d-13)*mVAL0 + GOTO 200 + ENDIF + END SELECT !ENDIF + ENDIF + ABSERR = mVAL0*ABSERR + mVAL0 = mVAL0 * (mE1-mD1) + mI0 = I + RETURN + ENDIF + ENDDO + RETURN + 200 INFORM = 1 + RETURN + END SUBROUTINE INITFUN +! +! Integrand subroutine +! + FUNCTION MVNFUN( Ndim, W ) RESULT (VAL) + USE JACOBMOD + USE FIMOD + IMPLICIT NONE + INTEGER, INTENT (IN) :: Ndim + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: W + DOUBLE PRECISION :: VAL +! local variables: + INTEGER :: N,I, J, FINA, FINB + INTEGER :: NdleftN, NdleftO ,IK + DOUBLE PRECISION :: TMP, AI, BI, DI, EI + LOGICAL :: useC1C2, isXd +!MVNFUN Multivariate Normal integrand function +! where the integrand is transformed from an integral +! having integration limits A and B to an +! integral having constant integration limits i.e. +! B 1 +! int jacob(xd,xc)*f(xd,xt)dxt dxd = int F2(W) dW +! A 0 +! +! W - new transformed integration variables, valid range 0..1 +! The vector must have the length Ndim returned from Covsrt +! mBIG - conditional sorted ChOlesky Factor of the covariance matrix (IN) +! mCDI - Cholesky DIagonal elements used to calculate the mean +! mCm - conditional mean of Xd and Xt given Xc, E(Xd,Xt|Xc) +! mXd - variables to the jacobian variable, need no initialization size Nd +! mXc - conditional variables (IN) +! mINDEX1 - if mINDEX1(I)>Nt then variable No. I is one of the Xd +! variables otherwise it is one of Xt + + !PRINT *,'Mvnfun,ndim',Ndim + +! xCut = gZERO ! xCutOff + + N = mNt+mNd-mINFIXt-mINFIXd-1 + IK = 1 ! Counter for Ndim + FINA = 0 + FINB = 0 + + NdleftN = mNdleftN0 ! Counter for number of Xd variables left + VAL = mVAL0 + NdleftO = mNd - mINFIXd + mY(IK) = FIINV( mD1 + W(IK)*( mE1 - mD1 ) ) + useC1C2 = (IK+1.LE.mNc1c2) + IF (useC1C2) THEN + ! Calculate the conditional mean + ! E(Y(I) | Y(1),...Y(I0))/STD(Y(I)|Y(1),,,,Y(I0)) + mY(mI0+1:N+1) = mBIG(IK, mI0+1:N+1)*mY(IK) + ENDIF + IF (NdleftO.GT.NdleftN ) THEN + mXd(NdleftN+1:NdleftO) = mCmXd(NdleftN+1:NdleftO)+ + & mY(IK) * mCDIXd(NdleftN+1:NdleftO) + ENDIF + NdleftO = NdleftN + IK = 2 !=IK+1 + + + DO I = mI0+1, N+1 + IF (useC1C2) THEN + TMP = mY(I) + ELSE + TMP = 0.d0 + DO J = 1, IK-1 + ! E(Y(I) | Y(1),...Y(IK-1))/STD(Y(IK)|Y(1),,,,Y(IK-1)) + TMP = TMP + mBIG(J,I)*mY(J) + END DO + ENDIF + IF (mINFI(I) < 0) GO TO 100 + ! May have infinite int. Limits if Nd>0 + IF ( mINFI(I) .NE. 0 ) THEN + IF ( FINA .EQ. 1 ) THEN + AI = MAX( AI, mA(I) - TMP) + ELSE + AI = mA(I) - TMP + FINA = 1 + END IF + IF (FINB.EQ.1.AND.BI<=AI) GOTO 200 + END IF + IF ( mINFI(I) .NE. 1 ) THEN + IF ( FINB .EQ. 1 ) THEN + BI = MIN( BI, mB(I) - TMP) + ELSE + BI = mB(I) - TMP + FINB = 1 + END IF + IF (FINA.EQ.1.AND.BI<=AI) GOTO 200 + END IF + 100 isXd = (mNt gZERO ) THEN + IF (useC1C2) THEN +! Note: for J =I+1:N+1: Y(J) = conditional expectation, E(Yj|Y1,...Yk) + CALL C1C2(I+1,N+1,IK,mA,mB,mINFI,mY,mBIG,AI,BI,FINA,FINB) + ENDIF + CALL MVNLMS( AI, BI, 2*FINA+FINB-1, DI, EI ) + IF ( DI >= EI ) GO TO 200 + VAL = VAL * ( EI - DI ) + + IF ( I <= N .OR. (NdleftN < NdleftO)) THEN + mY(IK) = FIINV( DI + W(IK)*( EI - DI ) ) + IF (NdleftN < NdleftO ) THEN + mXd(NdleftN+1:NdleftO) = mCmXd(NdleftN+1:NdleftO)+ + & mY(IK) * mCDIXd(NdleftN+1:NdleftO) + NdleftO = NdleftN + ENDIF + useC1C2 = (IK+1<=mNc1c2) + IF (useC1C2) THEN + + ! E(Y(J) | Y(1),...Y(I))/STD(Y(J)|Y(1),,,,Y(I)) + mY(I+1:N+1) = mY(I+1:N+1) + mBIG(IK, I+1:N+1)*mY(IK) + ENDIF + ENDIF + IK = IK + 1 + FINA = 0 + FINB = 0 + END IF + END DO + IF (mNd>0) VAL = VAL * jacob(mXd,mXc) + RETURN + 200 VAL = gZERO + RETURN + END FUNCTION MVNFUN + + +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +!!******************* RINDD - the main program *********************!! +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + SUBROUTINE RINDD(VALS,ERR,TERR,Big,Ex,Xc,Nt, + & indI,Blo,Bup,INFIN) + USE RCRUDEMOD + USE KRBVRCMOD + USE ADAPTMOD + USE KROBOVMOD + USE DKBVRCMOD + USE SSOBOLMOD + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(out):: VALS, ERR ,TERR + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: BIG + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: Xc + DOUBLE PRECISION, DIMENSION(:), INTENT(in) :: Ex + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: Blo, Bup + INTEGER, DIMENSION(:), INTENT(in) :: indI,INFIN + INTEGER, INTENT(in) :: Nt +! DOUBLE PRECISION, INTENT(in) :: XcScale +! local variables + INTEGER :: ix, INFORM, NDIM, MAXPTS, MINPTS + DOUBLE PRECISION :: VALUE,fxc,absERR,absERR2 + double precision :: LABSEPS,LRELEPS + + + VALS(:) = gZERO + ERR(:) = gONE + TERR(:) = gONE + + call preInit(BIG,Xc,Nt,inform) + IF (INFORM.GT.0) GOTO 110 ! degenerate case exit VALS=0 for all + ! (should perhaps return NaN instead??) + +! Now the loop over all different values of +! variables Xc (the one one is conditioning on) +! is started. The density f_{Xc}(xc(:,ix)) +! will be computed and denoted by fxc. + DO ix = 1, mNx + call initIntegrand(ix,Xc,Ex,indI,Blo,Bup,infin, + & fxc,value,abserr,NDIM,inform) + + + IF (INFORM.GT.0) GO TO 100 + + MAXPTS = mMAXPTS + MINPTS = mMINPTS + LABSEPS = max(mABSEPS-abserr,0.2D0*mABSEPS) !*fxc + LRELEPS = mRELEPS + ABSERR2 = mSmall + + SELECT CASE (mMethod) + CASE (:1) + IF (NDIM < 9) THEN + CALL SADAPT(NDIM,MAXPTS,MVNFUN,LABSEPS, + & LRELEPS,ABSERR2,VALUE,INFORM) + VALUE = MAX(VALUE,gZERO) + ELSE + CALL KRBVRC(NDIM, MINPTS, MAXPTS, MVNFUN,LABSEPS,LRELEPS, + & ABSERR2, VALUE, INFORM ) + ENDIF + CASE (2) +! Call the subregion adaptive integration subroutine + IF ( NDIM .GT. 19.) THEN +! print *, 'Ndim too large for SADMVN => Calling KRBVRC' + CALL KRBVRC( NDIM, MINPTS, MAXPTS, MVNFUN, LABSEPS, + & LRELEPS, ABSERR2, VALUE, INFORM ) + ELSE + CALL SADAPT(NDIM,MAXPTS,MVNFUN,LABSEPS, + & LRELEPS,ABSERR2,VALUE,INFORM) + VALUE = MAX(VALUE,gZERO) + ENDIF + CASE (3) ! Call the Lattice rule integration procedure + CALL KRBVRC( NDIM, MINPTS, MAXPTS, MVNFUN, LABSEPS, + & LRELEPS, ABSERR2, VALUE, INFORM ) + CASE (4) ! Call the Lattice rule + ! integration procedure + CALL KROBOV( NDIM, MINPTS, MAXPTS, MVNFUN, LABSEPS, + & LRELEPS,ABSERR2, VALUE, INFORM ) + CASE (5) ! Call Crude Monte Carlo integration procedure + CALL RANMC( NDIM, MAXPTS, MVNFUN, LABSEPS, + & LRELEPS, ABSERR2, VALUE, INFORM ) + CASE (6) ! Call the scrambled Sobol sequence rule integration procedure + CALL SOBNIED( NDIM, MINPTS, MAXPTS, MVNFUN, LABSEPS, LRELEPS, + & ABSERR2, VALUE, INFORM ) + CASE (7:) + CALL DKBVRC( NDIM, MINPTS, MAXPTS, MVNFUN, LABSEPS, LRELEPS, + & ABSERR2, VALUE, INFORM ) + END SELECT + +! IF (INFORM.gt.0) print *,'RIND, INFORM,error =',inform,error + 100 VALS(ix) = VALUE*fxc + IF (SIZE(ERR, DIM = 1).EQ.mNx) ERR(ix) = abserr2*fxc + IF (SIZE(TERR, DIM = 1).EQ.mNx) TERR(ix) = abserr*fxc + ENDDO !ix + + 110 CONTINUE + call cleanUp + RETURN + END SUBROUTINE RINDD + + SUBROUTINE setIntLimits(xc,indI,Blo,Bup,INFIN,inform) + IMPLICIT NONE + DOUBLE PRECISION, DIMENSION(: ), INTENT(in) :: xc + INTEGER, DIMENSION(: ), INTENT(in) :: indI,INFIN + DOUBLE PRECISION, DIMENSION(:,:), INTENT(in) :: Blo,Bup + integer, intent(out) :: inform +!Local variables + INTEGER :: I, J, K, L,Mb1,Nb,NI,Nc + DOUBLE PRECISION :: xCut, SQ0 +!this procedure set mA,mB and mInfi according to Blo/Bup and INFIN +! +! INFIN INTEGER, array of integration limits flags: +! if INFIN(I) < 0, Ith limits are (-infinity, infinity); +! if INFIN(I) = 0, Ith limits are (-infinity, mB(I)]; +! if INFIN(I) = 1, Ith limits are [mA(I), infinity); +! if INFIN(I) = 2, Ith limits are [mA(I), mB(I)]. +! Note on member variables: +! mXedni = indices to the variables new place after cvsrtXc. Size Ntdc +! mCm = E(Xt,Xd|Xc), i.e., conditional mean given Xc +! mBIG(:,1:Ntd) = Cov(Xt,Xd|Xc) + + xCut = ABS(mInfinity) + Mb1 = size(Blo,DIM=1)-1 + Nb = size(Blo,DIM=2) + NI = size(indI,DIM=1) + Nc = size(xc,DIM=1) + if (Mb1>Nc .or. Nb.NE.NI-1) then +! size of variables inconsistent + inform = 4 + return + endif + +! IF (Mb.GT.Nc+1) print *,'barrier: Mb,Nc =',Mb,Nc +! IF (Nb.NE.NI-1) print *,'barrier: Nb,NI =',Nb,NI + DO J = 2, NI + DO I = indI (J - 1) + 1 , indI (J) + L = mXedni(I) + mINFI(L) = INFIN(J-1) + SQ0 = SQRT(mBIG(L,L)) + mA(L) = -xCut*SQ0 + mB(L) = xCut*SQ0 + IF (mINFI(L).GE.0) THEN + IF (mINFI(L).NE.0) THEN + mA(L) = Blo (1, J - 1)-mCm(L) + DO K = 1, Mb1 + mA(L) = mA(L)+Blo(K+1,J-1)*xc(K) + ENDDO ! K + ! This can only be done if + if (mA(L)< -xCut*SQ0) mINFI(L) = mINFI(L)-2 + ENDIF + IF (mINFI(L).NE.1) THEN + mB(L) = Bup (1, J - 1)-mCm(L) + DO K = 1, Mb1 + mB(L) = mB(L)+Bup(K+1,J-1)*xc(K) + ENDDO + if (xCut*SQ0-1) THEN + IF (infi.NE.0)THEN + IF (A < -mXcutOff) THEN + infi = infi-2 +! CALL mexprintf('ADJ A') + ENDIF + ENDIF + IF (infi.NE.1) THEN + IF (mXCutOff < B) THEN + infi = infi-1 +! CALL mexprintf('ADJ B') + ENDIF + END IF + END IF + RETURN + END SUBROUTINE ADJLIMITS + SUBROUTINE C1C2(I0,I1,IK,A,B,INFIN, Cm, BIG, AJ, BJ, FINA,FINB) +! The regression equation for the conditional distr. of Y given X=x +! is equal to the conditional expectation of Y given X=x, i.e., +! +! E(Y|X=x) = E(Y) + Cov(Y,X)/Var(X)[x-E(X)] +! +! Let +! x1 = (x-E(X))/SQRT(Var(X)) be zero mean, +! C1< x1 B(I) or +! +! b) Cm(I)+x1*B1(I)+C*SQ(I)-1) THEN + !BdSQ0 = B1(I) + !CSQ = xCut * SQ(I) + BdSQ0 = BIG(IK,I) + CSQ = xCut * BIG(I,IK) + IF (BdSQ0 > LTOL) THEN + IF ( INFI .NE. 0 ) THEN + IF (FINA.EQ.1) THEN + AJ = MAX(AJ,(A(I) - Cm(I) - CSQ)/BdSQ0) + ELSE + AJ = (A(I) - Cm(I) - CSQ)/BdSQ0 + FINA = 1 + ENDIF + IF (FINB.GT.0) AJ = MIN(AJ,BJ) + END IF + IF ( INFI .NE. 1 ) THEN + IF (FINB.EQ.1) THEN + BJ = MIN(BJ,(B(I) - Cm(I) + CSQ)/BdSQ0) + ELSE + BJ = (B(I) - Cm(I) + CSQ)/BdSQ0 + FINB = 1 + ENDIF + IF (FINA.GT.0) BJ = MAX(AJ,BJ) + END IF + ELSEIF (BdSQ0 < -LTOL) THEN + IF ( INFI .NE. 0 ) THEN + IF (FINB.EQ.1) THEN + BJ = MIN(BJ,(A(I) - Cm(I) - CSQ)/BdSQ0) + ELSE + BJ = (A(I) - Cm(I) - CSQ)/BdSQ0 + FINB = 1 + ENDIF + IF (FINA.GT.0) BJ = MAX(AJ,BJ) + END IF + IF ( INFI .NE. 1 ) THEN + IF (FINA.EQ.1) THEN + AJ = MAX(AJ,(B(I) - Cm(I) + CSQ)/BdSQ0) + ELSE + AJ = (B(I) - Cm(I) + CSQ)/BdSQ0 + FINA = 1 + ENDIF + IF (FINB.GT.0) AJ = MIN(AJ,BJ) + END IF + END IF + ENDIF + END DO +! IF (FINA>0 .AND. FINB>0) THEN +! IF (AJmaxSQ) maxSQ = SQ(I) + ENDDO + + XCEPS2 = Ntdc*mSmall*maxSQ + mXcEps2 = XCEPS2 + LTOL = mSmall + LO = 1 + K = Ntdc + DO I = 1, Nc ! Condsort Xc + m = K+1-MAXLOC(SQ(K:Ntd+1:-1)) + M1 = m(1) + IF (SQ(m1)<=XCEPS2) THEN +! PRINT *,'CVSRTXC: Degenerate case of Xc(Nc-J+1) for J=',ix + !CALL mexprintf('CVSRTXC: Degenerate case of Xc(Nc-J+1)') + INFORM = 1 + GOTO 200 ! RETURN !degenerate case + ENDIF + IF (M1.NE.K) THEN + ! Symmetric row column permuations + ! Swap row and columns, but only upper triangular part + CALL RCSWAP( M1, K, Ntdc,Ntd, R,INDEX1,SQ) + END IF + R(K,K) = SQRT(SQ(K)) + IF (K .EQ. LO) GOTO 200 + R(LO:K-1,K) = R(LO:K-1,K)/R(K,K) +! Cov(Xi,Xj|Xk,Xk+1,..,Xn) = .... +! Cov(Xi,Xj|Xk+1,..,Xn) - Cov(Xi,Xk|Xk+1,..Xn)*Cov(Xj,Xk|Xk+1,..Xn) + DO J = LO,K-1 + ! Var(Xj | Xk,Xk+1,...,Xn) + SQ(J) = R(J,J) - R(J,K)*R(J,K) + IF (SQ(J)<=LTOL.AND.J<=Ntd) THEN + IF (LO < J) THEN + CALL RCSWAP(LO, J, Ntdc,Ntd, R,INDEX1,SQ) + ENDIF + R(LO,LO:K-1) = gZERO + IF (SQ(LO) < -10.0D0*SQRT(LTOL)) THEN + ! inform = 2 + !R(LO,K) = gZERO + ! CALL mexprintf('Negative definit BIG!'//CHAR(10)) + ENDIF + SQ(LO) = gZERO + LO = LO + 1 + ELSE + R(J,J) = SQ(J) + R(LO:J-1,J) = R(LO:J-1,J) - R(LO:J-1,K)*R(J,K) + ENDIF + END DO + K = K - 1 + ENDDO + 200 DEALLOCATE(SQ) + RETURN + END SUBROUTINE CVSRTXC + + SUBROUTINE RCSCALE(chkLim,K,K0,N1,N,K1,INFIS,CDI,Cm, + & R,A,B,INFI,INDEX1,Y) + USE GLOBALCONST + USE SWAPMOD + IMPLICIT NONE +!RCSCALE: Scale covariance matrix and limits +! +! CALL RCSCALE( k, k0, N1, N,K1, CDI,Cm,R,A, B, INFIN,index1,Y) +! +! chkLim = TRUE if check if variable K is redundant +! FALSE +! K = index to variable which is deterministic,i.e., +! STD(Xk|X1,...Xr) = 0 +! N1 = Number of significant variables of [Xt,Xd] +! N = length(Xt)+length(Xd) +! K1 = index to current variable we are conditioning on. +! CDI = Cholesky diagonal elements which contains either +! CDI(J) = STD(Xj | X1,...,Xj-1,Xc) if Xj is stochastic given +! X1,...Xj, Xc +! or +! CDI(J) = COV(Xj,Xk | X1,..,Xk-1,Xc )/STD(Xk | X1,..,Xk-1,Xc) +! if Xj is determinstically determined given X1,..,Xk,Xc +! for some k1) then + ! Check if variable is redundant + ! TODO: this chklim-block does not work correctly yet + xCut = mInfinity + I = 1 + Ak = R(I,K)*xCut + Bk = - (R(I,K))*xCut + if (INFI(I)>=0) then + if (INFI(I).ne.0) then + Ak = -(R(I,K))*MAX(A(I),-xCut) + endif + if (INFI(I).ne.1) then + Bk = - (R(I,K))*MIN(B(I),xCut) + endif + endif + + if (R(I,K) LTOL) .OR. (isXt)) THEN + DO J = 1,I-1 + isXd = (INDEX1(J)>Nt) + IF ( (R(J,J) <= LTOL) .AND.isXd) THEN + CALL RCSWAP(J, I, N, N, R,INDEX1,Cm, A, B, INFI) + !GO TO 10 + CYCLE LP3 + ENDIF + END DO + ENDIF +! 10 + END DO LP3 +! +! Move any doubly infinite limits or any redundant of Xt to the next +! innermost positions. +! + LP4: DO I = N-INFISD, N1+1, -1 + isXd = (INDEX1(I)>Nt) + IF ( ((INFI(I) > -1).AND.(R(I,I) > LTOL)) + & .OR. isXd) THEN + DO J = 1,I-1 + isXt = (INDEX1(J)<=Nt) + IF ( (INFI(J) < 0 .OR. (R(J,J)<= LTOL)) + & .AND. (isXt)) THEN + CALL RCSWAP( J, I, N,N, R,INDEX1,Cm, A, B, INFI) + !GO TO 15 + CYCLE LP4 + ENDIF + END DO + ENDIF +!15 + END DO LP4 + +! CALL mexprintf('Before sorting') +! CALL PRINTCOF(N,A,B,INFI,R,INDEX1) +! CALL PRINTVEC(CDI,'CDI') +! CALL PRINTVEC(Cm,'Cm') + + IF ( N1 <= 0 ) GOTO 200 +! +! Sort remaining limits and determine Cholesky factor. +! + Y(1:N1) = gZERO + K = 1 + Ndleft = Nd - INFISD + Nullity = 0 + DO WHILE (K .LE. N1) + +! IF (Ndim.EQ.3) EPSL = MAX(EPS2,1D-10) +! Determine the integration limits for variable with minimum +! expected probability and interchange that variable with Kth. + + K0 = K - Nullity + PRBMIN = gTWO + JMIN = K + CVDIAG = ZERO + RMAX = ZERO + IF ((Ndleft>0) .OR. (NDIM < Nd+mNIT)) THEN + DO J = K, N1 + isXd = (INDEX1(J)>Nt) + isOK = ((NDIM <= Nd+mNIT).OR.isXd) + IF ( R(J,J) <= K0*K0*EPSL .OR. (.NOT. isOK)) THEN + RMAX = max(RMAX,ABS(R(J,J))) + ELSE + TMP = ZERO ! = conditional mean of Y(I) given Y(1:I-1) + DO I = 1, K0 - 1 + TMP = TMP + R(I,J)*Y(I) + END DO + SUMSQ = SQRT( R(J,J)) + + IF (INFI(J)>-1) THEN + ! May have infinite int. limits if Nd>0 + IF (INFI(J).NE.0) THEN + AJ = ( A(J) - TMP )/SUMSQ + ENDIF + IF (INFI(J).NE.1) THEN + BJ = ( B(J) - TMP )/SUMSQ + ENDIF + ENDIF + IF (isXd) THEN + AA = (Cm(J)+TMP)/SUMSQ ! inflection point + CALL EXLMS(AA,AJ,BJ,INFI(J),D,E,Ca,Pa) + PRBJ = E - D + ELSE + !CALL MVNLMS( AJ, BJ, INFI(J), D, E ) + CALL MVNLIMITS(AJ,BJ,INFI(J),APJ,PRBJ) + ENDIF + !IF ( EMIN + D .GE. E + DMIN ) THEN + IF ( PRBJ < PRBMIN ) THEN + JMIN = J + AMIN = AJ + BMIN = BJ + PRBMIN = MAX(PRBJ,ZERO) + CVDIAG = SUMSQ + ENDIF + ENDIF + END DO + END IF +! +! Compute Ith column of Cholesky factor. +! Compute expected value for Ith integration variable (without +! considering the jacobian) and +! scale Ith covariance matrix row and limits. +! +! 40 + IF ( CVDIAG.GT.TOL) THEN + isXd = (INDEX1(JMIN)>Nt) + IF (isXd) THEN + Ndleft = Ndleft - 1 + ELSEIF (BCVSRT.EQV..FALSE..AND.(PRBMIN+LTOL>=gONE)) THEN +!BCVSRT.EQ. + J = 1 + AJ = R(J,JMIN)*xCut + BJ = - (R(J,JMIN))*xCut + if (INFI(J)>=0) then + if (INFI(J).ne.0) then + AJ = -(R(J,JMIN))*MAX(A(J),-xCut) + endif + if (INFI(J).ne.1) then + BJ = - (R(J,JMIN))*MIN(B(J),xCut) + endif + endif + if (R(J,JMIN)Nt) + if (isXd) then + Ndleft = Ndleft - 1 + ELSEIF (BCVSRT.EQV..FALSE.) THEN +! BCVSRT.EQ. + J = 1 + AJ = R(J,I)*xCut + BJ = - (R(J,I))*xCut + if (INFI(J)>=0) then + if (INFI(J).ne.0) then + AJ = -(R(J,I))*MAX(A(J),-xCut) + endif + if (INFI(J).ne.1) then + BJ = - (R(J,I))*MIN(B(J),xCut) + endif + endif + if (R(J,I)100) THEN + R(I,K0) = gZERO + ELSE + R(I,K0) = MAX(SQRT(MAX(R(I,I), gZERO)),LTOL) + ENDIF + Nullity = Nullity + 1 + K = K + 1 + IF (K < I) THEN + CALL RCSWAP( K, I, N1,N,R,INDEX1,Cm, A, B, INFI) + ! SWAP conditional standarddeviations + DO J = 1, K0 + CALL SWAP(R(K,J),R(I,J)) + END DO + ENDIF + chkLim = .FALSE. !((.not.isXd).AND.(BCVSRT.EQ..FALSE.)) + L = INFIS + CALL RCSCALE(chkLim,K,K0,N1,N,K1,INFIS,CDI,Cm, + & R,A,B,INFI,INDEX1) + if (L.ne.INFIS) THEN + K = K - 1 + I = I - 1 + ENDIF + END IF + I = I + 1 + 75 CONTINUE + END DO + INFJ = INFI(K1) + + IF (K1 .EQ.1) THEN + FINA = 0 + FINB = 0 + IF (INFJ.GE.0) THEN + IF (INFJ.NE.0) FINA = 1 + IF (INFJ.NE.1) FINB = 1 + ENDIF + CALL C1C2(K1+1,N1,K0,A,B,INFI, Y, R, + & AMIN, BMIN, FINA,FINB) + INFJ = 2*FINA+FINB-1 + CALL MVNLIMITS(AMIN,BMIN,INFJ,APJ,PRBMIN) + ENDIF + + Y(K0) = gettmean(AMIN,BMIN,INFJ,PRBMIN) + + + R( K0, K1 ) = R( K0, K1 ) / CVDIAG + DO J = 1, K0 - 1 + ! conditional covariances + R( J, K1 ) = R( J, K1 ) / CVDIAG + ! conditional standard dev.s used in regression eq. + R( K1, J ) = R( K1, J ) / CVDIAG + END DO + + A( K1 ) = A( K1 )/CVDIAG + B( K1 ) = B( K1 )/CVDIAG + + K = K + 1 +100 CONTINUE + ELSE + covErr = RMAX + R(K:N1,K:N1) = gZERO + I = K + DO WHILE (I <= N1) +! Scale covariance matrix rows and limits +! If the conditional covariance matrix diagonal entry is zero, +! permute limits and/or rows, if necessary. + chkLim = ((index1(I)<=Nt).AND.(BCVSRT.EQV..FALSE.)) + L = INFIS + CALL RCSCALE(chkLim,I,K0-1,N1,N,K1,INFIS,CDI,Cm, + & R,A,B,INFI,INDEX1) + if (L.EQ.INFIS) I = I + 1 + END DO + Nullity = N1 - K0 + 1 + GOTO 200 !RETURN + END IF + END DO + 200 CONTINUE + IF (Ndim .GT. 0) THEN ! N10 + IF (INFI(J).NE.0) THEN + AJ = ( A(J) - TMP )/SUMSQ + ENDIF + IF (INFI(J).NE.1) THEN + BJ = ( B(J) - TMP )/SUMSQ + ENDIF + 30 IF (INDEX1(J).GT.Nt) THEN + AA = (Cm(J)+TMP)/SUMSQ ! inflection point + CALL EXLMS(AA,AJ,BJ,INFI(J),D,E,Ca,Pa) + PRBJ = E-D + ELSE + !CALL MVNLMS( AJ, BJ, INFI(J), D, E ) + CALL MVNLIMITS(AJ,BJ,INFI(J),APJ,PRBJ) + ENDIF + IF ( PRBJ < PRBMIN ) THEN + JMIN = J + AMIN = AJ + BMIN = BJ + PRBMIN = MAX(PRBJ,ZERO) + CVDIAG = SUMSQ + ENDIF + ENDIF + END DO + END IF +! +! Compute Ith column of Cholesky factor. +! Compute expected value for Ith integration variable (without +! considering the jacobian) and +! scale Ith covariance matrix row and limits. +! +!40 + IF ( CVDIAG.GT.TOL) THEN + IF (INDEX1(JMIN).GT.Nt) THEN + Ndleft = Ndleft-1 + ELSE + IF (BCVSRT.EQV..FALSE..AND.(PRBMIN+LTOL.GE.gONE)) THEN +!BCVSRT.EQ. + I = 1 + AJ = R(I,JMIN)*xCut + BJ = - (R(I,JMIN))*xCut + if (INFI(1)>=0) then + if (INFI(1).ne.0) then + AJ = -(R(I,JMIN))*MAX(A(I),-xCut) + endif + if (INFI(1).ne.1) then + BJ = - (R(I,JMIN))*MIN(B(I),xCut) + endif + endif + if (R(I,JMIN) zG&xF0f{n0r5_YzZQEwondAJW6ddt0+#I%Jz>|#fNF2V_EWQWGW2wTY|H&R4f`A=+c zxzYRn*33SCCG526dru!YGkeXNwbrazvu4fg*?TYhaBpm8EEbFNe{wPwJ4mX(Ci}hg zPbbCKT>r>5vHe$k_lAQNOTT+V+nSGmx_;fKKKY+Mb=M!(f9$SLeBzVo`ro^|{!<;F zsQ>sU>YLwxXZ;_3a`oMBzxwJclb&>IDi&K>Q5}2#O`pFlw)mRZ>#vQ)Mq-!Ua8<>O zg|YiCi^WDSkH!Ai%vfJF74*LsSnTB8mY?C|t^gwW?XMRCT-^HegtaRct9SKOLG}5w zWZzY>+jP-)Rcz#HWv2NXyehWfx2GxlH-O)szI%O|`n?-yj|5U%bB%C>SH)Uay?ymv z>AScb{Hl<_*-m=DbddjRimmE<`==aYPbcsObap@KuaFk}f!Fl*-~05Z1*-fpz1~+` z9-(%M-rbI#=?GoL&~4v2bRlFI_n~=n%Tb ze+sm#KmL)GNAvVQ0E6mqWmVU|RHPS%sp?=w zG9J(x8l^^j8=<<+Rb@^G$2zXrWn%QDe|Pj_larI#yUzy`ANlCYBUNJ137^q=7-ags zF0}Nm13+T2uS??5uTwDkQE0(IIzs)i0xqjPm%iXw`s?HWW&TSAv`4@HJMq~3mj+_$ zuJJGT7XCSXs(B4C`TbMketY`k;&2@hHDD#cJMKVDuM@N$VL%^w==9x_gS$?=6|MHA z8-UCefw`W*JB0c!PoOR$a0O_pF*!)Dy8bbLKmO+~8NR2tSe~bcoIE#(+-;uRcLAC_ zBIo3I{HP=FQ&)e^KLv8*aO5Ri_ODNu8Y>M03}Mw^Rl*4@%6g{&^qy=e?LYzJbiD9C&pOymuhA zM;F1$-2yjRqY<5YvOFETczYW>cZdvxoe}4LIF6U)adr9VG zQ~OAg+0=fL`fTbDNnJM8Pg0vr9Ve;DrUpsmMJn%~b~s$Msb4xZOAAx|;v_AqV%Ain z>T=^i;tUD-meIejIjQ)Q4@N?SwYTb)gvh{&k2Czq@I$ErM_%HJjs!SF-c zu&qV964TVdX)4bW=QdT&w1F%Fe=7oZ^>F8W27LPtlckyBY-;D|2QNZ1H4>&q7#AxY z;-b|4bRsws##(|IBJn?=y6E2H>8r!bTY}34IV?y=fBFh=%$LI7d=q0z7YOF;uR zgjQ`)YG0ze0fc-bGB*f+Nu2qN0XTM@u5OJ7i|uMYSICwDBF- zi8)KTgt0h9-hYQ#H7IO97%bZyW@Y_h>O|1q6D;cvw`tsjS&gG0wLNI>43=%pJehdl zj|hPR8-Ia~y%2kB?{(_YsEiagm73Q6it09jr7lrW721{c?;P<dFMI zH>$lsYB-x3CSK53tkMWllM5)>p!%FqQqQW%2@^|KVG066+0>AURR`qND80id&GVF= z!vw>Ou1u!dh~&v^>g20Y`f)9-J1TijLnWK)%(m}DDJ@x4)tqe3(h1GUrfjN*WN{Wj zo0AK(sjVanvX}ziiwS66n2{p5niFm_wYDXbVMay{tX@XHt=V1Ff?gMHlQSV#6J{c} z5N=ba1FH&euB29Fm{CK>#lvl;6KubDP9H(f%;}8%MCK1rc4)n{D7Cw2{NHRP>i$Kk zy+tL5RNahjQED*Jecwgc<@`qGlU(Kp)m>cWhty*X+uV>EEgDi^r%2OU9(iLS@&deA ze*CQ#vWuVc`0p&l?<>Op6^b5_S&e0iqM$t14%5)>YeN#>^d;Er1z8Q4~_09a{r(o>jV#)kqPm4;3NKFGOs( zv9JlRr%3Ug5AG6~S%tXki*SGXzjN~E@&5r}uJihe@E^(J6Tg8i15ym)MQhm zB-Qzajtg=fN1L|lzw)%LhpII6@~fak_Z^xQ+RrwAKhfQ4u6^gj4d9Ia8a5uJCTuN~ z=zgnV?HAU24C~;-8-(@0pD)CU8P*|TB@L_d;eKH~C6}3_^|U-~`>?QHXIQ-tSHBai zzbeAAfUfdKUlG^Br<;$K_`1#5Lk$(AlTAzV{WqR7V}-l;XrfZ#}~4M zishn#uKvaO{fAvAJW@*@X&<1;*@yVek=U6p)e0ga!F+XdJgBqv$eqjtTu0jlp>ITH z5%BRLYsRFlS=9;|W{&kB8uIdq^>~+7II~B|hHt9Yc0fE?(I|aSeqYVGMtLH|U30qnY*ib@XtVB4P$p;Zhr-vjbK#{;uiF*tecCoJet@k! zri=Nfv+<7{9+^3J=;mzve+YsmM|Ud}SGanam_Qdc;TN@wwdt6CS(qM=w3JiDUqUml zus`K0ufOq(tv4-R=#g0J_p!5#iJYG5@|_?(jV*@&_RBt4D1J4&dS$1bdtt9X_BcNi zGg#PO8T1Og@~G|4u`;g`ti38oRa(!4oh_Kqi{ zeX5*m??w8kz%J(Zjqmj1b@E`DuV~LiW#tVhx9goGW=B4{L|xaQapd_Cfk~Hox12zRZC?51S~q9 zHux0~2J!wzZFP2hPXpjVEn&LOPliUhtAKe=zcM=+VCgEb-N zx1JR2N)PL}y36=gB)U%sw8FNevE5ENADP_jB%`CSiR_0P%kgaZnDy3VqC222Exm63 zlWNaE^H(boZgNTEk&YJ>ZM;)Pqkhb?kqOc4EpZK(&bOR2uk}@t>ALsqj6}CWC#if% zRk+O-n@g+X;Q{3;CPFhWHU~1V$0hC3CSF*3b5J|>1)01mRge7vS#~2oP7)17PtNSg z{8KNTXFZ7s!7*3S3N+SH@3(@9u{jaR0y%CP`xJ8Q^4=na8iR~hq}&*QIa@C*7umT` zaFoqx#W|2sSJEOD`7c6n*9ana^)(IHlGeecsNlgkzhfHGHa@$4KAFheL|Xo`I(7yAAgp;NCM3 zpLwNS-N03&SzhA)Zy=m}sar}P6X74d3&QOq3@002v#X@ntjzT$w>sW*M3Myt()|is zGKbrQ(b!s7cuHfq0asY{_QJi+BcSjUVbZZ5@{s+_ZM(`$rk02-rDmmc#J~D z3ipEC^>ds`1|HvnSZsXOt&Kmw?{lK?$D*+HQLXDE5+BWz_=1t>c!D1Ms2XN&z~n z#>Sq!SOg9;w$lIyHAoz@;EBWNjq#Xmjo=)b$95G{3%lJ81@+X5f_lNW7($NzH)@BL zm1aIh?In#r*!bxDzTjCzdhGY8B&o#gVcjSW242`b_AX=#UdrFkR1eJk0vwtTprNpt-At_u~32QH^d;}eNY4KYsQq32lyHifrUH6Fh2 ztzk`9SoNjMlb?Iasp|3cjNscrO;?jcGpvnIH^SwCE{KGS!>-AS#FmTXvo}=)9cP1; zBVosIwx%oi&iIuBGbBaVk$6*Zxbaxxfd#7aZmaQavYFGLI};oof7Z>niSA>#wanv* z2e|*qt{sbXTXD~SQZ&~geb?eI&PY6XGk9iQt02t0@?0JiPIr!}bxU$@teYee2(5BjYI=NXs%;!{+A3mBVNdk}Xx^ zyLv&tH5BUS{(*6gj)Mi;ZVcbHOb*1B1v`F zu1yH@GaA3k-@_IvbAzXehgJ@U@kfNPR|u-GAbD%heq!{GKy3V% zu>HiwXPBhq11fb^K&Wa1!OA{rjNT!7E6;{ER}qQ4bN=M~(`e4gyQKQ&Fut&aHl(`- z;-lA@7$+J(T($A3h&)X$B>yduf8iavtH0D#VX>Y9kqZpdfq0k1`0I+Xajq2qXl!XE z={j#9zTH%PTh&;N0ng%7+)}0Y92M2S?9WsDIqI9UlqtWBO7y8+2g_t^c#J0q7(Wxk ze(w8h;|~&)1oM zHq4-!KDP-)`X0u+71H~QQhH2-RaCO6unOkmo9Ox~tMYzAC5mg1Pv<2JrB=3qTq{fI zEV>s%`~?11*2dH-Atbm0zdfWE9-THphxjJ>(z4+;>mj@JdCo*$@1n0X(s$J}p$mqsRaH0G0&n3cC z?V?$VVH4f*b?zXDHw%R+VQY;Gk8t*1Zn=7MR`=etotx;kyH4%3;Sz4++f;r>r5zp6 zkpZnvbbdf{&95`s!)+FHb=0cjWpa9j0@I#zaNniQWP4zPq-S3u@ysf6u$RxIWQB++ml)LLB zGt&H*3bq9{^-D)O&w|B-?X`<$n+7st8WyzG|ITIB0?^0$Wf0cJhu;7+cpy#X2rKJX+m#WJatnjQ>s7(=%_8yOBB6tJOrBFTD+y(^0+gV3;-ay{_wU zJbS;QYRkX zQl0lQ>(whCs7yR`6tb8A)#YAk=UZv#*ngt(%LCU!HIaD(zizRX+pwPKE8&qaSz0pD{I5+mIT+0?bbzfS7U61 zk?HMTGhepLI_`zZ8-~g|&Wzwe4Fc={Et|HbrnEPO@wupIj_9Xqv$pU>vBZ_LFKQX7 z;dVaCR5I>Vwe7uFku*%OyO-*=8=)0v!AKZ;PC`Cv)|Fr$x}>EJU|o;3B2d?}GY{T? zMqeJFTj;L;o8k8|rON*a`QY&3u^D@2yzm$4tL_P}xhF_Gtg<~7iEbTd_;UQ3&GE$8 zQnIFhS~NQHGwXtkBKDUD>cQ@qtwC-o32(1!{BTX8`v6qr#+p2@ZtZ6K0k~6oaszNK zwS%WJeJ|{GF@fmZRR5L=EaW}2J;~#uKyrX83E!5KQVceTe zh>V~ArhK^T$CsZ7GwLI0x6*4j+kB-(=eNya-j`ddBRbBuPIkR=#b>W(nRFYO#1}t- z+s?NBtm~B-pG^Sl`sr0<6JPuw;I7eYy3Pxns&v`J7n=avO2J9-{5KPiWz6p~3=@yt zd^K`Bs4i3QN|t%Z60H)B{5pm*`HIwuT_(2ny+vLtTqZ>6RfDdMybX8K;&G1UA-?ky zqD~k?Qat8u%lD-0hVjNKmU2H~Xk$%YT~X%C12KLR-7ktevjnPHQW@S^8QjiqRd91< zcvDqydsTR6b#QZ4cvE$7dv$ncO#t(oYJ%Hq!aHk&n`^?GYJ=Nr!#nGOo9V;4;P$%k z&idfyI{GuXolJdhztQex=Qe0{FI!BP)W1c`&-du3Bdu`?sqb5-XRemBvR-zoHjQct z^w?Q!$<{$PNL^Y7J*$BS^C{6EkI>mCb?Ey*51tv@c7a-V)Q$fsTSD2E$*v1meD(@D z;{PD?nYU+Ke%5ti#%Her&^2}y+0Xn3-~C^zwP7Av!)`+g~tR=lr%(+_3J zn=UwmR>)_q+IFOyiD{Ti^G?@Ef>iBfZ0rhhjK!|e84Sm+V>7x2W{kCiwo~KzvD^9C zeEF>h>!CmPn^Io1rF{-da{IV$5qtPN*Ioi?b<+j?CNdwV(%9#)Ndm*7_1>m)7G3(i z$OT|vArE{8+h80J9={ZRxXSH6-m+;xJ3MX|a?t^yCbG+fIMZx!Srv|d^hu@;7Qj!2 zcgDM3VYBAT8q0rUJAf}Gx_9VmS#|IxZS^g>+D+?r-|2vkXAtGjp5K?XeD6T~i?E9| zH4b*X$o3#(!EFUH$g)@xCkxq&n*54LGd9E4s&MJMgJoOXol+HH0((2orp_AnR{=msyLq8JM4ZGs_c4bDEKg(8u7_qO_FS<5=7E) zG__e#JvI_DRNhw?{!vZ1_1$}^n|SD0_&&vtHYaNm9s4!6>2U`Y7Okx2?3e4qbj$p{ zP5tTwAMR*}63TW1Fub=~J6_*X8`~8!SB9vWrZdq`&el$3Vby4Su@3)6*l9ZN>)6$G zd~*EHoKC%d_uF~qoPGv3a2nOl4I!HRk1>*#!Y=Lpz;E=uOaQu>l>VzoTiN!r702a! zqmGfQKu1|7SZ$(NznEgiIyICFAjE=-sTPKnxcgVU&*Fu5&AN3*}x|r)NwKmQ&~c zL0A6@s4JK*r2muf4Um^)oCkh7c*T}2;g>bWgJW(tw<+^@$3F(2uI&1GEPXKeLe+f- z>`oV(9H|lF=ko*ZbZqd{`0RUnZ*_Mj8o$71?@u5?f3X{nHME~x!ku_gg?rCx zh;EnlP;rJk^qJYL>)eT@&vT_=bY63XlkaYUpkF3j`^eZ|QRdIDGcx5~+F6dJUl(xP zoI7R9+zm(Wk=Y6u2@$pl!Q#&=>VePd>*KleNgcDW{>SNh-9~k%tjGV6JI~R2w1){I zY;O)bn!=R}!)1%ZcZaE^!J{WNv;1~=WBA5!S!?j%pf1U_1P|`FZ1CU-rM21jRWxRW zoUmKH*$11LY6dbb{8lw_6ELGdQUhQhqmoX`HIuuHoZ^$rPAUi6cJMp8d6-8fPzonl zmB!x$1;xj)pE|gfC843JCf;WB2fl)Nm|ZEHt{C8lt%vUYq*WdK((O z!9=*tTDdGacd#-3r-{thC<~qsGlF(KKiM@g$-YRK)#c&y*Wd8`4adW*l)%a{*w*im zf=r)^FI*pN+e0SYW(X6LH#`w!b^{2q$NAm0^}^G4Qw@KS-OF|2fi3Xzvm7mvXHxr> z9liMobCem)1E1rL+~E(9wT5tU&o}klhE#Fts4uW|>M>)DN5hAB6=I9Eob@Fx4TauzshoK9|TT#fp$IwA2lkXga6!&^TuyPH=(%AQZZq$a z)gTHEv{Dv!)Q0!g1qT+B4>G;f3lC@@g&8>={05L9yH)V^q#KXHqZRc}EbK#@%3t`8cFe8WH{6=WbB6w7%h{Aj41rM$#6C7Bs-^>aD4;XT)fu|b; ze6UTw*`@k@bbgEPBLwtkL-Fufg+X5W0ZraVk(39+F)U(xEm(8eC!jAf^orEX6tj(HnW*=+=J^Scd z{dROSC)U_r7S9c_w-1?W$W)E~_hmB*-Ss`a*+)lE)IesGUpLd7BX`P#P)Vod&XTj4 zW^r=#H-3PtTr9_0`70{K!M=~_V)W1dr@^hfU`Eiqn~_@&+iQaCi%1_FNU9B48*v93 z1j)?N@3v~eZK4PcOepW{xT7}6)(GLiuzoW!eg`ra`E^4mPMf8`;L%EQ0~y^4bP7EW zj{dkWOwM&nJvmoem&?t|<<63GRL|vLqq*D&IY;kBVh~49$J{)(T&~jB2)0#`3vD2V z9d)5iUg0(ybJ;jW!2ung3zsFs11Hc?keT2z*fykE8MEc~IYGAHFo%U{6P-tXa8$^d z5vy`szu6P|J#diUfy@bNISV^U&WSjf%N-}@nlcEsYswHghj%iU(}^Vq+ndANpMz-= zz?Js-T<~B&x$r>~J~c1grm+<~cnDxNtG&bQ0g0M@&>EEygh^h%OOti7XUw)HOkv>C zOg5`7&mNFvWFIu^aVsmkkzs34f{@w&bEeL3Jn(5YEs5i^?|1WP*AFjuPizh}5d%zo zi&(Vrl|=WiA~1X1-McUu-DvIZvdoP1A9h`snf_qcg?Rd=t_!o$Z|k~nS$cL6g-6^R zT3G~SI{l>pmK0GnVbh;u1}*{*G}+Y2F%-3kQz*zD8)#yKOIL2ctEtXi)w?nx5|zzy zSM%IegS%Sbt`@qh#kwL0ZhWQVOX13D^vJ}C7S%v@JYjURDbk`8-5~C+c!`J!UGAaK zbgA72_Ic9lq{|OWm(9}U+oj9eqLx6~tFyWY{_m&GrxM+_vjYGBMx{@6d}-|aEPCC2 ztWGXAJ1w_^oSgG$ z?;wQ0!ZTm45=^4o>$OT#@tWh=XSzT*ycp{gkhrY2wOF1F;QPM%?A@c!N8EprZ&aG2z>yEgs$Nh|c)z{8+a^<*nll#xcO&E^b26D#jmU3=i5Vyxz?RX7G zZQChsuaCIZvI99fC*oGmmE)Eq_Z8zN49BgGoN*ia`yAD%ZTE{?YdN>g;h>IwRuN#FgXLOm4ez6Ncla2Ox~wU!TZP)wRak*TwBO z^4y{}Zx^>2j@#(hsJE$K9)+#3-1+#mVXA@K6)bSII$c>AEbCX~zibZAK!&M#Jbj~^ z!kosvw}y$io&d6rm@>)4Ov3vibj38?Pf(gaG0fDg)f+pj91K`?a`cb6$sH~m=G=>p z0zkVx8KmmNWkX?mzYv$z1?{x~96G9ll{&lJ)xTET2xBL&ipSisez(8Ubq;xJI8UYh zx$#-%LxTZ^p&Ys;&o_MLkC>9J==Ug}Rp zH^I=*%t>^63Fh0UqBJ-Kr9}7NV`)Zeq+%lANtFVsCi2d3*@-i$onh+WnL58=GNusP zv|z?H5*#`F)9bVG8Bd%?SDZYK-FHdN{LAa6Xy#yfBNyhyIyAjlhw@_m5z%h%ctx+P zXF9eX??0Ww7*Cw38}!zvGxeO|bMG*~(o2krr@;i&7XJoiS{Vl5R0mJYJscd*wp4^G zk_%rxO&Ggaw_l4bvN^d_z*x|o+>L6LSAEc`gYVBh8Vof-wj~4&lWtD7N{^)!<~Zdx zC)046W1Qxdj}9L9b>pKusi^>xO-8c0e3+x)SLk-O2}kb?S{wE zzz#M2OE8#itpFZ4IInm~JkX4Phs$EbUXIIX3pXSe+DW`c>15l+WH2FnUy)p%t*Z@} zCO6n-kREGc|Ls)Jb}D|$_z!^3qv{&RtU0+F{ALun3c9V(T>*lY!)u}46sD6)A7;SC z7A;M#-grxJTz89BBv*)jb8>Csp~GQYa*c*Mn!;FxFaT(kKu#$@pE*okU2&#v=%(@g zl(!6YC-(uc?Ubc-0i6Lz@`_uqHK}KM=)nCXzA{&P1nfy_Z$9g<@X)j*h$r!ylY?hg z;5X$v&0OJvoK+=OJGry+rrY>u4s@Uj!*H z{RCG?{~`&}+tt6T^iyiR8p%rJuFcDB=hM2AI`)*8+fMEE*lk1PwyP4kOSJ8^e`Z#t zX>ZsM0GGH)t@CWE^I}u_qZrh}f?=@O4TC(WjdvrMzu2J3&G9+)LuySw{H(i}3C`3V z2k)0P$RZEm54KFYv9DVb|IC62&+HvCcQKe*%@@yczIaMMQjdn6ANhp@ykx^m`n$00 zrQQTO4LP;9@f5Y`cs)8Uo7NMV&$9-bT9b1MXv}joDE_A|M z%?WS(v=qk-NVuk%e<>zn&Jz<+kLQi2sHCi6=_(QFF`7YTqaz;0Y`OkTZyk>-Mk#oO zO%#mC4NW!6w?wnNO-Dq;iYEw_eLSLgq8T|`Z1N}gD32$Y{0U%jAf3jd$|!(VKw%yf z8jJ#AL1|1w9PT2TZt4dYUOvSPt@o~#1un!x3dh~t0>#BfvFRYyVlEOO03qBij19Vz zJ4JP?3zwEA7eIU!b?5nTU?JDbxmG*d=$)lpYs%J*>a{FR)~LsTttMP(iNb{y8}E+7 zh1Q~Q!N&%juymHS#)T2f-R!6aI{0b_Z*%bN4(?sII>MrfZJMkxsXhSS3ob=81sIw> z8I)?6CP{RnX%R1|%3Mh&cyC1-S$|dF1?z|=oMLRw*$Gw@L+l_g!Wg@F)R?sGRzzvayxOe1!oVwK(rHC7^t!9;Z5kX)!hI1VkXVUh1l(AB3Vk-NqiTuE)93 zh<8OaT_Iz!dM+hg`D!fDy&RI$)yb_hivvQ>9YffIa9$YBTM~YcUSBcDQtBAO@1@N8 zdcS28Ti#vR*D5WRy?~iQO>A$g60;1$X5pgYu+_+Uu5$;=bP&rSzLOBWd)C%A1G^ zWg@y8;uK*DpN2)bcw!*RzNZSh*)@GSnp3N=0J~Ik(hi#I5ih5?u^%u~Ms}NTQDpRu z?9q^TH{kp21yv0C+D-k#h;4^cqN#K#?VoBYT^miM zL)1{dd@5Z7i?udwty2_Mx-@4po?|ndEL?d}0IgsueU-_W`PEIv>S@}t;N_>85t&Zs zl`+GK%`;|dpz>k{S^=}PG-BeiRgo;C&}M-RJ-gE=B#i=S1r%DXo?Z-~S+)&YN8Z-P z0>6#LxVAltcI29wngMDwoHUAc;d-rkS5fWo+zU1hUn(vz_fQrWOuQF*$D!vZOPP(r z+}(h@B`cfQqDNJ*Wc-1!PiYxw8v%Z=r7gM6O*!gbrYc)A3ll7x<3vRvgq!0QXs$9) zZak<@-2Bh>Lawlcsx}nV{j3PER+B70I&~?3^FdkbvIUyvedtpW+#U~?HIzUKF8z{u zt3?V$a9yCALnKA;Jq|7(R|GeQwbkukupQe_sLTCM;w?IHta;EyFb(LrB!XE8NZN<- zVp6(j0f}!rS91jHNzN0HeHeIX<>!g4Q^x?R2gE-SNs>}cYeI+&3D}*~`Vk_wLTpQ> zsUdVvWCKLj1JW9ieFyX4w#>8lQp(FX6>87T{*I*mRu+| z`eyE25Rc3Wc@q$7ng_$}qPx|FY7Cvo&??STzSXGDEAa3{&$oLuEY^8ADnu zXs{BlBrR7?`ctp4VWcbtqD6s{;!4jPHnf8J(SD1^D+?>rulJ13%&NAng*+EAlYjA5 zrwToqqsmV7Gr3)QTj^{*a%M!^_VL6v_w33Qg9JNQoEh>IJu7a~oKZWDyH>g83Rufs zo5GSl5O8+@DVfGS%Jej(r}TDt2iS%Kw8-3?n60m;_jZ04!27!*(o@i}@L%1Gtu#3% zy}Kj(9))UMF~Y=!-`o5o@yQ-6gPEI1 zo%1$WEodjC1EJL$sLtIxXre?tjqBKG1$?#MZH1Z^=c(0Y z6xiusZ4@*&U=(XC+93{GRf6hf1i{tLCgZot_<@<@=fe(%3|BV=gsBx})OK2vRv0x+ zZo-lDU=~o@AuQ+cjhdNmYE2on5u>)os5Oh)R+}AY%vL`?EG(&`O_|g}t6-BAd9epA z$DTb6l-F#^Bd%OrLc#e!!KD$+#&DH`Fs_OP!cD1AdL=nb}roE2B;gk6l|b?e;PiWq{z9R1UWVIDc>BG_au8< zdABQ<2LXGnk{!u)0K1Oo&%*x*KBx2$bMDiLU_kko?<$-G;eF4pW8i+Ci*}v z*JJc{GIdtx)@Scl3w8KHJv0x3bWJ@8|J2jE)p(w~k8#_u%2q%!L}Admak3)JC48z$ zxSCMH-5vp5>`0{%u8fY0c){KY2?|Cj;Gd|SBc=XX63W#;u7;GLJ^{DdQjSW;x$@M8 zsSEayqc%tZ|3vL1DfLf~P~POO`jl|rPe5W5ZL;qp?`fTNv_>4QgB0*jv<{I%Yd;CJ zn%&hNCER5d5Lz+aZnv~f?b;65$nJM;*STQ|c2dAU_i~lF$15~7>;?dv9V8atA92yW zXVeQ=!o=ntR|GynjuR00M4`K72;-ujQ#f_%RCWuvtffR1$!alR!n(zP>A)=pOu24I zO*mX_gakaV(EThCkE31TmNloHiR=;!jh1rr#dr@t^Y|qYp1EM7^lgqHEjUM0psS>8 zKP%Ba7mL@Nzztl~Pwes+lZNMyYElcz~gGObHT2D{m`}Fiyq3`ql#f?pEIYf>}PO%NAXhC?j z1SSZN3cbi%-EC<@X>uq&6mM`X%vF%lye7Z-Dh}*s?O14cD|ffiIje)XBO7x%^5L9S zU*1{uJ7;x>1c}rb>_P8*Wf1QdFz2jxa^+oug;_agwTA-gX{_#5MMkbF=A6}b0olG6 zFz2i`bLFWOJF8v_JhiQ=*q!WA#hkP16p#%_0ZS+Q)c~iQ?AKD@iLO)q?&KQP&rSAv z-r34~k{euk+LbQ`3ib*CcO+K{STxx;0hw~LZ=t|*T&l`ANL9{F_H9vlPttBbbSGO~ zdD3xQs7gDMiv{#Pc@BB6vSOdyK!NAAK-Cz~s+RM~^#b-JlLD6ek|awXuYd~y|VGfjDF&ChJo93sJ?2S;XZO)i9uFDIa$$(qu+`nYtV zO&2y_aMvPFHc8f+)XeLciL4#8&ILm9@YY++I{hf0udSX=hoh~Y?Jlc;X`jnR-u=EY z29Ue&i-Q=Y&}(};qM}WO<`hg&;I;jt2;iwnD4!!~nTZ7KNuCvuRWvmQ$r`Dpc5+O2 z9ESjTBE!OGVI+LFGse|%0eg}sND$Pn+~j1`nVe7;ZA0`q0Ta__f1t5Ht!Mj9Smiw% zQmsflG?-KPD(wQTVC#w?FY;n#E-t#uKp0q~b{0i+Xl*ab$rE)!zv%9;UCct#-mUuW zFLRJ`i3JQ6lrvy!I8UA9Vov1sg>=g%-vWwtWfWhU_bhP=1~vz3-H7MEp~Sl0OB0 z5ArMBUv&?@Zj{`qy_THbVPP*JPL~{-k^6I0HFnJb=JxL8 z-U?jDB}Qp}<>|Vkzzs&k^N!GMceu`!gDYSm_gCyt-BQ9wg`T)~fe~fz1lyA99Zk8o z0-Ci`&@7Fn3k-9o6kO_(3&Yy72|>m zcaDJEqZ80afwkm4t>P%Ko&rxRscPJ+Q?**2Qk70~h?5atVGwuwKh=cK!5w zHU)|HFSs(7#m)JlSzN)w`w|PyXD+-3FDB!Syx7*rl;s~aSW_IbYdn(J@<5fkB3iL= zRG{(5#t&l^^=btw_d=8o+hXt(3(e?un71Pa-`EeFA&Rp8ib>@5;fldiQ1%E@jrL3K zaoE;Dfio~V3|R~6N<11nyRT`dKn{=1wB4&TLS44i9F|(T_G*%+Yzuc&qsiKfLr|bR=ar600 zgdBW`5?36lIe(}^&C;O?eHzAfeSX0Z^?rV)Wa9x7Ewq91VD(ik)o-?Frj53fqKRK4 zt|>R~yM@oIOLd9)TMD+Zt`8W1#cM;Iq zQFACN?@9K#@`JA2Z`AA*kVsHKKSlSFpK^-cPJ!pOL)F+*P_^6?y;(r+HwjoiMXv`u z;HjqQG;qX`!A8rKskUk&j7x3Shy|0mHfyX|&9+%% z+G0ySzgc5F)?Bz*GwNz;v&JmaP55U2`3e7trDSNtk?K_vF$svGKI+K11JkjH-&lwNZ&pDI9sJth6(v_cZ z<=&a>7m$NX0v0)w?Leke9}{VO+|Yh=q41)-2~tOj||H#CojAnGCs_awZcltJQBDGYVQL9i?irK8UlK)S?dTdLtGQm5v$ECG#Ku^rE>atO`ZymE)n#b3~5oC_UY)mKTB({7C?IBE&dhIZNnR*jj^eMAfS8=iM zbJVON;Zb!linY811(nyD%4^G2p6LD@H#dbboK7~J8lhv@E7d8=0u?8=bb4v0VD?(o zTwJxhDZ_l(#ZIkHqw@Pr$9a31qh(Jo%bp^2+ivVHN!?TF^0ldZp{aY}CDh%3x)*XP zcPe#nT={RaXlZhK)BOvYP~FI_zXFqG%f3t;tCT6aJ4xgA}jQu(4n^Pd9b$A+Ug>P5?(gIf*y{@9%56*LbFgjdU z`dEt{p`n(}=rsscCqudB9rAi1MRs|G#yO7j*xMK#ymAdkSykq27dx-zPRb~+Q+uFQ z2S1p5ESPA5I5!6Xhz$-I1lVw0mq%!Vk)8?F3BhJOatqIFE`VX1p6TQ@5IRh%o3+co zB@ex5LvrcH7C=0VsE730DvnTRMfA#v){S#1TVC)|2={V^f|25Gj@>f;#I56hji+pZ zjm}Cegq0o_ZG!bGi3H2F5zAG^ve~g*V=UK2ELRomAj6zjAJ(vuuP(&<<#Y~l?v zF1nR%#ag0R7vOekGH>g6BUf5*45Zs|S}zG;zky3TZa5ITQ2 zQ|c6PX4a}gxej~vI?Kq>@a%n^VW&KawMLaM&~*{Db)MRKrLT>eGXk~0kYc{6G_s;k zy=%V({i}AJnbm0=u}t4O6Fpl)UpeDGg5~W1Q)c4mn3XX0h*FSS*2Gh~8Zf2G@THOV z(T%VQTD#e`w#cTeXZu8Sw?lti$KfOkMhr{U9yEnU!w-jCyN_-TtTs2dE@gYlcjPtoiK>oE5_4+povIXK}VobmDx zEBHePxhnMWyo$cpQbk>3FBAG2RB33R68|cjA=5q1g=YHKbTn7=xoA*#vE_yGTJpVG zgezNf8|y8S9UGjUnx|B7%X0)-qHS0+-y+&B*!E`Zx^_xucV<>^iJb}=8=KB9%edt3 z*-Ic>X_VTh+KIj$Vor-?;y5XD;!JCBl7J6>pf9LKI(#+aLlQ3ER$XGG0a_KaZ`Ck9yIRm%}T}QhL$CS z4N4Q;*{)spsg`qUb}cHo@l-yNtk}O~YO0Y`HjYG}C3HVY-aZ@LEL=`r(t)jjAj0;e z?!J#pDp#)oHI>)xb9D3 z6pLxE4cFpWDu3#qy#Sq(*$29&f1Zd}HnHWu@vG>38gixJ(qV;Vh)(GgE_>C(l`1PF zo%ci2nAA`tShRX`^tI^F>)vx}$QMfiD*kD~`ffzA+fE9I>2{N7s}{A{Yo6WdX6Y2D zZeQAKBH5-TD`?h*h!D_j3pl!O2J1;QtQXrf0XhesZ9Q^GQcVT)A|O>~rCotrh^>oKG(10rB9 zl>Da^?h69fW~;8%mjtfmLxzcmo~RgXqER9?{u`y$qiCn1kDGu;W-a2acplfN^I;zh zL?Q)GBpy00ST%3;7@1Ll1I)%Ny833mr|Ejx@AWkjsG2uDIab`#@43ogReJlAzsY~$ zIxqGktXwDO9+{H(o94n{X2l@%v%RA3L}{rAj^lNY2Z!Bj{VpJ=`~poM_VZx)d6%FeRgNzSDPM_>NF34u5Gv%ZI^9oww8 z3>cn3wtaZTalJ0Zc#L13jsJttASM70AZ7GGHbPVl#FP8=+StGOeSJx5qkoqwK$aQ)!v-l@CIjlaY13r_xK{P6gM)I#bP%} zwkE?bpPZ+ur7c6MH;?}s?xFIkoA?$^b246|G@fiB8GSbmDQmSHfm;2%(t=h$`tg!h zH}P4=!d9It%ief^@tI9CWRZ1KgYz}=DxzFqNT#kc8k5uxel zDQ1^I!^sup`rX_^anEl)vgt>Y!u&xrfm_gIR^d!wBCo17#j08-RV8SBPF3H9k_=>o zB=cm)vO+a|mHRhE#_`6#EmqSz+e}TWi<-`oXfua8>u(ri`K`ATSN0Z5uvHRdA$(@m zdLCywwITWWd&1`A=XFYx70Ic!$@QmKBsY+L9`FW~V{@!`BwKCZXK$ONJG#-GZhMgJ zA*=4NH`32NVyf*0K+$Gj#A}ld|7hl>Bb{G+=57?f0Wf<^-N{aewwA=rOwkdVlH1y%Pqjh{vF)kciDRVkE&hK4K2s_~lN$c|7L zFzo+eB~zStt6R;BIwcQ->Xm$!EdPp>JPH80Mto6;l1~CQB@a2YeiGmCE9d_#qMs`aBLI3PP*nDwmoKqbV*Y0^)AKp2Z%r{1bGqQkUK5p|IFW78W~5 zz}e|>igc?obZa~>pFb}?D;FErpLXWI*X zQHgGKOUQKF;Lz$we8cN~4H{)zVXooY#}*43UPYFM>-idRYDx5mh=Sw|*si>$TV=Qx zsqc9x$QCuAabKTorH8`f9HsDhk%WTt!sV|>xhg}s#^w^r6`EJB8ts)UN&(9K>kpf9 zD@DtlfpmtuYGzKkYsiX!p>o#(L$1}ns6@HT0h@AHkU=l=9QAqk zF`WAx@iELb?-|A5<+wzwOx z+2S5DP#0OKH{_^q1@5Wu@FWVU?*xW?+kH_9^&Y@Ry_XEsMHcEcIqDmLd+ObuL?QLf zz@Xmgi%O`c0UP!8WS}mxP+yp%z8bivzSff{q`nRq)Ytf;66z}e8}(IWpf0lJc`Kgu zk19I#FQwQsY4el{nJfnelU83;!lW6nF=-*A^B2uLe@7(171>o}B?j3QWYu1>%gIWy zWZTH@cG*_4=5d>OEs$GagU~|ukV9xDJL0lUWHquuSWH&_i0neLa(rYLkd=oe+aO$; zPIeyI{a6>-Ib^r~2wixHa!TKA~HQtc3LxChw`JCgI3O6$#HR zRt8KFOAgwp6;H<9f_amIPxLOQORp}-_3AzZ^9nym7I=}p9|DHL_xqv}h3^4u3g7F{ zwv+e?bBC`%<(*{pM|QW*(%>GljN)Dr3by(JL==QLk}U!~94@`EW8jzUGeF%yxo6Tz zRuTj4_5{do_F0&$BMXx>2?gtYfz8SU`idr1gew!%&`-)go+6qQnluf~5g1C_WYzuv zjlb#6siR3P^}KQ`$(Aa&N=pU|!WWe&_dLW+xfjWRHcH~#eU7Ye_XJt}f$*ZwBG@ol z+C4%-!C7B`It8KCvO#^#THg5tAWwIYtfza@*8yS3XQA6i7P|c;6dd;jh5A$x`ZPY5 z(5KM6J}qo?`c#vp&+pzobp+X(*XQyn^hw+)u~?*8D@yd)0@(Dq)S)dT@$FvhYf!m~ ztk-9=&(iLBWNCK;2{;RU0s0g~e(XxGROV1qY8`M-yq>IAYSLGP#vGr8cr{sw*N{+9 z>kA5%sv?wX%r2o+p?Rfx=OrUmyQS3it)^6!uwJgi$a5PD`?Y3`Cx^9G{o#jlXsY$r zznm$lOd4v^Wc61>AX;vF0vAPKry~%p27dfsjDRlnCmSS*2t=!8PoQoI1b){M5Sk>| z?Fi^nf8(?9?Cups=v*FD-cKtdCs;b+v#PtMjJa#RA(@Uqy4fKWG;su~Y%7V9vZD0n zVktKDYezOZh;nDwxwLInb)B!-$RR)O=iy%XqE6Bax~$%)yMuS`x!1Y~!k)e$yfAs|&HDwIWK-uLUYX?s!Fe9b#X~1(^i*uBFKF*Sqt6m?#s{(g zb&tgIIBnS@vD`60BarlrCW7`C!}fFT7FxmUewjKr$;4-hg74@gPvans1$MTgukpxz zQM*U&4uDOt^{+v>xpt2hw0jjq>?2R31o`&WAH?SUh>u&dhwq-?BMNjz>g4Iv$!EST zfn4^LQ;(l|MGq&}>EYymcfFgbx^~{_I>;nlEMXvf!?B zbFg6b+nJT4RCT$DGpW%tsfnrH`B)2lxMNf;=k_2koE%;@dS>PM@kPS_r~J1lUTo^P zHZpn!RqA}uesTQu&>ilWD6Bj|vYXYxI|OP$?tQL{n~`7NRG>@d79$ED&HZmm-1yO{Cx| zWH$j?q9Pvga7E1|aMiYf{>W-=qCW%>R4R}3T_nIDIA~(MkCHmMR81VOO5oZ}0>TD^ zy7ximHjBA?D6Cj?FF^wgb=OBl?I@CHhe?#! z@*{X%QY!!HB_4r)ZBlcTa0Hs@!J5ILsn=ZfwPV^LDfN)4Mwv$6p!^+lXE_4RHn zVQEE9+3+dQbacuGL+YgpeZG|hh3bk#)K6)$`th?PXNKMqBRo0vLv%jl)Ci}=cQ~VR z*xtm3-Jul9HdA*>-kv;|vdNsX2JJfc3!+o;5p zjlPFCBx>nY<8S!04_(?fx27U7E`_-9GHB64o^4>`Y)hq-a_AqO+h-xG}sHDM}OD@N{{6~dUR zGk*!Lb|9V~sXK}!n#R?ZOI6&B<>jTuI<2dH^{UZ`cy-Jv#_=@9;$5vDYkA7*q%x)d zyL;VN5yKDP;VB%j8CA~Nno;d{^YbmdX6@*siGtyi0Mz2_c@39t42L7}yFSKRe>Z6!wd@aVWY+}pqSDh559XVx_f+${k z^t|?VPhm{cdQ43UXut%WdO*qP7Wl<-LDP7Ddl1LErM$d!Kv~}w1d+MEC5Vjc4E+!s z3;g}Wbbd3@eUFPe);7A{Dd=5^A)o(I=kup+Uy;u*H>qFPS-f_ik9F=uNVHMv`sojI z_6kl*l_e2vAegdv1K8nT>r5iT2!G4sWd$Pb7Hy3#B#GpABeeuln*f46#lA=Hu7MRW8y*#`|51j*cWb@ z+bam6B()n?GJ&ZupSggCm)yuWO2T*LBEiZ-2n85XTXN2;k6KaGv1R|i#VJHjYnC;0 zIv0miFqQc+WGa(5uAwXR_^EG|j$dPPLlox2`DxvPp4N=oIkj8(CWM?@m{x$L-21X8 zW2eR7VX`6-r)rLRaH{4MIttfs(*{_H?l#&Jby0b*{!W3Dn7UWD6}MJ0MHbrU<@4V~ z?lB`0f?p{31LnS?gdNq4T6XE0(~JFw&il1-ggZA@h{bK76pN8R%02x8K5RQ2595a! z@EQz0s>B8)B|r@y?*%GyF2g+`B$qL+XVRx}8J{n58BLxTTA0T16+|uNqIi#U@24a4 zoT|e%winD;)&N_U_R$8Jl3%a54-%Gj)pQC^e}nNem4iEqgF7|qy@+3{dc{TlvHP+D zCpeYFi7ncKN9qD`+-S`&G1UeC|6gL#uhZ@V;Fu#H^qgPWps!xF%Ng1<&C5>^CHo^K zJ?j0YyrFaYQF&PmQidtLPc=OtujKpXtU%v9)e2NH65=RHZ23oiqexE>*NjNG;&7zA zytJA5)uZ1giujcJz>d$32T>Qe$JrRAqVEU8#^nVAs+{k?c0h?}vAOsb76VJ0rJaAI z^=-O@SK3_Um1GtmDYQkhPfW7&TN&^o1!(OQ4Yzk2#FGHyqfcy^89T$7 zjk2!@q|>jRTSJc9#!GYinB&$E-FGSYNN6JS#<;c6T(-3~_qx?wteS7&!W_$2Y2d^I z*1(134g4exd~M8{a?D<(eO-=O(-iINxSq~ehZW9ky4Kuw9iuklVRPXg3UJGNNg_Bi z?3C`>EjuX_B7;duV#^6;184h17NbI%ZQJR&m5_Ik-Vf!?$Qex8oy(4fX)vQ!r=ruCCBN>NvjYh8ZQcQ5Y4@`Zrq8v^f} z6S|9x zq2p_MI-aW0(ffa$8y$=^Q#v&yx}U=SBh$^79)zDv=w12>t~VihOWNhXp{R~5P+Vc# zo#!MvQjJ9BS$@5oQ+<58`$#2p%XvgqMrehY=>-OEwNlvQ(bU>0B2$Fn5LVGp^{$nVKy$g$r1o;Thdx(=`)> zU9+3-Awzvww8XaeANWCBkVJR+8PBRotqIY|akZ-guBuva3kiHxi|!1!%YqJ#y~42Vcuz~sa`jcf5|CW8j2L99RrW6L_x4UU#+2R zLKke&_JIJ*wrE|C_+x58{5wJ0cjBHV+Es0|yT>sS;XF`sf~gLOB+E@NDzm){FXFx; zBwxjl#`5-Z-XR&?+!W%0CV_kAmYHG@O#FsM3Ib}TP&TpUMy_1+Yx@{}Bu&57QZOJT zQ#78v=P9gykYYDm6l{YOR4??HQ&jIOs$Qlw)kcSExy=`&WaJ^Ipj0dflzd&^MMbK` zc0Hv?L-{#Djnka)J!XuoGaW)s9SrQHB#0+RD~IiCyoKRGVJp3l?*p4vx_!{Z1q5&v zUe2UW1#PEfQUVrlIHuoiYjG7|1(xLQ8+)K{)@Hb%APi5WC2|`^Y0-`5=YAVC0dn+*eeYCW#g8 z_KK4HT&bN?MIL!N#X|V*$WLN70R<kJI0=vdpJ0rUC+t3Dc>+= z#Z3(MreH#++ujzvUrdMJs&tTJ+&>4+GYZl1IoX4qj?p@&Y?kv&URq_Am|*7<7+Mxp}u98d0O8%45aUq|E--VED4 z!3H4#^Jn=ECm#BC@coy+k0pzP&cxYKxXnj^2sL*~&c3}!G2Z;8+ex-Z*67gWCbD{hR#Ad$Av|; zFc;KRdQf~Yu15oK9wIJECs%Czj5=4Zq9X)z zuc;%)m%U#PEiFfQKLRg-YRfKO7`+E-)yDTyr*YXP%7S zX)u$g2hov+8jq{5Ej-5fles1R^824H?w2plwti7vnD>!zcS5%WWDnAE8n8}{noMoU zG^Y@C$tlDZ?j7RAD!);z?EO;qx8SRAS*T5PrCBE*m_R>OfKbeOZvHBp*zyqe?}BUV zd+*ZsJ0o#6&*1DqGzfZ>&ARe-@-TLzE*yC=*AuY6B(bK%lSf z?xMka zNVw{ASG#rPjy_OB=7bh@3g|0{R1SNGE07%q19P9EiLyL&s)W|`2?IFhzDzi=s62rOW8G zPX*SQ4+_Lill`4;<75G<$gz(2Ix+_#<=39MyNJ=aDTtONvk0Eln^l=aBZ3+$uSU@I zXcTWmBhbeiLmGkad8<96W0pe5asQ|75gT3VkM?UMMFb*$89k#T0vF$61Z==T;3h{v zm->T%Xb~ak37CjW-85VbDWdf9r%aTH5|7Ey;3&xHI>%E8I;EewsE|b$Jh(%Slm69q z#NT7MCrR{tfWk-P*)BZ;VQpE+qvoAl37i`j#T*Nd?YGm~B%%zkzbG=aNB3-OBtAJ_hllINYhOP}9 zicdT+9|}~MCqnWU_C`kY42wY8aBkB3k%9+Wz@qZJSfcx7Ux|U&5LkGJ9CIM2$V%jr zTx%US4~$yI43~AmkS4a;Y>h>8-0pLLx;$WtZRn1gNvMe;V(}{Ak27(M|Cz5@ah^$u z7o9WwJ#m9z;|tJDJiwwFSZxLqVq6Efigy+ne!YX$dKgK4RAbl;y?JwymFCuRPe&&n z#@^14h3NflksVpEEDvAach=jk_tu#0@RSt&>z@KqFkDBY>WOL9yfT}it&!DiP)4D4 z@k1nFSY>Irj_GqJVrbeIRW9YV)fY@^dzCoPO2Kxn^hb7w%f+((ZMRdJOfEJ+)qc{i zznPKy{0$|Oe#a+slm6{O_~WbX*@e{u1W{rXJPk{EEg3OV&f&6;OE0Cu7Npc5r(hq6 z{>bikIY}w#G=}ZojYRyi6`YDh_n-3OuQRiD;`DiyaFS4~4sTa)u~y@SjqlRiHjid& z8jxd+Zaj}YJL0~RXfN`?;k@q5PzlaWIddxqQv^6v1_uQAP&L@C0J~LNo2sBtJyX+ac;tCR$BC7ZM0Gei zv4$$e?I^8WyK~)Xn7FOEb*T%oi3x6f<7EZsSNJ8H8!B9f%h^yazp-IR# zYHv3n4kJF7C8k#~oDtrO6DY@osOtZOT=5J(McE@U`xLd_03I9+MW#T}fwz9;==a_OY_mWx>H!0^RZReNvB zK6dJvS7fJNJH26QsV4unt61Xizk;`E{4Z5?r~iBsM}jK0@ok|9WBi2+Ot2ka&kjF= z{#<3PoPZZ%ANahshQbSv{AOWeeC-9+7<(ug60ioaiQh*`%dM=YfIIX#5EoezY+rX8 z@!jLTloVQZ_1PEacGOqWh32-_S7+Z^O)ghGA5N{C#vn{NSWPnFz3^dwo~GNt1`4%&7@W#GkbyPC z^2mE~t<^}yoj#bW;5*X*ds@F}^>tu*9gfhgmbqPI_T+BNR_E@l%(hkL-d&w-uU`7| zuy{cH`BjOZajC)s`e!{WkPa2Yq45XX;l%g@M}588vP^X!qPjpGq9)2WXcu)CX}!9q zo3U%4MA%9*h{v?vd*(7#2Ts>7zURa;XJ{_` z_wM!hT@Chy`%lT@xcS_}JvwOamR^2y+v}rv^V(yt^sPX_JsRXu5I^DKkMM8~_~}#M zdIc@~*a})UrdaN9;(>26$^!}07A*zCje6$0$&De>&&8bZS%Gnqpd1??BX^zHqb~MA z9ho~52&VQ88H^En@?fMTn z>wZ6maxm?{Lsd4PF!Gl7-$JjPZ{wDhb1e*%pPbuuzNK~Pn*mnyWcOGt5L6kkx=aw1 zFZmdc)r^as<>9eXOc7SB1`iV(+;u9)ORp|=7Eg#bdR#HxR)_lt;LzxOU_qmejdZIU zSzVYY$T*l*MxynwMH{69R`94((Q?Fi1Wg)PD+gS?s5a`&RY}Y|d`cXoggHEbRnb z4x+gC%rbAk`d@D1)3XQctN_kG;B)@Kt18&l^n1vrsr8#OS5o&4*_+G$ z#50_6AD)x&=!Lt#_<>yJi}Ktu(-%HCeR22s3m^PqE_2?Fu6WhXE6)8ISa|`bxZWs< zcjV7w`PM-G>$LrlQxGy&7N3BTBuZ8HZgqu&lvmhRZ0Klg@Bu zF6A;O871lz4C|fxxXqnLJJg6oaiH;_eP^$v(6>CSBwDe$o=SLD@{rHiO!UInxB%;H zRXah&9_s(+$M51W%+%1Az$h@GwQoM$Nrvn#T>_Mu6|w_&&pt18;1dKj1)G^|%QXzO zfA4XUXOz5o_l&#AXXlLT-8knyGn?;uCRY$Ku<-ocmLXMo;^mZj6=yPlAGqPwRxF&p zp^}N#v)Rf|DhD7#=RGq6Z~nxpt+Z-eeZ462ed|D=Et@(1sqFCZa4vKF>91wKbZQ9$ z36hmV-5|+f8L_gUw88hmhNY0IG^DbbbFqAJ)P4%oay!q3=RCi*ASboY58ORpaZkH3 z=lsAtj$&^k$7GbR%OISOP0eJ^10q^A+&&M8zbs^5zMVS`&Sfj_w`R-CynN_l@AKZd zcr!-W+9xn{nOPaRoyg=NwKT%-*)?$Y%**#T8Osjw3> z3e<{;JY9T;iO@3U&_PpMrVkGt`+cd?-kVJ8;NF4I$V7UjJZGyW`Gsh-X!PSQl)K4N zGV`Vh+voTHit%8clkbNns3AKv&hJJ0HQP4Nr8_bd-=BLxSC8d}?DzgL<*l5X0Bp8y z?g)>~+vg*SB@jmssnWBVd10_QGr#{%Rkd?IS9ibg%HO$;mu!u_M9~A^Uw2PCuV*VQ z!Iw>q`5A$$nRyn8P8jIc!>Yi711rt<+!#^mYOWkoJt8!)7P6WP*`1dy-77-h8yp8{ zZDlWDKxRQ#Kf?!UOh}!H`?(TMb{QP3+xpDBmO%baEyju)s?|1E`S)TKC&XN!pSZB1 z`Jc+YPtRQ_ zE%X*8S+^=uSx4ZO!kPgjTWkWc6$o1mLR)ToZH%LKu9LIsCXw#sA-TGO<(9DA#esb$ zbiL`m)PV)kpav(cM?UAkReVm3+FkYyy0&J|MgGl^flYi3>4j-}113)UNZBW1Gyv3) zTk9ROD@a^U9h5c6RT-ow0fabDpU=AYQ*PdxY-v9 z3CPK?y$pM2y`f#ahH&H?`2{(P*lCD!b#U%C|2aotrVw!O7Fh zL)}W`;X|&qxy03425uB4$9Hf^ki?s!85}I=&G_Cf)i!gP#1+*TheF>RhG&$LSfVVceIgiM=Oq}z)~--H9X%g*q$=-4o?;VR^l zY&RA43+AMR$n=>{T$vkDay`sbbhojJKo`=bTlqRAT}ac`V9vQ~|LZl;t$X%5SqW8G zR{(YwFkHjLkao5wC`T&-zfAo_WUdG${vjLB>fujK4#`|lq~Gi3$!tb4EP8b^3#e=k zsNA;MX;0V~?p5Ytm{Extb=mO1sIw(X0%?31Sm`PlHU&ojZnw1!zo*Qdtk)RWoh5zb#*v>B2~?TaP5Kg zE_v^0Mpx=Uo{+~|7YmZdJVz#qxjV&OP=SP5O`339co`l-#brEnU!6!}^iS8WDz!bl z*uFK9r3pFQh^M4HcuMDaSoM)&LVs#-FNztloGLn)tlw1-(?`s{+^r&CgoyjxAqpX{ zAqXJ|`vh?kc7jIM z!JbirFi21kT)V)+{HR(l?<5^^IDk&4Hr5fNiV4<2PEDRwX2R7xwYKbMiWYwIX}h7f zb+#+rLCbbA>B4t?_yQeRk9NWxp81rqrso3KKA({cytQLtcd;Qy3@T#vmvGCRc-B=o zeC6nye4bvX1-dE;ydVOhhas>IbmT|XGsl8M5>2qAnP9=RCeNqKCn{1|0WByn&vM3TJ9E!mm5CChFVM|F%)@~jCFbK| z{hfgqV*9bMSZ=qZd3LmlIk^CDu|1XMf4KJAM~d9Dg6@HnKLd{qifu>bAL8}yu#E~b z-ri|x2BP?KnEudFuk zSHzu;fL%L0gW8Mvv19+M1AgepwZJPguU`~#WQ<(0fVj_j(k4N*h&1&qp0sl!#BD0| zq^S#pw39pn(&{12qE{ge5+cg5tj^!uv>Cc%GR*Gw)ZpXnz(G##JtJ!p_+Tvi^t_jO zzCZkV$rzGTI)i;(uGrm7K1HtBV0t6K^+(Ir5$qyp-j5uz(|TFWA?uNizNMGnvsL~4 z%G?5|2|(f_+b9%l*uP!k@8S=SlFxZ&Dk0CzCCG`I_)OrO-5Hb(ndEZOseCf-q6wN@ zG?h$n(Nx7D-g<^}xdWgLm^|BCim~M^2Dr**y8ytpC`4ELLw>Jn_6J13NR_) z469aZz7k<^2ONfUNu?XfhwV!9D2Q)y@mqN0Zk61`1UUeI;C(azvP@DZ`MiJHO;F-a z>>h$zVItV&W3ds|goEi0Vo2DUIJ+G3oqJ%QU!OJS*}m-2ByYj0gFGN2rLuC*lKtXM7@2T3xpd+gx7tlS z9~1<(z}TtbYjdIfoUP3LoBWoX`#xfb$bCDt-hEhLhSg1_hQ3lSw+FMq4Mh!nrMRzY zPLtc68u^-jp453tF?X}Y+|46Yi^5Lu$l`A9|8nGRwo*$lK86>q%<$+nb>JP9&gsMp zCCemn-r3nAmJwCP*$FX`arFKUb<5+Gu^?y(pz*2~s#W6b`D=Ag^a?gJs}#O@3#Y!_ zjILr^vk$LlD+v(EyoJm==neGRN)4Lf6$RM(w*2qNNY3!)jiekSZ)xWV>MwiJzF*4! zEUSmXIpq0Y(o*8{g=j^1DQSEY@2kJ3O@OgmNRPce+!bh>c+Wk#UV=9b05CW&K>TH& zfOqX6xmB_R;u<)$@U9s{%}00IEvam@eIFF5aQ5N+Titg}NQD2O`5^H)rE{3{CmzjL zzE*=O?fvu9)Drg9{dA7*eCyI5{w?_`HveG%>%f8g<<|>LC*y=2I(X7=3*0eNnX8;( zQd>Z?!KC(QeKI_%&eD(%zs*L0l9Off70Jm8QQ|p$=CgW)lavN?(9K2`PEyJ*UQph! zcPViBy~LW=zwaV`xq1EGH+J%>&o_$j(3cw?5C2h@EjNYoszl_qk_Xkt%{|e_Ml^SJA{POL5$tkI2H0&j_$0xOBPi=UN2HwNqqXj0nWFLFewsi0Q7C`K= zVU{L^dt$>6#>TZ2_N{3n5dWrc)=tyj;&&t17SY*66#t9g`bYtOr+Ii#ywxjm#9ut@ zhFFadY|*Rp8@eKPHwHtI&}2k?vGh-U@u%6VVFMCb=wLt+o9}>Echq8MqKVOeCV33h|z)e+&FSO%6w^j9RmQmeni-lSbtKfBjTKX#{miJZkz9v3S z5e#*^sytzwA{-Hievo#EM|0)9#A&X4hq%Mj=3Ci{*Y95Yl%Lr})`C7#taM$h~5H%!p!8QB6LzXTQAR5ooc= z7G}4YX!&t?p^+w$`M#?KwbI6JAj0qnlf!JPq;BD-g7~!#h`xEpb2K1o_?Kmgl~83g z#6wH-ib_O#^`TJZ=TtCT_qi)Pj1_?{16PW?h*NF7q0QAob2r1iJ+T;Pk})~5gSp#H z94TwEWvsp3u@)JfB!};grwA$wv6?TDDIjd08}&$=^5OJSY}BKQA+vaDe+O~Fc;}w~6He`SOCn4HI_Q`{y*45ii-BSkSB*%h1WpRZWuU;WCgJ z27GKF11dI(QFQSrMwpZz#RMf7#VF(4t*U3vO;`#NLB;>OjACelF0H&(qy}{}jPb<{ zW@IItwblH;_*QN(qYnBOWsjNEFFTX>ubZdbNJi!TNJc>$$tZAGKjm6wHOsX4>$Y{# zuLUf=hc~mkk*?WBi+#3GuZ4nM4R&UsG1hesTxLH@(U+3$2IQT~+0#!yp1Y&x)Wy59 zUz)4x*7Fe?3v6E5|4MyL^5uNZ%UBxJzNJYLcg|nT%+EZU+qpc~@Y&X-3w-O8xh#D= zbVSLSg&cc~^zjV)xYudx+Jac%~c(Ub^tXOBZ*~U-;lRbh%d{rMhygCR=wbce{hVEXHi!yPP^8$v4=`Z^~TW z`+~EXD@t1Wxm-pO_q=go=MPg|=E~CZ0R<#fn5I1SwJNtmWIZ&r&8yLOUg47pp%6$+ zW?9DhL)bJC9mZZ(tV|tP4xDN9LuDAXDR-+{AkL^ii5NwLWNOb=ioA-m!R>YQa@ou* z8y)$a^SwUr&RKsQ9pAYKyY{cBon66&4l+f&{xZD&vhkWtz~?XSW<&6o-R8%*RAn>E zYAGQAtwJMLGYl8lq1<{}oHj}Gd)`v_{UtHh8uM?;%oenUBJO_U zf|lN{AE8)l6qDQbm0WR@aUfTRyj=n31wPl3>1;V@Y(p+Xf*xY<#zm1R8b76m#;P8!aGb`b7wwyZdl)e+@iWuA#|$YAkRE6uiY}VY0Gf zaTi$_qR9_m*L$N6t>4SVbxfZOti0l$l!22`7+rjg;Hkoam7Dh0S*R_?Hib_=E-yJ- zt9c(R2z6X#ld>vacs@m14~qh)>dvao?5{^!vY(ah;Aj2Wtz)eckk+M3x!X<9nd*cS zsH0AcQ!sTvHwa5!ToT9;-%uf)zi&t{%!CM;-CiL~FxTo6z z(u;)G7d^%2ho=@_v2IEha|(_GnwcFOOOrLo7nx93(1Q)LUmdY(@SXn+`hq8_HFuL3 z>*@E%ZJtUU&?wmvXdKa0j4>gsV|~EG4Y{p@tpMnPI^3^qJk$;>ZKwb-;*erEpG3j^ zx{lF1N#hA--xw2VACnDWjQeW(CxV0)StNI-&sTZZd-a0NQ^?$Me7o*<{m8RWQ+CwMX zeIJDr5d%yCXvG$$SuEqYP4ltsdZioI@w0y2 zcagsMt9otf&({52Kf?5mcP@Q_PWzU+dD6Gv)Zy!Pf|z zzR0{;Fw`1Px5K!_&#;sc8W-%6nVI#eq4%K4QdhuHq?+KQ3*w>IOM##N4Ak8cGX!1) zogq+%F7bB#yK5wqS{K|*Pydk15^GX|z2Kz3U~0IVcT`so`bd8e9r=2Ke9k$EDS?yf z)Pes=31Ki|g|lHx$E194(9@*DVVs`uN&fJuFI~;9WKRt|xsExdCNDUN0Hl~YGohq3 z#z`}NP3s({ET{;4iSncdcS%NErfi{UL$XDrPYkpXfMStXZ_k;yQ4^=6Ejoy<9O`*G zSqFzt79>%;NjYehKslYZyp^e}Ksnzd<#Z-8$b}J5Ypc4ORh>=e$K>tI7fR&K3)l_4 zF;UyXtOW9PJX&5`xIshZzM1CHB6^$uo<4)T!H9-Qt1X%FE%W=oPOahZ9~@ z9bnil7SbmOFp{Q*ljH_%c%aSacdBwjYDgBRM9i{h3%O70K3TQlRKD_ajbW$b3p7vj)MFlje*jt+6L)jS&l`4*ae2IAW%Q;68Hck6_qchRrL1 z_Vt3seNTjDD6lD%>hl2n*vH9)mjY3hI`Dii1;I2o>iR&LmEHoJnLsLFwbMtX5+278>nT|xhi zA$#9TrK0Oc#zQs9TaYrkdc+DE(Ws6ZQLk#mAGk&o>#`4@`oSwsExlshj9jysRqa=Z z`0JrvHIx=stWS&?KecS++lb_NAIzdRG4JGb4UTVhk~^w@TQ&fThMiL+H2#!K3qZxOijFU3L7_-|xH2y1U`e5+!& zM>}dN-04}+3++d3$tQ1U8Ior+$E5n%oyW782XmRxY-S?6{Yai)x~S0;8V71le@H{m zvzamF&DqQ5%vkEc1I|F@tkP`0(-0D4hpg{6^0PyBO;=t-Wb?ZE>0)LqXUJ!Vx>X`C z-evP$3jdv0C<(TLiYZyZwL< zC{MT~cfSA`KI7mM+x3_kw@r`GqV_(UnRKmV&25c;HZ$c~=Nunc<}%~i%!%ywlMHg% z-}peIpb~)sfhFyQ*Pz{vB=Xq_ZN)NYX7FNWkVVcRWmZzXCoa?PDch$6Pg$SBrIabl z{*9h8*;AH zC}|7~cxFrn=r@8bjndaZ|M{#W&4=Sg`j7Nk$wzT)!o?=~)HAGC=?|3L7bU0lQnC;k zt$Q4vKaZ<%%O!r#RxR_(dZfDaNdSpMm}>>=f(?v%Ib5Os)K(T%!fjwwg4Py0|0uqJ z(aMG#abOwGe)4ZrjUk!4MbI>ht&#}~gR0_?@&wRn7h8>B8ejK+bgvgAeHP}xV+!m( z5AaDH&=FN~OQzhVQ?1={DJ>PGeIIrwTP4ionSpd zH6OtSf?Y0H=VS5y4N>;G5ksCD9w4Qm{|c3PAQe74v6TcpkY~vt&;S{w6+wTQ81h`< z;epIYKo)#Qf*W9+gC83}uWuQ^CtwOaCWD!AMv1o6# zh#*+Qik`;M!@?@m-Gy^2wyRIEvqy~8?5`2)Y**hg0;~n81#}OE-p1`MYIZ1__4@wa79J$>QALiQiBUy0VeUJ|T( z<#t}4tNiQ}kG3xHZRyGjOKCx))csJI3^*6~h^IPanlQsUEKV z=uW*17aVko)Ap>{a&kNeN1+Z}?&eenS~9d`>~zUYWp|zvAKa;`li8hT<}#BIQ8jHV zTJBkRWa28{R8@1Rp_QD=OkH@g=v!UCPvWOBQ7lo^rw(ZE&{Yl<$xLQ(CHHVZ!`$v; zxy-SgTury^FbOt%?o&16u;B~$8*gQkL)E-{-_0^2j=}8qc}`!Dci}#$HD`f>y2Ne! z0@h^r^c?5KJb5uQJ6E-!qE9)J*7}i{N`L*U^K&!*u>va|UQe@o3iM|0nws0aYqQ4QOW~|QWV`i6)e1{F&2MIBe=|DZs(b7<`_Qs zT;`Y!GzKpB(QG(*Rn>rSwZ%><+>5Ihrn=8+O7ir!`aHElV$l(pJ$3JsqA}?08e4}R z?Y%L4o5bX{V$HWMe%|~Wn2)fqZ-u=H%?_7@Z?sc`|H4F+%hDL4TW|!>EEx#{xQITuZRVCIzD{%bdVIdVFdv#^;@9s}hAoA- zHWb~?`C{9QO1t_R-M1=ELBzpQWqr9<*3mFE#=E_3KD8|4K52Y01r+xKQ7Mr4|NdO^ z?w}}!cN2Op!qXN}8}aO@Pe10;;RYOOp@e=NkJJ)~l{9*u=*9r)7~#FmCQ_!NL2`_y z-WPkmG^rMug*dztA?^L?2wG_i1h7uTV8KwUyEONm9+d3A2x-TCZOU`hs60;&2jfx6 zYh$)9ojtYi9XXzb%IJ*RGfvqt;~=%vIGwZNS+$<2ls{;v>US^J7JZrFE&*vdoy>`SvaGWQWGmE65-d zGQ&6hNz`MS^r7cgbhI8?8W4hd-`61U#(RDwWl?Xu&ngOf;~Cffa)7L+Kgi*`Z=aw2 z;EeTNUWaZ*G%Lq(e!=v9#0HB?_KP`??0Vv>>Sw^(tp z2QNfYLTDk+J}P6B?dSNJsEn&#Y2D{%?DHE0utaBhd5-;ud! zS7oc$4hA^=mooiVTK8^tc*zbldDabQP4r|&M9PPGo!yge#!fXcq|)x7Ma|cml7~(n z#?0snZ3MEtH8fZ;ORD~q80EH*5Yngdb>yHY1WJY&~8Sf z!`C}0lOq-Hw1$o9g*C3;A?gKkr|rgcH{)4ZkD70g5;K(=d^o^?t0=`XtKf;!Q*Agb zJ;-VK*kd~n3AVx|VF9`BeDslbvm>M1uQt^jxc9P?L&KYv!Qrru%cPGc4&zV7 z;#=r0Tc{q4iw?N;Ej?G&zw)?F6loP5b1= zv2KcW${0XPC*eK|Z?$j_mG{LeZ{octc!yr`QuGR3STDP%aV*_2D%)7p<5cBWDo?cZ zL+%h~84=}fcQ^)fOyt)Lie{j}ryKILeOtq&4)D|=EZsV|L`TJHRhchuO4LTTzfIdF zIIef&x)YgSrafeSdBD#gwnx)zW9eQVfj-cIG8aZ+;*axSD(@T*@si+_51Qnl)5=(6 zwEUp`V~jwUa8`l$rw$DA#_k8bq4IiYWzB(Z%Z;582D!mAhR@(Rht@e4X}QT`XxuqB zcwVH$UX@t`V>v>|)A$)ncc5J*s!o*{@q?D0Ev`f~x;0A+vGO;VZfEA#&T#j&@l||& zEUo%ZJ-I$#b7K(wAw{d!Q{P}K60N~r3ppLtY=^1L)}nS#1F@(rs8^Ku;4ZEN zE$3f@-al?&Uql`i0RwT=zcHjbqZ=_)IgQ5jY&>T8XeuVk&P`;BzK-v%#XeIj5NsaR%Y_=On;1f-T=v&L!D$l z7tvAKl1}tfwgjUV9B_oz@}>i&{kYzDAm(Svxl#vXmQaSZBk+j|j+9Of_FAuI4gi4F z3z^ZxsSLr%rZ2kQ%51!)c|&hFD$T0+zI`6j7KcFzl0`;4S?sJQBS9{!L30^ousRWM zxy1WFM9wz)o8&$=HFy%?AxkIy1X+sggxc$m!VJ*>;a6XPhlT@~2X>au=Og>gCo_Y) z^q;M2+Aa9}sYmb`@7v)~HesSxXd}ify3V%a1II3a^--$QcWAfVV*MN4ofej*sSRna z2&`Oq+l_SF`>dC1b?z>*Q8LCExZEF}$lU}C*SjxB+L(@GW^Q?Q`?3o#!IwmOFY`(i zBj;Szipp`!88a4?^1ZiSIW3}e3Q=uVZ{;f9QBbZr{;D>sUwVz`vkt%?fRU=!;=5LC zo%A3=Rqot7e~?y*347*fb|=gDLbqyq?5i@eyXV~^akXDs^<$PL8#GwP8K041 z#W68B&%CjXE*8|Lr^)DmU3fB4-h1EWDrj&O)YF~UO##w@spYli1g|`+kGW^%Q9Ucu zlROrFPKGc*HggoI-+dI$lC(;F!jt-hXRJOg9b0|Ao@!rjL46lkM{w|Aj<4^KFhR)g z`(4=S**8xVIjSb~1gT}sWE*#8crZw{vDXm{6;S4OPq<`|QnDd+g1KO*uJz9vqZ$YS zR)(eL!rKiiSLf^pC*VOYb2PW}L3Wd5caF_vTzlIWu;&cNn!?2mF4@u2vo;7!v1NoE z7I+Q?%OCnIMO!&CC%G*2B7HD2=v;&7M75!}V3a>rczQB@E;V4G>6!fz2l?+ zYb8$WgUJs}NJ+Wc4w)0d#V`yK`1o&M_m#xAog;#S^(rQ@MRp zm2rf8jWNnR;dSCjcr;pOBD?cQ+&I_*P?Z`+BODQU;YmchO0-xgbF9Sh_hQCP5WQLI zUysRuKpt-{Gm+bQ1QVgDv4w8M+s+^$KF~q>A(5QBMT`$Jy`4<6wjYR<8kthN19Gma z-s~ZhJ&VVgqxagl{{vBb0W%4=tr!uJvvAXg=_DS|jFHTZDweqsT|6t}iuME*%-T*R zRhNlX*Im$3WompoH45y)|L9YV-PD-J=u)XFw2G)uI0g3YgI1w3s>1VlWC49tD0%dv zu}XykyKtLTs9i?do#iVGD2!M5ELCupzpwE9y!k3{Uy`_(8tliSIC=20P;iObwN?a$ z0}ET84bCX*tl$DJaIXyPY6Yp>kp0@0C+go+_{+y=a3k}ZG|El;I;u8$bNlhPj&nw?#i;}}cJw4bLs?~Y(0sE-ts4WqqqfiKx`@S7Ju#E{uRG5=Fj zWRcr2xjL!tAXZHw%K}w3!#k(DF?rv6>s(a}34toaho}D;05fuL%sq~c`y3(0#5J$= zkEbvM9*owh?i2|W9i?`tW zf^3s`)V_p*AU(@m9s90SR#!Gr?L0v;sdk<177x1oorU=q$hg!TW7MF5V7}xMDFyM$ zO8jLW0UEJU+X6=6d8V23oGy5qP8Yn*oi5nKse(-x$L&-tg0}@Yl_~5ppP?3IHZ8On z#?;VL^aoD3=7C`hE7&*yOC^owQN8^87`UodXK6H1spj)6>zu1@K$Ud0amB%nfP`^r1b#r!|B} zbBM7QzF(B1-Ez!Z5`@+BHBV4uEV4|Ejiohm4;mDxC^b3=MKv-@BE1N=^`CY38lYnp z98acmK2iq`;*VWq8cJZ8j+T}KuAf(U=jVh;KjzYP_nOkhz$l$iD}t+IxLcW!6JU1G z?(lb@arAb`8zz5(^tS~WXfZc)(*le(!YyH*APbnah18aXp_x`!_nl!uM@pCw#DlS> zUiw51b4Sv%ey|Sn#Q})cFd+t@rwD-Z1#As3r*Ui^`eJJ6r`NOK_c5DhKyXbu(PpOG z3>VbijXwQEo94=qFKKvS4a}ZR3mMrnGRRnTgZV+?$k{#Hh2a}_t5VLk$*gIrazZ)W zdKKV&enD0O4?)Gog*o)jn@?4KYxNld>?ab|)mog%eXmd@L84=>ssoiMaYlP;6^jc?*+4`C3 zN!#j*^4q8lp3TJ{QCC7qibSl8f&`)#>PM-L#bG2WNC6CHuvsuFt7Ao~66$BUh6$7{ zr~^4FP?b1jEX->C9daMxnVDdtCVHbg=7X}(5qK!=5s1(VbYoC3mD<6`Ck2S<2?SQ&4hvgxL3KwVZH16~HW7Yo0Um9Q zi-J}=+b(WRZ}rHqOJHD6dg~2z=c`14`OJnfbV!m z&ZKxJNsKFXx{(4ma=8wtTQy*j>`~R7XfW?7Tif*wHNtUDJ{re-`vayGT84H0O#zvU zzsdIT=cx9%svf9I7!st0s;m~QyC!}55_zE0z|X@f+C)oy>Xzt5E0%uV4JRnqziK&j zJ}Af1XT{Qwd3XZi;ekY)R(GXJU>&q@&hb%5rbZOHb}Tjw5Zc2@)u#skZ!Z)02jqU-I@UnEEGFFutA7b=pYim~xK?N2O}~E4FPOwh(H+)!=l0M&N5%NU+;lxX%oD6W!=>v@Zg{_c<L6?i z((#M)iDvfW zCGRjFaaE1jOaSx>4YEw|U=q`ila9fXs_O8Kd`DeApWV>)1FfnPmd~?sL4X26%A!2( za*2fy-_OIEuU4WH6rOQkXP|9|zJ+#FO3cH{F}z*4&!p?b#VDZ6uf>etA+wD zm+uR1(K@=zJy$j5)NCl^0AX`2H!~eX_bK|f6urmhE|f&$*u%|4 zGSmroGQ@oVVV!xfrpkoGXz26pI<-ry%`9G{EPGitwV0K1FNody< zgOs9tk0^?KI;bG~^wVF>-QP|qU-#nNkezl=Im&P;HTZcf5`q0UsrT+>9&NFi4pqzJ zK7Vateq9<9=Fjo6_>(}$SN_C$!$T*^oL+ywkjq&FXUXfRHh0>>_Bxw{WNld-Z2xEE z6n{(FQI+9|3Zue-u z@(uaAmV&t9-2IZ5eBDcO)+Rn{e`!`*MP-@}S!VmtFb_7!jH=;2{*T|5Jd}(r;h_)|&|` zXs|+B<5)WtUu%;cd=K1j!g4IW(#%IWbMxo%Ces?v;;Rz`eKLXc6UEwa3~U48$EfwF z0i2$&FUw20oxI{dZ~lw#h#75U3zM~@03|pk5&sy;v!771Z^rMb35qmuI^_RUDX;Q7 zr^J5;b6POpY*ku=9!-EYpFk#ys2+E}g>7Dd{?E4qwD{oPTJhgT^B#K_{%qIM`~Gc( zY?z zBZsn?{pywKn@M_Z7>)$_@K}BDb?Y zx9xOguI_Yp?C;x!Xx#@+KmD!hbe%iQF7p zH0|=vxV*D2?|GNk;AW=IX3i-u+o+M?8ox)#Z3NK?o>Pp=78<@HIc!$8A^W|56XC3N zyxIHHgk2|W6PLCVa*vx(D{^MeI_GFG&By>Y(FDwm<3ZKBQ?Xl_;+!ERyMjN&*(a8% z*db!-&Bs@e=aLT#5IJLj&MC!ZHfZN9XI&9SxM8|}o|9Ne&OY(<6Q!OSi!4@D?i#Z$ zKCBAy>3oH{VASQax~7zA%m~QWy;MG>BIK%ZZsYP#(o&Ug3Dawf(*G(Y4y>ExXx{)t zah50W?XojunX$wF$S3sIoyHDr!a%u5uHRAQDSS09{d_%cRXpDo&l{U{6GxeR6N}`1 zon6oUNrdBBf;8Q66-$ei(tTg9IqH!l&F607S;w=5XDv^yan*3fVE9GHOYKVw4mL=p zWm^(0?WMHnswk20BhaEIh88uP^FPOYO9!;*0%+0F?rGUkOv^j9O_+r~d|6f%%TUyn zL{WDsMSIppk+3$R1H9EbCZUcYtF}&;r>NUgw5OP&4|8b&6zN)NCf>?Ww6ByRHw9Hp zl)nbpX^A0S#B)hq40p@&!${peqsvX{7-{adm}2Vw2L}mj&xv zDOFborJ)EG;k?GyEGkt>>4U;os^{j6Jf*6yDBG0GD=SJwaJW*=F9 z+`5QWXw#j1UME+ht*{lbI#y<<=1%I>i3z_Q={ih*E#C*#Fz|C-04{DFw9GzeD@B^T z1G~jz?;!h1`3`VhYUntgOflM2B)03=Lx+GH7L3~mi10wCsk?qYNN59!<6CK3>-E&o zLgvI8npdfz>3V8tELTJQDmC!E^4ht?H%-YjXqmGdmsTQalEO>4;BnX&U$^UsctA>|3Q`FKa5DlaB*`?86i zR(?(N8kHxR(v2h~QQB`Gco0-ms`6q=->=Cv&W|U_ zC~Z-mWJKA~99x>&0|6+6r4S(Alu_6%yq--;ZnZYcMSm0xf<0Tgd)d zHl&QAjG8?_7}c%94OK+KK@upS?H1!wSiDglq|1i#Hmt~z^oSxy(&t>EKHdx(TRt2# z5eu|_5)9f%+SH%p%~jBi?19$98#VPRa>Ql_DAdW@3n)c4O%i0kPh2-~9+1wOrA(K~ zjM>M6XBG!Ozn%6wPg3Pg;l8;LQe}`O7%BrbRDM?eBzF2Q`xcf6&{QK zdWV3P8Pemfyp&Hg%9}o$6*wkj19!TtE3+c(>vVd(P!If=WszngSn9_ttO@RXBHWo( z;7+dz?o=Y&$yMNLPqBr+jOk=RiutV;K+mx4c?&r~_ba zgIBc~sdj|L|FvZOKpTSkLn2eC?Fqh%8YYH}wPA#e8ahDc558rVOvsoeYcGRUXncz5 zUbB6L32N3DRwe-vRuYo{tMv{mA!Ar|#IZ_pV~Vg^yEh||kT*j+)#AdK^x(~4EUWWl zX^9v?TjKofMYEGaC9sn(d?U##s}54WNA_#0bPJ2MVJ>Wv$SJG;&15c>`zFOE4R9Lc zu*(9ikLS7;2D;C+6ocw=80gN(SntS^Vd#ez^>#&$FO8xhfG9vRq*kJmpp3QHKv3Ex z_64Fd^-a^RPWT?LQ;=mYJ(r=-56=mi-@m<{+B8_LqumYT9n?6M7FER75ER*7FvPAv zFn*C58NI5;Krp_`r55D{LvHT*HOWOc)s!;2Q}+Y{lotpc}ICH{>} zr*NkE0@G>aMRq|v2pV_k>(;p4FfT-=NSbWQu$)+3b8sUvW9Gm(5}5=h-cGXIrlaIbbeoQmK!FN;27O77EAk)@+RM956N(&3A5moJHjVO@=r$cB!Jv(# z$5jv~Oa()?X;_hCX}cRcbesB!EOwjviSvL4U73A6ke&rJ1_(WhuaU}{Yo+m zP_*_#Ym<~j;HbqH6F5ffk4|8@-k00@vrW78YQdM3|=_{TzN=2YidQ5qeDLqM2Kxyc= z`bnMZo4^evIbl|=uoZ)TF&sk*35;Lj1nzt0%{LMWfie7BS&$-rm+g<{&9WrS&d$j4 z7*k3|HPhEq!&JE%CReH9gcXt`gOw z^JyL+;$4z@MUJE!6dAfC)x0ITB()?Mw2^e33J#`gR4{Z&Diq1wtRh2~WEr_Dc1c!< z^MIa}STf1NBXUU=6v+$-k0h7GlATLpRXUf%Xu&0U^Lg63yi2laBR<4y_|c3Kn0iVJ zXTW+$5Q60CB}n7ZuYl1Wkrr~V)4f@*Gfiq2@04igk;uOe5m?5MdK|} zWSiYy0yF@Zz)E7Y(djO$~k+e{k`=pkUxWVg4eUa54@l(>S+o=o>DWQ=0}z z>F{exu}LHCNfMCI^6-RIDZFFl;2pgdyop432g|`5y%xOTM0ow>;PsIZvz3W`WRVe! z8M+c97q@V~j ziHlJC(=Qup!pKltDMBsgXN2_@aZPRIxfW*es0EIrTQIaK9EMk_+D)-ZoCw+!8wlDA zyGN`B#8`?DK0yce&(7*w^@%!Kt8WI^>StE#dx(;$^NMgMU8$3~0&1)3^s+Lnwf+S% zm)1Wo^2<26Gb$0xyTlqMl$pSVDAFEuL#V@GH?_&?q^NYJTx=j{jvg7sLdiv5-6E^H zGSWen0vnq*v!PQ_L%W$XCQpT{+8h5wGiOGYn>iER#Jc^_Opfc73LB^pheZ_z?ac{< ztMj`RWJ_7tqSz#xtS?|zZNH{Oc#Y-Y)ss-h!h}syUX8;nWm?Uvv5=;HWb;IrS`EGi z%_RZ-ue_dlHRAt(EaS@Ezy1IA;F-H*g@=+-=l(|``O7G zHFYU6bU)j9D|SCSi1UDUxiULcCY%v#QzVWTk0kfglAW()RXQ_gw7{s(JW9ircRxS* zAMjR=@w2*z^L#V~PiOcASV;40o&jN7M(m;Nsxm(%T7tGGr`o=B%haTZD>0TQM0puw zbxd$qbAXPnsp5&miVv<*@u*4!ChK|>ARLzqb@VJSmPV!2PU}E8Aud&Ym3Sv<@BD&k zU#(ad)SP523p>uBa|~^!Fpt?xBNCe_>r7?h1VPm+)~Viw&zqL1-ayN?T+3$8Q}){J zJrmF69i_6uF)ehWadNn(Q^Jb^^~gnLMV*8U8>AU5N3d}41Pf^q{PgEm)t0xwh*f2- zLg(>aQ`lFiEwKYx4hb!F4i>DC&CSG`J~Z-$Ru_(560Tv>tF)S)p3^G9z`~TE>4lKz zgeVXvzRgD(tJsau*tU{C(b%?;fRT_1+$NaZD$fJv$d%)*MUf-vEs6|{Z4+;a#g#nfQX-%T2(Jz4O3Q?!DGNFrR}IBzvx3PD-#j8Cx}Zqr#T6ME(HY(njp#fH-u7Km zK{m6gU}!|A70G@%MTSOnlDA?bIz^lZbk3DIqcWipJ)y|K^hq8`M%0p>5w$9v5j9$1 z+D)HXm1*l=T2V2&_%A=^W+9oa^Q6kJ^va^CND_o0!L0;ItFRfxs3#JR1r>? zPTfQg_oqcT>U8u!HivCycDI;r35LV{R@}Tg_I{ycz6O;c`<>fPeUMc_9WR9Uz_qIQ@VqsBuYChzL?To z#ICI=LuO1-L`$fmG{%KhDHT$lQsLn#RprH$&YUtzMW9jIsXWP)?jb3lG@Pt<#_&1( z4ysVN1NS6cMi&xv$BE16HPFKRr$`7KlIvPV??LY&Fu|jg%`v8wrgf55EW2oeTCH?W zprc$3?W@$#W`%5+l;nB_^1fzGz@7?e$p^u17Yvrs#RF2pW%Lv3y2jHz*7k-&%=IXd z(IQ7PlF^_YLpM`I`DJvYJz7Q=k8nQ1W%M_I0dA%+2wHWOW%PZ9Xz4O~e@H;w-VPGG zHg%L(nrnUC>;}G&61xcs4}!9+s+?efW&OEN8@q>f9XzT@4!NK&n3Wi?cs3Q3+S&^Yv*w0(BS2#?Z2Q=c!4601%74|8T z_T`b}6iX>hm#g!da@v(ty?jj66TK=2bi( z)xInE{HILy4#L3@nIu~$wo;`Ge8DjX&OwWi36v%@c_K45vNn!Hn`6Z`RH{;v@pe!_ zg@j6=LN-Zx%{HypJtjde5D>0q1)ze=r2?=59*LdcvJi}HQt|M*l< zYIx1@UnmrXM~V3)U~9f}-D?^0xFN!xf!w507McmudY z1zEFE!O)VnDsn8nRgs}3ZRV}mlC}`%0c~+*HmOW#Nt+bOXoE+RCADN{Nv%p}NsSit z+Wvc=zJJ}V~kkZ2cX3$;Z}8I!)rwKZi(g#wX1kNb>amg{dyAyKX=-~CssDsX7^ zCSggU)te&0TfK8)8#2Iymho2agd#`MClwi5y`#J(TD@Z=cw=>31yLat46WXTBFEB4 z6d78*QQnHJ-a+C#pmA4bOl3l=H>^nZ_wz`ydY0_0o>l3rp3#EU`|JO;D$_mzzeg8! zbiHQkI7`fvD#yj^2nn?$2t$H(1W9wViZ#4M?5l8Zawpbl{;!gEN-TqSA_G@Q@KB#6 z7(%_mOT@+n_hvFBsF!&M>I{$KS;cwcJito?Lx8iq0C0f_08I1dW);s{C}~zvc`$~W zRaE^1wLB~W<$1mT&sOE>FM|UZwv#)Nn;j&0G{fyv>=uF!>?H@bnFs?bjskWQ?|^OOQOwUK;ylES1UI zDIx=R*H`r3%rbQmIsF>SEsOV;gH#11 zfB9u0!jcn1_zrQMo5mM(B~Ixv(=R5)ay+r9OX};FZqnuAnR)*z`g(u75SyhNM?>-P zt<^y*+Z`kv#*XZ8Df|>y@g|+G{nDTnOpNVDqQzgLAykS()OB@PE8*7gdVz-YLR+rr z+6ko7ODQ!?bFy~{U2LX?We$}Ycl3AFyq>45lB$JRcsUkciG?eEHp*Wegqs}9TD^1m zKz$GoB8{2d{stIKXgR$9o3 zq1m06kXDaeQy_+`BbOTdZ>C}*B#||*&uy=X;p7y(7E5wk<+j%bX~?kB?DXSU5g$Ep zw~BnMu!y&li^4#fR@D=d_@^H$BGK?GWnd#!dHMs)dS6Fl-UU}`(cs&BxMr?iD4@RE zvBJhLQE{ z8rAdE>~^9KM!|_Fcr*$gi-ISj;G_?N3P7gxhPq8h8D^s3d=y-Wg3D2GB?$UE9(FG; zz7zWh)$SDA%yf3=`MJ!r6Cdtexz4+&jQT`TN)7&{dKt%kf8EKwAK{*~d2Vm<qhOl_jlb;*0<+|AQqTq=rIB7vA9STZ1qSTovI3EQU zqTq5ATnU09_Dg|=_rI+*n_158yds52xZkH571rtI%dUsa27+Yv$j%df5Izjt-B{6^ z=Ah!DGkiH~xskJZw{kb!6vyw<>kZtUuIR;zrHgWIO;bE=d3Bjz`sv3p%S{7!H(Bnc zlH40}nI_A+z z(;L34j>tGiA#RdLJ#=b49CEY2T&E}HjYX2yMG2e9t-0&!RpTU1q?Lqyq&Ed+<*le} z6isSJQ2O&-Dh+3&(i=%{4odF|O9#=U?g~neT4^{Pm2M+_n@+Jmy?#e}PgpvLCUs9x zx|z}*=ZA^k8kFkxrGiM(x`Q&$zF*fV{ERPlnxrj4_0;-p=}wC`T7!6!JDJ}wK3$@u z0nT?^#qI6IQdMl;mG0gDYxv>W@24K(+BOgNk$mM11(3sJgC0wcS1>>Y0>~vQ|M4oo zuTly3Cmwc{wy!hbR1PVs;RdsDnzKyH* z{kqi6?khNVhOJ9E2AyqXV+99Y=T(=b0(d5%G-rhV@t` z-@zb>6U$uE7!R6i9}kT(`}O26Pn6UxIM%y$X!65V=B1!feKwSO6M@vYYX>5G2KJ?U zDtbSR@1Lt^<%4$iGk8_J_t%q|;l_IRo{@PB zhL~nAN0>1dPKB4wu$D+h!xjE)vA&yQ>ai~|nn@AEEUumxH;y7(qeV4jzqH}u>`W^u z6UydbV(m`9idiLMm|Qw)<%_Mazg@}Z-;hL8}Rde~1m0%)V8-D0T&jL+><{+>s2kw7 zH*w~$&H=Vm7 z_wGtah@@#CgeF+VL+R+ zTG~>ht=^tP{|JVQU*s}QvWwjyQpclEy4B;N31BL9;KzZNbdqtB2gOVn*r1{}C-roc z(hDrD7;NJ{3+q^a#+D zoNuV77HLIH^(rr9cU-7^$I{f#E2SeJozC4G>Yre@;&R|iCTpkt#Ou9BbS*O zlog1ibx@U;7oOA~Ip^STDmkGnA6P;?gBzjEb@o!?1TnVKu?=UDUZ1E*qC5~SGl9fO9srRiz}qoB zM$*R>xg*_9i3x%pNC!Z65OtI&59C4RhhXJ*&H!%*6^VQ*l8fjmF-*_{=>kY6QKLk8 zAY;nU`keARe}K1sMRL@xBKhprF{g(&&m1|%{Y= zSr$9K&LPZ8w}FV4`FNkGs8*2EQ+?t;bIA-jy+X%xDyof~dMf9SDQ94pFbmivXL@8A z&}6bjfJWX}dA*jQK+RmW(oQj(YQ_5E?yv1RGa!L3{>mB*h`xk!HcvcUivcOHd5-nh zpsciGcXjHXlHbQwXdyD1>MQk)Yjmjbt!VhPOjhk)7E}l*gn^`T06W`9nLiNs%Mz7DYNclO|YXXEqY$fix>W?zZxW zcBVm*Bk4v(hIXcgw?sQrM}mh|uYx!`Dj3?CN=1&?B?A}%dvkWis&RJ4&~|pl*x>9; zmr6Q2v(E*u%g)@*dChCJGw0T9XQsF+3gY%bGTq~SpL>|(O(Mbg8cDb_3Oyp=hmm;bq>tpGfLQD}r7r&Lqz)3@?V*kr>nN7KB z!}!oR!xct(n@^?kIxr0E49RhKPNuUrM9P9}o=F`z7h2}E+OGo3oKWvQFYwMx@AGZ6 z&!Au2I($YWtzsW<6+=c|u?}4IU=#^cb`grkXSML4WB{|b=8$R{SYF4B!v`69iDB1M z?{$y#RKcR}D*`5Juur9uQ`b*P;>wIxuY)J7;Ebo+M9^9~j@0m935~U6?R{OCO;am7 z(j5+MJ7cJFdiID7hPgXim4k!MYYI!0@0PXcA`ZC|$XyQdvp~R;FM+J{2V;;29V3TB zMye0Ug~QL(eW&9jYGP?edY`L7hF&$eL3o6_4s?puAeVw&E@M30-1nHxw_!Yc$cRCd zJ2vTpa>tIkpxm)zE@cWF~D?HmtZ)rIe@=`wSsOUOBHXaUtEn?o09xIzo)al>H6eNrh~ zD;f2aPx=O3E9fleTvfZxt0mBSrqL)ErO+DOwR>u=a&7|%E#6U0IZZ*EX-N&fns<7G zap3U3n4+M!G^vNCi3sYDmxN6wO~W@Qo$`z%og+4p7pc^B0|~7P3u&w_Y-8s{n}=$5 zzWb&!F?XIbm^D&6mu%9d4j*?|mrJ)@EuJ_neiRvpq}pkN4&YP!bxoT6FdR&({)tD8 zZZE!xblK*vzl~Z=gcaGQB*+0_Yn`rr0n@dP7tb+m)}}w4z$L9IzYKdJkQlGH>G&D0 zdIs@8ip5DpSccMxuoogU@StQU$XOyIZo)?GVOQ{3!$g^j`0g?b8+TtHfzW%BRX9cj zcF3gGxdv`>M|y+M1$wx7YX66#xv1;aN+#yLi9Us9s!HF0tIk38j`~u8Qac;UmWkuR zabKdHOd_u^?-PqrCZ*CMVyf>>6jRhVzjwfpQYN%G`^OptFgoKERQK_~Am+oe_^qZ+7W^lvl6F@pOYC!%loJp-6V7D>5AA z9px=?ly{5-5AC=LvWldF;V5rHk$jxO14*$rH_EeW+$hh`cJ7O@!Hx2at!|WO?Nu_H zB-!y|=Yz5d609ul#K&_Xt_EijF@-$ZZ~Q zli&b1A$DG|>qpC$qP)qT-(B#Lw;OWGUgRn$sueEkDOcgwSp4xd37umg0W7)eZqEh7 zGxd;8lS*@tSLwlih!?3|ZD*{euj;Bv3GSt;0yd~=DgCzLcj;SEc zrh=iajw=!aqe!Q#BLs_db&Mzv7?(8?d`>YyT-b5^9&)n0-{y1I`j52RoDnRr$H zP*?XTa>TCU@VdH-m?B;6BFY2lR(||q9sqfkSl)Ih630xDp{{P_Em2puk>H`Vs~~=? z3WmD6MUf-vRvsvly*XXAYMibb+D=!E4Nh0bRnqC|aThF_k&$qDT{Q)D{kKgipsPz4 zOvoc$m7^?7!A-$JT`kc%Wx1xV+T=o9SId?v($&Y`V#s+sR&(putgFK1n!5Tv)qC8n zqns?58*$g8Mr$m_Ms`HOEwPaPx>`2DPfKh|Z{6?=%{mJ|RjGzh>y~N!%Z|ZEc<{F1 z-jvD|#=04zE-C7`DQfnaH*wep@B3AYK;ZH@WtkD^Q-BBAUn>`Pgc8j zQgg9LMJ}}%8eFM(rxf&vGLRlowehnw7q4nH-d5b3f#?$mg(z#y^Fy{$C_t)egDl7u zRkmWmWnUo=nE>YXsc@aXOKxy@dNWh+v9^2L97kuNmNGHKg@ayrYTTAgJQHU*Xmo{0=A#1aL`R3=;sa?N};CTm!* z-(9n~B@NH7XVR%qWavY~xf3tNYns1u1AGbnT4cLKM;oTEx@7`N%fv|F^n?rc@aB_& zTo;Z$u?Jx(jXS{uAFrdTjC0sY0$}7E>Lv}K>Xr;Dk+e`ymv2})j*?67cIn;C(NmcfK)ml z&yoos&pIH>yn)FTMTXAdJa384;Q|RBrOPTv_pgGXb2y_&ya*mRhxX>2L#xI)hlaLu z4vh`YIW)F9=g`_~wSk<>6f&-XoCGV2bNG1>h-24^b^dky#qOMJFCJ z8N-9ts&G2iq{xxOUK6Tt^+XFexF%liWK`&RLO$!vmC(#AYQT0 zE0Qnt73pSZ&JgrK0>wT@lqY{$`Po^c{Gno>ROE==q!KCigG44O_HhzCv=b_b`0)T* zqic~Pip1ShWN1UjcuTaQ<0N=!6Dr8;p9+RHbVQNt)>q`1?I?y(`*<@N*)Anvbs9jz zAPFAYunG>Q`+1OVlNRhuQlz_W1dCvAThlEv4ocXX-bB#w=NlA)#+a??jReoT3{3CWzQ7?Xh%rO5QR-t(Wz?pa!w~Tu|GWVY@v&O-RJ6+ZXyGB;&Pei|kRK;lB;+TFQUP>)k|6m{ zD1RvA4=QpbeN2%~$j1p53HcGCJdmTx4<5=N3i+5KN74rs8TMX-yd?_x2ninAs0z|p zDi{j+K1H%cR*|7t?%^#_EPF}t(E3!66;>4t#j;D0?CVivvHfWyGSU9Dli-2wPhmtxNYF~UZrLz* z;%+Q);%>Zl-Lkcv+pQN9_k9kSy5%!M194yMG2~QvzD{TgBS!6#c8T9vKua(w(&^YA|NnCLKJa-S)xD?eyeb0ZN)QPQC{(2{t=+h-0jJoF0wR%$pfam1 zG8n2fx~=GSd)?OCt85K8v4W-6Z(k{P?{&c33f8Lq>AJV+#`Ky`-B#Sne;PU95(B;< zCsv}iZY!_6tpjNzz?bazch1c7KJOpNQUbesS0DSGnKLtI&YU@O=FH#6$Oiq*e`y^< zG{o@`BS6{%i@t#K#)uC7X3}!gO;gyU!a?J$2QyTwBad{f0Jqg~G`mjlakCR*G;=Ut za;0i(QrWf&UPNK(K??SWLXzCq*M6SH2W(r z(hPz`gi30)NK;rSs4%T8OlE%B9AW)AIVRElL;48afRiXnByi*K) zp-rJ=aidis&sFG*EuKLwOomS7o8%&cz`J`$Eg{quf#IxB+cH9zvK%+$+#?WHyUL)v zzFw&WzDOv6D_d@}s|>#vD4`mo!j~+4>>{MKv-fJ6>yc{vL5b+XCiw1U+1B2VY)eKL z{@m2wjyH^;(bVn-1Ucf&PQ1{%L+KM!yH7wyDFNNo?#3IC#8d7)fC7?UrDw9P^ogn6 zDIlj$1uPxv)&s0K)NLdpAZ<~8w3+fJLtR^pr`_E-3qC~8<6yYM04mGKmkdu(o=7xPppu6jdsJ?>o^iz zxJ{;6LKUr$YeWQW&nhFfr!pp1$c%tI4=!M0YM&=m(bS$IB4E3uj2N}bn3&pU1>_b3 z4ukDRXwzV8P`8Y&IJbZLqaKH&%T)x)TxhSkEQRGnnyA{X0|LlgJ!{4?S-Htv;k zz%&*)lo4E8mEW!_vppvNaqFG8AF!C+Z_J%X4U9Bx41COI4q~q>;r%c9GqG^)raR}p zJoK2JV6t6M?S^t)EWQc#z?os{T68V(khRC8*-Hf`*heDLiz(4g{d39e+ zR<^9P(#;XYmtM40=kU{1t@tYJ%Ji3Cv|R{KvfN%wYC>4rgc1(%Pp(X;qKmew8gVT+ z9ORbs0&mzlAzaM$FLAPJuUg_%RjzDu)plX#hO4&Dg9@t#*54PnYP%5QyaCkgWhd3^ z2E$d`SYVmCV=5sz>wM#@wl9E)@~gH&QgX~qpj3+%U9}av5yuQpv3xJ-s;!Aba@E#C z-}9@s>KCcbS9H}D`B7W(o*Bo7O}MU6cj_n7Y_Ki8fZL~tq6@f!w1zC`k8|q5H@bj3 zOP&fe=>o2m90@47fUAay+M(zIt|BU0(8VH^T)?fWbeq+Y6yGu{C>8Okf>PlEu8`?2 zYq)?bG=4@?wgmq~vb@C?a0OWk$#LDiz7olfWHFK}bVIvEZN)U~2Xeu)Ux zh<2XAOAnaBp?;b|$)=6*{z@*BsJ$zU#0+?*aex&~*E2+f($0GR2^>mO ztAg#g9Qu!dJ~cUlw`6MaFra|sn9{R(qx2ZnKnaZs$R4ABK1&$JTQW;H04N|isPt${ zr4I{D=zak?%O#-C68iC$%o2713P=W&-Y?ODXzfD?J=S)9JCvR!Ehru`*o16_%2dDFSKoDpx7P1zgh(dMv>%;Pw&e z7jTt~y2}Ak>H@AH%kE~5NZHDk(#2i7NwBm00}SZ}PXKw@7Em#TzjK?PE{fGZv@ zrDpL0uIW5y{S9hXegW6ZTC8RZ>6xe;C4flvLApFj{*d?l9jt#;)H6GYpnB3Xb~lq< z8(%63dS)=j)93IaCj%b8P6CUB3OJhGE?}Z(wi2qSXL^YUrRm@S`FoTx(KB5F4rjXs zbUo9Gw?xl$018Mtm7Ze(N}uSNjRJBkKtR_sYw(unne~7Ik_}4Fu>hq{^h~pW!@RX- zNOaM^9&d@BSq&&4X;S*ZY=hD#dZtD|wkHKl^vpbrtEgwHNEWbVl#xXZHD#h_u8HHE z55PemSjhE^72|rw$aXzrY;ZkeY;`@eO_+V_V99#sI$uXvs-6iKaD#eCYb1fvdL~@J z?E}p4_~386#p-IS{S0=JUJjWMiDX_-XlWO4yWmbGdxr+>2O0mcw)}yX)CJruxk#}F zM}L&8#IRljX#McQn=L5lt)7nN*+D2Ns}(>80LazaC3%$?;Lda^0kn2Ys_Uij^^^{L z1J0gt+qPfu0`9M|MH)(A@zuEG`Uaphh}PZTO`5`C`K9QuA_J)M1zcC4#pewUPgJ^q zyNDu#y<#1-%JB=hE%?H`jY}?7@Ssf3aRFB)`RRvW$DkI&z@^pZ!fC!m%H{ISvhIyB z15^=LzDl1-+F32w3Y3;=Q~6#AA4LYK1pfq-S7zuZ33@9C5~%gVE>3A-XC}S3AnnQw zFCbFmX-A3d>L0!hBuOU;bBQox)r}%iRw%u+`$f|Xa;mZ;3Ce2Mf4lJ5_1|<0RG^2Y=mtpCkfJOg zmkm1M-gx~tP@rOs0*ZaZm=&u$6f4c=9kx9_kf}M3x@Ksrpa}^H1Cn<^MT9MICbI%^ zFu~)-J?@wszmi88Drz|=F_9IK1y&PV|E4G<&O6rY9w+vc-02ZWT}7_C%874TRh4g% z>%W`VSXnzswOnNzgsxv#f;ALfc^@B^C>-yq8~ka)j87tnf03m{+9Z}MyG{GN6|@P8 zwWF*LEelDqT9-Q38nD{c*b`6}+Iw-!w{Gv}mz*?S6jtp^_C=*5D$yi~q^2+6qOb~i z(JToUg-y_xq^ar#!=2$+#}aL|SRI#lXIN|rE%e>0W~$Mbg%TaQ(4AqS3~EkHl$yJ# z)()6NF<)rtq1z6q3El3hATE@ObO>v54LFs!gzuhM)L3G9iVT5+08mh)I3U@9Qtm%Eu;u}WkrdP?6!H>6TDvnG z5-Aq7FQ$euNRX1ox#zt`loFx#bDzi%WS5&Dr1s(H9^(5jqktY1Uy_MwElDd*OdE(G zqu9F|FYQ_{tjPjcbBsr2dVG_|hly!Mz|m}tfXT%4SxBfjF}+SiD6Pt|&5PP(VtSPj zbFXUx`o#1S-ja#wWk3PRtkN@?RQhCMdO<)AlM3h)(=&KWCZ^{A1tjN{o)J>%lZolL zfE*?j&=nLnqXdX0Si!N3$myoNfwD+mYY?oh@8?y!)=) zl#Z|*w*(^_){Co_?KH&*tDEN%!>G0qcazG@Gr8_(GIz}#Cy(lo*!9UtIU+=G5>aaK zr!dO?FTRQtGDExW^QBN7A!wi7x+eIzF(JNWrKE+ItdzhH+lb(lu8W%)e@!Kgv%@~^ zWIaMS3uGIE^)aq_FH2>|vXrz?mJ-~ctOD9&!d76DzoA=3pKYY1?n;Z75(&Bcue|XZ z;!<)~I?VIc8q!g(K_IE&L6w&1sH2$$bks2-$S56U*J!y+4+LhY(%5U`F`oX47eY>W ze9%#c1Vjb}Omx(KLKSt?K_WtFqsqwKLKzbswO7F5?682Yqjusg(NP0{0+KyVAp8rB8I!Rss1$sDQ4cI`Ee0s4hSONw?B-zET* zIbBB`a&O5Zy@V_1C{s*6J+svxbktvtn%!cyfxT;>VOo?zo4mz$rGUrD45 zj*tVho(Y_KU%U|`IU@se_p-()YmYw&-pG~xms>E!}}S|uI0ngiYA_f=JmBKlNx zioT$Y3*8#(<~`4KoT#syWLamaJHWF_w?J~0t2@BPRbRv)=^)VJJHUc0i@tIdQh}Yq zx>zMEAqljlc`A^2Dpx!WcYs5kwu^MG(4`Vl6Qu>(hog1KpJc9{DsADVD772^lviFY zMg1|s!h&ECmsCo+f)yr@0Z~yl(Rzby6_=+1MQPp$l$JN%G}Aj8W%5=^Y5K^paWLHt zN)uP8)}>^5$;8yVhfdZyp2E7K<2uEtpbl8+qIFDBp_HZ6Y{wbFpe zNtWahZLQ*!t*UG(SygGj@v2HJH>h8Vw$^W`ha1LU)&Xz0s&XSF(Wqk(NiGZj|9n;D zg|Os*z*UtOQOy(TYp%SDy4;OWE^k%kkH7UDso9A1#;YoxveH65y5l@Fr&m>C;$E!4 z;B8D4eLeDIktLN_nML~ScX>(0Ke}Se?qWfx9L_;P$(l+?rEMD3 z9W!(QCs>Yx;7zZvzwAz{trDdcRa84#tPf|wMU^(T{wgl2bP_>EO<3$|H_N0zKqp?o zjm@)%k@lxB;Gy95F3!xD7|0C2gwXjLeG)~B=b07 z!g9HQq%ZGx53T|VNUkaUV0KpNlL^Zu0eN*tz+}R5j!?x3%LO6=wkc(#_b6jBVL2n< zu)V>Bq*%x&ELMz9Sd46+uoxSB!eVUo35&JY5*Jk@SUDyv-@hNrt87u_y1Jg*KF}!X zqmIg=;os)`dV#1$@MKXXqmakOMHN-KWKl(!3yUgB;EO8CUH6Ck zvdPYnU`gTM@;j#R)lGw)B{Ct*rs+k`ZkF|JB}w(|@AC3g-8HjL109Pk7if73;*W@O z5g*<@X;6>y3z>(wb{E=rN8aB)ISNP_5LdfKPkta&Tq{wu$U#E1$f$rWu6yy8i0ghp z0f}A9X9Gm(6LB3N1d>4kOBa^=09Nd_+ldHBcPKySER{d$wmV}y(&zF09v`}GkAS>> zE}-|3PP`?3q#IBuWUJD1!b0hjKGG&2lUo73k8HqO(nneV1thIX?=Q-LjdQX zK2D*JG!d%UN3ui&Y-^NpFx#w*Ngrtta5%eKz(gHo2vt-^wL}DL^~#8SqKt_;x~|T` zVKab}g$tPm^$VF+oL|VadbHX54aOJ0kZFAOUOJ!>yqB8X&`XiR&_lH{g;zavn|swm z``oL8-s*fL&=DW&mfk}p&N+JM-@Od7!-Y(VbpPwAgwknmBQ-uKI0%?nIjtdh}1)ma!S4-S$&yy&v(u4%@)e_|k zU||<+cFEYqQ#XQ3#8bD4m4V)=i_4_f^;fXY041c`!?d2R6$kOujo=dT)NSH`L|2l@ zrt7pIx$H=Edl)3TR$LIzXKBic;(48jfK7Lk!8Q*BY(a%zl?<>;EMW3#$t6NYRq10o zmx&12W|fheDWiW?g3tv4*)A5aRCAmFSW$CK5D}1`QGPa|lt0lN=VJVD_PocR_4uGU zjtR&<8xFFlMnf#u;Z?KZ)vG1P+?&OF*1gSwDyNT4M!Ano#*(nZE0(p{@iJ?>HoM}G zlKehLrm;z)kwfy|vd)NC;r?ogC}JN(l0JZ!ej87(b$D)dtO@t3V<{1Zs$&JRh2F>p z{oNl)R+*F8L9)q6x`6Y>i2l~k2WwAOua;C;xR%hTM#|JW@)8o4*^BlT#5^b|N-gJa zL5P?B4u^(J{wX?+;)QoO1VN$-7W!he-7xVIX;T?Rg$nUP47p+AB^Da$zL@0@-r;Z- zXk9CLhob;0JCo{1XkhLPm2lq2)Twtk3ZT;EuW$wj1kyu}Kzh6tv6g$~BVRJXTrb7! zN5YA@Mhx2US)4FIr>Cw_D2y6|_FfGctS9lgnL-@$X29^iXY#$#b;7API-2klz0q;N zP}>up>xJjIA?J+_VYN3pl-J+rP=ZBgoqTRoZ*-_`RAdkbD$Vg>P1lSQPsZGB0`kF10h4LdRzelW++HFAwmxO#%8)W9V{Vs#Tp1EDF$r4jW0ep9ux*Q3CG>5!SRB7mtzuM^(-2> z)Fr^FkxP=DW8^xo-jOm1lQ%k)wv~Fxjc;`H;irxo9{ihgN}$z-^>O#jT zBSN!Lq3}k>2KkdWIuuj%Mn|nQmc7xTge7luyt4R>j?8|xqaQePor)Gc&>@Lc-AcbT zZ+2_w)tyGtI(yWDl&PpG|9UQHzrhCo-dftm_WlpIiu+rrOH-ZI=6G^RUrjD1w2hadb#aoUHAdxnqmpFxv3M4l@+70+wrrP} zQi_4^%JZ5D7-|i}2E#zIq@Eh7da_&X6Y@QkJ|S=FGkikc+6=#504e^2{D3MuYPuFw zyf@<3I**ha8?AtD&YSdsgDu0foExQd2+YQ5x zJ@>U%^>4_xx0X=Cvvo#ctD))kq@T5;DmPveE6=mF)yvBn!5p5>|+@(Vd1ptGB*IhzO-IJ(ZRDIaJ6Dp#f z`X*erWE_-;7`B44CyjEeh6qO~DP96fOO`@eUUG#4<8^~isBxW)3TA@|zkiYJGlhh0 z*{wIVWqaaBSyXaTlTKo~h+#ELm5d)_d0?8=s2dftXMSb>=HgWTwd(?B7NW6X{|QQ~ z%AH>OmE03BScK;q_R>8~CAml=**bxM26jDFtIu;LvQpYmiqcU9i8$}6+rigk%0BLk z05Rs2ePH5YN32d_!vPN%s;u2_&7E~KPYIAk1@$p{VJhk__SFbUI&+|R%uVnhVW8c6 z9Ln`LS(Zrq#lMNvd#`os$Aw_r^}1_sZ7u0>d-X0*tE!QDl~$l$2~yMx(+#K(gMo8i zuTF~76g5HCz;)-K?E{?=)ES%mB6hM;6*guRyND|I={cROwKjF7VEARQo)y|Cc4CDU zc1}>|gB7M!g~AkjgTnN|L0!@M42NKX?paay;9)}IQ`MhW`CCO@62b%a;1-KN>j?2L ztx5$-$P@DyP^D~x3m2Q;!jMvDOF|IU8RO+f`eVy9Zop_4kLE>`cPz~v3}<@okWvDt zRQ!^X4w|$wPA4dfbYvx(*fLTrmwoZ5pxs|EJHqi8NG$now0NkZHTE(&rosH5%5Et3>jQ;C7p!YBPuBIvzqSNbPv3l242k2$DMKfe4?=(h$jGvbhtgt2nw8@=qqcP&%Hitl zYVbvskZ`FdyAg5R2p?OhwKzttGdO`e6|-~frZ}J2N51Q#!kdWJ)ilZ?d>UoAY3M(A zy(t5=qt4hI$#{F#>+L@~U-Mz#ZXG58rqlr()Zh#xg-N<;Y#)e-m?eULD*h@imAH%( zm_+=uF`n&KkH6;eogSK!!*;8HzPxZ2ugzpTvvGOhJRtt5kPEmJat?<=)_Z6|4!f)Z z`a;Jsyd?`AGBx-oB;&XsIgSI81`i#T!!E0U-PsOkKZrLV>7tc70UZLwKOs4S3zAVB zkeJy7R|JG>0(RRYpaXaVk{*z31<77O{1cL4T#yXnfTY$#JLUMZv&h{5Dao`AV8sdk z4kGv`Z2ijUyB=WM;GteQz7~c=SjZ>qR*di87};T$RmsCHt9xyi)xAi`Y9eb97D<>p z8G1+#$(r2G3SP9*d`fa2x}rsde34z&Td@^$Nol-OLHm@4(gx54fqdYP*OG*{aDqk& z`~;11`w1FhE%eB!*b(SX)ueDODe9+W)}e0T(~u(5GKHbuFxX*To3#B*(1&5B=7)h~ zi#VzPMqm<>dccrEs9-W(Ns14%AfL^gAa78P;lo|QbW$0xZHDNiyn_VHWV$S<+h_6Y zj1m^CCMCFm)l^*0tT4uUC8pU`LA`~dA*zIwV|Md#|JoWC$3~6)>B@W~*ZqymJ1_;? zo5L3!oB5)nN*L*4?$MB|-+#s4{!l|v(KdKx{Fb5EY5~1%5|r_d74(92KsOyXr*8Na z)$s~|z&xa?JazkYq%6_to+Zej6uZ(aVAP@5D}N8$X2^9zdxY5EXs6R|1QGwLHu;KD z-M(r<#Y2{oq>5JkD4L0w^lZHKBB4!@TaqV`TgZdY#5~-2`SZsa+Y5uFv9K_T3E2%x zR1qmE%kq?z*g=W0&Icym_&in7=b1nv1N^`1A#f)8Vzr22^4S-srRrQUPKAaz@LRX* z&Ss=)X1_>{IMR^9up?rSI*)MygW|xTm^iil1IMs4g<)5Gv|_zuu(*IhabQqP#Bir$ zFjG0yLR0A6DGqRHG=K(+3m7U)uixMp%oq(Ail^tnPz@Lq2Mx6;8fN|)J`_w}L&ErC zlC#n%(IAjYVW^T6V6#CYaCHaROryPr9EU)XFvk~~V(p}_QYiw?BUY*?G<_CuzD*SR zns>pP$Y8>mHIbMRT0{k_2C=ZSTmytcq|4|?I%a0^?B?L5@9R_m5!VIvG-ep$9dW1@ z?2^^Gp@|Pyo7y2~hsbYVZJ$Arzi#9>xeU@u*A<9V64off`~D*dio2~?9mo@x$~r{u zBWUIjpTIbfx~=&p#jaU+jEtF01oB!_yx5 z_9m;nlHbn~H6gn~+Qc)`VToER(nU+uVzgEoOV@3?5qd25W*~u}5 zLxc>Zbi}ElFMqh&CRZUTq7WYMV~+C@ikOaqoS(^Yoh9$xOEDT~B^! zcIcBUf$pw8A+$MkaLqriP%dx7It= zJ1qvWa)VHU8m+Hf<_o#*FJvM@eO{z8!pzF)%t>ZrqOH6z@t^y}>Ql5KS%7PVL1|jb@y`%z1 zpAhhew+pYPNO-$(6oGfET=(__FTGR>lTtfyNF%kYKO%&ddTZxVkvSy&BOhJqw)fDN zcfS^T1lQrQXH>)7-~rjXch3DSG4g@+GES_3K6Rt&5*FAGh?|T?ky4|TY`4%Szu(jr zQB_wSVY?740jrqI;ekPkF)b1`+ChS*(RxsyuGJ0!5&~NL2rh(;;t(mV_Hc~kGguyZ zRFTPac)x(7aVFbFjsYNHV%`Z7&5-v3;-5+wR{CTndtJcrY=zHc>Bw1t>e$V}ZIV0U zDg&0U#=BEk+U(e%5zuCbr)Ee8RELr-xmSxDVnk>uu_i}Lwf#JU8}sg)7)PjzQm|Og zhElI)IiaLfi+BR9=@eSTPRA#!G8iplbex_Yh%&BzqgJ?CXUTSDdl_?fF!{BakQdwm zZQB(^$1pI*?9-C4!$4bt0LV*?DU9Je2l3r+fPZ| zxo2+g%x>Q;;$2V1T?HLTNw$5V`q}oyDYh^C%h-W;nqv(>GtK*~ zNcXiRCQ$;`?fZvJQ~_rQ=TdxC>Xf86txVP0<4ytTEutl0S4z+7jYH+>?=Ld7?gvjd zU8IN`P#XKBq`It6VmtwcMS&SJ)KbTIo^)tvdqn~rDe0dVNL124F9G78*gJy@v!`&> zs&uW{7|C*PT`W90yX;KhFT-pGr8Z^nOqfB%yyE7m(vKI7{oF zmcjd{5wKYQ6eEyKX;QH!NB=zXLF=Er^s1ts;!_yt64aisvh|C-gplhV+wU19P*}N8 zl&@Tf&nE~KEstn(DKxh3Q=KO|!Jc&Y+Lh^i(GU;`t#C^26}4Ig*yE}0`aJd_ z0=u`|E`^X8e2t|>I@NVnHbXWQi_T%N)8pu%}re+OH&1_Y(INzjC%s32|n>XC73pbbGK56TF;A_c! z;khR@*Dl8Ks7=3#Uzhv(b5BrC?R51COjj+pZRPtB7ni#IRx>^2IoKlUO&h+$BqJBDNh@i;t68EYPGSIZXkyQBP)}e5Sg>y&M`dr8QOdS1}(SEz<=czL1*$cBT1_$Wv!)Bwg@AaDP=E= zk;^QkA|n@+vKPR_AZ4p>)CHF*0L!JsyWlblsoVuwyW`+uQ6G7sUC@^nQF+--XuM?L zMD1v?;}fh)dWt<~w#OmO)FKzIem!{le++Fs&H9Ip4KwAZ8&+Auk*@FHY99%$N>As( z?e^Lv+hgU~_>>+gZO4gh$*1)0KD{OP_j|5tbNNUQ?z7B(Px_XC)@19L6Kn5ycKgAjT&#$C2T$^sc zcIiW8gWjjUIequc+}*LrTPXh};zf4u&1w2(a$7FXy;Z}awQ{?KMPEAn>Oe0vaAKl* zXP|E;-#(Myayi$2KDXt@7)CR2w#rkyR6N4hiUFG0 zfeDdXDE^WbTC~K(Y$DhqHH>C#L)Vtr5iBkUs1g`csS}IQq)9DCH-V(t%#^GuS!{-& z_ykmTj`YF;vXdrcAK57i)?4Nc+NWKN?kuq~B zRTjJc@XBh}9|V{k&n`i0Q#iYy5J35Tu(pZxQ>3-oF3m}BhF~cFGG5BRghRx69R10XyrOm#P-~`NPUeYwp>Y*6Pza)3b>A!0yIG&Vire#c(1xo1qixe0b0`Oy`4px z-7m+ty#sF_c7A))WL1WI`>%W(M==nyk@-V63=P%-+rKq>}wEyz{}^Ou%QxOMyfJq3Yk?EJ@{{!s4Z*d;kErgQ#f>;irnqnQWD z)-%?rsMBLxlN3E;T}t6A?MBBMN?Yf2bjdu<EzgIPnu07Z7NHughuwsaYoQ`(tVQIt&{*~9#wwl&inbTlSgGb%oQm?My5j{mRR;|P zxh>41J5q*Tha_m9)>EP`D@a$j;?@v{I(p!Y?1yLsnn5valbzD>I$RB~A$!nvaVm`3 zs6$^)vim+ZxKywkcDUW(Tlqz%!&lax&P}yyT%bxjZ1nFpL#1f-BrM!vwrFhVfc_#2 zCm``-J*?;)qKkkk-ry;>5il@hBZQr3{IW%CP)_K@r>r7?RR;t6;I%(v_dx((09}U|*6>I6tV|p4hMr z8#cZVUDS?9tfo97X}yt@y0?{(gxy9y*==1mKY|a06F$iJ1W(|67o6{A(o|Lui&5*W zpbb_~>S|w7&{oT*g8JlB6N4vJP%j1bgo64gXj}R1ykHB43wmu<)_UX5`l2S@@BESB zX#9~)$#SYX3=Jq7jwR_c0*>1)nRuj7pu)nu(%s-lVQ01{{f$kGb3)1nTEwVu z0izN+#*NS}vr==dYi|#Ga=z4m1Sm}=s}Pz;6-vIMc8E|!EgP_aTFD)?I&4MM-AoBO zvBDVDND_8%TGg=t?FGa?m6hKAMDr1OAVv<`Nn)temL?Lo4u{ZAIivPkL0GkB5nVKp zw}&_@Yt(y=cPS$Jh~S?}+@}1#VGUCCN#b|JcwRL3`0Y5vcX_B=&ZwChBjGHWo#$;v z#I&hu@xEze^szGidz%bFEjiKA`-a*0&)+tT?MHDn0Qsi^xg&A)P2gF6~7#pKFmxN7Zba!87w-&%HQA)DjV}6`xpZb!=Lh2V0ej zV1Eu7()sZjph1ST7Oy?@SwQ?#^{*;VI6;qUA@bQ6S$ceay(gWLlN_Jdg~VQRjROs( z*zPf)GZ9hoP9S=P$n!CBxa55O2BAmx()c;fM_h@cc({ z;ImW@*hb~B?SoSg!F71AiVMu5@ir?B%kX$-9NLVx-l0u+4T+x_FzS3y(%9j9lE!~O zGhhwt;%&0x;w^d2A>Q}jYQ#nHeibYEWBYY>#%FkAJ2d0*>ELwr01;SJA`i>mgVh7R z9I~u+@^C9`><|d^jYqt^c~#Z#aiq5{{9F$aO%ywJfV6w&Gj)ScB3gKMH*f=!FGLe3 z&%U1nJooB7^WRrDIKbRSo_*7Jt~BsND~QW`=4v}L{?7APZl$2W5E}Rrsh)J_V)b5{w8C;<|1X0sFzkCn z*egWXf1n8q1$`G=rsp*;s%5@K^B3s)-Y}qk8w~i}{|5^C&L=5oO;JJLMNYr`gJAzW zBK5uI*T3xg&hvA9-|JGo^XqodTsl(+DvwgJU>dS&5c)cf6!cS%(Wg4`@Wdx0-*!fX zt;lm&O4~uOmmu*{b$xj0dp$Trbm8a^uPu4urDB50Tus&^bA{8aW3odwox1nODAS2! zibkpZPL{Mqnyih1EVmFTW(T;9vSdwkCy+qgF1!%ek3-UJIQql8J$NBb&_G-;+RKT1 zOF~?jBqn!(psl%t#Ew8>Vo)VpoB>NKB&n)8oA7at8qEIZ=Bla(&J06H(TrImq%D4z zOmA!pT=m+n1U`FUIWpfk04v9K^0VU9*fyNCr^fnld<|AdA2fbbd+9&^$=e{;y=r>> zjqOq%p8=2U$DeOJ;E-NYsL65ijVi~{8{5brk)evht|h4+TCrD4QcfuAAJf(KWSXw7 z;rFR4+6FP7UKig%rmjp3`+f=5o6@v;WTKa;5HST>(6ep zgnm3$Rr3_Ah*qM~PM_tj-3nH)^^IxOlhQme?r7vr4VYb z=~MoeYYL3o)&g~uTxy5rxHVMnxNR_uje7=}gkux#4`#BZ-??J!g!mAq=#AqFxNRL# z?pUz|mV9&VMJ&bvO37VYI|XlcZM zvk=Yx^&*9LK~9Bo+rsQtf3RUXqr>C_N+gC(5^EJ1HFK9(4iV{exU7F(FS~Q@lXi$m zwWM~E-Ow|n8eBL~kP?hLAu`NPrG9`a#5rn(>h}GOKV5B+w{G760qp?zO1+7kAE#He zE!oHWEvN-aKKwzTywOgLNg#74MW&@UDl;plGpFn`I9=edE7tPFBIBB$uhno)<72kY zm~Y%FT&XJC{zAhm*h*mDxpx(uT}r~iX=+5BrJHohs1$RFXS6-cOg|sMpbHf z1^VUE5t}40Z?hfcBjj^GwPf_3At+C>iq`r->l>kU4gNr~FUeNN6;!w|^!uCzzabZ> zc3oscL@hQ5wJieY8*N=Y#Rl6wNwZ;j2QpxTki!P8bT0vY$N(EeApg=$c4IdD9>=c7 znvj=#)8wGmKgX}DywhW*P1tlgV2W-`x{pDl zbnnJH?bwuJy&D|C%f{I;IhI|$dhBSDfGZkZK(wFo4cC^Z$E2)0vDAm@O_jAMs(5uI zV;5$*>ZPnmjtxC1aTVMDUhl=aGhscxV?`K3&H_;i6nN;;r&pW|y;+@gfwK*NlSz+) zpYTQ!9@!uRDFO)Y5_)e<^s}b(>VSAPotJFj&Ej3}-e#t1P0~5It2J`tHgvjMFBu|S zs~$@h)rH)e%Bd8*n#!sC9HaTlui0@+mF5qoN}y;RSuBI{hUs&gT_tE%E>HtiWI!9} z6I!EBMncv;fvxoPoYgpSK3LQrUkQssJdRScE`W(E&tnL=Jc0SNl3MHj2EuAR!WuW~ zMzjSPnrs2f#|cOZFx_fp$@tj|5?9BI89z!Tc0IN>8b3ue+$AJo_}3C{ew7XXVZpb; z@IRr>6NZ1SJ;vc*qfn?I=OyCse_YTw{2xmtS;p}HFxhPQ5A%;`0h|-MQVU=L;O>6| zA)2b#kS-%YCA$%zOl}06!N&%XD(yyq%CQ_W0<1cte(NeR0#q9_0zO`91cYW>f=wyG z@K*CR6d&QS6|RY%&|Nw560J*LxbY4?=*J6IwMmf-$BRL+W6ppeV%DNY{uZ-EN8{TH zrU*F7GHM;mQ!ZwZLV{4*@$d_Ha^G6}b?7`V)T?a#AGZ4h(Od=bW#U$x#(11pqC2)i zr`xW%uVbBE1!!#}6vk;CAD>dd47BU`ylspZ$8C*iI`b%msQjdD4Eb^61+l?EQ;kz? zBi+%8CXmZuQ(?kVVvrTA6Y)u#lD$l_Y+l5P)K=6|=AhJ6CM(N!_S5@pMWv{}&%I7k zlbB+PgI|3(IuP|0EyZc;L(^kfJ$U69Bdm!}Zn8H7UF+a{qH?x_U1Y7rzZS zUA_MWEJHFuoQ_A0*it#H30ux4Y*ypLn#@gBujW@ZqVhe#-70qpbH+oKY#Rt{wny8+ z(g*iy*6fzJ8fUOL(TY>F)G#n=FGE@0x_#mW{No(~C3hQWm6?oRsC&d8bj+_Zld<;Y z`OIFKj9*wC9PQ>Ww3S&K=vM2C~SmuUY~%I(XOWw$ZAr zdTpu{GriKKl%H#?8~Qk1;#k528IC`6VwpQk5V3kh$CXaM7kdalXVZ4SEq2b=mv+t-!>n3yV087B_t(Oc zLjPg&Q2pmhE8zGkpSpb~kgzeGEM=tP7w$+w(RHPDQX&~77bOo+6lu;!)$h)vyky2btOgFqdze@H} z{uYzsr|TXWw?gu_m=rhtz;uS`*MdQkd<-mLu4|GcD+G66X z(pOvQCfzCACfzTxbd2X~k-r7u7Yn&y^8;5NMEX;jv8dTJwUyM<~0yen}HP{+!up>S1OVz-q zm8!uq=aW6z9n`=?%IB)(NK-Y~K@Iw;!B(q5N_nMnx$?TX;=C}eyy^!3H?iTW`UnQ~ zJZ_@E($m7Az`mArw4lIVozUfTwJ__;H)`6KV45HhCw=)wn?9y6+5EAg43h-eRbd=F z(b^Ky{&%~^v2&IqO|Qhd5P0M_Rv?O$RQJeNS9~SkX#LvcsiLx}8+-+;3n+2*3FgN? z@ADF2qMSp5jl3IJoNU}7yK-#a1pYd|G(uaj2svDuJIQ6_w%xBs&^a1;a%98CR3CNL zykqW?x`C!`v>gML=4?}xGt$O6V@=pNBO7LG0^4kjWmen_Q9EaC>mq;Hro$?oQk#PgN1Xnt87FjrcAiSv8@Y zp#%~7!L!U$%W8X>Sn}1^!#~{G8eB37O#YfcN>bbPucEfL?(M7L6>Iz})tJEH`kcKL zItwq}oq7CYOlNMg-c~kX)x8?M2PQ>P)%DT7FZb+DPpy^EPm+FdMCX@-Xu6SLAQe ze4_4=Z{%<3!ZXtJ`h3HG;z4Q~Np*}}rj?&b=Sc%(h&`%Z;TW2YRZ1fRXw0o1rLo<} zn8u2;NsE)9bxOS<-tx8yZ+uR%(G)H|E5v>v5 zB&sT(nYZdXJ9h$6P2{T}aR)UG=8{rM^5%Z7TpBBjZX)}G^p(S!_s;!zGz7~m&zrCO z{lB2oH9x0&R?UT{voukSv-tPDch8xD6Y6+&PnG(FTgaU4)m-f>bO|cfs}#6>!Li0{l5E?!`mwEU-(k|n-5TxYjeOwwvdM+E0*huAP>9ZXj7!8jyxo&&a}Vc5 zOXke~4(e~1YH%Nfa@nzW#l0V7%;<8VOyR&sa9N# ze!FmGTqs_~MOTh-?<=d!lxn3#Hu}Tj~%3I(cUe=E0(syYf8lGcdCJ&xqJijm}nYUHz9uAp`7P&`q{kW@vUxW|#a_GgNk_!fe*w+V?7 z3CS))qL3j`kF@Hz$C2D#jO1-Xa_!w9Q6eFEt07UykZ6<2khsT@^b{kxM@ariNR&uO zzWxbSMg-xzK!CehOPW2 zOut_q_Wd6DMJ~xwcbB=N1Yk8fo7>4GXtr>?B@0+rW%`YH8K(YrxLwgHp%aia;I0N65meLPcmeQwS;$0%%dj_pmZ1gsa zDoe_wvf&o6CpNwvH*7qDp+9>n#5|kVq|7TV>gG4wrd_xrB1q~ib$;_YTlpQ^ZjxI! zSflbA_ewJTj?1KFGuDg9BDu3G`9f7JVn!21CDp2Z?8M%Rb<8Nrl`o3?%Hz`xjrP1iq~k@Sl;RiYJnUdG}AnkJ2cfTPyas zHd~a2#TTjB%9rWHaN7l0TE?*lk3L7hYT~5E-3ykMMG|YMueic)_w$q0;);sYK2>sy z<|+Um_Xfkh%f93OUATx%oM3B|AF z)EZAat{lnSMA893U>j5ne~_ZgR6^)%Dmon3aSjqsj%!MG$BbB}9I$K#XZHulBV;)p ziBQRUN2=jtBbhhpdp^ETsrx^UfM%g6RoBlQO4n%ZwZPF?;*6u89_xp6S@6HjD^|@kY8tk?sB#lxa zth?JGR$1)Lt4FDWP)2EheC2lXrS^)+zfMvk|4)p3%4#9alkQAcAMy=EKeS*?N(vKN zRTjTG3+Rp^Hpr~G`rYG{ZD9xV}u3~>(1?~QKItZ$L zbs@B)p`Fko9Asyx=pt%0p_@7}{#k=y=Y?M6=9iUya?BMQk{lm<#4)b z^3J*8=_$76L~4md#L0n+jOGVVGe4NFK1ORr2J`625AR!nLeFZ=D62K2qsU?T{No4F z-6yDEO0g$zBJIC2C)>eKgCe2YkqdW|j!IB{tR|v{2Vg;X-9QP=%i%bK z>cSCQrr5eqc8OrPx;7wm46;Bk1LdD^&Ek@K28T#pHoF!hd7jTBuPV|;>T$1=`A#9;RGf2JiA9+E;l_DMXw??0MfrQS~28&s%`6k{ENgwvch={TKVrEMKj zty9i*@}FG$CBkbIHuW*+2WanDLnNJJJrTR#1kaQLji7eiUhUZ$s@$!YrT|{s>TbVO*gIUcy<2li`MO4%_)}r^5|-8Ow2%$!^GRhwySs__RP(xuIU| znU~qXdeH{p4z1RjIf*HpSaw76`c8x1zbUdFhh_s9ton?jQpkEEU1GfrU5;5-=Z3BY zzsyw<74TnGgrPIL@gXJ5J@l+4Z*V)$O%jBVsxbjLEFR^)l^+pllS6!P=6Q9L+|=Yy zKYln+m3wF>zTD6b{a%}FA28tN!Q9X;Ad^FV{0iUX(6-gj??FEgnX*ktttAzinbtUilR)vyGI&k>reK9hzeobtOO+;;i&sR#a6O*i!A z{+HN5z=QQOH{}~okd5e}5yhomtpCbSmAqL0zP-gS*8j#2udF((+>_Pg{2~sRz|Ybv zoy6<-3M5upy7@G0F%s{6{oD`H$!p?jRCvR_L7n?|AS_)0O{XhW;FYBnc<8r_EAW{& zQUT?jtk%x7SKtgjufREcg$kUvblQYYU`we$ToOoE;IU1`6|i-PFW>vCY3^?!O(Nvd zTvNQElm1@7v)so%tel7izark386LIM*SR5mKVVFaz~%=rL?=>keiZv9}y~y1$sYYwoMQJi=%r8ge5wDpP#RH;P}m zhcW>CaB1%J?VnO8!K$z&#f1}$mKx;IU5a&vI;pVrN$iex+VmY|_2IN4wb9U}%vicH! z7hp{-3zeKDG+8~9h9#AZHAyLn*aPDNYLJmPs|VIVRJsRhNUqca_y1%G@i&(c{}UqK z2K4GFaL{(BkZUxFS708WRX{rO@O6GrFlkt-0!ji61uYjV5Z9v96?i9vr7JM&nagzG z(Nw7gzQ42rzsu`R=?eUDGZj$o$?9f)y#h6~g||R`6c=lO211k7wP{$Y z0t>c4T=@WD5pc$W6U=6;4 z2(7bp*)(h^6^IMw=?Y{@DzF-)l`1g&mXZq8l~mwXRY18XtDE@s3Ut#JErO52HjHma4#lS}5+agbMtcI&oFH0%)Q0Agxq^ zz3WRV@bZ!h{D>-`+>_N8`1K03;PVQ!;VV?2!_u{;VN0n%+&W8F;O!8Wh!7Rn0Mel^ z-+MRsk}o%X;U`Lnf6slz-2au=LA-KKR&V52#OH4lA18;l;uqnYJ}V#JX8K10vTNgx zVw#vgp`iWw5u3nS&fL&ya`~FqkbTX_hWNZi<{uKux<_nM!+O?`mZ0+^nqB5bnw4)W zqM)^|soYSL;_i@v&z7R3APG0dPH?#(C{x&tHFGZYQ`;E!=DQn_(tr0N~o8h-A zclYIyyH=P9Wfs%OdkLgWriYX$G|{l+aLtdGG|?Y@G-;yGDZwN?nP+w<+b<}q*=4rc zm%l^pwCP*BUzX<)-iE#JxO497xz8R~E$@(k*{PFFPwakMen`Nu-Z7$zu&g(7MhV-` zbF?VutQj!|eb(Ss^IYw*JLmo@X{bPr%=jOKGA4N}N!V*ECN{`Jt2!^s6gw%DMT`NQ z*^|F3?0(W^pWapQHDzP+p3kZEtM31|I?W;^Sdjec`Y#ui$=4{B`?06oP!AB>ARyMlwO@=D} zkm%9wR#86|9oCQke3R8LY4)Ta{}?IaxhyS^#TBy$uFi6y#xy5gruWR{g1HaSe z4@Xt6Ea6K9_SFhIPPQ(^f+M z5*PN&cgS0a{q{RNHWOmi$c5OyzH?;?(>=m8bm$wg{3H14t^9-d283Z~6rYzbn96@? zD8D9@Pz`TKhGOhTL-{dQ5><%x@?+Ykv2iDdsyJro_0QmYg_S@5Y%KpeJ}+M|tG{xk z>c7g$kFnow_1IXxByMCV#%{Ly$Iv}izHUHz`F;5Gfe|zdKCgcdJ}+M|tA9!P4OV`P z{b)(~lFt#tr@Vg+cM74WF?}b8CZ3DspTT#tm45=Cmp_ir%NNY*uUx76zs|~!vEP1s zas4I5BSSHEvy~r1_gMMO-;CvF@ikcatMPgHP58Wg!L0rz<-ftokFg&Og3P>-$ro$58`XI@^|9%@^|6$@&&W{D_5%iYpwhk`|Y=RY%E{BbYv*T z{x#GULibqtGd#=dR@ zVJ3O`NARt-@(<$k@<;J``GQ&fL-~S2N2bNfkFg&Oxn_rjiZZe}q{nx8uPAr%xr^)q zvyD@F{EDwT`4<~n!q=Vn>O$#JDBGUWYsKt(v1OVuTx?wNsSd_XeXqy2bBpffyiq#> z99fe2%pM8{HK-hZZ8Q$b(MBrg=kY3CzuXbRm3KHuy^RCO+p6jwd=^VHPY_TKpdLV% z0ckB*d)(dZQ`#q-wrgHcz42R5aAkpg{?^>Jn4sPh^vN#fDD7DPCm8cjjt$7+kq;iG z8rzBA&lC8kj)XTntnQyr(y5WL9?!Tfm9cjT89N}Km)o7%@Rg>f}FI*9~eNc7ZBa%+dc!=f!mOEC`(=6w$%|*4TbU_nu`mTjUJCT@{nuNs=o+ zqhluoZuhjAKg3+X!nzKBZ(SrDFO6q@Vjy zPiUw|-p%cw%D9zw>Q;DqBXBOPq#+uLtF?4>^ikG76kD>F=t z4TFx>v}f;lpzolt-)6B-@KWCP-9JqQb-$FS@fe?ab<%@uI_9APg>U5QR2=mL zc6RNUcw^(%lJ6hd{8A$wBCwb2HZbKIZCpwfWMk6{qhuz1!N*pe7X2n4bPR|N(=;Ym z=?WLAm{HOp19J5Kpr47Nd*~pK*0=Mk#4i9kxx>Gz6Z%;@WnYkO!5_{LxtyIEJ16cw zrPCNlO!75xodyDjjuGiE7RdRSa0ttVl_WC%tlV29W&oN2D4Ul%Z{_MB6Q{JAa9rw7 zj_p^uU*|N13oB<91^A8=avI4qT2`QOY=T*Mt0vOIV?cqHaqAxxt#X|Q(lP*Q0Pru+ za?NO|1pp5+I3~V)#bMaTTkjZ?yOIKDNCA$^IQkoL2wJ1$DQYnZ zs7{xu?eNy%m2l&=_rc^v$4xLPMwKWAX8@;yF{(aAcEu{s>8bBkAGxY8a05x7YyC zlkFa};TYu^G#X}e9FDizaNO&|akmf0eLfsxNS6-Bt|U~>BGy8e=xof8XzZK>%Vs|? zrU&@g1t9rVGx}|u;umcy+df==DCFWmR5VUB*11j+h7z-<8_?X#5mR~eS8Ou$0!3E( zaEeWaZ62{52U%3;(h)yr%wS1~_i`xKDnM_*0(@)PfK%Cs*x`u#ajv}M=2Apdw1pUF z!vXUfC&du6>56#Lrlg{SY_0M)!_-ncMy+94%MF?oEn`Y1o2>&p*kjv3DK*UpueNPE zZr-}#dw5?(y8uditH*2ZqmS)&xmhC_bh9SKGBaz$X~vR+IP^+6IeO*aKVjWBxd=|F z1Bzl|i8D4#-RK=6#Mp2!vSB|Si3U$cN|2C-p0TP=!ibY&wQ}r%M`KBbpq}qAvqvw- z8ZurIK5KkAZ?+6ghzTL3LrI(~7i07gHY_ICDMBQ383LRpy(22 zbg){2k?EJ3%+5US29w$qu(W#MkgQF&v$?_}4n>30FV5HlcN%n%0-2q|HfGE6bSyGH z-7Kej93h=dP%qbV=eHql0sDI6=eQKAoE1_1v;xo6q4_X`r}+)Kc{ zd!BY9`0=%qxp_Sr{du>6WfTXklQuoilMl=ngqFWWsF@&%QxnYKvjCLMx!}~C0{}H= zaEi>}6g4gCx)Kq5`?uw$aPoND?nM$Phapsd9bt z(guujTX2eGh*t8+%c$B+la~q-#4@~SVK?qZv^0~%X$cav20(!aP78bRqJ?wI#S)az zV)C=VL~1p;poMcnMYPyNDl~*HCl$$0J%9ocES$27pzyMw& z?wJYSD8oI?<#PM|1B==3yhLio;VEB8d{j@7iqXM%|2~~J!3GABGTtu+;~m8o8%6r8 zK%Z>BGWwJx-&juH&n}lfA&T^kG@Qz>%>QgAye<_8!%?CuzrxWMZ9dM@o}9?iJZARV zPa?Y|y$8y>Ne^dhs=;j>VJHET$k1g4{DvoDGD9eu+m{qmG|lkozppeG3tTXekK6iC zB3hbeTosnGX~qF7sc?~Xid4yD;~IfD+3=g_Me~i}@G5jN`LbGmG6& zT_xRCqS3ZOQ5@;hBiad+n}${EU<^hR_$6z$4z%{7<{nsN01<+593I}4I$L#4I_Rmj zU(7v|HZ6{k0wl+A^cM@XN7AKJi91A`kK-~202~FN5^d(X_Uou9ih39zf_wxgZB%%g zk_Fo5f`LQMWKr}W8Noe@qrXT;ee7ejL6j(^?=b&TbiU{i=e!KP57Eo@W#(9=t>DgKFb6ci=JuL1bY zlVt;NucCaxjfCnSO8C<9gxfsf5^Rd(O8B!>lsZeNQWY($3c{lYg4FGM3&f>XuQVnw zo>|-@ZOdB3ItzNJmm}(%&z4nlz^Na^iF?nk_A zA!W6dr(T;{ND)D1UMOo~UPyr5ybu;QFY1+j)Sf72eQ6aUj=LMCH56htB#f%iGeLbh6 zd`TnB4%3>mnH>pN;j%>Od20Z`<*F0<2}>I5fFZ?MoM^*^F{5N(Z#5~v(S)PFs3Lc2 zFHKTkSkkB=iIp4o_38l>%JqG{24L*#)#7+ZS?EV&><#;p+jxA@X#?kwS=MLzj#q`=y-0TOsDozqw=BSi{%NIK6H%x z2vIU4b;YO|>Ej#|MG*H>GE#Uz1o+cQ&@oJ?WNUA)Q>YknDMT)X;LS$1_F6d6wDEy6 z+R008?d`eB8)2nKe)R4z2Y%X*%hjU|B&g4Y4_CGy%6;*d_1@Le6IaM?wgbC6H1{M z6V6(K&F6Ak&g8c|oZE6D*FMhaMXCgLy>P~HMO`wf9ce#-Q!~Q#7A7;C_R`pRKQom* zXLc1;mmSN}vx}T>)Y--MOSz|?d%Bz(?dJkJF6Z0NvA@YhnD*5=ve+?K5@zegqtPTubG| z197QSk^OJ9dj~90oE~Z5bkiZpNQ0$-TqUT8(RRv={}| zJpx;|oY%&kliyp%#e(Xp_v`Q)ul$;uZ@;Xs!#Y#q-go!v>V3V_Kd(LzgwQ);% z8za)8jS=4RHs<)MN&ICyz1n_Z(H4GL#TI^Db*hDXzr$hO*uqUi3evor?xt-Yhj-St z&hC>V4eKKdbn>RUK2%+87F~9x1Ty*`%Ag@iHpBF@#K~>7k~8>T>#xe!m>rm{!H%t+)X2Q zuE@1d<=dy!o2yT78;H5j`PV(EUEk_4c|2O(y7$$gTTkU%ERfrBVbgsV>h}F##ZCTb ze#>#=^ab_X-kYENP@$IkVy%UqLSkt?Jy9Jibv`8#36AsDQC*gbfYkhMQ~@!i9q&Z` z?r|NaNLVY*tqx*mG|f;Gpf?BZX^v+>t4t`RjEg+>8(p53gZ$56jp5MvbL%l(sjK;0uu##lP658uEDXWx=Of$ z+M^%F64GqH5ZP|Jkwh0F%hP}YyHRc9`MW2|IK0N$SjN=%aQ-=A>i#S1Dr%R{F{?DO zE)p~!KO}cZdu|JIdS+AmRNX#ZzfI{FuiMn}q%Enoj|u5|7eNXYFX1R$xNkxqB`$C^ zC1*xWl(S^5zE= z@`UXuQ%8aN3R3sKVy3tfXv_9;G`n|I-M$Y2i@e7c*$%4SbfXarx`NnF46{B`bZ+7R zR6$XYEsn&%m(_06Q1V)Yp<4o52BG2nnCJ6OWt(<9wsYpDV`M|RD-;?n&=OjW%?)Pr zTE|YSh=I4$be-&bI3xKaQ&PRyf}l|oHqwNwJU5)++6!*|guAsNTyvH%+;@AfA%{Kp z#UC@fd<_`=95TmpVPL;D5|Wqm?K4F_7;>IuJK48w;&t@hA6BE#tg7WU4h?nqp`k(1 zpE>V$AhyYz5(oJZ(S&rsdi7aU@?y~^VI)U^NzV6_R8*oBDTqtOIbwHQ>dWrr8U`<- zPgh^#<^-^<(Ns$5r~X<|&gq+6{rc(Jt!gyh&?)fcxFm1SE}TceXS@GN zh<8`pvW0~FYquv?wqNre5`5#LC=zeD!^*Gzin!4}C|2Y@rPhEU?V9sd<+kk4@u-~h zA-qGkS?|#KTL=EkUGDAyI$o_v#I0FFaU=Hro%$Si-GmT|9=OC^eh>Mb?uSH2?jb#S zP)y0W&?xN}oCcdL1sZ&=xA`*jtjTt52=WYqcKdja?u<%#@}DUs-OBApBer9X?Rbuv zWxzIWpv`*kZnFK5&`h=;ku%bMsPfgX*6=Wc30rtZ;vtD)?ja2(&i|9Q+M@@#ktWs6 zE|uqoHpu@uNwqDq`=DDZc|fDU0uPOV#2ojozfVS`Oj+hCv|F%LSQf4 zWN%dPoQ06yWN#c_XQ?k3}J`+X9-%O8%4tt@;Rp>8LXlNa{_=lT# zG~L=t%!s-BzrT>;w~JCda7HR4>X1EG>rHd!+OMngE1>yWZGOx3T)n-(9#Yu#@b>xK z7E7lPm#F+Y6xXBL=aoTkY8PH@AElV`DS__Q*rXsFMkZ{-F0=IVr_Y(T=pJHtkDdEh z&pm+ zY>P9?AA`39%GyfSmXNiTtZl4k9R;@})=aqDJzO`uvL1-tZ?el#tXwBi|HuIehEU~0 zcd@G~pK`ATn|3vA4W-|94mtp7Zc!N(%Lp_McRiLc?Yi~oMLB+Rc>`Usykaq zts$|)cJHj3fraP9LR3GlTL1*BJZX$vvEnewl2nUd!bz zE3soX7&A7_?|zMrOEu zI|qJ@T(s^wJ;Z$!KUaX(^Bj5Z)J=ZmKSlhy5C_ARA30zHK0Et~>vVOv9Wg+7r)CO^ z)%xPMup4w0Z8bDCAq(P0*v$vhtk2O0%CZqJvIOcierCQQp?O9cgvbPaou;t$VtnNUrqs?0ZNkr1J*9HLDYr%=Kw=%NAx86c(HS{`@y$z&= z52^{}Z>6n-1c>nGzP5INL?rN2kg!33Z$+kwv5y! zfNUd)RO(+t$gGt?e?{A&^+5H+0q|-6An?fh38Y^7vBwdERWK!`{|w$d`aD^AgTvgca>YdQh2$AH@aw7}!O zzfh)4-`@RpxV#=5_5i-xOsN|_22|Y2h2s%m^A0giE?Ca(+pg)Ri+9a^F5-CyIm9r- zlMQ$>9}`J^I?S(;Fl+~QPi69%DOya(lJV{@LNwg572GG@%;4sNxC^2sm^#BQfz;td z^kEIvAE2a?hTaQ^f1&B7?3ns602+D_XXGx|hbfud3D_IjZh*T??gEG)noKg$2rKGP zAp9niiNNkCr)wLDO6b}Fh<~vpqpM%I4%oBt73k_Ewv4VmfK zUJu^oN#2>iE0Mf+zNuL9e(`aWybdr^R%a-S#_5lew+kUVU=zb2d^;4=LObrXm_cZh zNFu)jc%$&V69%dgOnB5ti4dx+D1?rZitda-Qji4Ye_ zm5{G2lAnbvMMsf*Cmkg;wQBG%I3$PajmM*(VO;RK;Xh@!g{sGlveR#eMDL*?Ng6Eb%hFQkYV4u zh_W)JyU?=&|3xzraYZd(aVRyaV~P%D>i=J=bAhfU)p*Y}>Gq+QNQjg*HvfZ~{UvPZ zh-1AE;5L7>d14&Ol@;@!3^Ka^M`hlX|H{@(f&4NPDb*V)n@IgUk5nXe!9JOpV`IQ>v@sOx&_I!Yv$^W@a+`yis9s;hvN>Uz-OrnbyqqKbHdL2Ry|*p#}G zvZ|DJIZALLyg>uas~a7NqPDdyPsAB!9220~~P1xs^-PV-%oSGVL^8HzP@GJ;BQA}{vo{mSox zP=y9^OY;Oc!%}f3_L;I#Gz!JyIU}8gRuT1Tm3Og(6I-AV8{6#HX;Bo7Y}hMT|C#pt zzsY+a_`I{K&cB@|P#`q{Q>>Cgzy~&EiodFzHI;&yAsqq+h!7yU(N}cikBY_3Vg}0^ zrWu>KeSDH>)r=N5Kx3;`txkU$*UCmr+c?QUl>+@iW@u*umNhY5wu6-kW1;*0oO8eb zp65y0jDxx_pI4jv|J-xWJ@?#u&%O72d!@sW>}N%522pGeYfGgeGAV66j~BM*XPHq=| znuR~`?iV18BAL!*Q>iut9WzIbtj~Mp>DlC(;w@ic55i>TR-g8`0tdCYy|gf4g26uu z)samL{5sA-`l=5;5R1DoDura`(c=wWQ{7w6Jl#E^qHb?(aDN0aT}8m%{)+H<;%b zlAMD7hl*(4|G$1v^-4HsZbyLJKVc(mla5t1+w;amW~FE{f~2Q<_`e`njN6pgHtG?z z*WYp%H~!CmnJ!)^gtoc#xMh3~e5oA1obvcM&5ZcvSTfFiGnN$5gmLE3;0T9X9KyFuuQZ8% z-vsE2jV&i~j{i-W#{M(l3mtRJ;oYe@-0qzG4yI>qj4|{Yn9QZ$Ro6H8y7Mn?y6*g^ zFTN1lRK7JVzPA3`TzqX^cJT#sARm2Kuq_a2+rLdBZCjQ|oJW^ip}x+v0h`z@mYHN_ zWk*}A?au1I0q6VX+9ugDTdaRNt9vi%@qu;|jsG@#v2lf7++MC1cl#b>x6Lgr$cmj1 zP(8QPdv4uLg;X@X^hJxjW%iTLR1Y_W9&Yj;))9J&wQgxAxx(&vxh>yvTj{291pgVk zV#B>UlyS&?or_8CH(TC=|DqU!kh9%01H3$*L;C)k4 z0A@6T6YQ=^)pueaQ{WBcYHTUL-X4CXzt$`58dZu=?x* zR4~yV4uiSqmAxrSKSZ~`u4xHQ23-^-Tl|S&T?E18^^=e1xm~S&Q!#{Y+e}e07vwdf zyG@sA!m~JQPjr7w!$W>m#x=84WqYWs$0|dOS*i_fiL{|t4c%~8tWB}S*Ja^+jYqJV zzP&Hk2KwzA{EJUuj>#BI#mCS_u&V&5@0ls1<&^#g412*E7ssyvb zLq=r^=maDGkY9&=L$=r2)N2o)<~r=SUFX~PgWw>V%EsY@RjijGqgLsw-FD%=9C-wj zdmqD9jeNbxE&c1tknl$P`?|%?+`V|BaEJJtE?oj3|8!y`Z}q{i5b%{pAD7J}`gDS; zG@5yUpiUPNb;XJ4OC=J2rqHiPq0cKU7l=~+`-sTP{^Aipx}8r0?rc6>b=$1~kMtP% zicjR*KT$!E&KS#Jb(~9^!r4*JSNu}cz-SrZ30fu8*wB(0(yTq(^|ZocxR&Cu6eS6L zA_)>YsnBaCWyfQ}4!=`$1pyt0V^!YC`@Z!?UXvTQ2jm8FwZJ8(oZ+6^B45W^8xT$T zM`eP|hKs}i(3{C8E5%Sk8e>2yEOSgb{Ebf`qXV%Y!eiaZ z3)T|k>(s^8CpT%JT_@0U8vF7<_-+D&U*iy7o5BH-g~AP|xK_Gi2;$n^Ifeuqua42Oo9xz)t;MSwaQOE5`AaxQBlXn+hK_IppuYOQzH{R7<;9EyW zXXb}r1l2G<*wxYB{2iMg+JQ`69ic8z6{#eNBsU?MI>-*8&nw)^0x=S)XOX6pNiw&eJu-BX}>4+jUF3So)_CG~Er{6G0PY z1C-})-K0%GIm+CH`lB2tPKfj*4d@lT9m5YMp^91dhRcOR|9Wq^@ zR8f~-Br0_IoGM|0!=Z-I<>wU1?5fCd>vF&;Cs|Zh1{D|%#;0ybFR5;V^rGsfhzixs zs5D~+C#h~+kwdvtavlfcV|W5<9mgA3>jYl?V6BsQSI1h%G02r+t=qZsmS(Nj|CX`V zD3HP6NT>@OeJXy428zhWRr7cPS6#p>vDF9lMRwz>%S!i>v~`Y9ni-6^XGj;#W7bl| z32Ui_gtd}s*Y153T@*Fy37&|WFqf*O^Ms2tmugsnxs)6+*NdNJcbE6lsD8>r5ZR8g zw_5)0Qlp00$bbwSXm(?`MXpmLZ#wBRN@E>Al&i-JF*bR+u{IkYMUI-i7$%4gN?Zkt zBJNotDsazrya2g|LnVP(=M~9^7jV+E3HdG)HS7-aVI5xMSY9LG9S0_{vNfw^1>PFG zT2tUPTeE`8nIy3z9;+GEP-aGb$0a765np7C_#&fpi8I9K`ci9YX3r)uiw@LxYduGK zAk&mJs*7uRE9^9^WREmQUeZ=S+@CK~lJ2Ov*v>B0dN$+mmpNsksq ziZ8b)ihD_fp$}!Iv`Vyz7fI^H9cTJTd#u66}H~40BA&uweL2e1a7xzz? zXjxl5*huC`x3T0Mah)iEU_2-W(}IerJ~&@RTo?_CDYr|I_@Smrl0mFOxq@mS^ZZa) ztBx|nusQp>s*eXlde~US@vxznZ1vv&uA%C4faM9|@Xl@2JSzl7tg2Vj4503-m!0m1 z?9*KOyk7${S{r|%%HI2~#m^D2W@9T*pptn)L8(gq=6MXOzt`c33+NOp81k(3G{qUF zBlc)3CgJZ>G$BtN8CjT3$%(Zin-p?A6GW=@P@rdxLV=!MpbPaxo9M7O zD7V+vOP)w}10V%$yur3kliq5^KGR0m5)oCLRHibUb4$kgt6 zgmBp69L6gMw0#t>en|QwcvrW@`O6bUTb!1sBwg;2AvfDScOSMb&Jd8P>rki*R7I-P z?pYmVVy78T$?jPlX1kmwrTXr9C*Ej_qusN0h?aQjr+AB_ijyslfG1lV-#v@qrMqV% zp`eMf$p%N2BD#czZ*T;Eg$<69qYch$zDCxVBijTi=Ezos;@xvqMM;;}5=9=d<0iax zc?}NuT_cuIg(8P?>lGRAo|TgaGx?x~p=u zd%lP#u+|)26(#mEUj1OLdAzG*t#|)k5o`UgC$p^eoL@86x&UPAnhkY<;{a7kXuB;^ zA_6V_4<32Uvqdp7C`o`{+- zm#U@ngo`tmYFL4}lpHbF+*g&ABgc66+yt(ryXO{SfiFI4#Y@LF&y9*4&FxgA@17g*7IDuuqCzFxm7h(K^2gj$ugIZX4#yU4x5vxQI-*!E%VAZ# z+TF9kE!jOA%B-t5{WViyvfd4o4^B8%i&np4j$7IDrWVXkdxO1y^0v@;ua!sB$tt<9 z^AJ6v9kGbX3mJK<4@%|Zr#5yFVmszCn(p)(Rx`e)V|^Zo1&&s?D-psLR!iik*es3~ zqRUOjM+BDVHOM7_Em_kRYqX7<6AQJvO9;Ng7B~L%*=|N%)DUuH{D$*rJAKoH~ zF+fzPV3nhq7OR5M=+OG2LVV>K3boQ(yA=!@N;WspK-!dU#kw?LSlbuH_9|+^ zMmjTfuR`{|{>{(zVdrjl^^+lho1bDb&oz`>$!5+!r4mpy(E@yVS zN?LrtaI%OBr9xp*8&vNAmX&qWNcZUMJXm$=)!F&*Z<>_>>nA$r)BoFOt)PAjAEWVO zI<(cs_aBI*BQ#Q!4s>adAdNVJkev7ocgEw47qXf!l_&RM97NShiWZ|otOj5hc}dk% zddgWwSz~W>?)l*?Y9Dw5VMFUIom?Jd)orKL{P1etkI%h*;sn*d&@G|se$7CoJIkOc zQESVegkBpr2!@L08KF{o)}P+NEr)K&_U##H;0^ESg`D$|VTtGhM^IJYL5O~Z>~pn@ znmz@vX$Y%YONPuSxCX%5X-3BZCHLi8qS2u2``+Nz%f>A=>-~ieh(P+Trtf{{LE}UDJA44j`NVTOv@)1oG z8i0W^0?I`Se9D1tSrPYq3)Kk=6mH`<0Vkma#nQJ#lpDFE&9~lX#=M{A4$BjdpU9pY z-_WqC{jssv+vGP`Xz~^6;&O+a>Vp_sNw-*$NWLy#AzV|)PW&&+$6f@7cBnb`{wMPF zrIsuMff@qASWaOc@&y=CJ^@ia-^`V+`svnGD;D3g+Ul%VqJ4~`e(Tjm^hso?nx!?t zrx*i)Vb;b=2A>&}JgHl<-c^yPjV_l3QF~aT_GKS3QEMX!QTwjHGe%HQzZgJob=2)- zx~nA9q~Tpn5Z*%F^9xfWo`xblRdf>xQF7@tSGw`qdqHlH_>h( zYV*kMKBvJCmi?D|xcbvnjH6DQk0X4>)Ky zQRXgZM|797MOl?W*6=zh)IlK`((B~1NmseMr(Cww=nZ2j=I;Z+E41FqIic(;XEf7;Dqmq%~SL??G3EgQ^I?hfQ_kX`k`Jg?8*!TSh@ zUYUdNmvPn{v_y6X@3p^ZTX~fRryPzhKlxR;Kg(W~n-mXz7=VTfBUsFgY)m9~T2J;2pkOhHE0DWbYubl2NkX z{a{h6w_;~HwAyrIErZtTNgz|#R8-gF$d!Io%J(R6?0V#mC-ybb24&6jv8o-C-Ac@e zAhA9=t?U#NuFc)KIDu4(S}m)HC&_K+W4>Z+BkB}U{0sK8+$!P(5nwWo6PbIHRm3Jm zv-rnRsWn^Bi#G%RDv>9MD5^{|t*zFvYQ|verm`bMsbnZ_E74;_P}wL>RGCbUwJO>_ z?UAai+bWab8D@#EEZCsLTkl>e4-UCkNAJRv3|j6_x>rZ<>)orP_Zs(VxxdrBTJAT> zi*P!4f;L6#P&c;ro-bLHYK9TMD{y~a$8lSUBdo%{!pq^42(P%0b|^Zew&WRG`zk+5 zjH1*(EyGnc7T*8V+I<^_@4As68mJ@wuEj5tLq2tWzY6$$ai4!e=PzgS@owI>^rXyX zxXH&oM$RIWk6l!eHu)ItPA}ZG(QtGOnz>LAZ^zX?KG}B2N19MnV^}iojxN?&uBZj% z329OPhKqH-^?No8rQ1mkNpX&h?Z8njg%YAbTuq#Vyh@L*>Al~frSq1f8bfB(wlcH{ zi-04hgQFd$U{O2Ncb%*)%-BSWBhVwqzf~2z_eSWl!8`_L6xJ25Bl2d)omK`#LqSU+ zfMte)7GewqTWSPrq^Y5x9gFpyk2@auf=*|Rhj6C1=&YzH}QT1p{^)Bf)F9?I^cCYiI!NEq9qm@zSR)?L`y8F z@%~z8kV=lU#2=kgRyZ@5!E=6{5JVrZW+k%TtVDLuh9YL@$}odliR>m0aGf}5Ym6G~ zP^gXQQ+WBpm}u;L+D;_(b$AwSQ6atH5UDE6P-M)<<7KgHB3}`9EkvoRP@ma~Y!$c> zyF*8qOQn$s7TCdn(yp-cx z$|Q`s@_~j3Y4Dl@JilwIYGG9&;;gC~R$x^nN32@?7+IThZLx@FPae$xP4ot>h-RWT zW)h_#`;`*O{tq1E6V>{REK_o7N-CPR&?5JfhiQ7uJ}qdfoOH$HZ+AKfI0N>v1@7ER z_+NVZADi7var@Zp&2ZDFXoZ`7Y;g6st^PxU{c4!&?n3)k4@0d3hJkweGzys17^TIr{pBZ@hMX>11wZyH7a~OW)SVxYFd&p54J~rd4z{kF(FMUw$ zf}R(}RPY8xNTfg5RR=Q)CZn$p2f3%x$eke^FCUO7`6x=S$_iu34lGmlk-5;wlJE2M z{y+wLgj@Ox8Jk1di&3BY=aE7SVf1#;y`q8YGe8r;c?Er%xGZlgnfwdYsZ7vLovfCk z#qE&e5K?nU4+FYLO7A6#yph~BDcwgL)au14Bc*o}eM&{rbI2YdMQ%B?3@5LzbA)^7 z-UM25LFoG}YAQIdP;0J@Y)kSoi|eZcBX(igWTq~g1(|tOUetcJ|KeKEEaB>dgNo%~ zK^1DI7tVZawNUp91O(qM3{4~T<`ggk&O*YX(M95=KG8cPQz)$ZB#MItdOPO|ON8*{ z_9lqH2V(AA(Cgbvvy^EgMjh6U8|~mbBR?Bp#a9nKuY%Md0WD{lg?oic!HI@M061jJ zZr%KC&-Jd;;j-_uI5!Y?B$ER|F(fIcc0A2mHu)5g7+aixW;kEe>cuxSMi;k-=hR^-H~^9Ul~E;w;jPjn z*#6SVQCd+<^Jy_>4GeYCJias z$fm|q`Hk$w|7IImkxyi_ftQeR#SV)WTkx8Q9qleNWfD-HY2_Z_7(@sx{EZCypq7kQ zRmi#?u`-}_uHL2E%u=r;iy3^XFUV5wZh{4h$YuMvRC078IqXaz zqKuU<=GhbpBm^T8xU8TycIlEbSv6e|n4L_-FZTQXIsSZKQ}_cjwmsV)aA#r#dR zU6JM5zEkn8NFv!pVv(3*>m|a+4GMWw&{q28L}5|x)d|@ZAqOF=*13?a@P?JcD(*mQ zWck)*1b+Fxj7XZCQ;3*4i1;ugFJiVNRlTCr0W;=-fN5gc(McrppVFcd2fsid)kR7x z*G1OCB3`-qpo;rz1qO6}Djkr|_*k&%pQT2ig6J1f_28c)cT!YPS~)6MAFjx#p}U9d z=0ItqVuGx|D$A6Oa83F+;(%Q&aH9T9QX>v{Dg1#zQ|lML`nN$!7dFU9f*%3!`FD&Z zzCmvgOoErO6nq`>C{31v_n4(%#bhi6n=mv>!Hm0lDr0MUXYBR62+`q0I3T;M!-=)O zUkwy!J;0qbWb4f;3OQq|DB)mc!W695?hz|hY|I4BcywlY z!a$KhCxEbQt#u9I_-lep+01skX^_mL^k5!^Gr;2GN7n;ICy*DN4&zjAbkNX+54Ba& z4{t}}tqI=3u7=oB$|mB1226?>@o#kXK&mMK)McWRQ$ov@oRl$c!WaI6r4-dh^5Cxn zGJ8^Z&%H$|vZYTbtKBEJlfv3}n~F>jK%f=}Ss*hBU3j(C#H-C&8e8oZiI#>jiCzKQ zdtSWwow{fgoqmUJ)~#=2aOXhKt&h+aop_3fAXsGe~-pte=0<*5@`{lE%VUk>247TY~ZHxfXOflPG9>dQz-S_u(&|1jCu zL?6OgDd#ua>dRj07atud;iFge7196X!&yE$_b#KqAaJXpK-b9w=tiGt%KJ)Wt^<{!=X7xoh)#ddG zSDTvE7gfs5yGiAd)fd4;RS;QyX}Z+RC#)QAR&PaCU&a9_CSbOexBB2W2xw*Ca|cS( zV+IcCK{AVB$$DR!Y91&~_qo9L{+e%CPV+t6$o7lHnC%yhP_z9aA>sGI489Lq*?uWs ze=+=M@fgmrk%HXZiE-@@xN==e$a}n7fU(9Viw6a@e5|lxR%!ueiuA|=Osm6El(Z|& zNsv&BLXia+sdgAq0xlYZfMU2kXtf{wkG$}L)X@`hMFL@~!;|B0oXxkq1(;3T^S6`w zA(Ob&S5J)U6LvZL;U#MwUQjU7OF31q`bsRo)Q}4pwK)3WU4u8s&I-JOOziq3Lsjq& zb0OE;u!KXN>p1$6Ah1kdIy6^eo~6&P|7h}(Rgaw&pMJ^OPS`EL7|J?1R}?wLG}_?> zZn>ES7$z+tz3^k-X{7~3o2Whj_6s{xrWuFWm9RFiL}YKWd@#B4MJLsklO1yeCP~Jp z#OR1&sbG8j7*H3gfbQs&!d5d0lqd}lN{K*x&Oy{DO4lci7wmCc5e@7HrDeMbo$UTc zOMxrAEcjcar*IQCu64FbL#aoj9PXL-P^gt2?V=k^W$O<~0Hb?EyNMNrk%xQK&&;Mc zfH7(?3o3HRpDOe0MvZZ;Dm|bA_GaOGPp3M;a3SoM}0bz zww{qNP>01weX2e=>QfaNiOvDnEODi0(nd%@6MY5E5BgLoI0_S2c?*7W(05J*kG|2X zGifD92Ys(NLspmi@Qm%sgRQh7d+|(~xD#R>r&MX*pCmT){WxAoZ~}))0&5;oB$qN2 zIc|LqMCDW#rMX=hV~PoTT%FW-i1gAL4-*?|92Ec-060mF2NcP@VL5snw---fvp&3m z&HC}`2b&GxT^*af>1T`B?EGYw&93~Iu~`q0!Js$P1&+=@dK@QG8;8~4NjOaVVDX_Q zf7ndu8kj_0{rW0kOvKT|ekJ(JsCv2vA5;jXF_HqVhjD~_I(k6_iYC%=F zIHReC6&Ov)5u^S2Unpy?8!oF8m?7gUI%<C(i=HTX+If>;dH5fPt_biD&G!_`Fj#%OSx@^SP+yzJ%<|oWk}ZsJ zeCin|XQow@6nGtsg)hb03@kZ7o5OLIQK0VX>lS~3vn*E6&TmI>;Ml8F9Nr>nrV412 zutWl&MULxuA;&cw(#6=MS5$;_e+*0d8e&LS<%H%{Xf$_4g*eip#4O%Yvdba~U z{>BwJf$ZlMIh4DA!-_{e%;HCP4o#3Wo4KD>kJX(+ts%*vJBKaq)ty5F!cG%!jmK*F zWGJ$Hde;N2E=GJsiO3>Dd~4emm|D+%hu8-&7T)*E$>%gz_<20Ju@M|3y$HAE|Gd^cB#EcCYFK>O`D(c6#I!pt7z+`0G{P^-A5R)!b(_*C=m1VCwO92u~k7DuGw` zb%i!wjUA(`kDc|NS7T?Jdo^|%+^ezEBQIm;aWD^^63c&jizp3MqI6%^YLvxCpH5)xzOJH^5u^}F+}zFZYWO%ODS{i%%=ZwVOeMG5^Fjc>R zvv|Uxs^dDl%9bCs!OF}?rc}2zjB9ff&ee#N6X{|u~8VhEKl)cuVUfHx7=%Wt7ycJuliGqT7e%`xC}oknwvMO5N8`s>BS%|{T=eX z-w%7K$nu;iNRV?U4rCHQ=)c_~C7FOF<~6S8se~uAdxFw~88XFiwLP`3lKHGHL_|cP0lgIV~-7t$)2JFM#7+J`E z*QIIH@Lcttew|~e!q792K@`-pOSxcuQ>0dUQTl5VA;}AVP5QU{>`Mhkg(0&e4S(xM zE&DJgW4%k6v(~#>gx|O=0MZ7$1jpBSwghkkUc85-2WgGKG*NepYV(;K7y~3mX1tV= zG2=Bsk$hyvYn%YD3QdB%#JRwy2-SGih+Uq$>uno zRD|hzGzdU&FAn&12*053&Ab*8^130BSfYw4V|yeWHYUB6W;&}oX1d6fS0m_zst2fA z78J~s*CC+;Cjt&rUV@r7Bl&J-t8~0>Ykl z0(&!4Uc$&sd8tN#cX?GJ8T$+~<+WE)Y?y^0i&RT-Q(nD}iKY0B81C!|Su^D&P_Zd5 zWlfp#GMFQNqt{G%Mf!9#E;i+5R13UU+5?xrg&vS8uk@OLCIl9c2v}wx`OGRL-}Q4Q z8&z$SDvXql_HgF7Q!PR!N{g0?;Q`Lw4x)z4_LeD#FG<;AjjTPJIqy&{zihp$Zrz^o zF_J1`Du2t(o<`7vLH95?wUG?{+NRW7GZ{ASwI9OK7&9v+VqZUCC{tUkX*xvj!sOar zGB$=3ijha`TwtayT~u5omYkX&=kU_Qvp5tyDU{h{Dw0DVMaIe|mDA*qG?Bf;^5_fN0(cy!x^GI*E66 z+NV!;6|ErO`iI#S9Z;&|GbU1o$^toJ$tJ#Qzzc2baX>NfU9BR~ zWGOP{JLM#c%4U_EM=~{5kX~A26|tel8UaA%hm+KJUBpE_s5B`#uMiGwb``IR5_=7= zez4gR-qo?$ZgiNLL-fVp&$8LG-)L-h8OYQ%AL;_fV^ryECQ=)ljjPQun~4Hqv!LWu z7Z{tJRIXUbd4f>HW>Rt*mBkn$e#~a7K4CM}ld##!N=~Dp;EA*eqp4a@6)w(bs$m62 zQ*y*;v%kk0COmp^an`iV#8dv^OR7v)8D%90117tk{;Q5T4L+U#%5f;Ge_x`)(d(HM z!ex&8Xk?ieG^sK-Z{+IHoA)M~^YjT7plmZjt@QlG>xmz?SdhmpulQXk+?i{Oi5=%K z+LNP#96Wz%OFe&4ZT9?SJ)Yv{FM=FBF)4ojBA5uV%QzAhaz@OuZ~Q<-Im$nO5nRe% zS*EN#e^H*&U2gLHMbIPMil4uzEYDx8*_HA07vU%l2hT|jxcE3=LZQrYz$s!Nqm_sS z^>)T=so2~}EVxHCg>kVMg)~l+lwqBUK3~~5cWT~|-p^j6%pHK+AYwJ~QBEN1?Tfdu%%WCU;NC2S7 z(Tf*y?7@K?lF-QPz9^m3W>4Si>6)X--KEIUT(=@!Ti=GalDfto}ks3Pxy`obAAWd74c4L5&lm%<)nSUr1lsj^G$P1!=R#cNZ8=Wd*`T62d^8(~x7y zjsy9FK$wrx`FMn(`k`-l-~T4-q5y#Zha)KehKTP+k2@r2ySYN6wT4!GP=LQoB>!AUZ{lSD+9 z?;0_G7|}_W?=<<8-c>C-L3!P&8;V7y=L7ZsDb3`Ki?CmKv2&A=%`Kub0@Qf;I2xrNLpwGG!9H^=M*!n zfCAu)r0cFjtch3rjx%P)P`Gg5pn(!F!>7hdBe2fjy@0$*XhrSY0e`m`MpZl_JWnYn zfYLc(P!ZWORK~=X;SoaI$(B=n@NQ~X+XK@o5?uPh#n<9uT0hSimCrY@40na@{kec> zz}|t96{q;wU_Bz2b;yi56aMgo6eq ze4vQV`_)wY_gb(Ny;pXsRRFzlv?-&i;fuXj*ib`rKye51hSfvB8wS4}~ zIGZIzgcU0klYiV4%^F})F07y?&{jqMC-Uu2R3vB=H?t|#%r4fwQL9Sn^&+i`T~I~S zRP^R0viPWJYTFOmG-Z6xG<6S4J;scJ`T?K=FA69$8i&abs3di$d(7z7Kf!$ z0hYi5OV%T!3M-bYP?=OzkRInT5m==l?M)!bt4tsDObY6E-_&&$TbXBeC*Xt9XLhHf z7j{#Wl3$;~wvTCSib$S ziaQslQd@JRkEWon()(lmz%OhV(%+4T`MdU0g^lXL>IXkw*f@ZP=cVXH$}V~&g`NX< zjfvudIHT4nK!cCSZ-?8ic&2X^wWj)hZQjR*jN*rtm$R?%f$5Eh2veb~-HStZoVoX{ zV{1N0p3`Gha_r)Rz>HN84qCN!_mCA z@NNXcG`k1&z;s1U^~}HEeP6$U9z{rj&<;dIccmJ7yKe9@yxjJK8hd~1qs$YkE8wEm|8%1mN4BSR=Ft0pV$;OS~E9{ zlgSn|`Ny{Wb^Zx90(P0>HnNHIls|`~->}Ez5d%3YLg|G5TCvM4GLQ8tT zYjv%Nnw1b|;lsc^RLW${T;3R~2k*j$t@^vMk-r%x%Mn4J$9=`IGYxbFKpQ!FFZbX>5;EaNo^V?%u92R&wX{OqWXc! zm){`gbI$8{;nHl-<#y(FoA$l1LAv!+C0$P&iPb9EJ9Aw&lCU^J7jJ_<(k#1xDDhiu5YDw5cf>k8xK)9Z;^3pZh7E@6jPGO^q zkV9npm?b~y70rx|61C;*n8XT8Y(!SftuVy*J?E2&!bSk>YgGOj1Ayi{FVGOe66F$LKKlq8lW{nAbpn*48 zTOQBk~Bk1+(zH#Hy=2=>AV~a6$hsDehQ(y(R zf2sD~TKizk{-t&IJa@Ws6A6@G6XGhW2iDP^{Yw@5YWFYQRy`mydGZ`Q2y%-W8#Rt!*rR@8w&53aPFS_9#&W&KgpzzUHlTOrbHqSpV< zr#`Ewe$ORous09pb6>iCW8o2?lNNy12cSC32|zaip*9P&hN!A6P|>sx6k_0yZvXm? zg}xZ|7d*45zg(!l_?v|KON9Dqy5pNcmowiBa1E|+2JnfW1i0=BC&2&dZ1U-s1N4vJ zodoDJ$0jo^U%#=~@y&pI>D6Dq5v@nxrWNZWUoLmZ-Dr6V8?@XmZ1nXudlg%7vnKRm zU<=-_v4nf)=YNtT{<`z7Z|Xq<-wV?>vR~avp2qv8PC)$3rq~uW+V57e4!mu#@)Q}? zc$Mz>F1l6^1P z7q^7{Z;iy(8{@q+%}hg9R)gI1>OuMMeTP=M+LW^{A8a8e|3ItqXosTh%CYr`H3e>c zyYgNYIZu(Oj<-f#^z^q3DbyBT0Q?AR$ec>b|H;;;r%%ws7Ef_9#WA;SZ4UUL*mvwLPGHq9X{_O+4v)QOz*2DdHEO%Gx z@0!(;CjUhKsp(yF8fCVB*z(YD-HY=-dO830i^Cl^svrE!=`XHZ_kfMNx1YCX9lGCV zFEp{Iy6ZyW0S7jjtj%`K2-+L-Z$Fpch2kUGpsa2^w(HdNE^R{BL{%J5mSDS1hAPJM zyG}gaW!J7F)4PtPD>#&_w00d16^!P0jofr~wd=t2t|37h-gQ9his4;HaB7Bkox-Ua z-gO>l{qUfAA791rpt>W^lHyCx7eg!llEsx-P5mcULrH-rzlMgy*HaD-Ab(?VT2WaK z7aowzGZVEl`N1~)L1AWosmumDEYdV)Nn|^bX|37dZh?7V4}Yfzd-*Gh6wJqRta@Mr z+>@-!zCfa_%YL0~VO{nS%fY(rD|i-m@~2?c?O)Q$Y_L=CwJ>wBqovtkm&YY5Gshw< z%s%lI7G{RMlTnQm8SlQx^5$=W9|NtAfdW1NO;%KXGm2AVKS#zLy4+@a}7Ax<{!;J!QQXet|wLG@JdA? zJzBpUonX0F{;nc0Ya6U z>Hs{76KXwyH`IF46OZG7jyA*k;nk6ee#0IsYk{$;z;yMUtnKxwC(YQJMyaBX;1t17 z{|sL0pTr@-PMX|n3sAgNq1a_x*v(4CHS$^rP(hC1MM{JU=I~O%EDj0haP-4_-hHY- zvCCG_1UN z+c-;V=4!;Y9k|s8{{eIXHP)t;@#(QnIh?Gt=bFdb@#}D!r{K*TPIa+rmn0$4+0W`}<|vM&Dp_&_J{~Kt=;GlopOVs_IFowC4lbU(M&fd zY0XO8ptOjalC)N({WkXlV2JysBt|oGRY%6^us%oc;_`fJ@$O!9Z0-;f;ayt1@(wO zNTuBb_Yw?3qYp2w=*1ynH%@@MCwPZFb{U~DU`Ak~Ei@bd0kaSy?JVUv>8lW!>id5= zXYj9rl<=UcCA`9+;2n1?}gDW^p_cu)5>ZzZ}+l-O6Nn!&9r|^RP1P*NxM-kFPKQ5Ts z^R}-5@(5vrlGtB}UI;=fy%40(F&sdMqX->#5TkO`hX?RjAGW%ITA~gS6|fjlHn(8` zh+wX#Uy+!{#GxA}X%;+Ik5>)FE48iVaka43=n8Se-xcB~J+Bnvr`#($AZvtVvzZ{Q zke6M^=XM(Us)la3|FiYTdApBUWI=UKms4KfV3$)2CqKFPygR7SR1N3Fet+6a?!zE<{YH`RkLB$vMAx2}_68Av7r zCgM-RYPDbg61(`U#d!)sZm(qZKu!ZYo=n`X4PD*rs5ar)limhAw+vk?H7@Zwe3N~s z_y%%Sz$lja991gTW;+-Ax7q~Bw%Bx*cu{kXzQZI`pSJ3U57I%V;%PBpX_}vB9?R8g ziAK}+DA~;SZZMPEF!MoO@Lqu#G#XaJ3@wlnW@r^fxo3-G%&-m5EipsgePyzhLt@9- z>fv8>DQjc?CJd}5RzIlE-4y382V9GjUhZ};%kz!i%$+z3_m#(@9NguxC_m_K9Sevp zF6PTsA~hjl_}CM?4?pgs`c|7=b{y6K%*G)~KP_GDYLOxf8xyr^pe+|XO^}S3B$evb zU*+lkQNThq14DX79rDN*T%12L|Jdm= zlDzj_x0bJZ@QvS*!2A+daQJfbeP38Z4av%7@ZsL)#-YDJstN(k&5llsobZUYL`&JL zdw?_K&<~uf2`gqkmt>Y)jKu2lkTuN%S>3mCWXmxQ?S05Z-yb0mxOn0mwDH0mzjQ3lKF0Aale}@-j{UavpD3_sxdvWVnbo z0J#ui0U|mAWQG{>oWl_i5{@f@&6@HMi&qN~RTdT^LOx%SoBx&nYS-uz^KY3&>B4I^ zF(UOX1+7xH5rD2Mcfz~LAp%{hY+`Zo$eedm`t55ALq<6m#jTFN(ZWC08SxEbMtL$^ zwn;d1za3}ctoO0wVl_QnTGM}yacNB9l71un7H|;^aOrehRI8>NoH3OuY~0CTh@3)l zIjk19#VK0dr|^y9femANJGyb`wOMKk{XK_QOaoGrcy%#c*A&$K#VN^m0;0_H&~mH& z^OPoe@CjgNSNo%zi&pzD`RVLx|J9%d8iD{C7jOcb4&jyVh}aRFBD4>C%Aw+v1Z~P4 zDNbcsPZZQ2#Yx)r{z@ZX{xqUL|CuL0lcdn%a5XR!7vBzyKAEughd%$4s3j`GcL}Np z&Od=_(h4s=d${(mpp0tNrcjiU<||97_mVwh_2D0WDod&7uQy5w0xtm%;Lt=_(hL$o z_B@NIbde}B$yjG5C81Jjv)GD-??AjN+o^GHR|OB=2wFlVc8+GnG ziW>En-PvCH>1SD^1OX&_a6+TzXTdsx*D8v+_hkz* zY0KDH|65rkj|<7aqV_|;nuku@L~ww-zP(Gb+Ze7{Cu z{6(ssiV4EF?Y(#g6yOPKzdgH&3D@@UzWSpH^u@4Gb%x+N zll-Gw&g9SAP1@T~UG5}*4H-oZ9Q}~{fr`K5CGBfLPSSj3bC&esNV)RQ;_x&*0g@S#gQ%LJtL+vjNSL{$NqxM|c zpK}Se13iK-*(S5YwzY8UN*uc>3lnQAn1hNyZ&Dtl5wZ%CI<_Rt&0 z6+-!>!l5^ud88V|ECbLW*fwy@_C_NyVyJX)>{Qc+a@%pJ&bVg9-e@2rz_;S)M|FZg zQ2`IVam*94y`ctKZ%ioFdqa~1MU&o8%iPG0QnI}vsMZ@o!FoeT7xjjY7`!(G+j~P5 zF4r3(Z0HTwMcStmBs4N(=CXKv=WV`q8}$JYkFlF5P0H=xV2McOQ1=aWGidM#PZW!F z%N|5%4s5+1i-)Grzl_OA%D^Z_W&fBrR+0_E!8SNR=NU1IwW@?UhNkAR2@FhJL@qYf1Qr)E)@GV4p6!Ez6s`i4kuCV2?VNPYmKv#7M1I*GrUj zkr^f?ltSe0AR7=nar7gj%2QAf14GU!0c8i-ugW`NE5~SlQL1s3Kp9u5>WHhpTVIqO zwRSjH34(K#+U;BwG?=ORMO28ns-FOLtAQYH^4W^J7Igwh)7D^_d}ErC?k@p zE+UfJ;Y1PyCz9IjL<%~0Dp%|C6~A%k;%~Db*QWT9FPHAsf5OxZTCg6WreSwbR@C4% zDh6$a#-nR9i~*bNSjFa-iroDF{vtO|Iyq)<4qq9{Y_=m}Q-_ESg{E+fLQHw;DHf98 zN`fQ~K6R5~!fLttpcZs4oWhi*HxeR~N(ZayzOts>29hO>XVD6sER6~wP+YET_cT>U z+BOdb&|4LXmuZ{<$^4gc(pTn$HHOyZ<<}T~Ob}MG=y3tDJ~u9{&QZ zf5c4yVHw`+T1Dgb+T>D&#J$k760+WI6dE_Ok;*qZ7RVvem=WS%v+vD|U;r0Z;&mKU z!>+D1LOBt$PZt|Sa?r%_C$sRT;!4$ucTu77nh33JZDujoquT0j3#E%~LD_58#pYXq za7v75JHo^?gZQ%v>dU2N#){sZCDT~-!2ip##IX*%Z_W3$c(X|=%bc#s(6)2;5t{&`hrcoo@0tePKH>3 z9H0t-93zH2$8iiubFQ}STR*RtJ%L1`p%K7osQf_;O}JNIc~A@U5ba|xxN#%Zof(xX zd}`T->`fMRu7PZ7C!(eu7g3{_>Vw}8Fo_!7GomX=f{TI>*{u*}4MhPy6QK|`SDegY z{nDk#c>U6;P-gu?%@@HuJL6m?hMc0vyqYzXo5P{rd9`eX<;w-K0dW>bKX6ld3JPMF zaXN&9x3}fez?3LYb4yg9uJ`6p~ZpodU2D+$8B_W?uI*{me=QnL~o9Tgt6 z*Ks~I3ARs7B4K8oW4mtF62v2DjEeqAd92EWj{%8_Hm~1@pphP26Vw$drMKm*c7l5I z#gYlCgWjeSJ8@Ff5p#3&ro=F`IH&gk2c?WrI1Uq|L^p(-vfAOzAP6Y5iBv#nSYl?f zOOV2d4P$k_%xLZXj)-xKFQ_bTkH&bJ*?Ut|ine6g-DmG$hC>s1WYQzj$p(`i=cI4? zQB;l)LD@8pezV<&KSARv-$({n11VUMDm1{lDp=2VSjr|??{HWO23Q&>0hW8+JV>O0 z46th73ar0GYY1L8w1D+ohoxYEB}p4#xz}MuioXD>QLx_cuuL`s>tk=THYylkX^aP0 z?sZs^elEc36s%V{ERzbrdauJ$Fu>Bd4Y1r>)&xqwV0{5aB5kyh4y;!=ECmCs&_-D| ziI87gg1q;N*-42gfAOu>!W8A54J=dC)qm=l6b#h`)Ky)C)311@6i%TJl_~0+_jsmM z=LCW(Q$(p2&y=E+hKWWN4uiUd3uUc5J8LOpi)Dy$U+$V3H<$gI+7TKdfA*Ge6JQ&y zoNli*TZVcI*ZDIUWoSYo?&MP2L$~+lnz@o^mzA^c+nTxL$Td8hwXCAlmAubwna(c> zPAhQQ>_%OCxf^+03iKO!mkmPkg=<0RMm@Fr$-9tD^?Q$|76J6{&?_PV}=fI$*HHCFN zWi&gVEkmz+-a_|r$A-^7h4Y8Bsj>ih_B5G#EYn$fy6;lObm?C7`PdYhU98Ywd+4_K z+&dRu%eqhzgI}#4{A4YSmGvBE+xve6?y{u;1lPiLzpJ#k$k`9Fx6G?=1TPFmIt+-q zN6Qxmaf%h&6B^R>MSt_4cSC+?=PxRa<+qKsykb#thPaY$??@pzPo9Yaq%rbN^s z!ULU-A{jA?yki?JD{R=VzZvPn(GQ^d$Yb5LG1z7qAVL+N(w{9?d6S8_aCrSV_BNI` z1cI7>V$13LjGeffJ&OEOTh0Vy6lWMbW*$ar%U;S+)m|L^Xml&VZh}^GLf<_^S)*Ce znHo^D_XB6gWNL;f>7<-wN;*z3Oi8-srfI-# zw@EQ`mL6YbbRz-n7O5tN=myiO%^{7NGB$b`a#Q^LY4Le~HL`mAR)2R*3TQLxW(UjB zY&jRmG#e;qv*i?YC_ByC_k&cl{4A^0WT;|HfW2ode+K>x`H&8(hLNTa@0sBj?XQfF zdt*7Vo+z=Pk0JlirEU+y&=ok*=O*=`OOqUaMLp!U7b<2E_&N+$RAbK#_N|iJR6I|z zRorKKOi7KaM5Qa1^6r}0)c4I+@%iD`@eCV50?#o-!68VEIWnej*l8cFx=dsd4jsJz zO)q2e53L)wg$xLsCwoSm%o35tXcmkv5(h>Xa5CcLlUkUj#K~96i<243QPnvd{UAuX zPt2&+Dbh@7u|Z>v%#%bUX!xywDdL!RCUAUYo*9!BD2%bOHf7Dh$NeA?_?{#OFvfB8 zW4tSdp)d8Bu)$lTK3nqG^<-G0NDvd^<~(BJ2QGX=hg;%2J@gulrW|d*i&$xQ8CKfk ztfZ@9WmrktfK)fO87l?Ffz`-~y-#xJdIBr8P^O5LwAD#dO!I*4d;FHQG12+qyUVju zQ;fr`Sj}0fnaHTsdt)4yWuYD#p52P0 zUxc0AX$aGc6eJl|swW~%7`tFX9IRA_vob5ykb?@PaMlm@P)uMYVG~$M1jMTuNBxO+ z8CJUXDeNIRli`TLN_Eqlm)prK+>Vt$8ZBYBe`&+Lm8UiUfcJ-k^)k;m5M9$6AYDH& zKLj@76ugJ=iV%25@osYONQedVNm2oFfEe-&;RN05Uc3QFf5=XT0lWc7Ux)>WssKn2 zG34pR5fBpk!6FbY3^9#C8)8m46$ykB3V1bDt1Wqr!LNTq()$p>s6BYq9tfggAtl}@ zE}2qy7d<6&qsyXLtAuZay zpGcoj40~9myIF72(pV4_!vs2>BfCw;rni_;;XZDrIc43zjbF6c_s;x`-~Q5IcA|P= z?Tv+1LR40U$~;YiAbNr(c@l!kT4F*@fZ@yu(?!^ExxG!1}(<7O2CH$vrUV8;5mpFlp8Tc6OUF;t`vr2vPBc%3p@#LRm_ zL>V}4j+lM#0J3n>SN^PDfGO6elya2k41CwcgcP&aBviAcd zUR7eeQkzwYQM>L>M``OmLyS$}$=3aR1ca5A@*_BK03!A#G^t3|vx@Ys`$@b3NEeuB z>wb!;faZkq!^_GaZ{3e8l3l1GHT-UOT^jk0SyUZ|A*?VpLWw&<+^{=Aaw`{JNp1t> zlG{-8DbF~|CAYO2LHWVIv*VGpHsGpv!ZndJktYo^Se_Dwym%#nD^*9k3(4#TEbiqrx;IMnTRAkYSBWu?cB;gv-F~{64x*K;M!IOF*B)T|GS+nv9fCJv zSMM?_y<5~lG*g_eZo$zHJVixfwiAjVK-p-sd}cki%PDX3paK~JV*k|@(lOES%q zAGvx3hc-5FOtO_@l7{=HhG=!hAi)Vi-GvE|s`SahSw*QRM-cUPLPCzn&P&_c{Hz^X zY?H*v7R0O{LI_?Q0B-(kPdCL zh(a1V_Hq_9Z8dVd6FhIKjkB$>QiWX&(^e-#br1MA!i`}RXnz^T;)7a2h~Sz)%5qX(8rTs7rw${>GF7$sJ2c&9lY8uEy((~Ub5LO zodajenIm_c+C<`oIY_!ng86C7W91PnJ*W`rW%8sQRXMzq94iOWm#rC3#ajXhk zsIZj^+hE#uI)D##20H@Qd8M1wH>bHj@Np?;GZ5Fc=C)EnHx+d03pvSvfa}HO3)RRS z>+`5eW9bsY+;h9*r3ZWnQp;SXIn@KaEJ8>%6l~+Pt0B(`BmpsP10!myb{ee0z^N-= z@k_%ZGSd9Rzh`F_n+Ufld_Q3>L~Wwe_i`+HY0X96z{sIgsFtmy<)f42A zUp{KYL`_%30XOh#%K7j=-nj9|myK31!p_h0pLfS!u*O4gEcZY1@J)vb=WC0%U3$a_ z^~k)D%7^}~m#n$830pXtX);q!DmIC^9qcg&8}u<+#vHBCncawgKjRS=63uXFBDR_rHw*2zs=p@VDG%mX-mBpopn1D+! zUU1oili<=9rE|By)A!^TNVL`7G9MHqLl&daMd?wjrAOt)8R0Cs6Q9FY z?uh+FTUNLE)2J@vUdl81eR*qExA|O@mPhBU-Yfi-Vl!;b_q}xCdqGVK%>_0jxY2v; zE83s@IFP3+*Q1^Gmek<0mWXOcYY9zP>eE7TT)HL7vusQBy&zihpR+9)d#tD>xuTXd zeVmr4>~y8RVPq{)Fh6bIG=lNYiO|9mtGP;WrCi|-`vTHgH|VtCZJDOl5S)J>Rlj=F zGZ=n;?j}Nc`vQ=Cb|oGb@f-XQojkx#BI4Kgz0bCV za{RvDHuv<>;Qcf;+ZimHvTXJ1ugtR5AJ5Pk^}=eijC8})G+cYN>B{T)V$7S4uCe5$ zOk}F1h9?py(dkF;>7#GV1ugq__0&05Pu>Wgp5JC?&~Vc0v&g@bOqnt9=$0(a;Qu!-RTDU`f#87y9mOnaG>pK8AU8(+rQ218Ur>6%Wet)H1m`?iCjjx-CL5>9} zB%182{HQ3G-)Q~4p;7cbpLF)w>IWam|MiofP5RaVA2`jY3d51eb7t5TB>k*UZmfy> zS$Eg6q}uxVB2qorkR{b89*X+;j^+9}_35hc>2hRhale<(luxKrKEo~WMZbDz{LzRn zFdi{%jaL7{8_n4UznY90-uT$R%QpDYzbxSm7aT>5aZJ^|258fj2k0gr;)n1V>uW|j zI>Mjn%As^zit(o_N7E@sj}Xe+m*i|_OL{#rvk{_GLtM2a6nYMvlIr@uGAi_Ymcc?v z*MIjTMU)tSMV1ohSv?9|xo6STvoH5%W4nH_28 zM9?d6h0j}XF2dG?@p;QP zla5QbKzR~6!&JfI$N$Q<;Hp~i%4`cJtmr-O&2r(Ne69%l#v<(7&w{gAbQ+=hx#EOCcEdiXC^yCFi+h~b~?*RCOZLJX0n^E9APB6 zXdlIw^!pJ))0KzQacQb$xijHSliWj;QqTTQNzZ=pvqiM2%Vm4E@eH(4`RU3-{59Gr z$O1rn>oG;*rysbICyd90XnuOjldM)xBId0v$!RCCI&RaC!!R8y4ZnVE(%r-FBoOuZ z#wU9>%WDmS=Ug{PF+4s5x)?&bT?xc?%hS>NNHG$pe_22$+~) zx5>aiKfB}6ec!?Y|2WBLV(z?a@ypysZ!X*+>f404s3ZJDN$3L=`J?<*N?gwRk3Ep_A5Y5&35?lU(b7lf2)%@Fo4;O=!BZGaYx!{oY0? z_4`LuwWc-^>inCa!x%i68PPeAfb#JvebXfUuJY5B?fgym`&FP7He1J!hHuTO;|q6K z&yU-&qZ@60$P6_@@5>Y!Q@g^6`6fE|w- z)%BoKV4dnRbfO27R|I&-Ux-)S2lcn-EAGE*@z19#yQ$2j(H?w8Uz0{Xgr+N{C5_|K z^evV~k<2%V*-0sgRwQqBeWr-EGxb^8US?@9|{_OE0CM zOVOU=Ri7@R%gL8y>2mJRp^M5+SMKGn(M3V_916on+WU?P&%#FG$DZT5kws`mWEswq zWkh7TjjADwGACpauw}_|5r{qBF5B)!X3i6ut6B-&-jS@lPs+! zM61tI+m5g7d%oEYTDvq|v7g4TxodHeH3>zXDC77NUO7c*y7FW??iP84FXK{5GU_;$ zWSjlSTflvidckBWV3MAk zB#px4q+FTFN#rj#IgMKT*PiA5il!lzizX-C)Ndws$mo@?yU!;lWr-%II&kDp%pN3A z4iee=5*+JAQd9ac2K6#~%+{{KoWcezVIh32g09rsJ&+| z+%cpg*bXM%o}IkfjSuksLV5!%c^>i*iaH@-Pwuw~fSZ#Tu6<$ndg~c(>8R4-osH2Y zBVoEv7nxMEU5y#AN`~tiiPT$qzrQ7Tei$eY-Y7 zz?sv3_Y$PkrI!*MxCX~X4!y+AHfC$3s*;c%8Vl$3EisQ!3sPIzymduTtM)FX2CystlP=#rX zzy)gpyH!mrNcJl9nv>L{r)`@YM3kJ$ zdVSyXVeU97h&=+)>{4ZuVi%ZaI)JKT)T@@{D{^^0<}|-%BbnXShzdkpcnDfXTsVZE zQbGwb98gM_hzFEn6LB;pMY@cBQUYd4YkVSNrZ_AZhplO6>?y*C0NM0h*sLboKAA0< zD%KSTNux+W;d639Vxv%Nl|+HHPcfXdYhn=EJR6@}PLelUdkU+!FakmtVoW#6`4$TeFRIVy8&VYtOF`G zkn2}5pY9GtiFA!84kmni4*sb#Z<`AG^y4w?_hewhF z{zx*O?%GsnG}n$Z%pyi1pY9ABpYDtT%u!@8(lYDa_bX`gG`D45sfUvQoO3Q5mVKTR4NbGn4~QW62P4n*Ih8pu^pLdySmz)sO@HY0E)y)&u6Ku%!&y@Il9aX3MO zUzmculxg!`pwi;;q(l=Xw36ABx43rX}WNCdT@`rt)cP6L%ckpXITkqi)37~^DB z?Fdjk_BP1yJuw-9Ac9CBlzsZ%2@IiaFeHpbjZAToO2t*1T4gyAENF~Gn_GMbf7imd zvG|YP!M_#`jL#;eVY9&grRP*1{AH2AFE}J3<2?Dxii}wjKtdwpqPUt{{5Z>rj2UI2 zJCr57(u2!C^**~}o0f5@RnEe%z++kcg_dg~cGQ9a9ZNzT@g?$Y9`J_j28nzkt`cEL zhKH9!X0XUvQMZT5r9O(*GV9#1;~b?Zd>KbS5LQecgzp$!5#cWYE5T+{MTE^($EKc$ zfK3iByjq82M{npnHf~E}GlLQPD4c(2%V+anDfgDUhVo!qi=$ss_Znh+Ri_O$S=JK~ z>aM~|-4!@DyGOm`l(-%!!9qHEgsl`wGOe+-wuVSThA6GtZJE9CS63vKZHkK7Z5uGk zvRfkwhQHf?gWa|hvmCoM2o?6|I3QRnX(`+#2tm|R1MYTN0Ho9VgNOcXCBz}}F=(xE ze_j1OV$ZEuezH0d_p)A^SG?ac;_K-6x{1KLs`AJ8@;s>dfBiLt{X9fOeX%pT#9^P7 ziY{G*OX2I^j=JUw`bOUr!;s(0reV5LW!3*km#g60BIADpAZmb($M%_1EP=t(cERtagPIu&PM}~UIE!GAj%{l z-3CM<1ENkbAntJ>(TQ3Ba#%oSSrq%I2FObch>92x9g!Ij_c)N~)GGj)5D@7j$COE! zJo+5bL?Hvx9|3WX1Bp&21CTiZd9#2hlYl&6Kol|{LlI5f<3OV0q5!1g9RPWbfGCrI zv>6bE3`kpqiF+JKbOsTCGziEPdPYCc0Lb$Uh>92x>Ftds?r|WIW7|S2O_G zX+TuOfJl8xb6y+NvJNCtbp{}(1mvWEn6echPqIRuu2e`s*xKDUrCX?(YpEAClDRaP zy|~GX1>GZT&TW$?Yconu$cfy`MPib;wn*WWwWwNq<8WrnQ|y&CvEJ3Euy<Amxx<7rHw5!%2S5M*O2}<_wyJEQnU9>#Rv&yW z0oq8>u16pRZues%fZwG2lA?T3TjPa0*5Dym=d%b?QHMHD=l#TKGEv-CiTfyRJBK)G zkSZj;4sesyY0|tkw~5yHLdhD$n@wD#xYkpYsB2+QrA-DjC03I%Q`7_w)uEs9YUy>& z#+I6@`JCG1HM51=kV%XAU>+n`Vz$HrI&p78S~8Dw)XsR?I7`MQXY8bXf0de z=}LX?UWpN;eO2_s2fly*(z<*9}6FTHL5m8!7| z)F&eh&;38ly$g6$)w%FLlT2{Hfj!EoK~ouZutcIw+O%d$&;SWW4T>5NHCR0dQd>Ed z!VF*wNpR0#c87tqhqit_*4k=Y+hbeXD&h@u!GwU-K)fV`Km^p;3@Vp42^Y!#_pZGs z321x%|L6Ih|M%s2GHdU3eb;+i?|Ro|w`9npV$mZoGgCo&nQ)tLfLl{`_(i*a6=isI~pL3>4LAhyTuiA>J4t^Lk`DV3#|CX2UIucNnITrsvmU!vPXE)fz@-tKwIoQ zd5ceTJ)vT!xmb-iTbtr?uG&HVIk2>sJsE3uF3?X6gszPChQ`LTo|E^=x`DBJ(xrdw z4EKr#xwnJ;NPj#rpl|lxb@#lc_)*ldPgcuRlq%QC(VKLsH*XVHw{I|r*0`4hdT`WFtl_{Y<(s8APDsove zyMYL!$9O%4>ExOv^pkc{e>4@F&3TcAW8;l2d2QV#?(8j{^-np&sHx6GGOe?9dm?mh zXKTlnr<|c9+Y`H5!+*DqEk$=MPn*}&F{R>HT?PNP4stM9PUlJvwwmpg(TORvf6 z${XPFq@5u8tiBF?hof(&zBxx(8+Fkg;jo za%R7^(GSc&nE6(ATWt3J_77_t+7FC8&U>TV3?~>j&^?ewey?^nAfJ(OZ4}&dBGKdI`H1_0mnLgTze}90dQ9LRBRQSw_%?6p? z*gOx%uxQMfx!-ul*aPOi5bRufz0qduq`Pf-JM_(23Nto81v{3Nr7+MFz9o2ATm34X zz@U5Rc_F|d<9Mn>o!}dO9F9*LnTPrgCx4~VrJ+;-$se2Dvq`X${mu_&_O$m%M-PLQ zM&4p2`;9&AJ;q_9WPkf7Dq>grK3->cv?oS(7{_Dtb`jeb?l9hM-`BTbfAHPKUkx@b zzB0RM+`A+gWRnvx?R!VI$?Ng<1F4p|UE_^$E$T|j;Je{BCzb5KXm&@kMdZVHKgE9v zUm$Dcez0b|0jj|A#D89mI~0c8#wHoFM>4f2-7f6KB`_J08NjtpZSqtDnaug2`2_K%I7!V`OA^Y&YeV;m8_>4DV3Ht#IXh1F7A z;|jhL@++qKzA%lYKWw%(?~^F#qj*V#Ck3D=jbVQS6P~qo=u>vM-VR^4!^iFLX*;a9 z!$<7!Wjow#hgQ6r?w+zqfE)V#-S*Ljgi@0~QGaT+*5x7Qs zzBq7A&Hkg6%r*);7X}K+>F+$r(>0wRt7rAe%g2^|PhL9S>&&WO$?FZD)17gj%4^*!_}J3h$>L93ag0sNj!S?{Rlg!|mB4V-vmOB< zhlX>yDgqM;uVNN7QQutFq*^vlZ+Y$a)^tpemXndX&WuF@0w<>*TlQ%34|S-<`zW)B z4wvG3FEctOK&k2}0|TE_YwO;iWgZV)TYWXbm#)#)owQ=AajMTjUv<`Zj9#Gt-!;01 zaCbw;=vqSaFXR(?Q|#!q+PbHBjdpdu*O}O5;^!wv$JSjLhpccyzy0obLd8#TTVaOR ze$OOi!BXC~?aG*Fhq-oGV24F^SW38iTj$o@4O;CyW@o#Pb!5yUE_n&#T|;ubQqOVU zMcHk$x?F+IR(-RpW6E+s*xjISzVEIkK)#?zTe}*Nxm~tPtCcg(j6Hj$KXkaYJL3@n zxOLZr$L;VbJAB3pGd2=-XVl9Z-P~e_ZFbmUhdqS5w=$MxNbAxzpz^)=rtXY7$-<-g zZK%=t-jx678c_s^=62TaZUu*jwY4%&?at_sK5yMMp~nsrc6i7R`|Z&2q?ON2*qz~( zH!zuLhkiSpXotCWSYU@mgce3&mAPa6eV>1gekP)aUjhU8pfUjDs_ z)?VdookhM}DcfOow(cTihJc9h@7;Zv*$R^O3vx!gc5zFwRx2Zcv&-+_Hv7qNYU$N#^@wga&pL$A9#1-G+c zs^o=8ZQhPspoLrCl_h!#36;OEc}eDTug!`%FXg*Ne$xLBg7?4*x?~N z?6*TDHKY%d8pK&i4WW`6LM1hXN@@s|)DSAE85D0}jQ=l^v+n5sTgh2KPFr%;o`PVz zLV>yFevugTl_fw*uPJ+}yQ8DEGouWw?m8eUa<^%|K-T{Y#HtH0D!KhD@zo>JpBBfZ z^rdP-=f`FyDZ7u0o}2|?P>N>}0f&l~{*nOS(V0g@a<(!t+E8Vm@s2>pU68p;=#_cJZ!T^i1nh9CbTNNv=6&caW+%rg*(&V>rN ztLq2!z3$M6Rom!XjbM;Qefs8!cQK#L>q_pWyg&ZPPe|n{(6H|UOpt2F$fo3$$~y26 zNY+zHO?C1GfCipY;K;Y(DYW4!kK6R^AA(6;1>zYFQ!X%tfQe=bD>JSssx+nx_VO!@ z^oE3&w=~`g2wm3e2nBcLsvF&ony!TbzrMK?m|Jk?R<=w>Me&Q@mfsPMdVbw#`@czO z#|@>cycA3R(MnDlDtk4*BOEoKsWJI*iahXNp-pc=zjRyBUo7bNWDTOf$N>G9Fkv?u zZ1m^Q)jF%Ixnx!>N$3a34%}Ubs;MbJP2$Y=>+iWk?p0+fR}CCPM+WS?g&kByCuP0y_Lr0LT$o%&|C z@LMe1@CY-z5=)okn@A-Xz44df6#OZ-&oSOml@`X!m3+yqG6jZD3b_GfJ_-lxnF8=5=YCinAsfNAxCVB8#3H{Ze7Isek0ui`kSH{iu3F@?6UvGLCHY zQ+?v^=)u?=cYNAFbO%jWe+UWHyt`!vY{~IvH78rj<&WlVyy^)jxxja-{IjQ*4}WOh zK(hZhUIyvShJ#JY!FT3CB?Fi{@=<4EGn<;3t1)&nGRwQ>9O#;fGZl{xG@9cvo$QPx-I#`~ckw z6xf@_LNNU{`X>wJ>u;Ir5xj(MY6hiO#zntRb>X}kXEfoo*yq>EUGjmUQD#_7US)LdI8gQnDT z`lTfJ2NQmz`~${2w;4?`(%j-PW*&-N?^Y`#eQlSt>Gc-`w{Qo=7QOyrz2{Kk=Lcza z(sgp zN(Ayb5?}flPN>hVJxgzK{cabc}Z(q4MW!Px9WN;syuwY7g179zvVuD%8_ z-9jUTxYxPGk1s2-TI~QidS7#CQ4uPM4j+om8szb+2jO2Tv;^QNCbHCayPbZWyLum0 zM_QN9>3z)^dayZt63iH!cX07dQWI!S)il*z^@YJ|o|bB8W|%1Li!b=Q#gf=ll6Did zKKT3Q^ed?_IYv)9DXncvPb{LWH1HAXjwVW7z?XbWf3GNHHmCa~^LurDUHUtYzTIX8 z{3G_6Y742-B5lMpr{|K*d`%LcMV&*sEfX9g#CggPqD4Out~(7nZS5ksm~!-;qQkp? zz&uHI#zL6C>{eZKtP2YR`vZ^2;4T4X1r);7#c=SJ!Ka&|1IB~ys)>Sv5PoBK z@3ahe=xqIyG(5*^o27-B?${k3@eyq0P30TSB2RBohFgpNnyBbN)!72viQcK`#`!e3 zbS&O@>e4oiNL-71Cm7zp_#?7iXq-^|Fx##88LmqBNse|^9~{nq(uNkD4$Y~SO5IxI zYr+6&x$(tLbCSdlt6?`cQA!Q35#fd0(gUO_24p;C9c`~SKZ?p=wr}%K=_rI z%7K-9-FP6_z;;WIoMKi z5VYc23XGQlS$qCEpZ>uiBi|a+$K0w0(UM(NQ}Vjhd`H{lx)_%-!_W=@ik0lLhSJ!A zo)lJ%;~TG{#>8JpKQrzz;*#xln~Cy8G(7tt294Sn=cSa|C*q2i9FZaXnVVJXja7hE za-`C@&S%{2HNOOUKzz!+F#aavsnYkJXsZk#+S+Bpf()h&+8WuWX^(k!0Cz?Eq^TJ) zvS?9Jl}{CEQFZmq9Cvg_)mV~-kt=cyIieqFYwsmwB;Ihr#$3urc7#S~n;J#ct6{kj zhf6RS?upG1UAsn!7 zl>n3&O9oSh?4io{3U|$MCI4U?N<51tApDse_j&zIy!{UaxNRPJs&PMCW(H^%^)TM5 zn9f)$9@7SRl=^61ke67mDi|Dlsy_t5>wWP&Rv~F~^c6VIBLK?(=Mu%>311nW_-Gnz{jiX=VB;S4hA_C zOCU>uXm6Y21Y)O`O? z%|dTgp;RKwVzf;A6PH#h}_iZ|fe2ARLEx0n@okb`D zGBHJ`&l8eqdC(~oC|`9-2}z3<)< z9yby~&|hHg3=#A_W-g}_v@npUC=+y74BGRE58bqmcbhMQViCXlrB^8e=UU=-kq}t< zCuS-7egu8bA zuw7oV8O_EX$UTFSS^NjYJyVXMvjH8sYOe$T7_XU(4z! zgk#xA{g_i*eZP=l5Cio8=}zbNq_L$^Ul_=Bl8@zf8-`_jD6woOU5HMxN@WE>%Cd89 zY{eE^s+P2PNv@eKd2GM@yoxr5BK$iAAJcNLNzBH$NPt&ix zdO%qPn}mxe$Z)LpJIB?>%bX*O1m-|um^t7HO;qN9)n6nPdjK0m01yV_A;VJykiUL9kM4wPnNZ!7MxPR8RF=sq)iZ zYntV8f$*uPEQK$Cn#_b=s_w=f{a${b-v+107qP<9hsNNi{ zb{{#lCwDuY@*QCnCk?%z5iPA{AEUZ6X4^y~Tsfxiq>Mjy@3Y@Dz9%U0e7k!Y~A95jf@whHk)a#1h7OV#mwg+yVooPMG0C__+Qmool$N_I_t$?%3`xL=Cd(3YX3V2apXF7V+;>LqM(GJ95qM(f1UGKIlol+lPpW8VhfaR|KvTcB6P8`BqAwu2}VCppFI| z%pGFZv3**6oCr+9r*X?C9=%uQidy77;j(-W%$h{RfbI-OSKJ5{OVb*y1%jx!PfgHXwe91phhal zYfaT2U#Q&rszvI_rC{EUNPXyXZBxIV@Kd(%&ZYD4glenH0g_~6&x^u*#)(LMc&E`_ z$)ra$75*tmDb_cyPy=mZ1igI`P3CyYsYNaUesyY5>?P2hV{|9Jnh-a{h$L>PdR8v> zgCc7@tGQ<33xbcZo7P{DD)h2IuFGy$AUI)SQx8b2zn6Zyw8$e)`ZhLxzbAI1xYu)H zcexGx_hqcO$r@cU@jNpQiki2aQSjRTso-vAGEy*;f);$k+wB3mf7$MMl#3Mal;Qf> z%gL^K<457-_BH_dA35?bD;MHY|{f5=&nc)%6+31*BWPhLoMkKvN}(|lfK zIqyC~H{n7;Poe`ah=6@5V0WiWx%mC=uEGGAoXJ|PB*}`bwZ43M`XB5be+bilUiy{H zQlxxKDqSB4vh9F3ec(%KzOwcwykPA_KLPx|IK>cHE@NVeh)?ZGx*2!X#EY+MV~8(- z5v8^VC{k19%-5nb;2oS=L+qkh2%ae;i_|YQPozFpzjBpfvWE&tmw9|D-A%gCxyY~+ zHA%GSC*`1nLqEpZkryDJek@IksQd2IQuOM37;3P<5fWnHT3bt-&BzF;+iAM#jwWt|qej(UXagl@$UG)>Ac zOO>y=2Fl+Ps!G5!u%paEKrfnakrruHSwQy`LEAuB zi~Imq1=ou#{zvpe^qC3SUP}d;h15>-g3e zh1}{M3X7b>!Jw%{iC^urpx?!aE?9bwP~lKjZgqGAar$wm_V6!xphc2Y3(_BybAgqs zj>P!XQ&@D`>Y3m;HhJR?6y}S_0uJYpN9GKf+o^zgCO}#6B))88uVS$DAndEJL7zc{ z(>j1{E;w40IA#NW83pT7^z=wA^dEh2znh(Dvp%D%)&ZIJd_`c6vB#Rght8^Lt%0d> zWxLn>J#68yRMp!;JeeeRLYDH%2Gdo!>b-%pD#1}e@l--BgnWB%FbR7N5yG;8_M zkHe+skv1fTc^|<>uQ6jqQ+-*BK1$+{rc#wz)czG&6m66)0d}QG%qAExb~XSGGFn++ zk$IssKcoyQEp6~Es!*HcJMiMa*eQdn>QG|$UaK>ub{p>4ZLYxZ(JrF z`6OzA;W>o}Bu(Mvg!zH^)K@u4uGIT=8FuDsYvv+=m8*&aa~xi?jAx_c#qJ@HZnQyq zj-rCK=qS+lmvl3oKzp9v5B8U5^9rigUKN})$cX`YK%mXvkhx|>;EN1|;!sbisy?op zGk+oSy-9M4ZXWFI5{f{$VlWyTi`rB5r5QK4pn^G3jewLnt?@sI4mfS#>BX>kbu*nY zUlm&S5AWDwn{jrLhiVECxq+0T+eDnTp8*hDv02`DsV`n$=VN@plODdX#VNV<23K(F zvX3@;=~7e5eqeIsv|`kFp*EX)W3nP0Vpq*K#y6bEn0&XZ`X&xM^y~Y^H}q%dC!Bf* zE?94T4&KYvzF^~$aV=@8fks!bZQ0T6Lwe%8hD2Jte065DD>Ui_KMiJgwtxGizS(OW z5+|j2u2x-xj3COb5;i9vQ|-%2jdYxe=S4w}EJMJ8I071*}2OiOGxAwZ>v=Y$wjyGCD zBh?H!yN!#{uJdm41C#bj@xxyI(0CT4BO@pi{U|&l_JB`+---5cfnJBoCRO!;5N5pj zPP1FoPGMlvJtQXT`7yqu$zx6MN^SL8l7MH0WFcH6VNEbsi^#1d%y|o>%$h)i=-6Fe zZtbYyN!v6|Kk+4P?G5Jv_X!OCsXQ24^Av`Y*>Tr~cxZYXJ~vscwA$4+U8sr(Q>#GY0+ zVX|)L1u-gSjfydxu@!+8(SdLY$Gxr~tw?gqEukSe4a48Iu-!!a8DBQ!K$LA+9+C%0DC z4V5z&2#vWT_I0XDJar2oh-ZP5Rgs@U3$9VyNCKSyvbwR-cv{^xM_u<3Ep;xGP(QJN zDFsF|J3mg8Xpur5>6wVJxGUl`KZ)6-jYxqU0@V}1IzsE%G>_hsuFlp!G?wc6nHJUZ zK;iW=xrcv3)F&{4a;w@Wd_}HcGtiW4@%!O;V;ilP)=n^9~weQ9~& z+05p``_R%+oxJ*qo3zNIu$+=NZC$mn;fd?*{95!Ix@H?mZQZhuJTioUYNStaPEDDF6jd=0DNQ-Wxkgb%4 zX(PL5wlXrmLuX;wdP<@T9>6`Tt^F>%X~&(ft-Jml)U?H-NJS6%Xh{VYXGiNfnO^kU zE~I%f2+&@xfAOni%9g7u>v`Dac}@5_ZqWxWkqJ}C7BI!lu2FjbSNYb6CA4l}7SzDm z$c_-2iUa|PpJBU#xac=fKdg!UP6i#Wnk4CS`e)(YT#K=7=|3v7m93}*&LLx*SQyqe z-HLVaR}b9Lp3+&C4*MsnD?Yt#6Ro0iM$&--?crQune~=l0sl^rEGh-PBRYc)Nz0fp z;%G0BF3g4%dCswQrQHtj2nmOA=%zcI$sgMATRp%dG8PNRZ)}Ut9vVaEu`>0g>dTUs$6ZFeYZ)%vGD_N?TBm}E= zW*^XxyQ@d7IyRnVaARv##*6X*hOiB_$otHI`*xbU)h;zH@@4pwq*;>mJ9)Nl@J?~| z7L1^w3CAURm2V(ECsT`7k(C*USO5Be7F9gX454xHAvVS|()NT6Z3E}V;` zP=!QgTY4{5W{CBretP%_d6=ts0*NJgL_BKU(2F{mFR#{JVg~AUw!GT+4r7_lkk>Wp zYB4E$wN+M)pVQrwE$COurzHf2mLk}4P@10LF>&szDRY%Ps+eqMb=u$=a*RRIVViJ* zr8LP{Ls5+SEO5tDN<0M_=BF|NRrZo~eR*EJUgdRYzo^&u_B-oGwml{H_J}>BMRt%? z-%@11n@zmZT)Ch~@Q>&%2M#4@_GO`uD)W!|m8=4Lm~ps8;XcHO0}kp1619TCrykWe zq^bFFBB^w~jWVdOH+qPFnt19c1koxB>uMmkG*{8;laWP0P1BD8D znWMrn^;Ry4vTHvB6b)jsi&WIJGR^>-n?y6!V)(Ms`7VuTBb6z(5!R=)EvEn zJfT1cD_`vhlnSKFYc3$07P(Ny602 z)_a_J9RO3IMdaE***;lEefAi92`$=i=ZW{}9zPMCiSF5wVLi|C2k^B7d;_?HuBw(S zE(f2RNf3|$VGEBqrAEP#^R;!~p?C3!`jP>yixDgunMZebiC7DXZ(qr4GZjj_!stYb zgvJ>5p4|gqlJuw;4JWCYU7u1uWRZLdT*&-uR_rz}%gPM^B6-4BupB>ms#ja%0;7Oc z&W4KRtoBF?PbPrQ0IbT3Q(qWZ?i9*dgh;GJ zY6P=kksd2fdf5#4LI8>jD-@Z3qfKjkfw5s6`R0KPC+CnsiyWe(GEEz=t^E=AgV{2W zSC1ZGG(9)gp3>cH5vb zyMcWBiSiHtX(W&u8#0&!423v}>RyOl45x5P2iQ$~C zy;8o)g?CMNaSxB>V2i&)2J=~3PI0|R^5Zy>>7K>-FpzT?;>{wO(x2geT|oHp>w$Lek%vdazpPK?eS@ED&t*tUDCsa`hi@uf>`HN zlp_^Mg}lm?{XY5^kw;w7<~6KjeSWvr4giWN3yvIWYi&5;(obkrbGkEXnE4rvrZ|;@FBUhwXbmWEU(_KG?|VZ_cl30W0;oS zBkq>tBfAKE=l}Zo>a5f+Vi%8^Bc&p8IgT`NRw}@ zpXT+-Khx_K8AY~XTyz`Po7i0Re~N{^2lzuQG}4mqVT|QTD%0vOERxY3Bzm7m2p+9q?zffb9pQul3~R!Yy`deAb5o0X;VF3a^mUVK%|P zgTY$N;pu4#7r)DF>7F z6W_uM4EpsG-_fGG;iUMG1MXY4gY8$C5Hj4pN-}7cSuGqb0>E%22A1+J+D3&syvfQZ z8HN9A3MOjN69^<)NKJ<=H@%@&_*^1kiN7+zp%PVX$}+L4=g^<|DrIF9uGf3Kdi^=J z_+oh)t$i-(XK&hokt2SaOifQnUC zjTEQGB+JfJBRa@zVx+MB;NBF$wRM*X!uhb6FjFcv?wU@am!*))N}i87X1ib4$&}wx zHn`?s98(T5axs`1t4Wc@r0s7o-85ei{|R~Mqm1N1 zE=pc8+itTLKaUoXJsYwR`dhNt1>4zx#$vE|mdaMM)GV0ZBb5y43kwpWtD_R$q}Q7qUNw>%}+U~LS7@y4B#Cb zyeYzZu-5n1&^~PRGyxPXBXGphjMwCDi1#rwT*ejJ!$%ktStx761cUl>;}OfE5NivA zK9r?+s~miI<7H_BTwSxAY%7edw&@{zC))D1tdh+^=tH^Ou(i`OV$QrQA?8`CS1hY0=vIo1pf z^G6)@65<2#u|@1TI1|X>c}V{1|C|p>RWI~QMydw{&Kd=qYACU#R379lu9U- z0L>!n0_DfFhrbCeI$Jw?tXb8=+jvdNy~Q2kt5B?o$VTgzkJL|%(bnDwXG7dv(FNaN z5RNV6?wu8ZOsZGS;9k0nbX@*ba`dAhm=HHwHnh)vjo*S42`V@h(p5Ew?&r$JjW2s( zjDf1JgTi9vP(w`qcBvvtG1bfk8O2~-Ike96E40luxNM{;ar;H&l22;EM%n#r$e^Yc z%X65x>k@_3LbbP~w8}?og$B#YGAVt)s=d@^JEyi*r)zm~zM)WUHIyE{E;DA1LdIRA zUPNeFOT%@}W)V*CV{-VMZ}VHgpde(XppRZ>N(i`fQ{YxIxbQ3h3RdK*qXM2~Ka5h> zGpzJdu$Utj?-JTXE+&#saYjC*B)?!h@&FhI!*Wx6vGV!C!XvEm#eyP6%5uC^(M!iD zxMhz=nazbF5;R!^hD(*LPaShpL&jnxlk!EhIae9Vo&a}O0CiU4>I+D!U}K+*F0x~% z)Syu(*ubT!u9ArS9mE+B>~%|+loTHhpO0FWAvl(<_c+f+VzfvVV9~|eCTMiFCGKG_ z;wRa9oeV<17dGhC)}BR;3_|(Ll25|ZJZ1%DKkj%ckdsbXFZn5gJz87h&|h<=)+^=u zf996O0!JCHs8%)=(5vW<(D?vf!Prw2@<@z1mu^AHnNF(nun2@mj49}vTE}hBCI_LwqnWKvC&UlET|9ot42EOF*k!P z)qMiP0W=?NNdFa!upx#+9-I6A(ME%xu4K7C9{>EsOco{CD8)Z~891kE#kVq}6xI>O0N^#Mq z!fX_8mEtS^N%1vS@kg!VPIZD2W|S%r2NCvqDSpjADK0E6ngcRV!d+@Bf7^?g4Vu)a za?8yDF+_w1W_hs_>bwnmGcXmhAeN!6 z{vw$G(NCg7?W5u)ATNY!d@{qJ7-*g)&K^$@@!Fq(78xzL4D*PL*u%v4GlO?(bYl>| z)fyc;ghR^W({hc!?KY7N(ciUBRo};{EAt=wUPbs$QShe0Kx+*#!r>MtsCLCNIHPjv z#FpS1L-~N=a!c;cs8@?zCEggT9)!&w{uKz#7sWLKN=cI<)Xvb|qTkd`6mvCmdE`WJ zI1q^Mhmd3u+i$TfuMI9m0UtBRC&|Ty2;u`m$vPEUc`9(4Gl;7*-cGut5p6@sKz#N< zVK6)ncW7DoLqxueJ+#V=#%&(zwce?8NNt+HVh%8CO%Vo06`DAYK=}Z|%ILw_C|k>G zYabBZbbO5VlP2@8Y+W5JWl@sOuAM>-K$l8v`sydfFaecOf?{x^pZ|avvWpY#NWLl+ z$&O01o&3@8xpTe-EhH-R7&sr~MJjk2n|c@f*QVNO4j`@7&;cF9v+$7nIKlpt6a6l?lA zqJ^pGNU?N;uvEh22w_f^Jm5yfd(CNifL?684P9a5iB866p+b@5Hm?Ge$_n%oHBq8E zGbYlOnITg|1~H;frzK?gUkoThH2y2h8&O)88AsOBKuK{Y(aJ=y+w2pUuO*nOg8!z+ z!}O12P0EpB8C_0qnxW-lnoh9@rN!PU1fXHG>_c(4x9zJ6{t)0P9K_o%O9j9Ej{n*lVFnnhxLyx5mqGzF}wI4Y7Whd_s z=(6^M*Wq&!3&AdtVItu7^TUg5nM2wCNPb|KzJ%}Ln#(ew-}Z}7FVJ`EK;uUxlVk}ukkYp<&!sn zQYhp<)2w0OV8D1>s^|yX<)nK>8O3gJWjBd_;;Wzb*b&^O#lK1ZZ1&gyL%GT(In*X4 zkpr_-suNpHEEa^S6_9wIYi84@pSBdN?mg+JI&g^C&Ej`wA}`@tT5^}X!h z*P>r0)qIn8OLJQDQl&#>(DsokIGnVQqw*Gv;K8Aevj`obvE}?j-g>;ymZ^^#uRy4Q z+*UAN%A)zY7r}b?Y)-glVR*>N6R4xq4EI1F9m-Nkrq>PYjadghkllPJoFxWMrVOwU zPX9i}%i00JP+BWoV%|ZDy`N3g$ZO8wtfxk7KzUELU%{3r50}te!0Q(6#<(0`o=a~k z6!bD@ge`u>98oL{xhCG|7ZNe;`%JyCv?29U7>8ex(WFHm#I~URB6ATBBouQSnY48; zY)&1;)&UUq=zQ)5o$G$4>>UfKfDyyDPi+-uow&^gEh=+~$mVor!<^1w49e?@_ExEB z{2)bW@+JzO+2yV1R-wq+Us?#v3WmNU7*@k28`g!Y`h%$dvtm=JK4fiYRu}-W<_W-H z>K2se4^S(y#Xi}&+QlQ9hVr z9K4ftHZ6Jt2BxNe$lB9V#~{nx3Nlqj^DaTFkQx7F)p-`1fCR)LWfJ8OBdj+%5g9OCkE5<%D7||yM}if5{I>XQe24X z27DQ@Tr$iFYg~GneQciFo`s^{rOCucKV@Zy2M%^zK|ZsB$2uv=V)k5`S00o~V}v=K zgvu5;neD4r^DIne?Rr&a<13c};z2eAg&Oq%=hC}B7pRJW+pM(9o|!@Qz$YgK)CIBv zbYc;eDgbPVUj<9n)qCIx;A+zp-pt<;Z?9axN;wC|t0w+3pU(~fWI-(Rm$^Jfcf{PG ziQ=n)_wvEp<%Tandakr62O}@1L0RY0<<8|7m-GFehwA!8+`c~`$To(V%ZmIvEY^iWd*q6M%&S-QtrC-1rN2zha(yw!% zkyLRfmEsCg2XlD$Wp^5QxDF-$1dnpD?Y7BeUou+pTX;l^Ts`T~H|H1~%0-daHT2B> zSE|BiazMHTRr9*yp}-Z%F{d@#ByAez@D{E1uC?0Rk^JT0eZPWF#kTA!YpG~ z^*ZJVT?JmGmts~<7iDy+sU0+%NnE9+i-M6kPUP-N6?S_RQoIfEYv zkFDee567}^)Q(m2bA5BcT}{wSDwS)-#azyp-V8UtrQvbx+BCtX9VbQb=QZH0|^#ZN0aE)_>E>mqk1`ww;FE>lle5ab1 zQk^Mdh_Vl$ZzlBhi{%lZS3I;?y%oh_p@E}_iEt~dJh2AMaONdmFu#D?PK56RZo!WbJ*xTce&MX?nR zx!Bv?-^aJ7pneYj1zL0mNFa3x8 zGAE;pOD>IlosF|&k{8z+n9Q4eXBT#98#tNPTU3C^J6CX>^LbX&chyI;Tb_@y_sJx|U{W zI>&fLx$-dpxz!su8+r9E-^6;f`*N?GF9q~Ijk?iC$fwNq?>CzAI z8M|Ow_`G2I;zP!v7)2;a4RWtz)3{#!4QDc8`(H$Ra*8@lAPAicC}+TAY!O4j?w@{8 z*g+QECIV9q3NR3#Whs&?Uil%;qmxKj*U{Hl2(1wi!4WQ zl9WB!+uIXrLlexAl~*4Ou|aiVAaluCu^A^NO(4@7&THSt?bhs8#YUw)dNProL*hQ__LOdid}b7 zwNdmWwAmoVH3WIsErbJ4963td2N%| z1B0(U+xc|hx@%4hv}8zGF~s7oyW+0bq?oYan^soUkR1Pueh;1;%8bFG#vk}iz<|RC z!C0wEauao0_~H~C_YO9!;J7taxu@x~-_vnJG%u?Cvb_34H=@WL2Kp2QWX$#Bgn*ZB zWT}TxhJ^>avw>8tNLfmLxrIHi9x|vi?2tqxBQvpDs?B;%Dx;z4d_=&dUhH;4+=3=D z0?)NfXO@EEr6hc$mK_<@no|AxvpAp*x{_}iht=NO_77vD^SL54?t6tbLPx`abYshv z6Mwd6K|_Cf+?6)P551P18+UCtwml*Fj3qAP`|jk!ao5|@j3EBh8j=0v`zid2Ehm;= z7Ld!e?|yh+cCY0lL=%C-wjq3pb0AP$K3*a#WEJ(E{?N0!p|E%%55L(EnRvx?C%MhO3B*!2l|DdS0W)=v+jAX%b zhRgVr5fPmBVkk;>hI7k1; zWDQ`lKIx66GnsKHTAjg+F^wUd1g3boGPdO!Z^&qzt~a?Djq;a0$GDZV z^kS-`f!p(EgPA`JwL`-B4m z%*m_)8MA?V6O>x7LamQLt!KEDy);a>=kxu;Lof_jawPU+=yDKAsgEL`MA5Ur@JcQI z)AZ*=Rxk+E$_JP!k1zM(b$^U#^pkCWl0nTB`9da}wu`(Cr!wLzMmXh!e#;r_kKd+c zlwK3lWSaCl71&&Tgt~n3if3fyTqu>x;APRx8(+A}M{2&_GoGTEp?}-t zrx>_wCa*WfK!hzMUxXalNH(uA7Q}OTNLZ&?r($x@Vjd)a|xeM-L!=SMtovF~_e-}eT&_SpTp3{5b6OxZfeUE=FT)uAzZQ+F3jy;w$TWS$rr%w zGjXZp%5f!E)rk?pCJR{;ml;u3Z1G81G42g%$@5eE&902_NO;_b|1JD6xx7LhEU^@S z8y&_`SnjW|oQya2qRJ)5l~8+)Sw5SS#a20EJQ4bci6&aK2=OU`IrY~BZvsv!R{&vV z@>DGQpP166?wt`b_~7qY@z14KKJ8Ci`sQ;XF}dTubH++eQe>0oyMhNM$m%O3qNA&~ zjqD3$tM*m|vL-Kgue<^*sQDmR@KalnQNGc~^(`!bD*h{CMyz;_`EXI{dX#D6ObU_r z2#&FTaY@SM4Dln(I;1wI6?=FoB%y@CB~pf<+&+QPHWpw8QtNxK)R8z zBnEw@tmMSyxKC9b3+xfqXbJxnx~ai`CChd)X8uaqldkCc-!Ts6$b49>azGGQq6AVK zubFch!mJwKlBEh8(9i_CRxK*NujFq8Hlr|*ctBLkS(eBoqqO&3?3zR?KtCZ}G+OMW z`oZa7-JILNu`-!sBLp6~%A&!EQIG|7v`t?9cu|#GKYnL*y58sy?hNh8tG92o8KD5< z#S+xi_W5Y2h(>ch$;iGZS4})(mJxAba5dv_6#1(vV*-;D2&*J{UT6_7664>yImYU&hIGzz~ zGn!V6u99Kf%cqpy8y}t)FMrG%zsbi3r-Kbkz7)IAXhYt7wtgTgON}uMFGo{7GTM_{ z?R3>$qdivs6Q9x6o@npE9p90BdeDBg{D(R4SCKe1&_yy1$bPE)_zFM}0{{zJh-xqu z`Un>``NW2iLm({cXC^wut&KoULO6)s-k_78z#05L~;jK+USMBnLUwz!aZ{SD?>SJyd5m^LA`Mmfgt}bE)B} z!P*|PO;&(UjpX1d)903HYJ@bV`Kp%2uN(OiE^rwqGx-X|c#(adaIIPb=fY1C+=(@e zBEj88WA!fKg7}Ku{@_2VvgP|p|E$EFlwb&OeI=M!(aGRrPqJn)=;Nvp|?7SCGp zoRfHjX;96Sf+zPZkZVCUh==uyTI6o{9aI+O^~Si}YgSr(c^X$QgfGOSk=Lv20d0d< zZuV+{yX8`bL)wPMnvHI$MvK(Yj|_T8ng{H63^{H)*NpXady`5$Hv=qT)89) z%B11h;>=*L;RqMjU9w?c8k)$@2VWdD$7Y3Yt~s_SbOW@@GGvXk2uHJ9i!{=je#$wn zOW!vF{bzdz3(BRsYp6~j`BYj_HVQmLeyJ|}XBJ9~9f{ASqtl%68!!>-q*r)5zL50GG}ZNA$a}nE8X1NXnOGbjSG5mRW*Qwx zMp|EofY0iij1^V~qSvB(>R4yO{^-~H&#D?D^18hr8Ro6J7v@M*!P>BePp|g{KjFd4 zKV$UY#UYU7ipGTjZ(eWm0&D^sV!cOe?-|(~+_NNytEQ4pV=KPnuS46=LH(FNev2#I z&M=$Ts`C}44bW6M9+IzWue`(Ar+A67K_^K&VMjxM8lwwhqz*R}$G#ry*VcUmGPO02 z@(YVF>d{00Qcx3JvIfo9bt79I7KBz=3GFoD`$;`h@ng*6qW0XK+FzTn6f%aqt zas zE}@^QZ)fTPp8*g+fZLHdzDDAp_7)saQkQD}B_9riaCx@z;Ha}pwoR*61i|0+b zT#>E38x>4~B=Q^)`=>eiq_&~S=(NR22&Nh|zX}B8o`uIX5}~xf9b4=b0*w1JY;;1F zvV2-ZrqhCl$=~HLZbCpfrncWU^7zsv(wFO{G#*2?5J$fP5vaBFrGF!Z$cct_05hvf=wQ)(i@$8pJLyc_*AhL7#Yc)4}% zGD!k%=w+?5f)%yZ2@%GS_d6-)pFEXIz~#dPW}Dzrq}vHc2m3>#Ub>Xp%v^z7*x{J! z8E9)5$Y}407Qg7@D@PPezFVihcY#mF9=f!Mc)_VXpZW?|yWk4P3}$z6-w&mKutTFO zKJ6qoT2DJk6T$xbx>Ks3sQ@=dWnT@kN$}Zn5;#xyjJWYnFxAq7^4-Ei%Aw1 z**wO6b@RKj^2Estd`|tCyZW5iSq(id&hw3IGtM$Eq=>Ymt@iRn_3FDlb_4avxAp$) z@UvpnqJ*CogvCqPNvyh=K{u=ZLzY}LUF{TgOzs*_Pgv|bdy-^bu-?P2)2bt1D!7Kxa*3&Vh? zB8q1+(KO!GTYSbeuiTVZjFYMOXFgQ=M4tWR$b!IGuGpy9Y?(uA&o^k#?_^!>sL|1I zz&im|>S!>%&aHg9*4b#h!$*rG=3_oap# zWc25C^|d+MWOi|%tWageTtCyE-xBwXF}BKaVCp*Hwd-av^A~BVYR@k)Yx#=U8!*qM zR4Kg)Ao-z7RF|f)YX6X0!I!x!9izXgxhoivNHlS+94!O`|9WG`ca|$+W*QhABjmI` zbAjalVy4bR7PyzSr+o2kh{2EC1Q-k^GB+@`ijHU&CtW6YDaK!fq2k55mk)v>SeCO# zCOdJT&IG8*rGF?Bdyf`rAR~3=zT)S>IFkKotaz2nIEEA7C5|tTUhjs#eM@hb7t6y( zcCT(`G?-~n*NsdPFcAKy%P=w1D24`b{UlcQpDyeMIznwZ0oK-BVL9_D+ZuA?6_3c3 zq?w!oMS*}Xc8t11qd1@2=#u?CN7!b8kY*pkUc*B(%^N5LDrJ5SO@j_?ACuwmE9{d%q{{$kS32qG^6)eWfU&>7W*Wi3@PF|}u} zcP_awHbZu{j7*+iCnxU082l`w_=D}s4jEgR;gZZD$-C}$Hn6rcGvF&3hKq)eTH2 zu)}gYEVILi9fs_1g&kJdVW}O?vcvoAaG@O**(}@Sy4~CJ%N=VSHOGjTMH5o22KpLrckcFXUn2{RxIp^t>jy-UiMXey{5n) z=8KHUk#)w-n!-$fxL|s4clA-+CgZbr8}q!*zLpY?pX!a3EFda>s<|{I`>pLazR4?F zJuY_`hxz7gCz316+HQu0#2oS^pG$Gs=eGYfo%Z>za&k;v-1l?ohFgg75H}g zjgI7~*woTN2rYP49ek8Z?kH5D&s_F>+i zk)w&vk+mqODy?pdO>mvIWxMk=ONcPfgOz92eT=+sW6?)IDWa2WP?%oF>>H7PXT1p*Di1Tcp+`6H4kcu zsW&WUjC84oq=CVDDpgCj+>**vEtza6zD(M!R)YCW;)nQS4WN9MKkoPpf7}3nY_a*{ z*OWnSSH2z(uTM@$@$bXLI%2SjXEmHMbXtE_F&uf3$-mo_< zyFK|P-+#0*nNYLpTbDoiPw6Rh_kT*y#70&A7A+#g`wR_#Wz~Kwmpl%mUWnK^X1k(W zO2kw0{j?x`xO@x0e2#n%r(XvA_fO>edzO43OUd_6s)u$`De`U64*7<5H`?<3M{+dm zO&78L@qJ`7qVxGpW_Qo4=`Mk0O2iTD*mEki; zq{b()41{0i`HY5O8|SaL2V0Fj7!5~%qy4Dl6YZxBSIqoG+jI;anHOvfT}d9c8tYpI zvfqjO#xmQu=m!_pobZRgbdzx`Ida-f*4rg));fw|-+#wlYF5ns`tL9hXE!?=mB1yN zDYIf@r|yV ztmw;u?XbXh=N;C%jM@(qo9Qv$$!=yAW&ya78kTk6c}EJs6uxp|VUPvNJh2jAY-MI_ zW>)a%%I_N1wqj)u&EC)F&$D+YO76F8hn=yRJ;75|Ur{~;@-Y<=)8cX~Is26JxDocI z?5^3^U6z4y>f3O1*lPgTP~>4E6@N%d$?%kSC1vO@1#h7Z@64=0kd6O`y|)36s=D^Z zGs!>#3{KF1s8OOuC5n}_sKf*v5+_6;8o(&E#L}wNwpzc=U=R`#W=3lP>%p}HMz4!M2zxRF0!;?8@pS{=q zT6^ua*Ipmxn+ra7hZ?c2LN4LL!26Z&W*5lH0k6!;U6H#0Pce@8ZpSLLz9f{rQdT05 zN9CJ!X32Q9&gj^dcf=TsZ9wxQasI81{F_#HX#FTvc{eAuT#}hxtS z&C#qz{FFNdemd)q&;`12jfueVzE=IFBa`4xEArq=AT(hDHU7}V$>O0EqXFv#?#qqm zfwICrUDxKj*S|ImRb~1Xqd5=41K!$Hyk_|3wo6b{TI#AB(k`H{|>!Lr~g z?bc>ggNskB%?a0nBlrvlVLU^gmJ+%DMa+rdV`TP3wnieHaZL1hSo~WJxXKJQE`to5 zH{cFz1?|P~$Tmd@S`hC`o_q|O9(3?2pH@F`Aslg49j2#hL8x*)?yGNcnWOybmaNjV zZpp-C$=n)X;$Tt#AzmOEaTRz2bGIm8opN*L1iFd0ngH&kO7$H>nzydtz}(O1mSGo4 zDer=J`fU9P^r%L?DiBwYNy1+4Ue*S(s7W(SH-*L1c3=C~z`Ol2mX!*q?%)nQhIbf0 zde^I!1mJNTit~ZKi!CbduL(GeDz$<;fUH@^-q>KPC!RuYz?kS>cA)j6w7k7))I3$> zFEvNa3%L#zpp(W{a07L*b5wbql05@725xn#0v;_zbG!z2`t#Tz7(@=V@LAhN)~_M| zEM$WwOYgj`R*>1tZ)s9R^E~6s3sp^>;|Ry?)98ilxi?^Gq?LtBwAOe@7W~HhcO49u z;K~gLARufBh+cpUF|h2~%emVTsF@b!Z8}h+Vg}G;0F>mUWIAG#_|5=Qdd@1zL_ghu zlaNh;G2+U_(FG-zv&7rDO<)?{Z|3_tyxYqwj!)!SxxRo;hy~6A0rxR?pbuK7j)4_i z;2*%uI5HJLKBvkvp&!%=zi6@tlVC68ER6@E2f6o{3%TV(V`t_Nzs#T07^oi*)t-(~ z)WFfup;NP6>I5@1jU^UW@b5~p1o`WLrHi?D15r(xUdl)0LCrbJr39zUIXHmSWV)9b zZb4-GbJn=C<{TAA=s7@WgleVxP(f(TxIAM4lj_K823fm0%Bp|ATFEi6F+9jd0m(ll zl7Gm>w31C$!m_xRh1Cl7S*>J?9UbOM83F5P({nXk&YZFu+{=#0g5XFU*oh^va;iWP zen!O0br+==p7v0^w zf-)sV^Io{E118u@O9lY9eWV0dxggu;KyTT3$6j4l@0DK8j|+lLp&}krPDX_mBK;O1 z*x8TMROn(9%{!#mG#00ZoOeLOQk>CI^GdNsu~JRRtU_#an#<2sYs!nUP{V;Nd9nt8 zfpQ1Q4M&ec=JpPueJQy3zMg+ZBRe7w8C8kyxgB7eD)P2Q!- zcc4!2NKLIr`a(DaA&t$xy$FFv{ow}Grnk4bRsO>jMt}d|>!GA@xXky4S(9a!XPT9e zxWswB)2r?Mzy5HBG#We!n)qGaMEv#Lzdt3-chCORG~eC()6;x+#m*3Zu>SB;sfzh) zzl+kyYq;tUQxC=+yqeR}TYdG3`kGiiI0`vMzSm3cp>r^iy`<-$Xm9DmZ|pt2DcF1Z z^r&W`QHIv+6B2IX{F3$eAd` zA`kT_V&@lR9-q;As4p0QmV)fC9Qj=rcCW(D-)nnzj_ICR^N&1SN&99?|AKW82kL4UB<`I)X9`Y zSZA!Nf|lliL$JlDN|I00;4w#?D8iZTzDu=eZ+qms5J#A8`mBFCo*~-XI_NXg+hJDj zqiCg%&Exj)sYE!Z--`jfA1&(*p;>uBpBLr^J2CK>80Lr|iD zLA*q|ZRa11)Qad;-FpCh;Czj=8|M3kJzw+E67w|^&tdOwOizmG-Q}p-HORLcWD@t5 z2e~zYdPdChJv(oVfR}3c9df->)$xuOeb!Q;3>*48LwyzYT-xVJ-I<1ur2j_!S2{CO zzFcvIJ0Rj%tMg?@og#P3cK6QH5UL;f+7Zk~j>L@W^O!ZS6YWvKc!;v%G?`MY6WA-B zplV$H4>~C8Z*d2Y2jvCxxv&*MRMAtg(hFNoKm=AkSZ!*@q;<lfg5VI1m(7CJc z``Y;}LXISP8(n=c7%`=od-03o2gWlin1ag%Gb_lRqMI4MJ<;#!RWf}#xRcqiZ9_Xc z_`R%lQ=jXuZ}+Xd0=O`3rPlDG*BC)p_)NdRmw>Qg1jzzS79!I>k~Erev= z>?E+WkSVqc@u_hoL;)%kXr9P#fjpv@@wO?uZ?cUy_QcP7Ur@#!*xVbw+#p{kgRId8 z#x8RqQYS?pLkib}ojP3dPN`n}wb*hLawK633hMcXb}ydw{Oe~u|N2?azkb&9kLRz< zfBl{(Ig&U*Q>r*rRb;8M%wpI}E_?{>R99r+AW$gJ?%*?6=}Mk?DqjljM^(F2CeE+n zATNM8<3QaN?Rbt2@HjdPf&@}~8ccFscLvwZ-4k|#YsE>}(Wy(I>J*)6?snc0UxY~s zFgA)>NPt`yK4~754B)+#HTqzkrNsnXa&RV%+@Y1Zn8;9Q4^qsPEU7B9!ofN`usWCt z375v&%+RAq4XwyP0kOL?7vGJ9n7hdXbE;LY!XUvKW7T2-Be^XjBXyO_%&u4Cab_By zDIIdp|Ck-v>07N_cY55*4#ffZUNKh&07waRHu^k>o|tg1NX4+wZ((mj93UR+Tda1n zR<<*CLSjsD(7Y8_9?a^V{{%jotyl|3sVOeA)xGRBb&PT~UJ}Z>1S4qQ7==bXKyt_f z?G;(YXI+trd!^;Ujnx(E?hvPkXS=N!xdIt2-+gKYD|Rn?3pyq;^uGD^Yls;_EUo(h znL9nKY+^Kx#OUJSay)~Hh&`T|Q{p#|Ma6oiIOOg?IcF+FRyefSgTKfS4jT9*@yM+}r6kn#lz_Lb)1CiZ4AhsF#p z;@^dH_&3B>P_4Nh2MHx#xGbh1Rks~?ju7dnngymlm9#@RL>bRQ4l0G7ToGy|frYBp z>$y-XScAIKi8f#1R0~r1&T=th=BO6{l!= zEVzXB2!>VYwkW9&EqYeKs;v5Aw8+e=*Bw%_ehRYgGFo)b__PE`=abhEq{~R*ggwV5 zX%u^sk1I%WuvPvnBx1MFLZN0WgqjIq4Xq@(0td8^O*2<;D4UeLP_mqLmpQ6l4~dy| zr&=hB0Rk-DWZZLdKr~@9S8#r@9)!$6WJq|@;jlCh%}I%lMt1Cn((|yOnIzwZyt+hm z2y&9vHw$wy`(;J9Q`z?y zn`N%h>@Kq!<_};hU)LLu?_I1mC0PL=>=6zFs&kR2$6ye77Iwk!?br-WR3YH*w-){u zqJP3&b%K^g7vfbdlo8)(+!k6Xlqkrt)*@d$ubTFlL0Ju}LLtrww>Hj$xmakF%zP|e zEs(-W5>-*XS>(6&j-osHETd><-37d2rM@?n-Un9l&0Im8Fa=j7f_;Lz0-^DV1D_bn zuz+A%^jYbZVP(;p>iN*A$Zv^WiXZR=BPkQR5`&EAc1p8&KhBX~C%I!Ma<6|$c7x)x zDxm)8D%b)=aR7&4bZnvQOmns?uS+J%T$LC@Rh{AgI9;#D*f8qq)VMrdf~jYX6K7oE z16x|VhMjy6wvT#26v)>(n+o>Uxcw`MI4M4#A3k)Ao2Zhr4~H`h@4{#CAqKJCJoeF| z40Ag2*Xh={L+g~-kqk5PE6NXsbC(-J}_KU{(j zB4N~N*D{S(w;26 zsZ^nF1yK{KxIC$f;Yn4j$8!?9XURKzfIjfBw6Buwi{UxsO$L2Pf0fq%13`K?E)T01x7TEEK>73TwaH6vEUx%z+IkV$6U;L)Z_Q1MlYBR5cz>CDP1+ zO?(@##>2MAX%1Y(w<0w@(|@p!Iq)IAeFv`77;opqNBK5HT{RRZUGqfpY;dYnoc-8x zJmKmN3UFCJs9LS06!^0a9vMB}x39yz;h2>Y>H8KIVIqyRD)QN1k>+(tHm`Vt7AVne zNSE={{YTqiICn6^I1#|EWxwx%6-HCI&*P|@fFO?H`9a=!OxM$b@t_4MuF+<5c^c=) z-Ufa12|Oi@EzR5DU+pqq^MBR_QP|0^VK*!|;(I^A-${1;YL74G6?C;Kbg}0jA?Lir z*`VFu0k_}7PHwklX)J*HDW8F2f}AB#^mrVt3e?mL{|D(twHgAs!g*?-u)phkhPu?1 z-+~K~Zr33GHJOy23BRPDqd`P1LHM??j#O$wEhq`I6&v=J&;JlEnOc{=?K*bnhsg^B z;{|!>x~P$-mx48Z(>a6RV-07a1~Kb6(3XNOx`UtK%E0tC^ZqggX&$EiR?=Q-CRIUN zCewb5v>EV`;BAqt?uL^k(;7PyH2B@YcTmFgZjGlok@ldZ?T)8qAZ@CoMdE25q|xK6 z>D||i6AUXwt?u9(pqHk1kKMSG9Hg0&)?t?guDXL>Nn2~@%V8P~o=k7M*nR*Wpd+jw zV4L2}N(XjzkDv(-c=93WiWml-jfc4tK)EXvJfV1ZfS+%89cju7;Z&MCFow^S%@7B> z0~=VV6V`;I_;4@{it^rez)#tqmIiyZHPeZ7Qfd$C=CWP>YtUZI!LisLtn-J}67R`? zTjnI+vl!4q<;}pet&umD0UUYSIROF$r8Huf=b7502aD_0XnbMD`Y(* z|0pYe&Qr`kQRgqS^Y>@|&7^^LewUSh>yyl1r1Ouq^KTo5{N!Nb`FHPqm zG#MhRK#O!?j_yLW-I!yUwFX%s4@YxGTbZXy=9_h9!_NH4NyuD8T4|3@mX&`I1Zk>d zy3T*Co&N>qKgbns=il?79-l`A{xqF`s-3@)`5788o_~#%f6*TZ-=p(iZ0Em<`EN_k z|Bwxzqf=6$^IvY~Ka=^-NzQLr`KL?%kvjh|?^C6d-+%lD$onO)1fW$^$4!)^K_si2xO=>k0?=OGy* zXCoAu(2~ezGX6-PYNhAsnU360hNa|f#v6Xxv9400A%NmEHrUHThWQ5Ft?TV>oyu+v z)mbyv>#XtGW}r6tNPNiX=<&4-U(s&RfT)W-scZ&pQAuG-&m2uw&m97c_Q4rD8Jm1d~7{aor6$G{BKzjZ8o>5Ue)mNDx8X(7`&luL)(c zDPXXMBE>Ap_P;+`d9zzPp-`4?Lct7S5{(I3>70!!7q~f)vBH9o2}P2StJ1?I!_jau z&F2rqZ=LxFh9<>Kw-w!N{6WSXd_Yi-T>WDeo3&2eB_&oV&v4ib9WbvNZkJ6OVT=cP zJ6r+QF*p2)TG>O+OQ`r?nHh4{!)mrN%Y@?~+=f=*aiW!g$~X_#!emkd zMFY{E*wUW(=s(N&S(U+K-g@M$D?G;?SdE9! zLTZ%1oQ5GWx9o>6z#vt-4~YI70wdws+zSpdn)>-4w1u;;26oN98?i93^qnjhDJzwg zY=$G>#W@~b#2Oinr_jZHMVD>QMM!PKP-NmbC|19icG=)JEyf0q(JZ|bcZcWRj2o74 zpXK<=394ViHVZ3^*h#VZntslpp{zfgO5^Il?cf<>@0%wk3Zh(c!5K|D|KC$lB>G)s zZws=&kX3(#pBXQwI-;3KO^lg6ADN=ui`$qiRZjm##|mQ(6if>hJN#sj!A1gq3O3E1 ziPSl;8uE4kQWvf^ar4P1sDl)EBgU1gCZfC@j)Po8H4$)UjyGWgbW&sb1$})(;jE(t z_DAC##TU5x`uf1mY3^qQTa5`Qq009-T2*BP)}wd|1F-V$QI#Ee?SWjmywl{*S5cN?=*4eoe5pv7FtR^kd0Ix--Jp`xbH#Z6!i#s4IFo}g&^@cf9r>QTcC$QE z=-uIa(!T~i$hwULTe+J9VOH)CKhqcxZ zI&$#OH$3D_hdcXi{?4@8L8|Of=qkF-sz1b!M#OB7r2~IJzfXWO-HUSI;`C^|H(uFw zSzTw2uWuP|ZTDWSn~YuN>iGOwLbmp@>Qnqh^*O%m(B=0WjAdH>hKnJIJoH1ENqMFfZc21Kt9f>;W_#i~%x zxj4RYOWuu4K|dgLR9vKKO=}gUMSZO#dw;7$l!F^V`#o5qu4)IHKR$!@lrMC9he5cGZX`PH49o} ziO1yO6jglm0_!NU`;GWOR_+S6%zCZ_md7=_IfzfQ*js84G;Pk4kzCtjB-Ph+NJjF- zJ-AJIKQ&ZDlf4v2{T6Rb?#1suqXP*I_B!2M&JaWo`_a({YP4$657px^(E z2XP$gv<6YrTdM8h=F^LCJidX}TGsdsLG`D&5yeego_XN1>JK1ga^QNbc5vg>T^9^B z#^T1S&*M8F5y6L&1{dU0VGi;D?HyMon32Sm98kgsmyaZZa;A8sOXE(pm5KXphQ% z0Xc`;?P2Z{y0xcNx5wh&dNeOizq5HIh9RpVV?y6#+(yp<7j5i_&TT_`F zAyXZ6){h-MU1OfERL`G>?J+*IRAJ|zrW?V{0gXUYsPm}Xagwydu3z-u(1a=)wqMIV zc%APj*h55W9`^2GecTRf_CVJfd!^Uq2y=d6-TT8v_XPutENm|6Gnz)b(u{tdf>m?( z7qlA%)~?zCy=82f2k?rmHLs)48}YTlnAXC)GVIYF<5TRV+}`|ebj22;Dty<(7=WLN z518HFOp$v zb!#-*EANrK4#%71171z=0r7SV`@wdHq}|ru56H{o{NR%uKghUhG9i8ORREE3O-%PK zea*@`DjtvKnWVGtOb^+-^;c>^%zU1wymd%|?ygW!vUKzyoFVT9h*frO*OaNaazlbF ztghUJ5fmqwCJW3sfO#4B&^UjIslgl!GjyEFF#)kt)Fcsj@D1PZO+=O>L!s z`woX9XMwvtU5pb>&nA69&w7z|rn_ohB^a<-Ql=SGDXFxY@PfNVPRFngIJjY?^ti z<=|_IvN|mfRTaLxO=ILVNrSLs;d*U`cs-ybnIRIWJHV?c0p+cOJ1Qv>drp-vkM_f7 zA~Eon5f}9RcX=k2iq8boGn`W_JS9A6;911H=o-0qXBx&0B&Dlj>blj~bT+?m16cOh zUt~@60xys7Z~>GFHP$4snB}j6Yw87_)(-`)`UF?crj3>l7s@i`;2i9hLJ@#lI$KEG z(un9^lOwWhd%-5PkDWDAaj#(mpodt@9vE{~(Iar#R@o`?akM>ydw-P}UC_zWYb;U*JfMEP9Ez^pmRphBgXqv8QCoOZdz-)glM|HFvkTQb5Lo4Y1d=f2K9ln6h06)nGcw|4@`iq`zN1u# zX#+yM{4}za{Hm2q%U_${iCBo1xG>hF6y-1lhkOC`;+leHQx)lsGj)6kODFZc~Xd5H5VcD)=805 z2x9aQ<7{Az&8|HQ2BUlCUC6xs!pIlrNM_$A0Ls`3*aUblrK*ft375#PB~ z3t=(bA4aC2g<)QJKz6`1U9X&+Ec^w1tQf95BY=1|*~&ro$d6F6=Y1>=*V5cNjD}^; z`4P-1ULbtAgjpBej}~gAv*$r&r`1ElnVZF5gj$06A4Bv;|2jM_AF z64)i%yP`h-v{R-2FapN8mu*7Ra9F@OhwI~$W()-w_|?GE*EC!c4!vFGBtnk;K3=~i zk5hhDjm)Prn22!{j{#u>+=~7kUQe_zh8*0x0 zb91Un$=e`SG|t>m7RjtLGL{V#aL9+;c^kqW7a^Nv8Tl<5d=t`9{LgBF$d6%JC~@|j zU6Y(xS{b@{YyqqfVsA)?bbE5KT*Kad6#y3UGKPmNNTLN00H!&)D1gRO{^#9?TkF56 z`()h5gAZtQW{fp)H@zlTw6u{ei9E#l?-BIp0{(a#WJCR4Anwd~F$EHj-I(%B)DyW6 ze>wbj5-@z;VKnQIWTq>fGSzAIHtZ4lW*>c%E5oymA4O!=uzvM;Rb)`-6Rg^9AxJ>z zXK~>I*{pmv@$D#>%EG?8eD|Cz_$jU04aYHMz?~vH1Pn~KD|ej**$Pa(p^&dq9BTSJ)Kh6|XmhV6LMyfC&5rx%L_PMUuiLSW9sq|3E;&@8+HtFrYF zLkqN6COKSebz5%mt>MSzzN?_M_UOE|v90?205kxBse;K!tc^p1`Yf>(j*RyT#%}cW z$8=(vNPpoF*f_<1DAgE(149JO-(6UoF?Xj~?80>8J9H2nYhxcn`2at=Z2ECA7abV! z#qFRU7zb`=HrD*UURK3``ZdfYjS0be-NLEdd=e6V;ca|mSPyiG&mZV-hJW_(E~5k` zyPz}L2KkOL0)&G0T?rb?j~U<_o&16iLcPLFJHp+$LpB;bfxEX}x+4t6N8kU0Vx1`a z>vm&cLE7A7YmSHUH<0yno)`ABtj7NzWW;tTKbMAwYkUVT6U;W9AOj(e2JJ2F;X1DS zOkG+k*7#Y!XAVXnw3zy3Jd$FkOd7%KQ3@CUk7v-|w%sFpAGL?@J!fYe3y=b0r43TP>iJPkc@h3LpkYkF*q!f(&6vea#Wm0wX7NLh6 zQ|ubN{n9%csJRr3{ODOUTpqzvpfSr-Dk{z z5;(cvcuPW&U--H4CO?HZ~LHc*YWT8)g9;G5lt=}1q;noZ#7bOq{HoHN0t38p+p zhBVk8qXoR#PW;pOPy1820r6$3(Gcl$)Ft{zX{V|~hepCOhOn5;dgLp6M>aXvu8r=bbJ_z%For*Un_4$GylMWrw` zTgeHp8Noe`*8y?f9VVr~wAYq%PEfWoOBEx8m5x+k_n=ZAFyk!z4XbR zu+8J>pR{{Ca)2G<27wvOxgFxyzpU;y`pNZ!eB9KEX)3u^Z)9>!R|N=-qF51Vsh-05 z*cw^41wP07`@XjfpdVxYjA%+gV+N!O=vQZq$^VWBDzpAE$k8J9AVE;eznT@ zcg<}O_}05kf8$hO47!Q!@;ml@tZ347LFv=-Mg^l>441m^QNSE;$`68tX+pR24;Ufx zZv#~mzZaYGV^h5nNJR}Bj?bt3Btz&27f0dlK zhA-nJTv7dGa_>2h@r891a*#M~_uXxq1AQvMv^(Yw6d_B0I5!pOzPP>q*g@p zbc?$eXp;gQm>Ee079n-A_scnK=$~?XQxiSPMP8k{F0xo4o^nvB+=Z7 zuXp>jj`JrF1xl9=V+1a}jUif}amlXL*n4@Hzw{L9`^dY$#Un|DNU{=gB;iaX*pMxH zk#v5hd>WE9xSZUm9$tzmg$dbYmwC(>4-~Q70h)@D#RvsovIcV64G=TRF_}Bg*mIzR zd+8{3Lf-5C!$t02{t5ZRL7s{607gvJj?P=17gkb$1HxqPd7&qfC-TA{fB;<;V2b6v zw$CdS_^t#185B4}g>uJ2=B0LW-?|J<&J;aInd7gs~Js8)_ zf_H1q$3~p@IozWdTIds*ivqH<7Ud=cXOSNv6|gO-8TS_o&X5J@7@64ZV|;y3npBA> zf3?Tf%}E7E0Qb<;05~FCKw6n^U-F5watW0i5=u0cYA|)ZMJoqtHvl!5I^SldRmkqo z2{x*{QN4R8^ej{GtZKD1uqX0QvaxGelpQ$>LYZ`CY z^QZAnYMF)aWWD_7-}Oqkw3<(KzXh+Da@fB%CtRxAQ))21K}zsMqFvqD{Q8TF@R3~K zpZ^ax4r~KYgIef)%%<|h?MLJ@jaly{#XOM{NcCVBwiZd)QQ&vOG%@) zL%V$NQoQ)rY5yVZd27pRPY5~to8i_^he0J`!@uO8`s@-=5`)Y&l9 ze7)Z$-!9GBS@VUL=Hb_(rQk`iNM@r2oTXhb-M}Jo<4fe^Cz2X~`Z?b43sC$ej2LFp zmpN6r{y>X@t{YI=nM-7gJa!|x0Q&3-dZ=dV4DNzUZQPvDD>~ezVxj1Q0TygS!Pu*u zA-jK&4w3qf2zxFjUW2Q>QF(HyE_yaq+D>6(kuHsGB3^*LK8llp@U^l`bT^apaUC;X zHS*bNm8DYPtBf$1W3CHi?+GDN&`UKM3QOo}HL|fk;XX7L;T9k6Lqicf;Av6(i3TD% zjm9CeB>T`DL~8#q+=qrI7b8OtdML_H5E&I`SP{8El)Mpl;3Z@Q70ri9$Q}Xa?I846 zJbrW4ZZS}X-qPiHZ$OadUiLW^v-a{Lw!8zTtYiHxnPxdI_aX)59mZuaWC?be8D^PN z-I`_IoI!ios@;fG>3gyafZr9ad^PwJ0u`akQ>H|&T2a^|jQM~?5-k!l`^ zd+7+XvLnNLbfh7g+>zq}cnMF@>_{^^vK8II!~m(f{)HWRi5-~)o72RMETa`?FCAf4 zcI1bTS~G$sb4Ff?Bs$_7mfw=UPD>v)ZTeuWW2^trFyFq%)}m*s>PwtP;wQel0fxSA z-bf}b9Nxrf?-pdiX)pGNM5!xuDR;x0*crdRS5#g^#lfGx*@w7w&vSA2J_9 zF1_q*dOSGgG^+UMNn z_UaR{4_absn|Z>(_We1i2?D(}KZ?VI7Dr=)BEOv^s-AT`hp~G54CUQ+S_;VAm=vsD zqR^nw?Wx=b z&p>EUeW$c&9e&xQR{XL}&*K-ZG5#ct!3$dGdp!1kguXq`^{x-KJZoYMqgWJ)_CDXY z=l6BpzJH_s{Pw5cpg+gO`x75uwmvbw?88bu=;<=dzGZrN{}^ws#qX>WPd2)L+|Il8 zuV0V$gTIJ80jfYDITqdVKb9R0e1-p7U>*-54_pf>@m*}2NTl*cfv$sGd=Ia_+5EC@$)9$RVGx)eSQ4ze;GfRB;Z;06}S(n zfpV4?GEJ(WmS=<683_?8LNHI6Ztg7}XHJMInXQ=WBjMC()kF`RlIGYC*+&a+ZVp!`8tCH!^>GuRT znkCcSfd}wSOAwdB4Ch2FM5-MPSeiqd1Osg@Uos6O3oBfP`XRj%v(@0~BxD2So5j6x zc19!0xBp0=nLpvq^>~wzhRFG(J#D_sTz(4D4S=y@45(Eygevf|6RE&)}of~U~fOek%HyJ?;KZ4ON12qk2it$ z3DKJ4U}VERDJlJ6RR`le#1wxYVQept)SL$K1pG8Z7c|Rc3!fZ~gzqE4=8t#%ED<#w%~2w-=T}=LaM{j!k{)A!E;hpBJ?qT zWAj{;M~+XB+Dx_#wkZ6l=L6rnkOALclkdpzmG3Z;#`oXjJ4EpMD<1r>(VGOXrg5g~ znj34h@loq;fNsuv63@i8`HQ-`UYs@`I}xs)t^tT9EY8T<79ert z^GJBabV z-5MwgehA--9V1XFC<$=Ra0?G+%56hIX`pEB5 zCu{jJekn~Np-9q}iT%d%fT>qZrS=PDR3OwX1u>_Py0~Pa*%dOJZ-O}jX+vyJnbKnHWFzi@w9&6DEzZW^>qh4@wCB`Hrldy zM*C3j$w*TrLoqyq{e^h{1@pk{In$C$Ng~}$5uZ~7;O6CJN;V8e+<{XuJZ}FQeBQqX zg}0z8!TTK94U0wIId_-HZ!S=Sxe(x3%2}9+s0V}Pn4{l@sKIhp*ywIp2M~ps?qDl^ zxl(SKE(m7p_-%xC4{z1s?HQd`Fikv&;huwLV9~h)x8Z@N3S%jBH7hqqp8gwm0f;g; zoAu9PDwPAD3&%R)EQ}q8#}e>6)O>l@A07eYz|Wt6i~uRH&(G37bM((p{WDyC>gxD| zf8n}-en9?gKKW-4MKdntIDi0-PH~$wdICEfF20;dsyx|dakV+`ZakawSQuXV;bS>a zE?vNoa=PMU2ofSYHoGA0=a4*gANr(4Ma4O0{c?g@8)+VjU3hjjAe_fRn1cHZZGDdp z*A=9=8=gb`Htqu+z2R)$PD&7u-UF9+?f|2WGFxa7He}drAln$+eR5PCn0_=fd1NCuOUb1#ihS}g2*8^MKoCB%c-a<`Z__N(;Pgk znBW@_jj2LNY%NEEutoLH#sUhyf)C-6A`T-u+6Ug*CBYhZET`a~B*CR&VJ!t|fgLW% z&(!EXnmqo5%7y*m72R>Jkf z4BQ9LjebC2dVi-_5mxjnS#%tsBQo!T9of*Rh#v703Cgl z-=L6OM+TGsk`O@f4yLG(I3X8t?N)45(Pb=x4bi*R1V1pDN^Vp>&InqQE=vfR7Y>$u zW^oRpUY>xtC4}YE1np!Fh#_}Vr&8n9s}F$<6qJ30?a(+`u^Ch5l{rjm8LI>S#1R-{ z(KQ)IO?Sg$Yv9JpW)TfyLZCnITEgKs=hYE#u`^sOy$#EXW53Zdn9HI{k6GV<_o&H9 zb>@zM6@8?fI)7f5|C3C!iPI6CijRr0nPP2`SA2xADaDJ}mscdM0IPo={u&wV3*h#J zdWD$mzdi)L%I|#ufW6DQKj}MmTihKy!SA#L<@c${-}U$f`TbSv`=aFU8vb?sPAwFc z-;w-X!}s!g(E6VHKvMl0{%QPvo%Q|tO4X} zmZdRBA9TpsLh}#63gwxmmOqKX0<&{9usFX(tgWc<`Odn68T0o;gyCO)dB;Dl>@ zfILK$y7^p@4mE!%e$*tKag8BnJJeIsm50)$e*Vz|ef!K+u?}-mMR@E)mI1Ky1sH;! zmgF|Kz{y7JJ{+@&`5rhV;h;-COxcm0T;98*H*@LAza;)m^jD`$v!kON=s=O}Q8U}%{s%{Ud?V({nO>!^$)Y=ggg1a|oU!?fx- zk54ZLmLO6A#8kdb(yC_GMv7HQOF85$;$w#vS-I8iED|g?5fF z;v>0L>khBWIXfQA+IcLz3NNF((}j=-XU|JcYzZqaI%t8iAvoK@`6 zTkTj3bmS!72&YVoy9R%bg5F)XKuW!7;0}l>I zsK-_pg!_#3a5fBd5s);SY$ML*Yjod$357hV( z(fa^~UTGl#fMTyK39Qq#RHhHRfB7_1lh*4y1N3?gR-jw4mmr%uf;|zGbQYH%GIzth zb9lVaxHp2W1t3|qY~-d5)=Drd+Y?Aq*`BwmpcCQvI?-@VNU%W1p;iv}PE;Dbn`7?X zOuUT#$f6P-y%(=&H72kZTIAFq8aQJbkA)URhXI17+;RH7q)GT|Fc-!N&8#LkxB)4K zvugE>rsb)@!Mw0FKGQ)RK<~BuPQ3gi&oqm(&8tR*i-+!VZ@UgQ zF?E^zaqW_y%ntsfX3C2*We`7QrQi+A0(KP8_15=A$@XS4S~EfZwY?c%*G2EV!(I@Y zAFJQ91L?GE#HzTGA>Uy5t%jLm%RC+ee@1LGKnf&c8y_;*$=rzNgh5ai!)6Lisfz?z*MV{J8+ETf$Rt|rV#U> zqd?~hp6*00z@O_fS5`;`?!fPXkV@X*5gh)zP4Rgh%9^V}Yy*9lOUN&C;Z(eavJj2~ zvC*dC*<5%z{%U{UumXp7d3XfVVRYe09MP2zybV9%p=+5{BJI&-%Ow~K9SDtGN7N}e zc}g+LbdpM^Z}H1AbVxgRfw%p{8R-L(_^*tvv67iFve=;4fg|aHNa7gAK=YiXRWN=jgv`u~50qD?M9$;LJ z$wli;iNl6I$Sku$5#@mt_~wSEm(xjyme;f$|^=xgL75e5tiVG7}u2OIDGRkIy3r^q%-nLMGXQFMP@&zFuCYYm8caZ}K z>R-%OU=eXac^q2=Kd0l_H_^gM3nyzm8dn`*!Nk~5JDfrGoe1|p5>jMUjmeGNuTe-DF08U&w_ji6`!Ebyi-V`&k(#HZOT%U9Qur8ohLn^vptU8I*}+x_rTbZ6MPU1XYu1oF7S54s&j0#tMf7oqz|S%kYV2wefPcQ~;48zm=fKk`|}PzQ*3EaqTsB0939E#}SSH zN1I37%RX!U2=O*Z9P&PcZ>c$;sf@WW>Ih>l=o%4;)A6~r4j>;vRur?=jwkPPy>#Y2 zotR(JR!9`FF0kDqh!7kS$db2QW9Mzq{mjE*I4zlYw$_%Y+guRrIA_4E3u$MoI>tDM zp@h*$@o5rruFBsi{Gu9NY!<3&C)``ib}9*`3R3@?@8kM4TvD1C+H{Xc{3N>fX%gM5 zPSBRt>qw&Q)bK3mre}ew4{U1*Mgmvo1pZ=~p{lj4ym?@-ee=q#$1HIC} zUo+Jzgn-$SN9f;p@TY5S{M-hmOz2R0obbch9a;9b%>QY2FXA#47*iS+IiY>5eaN4G+xcSRQQ>8lX% zW(A3^*_W|zG<7M>P*)(tvn1nLGo)9z9BrngS)8kPfs!h*zgq!`Kev1}ksIYwaR=|f zUnMKZ=0-Q!JO3S4WwIt6ZJHC6`eP?p=NE}TV>K%8tvKl;IW!Lxw|?vdK}-`iIv%}v zd7QU&2O$muS?r9H#lsd^T-u#1zDt%;I>6j29;n&D-8$%gHe^t__H0 zfbJ$w{54X0a*U7iOB%j_X#N-I<*DC*UJ`vcdH;Rqc|s)K@H}rr@BKWV;1`*X+?^W~ zE3t5}bCO@=zT7Ln_z#jDnDprw6IMWbtz)x73V{ZulLmq=BA~^knqIOlXm?oWe3+{W zuSG4XSY24>Fjr)OJ z0h{7@OY?XG7@$)K9Y~92?i@#oEZ==)o5RO#=a0UD!-T~UT(^NZjj#ke(rX*xne9P#WkY>YGsEtC&si6|#l zd=o3Ui3QIccuS^|ogg)Oo|kCk;)qmcYIKdJMvdQuiz5sGLja4fo?rRx|I731M@iJ^ zL*7R8jozn8(Zvsg;M|LwM{;g@ka)8SA~l^~s`2H&fq$F*4d{{0g#Y)^BSIv`{KxXe z1U(Y!0eW`h|>Pc+e`*!9Ftm=T$7+3Y zIjmaraew!-YVFsZRpD=_S9fTXlhF29BxL@zn8I!CGIeH=_1CA!>0}>nI^=vIdOW1ZO2tTr7Syk!sVnM@ZYg zm3%I7PIa`9z-|4DMc|0qAaJ({fpZ6hv;G$yRsU5&x_gp{TnhUo=TwHm12xOyIraDV zAhqW?btJzu;md!4-@4;}9et|;HA<`ri{JWM`X-bN8+v#79JOx~^sVx1=-bbFp>KQs zL;6NH(w2MnU7oXKHs6cTq1S?kthUrCQRsta)$_Z|T=w;ORl=dgb1z zI-4Ykqo#&^rc9Q^QTz6*6pr$_Z%5&hPm~g(~A zsUpDTvF`f``gRA-lLu}2+iktb-^6^uyPhnZTnK9soW3Qt9#GlF3?I?L;WZ^%SFx zrWoyGOaeiKvQ}9#v=+$Fj#sxjwG1suZsvj9Y#UCf@AbyaJ=C4XF;-u1G>#?#U!`#m zerp={E+^fRn#pa$pfwnVB&pdAHjVoiNzEqpxNY!uzil|t((kE9J5zA6`pqs|8?E~W z%cuY>LP})xYIICQXF*Nqb|9=&R0q(Qon&dOzPL@!@$NF z4HbDCj_SwZjmOn9d)J4t=$>fBd~1ytUsLa-&pn^MqWO&lHu3}9_0#j|ScnLFv2SR{T%bZ|R%FTfVvyeG-z( z2qWMvC-Nfqrg=#1Npi2}mr8sQlKb!T^F$E9Ugd-TK0gC{z5%28@AEU2Bf4v{{QrG^ zUhzEU?*Fm#^Lx$cQ}X$F4uycK2B|&I&x`ow7JT{l`T6VhSN?r|{`dJ=_;FZ4{BJxz zZ+I3f|Nq7F^TB7(vE=h}HWf^M1Mc)I%-m>xX~386=V!)0sLD_iMyuJQU`jEcF70U$ zLVwqz(mnaS;QGSK-BX6ew-6(d8XBg`#k>2R2yl#1?oxKxzV!=>2*r4%Ab04vp& zc%`}eZ3KVd_BeGQKNgEYtbbK5V%c7i6Dg!6+QET3E*45ohfnfm{t>N3ac?R>BS*uH z53LCq!BS!>M4KK*W9jRQ4z+M^=D7@<9?WA; z2s_;2YAQ};h{LosGVV{^RT~m zI_JRsvI{ftT0uvA23(WX-3@FG)Nqf7t-OhNxd?K94?8q_6ibU^F<2&qoK0pkXUbg8 zSyJ~c<#SUD{zh*_O|Tq)%Eko!tNDBX9z?CAy&XehK+m@<(|-tuaH={q-euyix)MRt z4>ZWL|Bh)XzFHbszCGtwSVAM5>ZLHtKThOB4Xehm)XdbUFKQTq;JKS?^Ge}78n%1I zuK^4#Q+?Z+d^8-wmv3%rbN0=_;c_UV!R|vPx;FnEH#^)5;XN%4mBM?PuGTUJH>)H)Ck;s1%Z(YUa#qEzLvMm(Qa-lczy0T`a^()rsRYb;!jt@1P$?# zU_sUn7qOvG))3nYF9$$qYkMKGL~p@hNq@|@qp*?dGGB|WNIDN$>j%bIaF|{_BF#8Q zH3d+CUvmfwsfr>D1e66wi1VQP*#Uf? zk6#T*U6|Kt3QPtUB6j`;hR~K7KcJ)_niP6ZgvPh~q0ynz_OEgJ&QU`Owiv}s-=fNH zz=___wzG)yEjG01y^WJ%AKq7tnH~PEfH~;C9fS-BzLxKhupA0w*u6A+UXN$x-ZDdQOC`|q^0lmV~Gq8aCaKcSsatLcy8_;uljcF8nL zHdiAE(u7xGQt5pOIMX*`l-EfnVVl_!;(cd8RB`4h*5uGtA6tHp8>(MzgBL z^sQ;agpE|?%~&ub?dIOPL;c)$)uXn;%Jy3a-QK6r`_jz*{+jhb$aB#ev(?<>e*AR@Jnf}H z!QHVA5f(b!FLz+G_qGh$q$=06b`8txIIgo`)2*4eI}2Lv!Ux&qwdOWQ$DmGCwHduC z!J>?g<@i%8>+0)ag=_dg4Bwl8jw3e*>~^{Y#8`@NG;GUQjc-RoprOjauC9@9`ooH#j9m+)WH2R*U7 z!L1n%O`d)!(U}Czwdw6dT5@6wE=@vF&g(;mF(l&Ei#JF%ezxJcJAOWkl;XMzfS>-B zJi3Ef{mPLp@dfj72QaEJ6*#w`l?Zq?1}^~XXD<;DWV5DS42x$b!!xcISf2s&=RXWl zaM;@d`1o0?f9OpDuE82pLuI?_4td>o{+3@c6w~iZOe&lI4|oK!$ARyEd=bNZ-9AB6 zp{MZYo?#T?Z+~M5{yL3InVk_Vnf=}0W9G^;waf4DSef?l*bLTgLxByhc9anI$Y(p< z#uvB+O;65W{~q_FuG~-qnhNscug2aI^k8IwA-et zHM=iE)OP5y&R+;=c(LpS*tXgnXOA_@+cBKQBpA`(6XR;y+tNpl!}!LYGY?97V}BXy ztg>Q@sw~7DH1`emx6R+?G<|4Jdm9w!Yv>OZj)XUZ zNFrtc$%2H3d8QFoF7!gy(29|a-lhk`(G~p^Pu9T7yhIlxp|OAT=ZW;F6VJ-GMtRq| zmmQ4q8WSWjjx5BIk;Ibd>HNZWj3hclx1kuPWgWWG*x&u~A+u(U|I?BFF3bj_;h0q~ z<#(CBW>vK&mZjGpro;X6+aTBeBmHi_Fywkg&sAv7gm&Kts_G@>YmWL*OWRn-*`)_| zM%PIzTL27`Aj?wCz8UHCDxtFzyN-$e5W-*5E3RvIa1!1$V30mGniJl}g`Sx3iJb7k z7qhFI*|%XByZo-$^8BtSqrq7u%%)$kg%|n-ez7L2+eXWE{MLRBgz>Y+47A1vAK1Ic zgJT89(?9kd{bZc(k&i}4-J$OQrO}_dLzf#j*Irn6Xoi75hH;~KH-3X^?8)@k9ryyZC-@CE0s7V4BY(XV09L~dulbg6YM2^$b0o5Z z8*mZZ!J$R|iak%bj#D!#e2fF+RqO@ODn?_@=>-@rdB&Q!Nw?>|C*2=)s+ zS6u22lCgbeWb`#I+DdVl%o*o|+6YKW1}35gch+{L{@5AOKcj>{mL7cyzhC89s3l;7_u?@rl6D<(o?n1q8NV#zMKavzi0_=d1E&0{ zW9mMF=STAZm`ukr+*Ag=$kRuU^{F>=BsMc>y=HfhrPmN$84o{Z16GK47wFAu?Kod_|w+y7z!U$8Nr zg!D$$fS3KPPPkcHm(d_^gj9fU+WQn9=;=tG@%H1zJRh!);q1)I{s=LVEHYqdD%=g= zm=KAe!OFX%Fx@?WF(H(1MXQ7N@==ae^jX7pFcKR!)PLZyPVp4(f&1_%!wu&Fx;9a+;;CyV4c&od^(I0+H z@uY_mD3TIo+%;4LDad}is%9jynQImapm(t;Sv!&b0lsSgMZi^hmb$@VOw&HXmge}T z!mA}D2*GvQMOf{rA$a@57_gH<;{bR7AR-$ITdu{{X6W2%9;Y8+mgN^7T*Rl5&SW{7 z^0^B3*7PyUU9ktvy$H^jw0;mj81fW^7|kfy33pICF_(FVfwb|6^gA(+kU$I%6jgWQ7nN=C@v~Jz!dc9%_PD7{&=Pg7Yb%ib;iXm_8 zKfb}$*Hf_i_AjK}b}4(j-mck?xDxx-xdsoSYcHB%diNgyKZTG7>Hb|u^eZRD=rhBA z-Tr?ZXd}0+Uk)E=<0h$J4jgEsBu~G5dY~;Q{<8D!8}~o-&{T8PxhW|*DHV$!nz}f@ z{datJ2ZG22QP*#p zpyyR!eF|8yPwbJ>zZfsL2g;>|XQdsI3a&Fp*AAiM+Tn0q>vNm^&8rZoH5VZ~n#zo` ziT~aF-#-i#?r(jcVLw^xtHJ(YRg3z>kG$OqyZ$Op?<_TVDy9p!(Ko3n8Th##f%XuX zZam50(?J9RGC(9Trr!s4XW|=vAfh5FA>0%l92tmvg*Rtp6vl7~bBjC_O^@E&B>wX# zVvww1J8M5=)vX7=&>PUl?VLM-Ke5er)8!ZKmv|0z4u3bKvXK{&2hS_{yi7m;mCuji zd5HvJ0m&ovdzmk<9EYb+)grbTrT)g8vyjv5%v*&x^F#An+MH>K^w{n@&~|a3MMBZO zkMB5Fk4d><8-#E>0boqa&-u6-j{uT-BY=z|kWsl^S7gGL(BGDARWN|xh7v$u9NkRh z&P2+KAVOUc2a=I+I>`H_ylDG@r-!Sf-G!!1aNjz-In(7}Z1OgIAx zNi$H{%+)DD*!`Uu#-Qax{hj@d{>wAq;o5)$o1?p78}|QZE}eM(e#>3V4~=pwALbMB zOF&0CU{JFm=CK4qk=XOi_-+0%*8)-D*M;=fnSvb1k5gL4aoepynvN)lk#{k&{?(~W z!tgMwBwzLnl6BxosgJ?Q5&u+Tot%nq$^8REo4jI>zgv&+F7f2Je&9yie;7PRpv5?T z$sE!>xP3drW1O(0+IqRbV|<76G~|4Hzw(cHh#m3mi2N95C_AHXOU$kJGyfQdI&=8e zVG>5rGv0P@q%d&;LC# zG@ple(1*90%OoG&`}%%H|9{OH0+=D?jOOOQ;p?0~HRnp&JxqJNxlCRtrSpwOMTP*N zD`TUf`G?G3-~6Pc(S5Z$a5M0&xm^-MlJG+&T!|r%B&d zz#opH{>~%5^?KSgeqp}-2m9zyBBzpJvC#izZ~+J}h52F|sVElCP3R6j;F?X}Kk3&T{fd~=2r{)M zhub$78%tj}2d4_SU*+kHMY<}$A^J`Tm*j#jz$@;>+!?Jh8b7h7xIE>cuU$@O;xJ=+ z_eCZ{28M$2vE*X@DDS@5{P;-e2Wvbe05kf8+WPc}_VqBt@Q8z19Z9Z=%}GT2@*@jM zA>fxyCgQaKz7LT z-d-xZh(aK^SfajrI0Gn89HVTkbM^;l=Oi-k z;4`D}UHnjWob1n!iV;N<+h#vlS2C!7gs1Jpg~FdKf7sD3fm&z}Ptfcz0%vA^Joikq zLn)_5)Id1p3GGlDMOI83(d>6jAv`xR6Wz#;DQ?Y&BPtvMPEO%L>YB4i`&_oqo!x5E zI}F;&z!SAwU>na?NHQ+lApza~%dQ@R&)6$sqVJonj!+}V-S&tjxvX1G?RT8R^rWDj zqZgW)+yYir&lZ*Uy=&&tcGWS3lHOJldJJff@no;g{e!7Fv4b-z7|!su?npb1rEb*( z*y-s=49;O%lZ)P(}#+3|68!ho}>E8ipX_(BEqMpE2fKgp|d8RG!!S+eV7@! zN87R80H>TKR z9hjyN>;HmZjR)6284q+$@UEKdjoxoDA22!oP5R>hBR%qeq}Ti(=~s12XMLEvcY#KT zabby|t#{@`i}H9`S={!fT&HqTat8~Uv#noqu>M-{0G`irl*no1xCc2j37;c}^jXrg zn1k4pZbNF*6j?y7M5xg)xJVN%AQ;+4NN3Ex<%k?Lq z@X;%h+1mTE3jB^R>XNEycji#ilJ~0&_H66TQX}aBvbdYbxh+DiQLGvLQAGSZrX7!U z^I=+Vk87tQ0kdA@9?w~`dxA-hy3lk4JufsS8Ltv^3{^0TJGotB@S%u!`m+Y}`;s;1l;{s=)>gD65% z{16j=%PrwIMBIJ(GScI%9j|rajQ;(f@HZD2_%l8Ncv^Ti<736fm84s7mbJs@0V%;Y zHNHdWK?X-QTg_`=%Qd(ad76=KMZN@ZNh_uQp?ZQbWA*ctPV|v6`bTGv!sYoQzI;0w z{FBqW&Z+^W!FrbB40oQg`aW);Wh0jDm`$5ld`ue2ymh}qKm3v9M3RJ|E0!W(N(t#R zfN?)CgL;nAPW_xo<{#BNM+}MFFtF>~-JgH%Qv&NhL38s@u{pRg{~YWOr2m)d$keai z`85s%s>kY+p1(}AWe4mkHI}DeG=8a7stJ+4eGj& zCNy+~MISo4T;7Geo2{Z-F+|9^uNIQyc~U7Uyk+q&D())J-Y-!x%pZVh(V2rg!&mXT zOHp;6Q4t!#GNMF<*;sxDCK_vcB$%$s?%#l7sb+}f=$Xm0As1euan=Pkxnl-9)p?wW zhfgTl#7wUq>{gc)taGYmT=qL4;g`PW_BPFbj6B5=5B8rJ`YofGyddX}$#*uzONL|e z5HC5oxR$dUX%mW?gK>FPfO+tg&Qa5qe)J<4%VAa&9HR|RWRFulaPBd^`x|^hvXhxR zd9Vh&xq~ya9AzfoV6kz>6ETBo$4!?AFGF?mLGtQt_Ahfmg4 zn(Yrz#}D1=AqCBWZRo2^6I6gvE~W|IqXJTkx#8}Dw+q;N520}s*DOL1OrA*|d91I_ z4;=B{XVp?{igCD%t?_U#Xb!9q$Mvx$vIiZ^#5$u}I?Y*1n)=e~iS|f(ih(64jEP{c z@VPP<z(3a%bjok+apAiTZ;fcdG|$)KO`jP}Bx# zSI~r#E(%~GL7^Br#aCxQWJR?*<`frgn{^F-6N{SX40UG?DcBY`qT$3`)+egugS=`0 za5H%dHU;(FI`1J2e)8m`xnST6R+tnaF@!jGXCk*q?tj8$%4%STTL=FTs%%y_p--ZU)Zg<+8 z#j>MoK0F9%AtvRn(|(yTtvhG2`7&33t>Z%;I~_gJd2SM!jJ4~l+UPpQ^@ST36!$q5 zX>?6Op!t+HgTK3GBqsjmo7XmtSK1=uJ-YVWQR9h=g{zg;xX(>c`HD&LiS=Uh>i6JB zm`{-9NiV4FN>BDG1Y^EVNZM^3MByJzX_EdcF4HT&2CeOOH)Q0^Iax*Kg6u;JWbvv; zsWF-D9cXf2olL>zzw{1lh>vT->JBp#>qqx>-v-6`tyJUI14Yr%;1i?x3N9GP|Dt`t zdAaLYyxaE`7gTpiEfxl>t{29Z46`9ihSuZaPbU8`ujE9kJ1!3GjBd*~ z^iIbri!Yv9e~NW9Bbay6X__A4BnGFkfA#oIqBc% zNmrO+k7@cYVRVcLt(R~h%1m_x@*9E{m8XxZ#}_ue!X_=ldHcYNZp`F)S$v5+zC?b| zlwswV9E?p72`?55PMI?)wfHc&3dZgsJ~d55F4v2jVZt&aQ&Q3C z7>AtPUxXuQb;c;9*W8bc+!Om$)l`+RXb0<$5}p!$Rk<>P&b3N$O#@Ln4B-p*cn(!( z<=<_EU>)VC34a(YTAq+Ht?3_~Q3A9ARarX37+Sue(oK<^L#BfneDQWqANJMuJ5S&8 z1(Ar>gAf84=9#8+Phy9`t;G(n#QdgT>Vv0-2dJ93a3f90B)+Ug3^rUZBe1&DCis=m z-(c)EqMZE(xHDoZmo~^2CN7l+Lz>t=jB(xa$xg+Csn{$^UZ&WY6Wo!*oQnHX33(*k zN`iB26@#4Nj0{I-huI1Z=?1ctJP#;Os@exJ`Jmd1)Vhkv#pQ#;zOhnXus+(YV6Ti| zeIsDe!a0lg(LwtN*}34&eOad`?jQ2_A3c^4T=+gHapTJ5e!osF+17ky5Y|EqT7~O{ z>aa$x_+C45=AmCkE}(tH+!j%;VIXFGN|=ik0AV4!hhLF7v9r=|{-zU5cM2W%v*s*v061N>kKQk!-{dj*+9ms=bR(P-fleQWCPW1#k z^f`(0JT(U6CLUdm4HK>Z){H!oLtpwniu*r)9XC$2tuhaq($h1k!#fqq=6(pD%Ql)S zeaesZ?b*`$gVe3QeeU-yMd{nPu;FRF^$9@8ja}nc+2nUCRpnA;X1ht>N&uEKY=UKv zZbd1d*-ig#K8;rEtoxb7hW5=I z-a#GwW~LgPr#76UHcZQ8&>BvF5aX50IDwAKLe{*W?Y^p@c#>v*BD7rd?;@brB| z2?Q6)!6*-wqeSL29?MY!X#RZgu3~d%vh=(ijFt)^V%`pG?Dd0 zX)yK|${{!$jW%^gx3hGp`KiX6NgX#GG4bw0Jc_u*IpoCmk_)Z8<$ks|aZ`4K64#T+ zd<`!AGgwfrmyQGRGv#`YTteu1v@QOsM)(zoFvEF|i$n*0?wT==?w;eAKs>Zei!q4j zC({yy2w{93BXy#?SjD3s%!&S`uHPnBJ?Ata$4)##HCL-KM*dMtZac0e1Jsh!YMo z;%1p=ZSD}&sjQaWS1DVUTEm~>BT+HFY8=YTDtRkoZPr7UpQ(Zwdg3&84CMJtx=!5e z6TU467L(u27hTnZ3L0TJj`_{@e_5@}H;rdR;j2?mXRUZqAfiJpUF9se$7g#{8887P zyN>sLHM}Y?h#Pe*sD>pxcbIZBCwM>6Z?x1ezb0K?$Kj^@@~-ml|3C6ho8Zl*Olp0K zj`fS~O&1-ND*CIgqDxh@dV=?DQ{4o=%!G8A@qU@6Uw4(6N*M$Lv8>p8hiv&a{YJHh z3PXd_<%j#_OS?69s9)zCl_?+Zluz~MDma4M#$j(GLF8q#5D25*^+Ytf- zQqGsjDX3%arac^;PRnCyu%erHns`RV_|lGd?(^Uah&ODwV;qhYL+#5hMWhkbM_@`7eh$Js*+NBjw_X+ zQeXVTCi-YdE4TkTki_>$OmB5k`W@_dr)IGoxRIygF!CJg-kwujoipc5OgtTIH>UtYnj-2_CQsc09*t`(L&m^hfB=Go3f#SEso-MW@X8Pe# znVLkO-M#|DSSp{poUi1F5{xos(-W*;$N$;aT_?>?u)c-=wG$G3Wa}^4CwVRzqld2z z-yA($9IU^WH~cC0Nz=zuoq2>9r!{)` z^6*`(CV%)Eg^mpgzZE@J9RA6OU<_dmm4`;o>T}e1fwE8c`W-(+L~y|l{u|iASP7+` zUqaRwgs_f=IXQ>Fz=do z`y7={WnIkhid6LWRMGp=i5gyWjU`!>N<6OQ_sQE>bYS-R&b|@J$!Kqi4g?nrrM>#T z&3xDHF<5lkE0Pt8crUmhs0@66-F%Zl=gM6KnVJvl57z1E6Dx4W>|0mqDelNW?mqss z#OULzd02OEW>VzpwA&NYW65C@iB}!0J6bqByCFIsP)r!?E9ZV-ubVD@@L@(k_R@$F z+&Ha&nJo4kHoydBa>+JjN~6^v)X|6!I4hzNzwu-2E~Qs^8A%BxogY4jYbu|W^bh~N zq+i%8$%{Nr(sGj&`H&z2la!;+*qAp7T3jR>i0N2wZQZImkN7RAMt_E$#{EyJV^> z&Uhq`!>!^GGi;{e$7Q<7K;jMP-hwpLX1f2lO!+3$KsEj(HQqSyc!D8}&X(-(TS5nW z_vXgQNGw--g?l?AhVf3TU=kee^2V}_9qW!ni(@j7cc>pk6H?*_??)*TJ=|BtCb=Vr z`w%9(BL`@oUjHCeNKT$q7dfK0y!$Ptbjv`ivYbvD`@aRGX@Pq7xK7-A26@$9^QNL1 z-{_p|-nPeWe&&=o@ik?hlhwYJhxN7f=Kru~z0aD|;dD~3P#ZbpxEzm?!#pu<*TWI!FwShGk&+oEty!H_jNgpX z=ncKYCnQD;P;6p^v_J->S%2z6DTnW>#N;@xd^p6S*F90^*vT)@>}p)r@8|;3eJt`+ z35#X)F`D_>zvx4%{#mL78RH1Y$=>-s*J8d!_YUSfWr|J#Z<#$vcKd~x@<#@^SZgIE zNrv{ip`=^0cO(2~bog9q%WSvj+k%*MFx7N3Hkv)^`rz6OXWd42t3E#nzSi?w%K7dK zIQ5(PJHct?h~q}Jux4d)$~V|}o}!QSXg}UZ-BGjBnKsm^9v%<1nB52%_Iu)flNk!JUh_dKDA8@a_ zA2Ajq%X{6E9#m*!xNmgk&|cGTPV~-edFQ@FMdqYd{bV)$Q9s!^<|`-9{0t~vugKgw z{a{+22bP|k#JE)qiMC9T{KQk;{{FZ3)LVGQyCO5=R{dl(ny>5?<|k*j`5BOBesU+7 zpCR-Cd&v|Sbum$aQn$0y^whh6kXzI4!BF6+Df~X@gqC735?X>2m+)C`%~I!0w|ubs zgLZ(q?k@g2qcR=rqn93hTpJKHx1aHIFtmitlgUK+#uY>%=nb3_tzDAw$mxedOESQI zuwHh;Lf<`DoVb-s-A5)Q%El9ifsl33AyvWL<$kWLzIL-Buyp_mHvEE+O9fSvjc)q{ zfVvZxnzfA`aQ$W_*Dg(z4j_=>n)Cm;f62^~2K-1SCrHX)xitDpJ;^Y!v-Lf`goB9_ zMhENPAu{D!2{Iu~z%@ty^AXLV2kmgIyqJUx4iH3B3W}zfC7sEJQ@XOz4EK)7QkdRK z61kJ}Yfz!SB8;*RtL3e0Prm04Es^GnX&zw;M&EXAWcrC}%-bZ2&k|$HK`NY=!Qk3z9@exqCvE%jQ)?Y2YFcMC% zb#y#}3pL5>&!IzDO@@aT9xdG0Z(Vp078JTLCIg5g)=b>lpZq-yr^rYIp_YNE>0!r1 z#&x>cW6sL6?76WRfNM^PMRTK1QsKxix{A7Yv(E_{55mX0qv|1FG#)Yn&Bn`oQR|}V zr&uv#JYt3~ucqa#VH`Ih&-n6-av1zrc_$FL26?3vc!*FxM}&IbfB=6fG3ysTJhI(M zeMTOF`Z|62r(=OH)-YdhuXf&w?#%NU9yGlP-{YpV??zf2U zYu20Gls#K`Yu7>bH+u^;x6WA8of-}ON1qj`fxS^=p$3k@nJqsqZ0fj9!?QmrNuK(z zbbEKW7NB4dX$Y0Vru4OxR#9|fItzE&@1A~wF{$hLb7%hI8TY??-zo?wqhsr;pnf)(%&W=ltXn0mR`lrD@XISs zj2^u;yc~sN^#ERXKhdcku%ds*vnKCCoA*?cw<`Sjic_LTtHX8f*WED##+5l=cg74@ zk>kO%I#-=e9y8}wovqNFiaTGSn-!8Jj2BWUU!h`!@)RmmXrMxz&fx!y-kfDCJ&(xf z(QzE-k+6bwwK`Z2x;lGQey%5tu_^Y!VAC&gq3F>H+#8Uv;*#jmDr+?0p5{&)FnWY@ znlo*{iVHp6U@*mAw8g|3O>NpdtvD-s^sZq2VuC%2o#{PB)T#^A+!+c1mR1mLfiyrMa{R6i*jTki|Ix{!m^rj)0uQp|RmkU&u zKwYR1n(_?qEJ9MSr^X0eW|{kmvpPI+n}Ps=zZw!Tyq@g ztwyj}h0>op-GmAcc09cbS4|n-&lG=>LQgByPoaf`+|yW&`N(jpGjT!Hae`ZsTS_Zd z8a6}5)9cBijZ2x1xD)vDnlg@zFF=Xatas}zmtDpls? z65n&X(zPDz0#_&}TAR)K_Dfpq)(miJn%rrVWmzNrq+2-bQ{sPH4xrPkfIo zPGo~SZPEy5+9bDjhf}*ti|h{p0kA&UrwdqUfH-ET9XDYd^Qe>apKRd&!F4R`how-q z`$l`+9HVqB4de@NgMT+&UaW#Y4edU-E)X76SGzkSd{*>>V+{s|Rw_W5mFjY|59~{V zv8BM&(lrn>8d*RG>pxaIhDT>kW!O``!N-eeY-j$flkSAw!av1zh7wNMj4i)~!3=G{X;7(K)8yd5=xw)h1NW1PDhED% zerhpyYX%~w@W>>1YZKl!mbY_CLHf+0ux9i{|7H=P@jX0fQ9FQ?SOK-c!DtZ0UXp~ zuAMeXR@*I<)$Z9VQnx;rLp381LCwik}s#)Q2A z%tQ3oW!5r0mEQ3l-e`2-Wg1c0wpv5&v}?yv#s)$%XoHobKl?=gan8s zSpQAssomp-+TF;mo4LS%fn#Ks^sMDGtaF2c4e2&{-vR~x{GpJBY#Tvz=-V8Yp)NHmfuXzamUOEY@u>a<)+Oj*y>ARx|&u!i_?E{ zBJ`w9n8$1rIJypYD`x1&o5#QC_1Sn8Qrl+Ea%y)wN1~r~y0dez37k2@*;4R!^k8T6 zu|emnp1>hz<_!F16l{tQ`@+)#SAFVzX~j_8vp^b>@P&!HcHzsam_!!8bMm=dzIuCmZme_uX#DGK zU7c`O<%i6wbE?A5y6GSStwPJp_Z>4h(c8-Yur@-Dc-Z`?}u&E z&q+7^_$Jr>7cj0cO}5Kkx?N+{WZtXsSH5)oFjY8$ix@MUW_MaRaKsriqu{f^HfPK% z?V}|r4EQ}+daNXFy14jww01X(-TRUnS;(g6aN}#7zw8}~9+Fkd`G?#{d%;^y?Mi2V zeAu-VXK6)rDR`T;(XCzCn-#Klx6OND?e5q?XXdP6{gayZ(K<$kyb%iGTZ*1w^bZ%?yG|HVIm&H!qM z>Rk)g4F5~XN9p?XS`U$A!q(59E8bRdi{F_z%er3#S~zX_D?it` z&ycituYziN`1<(Bzi|>UeMGeL>~LAMb6~h6+Idd+nrP>F;jcwI&kbLWn2uwj&OzY| zqn#Io&x>}RkBHlOVK`U(GTM1sFm?*ieEi3@&nZESwQ7*OV9Yl(F-lvbTjD0p@DeIV z)UB9dMO|(fnTV_L&6Vg=)CPxYqaRq?U;A%qRoS-!COncHpga@V*pM&oXU3Gi>7i+21ZXV@D9YK^-GsYy&M3z zWtqlEAbBsW&D#!XA_Z{B@(xRc*8;zlquXHYDb0k+&0oQJe?OjbhvDB}y+SlB2hKYr zixPeW?-jGC<=&`~Y~Q|Yc8+t*J4IBM>J?2$h1DE?by{L)P*yuGQN+IGjz)tv3VS#& zN+SHp&ss#U$?~PF=PK(!gI0B^w;{{+uMpmruBFY52D_SNM-5V1DAGbdyqSJyekG*S znQfPi%W;a`Vixtsp z>}=qN#)*2$nYvGQZs`m=Q41isU5j-Zl0c zlo+TIy04KiN=KDQL>K9YzaC|~>yvfA^}4A);-U@=9N{(w8#VIYRl47TE-16;yzry$ zRl3*We?914rMoQt*FB_}Bb@Ll#plhsKe%u|)w$E( z6sAWs(bg^@<4DK+q%^pZy8-^I6mV-5=B^d~3!Ahz{t+Qb-v7g|J8ud9M>*z4k-Hdt zXJ7KSyCA4G!qO(4L?iI+Fo>VV)IFk6f7e0Rtuq#>m4GnvmWVuk|L6*GpxgCOOLWH9 zszW;M$TQ_`3C5lz!nVrlqZuP@28lqXUF<4eeLQjQ>3a}%$X+N?ZNtQ!*;&}C16r-;cnL$C1=_zX>WEM>%7$~ z5}!U-w5>-Lo4cjIOge)SY*=n#e)YgCCYQ61PN$HX0$*>7N6v8<3i)PSZi+QI<}31y zce{mZ@RRQE9j4G7cZ4^kz+6sDb;lp9;*$An&Sy0rXAEXC>XzV^_~V&Onxb{#5%KbT z`v?oS&)+U=;-r=fxA?&bU(5p%Rarbn5z0!Gn<{xBy|+`It(&%O_Q(x+!8yap>3El_ z1u*&D3PuRs>|oBGs|P0}>19OMWp?~1twl|@NBUFa(uu|Itf0LXzQ5nj@OLFT&ZAsw z=~)@^8E5(H6zh<(BZEK8Kxch&7`V^~ zv^sAmcM(ntu7G?cwCnX3MDwZUebxGyzF%!B zJit*c6<$9-r+$0*T&Fp>c7ODfp?G_r-j7F?^6HLW9yzCM{wej_BOmf)kO*lTC7j+- zdl&mlt?6>Dk)j7%AD(V>(wK~@v}ofR3`^AF7bdaHDkU@lR8P>Fi~qxl!tF-ho?p?4 zJH(=rAs`|z(z~ML6Ral5vkA|Wi9X70du^&kKI9tud%p=(bR>Lv$+uqV__I#~;Jf?r zVjBN=7c$hi=R=G_(sr57`b3{)48BlFtEMFS$gI({T4s;QwSR&YpRPEZeGW5Ljl5K% z&g{7!dNf9yFWgVEEhsQ%M7$UU?S3K+KhZ}S(^-5wwd3jIM%qV9ZZyM{&n;K(x^lGk z@DOJmKDxM{k$PX@;j?kwU%xT(i9c%RP*9^LS?f!K)+K;ZALqwg=I+g-ml}xpbGk5O z^m0sErdZNjp=COJ`rH=fSyh6Sy*ZFI`@@uIoIgqJobj%oY1vCQQwrb4-Z$Ua`{vh< zO4<9m)j62_7FXreUhcyC$7ea!uzNL52EffsSCb=4IZkw|vK@?xtFtxro3mH$8dVL196#|Wlo zxr9r=%Wi(Y>0*wba_i!`ZSmYH{&Pj|FPVW&@!P8UuexM8jIY@~7JtN{%cm}UxLq2dxGg3L?=p``#lDQMTfHz{=-zw7 zZ&*>?oVt&)u(z%p$Z?gPf-W6WxG|7(%Baj9lY^qr1Nd@tTn2+a^bKr_XU~skkB;Zg z*LR=z%Km>|bI#2!#y^{!q0JwhRJe(F@07xA&Zg!M`V?*o{{HpmjvS{dGoJ0>SM1|V zZAw5!f&Rq@o)!H4DEy5v*3BPhHUBjyu$A{f;(8V2m3X$i$z&89ac5*Vf6CE_Gb%ft z`L#g%-GL2e?NrZf`*`mP`69i?aK}t)$jvHq#!N~rqzyHD815k&?$O1ZEGy)g9f*@y z7MNeNCvx>6BQ8X)cRnj@YW8{^c=3>~Q)Yy-rpTK)PZLBx3WR&No{-_1avjf@`P+*4 zJ!S1>fsQ7tzp$h#(qZJo;+CjXFe)6xm~xlH^VX@uRm${RPA;B_vbskVDQWUKx8 zWYy`HFe$pfE^rGGV><>eD-G7`6vynp4CI8dDU^#=e_&8!qt_;?X&~IL_{(Al5e(Y-f;u`-7{q_siU#wpY z_T@(3Vhfwu;JlYWlkK{?cZN&%s963nbg;WvBSx>}`NZ@#`O;YOo3V4BF$3}L>^xLS zmDzn((K^3?9`KW!4$$G^BEir9m<9?ida?{?aRi?2n8C2A2YYcMZuB&2)j&1Upv|4D zT5O(C2<8S6!6%l9LANEF_pxVtmN4E38a`J>+e&Xc?KiEgTP+g8UhbBzj?Ps>^p`Ne zsmof-r}PaL#$rw}eax6_DsXVFcKGO#22*F9d1#HBLvqJX8uL5}?)MB~wJb|D zf{AK6FNFM>ScJ@MpRU4&)(i!$@M&xBH&UJN?i)eF^0mLA>Uotd2@ZFMGE~0))V8-q z)t^mT3f*RSnt}^oGq|$j1JW60H)h6F!$gac)m=lRGTuVNK`e=h z)AfVFg^y9zc3czObXw=szAvFqZv~zA3OuP6i5a8l|JWW;|4~Vl*?^{VJvxS{i^&BE zzSj=gUr>oicHz7B`5}v599yJjK}~i{EFv z=NhpKJH7v+gnPQgH1|4*P;#IDdP-mBY%6%@rrGDjv(I+6G=DNEo_+GRBgL6p=lloD zm6GOs7|(v&soYx}2tQI>voH9>V}e$>FFtH5PbMYf1Gn!ve>!9qcG*b&HFR z%|e+QXvO+s^bqHv{J@5eKRI9T_#`c40FV79A_lz8OsIFE|H7v9wx57fFUa4YJPpc|sP0Rcn+-#RKeudf(YiT79LL;} zAKllvk=sh=x2;ds-<)!0HKozIvnm@LSl6+`tXE|?+v;ddS3!U1N;iL2|4V;)72~VA zOy`QH4xaP(f=zUfPKN)g9;$b~U%ne@Pgf7qRht0yv!Bd&Qul}Ocrb4;Fam^Fcm_F4s^=D`RZmfT|09zF-M(55un)Q4=Us!9HLI#u{&;muM_T7cz)-N+Zn z*v81xj-M~TuXm>oaNb7MIn3=n4qL+D+MH76CF+W-_G6t56^w1aF!yir!q8Lt{t4RF z&rsoRCQ4WE(sE=9i{Q_|FLBn-Z=6p<*cBJI)+v-xceFni)OANs;xa0hZq4(}Romvj z@F2+?S-xp;#S2)2ubndcq50+-m(#i|hlftbn2~sZZXaqbC37%#nigVEY)+z(_l&7J zkADPX2T6CoKZCsPL)pa-Wd-AN71L{e=Fk!5(yQ}Oc0=gnhIPiEE5_}BPIserkH8_gmSBaaS#s=7uR4$(*t_6Q4I6hHSo_0qKmKn_AjZwy=xtW*n8_MKTD@ zt0Xg#^Sx9~TSaRA4Z)8^son^FTH=e_sNF}wn{J&-IXh{7rnB?VPEIOja`*%zn)SRI zL;QUxG|`W4=V96r6AE^6K9wdTD}~#;Rbv6tnFeyT1#%5VI7|HY4q%kaeYg&P~1dH(Zr z6k4pet96ZY)m}by!TA`59CwLNrSB7z2iG<^2AJ+L>OJ(P!i|YOx@SvMGUDUg^q9+_ za(3JCv7>PO)yqar|GRUNGWlg!>4q=>8dvvLeVeIIcRm+V-)dbWS@pKx0^QeNt!vAx zKJ@c^o0v2?r0HRnF?wC$RIW-s@J9%^rp4c{mIh~N2#JXZOaorExBQjKSGlNR zL&ur^ex>BP@aU4k;St>XEHAkzd_9W8D@v{mU&eu1w>LD1|5KszoUJ^SYhoLzI2c=?=1**KUzS+! z{@8SaQ<)HIYiDamcB6auV4c!j#kY%hUi|ZG!M$~)5!gO(j&Su02y7OD^`|ILbuL!i zC=&}@96?s+@oGY;$uPowG|QQhDo;g!; zL$JP?RjE?74k0RPUwyHA!VuC>(_KH$w_(_!;t8x=pNix_{ z?U(a(*k(cLTCL9+sQzj!#l3mIw3A24AN7@ z1L&_?kr@x?50Z6q^rL+mG>u(NqrkQZEMs2NNLj0hgK*E%ix}EaDQ}6X|Hl?QZ?p1@ zyrJ@EEP;ftggAnxy_P@MYFuY|48mm?Q-rU3G;Dztw z9EK1~b8&_Ym-cCCH5*6U+;Lh_ZO?Z2S-tb26Y5=k9Uzl8WcdW@U8t<$LZTC~^F@Av zj-UAuN_^aOeBYg!$)heCJNN(Esa$@jX1N<$?naiEjuRpO9nWLBDalZZ4DjsghL$R! zu|lM{bV?%gYZqZsGMF)$)EUdQdDF7jCAqrlq*FwI181y!$-%>C?U`p0>c|3v63 znxi$V3fA?8l>Emm&S&dt2j;g}CUN6E5o!l`1{W2$Wf2!a?b3I`zADXS75lZrWU}eFyC7&5!x3@)~EZBFP}r)EjCc1HlG)|LeRnIeHVXnjLvli{1I z=(XFs=k)QK6bamYvYo1FX$UnnJf;P}?d|=Xq-gE340$YH7M+osA)Sv~v!rmNdhSxI z+6hV|YwUDGEBu)dk_wq?@v+~s_IdgTn_VGev{1{zI*FdFlRr{g9c16Nyr$RJA^3Mj zu5sS9D&sHQ2v(4@i@3SecSKQS_v|Z~UdbD1u)nB1_&R!mL~w29*F}Bz@Kuxu|A|a> z4Q4i_1euh)H8xRa7FvzRdh{Jz&_-b^awRi3nUrCXcJ#r8QNwI@kc)xOibtjA9F0j4 zL#H@KR6kD58n|hEL}vWHH3AB#e?$w2+4TPry_BJ?)KdZJ zmv5ha^xgYb1X@EMs&S&EXlHP9t%K4uNtI0gc(^$L2%JJ6x)lMvo%;=#R-3TTjUO%r^*6UXMPOVUGP1@HVH| zkIh+42xJB8ZPbT=`6*E&qn#+L&8CGn&qwff({6WkR?&vw6NRKAuM`~)F3@V@-kw#o zEx6zuf_S2P;xvA7S3WMA<0nwu@G{>TTysKExeG95Vr-SW8~}19p>MP`r>G_?_{7hd zzF_IJHNH&Z^<&1QR^edmO1kS!@qN!IrUrVrsu5Y74b_iPFqC7>2S_T`cVq{Ol?PQzzFJ{P zbyB*5r@H!M+cGcR7CRrWN@x8JSxu)R*9zRhf5i8pu6 zy|>eeCkeX6KjUG#SLWMk&mL}lf@=WiIz9V_a3>ZL9<17$x&Y2g16-q}iQKnm8Lvai z_fA)n?@8xdL_V?U6#vxuBm332;L&bIai39aM#DV6V9j`*AFGWreE3){v|EAmdH=D` z3az$=Bk*H%T?32Au}=%{@73;^V-a)XBYSJXOExYh&D@PN_DLBR$4dilbydpMzbYtT z^rj?kygqPJ|FmDf`WFRz;_i-1*2#$#ad#stN}^)2X+4S{zrPaAU%uRqsX@Ordd7#ldTrn7{V>l~ddE<=7aN&&ouO3biUIvdTMk{o$SG(mMKI|&S#zC^ z-{R8o5c@?P^_&rJgm6YTm3_Mbn=Nr9D$7zjjRc0ARL`^v+ zg6E?1-0|7&@Zd{t@{qf^siI7J69bva^Eir@XT<3kWlKFey92ztXD~MABR!?+>G)rcw*|vF8IXb zEDJ(js3pL`q{IM8?V4|*;&xF$0&;7#^(PYl zqt1A1+C|ydsPAQFASN9@5SBSVt^F%3U1uf`5-sS9v|#2zwvpR63uLb$EL?H1Of#?= zo)@l$9kk+UAzs>xZ!{Ijf1X7KE+oMA%DU}&_9*+aWaqvYd!9n}Jl#8}Cc?G92e09k zH2UDY@4VS@Kl~}MQ<%9(QB1iJO=c%Fjd_K;kE*PKZ9ITwC2d(HfNuK)#(t&+HLBU~ z!k7(F91v>p8X;4&CcMdKd5k5+XvAp?*z>g5O>o+&6)^N2{Q%gr&Y6f|6&7yiK#F* z`E7 zNrhDZ<30>cTXNBdcvups)jG>T!@pUHPwA~{dr=Ud}VsnPd!2x z9%_`v1$RMfSRst+Wtj=|M!Qne=+rFl$br9CHfloE#Kg#!yJL9#uSK}HMXO510C!qG z(Qx33yhLcJz?%m+oQZ2v>)&|z@p;I)P&?~FdBM)$OGk?bMa+73u^5%i)vb? z{}`K>Y5C2&GhN=u*%#OvZO(Rwj&Oz+Kb#d@I8$@!;mmSpXvdq(Z#K_?aJgHvEMB>t ziJS$pG~w?C-^rn+I-=YzVk!C>FL%`_XvTwaNj^4`_SQ7j&DU<3R~A>4M~nM9H7ll{ zMyz0b6Br`>qCwQy8+Knugj?C<-ZEkST$e&67q}0FgY_~gF1aLfLZUn@Jh{9p#fH6G zO#^IAOaNzU7y$8_kLsRRt)HeElOpy{MnDO*EBXYVxJJuJMXrx~=-hip)3r8R(zhmJ zN`@{J-Sh6FINy&HpPnEgCHb%YCWrHZGFZM;Zu?;%u%Cy6gqOGkNHd9~*F-rfZbaXc zLzRC_CWAaIKl#N_Acf&c>$I#LHh8XCpz{5ct!6>IggcgU5k0Z+Ajdbntl83vJTtqcoh^E`4idv}&e;gy?x7}LMkUM;2 z(X`x$e-4<|%xl4mVF353Rju(+X7#9iR?S&^8r?}Koj#a#wKA_qbtsgXr_PczEa@}?4bcNOF&W^Wn-7B($}H@{`p zNu?(LwxYAMABb$aqaW;#uDgx`WwYD0gisg1DdJ<5XNzsu=!67LhRAp=>%jJ!I1g_cBHW|@twTRjjK<$c@4HVXN3 z>kN1u{fyzrQzhrsfXDY4ZnKJ27QzAI)g|S!1V1(<66LCP3J7D_N=DoX% z;uQm0D+bv2?oNoV9~xY~sduy2+kfybX)SsA-~GY6A5*O+uYY&pI#7@t%F$T2`pkL! zEJSE11<~u4utnn(`#;1LM?PqDbunAeAVxxp_$fOA7HzYah_ufy z4MbaeHH6kSl=p%(qe=X4o-jQ}{pllS1lcV=8~&Fc%jeUapIg|G?1X(4m)ItMTpLh;Jg;9DfjIf!jyMAb77~aA9 z)|K=f8o3mkw^{$d?(O_E-Y+0i3h%!(<;~L*tf#wJJ{Mj>6kB(M8$E*87HDP{g)9}= z#`VTPbF_9tAiAxy?llc{#v|GX6l_8zE3tkTy){#n0oVIdZskh*!fhX6XJgPYkMve@ zsV4hU3OnYFVIL*l_RCm#NGn?W_J@Mdp;Dj7Ky>6>vzB`wllctp4gEj`p;6xtJ9 zsGIA2mFnY(llkCIz=;xHYxWdu14guV51yUBPC~Fgsk~T9+kr1Yi{3`H=c0p*uDg+5 zH`Ki59fKLv9SKAyZe~C>gTRI}OsUQ0%r0fsUb6%9wLNH0$y2b+AZ#KhC@Gn3R96XG*~g>y3fqlzc~3p(>v%xG^;vMwfbxZ=#*Wbjc+{?LY)!G9yf zu*3H=L1Q_hFI&SKizn_0#xqFLdM4F}md6^-t5+ufQJ^&u&c8CAc{cN*qO@q@o;e38 zh!GlE2FQ%nZBIb&rKcp~UeTr@4ZY&!0d0IjSf$K9tFTG@q4maIfuW_vp&gNbh*&v- z1q*E)=#DO)*cN<3o+eY(ldi_lf@!pXr|D_IY)t1=Akgm1gB3KWv}os?LyC{I>Baj! znq}c{@IMa|{+d1WL$5XTDn}VZU1QMmxRK5DE(g}ggwHxxjL6@N=Rx3XX8c;euMH}^ z)ErW^YmV3!CHG*^OIy-d)|SdNYj>bcE1&p?Kxq+KLEbv!*YVR7A0exh5Mvp;oBSgk zZv-Ef|G_>hH)B|5^bLj01*L-A9^U+>d!ENJ$ z%N)Y)1$R z1t6yz6?}>coBm^CQn?ap@cPhV%)a9?-;@&q{OV zk;J69cLia?z5mkM>#}lBw>(83Msn!>Vzwc{Z=1?Rf`LumWttW8_^@;o?$=mv{Q1Z% z@)@z2JQ3FDDUGeYE-&{^67ZE5(>8SVYvDKFBTb5^%6151M{8NHLi4H_Ixq2muZCnl zeCwZ?=ifSwMfh%NQZsl6@JGvxA4S9OG@&Ez4>?+}AzJ zi9Ja3N6C%G8PQi2&cv&?3E+P33I>ETf)m~AbO|x|QX;TE`q2sYIX@1Sw-h!dVv{LD z4H@y;MID2Y)PgUK=2gAeW;ZTq!I#GAYegw1EYa5NV)G7S_{v1)<0|8h&MmuabdIwi zCUskEyFMTE!bdt?fM0R^?6E{7PHK)aLfaV&SK%jF@}V5Eu6I{V4_`-Mr$HAMUuTCW`F#E3HOPg#BM(rYA z)^TF+rMKO<0He*C#gOFA3mhqTOpME*U<#i*uV|4$elR8(4j_rlc{DGhwBYq3Ggxz0 zCk(|XQU{Aykr+3;SGl>zLbMdT?;L($<$U9U=d z+r=j>ec1VuD9fSN45utNQD)305@q6D8FuC%-@MC*eJM2fl2wIP27zHni1RnO0%c-7 zt8L(74XzU#um7gu!I##-s0c$6EbDFvxS>T+^9CqTRkk$1)qzFD zhUy|!K8d8L<3^vR5{5WB25NmsWX@HS-GTE;?MTl)4_$o0+ivb$;>rW>b7RCOj_{kz zIM=?R>HSgildpoCaWb7UkB&OMz3+iN5>NYf^gG3v-qL4Bqawoxye4HbkhgU z-D?!#hSc2hET^U}y88r6qE4tje3KigGYbkbPwfg&&~aw)rJame@FgC9xh=N2R9uCO z7o}Lr?YZTb-JV0+W7{9u;r9_6)6E77jKs0LrV08p?8Gtn7iHI)*{JDMcu-C)>!hHq zOGlF39Ywv{oW--q!|Gx#Q^m~(b6j-j(_fBe`EtIcdReOYnnm%6E9``ZQCj%~at+lP zDwTwYg!9%QErfNhfsd-pOnce^m6W1x39TqLU}PX?DR|Zf=xmzquS(xzVEB$HQ#ttn+En0}K*1%~WZLYU z3RsLCnc=vN(Gz%wUR8IC*3TY=!pZ#}=r{&x^wvjZ7P(IeUkQV9YU|zFy7(}*s(Rg8 zYEzLx@*jA2vb}Rd^?|notz#m8p4%bAadAZ9 zkh@sp<;L|tQEnz>ysFc=<+yoC`_wFO+rCzqB;G$hdK4 zhNSf6B`70SETixKMmHs_>`RXRIV@v+^ovWTpOzSrRr->&<9oOkV35gut>^yvZRD*H zS#>>Ae0dCu=6(Q(9zGq1jO>ZymAm8Y6ZX+pd6-TvUqkm$dfc9yD7BmUsvOGvX{o97 z@OipWI8bk9UKotkv4A4uFjq3-6&=yT!QkUkH=vGq_B*Nja@r!4s6ogn!nEX+hCIYW zzg}tChTA$*74A!Z%hVPxJsLecDERm(7UnKsn)fzSMUxrFm%Ea3MsbcYJAspf^=4x{ zBFAeX!p^@DXmEDWquzdxxV3pRqaB>5C!^Je`ZM`7__>6NjT?KAgLIzJ5#zo=7rxK{ zWh7_)!QjhpJJcj>cp^+YAG_u6r~G4k<_A09_OX*kvas{*LDYIE)!uI9PgD79l^?MAhOvQdP%H4YgIA@G;?ipZS7=jpbsH7X2bb~6-<;mZz{;FO)L?gh| zJ3kXL5li!^5MrS)7rz*{I$Np-t$5c_s2li`1pW?X=I{;7jgnbr$_6lrW zjnu`4mWQQ*tSbA{CBSQbcWdJX0+a89F=NBHgBI@tx|hl)#Af(;QivUzf}a3F^a~VQ zFDWob9=?CBkcjwhI+Jc62>9ZsK8lZ!!#%x0dk74m=abDMoY5eKH|$lrPyL|E%$wQ9 z@?*D85q>j^duB8TMXyZ(m{H2UOU6SgPIr?TAECVp{LB*STA6}5cL9X}T z&?|}if09ZJKK>mlOlRO(6F!w?tFjzEH?o}YdK1o!Oikq*;FVJgT@jUd_p^m1obe*z z2{xR3fN&LIO2_=tZK=|^UZySG#IogGYD?6MsL!+ERf4LGF;JH)zAxd_dg;rPTVz_A z{Lu#4dzV}WV`mUcF6Vv$zja5rzke5j;M#5R@-{B-Jv^=M$Q4-M+1qYL$inW=oIkfG zZ?ixsb1B3cFZ&aQdhl2>D>$GK5^GX6h2 zxo%_~-~Sp_h8yaR+!Ut~AXPW@EoNCeTKI$sB`R?EX<; zR%3sFTR$?u-zjyZ6~oi-hOp~@FwwI@GP)D)t4FHm}OqTVEmu7jw4>NLm$rZhGfp>g#CG>J-n4WD2A zT^s(H!c%NmPu{-ZFGCg0%Wx~xyU2VVI3nMsb9wc&u` zak)~ngN;*g6>$sdDj&L!(3bOwyIsS{*M_cNWg_Ma`9jZI}wdp}?P9EJ` zXJ5KZzsi%GjRtM)K0IF0#taISTx#Fvterx{e{!_T&;7qjPfN|eHIzYvq=WWxgBaSL zGc)-Waz7rfYMXm3V;xGOg@(sh zOj3=9c{@lx2I?hG75nKt{Gyh%*Z?)b3xMX^rB7Lon&g>Kalj;6yW z6296URl*DFXS=B@+^i+cgbefgkh#C?R`Xa@r< z$txQ*Z4m$C8J*+@>z|{%>n_rNn{HTp!KT0l894|IB$ zIM%sZA?vY8u74u4eZM~sINN-`KL^+KiVTi^5QvEIpzlrWF!jC6T3H*Ny#LN`yULDMf9OzZn-n^N|fk{^l}I7H28_i|+5sA6&&y zPN5$@0|x@ETA|OA-~UuFK98Dv`9exEmn)_pq=(v;|FXXUS2}$=}3UTVzh+G@ERS=)$Ay$$*nyBD`m)?a|!Kkie8^H z&e@NrnE{2{E&Ua4oS&WJWIt72v@>!bp8J#>f=}F0@D8qDIYu`Mnas!3x>CIReeT^0 z-I2w(KQ;WwdA;Y8XDNNh5DqkqiM!z*>=EQjX|%6jn|hm6YB8X?E9&`Q^x5>8=tV>> zg`FLfoNdnjg3qwo*)bvBC1i92?_2vYD1{Wze+{5& zi-?Ds`0mDPQk9=g<=(l<+%54(e#`!~gv5;F5>vhjb}JFTamUS9t*3MM3dPCy)})uz zv+T9ZUg2x)0ynosIke!V7uSEz(c-GRQ6I4v;OD35;=y?rFrYSZBZ;k{$MZVQPA`=g zW1aH@)qcOf|9HLrdHFbZob%b|bLKryD#9?IX-<0rr|J5{ z@86|h8C^1k)}dfD%4m;*CrmR3)J6a1Jo-6j*#9H_ejt&wpYQAXObblHlYBr@2iH#G zP=ZE$zmo4$Sa`fsbelS&+te1_rj|h03~2Qa%S+wA0KUORpvhx1 z?`yPY53Gqh!0*1u2G2aJk1|i6%7}?m=%!SM0Xe?;R*Y}N<0Q*$*%iMTuG<4+$pH{i zpOFoJiQ7B)t_?MC0WP^82T7P90OkG(C0oO$5+NQB$K!~O-555xkM3c}UJrDU#Bp}e zATs3Ei#N@%I2#Zl-|0K}X(nrcpz0Kg(K(C$7AlflD2i|FLd)q-lebe+be5fA^+K?E zJ}{IUjO9RQ*%1fEg}$MtALue$gQo~2O;^B#Q@I=80U&-^PtO24-I2vcr|7Rgi0nSa zT0k%9gpv`B#CVTh@+)*kFL};J1$$IdJO|#?a49^eN7}kci%NU4M~JVF_E|k3gYE>Q ztE4!^80(UX_R(IG$iW z$QV0x2T7a|VT?E2Qb|t&X;CE|N$`aTByYeroZB5Js$-TvvB$mhM}kQ zfgN66{0XOIh|#hbp1U*h&g2)QV%%L(-13CP;1~VybteXT!7l=wLRr62I0?U;k``Tf zT6CPV5u^P!;=-(-1Qh%NqkUC8!DwH{j?sQ)JV_l}3;IRy2)%>`db~l!YlMnd9~I9V z6|XKTUM+;$>bCMY+A!c1&;nnes!mfFmcXv3VAs<%aI4WiVZ8tn>BCgKKNc+Pn;+Tm zkzME$5Eo|w;MIn;*x43AJo#c9_#sge7s3j`FLDNC4eB5K!W>u%^Aln^2f0IlC~>rS zU&U!kc_C@lfCTwoSHAV`w@|$}zhJeUZUUz%)PK5(A@P$u`gpM3Gf&g#?MVxb^&lOe zsI|H?K^P@`6WiLPqVN~!s|55_6#6O%eSHFbIYD39!J*q0wqSwrDRt%4M9BU;=6MNJ zTONIAe7`N$^U;;x&_<}HE?7?MT-MF$U0~{uHXaqw73L4<2n7YSf!PCEP-BgQU*H55 z7&yQyb*F;(;uf4O1VY1G_hSnqrjhyu^!J3%aT!R+nuv9Iv0qA;A64)zUWxj_$aFqP zuzGT7n#i=-XnFZ-ujwO`J%%BPhhC$`CMRwJDqSh*RZ7L^tHn4)2(b=ptNJ(YqO%Ge zVHuO*p(6+*aYB+f5=f24)g~T``l`=&uGvKO@p#gyuv#Px>_4i4bc%o~>0H4^_3V$x z_Ox?|(VmLPe13v1|2HY}BO)_6yCR#FKV?e!(U!<2#A**$wn2?o9elsGaQUx&*$(iFd$A|k~ArzsC{0d2%=Oz$Q=Z3ZfWa6L3W8J2&Fymk| z=XXp50z`xd`V{P+_eB2hk)Iy$Gng=Vp2~I1**J9P;Tz%-Gk__o-hyIAybu$*-|J|4 z2(mWhwxBH7nX125@!DwnSEXp9?^I~RUl+cIp0A+JedU1VoMP08?l7hoJyIwm24VkW zJJA7insNjE)3BHnSDEsq(fDO2%CwX0h%D^JoEFEJIE7Z!c`UV9wug{g|7}~~H`@QZ zs7Pg@@!6t5-G*D)Ft6>eH_ZIqEJ)f7Q{=kh8v!lP`t@dtR;LzIG&)t7qRruvq&(}l zI8)3ob4`4Kc~=Jx|E~d$(+w7GyG_z;0V$W6c-SG zn7Dxa{lx_o&_i5610BQ#RNy5pnv&K4r_gaat!(emT8$w{dMSMM%<=2ei~OZcW{KIX zXI}qK=9V^@+mj8%e6c8s_Vk_1C2cZyVdk+;p$A_HWp;cg^IzynOP;Hy_As0lSlH)T zu(#wXoPJTBZB!|?QN_?aiFY~i4sUYem`6}R51-43a%jt}PE*#vT~W|!N|d;OW*6eZ zXrEK###+>T!=DD=Jxu=K4nFEJ=Fe~Px}X01BCd5_Q|kMHujHe|MNnQ!<*hdDvcFh_ znhGzXJBdZ807uS*Z^xh&R9>Qco;cy9;jeh$j_GQ22cDo?@DN>syJ=nYD6&gMp#$WJ z;F~xMrKLP_KV;~0Jd{zi95_x@YGNhmNamM8v=X?{2V9u02^GI`DFQaMVyrOT146yJ zUq}Se7C@rk9^&l<@*w)ZW6`}!%X2{+o@KS#rAy!9oy>R8@0J3(+JtXQ+Ml%oi*ewzLQjO9XU;@keuwr z+)h)g-~slLg*QN|pU&0&Tw-C|guJzLnw1+DN$W!1W^$V4z{|BEZ|$9Cy@V-}R*Oy- z#z#1Bc#_vjoNZ{Dbk!V?Bi2D)AKr(Fe>OJOubS!BNgXeH!aAJKG)L~n>9Wb}4P(Wk zK^e@tQZrWjmU^@EDe~cKLY@=caR*Q-BP)jlIoppa$ez`K^p{e!S?jJ!*bcL%LaH0bD`5ZV?uKPAP?jtxBrc9c*t(e5brIWFZB@RjuvJ;|CE zr?7<3F(Td~y9-epExeDLR3JK_m>;TX^{sALG*t2!YsatAtNhoUQ<$JWnRS|t3?PC2|U z%NapKDmi zPxIL<@aXd9+qvZnZdk*a-Hs92u!88Yb0Z#DgHWZ#=S^S+b#FVL4QzzEEPlkru%GyT zR4-b@+9GX<7?!AGQ^KG}QpNbYKh~mY3#?{=EU5*MKke@geS*#8;71=SUEmLm!>x%m0Aa@**FzKZNSX+Q1&6=WHI3#;5kK~l`2kQv>DJ%$FO2k}J02W3L{RrDFsYMKXz~3T$^y4(J zF&LI(ZGZsFl(b8GLMPDg`|=O}hxzOM!~A*vVg75$Z_+GH{vH1t{$c(}@6Rt5d5lG) z){ZvSCuP1?Z-21VM>m24O?rVgQ<>O0r6gup+hb&iN1sU)cWen3!w1vmV;cJMkkoA^r)O z0+zX1!t!OoSBnWFo+aUs+nXrvqW2l_&F-d@%76<|zp%doC-!S)&|}DAR2}0R|LzC4 zu}Z&5Zk@yZVBqhu4a$HRIwqoup}eS1t~_E1KRJMtlmZK}b?wL1*;d^m#EkNqRtSH}btmU1JzU)1{t zV7Z`R*^tME^YDi}JjSuH^>f5v^xI4iAPOWOeN=Lcctv?Crpn`mtnw}8nFe{fJDVFg=&f%ES5^StpHkT}ho5e`2Ri&(~)B<`K#fj{TCPJ1roIX)R)4x>6v z;mo`HL8s99NKquB3B-2_jlvyzY5{FR-a4X3hM%uwYa11X4Gc~=3gcP&vEpQJ6hoNAMke{QXVCR~=X z4V-g~MbPIVSe{)?{#?PIllW2%UyC2)r-;)VX2}xPFz3a3XngV8Y2fk!_!Rw@>Ap9@ zd~Z(oy&mTK$8_IoVZOJf`zGKdeI6r(EY(C0CB;9aKEp23UNm&1`E;Q9s$fg1XoRlOHqGs5pfq+7+tK> zxX@c<{GJ7lW0;M5*#}AG-&pU*4}fsL5LWzoh+{LSDM!FZ#F+N{_JiAZjRo}6PBWL0 z!Sku>{v{Z%MDG@zo-!E1$z}VC=+9ClVZQK3?k7gsg&)Dk==%16)P;9^&h%1mxDeBv z!mf~7yKbh~2yq0ADaPesxVQ>j9IdG(gyD$r_R1)FC**wPLgNl)&|42IplJGrIZ}`)8$xbxO>)=9FL*+wC=)q zF8t*zaO=DO(ejr^mk3^yEvyjS1Kr;4`;e|T(MP0zc#8A+8S^>^G!J=&jnW0-9-GV| zFH8Xwf?t^fI;J2*pSweX^=w0o>I?CJeV&EajWeweph2vg@!J+$DOL+G*p#wHi6XKl z8}+|QHwG9wA;FvfBom>#d51-)$ch}<=27)Sy3p9j*+(d)$Rma&5 z+jzszYm;uV(KS7Ee;#P%p?!$U_U`%^!Ja&q00Ur`ypDo$Db}d4LK<9uW?$SRW?W5j zsOSD7Apdk{C@cK2R>wJ8;JtdtPZr9F85B)V78z*Veg zkrQ}Or(HlzXrJFtN`5?fazY?>x+J)taGLc48S=e?FZk-=_{RW#+3Ym+JRYt$djuvp zMF!#0?QozJ_oNXczJv6OdgnIODewQ%V{YgyTF} zX_{j!9`e>4a5UsCKCtQTz=pT9)0Fn&0^i3&nZ`1;u?v=hrtu%JU`7ncyxoX2B^t{`F$=fEt9 z)3Yf`{KdF?afjot{hkmX7ktwv__ckixipW#V-C?qTQ#`Qi-u>f667-`(%2%2U{fkT_1;Ben>BD7)nNITqT1`N!wXcU}(2;Bf2aOD#f;qy(* z^Ac`*UG^GSrWA!C;;e3#I0q|Kt6e$lek$-q{6%DBvpE|BW*F&6{B;=V($oDuI3fkZ z;EQDwkU8FG^`*q$6Q1tJ$$l^KG)5zuJiK4DH_d!dgA-!O7< zDC7~2z*!yMJvh9>*Tz@Ph=zevbQW-AtbJh|`EaKMk1g8^c2B}`5HDAPMHa#Mt+8l_iFc}PLVyK_4teN7Za!9@nsiL9m+DG*whJl ziBqT_B1d}vpNMCuqgfI=g81LNf1Kqq=AF`3fR^u6fXll@^-IQp58iS4XWlu5WWTI!_6v+vzQ=B8tfp&t6gujZk&;B0g7!0eW+M4Yjy;-+6JY=YdNAGxuSDI3( zCEy{IQR3o}cf4aO7*F+%Q7~z$cQ9NF?-+o``2DPWjS{16)<-7nikLVI&KKGV4-V=yAyVWYJC{n!k{sn0h38z`TZ ziIG?}`MW$}@SDHO<4=*G-@oxMBQh7j#*FmQM~3OI=t1v|K3ULqrSq@W&}#<%#dB@b z`PT_NO7XAeH2z2W*ZYD`N!UG=*LVDjzjly81iDEX(ny#Rf$mb4cm3;2JeK|yU{3X| z-iB`_<)()vWfT9~^Z$szDG`jOt8oBfG`PfIWK8CW3A6D#!Vx}E_=SmBg)_`Jht%bH zc>UZ|l)lu9@Z2OEN2vJhiq(c8hd!T;gLE*m#L0$eUD-@_K(n#S`U@7%k@EP));Lli ziiaV3@Yq|QUBSPGv#?XxM(i(T6Uz=$33v9koThxMKTFg5*>)AZ&``XHvt03dfQWX* z;W-2F9U}nmfTIfW@unyIiKi?}Q)B^Tiob~dW>okX9EL9#Lrcexh-Zg4(HTqM`Ovl6g^b~ZTHhJr&4xux zh~mcmKXBA+V*h8!$rrtDf-w;%jLUmi-;J|geHhn$e;iJr>_rvYG|r(M1w}S9dHAlz z0in3YF|Uc-pRA96(qvs?lQqD|>dpXRi*LM5rVd6X9_(n~OXY-?pKUOC2;o7@ml^j{ z)7?7)f$jT)5K7$JNLCH_Xs|ZJ_`z;z^5r1<9HPSkPZD*oW%P?VNL7@10tD&B*F(B zA5_jLoFY{(pZMlX_{}?2IMD+r(!Z*oQoR%TJ3Db!_LxOKWeK>5kAn`tA$6c6t`&U6 zSyF1!LXc0JWtHH|CQBgplcvoQiYH)w6x%0j;zM0lN9YNDZuF>eRxODpPKU7R#wQ_v zI%D1^TgZzd0YM=z3I>b~c~LYVAmTHwW!Y`wZwH9@ko+lP1rKq?e63y3Ah~DR46Ll3 z^Dn)@lx$!_i~~1T!bE45jg>iF84&WyG3c|%h9#cIDouy<8-TB~hYSc98`YR`1RiqK!z1V>8K>O%h*MZwfr-$k zI3x&z<%90eC)kC*6$4K!>POXpdiOE_2cwk7g!xXh@`D^EkRRYoDwjiO34CTah56x` z{!?w}vA-pLP8R5A%vIxUhcIhaP>JXehGOhqb8ZUMjiv4<*vf#8GUAsh)?m}#%yLlC zX}r^aIrP3f-mgi(AdcQH+KfSCG3#&i=iMxBXV^P(Kuf33c$(NEacRPOs=64wZ)K1t z3PA*ZG8jZ8_6QSpfaw|(JL!pUx=B94r3r#1^!BYs}5-UDliSV&Kvslo8 z0vstM6wrMJwL|JuO{8-XGM03KBYCLCBb{n4;YDI5h$2}Qu7h>u?RF zMjMDY)o!syxj`MCL0XRyf&& zgV92GDt{G2^!GkpYR23|QixnX=>`PMi}j{I&kGFFG%lASor`l~2sEsR@J`~ftueB` zct+$DKfrl7&~Af0zcuaL8nL1;m!|V@9UF(s>5BkM!mvUl=D+a;9Y{H{vmX$pK~Fx_86I;!iD6)gq{rt#axn5Nu(%0H3 zEVt%2Wm*9MUIXz|bM)kpub<=@k$-!oO}d zvw5U{K+iryhl~v9H6&nUg|1)t2Yf!Xuj`mTBm49k?C;vE_elR?BV9-M4`$M5=qM&% z^cpiP0Lg$MOwd6`_P~Il{rb5M>EqU?I-U#(aC03qa@gPj0o`4)wHijMy#||mjp!fv zg+IuUu1?5Y*UMbP3`Bte_&)&84a$5`tx7fHRlmVQd-0{tj`7Yd-AkRx_q^0u=Sw&L z%GKP`Bi2RY>rboUFAYb!oC0r}=MY@rOP}9R2H(|uM*^WCzN(%M7gYA{V_k802>9IGduZU0z9Y>Qh6MB_iN1YYV0`~EX^Xjiuoz2>>65m^2MB@87;tPh z4}nqBn1bs^HL$>J?ADLD7&&T9_k9%_NJmt?`yX?_Y?uX#3_aTfUY0h|Zk(peQ{9B}Uj z?{8or!d5WRf2pD*zzNsv)7uqyl}YeUjgt+;cuIRtkM7q3qe{J{G9-w!*Qt4 zW+;%bw7a5INB40J@U_ZoQp_j^vPv1i0RZKn2Uv{qzkok}6SW0tC+Id9j#UX|4;BZ2 zIAJ0Lb4MfYjPrhcSLk)23CeKx)d#Q$uphW$k!}WmT%l@->m)#bREn-ByS$R3jEBt# zZ(ygxho-?c+0Yd;9fSXi_^Esd_z!$I;&x%2BT<6b<>rrsz-gR||o~$UB zy1}nYD#|o$$|OFhML|{pjgck*_+9r?@E4C4p8(?VtQ&Y63m!)mL!GIr1AjbXb7@84 zZi(&R>GC#5-Vne+fW&(N`FLO^@ioNrB-q#t-GPKi591->47UCLiib1%fZsQY;E(u- zCmJx>xaK{f8|dzUEv9CNOwiXL@K*wOuRvx(jsA*qaxr|Mtx3uMlcMB8nMOw0sYq#u z1VD4}Cvj$m1Kh%W?kw;L;NAg0sgFQG*bh47xvmv@gpPCKnmz&-S8VZp1!TmR33-Tb z4l)v72f%#Dey@TK&R;1?lq+=Y3;9r~Xb+YnzEyx&Kn!>(ZQ$cO;$zw!_8`9aQmOb_ z&P1Kq3%_}!DBd+u4*BRW^grTU0PqK#1`vk?>Q7!@gx-$876jt^5`~EG@+mzJei2dR zrQeXhtpLFvY(X64?>v-r5!YV;FZq+W=gm@-_Pw#c0JchxPx6dtbjsbriA^AL~YXd27L@)q!U%Y*G$5iSKK~7(!qH9Y@D*CS_7KJAvC4 z-(=w1Cw&F-(*KB${1M-L*drPCwZ&HxzCwKDvkm~Sg%3)3x8Qy?ULHo;3VPd!v@iG@ z3jE2NBt2G?Lq#WaZUeg1c(H{REjOWufShj@LLHyMxtI2-?egRBOxb&@{&LL zAMxU~z(s$dKSMo2e}Q<(_k=~@QQ~`p`bK=*IY-C?0j0l?KZ!30<$?jD0kp>m>JYqn z09SRSa2esx#J3OiAq4s)5MQI8b^fHhjgXi8kr&3lu>fz}EJb=4De;YkExe$=2*^kN z{1K}O#McH5#+^Zm@+w(TkX5M(Ab-SH0?+}V@*Xc|8vM~;w&R}sMI-)|1_Oi$6r6HK zQ9ggF<8wnf@<%(H0c`;Xz?a0g9{Bpe7R4bO`IGo$eIvfM;E(o|{1IP0fEmD*5#q}P zAiog++L!zdhJ3^~9Qum`4g&E}UgERN*V|jl3)U4gU>tz>*lrRZ{lynXBR(Eioe@6C zAMHUr^gpK5-Dv>zNB*LLkoY#@ehF|&{*J&8rT@(Ue_t<4wJ+<2H-Iurdho{^!V&y=buq|sJ}l^f2BVY-@QPT8>8D7E+G7mv7irN zGC<-B2X5-`Ez&{Yk@{!6_;$!{rx}@U^g&&cZ<^ZrQ>I(f&#^)dKvLv26z$WC6@rC$0`Bfce26#bd_AVP}%sKep_ z@+a&8T;xAJKH5XZ1Igd^C5RKtO(LFlL>c-Y@tpu5{G_zMLVpH-Qh%f&@ePHn&)R@D z10QX`_Yz+ZT-)Mff43v}t$>vBPD7i{{C6N2f&BxFy8rw{_DRl<2LSFJ`8?Pk3dBF1m?>t~*;*&U@Pwe z%Ky% z_-y&R;jQEHF>s<93VG`z74aS^Os3QY!4{}<5??v=Gv4OZp?A|%dB1vOO6eaUi-@Dt z-%#L?_9cJB$9v+Vyhq?<o4_}vp3q~dL~gnP(o4)Ky`+7myxqF! z_`cquD1M7{{uocI0agLp0;D~r;X>jgf3iLA;gTvZ?OVSgV#;zIUs;qVKH>mbrH64% z{`~Q98SpUP6JKY@PyUEc^0&+neQosLq`b9_@e0Hc5B`fIsp^G5=h4GZ~jsyG-AU?`_5g_^F{0aFZKIwm+d31Rh|ERx`CgWIP})TYQ-M5HW)OO#O`lpW}g(@hUxk^k*6GS$`Q{h${pj<>kE!Ab-P= zZUnIZBKfnmhb@1U*BN;c!bH80_-J3^BY(t4e;-mh^-xFNV2hjf*Pw6ibAMHzgEJOYf4n_U_3@LR-e6)uxe>0Go z^@I4>Kcziv<1_I+b~~J%64+(y)o%9uXIT z^|b_mc;*=?eNf_?2!AF%^5`w*fMf zKjM?}5+CCq@lk&)%lg5T_!ysQU*co^V|%#~X*pzI{Y}r`@<}>AmY4A*C$2*P>E*o( z`^xs0;}3~19Q8!<_aoXU@<)GWdubbAq`Xppc|f!`>_Pq{KFXW_lT?2pKDHmUZ@mp^ z>zj=C65mPSAwF4urG1IdmcRTzpl|&Z`d;9V{#+K&5Ws8NL*k=-F-T*Mn`qx8KDHkcAKMS&<9LDnAzObQ?t%7YANtg2>!iH(fQxpeymlx{ z{z@WcJfJ=3&(xngt|dO%|H~h&rQFO-qC4gt_V<^yc;alG&6sPo76SN13Wa#a+9 zFEZ1gn->QC-}JR6TYSaA1N~3NzfHJiydr-FqD;8|yFSmH2o*4&&8RFi(GB|Aqd{{;qBNM*sT* z&*?AokD5e#UKwce8u%Eqs6Xm}_Fz1a_$uQe`D6Pg#~-Y3GG38CkQH@A%1eC2wHP#I zd?7yeha`XXaWCVk#7B8KA5jry%>c&LL4dY^1b~dsw*0x{Ipt;jmG~$x`IGnf4*0=Qd=zkm^QGdjjBa5y-_BUkzPu36WkM?!$gT5X3b2jinB}zR2 z<)wWYPi6mJ_9tm4%FF()#7F;>@;;fM*Eiy#eI>qMKu_Wuf#<|0a2fJaf1Tksgokx? ze5`L$f2x6R8&dK&(ZI+4F6~8pT>qGkYbkGS;39DTp8Qc>@<(}zuQou&d)k-$v41}b zDeD{gWB)+nlk)Ppl$ZP=i&$^&hE&FT;$!?PW8kAdlRx^O#3%dr#K(BRct!r)aNhzT z@xeU>FEXAE$35}cXG-nwG9FX}enQvosr*TM*y3x2^2-5~m-UzO65mr8jr`HRw*B$8 znvRe0it<7=fox z>CX-ET*^DMep-CgrzfBqfVLq%K4U!n5~(L1(q9-~xV}YuB*9OleI3f`_!ed}DT^ZY zvW-xV_!wVS1E@b4PuYK#^_Tq@_D|Wq$@u4526;=v7d%W#pCu^xKlBIjI9wC)l{$rZ zVr>QH6l?jcC$tw>N&lzKcm0zlh#KL2nyIDX+2u@?3fV3(P3T%SUZl&0o?#l*eCJ+~ zuKfB0Q_JPxn@r7HM;~OWv^;xDyq`Awccxm4yl0vExnGN6YR>=Sytv$yk-}_erZ{T`jPX_DG z&wwmY)_-F!!?Y5al}=T&D*0n`Dz|^kr}PpU1_7JD|I_s0l41>+_NVPNz)-*nz*7K! z9`*%*v7UP^ZlG?Y-)qsS0%9V9h}>)O=37PVwK$6a?DYoYkOB_M{FPah8-;R;dQabD zoF&cr0JhNx!^&>JT+q6L)CcJp(0mD41}4{`&8vq3D$;LJf6n`&zM(E&u%M5T6aA1o zCZ%9+ld|fYOiJAy4$6z=j!KYSEVr-f1ON-@unoV0`uY~I z*9rY0$eM`s9140@#-0Z^jM2fYV^x#V><;?9fF^e*8#8))?d z{$S`as~_4{1XlhM=pT!)-=nfgQ88v&0b>*xZLe4cIw<+GWJ#e%8Zd*PM<4D6AU$MP zq5z~<2|8VZV8eBv$)M*12E)rC&cI&^l!AU2qK{Ssc_yJB-O!{|!kkX|Atq%f5GZN|8+Ci?eY=;s5$`Lc@g9US4%ap zC*?zNp-<8xL<2}~D$vsK@TpFh92eX3%CHVrAOP_(xW~rqA?6E1K$PHf7VZ>H#h)e+bBC_ z`#3vg=J%PD8b`7!U0WdD0H-aza=0hG5WrY~)aP;Fer+RPA1H+Mf{Lf5$Gtr+UjXM! zlXCJ;lk#kXoigcyz2c04^%#qT@E6h}4eC?U1ABtrDx~aB#RAgPyKT@L2cNOPesl7o zo`Ig4-=t*UWm1aHz#cYpCdGS_owE8C>S*U23d}F!i=>wg_pA@3=LR6XAmAlU>N5!` z%%pUN{@Ov8Qoe9ko!+G7I=$7X5GiZ zOX~VO*c>st6!@r)_=id>FFV42zu1#L|juo z(xZHtkU1PQd-y}AO)$<3*6FPc!?VjK<@7MbcF?PdI8Z2yNzjAo-%D=*Xlw^a`A9Dd z7`y`m96%i`2YU^yq|+->1Mz4K#@DSucNg~B9|cbZ?39JeGb@uHAYLEMCFsE<@1=Jb z?=}HwKgw6c5pgz$PVWY2l3pRu>4z9ItqAs7{G`*H3Zst;Fe%rrn3RovkP-9-gD#3H zw)E&D^quJdUZcrMkx%N=7jg;t@a{P39_cOVrO(avKZO`r41Iq%yBp$)q~{u)HADF_ zqE`oasn0&JnXPG`0-G{1v(A9}w1shyB7Qv*BY z1OjpAVp&q!qmQ9Sf06WT?Y9*EBJ~-Cx=DJMCh7W2YHhFFFJ-T2^$@oqA5f&kPxjAf zKkAqDVJ(35f%07k*wV9=?-BYGq?ZFRoAh?w)aBdr2Jsg3o_*nvAw9VFd+9ZT?j*ff z;3Pd?XI-D9NB^Y1%#A@GJ&#GqM|$*^#eL9^nPM;W$@9PK$r}r!3XDP@>dibX}6fy~V zWnJu)<^lG?KewN8RKBmH>y!N@=`Z&0p$AtJefjs%tJg%QH+~>wGwgTwx}A`(!906~ z^eR-*`}3p+l?eO2j~@Mn`Xs%daXkp>5-6rEe1`J1sif1}j{3p+u;0(5kRIie^opO> z`}3rSVuBv!1bZp-@>FH6Q|AgK+7((iE4t$34l^Be%%uYqhZuC7nYw*cc! z%9rV$DGfc!NPSiYpv&_?dOtue)`wy?`pk$P{bg1MdttxiUor`L^cTwaZ|I$Z;iW!F zZ(vo7^&4THrjRaQ;|CbKLq7To=~?dPQrI4mmMuNX_#u5#K7Kp(PwCNqq(|HR9ld?X zgQ2l<5Cwk4b$WUOtEbAhI(J(6Xg|tVZm6TE59#UI`b#z7rmPv!qy1)~F0ej)h@RAE z5*9IOzia?o`7)vh^SmS9hv;pKQk3-ed(~SXAF(}>^y=d}J-rw_BRvd7(&#fIdcQZs z8VB^55xp0`rp}+q{->nJ@h$5g^(pB!N@u@+O7Gw=sr?DkgBg_c^jO~|J=S-|mjQT2 ze|d!ajO>@ZAyvMT!%QjlAw4~?|F7s3&Xd+(a-wmT`gF3#yod+(*uy{nTlCWV=YNad zv-jwe^6kN3fbr$R9QdA%d`;VCN|7&VXlnaM`ymW{P@f+|Z{|FmUfxK(K1h0gR(pl? zXfxJ_^!|coD^2^r`hf00hW=tJAL$K#gf`oT-o*8G%8zioe@gFT<@-B&2)`-gmHN0I z4#-G8TY4=Jm}GsRd`myUcbB8FucrUI@_BW`9I1U~As^$Jqz99y*e@e`C82y-|7_`% z!odGy>9KwIC-m69v%dcwz3+Ra`irf6q$mBwRz8kzmjPsdg8oAJGNPA}KBvD;OE15h zNr^eEw-1sY%#fnbkEQ2?#_XTcLnsvff-cDi>Cs=(%a_BPN{{tj`pbvpV_U@fC+VrU z&Pcuw(OXttk1w|LTppVg*7uE=$DZZmn4(Xx{a>Y*9Zo^{B)tm7GrdEP;}j`hOCs0BYLubZCn4Ozu4OE@8ly5NssbL zdh{V#|0v(TrB~##DaC%Q@BfxwQ^cB&kkmhF*keL!(h|LCv( zEqcCocEUf?(_?>0(xbfp3B6V5?@E12dOsaWtq;VHFp*N({Q8uO@lF!@lmkyZAB0V{Nkn#Z!+1vfjjDw?Sk{LO>_>gt(xZI-c=mVnj+k}-T!Mh{Pw7dTQa)RH9YLG%#nxXi z4X1nzy)BJ130a7rHltj;wxyR|z7Nr3`(P{I5y)z*&-c-jw3()-$G*<{e_ORV34bT8X0V@Dc0bRk%f4aXnEAX)2 zgyr>=IoOK0UJTd`_;2j#B@M=F5u=fk7OKsEbssPFMEsNmuJu2%cbE2%{pkX@b_L`E zv<18bTmby1`*kG^;^mwbY0wWbZ6|14K^g^k2KcvobR`YyiZp5iNaHI&KY-k~`k(B} zwWUE>8UUIAJOI>{q=7A`|9UU3q(OhG450n#XDt9&c2A+v3RRo?VgJqkTSgqV;;XXmRPxqhfo25M{2k}x@k_Ok>NMjY?Kiw;fE}^i8q#=EmG~5gt*edxS?T^if z2I<(+IDvcaIkeq_`%m`7Qdew4Y~@H#14B$fL+;yTfAXK~gGKgt{=l-55zs&QoTm$ zxWiXb75<1m6j6>#%|eG;DQ?Ov!JQ(Bk>*Mzmk927k8F+FTYwH)9XYfKfj&o zg36CNkC?Du9lmzMtv;qB>V|=3yXC)eT&?)v+^rlpPpW@MWW6=O?(?j3)rni%-Pv+@ zr5bSa*@Q;f*Q?F0e|7DV~!T_dgo7 zN-eo}Uy1VN*Q>#kj)!zBy;*%!IK0-uqubP^oPleG6xpes+gvAZ#r554&Xr?|eCl9P z4^CTG{lsyLdO!2+>kchrQs_lAZZWO?_513U#0yn_@V&3rm|W1YPN{opyT%WSobLUn z>USx5YMEkp)TZ-G?(X0HwmQ)?G5hb8Z>ra3_>Ld?O@eCvHfGbE(Q)eD`bqcQw9{%* zwTVm04USR2%(t%bwQ*C_ox3l@{XYJ(m-bESxEG&)Df0a>>*QvZx$8Y;s@pA}ChOD( z>}Xz?d_RRwZVopPOUZH?bb9o21LOkAHP%RJ%TNtdBP?6MTEO zR(FM8T)6SfH=g39l21#U>UXyPANQEp@7t(b(MGCPE15Ol% u%RI)t+Vj!ASyczT zjCP&&`efqa1ewa`>Yd*9D>}F+mbQzUyF~qTFQt4({a&@|@3n7Vym^`Rgq`K^g!YYB z^n4QSS!cb+2J7YMdU~oF&($bBpSJpTt|_%^J6Mj-Uy}Fg!I#n7?aceLl(>_E-?&%z z>F?Da^!!@y$)z114bNg}HnI4&_|3`D)x)ku#)mwLjvZ63cn|-J(fjmNb<>}#zIr~@ zD5w3@c**ec)3RFD1@~5-l(e(_aw~49+r($lZQisV-M;+o6#6andv&G$UR|Z<*M8K? zYnk)Ee4|asZt;Bm=!|0ndrQfABU<|veH}gDbj0(?f(OyP=SF;9=+SS{?etWgt3Ow( z==oGPy`1K#(=lvFPj<(LJBMZquaw zz37C32Y(E4J{SFmo~r)(b9IECPc5pK(~@;OnpwxI4Xbf7wqZMqu@cd7sb8T^K{B4Ij(bHPB`hIKh>F9ZS zs(zwBS7++^)YW=9)m6u%&C>B|Q*}Dp5S^~}*@iAhVrS&H^n22OXQhF8EhVo$8Ids4 z$?{9TEid{X%4W&?%i9@aTV=NV@kRZURkPVyngvWv%5nNtbmLavZaTQM=`g66Fo=@$lms20;c(hzPUTvjLN6V|z)w<|>NWQd-FFG7) znY)ms_pPNrFUgwU(tXXjT|Woswaok@|MADQa$DvPf7AX&g&Y=hlYB=u6n3#Xys-O>5hWWBac8B^FVmHlgu z)#ZGXE3Rt+>H|2((GL&=kbf*I`w_&!@eKRE7#0eAj8p8pbDouWxkt?QZ}9!ibDnqo zQCu(zvf|ysy8vbt9*lBh!XQac8=Ld~^uZ(h;a&`23vd><%-tU`rzZ#&9 zF0#H}!ymS)UDp+_ID7qNb@;qo+bia{t#&l-hZ^s%8TlXP)XPWDm{{npLxT61RWp{a z&eTzD(Ro|$*PWKBk0(U_bY<5G_1m3|k5-*=LtSX3w~gn;jC@}kh|FF+EZ%fFY0MCysxX8kq$AQM;iH> z8|BXL)bTw1M8`Y%#;&)$y&rk`H|gK$T)A1^i#qSg{q@k--uD*YUo(3~OSN zrmKtRUavSWV2heG)?u&t>1nm#cgxy7(Gt|+MtaY99%ba~Z~lvop@oxOaCg zxj#my>t)sX$TL&t%PYXLXz1%zp7B4|&2_6{e=o-zE1qP&|Cg83rfmn7&GYxJ{c>-K zV@39QFIks=w#V6=s`t)XrI){HrasSFe95k>vTRthwFUX z)_q?03p3T&x97TgYpGhJRqO0p!&)z{=lJH5+CIx?Ykv96PJ8ru>F&2H6xQa~n4kN* zmFHB~AM3fTxc5q(y+j&Os%jg1?%T0y%OUmA-Hw&&eDOdX89U*rU4*?hWZtF)80`akoahXiLJ*3~K3LL)$p)Y5wg;52&U>1>TfM`cwV%_M6S_c6QqM zn*ni!^W@P6KIwnfRMlCVI_!GQZd1x?ZyFZysQYDAP0ROHji*;?X^-wT4s1SgpZc`p z(frZp64mCjl3Gm3rf5TteXq=Hm`n3(9#$>kbRq55!3KXm+fz#OT)kuQ)_WDTJ-b|f z?Dt!B?acK=*L^+fYB9qOe_neK`n2tg zn3@H&NuS(|&AP^{{aibAqy75w+U}&khD~T(O&eBhh-yx*sU7h8{@BJOFYP;J+>@u@ z?N;jzUOr^Xyc=qk@F{11sPSB_cfR47(6yPh$15w`TjHNri~c0G@ln5`+OcnTdlmC8 zt^FQwWkumk6}3%Meyww-n49LT-MjpAxmw!Mpyz{<#(QdADt?vx%Z&Qkre>i9-G*&d zzm2Py`}8;QYSTwWj~%G@NF95@IsSm7NgMF%gGS{iX4ej0Tj+eVRX#2I_9|yHH*wZB zclvtQz=Tqo--=Pctox#Z7C0bpg46XX+M3%F_ZF{GLwgd^z(4Pl+S;C5x0aQk@2MRg z>~Qj@X7x0uWs5C-&l_qhk9vF;9oJNQ=GW}mty~+`nVH%ucTZhVM~-gtW<~qEYC-pE ztITa)soU zR8M>0T5##Ifep3IVVR$GJ=s`mU2he#ff88nR zteUB3x7G0>R<*CW+aUGiQ+2TE@=s7ohEjEmQB0+;`pZQYw~LOYkb}5=JrBb z@Nl=dV_QmS8|=9@S{b|0Ym9_EP@60w0a??W0PurcE@Tt~r z)zlmnZq(M!<>?rEY`KSKceL;KKOR)I%Kitv5-Qi%9CqY=d3t+8?F+xhZ@!+_SZm+5 z`GG%En zQmskkYo?aRg$wYx)^d?Jmq>d!_z9mU3>xUf=TW^Xmt?A)EWAfN@9*}IDGq0G)bM}8 zy48i5DovJ_7wP!M+xb4~k3HgCByIB`dp_5$91`QD;H7FQ-kYb_uOd?Oku4(sXIrdH z&6kFo_&lNPtUOFDeQFnH>X-0R;McsSRp))wtg@S!U(5W{A58r^fBBZF<;2)r8q%oU z_XJ<&LsiT0-u(JuWv1GTS2dYh{6E2g?ObWRtQd170zl18u zf^YNsvw4|6A!<$$kv_2sJ(yR1ChTCjw@K(Tculy_hebP6i}}oP=LEf|f;TnZD*@9R zGBuCy)0C-SjN5ml7Zp5P_@&?e;ll1puPj1u39TPyVm@=|qnu3rI_JpGRB`fhW*Qvb zq7>7pO@(!TSUB62_rd3Tx-nHYT=|q~l>N~vKQT-R4WpQ~gRVF$~(MGEr;54|Du6qPwp_^COuTS4(W zuA1;y^UK$zc%QJmm*6w1u&>T%%njW>gYMSgdu40W+Dy&e6rne*UQw0z!9Sf9{6^*P zs`IN=6Z~3E`8N~!1B$d{s`PExM%*thonie~IEHWl{GS+q+!XzeB(=ZjhwN3ulVZ$` zVs5D$Th!0)dG@q=XPQU>Oh~odq$UA=RLE+v0_cCUs6Yw z*}Akz@+EcQyn79@{S*wtwA5y`}|!erfpwZ~tM{zg8W3d3QbE zrt;ya3+i*HTY35)zob4d`>Dss;Dc)2oeLlO=Ut|DzrCdPoSXgBz~e(ZlsQ^Zt@b>A zXpONyc^~`q!r%&~yxt@FdHNR$`Auz=%YS(LHkZ_=Z^yZuzMia}(=NMPTC7%kcKfF7 z^82IIpM#q3_cDE|=BRh_rRNWqy|3*X?{_RuKkr;U^S28sxYz5^6VDS9cb`>D?dbXE zqqT8rN4KNB)+8QPyXN}6?cKw_sLG-44q<^I>RjKj8XJCUqE6{lYIp3iH{M~|tDFs| zeBFz=x;{Lm4q0#Ys#*D>+GKvd*7>|os#mjiDZQ@z zHg%%I)Ti4P%vYZtS$jL?jK6xe=d=QCS5#D=3^*D3*Ys=NO@}+~y4828_u5Qr@BiUc z(EGPZ;Z=&=o9?xC?lk{KU5|VAcf9szqS1alHH{wcq)uUwmdS zQtf{nJ^Nz+v1&lJc1qj5ZPmehqgS3CP(~f|bEgN?#l5|Ip50ja%l%&0?OOD!dC<=*@XElmYOi~qPA%)TRhAF*y!!a+tR&Yn z9(Svro!eq|VUJmhqHgw9E7tW`I(E&P#(UL2*Vk+mGwYOE!SkM}+3Zv5uwpk{i;s>~ zyJViScW}w=YW`XUE8V!XQoZ~1^G4nUBGmk=#|39yJV?E!Oei)vb0c+9#Lr5j-bGcH zVrK*YXnDu`yS4L5#JAq$?bmBx=4Cwsy~9^dyiq>L%{ypKr;e?+-t@Y>x%=9eb?11+ zRcn1ewto$;Wo_EK1i2pb{ONFqE`5IL?D^f)91#O|UGR9mD%pP3Q6G=wKHu*v@!7X^ zbHCl=k+kES`<3Q1j=Y?DrVheP`akV*%nQa*%rER`>Q}MaGp6Q4Mb0tRoMujDYAIGh z^gA$)*Uu}wIer#J7V}fR+`NDTBL7=I(SAhDp3y_xe?2sZD1WZpcPyv$@wQ`{ zu<)U1cm0~wy)NGGw~Bt5*{^_TpDkG*4&n2tE_o`5bd%o+LI3k{9hnASueHI8X}<+` z`Chx(S>Vwktw(vEaJRqcM+E;ecO37PgLl0|zGvNpo`MIIj}-j$_sGT6;_26u_{*@@?H!pwl8Ph0_v&F>yu_9*#o@Mg_1>P+8?L~U4 z;%MTH8v1%0=glp*Gl}-z@_UTXTkwf)XIWnB@z)-KZ|aL>;{M8m2~2|{=C)yKw(sZ6 z)Nk&0SBW?3n0bMqw{>wnkydGyKstT})_ft-gLD2Mz2Mnd>M@P#R;Zr`(uDSUf6=_b zq}%Q5MB#^ii3NmzD#h$Yf6n}{-5fzLYK^c%!dG(|@?OimGN0hbGD`5_*Sbm+=?6RI z>nzfabsYsiVPk(0d{jByM99DM``^fi`Ap}wO#Pg+Uj;uWr;05*!8Hfxu8Zdh!*1*S z(c74B!Mzf+TJ+O`f1DJ{`zXuy%}f*8ELh6avfFNwxIfmhr?}7iq!v?Ubx1am4!?du z@Ka)r;4|Ugpk9K{t!h!GO4q+mkUypM(J@Rd%byitYR>=HMxnn=MKr;8j$(Vrud>uy zk!e&%bu#%?VjKPH&UAI5Ep<3AY5P~a#%!NeW3NXWsoHRa`d83lYqZQ`+^ga4Pj`JW zGb#F+S3DMpev_$ut`4Z%E@5!;pV9W)7QHF$aV@31aWCJi#f|mUKIzs|jdfMkcrNp) zReFz~S+M85=rhZ1EctH7?dYCw3P0@rA}$5LajzQhWq!5qv1~^-?6?~cCGy2VJ(R)@#M%2YL;t42OqPIV|5U8T~id(n&Sa<jj^$hmedAs=-m6A_Szf*LsA6XCiua?RZTzOkqIF5p^RGpg+P?db=!*kQSuMLR zM~}EZXH4r{`(&yb&s8IzYLt_B)QRs|KYn7YA1^s_tOVDOZyW2!MyeXmRU@BjtUIg5 zI<&;A295D8=ep*8^!gVC`aN;K7aejlUrlXOQuLq^E8~4!tVk;s~RjW z+d4jae2x0IjyRl&ez9g$zuj$rm8ohxSB-qCQBF1Rs0Loupd;z3|8_llzpN(2;8L{yZ+0|XQg6!1Y%QTcy+j@?bzK*Zmf2wWl+va-Tm;1t@9e;Dvz}kniH*48RFZA2_=$G2=*B`7J$L|Th+uwh%{2BUK z{tWvqe+E0W~deM z=TA~u&!421jTdLkdG-ly=Vc$|=1qD*D>!s;%_r}?q$$Ij{c?M|SG4m- zr-(QIxk~%IXw<7SuX#-ya>0AItiSUO?P$*nH^0}fM%zC3gU-`0sMSPi#$_WWM?yQ^ zPG{${@z{9na_n;Ldf4@{>uJ}!zCXyETX*VYPjuRe6DNuglJDft3s_ro;zTVtmK`S` zZu9XIC*ErsiHnsk{=r>3lK%VmF9rUkz`qpumjeG%;9m;-OMx?@K&SU7w)i^t!A>h& z?R#FjY`IvdYk@a-95aUD;=}w(0*{N?w97#E}{4@P5gkz$30lu{Z z&e~}^bqC@|zI-br&$FBD)F-37kQKMX3X7uh9kJqORhaopqP{J%;yyu0%DW`$+X3qv z6EySXM131+#oca(-g11So11Na%=$JcWacCFJcKsTsAq~5w=U}2JgW_#TXBCPgsOR> zDyqCLm1f*XE1VVet-y*S<($di7ah+e*S~pe3X~M*P07#q1$_lG*&$3~K}iYa^Hu0m zii07&!dF<~FV%g;fx);mfiTC71YvK|P3Un2j+q!iT(~I8abpR*)Dh zDx2xcFAD@i{y->*A6M4>B~*s}7fwc!llm3B+dFb%6icp0=fTR`v>V|N!NFBkYSN#)QLZ~PT7wS>m zC~VO+k00o8Mq`N&>Use)(2?&C3$bejyI3EEg3AgnGXjl^gylk-Z-8dVjlUS0TT zEb)QRDJv4Q9!xM4MU%YZDUGW~Ok7fQZ6@bcmj44>avfY4-o=5&VQYZiMa2aLdcZMx zhQB1(NJKH)XybuYYb2W3{cq#J6mA@%^z?L$rCIh&Bw=_q2K7+XoVCYDomdQ9GL@$3 z)icX5J>#qLgZcgvy`cdEDVOaEj!)W|@!GF>=!V<%{O8r%5+_vbZmFl6QvVw-j!6|7( zSWvh=frk5^AhGB}1u9F+s}u9fD)hwC%92pADcgKWSy@TreMy;Vn8FmqY-I_N6s6^c z@bpjd7en4UAU=b|WdTRODk3kFhakBluQKEa6%_}=AMwQ~!-2SdRn+jLoTM>|<0O

@Ayf2#Ug0Orm|2X@EM&{89r0Fng&mmKYItQJ zKLo@!^ECbv%t`8| z6VPrqLt-p8=N5p_;GAw2A29Tkgc68elK_Px0Rk8=5S$67lF}-XD1c@8Ae=?1MBpf^pz1W7s#~a$ltKZNUPV>q zQyA-{015?AC;%@g02rVJQ6|Zd$`CD-Ni1lPgcDOHi71mclt~o|G(mEM>r)0P5CcL` zCK=Gbfig#-)kj33g2*bNjQLP#DUW4&Q!!9Uj|a*^#&`%Pd??aE-9b{fqI~(~WoV~fLG>#b zf`M6pnG`VQerY8b0o2IC;wn>x>{npS$0=xBzk*f`rjJTSJK_l`3UqXgUVuSP=6+>B zuPQfZw9#^-B8nrR&-9Thx%;7#qzv<;F%$oUIzFbC@1c z1W0gL<)S9xY9$bAB?bx%;-L$J?uis?PB|_$zt~ZiqOuXzMg~HN5HAF#8lUgaFVbg0 z8Po^PDk~?f2z4|%VaO1NF&K*cGjzK%BLgKE9u@JRLqZh(DE=B<#y}G*84C`ehUNgt zVvjZ~-^v0Qoca{9WV6$RX%2Q@g3${RP+}1$TsoS2%Cd_CF!$JHM+!FPY8fQRl*+P7 ztTLnOL_XP*8*9o)5+hBxPO+;Jg@;UYlP5sV`a{Lw3WS4@Xp|S}kCW+T)Oi*tRN~Lq zXBj}n{q~1MW_*^px#vsnOOlD2L@obqXI<0WJI|IV20@ZKv`gjUWEmGbSi%c zYy$#cr&0-920QV?Xg0;sFWAcFM+P^>Vjrxd5S2?Tq~Zg`Zg(JWFw{4*O^P8B6hwom z<+(G^&CnT2_0qD6YAP)~B`rR^c%a$yU{4rr>7l{t1-&eBXA3(^&{;Ch5^t7Vvm_dk zXM}fW6c)PE$pXM|&_WxV0g^%?y|f&;=}Ia~qtXa5(?qpDB{gZxn2hA4oK)y!HZcm!Duwaz zjNAYov(7x@JoR^$j`^DlbxRR+eJcJHN7mXv1~d$g#20 zMz@h`xQ)av+yn67eDb%^@=xmGMHK$p)fxfS&TEFm8-V~iw&%|kI-MId{5sK&8i%-*OP#YrD>VMT(X8)p zn(2GjnsiyMEg1ahjSH?nO8h+WXSW~in!Q`9Udtrg_i&issoFoDKKv264};v^(eVZ2 zcjfV^jo0{&`sM6>e8D<3)BAlh{ycG1q1ViRPYr*m_ng&VAFSCkZCc6PX)kH7jT!&> z%9>*}kM93#FluR?eKEO zpW*k6B;RW0_aC*ZHf$`VeTIK8;^Qs6ORfGLZ{^=uV~^)%1CI8*yKS@D!5c}wbu~4u zdQ$J;yyh3jFK+!~+r^sW$=lz&x%eBcPuWvHAH1rom+8Coz3oT5Ug5UKyLV_l$@|N# zi`Reh#5C`B>qAdJeB(5)c~8kJTDL3b1jWvOXm@PA;BaX>+B^So?)qcPa=qQEULDxt z<_d3B=if&>`~7v^^!p!p>7mVYto&Da-`_<3jPp{ce@kx*vwq&a);%azsG05mOzU~W z4;QWKv0l6Et}Dw1KDflYFEw%6M_IeQjyqQ7b}u>P9aOpCMo-B%-V67qzrX#%cfFfx zJM_ME^TXaia<{p29-Hi~Jos>r9bH;`i$_23?p0HlduP0`Y*y+ypL^dtQt-?yX0Nv} z>(fsvR&Mn^vY|4OZNI{M?BxxAUR8aAcSW~=d_jDwMcmYcGVXzSwK-QG)V>z&#!uj8=}oxKZ|y*qN|4eh;Cv%dRN zf9I&S&sk8UwQcW-AF!+D*276!P3LE?y4-Px<~?)|*Z!9^+Qu8WpYLk_jm8ybeN*+( z?^@bp!(TgCLV545x%<=5@moBDc8}lmPT&tuYWA>}T_@#e`_o-rlLjx)KFG~tcKrU4 zmik!F;ZNNDht@Rnroi_*J9+zm?Rjh2quspo-um@$P4OOe_iFF4;T^B@)P(ZW5+?n} zv+eDL_rJa&O&c`46Z_kY+qL7#e3u_?d`r7}+xm=;nY~(+EVaewDY$#1b&23~^!`85 zBN$eQ$RvA3T^Pnm6q82DeukqX@*@flkqf0*a@(?$j}ps~WTjORsmw+Q$;7P#wX*N3@=(1o<#_gqzJr6qUM3qC0_)N#guE9mU5aF)^k@ z6&8!e7!%~rt`Wz?LKOKLizwl*Q95I!HIc8e$PsHUo|&!{E{Bg*$4GttiwhHjat?2u z`>|%*dXaG+7b(K}h$*k3XV`L#q8>;xP#FJo@tXR`S?-_TEZA^(%8xbn{aojLKjfPE z_fNN%LtZmaGdrw}MZ^EX+Q{$`odFvUEP5CphE9A&>m#12H-aSwYa}d?@E2A0M)5Y_ zs>=gn;|lZjGaE|=E04?xQK&lu?K1P>eZoe~9Z@(%-K@2uB-Nc@HZFq}RvMX$jR)+| zq?whDXX_62Sh$3GEGAYOMy|^YW2ZTNS&Xyp6pw|6<4#`|4Bd73d@MXXecG~EL8vPU zY&@W25SGelTCxrGU4@y@<}OGV8)ts0kuWM<>~;pH*H0Ilu6dDh#fsu->A^~;rz_IL zE-Py6u~I#;X49;0n$y!>I{mmqS+VC;bXhzfo8EQOIAhP3C|!r8g}TzuZda6`MVix> zMT@cP90*p0N~eZ-21|>lo##l?nDSzeBceS;(}0#@kC7-{jisg7{f4ni8LC!9i9*^2 z=w+x;QSFpsx1k98Id$qM$F5%y_I&E5i;WNTEtncLC+G%v4cbu^ifFJb9c7#&N`T$( z(PgrY;3X_wS5=FRC-&H=Th{5v1qR~j_#cbG(}*;&X<4^EvBy{4G^ghqEE9Wd)xpCw zf`(Cczy|xPo|0@Tu*HS;!NL0_Nw7EryEmZuDLs@C5ziukH0e~?1*!A?Iq4-NHDS^em zglt(?f(F1|p~Ewx09%L^)3EoM76?`r78d6h6Yqiof5?w*u3&yeaXB>DU<9|rUx@7v zomzTuhh7f21ke&t`;!?y z{NoOt0C|4`a3|o<&pY&a01{t?kOw&avqNtVpbzcP_ac9n!#nh?c%BDH1suY=4tNVN z894S>cnOXzfTe)iV>|Tw0kZ)|e%Ya~0FcnG19@Krm;;!76!kq|e!CaXDTr$hICNx( z{s~|LB*JiwlcU zzPX+4AoHUHdu}BC*kWurVe`lu2LykE*we^%8`+mNDjO-lpO4+|An@l^pR#f(@Bx5} zf|DKXH3t0U<+|UXs^4Lb z=*U!wS>MLxi&57`Wh8x`lA4@0HfcQKcQ{z66jBK|((JR9K4CQ4(Y{1XZ>wPwSbl^;mjrh9xqUKkEBd4O;sl z&CYfYfJ=|=FD0%6_2#DS2@o!`?$nKxnI668Z%IOXy4!q_us=)Q!4d*zkb)WhKt5qq zCjYF~gH)i5GPc3tQ3V-Hm6yPQB3M~YSY?nZuP7r-sjLE?{)Yb#JQCqDb-7+qM)^_2 zP(@jJkxosoEQ6Z?3LriSSxMB^ev*#4U#C zwVAm&whtCVgunTfc#A}RCA0{Zf|1qFJt8$acip_!x2U{O$9#aEfT5}IX}0$ADeKuJ zEtOqqu;;?c67begWkrC>C@0Qh=%8_!*s$4%ZHObK)Ep3p@GI0 zj8-lvM#G6yf$fE0$u)3YKSo#)7%&m9RBixj74iEq#VutD9;-HK0jNl5LdXF%FD(Po z*A`s`NmJ@#L%{1*`EU#j z!h0w%1#WKWsFbv<)Z`pnYFS-{`jf0i)1W1jbk_VpU7}lLGz0XDw9ydB7}b^e=wcm; zHyopg22O|wdcc)0*Y<-od}{KE!bcoxhFkuFmLIEQroRHNhf@@X`LhbPU8rApc)<{ppisQ54CDI)Szr) zJ_TYrJZ{H`;mN*Bax#*9!*YlFh{&L5a~!~13{J@49w7%Nyx~@p-~dOcs7^eo)do(u z+ntIaQwbGgXRvTl4a_qm6TwBuJu)dX6+@0VQU;6j zQ33n2UPT<|jL~RJYioIdF>_KbL*EIzR`x3?Pz67-(M=b$DcnvB0NeuHPB4%r#G zSx}zBj1RkcCl$~zzH!Ey2e=(@{W1o$KQM*38#ywvQc|-{jTZGusU+GDaTGLXEWy;+ z%)uf*7N%H&IzmL)VQp1rj0U2~fjLlF7SA@8px8+zGZd`@Ej$h~h8pM}$JnGx;Kzh& zSe+6@L<(>Ci}RBK;bvOI=(T zI8nHa(bnj31NU(_!;%qG0B^l1=rGH9lZtrs8qAEypZWuxG96|Pp2*J0$b@HdJ~)r@ zNc?;o#vDCXBW<$gk~vsVWM)$G=txhw8XWfxx-t=9KkggpQq0j&TO;Aj+$4n#fg!SnX0 z_owlEWz;(rnU>~F zmT%B5!Kh~z7eMq|)r>MMku`XrxU{kqPR&z_vAndE1uWUY?2K#__2aOeIsr$r1u5n` ziOa?FWWYQ?W@-d(!1ED&?~m{)%x86xRh(NY&A(kgJw6#L04u0b1 zSfmHR*P}+?i1b{CJ*J$3eG16d2g9e7a??krXIz}#suh&-8O5-E8b^U=_$!LZ=?t8< zp@zi#!vTk&p==NzU}{)d8Af%$L1mlgDai2+plp?8o;@;kO^iuQ6oqOP3n4i$;V{%2 zV$?JqS{bHG2uH&g*cR`kN)EVp7wIMCj=F!DP(iFiSj2kNib~N7{W#l2Wka;$&(Nz$ z2nEs6yI-((D=NK=8jqD4i68_vLNIm8K@QURpyHAfS>~xL`weRXvS1C)^c(vtZ0DW& z+5d~ci@Fksu5%{dPY1E`MdO%P4`=kZ=;y^&y5%v_J7UB|=RMW)f2;fvSmfnkq3z4g zNl8oh<))|QU}X}qwT6noU1t`Tln^xxYi#Ih0rR*HG&3wh0|kB<&J8nmtN8S?s3gQj zSByh}mUI0;D!QnQ+?+El3wkS#i2R+xQnRwm!XPjHe%p-YL!*n!%}ynxM3J!VVM1Yz zX)Z~LzDVW9pu5`$dlPztF%Jnn{_q~r|cX<;T}(Pu}YYYqe{(9$0BZc zYF28B4`&64j3-&Ma#L}T2t&eZ63G|H!%mj%XE+D5pONhpA8Y9gk zLXg!MQms%Rv4oJu01S(gX$dy;{(@p0JM>pWi!ClKh3$JPv;JSq1#B6V@W(qo;7q(QavO+YDJsRG zScA+KyLSvv8k3zGg*+v7cv9||93QAL#+C`#+Nv^i8q0oR89t0L6tUUc!)PqAu0?vL zmA_yrj{gzMjM3DH)#PMyqWkT7F|@=UFFk2_P0N7X~ z69Yw(b_R@bVirfte8$89;;}d|1O5~8L++Eqeiq5eyeY?_qhKqtv;?~f8wU+TWK@mN z)qYSmFa@?SBTE$3tPLZZQ4kpl>R><57@PHtJ;6wmFx4}%d?~qOGm|s2u#-gA$e2ui zV(KC1B~ey9_@Hg_7--nBq7{YusD@#Q1eTm^;IhUB7>D1H=g*%8%S--g5uy&bO{EfZ z&PU3(cOjvAgDJ=SM9hiCdAHfc&|Luz0C_G4gy)*Ygb+|UsrZL*4JZ*qZIcjQFERco zVqx@=RUp})s#iYrC@cqyu?rpEf3-(vurjaC03~b6`f05M)?RI^%!;xp*hV6TIo;U( zCNl@iU8q&@{esxX?ia*K(^DkFS8Oz-fxRIZo|#I5?9>tC!rR1zKNCA1q1|wteIpZL zh+*kAmIlV*NQ`6Sh@!bQWvXFhFS;D3>c~L0DsAoXFKkn zg!KLh?$hCE7nPR6^8{=}pqHW+lVCEo(*ZaP(XdT5r{0<~Y@Tj7Juy;7pB)5`BV2)4 zxyjhDN-@-ROaKfv5=)Lil3n5oBR<0F4F4*y6|6;xzXRDM$S(p5#iaLfCd zz`_n09xJ`^A*vvw6!RUGBV#(eHp?%=;c^frCLXJPSf&{5k5v?@zx|z1keq_X7Ku#- z@cyuo61)H($;7S`OEAD1XBsihN|LkAy>{wu$Nvm82KU~mvZJ3#owha-Dv>UlK15pE zLlU%#9+K3E3E;SKezxPzH2gcbyjDGCN7bVp;u-^_ex$5g3+(!mcl-IDhK7*HdXn^{ZwS0>LG-g7cc$Ur z!R58;LB<#<@9*Tb(;Hl)aqOP@Ien*2V5SAp&vx9IhJP1Vbb9i9cO!w+kEAE6=$a>X``R(=Z*DF(wqDS>k>H1C6Zr45TCQPuq2-`R(%mU!b|& zhUh*b&nNW80m*N-qdpEB_dgAz@tzJ>^!QnXHjupM6gCd*ww$gEyZ=s??tkjLT|VKv zxUa`_uQQD{76*=6O<|q-%9x$Hf7DK$gtuAG

)CBwu5o^H|JXKx5MWPo%NSCp3X+ z6zljZ%Ldo5H2UU}ojQS9$aDhH&vx9IhNr`I$STvuADuq>+5Ud2kfb;K6ph0%*!VQ< z>Er>fd2k9aH?`^v3M2hAm=uW3A)LjIfH67jJP@6YP}eAgL>hwKaA(9AlUnc8liQlG zq7BBD1&_Acsc%613czB(#ekKFtAoitB;c?v7Q}uuaoi2>7@-L;e`BX4oRAc2?3L8< zkqGt! z#4Q1Y3n4YaouJ01PClyYHnuq^Y?D#pG{o%#rYzj$h0Px8h{RCh9nzm9Gb~ZY1`(ld zI8&td$>uQ&*zK_`R{uMBM@Le1n{My^lP~a>G|s1!-3Y@&%{o#=rivSmk16r&5jU)rg(kbWFGWW$LH3sYUhbwo~uaWv6b3jN@&C>6s8!Z}gn5|3woQ`Ec8Ww`?3Or;x6}E>7MBe* z4qeoBiA}5L5*y_$n^EUe)Q4epKD31=2==eTe%HocyK((2cuOXB7>sAbqjCyrOYFhe zy$?8y0fDiAkxRC-?EDpu0jant96<_B4`h=|w=M6iI`&mEicXa?H*$fel`K>?O%G80 z2GfHuUti+EcZHq$+ki#fPJJI60TSPD@Q^+nlQ;;@&(_lzopMv)xPvH|abvSUgS-@# zlL-42vs3?!h7JR`8}Jk2$^rc;$54=kA`IAPRt)UKXXLc^qX?HKX~t*3Cogk{{tLo# zz;3{L06yW2iKH{{+j!c#KWa7N7uAw@Qpq~w1##B_-);bf@kE{-R!E)+NY?uz z>)npGLlSS>U~+SY50SBx4~HV`3>d|krW?y$-Y%Q4S5lvG#=e@pF##spK)U%)!AG$X zKtGK$gbl!6#K(e$(*L*PKSTMkfb@w;By3OE1}}?1m_s<00xx!uCOoZeBBf8MoPi10xVqOV6oPFkAtHbR!4=nl8bFudrc1u(p#sKMp_9B|CHy4n|1wWg&lKps{7#2)qOuoBqF@&Mx251t3hx z?of74QciAm-2+_pj*)`qb@P~qto~jea%$$(IqH@{+%*19dh7U2ox_tSx1(;1Dd&xI z;C`DBFgs<8Ng)Eja*Cupbwuy=(j9o_@rl-StK_xduG|uL<+~W6YsL8Arz=q%saLlI4Kud1#!sKDkmDiJ?Sj z3b+l&M;y9r;cj`f3@1D7UI5CQq5CfB_I$AGQ5UP zZY!BzkZULPWsH<&I^&>TgrW_kt3PLBBs0pb&mS5}S9kuNoQl-#XTf|E*+yvt+vN`r`#z6)znMUNki|~Q;b z68{v#$FW{XQKvnUGI7xZP977-JyV^-e77gS$t{eWEX6@5Ot28n7GuH|P}s)ADQU{k z-pthlc{HCQ2a&;|^pj5`$2i+u87dqiQ#i?N_}k;=A>!i-7KF12xW<7P3t(_0KlgC* zvFEzSqQff_D$2u<^5bv=>N=CGJ*}Thp~^}O9*1b-`gh85{e|Hq;-BB36F>2LCI=h{ z2P40rLd+}pnG>A#B_Rj|zkl)rDpbE;KewvVY4lj`~?kqQ;-Y`+s*e{?YZ-*_Md+L>zn(E3j5r-c&3)ob=zkb z4O*ymSlzw&%J;WwMMl0_&Ea1>Ecu}=Z?@~!z4yjTduiuR`*>aNEg|jI&0_AD$Cqkn zf4=km>X|z~N*bVp= zu-JMh@$;tR9k3lhRczNg0W$GS;xn^w>DX{z>Lr;O=~(CZQsDBPlZ{*AsQ^_;mEb>e zvs*mT1qM>-{&YB-8u!Z1yLG$1^P@kHp#EcHg#LuLY3z#R%i>FrUAPk=D-B z*zlKIOk7JXTr2QC1K_seZ;UFVw-px)_cilQu6KM?-dK4^+#w5RA=Qp! ziMEosaTaabS!vrLp5QLGXhQJBll-VdbeZ-uiAM+2`9lwoqo36j4kczjuw7q%|EYnV zzg@2nr_0mW?*wmS)AqH}9zvb#G$_VPQ^Yj~v;dGhH`)Ns0h|Zu0O$nh0w6zT-5t;q z&s*F7z7vsAO>#+zyt8-wfH3FmdQWO-(Of`{Z0irTY;N+2z|+Ths9BT75%l^ zgjeu96Y%UCCftMYVL&dRCjdA#e{xy=lQ(^&y}V)a-1uAG(T-O?lG!2UW3AcmS1vq% z$UQ1MVMH!@kJN?O(Y>hGZonb{;qRyTGk!lKDYxy zWIx59{re#HeT>Hai)e=RJ0f$|dX3Cee>K9{*C(Ql_*Ihj`9^sCw)>4xfB$_FI(&=b zh9UfR#z={Ti|^@HiqQM@L-b;V^Lng%{ZoW||6iuHNw$9{gIcuxhKuufsRDVgsl5tiH zKZlo(l?+8QEXNC?Bs=XqyJkdw$D73cC+fY;%+K@zy(!8DJ5O}j3@>L{5v`*?;JG7U zV-!B}c}vv$Hay?;kXimhgiY}MF@$jlpG8RK&FTJLvhuIA^1or_xAV20Y~nu`A;E9| z?YHv%VCA#p>xUz8&j9v^af<--8?q6PA0i_c72wdPab*xWgNZkyB#}pRtrvwPmt0b0 zZ*)hte8b4FzC9^VRCdZ^)jzpj{nuOd-*lS#6Q1)={%%-k((hJ;gnoA-B>nRc!p8JZ zd#nCk>ec@ztNuq$Q~!}xzHEe~-0>DZyG)dk!nc2)|dG!ki-}pbDV|m z%s7+Ep}ONOI$mbc(Vo9{OH!+f{5V%iHYgjsWYta^D{N`uZ*Acx>2{hc#~cSmP+6-uMxakKj`flCC3oqH*Zfd#Uw(Izp1Z5+Nz~N`$AH2T@z+ z`1L*GCJN)n0mJ=q8p#x$-()jpH{uvMIYLI+`#R%Oq3Fi=GtRu3eH$(^`gWCeR-PtQ zlUXg>G;4NV%O;cqaYP@<%-gP~gD6Sov^=kQ+_1LIho9H9`FUqGJFi7k>Qwm_5yr4dk<``ET%lfdUyxmyaUFvP)YVzw?1EGQxPgCje+bZEuS5AjGL;STxB` zc9d5a7^=PXP7wV2_rHz;vuYz+UBRZ-)SNZw@3$gx>ky}|MSN6TyZ2jD_aJUlR9p$- zwj-`D^4ot~5l63!yxZ}1I1k@m0IUOi4)_T`z1^DX0-ymNz&JnwAOyGt@DSh`!0Ujm zfNueR0ouKTvH?6`3}6DF2rvt9JK$l!D!>N7cEABZ-1^qk`G7<~3Lpni1egK15pW;i zDZna#{r4`Ow*$Tb{0?Zpp*1xKFcL5c5CGf)cnVMp_!RIHAZ}x8svCd?qyWYM@&NW< z6`rpJ+zPk{@G#&hz)OJF0q+2|0zL=q0~`YU3W$3*f};(dy8-$F5&%3v1*8B*0dfGB z0SW=-fEj?#2q*_!4!9mL5AY!1F~AD|`|sbe5TV8YpT|N=DziGNVu~-*UlG)Ea8ae66et+2 zSI@-V{z3ebX=ZhDhViTHzNFx|vf_fwPzCHMk=Wt5AKs4d8x@~p_z8|8F{anN&y2}M zObYom_Y}P(4Q|8PrrJeaY{!q#L(%b*?D%x@n?XMN4Ofjsrz%1`ya9a4xMHjVc1iPX zxZ%7>!CGm)14Sw>u{AHBpr%`~8TrP~z`|f(VZ|8thfvpBZz#&DLV-0@ISOt?MIw(X@*6!woNjtP24^+ z7+Y3QiH%YRi4TNq%Hj<-K>CK`=iDhuCvQeFA1F#FPEl2eOE-QFz-OSRs5y}sAfl)m zyj$IkT%?_L|7?qVK@>%8kGz{58<$y~ZQP2JultgV^!#bC&qc>s{R-;`i8Xp1L&`!w zC=!Paa9ov&L5KlDv5|N((5%$XNUTwI1>VVnFD-~$5JJYt3)yi-ifwrF4XZ3JDKO|v z?IrKSp;(R8Lq%l;)Gy>c4R$?~WH1H}Yw8P=f(*SX^6taxQ%5Cmu?evxCd2bYABpXG z^hFAljNS2&PJCyQs7tK3Y`xT9UW7Ysk|=5#?iIo<5PCBCJ#lyrV~5AM9_1=rs|TA# z{b)*V0+JDQFgY3n8NM~cs;%Ovi^x~Awq_JcC?RpU+a*7#puo65oI22iGzvd0P<;7G z2i*X@WGOp;LX2fNIYW|=eCM883jLR;; zh6XjL>Bauy5N3HcR&FJ_IdG}Orgr9>vM@%7J)h~L1?!qGpL86t9s3H%FCaN6Um-Q zOZg0EiB!sm`@u@d?bK8To(bwa3Z7QD32GX+k?B!w;PVyW+D)LsP2#UpKE0v>7s6BR zn)r&#@~{UO2d9Pre757T)JK?Wge;}U!Sj`x8dq3|Td#^JDi~L2+^|(hRmT+?v;Ug7 zLd)O#={Pv@QqRSao7&6r!K>o%>+$*J)fBayJfWTxwJNS0KhFMM94YMmxS)mW^@`vD}ZV_i4PB=J~)teYlQ@qRK#J{E9|Jh?)&57m>?! zsdo*U`pSZZ7+PeiP_vs5`b-7tNAMKFUEQRZPI3M`uurN7T3J>M3q4v1vQP?IR~gEu zM#rIRa5Wo#M-^=%uJxg>)H(_*YR(k3fjdk9oDq$hs=)K#1OvCk7|1h$`+o|e+hFV04TdoE z9Kgr6bSK(Pr_#lA1$_(s2z`j|%=Be$W)?8Zm{m*-^Dgr_bC_wuwq(1qgIO<|#ul;V z>~-wD>?`c+>>lggKbqFuvW8Lo?6lU>)j=D8klJ?eVNRpVOk+Tv=io~vG{4pLdw zr4CoK)ro3>TA^O8-lWb`7ppI-E7e+ck9tV$=hoe`-4D5+ch|Vzc7N#Z>gnrodnS3R zwAtFt+GE-n@s>-1cD8NH4ElkUT$F|RROnVrnn>;d*?_89vY+mvg? zwc~nogE@uE5 zIYTazZ+u9sbVT@%%x)miRm+^gKRpz2TVex4y7 z*>k1m8P8JBJD!%>Ia+_MP&;hx4vs{966hc4U+88`d!`pNfVm5FJ&S#w{X-Jufcrl8 z2k!mu7U-E=Po?Ks&sxu3Pgjl6F4At&9?@#FUkIK|bMLb)J%rAuub>yuAJX5^XEPde zF*B2So_U*jS=uO_D2G524f|+${*462@RUeLH<0{WwP8)%-rGx%{yFg#5g`Q$8+l zbbjdE?rfs;Rz@q?$^=DMb}E{>!2PRdoVHw}mQtkqDKGml`v*ILtKs&bHMfahNXO(8 z@>x#V>2;29Ry(h8&T+0+zSF2$$Z(`@Mc)m2E~cs7X8yrE$18jn$tgW2Etg)CmdYQ> zU7fw0@y-dZ1?m#@8TE5@pZbGJ9ipH?Qq<%0J9Gx~B(t9VmhHjy=Z0{Vd`O-pUnjpR zufeEIcBVPcb3Nngq%!I{b*+1f=UUHv&tsnFJ#Ty7^L+2=t)*yw?GA0Bwo-eWjA2+A z9|GP!bO9)_k8X!CGl&_+q%);Vka-0&ayRombA(A^N3uS)ioJoo11)})t!3Y4x3D|d z-Ry7dxtxb9;rc5H3aebCOjM>S_bCr6E0kB2HOf|{uZwYwa7}YnxR$#pb(or^PEvnY zo!zDG>)glP%{{F>9Xz~8^<;Z4^GxxSc&2-*J=b`k^iY#fx0T!*+*@4?`hhi4Jg0U$(J>gox0X6cw3H!T2mZTC`cT>_?UlZhD7mjZNxoYi=$z;L(b-Gs18TWkURRpS@0#jb zhEcuNwbS*r>jzhRjO&4JkNZB)>z)klGHtFlUt0wp)Wnz{7tktd{sl9KUBa$oALH8M zhncVE|KKMH`-FYsGvN5IO53C=^(ysx^*Qwwb%W6dUEMw0{oS+NH@kaz+G?G(Z^5H~ z)hKTh>H*NEB^{*ipj$BKF`b#7OfoZ?$-}6a!Cb-2X67*Sn4{p*GS$;FCvkD`3uJ*G=Wj3L{MZLPvSJU6q{TMe> z41TnTImledR&sNMuHr$lJ?=_9Dz%jpWw%@?S7IhNbq;WjbL!4gXQgwN^Csv0&Uc)j zIKOay4c>Lkd6v>u>4hd$`#7B%5BPTO0sLb%jc>BXL-=I2%P_0aFq^fSGA`q zqZf+Q8!(3MRPV>^T&ljVt^tSsU2W!`==Qs--8Z=Jalhr>>i*ol&;5hDsi(b%^Nafu(_>I@3L9ksd~m zqO<7nbP;_OILD*($Ml!r??>pan5hagg2@0^zKjVlS2EXwFVryW3_W2FWY7twIop=) z&h~}2AhH$QT+YES5?6~mL|V#{7E9}-Yn_~utb~+DlqT-BZYQ{<=oyCD7t*M5b6jQ7 zRrFGNC~*J9oXh60Z?Ye-9WnMFUM&kHt`&$&*S`DAxC-R48M<+{OkMx=U8Wdl4i1rJC4w{ zJkF56z1j9o&UuUTF6Vsbm*D$v+k2B9fGu_O5!h8i8ahz$v zc4K?7L)eShOV|STHufHN5&IPTBKsQKha1F+sC^MMp;_E@7(t7;C%Koo_1tFYa({8n z`STzLllZZGE^1W-p1OzsiEkrx5PAv&ghW9R`n#HW+IcSYBzRa)0CVXk&uyMXo_MVm z@;r`e)&%}vm?dlI3Cvn1fxQLV@C)2%{x|+FzPZpw@CsvuETK@CCMHNam%k zTGxB7gRY~{tlO#`)jn#XDyS*YtMk<9YPC9By+eIN-K_3bzgMTZgYGLJBj>tb0pEDv za~%3!f+lO};2YDmYHg184CMG5gl8;`qizKaMnZ~J(+|_nLQnV@D~MmgzZ1bHvYGMB z`D|}?AT+_3+12cy(63u^ZMhE6AXv@`iI&5S=c>7@&@0bF-frPO<-UQ$JVc`TM zVyc)6Sr~vESS-FIz6Oo=L-7l7ulOIasnkt!KrT8Z4YZyp`K9U7HPT0r4d=_<ujN%t8`SlD}9wgiULh! zyrC@yz~8P{7ATJ@E0s5ldEdu180#GoQuchchuRpN3@I5ACG0JKnv> zeIw@I%bwMquRVu7zj~T#i5jn|puSJjwMwjO=4y9hEs(r3~t^KI|30*Ia z+JwG1i|$Bwr+d*d?Zv8Y5}gMgel0zRzLQ==KVj$?>*+1@=kz!90qE<^nbu54raP0s z2uu=W?L~~ADPgLZdzgoqCCm$0S8Txg?>k7lW8mzq*~i(JFt0YSU$Xny!)!CGmO66+ z=i)|!&)>;CjP*thw+UL)Va%>1egvPxU(Vme-_I}R3xzV_3gJ587U3RYG3LT@p%$|G z17U}-UpOTEhW=_Rb`*Pv38El+#8G0FI9|+$7IV3Hop=Xk$HQ2)ydu_!8^o>R=jg>B z#p96eZKbYKFK~TU@=9rtFPBM$QmHgkxC5P8 zbUEbVU6@}>=~w7{=2~VdcMW$lcOSO^^X5hFHSRrbJJ*fx4eg6)s%cnzkH@Sj#=NQK zXY+Rm3x#vUa`6-KGjTW8LWjkpViT!_)CRg?52>#-P+}wz>(NP|T^UxTmqS~;OIij= z{k3#Z`b9b+oh`SAmV2SxA2dss$AMxM@(ozCEQQWniy88rRxgUHLkg?dmtSjaXsZ)3H!iy*Dg@Lg&GeFfeihAjGC)XP$#R! zY87;(`RXEd1?JRu>VMSV)TYof&Uatn?&Tf?Z6nJ)0UFZ`XrIrxm%CqeuXAs9Z-d^n z2YS=*?hc*{JiR@VXOw3eR;pKcZt&dUdBC&Kv&8e9=QYn(&*xaV{_1HBekfv24%afZ z@z9D3v{G%Bb}!a9k7=v5O_-0z$c%)mY#en7`mqIl9^H-ZN%x}@VQU$OKGo^Vq4&Q) zucF_iH_#u^pV7N9BM;Jl!TQpZ>Cd>Z7Aj+^nX6%mxf^rwQD|99p=WK!%4k3H2ecxZ zRbY)71?}ikHV-zL>FjKFKKm#n-y7^E_D5JV{=~YWKbMI4nZ;ek-Gb55itoht;`{Su z{5<|eej}eKkhM&zFi8l4f6fu+3y%md2-}2jj2Zct&pUrp2+!@7Z^5gi+cp_Q)f-YXj68FBfB; zd?D|Xf5r;m<;-&yJA1hLLmD_;Nf_ZduDcA|*E6m+Tx(!W*y-Bs`j6{ZR}-~`+8I(p zRWmTUuY!(rhkCC{*5~WhP3mV@pC3`ra<_MPG1gN<-D9y1*yH{gYumG+#hvdVHXDy; zI7adnp6js&c)_#Av&r+JXNTvAhtk?>U0@-*50ZSHwgpmzqMA}XXnH=~o91bSUQVy0 z-=}xcU(-KeRCZ^2Gc49V$&l#*CIrp=4(48HVjGw?tOuholby^~V5L5XT?yInH9M3W z$6d;max);+_dy;U=bFJ{HjS^~kMq5Sff#QOLL+)nSOrPlAC?-Im?B;;J_|YhiDXLO zDRM}j4Q~9R{2DZQ%Gm~drLXgG=d<7Ikjeu}l!kIo~`rr;!_v6d=S%9I((4OmIt z0}W^ktTiW;HlQ-+k|A>^x~90QU01tKK>ultRTZO3s#_hYrmH#N84J`W)#ufh)i+_i zcvsz}5?(RDo$J2JeZ70V`=I+M)`P7)8J;T7Ri0bH54M4RXOVH(t|_$&frQojO1c*F zco$ahZJDl2KgP#Q!|Lcd<|t-s9NUTISSM_!IqU>>Dtk4%46}4C`>`QMkFaNRsoZF8 zBIf8aZWR~D59Dcsli$v-fVTZE|1sYIx@eN1Vou$Ov6P9mzu$`H(;@yae(Rqt~> z>-qz2>!3Q+GeCK%ea`j^}j<8N>YMgCo z!TiQt0?D8`&r@DiZ*VK59B)(XRpB@P=tsnbp5>l($k9n-HA(ZJCgUOhil9wCqP=EF zzRl2NzK5j@wt&p0h7G1Y-IpGS`&1-4MBhuFYpe#YWcDz(v3IeLv72E7>%%2u6?2cc zLOdw9bAG0jLs~opJMvRlMSbe}%+*?*1&hVQ+FRN?(3WA zevEmV>527&6C*j59m6)~TVY+$h5tzSk1z!CuB&pha=UUb@yl1Y65*7=F&iBF*}CS_*aBC zg|~%YrLM9f50lfNflQNsg7lo~y2*8`Ya)7#nr-GiK|7c#_93+QQ?@0nKr*!E3hou| zcUV8Xd>-sAk6?`a!OO5X-y)RC*BJK8ro`My<-@9fEqxQL-Mb)N)^lHSKXJYJWWJKW zm4Ap|j(ltR@4@lng&_hjxP%PhV&O93D&byXnedA6hOkcfOxO+m>?fh6*iGySNiam5 zinU5}=v^Jb=f0Hgkne#Wum$Uqe$G^7FYFPcv}sryH8t!*TWKG7?w#Pa3t>h75Ze7f z{ucgOzAx58pNKcYCMALUjmNya-gSp-p({bX2eSKVSoh1^A@}$0U){|-XJh@<+4G%; zTH2JDcwswp!*({B-TQk6l_~7r6Z7aO(Ea@gzfcQXK$>_h$VEqvkEq)>tS1) z4{o&#*1wI;Jc zeWpY6dBL^9^%d%R)OFm|ROMjHyhME#tL4|#x73ZOJLPT%{ieISuX~7lwEH6W#qP=O zX^@&TVF9=o{A-K*Q|LEeyAOen{Qskr zHP&oJ;xpnK(Cs@*F3Bh9(lqF#w@CY>@1ei{3jMvkd;#?L0WvKoW9DSZ6Xgn%15BLk8$QWea>mnI1WSa{L|SSYqfsLV1-xQ%1Bt>?o}2Uy5}lro?j|m zp=aLVy4STBy!1=g&yc{aA%8V!Bjd5xL`F#mtj|>UF!u)cPWOeLp|A$b$6Wu(=-27J*u^-P=>$uLz&y#nz`qL3YYSGgt%deN4`C{Fj4Op3 zgjQf6MjY`$G11M;Ql&qXOCccwJm4zK69yXX#F9 zzO+bsPdXqK$^oocseWB+T zGA?Ma#n2wEWA|}yVyEg|{saCSzOB#^n%EHGNv!BM3BL=BWRG8MMI$HY&?J>qxb zA@PLRN@_2qNVAPrJS)8nJNHIdy7ywd{3dmPl}>O@!fJ%9MPA2x{d?zSm|3%3PhwuZ ziI%i5EFu3Pj!fN$^@D#Y?eq+5ViQB|o z(1SmdzmgBi9h?lT1G$*(L^H`#u7dUNF6Be4Wq!f_)CkwB(C&7D>#R~Kx*0LWQB|PA ze5M=gVEeHNu$H>m;gCPXj+GC31lSquEZCIpWf#Dr^$PnIyPo|JdwaW}U;P9t_yt@7 zHDw}^Mb#_|OA6j#FryH0#x{1W?VKZ-}hmeM)W0BIa%@U7B)(nGNRJ}12b zj=TnA?L+A^Xvq7)L7T`eu^*8jbI@)k$ydVCb(_3EUV_=Y0_*S%^7~j{elGtgABFbZ z1a_DUF*7c57Q(82Csq;*vBR>|xdK|@I_Fkc*N-@lJI{qRCKXoLT*appD;3I2e_t(0%hH0{mD+V!|KFo6f(77ZaNPCSLp$%!(BLi}CI#~;8~aD4*nwRF ztNdo{!+ybhjoq|E&_v_dR_u8!gK?GuT{HvZtO$E+55l7JHv1mCmHi6i>OZU-+UOXp zl;(m{Z{~QzJ~{#W+$GSoHt}gfu5c;rZ8u<#=aBG+aJG03?3h1EXUXTt=gU1{BS@4* zSju05?PL)4Q0H?6MlG?#yP? zx1e2rnuTtgN+&a!X!|daNB!7jb~NmeA7TgbJM171#q7z&ydg4)gRLxTRUFat;f)lI3QNksHAKZEd^rIWFcd$@+!q_`lE4(Xg#mx8tc3o3f?h4y3 zEjnR;9E%3QfHZ%do8m$p~>LHZeUrj^_Qmdbd@KuJ!5Rz3`T=LKaI_C7zv z9>dql5#=wXrK_{67p#s7b{W#K%TVA7xGsmLbvyQ#9s~D#)wRyG89RJk;9)UFy;RLt zL(uBU9@Aos^A`*aV~w$AN4d{(w{drb4J97E;c}B5?wRf@-7mUVz`FGoG^Y>TdtpBz z8V2P#%X1EPR{I+^^I@Kmo^;P8&^M-I6?(U4f#-4T|G$it=zFlH?0_}pkmo3DoM&t2 zYu&Zpu&X#V4Qqp3*qV#byH{w}z}`7eTcSO!y$B20W^FsPl4FJ*-;A0?^fS5z?ZA$e zhaL`zOKdBJbby`#DRZN-%l|_9kr8AJW^ghj$3p=}ydruuqR-E``Q&CuYhp zHco6MwuhG68*6-4RK#J14RV5*2aUHv+zdYdyEqbklLra&nzR>3?~f5A}LkTvYlXTZAV3N z%Dv!V=V9M}5cabbWtcKb$-@5sWTgoENL83ObCh|?1F({9P#ms!a4oW`9gcn-=eo>Q zh&9h+uII4V{W|(|lj|ec5casfhYs_*s~x;(bhT8iRIkJi;%$}%fynFE)V1n+>L=eYwu5V66T8zr-~FijY4TU*62v3-Z!_ zdN4DF*+OLIY%^{w{R^{KK1-2Ex_OXu2=c*u)?yEDq&yJwe>z6kSZJvDu&9}_C$xc| zFF!4RjTPKaPTdu!-VB~P8e`=}&nsjH7W)j%48Moz-1~+X&bQoe+*s@f{D17d33!#& zweY{+_ne$_5)up$6*WqjgG?s_$;ku(5(Wt&LQu5S1jqrR0n!YD)*&h?Dy`s9soFNq zw52tU#TI*`Rf{cET5aXTp;WC>#gnxi{Q&zSZkvbza?KehzH+$p(FW3yA8Ke{N49B?)J z*E@r0}g>q^yLzuvEm#Uf}Gr%c!6Y-3D3kh3@EkMPVvSRvHpo|U^Q z_Zzw2$?akV{tKG#lk)CClR2<>BquIQ=$&&|2_8q*zJO8QHFf+nwcoEcQ}o5i%r|jD zbYboZ`IqOvRrEe527`;o(#z7n%h7+f6ko^*@U_Saw-(=7{2hH(_#}JHUt#+p7AJpY zE(h4P99JS*qe-k+QxkfAZOQrC7UioYUt>+(0`-ObVPZyD%SZepTVQ@VZE( z70vur=;a?q4tRre*G#Nb^09NND%w}9(v$RAVL4-PN^Uh$KH59U9UAIlFQiH|_s4rJnswPk?p zAV#6{uSI^88Tu&g@irQ4Iqj(^uHuB}qT;)Ycd&PRrPyDRT2fZBkeRrRb?jwUu|Vml z(pmJtSI`QptR&t3=WtHeLJxd5d@eR)SLff5|6#u3EKA1mFQ>dRrI-z=4!l76pG!$N6IFj?L zZzDIo$vO30PNc3aE<*pc0qN$hlAV;y#g^bA`1(s&cFaH<-iq}=XW3(DSRL#J7EfI> zb-CnGo}@5(RhOfGzAGmq_no|KPUOzb&(J5MOVHq5h&0@aUg&D%zuOA#VP$(3?eE{Q zuGoO|_5`QO??k2-HE~9H3n!E*#Z$Dtw}{>M{pdEQm43DK7R7*wGAx{ye>)euu3eE9?88Z@4~{H;Qc!yN!VqymzI{P z4nu#BRb_EbX6_zF^%PEWA3?$yU2?EQZAsE+`PtZ1+#Ft-lghbe`;^jx51Cm`NucDa zvhCFgCI(Z@45KRO3nr}G)1TRFLVfL+4x^Z$&kkuxPUWzdu*)a|du zKP<^EyHd*1ouqY%_mKPeoE_L{jOEN>2NKI*q`^~>1!rIzbq_P@{YZqBZ#h;HcXArE zlM~cm6$MM4ExESzfwJ?EeX)_-o1|@k79->C4j%}A6t2n{l6y7s+0XK7^V`r_J(j`nUf#_JyL>9WUC zWMs)|Jzp}B>WAhI`=r*itet{ju z?~5jve6jR;Y*eRAJ6qz`1hkBDka7QdL8P#qbL7mT^BKJb#aEy+T8dV^PQuj(wC|pV za7)hQDI?*SYy^SlquU#Yf#_G2;k?XqV$-O0vY@q(#xVxu|&Y7UQNPQku_=I6)Z zSok-b*PoTUEVn)PVr-iKk$Wer@RNDJ%KIlfxyJlw3$G}8x#*LkEm)Y6o$+o!Cw2TW+7yiO!`9ZoPBLE_4xl(DuHF+_!(q0ql4W zvG4kXlgdy*YC(FzP|oPGIj_t|KT%OIht+fmHrMq94e*M#f(@M7brjHGH9;*m96;lB z2rcemc2tT|&xuq;YOn}c5~(k0;Do;ko31vrxfd06pwHce<;NDJ$8ANobDn*7(RR34 z7pK}g(JOVMeb`;Jr)V!ahOz-$Rifvd~au zqYDnBi;SQTE=Qu6gG^CVT#Gch6uG}aY^LgiYKiEHu(j=oY>aG*Y(~?0Q)C+&x=vQY z?btAO!RK~Hc5x2>6l?w-^q((s8vhD5D{n>)zyS}T2|bJ?ql)}RAx_cKi!#uOWfo;| znwE`p6Gobf6qO=TRj^a9!nUEdXbBR}zoG>`LEr8#2_YM$mt>R-McS<06H4JE5fny`m!Lt?oIt-!{TO`M2q;q-qSyPQt;IosLk zbg|dj$!@2c{myQ7JbO7e-G?RF{*pJ*9~?x3@B#YUPq6*ll zgwk+nK3bj9(sDFAbJ+dXa1OYn^aD;DK4AyzpBh5mO`n>9%$qqi3yZjHWZy8>!V&C+ z%coYbtF1!AQ_IeF>D2nE4O3UcnVPW=+rY_92dAx@I49gP^(JKT+p!nBd+K)V2f8=` z+ld`*H`4iTPGa}61Kx-Jc>mNlk=75g6aE0(f=|#9`KN`ZrK0P|K--ZyEemZ?Hap`m zc0duV4$85no-?fq+k;y8|I%so*dMH()-k?Pa6g3rF(d z4W*hp%!$vlrErP{zJ6$mG;`j&;d77k+tDH2UA!IXyNf;X&f;Cg-AIDFi}!Hy`(p7v zB=Y^pg$Ifca<1}0@!{f6{u3kde`?e%#crhmnY@WFJ=!!!?!aDpQ|V?TftyOVq4Dp; zI&wQQK^Hoiou#|@_T?$$_dT5QzKDkG6|DB&EIm+q5P9K)(!)p$s?1*&LSvJT&Soel zLs^^+WtUCBCMmxx!U;xsSw-2LvZ}J0vRb}WSc(+hP_`ONrDjguHn7fgaPGaSY%}(w zHzdB8yUVth?I`O))43Cgy&HY!?y^1Xc3&*p$Jx?;td0+q9Yp{0KQV*;XXeT$ zdVLM5eM#`)us<9Mr-sw9ts9DUT^8rk+2~}$SV~0D%$9Q^IfwI&ns6=h;Zn|h8rbzW zVYk(W<<>=fr?ZjOd2@IRlH)d{^-eUn+v98PE-VM0Lf+kjO!*=js#mZDdK2mQAeyQV zu%-M2n*x7Mi1U(kZ1sk6&X&cwNj5fn;hg-ONKR=^IeOnY?15`?YIBw#`_<=o>vtQr zd>3IkzmfBx%~;Rhgl6M*tk>_(*^U)$SI)y&((b~_?05euVNurYd*?}-kg zH~k>zF!l>7*U$G~sk!O78OU2kCdlT*BAlC_8{wOya`ee_IJv07zF|r3QfxsQ&@4Cc zomd;EIu~J?v=PgY&AD4R3Eak6b|WoKIHV+lL_dUO`6+2=Q7;kyB8y8{_&6W^k3LB`w0w_Ba;9k%D~$m_~` zm@|=GdEI$WvE$i;rRj^<%)OGgAM2C@*jOLR`ylUd-Y3YQ{`^pWDtn;}EC4c*ok!(o z=TG1SB_HiUDJSj~$kJ7uJJ<3>$Wp%lYQS!|35`M<+Kr2_w%eG$3Eje${G0N(v0v$A zr@1|UM}AlS!}&Y&cOid2mA@M;`d*~)eVo1Q&wn%j0Q%-bXhaTk5~`;7<1*4vq@=94 zoRp8GR2r9+YLJ$e#O0+XB&N108?4l{3At%YTynY_*=a{ydg?}g+8vjmUeUb&fR&;S zBS)zMzm=pikfkyUvaCE6Mxu)FbxFCFs;ZEyYU7gCYGkYCxOBC#U{k?nti*0A*v6?) zCnt5=3wCfe^l-sWP8_>AAKG28hi}hbEZBz~=l+5>(Sjf39PfjI!|a+>p}#PMB~>~) z@uBE~vanCgE}Vd^Zhm2;uoS&eMd2KDLp6o9g-ftltViRqy0Gd0;?--<|0fdJoBw6$ zb2Z<@G^69%fR?KRP0Oa@&1j%+LI>Tu_J%)0ire=&C9(hPn(<$gx!~tpg7R698r6@B zcl6=YyAwEa=6}d@yZ=Xd=>JVTj`r*fs#j>w&(9J6|H<|KJNew+qsr6!*+G6%RL;I| zY5Xjx6S=nwd3QH*?*8Hq_D9>;7b*5R>FjaJ+0QINqU=C|+@epcyO0-mBPZ@J%|f!< zghba_mc@=H%uZ#KKAY}jf6~pKWG{P>1MEW-`wuy3&6?3>39+cC9?~b8=l=1r=se&sczJfuibda-=h9eId=z&Cd!i$F zmY)(cemZ$h0Y3D-Sd^Z{azM=iYI^6r}s%SoBQ6ui>sz zp5^EEL@(#rLB6wj)=(aK?)_mbdOGQpeV6mH3_W&A2!;I2M&}5y& z#Z?tFy{V_7yk~hto`(K1M@)uZpUl0Q$-Mz4==jSo_2~OQ-WR=;pj$rL7oAOgyN-=T zW4*!k8H=lyU+0CdAI80i(8D~(9}(`otzNh=>4+1|4xXbE!b#m+b>Y{&aGle7q9>y> z+3Uojqo8&29L}@Z!m5ORqcPWIEjCwPH* zN?xvd{6Q~#xH=Zi09Q{uT=c~Mnf@;Or5A25^GD`OIpbaWHR}-*@6bPE(W?bNxF@=Z zXZS!Y>QJxl89mWSL7sO0g{N|dDg9mk#aQ%jgzK0Vi;ByIZl2{lvu=$=-Gq9Xa{f&@ zwm-`sj73i(TsqIh@qafsR}DSZ3)kWA(R?F3&-7FIz@F$KNuTk^;8k0?V$pWWQO|so z{KL%S$vnHy>xq`~RKPNx>v>9j(|tYSb_}yf?!D$2KBgzSRAA=yZ+LF$;eJcXy@h;l z6?#%n^jw}DgkQzJmvm@?xzjk>>!@-*Zrg~*?PiJiDmx7@k{rO8Gi|5{ur*GYdGEXF0HZGqB&%vuGE63~S+f;0WnwJr#@I%u@~O ziJs0Qo%%KKJY>gj*P~{=>ZE^V9CcU4qQ~>>V1CK7)57UIHv>0=PZc`lyqf2J@K?!` zewKOC8IDE2$n(&oSoBGr9q`9psBew)sCpAIdnIHoUl>tfuT2i!qjmz#r&mRJK;~aOMAU)_-uGsPqdz}^{>UWyio&Q)}wC5B}`gnA-@dgSrh7s zeuL+J*8LLbS(I;zz|Y2_FOl9B(kV?M+*!y2(Ce$2S3El@_w^F)@3CkR&+r#|qW4m- zuEjmkXQA&urziRe6YJ32p6Dt+^*ggC`ULnx4$RW?>xeH zUeyx~OTB42eg1xA5FDz9*U;0KX^} z{WWkm?Q;kDZXq367n<#}%RX!DGi;v((f^wG>#D;=d~L7cLp$tz<&N!_!R%kz6FrY~ zo8d$9{aOw3jMSs~zF2e*Pq_Azb(5SoAf>op;2dkC~)_j1MAL zoywFp$Qs7`81Pw)Z~4}%b7D+f)o}|7`PO^!y4UqY%fW47yp}SKI&6D( z)W)J^v|q;)v=`+#gdF^3#*6o_mKRrj^=2;}^^lRPJK+PuFSk%0X}=DhDLgxwU!!?; zBR@*}ciDWphf!|Q_x@$_;;P1PdFgi3P6^psdF+XMJbK6X`mS3he(Mg8e(1_r^gu$p z8Tv<$c=XQovFN5F=x6?$M^C>j7X9rJ^p|&g^zcR8!F~k2?pGeYX3Npy|MF#z-n=Fj zJ$yv`S-%x$CNzL4|Kor3=zCYiqPHDEFFfqg!#5wT{@+HFGMP5Fuzn}RH~jgO z0UrHO7Uic;>c<%Qx;Z-*y$^WH$e5O+_YRLmeKJ0vZv&sjKIwj*<;eS2%Jbkp&Cd^w zjYTg3?*4F}9-qx0?2CR&!jFcJ5r6+*_C>!6yq9zzeI`Qt|xqpO7 ze+%hp{tr(6jpFC3pJjRF&iX!lg>?2Z9uxVvX}@*jyl~yi_C<4a3g(ZYC!Oli6?YKK zIfDMr2_D_MqreMd;!nx-=-yofed(2j9^Jchz@z`~vu_Lhiar$fsPta+k+Dj(wJclP zx-!~Q*N8jTRcxNeW+x!=-YL#v)z=e|@q2Gn&bWlIadaIQR7BP5(B!VFx~6sOn(JDd zkr(enBoxP`b<0{>mR*3i(iOOQRxgdmhiF^fdYq}MVH5N_{yFQ`u4$?}e_2aiL*p9t z66lub`B9ui*I5UmCm|-UCiUpLm8y<+Qb>rUrm#Bz)wmA#nXB4X*EPsJvDfrPs&|0n z_19(MLqkyF%y;dwHBq&du^bN|cf>X^dxjve#*yOaQ(X^6J3OshF8*v4PFpGNvWB|W zmCB!Q-!-XDeCeuB%WXT@7ATl$S^(F)QB%^}3`QrSi+%>PMjAlT(xpV-G;Vx%hWvptrxV`X=kk? zsJTw`0-anZ;Hv1_XiIOl88n6r^cH-w+LE+M``Ao%*(A%~^+&1*ZMKeljNex3XIPV{ zI&MMW84uIPjcr|HKL4RAbuvF!iK^pj%D9v;I7ME)jG;xR$UnN60HW&$6 zmO6&(@+HhLs@(@sA$9G8kz^*DWUf={I`a6Gb*QyXCY1 zifBW=Lax7%AdMGB!)i7O$eZEd^*WU3LbeRX!y;vDUbf=Ax>h{vE@O=NX^;ej+8&41 zD-0M-G9fQvz{Ejy3d2PpQdg>+pQ}VK@(_8yM&ZSSu*`8ajAG$(SHCy$9`82eOSn#Z z_mwnE1BkAq;}oS%qhFdDm$xiykwLHwkG|goqf=#=t!a`N>N0+=61BADc2J2{0}`x?z6RjONwr*U!Q+*Eg-Tqa#c+xOxv4>BZ4WT{R>6f19#!2Jvv&2wR# zjgoV#x{yI5RZF<68VAa2;iYYAI1@xqtlr?Qq_R%CsBe|z6~l^_5{1as>~A+vn3c=h zSHf!9PX5k=j3el^LoAVTjX>TXHiETRdX!|p;ki_Z3VUE0`ex+<{=xnlDlQy z1?tBhLh7W8Gmpi~=uw6iD^*U;Zd^EP|!s~9S zv@mNEPRhB;kLJ*~j@RLNTQ2}_^rEak?mby}w_nrTc7a|nH6NitSU}Y+Oero_jwFV_3ngQAJO5zVmVUN7}j0ybgHs9e@cFB^MN`wtROt=jp% z_<#!6ULh6kF#POst2rYHi25zc433k%IjL{@We0q=wL~VU5(dJHIQLT6!L2fP3;ul zc2pW;uoqS*PTi2#4J;+F2G~0aLsiIpdE#<~kldWzxhNGS$ z>HbEt7uhW9HTykr5S3Yx*qAkyi<&(x>aFyVnrfGt)HDxR2@=1i&)sN zR)%oWXhs)q8-kA;aF=TwKY@s$;e+YiQh{{>r+l!3H=m>$*Cd-qMIB^^W(tOzH7p)-36# zCUq|ZLi@s<<^4z3@io)h)l6+3)d|P{SBfN!arUhCV zM>4)d3gO0$I=Ov8uJ|jpoPfL4Th&bfG7U8F7l4)AW{oh*++5bST74Llbh*Hz7qy=3 zmN%}d2M8v70>ggMoX%VN2qNgtvjvuFrnx}=7 zuklhw%Iu|zlBXT2a86yS6^1HmF;|I-N17&1ZDD63{|s3)JQqT~J|5YUO`Sx+(>LeD z8jE_TZ_bALHO-$zxw8X7Wg|&5u4K=`fMcI{n(jP}Xk9^9naxE1esgjZ87Y-D>S-SfWl8=ce!|k}jtWAVzi2i*es1HHexF)E2ADPpZQ>{Rz zH1AF7Mc(_ALNy~(+PGeWsg#U3PHLb#eGGq%`syAU@{7_lOfoL=P#dIE^t+iBNQ{IO z1=ZgWEid3#$Fhh5W2G6HX84GLs(>l;zE9{4jpsKsB6;x7L>K*3dYs(O)hm7JqMvem z=?U>A6IabfRs11Y|4?T?vv$G4x~jR0YU}EhoL$t_RU}|^w*Tor$Ip}eH5veXN=~W9W zr&pW>sj^yaP9R89i>v3>s;?vGZEB5UQrrueXksE?+yF z>8}S#MeSKNm6T;(^@202`{1PXvnvAEtoxbCKWOR%;0F2D&ipQzK~Cr zTvXLr7LguDc$0c)9FsV?O}YytKNb4>GbEZ~qz}=Et5DE6fhm|GWt3X#6<8BeoCgRy zKn#acL*t!qu->M=3lN&%gn5UHrZp{J*N!$TG|^)GY3&v>$znokpd=6qJEAK+#-A?9 z{D|Km`4dos{lOvip;9M>6+BHV+yE?-PV?HV)ajO0Vx&KRSvK^RHMH9?{90qt)bvC9B`|u4e&|q|+4HlD zYv#f<6;CEL&FHg3&)Rg;(^|RL3~e==1{zm|er^dFy#y87qYLJa9GcdSKG9^ULeJTt znQ2DfVRTZ6^>Ip8TKifL+gDc-4>BsPA-Zx|dz0*vS2XoT%}!e>{r|kpV?wIvtm9xf zbz35sPaB>`(`Cr=m16ZBjQ!9row0P?kO`qzokrx?G|})&`BmsOo3N6?vvbkN-&&+U ztvTATj6;DHDzx9?LaE=AEPrRgR8yeWEtqZ!^o9j#Jw$}M3!^RTROn5M9Gd!~r0{z? zUNX~;s>=zzWrJs>>Cq~>Z@F7C^tQ#1N<-RN74^^uEIM1I$P`S_AxQ(g<6KU=3<-rk za=tGOpcnkmVcVZ7&FrB=AKOIyDn;)&wT342cjpS?9P1AS-Pd?YUbJ}T%*sWJ;CHj8 z&#hX#uoAg0rLE-x6$-iC1Q;-g=FbdeyUpwl(nLsM=#6t_bjy4+Bl=Ve`%@Q7Ym9eg z%)28)X>3;M@ClZjn%1~(P3tN%C?~oz^%P1sNT#%FW?=>hec51Wk~^H9W{9eRQi@R6 zeTNdcT#_fEk4hPS9c4+;ZCb#)x|X}!Rj_O|E-+I+xLr;FIkYBCG@ee8&iOP7I}!JE!F$O7YJ zuL4Y-fh4oIs>;0et|y>-7ZQNpg}^6K^n&7-H*Y0LQtt9L<&2j+lGv_@DmT*!{}C`C zrBhDMK(<{XTpIn1lRHVn{(#o2J9*U_3K79uH< zp$jxr+LQSCak`XI)4|qitOSvg_QryAZk!~A^delzyS^2XmU4=vXeXe$<5H&fKSK#L zHf&JNdMUWHnK{*QE;O(|fF?va7aJ%9m8&_O4g;pD6D1wz@^6z&l2P{6>2n$OH_Vk( z=b9?Ex`Fee7bwR{-Wt+F-MP+;bbmmiaCEwI4c)r=Y+^7+)JZlyy%sq^zoe8D*B_^S0IUbacY@2^AW@>ytsN%P36qFv*sdo`K{=0Z%lQbtt2xt-4jB~ zKm;wMi+I}$ow;ysZKcjFPBbXVP@@tv@b(tVw5Cou&;QV5@T-NA!HlZu)$`(|!ESCF@A=~h7{Cg8PFv#{#-J~puroiDK~7^Cy2SJl-l5E;1_hV{>% zuDjIGkCvRL<97aBNK!P%2fvUcE30QNsE{q>;@Vm06?@@|%30GFSJjegZ;*sp;*~PG zmiur;vFv}Ied z^IKHS!UZ!a(A;XhE3#=PlqO&sy+w=p&fi`)MfvAWDaxX`v#aY8Q?RH-i)(7gScDi8 zq-yaZ>2(R7*n&QlVtN!gj^lD?4T&D>cYIC~`oQGr6=zJZo>^&o)q`};dO%`gh)Fsz zdw!-Izwn8>@bTBTdZ=1 z+1UAMhM8npIHF+_E6c_zO_g=Z8E(PyG|MiB+c*`e;_t>8VZk|R9_uj4jIi;l$Xp+- z=;d&v#nxD?az@(twQOTF#~fu5OHy+s|4}x^(llnaNqV$J)eA~Fqiuu+y}xkASa3Dc zr?!|dk;d3aO{wE$T_0<~=G5mTm$5cdTk3GBRJH{-q)9bVT3CjgH>GDCbm**yN;+kbF!C6R}r?pki_nphoZp#qke(e_IC9|(}x}5A`g7>Fk zipF_`$mPm;$ZlFfX=ai!;>a57j%2SZn=%jms3VNR9m!rzuGX$w zNl#-X=KR1WJ5=w_w3xKhqB7H3&ueUkzyHu8ve+ncD8^w$E9XO;bUM2%g)y&9R@P!I zNTN?zbat9|hVB*PNzGB*krPff)`nu3ruDndPn_pyQ@=CJ9T`4(Wn&8sD%DrcQ7dOrfn^$B^JWl#<(t@l#7aNysbEwb)YZ zw)hhTZ!ANMs)uuZ=UGcUL5Q5(MAxx*_?blx)hVr8vu2r1>gSelyb$72p6R^jE$ui> z!wysLsf@{m^MWNFD@58=(2MKajxQ_PH?L-g1Zb|8o(zIEGw3c#y4|kREl$$1Iq?R4L zWs!L>&1MV}ys_);+Vj&|mz|H84|`!BiQr(zNyOsOw@`z3EVk5QwV?03>lo?2++xis zm2wW+>0iOXMzgbmWZ$!>IeM3ETSz&7wCJidz0LTOWA+&}sZYz~KIBZ&v#yp+wpg(_ ze|GXUVo4e&HW+(SZnL-iz?N^R)h9TIonjrbo+-!SiK)fMj?8=EH|i9ph?zfB|B*@z z)!Rhj*h9M+^ZF0lfoTL9HVu|m?>G~MHJFvCGjSzS&K){kHX5mVOLC_(=s4+zY>MqQ ztB0GA=JmVgEc8+IE&q(fC$UD~W6`A^S~>UF z_~m``V?$;M6@3XN{d;XfbF`X9n^njxF~s{Uv8pdoIrrHlYtq`4^H1kA+eM9x8>N*Z zzLDEpS>BZ6xTXg>UBj+jtw!;U-0m87?rJ@YZ{!Zwte!p#ce&p3>9a8&cFoG;xA0Ea zEKGhIW0z~zza$HHyWRqsWMe!CWjx)zKn_Bcc%9-nK9xmg@pVkyz z$ylgz&EgYEYiV4yIsuWIhN0a$tfSe;&$lV0GtXJ*mrKnSSX@SYHM4e8amr9Tb9Lu< z!81vgv(I(yt#F;SX1NePZS^)@uq+n$1|w%Ja+l~5kFpElVpoJpnE^%z=bYjGElUs+ zv=rj4JZHMHJ8?%g(KXr>CcZQ-ab@S>j%+ra7RR6E$|lnt*``H66%?cwP^Nw=CY`;o2pVlIRvBTU`9^L+9uWyMZsw+(6*?o|$jwgL@(bFctqhZu z*a>)caJ>N#L>`e0R_V6)jl9VbjW=qGMpsmNOa%ueFe{>LUYc#7PA5&PvFNi_i@KY5 zjD_=EQCl!UD3ac7uebCajuCk;uyB`SW!?+zID8m{G3QON$#pJvZ=k1qBX>d-wWQPG z-l-87g9QCo!{LJdi?s4EOukxcDDzos4Tq`W-Awg!fk&Wj`kQk+Y;J^}L!WA_2`{Wn zhyORyl7owZ!a$uASD5LLQBH>YG$9NlJyvUKMcxu_ahxtX(marvhsWtj1ZV9h&FSwZ zoT2V!QW{c@fFi>yE~aO>_fdFB)l+s1cSVgNQ_2b(BU~erg*>h>(vGZDE8358MdKhc z8*4T8^;DDP25DKhH$s~c-^aM3N05UFZ%~hQWy3F(&@Gc~$9R^JuE)7@knD~el}4|a z69)%{v?I7|!_mguu|L7c(i2?SG0ReKW#oyjY<1m{tlWBQILS3)B#VOCV@-Bti{_3j zwL3UF2Xoxt(pn>Rx2HR0ddjBhF)-D(J1176bDL(%VyWr?qIpW^s5Jhh>c2hMq0`6aL7!vug05KMi1@Fi7WeS4JUeZ*ot^ zYBPD(e0$bzUcF;b6g?1R`&e0_&+c4}&|7?;eic0p`U<}RINV$yXPXksC@uo_y^6!! zpnhM(@#`EF((e@us;Z_hRLL5sRVn7VPz^9IRVr1#RMntGs8(qjSZIKO8d#!^(a%LH z-8>hmLFT1K4K^>e3uU7{L<1aVqa+hJL&G)dSpA%6k@&QYWEQuCf?<)B*F+!9Q}?i z)(8>2AJkxZ%H zbd4I@-zOY{S9IIxAw?vp(|aoS>fck&QJxfxtzZ1JI}D)Ri&7oudlY$eLtC>z@=o14 z;8J6peqX-13)39um@yKV?<5qU2<)RMWU-I52$fR@Y ze6sYAaW+Y0yhLwhx7q`?rKX7UAV__e>iTB4n!~!&Ok-@c#M6X0&e|h5r^#X2xb>^i z{V?HA(>Y9(bj0z}U-^-vlFu+Fox`6A0FzenGEH9Ed08m*$xgy(F%#Eq3!KVnC(K7k ziKEF*Y;ow6!bj_pfqc;!)-BZ*ke1pCE{Aq#3+NN4t^V8_!2n9}cJZ2+qxS`#X-EIDrKo8u;(BTiBJV~- zMiLn@&dYVH&h=(+VRGH7bN#tMvZw<~MID5Xyi#7=8v_zE$=5XM<)})Ru_52J=8M@$ zVoStxHQ%?ocl`&2Gr=5jq4i~ch2-}_yo7h@60QIzCA>?QP>$_P3GdP+d>(j;?ivHT zTT@Me?+Hjki3OIAZB2m-9Q`du??<=p{mBVKr4eOIpKo&YR2BDL56;FlfKRDAPNfuj zFHTGmU~@o*5x@aO0AD2_)3HTciO2`MZdbBIx)DO5mdxD;lcj~-_SJ>(nujdVTxjf~ z-G`I)PNlsmqCcck?jt(HL&RtL39Z06@-t!g<-YYeGK8thQaml-z37*uwrIRmML6oq z$ujW&Aw`#(ysT?-vY+;SolJp0f^E86LlMgRsxHkkh>;Z-2wmV|#1B=(R^c^W1+hd_ zMMv;-<*rF}#6#Mh{9Yl9eBo@$u|{+D5LKKaXTk*3YNM_G9K*}krkW`kGX1_zZ~f`_ zDWXkrn^U_b($@4TuS)ZJU?1qtWSW?Ci9&cYJ^7#=m$-TR!}ZA`3i zW1WY0#H-yZrplcpA>W*vYBuU>J_qiI_ET;!F)8VegtkMgmx)`TlW}zvq(vrq2?lk7 z=Yk7MAF$hk6$bSxzXN2h*be{;quL{ZG*b)dradTh;UjJ+P0oK(vFD+bVx{LM>kt#b z6t?9kcYtn4r)I2f)>I9RmHgsrE;r3c33^n-N4fqS-Mzj4FzZWq#NppTepO^ApWWx^ zX?VLH{xaVBq^aB+J}WsyYEtBhSV@H{{F=G3xI;69Ao zeA(|laddudsE&9fe1*m2d6LWyd)Yjp*|dC(VOio60bz-=lWAtnnV-;{`cmK=Ss!#) zJQ>hOZ(CCfjRfmH6_6C&trdmxVWXIHKdmvot=lin(-Ywt3va%(P-L72KE`%`8j#81 zYd>^}<*FXylS}e6JMiF+ODAY%V&DkV!o2OFRFO7O`YLyKpqoY+4ws8)dlmQDfQ+Ad zK{T#21LS7`VMgBqrP3v9@r9swr2!bS1Tjt#++tq>KWMD$rD#hwap`zGZl?Z8IyaC) zt}a`#PtqRGF9P2w^@*X`<3MU^tNlXO7jU$gC9WVJ;P(mCq#W9{PQ*U3p(2Eonc)M@ z?7IY~ZPvE>rxn(rL}aC@==wk_Juwj zT3k;)$uB!qsmsXMjI#^1Y$*m!Vfivbe_QHas4H`^AQ4pB$DQMnr zq`(*XBthTSPcAWPA#p3A8+HZrATHaPlbj98ee~!9)uTJ&9P_9Ao+3AKMqx_&s2-|^ zqy)6^qkSc(s$KS}QwYk(tWQ4QO=mNOO1PCidbCeo9$Jqu@iO|x4m|l0UPiCIfg30V-)H z4Ty0{C0milWWVx50hqr(lyt=KWL6V8?Nt`xwlAH9wU`t&j%k>s&m7J9n~CSPFPUwa z^r=n_wJ;*B_#yEmL|xegesdm3U* zHQ+}A;m!NFue$9j?{h!xs$$fi-W7lysQgc**)^- zcK)cjB9Pop>Aug;T^;>#g*Al zDa&r+hmo1b4v+-?0w&DkY12FGWKmEmciaF;K{;a?@uv>> z1@Gl@?BI^q;WrXKqFJDaxf4vObm(FVu!5gkFraJz(aMzk`3MU8bIDz+_TQxY z-ED7}FJ($1#i3IAt-&M8RK!tH?I<0m72x z_F&mK;OaR5#rdW)i^Rr3bmMxTrBWPmXuMfgNTRRDT+CEUrO2p%6r0VDRl0PRKjk9c=gMe5fgJPrxhJNa z0j~dOFBOf(O6ZqJn1Lx}-vutaQ~rFNKXjKAMt9eBM7Q0gH*ltEb@I^!Jb7Y@Bc7U1 z#B1ve3icj>O$8_F3a$kgHp?Jh1-w?7m?DGW7OASO{N$8w$+akf&smoh?sbkMKA`Wx zzhgHs@`}A2uG5U{pyVLzhk(L=j%BDC#&(?}X=VdQ@I|3h_6qP7J!dW!(rOF{`VzmY ziLWNc>pd!Suh-Pvp?#tz(6?y%MbOJfQ%QHL=AQQeYcAy08uys)A?J^{F6iGcy6?VA zm>=_VcRGWqZT~Q((!ZZVA4HS5H#`05FkLKvTh=UV!>xv{nsR^RI@*DDb5ArzQO1>c zjrbeA6escFypj5TPE~u=L#<0&BVCC0ANG%;{LJ-r^c~ zC2;iy2u7TG-IW~Otu-P_zM&WQCkY{Y_cwL?{Xp}Dflj4_TO^-P+sp7VtB zeo73@eaD^zo_~6<7LkoTmYHgV5m=0M=;1!VS5K5(Jcx_e&Ke@_DfJrS0X<$X0%u0k z11Ung9yp@62oLEI`kcUwHrAepQ)KNK%5je%SbZKzk<}*xqL5lXn&PJ+-K}%x3Ktqc zep&q7r&4}jLYMaAj&meT82Vl+;y#;_OxFFw=mn~oFqcU>ucn+PVfrml9=Ugo(M{Aq zndnr>WFwKkCJDTjvi7qwxefY566U3p?;a%+kKCJyUC1=Qm52wV7W-2A*Fa^+f?Sly zMZ{MFQ}?|TNBp_}iQjt4dQX|xEAQ!ExeHuaM@yJ!?`bBo2T}w*#hgw z+0Yu-kyUC*67*wAh6+CYxHb*8rU!<8N=*9mD}tJ zLtc6c1elo_+6j&EB~88!a-QZoE#?HKyXq-M)Ucbz1 z*_Sk&EAZ+1wL)G+Fj;7Yl7$mqCyLvu6XA>|v1sd+J7a+3d`cX1HZx;@NG7Areq@Fb z8kt}f17z~XOKd^;22adyEZLmPRO(2J&XGJ{8*usy{fl$@@4?t2>7Z)iSj}Uf)`F*0 z{bvJY+a+7wgt994odJDzJ&80&E`Io61h7K;uQ$}K6s7K-k@+SBS|(GGs^f-0#bC3ovmBV0-u#80$an_`7a z08hA7b7TnpT8b$_{xV?443bgV|gk59xsa@ ziqlptM+eHU_$}hid!Ijt zBr=mpnqmRhxRT2JtmNjWN5cUjJxqNFXH*}=F#Vrk^P%F&zIxIu032VUR zi5aDPT&h^~__lUlTDXFh;`mfqb$#ufmsZzPBqKj+eyG{xSz7&Wm6e7|nr`3QUtO6% zbmWeZQ}M&Rf?UOqr;%Xy>XKX!PS?vvfMkB|o2j;5S|h6EN|VRK{qyLhIdc7o=#HNz zxdZVm9@bg>8Jrr`E3(D)OJZ3qUyf<@!3~_C-cjMr(i=1fJ)@AA?hTrIj%GC9p!wz* znrGgidFC0KU*72JCg4~-Q*YMz2?1$b^FEe#{hB$4Mc})|CzdOss^4ZpUMeBKuHVmG zEB;7LwZws<`?~+%E4W<-4)`7C`bw|l2mHccOvw-UMcR~-AMgvuHzhxyzx^~N|AW7` zl1vM|Km8I^f8)GOyy2ek^snbhbByPS;wtMc~Xj zce>Hn0?QfV>00adZ$i~QcDh!(4W$%jm0K9-CdY#U>s8LcqbOD(&iUZUwK{;?KF5@C zu~rZp_4E=;DxV``rk&DlV7j=Cfx#56>|=0c@9}5J8~i~_RrZo#e$Joj1B9EGREYyv zGMYDtmv6|+$-EpK$IDn=29Jkr&8FL!|L{*C+%NC%JZZT8stU#;c|JAzUbsd{>_*9(|j-%UE-$z z^?|Z!QuaLlEE&fix4pLPWWfyLPxWp;vFGvjp(JxAFGJAe%v-_BA10FB8eZJ?`jYkf z*-(5L&&6Ni&u^#g`9>TGf8qkOkYFvt1Aos=0$ z*IAyOu%<45LsQFlSgKCzu$Puk&C*}n=%9@QPtyr~pP&aMq2==JsyL=pZu6;{*74om zO!$z>(9WM_Xp)7FhfSxUTwHG`-?Oof*80aEwe?>-qV?Z9vh|NSqV)%Vj@Ccvh}Iu= zMC*@8Xnpl`26I=v>R0N&*)NHxOmA0m4T{_A?MiNg z`AlzDpWDw*V3@8!JBF3o?@u60>j(g~-=Dzn2PIb_8+b$u{JPXPZx!SwpjG-oLDIYkR<79jcLcPJ^~GYl(6a`MLpv~YZK?>f#jxRJ z+Dno91!ot10Jl-WBfS*4OPvy82mB-Hn8E$&+F;XjD~ychI=;sVJ><^>29kH8O7~oD|yTp7A7&~-_e`L0(n=1<-6E5d>kxp z`T4fsGS_j$f7MWZU<4>WvxbUsd;DDtngFD;PH0rl75YsL#&J~Nq^={W0V(mMu1iSD zd)G-_7f=qIG;_iMI4DTf5KzoIS;``Qm)GR6#q2lOJfoB*SAT_1F0z=?I- z7`{(=NcYQiP{&H&jCy}x^Z;C!uk#O5;p`AIcib8X!Ew>CFE)e`L>hY!E<<6r$R$lFcZ>5aFAPetmrYqv5h62B-iaY zuO-?wd0iZ*)(2zJ#oUAYYf7JjWz)&pVvk57Sva{MxB)^E5#mJx<1yTW_XCe%671Kb zXkwmifJV~XCMAB|eUFl5@01!PG=Q$w#!xJ}PXZ10WgqHOtqyYTR}Cigt)E>DsB&fT zVzOON8LBY8vemfN6%p(%kfs{9xQE!6Q$61Soxq^zeA$HiH7O zXbwN;d3Q4T4gZV8cw7GT@MnTYo~Y>fA{|Y)U=>m3NRjrr+4Veo2gWH>I!)NQT&$!A z#<1QNMf$>BOTyuUHztH2S3W2Cv799vxra%nSEiN$HwZ=#{!{cs*R65}!NoMz$#PyI ztL!cPT4k(o?M4D^mp~)#|SO6Stti_Ucfg3?+YOvU3YDvctS5_Ntz$ z#RQrofpQ)3S(PwVS4;4Osd_#kH%Z7mCtLTuovOX%m*ubQs1*=Oy&H?pqz%?mKDp>h zYEY)7*IU7u8cfqQ_=8u2)kN7XSx$G(B1ZOpDN@2*8@r!&yp}+RB~XQP1%ZbDL)!KO z{$vkjNR10XvOVw}LPo$jl}`2&p1nN~XTnm@Lw%~yha{JS|B;Kq2cge@ageFQAxGZI zz<3P${k{zPFZ~$w2mKiIhngW@DhX%?{a4GNKk*p!N4k}MOaRkLhjlBx4J-`$W6hwC ziP&DR_#^iaN+na=uTZY+ZPEz++pLX1J0;K{_Xh+@XtRA1JfY3rBIIESInm8dhv9o| z7VzH-gHBl3m|v@o-f&RlGWB~|+|Htup&_Q-Ryp!^B^a;W8vC}}x&7MhyngN0q}%B= zNkF&Tn*Qy!R?qFhMc&+Ar{}h`S+j1l5-576uRg?jMdh5!oF@j;W^;J&(`GW$ZzRxa z33RpdE`bte`X&jUFw=id$n6sHE+@O2XK$Nv45QNS73qqqPg0YuGIb!3>Y` zl&NluuD#>r+11pz4w$i;Ig{jjm`}CRM9O)BLTUCIRC!u}GRww$4}eedbr8&;y^WF~ zfB2CmD>RmaBxJscs-?ky49t)+Z6@(4@f7QFaOZI<1W9p_NL?d)X}K7CI6_SFWs&01 z+UxkEw%3bCwAXt_w%0Lk|MnXE@3xm($}-@pUG&0#uObs?q;gZ=WNrKWFHvGf5LLvm z(Nki&FYINQd_E-*n-jlm@P{`X&N5*FY8x{!&! z|NYlZkaB-+mFH*bG+plw1mDWP(z+pkXvT0Re6JV$|MjRZ_X^Aqr;z_|der~iTJ5A^ zdXUD|)=4Ak87ZGzZ5>FPPVl~J>xc?u)JP)!|FXCGBOTEPQ?xdAfIk@Y%jPLH68xz% zhkYO(N#bh3;BGvn$$Zw>xLPod?(4=qj_&WqJx=i4xCfuL>GpTy9{jl_;M~sh@2-M- zbiw+$aSuLcgC60=Jx=*-H}3Hu{oJ_6@y3mN@OhiZgn&89!noSsAGjX+G@V6G3;Kn_;-{L}^Uqu!CokgXZ zLcMOmbW^A|EJzE+)q=q{Epn)MD8fG8v&;?t-gy$nCT?ersum2sWh3@;>K=UC;`=&v z4<4}SqdIjDzT-q`rF4JLb-zw?;Kj2FU&y?iIelTZb{?9nFDhY4PD#A*Rt0@-8xe>Z z?m37+)|*stoYoS^U>0Y3DtM}e{R1aUZ;p3m_{TlE z2Par^qDS}OMC@fGkmu1IgjtB<9^HeJTtA&I9^D5^DS}~F6bDCDh7K`bv?bj2>ztA( za`V9;5?yN|UCOwH8}E1V>EJrVUAY`M1FyEI`A*S|e;deSo0XHLC(RFm)DS1JHASzk zoG1I{b7TPNA=MCzPU7b;#vlTTIm1R3rVs{qoV|Hilt+TY|GAZP67M8-4)@u<+xvqP zE-iLyxGMc-ehWxbZZIB-7l;;WbXfPuR&~NnG^7XlPdsTE_50f}q)sx__qUnT2Ir=P zj2i0_DSPjaMX%_>y8teOG)EI)B>npZBSx3b`7-rB0UXxQ zxJvYo8>9_0OF>Y!3ncJl0I8#QYqL|{rx3mPbcV!N_{}H6JGy>)NR&&87f2%9ON9dy zxtPjcz<|Hdn$Tw)1vE zv(|Z2sF!?ba4cHE{1}G$t6aD3&5yVH%nu9M`SAxkKl-GmoL_%tPRi*do8R%9M>cYY zx0!aowwah|_mWLEe!sV~J2Ayxbp5CMqBrtePhuCw6WeVQQ)Bir#^fv5u_{|{n*Fy* zD90H$UzqW6&OxTUj6=sc)!Q@&UvO>*yNC%#IKPBD===zbEUtvpo95s^Hv@|7h6toN z`ye+0M&^^_94)iskDA$wM`ZTik(nKHL}r5%GE+CoilQbn{QrCRm)<;Rm>j=Y{a>=n z>|(GDIDtA?QyJe2zoA_}-!9YJH^xn6+{G-p?jt>?$riPFqLsP8C0*SjC+m2B$~>&*P4XIROS<1l>}26_c}kN_!sOOKliS| zKTH=fZVThj((U_sja`z`j%N|l=q7RW4TKSoTnjY4Y_kn;%*d;=gI0c^Zbj=_=IgeWgvVAUXT7$deE zgVhkdEV;Kz9*&doed*fcoM(B+;CGy3y=5uzf+GgeDf|fcn1nm%T*5;-mvDMn3Ji4D zfRgD=pnD|HAopD!!jBy1Xqg><)XZKyBD437%$bnYw}n$yH|~q5V%SOWp;_ zEs=l8x}*>la!#ZY@pb7X8umZEF5ONacyk-W)}?>ws`Ocxk|@RJUzglE&t}sfeMZV32Uq`AC-fN?mi|Y})@N(8K6|n0 zHGGVyq|u*B_D2{;ehy2>Kv2653=LySr3S`3|6szh%82_P6_|iWP~BFc}tZ)0hQ(t4y+GUI;&;H)25IXU_>NaM}=UXrH8~C z(s+vkVe$_p%dr(;GSQ7aq}a#zwe*9W33;F_tWPli`z@?yXlQKW!fMb*EUX57l!et0 z5*Aj2ILg9m2>ljTDcF$O=1rpru8FvDYEy+WE+7SL zSWT3pEUaeieD=a>A|AQ08vGFpt3e;t43CBNHCk!VP-l2P`;a6(p3S>3IM46qa66il z%xHFo+rgZq&tQia%N9o4_6lB4nA1S%2?M2d^)j4YY41?Z@b_r+!MF`FNHKqykhqX1 z66&$yxrM#vPs*__Lgh0Ae^dmQ*FS+8(z>p_Wd$mriA%v8GhHx}lX51BLB@T8(2lYv zHvy^{fT%UaO>g*1AXbCOXtCy1dFO+{x+G-#&S0&=CjQ!L;YG$^-ZJ0-$Y)&gg= z+JcptJP%!x(dw0KszJR7$}8D4gW7q?u@*(i$|dbvB<)sRvgrbMYuJ=*h9KmltBh8i z`OK@N#_gY6l+kQ6uQbWteo032|6%XTnjo@ATUb9yH{P-5r-oxw&~qFW@upq;uf{ctJ~aEF6;YCgiZZmaG?= z6(vV|48ZiToej|PAWGOpc>M6Ib57njLEj9zzcav^p>#E-^mbG+n4!nu55pKUFl2^0 z;O<71hrdSpJ76Z^51T^x^UcuHLDE`+r_1Q6yZc}GL-WI!t|IHxWn|Bo{KyV=j;z?t zkE};1GKa_3VH*+B_uplPVl;!HW_A6f`j5#FJs*bXbERwtWtX)Rd%6Qj`;iUNuOSzF zLzM3!L-aZ!bB3ro=L}JG&l#dhM+{MAg$+^VL=90DOhfd2`ILwuS^zCRnj!iS_0Jii zFNvT-7^1urd@6ADi2)-}IsTqmO5d`RC^4Adb7(77Y*Byz&v+*(2L=h#URn$2N;1}h zC?h^$ZWJ!?nZ8dji?5_|hg_TuTfWI*DCi%}@+~MZZ{Vv^m!d7n6pS`4Xk&cKx1b7` zWho`TLVNzzt*gvwB2^sNNH0S7}h>PakF|VI9;<0G1g2P5U z7R{9zGU5yNT3*hGFL=qaGOE-*OO~ioFIzHf#236`nfXRM7R|LL9KwjlqPeP+XT)RC zT=`KWzF@y)cWK09(YzF?)ZJ_j_gz@42^-dVZhPPPRkj{WFSRgEUdAeBkB5-(<|@9P z2G(Kr7~iY^0LHh;(2XqDyaRgjLRdT2M7%Bzn}de4Z$Vv8hS<%4b$WxcU^j2}ZN?jw z_4=8;&V=UX8*C+F?fcK{sk;-t$tEV&{=}KR<(yA*Q%?xJl+kWh#F zgq54buRb+j-jO>|Cksa(DS+ScRS&vX;&gT%X z>%0#P?!VUl_tCdo+L~KFmg#36(0t=yC?8n;k0U`pvel1UX9KIB?;)%IN+EMrzdGlv zes#}T{Ypoyer1KNe&s~1eicls|1J5Hh}ADM(*Hc1_Cp);@xfH_LmKi}@GLArb9rb> z{KL;U+Xc_3P_@G*9abte&7vkb=90XyHM3mklt4hx9F9byqrmg1y5yVRH=QIEK#Liwq)3(!-A&<$v5e+ z;CUZ({-6a<4VY)rVZl@RQIjsY-?9(2;Q2?SQXwuPX>Q?x{c@?}xUfMNaaoPC&u+&v z7##+8@D~L^SR6h9Zjs>0#vOq~{uD@GG&V73TM6hI+(~xeR1Lu=;<*6fuBULt5)P)U zJ1MJ}tDU#OrNrrOyCV8CrpJ3M3cU@tdNUEQi0OAlSP{Jej?Y6q_$y!;Ibe2!!`z2I ze=3UC2C?OYr$19zclQYRWm9BKSCRGUGO}knMRu@rWW{cNWIaNWITs*a*U4bJ*}t|c z!c>KSq7D0wkEJ(yq7cSQ8T1c&qoYtl~+9QGvF$eYcI;%tXP9H}{6gmVZ zQGk22(R!{z5zQnY-{a}C0H@eC!! z*%I+5=@i8ail-(XG&O9ZLvWwOLq_u`+WQ6UXzv%W^LxL*!SDSN4_mqUyk#h! z61zpQyxuSInDyGJ_X}JO-TMVz@_N63uf1R5aT`Zf$r7fYPga)@*d37U{XT)D>&_w@ zn$So*X$p|O#Z`&t&2eZsbG={U1uHn*`z2nq%uw%_*lT&Y-Y@ZzWo1;UeU>ayrCzpV zxc5uEVww59U*c7BKXg81@0WPZ2F&aI62GzhXz!QUZ`oZ=Xe54T)*zLNS0{cP=jcZ# z0zv%A7G%3F363fix6ABcXj#|!Mvy#~iSvyGIx5F}@sH!DLSzramJrKi10(&O@+hMk z!@%u$o&}nSn6UwJ zVt&lvF~Cm5dOe;?5%5NY>SYI<6B#qW!n!gxkzU6FWg9OuO$_>Q1c-h;IL$el8`5Br@m-$R}9^+M)4Wp&PV%Ico$l$DNj%E}6N%F2m$ z$|{(hvh={=9hdG!DQNN07KRA&4t2`=M9?8R<$`#s>D#CbDIWSZukQF|HTC|@&S9Qi z<8e&LpIx}YN%Og|JhTm3=NP!+d0B1EDkmP|&BGng$JXEy=n!x2!r9Ab&&3_p=r(hU zRd++Pzh^ek_xLGX+Zy-_et2%}N|GF;oO+iS!V@|VZDT|hsJN8HROz&oRgQiq;&XzN zEO^fM>92&L<0|~U&kV0`t;r9L9f^m%>-)5)<0S|3GRnZ_k?3qP;_STSARhh}OU3jm zlGDo8Z)(Pd2k~W(%u5b4zDPeD;u+oz?N#T2doCajc1Vu#@OveY#$^kYR91Ifv=$TPjI8xAlbTZCT2)$;RRe>yh4`j`X%9<6Gg~I~_SzPOc zta;|TK$gA-vgSo)&5O#yF@b@st5sHwc|DM&?}4nEsH~c(EF1_J$l9l}7MP>Z3u=1l zdmw8;RMvv1EFAq8$Qpn*d}FOSKai#Gfvno7tlFro+K{ZfRj~ z8t-t(E#d0!&rz|_D1^5}Yu_l`0HTT2T4l%SIoSIUuv4CzWB%TUz#-%5-UqDis(=zN zy7vLAyXw$0=ip# zM^*O$Y^{84nHrYj0 z!%H897yem_;}V9kYsYU%2(A_P^_NBe$FeRys}GjR{vtBAF^Hf6-?n<3dsZKrq2W15 zjOAJQ=#K;baO}Q$S2%szn%lUv`&XfQAA^1*8E5aBjL(3UJ@l2Q%=OrYx?M;qp9E$5 z;{nE|Hak%qWpq>IsJ5uv69#*F@f?jv;+SSDl{~n~WgcL(Hn55*_$^lqrAy-jB}Z;{ znc}!0d!S^<%`P(p_fij({J6!smJFQ5u(#N-JqNBO`E5(~bs}0i=88ipiFJMGcORau z(D56Aj#or=yfUieSE4$8C930BqdI;ys^fok($O&&b)g;)W$MUYhUXe+)(hhyO}&c( z%_O-lvXR9#xh}S(%Rx$RETYGANJ?%jqU(Qy9IRvfqghrauW+0pQa2Wpq03l9b6BKKQAk?rEDK&xf74$T%lQfdo&m3lJ z)5&C%+sgDwbv+rk-S!b5`W#i0xczbB*mJsH*SsXYB0GpUnmXbXV)$v~@Ppw&&#O8bmSqSX%Yw9l9%F%3Nyv{Z`8 zqR3OErB+N9_ie|a;gt)kwQd|P&24`rrV8N{-i-2gCnBnJM%wu(MvJ}JZy?)&Q}`_Y zun-wD+MkaCPT@IlpI}E~MtSsiz}$pCv)<;MVBuycvcl6)%85=xsbEe+ z{Y5?{vNj};<$pa=;m{K^!9+->Igieh8Hbpoz$90^pxe~=gXVTLnBimE;}024k?1k) z0Xuq3d%(^=raf@*k7^vaF0Mwa=0zs?^Jt3?I`Tf5kHMk7EQUN{J}^3cjj@VQjuBTn$6au(Q(Y=(6U8i zeUAUctd8t+c+Ou1Qwf%KaSQx5bMoy{4CZi1OPhwTh=dQ=^!dbGoREU&4v5&q875dL z75vz}VDx~z;q(PzzKMr3sxS^*E2fQOW<(@+?S}&P;vklH@Ze@6=f4?^_E$3)Qx$m5 zVb`MF`W0MyI=yT!LVw2e-p(@A+k6RsSj({L;dfc_r%eU8_aL?4?>zcDV2;KgmLm9* zE-PN-9sw5HS9szsv^Wl9#UD0U*aqH3WPQ4f?3qrH9qb%gai_?7gd%g!7=*lWN_s&F zvtY@}vbklG#!envT{fY*`iSaD6ULWSW>0GYIAn9S31g{|Whb_w^Vx_)g0?pDjG(gd zlcr1_f5gd-89R2I{@<{6?HKViZd2o$4Y-VrM^lY!Y#xU^+W4{bRhOf$+A|z_2YuBe zNXw7hS6zZ+_xmcohx)2737PAw)H&Bzse7)kQaaLCDJ$GpDJR-jsbKb1ugj-I`YNsy zf8dgdTaUF+wp+u0K!q(a^5-B9ab-_DD?W1&hlBK+I^=3fV#+Sm8ClqvyL8F1HMpE> z$^iJ~izke#Pnf^ z_QNcd=nX-GC2jq+k>n5_(s1Z5*yTLAT}3XK_B4|&dPh*I@P0%eVd4gs!=9#2huqHd zp}TLDyR;t5D^9^*%h6`!Ejs)!G?EEN4lyvRq`PNvAS17ZN%scMm#Y!~3nH`{@gE>j zfm_k*uy2szbq)eeg z!^7BgfxF8TDn=%eDO8n|H-)Oq=oG5*B2%c!%BWKNtWqVa)XSF4n?ltfT}+{B z={fWiss`*lg{u5cQ>e;5k38{l8&)bjUjMko!HJJ7gse9HiH}Ohdo;l} zPJH~ilz^0{W6mn;J>xYtZ{D&&jvm4Rk5`F|5@kAIXl3aM1}`RYaN^@KHQ*+aXGF-)iN$KpmGBj^a_f-0L^9sK} zCVsG=J$-_aCLP}(x8tNwG+Y@)&2+luU%k@iq)##gcqHR-43&Ep#J$Q@cuCDcv%a#n zR^M`q<6!4j#X;m&wPOq-tK&HG7!Gz>JmI)&+8l3m0z%`M8_qUtc1peK7eOZE;z@7( z`*>$ht5;ci69%J5L)ip2P;Yd+i8F;vCEBu^HaXs;l|p6`G%VIS-jo)hOA_lhwQo7a z@eb#1X}7#*V(q48?8x?}D&5!VW!Q*vzfy1cVUqMF3!lCQ++>_OsV{1vzW#=!@qH!0 z?Pb_GP$hLI)tlLb@WTRk>L~8u)(DqgsA(<~oK6g!sH7i&JJMa7Qr?kNteM6ce~Q@L>7CSyd6rV;F@i5yq!vBoW7LfoqZ+5#Pw?2`coRV zoKg>iuJv>$<6STv?um`r(;e?Z+q#pILhW6oWjdZ<5Zt`7ely~|_!9_$^G}_AR-W#v zPsS-J-qf%;yQy(YoAy>!-gRZ@WD;`lgLeZ<8NXmFE={IK$NQ$n8BbtbAs3Z|FoLJ%A zL&ej`!o?LR2JpW4Yt~q)Nz2j32`f4?eK5X??Tf-A5*B&;#E@ zkkstCb8A+ts9#ZY%t{D2H+Uypn`|tuphDdj(F-eR7b&HlRVLhCeqmEm?sIEq03mlcj z2!$1nz_+}3$5k^D`SH6of~V>j!JOLJOFj`a4MLnyvwSI}t4mmtYgJvtD^MNp>46Xc zO@H|v3Yu3_yJ)eRjy^Ga+0qqt%a<-&NM+Uin3YSRx@)Pha9_=JC}Nu(uVcLme=de; z=hXbA%NN)4XLem3(#$eeF3GWs`Uy+))n!q3yyt(W0{5OmfzWJ`q}1#ci!jNaqnFnl zw+LBha-1MDgD~Mpe6?}+Z=XphCNw)bOszulp+9~gx=cX~^bi^aYD&OO~p8SK{n_yN>t95fFvs zc=K_JtXVR5={%hCT)(nz{?sr%uV()2m9?xxIWM7F;%k|0!sY~Smhj%XSmnNbGG_Qw z%a^WPg73mYp?#gV^tdGurhF;Ut|gY#%wArzq7Lb+j_lbmx|xGPO5C!REnhkp3N2b9 zm@g|kqzw>XlIX3??QEaleMMDy|A$m%#i9jE>cbK&YsJcC%MkGjXr*3iabP}jo!-MK z7;|tqAx28H2^zX%h0us#oxpf&x7evgF_Bz`nJz(8R>DJVYUb8_ow+;D&)_DM(IU?1|iM@v`zd!kn zO}JMLLN~W;%C@0kJZv5N(XjzX>@>rgd&DyPilk<2O1GjOwGMsg5OlMed5>GS-r}}- zQ$6iSd+@UNv~}!7N2IH`L5s}|j`yr}>q$4-@3gg1nqUAm;EF`l%stk}Ve}!jsxbty z@SeBMJ?Jdou-@_ZT4r}LH&oXny(FEG!~3jL37ou54agN)BJ^H0uOqwM@(CWUkgvBr z*lU(K5$KYZETr4AyWf_FN#2%*tuVYSsKooN>kubTwV zS1hl?Cud^5vK%#= zuQO^lPYr6bSgzMw_EA3D@vgVwXGP<4yc?{;yr_f9zrhMx=moWeFY0)sb*zm#I^K;| zY&JEb068);jg?>SdeWd7S99Si*K1(Yd`fF`Q*%2Cw=09%Sot@i4jQv7 zL*Q8X&8}@><*Q?sdz(#J#%<`k$%oOW+=S)cYq^e> zu;K5=7tlyaTKXZOHB{1u+UubLzfy*VOWAP1Nhjm% zs0O7_2+uIyxzZcSR6@Pp59@dfT^*uebnbYI+@U-Q3flyTiic!nC^tE+ga@F@<3bB~LM~0%^YSIpe zeUu%G``*et^j&h}ytl&r!vJbrVY||mF6{zVo%J$<;vMVm5)V~O{h(((&ZU9rmT&U& zIdEC!(s*>sTWqfSz1{IH#|dtE8>=je#TxfLPQjL+rY))ec|Q9L_Q6uQmBV(!TXT9_ zb_?=|N$a!EHJl^0BTS!pzL8jR*gZ5I5?`$R;;@*mJnS+=6}B}twX*@}jJH{EYtdjP<`CTp#PIWr^-V?cQ-N&1Sd! zC~H;QN;TeHi-a8_xmMy$mpbT47S50yX9`LaJJTu_XM#H3EK8=eF`sS83@!BK()Og5 zEUm}n!+czZsNA1peE9~K)sE18U6i~62ni|3u~vJee5Snq3X zXyr8@oSrgek(Jmy$Lb}xsRGY&SZci-V$0<&j55BS!`0VhoL%=&U2;~-!i)NnTJc_T6fmP9lU3FD7OWpxBtPPh73WZpX1G9*$xWxl;sirf+ zF22S=;SLColOVm#Hhd+UZ{Ugim0p08{s-JAFfR;$yOB5mC;bqdXECD-e?B;=6s$+^ zJ@6z`$=zL|mpJDIxRQS_W4cvLBlzKIH(vkPYmmow51cx32E{nFcDpDA@G3s5@&Nfm zV%OpiTN<3((uL}Mx>Ws{PO2a5ta`DVuX>LUq56PMst*pSu1XILDee4V9Ll|OB+Adf zeEnIQ#<6RixksL~88_mbbV~E)>`C)io#Zc4pVYXfvFW77$y29{X<0jFGurHJ6DOP$ zTE#{_>c3T}&R?&D=D`Z|Za93n73i+6PfVjcV3kwG3BmP=?%6!tQ?E~S&*3}jyI!B@ zo_nj1{`HCOdFt$6pXh#8-Tmtm-OniWkmRJ3i=@%K!P2l3C);3ws2%khQK65M61zc@C)XH=!o|tkIJaps2t-qM8 zE7MVyU73zBb!9rjl9lNQ=a4JYGZ8JKpYt7bcmMyQ#~NqXh+Hbn`TrL^I?2IOoq{V{ zl4WcoxQ|mdZYGEPR4R`y?sZ<_i-Hpf&xqgZt9CL2~Kz&%#R(MFpCSP(H)Vz zP^QbMnTP2kf&*ZjBDktR>QU<^YzeJd# zcrhhS#Z$tcq|-fK(1YLv9u1c9!3nmF%;dlcKW37b$1?#q!Aj5AEt8c9PH=*JiJlH1 zjW8rngHu7AU(QRf@9$D}${u$V+TW!PnM|<1OBp4Z zPW!vmp=Zv4`@5(ZOxsL!f0ueK&2--1r7mTe57^(OUMe#A`@581nX&u3l&m`JOlH*M zM#<{Kz7QsHplf_TH0;UVBYNc}w^sHbIDuETXTtltRFXsGbNjoL8PA0GcPTH0%VL@^ zHHsDXm#h{URcfClOH`?sEr}Ei@9$D6eKR_^3|)DtrKdD=sQq0Uuq>0mzf1WQnY{g7 z%0ASUm+vE$Jg&MCoNyToz>JOp08U^bWVPW;6tAOHI)2zOOzF|CmVi{o2Pdd=CKCZC z@YD&6mXt|wf>xHEU~o`GaKhK5GW2x{W$mxpErJpuaKf!1i}?*d!HZPGLx2-{5S(CO zm?B?riKBuOq*uo`_~3-$5?S0ycL`2-22m8mhd@TJg7|Z?`&J`J)PPzDN7;9CGu zAQ3ZHD?f%+N% z7vEQJql7Y6RsQQW~jMY!}rO>?2(#0uS8>I#+g16+ak97KVt^_>b9 zAPNbL-IEGYkbB0EW;zD+wksV^Dnvo46kG+Opk&7BM>*cv_uw}Xp1=qo3ac4`LKJKp zPfBM)F4B@6PevdLpOoQ!%IW_WgjRR+E+!*sg|kD#gp3*I3(I3b-PTsD%9v_fwUn;s z=0fP?nDK1Q&~GGla=xv3BTxOG@NOBoB}tv%HWRhN_l!m>TKjH&QP%uLon{zG2apW?woFpyA8uEQU*1}8AsPP1TS$g>ynT`N zQAmdJOOx!7y?dw_KUW|bToc9wOwvL!W(tY3g5tCV3gRqv1@U#v=->k_B!f(}7!TZy zAl-a;MF^7N^L$8#Py4I*J`G@kKr(zfymZ+Kl5qkeL!`S0VsMB60qP=0Sx83M(LyqO zRyYD5G~myXJuYkGaqp=Oj35lju!KS~ED@IEuZ!EcwWq5g0Gj^tehLahGAt2>WLTDk zWLPRJ+*i|wWSp+TpX-eot#0{{3}r+h89plqcJb9^X$K_Zmnv}YrztRiS12SSNBfYB z94E-kAWT2p}0gBOHGxNX9OW z{lHP!7uPL-WXKyA&*dd7z)vNaj6GO{P|*GLix@f&k`d4rk`d5di3=8F-l$cPZ|gUrm^k-lCc{mmqId1qmT@BAS9zS50arSgk+R#(lm^|b56MtBLNZE;X^@3U zHJt#-P)9;CN;^R^)Qymg(nCNp)CVCMrBV^{AQ|dRNQQocKr)m`NJeQsBtxAD$;d~Wnpx0m;x5nq)aTOt{YIIALl~o5gay z-m;JK*@R?h_*v2T2+2@~c~J+Ie}fgYFcZ`gzNq7k*0DC~NJxf?T$T|?#w43f3d!Jj zoREx+G-$@vT)4{3^7*S)Txsp}e~S zp302d(07v`f@Ek+_gXF?85;h6e1SqTlzvEPm6f!zcDtDfBtvCAVY!54XxL|5=@AIY zP{yy6q0&-T8Xy@3aduRLIQA7t274o!KnX!IwD4n2f{={KJf|Psl@H0#?kklEAQ{TY zWWtaPl~97hoP%U2uV>I7>a-Fe8S2v4)_uuUpIHjA9|+0Nuw|JLB*Tct6}Br~>1tPs z={X;gaV)U#bGgBdDvw*5txHy zFv$qX;LNH(GB_tiNCqYw14xE?x(Y!9NQSbmLpXtCa2QHR2B-5NW}9RqYLv-@AsHIz zHf0i$p~dqKFuHaMvOnA$;&LF%8exZx zLtVAWQd&L;${sc!QZ+YP(=>W^xT zIB?)oGf(!Ry26lQS4>_xb_T3Jt^`gvU5W!vh0wud(!SR&UE&nT`->?o69j?+i~E^+$m%Lz_Dd0Fc8m%k@C1LW^~r&Rvd zI0NR)fN&gaOH@229Pe_CFS%;;kM9520*D3bLqw)6aZV_ zkY)&#m>zF&|HDfDcHjpSEItu;24}plx$nRa_V*K$d97Pa!Z%WH63w_?pWQ$-{%sO* z88p3J#zc;PQ zc=yTI_m>OryO|O9K~bH3G?jdZR{j+0$OnavL%?NtEB-8gIO{5Pai-IcBFtzy6~yUQ z5dQ;yd+IAa_T$8~IfC=ELqk1;V?Jm0atU`;xesId9A7Iq`)w{@6T??Acg%&fk}5dw zjg!?Fs-n>`7n6zjK81E_n2b*`L);uU=Bp4hT!2x{af%$V-Z7`fIl(*vQ{DEBg9_6c zr(ei;2aZG6W8t^HrJ)so#d>RFn{SIWgKMWO*6Q1$q^fe8sM7A3@6f$+x{It(il2=jpC!9H-tBOe}$)8CL2A!34Q zZ{pD?exg?;A^^CkW7(Y@*-3b2BIH&`o+vq8mEf1-@Rf;(s45}L2A9U2Ng`H1Yrmn+ zufN}s-RA7cZbb0s5qylK?|!E5m%$oy3JhGw?5EScq}yb9Lg=SKPe!TP|8AK?Re`8} zN0}%<{4+^Xg3}X@c|>MqX7$*U{UVhX{@QyRdB8{i#PNU1y5f+B2D$+C3_ zs*@9rv6e-9-FW%p*)EfD5qyl0YT*~2IW9Fi+@_rD6EgAm)DVqJZB4KEetg4JRQX2k z_eB#Hf0K+g*|u%mt0dbX%=@vQ&IMDkkU%oXgpp(V$KNHpMSQh3ws5zU+38l3Nr;9G z-6Pfl4)AVn{hVg(2O75pBdVsh^^Th~lIZtt-jjU^&klUVR-o)A)??Zz zT<=#4@MM+l()bZm>M;e?#_Js2lt?nmM%35C`iG7UtsAyFZa4EMWFcyn{cgL?cVs+L zv!agGGdi-T&+N#46Y8uQ>F4T^(uV#5Jl5eOrPg{`P@Azqw_yYBfjBZwy{3RSep}-@ z%w*s`TNdHd$U#G`)J3E|WBwfd;)t6xR3~?2kNjjuwhF>Vj`BbH&+^f$z+*{$ zE6$4dc~VG%|B)oPS}1lRe-UN&f}Xmrxe4jfH?bN*kNPBv=VN$rA>9-tMmB?e?G0S-Rl+7C5ah?jFY-o?6ig?(GZ2J+OBO&7&euY$#lr#$K z!5hE6!9lI&^658}tY=F2yayQd%t*xS;p!DwZMe&4QLlwBRPXbAp?X*2MgA3k z5A|m&Qfr=5W3kdqJ7ea5)k9y^+pNbQR#0OWgkat`f_tz){Jlzl2h3++vk|idf1JE_ z3X0sXfwdd4K$w7Xy1UE4VTCnjVF>1};unpEpu!d<<}ZLxV7|xU4<|YxVjDSwVtw(4 z1qGb*5ddg!0}dxKjH#(_Su0b@nJq(warD||fC#Y@0!Fo&Mq@J(yZ2ka&PqdY>KJR8 z4snj=7#tgCTeGLOH@32gpY?gTCSrSU`E|Bu170P>wSI_x2!Zpznz@V54>9{*32_%g ze9;f_3qM4Kb2N4pp>qv|nDZwIF^eI7?uRHCYqc8c9Nmt3*OFb^1{*U#S)4~f{U zTM_6l2o&+e>wM=e6c0P;f%Dd)`N_W2k+}}&aL&>USq+7;$zmg;e#J_w4AVO+xmsCh~vG!Ze10*K3x{M zXH0&PJJ`9%6?ZCfJ^s-mH=t9I8{DbL4gH`Z=k&+!9@m*V;NJk=m*t4{t<9U|Cg+a@ z#Qy{uk53|#av=U^P~Scrh~Ee6$JvlzPgR+F_7$k?{xNcVcXLOc>Mb6*W8~C1cZ{66 z=Z=w6I&zGhvckv6DJOc2oC@YKa_`EgM2?Yjq11;2>;H`U`(XXY8SYSEeeszC>;FaK z_<&>Nu5^J@=nU46vOfM}}){-IIFfLiyae77rrY9%hdI@Ex?D3}|T(UZ33IklSGD-?N;gZ#% zXU>7RWGaUF-NGm?S-qAPcE%;EOIhIu;F8r#MPWWJS^1TP7MHAKRnafdTNXTSKd`!J zf0*QcPZC z_+oIo8*-?lxP!}Ek-JOgQ`1~1IMoDBRMHQy8t*;^H+>{kJM4c^tV`1EyWt|ogr&Dp zC8n8TaMRnB)?>obJCw4=gr#>XnQ?kjPWtR~A*QQi!qOLvfW<4vgrzU^yElI#GJR2l zW^?$Mu=K@~5rW5r^@@zil5tAHq5p^po5~)z7L63(6S&XL73WKG5@S|NcOF#ZSjo_&zj9|`3J~k`;bRP(Sroa3a1%)x1mIz}s zE$hP`o0aZZt-_!CUkcC1X!>Vlk*_Cd{k>ze($C+c0{5=LSR`~P*2jHpR{G^4M1W*@ zZ671b$7uSDf6=j7>ECiAFk(MYj^WrpdTdtu;9DB{^;U+?!)OMy#b^d}xU~6@PamO? zeq$m;L7_JvrpP>uW{wUpnmJZiVuR(<^jn`*xo;nbM!_C;^?!40R{Gr+RF(Jdpemg) zn##&yH2;BPv(k=fgwWpcbb)zAKJc|=vZE=ir*-Mt zayn!F2Xgwnh@Ue|`dsq{Mk26#aGaMtE+oCs)lL~5sgqvheoq#!zn_2GYm7Y#)J5p^>!7Nw0DLBAwr9g@W?)KhI~ML6Zqg-y^Xpg&}N;4Nq(e%w&sA z37F>_i6sO*Nw1aocw9(GOjjOu85)BYo08rj89{6ct?P~0Tj|n}A~ppEr(#pmE!NXj z2&&kW^cKsy4&jhNTit2sZir2xNe408tozNTFuj;_ZwA`7i9r=-hm)@4KqCtcyPH^RDYVdOxM^e|B$=#jzzJ(3>ovZLYX!Y>FTT=obw ziU~DKSK5+P7MS4akuJxcK#vq+b{11pEH0z0>`K4DIqA{1q*b9bTl7e}%4Pcs^hlwi zN77?lHjF@zh{5ip$GU8t-14b~wuX;$*+AqU=#d`p{slF+uO8@;o-Vbdkn;!W8ImVV zL83>}Gp%BACa9C1WyuuNz)8=xWQJ|ma%mm@p#wd(!u0C*EPj}={m+2yRt$sea1aC7 zCZ*4Ina!ngJ2ozNz@!WD05bF9nCP({xp|q8mj__-&bqxLdm^4Y8Zo5{sLjBQSVl%@ zwrhLAi-^Yp5)O3(e z-MtfkShb89>d*OhYZdbze*VOi?H@Z9e%MBV^DVrl2gSzW&oW?*j7i3yLLQVAl0PJN z5&p1MFs3Wj`*f-LGbUg4gPm0`cJo#5@gYm%s7bqt@HyFE61#@mt?vn@~AZi-MG=3-7a;mMSybCp?V>p~%a<=*UO#`)avb8i zBgd#&y4*Q4L;{?3R*qcyiE!YhE1dI3gdCU2a1p1B%&%R9gPbuU4&s@E122|}yK`ZP zy?D_Iz~>hDP8WroX4i6Pc|4qee7iX0Kv64~EUI(s)y?Vswj zE5s9#E1XM1EJj{`?Cjc=HO?3E*-LT1$Nbu*$2ngNxp1rX@+COW`m!#Vs_>UWF0*TE zm(ImJE?|NG8Di^(%X;R*mqY9o3zyp^pk$luT;H=s#mWmq)y-4mB#b70c@BU3bX1#X0xFT>l^u-l{m%NKB0=`~ck$l|7 zQI+`}IayrCzoqQZSf*NEI)d2MRLDoS2{&Ba(L2TC^>#-W+9b|HzVyz&Di^qBC?~~G2>Y9*q7K1 z=ha&3;-G=NsisdD+*ky{u@Pqcb3$f#>e4pHOi;2Up^%=5DynCK=SrGMwgW*1@vX%C z5@EaZ2b`t&lZ-!t-yT%SOd$hf;~PvL3^#kx+Y=nHxk&K193e$EOx-69z7d@gSp@EyLw>;9?&^q_c{fq zW(LG&Y@V?WPH#aL`DZVi>BjsJGI^`;bjs`N18HWG-4~dgS!6r?SRfw(tN%Wf!=<>3 z6obL0wGCUcJf+S(MPiL{hOQ5wN!!PR#pDxWLWsZ?s>Kbb%|(tjv}VC)nQ=;SJ|jNW zN70%$?AH!#!BrOZ7Ns`HHD=J}hSrVTO;0e0X1Yzm`7N%4$e89=V zcLp=hgQf4knw{}I+4Jxm4Wsy*5L1RM`72*|FB@(*K#C5*g=z?cqSMH8BLTl$5rx;} zJ6C@K7CxS>koi7D4Ta2=hC;8Q>0K`B18cAWhftasu9;P|CtF>-CwnJcx2J(@(5#&y z8ovZ4^`9lwPynLzExi#a*3rm{;}H6F44%vacQ`NM9A1N;5h>Vdl_%q^vXMVq@q>RO z<)XQET+hJ6Fo`Mf7h=q`SY&WP9AuaNSX#^Gb!5-Nb2W4rf&rjacv_4}|KDIz;psw& ziWA|t3<{aqv5<;WeHBMh#o|plHHR2h#c+zB98K|j=UumTWD^+ftb-8l02qxFua^`z z$MPcI)lx8b!L^EY=lAel@Ess)Hksj9fF9#B#$E#|cImFOM%{*&AHYBUjpNx37Ex`M zOV_b_3ocH^vl~A4BED+Gx11ULHiHZn_0Zoq=1o(*X%F_g?a2<=jJ6=71?)|~fT_uD#+!=f#9)tu7fLgv9R=B?h7whH7v>l zqovjGc_W@D;QM;`u7GbeG?4xtI76YXD_=LEiE&A(4ph6wl*IOA+wq(T*8^6yYZ&-* zU=W9Q9S!NdASQG#LSEms2%i1=#+8MuWFP2* zFc1*Kms4o_CbZ3tRN3>up2Q|`8T>3OLCTD90YYw8TsH9Kt`^Qc9ogQ`cVvG6?@v&Q zsJcZ&yb9h>HVSCp+Jxh@qLTUZX7%j~wr$rYLRYuUR+q^(6CNiA9Sc782kvAZIb-_7 zrdYI2zgX(m9ofUjLB-v8`4t|s#~n5c^nSdbLY3ckhpz=aoLBjbI3Ju*yq@s_2*p& z4F+YdrOb;-K&B8k1v0lh%aYyiI{4sa-BX<-WCkU6B_$biIXlBeBxF%xGuwQ3K<8yB|6rPCPTmhOh z#GFnuw^;5~LkW<@>adp%DB+fUn`N&f8?)2|hJV+TU=}11 zI|aOCoc7UZT=<}FcUu475dS!mfNkUV#ZF4ZHi_&kaJ4_MoYmlTl>>c3IWXPN0W&Jd zfJAKJwJ&Bh7Y=sLh2l=R(Bnhrf^!b`61vXGW&i3a9^4+vIn$42YG*Yvp~-*j_Rs>kJ@n8M2H_JqQ(avb z+D)zt{W#_ocrhtA%wR1*uTe{-&HJ!OE$l1xp!qHaCSllD>LEEonhOZPcLh@p0Xqu& z3fTFuufV~FeWf0@a`RzdsYk6t81|LgEsEvAzEY1_ubp6Dfy<#`UxAlA*jK<;*jLKG z9J8wER(2ddSzYvGnBxO*@uBGF7SP4exr)!M;*21PPmieWhNs z%nlhmX%SZg1a(Rso<{65bP`UiVczv`%1lPZ(2PB>?`$}4VVY}O8v(2 zqp+`(f5A+bu&>nb%o9kZL%_apy5kUZ?E&m7clD&gzHs$qi{gR0f_>rY$u|Y|#g;4? zUjRut@RwWtbI=O@a>u`lcebYr{&FWI(A@{%FL&ZFAuagJoit5IAN=J`IaX*N{N*0L zNoXJZVn}_;c@2_&*Q+a-aW!3f#*(KmLW_FZbm%B0#dd_5vgNH-o?2 z-)_;^4-Cdk$Uh4Hau2?tp2*_&)`I zx$o{#Ro=gis(h^AFV`_y2<;tr3(Q{m&<_TGVMpmt)xT#(U?}@h!C!915DC!d*Dy=Y zFz&hLAe!C?_{$CMiURn{UF6=*b#wq}1pMXJx(tv5e+7(84*cZ?cSYsEU#@?vQz!6O z;1ULZ1R3jPY%0r<;u^1)vLI}H8`n4Q62?plfO(BQAYLj?Tg=I)A8 z@R!@@(wvHbzueqiQ9k&~&D|A6@Rz&QJsjOl4*ccj?uyERzueqiQNncG++9&!fWO=w z?p?^59Qe!K={_V30e>Bda-W&y4wn4$!C!8f%U+x#4-5Wshu}g{a(wWYJJe;Dm;-;g zaq_{*(u*&B5Nf4RYJPC4+GJKSYQ69Rv^BV6_fKKRS6v?VDA{&IucoO0kVH@M9y z0DrloZAlA(zuYR9?Q0JF<&JULFb3c+cdX0SDF^;?$GL1E^1)y3c=yk!xfcB8PM2CD z;4e40%}KytZg88EfWO?}HYWjpxw+e%&~`1C*5Mxlf3?E&>i0B$n6dp^VY?ChH4(%B zwn^^UF0;9m^DWr0zos4MWY-!~&;t-I>|Cyu7hPC!%wi5h2O;=l2tIg=wbSQ`K^>dR zASkHw*nkZr%FUfet9f7(5tksudLF!m_*BQ8p@B}bfo9|a&7eW<2bv*)%8aNd2eF&) zL{@Y{4m7QIP3p+Lfaf7hYrX{8LwGC+zu`?VhG2^uNc!v94szQm!2DscN;oUQaco3- zhP(NE=a{SuMU+kG$bJjY4-v5GFpcW-jOsPY79gzoJe$JOt(X{YVq&!c>t}W`a2?tT`3m@dXt z`FP9VDz#C(Zrkl2`vLyYEI_Cc@a_(Z@k|5i56)M}84_ELKkR~y=}PH7T`K)dC#4T| zR=T*8(mg(e(gQjvJ-Cz7LqkeCJ&(j^I5!Q&=-n(>va)P$*`%?P$5xk3sIESudeVgP zWtH4q-`dE_3mP_!EIW~RRBXf{Ut1fu0EbaFe$tf5h3MCN3IIz4IsS-8SSPKr^WUZ_zoPkXxg$+~@e$tfhw2 z#qQirjWjfe(TQ(mpz%y!*Aj=9ic=%bl!nuc8c-30C$6aym)VDlKXzX9xO@*~_|(dJ zarAe8r?L`xK%R02r5@_$HaEz;^_+`M#k)-zi+($S89_6MLkirC^suf9uJQI1=W zjY@zEG|53CIWHAOksaef(8?n28228xaa0x0#A ziLR@#3Kzw!qY7cDbh6zmxH_F7)5xRFu5WXX&ww9k?ys?f`p zMCt`dMeh~M>|3OJp8Vb7xOM(+*4gsXqArn&-fK2sSy5!Sxc3{&uP6%d7WejBc9*wU z;U4;PkwV?y#z&NTmF{5}WfXszUo_HX@k29<%!0Lnn{<_q7dvzw?Xpl}d{`u%y;o(O zGex;Oth_O90_lt~qB0#Yv<>YE2KNCu-dF+*;ia$BgF1NC?j^{PE|)P1Q?cVs0~7?} zQZK2BonWK^gOaj)J$9lQB+|OPq$+ljnS{{pyyJ*jE_`(`h=Mo^JWhnf`(f_F*-PdD zwOn)=rSudCbKRoFHBPGd2={l4c-^+z=56yD+OlqF=XdArOr@muc1o ziVz4bQi_jquZ8!X^>dD|*O(**oZ_ljaU!oL6;F4oFs_Ec`M{LUZUabaO*<~fc8X^N zk*#l=3v-irOjTp1D2IeBTHjU+h{Wu*YjL8Py3Mj~8S8c&#xPd<+19BiB0IKuQ~T!Z z3RoNso0hb1UW3Czi|5z~ON*MQ%ZkSBS$?EbJl8suQbR0iT9-XdWzDxPRUsD$am^*>@^C`k0H+Y5Wi3>MK7iOnu2hIirra9u2?hiyEk}&*L+EUoNHKiaWS-gi9~fG#3g^s{$t~=?CEScy4uys`dK~>}sq|y$Bb%9?acF#c6CQc+1_c zv|bP9?oi5J59aPv61P@Uj(hf(A*QSA!Q2au!~~6859V5{N+{`T+>5l)h+GfmUd%(1 zxjHooGK+|9Tn1aHqQgi|f91h01;VQ)m?YE1s4Gum8sDquh7jP*vW4kg9ZEo%$!PkHYHI84y~^)hTWn z{(ILwVRfoQ{d;BxEFXKXlf7)}!(aD=)v0a>UU<3N-#m&r5^hJ~y)EtlLt~D{33pBd zx9Yg1GP;0eSv(GtW9~qsEp1s5x1N($>#PF9hlaLxOau?IoJz~l26~VUS5>6D$(1|U za;q)ZaR=MblZx18J8qe!rwXm1%512kie%ThGKW~^EM;QC$A+9&Je7(MwdBGge}lP( z8*0PVLIv5b!l^;G+;W#$E;;(4br@yfYy!uvu#8p8P-zu5+(|_|@jyfkv#ix*IqonU zY@G}O+~Jly1$iK+NNJ$qHqa&r*E14C)(FdP@!5_$!U||B?#|DwwB%_;eq~aDl{VxV zMY#)D+>yfM3Yl^paQKxx89{~}jyuXS&R2#C8)d^?Y>L8{)TrZV>$ofG=(wY;sLPC# z-qJ?IIBw3t5zyEK#UvkNjzO6m$a)|vrWa!BNX8NVaT!=K)sZGFcLyt`v-_~9#*6$F zQwHGRLXXS9im5U(MZs|ySTR)zB`DwaxD2dqDz9fz-fakwx=eU0;2G&d2 zjAOmjmOnql@h*F8td~k1cCfVh6&aMBRun!gBVeDw5hH55?~$dU_&F-30ktgnr(^_7 zlm}@dwzRL&p{Rp(P)5Xs(xTj98=+G&0uLw|KH47@VuPeVPs!kn!bS%Rr5vzvp%jB` zJtYGRrOc#Q`Bez2r(|HER9V*{oGg?sfoa8sQVwMyW}9`t*=Wmkx}|S3w&~g~14|x| zA#DpTNedn5i#5^($Stms7ICr3!5Zmt!jQ{bUPY@}$Td>tSH!&8Bc)-+VrrX_a+_TkY)OMx;nF6O@o)Hg6|9lkVyeyAaF>=2=TZE8AK}s@;S_+h zGnKaBlxaIN(&fAx&c!GS&c(pesEVxg%NFXWEmT$7npC;$*Rd+KUcbW+vr@)=#TW?u6nWS~>f+fhGgd~1+u>snM}{#Y zXRNh36(x;J`eF!zwhQyCPRXZ61;ZTll+8}b#^u7m*s!f$s(8t!CgCK>X~Lw(MyF&m zXJL{5WVK@xV@Z=T(qwEPqgffab{OaPN=z*pQwceoNOww3l{v=pp5$OukBNnn*59Cp zpg@qdSy^q$DkTe@8-2AatIQcZ&+IJkC!gb(&oE&)V$+GYdjD+lbF}FwO}3nJ`j$o> zuv;zuG6RmAn1^c`*j!JI9DZ-d`sF#-2>{9kDEcjvJf*T@vjJ){*vkMy@ zx72ebl-nI0oMb3dTjnHu`cUi&8J%P|;*{gAYOLzH%VY!{I~}eSC~wQGqbxzYN2}w_ z*70aM4!ecL{b**#u+!NAA5C4H;ko@t@U(i z`eI*j)knAfSXuvMN zv+*}#GS%%BH?fuQHng4Ze1oi$@f9P`m%-5J6ku>%WnX9m4c0&-S{t^Z$a6svn{D~Q z=4SdpdQO)&h-KLtf#PKS73r6mXRN;>mm!=gvtDje$Ml#JA7wutCk=+e0I-IcWO@3aCL|(i^(a4LD znyh1)tQKnUdr6Dc$Lz^&z;n%ZOtIjIm2vor-!tL3p|_f;E5+9Q$w<*Gd7vXZ0MBFa zJ`3K*!~35kL+F136KEIq0zQl9U3fVQUM7AT%;BHL%lUYz!ONt}@G|*p`1v%b$=|@s z5Aotm=!Umt$8=OShPgq@&+G927d+oXnDICZoL_i@q(8z; z;a)y-qbqGA?mv+zZF+uN!#fCDfM*}Vud(63?T2>`H_~YJOGa18xl!MiK*RQI*5r=t zHF%14porr#uBlL>pR^-Kf^!7TNXHCFQjIgnkS&Tz-v;_fwmr)c{scT`P;%cu$C=g) zo^ur2oqBL@L)8cRJ_+H|t^#k`m-urr{Yq@oBE?)%9hf1V$Caqgwc5Z2r0WDg{eJ7K2$|%LtEe0b~-P?bj;kS zxO`_e{jcBNk^Kvv0cYYQRx5IDXOWFtu%jCd{`4*-`mWUR2?%=?&jJXXgiD5~yAar0yNUmjlGhFg)LftSLj7>5}FT_^k(9`-e11$2Q_VD;{ok zN<$N1KaQDTPDLHwW%gu$jpt=ZxDXQNoWk`AxPA$pMe*5=Gne$DCY?FPvWa6Ragil< z>D^~Jfy|Z$^h#!~NZbo)?Jlm3Lf{u6abAW+XD*k#n!&2E5!5h(Ysrx9+ViQ*_dw=^ z(lS~pB3mHxTs$wpz57roDNcM#pMwx3ES1%AaTo2NYRB9fH|*6*UhBwy2hTwG`Z9b^ z1sv{H>0=gwGnGeY+!|-ZJ4mVxb!(iOz6!=HPV~S-0>#%YA zyAu3N&}dO$U2e6P`f?BBK*%xW$T&@3ocAEnqgff>036hU_#H0W ztN47sTr7&ydm^^F6#HWXP~Fk86!#R>V$ys<$XBVA*zhwDL~Qu?3sg;C%f?Px`Yu#* zH5A;A=WPhODXe6pujGRHfeITXPP1$b_1+|UJJONU2MW|Xva;hW-;-U7r{X;9Hm^WV zqJX}`j(iyybMTQMxten`$a$x+4SI*`BCmt2kz3etkOvthpLLvt9Gxq90>~Pg0fgGU z$M*F!aPY01QVA-TV;+yzsytWPO4S=WvR}vZp9p^w6db<>=b$j4*z11Z`nZn2E{#u- zcJgttaNJ8%N8odwl=}8l#$UaD9ga8&?C=AwVHC^ub!5N&a!2+T@G^543m&rUfJii- z1F1H@GA4tu=n|&GA6$;aSnU|eA0?6%a6R&Nq@IDeS$Iq)RtbsI9tO`jn%3$va6dS!5=I!cnDfjI%s8Hnv7NN1xmAx;-2aC=)zyPUluLyf^vVR^0$ za}^Tz5j@|3v<@q6h)Vke&SVJ->lGCib)>A-IFDruo@XGdnnt5qfdjOMyA1~8FY!3% z1GhO`d&B{O6)66-1M8*!cfs%Vc&gz4GV8yW?_V>zmvo4zk5i=Y>LvXl@?C9EYhu;u zP+;fJI?SK?Gwa)|TZ`<#J?eR%Ge}?o} zrGD4jB7N|MXnRHc+akUJ^bxQm-<40i7L+zD95^~SP>Ah83!**`&wX%R3~3x7ykQ3j zvs|K6lvcyY^9ch zo+a|WDIvcIdT|m#r{Fn)2XfpcIzJ4)%@7-pOJuo0w1vsra+jt z3jU4&a2excnZt0**<#;+27IW^0fl0l*_a8eJxO-_N53fzlgYX2_VPHRvs*?VHYVRS~52C0ez~o%UZC3r)KWKTE2? z35};9LB~^g@fFnXsZ;$*V1~BgISU?cv-;JEe%}H|^{bQk!}`^Ues9AE^*dJFkDz|X ziGF=A!Jvaf#{rPMkUAdkPWvQvTuB{y!Lke)CvnIq!^JfSLH+z2{}Qzfp$Fmro3ae10Pi5D3AVEQ=2Z9bHDCo{v z$hZ@XMPf|;A<-y(;ej3aQa>t|09#B;qNAlQd@#a$Ydf;f;`uG)Zi6yYM46JLrnWO) zKB^?is8LKpG1*v>UB_ZwDP`y4j_jB5^tu#%T@XVu8bh*+7_>CM7rg;B{27iWC$#@Q zp4pIp#2Ehz-jn2{2`OLjo+MuM3$$qAs4&NTtLsQYKKLaih~=wzHY29{5tC-zwq;)m+AAW_f2^9rJxFxLO@ z`=cLze-|H)`BR`J9rMMmBl4Xk^I%vM;FC+ffQ=l8LqGY8630>C=_h|tBG~|1Klw{} zpZuR)eDaq6$KIQOS5;ka<7c0{Z*nK*DKbcy1B8%7h9IB`BtS4GF@!-y!*qct0tF(1 z15|Crp%tnXYt>TcT5YLypa>P`i7JXy;)D~;?z z=IpiBp4OiC+3(u8S`KH^v2W|BQ(I3+P=txuhlDIdhR;DnrNh0%oGOX=qo0^lB{47g zi8;MlV$KL8hO3>rYaZgO8qe${0E*B5Om*s#LrtL!(8HB;zw3% zBa==6AM$C1P=XJ1f@{)el;0x77!Tw%CT|(un7kd~zh`4yBa6RRK`AnQ>Ka)GWnJu5 zhBdMVDuUbO|5R=IscolET1hisr)h5vKS@@PKa|yDtl`$vFVYQL@q^tvHW^{IK~e4Cz!O!3D}`@_ISA*wp4>iA>FJeuGwF zYr-V%Fq1g-B4X_;DLPD2G>jr>S=eq4u`Y{yiR@;U$gnbu;ZKn8oqh}P;ezff%mCNF z5F6j(W~o%k8o*Io#9>w!p353O6BhaxS=-@uQ`uH=)V}oLuNjw%iCqh@$%lnWuS>AW zaEPbWeUgQ8(2P>|iBfNdTUOeyN~$|-hSMzD4B=Q1#!(ONBhX8sEcJQl735^>2cT7M z17YNscsm}B0Z4gxZLu0R@ug~afE8a>k#Y|%tUPe5D zAN=EJ4>Mkv=}}Q#(sLSQQESDwH6~BRb3Z~kgV~fL%J4=Z3!BX> z;SPt>IZCWeE?a5U{ao5M6%9=KES9xX+L-Ky=SX<1QL;d)t6!LYa9ur+7RI*-?HP}Y zQ+YQrLh3uh>>ND6a=R9UGG_cC=HPy&G2et?&d}GdTFJYf+lOUKXwI9B$$_{$`>&9D z5y7x0X)irV_sgK1XW4MtOE+2s_qc}-a-6f^C94zYJ;NK}W9;8RtIP*s#Fu!(3cMXu zbrFPqfk*WY-$PL9Eu<0uC&qaLP5NwuqN9Ck< zjxG54W3dSi?VN`Iel&^&=%^tQ?1+hw|&( zIiOxlPGR^Na;B0ax*~NC13n~tfE>}4r1;n1yhYCFa2Mp!q}b`~r&xsUfKV1_sx*A4 zFI1EgI+W?U4?<7iQIo>86f)^zNv$1+W`ReQg_n{eu}>xE8BnvKVs&`fP|@c6{YFPU zpFXSvIBZ4Pqc8&;)0m9>65DY_P`>FdpO?X71c+wvd|oyhYvDG7$BTCGxR`^7qh8YV z8`^Z~I+pLtG8Fw9!Wc5pyUB=g^yNU-VnbjBJ{V+%$MJ(*1>&AXjl{wwqmiX&Kr^-a zN^q8w^O0Uij@0T6)RnE(EUC{R6dsLyf2r3~C{XwvLA%xzdP$>MmFBIwG3rR^G4xtJ>DjfcrLQ+yv9^;D;J07LI^60{mbpSLZ zrx}#foS`EXBnW(YJhd>Oe)&76iN9`C9K;SW0urDl21%=li_5!4mvw;*=~<=#_A zbiik(43RTvjkfM$kRE{^AtZQ?4sLf)xIj|sXb+khT44q-HS>4`1Zd_y{NYzK_$q-o zpqcl#L-L?yP|l!CpU|!N!*AM39W!D2q)BBpb<@g^DT8H9?sYravY8tjV>20YCas~R z(^cV~AcaFW;PTz}Um%krR^W-b&LkYlfYbz$8iz}X+xNliB!D89E?bQas8!+PgtdhM zR7GK-sTGZNYgJ=Uwb0o6Ej8Azg~mF52aWY;p|RdAG}bquG3RmaH#ol;^qm(V<+PQ`vuaU>LU&HOEzGKiML2Y{jw$MsE;(%`z$RIwWo?5{fZ?e zOrl=3&h{ozuURKF=%Wqw>z0@mHAg%>w4r`O?MCawQNw7fXhXfub2EIG$XH0xWaj(5~E&{7*?x4s!4=gHFM&|x~CO& zdB8hPi3K>jIyEN$f@dc@os5yO9sM}!a;e&zyntHGzuM6})YiogAoy;bu@Q$T8WBZ% zG1jqzF?6{C3N~p?*S)%~dDzYP2M}Ox7km~&2sF)X0=j-5FRLRQ|3MOJN#kuQmUKGZ**Jt3XnMLKTsQWqt-v7C{EOdadvL*B1iw&@Vy~ipJUvC zAzW`Tq|^|u&oz|b5U#Be%vLQf>+f!HIU{IsIpd#MT+T?hxSa7nSzONi-?6xyDHfM8 z{7=}729&xU>;GND#mmSh@Mf?7JFnsL?Po;9$Tpo~J|oiS1~k!cpNs}=Zbw_QxgBeB z2WncHO^qTa*69HdzlVve3AYNM`dTOYWmk;EQQTt5bJ=S!or`9Q&9Z0Z zf$f<@bf`K22kr-3QNIA5a@Be`vF?a3kvWhP9cC#y-e4(tmJ)Fi3?rJaZi1gSx-CO$ zixI6Ie==Y=IkUr@=s0y8T=4~SSIu?cFrA(gw+He;*@2-8-C}%!N%lA|^!Nh6)xiH+ z5|nTxCv#VkHU<=cjk9IHt6Jx{?AZdrvoU7fZ6fr6KX9K+#xsmqT-z_shiHCzS;4>O=nTx z?0DRt(MNr=<8sqha>Xhq>YE)miSo^kn?(6$#{)N=MSZj5@$^|^)VCkf`b}q1-|Toi zZAKsU&5p-|Gy3R1H9H=CM?DQK#k!)-_l)MaCt&9#&Y^py6UCu>sipRUvFH%%)*YXx zriZ$$ni%WjGG~kCT6Q9yvLF&2=3XRWv^PYwJl8aq&L9vie+~gfz9~l;G!hk!IMAyAfiF$+sDV?#<~y10&Be2LS^kf079anottg z|G>b=SCSsxnw@kQ7`YL?GxVqU?cA0%Cla$!hViY*%{dm%$b{Ou%IOsq=8cy$PA;o) z6v-7;lglUK!bX>liBn2ya9bpJAv$3@pu*9@s5-K`qHLBEcHDV@RSjhv8hsTHul02E zUxm{%$L_|dnUp#9zT(zlgMm3@f;fG1?6bs~GRMAB+$nSH=ZZUJj@`JkoG#L-eua3u znjfgB>p!43s3Hj}u71I64H02Ad<9!wr>3LX#_msg4CaqfrstgQXyaCR?V~#zG;kajBfnZuU$6lO31Sclf zIIWpuH+5X6n`5tp53~;FAajhNP6i8Hqr;FimsPxz#tdt@?lt||Abc4t-0N7&Sn9kU zOx9oSZ%m`nVV;8$^xaLS9;57+HOya3K+*5btT_?pi3|4@<7zK~7!c-dhSWJMur+s^ z85Fa^<}8hes&MZ#^qyf3RqjqE%K5%*(1A_b%R}49qObi=$+QW+`Oo zT4vnOU_Fj)JMP^iq6Iy06TJM_%+F6nWQcTko3;|ETqgUynxDVRMDXNHMlc~@;KMqO zDXXbs*C3qMtSne0>fUSwfRsLSD+3A|_^^(kfe%Zv20pAS7`SJL#G+ao>rLPp z5bxXTP3-UG;)}??Zhro2kS{nE;q-oQut82=pO+(!> zA{AKVq14MKSK?meREdTh>>u-1PHbyo4@a#)pxw0_QZY#>4?!NRr#Hh00vb7`~K)#`B*UZxt)@Yu89>S?^uMiAeW^;x8*G+LVr9tMW=TEcD^ILnj^SjxC1hi64OH>cMc%cs?hec8 zA72SPMH2XlBm=$Ml5^s=5C9-BhEDF0B89<*9xw!vTtOSFW(Nw#W*@;6M62FF&i7bY zzXD?}v+ua~S;oO+NE{26Ex|D-$GzWjdXa;OxkbGI#t&$fgpE>TsmU$4FFny3*2K4hImY5|W@$yO=)T5TsjSPR7 zHHG)M<#iR_NlWC2b)7jT6K6042rMU$22 zL|eF4_F%=u7zVZFxNoQf z2*>SL7+;Fy+YxNPB_4vM(sEeN^Xjg*v>6dMMnN$1AvD>2+t!mJOUFki@%1@c!ZhDk4p<7ONiQ3thQtD}-5b*a-$04xhK=ysi6@P2}vjxnbJbSp_pfTf<_#F2twHdxJ%R|yV{d%`yq;JB|^Ab)k=!<<7VdT zxYt+>jj$BiR{+(_n~VI`EHl?@EqRN|Kjxc9QQiQC{1UW@UOE0O^N%hgfE79 zy=7LUGadJO8)S7HVDN8Le_KpA;ezp)D^(anapTgVDc6+37B?O=z2ms9EOKH0B%NVm zc4bK%>UWcCdsxYJ$Wpgjs^f-iAh)`4e+Hl}ZJSRsVQTAp2kEegWT;_F-DRnc8@B%M zLk?&FDZ{!S61VY{VSVj(;{o$TnU=c8QXMzb`hCik5dq_`B|K*cCbWq4_kxQ`$bstM zCsCcms1QdZxw|}IRLCq*uv&LuRA|7#tav)^85J_aS0wHm6*7cGJZMzNu6t0KQ$~gC z!p9#E&4!Bu!$5|UW!t`#sz>aJVE?I6A>%hY9xy8OK`*Abza2`ayPOxW=`55T6_^#e zNCa}JeShql>2iVzvqD}u`?T&W2PJmeKc}~AfsVjh`TkkE`)73-?|X>O6x*#!H>aT>Kc}~u`a}AD6I=|qf4v{880`fxSSf7 z29>&oMTkz|8Wyh?N;fey6t#^ehT>uv2PTHb3PG-6sX~XDp-)C)GxSJAE_*}l8e}`F zx6^x<`&(5CcQ!ivFVqz%_H1cjUkla9vsV=PyATTZj}z>V-I&Y1xdROtv3A5QT*b|H zxmISsOsgfFd-QR+kY$UovyHy4nUh6K{Q%2WjD%#-!6h$T^KsIK!FuVkRY((t8W=va z6~8k(GCQ*w=yEy79bK=Q4RX2e!qEcLS>)Jyn(c3UrY?Dj2Q3+yhLPh{XIe5c^*9%8 zW&SeGmmFO3!c`1Mf9YjlbIj%P1LllucarCtnI(n?Gw&Vla@yR=B`*u1*gjHfG-t#% z80XGm>XH}qAW)xw$qNsDeH{{$ zV2_7OURa6x!j=wBo!6NzOs!R?Lt1|N;e6#`8(5vmi7r(3|F zrxOF7P7+UjIkg1x04FkJHldm*Iu}lsOh2H>=hAmf^@lol(_4AlLttd|cYiwBbsPe_|d;Qa?W1OW)5VeM5?v){CWq4Rr>7 zo9Ukx#V`aMVY7`TU@g_lR+<0(99{~*ZcUk*}%M=QJ*F4&Ve z5`SKW%)69(C4UiRJa^%8k#W4#aI+hA{3A(DdnDy3JU>Nje_(Q?m_A|xwu8jfiQ}(u z^v6v(pHL%*u=@9guYP#cm-&0(%zsc~8Np-G^(z$)LmQJ9 z;pw{ts=(pbkvR0+HNT(Mx($HVL>SIiz@2*F`14f=??om6aeXQ^>oHIcX+uck^ceRFA8)qg$z4vB1Jz$*I>3yke?DR;H$Dm=H> zRkY}N19onhl+cX`-V6-CmX3EQYlE2dvZ}kdSxpG?s!@S|ji=8w`1m={)Pjqp790u6 z;Z(>>us5KIt4rMc%i&HlBxeRHIpVkwgQU#QLd!8+9ge_Es+ODKszpA0qd=02(|q~U z1H;EUJABwOvl+TW3T{1=wj#4Bc_9*d&>$9^qwZi>cY=_IdiE!l;p=b|GiTR9d@HkY z&tACl3-RL=GnGwXJVeHQpOP^TKcn7)yKpH*oDzEsrOM`kR#b2L$u*MW1)xmC zq;v&rFygY26&S?VDp~O~EGT6jUq^67Oy&h@8$vUgJe-;AIH56FP0ml1$>DN1Yz|Rh zqyQNe`mE2>QyygPn%tNi0x0fkB;;aRV}O>wl%!oPiG{rv+0MEfE=kaX@UW55exu4E zZxU3>T6NbHm>nUfmph*vsae9=P~Mo_Mb4q_={`ql;!#rp!y{*wR};&qR}WZdYe!cl zDVpk2*?SL!o2H5(Sbvhu&+| zpUE+*W#a0=Ifa~A>NRqtuHV3bO@53h;Jyf?nWt8h^GDDmTr#GB;pXW%ez?m)u#rmbPAkWoN6!^7LxmstlXtzA*p;;wir#O?)T@ zZq%FQQWt1n&IWE;Wqm6_8V&<;4sA?!z|(+$Ds4dZfq+)bHF+7_~Hs=bF{ZB!mu7=nr1U zGe)I?cGQ*M7ONw=&xZE`JpF#-II|G(ICPs=itbsZ+VbMU`5>1&Q|08izKlXj9q}_B z1L~??M_0viP^!W^2p`?6P6zYeOpz;rK=eIT0t%0ELC%~+YU|Pv$|EQl1SV&dI=II} zh*N5%jtrpVOz=k}Ar5rh5Alb?3VabB4RqWu@Q0NVl$8ho=(r*H!}X_9ZOO>Vvx|M# zsbr;{@!6GLa;B2Mqt#L$ln+q*R}^kc*KZcPlG zW88sT6GIyeDRpaN=v+ey-kKOX&jid{6D5&B>|E&lE=>17!_Im4B!&k*!vy1mEO12O z!LQPv8(z5>;KXc95FNM9yTve^6iMH?IOZ}AjmAN%(V>KvlYiD3(HWy|hQNRQ7Q>A3 z6A&$;pKvR>jA%vqgt8hQIkyMzQ-rdr8t06F69-_{rJPkq1U*+xb2bbLFstRr(!{FD zNfqT2Yn^igya_nkUL}0zya4&g@@dm>^uS}CA7GVK@PxwAV3k!m7X%m#YI0A`x@MvXCB~DFV+zQbo_~!vmNkv7~#1cu}B>}RzF{+NGusJ}UHl?bDhcYMfF1bqs z3=nFjSJ%qbZq6?PjEa(Jwa#UOSmaBmgl&y0tv$NB3~4!{vT9~!8qGf#DmBx{`R79e zG^nM*2?Yo^5+uh%b%0h{R#QHMN0b7z)cMj3b{#z9@;_gunb}*KI4{$b%QZ8z*>Cya zfXqJkOM^CtYg?YM4T1wAV-K)Jr{Ap^ZL=7v5#n^Kfw~b+wC!q->Jf{aXs2^P{GK5L zkuTpzps@gCAd;!NqoKCEt1}W)_fXcu5{y8{6ltfP1ucFh%mO4LL)G&c_{$RkfDuG; z)l4|i1t%z5KQ!u1P^Ay`8GnrIUSRO0EPf80`hQ|0@yMxg9?s3Y{PAzNJj-n9<_|l zDTWi-EeXRHr$hi19C^%&_DnRx5cr(z#J8b>eUbi&G*qxp&q*v?j-q_r#*y1;0Cnv- z^E-_RI(h%-bx>Vr4t#<8MoS zUW^t&A`y2t1mfpG%RM7G?rAY7&wLw?40c&v*}7zL7#U*Sy3^k1z+=opC~t=?u1JhVal7<^zcc@VTg{8;s-q^H&EOyjfF4*1U0j4V^Pi{r2k zE9XgqygVj0}33ekpzy^ND!i+j3}CK-cW**t%5Y@ia>eX+aeA4wbHv< zvwcDmo?$Epx`p}T_OI5g7N>u;=0b6%uGajaxKmeaZWedyYE9$j)tb^5gPRrO57m=J z5)?oTK&EDzj1*H~q@tjCQe8pqra1C2Nrq2X7PScfqkKNoD11<72$dpCY04K^OMDg+ z>3KK@?e@|T9YA#xoS*98sxS`_!eovT813-d>2i@ z{f&uEXQV&|ruw4TeUJflh(RYqzNp_~Te-~|_S zvJ$iwz!WYth;B5MC1~Ty7|Jp60WhTgvo@bEFKn5wd4>CxR(vPeg zEJfL(I^3S?k!C^c~lxz(6G zkijf?&(vk;b2}1ba5X*+CW0V?Be5~e=~{D;K?b(QxNJ!W8JJ-qlJGzV%nZhnM01b< zJ2{+JGm~8JAlmJUB?XW{Vr4UsfeAKCX1Q{DbDN#1_DuL710$1-$#-**f#LK|Gy@qJ za!$fKI^rec9w}0Q40^Q$89a{JhXEP%N(UJj20;eBnt==qhaiJqEkFi_N033U)<6b^ zO^`t^9-H?;28K?ML9dn|1H&Z9pjQfHV2A`6^x{d46v)6Z2r}s953?S~!0-q%=*3g| z+*M713=ESXgI+B_28KtFK`&0@TLBpu34#oINkeD`GB9j{3``ybWMGH{8T4unGB7NH z3=(M|1Fq-*GDxI>3=HuQtfkUH2BtoYNHhl-7u%I}`9VMN7=(J4BQ0})FJRX|^HFk- z@fO8p9(xKog8Xa6pfTB#_=qpqB3(falJ3n8Jz8!e?d*V$FPJ4M&QGN91x7g|EX7Qg zuTf^UT;w-onY3PO$>TgS@dd_zae92j7Z^rqI>Us2oegM8!fzmaG0f{Nvm%{Ie1QqF zIwAOi99v8VU%<5~@dXL#%am(MVT+q+jxS&s#22J7Ow6t7?r&r)k*LL9EfByA%HJ1l^@$) z4)6to@rjlrm4`1dBUdEh;|mNSkqF`oObG2!nN#=zL+k7hh4z#R@CAmGWt+W}sz>aJ zVE-w;!1&Eh1n>nPeV6zD1Qu{uNV5ZBtrQ2_bSI$0Xmdkk~ z@CCM1y@Bp%mrDfT3)o}@U$9m7W==7ksF%HYt|6bs;a3{Bp|Iabq~i-HNPGb|Q+<4a zA#P9-OFDeOur3G&)0)6W#qF~czJMy@?Zw=Wl-rBBKSO*0w&;9(ff3pQum0`DhI9@5 zp<=i}+F3#J~leA%f z4159m=8nV{uy!O;_yR7I*)ON?1zf|jMfmsvGabX0Gh01awqhhCiw^JwT<&qc)*N3z z<#590AIx+Ix?IU|x7Vv?gIq4TfG;qeMUJhf+5VO&@CE#~#~L5R7nrbfyy{GRfvLy2 zXe%jv0T(bF_!>Y8_)X>k>+7b?l|$k@OX2tX?Iui;@3K>+L>!8N8vrplIE zh-U)HoJwX6zf-tVx%)Nx=dMd+!FZPZAV90h~D3NV^9Y$ZghZY>}EDe%ddEnsQ zm@}9fu0!epA&hF7#)pQ(=Kze8QO!42YlJYEleT&2;BX$TVFivU?NlPI8YnG!-Rb9b zr{s0W&=v4FbRmAABl?H^T<&QB6oUi2jyfZv)D6D(Ga^)5E{?#ik8mD^wDD*a{ZSsr z8zPEy^``G-s(2a3jWlpsFX+9(dZ$krFqX|b!BJmF6!*#1mwmkSel5NSEX8FUUyGMv z)Ggk*O*ZTbG-LHmgyO?CnRiAo>|V+^(Yukr0qDzceAkK6!+`mV>lfiJMB~bxPdJGi zWrA}Nzdc71ib^7xvibOU1asXw%EHTKT~=Z9&fPhcVc&(3DKX@N95HWRh%y|jsH7&B zhpvG)iA7n=dB8xdsHMhkwLGzZXSWGC}!_A2*RO{w)!;r+-s&%N9~Uc-7K}NGfP7HaRw<3)^$4X!@Cd}st_}r&L4v~n!BC0-JTO2mes(LImbv_l<^|v^?J|C_NSh};| z8uugm{QMDwKb}oA8|(K zrsO4f)UKfq!8vp%e|QiMe0CE9!5dHh?xA0k^&x-W5q>@)++6=Ts<%?vF9J`1=RSm7 z(BCWb-qL~(fL4sO_YsY#YExe@wzB2QfvWQ&D!+GAawDFDZgQNf{Q%CBN>c_}fhWl? zNJ~kOl0Q$X#b&q*apdm;aqXfD@%=>V*j~7t5+-&fF0x`bkx-J5IWILP&&0DI0&0Ml zr)_p1|FQf4faK%3jbTFqed!K4PDHJWF@@vszcKTMoQpo zZQ!FN@ITRo#%f&se}@CwjA|7ESc^xUrk25fAUa7&HNs~2YC?KSOhLoi0-$4aX~RLC zqtvebxPRfz#^eM9-gTgtm~$jCOF^Tu&XvU63|AhmQROjhpaqm98`LLgHoE(LMj{%K6(IS@( z>@2vPvViX?YF|}TvIlMgyacRHgS@6Yg?{e=sR(|j(CfQ!j1}C)ROX`dR)!=H57}yP z)CnpZ$EBy^DFknVAJhp9>UfHm*w4pu%6<{df2hA0o$bTv(K~kIiYiED<#;9c7b&?L zK$|4}$6rJ%|Dd~`y@GMK|AQ&n$E9SCp$lU(jf((Q!j%3Vq{&eZMUN{69@_NP8HE@V z_DFD_(*x`?KcRRSW7sWlVS(VeyZjLyG28|D9%bY*nCw_61DNaXf21*K=f4P8y2$xX z35N;P%autC7IT->FRW);)@I5$%C^571IJGg@SMS3PS<8qM}GpX08QE_`^vn7g5yIFg;}jHFR2LD2{2*rbw|2j%SEJw_$c6 zW(dgRI&t5Da0-_u;d{Nf)osZ0(gxT>nVn0wQ#GHqIP^=>%odxYibCfc)0CVlBT_@?9=snhG8=bPK;|tDNhgGkL?VYC58BWg z{77a$1ov}1>YlW2LwcOa2;xXQsw}jGK2!5P@yZw;BKzb}faR2!GWSx|)s=cYr?M%z z2u=BUm~g2V`zDy2+A0;3&9^Zn9jXn+w(zdZ8U8GyfeBG5M@zZh+-f_?Sl;m6O>w&K9LZ$1Er^C9nmj z^oQdXnm3TNoBjNiNyF*zCzHR)Qs+*9%l1rW++L&hec6~i2p!YuU_B4dW_q%Q_2@U0 zHdW8R>ee<)hj?b3E>H1^c>To;pt!b$$q%sd^`iwgzoC(VrsfT?m&^?KpE`ktO*5kCOoh01ncAafC?kDJVcRy*?UAJHvrz3xNe~JW3MOqE+ z>3DGM@@=_kUTcqW63+ut)S0T{gz~{1Zxf1JKYmoVdo=v#dy@k?s@5KsazYtq5{-YX_dP!rc+ayv%LVK5*pt|8a`k-3w4A8kG6TKEO!mX~hQ=X!$@E^Nr4f(1Dl`X4X|9uA z@Y4^E`b%hCD{KaN9oe6Uu1sf(PBIZo8$7Cw4g_qgHyRpN4c)?OAGG$u!lqS8~TbTW9r#~D09290hTLYJ=><5Ltezw?rI>Pd$yZ8t- zd~^l}37mTX;>stDT(ry@J5y(dx6eWKh5*_C29^)QTkHHzhl!q%aUBFOW5a2_CCio} z=*z<+@v#8Vnft>h&xI@;g&3m4rEnOXFArzW^Lp#I!go=qVd-iNe2zLYBZ}apaz_wR zA3SPSMhvQGR=K-?(}UbrD)+^pUq;@V@L>8(Rc#SGN_F1MR<_wWI8fe{ zoQZC7*gcN(y8^E~vNg-&XwZ27uFPk$HB01DkW7hW%WjX^+)~sRHIiYIjOrH=_`4eex<@w>^XWaq@-f= zWf2~=L61Qu0+|*?Gqi8WzD=(r`*`#$GD;rFf#d^l@_VACw4&$-5%nHC>L&fO^ngXt zWbGq+ODlCA-*sTO3{#y4v|5jbQG$_p4|I??#8dMFqUNtav(^3qQF8tRAe<<*0}W5#L_Ox1rVrDznx!%_@agDaz^pMuQrE+ili_R@&>dPB<_>g)$v^h4%8 zHr;6WqQanlB$H2o^DMco=%??jreqEt^`^dsK2sIZlnYpk$o^12(F*&1upTAb2_Hyj zOT_!ZdXMa<)3iGnz#-h0EFTQjq71WKnF*zuEv-cvth)m|Hb2D;kag^$4E7ZqqFUU{_u&_C-ZBw%CgIExc@QUpMiQ!Pt3QQ~)WRQ6_ z3Fsa!$Y4vkhAvZxKaq$(C&3irPcm4DYaTLf=fVv3X0O1N`vXU9%vg!AIB0JYZ{JV~ zZOFLFA4b9ROQ!l+26w?jo3^YQIUlz5mNp>f!I@4BO@&v&n2(m~3YJ+y#71MpL|806}ycnfXXaRyR$6qS~#&q6jTR4XcS)bR8vQ>!x7mAEh+ z&jzG<)<|St_GO04tm#(Jtn!9uGPZX}Ko*8)QhBjQ;4;b^E))GxBpBu8XHt3dNLY$% zX-~o;#gKjqQXwghDioRRAmpy%rrsg4G%4mV$z912!gg_eXU&`0=#;P@b^g$%7!4uo+v41j~MCo$ThBUCFt!Ns}uJuXz!v_7gc5m@j*JW|hc!1NS7&4&>)iSt9P~ z)|4F38!LLmpFajFmNNT1$|iNtU9y^zlkupLv7Mt)N}E8N=@DzMfa?UL&T(X- zyA^^P*!(8NUZ8NGr@R4@FM{3eAcR#Hixq*r2ehI0;b*4Dnf?M?*l^r}K$b%!muE?( zW1AMc8;nB#)CGXuLOC6=S4z3hh_Nt7F`_TKV`kd}5zUSTBJrp;60<*cP|v31AUx_P zu?v}|K$6)^?gi_#USK~Fdj#xh2ZMGUqMYe5rVj?Cb|il819^H0UeMX>Li$k(80NRe z4o9loP1VIR*8L$?CC=hm4>dM*Y{J{^G43-sGIno;)N|D8!?8f} z?A9?uKbkNSM^GgUUA9T!=GoY~l)FN)V5Ju`OTsSkv?XCP?)sw|lb20vOumY2tv%Fh zC0*idC2jYjC{XRY#aZq1;4=MnR^0U0m#>>FZRVgjeTFtYb$T&BZ%dW$73Wqz`lY&}qke0)7tnG0w4qMh;y@u2Qor(DWl+ zRU7^~nT{Lo zz;u5X+;HZ=Cz)V_8_pd368*J~8_rCMq=y^MT%6%Dj&H>cM@Iby0s^Q6z!m^hTh|(El&E%%dEUCr;-k{us^2zv29i&v0*VY0R8$!n?h5VOx{_e}Wq(@V5xK*JzI#r0lz(hzmwhyw~S!l<+Jd;%IMa|30WV zn$1ql2Ng&A+)Zh+$J=i7s3|ydywets=!+IP@y@^ZsD#zkA;?~*bIz?bK3D-z7>b1Kc0{%zND4$2 zz6T6oAJpC#u|^A0GWZAUNX-nU+ zd^H-L+v)ZU<03pA_>;#Kx(Y;WDUZIPCb-<}~^or?B^lcsx`y2qt2KYKHSH z_-zf<4Av!JWol-uQ&H?ebtq<81S)%|=Ga5Zj6*{8QO!O%9o6iUo1>b2hKFj7J#52m zj%toQY8k*K_+QOqyCq@GP|dN&tY`~Vv(Ncub|*gxv>{j1*VZHRCDYl8!(Ov`l#mE%a#~GHOKZ@S_;)1 zd&QCxCQ+|iXM2;V*Q^s7^ij>R*DbL*syX(Ctv%m@YL4x<9-E<>V{ck|I;uJLmL<1} zYL305WSdRN1RbtNB#s<5rggp2sSmoFd>(*^Pz~nqO)MeH5vC6Sr%MN0d zW5e8-)N~K441#GXK2|xF=YAq0Sx#G~B9`wiL?V2wa-vTrCim@G=eyxW+Tgcfl{-b+ z9IcLqkdIYvbBvPd67nEedc+=adMIT*>RoYrC}oXf zGYri`DeEHR&T_g+ueu7--QBf#03V2b}z%&^troc!MBc+xC zC|i6!(dc(X z(QA#{pp^CL#${2;dcAQboP!vSKC=sgX$_^U&)vodh*H+)*$&=EDeLo1%}zrp>kA%$ z52BR2+tblzgDz7uq~<7Pea&TU5x%Tp^>wUe%z=L&n*NQ6GX+)FH<{X-f-39Zo58?9 zmGv#g6@V)1+YG65kEz{|*KKATYK~OacN)4uD(jt0mqjY;KW`C-MJnsNt`jGb${ZIn zH47nA?`FRJofbhV>$^!r1A3reJ2asG4pLb^d^ggENOzxYA`M)J=HZtAEu^x3d=vsk z1W!K32>#EJ%6ji+6VNk5+asXw7pbfp_nE+7IGush%u$`ObyN!jJC-oLGDT8GCLJqj z)^x1Nj(%}G0z$U;y~+Upb4X?V+D}bH`{#8)ME_-^vVQwh6Z?BtGxlm2b26A#z6qw3 zFRf{bKn4AN1AIYA2mVgq-v?4zfAB{WD;h;@s;;S;2Gci-wL2v->V+QM5QI5S>Ie#>bE z(5xS@yw(BD`a#QX258m~S$b=LX8o{b1_90b5ld_iXx5KfMk|13{kY||258oMEwdFs zvwqg{z7^1{o2*3ZfM)%oWd{MxdY>h>1T^bcEvp%zS-+vUm`evV>;0D44A88-Wlu9e zvwqvwlQclHe#cVN0L}VcWhQ0C>40Yao?Y&z0L}V+OG*bc>%UsE0W|BsDKkH;PWZQ` z=>zIoX?h;2S%08@D}?5#X8n;(q=#zOpQ%5HsPL1(cTLcNz^dN@bvVeB6~RI}cqxFF;bkibX%YY7??!!|ORyh^$v z-29XRHEWO7DyUgst<2p~KB!q=V-=JJY6jIzuG2xy`dUj)fto=wljP>0W__Jyv<7Mh z(}dp|s99fcnax4XV3@cFYS!PVyKN}})T|v@#QLCStz1(G%|XrDmGy7ypk^?ctY)BQ z9kNs()C>v}66zNKHEV5Y%|Okdn=sQr%{pwUKByTK6Q%_<>kR7-fSN%wVWokZb*82I zpk`1^SRSZZM=T)-Y6j7SCZJ}HQ`!5l96L?vvt=+!12yX@xbV}|#FdUNckjW+T8>r% zYStC58NEDEvrh7Ztx?1P#u zh22IF)a;Xkpk|-g64b2cOMJXEEf7oq)a(nSftvLqDToxPS=YPV$Vme=>*ZExiw|nn zD=o=@n)S&p7po~yvtDiaK~S?^V~HN9S+BL#vsF;DKHVksD+OxS>)q#sAfV>=&|hZi z&(KX~>YEUGdyY};8f2%6pl1DB^$OeoHR~_bSWMmo)U3Z2s*z`}DDng~b6>eFyJH=5 z*)?}6*1e^6c%WvT?Q%uUZrOsGbsv|@UA71VYSw*SGbQst%^D}^rD9l6v+nP5W!M7L ztOtm4(m>66pvy&H0Mx7pxm=xjpk|$8>uCzqtOvXN@R$Z_)YU^pa&?EIm-O9`15--5k`c3)~Qp!xq%6$4eU&P_sTvN}L+xAsl_U zO_%{S>tgFPpk`fSoe9q4Yozb_mq5*#*am687(c8wb^|k0PlTf_dpv!n%Swc>H@N5Y z!IXZ|k@h34dG+k>Vu=n0XZdBNw3CQ0u_VaiEF`a7m4mL01J-n_XiS$v#yD1neXoFR z<4k#<27A9#oQS-aR#jA#)HqRb)H*Tqx5kN^mkK8#FBR2T|5Z9|#8G1$ZN)LmX(xZD zp;Ajyr#T(WOSRL{ywujvtWzg(OeiUxX55{{UF~#{zvWI>!*{xwzm-mwc{#>8NM5R( z?(+8-r-%HVP<(7aSTgPfS%&RezYMAny$E-{{+5_*gK7nE3HHReXPlHik2%Apg*ZW@3HQZopq^8u(ZnwTB*x&gw*n{yL+Ub+fSGs3Grmq~%*H^ojBUs!{ zNBe`0zEP6Z*TW;}trBZrB=Z&tukVSD{-b$Y;pkh<8}fCVdBZU~+##p$a5I68Mf(vr zcz?ZF+@3ueeW}z|GdZLwAxHm0yt5Y)tA_eA@qq2nHoUl3|I%hL!THmlB#Z2S#IUHN zcUsRqy``z6|7`tdqgP~RVvQ0$MR!t)!J@M0|r;l4=4;MA}2Bd3ww0rCoj+uT+4C*x`} zo=;L@9Jk07JItY()^m~X*}lPZ zk-NDS&-g&=j&*Uk7*YS+`X1~1wr}t~)}@FuQ~{a_mCdVPwa^J)u4G*jdVn5Jp_|{1 zhpb$++6iBw_z^`s)UO0Y1LCJz@sBB92l-R2Jj72=iQDj<@FiA$zyK5cC5oS$P4Jsj z@)EogUSXxDQJSHzu;K`PRZ7~1zQhS%Wj&m2gTG4gL$wM1>Xe6t%jd(i*2?;YYvAX2 z>*o&Z=XmP}anz-}NQxkRww2!RCF$&x_>YZvu6*hNLS<1ss)VDahm`6!5IK+&ywgLh zhr`&0z~NW7VeCKfF15&dPJNtJqqS1CzW33Z-iP2M^%%{0xnn(e_K?&_n9!Is$ct^H zOYy;g+>CTdHSvy=uYH5%$f~K7gNey?)M)oa2n_-FW{k@(_d{Ty;ZRd`aF*M=<(uCJhTv@dI7z_}<9ocz#+Uaz!#&LX0a7sBVB0Qq^9#-d zt6(*L@(VZP7ymMK1w=Zxfvc;0xMrHWF}dBS5pN-U6sR(P`ypOrpe}X}!6)|RxUj^Y zdni$=+hDJMD3SgFhCWKDs6m}EXLCy!;2^G#-IAS%deA(i(Vf7O8ni-Q>3`7M82Byq zT*`{TK*Z&^r3_&NRpyrQbs#LvPLfUsorLsX?qp6f2QGy06wVk1u6EpVkwBLrUCY3w z^O6{{;Il&LOGV9YrE$z%NPwGLonjF@0TW0yLIEOSfsvnPB&1Z(zK@bbQ`Ml<{`F9 z!)2>9-lU?#$j>(EMTbe5ZIeniObTtA%TgOArM6A#@h~a2Z7$1gn3S8POTn4}oo695(VOK9g?8b)>5blY|>2}X?5{;!9|9L#0;=S|eiYEg*Nha-i zE-R52+dS`e)LBM&Ohc{j?p@1lGw1Ld2v8|7Q-QYhcN8s%?yM>Y+G@{6GH{K5%Tenpz{ zO;SdF)4EVgf32&XBlu3}{eoeh-go+X-|6dpr;Oi5?>hr}-x<)mnTMH5zcZkBOBcPH zck11~LGShrdbe*z?>p1tNy_;8~_nq#@ z8t9_nWYPP2>ixVly_=+rT-~}*OMi|t8pdk~4kpeY&_<;=fb4k%H=@1Tm|VXX0HQn~ z#4%_k6^}{W1WJ(%m`Rx+eFFCwK*JV^zv8E0&gNZs{tC~RNW>TcJN-zQi@|ip9>B!1 zGlCo^oHOLGo4aYTGd6-%Z5|lL%X0N@82e`QGCms|LtU+KRL!}NROc{)%4F^g#MtXfzkMj=K} zPkYXTVW10O_Xe`B4Tl*JN#G)O<~u-|ATy#x;KAgvA%CV(&z zF`mE(&xWHER;o^yqZCrPq+cd*eUv(B?#dH^Q#Da<^g9L`-Lvhw@P{5JO+e zsM?dqC}iFdb~@9a{A6mftb)7?Kd5!+C|B)U-IVZ<+${6k-@sjDAcUKx!bO|B3TWI@;AUI; zg>Y}8OB$y~d72cI^<`4K-l7XByi96d2A3o@i8!c2;JEvmQd@r1l>FI`o07+Z{l1qz zFsR9MKtpSQi_?c|>5|#KT@sq}efNTVxXc@j`%}1)2KNp5Y%u%69s>IKYkz(l7A#>BYMmljq}k1@d);o)!y4i)~(nTRNNqQOhv8mwHy63~d%@ zY<7p3W|!l2X*{>=s9!2I9leHn86gjb)GwtYGqe6*N(0AIR9zuLBX5Gx5b2t(lO70@ zK%a86^ghnWJwD}D>ApDSAg1$9>E;5(fXLrK89@JgHUJ)vR91}ea`%Rm!2`?<8q^z7 z2H}^y8uNxs=&Rs1d4EIFc@5oWg|c5QL{LLsroJ8ZmLz^2U0A7@uYotxh1H62eFT?T zu^9IlGkLb$oPFq!m)doT5ePM0u#T1O9VzJ96hH%iSJD+~*tl+zEK}Z7T&9FJ{c4?E zs^q(qS%SAB&qe6A)d#BJY`6>7;%EFUPzpEV?a&v&e;ZF{WTKEjZ0FEys3;%LAd>DC z5}gz997@u!NSZ?DEIfsOpcDVh(ud0E#!^mO`cT_m^;_$xaBI~M^o^)`x8QklA9ge0 zrCfUCuv9-lM$1t?;Sk%1yGfTrC1GjKup?A1^)f8=(%qEsa^@i81){^IQ^Z(SC z+ysS;LMWq0dx^}FM9u?^iOiBjz6h7;yR)Rm_kImrNk^8X<0QCk!nzCLMG&~4@1Zy< zjXwo7ecb#NOAug=nvAI2O~_Gj@(vD_bK#t5isH|7KLPhZr0y;bs^c$3eoIY$A7vcK?nGpFHznKe z2M<{j2WKTV=i<%-6H@}_WHccU^{bX4$&b0B_4N*>N($ycAha2w7NO)HlMR`(KslVt zT)3Hl!{7AE=P{Y}{~qpf-X156o0+QIuz*$T3GwkbB*vhFe$r*P5qb-$@P|)pbL;q! zV!wUgxv<*w*I5Z2Ny^U33-N4OMjmfsv1mBv5=b4BiU&`no7 zPvpj|u3xYUHb3W!>nU(e-?|{g7~M^iOu-k!Aq9VsGkTe5X|vJNt^&+I3Y(G#zl|9$ z(+DkXmRwB*#b{}>SZ_OB7UDcUP#U(tOJb$Tn?uxFd|Ce2UIs+zN%`jv}mRP$yWJOff0qIpv4 z#(m`VXjiu*?A>_O4qfmV+y(dYXFGoI&+D|%K0auz=LUVxj>hCCe}<(>1fDa_OWOz1 zbN>!Bc2plo*WLAfxS;0`r0#7n5*;&qkxk-Js2+qmqBpyu~0-bm3jH?=!9J_i(Ue-l{tPeKAA$2r;Y_J{74hhgk>%U*GL2bYf}9j1gYLW@$VVX8vr@Sh!D}G6 zoPw)L(*-xC1Zx>$&k;?@trR?3Elro?*L|zV>6Gj+3Y`QVcf~K$1gCfmD|{q{4?DCe zIUSEXQ>9Wl#iM%VW4lYchuk%!oHb3!%~)_OL#{8JXlt$8RXWRGf`(cP7l)eP!6jWM z+-%gtKe6=|ZZ@i=a8Ht5%)TKx4YsLxk}N{{3EOQbo*{dd#`!j+^JELhxbtLhvww(t zn|ZSTIUuwX4R7o|C}l`7S~aKZ?xYaE8mVJzuNdMu8`q(1vZ2XIp}mKra1ulDNxRvJpwBR4L+~&ea-VmwfyQ;dYQ9e^3TN36_(>t1++p$vZZiXayq z@Ibg=90ff>?5kY6{9z^(ZiC1Jtgzhv&#+}&w(~+6J$jlL;4Ui}}8?=H`__KsR zwfvdNpJM)uz|Z&%5U;u%Z&GB}$qR~XD_%ZAgoWGjQuQEyP-IWzPwnR*zJiy^zvAZ+ zy1u|mVa720bi_|pPyDdRDs%8s`~_@{9D6#SOi z;f$ta1Z@rbd&8M}Zt0EB2ceSNdi4mYid%aM>YYsa$&jCA@ni9FAKS%KA zaQuv?E~>7_n-tg|&uyr7L8hCf?aT)%{ef)nvm%Mab-kk(yH>o#}y1Tek?ZTwpxRPs~9nO`9| z^SNPsdt|)ocm{Ty`1}ieP5})*Bh01vTn~cy{5gD9(Wexwd{T$*w;6dO`;-F^lB@7Qi3=F~??Id55i9=$*AwuD;^LR*1d9MHjdSh?$LZ;f5`F*cP&z1-x(IQ7z}D zHx5M|!8HFC$Sj)dMf|8l{1RwIayh}HnrEy(fctQs&Vc7n(fIPe0e{}ymB`(05jff- zSQD$e;CXrf|Nwc3_WC$H|2A2`jO2 z-8kCtGM3SvloW&-Zdx}+ETiEX0ioQ44TCYTp;d>u?o*Qz7X2v_01-YP}ooA>K^~j%t$3;&UZTdWj*U z=Y=3Sr(sD)y`ZUKchl4{a{I!IqOlvP%epbts{~{c^s*!fHi)sj zC&z<58ty*f9!~Bmm=u%Dz9O{aK$~$b%j{Ln6OGI1mb&q#Wa9U5AI(e{bDs}|9~=f7 zdOUmae122%OFZi6a6#9B=nrE2`5GL%U$7dPk!52iG_LgJkfUA;r#1BE>@6_u)KJ@) z#B$u3IK``WuZ7vtzW{B_sse0XhFR+dVEQ*?6%05U=a2;rC!K_gA&hGbig|ySm2o1) zgjWZ9O3_9sC)zj`ON$i=R6`2IDk_2xf0f}BE ziT*2HCgH0j;e}e+&ZR*Te=^)fo-sm0x(Xy|RE}CLGH$~Hvu}NhX#$=t!ZnsVXEMwD z6QuGpR3~+&F8BpCashwNC>hUv+$9nozH70BEsG0inaxkc0D^ebpAQP4cnaHhHXyzhHZ{nLFwm#{x^=T0sI+^aRMF#p-#PcYgfnnv$Kf=pd_h4Mz zgK>3FkE?r&xX|l&YAr6%s}awMcxn*W<9=M7f^l^U#?>i3u1+oD!oZ$rEiTaW5zi5L z&OlsaE4+Lqf^j8+aV65@O89ZLzm1&%LP!~VV|Xy7R*mj6)>U=KAK4O08GDQERbf!e zFdu>3qm+A3-HVZzwlX|pZ?U%SCJfGxqE$mkj6rm8j{$|fPr%q)n-#K!t5n@}2%+6_ z6W8o2Nb2sPLi}kAOAzZwIXKhm(cLsw^>*WypTk?t;ILJ_Yu^N z?`HAMv+Sm6kr1EEvqNWIh>8@hTaM{f=q$eDka4(fKE6;cIyB+u-d=fmKX9Di& zWatBul`y}Mx?;;KbUv5d-^sFDcpyzKTFY+X!S}=QEtcKFNs;s{yM-6OPuXv??3SrB zMs0MlH4rq$W-Pmr&1t^r8XRG-t!0fU{bxHo!XFq>A#1wa&Q#-UQ(9tAy{I z7a$*5J`LE1$sX(c0IQ^eAnl{U0&L-e0E0nIuPm>1ei9%WlL*dF10>3oOk|Rr3j<_e z1*~PaRLUjDY0jpA7$dKnQBpCz%=uY!aup2nO{%Dx>0A`x&{|hbWl4o|aVtcV;GYLL zB^4D_6H&@Y-6a8XX?acA#M(NR!sY;Z+LS7o00gV5rqsDKzyP6UdUY+z5kUT51QCymf2g{nr}rdGn*X+*qand%?NXVkNLhP9Dp#MENSdW;b$ ztVla`I%u(E7T_e2p@I*H+u3U*S9QvOZu&X#CG(awEM4G4hFOY^H&{xZr9_+r!-(Xo zY4FoVx8;WLZFt)8Cj-`aGCRzPj8hux%D5Q4fx~v)al3v2Wd{qppN=n(2|EZT1(7(d zM8kP40;63t$%MHzNY0mmwTBWWW+eP!qn!+?iECvsJ zawKl-++sUt`I3f}j?YNM@sW&#hi$m+2?JCvj+?S^wFjeg zB9B?oo^hBKLkhTjPOiY0F`ttiPf_b&Qy52Amg2gkph*9?clZnJB`L2t@rBEiPULYL zM{dWDFpu(``5hxHH;+34I!r=!oj9mPt&Lw+lqXal6kUhh$cyR+nEl09&t0*U>31S8 z*?=7;e%We6eAyCpe0g%gTwG2&--+zAv`Cx>Z<4qnE%J&bB}}4Twa)e?QLkAiG)R<= zoH>uYZi!iO^Fguhq`50j#Bue=8@BfJjN@Ld6r_}eu?Qc9Bm1q#?6}ljUM_{J2As&7 zmfk;(SWy>Yz_rgl0C|n1hnr%x zm*T>CvzK~F?E7uCn956w{l}Y_pvKKT8+}rD=MeTLS ztV;i4BUMrQqUI&QrV^w{Vvz!g^;M8BX!ZHe>`hvB4AhXebX#xe>i zjZz_~5QtuybxEX6FbLoFj_(7#?_WS43cdgPQmAuD8j@?sT#{x%YO#W1fjWj;fW80O_@f68u0_Tu;J02W zrNO)zM;{f61`TMhWrzk1xHJe5&Yn5<@VT?m{DxezvKKtD zK{9;05|-(7?2@zyUNrl-x#&6-VZzP~)8r#Nd}cg&ZmSgZ;^$dV{E{?_STK);n9!qV zABQ$Ez~Y&UW-NitvcMu1&0aWf#!Ot{Wf5-qkjI*RI59yb3jQ<_rJ~(-{7zRB>l=MZ zTH0Qcra#;aY%B4Sv|#5AlKRyl<+@8}&Yh1thZioO>pHtwVDVUImkOLOJL|z1y!L`* z`TED1W$co)2*#acGme?J1Z@&Uajqq^REE#12X8bYKUDOsq6*|2U6N)#<&rc5$R%k8 z2ro%9uzN|GLFHVMW^isLQ>M}7lC-o@lkXH9d{EQmYljTR3q?vCiTch)qtlzc|0`(U1NhK6y zZuv#QchupSyE5VJXTf*Xt9|qYl4w zRBdMC$t`UdU_Ug7I%wCexcV8JuJSf>@M9A)B(rffUNOenFUw5tGUyQ*(+MGUKhs@` z+s|rXAk4PYLMW!P;OFYsP(kGOvl@BMht>CjUzh;iepVxIzHL~?&7$C!CWN=2)u3QB z70A<%x(0WfFy4Mv)4Bn(<_b-@5#+xz!My#fhHE-Q#XSbk+s|rRTIp&l`^b1XF}T+R z^7gYDyikod(7fQ+2FcscY7lq*3X|1+CV;n})r8Zmbl!s|jJKcFa9>tyxLBOA^&T;S zy%>mg)nPhkFL>01@%FPCYV@=kV(|tAXa(Nhggkr9#Nh2`HJYpSn}u+(ZN(O7@PrBG z?PpSl)n4$lLGt#qnl%kgXfNGP==*0)5N|)rz~|h&mma*JUPX7|_OlGhH#69a200On zCEmecdDkv(CS}5hg}6ov{$%*1(crO2MGamy*nIGldS>x_AU7iCK-$<&EHg_H8+N1S?jIW z8T7#x?FHAF^wV?8^MdP5z^vQ=$^Uwj(VR>;M))CtH<-YAxq)7AgUNDXro#)~R`;1s zf|GLK>6I!kKg(!wrhMszEq-PN1@qeW4XqofH~4yy%gfJl0;FVLFNt~inUSx$)&&N8 ztHF9ffyv}{ANG*umh~KC34^;c#7UkBllsTR!)Z^jNrT;LuwIZf>3@M5P(?`@_#O>Q zs+37}zn{@lvS14h_927yfFPzGkk%AOB(1`7hBIbRnD5O!&f3{Ea3kZUBk=IGOM|J7HsyP)d*aEmP-5;0yCB92Vzr+CsB9_ zrznaBZH^k?4cHodTfG9f4km@a>#K9?^Z@&p#!7rjMIHaA$c6S}T+EJN#XeoHcEH&9#hf_k587|#7h@gL)J@qx?Fj5rzVi(ZN8LA2g+K9y!(ekMA# z8C2u_9yn|?Q1@C{aEKm*8Qq14>K~Fkry-!6Get(nl|7 zvYTH}*0ITCcEYecI2>lZ5GIQ>!n{#(HGYw8jFmE#m=7SJ#0$>#$wbKeBLDI_=>ELI zL+@kCXL$LU4sb6&(+IizOn=(T&jc`+pJ~8cerCS)XKnS^`Q z@)wt%$pvXp%Q}2&*X!bpA{LoAeWy7m-(-w_sWA{i~lHkEOQ!^Bf})v`iX!<2J*v( zq|q9|_5MGRpyEiFvx6JLBoGZZ8jegb)_44Y10~z-}ZCQViyRj@UjJ#W>e)`86b)cMsxG~Om(2)$jtpzz%xUvl|b@LzuAAdllm zEDt@N%m&_$%}Cw@x2nm#KA}k|brY&ESi9&p$v2M0 zHEC1-U=DqJQ?VFQgAOs@L$Af4R4df2NICQ_;#cZ8!*DLKS-x=AR=z-$f`~~ara|cz z0_+Zzxt;)beW`k$b=EX|Jfz{{TA36YKJL&U-?&^&eL}|&YR=Zw48z&lbA$p=E??eo zu6gWA(|Wq!r*vYq3MEV3?o(G`jv9>G-=~AT;p`)QB*asXE4_$P-wO$SJS6mS^=&4E zr}*PKi(xo>`Gk%>3{HwqNM^CN$3f50sCUBW_s*P&ppLxFs=<&V-a*xK`?B(%1CdBZWp zHf_LNFNY`NweqA6klgqJ2*uAJ*m&LurFj#V8vHBw$eTsKdUI#?tnYMY zZ^DVUx}i96s=4J~1?1k}12+;B{HuVR8l>=Rl;ZxMc_Vvi&Z%4{;6`YEZ8$o46rOvX zg=Akr#-k~D)Kccu22?$F9l0x^-yPOyzfgH&xV}^$Wd@%BI2NTZW0Kzi@br->J6c)sJP5TKib`B?Qw;uwGOD5{a)&D{r(OL@$y5J_fMC+$Qq!MTnX#sK?DA4Q(qn zwW8r)xm2TW1!^q%c?Zk90!hZ=mI#4mY$`PUQgCW|C%g47&?dF zrc~Ra$FkpC{8;uhB)uM)NuS-O`Rp6O@&35m6hk@*VdUMW`KqQ^c~f*Zh_e% z?$EsUAfN*#gNz%H{c2t4Q$_{wCIchINt z(Vrh*z{do9O#K=@utEBL{P{Do+`=sHQU|^Pcs9Zt|Addmr}*m;{F-ip$#0;QDYt9?R6CWoN)a^8id@!Vk@($gElxN^)5>htkYcv`e)xUhXcj%XZzZyRa z!>~j3E;X(TI&=&0-@wnhFl^RhovziJb}R7zi66=D$U_a@4%&9u@Gx*!<~rZ%fop== zZs^P&d{bxkcu@FPoB|X^Sm~4h&j*f-u+k?ZTnA{nuJB5k2ro|yC#=*n-!B>2WZJAT zy-JifLpMp*=V;6Vo`fNeTL%U41Q3T2(S(ESf-1th;a4U)=3JSWglMaMHqg*gL<5h> zItypHXU?D;Fw3rvJI|SfA+*-#+T{>LodjlGt10{npb1|U&hze z>+uW!jFhw{4fS^J^$fbn!$9wAo!Kvby)&CGQ{G2M+eUv|kG@I3vC-ewqi+cyY4o@C z_=8K2H2T|mz->aXG_lf6{0qRQi3L%QH*BSeal@DroN42Q(#F1S<4uf*HZBk?# zmCo$AO6Bz!WBd6k-Oncg$9}#__w(h1Q0P^T%*Bb0piX` zT<=4w4xr-Gf|4#{GhVOmu172H1n$6R@ar7JZG03TjrZZ##9I;Ph`-@WEu30_+5aFq z=v{$02i4%?dVEYBiVq9`>OVh5t`9NS8`Xgu0RMoQHRGf4c>bD?UlZR#_(31X*9%O1 zK0Xfm9DbElfizC`<}8uiP^m7=>A2jmFCfL%ah=((Hgsm|k^FkJ*c?3@U&t=R6$#R5 z7gF9XMTB}W<$LNvYA)9SBi*PE4gVS7T&hqPBD*i)M}4XBzX3Mhf?wfyMF+f@M>qn# z1q^&VdU;y4^3EJ*`|eFG7*7U{efOpojFr9Z7=1HWFuth=(-D1SX#LF&t;1wb2EA=j z^JY{~G6}em@nJmQ(8?Vyxi9taChZ&!ynpBuN^c|DFxvqCPZvCi_m8T7>hH~ck&7+} z6I;`&mNnQYQ~$Er7!tD0Hsoy+GJS$R#if2o_49({bWWU6mZi3AoPU&`DCi z{;YpNx}ds((BJO6_q%X^NFVk>0mj;X{{!zb=deD^icPox|No-@!R~k*XcvRz0CMFn zdi`7`cc>8y;K_(YX(Lhv@i&-eG`!(7W(nlW+V%@51{`fcv0#;r*I0zVYH5TrYgUMD6mR zcNo(BgWh43*n{37ULN!=e9)9p-{VBgY9ZLr<6#%%!Sx+zx)KT%=iqwb!|FyhZGGVr z>MiJX(SzQFPnwMJOip-kz3?f6bRP6BeA?im2fYiQF{nU@de(qtLez5xbRYCCeBL1A z4|*5ApneXT`B)C^QyV*0%0?vj<9H~e@I{lbF335!Uie3Y&wbFl@Fj!JdvLw*WmSMy z$fOJ3REHFzIk>g&6~1M97rTTj)^z~!HVeJmI!c$mpg5B4^3&;2u=sfIe;6TV^5xxdq zIM%;bN9paAk&40we*uUnSF17SYLj(?Vjij-`c{Rp_^Sq%T_M2?MSKLcHp4@Z7Zdnv zb!7`a#x%G%?ac8&=_CXuH~>zP%wKW(Ot=HA;NAIa*>7G?oCqP@;HiN+BlUA#IIOG# zbuJsn>#bEakY!hFglE6TS89R=6WQzgNKrMLzZ&^#G=AY3?Ige7ME&rj^)vXha7JhL zRQ&uH+UP3?>%*{@0Q6zZo;46_eHCt1TV*>;oszR0$_b)SsXMSUyB$A=BIzs8M{D#w z4X5xEtD)MBsKP0%!bu1RB-J>D6kkgW*aG&%_SX>o?|^IcajB;DI6}N)4ZNb;nbg0$ ztREY8GK$$c5}`{Ikd# z#BRL}G495X8WC?Xv{NcUri5yN#3f|#zN#4q;Wo85x8V+jV{@9r31F4BjOol)j_u6$ zt%ac$x^NAS|oV;TK$M61P>(ul!&UJ0-=ykUB&<_vU(EqPi_$sw8< zJv|+(8uaS#ki%b4t}e(^(^#(RheBAe=9OuTK9eY2?sS%WnE`c#>5TAOV7$TKz^{KH zw;|q8vs7W;N)7uPhfS5b3V*)L64Y?JR4IH!%>ni`LiN6&n zYN3dv$9B2@JTRJEm9MbsyoGJ+QrOO}g_U+GtimbGyAW#{-@EaUeXZET6?y|sTJ9B% ze)%ZRyL3J14mJ8;qb+w&qfaE7aCoj|9gcipgQJO;VR$g{)7w(J!6hRX=^KDf85e1O zLo%m~i}ZIim`GU{X$elJWTT_t0tpWQi;J|tWk?>nNDHbGSy&fo!SqhKF4B^5Elx;l zA`>~9J}im5*7SYeYXbM80Fd?kP!3e#b|%f6xmQZ z%>^exIQ|+GmQg|$o0(YrZ7*Qc(%<&CP-9A5e_P4eBk_^HtsoO6uD`9|(xpu`px_xp zK_CP@Yrrxg=s5$T^;}_qcs)qhoqL(b`w@lA^C9-5m|IOr`@QR})OZp#b2b!;ZI~tviy5B(t zrN3nljP%L7m=@8~uwAD|88}gTFM~(>!Z_&?vC!6=;GiVOO?RcvqfC%=)0H`|5(pj# zq?_($9i_KdK^owuI}#*dy4O=thkorWyNaigP{ZQm)jwE6>xWzXQKe@z5UKrei%(D= z*SVpNUHx#2m#GJkx-d}#<+mrj6SZTk-*7eH6gROvfBX;dOrX0$&Ipf|lsLxvQ$}gHEG3Sy{sGf9T$vKbSie!=-d?5Zg(>bfWY$an zBGtW!0(G^(7A8oO#3BU}s~5jate@&|iZ+rY;e>jTQ;`0tFq|~%aA4ooSVkeGQ7Q!W z0-{p02#K@_8t`o$WBr3jTGa*UrZT_d%Lqx)G1fngB(crVqi|aH&lEV3qGPQ834ziG z&0;ONS-`-nW{JveI|WBpIR$pYvY>tAdYG(dWV;a?(rl}I^`vHoY0v}40D zwztVo9AojqByuWDkYK!dc{kq{DzZ+Wvp;go?4y^=g$H$rvyP%Rj`c0HFwPxnM^OvA z4pj-`bY>3Q`uCQjFcf1y~PEb9UE%@B%5|xBYQMw8(W7 zHGnvZ8o1?U)O1nk^f_bk+{G?z9YviO#_Ko28CtgZ{=vbPv^zqWX(2efq=A zz;-GRiTgW$DXCvQ49C0CNjZ+9A#5B)LpWb{_TYs7S^=^GL9buUEF&+_C5JbXlJ8r?OOa3HC~7{%QPcq9C~APvQPjY$qo_f-Zk|blb1RwaDC+WdOTqyEA8j$^0!)?6THw^-j4D@WY@K;4bxJ+AWms*7+K9`mR6(ei5)=X=iaRMBt* z%kyiMO#8K^m6Xr@lt|jT61~_3EV6hA)Kl%g>GwC75e6dyy1z+RUm~JVumcRX!C>*M zut`0sgfiRn>kQneVM$eIQXO2PWtAWY8sv0Adj3F@a#rb9533Mo5e7WH#JWI8$`K~zStXIPl|ND= z>82xC4;WHM4;`)6dj2SbxJVF^*(j6lGpfXONRz6(FOa@-QH!&bf1WxTcN}U})4FZ>b9~Wyq1<`?TtCSz{lSS6?OWu}^O*p% zeTlejg@~XebldXhn;go(-{>D69r70#TxE%MViw&!3h7-UPM>t!3ZvH|+wR@A!f18q z2XWi-7yA$69z{5@l*nK{#^;!a+m_a^{bT)&I=Ei5jvY*KmnMn;1_93-r!9Yt?glz-ap4Npy2YnzPp2)c<-}>rZ!?j$ zAgMTQ`5O)Dn@ET5In~cVZ=ur`S4_y}G!uTa5&?FGfp1ktf}N?CAO(YO2cnC=mj4Mq z12&_-R*Clf@i+UtRfrKr`)2Kvjnnh7??MBI!p{8K05 zW~5IG9(gcyr1D3ZEJs)t!%#K6RWCxN-skiVA1W&*#`v6<;X`Gl#8{t`qd&M&K;a81cMvEGz#}E_Qzr081`aTmCjUq#9AMt4_m9*ovHly)+Ha*^ zTNQlWq+F@9t=q&+6Du;*m(t%vmk{HB@T0CC zJRKlcHUsguE{lrJo}lm-4q3|NjBpe@}Dg0%zhrE3`5I|)lFBg*mhfi z8;iE9SGrH?ls8T{UcF-LZ3W!Wf&I&|I{4^;0MQ%cR1(>q252-+oonk1d{3CQfBC|p zt5>w(=&K zh1L_!82`ixo!Rf8CiU=;z^h+x>Iu04m#EqA`#}@!KKMNaz_9iE~EbsJ_s!MaF%{s^J_$ zzem1*z>m7oAN(c2_%{h#&!*t}+=HQ*2MzkwDx5N|?aV%jtS7;6C;fAuCZ>3>@+RvZ z`Hhy*1()A?P6PVu0ZrU-2yJM_xzPu;vFZ{HLJi}qZIqKg1;VSn9lxd_-znY!W@nJ4 zDAl-xR>CT^2o0ba4QF!Os6yhB!$%ZTJP0!!;w2CPhZqZhp=na71MMNk4ut#~l|&?M zL@W2}5Q*%q)Is(TV{yBd6o_*YqWgUdhT{+CbYQ+uO#gx};tyLJn90b%A6T#h7|x$c z)zSu-fKRaQ&4f4ADBz&gQv+)ekSth!)8pB)*O5|39&aNTFtS#Pb>xwAb>uCKJP@Bc z^2cms-O+(6?Dhjra+xl@GcQff-g3qbiR;+{0_@WMa z+E!(%)&F(qCvVrG9t&Z=Ox1d}P=E15I&3?;fo+tJE35Nz<+d(dxw9)*milq7tk?~% ztm(p)1G;eKAcrfxM`1ejy=~L?^;Wb!W4eAt%ih_K-U8t@qaDPX{pf;69>fTK@B7g` zFxtE9NBigA47BV=`=8=B?WuY{+CT3&Jw z?SEP@?tZj?v1H8sXicQMAMIZP?}Ajrj4~R-mx7hwmJ*@tY4l1foJ)w?-K3^Pe|D~QZ8G9t&Z2zU6 zGRQ=6xc!%U+ThaIQMqC$ zEX<1YZULrVGzsg9bG86ee>C_Z#qJhh>Lr67;q~ac1(VU7IP0Q9z!j#Q0uN<1wfnVZRMF&D2z*o;V z@qv?E(9$~ETHu_53t_d!pszr}#IEfXEzLN4(~4JPplJ@vQMGqFnRi=fHi@6gAqw}k z(hC&Nt%B~Ooa}Icn?-Nw*_piqKhqKYvrxmT5F1C&j?#ndat%VwJBmSgC=6UhS=URg z2{TyY!V z^K;6G1(Kl6DClDRT!q4VhiidvsV%?i%>EKTzW}}uUWJ8Hb*b9wic`i@# zoq_(j8_0+7qb{qlpSA2?{Of1eTz*PvX1W#Yt%vbbJ5+gZAcOwlnhP=XTyQyYX3Yg0 zg&10IKwY@zf`yv(#R#tWNZh0_FJmE6Fs13I%W)^*}dJLR=O ziyg$q#j(*9EO--;gK0ZZCo`=XmYz&f??Py~w6cc13QCMmBH~bTtgpNZ z-q_5emBYN@TCex7VX#soenN>;rMBabu8bOK1dW$^M6CgKCW=SAdl+wrx)gsXbCepX z_4-tae-=>G3J~dbMk@FJjz6SJslnvLCR!9dHJkY-3l6S*JWKSc27NfWC0Q_?=%}eq zV6Bq{Z9{->)R?et$%00d5>;?pmkRFe zTEWsT6|8V7=q(}ddwgf{{c#^!xuW@GTuRxT-7Dt}Uxj}6>PFNc)bF;TCwEW3vwB?k z^ooD()$Cz?uF(G!zoEy82a$i?*EDE7i2U;<*m@B87f87EAo4F1*zq9pFA`MbLF9j0 zFs=uYf3ajt52C;8syOEg{Yx+u-VZ&l`@>m#L8~fE6s8*!zf!jqKnHNNs>D4?+CyVQ zttvz(7&+9cLUh{rLs+dU3Nuf_QK(fVo-`SIB;IIMiKh%QQ50%biKh)NjaLCgt4cg$P=OHjtO3h} zsOJob77Vqj#PbH(yC_$yO1z-%2F=i_it=hzi5E@6x}qGdD)C2yA5!FMRf(4jdITvFIv@v?ddt&~@*>Y+BSMKgq=2-A==v$ZtEL$~6Nh+pDo8|JB!>oEkUVg@Po%FImE zpy!kFcJ@-0x)guN$4XV$nJDpyDh2kxL61`9pJ2QlYBK(?pAb*aM2QlA2vC$?h}6PJ z)4vyc(*P*m3SWM@)1;>m!NH32-?||pwcb`RqQrF-gou9 zGHVv9u}|GnvBbnZ^&4B7H{y1hjcZr5QD195IlFhB_DYY&{IbcNU;co0e$VsE*U^=B ze&M$>zi2ag=%MPLFTv6LBH_{eB5=<9A}Du$5lrsoII-H)! z-pA_L!|92&&+Cl3Ih_7ZW`un^{W#AFB@5N-AXKmOlfP0sF+kmQe)1k|bVn}{8_q}} zI(MBPqT}oQFu<-^*k>H(RN@~`ugFPen0b$;@X z2A{jmPrhW(BfP?{Gg9(pRg6~XfqPh7IpwK=Ig?L3bTcjodj>z=Fy-A3VUIn0?geld z*8^38Tg}hJ>SW;6XzGc)hK(g~EHAbQgVwA4~QOd(DY7oQW!B*1d1mA_=GJ%IM z`cA-JIp33f6lGUk z4*mMkxvu5JNTq)&GnfSH?9 z7{JI9AyFi+8xT4yRKpj!&R&h6|Q21 zsC=u~!tPeFxY1yjtJuPBRiKYXzqm77HC%biU>U8@TEbEMJPfD`Jw%XtB@kB-!K*lNx9NJouMj>J4=&<45H*i6 z#*9#2&vp?3FySuX5G?3;=*XN1Mbry4>7*QXSLS8+)S8H}1o_$eG zMD*OW0gp<1YPp2Ibaqd+QWLg9klhN&?)9^)>M+&L0a2A`V_3(9hF6&8aTMTHHzK?e zd489aCq@AUX1@bXh8H}6DU;8Q{Hz79XPA<0W8@?rOk)tGTPkriKPiDS*CU^A0qX7b zF>29Q0V&nDKm5eu^ZpYIFOsNKjn%>6^S%z)Gr>WK_dAZi9cl~yaAYB#*1-x({1<={ zyF*`(nU(uR_#<|Qe1%o#Eo@tt!gh8oth7sE6;5H^GOdIC;qdoc2OGavbg-+?@gq*h zIM}a)t%&Z&a;M+e(erE3|++CI{+=3r1!zp8^MaP+HtQDUxsB^Xz~5)AY!<^lZ* zFQ<4J=5sK90{*i4)gkH$lsZ^7E{}edQ_K>lm{W3#5&i0V7DN5&CsP!f+Ui%h639KGVD&4Yx183Q9dQ;eHN|w^ zh_I5rA8c7*yBhwygBiS(-_NEXwt znCcb8vij93L@BCAsz|?Ls4Jh|AS8Fki4gpcQ`W4gs83lONo2`CD%4^1meswvTER~oAOqqNx;3v&b z8Kz|07&)0r@V?SAN;j-Q_(=(*^{ev%Mf%m5fS@-$&T&*`>PaUn3S z4kk9ATpQQ_GESs}(aaRn!I;V)7wKTM<4ghU=wM=;dS@F~6O&mTOcJ>|m|*hjV2+LJ zTg+w8ZCtlvs?BfX8UX9QSACDw!D!<;geWLe`_9I76~|STIskvV>R>No3>q8P0>;A? z^!O9AaWw&Dbg(lSsoeh*{^aUl#-OGPtIk{4HWe=n*TTmOEA``rRXBwi9qjva-)|jk z!d}tAM$~)W__OxwVA1{U`LAnCWcTepX{-2fXH^{^8#<;Qfe3xUef!5$^T(ZL$V$91rFVBSdwdyH}3 zQ3uAidyQ_m8$z*%1gMFU4?70s1R<}A>@kHuiWtfV?eZ~<)?Nc4> z7>=td^*TmdR~_sdz#1JaV7wjbQD9;^SS><~4t4+|mHX52C$A2s3#-ms*ftd}Y-iWP zO8t0Y6;5GZtKMfEeAN4_gSGD+J6Ib!{-Cq>>tG+G4z{OC7tPQ5#24<2oCo*jRKKf$ z*+)B%=U|vo`EcOGY{uP}Sr zc@)6axMsyQu35_DEjy31)S*Z&JC7Hj5NGGH9agVd>LUo&JC6zXWETOqm^?d=ImIk- zipjh4cqfbD&f|$N>whSB9!b~-yYtvVUWhcVmtBw=S2HNgv-3E>?mTYT7dwxds7T|| zM180=F3y)`=Mfy9Pvatb;bnLN^9!BX!!f}h3C+grJo2+0s8Hit2*l5bFdEkhfNLhX z8W&@n2#l+7acsCJyEue@$vBb5wHnD{RxhU7j#yUXIu%iZ$w(DxTuc?;d6dGUlU;P- zoy=rb0TvCX$^GHOv^C+R+o$Q*9iFFEy%H4Tnnm15@SH09~ zT%^3`6w$c8fhJ2Ojs>PnK3DLQNBuKQsoO^6WGZnMgDBlni3|A|?mT`8P_*+%PiO2X zRt&^2t5V;?@an2@EeDo+*NAs7$KMY1dHmtXa&{g&fifD`>x@+H{}X?5H7>WX>b!+* zQ}M!fb}bC2>tlsgIECpKA${+%dGE8v)x38!t~=53Gd5!!?B99(z;+(@hQ<}@S6cPr zeZ%u+FQxX?|C<<;1?d91?X1h5UMKIi7LOcX1S*2^9+QRHb=@P)zhUUeUu6fGjElSrs zH3P{->G~WBag?rRC|&c^5(I0dtI$=t2)M=MQMz)9S>hCvSLyl@i=ooB91`tAsdSOB z4_4`#KwgNHt{YsCO4n*om`CXvWRc&HbzdS66Y|8(k+#^n4h82bq%0M>G~WXC{qt|Tve%7{OPK6^#k@~a1i2Mz<4{< zNAQOu%Tc<%2$WH}zQ;)A{txjdSLt#KtIk{4HWe>yXV=0?{di#&PGR0gZRYyt{P$Vu zY9HUQSN0mcF`hT?TnvOz>-rr!|2=!(U!&kiVs3ZgH)b$f zz&YOcf^xm@1(WN2FB#MO{vWz3Ik&qMfQsFJAKE=n{|nL|dEe`2*|Hq!zhS6K8z9&^I^=dbV<~FK8zBwOCLsw($$Ai@SzW*fc2&SOJ;b`)VrZ{ z)gT89l`anDTpz~nl`hHHy@>}tjDpPdVH8|+6HnnYCR!jwJ!`-+A?i5;x;OE_hf#8g z-^2qSM&X@qZsLItqa=*o!~-8j!FTat6m;Hu58%V-C|zXnd|H>rKMfDYqhRlX~q z^FnU0i##HgO#@kGqTaV_&FD-Q1e;}#MML?&8r#k zp9zPW7h_C11S*Q7d2tlFniog$ml-G0yjqbgrg<^dEr?|`ud@;5Ii`vo%l^O8ia<|UY2YF^Css6&y9XkJo?qj?b#YF-lBo#xdW^DDhTb2Trfc@zbB z)eQ*O=ekI_Hw`GT`;BO_RD$-!GWn#DuB?m(FQ#PM7*Ux@&`@SHFWQ+R&FgD`BF*db zfS@eR<;bd1FAd74d3_1kR`3wwd5pJ1-3JWEmSgZLLx|D5Ml({mKM8+wH7~cY>b!+* zQ}M!fb}g*bj~7-~G&X6)L#_TAa~cVX|!dubQXb#-s=imY3WUTWw+&zeJJ>k`0KhGxgN7-#36>zeHxxY~loam`)0v1|7Jb6xf%{Re-ptA)G} zZ81LSg4DS_kaJy{sA!8(6ZN6qVsy`S;cBitC+XXPZorwY-q&aL#r8g>a~GF~;QSP)!_-OU^k(-i$og^%cg6G%lKMVj34y-HKRNe z-D+H7o$E>s!7!^**I{_E#<{kxCBT|fDyDQbL+P5o|6G?EJrHe662gX&p0+w5(j|pON*9ejCoq{+x+IaSbO~mcN*8mzhPmwdxvm>A zx8^_Bb?|Hquj;K<=_2J>qM$v!>vLVAbnV8uuAg&URjHNuLnhBvy2^ny=eo{hyd7#b z{=_yIF9ymeUDq*Ex&K}K$yK_{xh`E;b>70Zsd!;KyB1dJ#|x`)3iEF41upWww|HMG zUC!ewyt21-O;d!~D<`}z8_RpgUH$8+-L`o7O-*ZBJDQtLU4i!sH*WG0BWlpEi9}P= z%8r(Gn_61K5O~FOeYG`t?r(vXS6h>x;x{H(d9^ip-gXVzS6h?kOR#;lHF<%A+gDqY z7YgjW+M2vbP|>Tc$xjQ$eYG`tv1H6wTQ!mHYb?o2rjqV-QY&YXhL#Wndcw=OU$y&7 z?86pXon(%?af`ja;VU&jQ`}*1{7Tj7&e^>izi@iI$B7Uo+TwMLy}=&Xl64kqUu*@k z^ou}tuf*-PzLw^7@VtwE9bVVlbOv74N*62U9R^IowHfJB^=;sa5{1Q$>0hY}6ELDX z50RzsQPNc!8y5QCMun&=i0YOF{B1_+E@-55cK17zj&jeIP0bcrk zO&B)eGR{L}=?6^I+DuG02}9~K-91DWMj4XHd5A2;kI3*Lvh;(djQZe72)Gbz2wrkQ zbX($5G+hsJZrYsIVCz1t=3?S2u1`OquEy3uCVYr2{iMm*Bk|@Tvh-61naG3>k)@wD zxOB!oM3#QWpaLQ4Sp${{QO_9=Ef_vTmVVwKduMVVB1^xZ9)_5Kf|tqr5Lx;~ldvw6 z^AK73j|M*^<32=|e#xLmcGAHNuFP?Ugxd~f0eETs6U$V zLD$++a4$YdV_A#mkL3p%n?dDxlv4|0&EV}V>rIC04%G+2stG$YI=Q-oa48;Ly@R-l zK|>MxUnk)cS*kl3*t4RN$h*kw74!J{GnyG#R2F}Gu)H3Oh#d$me!|x-D0}#dteFy4 zWl#6iYtAb+cpTIXVji#JY0w7;c4mKwiT+5uSK6zT1-{0h7lEom3VZ&`hYr`F^n)&`Q? zwh^7#>XGnbn5(>BLdgEodzX9eSAaPKCaNgel z3>t}#AxGia*a`eN1iuylim{#L{%)DiMqqP11onGmP-k`}^7##pXgMtSS)dFHaJm3(ID?UoU31Xk!(u;N9-JF|Ljn%`XgYd?7 zyly>K)BXZr7T%ykYZfVQ*lidVn~>eBSRbha)bOVO5C1)X{RY2Aq@gkoc^O}`5E=h0 zt?MkUwRva_1E=rUp1ln}E0OreA+5EV*3SYbwAN~BenD8%TB~XOJ7Chtaau>&AWiQ_kpTZjTZxM)BAmUpFZ11m=mF57fr`&lP8P=gC)i;Je2eC8!G5i`a2Z%`A zT#UH*SD0Wvg$d5kqZQPV<`tXl{3esRa-Rlo${Sptvl~3C{!QXUf-TAMIE!qt*BJ`2lO6G z`Ys1fQ-3V!dxQ|`26~TU=-WD!5JQhU4sWDGXE~n0X9(y<`Y2=GL=dmz;k_3Y`3OKT zzae*hODk15L-pr!hCtpZbwhEPJLKoYrOKOD=6SVTGI;89iagZ>R22mW;r+^yu0!SVYk{dRyM@c`{+368j31mHf)PHvwfi_6@^>*Zv zud~rn-FLI6>+$qowr5+>$*&-bm(g5?J#`0Hf7Es`^_t@efppu!=j%{HT6Y7aJD8ay zPsr)u!33iYo(B-)?o~wWF%OLz>ua{XOLa~!<3Jmfib^!t&B$d(d8~i818Mu0fw}#A z(z1B}{t%e_{re(9!v6g&2u_?B^)F$+V|l!P2O&zVe~$%f)RrNg*&XMg*zv(WDen^}mxa`?wUQ8){o1t=^K&mrZV zP*C72+p~=*^cqCp78Y2mSm52jxl>8cCR<>w)+Uz&j;4}p0mWsjw+pF?tAHVE?!eD| zNZHo2i#&Z3Xd_QaP2+N5Nh?n;Bdp~qEB_}G3KrG!bo2^_5@P6ifFh+6eBH!(39Bl% z6AbS~p_EroL)H8oxbSY|P+TcP2I&~|XI%sUmN020?8?#djO!DZ4Rl?Gw2MU%nZuG@F{}P4EjreW(Fm-F97r= zJcVDEAeV{WB>fmw@*3u;)Z}jsg)N{;O~N0FN~NY)H;(ip>hr)}fjkiJfgy;uL#+gc zHUh-ck5Q#d{C^>Yb|yp`jnH(te-8ez8`HQJ7m_O+lD)4(v+%uJkKNa{+V+mtO)cxQ<5stI z>=o1O(s6iQ=rYi54kIQXc>ulg9uFfX&b^YIq@8aQpW-)+t#TMKao*J$w1*KB=S#44 zzD-;p;nw*!aiPGD^KIfHK}F8DiBAj0b-qnpEE&`J_H|tq$N4sK$^Rp2&yB6`WL@q4 zeBoX&e-#D;|`sv`%HlA z(3!el6BctTNIhVpcG+zWL%QE>4Wq<%TSL6;wx%95Wz-kH0$~z@4aH-JIUsjiZ$r~% z$R0st(M&z8Hb4PM*QcIPKZX2?9;Hk@X)<W8L67i)t`^PI%li4# z9@u}OL9?x+WmOYO_52O`HSL1g5a=aMd>Iia3Jn0T$^u|WDMA?e6owF3=>p9zu*w4H z7shr=^!)2JjRky{8U?J&o|;_;q$y7qaf79VMT7v0xY35N2n~=D5_}UgC@U{OuH}D4 zUzb&s;j^M2e~sd=1MrKqtX;9OX(J9#s{xu0#W#OSS*#kQYsPxnPZViCQJ{R5m0yFL z$}iL*#pEvNQF!G==E8?{;PnyQMQbe3kM}hsm`d_0Gb-h2hk zCQw7Vtx}k&u3GO-G%Qoyf*=28-OjqUIvSDHY;=`HNo@F0{9xnH;RiclH9q8DpXr#V zP$}t)xorCLbf9gTtXB{?O=DUH{q|5#JgknNTM+%HsCeJ(>CM@;O)VQ*HzJ9amzP70 z-hz^Tjo@0ZpH_7e*D$hD{g0*Ss8VkXwR^w=tg4fGMExFE-Xw{5Js59?`T;N$9!d?+ zs!poJ?}rc)j7W`)RPN8fAI?%rq%(v->L4?Gb|rgy4_Q1ISfNN8?`g=Twp4u1X@P3N0E z+(co{c8Tv7%5&toSe2s5!Yd$ab*%R4{Bu8v?oXIoO85;$Dbdu74Hy5sJJ?HuvBPb= zHY7NmXj;8)1;pzG5*`3&<-G27FJfhzH{<6JB z#1F4F@#8nPrDh$jw|xt?^d|FkxxdX15}I6dZ=0Xr!8NU#n%Xv;*0O3fmVsMSY9jKo zef&7Y#cu%@L6C1vF{E%cj9yq0ZcVW*hXX2xCFy6W9|KYgi?LJla~)5e;AJjEkJ3{< zz+{Fl_xx*^mr}WqHvuxv_cF)tt3^XJfcKE|7lP}*+Ppn`E+oi)&flb8z4hM@&QC3# zD~x_AnJ#sV1wTu!OU*KYmvb^n9b>^O-k?B!$8BDR?R@d=s-8!$}W;G3;UNGypj#db6ui!g6JLr2I zt6EN7zhTv?mPwvkUZCb9TEQPNua;nhEiWKgvMT&)hgo#F4lZp)_{xHvh*`P{5t`+* zz1>r*3P?cdDoilhf(HEwyO8;8jj*)7TP&o2`8)*?R!g!|5W#$|#Ad7@S3(Y$&(ol2 zH6%zvS?PMjElKFo)*}b`#DX}%8kCcu3WyxkbydqmsAmb?9(HUU4vA6%fzT6L-T?`= zR68&|Pqom~fGV-WabSY&e%czSbsdO$P=fgub}YX#vG~eF>8Xf6Rii3F*ugrVEr?r{ z0)=N|7@rPBO3hAG^Pb7-(flU$J^6?Uw;GO_T=L?3#}*Q~&=JCR49 zb%ajCuO4f$7k4f`rr@LRrTBn>yXGqVUBZxW;G-QMeZGs2K2(ruevV(40oD6X6jbvd zpgS4!F?{?UAN*HKso4iD(9i2{q$b+~YEus61zKuu{^*BZYHoqV{LQNE*(0yqFEybU z?w6YTrRIB=njLz6fY@A}(DQ>GT(3iVyo3c8#pY@)XzN-;YzlNEAd14ZI;`O&h)s&Z zTQD{sq9{BmQAJT$MNwEqQCRIYKps*Q7IrMtLbZ1nk=U0a@pR;+MPgry#G3*2rAQof zvJr`w@`EyQ3qL3m@5M(X6Z=pmRyUxuzLbZ5U@XeRzvF}dYA6r?f~wgysecVCY8Q#!1RQ6EYP0-RZ;>zh0!<%!bfdN^r8gpMG4r860oWb=xULG&;y}XY6*DCdPpxS zguN;Kidv2I>rLr50Z?yBzlHpuLijm;Q2JfV4@$qS_=u!mZ%V&MfU3HR@|F^?W&>hU z0?xt*|MjH=d;yiI@oJ3@$f_xo3wgXa-S-YT@k1{Gz17>Z{7HUcPbHvoEJ*58ITj=p zvmmMSb1g_JWu8i7c)IObJs@=r2K204}J zNJ-`tAg2;!i!kQY!(?p05~MVtur06@tooIj+mlJl2YPdRjsvDbNQMaRDaGrYD~BN% z0@jeEaaGs{@Tz;M;elk)JE`OJ32D-`>uXBYRjTQUS{#fcov4YX1z1wrFQPP)>5&OC zMD}Oaq-}uCF=^YYE(A3h1FIc62Spj-m?R=fJL`x;#sXyP3=irwX+x9J@VY67jaAcv z-0b3>qB} z*&i6yE+X)tNvH#EYvmuNIk=yx;?m6VFnJupD&k79D5+cCwBBH)=?>K>WkyI}Mz@6< z|1eX1G&buy)6~p>vrI+=LCI`Gy$L1{nj@J+vuEbIwIJfi3`Ttg zq8_Cyio)la{J=%EsOWq*3%o#=L2hshKqeS-)Z_SpXu^+1b(wKkg1V)Pj6^WPsyG_R%p&8;u0Uj04=cM$tn4ba zva8IMUF9OXDk9dC;oH+~(#o-h4PVV+cVNPU#!(GNEZ;lYw9w`HVlpBnbk}hS8U2g}@7&~yrl4Hl2Lcl7*oeh=;9I(J3Lk-3ylMD`Xj}MC>PE&9kIOzZmvvOuQ z8FoZehA=Gnzl(^q$^Z%q#qPUgx!shgmWd!uBR!C^RBJjSe<@3i9MQ5=m?&_CagVTV zx=yy(#s~)%nz1x$0Jdsb1VW3nO;y3B>KO$|Q&r|^s*vyYc~iOd%`^G94d#v^%+aFX z26me1VH>@~ZS>OIRxXoP#^{WccuYY?$Bd67&P7&up;6gT76b>{HZr58%8Jrzt4Q>Y z;$ss^%s@Bo`p%u;$SNx!P1-J9L7{`Lvz=j@ z-Nbgf1v1fgXTOlpxPa>KNF=bw0K+Xtu+`cA6FEmI7^)3}qA*CnD1<|I2swn4zF{@t z5Kj9#xx)?NO31# z#kpElCU-{V+!+qB-Cl>}wsVC{5Kz%X_`0k8xNep^{3&`&=@c=xZH+XrbAc5=PGodW zUw~TH(;`sQt-!H*n#qI<6Q@MzX(BURnypYWBCgIPF`yMn1VOVEOD5E=OH8O;mzYpT zL_r&~bKY>7=0=dcsDtGQF)Cnj_8M)gzR%f9#$Vcwwjy`5#TT}@Oc4lE^l(|RBu`^xHT+9pwv+c`a@b6^WaD@Ars7zQ|)szZsPZ6LjkhyV{m3$S+2zV6DcCK4)< z)w9-GJ^ShWLaS&05Y(g%aIKzoQARKVAfjXSjEn(s?irlR5*&1fC8!+a4mvW1RRT~W zVGJ&X;)BeNM0auwS3@@8yX2I8vic5tOE)Ji=SD1YiNx_|KZs?6zr=Mk=J>V5# zfyl<~Fp1cULa8w{nz+P3Hq7u7=8TA0GyqExWV9Hkzzj45TMKz;UaQYHr;N#E(XqKK z3TwGE0?Cauytt{{B;r&CzMc>Y$+(g|F`{1^kRpQI+-XI(!vvf%#mODu0g+`Ed?eJ- ze0v}*AqQ#3fsJ@-j0QLVxZT_?4i2?uvuR=C_<)}7n&4=2n;}!=VGbVLIx}vXo5j&R zJ8D}Q-L#X(NB0r7wvO1JV{vwL&ov1{IdPjZc_1Bdk@qeN$#dB=jN1wboL!7y8kaCnD1vMLg1sv`njt#DheIM7M$gTLKZwWA^Xb zpHUY^qP8}^1<@};)M4COtvlSmv|9p@p^@~X-tEYzfniB;ap&|dSq0WnX*D-9*D#7W zLmfc^F$RH8QEnA+5$q#l1-i0L%YGIXs^TIM>RpNCd1I{1gS?l`L@Vj_=4(_}E9nil z+id~^PB1%a84BQuQT1GkCiO!JcEb<51XgB4u-i|jK7i3!u54yDa#$T0b+L>N?0|L| zR#QzRcUT>4;(<&_c!6_PRx?Dm}_88MVN9XrFvZq8v>p2`@ zVLN;bvki7w7-JO!heN|rqS>j#obiK5!(*jIjJ;=zS{^kp0`NV_?R}ze%j6qavEIWK z>m`vkOYOT`OS*g3#Y%21jIlC<(L8q+?PaAd3{WzQzSpxV?#vyn$~2E+f<@ktg*c-U z+4;F1;{*%dV0|1J97%g_PKC3S6~0=&$#h~xFY*8%A+pI3Tog?U0R&-lN9$^yb z)(Lm0nAIpG2(|BUDuMQG89yQsJGBvsW25=b6`-iQj>BPqsy5^ov+?69xyN6ic+2q@ z?AdbEOtz}-l&BWW`~Xd)(Ohsk#-*dt(18kbg0aHcfCo9FQ}^3c8J}9&w&I@}^C8X% zMXw&JDMQhb(k;`dTl92?N)#QPTZzxO@lz{S>`T+lGT9h`;^^b7kUh1+3W1&@D8Q(B z8?Im!t9P3yN4j;!d6luA>EYZO-~fwLFtVO+XJ31CB_b0?SL}@ZkuW=1h1dqcX_knU zVy6!l8+uKrEU_~zj=69`JvJ&x#MW^(zO&j`Y9gT$;m+#u7H20^=NJr+Sr-|`aP~j*L;fZcM8~_RjP+SgM6ONHX zQ^ZPgKqN)-op{VEJV|`0_RGvO)u95i=isP~I7syTViyujZ4X4|tl_3H4?8X4V59@; z2AJU@Jnt|olxId&U}3YIXnJhScKayOHV=n$fITKJ4+l9AEBHXYgra&3-PJ(IeKZt_pVk7zK0kQ2_^&Co+pHq-~mE= zo{%7p^M{rKj*KZBXm(UP9A%J|Z?USO?kv zRFH92R?Ibp8`*cHLoc#FD$L$p-0Bv+6vvVv@} zLzJEnmN*El`5i-qDM82JV%zWsTL&H`42M676H%u;-trDZKV&-Yc!<;5eM+i_V+EI^uyW3WBVqx$)+e(m`?r@kW63bByN$up2+8hz)8Z!~=fcOxF zdPt#spdHju2*oN2RgeKWwo0rd!&2fR1==7-I;G1rE1p~%C8{(dcl2WcDSaa{j-t}a z21K4^ML#9L?6`b5+%$;ROmRLy1QvBa+tA3ub)$n`8tQ(Ki~}M6?0ONMCVCJTi<$yQ zd$Q|A*Yd|jBZ~otNkXW8w!hz#Mz!}OiZu_yMK{{NjxQf$+LY{HM_blf0GGKItn#SW zqjAJz?544!O>9RcsWh#G=EWwq%;z|?MyA5Cb!=AWPAhQY5ype}ni-#6hh0rnCUt## zUepY`ehzb^zx&HL!9fI;sh!r0bwdm8fx1BCGRR>rBpYmZaNgI0>ia~g7Q^E{-TjJ= zrQiTId%7w#UFcS>HhiSHptn7i(#O@AqZ4PE^J>D;put+(9sTTvnmv)=@S1Z9xH~5; zhjSnY<9#lCX(tuKPeWa)t9MbYwnQnXJrgYgb_92(AzGZQ-8lukHj0W@{2W3gPGD6C zxnJyu?xX{UZ7X*u@y7wQ0ux|Elnp~8J7q*zM3$XHVx>h9up1U;4!WmMU|L%xnn%Q3 zqmASU%uoY&aMsEY3QX6|fZX@_0@RAdJwFpIBG0Z_O3is#&Fb`M2nC|!(}D9omWO*< z9){y@j*ydvhnx&MBtE}FblTi0`l@3YSU#a#H4*Jf21kMNEnNEMioF^;X~S2G@)B-A z!fcfI5ns?J$jp5tV*vTt^#lSgJk&*TU^kr2kjiu9-ZU9`cBtLg9!7TCqm#c{{W2^_ zLf<8eg)(T@I=srr`ik9obM+Ov4(ax=<96RPhI;^RPrMMi z9RhJDs@xG#hFUtjwBIRIE2y+kS*Or$8`e?fI1H_;8OJP=JBl1b9ZwC+_SUMRJrN;% z$f$jyo)AXun}<Bm2e3dln<_-Vp4ryNj$v;ypO9MMfff zHlQ?GVdt11aNalKac4)sEc38##3GV5{>ms?m)jJ1VTZ9wa9Qcvw*b=B--bdEIi77? zk~%9)rj51?x*AQnWuT2DazMat8Nd|Dl;I^r0y=l!Y3r6_`uR7 z8yK*0(SQcec7frt+|7og>zRX7n>eb$g!YCz$3BNZoI|4(&OMe9HxX)wHoL_EQ?io* z_BCidwhe(M97oHYV>9;jj-zdIG|dESe45BLz1?jLZNH&`*s=45ZpjXA-zejj&G*>w zCPq$YE5R``<=i@k0YHw%L3j2M%xwG<-EKHtFp~0gKD-Ro`d` zk|S$ur_{1jEcb?;67sLp0oD;WW@z!sQsgIIBaG{WyZ9?qD1EK4v@>rKF32^BCL&`u zO-xCOEe`vXkwzLQ47({B0=eeoB2zsx9E)=YoNI!?^#~>~tZgo9?PZF?>gF{Rx%Xf= zXa8{-vMY^ozg=WQms3uby-?wZy)+=~C7ZF)m2I)(PUxu6{Ejhdxy&@5HO&!3r&N)n zq66J<6(-O27RG`IB?Qx)?483NC*sQ8aKk3*{zmuSq0w_&Iojgp4ZN7QqtR>P-DlP+|s&=N%0SF2A{OPO=7Ouw6=W=UUQu|0WjXX#pLHd-TGLz z;MaKH?or=Iha`O99;)xm7Q7y))oV`p|H%6iz^1CK|GamKUiKZuQAh!CfhJ*5p;=m7 zhb~x`fuw*GAxXH zHly?ZotM7!wYKOm<2T>@r%Lj2*K_YZ@7#0GJxiQ?;o$a+0ddIK*!TMxN5&ze3>lkm znIVrIe2Ls!ZOg=M?P|-paPSrFIknd!XU||Ma5d#yuF8}zJ}*8!g?ud{CGk?D)m>H| zpLxT{FGV7`!gQWTQ*RFHy*pT1Dqj61_0?03!I$DFxUgW_<#?n4Nwdjgr~G=krwYQ_ zvoXXI=SmiG|`dD`}PG%99OlcYD@}DrCKNo@A$kKHpagV+ga|>*>5Y8r(t`$rnl# zDhkms59PL?f*75YV$cKS4iQU@x{w&+6+`KsqGtL~=c3;fS?H+FPSr(ruI8&()6Z{!n=9nu0u4WUhI{}45^}uqGopmjSbS6mV?4~lm>_C*&;vv zOoV&@V`T{4EN`Y-oiJ3i!;`Tc@YKpuU{U$bcOTd|$7`lOV$i9hq9ix#Il!|bEKIb# zPFU#z5u`lyEMFoW5Lb$_TQsc%R$!W|`$>Vx@5V^9ex)Twrf>RMqR)Tn+w$z<+Zt&k zP&`~k=UGzR4&fD$>3+Nf=NjInuX-mvO?P@+#njr{P8&SJ<8B97 zw;WwPI7|ws=N5mtf_eskY*8~h{d{PB8s!A!NkgfZg?tw3Wgwru{k=P~617YF z15jG!n&{hrichRyXb<*dXw~QXWU<zrg%XbHhKnmpw z4-GWXqGmHP_A43B4;G#@B)0cnI~46zp}h$UCTuFde(e+GueWFJxe1xKlN6XoLz`)w zr^@;G4b;bv=H6Q4LO*+mhjwTU_ZcRkf0+6jKq|_}-n^5%E_y*17K2w&DR8Ba&}X9T z#sV(;wJZ#e-azl_lIYGNQBUp=vK~>g8j!WBdVJ<0`czlvEyKDkwd3RIB7AC=DjR?` z^pFBIG(hOn@je*nPeVNP%f(65G9-z1Ee_IqL+Y-b>!j_A?Tct$Ae~0lQ?`G094!vE zw{z$=w6k}pw5_(1Mg?hp*a|@Wiy6ipLq!tJ_dAgA?IKR_59Psrw}=OhOg$~}Q_mo+ z>mdw}kbgBI1JZ{|!FxC}&p;b`aD|VY!h;&+O6^aT0_7;s4ugIeVECV*QefhgiNCLz zv3v7Y)Ot}VxNoRI^DOi;+%xtf;YlU))uDFHGrH`RL>Yd%pk6*tMV87OZWBca*T55Nr$P-GD z*J6NTWlm&P(_Dt@4JG+8PNx6T2|F$J3#^A7AJ1U9YTAcb%geRtEMBgG>T>NKBK)mR zdS|gcd(6#m(wtEH3N5N@ubOxZsK}qs!Om1kJF+|*Hqgt11GI&jXO~uB`g40Ty>iNIX`u zN9?rH{W4yalUdjfUK<)}qHlFAbVmWGk-36?Np6Ll%}Y+A0ZN=(jU@(srNY z0)AzQB&2+HmS8HewQv2iK(i{OoLp&XM9S@b{afjzWEa)m9X1*+0(7E)3HgJv&;uT0 zsV(_cx4G<;nQoLvNhOWc-%o!k5Wy;-Ve0e6d8Q z3c^&5cSihP9-uD!o)0i*Th5gNwseOm`D%wqIIzKL_Li1?wIgc_^=^sxVS51Q&~n%( zjPyI~3kP(VfE)dd#k3q7Y>TL%{s!*>$`>w*70s=*3ZP6audbn$!5S|%%yzPu%{aw1Ug^z|CL@uo>Vnljg zYO$^KJuXs_@~a}xZnIdA0zb2#!sh_HJa)k1@`B>VMg0JSwVB*o?H1Nl`9+ROrX&y^@{5J%9>6dWFv_XuTI^vtM2HmdyOd z*A6h3-%kt@l@0W0p?sMnj~{TQI2WJPyO}>-etb@2<_6!l(fJ`tuOlOtNNV};01h+4 zO`8hBX#JpMFD?O@Il7Fu=eGxjfLURHuv7Nara}*%9>$iGOOF(RE;YB#Zl&!Y$+@(* z&|d6C{r{Hj^lf1sQf>pBAcrCHglTRV+bQ)4BP+}!$+lAk76VVb!D;xBG^TcN=-Xu}%M>rFW*LRiX%%j# zRlaoC`4g4h31!yGDD$hcAVr|YLRSUQ;~`*}q@3ZniO(CI^f2K7+Q$+cZg^tUHiRAI8;smt4AV{Cd@)c5U zX0-N8g+W>oqMmih(;c+jvU7dxTI9VZ1;t>r_k5wkF8oHS6Rl#pG446}T;KzM$~YSs z^T!?x^UflM;*UCe^toAw_u-uN$*-oqCSrHaihbn`I&!cWS5BHikHpxa+7-MYBf^X#^t+v3p#wrz=G z{qi_;o2m3B%=744&(pDHYYrtCkTiy-8N@7lQ5O_uYaHs_z}(^G48X%hK~cc~+zkMd z6aXfn{~3Of^3H>F31C>(4nrCNhI?fmdb7-fs4NK3?+Uq{gE4}c-6vN2l^@*xx&i~9 z*Wp0S^ZDHxWj_BT8^mB`!1AETzy`#i(MOa<-;w#`vb!MIKu;>I?u(Hv5|Un2n%x(} z&6X+6zA4wYwF9{IN)NxphCz=N)+v%7UMLw2Kch7Kg3|DF-0%}h!;i!O8j0Rf+I>W6 zcbC%cGcuN+;kyj&T9kGxx!p$#BN8RFd+2|Fl_$EwO22}Y8?e4OLFss1ZpXpulQq~w z?j;xYMHjve##~0q2KsPKknSVVqM&4?>g`29NgP^Qj?(hr7ZHS9FJYu;YGaWyf$!*= zJ0awW&j8PHS@V|s#`=iY-Ea+{xLsyk`L2K=^2-d7ztDe*-ooqfm>i_n@s>O$2k@Ol zkK%2ap}=y7QfXbs*JDuxnt+T0qtaw#Ii=<{{8g5d!~e>r^$XwiRA4oGSCt`4e;|0dA@-b+DRX#3_Bgtg){iq)pkgS&}yXkZ&AEa z7gXu6ZXv*Xo}`2o377q1{q%9A5veEuPaBM!uOul;7@xT6SdCiY&~7Aekt9!oNc9~^ zkuQXB(obIS7R(Uj2jtO_cfa;(l=}iPrnh8fS!XyLw&Wa$bf~wBmP4{=r==G8{5C4V zGgOO`w#J#8X3{x+T2Q}v?o1ji?E4jQ2m_Oe-Q;(YwCI_NaVps~G3X5>l`hyk11FK< zQ&VSCb`mDS>>zKzQQWE)T>AyyqVm(a1|ju0=E(t`b5;0iOqE)m zbKc<`Wdhq$Grj{fbrM<;RZ7WGc&B9DF^J&*UZ%wDT;^Ok-{V~Pk8m5Ozx>eYvX|%1 z%bJY;PkTe5y@fap1A(`MUkV-5?~5hNvUEuD)=Y8OZWu?|7BJ1TAq7rPr$KeJOs`0Z z@o7*{??JqwvhFYcs#!XNdn52<&YaBo+0J<@r<``~R6Y!obDF6Gm&Q|<(Gyc=!j3S? zLbq5b)^b!_NH^EhcoC|0q%5EID?aiKsB5auqTcc^B=Q=n-A=E&Vq-FSEYwHOp93IT z=oO+V^>_;Hq$NqOy5DscS5&1QFWx*Zi@wtt=)S@hdWYpo-Y}h8&ut|uZ5^oT(9*z= z*!%fHw{5!hx&-kmWe0KMvRiG=c%vzEzT2I}r`Fth8tS6O7CPTT3-RfqeE(9)7OtiR zredo#XGErT|N8uw#Y1_xG3e#DPEV#~7CHx8|Ck+_FUuG9&x>6P7;=)$R+{gkxi}!c z462zK78~R%hLoADWuIO+fAM_EHb81~iA1BCDKXSQt%VSZ2|oywcj|@aTUp#7&a0@x z+nY_d5Z>1{QxN;rQC)qk^8psHnjptWb18eEi;OPnZGou!;8ozj^DWEbjI`KAkj^b} z$%bL(So7CTtMRE(<87JySH1jBvA8sUWajT0aQ1gi2QIm3Nq``(UgDx<{_E+NMJ&Vk zy-xUJon*nP{;e?N^v34c+&P)3Qs>^{eYUDtB#Iqo$Mj@jEvA`#TV@T@!Z57@KY6>d z_IN`BUt*w_V4S^N)@LB`12wb8S$DX-IVlBnLx8Lny2=2|68c!@8kRWrv{0_=RmcQf zOKB;7iWZi7C9Kb1_+DP@OnxQI$}6$l#Rm+CLk0oFsQ?kL!WImZu4*=`kmf>oGbrqy z1L^&I6`(ysK{B3~rHyz6mMpQ&=1q8hkS1WHnPB1dxNtLjZBDN>$A){0B&GhbCzRR) zl)dRsXFzpTuCFsT{vCJqKeRLDc$R0MmazUv1Z~@tGDc#Wj8ec|;}+9X_NlwLiIYb{ ziZJ_RfpWOjD|7PE8O#azNL7gN4@^tvsy{-70q6d#RnF7Sm1Yy_c;;_=eNBu+7f7xv zkF6Xve%cE+QeH4ak+lHh*K*z@$uceRe6dBAz{h-|oED~^0SWxq&C%)6?R%$)?D-28 z&r=9?)`A~9vp*6cG36cC0Gb@U_g5x>3;vjorvt%8TWGKaY%~paiA4#NA1e1&BtM87 z`UCqn%%4PYbpis*Ld5K z`I9omW66(-H>#k?am?HBDQ=$7UAfqc8&D9hVf9DFMIyPxYIeKJ#q7KH#hXU1%d~AO z%!^C76IY-0)2(r_?uFnf4o%4)X(FE=7b!SP?RHw%Atw&3zq@VdVh+ac9qPg1pamSx5~t+4M`Bi2{Zd?-X9bVa%WgGeR>8dZ0%T~$ zBn5Gz`&1WJE(I|Mi9Fo*Ntv1U@ebhBx0KZOnW^Mc!V|c_-*2PObaH}JF^7i8mr7+h z^c6(9&r%8I=dXpH2dNqN5fxA@2-8P8-op6s=b^iy#qmeT)5nGB7al%vet;w3_973R z!)MJf&YB*YV~40JOaVNe8##IY7LOO(ajEw}Q9X{P;Deq+foGA*XVh^JQvVUZcj7mi zc?FM87kQMmJX@iOb!R{m{}=X&rOu_xSLUDg9qstKwQUH860tCsNtsd1JaiQj#z;%5 zXG9O7NBB%=lU&vrW^1I}bIMc{p9$&v|3kA4eB|QOPWI`x8ZCwFxF~;*Hk+zk$3)XK z11qG5##gRGm0@J?!d@x`rcvK8=)oehwb)lx&6J^UQiURNr~wI9@^1A0h9>!lB`EnBsuXnq1gAMeTp6>JV2DMWd<{hk-gHhOUh(l+%4mZGogyf)Vbkm>JgxMijEV0hl3J-hRIGYp1Ak~u zU1k|?a$}{v!dl_ojSt-N#Ri4#(PFPJ)@)3na=>^mTK{5Ah>MWX?%mqz#(AX-cY)T5 z3LJ_IP%YpSjNK*fx6)M*paz7sj4u~!g)M!hb&=Tt9mQK(%YC@r50v@5<bpd)w=l5=;T}AcY+O4_XIo?}nOud&D*uC^h0X{yG?B2O$ zv<#0}6fY(KA0zCVi_O~3x{sK9lMPrD7E*ZY_)KH^ZgI>fQq9K8M0LCgm&RMCEb>m@ zY)!$nm@7o9TI5S2BG$yYsMXpN+KrjHG}42zwqZV+=dVb~rB4ezE0+lCRx53iaJSzx zsTlfGB0>hy;o1aL-6%``#8jX0H)*zo=_;RB%Q^^raX(; z*1&w`g&r}1-Z~p6{~#uexmLT82DsuAFHNKs245a-!+oprbB%7VZM>~%zpyUKrs6!l zxPJX?S7wRVOP}O=d=)vg9~{Wrxws7!o}F|!H)OUIbNl@~i49_NjhixYSIx?}Pbz!x zy8m4A&BwiYu9eG|&SU-W{{=GM;mR5Mz3XVX!Ib zF7RIe*fmq<43APUl?a%UZd7nL7D6`FFZpirhIxmHa!hJD7)#3E)Uh zvk$I~0Zsmk)TY7Cgd!QU``@yZd(>I3ZgPqJP-uUQw3#*()r(@^0Vvu+&WWoiY={Fy za8~TB*UV+c68ai9?q4E#KplDg5Y@4wIoj0oolebJQr3b5sD30JXlvke+2eq6shv*A zNeSw97ubWce~_iE&(!P_qt~@keL>Qq>9f=6KH1;6d!L(fp#N>59EitU-dPSY?5R;F zif2DL=F^Qe`yt!?uC2=q)}jQF@fe%LFdTB{$rORb#JadACCMv~VjEZmzS_k|dk$%{ ztnx+CR2`SR2RBw$aX>AZ!D(wj)e>q_Ma8dG;x&Mf3>l>-p(6G7wYeo=7_e7hvxfqa zTJ;2%!TpUtu_o2)cx^xUj-)l%ftClC?)0j-ZR(Fge;_G1Ax6g3@ZI-UvPeo1t63c0 zro)FBJ;C~?-;tDCL*rd^v!2G=>1L=V)q_+jGlZW=w9vfZNGrv<=o;6oisE%-h6Mi_ zJ(=yaFp16&LasiS&Vd#-z6J$x0*$W1VXVUEG16FC6}&Oa0YPSf&J8+P?}t8t9{QFd zz2@6M?-v@NIV3E$5tVojQk)0k1&1iDq_H7Kt~(D`G+v122N~&Tp}&HxF8Z<%Y|67Z zjDCb0gI_~`=U5>$yjg9^QC?0D7D1jk93A!yHC9l#$X+q80@8ase&q5;S&=IxE_PNi z{%vXdR*W?;H37!x;8~LIz;;t*N`=F5|H*}poiibKV%<}9HB3EF>RaFkR?NM7#UrcV zAfIbZiJHBZ7wbJ8*100JSeQB2gIu-;2r5$g-2dD?!gZ_H6(LS4vF5`UnO#S38T4|wv2HX&+=Yot0DAS^Ybp&3BB%{?~ zqnzdgVlX((VpYXt?Ie^r44!^TnRUFap$uArrReTW=$J_KFe{ScSA8LO{;&ka`|)by zdl=lW0WNrd-?14}6JYc+dg^SIZXMyiO&~^UYcpJJaD_7G`tNO&iaO@f|AR@z(h{d`?v$!0B1B z&tp8#xB+D7V@Vn{zMcDd87tmG5=gC05t;Mrz`MpnF_J6GhK<<>fy8cOscEL|S{1j_ zZa}4HVjyXcx0y1GIKWPtZL3f>og)KKy`o2lCQoqMgFUo8>o^JWSq(6Wm!aKXLF3y7 zq<+%F`d_d2W_7PB537DP_J-yj<<(uS?vpx}sXWq0vLv3rUj<&zX-^_eGoTa9;=Ry^ zw;#h~70g4N_)H(kT^1Fr)xLzJCX!q*CaJ&PcFDWsF*t6HQh>D#@i&;4@^^9Lm$r%W z^cm#QQ=b;73pj37p*q6T_XMQL*5p!U#$wolthN?ye;WfK0Je=uxTZZI;-CYjTyH4_ z^v|Kdjvin!c1-x~0kLE1K^0ORzpF2!K^ttnM$p#j~@lYScN~y=0fklz_K_x@&U)t#cmvzmOx-2QlOL~ikGp@ zEiBG1m3~ETi&}XtPunX(%J+#8rV}*8B5W%4$l$DxgyfudTm@5iBf0_=0yNpw4{G{e z&?s*T^#ZRKWYyyp(9<{23XeJflN)Wk*#kReLv`X5YnBa~$q=*Ws@rke`^f(URzDMu z&N42Ul9+f*G>P()^5`LSTcOL%r6Gd(64&Z`*0iWU>u_Yx4vG|2jmN|jx<^QhL_%fz z%>egY(J3*5+1ITCrvqc0Ejn9!_&xd!G;qMlsq4W>Tana`O>193-M3}Qb7j0Q)opeN zCk;%Rl1R$~iNcgSHKEK_JY&j4l_2Z6fohaaxUc$lb+Qw=30UZOto!e+vd&W3sUuu= z2lNhOpxDfB$={$B7(?p{BPK<_Ha)-AUy z92VFk8sDFE#Wd?aQD!xp#@njI<)#w4KDZv)Ve2;5*GAh`N)L!%f{Vkghsbw+F_v^ONkxJI{35>1rR)|PP2^HDT)X$!Xq18G zSWwm^CeaPS$jjFQ({Z8;5yqY;dEhWevYM?82U{c7cqm)RtlTHPrGw)2`E!5$^!4-S zs<>I3f*OH7Kn909iVJI5^1i-PVkMXSYwwOF2XNvey`^AcvRDUheGYl*KDd6n_(<;G z_Fi&RFZR|*`qwi0ZEmY_!(8&#eK130$rnV*AK?c7(ks&7jdM8n`n$vod1zZUvmnjA zq@Chp@E?~=`S8|7Dza6Yko6X7CdgyYExvs(#@KeAIblG~*FvJ+VYc35#Re>@h0YTe z6U+#)#)boCcd@XF-Ia><17>V3YsGy5GuX>0zwR=ztW61Uut8CRz!7076jbb#-NF(* zXcpje2n1O{Q8nF2dIQWy^whUyCqc0Q$Bm(`6#AKmGV8=NQI+C_ZIZo#4(jahiiVPi zR0>_zveMm=vtbej8|K}#J3p{t?^h)yUaCDS%(@IKAYKf??l%dYnT-%UK3Q1TK)(UT zd{P*y7FUb&{)Ee`-5?WLa#0=!98R}%FB4^+$rhl^Edn~uWIDX z-503ua>jAw2Cx(?ih}l8%90qOzpi3?vW-0g*!yaI9;Cb!pu<)Zupt4DTfR zB*wD70>9Ql%UGg2d&uJ?^;I{S(e7`1Nyu%4B1_LY6nLyh2o3J=S&+CZhBbC~Q9aVP z!c->LQiIEQ%dU7kG+eZ`-a{%gVX;;^0)QrkvoEeG-_TM;(`_x+^D!An^et+F0KzuZ}(220^Z%1mOWVbndamw#YEjSGolYwMoYP6v%LiI#JlfNQb*h)7*}hzeTcAq@ z$)06BBtI@ZexS1et0+4}11u^xIe=wGkgVa>3_2hNI;Bf8?giRBwqU|kb@BD_D6{P> z=xlq1O_YzEeM7qaBskFIRN2W zCg}%IdXdk2zjzg|d4$N8_3+a|4^9L~`DzuD-Az4$H+u81---iXwJ+W8Q2Qy=wxZZQ z3U&T4#+96(ji1|Ax1iR?F|Ok(bRjxUDaB(Qy(eHGQ- zJu@rSNzt8!t#(^vQkEL%{3KH`)KRYk9|aW&3tW2e&$;|_qJ1jnX-H&fY0T?vfoTun zk^-HrwDS`W#lr-j7&r?Q~VY%0!#x8U&>PX$}1Z-qQw75*m3*uo#9Fs^M69<~9ys|Xsp`1v^utN51%oCCOq9J?>thtCSD@?xli z+E8wz#0&UsVg0LKoMK=O5iQrD*vC39_Uob_DE5Y~We3XbD@wX6Hm(xQKd-|A$fE}e zw>(z)h^$)1Ujg?vaMvjEXPJ>?8_aC@nU`pLL0G=@TsI`3NmMB%xf!v0CsiL#6}~KR z@hJDE%sb8w=|3{9DEBsu8A2{LF{%UBt}A z)2r%=;ST_*r{oqf82jXfY&TV3fL)nruTtyH0>-OIt!ky#ldG7^c(n%u|Kuvh_8^Rb zzy>f&a0`$o!X~V0>C6Sd#8%%Zl2Ps10>QmLr%b@Ja1g<5FkB%LgYe^B#SO*%#9g0U zqesRac%k?i>ZKmV&`M>nk4(jco{*U>Z_|&6jxLhm!$2O0Z;}7D-{;$ z=d2iY0ka?H)>mQzW`hrUwTwzXC}z&ENA;W?z1{q{pXA5e%yWyd0LKV z-b&~Ewwp+GUsU(OpG4jq-3QTnhYc9~$!RXq4vhiXtsIE^YZi|vLXzinb##sYWQq3+ z?3GqAxWp2z-q?!Us-`*F-0gnG}N6%etg`C)#&qXJ5J!tzUBS-JHivlp2ko+b3i z`%}KZ{8hR}=*`Juj*kYi=Zlky9Qsc9$9Q!2^{{X77w~3yhawt33Du5L8VU{dijCDU z`GiB4A&N_wb?Vt){|6v!1tcJ*a&NMF<~EH4u$wRsrCu?lSnS)Wp0hIkh|+i9Vh<+S zejGH_3TfO5G!{3{9`AF|b$mdxICQb$Ta}r^TD%#sBc1 zbIMEh04tD`76sHTy_SVy8%WyX^U^8oO?$y*riWNaa*l`Q2GGU`>=}MkZ7d8ZTtq~W z$NtN-zM?>6(gf0&Xc+ISC^$OHEzfB?qqF0mI>_tbdWQ```Xxc@F~@Iox@$H%7i7Ua zrFq}XOwn5L9TY#{?h5jL)k;{;yThNsH5+%7R755CM-CwMb?D}b3$x_u=NQ+&eWhYu z0?Qff(B7ovIJnsw?SD-iuM$mkqcBu9F1-25coU7pdFcTBk6a|tP|&dQN*ch=I7MgF zZOt5?nJJFLJw{MvmIAykf9)qxuK@Xiu%&ol4voP%{vB{3kH9*>uBVG}n8wd3ws<%Y zV>?y2956WYywtohOjUgYK04oD1uhWd`UJCkY29m3A%g3MbSPZRGEhR0o`6On2Q#@YVOnAYu(6ejczN64W&j7QYgZ=J3@Hm0P5fpu(;QP{Q4?Q2_B8!J^3S-)C z!YH6jG|dZ-Hc3>r+5nF|E??Q7y)*{{1N-c7k+mf%BFUJ6{OT)bmW1JK$&AOks* zRGzYu_sy63L15_%V_G>27Y=HJfj1-;$ zxeGk36hWJ+Rla;!*-6Z@MWSnhWDeX9RRAbzEeTbYrP5Pt>gY9cdA+yo2m7}J>sC@w zPxm8*W=5Xh$MiK7)CpU3LZ6jdP^tx*VWEo0#7a1!Sd#=7RW2`ds;7ErYf-4|q&#If z=;p^z8aqy+F0wL6z#=2j0~>5tg&UsRqFnx-UjXurXG^a;XrP~(R|Oyga?uyKq8?rM zYcE|4#9q|`e#Zrgm525MJ1?|A;0vuk;a{?g=0m<}_rh1zmQ^lVe-@zcDVmKC4QJB- zVQz3cFDVY%huZM5PR^nG_PDZJEMLfi8_mC=z_^mNhl18+|i^l|6 zY}gNQmtk&OL3Tz-d*r2_Y=e*Z{ta9Ga`7HW}z7Mt%IWuegOJEi)(${!TXh_=>mC@#EmQzE_p;` z0#8iG1Xe<6ZISn@&EoM@WhL}teuzrXc9n}Nru`=h>(XH?%w*=CRl?ss!7miLsOD_k z-HJhN6I=>KgXW6OVlF%4amizcm3<>mgSV8L8f>PJJcemda|I+<5WF1*hZe*H4#or? z&np8x3sNd%qhZWqf(W6ms8%Yzofo3bXJaXb%h^#m-r89J8p@;Lo%Ax^m1jU9%IHMC zr!l(vzdS2I{aULzmHJz* z9g1)+GJ9T#j7P<>6TDB|35SegtncVobUtX*quBmo#O@bW#DvHAEtHs1tnkDR2r{MQx zUr|`TY8d-hs;3+3Xi|%?PLeMjJR2wZ%w3}D>5P<$J+Lr?UE9rdApc0VDo&^xZpMFX z>U~9c7d+Mk<%yByP2-!tJ#Z74`0PGw+=x+Dv0xYOF4gmA;#dsrTjr<+;GhiaQy0Xv zNvy5A6FMYpw*i9V5`~8;AX%=M24sM%DanGJ-=(C`+9C_z;#jxC?FH^Z=2g<4uy?^o zfQ@^Y?GbwiXkd#lHo&mOvE@y% zSzK^~Jmoy{woFM8YiU@BXBbA{`LMzBHGhg%rv|io<#+GGY4JlSx8hcg$sd(~Obibn<>N~% z?gNWUFwWk1-iPmTfp{BqNa25CNPNoAZSX#16vg!UYEK!2vD{TQ?S`MOi6I&#!sX%| zy!VxOf#CNjY(^{ah9*YE+vuw$9{R6A^-PD7Kg2E_f~zD9Iu zD6hGg>K6Oyl_8F)-lwLo9UP;sCuf#P#exC<7-PZA}3)-IB#;|GS2{*o()| za78h<^kh+e@dohQAeV=Mk`G$rDjda%UxTmUL|N87^`Cp>%Uzk}X|p&~9_P81EQd-2 z6el|QIaUvYFgM7A#>D@rv*3F`oulw`l*;F`Dz>_VCyt9Puq(H~5g29a*{C30Ph%sW z7RWtlq@CvLX{054hI;PPvs&Wuvn971?Qn*xQk^ic@6LA67;)qLB7?Sr-Oa73%+Vcv}^#fekESX(H#x|v49Ul~ZLNen&NI)Rqf zSJ9vV8`cdn(6S^Lu5Av1MCI!PvFX6ezv>Mb(B&rWs2b z*6;N_MzG0rgN6x{sLE$2QH)RHM14tVO)Ab87Ak>Xp_MJ-BFJ{(r=WjOl)0a_mayfe zu&Sc407FrF77Pj92cj3^+0P>JZ){DD|b4U6~Eaw!Wg0PSl>!GYt7;OwarQ*iFrtA1$?ZA6_v zLQi2HHb%j9&_u#c&qQ zGW|AJH;10bkoQE3I6D_n#29H^h%qu)JtGK9CL_P_JwtG4N&}%G?6N`qB#_Hn(+MH$ zY0uIe7sLVfb&yTv2HU*k;T=1)4;_Er18TZ&6b7uvW@AJ9V0EyRWgDn^XG}c^oJZ_? zb;Bi-jK{>_^^V37g=;%hxh5N!shC%qp9q|(gHn5zR^CmI*jU}7(c29 z=;mhJg|tAWTM;ZNFPdp0;D&FX0MolH1D$K3O!)S2+06VM`8C|Kn3DX=*y`bL92U1Y zeue3>7P=rw%mAww!m+ajJ|W>y0h|s#nR3G4Pzb%@5VZv_8?ft;&Xw7kLcf>s1{K!f zeq*$BoGuGoNsxJ$ygzpa1m;S+56XU#_o}ZPw8Ly%UjkOT1&2NlZHK#%cXiEQOo1<< z@Roz=jrYEN5ng3T0b{LvaKQh6Eo^rGS=^sob>AZD*^IeM@>Yp?bf}O;&vmkJ-4A(| z7+$&4o9f#vnr6|1(24&*_B-Z?tb?=O{TkTqo^}16%uM(!NtMSB6T1(Js#P%E_3wtn z1&DX?;E`~G*gu#Gqu~&wIm)EeRB@x!w&WCpA1VCnM*3>ONimq<{( zZrNdrPvOQwxEa9v_GW>H?t)VGUkc$=0)CN3fTgnHU2cKnxXnf2Q~v;&A?7wj4+1wf zVIFS9)WQpf9yZ~zBdw2lcYv09;DWC?qAR7FqbSZ+I>Q zjV^KkL3#<-<_+^=dca$?!2wjMqL6&QbPnVibr3Be{r8ddUARv8qEHS(RqeY%7M1zI z`hN$}j9-Fp7EYU`riGCfLP}j*83UKWk?}hm6z~KU#my3ItkHH;r0oZwVA)bA;}V_Q z>8kAlwQZ%XaoV>2qLZx>+~A|RH`fUEcgNan1AtdZsaONwqO2rRL!dTTe|bz_9FN&4 z@Za5&oIF&1TJA3%hAd1jkREy%gMl5>xO3q81~`X>{ZhOq-iOSUyMmw2%lg9eFdqK< zZAg>ragLKyaSj(P^60+Q!v2j{=0}=n^Eh>a$^AAVA&NpxG7Q{ey(-D7jAh_$LYX}sI-5>jB#%y?7g%1oyH`5|FCDK?wE)1&*)IFx#gjlJN}3!d4X78=Ml zkK)2|uPCh+gAa&ND@QqIS;YnSH3*yX`0ZSATc$jE81=7jn0Cc9Q5ipKJT4m-fU3a) zvK|+i5G#l`i|0&9bU417LB*^|9Y`;UH_c2h2WK-D2SZP$C=&-Nug7We12`+%&aX$G zfP0-aGuaEu*QkSTnHPxuEM5fodEWVu*d`nYrW?gHcX^6;6pTX}C>OC0^j`8|W3uP9 znqhNjT(U)cnhbA>uz|yl$kqyY3817#`F0$JK3i?4VmKGPsR2a8UJTc&P)va@R_yZo z3qx)szp7YN;60K&IZ?*oCQR`My(Mf`aL~s0tmREUF`@BZo|eyUxli1A1AL&Csq

eaID*Z;X^pZ1$B+;Bm;Cwi>;>8vYGciW|&ur#+`tQc}4goXR=Y$#5MIo3Eg?!gC_ zHBestT`4owJDuz_6oD~?e+eWeK5`nUPg?AGr-Q+yd4bp8^)5F0l`4*_08=6tUSLW`oiX zqBM437SNOx7egih8Pr&*s!BD`$Yu@a$4J^dHOsmsGoEdYJbPEGmU*3UMhKN6dn~vy4fBY4OtboF&sEN z9{8xmRy$eM1<8I8#XpFVwn2bT@4?OM=kJ}HsNH!bg3(pac(cwZ+q;I7ps6_Vz zXY@sZKjDG|8-=96jbQTYSpHOr2pkLixz^11Mo|fWS4nhUGo(#*$he%jZE-uh2d8Q& zR7|t$A3V`=Fihy@b8+0$Rrh{-M z?}hv(1fygKJ3rE?;B6|3fCo!&tWOi%pqTD8!JQk#nAKpt4(dY5G~6R9ziIPV&yZ{@ zsxJ|l*TM@(9Zy#qIA#Xlq!P1?2LQ>_61JBuna5InBIW$mcY|Uj3EwGN?$5w716vS5 z17C~$s)DEKUR1gVmw!{XShw=J-dW_z{|3ryz8$Msbko-bU)*-K`+?FU*gjt7^}NjR zRmU2$`%=7FqQv3FT!Jz`1qUT;5e$5R6`asx-&4 zqVD+mSo(C0D=T*7R46_+pInK#!?6+y!o2{ruzzSxse~m z1*;}Esx`pPKnvP;1an8mQo|ZQ3@*Uy^$S(u9ta}yS9EsSIPCm` zwreI_N47c#^jpC9>FOO68)_V}`5KxUKpR-9-XSoENeZ^T02(jr#-9PD|LNVn{3z9g zcBim8?3&B1s%ie9v2N5_2=b~9#zEiH%5zu9f*gQ1>n7ND*6Dr}!i`93nG7gpNanj1Fys>(GNm<+} zmI}jZfojrlgmv5aC{}Z$?dPwG+2q4{s71-$1C>)*_aAHuxjft1W~Z(0l|QL!N@sNx z#)#VG*v{^jqzd0ktnbrBtkCv~&Xw#{$$EhGE?}DseoY5kSNJOO5U#}2@!x>9-+#m1%osRb z^jf!xT?c494z{4zkK-`%vp^N5Fhm3EXd!%xzF$~ZE?;yGPCLc)D@g=*LFE!!JF7W_ z(w{(0OK4(CQ#>o{d=6!J3D+}lF4_EK4P60KisuXKvC;dXTCsx_V88bPWze>?LG1eC zD{OM#z*9XE-^AuU*bJYQ@I1NQnhxlapv1NW-bXHF0ipF0<$p+|Rr8>=&td+{u}vA{ zl3D!wnn=h4Q2P|^*cSm*Pmj}^ykSbkj^y2~$s5*H(fnq({J8MkV&PM%(Fu+pcaROj zCaj0s%S173O5$PVfq$s~T~&?iD+H*Dw{0+&nYZHN$Kiv68M+ejEdt;*T-A^52Xj*| zoBFl=KcSx-`9DrgQL~_fV3MAl`*G{+qYx!bD=!gw0vbRw!qAZ!CyCeTJRE9-u~_DC zk&h@_&;L=+luPGlMg2Z>sqz2gw-2Tby2r2-W2K0P4E(NSUH^kRX#Ypm{{y_CyseXB zokmBMx`b;vu@oi*Goxmwm8?Yh5Uga<%j2RpbhR9-;Z8_NcH^eGUKdQqWhmm?McPs1 zcze2d$!kZVDcII?2nR7-o-*VsoX#hU8gUfy>O3Lw0`7H#Ftw7$V!8f`ZBN#{kI%o? z$@NdqDd=v6D@VlPTyT01nH@KBY?+$#l=hsbP;)*}e5{jTK^{@)9luvyU*`}r z>c5&@T{_R)iwsZ5+A2)QC^#URn&7sLKlSs(3fuUqxL@3$urKF;iIR0OXTV1O>l`L4 z?mx4Bv}5ld`NFrchbKxgTd(n}bpgC(Tduky;saA2b#5``H}5NMRh(dY;RG{ZY}fTl=tS}5j7^LXNfL1 z0M*t9WaRHdjmq3JL=D#ZT?U&UH?FalL5)U5h1RCV>Fh5xf(4?v8+WO`3a3%Trns}( zkN_4ZFbLcZZO`M9-!#G$SJVv>L_Me0b%6s%xjW8CU871fv3&8$s2?4mEf73l;;!lGHrZxW< z8Z>Q*paHxhVpDMOrV!iI2@l41yCnb*lH2isi2?5jb`S%DZG`pvcz`oxr!9eX?ZTb5 zgdc+l|F-mCA`}Z2o18A{rqwuX2G6?**p9UoRsF#R-p!;wvAhzn3w!{Gt)=Uy;f!<|UmXBN&5 zxX@d)6!y*emZcHSLD@1KPPg_P@seo0BhQF1D-ce*wj*wd6#*NepNsI|h_kX1%5MH@ zE4Yu?I3s*LbmS&^0|~cnBra?umXZK5poSCD=gi*Tw=k7*;<2*sH1!f8xkLC-JQi-yaxq^qbvCq zwxdqFPger2AG79j&TvWQ;{K zwX)>ejN8o1xCLKjig)_VnXs|VOsQBmb7uaPYT4|IQ5LQ#0-IBzWoL)_h9%{@x$J9s zXfsDL913Bo2Ucg7(_+?``6O}57#Jz3iY9^4sQrWlJ=TdX(K<3qy^c8)+cuEnnt}LB zq3hl@5P0@T5ewT!(yVBTK%>RpJ|4ejJSVX_^!tw%%!Mt@1? zaRpP}kBqCOZCr~DG!!qBz1z_xa*Sm7OAKtmjpDZjxIeDR!Byu*+24@!6q3Fv;M>q* zIZ0KQO8f*B5L!C0<-hXXBdv21-H(kGb+=P8A)q&NXLLaQ#Ba%1x#tTPjnqaSLcNf_Ya7WPB zgb~A^c|vkss>Ve2Nz{S&tH4&#nwpwoL}bWbmX!Q`nC`XA2QRNPCqKY;bL_iRoxlqL zrSd0~{56d#JJs+^fcs;)@w$H-BZOgOM&VsMW4Gu8dU zfap}mUN44>cg$V|#WHKoP1}^&4PuF4dlZQZg_rlpD1eH0A+Ts#hTE82_Vgn##7Vb) zI~!*V)?M`^Q6Gaaj+_mhqzptZj(VXAsQ6GOhTsm{RZu!^LV0Aprzm#&6uiu*{` zl8Bv94givMGrF3)ZbpXP13A2jELgtGmE|^OO`38!MwRb|!(+qzoTWT4<<4_Hkmf=u zHrX-3ZFM*%7;Q$Qaaye6ANVe%+eK&6?f3UAWttW&_`Y0~r;pQ>xn_`bw*sWvz6kzw zm(|#iX}oUYr5oXhLm|j7{%b%=V~~Ca1@C>12|L&V`j*KlGuX-=wsblu^CcnJUUDuy zUKmK;Z7zl(h#!Y>|1-!894)p|T3D1Js%hD&118a=ysn4;HRGsUfN>ndI1tDPw@TKl zjT0~qn8&^k+wK#E%``ZP0f&J+eBHonMqyoYwHt;+Aw;fAf@>T2p@A47&T9NkLhAU; znG@il(4YJ&*s1_~siP60RE17A{cA>dXdy<|!lOG;;KG$zA43XagC$oNLm$^gFJV9* z!VINth-1JGV%<1(E$sPfq@eN~gbr^pr0e5t##2=$cr_U#QLGaC93_>(tyBiL1fSni zisZZ}>y7&^4k@ zOw2$b>CSC~>j;!hhT(ZyKQXX}d}Uw06j$>Ojc;)# zC5~uv@))D_HF-MZUDhe@eEjCW6VR!+2;b3qR}Q3@foGALUkMMLuW0kH9!TsIQjdT9 zcjA2X3v7wj*Njbt?Fh8MV9MTJ2G45y0pwk)&AW#CKb!PO2JUxE%Un1hZ`SBgCr)gV-Z!OmKI&B#RzV`V^1HN>XuSXsJ zI|SR=8@ibvy;1^jJly2mr5&SY4%IRl+nb#1{4EM=7i9t~4m)T3Kp7oWL?1`L(RMUr zR{J`#^01T1O0tLfd~A<2dnIqmv`nMf=y3>1vJ{?u*aX=>kv-W!sBLz3Za;B?BXq$Le>!smHa80K?9xvBB1jWV2w0Rm_;QU(n=gd7#{s6$#VJ~c}AMG11>o3*T z$FthE2{7NL&C|>!_r3OuMrWVsc)=HRT1zfdnc6iEzn1M) zv6v@y%Ij`jY6S`cCmcVbydGsvpnOKpCg&ABHEZ<)>(BKrM)@OOH#&=;Ko(tNO+B?t z;LAqmb=}~fGVf?-&(J0(^V!jM+UC8hF><^2p-u*re{a;*(X0ix%VkU`GfrEk4Hvp= z_pe+Buq0{gbfOzvhQrNYs4au%?%GW21)M61;PLHID;>ckWkho8yBo(XOjz{=1qBZgUReNpVc; z&iq_7@2XC89(B|_j&nU6zoT=A=kEG>5&dw~+zfOIQ;T*ZQc*S&iHgLfaX}g z*JXn zrXi2RUv@=%^eDr1ITYpzZC%YesAV|ZE(ayPTuV*PKJS zeGYP2ug&i?zQExo=lUovrS$F5sXj-7{Pk(-a}3Bur^)9akS=ZhY4$gM2TOo-9GP&2 zwho?oJvom965g)O(~L*SN8Ke|27B zJdS$TEli+io%>bmaS*(r+J5n@=5aK<4)dhR<4|~A$xC?dIR0JdJ(_Wa^Ee9LOl^M} zT;Y5Uf|uS!z6ukE!t2a)scmyeyyR$I;DhphMdUyVT*%)V&Hp~%&Sf|>UgtU1qYmeB zjJzG))K_8P=y=y_%e0M8g`Y#@ou|#mvmXDreU6p40AF40$!hx?9(rJtw9`BZJ z_5l?Jj(&HkwjVsJd6j6tyF8ACH#l0aea~drIU?TJXkNRll=A|}>x^UScsNGhW^KLB z_<*_-Pm|99@}_i=ua1W!<#pFL$H?n&?r)>VYF!SN*SW49eesw$Y98PJb+uM%84ixO zwVN{P_&MI)4O;lyU{Lcp(%r%?@>Li)uwAS+AJ2OHQ`Q7QU)tY?j`*&&&%y3G@D^=* zp4vW#ygMh_e#bTE$amf4aR9u|d1{{=2k(w(n}F-Oh&)*BGaK!K^=qG7Jgap%Al?RT zURzx?pF`rUKV3fd#16c3r}`WiZ*CX$^+@A6E z&w<%aY4bJX>u$eJ!-l|-#M<$(FuGrJ9tRQw>)m0^d7PZbA;m80E^kOvN1hbrc${31 z!-~D3t*4>IoS%q$i8JPpnnPEySN?b3*W_HJJ=?ayp|-(clQwDdHEl3XF)SPjsC}Pr zr)$bMu}(nqHe77yE0r96O9L;2U>! z0jpY{18+?2B434*BXB&ReMh>0fn!}9=mG|{jU$Lh@mCxyqGQ#xp_bv03+`@Yk7^l? zaPXYApRU@$8qd(qYZqnM|G!hGfu{>R;2;3W+IG4q!yfT}p&eHjW!Rg02RfyJr>l3C z@%Uy8_|SVzPM;P=Jga%^pZo4kdAy!nk9}}=C7VH3q+K}TzE?YkonYoR*mL$dKTw99 zVBhfrW!P(VcXV8Zm;F<>@AaUQ8XkgSVL#O-?YpFbSDg>`F5Q8qV618$JDKh-k9|#d z&QsxHm(xqpP84T5!NpFe=l{U?*TDi!$uk`D8a`RCw8$ zGi&cf`_j-=1)rX8a=N?7SLcbHILB)9@vOGZ&Yb_C&C}33rR{x9&av7x(%`rr^|%Z> zRz8HgqbPh`jFbKJ-VKI6TBeJ3*f(sd7M3pBVK1>){y-V_7aRD2GJ$c2ofn^_fv2m! zZfbJA6Kx0lK^JA%N9vAl@Iama0Oqh=&fLzU^W0^hCU4Ja^3qO|XX+xaD|*B@(2NTo zcD~u+ET-WZIiEdmz8jr~j_)z&vro;%-OK@osPw@eGADOaMumf2Uv`D((Ka4za=xa; z#ZK$Nu&~3)Z9hCDaHO9oC*kXwV zdm@6^qKQ$l*Z2F``zdFxSB$^+zux!#uNBtX>+_v`_St8j@;p!25o!?*4kNH zes7?Sufl4&*C{Tog)hPCZvCv^8ag}S+64F7ubTTm*VTBs{<_Y+yZC;pqwjY$uWP^A zXZG~lNB#Ilq1VD|;%n-o-zn}N(!}`$hoc{;w`FHi>cWcl8hW&c4uXQ==oA2Kq>c_9#ZTJnx zJ6`?xr7ON%@2l>!#PAzcKMP}m|Igw45W{a$T^Yu7xi1mJ?@J91W2F1ZXtUp$3a_i6 ze;UJYLY<@dtk!Po;5VOs8^&~#hu>^E;p<}bJ2Oq6C3TaBUu8P>Yx3|5OTYh`7=A(N z;;)J6x3=DIe$D#uJ4UB{O&)%wXveR~!|w|n@ilq)&7mW|CWhZ2`qkIO@OwjFw_p5< zP}ApT!CrKC59K*(#6~(>*XeyqIM?Jkiu*k6{K`!Jd5}LpbeE6#>lM#$nd~ZL=TEx3 z_M_U`&Iq==uIfUas^-%9Ke{3QfZtJZ?-|$HYF|yzQw!qMaTDwMkD;c#lO|6cH)&$0zAjN2N3~68 zpK_>v27C0liQ_uQDzDD`mn%XwGeTs^o z+A&3yO_(rgVxe>Fq$&K}Y|?5O#*dp|i_kG)^3o2plk7=G!z9@&cPieCyJ$QWk#6vCDlu7l8 zqr8wwquUPAN~T*>IJiD~w5C3>V|>SiPA!+uLcc<+Up<~^d)qwDg!UubCXF7gKVG2i zKDwh2Jnon{a?&XM>T%eiE!*Ix)fzR`cHT;wJgIXWyW#t4XR2whx-LY}*fxIL#E$eA zo|E0`8lHVqsKt%y7^qXzseQ~()|V0{^J{CHP@k$><0w1A*+hcyacx1G{D3w^bgd_7 z%oitcj>~qu(shXpllOmYC4>Ivq!sL9w~7n)5s7$~nenA?<&scp%5lC;}#a7RrJe4e*!33Q*LyGeM^yq4}NXu2$d%D%jD zL1SKa;0zWzxeS6ief^66KYW_F^GI1v2fKoYMd7?(1Fkbkx~&NEf+IUvuPwqn2M8-R@RrI>%sf z^P?L$|6jS6ef0(g#g5bKqU^~&UxDnkThJQx@+o$G!50LCFCO!kkxkD+$;$(K71Pu+ z*pj9Wnh&qOnqu=;L{09lQx6*R^Y9gY)B8zKMz`lduN)3;8(E*i0;cDF5wCqmPnga1}^jCiEMdyFCy7`7S)e#((Kn5ZC z(l?c=gYXp@yA~SevR5L3V-c5PzO31?&Q~=kwd;A#H=${quiA%v5{sz2>3VBQyU0#? zDcN&zK3tF{U*fN-GCeK%q6FQ)d?(d=fHr+^P0lhcf9Orj zxb}m`cjRvn!;oyE!AM<`f5jw%J~^#}w3-QUu(Dw`sMlAHYbHa5At zPAh24H}os|ru(_bA-leb?>fzFZL;aK>5XjrRJ|7tYU%b8`-&S_zV1O`!OExa-FZ^g zyGeT&8ocRGURO|q-niOr zOx9mMFD&}~ZaPNcfBXII5o0w{MmDZi@*TbV!0qUtgRns)` zinEW<(hhn*Q|L%PI_vgBm*6}GGRU9rYSWSV-*|$w;=by9m9PbPIAxM`j8+B@41 z?`Z2B*{&y#(e1obO+P*Ta{QM+#tcqH*AGsE?*GXt=}6`ucC#C#u7RnGJ^|ld}0sfN>3Btd8Sp|*VJTs^F(|n*iwl^)U|BqGE7-?MK?B)=4tt8)!td6FEnm;@bayRWl zzF|Q`emMlr{1OkG->A-}XRZIg6#aj?&U{Yy8Pty19hK#DE2_7p4~B0@o3I-*jESjo|-?eOIe|ltB{8PjT8mzLL17jWo3gd%2F_?xyn! zi0yB_Mgi_BQw3lVp%I~*S!fv~p;-ld@$r0_Ews46bp+Q}#o-zd`>wS&3UGCsSPc3l zp^$FjUgW)sd9QNNt0nK1Z&%(c%6pZ9UafhrY)AR3=0R4<)FK@0I)cZT&exOJ9nIG$ zzzH&y4JMhp9znVVvk7_?^IqkkS4-Y2n@!LwqSxM*v;>IOBDdzfvf1$E(s#<(8#vo_ z1aI7>d2fh)$=VwQ_>oM94qTjsLb}PFo*5BVyV zzIK3cq06lI0h)`<<|58^9l>q&g>>OL;|sH&vi3#+cGv!rw-;ew@81H~G2JM_O%gx! z9QkZsRKGRlU#w6`LnYH{=czTa*4m1~S}yaz+Sc-ra~J^eIv(HL{XyG}Lubu)>A_G~4C_LiWX zuK}@tL3?Y^&aYQ=ZSNhl^XnY;kMF3TFJm>}0@o4zr|EpB_|E!dF^POinRQ=HF5F3aCamotFhtNCNuluJE+r z3zI#y(tSJYQvu#RrU>sIgI`$p%Ef|b%GQ-BC8HlC>GP;wCwaY0L*6Xh>hh1m9WG}H zce#8(Sl;qi^V#v+O7@RGdvK?W^8#nPj^IlAx}oq^NbFy&y-|QK%CywrJ(u7E8NJ}A z?gpPHZn%UJt0Pz{83VSs8!Vf+;R@~sT`OX|_hm}P7@xT$?~>k$T;Fy{{}o-PljrX` zG-OO3&Tt*U8%*aH3xDTfdl|8CsOt#cWx6@GET75(H<+y4EZpHTEr6uM%~hT#bh;#v zl)=j<0!Nsul(%MQY?@x#9cQoZ^gJ(4cOAj|Oy{)`JHvd90=!$M>liE|G$QmK3$21A zG`q82EZ=3;oLx8kQHzp{1%nmW5j@*;UKFt-&DSWvGi53YEFv@_^ehXlf+RF6YLa|Y ztT`)+zohY)jH2Ki*AeXh$L8Zs?90~PD8M~$x1zv-GR`=pTX-W>xcfbsfP4ziD1kVyo8P zD8PGUS~~C-bJrvIg1fj=)BfuHEBA4mDYsB>cwZ^#YxOEuzmrbCow2wlNv+EbQu%?o&*b z!8z^?%Uj)CrL_dlloh{~TobIdHdDCHW!jgqMw%<`5DsxkpqCrpDCy;97dL->X}*l* zfD2qlu&i%^*UILfYRdPyOv?fGQgbkIGI?tm#MYYKH{X_PadTC{-Y(P1`TI_X$*2N$ zx{lyn(|Hxd{!peWz*QzI*9b%g1@T9rZjg}_-sC!hr*wJIM(kZOB?ZIOtW5g}C%H^3 zCGc4b%swPoOc5(vRJ^IMw@W~OWla0>7pU%(Q4pN%I)ba{8|TBdCiZEWx`Th3th^WF2d?+cRoX`#4z|9fQNkpbCkZ#Zd{Fp@%Qu9`l9$#Nwse^;-OEaNss&a7m8iB~ z3OAZ8&lVnYFCd%V^MFrGmbX*FlPqZ!Tw*fYns=0+67{-(Do=9>lA-dXwH4LX%Zu}* zwQiEWtE4?GQ+W+xJD2+lK2({Zj&d)VcCnhuhYHhOrqieUMiv;;r_*H~n9YN=O^Uxr z(wCw3k)$t!mFat!9gMjb%DgAW7Gfrjwg&=gV|)v_P^22QWw$k!&|>E`ualYo4qeBx}u+Wk)wi z)lwWAAaGv`j7MjIaawY4H{@^RJtpJW!8xuY_~_4VS+i#zVqcSW>Ar-*G&ES&<+{RP zmla`*%X5T_T&A;qLD^omj3wZiN}!(wmdLc8OER^&B-4W~(@c>b60Bn|>U=S&J$tP~ zzNCHMEv3n(*nJNXNrz5zQSUEh!Fuv%0{hEYCOE)#1pjS1zdDKCNTy{1cblxbB_+7Pz2J8Df<9JAm72D7*(MxevIM-+Y(HMts7G7( z+Mk34CgV?pZ(E<3OoLqlvIYOo^G|jE!0L~Csn7b>y}YI1^@rW5XP9S7*J+ln(>rBs z37qXZg2(HnzfNejCB(jJ?fNKK+%sv1BTegr8S%%7A9{}b34k2Wd5$9dK&EX2NxGIa zo!n$Q)U&m~x=e164APPg66}32Mr31IukzwTGDd4YMmZRxl`*I|xCVn{EhJmUnq$yg zruFF!S9Ui@#^?=)yBj3)=$(&|JzWH2v@*u-)~gDVWPRW;cY`EZANUh@gJj3D|BE2; zdorF;V3MsbOm?hyF#o=!J6c9OOcuFsy2$v`lT%dt4`jhvTuBc%Hdl7hu^`_wS2kPf zA8W2^T61uF;?I?CFXKSMp{^tN?#Sj31Be}A?TrF_Or~=Ho-}tof^-XxN6@QCug7I7 z03^Ly@?P0xdXk!dW0AG%g*h&#jnLLwf%gaxHTPLX*;ez6VVPfEk!MumZ!Keu#W~v-=TE{sm%%y>RJF-E z9WQyN6<=cx$&xXL-`S|O*9GRHg=D#IbV;SYz1edWtC#HKsC0XDm5xfsMYBOuW$2}p znBmar)J|27WCy7HNvk{#mi41Y-=B`JOZo#?d5A3VNCJChN=eVhap0S-n*i-y;h?)ngm4mTBv56CQN=iqK2L z$qUwUxwA0LB^YnAe33wzioNJx&vslV(<=Zl%O&`$$r#LY?~B6AE|=2AasbqAsPF@m zG1$kwfK#C%!0GPgJY4GX3gH%)w+nxF8EMvA+sw=R3J1BIByfB*+Ia$}M|r{R?gb0n z3tn;W25)H@W$Lz*u&>LX2{T z?Ba4iq0Qxy!Z9vS5w3K}g2WO->Fj}`2Q#AAgcO_r|_9&@>+?jHNw9i-eQ9P2W@roZ|)ZDdEJ3byjo z0{jeByPTm-Z2zj9fY~nD%5`ibs%+&=F4?JjU4mfK{%oscx4Q|p2-SQMs*mbIpDWYM z!R@vl)$W&OYPK|0mSziEgcxjVvdSuPC(w%^R_RYJxyqh$$%6SRWiN*YYUcaeBGjnG z3#c&^I}yAlkJXD-hcZg%+x zfkUPmxY`f2jVN=q-{z91x4T_FFZfQCIntbGb>ker=<>Td%baJ;f+KyU$?PDpt21r? zs=N#sVB1q2A&hki4lx-6-@hvR_ZQo=Do@$7Y?Z34ThV4-WtC>z6slY*T&Ox$Jni+j zx~oi#t4CfY#(|S$CS0?U9L|v@W56{lZ$8H=b9~jk`NXp0I_n|*XRM5uW^lIa2wwIq z{`|!sv5(5MMBv0nkQH!}$?D0%XLHO8c6!2U0i+6En33rpmZ|*hM|CyHv>WN2_7$~E zeAxQ_xHtMxM~V#Rd?c_kh$-DJHWKFnSq>s7qi z={kZlOy|pdy?$!;1{qrdZ*m>MALtJmg?WkHK|W0-Eqa>1`~Nr@-QjfC5xm26Fx1=6 zblf1bp~Rb9M{usbZ@XzI`5v+MMge{y)24y7-tkblp-gVjH3PmO-u#B}nadqC&R#Ng zIz~9vWjdR?mHs0OtPp>MwN?ludvK)QQQ%Muj1L!%H(6$!_gn%WGX9pj21EYBGGz-m zVky1*l(8sqr0WO{Te^8)iT$y)Hwy4=nVxLGL6L{T<7IM#UnXw&cXxx8lf-asnWDkA zi5oJu-08{$Ll+r(J4;pt$kmH4Hi*S zk&>RUGHM_xqXph5(|&`bj27tQ)xfqg&9w#kc-iR)rX4ZHa7$JN$r!EhHFtw#j8^E$ zvSYA^Ttw?GLp67}{7hg0f_u+{8fl@;ChopZx`RE{caWz^U2zZHPGxK=thkQg62<0C zCH7=%ZxrCErt1;BK&Fzw?8FT{MgDI7%%XnMg|15}E`6N#Ngt;xG-7exm}GWi5=Xj@ z;Lv2MVeBo|-YCF7nXX6h^TZEZ)K4XYEs_+_)8!>kQ|R@ww4^j9eVh*asQ&oGV=_vF zb6iL8&3`vPp%D9TYi|_b8gJT@0N7E+2EaYt4Z3E)H`SZZ7G}D9MflKVtRWAO=|cRO zaG}ez*q1cuyB1g>{se2S5XeBma|>hqQUqn&W#Fa7 z1@#X~yUa$+o`c@f!?$IuBV6b@f>-F7E*Tjb@bei?5Jt+Lm?+l{0SAn>`t;0?%8-Kt;8^|DN3zAE&! z)_8ScFPE`!ipx`l>s($h{J~|KsW3`eWE2H^xQ^gPrt{ZZ#4cw(ZB^196czWW(P^E zxQ^h_rt?$-N9n0pMl2lcI)b;EZjSwd`5FaSm+9>mIKtfZ2>#67;N-*&$rijhW8frN z5e~QJ7$nJB;EC=ANwOArmb*bxW%fyRkT@doR12+uBylS|$=x7H+zP$Q>^?Q^{bxFk zld(K-y6Xs@@RnAi)fy-|P<$+RorQFGTLNVj0Kf?h>>-7M2G-7h@s5+n&);0x{s z3rxmfkfp5-5%zQmN+x6A<7Thwf^j3p{i~&_fn>1OyxQ!AdPgK97A|xh!5w?y&torz%bKrIfUC%Kdj{*6yB@*4+zo~$Zb-J^X3oG#vLal`noD3^ndaUC z_i#5zlC|W?O6i?r1vN9Yp03sxHgma;fXQ1E_H~)|NkO~-U8R`>3+DI>3R#i zD)GbZyuKD#Gu=!qD0frqQ=|LOTvGW`EjG>=;aHci2-{fF+9ev9#Z)1z*r7JH z+B3pSE}5mTUF|~2>ukcc`vgv{x}^s;co9tjCs_eimhC(nwfdki!A7m-qgEO9TpOy& zsB>Miu53^6bUP;7ny;8^dX=h>|4*mQfj-n~sU0h@3c*|t(v1G*YsrR=_f0)TxWMHt z!ow~f5$3xbr!{Bim5I$~L4u@Q*~@Cax@`9l*k(!ay2%o_*H$=wOE|(-IA(?a;qqCP zw4DtVA0qtGB?Ua?lEKfiQDd&^xi04k8`&0=S$?kTwOz>h-- zeBZpKLj}LSvb*(aDs~;KyR@-zpi3@twoDfl=Y4Hk&bXIq8R=!sP)S_GswKU3wQKZI zR!DigaE8nDPTJ)fNmh-*z2Xw5mimJKZ)bVmwdIW|CRtwMSF^x)9l>WA=TplHn)lH& z9rI;85y1tnBiPpENuAi@$HX=YaI8!>3h=GZ{52V*TX6pfdKKw)s`aXZ1u~wI;ivAt z?^As|A;bNVm?Un2Z^?9Nfu+5)7Pz&IR|R_~Zs=uXcQ(rCZ{sy0m?Un6Ka=t91SXkV z;R=?n5y4GO*IS`4Oe6dGoOhLPLlvuS*-!Y9%S#2OBQG;r=<)-BF@r5!{1cTX)1@?5 ztpscRnEg@~SOH6$%x<>FYRGqFI$NyVK}7@M$}-`O8USZ?N`80X`J8^HiDU_kNbLvZ7M1<~4yeOxF4fgI%V#kY`lg zO4dDIL)h75b)+!Py~hhDy1Ys7lH;Y7g>2f;jRmTfOp~6Yhcn%EpWus=wfYkzAk0n!IIylHxPoQ&e(bk`C5mFc|rbM*LPnYx3^O=ja<@_qeIhKx*brt1j) zX@}OmmBh2$67KCxuH;TdE@qqmC3uFGVd#s>=2H1d8#nO zWqMM{|CA*yk+f==N@Tj-GL;?>=DH-)q1HXS$^mKhY{K{m7A+K`@s970U<1UN)*DQa9{J*fIl?@a>#JdNX(wPTW&`^=Lh!^J-*c2i*Tmv2;ONrkDaW? zhk1JucDjz>nWppD!q!?488yHjt|NH9mV^V6odQ82=`~>~8>$ow z`?<`MX4eGuFQ-LG5qUiotCVsiDc)>4bGlFQ!<|2CPuGFn@+on)>GY5wJsIrX&# zu52M}=Wn=f`0#AG~80Zr0>Jp4_3669L z?sf^@bqT0U$-p9tEK=mERzewUEK`v!kV17)=k=EJddqpe<-Fc!FS3*uS;~tne zP-ONpH7K%$BEN4%)<9BZZ#dQ6fI_v_z2Qsl1{94OE^qr;155xnT+iKr$>4@NxEnAr z+;D$)1151Ia1NJ|BK`h@L%V_UtLnaUH?G zo6aw>M~5m_X0hTN*AZN3x;ge`^XXfxx@n)cr#_IAkqa(x9l?)G=edaem-!k6NV_f? z&^2`6Ub-{LNDBwMj^K`_^R&cnYraMS(jMFhM`-r#z8Xb1(scwMF`cI(_Hgqx3h-f> z?s=eV=oI;mx8@4?smUrh#l7Hs_ksuA3m$TB`t0%OA^MefnQezS$8`i(I@F(0!`L_E z*ZkfjOwE$Z3cX#Xfv>CepB7kID6C+u+55O5E9l$kWDE(1x{lzjrt>u+c9=}#fP+m| zMhWBH3mWd7A<#c~DOlITBh3~6OgO`3T4ukS^>chO3V{P$M{pCrMLrb`b~RbqLm)CJkHDh2ve#3%TFq4gyP2%!eY3Y|LzdSn%4`+Ip{^r1 z!*pIevHQqW5ID+Y7l2|UQG{tO&5@i+TdW< z5ghae{=7C~x00zgu(Qd^ZUT|PV&$zdt@~JDJX#p*a;k8+%VUHexja=k)8%c#ESJv< zFS>kH_@~Rah4)>4A{72%Wi25r<8nEnx674<)m?5RZ0WK?nC$Wb;YyeH3lF<|TzJ}L z>+8DJ%QW-Vgf(4$N7%sSPlc0Ro*|s&@*-iT%d3QIUEV0%>T(&a+j6#cac^N|mm3Ja zqS-d>q&eOT;UCu3k5b%vFsrmD9IkOfs*N^I!kY2@04+k!P%}O_~vfSHzZBJ5HZSJ_&&d+tU%g7B6m#LByg*y^AeAwNK z?V_(;k`WEhl_?rLlDOeKcZ2$_9t}^Fkz2SZal@<4T>-23>W|u7+%wVe0GWDD6JAW* z>1MLRpV+Qc*p(G*fh+9FK$l<(lQB5hy?|X%Rs8aJqZJMJ6l15pH%bV23nK(AQ+VmawHuFxq4VjCC)V z;$Bd9FF41&;BxnZ2iyz%YRWF$ceTME*j~qXY18iZ{p+E!*7XYS6z+EUi14z@7G?6f z?F5}-`D2Er>6|3fVKk zEPa#Qoie)tiL+ftaK7o_Nq##$`N-@AfjHQ81dsZDmlp)`?QQLi0^C;Z`mhBINkSpr zf{$ee=DmvaD$DdD1tbGx?=geWh|qBs8iT!jfL6GV4G@DQLuy>?;vy{U6 zdyh2gctvbut_lT{Gk7_3zFM!c9P!YsH9I69sHI>XYM|9*8T589*wnr0czdc3V`>n_ z@&(FYbswmYOk`{U9O^oPTOHKA1w-W9&)W4R2;y<5E8lx%El4NVi}MI+Et#wc#+i zu9fNLK!;mh-XXl?@Fz-*hh)5DUvvZbZ0Gc8B9v~%?ERddCk04p@>aE4q- zb$^ibX=E2Ut!L4xP`x#4&2NZuJ!-94Nq6ZX0|vW2}(TzmrU#TjPQob_XQ$@ zRUIeS$<|r{zc5(_7q}PP>|XE(lO=Gk$r^alz2IH^MplfJB!z|{*7GV$95!}dho_2&Dw|jdL zj&vQtD@`}Y9%H^n0iG|@aRC>ayBMte z*Ac9n&PyS7UGp^xaF|RNJgAww9>G!W2BQ-<>~uHins^=g*0bh#H(?K#>0I8@!?$IW z2p77J;89)fS;T(Je2oGeF4MAr1I?|!hal1|SgrN-aJ0F~RSc5Z*%Sx6j^HV#^A#p`N13{VLrqqGDE!Q2x+ZyGnZTp1wMyX6 zU8aGP^zbNi#U}}#CVLuuOJ9)rw#=4RT~p1=HLM&T#K9g>&2s&U5bt!ej0Q&$t&n?_RLby?y_#FQkxZ7W)WoF2NBd ztKdBMf*ainZgnqs#J%Yg-T}E_ImWrB^^jyvgZ1kI1jv?*W-W#VEM)^!Q!uYh#T z2kPM=ou~6yPG-i?m-O)As#Zc)%ri zNT!=i3nW9Z!NC9#3FxWNR(OYnmOzrB70z)tcv?m@e9qkh+#323WtBhjdNY@d3&U9WZu|F}NzGFc=N2XgCIN#j$2+}Qh zfe`d6((7Dnu7RXiOWrGc8+nbIe`k^9CxvHRrb~Rh9-eKk%5332m*8=eG4MLF&7L+` zA7{vzDV**)f~#m@w87bXDq?3_d!qpFmuaEF)8?*6kZ!^H2fd2)dP1g!07nw^g8b+T`ev1afl*AXl#U$|z(K4I;R0{ojyivylFcRey%HI>DMt{EOz z*mKq^CUSwxbkFB$OXtg|1uk$MK`#HW7GmGEcKv-}adk^o0bN5|RY*^pieAKvyzm3hr?)xX-=7yJsi*V!246yDZ87;&P7Qf!QgIOZret#zbMobp(H8I-e-9 zBh9BTJWtw#i3ZKZw3*qZhY;TwnJ$-c!c>=O>j8S$VXl~f`+Iv44sad8^-broZ{4VmVq`1^e9v_RKQNugKB~u$d3zDgaUH>z zP3N(*?$IaHGV;RNt|Pcqmy49xC#+p}P4Nwx4i|Xe-1P|3P40A&f?h>>y(H6R0$!1E zVxcFC!MlkYz9&<3o;SOag1ixVpSQ>|NUCXtAGsTRCev`Ou!j{{2FWyA(}Jhz93JQA zvIwWUj^NX#^W`Jdq>V^>p+|zGm{xedyTL;;Rs_y*H%Mlgt;jsx$L7oIZXhmj9l?)G=PN?& zzs#qf%M;&|sa()Cbk;1LJ(-<7aklFSu6U>IRrV@}*f}z#0?(MNJSPwt+{mBITH{`7 z@z(6n^pmTlcBNm?JI)Z;Q-5h(ld@2CkX0rT{@T7ae)9y`cnWu;IWwuq~0@o3&FK)Y?ttqkZ z%9I~0u4XOdlER86V^DK%nxBV4j-yU+MUtcv+dP?v(?K)X;hcS+(4m(}zcPI20 zB~0g2C-zvGN=v)9zM_{CGP=WFt|NGZ>AX9!17zwBI!so^375FMT%c2MaOks!Ed9nG zG@Wf)`aU7_==8DvAS#-SX*~MUpgkQTU6ybjLlnpFGr%^}^$4Dq_+fW*O8OOpel0=2 zV$d&p89?3Z$g~#2g;6fk>VgH{Of6foK9exoEUj$)9bCCE|ClBi#+Oh+MtN&VS< zm%M#tT0KCiIR4)=cWu7K`;Wkh=>Op?vF2cdCBe=imyv$29 z!%J=E`ejCOrt1hkU^~(kZ77%-mwKodzewhvuc);BC2=-Jrxk1+q zcdGe5nKtnaq17U@+ju|K*57L_!U3)$ST>#4P3-r~*C@c9Wf~OhYVLXj=@y*zP4sXp zb7g}LQ61aMSO7TGbp($zoexTE)qMKH(BgqIWe08M)~#Bc;%?A2!#oW>U&d%~f$Ipq zXF4CP-@ST4A|n&eOgG1FWj_4~hq%2=m4O}2t#7y#hr1grB14f3J6LEHBpF)Z z0qzD#hV0p7Tlt1qb6ggDtZbbpYj%hEY>Tkdbp%f^ozG^3y0^=iIUMOag6G`Vd?<-M z+}ic46yiLYW)5C5cRhl13l0Lk?zQGd5k6>s0!S@K=|MDR3?8Q=)(aT#gp%E`KDP?J~W$GqZWtz1E@@#?tf7 zeu58~-P^BL(Cro&1Ikuy-&NrH)+al^Bh@m~TFXqp3o8Fa@=OcN-f9(k>Xsv83tTZBlOlF)^XcP7aRZqq1qPa1KTakdAXNTyqRFT!4~BY1)7=Ggw`YZTyCGOZQpE_4qMEyAQd+qKCm`7obC z5q7$c;15mb!%oxd!{hw*Vi8Vv9l@n+jON&ewKodz8ktH2-G%#*Lfn zCUy<;H41QDnXXx|fw}7uq+4()2fd2)O0s6N3ECst`&;)KNV2xVj-YcubKuoQeqo2of@#kIJ?ge z7fx~cn(&s(F#m6?PZ{iMtyTK`%H>r81LenKITC z&UPKa^~W?HGh&~$_C^6t=-@onK&Oo5hsU@Z{3vn5`e=&=$H<6=3=+Jr55_1m#&}Cs z1<4pK@Mw2~WQ-O#)yAlTWQ>-4jBL+dQr<%?L4{mLxqM7m-1=9*QYK^2>0UCu=`!8@ zA?h>Sx|cfyvgsB1SOpOryf}YPLk{*T~Be@5H4|fm2jiWzY5Q} zObaO}i{~!^uc-t&Eq^Jmsg&n0k^g+lR3iV)E?*LSqS=49oTet4{`y}-{!_F>+ToAu6A#yN#UT}SX3)A_BH z*sA&TUb~z2edHS@(Tbt|PeScKDlP=UIEB0K2yTUB35Zs`+za33Zq3DXi!+EpWuEdXpw&P&m?c1lQ58 z&W3{$J4L2UV1WH*ZMNjJPPW!ESj$?gfIPwBo~PCqEiislc*o@$3R=?wvzyJpt@RdJ zMs0Ag>j>VjS%tOjCf|uNoh@*#$r!A>jd}YDKd}|bD&9q{^iyp|2*a!t$XhhUUB)kaKPr4p4sq5xm`WeqGG! zrROIZv2eEQ2tI5&k9|vz-}d$*TpMUP}dQ>z;s?1u_g003b0+K!vrRnyB@*w+zq;B z$a|HJ$Re|+oxC+ZHfzn6@Ou5JyBlOw3U6{9!KL-1%Hi#V*k@&0wikuBTrLzoaQTU_ zg#DOvmjCy1{n=Wp;02QvFwebY`p~`LBlnW2hh?gQB~51cs8&7fDWhoE%XI`xrt{?` zc0-wp9w>azhNk09NG_Zs8$ux_q6Z_O6^`c1WwGTTV;Cf5;MRX35Qjg;?B zYi|_bvofs@c;4LlAv^I6cZ04Oo|f-#)?9sGSXl#vFX-iZ&RQ$v>0_4r z0|h!MAln5!T+Uo&u&&7pAVrdCQ}+V0=`IX*cP|)jGS2g7s}*b0OET(*71t5G)O21y zu_Mi=pB@xP%d}cxthx1fyu=IK4Z3ESraF$3F&doiI)YP{>hdmLzO!YTBlw=0b?7%0 zwsx5=(Pe5KY_1xuLtUn=*Ke=;i;N-RO|B#Oz)<}81c`mt+Vv(^tg2mOg8hf@dmN{LbYg z!hDx63o9#?0tN_V4OdOw|7DrV;2o1yKw@nr*ugSYN&2G8JZZM9lk--F^Kr7)L2C6f zYm|AvrKyo|fy=zMY|$@SUjIELV{zb2*ZKol`s7jHs~6sBiT$HYivwOUS$SP}-@SlN z!Q2VF-&=R+t>2rKsr!w>!!Dl`iv9(DEkaM1>j)dTOz$dWVk}iO=2P(t%US{xd%63k z;_WiscR^DBm@q?9%kFAE*dpTxg(qCDt`Qko6^4D1QAf0@)B!S8Fycs&S)l2Xj5Q+d z*Y9~9P#NnA2e^*l_NMa#O6(>w4GXq2Sph@_#SC0SuOMV3g@aw|`{?y0h^F(T#8zbL zzMpV_%aa5myCmJ)TxD>I$qMkm?9+ohV~LFI7FfzN=5GSka;mjvM{|@OjyG4fvLoi| zIYh=};7HdI{E6v&GQ^IPscbOKWcG3h*P-4zML5=Fx)ZV1uq0y~SaBV}0~8vbaAFUV zX&mrFla*tID_veE>}L5ZKM?329QH|Sone9Tg~Ams>2sUQyM!lP{!RF|%lCzkT}DdS zVoBpwgzvfBQee1X*QP3-y5yQABuUdb&w52KWn|15&UPKa{a$UJGqHb>DHC|rWaS^i z(u&mVz9p>Zasz?>!JO&yp!JEL6JBvi_s9Zcy07YTP2syP$+UyZ-2_jXosE9_U-tg? zKkd4D!~w1&xV`E8Y{Zd%=0RrrD^^@b@L#5zW83A^TtTPF$`JyQ!K_Gnw7Ih5KW}f{ z?q!Sv7r2h#swKM<2Q916GSId4GY(U>pM9w!ku2-2$t5V0Hm*tCsz&HGWQ5 z;4pDfuBCZ;UY;+rS&9o>NAT8%noka~D?ebF z_7o0uIrl+*Ly;ntzbI_%aywy1msR1%F0T{Fs@QZYBwfNX=QfwG2)#6x zZuYkc&$`SdZ(vh@FA(GS>T{jj=zd>g$meXPF>j{ejh`;T{{S;i#`9?xPNoIX}O`p@>*Fwc{yaQ-x8N}=FeZ3BL3&2;m>uItr2W%#v4!f~DyW;K{>UC{Q2n`c z*4yjy$DimiwWXhBQ&+Fxaho)InzpCgkv>kxw11JiK8U?ZrsE7o z^|NbztnjhRHTvtfeAYDY^}>JwCdUaMx?EWqH?tRom5RUs!CvS2%jEyUhN_KF?$MUN zwzHDfEPw4q;bWKKRJ^E2=8t9kco-aWeorK9s33-s?gd&)`bV9M`ku6lP( zIoEj|Oqsm$QrQDG<=T6K&ojFY7FYNFUeZQFQXNU>TGA>>ueD6oJZY7r{VZvfCGB*1 zg>bb?hGKo z+4MDCZY1pE@(>k!qD>(_LzwB3+1%`s+4Qu!V~XA0DvT-i7cMFGE|=*J$NTBIP{v_} z71t5mV0iOkCALGR!wUXkvhpus$^G$GmJx=#Y!m1ooW;C*neM-~?$sBC*IklnDeGP( z(*Z8?OxX&LRp5!%Cq6|u-6c5RWEouLUXu2*Ofgu+WO*%NZ}*aajC&6gPIm8g!UHZp z6MEQGVz7+K@^Zpz?oHS71P%3ujap;W$hy~d5O#6NP$#;)S@?s?y9Bc7kdx3?Ej!sG z_RP|cZ05ppH;89 zvhelCCwc)Svll?(0@o2-S+AACy5`CEnM~cmO3g2&25S2U$;bo;yN=*f2Q}|Cu{+6> z3B)EV`v}(_Xj^%MK&N0=^FC$zl&nvcKG#{FDt&gcKGov{@1AYIZVDt=ub;*Whq?qu znk*kD-0a?4g+I6i_n9m|Dy(vVWdK{7jKQuZ%Ozoy$ljS+W(zZ0E6@^t?f(=Z@ zU|aXHc2~I<%yw^j;9179tw*ho3cb;at-T_wYD3k?LJHjwP7-_S*0;W4{|s8uJdJft&0m> zNAT~Xn-`MU4`f&@;mlR=orGVy_Z;DTm*6UsGa_?S3)g{=^WDF*|m!Tea z`GoLym*6FnF<8Y4C{e&jlQB5NWVutg(q!ps;bxQZABFo}J|aAAvIJgpFIZ;}*0KaP zG#L*QI^7G7Hd+3$Fx_Mft~6P?Mfju3zY33;jKMP|%kzboOqRe0?k(*3T*tC94GdN= zSzbvP;NA^{fiA)JCgZ(?vP)1iS=vuH&?OjSG6v(_J5e~?CAipRe4p@$OYk?7CGetq z!K?25hwv|#-~*E}_|(0h3ya&SEP)o2G3e>uUcyQ)L4T7mSjWBV3LCfto0*Kk*6!U_ z*vTc>-DC{>a>%Yc4)BF`aH<^OrERaPdkDi_rmxqg=~c&ZGA>a#-E{=F*IUc*5+(M0 zneJ)eN|V)VgirRxTm4+16Q58f|MEU%`dnpwYV`Tk`qc71*~OUm$>xLWcy-|O9r%jr zdIY`9Mml2QV#Quz<5X@FR#%8_6kt7*F*wk@V4QowmF@-ixEFlvUMgL}W|w^;{gyt4 ze_LiZIB}ut2yVA*^Xd`1`qH*~p9(84gRE`-ExiqqNnYNft5zoYzA*ILCR>z-RKaU( zGOcQv%7E4$h5GM~O;>>S4XnMyNK4vCB}UrTMk);z+Fa&?mOjk}EivfwHfXj3Bt1vj z*a7&i>3Rg`YXtmoBjx4Lz}J-#KV&-i;g3!0uU?CnC4TsJ;)mTWUouV+F6QI3KqjGa zis@uDP75nJH}S({{1%vuQw+w*em3C%wKDD#RXazD5DglqoB?(%kh3(oODkszI+Jy^^fiLeV}|riG8-#ir}6&|@3f|2Yxs z?Tr?g4BI;$RymsTjH>-rdQJ=2W>T<^Q? zhpVmU@$k>4>k;g0^)(7`KvFB*Gx5Xj=8)to2KidZ*Y5p_FzJ_V33bnvvDGlCyEUjg zqVDfoj(RIh>WG3mvTY;Z6`rpJ{?2s0H%#hl3F_-jeV)6~^1s-7^LV+(GyZ#UFc=ID zVn22oB9TN;H1=AmbIvf+*bB9@RGOKitZZJEYeOOLhIihbu0OBEGGrKu&B(oz+T zUGaN=uIs+P-}^)&`aFF-&-2G~Uisv6&F8-E>$>jcyUd(3GkNTeX2lM5my)`(CD(cl z2V9R9C&YaKGkPXhsUbLNRe2Vm@y&E|WtONnKs_5e*UihJ8{E7PdezO%8U9uP-?%3f zG-MZf{8q*P#^Se%jE7PK}VI?c_g&}4Q7^~a5XskPVKV8&@l z2Dm+aLL@~w*CU+|DViJ!sO^TiGEo#Q>8_#dYeiR8u+K#GO3Z7l=;|M!qD87cL6qk# zQriklxYm(LiOb0eCZGT8T%-7VdwkIdGwW|d-%X{AzqPFOB&(7yYz5RcYY%!Y8k~wC zt4Pzu;UBjXYCcs-S=o)qlx4Y{1v)>7UvRr9UUL;cM&oMB_g#=&EOIH^6SSw0&`r^@%h`ZM=b70my3AG4m99Pn zJ?5%thO3`J-?}-^^4t&rMz<=|+sxL5SKwR#C|xwj%(`eNS4HDo72WNs==ZLQUUF4b zSkdZT4qDsH);`b}S4AhgDmu-~$|cZkX4XZM&1@At;i~9qSC3hV2!MKTf$lN0@)UI1 z%9dDkwwbM>$*zi?F|+a_G~La(@Y^%bFWZz?--3KbtM@W*kJ{W-_hho3wh5~?F~(bL zxYb9X{#I6XSE%l0KE|p>v!qp6JrL4xp11nF2`HB8CHMM4Z=^>9?a5p4~HDNSAJ_ukB6fBRAKjvlo>eW`|N|*mp%LQdP-i ze{mkJV^Zr@&=GFNyq&H5#RbqoFFwibqWIU7 zv11j{a&ERjtGoFlsK1+=LR-0+M*6@awJFj(*4j27z~%~NZj84|DVc2Rt{+4&5~cNAcT zL~2e}B5!TWTeCfux3=c3*;#!;2Y;FYRE2n=+ePuiX6IGN_j-_|&ZRcB+-a@VyP*f& zjB_&Omt3NN?FaY;w~OKf&$6Q{-w$a22IN_qrWHVvQjxYkQ&QU=&=@zzLLF|t34Q3M zy02~B+xCW(D7o=bqz^1ls~me-Yc?}#eGhOmSrC6{o>h^&wSmPeS+A;S)^Ti05j$HU z6;(Ri&2C5~GNdw{6eAg(!mnnnRrML_W{jSkFXgnucN~?&r=fZj=GE??bc=eOaXm&O zU2CnaqKC}P_RNYr9A;8Y5%+Ubbc>l4kyoCbKc^qT6KtRr7Qf|oQT*AFJy%%1^P(~E zF6de}V{K~P+N8E&P^X(0LASa2H)w{NX`ip@$0bt{@3z)#Efw)gN1c+jRG-UCs^zWOd@1=aymc6Kj++`~=o8CG z?r#gHCBS5Prp6qr}yfYQ1=V|%=5zt*U z=x~{}O`$#9+!s2_%}b#vZhiu-=@Y&lq^QY|6!dco+O{E%3c(>NI@!(NKsUMhC#YcE z+m?nD4PVh9H-7?c?`GT>ivP96Z&jsRTclRSALFLV^PsJYw4rs+c8Qf$fMon4M4YTOFK-aQ(+(#*;qA=QQ&9aZtIJ*B=pRDagw zF=&RHvBPvK-pHh?C|R-HT~(2qRZc7-&sX~ja}BGpnwOhB3FF-SIF-rAP8W+x%F-fVqaMW2~jljA@OQ&Y5IZl?LZ#!<^9mbYeI zJlt&F!3WP;=L`70YzgY38D>^Q8{y4;jVM$v+TK;s9%fcV`?wktB)3Cf5Xrl@sda)m zW+Q!=*2gVnRW!g_tMVV}W*#wHg~8ptwE<`q#9O;v6rX8!e&LqyKBhGa;_qp1Qu|22 zAu0;4`AaNlAyiR(thrW2Cj;iXEI!?3QHYSesM5udt^l@u;H%s&il>}D%l1LL6|iSS z51l5n`Y5y_o|rAriEiEvsef{fRH`?vdz|gks@o~iYHsGmB%3; zK}GbYt0EN1>116s<%Id^K2=lw3;g zAkwzxSXc4gZmRpr=2%ysz1)o1<$tm}CVk}e8+XjNRd$`-5dTfBPn*b7Rz!!ps(`<7 zQ$fSF6{#3Dv*vRTi(e5PVP@NjkkYY(MNhjLE1kfx)Brke#1q{vif=PJU(+!U^I;=E zzT&ZN7sbCaJNNCnk3S*=c09sYxm^@LYIg2hpzk~$t4Tbc+ePs~X7}`6$27kB65cno zi`};ohgMMBvb8sw#LEDtNff%3Vz=b-u?EeG%oY&!HnSoc=Bh~jl0HlEaHvVuc4)Ml zv5>y^^43S7xe)hvyC`nVG8gjQ!P*-I@u7e-zG$q;d@vY%s>`C&gDl>VXn2bTguvpx zTow%tvRJv3t4Wf&NvT@_V-$rPCGoi~i$d|)!K(=O0uK73xSu7ci9$JL@t!V=LOJDF zj(Vok7N(*k9u2r{5rwH}7I(TV3S~BnuXkA#k~E9QSngI)s6KnWd|O<{Sg)Gmp5mrr z-R)*9GC4V@m_w|!dIz+uMXzd*+qoGB6RTzbx8eA{^=TE&aI*>j^{h{;x^LsAqSW1t zk%sYc5BmV^Ch>5$i{jOZm7ay=d#<(fP3rKY_jtSbd9xb@@$CAI_kK;{GXPsb6hf3@ z2;?L}wiT3lAJ}20#8Uw$F41(r*qX)vc3BjnHH-glNvfiM z0(pzSa9I=vnyvX^MEIQrt1HKAZYsrs)~T+r@42Z^>Yp4k>hp^AsW#F2kU3^IQ)+$H zT5DfHW307y9Q3f8aY;K1{22n!l8R4qyC^9Yt@9Gkp@ndK7Tx0pZ1{hY_ zeY#0)qIbXB>Qbv{KH?=etn>45yh-(Aphw+|kxM-6Wl~MFqM2=?fv#>3o#v|O3|DW4 zRCn^qS9d?2^#cu2JlXA{c%2P<4pF|(T03tXfd32@Eby*4ZDT!{3gSD>WdAL7(1RI3 zn@#)~h|cqnsRXiUdZ6^tLH6v*QC96tu@W$YM!1uwthfsUWRapuj?t6(*4RR@k~k#G zw%zM!-&lgmLRrv!r61+o3~ZyoFSuP451Q=f@3?kT&|bB6KDQcv2V~>cgTI3~ZrPut z4th|C5#a>{tpV>hEMu<#vS@ms^wB}~?8;GA&7xQdm=}@aX}ZMA0c4S)N{-Q!S=87< zu#z|=%VzOIv_&mar5EHuvstVh%=<2YW>H*qyC^=??EIc`*b+R+2J#gTce^Owd`Vm8 z?50G%oq$7A^gA=Flc4Etz6pJ9W<~TLSHFRlAr#$2%bQtU5mJI=)R*F@5KPLr*ep9+ z@dwx)z;*}xg4;#$rw`d=X0=X1Tkb(=je>Y*vpb67n}ROhEc6qPFuPF@pA>ZQtw9&h zF3(3+N25vnG2lK&6hf55rvqeBh>+basL~LjDE^N{sE9&@avq_QM95C{NrX}!p)HBf zoJVL&B4qoi$V`j`@tNd>)Tz(HtYAG;Z=xSCe2C8uN2BW6}a(_K~fRjp6kk&r53 zGirbu7^Z@%s8E~7&t6O#MfXjtwWjW!Zsy%<>h9yoUW@L#A%DXKv{%Lb-7bm?Kkj*4 z$#-i&A)<@>%dB4l-88_=+n_fFnfVs<+fB^88B(a^0j+HGz7`wJ8e|0qPBr9i_ZY05j`Gc z@pCSVme|O>#p?jPMQbw=iY?y7=B8D2Mv%ptE4)R+Hg#|DfdE-FBgkT()mBlMo9t*! z=B}u@xzL7K6@`(P#SgnIddO>JE(cK^t~eq*-8Zh(32! zq)9*(t!;awDq7dfHqoB04u@WMQ=4b?jn%Cx+S1ILXbYR4s>o-sA{yeV=vXr=qHA0g zX+D|xvUn+*%c^J#Gb^IqT-^h@#Le5Gd)#~ldc)0kA)of_Da1r(OmoQ~Pi0=tvAJmz zX#!ET_M7@Fh|V>$tqb~>n=_$L-PF+Ev012yzB04z1crXT%|hEuXh|Dcn`n76E2}}; zR-9V$3CWJFXW0N>*-=nau@_mfHPw8hRajG@zD_k2`xDDr+XmXt%^RWVZmPmntrlC6 zYb|R{Gpj9`JnzourFA#rA7iOnCqNgwsZ_tRVYfa2HCy~vW&Nd_%KD<4%IcHRx;x4D zwE|i-FBiF~d0E7PU!lU~ ztd@!@thqTHI>=2Gd%v3tP)i>#Yaq0#o1)FkY!hwcsz!5=naMt^Xgg{zlK5a~teF+< z%xhfL&V0sA?M!V;eB+hoLq@Zu4WVr@V*9bwCfdSMRYl6oe$iC!@8->r<`Grv`A3`1 zHXR;YTKqPhfV`G$ZxxQhALs%ip3m)~_(FcA!C{x(?8tXHz%dakm9(NsZKA!$tF^i> z^zPASHjd#PcgLA|3)FPHnMG(sr^t79AK<~KuHKd}FsZs&E zSplu0Gu>1HCt5A7D&RMO^REhc!D`8Nle(`8bd3^wsEX(ez(_?3r-=}cval7ALQ583 zWGN~lrIDPct0?QNv$Wkrimz!_i3aX8SuYzhLC7Wm(!~dtvX|}N+AkP~%BNat_+RDsYPo?F0 zZ&iyAB5T!_@r{^C(^$1PZ2>Ebl4yyZ$+kU~-^c*wJemGKF*Yp$>VnL9Scw^!S_0JZ zOw9>C{ii@$0@O31Syti;Vrw@tyNeM}6NlLg3X8HSgU}qJ{sz*BF?B3z4l$pHG>4df zh5UGI{U@fT6ZKPQmZj2R?^&yP)~d3GRm-zh^Q_f8YcI@x|T-+S$!DD0?%IL`*h_{Fisfc$!_CGs0>XG2I|KARqRvpaas+qIGRXodX!P zj;LELPhE$p_6w@EjP}dy_sT1z(wT=f)p4ek!%X&y(rD#SbsTGUF!QXf%BuNB)hS$y zC&eDfNEYqx`VWRy_VVSpgk$zV34fN zf=tNTzM^@aZ0R?pWw^KI1!b+eQjE3@nMqUGSmA6CS9k`$&-w`HIxL>)c2T_fEWad_ z?~5Ybb_Xezh=nONfXG2rnOoNUxDZ8Oj-=j@x6`g5j zU45synf5&eNtb@{tVN7N`=xcMsrPkmif%D8%Q&Go8y09};)!k-#rO21vbOL@n#7wYm$m`ub)LhB}CYdK9FP$+b(}pRw+(|Dw-F*1dHYP6wM~cIA}g450Cf z<*i88^{Rs==rxwbUT^*jZDkHIO5*uF zMzi=tvl}IGD5E)+!HFt6k`?1MfL0cVe7%x<*)>zX|8U=CaqwL+@y#xp6L{si0qoiU zPjtH|zR~RbqB(}ghkARHc&yt+@tJ1lzLR)-tG73aZ+E*We%kEZx5DFAZ*LM;-7bnp zo1Odi<#9i6ZxZ)+yC~kt?A&+8P292ojZHk$?V|XYn|-6iEh*n7)A#}-cu&CQ5e+q& zFBFH>E!k7*wS+Y{n#94iBpw@dambdf<`{O#p|)fAD=K)b+ePtCyiG=1I94X#ldQc_ z5MKy5m_@g`DS8E{m-tkXAzs^M(V!rUH+5O`Jry;nqG^CLjwqB- z5`X5hD3nnWFKdBoqEJRjJkVuPD5E4+?(}R%fTHG174rup?-*USs-f4fkd}M1R-){lyBHC}H%<2Kqk!~IX-RU6ln0m7>md)G-3Th$cf+VQ zcg)UuiYS>KHR9CJEIVdg5^Y()B~Ij3Rz&-|sv5?-sW^|j`84F2va4HOd+VLF{@xs0 zH9tSHiOH5@OdG$n1zHaAShtJftE)YiL%!!&d!ry;hIUF7^$Mi z6;1SBCGjQJt0D?{^TQg~khds)$|BT6uK;GSEdH0vqOXE1UfKfJM4`%ZUS+m4s`57L z)hLNq!kxg);w{Z?l*FOr=2)^WCP~fN1>h87+zi_Hxe zs#7UcpY4|Wacj1?*$c@3Mv880<<*WzD$KgeHzXc_>v)Tl&3{sk96teU{#|j}-5lG- zKpGBeEOI9vR!pk4L5I6}CFEP8N0}kDqA3(%RDnm#W}w-y z{p4|(`P3LHYNbQ?^cwB8thee_{~E1p6> z=BBED+s)>X0EajR%ve6AvaJ9x2SFMHW{iIU^=rL3t&6TOvm$D-`1Ju$C_tnl*n%3? z2tYT@+F#s^gF{`NG)kAGD*T3rK-*P3pW8+81y}UkuJY|;?Tv!?d)k|l_H4VV|M}j( zB>tz_{ADZranQw2b@_G`e`$83Bo6tq?Rqc1&w{x8f5KL*_*k(9(Jwwe5c}5Tv0@Hl zjIn)B?6Jw?xE#k2=eSwoerAt-`&>Yr>n*N7R!qg3bvsR=Pg-A${}}q)fMxj#+JI1) z$3v&OsRWO^skpxa$r7$bA5Aw4Eb3=wMRbd+ivMpnMVc0Ni-JCBLF=06&)r;<*y~yR zdK?CEW2M8c<#{2{ZV?Z6yC@#b_T&?`IM0?-sZ6Ikc*Es;K|YZsvWmi}}$wUJP`{ zE4~eIRTe!HWU+^B6a9i%@)r9S9Q3zHRpW?D81S{vk zvSTO-R#LDvtyfhPf;Edza#<9DHRr*yRp{arc?Hmvh_7^B@6u;`S=#3zYKXF;~MUcgdUS&Zar*lS`sg2h1Nu&(31Ewmql$?TcIWK6@U#OTG9(G ziB|;3qP2o7-qB^z&w?zz*JaVOK^9MSS@d?0#XdJR(Y(HLCGpxeH#O1LK^FUzWoHjf z*|m&P&r8K&h|OZ(2l!QeS%qyAAuTp13DKjjioDo1 z(FImv+eOghZoUUCYPGa!-Mp5zeB!bTidOht>r;yh!UD(HPR;=j;q-wyW+%_emRw+f z4nA?!?V|W_v-7(U`R-*}qafZ7Flf>DxHidkoViv+!8NTVasQ_apR zkniTEHJZfdcza2Fd(g$9UymFEy}c+N0+<)kk!DszlUx;fu#U3$C6`4ZZuYvm>Ird6 z;?SPmRd=n=VF>Kh24CfNQQX`|dOkM!K4|TYCh;EtClt}ECU=y?GhO}+DiZ+@Q3#d| zI0;r%uurU4U8J7mEsK}52z612kPU76U`|OurHkKkyC~j~WlT$#?-$nID2NNT+I7+T z!BzZImqp(bp-B$1>4R|Q3#d|J}IZDV2he-MWmh@ym+w7q7b3S z;KP7Q;vbo7O%x(Di??@K6e46R-+c)0dIFk0@npA);=-7oFHXw$S-|;0^pcs?snFMM z##@*PukouHprGQ3ZWqPRywP(_0>cE*#rtw0So&xh0>HBI$f>)s~1 z)y$gcDOW{bTF{z;{>-}96!cea=0USFylV2Gt)j22dtKdku|9QmpXg@ZJv-5M9?Wl% zfrc+W$?c-}3bXU0sgqwOo&d}jKFRH(_`yAUPL+HQ-A!7fARb=#cJUaq8wK$rK^GtQ z3-=dy?e6~K&OKZgKWKJGQT%Gq#k0%5an1TQiMRJWCGlCFr%60~h~+7XUpBkZBp%`U zOXABsPm}mTvpY)Sn{CXECUMB09WNUH`8Gd|qIhR&U@M5uGqWbznrcu*+n8BXeP2)) zs_08IYhOd#P!+0ZTQh4vgHvt!QSz+d;dzIRsLtWE#}x*Vd;^w2`&eL|d3y z5pC_NBGud!DH^HrpxFVK2W?f*ZOpN*?sYfwKG{(>V;O#D3N%phOt*{T(JS^GsC<`M zR$8MVKB$+CNi+uNnjyZ+WzoGs7AsmZ1EY}S%}_3fZgz8PoNDG+`31C}n{iKkO#$nf zV@+Mpa8tpLT0xO&FGKTMpKMZ^Y2DNuD|w$vZyfiqK9yn60d9_iJW@rG-g8v}m+x6f z;dasi&6;>Vw~ONW&CbtNT}yG70OTva%I%`~PP23030rd32J#hO>~>LnquIG{Cy!6? z_9pS^ZWqPBG&}e0dXgG|)c{}Rc2WGe*|~4`yj`}a z1Jo}H^~XbT#wnaPfM!KJ)9s>o>My0|vm)OwPqhLH;;qi`cJa^6ZWP3~g?{3P%x)CK zvx~Q!$7>S552#WULYKtb0Ax{!T#AvAlfc=fQiX=VMe$!Oa9tE4l=BGnBto_pim>=; zHq?@MC$l@6#SfqEx;WI?EZ!TiHYIUL(;U-CPx55zv?|fUU)IH8wK&~;yq>g8cpI$h{-`A3ZYBlD*>`d5viyYBO@n)vqMOQhQLMf85X!M z3K7bAgnAMoJA@SBVY##Q#b24-(JbD`hguScI-A801l`yRZH{RaC&`l?LY?%v3^0(m zA|rTsfJs%+rEbR7-yg+p1az1Vz3=9DoK!;cYy1Zp!Oy(!`A`TWr`wN~WA$n1c{is+ zTAbuy`I_!~Fj)3qJ9N04FG2rsb2~EcYS}9ts-S+vx&UC*7q=Hnpzo4 z)}yR|%B|3cZpMLrK$;aizV?(Rm0C21y{yvguux4Gnqz$foHjH^OL@7QdH1@q53)S< zy&$a)<;8_b4vX>$yf_GSScsQ$yD0vU(`$NI$anb@ZLbu>d!Ov>;?ZU|3gV|iKk-Xu zHwxm}#oNU4HJZeW5R>H=h0rDOFn}xykxMZ$auPT@EL3O+Toiu+7_%ruDCZICNrddM zP=pP9s3q}evpbr_e?Q5lpd=1;HjBptZGUk{(;U-CPx54k#Q=PF2g!y!g%mFWHo>yA ztYWP-Q6D#}&>n8aJ#-kQoB)`QiO}V44#G)=B?rs;jO%@Cttw1NEvF+`AgVYQI^WH! zp-0`+F#hUhOnDHIo(7cp67-In+fw)tFa85)DN9vZ7uwj(vUcGso9N!cy{rISiVM+xHmCbEKvwu5+4DOMImx2Mn+Bo zXIou`hQLMfau&EQ3K7bAgnAMo+v#b=t`(JWqoLZpjBoz3D#(8VE5b4(-u zBu}>0cft2ikZkp9NbwPr3RF((G-iDi=U6x*4+`OYCzzew@x^t1J6xYprjU_06_= zWdc>#W$MWD2Nvd{lrU~-6)7>7w;&`*Ju*& zL`)V-6hfE8T>x1WB9~%h?9 z@j4VDT^#Cc7T*_iaY)k~)5t%`lWp~J`2HFsTm5lTH2=!>P@R^c)>;!C?B+!15;x<@ z+=l-n)~EIY^qQMT;H1Kmt$q;W>TOb0VM1y--F==_@f`G$n{Pw&vTW3*VXWY0OnEbr z7NJyj+S1TkZk_^N?B@CuQME!Uqo5<*d>HCy1ynYMyu8-GW4`a|5oA5q3aH!(&2%$n zy^Pqu^Z0Q(ldZ1oXIg80pR8}T)yEvfu?@7<#bezriuXTEdVXIo-|+|AIv2z*j`4Q! z8)owzbMRK7pLiFu8wK&~;$3X{8cpKS#ANe|LgJJR-Qea&&~UHm z0LaU0U76&oS^<@tq1)YjA6n0{X16F068n!HKTc;dI%U7nTI&~PeY34TooBRf0Bv>g zTW%M{J5BJd97iYL_s+C+E{N|v$J@nEnB6Fd*9`r{{mgC@#IuXHkjHBh{}r%#MIm%a zd_O=Ig~+8C8951@ZFLnI0vE+kS>U=TL@4JG>Pdubt1H5{xND1we|(k=wOKslY}dtC zQxs=|X7NjAb5EWZ+8om;PLe0v>Lc-0-{e)GJxFmLU(O+ePu{gKTxP-xJAq+Wxls1@SAR zyyzrA|cQlJX54t#{X^v^+pXA97 zfD`al-{b(;iBu;8mhk7a>}IWPq7iOB0C}Hmw;!EJ*;(-eM$mD9!c=dC?sxM;=u0;h zX0k=BJ`2q}(0mtRot6M}YY9u1902Px6=wo!J0H5%&H1TzIj{Iy=qWcBB26z#RT&A* zZ>cK1pfk*@tANMd6ltl6yB2k@KxXB0JxGAe+DdJ zA6hoD*1Bk0H;;fi-HdB|2BlmCn2#HvJKfv`Cl8(-DL-ReyIbF?!W`$OoGxL3*y{H{ z54rhlShC~*IGgV818VyOTENR}heo?O51H4n?3KaL&)vKLTGmokM87bzCQ=c+jwU+Z zRZ$q7$m_4{K`r}OS(S^SSKN%lKbGX0Hpy>x-W@o97E~M~Ca;P-nAvEg*k!NYfnCNKf))htOjoMsf&! zM2g|#Y!h4vb-8%}jzge`9;6OUCKYN|YFRMjDkPJmqA#;)u4|f) z%L@tF^X_$JzuqF%pM$i%6rBgnu1zyq$PRR1iD$Z96hF7B^!&h*??R?E3gQ~z^$gMO zCU+FY`?@T;I>_Q{To%nPu%fX2n#8|0yQ3tY9CUH$mmNS!K}8j`9ANE5D*z}az?1THD?^5$9-g}}|?D_j5qgO= zSdO)1%-OpjN6>V%HCNR9gq!i?J8UiX7tnHwhr3-A|HJHjIpsUnv_?TZKD3L^2b{G; zcLZ7dhRdSaMU%VMFzHrOx8Da{{JPm4C9&ejKZ%#EZBkuP)hSvmDR?7GtPb&~I?*4`+HF9n?QVSjj}k@m@U)!XdeM~>-(`>Tw6uKHJkTK&>peotf(m*=g$Kb zC4Rx}qWFc?Y*w@95c2(}wKodlwP>d((eHw*_!gH%-xHxp5k3NJIZ?qQl*Bt&go-Ex zE{UIXSrh_iBTGsvD)4_Sa8(onm&G?&gsLb6E{mUYSrh_iXY3?!NrAt%z%@|_+$_G) zBGg17aI<)d%c2lCJ53~k%L=@+xweXS1?=Wt;^8ifLf~FvpNiIGDzc3`l;$I>S4GW# za5J7%W^m5<2xz^%o!`YFUbYjGqKhh8?aBE)X)dXGerv9X!tk2K<6IVn zaWsoha#H`zL+#G7kda9Y(t(79F zMh?9=VVLUP>gw*04?DXqv~W6F6=>PTtGitkKWBD+?vd|CrZo!UodE}_=q8gpisGAH z7R@fgNONs8iAS5=Q4)^@L=#;ZWbwmhH=4vx2VMLuz+DuwWGkK2SyY{BXCmTGPnt_= zzRsGfqA-kR@slo#Lf&Sv2g|M^3br}W>WV|@y~G}^Q5J_9vsK>~?RvoaJ_!BZ%{)PN z714a0YONJb!J}@*VKW19Sc5;9+P)>wN{Y93yC{C#?0hBVTQjXu5H|qFg6MjaJBng; zOAe8wSCe|}WzAL5NWht?BtFt*Q3zHN-{rFCVIXhuWS2#u%4{8zd`0EE(p+nz5V)LI znN3(b%@>+yB~M$qA4Tbs2|JvJ@?dM^t=TRa{7bi%&^ z+`5U*Gr6NERyX8q!FU*YHHnY3=9(zZP-2l}@o0`lQ zD#IgP7JW~ICPmoTTPUyrnWxn$70k6wv?$OaCtla({*VH)|3wOxoF$XOii*|CnyVreN361Vq|2gE zWH}F(oh6fCB?X(`dR0WBS99L0$2`hg=T>o>^{R_P3BAOlTo#33z4Bn$(Uz3ZtYBg8 zR*XmECLwCF@5g*Rwf#__brg?vyC`1V>dN=Md{4LbMnQZpU^YeXncPtnf9bMlb`dTx z*G5y)tu!o!G8I@`~%Cr_8Y;Qa>(3qPNVf zi#%mT^mkYD!PPamg)M%zn_AZ7P6uc;#jCqr6c4eR-F!9W`x9$#6vVS@-^JUD;+okV zW%0#97hfH8@syy8{}y!dHkP|l6o)+7dZ><_&9_k!Z{l?}i`_SWfBrVKKLA*-Zs=<_ z<07fbhfJ!g^+Pw)){!RFM5E2Dh^}{4eN-%`rr2jg9;znRTBHQDicWL&Qpo$XiT>`Y zs2Anq8%L4smKAB)z*@6)n?92r0JLu6x7;p@4`!LutB-s?xAsOsyq0Z@HqkD@RlJ+a zqS-~5&s-Z#Nw-qsn;nHowxY6q2{;Nx3c;3L23pn3%C^w?RK?@n&EL8IM_Vah!8BI}}!thFLiKSq(4Ue^eI z>JFlv&8+7Gs%u=M+#$xF!V3$}11+HV1-FahW_Clmfb#vy+8YINaSiR1R?#XzuHr3R z7VQ&c@!>9uP7Sj75|>5Sx+(e?D4tklkVZ7SimK+?D2j)Ax3buiG>S0^;mXSLt@$*H z;t(%8q&30?yuBn2Wi-b!xY%VItU&u=fJ0hiy4lS*ubPx`Ce_vYZ#UD{6-=s$Rxz_8 z8tbb1JmY5UqdDB)q>6@dqnoj{o4dkCfYwnw+3liu5ckpPI?DIY*4`+H%XXh#7p)mw z#p;&a5huNx)azBijuyQGNKg`g?6N2XD~Wqsur|^9K;GhhE{j5y+59H?ipsaLxz za5=9sJMq1Z=Thcb&C}+$I`1<}z-9@a>~>MSF+F?C655}womqlE2TX@(vEV9R1|W-i z1zD_U>EzKX1Zxt{v|u$+2v!m=ZM|xu5Ui93%f{H92P-Pr2NtX%3cbqWH7r;~v@u|8 z**1W;-biqL5h>Y`9uFY);)%Fzv;ESHCI-LHgr?8rI~G_t<9{8 zc5zjt+Sv4>6U?lLl#d-HI>Xg?vemdeXsaUaWUZ}3Adi%dkio`26L{|3@aN`D;)!k- z#qXG%Pp5qEHmy+*KMFXKM30-?Q53)KvgmsvG%3PlbFGU)gpzo=%c2k=o6e+$q9TO$ zZ0{%SCAB|dp{k;gp;`Qz%c2k=+xsoQfVEcTq&Uf$PmX1iT9?UMv(;4Vs@B@J zcGjA`Jasv(U6!PBGo*?rVK&vs@fK@s%UiQBYEdF~QQn%BkhjjR?-TU5GmvJ|&~K4YTu|sXp@n`HJUryD0vt**$%iH?2_+e@}ZcwsXAU znf=Tu)h;wJvh0N#byx#%e`dTE_5!?*uBkq;Np>HwApR!k!EHbR#CL$`EcXql8}(pzbu4Wi8b$G%)0Ep`|9DBdyv1-3Cd0ZmK z5+M51WIyZkze;8Q>MW@uF%N@OBWA1y6TyB~;{V=&!$YJ}*no<%zpILJhMOXf)F!&v z)k~r4+kz7B`!;-b-Hi~q)1iF9BDf7a3SwFFkL8Ph!6INe5cQLO&R4R7$H5dZH+|k+`J!4-1j~cyzc!yE z*$FNIH-V^cfxQ*j3mgiz0~PQ?+xz}sHFoO3629XkLtP-JO-wLs4M?bAl5rK{Uv-g z295n=ps{N%G0*p*XbuKkP3+;Lk$NNM5CjX7Ut^~z*c%K1?{X5?0*E?YFSIj%O;Y`44ZeaT7#DJ%K_Luf<>`@;x2JqI0eBj_r{-p5(bnNqpJ?5YP@8whOlYz$eD$v+8 zR*g+#)z~yvjZI_K*fiE9fX1q^X{;KX#;UPttj`crW4sxD7{vMfe>z|L^ZY8{Py8L= zR6g1YtO|AqZ@s|&eKD_V;>-L2GWhvl7%zzRJ~M1;yD**45&RTPS&u*WSf67B>j3B^=aZm9Ef<0*_c6u?ShpJ( z<4t@>&}FoxAvXsQwx3Hf@8lq>9zUz4Ir2d=5NaV=cJFq?|5(;I0MA^bJC;l1biO}ea=k! z&8@u`HLV6FfIlVm%}L)BpTj|!Ia>i7huxXZ?A=)eoreT}l7BwQuvUsqH(02_H^v{}=cf z_HH2NpIiGle8+=Zz!cC4P6V<4+}hv4cLu1C`vegC%}L*X27lrJhJ7@({aSD+_E8}A zn_K%td@lnxgIhosxE{p*b8CMZ-j1N;dcI5hHFS+1m_P>S&C~q zn8GXVCrx5MZo|v^+Y%SQvq6RL!5k0z;(IUX1gczv&j3-6 zbxg-saV9V)FJn)_cXocmxCY(^`hq>cta19%Z#?J(*MQi*!Dc+40w?^0=UyP{gSME~ z{&Ua;_Du9xR~OoYTXC(PhwCxu0*`<(;5<z*)x-|K;v z4f%5*(1Lvy7}k&T9_Xac@;shITNCzlH2IdX4^83?9mw-_a56X*#5}2XW}?5-%6&DM z0X_lIf6vEQ3s8HUb0zo&dk`Gk7h8g_v<0h!zF=7j4lr*^eBd6K z&R%~X%mANh--89gV2;TvbzE{SYX&W#H<)o7e~kmCfWLumj==?q+ex37!E|DO0lK?6 z4?RLZFdh^*KdcER%rmY1uV6ap;Qnq5d@?A%!^i4_PGUX>hJo>*(8lYOpzlboo1pS0 zZ+m=;>nE{x2VH1?0K+)9js=q#>z}~{a1H33%zJ@3SF~Wafx$dJ5=_U|`K5*0_XcCI zPXWWQFM1Mx`sh4USc3BcC^I&lCuVSsTjF5uOYh?ERY4c$)^9=g&KygilY4>-K^OMj zpbRbrW6+KPoz%D>kEetEcs!kRXn*Fpt1stbFryFmNgLqDJ?Cazi@Q0m=zK8vPF`05 zg>88K159C$ug0}@*t@*zmgBuIdtb+E3wt!(zi}Uo*^cWl=w6C<(196X*=885w>16W ze}Tccz9+a8{08g~E(Sxva1i~jU0_=KH1Ilj6GS~~1G(Qn z45;m$|Ds*KW%?}zmIE>Fob1&QduqN0A#C~(q_rRwebc0V5|54aSfUa-YdtfQh3&>|t_*nRO5aa*1{-@FRT%gz* z>tMJQ#CUUSZ^5?@IFG*Xfiu8aU^j3Y=u6w6B%b`&0o}C8|3)wgsQ)z}=KZ05G0(m9 zRm@w#?I6|><88a*0G-%69w%|U{DI@4n|-bQJB&T2d793( z@nc;d$*~0J zoR7q}i?!c?YtHnq_%Iy&`_lI3z1cUr@w}u?JnUEYWBqoR)?TMiC)$=;PjYRs81Z)D z`U(b9`b>g)41>ib77VLlgwDy%x;P?0N5@6bK9Qz>VoeF9iRq!hB9){(flt zq4XUG)K}}GzFLpN(XIe7&JXp|TGzpN*5g937SP(?L+trst+~dw2GAbpBA3Rv70@1- z!J2ChwdUFb+c1aP16unQ&^U%;E?NJ+$NJ-#Z`M3>iyz1Lzl!rN^}Gi@Wo+qqXRYH4 zd@fJMu>^KA(EOYaCWU!f25rm#3x3Q#<6 z&Kf2^t2v%>F5?*U_e%lGlH9tGy@0_JfTF-N2IrDlzzdjtONiPy8bXd6OX%rkHk zULOLtgC{^cI0pQ;?dmrs=@;v-Y{}m>fEL>H4e|PNc75HtzNdUg^qA+KNBI3J$K)`e zZv&2cjHB-f*Wdi;YqXzvgMGp=tM9$m_c!ZHl=bbt>Zfnv9lhdr`|CSt_1&}jzS%p$ z1aj*;V>`hwK^M=L^D<628>eMf8eD*PQ`%Xj1HJ5u#ssI%6ouM^eRhDN>r zX{;NFUz-?peVgLpKwp5U?_G>~9Iw7AQ{U_v^|y}n@A`{h2^V#J{oIQ{Umm9~s*8Gz zqwfpUH|RyZdLr`!ULwA}-!1CnPv(3Iz5@CVuc*g3`hu*~f9$awryzdSQS@&d&$$lt z>ZC3Z^%zIrUZq%3pV(j>K>Qw=sNXk{zhwbGK9Aq^fvCqg`f4D3lTp-fKbZ3?h+onX z^%-OM+sQ+D%?{|RJ)$1t=zCZ6H8D|N{Ve}NiuhdzQP)=>%mDRs{mT-f9^>dsE%Y56 zQD15luM>m#k?~R2C&`x&y1^pU~(c;cwXIQpDveJpm=$MN?Z=Yse_U31gF zU7Obr*C7Ycr!y77TA&Hc4`Tlx>i5}doFi8EH|*-2x_W={ejvt)b?f7H^%1=KtXF*k zt3G5@pY}Nc-^oB9?)U<+^r3+IBtCt7oIV;(A9eOP7|eU)^?6-0XwxT6b@OIweNvG= zm}hZpeISfJ_(h)=qK___LQH+agg(hYpKhS{?d$#ZdT+Mgajkbv>s`!xE3Muf8|!`a zcbua+kHmMSMm>&0Z=BVeIHxSdc?HCFy|Hmmpf@|{&1-ra$88|~%&mP_9De~~|JZMF z484UUzPqRkTW`@*{PVzIFdW36|JJ{Yj*1uGGL**A8!s*Z%hBEm>x~wA?}Oe%5r35L zhxn;py|1E7EWPDJae0Hq|Nrwpo`F95jXF@9QtR@~w}ryUc}5&~;PAu7_3M-GlA%Kn zIk^4EQCbd`prtVH9M)kx?Pbse<^%qQG_fl~_Zeql`l47IHQD=Uhrv?3*A+bK4$8cR zK6J9wrVx3avE*?AWMTJ@d50hZ)D&SQW)*WB5@c z4;ppw$n}|$ecMNlI@qU0?=+r%ypM9e!q7wZ)mu~xEg&EJ(>!{HZEN*l7Ycs?omBRH zbNC@XWxDwM#IbuXjq5qun?e5b-;BM5ZgU*_VfiF#9p;;7-#kfT>CJWd*!vtX{4h1< zBaL&o8LH3WVWSQnanK?9*Kr_k`UtV~uFy&t>Fm}^ZvEv0=d-#k%9Pm4BJGAUtcTAC zl)-e#choT`)9J;(u*c3(oKos@1xjVHRCyGog{jDUy@=Ayy9a%Bl>QBr!Ej#Trzkpm z<;nsIz)v1$Im}@_B5#2*c>dI91WIS7#GT+Xrq$`YRH1O02M+&#cPA`V%6L!J~WQru$1q=7|;9dIRys;|{zRLR@a@e@T_Bohifp2BVR=HE7;9%8^ z&1sc?iO&S$lb@@gDKU;Ix1x+$rpJ1rbkdf`c|o05N`2l&8Qeqp2BmAY zbWO_)x-aj^w3;o~swiDtlBFnQp|Basj2=oW$`np*?i1I`$F4cNc?Ew9t97^k;(E2P zN{Tw)Jl*`yk|#g$tksET=htLIN#um7-06hWMF&md@Vz4pb4!d@+vJ`mBm_JMZbv<7|v_@p-AT z3rgp-d6PIpP&T_E^%;Y*5byNQbeg=B-e6;|=L~g+ow!|0`7vRh+EX&{0SB8PuN#tnWA2g;WOdo=p$tcN>>l%uP6`AOe4=knfOJjEV2N-o=fBOLYb5)Ll36r zfg26%&J_~|6*~9G#&!5;dqv^RKVWWP9mOMN2gS5$v+~-JyLH!D2 z&PgNRN94D7dX~uuyns`BYg6rN~F6#mb3W98F3RnA12-kip{2xUg5Xnr;sxZwcZR(r0Y zCTvs~wpdora9sLrQs~YUt5DJj}eD`|M#rd@7&v&mEGhW~{+v6u*D<@^wi=qbH<0oD(9z*r(#R2;a zKV)C77`jU4KMyjBDgDAc&*oYg$K^g6*HL-rV8wBD64_>Kc5%WzTUWeZ%+4p=k4+)2 z*F5%!ea3vJ0u32UM1D}JVkJb4t%7jdb0p-1-Vzv0FM3fayq3_U{1 zhK0_NY0X>E>%s$KFV)}ELCns zdHIP{c@SmXld1A2l$(AZmAF@ZZ)mR$zL>k19!Jn@_Uf#sjY4*A$&SIFYN$Pa;<@D> z&Z`PA-#kB^TTPOW|*fqUo71iXPSGDZj#J!1HmW(wF2JK+DVNUFAwB zeS0YDpgcAzUBUh+PnYIR)?x>gLXTd%qLh0mLs7bW#5n-vK%SuHYkC68;v-Y#B9yzv zrOHhxXB?d>kE1MlOsc$!viY&8@&(E{r=-eai%<_w9P{jJpqzYVs{9yb$Jlp-sCRMbHzR8>!o!+cgcAQOL7;N|73eC&e%M&*+20Ws+YnF z&NH~jHBiyw9xE&t_t-si++)x7*kgnG&3fMKW)zPsFrSZN4twkcjeWu3W5fA7%6SW= z%GW4sEt)Dz^2$nM@l;tG<(wr`WiZO0mPwT%C?EGw4nXGusnQ$efagvtoKc-9F9_5 zwke5xHp(AYN|kF++BrGo+3!bb-7!^OLfMzyfbIc zoU_h*pFA$kl}|Q8w%RDsFtx7tZa>C)@BN1rxp40ByZgsW)#KyX&B6lxm z%wGnJVDZgTg3RUmEcdn(vXtQoy+Bq8qeL9yH?*Y=XS84B3+SiXu`*Njyiqd|tviv)g z_KoAx-lnu4skHNgI=$!iqgJgT-uwJ z_Q#d>QKkKKrG4kPw4b81KdQ9vR@z%)?a>a^gWyCvIk{DZaP`;Sm+K`I&(vMD?*6`2 zIOh`UidJa%*j7MZGN~0~8YjBia%;#mj;tYP^Io=zBn`N;LVe?bbKe zp{zu8>l+(v4c%Fhf1-V6vnl)YjrF#M_3hKbJyemCV&}*=4uhP3CEu92FMp1%zgqS` zF6QUq64G`!Ng`R__=amcj~P_E3Ke(AAd{_D3k5`p(bpepu9xfW058Us@2=^GMAy_* z#QPglaEmg&5?=>o^hG{$6Of)w{&n|ffHVhkzOOis02!I*%i$rbk!3z|ERexJ2?8@A z%>vT;ET6L&NG3o!fb98@&v_$|Vcb@YTk#%pj`WfL05W>0k9-@*P=Ndl$gUUqoF{>d zY_UkTTE=!|t!wCYk)2JQpM`rVtylWUbRdI)eHH*|3+((FAiF+oB~wt5a&GdGHv$PQ z{~jRi@3fq3e>GbvlRz@rN}uP=cn3&Iv)$9?CSi_oa0!ZSR)qVqDDvk;BKbY8^a>^7-kHT>d~kbrNOfg>@B92{OsNuA(Gj3VddDGc1d07s%$ zeaPGJOXeiDUISd%=-7M$QvS5$5~za28D>8#!=^l(Y~WiFM>0pTfWn zC^!=R$O$&k9seqDBp#A8*Wvz$cYz}jlAM?MS?=?#;7H6Q=i9)=^Bn;n?xGyyndBT2 z&2~NmcT2&MxJnLtU)%WzEE^@#l5;jVq5Iff{UKD51tHo- zOTm$dP0nQ~6>Q}inR(X7#Bg$s1E%X-0Y{=bIoE=tb-fiFiSy)~lPc$v;7H`J&-oTO zG8d5Z8dOHt`C-<_%ns!6JfPY-&ioA=nH|Wv8FHRs+Ux&m#2E*fFUaB9d)=-kaAXD{ z=l0ZgEd)pA6mlxygnde#OTm#@hMc}s&TGMud54_c;AlVW1xIEga;^kNhpD$xj+vXt z`D3aLKLn1{Xb#v555 zGoO<4A;kG}Lm~KfJvcJMlJgLPf;y~{xfL9l2gzwfDeXUZfg>{`IVYrY9-=NgcQ;H+ z<@^yGHw)L{Onw36*txr*5ps0DPXouT3hKx?ksLeY*OBvba_q{Xj+}GBVd515d;=YE zx%uw@xisQnkqXWw%{Y6Y27E5!Fj`D%xDS4a{}Soyh{LFZ(<~sInqZ*55eFR(&ZBT1 z^1}44h=Zj+IG@xV3j71$glpQ{6!M(_u~$I2WoOR}8$KVtG+V4q}x_y&>b#n-uXxsnTJCBt8A|QhS=cPazZ4VmtbAYt}$uD(2kW9d7 zXQ@B>oNIuz{lQ1x4P?q*AK3z={RtoW5|CY3s>Rnk-v_ei=N35-Ye=pfWexfB)PCn0 zk}F49L*9j%>YK)H{vWO(xpI^>H0hYjvECHjrgL|5ooF#Uk#0#0OUpBxDi*UznZ{tW4S@Ep(vPf zmC;n)(UVk%Oj3K z)&gmp$szd%|aGScF6egI^O)ovvJ3P{`K{yxByK(+*O4#smM%|U%$ z1Z41+Hr7$lTp+_|_`2GF>^aCsddLZow*qPZt(9{iV&)Fa))F(T=v|!{GatqiDH1ce zSNB>)V$A$3){zo3uY?ECv*ToA)bv>xqktzhe2)K9=>xEa_y#$rz&ju`k-iL$_y##m z_@YJq3>@(ma+ZLjmL!>jrd$6Z=X2obaq(hs#DBrpy`Q`5;F&p%cvJ7#>@q9c!`+<$b`WXi7|5%x>{o9 z&O~nfR8$oliJ9fnnryKJ{{;)nb77y1U47~5{!{O{uo2v^I}HIr;szdbNJ)$vi~DTc zxB-3fV#Q+I;QB`5#!Debi+a6lJALd5C4&HcV+5TgzJW9m~ zH_k&}$b8y}OkE%PMmzjRe1jYvHt8GNoNr*Um=ZVW8sbMfAL=xZa>_g6cbS+10nCL%yoc}C9rtVYv&o^7G|NJ}rneSi- z6a8nE^Pl68sVHVWHaG_VxzqVi8|3KtW3F=%ZpDAT5>^D?tp9w``A=_dpr_Q?oNWm_ z=s#ee(f_UQKNP$ZoS|RYRSJ>aK(-xX*ER=Y-SQypBR+P#?kv=h@u%a>*2m~Z7qH?% zqL1xH*cKoA4&>02;$(fSZJzb9A>E;%|IyiyKK5peYVBiFkF_===N#zLbM9<##H!@{ z1d=t!%!7a>)~y3a&+qirW#?F5#qFxhLvf>`PxRG|&R0RM+v2?La^!1Ipx3?leCu`G8Q{zpCVCwo2&7-jicy=0Gb|o{ zjl6CqnV}GTGc&C7x<(*+6fi=5f^izTlN##JuzU_Y^19+R@yjt#O465U9~ge#cPmskGj`+6yJKH>r9V26h+0OUJ5z7`ShqK$KX-B#^6yG zz;gSWb7!MI(Rx1DxhlJ|&{wDwJL7nE1V;AoY0;j8uC6iCbZ~b4-k)<@SSmoy15yr< z*8$0#?C)mu0BH?4*8-UmAU6ORKA^i0g=bsu&4z)_*g|IWYd&DTcL;uZQ{HnfTO+cE8vLb$)U&TE_#4+j19?w(iF~<;7ISJ%ds(h?|kG# z!lZ_-u(Hv&DUJAG`jngxqQV@*VVcosdpTVf*{$G6zmt<*=huQGo9W2b}#wN=z8$N#F2XnS|cMjk4!}|tL4V1Cnq&<-XS|ooD252 zkvoV?Ts9;U=Yk{P4l;82cC;|r)iSThWaRc1dP|kH@t76<)s66t=6$a~-bT(GyEbOI zn}CeEy}<*qTHc8h5;8k1Q*CDrIXfJFiydE|!>oBc;UIB*eGkE0)+F53r`LvwvxnHn z_y#gVb=K!sERfQZ8gTialJ0A?Hl&;rz|gw(fFo8VhjKz)0L;$73N&1NwHpYUmPqu~ z4R9^-)$bu!uVCq`L(W$hgQInEmKkuq+6)c~BockK3@7A>nba^7e|3zaug-v*i?41? zNQhU&?Zl5R2;d zR@i5kJ!Pt-2z3~VX};g*{FIzGhz+FF zFM*8A_DlVloHzTNXTtP@0dfqG(Kq^>CLpZ=@+x*%pz8u4BY~VNfoylB?77^L;9Tx1 zaGIO^wyy`$dcKcrrsP1^R&w6t*YJx#22b-#-N#Y^@@F88@35Q$G0X5wiHv1Dj-8S? z%bf9jJC?t48s4p?SRBhY!_{Rhe+>hWu{%u9Il=lNY-G;7h57t;0yyG_3CR_rJ_$oPXN2vxSt3X}Gd&#*tmD3N7_%k^TlalSSGvk1p8J~;Mc)QZ|Hpmg5 zr<^8Sjl4>6@@R_qAvqWlDRurZ>tj5VoO97AJrjKe9Pw3h{sK8V9zFn$cqTco0Ouf8 zpTDur##hN{MZUJ-%VuOE?pdl=PqAxcJl1n8LumGV5bwi&^bx+JoS@_)|yD?slHSI)aX&zTii>|bD+|^h-b*YZ$9QO>kjLdOwg=F3DX18aO z-R&6!hwGj&agN*W=D2APfO$%ORBkh+`>&Qs^7g(EP2q$L{4-jk|pBp$U440J;x(W7oJT93LOxjG`#qc$F5J!%O! zy7}}dJeX+WnXIwlUWr7H+6AALb$BCk(^pNmVibr+@$O`ptVi{tK61@i=v!T^l%f|D zJMyit&){D1sCrLD?Et44ht1;CbUy~d7c;X@r2fAG()zbZj*-3>NPd&$Wc#v(o?^AO zHAc*LtZO}_FJH{{B~Cy74RS^uhoTS1YP!*#oXO@3T}0ahP7^po!+xF51=1coQ*#NB z=HQ8*ERd1c`fIjcAen&k2FeML4M3*grHt_tG}i;!6ClGtnxD3uY?(F2d#Hjs-@;Pv zIiPG$u39UXs>1ODkkpAyLY3`p}Iea;_&47wT~i1pYLxR90g z81G8z#3(ThuXdLx@eAz1-Ka>664P)oE9;XrwNtS{mo=Hv?oUmzj9kuav$(hvfOiVvDsf72p0y*Nnl+%yVJ;TeD zkM9FV{F$6r0Mt=y3pnE8odx6+^BON=>w4C;zk|LC&6)%qz>ov;JDaZhx2W4T%51Nxepu{=j(7D0>{k` zbvS##acAS}aQ+I8n+xi2IOEU6)G0GQp9j(7i!=VK(Ut7&Neyp87<#XAR?hg}hnve9 zvK>rCku$Csc9V^qt@w-W&P3vjzXytB#=jgw&Q37oj4R*yB{TlrD&NldnDn9DCOTgaTeOuk(f?tI1s8xPyd8ao?XyJUOmuCForyjQIqdH+?LGQ=1xGAT&UHYwNBxx?(--9Qq;ifv$@UI8*Q9dhgCqS#4kMe^bul>7gXAnv z<*Wur`jnhjaI_iU503OQIk{90N9B490U4FkQ5lYhFmY7gi3w9iKuWlFD;f*LQqY@kJhK>JuiKB8U)*Uh`yOHyJFIPVD%I;KghE+VJx-zGPkTEg(bDs#0wJLm+Ku`eX1hAfuQc zZDVW&WHfV==mIY3STGUYzM z)M-ElgI1gkq|5+J4~c`VcumD?SfoI4HFX zNPBQa_P;>3S^r^mGJgOv6d->EGWa=P*W^=S!+`T#AguxCSRkVT=M^5u33k_dPq1s<2hO%n_%?h8kYRUqlkF>+_MdL|nljn7 zg({(~b{EU!--J>lr~7iY0~vI8LP`1oB?p|xfJ|{n7VjSFE3N4p4kRDe1ZxCxP6RR- z^w(k_qfQQWbrK0?*f#(fZuD#TJ|KIJ^^rS(3aFz`miQ(kH z;Zo8!z>%n4U)T4+kvLCIdYvBzMP{)J?;K&Mu z99&4G)OiIsvL>m|Sw~%FEm5EIL2zWS+|gLWNLjLVSUU>hMc#j$~m+J z{^RQNwp7l^tULvLCiFh5O-VHgj zj-s3$aGqyER+v5tj;yT6S%nHu4+;484RB}7&#Y# zqsPTd=3?xa6&g9;0!O#&3~*%4M$U~;^fK_mlm$mtape3FoD)I{{A{~dunmhF97#ze?iGCW8oO8UI}GNZ zsX@rSf)SWj_6jaU+jZRFUcmrND|-ceTXbte6MP4pZK%%_oH|gZE|BNA?OjOTA_M{wiOjRxI^ZqiuuRV4w25Xw|KxNY#D_&d4OYGAH(HAbSGj zS@VD#>~l^A(ik9T0coAU4xC;0boSN%N?5n5RgI57J4cMyy z{>Bl9V3>Fnu=p%{6>vS|=n=OHEfvdC7b8DJCDMDr5zCXqC=yo5Mx+I2M;2@NRYHP% zy%ln#zbFR{jI8aGe?pGwFLHSAMmc!qDR87u$@wlgaKS`+;e6Z6t*!C%faVdBVr&t^Mvmtw>*0)~kr_b3co8Mz-uW@u-! zIdV6kDKc`G0@3Z_$Zf_y8M&?CJPZHA#F4uJqnkOC8n%U*_-04$2@vmg`P2zT>=DgJ zl($Kr(?1{|aO<*aLaaLd>~e@Fh0_X$|&U z7655<$bpD;N1bS6-Nkyaqmhhty@NK^tvC&FObraix}PqxvF^F>+Nq|m{XZ9?rQ)mf z`78V^_c;fS_$oPP0uNQ$Sl4(C@{ubs(-n6gYP7299dfF`^*H?q>tlSLoK=+O%G(d$ z0!KyxIbR2?S46)AN5%y?j4NTCDQoh}?MNZ#B|s2@66rW_WbBZ0DZc3XoK21yDdb#@ zFIvvU;K=wQ=QXKvt_DX&963*b!`UuOZvjU}963ir(cvKh-#!VBj6rg)LWNIOoSopv z_#%hDd5a}~BJBo8#uqvC9c{ydxcGH_ir|^TITjolgOr1bD#bnv!I4o(&QWOBi@^)i zGH_&^lJgN{>KJ|%I5Kj{Nw3e_!Eq4@JJV_DMsQq=seTBs>9gB4r$L*x;USfStp~5zi@Z2;&47)fEXn6=`~7`oloBbT{55Y?3j6#b8zcyH|(=( z>b~!q@$~+%Ise=kjnH4ARO5g9asKx}nve4DL~t?H{#~E*OdxGRsp&vQ?z0?wx1!O$ zW8Ad5iKU*j973-EG8(*D`fMPL!HjkhIrstL_?}%SkfET413=o&_3QjLAnmX8kxf8` zgIVvhKt><)CGP;ze4bzGZXny1_{dLL>H;5m1jwF+KJt4YgXj3j)8qtgf6*DJv)LtX zj7It^fV4i}FZCKAyPn}Aoj?ZNJW^lyk z$!SNnp1(c|j*J3wjt57}`35*LF38~%m*INet^s=78lVTG|7vB&`yfX~6XkpWx^%m^ zJ166dob-16hV?OCN6v>*>-;o0G6u=P&$(t)buvd`Q&UDIIk! z*F11!RHRk%XL; zs4#cr!}J6=5?jdmI&?ihB;ea2ud>mGoC{#*M#Xt4I1+!zDIj0BeHl0sk;pkORnAIq zBu0^Q3EHLCNN)m1q82$^k7@guU99PL?!Fy%<{BtWoVzdll%2b0!8m+xM3^{tKa5#j z=5DSbb-T>9FeYx9yZ3+t#fikZdpp9C%-su6=SqSh=g@9@uARI2`(a_SbN7i*By;zg zO0lM2UGZVs@cYqBq@;+<{{W{kIFJ2RAVURzcDS2zuJMuGKxVuVR)-LYX}<>25+Hv9 zlDWp`OlpO%uJq+h19EV{nE_-Z&^{N)VE&8u06L$eFOb zYge{ZE9Jl&InHvj9fIt-&C0RspSEEA^K8gz56*a;2xQkSehtq6(tNy?%=%mmBvbT} zb|8C#mR>HMK^)VG>y|?vx9gTaoR8n>Jt)cIx@GioyKZ?3llut)#m?{d zzdjmG4W~eczAktTtRdqayoS|~p;To$!IAM!&JC%YH-IA%fE;XZq{O<7)Ma7IK!#d<+~J@8rAy9BrbnfFt9boQ>cx!iMRG;K+C<=Lux$Iro>~NCY6~Ja7&Qh49-V z$T2a2oMsU8+HVRt5+%qvK2^?1;7Hu4&sj`eCX&?WydE5hE#&m#%Ov~@(*QUUZOF-` z+UG`aB>s@YyB>PoavL}jk;r)*O4JmW`8qffqsZ9{j_!*efg>@BoNjP*UyM?YiCW~W zOyzK$DRGRPc}6eVW}96c_E!I8L1&P+6%<1kFO zQTtdTj$5VF;XDYAoADbO zQ#8q5({f}nGQl?vPJ2#)>(#*@+V$#5n1SAl^>LWEUY(0DAnR4$3DJFO?z)0NuR%Nn zVMZtf-?(1ggG&=xuU-zeKHbN?rcYoxlD(#0=uqBkWkawwatmK5}t_0{?rL()BmUk$xxV0WuZm z=yR+mkh2Pk4pp3!z>$6@rv)56=Fb2}Jb|2U$k3eEQjYNra_#{^&pQL)h_{e)eJbY$ zaKwMe;ain-owtD_9!1W{;OH*93mow=a()KIdJXU>IO28Wd=WzQT+p!88!2^S=2URp z_^QLb_tc+X+&Cvof(N|B9Yo1jSISha>9V_cbxWG{n#+U%WK zB}LS}0-VO+{^`X)hL5o^fvh5s(PoPrh$!)KEQ07qlNu)JApo3F;v^i?g7Lxm38=gY z941DIZ>_RX;@hx?_TD!-i&4%?LjlpZ8=S?+;hhoXESWo;4aup2qji1XS(TitQsvNl z2T%?1-p$}l#=kJpdv_ddz4vldMtc;!_de&nP+Z4*r@?a6Am>F9NE38X{U5bURc<&CCZ@u?7P$b@4Di@M3D?q8oP|cBSG@sV--amsgg8y_$$~Q& zAXl-J+izig`hkoDa`;=BmpjD%!sd;^%7MSaIqW!;^B|BL-{9BhEs#7M=z2Gh_5k@H zkc^XaAV&ArGwkR-MGVWvc!{HX(i%IuuRGRM*URTej_!B%+R=SGhMS(hw$jeVqad%L z6{SMAvTK0hd}PCh!w;kEWco7Xh}Tih>8SH@NlJ#-mEwowFhA7A0{1|UcqTb#U_6|u zp#3JUCy8D$l-6*xlvGuGaq$!W2X-1JaF8ItHW6VjvJ@uw7m8o{w|&y z-F4d4OI>y})zS4va2jn)s3Ye+;JEnH(2OrS8h?x&rz^crIfG2adP8QA-6){fB%DE} z;t(rWVYos=!+(oUVd4yOEQA~eSl*kV{h8~ZHaCMHG-sX>3c)wC{yE9cAlPioVBjVa zuj3BJ#3D0Dr&45RkQP)%W{}=oF=Yn%Jni$bD5@(dqV(6`3?!2>`pd(?sk8IJ*%ou6U*#KdzshH4v~9tR z){9ajN7>oxKt$|&TW!Sdth*k2*ZXb6egOUSaxu5}ml6BSijCN~rJl03c{^GvJxH(9 zBY@(*4vzF7Ias`>TqQjKj`SBf+%?kG{{O&{9wg^*aJ0)je;IU{9wg@_;Dk}MDKEdK zw_zREE#xpilw)U^TQFPEzvL||_>fFkLy0Gla~5*Lh-81cZ(tv~D3UXg_z&eA2PCWy zIWy2M@hEcmY&+W@rp4eau%n>PDW)7aZtT?ITn&yJO?5c`296s$bvQ%dxUo}*!|1oi zMZc%eAYONc$wa>yHu{aA?XL_8_{QjWu8V#ffoK~t`rUYhT|YCjF;<3&(Qo)98~xgl znI8RC!bK(eZ4CwBn~i=Kx#-t{x4YLWxz6y;>m9Jqh}}oh)jc5Zi<`g5#*O;FNm0Dn z#tl5|oO0)yabr)_#tn9aZrm={cKUOA+@Nnfj!9EyM$WK0CeSzTeTnsrQ@{zwAUlV? z!MC-rx9dI2N#EGxe4`Oet&6^~$N9!IaKhLE!2J5*QPZt&+(9Tv);G$|H|(!9mEj`= zx7Yc5*k|xV^=HNdF{dnEY<+_}OFHo?;Oif^zHu8mqEV5IZ`7=B9FyuBN1kun&i=|l zhVBdc#`F`dZ!AdV&^Iy&m9lDjK6JfQ)rY?EmofOplp}52XiU{b-7gh)FYoS!U!ZKg-$6Lj*@v7*F-RvTG(~q$#^68Cf0^~4MNoOIl0*M_F(v{u2)c0L zo2WAjFt#+0!G9W^|13o*6i6hlx_geXvE?g?+<4yEhRVpQTl{BMV%zbxu+Q+ye=Yyn zefIwS=TCQ7|7k}H(RqnP|Cu>p{fBP`PWK=F+TgzYr{wIzKHX5)e>S2D&qN($FHXlO z#-A%rvi|b|sKmBTBGG@&7=!<`jlqAq$KXFF!bN4>Qr~}eCHyD+jmb>r-(jCASO07I z&$$>fn7+{$_2bWFU$g#GKmMGAF5<|;sm{9obIX4G=R?jul!G5SuM>ax4zm6EPx(~q zKaZh4m4x?X%-ZI)WALBy82o4382sm#WAL9n3ICa$h(BL|eVTjzwfyJv=kDKs9=LP= z{xfTx^`FD)`p?u7{KEKHm+DUf-*NV#|BTl4pQpy)Kd;5jdRhO}_n)<6@SmYE_|KDL z@Sl&pc>nQd3NCHE`KywQKaapZZG-<>{&T{4`}d#h53K)GFhbCIiNyKqZ)W|1^jG)0y<2 z=U#xli`V^Y`49I>_BVfh{{ibi{dN84%t7lvN7Ri!5AVl+UgqpW-*~ca{OK8k|IC`V zfB(5-4F0og4F0oW4E}S>ar^h5w$Ohnvzo&R>`d5a^qPMy|M@G%{Qmss>_@Estf}ii z%dWNl^UAvZv#boiFmWS&{<_rJhyJq)n>*>(Ut7lDKhqal|KW>HaB-MOTtENN`41+S z#G0RUv$rz_|KXb)x%)VYM_cM#fAP14pbnh+>*sRlKb=Ycxf=G_b=kj`|6Fz9{{81G zzqS5zOJAbgQ|Lh)v{~UAr{{82PG5F6EOqBHENezwo zi>4(K_kX6Hx_|$<;rRXg&rs+;;m^23??+&t=C}T9`OlBr_U}LQpS1o{fBkdU+pPc8 z-~X9@HTnT|sJH)fhqDhk_4j|KV!gV*_0O@dvi?(l|L56QU}Hc)*FN@t#^68gWALBl zC+y#UwuS!FncP489_&-@_}B8E#TV`0e?EmN08N9P>#u(v-eCP_M&06SvCg$$>Bf<+yip1fXl+U6N&TJX=Cu8wlVn6)-m|cvuEtze~!XJLax79*-6V2 zRnGhs_SrL~zW(1*XmNS~*iVVoeBYvr+K*|sMNH>ti=lOEp4rKHf zKIbDqb_MPF5|EvNuI~aF32OL1MDW9k4VlJhe%T9TN>HC?z6QFU<7=M@WXQGaK-?Aj z?8SEEKCP!kSd}~f#~xuv?k%|ee|Up2xA%uvzLT%BBNs0MN_hv)tI$&MI*z8Fd!^%# zuLDQCj+}pwGrUjNfFpiL&L_Q`_~Qp?Rnvpy%!xC+Pb1)nuad*(CUklj9PwUqZqx)I z&p_l8eq<4ZNyli}TpFDkeb>!akA<1|X78joyV~d$!4n!2)1_wYx;0b)Eu1<`icQ@K7`f*%}v?vmz z=;=c?isHg2#d}}rtU+DJgQL}5?yN!1v!O?i6na#9lU+Y!qDt{zdeqDE)}wBRqSIBK z=~2I$Vm%5MbSd?rNAVYe&}h_$o-6aUFN_}5dYZldT7WFB6vIT1`r=FM`e$pHiEq}U zUhX`qTrKqHOQ%)}_~Go>wXUXp@WX*-rql_Xy^XpO2IeMK~H*NlC>Zn#( z$@ZU2GS*Gybm5((;4F1@UfJ21a@cYs>YRB^{W@pMO|#}MoE_JPiZeH(RI@FW$!4>Z zoEdTmIk$o1YUtW7y4d#r1SjkZ-FDh0G^B1joFtKKe_iC-p6}^NY5Uhu!)>T{yAopn#=15a>l%TDHnR5F=G!?p_hGzXc7J18IP7;E8cC#y?)SkfZNI~qDT)0)ced?! zY!;xajU)6KBU2kMAWxrDn{v^^w_vsn0vwgZbp-H~7PtU?+_@3(!r zTICbq_!@F{o(CjsoNBvX?@-#i$EAI@(!N<~A5z*kD(&TQX@6L0-=ehNsI-4L)*kH^79mGgAbNMD zyD!(v4VQSn=&E(&w^cJ4Z%&E4cfhs+I+JOlRw>c^KAZc#X6%^XI6$+#6mjMbS!<-+ zD~UKQ>#cp#IFWtU?882GmGVz)d&|y!)mhd*b9e2(?elqxNo;`_f$&# zefjLlLSLa$H2dFKfii=p-y1UrrS*H{8^YlV_IJ<(7xdDE`9`$c(_Z1akGiIMTI8c` z7f-N@&sVdBN>{v{4;lfo%a_%^+9IbDoY5;Ij@#>&Qq(>QX4!D+%D%;zZ z-sD=kx?09-r)ptiGlyS-Ypd7SZ>jZg;jmo`(VkG8SJ2KI%+^ zpXPI1??@@OVm&zFhR;N|f~VXgA4_XQ=H;kiW46BK*@|U8$F)LAu@xtS^Z##Oe95(< ztK8X>t5%C$YyIJJDQeiZk5)MUF&x$z7k!B|(U#wtQfJ@o^Qd!q40RUHKc~(=aCOGp z;c6wny2e^n)OlzhbtdVJ;JE$yOjZQNrJVnW9JcG7D8*PAC*2n*Q8c<2>8`s&7c|1` zsgKKX87#@SIV_r z5VrkSkeuFjCns$N`8(QP8$;WF6Sh6yS1AXr-;8!m$?d!C?Dr!#+P2#fC#Bd@yl$>e zOI@jdu%$y|Xz4Ss-jH4{cazP0rOm@)02As*h|3GBO~@LC$-{KJ3%G8 zm+Z)$=K9nGn|$)6mUp2QnYTo(NQn{@`BQLOEyw8iHQVlxY-RO@=K*h9@7w49z-fQG zwGWFOdKu)b5l_dyU$pWR?X=je#!LpAn_jXOYq9;6QbV=Jn8vXy&()FkhReai4Jt2L zi_LHrTZy+1<$|$}GZhAG{aAgA*>(ws?OHxHlexgt6rTr}sCJE5tD05Q5uvVV&DP@D z)!Ts>zQ#KuWBAWT?+kw->cJEnW>KuC(3fe%3ueu|EmP{nDCK4ugERvv2b@;`*^o^`Q-4h9H0jcximT!F$JHvi;ub?6U@kJW9PCLCgnPaLxqcEM_Dx12Xfc(Wx_o@a#tGH+{)@AZ1_NXZk-ID>Tb^r9!Oi@IU!U8-xpA%Ze;oOxFX$UDMaVkE)ZG5j zqoDq&GiUjRp>X2@!t5%yeIU|q&Kp}T@_##0-r)SFn(9DbLo0^wj#^sBf9?TikL4Kg zyMeTS$J&R`uYrsP$e)0e@39;^c0?EL^J$D7+?@52wNLy8IWIH%XlKR+wl7lZY}@`; z*Y=f#T6ZD2z|S0nlOt{aUBB(N&cb1xzlyNNHv`6LqU-!_S7%hXFQ?vEIR$l|a_|1@ zEF9MPy>(;MMA`WRuFlo|-oy+;OC5_kZ@X{*brufmJcwQmPYO=7owv9;uS^{mC!)^H z_t&p8+ch7Yp`Sz?xAv1#Y{f^FZ%%Y8ns6RKu5P;X_`U98^6F*@YB*|ZsA_{q60KK- z!#Z;lGJWp;hrK0Qua2yR9%z}=@Io3fNVYz0Kc!X4QxQ$h?CQrz0e?#^vMEKB%-WP}=!hSfTcxse91v_M-=wrJQ`%dV_M?^d^0>6$qqO6qEzx%Vib81lElT^qxU}z3+G|RCx6*!%(mpsY z?K_qBbxM0#X&+MBH;hX=qiA5&xhs_RHl>|UH-sZ@Xk6Ndl=h`c`{_#ivy}E5$EE#7 zr5z7s*mlVsv6jV3`|(Qq@VK;ZQ`)(!On6+BYce ztx9`~(*A^swA;s}eZA6ty3)?y>kG!kyhoMxk#T7sQQEOx7wT&1QQFrl%ilRJ?c0_1 zveKSc+RIA&u5oF zWZE-Ar&w#Go&Ske4vp46X`IMDha6QulGrP$e`4EP2KQCx=#0?D{kMJoz1DvkFdPy| zwM)mkeO)0Qnee)~%h5%FAGR!omjuYXrIQ^JdDOx73H`rI`;gMkU*ZaMwJcNGS19dA zj!XMGrG2r|zCdaJC2pQaHH_LmbzIsvEA4ruo%gQ-Ys}lK+CF_;+HY6d*D38~rM)>m zwHUR1#<;X^QQCWy_I9QHKGpV9#-)9S(!O44A5hwtskXO_OZx_;y-jIfthAq`+J5@D zv=1oltx9`~(tf}4`NiYXUQ^of2utYUEzL^%-AeniacRF%X>V8Bmn-e>P?ldlF6~>D z_OjBRSK5E8w67SK_H9c0fYOdfvckTYceL{P{J6A_DD4}R_H{~ohtl3NF71O#`%v_D6+ebczK-=ehFl=g0={h+w*(VF&o`&iT3HGdp4?V8_5=j+Q*uIfwe~3dOlk7pJMHk#)<56!anR{*T(h6e*NPMl z^FN4ot=q@1yxDe<%M{;P8@}3!b`)4--fA_Uj!*j( zrF~Sj{a)4fWoYJOrMx}kD(*D~C z^7+N8?NgQICo9V@o*>KfcjzMjiN^bgYWwY~?Vp~Y5jR7%eXr8~sM7x73F`OVs_ppE zu+SPU!%F+56V&!*)pkxkL0`1&Rod^LptiRt?FTFEPb%$?PmuO@rM+2cpP_ty`vm#? zWTpLn)$jMHw$GTLwog~uA6ME(m3B<{);Ip4Iqq_$eWtSfbY=PLC&=>4l=kUL`xK?U zdxEqdskHO$q%bVkND}>8b}7rZOpxVws%W!GY2To<@1CGp=1HafPNjW^(ths*#k!}I z_Is4}5vBdn3DVAY9|gTUcbn3_MQP7ZkoL!w_8m(5Hl=;@1Zkh9eEw0TeYeuyJwZO- zszl})%80nmf4Ek)a}s| zMyNW{SAjfPl$}yRegtIn?LP8LAcH@WXT*f_e?T@4%Kot+N8_!fc9kng3y>XA4Fzch z@^FAG17c5BAB6V|$m>aZ+U&C@tl^d5oR0s~e?(3n5T>V}w#c>Q1d?w6vOQ?mtw5~B zM9$7g4!;TVLm=y;-DW`^0%9YZAb$a}?mpid&&A{1>jUIvK!%+Svt5-!0Xi1Dc4hPZ zWwt=xl+_6Be7{6zZ#lEVahSgla(bduL!$ixAWU)F->i^#E9B!qh6DTD288#mFcn5^ z{|=BxgH}8UeKAm>CNlp2>>0;D}? z#brPmuku@324a)6;#wefuUnAof!I}(AfE$r=e@RfSpFU$8-gDEH4r(!VSDFqKx`5@ zQ?i+ieb2ujM+31*kduHc4kRxDVxzinE{jUV@n-`N`;4k^ZiqOseQpI}&!!6Jn?Qzx zc0B;3?Jd5=ehXwU@Slcu_-cSm1#)C`r%xoG2xNQEin&1SN?14-0T~TAuLqJ3kaa-h zT&1<@5Ri32FW(Hr-Y*czcL0&pm?@e&#c-WOx~Cn^>*83pt6Iy|;4SuDXNLU{ICh6h zBtH%0;Gl*t%%RTFJSd#=fG~;Wv-qK!S|?^1bGq2J;!1ED-{9N12guaGhU+6a@z{AU z5PPm0@wry&FP96Iav=F;a0Y_jxeZ7-GyVw3JwYoT0utAmpY{+5M)%~7Oy>T;TaE+r zcp#?<$mC$eEd^p%!Us`s=5;_e1*KL286NQG?l%Bw4tjYA$nK!jhk@(~kWT^G8X#W) z!W55!yMeU#`Ig@e3E%*Sa!T7T@v1U`;C7|icWfL!i4*PU!D~t34nI81uMj%XaD>ehMXYAn#r83^E0bPOjewwACw*g3~gxY*=nJN8Lchws7EO$N+Rb;AXD!5+y3l4ewS*JzalyYNVk*B;w?ai@qct{ zWW)1;l<_r=W3L4=>O3Kv#c#Z15rB~5wyy*yMzURND#cnMvo4q`*HI2C8%ur{kXwQp zeh`SgN|JWn3ZxC9<5J%MvLNv1-9Wa0b1?o%sl7lj=NIA{PQub^T40}}f!L=+rPND- zEDL;W36OZiWplL>x+)`2%vs-fEjae+Gm&!@5POv^$T}c)uSt*_C>bfP;eP^I8qC69 z2Xc?|RkH5`vL4Nht?>wu5og0}Z=tudyf(8ju>4+drUq?4tP3lUK=O-$*egV-;Q}Bt zp;L6B?K%4M&Oq|{;KXr^+TpF4^#NxUINP1qVFk;eo{_iyS{uFzoJQ9QWM|$7#6DRj z_4z0ed1}m-x&;VRY{Rbu*#!EbK&8}=73Y^gc15RRg!2a?fi(_Wi74t2MD?E1nnFdM zoU+=F2dC_=0*RAhvu3$ohcuQy@&S4fiPIDIg<(RiE1}rTAA`dP0PV z9L%uhy_YrD(rh-@gCFtAg=?)@D78J9zs?2H_}BCbB!o@$}63cead z+V_Lg{uZenqH(T@-_6QoZg=&eoKJvri<3j-i$GfA{#w&n<@=H32`t<1-veiI&|i-L zu}Q4)Cm=&XD~@E~K#J`=9mt)*c%K8rK0PgR&IGa}SiN5cWWh$;E=ueJV)yW+)H{I0 zo=MIJfH1|{KdF!}069H~e%}T%EztfGAX}XOaBAu;>Vg+#W||f>wruRBv*hO>3o$s z27wF(R=o~LE9yk4BKc!L+TZRYcK}%$SoM2Angd;r0BH<#{Q=0ML8(J}L`m#p(}3&> zM)xdokYdi6Kn4%<>vIK=y{PP=;7Og=0I9k9WGe*|O61w?#)$KNa4@*NQXc^_IY4d& z!W3)Y0p#GI72gLk8uaNyK*~XX{h6f#InU~aHCzp;<7gn$0%SIj7Uw_N!hqS^*&IZq zHgM!=3)`+NO9k3j1L+Cc^;RHE(k{F&8plFcXXKp*l#|VMb{6nchEswFxf!LV1io<_ zkoE?DPWcXyX@T~i0omeWLN<#7sL^VWHGnSeP<2-_1I`bzCu3%mEkR44fSd(ED;i++ z6~Tym0g&Z^4QByiihHmX$m4;xTngm&pwvnrLx@52Ch@2@0a+f@=Q<$MoHer5;>x~U zPez^-rwy4t4o*)X`I|uYILY{RM$U1WmO%1P!3lQ@9|f`{XlX+U-Wy1M36LiPqy@-E z=Rd5^G9c3fBnM3rr2Uz6!HZic86SA`a>Y2u3aqum@4&Gawhv$oeGb>F{tx# z#>c04+Fx!EO0<2k3`k=jX9YQdoSG@+ujl^_$krgXd;kavdAdFcWOLApF9Vqo*yk=F zQ(eEaR=)tUH_-lja$KowuA@}J61LlUI7>YR&W<3G9CbCW`U5$q0vQSFyadQFOdiL& z91uy|CwVSDVn8O+YH;lR6zQ+`0Y(OOKfsu5MvqR4J$o|@Y@Y2CC|3o8h#AO{lR+di$HF4{=>N1xh9{H zUyfj@Y__wzTD+#PJ@AC@q11NQF2=(?Y}pS6oJYVJa28{I{s?4UFqWTV-n!@8`7|I; zIgiT9MRsOd5Y=B1mBN^U|2zkhwf`&!rxxg11%$k~-`^6+iIGh}rUmP$j{+GCTJc#R zGlL$y8%SH=V-Eqj*Yy|M{udw{f?4J$jIV93rQ{p~WM+WO0diy@`PD$Cf*X&fERe_D zY(+VIKlETw>g_=Cf%XprnGztM1;P|tXuDi2<(^B-Qn_m)-{h67*Sf>P~4 zo$ms2XMp?|$o+v;e+`65EQZxik;Z5bB>x$l&4HYQ5h0ca$O%AZIK=Ei%toXQ?6Uxz zP0l{q-c_{%?vb^-cCj99;4F5&imTCTwNR;D9@HlbP9`XI6_BmYVw5vT4pQt1n}BQ! zIRBwI+kuP*k^lQZHU*^~1+sC_-*G)0k!YqR*pm|7NFFL_*-XRF<%HQCNmAGX~3 zYSm1(GgmHVSFP!R;HLTW=Ptnv3=SuK*H6M`1ZZ_Z@% zrT&hdLLf^Q#&$v7>dc!nm(?lOqRL0g(Tsk`?Zq2ROL;WGHcfD^hUiLIrwf#PsWYYG z3Eg!_34^7x#0C^--ky@J=2jcsuuBPDaKU1DWF@y2mBTs_P6NC5^u*t=jKDnyS~tpe zjk7>rE^r~QyU@8Ro5LkmS8*VlFZLGtszvlCuIQ*CGD{(;=7zOScn9{g!E}tuNCn$UVg^RPb zN`d1C9vi^Zlg3#tp5Wd|%W2S5hJ#3gbsRY0LRqd?w_SelZBP5j8kNsdJh^}v{k2}=4{-y;BXQ5JBTdlX+ zVO)1r1#Mkz+lp_|7*#k}uBi*>&PJa`O~n_u72&Qga} zV7{0NVI)|Pqatg1ou2|!T9`yJvby^FI&)34=FNd4WDzuNDa^>&5yL7Jgr->w7pUx> zUIbOY#L8Sh0!Gc$HI@^hA$3)yuaajBS-Gld_UzenGT8z7WZWh$oXeN`aCaa0TVs)U_G`o3$e9ZGB`ngywp<9~g!!^^&MaAaKpN(olLcR$fjRX|KN8>5JI#dGl zxddOYZk?>efN@u!-8rk%G~dT^`Kw|>`59Ol)OriJ&6=nwCS15;dKs2C{^JWmSHRJe zVi*Kc;aXuOmMQrT{@P%&P-hP+gky+_Dp3~dBn6Y1&Q5bDVp>xW=>AqDJ72hoqx=ksUTNB|q>i_yFd)5RJ7B&;%`$u_{zmON)$jQ6Ax zo8`JbR%5g37iy`W<(x5=M*~+oi)PUAbDY!b4XiMy1Ch8WYq2nc-=am5&dA5k5i7}6 zR+j73YJQ6K3!U91-8?#rETxl%gv;0rhIZSDv43mS*qp=8lI;)--KeKP;!3;Z<~qHK z^(n823M-9mbRKSG6fyQw%XN0+GPDyHY?x(w%eA%K$-(luX-><6`CMyhX|6O!T;>o9Y?#8=*3tYr(OE{~oNmdJ56<7`+b&xdUT z>_wH=?%LXNA!~ju7Zt>kv{J|tN-f=4!m_Y1kebIEie5%hc2=_;xb|Na;M_6GR?*h5 zujVYA#W~X&ljZ`?6z4@AOxa(Jc5AbUjo6~DB6^k(psTBjWw52s%)Wwr$yT!cebD0x z%AMeL&TicVke8XWPC)0Q~u4wbCbA6o!oSQ={a=pK{##{+BWH0*eH<{ni$?DRwOwpVrYVm8_Ar6_|$s2 z+8Y;3lVBOTxNUG0Pm+a;CWJ^-k-X?}lSon!Xp)6vpSIzqJ_AnKqiPq1o@C)Dupj`{ z$?-ytFc1{P`K?>mqM|M!2``9B0{Njy5HB=D@kwwq*hO^|qy+Z^jaQ3gxYEKUW(gh# zE-h4|m*DX*jpoBBs!Fa7WXV!4c3}UIyTZm`u}~XE{M?ktCdE?1TbjJ|>RV0G?_ACB z0j(!p3LSytj4xp}#4WkiI#uUX^8*Od}``_NCcXBs9vDuE*g}3!C`{oGl zGr|edtbxpX!&C-VIcXU(rLHPg;lQ{w!45TMw!Q+U>F8@>ZpLU9S_Lz)DaNe_?_)Mt z?nPvBvPD}0+sC>79xjAfGM-feGFRtzqPKOaq=NpEz%gfWvFysbO4or~B0o&AgE*AA z%u>GP#4gZ&95iNs`BuMIWozbrWYw2iK|AZ$cAuHhXMRCxhOtG^RpLK!r~5?H!?Pn7 zi|U?m9YlO&RC{nohtGKNzK81}#FA32*o9R;*J~J>p=0#-)vzaz#dM_)Ykk}k3W}PI zb13V_#TnmU$dzhS%lzhWUB9xcGdqA^B@K(Nt;#J^gzwJ&3OD`bW&n0rbGQhBnAzN2 zvYr&xlUE%<4Y7e(sH8WH7djOz?^K(!m8e<97-6HrJg)-T5-Mzrm+W6{Ud>QOPEwp+ z&(ujyQSMZT!F8syv(BnoYfDzrVuNXU-iBlqh$&>k9vjv7v5?oWA`S;Dx11jzc zPDC?2hmny|&lh=gCR=R5e_Cdo6+0b#v)Y}*B^Y9^u4A0%mFVrw4WNUXvn?#-XVk%~ zK>?*Dl&7FC>CV%EL7sH)AN#I;tY1OCy@3MlDHJP&LG>PMY&c z`;3A*MSVrC-sxPaef>Obeb&xvSrPYL3uZ4Q0I{>k{gD8(Rf$f9;waiRdTr^+OV+B$ zLuW>+&PkOW`&KdAQ|zeZDhyLNeh^g4)E{$7Z`u_|SWN5n3Nr$5*9gx5M7s{MCiY#r zhz$oeLUJ;uL0w)6aU03anjM-BZn8w9ubktylg-7!1@2$q=rp!MuyiZ*6mUyCfpMFX zJ1jWb5M8VR=qvU06;^rxm2{VSdN7!4-I?q)g-VGR+5C*>H;cIU85j1Z*{CKd>jWMO zv2EZs0k1%RH)t>!K-CjVU9Q7PAT#|if1iN^eb!E zl*vAdR*+sdMu_K{5t8&Yj~KgG1p1x}FHJ!se~xlIr;L!K8%OZIJeDCx4vKKc0oO)m z8$WilI6vC65Q;WjOpFEXixr5&WP*KSJF2|_WpHdc7wOzsDBF+L+qtL76TB0&#Ic?#Chmcu;|jUnEZ&YFci6lr8)ZfBPRP1GGZhjCWYy%PFK&*bCNyxi zw;vZxxQA(0(+Lz0jU?~3$sQsHo7ty;8gqcKh|`cfvf7OeKTZnvdpXAj+izWPRqXom zf$vdX+?^Ceg@S`@AH$GmnM&To?v8YqR~fF$T z$`-{rynb9#Bu4{V%N@C@Io=fe67EjoX-nf|K~1>$!C6a_VgA_L)GPaYFhNpWz&GB6 zRf2K#AjeD=a4kBtS6|N3I7qMdD~(rVi(S0YjMYz{xlqDT;EM+sY0Ubgn&sJyxD|=q zFwYL6C|uKf#PuZF8Q)?oldp6c6KWCAbU2K2*LZy6-Enc}sWId$3@Yx$I<3u*cmo{fZ2oD4w| zEJFwmCV&?<1@JA7xM+iCYGxEPC6B%$gIjaM_$m285Y!y_rDuyHt321GdewGWN>r6l3>s*Q8$*?ax$@61>z4DHe61rVfu=^Hx8Dg~ku$B*7$=$jBzEypt zHTDVxzKkVX%IeBoxzUo0-?$5n?J=HUv@;S0p?Oj$aqVtk+z`lC`|%hT4^8QHuHi(P z_B>Q5SF0;VYe_7@7hQbW@qQ!QGvmvfC(R)}-@DkUZ+L8(;XmZO_R_pZbAX}W> zhDKk0e;HT4{wcZW@=CT&%tb^XNj9YWqRWI7MZB^wg}GMcW1rENf##+;a~8~*9Z2Ii za}%l(W*nC&+!gm)i`eBgkLTetpS*KlFjYlgD9RojE++6=*gitW?Q%!s0y8 zm$aD4S19ERXr?0bIkCKpGyFkTl(|a^i`V%5A0Xlc+O_uK3Tb5J5SnCclUM=n%QjoGB~MuKcj`NP2>ZcGT`MxT5&9Ulz}9z(`uSOptL7z((hz>~rR zWs6Tn8FQ+*6y>h5`CPyi7v9i^C?2^bHgYY}lP&WCNNzTHAB|7&0Zv?9MVrND^qYNN zYBc+Wd{m(a$3S?vmP?$NBH5J!9_|ann;jXrVwClo+%%M?7#a46s7PeZqVwY>7k{ul zWX1EdfjQ}zn`GP+jBbh8lfYR%m=fHBeWUENn`Lhxs6=_LT82V1?E zPm>#2EEl;%+)LsjuB+s0qQ7EJ)M*~z`bjX=eFFP^C`jCqQ9<4WlHL>`*`_P>^!hq+oosB`Jo_wI#7|qg>?WY}*wZC&PGlsc6oK*-A%uqHJUN;H&Ea z;q(>opnvd$g>4z0zl$!FyLw8wS`-1CJq?&rYkFmNB^0R|8h^FMwgHMhBQ=3P1%<+j z23ZO3H01+=NMy)YwcyP)1%`J>qS7fm8`FHh6(`ruE4auq9_$028~bqRq<&89ojw}5 zr9iq__RhOhf`hCc^P0LjxO`JHyU6RPn`6V0u95ZMdNOm7Oy|l%bPX_fRs}23)8%7F z{4w+z+)@?yuBWdUNl5i{U$?k>Ju%kl_mv-MiX0;He<=_S0xcwLR3ykZZt8&0azr;T z!|QY@21mWDw5JIod3DRU!wW&AjxH$uc%8V$MAS|qEee^RL>S$?k!>a^gl7-pmGtUd zPd}E4CYPhoO&l$A<{;c-$FmQ!2)-c4kgUu4f;igk{O{wYKqZ$ihI$Pg9mfwUWHQ1y zFFFI3U7jE-g`3tfMu;8#eg$I-NIx5*F@yKrwphD@-)^02gh}h`WLg{4$xe$KMyMU= zep3Rg)DZ~V$cB^Ot)c%(w|h>4-xDw|*Yb5?`DPx2zy?&8nl zN{**N=XN?hI*&3<4QjZH&KGUUU86!ChehykYhn^aK$Htr+48EhlAy7;Ce1H`*E}bL0@L zX^hSan!iR~=A6!;z)TfWDJFtWyM$LL{&4xB9J zg;Ls~U~>d2CivCFK^JrIo;TvLbCGN(pA!rSepz$#9?v}KLN-UU)3%6&9o|P43^Te~ zh1eV|8xQByVTb#&MglJI>acm~=Xttech+SiN3qi$PAX!gVDFe&ir<-fYd{pI@l&3X zu;Q^IQFX7|L!CYwF3rajux81J54T4+wuJnN&C+pWrP$@qZ8iftv^Xh(2d<;5X;&>v zFpBEtQeE9lQL3}?K9qh`w_Zk%&WIZ4SJa%9l~Yf)s;UWy#5g#$k8C-!5lL6YBfPiR z$HkV)=B5mfdNiVEN5MMM?XWaoT6Rpn9L`rbEh7edSc2@Cg zPktOVJ2z#%?8D z66EU+^Tj#*)Q^R~{TQQ&EGyS!SKBugfM=0Ddx&v$)qS+NF%o~mOTNmTxU*Z8>B0NP zoixUQ8sGKORW3Hop1*)Ewh^ocO^QHHPXhA9TDB~QK5+k~X5Nlvzpo*HEn8zN3#MTO z>;+?f>&jwjEL*isrrBMNRp2FW+^Tiirlh%Sg)!6e>{e%3qM+djVGHLhoWn(rE279N z6=Lc!;9%*SsL2$Ci|2}YkSV)(_L&6ejJPXPwcqhVxCDXykjJ$_S8;Wr+7Z2Ut+xZ{ zn$B!z8GG*8-VRA0)=v7+v^_2gX-_&=Xz&Q?}O=K!NN^(6tkCDWFJTXniG9kcU-Q&MzV*nC`cF>1(D z1o90JZe7e5AvqfEXS;Wmon>yo7}fm5QN>D~B}WqtUgl9MJ|cjN;0oR+id*hLOn=Po zur=dbOYP^LYIm`#X213FRRK}kig5wLxqQ?Dcu8r^+?ZKzo{R37JI4%VxtAG9;G1LF zjaFi=57+N~_8V?%7EAU^HCBd;yl$MRj%45?#)tieH#XXjm7wCd-YE85BY7y2$0d)s zCoNLU9Y8smECZJYk@poZ!JBQ}+lr$v;p>RAjC7eM6YrYlp`qcU?&cP+JN|9LB}2b? zYiyxhHKESErK_i~#)KTicJnf0z5uWn*Jp-x(IpowKll74*|v+9T(bDW>_tnKUAQQI zfpQU^m2F$QWS}#9kvz-3BswQ+a=1H!R+-P{ccG%sXgYs4C7bQ$EnYkZ*;`%RS(!g8 z3xBRJZ4uvRz0{mVZ*8Hmf(j3G_9I}jAx0hKT_j3^QSOEV z9<-x@F6N4AWp|J$VoS- za?IH!8cvtsIx098C}WQuW(Pp1j*tCR@Ct6DFX3XGq$GO1N*S`{hff<+svjaUz7i(L4L4R)t-W&)&umYWt5*Fm8wRv2u zR^VfD=AEW|U#wK)GQ0+G5mrRYOXvT;#;$F*ksF47Q`7c6PTBxQv8~Z8(8qyek1t!_ zYR4Pr?|TkOaU@D(?9*<>a}g-M~dCy z$lyAWD&(*Ietz1(XHOn~!qU2a*mU>L9%qfz_&r13kNpQW&_Dc&+VCj8e&}Y;PuJ~E z45MDbPvYq@t1z7Ay4=9Q60q2~i->R`~5rpN54C~|5eVbpl+U7Ui|XIljnBKCrw2lWB**Z zKgNgd4fUA@2^0=!Z{;{UVq&^+x1F$syh2tVX@|_iK!!k8QhIo2)P>GWOf5v`t4|^D z#X%s0hG(wUtJ?yQgXTd#>EFuzf*)w=Q0o@jm}FcZ!K?vlV;$x+Uvnd;yoZPUu`$~I zVvjfbZ#pdJreSh%)fo7_LE&6C#+cFB`M8)Ym#}ab`jq;L={n1mIEV<8qCPSPQ7X$E zCEZUXK3Y56%q31YKwpo^Dm^~b=thz?&^uUY?05ZZ0nI+kku04??VgE`i&w!_Zi(|N*E2`g0*MUtS#A1;+p@Vv zv`AZWM;kuh#~JGk-7J@ zPaRwiqd#z)kbKL!sHZ;>4s*Q|e^!r(7YXm#NV#eov?^JbX`4@k8(h42+%nZDMkLr? z--%BYbe={FKTK1_{o!X=1MWw4r7u8}y&^F&;ppxKYV}1Lp5T>Yu#zLM$p1!`Raa35 zea|1B>u4fN5e2SE0dCs!^f4PAhvnWYper5$_%G4@H}ES2(-DTXyD1bAIWARodHFvm zLi}<(zXEISdbRZm&|7Ut3Xo!Bqt$us-v>h~recvuK${b8aP!gEj$%XbRhmZ0(gD&- zNp#@Cofx#p|W)x-Sy}{cG9)NhZ80t2lH8Vlblp&Z` zBseJg29ISb5=6^mt%4qB>sp)bVU*5MSYkmVuteGw2=0*M;h>o?8$Rq;_m~hfF zd+Lz-+$o)|%;}}MLf#;cHcI(8h{^Fmq3|Dj57bI1Zq9Gp%|BKWp$DxyAQ&4_gN*Wx zMeZs&-4b0!k+@u$0bkATF{FF95kj>f1LQ&xb}y0YqbkYF1Jp zxd^wQ+hQO`hpn}`2~^!KCvNi1DA*aWiF$PNZVF0U6lA$diPe@m`J746FDLm*=hX-* z&R0p{L@XYx*>}w@CNVJZ2_dWF7-ST__jRalB7{W&=eV_mwTVh5AhIFYj!i4~1@S-0 z>2r-|TZn{UcbICi+|$eJ_3d3!G@yifH?;!dNJ2b)TH*@W@_rsmkREZgObGHN(&!dc zO`E|&C#ArOq7;{4oYJ?gb041yQn%ST@CKC}co|C|5xKbliE`P!2DF zjYYs%B#FeSawCAnOx_Qzuyie_F(m+hk{)EO?8SzzV8}Gp*ip~)31?x|uqI9k3sNA` zBl!`zZ>2}jP4%##z(;aJxY)a-jmK>@_Bn86RK75hyRDPK;ei11XP*-(G(VY5hZ{=- z7AS?hOAuO8L$B7r)h$=2*An;=VhFq4FJ=Ds?Zm|hqnFY*70Z>xa)22d1#TVF$q5S& zzwYL5+VCWhl0spw341Paz*4gGq33FYwL4gUk~FeLAPtIo^~-nD$>jgKo3Ucz*DH3S zA#wXh|H%qup61|M7`T8H$3`+4nZ}V+wt5^5KJzdb=o)WAjfDC7q5-Kh-0k%{Y9W58 zB@Ha|U?3`hNB-e~1KKl5z*G2!!~2pMZQ-A_e)V|eeUfPq=vQ1uO;=fUAI(FT9&jPckj_hjM+&c|BI;=n(yj9=l_y1% zMRqfr+rkN{jV{)gOcd`(6BIOXwjdW-q%6$KzTC_~$mgtScrb0J9T?})Grd5X>E#gQ zk1d=GQjkZ~_n{k?-oFuRjza*H4QA!8%sapbGuc4_E7%|@Mt~;sUpD+EK9x0@;$iIy zig%8uCQ{NA+2cWUJ*nIH&V~rC93%5kG64uF)`AKs0l0K(IRF3v literal 0 HcmV?d00001 diff --git a/wafo/source/rind2007/ssobolmod.mod b/wafo/source/rind2007/ssobolmod.mod new file mode 100755 index 0000000..74f1fc3 --- /dev/null +++ b/wafo/source/rind2007/ssobolmod.mod @@ -0,0 +1,68 @@ +GFORTRAN module version '0' created from intmodule.f on Wed Aug 05 05:35:50 2009 +MD5:90a0ef8cf611f77589e8916df0e211a8 -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () +() () () () () () () () () () () () () () ()) + +() + +(('initsobol' 'ssobolmod' 2) ('sobnied' 'ssobolmod' 3) ('sobolseq' +'ssobolmod' 4)) + +() + +() + +(2 'initsobol' 'ssobolmod' 'initsobol' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +5 0 (6 7 8 9 10 11) () 0 () () () 0 0) +3 'sobnied' 'ssobolmod' 'sobnied' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC) (UNKNOWN 0 0 0 UNKNOWN ()) +12 0 (13 14 15 16 17 18 19 20 21) () 0 () () () 0 0) +4 'sobolseq' 'ssobolmod' 'sobolseq' 1 ((PROCEDURE UNKNOWN-INTENT +MODULE-PROC DECL UNKNOWN SUBROUTINE GENERIC ALWAYS_EXPLICIT) (UNKNOWN 0 +0 0 UNKNOWN ()) 22 0 (23 24) () 0 () () () 0 0) +6 'inform' '' 'inform' 5 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +7 'taus' '' 'taus' 5 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +8 'ndim' '' 'ndim' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +9 'atmost' '' 'atmost' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +10 'numds' '' 'numds' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +11 'iflag' '' 'iflag' 5 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +23 'quasi' '' 'quasi' 22 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DIMENSION DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT +(INTEGER 4 0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +24 'inform' '' 'inform' 22 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +13 'ndim' '' 'ndim' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) +(INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +14 'minvls' '' 'minvls' 12 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +15 'maxvls' '' 'maxvls' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +16 'functn' '' 'functn' 12 ((PROCEDURE UNKNOWN-INTENT UNKNOWN-PROC BODY +UNKNOWN DUMMY FUNCTION ALWAYS_EXPLICIT) (REAL 8 0 0 REAL ()) 25 0 (26 27) +() 16 () () () 0 0) +17 'abseps' '' 'abseps' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +18 'releps' '' 'releps' 12 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +19 'abserr' '' 'abserr' 12 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +20 'finest' '' 'finest' 12 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +21 'inform' '' 'inform' 12 ((VARIABLE OUT UNKNOWN-PROC UNKNOWN UNKNOWN +DUMMY) (INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +26 'n' '' 'n' 25 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +27 'z' '' 'z' 25 ((VARIABLE IN UNKNOWN-PROC UNKNOWN UNKNOWN DIMENSION +DUMMY) (REAL 8 0 0 REAL ()) 0 0 () (1 ASSUMED_SHAPE (CONSTANT (INTEGER 4 +0 0 INTEGER ()) 0 '1') ()) 0 () () () 0 0) +) + +('initsobol' 0 2 'sobnied' 0 3 'sobolseq' 0 4) diff --git a/wafo/source/rind2007/swapmod.f b/wafo/source/rind2007/swapmod.f new file mode 100755 index 0000000..ba38b0c --- /dev/null +++ b/wafo/source/rind2007/swapmod.f @@ -0,0 +1,27 @@ + MODULE SWAPMOD + INTERFACE SWAP + MODULE PROCEDURE SWAP_R, SWAP_I, SWAP_C + END INTERFACE + CONTAINS + + SUBROUTINE SWAP_R(A,B) + IMPLICIT NONE + DOUBLE PRECISION, INTENT (INOUT) :: A, B + DOUBLE PRECISION :: TEMP + TEMP = A; A = B; B = TEMP + END SUBROUTINE SWAP_R + + SUBROUTINE SWAP_I(A,B) + IMPLICIT NONE + INTEGER, INTENT (INOUT) :: A, B + INTEGER :: TEMP + TEMP = A ; A = B ; B = TEMP + END SUBROUTINE SWAP_I + + SUBROUTINE SWAP_C(A,B) + IMPLICIT NONE + CHARACTER, INTENT (INOUT) :: A, B + CHARACTER :: TEMP + TEMP = A ; A = B ; B = TEMP + END SUBROUTINE SWAP_C + END MODULE SWAPMOD \ No newline at end of file diff --git a/wafo/source/rind2007/swapmod.mod b/wafo/source/rind2007/swapmod.mod new file mode 100755 index 0000000..39fae1a --- /dev/null +++ b/wafo/source/rind2007/swapmod.mod @@ -0,0 +1,42 @@ +GFORTRAN module version '0' created from swapmod.f on Wed Aug 05 05:35:52 2009 +MD5:ef4929a633bcda1f578d77241251f8bb -- If you edit this, you'll get what you deserve. + +(() () () () () () () () () () () () () () () () () () () () () () () () +() () ()) + +() + +(('swap' 'swapmod' 2 3 4)) + +() + +() + +(2 'swap_c' 'swapmod' 'swap_c' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 5 0 (6 7) () 0 () () +() 0 0) +3 'swap_i' 'swapmod' 'swap_i' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 8 0 (9 10) () 0 () () +() 0 0) +4 'swap_r' 'swapmod' 'swap_r' 1 ((PROCEDURE UNKNOWN-INTENT MODULE-PROC +DECL UNKNOWN SUBROUTINE) (UNKNOWN 0 0 0 UNKNOWN ()) 11 0 (12 13) () 0 () +() () 0 0) +14 'swapmod' 'swapmod' 'swapmod' 1 ((MODULE UNKNOWN-INTENT UNKNOWN-PROC +UNKNOWN UNKNOWN) (UNKNOWN 0 0 0 UNKNOWN ()) 0 0 () () 0 () () () 0 0) +10 'b' '' 'b' 8 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +6 'a' '' 'a' 5 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +CHARACTER 1 0 0 CHARACTER ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1'))) +0 0 () () 0 () () () 0 0) +7 'b' '' 'b' 5 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +CHARACTER 1 0 0 CHARACTER ((CONSTANT (INTEGER 4 0 0 INTEGER ()) 0 '1'))) +0 0 () () 0 () () () 0 0) +12 'a' '' 'a' 11 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +13 'b' '' 'b' 11 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +REAL 8 0 0 REAL ()) 0 0 () () 0 () () () 0 0) +9 'a' '' 'a' 8 ((VARIABLE INOUT UNKNOWN-PROC UNKNOWN UNKNOWN DUMMY) ( +INTEGER 4 0 0 INTEGER ()) 0 0 () () 0 () () () 0 0) +) + +('swap_c' 0 2 'swap_i' 0 3 'swap_r' 0 4 'swapmod' 0 14) diff --git a/wafo/source/rind2007/test_fimod.dsp b/wafo/source/rind2007/test_fimod.dsp new file mode 100755 index 0000000..0c93666 --- /dev/null +++ b/wafo/source/rind2007/test_fimod.dsp @@ -0,0 +1,103 @@ +# Microsoft Developer Studio Project File - Name="test_fimod" - Package Owner=<4> +# Microsoft Developer Studio Generated Build File, Format Version 6.00 +# ** DO NOT EDIT ** + +# TARGTYPE "Win32 (x86) Console Application" 0x0103 + +CFG=test_fimod - Win32 Debug +!MESSAGE This is not a valid makefile. To build this project using NMAKE, +!MESSAGE use the Export Makefile command and run +!MESSAGE +!MESSAGE NMAKE /f "test_fimod.mak". +!MESSAGE +!MESSAGE You can specify a configuration when running NMAKE +!MESSAGE by defining the macro CFG on the command line. For example: +!MESSAGE +!MESSAGE NMAKE /f "test_fimod.mak" CFG="test_fimod - Win32 Debug" +!MESSAGE +!MESSAGE Possible choices for configuration are: +!MESSAGE +!MESSAGE "test_fimod - Win32 Release" (based on "Win32 (x86) Console Application") +!MESSAGE "test_fimod - Win32 Debug" (based on "Win32 (x86) Console Application") +!MESSAGE + +# Begin Project +# PROP AllowPerConfigDependencies 0 +# PROP Scc_ProjName "" +# PROP Scc_LocalPath "" +CPP=cl.exe +F90=df.exe +RSC=rc.exe + +!IF "$(CFG)" == "test_fimod - Win32 Release" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 0 +# PROP BASE Output_Dir "Release" +# PROP BASE Intermediate_Dir "Release" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 0 +# PROP Output_Dir "Release" +# PROP Intermediate_Dir "Release" +# PROP Target_Dir "" +# ADD BASE F90 /compile_only /nologo /warn:nofileopt +# ADD F90 /compile_only /nologo /warn:nofileopt +# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /c +# ADD BASE RSC /l 0x414 /d "NDEBUG" +# ADD RSC /l 0x414 /d "NDEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 +# ADD LINK32 kernel32.lib /nologo /subsystem:console /machine:I386 + +!ELSEIF "$(CFG)" == "test_fimod - Win32 Debug" + +# PROP BASE Use_MFC 0 +# PROP BASE Use_Debug_Libraries 1 +# PROP BASE Output_Dir "Debug" +# PROP BASE Intermediate_Dir "Debug" +# PROP BASE Target_Dir "" +# PROP Use_MFC 0 +# PROP Use_Debug_Libraries 1 +# PROP Output_Dir "Debug" +# PROP Intermediate_Dir "Debug" +# PROP Target_Dir "" +# ADD BASE F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD F90 /check:bounds /compile_only /debug:full /nologo /traceback /warn:argument_checking /warn:nofileopt +# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" /YX /FD /GZ /c +# ADD BASE RSC /l 0x414 /d "_DEBUG" +# ADD RSC /l 0x414 /d "_DEBUG" +BSC32=bscmake.exe +# ADD BASE BSC32 /nologo +# ADD BSC32 /nologo +LINK32=link.exe +# ADD BASE LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept +# ADD LINK32 kernel32.lib /nologo /subsystem:console /debug /machine:I386 /pdbtype:sept + +!ENDIF + +# Begin Target + +# Name "test_fimod - Win32 Release" +# Name "test_fimod - Win32 Debug" +# Begin Source File + +SOURCE=.\fimod.f +# End Source File +# Begin Source File + +SOURCE=.\test_fimod.f +DEP_F90_TEST_=\ + ".\FIMOD.mod"\ + +NODEP_F90_TEST_=\ + ".\ERFCOREMOD.mod"\ + +# End Source File +# End Target +# End Project diff --git a/wafo/source/rind2007/test_fimod.dsw b/wafo/source/rind2007/test_fimod.dsw new file mode 100755 index 0000000..349f8b4 --- /dev/null +++ b/wafo/source/rind2007/test_fimod.dsw @@ -0,0 +1,29 @@ +Microsoft Developer Studio Workspace File, Format Version 6.00 +# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE! + +############################################################################### + +Project: "test_fimod"=.\test_fimod.dsp - Package Owner=<4> + +Package=<5> +{{{ +}}} + +Package=<4> +{{{ +}}} + +############################################################################### + +Global: + +Package=<5> +{{{ +}}} + +Package=<3> +{{{ +}}} + +############################################################################### + diff --git a/wafo/source/rind2007/test_fimod.exe b/wafo/source/rind2007/test_fimod.exe new file mode 100755 index 0000000000000000000000000000000000000000..65adab4eb0232b17a9cde0e772740ea8927410f4 GIT binary patch literal 618156 zcmd3P4SZD9nfD}_;GmHkHP&cpN!zgvEo#zYo2;NwGMXy1u@X!xanlylw9=YaCmMGV zLTAS2b{NR^#g=xl#mer|t?sg2RJ0Zoh$OhyMzA`O1cIW@I9Q`~A)syE|NlAX-nsJ? zpmq26^3$B}=j%MrbDnd~oqHF2rQ22Da=G02e`3Pr+KQC_YUJ%}TZN_8MTwA98 z_9I*K=KuC13tPW=TUpz!w|wK)uYSAi>tFrOcW&{QeeI^QTid@=_Ra5<)qe51vTxtA zy*6H^75-(tMXm0_wfHTm#g9o z3@FC`8&D>7%p*&>^YA}Y`Pc1{Lf6`TZ5&!$#6O(*%zvG(nw|^4so;rhAS2hQ=yy0BUPaGEv(@-@gja!nq)$s; zweW9E{zaA5QvAHZBKnc%Y3cZj^Dp|$#nSKWp95Dt+BYKoaF%|vKPUZOhW@x*Q(Ueq zk!&xNy5t|g`)s8Yo5*!N`cdc}q$&TPJN8*gf82#~XG+<8<+{KjZ@=4He@2ZfHnlp>6*%OMo&RqxSFHHoU9O1l zoqpdtq`|E97T@Q({|Z-st=H`?p69|C7ZTJLMSSB(Jh9cE%X8h=hRRS+`_-{-l)`7b zF~ls6?E%EV!Le8vKx22ag(E%p5fU=)`vjKT8~e&x`7U!u>}GT^r+Z^7AlUGSmVxH` z1roZ3=M|giIMYJL;o*4|tUEikuAX&ysEgk+F)<SUnd19hF zvgPCCvcYP{bXx7v)ON_LB<%Bq!NJ^raJhQ!xMXew$*tG?nqw#(0s;!Uo!I|{f&|9% zj9>v;Lp?_5Ur}4x6X+|sp=rC@HFqtB`oBE)hfF>=_x~bkKahB6E;PM|^!j~sKg7D< zI^Yt1>=Fgne_N=>zZu9_8M)mxF}M|+P9%P&`KjC+{}#%Q(Wi0rpDq@v{MUh^;CI-; z?PWu^9v@$fI^x%C=<1g4_&g0wcvWa){|;z^Hhz9;tKj+vyY-aRR*}zbXbtU^(MIr9 zNILf82e3?`=S2Jk3O@Cp%ugw(a&5lC75f&15bC+s|4s6D7HT-(O{o0RmmroiSnE-m z+B0PyWOLu42d}^Ye+2-{B!HP3z(wr(Sq)&i1z;+=am2*nt{qyQvVJChu9D%F?o@hS zBr~ArBLsJ~2KQT33Oxj;=-9PG0eGF`R~}jiVN#>&-7t!vw-rTmt#>Js5mg#GFtXm; zsmhWRb^!Q`@%^KR`wES{~Tc46qgT_C0d#jvUkuk{i-8h)4|&mtKPeGyJ`*lio;ZwY3%D7itRffgQPkzo^OO!!A#Sn;P#pe zz3$kSPs43-)V^IZCVn%z0+*V-4WJ>*?A@a1RDCw3iJG+#br8w%M14xSs0T0&Nl^>@ z3{iKfK3deek3-a_OeX5hB2-((Tb(kt#TEP=oUSc{9>pJAd>xjCkwPgSg=&c=Xf52B zQd0UR`q!vL#lBiGhDJvKYffdJYhQkhq0oe)LQU9U_Wnj_$k{8Jy_f%-k-||l4Q~+@Q983BIS@<|3v}?U zq=-aPg)t2K3vJT9qShwUO@#`vX1rf2bo4?|p|TVeI>^deZ&|7eQFzKnv|po% zcl`(0JTOuyX|K#90JU=N{*cAxEOQs@z+3P3)p zCmVJ^Nsttc6c%G(237uZXca&H^@EL%y*2#i3X@h5|D|(S(soxNoXHeCfe+iZE2T+o zmzMk83qbuii^vfCFI))S|8Cr;^3xVteeyLQOR zT!n?$(+VAn_{Jnm^m!N}+&w-q5%!IR8{RQ}qh`aw5#OkDz|xEX4U-RO%NXFzHUOcF zP}SP+8-_UTm3r(l(>Gu?JZ;ASz8Cmo`1N%ouh7R{}-Ig`J zYx~G3!vME&j|u~(4r0afj6~Il5#PYjfwUP8jO8&9g+{vqcMX>sYrM!!_=Y1u3*jt9 z5IWMdIqcgUZrEbUrw7!KiYi47=492hzPR`cQGn+AYo z_@;r8rZJ&oq_CdA4~+Q6(s;*!a^0m-kxueP3Y#?_V*rFv7}_*oX$U7H{vE`kVP8+U zq0jVfHXF8#_%>^m>A^AWTTyCspEeQ^R}7lHD-V!IYjrBC z3GMQqYL|MT%{8!$+W0e!K_osofQ7FDPO3uDVqr=N@&1H;g6h&~lbh0E7#)P1u&;!3 zNEOV=ng4GUoDRS_IlbfvMe%61$z1HMi66De?8-)_|L+_Uv-osK-Tzr>XT%omp>w%l zCY7}tu=ed5I>rDYjCdft&^sM+EQ1`qaURsjC^h2Ua_0!>*kW&4yhZh)m3;6A5G3j} zA?rj68PjhBKTKby6l8 zY|jGXGW=f-+g|LgQ)Fxf4%&JT)3}5jg#*YB`@I!d!RK5326exv-4B)|jEw4*n6#j- z4u&4v*SqiNF!DCOvbb8q#C#~hOk@49Hr6q_)gim~I^CL6a1V)G1U{v2sY;5*V-NrS z$!?q+Lw2rTQFf4N6}e5y%)@%L7przi0}`o14gV?`aVDTv+;NPey38Wl!MMLdR7yV3m?$4GRJl+?l_--Q>!EC( za6=IiH;QFuiP!9n{Q;{aIysF|Iklro;mgGCS}kEL_BIQ6+BM=XjiOPbXe0{2Zq_(j z6^`!%hk&Vx-*3-!PN%j+5R4SIIkd$o_>b8HM8&Z@hqW`svD74Lq>E~PD5Y7Ek(hxF zbRkg$v)QOQKK;cF9_(LtKQrZRwS1X8WRJkdt=D%rFWBPFz z@z{dV;crJ}g;ashpxN*o)>93+F}$GET3rx!G3E;|m~Pb|LXjF`2Nz9)1dKC|h;NXb zG~={pq^ZYRA9XB)MbS49#qt{Vm5r404=eV)74~^qEaBeT=;G0ZF8JGpZsBogG*eH@ zG*aGR?NlonX#19x$u;v46K9qnxD8{W`QPxNz=kEWuA^fsDS+0A{`JyB%>7;1$6*9|Z6)>{TAN=2sENtPP1ot_Upa0Qlm=bvV*`4zG}13~SG`^gQe zV=IO=(;0x5X5>30Un}`GAn$M>FGsn}Duds0^e4XrXXAx!i&iwUAux)~Yx~ETHMjS^ zJ|p7Je|8+bZJOyss6+LNMtwLwf&M%oujfit>um*ljp)SfQX}ZBN4a$fK}89c1B9?x zerIQx&7$j89vUo?V9`3N@1CmMFA~Vps%^tPAkV>(SoVMgH0a%o!KmMY1n1*VBcUvj z9ne|P9N08Frnw@$Y5xIyJkGv3;OoYkAWAs-W(g+GBvLnl96{HG*Y=TuaIjD42|lgJ zdRkRVZ}gGASC0grBP)&~J423^KCSPQb_H4?Avz+#O+1l^DAJLTkVvCNQlx$&67=%c zxA&!jyg`jEa`i-Ht(W+E4-`a-PPM9UWi_GpzFLs?HfE!Uc7yXAbH3MYmUv^w-edGQ zTw$>;cti*pc%(KHk5nHQ&kr;nYc4T~DRY@pzZD!~jvq$?Mu-6O+lPcxUA zi{Ypy-iA;r*39W*HU~QmeFzN{P`0{+EmdCy^oGbWY3n6px7ols(82{Dp_q{VR5*(` z%VHEF8qGo)jp~ifb76&Ame-4##_RrsgAs)q43lrnk?bvDNaZl3Sx!S**+&by;l?JO z&n>zx(AVjZo?dDg%)y-KKe>aVFKLE-(wD%gdD(_Puv(PR(+a=s6$TL@gDWmD;tA8^yTHaPn9xLU0wIs|yZYb{yQCMb^KgiE3xalFz`HYvhJ zJ-X1%V5uM`gscKhb)ds)hI%t3UU4gW)*(j7zQ!8C$Dusv(hS#(E@^&(^Yv4^Lvn-g zu~I~62mm91ZDR4cdxgYg;&2oHM^Iy)=Iq7)=+;K~*zdPNkiBwX!da+8jd=7hsr7r8 z09Xe`x%Gl}_Sv$&VYve%sQ2Ik-}K`)?BO*)woF#J8WrwBH!}7(fkT~IF#?CM=;~0T zj@pLfIGoIl4KEl|865CsW8Hs~3`5V6!bXnUMfy2PZEQlUl0IqH)WMS#c=4ZZfFifB5tr0Z)uz#i zZ!6`-ZI$eexS#HV@I`0gVmQ1aE^gE+PLT2Te@6_zsvQDZ#G7BT9rpX|Lh!cmR*HjOlG zP|YBU%|cWuHqPL>Sf@q8H6U1236)w3^MopebNJgEAcL@PQ@G&))7Nb_tR3;G`M#df z!qY-yQMjgv2i1u}?x|cR!rmg-2c~-9NYwPLW#o|BV>_$R<8gD(k-b=hp@S+k!0G?c zE^%R@%ixs1FMq|EnLE?(0mgvSIyUEVK5X)S3NPHgHZr?1?Asb%Hs%h`9y2c{x8~g0 z_#1Igm1dZ5vYE`AbLa5yKweMYKxPk$$(&nD0JF~v`yRI-w{J4H`u;2$}m)xdr zgW0gr=^W$&sE`xG9S#{BIsnx!BrlTlZO(A~ezhgc7Y_ckKEk1U7Jrr@nkr=inuh>f_Zp$|Mt-#Jp)A^s4DJ@G9#qu18Bq9r+B z=#-7NS~wB16FdD*EE4zf#E9;Oi0N*~7gD#=(Dnhra73Ri#eEKRttm5=1LHhkB-q$L zb`WDLFh<~Xfs_aZ5fG9l%fEeF5V9lrdkztq#UBt-AGK;sf{{`f^dU{(BjaE z@I9ayj<6#UejO!^0^v(GDH_2}I1r@|S{F|0Mvye%VoQrbIb{#U?j-6PB;(#15ETx| z-+OA2H+^yq_5^kuHjPi2+ow}!7?V-*`4q_dX0~de2D9> z3WCI(%hUqymId7Hy}Pmo;mR1DSC=?1xrGM7IITdI*RUsela3V>y)p0Xuh-tmZr<$` zcU{=GF5Ix*6dN+dhDId6vX5cG4LAO+?12y^lt7%aJR|nMQbI^MV;n~>*(6A5OiCr3 zj!4kU60&Y&*$qxRHgp=M4ksG%Td`$UP$d530&-HMOQZp34|mrM*(uv~oItmK2oK4j zA=|?Ie{e}3Wq2duvE%+iF(N`d;k*9zUT&JfA`@~8A(7L6^Jq@Hkg=%6(v+22{|b?X z7GyS>uSyEpBQsItz;%VfRR${9=x8ZN3r_FKMCO0S6Wv=e5ia%IB~FmA($0>*hH9Bv zjGKk6)hu-8aaaeoRO`J_^w)b&IRO=!ulEi}wQMBhVA|S3TF2Y6ZA>0nV{?i9zKlt3 zD1oO<^DUbZl$)`G--K>>6az;^%-GJ%d4l^jt6Ptp5XcB-LG&=r>hSy)$MPx{Xh)Gn ze_|g}{q3yk-<;Y%hK`8}_R)e03J9E+97I)0J-ed*5E6?b$Acd+IE5)rKkmBE+1OzE#Hf?2@FK`lNNb72CL3}y0grcoG==px3C^4y%yCN4Pj8+XD2kF;}(98f(@e9@~p!DAeKL1YF4TgPkZscKS>h?VM_~ z1E+evFr^(mYoNIGn64U}PYI6Q5R{lBk7I1v;5^4_zryN(8RHo^53_Onfqa$S$LazY zbvCy-Veq6?;lA1)h(|g>s@-7K0~?QCI>-)=ooHt%{hR=(EZG3Gr2$|+ORQ_RuY73& zWgHxnqR?(U3Wks`{sTE?5WgcX2i&#_EiijA1nZy;9JfNhXyKMO5PvpEVtAQ`4s;f+ zpnM(b(6e=T2^`;gbt|O~Nr;0-l^fVY-B$se?oY^UKtibSadr=uQPQpKFS8y+W(W&3 zsP^!t=(@sGlLQfsBZXUG5*fj$zle<#HwJ6l4T^WxHcjuBbxL@I2U>{R(KVa!(aW~y z8h9(~@Jnu`&^Su+`Cw8N8mnN}bKuM5{!HwoE_v6H%~1H@I3k<9f2FP1nv_(r90p?P zs%;;cHs*wp)j(2U-~@Xz8%r}4+dgwmjAd*V4(L&esW<^-o37lp68s^|MBRBcVwx6X znq;lVv}N2Ht?XlHcZ0-vfkPcKlZf%~>mj)gEch1Gh7p@bmKvPT@R{F>(VB9)_z!rZ z*XcY(QLTF!4&MbNYULWwZ~t_1*_Ry8#d^39;2781!}H-5)N^da8taHq>XRU(7rj6$ z912_|pJ2oj=up$GP*^VFxY%+kY9N-6axEBHJ{$RGV~|m;Qx$mIS+^HmG%+|Y4=nZ8 z=3_xGs7pL+tqR9x;BGH(5Nq+wK}zLXp$UZ4%QA{^1_Eye@Fk{R_r8?}gQuNhB_Ixv z>R1KSg_gL$21rk(fyzw*2d8%j;EMl+O#@~mn;yv{I@l=iIbBQch>ny?(LoXgml<@! zo2#A6Nd(=*0FNX|;Xqc0xjZMfliO<8`B-FfH}%_@UZIO69ZD$EJ5__!=#6?G-PptchjH#+G!*t|6kSD&uL z2Q)ka(eOZo7`EoM1Kw;I)Yh8kHkAF)OztS!V5yF60LhMJLvIBCMVyVWmURbU1S`-( zgY5uV09ObYQ)<_--rFOz=__w-f-n3jW9qum4H~+Zz1NG7z#I3!6kGLr$r@|!Ly10h ztw_`y>>bU|!})N5>Kcfh#tZ%pm@7CSxN-uuNx@oweJ0*fbkW<2$)VndLj_!m=_MGz zsrSPhg}-Da!2$UJtarfo0v_3gm*5~S>Jr8XuLRctX)HSskOWmP&U@c@iMSyJZDX8h-A4A|vjAZJX_F{7<-D3%fC8NtQ!s6164 zQ>i*ap@fGn@}Qp1l32ErWy`eq5WM|7);hF6228BzRc^$GH)@xuPsr7FeWY+4VzS#@ z|EXoRnZtDyyG3FX?8-?$&Jxw?tb%3qQQGdo$ZW1kei4QHclLt*(a<1Qcm|yF9}`MD z300%os8FqvlK@nb3^22ST?&hZINBIQQrIff%M$u+QvGyy3Jaq|W`(6PN{cZ@Ko%o8 zNnWpdi6rrRHSp**BkjK<-Y{@dO5@csxiO@15BV$Ok_JL8S9t`-8Qh>7S%gV zNGGZ)+W}&79|dm+QaaHO{-`dyS`8gRD`Gy#jeFx%T7>i{#*0*$5q%Q3xd8*g0V^>| ztCX;9E283_$|S?$m|S9@TG_KRIR{BE+etkC|4X?syOeJ`EK+V1DL0>ll>Y_;PhQHz zkRs*WYr)yPM_0XZ9IwoBy$sg=I*Xg~-)K405&6+NPaG%t`5KP)w1;2s#d9kzm^>4j z{4OzG zk9$i=RhHoq_oXtB^rsCxhXX?#h`Wb-%LKq@^Tsu98E`z@&%I3$97+)7SwKvJ|3?@+ z9O58#D;^I*4%v7(t_T*8jC(5teWnB_A)$mMJjj8X1Z-+uk&;WpGT$TaL1=hWcf|eK zNJ&*nU03)X>Pw{Ltgy_9?%J8zRc=vnOb1=Yb4FcA@GFjPPTY^)BHAi|v6@4?NmV^M z*`pmjh96`PMPA~ju&8syorjR!>@A2;%@u#tm+W(f>%U|kQhaconJ$3vI z(_ch{Aw)C+Qk=hE%bdcd4RXv%U09c?i;;$Pkf0~hu)z}Kwl^)J65oIr3uMkxCM=a# zC)LWtPjt%GT?grx!*j$xChjAbyZNPa%6P{UzaWdE_heyxYq~XT2DO&*!>P4#0+gNL zxh$>ae5eju-a{S!k3Uctb?9a{^N9j9Z)Wok&^-JgoAoqeInA)ZL0kRRgdfD3jXp!U++$vgr^=;DA7xx#Y+kE=#ez4ytoUHKp))*xyE|O6 z-CX-*J%O)!l8&|}G1~9jst9>p5z<49{k}dS#J3JV6YuwJVI6)+Pbx~(xs9SiYD!g& zrb4Qw>#B4rHYcf|`vnzqEGlA(iZMmSJ8+et;t)#_F?9Tdzu$Kdy(jv8gQ{;-^&M7y zpHqDWu5X~<_cZ(B8E9xQ-t0Ai1PjF|^%)Pxlw)@qoBjgzu!7w}^7o$E$eXh8n)i5- zSBtP5TuN}XR2`_L1vC9BI0|}W5E}FKI2%UdcG>Q<0;dhAubO_Dnz9aiGBQ;#I$WT7xj8hk# zCql$@8eya^54hM*a1F52T45kkat>okRxnhPCs;@Qos3^wnSR zxDu=qpLDU>dJ9%L+Z>~|7vNeS5b&@(bccsqvyqk{twLIily_W3<}&z7{fmxsty?C1sUsa>Ehw1Nx%u2-0oRTQ;L{3SE=9KGfI;T$^5l%OtNjTlgKG`|t6DHX>9gzBTPI)MP zVx0aJ_6WNmy^2%Pp*bb;bWTSP3#VjII2~l4?3@mx$>LP}Iu{D1w&u=)EwV&R!rP7l zJoJST&MsMeP3kPd>&Tb}o}H9(5hHyIy(Mt{#rS}@bLQeC899*QhS774QXc}Y&lQeLqoisF%26Y!F z3keSoGl}`j{Q`*LENWt8vXjJ6DV)R%@E8igCTI|1#*)M^Frex?jm9!$n}4-7C&M7i zkef&6bpsfYg~@omscqBt`^CHI?{8DxnZwJCw_g*<9ouP#Qj zGsq{0EJq!-L-$o)IS$VVGp4^U3{GwbV1-0!2IV|nF-YX;3@#WG)#J^ts9qWSWao4i znzC_PA@%8t?`+hb*i`=IMh5sKN^?p&kmXboc{-NS~hDhz9b^o;`<{Weg(Z`!LriNT!!vX;h~Lg7$Z*) zpp0}BkOmQkjLqQ|6fYyly zfwsyk<{$Jf<3P2u2edYnfXUCwRdPCjLCq*l#VB;+A%S@eb*-q=fR?H;OE_k&?7ab@ zk(EL3VkBw`ASrr8&M&;IH1p&`qvQ#p<^@rT=T%HPU#DaJ#2v1UW7m4$K@$J-TmsFp zrAN4O4t}DM+x5w*z-AI_ZH{t=GUKGagny6rA91}YsxT9I&Mkj$gctUUo zvcm0|1n$-of=g*-%3;$aa5r#-J{qxY5pv9Bd?$R)0WG17={y+UqA1hB1ps#&D00rw zDzC8kctX~JIw(MeUdFeaBojvLKTB^b?Mo{AB|i1r|wfwS~P z)_SR8$jTMxEphRaB*pTRr~M6@$0yyS97gx!n{<`i(F;C_?Buln3UtoY`*PN1+u)Qr zVdn%|>g;tq3W~E*;K@Y+zk%Xd9dTu7$Dxz!3?_wJ0CE7$pjnYiWa+Fa24rbn6rZI! z1Fwm7HAC)BoYY1~>k}K2}AxpNkVo+R`Vk`ni z>|Tk{QjE9pp^)5)!7%r^6Vi)Tpvj!-W+Knw>KoB^e0{6W3b$?&xHTN{Kjb<|Gp5gS zox)zyFHi>7^=6QQStlvhtiN|L zni)22LcgqG(`GbafD17Le@Tx}p2iX z7zf&6Qx_}op$1mkVN(Z6>0whR>NKFB8ncXJ?69egl|e5bDajT#NwcyIBEM)fWO7#p7B%h6HJHkgAtlOu13^%DlFB3 zP^7*WBJTkInS01(sD(Up#Ru=t9SH;rG&BI9A|1$b<3Z%ertBeKe@P6WlTG3Q((ZoL zXF0Ml*o`5X46a4(U(aB!)mL8v1=Y7g6oaHgGf3p=3{EA3*b$&fR{nMDlbzFzXv)Uv zCaF)~Lq337aGEQQd4Db*f?g5@o;a1HLvu>x>733uAe@px;dC?mWasp8G+CV5ajTll zlRUt+H95;wUg|7b>!Q7fBoT0aSr2fp830Pq+mK-NJ zb{A{*II{;C^XHm9+X_iUE-U;kR$9y#S+M5oVs>XpQigRgYe-U#26SSeFbi2M^Ijw% zM294$tX$=t&PqEZ@t~A7Bq>INKwIT4;lQA`hy(4A#KlUS&9c%CNyeae=^@ED>NKGD zsFpZnL6QtfVywgo2$F0ei8QN_L{O@bM0i0+a_MuJ>)av9>{*B*F2Wz4D1lPVY3d1B z8yZL;`uLH>48tm`?O_<4jPVtMIYL0hbw=z=wd)Dvgj4GscG z=JsoVwb^#sJ!pW2=7vY2GU08`1#i>w;BCkXZ(S~U-N%F1l@(rRE_fYiaQMosYh;>V zcR0EXCulEWYO%z!$W@X;g|2b)Pr*|etu+c&oFS^;Za$obA0$B4b5JBE$X^%A^w`^f zIgFsI!_=Q3MVuB*5vMMVBF-@>sv$)%Fi<4n-B@nYY`nRJWmB(DEz-~Yw6HkCnlx%b z8fjD)lJ-x}3u&ZCNE=Th%@JqVc+;fDxzbXzyQCecs0%|m!ol{6sMQf0)d^WSVgrG4 z!mbG`0%5p{AU)Os_DALQ1$|ZR{z6FTdKH3_n{@${Iekp+TUnk{7XK{8A3I z!_Q`vfN2RU?eMc6rS$N#5p^2SVl`$V$Ji%gb*x0-g(O?}Da|TY5|ql#2`>=T6T2{R zxx>$gK7wdvGyY5-;hX|XL8Q|)6&_OJnxi0Ct`XZXc2b=mATQS3qbKJ+^O30@GM91B zxRspea8{cMcd`Iz(+MHokQMQ|Nf38)gyphM#sKVnIZ20|ShhLeI_Y)_)K9EK9k-V$S4V9iI<`y-qy_IQ#l4nPI8}Y-|1w?BE>wyNw>m9f{qQW2`t4hY0wOlXfk}{x071S zWe~)qI_Kj1_>QaWv#mgbKwIUV&4GA;h68P9TgJ+@UN0+cXIqR?y0a}sodz^rjVa+6+u3?p8T1w* zNzo>)KGLkzM^Gwz5ndp)FZE3-w7ThVw)603a%cM%1Vm?hK=zK}r`%f0 zcolmS2b~GRa1y~~Ogj@YK;}0LOllVwKq!;y;AX(dk76PBg|!oQt#4 zcA`;~vO3XGG-%&bdZ&JUXGQv6YW7M-H8sMP6K*cjp^eU+lg*vWzhRL zl59>?nw1k3l*)+;FA&=4PfRMbf^%H1?)aZRpiUuiTBliMT&azPN0DeCg~-+-i#C^> zn9e~VDZUC-5>LRh&DkhpL>ZE-0^}=sHPl(i+EBeHB*j>&N}_6nIvr&|^&m+0FMEg_*_3Pa`*%S0>%A3hirNkr;uc2uoWLA3Wn-{L>eCsl zMJ-T?(q=hhe7`Q2Nt9-gbZ7>NJe|Sq+rc2t?9n7ge0A)TozsPA%EoD<)TeX07_}!h zm9{VjFoajAboryn;qc)(PC)>lL}^Y*hvt;X(>aay3a4aHIBjO1?3^w|lf|ihSgoAl zNnWF$IB(WUWnbWt2rS20uhEOZ3(h~uf)$XQ)HQk=>>dnei74rFL@1eU&1g&4U04EV zE%QvEF&BpVNifvOAlW8m3q36@pne<#R;^yS^#lHtL{mSIZB<$88l5sgi+zp0l}p!p zZyVWBKT>jp9vSnP7HB4Eu;$SYGs%>`Mi<_b*XWcHf)D!|{j;C|VJ0cCW_6Nl^kqV5 z<~4e!&4AP222p!r<~WF+5?Y_MxB;I;QQXLq4rJ+Bi5%G!&-(doBJM6WWw*k$XgUEa zwCQCgIS;1e8a-q7a(WnR_G~L85xK1JZY<20FS20GmmL*u#@uF&3b&#`!Y_OdkMocB zY$Jh?Mu`c>H>_OceSnpARJabMtU=8NGzc_23&?>%?|Kfjqrz@h;%CXMw4=gKl+vTZ zF4Sp2tJIhv$JkL}2P-kZNU}wR(ySsFL8*_TI0zBUku8|(+~=5Y6d~}4;m>gbk5@q; zA`tc3Dq4oT{|C&f`OWEzVkA0aV?9dZa=5xE+Kvx*Fe}`FN#OQy#9zLtx=>5&?>(xc;+!Ny>%FF6O+x?QLI2o2cPnq0~MepiLs2v zc6nsev9lJ5Bp;5Y*kDp_YQ{W}0uv%BmI=ur<#FfK!|#|_y+8nI&8Yw`bk0mCh)7O7DYaOy+d3)hwkK`In5>?(6%E>xE+t$%G=l`< z(w?-Dm8-mqS!sLHI+U_{(t0##2e^;}ac9GUwkNG&0}UcaHYLy) zeMr3BW;P{_+R4b{XtEgm>%x7T>*K~wmd~^U4H5y<$Qtf{2rR%$k_F347V-Si@(joG zf1RRhS;GAe>S7Kb(Pk^CeP;uN862LtYal=!2n*h1AWZt4f$#;B#|y=2Q|ZvYo)eo& zn+s-={@fWe+Fee5DoI4Hsr=G^PHMom*Xw~uvUWYMNh z6^l?viqEA=3@7q<{^v#+BgQ~?RsoKqK|_5HSsUs*C?v%gQzg+ULOp~sphl6TpDK=` zP6IrMtPOA&1pthp0ssb4Qm2Z~NiN%|BKyD@@>G%dk>&L;8D!-3^wAa2U!L7 zpaNTg3IR)r0_<#*0k#ZDx;)EKryRG5P^#{q0Qv&oeLeYoUt zS%LVZpAxDNp@b@ILa5U=O(xXDDc$<}*6Ii0u#R^WgmA8VI<=(#@psN$4_vPz&Dplr2$(f|Jiu) z9b5iMT1xS~YIirjtst-B3mmGl05ky_o`}Wu<$nNooNu|zBqVTGsmp&RuBp?=3EVZ^ zWds*M=-~y^)7s)SQk~8d-XMxl87l3IQB5_G_ku`4GA-Mx6XA1aAsa83^_Z zm@z88dP}DDVZbjsppAta-bsbFkegfzWi5N zKLg-D$C?FEWBDRc{CZ3TNAZI;*qhhzZFKhM1@L11;-8=$FLDXK~h-f$k#jajgEY?Bj0M}%N5KvmI1TFss|yRj(nFR z-|fh+bL2NT@|z?tU#Y4{T&-|ymO3y9QSN(7zUx-Fm32DbW7p#y^r{Ym!B>w8d)SL# zgsV{VlJx_Mr{Wd(OXO4c6%efTO{gjeb`Hwcr@i>=;_0BLG-;P=rsX^Lx##&(jX7gx z{AW5e05;ZeDDi2l22MoPl*#Ck!T~a}i=Q%CT8inkzH`t7m8BKpjiF}4L1?QcuG~_? z$%!+9-xU)hBUwfBnec)l2TjV*i{VMObKHVrs|`BLHhKH8V~DN}+{Gb3NFAd6WSkVx z(h3J{7ERnprm!gVWeTtis5Ji;W&TfNGH-%ZiebT@)cK;3Qj!4kT>vjE@?!ri=3A%5 zEg#K^k2H-!r1C)_(5CP^KC5a3`-Jw<;RU1kb`Z%wFwzu*AHk=56f=cmOnZkHplUps zb#1Y0J;`iwGFzI=mgy`=0g!T*U~U!34pqr)O)^`T%+@EfjaF8FDjC6Fag|Zh*PlE2JiIx+0C>z2S~IB2BIRu&Wia1L z>M<)y#BD6m^H@B=@g%cd$!vEryDpjCkj!q9tjKpWvjDm^+1iuL4kWXK$!s*49ksGa z`TmzheKXr^>SHVc(U>&?3X;sa9zv^98&5J@oXnOcvt^Q1+QBTfBiUM&%+@5cb;)df zGTUfnZR!)2g?C<2WBSI-hIeQXS-$V%feG{N=3{DwG%ZCEf5a~)<6FlFDBPn!(eIYP zBKE6apf0razb7V|SsQvBIRskB9YpTiQWrxGcj>6xjGU{Oxh=@y`8rob>KHjy{mNOo z8YRmyjXi;P9HT$pag4wHp$G66dgu!LhPgsx4L`epU@M|}0oDw@Gxgqbv_?X8_{*RL zuVq#_ce3AF^oxYpj}&a?5eZqXSHdXR$_P!<#HiP9|KSs=9Z`{t4yKIuq>L6GQbsrG z(ResnMt?75^i#ia;wI0G50kjh!{}t`alG`iKh%Mjm@4jlb8ajot^^lBLdn$LDlKXYqD!V8XjX?`3Lful3n4>B1k* z&Bm8r`a@B?7*`2<7&$Da5VjlY`Xi9iAMzk~uG9^pRhiUt$f*fn9Vg(Ge=u1Cc(j~1->aOBGqmIas8n8A?__F6l#49Vq*k*(5iykNx{k@|`L;5~~`&8nKj z>;0itSRJ>q&@bdz-5>HJC-V_ns_Qi3P&3N?p(XgsfBm6)<`rM%n&=>MGlbU;o|5h;}r_)Ry^T6Z`v(Cf+jE*21%s=xL1it4io0n?OLtR$A!}&ji2#^HQ@8;iwdg%M!yKp_9PxQ(4h;2d%4_$GM2BLD z{GnaX#{6dv?TQX;%JaYdY;1T}`#U4iME=N7Xm>|`(~jue`lDC4lKfvA!P8K4>0oa? zdu5zyV5;i^rc!xFVrDNY%u(~{uqRyOuBW6a2kRf`!S_T0hh~NEDhjuIaAZmH+DFZI z&4JK_(X|>KD-ZMM8UKi!Ie>Ev^H~V=oaz^E|4jI?)YY0`!KoPapbk?hJ&}B2U5{(&ui8Fw-utoKh@k{xi?-yzxMYN$eoIu z%&*9Edbk0?EDkr}2&4qa%moL{=gs|)+=r@%ZvVVFXub$`2P=06`lgFywEk2_@0f2% zV6^?(>bH!$Y4z1n|DI9vEz@^!&zn*)yys;U8=`w+Q={gwaMLhqkF-b47xuh- z^-_ z_`!x~qF>pArGFwX20n6f1RMxw8wngp*-dhb03Rl!|0wrm@iT%UJ5rIRElH1O}!b# zR8wu9zqJCYW@(MP`gwnuD9ztfX_P`TAfbUX}M0TbXua***cx0(;A&t=yaA&OC^P?99rg`W;{~sordGplFp}#TDWcx zEye%u;qNr~#-#i1hAZLc?b}8c;&Z2qz4OiJ`QU8D+=+=dS71Aj89?^+%T|02$wikM zYu-~eD_q8!MX>Lop6Ka|;oydL4WHhObYE}u^j4&C92&SN9}N5BWyYFKD2Db99l#M{ z9LKNd5q)a7a8RY^M|F8rmt(p-rpx0=`Nb=re; z-&0sS3W=S#LF%r3y*qGP%Pz>qzlGTtIxzR!d#BW3iW-M{_+{APw~W<)Bzc8f$@5dg z=lAGzK&OK`jp}q%r!k~BC1VMa9M`GqT~+qzv{n~<8J zo}tm`uITyY=!GM7UJu~^GW=g0d$1FI7ULVXxC!9cXdIe?6vt|{=z`F4-&@$t;vhbN zo}s<`-mTF^&&l2p#|0Ekobj%T2XKF*S*g)!olfg@+NjfJown+<4Jl@hC9vM9(=MHM z>vWw?H|TVePB$Y}B8ZQJn4#FvX#AN!;S2#J&PH3DyDaFJCi{FL`$5ztPEYX&liOPf zObY4;ds~j=mN~}iIn=$LmDq9q?y~n?^J2r>hj#6I+gQWLPN9cS?c2WZKperVWw!St z`@e0rQJC#Ca6K|a*;YWQ66e8cD|deh4=~m5pCuOSiKbcXB{jyH9&&MD?$Qif`7j!k zDeq)XSq;p$hm(tRK&OK`jp}q%r!l13YGBUetVJqTgH)^rsaOqCu^OaeHMV(EF<=QN zY&o~x1xioIaz2lq+HzL^851___cq24(qiDRlmUrfllWpJ8r?NiI15r8ew{9IUp)RO zy8eG)R(nB4OZP}L*1L@S^t(O^UY4If^oMvUTJ{~IpR9oB;S^6n1?+=f`XUk^9V(m+ zj^b~^-pD;nlEqOJVQ;+OEyvnc#@!`g^2FR#hS&_=2Tfi)u;u0w8LK(Z<=W{kfF~}! z!CE2%ho(y(Kdy-9<9Zmc#}50wWwk86LAF* zZ}Ocp-q(^$>3wju}Frw$TEJ;&6 zX)1EkQ~{b6f+h@@(^7b8O^Z2?(wp647WBr7QOZZD3aMKarwH9GE3fgmI`=O1mIeCi zKyyD%C|dgG!A0RO&cyL|imL~IJ@EFwWvc6v?a~*+691-}6Q*=ufxlB+of!}l-?OHt zJ8)k=VmQP=9KGK(ks12yGQBw|@pg>3yjLv-sx3 zRDOfeo4A*wa*ZG<@eT&mxAO$Z0d;IeyczYWmE#lfYfz~~be*{e=Lz92xy|0gJIk;k zo;UrHd8Nxw?|ikm{jBg=;d!N9MfrhwrFnrq5A`ivU=~rC-LWZmV()D=n1>^eLsM|x zaQ!0l838&cvQX@+6mqXJOE|~_LckkL^q;;AWnEN+J-(-UkFn;TQ5U|_Q@z88;BeA4 zGaBkKuk&+J^lfa>( z@U@EL7mPK0a)=!F-_vWZ}yIUA@2k4F`G4&$aOKtkKax zx{I9qYfXOQ7kdAt2)9Q686Ms-y8X4pO7n&I5>RfP@8F~a)GdPp`<=NIlKwsX&vZE7 zvi{49&~3v1g`E)T1rhr9%iTDfIoI5QP5#Se#>2H|y8@&8r$)QnX9TwA1&$T8CnDDt zm}4{FHjl=*zQQ+6m&E|!!vG%Wo3#T#4)^8x4MP1C!4Y!em;Ae_#(c|v9~;W-h9Agz zj`{p`<_@kj*A|%z#=@WXn1j9JGmZ>?WH8WkPW8ZD`Q|{N=fi=~vDk0$0p##qV^EqI z;V-&TWBLvScinkL=&;dsA7UHa7k3_5Vb;0Lx59TFnmS|z-$SiA-76~-v`%h>;Y2Wf zuGj=VcN6HT=sG3PpO>r8Y50&4cJG5YP!U*kzG7a80uMWRPNsC zKC1#!s@~rI-+6m3X*y&CKT2}$8Vg_L!I97E1n?F34uu=W#5k_-7_0f*9Xou{eWaJ6 zn|}%?_bLzXylZe;XLRu%Ye|(v)}>%OiT+T@-W)iRuJP284e$C z&U1UlXMzh>WdsLNv$LQA-QrKOaSPlzrf%ST*AyNOVhJ%qZ&K@0s54f#L5ndCykn@7 z{nz8~p}YBR{EJ8|d!W9Vzgq;2;~C-tPhk8OJR4=)(_=h5XgnMZY%d6Zz9=$%!}`uib7XKMbE=0UCg_l zgNhnB(xZy*H`@ozou@Sn;-Jb1zKE$d9$pX&94PBru-|yNY49WOM&?y?O$qGGn^V1f zYGmH$PWA2Yx^e=YpfAsbeS^k>gL_^-+*{^%^8^k@jaXHDgY7#mX$QQO)UyR1^KB4L zGJT`ex93D-4i@-EXAZL5hjQiamTtsiww^vO;}`4kV>sm^FWZgPFOc~cX7-0B%sV~H z%P9gs&RIQ&uPF5RPYb-6kCWEbJBeX|C;a6io)J8SlJq+r5BnUhDfAeje?nDgV)JfhFgs#qDCLwi>oa_S#( z7@>KXbASa=GD*oXUnLU;o86N#0y7oSH8{WWS?s6&JCa6@e8 zm3b9i9|-Ksk28FP7jvrJ$57Q$*+cqvx~EhGdh)8rVdsAqNby1r!0G9iig3inXP+7l zu55Ns;K7UdE!0=kbQD2i!5^Zu6T^4r#lxbKfG7IcFDKf8j^aP5#j+)^qQvEI313xg z-ZZM!YDWw<;X8ycdqb=^TJp}|f^0l;RY~C0F>|(B)2Dq&7E#~u^0}3JWxr!=bAK2| zuvmt6gP^c)SS_XDn?^0En#ZINp(KurV+khBP2jb^$2n0OE7==$@ za}D>s%_V&E7X|zF`|`m0E>5=Gs0Kozs@;5ov zi;AiTjny|IOVdJ&vAR*!!;P)J1V}MjH3Tn1LuhaNHQ`0L&LZXQHJz_cF+!g}ec(Hu zyl!hHpABl9PWLsi9h{0@=)k+f*jeZh=aQWS{t~rokvs9AITqW3NPzm8I5!)=vESn& z6NKyVsAvU_YgL#5vC}=wP=LXVx*@n?0$IWXdI~SLRsh&*&x+R|;59!30al0GcvU(U zn*}=ZzEc!>!{2QtFzr_JLNr4QJKl`9E2cgLsA!K}f`<5P08;UsOhIs$U5;;7ILg=^ z^u$hMf4AMD_1HM?}J8bpvuA%qXj7V((g^LL=$GNP=k78zLzGyD; zB!1D-eZ48ppg!CvZj~oDz}1Yvc?tI4t>8zVDh3y`@pCGENS&Jw?u)paVYwXX9PZYT zpQX3H#v?t9%Fa97=Qe_mLQJsVI$kszPaw#z>`9ceCA2bG!wx99a5J!d<*TkvNFUoS zfaLajKGM?2ygVc&DApmxQYZ%u#aO556XcBtI0~r4CN1_2eAflk&tG}e)d?-x;lIJ$ zj+>!5-q>8uE>1t6gzE_O)k7XT4)@jgzfAOmB=l|F@dW1lR_IMjHygMGsXSb{J5F=# zuPH)&;QBTH#GfU&qXZr+fSwTY%}L0dZvjXkR2Fmad~CE`7hGC{v1bZ=T<$Owtq->q zF{Y#|dB5d91k9u$Q~p0gi=Gj7Kncq*B4{g(<#E=>0b`{ zj8imicyudKWWJ~Z$Y0@;q~Ytdh0ntdii&-~7wmb__KDfKfyAZF&O%6!@@13E&jjY@ z^U3+yCiC+joSz}$k9{2<$|Z*XT9Cvr>HNHnvDlC430jN^3jEn+tokKp$O!UBb(p6% z*ohyS)&U_@i9O({d)P@0%3>EtXQ7^D+EFd+q#XI#+3e&Dzyv$>);v|%b`sU|gc^2` zdHOx(=@mUsv=7?JLZsa9)+42Xlw0$Z%}B1O1Pgxe!j*p(Bk4DS^FTo0&wnyj@j@^> zuc&&bu_l7-;du;uUP5l>m^rTqH=f7L7$@{+2zQbbdf?6U37zAOEuK$tFSg@(m=CbH zw((E=F^HJvcQd)NCb&YG-v>Ftaz0Tn^ZN$o_YBl2VnP@mxVb1VNz2!vT(t1SH4cOr zugq1c!_~k?edh^HJt;^r$X}qfn;eF_{}Ox?jGQAhkpsUy@O>c}#rv%^7eC+I^U z7nqo4+YGLl^IXGE>XcYYVrA8j`35sb9*B5^QM?F zgaa{0I8fv-mvBJw3rj^jfEZmuf+9yqP}KfX_3w-|#{kU2k4eRGCkUPh?l!uv0x~?? zWQ4wfOyDKNs4GaT(g_ttEjR?`R7Lm-6(2Ols#t010K&25mtkX*@2}P!sR>tj^nN%6 z+61$9YA|XQfbZ7olp~&>Yn3zLyuRc+MI>&y5EJ7!1|NuE7Z7iJj)_dGkEx(8_Dv z5-Y`^m9a4#?pVGFw9yF5SHg`{`RBOFsY}}WZx7Vs8qDKu>6Wh$A z0GGDgMm3CUR=flcfwpvO?q~ka{5ubZmL1-SXnum>pEBFXRTJ1X&%>VJbyV8@)e`%~ z*E6N17u?G|kk++ssFC?7p=qVL0EER#F)aQNYk^QS+IRw17VmO&WH=prGmeg{h!^Li z6?yS8nv#Z8#tzT0!_6F~shtle1*Hhz;D$WPVD;xm@E`=v=&rmF4(uv=m7T7N_}_td zOGEE0O1y9cCPp{b{%mBi_bRFzhIZlj~p;=K!T8P6^`X& z-mh`5Xao$U#m8VY{2laKc8Bk!c_FRR=^T*H$1Z1~3vsldtwws* zqD0Ti<+lQ@TsD!dGakmquLsvvH@9@dumj`gvpFG1Y1%#ql|*xdtM0>@B2xVh+qh}3%4dFj$eDUWs! zus=!=f%*8{sm4nR-i;%so?va+VesuXg6rs^&WhYz6uySX>$Ac)cubt%&&Q1$@8}Y- zN3i3-(D=1!11~$?zw$SdD_SWTGl5(&rmER=bN{piMPBE%BK06$inJ&e z#VH8M{wT;EDd4!s&7Qq;ypZIAw^b8wWYzt0YWstlvJC=XQu?@4}H-cXP8-b&k>kee#AJGt*&zXR8^T*!6 z_jAd?BXBq(FX?)_z|9kR1V5yZ;2iR3K})w0yb5rrb)2_aOlUsG-(ijKyc9Fvj3EvY zK$Re<_~+Tj;=6JeU{E96UVz%#!7lR=3noByTWlx%Cc&0r2qnfZIm<`^tR!{}r{67j zUepLhtyZL#$cE7>^2Gf0A&-7*YrUT^LN8&4AgaH2Bfj;yj4mHQR=%M?{tG&qmvn)+=TdAF?MCqXP*upfP3b>O z&kvrlA$v)=pg4b50`zk}i{E-N>#zfy_W39BOJK*! zDEUv}D%hC!o|;s2pi`?i#i?-@O5GBWev4&4?d>$^gfb)8JFF5&>Ym3x5K~prvP{Eop|8 zZ$OQn#Euo7>eEJOJsOjqN`R@^{yDlNeF^_6*OZV8MBxa>3P#cEp#fx_p5?< z0TSa8aPKs%_$L9{c!DzN;PW#KuDz~YIGU?%B-L!Ek_0VKG?^~I68lE}jD608q6NpC-|KMw{v5$JVSKXu0&TZ_Tc4l91Z<|t3q z$a*0UXBUTgBkjjiHGey!_uaxvZgj8s0)8Mc9(Z|1?|5P0-Ml~)N3g|_ML4~@yQF&i zZRhsq3xe(L>cKnyICCrzJG(cQA6a;JX=tzi)JMyJaOTjSZ@m}jD>lb?NXe6{m6yUs zV9L9g?o9kt@be}|Jt1|Yz@Puqk}!5y6YZbur!#W}fa2LZ4qbAi$Bf?fv3{VZ%fyWm z=rP9veI+;CxPzs9tAOKVmT|rERp5!>48N|(+!01^zF)D(8*zsah|}A9Vs|V;23JA* zVz11FbC_40_-Wt}qhTIKRpG%F>mX`2o(QOg8v=|{#DsIOIjX_q0d-KG5`pv(aKRf@ z;lXl@4!dS<&%=o`9<8XwlLV+YR=*6o0}%7YMzCCE7bCXiH7#lv=gVQd|0CwJfjBnA zTraWGG=_E=!D8nBw&dAF;N?8T%j5$7ddZa_eU2AC-Fy-#tIj=q#lYu|m0kzG zj$0r;ya=MEW9N)yHg93hN0r$-^I7g{LA;#h8LNH^fe798#awB&v4}>Hg79f=4?O66 zZ`ty55ZTW_PVgV}aX(@{iDp#OO*Ue~@C^(r6IObc;j^izEd%EAz=0WiUjEqP@A2zq zGWvGhyP<0{9^1>~G#epaX)#vYg3`8n5&()5U*PjxjnJuS=si7fXAwk3Vk`Gj1{HI_ zOcZ)sgI;r>!?k#-qAt)ke+LFPS03)aikk20&$r+KNU2ZaX_;TFtE`JK@RCySEW@A)yzw3U0j4fCQxUP>9xv-9F3bUSmr+nUiFYf~6zgRb2GAoj`gl zDu6vNQQ%!|K~#rtC^pr$+t_w);N6Ri)mNVly5B{>e>pPdQ0Aq+Eua#mt0f`R>4ku>wyUJcs~k-e7lP*Z(8#-{YgMuKj;JlT08$a0VSQ zXq2eY62VGZszk7cgkVIl+@e&$a?Vj}du+8bgRzAWoCJCEW-#7b>rt!K_SlvlX^V>Y zgdhR2%Ee2#X{y-HIJAOTu9keCuf5;z$$)x3=bzu>$3yde&%Ug^_S$Q&wf5R;?|10w z04vA||3b-OpMa}+#3EcB@wzHQ$wwOG)Gv1#D=b-SPjRc z&LOW-rDw2Iio$7Fjzo_p&#xlQ(u$h&!>^-|YqjGY%sUjtlnq-LZ%3!Fr1 z`Wa*4tSDVc2AuywsV1eftn>vQz`B8lo;T_lKYSfa3XEnVKMvP~nnv?V&s0P1iUiFM zWi{y$QkXM9tvp~IjkQ}<81KrHFQe&pK1>@wz_Mr&FI2u)i+lJd3OwNm$t~DuuJbQg zML*()!wvb*YnoHY;JayxV!q?63*v|S?6}wPWy3k!3wP9aSAip?)C<21M+q$Jru%sM zaYrZO_}Xvq@mt&NP-y96^Z{&JZ6j*6tTV77ejq2b^dHC5pH=bqL(vm=G?})x7rxa> zOCDIFSwhXrL9cwDm!D`VEuhLFc(*PhP#s!FU zT-u9QZ(bqCrh(;XVL48t$0K4MR<;OlXFy6z-q6!y0;8vgns!obbbYLMY8x+3TMr+H zo}L_NJTyF-ZrWrg06dgq%bEEW zx^uqR@bINx`B3wBD3jpJp28JDT8W@=7_KwX_~LL)?>OJ#W6d|hHa%Lvfw7% zv!SIwf;YXifuTDu9e|j&EXu6tq8u%mhvn?%R=4oJk|R}A9|ZwIFSI`Q4GNX5qF5_0 z+Y4V2UnlJNz$IERMZF1TxH;H2e&8FShrLN#0L~%}oXy^D+6d`^U{FX*48dul1hwv~SX6RCkNk-#}!j1x=Y&`VRW4*paKcWm}$mX%>&BDxaQ z8_YId{6HT%Ffw$9ZiE27kt@(Y0Ffn9kUNqYG^v&`VdQ8ZsV>yPio6f=WTn>*_y|N6 zhraafK>98Zf7>J6`|Ls4Zu=VR>FU7fq0vF3&xOsV(^5|K#L!Ef`oVindZ7PCr!!r? zDnKvjz#MsZMMJ{fEICqhpqcTf3+ton#19XT{xwnk1~U6VLFkSNTFO`!PF%JjQP-nG zXR8Zpo&^%R+|A`L7ODjK$yeH1@bFu(7DgM--ycV2DCe@-t@ z2-`5!^dT$Y{aaJ-nkcnU)7RinvL-3(H+o-Uq>0bjYcYa)796L?8zS9_D~dwR4HRVs z5{_Tk9cnf_&I)1GExR$BxYA9llFeQHa*=eQ=Ba{;1jUw{hL{ma5i{mtC8k~zWBYM~ zgB6&Txlbom)rMN}2H7Q!kO?_aY>*lz5@g7hh0~cSfKXDIm3w}j9@dvYrib@ahP6sz zX>zu-6*9(ns_Y%XFN6E-8INKdF0xt!wmWb-^f${k#i3 zv^pwb%gk(gjMwDDm-5?~tCTU-6wDg%&~tQ*!HmOtae@_^6l|m_Mtw1~0V=>l()tkxMl7at?~D{X1mXZCx$~1*)yT0O%#o<u9feWhJs`}JNZbUPXc8nlu{-AW#u1!p-j0?3c>1EAM>BxCgBs|rb9 zMmjJ?1JV>>Uk&2c4kwk*LMU?;t3H*DWG@T>H5$Bv$t!As>#4U&Q@4=1v|@(e+c9Z# ztHSZNLP7cb5;GzQ1XNH*n!O`fYC8RT*{c+;&9jO=xeyKl$5t?+pdM|92Rj@0Z^lV+ zrcFPSp0YFNvB(Tuw{L_NHJ~;Ed(dgMV5!ayW&0-Z$xx!7*r}e@(2L*G0vi$|3KGML zoZS`wXvlSv6>Iss79CB5QA6Ldwz4&4ujn0DU=0K|EI1e1!)T|SZ}2i)E5+Z#px1sK z;9cZx?a^fMoHjAV&$8NKmkyfmz+egP}9lMCAMy2 zS?O*8yw}cOj|^vCz*?$RcbAj5C4VlecSq{Iu7^Xn7Y0$AI!N672KEoUK7$e&QF%)) z?aXDALw9Q1+@GzC_UET5n#IT+JG+}@C8W*}VyNzTSD?I;&ddlkeZ3zNOxR-bR1NlWfxV)m1u9}uCmqX9hWYEkcP*}?=PN}|dfr{QkN8TmwL*8;TC0O7u9#i`o6?JmojbX!s1sM187$ z)DHPYa3SljN$%7z+sbVqqB5~_2;>|!CLCH4grcA|jev@Jc6-zUU)|;*+s(?O5v9p@ z*c}!Fy}^^xGo2n^;dz+vx zvHZ*&`@Vj9j7ytW>!;;Mhj}o8pQ(!&Gv6L<>X5-?HOYPrpy9@|#!&3{4Gt~6yAOb@#wu?`j$G?r9%)_|jig?q4E}a^+QNu@ zS}&?fxMO^kupsnmn2V5fzK`(Kb{M}7+vdizA#+?peuXEkYp*X3+!<4!^|&ll>z z%Z^U3fG*yAIJB^hy0ks3kEboi0D4Ql>Von1bz9aA>W=@7E(8Xxi~l8z`7Pk_HoZxX z?8sk4QNaSqSy0r7j;tw56Iu*yd7)H6QC{1SG8zay(`3?CaQ_2emm_z}GV|ERx038H zRoQ0yxt(+Q-t^~tzRXX-U=4qYSPJRFd>`RK-|-QLNw++F%h`5Ef%TBU1x$R;P`c_t zWY}lv8k`+7Ga@hbYdFgz)~~_3^V~)e(Nc8FI*(*a$w{sC`Nf+OOyc8NfTiA&v=diY zUMt(|uU{Y6G-H50gUugWTP$_8Cfw7YiQ$|VdU4uA5u);jcPH}yg>_PyUxK&cVi&i zc%Q<-vf26{rXHZAw;(giI|g9| zAoTB;g<$Gp0;mWZCGIm3JOP8qlYV#3Lrc&?Xvsu{gj${ejL{Q->8P}eh)T1hNad-% zov$8#@UmGRGXkn(6kRG!JSDe0v1%E_B;WE6%4+gjF23Ufad8eAK$6O0Naq5kkk-xO z*?P+uO1bz8DCDh0jj?peaPU3Q3;d1A-5eC!){zMca{=eeNccb%Qx_3cMvq=o7XPd# zHMP&iyv^nO26H&oq&Pe9;2Z)CM^jOLhnmVE8nf(Zuh)oUyhA7fI;Ox1pcM z0-hg`zP3`93#y3L_`DB=`B>=ju6Tu#IjMH|m(n+~fpmk%$DE+^SeG3ZqEuaGxCZ6H z(&g0PW-I1@BACaZm8L`ThL2$1EHH}Ag6KdLKXRfW6+aZ7|B-Qf56ema1%pFX)y~n* zi^Q}Oj)0YI0%bY3bXWm=r5O~ub2qF*m60?7x;K)RlL%Iky^^<7Ke*0wIDHga@~Vy9 zYbD1c3F0=|)|I!vbNljENbOA-kT%yLcw|WFU~>HM_wWKk{`lb^hMM1nlM+1+xJx|; z+b=O8q;6j(8!~HE3rA}LppIl<8SkQJRG7n??0iyC{NFfoNT~TR6A~$8mc!Of@0cCF zpk`R|Pb_c%V!-;Ai3QK0ztqdrl@@M|cZK7v1H74+x|?_}n%D^f&z;C0gd?ls7h20! zrB;~kWNI{T%gol9RD#a3=%=VYt;ygVr+1vG6*DkZoBq>Eq9*_f>7`S=~NOTR`%k1jHv7`}`$w5tO|tg&iT9f)bRodF{mlxjy)cz*D(Kj5J| z&lJIDzy<7~_^F9tHI-garJ&8e7IVyVzuu`OzZEvP=3tzZ4l;6)mN8$+QDbWRJ1jR- z&x-$T+I~fy8mwxR^8isrmQYR2)bM(BILhO=Zz5^|C71A!+(6T}wZdm788jRy~&UG%r!(5^DY# zJnVHL3rVdsL(Mk<SRvIL%r+T5Nc08uSP!Cgkedmh}{y>%8ij z9*UjVP`-A7f`gEUy4+*;#piw_2ndR?*IwUw)^=b|-rm29$M*arf42qM$sy8fd;i`1 zdbh11q${{c+TQqA6&Trabg1q>IKUAv9VU!K>yQJ(*>_TwF+`XYxqowaRU zkw9ns$Uq9urK`h4`CHFY^E-n7lvt8JR)%Qs@SJ`ezV&~pYtXT5ZD`TiKm)=^vLY&| zqfh%;i3FmA07OeilU}5BCXd8ypU}d4vFR8T{n9@ohNlLuEZ^q$CWn^E_6-&4D;Bw% zr^Zar;lk8(Z-&=B?8ta)9s{m%fZfb+FpJg=;^&gmM@R+72^^CEYZlV{7!fU=r%NeD zu+qF8UZWApB?M+F%PY-?Cj0?9*31}==(Cq?2>U(^B-M`oiD+^g422lD z2J8anG=4A}ONd-pdc59ILae`*-a&;et@_p3KdjCYCa#_l3Rb@*KO%i#?Cs8V3F4AE z^NUDBj8ZhWl}#^`Ri5E70h%)m^OKc8U+Wh`K(LyWOd z-8i&PEHPx8?r_;id-BRt%&eGBsiLw21Y`iI!+H*rSD$W(I@-jR)HXzDZM4I-vKFN` zS?IMM+XX^P<8-ZD=Nm?wNImuNHLaLA3YiG@eU3@XUK*}*f<=16z63-B-s0~_l!Att ziV=EUq$lW3_tCu`<-)rV6jgN9(MaAE4`amjIGbM!6^F^E6|S_6KZMzExNdC;;#h!{Ytc&!`gDJ@R)!rY8^oZ^s0GNbRdY&K=)Ke z3zg#FS~|@ur5eZUUGxw=d0$gweh)#;%Uq)&{Qg#Fhmtfz4i3Q{8%UeaRz`)I-xP{sQybS*BdY^y9MJG*wj9*!j$E-4@a=L9E@ry@ z9u1Rx0WP8&69AJ<2Z$sh0>xC%(Gf&dmoyc#QT;cnKJQDaFR|4hwABOV1S8BS5KIS6 z_D59xn_p60EG@~wFb~CD>Ir|(i&zGk0`2hjv{bhY5%IvJFm^&qxb6LXOocKX>JFz~ zAhX3275OVg0Hc)}LOAcl@4@m`CHP7#KeX^G6avK(GILBE6+cS#gQw9?sTd>%n-!#a z`jjcY=mE$gZNX)jpGae8P2bNcZ(qBi#HU#8*eMQ~kf<8&{Q2D!Geh!wQNY0Ct4TZl zV%$qVo)NoB0zT!SXswD7hg(iC?aDGZ1~@RWCAh{gWnh|lcMRN6(^utHrIX+G)E<}(I z2q7CVWaVvSAT^G(7U!*WP>qD1uIWzHb&sxy4Z`~+fXjT?>IJj~D5fRQ1K za)nE(n^mhnFfgjdB=89%U&>@fdvG?&lk%aZH%T@fIxh6n_SByUUCq?8BS~kMUPK8{ z7Z7iJ6ZmaZ>hPcdIH3!wxoKS&{(1p7u6XcjOntz~OcztOq*Pxfyu z<48F)mC-O-xTkVh^<3X#);KzAKGGy^rgV>XR-6^wRDyj5YZZl-%vJ)HM_C6QE0G;S zc!NisMIUMiJbc9}z(h`H-X_N(-|5%b)MTh@By-tXneDc8XzAq;2tn%o4!lBLQ$KYI z;n^@}35)xy;aZ~P0oU1IMwXcfo|83xC&^+eIx`ThGTc?O4vQOaP>=38IYlFggL?8}8?P=tPC5+th!LoMAr-TUr zYN9~J`cUG#lrJO31{|iDVk%*RlvE<6kLYNEscnZzwGNbcpPnkCM>_&|O2rO425Bm0 zF@ywLHbbO~C7uw$-z+=2Gl5c{o0 zct^mpC+yU=W&Ms1Fe|n_eCxmSQ9--1ZO4tWV+;1_D~U643*N3kSiJvy^*8x7Dwoi zV~(?E92sNl{A0d#g&A9xK4uvMK^^Ap4D_Wo&F_2;s>k|q!nGK~Lnlud9V2GA2ZGsQ zER}R#OIB}EEsO_qcLXC`ECZ)V3YLM3{{-V@X*XyXsTHe9eVZIFo=sxpl|VM@8I27p ze^K}qY>Ds)YP^Ns4oNrka-x1Xy_sRK*P0Qw_$6yZSsJ<~-Z`KlV%hgOxUjS%xKzgB zSLw8ens39l0DfiaW?sk`%WY(8>)&8=V2rf~K#0-#!T_DwrPj_6y9o^!-#*Z0q*~-Q z%UD#Y*_xZxtcE$AfetF)*1WI5EaNjHLX($M`PeSMifq-0EPd1xu(%?6o+xb8B?0Ri z)%b0Q|K9Exz(;L3v!MWlO&taemTnb#|0`m}y(OZ^)or{YSuO?@1_hYgnvMO^P=|6T zwsv6XX=`Sw>I(IyyCS-R7ER0CId~QOY@y~)U|=BqQ+rQyaxyG41!9_lsjEd+4Kx1B zh7&F0JRWN5!m*r~RGjLNXSy;1L0YLFU7X&L?PBCUTE=_0v$=c|3;8I1rZxCNMmlfA zPINXf{KHW)Vz`lUT_HP%?_KCpmG0>Kkg*aUB%U~X5GeF?UK2bii9&~K19Ps!TQw|) z1vn{~mggo^RCbL9GFmE!bs>zd!7KoMX{?~soLFPknclH^ZhO{<{)i@%x1B*EFWntE z=TI&+gVz?-WHWm@%^MHO^-ix;H5u1;z{!NKUckGU%!aBPU(QT`bH^-0xhmcrm~+h+ zA~mD5Aa%W0_t*la2N9hVFc-)Q>10?KE5pP1WvFDY-h)mcw`I=rmrNH@OATA@bG0dn2IR*-oUC{NZX*2P4m>LG5$Jb?5SPEqvc5 zz0vbW$X~3RAhjfpGC~}>5&Dl%h7N0t+*u? zNnhIHtO~T}ox~nTt#i_x3pvn8uG~qrxPr{V9DYa2wm5jWb|;^NN4eN`{V0mh?r-=l z)~f@@6=YdG%;_{Pit=qe@5H|X3ZKbG>K3C~zAX_gJtuwKQO&liO(&JzqHXVD+uo-1 zqnZ1DMNh-FL=|!_X{70&2x@xm=0v{=T?=ScR{%p(`Bk}L#;5Av(YA)Fi5aD5r&nFy z^4xM!cYS8cnA@~QHm}ne{LnM&aK~Bbb?u*$5)TMx}EV7P+c=Fb9sb%&l5`( z-nRS09MdZ;B~6=QhW~jFntZgz>m_2M5=KiGa&Sg1`b4r}Ffa_)uY@PTQ0*9htR3%S z+dEBH1J4^(P#ED3XG|}J6m!+-@@||pC#EkAv3{T4%7!StSUe(0Hj9M*z3 z&al$tiL}B3(k-_kWr7n0m`9-A_}K@s9%?>J5XQl}y_Z^<=|W&(iwb z;Gmr7nWpWBLE@<9b+aVRZ!zmqz@?-^jD5iP7BRjhvOG%Z6)ziXZzVV^890iVoMxs6 z_rBBS!1UJ4_*r_*fU>$*>t+n|@=c07yYp1WB2g<@5tY}T?^Y;3zA6%L)4FkjGDw|9 zYBVwJc7?uSxi&lIkKR~zc`_M8~jmBu^fGhD+quI?nI4q5%4Aq<Irf>hc|5h zb+Q2@d(ht`W`^^5rtv{;FQV~aY7%a(1?JKe`WucPJYh~@U=y4F ziK=kL+Bu)fWYPT=P7wnT*PZ1aVDJ7=?|d(-ZNzm6;=0s9|NR`j)2FMS0Pp z#1#Q&i{@MC>0Djsv?@S)Ahw6D+{MJwaYWeBefJ8R0` zj-8PR-iKY9llV3#k^@{O&^s7U1>+y_nYW7E*ohUJZ`tkacBw*5An0Dl_CfpNuLsge z&;KIn$tmhwVGunYRF1*PSt~=q>tB4A*g>0aL%?Ym0$1L z}d-XQl*Ui5oZnwGWqe=cMnp{MA!QMd@~txggZE z^>NU>Kn-q7CwlaiZf7ibv=uGGA-m{L5RZe>XM27l$e4WZWT}IoS0WJIsbbR%Ckbz9 z5K60l@^MoX!zOk)NgI^(b6cCAN&Q@$`Pp*bn4IL3T}Qe*@>N%cSR#0JBKV4`i3M-6 zMNLCG{@46tc(SK328Yo<@SD(p!!u}{YSExl>@**bK&D}XhrXpjr^H*I|DH|(gBC`# zpIP3T+`&}j4ukkb21z$~U(Nu~%X5m&OEllo!Rzd5A1brVpTFF~Uf#+um^17QiDpJo za-qN$KP6x^RLw^Og64bWsD$yl_4q_^qqF`om2+kXou3q>???pS zQZpj_Z}IFn?dcDF`pTA*my7s*U-dFV62qw`G@bGMiNOAxJl+edZv||==+6n*b zo=@Qj0ef~^ADhB_wIiJ49*)EHM%SoRfdSSh>d^;{N@phZjsvJrDs3h7>m63_2UVpaB+tJLE zmEWKtu6fKgo{P_2x8L$?i4fUQwrBH)PO8sF=UZ$@ZBBci06_j({XLqokXD=KUK2)z zm$mB{WYa&X8d@?5f?!6nVL2}7{0of;P4{6asyON#u`^t+5T?|b&h55g$%sUBVT6<+ zIx5mGsfjvHjJ;iHBRG}HMMPGCX@4^8=9X_N<2i`5GFCE!5VUcW89EIWP6kW7;nHox zo!6y}^WyD6w9$xLpF(d9n{yiA0I++|Au2gyyMlIU4!Hc-odq4-mpD;NZ3=L5=2OVmg3x<5=Z^2xJ5DPUHLd{L61?aFZ5 zk^IEmUICrZ?>J`v@%yxl&}(OzOp}p@A}$>b#)W}gfotY}0<1`4#&YePYovywyzIDz z6E`l1kUJvYHJGYJ(SLubglf=o4Q0bFiU?asUr_9`ieh2s1PBlHTD9y6Z~my_m0RE8 zHXf4SlOH0&wx?_xO)q%lb}=bUGrbK_ZT~@l@z#c@W|kSrw{HC?-RjGiY<|QO=l(G4 z{v=$%9jCRBmRn5!<#Z&*UX(LxoEA$F4q&km&4V#%(A>uY8hp-l!lDRWtaw#;qV$Sq zpX6+??R$oFt8B93TlXX`gEYU3B*sN5Fb7^T{Apyu1egLpdMNHf5pW&WW51Nbj_7iX zO~4P2UQL%qc;?$MN@_J%WMUA8??2tzl?4GU1JKU{X0S%#T>Jo3A1bsE`V;`INX%X2 z9AR>4PfpBTa_dSbCX=rex6hC{Dm5&aUeF>Vgdhv;iEBkv?B4R3c8vE$L+OD&e-o7v z>jRHR@V~|WL8-7t2TRQ7Z>Q7Q3(NfpmXp5mHdRi?ORM2=CPh3>{sMiX@sWupDO$<& zsf0P>uZV6!rZ(AYt^ES*kH^M{%j zib>vWJCe&lT17b(hn=YY_Wlq%OiY{xuR|MdG5*12IgDDlMf^n z8y$ms+3WYn*_?jW%QxM1HoMb)8gVvkPHyhP9p9N=ma$*0|8N-mRVk+ivPgPB@l+!c zb3s7{02Z_c)nO_0cU;(%lMNGuY1!5Wl<;(>sLZe*TCaY>AvpoZ(@%plgVR}kwi-S$B)lBk3azT`9>oD}_5vV*eLJ}fw$MbK(aE&2LIfr=wMY#CS}E7WE2m$EoQOEmMR4#e7f9sG>km zCJT#0gBm`7ltoS_Gb49@r_g8jO}fH%p!s5CPYe4@*dGVt2YNRgr}?_^0CSjM^Y_6V z$p%;(wur=ABNZR>66Sw&^rv9$q`9K;#?o;4zVu1h1RlomuF&SLK5Hu8n>~!HrqTiD zReZ-6GPcoO@q;Ca$-&rW)NJ{>IA2kEnlUwwhxEvJXWQ=-P$phMM8j1@;N+J$Lk z4mXT-FRVBay7TW4GqmJE{=y7)}#H{ zK1$t>NcHR^oILi*rpd+(2rc;-AgGnIfXGfyq1KK~1L&~1I_5UU2ayaUdbTKP{< z)8JC;^c6M^THj{|+S3lm?`X{o-}eK~M@~A!uP*7<{owQE9xi%&D>d7c|5hMzQ{Y(s z>EYo})4x%y@!)VkuD5q_Y5WYlzDiyn-J4aq`B%^k=vVS3l4WQStDVP-F6Em$^~n@$=q(_rcwU_j|fcwC#B zs4cwRTf!QEL4Saa4r?nb5^B&$jhJ+9|f1N=9 zYVGs?P7aAf9C5U`nc>v1_zEPP8YD5#V3-h))MQ54^nNHfrM`)MnCHQ#7xpX|}8ymT2XYH6;5nx74x6Eox)Acsq3+6@gz!XnF?O+Pd>McQucFF2YxisF;4I#eDAqpNyxvLQV351APSWMzVLo z6^{9=?h=u^)IZo^RWMQY88=#2eMS@Ff#FVvMvDKn`DUFn=kR9yHP^SWmx_9jW4-Bd z(bE_Aq2}N6Gk%~XbjLOUq5>J`ksBz~~>{Hm3*Ki$D*QCY@G1hGU>*%~a% zco6DS6Dg=YM?Mx9bhN@H zJu-WD&$W&WvXn#6g~@4n$wmF2VUjVwSiU6+kCW0DgWTJwpZp}?+j+tAWF%t zPYWga_t`2Lirh#<7F4`5yV5yOzHR@8zy_@@ZqN=@u^W6K^vv2s;c?EZIt~o1kHQ{o zHZy;bYd{zN0<)H{h`kQ;oB>Gnrj(f7Jvie3BL%?`fSu5^t4`fFDxqC_O|A{{M+ z0{?qp#{-)AwBTTH^wMd4)&l9Dvr^}!7}{&^X@q!#{cxwUt9hq~bepnA5#l!Jbep@P+(Jf$3@<0*Z6LeCTX;ec31b^yIxF?9+Ku3T! ztdzaAU`%H|71l63G2?z+Nm|4yPy`6{B4V^4+L!aWtAdK}`GhbFCTZDj>@_?zRpD6g zjw<7j1H$M1qc|EOb6(v~hj2?yFdmt3VsxPG={kKY? z*O?g(?C+>4ECIYTj}1=a?@i@mp~3Pm|P$JxU-akn5@wC!Gi+Dg8UF_nJG zp9Npo{`qm*=ey78<607tht!Su==)1zLxsdYKw@CoyL^2!@{H{F;O)YrvZDRgPqW+Z zX_qg!(5zZdepgMu>^E(me*44RI@A9c8~F`aI-48k4(u+8u`4hTXHK8RwMS|j50=Ev zzby7?*;cHjpc+Lisz*-U&SbtU$GV+?cOZ@vD>P&=F3Hqh*`8bHuPfV{=2naHP3dj? zk0Iy%^V=_UXBO(~skFbX;d{6l=RW*dNo)qbrvpxBy03d7JItI#id|eA+ly>%kB+hW zzaw~;P^m)Je2Uv3u!YuTdGU?a8dielqmC*0^?ZAyeST|MJ0;U^Lf;KeCx2h{k>P3a zS+MItfa)WrRR!+J9FujL=VBH_>pE&)BSW{EIyLvYRT1~c;mWcDPR()*#-&~4@J+O@ zbc}7brN$RI6PoXJ$CtRb6pz6RTegSa%XM_}DT-EB7@+evxEC#A)6}iIS4ZhaVfM=t z;!q+HoT9!oM`_!wS?)B~^O8QZvw!CS4(XcYZKDG1Zp~|zPR(nhOm_4l801?kANd{E zq3%m2HZV*bkLCo~yj{S1`KG|`0f(HLMyIZ+dDDA8XuR!@o%wG9E&W@Mo?Zv*?xn%_ zi|TbCcD%(97w;_pi>RR|SD8(_M6ePRi5ebzA4oJSMAPAwpZ6vTD-*@8n^0QCg!`6< zn*W`*4sz*QPSvRU3`rjkJ!xwFXKP_udwM04^i5Dtwra)KdPV)6Fq?7fis`f>dbE>l z2P;9B$KcKP5%R{@tMA-*BW)$WZ=ty67ZyEJRB*`Z&cM0cl$ku)FEn3;JS;9GZ;H)G zeV6ne{#XJkpXZNne~v%K!yjus{`eJjn78v@OT_L?pXKxK9i-;Cuu9=VIAzSx@x=;c zHGI-A$LEnw_Zx;s=H08!*1u7MQNFzGZ@F%4d77Y{Xq6f9npGQWRp=l4N> zes2XlV<(`@Z##C(Z^rI2Z+`y|CEDK4)3m3%mk<(u+M-U;_fgg9$h1jx%_W}fqu zqzOXc_j=xThm`{+V$SCePY9?NfmjcJOgxr9Z0M{N0`7$S?yZyvNEENH7^_+TEvjeD zdPC?xg`RBVt`KJYdY?mHH%^Et^}qa54p~8oEDkaL=*)bdMJvf48yHMw{R%bRD`q%$ zzF%Y8VOrZl`X;rH!+7$pv>B-@4d3|sNtS{5WoE=_tJuK#@QoGgocAyq_Wn9_cg@G4 zpS7Jc@#D}-2a%EG6|17>Qif3I_}cEWw-b>QSPh-B_~gdJC9(4^cMhieR9$X=olY>> zUKSn)zJ0Z~f9Jf7A}(7KSY;+$dJT1MegE56@3*n9zWgEN=X3Z-&%al(?h8@65R}db zr7;G&tCR!a^t7gcG&7p?5a4@ z@O9(kpd3pjnHGPv*=0uphn!g0x4Y`FyR3n+n0zuE5bH^tN21{m<xFl@hxJJki5a`2T?*OffMpvQO4cLr90eRZPvMKcq% ze4F^DEo=&Yq;0CYuE5r^BheF411ronT*iJ|Bm2#UW3>G>*R6Ro3v-j4`V9bD$Ri{D zq2B`^|6%S-j3-REFu_RN-IO;zI_!y(*l+^;E_U;tsEl0^@A@o$Ct0hQQ&d=M{Vt2>a=FwC*_7Ld&oE!Sq=JK;3wv?ZX(*rcZUD__F+ll)wH@!4@ zs3c$xYJ74N&9E`c+`OP2i{O@9Oo$k({+#5%*^G(d$K>f75o77pa7LwKr$whf9BmMrFl|c0q`a6sYV%Yi(PI_scp$Bb~BtcR<@qcJEm0U zfKQy7-A>)7GNpEh7X1v6zT_^jQoniMwvn;%iR<{Z^-P5|`jTb?eQs`@9DVe2^64d$ zGi6G2pI8x5Y-{XVt5mLB z<69A*(m%JRfZkav!nYB&6vgt_W%nm+v9ABos_!j=pK0EHQYxm_CtTX?tZ0bycY7_QL~fb$#H7B0yDb?#C9?l@nfM5 zUFLLM(wVsHy&oj8%@_TKQafhu-cduJtrjluq3}~qFvAQf+)w=aDek<& z_y@bSw&EZObU;*Iz}xc92L zbxQp`Upl^TQo@X{MMg(I^>I2`jeB^aGoWXrxhs!Qlt{CBN;eB)yHa1bv!oO=KRF5k z2_7r-ex7~5U+-ty_j2Yh@ezv8phGyq&Q?1H#!QEUYZ%#=+WbvXAcOv;|iZOOV~{;K-_Ou zC4wF9NT-76CT9$;MIvf~(R>P}yD)`s;tLp-NkRfv9pQFh!;JvjLwkG)ISbe*w_Mb%hzJT7oWRFep`NkjkL%R&igqq&`B7WIv zawXOj6Y1A^o7Bmv$4Jq9@Kak&*{SspeJQv6ni5&uLPb0NqO(8#_T7%ZeYfLp-|hJG ze)RZDf5rv{1SKwgdGPzpWNav@_?iN#_}>3%+PHcZx!cI4BwUn}oKJcdEWN@{f_E11 zs7%3&s3cIyU)qYMiJzJ#tQA2^H1W92HBHoKHBo#_6Bhn4pf9l%#t6Srp96hq7U)xX z&-em8d;#{@wZvAtHHDAez;mYWE6mEDK{%L6r+t-Qrr)VMulthzQzS8|d%+=s(B|LT z`>~rTZS-Kt(_rW@^a5@E0T1&dLIvzlqL*g7e0C$?^q)kP==B`XCLY4+KTW@;yWi z$Le`w;g7>Ca`nu1*VJN@Y&Xmo+>jWf0q&;(ew%M%W~FI1Cs!%0rqC3tF}K?oD5>9) z?vFp+0XG7H4irRB1=s}j`!0NjEgktc(zXC$PKf`_Z>bqOEYRah2olD;b%_7^mrT06 zeX9%jEK~I`tT6s{R2r$0m^%I0Gx&*0cxUhLI;y8nI+crAR)??tPWAvAekoX&+Bw7y z6~ATg&64^2b+zzcv|zST_pcFJq2`a+3Uq2#u2dWYX_ZR*wMlznrMRB7u+sjWwCjmU zu4y$zLyJx~g;x88*f9$=@1TZL)0s&NlJ;|xwlkAfK-zSZmdvD8lBOFLoSIKp5+$KV zb@OEN>j*rjW|xm#P6=s_N!#t$g_fb_8k4rxFIS>81sFIr8_ZrS@PN)W+Q4>d-gNDU z6y^`rmNyIOfpo~=%*u(4mr@4Qwuqz+0YPF8iu|ydHU?X>aJD9EABH2rZ-zdM# zE1zS^Pq5`{{qjFndCBuk`6jRYN))kMJ=&HZ>6ag`@-5lrXL#jX1wSs&p{WvIq&E+% zh-!_a7IX-Y@G8tQ6&f=YnzAZxs3D!jm)QwyD+S`s~C zx-i#vq25R44i%k8QPvw2UhWkhX$s$L3rGFJSE;Z*LY|?|60dwcUT3#@mMwp+U;Z4G zKY&L*Q~p}7e4~Ls!&*Q~XeH!!fz_P8>><2Eu;v<}Y1q>bC1!eS>-#EPu_ztiEF2%BzCr_a@?7SiRu~6oPAbP=h2ii z6HgIZEp_)9=KI?5Cn&DWTz;ot1)d4^W&bP8{-69cnEvD5hh#x>NvN|XIpl0=u**{D z@TIkJCPd*xB_Sj^+kl-9IC>jQ_NE#FYfW%CLa-ReSKFap4$hIOMQ%+IDNc29{QZ$` zO>x^H93;IR941^#9=*(Nq6n!M&l21cY*-?8l(5Vsl)Ak;s?k`YWc>x4V9aTBez9B~ z>FqmieEy+e2^n0XS85+#wcFOYcbFQh+{z*B(eHPz8sgVABVqqQ57{0Q3*APQ=KQ`_ zJQ2K98(DSXL~sF7YIPBZgF1CZ&ZL5D^{Vka_P4QT?D&53Ja2r8;o_H-Z@JD!g33*kebgnE@FZ$Jv zD#hd}4*6xRpL)ih(&=SP*VqGIk@Q{I`&A-)_avRvG(JAqN#hXtkDMF}6a>L1{X~Xd z@Xvx><`Var1=_j8@1D~*>by`>J1>d*v?K9So^zSunC_F_MP5jEXaFS+(=Gjp7d7`a)U9Ui}ct@^+2b*q1OQzp< zPVK2kz3htDx7hOk$fZi^YZPD8tp4UCUi>SM>tD(Zq{5{3Fql8zFzAdwJr;2%>io`0 z#+}TN=OwBFajdp$Fxwcfip}%qkUE!L=Nd#F9j!~^$88 zuv@dst=nC;VN}h|*b5+`!waBMMbn}flA)s}DH70h87G8yrnGh9)+8xgX^M*fjXWvx z`d3rv`dy41-NhnPp<;9BPVF_zvU!+iRzGQMyXj}$_KLcl(c9d4_^fv01+Np9xKwaI zBYYC0TM}biFviUJYIwQ^2tO|}QTxk2ghrUlWeFqlZSKsk|?Q&}X z)#Xl11~vvdfDR@2_Uy#usG9AuW%1RVu{(+q!g8kw;nZz6_ozS+N_jNs8Eqrq4LyR| z+@DvN7{hJ#c@5u76o%q|$tzpS(0+xlS2d2lpd|L=OK~V1QA^b6*m6e!_eY)B&5o9mjk#t-E+3~*}?Ca%)aumuN|8BIDH(!Jpy zd~iIKqECzZYNG{jJ7BC9z($@=^(VTS3%B; z1m+i{zg=B1Gtw~Gox3&Yj@XKaZ6?R*chBRi*G_;*U1$_dO_%g4V3_nyU8gf~dvfN7 zQoUh0NhWS@ZguNAZ+oiRiS2aebpdexlP2_X6soHuXXo#=9J1%cIHns*tlWwJCq6Hn zGe3W27q0@2(knj5+U%dGbYtJBDcbo)8DotK+-a-^5b?~`6SvX+#O<)5i$^uUR#%x> zG?s`rFclDE$<$WOkwR`T@LKczQxe-a(C_yLf>{2LC9-V(W51=+2k}^IkHsP#(5l(;t{g0tGV^IXR3*;o3~R$ z{G+P9?GE6~$N7em$zv$#eo2Q6C4YxgkGYx{t&k7=cF^N1JQ38;v&VFJZHow5kQhD6 z4RE}9P4sx&ea0VjM+x;RE7%|UKNIl++Vp5>>E})iYk#YT>n3CUy}4}p8DHGT?o1?b zw9MK6t@;n}It1QsUe|Eq;%mAuEQ*dHSSNpEaX31%s$%2(eV2dhwhz)T6Cw4yE`n*$ zUfJT}3n@2*#H#lRfIIyc4hp-GNSTr!MTwBsvJI)5e8;@=j(jAc4=%kWNEF z@aDY2TH2~VKR!CneqCbPJqL`?wo<0Vh^gJWj0%n3+j5?5)Q(@J@QHq?Fd>jwinS;t zq#Qs3RC@6EzQMz9pKVzzSG2GKH?NfrUKjf=I>a7MsoACWqz>op3UECI`k*k-q46a; z>^qA?7xs%rP%gc%Zy8yb7wuD7v1{Xkys zjqie8%S1nXO7p^aJ7SYyWJ1YwJfW9U*QgEJky-;B>NTfQX5QFm5WiTrOSOKfX(TD4 z0YHMvq|*%<1?G1YVO3n(J$3qm)oQ>@tnSkLW>H;W3Oq2E0OqB93J{N&iCw!6r3Q*; zxRd#gB~fXUBUM8uhk0ENaTXJSUTEXd8u+?_jbDo&$%}2IIJ+n5*Io(&FTLEH+DZS$ zkUjlN4xc^DQox?^scTH%)j|}TbKlJj>-bR9r_?Zq3)K5uiR>COT>5W9PeMn3*D@F)F?7nikTlX5b&P;3yYzVAZ zC|u3**z;Z#ixB-mjbg@~ixl3MlNUP&qi2YQ*w~ar zi1Ti5@?yoTVa$VW%;xS%)7Q15bl!Y!2_}2`&t^`10lYH7BP1d0PSgn;AFRGs`Z;hd zUjWbUcPo6r@annR<9}+3w}GmI!@=>KpwNYq_zr^`T9|r8DjEM z$E9F!5V{+u^?TPJ;|=lntH|HUj25OR8;(w{py;Dr_@mHPfA_cdH5lCWLuzssn6kN9 z|95aSvc(^gM^}?AoW@at{iU8NrkJlz+SR=&3U5O;lh?zwb} z>&ov@aWK~8KEFb5>xl63op(2Vu0ysziXWG~p!l2QfDI7taDm;N2sJ$lkoe)g(VF<- zVDtphZusA|xnu_ZA)JXyqD+o>>!E2}Eqhw>^)~=9a$xjaIL0^ER$yQpT{x$%yL;O= zlaJcMvCRM~m;`JAyc<8E*TxoXbR}uRc}Z)|l^>?qEJzJ$vvK%2V0WCB(&FFn7v2qd zP^g-C=u=U)#rTn!dTygA#KbY74-L+Zcf=o6P6Y%O++MS zgUNM&20;Uka+EIH*il(1$WCnm-}5%$TS%w+)9z))UrPv?=f^Aj~%c$STM$6 zuX1&%i8`TJmUzh6$HcSYIVo_q;v4GooOtK@=X3CQ>}1Hpw3EDtzasxa0p?66)NCZl z>FwH-=|Qiz9hFAD`HRo&#(4MnW3-Gl=C7sKqyo3T(8W~SX#^4sy@Cx6e4!@WA@8`r zLB$77+&MSGIsBPBIe1VD?~L}ZI3)D1u4^d16+#6GFmiJOYX!<~XF=`m0r*>-Hi&!z zt7?uAbXeGdH=J*#pJesonZQ}&Z%7E|Ovu{I+5uYpgsX}ziMb4^$_#QxmDg>vqwA5M z&ECR_wua-&)}}k{`T;gTz|7=&y7U^6hW6zDKp?YZyxVZ>rdVHwlVOtl<-&{T8S#U; z(Sa-&lAynHR8_(J_nfLihMRo$qyuZye`7P6N0%=@#%j`Gh(ELe`2iiI&U~)<=yEeF z`Yl+kQU;j>(T^TaMJ|ybQBHh!cUyAsG3=5VKjd#g{3k=Yqt(>xo?1wt>w)g*Fa$+` z7ock$qv7Bc~eux-HtjB5(dl z^G+*Nic*k2Wfqk_U=T@`>?HT8n*no zVAotIka*}piC>naXv!=KK0z%wfD?Vhqxjc<)I8#oa3fYX1N9g7OaJG7T5n$|3&43h z*?1+tWWsC}usxt>EQaJtHeH-mK>V(6IFvZ|wa~PwnEVaZT=P4tx!Zv(Di@$NjJ7ef zMVgy}$w9AzxOv5-0GTJ<#g9;8jAI_Y`4XGLMp@GZK=2w4H7}u*yZCYb%0v1)sF2C} zi?VKiguk_pc__MV7?mXpqJ7w98Z2C_!Q+4mvES-W{arp2h&=$Eld)(nrCbJI zbCI*}FEAZ-n(q}OXS$bbz!G;Zu%RZDpP>PdZufS%cQy1Mt~G6Yjfa}fQmzju`3AX@ zEPzx$a=iAAM*jf=!fPk?A3oh!YSC`OqLx8wo^8)VYSBiD9NXU>M(+ZB`I`=?2&LoE&E_-l%hsEzaJ?xx+aicAAvJ?o2%U;_*kE_VGHq zmR}qDgu7xfvTj(zfuzpp1%Twtt^;8H190q*Y}1Jq%qFWRr5L#TWeKkyCY`43fQ;>4 zS13+<0BC5vKe7&XtGJTVdRYA))Y%1Q#)MyXr*E0q5=YthcOH{T5&G}z|LS5isaAOQ zBUa$a3{PIBTg>uCqi2rFU!>V@QX;M+ zBY6Kt+^;XvRUdWp>}enI@#Ip*u=-l7$jr9bOdu>afecNp^;0z-oykjo#hp5RWB+95 z%$>x?0b~6W9J|l_rX;qp}FZJ@W_u#r#DEz6S$*jQq_=fs5!S z>hi1p{-=pt>7EqH%#G%2nAz?NU?C7$y9?p4~<2q*R&3_~;5hw2eZT z>$57%B6W(n)5HhyO;e6A?f*dn`Si_*y&)!d>eNuvoyzu_J(<+WCQ`^`KncluQ9*lt(7L}Jd(VG5|eNm2|i@|1ismC)}mPc zX*_EjS>EJ6`~*WvNbHnC=Y)$&dR6CyniTpf6C=^AFTtrt)7Ro=G|Ob^qksD+ATA%_ zo>I0xet2}~&OcDTgYUnxeak;S@7pl4ter1anF^||Wa+%bGRh?HZex_XCt(zu-wpXM zPa@wn0A!$W*q>mE`&1SqIGFsXRT@S=6QeI=18Pn0zKJUX4acw4ELaolT~b-m8QY(j zmfO81_nI|T#EV)?&1&CxotCnuP4;6|lkF3z?sQC(sfmm(-(PvD+IXpYIxS-Kboxe| zlBr%4^~mbW6KKg+$XV{VVH!2JNCX-VW?bL3Ewl zpr3L#xfC^WF;(|n)QYjs?XoVzG?riFpO{zRnvfCt6HeDiL}|R}bcM5*Wr;g`i26L* zK-H$e4!62QDd(7!QoRo5RTWP%6=NM8CZdENki>3ENMFJK>r%xpTN3xQuk{=!!7yCI z74Ocw07YE3H?UtDo6;xA^)JCE_{~V~ahxT8Ppa&4>ot>p@rtO*{YPbH=7$z9b=+dz za8l#kTr2{vKT!n05n~19)y6)}UUAkvs^Es6pp`oJM8*D^C>X+A0Cl2bfSs^c$?wlF zZv&iBM;ORDPX^FL(k6UZm!IXW&wfYbdXHFCBLLw9O+vdkGlp`{vIG#KV)76@vS+Pf zD8~py1*Bg9Ja=5Jd&O|4y1pY%kYp%dr{pSyzB}<{RQE!LZX-E?m!d&m=CK|%6ZGPa zGxyYvXC7lCg`Vtie^T#^tHryIDYbvAU)a5TY~WR~++E;AjFVek@5Gw`-%-uFfJeMh z5B_yj8%^C&9kIVmA3Cas*@n>`dTpMG2JFgr19$pJr*xi zR9DABwX1*eu9rK;)$6VC*NgajIKH-|W1PijTvX|cObx9_JYHF0{AG#f?E;ao z;h)laO7rCfHEDd{!P4ogv9D&bP{_vbD7hr|_{~r=#uT!GuI?JTPiR`}~uMk5$(E4->)7qlQP1d$f^C z)_!eEuj3$vdH3ck_)3!$G=5kaJGJo<(f+-T%Hg6bCD*0)F%EV;ur77zv+OQ_pOIhq z3<$rO8D=LwJg3H4+h;>`M4~#phI`PtMdyQ1{BWNJZa?l_8*d*TTJ~zNEfri;vxQwa_yc=f`N;Sz)(+dg`V82z^pymh@H5bs}RP-Tf@#oHusVh6L&|y#leQ=Zl}Ph4f3Td=jHm<~sh$+o-QeVTqSceB8Wa-0T&7BQctN4T z(w#_yd425CIQHpd8|axk^D|Z>nPu5D=%JH|uLCQi+(h1<)m{Zf zSdyiG*Hh~>TPw8a4K(AI*X#yIE#`DSvZwN2NTtcpB3-Wi<&{@?l^>&&op!#yIk9A! z!s?@u=k-G8@%hHvi`_id-+QuTp6`EQ!$W52sn;Iuelh-)1-r)5TXZ10`c(9w=ce|J zCkQ)kB+`V7j8``Hs%8&M#ZgeQx3gT;-y5zz)o;7rt=W234r1=29An^{tx(UInT$ZZYw99L1@7tgV8#k zLaB|XaC(*}*hK$ekl_ay#vV`qw~=qp26JF8v#8Zt6B?E+%%Wl4v%QYZ?{ifC|EWKJ z<`6=B-)G31S)a&%Yx^g4epLT1ZO-nWvWk+| zbr}ZHq`T@oqtUP{Zo*D6YnOM*krKCj4e=W+MSABX=kRXZH1>&{_3&jLcAZ()zw=L@ zorMpXGvoC`IFfCTh#b2grhK=uGPB;~w;LvuJeD7S|Fg`(#OosPOuWJ{?T5@GII9Mq zrb19B7GvxT$A!u#MyAek_EcTsOr2$pC1|}&Ac8J$zs5Ph01zp!p^wAWU8J;41Fb^D6gIsYWf*@ z)`R#2$6oXmHH97Zd!j^V0HWYL@zHw`Sg{$W7P}|jFG1GdPs6DF}yT~7b^j&B5(l}^=v~GQF)0i`F*}Kd!Gc< z=RWx(XZF0TS+i!%nl&?P))>){yiBskt_ReRO4HO18hfgqG|ba&e=z!m=;~XENJ9UM84s&5 zZciLe_G5k6hg)o1mgCKww|S=F#^eU<{mc|$++SL*zVliI`C(~Q^NdfEW<0yr(%2VvWpA6r1w2Z!qa(_(D3DW=a1O>1@H8(FXqxpv=dAX*0Y6&% zZ7zbieTvI+>oN*kCay_eRXk?!tk0Y=`Rc*8-*B zdE>!N{0jJk^=egV#jP$1?Ga8*Q_1F6i{_oTf%gis!x6pv338B zU+pGIP;|4Fd6LrJ9e}cfrp6dB`a;zh2~xhiu;d=8%kVxDy|P2MRfYG6G9E8skr_oZn%HL*gRO> za5iynIq&<1`$vnx<0s0)HREi5U&=&w+R^3q;Bnzb^HH74g^^H${9%NmYe_!1mcnmP zmErq5GaHtf{mxl?q(Ox*cl&D~#J1FC6ldc#tG`+1*ss&v{${PP1yvRh#o3|QDtxj8H71hF4_0fW9NkmtE1s5H90=@&tPX#Bd)z$NtQ)KLhN~VDnR7uOI#r z^$j*a{#=Ek(+7aYb)o|TaClnC(WNKU;Y8VuVoSF)*D0%Y?wd#0xle`h@^l!|RhlM1 zQgv5~hKLX|W2*@Uf05+UKhh?yov*RC_KEE)@}~InS`S-Dz-rQCg_+ zZ`2>~KJc(nN^Zrd4H^UvIB?++YLGX5W$VTLU5YB(6$eE`E`ZSePId;+`S@8b*VZ4< z!|vqHTyVfz%$Y-9iu~z01i&{y#K=oAN9+xuRg=jzK@hh5axQgw8wG+!3w=gR>{YhL z++sP`v6>urKcmwbK(UueNR*d|j5M@YDAsHue7ZB7Vt+9aSr!&!DW)6GiSkSv!9a@r z%|ztc2u4wCxrspd3MfM;_L7OvsRa>?pID2D7zVo$!QhFlF%hUx$kJ7Wx!+x`6OA-) zHchef13TVYBPL33R5quocJUN3e@o=X#d6gkKMwuyUoz%zXSU_+;C7`OU!0`3bx*hBvO?*9x8pT4`{OUbKTqkhLJ|BMyQf?Dy_6pF z(;w}gZsEVnGQhjtPv6r$-QxdurC0drclhmhwQoy5E>+@SKM^9Du9HVR2&u+3DqZiV z3%Pv1upy33zeDLsaUR0vhP-&$py;0c$y0I}6lFK?s+B&Y@9$5h5u;NVo-7~aj>y-^ z7hD#74}0eGnY!0M4g|*AN#R>&73m21EbPj{R$(#N*rs&+ncAj^={a--ql{b_LB|sP zwxLhH8a>=ETo^svKe9SVpYErB{08Yy2eDOt><+~~9K>GY$NpWh_X+v~ih)S)>^CZs z)t})Cw{(KL>?w$avh!WIxUj|S>*8MdRJZR1V=_X29+Op`zAn0&)4!SLp)Y!F-w{sV z;xU=C&UWw3C@(nT-pfssO=KwSOkanm>mA%raxOQDA%1TRG^cOj`t}!m(Cxd?V7je8 zGwmU`TaFkAf5+eIbjRjmZo57*B0lB=Y!|0}Gum+mX4M_J;la_4f#Gwb9cP8liguhC zK0VrjLLKcG6b?l@&I$L8cATwOoX*8-i4~ElRp0cXEZ#C=M)g|cRoVe7H|^_(_pZoz?C8og1nWBd%2$fc=fxl+?aXd4BVv z9_$A_#4=mVmDdYF4AD(Ky7cI74e!0)6b;?u^*3X`T0J4*d;cGM8_kZe(vit#KUvQ$ zLVQGzFwK6BJmOx#w&aJefhG#AGW86fD^FuT(p)EF9HTZwYlkqy|3PuJGe$YJGgyfA zreK7{=CPJQ)vsw`Tw=RxdN?>NEUy*riE^VITVz5FzXlNyiW%8CrbIz$tNs~?uY{Ci zKVhB7xJLG&ax;_QQ?p; znpJbMk}O3PTX8H%9#Pm}2ZbT1Ig5D;o!nBy^BCbxhF&`)sF%}8a-7#7LpsEON&_U- zKgm@R|A3N^hJuL$&FG(!6 zT%?WK8P~p_prE-XMoJUar2==VlBaWtQ&F zJy~{eFbF`bq;IHU3nWcm_#66KO*aIbYj(Wu$tu1lbH-}5==C-RgB&Nx+cVT?Umo-h zJyGAigI4IQqGm6GqA&S;M-=YZ33S?sT0AH6DhfR|ZHwtK=Q>dC&b8(Q8loSRUTul~ zEzon9H-gzH$NYF$P=6`E_JcXauVP}KUti@;1Dw$y?KUtM#NEZcL(m;}>v+gOgbi@_ zV4;i4YXMZ02*rC*N`P2YyG_D?#4$QnO};+J5^Bs4?;*e-XBz&fTIZS}!8lzfWBNqs zfoBxkZM;6V*^bv(70qg2k$nD9s*tR_r#l%m8;bWnT1u)V!w_K$ATw%(J#{ zbumdzTfyq04%|6+fVdST4A9=x3K^W;RO-zW%`3KwFTMZrrNn!0r7BuO2Y!hxTH9vF zn0ibo`Lf8EBwNXylHZGU3>#}fxd;z5TWqoZRm6ldCa#&>w5&(0zYc7}2eggVZU4@A zeZwLEZI7ip`=rBS=4>{cuetwuq_@9EGmc&AMEkS?tO-sLf_|%**iC?#3FTJfddxd)Pv(q5wNSxrMhtD&j z;;wVe>RJ27;^ktDEVTWktHq{0=2j3>x3voK&Kx5;3<>U38GpQ)GR#==2;I0wyni#G z#7t$xL|cqY$c(Fw4*N(4+y^08%h;XUcR0||C(9jwD zfl-ZDYnyk*Kyy(mf2ILcB z%#mjJdcPuU+6$qeQ(E%h{kaiEy^!CFlW0h=Tx(U$&|d#*{PivQl`Huu`Mn1O(E`9V zce0T2tl;Iw}|tUE_iKL}Q1$(}%&y^JRj}i!k^T4Xqs3yR`5?(YnZI zJjjO7i4PkWAGXY$(+nVSdhz@fgsk(Rgt6P=QzLI^AKLmD+a9?3vG!c$!(JdR%{jp> zAMT7C5Wi_?eB=;bm>fBnTRSx^*D*&M43@w zqO0@qJ#tfCawAGAYY=;nF)=c80yd=0`o~&DcX-6uDxduCf5I(De|a3Rp4s=j4zfC% z(E$iteaA1&>=M(u(w);nA=?m*x`D*`8&N#QO%fXr7QNCcec^@59iM~w)5$0Y-)8D{ zZ^0NUa=@=^P2m>r&+rI|-$1K$Mwa4WR@`-y>Y8f$;o!_k>VweAEP7x=(f(8qWQ}v@ zHMUR*QuGYgHXNOB;*)$!4VpeorOiQ5JZD@yqseJjPdUrfOYTEvDsNI*?=EUW(|@|V zbnjZ9;AKGaQCAqaD9Y31N6-#BDL40iN07daQ>jCZCLFzYLRw^|Cd4;q+=b?f`-|&X zMxAcPcjM|SRBBp}XRc~I4QD4?XBLda*biAdZZ%+}Nkn!i8b=3|ZEDRpA+I!^GXU=$ zpHhjfEqd>ibo}-5`~;P9+GVTtm3L?2)^J*00Q{CMUB-uZ7Tz`)rJOUWuL=kLR2gNX&Rh-KR2yy;g&}xBqCp7@D;A*3m57 zj%GwIc26sMBV4BVH{8*8vcw8oT?fBRM(3gR0Z$rz{sg0Zrbo8{v)@BI1sMpDl|X3! zJNmC`?=tF2?mUqUsICvyE9Y763(}*~JJPp14=NOZ*0jQ>nN}d5S-O1uTacvbSNc<_ z_dOD3*VdAaRfC>EN$vTT>PV;5JN`;g0O=1vDs1tF`G5~^GoKo^srB}?;^$KQi|n)I8REZfSw@e>OfEa@Fvjh_dqA0mA)bI$u@Tc$laIs9*q@-57;?!-$5@w4t zvBin3ZKA`5x|Pk0^xlWIaa4JTS10rsXa<7HcuYW<5*nYfTOVC}tzFJWwq7&$yGI!i zyv7l(YuFKfDL%E$`MCZ_pV0lY!LPWc?XG@z_bRSfF|BX3?iCpF60mVrIj@D5Y)t25 zv?p(!q_4*!et&4?eh0rOE&X0|Yu2vn98|FX^p2v}?#jNK$JK+vht=eD&UQW3ZXaJwIaR>O>l2A{O#rjMiu z*hU5Wv&LtHk>H|$0Fe_5Awz`^nGsS2v`&>?Hec5Xz{}ZPKfN;#mjkou$B=Q(G3pwK z6k9**L+@eoi2n-@db5{pD{J7TmEzjgp`z{t$zdp*kz@EbVUHJI?*-H3W{(O#@vii&6&uB}5 zw(qJlX^{5r-ro;L&FultEm$Q6yb$6wpsmWqF7TYXHlqkm>kcn`hkNU^Qkb$+3L66>FU4*LENheW{{h>@q*-)4r3 z`QJBu8virG*D1R^4k-IY|4YwRW?K`@#0b;vi4ms911RWB%&w}w)FcP-0l#3z(Obzu zynRKWGe4g8A*U`9*UT-kQhJxyr!)g!qF~)RcKoiuLuhN-Mcj4K3sj~n>-Jucmo0W1 z<}XCOEHiTf(^hNxg(IBGHpp2ff#Lm099P%Y+I#3I=-d7`=dg*N+t-jfXLOk_RTctt zF0XIrh4{qZ;`WC=xGuIbL#)FVyB2P_WF@&;5?0h=C6T{a|>vy3+JJ zeGyidX5=s8Cwanr)2_zeYL;913Ztt*69xPs#Jruts{9Uf%=W2ZfvMcsV8dfF#|#tS zlvD5q(r=m6_oU*T4JPkdLI$;32XYrdyI&=eZ3!b#d{fq-N;(EVqNIZhrOYOSz1!eA}$#! zF7dvu6yY&c?BH#un7U;>O_|%5*Or{Rwb74;Mmy<^zYyn4Tv5ndK+W#Nwe2}}{Lvku zm2V=hqeuJPePulBW!qQr8DrZb@3<3JxRGWrLM^Q$(k~o&Xt%fCVA%pNI>8J}cls3K zwF_Xgi@Q$sZe?pg@=D`66w`Cu7BHeuNUOtJHPE{{e62dX|2)7zOWHOF+7))TFDvZy zbbI#;>uIg)jlNiybIe4mas2v05hDDK#|DZ={gIK8jp7J@ zUNMBCvHDHEjARHh`s1ZrR)G^;Ox6Y6vZl~yq(Zy7qwOQisr8-=mcB~gc;&M%(>Hn} zOuEb8P{U``-lcB{1?<^0N4B%nmS@8O&g(`~qiZ;Q7qg>sWQp6+(31T*>oQu$I;(a3 z8*tJ(w(;Agb)ayt0ell0@msqb=gv}8&2q&Y2C;xUHV3- z;dJUi=XfDnH-J;u&q19~HYN);gut3hsJLd`v`aQ=|k))YF%+%C?>`B*`eMB4cZ!G;0A@{ zEviewL6UKbbyBY`vPav`_x?(WXnSw(X@0+`vtWRV&T^Vf6U6qnr4Qw*nu)I%ZK!Aa zDdoP3Ghb4!z8Dqa*{i&(2#cWu{RDqBtOVs>kQ0@Y?8!%IC>9kzx%GgCalRK^3H-6! zn+ZEl61&18->z-Qw9w+tAA(YJYXU*#4MXf%L z8=rPEC$d>i#;m&gHSO})%Cz`-bGdkb5AtS>8&Z3AC@ey-cd$H7$@9E+{bY&2hjR79FR zEg)c33a#-D^5I;DsTzk<6>5(WCMJs^7^re@jb%b|_=^&S$tlL&k_z}OF<-ep`lw|EO*ubjMrK1GeC04LQs;J3>=mvl=V?`@^kU=b796Ua`D zWMa*l?>`S3^v>to;!|`P(<5K?_ony7?u3vfB`lKW>25C-u?uoAsH&MLp_yabxr<53 zpNZ@b{A%q*;Z>ak+?gJp;2%ZhMaE-=zz#xey*<*Ic`nby2un56$T$F>2t=|`*gpzd zmuYjm_o@4Fi(`J-aWi|+Hj{ra5Xma~xULs3`?ded`IyV}cKqB_&FaM7g~M}0R{X{R zELP|C9n+X~f}TPC%)kj65#ax3-9hZ~54xA=rIzTrt0p@Y2M?j&U^3o2y633<6p_Nc zCP!~S_@6_q(thp7=Z9J~Y1xlMhg!8gWj{VT)S8$2*!|{@4?gTRiTiOmd0raVhfb>Jpaj2_K4!i0 zXPFO!S06If?>%ZF3~qhgiTmr{|Bo|~>;}I+T$rkV_j4{w`8f8$lXLxhhn$-I(f9Hq zCx)ITVCigNeFUub4+2WrU+Bebn=g+T)=mqvKuiyY&pb_rKZEt&RLJS;+>E1(eEH%T z9llWf*xi13J%?XTUq5|v5c2uGF-Y*Mr9K^Nr2c~XQ-m+a|aid zx!5~KV(BgnH6LGq(1NDlf!lZxCW9ZgjCALf7eBN?JZZJrsLV(XgNBQh+w4z*x;Ji( zIe%pT%4U5w$l8aj7JJzzeF@N}Am?uQr+sS*cLl)T*i*{5wvk=Zq`W*6enH_s+wf+E zA1A!nTw*~4NgA!x$IGV^icfr)7RbKVQ_g$H>2wsV#!nZ1xLY%Na#Ox7a;Wv{UJn}y z^BvMz=U!2DZyB7n8vs{io8TIP068ik!vthle&XmR*VP52oR-f%D@ai1b4DdK!0y7fR! zvqqQPUAe8VzaWfHtg}GEd*(6RG}jFkaac^_K=-lqE}2Z>Feo)0XkXS;ZGpt zfDr#TztX}WlM}Jo9dg(ZE}L1_JZ4oHmyfic6aLoBJDV4o&tK{@->&AG+f3BMit5+= zZ}aghK0>j@5PRa9=6irTyF*4+;g4tC+?>g0w4*cpZfO3W$k2Qa-^hp8n}?ZvIuMTh zQ0J%3pPC3=$qhF*zsbjpzcgnX_zx;>N%JuCp|wwBI2BDY`DF?gZfqW_{Ii=MHgPil z3pL2}rg?>lh?|I874Z#3g7Np&e47Ecz$9I*r29>TPU<7ufS*IrXvfjWE4JG#f6?E( z)@83^{94X@efFQptjtx66-4>+v-u&y>(?~@#r)8|8TPv&_?~Y9DUJcYm6-y!oEshGenmUxD_Sk7 zNM{uqTV!COJRiA$RngU&8T~SrKN(XRo@PBOE|3iw#-|mZCbu*qIsE&tE({)?&M6ytdYmb4LNYw&-Ge6{Nf08Gq z>#TzY7NTV@F>S6f%E9cdFUe1SKAla9j6rA-DPJ1`>eJt>B@9)u4F&0w zp^b0~rh7~9P0Ogl?+o%4wFVcT(_5VKs{<7*g{u$WzaOCeh#a?;+t;DSDqu&4=Y<-s zA|OSf%pTL+V3rM*mvnu=X@#4H73~hq(?XzNw~Z=H|_?yBQ1N_v|} z`0D;-?Od7TPRWiPtSzTIx#%#;_G77ArB`_RqcJ##!6x|`oBu(Vq$1nacSW*_T}^4{ zRUOwwTDo=HtDy&EzlK@pO2}5Yp8moCO{%{}=&-UZTJjt97w4}4!ITsh{*Ek20zr5? zRlT5IiPyaA94-%{zYAK0>wz$9B}=@9n?-KQkDtKN@CAM*+kpITxONAe3xxJ3j>+1m zTU(o)PuQI)*eE5&=o_N;CtpJCj9REYfclT2wi%!D2L+jp6m}}{o0_#~+Xz;r+3UUU zt_|!4f?|Pu7$Sk{AAVlqA6Zsr6>X@?bF+)h1r#n3Ko4_}mpbH=`BcFMd#>qk9z?E? ziM`KFA1;;bVh@>o+A%n>{@siSFJxr7k2Dg6hXnJR+9Q|-y|qh~;cq(phCOsf(2vbh zFh4!Al5L6ZVvzQm)#T(T9RYkUi~btu&L(X_xLunN?GF^2YctmOSa%4J)ELyD%025q8T4jq-@_b?o-_}wO+#cJxe^skM!-dy5M9AL&`#yNc;z3A zfWl-0qGpW%1qqVV%lU1sAI^D-z1EW6s*Tfg*fx*ta1yKs*A!PQsO#xYT;SHsOMgvc z#TT9zvG}*AZQ4pNu3HeA_iqA;iUs`V;-OnHuV7Wdkqaspgc?r)Gh;1cU%tvyhMGpF zvLU%NEGgQEd;e%%6VC&&>-0}j`REbJXzh7Hxm&RSUBf8a2=Ae!CBrIHu>jZ3nrfsy zpp1N<$k}T}TC>q*_H!bV-!ZLtkQqImO*h!vhQqsJi@+Ev)dtO-X$%&~yp9OV) zgG`#k9-WFtbYB-!!*Bk5-YiM*aqf7WR>=XqnP;BXX{YAkZ^g?sQ0(NZ)dwAT1E9=6 z$WG2VM^}+`5xFJ0=RmaO#>T79VhT1}GC+hfe|k2({r6Ps^Y^jxtZkGoTp`cqzx-A5 z?AkcTJ#0N6aJF%vk|>`df>0*8<8gk?^C}V)Bq#sKQI0cxO0YZK)mDY5-{>PgJdUR{ zidF3A075tD>C|nryLt5*JitWuDSaGZ>mS$Ra#lCcDf*#~apo;$!Or_rJ51-FixtbD zf?c%(cTckJUJt zhNy`FxP&@zmJxmrMOd9EMpOI(6Mw@E;eUv^=ksN>$8qg1chvzt|0nz#E&ST|x{FfN zKUQrlA>FF8%pJZA2o&3(KZei(d9w*B;zY=nSS^q z%ZVh3Lc8`IHP>PS0dVr)O{Wf2+9{th$ozNTog;=tuFCB?*Y?Ms`wM~fukc)-Jj$bc z`2(>B(0;tOj!gY(onK=vP`%5$jb8@Z(ogIxwU(c3!?DxJYtexR$b6!QD4YxAux zr*zsS#-CPxyu7rvyfm%xwb9Xc(xb+YR{CboccbOm4Fvu-KkKFZXFZ3YSCvzULdkiR zpX7r-?KUe0_1ROQi!Axrqsx)ETb7D0@8?3S^R#lny@NI>yuow2xVWo4YrlkbNkj)s zHNLnn;dV?>b)MNGG^;YBN|c+0<-qo%FvC5eR8@BU1{BLRL##y4NIpVs+~RRor*Ck_ z4tA>ZIHL~tF519IuO94HmlUjas%7l;S0EYh;l~g(#h+$@nk{=w4DXiGPHy13WAmL2 z@si<~AjC^fF0SJ&MY{<_t3vS|%E5yDSc>1D3;BrC^!lZdSb0QclJ^FO$j|9 z-N}rdJO(V*u+Yp*M;Xb=n2^tN%7l_GhET;2~Wg{x#>KVO?Yxd5(mUHAP_)dJt`MiiIsqjhz2vq0s z&R;8N`yJH&OSgJR!K(Dl>{l5SRDfO{1qvQZA#5!$|JzgWMgeQ@As|O_O`|A+$#cmg zi{I+}^dsJGW-Y}Ag2Sb6jfJqF6>)(E!(S}hEBAz)zmpZG>gH^tTMyAcMjt~`%aold z2zRL+J;G(?Y-x|1Q4b{cesFW0YeZy223*1kvkvp3`udOZaZcnEO( zrR1mlrKHX;B0A1ZjzK4ZL*>)n7u*`Jp($EDG?=VdLE8NTAk@^f6(P_^(^MPn-u+w zL*ig6F+~D;=knrSRUQ`NoYnnH6x7Cl_#~>c6N4@v<5VuXgfxOIFGCII6DT_KQ);pH zg+*r`HsSdu{@*72C}Fq%9<*Upf=&I>(jHgXH4e|Hz|1YfpQM>42EZIe1`~^@mh~q% zp5OdO;i7}#Dc1KhCCBsCm-)mwY!6ZW={&p-vD-ow$q#9&ylm|VD9Eodu}JwC-bxNR z*?K`l?YV@pcmk9J&%431{kQh~F@QU#%bC^!3pvz?VDGfMP{-FHh!G3kljU8?LGvpN z%K*a?0|yV8e^Vsbk+IA1^4D!GILMT3Ur=TMu~pt2Vyyf&*EGG`Qs0SQ>JR<-y%D=h zrF*GoY^>>**c~c?{+sBfZ~b{SMEUyO?0s54I19&vkQ1Ar|M467?>0Y5d>QKjx;3Du z8#CExap(opj<2*OeR&V+LF^8JTZn+^ocpx~jD)|-^y50>F9V$3M#u}MT2>(iG?l=S><{CDGm;y$J# zO|D5uU)Arm&|fbbg~`47ZfFTLoFlF^FN)RuF#3|3#KhGKHtu60fLlH(KCwY!UhQ7= z8k_F07Eo{)C8br6;2K5vMJQnCi^fA(5KR^MT&(Klyh7R5!7yXMIP zRZe{{VeOgT;=Ux*SH0CUeO>&zHmu+<`*>chb2j=mAQ`7=~(mI4qt9J>>tdC6hq+M8;o-kcP8`54(Tit#l zhNYD-h_k_Y(}&CAN6#l|9e0)cnBf75vkBPQu%fk8DcsRZyCxbAr@R9amQ-(C%!yQY zS{&LQ-JEvl&Gu$XFI-jqLaWAb26p%x-IoH)M@@p}K^I(21Cm#Od3U0-d1UCGl#bor z#L4@5L zywTdBSYDjmSBxWQ^~Ok}2an!M?}>e+YN|?@w0Vt{@Z{)A%9R#!E?0_qNlTj!L-;~G z>Q#cwN0(bASVuWRp%{}LHo5{+m%h>35}*~R%2FJs6aI%vw?wiJnFglu#oeb~tgG#J zp1xlvHetLJ6R@v9rCJg@3~eoSGDERv`UD@iY8jwv;-ZaqN+$7TEmW|ndKQJ%ojSp< zg!YDFHxlI>XjTo*$SGW+AX}KYAP%%ep_+b;IMBzlox7IHpyFNQn zmM3H|HiD^Q!^G>)o1RB=IDxj0=01*J$BGrUrN$uyE&U~Rc&EVG+}Gf9zy?#L&-t+v zj>WX$Aa$#4cOHl74T7Ti)@J|_H+Gp{?-;ABdPUyN;AB%|}e5oL!TDOn(MzavU)^Bz&G#6<( zFi<#5&7jj7d&7wF%B7q@$7Qi<{13S=DJYqwk)Nn|N~7aEpw}lVo)cR`?L@^g#h%`h zs92{!w511UHwrlw&Dztb*rpGb|Mq7mNb|Kv#U-f^FM)k^n|de-rj3^p2+e;-41Aao zQ^IFFmMsLJNe}3*Vk4er>Ukp+Efqn=-iD^_OwGrv?j$!RUia^pxn^{@KW|iJ@;Bqe z#1)0FI}88KuWKYHPXxXmzS?Frt1EWm{`=>oB0C?_I2ywvU|bx2m2C`3?RF4KrP+Hy zKL2;?`-V@&gVXcfsd-Uk=6u~`(arBKjKoc$xb{0O+Hf7iqhYfKvRpibVsB9n#i1kG z(iz>t)FJc()v;_QrcvMX<;AAUF7g^J;r%KRRBkLyi_GMpF2 zOiIEnGmFHz3jnVR_0V?y_0%oax$5O(Wy9?(9=tv5J}U7}pSJ_P8m+`NBr;w@^Zyqr zDA)PNfjCFG9wV0sdKS3FUs4ah028J;ySUi%$rG;W^XQ&gjtRsomf9gQK|{kbgcxDK zv-H%7?m`uhzCA1YR(+oh%zDnLK#rYwglaAoGDiOqCa)YP=pIJL^-i_;D!u+V@ldPu zPdYj~XY`Rgyrb!Lc>>|qfGnHuHRM)aq@wk%qGo1@nibDi=qtBDuxB17Cv^UTfd z;yRVpwEGfe>w`J`7kuEHf6p)2ysXMGTXmf6g<>D8f?BzVh#iG^zL2h$H2aWmD}g2C z_wYqibErW*jKnd&S^h7xmH7sFdK5u6r9X4UlL8SPYWXTVgRU@r8kGSPK(Z$F=#qT9 zu_9(dH6r1$!<3so!TXJVqoscNVX5+02jzQqmH#c}nd80LlnLgi=(T>)+fqg4ZrfCy z(N**|6|J7&{m@i5!7sD*r2yUWewjsha0vwUP=oHB5?QfbILcD_HvLAW{fR=0QssyH z<@36syPuJ#GP6{sY`jx8#hb0*NN)dzz4Zjqm(4^Vih5TP(d3q0>y+JTstM*pr!9J~ zI(sKoq&i!^sOapfU((rb1H~m-X7PK_yuOqXna0&<@}zm`K6mH((_1ig-}QYM_+Qki zV~UCg%(#s`MG*-?-z!IsH$e!OPw;L=D4X>jLt)Qx@?o$bJx)gCgVW|U`BUWK<3>!n zvdthHl*>GP++@3VGKsg6xOf7KZ?6@u^4HIku(+ae!IQ4PXI#7eP2?5~ri|AQ??EC3 zbtwJ8Z$==w<_l^cph~R#S0kCqCqNVB$=vh8u_ExlmG^(Ss8RHK=)O`0ws)Ej^^W79 z4p+`+$tkEO&IcckPN(KEHCWZnJ5@5He0+8~H{ri4^84Z2(KOiHvlEQhTY3jwIFnps zZ8&=t;USbjGBL&6e;Snt*9Gvl+7+mBf4vkL_ITj_0+j@KE=r?BeR|Szp7%)4_JL zDl7R0f?7cqrW4n=H)S~^vz)5TWQ(E+eqs}Be~!=czid71A93E1;k<^tI@QfCI(62m zb?3O%SxHuVz$Ej{Y->|ha!XK&BAjjCVPpGNqK-v3*pFvvR?smEnDbH0(I_r;|DN%vadXNX{w2C{s2)p@!A`pLxX<+W84JtmS{*ghVgd-b?pM zP9$UW@a5s_qlb$_4Y!h98p&U5O!FVt10LU%7Z9Th=|;~LGSOr|hM>0V6TOs$HgrNZ zU!Gmjk1Ub59E-=%;uIe8m@(^TfC`T@U?MLi_mE2Ek!LMJKuv2(Zd4Hi%a(_F&hF<3dHs2VNNDmKeu#+Bysi8< zutTvD5*N3S^>Goby)juG)EkQBDXoEM_Yxt%jAzb&3wAmC*^4P`EofaVn#Zpmn*O)~ z$*-A)pfH9hX(-vl1ctD>W5hxtVXs5sEDm|C>I7W@*MR zRJYI3sZ{30G_OcSe-RYDJ(Z~LHP=d#_XLT@m3)xAO+}x~JloknGP#7^o1#xb^M-=2 zz89G9y1j;q&bIPoR1v#E^FqqN_f+#u2AwN+F=Q|v)*P(Y(I-~m^w}RSkt?IfXSe8t z=h#2x$1%yijHKAr*=A2nk0!$uiB}!0?)fk-%CM)XLw%z*wR3v;|uh&_I*f<5o}^Rn`Cr*4%VIFGmFbc zTc242J~~$XUN#9q(pv`hXBLkfV)I;kT%J>vXOuCdRDWEi4{v3Ura0}MJPx;t zN7mX*%Z|&mo=o^^Mh#JQLv5x#$7Nb#GU1~(J$#aoH_kL3pbMijr8_)N=wQ#D+yEJc zhxn=8{aGq?yh$DEr*`*d zsnp9&>aY`Rz1@9TDmB-n;=8p$UVMz6(aoEsa&$~YqD>*u&W9t-VVtCmCU|}{XLVN5 zf3>C2t9pieCq@oXY+|H#fecAA|Jg-S4&POY$#GoyupW);o~U!|$h&n3T(=4~7dIXslDC*9nd=bWiSo$BH7inT_)hXNyBIchpc zWED=CwlIGa|Eh;#?YPm$!yx8pR7IRCwss78IWzVd0UJ_H4No;Z&YcHAz32d(2l>n)%8eYJLVxF_AgT%+C7gWaFYM$mP4 z@}C!;cz~~N$-(=zHN(#B$NU_uSj6JVWTJf2GNMrQawkXY7NyR>AD2{9JcjXBR61TMwX6bxV97nXWnipZ!)wo_4^GWN?C{{FO_hFEo%5A$Eqo$Cq$0(R&R3(uoXQ z9l<7~3Ao0{#ZPGr-D$hyxv!HTXJ*}p9HXQ&nR#ydh1j_e_7$YR)+^+^qsqC5C*s8Qj_@4Jechv7ppDWk``hdM^TXgVZSF4>0>WmK*6ruDOG#(2~WUtdk> zTTg8<`j)T1D2Jhs)pyb(mjS30c&JcMph7J+AejFGHS702JhJ`j0$(4x2Lyfnr+uEU z)*ugWs&-!2bCh^%i}Y!~)3hdhyW6v9|E%v7?Vs_Hf0i7%!xH)gGvB1%Uk-2TI;d_R zE7FXsUD2Hz4gaU!{%s=*HE;~hX!&(vOFPe@Vl|i)@u>e|w`aR+0SX3@hEZVyGv1$} zw2HDP#z6wa^j}i;8)N4e+Or0a3Uu%(37#k9&n#AK{~G_I=YK;zkRI*0Wm<1zQrG^! zXt?3Ecs_%H(%LsQhxD_~WbP=S?$ym%#6&x;4L`f=#AwI3@KbC!Ru8zQ%sJ7i9559o6A__gn7R0oRRizU7P^uq@kS+r6{7KY7fUYd%9E#%X8s z*$Q2+kSt-m3Wf3&Dpn{@p+bdn6*`}gsq{Ox(zA$+c3j7C9tq2sS9#00C&6PXKhx8W zu_<E;?8R?wrOdYW7Tu(O`OtJRCh8zQe+O&9D zhI8ecLk$a$FZMO>KBAh>5xTVsX>Zs23883`r%rR)Pi}InbK*Hak6&HY#(;64VDvn6OHQ*{*eyq~X+A*}EhAKTu>Ij?97v^kzf(L; zl+wJ173!nVd_wN2iSisi(wyoHTtceGe&4WSu*8(nx3OB)4v>Q@2x->@NWU zFrEy#T)=pB35kgp{u*5W>{TP@KGewngR7a?4{Jl&t{d(3Z;aBhG>~t)b^cv(d6f$N zwqg&@UWEtM*X>EeU-#Qb8x0K2RDd!w)xS6@VqFr7Edi#cuAPt5yI4Sn8r~Nk!=ux0 zV?zGLiGT}o`(t*FN z*miK0q1-l6?yaNN+d_BBJqw`>x9GY}-M=HI27v5oX;AN1gY+J6b zcD6~cUKK`P-~{IdaU=%mbvv2Hv%1^+hh9ZVfLTHf-&3Bty>7)eH?s43E-+x=$U{f$ zv*J?Rcp>Idr~oIAjpbncP)OZ!v+0&L#>OY=mdb5kQrqTr%_5U}+pM+}O)Ul=I}3i zWfoq3gxmBPPTd~oNc7`QcV;#=fjsj3YQY=PgPp664mw-)@aXpRTKrfPY={s0rgI>A zpp)g%*$1f2c8MojEE^st4Q-}nNkQ+-e;(w|?B=WKzh6gsxS?=f2(i_WH>S&mQ86JO5pj|qkzaP#r_9WVl- zopCJD?(>1&`<1|kif}8`1GZ5$0#?_?W=t!g(3}%8%{PN$mknivV*g}1gzp$Lu{%_9 zBz`1JkLV#hG&ZBZBMpWzG`&g6VMKew5g>dySx=E53&Dqc$#C41OJ(2!+v-Eld&FU-o;NG8F!rdkGzLdv@ zCusC@0y#}n;RFu4d=|YCux{nrZX;%h4=t&4Q8^LWdi-#_`DqE|Z3yK7;uQ&HiGV;T zZ#_;ZSBI@99ADTKt!BQ!;y>)2bHuJkr5QAAME5!tk;i{xn{}%YQM0xlKRayxADX4p z3ZK322S&7RE$n?eQ&;HzZ`yCv1#K!w)HV83+50ZEuYr6@jGkio| zXEkOK0aP};r`vAFOjp_1DR^%&90MU0wB73@(%+vcw_Tk|+N%n2)&C8%68gI;dQN0#=p8h^QGd4 zslt(5#He*vxl_aGN1U;>1s|txcE--oI$D}S-I3&?UvTaL^ds( z8(-J?)83)zAz8JYeaMY$D|p?hd(Jr!A9gv#nOad@3f^FDbnBk$$qZSy$L2k^Zcpr> zGkr#=;UNwCXgxi{+OW&4t`xe+{HYd-2D9+Hf2G~y;T_s%D4as@Mgh4g+cGWkfx10e zAO-wlW&1#2eFeXK@FPp~-*a}V4%7#piT1n;j`1-BJh`voNxb`oWsdExyiPZMn>0XSf$b%Cyc&Q zO&I$t${KSXi(f?gX{9JyH!E4W%$bYs1G;^m^L!nc}93dv@%ql^R zwc8-D#=P1F817l>@i~iT##S+2UPCyuWw=lD4*3a8#~!B3e8Uljg0YUYp|;lY>`%vz*Fp zxcdxp+y;zerNDQ7U>LGNmr1>B0PrS>bndj|Zsdcv1=d6>;E?4_rU-8>@>Y&#L$P0I zBviigC6f2D8z^@e`TgZH#9_8Uy*Eh~C;W<|Z@S-@{}It?%;pQO%XX*Ea3Xs=ae5$Cu3t{x54uHMsffou zW@ToUbnxpIAP7;>U&UAh8k>YWX*G5>$V21QJaBIAvz=R7YX@opj2ZTp(MN$i`qCNy z_iLzkwKxGhr_U(ZgnR@xzgkyd9enmC?=sDt)72&DJO%u>oun|Uqiwz*uG{8~F+H-g zpfwmr$l|WofV{ZTI z2ym3!7-H1udza{b3wuEsMQ4TYbuZDq7XRx`_Y&P@@xQ+7UZR^ueDy0nYsMX+`3I=d zohJ8>ANfK$Ner7)e?+-V1@Ukabv4bvkUXe$?yag<|zQa6%s0r>v}z^zr7yHfNo zY|+|SmMGG^|H7|3XA%ELJLX4`@?h-jPd>jBhH4|M-K3L10^bgU_-P965w%?+C3#%! z0$~XVGhoH!soPP1B?qW_Kc!fFr5dEujz&}NhEVJwA}m&RKbk($GF~`HGjV^jNG0}< zbxa_*_?xP~)WV6(O0}~=rWclS;+Tv5iW*NR`gkPWIbtPc%l5I9j}W7;BX=mkdlx~D zUBgUE$N5fUXv0=ws=TYn#r}t%Kh^9%r?USy83J-GHbr!*9mLEs`ECj|{1CDG1t>o- zsW))9Ypjy}D`~e7JI*VToIX>$jmxlxRo&8yO{sCA#-}XIFYlN$$>r>)YXYJM;P-vY zv@|l%oiE~>ez_*r;+U_CGs-aJ+y)TQOfh2Hws%gspY~gelWsc=Rt?6Odf~e`RFoJrPIUh>6B&Z zrfr)&azkHmPII!`cTlweCNG*s)7YCG%-M7G;Dj{2wCL)L_Fq|Ky2}T1zgYe{nEXx; z*=ykk`fLyXM5^N)%C(lBo))h?-JhqJha|qmNNg2|+u32F#u-l@?YutPGPJSxSLK-d z6qnX`38ByS$Z|7#MFy$~_S#_+!IyRaJNUldIo#U&LSjt|CpR715q(`~9NHy(oc(>a zg?ECIMw)r`S_sKBUmWCL8h-?E$q5`RsL{wn{NahyZzg8FC#+M%FzKr~K}Td)Y5Te` zK5?xM%wJ&dl^15X8I_?^$xkR6YpJdd_rnDjJ}PxeqZ4T8Pf$nl=ItH7K69Rj{6%*6 z;$7m%DexKBOrx9NI;X?5OW0C_8G(O-K5PbUhkius972te?P?Exvr%eO)aEE%dduhqHm(tR^&V=sH|ZO!Qf_<=@%6aV5~z*J-&_1oY2XR!JqHMjXl*% zuUsrrhtHmyR`Q*2K}liwypnsuXO~i19TezmFa7F*$!bF&+^gwJ$Vg;pMjemE5G>(l!1=uuvM$AyuBBj)yN z*b;e{CwzqBe^J8e8MWRLo6y80wMAuJqZCmzC0z4$!~F0cHM<8vVVN0Q;oP6axws3#qcsYGL_>*w<^oQn7BH# zeJ6P^ilJR#xE8y{V6c63j}?L`ZtT(zbB(>w3>uI;@>6l-3%5dgYb@k^D-o5x^8aT% zA09$sa~f`@OGY)a?E1xf{)gkIocef9TRf+V|6I{~D& zjq}1ZpcEj>sPqh*|6&EUWFS%f7`gKJ)8IL z<5>=V#oo`*q6A_T=wCed^w8f%<8O?lD*oM6Pr`E^Jxl_4wq;L%L3x7S5b3@8Uca5PdH_+_SYe&IhDR zw?AUWZ!7BeOR+5NeG-I!|7V*Kwkv#2c; zyPK96%gZN;u;B3DQ9QSa+?=i|^5#hrTW2x{%9l;tU^*c`hk>819btF2^2W_2c%2Jq zsEvOYwnZQuo}fDY5+=pGOaZu)(XQKbc?7rN4(c%LF9SJYY`Fl)HEy-gCwd1rBk~+t7%kwOLWf_3G@Cu@X{I$Nu0Li30tw8!CL$}VoNR#HH_46UZ~+p{o;P? zQvKqp{v!SM2{n9OzZmSF#jm9nHnX8Qe}+sc1TyBUc~tzz2sGhfccFR=BFXcKX>Ic2 z3i6x2b00Asv14W)TS=8!=F+-fKo9C^qY85T@_ZoK{P(G&kgq4xEnysiXE~-bZ0f-t zoQRu!8ex?yBn{cz*{a3n8I59Y2oZV!QQHX-R_$la_9$Vz5j1|Pj2268OHgaQc@7qP zxf{9~I$Mb7FJXXFm$jG=_8TmWg`0ulcb#z1-@(~h;j@o4m^$mt!)M$iH|81Zl3TZf z%wiJUpBctlyEH(8g}G_G2=X+sy72GwRoL*F;h@1jZ#{Z*(D-An>C-LGe3KepVo8F- z-KFIA_fIXpHLCs$(gJdu?r90lf7#H=_76mdzucJVS9KE@eR|%pWxV-ngQfn1S`unl z8Md);Y{z}#&enEBQ7g~Vu8G!VasVL%L>!S7;2P{DjSJU|_V!HnBY!C%b8~uF%LONA zc4^VJh*$JUonwo>PqO8lc*Y}>o5~YudBk8QQ}oG<1NOOR(?sK0dvX(vZ=vzFtHqgy zOOu~n6Li13%ryOAX#RcB$~IgB+%#I})V?pF&-0uQ=g1fc>1rMsG6H`=SXccV3lcg_I)LIFZ?~$uJ z*L%GHYu7V-_p@Hf0yS=<-cXM~&&Zv(LW8s|h2RFS6V- zjoP*&6#FAJy8Wf*v6sMqx!>Oy?6*0a3*NkD=D>K?8P2P#J{%O!I(hSv;*3qRe#~^I zq*?FAv)*tj_Z6py?diXT^S>KTmLP%D4vOr|OL8 zhndm#%%UT8JQ%y*t=#9lWuOgI3sY{pJha&v(cLh!LOKar>{=Zfy1WB+S!LE(#Wzg1y< zU0?E>U^644QyO0vJ;gHo5AU= zSZ|CO;@p*=zOMbB&bQh>G;_HRkM$HiiEK0j@|N#u^C@NWU4x3&U4u96L+g@KQ$#(}e0Q}UjyDULtc_AM#o2vDE=U&&LUJdx_Yg}E6qMD%k<3@%zdD}>{j8}g(3 zJJ+u|Jm~DUHOXZ_w9c?5H(7UBBL=6hZr^I=!x1>^YHv+d0eqU$%^%kPM|*iy% z`ocryunuKFt_J**dm5jW|uN9+3uK>$17>&^lhIo_jmHb@KdfChFV{CMm}Z>_!Xjb zg)gOt22_N827ZaNW^U75@MBe7+*+?tT75@fEU@c4PU12vmU64+nyb32-r_-%S+bmy zeuo#aMt^t9tf%IhYhX_6(rg|s9cy~x2Q>RoYblvSu~RjXLt=B1g}!J^-FZAD6gx<| z`(Q13-Mg}i@5&6tXDg=1+>D_k&81oAuB^t2_ZwFmgRs~n$>Z6=pwuxx-gU$Ezl(a_D z+#)tK2QgzTD+-p}6*WOzj}0nwXxPQa?$5-=p+C0@6~oD)Mv!Ggu|tnC-gra^QnCp|P%hDT7*=PEC+Vd5* zdRxeiKIK%=t}}0IBU31YS!ktWq8*ss?M185A4ly)l&Q}J?oaUniqtB zwC@gvN7wv|8hFW_Y~N@IMlvR^%+L$;+mcz=(;=OaGlQuuu%+EvO+P9_`*oJg&CdoJWrT(~0TD=s!=GLo}vmNv^ob89UbJFpmIlix*u~^6ue>>JH z?5}R&q1llW3bu2;m0}~S#oN1C*8-$71!S59av4Q9j8Ff(dnxPM*OodhSdT8}L{CSc z8KBeti!XFE3;5SqE3~(XUdZDNx4)UI`|HLn&vQ+k*5_tB4NqKCxV~`}&w1`&Z|)Z? z*EP`QBp*f1*r;j$a!yhvzihK^7z3bbc~8~1j{0x)p1a4|4+9xGFwkXUV|OoWCft zX03bQGSH|0PEM3&sU4(stm*K_(xRIJcX;f_Rwgowa2RxU`+e}}Zd%_IaqNc4Zq0KXfBe>W z8@`&WboEEh3&l>xq9$703x6S+ZYowl*q+YBrD{zUErqzkp>dV>1hR)^z#Fg7gA>+^ztYHz2^)tLm2I3svWxd>~;4;IYC{GV><8fNI zJR=^?A0+GM=zIIsY3jS0CV_1dSo*xCiL!Ph55_%RFKTE(ro1Jl{_k7xJU`8|@P^AD zu?!Nv80H8Wd@Xi=VYGu1t$Qv#H2*ziGLEh@_rH&T zxLUWZtU_&x+=oS)y>;;)FmR686JfpPyH}OsFBe9o7%FPB8qd`V$gAG_EgWqw6K_%- z91PYy$NU|zrYAM{}{Q#yze-RsMcFhRi>eeiCdqC-%eDS;w zMlk5&Oc^Qd^U}?a1n6D|AirhT`YrQNompqDU48{1lUHT>4C$}0Cu4CO|dZKh@9rT4FJ@6Jh#vf|<3%)#!ceD~XV z2zx6KMz}X?hu!66I0VA@3}*lWq3Gkt9(NYNBfob6Zto<%S%dm4J3iW-oUqIOHoR;a z+$E%QvG0+PzRh&i+TW@hOz45pktoLvWXk>iHdCiPjf2va7%+{?GqI{^_{SK_mYkK$+zXQVo3;YA@8!KCk+-#=R zZqH+fkJq9|;O_r~-@yj8}%+=eoNG-XeXQ9X3@eM<|BFgX^%T5vuIuDfkINzSBegY=4rNZZ^|s% z9GW+fAfD_VIF(=AonM#5@f9R)e3ox@t~ueT+zFTw5^R+_9RPBr;e=>wc2P}c=z%8~ zzEJ747k!%)i%X5mnb!|hIQBLDpTx>V2h_0fvaGbSvb0;b%(T?J0czlTsHpf>WTZ1v zidHIG^8c*8&zU*Am|FMyJiq_*+|kWBXTPky_S$Q&z4qE~R3#G0KpAY$Lqe*Jo>Z&6 zHhvC4A$N>t-5oOy1dRZJ9XpYy2u}}kyW8At`n^^(XPR3@mrUO~t?rH=@oC?DfmA9s za>cQWD3;);fY^}IpA67%#W|FS={N(hV(J}8y@r4hqwq5p4!D?Y642sZa5qY#JxOTW z5w7O)hH;X=Gtw2xZo|XK8A@RV@e4Ie7%t5@Rc^+%IOA&)WfkU$xuv{u^s4pd%MTC~ zNZ+PP7*@NnEyIT8bXJ7|{&gqZ(V8sg-*Llwy&d(I53P90OvUs8$i4bEy%5AtSx68p& z$+lA0gxHfj*{MYoZ-NWu{myvH5Rb&PBtL1rBF3vnAfs(UVC!5AMvb_>fiDAkJC6p+ zki+vvgLgxwqKV~E!z&M=-j+!OJeb*h*`r=Y7~5O9 z5MgD)!-Z-$TXYoLfhW#T{nj2zQ+enpw+>#;a{=={B-pXlwf$lLDif5H3MG_T^ox0_ z9+WDpA8LLszZ1m%F#@dH3)L)tG)WRzyO+VQ9Qw%yTWoa^dK8ob83-tsR9;feAB9DV zsK?097tO931=_+;BOOkMcOpvtQjCxPsYERmpM88sH zMU9>?bzlPxN&1)PlGT8IXe;)$Um#!XM1;1W_C|kX9?>SN9hP@fc&(q!9Rryt8dK;B-4FEVh#F znwaD1b{!q`U|UpY+Z+rWs%>fv=Ah3)JE*1^dqvoQF&^e}Z@imJ+PfVJG}V|+16!$o z*Ppbp>A^94mXJE%I?$5r7d zN?fFY6D>8pnO&y#z9L(cM=%y4m3T7`T>q@ZDRH*picb#VB97~V)q7q}V3gh_nE|vk%-Et7^>V7norplQqc9tmVk)kYY^BYIx(WwY z;Guf<5-WUbWh8b$QxxT;aUrr-EQSh8V}dz&U}Tf^C^EM#paL?zZw)K=JTDMIZDr+_ z%B;wvlx#l_YB`0~@=3@DCN@b8Ag!I+8}Z+J?HU>aO%*vyZQ2UA zUwrGRNJ@$WHIKq`5YEO!2S7#FePP#NO z$4JEF{e??Ge*n^p6!cS!3lN)Xn|{RN`3G4A5NAJ5We;W*QH6|v6}uysRRou@IM7zr3GoP^}m4)TaX`n?2F(;FREA&E>@u~a>8VM&~|3@0@ds@?GoONIS~@rZy8 z4G??5vN2B$MW2c2*sp~#k3Ysd@&XcyklN2e*5H;kl)?I)^-%3h$S1esM43M1g(mkV zAVAV&qFv#*kSI^z1GqqoYudD`fo5=+rhN&`0yz@eCm@&^Q~W}t(Ve`^jpE{}3ntxq zi{cNsArod@MoC5xwisPQHfMwU5NuS2m1D@a%9i2d*uwgn3QBUE_E{ja^Pmy7MbhXK zU@+F(NomsCf+?aYHW(a(fRpxz2SU;u5eb{z4}=}cfH5F*(NQ~k;~RGN4A2`RgGo?s z^KBZ zCRL^W3--Gbek2ff2J2q6YFF7b>|{B*q3oi$B+#NgLnfrW6|GS<74~I6;)EswwT0$# zVBx^Xj6UrTpl`<98cEX65S6Ccz!;#)^fuJCcZmIa41J*&F$NXt&st+Q`CrDM0dtVz zh$YOv0ufjSnB;&KEz4nZFf_<3*@s~Rvf+}m=gHb)_u$Y2>aqecd4O9xzo~62+JgX+ zu1yKEkCB12UXwwbK@d$lvJb+K7wW({HhslP6pm1`g=>q*;^KkP0D1^!dRfa}TEV)a zFS6=Cs`Z9^*A-EN>X=W3{m3>Bmj~`3T1-GxTS#YHW^Z^y0*5HewW|p{yTHR5yH)D{ zCPN-~hpr25N57!)J+AoVTA*%6#u+P49*Tu6N3rB#z_MN&Yt=7nY#lAvt|N#rk2)23hEH>qv9wU`%Qi)%&s`py9Tj;s|}Gn3i7wA#alJ9g^a zzA=}!xA}!x{Q|Q+6-%C{wv_FmvHH~>Li@(x+0Cf2>DLzO4x;ILf>_kx4}sqHRl{kD z@*pwGV;&HIdU|E`fqJoTgG~|bGq-?7%ebX+oyHv4#;RYJbsu~Q#tFb6*58cjDO)QD zv#ap1=}K%9rWP!)AyH5-TZU1QM@y1}`kLC7Ym7uE8}6mTfL)f;WS$cmfHmC+0EPN9 zxo=ah7bIjPW*>~0=A3n{6-ytdZY0DzV zegz+FA?G%j7u>EgI_nox`ok1Wzql|6do<~Y=~(~En7+ZyoIA=q0{V@%UbKbu#=1TL zce`fuaI+#6%Yd!vsiI1{K8(sj-u5B@!-i@UdrUwXa>98YVTCaheJwu2M+ap3WWNV6 zWga6y7bXDW39GWgF|7B{tt50tg~6+w!chj+@1iODBOdyU$I)kGqJuE?tyR%tY27AY zvc|KRkoP6j{f>eV#FBCCDhQIUHvLMr1sq%@s;@Hu2_dB3=vSFUi3Wz+E-It=k%Pf?OM&Vw4Xz?KOkM=pJ7SDAObzy`9m=xz{Ej%S!}5fMK)7sS(k z13O%EMs`$51?Tfw(2h|dbb}*yUv$nI#_r4OQy9{@ zETl8PFRv}XFRxXpqm_7Jo}I4*#$Wk`c`J}DHC}P=!$y$6K22zpADfSV0V*^&Q$ z$;hWbw*fQZzUGlLF+{^G_H2@hqf?lzE}ti4gdrt`(0^1GLLH_m5Ux`n?K9a#UwFg2BE>59`y3)#YzwI%0W$b0s zj|f6${NO1lKXtV=6k*ugEF9W>GLndKaJUK@NIRQpHShol%sD6BaLSf;F9Q&RhyZY? zb_cdbb~D)tFOqnyzg)zcMyoQxPvQ`UUmp6Z`P6S~SBv+3W5^?JSiwYOnYLI9^J*(7 z8Tw6%e7Zw6K)YIzmrqGzH|6FO!z|Pp{ZqNNns9*8Yl#Vix!h5HrlB}ptW9oE8$VNj zteJb^H>{iM>7;uvM3U&fhNWlpL4SG@-RF|N)P3qIq1@0VdKGS^7)3#`ayx+Sk#42t zoSkmw0}Z*wRMo;<8VC69hDjD$T?#9^z|3tF8vuurq~bHRu2hOe7De0ip;ZMe@!=>IcSdQY^Vh;$OQ7 z>#oQ%F%0&C)aZrxIu=tVqtl^%qn=@sCe~k4PqfmmzETyStx+tYo$vTk z)5p@g@qs-Bcai$4ukk$q80MTBoDBUa0u*_6ii?%jT4vz&g%!O5***vxq zJ8nQ2xnC=?Jx{TZ1)jOcLmn6KVoFTGB~AxQoWg&tke9zxUsu{HBA zBOw-{!O8$OL+@7OM)$3o=cKbcd)>_?11;`_8aEpFXt63~UKjrok`HB}?rwhSKy9Vz zH)2*y!Ga1En9v;?7+axON+(rH*(02g0R}2yfUE6+!8|OTqXceMqCOY`gw$C5c7^;+ z6}YQXTSKkP7>~b7Yyr^M6ljYr?iv_lkk>fad2FV=D4jP%BO1Kt%Or@zF`yFEg$NXL z^~b24WGS1Zs-iZ+F|x12ZffA-q%sYu7+TeC71Z;Q93fEDiM)Wgx$IoX3z8f`R5C)0 zN8N>sQ#y_?d~o>(@u}NedbJ0$H~5$OmYVC^&FjyXiI{faqLD+JW+WvggB%mR@iwnN2CoZVL8WY_HaD$^YFowPg!$j+|=o3cn#|(~Q;W-o=q79;> z!Jz~+lFVJ4l6f?IBE z^rSp=;QpE`$6$j)>vqGL2{niWdsqd#ZwBd^RJc;b4hOzcZ>8xJQ>s`D$4Su0x)Y(= z%0TVvd2MLIl0?R82oB!^5-=STu#SAJR1k&5A+~6N3yTwY54LzgB0AeHI78&i@c-`PG8~ZNIt9`s~FuX#s!0L5LX2EVFIG9p`?(O z9_aSSBbE+%Aaa_wV=)DZWXB&^;Q$`OD@i}cd3;h^`3Xu5^|?xILxVKl4uUeXZY@%a z9i>#*I{WUAsIM?z@0)dBd6=iN4Q|UszB_{WTE&LmZ(J=yeT8{WYaAlhCsssR0l<8< zBMyW@pIWG^E`*$^!-$1WxU>)4L1n4Nxk%+|t_(zZBaNPCdbK-kXy`_Fc0HuX&xN=I zji`);A+_eK3dJH)SD?=<1T2d!JE&BuC07rmfC3ijW($#E}Nd$R_V zj+ER!CyU>X;_q!7AJj<_siQ|Q~EH-H^q`SfG1Ve{njW{ z7Ry*9p~m)fXY2jrtWS4lHynT&+9MMgo5-Ll2evxq>cDgPp3f~}Rv5X^$a zSU8S)6L_jdyy6&%L^ANS(b#^p6iCBxAHq56s{MWlBx{H_ru@iSOsgmzbnzPGsRSP+ zXXRZMC1N3b70lwoBX}@=+A-BgH7pvl12T_=V(Uoqa7!1w+(ko=R2{*2c#GAqS;H+!qiR(gar> z3XT=$l`FXq@1v4TK1+Q;-#w zwVNAXvBHWRA)*;bXo}4QG-WN|Fhzvw1yrLw9M?b(vmM4lHyqjrE+#n+(mEbRmnr#A z22pCy6q&CpaVQer0Vx+~*q_3L1=Y?0eAprrq5bkpXraxiNx@5kfAdIj#bAeMTul^A2fZ0_Yn5(VM>?cb#`cw z3yMNq;+Tmp5bxEv7tt}5zt?;X7LCF?QnwaUS4gRS93DLNDs)?p{yar4F?DzT{whJG zjulYXl7Ab#OY^G>eqs|d`)O&4eM$wb7YiBy!H!A{8ie(Uc;?n)*~OE1QG9ivP*Z`$ z|Jj+j^@A~c&sWQ{^>X_()0(j76u>2ME}BHk=$aVr9SM`;`G*_wh_yE z_-WZMuqh!@8|_&=P|7ku>#&(_^<~J_u?`wp8ZEi?;fg#uZzi`sS&`>pFR8#Jw>|=6 zDNN$9Et^Qb74`eaq1DbK#} zHQ-ZapT7y!8ZwP(wnLd+wc8J{r*wXZm4ha%sCCokPAs$muMNStqY*?}PkaD?vd|OY zabZ89N0iNfA8d^IS{nbLje%Xt89@ommcjVLRBy<4q}q&BIOxDLC<3McVyr6r`{b1b zFWgr|<8FAp#9#-3Q0=JbppzS(tQPHnnp=-;px?0ph~SWHKI6iiyq8VYLRM(X_O z@N;D0k3^3o#CMdT9pOAOkp{GY-zHu?jb&ZPoY4Up1t7AEI*z4?C}L&cxp#Kv&Z+H* zZ=_qWkErcrU&SIaIl|uoy5KRL1s4WaU<2$TI?9D7-hMbJZ|M0lOSX?ZrdK1g3 zUKev8z;k~cQFz&FUxL1c^Y3|NvBu`}On===$PlYipNm!0I;^4&$0}+qR#69I74=B0 zq7J|+>c>RrB9(&xeM>yg$&cPe|K84A9j`+=a;~o3Uc_GFR8N6Wm!ucL>5UP znaDkp!9(GS{Nvm+l6xBA8G}BSdye3qbKyBfk-v_6_FoVVcNco}8l`rD_29fk0b z%$u~HgU+ir@5r@Z+=EC_S8}gClBM9w(ab;P@|(7tw*pK%rh&kz!-*Tfu>=W%`t$q2 za+2V2ffj63+3g#g&63*RP^2j|Eh9tyydJ1pnr?QrO#AE54UrL>r=uNk&XsTn08Jji z=!KKnb8&pci-kU)W946=F{)z04Z5ydv4qL^kZF{obk}#Sr3i~V6xPpZ+TK|hNDPWZ z_i2;la7;r3lGB6sFR;}uSj&LX+e5affiP_w@51{q+n6BS@Y>ZTZ2?1Hf|ek#+Yi|O zCtEZw%P@7pqQ8Uoik|4wLZ;RpH(zUI+KcHR8V^%I+lP2SsU+{sKMk}Vu@y17x*gLL z^Z3RO+e<|NjsyR?@&$X=i*5c2E@8EH0ZJhMB^2j*hdy{k%wTvn`{) zJe-Mk-`#FIX_AD* zzy>2%HIniq=hzVi1sIf%UO&J=GuG04F75xL^Jqf+V8zb99~%&{B0>AB{eUmnQ2VQy z?dv1kO=rW6hT7B4s^;mN?^k5|B|UMShgIvj%TWuPoGc02OXKj*S_r58pj0Xlf|ZI& zNAQ3HnfRQWLjkuLyjk|9`SJaKSc3zrS|n!JY$oqoPq%X4GAwcNW3352HBC@xSPu6h z2ih(*_oV&oSv0NT9=JQtdCdq-VeIJU%dR-YnH1Rf^nvI6oVHly1a^mAgGM(2d*(-2FJY&9Xa9qo z|NM6qwD-2Qe?=2;-1JMK&nt8wX>6tMF&sSyGd%UJ=?zX2Dso-fx{6TA2~)K0S= zuwL@Lh!p}BYEEQxg6X23&uY>c^fbHJfU(HQfNhHWFr;$Bp0s&dh#H%PnmXyww5^IM zb%DD`CNq1ZUG*Tq(au38R*uYj#rFvAwRzRLADJVaP`iNo`^G0cLZL-ng-haw2L|kZ zVUqQTe}nISY%6C)0E&bl5gtoyu+oO(h}jHGP89=oK&k0VYy$W~-r8S_<(NFE zeS_2Ufd6H-M4)yJKoU5bdTa`E4vxK@YGbEExRnQ#TG<=!MMCWmyfyvN=Z&ShQ+K9v zF+x1D6W=mXBW2zdnL8e&$g;rKM9lucbtMj=NuVU8swt4Ja+I|ou|Hk#6Oq{dCah0l zm)eDI>u@)Y;2qq89TbB)JZI->JWib}t*t(Tu>c-%&g6=Py-=Y%a2Ep0w2PFrU7cO! z`%6eImjGI{ixgj(7D@U=7bleLp3c0~C(tRQKg!Knq%@9zesctR&Oy@uDE}m6QM-e} zM`#zBYT;7}+thHpE7+#SFbZEy;Z77jLjBvT9YKjCH8Bv-Tt#=5 zul-34ul5yJVHn*-m!RSP#^=~rGyeeU44(o}=Cz|(L`Q!(6IUUzSf{)_i{r6EBT!*S zwtbB~JPpL;N(4m3Z(JPn{0f;ylYE} zBvpKB4X+Q3B^@ZDjc0WYpXabH9xd=?yncfaJjSpLK-`}|WV>Y{0fe_dnXe{IC9z5K z@E6V70-++Y<8%n^I(rdM-mb;u)Pb-}51hl*5OyQWRgwPyPpaoh_rqp{HTwAvbKhco zTDGIsyP?)Qqt<BSLt6uJcC!zU02EKz zr12%ADfIQa!q`0fEAU3>QlzwnvGE>pi63Z2T+$C#Aev-yat^pD^k;Am-DNCmoAfHx zCuxLOy}aFi9mXTh1lfa~4B&A@viI`kO5lG)L)$1ETY>o-#lo+VT-pWgZW>FBooBBr z0G1fPkUcEKiRDRb$RPgy2X%c-`1{SDXh2H1a2CRPAzX*St_bD(q~(E3zvS(+>^GK^ z%89#TQ7Wp$iGPI?e=KJhg%D@^c>y@efYNwqE(dn0SR#aCQBOIrl}E*<6orUVQ`(Wm zn-T#BjE&C3S+U5H&H@tqS69|<$eKxFPs*^K36dNJ#uNY$>tRjfEgKC*U|S2&zw`1Q z`4s|vGO}{r2RpM0Rm8^MbCJ;TxmeXw{c=^>dc^(!_6VV+-X&|P$gDN+6?YCj`P~gR z46Wb;I|NR~_=S%c+3-AoB<~X1fx^b!{n;m-(3D%Bgxw(+=;hWM75UV@k@&-}Ky8d_ zUEta^21hmcBlg>&NDXTy#rnS*#0DDsH@O$_ZKQ+aq949Tjw!34 zQ3o_y6yV5e_E?ICBNISfLb*|U<@V0xFF8vp@)m*!g{WXdRzHa;jDwr7f~;Lr`KA7} z;*{8*GRZtCpO+u`i{*zzrtV@jqS@_t^YWuFk-8AO2Zl~E&`^t+DKM`RC`mkP9|Ewl zNR&T}R8BeKz0OtZ;W)FMNs44e-bK8CC=0eUWs~ndaV3ClREhb_+ zt&UQj*vwi*8IA^!Oo7yRd99O)!4thWtV&ODeskr@G3f?)fbue+keE^AU5CX1LEL1m zShSZ30!V~9Zi4;kJd1B&xhnGh4J1UI7t%at5jO2#gfYuf$}E6RQg1{uQC={E?t2_e zcb2UzyNyT-bQbd9hD{(Evv_5%aZ=-CHK<|Wg@2mIJBoO~evt7UGBNT@w}|G&KxfX7 zL0CT#%@ieH@{mC@WuZB zXEdZfpm-7MP`|*Z)G-f8<51|{4wSSTM;(L@16Vq1a1=e!>kOkOI-SAvM4v-PqS0A{ z-RTMYGRGt$VrO)GrW|;nnhkFi;Ti&GK^6AXV?ph zpUz%T{u%5A1bCXgfC75<0uqd5FX5C|vLc^WpaQYopEoTIN#qavQZX!h)cu34bi0Y zyu7Vv1$NK&r9P?`^-&L^dtzZ75QdNrI3@}?K*OiCCDPEAqAKz}0J|a~4xV5ypzLzI zi2bumZqUY8k)M(g4lL`=!Q3d?&ui#CiThXKopXt^y=&i;yd1BAc+SSV_InNThKyYZ zE+TeflTb!avV?E0XS8_kUuZiyn4FWw$Mw+9pbq>7wcsLDf}b0+=r}}|SQH9S5QMKI z9jT@AIHyFe!c&?Oc^DYGi0T*s8cFdbAvyrq@BtUhHTmq8ttK-}=K+v6_oEJEIvzmy z=T7=ON;ok6HvsrI#(6nLAQH|JLvH1zZ{IBPGqT77W#XGSVF=>{E^+xplUO}kpdd|q z1kk(aKM3zUXGau7f{X@qnuqL@E-rPA$IL$km6OGa_TnEAtw;6=qnPGC+jc)J;xh_( z*KRF0U!9*7{uQZpu;GO@6ufd5W>RSlOa(+>T|>c=rTFf7HDISPB+PuHt?3y0bkC|< zzGR0T^a@$q2TFf2HZ#!qW#UoxT%X1_cJ1@S?n$1(JP8vuSs9@%KuTkUntjtqR2>#M zmKYE8Jc?yg%(y1jui~rm-VN403w|ge;M;Re(@M{_F@LYpxP23FWd8TCEt(tVD;CZK z8!c#Pz$%=q(ReoCIhLM1ge)CB8(L+zGvB~I3l-iA7YY3u8b(rV#lpexz#a>02%h|O zkJw5_7krp+xGR==WzT<`_o zDvj;STTAb|w!`pGosIo|*ipHTCh2EEs2#FrDhvNp18AfTW5yz+H>|Ei89VJegf@^r z6!EYdfzBD6v<0Aq%t7XP-8`~7k!E#tJ0GyO?cr(Q@Aa^uOAQFDTzC#y!y; z+(orbV4&#lXVhjNAJvu?mFHIi9U-3?+C6hA_czD~c(prDoMhMFTr~4Mk5<<0M$Lj9 ztQ`E5YS#Y6^tl)wd`0ywew*?AvFv*RzTc#8EX4FF5Az^|8UeFEUqQC^4n{Bgv+S+A z=|y5Zh7rS2qSSgU6eauooF0G!FoGiqHDwQ^RC{plB7t^9lUF|uQjxF4S2JMdooao z?F54c40F7pB~wjP-Bo@8P5B0pqmcq_KSW!gir>?LbYKE6&fsBIfq#pKYH~i3{(_%q zeyv>H4Jm|jwUQo0w>C6~hW%udy)mEAsrI7Sp3p7qLQ!xiJdO!CX%4*G^fN`2!14K$ z&gJd|$6W7eoHVbe8U598bG^5zTe-%2ApFZUJ`b@6Ez}owZ8z6@7)Mi?;%T8GMk(3d zocxF+Fp^Uem}~G5lfb(R_r8aFLo)y*+^3@Prj;{@Pjgs^Pt_-z;Nj)<`SR0Uv|tTq zetO!xFoW3o%a7qhP?OO~yWcabfV_9P9{(>*R2Ef`%d3{LdRa(z( zqRZv%b1~VCu>+2mdcekJG;qL_+iokHgn(pEp{WB@!o&wif|ycqCZO$~G+xJ5YMp8$ zoS$^N6Zf7MfGw5_t_c7>uk{vsu;C`HZKjD4OnvR9)&dZX<`n(0L(TfTbflNmA7dVY z@8X8&5Nt0}4uC?EgCBvn(UpV>33@?(7Hau+T>b7rzQg$U++qChBW_w=HpwGS8bx`^nvc_7%ljWp^${C^ffm%G&lKiIIa9*I zTD=>LMpsqNn~O)S7s+eia(u>GuP$g1P{H$Xo-`gL(;&vEKW~Wk0KXiQxS|Nt!B;HU z>rzeeEIX{YDBQc<&dv124%s&ws#_V~_Ajycw8gH6>WnM3I3%wI$$h!bfIUB-IU57# z7q-3vC;qB?Lt|(wo=q(75qzToJSpyhY=~-)+t|M=59y7}pqQ{G2L55~X&@cZfFp}> z5`(ET^{z=YI~zIGHa7~hYE#VDTba^qvE3A({9-lXt_Yj98#2=uhCX)GdI$=Qwo;O( z7ug|Fp7!V;(A+NL09<{ge@TJYSWEj>xC}n~x6uJP-Lks5{Zf0F^^X8->`V79Xgw95 z?6*INRMJ$S`Fd;9@&o4)=(fwM>sD)1d{QTq1e^*t#Xn2LKRgOMT#^a@`L-P3e}&_( z>jrN_Vay{iKw&DkFt&>82SB+KLs=}340G#6+I;Rg+CCF97F+AfNJN!FsXU8Np4e_~C#Qu%^=x#0Y#I0<_75T<9>5`F`LpCW%MI%MoNE2FIp1)*)*T0%Qi z1*7xD-7Ubf4tO&Cr9k(CMORaxJ8jYZSfKmfqB~QdtHw#ZbPNHa_%RK|$sZCutw+VJ z0dm4(kAX;7Nl17Elo>nAk(DN8#{pR)M-frl%1&M7U5!-D^4etb9Qp{|-^Vn8Kgwv` zjIoO?y7Q)$=-EKr)|-~$h4;uf4;$M#7vo#fL0tHY^ZhtLoYo6r#-9#>8mq|L4Lodf zVrXA9E#DO<&<`kAJAZxec7v^&r*?C^;s_k?9Xzy?#5;| zzC6G+@s1M-uJMiwGEHGQNx4N&bt|{AE#z*czGYVSW_sPWK92%*)xJ0KcUjqoB7Z-; zm<}gVis`?Qg!nnA&gnbALMauCx8pDLn6^yb8h47-L-X}g=LsCf1*DZ+4uWfhR z?ptbQ-&S^wJIk(iDW#_4B$}k|PN_xQSxk<;gkDRvufx>tCbVgRT^}irAx-xWaK`9} zBFSSc7umg?GX`7b(K5drLQ1~+A3gt?@ua#Ky)2!<9#DH@x8u3ajd(=jk08ioH4fYL zv`sdSGhfF-=}use&y?nRH)Brjb)|8V6CiYMeYHIrFfErgJto6+7D zyb1OaK#--fD_Ih$C5!EU%v2IE#DqAbi<04rO^kWj>Rm@Flw4$vi&qdptLt$>@w@@- z1s$P@7STX_4e#cTWxUoS>IG-0({;OuJHzdC=nv$wM*trqco5ESjiZ4v){7|evOrua zR+go+n$B=Y#5ZKdx3#T<1L}<(3%Y?=)?d`ayLp+;2O~~EJ(d~#V(H9|f+<*G7qB|I zn#OVR@}h#+MGP&JWCIW*{`A|$u9<@XW=DFGUUpy`rZUa|7S*IwA9Q{d)HZOOwt7oH zBt`?Xe#5pqUPklli0I}s7tLjXs8^h)&d;?XdkX-g!_Hv{ zYvXGU*bxtV2*E1$Xv72@v}s@DM$^5Hbx0uL6GS^NO<3tt9k5@q^nF4|chdi|Ef~i~ z8ON}d^+({jP8n#bRus;|tN*UTZaAYtk#XHQr-Gh!%9BvB?%&9T$%FQ`07(o%1nD~GQR}sz<`xHQm>rdbcc}ivR zM!NYsB`%{)0NRtj-%_(DjY?l>e~l+QMI9mGq7=aemqIerNq3d9QZ4Ea#wf_Gq5AHL zSL-#$(|9-=9jA{tem!J+#H!tDzQME+Y|_2a-RJ>Bq~BLqI)dF0p2leNRTvQ$D>R4`#HurZm4l4YjK>r1|U|RL7PvHV1I_fiw zY%Fw=k>^(0uPD(`w+Z8SG52YqHyX@=N-_7mc;s}ds86Xh8(x$tR`IqCj+2@ zu=g5=A=_UomPYJs(ZMmXeA`OTwZke-9CCEbr}r^lz6j)i@*NY)r@{ESY5AUqA1|M} z-EEbRjzXd0Q9*BBL=l0U5LQG90pbvJ%_s#9eE@;2x|KF{y6t&yt9CIen8c!(u+p7G z(Mqd!l})>{^lA_PZNA$?D0vT{B97VpOOCak2D700$qQw1KK!)OXcYy8`M=_1My5DFvc9$OdPd@JZ@2{~MIxc_e6DI>bL!1tDxvAw^Y( zIVi`srB#nn;i-^R#QYC{IgwzQ8jA|^mY`A#pM>JQHeipUFb-5dRduS$u?XHLd|7ko zLjpzCCcq_%{ArLJP5EO!{Ln_*Iwm3WTeJVMk`u5yHEsZ9%^JXo|FGs47tFZh#J_p- zYYTaL3+@mTel9fU4iQS8M>G1#xnn9CSrhIU0IG2AkXkllkH_HMggxjWBd`ND%Yr@D zQ1yX-b1XR1fj9%FQ01(3GRLvjR8L?L>-9p9yKcf9DX2A9T~q%@+|2769FoT5Q8Nx1 z*(jAO1vq37QdI43#vPvnaTj-Fp-NrcLE@TmM>4!||AtSPqgXaSlC#w|KOM}M{{%c8 zbmTANA3)0~=_6>d)0~aSgL>o8R~o-<x4H$zVvfU1DnK{<;>$srC!L z2THrzQHWWSTg9<}Z*CRGKt%$5Z^2)pWS)f87fq#)B&J^>4!WuIX^XzA34cX_t}XBv zor~9mzxKn+$zS8B@^6#BZYF$sqTXG&HsdckEx82=R6}KGR6?f&`kBhooWGujx5QsY zrHi+wi@a6qO&nJ1#r}HGUz;h=L6S4_fXg>m7E+o6HWVM z>vR&p=R^U#1&qpy=YxWxxV7!!JmGk8^{cGUd6&DBZ5owo9qWU#TA%Aoy}V7knlwy0 zrpZU_dZDuCmU-VY&=4^mMd|xX3z&Bi2;;;8g8Gh~b1g-D2z5bX(3U zTDaeb5SwwOp`mKzR3OIWg!p>?chJoK?ZsoUJC5N5t9T-ztaHw%QBdJnw?N%m959A= z924iD^~rqv(HU zg;OYkeb}Be#y8EHupk9Q#l z-Tc9xhPSGc`a zy80`$#~(@MLPUI-+C8GyA!XHH%xWXn^f_+{<59y?5jClHEkONVyNL!K5aVp%!4jd7 z<|0w;o6e%M7is+Z0>;xB-WXEbo@1v9lMS04OPYfh#gZ!k#fD_#nLmt(cKF!baMzl( zwA}&p{Wyp#{}=cb>ei4bCVLQYXdetO(53+gpK94DZg&BR{L5DDG7Of>0Miz{*HZ^>K{8UW$u@=D#i{NE6sBDU`Q=tFqUoWebRbbI!uZW&7o_8X#u#VO=q*Y% z25k%VQ`G0_GJ4XEXtthPJl&{AVu$fYjbP*N&q>G=2$l)>y<h8hH+T(alLI;7WPAd!0iDDi$t~s)S>1tu}&L+5FIDlDg#h1^nzt*VSzZG zj$bt4Z5rpx4%uZzive&lu$9=?ucH!{6#CrHW;m$}2coOtE1jy%^u3{P2-x#qYnJ9u zrUC%P#eCBo4ne9K-{Xbdx|3lDdDvrQaO5pUYA->y4(tN2T_*QWJ;*XRISR5Ok*22a zp?T~f7|yaufIV2_3o{i=q}V}+tUO8CVJ!r$A_^C1a=ShDjN#N?id0ov-vb+_C@MxW zEkva})MTz-$r2$tSV(u0rdV<+tVgbVTQL67wwCstH0EobrVD`S1jW@HpRwo<6zG4n=nod?Yb^Rhh58CHQDamcQD6+I{3&#+;r zA+roEjDu&HwoHkG#B!nwv}J`suXD8?2Nh{|TD0Y?etMX%&(97Dh~0@D@hC1G;RI$y zQYKP6JkFYs4=kzLN^`jfM&^}x3(!`~|JuAGh3~r1+BdWKIjd`1;YcdW@iC>fZOo@t z=H0pG>!U2*g%e;E*^pghJzDT$D=aSJwwnAyrh{Iu`OxB{YcR7|CO2S(6tWlV#{S|k zmi23edV9c;%v@={>i$BVJ{TlABYeROE%?4d*2j?$CwVxvmo!0GOr_ zRG`~g5L*rtoZ}ISh;y2>dwus1-&5BDZtg8c?u%ea*egXM?EE)1R~)caA|o%`@l=po z4a1v7TgF!I6Q3e^LsVytunMj&JQxu8z4Ga&_&f9X-=CXOpvS7*h}}niE}pha|H`U< zKNjya4Xe1-)h8!gu(7oGp9IACejd9Qcv#h0^7T1W0VUHrzU zYn6osM~lz-f3i zi1)%WfBF7w@d@uWs=_C0im%L9mA0NzUHtXLNf-B?J6c?7dvVzP{q_}qvd~sPa`|V? z^84e&X}8Nif34~~e(uIE?mwzJrF}VEcj=Vs7R9`2@S@r0-iYnHRy8Mn|A1-JzEr(D z=+fkjoE@rXKm7Deg4=G@r_c16+VO{ds{VDAXWG|%bIW|z*^TZq+r6lo|9SMejk{K> zj5Sws!tPq98hiSc@86oRQPq8Ir*}Jb-l7^E_=JB$@K>rEv)9KCJW-;0{Jo(|hx%<( z{d3B|ja@o#S7kiv6`oSKy;*)$9`km-o_#>Ia`RIUFVFo*RcX19<8fb!>dTA8g-=zL zt8%Kte8wHyr|LcB+QYjKR5VMUn0|0s{PU$MyKh3|*#@)9E$C;<&-+)XKK)R$<5Jcd zRnKkPd-UzQPL;c0pLyy-8&sFNScjGE`9f9O!Sq3D*DqC-8-^cy_w;{M9ahijI<$3( zs%+86kL=%9qPo!L?CI7KrOy0pqsK4OoW7vi=r}s$ecc7sqyOmSIlR|-RrKh(t_P<7 zq?&fTVPWqF&#A(f_59C_*t4qnZu9T@ZcvTt`^CB!(pFZhly8=Pb}svvYMZ9^g1`EJ zs@8A*iicB5RU|(IH3s>wYXsVRI}6`4@gxCDKQ-L;;)aG2U?TZF2EYAKs`o(Ql>AzX zr@kiyG5`1b9|itLf&Wq9e-!v11^!2Y|54!1D9~}=Q*D3Lzus|U;JrO!Kdrj=)0y9n zc)7=<2X<}#PcL0`cQQcS^p|N&G-PC8OM@{nnfANjnPxKHGFfFQ! zMu>V&BUHkVegpPu1k8E~d9pAy{OI?p__WBv)`@;?_hByw;;ckiHO6h;fY}Xx^otXp z^d8j}S3@E!UGzIFK3B=o)ro#{_Ve_sWnn8tzXNzuenqk{yBId;8=j61@0V~175xhM zQ@s{p!UMeQtHiK}>9RfXR|2}^0#CK*S0W3WCYGT}^sC2{bk23M{Co~@zfkeHK^8Vm z^po2?=qTaf#WF4DuhGn35vI#bp>~Bxf288F5J&@v{wa$*Djib_r^w--ur?2--`k@bBDjL=5f8%9Vf>HrFVZ~)RNy1&VMT4C3Sq~Te$wh-5T{FUNH+$zi<-yxQ{ThB+ez`Za(_Y1 z>8up#tyDkCeuu>J+QoYQSv7CxuGxNZ8$|zpBHVT2_Y^Vxu3`>vm&&8>b4v|^$!g0nPTy& z;^jY~>XBbNVN>^V)zdHLr1`%7uDV7$c-Fy*)oSI^FZA6~>eT&BD;ADQIir5?Y{b5* z1H09GOYZ9xyZ=pfYDia`W%V?*>B5`ck9EFFojmT<-SeK=pw9aE(-*XNpHzSKYvR9N z@c%)bH1Wvcj4vwHZ|yVMNh^{A1qSeD%hzsly-WrxoezBi2v7%JI<`B~QkO zt7iP9O{ooCu6lgxrp+H-+OJw~iuT+a{i|w+`^c_)26s?D(`UNRmHRrWSA4pAOm_ag z>Src8{xFnXR@DR~&Qx`{cT~T=-xV*u7_2Jp^x?ecluK3Wx@C{v``b3vuKY(Yy?E~# z)uTxh&&)Y^O%=X6?8^%&g8HT6myQ^(7mVs(J!NlM>hGhp(HhS#Q)5(TBLcew4_Kl4 zMnBR2*tLTy?dl$3?=SgX)hcRH>bc_`)erwTs`S&hyQ+&yuU;%pJ{?rOS$!qU$2_Xo zm=Hd2>Mx^?e*MPstvkb2{lhvwQlGU%bv zCkg%fDkmB;O)17qWl~zk2&FPCysz)%k;d`fbn5`Rqw!df{yeopdi(`;p?X?lhs zAuS_OnPNztVT947d0a8V?D&jXh77?gDkE(MdK4wR4ar%CL}h03jMVrPWuHW4zdo71 zBb0qI2YdZlG=xTnj}9L{o*rRQT6#olM^6&MQ&J2w04X^&)0kmOFeay^3SlW}@y6uT z8H3W(l2eUJ!<+;|Itz$4%$RLRH6k!ARhblz`VfRrLk7dhI5*v(3?CAy%$%8KN=a1C zjL$MCryC5ZcuP%80nS;;@k--N&>|x()o4gf94r_!;!`t|&|Su7WW>+yhjM7*6O{x> z5F#>zh0$eGt!KR33wrCvuDRQj+JVf4Z{3JrV_@Qwfho@$ml9G}Wl0jf)V!Sb4 znP|vN$Vg5%re$QhU@PO3pkDxNmLVgPD$9vjoP=1TQUf>CY&>A1eo?0cDLFOWWE4vz z5XCtRWolZYLC9?leGIN2T$KloM}wnhYAf#OI}0uzuEbL#OoOAaF?f2w)xjNx6WVBm z&j7=Y=W4iVa2?@F+G>Qy;Qk5c2N>%`xCCPrTrONu2aPZTE(&hPUD%ufM^6a{`c8+N z3>VcN_`35j1Kxe$ci0R0z`X|-1(yr|(d{%s1)TKsfq!qnuM@*0*tnWdI1ER0F=6^$ ziJF`aii2*EQQ8QQF&yK;`Z6fq~sKXGA-SZ3jQHc z@WjOM7%ljQ$IH$DqbZGP&7y&;Nel^LjQN!58HP;a4uYVM2#cJk3yz7=hH`F^YM0?_J!?X6CSI6)P9}+UW2nwSP6S zHX^i1QjrJZ)6)&{jH>ZU&e5)>(jvaMm#zg|Z!00yd8jrdTo*k4w(FeIpks`<-2@b0 zGd?(C+-)Y{IE@e2-9h}Q;LzKQjd6cu^hl|pL*FoE8qotQ)6+7Ojp(DB1RK-RlqvBU zGtk#IPA6+$1C=oubGh7O{2m+YByCfG${E7V?R6c=@8bC#)%{) zW+NFiw}hGWgwm1>iAtdRWcEquLw&zCHBpInMbc1u=fx4CO-v*vnNmj^kPv=GCGmK z&M>78GA7S9C}CB}h|ieoio*J8(my#(g(q02O1i5dF;mpEsiH!|Cu&1tq@F^oD&S8^ zSa+zeVpt?T4_I4%#rXN$UESX%D#Ov`}%s_ zGXBk?P-cS%58?k|(HexJq|O>bRx1>eFdQOcID{2oaDsqgi*nRR<>;`GxXCe*!EqXW zSR9FIfmV)z4-Cpg)9iHCPot4#CZjzKRH7AT%pKgU)C?w#U;cz36zF6HEm5)M1R^Zq zChd$RB3J^fZ6=653@=lhV}y7<_Gu}IS{cNOAXH?-t_qh9NAD$YqtSR`CI&~u#pt5I zTLKUnX3#=x4z5DY)Mof`vE1xRo0at?giRI0``~#V zG^v3*4p#wJ1}CN6Dtlj#_qDR`xp>#fz9~(Z_^razIUbBs8WN#=xkh9pi?|G+dWn*U zIMuKe2sb9A6XGEvl2E~r_09(Hh@ao1Bb1>bO2~xJMgU~}FEGGJnZ|h|l)Yt{AkT>g zs9Q#e6NnF`s1YTlky@;jLldIJ-k(%R^l*rrot%gffQY7Sa7*KWRA!+_OrDVp6;~3T z7&c%)&yrym&jbx~>3A|Xk$;o_dw5?5R}Hr++T{-8JrvV@FypQ zN#D16Dv|aHq^lO)1ieN$3b^DXT%~WnNf>iBaXEf60C4mq$g7tz8iW{S%4MvK|6e@b6!&LU_liABlh)5Hr7)Wd5S+Zv$dIF^|J$XhP z*Xx9oWTP>~AbmkcBBePqJD%+x(hSlFUH*UMqJS$oInLAYeJj^eIysD0O<>Bym zfJTs-7!M0BGo^X;i%28mj2MNCqsd9iRM=ICgM3{o0ZD*&C*2bZH$P)GiG$?ADOhs36ylF(`Bpa6#WOJqw1+;Bv2#-A2MKe*Y z61d%nR3r4eN?1nYjR`ZE4xBkysf>i2%ScB5%q+}EgRxq3G3OPYq@*wi4(enxAudQu zqi+*TSF&975m0Kwv=ga_z&Gn0x$=~Ab|Y>WBZL|_p^B8l-#CiTOK zr1i5QHaCc1WB|J>`f9M07c!)gAr%IWjcU0yDvcN}F*!3mC4Mf(P|34rL-&BqF$LN) zeonrXp%{fBO=Ls_#x+`IFLdJSBE5?}0h0z1=tLS}?*be>Ci026@sT0==tkvEXHu6` zW-=XOKq(4r(LS1u(WSxJ{jdto#Apacp;Q@NBco_Y89Y8NYCOPmLCy!fu-?(&oy}~p z4vxbGJsDt(oM%HkGct?fUKtiVK3XdS9;yus){l>g12x7=eS&k=MI6uZDHqN|F1sO> zir7d8n*gzbSTkPniO;}@LP{L#o5aN6*XHCzY6&lYzsDbae5n8MM~1qHIzBu)CN5eV zg$aw8NScI*HjpI}Dj_utWJ%>rWqiW310rHu09x^L(WzqMg$?BAN+xM)H|g=PaClK= zKwQlx^r7S-GK?WIj8N6_pls?48mm$g8P!CiwInF04+TSFvV#$+>EJihRU|a^$cb^G zdR*b0H+H%%7T`&SoEx0C;DqzJ5E#4&Eu27fOJ-8)a;q4b>zkeWnwPe z_GX$60}eI2XHA&1#c+q)zNPoS`@9oaMIs&*GCZci?{=Jow|6qu6T(S&%ikrx zzxupgSVu+r$>Y=e?UaM!5PlT@UeQVT(zo>fcb|6(OCF!zqi)j?o)ll=u~v8|N8i%> z-+kT*EIE(;6+9>}CN*wP+zXmm#D^=N%ANdO^82gLJB1~WPwzhfr`vIaAH}C~r=-n* zf{`N5f3(~gN$Y^bzJ#ySAOXwQp$M}RHOzIzlN^0Z?|=6x!OCj^W=nojdlMI0%Aq6y4$ z7{|{Mb-lx&z=;Ytr=pA!!hZ`ZMpP< zWiptM<`XK7n1aQh1(O2J4?2@b9x!A&C$8nmh`KBj@?;%5UqK`YZF_2j`yS#hzZdi& z(LJlw2(Q9FA1(u~FWe&dHG(89l2xWne}+~>^~uCcV(K90Yz2w{(VT1WEWIHcr6Hf`9^Wq7tbB|Cch8ip1`+VbpMpSXQ~iCSR=HD`$Me}zJc2g zzt7;DnGi-Jl(X4{LIO}7$xQ45rf6JoXf}i|c7q92Tp~P#Rwg`5(HKqG zim-p7^q7)gwIW!U_BwZOH+f3_|IOz@F^_CKr=tZ+Hc4vj%mcieqGVsUTBDYnHiRuY zZoE7#yvg!3*~+!ZMnSRwO{0JgScQPOQ|B5;HuICrc3xoJ4v3fRIwlb)ZeU-TA&r<4B<-(IPFs98iqzZio`1MD7 z-8NPuOdp4R3~=khHNvlBT#o$v3>fs#qyB^YVDR`SJ=mN8!o*V zWx0uas3cfu$=xjef7|~7z7& zYoa_#G`__;RmcE}2@!x_qA`8YDAVBd!P8S9mgCT6V-2Tr~1^b_;Xq*Qv5xA51;!^lVn}?d0qp=U~ z=h;5Uc!>}&J4KEUr4B$`kSBy{8}A3fJimO0k$j&QNmS|?8fQa1+hh;QUxCqhpUIs= zXuj9x&S7XHLL#vkYqYFp?i>i{F)>n)T}rOX`YS-1>;w8MAcSU|+yqLrc7k3T5fhFr zO5)D7=Cv!W1-&)LqTEfmnwB}GVizyp|I;Gt2y7dNi&Sg_4-E%s+v_6>kanmrf0|Q|q6I$KEP$RP(U3|T6^$8l zX-*!40$MQ77nBfCfk9?VS`yi2LM#evw7iYW9`wq$+H=eMoP-n*2pO>zE6vMF?F;={ zv$|{{CXdH9&A2FflXy+rYzxs?zD?!B&Ehp~zs+M2Zq3_h%kf%hhs`5Obcvo45i(|C zWJKhx@iW-^x+Xcv zb{YgnVWTs4-qE5luFj#oOAVlT30=Fq1dbE-)}g^B3Yf;kEbb9e?e;-(a~W=qPUcw z5WRIGHs&J^rm>$8oP5IPA6rt{`9bW=ApTvV`sjY)-XrI(epNFw>7jqVldX#Ea`eQ6 z{%@%6+uSWVXJ4giCQDbMQpUfd30Yb3m3P-}y>`X+R4Ha1+R>}RsM@lBn11|w>s0Md z9^W??=bEb8zT!2!IKH^{<>ga`^?yh8Q@>FoUrpGms!>kJ-5pn{y10GQb@jocD&1!< z{#z(Kt{QH-^3|p(391J>KK4Y6&7$gdYQn5-KigD29!oeo?coyD8pm75rY5XcJ(^bg zV%^y9RS*4ezH`#3FI9IE>bBR*F06W}KCkzu~)ayUoTRZi>8S127{qjB? zpQtW;cTbI%U!?lsv+IIAy7y5}%iL0P|Ijn4#}YeCyLV`wYWnNO^Or7sT>R45F-tCt z?y4U6@tE`P_Ipb0(<=Rmo)yojXZHK4XO{ta>Swza9PZ%zyt?PvXC}6PEMC1REB!y4 z-+xrC8h&y`#PE3~FHRZ!OuR>ty5A+!eU_ih>Q{gMIwaO7QT^m=ar$=K{MFy)Z%g0u zl0!8%%^tw=9rUc`bo#K8gtKp*HLlH3p9%bKf0s+|s-Nk-c;*)kYt@}6ywSPV{Z+Ns zTMzX5c&brdG~vOAZIec+1;Lx@Q&qX9JJq9l)jqYb8m$}gD3Nknux3ML^1|9p{k zKax4VxG5n5gZw0T2wj2t{QQgx?82W-Ee|? zyKyVUxU2BI)vpyIw1#U7=LOdu?ru1`TK+z`j&O8#G95uGJKeZ?)(Y8u(D&BX&{QR$N;yG#1eQ|*Zqc8D0EF1Pt!GcnBNu7g*zHm=H zz+EVw5pb>HzUfM4w-Qx+NLs?0MF&-%?VM)oS5T(9KKHGt`$7+?Jg()uasQxYL61B+ zT2J3DT*zLh242;0tKi6v_a{Ggep_%zr_|OPH*R_<>^B^7)hcqh?vV%m>c?dNt>%%Y@F&iRW8aqT{Q1mP_RP&2OvDi??oD9NyrVE;;%C^mkDki7Rqh%* z?O9{65LOW0S=N;nQK)}h>GuwvMcsF7J%Z=Zhku*ZK14dFO;}Zx|HRO&5MgJ;jM=3h zh6p47Ijv^$_aW-V8|OUuNypHr3#X6NbR8G^;$dBzZ|ZVGiJ!W_<-q;fFIW?T{SZR@ z^aN;3f}j5*j}Coo*yFs!XW+(1_?HD}0e|!w$7#c77QUJ)K>E(<9h~ znrmvw2@HBP*F$A#Okne%ske~9^bT;=p@hbPsK51zMEKLsNG zMNRNe65*!Y0{;>*-5xwC-vc5%sZ8M_oCp!l6g(-O^ve*#=ZN8w|Cgfw*G>GTaOrug z^JCY2h&hkyx~sq65QOf~O6^yQterD69($)~BIKrrnMrY5dghAo z%_4l_cdB0tp2UAec#;fSfhWntroUH2zF8si(ds7r^KTK}dOWG>2#)-BO8ov&40qs3 z`TvY3<@+0+f7T9UQ*?$Dc3>FBKnZ;&(bNksf9s*AzjpV=$to62Xy|Q{KY6;wZF1&D`8#FR>B6EUk&`cd$kgNmHDmi z*Gh{MF=F20D*=*Y?>1i z_9cWMsMHh40x4vXBy5V}jyt&2wO6`m^{SQDrFQdTU8z>FTCJ@MYF(;Wv8{EfSHIuy zo%x^qPZE3k_1gP9-}l_}Jahi@zBBXAJKH<^JL_OJ!CV1zGt7@+o`v}fOf)~BhQUmO zSq#$vb1KX(nD4>d1M@hH_j?ugLok1Z`3xp9JfQl(41yT}Qw&oAQwp;XrW)oX81J_Z z_AM|wVXlU`8Rj0CM`3;i^8(BpFo$8xh=9s~$$=RRGYV!h%rP*tVHU%zgsFj92h$9* z1!f1#PMFJJ_Q2c(vlr&aFb~2!0rMM}S78pp{0Zh$m=N;256mE#5irFt(_p;c|K{z# zCT~ZmSy(@>pNmCCEWMShSy#S|DZbw#V|p#!C{9STsX$xD^!IrZ%%j_HkzxUgSPw$(+hmeO@mOI^nX z#}DG$Kpca|>*_=)m^!5AVPXVzfmlQ98r^$v0~gS}v%bELS4pwBSh2-!C@6K-^Zfu|3 zvT+&ukPY=q;8}LY1w4g&q?h@fdThSD3?wy7e(8)_3&qt&_^_Y;c&H?2w3c5F;Q z!LCv>0JkQf#6zzCD|L*88*EIKfDmm0E7S>l5~T&Hgx<=H?P@DhiR~z)X$NfUxWuZi zRta2Xhmtw<3rT09rLDncF;1``y)A2$I!Pz6gw23EG>Lx=sXbe4HqIMhZ-;KLTHuc` zSZ2n8$B_nuB7BdM?|3x`UmN#e*jgGf?>816jc+UJK|=#>$FEarnrVO*h+1{5Y1mkg zyjx(9J4mfkO@=C?HgN3~Pz#{7>SX*kuO&wt4cCWTYL(hzn(CWsTem8;m9{3FSy9_) z1Me7L85ECr+-0nmVWoD%)~v2JNJi~C=rFoQY#^$>L7QCmSLz1Zaga)>Z_?Jx^xkFK zaaVOSYT(_l;Q$D1kC@H1ZQ@U{Z~PaS1r=3`D;7=|FDmy@k8=>mKVzEOHq~OIle+y? zA!z)+X8inn{owz8znmQ4dL8EjN@fFC<<2jIjO+ZB!)ny0n3{05fZwHYwE&;elj151 z-&TC7K(jRwhs?r?8Q>@IJ#aB}o8jyI_#AUs5FZi2H z5W2UcNboM`$zB2Y;3;KlD89S4l&LfEje(Cj#JlgF199}nkfk^)_HBgQb7x%L0QlhP zWiq#@L^|$*|Kc-n{uO;&hP`wy}C>ku@@KN zyffg#2>%M)W1#yW-~%_s)m=#7j*pR#FdV8gp?*|@r`G#`hx^3ndf&-we4rZTg7C#(xAmbF;mLb0zHx?I9!G!N`C}OxHT+~R{=EsD1E#;<#TD1_ z_6&zkL&Dd@W!?Gkh%&*e0_!gZnEnrJ$C+JxcOl*!eD~tZ@cY0g-S^%s?zs1!z@vQ`1EU&0ye2*kt zQ>M_VseO0E6}oAa`w`CCAwTwk9@ox`_uB8_%W(!2u!8>)_#8yK$zSF3adkPqt$@el z8v|T|Z!!GQ{V@3F#??OOzxV~XgZ^RoyAt0R@?|O9bCJF}d`n%q?|9s{$JV3DR08rgpO@iVjP!gJ-yNId>gV_#Kt1>= z;;+0NX9`iKvB%e#QIT3*e(pnh<{`ZYAkRL5{}|$9dMoiQ#kU6K zY<%gme2!7t@fkyXVS7FJNNPL(4sb>-$npH~?Ig;_eW)*^@vVehKaB5QK=Ha;N z03UlHcNjn4FZv3;e2ZxYzI^A2?U?T`vEK7-qbKM{@K3q73+2G}d;t7IxTsvXvt3jUDwBSw6ms%Nq_c8YTzw7YTimBiU4U;Z=(8T| z!nZfRG03~g`0jZzu6n`$flapE@5Pty-tQ1BM)hv;_&zud`OI=bJ-Qy@4*w}G{Zr{A z+^2-!;=jbD|I7Wem6y9dgF^cMafx)*03L?$rN6e{)&ur?;F-8;V$4sX zzL4H8jt4aNk__Ro)kV z_+wizs`NuIzltAla`u|I`W@VgJId60(A@_)KM~(t^tVjM-k-(Qgf=Amr!>;P;*pSNGyuyeY2Q@ofd3 z?c4j6!vgs;(F+$ltxS~ySA+UGgY^jGq@no4z7bb5nSakAzraVVCaz9Feer(zuo(4h zl}G0=(mRa&o|M{d>crnECwl&NU|e_|aC;!9*w3j-j6;y_+!N7HApF6V7$*Xbt%$3; z;d}sJ=11;varGMD+=X#981AKuS?nb*Qk@BD;RL@20MPK`C42BKz~OI`Z3`5!u<|>cP+pj5`O1fIklrTu1*6StG4;R zuL|Q%`ftKJG6-J`_!7W1pj!?&hVblGPXJC$RHWuU>_lBz;3mOKXC6 z;M8|9CdXnKR^WKb5lewk7FegA!$=EP#x`SZQVl5*JCoJiv>}0uqKUf3CiNW9_SK{M zgj>HlY7A0~jID2JPzl&U!52zR!Y~Y|MyM=i7AER=(DeLNqzs+U1{Iv>?BXOB z@*o!DmZjFl+632Gxsf=-)gf73y#fH%6Hz)?YW*_+Xu{k8UG?<|9IjobK0uvngU(7Q zN%l~i5uNV{EO|L7ygal9!ZaJ3;}Mrv8?eO5)l_Ife*-vNGJvW*tK%L#)u~EQa!(DQ zCdgw52`mcV4>S(XZcZRyp@ly;0~|KgCbqPS+4fy)E*K0(+E82T*Hitrs&Ft`2=*m#Qi$1%vTaIWIh|L6)oYz7 zx5)l@E)E{y*7R09GwPCLRne-ehB0_zlW1&hP{-s6=%7*gNC_6=lcChH!$F7%<1#f5 zY+ne3)jjHAo(D#>QF(|wG}w-2XcAp7k0=O>S!kh+&2sEOmiTQ&-R#3!%=12s)ZeLS zyIw%MtAk?$>OmjYe@=TmTCC^Woj3oX59K?JUXFR0D|(V3KdwC0po8dPtzXCBp0w6`Q0>eOif*-o%2B30sEz_LJ}XlzLMmBXqR(fF+k zDu-N_X;bH5f`ij}Xq>1MtWByE#?Hd;M5B8NT?SY8Dd^OYG#eG|8(>eCwq4Ip$UX&W zAa$U@nfVS>miefHP6IOvZ8iFre*;FSqW5Xqz!2&T3BpPG&k%YLO1T5K_Po2hYEvOX z$Tpj+`Hdr;)UsGL64G2qI$u2Mp}y4xi6>FkCEBH)r=!{+yW5c8o#&(>>M;+ryDGDh zMhPlaUt@_$Ah1@8)S^OcQ0*QP`mFIp(N=YzhhUn>jhY~xIA`svP;lQL3Mz0zKI2Vc zNN;&4sov{dkAXa3O=Byy*~*%%UIf}!X$U~-zE#&lQgpPU5Fzg6(iq+sTnBk!YmFym zB=EmWU13)zby^*PaRjqBSv$qoZ-JF^Ak?OAX3b!|hpfSNDB}@tX{Z*07icjcTT)>1 z>kt;Q_vo5V7NkNatd2nHIbLdMXkcD{1t4i8Hnz01s|pXYJu7u>*o_>NiPyiz=Vw z;n%3WN&5yh4>G~}UyaSj)f*?Og;SCk^%*)D>)NO;#lXPY!N!Kf+G2HNxgVo8&+)M; zKGpuY-BM*8j+*ZUt#4E3cLL4o!z9q4Y8NDZsV9^6I_7{ZGTDjtcqIP-sta=`u?6Y` zY}v>aBAn-N4qo!UkGjF(8fy#`^{R6qY$W7HXz1Od{t8heU>*8Ih&puwN=pzM)Z3nQ zwUYW^2hbuc)J>=$;;lirL(ZVYIW2!aQ>h0q?!dma>{7l%yHrN|;MS**8MSE9*yF_B z=#~uYQ}#(g1I&UBr|B0$xJHkl9JF^I)tyHoAsmBq>k~gD6ka(KzY$S<74n?P#ICK{ z687x%;`3th$+`Ic9BgWUL5!-K>nQh1)VwGXVj+wZ>Jp75Dwfp+HBqg>2+IpIQ4Q|Z z36-dqe9*XJwI}AI5BRqbamn~lL-B(g0qdN!uLRqF34&dYypsC2#nabC_HgEY8|2d2 zOrIP{LrGGP@O&oHBA{QT*^L=_W-WnfPGiGX^$@bf`G8QuyQPgyuFC(d(?y6m^e<5~ zK9UZ5Hj2n$En$bRVLpoDc1Rg%Nl|2_#cXhxp915;`l8>0{KaexvXIq)9NX|!$YgJz zkm8Vz9CipC^`#)P0ggphrv^|T0F~lZ{fYT+`Bb&&LL7(c8Q4>}P_5`fTv#u|R0e8{ z!!ZR?GU(t@d|aFO#Bg^XCpaL;F%@eVFYa7FGm2{ulhc&?Q-JPujhpHkF?zwz2Ita4 zEa}{VGYqNjTzW8_?!NGh#HidGjBGIcSfZZ=ZTAULexHzK)I_4(hmmOi-~9UsS%4Jc z7u0-%XIAdSv6IFY=i*(bsl^k=kIOBjiWZa%-m+P}VPx)!@~&Dgrm$9H%(#h@Cykr> zRi*z6r4|ibR)9*2S<_ZEVXCugT}xB_s@W@7dC!WiYFyLUysB|h$>cGuwPR2V*KVFL zewFX}wr<&r!yFi1wX49>kHRew40qrj-&#IR3sI~BCX6<}kq`O#u{y+>t%5xA($S!D z&6yWN45TGm+czq67VRbvU@a(^vo9Agml{f-@balL=UVqDV2*#yc@~Z# zIN~6Av(ut-K%%1o{3>(4#SBbK;KhyxnQ)j3Ea5>a6#SzkC5smTE84E;%;@tyv$Yq4&KtM;5Ib#u#aAy=rCmUB#6q$gF zfE%z{wRkEJOCr2j1|~87$iu;Kq$K!={w~^TIwr}D&342Td{o=~5G*EZUC=>##?+(> zI+E@^wvmu4u}Lz~bUV8a?ss%!>22Nv6`ZuH;A74qr_(_N9~Z_<-oSL+Pln87lq&dy z^ExQqPI*v-@^21Y}jU~$Iz zesCgc#_hfLSuHvy!R*&ReivoZF%7Joy5imBdmI?i0%ACT64 zxP~6=uTRE@6twQ^O|ODa16FtlT>P!3zeAdXD3%QT@#z&6%r+QoC`v34TSQO2&E@zo zR;_!AY(S5ZJ<~0+ce_W{t6OA!e37XqF~l))>f&E3``yCSSGttgm(m*yMBd#8)7cyR z7SKQ48{B|w^?C!^eZ9er0(SNW*15Acu$a1{Rar8(6~Z4X~Dgq@?r) z5u*M-=?#8_rqZQ1u=&xgH?Zh#y@5sd&>L6>UvFR$J@f|Fp-XQ-#=7?g)@x6_fpz)2 zy@B=8y*IGqKtP?iP1S&usDM|eo2tM!GD0mOjeK7-ry9kH+ZaTZ(u2P=?yG0 zwKuT1l-|IiqL!&w9aAyO)N2mx(i_+yJ@f{Tv#tJ}-oOUz-Wynax8A^_zo<8O7P*wA zW#y)e>`{8>C>+Sf@*Vd-8ZqbVVP{LrVaH2xunkOSYfgW?K2l%r3ohF=Nf(}sTm-Wc zfw&jei!MrEFRbqN2=&+->YsL{+Oszvy1WYJY(&8wwHVeWl>RAW*b9{7HMJ+!H+7}m z#hoWOZ-e2f0&d7zqBoH!4~RITUT>#YbS0N`;Stbg5E_S2=aLYVCM&&yguV*Xn|Qr~ zE|her%yh}t-iDtZ;iKG`NTPY7wCIw!`UQNyPqG|-kn#wI|0_%%8BXg$Hs2Dogg$)e zR$2Hsz^d{SLp~-mC0+mP3QZBMyrfXzP@W^W(I7@tFkIr6ZpMUo=gO1VfW=gNJlJi|)Otw;1|J)aj|H zc=f#FD!TYvwjy4sbc(;Sd2^IW!7Q9tU5$w?uGYyCwc7i}6Ozl+ZXb$~Cyt9RTwb9r>xy1-Tt(IFg-ceb%Y80TE`tjt@rCM&9*~yd zD}63_Fm%Z*l=70r>gzr<9*4&Roe7r0RX#Lc+pLl&E0fB={oPs0wb1JG_^|JmJE}1iL77}DDn8hJm7OH@c z*sLXsDi>C)R6!pO@4KS*ma8-$Zq{5pYKf;ut5k@h{Nc9wJQ~;N*z} zhdw9`_=}cO47dEmKGgllQ@Q{}*S9G0qHe@aM^zHzx)(=%b^QZMwbZ%GvIA~Ci10kB=VvD9y36OqmhqXd8#bCgBbbP5ecdc z*>973!;!z~vk<0VFcLN|!IHjg`K(zL%a%dj&5qAoxV#EW!72l~L{%hW_Q69YSN;Y? z3Qa5akFrD^qKb?(tleynvIQL(<=|lSb`~KnVS+)E7s-;5Yoy3IN3$ARn%dUN3Tb4F znI%mqW|3&p#ma7t`s;YBqs)xF0t@H9E_*Hj=*)G{4t{j5{0Zd z8Qg?}<3kcDZ7UoYK?C+7VYEbWC@=50_A5-4>-clX2#mJ?5jgSvVM?4o2==BMnoz74 zoq!N%BkCysX&@aAl2RJmw49xg?x#q9XK*%};iY8aCRQ>eU=YT(O5b7|O)$g*bvTBi z^li2tqtshEu*!`@-N7tGXBFbsg#LkrVj-Rth1glI^xYPfGpLay@3o!nz(Ma5`iX@G zh1l`wpOFufmmAuEnC{CLAV0(-s!IRIC;_KXH#u9Oh#YK3`{vzo4t zsvY(X;vE7S;}MAi7FVnQeFrR?h3DjF%|&f-h^mUpg?vCg=pp>^L;OmaurI<%TK$Jp zZ0v^$a1tRM3ZxUFOh{}{VTE+be5|wndAZa|QT^`6HuT|54DD1)Cn}e4jNA!B^e@7N zzNEXKACH`O!biV91*DK2fB7XzdRnLxc#5OM4@0kAeEGs^Q0?^MYb74p)9|1}RaPybqP=;G zWme>9`?v|YOy9^|I;B5()w1&Wy<~+-t`mL=4z+A~WhEl!AjW!GxO^E)o!Wf{3CE9nnX^8{*H@r%U`)4eshxT7{=}I+E;VNlP+U zmQ`YC*Y|3Dr2Y_lgHhg=(no0y>o}0(wlS8cl^!IMFsz+Nxr?rk*0%G?&5{Kvz_!E5 z$1KIRi@^?4=rFd=8|=arWm)lSu|piT*kP3(;zCc%vce?S!6gFQP`NJDjA%Mp8tTB( zEGI69x-jL@y>uVuz`0qT=&)plxo`^+IR&=G<~eMo!z!KU!dGJ&BN8*;Ay!5&z}P|O zyAZ3g(6TL&;SNYewL}VCs8geT>20KdfxI0$%Qc~q5-^Z=wwC#e(xV(=r;cu8yrW!@i*)oJ zCU3NZcj@R-3zLyR9!5Z%NF-JD+ar8>jMTbta4@?3zB~2pItK^*vbt?xt#o&5_OT`p zb6rl#JoG)9g2Losu14K1i3XH3E>P$nI=1sJ47xfip_k* z2v=~R#T+g_buOs$a)!AXcW6NLeupm1@=g$YZ2Vj#ipeWF+TOuoWs}1^`T<$j59%Q% zulVQ&Dhp3A`AR?N90t}3^z}R1j_ykx)}C2Z`jBh><*3-WqEid9?>f|6nPs~iQu>b$y)a9r8SiO3 z&!~(ZP5E$GkCj$ejY&4IHR$*CL_w^~!T~&-p9SA`Zuu9--zvABpg+>n#Agkf99H~o zDn8b1_mnqku%3#RKT!Udh=DRqVmB z#Y7`2Q<87#-u+n)g-nyT8c}bQEQ$p3t~Tu6u=8hZ3G6XeTpL+N3FO^utT;Ea&JxJG&Dh>E z;NZQ+>plZ6#9hYrJV6KFYi!39bRm9fZ2y<$;C;sHAk$ok2f-8jzmS6;71*XV&+xbMYHa4zZ=R-uZaPg}JcLp($U*ssn(9Y4(uVKoT zI9yJ$H?!N@oh}1i%ay|Mybl6d9A$0kXoJ*gw%rBgv|G3Fyyc>Eue0NSz$OkF?kzMG;$Fj*)^^-oOzhMR$FLE{PBj9Oq16x zLqMh1m>XnmZ;O?KUh+Kjsq8_4^gOcZM_W(~E}$J~v~P5a5jI#LZzskh9APGJ>MC6; z5e4!t(phVuu&)i(qyZ<%y{o*P9xxEe;y`4rT=B-TMWf-89-4y2A~1SHT+h_4 z&eI;9CCgYSvo?qN4#J@>Y%*N7Km!3wvih;vx!3NWF;ozyVcvy^hWz~@FSyl~)sGgjcBx3@7|dgyc-2tK+$L zbUo5=BiZETXQ5Q=@mGxnX;ewH7Aw(4ySiUw$I?ZHGiG-6Zj3y}aH?za&~wYwaICSz zNOTHzj`bD8DVoWf;bw5I4URJ}Be(LT*kgL8G}$bv1IM_0$Bq@(+>Ukp1etwGmpU+F zMR?qSQO*XdL{z0OUXt)OXfZX#MyT7Z#Y)(0Y#t_I*0Jlb&KCO=f2?pd&rBd~=mTJ6hGDr0l0GruZBqN+7aHZ-e-+8LPbyoxIcd;61 zEhnfW#Ii&kDc=*+QSzOw2FbTV9c{mh)nIE`riO@Rj>?tqLN!#r&?X|^a+N3Fxhh}2 zC`L8hy3A4|tfdmyr81mgX_tp-^)7Q4O0REJ?=e@Q#IiPHMC2+7HZ41WU={}Ko=XIK zLi#52GX#jvr@;JfG6-bL&8|iU>Faj$iX;2Iq#sN|JRqosM)kj$Mfng$==(5C{I+R8 zfMMQn^xuW8VH|kzGMe5iu?_>9KM;DuAf4~DHn`qpZDi z)N7iruM#*pV7ppst6iMnI9us!BsgV`U2(ov0$>q6I*aMO&LuI*QPYnkiIg^OYWXu4 zc#zk1V*%TR&qX6*Vlyl!`hH1zBxufV9?te6XDYBfnz}^oTO{>6*!9wQHT}EgYm@Hx z>yT(topkLob}+>sDlgZzu@1>0K|yVHF8Ux$RhHJhM$j`~1Ovzc`|!4nwX}2hW_UAg`#_?gPMPW~j(-c4_MM<{S2{h?#7%wT?$qp zTs1bU0$L9%Kmg%#RY0;1F|P^`TY!u>DZmL}fz13cQOE5ahe7t96p#!#*|Qa~(V0Ym zT@NBI1c{vIP+Em;Zi8)=WpM!ES-vO5Z$zCxW{V{raQOwSsWAxlL zHFW+K=0p&n5)~WcPKoh67vs*<7@k;z7&0wz(XD0Zk6AaU?PVg5o%G0;)%s$- z{a-L=y=iJH%|yQ3iuj&Ra`j7qvEKZ#n~okzZ3}WNv!v`~-06VUDfZ^9xhq{}Djge2M6ri5 zcZ-h#=65(qx5>J@@*MNK)O2+BVUu!WT>TQJ0@Rj`W>P3of0xdRe==~zm`VU-N_GRB zG>tXjcj+HOY?|GX67c(?aPw<8mek^a&{hvaJuxLN2`@*k`Y_(Em6tG-O)*0O);&}eTdNPj!l~6 z2XjzMu^uTC0rPRxSK1Jm7OiX6LjNAjcM@0^JU9iC(7s+p&f z$dqPvA=%Z3&IRS=FjNFZ4MsMxrCH4M&w(q(swlQFL5b&2hTxFNq*+WsJWDpIcSpv# z^I=I$beuaMhIcuvpI8aky-ax)*S+S0L;;#|MHVwijkyyMQN{0@Fzet(ok?SV3FH+3 z#{L$T|Dfd!Sa>0R+F@9xe}X?KK1}JrG1<-nUayZvOuymDo_FAOD=Pn zEIUe&T9K^fqNK@O-?f^hx@*y^4BdVE5FM3Kjgw}0y;OhJw-lPnT=qreFhs>wfxp5W z0wt=kvUzlwP#TyCP57sy7$1O#_h8JG(V2SyrwDF2<)_U3J{B=w&Gk7KVS{maiovh}t*I>nA)&4VFQG`q{E$lF>N zvppo3!0ww*pCAq4VFzDy`V@|F>gtP?c_hS&ALuxInv<#?;?vV6h&b@z9j6zGFtKn6 znuWEMVrE&=&P88k9u4h7rtr*7iJYA@`$Mch&k)hrB5T;@7av2hGMo2CHM* zoW`a=NXsyb8n-pHYqr8QZ5({zDFb_k3O>j)st<5>-lc$(Gi$qp$4*J0Lu%($mq0`) zp>E?5g%)fmQPI~XY;WtoAVzhJdo{{FjbOF~#5Xm3_t^@qqKNkl#B1x>HW^z!3S2QS zx?@;^5%o4n%=<)QpwfXD9qLG|tc=4rbeoJr!RUmsY>TG`NHDPb)6?v-5S6V-#@3=8 zB*%7kCufT?_w-y*J$FqV(AW9NXQKI?}pFs_CV0ES0KrZ)hJf z;>Upf9LSW>Z0|XGJD;T9^MXz2ViAW%6#!bz$La*EtctJM{fj* zV={#$;Wm`fJt=W{XsKaT=AMV1^3}dkTREGU1yEkU; zVQ;hzxN;d--pjytm{wtR1pJ5<_*!_VKp6?}9sx{6e#H68SS(gmp#A=sbeaIn-hef2 z=n@cw=~y)zr^U!>5>q!@_8jg0o9Aui94n+p>0LjMyCE&L^LZmgNvuyxpDESdGsEX@ zGyl%GI`;0k`W4tZAH;0Qm&&yDGvLP0XH_rN%$5Z?C?8JkO_^=79d!lGHYKy9v0-i{ z$0^V-ll$RSX0CP*fYx1)rjl0Ngh9A z!z`r-fg8`YXEQd;to#TtMM*RIR12;r*f>#{abb>5t`M+9nekzsfZr#e zG84iam>vc+m#P00vGWF>nHF9*NvWB8ftz_F|E|ZMn#Tdjp&e!FGZ?cjd<*@2hLO?C z5BPTofAc+O8H`NhU}OP@B86B4Kw zH-d>fVa(*rnVASSlM1tEeh3%L&l$Tc$-e-kt=Fs_HtFV^u;zmc--4MBa;u zDikx{4r@O4F!m%Uga*C6Q#>BNEj)Y*+#;^xJPl7fN%H3K%#nZ>?*TAvqAkp+JmZj@ zXQ>P=??#+briKrMswx~8v&m8!to2KQE0!%8g+op(jcvdba8SaHS7QWM!WM+J7zA{bXm%ycO`w zZ}IOM{Gqsx05eit7b3VTE}6jDDP)2gJRpBlXFgmqPb9OwFXaZ)IuFLLQI(E#c-hrvKruu zDSqIQ^5=ZORDN%MNZCD4s1lsyJ6mNxS~oz~$1L8{{=;`_alMJI zok4x>yTtu4+)KA33(anko<~5#kw~E`B;{VPWe)2|XQeCN3Y;DFJ!?4X`x#&k zpCMnKGtAWt>}uHI^K;TyuOKYrlIIL_`8$MVifiHD0$zLo4t6;8s$q;~cO{3CuSw@V z8Jb5qcmKVFuLiV;0`wAa`4;o%Q`1F&E~cUc5uOVuc{d`2NZ;#V;ZG{-R7B&pWsb3f z5r`P4lh}M8x1K1PMr3&Ee+ zpOKEJyZVt1Y9IVOMLI8L%%`6&9hB$X*~ds0{RTWiE-;d35cmxecqya#iz0ak?g3g5x zkDh^94A$;F*2{);nWJq3&PtthnV#K8cos`4BS4`uY#88ow7_h*ErdnrWCZpp^uvTj z=vcTY503=wgvW0pA}e_M2b|zx_c%ay5h!#9O8A}dFQc{^Fn9`#`AVQ`i}IX01Q!du8T6XURLUDfGm=FUEuXcOQiM|$tbH*>NWXY znjt$PwHUlr33BNG5SaOI9B3>pp!F13XPzwZc*0A?T23nmCRJ`wQdKmKx!NW~ut(!( zZL>0EnOc8_Fm`XIER!RX;dVY!CWFQTG_dkaHr^!14&)s?9=~zUc3-AK0xgq9_EP53 zr@OMV^mSkyOX5{k6^M*|NCuuv`Y$p$?c!9|$Ez}LXQs@0{BHWdO;De48{TR__CHYO z)wH)IHJSN@sb(D{Se4>HOld$wha_3LaxN?9VUV~NuIByBY*3ha0Jy~wWZkqEU|aAG z{x&1vv=0esB;r*-bGi9u5b;Xp@!1(aiF*Yxm)mLi{~lLRTdB-d8Na5BlwS33Z;q?j zEphb@P}3_w$?RTb2bbhwC;eAvxWOgkcY{kcmsP0#yI_-E{+xMR8AxshZsvOYE#^Ao zg0o>OLlG{x1eQ&-d;^yAVVQP2EX#j{zeR|_0Fw(|)m#p5w}bpTIGF{R zmyx^-ad!dXxS0PTl620kc-89-gj?_@{M9iq8WXePHIV)TjQK3n)<-oJ+Dzq9)8wv~ zGPrBXhtOX58y?L-AZnSn8`h^(CIH=FKr#KDZ1! zsNXF2TIppXL64J_y30g*4o7XiOyuTq@30PECcC4@iM+f#un$obNK3s^@I@!F0$F9~J|?s{%Z^!lnAFtxrBOWUdkWie@T&waKDJZS!jI?=kMWfwzKMUs~aD{#KCk z#d7{ukfTj<{#K9@-*Wzz-2Jqi{~_4P`8$HQoLf6NKNOT5WN`j&(Bu4%)~9g(p4ctt zb|G~^Xz32HGxK*S?wL>GuWH)s_@DM3|1=6?S|{5qsdO&uOa-_*faYQvLw&&9%#VSa`7Zue zzJ@=nQq6phn8)z9xHO1Hore5*3lS~o4NLD)upA9b4HiKb6u@#Wwo;~#g9U@BY18pt zJ_mnS#>!N6DI{kz%+F^d3(o*n&A0>kS`#T#`(VudX_DoV`SU%jqfC^~|G*>5ad|xoHT!0JcVi zUa$g|^JuAs<*UU=L=!Bgqh|VM`PNN41K;HroaIM<`B?aqTr1WJDApdAg)FS=%ht{> z!`w0Z1p-v=0{)daV`uv&9FA8fi1wzywe+U-iJ!nB(qI1vK1_<%t2|{? zk*DDqi3m{>tUVkof8(&{cBZYdD6J=r=LVk z{pWRKWuanr(~V`$ybWlp8_S$UyYX~mnX`W≺$loMW9m-B{*a>+b2sGUr*?ryI-c zw5U$qSmu0-@$1Gi7g)m7jU`O_bz_+e`;qT|z3R)PZlB-~VbRm=6CC=GFz|)CeNr{~ zq-8-_zY>i*PP+uu`=s@%@sLjcM508c^_}7&J)c1Ky8y^9LFZ2-7)~zD{j?1qntDE53 zTV9v5umd*q|(=CDTc28ihZVBw;OQ2enjSQAUcK@e8KZA#y{cV#tUtT?<2a(U+fKa^8RBL98;o!wP)hBNdw(9R5o z!$Df2CE-W(TnKaOs`M0Fh98CQ2x;ELCWrb-bgE*@B)Y3&%cO&+*fPA|(e0|(GW?ix zfVvOw`4ts@To~)3*fRWt^V&_ZWzyw~6xuVq{$}N+O?P%kWb=1OB2#;TQD@kk_4xEyFK4!pf)EGW@bb`V?D+4?0}L(=?;P zuQ*iHGWDthW0tAc9EcoD4)w#ocgTUfvyBIby|W78*Y(dK*mx1Q$Dw}s4HvMBn#=H; z4xg&#GW?c9_o(JF{I;$~F2#ajW3EAVK(Eol3Q?A|B3`vv)G4Kl>SlDw8UELCRXAYU z5da~>Si)q;FVb-tj+pPkL+^J`T!X@e<|K@h-2M9SNW+SbzRK#j43BbfFuRPUIoh!L zCv{wgi=4Ax$7Og7b`a>v({Txe?TC^(F2iF@5ag)ivJbfk7n|RJqaG(XeeD@v-^0Lq zaO#0e*`x8hlgFCdelZOLe z#cc;nff_-R&m9lM_;4dq^pTXvZgs?Wk&zx0Jo2d3NZ%(zFgQkp@<5+mLC{zDB5F+d zUG_W_SIZv8R0J^`nSr`di`^D|1+Di3bu?>${yK{?EpP>fqG-{qI)iocsb#$>g?J~P zJXT&DSC7DCvK|5_X6&$PtV)>l!s|<$_v)|Tt5ex?54UN zsK#FJa!kV*S=3|TTw!1&&cWq0tZr)D08Jq03Vpt5YI!(Ucz6!5%ELW5t98g7-qsoZ zIC)Pl)w%fVarHHrEF7Y1N2K|Z>I{h#^X%c0$PC+uVFKUTMr1a?_qO$$zHCi+Eu_=A z7473en5l??Z*zO?|por@?|!_*@hKKN~$-LG9Fw%I-B z$R-~H*N^%scA^iW82TO;SGz%MTawtLj+h#80Cnsf;0sit%xQzy(idi?H5A7E_2+0k ztcO~U^5(SRr}Z7cE<=NZzX9}zS2ciP=L&x^rwwPD0=RHC1WzK_dz%Housvax+e2gn zdW`IuZjrs)J+fZiBJ1OeOywZ)cqJW0_OG2^;#Cc(%-Zs$%q(}H;XXY8e7l)t=;>b| zFaNojWwXSIT-kEGt0Cye+IOjS*D#udva!(b~eioiUQm_8)@fQXK!YicCK~z zW|nE^S=cwTOxtNuoiod{^DV|dvrN0d66VZOnDoyq(=NmV*xhHArX9~*QjzyjAJEzN z#G?1=Mq~tC+^ZXrks5uMfnKXk3^b1UYaB3TkT^Bs>Ij^UsQ{GvJco0M%hJE75TM7Z z-;xF|>l0d@5F*~o9g%v8JPEEll~ljzA&=ywH{5U-L?glU$-JwS{y+V$NBYbM$mTyf z0m~R7Wtp6SWeht5T>qU3nD0e}%;~+DVX6BtP*6w$|BA_1W`@2Uv@?TIPQPf)D#?6A zuZ5J#_D#PsABA>7@RcXnPcUm%Ea)cF` zcRMYaFFRx~JGs-6dC=h^y?TK{<|_`2T83VAV9YY~ngfx0$*EW7?;UbrcIwnC^L71G zw%NQv**#9ZGT(3kbF))+Su)>r`21}DE=%TH4&CF_EAwrAHgc%NderP6 zSfwW-v?*V~7iF?u9|9m8WJ3xEuYkR;nHyhR4h_cHSCC4MJTOx|Z&8Jc^qOkkX2f-y z7q)CJU)^3`4Y{s*O*5yEAfm6^JQv#KI$fqa7cjzSYJ^I!8Mxs?x@E^FY)ldZ^e#6sm% zRvCXMzk1Cze?y-3V+&6p-}>jG^X372am=N!t{e92T{vn zCd?4fy`f+xRtf06p1^38b}oC8F>r` z$&>X(4y>6kOG0-2uP zP%!6D!&p+@P%v&()%k{kxzGxYls6R2MRO6Nr#BQxDI6rjP~!CPJ%GFi0{+F144D1Z zhzyZFJ^;gb@6muS@sR=Z`8dmLbSWzzaT z_{f0ygc=x-Yo9+tR_qG`zGn&?>YsXKz(55Bhz<&xu>MdI`u86Nz%hg8t^Z7YObp!E zhXCA@1poM>04A!_5j^W^bEJL@XZkQWYHEVQaC4OAV2*U zT3bn*n=OiH0o&18KBf<%d)*9nm_mn<$pEl6Tv4`9;lCN;u*D9mfU)!@X7jv-GPw>e z5!lkob)jZt+e4*t4`--DmRh7TLtV)7UN4dHVGf*|jpN3mAKelg=E5xm3rV&ACeL9j z9Ts`w!dGLKLAC!T-yv37gr%16!mY~Yxm96oxI@(trOa>_tWG8YW`qORp$s~e{{wBa zYXgW|MZH3+z@b|`G_J@y0`0wi$Yd5ea7%W|Ljb^Af~RJSQd7&?NI_CZuf^gTy#%M0 zUYT~_4uM1Lvo&GDQ+cuQINCYxN_E7=dq?Vu9$yMDWAswg$)mr4 zQNXF%oUJeDhl(k>+nvs4GuLg8VC1gMJQL@-5(coMv)L>(48X~S)!CdxM6;7Ro6RCe zA%^;m@}bUVv&7qU$@bI~+PPJy%fM`_v0cuod)^0u>=)~7PEyT9Iar;|W|_$nj`Opv z9>nE_Z5~=^W%6W>Gk5eSSR_@)YfUQ*MLje&dnJw?7u(KO8j5jfYVwk~)Yo0CY?2N4mz`<%5B z5j8ev_o%VicpgwQP}!l7xr1tM)=K_UZ!=dE*5kg1;e?HPn=#3@dYf^Tlw;ID-W~+q z&_WIQrp=+ggK(%1o6KU2e5kjXQ(2JN?A&kDR&s51@Lugi*EX402J-F#qMP1kv)#-= zX;E);wkYs5JIo3}h~DPcAvLo~%@8TGr0~i$97|GsT3G@igv(#V1U;!V%y3}FYU;#D zo+~a)wnX6N8;*%&{_9tRY=#T_P=jp6*$Bgt4%bnNfIJs8Nj5MMn zC@()dsRr4MawH4Ax`j6CDpiq{CPjw*I#eNh@?nf&hYVH7PCSe?>=jL3i4_F6jcV92 zbybCI#+hAcojFz&vY9C@AzQ8o&N+iJl zl`7=(G34*ZEiD$M%=>y_BJgvxyFQdV=1jwam6_o-_!!KYVL)?gh;@hjSmWY>n1Y}Y zVSQD_zBVd3&A~QKi;AtU5(MUk?N%LYY(ukPLc}y<(PO=eHE|Udu;2kJp$qhNpoJogstV4b- z)gbC~EmY_TE%!@;8E<6}`AzL|WSEzMk3wE+DwqQvJ2X;47=l&%Y zF(cFlC0ST@u+L!YT^3!6TT$4!fP{o}hrZ&=SX@Ij)QNMl&Zj|?9vzaUExig!ABOY4 zqeJXQRG!s2Ybs?19oP!jeAKr}=V&MU^R44;&T&2+hjRnT%x7^7=i-o=PhQlB&PO6` z+7hiQaEX?<1JD=N9l#%ZUkT^wVKfGqO9Nva?&`uj@eHE!FKwpM|Mz;V%f|m9L zF3=Dgs9@vj&8YI+W}a!&q;I1S!uOJogFynZajoKIzR#oz! zpsE=;bMSY#oelE`crS(baq#{pDG>S}&kWi#yiC0b({DQNe8S6wQ-F*En6ML;8dxS? z0n4O+!{65dO}ZJDU&Ertr^9ye8f;Bp8&{tJb034}13792EaPCA2g}5nuuPhRzeYfl zmcnu#EUK7gX1Tq=2)Bnvl&QbL+z97C4zk?dAUQ0l6aUz7u4UbT;&RClRZynFFi#=O zIOsiL3U8A9N0`ZDDRRDRL^fh`T%vUO`8^vxhWG}+{3pV%apAw`g;!Iw2(2Uhs_7a< z#&|VQQ=T2z9#`W}!_8`_-6(+Sj}kC(gvgQQz)a;ZQt6{YWaBC#Faq@8#{f^G?0FS5 z-iE^==19)!PO`CWHK?NT_DIolC69YR z>~5GfAjli2gxK_?rx1QaLOMSh`1I#h40w(?xSTeA;NfDbb8l<4Ni;$j*N*u27@Z zl$u3&UbCGUVB19L ziQHrf?EdNLDoNAcw3sCn_kvmluAH2Nz%PSh`41?KW^v2w0-!2f1Qm?nJ|Z^q@wnM! z<|%-kL^(2AE+k7qvKr=Nxc43gCdG-i;j<7T##&hnMHNUPm@URrzCq1i{ovo?>WojJ zx)Z*xg6|SsV7f#4m^xre`0~pgK}LKvL0QNFf}E;y)K4z-08Yc;w*>H1TDs}N512BCD7=kewQ z?=qBE!P#EDm=~n?w7?Er+nCC|7^=?D^JOdUU9!cjSsd267s*mEI3K1j2>rXC$wrUKIkS^2td}@-%wFQq9CL0%?9!_mlU0gX}+;>M@ePwT4eIMcf9Sn{WO`-@W<8`lZebUaq zb_XYmoP1J7I8bOl70G!@+S`kazqkPkL0XdI@Iyv3irkOl>NMz2ISeny4rj$fksT6> zgXRFVV}6UM1Y+K#5YqWa!zb%o&w1jNa|>y5EQ5H2TslBXf+qu z6?Dl6O#dda$P{}9&h|=57pK;NR7c5@t>~g*u0m`Vf;xrD_@Iogk-;79tsU}IgiJMt zq!R1m$}q*q+!J6P0JY~GwV{^U0vr;4qqO}Yyi5bL93X9Mmw%L%Jy&y z^=t&pQFC$aeuV82k4laL#lP*q`ngdf2AChf%z^(aod15Fe_PP~q(ek|oGkreKj{xq z?sg37hFH~hDp2`+T)hU<26EI^!Vb1t$lU;pv|VTdLE}A6sJsHCO@!*m&WJb>e8K;9;7YmWqKv`ZKku*2l10Qo?+TmX1h@?ps+9M$(?~-H8p*H4X zOwV-EH5V_ZOy8s-JKE&?@9 z5Z-qags+HLd0$R9><%szsq((;wt5BUMAR)>XcdF2buVJ@xd3X<9A~!(XA^;;20`Az zq?Gy^;8LM?i-i0h;6=|OcnHC#a#2~or^~!gEdtbR>FkUk^Ok<^;s$P@@qdG0Z$x!#o5Ju~C-qMj3Ow56n2p zp+>_TLQ^RbjkPF`M#D^>uow~qOs_XAkTK0`&|8S?o5^|AU{DqHAkAj_H!v5Peg*y( z??gg<^C?iU^C?(725ow(Eq}QfC!P&+Ej;XX{8bBo4+CTQtCslv{8bBoeV17NjuZE( z*Tu-v(nPwdf?|y}*$H^7UunOBy21sKb zU{&1Md~!!46!h9nE_82cl8Dx$%G8rE>)C<P%kx5m}QFz0~uuwulIiCk40r+D8_Mpo@26QMwz7^@+FBqjW_ zLU3#9i1G`3F~%L6@kY~@xOxio54jk(%H;1qfhqCGv1}$(dzE3U%z>5xw&_15Xyw$s z+h@1o5g2`H&>O?gmf7POGJDMExNH06!H&K7!=!RNdTK%61~ODdwzh+M1epfhZVHIl zKY;s17i}q1zlRsTbx}eEV{oKBwj8CwQ>cK?16&T+a8&2@Avbp&u4%3%wT%5`r~(avG?rtthJu?to!Y~o=23V z;Oe=fV-u?M(UK{OdQxI9*7X&a!w42W>kzfg$_A-@{b{8tg6w@IJPr|P#fM?I37;#$ zY1m{vIk=DYb|(nU6mk!9u%9wEC=bQZuiv_*9euANEk{BPf5kwGPwpfrf&&|lBo#7} zOaW!~dF(h9GK?;Ud&d0(@H7g+H?tMlmFPTxbHyFoL@-2&=8_;6#>PtrdZ>G43YlkCRUl@5+w{O`N~ z`fE`#*Mq@DQ(1w=juw_b1!b{hX^dnkeKKU~i}d#(%59WsY1hP|9X@tu`aA~GEHOH%&ocU~^fhtxY`z%%WaR!O1PU%h^x5g#8R&zcnWK0+*B{hc z`b4Wr zPAdr?PEosYNpby$VB-d*-*+0CoDP@2ltZ*dAnN4#OF3xV1h)>?Px#5>N=_ce{wiSH z)W<*lLDuh+G8Ns9z?d>Hy2*^Obvbf}0|6M(vt{WSysY42u<tzz0@2puM^W()7RP)Ucs;w_On069}XDSE{mQ*h7Vcl;q1T%;b>JX zeBQo*Kilv@IDM_r!}Y+%_5qY50?B)hUhYl=xI>to7^$aBb?5|UPYB@Y2BtoYKfE zd33%tT?JA)wKFrvRJ@8zO0Wr0FsQZ!C!99q3wOJ-d`x@3&B5gSwR1kS--QEKy?St1LrP+Y4_a?J*0N zR?n%PJZ{RkhU$q84M#Rio;abpjyA)Up)hF}D{dBzHK65>va92;5Jax*1 zBTq4Q+_>@jf9>kkVRi(Blz{7?SZg7unQt_B--CbZ0p>*Qny?d1&gP zpQ66s+Vjxp!Dql`jGG%$Z#pi%uI z_0Fb6x2R{sLrTyVOJ)m?$;P}M^AZl{v^fW@}cfWk5E5~Wn8+o5jxG+7$EOOLkZ5$u;z}m|jB>nxWg#Ok$#zQ|;dD}VrN76t)vqQdIIW!FR+0mlsN`JwOesen5z$-u+$J!ROT4` z$}>(Xa}1vJ#Dp@(V85pol{p5#_N0Oe^^|v3s8COPXHuDC@EcF;tjsa^t^EOH2F9>^ zWsbo!K4K?jj=_IS0CO8wMR?r<5+3sRd5xD=vXmO?+;` zLSP6cm!8-aPT7RABut?~7VZ+Rwj@3m?LubA6mZ4VScD(W`k3V=?#7( z7z)f{g$-vY07>w8c2)`J?!%D5W*pvJf=?~DawhKOqcf#e(9B`iVxW2yK7CAInZMoD z3}3)zPH+5f;F_A+bxNAq{^kR1o=9Vjh?`xwJLZmW z81!;?;SUEaYr9LVf47M}+$FICT@&lsC9&R##LT&eqi)RR-Vov+I%PqX0r3#;$XvA> zbJgoLkegN3zSX4OhAM+@=BkgO*rU0MzY}xSzlpOrSE+Y#u2TQvT&3=kxk^dNxk@Re zbCojYTy+r50;&d*bJfcvz1dt9sUrwRe47Hp7(GfQ7$y3NT^b5=I<{5|!}ds7K(Iza z#?EyI5b=<@1ImK*)GN?uvR#!0l#&{kEI7WoQ@F(^G`1RB60T{%F~*fpS{5u>f_XWG z;|CrjMEY;jGlwJDzctCm+S)Qhq->GZsgqFxnW0~lTpdzFb3#`@+4P54bfvlivgP+6 z`4ZwZlRfMq%Jlau5Kz90@Pc@WDSNF3V@6J_jjNg3vNHQuNR*?DT>0Pt(R<`=4}{HE zW0_ni8)N?pN5~tIQ`eZXdixPL(Sk#7V7qLrrv#xluw6FJQ?jN&9%T)d%IeF59^^C# z165CcWvG{{*NU0b9P;N)-1gt((tJ5H;1lf=lz~KxL-PIH{ zCt`eA@&M7%yV4MQM3K$NMVsbVtRg@5W z6haI^I9r0AI%QB1mMThso;vmDQ}m#oItqqWOqfuV0F`nYv?|m?9xO#g`Lv0Bs>4Gm zN{EBhh9!y;VtQRjMG4SEr)kvpeg@M+>}=>wRATJpD&|L!@GuS?IX@Ml`9n|L#VFuj z)Km9!>`cN~Q3CYTDPu$7y`qG&Cp|F;V?_yN`#miiMqRS(*Pc{Rp`P;23Ki;U??eg4 z$`ZTMgn%1Vypy|Vce?QfWaNSi|bBr8KY@*vt2@+aGzBo>%lXJq15lV5JR63zqx zX>qbLKa;HO^Vm+=eLwPQ03KF;Jok zk449|wlps@Y2#KwJ;azam1c6g(}Jf7CodIeAuSMf6Heu6C|>5I-1ZcF((6w>3;maZv&_(%I#9gls5?j#)*POvt}J}l zY&PKzbrwt|`Gn_R4K{(^sRDqxWgT>{^O&v>UNRGhXzA0}oNdBO{pe1YJRuA((>5KX z83o3hPCEnXUj8n`;A{Q?o}Ww(HWQFjz}@!-TgZJJi$O!)nJan_-}I4foX)t| zf{t_?x|DY>UAVZldCr1)3!3Mez%PtEnjyUZ7$k;7_vQ#SyGEV zmBa*vluRI6dHLsZ;lA57fuAj50!i%!-f>cM+aeAPqSqkF$$3%bMX(7U8Vm-I^pUTT zQBr$>cQisrz>>B_t@Clp=t=Khx@ZXwX}l}RJQ7o%?1jHLO_@KQ!j>RQMJ(;Ajb#bS z%oCP+1uZ054U^;;iOZ&J!Y6*94EL`i!%o@@ite`N6BeNAY>^UIW*jG(NF;Xj;Ms&v z_dx)2LY=i2Lv^BT3G|p+pI2Q?bst2FcA&J${(ARS1Uk zL;E2~Uo;?Sn^MgPnzoR;O?k`N8&{jKU|SG96TF{Wf}P>b_OpF3cSRNrP52c%50@-l zr$sNsWxW>ewr>m|JqV#6=?rWiaX@auulwa-HdHBZmCRr-63W;FRJ6R`4!>bJ$YD95 zYu1STP0O0XJKt~%Ac;V7U~I&NbNDUKwo(?Yd<`4k=1El{?YD#Q9Z#snS{hF#@$zpA z&~Ugb32*m4wc!?k#n)h0w}wpb^5nWOvH})~ako?{UZW4fJ;55)^(xqi@CWt*EI|T0 z1kZv8owmLMb1t)Q!h5{O;q;I+PTjNt7!DKO>wN~(2MKeheX8hSFyVdPuZn(9R0s57o%;+xnS1C?~@Ie?xkw<51l2ls#{RthI5yjba3 z{m6Utr$;=^YUSQZWFyHq&JK(i7#%H72qK&L;f1_v=GHuHU)V##Rjr zAU;IJc=nhNaTr5Lufp>ytg;oj0X1{Vyf?ii52qPukW*qW64y4gqr9Y?P{U7ouL^jD z^3tEBWuO`EAgasNOblVB4-c2Ay8`OqlsE}nqs>qY7PZ}ID>FG%jR#oy@ZDwjJKs*G zc{;YF$iZ`-I>S?Swe{atms_(vRaZm2Qq(oqTr}*Cm0MSX?Ez1kFFPDxLMHqlPi_fi z;rDy1E5Fuo&8E}Z-@6UUmcxTKjSECqvjn>wnjZ{bu%Qr^g}Cg(OP|P!eE6ala(Q^> z$_?AlI9|5BB;*S8I~?R`R$j5}{M3D5s_b3p{{7^OIq4^>cP{n%aoZ?g7%YB>K!ex8 ze}xUla(uv^NR+6AyDT?(94@FS@9oJQsS2hXPrEIqDbK*izMXU$ zClsD(PrcJqO_=ua??Dc@NXdBj9&u}|jE}X~g+<*fVVS2s=&1%2c92xf!%k)d6J|Z( zQ6(t1tdIA&LnGuwb$D+y!gFnSq0B~dl+f-qriAmIZc(s1H{k*|tcndU2t{K`*y42h z%7&^jB_rp8%aH?6Me5R=L0M2)5=d9Z93?MdWii2TSKx3dfDGsPiO>Pt_?rBlSDXDC|xv zsk9eWr-Z8|J*rMgu<0(q6_!V0UUf>iRw{z3Q+URBx(U}ip3YEp3Xa`WbxOF|2ik?G zsyZdy;z`#b9va4(j@wYGPT|28*lhRyH`$Qa;o9)d_Qc&v#6f^>p0|R~MSn_oo~uJ^ zqyCgow0?v;+%zFTe@Z53!GM_wE`YF^U?LLl!TE?ogB(8%F+=WzG4)2ct1;NWYOhAM zS4#(bU8owKqoRcWKDh9_xWMr^%sYowzP)&eWu;?YJI&1@;>FQ~}ylxr^cK@0b2# z9k(CQrs0Q^aZXp3m>zW9JKk~GOkFLys`s60f?JJ(9V)d}5zdr881keroFz5R5|rWa zXfIg60yW`m@6768-sqjs>==Y?GWKK_E^5c&gMcBhU04!3a5^y$2Ya!bP2_T%ee^hh zFE$&0DwzqcMSm}F#0$@NY(&E>ASxXzJ7_q7$5XbtF z^{e^wM&7<=0#4n-^vYRR7It(AL%EFhJ_mO;ns!_}--oELliR6VaZx;)KmPzyEuqi# zT$T)e4=`F=fp8WVQaJ&{9=yfvIXG#EEr1JJ<@+MjP+Cv3Y^-@`o{w&Np|sw>^Ff>_ zBitj96-w*xK{%eYBb*)-_i!UX;z|*L&ce^KUhdcU!|4T@?IWaCzC)Hq2r~$t;lR{E z@Z-1#3hh;dho_FgpIbzzOfU=Cs{1qPLsK{74@VknBQtAB(ffBR`ompBKhRb5o?S%m z{T4(Y)J60m3DH&PVF{tlx5uO1o2xNQ{KM~`b!Z&7+RQm>`5CaWv3%X8GuAAhw`_TY zt6IK()%uOg*H4)?b?oNVV_~3j?e<9%VG=q9UZEcK-)8jh9}I`&@eTA|c)T^VRCj9g z^IUG&jO-KAMHJPSK#olC@;CZ>#-pgdD$Yo4zPm`hBenVN!|ETY&36~8JE1n;?Nm}x zZN9riDM_{Y?owq;wfQ1s>CJR+%Kg@ErsaAyx|x2G@eXw}Eg_3H(`CGEJ(O1aEN-U1 zi~#?1HTLP5MU*36CI7kDwxUm4RYDC@lf5Q2-D zKm<+ye25b-~`XT;K2!Xh)!^V*#i&fo;4*A+ZCL7nx7@g+*xKC8}#!#bK7-#yhyq2cY+_3Yx23Un7lQ-gb_&ii(>-8#j=I(0KzN?IyupERhdK*p z0QrRH-+=_u$pefSqOgJqC`7@J@pS2F$Yt8HOAHQ#m%m50_gORW4X|#=DIw#T`-5;h zK4R910CDwgVT12l>Tbt_VLsh3b^=E;%o`a!oZq_XbgEIA_-Zw&6&XF>wv)8O_bE+Q zq>lV5(bl3%olU3X)tN@A%B(zd<$63Co&3}=vaI$Asr-OcKP%+g46hfAohmOkYU(mF zgBg3o&&9hQRmqY|$A`pnF91l!Bf zRu-JfijFhrAsHlM#JKNvMENHflnC!X35g-my@PSq^A9j65$=<_@gV%!S|*T$WO#={ zGQ6YomQ}C+{n^?>4PXFCAGwE&l8_AVNJ26^$wM-{E6F^aO6N`$|=LQ{W!2A+?- zU4s(gfgXqj*$-aE*qtC5vD-s3Vt29{BkV+cA@f3uvV8F=vMk~){!W7u;h+9P`M%6Y z2mexo65*>asVHy!n4)xrWGJZ!$?!o0lA*toC73e#5=h4RU^H^77KSDC94gtx~5QJn@bqC2%Z$dIO4+6S>VNQN%AW_zk%cmk54Yp%Iy*fAtS zN%Li2mw;p_xuxJC8M@MKEhHfsmD2T=U~lIk8HWpDS)mIgLxo&kh#?uZ5^@FlT>_H9 z&YvPAW3YV~-M_zlF(>_Hw?ZcUxmlJk3>J?e(7^Y>pO6fW57-GtkPL2ZIb6uC?H4Rr zW5p-w5t4DE^sG9Fj+LcAULsn3p?gTisUmSh!7q*h$?yiUxX$W6VOrdqW#xLk zC(nq;gk)&^*`?_blA#`ROFfkT4W7~bLflLELp^Wwo-L)Ggk&ho)`CDXCi`kqNCx-g zgk%&vBtvUqmn(FJWRM3T86_T?vUAKfAsK#zm0YJhb+@MylA%m)bvX5jAsI@$Ev6~Y zz{kFw^aLbBQ@Ybr3CYm-_aFxf$x!zmaVxKk=e5@rN+21^>p@Q?Btzpq>|{nDBtr?0 zDnYqrJvTrypd1K|@bEUYHi2YtHj)FB1SCTnKh7iw$(RC-(VVU#NQO>d*+LA-P(q=Q zgk&g(3N+>-BtvO^;`uPbEG%;BQ|bG@hh!+R3T)pLlA*z>3kgVu6^U#8RJzpZREp!d z2$FH_;WA6H^y8WJ1jhxYtJx6MbL_Lsaq$R9hOgCV(ml~}p8!Y(yR1Mm21uVhOGnZu zd#jw1&*dB}om(j!HwvYY3ENDjJJvkq7XploU56M^pw?Z;*#)ug~ zGDy|%92F(}_rZmy>ooixcvYm!w)CpoUSY}Jw%WUE}IF-(B-i2R1@5p zDA*z-gMF~zAsMW3mY@u=NBiC$us{jPP&uL7d=oWV&Jhog3^pS0-syNKm78}Qj!hRWZ1z7RGl^C_xbbP8EALR95ab{sB|o{} z#{1Mj9nEbE7R@zjap-0;1Ufj~Sc)rQX@41UwS{mC-P8>^2UjMe4P=BndvEi7n=(GyV&&7AFZah{#epRJo;hcz`Y~hlF;2p+^wds z{9OR-D2o6lC-m<^Q>i~rG6UqtA~R6_o@55e-+87={x+Mz`gfr@Tz@P!L*&OXrds~C zn4$8w(F~Knb4`u>oo{O8FW>kKSD!g%g#KtXBTe3q3wn4MUg1tbRrW4~yWH%dXj9vP zSM`kq7hFY0Pyli^^2wUs+3*Ipo)OUMWVv)>91DQ0FUl~4PRxKeyN`IzUx~v2f*d&l zGo%oH-o1h_P)P%ob>X$HCmqou^~)j|Uy`p`3lqcPZb`TrlHMZxsxdl#U4Oy%R{e$7 z3E$9PtJkgHfQ)?0?ZD|Iy3j_LwKuilRpO3UZ=aS1s|!S~zD@WUiOzvY4+5{22zY;1 z*s^I`$7&SEzx!MkxQhC=7%XVZ%7p#v5xwoxC1b_62E$W7+*YfmA-hi89)|x486(%`jrL$gYQ22lK}_t zVA>wZ^VwmE8N%3$p-T&M!?KzP#&j`%*7Ee*Ucw=UKV`XNFXbw!mQV9wu!*s1*Bg5| ziAe9g7^jBI{uC#~n*wV;3pOJJ7_})N%aPC`{l0()%p;)!&i~@3!gd4<3m&h)bC@U- zgDy)T&D;GN+kQp3SyLMc`4tgTMcFN)Ku6fu=wCN#FqqYiuEY1}N&IT!*Ftv&;cT~pa^(8bTD?CwR7VXwn++*c{@d}6+zDuImd86*4|0N&sh8UIPPZ>(*1iR z-Dm%{boDBiv{bvwR-fHu*7EZnXwwDrv8UnGe-*{~Bq-w`+o^Qi4u=`f#_G$f0oF7E z%QO4dF-_)&_&kOnRl{*JfjIX`9c0>}h8gv+Ct$c{xXeUoRitW^sL<<6)$o;i9((}G z?tav0RwL$_;5hENnGf&sxfSXJ4qD@7H8LhUiZq`dBI7 zXIZ}A1!?R$EO3o|mR`T1d#hYei2EhDr=Zn5E7u<%N7Wen9C@Mv@y}!_2_8=v`+(fQ zw$?S7Yw@XGftVwr#2#Q`Eg+5EfFq+0>dbtAljb&%fZDQq>G%>HX1wn(8`hjPqyuF%XOF;FAdFCN;_Y=8au;DAy&M*$;?`Ye4T2{t0N(U)WHnLI%olHf|lYe z$6~n*gsEDLN^sj&OaQN=WdJ;|2EoyV)b)$Ca1pks&bjLlRSzeO^(%{QOD0H;8y$=B z41^dd-6Co{O^y;B;Y&{53E3c+mT*%?W#3>L@&NsS8`tx_FNUySE(xpFY~9YcO7aZC zzLDzP24ak4kOL!Q2L{KIyjenZtl!MnQg(;iK?a0q_}INucY*@En`>{{g!e$>Bkkl4 z+R0hRo1vNf z5Bqd0JJz0QT+aRhRfwMD^X>2Xj_Ra7QCIBV^G;~C%)|?M&6X`I*Fv@IQ32&T3A72@*Pn{VJ9b9E?0uFL4AkoSDqZi5TzAvu;VVAC zev*J@of$CeufsJ}A25+bc~T$0^*pWnSu$=2oN~X^RjV<+00XyC;bfF0TEJbjyxHyTtB*Fxz1GaPO zrj00%%Je}no$($t&-Z}yC-8xi$Wfc%o*5BFzaOqy7vXCdBF_34e!L4m@DEi+EmOYU z^u>7=5Zd+#y$SPRT>?~~+TMlFd%)uw=0dtiRtAMjL7Q;eN`qd_>(jmJY-dSCwC9*K z^lT>ha)xW)sum2}4w-r~R4dZI0-wKvS#AtQH}vW@PCcVG=!CuGdz!!GxMJ)@r4>}_ zxdP@(R^8HQmVm|S^-=9yB(<{xw2_j}i=_r;UxPy2fCvxbQq*1+{0K6Px*N2{gCLCl zF@BBy1-_aBAFcu$LHl)?wHxd3dlqNzAA{>G&fb6K56<92&cF}O;uGQ1QT?6VR-W$3sziZK8&pt5ok4R%B^8t;@CpJt3tMlt?h6r~=3E+LXju7i{rvr!jj)3@|?P1LM7^8|H{)f@u-WrHM z0_!JKo_+?MJyIjb->#_g^gqN|R3oR}MKyBjUsNNf?h-X}N=mAcQ%b2CIb}>Wa<58O zO4P_XNbwfI`cz9CtC8Esc!vV(OUNQv|0PKyICaxD+W1Ws0#RM$om3-twF6G!pRY!4 zJd%AIYUEh9hgRL{O7zA(!LsVCH|{4)@9$R;*RA%qTnYykK^T-3h)cdBz*JI-OV*Yl z)Fduh$pHgn0E?BTDLL!apJJuFc>{H%?Xl`nD35W;N~kFBf=gD9K1C1Wk|`L@cgst0 z$r`k(yelqQeX7gf1edHqYRfz0l9gUp?s3WLtncw8CdRUTJ|7J|{*ZK1Y1$7UVNZ6H zQl)7hMEMqoOWudsxIBqVR>p?H7jel-49b(ZWTj=x6S!n06;!CFyigS?)YIOH5=`Qf zHA-c<-moNa$@f8K9F&(I3YV-AtIIp%l9gUt-U*kiOgWUzP z34I$l5zL(=8pkp6p(#N3LhfXH4hoaUkKO1X%PqIBql7cTyTGF&Ruh(QxF2p+6PBOw zJN)KIsul1)2j)~Pd-|lk(#jl)RV*=sR_#;v02=any~ydbyu2R zmamMSMq0h)i&FO{3DUKInh7YAhN1)-s+r+^sNah}#{!C^{&e+b;Ua!dP`oZX*!_0YX60X)1Xd`H7w;#_P8iLi`|YaD%Kz!Z%J=0H3gG*%RGXE5 z^;as&8@E!Ft{Ba~Lv2>x*!5uAFUXhK-$+K^T+LNJYwy$Wp&e5WX;ih<+g5XxFW5hW zPygScJ)CRv7upwa(T;Tw6d!waA^G`ECuK~eCcnUaQ!cNAa>1tLTO1=`WGz>0N=zt} z$Jmtoah^j3mJc4Al3(O$eaa)OrU!4tK9%K)Z6h`%CRTy%p|L4(u>{!62V1*|bqzIdmU*_0pfK7o95l0?0 zkU!CJd~`Kixk%bz@~hlSGWnfVE-1e!dlC6uE}1}#0uq~2p1`K~_{64Qne4GCF>$Ar zR1(mW{Ax*$>OvB1x(jfHiTrNt#n*S5u1Vqr(#p`n|+{Nh^p9> z{1#8T4)IVyXS(T_Zir3ck`8RPd;gnkd5lfTpY4gem1y$kI8NZHnp;8Wf=$Vv=Wa*U z5Svmi*p&PZw^s$Btw*;(?!%I|Vh;>g;`8VkIMM~wX0VUVaV^-007>?^K!U=!vwRBE zOU~7cDU^m{BKv;`^V>+I1`Mw$CNiCgEMg)9Zosdb;d8hd;?H~;&f4mSIj!`wL-B{9 ztsR;;^ZhnTVGs5_2-nJR&s)Bn<9-m~qBGy0AP`TC5a=cb>gB$VKkQo84vWrwa~-m` zLzus?WCx~JAPmPSP`-hm`NLC3;!i8EMiv@$e}+1!?oayA)W6{mM+IxU6TN@8qCadq zi+-T1=sjI$(R;rI(Fb)AeMmxd6?#}gX!9iU;!GQGNdH*X9+5SqH5<=d-?3@qJ90L7 zC%Wm3v5;R{AB-tH^fT1-|MF}wb^cXo6nZw8x`4mAI}=47sS7_R&gg6~b&+~UXM?E^ ztABJhn7UZqiL=4fP9+u322+OnSY*6e;Bo%q2E;EqgP0t2P4ge3Sj)NzB z??L1K7o70@5jjBeO>59?vn>mnn%mkIwYAS%&;}*0=M@Rfi`vWw5>9}#K3H@vdRH>? zqQz$C$b@IBXic88XyLq;1yJOS9dVpa6BJ%75`S}Pf_&V9#emNp6M0>h@M>(~zVk$Q z0r_@$!h@`qE?lt0d?Z0st;Xh~2@=DpB4_il1Ub^`bVY(DEEk)PCrC`Z{rJX~rOoCO zoym)iZ*H5{vgic!$%GG|TDL8PqW3GiA*#Utmhfq8X<0M}3UdJq{8WOhI=nVVN=h28$o#|y?P9nh_BpiSia1Co!xb@I4Oe9L`84VaFJcmloehQMSSH0zp23bn z(Uo&R>fxtfYD)R3{VjTNzCQDWoq|4^!$6`B2>Ry16Z`L!n% zRH&!CvqFV>+B;E#@fmF9H=fwpa7E^~_8!Pg{c+u%!DgQE5jz>K$o!Y5mm03fJnPAI zrUw@})by7qj_2%blv2;_D7z{%}in7U54OcmUtMDUzK^ z0`|r?*#6iAs09ssqt6kQv2Hxm*e_bn3p@$#vF5DRYc_Ai(79hV$4X>-0oe87w%C9~Ir^*z4(1-qeD%c%JfL$z?z?XNT3pzA#~FA$WM}Q+XRPcvov-N$COR2}bCIBw2Y^~9J1G#B4q##G>Wd7VB6Kr^bsk@Rzh+wp zHo?$mli7$x@t44+8ddTdf6y))tQ(+2hr*y5;-KlQC%gsl%f+Sen$F&LezMX0H$GQ` zC&8@4z;mf3)BCvet`YHpHCT(AKs(FX*4idBdw7%i1$@uJVz^eTc9uw--h?`31&C`H z08#pD9O%QxpeoiPb{4BLdyE^=2KR_&e2uIIrS25`s$0*mGx3Fgqr}kMHkfDVKw%S8 z5M9LB>7}-*iG%Dm99!#dSfT6rkw$YbWZ*u*3p_o=qJIHI3OrL>BH|Aaei}t=OeI8Y zjYJ$x5hrafiaFG>D<(_)l+qIK?7iZ?M)Uu$<=F`)d;u^9CEhM2ZjT>^M!iBB=B@Cp zXW#iQg8v*JyTOj2y_vBQVca!vr9OVe2S@M5k0%fw|He~ygGW@`Hkmqhf2hg)H$Ddu zVn5PrKzePg;Hvi_!VnP;^9?Nc+8yUKnXls044*tk1vao3qXwoSR{`v|W+lYD%T^#{ z3qJ2d=pzxDjPGLT&lMR*FmwB9+lrtcz-JG9*Lvokj+ob|7#`(;-O_G^d=_jxbcHH`e9AP|Rl9T(EU7T}%+ z!Q0+80D+_a#Wj^ z86W5k7G{!;7TY&0jWok_7USD;%8rI zG+)HWKIVqchWj@B-a(OHb|Y59J%XluM(zS-^!xDZW-!OU8W{i+qlK}Dr|b&U(yREC zZ-=Oe!Pa(oinVCj3>hF8%ku$sW=OqXU(7{^Im*DjbI&M#8z`2`P>5n z+s6mVBy$!V@AHmYIJ6ahY&l|j=5fbaXM}%u( zxaaNbpl~&ZaB_l@>EUR- z(EBadg1MkSRuJY6K=1ysM?A0|$}`h<1(sk+r z{!Se2sIutd(T;i-k9O3*c(kMLlA|3ZC69KLQhKzbjJvfSn!4;|=I*WNXiX=rho;}m zdT6@TdT9D@Sr5(pYpjQ6-k$Z)GO-?d=mUc!>?_-yxzL=L3w?n^f1}IB3LKb zS2nhl*%|f~`y3kf6$j}A`-lSdBUM$z>=h+dI^ePw@Y zx8WM3P@jE5tbGJIh=?T#-B?298=CO8J1ir_ETa4*~n{&Ew3i{Bhi75wEUrZL^e;4e36 zxHvud%T1mx&ItVFrXDZu2>j)a*dXo*{N<*po8Yg%LXszuR&V*D?7c~Xbn`*Y1e8fb zQ34Is$nZYYe~bS^h(eLnpRV4_BI1Xj_7WSClu`Ua9V1i*p`^uF@M?^`C}b32Ietgr zFLxA0J1mdoe}&t&2R;J+a-D2Mx)K|auGB`P+d=uM{UT-uEAH{gc37?*5rb42kYFSOEV6z+Z0P zEtgUGSGX@PfuZxRJ5n3GkPDVLVu&I9|M$EZ;Hk zm;2NC%J=2PoH_rM;4k;;V=BrUyD7>$3jT7&t^w12fh)87C8KW+{=$pWyES}hM`E=6 z--5qf!Tte!`u`SR=UR86J%HVG3HZy!wxR(3atquo*g+CVBj7LB;uxU_{)!2OBKXV2 zwxWvQFBchq>H_|XeUjj>nE2-4uQ*r{{N)zA4~WDb{N*%V{&G9q9wEH!Fl!%$c3+t7hDiNI;4fG0IE!PQ7J? zB?5oBVUAN`5&Y$9eARjIm#cN0jkx;-94DFt_{)uSoDm}Mm#gzFsR;gZ zu{Eb6_{+uCoMP~o8{=DA0{rFb9mm%q_{)uT92jHpmmB9eIu*fRZoK0F(HZ>ZCb&PM z=X&s$n<>3Sz+W!5<|N=R7h7`@@Ry6NISKg76|Fg8>}r$I;cbDxI(7> zb|d&}5*&j#Cb{z+tGSBjEqJiMYTH_4TdXbX4G0%rF1N@Jy;w2!IBr7^NA#Z{`j9Pt zojz9<)Tud)f`&Sm1K41q+}vEQng?$r;t~#7JrCJJe5!G?G}2i<(yU^nSzM4uk!DGx zYAfR5C>`hAUn_x&B|Nyau0F5PY{chz9Bcj>yoXXP3G+~SHXL|q4=2M-qjUQ@VE%Af zC6u#4F+L$RGjBiIH6`yu7Q4@BG}GVTXnuu=8xPZ@KFXx>=fELASo={9g|p!vwvmOk z6<9xe1tXsYT1`0u4+MwN_}G81odRd=XnqaFS1gR^Br$ebS7E%52y z!YrdOcQbJooSaOb#IQZzUu4dwP0)VP(UrOP;aStcvm4EOk=r?lIIoZ9w1dnyfiRQ+ zM%zKg*TXq%Y5yx-b5P<>-m_7|SK_l0 zX>9cwd4(DI2nfSBYK~u1Nw@OK>MzX4K6sju+V)w99h;yNsG)0evEOD?5}V}#MEssl zrh&-}_&|{puQiOV>B>eucCj&{1m+@2uYOwQHRQ1w1TFI#3i|J4Ie@0rst~HqjPkby zj00O|_i)YB&(6gkhPHN0bXJ{x$bJ>n?_nrGxG$lDWS_TNK)F}&mSg0$Alt*e0-pzv z1_DhdvtI5B{9(CRTOZ*qV^eCQ|A&Lwz|;@$hsy%QntG zY;AW!_wQEdhr0-UpsUb5y9nL;EeJiRi_k;52t6zzv{^PD*)aKP?B4A$3zt^Ush&J; z%D9H=i46@$HcXy4p}LNb>pRxdc)`jIqpDBd3e4o`Q1W%=`Ypg=R8N>Zb;^VzPce4f zxbgab?dsKICD8bU`LppjhUY!VJ8}%a0^`Q~$&lM0!>1o&-Tp6+;e+$p4D=X2C_RP` zE|gw`Cxh*)0N^meMGQ(+!KCJ%HF??{bx)aCn!A>O=kKuz$l#)D#5B$kUx5x0o zTR(=+B#+@UZ*~lyDLsbI{Hmjz`_SD}j+F_Zs?%_Ktg|Hs%&+Cmf4 zXj!>=iA|$rhkg-V^sQaQ^>0Rf!i77yGZn9=3eWENh+5x zjg~8ug>2WC`?B(Emv=Mz==In=uM;L#(GK+dedmRah{Sj z1@g!>*qaciJm^7AJurRs1DlEi2JVV53GzRl*@u;e6R8Vz2(m`=dl^qQ9Yp}h^8i6s0r7vDvdz+Yo>Df~4icZR>l z9ufRC7vDt{QLb_qm5cA9iXJAnR|M+>f6c{rQACge`=t;-s5*;%4h?^egLHzw#&m_h z=Az4|`rfoM96K9&{~_t*UDWqbbcc1ii^~1fo`VAJRiAsp5~x#zzvkk*s092q7vDvN zu?m7*d>0iPG|t6$Q7Tk?7o|eQcToxWYc9TvqM2+UkRlZXx%e)sd-!WEzKaS=R1oCi zyC|BsUc07!^}029{g!*vyQtiA_Wz-j@;3u5RF$i9@5MoZw>q91<=6<>ZMZHmxzXMo z^zK0D+!)8EiMc+MHDs>ddl$l@X|&u}_etRaL(-eh*s|7upq-@;2z*{bOWJ9I zbYwKl-K6apb?=Raxv%P~xsc{2+ufqB3SlDeSKT+1)F;hNfpNF#lvGLke83TNtfz`& z_g$q|r8!l(J1Cf|sZR4$^n0VkQJWS$e(w9@#aV~?;w+g7SPPjzY|FF&_Df7lBiXr{(L=-r{4aZQj&EteBTVgaU zcF}NG>?k!FmJ^(6WHihLcAxSqvwVY{<*Pqx$2Zxc(J+l7$J4mu9D-m-KeQK0`bDE* z{=QSw?#5`CPg#s7;Er<offj8N_nef278lGbPGhvAlx@B2RU3K=^ECn25{fBtSKlE2)95HFjUCm z7#Ppv+_ya2N?FA6DA?WRNmZd54Rhb|glepB@N(`eYBqR}w7$J1#vY)~hoVeWqKNuyzdywNcCfG5&u*dTe)phs%%N8W=*!v@9E ztXAGW??P>=czM1Raaa8ZFRXd+f#Kl zWZd(9S3egGTaAXf1D-Trc07^MF!w*6+!9hTu=~B$m0xQZ8x3;@ZC1M866|`AFXLXY zJ%q3oBH<|7_UqX{TMa~sK)phf;Wp#mu(iIL@a_>tJh@Y)(Xdbk zH0!h$cDb;`Xqa=d$pw0#)I(EtvL&X`Fh9adu2Y`6+f$88c_z2IFftnE0#CawrYXs_ z#$`R>Q6(t1td9qyVVQsv)!|%?3O0wcksK{VikXVooDkE+0yq3{HoPE=usJ$?WkXfW z1Z<8H3Sq36sff)%WA=)fViZlEcs|qv7Zdwb`o1r<8bNug!1mCJnc}$BVWgM|*qj#z zQ{q}bl`eH$7qIJ`CPu@6&H1DRsAuWNGwTVC3rt{hqI!;fmN~WKwAt5cH0hq`xK98! zhg}w<$tw4I9?906r6XySy@-4+=V0mFO5wN>CKNOI_*BfqGgCDh787?`NhP6o3D6s+ zM{G`lO?LsVuskC3ikTAFoKO@q0h`0q8e(&B45x~j64;#3D`rYyb3(=Da2rZ&4iCCc zHwkP`7%OHz{~_^LfA|&1&Pbq z5Qhdi8=}!L_n&qy+%OvEUbUY?wTsa(_qtFuJV!+d|9x=b`Eh~cvCBJ-&Ao{HVe1IJ z+9x1?xL4-5?A1O2`NNGYdxWZe0`f=KWH?r4uZNd!7zN3q0rH1?J}%ly)IJrFKOD$V z@SAXAFv4*=#}nPCnT>SZckvy*3>J01omR)ko<-zO7^{6MB7dUhY=HdHc3h9X;?+I@ z`NLfdXMa`u1mq95A3*;2;bffCl_jPJUH6W6TsC)u{5cH;J5*||0>~fs!BDC&M*d&~ zK?Y;w4-3?|82O`vc@g=86?&VDJ#P#7^D&%#^f-twHXDCRnF(%yFa?fyK>n~14eQv1 zL(etsI)vGC?0E<+Up0UUoI_Xb)-`wsZ_nj#G?YgCiDJn>XiwKjx4?suPESNSLm~~s z)Gm+W?M_)u*vA-jrLl6=TC>Xk08&K(Hg35DOTEls7T;WEK_Qd+s8y~bik@d|+X_Wh z5yB$1-PzO?U^Ma=lptLEjUwToF>H&B4#urgCb#z;Im}TQ*Lu>8N;a>+( zih)ZDY4esf+wi^+L&&L{@F1~W_}IT9T@$u@A;6UG-SOmiH=R1&{iIiyzlsZqxl6s_kF;amZ5mMP9KW# z2N1?-^Lv!;5g)|M^$YOh-x2yceC#tL5x(KGAWev96R(HMm`TUs&n*b^U55L0!&-)k z+!HrT7!yge6-@zc{6!IGKOzjp>*4n!wXabesiqexz>OeLI&u6Gj#|K{{>-AC#OD8d z#QYFSFYm0ozl>&mg2|_-z zKhS9Y6Q7TP-xCx7X}u&Z>${*F#cLS*imbZ+3imXK_o}0KgFXbwP*Sf+*y${)rC@U+ zKGvp^WpyO1VBtw_+|%v-rIK~>WsX{52dmfKMsp+*`BaUT%Keh;8c?Qi4FxV-Alw4? z48P3)iGkh6v(q}(phkZrqP>9-GdVh41*ZRj4<3!5gJ2E+1Dcu60qI+y-bJ7NuAy=W zyn5n`qX2g;lkK+6xP--U5=~?FwoV!7?EfG{ANJ!$Q+GbrqO~giZ6f{>P-b$7`xS!x z1|Rz!SB4M`M={0e^vNJ%0Uvw2Q>vNe2P@qG$rxemPizC)^HO|11)l4`gLY|t!m7C& zgh?yG>PYy`$HzX{Z~^%vFJcO(WJhJ}zEY(X-36ijn`iLZ57u`xM`9RjpXKku1yWWg zVTP<Tq}M%&H|>p8O=clNY#$B@0VRYVWjqHY_BwHV1rGMQPqXgFvnf4^ zm`~$lKQ|ij60J#wikImFzV^#)^p&9^q9uolfe164;jY!8B63GVMVFCRhdGn_f**Ll z4E8!Pd_e}@F>DPo6#8NR%1$jI=~s>FeIGtOF2v>M2yF#dN-H=Dl%rW7BjLRtUEF@k zHGCFs42PX31JPM<8YW3uL8Ufhx;h%nRI1H7U3JNaP9Nv_T$~$+KQA$Te9%uHzRrAx zz9kjcib87|++@y$paVv-;_$GYmGeaq#-W{kn|1h8IA$|vXCinO3oCo~LvS@r#Fv>( zDZdO4J{7R{yhM*x_?kK!?ui>2#58io{3gP1Rc7ylK1aFpVjpRVzlKi(eU?Qnv68q_G$V^TQ>l1d*LJpCm>J*X!c~AMY(Apst%2Eum&l$BhUtX>?w8_16?Ai zb9HtQ)Xj{(%5JC6*Fh7$^wyOH?tHV@T-vO=4Z|+E8H=3@@tJxty7(AO+-NtO zr7cj4m1nNKa(y=})rX9(0Fy7^vkHtBdPeILjM#KF^fRS=iXLQB@sUO|51)^M%@@H& zhlponi1-d@+L9Fu^B1^Hvup^2HH|H<)d6^rlN zjkOV#6Xcyw26{ktu;hr1Npfv&~YvrDn{e$!%G#A34x;!;be9)vEOMJzgdY+Q0! zE|ALNvkT+WgGD@0&9oUPRC7u#FX;Zk*m|l3lIyT{24IgPyOXCw_*l=)J~X$t2Cxr; zcHAAU-+*ILsHamSx8-P>k=e5}djpOjt5fIS1aijfzu|A324=i!<6FcTWE6Oxx=6jV z8NDS;eOUbqaAR|6QWvYc0?}bBnCw$KmDC3;ww;E2nA9aosm!!*J!A7}(%w>+D&r~u z4@AgP)y91(_gm9{^9Th7LKZsG(xaYYyzb4OrPoNv$n05qUEVQ`Lzq3w2AQchBS5aJ z*|Sm-)a4%E+$r4R6B=8MEeY4O;27gdC@l+?ENN*rDdV(*L*pj5QJI-dNEXRA-HIV2 z7b`3F!22RWlp-gbREk`5QYmu6MWx6IXBVZ&ML$B@W2MMNau=n@MXyduk&7N=<&`2A ziLp}TB8lN*rN~8cQ7LkfCM>BGxkxHeirk5uP>NjiNhn3`N{o~u7kx^UA{WUeN|B4? zPD+uB9-WjT7d;}S$f)v-^V7a1&0TV0Ycphd*TO|7EG(f>`eT~geDl(9F+Nlpn9>9n zno1C0qo%c`d6@|kw7Jb~XuWeyIzcPqOEVlgs91N+snv3ep0e3U37!(-#{gwRq>FFE zo=hGGlvQ)wiXR7*4ZT-7beUKdl&_c(qL@-GO$XVdOO5m8%GaT2gt*j~K>K8q>#;qe zM#O0*ci6=szQa!jvacNg(|qE|K(@>dL`Thcr}gP>hK)QXV_?emv_A(eoPvFSAv?zY zGK0TF1mGD#w%(oqCx+mHe@2iU>nTCOKO@MF^OUS9Cy#7{y$W%91U<>=6?`iAl`*}7 zvfeAQGi)_hz99fXlg}0i%!E^|w-q!8i8loB`U?^% z3z)s$)1c347gk5e#;KTaWaSM-R65cNHCCY=lLH2h%^1eyY(dvykr~6-qfo#)8g>n# z&r11L6k<);at#c9R_f8G=s|r}6bv^`g@hSHsGicGRfSG(2x6b=Lh)rmI}Xlq#kf(d z+nP8?ZK1@BVN9&V$~*n>&uWR&3zkgyLYzPw+9vX%VQu0p-_ zrar4%u%0W#W(=XvDk@mM=-rN++*1woSt&6n#BT_o&q`_8LZm$x`mB^xP@$gk&I%Rk zY41b{#wxU-&q||I7W7~wdP4wxR@!>13f-#EhCVBeSY0T2LjZkNO0O*>-wq^XMR(b$byY9Ez?{ zm92B<=23WhH=Z5k*j(AWw26-P?%=Qwvrfi1Z7bP=tnst;-n&pJzBb5?b?-&P$91O? z4G7w&`hdV&O_LqxM9~vo8DiZp07it%rDR&^sHRXlc;} zHK-OE!;^5qqIreRh&@ZD9$8s6la1I1L{iy{)(oOG_J`oc#r7^ri6R1S$T%3at*w#%n z5j+!V18Wd>kP$5aZc?i_vl+ePn@ruJfCy&f-oUu29};&(#@{C%ah16HWMs2w+%$Dp zn*KT#!?%)pj4N3@l^mW?0DJ>b7EmS)MF})i4zws#KT!Ky&O8)J{pqS?DI)&V*q<_r zKd8qGl|d+JF&4Zw#9kCKif}Q07hf7sv;k+J8RDhEAK{Z(f9hGrZKvQ|k;~B}00!y~ zGSrRh&Qn(wzEE83cBr#p29l3E|3ASd?Oz564gs%+(L)OEl7-k+Wnlc#IKT83m!fGd z)Ak)?7zLWQ1#osbUs&^{!Jv|t24w*`i86cH`$R7d>ajn|_?HH3WynF*`REGnOWIe0 zO!1L{HeXbG{K$Z1$eNcM^;^_ck>N`P|Hwc|eXt&pM+Q1)RiYG19~mgUDx;4KC=(!O z8F^$dQ5>}y|HxpPIO|YVoI}e3RzO*>ih1S^Me^n!8IXw1bKf@*CD$l}Pkrm+=vLgr%KAH`XMK6IQ(MeZaFIPm*`2&QrWVkCw{_x3}*B7&GP;aa!o@>VaC zo=ReZ5k@o15Uc&-9TAGw2!l8+3$ zBWd;0lf2bS?@BU{#PrCMUr?(um_ObVO)1w|@tG2qF4RrM60Bq~H!Ny94lC!yt<7^5 z%v%6bBraPq0Hyns;r^{;*y)i$(H%W9C{p6ejN>E|iNuaC4BgY!oCom8;6*0X`H?|H z5UZDwV`1|NXe>VH;yG=NOXkc+Yw?7(=GKW*y@@AIcmE8myb;~+j)RD9-t&gK5edWW=V=N${18{3*;k0#~aoYb(H zZ^E8D@TAtZMROp~f`zh0^1Kr*E8`2@BaL1?sG_`aA4Tc<$UsSpm$tSdVJ>4dNXyd2 ztn~%QEG%iZDU;V4#j*@-*uEc3`|^>&VK~pvl{_+tT~f1=S82H^v&18VN0nchokxBg zS>%yHuK376qePDk>JSX+hxQ|qe({k(PAzI`+TA=d@F_=+43;5!SKXdTnlZ~ zh2$fH;|6lf#_DHVM+YV^-C5v~K}H~sL80`KfldqALiEUhnZZ0#=={ilgB%xdvdE1( z$u}))3Xcp5TRJ^5P_~t_$|dpuj|`MlRfr!MD4`mQ@6L}5)Tg%4>5+kw>k1KcBogCp zsZu;L7~J)d!9J`$^pU~f(nkjB!AAyzJ3TT`A3ib|+~tvh`tgy$;O-t7s5c)O4CaR4 zzYN%8mCi>7gS$R5P)|NG7+id0phP}07)+$b%J`9idhn6K;CPyi9vP?~9~lhp`p7^% z`N&{!mq!Nb$43T(xs31Tk%5NbBZI-xt2#Y0P;Wjm&^!RBx!>oSj|>KPeq^BG`N*J9 z^2mTYI#)BXQ1Zw?iIcFGDt%<2?O}4E^CJVLPxJKXk%3ZYcxv>>Kv!C`Jylmjd}N?& zuDNK~@goBz&6kZ%;*o)pTMGV>fiC)554#HU2i_MHq}MIMKF7Z==q-e0g)Z+4RKDef z_melPC}4!3*I^DE_xnb0*mnN;3|HZNZoCw_uJLkO2xf%gR*8n7#h z-WPD2$B_biRK71DYb^F8J-#oH%h8%Th#nydBU*i-1UnGFFIXlLHx!ER3$$=1dx|cW zud}*Zo)&jxS+rj7$ulA{-xp~7*`?|6eSvz+E%i|TH+V+#3vmbG5B0p!d$yE%@_m7_ zY%R$9f;wMK`o4gBQ@$@K$XI5b*1|4V=={EbJovt##6wedvI*w<0zbG)u2Y`6+fxnR z7bufk9nMO`Ah5yv0;Sy+)0Ai6W8Y4C;(Y-NI8}3}r}BM)#=i$S(Dw!E-Xm`1mGQjx zxE-UW~cFWn!SvrVD*<0n5d@iS7>D)@;xKSv5U%-HTU%eL-2U7z1Wmuv3nMW+CyOoQgO!$N|(4GnDTO=EDtbb$DNJ0~Sxiq=UUK zR1MEjQNn*8ym+u&&hZ%U3ph6S=KBJ+jzY9?t#;fdb6k#gnnNA;u`vP5#;mA39 zU!V=6AXzkcU%>629Jp<1-?(WjWIB}y=i$EL_u)Vmzc1iUj;Fm*GaKo+<-+>{9W3g6 zJFSk7MDf0WcYAE{$@c{;c)Y5Knls-QXgjV)Un#yX;0A^hfBe3HI}f}s@WaVCr;AEV z57GMqu9*40Kv%-PQ%!L1MZwm@?+e%m3;ulpYn&x0L+sH$(*X9VM*-3!Nfcm1dZKnBA>&tN6**s#b)ErCCh>@Lzr@ocz9pHMg%Kr zgwb$OXkdv8kT8TEE`U&{zkz9Smdy)1--C>eC_Vy^2K@y@7>Qo6oTDRr^#Jf#IdV%8 z6G+cv=~>5n3U@3|-$r`np6*!kKrB5~oF&J7sY12Jn#EWnwdi=VG}7xToyD^;Gm0hL z4(YK-$OW>DPmM>+;g~0L0e`VsgTp8;+F(f$xA|MQbpWPxhn3KF8$(N8?}+nyhvaqi zm<~i7a~i%-MvRXWTb^m5(E`A0><6;eeld>zfh>!y9uU|aS+1iX8=+N<$MAqRWG(6T zzv3vzN|doYNP{oi1*5n4=!_{7#->#;zV~|8@|@hhHZ+p=b%{NEBNSY|E>Xs^Z1J1N zWMe0zA=@{y3_i9_e=~uxCowUTy9)vi$5;mVuE{aN@YQOwQC;;kt7u)00@ovbk0VLt zL`X`u8ka}F^#wUrUOn5gP3v!-&e@FrEgof(LOsY?{S|SP>DcB(ntFn+R~nnov6{!> z4Mayfk4)`Dx$&1#=;w2&OA6G$^xwB_4b$J1wfm2PeYhD-X2vDZW;zTH2&6W5N$IQu zZ30^Ft}I*c9dOn2sezD`PUINbFpi0h?tCSg()&l|H$ zCpDRF7}CrhgsVJnCPOZejQvtJU4sUV-=IzrN#l0+Tz3ETCNq`r?S2rt3LpDScFa}M z%KES-WE>|;>9Ef9*^l2sBv&D3OrJl2c!U^*(|&ugwAtNtFyl9-$(#tm|BTSnq%1CG z%e)ArBm1%-FJagDHk?QKN!eb?snfPjM@e1Af`a*JGkrB&m$P=8;hIs!n6Eqr{xjJ% zXO3zz70_R5pZg4w8B+_AnNwnLGB@C3?;NuS&M|lJ zi$FN|bC{S4zvJk?cg*Yb`Xj%d6aNN4O96Y?h>kSG+Jk?h;7yOqE`F3);9Literij$?U=>bGb3s#tbf%Ml%t#2~kMiAe~Ht)cmE= zEG~q5A|QX4i|b~(klsh6jok^CX{4}`jnje^K^k6cG;R1igaCGUByvGSe#5iqAt48U z1SRoqYLrDiLQY52%VOqJg!x*~DBlsn{06$vS=H6+ zqX1|#skvZqEI#&Jy9x0V$%!P@;7$IvsZ2j zG3nX2o`U<#`27uWoQ+gW#>233iUkfHgEte-EeC<)v%<}GN=XehRx-vMNyr#conJ$G zSUAG2UA624Y%1!1P?arMQNu69N(02*(cA;e)DHamoUha)LB?@&6atJ zfBcE1@;<>T2PqKvUx2A(cX7#1-wX(2^U`|EDR!~EF9&M+R`Re*Q{a)!|2(Y-W5N?0 z+}q><4=g^Z=`u#|3jkq(;KSxZbi{xQ3w+GjCful6$^)1&zuR5v&wmjxcae3fl!ghY zG`7@Zu&7?g}3b7IeFQ0q;1R&=4`s6sx z@uw2Vb9^AEdprY($r2A;e;|u>phyj~GqNbdr^F*EOnWvbN_cQQjs2O{g+-VlAdl-9 zz7pXSHP*xTdWQcBIKQzKHW6u3sq_yRn~%*cxwnD0k6DF8Z(u?R2vQRTHm!51I8KjK zr8()RXlRr=)}xw|;6^?6;4*b6e)>1@Pi^%-ym@sj)Qq45FJIc?q$NrKwtg zTORpx6|BPr;BP+;fdfvxgDTZG7=@TL$k}8!l_fyrwa6R6(uuR>4OqqHZIV&IG z%c=+W0iOa#vgyTrz@ZoWvgu_+Hs`G?@1E(WcO%e?fJh0kr2%$p++6n$X6g5x#DfIAX%0RPI0x4(X`<=K-_0v4pk2k~03UzC zPwz6fH5vddH|$Hh`hrb*8zDwa<>UT{S$LeCYdYO3m}mI^fMWiONx>@ zBrI&HiQ6XEe~C!T$+90K+L?dt48cASISwZgo>5(ZdY#`|rj9^XrWW|( z=ozKvumQM2QWGUkS`gh2gvh67l=@lqbCJ*fQR-(810Y{qWQ8MMI=?=S|tlm7Rl<1!d|Q z^rXG7Q0ljZetG0tDvxQv75ej;TuUYLL!hKYa``&e9{^L09Uyn!f903R0PB|s&35vb z_a|3jjS`fP;HZ4C>~*r=WT~^qd&PFlks?yB@>OjyvA(~wL^!4_F%z#xBBkEzZ>RzHD;u^D6a4#>be$QScNEavxsbJhMK7V-gC192SJmWNn!-y;Oy z6GB+`qa7>(LaP45X+fhH9^qox1S*f3K?>s0oTaG4^-U{C|~G{xu4o zPBQfcG1>)>Y~H$VY~70b+QwGIJS_f1KQxsVj0kdQss9oCDi_-eRORwP+Dg^@uGok} z0gou8&merN?gP4dCR~xtcb|roeUF3|x2Gc;6}kfvDLp!K%G4px?u$y*)Gei|6=_~D z7MbULnbACJ`Xz8qc%$PK+w+7#7DmTOczX#F;f>~re%^0@5aAWXNqAL+XoT^Sl~|+* z>SUmb2%~fn^IQW&J`{A6K8TklB{WRZuH+adKqF;MgCIp5zz=$8d5K!ton&l*92lIgWs%=z68*E`j4xIOa9OG4}`fJV4Ne z1pNY^UN<1l>)|ZuYSD^V}acN;JsW%Mq01MVgUA6Y6$l=<63WmKhB3rQa*kTxSZFQ0{6R_Honl) zVp@v3HL_~d%o=IEdtHfa_nIVaGDcc22ST=deazN%C5=suH7C`tVhcCN)$koahPnqs)C^+)d4I zTJj}g4)v7Rg7YJghm1y8HOXW#$WH(_;t%-D_bKyU0)!36eF&r(EctYolsmRL$@@Vl z3T|CMv70g9N9>hc?nfl4Fb}4PQiWxz8b7@-8H&Wmx=3VH9adDP#^I-blsuo(6iPBR zlczyC?;wz$Og;+ooCATo5K+$e3G;>lGj}XLHvv7b6b>}pUOlM9mSdRTmOKopGMlSQ zc&xiAS;b(I7RlAU_lMeA)$$lwnC0_zZ z)xKwns(qhZ{QkOEO8V=|*G=a(vwwsD^hNEUN+&+K@cpuKdR1mAX`5Le3Uxcy{$!5trx!08CNWO=qvGuTB_E^ z_}a*LTkCvauS+oBOblO%5A_%LLrNjwuZy9$5E$z+bTK=@M5V3uvA#BP zYL$%mx`xhNJ2gvO3-1FbRFkj8AKuv43qK~zfst}>Q6>@SLvTVh`8W{hyj$y|YntnL z2=`iYQi6a=sft`0&Qi|~v-C{6EPd2IOP$+gsq255r9SPl)UREZ2K>7$slUxau2tnQ zx_9?q)*WW0i0?#icrBVzWjPYgm#v^h`t(jzjQ_pfa26_22YSQT0`2P!lN)E$zTWU} z8BFU93puSfEcCSAu)rC5!-5Ly4GShyZ&(5*yFW*0m&Xjn@r`=JiGzO)23Dw?Tvd6*)Y*8}qpET$lyfswiN9;T;l!jv z5p4o5fo%K#^@gXF;}-X(kdkm2sUrX1syCcyoDy|4?*Ait!=(6I42{ODKC_XsZ=*$A zcrdXa@HsU~cxENytbW}71Eu1uTPD2yZ`ZaX4Z5S%RLh3`Rws1M2sSe7)kVpm#{&OA5-ON|^&OuYgoR=W;! zmdkT!$uCO~b6B@I8P`4FH&9{5v|08Kl1aTE@rHGqlb!W&;8N4NVy`ASLbt~8*DW2B z`FbyC7$!Oykdq@FXgiTMLvoY@6Dpg0CkymAcq4KH>T2WN79}U@R{@Du zGXOXKbm~SvC+ZzkH3F?>AS7bZY6f^Z{6aCHomMkQ7l9PFl(BBb$v^5tFv}uEWnZf~ z`LLF8h_QiIbAZm&Y7WqCwVDHhuhpD<#D&{dt2w#T5ule)j}xR?difyv7$>ZaR&(-k z$J$P-IiP&AR&&78Myol%i&k@Tmy096(<7L124F#_m%|`wHJ3ni-Dy}3X*DOG)c=Hl zyX7Ze))kmWrnQ=ruegA5RWQ(MPQL1pA+6@*Zih>2H78$lC{Gggx&w10QExa95)8DO zlW#g?Tdn5gTdwwegI06$ZRfF#R&(+lhtJe%PQL5V9cncv-`DdYrPNSV+rG)6=0g&R zTnS7LGgJxb;veZKsN`@5+fExv(jyF2O=x6_u5vQpk;A&m$&n_>HQm=$20~g&psSo5 zWj4K&w3Kb( zNpRC#R!tRlRh8|HG8l-evb|ZLkgBr1O;FwY z(9`vHyNp9^HI?mMf)`C?yMxl@G?nc=TN!Yg%J$x?86-_*8W-c13L$PEqkIQDEv%_* z?d2yh?nB>NQ`uTpP)2xheJh3cKWHl3guV!D;7{okuv_iAp?ohr$v%S+H+9@>KyB#G{ zq1oQ=(CrkO?eDqdJ5Xr059pnksI*sTwtsMhb_&h*K}YF8q1isf(>F2aBGxjlVcl%|xu(WX+KK8wy%^2ECx0j>J$a5#6T+T5Q1SVL z&SE*3`o+*x7il|^`UhXD*>2UeAfzQADL&d?a?qFvP|VWQEBm6~mZk z_5?$V)wEKxUE}CsrDl7gL;6b1_9Rz5J5*}6ry5fIN-H(n_2vaeuu}7f=r7}TAG*o7 zy&jS0&=^Hs1MgIkQnS5IzXlje&GrjD0h2dYYPMf7R`{t`WPVa=rhVmX>W*#FP}kh8 z#P;Lb;VU)UTth2r>Xw~Sv+Zwaxl1iVl$z}TBU3V8soCNtJy#5;)NBVDS{b%eYPN$| zI5cSsl$z~eLyNwUQnMXmXm#c*HQS-Co~D(W?Jz?Jj~PnMcDM^Wt<-EsxOyB?YPR`? z);ejWW;@c*A|+62wxf(pEPbVBJKE6Xx~)>PEi@5m4m+i0JBiyMD>d6gxx`6=bP2~E z<`O1K&9=mWqSS0l9q7?Kem3_#|B+I29NQo{%kiOV<2Eqkb~1o$>hbIbLzM_&Z!~B1 z$CQ5BEO$sNPT%e>jER9j%cH4N$W9^@h6%xDq$2F3RXOlh09ezlB4fJ5B*w8~&RtPe zsp9OO1AD(SRD#`8swyfKRc>aZ~l9f z>cfAhslNPosyaaaR;mNVF-P@d$8?p;e=Agf{)^X<`0o^z$A4$2f&7;Y+_aILG6mbh*(JqJjzzYTa+D(eGQ_4n-0&FSD7z?bvwugv8LmL9WfXk4c3Z#Y>4 ze0?Oljbj~vWZul-4LDBOTg0_W*;~bheBCB4T(et&T-J4JsNv4 z*H)Pvk|`l&FJbT03$ay0dntRsc4()g(SGe^E{h(`pYGr+QvV~D_UsPlxv#%8RrVg| zKNr0sWi}}(vG;SF(?kKt6fpox`H0oVr>F5NKYZ9Nym0I6X+%#r!db8+C=x!}3jZ0W!=4rt8;gUiK; z`lrtKguu6R!S@71ENX;?YAWQqxMB5D6}?>Zx+L-td0a~{ogEKvS-nO@f2QdWg*`O1 zKt%)WCp-3k5PJ>yPj>uZKQ+zn!dKCY9RHv}68uG)j+-U;EopuZUPV_q?m5Iwp|5i6 z2z_;$+l9VDMXzuk&TzqBq3NJng8x<8!_wwDnAU1(Sb8G-9P9kt?))6<{2-2+v=>eh zxX*ChZ~I9)Bh7xMu;=qp4>VMq9@)Hz)_H@G1HQpKFGBTjB()(uFG8noBdPy@n`@Et zoIae@Dr>2c;bFb#+D&3Hp6_rqbJ;Si}hxXUfBQT-|D4%^6$Er96qZki^u7oUhE zPvAadIPTU@Sf0QA01h6gOVmL)VsFNSCGOrssn$J*`TavF_YbhnR!V{z zavf4*N-4l0v_3YaI}r7d&uOAmMkO^Qi?C(nf5`eYHkYO@%rF>nDKmva7(*g6Q^`3P zS1G1(r-M#{`!6${CYghmf_Vnb7zVFVrkpv@WpLLrxN&hkhAjB3V0$`dewG@CKdNLV8LbA*FS1wGze2GJSKV+R+7If6=J>^(yv^LBzC`)tSP4?9Lj zAer`obX1@bZEDJznpVKpN2qveXx1^E`qAyE(p!eRDh+wh~w(W+>Z6ueQ!*jujdpIQRTqpwPLa8_xwBJ!nwi`;)aO&!r ziMsLOq!8}2@$GgWSV_jx#Q!L|pW?ge>Wa?;J4urEQI~|Ujf;JTgL?~l>@kSA@JntI zQS`e-o$*2Y7|ze2A`D8(*bN;swf9F2irP{~!pAstCxqWU-xvO!f$;APgnuWGLL&S- zL&Co^B>X!=!oM>le1~V@i<^Y+To9RaL8{Ir!bg-L;Y$KU_>N74?*JCQxJCHR&BAv) z5Wb{cgzvBBzKvINu}QrlDosR+{I0DcP_}?xgdAv61nflkh>&6~G|)FlTcYJU@otmq^5TR(AR!6X$`bCd}xGF$+OXWXfrL+0ATTt|lx3VH61BrCEOv zRjPr!Oj-+yVAp6|Ra2)BRvk)8WjuF=aml5%tt*iHcOts^#4;5>sZ5;@rpqYlJllAO zXB&3`SByEpI}vI&F9JG@=N#|woMSHqJ5DAoGNYan;XLj>y-amJ0}8CSDfMm;0<&OYMTUOPHPR()}p1S-Fs5K$PXdosd#_v;v#{-xGD^7JL?L#%9UjRB zm~MU#EN1gjQ=t6PT#1yM)@hS5ooS8~U|tM1^raM44$&wIo_9o5ck;&{n79YY3CMr& zgQN}_`%$|o898em#RBPp3L6Uxbm5nlp9G8#=X znzS7NWK=+`#}fb{F>pQs5KFYXH=t>6+nm>9<654ywiFKSb5I0~&>e zer?+#RRg%gxHPx${PrTi#iByEg)7`=#K09$;IVf~Te^g)mk`8_Q)$8co-oMArCht7 zB?u|JlxyB6fczxlq6#UFn>S#g>B2Jg`cGhY;w~t3`RN0JB)J+mv<5&leYk)ip4~e; z!g9ZF8_cnA2L z=StPl_&pB(nj&9{g)GG{fRhfVkj2s)GnwK>->Q?~rUFOJ?jUJ)L;Ws|?ky{Qnbz~r zYv@-I@-T2+#vPf=`Y+=Kj-{yn88eN&9!$fzYr2|yAWQ-S%njW8sIgB3m|MB~qA3UI zbl%0?T&Nfj`CBLh$Uk>WnK}!ptQh0x?kz5ZTPQbZP;YS={2h?gn74RBKk*(v?{9HB zHxn!?l(+R#1l99ik~eHoaN?^7!b(L>1Gf-_)rvr`0g@Gqz~g1|?5O+QhYq>Xty6>{ z(t6%Hs%-CbL6;K)8u$mCu1M>qb<=p6@}Z_>N@Vjd*14rhftgMvXnzW86+I#JJ-YA= zz=bE_Gie(zMVsI{WF+Y0@#~IE6pQ3PIq-ywwh1)*jTcrAWK zHxY<`vh-nLP$_3DeMs7V^*c%FXh+o#_(iCC8}PgLKI~?~OF8$*QLcVa87)WoL?hHj z%w}5-kwm#U!;Vln4}?*!mu9mU#D%rr*O~8YN>vBGkqHJI!azZRl7=6Ed-K>P{xh(6WNOsSp^&= zvKJ@vQ9#lXdvT5T9srfo(Tme@6kwOI-i&w@2wKqh(KISedIB|lV%@402ym#Lj;PG$ zV`!Q*jG4b8-)v>q#|-%cd58bu?0-f9Qb{SLUaf#dfvV1{cnXY1Q=__59u9ZiYb{>3 z&(IK+q5-<#Po?UU$MKLX;^B|?p_{LKSqA1NPc%x9LVluWcM-R{1-TuX9PmVc zj}x_1s&eZRs#;I7kGsJ!9v$>khPsW90i}meXLIY=h^BtK`^9By=)3Dh#*uYi}Xcro*hU(>K;^>U@_7`h)+>06gX zNJZLghIuy{TT1|N!SAoeHL;Yoh?Jg~UZ#p?l&RDsnDK&%q_l-|H4Ye&(iYD1Lx80g zZ(%8QdlWK23NK;mL4ee_#T@iD33}@bc;)!TQuRHMK662D zQS~!z1MWeL>d@fwuCxZM-oyyj&#i7A0y7jt%hUsi{VT*SMf-E!SNt1rlM=m9hkV_+!9@8|br^J}dB?1gieF~0!aHyw|!pKn6rq+ro4}T-A_pYnz!-y$WgZS^lqEYx; zHI9L~Mbq%NXbyd93Ejfzg_Wn{?+FO4@&Y(IJp;;ROqntJb;Pp=h{E5&F^95z3UYEW zGH4d}K|Vsc-j>caGu{fuhlz3ZluX8V(~NT|#Qd3MDzQHpkJOEsoVma{LCz!2{uSsX z@H49}%V3=06CCp_Vy>(%Q}y_n`8u7-89vr8AGaWKd&oT^y85g#^$r#s3!lY<-IHCd zH9feq+z1?MEg%|dE(63}CtzySeV=pn7BDrcqXAFjUCaRyz74jyWEw9*@|bK|OOD_@ zO97t)_bA@N5qK2uZ4Qjk-sULY{~Q$AfkK~94517!L93?ex|tTCQzL!!+@B3sYWI&& zHYCYuk*5zs;dmqPQS|u~)WVnO^Avp^rqA8@OnL$ARRh7o)qE5?E?-w!49DW+5ktkZc+&lm9!IAO99Jn+@$3|R*{K6eGL2D3!fK@&np9; z+kKy_;j@Z->SNHtD5m?t|AO#KEUJ%-<${2BAtZ~%FP(fng9`8_eh{L9mBv#D<4Mjm`nYHJ^QXufy-y2P-r!Bon8-b{#ZM`E9QWb6OX^3|^@oxeDHsKfE zCw$)30WXS8n12J&d>m$`hhjM33&8C53{eDhp!mi)WojRO5aVr>kd;&xKC*HRpsU~q zg+>R1RA9|iXop7%cM+qHsQfdaH<=N25wS@dD~r%3Jla?;+T!A~QD7jMvdB1e4~6Fg zS9m&o*3hShKJ(~vIDHPoXVME`uet^k=Ubtt2V}!@b zK==~4NhLs3(osXxO9)Pm8zwCWvg%k0>=^cW0A#sUd?qND?DGZR=LYz!BA;Ba6jLks zbNX>i!b^ANIF_ve?=e&WY5|>M-@36({Q*A+aR~)~BXBc(WaS-z?twQH7oA+^p{Rya zag{|1Um->xQTZOACz&xlAz_1p%L}w^=~%4eYdhZ+dGfCIr*V)GxrZY`P!uPL6mdaK-#M!A?tetX~0q7~Rf* zXHtMW;8oBU*R~*ck1@kEAK^@_KE?;=?*oh3ZgWlDYTPAxoRduEuO>FOViReXgSV|4 zPARODX9u2O>_nb$KIu3%t(!ovQ=EcG>-Fo#vt=|qBfywTc4Kt_8(KA(>psKM z_&qSgVKxqHmuDFp zxE%12lnF8S`Ed04$ymJ5-HQ*VVd00Gp^uCf_85%*AW5IEKymv8YmgaUHg-ef%3Ka9 z{YEsSp|>R$z@k+2XQk>cM2}}O-4f}ID7Ex=fE&NM5L=f~s&!r8fS6aqfTMuJm$a^2 ziH9Ks8joUrJ4%(YfY_K;1G_Ld!NFk+6DDHg{oN?7b4}|q#~}suUX+%C(^xw1NBO>I z>s-8bk!dGU+6=YgT2$W|xGVAq5-e9uW^g+hCYBLrSW+6Gec%~fUxrB=ox#V zm&w>W5kOm+78Fi`d<%-o@x{NXZEX>9GL&AO*>QE0R;(pqiEz)w*fN7m`popDyP6Z* z1YEHscr_>ZDncO9t2xnsAxILwniJmdO}}$#<;2$kF7}NP3hI2IxKSy+hIvfu64|$2 zD^0++MR=m4E}BkdekM{`jS)$2u!Wb9M9!nn2KuzprvaY@bgkzWFusYOo^L-d2Z01N z!$&%Sah3fc@_a3RdXa4_-t<^hk3*-S9qrc=VG-7jC*yY)vUD~iC!PP$@P_Ts@P_Ts z%njS2vWN(6*iyICzr)x-C_zj|K%@&cV=9@+r@=mzgtIf0iTO_Cg67%;@TC&)h!%Xw{TqDGUMvj zE-no0UPo~OuMkfk{EkCh6Ds_CdEvOca9mzyTwV}Y&TZ5gAcVBBHwq7?)ZW2Rn(U!( z!XMreN*jAiKCLeYc4`*$Ek-w+{7@eS4B5)?jlCta4L!fQ6RjG7u`!4)W)FC&_X!z$ z>$HluaJ8?*d>Y`_Z{dvf>@Z``w9D8>?K9T7UBb{5}!%Wjq|65_}_H?rY;RHSH4 zGp1LO)5(oX#?hKOoKQy2_$h-ninp;aPmBCe$cd;N#YWB)x(B!cv((600_VUxPRuFz z$VNeRM-Z(`kzN%!TQI$%HQ4RIfiRxjiJT(=_f;|bF=r)8C!~gLc}33MN2qUO*)2Ml zOfEXhZqZ>60{8~YZqa(?^ewwZmw!aO-(=Y>Zes^;GD;;f%($^-w@j3??3RI?GrzQ2 z=?qj^`E+G6Fcsx<=fZB8|CG3Ufknk84MMbtzHEy{^cCf0Q)kbvnq4!kd^Vo1J~fS) zS~Xjp76Ngzeq9=@LN6ME=BSNBLSQvpZGgeLX%*#@=c=PI1@Jl?K;96}MFJYlcS525`>?KXvQ93)wG zOJ{~6uQ{T$V%}7BL0fbc4DwB@sG6@X3{l8h*X+vD3iXo?kdok^hA5>K6;+c_%FyY! zD1@F;K6~n9Jhq2Y*b+j|nNbB3fFM=Po}w-e5rCLIuX--Z5ruw9hyV?dx$4p(iY%Rx z6}5Put5ERY+KO8IfZfyp;F+zc#rttv3#_QcbE%^sGFwfH_vgcmz=~RYK-Va>f^TC* zEivI~iYe2IT9&42nt?1*S@8$kBFCt#PS5zrz%&}L*>CvRv=z0iZlCzbfVEg92+)ag@XH!df!VZL_Adw;~(EzVPU}P7K zGa;`A@%=K8wo^Qoa@eIf@kd>gKtv(CXo-il^x}*S?4ku|OUz`7m<=8T=tN5F+~R$R z<`u0iDj;|%9Fh^@5f^SwD!5_K>(RtcN9dj=sKjHOFsRC`3vL~X|F?5OPlLeVwZ~}zw5bFP(E1D z^%r4q3}jdj(RHIiEz8;XrHb;T?vJADlAm~4ACK8zYEA8`MoPa*yy5~@l=!AKf_&8> zZK}C`Ni80yty78J4wp#zgGJ&shw>y*uRAbD67_}yA;G{dTH;NI?3I!O#hR71tB%8U z^~77Q_Vi8RU9GfADHX;t9117ib{=z6TzBblsd~JRn|R0J2d3}{*0OpZ{jNg~Ravxg zh1o()NF49$Qy`_}yO3Sq#8A@()8CY+>L!L6s)W>Rq$&+}uBbgoB&mH`qn%l1Lq?Poo^Lsug6JI!g0o19@P(XsM(1uQ)wcW!2O`nlv%2S=qXp zIvtf-sJ{o_F-wuf?3HkLk6GHlj#)}|+@?qB!?kt-KL8AtsC7s=jum>gyGpi#Vc` zGUXLs2RF?MWf#FK+R3nu@ zlq8`O)PrOR|4#;VN+Z*O-NRU7p_Hb5ffNT~Kd!ozNZ-Q%xP2RG-XWB?*l6q?>;UqJ$k>;Hwu#J*ocJEYy5}?*MD{sAkp6W&6cpIi680(ZE@k;S>SaV;! z>O|#vXTL`gkc~9YO_>?uYVMsYwcJL@3!dm$x)Q~D-d;*9Y^3d-AIC@;-_sy?`DB= zI1qjo&$~@f-J`q}>ur}osTY~&gF2<(!FYEGzHgKUD{lvzJj=_C;-x+Bo~MvXC_6`4 z@zJ~Y1qO$ryl9+^St^B?{TF3C$RHa@^X?}kTF^uDve9lzCr_R_XHHGnNScq62_2e~ z<0-Aie0B<2l<#LQ8qzE@DF@H1oKrn@a{09KsZ*52Rv~OS*3{P3)wdwIk9>mkA=1Zw zCy|DXq`^Bw^JkaOoyxHVL_tx6j0#8KuM%+Gx1k9_-nAS7BZ8+?XX*_qN-GZ!x&{VV zYZ+Yw1L2U2ORC(k^qzi10($Nk3TVpIit<@b+tUGIBWVuxy?Iqgx^YlAa6g&y(6{$u zR|JYwzH}o6-quK(Am&xdieN6psC`sgvVL-@Dl6~hCJAtNckE0j+89Yo!@iNUG$ts_ zz)wfX4m9$;H|~>&-u?+iE%h|;GhRtau$Xptk(qczA1HP2#HFxi$YsB}* z1F^k>LYiDY3pR(Vt4MV{4U5LQ4(J^P=W8%}d)|^DKRua(oLV`#Y6>j|=dqErG#nU7 zOQSjpHh5m$`$sXtLq_+}HHk#pNSbp_shVGj+zOs+v~fV?R4B<~-4t;!a#M{pS{c?> z)}g9rS4~EO%Aw7#q7D~MP0R^h9(MP>*d$5$dMPEPy^%CQ&6!tSjfm$URl>qr(BcjU z9#L6RqL_Cn4|g#UXm9I9^eq&+Zx&5T)rYubeIOi|ae>t?Iia?(u3mXoua)rPnl}3q zv;-!-f0dvvgj{&To8wNHFJog6gTWftqBf2XOWU`QiHM=kX=OVKyNa7u%S<5MR9r+&}nXI4np*5XL#lsFy*3bGhG?J>VoFn7qMDGzt zB< zKO#b|OyiK1_q?N#^|L-Sqo-X%EZ#5ys)dzv^k;u|9Ay2h57%mbvk)q_jnJv}UUp=% zekOTXs=VC}N!HK$EGwviyjV^s;ny9Bte>Tza}Ifs%>wT&{V|FQ*3VLud^du-s6E z*sum(hhRT)s2RNGaS~GAUmdz4#S_23X_@&|rvmF|-pBezZhCXE?m@nkw@2T`hy^L= z$<|`qLmqZh-lr~+3%jnQ8Rd}%4voJDe<&Y4cWOb@ld0*?Du8^Rl z>?vNUlJTVTI!gWuWD*+qIrYiMJ^dX%OFV1hL^--{LJ;Qoa>0gZgW`W zMO+}a8tjMEHLRpIW*u&OfRiw-^L;nrp|mI1sKegpu*!=%|9?OZXo?bZ@WTv?ubA`o zm`U-FEZDfiKH;#+i#xy17#siFNEOef*!Y=OVPx=1q*gU7TaMApM|debFyFMQVKtU!vs?%{ zsLWW|(?gwJmBV!pMnlH>n4EZGeVC0%_XnJY#R`}%{P!<@PI>PvwD^-8U zJ<`xB0mjd$$)Z{;Hu=0$vsU_1KYKp<6dHlKaSMj}jTCEKpp0N#!TFEmouO&Z)U7Xl z-i?}LNpD2KY$C@;#?L~*bi}Yp(-zt4hQ?MJK$dYqknuCxb39IY4Tg4W$oLty;V`_y zq>tC^n6|>}il!Fw*WyrD!XKn~f}uqy89$?qE(Ej2(XZDjDhR1~CpzRdK`QSgS3Pe9 z0*e@oA-uj{O`{vO1^{M0Kl|Gfx>_K!X4kG-U!zPU?@*NTy2WN?jApmXw!oXbnSSznl1vG<-)p4?{Um)<+qcS7LaOS?_2=lV&o0CUa`n zs0vLdTsG>@rIzDO;x?G#B0Q8!oFvFy>|ripmISK25(g%vGcR?ZN9%*x-1j6Zt7`ni zFHF{P$W%FnkBzW5F%8>#0Zdh-7~31!m*7Ly#_dwZ>?{Bt^?2R}LzM_&Z#0{8G504E z9%2QZo&K5@OK%Xu#?Kfb#?RR48$T1k89!sd89#GwHh#u#XZ(!azVR~#VEjz}!uXju zD$tEn0(|3V4EV;+7=ZCJ{tM%0@)yR>!~x@H;&8^#7{EcHZ~Tm57(e5`Fn%U<)l>e$ z_?b9h{EQtie#U=c{EYv?_!<9&@iX}g<7eW4@iTV7_!<9&@iYDl<7fOA#?SaKjGyse z+D;lI6c|4f2N^%ha{YoBKl3)3Pf>bZJa4Oc9wnAqgUOMrBsls>12%>J!>1%54ex66 zFL>zs8kPGsffsZQ*SZ>MiR%W_zrO_g+kgjc*axiY=XpOjKLSrK1~as*Uzw{BY_2~) z{S7B8m!@FLX!P91vF0L~H*EM&%8_6JM}`c2Y4xapmTthrq)%oEWXU;(xWNV9h^(*g2eurx5N4G>kr4+ zRdhk*q8(9wvm`Oz{hWK>m|6c@aTrN<;Fi>c%_r1ot$%|oEH_>CVmbgRyea82ib?v3mP8MksnglnTU+3jrUr zH5Vqvkg?93g$eH=XLx=INv34+C>>SZC^!5WDrkJoCs7-V~G1>iAgUbk^wyBpBBu}H>V1iu|=)c5My z2&4FT;KtYE^AGL!`2j%vMXN`W~SPCTt$64g)3CA{a^oQd`IPfoKuSdeV z^@g`en(XWN0?5|NB zwjTHm_(^y(4|RCI(XPTC9vbfAOyyf{1CF$9N2xmHzEU*}Dg11hUlA4?s{gBiql&QD zP(`=^Pzh&vu?&Qp6H*fv^T>BIF}pzPWGwtE)XG>S^@dvGY`|mC#9?(%5RU>;Mu-|* zWEWHx-VMLdw$8ZFjse?JLjvmhH?X0O$vO*nxhKCsE!-`;TDPwogC?}x&>%1ztYc7F zmvaiw0aQe5W&OHozPD6ODW(DOUGvI4rD`gTYp)>l27o@^ka|_|k-!zt!beS{!KWFd z8K_eFLQ{MJkv7uj6nqY%*X1W%4%dXM@xedWOZr>;)9GMQgXhG1&lZuTbA*OU?myLrpo+SMkY;fF>(MDOgz;3;}R9%N6&HKAj?;|eh%I~16 zTm@7V9Y2x#1#Pn`|i1BLuP(Gym5pd&Q!)FC}i=T(1cqcvwB_NCG zpTniACqyv%A3_Rx>%enJA2=?AW5OUf&;V%u^G}3IqYBJ&jBf&bH3e1&NAZ#LnT5|m z)u118GF(rQ=O4mx$ocqu2?+m&Yj>AOEL7^VG72t}MwzKzTdGE#SgQ8_46#9CGk7#U zi;57sZc=DxQGYuX4EeH^uk=|obGZN*DMr3D{3^h5nnLwNa6|CZTZ-=iSWIe!LD``I z_IA)Y0=@h8QgsO`RQ_JPGe6odyS>~oE&z_oZZCI?8n=n1jqc6t8255x8uPg{tRYP*lLzEEW<&W{>l%=C855~r+n=wB}HP;^|{FI?WNqXF}WRk~G@4V}d zQni+9->OJmCi$REK#xJDl-|J;%Zrd(%z!RO4f-Ki4_6g*8C^v#rIOQn)^>tZ$lLtTW{ zRW*}wDR3u32lq>Gh7(;16wRB8Y1Ub6}(tf5sLNCT8EoqI}j* z;mzwG=?^?@A!=Pw(_F{LIh|Ura)|aB>)Bz(o@tk{kJ@LfbGwXn{ZBL2r(MSSg)$~t z8u0J3q@GPdSZZq#on}t2oR>Q}cg(1d3H<+BapEG>Ctq=b+}NP-6(^`}V|OA@oDgzaaYE>6#R-8k6ek1~R-6z_ zrs9MIOo|ie<&c#O#fh&8_3soXGPEQ9jrv2P?5zme+W)VAfS2XdQoy#Nyeywa{okU0 z@NF~>Sj8aPk80(=(HRJ92;e?+r>LcB`b|%rf9q@e!Nq%Qt;vo2cv6o-*hw3YS#qR` z<9~#9FS_W^#r62ZT3QifgNy3{I`cvA0NwUM?||Sx=pBE=h1>Q)@Aytf2tVi@e~c4G zZ@h#quE!sDtnD834k+LJpm)I1=0WcOFAsXhceyz7JAH~_D*y{RE#EH$(#7=;A-Zhp zR6-Zm<4@{qNwoR#m-Rl(>(UQ;$6s*)hadEgzv_^o2fgFF9WMQ#clPnbjY?3ddJ_=4oVB2XG71Ibq^%}d~@)~$N-;u+wfyYOhGdT?Z zHE4}FiS6$L#c=tm?|Wqi(ZN`m$$47G=-tNV7}GW?fB~gio2_ji3)y@ z8tb4TNQMc_a?WhzSn>nIX(tr|#a;*~3IVuDGOKp&WT*qwlI{HERBoypZiEnApmcu@ zNI$@lW0$o*htg8WN2|I&#oe_9n*EIL&I!sRCqcBzV;Q>uQA+2{wL?N7940qjql>P!53YgkoV;un}cK4UqQL84A&+YewlY(uFU z0k0omKH7)vG#pP(tcLowAPdJ+7UqKvNV0J}rTBcppju!*an&BMzXP}rUze&`i7Ujl z%b*p#ioBZ5IR}tnA4F8WFqzS`Se(`@|qZV`FKDd^Hb;%K21tARrMFK|<`$1sq3zO2|pnR?e*gdc?y?|>53d4{2 zu#A`kGzHX*QvEZ2zefn4AYP70>BA`AzfvR=G1ryDIGO+Q<1L|hPjw(Oln}$cz^J@m z!S`1PZJ-+DmMRps)`K@uv+1En;}2BP6APPf~&%FzjXWXQD03vFM^hTxDtko#=Yz48Y}4 zLvh$8O|5iU1*a)1ni`koIxqnh>1)A|)m}w96XjH-GmxSpoq=K%=?u&_sz^^lw1~d! zMl{!~wo8;Wf>oqLAkN>{r9o1W4nd?M9Rk~_NT+GE2nbZ9)97|8(rHo~73nmA*At>5 zokj*K(rFa&1uD{Mw0|*VQz+#eB&kTJ*)oorbR)6o+n!0HC4JkcFpbF$>)T35iV~mJ zw-uz#4(r=yeC?NP^yQAfy-8wUrQhWxFLwJ6+rC4wo#@wH1%K z*%?a~=-LW?V0If_TR{(1Nt#Tz)3tpK66%yl?A1Ln|I6kjOJbiZS(PnImc-{SY^### zB}?K<{UOBHr3n%sMco?^K<5S$$1p>67sDb-8hh7?;SRQ)7ZG`ck&2VZ_SJNS-OJ8U z(_PGA8r=L{xdtQc#?bjF+!8Z9wVj5P-jXE-M&im_%~3B%oEq8Mw6 z1@5J~>-{jq-GadO;}4~JKSCjOeSwWzN|SI=3WRGvayhPhnND3BB}wQ6?MF2Q{$CB~ zlt!il`!!>Ug;JXK1=4;%bmuBUiS#`b!0ju>nnNgQJq|!I<(SsXL5Y!KtXV@zBAKB? zS7E+!lE5}bim~QYffAtBV=cK}Ku`6gaLk6e2qqf7IO`N+&Dnb?0#b}M=lByeK)k{* z=Ssb@v5;b{IWJ24*iek^<-%h-3K}m=BBZ#b1mn%ihv;pgEMMt!>i6bNt(;p94e9{r zD~kF&zHXrpZ8ID_!^k* z?ylK&rbO`6fgXYkD~dWm6h$2n4$0RklsmuX>31Zc=T4@8!iu5}2rG&@lv5OSP&jZu znR0*FyjXxhA%>U!M1i+e6ct2rnd1rJ_~lq;H%>>Y=Ps$SzXpV@EguUrKaI++i2?g0kQ8Wz)ilS*$N5KZSw#`3|kZ|`6>5OpGilWXbilPn>MNtO?ilPn< zD~dW)hN7s$g;SHMC~Cg=tt91ZdJ#OUy`rd~(u$&vg%w4`9S%IAlC09k$H+$M@d$K( zYvTG=&Zw{0nUz-T6n@saGYNf>@Tc^b#2-@ZbZ)K%f(}P(T(ok<-FW&Tc<*$v>8&?* zG)2P|EM@v?8OQr}z7F#+bAXnfHaD9WyMU!H9*F5Ft8bbE9cHM* zNC$nO^Ov73dIy5-=dcA1i)V$M?=jiZuyY+;%&_>%b-pHMb6+LM{tj6pNM-svpHn)| zr-5aF17~FWjamE+aQ-Tg1X8>dY@WkbJ1k`4{LjTKmUJM@K!;c$2=O=2`CFJxnm4q^ zgjbM7Vv7hxpa^UUPcqG52QJ4PrV;w2vSS9ccv^wLStm=v8sgB+J{qqky8u>qocF+xeq$1!L!Hl4veU{|W*8$$O-HZ_7)l*!=}XFW`qmsCz>am*aF5@I@J2G`ATvcsk3vi{kR*o>=bRz(3NoTRMS`6GBb?KdNH|E zrrbn(QdPCttXpI%40*t4pDk)z0m91;)V9nl7eWr|w^Q3PRSwrZ+gDE#d8f2xmT@tV(iSaTF|}?m zG_@zCEv)54Y0ES_rmgTQN?WGIp{|5K6we7Jg?S4pZPAJe!K`ug>$P-XCpvhWc0Jfh zyab8l-3mlIeJyjUNuipNzE(DC{+RWq4F36#N6+=^Xbt_*wm3%|PJ9Mc0ZepaNaoOaJ zalOPSLxZEqE0+F1nbC&EC(@yk;Y$v^Ore>JM%qVosLUj85ZTxgRpwB)5L9T+=nM{X zX|g0jWl9{Fpw3&FQU`i8bk63EASZ%4(}a6}Qtc^Y42NK2($kkU_W3D9kg_ z{JK*2V>TEn*aNXZfwd!3ji={O1!jV`A0n@&eg{NZ0L~QR>5e#)i2dA7lbJ~#`?)vj z%}id29oXX5ev5f+75Sy}xtN2^T}_83ewU%Q=$zBaR5gD3E8NuvYyVc5sp;^)Mt*Lp=?SoUYJ|J}p(3@5Mn7y#1&b!f9&8&9y7YxdA8& z_6iF2egFe$y|1sh5VRh+UowbtS|h6cI#*9ZD1%8DZ+up&KF3e@)GNT6w;H&-rSv%l zA2oz{^1wVEKix^Ur6Zj*_lR5S_J)QZXks~?TBiErHxCK$_Q&nM@B>Xef^H_9v{)61 z$>zppJA6d=fhGz`SLe5Vpb3|9AwZ2MnZ#fPp8d=?Zb}nKBso7TRkN-tRX;#d2KUDG zQx;vmCfVHp+$hK{Uvrr#twyu(@-<2C2EYZaIKLdlM&Q;t@6JH? zgn~Aks|PKuZNSypv&_6JO4Xn`=;AbzMfvsSaKJ40Rd8&?PmeHfLNaaTI+!ZO??Hc< zcov(lh=*%N;mRxVQXX=W4-E;t`n8t_bpQ3h&# zfzj2^;|}o)rRsI?-x7%A0z)FnHkw6pfgzEU0TPj1U`Ql*I1JhnIMNv*Y1k_5zIDkE zYC=~d-0Shv*P6U7fbnk(j-Fk_JHr=4F%CL(&Z1IvZhfiRiJ-^y@yll?CuT2jW4T2B z#C>#R^R{&bD6hvkad>1`71ZJ0=q}#NTFW4&Vf1Pn^^?~Fq59s6&tVAnU^UL23{osw z7k_|?i%X2}q08WkhC8{9FgAnw989QZB+11>RM3Jh&cYCYb+#OML_C^88q z-bCwSZU=^{x7LUFml%_)xTgS*2GR76+=K9FOb2EbVGfLp#2=D2Fpm+Yf8=!hq487e zzO)Bu`?}J!YJ!`9BdtpJ?+ZdSQlclToKKM}W-j!ZBgD*;VrCvz&dlqHxj&rDe5}uG z)C8H1GjCxl^R6}Et%P#|k8>z7L|VL=Y3m~{oC(y5g;a7qleQCyy#{gAAU|<3$!6-J0;U!RX$WT0 zOkP&Sd$$CY1^q7NJbsi%AOt8%4gcu%8%OD%Fd>3t?c?OYGt2xwX$EkS~(z8 zE7dP)p{aI_`)?mb`*%#2Hn)B!$I&?hmAY{;((aC& z(*@H{IV+(HruN)_66)U_J7=6Nf8*it|8$i1&1ZMt!J%B-#uLS{Kk6GI*fR;8xy2sV zA`iv}XKn%75_53o7N8UEx}1OJ77)BFIdh9W;=;|z$~<$6?R13hX@ZJ9#tFkDJ}Y$Q z7JJ;W_RVT@<`z(LVV^)04xn_IVdFMn8JLxE<`&?GX3?2jY?q58KUsj$BLEAMEn$$Z z3f=KECC@VN~i@o9kR+M;m<`#R^A#GN0<`&!S za0wWV<^2y8d(ELdN!05O%#lRB;Xp_*ICqP^>5#p$WO?h`xQ)G~??alg8p`VM+%5LD z^O&2Jaqbp-$KeNNh0on$?>h8Q*d}Rr?iPDrKME;z!a)<%7wei^8({La7Uv;N^q{4R zOvO4Q8``{Uv7l)p3;^T-08u)FLd?e#g@DCjpe_v184I(aT!=dyqcT@>8Y9n3Y%5@- z3~QLHU3?tHHGWDciU6P}uJtJt1p|~4O7L$efSfK7gxcjZlyy$m95}lkK%e3C8HW$0 zh1Qi=8!6q7)1i;S9H=uzs|Rq-C||x4QTk3qD9)TNmm;JtKcWwv1a@hm&k}rcx?V%y z|2Yjf%wr8wbook;&6wGf_9&x2exOu!eGoHEtJPXe%DUGOgB4ud@Yf*hUT*a1hc!^8dueq)w`Ksjr@UW8yNnsxY@ z>sij6TV^93u4PEaEi3Yas zNHQq5>SOW#Gk#}-{a$3ecm3MBdN;3)c-&uZ#>#msVtN$hzUly;728XRS?dEYqpkx_ zqvH=TYu(TF7%KL(rUmzQG!pR5CO+Jk!$g%j5AgA|qk>S2v+sHb%i>zxXGW8%X^BJ{d{C|6rf@@i@jN8&s*D@OY&61{--^o;k z9zOh_4mk*J&OHOE{x7F0kquOuzAlU#Hho=~Uw{O;sZ2Vy*WdOjW|y;2xm#r?0`i!~uQ7HMsw2CKEi( z5bMV|2%ct$<&yY=rx{}XZ>Cs-rx{`cR$(yx=6O(?8%yy{W5CYH;LQYFj>(?vW7E$o z#JkP$kpXM5ig#b^V{v|6Q3KBhdka}E+T6U0KBQN5N^zhlj%1V1Y?uwHx&evP$>!k zZz?pw4_;ZMU>?UWn?5ns*~W7gB@V-*kGMJ{Zz>3Y;IrOC7X#WuR780;YoCBF;3Pk% zaG1Ua;oy1)s^58#RGjX5$)gGlW61N9AR~qneNs9G0fHDxGGi!l*-JK|K@3wfW0;y5 z!_-g=*$_xbN~@5Esd}%(FkNp=#~?ru!}QD;rf0@5JrqMxn;1~*64UV_A;d(t?7qN& zjN45x1tvRvxK1bC3S)yAe}J~c9L)Fwbi&;<^Jn}4!Al0W>?B;wQtRnt3#MuLI1H~^ z2%&qLK)38DVVLnJLoU9U^NTS|wAS4*f`0=WRc{{J3c+_<_mrj6dHip@qxc7VIv$0$WW@u9rF4YzH1v7)fBtfTe^5cR! zHx!ib=Ah0Eg8GpJ)jKUmdB>x*QO+rUX+)O)4|{I{7*%!skH7a$0v8fU$iluPtU(|N zn*y21f~X|~j7wn>KtN!Uu!b;`uqDAsShQ6q0n}Pe0#xgg0BW@wP;sdZuGHFqODomj zR&6ohR;&Gg&U^39dox5^wf5iNw?*^j-TmHk&vwtb_r7%0YQTTD4*!12Sw)NjTUK@`Y$h9i~A0Bm2d$*+Jet&Dr$tPGL$wCn5y&}I90hHdiv9- zYJdT&2$chWMC8C0AOjpPI!HT(@y{T}8%6CyYD4d-${+A|1{qcOCKI*;q_-pDHT
$n1zzv=-!Oy2h^h8u`* zk1nJhM~0#LSnpLC;mCWcVmR(%x=){%KOuDl&y5FNix4>g z7khJ<6JO&nYz{J<3I7e>FLy%6qH7V-0WcDEp5Pw8p?!d!B`L##0iX|S8a@`!cZR7k zlr#yy*046C<&a^3pl|-_VIcK{3&TLO$IyqI?tx+4tg#A4_~foJjGHx1yn(~|FpThD z5$0jsq7UPuuBy_$dcXcb^d-p)3DI-1lwaYm5zP#QW1Y#X zzpeuw=NKLN2kL~bL!~FO9_B72sK?M$((w?ej9{)k5}8hMropO;Dias+$Xs|NiQ!0H zhBp({GmtX@aq18?DHFdECj!{OykS&_eMiDklztV{)GtC+{$Tcfluo!8A!eA~_c1!* z-hi;)|KljKkQ+=g6n@X{ zKZ`$ShXdf0gxOgNp|$7HzXt44V(2?{?e(vL5oG8im>y}4APGgHN1(|pH4i0{lJFih zf)ik`*~pa1nWm{#$dvd6;u6o`k+hJrcd}++8FFssoENA`4fwT25MaXG(NjS~2ue!G z$x_m1WhraW!qSq+pUO^47xp-L7xs`&}Tvz^hY{Few{1O8T7{{gZ`Uj(4Xi~ z8rV(F^QStLE<%_Y^k+JQUX74G>pRiK!#v2Y+O_Cc(g_BFok26qoUTWirv3?;Y?OYKv)d@WA4YnLbM94>#7H~L-eBH!J8M@M zda{yYdcwOSq^haU@#3MU+8I)uH852jD{X%8gwI86cxOG|?VRs@btGbV`G9=V6Mh^i zY#u>nUvj1%+J(r(<{niYCq3a>i9UK&9dGhRU7=E^vYs1GFWo&=>Bd^lW9XF5UOOw} zbp^^08z0<*_;6}KHX~Xtl#Jw$KGBm;z^~hbb51ad>T>ss?l1(39zRCq69Y9az-jNl zpMwOhu?K5iL##Ax`cPC(gtr=Q=8oXit3!CbbQZimI2&G3S}43?z7}4}<(;5+Dd#)B zZ$qZ^wqCht@p4@8vv}#h#E`ies0d9UV92E3GOBz_L#AdkWNKB6VK6%whD@#6SOZF* ztG2~RmWE6%#E_|-ZOGKlGGuBU7&5i5Gh}Mt(2)5b>~jtKwaSh|yU#T&V1eP-fCVNH z9qe-rM2GrZ0}0aS8g@kI4cIYhxmI-xOjy7IV8uWYaCV2H&gxLiKiwha4&E-S^2p;g|+fg2{mlKKIAI=XveJmTdhpupV|;l39UZQMN(Ud8VaNXFe0;nm0W zpuBq`e2bAR@16+XYNX4%C&ITGVcXpk;oFTU>+Xs0tBn}@-4o&07!~u~6M84@cTa@> zD2@C5-8TVg@(zwLH_T293AX6sH1A^mA{VJ5aJ*NKuzAw-9@{)=`s94|SImPC_jm3# zA1w21SJ?^~Ykp0aU0_i+Ao8nSU}rnLzT%tXqN95Nxb8rL`8n~s5!WTGb656OYy+bR z`3AQ!ReEedR>J#WM4$ByZX>#bZ*Ut4wr_A75gmMk+epAi_M{twy%pRs$jXp!a2r`W z`Uba=^0nXKHnN=k4Q?Yo@C|MwI6Be=776!+5loG|(jMeH0j@<4yD{d9AaBKVFypT5 zt@sHTXwWyfjhd9;Z*Uut!QbFE;)1@xZA3*HoqEIURJ75lH_ad*X!lkaMLPHf_iw;v z_|rFE<*hIZp8XAOBmS&!a2wG{is;Z=@iRcFJHG78n?0DsCMeoy^$g1venee~p#Fl> zK%?2S7NsA?7|nf*E>g5)egUvKNxu?|8L@uR1?~bhE5yz7eOLl6z=}gJuHMh#DC~Q` zpW|X~!PKe0T!vRvsXoYwu`$ z{-6=T8QM8R58TNUpN#$Q>gmTo#>)`wRl>D>#JM$ZVQ)Ti6$mcrwZfKI%zg?zVSmGIYY7)rFa=K4lhHUc=!>*-3aDDjeQITIej(qN%CNDECl*3UY@1wMLo~KKx0F} z7Z7ElAX7_^cn;c7aG4RIqabH^0%02p_U{>jf=hx?aNbv-pcmz=d1XA4{ryTrlo@zH zn}LeGi?fs+sHPf*5IZ_Pia3dm+~c9WH$c~y1AWottckNSz?WlQ0AKCRno!^xsY)8$f z5&nAATw+H}oW{1H<|u@eVd|nK%e+7|+2!OQz7Ue=p8aNw-6|%3v?hK=^fkb~cjOwU-FA5(D^tHd<*B20H^tHdOiURmIN)j+cL_m5qbRazJ>6?M&U*c~c z>R171QcoSE4gC5FqT+RkHXy!ZDqp}tT@ZJ$` zf-{bI1&^dth_KkrGsug7ox`}E&S5N}NAWfOi}9@{lLwjHXN$e}9p;F>9L?eH52%y9 zXgvd$C2rx`yAG6N*uu@sL6AoXOXpTj-pgUW<#H>J;gp#QTjw@T9X^OtImD@J5gNnO zQibMj!Jqn*5DYp;rs%V>1NreU4kOdA2MrmT{VGcRi^jM?G$hM$RB-rGkn?3(%I&DF z3*16x?`L!WUex=C-p}U##U&VHLx1ORY9@!d_j5S)CWQJxXUXHha~#koI-hg?iGwA4 zu5vCn8JCF1Fo{gKoSaoTb3(2UB3E;=g0mc0nWel7aqdAi8E^yjH|}MvoHDi(n{v|ba zhfZWAh!~`g!U*F#E_%8?&Ye1C`MC_T*rJ|9)Hz;s_c8n#AGtZCSEp0p&k%VCf9fM= zQJ_rH=eo}jeXh@%Y)nls2HPAmGuDcC2Czva_kOS5PFX5my!Pg=Px;ur8-Esibkhx~q+j|`}%Zj=XO2yAG#~+}U z_u;Y%n%_Rdtoh}{;Q759sloI6Ibu4V-x0%Y^ZOz?d;ucl{Bl_HE)1RD#at$Mes4t7 zIjQLGCj80y<>Cwh{tZYZ7A*E*o3aSbYH;;!_`4rfEr!2IN+B-&N5t8sP_Ge^vnT7y z-8O_RDfBQxfd;Yjr9**&2Ep^Uy}{iGTcYGm zghF|%qJA}3#q5IDgoC+7j#QOmc#T5%=_EuOGC{Z8tVht!Pk+Nl$67fmBVIUi8Ez<^%Mqc|;El8Rw>Q~88MNKHqQcCeR8#QbW^hTGU zK17)kl!@U<4q6hl(-`h6Um(1jdpjIKW!&p{{0Oy-S0?Co+VGpXPF0;a1j{nGB=t4svzWj?zNA9AoRU z@-bMKrd*u)ec5UkFXoSZ;7cF+H$E0G9`~&bvx^rinTIo#?fA=IjSicJ$gs`<+n|1j zt=8GN&^9<$?Zk3dAw~tDT&dRs0UqYM6eluU36O<`!GM!;EWvwJk=n z2s5tr)wUYxkqGm(zS=e;9F5}UwZ7VRBPtG67}xr0R~s?C!>nt4wQG!u`zzsLZ=lIe z`lo%hAHB!ThuTyzTz!wcF-H5Py&YYEh;xnjG`!u0s-0y+{c0nr{6d2kxbRmKB)9V$ z9~tU2?Lz%yH`LIZk>~8){=qi{YaQ?O7wUoq#jDGTmbf8&4|h_>qb@neg`naW5$*!R z&EZa*vJ){~z}F6UVp#qHp|0Rok9RtRkeb^S=7uNqeCk{!VjE`k_b3yIGjRMF9_?nX zOI3qIN-cvLdvO@^KLAqs4`(Wm;ScC){2%;z8Vix3Lc5C!Qi{e;IyYtU`hv2eRmqFi zuKX6CsR35=hjg+oOBk0tc2Y9FF{ExD2X><=@p`YmkFV@l!{86)dg9*s-1{~h$$>9Xkt`CZGT(CLRVcpcM1r)g$l%??mOryt5-?MDcnMakcqcBjpO zPT|ERJc9P9$3R^;<6NfTeK6knz(!$FL7^4KMXQ4DQd!nStX1f4^)`OPH9FL&X5dwc zoHhp+;9=7`HR;vi@Tzx7Q7JB}S%O0}>OxXyA{)I8A=w>tzmPcC9h<<-w-T&v7V61S ztB`&reSn-%OORo)@mf-%s7r`D5VZtkwvhEt=dVcdo2sFlduJxp(HC2BBUA?m|;1Uyo1Ju&0FS z@Q}3iTkyH=UopPKUZePth(~WR3LCpJ@z!?+ z9-X~Qc7)+;lznC+&~FhQ7od(lD>zh!$IS@!^Wo(Qy!5>mFIYSFy9vL4B(AH#J>J1W zj@hPLXS7X-VYX?6CXNN$L~Dh5+QSINGb>C1ZDxWMsmsE8GAr!Ktgt7u!d}IQ?#-;Q zvv;1(RC}Mr68kbs3?FB*#Jk?vVV2kzi^0Ck6UXoi^TgSBv3O!1=83%; z&{|*Shee!=`QbLa@V|b{4^Lxg@_@Z|GY?drfR`cVOGIkQsq_Ei`C%@2;hHBim98cK z1NJ=(F&LbKG<858 z8g8@;3Mn75NL4Pn;6I)NZU*<`zqh|L2UKl#Ej8G#rH0tG)DXLt8e-Q{&$er+XW6yX z4(wWLhjuOX{|UR+w_Oc);v?6FH8E);&@MdeDm;bSg;Di7ymnP0bmUZTu0jY$je|m6 zmLswmf04QsnJ;cS|MH73U63>Vvdb4NQ0Ojk7ncgB!#Cq7%Yp^d?1^{F#FvoxzkmNd z5WrsYVInqyL_g6(y;S{Sr|3>#cs;QpcS=NB#B?~FXs8kqk&YZ-fw3xyhzL$m`8-p% zK(&d+FkZfLse0#Iz5)-qZ2W4JthPaGa?<>{1Jl)y`^oL-KWPI zaj|Bma9bRX{rxAyLXoi8mMKO=8o&T3EEw7185mK)K*Hr-0hnQmdmzX_!G!SzV+qq@z>}6_mX6@z8s$e?hzPH=nOPs_D61)%d9;Z^dShdf)v-1%kQ}az)sZ*F z>O=?);8=~(c>~MG+JXQTd?a#e8R^GcZ84%w;JL+-Oj{{KI7&1I!`1BJyC1bn*}tCEY4&Z!ZJKd6Z0BuhB|Ypno7b@CkeV zspjxanm^whnHijBR>VQ{tY67+gbdw)&r&)Gzry2F8+eg6>*%9Ea zF~~YYA1L~nW7da>?T>-Zv{#`hvm#KNqFjttblT%qaygDGy99TX;OEi^L|!IyD9YtV z8=UmRt^gaCnQcuT_M6E*cnGERz>@140x zHq*t}Q!Bx*?32$M?yw9F794JOph&H*7c40bPxI?7}RI)z7@^&m@AZoS4+W*cDJALqr4Qu0aCE{KGk9fZ7Q5WpwCg)}+$`xKtoNS{Wdx z#>hV~q#cRH%#8+F)o}k3I>KRzY9=}{vgrt73~5N9b^{m|?hiG4WnwYQW?2phJY16N z2u4H3I#b6p(2!9s6b+?7{tk-q_oA{HidUq>yl!^P>mJPiqJl9m+Q7W8MYiDpPh7Cx z6E9)cQ?j~mtF+lsen7AmHc;{jC~MZbD#088kbxO^qBZ-L7A4scCLYYlLMf>@NyN}` zSE7X;7;dsvC~TY=?8(j`4IM4X!Xw<_A<=}JItK+5o1$jqA06nTP0<@;;+x*ZWP2Aa z{7o_O*Tnl&dsnPnp?X`e9yng=ffEddKT+x!=USs+c7C4TNfY5iSjr@`A0`i(Y;~PU zc8X2H=&TBdw^=XKwKcoq;|x|~aBZET)@20Xb2c~2wDl5gSqfYzt%s^_W*<$^;bO1= z14A`mp}v`X;v!~mKQQN&D?o|qX3)%%Z67lfw}6-q9sx8tTf>0zOeub)4rg@}I-EW= z$aP7ex?nXGYFz+SMv8?6m)Saq{^DD%2A_w%$Lwvk)sVs7=E(duiRv;l+1Xp3jFaNo zrVp}i`VE!302|SDsjsw=7z|BFhW6bRx(>_(EPbL(%r?;^It09SLB%!!Q$R36*lYs- zGK;|X155joU&tkY7rVmSHCWYP71^dSv(?EIo3J_=Gt*u2|0v1-qvc#dlvvh-m|$rW zYe*Zc{Gpgwt9&TE%sqPrx}hUSZ?j#@4YsGqReoQ)!02c7)LP^Bmuq}Woaprp43;i~ z>}z}$Dgm`9F@U5xI~yE=6c)`52}X%fHP<4!e}$@RcF&;RZ-^=1i_#I8Eged1C$b?8 zFQ@`Y)7?NCyCu>v4E2ym6Jtl3*kGiQb|OZao)*&dGLQymR84c0KFNLTNYghk<9b>@ zJL<5t$n39$Is+u?du z1zc2M=CgWZVd6i~!0lMi`Uf~N6wMlvEY$mBVp8GSGjflG|QF_uuhc{ z?0kzRxv^=sY&vaRV4owaxeKjHWsw$e&BDTGmrv7~U)a=agI~ZQdltV4_-1YVVy4wM zqu?wvf_WP{d$Cy$)J=Vp4aa>$mhyjM32)cn|Icmpu!!GcC#Li<*om%6F}vu9o$vyG zltKG8=>t{H!e89}Em0Orcf9J%3M|9Id<*aGUIA9+EDU8b;N2W1ck2%#gKr=Z#7?$= z633d`xxq9KKY=w+t2yZ+Foij*cII%oIc6g!C>ZsnPG@Fzm_yOkOuLgn=LhL>XM@f- zxJ9Ut=reEaFo(c(!ZTn5nMGUu(pT3*^lm=1du!jCXeEcxGdFft?+;xGT(pfPhgD zS9(emFe3i*8D8*W_+PQNZ8$*sO>LH#0N&2Vwr!Jy*w5MD&O86Dd)xFSqruYT?lurE z^d}2dpoyFGpr^=vZKe~IaZK)O1A18d+VlYIm{R?)v@5Ag1@_Gavq6cITp2S$ouI)8 znTdk&F``So$zoT=5SZ1OU0vXRXMnfUAllf?q4ox!WEhIK3@D;wDP>WwMZ?IYX411r>vzQ#l8yw4~ z8gg$Z26`LB!t9$#kn6lq5(WQcraV~^H55WaO@S)N2|;^Bu#yb463SAb4Kk&(NXd}w z$-YMf{3t7!`muntGh$|yk~bjpG|BpT$QOk2hYL;qplhaZ-53mubw3+>weRPJUK-H- zz!?+4|KxfRlV<2ayjawGVAG!DdJ(u1IEBHBMpJ?q1)=)M`TkZKRRHn7Ge?oG1)LSI zTnnKd;1F%fa4lHg1fBY#?G~&a)~s8a06atz*w|-biAHJgi8G-D@WQ`f$aCx`V5I8B z>Ok*cv4Wk92IBR#8arzXWk0J;mUp3>8*Rvq`5tJ{3HC8^n+f(r#?nN+LDVwXhFmB% zM7lJFGLqQLoW|5LdkIC7fJfMdB>xFYwPEo7UUwf_9>aLU?bI_M)O2L-W#W;J1-+%m zu#a75wl)LknAa~r4SKM@oQ?s~V#bo2d>`I7k z;Fj7Fp^`wi)2Uozw5h~zswh7<%P z!$dIE;!2!q*(ohKYIRG>kdW4_4A_krs2u%1muW%TDgz9YkBWrSLO=tz(So!xKqMPP zWVbV*_HRfl0R;Jab}4z`cR$W&@Hvb1*$(o-4Qs+($M9(8Y;eFb$H7K4{;{@%hl)%a zhvXTHw;_~1vYt|o_R<9$vh=oRf%nzmaD8pK4QTe06w{w4jdy&TGSPtjzz!x&?)A1y zx$kFE><&3hjQv0xpR_dbnb*~!$3yG_DbnC<-Q-BSOWqJACq3FO0DBlBF2B>V{Mv1^&u?&??y&(Ng7i(PJaNp`e4eaeJ=~^BD;RXO?-u5JU2!br_WDw2URB7&w z&hey2nOPt4G}T-7=GXo=2Hj}1|u%m|ud0n$KFW@MpUMQX!# z1hrXCje^p4%Iq71kqR<`Y)WO0W)gya*ZKdG$7UtMV|ORcb6O)Z0KjL6Lm>w)WFVT2 zAIF;c0*w3{()u@ddDzLmi=@$SvH!&)NvUQ=*@@By5wPI^5!f^Z1_y&k=hm^zt>dh0 zXX%^JX=H9D02>3~AhQ6oF2*<8#uyGtHo(}3%$8bvwqR$qR-ZQ`t5j=ECLlTZ**t-p z39xPh=>r>}jH+-5!)}De@e70Uzy_FPLHoNfgvcV3JE+*od)7ljy zGZ&RStynJ^8}TA}WZld}RBen5JyxPSG2iDa5O5U&rsjJcMF0dkD-XRC!M8)I^BLxzD` zIn-At2*AIeqzwD|!w|?p+SLDm9t!keC|fIj))c@Z!EXTGAaEn$ALy+AgK}IjSRt4g zU9m!7uo~+FfYpF6VkCSe7wN}b1SgAiYO!+>+tnfeV!juzjDWMOi|j#H?m8AHDQUo(<5r2$V>{Tv4=Rs7=s{{M;#tlhX@4qwPt7Eei;S+we+IVnY} z7O(IwS&ECRQ&z5Bzc!_C^~$9w7rIgk%$zAjR~D_(uWpw)75BM5a?j9j$BO=X&>TvP=V)Ifjec3TC9F6{I-7;%_^}Wz&l0 znPQsAeDyLd+^GBLwJ1CsR~Qd#JVSYHG`Mw!))z@7_?C&L@U2zf5T{a#R)3cX3B|}1 zVB=R^!!B_XlgJ+xkVyRx=Je~6%`X(-zD-7G44>&_t$S(7*G@fO!o3#xG3mib4^4!L zW0ePqppM`~u%_gc<@h=r7sWq(a&OtnVk0L$8&NU_*U66`hcLe1$GDVQ4$^rVS4$t$ zr#?(W+(Iwr?@XlXE|@z;8y0ING;qT9Zf7SHdyr6rgdJDR(uT*5)FLp&dR>P(Wv`hs zEcQGrC6}@IK&!UiYs05CBystWyHaMo9IaW|$B^`bONiX(QUDU;W;jX3mT9~Xp^*W@y+gJ5C)2Ecq zpr{t%WnwCF3vX>b#d@yv3U31yyD7R3%M=qV(QXvFy07Xl+Edv4T7p)Qw>efnKT<6TAW!cozMaz=;>B*)@mjP=6{+-x}3EQfvOEbk> zYXurEa2a3q|=)-naW@TG}WE=hjd+ZHP)P;d)%)-GxU49#(^!4|9X6dK0a4tfDR= z=Jwh=kx0jtMiJ)~@pMyV8@;2r>8F(rI;ps5U!@D_GaK@0VEcUP>Z6MjXq=C76H>Pe z?~d(zk5XK#xJMfr*F^P|Z3Xo-ypD#pKO;&{QfxClTIr*HqOla+C}~79tJ~fm2N}9``2)9pXtuM zmG7-H#KyG3B}Eoa9-fbad!tlO3cbIkZX4Bh&!%|KPA{#g^U~XETIr|V8@29|Y7|Ds z&2g%KX2X=6CFxZ&scRc`YooOyCKt`zzJi;4HCFg@s7!dMM=~vIOGCmVdcxze!jp?g ztM#L!P+t@38@qVyHMJLSzQ6W4D^a-;i9aIMzkuS~Xq2aE=`Sv!NFSG0 zTTsFE8+mZ2!$k7-^wC?-SvH{{EoDqW(OkN;ncVG%_an>wdX{IyfMPXEk+_fMbHAR~ zqwnKr`i&x7wA?2!A1*u|#&jLDh8WF6d`%~wt{!r__Qwg|>813$<*wqPm%l*s8m$>x z)?yVsdONttd%Yl;8fbTsXWKSWp)blYxp9r+zUl*FkCSfGKq_a7AP%05 zZ+w})P}=Fo<={qX^>iJz&>NfD57Lh{;i#cqs^E!!sgQxTzn2^MRV1C)E)FfU|MX?&pOJ{K2SH-r_I<%-TXOK z-s+4WQh|#iJO|c!X+`@L_oCl_b~D6k`?$44+0DaCQS=vF)LW|;T5Sy>S_Q_u7^(VK zoTkV|swr=z4*@XxQF#k>fr{{+ctNDse7vI`>?j3-D0%KPlV{TQ3QXaSFg&6F=QTch za)XB+2}ij{HW=mZ)rR&l3wH74vtso!7knqoPgf$_Iqh^wJH1^Y686y)RIx=B{s!mL z#4%2~vqBrL-V2siM=vO%QCvW?gui-r`uNq$3r~x4A*;oN)X`hg=2Eg~6YGz$GE<5f zr3vlEjPI)vgJ#k%RG$35Rfz0;qLw_UlYiqxEB|ET2f4OT23{x%Xxl`YsAC`X$2;fP z2X?uS{-~gDA1mOTPizn#=az$8GDfG<$#6H_y1`RW^CJBuyiHt8PgICHqrNXTaZg@W zJY2_ZfkBBKW%N`<`#u_k`c`wz+X-)XZW3;z+#yvPp^Bf-LGJG}6yu{sf%Z?JeX*Ld zM0WL*d@qQmnXai6jnuvF(}vmUd1)D`HMuY*> zXtwC(g<|*e0s2=8Tp!N2o!}o%SBrgy-%XKo~p_L$$cbz z_dzjgryI*rUqhvcc}5hV<-M9{r}MaXUu+VNLl{T1b4*qGyIL=a$o@Bg$VZ~o=G4)J zMGY@6Eodl7FA`;-t*4bniV>bG*FBO3eM0P;0p+v~id$XUP0*(ufO{+TYCU?Cy0ktk z4)6K2=(8PS*B-HJZxuzfoDpNiCE_^UtYVP&ZEB~N6w$U%lv1B$QASr)G9o>$wx^er z{zA+|%ugyk`_sf$Wa#Jm2+wGjHavQH?a>#|l~OuZ;rfMGzqss*;;hwBQ9S3z3ZxXVU9fXk;;6*H>L36XS7jqB2nB!-G%GSpTsXjpC)Z}4`_e%lL{9aI|}_3 zftGR?#rvL0PdO>}ok~xk?aYeG=-mn*p0}tj?(Pv3D5YQXS_QRt1vI<2?Auwm{`j*; zSj+D&Vno9+y0=1`sA{95r;6TqQbZd+-99|CSh>OP)zrU{@>?hcQ>3=Pa|DYSQ9##} zH>37vR996s*v!dQES_KL(Fn|HMi=&IKDwsDgSWdNlFI1rO7Nw&({oSLtzgMzbWeq= z%8T;9)m-#NMGIoCMnAz08_Cm5^P3?~DY6+!%{-D~7u91j@WukprjHae7kr9YS#{cs zF_!f5GmE>E}xmlBDWA#{ZYZfGtwdYXp`bTg&3G14vLdl zNhtMNz>gwZ*L4W4E+P6&_76)AEJ~tBV}nx$!g2S zW0)`vb0)r?Y?x%El@o&w%rxG=ex`$`9_Ao6t&!l6>THQED>fx@dxra*VV? zmC3ZiMbSQ{%Kpi;#6=0sw9rLImF9&Un&!fa6tx=J??CqBO291XZ$$SVCpBYD#>5|P zojz)dVTnPa^cQtm(ht%DNP8h(Z7ovP}|5Hm}UcS5b=>0{EV5S6fsoYsuu=;d!NhSGIn$5NzGgP{^3mef z9rI^XtZ+S|FTqe-Ln+Yrm#Vt#;rdb1RC<`ZevH&Di+9X|_EYuIo|&_jInz=o%9WQ3_D-{XZ_N;My`l_}WAi8`o7TGXC^DNCxM{eE zK^>HjC5maAO}zp2T%)N4c}-$MzKktqIK2%xdqXX>v#H*O?c2XVb1JgCtK=_7X$aZI#>MlyBF0gi#`u3-6Nu8a3 zp}v{`wx9S33OyXAIGhHVPYp-$`tYDCl@W;hdAPmhXwJ4TDC%fA z>ir286Y0}CT;J{+kQ)C|(~0IrXL@iM7y*eO~sP9OOyd6M%k&yywm+~dCj zF14>xgd_JFT9>epJP8!p4tr$Ym9kf-7<~7K!*4QUi?RM<l@;tZ!a!|rgHmv)c6yh#lDolqN(R9}=?1e_gsk`SM6GIAL z%8@g3fTN#KV55KD%7>r2JJ)Ke7a5b3&k8ug}f(z`-kn)SBqX6`~X z^%(?z7k@Ez#|qF3yOTGEy4JyJ##-$fECG{gjYkgP@P5?sLb&S7IJPfylCvlsO0T!T zTc(@k(MH0jNPiy&rEw?cq^y{fnfaD@S=64sa*zJ$V0_- zB1dxT!wk>^LR}^@8VoBq_x=DP>q8<>?Lg!%p(f5r8IvA>mcpa@DHyE?XgDXBw00rN z!lvApQT8QG^-P^oISgL{$ayD(Pl0y@MYUt*3(|Io6u4nir=-`U(-n0~#66}k&;hM3<&E*@WjPOt8fRMS==3IWZfZ4MT(=d;&CVNm zDS*12lSy4KJjjt>Z3XCOd9K%G>&Gvv*wScp^khpK7a&F zh%a$2mm{6VajseJ{Rh%%a5BwvAaAM|PnXmg#21c!W_F-mZhn>r4qKNq&3WvZ(}tlJ zd5im@^7kXuXT)=h=HL9##f#=k+|1pD68=aaLta4u7owTpYz>J_<(z+u2+rBC6OngE zsCAh$#8uQKdmdERH!r?bysJeSgIBn!CnMBCt8y-~!z^;ieDb!uIZG6215A|RRz8RS znk&3?9;aS>y_luNo5{>g+q$ZI#Gl}zojB>8E0;-ROJxFh5hXLU;k~PVbPvX8qT%K; zqL`s4>UMN74$agj4Kq&==N#*ilw~K8A;7BCT(kC{~%e zUTiYK`n3Y4sg>=RYASB0Sm;$ge#ZI10z}jF6iP^jWg>yPweO+TZt7M?@$MYz=b^$D zktLdPyfAyYj$tk0dQ}{&Hdb3Q@(MawbzDKO^!ipG6#JNJEEJWBh)CXQD){ywXKzEm3P>F|0mytg_D zPa3UCM#<^axW4X7u}Dkm21|`-J63f}jyd`nbYNE}bzRfUf@-K$QzdWl{}>6!p+23I zJaFMw#5@I}E6B;uU$m{?x~4(1_YVlr@)t<;V=7W8+D*ldoE2e2f7`&O%I)EP$iBm+ z9>n}A%-tYT5c#(-(SmR_Y`QAFALiIvkI+>c+17t;xHd`+ka`vBy`!s&)Z-gq0B=Et z`@$Ph;qFogBKL;z0(>vEB7PUFFlCN|2)|pNjkK%FId=`3CwflrN^^MKl2nAALWoOo z`W~%i2BQA3p;5#lcpU&ly}0;;h$#@@m@DB=r38_E9GdrhSkUku^EBSCz`K~v=^J2N z(qGo&WrqH$#Te*&paKJUwTpTfZknlR^!WZ+^);U=ZhM&cH2gV)gQzB zr-3>M|7c?!a{EXd%VRf&@@iNe-m7#dZ4PJnZQj@#7|0*hmMTQmZ)|}@e7-hL)kem0 z_aB2@wH(`31 za_P#|CF{R-!$7c>X<7spUJd9^w6UUvjMqce75iod7C6PsuhOCC%t~__EbB2H6jk4D zsqh`35L)zKzXv^zttQFw8Gm}e*fI~d9W zO6;lah&o60XHmCiX!gs}oK>Yw`|w8Hvg>swb`V|Blw1CLClQ92l~^_{{+jJ%|GsHl z%uQhlXBdEhGsZj5Zo+!V-8U4q3>t427ue*-#ijEC$_o37pX!43#!MLfd%I|jyL!jd zc`Ip+A5yjkig=;a+fVUki^i_1Ga#}K$D{B&DxA%eGbWF{%{j+exHE68b8Tuqd0VN> zeXPoG$Fn3(Le{5|b^WX{GmfS2zLVBxvxk!%?+z*ClrPajgQmJBl)*sZq0h@3Yw2@H z<1G~)dQ|nyqgyMJ7qZaBo)9>`^dE;vzGB`yN^s4Camo1gx)#9nG;c0-Wlv#Gf&Bck zy;8pY9$Opc(TNJ=FL2%TWX*OjWPi81d9>O!pKZagtkfL79r1@|(4dxi?5<`n5jx;> zrL3iH4pvT%IH&fYmy&PNd&kH^zjzd{_&Dp3wtNb;k-dgJJ7U^EvQ{nR7 z;1ua|Yx2eU*ypq!#R}$nZ^(C+@!P`FwO;B2T}>q4SnJ*Ss;YW{ zU-jS1zSkCQSh~PnvU=qL-p}}NVB1p^lWJuaSef zeZiAI$JS-J;yTP$o8M|`*~z7~Qpn}K;j5B(Kx4hY0(Q8y=X z&a-JXDb@5@g^xZ#baV@OeeeMD#!2vk1FZiZ?4%Yg&VVa3`-oY=hngo3o26Xzk(Qky z#ofZEkoWhRy6fSChs2PpPE%`n_Oj`7^XX@r@A&>h1+*6X86C8?onqYHIeDVzgM&|1 z&3$0#pSK@;gbJI#luh!kATSwE%FCiBt#4cqSfp=2!WmWdYJ>R*o8G@@j(ZGobDY|U zKx{6@-UM%m6Q(LN=K+q}46c@OaHgogSu(E^?4#Smj+6SCuN^L{hQa_@0bvi@oh*8| z5Awh_;LAKX)0_9~BhWjtH$eieu3NdsE1{ps_RrswS~nIerS0XsGW}E&**Rh(mGLG{ zsi7!iknc-U%MQ|LH(j1Uqg`}4TO0S6{W$Va6tm4 zxoAl?^{=BPj``FJy9)6WQ%9=;O2@)en1v6+*y>w%X%QTb*fG(&E|2}#^gi}g?yO9( z{U*~J70K{~3mA?Y@Loq_JQVBB6I&W+cw=5!!8+J5ywpp?q|nIFgybU0)ww8Wg3G+iAG}xu_cs(^&y6P9y(^HBIfiiy7RJwDM}j&&#{*%#yr4vuRx&@1>Hnp|GXu3*ZN4tYH6|yEi^h zrS47DGC7wg3+_`NlB+}-r+Sde`&;WkewtGD-zy{BS9;xsWRT377hfHm8~N8L`k@j+ z*WTGYcMrH0%=G>1oaFXU&(_*>TIJ3=C$L&OumPE_W1`%w9^wKKME{tG6l zRaNJfmVt5koN17ej;-LKZoIy!ICzI`aU(@L3^hTr`!XSyl?T? z$x==p@FC9)o#0vbigb~5dS?2}leEq){nMFj0sI8Mps5A0>Se?AmJJWK180X|@Gr)y z#3f>}@tqHBpoh6^kv)Rk%SyesiKl^~hK;l)+(%11aOffC(+!NX*M!$y>RktOxj5pL zZ5?HAz=J65M7EoBA~Mm8mRRp2y%|HoS{?kL~eIZB=qu zeqJ2BK)~}IrSbinWr zqyJi0X`qc#C-xgxEiDk~$hTeP3H+j>^=U7hkl3^m$QP9DPYP$dx$+-mdtPbZjeLhH zv#(Da(}3z9S1DqaNp2`-1ND0vPtmRA&DuG=3!qD6 zQ-hjaz=$1@z3-KoqO=H3IOKalW5f0f<#jZTt=E6iT);)xwe_JJcJ2GhIpuCW|AzKZBR)1?CL9+tQ0&oi!L2@~1K?2{ z9pE~+g+>xF2)wEvP`Hh_=`))Wknm#=6u-M^k%#M@DE(u_%q~u8>{T=E&A>}PN4|^5 zF}BEP-rVyR9QlRoy`|1UP4Lu9;%xXmlHP^^XZ(5NS*V@a$Q1SCFn4YJR!k5h^j|cQ zP+wKwP*t6~dltG9Q`ew-IDWu8R|l~7pm%En05BI;o2N~$1?q4M&tGpnc50gq1kE}{p_i*Ecko&Y`hX>f;x(ytC z!X9cx2Jz)Ks0a*uWLi$s)sXMJm4J>6a@9M_fB)H>fy^CIz`P9gzm zudnyjK1~;hgtQrAUMcn9GZANWjqX~UoVa)Y#Z)AG z%{b~4rymx&O1kb(wF6=6v4J7A);lAh5KcsAuK^skctu>5IJ8H)NmI`t_m8ne#%5g~ z{KT?A!fC|cuc>Hg>iFP)c6(;b_<-b=hVbQO_Jo_24J7ysjA z)kj`(`Pme^rP41&y8myeY8$CLOTF|FWYayWoAMiZk3%mH&G(~@fsh$K6g^(y*R_Z+ z-iOoBf#oq_AcnzABjsoHcU0om0g%7-rK0illvlv#SP4AVm^`)s) zrcHo5o+Y$5d&U?Xz#QUxR=nLLUZzV$a>MZ@mrtFNN`v6;Jc5%cBUFk9536mUXnuzi zd|}J3!qJ6=;%yw9sFTW41JBFfx~tUHPo;I#&3*ek8VY;#@1TX;jXk=q1WLj(8No^E zQ*gADepKnhX7uE|bzW*KX{M%b{!;4iYl0StalH@dp40LyjPcmipAXaJoMg(Vqx)f> z&e)HUw|FTMO9J))$8wgVyji`WVHakrj&`W+$I_~&@Gh#?D^S^;Fq&f%d@|jwHXo#W zVOd_n_VZRMLH~e;$&8VBagiTs6WTK-mlaSI&c-B(7W%D%UJq&WibHgzmV#T%8VlAo zQGUCZ(g1sL61IF-8OWp=l{V8j(Y)uK=jee-*nS^ZMDr4w>XMr)8VUd*A2v1Q=8;p> zEm%+QZ)$^BY)qX3vMt2oIcUM{idvCAB_C-}Baml`hc0x`6c=6M-_mdhOS}Z$HHuxW zyp1E7mS#(xGPMer_N(q#E0&7EM@w^lc8BoRgBU#&9WeJCU>yAnIGVb)Y`3*w+gya` zkHggFS=cs#vp1FSOPtou?OAgMP*}Z-Y?{E{_$B4K*|A!A&jnEV;ejs~>^- zw;S_TUEWH!A%b%cCAXYTMw)77jOk z3}erbmYcnl1jOFZ4t>Xs4JRJD2iQ5xf&E(Wp9$ZJy|f71qg-B`V%)jGO-cGF#nw)+WK zr@DYTwrH)?SW&m9e#e&gZ(5JG`Un@eQV)0i&bQW;Vn0syp_(e14fJor`S7>8xV<&n z;CS@=Wl-_ZI^Olu9sRBWY)^yj3|4D#8ri?0<}`dv`k!_|+;J;p#!`%ytZJj;Yq4Q) zuzFl19%TR45fE}CEo(syu#{zp81L~j5Hq6g6`F%=)U5?aIQRwV|0oP(ux9!6s%d~W zUgb)b2)8!S0AQvI0BnH!XPNiY9pV=oYO3kU^^LTpv%6L_G4DTB(UOlX-OOfg+8}%u zfS;&v)4|TLf`}Lsz*}IlYpdTO=EFdS7KZn%`Ky+Nb2JAJLYQLXP&37})x)ETeKW6M z&r=-$7z+Tty{-oQtd3@4Yg03zm?0WbR_xOYzO=59c67#6^wEj~+i;F9MW^A0ZQcXZ zpC8^X5mQ5_)_aZzX8*cQe(K)t72~`$)PU2~Cp){nZ{CBzP6R&e>=qAu->wnwz$uhW zUvzfoW2XLI=7LMfO=+GdjPXbuJIr$GS{&6E!%I(oO8vp3?uGcrR(l^E09)_cz5}}; zGkY?(YlQS^J`ERGyEt-gT74lLi`pcWdgIOjAWZFP@t&Ab`wk7qI=flSfETlQ>pn5= zG|dsNrjKwU=ul;|c79JjdDlvpw9xo=;T*4>6FV0x`NF-T>7j)=^#>A{(voJnyantZ z(N6t%;<3x|A8*J%uX!)dGSzA0jOjhWdle4g0D0!4hn!;u4t9#gd$BD+u0L}f7}^)C zQAJ~+?BLB($JK21d+&iYwwkSI(ZVe%ULn8gI4=vxfJ2C?1CrmZ$I#|V2XDf3-kO+( z9e-mMG|=miT{uMhJp8;9+OchIog)eEziG72mD4aKbsZlKj`UTZ(a$krS<7wRj>B1C z_riC8W_YNNOC-(MO>;qY5f~t9$GMhu*aj5?2o8pd1Ou_>_%%m>sEUtIA~aWmA4mA9 zN4rQlmIl>t=L=$o7;uR;sV{lkC*_FE)U%NxjIH|XakQ?q?av^cc1T}HsHG4apWryg zl~BTRU&glJ-hYM4 z+lzSZe|=9kA9{^%uCL;n9;j@s+6H|a?D7?$hr4f(bgif!#6z_oB3kcH~(6*X+9bnzdlVCqSK(np!lI z*Jn+T#C%>V$wAA3eSL72DuK7>1Q34He6wi|DzGB|(^LA&opaAS8 z#_Qcc?quqPJ5~hrD)1ldp22Ulhl;ZC8}E_jPE?`XlQ6Q5Jw0>mWQtx;i_)VtGUg5X`7Ac&&c1_KqGEd4}cmYMqOaccP10Lq~L6$hvmQ6}6 z1Y?goIrG>U=X5Nput&9;7PMkp_sMFi<&(32MwPV@4k^S_x1z~0s{cl6MSFK4u@&t- z?m?Yhg>M-*v8ugx>^_l#JAM4DyJAyNoC_zRxXv6p%5@$yziaU3y&`e{ zymXP8Hzx6iLnqNdH#LDDKEJUMtQ^O+{JOMB=A&Er5I!EABZTpNN2hk6$v3feew>KQ zDma#Ng>d5Jgntwqg>yxp>bx5&>9RITMTfnj*KRWz-Ktn)EG zjS{WZTMo{|`oclgxXPoXU5tQj7iW2+>O@V!L(XdQLMk|=DQqG4VoN8rAg$m?V9R;t z?-2R-@ZiYeqlo-8B=YD>h?4>`YP61VK?|T(|__C@&!OCRjgrdKc0Jf7!FN z!S_6r1}x>Wbzz!Z_%lA47nQBsNAQHsl|ZW!@{4lnKhsZ#BoHoD>FKJ*B?nknUFqXH zDRAFT4CVSyS4)*A^*OYITgv>)nr@_XagE8$ts)P4-6NI0y|AO|7mdMX(1`2Cs8<3N zas4NAMBa9hvN`iYDo&v2giJo5*w0lBoQ=Z@^cU#l6H1$|O<&L~5(91J_Qdo&kHaUs z8kS!@-MJ3#ck##EGAhF1aM$L+INHCaZtmo9Iav26$kT%fH=@iRaLix;B$#JYe%odWj5>!hfUu+kl1h>Lp~75 zvNSY{ZpJv;ff=KC1nRECp1>3)_%4mO>VkT}*X~Zo=@EY!i>6aTxN;w*d2W~kTvx$1 zRaR%7pJvm@i)i@6a5%i5ukbtHnhSyU=Ek}$Y}-K5Yr|T>;5_2c)7wUlPkBqkZvCY8 z22oS^gY<_n=c0(-RzOcLRny7r$QUi8WvGIL2SUTql&xmbPm0yfr2Vp;NKXczD*PTQwcWj z>Nn=kg27y`_ve~Vtb4k&7Q7=ZWotE5>2@soJalV?3-=+keLM*#KAU$wlYjh{mqvh; zVFgTd^1=cC|E;2};5~8MjHaJ0qb_ZLUADJLETE$mYHq6JH*R# z=;zp7@}}m?n|5dWGHzZdR=k1Mn~oHYBgf=y*UsQzEVG~-j*dWN_; zGOihMjfiP6^CWW~EE&JVLIH0$VYoxpGF8<5vQhW#I3L+wq2c00uBW5A%VphqU8C%E zeXeLu6&IwTx)(NyWDJ21qeTO+5L3Siw@&aGkAnnmgZbBncEj?RuZ#J{Eon32wTHAQ zaTjc1TDf}XT^I~@1di&Z4T}QKVPZcKe-v-P=E_as28W5=a3>93e)|%v$*ow&X*017 z7wy`RZq&{<-;}I3sxZ$5A7;UDgHUn5-oY8zDw^n(EUTDPt`X|aNtr)zdaFdDQ>HX* z!5r@us{g?3DXE1eh0OccH;U9VVn>>Hx|Bl=S^pnRPB`2X{eiSXN!6*j5zmu2RIc z`~QB=dCHw(687Ew|K9ig{Qp08uix*SbMCq4o_n8~=eZB8UgKkvc<&l(c2)EUw&2sl zro*jqbM<1=a;-UP>`{YC3e4g6Z8SZF{(6y_J}k4{LBRtyY%Kg^p_$k1s1xwV#&Yb{ z@GS8L{2>#!70escF6`QC(4gN21gG(tgoeRab<2+pz7=OSN8`ew zCsf0xk=0OjWx=qbIQD#-0(dnnj*0#kYzSBZ=-!9SOfzWhIeDhA>ehboqwtv3#^89Y zikA})j>Caz;Dnvs@$_!q$lJ^}MWzIOorWVKpZmc^fOpJ-69?jA=-bN%2B(G0*62p; zGzLz?q8oUx1gmu5DF5e43#%Z0MV?Kg}e{{0@pizdjwDE5$u~2Jf#zO^#@ok3WrIYSYY-I zhXaQ}(_kj@aCAVunH=2Cg_o|$#5BNLp!EeMRl(!1W7SiwAv_E`$n%B*|2@K9 z6wXf(PNDG56k!g9Gg5>B3U9Q9pW*?A%)p)h|GoC{|I&p^6z{?R|FOSzxmQ@$l@1>a z$zOwk`)w~gIAJaF?+!Epnq(GK>2a(CGbwdEIdSlZEMAV>coA) zs!qW}df?O=|225ly3(w~Th+lK3x}E9TI|dY9Q-P*aRlZKn#8nexF>*nP)BDhTI4?J zv}y>vE)QnRIJLUqwqf1))L#9vG2?H2c4Fd|;9-4n=86qy9*&`H@wXyAwYjq2qH*)` zS6q3u$*sc;_+a>Dx0^X!dE)qt`W14Hic7i+>VxfYuL_4TTyWIaV-*t|YX9Iq3$pZC zm~RPX%)|}+;73@8r(K_G+TyPt15Hu)yvz;S>3c z)-$*;qalKm{FizEX&%;QET1~QU|6?JW?pd7&c{&4!m)nMY+JBts*Y>hm*kkoI<8}o{ zPaT3`#%#gbih$u$-S;zVA4R3v_~T#K+X`;yxZX6ma^g=|JYd}X%XsT%ze+4-GmuZv z;hjaC_Hmf6;V=)>7hYHPi&vYg2E~y}?3tgM?7g5Ko&d-E^J`*ow_(AyJ8<8o(>AVa zf?L?UN7xC=TVk|w=AjE+{&*1%?l)xcDV297?Z|Tvc$=Su4?Ng}8^4v+I7Ym1g_GZx zGY8^i^)Wm$@ob*~ZG-RN=ceG=j16YoclbLV9zM;%Z9-h5R0gYX6K+Sad~5LVhT!r^ zQ(t{;@if9qw#e0iezZ;9(;j$9%_wIwB z&A`tKdhu!)_y5M^jGMvx#anO1%LJ8w3GNKcSu|uo;yTmX%ssK&h+)893qJ*wg=?e}VE}dX&(6EFQ1$$)oPht7Ch7 z?A^Zil(e=-@{@b%Zd-BRyO}R(=4bS%Dl***-Fpj5uY?c}c;fN^v!U{lDqi4l9oSA4 zyzBltmilaOW}JE&W@Zg1Cf?{S8sTnh`F!eR1Fp2H=S3Eua8=^OUA!xd*MHm<32NCS zFU3|wdY=7?xga|+Lj0K#Z${lUdEsql!lzYcLdyT=22aGk9PK?W50Jcywdwi~8h80L?4%(4iwIY9 z!Mav`&4g+A1KZT#Uoj=)^I~FQEU9sps1p#XlTEp@~f}E2D{hXspedRKM-vyc)B3Jj?ezh#b3Jjp0jc; z?xnV?TrwN?alRTifAO=}vv$JXbYbua+=einO0M5z#@%;oFlSEi?MWMk&HZfdxVaOs zkY#;x$##DKj=#;c-%(HzFPLc-tPP%k3tQ~3AH&7SVGWCr!iB*WF9(M%+=!P8UcNQ+ zn1gY(Gc9;WhMBVfk6hxZoy)km?uXc$UKKoP$2;Blu+Db8%btNh&r}9$wmz{U_(!aS z@Z6*gIM7eUqZRY{0PJr6!NZ`A>_EOm_5%)bKTX0ym-F$SBc7M-Uevu{&^bl-6bwdm zeen?6NW8~)JZ}&d94G(B9cg!UkMKt1|5hBP@=h$`?cdkTX%i6CN_jf=c?7k0eMP+J z+OBiw7cJRYbnTUkf@NFr@?3{D)66(`ZRl~8!=Rc3<06F>u=!80-)GtBG3Lvc}K@}_0-;}l)x(DQM+clS^K zmp?zThhs#e2dSp(akZz)+W3j}ST?GHi#Xw5d2PI!%S<6^sPK1@Mjiu)ezzkCcMscm zvVL;L)jj){kN;#X{_!#C&OL&MZ+#sbXMfDK*^}$9>Awr_1L*$-_p8+v^tp|OFGlUG zjDoB5X7L~80v%jz5VY05e{9pW>!hiFl`hftxvoLh@DE+%r(r&hqeB;RH{)q`m z@s8?vcD{+DI-bYpm`vek25!Kghw{6bMJ0JAucE+IRTN|%e^A?#+)Imjd^hWk=G@0_ znpDY0pdaF$Dt99bgfTD=DD9)7~X*A%_d|230)Z%OV;e-%=fdnKNIzv!9o*2D6t$$b2ATY$@X;4d7`gSLFo zMH>DG7Fi8O@yN6b+Ns zO!v~@S@loj-b`Kav`!GU4;FU9jT@|eXz+vp>J;Kj{BTJgl9G zSE;pIzg;f*{4mpbAb6C!9?F|^`iMAPj|Zr+mgW_6Hey{HdR-a9b5{^OFK$x22nvQ)O0Oi}A%0^8t(F2^08YsDfvqVM zvey8_^I4{~mE2YENW5y}nXtYglXK-aJfDw8?B)6VsgtJe!Xs95g3B}K1YgHivK&vo zzmBKu9>vx&Kw`O3DqWepc?{QR8Zz;xC~>L7nX%Pg-sTr<`I&*Vhn=Pm3jZBz%U)7e zJ_28wDR=(v-pD!ZZpRnvz7VQ-_p7*zYv7%cuL2o(r%Yc=$(KXNLI2sI<6l2O@Ag`B z(@EwYoR@B;_*RZ{oB}P^!@+JUSL}RiN{B)+K9Gw`R4nX| zJ1gcSUj1V!^?v5;i-JS&jw#OC@wDN@9w*bTrP*-WsqNfb4cltq1|RpRoPh)U$@DO8 zUcdM`u^65S9oBE|m9f~w-mYz63~cc#MZ=8#xGOvmw;Ou&`|TpWWs8qWjOY<;-Gh(u z@&g4Uc!%ffUR~R}U)I1N=Zr+{$20JEmy;^Z&LgYcgVT`VPDehoIx_WY{B73h2;M~L zXNEdG*(!H7@T@An#pCv8s@0zzc1jA z?q4z?<15`O{8bUu!56w3ZZ|vo_wSd7)n@nU(Qo2PqU{OxXQLEW@-@;*T* zJ1(CpdAcPyaB%Q~shK(2?R-CowN?;=gA;Qkh?)k(H9IAWA)H`{;uiVvQ$bbFZu!$L zc;}qc5Xc+^lCOc_R&c!=2xit=GbpotOS|oCZzRpz>UFiMpxIJ=e54VbBGa;znpeU38{ocMgUK&&t%h39B6eYitV*!wZL0q4{gZ6V2=0JWR5!@5~dZdxhk)?x?|^Cb-ZtpW5#g& z_g`IR4BsKcjt-wA+x`4mE)UAfPx5wNa>oMuF7DPTmun2}hkC8*g&oL#SVQWTg1n8x z^7@=~{B?K>LALHX32DH;6H;FJ=$gvvs=VqhT~EPv&BQ7!TidCuZWJ$V z@L{UHMdO2yO=>7w(tR5K_>OO#>@)RQC>uVRRuBw7V-ghwd5K+X^UXUl<=*|D=||3U z=*Oq%2bN*N+q(s4v>0NjYdbfkU+jd1I z9tzIt)DJ706)m2IzkyWZPIO;9%!&_~X&2k$jycAS(kZwuT9GkF_#FJ*WExgXI-zIY zu0{EHlcYVa9As5+SW4%{O6Nx6zq@UW|LVzxzjew5qw|Tss!K+mSYAJREI-3%ZH{uK zkJkRz|HG#m1Ha=RmXf~QWQ9U4OhzEbiJG6=>;_)AziH7dv-f_@`eX<9I)CqNhwlB$ zQR(XOBhy`3_m;vykymfhemHpyxH^8e67NO&J}n(TV0lbqI(+f2M~bd3ezQG(#PYAU z?u-^ez6S5M$?sHNXzRfni~k4c_^rf)QtauAx*_qxgF|}? zZCJV-=uS@2G4E`b-%3mxuihnz`HeEd>jAKOOa^YgR05q%Eounm5H6fx!;j6qu?Ii=YTQSA@WU^<@qDSNw)p9` z$FRXRWy4REUD(LHaL0k47<xQ_C;pq}!)a$FJqIw*7%~n-|^ng@MC7-PzuL znmT?xhac3|IQt~&_!*rJp3dLDvmU>ugBj%a58Q2!-_glU(dFQ`)Eib9INF{sR_+?> z`%`;izqhtf{yLu;Cw2TjOQ)3f7z=g$Ld%&cI*t)_{7lPoTW5_C_53``_$Kt5F&;_B zD5t*LHb2O6yj>sMZJQrvnQrTx{b&wk5;rcZv+O)s`wQ29{>=2pZPw=(SI)EjgS++k z&6UDNbo}y4mlR!N;}YIG5a8!L(3~?5&hX|Bb^NXezT1*CM{@9+x_KRXCm%;rj_*<* z&upETQlEXGjvx3)_3i5Tp^wI5;uk+sb#6@j^v5N3dnq|*yA8;BE87O#ZFebjjm5MI zb0xK1x86MH(rvra9&*^Hk@om4kaWj+$q({-NJ>4G&~_ zmR{Tb{+d4dNsyyGoxi`Pj^74Jonvl)_>qtqcD+A>Jy8K#5YTX>zvrqhN2>*EQ9b>Jra&7o^klP!var@5?eiWyP!PVzrI~$rt z@5ab4d*s@B@EjDz$S-{O+XKeLiqZAYuYHu-^_^=D*FV4caj>UP9`kJMa~jj}3m~aF zw@rQss9-*nd~)McaYwQ1_QzH8C$HBITUpN%%5=a)e)N~6z#OmaHD zFz}qMx6UD48-5RDr9JLxZ1@3>5lx&=N?);}TX(yylzj<5wc+PDd7I-$HzIaja5qQ! zzZM2wv~|{XCfi*#tuQd#j?Fqhpq^i**k$Xj{xx>I4z$270?*E+jw|Px=+Kv>b5e+1 zT`lHA>hYwpc7~xHuKJ&DA5I;Y|4-U~TH8cApUl}x)Z<$7NykEKKSg~Q*H7bN>+KJ$ zv7(-9%%_WqI<7XKG^eeYa-8~Z?pAQ z{H_g`TTa?9Tj!{*&5#!h195viEI)26OL2{ylxu6=GS(@V_73FPv83p^ta6Vg^ju&$ z>G~(7J{Ma~+HS0|X8T-qxuOaGTyc52txu`n3+I{_+InkWM*m!7d4sJ_iI0mUU*pZC ze)}~`sn3;&?`)zz*B~C=gr18KSK4|f{>J9kvA9v1gJaYHyAC+VlR7SldxNdB`Xlkb_TW`%7*M`gACiU5}apT}hx98b@QsUrJx4qKn-8Q)BZJDjN+DMlh zwtEH+c3g*bkX_FjFY3AMYN4&S;-a2QuGTf7=bEb{Y`rz#Sf8t`u5LolbySm%yD9a# za%$4`OGhw@=o7nxlQT#L% z28P?m8Yd379WMTPy{)&#m-}P-;Chz+G11>2Q^#d3aX4{~BmT8LbzI%@6i=t;J#M>P z-tvG(Vt3o+!j$t<>btt7(51GUZa%WTw{cR!g$^q++&GhS<=Sw?!n+%ZiSwF%xO!kN zxOd#N@=1L!ELbeQ-^|qih>%ZqNtU7EHRYQ>f?NZhbBoct@K0%nj>vWx%8u zA9)hg{d(Zw+*B-F z-tK)n7R!$t3zwkV%eJxhHOvQ>kh>*KtX_Te<zbf--Q(>Sgjo!@@mmsFa59g{NVf`jSb)QpWnzlaPvO|IrOjl{QD%5yC!sed%v-Ie2Kp?9pB|o z)ur1XaSpV>M#5LfZ}j?!_^fkA>iPcodujAJkV*Y`@4$#ga^TwVJ?}p>V&lfa7r4{S zbJqvo*nZ8Piz(y5SoqrX%strfh30)5iN$S;?=N@UgAHFr{yTEu&FM7p@Kxid?PH&1 zlWt5nXBM`@z8?3gj<$V+=QujPVfvJo+4H0j#W@{=w$j?>xgasE50 zcc7Q;+c_`EarAu0v4?$LVfkhM=!5SY<^sIjf#;xz|9c7p1x@TvXv25odN(pYUYtV; z1DDyyd1qcX*0=T@a2||p;V9d$Q-^U=&v&r=^K;#n)A?gx>S52fi|zvV`f1%qp-^E7TZ~E-AW47|``r&IiC)<838#fNVHuE^z^0 zzyJQj3>;rtT7~Z?eA7*_0^+m>H?OqbYyi+g)OKqEgwCqwt8fRXFW7Nsuser z6@f~KYsyAd1TLwrDy^s)T3uEXNVT?nSC?9L-dk*TW2K(Qq-y_@ak_2)SK{Tj!Ai%D z9$g=}WMX|qUFpb*%KAWEbyW>mO<*X#JTa!?#37$LpN##_MQR zUs_u>7L%jCVl1c7sL?fnx?z}k_(BZbA`K&}M@bSYM%C6&EY%nHAg(JPTV0Ds>`RAM zkE+01=%{EnB2`jn8G2F|A5~F0w5+}iYY>-JCHKfr%DA$zr8;Ftmeq_9Ut>qdYldnd zqbo~?V|Kek6u?&qE7A3uijftg>NvHf7kKG#Xhon##x}W~QDqZKM^{$jqcj-qODh7_ z?~0o8(L?dlqFuqC?n&7isv|EU)sC*K=0+;to6|X!v}vR!!cyv{?7R=@jFzSTU%mN{ zs;H|gt4i4sx%1MW>`C28O+`{pov}-*khDc4@8c{xO{2dZrQ1dM18MoRd{oQ!yxT5e z&l`RzHjA=)Y*|Up+(aY^t(N@+`C(gXYgW2@0%zlsIjvJob|KEJVGP(50^G1Dyp<*I5 z;xRQ)+t===r0&4&X5~+OZ(93VwL(pu&y94yv2pM_(L~(UoG$L^fEDTPXVghbKNRms z<2Pqn`YCQKN;gY>QmpE`M}f1JQhbr2EIzV6d2U$#leUD^zWbTB+R^<7PP?khE*WWE zGT0_wN3E7poj1}6E5&~E-q>4OyFHmusZ+o*NWV+-qD->1LQazV!e$qhJXX*Cs9W%bqLDgwAT!)012?gNZ)FXe`g#-)F{oTp7dYLaV4jpRjY>8QG@ zQn~m^>V_Y&cLnBF7>lc=3irw@?TNoNaV={3_eV7;{Qux^;|7P`1Zr!?R*WmH8OhVa z#?J$+aCYCfdLxgUBvsY*b^fJ&UBxIdA61q-wg0opV9gr$9GPy#OPg_$cYkeavI4!phn`ia_S!iyh&(9 zlys-is%4q{m#*@>i*bMWy$f$|?(4mRJ?7M(VOBJ|?>{Z2zZEx9*B$nx;nEwPmYXKq z@VBc*a-Zb;|NUD>sZ+rpU*4!0T9J>NyLGtT>L2N?p6OURdv*6jZK&L7_D07tPnsQ# zbT>5~tGYiNme9{1&Puow)3DPYH`3O#gxViVu=~*YVJ97;z3y6xYN9JinebC?wd{8` z)r}v4UlGU3`Z9FA47b{CCvrTg!;V^YyeTY4myx5frX9sz+*YmR;PmD-?8oy~IyJW+jV#`49i#^na`WugU<|_-TQX8K@5tTPioizQW^pvc~y$3*Og4 zp)K(=<%U=!+_&XAKZPi?C7!O_5c>=FZMp8x7}bY}b;=EKmhfcTt3;Lv5UI}ygbBNu zVtJS`C=7vEr`!-13b)+i_au=e1aAR{TLMi%-5hYSq4_BEN?f4a5NpJP@0GU8M4u3B zt*!{|9aCZ_6%(595Td8vVj3Yhrg%nD|8bS0w@?@uah-BQJmF@_{lIAZk?0eG+rcve z5yGz`jvM0fs0J}1)dOp5t>V3)R!hFfA^&`Bcz;jprI70@bw**N#4gGW@hstfq_jN) z#To%$#1~iOpD*%4;6hDhC~SmSuG|ps6z(@d+c6?b2+jsagM=nb4Xa!urV)Z;%BLXY zAD4rgk0LV#xInofzAN01fVRs-hM5A~gn|eNO_&;*z9^;5CEwpWP^8y0Xe3L+pZ6>;1US^vT7N>Ry_HIb-4Q=a1pAei5j_s0==a>>%4Ptlxu@+4- z1BsAjn&p~OZreI77@`w_H$Fqn}ICA3ij-04I{N9X(>`|1AK-4t_b)&6?X0~Wc9soS1)Hf`7 z6%x8cXWcp@@N9Z|8A5Toxx3ctn%vk^7ne7Y|W`h`1ZirdJ{gL8&fy+>6 zOI)tp5Wg3mZ2OAH5&_~)6pSh%)s)K&mZ8usv0S+!j?@EycM470@uE)%z61`pgujV6 zZix5QiI^}{jwU4pI)ky-a~R$#l@cK$onY{@d}oOeojEahLuSQb7>mYG;#Z4jv)Vj~ zp@hK3c^LD9@OF&%!t#C;?6+J8JOrWAsZu{&3b<711Ar%mMq0z8_AKH%^>(84^oBT% z5f}}2I&oB`3s8bqk5zez@eZx5{#U6JC1~|9gV5?>!cm&cJTDM0uk4c3`Zu83k62IC z>4kzF(V2igO8Wr@C=CN5N(Te(RqFSSPv^=%E;*S%;d~*^P;Q8y3HPTVZRdzAA^0db zQcZY4Dd8m)ZuZ32R807*BPOm_F=3-4Ccdv?!rvV+@e>sjQX^t}FRGetysngfHz=jA z50tY0r%K(VYG1c~7$dMcYsIjRu z1MIKV4S-G`5yQxz0c(`fkS?v$CmJplZLzQQ<`~!ZY#}F|*b4(&DmTOu;r<}fww=fl zg6DxFI6@PqhE>iN(-^@q_4cfJkewuIZ@bxypC6$}a)Dcv8{#o|!N*P*ZFh=3A=n;z z1Vw1V)UZkiF^v%%Q!l9B=~2{PP+Y}yJ_>^(E>LcW+uuqKinfo7J|TEG^azS@qGL*A zHHh6IWv%D5R*3ke@OTz+AE}lI5%&`w&mtb|$cY_Lng@z!gi2s=mkN6NiasIOY_+70ur~@#iASoK(9RJP>CH;CMeH02*O9_c^@hhJqxW0_d)E24J?* z^?-Mk9)ak!2i{~H0#DD0)5z&Cii=@{Rqs*y5a3Cr;zbhRoyGP?)yJfIm@RAdFst7s zb;7Lvm{PyG*ZLdi(hd|HLkP{`sd*qK)9ey(?N{tf)W1}G#0b-cMg%09SaX2UzzEt! z@9;8jIkq@fxxC5%Mj>>w^tG2tagOr$q!c393r zbXqO7Vg$!o7V&u%6C7t*zB8{ET#xu86xo#lwzMA zRJsblN>;F}lP%gvJ>YVsQvs}J9R{|;@JDeTBb+bV*u{WrmD2uMrEKSGrTd~eZPM#f z8)))G8(s`}N-67XQtFNhozpA&ICLhE*5pS!KFM8M#zTAA4Ph!-bqC(**B$8ETlyh0 zeEpE-@XeUvd&qHqJ44)hU&1y6a-4j*qVN^C)J5SC5u?ftF@#q>;mSMjrEM(=hKR62 zX!I|DUz7$=ft9QwVx1|Xja&=3QD}H3V75|Le@egjj%S9A^9Po@%8fv)VOfOt-OXk#lYB)hHYk;u__K*y-ZrL80wyD2RgagV5+t09slj z!3DW9^h7O03@SIo_l5giqwRqxa7wseX!Ie#CZ%qqG(1j3-tM&+KdVI)z8WxBDS`Fj z(XGqXzu!V(FNy1v8{+X;iQArfwEYYP)d{}{jRs(KG>X+r-!MYM-^8$_HH?lBLvIAQ zu6PCtTPFsU8{)3=O`?Hyp1BMM5Jt12(CY zuuZ5pG`-=8A>sspQT|;i!D-5OT2hIs8eZ6UT9U@;8K_<+o+6_GH!FP@piM>C)LNC& z(=3T8vI4M9soQ;4pCpE1)>)&}H}v|!+&aO31FC5#IS1Y}4HBk~p*JzY*eevH$Q}_G zRc?qGIC$98lD6YTk2?XtSB1w7af>4-{^H1q>LcOyB|sm;MV|-}C(|YnB{=S~Tz3%D z+gB)vB8y0G)&#Vi89KXzCV>dSahB~ni&)OGeP`a(wVY+q+4bTqOmLjFBEF|$0-YeT zR=zWDC@g2$boRN_iV>VzZTwo^;g+?oM#0H?E8?rd<86sff?HX=XiFDAiA|yv(Mfz; zEAif4tJ|QbA1AAyDRswXrl&1o17C>Nnq_ryXs(qNG$mUqlhY#Y!gtrYT(jcv9)-fNzw#z0JeVlSNca zP*25#T9wk%rAp~(iBftx48d6^6ayimG2$Ki70`*@JJ+E zyq}_2`Q#@WI-@X6#4gGW@ps|=QH-`dQIICW+d^X-0kp*a&~1l?{X`TYJSMc{4ZwP( zejRTHoCVDjqK(pUol@V>I}wOMQz6>OU4Vy`x=nAxk$*c1`$OER+z{WICh73bzi68= zRr*7CS!nb%KpR+M8lMcPQaS>_`qsXI)tgHlZwsgB01*`v@`T0+omEO$sM5axo>wVh ztx5@u05gE_wMq&5O6$dhVM1e!=_aL1051tGCTOJIcyvScSHx4ve$aLi!*CJcBBk^+ zO(}uiaHw)~+5=VlNcC_z;4-0+=>UyCY*lAG_p2wjI=|l0LU#1HD+Fw*+z{Uu?oTn= z{!wHJ!FwD%ak(QWzTwD;>cc+((8uwjPlSklP%vx+$6c1|4q|#+fr9NMi}(Tx#0002 zEVmJB?5#Eo+lWZ52*GJ1+ixRcwUNy>7_qetTF$cQY_O=qgrO*itQE0Z#RR8~R>VhC zOmOfB|0P4 z%Ibexx_ia3Cpt-P>n53g+?jJ8^mn0HbFm6PCyU72=$MeHBJz66_@5F{%#GRFJ@Hd9 zZ=rA>L0qTY5U*O8d^3Qy+eDubEc=sO-V-WNFgAwBYS#3yYK2()5~&pb z2I?MSS<(wot~C20JQ#z5B-{+RN9hNE?Mk0}826@8V6f{E+;o*tN(cuFjSx;zshe3g zb*%Ugv#GO`76Aq*WmB`oe>e}mi^P9;6kvig zCuQuz84^>;r2zH?iDbHZYswg@4zIUEWcHkK9O@1aX2MXnU2+ak2)@Z@In9x~T{|2; zoDpE;6%u*aN_%@m(nq54GQ{r}U5UbpOPr?M5a0hfdE(OcW)y2s_-UgA3ab-mC^y8u z!;-7h_Ce7n1m6Y61Sf13aoiAD&6@Z8IMQkqwm@8?+z|OkO(eiO`qK7Y(I*6d0Ea8W zZz7HxBCA;~@bgM7P}l;orE)`Dgrz#|7HE5%=o5ltGiBFK7>7br;%!F6gq1>L1UgG; z*YOo1I&FD(udTKW^(81sJ;7-!n|KQf#Dul`O9nf8O88zd){jM#0GzAsZ>eVd7dud^?JD63$_qh=MVi4!BF{6M!vB z3EwF_2my3Jfi0nj&`1q{VM1DiQJjQ=GXO$^QokT=|%u20IIb_u!l+9 zVM2SM5dvognjn;_l=ESX(s6)ml->YXsB{xxU+H<|SU@MGrvW&9(AsbSXAk@mZcr&< zxk?F7sPq>=c5|uL8gQ)AL4Z1?_W}N-^m9OHFR?uckgxP)KwN18aIex8fOSek*f&%lhWw_|^?*;5ehJ9Jv`62L0CZJ)>OQ>#=b%9P5Vk|k9rQSe zY25(@GzO>;8hHosiAuX-rkpLaC2}cXzS6z1_c&hmAdx)40Hy9W-S~9+P3BOHu#e6b zg3h5>${Y&G_{BH_W+>%Qey@~6IZehS#*vz-lwb|oEs_t}-4#d@Vtx{0^RS^WMnTUB zH%LBW=~Hutmzo$;Vw{dqCrN$H?>=}1G)W^`#HG`hF}i8eCT(|Tu_+}Ifr z+VwZp5++}_xe`{_&7_1GpCO(~%Hio&iK2uPM$_S)NNmDR_A3;mk<37wSo16-_>FiB{H1Kd|<`h$SK3JnvssB{{7r#d z#7LD+0?bo-KVXT{X8^A#T@UzKX)AQ<80lE#R6tbeK)@wRM*%KXdNqJY9&C7z0eIlS z01hB>>j57s{SvUROyCF)TIVPo02rjS3UIa3>j9i( zXo6e&i82roZtc^R^6++>(nSCrsR*Yu=QFBt9zUw|M*!zDdci3@K6&HksMg8&#dsR9 zQ)xa%sjG}sjL=PJn4seqB#$sqXzT*O>tBeJ(E3Z#7=f;=6Ek{x8U;h}0qT4u)%~p&nx0#v?zzxd z&ZmiC>{G8!?BvhzH82#kbJjm_`Go@N?z2}w^Py4J_BjTHsUy}YH$?%VPMpt8^H^lD3eOrDYw1w(J z#5T$e@lfHuEk77K21W7!tW$1?w+r`e`2o>l6xtG_$_?>W;l3?DDB40Eq{3ALu%&WC z>@3{34G${}6r+e=U{tvwj;p3T*|tjbi2$($^q8B3){ZH$uZjr+95IpJteLz54xUB9 zTykd(KU!Lb!dQsIlpErWuO!Dp+d9!F1gXbH;kv4X>Twi!e-iMu(r*Aqh+#MfaG}zR z0F#tX0bH-t^~A5GCQuj@afWh3{IhUBLA0GKvVRTvuMO>%c5L>6rIeu() zJ_>D#3zQpT^u^>{&~~xt6M_bMWSX$QV@m9(V#0}zm`HEdxbQ2k#VBl;7*%eFFA4Yi zOWTV?hNstol_+}!A~QmKaEd>Mp){uePgaq~Z3F(e4uw;UcngYadR21V;YtaPgDhg6iV0nWh6z`yv;lCB zQo?+pVS={n9m1`44ck3JEK3MZW7&SR-Z^^yOuY7h!h8_BC^y96!u_emk0y`NeOQQC zr`!;q7w+5gBg(m|4-wlbH^egGzU^j&_z{Y1DZnkt4Y6e`c}$j;;^XZov?V^S+z_7> zZuxx=eo@3PaEo$7{7SfQ%MUKkN1-iofpSCqOn9>G6Cz6lh}2uVeY$egA>z}bjuM_l z!FHcT)LP!edP(CXeeE`f+Hu*K2&J4&|z)X?88-GQW_ zNK$}XlpErH_*zZUZV9rTqQ?Wnj^66%W?vn0)$E;nD5dP5D7e-1BOnCt)?KHsA=)L{ zFpZjv)(ev#u-=ZsFo`>r8{*Hx{qf)jtus()OKhgx5cd-9+wud~E!0rRkZzB^a;US=&@5EbZ|_Gom5On_3$NXe~W@$DxsNJh6zUr zjdcX%DRnb^5Pr53kv9<3C}xX;tMF)sC>WP6t(;s`duWJ5rPv< zHgTlpEq_!mX6x_kAKmN`Nn;pznnBB90p( ztJx{RPp4LhxKh*+!gE5yYXIsiLRg2wL=oRcK}LMH-dQ*UcibA{BDEwq!DJIRshIFS z3Nu37qGE#6OD`kaupirwB6|biPUVKUx4Q8D@kkOd(_ zlLR9)x(}ecQg6acL_biZAHW&P4e@c|zEggIz6^!7#0uqx_=xai+j__l0Aae&$lZYZ zRZ94iO5Ira1^ZYIPYkrRd0iCdH#;+6O=p*?i8 z-HC$ggp;90A5I0-Dy;{wlGQWT`4+{!{&S$WK8Pw_D`&=-QKyvGi^euD#ul zY}nzlDL~8<9yi3{j+~gTPfop%RWHk`7qaU4rvZrjdlclNBi#N01=NksN^o;%_CaYL z2+s)NB9a|C-TLizAdEvuu^v)F#HeyZoGaWP$LaWe2a46qSp2+4MBd3)K7Mva;m{Jh zC^y8u!hMh7A-FSxLR(@~xgjnWo@_fzWQhQ=*3lDhbmYXDj+{8pkrS6Va-#b79|U3? zj_(lB@sVZu2w6U|EFbW*kRe$Ek53AKxqy4qDsaO#1=j1$)=H^jW9$s69skevvb^#_!k zA8;vx!s^6!$_;VSkIB_(+YJRBCOj)Nb||baM!~6B8Gx0n3t!ebSqvj#K&etU_%rdd zjZ`S1n^L8|8}Gzz)kO3XMS2Nbquda`6zjo7v+X{rf|QtZSP@vpvd$9?o@7wo!(EL9<<#@ zWC_6*;E0US$}uH&R576m4tF0qXK0-$5-!hIX& z%ytwRbKp+phIqA%zn>-A?(;5fG3LOLQ4z-tk=3l8vsPzOCqhKWG>f?2krVgQ z*0P943r~cIP88m#TTvKB5k)~3<^h%{B{;2Q6F*Wh9cye}Zt|cRD%#>Z0CSYS1^7-W z12_Q%7fh!B&Q#hTP^Hw}m9S?^rB2EF0JeqW&T#;3(%ZLBg!Tq83=6%!s58Y8G-G2wNUx*o%~%f-E4RMz6 zWZPVkB?825Cd3$YfxA0rvS%mLOZH^lFS`_0n!N|7Z5?*vD)gmk70 z)igwO^nSBfpji}|u)sRyhPXz!)hvGBDYArM6Z#PC9KF|8{zOa^6t+d|qTCQ~67IJ} z+j5a51XJ}>#v=tN^hKPe+z@+DpxpOG+a;n;2tEalZI-Z7#BoDpHEUD0YK2(a@#^)) z(i`fRpZLaxS@P3){lx%`t5GtZ{n|_ zZ|Pr2L&SB;4e`ba+$Z@dq3uT~m^Fm!#>;;G5y1OOyP`rb6e}UD^NZAp5FQl680+j( z`U8LsS=WgzAUaO85yJUO3706X0^Fq3Z{6F?-3`s3L>pyXTa^-a3Jnv!Qz={jRi%Uz zGRBT(?%9CB+g<4 zr;RMX4exMW4`)A%-za_UExw{9w@7})#|x`e5G9hy_H@J7_QU}qyb*ke=$L0Dkf-5 z#ePi1zW-wS?Hkcn^#JXtx6Hy32<>PIFG}bnG)!RHunpA$Zc=(TV6IYnxlx>k z2{VO83HPd$uu!FhWhy1;yzp-3Wxt9&4GQNev88fDEE4X|Q`#OaGF)q?(YJ@}4=C7V zdH~K=>ZbAp{Ol&8=;?rSl)Bo68*x`2g>evPC^y7E3HRd|at+dhLR(_FazlJnc(QG+ z$Pxi!s(vJ7SEC^2n*p~goey|GsT*Mauh{pZuu)Mywa_h8xU-SvV zCiEfNeTss;7~ylN7SAG{KUu_t5)||=i%4(QKJV{NErgv7?LjD@#{)VkC3F!QCKRYN z0vMj{V`y%;c5sq3^G ze)bSi^mIUlQdb-9h(FDsut{Q6xgowJ+;5V$6)0$uFji=^9&ouz3G-FD0Kod#!MIIb zji1+vD0~NCo>Eu44bPNrN0Gq+?o@7wAsi*_z1OPNxMhh#TjCn!hS=wzS z32mT8Ol<+Qw8Ep|+hXYL(tr7RZ z(uG)OfTl5)0YhyyRs~uu)xBwV0t}gR#6)}M9F%Ei&Ow>>Vxq5W~r85A`Ic%AB<{Xr1e^}`f zz%xqM0^U^0!Qe>1mV?2O0OepblO%-q101jPQ~<{Z222*m2b4p^@d4!!aeP2IL>wPb z4$)mo=K>y3x)`uR=^6kB5Vjmc4j?GUPzKOHvSb(I)-npWF=9*QhS+mp@-{}>JQR2$ z^cPxkE}%+jHK0C9gOYIo*0)Y)SZ5XrHrt`Z2T$~1=sQX{28F(fr-?XR4p`=hi7%>nBVhmY)tY!X3IZ$! zY;wfJFH}r8GN#tVd=yv{UU0<3jVdO5WOu;zATSd=qez4v_aE zJ~Lb-S&ed3DwJ|mrYI#`Cp1iWRHX!t0=yCi%K$_PBXleX*Qu0nze)*%B+pTf%2=fw zc&6G(v!*smsMmB7)(VX>vp*?qhO{xch@k_Zvr^``OlXuaQl*3&R7#koQo@faC1gt` z!-ShPsf2q~N?5E?!V@Yb=(t1)AF7n_jnL>XfM%M00!IklB#cyPJz%<0!V^NHgr`(W zcuu8+7gS34T&0BXR7yBhHlZj%w|Tj}F>_7>HInCQ(EXuptPEAYF~vClDwT5n)k&S0zgO^% z1hx1}#~A&~M~GOb+z=DO{S%N?xU5?(*Mm5F0N+q$W5XvfXrbf~;87 z-fgZ~__<6(UiMqz=W8O0GGO|&&iy*#XIBx0*Lhm6?zIp#h_-| z19X6Gq7k;G3Gz;#-n<`=Nu%(1L0qTY5MOy9`DB;2Ux+>-cpCJ`HKDg-N@O)_2zH?c z#n!puClD2gC`?Tsr2_!>a#2#y=V9V&I* zjPOL>?XPUio)$9kaP$PWRBnhx!u<(J+apDm5bOz#ZWGQBaoiBkQ86La!%>jsi#mJ~ zfYz8ku7&Zl7=?pHj4C(82H}2qw7p1Vc-;$lGYY~Zq?!)FLq}!$5K@R( zuG|nWc{F(r(DqW%Cj^HrquVH<7KNK3@y{wIY;wdzdb1|`SUB2(f|CkX+JFK|!w;3Z zxfl(jHDXvy!zrRI_6@xOyc|Y1i=lVvGzmWwBJxtpu-+CQUTRw+vSTE=aCbnVQn&p# zVeCZr6R38>+sLV1FYaRh^t9d%F#uQD;?4^x6F=FYHQL!PW9Ff7Xo+o<8)8S{{?O7k zM`Q^>>aDG7^GkSu0)?)KpDQ=SV2Uf+ZWBG$kaF~vtMH+?nnaNa2aGB=#PfywQLVxw zX{+_|v=DKPazp$|xNo}wzrR4S=0dnVnnIDLfKla!*h`)W_p8(PZz#y$=YXG;His20 zt*lOj<}T4j3HJ((5EiPG@PbMSuLvzBY!F&P_(Y|IkoYfQQ~L>xb^vq~8XtsUFs%_G>5@ zSHf39iwQeaO88Nw1iFJQVK1S@1bVe*#*i1W&p_dD5zCbu;(D1-{&1~;Y&8l7W+UKT zrN_f+If^w0XhaKZ1eackb9fZCLtL)h5Wf=cw?o?%D5y?&Uug92fG?D~oAZ=Q@z4PZ zof4-hH^e2veW%&@-9q&tVoT+Q*iU$}?Xe=mvpT?&P!J3u)iexQF^WugU{tvwP7?0B zU5ek!R39QPS8j;^6rODRs>l)n;#Vk`E`)!GIBtln##!Y2dkH_k6j7AgT|&bIHS}ig z<~I0qD+mHd>iBy&{RsuB zJp}5uV(IPNSK;Ss6oyD#qudbBIW##$+P)`xyh97@2tCq5IMFdBvYM5xpJ925h$5$Y zT5spR(ea6{(&e`(2$b-n(CC4vbG%fK64(F?+@avEq7a4Q6Hixeh<6M3Gfdm_P*9z4 znb7EsfIF1hPSr3%xL&j|8s4eYHJpr}(?t}X4Nx~;Y=INe77Ak{29+D)2H}2eN8)!5 z3Sv78&`0Tc02WB^2Hd06ZGFf#>{L+bpEydnA%40edA~RrvIQvc^Z?*drOyN2Q%d+u zXzU9>=610q>?brv$WbYwhe`>3R7x12QbJgzgdr-e1PoItVYo_10_Llf@SsWwi&RQj zqtdSdt6;LfrMJEIH7Q^WA z0QDcO0A*^ey>J|Lp3&+|r{jq^?5&>IZO1A5svV5dw+7CsmBe z$qy6qx*BW+XrwVe(wHBqx7!+mO{WY+<_oY~xgq`}+@FuMy;)=l!BqVeM~_6%>|PWM z3Sqs_=zD-4loD7U25!y+d_)aJHVt4R`yaRZktH^jEubw6&%o)4bb}GLqWBUx2bN!(|FtEi9G!A6}VHm zAr6<+_|uBE2Rcb69*crA0YXO+#|@FytP=#QR*1EZ6Lkr}sg>o|@-8F0L4Af;Mk)Zq zl)5Qyg`dZWC>jNnC?#AXG)&Mqyur>!W?Gl(tckB?Je8BhiE^ z5yuUY)vWwmwL+{tRMatoQ!C4_BM$=9r?-RZ2vLP-OIY_#r4Inq&`a3) z5DgY>@kM}3goX*MhaJf+fEh{&Glhl;^acapsW&@%VP+SiFlWTml^f!1!u_1lcBse_ zf+N6@9Kt9O#|`mT6%$fDTmso}QHN<+r_>$uS`6tJ6vjfVQ*Mad{IP+0n-y)Z5*fY+ z4P1uPpmEa>P5&&WQ2{me_9j!l z#Y3+sjDR>zxgowI-0v7|A40(<{wQFT(lvmWl)egBuhdQ4b@+LUh+>2#LZgJGDy65F zRZ3W^QhHjal(0dlw>53X&yP?TG;xb^L(IkLjh!~y{))l_2vsPc%>nx>Js5C^Qa5PU z`Bv&g2qDo%S*Nv9);Ub6TW9H1?08Wa6LGn6Lu`j9r0kezyIS-K!PfEwRg`eBV@hN- zYYYDoHJXVi>}&n4WfHa)6t+)1UAZAXBHSOyUie)svV>qYIFdpbC1PwXz{^xjNcB(! z*$7d`t^qux)XfEb4;N9CejZfnYQuPPqgbBaz-bRKs@xD;yq26P+E$1@A-Dh>DIq){ z;>6YXBRR((p&6 zZg<~A5N}Dha9mU|*$fipD}46j2GaEtR_3 zUe{y)g2E<=rz|KgV=3hEG!>Hu^wy)H(*zR zBK-tLl^fzSDR;8xL-zfxlF5Cbq8dqcoqr1r#W>Y)MfnHfui+?kPVA!G5T9wCoJ898 zLqQS=Ukig>NYG>r5ssUF@1_*p3tAzX8NdtZ- zR39SVuG|pk3-@iaaZ|hn3jGpWDmTQlgeTj!6B)iL4EzHM2A0rG#BoDpHHZmKcnHx0 z%`qH)t%z02JJ*``0pdnsjKl@X4ROhbl>0H#_9+wuKp6UW(&#V%Ev<=7!^L74AykNA z%s2ElufIZDDcTZh?^pULV6b>BsQ{>R@4WuaaX5CNFk<35<#_)GqlkBi?1+~_woLUQ z;^WEDy7pMN`0qZTBrD0HmB`)+CpeG%o2vVN!*ms z<4&c1Y+llr;(5(wC`=Azsy_$#KCCZSL~6Zoo%2~PY~ zwg)Gc!BCGC%kX=Etx7wgMYfCx?K)1YLvj#m7Zfx#+i+WSI|}nk z+^O6UTkK4p%(M+bhGq%-3yl(JX$8~kWSnZC&?)hB<%T#Bv42yk_-m$I>ntMd+P0f1zyj(Vh?nvYyhq)+hhuBWJA)WwJjG%WlP1{Z=Xot{G zXmkKzywXX4L&SgdFaYaYll?Sk%f&D}3NTJ7>r7XAE8sq*j{yFn^hLlcN;d)CSNbI& zQ~Zbb2CzA6)XspGaY57oaGbh*ZukWUGZgljI77K19`|c6dHXR@Q%{= z06!`H1;F}NpIPTF(S{!eJfW1;Hz{THuaxcp{HTE;QN)KufDvIr!OEMBenzzZmB{C~Sw= zMY$o4NL{7`vOXwihcHTLbPRx&Ry%ZBDB1|2Mrh18^fsWIpm|8N;p5?=i@5RfwXFpX zMJSAoxKp_ycEI_QJ;!PLI|^bWw3E{-Z(CZ5% zQ92!MJS6QD`>hw#`BZW4?U{~*eOIXyxd+fp>ckEO6f31Cy1?lu`_N9R#~AU+O6hcp zP%pf<5!y^~TEdvxNc9qW(lnGX4eg~)2|b;o)bG1@F#a9Y50dK93>Y0HhS5U6=}N}~ zSkIb4<56ceiu-mo`JM6`%g4A(M)@*1?3s*{P~M_51%&+e4g52s{RfzRdd(Uv3IN0S(jf3I* zSt+|rzqsaRWbbNp&AfhkfgXtJoi(JM04F*+{YLT_qtj=_Q_Oc7qtkqG8e>YQDSZO) zv{E+33}fqNl9^%92Eb!V{{qmQd%f<6R(nY-;j;ndN*T+wO1A<&Q%d+oXk;g#g9IDq zpr53)Ct#@3OA-Do=|XrOV7XHE<^`qfO|HZpX0XK)VVJ?*tCYe1O{q6ot1wwnWU>Mm zC^y8*t5YT`WRIg@vJy@mMj9;u#FP#OJfd_7fc5RU=v9xf`p@Dib`lJ`Nu3xyl_;gB zg-U%-UWT7S)s0d;{664ArG&49MhHKslupaVQpvH=v zqURVJAR=Ia5g05{gJSGPj*3`_jxEMmf@0SwiY-gRXE!yfqFvR&*ez`fXV4?n`{p<9bamOj{`JM^m9{pMBQk1_mF82G&o|~%mCqEw9`{`0o(#Yx7|NIrDer>r zby4)ViRI^@#Sb@wUeHo5idHnS+yWi$TG81i7DX4ESiTav&BW3j&^<1So;9&3dcn1C zK>u*@9uteA2VDCg^rUOm^2l0VS_)d)MbVE;EUyLq%(aI> zhr1{`!Nj8IT-U1azHqImH$#{CU{~FEm33HcBzZ4p3DmZPj&M;?6oL)mWk@5R`Ox`n zjJ|clV<`37YiA&O?X@|G^2_+-4&@YRVu^dY9Etxpym4a5b~(Vr61AFG=?9(c;;GOH zI5Dw)0m(lz$5Qv?c6WIkb~4|hXb%(1`#?inD;nY2qagn7PqnL_^Ig0Yn&qPC2@}gt zK`*)X&(Pmod>{J4#c!e2Exlq58tkHyp6ucb$n#HD^V#^UX{A;9oakcMtXdh1O>HHz z2f_VZj>H>vGbgYS$6QDURz65>Y;#ZLTGaZ?_m*sxE8P??fqKk6>w~MKJ za@|PXOL9NX46AaV;-cKYbTM^L*81+0l&rKQ+Q-DA=u+3p{Z-eBK60%h^&G8sltcv+ z%PT>fxOP)$a~DPZO)T#LO>(X1EZ6=Ty353(=wTB}FF}8Dt>_)sivHd@vc1q`h|<4b4)Bxf&T8=ccAxN6n$Z0xyM+x zKfrug9_r(wXdM&FeW5nj4uE!XQB*dud;oNmYsWxiT@?Mo#PS)?rLLU@UE!kWMia}o zLz|DY940`MOe~6ijwj+?RU&!@7j0roJ_`zBWAL;L+q+RA~@?_9hYl7D6o zOWn(I|EIavZ6Eho$Z%xxa4iRk;r`pQ_x4yO_Esd)Ut~9BMu#(O46U zqA9Mu9QuumqU%j8ie|c2Rjq09OKU?LxhUG)#G>eM*D8S-t`*&5VtE$yxrwDOp~d&N zzRW{?TwEPm&%}~wYuAb{`)q*N%Y3x%LETqKl%siN(vIt6UUaXJYAk=q49McbZrf z-RIi-p+{X5eQ08FMJCbeHj#>=4NWYGHgm0LE7xuVZSSIJR}+h(ys%Y|9yEbJu$fiW1pb-L zi|RD!1{Z_jZ0VJ-DZ7GqjZvXe;l!eL6MZoDPVN=@u()ZvS=%V@wxAv)f~ zqUa{qitcu;=yTVKmbdhZqCHHkDARpi40X+1jnDjndQUvdM&jE|% zbD(mKqPY8g(7P^%F`jo3-~0rcdE&QRj>Nl6l|KC_K(-%SdEK}lEADmE3%4RyAL z*sDn#M@>3PQJc)Y9*H+GxuYO<+j{c5OWAsPJui-{Z4T8kcnxvC@N5g>*tSo`wvf&7 zTeoc%$F{3vY?BvmD#tBAW+4@~<3|smP83&Mj>MPs_xT#ClI>`~7*BvExtJ|I!&J%7 zqH=ImvWBD@xxLL*<5hO>I>bLQxo-TE9bGTpxXtaw&zjs3i8r$R>c;)zT*U{)dU1Dc zh~qV7;^h_ZX!mOp$9~C>DDQs)hA9%qc^5KyN6LSY#po!A<2<5F9?7sN-W?tCC!h~p97yxa0JktF6f~|~^)Jr74ddUy7DU2$0Akc66Mbpsk|W_u5qMO!f+BH?f+!2QG5*+rK0gB z);@*0R;3#6v|4MKT2=XvEP2s$^66QC}7d;P!b0G|ENMbtV>Xg>H9IbdQOp z`=D8_6+PqHuc2>U6s@<3HCS|wi6zlZt`*(t+Gn5_Tr0}8S~|U;AG)|Kw5Ey0O`&aF z`=d?S3jnE$b~UjkI>5D}Q(Y^1%(bGIT`T&VYej|4EZ_B^txPQK08MnQ=t9?urkYs1 z0eZ;9nrM!RCDB~hie7W=IsJ$L$oB#0aTANLKvOrjibcORu_T(~TG8t!7XJ#(cQK4| zjedUHy1eoU{9F z=UkivdC;=xeb*||;^tmfq-GaGq^Br-8icQesCao0&V${f*r+OI$H<^ls$YUkXDQ_+ zt%hWhv>(S!0ZGr`l+a$1_qv9z?5mL|LUyh&U-fL%J^ zw_J|IKRmTD3)y}NGF7LlvPu@mgEid?TH3|XCoPxoi3?CY;ISOrAgd?Ym+z(IGb=5Lma)=g&K!wqx|LQH@eUV7-gG%Sw~6RKz{x&sd5F0WK3FS!*oCU$|PdV8*{dH_3{NQ=pkHz5&URb|@b?WyVrI zA6RKMElv7MmH*aDr$c{oQLT)9LK>O-TSfe*8P?K>$!*|JO5z+9G0ssD;~cjoKkv6> z7b>t!mjxO%ac`F+@w8uh*MvTn?P`D~icUANdKPqpi?>3ryZAoTf-0nRI zeQaWJHH?%S+F)oIH>xILEPuwNnUXduO-8qslGCiTBFc=|?_8@S)vIhQBCoHyC*pY5 zrs*bI$NUTUwrijxy`Mv8xY)I{oR%h=kbJ)ebbx4A^R3G8 zmo6&WbQiM`2cpt&iDj)`7te_G;sx_u3*CBvI~Y-$iAB+At`)`Ei>A6(bc2aS(JihG z6=ZIQcBjPM%PO5`hDl3*$m#N?s)$Z?QTD%gF^!mvLSZhqf4~+l+}q_ye1OU62Wzt3 z)O2;@?aM<^siM3X)OHhthvT#m#o zQx}*%=z2`C=_6X^B8ipdpd(#uhn{z_7rye(TqEb>zL~j~<+HvSmPMPpDEIL$PJ~W% z@qB2ii`k?%w@9V_(9SNVK}!l+G@p`!PH<5{&u~#eFLyB;G*2W=R`DhlwJ1_#&0BGA z^C~V6c?*i7&0H%|g)$b8b+t&9OMN~(#nqzj`uIrCqDj1zyXD2dHM!m-j{TCEppI3S zggavO%l?^jb+LLRl&hcBE#W-$!Z!@kSp1l9qVXmcML)zE?Q+o0E{cwFQH}NCPOhj; z_)IbPnvyS=VNLF%U6jvFE{57=|3ViZ8GY!6>9k6&v!`Hxmid%LUS(1AsB0DQLl>1u zJZ(ivhP_bzd4r3h$4o3g52-q4uxMoylTBg>YiTIZx)Bd^ITD{@a=PH#UgU3ofo#P) zxg3cPF*&tupUs~J0@;ekxg3elH#xPP{Q^H!0ojV@xEzVMUm&h*zp!$iVFzy(my6xD z9tI&N+j(x=B>p>~n?$i&KDeO{Zl6-D$jlMZe@rZjTB!rANPZcgw?cSPc&S}-yIK?{pDbQQI1{k-MB*M+K~)r|QxI?DYEhg{A*3VE zY`4W-kr!{Ph`Ev|?uuq{(bb|j&1Ug&t`^0WG>hA;?vg0ZKKZrh9%KV7hizBa#8Nh=3Y{i^;`^9 zwm!{e7icz#`?(y6KY2#_bY;nQu$A)(4SarFF22&_x^Z`Yd$?bd_-BCWE{a3sLkQH0 z6h}y=f@*#RXh6l2v0<)>;s^z?yQO0;x47cG__u(KOEewOwr24|t`^17n#FfnB^A+q zK-S_vx>^*cnT+`WBAjHwYO3RA7gfbeE-LIj=3i4N`Dd1ld~P(u$_vo1tTY*OmEL5f z)hD4gE3NJgo#$d0(&7sICJtyw#TAz$@pdcv^)_oe*vc7F_(;%8?}6&bU(lqJ(IEV( zjO63920A$-V<7p@K$AxN9!R3;Vy>PU5Q0b%vD3Vxt2jgt+N>P(S ztlF7BnIsBI;vcRS#nl(Y1tMZCiYqFFicqV*xUZ6%LiKB0UtS!SC!>Edx;FqL`VRDg ziyuN?xfsQDWrqAbN?rq@ZLn|$SSRm*@Rw$i|CKe+NiIZ$ zdx2oQEb=PSg=jia^}#@Lcj>5B%}lW>VBZlb9+SEt{t-YeQdFr!bkt$2)V4TSUL04J zOuG-!En|_2D?uJK8R^cK*_(lSQGB(_k+|0@wyPzVNZHi)r(?PK);9-Pu(Sc*VQ6Ll{!Sv^rG4p z2g{4&%937u0NopaMe+{hL6csbeFAe4*j$9?xEzT;GC93Uwy(!$=0LXMaV|&Vfj_ok zPI_FnlL57g?l-YA6PoYh$54b52BN%)m1UrHT`StawHraIAk*p_aaRaBWqc@>9OhQ% z^UMxlvje``TzrDbb>n>OC*IuTx^X4ei%*XA;_m8s z(CcXuKMc6f5yc_$;{5<>Q5+$;TTrHPgh>39MJS5m2!%94F%u!#>N64YX@qhnLUS6S zoQaUkr;-dO;4S-fO$VH`~7-+AD z)D4IslAm6_S6yZ2s%$HO zL`2u`F0pn4bl)B(J_LO<(8N!mI|rHg2S}kZ*E2;bTBIa-sYaVB=`X2H0Blvp-Q^RP zH;FHEchPm`){z%CS)L`)G#5omo5tnEb6hP_6QmYDVy!BP4%ySy;!6N)MD${;7XR7R zqBZt%Yw^|qYtdG8gkp;iw!SHeE{WA*^%d5l_M%&hPXMSzIUkg~*n71kiu)#6t(m@y z)Hl~z6Dy*)dPYj{O{@REz7uT3n9^48YM&!DGW6sZ@O8=}ZsT@k4h z(2BOQxls{qV`5o!q-)1PAG)Z?({FFNRYWBdtD?QFe<~vH!J=rCYenapSQOpvT9Nvb zo-c^kvc9Z{_BOF78t&R7pc`DA1wHQK`_M-&ehzuJCtJeR^qBgRMqWhUTyEV|7O4Z# zYV7y$UJzYjVtG3Bjf*{L?-JJZvYP&xiAB*5tm)-Cbghd$X~LR-O+>VTiN(zzO)Io% zha_w34JN=3EW@gj{jH12`CiMgsziO9s!Dc{B~aZ5n&9HS(0mt_;ii_0jmRBVYgIj~ zDVh1XJMEX!aN?h1Rh2rS>s?e;S6L5~o`Tl4_$AePsf()huP&-q?~KynR6f=cD5+n5 z>!SK)9m}PZc80AlpB>4rlBQLBj~?)8Us;BfHnFsdJ3>_#HP1E4nTYR`;rfNu_ z0eLRT+$x?z*?3-GMnUnG|)9l?4gRHR{$*)DV#b&e7A)yiWFLE@jF&UQKV|5 zPOB@b)&+aBBdMj_a%DUitxJy`hbF>3!(mF0Mx;AMert#ChG-xFaT1kUe6jT!lTLslb%1ojS2)dm$KbhEh0&i-;i;B3i<(8Dr#rR8iP>DAp zDbqmlAwc^Ct$5B_ zQhO275TJbx@_$qS^HSv|i_Et71OxUu$f&gPS94Vh^kWw_ z(1-b8UkFWeaXg)Rj&*EOUuJ^H{%|)86XcjPxn|m~kewh}kUzAk%|XEzglhiN32xV(_9HV%~+|G+}kM6qe|!+Sf$M_a9YgaeOrITGJ$a(bt5 z8t2miQ!Lcf$=6b@1Ztr8YL_E%E8ld=-e}17X21xDUNN!q2J~YrGaI)I@3zw9hDNF< zO;r-TW@1gg8<=lHLNB7$rC+>Y5)Y$$6>v)|?=M^weQRP`BY( zmZ7@^Wad^Ur?;7^ENUHKEj$?Nx08uQ=$FKy-Dg4yne766UN`sBH*z(fQaeT`nPGC} zR6RK?)LyZy)#>6B@UkD%;X6$3h{P|&dhyabyS;dgUEE%L^-oM>F{;eO>A-1E%@@kWxUr9J=1c(5?+gbU9O1SA^WKB)Z15 zWzo$hmP9j6tSa}{TofsN?(Ic&6RQtGE71_<=vC0N3<08=qX~c*T7#P!qp?7HJEZm? zhEYHa$zDlSv#i$QQ_wReR#j`O)mq#SI>trOaV`e;U1+Onrvpc*dLR3a5t$B59!jeo zIL+g$t^aVbjr`SyOinA%x=XB~HN{cZ^zfdjyUDdS+bCA_n4O2Oj*equ3i?;lVqIiZJ7CNJqFV}Bs-|6Q!$?(=LN8-hQ-S}Cu zY>%_@x^WN6ned_oO=n>C2f#Km2YSiHQ0dP(UCf-5h8L&y&y|4oC~?K*Nc_>ojd{p+ zq?PlBxbSY2lZR-p*iiFz~t0+BIhT2d6RgO%aQmp zlT+Ik&e!nrCh=M>N8)WwPHl6X_we#2aZi^c@yaHrwym?6+dyp-_j5TC-)C~8?arpF z=fu+hlSg!gsXHRE+%j`YHI%Hl-XxAq^Wqt?UL4n!jArf8T`ZMupK((%*}sLwRZ3W9kAI0_j5TCUpB!mAIS$#vK<5%7ttLiR_=iwckwBx z7f#HbHKDOCc0dZ1olzKiq_XHpbFWT^?sQQ>|L9`K^a4(AFjZNGvfy(1CFH@A8$m_u z8b-OfVY2HfqSTDSp>yM6$)UzW(2W3G;zXWhQFNDUmBSM*D$erO$lA(Ddy}hMntN$+ zO8b~$N&R!Yi=oPyL%6B}4TpG^%aQogp^d{K+do-(-S{xdNmVp5HWkYab+(4st4aJ< zz<`S0a<9DjJ@YDx;(C*1ovAlcgq6&+D%uFpg9Y&pt`_YXtHr}zEsC=&q**3IqdFEd zuXNrci`Y1|Bi#iIzvWgaOS?@melN;xkN6H+0!< zZMwSg2xOv)WSYrSmi+)@*Cdu#uN+T~?kHT)q?3UlJla|EpsayT6f_t}J}PrAc??J* z>g1S=f#l<|20A${V<1^6ClNviXPTH-o+ZFQRUmI|QKWF0;hX*k9&QfQhvFG7N8%G^ z+9e^`aAo@^D`$m&cX?B$JXxvo-}8R!*}Qm~$sNt&Yhu0lqX(?sX7S3FLp?8!^GQ}w zCSD;EuTLgkArr4pCSD;EuTSW}5!8Jm2-m4okQFPOE7q5p^Jem!1VZ_5kX1)GR~;LI za9)ht5Y9urs}S=Ti|fznRz25c&c_h*DvRsoim6x&e$#CtKG}Rj{G-r!0L2CY@DvL9c|@xB=}MtAtM6mM>FJuhC;>unbQ#N>Kj9LGzh>zBk>8v8K(%ONXPI9IG=GUqoUf0Q{_ z%ws^XpN2dma~_7{KI*w21Utpu%HsI+nTz~x=3FrqYr*MMz$Tkth~I>MZNRW>3ypE{ z0q9W|Rl(u}#6WSMcQLphMr!JA23T~oiAB+eu2uZaEK*IR^qDOR+RGx<)X`hJI1oD0 z#n6n*%|+*Zd}j-2wurBGITGK%^yJ-PNKvheDb|ax0UmBdg+!`9{qWsTsG4)9<=J(?B3eX*| z_+!9TS(L{~YO#kci!P4UV(;kWUZee1CKk}Zi^sVfi7%VcIPkKqTY25Mg>vSQXwBGE zEVsdFK!DBb1_)byI~8FVO&pWVP=&TkLBJ6Xz;}qmm_iC;~EEF zwiB$p-Xy*Q@RP6TZc}&U#m%^(7Om(J@?u5H{G6N#7Ae@BfGH!2gB8Tfn^#Q~2P>q( zk~NeGmRGRbEm%bq2WuAhwqO-e9IQDFmW;wYw#dH#b&2>bmm~2dzUY#TP`1n5CEL33 zOUU%D=rvRGE>U>ZyG<=x186H1Z{cduHnCbf(AA<+tQNm>uLThm;xxqD0jd=37^}s~ zG&9bbM4OcG4S>-Q#fj#{t69}mQJiRAyrru}aiV$g-mVtKiRQ&y-D9yu=L1@s7yrf8 zqB3oeT6~~2t13DyR*TPawdmYfE&kHgqNTmHd2t_WZB?{(tQLFUR7C?~wRi-e@uEqw zTI^kx>>lc}ztboBxl|lCv03c%ApP)D{rC!C25+GDSyOBKLTWkM$DtK0_u9%(KNr>L z!7dJk)NX9m=38BS6H-IaZV_jTI2rML*Io#D-pOKEf;=?DTo6RdnphOga_t;QgUu#k zV{fBaUJUYN%c8lKcll*#am%H=0W{D>jhlLmD$?4}Qz#NW6r-r8T_^k?jXoUN`;>nT$l=VcH~@CVO>jQ52gdmzwD(^Ftm` z2I3hmN8*vE*t|`azigkj@_LhaH80PLcQU!&B#!+W>UhNcBJsO`ei22OGccky6RRQ* z)=>}-ceN;vTL^o-@`>Z-#c_FZSKT^+&zphTChq5QB)-Pvw0C7Y&~)`C@&14fMRb&@ zJM!X5u09>=bWs!sOB$RB7Ae>-&9o+xCwoCbe3h$3afGC4?Tp&dK&gwzxg3dKH91XP zwr85IZaf)T%Le*`sXHR^%dQrEM}#It`jwehM85&ryTo_9TEXVJD2jt6jnAYLDcG;g zv?!9N8ZVyhYEc}aq49Bp^5T2Uv?_`tG>czywJ45|jC|oFezytKed69ON8+N%Y4^!? zRlqb9tz%;4$Iw6*!*m<+Y5&|%prGPmE=S^NpIgh4r6SwWfS{s3{>x_5)6gndGO=2q zp)L-GYi-0xfAIlpyrEvx*UnuFgeqwzh)-}*8gyCmm~4OYa6?&fUd{o($$SWxx&lE zxlY%MOD10>t zym-V_R!@`oQ`s=D)s z3@PouIPSsBwY2yW69Q<0i7PHg;`3j&)+K9Ewg&;~5iLhC4PF6S$Hny_Ic2&*K8Kr6 zS+sICy%MX%ik9htGf~N!rrZxb?cy+uCYWLISm-nt z!<<-^%J(wEs$8#kQNb@cRFSHmLu;B((kYu$y1y9~Q=j6V82;RRiW8x;T)YtSNJT|j z%4=7^pEM>ipWpF*1k`KdPh5_~%RSQAYyUwPJ#4xO;$}djMX~9G(7rR!UE;+#qVxh- zhSIYrdDcoRFG5XLT9J|BWV%*{^USdHcgRbVdqS0dWToZLlhWjFb2O@UD=nS~DI=vo z1q);&!(UiwIW0}Xs6-X@;Pb~zIN$>h{MSES`Y zw&I>HN8-L^Ygw{;$aZxruNx0S=C)fj-qanD_(WHW7K|X>WG~*f#D)t9a6WXoi%&vt zxEMOF8T;K$RgwK;F3M2RGjnMGh8I}y;-k}GJ4LoTT6x|07G!QYMXMd?rsACeYEd;-i>J9-^h&H2|IO8+uVb}X zbrU4?Os484rSOeaT@}Su=hLdInX2SyTEct*%o$`()Sq@1u{C#oq?kR>G(JC*GTK))8%|{!WK5xJNxxWC7koYZ^Bk}Uo zkX<3NUE*ib)r~hbxg!$q4+tw-ZU1<*;0*w3(G9U${Ftjnuf%Hc-&`$PGOk;!JP0EC zj+B~|+J%-zO%$h*7mu~THBp>KUhMVNL|+5iniqS0$?V89J5n7hW5RVu6xUG@|JK!_ zxQ>F@gC)}-k4o0;GRo#87ykgM12TKh+0-<{T2t)aCyd~87=7f1K~<=6fd?8?ac`F+ z@gpXu`<86?G+o_zU|cRf5Rj5+QmhtxhJ7J z{WN9SPO$R2@rfpPMB@8nz4$3W%Azk!-4TgBT$*wlx^@s!3O3<9NpUYy1ePMamdlZN zhrMmKCKr?zbURu(dnY^wuwq0Pnz|zr|Jv1}1tUoJuou4#ed6Ml1Nr79AXX=Iql>RV zAGjEj-5mR!O;wToi!RDg6=kk1s$)CUOXR8-G}SI>lC?sI^APY5?50~1#kZhLK5bZ& zkH}Li77;V4eQXBFHK>gQ`dfeTJ6w1tmm~3KgBtr$wu7ylhwi|a0_qaoW$KPd{6|-d zu8$*#?*mwi77Y9#rnAkfwlc*Vnq_S?be)Uxms94dv=8>{o2s%gbghf2VRAJ%1;amC z@S=jtn0dH8bb^a%a!IdD<_@h6G`qwXxEzV6n4B(viKF$qBwA~_&`^S z;=suVO_{(21^$x-E{Wm@eZ*=kx7wLDC*Lgj6w@DAaZ$xp7enInM{~gd8cy*iE=S_y z#xxG6Ypab%x~myB&D zyGU88KK=9&ADQC3iWj%yq9|@hvv|C#MRCH(P$rLY0P438xr^b45?3au|rshZ)sGO#ShG&ZNDxPS?6;Yg6v-k>E zi>?N&%4V?#OEx+MTh)r|1#z5XAF)TP7sPRn$uO;h?qtAhodR{bm{yS7o$W=*P%AB} zt(UrZE##Rb+h@y>T%3W%M!c5Gk+@=VIySQHYdRhR4Q~zTA<=i3Hpz5=nU+McY0~c- zqAOW(lGG5^`B0#w#KT;U#KVrTUQO;8WP5^@^IR184nR_(9b!}QjsUgjJ0dhG!pRn) zD4Gm(GcA6_)uK3XUR<-lMNu3$X;~(2o+HrxFG(CMW~44zyIgh^s|$;AES~1THA>>lU~q`YWI-`iMVqwI~kUN9saebT`pvKucac$mDvH_<&e1J_t~Y zD6SMw<5xOZ;oLBMIR$LLq&1e?aTrG<0Z5Dg5E3X^>1(~%V`qI=Lkyvh-C6e)KlJ`xZN3J5e6KKT5kGonF2g{3>uwWI@4?Uf{ zxVNiCahAzAX6lPn-^UiXDvARa(kzn>yPe{<&9azQTl@j>Rb8gT9*yHLHPX^#mQ3D* z?gZAI@C7bM;+}ZY+T{8t+uv9@-3h-5xOEf#)zlr4SZ=730YepgHHjYwOb1cyl~28r z=4I-NebMXvew=zzRJ96qBw;< z;=5ffii7n@gC(milR~qC#eKI*nD=L*Q?$&ypIPP!7C_@Dp5<~R9$c|LNVWjkzHH@n z<0UDlH$^{*O~re-TGU;Hzk7tHj9Y%E)Ha#nnc5=N`YIrC(Hka~L`_y%Q55G;5D#*- zD9#~S4w<-l#Z^A+4NB*S=2h7g+S0|)b1L23RAsfR=3*%A!Rhj*s>*jO7k7aUbTJry zl4M*{#w%HAQ6xVuL!y2r)YXhGVyU#x_}nnc5=Nx(8qtiWGt=dl+=I zYo|a{T~y4QT@0O>36)nU_pc~}6U?$A|4Up9P9Z;97}Cph*n%Z@@8zk|Mvt4Op-yMd~%?rl_YGR^@Y`i@`^I_=Ov)8QWTEvJea0zAkHb zzTDQpyZvhi(B@i4Qjq}8UkI@~)i3pCrs zyWmMUKNp&Q^$zkaBdapyaG=()1oMj z(43}L%%qn5fRc$&P=whQp(ct`>m&Y~t3`3(KH_g(Es9f1KElWZZdTyQW?B-(5mrf4 zD`iqk?z!8K;K~Cu^x|SIQU zR&s4v6>66UEh*A#=3aUi@<^r7Li!;1wD4o-8bIACUd!c3Ji+92CCPSI)76d3$gCvM zzNYSo#A947`i=-qic~SvnkbHt7q`1w6h}z9Gm}H42yuBb_cP^rm6t43MHJW2EFSG@ zQ5+$e`|6n2f6A&E&L4IL-aYbamtJD34^P^33fPXA7-rZ|cs@W!bI`_`%kA zUF7hc1<8GZzaxh)HR$A4paA0AKrohkCrFHS@*TBBs&xwxUdSPNTi|c(XuhCHCwl>H zP2zpBg*rJuE)-A67V0Fm8AU*)e5)sLc;rxF%2!9jq zT5pFBLP?p92P_8B&rK|gI!!Dofxo%<1+=l%P}>>W)kTzc@I*mtKO?&z;(-A1SCAT< z8Sm3Ll^WGDgjmbMBp0=nIo;7!s$}=Z(lm1A)Fg7^t2z$>p}l&xTzBnHqm?v3Kj5Y>EiHPP|BnyD+;w57a~7Pf%b9IGC*BYwZ+OwkHdfdXiFeHw>g0&HP^t#+>XCRIbI`+0n72BK^C*Z_oj+xSLY>4_6~s4X3w5%BH@P5Q z10`rC39FMhk7NPq>bWMct61@ZCdnJxIn{Bl zRJO>JD;-VmU@y7d&fQ+}giQHFWc8dq$B209xlTLhYl57IBttnxcC5|+s*Ck@8}ycm zHMO8O$jr#?Dd}&e`?yl zr75pNo^)9`$OEle@t+JQ0G3{ASd`(4X4tT(g46$ZdC2{3JYT3SS6G{uae#0HeeOKI zM-AHe6O@6V9ZVGu<_i{}6L~Z|`&=G#^Q->BJ@?fwc$PC*Y$8wR1>xBDWZp3V4gjM- zIOZJ0Yl6V?2M@@#fN(5KUp|Cq;)DIb;UFBxoHQUe8@va;0^#@-^7-H<@F2Jdbb@d! zs(j+b{Fx0n6I=$u(eo1CPXm?&D}!*Hv=Q%`29v-P5RO}r?*Mm$Co}r3=&LEIXAOg#Pa44_Mz&_w`5DwM9B<%_LE=oTfTeU%LKNYC$>I=19eWA9i zFVuF`skYApYP0$v9RE{sZX=&O`KaE9fa+O0Q_qQ%*FnffWt)Ije6|7M_`Y@*{D(Gy zm%-~G9J}-wkgI{hvb@j+9A6la`wiF{3hk+NQRuZECC9rndft zHmR*@o7$?jsjX_8+B%JxYU7FUc_1ABPuI7_+kCJOcKs(GLV=Gy;5*^)jCcFzTKX_z4jjk$P-hLy1M5v7ui3QmIle$UlTV3=-#LSCXWmXZdtG0y4@KJ0#6I1M zd=;2^5c-1|AL70aW^c&L2egkK!dp*=`6CN@;M>9;-NJs{O4+wyKEBUQqJGM>kIrVl z(Y`V9OJ6^eY0DlXY3FcnTcL-~ugP!nXIAuYJLR&OO!*8Dj?mw;ALq|QKnvHyEkMgz z{MG^#z>h%t8~hRr6#H-;0tNbHQ&6PN38T8k8}diKA^HUMk>mYfHhLGA^IW3}~o(FEuR+CVrKrr&Vg z0l6)}L~trN7z_n%-~bSg?`wA=eKQLbe$Uv0c{lTmCJ>HAl^3v`2IPA$xB~f+jQ^s_ zD_`@wF7Pn;5QJl4`cc?i1Fi$V%h*3YiQK_*r}33N5RQfE-^KQG@Rwh@&%W?sARLP- zU;9*k2?pB1l^`6OB5w<(gMWPw{jS*TBYWyrF7jC_lgFaUUuO>f2^@7YzdQ%w==%%4 z(E)1U3=ocm>8D_G1^5WGO-${tE6 z$69$0bgsjjrog;Qc%Idz{d4n~>;KVwXU+5i1>_aM>=U`4qCY0H#;*a>!M$K6`@&f{RBhs zodnv+Q7z<@%c`gCSeZy~qxEAZhqC4!z z+fNwNI+#fxE=k*GU(5F+e?tz)dx9dE42IB#Y(Amh!sC1k1I&Ajc?gGN1V8)U2$o=7 z6hJr@rk};wdR}V`2Is8}l zJh1zZJk~Vz3%Sn)L*{$FLn!+<$g#E#*ZRW#4iJtJC-l#q1-MY(L}fw#cB8NY?;$8)cE75FW<1%xB$ z=AX^|x(~rp=u{St zZI|O^+2FZmu1l=poso+m9E&P{9oxTye}UC{r+y35Z-~tnU@~|#W4{gZuArSfI>B4W z?*Q4n0S1CWARPa#eGT8iK(W=<0$2ltV^QVv@%;uIN*~<=eg+N%>wp@_5vx}wp6tH> zlPQz^&%s0>{|*q2?`s$8ITK&SJQ+*^A&(Gm?gajL0QBQJcQgpc!u0>b_8XAHcGHY~ zSmzTz$HvQ;0>V2-oGsCaW+`xY-0`Ve-7u&Y0ckO=8yWRo%pAM$>2&*U=RE$=zN23p#7P6!3(17JG#?}CYxt$P&hIh1$N45u7#S$E&jO!-aGbjy>jtzkJ_Er_OIqXk*(fQI}n6p9JRxB(CrMu@qO*4;&Uko{j^{^^g`=BXm2<^=X@>BW&a6~ zeG3T3qRJn{|6w3sy|Y%n8jnZOeFVbseeE>Xdi}B9^Q$*NPXHQwy^L4yW)5#w*6W8g z2j(;8%K3a)b0EB0T4Sm?pf?t44ruJ#f!@lSgTpcLY(Ee6Em+T@;{Q*_+3FmwJs`Ya zIJ9@cJoGy3e}ZrfMLrbB{%;@$)GvpjtN$O^O~q#xP%O<2)vuW0SXBA%=+~Qo`c-f9 z4&yQ%-Cxz`@$r4_^iFw=U3dqy=7Q!%cu%tCoaTh~0OhKeNo!8%{nDyiW3RcOSI=t? z2*)93Hpb1y(;KK47Vm$`{~YQ+4}^9p?-9x!-J>8J-`8$c`ltmgtQ{7c_Gw5RPzP)cHA|w{!h(KaTtU8tvm+Q$RQEm&_q@dhuJ_WSB$mbrQoooL2U^dsGNIrz1eQuKfTQ78GNQTn|rR0Ks)yUx*zD|`mO7J8#ekZrbtfO2WJvnZ?o1LtZxN+ zMYM9(+lKYR)>iJ3^oCWv*z+U$VF+=44%)y0U?R8-w190v4y-H=#{_?~-b%3E!55Ct zhj9NtlzUj9x3KArZ0#T%iz=6|UXL~(=*?;2O>T;znBn-ocJ24`HwZxQcj$7d&y9LV3t?)qD~F9aLR;B$PiCRh)IV^QVu z)mufTg3EwnOa_XfnBn-ocF*3;{W3V_UOpQF;duQX;&C2c!4O{D5X!^4(d$d~YSP># z^fSH!_NX0tL5N;JqIWu6LRmN- z;j{ctfS#*g1^+_M!{PY8tXzQ4!)jjuSde`5$)kP<0XHN zax3dn4_*#Oh@(fc>oM&^KIQjPpHqIKKVn>u%GUF$^&n;W>4C?3Y;icwe;Aqm=>_yC z+Hi!pdMvQ?dMvFTKO2tmMV?OtW|#c=s(NDUFF`mKRemM5H-UeGb%=2fd>;tMqRO|$ zXBVJn!p;KWSeSnO1IQETA*7vPD`Y*VG#ra6*AqweFjM(H2g0#1{k!|oHqf%aKc4d& zWIbIo9E&Q~Loru~eXoYYu`vA#HNFD?!UHUW{lfI?W4j~R73>beu`qqGEn<6e?4##u zhGS9XFJt>ADAEslie)$!rvEp#TVgjG=&6`HfHn}0MU~4}KB{XLkgp!h8IDDj|G3KU z)4)V96NF=7`aQ5Y9E8VRjzu1y@mo~6eC4CMJ_7Qc0K&1Tay|d@QZR2I?cUp;g?TOK z;aF6;9$fhZ_!hJfV>bLe2*;wzx5P)!tn38Ofp9ELujfqO52g>|GZCOCNa}%;;aF7p zTiAX8z6Rfd`QS?sjzyKPOr7h1c5o#K$HMesKhz_)^=NH9J6q4l&ar3pEz@W0C3+;X zo~Em3;ue^{dXVgFp!wUvSn5%!E%d3zM~~uEyTcLU>%o2P|so1P)2=ZfjsQ+nW&o>DY;EcXt3(qHt+X!lA!iIuPjl%zO9n zZ*AWi3gJbS?}N>LAovH@A0p^m;wunyW6+7bOdS70)cSg}z9$_H)%Shu^v!jBb-F;T<$>bn;Q#;le|Hb`J#5sG!)c=C$v5BT zawB>S8#{i}zS$|88$5LU@MA}5c4$hpQX0(h7!N#nQ=l_;i)6+DXqncwD z$23>+e`|y07Bt0J(=*qX%Drx%kUe`mxS0RRmATu0eGeTverSA3VXi0M3m$zB88Yp*Pk*6Zgh(BaRw1dc?-`$|1u?j2i7d^Caan`J)K6sb_BRm_zheaXH1a z$U4dCZ<^j;I+wG2O!EQ%&*pSteJCSkK7_E|KcVgJrP61yX_jGf{5Ne+GVIZk_y?iy z*t8R^T|Ev7MGd?%8K!OTd-$-iDo$G(`mhzP_u=rdhYcGucKA_a4(+SIPK%Fqh|?Kb zirn3?1Nwh26?#J!H8dOkAgdXJ=Dr6Gi!gdQ8o znfKWAE=Hj@bnWooIBe7c9brDF(Td4&E4rJ#GCCidgPBq3+PN0Z6TMxd405?!(5%e_ zNo^iRa|3^+m}*`{vs|C7=0h~Et`szbj~UT-v&}Z!R8u#dy*&}z8Z=9D*4dz0k+a=b z4sn#vhG;HbEvwlP&5V|;ri|vaHL{w+&`ek>t2q|Up<5G zKDKYa&9>fLNyM!fe2g@k$spFK?Du#L+bMWSGYich_i&B(>N992?v=H96V0zL%W6JD z^Mh$w&C)pE{p+k|H8fXWk=67?)7F{Q?1bjnD}yG?XP+CI&uy3Fa=)Yn>Cw%6CPw2C zcE5B!@78F*S(wj#h^_!Vd+esE-*ANatZRnP=kdeGjUU`FsRs}2zx&>U2j^yA6Stxv z+caF2O6Dyd*Olz^?xot#TQZm1B{fG%T8by#jZH(borIR^j%HCScSxwc$8Wm?3N1Z_ zl6d7FH8flRV(Y=uAQze!i)URJuOT<9?F-2;Y_$J3TcIQl(?D_1RrE%_oBrUwF1Crx z<}2E)zk6&vCdM{ww#2!g|GS1d2ODpxY<_}Gm+6t48pmNP!)9y#*ElsE*Tgn#W!P-Q z|4TF)aQ6GyhRqurwv=x2c_6ltch4Rz{NJ^%XJVUW%!W;`o19;dZSrQb@R^`T8u&~Y zHs+{y?wbaWX&*mo%;<6P?b6$d^NSun6S{UEh1?_1Wo`TblI~ioqiJu@>?F;gtj!QK zoeeg}pqYJQ*5+(9EhTz_TD(D1(9A3b&Hu*C)O_@rd04mop_!@q=reN;gYEmZbyfVI zW~Sz&&&-R6({;9V(o*kv&4fKU(Y$Fq9>d0aUN)M0jVXoQuZ8f|hdthI3=p6Fl{h|L zinAVC@9nJdGPKD@P&V69qy!s}O|kJYmCZ90>K?rD*c%%kW!dQG*RJgviA^%@JzB8o zn$NM=Br{0P~hCh zc(ooKY^3=L&CG#W%~IOH8rroYn%OI7Z8ne%x4P+gZI7lnI;$Ckrsa&RW(bCtPG99n$(M){TH9lMJLo>NyZoG(Q=Du0456~1o%6j!+JD>b~ zR=vkzLo#!V>rE{j9v zm_Q}IM=8zc$_WWx=4H|-jTjbA}za~l!5_RoIU_%%f~W3g!*Q&l?x z8^6lPW^}hU$7AEy9of9jN!NLJ4mN%zlFk0ubls+|Q5?HA$>v|(_Thcl_|-}_`i!<~ z&U3Kw>z8cQ@UHp1i;Z8=WTVeByXK?YbHB#P<}cm$^Rn3ZRZlh#cbm`p*!Xo&Hn%Ye zTd-?9cE!f8jIue9MlqolI0j?m*Gk#kLuuEwd=fT(^^^@ic6Bp1reWjPQ`!8QeSY@^ zYRctqS6z06mCc*<)|IL+83 zSK)=&tfx5P+TEjtI9ZA$DYgW?3{X$H$S)W?eLe22C3peZuK+1`j)O z_|VZE?d?xz?=$znW_D^bYP9`Esu+cPw5S*>QYqQ+xYxZoHfui<|CVp zRF};t*{q9!+TVEWh0Tz#3anj?m^I|$9Zu=mO&cc|jtXNzoh!A2{j@%RNcK7V90gF>yw#$y^bK7V9$ z426yRs;uwC#%Gjl^fPtWJ?eSYWphk68(`Bl=XbF2IVPJkvFV!6;=RMHlTG-WHX3kdpP6H)*7WS5azZU| zXwTf5)!=*PL`t~hyNwyKYUi(z-TjtAljF+; z>3-M;O`*YNEi|)_%Es9i&E$sNuYzWJgXVBFGaL5aU!v)3&|IN74XwCdnugkEpqU@H z%UgQCY#z2YAFXUCs)_xY6nS2 z9~A3`B#_9zl>`V1-hI38?d~JH?>*joyV+pWZAA?h>sDxuN-?%rQE5#v+NjvBf|@GU zSW!|Nb*r?}pAokfEmFka_dDm#+?jjs+l1Ft=A+@=Gv7I9=FFKhXXehGy$h6%M}1lM z5)-uI>!5UQ^Gp33C^K*KDNlov3uGOIP0eX*QN|FC1EuF5d|59Ar5a%7fzlpe7JExt66K^ko%TD&SlOr9H62O`vo*OR#H@?qCh_Hee?1^V|L*P^!Gp>HL{c#KNxzWvcFDYM^W{TgtN$+nfQ%E3wUQ z;e~Z#Y;(qqHny3A$?_M~werQ_E7sO=irweAd_us+5|5koy|%)P`I zZ$r#AnV2sEBQp^(c*x-ME%Grl5ixKD88PHO@^P5g10!P!KU{ha!X25v$cJluUFQYB z$c#qJC7GCufRQ zt-#34NDLk_+O>mx%q&Apf2OPlfRWjg75vKnpALCbvVXUs( zbt1NEWX^4lSptmA!o(o(%4pYB-12elIx`bf07hnN^2xU6IxsSK6LVW;o!nFGd?ld_4y1i5(5y!eG9F_e*i|Jg64eoP?m`kh*^gI(rcMV zDa%9-#Ng#-2IjwkkywJ5*P%XurP7fI-zB;rrjUu@o|VKK#GIOmIT3s$0wIQDP`7;< zFcOmx69J>g;AOx_1VRiZpo}`-2#mxe%`txrj6^BTG24NWxP=(*BkB4)1dPNj#BfEU zb@(LfViWnSF$yg6Q42;BD#Jmcnbh{o0 zMxrlb*zX#1+$r$$CLSZ^N?`Q3cqK3rp%L>HV062#1V&;uVzxriS-^#<0gOa(#QYMN z(?bBBCV_Dgb(`)77U0Qr7h^YB<9`Gg7cFOeGeSN)h=B-d1@AqzlLwu91w9D-7)2b~ zwjIIETktDP+$;FPEA3vv&oP*Ppp2e-1>Exl1MoqBmtphVE7*w~_Q0WS?fBIl3c?fj z3XVceWv^fY9dU{pJlreTfE?K?xL@Vly#k(ekKZogGmqM)^lrgdp`YGOan!B2NY(Zd z6GZqkpj6$eg6aZwz?9TS{7|}7pz=twG$X+^2S!TVEa~VbsjK!h|yN(Ly*|&-C;%W zWNmdmaAK>&mHrKBOU>m*pr0vgb-KES?>m8+8GklckyY%>ie;XS(XA6LbLMZXWlmru zEmfciYT|TjnO{a*HLE+FHfSx`tE9hk+8~BeuJ-D*s3B)j>wwX{OpAKc_12>H0i#C~ zE$Y3_q80(8yNDL`gtI7G3ka!1@3-AqR0ndkh0~&VW>hRHQi7~SO#&wtHBhOI@+y%l-_NY z^RqF_eBcB-mY8HBvHbUkXGMcUXsOsCbkt-g zXA|{f?2wp^N)8FP0wb153@V?IJ^_r_DlzW_qD`SbPg%x#iCLS8`8qIS&%`i{%YKX3 zKsBg5tZFgxcPLqV!AESK7|s)~Q5deI#14s};5LPM9AvRfV%7klXQJcbw!~J6c@jL( z9jUYc7_m%ZvZL;Gz=*99(+v)~K5qs_te2QW4iO6oh1~&+8y9Ubl8p2zVBBbGo11~a z8&~qNBhKtXXxPKRI4{wLhm7eFE?B=+)BU|@7=eQ1-l|)Swz%Vun6X&?yZjPG+Cfq#<6X&?a2qa{V!!kLQ>>T$u zz{wm}FWpp(25Oa&XhW%7uybAgblCIG*o!JI!t^#^rg0EWeE75BX}RAmQ4=QCj6_d+ z9_q(2eQ4V$@F{S%sWbu1ADm-7E%~Sp%zegbgM3a(agfKoP8-DFAtTYECXTmp_@zK( zM@@T1tVR7PFsODaF=~1(d>;M>S*!4`Zayt)o3p6qQPZO^G>OAIz$ZIu`YaYZVo_%* zLDr&9LsP_}isi9VtrB0Y0G^T#hZE{KdiJR4IAErNw~FV1(gD%z6Eq0v)#MX@pDUEt zf^su_y7ACAisnxvR?v4WA7!aV6Zgc!>>CZC1-m^b(hxV7bfG{AH-VTh69b(>rPNzo>)9u7K`}qJeHJ?vVmKk56OnPF}<@f%HcQ-2OV&Tllq{0123Nt$4eISaC_w`qcT zDKO5@H^H0>jPvtNFw1~(vqKZiMZma|`AslufpK#|6AWkk2i=U%uTk{)VhmX>+Zq2Y zm}_}6Oqe+1zvoCh1LhKIOxp%$T>O z;A7bD1f@N|{39sc8~jo~1*IBrJ`6){o5MUCGtn3D-bH32d~TePI1|lBh(&*oRW@GC zT&qwM!2IO`I}`mm_~_Z;C1|N=o_sD>JV;mqjA)*iKLkZv)LLSUo{1UG#8iQi-XZ3u zOw7B1k^Ulvo=wa87%8FeBxO{t2Zk09CXUKpR6$1N5HeA@ zRN~6+V;GV$Dx1gQUvQ%m=RDQkCF=TecCQJk)>k$M6!(-vbWr-8D)=8vy6pmdjg z$`B|$!6~ml0A=@mKITqPI;UglhV#9kOpaSjR4UhtwFbU!@T1Ca0n-ui`43Qfj`18Vsj=rzgh<6 z@c?rZDAhn?9{^=Cplk=FJ@|Iu%b;xghOeJ*gR*Bm0(YU{_Ydj+gtSsMM=>MrZYj>jm{>)b=mv9`)_s(m5*^aNnUR*6{-N+`-k!dp)j zyO8q|EE%S=z(*{ceCo(Vl~QRPFkY(Q>oX&!D9Ffs~=`66<3bozc^WLyw~Ex1&j z$?o&O$VegP3{bSMdk7dAJH%WKjIPhGDa%ESH)irV;@n(3zR2fwnSAB~BO{KOUjXx5 z{69=ffRPbL%u7(=qeB3mUQa#~v}a;&K!s7kRN4rPj4xu|1 zZtR(uB6t9nN}oT~+A}eCK#h8i>jodOaAHsZx=W`kfDxM~rWe_$U@8@Wkx@X*X~@-l zMuCxWLCi4#a8xJB#sH6?8kB&w47}BiN{_dIkBlZ_-Vda17vCz%_#y@jGwQRA^)XgQ z%%5dq?q$2o7$oLZsI#h0?n}VPs3c}_CZBHuBjc2qhtU_hzy1Rl8M(wQp;jCcuRa6p$I$E4EDtdH><#PF`KH7NwX3j{_y2{D7HFhcB9`Uo)MTZs80 zWa%~9PGH2_5X0O4I#OJ6xqk*m{0}ij*IX#bDkh)7L>i z+kO(yaf*wGeIqbcd)mj4ZUki-A2KI%)0;u*xW%Wu2b9Csp#>&rIUkBxp0P`>??YQV9k^U$sj|P~>L791*k2z!^N`1x7U#!oGpv>ItV@?I7 zH^3|gr5gvyWY%M;HK0_de9HBp?8a1+U~U8@_xC>K4?*etf=~GnC_P8`(mw`D$2)z> zPV#x3)lXDuRPrF~UTQH>pHQ~#63+O}F20j+cM$(P06x_h*-~JU+Y8FJFZuPE0i_$p zmT2_|45yxrKIM2&rUGr82TC=dtORA-s9$O=DGPi`A1Ix-`qJMFO3yoe%AKI}1~vQ? zDBS^N7bp_}WiKcl0c8f1oTEG&dj*$cUj}XgV>yS>s1x@JF8i2`TmI{^T<%Pa`7liY zbNLz@w>*W({qz7}=l32=B^+(|t{*(~y5O)b^o1Gk#Eb!{MCDEdM#eia@5{u@2Sz*q zF_>IoH|g{mV8ka7a|Zy7%))dvFf!hWc@Z#LMO9#Ayb}Yn$=E-92QV_;iTMSD=sEZO zzK^WVUTCuxp(0YV<}EyRpK z7JD~L=P)cX-iDZbrhYB~M*I&k_XDHjmLf3Xk%-v`rfQ1IHGmNxMa<*C(6Ym{1sL&B z#0()*_r-0%h}R-!FcZT#Q~Ve)rvig&r_!C^Bc6?z?;}^&`SX-zJOD8qTVZTWmfrzJ zydN>UVW>Lxn*m1rAu;a*6TS%!(;)~Q#6uE;p`2l3rvW2Alb8!LF|PqeyeKh~!02(Y zmKft#iJ6Cna~y_g5E${a#C!*tdJJv>Mtm1BnBM}^u^-Hfm!b;$!7KvCMIcS~kuC{7uk4qJsiR>lyNX#ef0}$y!w>NxAE$c5G3&`Z!%Wl zYVOaWpH6$*v*IFE`!scUiyupTou!I?1oB-_j#-B`0m}d9az6%TGN8u#{eLEadF|CUZux(3VtU@$ik3>B(#CE@@vviUY%>9O zYx=8gEB^CGz8LfSZ@@?ToqYZU4@8IQ8b#6 zfPwCd4+0}rN6crzM9&2~fN>+GiO>8hFm8M`!EoI@=QQibZbzL@3>$?f`my)@oAqPI zy$~f-r_zr-2Tc(_b|*@KRVtaYpfG0fV^!qpzMvo5)?xkFIQjyc^{GTZcK-2F8hbKI zko9Bpogb?=a7p}N+LL{cdfw0XgO35T{YL8nSdk-M3F{s3DJO$cwS3%PocUe;t(I+= zTf|Eo3XSPRFHxI!NW3fi&*&!((=gFXbm3^3?8<%>TGiIuiI$4SXqjh*4C1HP0wWqD zW+$j%oJvDZhr~3Ht7YBnv`Wkkz-T_S-g{2B)_VsqIxhZ_0BonTJIKMUV{IJiPrnW6Rh>#7iQwgTJJlZ^;W9I^f6}O z?u35Y%kg}wt84h)15B@bcVqV@a=~9B*hxO`_U-u_p!C21l3j>@Atv}s4Ud5`eUE)vGGbBCQCl}ML$k6mz#M$!#ERgKR%leGGWdwq5pw~c zrz#NFm12j)Fh7*V0&it~jAatTziY9aJWgZ zuK?rvy=@*S+9T}&##u{S2Qbt^n0Ozxv#}=kNb^2wXPIpsV4(T%K5A#rP5AH*Z8r*< zVE!NK?8Z(L%+tWQ5!VFs{0q>hcAT2~QndZ>zHT?Vo3yI~e4I~cBC8XaoRgKUpOwH& zJ4`1EXm5NqF?QrO=~K=itLNGoWH0#Wn1nM(+tYRi;lOzexG-@B`MH}x&OxTOXU0FP z-3-E6MlA=;I&RzPb_Q7w%yFS0JaGp3;0x^x(ys*B8RTv^gA7zh)4>n;l%SuP{jB5O z3{21Ec6N9+yx%vm-lLn58*h{{%nInc_$vc&55Rl`|AD(qr3q;4lYQ3vT>y>gFlo|h zgM3Z{MkzM;aihcr&FpL9F9<*o7^e~~>LoBniKx#; zuC5O)YSLL0y%q?m#F*rX)2&4@Zb5-mqD4K8z@N4+XSPFtwW$Ae7KJ}}Rj7=ljp}|h zW5WDJl@9O;dGHD6D$V`s+k&r$9!9B$Fm|X*ssAHXN4K>)mV6SFZ2{(RI`Lq}KMs_R zOZ-yjf-)V%0IwlswU4h0p)F=bX??P-cJe)i7}Gcz;;l&@uy{l@@$Nh z0@f-rQhun-63Swn@TND|k@62G;M;DhHb@*PKkc_8p$P!B+WI&%!NCp1l(DKe|7pF_Ls2@ zVtxrhFHxYAP))H7VirS|#=Hs`u@+)J4IX-Jel;*+Kg4jaAgnV5-w2FY6fr*rMPuGg zjIl9dPElZhW(>JpCVI$~&O`n&G8M$E+IBh*IRp%xNGj1o zb|MBq_yQgFz~-M!A!N?|%NJP>`7@PoJ>>J@u4V7EFWy^LbG~>YdiG}HD@H+#-20n?8&%J zyE59wH;=WpaV{{ZQYz6lzT<2I#+FeZ&Ym4G2bMmxtpopRS+tFbms{JI1B_l5aQ3_n zSu%UlCxpq`M%md0^RHeRq7Y|6KNHu+Gl*87fe!&QgX$%#9NmVWL7G4ZoOy#Cm0cKe z+S9%lEfuRHpC1P0?Zb9p#OjE-#gc>neghb>Lt;J}}0#oC7{Gn#kvTG>X0{ zOg+HJ_#)~ypen@K>Pa_SeE`C=JkD0#ZnmQRV92KuXREDlw!)TI4u+CSoUK;B z*v?izP30#0&tq=3T5;vN!Qo1ux7cgVAF5{O=J(Y(pmMZg=4Op{JA1yxug}0prQiit z&!j$wq5ZVbOj)Wv8Fh~T`p-LDeH!D9usY8uic9K~AuFy=;{f!-ztAC(XMc4x8Yt!) zqqU;_Bl0MJ!%B>=zoun%WPS&&b@*eH3ZrH7JwB*M9e@s#I%l*i*5L1aGEz5%AywuwRW)U{3%!G!T$b?Ki+p2>O471oulgf1&hyLm{@|*@!z7< zlr5EuqKKSx9oyp`G?=de_yZQ{5`d}Ul6H_)7`zdND`kCF6Bs%0Ql`8H&x>Rgjb_pCvGA~&l~$&pdPBbbHhJ8@nM|7u;| z1i5@fq%pLfME7Fo`9fcYgpT-KXZLLkl#>b$uLnr7rw{p z=TDJID+v?z+_v26S+69BrVfARbjWBhth2S}NjJV0ghKFS$NPbdul?Buqoz5CtoEm$ z=Nx5c&up9j6>NUDsq^eMFBtaMg`6LvZLa+@e+D?q-L!1A$v-!W)Oi+q8zr)%5%QE?}PnXTo zrzm9Jqdkf`gB9wto}?hzadF0e`aQQQm+OE_X%>N4dln33p@FG%FzuQB{;mt{7{oE8 zjKqFF_D}3sZb!eLs8Hsi>X*4><&n_r?j<}SSt(FM#6)(}$`cc7*L zrRxFY2b3j8;W4H(isM`_Zn2twM$)I0^tnnpXSPuKaZ37ROVaOA(%Y4EFiuJT5yGpm z?OR)tKCPs$RMH<+(%-1szO5zc{41q_Ru`YFq)#d7Pph`y-IDYNlyn?%4eQhOppt&F zYWwz>`Yt7%U$}eY4eBB9O(a_uuxVk68Q3_?w%y?f>H1-l&b1y-i%yAu=Sq z2{rvb`#wOTpEFZhK8Usv+w-HY&h@BR3$H*WffeY$v4m!8SYrBtnZ$%)Fm6{?N-;W} zM%ekbpd|-ubz|RYu6Mg?(`r1~-uZ=V=~#TnLbx?~;wn@TE}&UUt@R3q?ZS~cp#5~v z+7IChwgSty|Kq+m&b4Bo+K>C@>!pF-+*w=koJl zYyRYnI{Ow>MV&hipw5E%-PHMPS7&^A*Qof_HA;Fb>fAj`oe8=H7`FqAJ5>y$q?EHC z;lp;l8>Lb+qgt(V9u1RybL3XFp*t{O>!X%kA`)<0FX)&~ykvb8zj2C33aeZl4_#F5 zHneN^e%gK~`xH&#nC5*lWHelGrCi&E!nXg!Aie6i6}01%@iN!!;QK-*V^Z7-B- z)u8ovqg_*f*L-}j{_OWI*LLf%r4(EG67)}YFS}Cz%a&FTprw&(X*KiDv)zkUO#i*K zG;1G;E&UQOol`M}gxtfRbbryO{1lYjmwd_*7v*r1hEI7RDD7YNDQ6J#RiCmPl*wH_ z@yaaju zJ1{dALqhIXZ2Q03wnw$GD^QhO?nl0Uj=UH>_-_`&?BhV`xLhn9yK3=@L!?t<3p#SS z>j`wpYV11OUl}!gCgZ*PvRHZ>@8_TI=S!*u}e07UQfyinSeHM%1d8!nb} zyHE7bl%9i9Zk91}FJLdf$j4j^$~NS2bq3ELi|?4@VR1C29(c% zvfEK?4+>|t^aq&uv*)-28QoKmxxbcv*|jvYp}DW4h8-`BThXMY-vwsEV%X5!k3rcU zP#$AT@h70!r_!QdgE9rIST9Q*xf+;&@hN1u|0kYb`hvD`CS2CJtdvW76i~Ner&-TGg&eVsNmxLbY?Rx5 zMJ(N%_)THrk@9V4KlMxl`Z`+CGcRswSQW=`4=~#-#!w#xrTyhrKP3GMl*xc{=$c%v z<7|tuV@G6BKOcvA9PVWBht*H-0nCg&wl6a3Y`x$2UE2qXjiF*Xz|S3v8s>2Q%YJtu z42E_7JGixz{!i=t6IW+cxSUt_Nt}#2Pc7Jgodv@>zqhH6I#_!CPgm#qsQT0t+BzF` z?#0zW`_r>vSm%j&XVz>5Fx^XIjEnuG6kGA<$~F&n zD_#sABWu{9g861Qi0p7V8frLcYp8025f{gGf?=Hp(5~#c`+sdM@u|FR)@QciaC<7* z`s9{TtEi9m3GVH-^8of;_R>GY;S4VU~#wY{Sy>AW93 z;Jo-cC7lB~z%1FS+CHx(>Bp$H4=d^IO8P%3>76Y}U#+Cyt)yS7qz@_0FKbD9uaZ8c zq!*O*ZAyA~OVTHl^l2siW+i=}lD@hn>77dYq>|2?2t%t|qNMk8ZzEw%TKuNzy zNnhWR^e!d+b|oE*Q*Hk}CB3&L=?x|QAtilWN&iPBeW)er!%F&tN_tgE|D2LuZAtp1 zl0KuP^Ipc#>W)i1WE@?LwXmZaaRr0-MGCzbRgl&9U@lJrZJ^m~-_9woi3+P31mUPbul!l=M#3_UV?S->jrRqNHz8(tn}a{%A|mZ&%VESJJmC=_jkU&$J}{TqXTh zCB0KgKU=l^iI${yE9u*m^p#3F@A!ek;ckZAyTBz9fIY*VlW`?|kCMJwN#CQSAJvld zf|CA#l0KxQ^KVLpZEtT$`c@_V2_^jwCH+igb#q#hzC}rYR7t;8Nq;J7d%Vwok=qH> zXJugyxjyU!c9KwB5_tR_C^)u^y$d?Mh?ol*Yyrjm6T>ZAtnz zB^^V}+M(>}b={?;zfxICS4+~bQ_}BKZSPgm->cewK}*t~NLmq}=3TF(KLtC9M`gUj zxkW`ptx11eNnfX=KcS?LC(`4Qa`h}D#hxlp_A2eE@}5LiY(K6Q(04i=w2>k@TsY6R zYnD^xm)aW6a;kjB@!`A0Fxj_ePtT$sJInkI+un7zwddyTT6~xtgUvBZ@3Lbj>r{EV zPqnX`<-NnL$}*p@b++#&y6%9o!*RjCMH5qE=_^|rmFt!C2bA<7C4I9>7`M zT}t|Al=R`2q*s;ny{hdKO8VnU^Np6IZ&A`8SJJmC>6=yCH@77HIwgIVl0K}YkEyob z+>-RwO8O2ZeZ7)?qLO}VOVU>=>D!g`bxQhCO8V_BNgr0y_bBO`mGti_>36gw{Zb`; zr;>i1lFoY+LO*|3OVT$h>5nSuw<_tcR5pK4OVV#v(r1+P+m-YIC4EOr(zhzGyY88-&hfhYDC_;2w|(gy)_&T;Gv-u-ZTn)^_Wn&c2Ui|E568rdW%suv z$FOTOWN(i#`g=Pl`@j$t;Km2idqJ5ow$XuIBSQ-Qu{snCcb0hWOUhc{!LlFn;|*7? z&RP1op&xg!c&*65F#n@y*MqbC)dSluVws-VS+&FLYShN+iwm|-Ev4%yYvGo%Cn~u~sWra^pd}#(#pRC`^fdz68oNSkhXA^EZfT_c8wtiakXsm_sflmky85 z$)M18CY+anVs{;-)N4&CUt`ySLf^}hf*BS9+g5y3@%bz$_69=XbHBoT z8FTht*^MV?_9F*&jnbh#rpxhDI&y}Eb2ADU3vN@pK z0E%4;i>xi6TpIAX0~GsiOE8}RMG~}OW<4}1mA(Xwy&Hj}souzAb3<+fq7HG(?r5VQ zf7K|EwFjk!1IkP+E9sr5L9x5&;M1s#R;$IDyuq}+^IUw76?&5SpsWnq{wjVF7TDNY zP0E#a|6n^LFoua z)4zhUJFuT$gR(Br*mF@ACh-YTsh)2%HpRDKS^c~en0ta!i&+X2omf=FKMx6l+$UrD zE5en?@Ea3BeO3grD0M9;7X+<{K-n8mMnIXu|2ePHZxn`yqlksQk-G``A?1%inHTW+ zASibPl#daEV#&C;&+zH?IDZ|KyMj^=gCc8utDj%7l(UT}->8&8khi54a}1ou?tsrp zpiCU?+s`XNc`CsC9w^HkB^oJ?^jA0Kh61f#2FwYr6_B21U#t%>eZV9ZPCn?LTyKDx z0H!yQ73FJ#7;#Ku;h4WTD06aSl5N*}QL5@n5&dCMRtDCx9h6;xtj~cm^E~#a{6Clb zDkwRJ!8jeRY%JE~y{DD+U0|l%oJ(2!TkA~X!=s3Icwe?|3n+1&2L^^m>q9v?FJbvS zj#BN%Sd3xtI<&%-BIOuR9uLOOS)j1OiM6aG1t}goQGOVgZs$XK_EsS?YFBb_W*q2~Zw!e2Doh zD7_d;AmaZKdl}dDv362JVs--)>iLJD+#E>%IVc^DGlx4bpx^G=MLxd)=5E)nC^A>( z=lDiLq!aVJD{=d4z>3MiihgL~JdTFqnAI{AQN-YM)z6$_mL{vB#VAcYY#Kz>D2gU9rLnPAM zLD?I${m(#Y1eANpC#c~RC`^gwe+kM70p^f(M6`RDlMKa89d#$C;~}GL|=wItuHv0DSfZtym7qgMsung3+{9YLv^KzYJxHQHD! zHHwI}Tzx3(L%>L)R*%C^t<{~tJP=6#CMd)uz5J7yPeOSDlqZ7v9Cu@P zeljTM2BpqsDWqfuc?~GT0p_w8lSnTq%I||>cMCaA8|F*@Y9M_QnCpU;-VI8@$)fiw zpe|ERhl~nFDr3c+0iVA^sXb2fto@Hc=}!2Vl{tK7Q0hN{nd2}l^%N*}Zy9xFl(G;O z9+Wx>tNBM|$yxhJPOedt)0JIIV5uYYl8#MAwwcm*J0Q_$2-j4gWbBERSMN>n~Ot zrAj#(!k=OtF4nrc5Ku&`R!0|Ix%{$K(S@rnUUNC7CeU8H;>zgKHEY+&6aJtB%x|z% zZxn0TIbmgaRR^erVv0V$IFulGNnE8?M4%B}cE!r5KM$D$ESkyymx2EAW*JTBSYzV0 zz5M(IOBQt!GElN|VBwgA(OdxLFF1dh${rr6hb0E{qloGn3p1%9aYLQP^#=#Bq z7cN}5C>M>(uO%TaU#OH3vIiBbmK%fRLP&$${#0!mV~vr4atH%$IHdF`O1&{!D5pgB zjg6*@l}E(q&;b$R^v@CkRSoq?JZWja1bKN+}%kEkk zCDUOQW1RK*o%lO3olC6chr`AnP%?!0PGGM2qcQPN2}YAQgwkU(HFU#)%uxsv$3;!} zgPi4(`Jy@MuZ&bn!$mBgIf~eH3t&8r?D80VTbewQACKyz82cCtg$V0{!NyP;6K9U( zYa5EbV8d67E7=j8i&m_?X5EU_^Urs`7Iexvnz>2snpEFx8+)*z5t*5pP02)t4a$Vr zW~DQe#>wpxb6pd|XEZcvA}-p@m+J%YPZ-C=!BB}V4{>z~UMRC%{}2qKA07^#W2D;H z#AzC?cK)KSWlNXNULx99D!?VCi=DsND;D>`aHUd>>eXU@kX42aV=AfTH^I-+Oz>x~ zD`F|GVO{}LE!vpJ2D{gOkZ6PDk>O}8UyBN*5ihp{wlK|l(e6kj1)=RyBPv$tmlJCa zn5A-D&FJBp2n#V^l!%`q5{ggC(}@iUpI6xrE^{McDE0GukMO1k*PPo<0MKto^Ec zWidsTup&g<@6_nE(pZs^oY9e{-a=1mYxSLrcuAt;DSx6p$`{7+<$mKGbI@JByn&7q z*dk^M`NEhD_RL_;r!t-yC6`KyyUm3Jw4xgFg*a z!(9XPpcjlAUrycWvTpomWu(188l!xH23U`f&Y@h7z3v6%yV@J$$>LxUy0~qyxI&fh z`wL+l-{>170~ewsJLa6l=}4L*U~a=IJ9H}P!m-PMYiW|>ITJx(xQAxlh>JQ`Be=ld z2+4OkLh%NDB%Vj;W*Cd;*!>9IcOhOa(vCfdHF`EKjJtqBecNIGeTaz zWr*teG0gnjijIFe4_@NlQw;Tp1EY8eR2;|5nP>2u{K81gBP`+Tct?#k4i(GN*NN$% za#%__jOv>b00-7A-QTvx=^U>yIxB3FUYmM*B;Vg4LW(#}%UR~qCV zaS5-5q&pLpyXRQ%ad%t2%Hsj66#kS!^Kc%)2VU-1{Dns;Dpwk%0YuBjMCuJLTWx$4 z;hy_O2}ZLqUn|2>ush`Cq9=wb8*vh$e-!q@qhBB4rP3SR4&q66yulu2oI-;rKhJ4?!zl;((R*0q4ng;99VtypT>wZ}=c@pBR z_%MKJjR})YYm#5Gk;$#Q#*mpYM@F%G!jZ~VQi_WA73tNJ%tWpmp)@SGu~fxeQmc%_ zdlJdB_^Qyf;h_d+V~|zA zOKGsC(gH?eUKtsc(FRVfWEClu{S1ni-sdk-FAXT}c@kqylN$dth4}YDjG-_iF&pNY zxWe>Y+%iIhNYjgn{3%4Q_eaaseE$aLY0&{?Sxd(+AAN6Wv&clN(B?MJQNnEz7jXr; zwz*!snVE0b#$Kyz(K+OGpXu#+tA#W2TBAXB5*qO^XKY)t7M(-V>;K)L2DS8sNqOb_mPZ11NGR@SFoZ z4VLrRMvWE(%u=~wo*hK71Elqc>50EIwnbkikBQ^Tnxc~2jUL`ucT(J0YC`e_`dTpR zjrTYO?dSR)FFQB(dpa}a{h9(|A1L`$g&Cjn$i}7~Wpp}j+An5j#m>=X!ulCYmEwJ+ zw2Ks+^@Q^FC04g38fO{eU|>S<+@_Z3InT_@*l9{0ZAAvR#)ke=@&hNTiv+GzXNL|| z=Lc?8vW=TejF*pIkFh^}%VW0RgUt7z4L9p_MSvL{A&DsC*Aj%UBbM;8X+(ZDpS^6~ z+|!O(_*=&oduJi~#VmkaeMwoE{pB~QnH7wM4E>rCI_>s;~RX}2#p$@6`Gv+@oTdjemv&MV~NZ3CRn zj(=_98)(_1z#pP3S2o(EBy1TWTSjzc7T_@DV5VUU(=_MWXi*XAW$P&qE> zSypFRt~w`^x6c)SXuX!Nas7c;-$7MP{jpdavD04jVp^_O7(?0YaN=xSE;74nGDO0F zbrkRX8|KXbSH9+VIVr*IV@&X7lOJ(EURm_vMSff-egolWLK7NnDxhLPnJ_OD@86C&igVd4xX=wf6C~6Wfm0BhqzV#j@UY z2Av}%k{8iE=N|JnB9gW>{W)5 zc#3TCT5a~k(@%E1uBNC%}Wwh200cJ0*UaZEy`YL#@jGaZH)8U$T<${Vm zlxctinkT~m?=1U=qK)SDw6X3+Wdlw*OU=upm^;uKV~kvaqBUN<9fiB$c=72Z8=!p> z<%>kAjP4GTn>1DczD{+KW;)bJqlYweJX>{238z!<(dx@1g{|^cEFja8u$(jkEO5nfSl63m*=W#HqNX9VvCi{GyLtt23$kDCvB{ieJ+`v@e0A&wLIb# zFny@uj%mYt3U;~+MgJH=DH>qxEgLM}kT6tP1_b_C0(DH^;iN;doO;ec{(){&|$~1FdGp^F8CTyDo{-zCn1Dh1L&1{lw z8p}8P+-s>-Do}a+!2LEj8^5~%##~SPac2a$6~a?40ZjH}#Iw_&f^1`9ZX?1kI9i2S z`DZfXx{F^jTbuzWiT29zUUY^a?t7ZTbXq*E8b6G8&R?`>*`kF3H~JQi9`i;)F*D@u1+LH*6Bu;FU2H`2HFrg+!S@Wymq7j*W7LWaf7f zp$b0z<5Eq`59`)O=~Z@=NY;z%qBWhhZ%@f$~R>T00Gmm~DU2}H7M z#VTqLjIFo|oES|JREjGEX^P=tk1YwuY%VD;bRsy0q4i@mC%9FN;NhG}_&#tSIY_Go(Ox$T6 z!S$2SRQCzl??a&^9T^v-ilsM&knU2UX7#J&7_GS2$r!%v0@K5S@)fN5Ss+PgdyH+5 zd!(e>J)-G*dA8DF03N_vfsiu#*qVX>{Q72qW6soyvI=3KOhfYx4TLiu58ra2V4{Ro z4REUgF~vZBbQmPF%^43z`90bgSY`-aG;W?mpTB5vC(j0q-CZLKj}%o|6zfGxl+zk@`7l45|=-{0yxITe)K1&E%D04w;tj%NBEQ#>N``Z27Sy z(Ou}8={RF;V-RR2VWTntnFB)e5gB|*(4VTu^Xw%qV2!bFqHQRpU)u0@OB?(sghj9CN^$T1*m zvOaH)c5973-4v+h3#Cx5A;(8Vbsa-LFERs^4Ns7jfz9d|!^Dn$zk-Pdq@NAYsKI-- zE!L*sw_E2LX43j5nN|l)va|e#VQL4u-;_WrO&CHq@;c1#*3kZ>+daF%r8ed}U0)W$ zH*+-CeEZ>H`>{=hulRA-M}UrLx>A;RMvf;z=O%J=9(kG?G_Xa*6QpvcrC7jDEbn>< zCqX#Gcpo4?Ox13}iQ`~OM1x`yj|JmUy7`#He)%F#Tu{ib8aA=z&@#U8-Bj)uYO&m3 z!KTNcJRzv!OC!TaUVh7O+kxiDvvEj43#6r9Gj!8kV8@Eb z-8^a(5cH31u(ClQI~0+JRqI`yv~FVqrZR?3_taY>DaRH z!*)7d!trfmX~6frHUm3|IA@8^&lolbrsNB1noDs_GexM*&KGVN1@~qd!#X3bi(gUm zqEyb&*|w-Az*FEf=`7iD;xXo~ipO-^C%|ApWivA6fk}b+11=~SA2bN6>Vso#Xp$en za4#)sijR$D*?!E(qSo}-iOY!{sgV`u8f$8n8QWB|Y+IvPam`?+0{g*uR@RJ7U~38# zT3nNCYj-L;R)%MN3KDcrv(|(L(+m|$3#=|fUSNAFKVYIe-`boiCmA}rOxd3*7t6DK zt|fXpjD2I%0W7XlXXj!bSWdvF)l2<#`~`KK%I~j^Mg!O@9mTsq_(k(tYyfA8F~uXh zS}ZMEw#0opQ7dBdmQ8J3yjO_^hbw*9hACj1o8g~F>K76j;%GHaR1|X6dU3Q+InVGo zk1I*3K(&HXL<5}T@m2X)p|ps-@q5}pZymOO1K*!T;TP7lK{|NiWWt);_J%nRiS$TF3Ei6&g>tjP!xJu^*<3&D?0Dk3nt`mwGJVO)YpdxzIOMA@5BSNay+Jwk*2b;<6E!LRUum z3};-jXC6$)-8jmNW^6sVoerDl>9eRd7JttZx2c>a;1Vob4rbNw9{Ls*gicQJM>6K; zinZ}LlqVdwTg&?#91KU0DKXx`lm`zlWm^I!)y9cra9zRQ(E zmr-G1pRHM;G%#R)57&oE1Fnxout9EfN=X5d^M$wtu#(Eg#R;<7xftECc##>(^3o;N zPJgAkiQQ;9=F3Hm0%oZ`v>C9Z*%=){2O)Tb${^_M+?{4_IU-b zjaqGPS~3?c@$d`$5l*g3?N_e5!d#%OJ^aaCD9GAOLFcRpQI8pdEV6*29QD|_Rr<4qGdMvY;7k>)CBU~B3t zFI=(qQfv@hxT#TGHQr6HYI0U!*Pu}Z+v4)>g{0ze?nr$M12oE`Bh4`fL9XF2r@D)* z4k|WSOxUb(6VM6_B;L+~!Nm2qTuv1mhOvp2=D3N5S>>Uh{5z^piGj-O>cc5KRNNc` ztZ)a1pHU%l92QFnPlb zkJh-CN{Ftsd9@s4VVoE#r5dkH$(CV&@fMU6DpmM0%>4E&Xr-N_Xdf3B8<$lIqr>qq zTb`IVJUMSSWX&?H0%TfiWw<~)P3*OqoTv|*C5aMEo#cjV@Ne!wtfMk`vquiW)^LV! zPRcj73=P&sod)Foy;vRYyS}JVD#HNMJu{4{7mlc!A9T)$N44>NK+J%*o5nxwH>1XZ zxIPlKL%ltnhe*yBDIfglBv;F7#&XuNvAPm~ehH z3gc--v(Jr>EnN!{vtV%Hn`=F)u!%&wHf7cISJKi-5;1)DpO>L$f&=oIL1rJ8WNmZJ) z&lG}P$XfwAq>^|flfh8a_$Thtrz|Q%6SYwWv!)~_}=xr{j$72oS=CBsiNam?NrTVq!f#%=rI zP|OruW~tUHh7}oln8g&)8#D?RFr=@qJb;kF9A-l^12^tZ|6h&)sL$W?u+`-9$^Krup9mK#+00qrGd}0p8M?~&z=dR( z82pI^=Uu=FpPc3g>&avh-*u02bc5Vt!B5zgANwxiKamsvY!-`0vwJ7j1b=1% zTr%vmHp&gJ<`bU{r!bu-+H^~e42DCTv`stWKa0b=a}^@M??t^3)vIE+{;%Gb~k&?Be=Z^Q*~F$NxvfY0AadIlila2x`Bkggxy2K&{m)7He|2%B=kS zeBd7TUmshpanb*se{aits5e7_M?MSZVn}t(SHf|!E7q~=w(bvRKFH%pkB~w5DB+=E z#8hn8#BCpQh?}}eZ$f7G5Wa>m@&hk*+pm25;{xsfCapeFoF1a?7rhTVdL|oW6uW`c z-eUYzta;)sn_aFAHxiD3NBhM-S&T<}t$WMuTMY4^Xr9o4J*s zgUW0oyp8gUe$DIN((-nLY`mFZKX|Vv{KZl{%H87l8%m>{&o{A?sUY&|9 zyzY+mvHnZ(h3${7i!G#%tc&H+mrtcHi?^UPS@+QRtJASlt;u+NgfO0r5dg2vrB?`Q z79QBLKK9W3JwF{AoY;H!!U#{!SlmL3DoRQ)&(GL3=32C>`yiec2hB|L$E4fi@$#5 z$`z}B@U8w!HLxy;U%4p*-G!C^b>+%P?&!Z$Ew_j1G-sGTQ=E>x>a*#ZEH$|Ew_~x1 z-?-z>9Kpwa=1-MJ(h(twkQOfdZVM7!sY(p2Cv|WlG5AM7Z=dKtS^rBrPsC$)j*>O= z{yTq9!4Kd0y99fmU3%SGdaa7v(9ke&@zo}UTQ6WMfK3C80BfpI3d@cac+$;6|l zvfC$e^>x|wY_5JfyDt0Qc#xhBwx6}+ApJcnS5G28FVJ&3)P=r7u%A4Br*6# ziawQ|7Xw*>i6DJ3o372q?nqxu3_S=qe9GJ#%p@L7U(D4vSD^RU|FbR@OeaPs-h}_6)?0rieQ~YATPjhSu0Sa<@Rt&_ z>M>un9Hfs$sT#}U*==X$(&O3mvAM=c*bmb4ix<&KlL8OOC^#|s?OSs3bx*D!tNwd0 z#_n5FGXDkpS1OtGba^FP3Tz!;ovq^qw*DiXYh%32q4vZZ*b-|MxCxfY6TUE9z+4B7PpewmG zn{Ft}+%8}&7)Ty66>6~jpw$IWZG1eKNnxzpvaQK>RJt|UAvqRneQR=q6K-oVLrEK~ zq)p|$qcxdw{bL}B35`KAWh7h6yGd&j6;(%RP4+^v*+_2ArZ=1-qcl31t#jSu@nCxL z#ao{LZZMter~)21xa{`>t=Cy8TcNTeXis)#_a$5YO#S4JOtP~t87!++yOKL{jSboM z?K zNFD+3Iz~Xs>mYkOAn~ixg3;u01p~>W1U@rQhXou;K0=W5PuMtW62z0)bkmjTxvr!b zYoLfm@DB)oG&v+943-TPF+yBLY#Fm?V)(TTT4*e}Fbgi7+^t0wn5!OtV>))>^xRnT zAbIB;<+3ijSuKL(&(q4gl3HM^%a~~&!`)@<}?}h^3jgIenf&$+)0uCi>3Eg0;n^&)!B=E8r)nt=bk0k>fP_cX_T!sxo@skcyYFgn-QW%K4CMhV{hYCtjq2QEK^)zac_nlcOQKz9yGZOR&07ziA#zO|~v-gh$N?_kCP~ zV+6!0(a7J9ikR_4MbzR2Cg`>O;M|i~YM{t$BKO%pk6+YW+@W=Tm_a_+qabPhZ`>lvtqX1fj!X_v*8wK2g zQlADt+<7zufv8-YS1cUWOZ6pt#j2rjC&<<~#u$5ZvvkZ!nM?7u8Yc zF105&Lwpx`H+grUh36eStDc>-PCL&UvYUDC3HISj&@RBbaTnS`ccH8AL!rCSQRFUo z-(WvQI?dYc+=v}+bW{Z$yxYM$9sHn!n=NpDfq4_3(O`{AO_1!ZU^}eI!O-wY3#(!p zB$0`RMXaD&ktfLnD=1GR=bs{0un}*<3C6~paj-%kVvM*5qwI<%hBd85qk&`~ZcW0+O$Yu?)RDElnRA(}^y6mRbpmOdz zWqm6#_`7uAu*LEz-rEZ)qlR-!ab0#hE{(Gfto}j~npo#_0igjK; zdMqHp0Rq>w)uCNvE_>aTA?I2bxGZfCpSQyNHS;RURLv0N5rQpVPz4oHqEuuG6>)+v zfv-|TIeRKVlzmG@n%Px-HJX)07{M-;oTP)~hE$f5+~U)Wl%d`hY7{E{mVcI`pc!sq z{{6VucvG6tKxmRzY#@qiA96|!#e<)+L@Js=X*M&4P*mzxr?^+wnCF7d=QKGg&f`ht z)upJ?mSy!$eh1TgEKDydzYp8rz&O%Kr*F9b`}BL z*UHcgP`%--QEbfiYRIJVA&WaDsmy*7`Ittm4Wj8L2cs3f0h^W zi6vCEprGbwMu4^&XNBIWN7@PoW5|2V`@c zpa_20!DZu$;AXH!-TFnkDcc;C`Z3JA#_h>QA@2r#svbS#i|jsIsq*M^0Y21+d%RXLGG?A z^8R;B&aYqZ9nyj1ywbqvm0NiIWn2?h@v>Uh z>%^;d&M{RPgFMh(p`ul-klyVSSe*+!oE-|6d?o;xE2s!~Q!F8(eih->7OVpvW^ zqB(<=s)?$VwKGe>EVClf%(?g%fyCC%Ej6^<(p7pH$mr54f(k3(N!;?}xIgzI z3r32PAX+3SD9&_Y($FIL!}S)ASLRk`e!v$rS3MOjrukA7$iDcjm0XY3FtcNQF271| zGo1q`=H|6*A5VP7E!$r|jk9z8+>EE_E0j$)|$u2!zP0ybpRo1-ZcAYkqQlCp|< zl|7eGm?SOnhezF z_6|~{sHHJoCkbq<_4C8gc@wck~~_JNw-)A8?1<{c+m32v!;RYT1|NPm0L?F zI2$OqB%;xnQe_~lRQUqgbgC?mI;!BxBYU8@3I;P@u%D(mFUIP9&~mkwP}6=)y46V8 z08Lz^K+BVo*C>F7$6eH>3v%)wci}&FXVYyZ6y0P^aPepU1aT1sGf&h{iUpHG%haQ` z@^Xy&sGE?5{!M#H8Lde?_jW75d=28po?PWU5SYBRJ(q9i|T@cf0gmEW%hCd zNqfS3VMw9v z^2|(}Te$EXC@DR&;1weKS&?($U9qwhs})Q2MkoB(?rEfG1J!)+Yl(px9qp)Y>i%g} z5Lq>w25y2NP18icKee>B8dr#WAGZ^&>;NQ16b6kOCn~}`QcfKKPs<9}?Ge!Vj%1qW z$>=zb7wmCJkgz}k|3vK)A^9&7kgf{yG@}6V2{>v~IWkT0{Mz6tM3nAijwf*^dzSv@SYY^N!Xr68I-t#|fczlmJ?-?&+`sc3B04R!rON z7B;G02LT(|qt5I)Gfcub3H*zRd~D-Xm4=2x#3^Qs!2J6Y&b#*ojR5x8^1$cG#|a2* zqR`zmgnrS)IhIB>Dys!NHjtu>L^T;OX5D1KWZ)(PGY&yrYS~4#5E5`OXW$!nJdSpi zo7S8kunE*dDnh-bTzygA$qT2~K)CRN_0n4%L27V`sz6sk*?LxDU?VJjUrL?hY}!{J zSf?hGmP50NU=2pEp(djFTaIQ4G0p@qYrhJ0WZM7_baIbaYADvoUuq^6J6@u(v;cF5 zt65^`0uq%nYCc`T_We1@QQPP3i|doMm%x93&T$A0riUHHPHe21w?>0JPbqsT4eNIO{oUxiH7^{=cSRE&TBUJ`{;DnDl z@lgTu#%i1=ZxYPS${VZ0B#=*i^$}&H=PF~~SRE9Q<$D41#_9l1o?5Z78X>_`8&$@E z>4{b;gx3oW{^_<}VSd7??8Rwc|kQIix_-Z?_D z@YY&bcxUsq)U)5^)Kbqu7nOBC;-aB-zi*Kal*?Frr&s4eScNU_Tv;)uxxPEm3VYIFYsMj1?pny3MVhLVr3>S+-1NG ztXDmYJUXQI2*N24bxyzNj@c?^l(aXie)-D`q)cL@fX(Fvuryqt&T%ova&MGw+29+Y z*jPsKD#mo0MTRv5`X%TU1X|=KhZ4McHO<%-$x+>7T*~&ZKj!?4MlhD>7AhQ6nexa5FN=aQ)^6V zGWYA)M@O7_45wf)qg&?)+5Vvjv32fQ_E(<$#{9X{?r`!N%bxMMnWc4e=Zw9w_TT#& z^I!3@YTz;Pz~j6KMIB`=G40-V$~MCOx#P)i1HT9U6&|g<2V1v5?A#+3oF6l{mnS8I zB_|k^6+K0!WNUQIf1so_yJl$q998vQGl2QEdzrV0=~$ze7G|EVIU;5-BwjFtZn?uX zrVL!92${cPgX*Rd-YfLPy$K8{dn4GH>~%C{;vzH~D$p$TrXz|uE&-RCihrfvc#Tg$R6Bj8Z7OTfId+s2b0{fnL54iY@IPGuZOwku=a*-Z&JgcD=b z&QdN0qM0X8ZB~MI4M76$X@u0aDkE!Z%9wX{Hwefcoq*m8Y#{Dw6?=hABzVq}%Enfm zvgN(NIsqBI1uXXhV}OlpsTWv7g2;Nm&SvJdBE>=nK?N^x1*gSh7tPFHa?XsXVUa4# z%$1Q8&CHEiH#0XGIOoTNi}M45wOV1Z>)T(oAxN}e=FD6gH`Qkv7nyjkG10v6!Zlbi zsd{L|MnlDyeN<;-R6Eyp~u_uaRg=2N7dnsB~F#>PjpcE4$aUQXqpz)%uT{ycl@o;?(-m5}oH z*K1~|h!W>?-S^-(udLy6BnG~ODGtS4I8>o(=}^U|Np($Mm@tH`Ul=J_ctAy?I#BMc zdR<$+5BS9vjkMu%QaJFd$EEV)zMJ@5ovSs*Z+Q%b@p}_bp%ckL9DI3sFY4BDZ(=Dj z%T^1Z4S+zGG2KKIo2}O%{b`0>ZW3(NSr}9LShA6TVd^lM3Y2RAn(=meL%)B-6)2 z1RP3U60mfk<_y4!3pHm+@C?r=Ka*$W&o9)>hv`hPUHYs`_X{;A1sqFG30SmHa~Md) zg_&oJQU7i&6DSugQ}@JSkorpP_kV>w^-9c)JPQ;Yf^wbkyhbzia_`Sc8rOqW&wwi zn+f3Ao}9m8)C-F>BucUY3pP)jg#G-`ud(XXdN+`%JGm+-*uq%!v(VLO<&24-RIIMr zvso}E4S+nGjYMIro}i*JsZsh^vX-D=Og!ZkiZcO}8j~2n&9lfexOqNNb zh|2^N;f=|BNW0XSERf)7Us6Ukyp%ET2+s&eCIL&0$#H-cjmb$8JkcrT=ZuH)=Z(p9 zm_C#|>(bA-bZ<r#-G5SNtRjc5`Y-XuQt69CdY_gl4jiVk z@gzq!Ow#pb=R8=%*8Ko9ydriGxke{MHonMeRqZhqZi`Z2Gy~ZzHLf|um?93hv?r5& zdu12nNjY;#L>|}d%1Rv}PyKmm0ur-iJDyqV5L&f(ae9p;R?3<=JjkooDh6@doBLNN zg+qWjTkoQPI(X4eOAJbNTZkuyKgihSXBG{lI!?RbG~+BdymTg$I-C!><`C_iKV@sN zQ(P9OAc6w7tMj@@QY$X*7D_2$^Z}AK<@Q{Gkqu&VOD4G?G5j&42Qx+DwZr&j;!O+( z+r{PTBLAexxS%f^H0>E-+EXNMTaEobiMx_4uT9)7ChnFs#NCXz zTR4?lN!)!qzc-DRBv+T?|3ww*wy^aVQRz*RYGQ6&$+zxJXb}&3# zSNd9u9ibtY&geA@RVPDvZgdw?5WeW%PEMnIRHS#V30we7@ivo2q_BEJE1xu*osAN0MBn0f28cEBMDg z{lLX9{QWH#1fO#7GX!(h(;RP~J!-JI>KUDNpY(_0pW`6K2)eEi+cPe`JkS}>Tq^%O6t-#j!=ZSDXi;1Xz z<&}xyF9R?qAh*NzQ8miPxjjh3(89*`+>A9aCUN8oUU3D7wTLAhA6C~zI0_StvC~v& zF%PQoxRxZ`>NZnVnAU0ZfwKy1L>zVo^yfb|9*?YQB**lV0#d`_Vg z#9Vbll&?uIUZ)v(8oqd+XVwW%Y&9wK3p8CwZG)%Qtnk{XIVDj2qZA8OrIJ+>YF+yq zXMph8H#IalXeSjM%h zWS(n1!lh^#*Z$ei#dTh$UJ&*+i?FRe^oqV;!U&oZD}BpwG{RDk`j-v7jy6|KliJG# zI-A0`;WLThe&~evCYt@AF2DOVVD^!q@Z`C4P>6%+u zZxiq6;Of*orO1}&JiLU;>X!r}^q3R9t*yUJpw3W7Xlr60Djq*&dMvY4<=X{GIDPZAXLv)PTp<>bX3*m4L$Y~Snd`>?oj z`I-?^dEN<^H(C-tbk)})`CR`hwhiUk@K%mOOWq0_Y>LJc!wqicC_U4Hj-YU{mHJwD zE%v1fr~X+B&?%WCplkT&jd(>9!@5UO-uWuzO2MVw3e6Cm(ji>>s+TL37A0MDYlkpBFBG6JTV!NLIiAsX}Q&iiRuW(WA z@Ccf7E+Pc9+5(RD%_#Z`64u2wDL|LNv!zE4Nvf)VE(20_77kYwjM_`GB-E ztycThWq0r%)QigD&frk|xSm+dAZiJ2<;m85SVv*D9pBBJkho3(OHMDcU{v8A9IX;k z@I0jSBdQLgAJHKf3&+H&y?ReP4udQ!DP1Df9kfdy&ySk#@)#190bwxjN?zd1Kz4gg z_BFZM*I3wpVqN0VC#$AYR7%8_eylWm={rk(&wFRgk$1!+LWpNiQ~F;P%*N{!2N3QD3j6MZFRsvH2g6h6$P7I(!7N}@E~ z>I}Z(fV6fNf)oeT904f~NPQ>7QXEhV0TP-(Eb1vl<@*41h+v!{4)|mgJUH>2)uyN< zoDCB=<06`)ZkFaI2iRr-2fy~4)wVjxxzynC=bthrum+!<_!Dx+4(OHv!xPAs53irn zbtzWH(sjA`UkMFj0`LOTpkBy^iP}@~WRGrkefSl+inY(*rAmK$!?WuE>=nXeLipT2 z+Nl-gr|Talfb~%VU+XcVR%@@$u6u)Xus9)F^TR#~EcuOeWl8i9L9Tv~zg%ogRZD9I zSFc}sBj%yzaTt@CIHNG0jQt3F{umW0tF;V)YW?>LBenkH>XKS-;>2^b){k)L8kUrw zT8|LG>jHtV^)k_DTVHkY${g2Aut-4+$or$8)H zj_Pj|i)rv5Oiap)m@X1%F^4?8KeG61G^-k`t(b#$ad0n$nIrK!)46@gPu!DjO@2bB zG?|f{>q+*W?@I0?`~={A2*<`)Z%9V1N8ML~HlCztDgxwwo zeHFyU2QJ}rPr-?>S)GY}cbpvUp!u>oh$=tOPK7SI!$T=+D^bd7B><<*C2v6Y`8hJ4xUxKILv6nHbr>t(x@D9J^#O*!3e@ku4J)s~RSw%MUI68MTY z`5aWrmcm@cwT`VKsCX?=Dqc?jP6L5{$WoAk0^5_9bcYo8CGz_+ zoO@-J*8+NJAhG0 zhfgXgq!q9g(ndt*FIsv34o`q5qPvKS4WeB{RbQezh)S?TJBc20(GH?!aa*|-$os{t z4G=x<5L$`OyJ(82dNvfc5|uq7+Co%@kLYHivam#(g-g|mZX$XV?IOB?sQJRJcCt?n zAkZdWC?en$%q9Z1<{JsvUes11Ghw}X&pj1&1RVLOCE&fqnt&nV-F!9!5qmOj3+84y zp8#caY1Pg7Ry_h^Uf{=w0x#0{L3QJ+*I@WX&j;Ey=8g9LuS9P>HIJWfj&j;Rq!T-CP_nco&qIpqN;y@#Bcn&%HE`=dS19SL`#KR zt0@Bt;gd>)y8>|&?n^{KTOjcDzC_g5dzq+yAYArQ7@H+Zz2^x?xaboQry$f?I>_R7 zAnSYvkf%FM)YCod^MEkpqtKlo3f+?gBux2)s63T~JguBHh}p?RTt<0U0k zy(QG$mrSTiVZPjmlIIr|dNgN^Cr33`eUb$bDrN-8b;I;Jab?_)lN7aANFbbUdjdyA zV8js!X9K6dY6SGCpLCEQBoNM)J%O_#@UxD9(8TuvM?jDIE!~7=cUKf4b6HSXKh2CB zW0{1HDsOvP;ja3I6jt#^9a5x<^H613Nt6^7rFF$z+<#Ilvf)7#zSNVkrKOk2_y6}T~gp`eL|Whl@Xz)+wu zfT2KRfEGmwYSo^X5nqna(Gh{ ze#vd2MXvj0=-?!iKEd;4eOhMAG?fK*v1($=iTlEOFW3%%4X{nuAl!Vt7b5lE1(EFb z`D}UtC*QvM1KZq>c-pEx`=Mn%qM&aBojspEd*MrB$VFc~clz9mdO5jKFDL)2%PsRd z2?RBnXPw-MAu;?IyDLk$4=AX9cCIS(OZE|<{!1IsV73R1=XDGK`xw}-L^2db7koc;eV&_EsD#jy{`$Co=(Nb;kLiD^aIeH-MbvkyiDe7 zdL_I4r64^MY@eM=&z#PGov6!npr-637AI!ub(qmHQ|KByi3OU!KTYSkK;Sqme{}|n zB!3B@W-PdQ3=Qs#Y=^{E;f7xp`XGNvdM{}|kIISRRSKmJ5P-1Hpzc1%{9-Y?hr)`5djZ-Bu-${D^{jm& z@I5RN4?ZeF)6sR_&wfYCx{*zQo4Nm<5h=e3@ZcQlykw_fojQ!3GxdJ88+jty>_-Z> z_g4fTSNU$=GOSjs-3%-&s}?sv@@Wh`-uH&ZAFQVYn%#RBj`P-QSbo_r2d8809-Ge#hSKwHJA}gY3VpaG>sd7T!^UUxmgiu#xs{?8z;+4@D2LMO|c zXaW+Iw6{VNxn5AFy@`R}qKS}*q(va^?M$f}U~T@xV;*HHHbGW#)kRBl+H2MHtJhD0 ztyDkXf}A|kZmiRF9rKXdRj8tld4z3N&{44|9laAjB&=zre%jZ&W-GnyKI)FsZZD6~1AG7VvwU`fl8PcUckbOZ+KiF;Jb1mW92S{9E`9odE+%f zuF&fkKKi{Fh45|7vTCko;xGy(GT(UI%>g6)rlGk*KVsiSc!p7>Jv6md8_^(5hGE# zRX7EqTmmh`-T#Bm@}-|+BsKe`y!I`UF1PIT_E!C+YC&4Bo3m2gD^nbsuj9s`4hoy&)u%v7~p>S1}o%C^8u-PYfxn zV)!CnOF1jv;@tc3P(3R(Sl{-@h-DS9Y3T%YkSh84iu)j8SyQbh@XR06e<~Tc$1!l{ z7Q7Ylb5$?6&^`{lB4Pw9ahw>|5k_ZP0UmW`n#& zR4=D!t5mNrK$NVHl(eX~o3e(^=!fZLK1dm+%35=b6r@G(}&Z7=FJ?qYP7} zy!BHLB>&dkpi^FMZ>M# z2Js}o_`-j@ZCz}RGaF@J5y)h&y|m_hX?<&#w%(Q29PYbBJ`$Q3d|ljXXeQfgo4;<= z7AEAY7An}1FY+oC9C@=t2;q#d70tDqc9JGUI+KFL@EJw}r~5@3qeQB0%jx-IXu8!r*b(0cE3o8asnpF`fb9hZFkv1W)SY zp=&>UtM9{pAW*uqwNmb~fgs|NtO(P;gjJSVEx1-@@j&J{LAjMLE}7b>C~E4fsJuL> zUJ>(`Uo4&gUOZYjvk4ua)6?-(jgIdBb!K!rluYT+kQjId{SQ^Qka~>rq(X1kS8%-w z$y!n`{|!YoWJGY$x;x8>ccdJN!Ef-_^I7TR(*q}Jpj%!>m}Q1W<}J$2!C)ovzqdyceus%{`PQ>|A_rUXKW9@RgLi^r?{jDWI#0 zXqiORPfpcr zqA6U!vJ4lr#inNl2zzEV-$Q05&}gx3_aFF990|f*e)_X=l51IX@}=5Sq*P^%Y$1WK zY~fB4k3z80t#(~uut6)V}>u#!`R|aY+4hu$8RrRt7?Mq(3l29lp ztr&P*1#*Jz{c3e(V>+@#I{^YPTcUL>;*Y5X@h=CRUygg4NLRU$?qOGu2p53j6HGNg z$XR}PQJSq?covToA^9wZv{=xW6^CSW^FxRS8VBy3TSkg$FtHozDKMy!Lea$VTX}Nc zudQSFp0xT>OQb`Jr?5YJ%M;ChjAS=jM3zA!*`pS-LiUNG>}66@Ze*yM+jy}+L>96F zrD8^)nVj2DvSxLoW_K&GGgSM>fmzfVBiQTK|HxoGizVtjk*WXT6!Bl z0XDOA`=E()2q;x}d6haBbe@w+30S<~n0bfI#g%{-Sdia0_CQ~)1C)Y*JWz6ipwa*y zaZdvBv_cToJdY$WSv-=mU`WPHc?+J0WCAY*eJb%hl)lDfHKGnGE;R4n^C)CKM&ir# zJPMg7iZW9r6-B+hpu|5A~JO9QF`P(kBQ<`Ju3CF z7tQl1+9;YL&08Tc6RyFT1p;1#n;+xYRB|eUdX19FTP*O+%o<*)HmXm6e%a7X8}rl0 zLVwV7Qk;JNIZnV`H?kBT!I1bVXmqBb5`_0r@Wf?!Vl_OM<4>$My@7K%4}OU=v#JTb z=^U>RaBgQ0*$u{liP|vji;*;LeWVG)6QsZJ^Y6R=QV)Rg!)H$j6k}L=Nfe3a?-+Y> z<76*Zuy#T&*fIYnnr1LACGe-D~>6vE?k(g!;or$cKkFus|r z`Z{O}_k`(U1nGf(L?uf7f){brQUIE$zzzH#Ec38|2>;YQbOekFBnhCX8x(Zf%o2y( zxiWWRj07Eg(~qbQzUh~9&{Yqy*~z$&g;p}q?X8MDqLbG z0p)HLlpoQQkHUhWs~%(1>AmyrjGi}eWR~lp6Lmx{5)~~=Lq2l9mAN`*kmva<&!%U_G5x1c~-N8QYlH=A^R!+KL zS-JyQ*S8A`jq0SoN;o8{zITJzp`7j9Le~RuUT7SbvzO|Y?9lpM^ti~uxK?$*Mp(Qf zlkDpIPikCUMTZOKuBju&m%V=gTAGe_CVg!e%0>U$S?I=Cc4mznL(HA?Aw zcyo`8d)!Wlb-efpRg{-WJ1YQd2m4ZYE&b_xmIi1p*$aP)@eEN(oHBiDPxAzhEMX)e z-+F~c^Y6M3el5JyU_EaSA|rJ*URUpl9%FpwFG||w=f{iN<>{l=F3L;c69nu|XiGr) zASq`6>(r?6)S1k13Q>=oLTqF25Fyums94xN6858%D|cC_DVox>lMhTFpISf&rkBlM zMH9o1qW{jhwzl^s{istCr}K2qAy|W;M>(J;uSd?vKzTqwx698(zWep$P9Gv1F+!S3 zRIT=ratQ?5+CE--P{_wkmGUW*_Q{n|rTAle?&2_e+3XI-QQsb_vX22g@#y1_-w$%t zBs$v|Omh(;1#JQ<;_KVFpppMU7ia_!yXL}rf=3l%`NDM7k96*@(vg0?x~S*I$#*aP z=X2kIK{Xc@K1{&VgnK%qCwKIL98xEwFfO3aAX0hkF_$1c3{Gu)hAK+)kf{P{H%`!Z zm+o5lOXJ&JMxo1(tX8UuV_+^mm5aZF`mc9u64?1hvCgF9-An(I9u?ZwlOv!<{U9J(cnEp}CM+ekN-2gEQab-%jFpfQugOs1(8=k)#9IhDrJsIDE{h&` zafcWu{p;+AzsGQIlIZ;a^LKc!B)hG~eI0HaFD=-s0eWX9d@Z2=5{K?fof`Zmm1Qqd zmc0(pQDr_+t6rfjJ?;OvK+3o|_{Q_!zzU}HCKo;pgBlTiJhPqDR-RiVF2bz}b8?s} zpR{jHHuvx2P<-Nn+o3>)O(G9am()e3_W7oF4nJ#mAe&-?@Rk(q>)!%NNghPKcZtU7R&kDZY!!x z-Zwzhe$by$&;8~XO9uT9^0v5tcj0=j=v#R95qo!``xH);3JShXk+ND+Vz}JE;{=bM zOSvs@sZLJ95d!^)9(6HsDd;MS?e0dxe;Ea*Dlzc;T>Ldxy#u4qRl-SJtwyX}llfX( zUg&$fZrgl3SKkaDyS4GW_>Fn@okY9H2ZQtKxtS82yOy57r9J@px$0f3(0xZqo^$pM z#<_D>r+ot2`=Je|(ssRGr_CCH2vq9qA$wxvYhtY29J-CoeQ%(K-MROhdDle`*1uG% znQzWKH`jRKuBDkd{-Yf_H#%>s3vx29l9e2lU8HFi62kIr?&XQgUgi(p7@XiPr4zZh zj=yNtx*fOh7o%?B#GjUE$h&?ouOW8D)t~>7X-GSzcNh`J5w9Nu$q2$7;TfDjIVON= z-hf^ahOeR|rDlIbDYj8;@1E=k9#1^l#r3O@tm36R?pK?k&!39dSON0qb-HjBG`j$< z#=VKAqVwY@?4T0|@n0k|aVKeU8$6e{rjRL~CEmEwAl{8IGIt|?7O3|n->F-c-sx^x z+RE)pThDiL>v~V}onYyv_?Gin>(KB;c2zSs22W1Da7!?C`}D@CrP|!PuV9H^yoIM} z{4W)Cw|{*SM}i{SdACp%WB!E;Otb@E&n`cr{@Hk)oPbwiA9%gCmdp#EA1!W-AOAyZ zj2?34D{u{DE50A8UT%4{1iVA91MwkCq8(KyP~RT+rli=aZwOwU?QDoMgl1bCYJ$6J zz;ea&;#Ac%24Tw4+8`62L1vpY6_Rgl^Pn>>RY!2;i;~a|&JKB$k^+;sswdseUb;fn z-IpD(q~l)>YF`%*z1a43HH$l)Wm;2|ZZMNaz9*ZiK`ZX|(QJ(OOhfKz{gU0+{^csH z4Yn4nMFj%3PT#ql)_@4t62SUnc4ECab zn{@E7&|xYX3|hH=B93RMQ|9#tBIwq?N=q|zd)YcMaKZ6kq(rOXV|&%%iezfIY6Zcc z;IHpMj>d_6=i#QH{t3#=cGMKh8DDmlD);D(Wmh9So1U0^`9AHfs`tw~WK}y^NddDb zz=ay&nim?VM-8+1_xMv#&n&*52pH|5cOTkjPbDKNuX0q{MdfZs#ascG&z2)C?Y82y zZhF-X%JT!jF|GHXyhPEV)AjT3JGRUnnhUpI2aD-Od&B)lWpUhk?!$GuXzr$Z{${r| z6yWByM;;klp@MrfKu`o9ckn|5&H+C$`R!Y1;U`zd7%^%b= z-%V}|K))7q%%ei%I8iw^9wK)g=wSzaga8p=$vKF`@HdQ`A;l?@J;iCCpS)*X-ZLKJ zDNZ=(Ndiw%5OmI8(84>xSElXrA9B|Hc?@B&>_DI*n~z!bmiumERL-^Wm6kItOq8FU z>pI(#TKb!it9j5pR|`ay2d*v=rJff(#B(*{ptA&?D?v)QVmJ5z(C}NQa=i5DptE>F zJTc-*=(aoDO9Y2T&;1LUZERv#-Nf#~coE`2Qiy;R*rturAuD>6DX<(dg0M+LYvqV* z6xBgJ?!iaFJbiK;B!|Cgfa?Z4LEGC_ik24iX#im~kf=h#jj3YSP^n=K)+&sBJQP$ zMW=9iZvVvVg0${Gtk>la?kWT3)N*8*+S=_v#WzCSt`!MgOK|!7diQ|c6~O%myv`qb zRYj+oeiz-eZhc4ka^itOdvfR(Uf_=V{5=V$&)xgAd$Q@T$#Y9jpZm!4`JHFaedKG| z^jW*Q;@0h#o%_|lay>6_-yn^5)jx>kyN2rjxQ-uk3qtzx;!856`f__^o-?lv`Bi(- zi0WR26^AaHSk_`Q^V=xt%$#`I!~3Am@pujciz)8$mVlaY}|@X`Eu#Z4^+WGTaZ5b zh2X$}1KIS^=f4>|HMxX=gvt2e0hr{nj7VNs+UUn%<5En;jj14gCW04b?FV5kyZuc5 zp6A<(Fe!b$|K9o7eH|v8v;FfpikT*^$ymKCqi{B|G?P9HiNdbows}Z=zF2&@4!&`4 zCWwE=nk_x^`oZ&=SNzQ4YcRsrKB1vY&&tScM<*XrOQZZ=T>baXyuPp5n4ES@zA>Ag zjxsSVlw!HlVP+UQ!ght4DPRA}EAFd4rc1wr6JANSY@hAxar(hPW1?&vl-d!^?&b3A zSExnA{OvPAJm*r5Cmtnr+k{*?*JOeR>67QvC+DiAh`I&kqQ0QEeYU_ERm}XJRWJ3h zD%pRsD|9bxO{W{Jup2Xqx)lp~`tThlLfe>w2d&$(eE3kuJ?c(-Z?s;A^oH|BrqHj1 zbEfYk1=*l}u9aZRw)sMhr4WZ7QlY2P^WtDjdcN;&6~)Cd^`8-6xx1@) z2x{%20PcUW>b?#hPsJ_4=S__I6@e@1c{YiT8R^u+D!`)sE6w-aP^hIVIXzV?+CqbcM_nrgteMF~TD(Xi8T=_B$y)^S;WNnW2kTVc*0` z+E>`UP$~tg1iv)mahY!R=9L8IWY~TPduPJQwb@NPv0S5^)I(&p<tw>kf)M`4G{W<|@#jXSASE%IDd5A8S4O{JM(mT46oqg}sYWOLZ z1?}Zqu9?)vA0&jp>&#eZ_?@Z5}f4o;s=+;?x`$*=$W zO;Gn`RITEgGz(uwJqbwlM0!&S+~P0I=4E$OK=;lV(y}MK5Ta+4U~`t*0QtRN2YYZ? z^t}qFzAW@4hNb@M?zZdh^iW?V^7N^$wYk*QS_WwpCr3|kNs%O*k`){*=xgx3U8)`C zGL0)KF~q=3X!(rB|;^5lg!EucG# z$k>Df*=2Wl8aOh|YrI1BNwzN)?HA1nDUtPOUU6k@M9B>ZPvG4qDk9xzm%hrkOWK7t zwT5fX-FLbtxNw~L)n#q|lm-9-Y|G%;Uyjwc8sg~BgWen~Y~#1j9b8!svFw*uT4jAj^k?P?a)vN^0}`xe)G@{QphWgZSND>0)k8y*^UjzmczO)mW_-9^); z@Cv|fwzuKWl$ixC+_jg#S?^3-RLG**qQJWe6t>qJd2BU295|wfGI|9A|8VM;85VD9 zY?i0^4{qg-HG8GG0(R?EC`Nyjw}@O?G*Qc3N*}0(t;bNG(On0 z9uM6Yr>ZggXJ}WEIv!qX-!_1<0X^J=rz9Lar3`@;U+9?BKQXYEj#&^nMeJa)zN-k* z3uIsRW>sGmk@We7C>41NQ7VG6j{}pk6Fp2+C`2D2kQj&_DnJhs6;nVpkWjw9ws3%` zr!Z2$9VI%&{~*YIdb<0G*6lJ114Ko^wF@H5ji~i zo(!*6AM<@{;SJB*7kX2(-N_xaY&VN8yw`^>umkJSL41c7K6$L^`2cLMM+AYV4lHaJ z2XZ8!5>Y>eTjtcWzF3cRaE4AYS1pAXMJViH3akqq`J>`lW5FRQEU+Y5V8OIjUR`-j zh|8C6d*^Nz)exdg#VaaJ7)0DPI|6{#Ae>DgVJRtD7b-Ge#}9h;8}sK*yEPnt%x!Mo ze96RT{C8ov@huadn^{^ncMcD(;(p1)G=Mc!|4KvOjTTE;&t3ZE>`hWHH+_mswOC4G zDsrog_3FKo`zC$wJZ7EQNOAXMwF&!S5nfH~wn@%F;68Ko!0TldS$x29=_j**xz`%g zQ6AlOjW%(z;i-b>+vGf7gp8i#cfHHq-c8Q!l}B08=T!&R$8gyly(XWRoj7u2oVUAM z-2|U-cVhS)F?uLkzAM0~7-XSYH4?75x?SjQ7tOuPxw?b@SS43?H|6$#(o5O1+FmF9oA_S#2^+_R$Lftx== zkBu7JiON5~>+Q6I3Nqf_X=#R{huEYD3wQN-JWOHR3f~xnyDGzT&Gk z0jnid)5zkhc19I(hf00bGz3z$;{;*V8mO9q*Qgp*DAWwg>io^kTc~$LhdJGz82CCT zaL|+cPs*BvJ{a3Rdp^KA-#h-cigMAM@)hit<%-?Q;#0vD8%S<~xPG*3J<)EW=KaVa zJE4cQ9I`su=$q>Kd#bvLzcRNF+5jQRkz*8!Hui0k`aAf;&EPrDOgZG4xdb^;6Hm8# z=j`q{1MW(8VlOoBmYo+EZQxN(N|3!- zdJ|FPko@qk&;aN%NxQ)F{^@R_Qg@&|M76_2wA({-oaK0@8Iv7ANa!Mvi%PVOs3+1v z)D!6>I?XvQ5ZXO7rzz?{GQ}g%RsvCQQZpx4`cFwhK;{uASA_y`PVPXm#y!@6tL{#U zmdpYMvD@Y9I)vFnCZ+SPjclW_0c27oJoXFiY0RDg>dCI%cKB{1(wd!(!WI(qglx4z zkWiqZN9=OS2x{&3A+roP#nGNCr`VY*HX&&qPn%81W(Y>SW5=a!LMo-$M;&0OX`M9)kt{VP9=%Pax0`pn;@U&-Div90DZJJDrt5^hC< z>AYr<@Lsc`<~1wwu>P#pE_ltOHjps9vFv&x@xTFAt4bVahaum24+8Z2v*tY8n>||O zE!uUE2Lw=ER_1Wy;xv|)h(sweWeUv59WXy9X0foqQ0g%P40AR!PoTbq|Q@{xSK8JZXTjoI_x-s zdg@pA7TnDgrG)ciWRYTpM~{i&_r#ski5CjW1TgRHY?a6Wt>WzDIgxSn{tji! zY6-A$>nqhNQSto07%-&VY%8-$;hneq(zjdD6*Lt*zMi8bPy~4^$eoM^dQ4G*R(Mqd zY<*kq6Ec!BJb5E2$H*JWd7}CS$L;;4+)uH47~Vsk`vq+!UMEIl`HzxD5AojoJ0(Xn z$9nRo0__lQN%Ts&w|xFH=j|*Y?x7y7R83KloGdVq3o3_v7%u z_vP1%%r52$ow|6^m7eXKiD%<8ENY8r5H4ze$tNQtv;6<}f3R7g^kf;l5xpLmm-(nYpi+w`_AK+o7eAsW2direWQdAy}9A}@Go`Q zc2izom59E^2`E0IuamNgB9^ z$wv!9ZV8^eqdl4FYk@?MO|!HpyeBgKU~XJTX5X4N1MyFKXYB;-EqOP=ZAm>h0OFtI zt(O##cap%9;;BKvA^+iFH^pkA!UkSj-qfog?xt`mk~bNJu~_|2WAUGHR>LMFve4m# zB(mN?U%pcx&nYYn|9IisFlFEbohD-V&Xsh=zt;6<%SUA|6qP{V?qqFRYbkfN7nzQ_>-{^;VAJ?RSs8 z!e@1ny`WE3JCmX@R+$YEXlq`eifpev6^egF8H4(-j1rhA!oCb$b>u~yY8wr0t(H3P zW)jyEfjEt1h@u|q^f!3oG_J?c%l{PI#{)}w-{X6e#?C$Mn7 zbKgJam-cr{BTNH!Fe>k6X@3XqhX(gO#giEsMvtp4fOgj5^@R+9D~bIpn#)L*oJ}lh zR=2>P;e{F!naGF$bPfh=x+=8Vj5f%L3WEMjc zbZh4=mKe~NVN5P=G9xSDtgY7nCAZZkGa8_85_-g>KJ852|JpL;W-`j}XEKV~Oh%E1 z^=GwKS<5mle$b9C`n`a~_wi(Qx6s$@pv6AhsMkh8Mw6Xc>KGY1`!8{xrQ}UX_XXtb z%fX4~zn;Cb?zh?5dupz_M&T1S7ud4W_eQ-<@^r5Dhu9j_xup>jx6hwX&(ECBZeN~j z{8DP^9Pc`%FR4F1)T-q40$;{5p>U47YMP^K8>jnMs`m2zHi5&l-RXrZ=}SvzABs`l zmh`3jUdd2*Dn?h1E&YN;iMhq{?2Y1W@brCeWt&obY&AZzdoKll&ub=C{NcTc{%>!D z!6qd0q%ZBg{#5$1l9qltn-<`{cPwoGmlT)2ymTF;phOp@DJQ>K?M{fSrw(oN zYV_@wd8I-ugc_4xmT~?VHcgezLoW#`QwNv*C!73K89{B%-mDgg3hHwOLD3-Tx>Ipg z50s0ll#OyhdX|HZyw3RnkGp-=e~ym#T*O_+Giqm-abX8Y1zA6hte-Yna|rnC`JEgH ze%c*=eDRioRt4#0wUij3u3{rwdjKhLNbzEow(Nr1ktaWN@l<+2Oqr(nGjE9pJ`coN zWB!ixY*A|naPK=7wDtD#8H%(?J_(s@VZvImbQBGLppC)e7rO< z&_T-}&`w~V@Mqy;}EuyCa`&Vx4tG8HN zwtlebuUetO0er3dU_mJ33WtO@bQY6-=nh=*i~MuMAl+_|AWT zyKZcZS|vR1xlcUPzp#1MRPkp$^Uuv3?kxZ|PFJl^)p1p|btv`j zrLX!*rLs3lu)hADxh+$PVa<|V1x+GaiZLPN%UB=EaAUT0AO(SLYKQyPPM~&RYeN}; zNJ4^eKZ&A!`W(rVhYXPd1>)H5fP_PBf5P(+Jbvq#r3HEwRqvy&FD_BnRj91nUCEw! zC~afxZ=DpB`d`_Ai`3r? zm6qL=+fxVaflnief&i=o(26ZAvl!x-lZ)qhN_FSY`rMvp3ay#zea8C09pvk)&(*f* zo$SuhRN~R6g3h5-YU!_ic@g#V)ww%TonHEw^;Xy#JP2Dx)F}kxbjoh+af8O-`TO3i zQE6Qjf7Vz1J=zz2)TmAQLH!q-P^S0%%+gmGw2!+H-}Tn1zE{&pP7RDUy^(_WrIwbQ zDaWS{-$qD&ly$Rksx_AEKyZtH&Q?a=xL}ve%&bogzK@=)?g}}w)DWF;Q9Sepb>Qn> zpmsM!41rfcX9zT)OTFFr?i$Io)Hl!$!y_L7MjHAzan zMHkVn#(IuH*3sdW1!)vd>KwF6*g0Kqxr?Q&uyejoozt1f5DO!q)>d(^QE|4MAJMm? zEM1o9n^&-PnTV=wWmN+GI`jrpH7#O~zm_OE_M6NC!yJ2G<@A}&J<8PAS>5J=o>tex zFEA=zMGwclsyf1mT_R*m5MeY;4JXYF+iJFYsbcBVy3bZ`oXo|) z0(LAHzs~F7o2#h3DUlQP8hWN{hr~^r&R94tMb8+E8fnHOhtjb{o1&H~{P&fU_@ML! zezl4nGSgg%83tGhG89|Eo-3DB<_l7pYfwBnY0hZU8a-ia3|TZW%tZ@o;E3rUx(_V< zh~|gOeDg}7eYvplz=gaS3T+CxdOZO@_i;MmwLrB>3}5H9;HY(wU|9nRf7T=Iqt43@-tksr%?PQ#ow3{Z>gh`+fgus z4@#}`T>VTq4({Cu3$k%K`s-qnjz-0|IyDOh#`Lt*P=qKpeG0EnsEr~vQ;*{9r*LRi zx2SDe&+tkcv8lUQ;zUv0a;Y1`?e^FXh|b-tWr*rAl-jS z*(Ji_J>$X6p+gj;N3!i;r(-WJ_xs;&W3MXn}?)EI|OWhCKmQT*uGA2)@kErVh+m8n6N3!XWAUz&zJCx%u zL)82)XuDTy`h%K!o=T4jH){`D(xZvt2c3b+TA@L1moX&44%*mn)ei>kGhI1VBFO2} zPv_I4Sz|sJ+^rlr$u7usEB-}^#=TebplI~%ac|Zq5>^tq|$cg+=F$bX9w-?XX+K-HkRL_JirM=6L>I~QIhG&;2uSN6?zmmKC_RB zTlbCzt3`18Hg_KILE+@L8}fvF5hMKb4+xt#gJK zEVJpcAbl*@cAQBr=Nlhv5>){Cg=M@3oo*zN*G_0FwmH)S=hFjhat;bvNe#Yo>HWTD z`;_2o)~k4V&4kjo$=6Ic`I>FtU#ON&I{FHo2`e;HUZHtcA>KltwF*rK+j!g8DzrhQ zdB1h_3Ki-jTwk9KqSD6DfTu@gfPO7J(y0C#_J3Y0N%G>jRsDNn`aNz%YLMW^a%(_LYQks>%#+#dU$wTY_%#uw3Zz`&7lv7t9;*GIJ07>`UIUlWTNJLjYMas`i>A`FGww*?@;Jz z%$^EO4=wWq*rl2#y^!1C16DTM22*<2FrgW6g~=4`z)yO}dJLOkQH^#7`_y;ms`t~( zz9cxA0v6d1bBx-Sm{Llmw1TVi1jw#0-uce9G3?jfA0;QuCDViM0EqEsf9{*~8q zuulR?nW@piK8bC$y)b9?)-WV)J4__(;sHm^w!;K_SbtV)7dzOemNEZB2mAKuNJ#M; zF{5U8wbv!9&NBDN$jJ8KTbvW=ztkv;Q{*uD&8|xd@2=P1_tphp-uP7T^>+u8&!0QD z5PUg!rm*kz+Hl`1yZzE!{7V;3r4^YWvWE*A=5`**rjKOhYPxNQ3Ahm#BaR#1aR2XV4mngGbk954M#M3g-8Rqd3-T`9 z3$^AfkWn9T+qQr;**QJOeKF6TPtVR(k1OkQu1eSXl9+OT>l^cPGjGy@fBy3{JEvf8 z_Cr&1JC}`*x$46r{_I?OxuoultQ$Pa5y!gNo2x$N>#+=!be#+x5C+kX2(l~ceE1&|I9*^Lz&65TXY4` zEC|L9gNM9RsbIyLWq#SwnTF2G(@W*BHaIt5sWH2fsl^xaY|d9=GxLdv#KL+;q@H=Z zrDOb`otcw^uRQT~n#0@R z@tX5^^dwWi7N3%`6ku(1bi3z^V>8O_%4>4(s<`eW3A&m^^fB{#-&xzBR95f3Z9a8X z!98YjvF<79hr*4NkQn&w@2BiKe9d>bns+5zRNI2gcKP((E*)tgkrt$_zfMMK3DinG zdLD37$aF+$GR>w^)C76@tW5yzeu0=2TsvG4Yz zWdBu>4&2ubIj$O&=gH+@1aTglg8F1Ix$qr1p2eNf8MPOj!Z%sJ+Z_sn8x@Sa`n4Nk zRKyNngx*1~f%Yz6#%@=}rzyk8q!u5}xAdw;t=kIVYQ2cIL916KOp{*pY^9GjP?tuOpuvwdD7?v@KkA_)YG1o= zrpXFA=$?1Zxb~L=WF`H67T zV&}97Gl9?=05#dgjAU--L^wWrUxq<3J*6v&SU1!A;=JDt;KFnA)^!ZeO~0>Lqu4`c zukr0mDc92`Un*EC_1iWiL-hiecX4^(5?0^!8mqYVpPe%~cNJO=N9Oj9A{;P)^^rJ7dZ~UjFaDo#2Ku)BI!ZRS%CRK_S$Q&z4qE`|2?GnUz0ShMWi!Uw5fq!1-;!t_KhO-vk56C8Oi>j zC6{>cLZl^x)~DD*7{mz%#Zd(xDc+pf(W<*8#0Iw^@3hmgbHilH%9kikOT5II7 zlZP?0az%P)FRp&4-%K-bLq-#@{K!q(D)O%qdAbd<=!E>d)wu6U?+pw+&6*Jedd+C` zhkQreSX#438cDvqc)s_MFO&ytH>Q6X&(a3gLWPu>sfMv9A|Ch@r9@_$^Hlk*He8k- zVHzHLY}Y7)t#C785JbFdQpDj`>iM=6lG|6fjnk~ z=^J5J&X~}62#8DOb#&`q;^%=dEgL!HOlmb9yEmm{k)QdmOdq7y z7|&5^CQ{CH$J11jum|gPNE-yLRoR^oLD<{_Y99u7F63xFsWxOlMA~ZXMPdq-DL?N1 z`%Or#u3Ty%J7z{bP+xUspy!ob!i?HXuJS$BVa&9_3~Fp;v~qJJ{d?Rsc@Q#0JVWF41jA5|Q~FQwoe zbeA1u5677cZbMBoGHbxu<6~he*y_HuM*H%B>dv@EOLmlG z12P7bWq|OAg}W>~MCK!@%-eV$iry)&WU2CsT%50NGPy)Vzam)F<5uNwS1?)n0Xybd zMnu@X&SNyk1iofaGy@GkM=74RZ)>>J51+b(<)|($(N(cpRp#VPS+mjC-9G`dN zb0;#tOnb=u@<5&ubV$={GlgLuQG2kjpq?W!@bf&F%DcuxvLv_|f~GmNX(48eRv5H% zCQTF0O7OmhN5^<$_k-SO@_J}x%}Mu6%v=!%6JuA5pRsGs)-?wjHaNz{yI04qt0<{g zA!}f4W6~#A=dM`1llDxMoiee)k6C;%n~BQkYnB#bFkke7ec9_~?Q(^rZcjY~qe?TzN-%VI#Z{hA)MSn2TDB^QK0l1-*c+Yn8{n zTb?sD-RNQU1~x25FE@2$V@n!RbRR(M$3AjJEhy|(X7caKXi9p)0Lhu7Imv!*&_-oT z256tMB^b5nf+JcjZ@N%AjO#-OVt%HaD|Ikt31wLOBcG_`O6i8NVe8e*0f4Z2Av2md zl`%Ql^bPN=%*I<>F!aWw;w+1A*zu5_G!0S^tzz_oVs|}R5#+KOHAj%a8bH0}5})`5 zFnj3y^846^v5P1VCg(5Igk*s5%=hA<;Q&rSyGZBrODD`HGlP5UUs%@E zTXg(sNc0)++vQOz+ByT zPU*Pjj2R13g`tvOxhDclM`P7AcOY*zHI)c+jI3d5&;shoC&@Us- zAihyRVC?JE6Q(vblWo#j=D{G<#$IPIR8U!caNeU~O3}vD5CdmQ-58$rR%$3jTp5=^ z3hy+oJkOP%n@0u{-Df8bKgMp7;^CRqZm(}U0ej7OtS?>M;3GR)de#PkMYfEv!vfEt zWcfqKQnZz$`yw9;{StjJI_R!Ja--U*w_%k3t^KvnG8I3ay<3fQBhlSzHl0tK{FsC{ z@zBiFf$yE@zA$lovv%UZX7PwcZ#g0Y z2VTXs>JjCK&K4hjY^wHUQwL}o33R^r@EKpJDvfxfbg}rBWBjF}aP7P2QLOSo+3=4| zyir+BSeC^%CJg5CpKv$v(EJ2hJ6olkiYLo&b)UG%&-cLz%WJ}gk&@fq2dKph69*P2 zjxW}x845Y3N)`&(KPLa9@^~k@=O+%I!9-|kY`tD^+ZhDKkMRfL^&QM$0>|1nJPoehz!M3WZ!eeS!qmhm`)gaC_)dbB!9K-^Bjz!;rW?kJ#-s9L zuEcb=OjWr;)CdKn2bZ>~nLifxM@LMeR)yYymGSR%)R)Cq0C>6tWkPS_=C^2LYBpwx*qS5%1Xrv&LvN}?YA zXEDNqYf(l#b6ddADyIj>BQ!Z6VDeg`A>ClD{MQ zV`x5Tk?Oj=15Y_;Zh7d&Y&m-w%M<$e4R&Ubz?~p#&LiG|*IEZ&Tlma3za4jFQ|`l> z880ng;~6Y4=pv{q!*n}o^zp$e?S|V)!KU7KcbnWk1bf@GH|^)CoAN7I2la=S z6XK57`sWH7G*d)9R9b|jlKxg*DCsx>^NZxxSKxN|gvlZZGLPqfoCvwjYN9@s*E>9~ zR=7}PDyEGXX75@}=6}cWr3+LO5HgzHwqc{i*f_&3TUXvz4EtlF-l0IlkjQs{5&T)u*owh?i2|`P zOV{9gBeVsmgcJ(G^a^uz?7LE0eX@xXtPuoBx$ADXbkOk!O7Yi0yw#o()R>WAzT_q` zC2*kvzs)0JBQ3&F+yn^;z9!U=Z2B>b{!qw4tb`2j&W+ zGE?(AG&e-KhVXwj=_9`4V|rAF1bgEf8H`@TShFY+G;^9K$}t73kmHqaEz6Pbpiu%PB}b=_$&pzSwTpOL zKeJ@I+=Dh&!}VkeHat3uKlUZ2p?J}Bv|2gjMtMbcVNRHMRWoI-t=5jgA;6LLuj#xU>~%Xr|Tkes`SE zixNjfaB|bs%ZQ4@+)=DEc?49}JOV=*0>X>L8h@O|#eC`u4X3_)FAILZV$%#LZel}@ z8ZR_^AAN?2HcEUH{Zb2$tby6HB{3s=27-*mQM7&5E92J8=RX*PH^UwV#hCDx=wM=LatNLS@|SLW0yxx+CSI7!*vUb}(|J05!dU!phrWVJoeueic#|1^M6s!k=G9 zMqO!D&}wJTm%0jFfte$Po|DH4UH8zT@9nwu`KVV&-y9;T{D|=cBfTmH3=AOf0f-M4 zL%;W~Z=u1fozfF14_Hn0g4u%KdR#NsqC>d-|As*WwV9_!Hi4`IF;rG0 zcf2DvDZxpS;L4qDw7^F$yKuUd0~X01`&x4i<_9b0w!5K5JkFU)#xZ~O)7C1q4D0?) zNijEmmhI!uQ|_z#+9+Mlkf7nzKFbB`u1TNvTp8##@au?*I?)oJx+Qwinp;0)-KWxZ zR82>lkJ7R9S##@^fu4v2dN7eLtAA1@vJP4}=lUo#QzHs}c8p~|OAy%Z%*(!E?0+(2 zV>r1ZfQB(vGt`o7paNNldj|3;qvhbjf@f7?sXloxO)$Nk&pT~2bVk^7CM3$H@vp?j zIS>UK9zD&QY-;#A_mWOAFYyUUM?JazVlD9Vxk)ukOu2l8m=*f^H)0<7xMisDacWy!H){(I0b(>l?RzF2G4C|T-aFREpl zwvC)?3+pd?A93^@fD}^%^vrwRch9o2ags*iE$OS}4%@3j4o6VUF#Oc6td#oSST9S( zEf=;`UaC)3I&l=r$}p}n`0gz8Wk*AqO!Kt~KHiTtOAIp5Bl2EtMSSHP0hUtt?nBjWuB=TV-u;i0SFoWQ$s_pSO(_# zo2ce6UJ6;A@vJ6oCV>3K1}O79nBg?$)W#6WzGUGOyt9rM&?PKVnauVLS*jq$brFgR zQjz63$1+KtFO2eL+R`Z1i4sryR#sYD_siwUkGSL*#i2dIl=fU2FzxA#>LX@!9-2EX z9))$yj@tq6qau)4JH1x1Uw?JauI!f)pR;?E$!ZhY6hIFuT@M>hS|FMx0&QMs=N&sE zq@AkDWk^)FQCLG*83m7a$`u27YV|wcWR4d1QiIbAXKA%H)|W|dQdPk8$;{?)5>f&I zNflJeiXAJWmtM+b$u{uCl!MeNuAS;7NUZFr^7((il>76g{KJhV<$ja$z%HcxN)ql~ z%F3Zc%9ZW01mrWwa7Gto@#1q(k{Xr`^x zUK|J)JNo)TVf{dnNV%!s0*+{!wE;qPY8igp~XpMnrJ*RZvT7ybnP=K>$IxeG;6 zIri|GNQOG8olJ7aQ=j*;o5s7dOZhDJ+pP?`X290_ZQ)fOZ0VB!69RD?gBAme%eqQJ zyRI0dWbi&M5O}(%p!oFDU!M4IFQKWXZ<;t|w;j|@GhAvI`y3XDz=@Zr_a0^*ZKItI zRm+!CL!r_B*EUV zqaPn_7FRjRr)uA73B~_JX~KJz@RSm=_TYCW)V^uYR><2DY?t@-zZQwsK*DY*$dIU# z|3^r?a!QGOReWO%IpmdLTM;}UHa^-8rM%=-SZERpA6LS_f8759;^DccUnMA4_T zlIj?v!gvUbm5&R<*}L_AzhQ*S?Qz-p-o=#NreReqeaWvgmJ^$3S~XL)_kg+U#wptm zV6)ho%?^t6gNISWFEJk4_!ItA*4>XlE7sl5@nS2sd6M6@;$}8gG_86gxZSDVkCSxe z<4PK;PG^{&6%!4{L_d@^bbhV83Ll)eX;$gNY!47jlYzA=?_x!EL1c z7_}i)fVUI&Wd$v_n^(f|=1+W8!sr1lj@FI>8o@cK_^%MX@^M9nYWy2jL8b*R#qwV) zm(|qaMakc3E{Wz_ElaD=vpLk(a*D|!YT!L=VOtZS|MRaRwm9%_wfOhb@;?6~__Kqz z-uw5fEI&&w6Mp5;hmRoeqTTaTw0nM5E&Rw8b*j-)`6IWtklxkqal3q@dy**LruoZb z27RlUvMYy*-J@5##{{0}9@TEUFf-<#em6*%VSRgD@kiKIZlJJx|Lu*%AMsNxC%5i7 z@huaFM<)(luAOMQT%7sOy<&3mKg-Z|-delbeZd*I=!`5V$E)4Chnk%Uvm6t@+I?Oy zPST5uCZ8*DE({Vrpc=R^P>Um#ad9r;Lgp7P4n|z8I~Tg@lI-tbDtX-2+mxvYNBFOH z-vpa$iP7K_qyX6-R{M!-PeT6Hfl7uKI{?ljUc+gbChw}ddr_m58H)y%Km=% z0O6u_yu}X}2zw`N6PLCV@|aJkWt^F-?i`I3))AV*z08f{K{fiV*quyqE)!GS!XM)9 z6GO^6L`=N}cnvr=Ls*2sOcA=K7)Lg0*A25N!x3(nK0nV*EJPQdditqyPmM(uODcDb zS(gx2hWK@hq=JAbYYuKGAWnowVR$gZ#1_ z$}3B6d0F(SC>7y3ltoocSyXZEf6j!Oj>@7BK&vdhp)7sbvizX73A50LFUzW8g%S^C9r3N&F%5NrRIQ!CP@Wdzs5zv8gx=RKi`>KK%ZgDE90yT zZl+ny*vE68d);Luqn71%$F0{zoP0#0yLP?c*wxpl&Z&l6{WhK2Jocxk%he=+Y zE*iYlRB~bt=*~(S3uE`~5lM<)FRAzlB~|9xlCJ%Y)u{?-C0!Cueo0q|ib`sBU44RA zX7ST|&s!H!rEK~pUucun%2ry7SRG4qSaT=M>cqrfU!e)p-^lr(dIo;p1>oW~QI?g* zY^6w(cW}3H?p>g7Rqg=yG@Lq*CzEBHj3jnld*}@Kuwc#(AR+_ZrtbZG6ww0}ms@#U z=WcT7068~@_9{8F?IwrTN;x!F$)RyKIn-6kLCc(#q_mZ2lN!8~3mM0K@vhDH)L21+ zS2G}J^@Hnx-qiD|Ba_6$-op*eANi)lpwT=Hak- z@U=MWNHlp^&P=tolkvSWUKGrz76UU@*$FdJiZnBenufyJga>0rv+IEwIR>G2%9x3b zu3PiO4T>7_gUz(q=Bc@Ys+(XFLDLGRa_}zerzQ*1p7f;PTQsrdYaLOuzVQxFDmH88 zEl-V!NWLArYemU=wv)bNxU3hhWrUN~!;FljCO4m}szP5(sb&b;`X)6)P?-ZQadf|1 zQ*Cp;Fq&UL?Hq~>HCMO?*L|{J)8SYsgJ(P613=*vP`dc?hNxCWbx}&DLx3QDwTP*r0>(@8u!N& zWhLzpPJT(dh>A*DrSq*+HgO{I^pnrx< z8`CsK%^skP>Q<44G9qG@2oh+!!kii`-Y5^^WkY!z7jUvLDd1$`nkO3J&8V^E!>Os% zP#Yz}s7)5E`E$Lw68gv>DQ)dJzKbd*#f;Tq!i*|9V&>of7qety#w=NH1+HS_lgWF> z_7x$hT2ow^1|(cbO(L%LI#*)Gxav=HmFLD}xZ1flBbAUhLp?R(!kG5p&0s9+re+FK zF@mm$dX~~hpOd~TQo+MZ`HwXOl=p3YO0WiEr1$ukVk37OyjKr^{%u-Zhu8^?X*I8#umfYuXKv4dhr zT#;h@7&$U}RgRHj{52o7sH_-rbFc46FOHH;xu6G>c?DD7Ph6}?6>GaUmu^oLx}8e# z_hdT7Gu0QFPAgtw7bJtIa&P^)Rqj!Q7c-O5CYv&>q*mJwZdA;aIWUPN=0IYLYJC7! zsCBUt)%x8x5-qpsEO@zY(>WqYP=n8)lk~VEkMW?sg4;AN;AG*9fU(;&&0DV9G)sh0 zn=H&JAx@YQ#%|NNfHMXAHg@bbjR4HLO{2g9p)pT$oCn&oPK$xUkbr!(i$|W@WYOLd zElYQstSq=qpI@QQD!WZr4~S^4+oX2#fjY9TYGTKJ6(b#Q1^CH*xMDBj2xhABQxG+M zmPYU)DQBcQh}htl5c!C~vjdOgK#^x9|KRx=Ly9Ri0J0Jv1U2wb<^)T|kpJb+tO1NF z$}B);?T6YXDzAXk2G1672IzAyV5Q!duk~pWXv~-j1r#5lfXX~uz!$23j0lLbo_|(2 z`6WF=R9;EX8a!Ll$AH3#SpEB3c;HKN;@7KEe1wuJ^K41~(O0abDxj70oN)3>dXcE8 zq_N)`CUtf;2WDI{_79=C@iv7`=S(cpH z*=1QC6H580W@$G$ELO^4p-K)HERi%RmU_Cei0|Q#W|ZJGl(cjP zY={Uk2+lA;+6Daz934~9V(AU|oAo+N#18UKie4VM^6MueP}RYem}(y{i4=SM&D2O# z5AhDw4jv{)-*r;l0@evE5bPot6V!)KA!rUBV=3OIYVU>A0SkF6W@se;NG(O_d@Grqj8KXW5kZMTk_XTZE<3IwcUV$TPf;wGj)e{f@Z8Acp zj;h}wN2->`in$N77TGz!AS~5zU`<+(VNL2H z*8anv7;EClSli05mhv;=d^1v0T?MJdD1o(TLd6#hZ3>6sm9q9JHmMUqn_`1On_&-( z)x#J|5#lH6z`pKQ-?Gnbqm4QUjN5DR{$?Bv^>84y_AZU&rh!UanVoKd2tGY7M zQI;Z`nm4ndQ>LPQ=8VZx@v8d9KheyY70YMNRBoWYKbpyLy^>)I8RD=g!>GRZVw|hW zyAx*1Mc5%|o=w&Xn5y*Ja_O~JqSs7B1q%~bN#$l7qg1H1(2T`2^&^|7f~nS!YgAp5 zfTZ`7x?I+ikzSgkJSE9+6zfV#Z!?uz(t54X-g+gNOzV{d#m^7H549TK0O|xALeaDz{$dK0b}>`C~vv$(-09xZPG4cC;c%cjNQ)x-pFZC zz}WrlbN-!iqJ!j&1z3o3a9V|7k+ zt2sbtca-sbZpO1!GM-k7$YkxN0mS2Su}(XSjHQ)Q%}(n;I3XUZzDlx_wh#P~wZ2A) zF3LI2SeAC2QRf)jOmUvFnN~<_rmQoWNfHE=uSBPO*FR^iO!-Ew?BI4bbB(my*Y|Q7 zD>zCOm19ZlB;(|GO{Yv2CCy_ZF)QjMWY{R0(eeU|hfrWKtpY#&*{ZGOZ3v>O&eiBX zzHOC#i`;TMkj=QD<<7ynC9=7hRMp2uzSQa>(VOBmu6m_b)zfoYCKy>qz3X)I> zB#FP`kVX}|5gXf1@NRTn z!T}{@1C0{K#c&zU4;{Ay#YHA73q*6NEkod&RN9l)gSj0?ZO5e1d zDV-&4Y)!T^lG7lUSN*u4dA{nX_*#}u*s6|=@q+JNsnjK_)|TFVZ{;Clf*UR-)QtsW zq5`P!^NUs6#p@7CRUJGBo$|7s6*RAG^U5|=wp69ZWy|Pb%1ez=aw|O;QOhE1<4|s; zl`ei&?z2~`mOD10o8adf(Jdl^5xpy#eBql%Vno*kWL{jr*oZFkmTN@UhzPdtrV_H5 zO$lQox+Ea`-so58bduls=_y0{f*8v66K*dwOY4Uv`jAgIM2 zWlpeU8U15VAp5yOyP}q3gNwMWAlfHzkf^)@b{afez%HO#vDa{~R9 za_Fs+Lysl0VN#y!8R`3uTLSh}OiMoq9`#_fj4l}v6ECA*P}enA7_z!I9#XDHnT}>0 z%|u6|dW_vn6)G&FTiKIkbjb+kBVI;-6CB`Xii4DT679JBY z_6lct%XMnzi7;yH1ysVZ!kiMuUg5NW97`53_6kRN%X)?5zyhI3Pcx=8u~#@EAoa^5 z&nvWO_h2l`FcqalcrZ_&r>-l{WBye=j>kHGwsAcE0tWFw{MstD47>k_!g~Eyv_CGa+n3+6VC$W;H41CEo2kxLH%tVbQHhC&$YGiE^NjAqyY&5A_X~sKYg(f6c zq9$aMl-t&6oxWodVZnfSt*8JsAeSq^7JTG(f}3J6u}RtCb$P){2G^F_2iMAhl4@`* z76|IBfLM>q|GQONM!QNCm9k>-T62rntZXXiccW57dYG#EO13oCwr#6klv7o2Oe9q= zPNSmtT&P;~*pd#ACfAZ4B_deTW1`EZ86Jo$Skit0Cksaej4f#oZ@HGVmxy2h`;?G1 z8zqb_X{UfQg)RYOOWMv`){=Gr3xp1OngdD`ThcZG8Ex>$v!oX7mejIzOKN4Iy?p%f zszUo1gZ7PI*8qO2>JaX7+LC?(CENIA=Ce{dPZ4c|qaDv@h>w(oV#Fh#vj#W6KZX66 zt867rdcKBmVoKJI3KAa#ST&s7Eh+wSFD;c{(+sY#=&o*Fz;(mgGVu2ucT*7D&XfuG~ z(tTSHYf&)iDZo*er)~xD8J-K(m~f$5F%jxZ&sG!atrtv(?_2wUa9YP5r`(3Q*w6h^ zZI4{hU3k%*h9_?~a|^C+?g^icv+DsLXpSI!Ud1mAqYnfAaEjXI#Nj)o)Xs=nx5Ha3myHisqO=c6;p3O3 z3`JA4#=w8DoM?~Q7~)Y!gAwDC`<2&K{oZ5W$(67GyYFTln6w?Db3^s^Ia zXV6k|8vo9mPi3*08j(3G(;#p=`My~_FIgu0=2PLbsqnc}_(CeY5QW>E=Az!AxfH=+ zWH}XHONG}{;muTdD;2K!F7aj`3~ImiZqK96U=&cF>-(C0*KJ>;U?JSB^cLn0dWRtx zzIwE;Sy=k`P`lSl?gtcK#1;61_Nn{!i7qg?f)P#aK(GgSk3Q|C)5R_D)10(RuW9?v zedT(7Ysk4=<6f510NU8$+qYgHK`d=`&w0yC-o_lw%4Nr(RU6WL}k?qxiPeO z_$JyKm}`sFusU-MWB57*AS_FPzc^U|I}wy8^*2}?`ta$tnuw2vHz9T2iLJ9eDu}} zv#&?bODhim>P>?ENpK(u9!-KnNpK_tVFe1lN+_dJ^1Bf?G+jrcIS(@~u-4qKyW!dTUOC ztx2#g3AQJ}jwqPO_YWiPRl0=xPGOQ!Pm}@$NrL@Ja3BdDO@c#7aKwVH9STZ2lGy1a zIGY6Lli=ATcrFUY+~0~?_~<)2i`|>W!*|pma=!0VM-$fV=9}I_79&M6dt~Ge)NT&NkwiWM@LT?LXC3|AlXD?I&0%yQew zhuaLhtqgnrM0cBEADI{~?0@t_H?v@N5Hx9QL z*3se@E&nbYh71n(BsUw*fC9Q|7>vf^pWOH9;$|lWJRrajJ|N&$-dilxLXleTyIfon zN{3ydeEGh=R!3x#BN1PcXn6e6UL@qRzkE(ljW-1(ZjclAYp9-H9JMp1r0FHtiUG|C*+lYdiy)ZC(Ly*p1Wd|;n>DYU2&8%n*IK*OBZ z1Hhq^#|uL>!ymx+pQ!2Nqs=1#T^L8V5r)*5_D#hXFEu>=M{zam2?}D>5Srp6Kb0>G zAL~7GMdmRYVw%02WX4!Lm40-FwL}n&SA=lT`fjeN$G)V>OpF9(ux4I-90gjdfm(`x zeBTqrWshitXlYD$jwfOXx zigW%kK@4%WEUJDt(2VenTANV=GevFGsR`MrNh>D04`!%gJOq^5XhK0@i3PNn6t;r; zJqD2@`ap8lW}AY@YBR%R6jFx!^Y>jUF3KtoOGAvp@$#ObtI+3tgCB!aSUk{yqJA7r|42W z7fDqYGUGut^3giJgjw@CeY{TJ23@_e?Z=<$`1q5hU?N-_e&|K7LQR48C~zPO=-Wz6 z4jEegM58rHEElj*3Vh*Warq;^_uF5XI|!f+By@2(yV&MFcyDFOHB`6J3-Ww4||XOkUqt*?=00oq>4t|5guRi2j6-VNd|ym;ObF9 zH=f+Kf@)WnZ{4$cgX(EiVrPqo-g1iCF!sabSXH#o2qBVW$w%j0oMszprse*Zr4IG?*thrS5HivGLY>o)0F5UxGeQ)ELqB zqL#K)Y1QlV)c+2L8(-jKoS;kGFw(@MRJ+yV(h}fQ&4E8oUfK!b0uPdzGO$5KZ?5%p zlxi1PTInTr_6mV&E!{eWZ znxdy#n#o12BGvS2Zxs7()V}N1;y=FiQ8g>EWP-l$vWdn&0s_m&6@ih3rzMC%U69VC z6xRejj=%TmH=nob*-yMi-RITt$wtpzc04Ed&xYd13{WZFrA-a(K_;pdaw z%%H45qOD`fyt48%{JJ{_A6xk89}wQo8hxU@IW6j;mz)+c-EHs&*a^H$^*n>&nt@$@ z0xBrO)ey5R$PV=I@HyX2-vmVuTG zT0&^@`)hY=8A_U&XRFpJVUw*ypY8s7o;L#$wZ(tB0|TOyP;T=i!<`tA5}W6u-=<{c z9lPiCZ0t;A9Q&l4SvxaEVRG$^E~ut>vNO{J(SvawRB*5}vr#;4&f~*9*9WDrD29M@ zg;6Dn?ToIT&b2eTz&hkMqJ)0UG`Y1nwLt+V?H21`XZnC-?97pb$bb{+=K+ymXATL7 zk0+qp8Ew7G*qJUsfs-ELb2>-(v7I>};AEjgK({jmf*CurA5b9DE_~c=;m3BSMZn2I ztAMecspl=%&NLAbs5L7g&W;kscBWRqN&CnEM!??O&R8~XXN+yPGbRSNGlNR$cILPT zcV%ZD=Dy~g+L>!Rwlj--DvH7#r^s}VANuTTt*jbvQ1WHB28u*8uj}oieS#-)xdcl5 z9ih9wGl(MP`8(M0Nr*|lk$;HCV?$E1J3uNhI(X=xDhtfO-Tjvv9{t2?>{Za$Iv%OU zd5iPv1TX*qb_YGJkO5Aou>`1-uFn+eOF2aW9p1&`gD(uu%y{lr^e3yBYb`Pi)T*Q?O02XwIV( zmvvtDU~~aT;6T}`hLr8M>cU1GPF{J)_IQ)gXU1)YT%!&RCjtw>7V&0v%#K$P!u8aH zuNLwkP8p%!*FA305>Rjy`72bP1Sq#uijfv$=GEiYv8%fj10R+9y?G>jY6x z`J`{sX9eAIuI{U|d9|FfUTL)wOp|B_?%D_IpW)sH7}|JC9qBX$ZKkDR>~*};8_Yq6 zpM;`durv*iF9C@1ke7r_CQidQ*G_px(#}bn$V-~ku8G7}g@rU$7Y?y=q9;(bZ@!1B zGBtP48O~bCosVo%_v7cC>q_yqt0fdpiys-|ke54k&<}lb-_@kqvyot4_D?-&MVMte;uAKi5Bmh4RZN1Mk-H;{8~%LTW zkW{=<+^04YB*juA5^Cs91j$s+zkAe}5)!Sr_!}AoFgoKER*&<*A)Wdeht5ha@oZ8n zE?@2_uZ;*2O1%3CBJ2VW$ejU*sXGwGGve|1c8?FEyk-IC3M~T0qr5uaaz}ZMM1nCkxjF^ikdd!OSRc5l|po>1ytBOJj`GeC z5vZM4LROKKFdpU23&`OV9%zca`6$n_@ll?!?e2?-!AE%}Rv+bAeU;57Nq2(Ug`jML z6sw3k@e$k!*cj(kOZa8|pT-m)LtVV>i9ku)n**R;_Y5dnMaLf^r!gn=jH@6}CsNc?uEI~U_!DvxJLg~mT5{KY&jrIX^^o3@$}zxI ze6%0prOHUja@3Ks;7+v*wKa@*=-M1*8%i?`gidWeWXtyc;0W0f#&s|N*~EOhdq zA=#U^Rm;ZPsxLCFhrpmO{FTTx~3w%^_>v!B%#mlyB^}WjXysx8NESVee&!Z-5 zEG9;FL?JDSkp8+(HX%$)94d6(_qSB*3i4E@8ba;ar1EdOfY0#YZQb7#%M`|*Wk5Ft zI&TfN__uH7vJc)*C>N2Ms@>yDgTm5em6KpA8X1dp$>?GEYsA|~qGkE*w?4VL9C!uS zbJQp#5{o#}D8v_$l4VCwLcuiIRP?3CIGuKTu)dhA6IMc(j5;Zoi7oi1{hm~iNE z9-0Ikd$B2rEWh3yYexcNT8vX56AXN@`G>-4dZfrM8T!dOuP0R(i&S8##%RH{ zf_tN&N0fmKjH-_BQeC{N)_B|UHzP435(<&ls^?kOQmjDA>ONVJJIZX!f}0^j9x?&U z>yzOgol9lvrO7HAWXMR%GE8CxGAwr$V|nsL@ZGdO=jYy1Z(*-DP6;Y{qm00EpK?fn@Oiq zm7x!f=T3qa?`ZzY2l!I@o#=L18*N#7#+M05EfXV!(-SG!BbZMHa)UVfKxYvtl{?P^ zAFqF31?O;p2*}7e93%);eI~t?CUBJ*#gR2ofE0&5uC%V+L*{7_G19y)Feb|oyc8~Aad7pY-YyE?UdR^5j*vvABJYXtBeCCB!ybV; zDXE?tKYhnch_Y6*pZ2Ca!=u8?wRq5?z^N}&dr0sM@A^k@J_N~QmLMB#Ul#|5UmS3S z6QEl26j__2~dCg5b@oPe(6a|AO=eg;q= za#r~8A^cd$X9S!q%nBIyUSquFD)}T4f!eeZQdvqEEBSE&*&-`otd_@k%T>!^A_BD$ zC1izF31hV!6p(#A0%q+`55Qde(@R7k+NbpXwF!s@`*S3UpDYY`d_NE3gRj#m;9Q}L z2MRb3DRfb)E)^gsRbTX=RDI2ZtpqKlcgx1PtGkKB)!k(6-Llo4@77DH`*A0xZuyGX zK;1Wnj5%dK)g(5>5u=5S?lnq^zG}HN$G-D7E zqtaSU(j*fFIm5~qgx4YA$FBCEfb>!Vx~ttsFc67$xgP-(hztmy!MgBcSNo8F>^>DR z+tsxL%Eo`hD~hMyJigQ8Ls!=(Af{MA_d=Qp2G08@&~Dt8RzM+> zg79%cg&%t%jRG=A5YWAl8iIkyAVf5Vt^*W^)C-?-3qSTkw$$5A7Vh$p;v#Jlt@D=a zg=`WLsNGRQd`~5ey^u8lxgK1=*wtR*E!WjvCL&Nx!%Qp9$-t5jZJ}%k0XRP)@P<{DD1?kI&yI?!z z88@8z&173`C*@L_jgR<7eYG&ksBSeml&YPq9OPnI^3=iyM}C($^^N0t%$UU@g%U!m zU+L|*GRtEMpSRZe<{67Q@g2n_%)nGjN08%0?JWMf5I^{W-<1e&?S03sFPwT(S1{Qs zs8&NcE*9Mh^~jY;%35+P_pUT%n`62ADS&YPpE;JR{inJkLAgKoW4T&<(GguydydC) z*R8Ui%dy}%Uv@H&*fO|O{4G}kLC87RCjtTH*{O0t!h3!Bvtol6t+EQYx6gL zx{!mnxNuN7N(oNu{OH6huJIR0v(s$hk?JB#c6HP1DjfzB)i``NRVSgGRhi-PgSM6E#MAAitj3I`T`19z{PdIyRdUc)MI-JY4>oe^@hnf+ zIwKs+^)GQUYp+uBsL3yEeAKqGaKlksmqE^~fwlJvM{O$!&MQFGUba)cVJsZAjWR5A zcg!Tjd!4sGYWpmhC_ic|BAIP&0;OuSzOZ+u!?9TeXW+ z<10C8i~gvtxX+C3!=_xDl%4X4HS27%2XF@!QE~uRkj{_<`*BSzc)J6*>!iuyNe6H( z=ZJyK0bEr~WF1Nl;3^{5gDzF6_yF#F-f31RQhLfPF)ET%j#1$Nu83(@c{qS8GQLMs zz63w9tYGN@TtRliay0LLE{|m=QjO)DW@ra+MNUlT9*nzAS#w?T6(Uq3>UoVIEnt}k z<HTp1}G3YCwvxfgpX4Vl(#tnSz{E?M+uVzGoyqVK!M1t@UfP{4--w;egWCb zC7_QIh6!dy3C95iBBR3hL$naN>6{!BkR?hU2q%mZj_{T{N*E*}P&=xGOpqxdv(x_8 zr-$#h$BDK#_t7mI_tA}QpVBii_>|sxrSvJiYaY~`n;9#g(hEV&U`yG9pDtaLpFYTa z&UP>^=zO}b6sQwc^;BOO4&aJPW@m~(8ocT$%y0nLtb;B~umiY*MEU_-p;2}{Ae1_Q zE6A>!nG;g7vZ-`Q*G>|QlpnzLysEXvd;=1-#c-%fWGWhvRFmRMtRsrV<#{`V+Oh0eAc4mNxklUaVvVTAcV>{C;;AEjsK({lU1T%J~2T&k# zNce0E5PocDIs{}}fPiji+6ZRsOgo@JB!SX)CLF*W1Wfn%pFlJvY%(Dd&AhI+ogKjKMLK!@4iz{IF@AVkenCs>0B(U)V6^ejKXMi_q89_2KfL~W zdlmGxjz{$j@fPRR37`i6>}u|kv_b|rlExB1bGKmK&BEKs9rytrCokHveZ>Q~|C}Y# zkOPyiCMCBw0A)cm@BVIZlFjlvv0o()Q2qg2H=w2a4L-J(cL2AFAw#?p9lYw{2XGG( z3gb2oxzr$oGCRisT;=4uAATN(S^|TXW}B1Ud{y%0@XfByjWGgL78`#;n~CdLHP{K1 zn(9*iUI_0+#wY|o0Tq-R`tN!5S`Z{~>ziGi(`02Py|y6h$_OtIQsrqyiR5Y@z6>Ny z2Zgaj7_sU^kvL0o&o)2lsMt_9|37F0>TZOm6T%%%KH|J`pBT+SF9fo7m{$u7*CF^3V;-47x*SjT_QdQdB*(;n1zhFK3r$A85a`0@f(c!HX( zRdz+Zz~BC6JDjTIXo8a3@!wtocKkP813COK72O1j>Qa;h;_^WkJQyAS4IC(2T{ps+;zoJA523Y(&DFOBq>VP&5=Gc0RWt&F=n zGc2(LSw3IIOjY`>NMb`Pof#I%VCE!5nYq37w!tJ)^GaP0&32R&6wxuu)P-Ep4pEJd z0jH45dkK)mjUg*g;t0$Fzi7X;ed1jT+F_N8u}nXGL`d_?=hx?MB6TYq?T7! zxp{@vK^{7X_+z+HKxZYFcwkx&YVN?ai3k!(yv+ou*G5r|C%{^xcuc0pw|IOQnAQq7 zSEv&(9+=*Nh1`MZT_QqmHBN0y+{Odb+q^OM+7!?SrYi(91Jj#;0+Ds$Gnf>9JTSd3 zAe%`A^nvLWf|-HoH9&#LlJHp}7JfW1y(l1?Nd@!?u*V2y2Bzl$1tJ%OkNYV6cwl-) zKz7>*7!OQmc*`A_&Jhu)%_||=sD#uAI?mgqfb1dVfu`7-4@@l^AD9~3?(>)!d|-N8 zDScpS_2tgTQ8ELny<*axpmrfBA4G~(#3sBCAB6FbcB{aRnx6)kE3RMxs$@YI)z4_K zV29<_g%uxPx#=VntJ8FgkXaMRH+20zG-}>FXOvI8v$(7+Eawej>Oi}sYRR4;8&P%l zTxuAZZPeYgvi57mzOU83^VWINs0^`RAMcbSLJY?dS%*JGQT~7FQKXO<-gTZYMd}Q% z_SvmX!7rK+qMNLQn%rb11mA2UhEujKTFm$?g*3@ddfhM|A({!>CSZMxYs>Re-cepc zP4W`LHhCpv&xu+hCci_sj6YjQNu8CJETs~9PH%k2ChC$oE3H8~+^aTZqrMr1q=d7| zEw)i-Yb)5Ob3~9(Hp-6Ca+n?n1r&&k2_N@F__2)|5^%CGETG${0fHGDbret_ za!mLLSopDx>KBktgbL_3s)u04M)d*;MEZo!{#xP3HmXy=$wHTav5jiyE!ReM5D};y zR6@2eDPe4*+61H-^1y)Do7*VM#%+|b?KaB9;5KSpDcwfRdoVLeFXak0$_$ea&usPw z8}+F<^IOa}uzL;EO^Z`_Q?T@`vS^<(904j+u zC)3gsv$3ya7nN^(?>CtaM>RPnl}>Nmt(OIice2EnXloX)Y*yuPW>%$p`&pGJ-(Y^p z+G@Y45owrwnFri!|<+}*6o z$G`D+GP4oU?PpaSbBD7k5%K_DVCmd@n0DBHR)t*}2qMgV($*uHRGCtV3R9)cKF?Ds z{?Qeic3*0{VcZiC|{H(gG+DX%#*_l8=z;d@XCK8=J zs3kTKsS~~*#)rrnP~Ps41R`5J!hq#wLS%5l&mP4_GW4AFvqPK4391_<+U4>H`+5uN_XR zNU@3xSYA4f=T$bTa#u~yeIIy~_EAP9QTK0Se%(M+CwM%mQmZ$QjV4u8+ z-1o|pDov$%nSeE^((HLD?`Tp*s7YQz*e0)}2pKUwt4WpquRrsQ-3@+nYw&~bMn0+o zDorf=I=2jXzLV(FVr2r^*d%QrQSN|eU9ddwX*bJ+rS2y-IQGGUH@u4rTjV_NL55zH9;3xEQVi^6C3 zsqkZie^$WB!eauu!Jj3VnW35o6o{M=K2}KhvB94faI!EXpwCc^63om{jROiqCWTKW z2tPLXBLZ?DQoz{YALT9A;13ZIs0}Nj-4+6|>w#SGFM2D1~eU?feH`|dY z9_{n^VUG{Z_K1MoelDQ5kwXMCZKMxS$fRHR?644i+(xw~+$`Gi~G`pg^Qk z_Y&HXUH93%JP(P4q+4+G?D@T{z-(Yg_1DPggZ>6Kk!CR^64XqR{ z3@ubMQv}sQk9trobkKuZ=ThSXL0f#RS$YeVIu~i7|Hq49I~>TAN)P`-3L!kLZKV1K zy^aAUR*%l`x^bQ_r~nfeYOK?0A?f?JWr5gg4f?337N)i(M7Neq@~(e0vGEXuo{+<> zB_6cvNrWq$fS`R?y0t{<0$9|=n;kNC_0);rjC$%cu@cZab#NJc9e;)D8c^PJdYIbN zvErbfIuV>vPn{+XM06yXWI9d@k(*9Lr-vb;W5tPj-k~aU)$=Y9ftt=HLv0HP)Pf1W zEgfK$Sitz!k`>;JtL$YuH;D+;)|HTwDWQK=g174evRo`+)^c0`m}@x}hzLZlC_Rf% zN*`N}Yf=1UVaekcJw8~Da{{u?#sghcrJeiBT9xM=C^kA!?O6h%*aqfMS zi6pG>N@QKOz0B&a%T{<(nm_2o)Hg{rifH~D_8arc+;1%rN34TL(?`fAAOMS>||j5HB)<7iexz=+AtAu-0UCYe~+;wUj>9Q>NyT zcYs{xFWOxYTaY9x)tui2AzAu89O^RpDLU%KlY2M>L8B56y&7-ZBJYql?7>dJsb%rJN*^*;6Olj$O*`f zccRvMZv5isO)=YLn0-q)F`L9-4e#&>19Vzyo8CgNF=qGGkic3JpPNbI&^H5y`#t0D zjqVps-O=IrSkSzfMW)1s1z+A(AmWV*~F{Q_% zD}8L(&qwhb)ARUq9v=+*tbkOzfZpeh6AYY3^JLS2LMAi9$LtF~?sG>4#F-V)UBV%P zfym&5&y$S+3Pg?zpK2F=+~*z@kPlW07!RBJdCTo{2Z#vN29=N_LrNI;xxE5%WJti+ zCG6xa*Cp&BB2YV|gq$5x!q_G35RkJ&JW?*9LER;^?A#@^a(L%xa`Db_RutSNyy!u7 zj@Lc78<+65CsEI(CILBC8-x^x=A!BL3U1|Yl>Z|BF&S|NeDdcQ;>1{PoOL9fYjAGmuetNlh z`L*5s` z-M9p;G0L7vrU}rPVsAJ|TZ3?-TN7KEo&E ztkbk7h;b_oc7V#+!)jAr!b*n-~%R zor0HLN=w<}r~yoUSiKV|qMrI&q;6O~y*j4D?+f_IceUwEx$0a#LOfNCaW~q?T$5R zN?R4A;@qch8(+^U`9+@uh+;0=2PPhK!fGVe9dLo6@;dQ-#YK1Xgn%yURUe}lrIO}i zUyYEaGX{G5tpzS547_`b!?>O&$qsqH@s)^sZ?(?-MG?5@cHOPFmX>t6y;>KfRn&-k z<(6&6GjPf4)=5d4tQJTbr0x>5b)YMPx?qc+!%r4gvM{6ADyHCFx3sg? z>eP*b(U-%zD6)~-NfegZH9=htmYJ}U%oMv#X8PbD%gSS)U=vKRJ$o8H^fBHfr<&iZ z@w`C|)OexFYqQ&C3D5T8UjtE5NjQ+BN_IPlWXP{^Y zkG8~=H!O`EjAnZ5kTL?7mHm!T$4p!4r(=>OHZqSVmW))&T^~G3toySTN7x=?(%rsz zcIZgoPQef9Pn9oau&b4CcZZH7lINqwLlLdAcPTM-=3gy4p*XA$6p9>rCGT3oE8<=M z>Ywhw)YCTaNPv;~J*06}Nf(MXh@$Osv3iM6%ezKU#fPCPaDo3cLjI9WtJw0(Xwh7` z41UZ=x`MA${_wn&HqJvklxJZ;3S?~A z!9!WG63fbVn>ky$4*76&wi$YnNrG6mBZCMYNTLtv#g++okl08(2rWcj~@lz(( zd6LOB9%Rz)Zwq>`$||5wbetoYndp$K!B0dk@`T8F9uR5rx3hY%$|_)Ap$Fb)2?ip) z)Y2h9^MLq?$Qhmxnd1QwbDNNgfJjZiKDz{Tlwcro1S0(q83)8qL?(GcWQ+$y>ium* z55IO6y&DCSL`MPU4)BMF;3sOsO6aQ|P&?pn1A6#e7#d-3K3KPGeEr7Q4y&v}538&m zv{hCQq9x5l)}t)aFn`q2LW-D>tH+qZi@Y=+k}Sbjcy-G#~T&AFZ)~C z0lF@bcl^<@B+*TF&`!v8v%tjq*2AT7yjU-7? z&}$f7*r4qPgFOr*HQx**U&KiTFbWg1bflD^UgP0PoPFTOM>7{l8;oQ4a941hlm}v4 zBRbA+mKSrGZVKxDS+sXXh>6!Egl)X0(tOrMF)CN=n%x%EYbbI=g-AZ;H=p;ft#NQ{ z&cvTC%-4&3U$1>Tu3&d-_@ZMgUvyLsQ@xBmnu?9n8+P}HDvE-3AuE%&9K}w1(cLD& z7!U2C73>Fk|9N{fOn%e8=m>zoT%@Wr4UcL|S!~liNzg$VcHvZT>M-p2-@~>Ma>J>U zBJ6jx(`Y*&#INRlpHXUfbRTb}U6xQ%S*v_x%|J|cHahhprA@J$NfX#j(hxE=4`*I} z?~mx)lTOk^nDk;Iwr!5eBE@A{noN#8dV#XM%_v@c*uhz?oi>sKpF}&%tO| zs>T(?Dbo-KeQS1og<6@K_0Lfvwlt(D3`G=V&ZD?ML2*z}OfOrBUVocYFlRJSC>@>$M>SAT96Z#g zcv$-^a!6cXBSQaTnsbkFqD~-%VWeUVs97fwq&fsOvuHm=ig}2{!tsfwsC2SdDU3k# zjO!~j&7K9CZxx3==bd;HwYYHRO~h`5CQ+fPPAse}*8w3D*)kfEwwYNxt2qQ|``Q&i z#9cuh#~ed~Qx4UHT|8TNYT*O>%1Mn4TD3;>^L|`NG~rh4Ft?_+jmH1>%rlYw ziyEK1%W8aI<7$tI?iMS(&_Bo&HE(u=w1sP=!xXhi5-qu%T6pN; z;u5W<{%URELR)vu`a^Hr1N1~#9KZ(OX%OHcA?&#igkfX=14<18nw>#IpGo!g!AYL+ z8UFLeF_>F{Ra92N4}RN59h|ckRo4Jnp0!PS))sn{%UfY%Ixty$f`Cd|ysRm1r3Rp! zr|R#){Pt-;UfH(Po^*0ns4zFap#DGl26H|ZQrb1+pyjA#b$cR4pa`YPtlWD;4VCxN~K z%9qDH=^BsD;*I+*6&KC!N)I4&6pA(yVj~V1K!$)Q^G+l(to#;jQR5iFNSv1mNXv^~ zma$+)mrlr=%>Y=?7!(2i5$q+XAriqp9*Q8?ucrr(gdnZ7iy*o7@Bl|6t9SF>nGFrRMK<^hQSwS9&s zjLq>NQdaG;D3Z@$dE{9|#>3%h0q3HTY!@j;frNqiA&6*%JPwGTa+nl;Jd(XDV7Ruz zN3t~J0zftB*6?i6bIMHyB5x)*A}U?BZO|C#vdvR#-~rX9q!kZpazla$H6_s$sj04? zpmSr~y_bH3q6mY@a)x#T8s&tXQZ?cTn$t;Y#CFHWvobg>5_B{?n~8K>?MAima_uEM zUKpUy8Dj8jBO%YY2i}e;iiTlew#ktwhrJTZq(vjorMS#@Yr9w@G%I$Ao@em;RcepB3}m2$mq1;Z zp42Oc!qeWLBeu>5ueRJEi)}cK+N89)tWDxP0Y*eY7;BVL+jzd@&`|e^1Ui*zpVvXk zw9gel{3PBro(OxHhia9kwH`%s-L*&FRAk&fuL(HkSIhMk)IKi)$+XWafcPngMdABK zL5PI*d0s%a&+yn;`?Lh!K8=BD?Nfq4Gi6C7nj-D<%s;jEIY6r_X(>L0fiFQd`_gCg z7vsF4*GFux%$MT6qX9p@m$wJtwnM$mn#?_&R1i}ZiCq*{co=IcYK3^r7nX$R(Ynz6l?_`Tx!#I~Jr(6C}p z_NaTZ)AD48U$aL#X$Fa=@$uR{@4+r+k?XxjPLAZcC0We(T1Nc79H{-2gB7=o zHuJ)*8QPa@eh+#Fi+}j^mo(NcrSWMSeiOgH_}5Q=k$md??69WW8u@<2jh!yP)vYdj z3YJI)(vB~qOvo|-)&2l21!JQpr}iP~csNG(1#slt6z#b)@LN)ymW zuV4!(Oy??T_}`y1`e+z?C*wh9W$b0Bgzd&+!SkViZJ$A^rBZ8EwAxi3c+p;zI_Ij5 zOf*poaH>hJ!a)FBh&Nd1Tp1?MUELr|eyh#5-n!dNEE!y1weHHcg7F=#cb9X|rnc3f z4S#b*H?P{zb^P+`+Lzb<=1OhDhZnx%8Jf=v8M_YGt}gRM+Z#q(!r9X>_KRBF(nhl& z9JbSy3THDCPQ43fe+A)mxo})Bch1Rv6V5I(QJHCX2O{CL+dhU5eS$i#AfVmW8T2>a z2RYNPHECL|mUU*etcoCasb$Yjkh{zzSCAF8>{$pgXj$`iO>mbAuv<>N3GOnJ{3giU z9UB)*+Q_qQfSHsw>9&K z(fMj_n~>Kdza+Sy-Rs4}x6|*N#lv@uI>q>@5E%Y0D~A2yx~P4v{)MC#?oPuoU)|T{ z?+>oW1t0+hus@{3d|^})4U4@OzOn*3iNSrl%)KF!}+@$k)C z-=}WTYPs9q#b5gU-oP(Buw!Chd*E+vqI+%P@XccPQt|Nh)$XMyC9i+-WAAz7Hhv1+ zmd_TmR*azOI6D<6ohqKN936((swr!IS+&g4WjgqpnPxrn{sIW1h%F$1_A@;K~6Dnk=MY$ z0zvXn0RjVyQ6%32^+>t7B&X%xuKUuwDLK4xofWHi`jdrO{ zUe|aH`QIc+{wq9)SmL371h0EYSqPe6Mv8c>_zkc(L9yvds+`v?UPA^nIc1;$0uk#x z^pD_e4=DpdD`uc6oq;zqNps@GgpTzP9K_G>Zn;`hOSKp^tu7o@EDy zv(Fc=-7D?uk-O3=o9gb$A>2}J+XSc>eOw?F1G$6fRuAKsgZJ}nc=TVA5u{EJaeG+t z(&^)RFqzK&m(#<9<&4%oLb4;LZ@-_YCr)qaVHihFZxRkO?Z!tNx$Sp8dgUJ1PMlsF z6y1qe+~#?Di$73|lHc@K=GAS=ZRqs8A)kIskC4Tgfa6n6xWYqhG;Fza`hufgNugdW zLlvU2eW{#nD;WLG_+dQ4ZL!9FiK=)0o+#(U~Kg{mL=pz~xvpjfDHEGpeLIL_a;iJ~aBCaQOKDJ2l z23ouHM7#42c+DM`^Zz7PzU99eE71xfNb08b5sm6uvq&;ZIlQjQyV|$8us>a1B`x<< zuZNTC_Y`Y?eH$E(aF6{PRhDVU6Q|2GBvn~WR8}J;52LfL=UQ2nvZS)A=xb70jp@oN z9SDlIXIELN>Zr~|c~!mTSyxpL6$QHo8AbP`9K9ZC(4(49iELS-UH=zzZv!7?b?1H0 zz(j)vuULadiyGI#g^D$4aZ75@2t=_BEmp8pv8DG-DXnbFV<(DTNJ3{ubL}vY-3PmF zms$|FYj<_)_NI!KVnUFBT8&^e5u#C1XBceprGQ|~^ZlK3uE`{zwa?wXpC=!f^ZtK3 z|8vg&yk0YvHkLHHqh(uUKLkdgF({Us$WIF5|*Wq{9YFvP&MP~Gm8AD~z>WN#p!)(#mFb(<#SvU@eJ=VjD&KjBs zpn@AbN81P(7_t%EPBebmB4jJLQH8DItcM!;w69J$f8$HbI9%Za%jWZSzI3LHuAz%V zc6rUN57`|w`Gt#|d0cjQHgURRrorB110&h;7~P<6VH&*ld!$$;ZKlZ3WglZ^aS{WV zHAZ3upGnS(eKA}tF|uklK!&bcIg7l+TD=kr=1bCf$tP6WW;W248)$qVdQd&0 zv6}LTq)J0l!M&|KN!V?alifDM%#V-*;k+DVd;-Tweg=}C$)xEhL@Y*)H;5(}LxF?=`D)fXl}^_M+y}+urRNDf8t1CeKZCnV}f!0jZKUv1e6W50HVSJ5S7tF zoCxhQD>c{Jf2rG(vrGMV6HArJDum|M3UOFip^ecsI00xy4S-g53tA2Kn4o7eC8);= zV^kxH+rg<-!y>AMDECPl(L68I;K3sl~2SOZjTlJrGEIxm{r^o2O2&#yO4GDq)OIl!pCG+*7JWJDpbPiP6boUuD$C8dJ!IF77U}khNROyJAJ894?;^;q! z)pv#*9^C{6PX!K?tLq`86J_Y7dC|uRZh(QT!A8`&7oApr>mg@tq)X=<)eVo3&d`{`kBuB+jMO zMq(WnvwKX`mH^P;ok02(61#%LTPtzs<-sjN4*=*H^c?%eJU&YYwy?D89T#UTdFycoeuUEtsw!6 zO5|a=+hEZ|yBzXot&_W3VQbp}m>RXk;yWZ(?LCgdtqXguhlJ6fUAvyV@k0?Wu?yA0 z(^SR{Oui6JnmjA7BRY3l{Lpb;qM5mkJS%(gWXt%W79{2Pp<-{PY7I$>aYQYl_6ffg zYPpTo*?&Wo6{-}K3?)ofio3osS;gP6WeRtB51jFSKSC0;Kj&FOM4}?uRnR#=SH%Eb zBGJ)Rj@Qv85*=No&{Z;+F7;{qfeO`yB>wxi-tW(z4}#V zlaX&BBf@O-*)63lA~=^I>FVm{;ic`(!69J=j{fkPB`>@%rdXM)!7^;EKX96Lt?ZEM z%?%fT(-OxN4XiOsmU@dqvL-sRtc3`gMZh+c<<~?P6XS?mf*0aqIAmRbqd&Y0ofqO1 z>xgqk`_aUGI!~ONBWw5gcmLpT6DiGz`a(=>_*B0Z9+q^b{W7lAH^g-h{+^hfN zpS)#qtyfjAzqO-P#?FA(R^m^MnqXt*l0#LFlNu#F7Q7J~1*9^tDCk;}nnNwl)smDY zl=Y9^qWf7k>n*y6-xspl1~ERpF20CDYg>e-BQ=IDf*~63Rv4Z0J$jq5k&ItxE?IVX0Z7C$8{r{C8<$&2;Hja8X{AZ77$2XG*954 zzt|o$YWgZHFEQfT$}B{)f4xXyn;@q`xosf}h_xZH+Z)kg@@9OdL?@|+k=4fBC6z-& zIvpf zBMz${{?p#imz#X4QAUl+PR^eoaWlGAX2zD)DTodHce{{-5}{g}XP?Qd#m7HgZIRbo z*-St?0CuI`sGJtxnTwHZmh6N3Ep!XgeB^^d*-G2IRto92i%gT>P#FpLMmC$z;LHGq zxneC(fHGL~vuib+)A)f|XH1PUdkY0DoBf5dli5mO-q|t|$$pfKiC#E@XZ1}w@E}_xmzriolO6-`))Hy{_{55>3jq{_t}pO-WG73Cq+eTsiSoaw2sB^ zNVZF|MZpRxQb^v#S@1t81=#iiF$AC`27xwgb#kw{N z0lO$i54hS~Cvn23mQ-7fWrS6Ggf(t>X>CEeD*FJ-#}bf7VER^rOU6$NKx}vXVaAVg z`S7)UTwweRqG5`FxZz(*xT%q5_;(Aw#~A+G)Og(RueHZu_}3`p805S}F#NAqY%u)a zUy$X`82<02m>K@v{3Eaco)Ea97C;-3O<#u)O;ya0E+asgtr4I?)(F^w4+)>YmJ5I4pM_~B3^z*XZ%uqo%}Yt62q*byFEVZZ2c&6OiBfpuvYZfpZj z*y9BwH5_9X?HMSchS^8Z>VsX)NS$eH(bd7*3Z^6AD9dWoux!o`Ge{vpAkFdcXYlxk z$GrueU3gO?&G^6E+$RXkRRD{ka0kZYA!V90V7vNnVV&(G($tMW7)k5+c(($^Kzk3L zts5hY^=6H!H?kE%gg;+52Kag-3sRkdwwoLUb)&vRLXmsy3Cj?JY`{8^oU|!9mr0hH z7jYuBmToCBQQcJ}D$6!==Ss7pqT0;2_uR*&HF;A^X~=6Hj!td36?+>&|C9gt#BR+b!~RtfW}|l_qG|sxmLZuS_6A3d*iu=i37c;wY=+}? zn#^?;ZJ=M)AI#5j?rgaqVa~Y5WYcug%=V}|M7p9yvu10Ft8x;9Gle%(Q_G2idl|~| zdMhOh>8Dq89cpGVK!vbi=HY_=@ zH?qwx^#&t=&K;X$#SSqZ z)NX!}jyfosu6msUm2{d*Cr_j((wvXVk=I+978F@F^l6f4`YYkoNIR47NsUxjsM(V8 zh96IvE<9~2|ClydtOR`*l&m_%4^z_#C#FW48P1tTi(mA9zR@5_ooTdq^x3@;&>OnW z6g7T94olQ(gDCuB>P(F*X;T98RWi^irTrhKzQS&_`%I(V1+a~F|8HW)c-|k#cR=|i zLN3^xon3+U7xavSs!dZ{X+4#Bwv9t%pDnkzd+YhQof<`VDH z=Kkixf##bT=s7pAM18y1{*w$qv=?wNJK$hZ;k>Va13Rr02Y=>#a!zy+92k|dbJe4P z7I3f#4q|XH+i+0Oc@>nho!2SHoEH{$US8rS5`(dYF{tmLKJy)zY~o;A=sK|H@(s;( zV5jBjvU4>z>r0K&v@Z{-aMG6=HG?F-0Fs$MmK_C2ifp^WVDO~ZmXgLkXL}rT&N4mv zW7sr`PTv?t6-|%xY5jw1(S_Q zvMbl#!B1+`YPB)#b6bm$!=-*ZmyxG7orR)vG_pNCVPZiWwW7H!w_D9X(>Cgkfl70> zZt$d8kj6AB#a-ZLYl=3rHI`X%BP1>Mna`Yc8uJ;l@qcbGJ`b9q>5DapOI*m-=))zr z#sy_A0%|rO$K%ey9g8azQQXD26)4t6nyQko_q^k0ANO{97i7=oShnw_#tu-T!W(u zcn24@B=Hi*o@Vxnb`nzo(YY}K9*e#dHR!22E$4`T^6KGtIV*tufb=*i9hTYA=-~ zTO2>spZytd25-r5F@#=#{Xdyp;*j(p26nSMgxOdi#vTefscZ9{)XwnJK_{gJ**_;Q z52a>aum{O?>e0NYxlWDAA9XLk1*2NJ{AymbhbRW~@>k89-~T)uTLSH!{d$(3we#B|+)3*bx#l9v2`HuLg4b6AR#DMn$xW&%{LH+?YbLh= zRn6gkl%H!uB_{-Y)r+6o*rvw%YSob6m9US#V%KW(1FdC?(r<{O~?Pv%Oj zgitO!&J8zQ%a}34DrJ8DY`_}5Gc%jr^P-Ci4cLdoWlQ_eE4w@v6kOSb)ET)?egvrG zllUb54=37Kt&Zw>mg;F%%k%SbL$y)lJk^Cp>qnw`8dRG`@?lWnZkj4vRHK+Y#YX)G zCY-6%f*B*Vnf|{BTQly-!8LnKGcGotZf9<|O;0E4#?}%>yNS56rfP9D`YpkgaiMe> z7c+duy`3YCDOF32PCR;O{e+_VU&~~W?{MTkZZtAz6mX!0i2w0NbATTLbfv^tQ&@%L zDK<8~ulc&Kx*L_{Yqf?(eb+dTeI{YOo=1Qn_e{bDJ(Dm!OVuj3C~WDVnG`9cKeNbS zfXp_~ERbgh19@IRiUmZO1Z0WgOm;s`Y0rE^h ziS<|@UmpzQTLSXV>i|(E0lClsQOE$%49ZYqJr>AqgMq9Rke>^PG6~4ucF9B`17wk@ z6sp*IERg#K16eO1-xd&M5|Dp2Kol}S)&w%K9t&j0U?9I0kTC+HOae0308z*QQHwO} zSdRtr_Fy0f1f=gZfGCrIeB1z0$NuTs7D(CogR1y6f|-925M>gOXWJwbg$xkw z@fjf2V}V>W7|3S@f2^#+JS2FUUN zi1kMz0K|GMkhOz>{F{K>CLqcrAe$eNOcc`Jz@=dw z+t#I-!51(T-WlMwv?rtAU_CbZD84E?x^iF_j^Yu7ng`26nqUiqox@HWf*j ztsZls!d_Zo`EQGX#R0TIC#md$lCInc$4rBx;FgZLv#j~f8Vgp|x1snR1MTRWFfn_1 z*zWhpFLKFNaCezIN<@^?XLCE53>79E+>#|)S7l;`cp0Yl?QnBNX9(pjh6cR}V|Vt< zWggI(J3o2KWdoTwNk`KjlMSTi&QCs@mM4*$U^=-eFW6U^A{9r;?S2<8>{_wW+c095 zoOx#5Ens``$jEKIDa9ig`ZG_37|-;v1?H6&byL&Lrk%SZqL_lS)T!y?&C2iE5?Z7N ztYYCGHI@(rZv!Gry4tYkpB8WxgZ-x%Z)KK%?Yr$pRO+HAIt=SdhL7`t>}xiNE^JSEyzuu4L(YvbZ)Jf$FIofvLsK$ezq%!5b2CSW+Rqz1beEG>&9)=*E*vfJI?StO|tWA>@?w`lee zVaL6M+jm?H#lgPgMG28F0U|kVGMhUABm0OYqLl~%L?WwjDYP8N4m&Ka?ID*|-9zIz zwZ_wq!_txAWNju&OY2JE4+*L;ObDEriY_kZi1{5rplJBjY1IzR3#qmEJ?hiuz`Q{ksVW1Dr+*d^Rm%;gOZ~Yi=mr^ z8RNKDIN0$}kcFPPO4OvlQV6#TiD3Z4qK#zEMA3FHWZlt;D<)DC_KJpSANI@!g@s=W zn`O9bUH4Fm-){a`dOPj*7wS+#iX#b(hIXkn<)bQph+aY6hZLnkKukZ8I#YQbCLCga zU5J`)&_Ph`s|%nx8d?u6f5Cfy@NwPQ62#UwzdI{Om52vHZj zNS{e8p+j;w&LCbmV#^d;_sMn>bXV7!1&%?M*geGZPp~q$l}K~p^XIoso)k|z-+_;Xsa#wM3By|olW0n z)2G?c{c`vunIiepi7m8-kdc+U3T*G~f$bg=_$PVXi%Y?~aS-xs8@fY|y@^Fdpi;Vt zVs4KuNF1O_(I<1IQw#ig{1 zXCVLJ%sMmj1qka}9kx2DdB~r&+OJzBBx)ETfBHRs-I~t276ZOcjX9LAYmr=G`q^(q)v zoptxiN!Q)`0c?yF5_`i#9C4IeG1Z$JPqoIcwFeB1M#e5y;%1aJLNNCJIw|Ym!zJr9 z6uS+DTX@8Vn!_aG5u3j+r3os(7CLK*>nxf}NY`yTix%J$8z#fLg@ihb<`u@}C1vl5 zaNFh1&C6a^)g^btjyD4V57ze$PmP*QF_M#Mr4_tb-|?)%1uxc5=4+URFV=5(J z?kt+aFY15^yo%OoNnDL@fW$RwwMBOn#(fxx4QJ)fRpSm;qud+zPpEN!AHoV5SPsx* zF)(Z>1Iwu8LI%QOK&3m2v@>lPn1|0Yun^w>1B*<)1%+`Rg@Is6ppb!wemj@}Eh;2; zH2iI$^y|noNcvlTKA8BaOsm(aBx=F0h_}lOTg~ZfKdGp-ssuJS`1NmpPd&pVRe|4; zGw-SfiynoKUUtRzw*1)y{83<-aW7$Xit$R{h3cjrsSTr%Oi|7qQOrW3#a6k z8YOx8w?~MuhfDpAi+`+89;)(w5L9WE4^-)upDqoSiI*az>Gj*$WyzU(hB}JMs=Hv2p+gbFUi+A(fQ6V^6CqvRkR8*NGqJQbBG>nyl=1`)NDo%j9F~X z9d#Bhfjq0gnp)-=TGv9Tv#7Z+F3)7ZNkJzOw7_5i)#=DywZKC=1}m_J)JLvc%?}++VO#+N$^s1oyQ)LEph(R{5GFz|sj5UhMV28zd{LcfHtJOhkEvhI$>z@(uJZ2b4Z4Ah7L zmF_IkmYHRs4WDIT8@@cT>z*+AwC$RY`zQ30~`KrFas0CfJ%23P2<-xuozaX3N_<145*7)m*9s{qA;$2 zfe-A3f?XEJzOuj*F;NVXOGjQ{-U_hnW6Xe%2up3q^1AFid zFpx2f_7%o`6b6E=vqA=5D~=4`?`mFz6)=2yh0 zE|MHOle6)Q@akX6$G4f-Wiyl3ue;r|LSpU$QEMt~CUB;tpDd@8UGqwsuNj#kK4lV9 zw+p2Ab2F)7Ju9gt=u}#>OFvzqaxzi0*46DNM=Nd8z>;`cfSWF}-W{iX~lW*ziF%U6Cu+z_U9s*5OZ7b245<&|9g!r6SV_g?Vi+n4Zv=PuRO}ydUFS&nmZWDQ6pjZnKMNq~hk0lB7 z+KN#d<~cIpnD0c&r8bdh1x}{@9|YZ=bXlo)73`X_5pw+3s{K&oH??3aAXt!+F&8c~dwciy|vX?>PE`lc~ zO1kEDLdrCK|CbX~2L?m3Qi*o+%LqR8V^vwcz0#JaDy-(}Cu`-Ej989l*DG0L3QNLv zUn4ERO_$istsg7ZG-VZ|DGxWGQn!m9?QRWf$D+fueEiDPfPB9B)JcGVYYuEm$nf%6= zmWE<8wJv2|&Q4aorRA#${Pr5ZJF1%1hY56J$h5^{f2qKHwZa^zJyS1C#g~?aV!U6? zcCubxKML}n^{UdDdSWWRwA|3jrtvW$_7*K*(Y^O0(`s^`soQ7qrK63w*i2rhXS3o< zD@>Tr`K~K9Qi_^zl<-EAKGuknXB8z*UAOVgb({Fo@g{*M5%Ze9PN$SRleNh7UNp2b zIThdWYQV{f_?o56$r^me;Y*u1^-=F)8A{2Ix5^%QfU*OryLQ{uh)Y!^52W75^8o{) zrvxdv=IsFg-S~NklMMcDd=~$1d=|gr z4F3*)fFWb>2dUQ$!LME+oeWYhF!+Pe7Y+Veb`355srdNrC^SvPXYtqIv-lNf_{R_x z|AB_@Gx&qlUEPCI)dkVwU0I7i2t6f8$u*cs7XRJ&N)7%y@LBw;@mc(eGyFUJiiM8I zI|hG{dY!``NJo7f?cbHX0O<^bz6hl49j*4W3LAEpg+iH)CtIM+7t$d{qT(?#yWO%> z?hvjaEzS0)V2(c(>hZPe>52 zvj-1}^!U3)O&9swIJ6PomR@}LSJ-!<_>tjFXQd}x92D%k)K9!~2MPYFcUI#}$@N~A z+gg}vwv7QhQ$nT6#*#}S!x0Ay#KDjL*~HBwi?&zi#SayED~A)pc2t<}cKBW4wlM$w z_5e6nJQGh?)K3VtGS=^_Tf)|dgoAR zGo$l-Wg08!m3Ou8}pGbO*sqA6>ZHXjRp0h|oltTIg@VK%XSD(`R6yYxV?ksui>*bZ{=qj<#vvGsVn zEc_XG9sF{<4*qDo4!&Xqf205wv~@8Bz99Ll?4c9{`!R7r)C|uKeFE(DD!=)EE6Rn_1NlKYr076ii<{d#Iib%yH6JKS6OwX2>dn0dH8qZbuxYe?>q~? z3-3i1{vCK7{MC3Je8mcWnS~z&#|S=cT#TiHPU1zX#dQ+XQjuinWOMn~f7ikfosg#` zg7-ojJ09;pTUsjdo@HYXjli`^{vKXOi(*Af%cBEYK(94V8}@0=I=JMoum{3NX!X>t z+O|mKF)VqTuK(cPXU1VbsKem1+~KZ3$A^G!1hj*dpZ!=Y%zFQ|fQBMS%>JB4lY+hi zVI8M`_V+V>gR3WcUsgg|O-C3&fB!Rr)vAKq>& zwf%U{v{KuE*GX+7UMDrhN@{hWk|flT6sS;;d@B1Td8y4kT53VQ?)Z_hw70?X4r`p(ZyiP!)@j3x1RsxCw^%w#QlK;R= z>B9sR~@#&I=i`<7N;9!b}_o zVFF&Wq{n$ymzNB+co{5}cj7?ov;lAZK!&N#3!T>V73 zq7ScGCP-i+w0SC)f!n^~o!?MO@C-&|E@9F{Xy#wC+@j5K`xLB~vwOCq-0mv#G zhou>>lSYfnPKM=p9gxI8>|(qjb+0HeUP%Mcie=y(i&x>7a%%Bf)-(=CxJtdER9^T0o(Q>@gEc#Zw=iAuX zcpdsVcpZAh3Vo3U*v1suHP3B$Q3-MR#DI5;^QQBC(FS73vk}KAKea=t0bbBpk{mk$ zx?8szc7ou){fgZU>CLot`psL`1Cu&g+M2Ze6KizXe9N|IGH;fnTU%R&FZg4wfA#9s z*ZN({-U@{(LSOpv>T7>o)%7#^y#!|kLRD?vU4rz#@SC}pch`Zf;n?xZ$e7t23X&oUhVnU!O>kI{TDt6IQX@gI;y`;oXKnMV6|obR8Tie@%Kv8Xu1Ruk zx==I_Vz&VF{slScCaqmC@%E$K=ue}GcYvnk0T7Oq+ltSsrk##0^a)hn4 z?Dmc{dnBO{`MH(7uQYX0>wiuS#ozCbU64EwJ0(5(mkQ5s?LQ@+i^P8yZaBc4xUFq+ zDD(Um{@5SiQmWgl>6=1TJ92!&E_Cv_Y z9gBxu-_boOa#LMsko-759N#xSwX`JFP@I}xCh!e?{tR!Q z=i^((TWx1+>qMirRXZruE(qPm+rj6<1!b%E>#q1)XY)zXhKp0v`>Ln!xhYcJ{k{LF z+VzML;!h905PvQNg$G}ZKiTgefiz!BCGi9Opm{oUuqS&BLBBIK>zNG|(ERt)pBdN1 zcS?7@-qOBv?})>MQ%m>wvv%)%-G5$Dutc2yeCqnXoi7uS8?jTLHSIpwuv^@A9DKcc z)}9;BfK;;We7(B!dqqUVM))sQ?aG#Ei1@pHd?(;*b!&C;eWO#e5N2uWdOlNH1~Py8 z9{*YYMI?7-bu-jF&Bfe#{k&M%y>h7EC0}1psTvh$1cdJ@`b+`8e?n&?h zrhhmn(JFbPe}(dN!rXuG&D>okU5J7L%AcCmw@FeN_w3(K@7viYM&Cp#n+c`r_V_RE z?DOCB>-OyYy@}Yp^A&=#x_4$qbaU|f`rX7HZ0Po%+xg1DZ|tdl?#7F%J8ryST*v9p zk>HcfKMc5+M|3H8c<0^#v;X3_Cr|IpUV@0KpKEyP{JK3KpVgh~M7PoBK>v)q5Z2N? zNX>r|QGKeq=jN{t;jn54HS?zL)J5u-*Db4mH;)eF_e{fQE}p)}yH(bl1gM4-=w?u8 zKz|EC4bdL|tpero5Be`C=+Elg`8)r4>BP&a>-Sj2@!yi(^ikDPn`dvVMAZVViBvxu zt1wFQcTyVLA3C+pE>INpV{}Q4Cm?X3t2Dm;F*QH9GSu4IKW4mhE1f&qxig(R*0~d$ zJI%Qj&YkMqdgsn?Zmn}CIyY)uL}&iu`|5SSuyZV^XBg>(EU9I}GORV9YDNzr1^lFy|7jJw@drfvwOxZ(g0dua&M*k4r6r;b}|= z>;3LA)Kt@?{{G)Lc`KhpCV2N=+VmNm3or3jzGq{axDa;@{Z&s}_sFOreD}z)xG%JK zkF3Pa{(^j}Z;HKrskibTg2`PyFZE=0^I@S@a&$koyXX$_gZKo{4agsO}!o-&8#D5au?rKo#C};Bv5X|ae+jWoyT0q+BdyLArbZ1?lHyA zEp=|Wb1R%X*146=orp`#DFo}&oIAt0vzrm;S{yFSC1d z&-NGI@>ag4ro5eNkDFh3DT^^4G~0D}|4%pDZkp{$aNXM@*&agfxie_BRXe_vj(mK^ zi{nj;EgsrpFRt}gwuy_ECM`Uwt(--IZOU8av#o~a+oHG@r@ zoRk+1tDjUiPN#T05ws8W(ie*O?w+Fe;3)fh+MBqiNh;V!koH!tv5~Q@Li2ZEYF{~2 zVdlK0Bt`u>(Fnt7Nv8IUP-tspI6ZOsb-^r7mag)|qUBtd9ZTLazGtm(l8EXEH1`P@F`3`!Q#rIH&cS(v}D z1A!ivA9QE3L~P*}8~Rv|z^(9EE4Y#&LugDf)GpHV>c3!AbdL$ug+c*e0nDC1k&gWI zVq_FVdSR);A)X+b?`0ZFScofyc+FoU)Xnj}Ap zSnfY#>6xZ|l_U3wewhjtLkPUlME~_GDC;#P ztT_}{@AOvwl(^L8#nl~NdO6;4-N`op^5Vu54qRRo;hW$@`Mt?E8o!F%EI43!4-OL@ zKp*QsHGo#_uKO}%n+4vjbI4iKjl5aFUko%amhy1rT zQ~*9>j-_8yoSxjD+yUyQ*Qr7?@9w-Dwe0WDnmO4`A%AD~YJ%}hm|Vy^C~po`50r0s zJ^MMb&1e4l=$HNHB$N2QlGIg}DapE@i)ntF{lZJ&e0WKE4 zLKj{AV#6D$0q~8d2Y72pEJzUDC57t+j{Mxu+N!s6BGeg}&duT*#sOdS=9 z_q{lxyCrgRd~-N{cz8oDebsQj(eal5ZbsuPebZ<&7yv#6@c5ST9ROjz81n@6e1Q|> z+<)lzo?8FS*jgo2zuB5+iBI?mJai` z#oNw`_wCR8cpqq&?ni0PPJJ;#j9<4evHg~llLx$(wb(YPy8X>BHTlyb{+p?#`$qJ5 ziT8;0M{59!puNTH`KyhYHQ>yJze5w+DqD_^cZNSG&&9t-0XzII7D%3Lcpx=>zkkH2 zLE{;zx_#j;ReqyawPS1KluD$;#|r-t-g)u$`@FmQXw*YF>%J*9O$#LM(h?i8OQgp-q)Qr52H{OE& z0?;;qw=t0g?aMCxisGhM0G-&r_?iQchGVyE9ezH_SbhDz8^0h(h&h0CS#jf;c`)}1 z3}^;)wds}gH{P)-i9MyXF97wHf8RR%0s!Vtis!*+-SQp6;Bg+crjf0h9FR zhnM`lv~Cb}-ik$NG3DT$qJ`}5&FY%4e-nXkM2EQxM%I7DJ;!=mt|3w&!!i9t2U#T@x9@LUGbL>pL-c^Eegs5dP-%>aq+F;n(D?8=_#K%q3*?&%lpZMzC6S24DY_KoqG?oSHvP(QDo_qQKhb{ zq2uBP;4PD$O)vJ}f^d;p*C%~@#%Ro*;dOoExZL5b*h08!$NW}ovAmu>Ys$}Y<@d8{ zCtfytE1nbc&yDL$_WQRKH;$DEVyqh%ADCQJ96K@o`(dmcuh=RK(~DDIDbX4M`#&5G zC*MfU)*q-XD)y59N>sAH@k9}K%5a(&(?tKJ$OY~{I&i51Usgm z^d&Qh*6nVbRJF^@cf3uJvshAQ7}^0rsk+^EC{2B%FOaH#c*7@wnE3_iL*wowF1OR+ z%)GM*#IyEc(3od?ODV|BD9u=0?b>duzUbMVbHQ((HwZ2f+vSh5s9k zr>4IzNp9Eh;jOq?D#&2k?k)cZfVwfyIcQh%pio_|k;O}@tGuVyOTMl`*AyprG@e3I zL3JfAAtm{Sx8m!#jKmL|wxN>pi5;=yyiJ?c)tg~?GiM>Ia}9l|%Xt8W&x4SK0UW*k zPkd&WEeXcraoaE!$kg&JRrNI`)m`3-ui{nHBE?&w3o^zW@>X07QcBx|#HA!8cQt%I zbq(8dqP(HD`L*M``KeHZ7K>C?G{aE~FeygX9uPJfnQArca&(_R9?CKuQwt!*A?s!b@$18ZCm+&&H z41oOD)ATw5UilLU2r_(+4A3ziI>O&6Nxl(l^>b8vkUW!Qv~cn7vkjIhZTpg*xtN6P z1OQok&Qw8Sdp?}K-{PoHcIe5RsQi(9`YivqUw-(T^XJdM=IUP|-Vjz=`j&pFmAQYU zHp0f!UjGmscl+UC<7AFUV(0xzMFbDKJQ8mYAI!-^2C~^a4X^r-r!KFk-qtkC?^eys z9#;K))0dr6lDpU<*h|~XoF_Z%@(OkbE-yhDN2;d%%dt-?;@j#nv)L3z&e}U^KYVt2 z>Tn5{3h)nUSk1mm&5nECzot0%v-z!G_DyFnBQ@J}t6I4M*IW$edCb2Tz)vONO1PN7 zq+8qYnsjJhq}hzZV{vOVTf;xzO?|xw+hmoUabQctOFV>_FoC8q9}9VpVB}Y|<;sgmU9OZr;OkHJndZ?Xvp$C|yT<%M9evabQbr>?=YqNQS-*9gk4w zH=;N5Ta};MwM^6O#h5^W`Zv#+3q%3~d7$(}G z3ofap?8gjzHmhWc&PXjPkxi+t1bO~N<=+ElQE;^Ue?p3@5oI96FpT_PKc@W25eOdZ zwu};`0y$Lpdp|Wu_*-L*$mftmvxq}axf1_*Ye4?uO|&ZOFkESg~2 zVMk}xO|4Ys+e!C8j4}`kF|pdb>{VA!Y9DGRGjTQFoq?+cGB&8EV>Ob=Rn$`~I&<0k zrjc}d34OIO{{A1m<=Ws(O)06~%J--69+)Dt=Vg3+wQouZJGh7aj4Jdem^%X%`Vupj z!4+B)&CIEnxaZ{Ud72McLYwrHeHam|`Q0F{f(ov*&F|x?V6#3k!_@B^)bGi}Sz?kD zkKa%d9-!ra>b4RHbDu9jNO{{_tvY-TeA0KV(9948gBs+|NNp8}zHf?CM${=Ko_`WJ z;ffi^g03wf$m&ykpWZ*zM`5HR zF+uKK*6vKpvzji9nWZ+ z=uqq*M|dl^^uS|apE-fT5D;w{#>5kVQSaWKNP8~gcaPYH&TFl9yqC}{(|?jV$RFab zdj8(3-!TMLJvZWDgHPGfyz(Bs`Qva|&UXAM16*Q|pJMDsA=oLBJIvF9I==t^0(cXjT5Df(J4GZh#$_nq1y~Zlo zBrP7J;h1yXr?;i+!^im<%z;dSIZzTCYs>-5FD(^&02|$y1SJI~K}o~Q)lYdV4+AW~ zPo;Kh*|WbtvBPV*0%V-k@{-@g6Mq>SwMn#EF0C0gUF#Q)?a9_Yn4OuZ$Up}$#~LqX zVlymO?J`OeCKtQ;@E~aYISN{JDQxJwkbo6&d2W&`klCrc$f_Ed-SpSgQZ%f(^)?NQ zANpiNkE{C3Lb~N3+s!?B;LdWKQqnkn5CuyG)wK=B!3>x8vXZ7}g7Q-$9C(m1G$ZqQ zN_dZK_4kIS6#G5PJ|8i*QU!FjV zRvz7Z*Y9Y5Y1jtSA?@()eLL*^>*l9_x3lknnJaIuY72Lq{A}_7EkRxHc(3IZ%6WIc z5DxDO;)LiSPihFZaqj|d$ZVTv8rS%2*?Ss)9QWg%^1ok9(TW3GvF7__{@Hp+U(wI3 zc?xray+r2o+adOgdykfu8*ncxMp{=zP$T~#L32uT0fc4BDVF`EVnJv$+IxgnmTf7> zD04dV`z#rk3oq-WmEmlKnv#Q5p$tzd!wo9tsI8}yLMc+$MUY1Yt$s|JgAlCIUH(Zr zuq)K7YzfJgMB1!gNd|1loA4#+|Jn#3;XVPO( zHT)AonHt}+#0<2VpMD*-WJlb?*Y(bU{_JV|$X-I+=3-R_r-G|~mo6beWdo*0HKacE& zn+iId$^-3C{+|eQ*ZEN1)3$2~UwqTXo!PdV6oND_@foa0b@mJVoy%ScH4{kI7P0AF zu)#M;$G*M9zmao3FG@CXV0J!rxqu6oB&2^3Zligi6$>O8KZmcBs+#LZG=G{$P}_M6 zaEoyl;+AB(Sp^ZjX;Dj;!5Z9-MxkF+9ObUXJdts5PK2MupIsda?+lNz4BA>wbQV`unBj^-?vbIqr{#I=BT@-v+g!Yd({_zAjB??F|!d9}z^ zXCWD&T9mo#6-)hYMs!K(m$*iT2DoMT0pj9^!`^Lc@qm#egF*bzIZw2?T1iY__P%cF z-8vl^r!L;`eLBpCX$vek$4WG3xc53pW}XRAmY&R~ob=}8OXq37^%D9sqpt-FV4F)u zi!$#z!q25(Yfzshf&%~a2R9URGHu3Debq`R^B$ZNy~cmhPT*t5H*ar7sVa5cYu<|- z;jmrRZ&i7kB=%4(Gv~KwBlDNN)PMYZvd+fr(Mrn9_P*lz%jQL|>G$R*w^Oq-yyV^D zoH^!+gkr~Q6r3G?&sHiK)TzzzO{b<=s2ay?Ty<)5a7!}7UC%U~MRrG5c0Ej`F4j`@ zXH+RQY6_VH*CKnK|Rd1k1k1}JWr}~taTutIYPi27F+P;e{1APg!n~o&gfdZyZEY$b<=%VZyLO;+M z%(uP4w*X-d$#=7g|L`&mu7;t^3olz{ra2tNsjDM-3||+90az`jV>#~I|KLAWn$SlLei+IvJYY1fSbd1%ntpOU$GN%XH72(_RdbX5oEL?>i_qV~N> zIn_7kx&0nRsJN*}G<6Eyo`E;a|6GJx$c{B5;85iEsSg-5@EpLfcw`~WWFJvoA1Y+* zMyEKt$rH4^prhMFoITF~36a!{()6^l^vu>W#s^l?8_wtq(?I*?lExzdydE?7FXZC^Rexu$-(gE2&=xPntFSX(hajPi_`i{gP-plEe^KZ(p2Q zc?}-6f?mkHI*HC$0n>{a#YLlfN3aCnSu06 zaM2r0lT8KAmdEWBhAP__Mj8cs>n-nAwQZS!Zwb6st zM=Kgn!?HgcpTWPUPV*7}QId&PH#wUL!#62bVOVKj60ImAwgSv!<1d}P^ObYw+*TG) ze-ry|WSz^gy|Aj;OKM9?w%U3^n`VdrD9(LB=ecI1Qzwyobo`bQL?&XZc1Z@6H89hS z-qw<<1|6QtsfuYj)lT8LRR=n+kmiRvhXwEeQf{b&u&94Bxyq>6VhPPJ<2>3_OVx;~ z+#2CaUB>Qi<722()dBKMpw!&X&^kb7{&psC&51*Y#E|v7u<7L6{2w05e>vnQxD-0q<30!uXh z^4Wf8Y=oI1kL%)FK39}(s(>c%*HdpRjqg934e7*jlu5qPa9rxUW${L3DP#ycUL?Nzr^6WuhIlG|Ke=_Se-1(@?rR2loN z`P6l#eA=U#4Bn>G<3}#^R(x(0bRWUszYLH6Se21*Zd^L@Ksq+1i#0cGR$9E?rZY?t zQErNyB2RyD*vE3@^l0X9CKG36MO5aS z)g~yZF54oC%`Dj3^Y)W9#kv2o`XMsN5K3Pb_ATD#Tfz)mQ_(lSy-=db|D+DHzovNw zq~{)+-#Sn(`wi8xZ@+JznWh%0l?5&aCH{%J@YkCUhoSkrivmLbUh@qmU@agdm<#2` zk9>nE1x7O`KaSLSi5k3crV?7NNQ3@-W|K~kqMQn9!$Eaa*Qv=R@xI|&%SilyyQ}d- zOp99ZPd`ny5o5lHJzkOtK{^&73<&uYTF1o&c=0z zyW)pJ-iqIS41PApU-n|7dJ_iM?vmd&gUNyAG>ezKAM&aWxb$=)su%NMs|2r_CEj9L zxHnETXp|aWZ&P-jFTJsPlHAo;5vb2+rjwP16<%%gIhdPW`$2~Vm@1;3lXFUOdcq0k z$9O7=gBa|IJfj()ZOtg<;(Wf^NcC2zndzl(K;!+#!9J6fX>Ub098f?lLh1_{nR%au zO#5|WM<5xRg^fZC43;u4aWat7mxnp&xZ*gxu3gcO&4kJtQF*y)52wsHwr>&L{>fQQ zdA$cN3)jr{5_`y2v$)~->@GZh`+y#M4_p;)K3o~gC3e^b08j>$`(=&VR-FAJ9h<9P zFfTlj*<8ab^wP;VdE-aE;3Zb0a;Cj`E1RT-N3L}Fz2w)(lU{9_IFgEl=qP-u>s&^B zX}Fqq{9co6I@;kbeYi+qVA$nCooSC2;Q;)@ga1{6cI*uLEZc{DK-ZO?(q*>s;)h1Sz(nu1N~sJVgaR<5glo=^onCVR zYBn28q1Y&IQ?~;6L%CA}A57<2zBUXOFmRJrcQtTv+|7z3dlND<>*=C;aGCg#%Ghh^ zDNoU7A1d~4tJhSmy?He(>mY-MR=l2G0F z{J6dG!^KS}EPMBCw!!_!8jBv52MJ*tdWlz=0Uvxm`+_;8<|RIbev&jpNk5Z+x#<}L z&EAF)G%(>fC*D}rpT4HtOE!{~8AxgTv;AJu=r}Wk%{T7HY>ItsgJvZ=`%WB2Pv<4C z7F2prY`K|qGZHD?jB#v_DQ|k}iT#MobeLAT&mmUD&bQqgVpn%WpAd>+gVfQG5JO>K zIGdIN2t|#v{a#RJK=lP54(}ijbCr^4=6h8{tTs#i>Q3e<$YUQ$r+b~Hp#6ZGk7atf zg3F`#D3!9Gv1QHpIi>hwOa0Q%IMDy=1@9SJf78EDd=-X^X#nDBL!p>z+ykB74S5 z>>z7=n;xlAINL!GbTcI)!W#Y-Lx*W-%T2>UDhVYlWTfHf95aq$N$3ZRILM%lB+Ay} zaJQYr2|!*$0HE`n$f*7J<`UxXB_0?xfHYayS3|hdDv9M)5G8JA)~CE>g%d+S)j(Gy z^POqHwKdD*11eiWS+JPucRMESsmZ1B_7XukdWtz-5I9gl8IA0nk*Hz%$#IX7dD?J0 z&}VK%gP^euipVIZ{m9w=(+795NO7)>KNn8fnR6;Kho#%6yp~3Wjqsa{Y15!m%%0Eo zP57=^~}cO2+s_6r6&}p$Cvy2tAE!x%+FMB<98clG$)K2PZ-xeZtJ*5j0}sLon+;NyKU!+z;AXV<1gupo1fm34uzN zKk+FeeMO~MKS9CHqP0y0l&KJ*0o>iTO(}|t5N80xq)I1%@fr=l)gV*8dUBkFkn0hl zpM^391r0T9c}Pa~U`I74HJEt|gAevoyQZNE+o=YB>PHL(--Q?RF~=I<~Xb<5iO zK}m#RQx}PoPhtO{>vMz`S(zq!<1p|np_aXs+BOebE46)eGi78k{f;e~l$DVED-p)f z9q$WQb;HaYFY)OU5i-XoTY=}s;B&y}=&sW0)7%OodNRGUlwlQq{Xu*SPHtFlH>?^= zR?Cs+77|1~PCEHyMu4 zYTX8504nIBG`eZ(8E78LdyAkhxB5&Q`?i8kalv_=f>s}W+Ce?R>?G*{`AX$FbxKy8mnzg|f1|mn8DCIr6i443)$nmL8N9@P7}YfGY;VOsjsTDyv8vkW zN9LuzP?p>tE6YAX9@g7aGjA=^n%1vXBv+x4;mFxsjXDx;{CJu-*Qfq4;%(fI`oy1%offVIHt0zRlqh2Rrene3tx4mLGPX} zn_F$9d(2cd@L8dr_MSf5&TrL)m)>rdL0@>i)4R2uvf!RO!i|=f0lKG1WubWY_MYvh z_s3s{h4AUy<1dwBehYZKT|V_Ay+zZ=Dp(LX7m1p#qoB!xLX)AMjZqzna<~y?EbKj) zFmZY-f=`r^+HT)5>k;}me1YX%XiJ+OFT#W6b$C@AD2qeyU^YzIOx55%?lMb zo@aLym=CG{2%Gag=fkRlNVU(UC+X?EKHueKe~M-~Vf_@UyDzAf5UoVrGa0NXk&@jO z=!e{%S!Tj}ZH8U#M8Eiq-+HBeD)ZiX~ObqAY-mhmai?F&D zkMItUU0_Q;ONQ)vFb7&s1IVml5gGQZ;-f&}0>NkR7D(PpQi-`0Kn`jr`>z;X@xwaP zw@?_pWS1t&cAjJAA%({Km$+C~8GFg!nV$TVG2V6R5)K!}_g2y?$T|nmcmWbXf|{}~ zfWL&iEJbH8VJGX@Y^~^rl&m%!xzx73{YWH!#B02!x2S@dpWjn;K<$Zlj{y|Vmin8y zu<13A$8Mk8gU)r82OYTaq533x*htPQ|e$Cahsx}8SH=K5Spd%bRiD_v_%Pp%6@TZS7 zyq5hDIo*WJOz)@!O~>>%WFnZolmk>88|B<*I&umIk?Z|dE@hMegSULTj)YpB0E`;H z1ln0^ClR$~N|7C|^0vJ?`p{)FJ*Ea!#td}X9Oo%}doVAOr_;!J0LJREZTPpnA}tP) z03;1rROu4Hlz`n#p6zNGRjDQZVls&mV{g)ZUQr3XhmM1OV{#`WBHJ!xLc$Wj1$`uX zpn};+oGOE(CzQmWT}jOzuxH+uaDRg~oK5JQ9dvLH0mQLvjIfueLTLIz?Vwe!2}4)C z5+{(YK#Q*CL)K1<{=ZV8??e883XQPsyFig@hbYojwv-C!bnvmq@&o&mupk0&X1;UfamagIk=|IC>3*3M_HDD_tQc6D0JP+zZ)2THy4U z8+1-}*s#rux}Q=n9YLNsSNz|6OGyU;nJqP zX4!juDEATuhl&c%;Khsd%v0WnDvN@_a!GW2F?yvIQH1NC?IzsaiMf%GRYh8 zWlu!w+=A0yZ~0^P>|PrwP9$`FyfCN z`Hq)-0ZmE|EWnL$3v72`LTI>sgk;35SuGl^2EcG61Iw%~I-|l|-el*KjMD$+iDSLw z5gH`DkeLqKWqRN2@I}F=eVvW!j1+DiyfmnAZ{@iX_#Cu=J(M6e9hpL*jVcte$@4JB-16&6P5EtS!_pjzlhs8= z9tJb!D=9)I++Sn5nSDt5Z{rT?)TyDWPANa)RFM@_B1s9y)j4=Il2_M9r!AS~a2{Zt z$4ltUhUQWKMiy6aCkN2j4A#n0{jF>@OVTe2SbjtM>6^0!^2$D<0=7yLufbaG#|5dm zTS;1sZ|HwrZ^7_NFQC7$DFGX07-QQad ze$?n*9BQ;4CzKlIKdQGOUd7Ca_@D4@dy7Gljj~0UVATHXG>;yWjp{UW?bv9eTQiYI zX}W$`KTpvtCfgGKF=u+{>_k`9wq-gTM1QEqJ@#LE!9@{3kd3|e#oc381N*AoBiG>U zF1m-`T@iM2IO(-}Mr91L|g~gI2Wtbb`yHYlwx$dag-8 zH4|w96Jn#6>QRab%=AO?SBqmKH(;=9)o6lJIRbMv(<`-y1nU91)=V8v81XjS5Y|5) zB85kP5}K9`&PNz54cH0HSp;Z}6`WjH@iF-sgqVM=xQzlmZ3=ad>=Lsa6BlP31zX%x z^b9d}Jnr6}=3G*DQ8zK@(4uAELPKhYYYO*^6E%<8Z3|Bo1pt{QS3sa<5pxor!@JYF z?VHp^&-R`^XIwo_FsHAIb!)A{s3uJ|*|vB@{QZ->6`x15soYBS1z%$jPA%l^oh8w7 zz#B9yFP%#|Oa6_z`Z2LOqh+*l)cv?e`JEV4!5nUd>}tFQ_A7O8<5MO74{h%rA9Zp4 z|7Xbp0fW2fqEVwn8(UJaB`sCf#JVH|BZ6{^QUz;o^zzYGWf!q>32at*^L8~>Y3;>U zs|;)K=@TtgK1tk1X^?PwcqfFG*X)?+Q9CYiYR72^Q&%_!1Bic$vS$85G233PxyknVz6K*++L8gA4CMP*l-TN5gqn zJd9D-qwM!as5nFx?{w;cq_(Zj3y$3!i~n(2gYQ7$he-KN%X(eY@fOUEHoD=ypg}^?I zE{fP`bf`1{HE?Oh*cKCN`4GZ6I4YjEoyqj#-H8)W%Nl~+;^g+gG4z;F%N)?6i3>X5 z(J{8WC&F|;W!oEI5c;FUU~lNQ-aup!8pbU75Hihcc~tSZ0|B6&PUTNjPy~B)0h9e_ z0{(g>qng9qa-{GWgDYwsK?SrbwK0AIh)-eciN#Bm;^103&C8_{$LU@45IuQc(_nrN zLeI-wqaytNcFe{H+Xs}NB-yDV?IB+Jlv)1^8f4z;TS>4n37%r9-nhJiG&h>;teDd$ z(1y7g&CJ~=9Nt6oQHR=ZM1+7CHhE|@r+j{LO@x^r`>%oyhZqN=o2Gx@JSzrOeZa<{ z^vFBHoF@FNTb3Se#_bU>IGGJ{;^}*^Ycl;Y4Ai1by?H1}EOKxNcG*B$e6~6&lzK@h zN=$8BQ-iDysIgz{FDyBz)tMd=CE(lX8d6Mmy9P~@)j8NSV+>%r(*Yuhh(IyLi?jt% z#idOpY!v^#igR`0ClyX z6=Vu@Als92x)VtRaK?qP6I#RVZ}r4fsM4nHaPCPywtA|f=W-Fij7oDtIPWCy!Rj_8 z_=8x_(9NGC6DU^jvB<iq4E96dw&dqKd!`T z=}8)LjM59WJdZRY88LDlnVVkm9dZL{%E!Jj!$V_c8!WUbNz2$k?r{Xy^EcZO1WguZ z!sM*U{hLphT2Zw21c%@JVpSiGziF#lllz1A&3~}(wJNrhLsJZKpKtgt?5w>>LZ<(;VWW1D8TqEF2s~O_XS94 ztiTGA1}SMv&$ZN*>!~RsgBZz2@)9=uoB>5lc9n zN{x|mwgt+5-)ocw1wt+7swfQp7`5nhyG}6elyR$GR*~yx>oI2D@$~I2J-5T`*N444 zlZn>rr*Au{+h8Cfg&zBqnH*D{anRXzLYOtiYHVlQg5vx)wzO|P>v`Z7#sap(NRe3K zmzG^s=m`7q2yE%835XU`ww=W3$lYg*N7Pdo71R?n?gY&2V#e(V{FW^YJysi}dZVX9 z3j_Qml6N6Z4lR5hIajw3bxBN+h|C!cOfz#2OWV`yj_oFh(!J+cUqe}U5&NYj>g3!< z))}KwrAO$tr{o<%g==EeLyJa8L3f@YG(`@bX9{j8BLe0W!$#N=%np}D$`L*n$mjeF ze+Hv`syk5%wftX}Yi8hJz_?c+_CxJSd=E<*xub(s9nw!}69CjghUjyl^moZ$MT`wN zOfuP&!vrZQN3K!eWUI+yp;N5`CEh3Js%X)+0G?8b!?u&u6}t(96kB(J$d^k$Tjs%3 zPJW*0vDM5Wk76SxZN&2xSU%=^8+(@Fngi_UtDbZ)`m9gPvjhy~uB?IqkgE=ui#X5x$CsgRf?*yu}eZ6q)TT;v+n^&OiFw_AtC< z>SLxc5Y(aHPGP*%qWSGBpnBpMcDR;fcxdMd+%al~b0Fv)#!|@_w{~kyt`&aJcZb2@ zav3;f8em~u@+ORz+d4tRXstv;?rVJU;@PA|o(XgpJu_m1%HI`!g;=6Ig5tN(+a~SC zxSXCjl-5i!*lW&+Sp1ebqAU#^6YuO7iFS&H%!b*W!5CD% zHMMt+G+h@*sPbY8AKm0<(XHahZHp}d%cJoxio#~NBw$@!P2Pz5@9mBNeB6dJ8wxm!O>-O4MP<$O?qDZt#CGWN@yCI*LcYX^oNwPu!zKBCriM&plA zqp6uQ2QO!xEtL8I0S3~)we~cls30;EAg0NfyFz3YoAF=H8DItH{!q(y9Lwo(<++SJ z)3FEyX`_66VSZb87bEA2LUsoC zcj!=+&iGr9F@_HkPn_Kd6neC{1(}pap}~!T8Q;NMHKd3MI4PKxXQh=@c8wSruav{O z6hRj=OF&;ER#3y7L}TM;ylwNG_AHKGN0r&1pFtuo+=}{n^5v%R+NzQ)W>2Pi<3X9` z^vc!qVOj=BCVcfA-X&x<>ecvit^qh_%)-i5$RiB$4^sA|;4$j?%t*13{8b9qJ4cP}i;Z}9vP@)zqQNKJ|3aEMJe zLO)C%8mxXEv2}EsqwdOV-Gk!acTdD+@hzgIuAywBq$Lr_U)bub3Um~o$QnnZbK;D1 z+0e*Wxsw`k1(}UG{Ek#@aqw{M$}T}hIoS5O8nRFCXXGu>D}&<-vaBBBY&I^6>aAVx z#J>UxpUHb_7F?~~nvPd~K7Z^H)pn>(C)d43Ti^M%zK!|Ch4X$zPb0QO6|ygBxM`mV zYFh0U#lHYuOQ=;x07FyxRXJhCr|Lf$Z4Fh^Qz}23Up1|DMTMyQT%pUD)3k=C)@cuZ zW#ag0oZwM(!`BxaZ|3L8)x)pofL{WtW5#7J4^!)TVyPnAc72#_dX<%=X)(;mKkq^F zol)bB3JFmK+|q#@>`{w9nEmxYU>K=ij!c4~>UmTpEWgWb>(pHhJddlOFw7kaPcMWN zv()J7PMkFZ@)rg=0-5HUI*a0$z|tt)d&b$J$4+3g7Q}IeRAvWI3!L2iw5_h(9_^;{ zy{X*)W#(gQEwgk#O;sk}*VVoJJ0h97A?nFSt{$iMS;3Qv;-4{f{~9EYs9q;aQvDV) zF9lpqV~DX2;BOiHt&rtWNvn8SZ(A$HVadQ&#Ox%~JvjHBI#0;IR^Xqd*Ayrlr>)mw zm{)I9jKxD4jAAcN zf0``ggkZ8Q=uVj*mJXnIK6FOy&?+bTq%zb7GVayM1}9plubjt+IRD`fAH5m-PU0*z~))H}7hi$DvF* zike&v4HraQ4{z$(}t#cQ6ed*R7#qw&l!Fr!kzH0DxAX{`5?@@lbl)A=AUT zZfbOp(~GD)m>Y-NY$EDxXNfs9h4zM%2acan8raClWwxBp(mcBILY*Bv;J=#OZIjsti9!Tt_ zX+4}!l5M`PVW5@q=EB0u!p@qiR}yEWgNv|Bi_%|XM{x_+0l%cTeidOzr%qYAg?(_Q10PG>AxJd{y} zO?L5{P>(0&KkNC8AY=CZlQkR!y&Qq~4rQBUBuRK{1R=M|XCEDeSlN3|ZA8cuU zPS(#~6n?f=*B51%ym6>A(^F+-h^2#9q=V0>m_%@{&1x#r_P^ARk;$&i7#wE&LEeN0 z5?(;#EQ;>LG#0_C(bEo z>LbWprk+^}ikFheky&)sao4LTm+il9La3p@b!kb+=~vS>knb39VdOuXzYd=mj|&V5dQ#r4x)le=X;WXO6FvC zK*ns~+ytZ6=b+Ymq1Jl_jlI-Ow-4j~!(9jrR4U5uz|dtQl2ISAh>~boWp|)f{zA!R z>MIxoX5|CQOiIs;;C25s$>=A~{v?B$DRM(5LEEu#`{ADHS-k?@pBx3+YD4KC8$Uc8-VeP_IqXp75skqR-s$DyQ*~{HFX65tcn=+o*dXBl9Js zR899bM78Y)0r;&2QS~gt$(L_?fF zjM8K&!UilRqQwX%6`J!{K!fX9$1I4@#OSlalR>Y1`iahZTfb*Wx5*|ezhQU!B1rS6 zNP1KxiaGF_OxnM&vZ!c#A5hVh>grKACCFQqtwZn6esToIL7{u zLsEXARj^@|*;RNZ5rLR*iKLBx!OCZ;v4e0~I-A+eA4=UUA$gzL~-QEc}BE)A`>Tdoq|BHXHRiMDt;@$^k=y*#=ncJd>Nu z5N091q@@ZE(fFAj)KE&kul(ucpHYT&%OZez0i}nCUK{?zBJrzzKjLj)Y9=v>RadK5f^tJe#)otF1HoXjD{IDI> zzYhR;gY{*ITDjzgr9*{Q%$gT;8^Y-Xy*Cw3*Rzp-`WLG5)f?0G@9SWm$pJU`Qzv)_ z#&qpvWVe8uF{Ko@BoP(0PJ^ej-20e}T9raDZ8{)r2l ze6nGJ2rbL{W!WuqYtx|y(>X{8v*U9xZQ0%vgNfj!feHz12x82?eh$?P0sK(<(=aG( zoRWO5x*(W;)3TxI@#t-D4>z-_a^)bW8JN;j@e1tAnHHM8o7EdP9H`pD5p(|V)NaFL zp3@5O;XZ6UW%`_{Gb5x^7nw67eLF)x=Tzzbq)#hxIVBhZf?tkiXKi8d@g~_G{gau#PpQ`Yax1g8KM%EFA?KhjnP?9^+N^X=53+N-zNC3s6aR8vrs2jVF?@_F zZjv*DSi@dHth;>s+da@k6RqS$PD=fF7X!@UjyuduN}hJ52*3$^^y6m0Ww zM~OMf{U^E4Bq3a_Pi-RZ4c^gueIh*Mj zJ@#!D`mDZbtgsD8osaHmWt|E8V}Ejg?>Wb+zi!x1ALiHGy$DBk4x)`%M3QZh==;2c z`JXZRLpcQU9MO1nWw?58{zPm7598$a(5CHu)w6LOPT*;i_(p68~2ZbG6kT=+M&M}_xQDBbdqsOp(l)D?1>e)v)dF+u* znLDI0=jFkStGx1UI^?hW6>Z_{v% zM5f^i?WLWOC&r1`$VgvSekd}=YWm!6;E5v6M^%auGcja8V==jk4&{lGgea$r)}Rj! zETayKcMr2eNlBy><;{I1&s6WN`VVT@0D1wNf=)3yJ=G4Y93}r6V}xlDm#b4PLr7}m z9g+Cw5WYF(>4w8k!6@mxAS{YFn5_#9j6^SUaC57gVxZHKST7=&AVluBh5=)RT!k>n z?M26>_EKy7LQ@yDzCF;{VzjZTcaZ80-VrZOzMvI`NY(pKKqq^~0CoO@<#K8o=^Z?u z)8UGQ@-8ZJ1qC?GfY{tzBg##x1b``HroUXQ9sM2^02_a5>872U=@riHpg~UOQBwEr8 zJH-}%014+#lA4DZCIlom9xj{K4+f{)chMyK)~LaumUqQ}7<|l7riG!@BtGRfk;a@N zwVJ9~vYKHj;z4bKjvLa7=@BgmzAlNQkgqa%tF)LHb~zPM!OV zK7lv(T9d@|n96>5@FR-L+wKxRt3{_ zhd9x??hsW-28KEraf<)7_-36mpXbf^Yo@ibmdfxT$9l{CqNlI!L#aRVGr7Mabjwx& zq5w0h(m5~U)hn5PLGnQFxpm8Bf4T$Bq_T>g2oj01sx?@a$sqDyTIu%ZK8W?3wwrlo zpAI*O2jP&jX;U6hB~IB5n*lcbaX|^)Jl&GJH2HoIoa`c4^*Zb#O$5Upj;Sfi#Uu-h zY${{FIr-gKd2;fCUm$s)WNv@Acl-7r`}z8;cY5berikhZ-5ll(@aEnguY$Jx%gOy! ziAQAAqJ$q3!O{&x5}RiBq?vQB(UMCjX(9!+=E!A%K}R!O(j(J%bsg&nE2r;AGk@$nymOmTY(d>+hQF|=?KM@8`8^dsq-H{p7A`$a;2@G_K zQM`1w6DwO2kXQ^Z`dLtc~7kzbl z%-LVPb>I5Hdd)7rrxmJlH~5RtV{6l;$2!kyJ20@`3wy9x%=}Fc1G@A#n6=y@_5#9l z1|Zd%N_u|$bkn3dR_*7T6@1NIX&CMG=dMshiD=>l+FA$&{_nt!zpCd`gM-1*OS|=% z3*>*!Or4iY1J<5H9RzR;Y9CDopHzk;p6^M91W2f&+el^ zxFxxz8i?U^ZJ_=A9%&37{1w4F!3b=k&nEVWis?yDl;wX}n6F)0z0S^f?H;=+H%Fqc zO+VQkrO1{(`4d{T<1T^0&oW9ybkhyHoVCnw`OGHCE3OQ*v$oSUch=kELm}phA2NkE zht{?(m?!f(^yugS!T=ihF?asu8!Nu63^@IZKJojA6<7UV-}iK@v-8ZWh>&P)?L6~t z?|H5F{Lp(|?LB9C&)2=@TJM?lo;$tgliu?s@44T5-tRph@}3WR&+XoGruSU#JzKoz zz237VY4NHha$<-t&3y8T9hEdB1<p=|$#Q z-PQrER(s#dyl?Bh-$C!WexAj3v-f=6d#?7LS?^io<=^G~F7h5g*+zNd!RlnKi6ju?ge&SW!0Daj0{hFCymt zU4jJ4-9)K7o4aSj#DSgLJiH>o4U+jjtn{wCse(`ZJd$EWX}iZ3y)Z|?8~y{nsx+Ug*Z;4)R4uvD03gl7JY5*x~kXmoN`gUF~61nG3>m5e*LBH z)KcB1O8r~sd>^;ttY06hNKC;OwcpvC@9Un+iZgqY66ZH2_MmG!;v=j*kO|%)RO-+@ zAL2#`Y@v2pV%)jfz|7EG@@Q^D@a>O|xouS) zr0#M@SGd=gkH9NiwVU5dwUu%iSz}QHbnbfhy#3P%=xVx4TkC3=2FNqwkRu(Opthvq z)a^Dbby72V$$w^ZzX!k4P~@8Atu=uTx8eDi)9`$a`5ZqF0l8#(>|_>=_GZU2ayyyD zZOv>x8o_(@#=x%r2c3pyr>P~i@y%4zK*YD_t5(m%DCSY0)u@mWEQ_VMiwt2*+_>7;Q`&o0*tuBwOezG2Pn`ug(@ag{$NQP)DwBuBm-sfpe#m{7^e*|h6;wVh zA7A^Je2hju)_U^s0A=X6v!72V?#iF(%kM3u7P*K@>CH&Wh{2=F71(OzWX=pcl2*~ zcahh>|Cb!?ZxyRsFZv$YoYc4Zo3Gk7wRu|uJTqOKj_ocpUmKp^c1mDRjmZ@MIt;(g zGW_Z{a2l8n1iT`vDr|S3z?bTc#pc`bi=;xFHB1WR^)NlpStf0Q68N*8H{N3PfQg{< z<-=0~YDFN?B_CstmJb_BYn6aIX3Y&~>qn@M+6`#99` z?K1lzcbSnJe|(ZmNdZK8BCR`8T8MJ`tsJLFsHz8c{&$PEe|3XalA5 zgwk>T`oXH;#Wwk~;I>=1UH&z@j%4C@+_9z3D^+WlHChCh1L1~kmw(Mi(5KfBHvzFA zS*hC)ac7sgW6Ps^W?$#nFlb{BHSOTK_Nq6sTRyb5!)xx??a{+?zHEFRMi%NiJ$^PLY4h;=2VNHp@HFAd$l{ExnL{qymy_3#~AUO?Fy`%-jI zD7}z=l`b__7`ETo9cqG1IpoS|+MYedpvS%EI|8e~zCK;P()2`4=f=KdGn&vkr+zA-}!FwgR#V=$?b=dhYvf&@gI(g|2VmpFp~#^iIN8^tf^6$ zl~3ec(Rqh;WPAKu4j0`g+U+lUlL~8a*)1vA6apImQ>&PzNjB7AH-*OKlfQ&!Wk0>G zE%B4&+G45-C+-2ApL1g0+8+EYN!-TIh57#C@GdPMH0{8h*CT&hcEy(hX5+?R=TQv{ zwe-#Rzl25bB|?sP#|u!DeT8>BerAtp6gK8YHqpe=!?WLJV^x;87nI0=YiJ3zY)1D& z9y3hIFyP!T%SC(8TL%QE8X-w>+9E*I>VCgb&*knuM5L0!`nDU z947$0!w)<;rO}3#xv#p3W;Z0x8R!nbX1B10Hp;Gv6gMprKa)!-M zmmY}H$oOWgf#&=d-LcKC88gr^90N49C1$;TfoG!~bNA%?vw^dpC(m{-=e*UjpN-nk z7OQPr++{NMs@q!K+WD~yoUgjGn*)bMxA${jRm&S%ya>9+OudbAua9ufeRBK$Og&44 zOn?yBdX!#^3}U40!%H;U38+(?)9OE>u@o~W`=^xyQ3>ujM~T zW&FurA&hAbx7$w8oLox$FNua9P{GNI=0j`GUd!-0x~-sS`rT# zLH0jKE*L!P*n&XMLZG=?R>z$hfwqRr!yYhGoovmNYIl$I>fh_G6b*a{PYEf6{Cx@e zJL*g;g|cf*me7)nyG(6%R|@06E@!2ofH$={x;IQxPSYDgOAeb3AxiCglP3f^D&l1@_UQ z9Ft;gFIE?k1ixz;0KpqL0#39h2Ej3+Lj}q&GUm z*OjZrK)fb`<(O>e{&om7{O%h{?G#}zii{Y1QMe{;dR$6jN*d-aDA73AJGvp1x|^ix zjTs|>ycSss&^xMTW92G2SnJi>BA$z%G5t1N3w zr;I=D8Zfp$#Tb%GaV4AaAC2)VX^?XWsq*#DVEcYh=>rvNB_|1{4Bw|H?HJPBWon8s zaDc=Yqlb30B-LFH{hi;^Kk{EaFgU=Tu@NGa0`2_TCw&=+C(SmsBkD!jmAn^pmp2|_ zvQa8|peTOEtj}3VEDkN%xVJqJ=ecS_F0p%R2bOB`?}5Z#^PQgu1Mv@&2Rq~M68R7| ziA1}vno88$z5~RzPwnPE(+08%_f#`^+?u%9x*oP>H*TOgYwTQP4ez)fHuwL)Y1rj7 zeJIz%uF!&?fwDi-DY3Jp)ZVSb6Qk4L*?+~AQ?)Gs;#hwG3n!_z@$tnUv*&+jzD$@9 zzuC__i*;-?o#mch{?V znst9j``m^ST4!h7{+xPCS)%8~Na0&e)xAUXw-FFZcu5woTo&t${Y%S!;<8eOp;#oX<<&-nEU%a`qqXkI(y9 zV_q>|F1<9=V%$Yu;~yk-qFJl+oA*--Vdif>m4dU#(Zx|~FM50(<5R`ApQjj>(ofj` zb&5N?H2L-}`696kPo`rrI4)}EQc7CNP`{|{OuYr#F#^5!bTH5uy8S_$wdHy}H^zHq zddPK!3H}{xgf?>PC!gF4BJ8e-RdLZr@6c^OBc*!X^4{ds_;6WiXvuoqCym7?y2m+@ zV+iHb^?C1NI~jlSDq^wT3M?!w-q0Cqe~WJw3vNA8-oC^RrgT%RbwWkMRMDu2dugGf z6I4+f5v=VS4gi9}3-9W$k_#fmG2kS2RIgjw+nrPDtO_l8)%|K?I`T8O)rh?2}p0-0=ZVS&Rm>hpl4v)Fd@nJlvIWuAR z5+Aj>XWsd#{QVU<41X;$Iyym@yUNS5n;q z&zsmQ#CwY@zaQE6@9F(p_PtT>m)ZBv>-{3$yJ-Ype#))a(-y@w*1-3OTSESS-qJHjO`0wFD&piek5Ou?FM^yRO#c!<+~A$ z?tZl{9n84Hov1FkV41a@h}2-bCz$?N1ajON+ z8R}jqNY1rE0UJ!F{C4j9#bqrA4*>}eRJSo-`UHCWnmsYWmm8n)Z@ptgCe-rMC&|n6 z=IaF1n)Vdv_)~6AK)SrUYcpnQU<^y*agR?#@i`W@X}&EkV^qHq+d#TEjXY zrnKm;33rhIs$V1wdMw&<8l-AWu-nB>W7Oq1oR{3`m6b3uo!&``vr;A9rbs5$%!{gH z+eNB{ch%;k@8vDMtb_t)ACq&>tt8|_tueNztSYTZ32c0XdyfHQa(kOL+{;Uy@_FuP zY`W25)1c68@@GfiOmw)VH^)Lt4io?+o_1EMO4mRa(q}U@R>D`zteuX2om!I?fi&%C z^YB!y!ZUwL7fmsQug4{;tfAW;;G@${UpUsCSn9NgmOSeo@0KpSFdexN3i=-H^st{v z9m?RoG*UPC(lCDSrKycG$GNwr#U9z7o1t9PP%Ck#yG#{_mb}86y&-+#wt1^18Ae%p z{z}6;OID$nE0!`EnOe#_MnwMpE}lxh<&CPdoD#`HEn~&0v?fvMdt&@0LnamHlPTY3 z!{yQoNU%Ifn^{50>TAd=VDQIe%mnADu$vYSkK)fQkkuUa8GS?ixds00E&xb8 zjecvHtFoS?#S^X(5~2hC$DPeij!?@|&5)-?++uf;;bmGh!ry?Y%f7H;Z0XYWzZYZF zMx;7>8LOBz9|>}A&Gaw71|mrTc=WqPxY{Ng`h818Xebe(EJ4QJ<+5MRxu;dFxksdN zQg`d`qFMTz78VKTjVB5RJnnjdKF07BTRSKUa`jcc_gl1$g` z(_&40y|dCFYT#ILtuZszP-=l8t56g`Hznapu9TdBMoLKrU9%umoL;2qZB@oL!A>g9 zu=?1@68IPi8)tEGO?_bWhym+H=GB3b6Paflq`8O54jDRqSfv`DBq%S6gn*Zh#@D{_l7Y@Q{F z6S>)4WI6*AY>P7MFd~RmY|b+Am;PYX94-yPGY!rd^gyR5H=OK@ho zxf96Yro~z5E)D(Je{Mq=6jW}P!p-R>2X~oxY~lrJ=Lm$pdZP*Evx9|mkJ{zk7Uq`! zw9aWPP2be%%p{x~qw+aB043g_x49-O05UOSVGxRx{cSBoWQ7AidJp_oR;l8E>$8^q z>$$(Mme!?9bBp-tE;1C~7@wYAX*5wvw6-oO%U7#=oRsMetI}z4L_?eS;M`+$l;M27 zw|kcU2CEkee zU9`*?5QZ6#m{!HTEH?7Dnl<0*w%o-$un}I8jd&TIN`{7J+giU9<=2_q`BOF4KWRpT zy20bZP&)c5fww@%aWkUEj7+n(x(%gF^8oDz}lJEAm{V_jKu>`YAW1U7)2VYHFDBW;;aGe4Vu^x_fpgxl)2tlt?5wlQjM#g$#VS-;j6FBYeo?R6heEvQNUWc$@rvDUtuDy}}N3Jd=z&_A;U4p3Fr{TS$}_50S|XTgaQnp?4FwLa_wip>DNY)_%sfPV?Tz|Z?%3+c1M@6H^J$*R=-BOquHww zbo#B=uUdC>IJv*4)9)qy`T|E$>Hd;aH|y64?&W37be&UWvvEjGUHN@k-dI{7Kqqp= z)DG8_!am!jDdW(^^4aTr(pA|yr8ShAYz^jgT>~ZedD4CU(;RSPBhvno z_^AM^RlDyX`l&V3^L6SLAlxyUKbYT|rdzf^5BWz}xHPtWL#cZ*Q=6zexg_~^@Aypj z1m^W;yZwy$xh@fRFD|Wa!(n=an>4vPEbo=ESL}Q4J4`;fjw)ksUUZn3%lzJ-8D$nb zSlq~rvWj?ANji8B*q9KP&^bI;Ilc0C(+0D;Vces}a@Xp{DNOKV?0wT6&)1_<$rWKy zDf@dIoZUT%KjU{7zb`ZGV}Bd_>;7{#+N^l*>JqNKt{;+7#axGDP)Sdm{P-FCWWaoN z&z~~&lPju67O6R3?=GOGKa{M??HFW5(WBp0S}6IlYWO8Jm@xHyYee=?>OB@VoQCD* zpnB3`O8cEjdvdwD9BE;teUr3l?D=kJGg(6mPB)oW`I`;H} z=SXuKa1L>G_IY}5T8=w5)UrW^4zfFHm|pf56ZqS(9{5Fji;LNRv-&Ctohh}Gy47v& zo{sK=2e)vjlxP2Ym@KORZevh($2~wxk6n(OZO;BH0b~ov%MX}vBVc%z-a8*9Rj;Fp zSn?eNV53+6I1po}4C%A>Ir+=I{B84;e~iuF=;!~j^1mbe z;yy-mR6}c_z+K%6{8a^>M5h=Mc?GUAO_*hyFw;lo7G<4HR{YVRQ{iRaKUeL&)@F|T znJ-u7TInjEK8LQe^cimGd6muoZ9o6#m4Cl_xS#(eFMrG+GsWhg?B_ptD*1KQSt0*J zK74~u%;q2I=YLlDr+3fa;=>np>c`pqll=U@Q2sA=&p*Y>Uu5zRwfTqn`G27Nd8{pi zkG3uJpyT`!N-x%^r*4wk0yyixbq8ok6qm+b)(M+i&8NjCte!G$y%8H zfWLvQW*R0%}kLYDj2QO4$a8o!PoX0M}rijBqC{1O~xRUO}tN3~J zZ)2}n{(kj~9)GJh!jWrlGV$*I_s!W$eggX@PQhg9?T#LTfmOZGa5uTVqNOdN9-bX? z`Vkyn`E6+6b9iY5-|8x9Tvef5{0o^n?RnHb@2BNo@8UnX^AFKo6Tk4XO}U= zaXJahtXd*Y;zP@~ii#{y5Cot6gO+Gke&+2om*h@42WBYTEkCi^X5yBR2$i^>oXJ_4pU4i`)+SysGp}>p8%_qn|iWo-6uV?V&?K;5~e zy%IgycQE&Z=;ruElyJxH479sVS$3cCmI1Kau+weYRkgmRVMpRgkkH`}pixKFq8OSX z(~uPjsJe<1*mmS*8a%S(jhU>Hf1^*zy!K&``%R1-*~BtaAi61ZyJC-I+5DPkw{}w5 z>!zJeuSc79#BX$Gv!=O=sKO>;$&wr4d?=rEZEJdDE5?{PzmAqyxV>w7B~GSgG`%nL zqgBD0(wlADchmNXrtQF@`D#0>qdVOOKy7!&W&<0D1!-bUcxTmmXKc2n;q}Br$<>@; zbOa@YM9w*eN<`F^@Il>B>f)mm8lIc^7U zu05wB@#70wj7~=a>GBiv$1E&%Ub$#=ZAIeS7c%kM4azF_70xM~H|xYe1^*I*(!t&w zhy7aeVDX&(ZsURUM0z?d42^)Bp%1_g_m_+(tNNY(W_Cb zl)JCAD5KS{Ebz~BDy?svc}B8!UPYojJ?W19`LH*h_tnM@ww71`yJAOZyRP;QNjDj# zuYDam(D)7n=4I-3hr?GwEeD{Ty=r52Brvxm|F!z))X1Fi?yT2>?y%Qbft|{6g}Y|= zaCSKXKY{}uXu@&YIB=5-?*&aN$hZDZwKJqC1z`D z4MSI^sHL2YemSCbZw0r;P|*T@#Anjn)Sk4Dkv9=5^wuo6Y(1*IRk3>JOFI#!WG5bC%fUGQ4Ir}b|`8Hma0Lwvh1}wa?^W3ud2v&G{4lfVK zhu1|n%-wtOB{#mEXAx!26FO*jj$)4&mY++$lgQUc_$qIy$$LTc@Z7B&)^tI@_AHCg ze}zv|874s0#WUXle!BLr)D&?C)|AETg-x`)HGZzCfxY1u-}u&1__*aO$T`TzN4ZZq z0-sS9AJ1Mo3cZ59D%TPaB%3WmKxZ4t2>2patJ4en;@C`Y+nwxDYWj9O7NL8B)7v33 zY-*{4L&w`^_s2B_W^~hskWMUNbL{NWM(Ub*cCt1}{BwHJo%@Z_wpymbsHt5#?3)q2 zx0O6wspVfx_{87wLep-;S`-o*96$n8y6`x|;Nk0I!rZZ38HKem_S+hR*CoEo7-GD{ znTDOJPs8Etoy0yeRyLFdGU6}0?Y_P+bnY?n2!l)SX|2Oci{pJ_(N%NzM%Txq-l)2Z zI6{WZef(r-t=d)7kWH*%bDJl5jf~N;`1_2d8s3sGbmkXP72mBg2JpiL72x9=?vC%( zZla86{~w_Wj>0!xYPuOXkHr$u5D(_*+6AC}l^d!#M%@Y#Dou7FU3&!5;A?(ot9Aum zlpXL)mmN^R+n681J8kgx#(p3#_2h^3b((Ewaj>I?wnPpKO|Io{6YE~fNaLoY@ z_L>osnKuhBn5^5|G=FJmCMhBYph0EQ=>*ae^E-~RDzEIEIGH6T5=_VHtXyOL8z`zhU~f7va5kthqfb&^_Jl1`V4Nu7n*D-Iv=IH8w_5`11J5a>ykTkLiNeyPT7@;c7K_yG?gIt(^Dt;ub(o2!V}eJu6Ud#) zmo3^HSZvZ_+8JcG1$_@F-L?e@XsAU?F$PpaGsoGOBKgPMu}gD(_$(ntesyBIUGE(m z-dj|h_&i3>AhFoklUk+4Fxhec}_~RS6!; z&|!D1PB`(w!sU;HYyAXxHXagLO&D1{OM52HoM@#_Mb%!cekh1u?n0!uXE; z4%-bsH8$P@KfVt@XBomhq(LxD>p{_PsfF<0mzQrtP5fB-PijwU!vEPG$@ZtV$2)9| z5MESjE%!9GYq}NPJpEkyW>6%7y;XZO2t3s$nJv-W5f!vY&8!e;K7ET%3<=&bU}knn zX=Uc)%}0FnX{l!uhpr<*s$yO45?m+UKkB=QxAi04;-&fVMxwKoWL-Q?CxNvk{^^H* ziW$Mmp`>O@Xaw=8Gye&WMz{DZSv-u-!s%ba$&2SSMcyGnA&?I$E8^W*$hygV89zRr z_QC&wlnJ?;yiU*!XYhrd^L9>w{pn?G>XHzaSrQHc*+hVr{53Sm)e-Ms-8OHvvKmdN z@h9D|n(xY%-Egk(nfW>wGmN?yBAfL)`HL4V71-F&?9;y?c|)J}#IbH#X~(3s*cUH% z&C^|}wCc6h2f0hlbI;{lT~~gO=z&Cw`@|!9TgQ$$-+A|=k2T1)NBi+*FK9ngcEeK; z?xT_ng>k93Eaq?WqrUNmUNnfYEaZ~bca8#Z%d6M#zEfGvPO!B6Pb;XG^nf2PBENo&rMAEw+)NDXPb z;}9Lm-9V@1H2F931-B|;0Y%gId$%OM5FN+x;|_EN($=5f+4G_bgHSQn z%d$_e1OqKF;5$&7t=G()Jo!aGjvM60h9G#p+NvOX_AE*sz5Ymixk0xXYIysr{&#q1 z=L*3$iyrH8znkNC6rVq4e;@m+Zkws5j3{-##sMn5qp!_9%{__BD#w@Bj4zo}?2N~3 z^G|29^Plw!A^(UAr$S3Mff|zq<~iyg-vl)o@EyqMvlcG*yN@V!#tU-(k5=fZ-}7&| zNmWhe&+0OQ__3M_yuc}kHeC?g_?0oaXo>uw(C!n;Hza3sXzeI>T&dew65TN8a~LdMb}U=h*l#&@$E*nF98TTAK@N?`POX211Y0SawhzX)0#67)cZ&jR1moR(rOyF+(HzY)I#&lcE+6G$uM5@XyiHUlw zGfd9ZdCfK})*ks;%r1?#&pEDYZGN+zKOhDun5k@$$gdG;s89Y66f#rBpBRbVnCJ^T zVUzSP2a3keNFL}BKY)!iuq`*KQyWWn* zI@OG?TjTwr#dA-beKMOd5!OALFYHxWEB{xNKZZi@z-(QJ8Nu$A%r=o%pcM& zzF7S}Y)hMpt$fbgISUG;?@>IJrlgFN-6&W_DJaN^NyIDr$E!Bn>yz*ggpb3hzq4L? z+Rv%IW4VTN=auZP%lIV|<~0G^4SL36$PQxB#aRW!@A`&Ag<~QFO~LF*lVPU$-L1O$ z+S4SOGHPhG$&P4fbCWTi6dmjWXk^YG1=!~}&Hp92K1;!x^Va=8od z=dV1Ze}W2yPk+~^`SEZ7^xu?mM(}BwUZktT&%(4;n5#Fuwg7JGw<+)KnMf6 zs9@3Teykh5=Ata$Utk*Qn2;<8=7D{d>{wG4Y^dcT)eA@-o$h?Ocg6ZYn@nscFmwpD zoT;xqpzIBN9cMq~j^T?}-;wBlvwJ;>Z~1g%s)b;rEoud%&b0M;)h*aSmZRI-g%M38xtRJ7Y{~OY#E`@o8#vIk~7g90P`P!6MtoyP7OATte%#FagEr@ z3?CZPv>Z^d-J41!XNXKH%x*Ygy$LV8a*4iHtP0b)&2zcsNy z-)^JFZ}zES8X(}{OQUhWo`)OKN8LQT>PLMH1V6X_+jbx`%VJZ3u+RiDw6x8fD1L0t zKK=k_7WYm3o0T(nTqP6EV?0|!;{yn(1)yehGD6as%|1;N>ZfF4X0v=IR;I6BndJ7l z3k-bkH~1L+ThIdM(M*QRFZk=9CUT{dAV=?Xm{96UdbWG#y}%spmn&UeUM@Cy{WIQbX>S$^Y|0^^291RN+R)JP?K7i0XULfcZr_PsU81 z?tWNIxOC=2-CKWz%9%qBDaWmeTm3C)&@2706sx90(+mVQm&hL?{)%>P($_ARn9t)m zab^XV%NJs-)X*&4=uRnlXOv`DRB?<1vb}_bItGCI-o;Mx0Xdo9ha-J z7#~^SY+EUWnbxg938@pznXx|dy-Yr~@%=9v$fs{X?d{?a-BjDeiJ_L;_1SCiDpJRr zNEyG=AfI-&&ioTWA;>TgAHpJY`~(}nxA<0$e#0xfF89Gw#n+hM$+nnDdXpqCp~57* zK!Ok1K7n7DKg&OjXN@D^HoCul5SFrKYC@@V{CV4n8w#~(Ym`ikbm~cukQJBUW;D}e zjYk{)jSyTs%sr**x#UN+q1*pL{!B`9VqP%B+&ROmI=Bhk6c9m_tT8YB5P7l_z%AK1 z4x`xop40Q`aeQ|T02wG8rbsZwBIVT{iR^EeXoS(vbnUq;K&|QBH+@-P&T-4t3)TdC zSHz;56Z_JWdUUSoapjsi;$bbOX0~s$0?cXMOKfjzCMALEQOrujv6Aaxn&~IP%z_o^sR|qP6FFrL6W(0((J39 zwwUs|fJ5GV&39T(Yok2?F^-*kByu*1RPNI#o%fNxCtme{P~Ow;ULZ^SJR87rw%aO} zV(%ZLQO2kqDb%2!Lac;hU5sALJ%hW)+UG`{cgc*E7x^bp)&r@I+HEk;#~d5`I7uyC|XY3i)4`yZXakn31)%vdeLnJ&RP?<@PusjW4*?D5@bS zJMM^&h5n(*OB1(*%{j4oRu3!!j+a#gz+qzr6gMV5>^|dcTCCuPuAr4BcYtD>P1G`B zE`S=K7-uK!74q9N#9IJ|>nH^cO>F$z%|7S92mJF3yWbf{B5GouYy+9cQV9VOe%R>_Ab?u889 zNOBr4#T?yyY&~iw=*1mn?g1K2KgLGV2^TlbbVfDe-N%&L_nM#Cy?A8cS&7^o;6#j* zTR+oDwg5g;KTAkvlFfSXFH>(u>P&sa{xWUI)DN-0hMIX-{V@AWaz%kL_R%N@a;E;< zV9H~%O;n%e*Z1^Tc(bCqGB>MU{Y!3tIx}jf-kN{6fWIFl*H&akS$sytmA=4~(2T^B zl}C)fEd9jYe3aGq*@vXT83z7}wy@)vujM7%A@f7GA(4>@tZfX61@ zx_P{;yt$_iLQ18hwi3-f;CuW?t~2{do%K~~8|R#o4)%32?e7mHBx1wMqBgl^;huKNK(@LPAqY1^Sz?|o0-^9(UqL*a??_X zl$j5#%N;z_y$RrF^cOw@!f&RAS&0wNXmHl{Ssx#kt`D!_o;gk_emj)>sLvd3m+IY^ z>=+t)=-FUR(x)2K zaEc1fpkV$Pama5U-XUq8Z^T8salO zwJ}2fGCj2^!oF!kgniRy2-78dYWst!{hdrtZL}CkhNJW$5rIemm(`VcH~O&d*pLmi zJV{oxXf<0Pb{b#}y97O7xc_zP4znSbxTQ%|FW^WEE!m^Mtle6O9lI;Js&quME$obC zaW5MkyDNSP8#hv&PKnbP*5w+?~FEf8XZQSD9ca7NczhTC0b)UFWr3ra()* zc=Ex;k@!@^P}uW-s`y)e&uvXwV_CclN}}c&Fcx%xZT9qA;crKFG|PXe-Nj|($<&)Z zSkS4S7S-KreDhSRr&Glg5=D z2dxPztG-u}TfbG0#CH696WjA& zHpBo5R^F<)#+am&-lLrPS zKD;l6Sh-UVF&in&_znREr`XIFfK^apB5&7h@9$(`wwM1?SE)6&RA|AAjEtXN^7po6 zPUmNI6?Xi>y1eYu3;)0?d>^@NxAXP!fHr7=DI9r1FEk#XZ?dD@EoT0`yPMAQ{Vyzd z$Sh5N`zQ~K;LY1PlGZW?GFG3;IOw^led7tjJ~|w2!bMTbW61{Au#}wv%C1KiT-75^ z6B%c2o#r;Yc4iT3?z|#;Z~VFQikf+>KCh^PN9eqw7>|i0&8+P|RM08^ z9X_A^Z}9ocsXjhUuW=F%2+ccaFj~h`D7EtxPLJ~hoA_T0GW-C;#Qpi-8~yfpun6HY zlUmI+q2bSO?nc9=$9o<9{l+7{|5x-fjd$o$lE$nh_1V;&Wd{@-z{-;7e$U zxA;S%f;Y1N;N5~S<>jnLE{n12%(VVh?qKt3;5#3uCT9-f$R4{zfRP_M%(r6?SyYgB98X5C`Y6i-V{v zdblC=n5gNAvgb(m*!h4OGS)QpAdUUu zPE(z&KXlis_P4m5=gmIrt;>;F5;3=R3JvFlVDs|OE$1`D`$SRy@2p(5lv<7i`}==l z;r!m%7ow{dB_a(y^*p|$wR>WJb{_M?KI~#+vmAF4zr{6}ld^x#1V)05z4FuYB zDaJ-@PWeiVeyrZOd@kk5@gAwmWtOq`Lmw?a_})ndzCUZeli_3E*%Zw8Kk^+Hy#2~c z@>!jpprz>*;5#?J(3eMJi4tyC>Gr9qE1w2HDdn$d&i{@WQ{>5eY1TFdT|z*=L$ zTKS!~a|nXx%V$GL^8!tQdNkilXDE6)W5OJGW3l^wpgZ#);$6~q_*b2sPsFA%60!93 zEkLx=IkU@eL#nc;*PeF6ZnMPQS(#jMJ|*<+`Fjxnt+!==Lay5LLoKp50J>nl4(`oA zt=>IuoZC1i8~CO9uy?+22__zJ)@QF&nIZA=+Aqe-YAfQA+P?8{ZNGSFZJ&5a?dkDg zZB614V5RSQT@s(zVS!R`(PVHl>$43ddz;m&7-x3`E7$VIC21cBq3Sz9o4E|p+^iE% zaf@nt%0vyNR*=b9L~8OyvVtRrSgY`@D_kyw#$;F|9Q}4DlcXrRMax`4>D>1KWjjriJqN)mITIu>af(|PXOCO+G=0q6O?H_W!{an=)QyGj!CN^?ZQIZZj&~Iv{8k$|CqF)q}3PF`e0Ec zZyMGs)DkPC4KQiLy&cBjN4=+$=GK=%o&m`ke*aK;*k&B|{8A=S$0|vld$eH9n;#R) z*)S4n`3&RxVgE6iwEXZ)RWx69&)pX&}#N8li(U`?1)$Oo8dj{S9l zJHX5pHij0g14Kl+_OM~P8VvK&WpAx zjHsZj)AUmIum992fGhJQXWk>Q(hcyrW<-#~vD9!*=)m4lB12TIy$aWrU zpQ362_B-Jq(D`v)IosB6-{Z|Zg5*{yv*=5a%kM)0d>%xMzLapJUKLtRC2SJ}VJk16 zp|0F>0zspNK0PM&0#3s;@QjeL03Y$PLO06&nLu>+FD7DfgXw`yR=s&48lQ0Z%BZ1D7;wB-0 zGI>Ckw)4*Z?s~0g6y@g86gxiP@zxwM6Pu)L&bXP2bsPt3X3}CEMWJ&l`g2YNw-r!O z<6bjQxRRMC$zVNrZtiUXv*WwmibxGBL6A6m+G|H}P5PcibR$w$m{Jc@)FL28o8Y?} zXFBtm0iC;7-v~%h6$W6h=CD(XN zH(iL#O+=fM ~6*1S{Ttsq>*(uXpuDoMz#`1L%w`pRO=KqImYOKQD@ZQM&xx54nR z8)kxl{1gNjT69ieIuKfLk4Lx>M(yWPFogK|(#0abGrw7Y>w=j&)7p&bacVc1u|1V4 zW6rz<{LVRIYOpfGuJ!EH#|?>+?}eRKu_HH`k6pBx=navV{sY>K(jX`7hIi`$Ui+Hv zC4;{Jy!;y5Lmai=dbYo!?>zya@`t*Ahls2l{6E6ZJ+P|c+W!dz2^c&scmgb+504*{%-!rnLUp+Yu2n;vu0+^ngL4JO;Dwm{JdLvJ1)O` znDoE<>2=-HE&SJ%E-Mt3U)Md|!hcrjF+V-)7hi+FMCmvC=~dm+E&Pbm%l-82e!8oD zTl#UL5{LSU5Ycp*p5g2>E2}%EDG*G1%Cq z{PDNcHcd>=p)2IdSV(v3SYqCG^vTW91O3AV(E|e_Yl8HopZ;G;|4R_t?8lB*?0rG( z<9_ViBSclnbL3uWg9xVWI%?CbJe)p2g$v&LnFo*I`` zmcBl^hSR?}r=u@=Zr@Q(-=cAub5C*a$SA{q_#NCd*+Pbb&h+)X9JZ7DNzO$^VZpDD zf#&or*pPhA2c3M|u4jVvXQn*_cgqk1;UD;0o$mO-nA>iMjEax@2;0RO--~vfh*@>V z;PB9B$Dr_O(T3G5|Z%0OQfbvb?4#cxOo7!!lc(-;M_j5#8jYOAo!R;l10N)|t{z{q=WXzdB)3 ztN*&<_?u{Ugq4m=Hv7wZZYkm;dXQ=ME94RP3brS1*an&?w93>od>YeY?5CRRWQ;RV zl}2lZF~k2}aW%8YI5o3bi1nu6`+rrgn~bhxFUU`LRSRRQU%Iox!C_%pjli^)h4o{R z3DrLUA|MnqvU6Oqg3?y~GZ0@1DZ_rkI+1aW>_g>dCgF{e{Pl&cbH3{w%wLUo#0b~u zyQoQt=GV-G)UZS7N=>iPQ)iUo^6@saYEHaJmcsIFIG!etC~UA3Tl1#{`lJV-u%U?O zF~S=Sy>?1aKQEO>4kBephZs<4fTa2-v0CCEP!iHmP&3FSTY*+K$<*yO2mr@viIE^d z9Yv;Dp%|o0^EUC%%)h0@no}{&VE46-|N8nHzt;J{vXW5jDZca!%1mK3Yq(H479}L^ zU(UT#yccYjOh)`;p}_)RYz9W%x zKm(sz?}>Ua*y20Cj@v}C7`A=m8xo6bc^c_YkmD!0SJgOg#7AdC0U7akI-_PAM>T%? zWK8P~qnK-GUN46?-e7&FFUS}<#w^{P+q3N8U=V;u@ssGZQ8jqh z=G9qx?1QbQ$DAubxjWaI6KIJ3#C<8EpQj1``35i>s4S)(;L-Age5+D}UZlf?Dah#4-6BW6Z zP~(Pq_W(v-SpT3}7nmWzI9)Ge`qt3hPb;?Dc5pk&k<_+K8oeY`{ z#d{BHd0}~Pn6L$q8MQ+4Rb0B5k>FIfbumeGTmG8D4xY#A0C6iw7@#v>vE+W6O1*`m zdHFW+rT1UHl=$GCR7Gp)z;BR6BP@sp^_U%FMiv>9WV^HA?=Lv-KcZt;-QCX&4>DV9 zu>r=LUB=|KQyZ7}hz&5_?DpD63{v}d#;Y9`0ce^m-PtD{5i@7A;XGsecLEf#do+F7 zrA|CP2wBeloBCS2Z!vQUj3Q5*TBbO&-bo}kP?D+UJ>6DXj+Sv6DqNpGkk~9>YolMKg%-{yE>u66$_ln({lz#^a03t1hw2|D=x@Gh z>32JyniHn*>z41Px3hwp|AC-(D{%6c9zNZOirY>zt7q*SiIMxeQxkB7#j?TuJM4y z$oP@&tPybXBAFob!fvzd6G!weDcD=MKJq0G-XnD4Bd(5*Snkem0+2YpXwgbS)_G8? zvD@NPBX4*g+WOE=+S=k+d#h~-{!KBPQ}3ZwZr2T!<;vqilN*BvYs1TD{@Tn z3ZtI-P8(Y*GHs+`mDY-3`oc`D2X|8-j!|HuYx3|ta&2y+sFD$Lpr5_RNXfh_dFfjJ z(EW6WM~toViT{2LZbACX=K;Y`3^UdrM)4I}~-%KIf5Y0G)i1Rn1 ze2>7X-K;7yqBjk7C+5fjI?6#SQ?GkH#!!*HeqCz|wt7#&BP8CBR_Rof;ILAv)3vH= zy6J~~bEc>dLaVaqfsKWGQazA$wY#uE=paQ;WNpLI2`4^@chsO+BUIWP1jTc%j%PGF zP3kFUxq8XHXPLr{&HVRnqb4-{zjT-G=DfwMPw+Az`KT)lTofIf9X*J4&`G%kcRBob zzdtG3zQ4hQqjyY7i_Fo4_~z`}&|GnUaRtk$6U_K-SaY#T&FJy;r47g9>}1=V{0fZy zkhN>p07jZbWT&EWbU@k0mW-ovOX4{L@!s(TmDt*%cT7v?JqMg_Qz@riwpw3#cP4L3 zI#O4-yhh(jn*N9y;mw!0$X57r?NQFg{2l3S&W^&D=Z?|(l^NCKWY%~w3eC9B#)xmj zq$eKFIX;k@xd4%FbRAi|UqUR?9_LN3L;beVe`5Nu@xzpYfosjMp5b%d#(K&Z9bbF8 zn_1M)oJ-W_GOD6Aw=$Q=KvD;dSMci`Pa(Ie7((P=uw^!T?^OdxU&OD4mFbDMz~b*Z@6P`Wr-EGx(^hnZsIK?aDd)-VbJC;IJJNSJ zzfvdwt!af%Gp#^Avvhf65lGVXOZ=(S`ymPQYHG;FszDEFrS^PFbfi<_9eE`vfb@MJ z;Zk~p5BR`#^QmDgd1(0ga`AHs{zZ0M%{JKOE>>r@YDBN13W&k1IMBNnirVu@d}t6A zs;?(zjNCGPA^~Cu&QqmKyVt)5p0uv7ZCw^Wnrx*;I%~PKcKug}=%$tM+=AZ4XHgAh zi_Z?#-_I}n>H9u>L?&xeQt?_}yA4a2t3Zo94j z%w9$1D`)hL)^36!&j%Z4wexD|v6s_18SRNb{`3u4#P12M+T-9CrMdsBZuL66W#{iX zp`-BC+p=e76s`^mA5fFmJ3I9BwL5tmttw+sdZR>tX?!=_g4Ps{APnCbPs7PAg5Ah@ zt!Qb^vLcz%;qGRY!f!y~#1_0d1&s>!XN}JYBf$~XW^WXDSO^&^+`ySds({w1(#sa< zIste&Z`aN0%*ExvJo+(YoO6u13?lL5$0we=_KW`u_IYm+q+6hfI>_eWT!_|;@vgCH zf}DI;`PGs-za{r{?Kl1%y+3G%zeU-jTVuLpZWn(Vdjz+l8;h!6A7ou%PhtKpe0=_F zA$&N0t{|qg?jraz+MKWLyH~$F)M@taKHLLGE$9KyEnY1KJR9QGqpixtF7TY%Hlqm6 z=ngM@i-ENl&R_Ifl(5$FX5jO)-u`Iy&r!~T9`Uj5bqC8s^Pf;Eq!|0tu1*#DFD~e! zgTDX6AyM#1jghC=-)4r3_}@2tJpVJoSBPx#IH2t3{F9!m%(f<)t)oo0w~jKBB!Gg> z#O$i-OH6VQAMgui9KDqs#M@Vv13;Na_%ng5BcaRP$UsrdKF8UeK&>BQK>uT4f*`s=Z6DKSr zkEHs#<8R?+bEy6|MB?9yzS6vb)NnQ@^ZoXRR&9uS!=oDclPD4|ekopjyD!uhQ}=(mx}%44VD*6^`D@}CzfNz?Z;g)`?!3{Eam;0?C6OJ`mJBBXI&Cdn!l{-0 z3Wi_X5R$U+g^dst8Ht`RGL7rhs9`mf^rl;4q<4Cs67mUa`o(*Qhy{JUpLWH28HC-) zI=6g%=&1wVaB)a^bBbBSCBwxf-Wf^}9>c{B-VTbXTQ<;?1$}wF+NoU^{d9P=liv7W z;+)AV3wT?($(_6|nPbNv-4R;#CgM7JsL#wx;#n`*zKYKt-xhh#oxIYGG~tjrV+1Q0GnOhb)0u2TLY3;8rPxNReV{%h&~~$4sX#w@9OXo z>hQj#oC<1CR&Z-*Y}AK;h!wX1e*vpi@V36 zv7+(xO`c;z;WJ81Vt7y8!E<0~+EaJ%n((wam((4c8s=X(d{ZEA>&21&%pvF#(bM%U z7S#8Bo>@Pdxv=hFMdW31gg>tsLeW_LCeGz2&`|vG(k-jNi7qBfQ-lh(1F-!82Kg@YAn?WRE6U_aC78<8f2KuX`BUWf}= zt8dh1OU3@;sIHmTjcn@DH$wF%PzO54bJ5y?oVtDm>V&c}S+F4l)&fFB)$39Wxi-mQlE8=A!iV{dc&vo1g(AY?IfI{)>-qt2>w;nlCdpbG~?( zW?~PmzGM*)u$X_U_PuTx84wrDT$7qymZ1`u`OT#C4$W6Z$=_j5!y`2D)haxT!v zc*ol`K}^0YeQ2<%nY_tpLp_tnmia2qB1yTrB2ttE;rm=47Y2K(d>2d?5_EB zkE{EDlX_=AN@n^qX7%xcRv$-;GUvpw)0zeE=7D;^fA|A3E*!p))h>0~V>V?S)u`bKs~U#KUAiScCO z7q|_4>|33|vDk*p2Ja0&>C+aAI^oCs&P0~uJ#yVVzL;5fhzabSSBP! zz91pHtBA)c9}c3W!@ipI&mUp8x> z7ImNGrD>vB8Cm&ayNGcqhScyIJ<Z98gzjJ$z9MU5o@C)L^O zx63>$K8*dv`e zr|}Gquv8g7~sC4b|5 z#%20$;|G5)?5D^@XW`py-@i>?=6?m#raXw9H=QYR=bWMO;!B*jiY5=9)6$z(V9_2Gh6-TPm0Im^ef51ymzKG^S6?}>hp8#y}k7Xr3l4XjUrmHa56l>LQX z%s150XTu|gIBQXLRKBC-aKNQrxch{KnPHi!mtUnF1_93gqUiMJm z0Ca4S^KJMixh+85{DQyPkC8F&I&GoLt2E&+6@JQw`;`)Yl<*_w(hMR`(r=YMUgDf6 zEk5}^;Y_L1mGgFTIvx3I@C%0D@0N_7+{|x_>~9&}>pmmVen2|w>Wgz1jfT_S2EfJb zaRt{B1jt1KGD1K`PazvElRdUSx>VCEe!r$d`>CD%a^ApwDEoZHAG9>(*k=H3bUvWz; zs!J7?u#%;|1O&U7J$(Hi>S)Qf*J)AZ_AN|RFlf$1AQ;Fb8u;tgB=*3wuYC7Ub zqalqP(1ul7<_SA}BIO?~ zg|_>MA^%}5^6^2H!L9j{X8Abm&r=I0K9VQ7$1&ZRCE-DjgAVP>|kc(l^ivZH$A2?qLhW4*>z5)lK!o8DygWybd{t2$#+& zZR$}_&SfXxHXqPTBl8OeJPnn*D8=875|GcIu6DM=SP`yljn!+X`ZX#|}#JgZ@ z{EIaWHn=Y~Nu!l?sfmzfKx8}cHyO+iMK;-PGySdm>AZesuYSBL=fOVvAA=Ua)sHWT z^5tjK%Y-+qZSu?y?OS2LR|elLCXnJ7;ES2C`m|;aRe6W8i{?{vU)(MO4*k`vV^74b zg?pXxPVh0*g*7>@wf9Fj6AeC19h8?ol55t+$X={vBK?gAyvRjji%rY%_1hvTipYLx zqrgWvW;36S_A}Rh;v-025OXzsGeC?prA2>XRe`yTR%a^GS%roe8Pr;qhg`slX|!fW zzl`Ni#*~JqQOb-_9yV(jyOw{EICdtwmw(^3Y_#&=3o*GUMJXHb>0un^Xb?3=dL3~) z^M;?Q5m(hDx>qH1x^8Edk%dxR&eF34Bd5?r)S zZ+6N?2P$6*R|Num&3PFoWi{OP4mDH(J32BqRDUS}DGH_bSm-LVOtHMA>k3W_lk4oZbnwt4zt%a@W+SJza_xts2DgTfMoiHY{av&ztgIOE@g{s+f=vu{R&=m*f!O{tsr&H zU95F(C8^zNlHI%tU7$kM*(~E(3Q5OhIV7NGP+!nO=ox!XLiBC3)DdZ9XlajF694{D zS5B>WoCCCkw@%CuN$9yb)w5aUeQStZa9167QqtQ(!ngM)YxT+;cUpFAUria^$;FB> zwjWE}D!uwM0FA*p05*v)Icx|JPDQqD=!#_3yoS=wW*rYkn!9z|=Fr`;m%|Ko6=W;e zK!4%zCe>e~bU0cXE&i?gi}PN9V7dwm|3DTifgrq@s-9D?#H-(T4wMDaH-J{b1|ZB` zrLEfQL~hDYoWxP|S$-zlfV^(Fb_YBd2+79}%i5<~TN@oMPx4=u5@YlYQTy|6pmxqw zs6CMS52LmjKk`2XnT-^7D)G~rHSOavR>9dDyc^a9b_zkUV7%$RC`&_g*m}NyL|U0u zxUn|Z%`P$*UbwUXJQGVUTD%%>&Qbl%ipa$>>G!#5&N9g^_N>XL9g3st-p`2e zB1e{ce*;l?WH7&}J&766Tf1Tz{wBvc>&^V|Gqd!}OOLE#8>G7!r2R%2c!GT&!RK=7 z13-7SXw$>(+Vn`?U1YB5gp9AV?hqiYfp8NLIP%mXe)r^{f^wTI`}yw4f#KO1HdzOz z0b%`L=&Sy~Hz57No)faGI%|V>{3JiKb9-)Q2j-c0bF;|Gm|=vyy8~5gB>IT;!N$c zn1k4U|CUV~Lu4VjTFV=afQvLDx|XcAn|e;=!g%HHjex>L1fph*0tE?@6Uz8)sT;}p zjlB?^-lC1#1wVurb~>%B2iF#rFRtzBPG0O*FHC<`W5pMq=djsePxrKSUsSs|wD8{q zTFV#npNo!e`NI6w`3KLcTpVgR7R-!wihXG-R~f1soXYw{(|=2fHt?K4w6>Awh}h+N zjZ{8*L^4`>o>k_SFGkleiZ;S~IBAJ`l__70D{1XPNP9pTd5Xw+>qJ_!v1aysQqWzMo&%SCODv>~_x-UFn# zm5cLnRlL|c#0U0S<&C7IdB5OG__XvqyUZH~B!4~&>i#a7G>1Kj$z$@)E~bXx{QJXM zlHgan6LFFyhxcZl`HN0hH3y%k$77*QuE1#ZK?nX9pv*wXPRu_wjjPYP_}myYwuv;Y0HUGtYW_g5V}E6r*^yDJ*?B< z0Vc9f=~n}`?oll+=XL{~qMweZv&|H4=l$s&rt?o@&uU2iTQ!5?BZfPZxiX(+NZ93n zZi?n-yI1Dp_jP%{e5o(*e~uBx*V-ffn-dS;bBo>svKlAT5QJa={+l}F=>G#WH+7;I zP4OR_c-;K|L(JX6m(d=tPQKJt2krYm;V-oCYd+{MN=^S*wJ}V(RcDzyd>IfZwn2Xk zqXqadcD9(?n@@tdi@Q2F%`MB50uI`V#)s98P|R5U+>6B1lC5ua&R9%TB@lc&8SF`E zU1!z6l2HAN0yJM)eOozr*{EfC|Eux6yVazTjBm2#`r(f(N0TH9Rd7PtT>$)co$1s; zN;~!o2HDMD7)jt9G%RxI;I4CYfBd=k3ao!+=*HKuIT)Qc2>S!=|7+{W)UVe0H4X-< zcTu zj*Y&T9yNZu(qHj>w_TpyK;VDVX+KK&>so=J7t6GBF&ri55>gWXJGtAe=<|n$COmYG zB_DfqIo#uC$;bU@y#bJT7H5&EcO8e$@8aUF@~r)Q7f5u#bmRN`d~V|uPRKP|gl1J{ zREaXPu#9d$1T)+oN>ydoZ$PnJGt5f#jKuxa#;qY|P5MT6{7`2?E@$H5-h~?(=@W*! z6N>ZKI1^-C_E#VoZ{>#(G{v9Nr#Rxl{u4vLWwetUzwY=vXJfp0Bqk5>;$w3ShiOV5+7XInGb-{AfrFlOn=p9ZA^B+u-7Ve8jGbHtEY`Qs%uGia ziOQIe&vnX1U~JUljL+o>BkXgv`Mq1&{C#g7eH}ZAmGU8m3#*W_JXA2>-?@-n??8aV zF5Rh8T4cqhI$YJoWGM5C+_AfrCSftKSm!zQp7;* zhsuY(FSrBsARAh-@bH}JLsKF>;2(RRi#=v-a2!SJySo3ke*HgX^j#!D;Gy5EzT^qKj?CI!cg@(TUxyf+hFZ7P$=%=00t5q zilI~d`81fUuy)(rqQX~ZUl`BmQMh{UaCg?Q{8!Qssyi{4^_eQsjGq#Ko57R6F@0~* zgyK0%7%a&~VOk2Nb+sR+;U+*mUN%hY1p3kxr~B?y=?TTcZZ8kzQqHR;W6;$`=Gmd# zv`s@f2%4a=8J( z+2FrKL2dkp`@vUsV$fx0oY+MlBaI--%TWE91PV`DOfA-)vGAn(On8xrf6#;gMWbI`Cah>7{LXFyMR_1YOwkY8ick@9JrMGiUjdQPL~o<|vrM?p#OoC%)E zhwXW10C#?u^R7)05y+v2UywcJNz(}2pbkO&Guh-JT9$q(htQiCmH~!~4IDgj{!Ni! zN5-y4h342=aL6fJ!k|nQu~puDVyyf&*FwFUQs1q;)F1ludn0z6O7~LF*jUpqv0GFE z{kOH3zV+u-6XolB^FG%4!C69OolXov+3Ccu;lJDTAn~QF2k6$It!~U@qs0$5nRa}u z?dlNrO`I5eF?hzmmH!LAQ;$*d_n9-@n7(1^hIv#F{b+b-)mEp?SyDnQhFWL~F>UTT z+s`tlb%U0eub4K69rHjM&MC%?aUMc*Vi}A5$&1BGdiEy%yKzBrA5xJ<*CeE`?*D4& zuNRKN#NT}59ijeIajkj5toA3-7u6&tt`@Ly9})rFvMKS&^%C=Hch*(bpzy^9guBuc zJqnY`zN=Z+%h%sdK9kd#Kb8co~Tm-pop)6kILJBrLXVp6AW#0zHdDgW4#W0bD9ih9&@*7$>SYLZW^Kp$(#|eOZ#7*)`_o=XTa!E*L)JBD95 z^N^T=)yk#rLxu+=&L&~k!;02YrC?_-?V4yf9Qz(fSW>-lE+)wSF3uj>W|FZjHfccmyh=QOCmeYX5#bDl@=xiPtx+fMxt7Ic5{Tqy9>_9xG z_*=dxj0(LZjV3s;3^fGy8`cv!w=X_nBL0h6r15C==YMizCeJgHOXTr2@_nWZGsjJ# z*i^Cb62ah!nd?6n73PR?#i>wl? zqZ|p+SvQK8Ck3W8eWNwSK+9K^B{*s){126Gj%4pQ4NT*UyH>qeSKIGgeZNj@tMQ6V zz`i<_YDw$>&9&6Y48@-A6MWzrW}vExi#FORnZlQ~h{1;I8RVxseUe`Z?G44QA$>doadzOK)<@ZVh5HDS4J+XH9a)jBv_s2@-NixS9m#P!pY; z=8OqP=Y&}b4eJK7ggif1o}k)WG5Mg{(}i8xO+}?c!@jXnZm2%mtzeI|P<-}9?vQzt{yYbjD_BoW8?OD9KNBOEvwd#3+vkR#0W-SN& z+Vjg@o0R!sbqUL=(RtasNtdK?%S!mnnli_Hnq93Q z-_Ia6yl<{vW&n|1r@t9H4;|HYjXxF>KloBXM73@v?G0)nT<Q&~aJF8h=Obiwa66Y2>$-KdJF|I?(G{%U6i4p>}Kea>bs|+*-a~foO9N z&TbTP%A2&OQNCRtEdTA#E|BJ{UBxA-8yDIXeKyyO4)@m$s!aZEoS3+x;B{xo zzxj2In)4PHi9UbaHGLj!pX-=FynLA*B9r*ZunZwaSoSnMb+o%g#iQ@e zjlNUYXCt$oa~zOkM<1k`3xtf(e}qZK5twX8m++3W_$s~W2=UOQ^v^pwJ7@QiJiSZq zEtRk22sn+(_cHmESarl;o36ya2uLR9veDlIL-)?6=lc9$cs71*CyX}Dx{i1~aU(XA zqRwnFl07WK092#g+N5?O8N`MYZgTXR<6x&O%xdDf+sF_%(>!x?Qe3C9ns#5LY+W#i z-^&M&0hIia&C9ABvsK60UMTjNDyWf5ir68D=Zn5NNwZJ*wh~xEzMU_cnnMlhVI+?E z&GLVlt;{#b)1%1MX#ES%t$w2=e)(Hd<#ilx%H!Wx?4b(Jr95-IH;*#G{1m<1FZy7rsN8#-qVu|ne!(a} z%6dOB)lKrtWTnbX^vg`Sv#U(AMo!tS5?QggaLlFhZTgK$`xAw>Uu<&o&f`eGe0#U% z*7PU$pno`MzJHV%6m2%;~Wi9i(fE+L}PExp_+z136`%!f`}^bU3QE~-d% zwtQdF*~``0Zau{%S?2P)&%E}O5t)G>8}g)i={|Q~bHvpBG`j=dzo=8k6t8h(QKRcg ziiiV!FCaPIBq7XneH}vCtoIlS1CJOAw+PasWJEqVZC;~4MGl8J5Gf;=o<=F#Y_buV zIs6D2lc&TRNql4zCtqF*T;;Ey(=f!MalsR^PcW`AGgRbO45o~i5${(-3hFIKRJr*Y zp!NZ(#L8!Pk*RDFG!a^v1ATe~>e26%_n-TigI*8aS;D~fj`yK1JpyWtay~;&L46<& zJ{+A+&t+<`s+)J5WJcM<_MFja-VGwZAHEq)gUvlV!Fau;ca%-c{WZD9+i<(W!zh7d zVv4!zcq$RDo8VJ^t&cqh!afdCy#f-cS=Quf?rj-3xZIQYPn;ev@_T&o5%R2ArM~*o zg7nFd5o~Ths>HWQOf7Xxfc>CrC%Dt}xX);JBCl(Ohr8Ei7fr~X`yEU?9c(wNvJ!6~ zs1;;kI(e;oZI)A!Q_z(QaUvmY#GgUy1p}7-h<)CseAOlSSFh6#}L$ZeQPgep$(mo&6j5v_a{r_ z9mnEvs3?VpJao+cC7{Ar8!(X<6YZo@dE^<35Kz+^6ECZX0rH@G(qn4ObHwO5&$GkV zF`In#JqjHf7JfZ?s3`o~icm~P_VVXp?Zvu4c|%BO^c%h(*rA2n_-|l`V#OprG6nFD zieSkG^FD~5maDWpqTTa_0CL5g|K`8t>|rmape4WM5z#z8dU*Py3M9T`8iK+Yrlg@{ z4-**1;);N=it*`VXlqEDc;}*kII;KOc;2%%*iVwzW| zqW1x=mDH5;RSJzQ6Bda0008k7V>?`NJ+ex@HZ%Nga^nmQ8Q6;!>TK^2u_8c~y z0m|T#ZOYU}yMs^%5~o@up7vwx20)MSGLm{L>6GvwuBm*6OXYvzPT4EYjod}j$0L*! zd7t1ZrsatpHs)1gEG-i2iAk=t`kW6oRL`I_^9kq6DnRSaF`ccwM2#`>q{Xytn0GSS zMVS=+06$Fy`-H#5)AMJR1`-`#qo1|!V>4$Io7m148Qq?Wb!YgbqSCR}M_0qGhl}5t zS0G4w%fSAmqKaWQ&&nh6Oi-RN#u%SW#WvHPBQl*srn;iE+jBYGDypclnR0!1kio>% z$3VhoPft}h+-9meBGYax+T1bt#7z(P6Y|D+$K7;cbdGd~X9?}=*^?V5W3XK95$@?! zjBv-`zr3e{BVByr*x1Y6G3?@)4CEc|2iXZJ_Jg;uDH1(!l!{Gp$BgtL+~kfKsC9b% zt#BbZae*avWZ&}o*BR3O>t^tqlqqY}!n9U@L?edK2!n5|O5G`aBRUr!{KipQcQ2Zf z=6f$E^W4lHHnqDCO{H!#skwe?cMqCM{i{hG=BIY|pQ+UQOzLnywY&FBrQTsuM;vAA z?e05Msgq19zGCa;HAr)Jckh|XaS=I;OCUQRR+z&$vyf(jr<*iqbym@TH6_tYdxm?r zRt!{ZYlU`!3`sLz>mn(K@2bS)IHG)5kJNQf)Ks5%VLbAOep$P%3y3lWeUYn5K=aiV zp!t$ixuE{psstTF?^AfE_)?4U7X5fA=P6Tl3V79=A$StTUuH*UWT1<+RzjL&`NwW~ zf@gv@Ab-Y%PolPrW_!LZh>15Jf_2ky(9IfkZD`9#@by`cIM6Y3ANd7X0ROkZm3%3G`2=tVAcN=o%MOmc7p(yXR+fOofr*(&8iM|Qcl6_19bEUb|FaY)F5wg0>c^Z{-O{1%uVo|Xy1V$# zi&8xJSNqt$yR?>c&;>l#9e52U`-x?k~HCnqg?e+ot%a^7>{ZPH^ghjr; zJWSn{kGZ!`Y8^F^I1GfWgAQ#K%zM($wI1a|ixq*b15l{p2|_LvRNZ9uwtEBAo&1=Y z+gJhDZ&GsYW4=#L*PQ>)dnY4TJKzU1I6+eW%EzM5)sqn+cA~x~7IQGsdmR4Ri40sT z!6u{$xW>p!f6^Gb)po~T%V3gfL1Boo9Px)FgA$-n}fWEsgs`EPN}SpZ`|= zXU^Ec<}8{%Trh{qKahBk{0?Hn#Mb>@obi?M5r7}sm;L!Vn140-B1kyF*3oeV7itoh z45C3;O@>DnbQJ9AvnD(Q8xLI=lL5p*YbNgOP5ceSDKZ8{sOzmu+aEHn)6E`pR?a$o zg-8Uc{1@cGx9?~bjy%y-)I3BVib)wg(jC=d`bFb@sd9-vj3}dOoj#+#RWl}{X88JQ zO5YmDaTD{OufHgVp^w#f(jylFs04VZP>-WRJz_vWzd+4;!iPt;-<;*^L$`yVum2<$ z`f3gG@Y)H^>w5kYZ+wwH$y-fp!Z*7;3-`?ZVd0+HpZaIXky|XGk23R3>b>Ximac>9 z(=HNeuC7_xof{4Rr`{UQBnvfgPR(d}prAR)^Q%}5CPX~yKiBP#tEMlS^mxrHOesr|s>hP0nI8GRNS*dfhGhyKJ zzR3qo-pw}eu_kX-_^##sqa72%b?$lY_<>i9a?W$c4_uz@{ft&M4Iqyhb4@2I^aI76 zqR^EJ$r8pZS13=RB874lDo|*!LT3^(mHxn1dNPsGjw?9MBVjr7DsLzEBzRcmCwba2 zHpNc0#UzEI9c8#TAYu8L(T*zQA3^sxcly9_70z+a^nuGy^O&b>vE)!gj)6gKT0AYs zne%m_`Xxse`;K=fQB9``-5Q0ox9k0!P&C2QsyWGH8r=yw@tj}BM_0A+ZSYz^1@Wr3 zXh)wJ@47ufVr)fpR!+Lp6GSjyZO-t{7AT2KPkvLI*eOr*P9UTW_A~=S{=BIodH_cy zI^a-U$6EdAYxSMjy}oXp$__@){nzK1<3R6u6q}}_RMB!m1^bfsHQ}l$&HJ6=`zdsv zLVXlkM94jk>6ni+XF>)psFJVFT$ZuLN? zy4jt6lPqhrKWSd9;$&9A2#-l^d*u_~Ba0JR?@pgm;Y^?6)^2lZcWILSA3y+%CrU07 zFkX2=V&e6`8dpQR)yM_+H1L1l8YcDw+EBLZMtj{HqjW3{YuTtU?c$xAV+a zct~Asdm8@1-#ye|U}&ZSl$oh&IVxgZ5{f+rOif+4Vn!ni=urKK!eeA~)=f;v_a04{ z-SuB-&cU&7ep~c*CiW$3tay!n+I#k59pZHn*zG|UK%nZ4M)(d%YUG8=xp^l>Y}_uoC;MxG*Q`JD$mv}EmSfOjImh$OCCq@HT9@@7W1 zJH94;GnI2HH@zl*i?4<0YTAU^oc^mjurv-BZu~0(XVy-wWi^88&F5eAk}SLm3Ab6Z zo!WNiVDz(2cTP4ofjla`Isc95zRuN$hMb~$c;tIl4SqB7H^xVN&)FN@+sX3il)cnu zyTp?%mJO0Sx-r8JGw&**XFXMi_kopG^zFAte}JWi;5sVGkP8z)*Q2hSL<1-qo5 zb*I>6TLAQ>M54y8eb2h9uV<0qcXEUp1h|XEZZLp-uchC}VjsT@aLM+7U#vUD?|u!` zaXzS{>CbP*bDls|3LVSwA23@Sj?R`}T8?j}C%&2E9})~b80T6%eg}+zXeS;{v^#xZ zcYG_b;Ue5h^?(IdEnu~6Y{s+@3e7(%(|j{1-m;;LQ0z67efW+s6T3wvEAS&>dPEQJ zAv=x!jx-p-(DbG#hY{`d2Z8X-WI6F43k{8U`&@IGui+qAef4o_G-H&GVEqrjtFD&716MEms<0D&X^a_ET zp{Z~&0^MiPYXIw3uIn~phWXGEIv14_k!?o~$B+Ijp}ZZTJW#wMp)3&)2<2@@2;~W3 z>v_i)c7j4-GtMLJ|eHP8ncK1 zDjVL@ZMVawtEEqa&^rvrKu85`_d1F6_h-s%SErJ8Yxvqpss*%tBtnZuBE?jZ;g)ag zhyqn7Yuupy6h9pG8-HeLI4Fhskto+d$r@j5r z{jzE~WxpHQp8vX2yTaKUA8`@InOad@^50-?bZb}iWQMG5w|P&iZIA79X3Y-O-=kq4 zt)pjH8+Mu1l|UDnKh;3dU>1)2m3B|GGrOU13c+gxh~IHdp9bmStoo+e9T9j1k9+2cAgj>73~}xE{=8%3SSuQJURTmXy-{h z9)#1|q0!DEJRa0}Dvt+so`QX8Tjv&|#@cNV_NaVA6YC;N z=EB^>Y4|ynqw1E`SXGxBMrNUqya;(yHrq^Ln#y3+7ZHuhI;sW|oHehWzA9`(LbcHj ztZlFYUt(b#P7tr*^PoSi(VJVlvbB62Opzw9eFMAj^^M|i*xFj&X4AKO&3jYraVrOM z2NL@&r?T0*f_Q)N03>Z~vEZm&=R~x4ASTUQMZGr1CX<6#gtMH=?YI{Wa@+)r!==Cv zery=BUYAL|Yyj{EiZK#Myp4SDw!)fd1=v)+$rRzOL*B~KZ76oHMndJLZ;-qfUPZYB z$nS5SAsU_p&YL8Q6Mh4`OIXx$Z`5eEZ=5wJ+d1U*7ncRC0)-$fbo|+Asc)Ll;Jbj6 zI~sLb=6S%6l8Airvlh~7q-ExjS^xPxvJN(6Rg-!ew%qQkG~Jbp$5xTC(NI^TOk1vu zH;SyI9o{UzF@F}(Y0N8UU6JihpY252J#l& zMrjGN?}!~6n~tyjlvZPBgFG~s{{v_0KHIq^HFlup!w?pIA%1Ys3lQ zIcs+Q7UUza`PI4t>)=zico#~Mouw{8=gH^4?IeX+9c}joaqV_*oavEW`7OaXLKb(u zKIAt2ihb*p>6?y~q_H@N5PrV(HLi%y<>OK8zvs&r?_-Q=gf zkWLW8e(WDmuALUM??~>G-2sB>3{XAp06}zYjD?QMdnve(^Gb_gtTPhQJ)}MM9@30V zHcaQ=r&hu?5cRMP(+zp>sogL=sDZX>DH+E&<|lO{`Feo=IRI|0!rWD&e?ha>#P=47s?2@QfPilh6KlRURR0si?$@BKHmO%} zw`;tT{VQqr5PP*(C^>zScpH~t^{cz3PdBBwSoWla`OO_uO)h5-Toe#B06*Fmj|_4b ziTI{pE{iog<|}f)cddnL=#y&icTA!0e?Po20P`;lJtibyFx!=fjmMgydI+9df}7)a zWiV(8*MuwLrFr%d7H*%vQP9juEf;R_gAqQ12PCR8d5nVRs!L6kP7k-IQ<|llwr%#v z4Sm5m-pNkxq-p_7tcuVy_GX82_B>%|t2Di|=$ee=Z!9w1<%79jEPowLekX+NweY=t zc7%T})p0)MT1rkxi`Sgs&r{4plKNsKwhF}U>@ZQ|uKNykUKwp3-q8Eoa(wg~F0JwM zLZ2Ox=gsUD8KfrIYln>lU()^W;QLDFKuhnli8U>p+PHsb^mU=J|1II;?CG;TybF{x z(#$K{LP)0h;voOhcwb!_pFPBgW6>Xfc;fW?iP_)@>l85zJ=So7j>xXk_H{vg@;V)u zKgZrHFWMNl6r4&HVbK+9o-iTY9~WHssMINqPN1PbK^@7Pw|)e-oBTy~_u?Jo$g%Jl z*G!{Z;5w(nv`g4hgBgLx-fxb~cR)X)bq=A%$ab{{zu73YDQfebVrk_|{E;?AKOXF? zO^jf$sRvq|HxdsL>vU9g3Ds^5w)AN26-F*oL?h31q(E~M%Ft1u;V4tXKwv#uLuO9Y zWOophmjSBD@TWUC;k|$fEivj({M!Ww9*JfEtM2?GF3(zeX}%OU_Eaxroh(v^Pg#&w z{DW|QaY6X>;@iWg6kib@Ry;gBwD{-YywV1yc+zFhx+u4(^R;_yd3DJBCy~E~K zzkgEqt4)OuoMbAzWI=ZQ*6>Nr>d>ma(NBis?R`cc9$Ct*>o_|yXw-uK^;;wF^JI`v zbSUBUj9MoeU&E%$wT7WO^s@Eg=|(4wiL+Fiqsj1v7?ud*M>CmbmEsMC)ESy{@qbuW zu+^-e7L;}34zaL!7=*};^ejt$(%MS}dX!<3)l0c;t4+1&hg?H{>*@5eWUH?)`PM7R zfBHNCK8Klr@ongjcOip>Ekq7^w)T=)qruwPiLQDLQ9M9#IQtx7 ztQvW#M2#8oOPXnnI3FEKvMneurboOO1?~DU1;4eIGN!Wlc4`5B0e^fv$aL3e(_MMo za^MTuToIGCSB`moz|s*nf`J%&-*x+R;nZ7 z59z{?QJopI46%f_+@LUE-a6%J+J%9>IgmB$!$37IzE`8VW~ZNNY}97b_%ZsS?0xf$ zy>DLa*udVGr^_+D9+mFZiMvKSjaiAH7b3D`u~PDc91_%&61o6dX^!MEDJ&3(|J$pe%d zKRf1{dtwLVHkaHbzkE}lXN>y9&iNx$7i<20__wKR<92F<;})4Dyvy9FE%saZy4nlV zf^Ll`2>qE+-R!y#GO@R=9L#YQkD79IvtUDdcK@-wnfSH*(96ws=?vO%RQfCNtOfC` zaq*l5`tB89(f6M#2VLo6{Ik&+zWUvM1sjR?`WL+7Y+U_ruY!%CzrDOVne9|%#Iqdy zihY=&MG3^n*T4AS6GDF*i@!1Ydi95ytKZ8`-@PpvWB@lzUdGDkV%rvwveL-lUDdziZW{-1HOtdL_? zAWrMD^aa(sBNyy9>O$la=d*(5)n1R!|FmD%DbvE4Q{~N^rwO7Tq=$R9^v3ysbm`>% zX8g9GeotL>R(i78?%&wVpY$NVd6CQFH}B(*DdNP8b?_21SH*|XH+4(3NcxYv#OSWr zINb?v7&)~2JL>3AOyz9yf;$@sFXNs11F1Oo`Gtg0>K7RXdBy#;e%+XA&|>`WG_$ZR z6q`v)jOFE@h_K-B-%+%nk=&fFD)PE15?d!Rhsi%=++aE>FNcAjtsP-^p7O@cC3u|+ zXsE6GZ`c-raA1<^^h=l&-Cq~DD^P}$gL!nf{ub&m>n{Vj)!1?YkZas(p-~D9J#Ee1 zXHc5bsa>8Pg4G;tzqr-BcMrU@21633EpgN~EN8G5zk=A}b3^qN`ppg1U!q^!k6oZ& zT;rdk-#(%GGxUqWzTD_rYGE@Qn*S7JN+FQZq2^I>Ayc{zc9*EfXq7ylnARq64I5DN ze$x><=j5`LRGDQit@{P^fS)$1AjjJSfMojGy;B{9d_6`6v^WCKa!hB~)O|fT5jXoZ z!fLRPG-Pw7FF%9v~_uy3B2mwlw6)LCa9TH_|UG0#|^*tP>?9wEW~ zrD3df%K{`AsHX8E$X|%ng@2!~!iLuj2QBt_>%r@S#vgV~pKjTUQtG|_`5OfGo)AVJ#P&oOvaM z+aq4#=e3S4`XR}dbK)8IPi-t~P0J+)GnvBAXYaMoOPeMd&)QQPY5Xu6Z@XHYX}C1; zH41v1B?rMHPlt{&qZB`a(sml~9>ZuI^m# z^#ZKbzjyCJh0p^Ai5nbT78!kOMH$(<9O*3?i7vi)<{@Kx?tE^W2N2g30~<%fWt|^Gg1km(3Xz&pOfBy!w+N@vLKBIarjjW$w?I?vyn5 z{dm?JPUXi%>EYXps`rHMzEjXD_rynR;mM^$eDD@NcvG}|kI$b+xz}b~hVj#cjOZts z(PU=f!CD@u-Q!k%>{cfngNBoCZn-$4aN3_`M5FVvHywg$|FfTN%#3o(Pmt^m(2XPK zn$}bS7HOqeUniH*-jqF{_`ANp8F3jR_ao9_75NmAs4b_7?mr~#8pRb~jC-sK>+AZG z-vpZ&5uMWby67pM;XR4cJa^pS!u7R%yWR(OHoJF>NI!(_VKTqPEh;=To6X?#7OXeM z4RdbGOJARS%{edmiJ8lNc&u0HNo1oLkjekn=2Ob#yBZa(y9RICht?&frYg@JI~bR% zM}uU+PU%iu6noj7HX{A=!X0xza^AvYVE*fcpU?ene8h428+%p_bEf5mw@R>xH|329 zVqBEXnv(ZxO>z9mCby=LBS3xfeD;jT zz>rhg)+W+`Xq{nAZM5#NMh#70liX(J!%;ZvO17k`06tCW<`3)t(_UWH_@*Y)xT0x8 z=l&~yBh90c;rG-+wa)kJH!;+`g{i7dfchC+c}{Tu2#-l)hwH>P3SY;|zYyPOZh@n;4C5%h9JC+~At88WTZJ#jrcXGq<(_k|UwZ80(e8v{=CZcqOFQtbD zRD^y8ezCK5LE{4OV^v+$Qm0T_T}NLmu5~4$~<1~>&Vsny(zGzI{c|0T(+efrL8 ziF2L(>01_r8Y(}m-w^&z^w6bqkCjF|eaeFB4`onjTq;M~KW#0WLhdwc4d}FZqX1^~ zJ1JBLs^CBTL&PeDoeT-{m@~)n;j_-ueV3=3xBI3x#>?ArCf?Vu-MnRhL`LzEkyv{N z2y+zN8NSJXdan(n_@7pT}a(xV$omZvwEvQPK*wC5{q^_Gzv zebTSav>&PVZzf#vs2$%t1xrQ!qa*u;kHyabmaKz|$};Ab`nPSX1{YOj)Q-R-C{ity zynujP!ew7R!~GM_(U$~1a@KO6)U3@1m*QQoa6-o1e_(GmSS`ix(lc%ut9e2ANAm4p zcy!IbsDbD2!Z=JrFp@EKRfb-?-=4_2k`C#NoD@uLfi3N}3G|~fB(Jb!Zj#PL&bNY` zwu)f<4Z{yciQX8#eTD|1I>ei{0vjg-qoE`gjaMJODIlix%{fLku{${LI*k9es z!?qQZ@^^5)m0}~S#oN1Cmjk3T1!RT=av?=Hj8FfndnxPM*OodySdTu>iJp!?Ge9SK z@7Fq-1^jWxv)pM5`pX?)=IQ~uam#aH(`WR#&Q8OV*A{GOSk3dH!`Ki*K0U8%piOyv z=z{d2{hgiHNlvBiBb0_#H9H2F?n3H4_2z;Nt-T%tuKwZ^+w>UBkWyCb@yo~JIIM?_ zn(;5EpECJnn{>k%0FBT0RDBuLr#qvIsPB1QLum^680fzL^SbujbdsOvC&Z-KA;k}~ zjnV9Kr?M%L|92R;dY!-CEeXX|Q(SAB-|_2~uS?w5p;t5GqjnV!3eEptMOLqK?_3W0 z^xrY9C0S|-51zw%JPEc!U#;aU^;593wOm3(U>fksz34qgQ|01@^~vw}>z(3@!{dsF zhAX%?T3UR1_!2fA&nZ4P{9W#lp25A0Q@NjUGHE9k7ln@(DH&RSVBut|<1zQ^$B>$;Ud9G8Q%9XJVR2+&e6#A3bxzA`>;67j)!KqF;+uqKW zWLBel{ZO6qoX@w5cVGPbOZZ(vm9*|%=O9}ZuJU|KOXkohOgl&UERUc zL$PCeF)NA|D`cw-YiIC-6QMNz_CUZTzU zXmH|WCLoqBn{GzwE?-w?glCD#lH5te^OpiI(auSWjcZj^k1%G6FAde#f&?QbBkLv= zZc-P_xSX6srzIbHei+f_u~wD&4+9MDuveTi!uP1$aFv_fBxU!Kpqz)6Y3%_a^36{I zQ|$45{5ewEX?5>Z_r#jjW%WyGte@cmG7#tR4(vrvIhPrR=&9qxY*r;@8S!x55Lq`z zKiH#AQ{PoL3hZ{QiPh)Tjg++;c`)t?dQn3QGUY8c^*=>MWhv(ssiO>+-)|Wtd@jrp zGWw(Ck0(HnDg*vF8N3eT5BKILz3og8-1mYzLa|!q@5w!0E`E!gyFN(5bBcX|#lLf|ugSzT>245J;CXzhyh(4r5N$vC>soJ4nmJ~r@Hp|(UW zWRYfXUHk_OoP+j6Sg!}~R;BpMl}`-mm2@VJ=V}GyRqs6vN1MyUTT}-JgS9J|zXSFZ zQ(!TcaQ4|pbl2Ho=3PcD1zWuz!*u8`VnfZY8Q~k<>g8?^D1EIjo+rWx23?#f8z1)@+aNMlO6oMprB9|flkamUKWUZw#|-7hm~Eys_JryEi`|(ytz)cs*f(dWJ0{QlelEh^3WQPa zb=qNfc^M9YFfqd!h(IX(EYj}I1$g8M7vT0z;*YCQpJm5KyAzY%vcL5&nFeA~3d zNJ!sgx@ukG^Dh{!7jt{5i#;CnN#N}Qm_{PBf~%XPbB|X0IM4E*7=1`%w7MyOO;1?K ze+=U@yp~!%diEA_dBpXV1a*teM4olk(*7l+US|nd%zMXbKdWK;OE& zwa!em>W{VTcWh=i3tN+O8NrE!43o5?4=susVY7`~bZ=%n+C*R+CP{Ri;^&(F;;wbxX;vr zefAS|A)#Yi+(_6~l z7jojHXlFVPqkjmm8{@8MXOGA+?mcFHU~BLyO~UrU)K)TMwy6!nl>}8|dsmHXQMl}s zwGib2L`%q!DaO@fj zKnGVEqTKcwpz=eD*8p$v>dcJ|)$iMv++_o#=bef#qE)n|xvNF>vf{E%rZrAjd8K=7 zv&z5d;_?qTi0xZf`$1YL_7B=)vc=XCaz677$`glvFUb>%{TuK$r^JuVIe`$w3f0@F z_W|=TQDdT=Y<8PP3vZ@Z@b*)?J1(mdesHk28Fs(yK4{I*HeZ z5fjY9q1d@J*PF~gf4?r(vpv)$0m+~Y*YhZ--iUYg1{d~O!e4GW)@%+GUj%`@_0;LZ ztA^Y?+#YWACWqmyvsI>KeXncHwNf%l=EWlL!e9Rc()T0o*q#XxU0lP2|2d(|9dXz8AYt-ki#} zn0yk`f&A3@CF|AKkNW6M%QV{>iNKH9 zHXrs=a_rH>t4F-tS(l^c#>e#3gqNsVLYlc-IiIwav@_x*>F$Ioa|6#mp}P31L!DDw zM_-cOuW!mPVEvy2dvbg7yR0u;(sEUb7Ixdw?`=yBQK=b2>G|93n;?nfNpRN2OHBO? zNeQfti@~B5{bYqZxxJAYg;r2O8tn?&E7g4MjkZq>`K{6H@JpaA8#RG*I>I8#!Mj;0 z|1IFx$?c-~Q342*$yAnn;2Y+{%boIF?sd#7+Z}pzXQZE5Xav%~wNASR`eUplmi>)- zxrvCjP?F7j6us!E8GSJCR(f){+k=J7${)hzl{peXztNII7dW!>+e%POlE-MQ)A0T- z4KHV%2qdz>0dEHpW{{ybZb~Rw7VrN=Fn%+ z4%&5MAF4QOY(}&-n{c!_EB)1?$nMCyU>nTu)w^7CJUG^#5^D0@11+^rPCF2b+4lS{ zBNY3xC-KUEAGk<-8;=)v2J^XYPySNce|vDW%ggY5st+whh1Hs% zh96coGtQ%Ocb*z(^uFJlcF*Yx5lS4>?x4+~dX+TydFbWsrk8gi6N4ka(A{_Su*550 zm(Iba)BtJi8gJsif9*fiSrlojz1uBsOaDB7k9adzc~J9|9w*(bhe%hPrU5oM8I6gj zNjeP8*bhJj0GT&|MhXyw8Hz=NWO_;i^DZW*oiDl+^g&23Dd_(+TtII1w*JK8v8|>9 z#Mu|B?W0Ubj6Sj>tZ=?%mL3YR@65qSU~v4k6xTS|BMMb-63Eg#Ca$}D4T!x_-PSz2m3{d>QD8S~o`TbbWmf}*B2xR8$QoW*qYcj6 z&a25=kWcA5M48hS#gO|12uPagj4RxQRAuJB!UI}X)0R~O}6O`qtM=oU^Yzg zxkyvFYoFZ|_pL6Bbj$O_AGlG8*NUc5r!&+~>$~1imQ%q297@S4GuEZI`kTkFRg#GbQ2s^?6GeB-O0n&>;8Ee2qOImq*TKnKw*twa^Rq%qZgUfLA-W zBzv3vl`{N2WXQKuMdH40Af1kG5Pu|yk##e-5@#DV>K1c+WmTSp+&PamS$#@{y+BKJT9v0{{y~*plI5Vp{bdU<%V10 zj;J$&LvFZ+WofyAQSQ#Tlqfc!3=`_NEGw(8mZj}xS=u6?25y;}DQ-n(HY1ixrIIDj z`+d$mGZ#eDzWtu(`6FI_ym#(B=d+*B+0S*iF8T`P8=Ys9BgT`kDl2{u3UVlv#R4A- zeS4R6;uPf`I?Ib^@#U`s-U@rbF5Zn8Q$+bp&17#GUuj$&16o)yDOOm@ZaaPKYaZpble3uFxb_1n*B_$L9 z_ap}pWF;I=T~4Z}6f?@%TOp+@Wp#*oVMkUYvEjPz;pe^sEUqb4+4^Qd)Z5UT@kMef z76-DTsln&|0`fXv>0b->zJMPX4CYxZcP}xS&f>#ELN9UjD;6S-YhrMc(Fn48doX>U zU>LbwL+^vcCQEoCs|)sM@`&l-k>@adgD-P#&I^uedYAi* zC$=Hh^#Qr*cTcd%ja-6&Sku#!M!ML6vhcC@0?w|%hH8l2Gb#_1aGpn8*4=|5GQvCE z6*V<{`l~>b7u*?o5dmN;lB4$MDQb`S7s$>|JH*N7d&nT_-7XEiGm#E;Mn}{cQ&B-U zn-p2OSUP@P1V`gVO2qpdR=?d41hHh?z6^n+jwj&-u>~Anr8i$c0w%o4<;IoKF)#=A z=Am%j%UcXm!bt5{zhNv$niu0WD8Dwk1Mch`MyBT#bVJ1aRis3FcOBe~!Co)|Eo3f0 zY~Cm8Nxt>IvAU$BG8CVKqs(gWaUDJD+IYA3>n=d?o{l169kB)tz@wM=2tVwFm}X%l zE$d-BkP)Ur(T4x2qK(F;?@?43`gc9`NaFh$+Ta3P5sZAP{AFL}+B{2iWIcoHB1HKf z7Ec#Z`Q1}RjPl)sM<@&MMa_2#Sn;Kom8c$YnFQ|enKO=~swOz<3$flB3r4WraX5Eh z)SA{od@rw2R&1@j*jn;?d6ne%@+#!|D(D}~^U9UL_}}=!yrm$^!mICnXap5_Q-8i> zq$lR%XQ2rVPpQuKud|R_DB%GZu*D%MIMD-Nl5`%<1Vc7hbp@*MjI>bb%`R$lj(6qD zF-0_GvU=3vf}@Q14+Nde_zy4>9^vX*fG!$lvBxti-Zf5))uqdfLNRQlFrK1EfJ$5R zC7cDBHj^taD8s%XBPIy0>GI0`bdG>SrrTky!a#` znkyBYH9hUcCu7e!f50mclLt?s@pHQ97!!0@F5aVc&l5`YG&o!Z1*EdaxdMDZ1+J9C zCY-Wm-ysm(jf6n(RncZ_jjZeRk}pO)@)bOv@30MW4ui7}AQO3WJ;Hv9y06zmSW$ z8GePvEk5!ak4-sMn<2AXe4|)biSL~vgv~!Rj#q^VJ`CE1zJU zh{*pzR&X7Zhge(G@MCk%AtM%{VUz)GhT83ziQijSE#e?oPK%77tQZqJK6b21nO!?F zhw&k=N06ztE!w`<`5T=TQ?Ss&E==h5jvl_typShVD)M+wX28LG-=z|K+8!Lt#?m=v zFcs+S!B{Y4!|J#5eD2(ZZ&lilv6MMR;(rUa03;mCv}b1o#b7W7wEAG2$K%`q>B0~i zQQ$*E5P9JLqBCxRb~y$hsg4{Exe-gnBvk>+h~&t7!Ar0Iz^`R?sRUbvrd_Q07)OYT zmBZ9UkErxdlg4Fg#3s) zq3ce};F#x~fY=Ca2puIp3$QUV*Y-!|yYNIs?^xW6=>1(@Q1ciccZt$JM9abW#ckn& zaX%^-G;Q-WXQ|+c5i5G)_%_rxdU-@C(gU$5JWkZnNsID=TE_UQ5%~w`Mslov1LDnO z_W3Xn6<+{{*qhfqC{lbC4P#!SfFYwr zWBu~zu6ekc=QTrK(6{&+kVZVb|JeBh7=uIUHsQ>KV`KtxLws)r`9)MXUmy+#K40wS zbc%C=E{5+gbmZQGxAwi!_7$@$a>9}!V+8_7#BPNwUIbWQI#w#^!Qv~iXh8;xL%8pr zQ3VmvH(NXob3h(nb65y_o}U$&_O62kHO8~OsK1Z-#(*wpsR}M(m#+q&h;nQddfU~f zI~0d-MZArP#D0uf5iNsJ?eW2I9`ZnSx;9}k1w*p$Ppoi&58;;4&-XKavaAf#+XAb5 zl$5Ccb{8~eRKF;3tF)S;TYZXfxzL*mad&PxX zT&3RV_QZ-PHxRfk)WCsIs8h4z3$qYsPNT=d6E3|iHdB^DoQsrilZ}A^VaSspiC(D3 z4Gneq&8|Dl>8S{p&=Foy6Rir{JQk8e`MEZgs{3-!(Ov0#}vmjS2v-j~YiO)Z=6UE~uTZ+sUTH#eHoM8z5x z=G*L#FL7uA?uA4yLBn+cyGHuMgU$2!$x6zQb_;$A{WJkxaf~jMgVL=PrDMHfKwoG< zYTiFK8hOvRg^2<*2|4BXoFRQ>rr%LIJ+#wG*Nz3Rsh!S4K@|gOG9DW8W6zD|eS-Pp z5Z}xTUId>sRZaH*7)ub=RT$%Wpq9I4ANK>b#1{_W414>Qc7}iyW@7D7nk!w3DPRJc z8u|v63AeU@Ae;p(Vc|IJrpa8Te8txlnG8&Gqp^2?E||u^eXR7T3*MRtNbcA$O!;xN zn5!s#{O}s$slpGH3wd8)R{CQwq%2K|D=Qb#L(--ruj|5X=Cldo#)1>0NC0;KQ9Qtz zmiObvz?QI`O~)O-7iU}hK1B*NA*1`%GB1olJTRmdoK)9S*HnHAewZ^1=I}faZaNsT z1)J65YWboKq^PC?IZ_0i@G~G7`mBsInmiAV;e79T;d4;!=b}-cc1 zhJ4J2w6l;F(FC75=m3>lXe~Ded*NSck<9%-SbkhMeVPS16(3w;L1r?#>O!P67_0$v z7iH@Pqa=vakl7a@X@v>Ca2g9|ze%zRL;`vWYvA#AqFJG%5w?+P@g0SDDjgM@s;5zk zUA>ap0{(npa9u>h_+8%2;R&O!@{Ue?KZKD14*Wp@kBLlBaWPVOYUH4s2mPjJBAHY; ztbsS0s1yvsigI&lgAi8t2%XJnvZ)sn=v0(|ubB`{FR(f|*!Mg1;qqdz(1b(#;KhvN z*k$W$iz-t+$3mf!qT`EP7cDpx3HQL13O2k&=(W*0yYa)*e+*i`@*}ip&Dj`WafX0* z7gH=F`=L`8<(4GE-(m}ZI4frcwPVv7q&wm62{RwcaI({-qe}VTl=Ucds z75Bl;Nh)0}Uks=~6ncs8Ayk35Uxu@8eZ%DaTZlov0k}u*5Iy%Ul{?%QEOU=QwdHFj zbM&NB*OT}65-TfKV4cM06>+cTSLdD-6Ei!xG{rk~7uSn*X^y}SBX((t^@+Hq7Gv4P zeYi1i*qs%#3yc4!Pfaauh1q+#T3#Fnj&%cK{JOv!E|DNlGdOEj_pdS0Kkrv$&+u@m zk2tk>QV6u|z_K2BTDJU{IGc^$iuEC797d*+ljQUkXu1;>$VUqDyyte*;%}DDSEue8yx84*4QKav^@? zxl*)5d$J(QndY7M9QY~l&RGYu#*Ppz+je4HHDd(EQ)=BI}Mr?Fw1T8zD*YjBgaC?kt?^T)|x2}IsOoc|c-0rLK3-Y3a>erhjMr1VvV zU}`z*YG?~zq)s1&XTE9pPw68G>3w-9M>vm6*8vysd-P9FV_6r73q62P6cPut<6DS? zI#-F3dM!V7sqIkwM!vaUP}_d@HP7deBcA)97hFb(*IC_nVFT=Z9_1o4Z^zrB!jE;- zpUJcxL|QDVdI`&^p4X{2m(-s}5-EGpQ)qAD{Ck;Lx7Zv>^w%9^hOWvw7pth_v5LAE zR#Drrin=>iQFp~E>L{$DZm(n4wcG{RKOQM5wdTG4oI8PZjX#g*D80I9(;|7}vqRZ( ze@TINrXa06h$E6Vh+^Lt`F04x;aoXy$7*~ z2!zBu9e2R_SHkTEHscGSFPzMtisK`m%nJVyEB~?_19r{5#Lsn`7l;@iJAxF|x4w%q z7GZIR+5JAJ?ft?aVlWZEr_IRW8-W63)Cb0UvEKx%TdDQ3%!AD*Wc0XYu*t0NcexzA)&4YIk#X<};aiD{1>u0>kT z#B-QpZ2@Nj@YPD>_jnfbfB9a7_K0n!Eu18w8t_UCY`ni8{a=B(=t{y(h2!Khk)%&>W!VMU>) z{D?d(acM0|6KZPiXpIpR9t8z%mzsIl+Yz{2or3Z0JpX4#IEAsfZiM*6A*-Nly(7fMC(n>|bG~AIlox$ZWvBgQ-vqgnr6_y@b6{3E?S~u*wPU zj&Tk4Zlbo&>E}L+o$j?F_elSX+?rW6%w6@Fn5cu!U$VlV;en*X_eLDR(Q_DvXWg0~ z{5ZL@;dG&2eGlRRlK6Q1nvCDuOMh}jjd!%bfQTMM5IxX_=TQ#$IM1g*<(YIhXG7C@ zyE+a3N1d7W7{*2DE|DcgBiy^)XCuyFg+K<26UUq|bWtp4HF*X-OLz(TB8Q_kn$zQu z%Y;2?v+W2qo(vXswxPMLN;K-Cw=yP+@kX!pHlX9qK@nE=&3-0gAHHkztb3EC}FR~FxWjjm zU>)M?*bH@EZ`#gQ3#6qY+HApZL#R>2?*nn)ZA@%<`JB#KSH9HByi`HT!k7G%qoD-p z_37M`RI&FZj6UgAYHhi#BgoNNR&aASGX*O=f8|{-K;HUN0y{ME?AElUbZeX|ek zoIPy+k$w_L6m91F&i47vB0SlPv8hhDH;YY;aeTjm@BJ*ij|6Bo4MDSM5SmT>fUY;t z%8h9aurV##(HY;%aW3|5eXCUSAO}*jZ7}KljAL*pwA}zDt{FmdtsKm^cL| ztqlyw{>@9Ge`^W@f@rXzDFNIFgUO$~RJk9$I9^>sotMTphQo4gk>cqE-*dMm#JOd1Spi1wUZt_1%_GL((1-n%e= zW1japva4OtLC)TE>@@G`OmK<*3&+D^{ap40F8cT5toq9M_cu5^Ywl+9B3%gUh448H z@rh8mPuloW@FUA--fx1E)z7(Sh_kvX5d$4=K72cD7Wb}Qgn_AgdHl^MBytiVH5K8I| zhLVarA>dcvIrRJ&mqa&om+aW#<-O>?$iAECo<}kAF5nIn(eG|1e)5E-)Z!%U4napR zwb)@!XZc3vH#b1r=+y?$RW6N=V>Y6n9q2P5!!Rvrf+s4R1#`^(zx;pw|2aDC5#;^o-|M-mTc4^`K zP_LgbUjT_@Hx=*uW(fO!jbvD)pZ*(&i@k(+6$!NRD1-3)*bzXd`If*6sm0YCm1mDl zEw(ss$M}R8&Oz!5K;)Y)-nTNRH4&2D=_pk1rSiSwF^;B&gQN+}Y1Dt2fg$lp0NEex ze!h!o`ud_J`h1YYCrYh!CJ3Xs-)GfWbSwM?`l=6o-3oo(0)5>KeVL&zezo|_r>w!8 zNBm`Fzr0@R{i>}a=j~psg^YN>tLKYCM0;19`P;pJb0xcZ(!~BjR zP>^FF%a&FjV3Z`sJy16>E-7K{|2G`|m2QYmFsO2v5O zNaIGf!SSIVxkpYkR-vP6D6|k@-wJVAh>LG3kOqQssq!kvJCi?=E@@7i2PI^|z=_kE zDyML?D&q=IkzAq}Q>ZBb=Tj+FYa1Y6i&4wAig3b9n!g>D2|H9!mXbZ1f14KvSQ zi^u-jV(&1!e=u*HKPO5Za~@hRN<|)y22ewREWFa{9AXGXEsjy8`=!4Hs7g-i0w1tE z4J-^Z=Cq3#alk7%WNn_mLj(dugwt{e_T%A|F-oEz>%)uDe#(eJSU)jXG{EpVUbIg$a{aCn?9wa08;G*>AUh%pn=#8P$tty( z9=^4ogAuh;)Sp&&Ja#uteS^&|XL6?5~65(~fE0ZHph)}i<~pygSE-FQW< z(}7o1I<0s`ox>y1c-CM&UNOGRIZaMFv;!GVI<&yGwCFaF)yFuSkr(SY%c75{Mq|zNGaB!zrtRmboLW2qM+AW`7$1FE;#@=GI3`XqryrM6cDO9@ zVnbpGKUHu9=^qw15Py=mf&62|4HWQzxPb-|#0^x?RowIgLSD=EiZ6B7EqN#zF zk|JIve(|!z7vBtstT0<-;z^e!-f2jDH`zeU7n7m|-q_0$FE=C}%EU9x>3NvD1J5-t zOYATtzBACmFh8BcHqX-=8|=dF*(R)`Zf6~J8>%Pqt{UFqO*I@71qx{4b8U(0+A^s* z?RB^-GUDI~aRbdR!Hr%&2jT`dzUuyzjQ8O3^a%_%>f`6fc%LMn7vNrciNCztUs8{J z&p~pvuWu4^D|!4=A{X#bO^GxH#{s4KnnOn_y$Yhu!Hw*2VYnt;d}XW5 z4Aaj*D2w}kABgq^68Uorf9@v_qWv2M{!8<`1U(SNvvSB!rSw%VOZ>1QaSKEErYGDf zJV8cWInkt>#|{?Mv_};0_2(^dFDd&5AS4)cz|%YoKl$O(K!412vP(Wkthg6{pFVoz z{jRHMxsUhM#EAIVOj)(N^IaF_OzX9Q%{q+X#g$|}vmH~-Tm!QUA@Fob=7Rp1S#5A3 zYKtQ_&ULAh^8o7f(4NV1re7TNiddV7Mt?RoGw}Q}{V03cp2lzN+LwpjGoE315<}D+ zWkhQMQ5q}Mygk7f7dhrQb~o6MWm95sO}DRkL*K9x_x8Ep=Med(ROg7?A1k`Pv&NXd zjM_KnJB%&5O6Hj7Jp?zJTT+5mIMeRJwFKARyw=yI#q(NHVR~iPCG4}X;y!D>*0iLg zD^r{2wZa4Jv2e%YDo^(qzSmb9KU|lB%nQSCQ}mAOQU&wE5Z=D&x)f|)$gjl|trCqc zw6}0x;oPoca5j=@?l%@k)%*~3zjYG^{#n_0YYvju3G|n{z&aeyv}Aq8FM_c(j2VmA zh8T6FX1v^Yh}J-QJEX&I1fDZE?ITG0F|AEBXz1@0+7>_FD#~4ypS~CDXz600Jv5cnU*r?;Rrw%2$@@lU z41&)NuHfF}h?%=t$RSUu7Uf^hpNj6m2HIQy?ZWSO48P~%_e=bZg_z;_alvG$6f*Dj z4IFE)=BVP$6?gTVPtx%OM}kMCsXE|?0}s$>z9d-6>tU|#ICqh#eS`UEhD2#j zx8v7k$Xr`YLi5|ABtCNnG=x(OTE5M~3-wl!b7b<0=ky44K`)h5D+Kt2oSAH$Nt<1)k@}gx?`9T&S;Y-Q+3`cHBjo zb|=9f(MzdR*YA(Wfke=opsUeY-yQJYS~^1^Gt3WUK>E_(JBa>Nx|5?32Hd_u$HTy%$lP0GR^Ko9#1w1S ziuM}qq0Xyx|G17Hm-D*YU@k9q7><{^)gxv!aKMyln_EmmAhM6+)B%iev<@SPa{^B; z{15x<_>|f$Mg9Cg`E@7xcy<)FSkC=j1M=A+AM+x*n_S_}i4jbFZDVNxic)imlk*|j zAL>XiRUcy>LGI#4=+Hb*k^-yg_)&{cZ{)_mTWtZD=vA-CWV`<=cK)2FUdqOAB z@0HSX&f<#;|$YFX3xZ>s0!nCL_U5FcVC!WqQStkah^0TjA;mC ztj|jZ2g6?uD6d$A>EQDj*y~crbQzo7_)vIQ^5nc(q9tx+N zFT!zW$B;cjwi&SJ=Y4-+z>O$hSYLq?e{BuXVyJ|pdO7K%?-6WS0-x0PK$Z-sim$PM zn;+W{#LzGi>7@KvAHX9TaAYw~VsO@C?V7~d+5W>kGY4Q+ZK&&F1?NQ1@Ve%Ae{nnO z0;9byh$Uq8Xuse66&f`5y(*rb5r;^HdIx`x;&u)P;3n*i%*m|MJELj^d<=g2Z+Atd z)SXt>^h?p#qJ9KoM-zT`!5(UUcc=F@Rcv8UsdC7l#T|7?Ay1NYqpfHu2HM~H!55V#*f@NJE1Ly8D z+*DE0U_WlxIHV8D7_P$UVHSIDCO3?Ji?a zArH>WmFIzCKbklVlo1XesY5J7{iqKSf^p8%?sZ+jmZO(pRC5}~`lIs9>71uU7Ee!z zZ%$u^Uuda02D&bVqD2x@ovRybdr42o?-ot z0{ofNhoM5oZnHdYWytJNsZvIdY6aa<`QqCx;PN#16z!MH`0q2~k7dRm&4~XYGyc1b z_~V)Jg*b_q#}FV%YtcgS`?u1kd%wOlz^GX4G0+vOf<$mso}-qLSv4u^$rZJYXAw2+ z7N@Stsz#aFXiZT*SwDliXbE&(D|XP<_6)AIt^idflpC^c7j9&YjPtOuopTF*t2Ri0 ze|^3m2Z(dM5N7;&2vl!#+BWdvnQ=GwMRWPCK7qd5ykI#Q+!vVlug`cTTDNHQ9DALe zRq@MDNTv?FCroSe6%@#M`bXl`H4;VAMKb*BHlW- z=;q;ky{bIH!;E2^rhh&IY2|0zO`9Te-Qu@fe8ydnD_Y3hJWira?t09v^Da_K_7!{O zSwAaVow?T$3>#CZ>HbIjDQc8Su|#+GUj7tfl}Gvh@)dB4mNsktm3`TCaa75u1@}O+ zclah;SDWY~%0IdwCSyezV)ng`KCX*cD18gu<9&;(*yKn_y=ZX^@gqc=JE71!7&tR( z@qk{Qr8A5pt*4USChE9kxx|j{0*hHUKtlsra zKqD8#@!=J`;OcsuP&~W2xIsnew+}nUSTABun+D}ltZ5mwY&^qZ41ObKd{Y$CJ*wDIBeO1)<^ILiscseL&)tzG zsu;@*e#xjMj)KWtx+(=Lq6^uNGs+7Ci4QT9BgqF~jQ-hrtN6?u0Mhj#ED@u^SG}K< z{$TO69G3YGLmFtn?vY8bHvZUdFVbNTAzZ~f7%71VWjX@Xh|aef85BQVxbxD9l`e%* zJIxDUBSZ0rBhPud;a1(J?FTdB4;4i& z!tPDKOF;H&y@h8E#FzrInCEdl;2LX2Se$E9Fpp8}Ip*A&nsQKcKqDeE{eX(w z)k|a!&qNeYID}8gGgn3!^3BOK zIsG2yP02xnEa*U?rw@5XYhJy+} z%1ro3j$pbIRvf_xjCj;%9LHF=i#4Qo$#!FiUp#fGflF9y@A2Cv1Rl` zeI9$V5$x{%-JKV?FCq^ceGs(4s#kCC+6uNtopu&uOHW2F7{x(0INL-{Qs+fpVur_% zp|o^Jf206GIKzq@1=YNeha5;(zV_2XYQ!+^KW{=m17b z7l1>biQ>2LPT?Jg-j>C$65{D!c!!=b4omvVdWViBE%-A18NFi|3RxNNXb!DN?@%RM zxJP?DF5@0N$OvSySr+cGlIDZ|rexqu2YLohp-Nfhca8%gv=dy!eK9NehATM7I9M%U zYu11CW@&GD$V3s3F7uGCrE&#wz(ZOhN5QtsyyHVK9`KH7FloR$7_NnPB;zr@zY!ki z%jVp~2aQo0;SQgA=1hX~rQd^xJ|6ii{0G=lavEuN>@*iW@-7W==qvkgpURVLy{~{t zIgTi!6k{+V+g3fd`hH!x;ne<-+yiA_;mg9T$zP?(fZzO8nna2O{r-i2>5=*PpQ!4} zL?0EVpP>g`G5SD=* z6M>FVhEfvxBhXKj<#PXe43Cw6IV=I+8m0SIQ5Zd}sEYVMnE!j6X&y$?RXD&X8(g9@ zGNYm=Wf8t(=&>)u3Dx-;N0@PrS;Pf*Oc)g@OW+_UgYj6 z87tfPkXo%x#&E)2{1fiplRPQQxNv{%c`!Eid`U?`*BxL?#0mZO=Rcq`?>A=-4BvbJ zCs>W73JsNWI(tD`y-m^at8l;=?r}_;9)uFV4U)A6J{oM`ByQNfgM5XEHiu|%K>5GH z_(uxz?JK|)K6>zx>A=svx6c_fRlhvbcjaVSQi_u4@=RZrlW8ihRh{Eejf&p>)4=x@%8a^nT%Ww)s_i(Z2O!&=ZMc5Y&6lGt<_=~rX=ky=&vc)Xg zDNDh{kps{HIHV3V-SS~f{Ko`Cgfte?ETGg8)2=m~zV zx2SQ}9f|rfA#9oc3BT#R(^JJ&T*oonReXzMrmOf?hr@Fp=dyy{=h?#|KFsNYSiwUe zF)MU=;TZrz_*n%?yi4cj@PPBfAy&UXHve_Z)Bb=s9%v!k!q%s`W)-s{a*=_ zNqbE|(xjqQK=nt_I(9q|#znhJWI`cbgiJ**`9&8us{c9*{pl%T=u&$g6{iYw3|kya znt~hig7ZKnx@3LDa||MS@x)`ox7OUbm3O1=$3a}_zu;L`{7Qymjt7BTnqyO-u1|GuCBYupYts~CX%Mni#Ya}7hfX<@- z{UL+Azx@k82?Y^_-DAQEFsVVYlAic7P3j3xSWjXSy}2$l?fVa&LV$>Tv3bQ~H=cPY z1c3rp{8uVq_!HC)sZ%vsb?ab6!#kfZsha3As(A-5d=(&yVp+Hj=9Lrp0_RTo$2>k?gO&)>Z8o!g)u0u6)!;c(9^j?}>Qql)YJ}y?8HVylspkN0OVUftjsME0g zSy5>N5t8FXTT2w=LM@0R!yVB$pH6;gBFxz*LL9OyM7tZvIlzYVHD98HIa%Q~#SAB_ za4>ojPt~c~qP^Gd#T<-H6uESJ`O{*)DMw;ZrinP1Rkt1ohCstR#(>9IVpMtQ;;AM+ z;I-8m^jHM*`%ZLc#U#LEn;@_l|HckFkP2mEN0bnhiUIh5rX07& zo-rI-Y{NFYg52Wz*f7PU=*g6mlr(G{u75#fLUOoJ{9#V9r0jC!{VWE!B0gTSi#cK#YofF#VW&f98{$u-HhB)ueyr z+*9Sbz4(o@byHSk+*^VbQXsF}#`|OkLHfC@1aH*7sj0gEWY)}z_r_&}*`jt%`NcOD z8c9vbvzXI*;11^{lXtX*#ksBn1p*9B;ZW3H zPuv8rRj{|{N+?*$;)(;dat!JfJDxIAm%+I+?0I74KK&HgODrvVXd?hx-&kOf-<7wW zk@w=kzyJMX8ekoZfdK6W08duI5VyvaCXE2mfI9(Q0UZGm09s)r03Q+6#skIzrUG1m zTmX9|{{bunoB?pacRgSw;0M5)fUg1BfIk7-0bc=50a!`jhLSKDz!J$nUjF|Iia+X* zJQ}aY`?BwpJXcF|wRhK&pS5wk- z@p`>~jgX-MK*>+qO#oH^X_FRdkQc=xc_Dq$B=4jf2_PQw%5=oTd!-Ae`=|a$o3y3^ zA^`mX+!w zh}zc!K?cGhLePGyR2BB9u4#8b*`G9pO(5KR_iNhIZcR(XjQP^`ChZZNGWj;nJg-oL z4W80}YyjH;69G#AKLB_xL@{75;8kQfhM~?*FzVM~nzjeVOvlLS8|@@ioR9cDOVcjZ zH)%%~o3swde>)%+unGW{v?qawll>e;TL`}GfPKJwM`cZW6u3VF?|;HTgb%^Q*cUae z5Kj2|CRwjUA@3+aD?nA?dIo@38ovz&vRW(@=EAiz_}d9SCu39n2T&m4#o?OPrV4NY zU;pYR&4PR&t2G3C4xs!`0iH+xcflXm1h2*Q9_Tg|j@2A_^XdUWoG=H1MPXLDF7~^} zzaq;*Pvl|m!wz^3uo<}Was2@NafGHH?u!6pQ7G<5-j|ze+AP?N@F(mv9XK67Y1)J6 zl(L601TX<$18|WBab5s40>lG8#IxI=H;!{x#{D!n@~F-dvLDy9gTvt04K!^&79|iL z)S@A&fV*%l1aM!|Iq-J`FZj{xBX~9pyv+oU({4kVxl=-Kr2F6wP2+6A`u|FK`yj0g zkOxqB_ahw-j3T}scwPh>TcA6T5ZA4ENZ5mAFYEAd!D#UNrzZF#KH|v+Jg(pKH(?m) zehgd8y8$vmUyp#l`oMb_G85X4)wD04hYt)gX*J%`v>TBpPR~0JSK6Tv&Bfe*VjQA=b4e|X435hQOuo$xc z+*Cr{XEbeD3+Or?@}W@C9?VC4D*^d{T<~&-j*st%kJsU_2k{-bJ%F#@0+fl3@SC%m z)~!AAAszjN{zsfo0}=td0mPwz`cwA>(AzfHfZxd@~3b=wNTUU9)QL+T1EZ0=E(0|=xq(IW5C}yD46)h!YLF! z>W_G65As(R_w>IwKo$U|(v0|?0e_vrZ*%aNg>pfB-!(=Z2{{Rrm;BNHh!?K~F8T}o z8R`-GbK)i66P^Q)3g4e7Z^Xx$W5P`kQ27h_Q}|{hUn*cafcBU|9fG%L;A(>_Tt@ga z@ohqRa6z90;){D*@~7mDLt64jUKsyo0=nVHi@0vZmH1}D7G0q~59A|%iHOw%;v0wx zj8$ia+A(4zK_?GC+L%3^@7q0BB$G zHxBX<-(=|T0B{h9kMa^<&SF{LQeLpGSpbg$h>!Iq@zG!6VKn07agF8SQ~c2$#6$n% zmAcyvp#I2THV_iu8vI@goQl6~@I&Q)Pk_H?mj~?2ve6AdnH9dzanJZde2k~WNB#YY z#I*0emZkB1Wk)@7yQckCViNI>@*=Bd15jR;U-HRkJfOb?fbxC|{Slwh|HvQlEy9_V z9c#!oEAb5j*Z@s|i+IZ73x=KFM&Y6UPNMuOehBV+kAO$&uQw_%#utU}{&A@1`fJ)tAEUj6FL)9k*cJRCtH76tEA>ZwEO#L&Z2h6X zp|A<@F}^5#EFWDDN_^??Bl6M*0JcS0q5rA){2E?1!1EB;g#0nS5Z^u31LcGDN8PT{ zzU!Ard`K$V2P=tF$4C9K{PN4D#0T|h8=yZWuPSfEw-kz^KNBBB@avB{tOp=}!XCgy z{>$Q{JybkU{HM96x6Ab8X9(FT04 z@I8QgBR;lwhk)OvxKiHvsMDGL1Oy|neZcs45^cW^*O)|KiuzOdgq-*dHxTiP{L!C@ zZyWez{Y!cOKp7!KPnP!BgiY`>drO;AXCN!&C4a_vrSLrkJjHky4I2}m;?IbW_F&wj zza#^wzefRne7L8)#>Isy2oTLlR^zBhn}@p(O*j`&#Kh|dIByFu1XwF3Bz{C(d| z;FQ4EE=F}R9&k1I^3bq2w{D02#5W3)3aRg*BPS3urp&YJw~10)e~l=_a8Er_UgD!aFRm)_l_1`q0KT0qBoJRb_*3?v zyew}DUt`=`0K`Xs-hwOfwb${@KrHQaBkEVYBN*{j-!989NQrn){*3tQK*n#OyES-D zf2O>QFGhUym*FrP?b{Lq2$4uj{)Pc;0Qz(yK*>7=_p1C7AL~onSIIkUsKoc|$C@_c zImsX6X=}hrz#xFK2S4Sh@R2`NpFa>0keBw2>4BK?vc%U2`H7D>KvsJ|zbAi*c(@#R z81ISiUdT`Wh)?mid<5FsXum0WJL>so0Cp^uH5;$9NBaVf{vb$;9un_~?JM?_Lb@(Y`EW#MeW=cEL3f!1{ysV7%f7 z8gBxhe}eYjG0#7BD=`FjG1Sw4u5 z?Ni#r7@vvnT!_@)9mq@EJyd*&!ZXI_vix-ck{&%}eMDRYme=|K z;(1EH(gzj3Iq+xVBY$Rt{^&23p%@RF62LbE>Bt}PF`_a0;>f5fNc zB|gSK;-mhUm*s<3;$wWKeTk3dkM-pmTpJ?+%Wql!UY;xQF~5p0)o||ul$G}<*jLrR z?0+bHZj=+n-y5i-$RGWg^`$YsD0!9sZUWI!um|~5_$Y6Un*;tre5^lc-|p{~E^jK{ zD|}x95Amt;tL#gBM*eENhPL%HXnTP_`g0>d4*>6J4~38R#W20_7Zv}gKO?@Su`(XK z_M^l{d7A@}Ow?}*AL|c=kM#%fvA@9fkkOwfN27k(gf=zmIwfy+;G$hAZxHg5zXrH6 z9?%~2XX-Bs_X?kC|J6v9_^3bn3uUCOT>$#WVt^4J`}-q8C4a1cReSQ+7MezgM`HSO zpW2}RwVZ1*;;RQ9=zl8yy^njwEAj`_{`RiX9>hm^iI4o%11SD9@7DQi z1mB>%tS^oDSbjhF5bcM1Wc|zX#_~&f6+Z3{XS_NG=IJkNztErA-Zj>5^uHhQoc^+S zyGhjNErF)Gj*l^m`lAkL55@z9uO%LmKh|%m|H1O6;uZM=Sy4umyu?Rb&x59lFT}_8 zkm4@}zg0X{_$V*OBbp(v1;Dua2w)JP5TN3-k-sQBr@Sn`3LoVqe+nPt5oJvPECA4- z+1@b5XVrfrf2_~he^dA(Q5clG!^X;=M$_MpF`_>(ewjKDZtK)-8wC(`POZzgO zs`kBVPts15m+f7JkN&CT{Vhe7H{zmw6~1>tPvM(_=fo#)>GD#4_rh-oXF5xKEN@DG zRvq6*xRSp)IzF~{X)ogA{6{A4mAoB+i@@=F@<(~eALS*!jsO+!XDJW z+Xo7tl9$hwyyOo_#C-EGTvfa$KE}U>IzIX{`J?|Se5!ppkG{AD&*=jSALC2Xof3$T{-@+6KH7u$81IQs`5*ZsK2_e7Kli|M zCGUcm()g&)E`Zhm+J^Y}jPdj_T)W^Q{e|&`^INn>5&T5iH>8oox1@?mdoD}njYB@- zV|-Z!p#D@mW&2r`U$$S^K4tx;;$Mq~NP7o-A=;#kUW$zWM}H8H-8B(ksZ)q2=2l=% zF_+JBLVJOgvVXS4El$z|%cgYO&1+7NuU_U=Yg*+XuZ8zFIwG#iC+^{OS)Wh%?R9P0 zif4E7nsX@i7_XKOr|0pi_513$ct3ygx4hc=R{x6E5mDde@@lD3yiff8Y*!(#InzC- zc(pyACg|Au-nN6kQy;j^$7^BLj)D*E&QT(rrD;dOr*?5lp%qPJ4X$~`zxsFs*Ar_p zSa#k9RD!bpiM0&#>sQq7xwEoXBfpyV;~U}HNTFd6F#P?0O&=~P=8$QB+TI432zUi> z4#3Z&6$2RSxz^%)l#Q}$E$(TGn1~>v)>{1ek|x$#e1!nq^-uIeYKCZwS5(rzuT@Qy zd-@*ZENR97SVtoaYo7t01g*ok+Hsu$n!f{3-(3Hay-q({0P0D}Q%0WqL66agRybXbQU zMtQvi*l0$32(tQc-HVLfT4K#ZB>L!JHuO%D*82q7y?~|fn6#S~K}MW0yJuA;p-a-D zj40ZI9%E>8Koa0(&`1NlFhFPMb2WaaAn}`s3q_FaM+C;27K~pbgZClKZ&yQk`2)P8 za!WjhH8Mr$BOVOV-bX<0`g8@2_5+K89zvDY0)Vh3+7Z9wx*sqGw9e!DHLmR-+XJ9? z5cgF;D+%~hp~uQ2P`4tm@=I7hJcsojElrvgeU?{XjGEJfwVa1Tv>KHv`RS1c%pmB| zhlc@356QJ<0Mcs?oi0VN;k?h|pl1ey?#75S@RypmL%&PVMr(^SbJ33OVbYpoOsB~N zllBP^EL~Jl`(qZ`D!`-UBfX9Q(t8F#eGUfhowyFdbrxvM#(gk!`3>ZpjEpxz*4<5D z=U9xxOhw&wP}3f6hPKuzlUD5pllH??6|^BAg=p0=0R1QoVWdYHkxlCfhz3wTMGtIh zpF_SJ$hQR7JY4I+ev@GI*1-P?-gDi|x4jTwpG7;P6X-7p($Y^tKc8S64ig#AcmwvU z3*2xq;ivT1zJOZ5q3Cg5{tSM91fSf1>+hg-@n!_SFvxrdd>Z%t@oYBA-pp0-r9)Vc z)Fw!~0ebjzMMZ63>x$akssVa1yM|YS-UB*4`sqO6ehqL2x+Fc0%TvA|ab1buwQqqO z@Eg**0dm$Ki25xP{_+Oog8j}wF;Dji7WAwUW}#2|rI8-k6ft)*t}us~=O?{ApfLfo zNUtBt2I-|VMLPis5%hWo=*@?+W@ZIx%{NrgYE2K(@~}|r#m@rrQJ+da(t{g_whXFS zts-c_41!)Zd}TOjk)EZ7rVX&5U)LV(`>tr`1HryVn)Y8f!j>Yd>5w0BAOdHOFUxo4XMo1#`DSL9OiYrLmg! z%X*|ejWRgYr0s>H-*Xl+^$8L5LJpb)J-9$AdX#SrU_Zb}kG40`qduFVGE8j<-v!er zV*>QXIncLV7No6zG)Py@U*wLKBzfpdXL`|_koJO5sgHg|upRu>)X895=sUr3KMs82-?>Fo|jxu_0RSo7B@kPWMHTS$6yUzYS%p^THByPipV9p%IOdgUw9BTXZ{ zo%oHWekpngQ`#6Le7S+tXI>w~?AyUd8^k{pS|wloo#EN+v-M zroSS+WYAa-Q1X#pB`|mb2KXFhurciQaC1qoPFuvI8R%aR0Nqcq)_yy9su`p$dAXwY z_-VxJ?KcW~Fv%6^ZN7U(1)#>}sSwH9wldh=lPM;#{Z zyTc}J%?QW{dgDMBSv4a)`Urg|6To{^S$_GHKI0*mkPq*^K-nX`r6c9o+}K@+fw!UU z4`+`=Tv7B|WLGX%zVhgG0$%EKG;C&+&wLZsG=MhgY`_(C2(jThvX{?puZS6m%Qb%%m;<19h)S z+HcDRS>A5||I{JN`(M!;3wqQi>6vg(`No0aw{SnG7x1_xy@9`?p8DRTxjI+SKKjxm z?6>;`S-<}kJ)=I2^yr`E(Hjn4%F?^>X4JQHB|Vn6tI4P6y$1U!dh{3Svn)M33QV69 zsQ01gAKL{9`6|Q)X*&^!@4c;(zdpJadh{1X&uG6F;V(*`%TP8+@8Ddi&!Pdr+Ns-v zHCuPYZO8`{{`krE8SO{?vOK&AV0oZ?M*&89M)}U7O+k895wl6}(_>P;4Syoug5LS@ zA?4D8dtZ@W9CWAXQf50N_kl__Il$fE0`_akW2e&xwWdOK0}`XIJ^KRBSzLX-#kr=mxF z(qE3jmP(&ckC2b`yHUPtp+|jEzT+-wKhk^rH?+4#YC=9mZ}37HuW7$4(Yp`tlzeRK zGM>?2Xg?(%3g73jg$L|gt!^t$(y^kzK_ z*>wB;bTmlF7yDGOMtV(K$@VryCY5PXL64Qwvytw;G_ zdDuL{q>&!wQ}pWXmhE}cLpDK=a)Ld7c_>exik=yYFH6sjXNsQE=eYhAwK{!K_amMv z|0F$x3C#v5OD_@6%9HP}=qY`Y-pey8Ya0rxT}F@kydHXw!VpTI|AEg?zWU?Pm-$2! z`fM@=eaR1kwf*SupH8nL=)t{(J}F;$^o-@fXg|s~96)-9p`fz#s87;U@*Pg8BI*bF ziqdC!^o;tv2wze5_2n*jQYqSqD)Bf*fOXOu6s zV?e&=f0Fv7d{3jlN%<=LY$`>MGE$!{0ci4EmELQRi{;@qgFefnM}JwE5G?Fh@@@q| zkN!#d{tmreFuc+y={Q07yX!Ri?vRiELV7tr-KeoXA}u35%6K(>QaIaGQX9tHMglNBdE}#uGzDc_>TI=r65-o3fTi zkM>)LvcU3iHF`>)MVQ2-{i*#(oz^$^H@RBSkL;_hsqj z;u-0oD^g0I<FZ^2WN zUiBGefmQssg2y?8VBT~5cknz5J5*L4`iNP{a1`54a>J(%2Y zzw+ocfbv!OGt#>q9sg^k$NJ%V=&^ohdH*YVuZ|4(i%~w(Q~qL%uA)|)rd4{xm#uZpy!pWKDEtLYlB?3Azm%1)swF^=pTIq58jOCsBEK6?_p8ZqwXg|tEdTcwz0?MPO+SkVNr~Jie zzrT`?G!#9`r|8j#RQaQPf0tgJLngodSl<6Gy?RPbLzu-N6H4Shr z{$iBx!)U}8(7RYomiPZldbfX!eeM4vy`zv(#p~0kG%w)ymF#yVdi2k~(&wW{Lw%AS z=XzP*N$+a*yH{}*~I(cV@1RP^537AOzIk1*jc@4UYjdM_g5 zH%MF6BHI(JABHx>{Hsnc^CgVm>++SQN1Bw6?IqG{3t$;%{ZQ6lRC%EN%F-L%{BnA~ zq5nsEr?48NK?^cAD8kq28ce4PS1twQ9L6( zt}ic7pVuoN{f2ZEJ=Rl7zVhgmE$>&O*Bqz+m#0t4dad*}pzsW+9`KjHq=$vK%6`-x z?Z@Bj!%&}pC7+RA4l-X4J^JVM>ho&!>`P>MQ2r_OX^@Y0qinohO}=irza(HRi}Y0g zLCH56`n|aT>+!CE9_3Tz?@Ib?`F}uaqG8^?tdX=%hhw+T|o7Mqiuq+Sd*pK=&(xZHdc=lKHwppZqE=9n&UV4hAlFvwQ z2xv3D82tsqaN4!dTYFapAq(--W|WKfMtWuCyBa;#4@UX6K~|$auS8GL=Cv$6wso!~ zpQ6_f0jfOvkzUz9_5<$(^a4x<9d>>va_k;^mkXY0wWbY$s?O#&sFsJmBxH(N#34E7Ir)AdP1L zNdUEO^?zBHYotM0VgWq?(E#d7(ZG_^zr7Y$(V#!I1knEUv%UaKyZdSMN73eb*uS&> zR?(n;G3JoQ0|3&P2Eg*Y|9QU)I?wIjAco2Wij;C`UBp zxZbt3i_z{duC0ZdMfso{9G_6-ku_%SpJMO{_YyuvNRe4 zFKM^{Gj$r&)fbS5>jc$0-RoI5OM6fb;-#(>4bHWZ#!A5dx>goVLSYX@L-{UgMCvrK zRPujXA6p&`(lOH5iQimvXk3GPJ!@jAE7l=KIm*&N7gNws>o(b*yqI`*H-=#eN{{5?g|2H*2A64yj`e(2XMu*} zw{71~*(0_lJhQCn57}Fs9d=ds>|`kaTYssojuo7F=v4OFjEnu}|9mn#YGJ|8RbKIC zpPQZ&(trEW>=)l#Wy#9ipZ#;|a~EE%l=GK#3hU-CTbq9>`@hpZTY0G9=jM!5@n0+X0r8VomW7+5DSaU;$7G{4wXvmozC-!IOdYL&=zZJ*V<&A(zZ&kaao%#qgN0-d&~3FcUxare}Cg8sc%{L zW}He1zB$MG$(ih|`wQ}|DTQ(2eGYtKZ8-Gz#@lx9x-9>gNqZKLd@R@MjTqhk#}b#- z)a9p)pLQ;_zV~L#=CjjQS{rQKRKH1+)z;LxU$}(Q75e<4wlSoc-skUuf+{M8$0|*>m1XZ8@_FM%=+CE@v|nr zP-wNhl>7dP=?APEV~S2i+ICxuTF+V9cwDaavG8~9`tH#*>nES>Kk)6WLtSkz1p2+$ z{-vq+JG_tg&Utcm7j>0(3%98+&vxP? zQQM&(^{l*ftH<_2%76d<)xf_R_*Vn}YT#cD{HuX~HE?|zsPV=9m3~NgzQ)?<>h*`e zS5W=Ehra3jbp0W>Ze9P`?eT-_)wvqBsg5y;Q>NfsFOD(E6Oa(siB1k$T*u!ZJ?x^- ze;OY^x3uh`Sr+ur!t8c|VJxm3-}%+>ZkGOTuYSE?cz05N78_?5?WU@eduglj9kRl# z9@@Ql#=oWdmG_obJ+xHNdrN0$rF+$Y9iso4^EXydQW?Bke(=Z+{md@6Q?2@N^?0GC8r$A z=R&JJYj4p5+lb=NgO$5rk~~* z%g8BHM$WV}X*9J7c(RO3o{(s18`YMylaeL9@e{{5$0fE((xxYleTc{d>DrZ>Zk%(x zAx-;o(-`FMVej6zZ~xftciSz_2}&7bBujog?IJr}0gvRlU1ZeN-?wR9?t5Bf%Cty7 zoyc|_%4b;URMLv<*fz3UWMjq{@I;ocM926^q^Wcm*{)5Sa&eVP)Am}@ly3}y=W<^g zc@=Nd;)T~KCrO?-!ICr*&M-zB72vx~r;g?FJ=!^CO5y}jbNOX#+ot@qMj6{)Sw{BT z>j9pBj(=OxyXRjmo49CUIr>%q&E7x%#Cc!1hUf4XPDQbaix#b4L*+F!N&jupuU7pU zuD|cD|8Ae7iND)z;*#1uM_je`^0%gsH`yN6e|OWbwQ^X8l$4y3my%O+L_XU>{k`~w z|4!?CV=k$tr+p3c)Nb-kVYa2i-nRCP1J)$*cigJK-yq-Lo+I_L-nz8;@_9?s&UMlA z>G&X5YGKEjn<8V?_>g?B<^1vbnLY8N23R?&6#kAl?+mZ1+QfVCclYU@!9c=sRm8M^A`t($Gz3*2Ji@0aI8qZSlWed8gF_OL(re7Q8XyR|E ztyaq(cVBE!Y;74^x9DhxD%J$?w>JAG@t2z|e}A3*__SURZEVz~tIU^U)$?V`Yi(Q2 zAwRzKZiPKvq+Ytm))jbb+hqFIwwuK7$|~Kb^0{V{dba5Lw%FQ=KXKk1l6bB1{ZH1} zTegmG{on_>9-8WSSL?rr>iM^3D}N4da<2YU)q-=HZ)LvC+1XXa>%-W)Q__S+LL=YRd$BQ{^Y&K~3nwN;Y**}fNek7w&wtCatcwSIchz;*TVtq(kz zGBM)$S8T`ZtsdDksL*Cv_)$XLai?v~oJ;3*8+Y7x+mHReDA>Ktwj<}}+lTLb$u=Rj zjwfTq2%GcNOZ5)ay1|y*=h5~-+wkj{H)chCZ%Z1q@9QZa?X~@P zi?dam>T7N1-{11*?3wAdwRI+Ry0xiY*KfFPpJJ=;t&ei<8`;Y`_N0AWQI93oj>Fci zfAj24>l)|a&>e$+wQdgTT4#H!YPN?PjS4@1^DVZe?``WjJ-xc^;X%GX6Z6hlk424n z$Xcy>x28?L&3@uccWd@7Z_a+yve0Tfy|``l-!@vernf!&WcB0Lwn>AI&)D<3wbzQc zPfm@~Y)@rBwa;-evs<&mp*!*>{L#%mI3~3Au)D24_KU9Fz4=n>mkEO+5B$EzYF|-5 z?zIJfSSt*eKjFl|8n(tibjy8jc^%uL+zV&2laF>OTyHxc7w+no?HJvw#jszx?f?A6 zC7*8TWo;H$qfPO&1=fqP?P?Xx%eBtgpWpwh$nUL&x>Qx4SBdV|+?JTiHAXt_ztxV2 zY}2lTzmAxaJYfu45@<#!oNSm}Q{5lgCMr<58}P7R7(ZjQzfNk`CQ#)Dl8v7csFmBb z2~?7X6r%&}m3D0c)xROdsN}J240Os9Ydq2zk_2iz0~+WcafT65pixscRiH`Iu1$H; zkDrk^WS z<1xU`_(aD;6UTI&F?#Cgk>e7(jvO^LanjVTQxeDVG8+8^T*i-_G0A~T@&sNcBs-AY z>FA%7)V1H}$kA=|no?@cV*Auxuw>1i7i2pkRke%S+2nhFdqmdPXlJQ<3|~L%F4OS; zS~l4pso3@GhA~^tjQuJ5j+iH_E`K3E`lb^t=RUV&aw)3J@emKoF8x=?dY*H`j>M^s z2LnQDO`BLs|J{uQ3^wsY`t=xmcasR@X&Tw)-WHZ7gAyk@@iK9YrTb{KPDhSLcc(>M zr&jGn8Y7;5&hewzw@R|~NFJX!VJcd_Q!U9;k-S$MBn}}?nLd8xjO6jo@s>N7ILk!)B*A~| zM6{pBp&tl*@gp5ml4mrDXxgg{{EK3v1pv0-pagM2$q={2HTP%Zm_3P0C0w}!;QKbd&mdwOOwrSPD zqI7DXGG*cvi+!pic|5zedKxOPDbsdp)uBm56OlS#@E*7=3H%gyYR=Ah4Z<7x1pCpn ziTblo7^A8iO~0R#IC|ogG1_3~=+TK&rzSbaS*9d9oKq%f{h@j&8QtTlGvOQKEf{^9 zIOYFg?_1!bEUvz1p55$jLIMH8J-~)=2@oJ$RHR}Ob{B|-B<3P$X_qD0kVr0THsNBu zprWGC7BBVQ*JxF!wMxCbRomKVt;K3JEw*VFM zfHo`c_E@wHO%N3qX>0FnLdAEXABwuRNM~oHz6oCJUS3(fsTl>mx7vW{kp_Vd5bbELx1|eyG(z?eWso~`V0Er2qil3^war28MzJPd z-x2B9ng~J}@t4i3)VUC=JDSl1qFd^t(T2FcCEB*3vxz%dS#>B->yL2VIOwOSoVBQ` zP?a;H#hD`#Pe6Cvkw+F-#5+5>>QTi}e^VsxUmuOO`Kb_59w@cCwvBD=o7;3I>f0Nl zVp=>yEN}1V?1*rdI7gc!9c?I+C4N>JwC9p(cJuO2i~9>Wn@j!E8VZ%DWGRa*W@a2V z{6IlShivZLdFnqTQFD-$wvF>h+JuTE3g-bp6wc$;I=5b+F#X3a^{-eS2(PKFEDbNK zTOO_{J2}L6W1t;S^|r?RXmS3S79kb-<0y} ze)}0mB3uHQ+DL6dbxSRcYPQ=w+F5m|W@Twr2u%)yA;#o-5I{9b-6FcBllm#OM();r z)ue&1Pb>=5U`BQSw3db?G)}`tc{H_mwKSlukP~%~z#nfujYMw#n##KBKnT=rKnFpB z;9UD8FfcwfRsy#lB7M$mq-_J^t*j1)sy`kr=m~bkFv`#{s2GM~)=-b33xk8GF0BYwt_s(LLP1jwO%W17cKTb}X-0)S(9U+OBN|8c=ZaDm z8k)MRs;i~4q((M>F6dRhTz04l?c3Sj?vJ-(eUch`MaUUDIj;6|#1&#&7-lleylUNc zlnAqpM;Fu#>hV}V-3?>tOKDsFRi$enZ$uI524ymii1Q0|t3Y%|I~cf~IdHW#qj3(@ z3Jfi)N^6c!6ewyj6+u#COi+_(lL=aqaiORkxVWbby3K=wY1`_j8f);kv~NITYXOlE z42wjU8L*S`9tp{}f|xrt0Ym3jG&vf?bzZnZ@krc+h6p*Le^YbBk2%oa*wK!8rLAGE zpwTVf2r)Y+TQGBppQd8Mg!?(q4~RW5-7r_dl))Sga|cX$<%+UEX}JijEUm^Q8LAf5 z5GRX3<*KUk&>BGq!fg=TCt)nBs12<^Q2g4S3y3RVx?%Rf?1R}26WW5QmL^V&^ynyl z%wVk;>ZwGj->6B|5MAisfVMx4O#}GqXw<#F&?H1VgJP_LwGZG(Nu`iMeUkRVb#h7DG6<7E}8azEoGP zzg{JPG0tWp{hOP?h+%b#{?UR>E(&jWUEL0d!U3_{i~tjxNI)@k=sWAT`ah1iU^7qR zn*U289R+r37rf)9Yp9~f*(T<4{kkToXi4O?8Ho|84lcJptjHhLWohul(h5xHu?TJH zQ6EB$CMTb$S}H>wUKbo@Vp^Qh3`)#@Toq%Vqz4%fvyft}6+hd5T6SrGNsVqHZU7v% zsv^)As;oAZs%dkE?;j&Z^NLEuC1&x{M#jn`C8}-%5iD#YT&fYjYSBsM*_YnI#p{RG zK}DoG4~7C|t4hlUUFQ_1rffyUU?WiYW#y$6#}6`sqN%)W)h7sFRT>;*Xq;uQtXXP0 zdWXNY3#=TvKGp!uw8Na@P5f00v4^Sg9Q~`%U)!-&je9(7lm-H!nwq6EFqcFltuxS+ zQu=0}G?Tk-BF&2SwmH!)7=P3<6ufSNuDFPI#b~IEi&#fHNdVeAurm+o3D$ybUD)40E!xp8A}E&5j`mnn zRGiw?-Wdg^HWUTsVes3{;8u8@OydjWXe{=Lcdge`wpz{h7gh(*b9zQqNBag0H#D9_ znM;Z{Z=m%wc#48)aqv6S;&U^^#{`2f8e~~{Ia$lALS)s1R-9;0K4AHH?Mtk{@|Jd% zZp>kY0A715Sw>BC1Fc}x5Y`xhgooD95mGI{tkXcFA*6&+4`W1$q;k;{bhh8v(g8Oi$zj#g@u@sz6Kj-&3I^1Rbga?C> zM3*z(;l4kw^zD9FQyVO+2-j7V)nZ%#m!UbW&L(i3o10r&cp9Ox4TAzNkT7hZhqpCE zFl_U3BBP+9ofuRdgm|UqMtehYW}?d@smi+APn#BGDOkIFlEgyQ)haQJMV~xx+?fZR zTwP5ljQk-<@L1?j)Hhj7N-`i?b2*DmjT1C}(=q|9nO&eN@Z3b1>0weR-Wj@Kitnw5 zFuT5qR}JyGet#v#xsGNGJG{z99E{_Ahq;WhMnCy!*-ae71&zAo?utjTR<#>NT?GV- z%R|+nU>LeuC_X_^tLs9A#D1GBQM|VGSh_;@tpQZj(vZY$CJq)Ik|#)Bnaxm4A*8b? z2XJs`QW;2)r1Lb%!tl(lIC7TfG&IL!Es?F@@|#;*qnMF8qb-nN;@2OERS+vzR#ZT? z9O5;TO>3g)6U`GiX>G^5HV*0&h-+3>t`0+9R9BOf?--A|GzHS~i6v}2VC(*}84~`e zJ^gS6$03mhW8CH_*UBmq>z9^?tIC014diOm0h|FbFp$Y?pgpKI-49Woj2Kc?>?lD# zfnwIfy?=RWc}>WHJQ!MDT322hMro9rIl<;&GHF!Vrrta8iRm?ItG%Y ze712rQOS`gk~3NV==bWnt589~XmZ2;H9 zQ5>bF7w%@Dpg9z!Lu+m-q|^Xp^uVBM;!KxH*n^dz@MXNrJSv;-|LbU)>guc61U)m5?}ZjM50x)z**)*}y<*fk@}}oS={+{@*aGH7%enodXvX|PZ&mfB#I)5jJIfNRAu1MFy$$^aTbJvtuCmPmBu zUr;MUBzIimpXx{iX;w$E{Kv@7O3ZqN-q=oJ8ov{psM4!Z z5@}$?1txZLa|0w&noNhVmE=-wyz**j-av!3*-XSA=;YYvJ%P0AQrja!_8 zsVc>+Lil@O2>w;X`%eSDfs>36I8zPfBNg^}xhWsCR50>ER0nS+w~*QbhHlheQ#6i& z)zSLadr`L9R5`v4?6cTCp8#KxBkV!P_h8aritx?ZL2;Hg&Tj+zEOxI0_u=sDbA;{2 z_sI}mptCqS8w%fSRA4rw)gbBv+-6FjG=~SMvIYom*0^@i%}q3eksO-_4jqe^mJo(O z@IcU0yC5$?msENbiD{YD-Y^BCuaX>qWMB17nC`KDU@7517?J`p5@;xZ-|R0udpHu} zRFoUU(Hv;E-TL+xT9dT(i$~K(Vp%$8(O*(TzwxIMB&9y6n3z%kpJH$FLRJ7zTH7Z< z2?Ivj4ZI1gh@94d$FDHvANR$W!QlRxBW>q5(R9}!O&!8H%ZHdI)5K6#&L$}~oE~KJ zqpt-88FHKN&uV`XT3cBwpfE%q zg?~{SLod0__h+>~DK2Mt`u3kOI74(&c+ZgJ zcnahEHgP`Artm%5%z;gY+~)hU+JnWlc5C0XDQ@;4jiKALF+(@G&G%=u4K8X=skr)s zneY_W`JEcKKR1O};|(NHnv+X(CE{ zum@v^zE6^tGe5nKyc>9bFyr@m+x?|QuxHOzrU*6}a+~kZY7Z7y$#&@Q=(Nec2lc^m z0WTVi86@48BOIB}ny*hA-=zQlLYbR9IO~YMC+`@Xq4*{rsW=So&uTmI9uAkY{q$U* zXq$_?491we94-x0e}@bAMfscbY23xxe%`=`yqI=(^$6@(O<|q-ySAV>yCul>_x1N~ z*n=??Z!qSlcJy7C!G!%H!kF}_Od!U`I)01R#~64v@_@%Ca}aYn8RxfweOmi)xUx@6 zq??-d;o_#!MB%GxN01e2u}QD?e&_>78z3}Q8?Z@@g2QiwNP%Pyb`%4Ee9jiGI-^nP zav}ueiJb&JXky~2MM3e>k;>G;&eo zL>%9N8icRKJuxu9g1HXnQozoIu@fPRmiSwF1F{~ZF6Avbfi2xc7!r#s#Tjf&k~kVd z?0F5QtQAVy^pU8o=VR&q)SGQ|l-yvHH1gNEG$sQFQ*P^$@HU1}DH##PWXA}Jgt zI7i{6ydqC@@?N<}O!#^W5gBsn8AhZr^96MM^GFECy9~ZN(%{hQl0-fy} zqitf^?4nudvzL4|C>DgF{|&S4D?#zl+JqtawApj=7tWtM3kS&bS9w${B`vO5Vp_uh z!yp$g-hy3&IpSo<)L_016Nh;muqv48!cW)i3mSyOihc|!VUB5Z-PEZF=wN&=Abht5 z#4E7Z!SurX5C*?uA-2KzOUa?m=YCh;H*qiE-8}@Su{x=}02T+nUYJ8L^qq~iMYb_B zw0pM$X8gz|xRJxu)h?g27@8+gfWz(pC#S?W`pBV4n}%4T=S0@CG&>F$NCyaa^lxzf zV-ThnVFohi9tep3%s}BkZ}``cet(AQL=_UYD2&ic7ZCao)LEh2h@!E(wJD^sN)h5S zx4O_$7)VpbhdEz}F@Qp12*9tQGdAbguDP+f>sv51hm{_uf9X=C=p3%7gDQ}{b$g6| zei42YFOi3jr)9+B0WsvU!I?V{_I`vV`%xX|FTVUUVZVr;Bl)^h7x0o1=Rul1?RenP5n zeAz*wL4$v-nsTW*sUonly0W73@Z&tu zklHuUCoYWrs3V69hF37wO*ul3MvmNZK3xQ#854Xo&tGK)Ag;!3MgsHqvsmB+6d(NQiV4!m#t;PkEgb(OfdPb$H~=I19+yf!PGzr5ghL}%M4$i$S~t_$ z6E|1TRU4wcg~vF6p}}2`10+gS9m12ud6EGSoj`6-Rv~b#9m8G+l$p$F7}|eQLs&m& z`1P1eI>neQpb2blZ5UJ}UN@Qb6J6c-JguRgpmw3wRHC%`k2&Yu*T(lX@*R!J-BWz) zXffh7vHeCxN_W6e>`ETl>0@wE5pFKWz z$|GOND;~D-z(Z4dJB#mo{K&fUoAwo_Kl6uQZN>W^#oo&^7XLKz(>K3$#Ysobx}o^3 zf@7CnS^wkWm;EPf`(^ma;y?fFo`077=BeUUcV6;+@%29xFYfx={r8+yUp#Tt5vyx= z?kLWE_JoZOzP+<}@)7l~t()Fcyys8XJ-xR6j^c&wZ(effxEG4^UwUV3w@`dvoo`4JD0J3by~CyrJal-+A=qjH1et>96f8 zbx)dBvMzq#%cB>)T6{!9*18dkwimCzy7QgCynEYEFFkJMH{M+_zNGNBmG69~;L9aB zuGs3l-qT8&3f{^aH+y@@spBvDZPv`MmE^s4N_FNDk&+8G#eQ<{%?nG47e8}N#o{x2 zE;(uLDG~SXl7hc4cyI@0)!hV_@u{6l@|{(V1rNsZgB(;xlrGO-S2unz7#nAee(KzxFEblLRi^n2hY z+LkRQIetsP2(N05ok?zSPbkDR_NcK=`$393K!fV7@$2nIP;6m^7Ftas!Cn zQydAj*YCODH^q1EU$?X1qKAwBx%IlLk--DS?th%|?a^~CJ7&SjE9%IdpoQdLC7|md zOg9XT>mT#udvZ$yW7^X0zWbg_mw$k(L|v7OS1p)W^!JsU&pG*+pT^I6wsKV0Kp4!u zc?u{i!S1j{fRbWc$P2)-u?yZ(4a2**9D^z7=-KE7um? z0DJeOhkpD!*o&rrurV_rbpA#6@6TJkXj4G!uh`J~00fFlFJAZZnim2kyYAjH@%B-{ zs&`-f-OJ;T4_@-yRh}mfZ3|L+8V7R*%*Xvomj!SpNkrDyg98yo^A{{!bi|QIEk4@B z`C$nkbumuysKfm-zGqAkwy^^_KHT{BXg9s_>HOuualHc{`R#SMZ^!p(ohtqFU`zP# zf^EUR6gKsn!~L$-@vqbIZ_@EiydM=S{6B?F_|5ML9q)jSXW*&!N}Qp<-VXLmz}L_w zn!W%FhYR_-G`dj-Od~Nze7O$G%^gVU=&A{v?&eLZ#CDC141B5L>l|^MpYLe;-%FwY zc1{0XhoPUwoX_%W?Na5}37g7qD{QKt?XU+^KM!j9_ovYRJ5B#HhoS#N9nXcfLg}VE z+7IRHUXAB|jpq^A6wdr!)c&t)e*>Sb^L2#Imw~6+hkIY7YJ3P?_|S(R{ac8$CJ*yk zR7gDp5Tc?IhR*EjCk6&SX_K02!u^TcuTC3siRN|^S@V@HNymB;$nj;L2l_O`A%3YY z$K|>lP5(8CgtjzAaDI_C76!aj$%O6CKBVjKJzam)-l={+gw5>_>CzZ91a?|K2p&iK zq3{QEJ9-AT^EVOk$bX8apYS+;tF*gL`=11x!hZ!er5lC)as9xt<%Qc}`No48)9PoC za7y+2!^}+1_-dF@(QsUuj(-Rvk3A^_2DhIdpI1?JYbWVEIhL*CNFh)6WxCzNeNy-V zBYs3YxQyRvE*b)Rc{P^s2ahC&@yCYrXo|7&6Kr!#o4?4$Oxz*7=|fW;9FzOcBfy zm>^6Q%vzWRm=>5$nA2g-hxrD~ji+I!qDF5}4&MRWK*RG{CgMnBV`F^A}&v(?tMs{^&{wLm?u>d1}ZaJEO~SF0fRr z(XN_kYb4f$6Yr%$Y{abtICmEffM=yEB_WUF`;^bbr90q6Q^Dd|oGEVZ#6?MTQ<|j?Hx6kn_Hrltb!-zx(w>tb~`kUE z4ul&ZAr^iSZlp~qA*P8i^vmiuH$VaqZjR#)%&lUf2)D$e(TzeZ7U9;7q=+Vt7GWsY zbn-<5LM#zs+I$iv0&i(S(IX_nxM>7WK_HDvd=u*R0()S%Q(_~eVoKKqD?PlTh2&Zz zSg>?#h>JqFTk6Afn^G)-tICStZe1V7jqYJw%O%7yaL2;9u81!>5#m_oZd55%!G&bQ zkgJE4{!BaajK{hlDx8JlRx;Wm6V(KV>zN)g7T9k^0V{E~AWZjU#r0vF;>$bI{I zA-*cZ5WG{wZIY0mg1m3%FO}wX`0m6_()ECkvLfrT<0r;h5RyZ@G~NOW3VQO#*Qe;@OTTQgk0k-42vETYayvO zT5DHp5#l=fhB6q|+w|2&xxdTm#F<-MdN1zA z7nE4=^$TlreVoGynoqv~b9|_}B2>O`0YB4*HlBktKCNkuZ>qv?Uw1%kCi|HH%g$mK1zEQ0?+J(t0Y7+RKx88R?(YVejzjGM zQ44rCY)p5e=c@sXzloos?>&faX*DRsy2gMwD#0R&2EZ(F+BD-|H9sh>0nA^BJ9A-Y zSA$Lzz`BNj_yFnp*9XKAa96Dhh`Y%@0^KOU*CF38!Ch1l5R=HiDj@zFaPup~hb00i zIz>mx$pLW|J`b%9h!qH5)DaL*o4~L;5f|Z?oABad+;swY&kmJuaiOw%F9?X^0rvw= z_P!gS|3&sas{H)O&lHMx8sx^Xx51|O-*-O+*)rMJ2gEO6$F{=i0k0qcWIE< zs($3-E`Y_if&#;(*nKMW%3=57jnQXdcNgOh2Xc2o{}}Q7mjuNR;6C)dpn9ynB*+_& zJ&6ATr33$m;9qoKK-`54R%HdnTBLgj`MeKsKk`)t`(O_AO0g(j_t$`U5gF`-zaQ{J zTLLV{$0z@g3d;Sf7n^clhw`Ly?Lj-uf_(@!mD{0H1DIWbANJ$0i%^bhVVfVdNlVPX z%HZind#3X5Mts^&*!Jy!m;gHln?wvHe-40`0DWk8%U~bW<-G4}(7!`I&5!EB5}DsI zc(=ua!VAxR@1h;TjvbBrBVm_7CzbXidX@wk-V2+;9fUvGMHdIaVIUvqM>(*wZ&C4g zgHG~~!6rJ_0WaZOhxkt{MqQ7W%kjrZu>~8^{4V&=q8x|DT z!}bF&#BM^s9#8JhpuqGi{67l_Fc#v_5Zvp6{QAEh;C{awaN1j`+7sZtm|o;}I^6qU z6Mg=-1L9KHC2%i*eekUSxGwyFm;8G`KlS6?I=napf8g&yyl=rihX*r&jzx0V}Wn;-Rg zOL*TkbXK{7JWuR{T?)VK%b`yVyBqCtBW(Zk0r3F2Q4d@WNQe5zp=(sT>qfntN^XRs z`tuhBdEDzpe;N;Z_I)QHPI19wdQe;hyZ2kFogacd9N-wr<4Cg6?}icmsF&;E&W26? z=2wUhOVm%2!p)$bYgIk>pq}yp=|#O$e=xsXd{|=iG!uRu<~6Dh^IL=uOSH{4{w1K7 z+H*GOx(D{|3j?APb}!PQax_1Mcg0aAo*(0P#CXD<3S)`CFSY$|QTeR`9_m--cRD^S zv30EpcL?J+)w3Vt?q=9MXou8ach3xRJN6$F zcW*%a1My<0A8J?oV3)w|LI1T-zUHUsJaU&w|KK0hIJgfsm8bdD;=>ZP-6q^N^rH&E zvcC}!JIRK-1$Gt2iPK=mz8T>5*A0J)+Y5LJYyr5loZbS+5`X-m!Mm>l?HlxOLq4ws zojo4a|Fg?*&pyTXsrmB|;KX;V%MJ<*>LRA|e`r4D6$;mZ{sjM?X+fS}x4jn-PXS*H zc#c5>h~eDYGn7sY<1g&pXz$-dv~37~H0&ze;c+v{w|8?;JOY1lc2InTa?WnS{Tyg| z-CKj=0gAT(^C<9@pnjtW=C8td3-`WKoI6AK*!NZYhZp~d*RsTz_f39d7+*KRrv&}| z3fTLuQ2qbVt;j#6do|twfPD~fRFde~qx#jsKk0dJFU}GpUqx>On6JnNdjBXUyZ1$uJK=jFAbtkhKMUu|;5>8--W8y5U&dKE*fEUP8_2E8v*b%S$4c;5(Jzor zHqMyz`Vjvb(3^?;BfVAdFM+*`!d->4on+VHoV^GBw+F;;;ogVxxgO~j0T0cy+1jqs z_Mul4yjR-@!ar(LmdIFU>Hfa^cY1ukH6Z>-AubGxjljDb^UEUGhkhU6d}RMRARYs~ z-TMRLa@e9*@rAuV$2g2|`*sGza{!k-8W8uYp@gtOVnpd36F2D{ycqYi0ak=|cMP=$ zT`sYG*m9sz8Ltkuc6+}PxY%`Tx{_4V0@T@aJ{kQ@$4={utdw%Cfvc(1LAqW zs?JgT^}6kN^8@Z}XDL3q=Zt`G0nb7BUkP|N_`%y@cdrVF^T;k&A1nzIZ-2=Qqxc!Jv?^<&yA;0jkIdd<8n*Y}gQzgqs)PKl>lVU$yjGHx!$%XuSLg2j20+1={?w z+^c{=DZCl)xy$zzF22q98nZBYttREcMDAPtszK{wO zi?IY~M>(dFx3vu@hUAgpHkv_sEW)wJp z`q-AZ$_cdfEyVnpj<7a3jE&K#coBZ2BZZo8kA>;Tqu4VGbqsN;dKn2aRC*vmJT)7X zcB0Xs6-+MVZxU~|wYG$DHaLuDo5WK9tH*(&VJ+~RFbA(}0(-Q*QH1dg431dhh`9`E z#;x}BMqjvr^olP`28uV}HZRO5n#AHFfXquv;^O&^0Q$_n7>Nao9g9SZ;+uf5B6D~> zYGk7zQ3eT!!|_JpM*ZB7Q~wc-^l`%5*%fPU2si4-M)_4MDjAlb zH`j+rd``RY$LQ2pXnq+S5D%lCAVGf*4qUR0abQa{3{CGQ@c~kg9CB;j$SHH`fPI=?MmN`Uk(!()DEH?+n&w{nN$u}s}FF0PnD(ZiegI_^esY(6`+ zYZf>Kel5a`fTDOB5YdQ6l6lgs-wA-aSlU3I286E;Gk|<_wXQbYEWMFmykHWu(6^e~ zSf7R4o6^YN?0_oB(+&u?yra?UOhmP<1$`9pkOS&es9%7-W7WCY;oUuq(uK z!98&EUPQRLF-&K<%~Js4S#(?FgT}$9n&RR-tURIiiH3_dL9L0G)M^?35{B&C(cZY@ znJW$A;xvrHl%S&|?CzI01QkqEV=(up?%RNOrlj% z9B~U;5Vo^0s3~OQFk?`DOe<8-KLE-Zr#Nx37sEW46WS*B4=Ei+mWI~HaCTL|rHTgW zT#m-Yn{^yAF0#;y5^gaLxu;R8y|EFakC+E1;RtuMw|9z=ajCHv#a05NR{wWmoOll7 zA!iL;T})0>snT}~zU_>t9i=eum?64ASpx@21l9n@`@q3G1P%K_BF14-LHd1?{4AEE~HBPk$ zxEwTaR35`5gpKS%snnw*q5rgqP6NbEiabDd;7ax1dlNA z^-6F~`N~!P>>;OkP7K!qsY>46^~c+x#1rUhJif~t(wX;+!1ML-Xi{rHqFik%+l!P;$+ko16srz<};#39K{$> z{k4djF$8h2Myem)Jy0wDo#=g;5FVQ2uHw$|Ab@xx+9}2l1fni!QGXLgfv=!P6M5L` z7F)dLJIWz1mlTqg^|zvlZKsf|e~7%`u4Qo?1y=xEP}8P)98ypWgMn*q+$w&K1at@t z{CF(0xm8#CKNCKTOoM-gamayEL$_zxP=#2-*A2l!gkQ?QNX~63Gt)p?G~~yCXpD~J zw`9>IP4f+nc|@^_UpMth zpuStgllV@eLc}l{=(wi9L`IGcqa1L}U@S$=kYM5;7AY4%tpt-L7B-Cw*q?+`mLS2z zkr=K2;v)Zs=1mRF;3)7@(Mc|mZF_e?l_J@nBp zwzm0*#YfJG)z3j~ZP>hU!CJ>N;5NnP1Bw}#96E*Tz7m9V+@#FX)hPVdIbTQ5N(;w2JA`#EeOvi(*0*&EYx||_bf<;aLl;R{=P7Sr zT9^*QLPJpbXTnWvo^^q8XCpe&AoSJ_1`Pb766PX4qHCkcOb2TR>5=;pjW;_zZXVg8wV7}~ zsy%WN9>V512ql2-+G5X{i+5Lo0qc8(gY{FTTaiP<>2rc9LD7qokJTf)kkEZYbwQNS`^%c6Gl_Ydd zCwUstFWk>*#Da*&(t&}`YoI$l7Hz;$n&x`pKB!^7bc}zz+IPR8L79rE7qv565%rRG zq6E?1!gOPmaKEg9W7Ctx0Pa`heW2OO&rR=Fc;J3jNA#z!rx$nP=sQseM%=Gy_|$ZW z#x_I^_;n2~5Si2zY02#sThz06}%;0u+F*`TG zNnX~)ZWJ_i#$i|EPaZ(oVmRx)SyzvSOUe->vv!Y`r@|r(QjXN=3-+@H^!;`xRA4?3K4PVwxQs$`Sr6dRm8 zr`X`sImPxcbBgB?jW=~p@jR+MoO6ojF(xc!PVqdhgZ7zIY@dPW6gx=DoMOY(oZ@*x zr%{;kCfbngEXtUV_G3F~PD#VaG=v(OV@~n>T0X#YisxB59AjQ$PVqda5j*D;&+{7S zm{U9lH7qfwcwW$;Ohwd-+L^70dPzH-bBgC>4NRR=Jg-O^KL?ysJg@4ADRYYFH4RUm zQ#`M0aKCek=M9;QQp%F{&?RKSENE#%&_S|&;`Q~On5;s%v3_J2I*|DM0g7*E1mVeJ z4FE&eYsXD+3`0yIXOZ7u$hk#3NEO~~2gGptLr57oHhB3FV~2)AN>moRD$MQ9LbqhFU)Xh`KkBeE`cd z-1-v2(s+cqtDnTi^qbg|eG+@SZ(_sxBsRj4m{^OIpCyh$roY%}N$&^FV+rr)G9f|U zEM7*5nF+}{&8fJ<>7^ldpjwdVEXc?g^c?=xGPa zhXUmQg<8nCFI14Rp2R}NeUU<(E4*$d((RbO+&c@2?$5rEu}nF*8vlyY^|^h^^3b@` z%gdIj=O~w#RoB#tGZKIhUfVp=;e<-iSqW$5@y^JVHDbpMhbKQ)8phpA%gf6GwcfZmDSYXGCJe6)8SQGPH(!O1g}tq*yZpbRQ&w#*BwB*qN=o3e8T~v zaOzG$@l6L9*Dmp5akm4;C~L&U4iF_CKC!gCE+j5V1y`OJs$O1RxmsN6@S$0|8c(%~ z%lZK-g1_bP!85s)fl|6HOI+>%(w);@qg@6)@ESRCUYYt2Ij~`U}(~&tV2t24VHoNWR)U#G6S<%cyg); z$!BL^GDyFHdKk->u$3&l8S*sX9^&?T-Sm;U*!v5)5?p!~mTzXw?AwK?0O=5OWuvY1ct7HaRztmgLC_y(5gc;{HJGmdNp6ac7+C`H+%;0Bsxiq)(!udHLwFu(i#ybuxF^uTm$gu?EeCqi zd&;3hdje6Zvu=SI6%*3WL9c*IjFisOWciGIFgcyR0jP%PWX&XKl~ZdcU8)=s?I0?p zlLe+}v{tGT@*##n-P343In=G>hmI_T`wKuPcfJKv2%MyxHI`pu5b{H=k&DH+DkNxJ z?(q{M$lpIEBQO%=9Z)r_$jclFHHV!(bS5Yt`s!;CX*@O-a_QKdyo^4#12mCZfV`Zl zGR?IJ_k5s7Q`4CwZN)ITDG7N3PBhX{qZ!u+#IJ#iG{|znRB!qwTFSow$W_ujKnVXX ztRZtrJ}5UmhzvXp=VX3$SI8|?u74*0XxmDGGl7EgXcW?9NfHqWIGu5tgJv-c5#HeZ zag!(^j3*Kjh|zJBlP)jS@-6v8Ne7~?hUr28QgzE~jckCNPTotg(p(Kx4!Z3q1vvRs zKdnZ4QNN^kLlRx>!u(OlEKbB=$@65nc_DcA$LC zk$~Mp65ez&Er|Z{5mF#cLeoE9OX?rmrTfR9bpJ5@jj;*&+W}J&k`BJT08@afB=tnq z?S88hQQht-jn-COl>40+6JR<$_a00wkey~D+pm#{>Afib^8lYA3V6xqzM4WwIWrwy z#yeWl`jhHN%2{T8={+FV08)ceK)4=!df$?pVbSD@aBAEhY7uH$4IvPZ?8B}10ipgR zWq*l{={K<_`y}>u-^7OXNo<58F>x*$z9nu!)Bj@Em!=;y;CgwZGy1tKGY_H|k448Z z%S_jSrvMq;GSe&^9XnujEWpS;>DwXqyn&qwxu^0@$UT*RLhh;DNpepGa>_jwBw6mM z5R=^VUz`=k!qM891}X->aJ0g>4w`oc-O-1Me%smfJR|zQxIxBi2Q0hF!;3}Qw0~3b zgWfVzoAG>Z-{Y0Php8=-{&+-|+dFifCnTHTN@ooo?I7e@qY98mP(zR=q&FzqLI!s_ zDd56C9nr1)Ow=VEeDl(z9O>wYY$feuc;~`<=wb+NA3zUG5!|Y#(MNErzil`SgQQ3;9 zm$WlQaI2#9Be+#2yRuxzJgl??<2TX-~!?8yRd=amh}0CkCl0gFgK-fdsg2x z!0F~J^K@%YQ>|I%sm|m}qsA=rmLRHX%LL~Ra~we2Vc?^Nb?yf;?`;(N2$>k`g)DT= z!cGr5rG5n_^=+6VPXKQ{vIF{OvXDM+1!!cvy{n@htA{yj0U;)CB&Q_g+z0>-V1h@+ zpwcbpwZQokazZ~I_e;p4QvsL;lhaX;{Zt@bxCt)n;$Th(^y#6*A><;0xGvs%Rt~P0 z<}pMbp+LKAP?3;FQjT3++t0}9;IcSMxvzzr##bR1E5MCsjOvIBc{I5m2j)>oNXRAR z9E+KDR0ru+$S={LG8^ukxF&3=O7qZ}IdMbTu?qAgK!&nn1-j?VQ5powN(gr?;f^z9 zrQ|+?-HNhh1jr#?H_nL%aLE#~^3mxzF`alwp}qFZoR~>`xdLqi$Rxf(fnGi%C&me_ zB)qP!%gz`TQwfz3pqUbiaYDzbgg!idRJ;Q`dpSAj7{(~9ELKrtts@8HsvzfFa97Aa zX?Y7-Nf1}p`=Bxzvh9o<)zFf`HyW^N+Et3!{b!7hw5isGn!vFKUF(+1jS>a?IQP5crk82{(wSS8r^jo-qm==693#FA)pB>=WVPakrs{ z`7^tb-PBPM?jaO`%0o{!9``OdvT2GKLK(k4;WgyDaNi2|criimJdm%Hxep^WwmE1+ zgyKj!(XgS|=Ewo`F?4x^JA=Z#C0D|tp%CHBHpkZiB5nzR_EMnX)(>D2`ypk2iH+$u zu_yZ^_IBUIhFPhJjc_C;ehy_aOUywbeX(pPRz^^(i#OND=Rt0PlS!Wo5BfTa^-ma> z3=ir)@FYt0Q}Up$bFM-KC?3>xE`8Gw&6^jl?R2|DV(;B`p7J(4sOx;?Z+KAG1sXF59+!|AtoO5ADk5j59-=!fr?MVgQi7kiDUDiX-&^CqEE?#+LCS0 zWX^%THSh6L@sl?Tx;=S!P^z}z+cTvDt$fgeZ*SHj1Wy)xL!LS`V4!9@f3fh6tT8}) zlONEW^#;n^FCtHTACQ5i=1xx8JMEuTNPRfvL>L@>^Ug^lgahcCIhbdkSH1;wzVBjq z%Jj{a`(UTvfIq%MxfT|hT88GFeRDL#ouN5r-&_sxi6Ml*S0vkEWxBHn&Eqgb>5oSY zb9=Mb`HJOO3_uw?AZrKEr{^FDoDWkKfpN}PPL;SXgQf%c-Vdl^HFhCm4z?M`E#duZ zcq4@p-XYK_D2JUwNpcD$hIExei6ey{rlhb~0P#X%D%bgf@|i>)l*3LTn4Cf|IfbAj zg%^`kfO0tye@mqhlC*l&c~A~Jg-~(|q2v@ojueKXKpdrn#f2{<|E5w{A-fYPD2JWG zisTelB&V>#k-~zM6wvB?E96PQoW0oh3;7QW-5HLJ8Q*@Xh82d|8#6Z8O@Zx=85``= zn-gYZ#`eg}P!d$%BN}gZM)Jmt?@{fMlkgC}$CxmzUospUGrq@l(AlcBUV>penj`fT0*OF8lvI~9B z%1p4d8TQ7E?>UWF5b=6r#`nAix-;yJ8Q(z-^I@k$DKq+B(4b63)Qj4gt%!O_J5hr6 z#*FV}4IG=1yfNc@MK_(?jD9y}e6Q+={*0uJ8Q*IfJ~hL+G2?q(gZo{-_}-9XP)hx7 zQDpn9lVlT>5wo*k{H>EE&odayz)nVl^=0{E)B#2t;e}#BXA>V#Xzjv%d)NoH*2*s- zw#S{1iW!mW&j+;3kxOC4Ea~DU#soqbv*;U9Dfyg4)CjJ*+!PJRg!K){*>a8QP!D*A z(QRa_bd3ZHH@Xp@)HO$gg>0q!6vnhh;v0o*r*Etkbd<$Hu9dEkjr_E;xs3S+>LlQ4M$)2 zu=+;G)}t*rzb++}65W#aCQLe1aefI@6IEFak>of6z)9~Rl+5D5Xbco*GM{;p<6M&N zR{JWYv7oj|t` z>!*oWUfv?K(~JC)yOC#`a)(p)cZ)9zhoO?#6_znzEu7YP9` z$M&(?)%Dhy(^W(G0Z&q+aoA)k=k*Rr4bIhd=*;O@3*E`}QVic2R5#l};)lo*w%p!A zh6~1`smyGJM_vSf5QrN84-jZEJmjNtG)T>x2Uy;8{3##-`pm`n!VQ?zfR3*T@Rp%` zO&08iUtSSoK|#~I6IsMK(A5H(^_U`cVNoT~9Rud;@``tM2L`fVdFUXJ7?4 zQLSa4~Cv6VM7p=EJS;2nF zk)r@OTic@n@j3+>;VQt=$C0gV=&mW*K!?71;B3H`ZtAN;va@ldryTXDvvIXWEZAxQ zRW`1+$nyj9KR!D4(n^E8`A zn_dKZ3r6->A0klRUaHh<>CZRur_gxMxf`yBkPL(%G};WW4~Y3N@(F7m(#v~~V!TFw z{(wJ)#(R!H#lOwbxCF})g?3Bj@2!GZQVC8%rn6``r`sgBVN6bxD7Y_~o7BHd_ksuA zbeI+iV1PllrrJmM%4Hs~kRaUnCvivTQaKU9cMu7F`4o~W=*G9RRA$hq-Hbr@P@pMN z0%aaat@763PeCsQKLua9sh@?AuT#i;S>QvvHcj1b4dCnK?0#v72i?v%0j1v#O6jT$ zqJ1`Z+-m@t#J0xgga5dDd+x`l!} zy6Pr`yplpLlm+*|?n^&Se@pw#0Qu0pk^z*#6i5T;b`Q$IQs!PO08u$8<{W$*Zq7jy zqWqqcER`oAM!_K>$IMIj{#|BJ@yF7LvT^PRxp`082EUq>hF>9Fp|)XV7d0=)WWn(C?)T(C?=V&>!%C zybz}))BycgJwShC2I#+WDRm%#Dy0v(l&*oB2I#-@0R1z#xXf+@i90Bh8P?Z9SHWH? zgw!&75`p$ppyAdJ5y(+yuTyYGnJuqG>0&6BbF2bCY*S_)_swuQCN}i14gD7!^*ofB z2a`h9Xt2jBIS74ul;=el|*Tv8T&h|$3}S}s5Jv5b{iO^#Egk()P+W$i!}2dEaj(S`Zm%` z*MXmwB(6r2sI(=J4nrUsnk)4Shb>(fOnb!Hr-$*m93zXX-&9rtXP(qq% zU8o>VX{L3NLQK+3x-kIfMIjp$=1eKwQ21%2neHetcD6Lr-9$=gu7Qr6k~nfPsohSP zfyVs_w00>!gA`WI7alnd*jYAMUb&(yfX#LQUBn(S(8wwwcgUifn3F;RI1GpCQ9c8m zM@k4Cv3orY4ZR=1 z4Z#*Z;qVs8Lc|$Dcy_^L(jUEr?=6>g0Rr_!jE-H9}m z!%m|%HI3TjG-@4boR^$N%Y5Ojm8*f;J?9@hpnzaHt zv=O`qH7ucx;C(@ZG8IuTYG<}0>Lu-TY9m0+T47GrM)1C(ThIX72;Nt9#1w4=s97t7 z$=V1|vsU1KrFl@Z&P6E=m#xmZ3)+3og?fq~T_OL|uR=u@_t?AyE@Z?bD0taTpOpZO zWThG*uYU)C^9Z0sX*c{G?o6DGg$6Qf0Nm)t)Jz%xW-It60&`W^*h zL`h&G2d(>c5aV$_hj7{N@#ivRF8km7c{4tT5DF>*Jq~-^=S;y&Qg2a|_7vTR6t-pau;}P-?1@T67)desGe?hpML#75gmQ zgQBWrIU!g{*P^Im@Tq~{U-KgpTyqoo7gZbHL($n z#Kf56F}#Sm$k-Rl|2MbKGq-7eE=>O#2rA!&bjL9L?gNjbO%9IfclUEHlg?`z^;-K} zrt2JP1L|C+>spbOc&SkpJSN`T)rt1RbcAU#}?NFe^xlGrE z3gSGM>AFZErgNE0q;oOg+L=Rif84oDi>}inK7RUdiD2!R$-KYw?wN$TOwG0h|p&K8~+N(oo9y0i-OgEQQ+vK7Kg zf|Qrl*5Wc97gQqXHbApE=vi8dWRd)`JJEL%r#}Dp1Zg#HkXlBEQvYY3AVrn8tssV< znoY3wq^b~3vmRejxw;|=rk9Sod8u%Ejj0=$f{~7ka5<0#DpysNht>$U0~QQbqxItT z4hJl-va}lKc|+A$x(#}L?48VA-01pv^B&?3Jka$`7AatBbywe)NRK>aS)87=ftDCl z6lSfwSfr1nOMeGm7WdW88DJ5t@KzFP;rr*qK$?-PoI|VkzDHqw8IrCx7;*@INNeZY zm=7~A!5?Vt6v4tMnw8MnQ4n`lLTg7sd}1gefYuIO-95~mO=x}uGo1c-#0a-{)3!M>#H}xrxSt)_eM~dL(`Yz zFfVjQW}xaulFmpo7}&&NUg(S{#LmOK&>2xc$6;RRj3}5dvzC&4K|3=QK`&}&wj$^y z?Q|aGg}#WwFgBB3Y=D-CYA*vE--VWl3Z8O&7g{0;o_u^4S|SSE@9|w|iIBd+NT2U- z@-`{}zERHip{`GnrLMyC{aqt*lWvl^YS#Bpi5GaqD7VjRJ%^9cdlx+_dxwUSFa1cAnt%&9MU9h0FsPGk8Z-62TuRPL~6e1&UCuqv1qPhkj+`oqrGuO`nU*C|E z1KMWoD8zVXf~JayF%rh9x@PS=;%AcmCu~eRjzsU9{8rdJvT82^(qBIc;UZ>bzM5Kvu9=_=@PAVz6gh(6r z5*lQ-?D{i&Jk1T*ZQIPEW0aY?7+IdC+-^^_4JCSpa{1tkw`Juv<;)c036DJIyFins z?>pwJjd8jHr`d z&3eex?No%AtUP?&`3~jE_Rs?gYDs*z0_Eh=rii>pO?6{)OVIn|kCZFd!&{3#Av&yl zzo!K$-9MEbQ$6%GRT>LSzC}I9Ii>1Pu!;x_)Rq> zu&lha;&^)`V8_X!>Plc&K2A)y>Xlb1>swf&bzlMzfYRUHPKbh`^0HNGabz5&Rh2ch z)snWT@}YJtpKegdpOH`!NT(ZT!s^spSg!Ea^*t+JlXR5R{d1NtM==)i~YNq19!mI_U^uD$|bROvI3FUqdfn8i53m z(5tUfLN&FewRJTPCSC(7%PA4qINj$v=HfrT*3oC<>%kVWo6Zh%<<<3aVBDIT4sr;$vHH|6RpCw25K|(MDHc*Q%7yF(r%i_ zuzp{LWw={|s;VmkAgHW@S4A4PgBp)6^bWci6qif9s7U$GJw!@P*@}v=6N3iT)Kyg> zVY-Gy1u4fG7PU^noh9fJ(07I`fb@Q8KfM)5N4cd-reS|Ry)<}YX+Td+GX2nkkZ$=)h0iM&6FwSQ=rR>ttAbI5uT{}e_}Ogflj9K#=?{@-ar!kURRm1x z{H@aF&wf*mZ>4EGQy!=A43qZ~9?o`+{b83%O%+6TBd?U><=>zplev?I`U#TQI%4FY z_S}M-#YqoL@pieHf29x;rJB6_S$t6#+-ky^iX{yzm*Tn;1u4)FHRnyz@d~rl@T;Jc zHMB@Wg`BKoFUnGbiC?=Hvs=aT>sZHR(sK(kPdiJp^l+J{;{-GRL;h2=b7htpIux2I zI$k*v=clQ7I?UJ5Dh(AfU&pV-okTohPSt=lne_0DoT_82%|g#ssHbVrIsyqfO-E?p z^@W_SolWNMAQfr4j?|L*8=BW=XlE?5i*hkTN9xSnPtF4E+>&KFszOqrW1XJ4o`TI} zrz?M(%+g(GCP#GTZ1> z2?sn-fQvcQo%V7Lw>qzT65@{B0VUiVY!qY}sV!;Yo(*w1H8I?K(gA)+UFYBV0_cHm>f}ixyv&>Lhn@Ujpx<>e^^D%ey7bu~t6Tx}?N!+Twpp8YrxMtkvj+ z_;4d?x*bPRf2h%p&BDfoVw3LCpxmtZ#^xBfnfo-rk6WMGXe7kDRFQf-SRj9_ebDCl zRf#q{ECr+wXmCN6d2Gdy@gR>VR(|0`^)MCP_QDs4Lu3DOFuZO#*~%}P*w~EIxM9k^ zfEKaxm_#06-`nukQ%eg33i9XLXCnC^VG?CFG%JqdVeOYoer@e&5_r}ClQBx3)$!szDLgB-k} zp~q;bI#K?nRNQ@uhSJU~&B<@+?jJM}^t>k;MbO{Ohjs}-!@iOCGsn!`) znJv`056QXQ>uPaL7Ci(54V6U+G7m}TmnM;6pl9JAtg5YUAPm zMm>HmwmUI{Z_?mn3|PpUbo`R!^spe)9>HV}h5u%aXeEnj_+1z3CCYP;_AF2K6mpM7 zS(Sy$VE-eJ(^b@rb|Y9Q;>y3$qUjAgf0n9&Zc7c<7K>3_`FkxjoLeksapm7?soB$| z-TN#veY$jvyDT;HxV8HpOHE8}9plHAn*Y+YyT>vUWSWlg5NM+L&!gS@*{$;G(Xk%0 z)J)~o?q18xR9+qHNlVXEJ`MQ2rDiIhj`9p%op#eS<9`nm*y&Pk=edN1QDJqQNZ@R? zTGT?mBV?JiE05ZbJF6wyh_+B}smaHe)zQ46$pOgB!kcRCcxw*}`BfT2Hu^ax`t_8v zN)5}gXESwPEa5X&_gtjvy+QF=HP#xYc&eTV z>nvg_sRyWA^yG=wKl}tJWG=+aJgY5QomlxTs2YCJ#-1A2ShVu6@?)yfZ1_nQEi$eA zPG$jxTyI^+vb`;895mT8;L~Xa1<(YfuAg~7@ewM7Vl+BCv@pT|cYq%u4%2>0P{?{t z$d$iKX06}a8I7ZvG=eubZw)2_fDu_sjK~HqdsqHtlCH0We5=_aksi8&gb)}rA`O%= z9jIGou^0<=7T2H~5f5!)lSN_+bP$lltL@F&|5mA3-mTibPimg`G~EvG0zkcp<#^Ug zo?%^rnsVje178wL%5ByS41gB1*L?v-IIsJ379JKMU6vYBe`cxSWRcf{u6_#KQy^~o zha7`pZVLCIe=}5tr=g6){}i}r<6UqNT2tkC~g7 zhI1{&Mq*M>Ypi(|Ezzv}WAqA6_rdwr^C+!+uJ&xXl)G#ew}E4IxnswQ?$IdL^th?` zge=icpBlnTwKJ1egVj7#rB_sj%@w~Qy%bmJ>id2n30scML)%Sl>>9|~vOmHfYIj-; z?saFuF_Z>Kd5%S`5V&_(C*)&cxO|n~YgeCU8x(>bc+m1O6y&`-ivhgEckw65X&|p~ zD+e|=D`{_&VkyCeM}L>&I$$q<*Wd!*mBPp0!OHUT(rS^;j#`nS>}oMYeUw9=oKTfl zL5ffzve;3r97EZ$Mhs)SMr13yMhsUURbqttsI8`j_DFVMGaEuOa_6wSN{nK=OpI3k zVvMpY#8~xlvKYr7m0~>GCyNPeFBiFNhr~o>SBOdKqXv)b645J!pY3vy$9Ach!gf&P zv%OMGWt)VT)09s@OjjROxO*={4=kPS8>zkQw(dghjm(tY))lC+EZiD@y>2Afv`jeM zSzy?Wj}Lo7xR~oFh>&>|4VZiEC>UGz>K5syP~W#+&}eV7!(b6&9Bz@9DgVn_H5G#q z=032A-?17IVTxf#Z(*{g5aYFh?jYL7sZIfzcQC#w7@hA_U+}$4eIZ|WtFQW|<`(4Q zht{u=0{TxIU6MIfUcqjgVY`xBs}fESpDpB79G%7-C2_u*BS46rc?sqB8lA;V;+pQ| zEYfJBmzF=#k#o(|4FR@}??)%1%w{M`@EQWSd~R!d+cfGgd@DD^qsby_hmh3iq2#5d zwG>{9udQ@vSPev%O5jyuYwSL73N6)&;MCvZ;m(R`=4X7n*UEu625* zl-~!*(;7N)Ec^6K`bOTiVU(JVYpU?pPuzYa*{aUMNxkV5n2tfiNeufmItGnz+P#_9 zMqfQZF{43PwOJ(RnStZP`m0%3b?hq&%+g-bxKmQG$zy?gCKIxg=$O?itgrtc_TB`( zs_NPw-+SLF$qgaQpeO+%2@t|%4nr_-6J!P<3@SFvkTN7DL=eS!z!{uvZHu$Ew$eIb zYg@FapjPo=9qNQQR-whVRve!FeZOn(bMCn}q4o9I_dfs6|MB76oW0iCYp*?=wb!23 zCPEcsafJ&~(`7{{bQ0;%F;AzBruyO{Fz#JYrZPv<6bW5O8F9Y7GKaxq7J6^0uYWru zX8yu5UJ2bzVpM;2m~Y7YU0_-$b`}TD=u$8P;hM3T7t*>%5h93`^FmT|NO@j}&>|GX zw?Z5M7RksD19hCbcMufsw?a}Nr+9BA{OC+gh+Pj7E(VMCFQK-I8{GoiJS*ZPAei5I zlHcM+yI42T7RLDwIg!ZTZa;#a$i=eW@W#7(5kB~dl0rZ7QJX7OM?8Ong6EChrQgC& z4_r-Lx(qKv_|k-z@pw`Ft(W8AeconGG`Jhto3)XVw0zjxHzw8RcuoQXUjChsl3EjG zNnHfk0F=X;sH`|`4i6l`0$3BJct6WX(Yq|%Y-~A253kk5Ni_n`>tMi}#chfkCB^Kc zZHgPyQ`{&i4hAxqM~>jp+p^9!x145*Lhrr^r%I8}8Zhb6+e>w`q{=%T6UgUgN%c{N z*r_ATjDCvnptqUvtD}q=36nftS4q|&sq%sNRk4+zEGh>y>YxS_iF zjq>Kz^n5g@uvyuLqJB83o&>j>+S1t<`+-z9#~s1K?`5YV)-nW@9?pVa%XE3KD^hIvu0do=Gw8TXqCY- zlR}>j&JW<31@13_qb>A`RxI>$083z2)NKJ6^2<2yWhz^7-s>5#D8i>))rtkA`rU_wHocTo58?R`xFh>Pf&Lc2j<9}8e~*_j ze0dKqtMD@7AYMj(jvqZ^WVjdpOh?|Aqb;bynDp|u0638Q z2N0&BdW=M(GO}8+X!jA%<$sgaO4fgnMM%jDD@?Xf^Z;bongPnhr6Be6A}Q8f2^BFt zf11m*vQ~n$3cr;vuEX7U=BCVMmX6o+vE_dyp0P;oV&rUqe1O%(c1YTM$lD-1dZld9-DH?am);zaXieL1*$f zVizZ*)bN2kDr)*;z?@2aG)k3NjwWL}%|}I3Hz7QLy^>VLV^Jyk&AG#@1#5Oh$q~nT zhPm@9=5c}WT+bl+5T0=1%g!1`8)xy7gfdS?`El@2i_@we;L9@yi8}DYXP;Ff%EX4t z@LAZm#~@YN8u1unc1E|OP&&b+D3iUDW>=K$XEp(~b+&;#6{Rw|79f?+q{|?*j7p4W$gvh%)?1C~B>!=Vnn%#$x8r_JA zyVYx!s!&vmnYH!GO7%RRKLZ;XfO4ff91Lbwk%BU#`2c3eU4+S=wawvUht;4%TEinq zp)BEqwq1jc5DQB1QM2q+EN|<-B1JX2VaX{?wGFtCR=$h%A)%gsS*6;C=V)}L=OA7C zajzHKaw7X}UakwX1Qzvr$xI`GFjSh5q66Io&;Tfq^OI8HP50d8VBf z+KiAC>>_*zzU^jLa@HyHV9O2F!|Qrj6A$6}IZ|sk(3A8*X{zs00+jHB>6X@m(oEZ+ zm#&bevn{$E1u+WYpae2xG#gq@-i{|LVBuYaXBwhj>8HIx(mow9roACO?G2Ll9e&zp zN!rgd?V;Kl_zPuT(3A$9$kf_NRxI_%oFV(g`gfA*(RY*T9mXBxWxUj|o5@EXJ5UVy zQW-CfL%7U#stFlhehPpZgTd5-#WjtnqX*L(u?LnGws%ibo%do=4MkV>3DOxW%IiTU zvk;)9B=aCmhIvOeKPR6*Auw(w=CpBtu>efdym8nqMp1pp;&HO(XxHC7vbo1uCEZ6K{9V$S zwBf;?Njub*ft0I!M#@wKPjJ=BLXs_aidB<~!A{&q03CcWn7KY)hOK7Ka@a+aE_Rhj{Xo##l?^02|1;XHyzuQLaardNC0rpIaq_ zKGg;fFo^TgWud-^&b-h%HCrL*QBYUV+FAogrc}aD!|C} z1w6lmEIScD0qeggP6mGfB!TgDQJm#^6!oO7B0$J!9w3ut>mByVVuDhc-f?nJx(F@4 zPyDxdui&zS=_~Z>L0={+(1Y9n$S78569hO9j~N;-k0V;S;?JkRV0_NhWlH`v0PRqX zt;1&BTmYvD*H)?qJkNmLykTDRxImi6A;4_&xImgmM<}uiX}%Xp0~w6)u*FTQR>Ah) zDD`fd7Ehr}$AIG@R{Q2yGns~Csfb$?>=M7ZHKsS6f+mV*2Ka6DWw=#jI1{iboW;2n z1o<(ryen4T8{w(EJ!HgSTbaYT$H53tZ61E#$v&1izemQImmjhSiGT%REJ5wFboH{+W82vqF z@Xe)K?{2D8kFTv%4=B;A8RFmh?2$!v?vl`MH{$4KM zOe0atv4J2Rd4(YN1mmTa%FLC5Ek?@+9;a3+vGxz@ zKMrqRFH(0;gXRr9W}9w{+%~H_*6-0MjsbYgwK@|IrHh@v4XYNcf$1YzQ|3jZ3$B8d zhUYnm(tD&=h%ZW4`~_gv>U+`9>N^&nD9vXS|4W9YdKm!Le11v#>Q@*RyW}OqQtpLs zWuOdkZJ6Kh)VVQKmzY!g3{y0lr_+>tTRQh`py1g39f|)ULQ|+fzXb{F5zl;SG8E|4 zO#qAXoJ7t0SHuwQdlZ@+|4CyVj%3`j%xG(KzW{y@X%qtQ$U|L8l{OM}v-GT7^Qt6e~RjN67%tK}oM9Hidp?M1U zS4p$kT+{-M^zT{7PZvC9oyp{pu5?_do*mMA@jc%L%WF48+jgv14B0Y9`w}p#b+To6 zR)NMgP;Ahg5R2tDhGjN2M`rpzW>}O?PG~zC^ej}BRXR5O6NIPdW0-m~60(Y?W5_8U zc8{H86@f~pv&7FqKE-NFK)^|OO#e{k7v-T+isvZAlCLU(7yO%Aj1((mPN220O$xj) z*vz4PrsQZnv%*^dnIi4F$m@@$N$V{UD{H#6Ys!0kj;x3*;wq5 z>*;tcKSja=89rWKEBQ*pWQH?JW|YXBX`?W~8ck5NwaSczU)rw_$F9wcjngtY#*RnE ziqTkv53DlIkJp#j1-(6<4sF+EswC1(`N-agAHOG4oa5gG#EB%NYDSUh*vG~2WY(V& z=MEg|24q#{!+6>dFo@HMpJSN$>!ezM;{VN9ucdt`xw#y$gw4^1lHzXw7`7A%?U!un z>Eqcrr-MZWYSVli&jW|@-GEKq1i*;b@HXiq{CtLpBR*wFBNL19GM7AH9*VgZu<{l7nYt0sN$2Bj2PM1$FNgT@J-o#6jQBBrW<89bA0zGQ zyFtAQ3?{t{$Sru(c$&AbgZ)9E%%u2LWG^NzFPm{vOq}zpq0GQNTP@v<;=ALFZnTw(Y+U;T(7h1urTLX8~7ls^_5kgqk3=qO10sbN_7;zn6r-a8uRfo%QgWp+s_?u z=W7w>8shOX>-GS#Qe(%P4Gded5v7i4nIo@D^+!Vk4iNf&tsq+aSotr z)V(OzMAu5S36FU+B1JBRKhc9q`A=f`4*=&$tb-Hz!g^T87uLmfc;UY({C@H~V!%lQ zdw#SWV^38+2tRXs739S~at@7F>69w-8mXMD` zP9lJuZKrfH>a9uk^5ZLfI`(;iRcl35YtP6;7UuP3Y3H{wu9!_mgz24gFl6rpeVF?W6}xpiwV)%x78UV-Uta zQC;ryd?HhAS-9Q}tw_!I7x4KGM6e4&Pl(F$7lf>Cx;vAFfc3$3N!1QYuiF%*Uh_HJ z?Q_WA1~K0U;skY~b4yDytxuW|K_ly^^YDjR(R!Ze!6|ExUJ7V^me6&Kf^NTV8&irN z3P9(%rR@*Uv&bo!$w~P(=6TR^GFR)9J-4*+1{o28=9fU~BSKs7hjtDiSzw@#4&516 ziu+ptNf6OJR0f*Y@sVhqPp1I)pgqZu)2MOY=@bZyOClZzCK8%|W|eAx6JE!8`-BC% z@NL2FJXqW)bv{++l@+KCcez)aswP^EteK+i$?>PAnYDDhofU9}b~630zSW-iebdQs#vE zR}}f+bf>01IMb=AkMNwDhIcu>nNCf^Pdh}=scHBb5iG;0Y4}-3+RUk`k2$~BD~iHzI$*%5X?U-LrJS0E-*TW_E7U$0%(p_l?Set4rr~!SFw?1N_+9-B zzD{h9&*s3_pMT+Yf6mv3-*XW&oSKH;ckpzlrr{49xLD<8=oS{ohx$d7QY*VVECa9f z#JY!PclGaox&euQTd`rkaweJq}DHhohdy6kZAG282t>bH2-A`-n+wH8Z5-y}_Y zv&X2#{Od~ThiOW+X)UFf4oe zY`6(w)$Sfpeu=p4RR`zslAN^ecpE>kj{4X5LvDaj%J3dN6@PYsA0YPdb_6cR!s-XnXwxqoH;cPB$-D*}LE*I@noJ zz!P7M=#vWu3?4dU!0?lmE-meE|1Vp#sGkt^Us=0w8Afj$UHA98^i>OLSAQe@cvhZL zUv!7?en0*k3iRvs<1M+nY=y%2`gh;mr8$=kz`DCM=kXo=yLESI&X+qWdwT9J%>@?i zxw|wMTD<4((p+T20e6>XqXnhhU7Cw6BLU5mr^yjU%uTi59m<>*x?cY zzX6LPD;&$_rS0@Y8@%)|x>MU45U6ia_~7(Q4}EavrH4MkyYw)+%kj;;^f3CgLj*59 zj6NfR!J-IWdKi7ykv6;Z(8m-U_R>S2B;(RUA8s!_#4YVM|0VG;81VVQMEs&)kPhrd zqv&$kAX}v@istLx%52J56P_7kf zp9|(&q26}E;H8JrcN{SD(!=Px`cdc!SQIT^dWcKgZ2@FldKi7*!P752jDFz2#dN=x zHd?{Af=k3GFRop%di9bx3*2dJd3w>pW;QU_SodyRFC73-hGF5rz(^%HV7_QQ@f}J zJfq*3k;73@cbI&SD@$Y2r$mq zPLeX-EJ0jrIEg5;8J9bTsp~puTy4hvh~Qft;9Fahf}j1pr1~zNkHGl-6ys{XW3Ghh zfN}K!pD|O6g_%$%y|iiNN?aI@ttboV#NdLoG%}DBs2&Ne$J1##&iXHcBZ}2cICXZn zuJ|~qmf%SO-o@S*c)6ZmQmJmiQwQL==$MZ<4fV4WfO_>q7jY&Hi=1z7qxEdP$ORVd*?N%+E#9;BA{W_kz}Aaww4ju&7rEF%g0^1d63dvj zo(LJV^&*${qTHFbo>>Fq9Gy+pk)IG9j);p;*k?GehckA>^diPNI?w8@`QgEp$f-mP zVEGys7}ix#wb-o-)aWXN(q@NX1PW%1m}YWnlY}!klrcOX$3#b7Es=nwsW!j*b<`EMwuj&jVnWN`rxE+CkNOL7AM-zd)M zCUxmwP@mJ|97uimIkBJ<>-fmlEUoJ*smbpgi6elXFxPcTSJcom8+pPy^Mm2>=g-5dQxtCINZnm*6+{OiBt zZ#c$^!n^Cg<8L}(IM2WSJHFS!vRY4Ml5e?St`%sX3+7va-gZHh9$IM4`Xvo@D*lcG zcFs$myNSQ6AK^FKvuj?96Grj(T*QLBw5z}4?>l&59tQQxmejxrE4-D&KXBj{ojS)q z)aRpw+Ps2Hbd49AcIdiWuVapS8#X_vSyUE|c*py=aJcnb=pN&J4I3qnz~@Pa9xrj| z+`QVlRgKHU=SRGsiJ+Wu7Ty9C09J>#2Y^PeikIS4JxMyNwv-{BFjt~RTC~brWra@A z3m{;g=S(?tq80@PA;p<;=p=o#aBI<-a%i3&jM%1f&a@eos@1#Q5Qv4T9Ae>X@ZQdh zA2YRba+S)vhFsd$jGHjIs(QkdDwWlGxcQI?FJ3#jZf)g)HA||Y*H!Bg=5#Vd@{8Aw zheMwfW~9SF5T8ryQP@;XzGF|Qu_;LkaCu=5x+MRxO!{$)p7^Hx)qnb@u!m|`1a0{nfgv%JPROi2JE%#L%2gv$8`<<)w;`2uCyfnRtH%B>@>xrr&? zZM8|f2B>vgZ3cXacNz|Et#@G89EP3SYBOk*1fAPzGkAssJ-5|nDDQAZTXt@%&9L(% z?76KrWj0K=)t8~u_#4vdEI({aoe4raql~dIWwKP1z*1d-YBSzG-?B7;#%|)>3em znH-r`X1xttx7B8Y4LP^f=4=~;+iLPL=UxvsExD~W7mvVB1aVt!oK=-_TWv12N+Zo} zwYh9OVzlJ8nw(-`3Jkv)Pdtc_=ac#0?AO`sszzc+^qEfBYvB25{s#Rzo9A}f1pZ?I z6Bzq1`*k*Z`hWo>eeqXh^v(KpHm@{V=C9?q0&}Xe|DIoG^ZIVfaBmYC`aYV!alg*y z?e0hb#q!=KOvrb|>|M^{0RJYx&gKu7*wptA#ccV1)vvQTz&Uove((au{wDl7n~%p? zmVbSXEK^RK|C@fD%_lcnzK6cu8hrmZ{W_b^KenR${Yi>qoi+zNLwin){}sQ^M(H!a zv}@SJ^rw>1f9!`D(?G9S`nVpQ4{65yYkrtbuFgjERyUX<^wVv{I9jy|Ug6D=n#LTB z6WEvHW7%|-(FH8a*7;QZM`^2R3-ZMGAHvo;E5z_Yd@P%z9i-Sn#H<6<#w*DS_*gdG z95mse3J}Y0a31HwlqqoGG6`E=1uoX8JiCuawmx@vzzPdgrn`$-*}4k_@8N>u^StwF zmRS!MZ!$#iJuRD_4m#aIQ6?^aHAWfqv}_6;V6FvNZiO!1ygY6d62Xpfp!ozTbBv3& zSOx*6mkTb3fw~$#kF2XtfNgQD1as>fQFs+OaJ>h{sYJ(MP3u3SGd9I8xGpcv_cGv? z;Td`2N6w1YTYz+nXrVZ{DADN{QHCAZw&?&HEx^X>(+A|{`ED}J6vrVS?VIQ1SRvCKtbLy68On~WQkc$p)=92x4fM#ng6-km zWcpkSP!HBkrkQD4iNu9@*7ejZ!*3pr|77rFW}ACEGFT!_$NQS*7^-?W$@FSmCjK$* zHggTtIGkj<_UFYo!LY}MlT7)Bm04)MD}%Cic`IS(WACwbVB>+$;D`}GkC3gQ^)G3P zSqj@0JSUkx5bZ%!gujIYCw3(vI?2py(MhIHfR=&A4j-6J^enJU%Ac+>Iis)wTWk#n zY;={0LAG_3iPJl*`cTg;h`O?lPKiyU1KoyrD2`LjR9HTAmC2zj*sOKdR zWN4Cb3PAKsv1>R5R?qY{oOgrg$voflr0L^W7JF?A->7R;C03i1820P%KI!R)euf<~ zyiYpyP-@sKnx17=5#RujVaJr|ebNjtoA7nEx85gBxqJzEa)4{J8{R8?$LN8Mbuxun zgvwO7U>3EuGGkmYmwo08(E$G??~@m!C+P4Yepr<s$?i4wA! zOLZ!L6=z{l{{%I`?P>mM3&yenPcqPo)C=cF|m-} z@IJl}GzfxLSPiqgH&QiOP=V@Jsn71&MY5yxIV>2C*ia?(x#szDJI|_)uF?AC zr#05%Folmf-(m`)&Ka7IxWFO`3+_R8q%X9gV#gS}u59;S5?zWVB{yT9i1Ksc!p)^t z!4HnsH`Kw0;^j727R7>U1Kk{7VF9C}jqpo?X@?pyLi8pJuE0igEL=cCLc3#M&{eFi z?iwCk>9&sE*p==Zl_9O3hphL&dSu@yyAe3k5jTHkx{RPhrvY1t_BP!i#qFJ$Xp#3g zhDNgp-NKglB`#7o8>y&a!CJeMUzgiF>3c|l@+_A( zuw~mSLUVF-c{XSI1xJ@>7(T% z0x3?mLSiIo#IVrw5szL!QS;@Z8hTKp;C&-Xs~==LR?_STe1&vX{jjpvfHpBkLTPNV z3$3?f`%sE)?*QB0KHI*QEs`opW82TN?HerErqy0u^hRC0Mb@Z`-nLjvS**_g;zv>z zXE#==i}1|EvTJ@!Y9e};EVl+4yY;d~UHvp`+}@&O?Kvs4J_ z2eN?bhgYhH@calQXMtqU=>Wcjz@UwI`5RsaUxSw+-^WkM47}Whmlb$X1GDi~@#Cag zh36VTe#Pj80B%QM&;Y!=iI>6Uco}jWe*TWokmK=k)J#NAu+FTsKQJQg_7RopX*?r= z{-cxj2U5b4JE7<8Z)_Xz6)Od@8}u*XS%x?Rj^_hrU3vb* z#@~yqzmMl?#9!#*|HO;0hG|h+U4q_#YDLF*El^XRB{nD3Rd{|4CPhc%%m|9Pi|CP$ z02xj*Qt2b36r*1?0I&eP@B)NKQ1^^Q{E2vQcfdZ#F|rOYHHvy?8lZF0>+0^&D437j z0@%oF`Ewa*%1N^XH1(wE5zWM_fkQ!X@b07v|1hc6AiXMZ8GSr}EY@R19a`;etG%ea3r2B;Iau^*q(+;MlCC=XlvH2In8doOs2ETL{s%|!d{c>@jL^TZ#$OB z<}7O);d}uKzr00`9+ooJgV_am4uK&L{ZPhopP_ss)@kW0_8Xax@8eE9g|pzC0Q9W9 zSL7R+4oC&nIl`>F3mK+PN0=$Sfv{~;mf?EajOU{{K7?o3Y~)B7iV9jUEqM`umgjnD zmNzmiJlBgdKZr0@(;3nREq8aN;RCkCZbxf<159MF38z#1AGq2YU^QeHe?|Lv`@7r0Q^a zQY{Csq1{>OQsz&1+Ji;9(-vtdcTY9ct#bQ_l^&>1;Wym3Qk{<|0dI^CM>|pQqgklN63;gIfn|3HmD{zX^_&2iTO7T=FV7 z0bij@po$4p6VSl>dd5+hWeBF2(lVMQEc3y#5YLssx9I^P1;w{tFh)LGWddh|kwXZJ z9X$7jHGB1~I23$*K0Gmj>UvO@VT0Md(#L!bNEw~&-y3Gar6(e2ZK!+0l=M0PDmc*t zf(VS?XAvHbjaNUF*wK>^s$Dz)4zneCe}th?U|pW-Jlg5w!hxMfwJ^m}C`wy^FSQQO z9K`I`6BTF6S0SFP4Z_de0&K-PE_^>eK)Pfbkri+hF`;;AsY6dyM{)`n5M8$ZH+$h4Mcx-1eCMRb^mlFc$nK zsjkFx9OC~F0uB)8ZHOrLy4SZpXUAWg!$U<+J|`9q_9zWUcAl5-t&!;`mM*S=lMSo? zmELbOlQ_W+ns&vN*q;Yf_19TWMJBoh7> zdeNVu^lr|D+YvlEH&hIcBXbA$Hxr6N5s!7gREhL9kdBlhfr6Qc zryo+g6x^v)28PADMgcdisc#bR+%nYYmd-2#%Q%}*xIf2p0=T{6xOKPOCgFrikXeUx zX6Z=snto?eEy8mFcqM2wTD$5<+r#aK!T2{kKLvJNFDgfc%kzAzk@U6$>)@>OMT#HSp#JcI;rQh20Q9 z#LRzza?b@$6dY|QRnd6aWJ69w@` zT4RNJ%(-+y?HUVk^=i;l3M?3Soap*tcE4eDbChDy3?K ztYYE7QR$CGuWUjI-OiE%b_%$0fbg-a>i(iuK9=1Lo5Pbut9&f0tzN}B6?L~3Ug}^{ zm3^F4-v_U4PO`g2vZnx{k0$PsrIu0)A*t}YTVhrsJmn5Ve-Y1cTD#js=JkN1lvyuU z=mwk8c2vnMl)(+a*Y&n#&>$)80K}%$AlouNN7$y+ASq2;gmc zHNs>s%)9|3E7eIL$nRt2t`(c(B0vU63Dp{w5I&VMaT197s5LC~U7+X(p;s7INWaw! z(OZb_E9bcCkKnwWO=z_l`Ms`aLf7DD>dSxx##7*6$5TrvpB2#Nr`pPQ5O!iUI3+-^ z)yY>a^34Op%2zGv2j#04`R)b<<(n<|;goNV$hQlKatYFAq~yLOQa-CIO5QPICr{Q%EbAZk^DCOv~) z+x`d{^;zaI+8-gK@eIof0SE|K3cv(0CjS_zmA-KQ2ISOBiY>r3)BN<&QVSGJaO+*z z`i9JWqqelw0LfH-lu4tR1X6OTL|ab9VacT)qtA=*Jb@Hm@l%MVrx0x+ z1>2gxjHKC+!EE4WE%4t2>F>nzXYe21&&$D=Qk)o>+8lf-g_oWKYi-h@vHnrZi3BK^ zl0qt%;W>IaP5~k%TX8>t*@cj4WT*LY5ohgBr&UF>kB%=`9NqB%v_7QTDTuVfY+VmHj8IhC{w9ob58yfS+n6X!AbkwvW<)r| zI}Q-r*s5J(q7-;$X#q}xNKW`;mEdXV7Uf~6nBv|`a4p8ANwp08_q!BNlfmEBfRuUc zSU0-}5M^ZxrT#x=t4zCI)D+3@3J^mvYp9&?)R-*9!fX)As(s2qr% zTEJshP?0t)S=L0?P0WMRr-nrBZ@HvW&AY5ptp^F+i;YM5G^y^5qhe$M9BJd|8-o4zau>yi#T}$4Ix*kNn39e_Skug$stiXFIsU zftdJ~Fl%L+i~*G1A^|(P@Io?haRKNT8Qan4egj;FDZMwn`^&&`FtK$z+7|{U&mxO$ z26=_LSF-RqV75^AN}+yh6%;O|+9y&!#-JUxSwQY;Ok%PeUI)_(SO)sD&|ApK$d3V= zIv;=`U*K&B$cAJAel1?6(-kqyGgujy16TiOQk~71?}bL*##mbzYb)M90rBANcp3aW ze(;aIJ?^i7rALuEq~|n8vO&pqjq(Hi3alRtpV>E*@PG){{-07 zmjM|31>P_MZw);(2t>p2=x&i8lBg$#KBLwbpa20q$mj);9mG5an3{4fpw}=C%CMuP z-}V&1F(H^CyVAw!%CQ-~;QFN6hSC`c1{Vxv1uES~SS|x(revwFWa+yIkLrN*ixDL& zA2RieEE)otmH{@k0D!@jcyn1wf@lIBT^`v$BAX>fC$x;wM@Me)qt6XQKMA>?1ER%@ zUJ-eOL}#%?MsRg*EuiNUGcfWZF%$i=B6J-Y4~iTlM#@Sg-VDqpVunRJAdgn!yHZIC z(VZaLPNK@l2%l(gif9Dox*tT3;?d(G)g-cVv8KL#0}gfK(N&Sv#7OEBiFpFhd=#-h zHe#Xp=KT3arC&|&RstAyQTbOTRpi>FdKjhOp$tvVs>@ep675|8ZRh!_Of*IsJazrL z>pZSu=b`i)Va5$@zTqs^@0-#U%>XgF3}`poku+j>j0pkUTcl%=QCzSag|t;0lt@lw z%rIo>MZj#Uz5`rS&6@fEM4#Z%Uxd#lQL3g09na|h8U7A2shWyi zomBIQQITI0BW-IP8QZocHPr(|n@ALjyyFvXO%X{=^#{=?JUSBjibPUVQXl=UL3BJi z?A1pH_N>RCgk(2^Rvn&#GDsjiOU;(!myz!ftM#10_{8HKbr$|mVQ4+qJAN78qyLfx zNB_`UpgWUv`*leU+|fsc&YsrDGZO%M3grkQInU9?d;wYxkhDI*^9UAdupOA5b1abN zh|r_>!&NiH;vRH!bm$Hw#s&fiH;|j|p=!akw*d=7bZgl-|I(ZdD+Y zxjDmKCgIxaG)|qbiF5@h5*mMAmCFAdnG~`C9vQreVN(XE#tPMIaN?EU9k1iy?_zb` zT1-H#iJUB`3Nn}m5n3v-PA!($3(ZRGK=Tr7-K@mgevJ}4vRR3BYgS@C0wt#2MDsCf zPv?L4xlqsL$CA~j)?&k7=^~XJF>h7lX^r!i*R5JIZ`|B@o_COWwF_%k&#N6$Hnd;; zqJB6NzijQGfp9G6yAMI7+JBqcqe+!Qes?}JyyriF_n*P|_3?_Htu z_>L_t)_Ygz{O?K7^WGJ@z@k0xU7-st-t*oSy2yqD-n&8@Ehy!^D|E4i1ig2KF0qX1 zz3Y%u{T3#bvYMZxOb3mro-n&AgKp-WG1HY! zqZ>QnIAzixlP6SH<5*J&mKkjecs%Kw5KAo;ONFyhIYJYj6rj2Y8r;84rcS6v3 zdGfR*Y8ld97XaIPTWeSg*9X8e$4{G4je9SWJk54P00F>^S<|cKaGAO>fWV!|)#^J% z>Yp8*J^b0&Z{W~tb~u(p?=C&jAH@S_TH%((et`n@&$RmBFo|KXi#4o#a8^A1OskK` zjbrs3!vJ`9ai4!Y{Y-20X@_W^LMV85pE z_l^5!TH)QrE7;VTR(N-@z;N6@(+ck{7M2zFR7CVG2gsLkKW~~X+5edsBj4*~V2~uK5Cloynz3Kt4Nia9kxEu!@ z^*|fUk62%1gDk7|5$-+LgDs=Zs35-O>lYEX4SxWchCk8pQ}}I5k@Qdka&T?7?gRr0 zZHKAd>2jo`{Bd=*X1{<9$0~2hxq>P*)JFy0Ae$1<(=u&<>}mBe9jB0UN#=mn@>o=;e}Xs1q!+PFO0y zy-8*{i%$Xr0|9J_ow8tE($0MW&NidE;{Fz7l{-x2df<;;ZjY+x7};H3KGItBKA&VLse}f4p$^Ev$pTm1#BZRtGVp~iD8-%Wc(A^&?gpCz?49_6 zFWfK{4evvVVnZr>R5YDhZb?OP%}l?FEE8RT$=FGFR)go?!Kw#%&eCN19Y9o15x)^e z7H7&v8(mO_+m*0Z^J8GwLk|?%svRv7zXBlTuaHoWZ+mZM4TceYQ5C}w`{j0MZpWEk zGZ5}og`c8>fE1sMx8hpn(F4fmv$bPS7LMXJa@)(jpyOYd$7Q>hRnM8M>pT zJAp@rSoDtrNP){GBqH_%Z59kiJthcSeu@6OzHKoMtuK6hjOZ?>Y63;{@eh;Te zuO`(zFu4~3^+k!-NQvv&J_vJBq&I^Ve2`JPiFoLUFlN=$aT(TG zc)FYlU65-V*k8Q{W+@le)zPJq(vRxBaKzme)K#D!4r(%fl+>pH;28TK$PKyxq*L+S z1ne@${05JCPb-F77{gHQY*0RlXD6s{2X!HsL(zcyUjgX>agF4z&swG>t=bpu7QM9u ztL*)-wH4U?PPAJX`78i%rJ}x#hV;t_47?qUSa16SB6!~$%VMYAgy>yLvDpDcRjq99 zc9KPpbzp%#4y(}~SFKv0^iym}a|uPnr^)zK1T5nN`@lvGvf5&8T?4e*>sD3pBU*{) z0nq*e{0luSmC#!N7D9`Vn%r|vL%Oo1%XX845H6u^D+Gt(c=TJk*H;Ml`j|iO;0LM7 z1sqNnePvVKT~Vp-7=sO5U=Yf)OySf5Whq#;>5rs6mVC;QOkf5iRNz zBjO~&xTYwIO&}oOO)es8qp)}#upU$j&~Ix5a%eq1GVe@IO_R9W(M?uG;Os*KQa{zO z*oK{s$ymQ*f$njWzLDLik1r~{@I+1ic{v9?>Cf$WF_)PfLY z?1!*xD4u(lR4=eW?*@|*Sc_c=vIa2XH?e_yZUBJo<18}yJp-q>z##-|W4W>fF&%UN z!&#sU(1b3;({Tgl%pA`JGU8(^2)K=C}{mZ{;+l{-0U zJ)#&I0e-W7im!kTP3w`~#0~sr)dE_I<_NkM@e03L8}WzM9Oz`?27a>+0>p7Oh;qoR zjcJEJ6iMq*yMWB9x15L9)Gv}7Vq=Z-IG?D|Wg%V{_FD}ANI#tieds!`nl<)RMXp{5 zEc}$hF;-t>_a05=k~Zz^iQP0MnbpwV0(wKzSkkP5P=r% zz*`--kYJp}2-?g2-?TZ&}X};@tkW#mk6aFTz&u%|G}hCZ0IJKQ)%-!*11+X=$oDt zij^OOWZ~3(?DgT`yw3kk3UO-e|HqR;zCX3BZt^+da}g)QS>5lFhJ08j!^@T~@(vVc zkKDtrCEcA`POFE|($ausDyQ8O0Dc40O_uL8I9aMz*Hma8 z*_3e++{j@EghSwhI?(3a0BbfkyRSZo04AV#wLLuO>a!7q(u%K?nF^KN&q2cRCI=~X zkSvu;9@zb* z!|l9V_H!{7 z!!cHzG<3e?vfp&Tz`R@bUI$CfyJf%SK)F_^eJ+@9g?ifsgY$0L?>J!Qyj!;KPp;*8 zx9s;^#Ef~j?Dri!ecmnm0|zcv+0EzOvOmFzGj~OA!0|vpW?TD9$QWp40K5{fR8S}AUS@_46I#L&4AT_AQmGgtFR!ZO_@HqYOabXvk)ds zU#1a;uHs>at|qY$!H8_e#L0aWG>t90ztartA>nXD&JdVEV4YbiL(%#NMSdK(T$I8-(pY$yv@%ww3dZ7^4LCLeR|_rNA>x1r+9 z8m20-WfD6Za?QoOpDeOs32tb2mZ*fR*Og0c8xKbq1y>9%U4?4BY$`eS%u-z(Kj|zm zs3WH^=e9X|vb|S{xveMWI3m(nm^;|Ym;+8$$t1YB+kQ0R2=~Q{H->v`J4W5tHNkNt zvUacS7IGup7HEEEL;1qQI^}r4g4##Kje*%_JH^iQy(b6N-L>t%u<))Cc2(w=6wLH2 zh|tf+uX;BR?Rh2627EIj+aI`GG6ZnrgOkixl;hPJb zST$oBRfAxHoQxAyoG2-?rvMBf>5KQ1QPAO=3ygtVwdxturjMtv7JvM#X%OAGP>{JN zrt@<0O08x7S`>2{S(y&sEMS)NX<3b8)E+2RvYxnX%DBG!3CnQr3Np-a_?8OKsG2hY zRi{%BzcT$eEs2fx4bL-liS>3TB!FUh?;|FZ>F~`1h{HE8Ftut9%EXb*OwJfnog9zW z;s7(MrcWM|#E8)Y1k;B;mWdH|OLX${2X2K#>ibJDzmhc_Ysn{6&2(>5S*-*G8F-~6 zK41=fWn&*aov||E@AqYk++ zax)zR+_4;!JJ9riyS9jf1;| zV!E9Cs9CTP0&i3yeA6z9^*NQLyMYYp$MyM=e#(JdmUSj)(-v@xDL0+OY?IP_w3J&o$x{7dF2`H)4;jdC0NtEJmz!S=$__ zYrJtqZ9P7)pF2PS*0eD-2xlp75z{>4Fop3(oUi3#!V)rl)PalR-d&ZR7>`Mn!hzS3 za16Gjf!8U?Wu*$osGfoe64u?|N$JR?wGHTVnSEt;IKq;CvxMQ_PBzKDZNryg?XpT^w6gwUK2*T~5QX1ntj-bpghwMV+f;GtN zN?aoDfSrXCmr@+7ryZgb5q>voEAKgn>nONYEA4H^c5%S$amWrtqFiZXx6juzcvM z#{9vxlQIX#))3_2LkAt@pw`;@NLzEO!a?17vf1xO^_6JY4P4E}70nJbUPe5g+XVAR z2c8@k!|zYpT7J{xOX`-^e7lLO=?8U|e0tRw^~fc;AL~2;%#GtpFkG_cE~ZxIuTIE$ zal7Ba9MbKDaz4I0TtaTM@|otxPj_+HEwKZie@FRYPCC*s6uZ0QBPdDvfwFiCL`VG+ z_St-G`cXe%jAZ>zZqXd{adt#J(cLVpVev_N%G{!_hqi&IJc#aq>d>c+gk#m{f4ygfA9(r$bIoM=EotV>vwz=Rkkgg|3>g;Q}2eN2+j+XX2vJw6V3Y#l(ZI z7?m+H$b~<=bc9XW$dEYH^B&_gtmHc6pj#bOnUG_0zrj8v@k5C&$HBJwFv~OSVn0GS zuh12q5eMDwpvpvC{2j;v_Q05^3-6S$jTLpVo-y%&yULh@?siaRVlM6rMtTJFzYg%S z1z2ubF5YVfjgTGH(Z59_6epAHjbtZHz{#W?qF}VH;AHZcquD&danH%5?Y^?&zLQA{ z$c1kU_U^q^In@N7M=qnbQKXFR7=Q^uNz3h45GuQ{q$890h8}XEzNH0FUO>)lEjW9jh zjapJkT^Oq1Op@u*+hl-EO9Y!Vw??JBO|r=7ZIXNa#M>liYv^qf({R4GNlUZ^QGIWd z7IYipp<$eAI1Ht?Np3I`Z<7{(kB+kNeDKs|6~v-Zjtr0cgqPWM8y4x}1!Q zqeQrz94P>}oWyo8D9mX1R0tal4?*HGH$>GSb3@%!x9#Rfx)R|6DErU#_fYKx@_~IN zP)kp(DD=Mu7tSB&QXiWfL*3kl4lUU_;@;@Bz;LWgz3dG)yBiK<`9(Nuqld9JS(a@d zK)HsID_K;g&~VI0qYa()>bfSyQLgcw3DzT&VT~n4K7hi9J8eCUPa}GVdUM*lgS^Wi)&T zgvq7GgL_Lhq8{+Ah*O9)R)y*HdIPBCrzcj@*E3Yeql-BE$anA^gFjv@QG|Mhjr21h z7->Zy(khA6gQg`;qQc{&SQGm9B*j)7S!(SG?*j4yhkb5laGsEb4v`EW*gR%l-1#{V zaAvk8DC%YjW|N>N3RSGF*_`Pk`I42;Mbl*(FjVPCrwgxRQj@K0%%|eEI7OF?^4$jf zHCmU9FeBD9)Sae6YmE+V0;8fIp#%})JBox#qer8g#aw8a-0#v`DCzZbr+H=IqvKlZ zmw+#>Te(;vWDBXjaY++4Hb8|euES1<8sVe=6Lf{^61b3!vZ>xF!JE5_6zR(gJo&B? z`T7i^tk+0u>Z^Jk&K2YmL@O3okRna*!#jbLRIYL4-NHhS{G}X5ru#Mgm80x!DN9^Q zG}O_l=Zli}>7hz>H=gYql$zX~hhu>uUmRmrrMCIK%y7Y(*fMt>URHp54Iceo5$F>) z0W`pa4ZIy8Y^R!nKj(txQqsMZSVkHzJg{D9lqU@*yV1t~D&lNKgpctwor!&V6i2G* zuN2^BfGC{=euqHeBBlSv5*fti|7*nh4U_vKu^Yj}llZ~L2Og8F#pJCFE4-1S>lAgz z^v#j~h&2DYq&g2z_F34$*F&ixI0V-*M7f3lGBnWvd$OombU}#dGUTW*#F^R^Kx65N zat?&Al!rSC^yUih{W()REE=n*a#@1eFlnhYNusjSceC@)z*V7 z@khYaNGha@0NqT?UX$qD4XD=mp%&n%Ww36l$Gke!iPw$kZ5bKJ#BbRP-xYXzoC905 z(2BoJ#GeXCIaSPA~Av~jwI$qKwl%~5o4ihv{P1g03

>1VYHV=pqE zP2jm4Jo=$-o@LcM0>GdJV3iGQXFPg$;ym(av*p!?X(K9l4@=)I+Y-sa?6lyMC} z{OTld7Xtk1ZeVNf&!%)QV%~>Gf3FYX1zMA+ik-kbPwWq85G$&}g9TN^hoJd{bhlbn z;e|a_(M063yK0sX-$|t8;tZdD zL!kRO%XJ^F&Rm8bl8P%prL`SUsZNEUU5Z$7*ilDbw*XLzcJ?sq@M#1pn6q&puV*$M z+k;SIAbwN@rCblhMk026O2k6^4805CfvZWP#<0h{5HveU^Z3xc_%rs;fJH)Qcda7D zaM^*L(O%c4w^!~x&!C`mTW|sF&wqgH22U$SuxmaFGz!nKZ$S|n1vD%B;u zv8Nrf+|>s~i{{Z$6!-gpjQf;*h7Aw6!1h_4CElF~vCrrtv}KFXLyNB-8-5SiXt z8a;j~*4Gy+Jx<L7Vc)Rz$5vj9yps}p$i#~YM0ZLL3o=nL{VUf)Kd6N!=nB(wn3@ObwtVr&wa5wspxt5r}Re(MdWB7;!6r()09Y#+59M zB<6iU8A(skE&?qLcq8R>wbY$!7WL`Px`I zA28dJ?OvF_A*`xoKp?rM?~P?f(yad&F1i1bR3#U|S}C!Lewirxxqu9zGG4Nn)YPEo z05lBeU1}v%)_~8!zWxx1^6St8aR3Afk3#44eJOi3sl1y|;)?*DpeD+u`|x*2r1hlBbMeV`)Nevnu~xL6>}~nZ z-lNw6`J0%~jRHaTemx2hZsh`<-HDWERsi!9Y6i??uTmRx0*Gi*Ydt04Ey1#%G#}*f zmT(6Cuvbb(;GRJ@iX)R)wMVtXdOU2fy z#bSG*S+N~xUTm$K632w1BmsrN!V*jaRC9uWbT>5u{{?Qiuujf7CfAuVTESwdN zWtWAY)ISTs?hl-15AW2rL_K7~->XGAc}!R7=`vxlE`q+N3|PP6-%f}F#hX7@=7bJ9+;`|#qNrS-V~<2jc` zN&FzbR6m%A4{a3)a#!s(6kRSGNUPMY+VJz}sGy8X!msNc(4aZ~Y4-3NjcO0;DjvXp^r`f~r>fb;g=0YF>u>qROs^9N$9SQU%xbw+x08t0a2$Y3{ILH+^HPr&uJOh&d5>d{Q; z_kgK(w?a|93`~2~K{|Bv9nxvcnXwIZ)JNkFzcQ^mc^!IqkNz>*+b>aCpvxoOe!T|} zwj$6;haS!|j{!ve3Zl>1KHHcI&{AP(-BMzmT1@PPW{DkWo>=Q^iQ33Dj8q6(x4Q+9Xuai}@13oVG(I7TN5k(RUP}UX zYEhsUbf!QDnhVt0WD3;wYYU`)#}TLcum`g7Khm$*eQw`Kr;>jJI+aln-*qbC|ISb- z6c`GH(uYE!jG<5{V<;5L7z%}&4~0U_hC-nhhC-o#G!zPbQ$rz)M#jF2CZ6)X_J4sBen+;4s0yDdK~(TzBl5B0eHF*P0?RfB2l6Zi>YG;d2V1V$Xq8h{IXD$>T`4*@Eu=8f^0pQL# z6)QEj2uWv^Pbp#vL+^2IG;cAH{UQlX9=c5y#^<&lRyx77+gdcSpa&}GkWDngw;0EB z$R<%37^uv0FOcbw?Kj}1+R@;{mav4<-KEs@ZzORnlysMfjRR!cr0&kN+cv`An!wwO zKs^cU@E~Gzq(`!jW&EMTGS#VLgzujse{e4M7XDOVEp{oM0kHi(0lpFD) zj&Lhg;vf%RlhSNSyFleo%yK@~lXl{{j|{VwI+FhB^eKGB97)$kWZ@KM;Z5KXve`I= z5_h@;5Ht&{k2LVKY8}EyLJMJuY}Jy+#s$kTA>Y8LW^?{gEZAd^%r=aWbyLU7n5{GU zvj#s$zYJ)%>+n{3Zz~+wOG8tfzP9E!KL5>cMKg6%-HR(Z!i1hWtmvY?Stx zaUL7^5qc4?k!x5~4=>uY(~2X2V3syrjJrj#q;e&)vMvYN;r0{6ktT@JV9=JpY?A+i zCD6!qtl7+G)}@%7LC{jnm6n0Z@KQcDEoC1}M!PXZH3GFd5gh)4bR{9Bk7c^20w!T; zE60+28$pt81=EdOW`jadL4xA|Q9U_f^cA=js$-nnCGys~*Dv_lbkrx}51WA2Mc&XL zwnygx`Z2hIu7Py>b#MHk-UOZfa`Vi&0NDwnUh-|XF?RrBCyZK3tW%4Lz0fSN1I-g_ z-7K-TfyC5LAed1H3jf`PJ!bB3ju$tDH};1swB-xxu`3F5M@treBQ|~oZ2T^xkrRL7 z=rz>fzdUhtGiueFIO2O?;^sBu-@PazZ&UeY;0y+H@ z(pkPk0}IGHoST+!z}AZe9IHfP*o+AU!R3+2lllOLCBfy9$WAyrm0BXyx9@y#`tpbm z&Ribx5#I7hWS8TcxjYhi+986=BavrBu#DxA$g_^L+46{wIsEd7Pm-}b;=}FoNaQ(} zMoByyTjKp-B0en`qpI3MBKo%*c)a^(`v`pZ zXVG-`XVL$H`?FX}?$5GX?SM8&n|~=&S?%@!_zm>QLHB2|FM2{}1l^y-4(I+1lQemt z&Dn+{Rk^Xg`acoy+@Hlt^yLVm1$*w#V*MP%cYhWubr85eBac`@bIAnm&&cUWD5}={ zaqiDzqx82CvhL3ia36^0{tS>uq%ZN@p8;Scz&SPeltD0#=x{O6%>5ZqyrDH3W^USW zrs;90*P#0|OcB{{MWDVV;)B!OpZVZS_h&xBbAN`JCikIcxIe>8llxp#2+lN7FjykN zYX>kXWJ#O3Kl3q%cYo%SWVk=`;nw{brj~3PC2h}y#`c4Ww!Ev&57H8O8WLu@Kf_GZ zMJV7loN0QAb1cD`Cd)YJ{tPos78r1U7W;qfy$P5V#q~B`Rkvs6&h0yZfPe@x?Ax#m zyRtaL467p$KtY2Ji-1G~0*t6pK{RoVktDwmmqemQjVm#l7!|i9xDhpKG#ZUW;~GsM zYNE!U{NMMS>b`yNT#P1~@Be(yH_vl>>YUn6S5;S6oj&KSot~G2KP$_@pNUX8_%jiz z82lMDO;N=Pny~=>44Nk8=fj^t)1>U8@Mq98y@*!IRAbCjS+owD zaqp}PWf2DwaKr!4|IQRvS3U?M(??ISvT7^3chjgKi2bOOF zcNPvkSV#|d77inTH6{@ccNUJ|k@awO^>An5$gc?S8R%~u z!JUN%QMC4t;vsJpHob@#fjbKe;LgH4xU(=H?kvo~ow1y731r@@bg?A`l;m*Qs6wJe&g?IH5!o!_~cUK8XxHG;Lfr^LbD-FKD z8>fa^@Z1FMEWDRYJVD!kge(zM+2;&*7Ctx$m7&rdJewebFZ&GP&ca9U)CwLanA?8< zcNRX;83jPnr+&!O8rbw%0DHoj zS^qKIS@=?0RDfoAwu(0?~;m*Rq?$Gke>_IH=U%;J(Y1;|OP=9Dom-_!bxU(>88<4#;_zJfKXNNb~ zOL1mJ4(=?x(N2Wh71wEbaA)CGy9b|Wh?bFnI|~co&ca*dW}3mBg|}LPu`GZ)3x8_a zQ_bMc!sc*iVIkaExL3HdusGaVxL3Hd@IL9%B5-Hn-r&x{y~3S^9|Lz5emvY+xEHvy z@Z;dl!eVe|;ojiR!jFMF3qKC-3bf}}?kxPFXXoI~z|y`bggXmA4(<$*T7EIOv+!ykSqOKA2(627 zXW<^()pygfV@zmdXBxwuh1O{=6vCZ_9|w1aNQzYecNV5RH-2m!pY)h%AvT%gi~C%P8@h1?ksF@`ud9C&SFLa?kp?WW)Zlv zaIWLxu^HT1c!c9VA%;5(7rGCrf-QhMi`g;UndcP3oyF`V+*!EDg>OWzY~*F0QJa8btj>xU=v&TMHU+XW<9-VsyK} zorNC>SJQJ=l=Or%mGup z(^~?)t(WQTKfVT_tnG6HdIh#g`{5s#9oF`ZzVyO2>AT=Q28}Y(tw1xtHi>7sQPYle zk!{jlh~e54iA0sWk2?v8_rWv1{>?=1k`P^m z?v@bR{Cp6`y&2z!tM|{-D;y`TDH7zsMW*hcdB?9gY0bQ2S02B3-o&}{mLi6b+Vhqz zT!zc=Q6mPdS~TEzKo_nXI%HnLw;cVbe;qLP|5*dc<1f%V5b?<@q=KLkaKg)$11S?n zr8dgBdSZcOOT`YTg#8Fe!%DaDM;Iohau%CAgJH~=rQT8eCLx2;$WdIQ)1@9b`fD1W z1r2vq&=}_9Z_V`sx#1Pk=s|9z0az=#Ax14GX zDL&S6DmsfT=tZ5mKZ`Bs`vUV7KZ`9`EGctFRb~9zn%;|1RXQjcaV-**^V}+&WRH{H z@d;!4vo*I6m?!AsJ;(`FeuMqa$i(n+p;w zrqhEm%r_G32sQJ<1W$^bWi};Pti18?+J?g>m~R%cr=!~@HcX#mzLkjKX*)Bg)i#)K z7h$Tv|C5NRZD^QYhhCmO&3q@p)-y&L*$bN!>{*kiW1!5OP&a)hkbn{qV9Y#h#%%N> zI{l(VL_;kOKe)KJ`4q+o@;EiYR#V(ON-H@>&{jdtW-IM_pFBK!Gx~Fhv)Rf<^FYEp zJA`2-UGW=!-%B3YM&pECV1DMt2{rt1nlK@RaYB0x|4g&9*MCVg+*C4hTO-X8qZ0;M~O~?;d3JY&I}_=~-`_&o4LU#yNDZ%MkL%|l+h~Z?IJeZFiy~jwz&uzCs45FZZMj( zQxP{9jrmwN7){dL4MzE~8;p`wZ7SJOk9z3_w;7fshoKE$gM@AQ_V5TAYhbelZM!@#vZvaPS7kJn!Ca1 z=;^dqHyF)W*~|?_`8^8VV3gg*0Q8~|MWXBty9ccl9*wr6al*H;+Rk~ha1ipbiHsAJ z4%)np#UG3lbOhu)Sv0!9lVzKfk?>^Ehb8IB@_l(2I+zMd0po-g5F%lma1+Ruyob9H zkjHQ@#tE&{Fix=eDvEy5v)N#rAa8ZtgPhF<JbxL@|(2j1mv-vBG5%N}9`ssMF#o3K?a%2;rQG0!8caECwJ<6iTpnFXf4B;W`S= zHq$*|c(T$#DNkezPgN?7Se(cfZcs97_G3BWMna^QB=Oq)iEQCH^H~8;WDEUzR4ADi z!}D}x2c?M<*~0UWmhFAobli-wJh)sLrM_^!kbp~W2l*EU&3O5>pG z#YCqvwwkjU-W#QQ7KuMte#i%ve z7A#wC?64QRvB*kak;-rE@YjUhqm;16#*TPf$Udd=1~Yc#(?VCFE7@`-vBiQ|VN``z z4uyWA)SG1RsbY^MOfs}tf>OZF$O&}e_4>48tosw_!khHovZeI%32#=4cfOh^+fd-# z8r{6uRfo6fi?@SsYBmA^#lt(4->H-@?xQCVqSCtU6dv|v@D`=4x5}n z7tzU+ngXLoho|CAQEljmcU7no$^=*T1^$B8>L&Qnb67)?5S zsW&P>v%K<8R#a$`5i#Thx`>by=prIMfi7aiC(uQVWc>vv(1ovGsI|X21`}3!d;*<> zcvhGMk_AMaO1Fmatro}y*>|1C+yy2XG3`&Fi|Jy;MF%;AyBoB~cV1+X1tu9eIyTA3 zv5FNN9|jS=dzqH|-YT5%P@X%1&Ii>b!xMS}ohRZG=scY~fzGq?PN4I=q%@`enbl(` z!VmtTqU`xKMQLu5p{(2qbUulkK&Rnk;VA=TwqM zjPl$GbUs+LW;uxiCK-*$UKV_p8zGux+yq^3Ha>w4CK*RSh04`wp-Dz-s4Kbm$~Vc- z*Frk0Qr;prgEwhb=BDU09GGNqlEb@H9o8eY{ZB1>3MLuZHH#7_(7_}_i|rswb;8oa zBtu!9vU&m?Ofr;Fi5*1V33M>Y(3l?C+bB*uNxr7+3plzV$G!LdIE zCK)@hclA$p?fv!{j33M>Y&^Vqz*QwbFbTG-#Xr4gV zX;FLv9ZWKm&lBi66`Vi^lMIdI33Q$O33M>YP$o~H>xAt|bOIerGBkoG&~=Jmv)Xx& z`Z%6I*NI2CaoyagODC9QXhxc3bjm-04kj5I#}nu}QBz)c0v${;GzCwf>m*NA@&r1V zWN0)`pwoN6;n6!ilPA!1$~%D$CK;NZC(vbcC(ywpLl<&GvbhuJV3MKCq1X^6PN0KH zhK`3}*}N0zV3MKyQJxPx3e3oFc<=D-fW;0@B})TWE>!jx!L>^=wOneqR;a% z3oyy(At~qMxrujII>Z{NifNHu$a#(W50|#H-52fQ2$5;QtPzjw|dj zBJtp?UmU~uLR)B<=jb-!N~`;XQSs9(E7u=-_LzumV3MKvYx3(eu)5HQ`uqqj|0-Y5 zWI?bH`(QpU8hN#kY{-u^Fv-v&XJo}BW0>zIHOb(9oF*Arnb54$UfANYc_+}p>VjqP z1iHKkt=T!=Hcc}83@dk?^4zVSYhaS0h1}u*exfJP!Sq6Tx5YdyGw`|ZBtJTV4h9%n z(>&FH1{hk_W1efk(XyU&@--x78v^aN@w->rkIh< z#wXChBtuJRg~9Akpo8&*^4iAl!<F21Ui^xSdqAg zf0Z8QxGvzM!&eb*>2P-iojbc%vGwCO>m0`grt7{u>gPCSuH)hnCK~8KphjN-c>4=3sHb z`e>4oD5h9~3oR9a{scOhWU#qul0kqW>`0e6>ZE9r0cE3}KnIfyO|%7B^#nSYWGL%O zeSMBtr*AR&LS2B!hcC zF52==po2*U8;7g5+-9qnKPC=V3MJeMIS#-D`Vv@OfvYX4;q1Nd;%Rz zGPLYI(Qq~}$0ye0DNruXq*2%oqlUc6NXFAS3<;fH1 z%9AJ1l^32shq(=^vX-r~#&FnpU2IwKQ}k#BXFQl>a1f#FvmKRECH!8D?MkKLxg?eWgSg**foBiegMAJ$B zPcWVJ|1@)e24L!`ayyZTsb1hF3u5Y(>fhq<(4r6MxAKXu8wm-#d?h& zlmQdo;J)rlzA;V%rCUSm6#oWq9MfIq9LsLZq?ADW0x(*jr`1QfOZm((2AAEEH*vD%|gekx9`e;)deC~ z-zL0BvU4I*Mc~DffzVwZ^dY>&-({AosGrMSau$-W4^S%l{GFmVGE|Gch)T?jyx)up z6W%L#-|<5{LP5FheJ=!6?W66(FrsQtF*aEf72mOJ)bu9A9C z?``aP%+&)2nw(E2>iZJrsh+Ywg@$-#VC|(Srk5B-tqfRX?nL&$5%ffnvp@G^06@x< z@FHu!ALqR&A>AdBbeH~X>8eyN8L2qzXV>}lX5`m#?BNB*JcGgqECKxbLW=V9U0P){2X$h()jD1KpoRwqh%^LjbnX^|^*+Z;s6$@VumC--joXu!HLFJTFZ(b+XrXSwXHWhk>F;OIaqF>QpRa^6WZ2)r0FK9hm*5n@zMoy zK&j|%YM&8Q65G`||nc(6=>`+Nt<@dzpPznekPY*EQ$zl*G@ zoG{j}EShFl%N^G`HsdCw=q-;$GHPp!&8w8^gG*436H%KqW`B`}6ai}KL z7`A`VmW+jq*RETZ&}wrVXup>1$8n3g6Q zK6mTXh2X%D#x;&#xpKJ~v<5q>6>D*bZ>g0=ueq?^EWqzqxQP>B88{TMhx&mQDP)m_ z@!S|a7U0QOx=q1>BO0NCT8po5IG|igvNL)&He&S;85gWxdIFX=_HP(Jc(VL``|o@Q z1$j?aeq`mvb!OQmb!IojncFw&)q`XX?R=3w!w1PzJBw5dH+WD$xlRMGdfl>P@UhE| z2{?rBAqNw+QcsZjQbfH%%A2qF1i{5%0R?evz+3MIY6RAsOYi~)i}Iv4-Eyk-{WzJo z4@VN+11v-ALA00YZ_Q|%n2?NpJO7UJ;y6nT{&}70cYB>#i^BT$i*EXDx#=yG2qX2~ zfDhhNr0~f9U7Fx^q4*N{hX~W>5}55AvvLK%nmUxsK%rxf#_+rgfxqEr%S!sL1U)ul z^!o~^abLw{A~KHq1_CP)z#qDd2Wj}O5sM$2&OcPFd4g5ww(IcQh%zqcUC1MnmPz48 z@T!;Kq~wg{=hIzEHnJrmUW-dn@xgf&^9|Ryb^-C-?9BW@lMpYNYAfpJv7KE}Sb2ZU zZg{F^^3`)F7<^&RrsfRymz-B{Ojv#glgaz2!d7 zk{+nJ9F4dG8BXko1;=^8!;qoxec;u87mR+tMyTI2xQq{cy4#rUC-T;=eGK7od~@$c zspI(e?)W_f_y(_IfN$}`5#V24DQ;>XNHrKg`_15gSy2!0#zxF>gFr1q@_wTbz#(CL zyU#{y-iy66=sTaOBSydDK#g06%PGhr;xXzqiuZjL&+LyB6z^gRL-B57fZ{#H0L6P9 z0r_kBQ#?N>ptb7F1aB+NwzGEPI4s3r=AFhrKA_f4N|X&63po^%Ha= z`0@b1GVN-nau2?Or)z$>Y1wK{@iiA97AJk4KEbqIfS{-wu84B%ha5PSYvnPC9JTjI zj=9Y7ttiKDqZ~cV)D z8wpBMJ2xWJKaeRe5znNopDYO~&p-m|twr*qqEh>ssS8E%rM4XtnzXdjkoZspCGojY z;^CV3*p$L zPSrjRcBr3;5kDQ)Zl8!dkg^FQ_avUTPiDjqD_~jB203GW9z_ws$muyXAoWx?J&Gd- zbE?rf7&(p4!N@6{2P3DfB#fML@?qq(;D7ggoSd=#FK{ohvHqhV_G+vzDRaj9|6tm^ z8SBGjXT-%08;It{`uQwxte?kJWBojq80+V8_G+v@2-SWH%Wbyp#{lx@nPxxFwn|!I z(=_`L))xdzmal{cBb82Jg}e&8l}gWO6*D4m*bXr#i5XiIqQ5)^g+&ksWm(!KZwv4$ z$%p6Hks;iqU9z$RCdLG&N5%phP1$LG!dn8KUn8;=F+9IAT2(ZI=huj~xd_@NQ!v;i zSLDO5_AD(|b+BZwP{u_7)$%z?6T{o{YwX>durmH}fr@XFoy1Fg1>S`?)O5K_)NY?;vX+W7Y6(!JA6PVto`m4lqE}%#nPpUN= z7x`O)yN@M@GDmQ0wYdz#x>crW2Vw*!EVGUx zvCZ&h1%8;Bla&riXoH(MRjD*$VS}65pk&sxWjUFRXQG&5FkzWs7SKO8v-6Si;OrmZw!Nu>b=hEv)0D?t61V6!q0)}k_0x+B2H zwa)=IEAuE1PCx~ZPh$n+8)~N=5+mvfp*EU6Cg1Ez%}MoRTjq)OC;$aLbsY;z+Gu(r zX`|^`-bT|?$-?t(G&9f4*TSFsUlv|yqp6HM8_kHd7aPsY^V_t*oeQxS`5a-hGB342 z1!$I6USvguHkuJbY&0W6Y&0Vxw$Y3jv5jWLNH$x6jb`Tcbz1wI-SPSD)52zD-g;Ma z?^?~=1vZ*7?QJw;Iw?ZAxaA+b9zE zsL+Nx%&~o8n^K{l(KCm;9+IG{B4L}7ndA6i!8QdeJh4HFY*R9G9UmIlrXYqEN8V^4 zbA;pk2-_4cl9rpyLiZ1O`JGrHR({d#MeI|!WCAlvNZXW(gl&q?PumnMlf7+9%sksl zEeX?;%p$3ewke5XiY2(vaxv&_Q!-1XBWRn#)%9`kt#n*S(KZDOPPI+Rtn!JrAgkJ@ zWY&1rmB@zC*`>xQ-|T+*SKbw2)jTM^r)WKQzTt;)oL!0`nR_#H5s*`{Ppb$6m` zXq!?YwkeqnZig@gE@T|WeYPgkMf$J8TaRQa9pBrJnI4XBBYd~5$g>{F^c3-7JyH={k7Rl|zG%3+hz3G$$2S5O#WXd` z^zkF9GG2mb`a14CVLeiTMG90?94`HQ*?pn`XEOc$NUOqV_SPerD#!U1)*}^aJ(3yV zI5EO{L>BBOGthB%a@|K&_$Pdj;{;I%=#i;*|G<;mLE5!dW~@9V6|^47jFUcL3(|Td zbFddIV1t@WjVIG=1Cy!sWR`Q+Oqm@%6`;onSbFXEG%oDej;CPl))EV{ks$WxoRrz< z*v*}6PU%8>fJSOwjLnDjD4JwDmb^QEUuXV_--l4YjzyuJeQwTceZG$b$>RO?*w-*R zPp_V*@_CDz;6-?ygXOQXjZa@mF&k8NpC>R0j7)B`7)igmCIq>1D)^BK{2(p zT@yOrFM#_1_B}}V8iLUIwnB352azt)`7S{WHAYBO&%*X`bMTLkmbKj?op1SS*29Ki;DsN)SuBidwaaORlnCR_`ivFZ66#cE{ zqPKK~qPPA8qVL~K^ezd}Rp@RBq0JdEG;`*I0sjTDosB})I#94%4$>5i5tlcOa*nNBcW z>@11$3Z5nLx#$Gb8M_B%d!1k!r-x(eO6mmD@j(jY#yY{6ov#y&*@Zg6I3m&srsIPY za;iVEOiITGDdZwd8mEUtumYW6IzC9DP$wA2>|G}qCn?Yg#(dQYrsIPYTAYPRH6{nQ z_)(IiPVncDu;nhy>It1-8mEWj9ht34*g9K??DL zBpn~5phCq5DX38KK?(_-U^+fXp+F~?jt^3(D5?`o#|J6o>jcyBK?->~!E}T^T2v>P ze#1V7R@#eB5U&4S@zRQQg1K`ER3`}6|5d6iDy9>J>;F5V6XZ-*8cae-InAIO{43C^ z8FbYzBh2|!z4P6W60B!p&7d3FQ%J8Fbi+mq8EFRHh{J`BG=pyBa-k#5pc|z$HG}^P zNnSu*t>r@5TayLpCWBiVP$o@92{ctL)B99^mUzM+P$Z2f)ta}6{2{pe2s{F1lz4Fa z3ztbKX)YI{YU3yh8D*Gg%^*uE4Ja^B54K+h>c6BJ zbPtY2WvFzA!6xK$&7wt z2HoyKC<>$GonNuY&rCDu-rcC>zBdaS-v6VTLHEJ4D$1U%6y-D33_4>MqtJGNE3-T0 zMn7IN2y?^xG<|4$W9$6yY6e}_{te}{{|RQ?Q>;7FzE!9hbTN=HG=px6yBQnCSTpDv z95duJgE1qa8FVp_a85JmVj$r{&0rjp)C|VVkJk*w$#R-OH_M$S5_`>{JIt|tbDBYS zxFehtyw;MMK{vAy%b=qerG;<7+i z&7kWFWjHyJX3%wWd?n^IgRZ;pI*GgKPBZ9YsNbAs(8W-{v1ZWq_aiN#8FW>S^J`8s=mt1WjIn0W4RoBHa+*Om$Z>)w z)C{_6_jXP*=*G%ZBAP)LL;Z?o(8W-{q8W5C)URj;T@LCObJt9n9X^$2a5a`*`#pgR zJGSF$tlg*?913E8&Pi^gV>frAz6I9Y3!4C<)L?BH6jq&K*4iKe)hQc$D0h1YAp0Z8 z-erwnr`OAZI#tIk7^wA}z&cX}>gu^_?!1EPco4FB?y`m-FN_bO0C!>UO@w1oo7!I;WKVG`x5(^^^E5^=kE{u;6VQ|l<;5P>4 zKJ0~=OJR-$qZ=EJHuUyLro9!c=uT<(vIy=$%?tN2RASBedYyR)zt@p*A`Aq1r>j}` zzCQp#?Y3Rbf)4@NZN=hs!dXks>E!4k_f0J6GSE@gG7jvs&1=>OCSUc9I+MX&J%Ma? zU#<9AR=fuct@v4jIu5@a)vQ_z`}yaX?KqGigx=v<#0{MbOVE`c4eHy9IQxW z{R7k73|21=;`>qSR%i|F>pi{%vPUB?hvO294qux^_}+jIGHBEHo8LiRJj>pK9)1VE zvMZpB^f&T8Z)7MKJy+-*|5GJh+YPP(AM!q$5NUer*k>cIUI~Y>!Og3S;~qmNaaeu} z8SnDd3}!WVCrW}N2%4pP^I|l@;O-aT_Xe`;(@xvGJIiQyWz^=~DQGQ7v)`o%bwa8> zrmraDQx`K2fUv)baguIlTjL*7TiZWU#;2dKr-FMIrV^xEhrybD)7FARMGVr3GCtkH z-H(`uPzMr~v#@>K(fG%9v9>Bw#>Y6@{q96^*D2 z>W6=P1q0N(h|uke3jJg=q2FpQbjxN!xBdh|@83-5F3p7QmJr&E8iU&~lLlk={&^#8 z3+e@j=fKYbWcyfHbhkSM!pFM!N72Eb%s#gm$aVz=Lu9ubgKVcZUJtf{Y^Tm(7;6;; z*-o8#vyc(UcIvAd9f548zNYaJ$ad;1r4u0Ask4=p1KCcUqnsqjcIsR$m>}CCWD;aM zb>6;|J6$3McygifT`Eup!;#%?Nw23UFy31LSS{)MBJ&jo*)CZuDI>exl4CP?2=;2X zn+{4x+<*jmxY+*qG^PA zSc2PPUBr!;qfB|5v%vfeK02ug(*+|U{m-{hXc7)QU1mGtL2V8PjxSU9F>QnsJ`596 zx}|*@yzm?>IkM^g_V;+VMiAlYDmw=xrr-!7JUzg3VuO)jg z7V!33kHR;%E!gHJ@xk%2OlNxGCcn8UJ0BlBPF;u(9!Es@;P~dI1r*|g?q*A3RP{fDaz?6(1ZQ*|d(THm%s!5jnU`k0eQa@T(wU zTfX=b_~7{Fwh;Z+n%~@R#_m6d4~}ncT5u8{9N*lOnZO6fH#gP1hs zQlVb*Bw8@W2gf%z%~FUDj&E){diH`3j&E+7u`(YY9N*lOpN|iYZ*IyiiVu!&ZrjjG zaL+DtZ=gBKXB}2oH(}N+W6LMjPH8x7<^-(qGHX|#WYTH30|~+=v~s6(A9o6rA081Z z-Pdur^68?np-K1ibkOEmu9^Eg9V;G5JYD6ZlSty}0q#o}_yY2?^7u7N4H)`N#Yp1m zflfX~bqA6-rAQBUf2aN?I_5mnbu(mY$-BK80eM>YiXf`XlUH^6{G{zHmgLi>cJaJb|ydJJDqc4_&h4y&jZs-glJ)XE5#-oi1F|BywZp7(A zM|k3HEr;HL0?%~2^5=xrOg{b9m6org3oP}`iizP+dk4HV?i{;yh5j=6X zj)Jqz)R)1XthC~ZyHl0&c;aq@l3CM{<+zR4p_pQL;_jSjP+|$5xbsWz9GtZnNe-m2U1@?DZUYVW9^8N+1Ha_aRDcb zTyH?{ernlM&7ig2&wQ~tXl-|!XGPH3?sm^;2CePx^fCF++U{P@ZU(LG?vpOX=ikmb zxCMb{a=);TV)dcW+MN^7+U}P=g3#KXlhE4kS3ZW&+MV;EwcU0fM`-QN&7ig2{XUw| z+MO50(Aw?+&nL8Y=K^SL_n?m?w036?t?eH2OhRjSh6#HFt?eH65ro$69KUAeQ;>Vq z#}Qh)a{;urd%{N&TDx;Tw6=TN#}Qh)GnM0o(Aw@?cVY7MX1{DJrBq|ACFvws_ovleC}yyU=FYk;K}bG7v6-f*}2N=a4$MTE|@1C zL830h@Wo`lbptpxU{@rl+HQ;GHjgs}otxYbq-ZSmq(0*=w_7mLr&G zF+8mcJg)#%8+ERP8uf4pkfWN$(y&i9M<|?31`8$f0V( zK54Tg$V1hJeG=D}t~shU?31`|Y=){0`y_4=VpMII5^WXTOg^f1%#KmDJ%{r~0uI~6 z>?Epo%xsRT4f7+`NBg8iF$vGbI6)q&Htdtw5jj+C*e6jxlZUDe`y@@2L)C_TlCl(4 z8}>=uf#y)PVV|V&NmOmvCn+;R)rNhNf1Zk=YQsKh5Jp=LRU7t62Ma?`wP#_%EDO#S zbSDUyZtq54LidqyH9coVNl#R5DwZoaAG?g> z+}xVhPaGW)sy3{jxJ~A~?ENBP{lq;ip9uAfg!Pjy$0Ag1SU>5&@Tl6be&Tjd6mDw( z@3j^(9Rt`dSU<6G@={luLdwY|}@uD9cs3)WA9stxNW9j7@|ZCF3?+g={3Hmskt z>>R2#tenE<53sJRU{Y13d?ljMV z{%5Q_gMz9J>nHX&TTrwi2YbN+LDhCOo>WwASL?|v7w0o&?)g-x+TVlPqvc1qaM*ag zWLa=6dbENw9;}}@h0 z0W$Q)^f-^RBVxr=$xRiNTk2^aIhB!p_?^N{rS`42H$ZYz**C}~b|5f~qSh;wt<)mN zF;{P~ry57iQg3fhHIAuFUon89!3m%+0~KZva`wb~vOHjj!x|;@<(iY|X~5HLS`Cw( zZB|m-CZ?8q-4@^LHo4b+{Z}Jn|0TGfjhG*xFgz|!FzH}Qb6VQkYvSyurP*v%FfQ4U z<~jbE%oH~pIsw) zKa$)%SHKA8Bgry=ZHq9~WCPBoAnMyjZ9<8?}dOp;f1}91T*vmn)Onk z#3@xJr`Nl3-bfYdZ{%{`*i^X)Ny!%BXg=8E1m*0!DzPIf(J;R>*-{^th%%|63hcCo zq7oJLxm={FTBR76nR0gXz-22It#0HIjP{B0K`&6~H_OqN6lgH(|8mn}*1sifw*rrR z-x>90IZSeX-wha;(wkePb-oK;HAe52G$+TmKve-Kc9mj9*~`-$Aw$@LS4azv{2@pY z`ATWU!$4QT9_feDIYR*lAdy$6Sx;&hX=ATR?*dhk0WR?Ih=xb;kJ2UGF`y9!ceqFz zkGnV0Tc_8X5ochmyn?`+_}N#|{Wr@fYs;RHd7MSc1M5uNod^q)r3$muw0#%Mk%Drn z&+S<i4HyDhkK#tDA?TWVd zM=0Q6&JjnCt2Za$XYc9%0LcE^c)0}^#B-V`MOpDV-S7SKb8OfJ;(q)^}2WsL0tWojwxnpF!HEygsFwK{dC z>rFTOQrDo>dPX8=MdU%?v4|Fu@=#DCh$7wr$q&HKwzJ8(NSY$XEHievwY$(3AC}dd z{zP>m$u2~(d^SEAkq>y*;Ci1*-FL?5;a8poU6N4_N z()x~=QI!X}oGQ2Pa>x!|-ngm>=(+j;E_HTSb-nreka}|ns(diM@uiNB-#YL(6D@Uo zz_x%g6B4;6TeG^}j9vr4azwT19X+~}nfC>-Mj`KHW=&s*2MlJWcxCV|szI6wf)p%B zC&qrs-qW+*yo=v-#Ep-O`Vx!!3X|7*7`H|kTgk}>_Sf2G8{V!nbN*guE<&mfeWITG zwe;Mtz?&%Z$FHSTI$jTYHfIH;2Y_bJJ}N!CjuhV70_*&!wD%6MCcVQ9k6IR<+VtUR zL-0;`Op0rF12UXo>~AcMF{YA&=VwF@xe*gF=xQL(Yl`73am*~x2hk4BeeIpPX#I*-<(_~?@>Pc*W<-;Eef9BH@ef4%h*Owfme-%GSc!J z(}o1S_&;G zL4=M(rCrl(cE=fI95mOWtbvpc%O7Lw)ACT4Oa;0-e)ih3#PeVoG)u+@0#g{GHlzI{2Lxxux!!(omO8QdjPzc%oXz=>a z#6@nl4U+ALpS>?{+K?G%Dfq`TZbE7~bLQ54l9e^Q#^@7Li6~R6eI7~G&dE65u&Umi z_2qi=9`0;P|ER6n$sEw*C)ze0WDZyXN}q=gPTS`E^+Tf4_LG(WGf1NMIny13LZw-v zB!|0)P}d=xy*DE;pSRw}4M3dA^^Cv`KH6Uuv6Qns?-5L$O6Qs53L9_Z3rFqW) zrOkVyZ(d9{cxme%{Gp#BEv6f#%72Do2=n+g%YcLK7YV;~BTn-z9t-p*SGpcNPd6$I z{NLP-5KsovX5{!De)ds!YgJx9Nc2uby~5~g+>`my(u)RVpU7Uk$-SK)J$^WbaT`R} z;AdZR1JDu$DIbUY?o{Q3~5+Eb`RhXMdeqUnH7EZfErSsqg1UOPlmYEd%hg6+xn4KfLiA zVQjZAvF3Cvs?M%AU&F0T7#uZ6`w~75H-lHLt|RSBxFOmNhPF@p63(-Of3EGbUkT^g zm7sL6?^hDdvo-qZ2-}yAk|Wjh&S`u}!0y4={bSbfr7QgrzjkBEvl}tIkpRyCUMz2y zJO&Z{q(h+(FWrs=Sg`>-Y5B^PDEiWp;lMe^K^wm+`OXvL?R z$v%j=kW)~RhJF>b?ZVGqAAB>vU}>_6};);{BrYcg}b8r;mBxq+zt zf~d0?{dVx1BGE4+>d%ZeCA;#YrQ%XFSQbC~+q~B8yXe@(i;im)%PhOJR8}B%4jNTe zT1!hgc6&zA{1n$y_OVM#IfqP>)%dbfj!*1nmaU17X5y&@vI<;-_b|1B=aTNJ~;dhi@NQ6sbLOy)mqE>rHuRm8JHf=4egTGd;@3;riQfT( z&(1eWIh%b1s_M&FYm}}*S$t`4l5CxR2@21UQcFNh;+IVO%~EQ?Q=7J|AHHb$;sq<3 zP;=k1Ekp6B@Dwii{x#vf@owoO!|KhU9C9DxUasLVzoWGOIMDs8dFhGE^asG6F%_ZI zraMoAWM5#Tl?7+uHX3Y^CNg$V{*tL^nwo3t%n$j4%yWn1=0z_vNLEe10nazypfaiL zS76{429>e#dXv(|8zc+;S!8JA4K8EjttVr};^m8v$0kKt*MT*J9Ak$_ny102T6;W7 z9V%Os8onlZvc@ophKHb;`D&#xl{273IIP~hf%L%$V`jOo*u-x~palZM7}yViNeuKv z;7A6l5qOq?DG0Q_AA!RWSct&vV-R=8xxB0qDN4ux75(a<9e5Y0{fFpsg_&x) z2AhGEcr}x^M|eL(!Xa`WCd2!91oRZyUn)KQ*HnD1Jbo2UC&Ga!x@)wOG}UzH`WjXD zx(tcMr;`uZYnS+9!NFqDOsYRG<=8Q+9)^DY{z z_jt@t!!z4PqL(&-Hz#7w{vN2aARU}!`Ifm5318#mH!<@Z6DMZMYmjmqqW{6N8Z((u zh<*&b{=dX!P84(4bD*GbG@bFvL6WKy7OYlX@~q6gh!~=vuQJum7S6?}eVX+9;Td-3 z2v+p_`g&720Ts>5Br1uxz7l<_zK>*O6Or`mnQu_0gvfkMu0YhhNr?VU<{?DSIsm+1 zpvpN>#9@8GnLQkrKZ1Q&EdrQqDj`35;TU7LW)6l_Zqtk!SsDE}GhN7Xxhd$=I92? zj!kR{_YL#5gaxsyZh!~(O?74uZtLWOqNilvkWWefN6-}*_U%Is`$ItKeBB|``TElJ zljND%FJ#WtrYBFWAuz8D`Ocvjqcj~eF!vcnl((b8sq#7CU&7Vn?#`<5eaADyYY|TyRH3V?f|A%c;%6?Y~@0ex;S}D?Tg;hleX}d-fDhJ zEnVR)wf?lXw12Z(>eB3%x_#U&nZF*2yEdbS{}+6R#VO)5@f+UI3pSibKyWd(T5C$5 zco+lY-}f6X#~>==H+&7)k>4=G_(mQ14c{na&Tm+wbAH1bpYt15I?r!dSxLWP<>dPf zYr*sz79sQfhWDY|pTuvttk>fdSp9~}`u>6Wiu(~?hfkR4PoZ9)&+_N}VS736Cp~r?szvqV zw+5)bVaoUkGwCt=|NMskulE~Huc$BaBkunve#3P99R{MLd^_n|x8hiu`2gm_n#Shuin^fQC%s*>TbJDjNXG63@1+fb=7RjnV$Ykuk zOq=v=&a|}szzZ*K4_!^BzileRf4_CiRM~$Z4zG!d!x5bs;K`ukQIZ2anKmt$J2Tjh zMCO)3E0*ys{Py9c)U*!D+RV?4u`hs9uVxVb{Zp}&Img&-92&7#GZ?A@z5PEz329P`zyIrFHmqpG4a+d3i# zS5zlSdNtRe>DuzOobYPS{KkHW25wW8dEPc)8JY8H&iug_ob+nWyx^G$ujb57&&zo= zXa49}SrzIW(Enr9dF zYRZcUf=}uKU6h6Ay7Z z2>Lt$@-y~Q4*G9Ep|O{8F!)I9Y1KRP03FBdjUdrq`yfaj$dD3hk51e%IY!cnRX z63IPH?i)>ZKfZ%;vtW?5PIk;6>ZTBDE0rz^FzK04um4iE!ub#@mHp=Bam4mys z2;n`IgS)R1lAg+ZFO~)DgtA}pACh^KOJFPV6Nws&ud2dGxy5*j~ePvzjjdm$ex z-EpQ?I(y3WX^o$ur*iP<2o#J89)E-t{QI8D!4sRcpr`t`LP4Lcr*iPjPA&YoQ(1T+ zjI=WH4w#ErdpTe(cz!Gj!fo$-kp+H!p31>X7idMVEZheb{g*wJgV+C|wZF-OzCW#} za`09Ya-orS{f)Ul3s2=>_fNFQcc!#Pk)N5Ta`0{`%7duyJ62(~I)T>@6(sUwA49Y5N@{ zL;BGEQ|kZsJe7m2-LB=dw8Nnj_0HRIU=}|AO2f^X0d-+n@G`d#X9qXfv6%I94$Z-h z_LYwEnu)!*WNjC0wU9NZ^8U&Ns~_=SBK3zg;$&A~5y zL^Frx;8#ATh(mL*-NzMoXb$f8(FG38!2_OO%%M4W&_^a6nuCWtv(TYAc-Ti2acB-6 z^>M`~yPtDt4&L&te23=X zFP^Oq&B0%-t`BEq7q48>_@yR%-VS!zAIhT_c{K;S?RCN^^lA>?@j^yk&B1&2$C7e> z!mBxW-}2%2Ud;>f__vn}@1(t~@wp&uzYPOlE|@HiMWQZ8;xgX`12{iKUd_Q4%MBs7 zfb?n(ejr6-VOSxH$;)Lb%5!QCB3@Ca=HLpuTLg}snu9BS1LZk2gR6_{e5dB%hn}5t zY6eRe$%RhM!Bsw@m{T(%wftgE&B4_^ve2m+5n30Wnu9&|Uf)a0jxm9eO>FGc99XBF zu*GHNJi=pFuUxURX^jb-?0<_pH6xN@6*x5qDbJ0an!%wUc}~qi;CTg3&ERX9c}~qi ziRa!!w`d&aX~5Aky;E~g>gj}2Gk987o>OyB=DD#`GdNmS=Q}mW?AWQxonbSl=AfrEPM%Y9(93bt zmvCwhdOPmUBB$n{j~}Nwr{`0LM*A z?9?0#bh@yNoSK6{j*II;r{!&v~)Xp^JLd-T9{Xf%$8fY+C2{g>8ojGBesSskO5-o(7Yg)?xSs2tJ>MXO5 z24t`w5R_GaKU->`9w9|OgUjI)s9W-#H*-rw~O-K2Eq}gBo zPc)t6{{+)n|4%aqXkeDhqaL(B={thBZBPW9FaC{(!o{kZDgpJ2u*iz zb({rL!!>?H226E>Yu`bHcqqbh6I|ggMX}wyD?xCrh}A9f zM+&w|t=%Bz%~D>s<4o`q4Xrl8EgHgo-Krs&*)7Li{LGbg$1<_|5^)Fb5o{JZ>m3k- z@5*S^#o;RWkDA~j$@fkJ2C&?(aZ$c?>l;|w`}o+c? zgEKs>gL^N)OR>kI1m>CJC~!Bj@{^aujMR2E|T|B6rkE|WJR{a1W?BtJEm+?Q`kzT?yP?5V|n$MSQt7QZ={UW&)jls@$= zre^7@eR7n(HkaC$zTA{t?lYX}i@)6RL$wxvMJ~gVRf}+*{hDPcWfb|$376)Pfwi;a>>~qa?*~ij0|Tzhjn5E)A==@9(3sdes%^Mq^1g7n8Sco{ zdWXx`zP@6hs)MpGeR7Q*>5fC9esI1y(DBQCKlryEq(cX`+!`9#L~%WLg*hNPXMB;RaW4L{#-UTm}!>j4S@i zf(9gMTLG$_e7L5}?I~`1wn(%Q{sOqNemfljc~RGxq4>nUs)@$QD>22nT5H?)jpm11 znIC}8R?CL!y$8~`S{B%w`(szT4ORC(l-%*`soqCPkokK*i5I`;u4P(D&*?&OyR&I;TTOnOH)X%V8)v*BqpQ7Bp_Yk4rfmczY882%^QCB zZ;P|vEY41$WttaKtV2`QHI84oayhU*65Z3tRmUXGqqkv5Z|>)ZG$=o$5t4y^JX3HM z9Uy&nn+&o6(rLFj_SyjHwcBJI50GxV&9UDGNWXc$bex9!5d~OBJ-Wb$&?`O!?{|!n z+Z;ve$EjWtQGkAQ2#=D9b$dh{550m952Src6sGA)lm<9SD*M2<65JIFqXZ*XD0}!( zsJQx{@<^0m-W}2s7d#*Rh%Lgz6lM6v;)$B);{(NKsaWIVJ#;%7zin02__xQ6e|y~c zx64~d8~^r1@l^nAe4k7k-xJdK z8rH`5VQGAy1`VgOYvX$^8()Lk__w>^&-O>-k3x$N9x|Sd-;me%D$4LZ#S=BpSG?Kz z2H%EuKYu{f?%U#a-xjy~HhF(*yKhUh`?f^8>pDya{kBBAd%m>0hS}~ugm(8Kw7U;! zyKl>DcNIX}-6zv__k^^&hPB;&SlZpELA$H$+U}mqcGsY``!+XxCfcI<1ZnpTZ1;2X z+FeB%zOHzp=J|kLgGDW!gX!lF*G6mk0$CNpMH;{FJp!NDf$$K=OKY*EnZ$$OjFK1T zVp$-yd6alI#x9k7M}a!%JY>8SzkfoA1I5|ts}lKDM4Hhvuz78ZBF9L~X=3c=HXUn5 zAB%{Ah|nyn?4L`FxrkZDZa|E3*IAgVnd`|lY_zg)b%O3$E};|%?tQV zK!VreBI~8dFM~%=kb1z87;`2lu1O}Q_>MC*T3FNCC8GosVi?#6oP_^nGY8o{VTjbCDgKLAk=l&a&H z6vz{G$NBJYnF>-a?_LJKKBhW;!J6aXr*{1NsHY_Lv zfwz(+j(r>%i2-I;y^bVq(~rMMh>diM$)U7B|+o+0dbO%`4MpbO1XF%rKXaL2mcp}$E z!srhM+h`Em=y(!nqrpu20}^N?A?_xDMyjUdZ)Y+1N2v?pW*Kn3ej5!yr5A(dvviTfK1fO)&WQ6j za&R9P%jhb33KS%~SVmrVP?3l*RH5Uzd&$~+uC6yXUjsk`M86fuhX}UhmEhrN0LA6Q zeWYY{@3(|%-?tO&gJs>Iblayz2H^0rF&jw1GsuAE_`jYsCoMJSdkCbNV71|Zuu`4M z^I?klJ72E@z*L?220TmS&ksdPRilq`W5Z_}C5A$F5H_rO|E~ zhgw>D7-kLo0!r?SRF}v^rmOx-XQC1FvMlJA zgVuY0S>(KzwC+$|u}e_Yq-WXQz@iZ0*OS6dMZX5#PYSygrS`#=Rd*~(AE=9GA3FiD zV^;WmiY7=koxh%g?G5SZlb8Sx_@70tRMUm)C(1VEP0MXcYSU%w{Z?hLo5UV`68HRF zOxt$1tv(ZU^~t!5y$zfp7b0}f|02HpNA;#HZej=>vCTm>XrdYT^(N~V!Xmj4zk|rS zjI7BdPsDG?k4fTBw?1r)_Uz@ntq)r}8h$4mTT*QJfj<~SZzg_!#ZCSWS*FO0Tq45{ zE~8V>KP4$XBW_bL1x->Sk27$DrpUM~k#XrZW#hWA_uJ!&40Z5ZVW9=@b!H)clTg>zxUTn-b-kCY>%IKC z-fLDDd|)59MeYmyEw9y?3f$Kk)HP*9G{_&9L4Fx{9ORG7Ab%LtRGAhZ*H4epy*(~t z9QVdy_oT$x=Q*OKm47R-!@=OT{3(6ZqRw3qy*fG+6EBW^?8Q1$jRu*8Qbvx9gzO+f zt_P1ob`T*y0Ht$x2O05W{(xAKql3tCE@&@UM`3&b1~>HkTfUXX{thF3%%auHQD7fC z301jGM{#QJD~SibfZRNg7;jeP%mJt0myy4pXrQfx6r@dtVN>DD0LKi{t;2gYyszBZgW9XfO#)Q{qu;d z`gedH6X`esZl*)I=@<^J-$;%(k>Ws1(2qM#8(OV_+ zm{+2rw@T6HfM(G*OYDz8nUP6sKn{#87uK75@w*?f%MQZ4k;DdMuW~|6VgqtmVqR<* zlf(vONp=Q?J`RxvAkKo-OHVLZ675EfW?XE%t7{GH-V_Au`+=<)4V23<_2zBV{t;@| zuKm8~6}!BOG2N;Q#!!UKd40f7&UOY@JImG_3#4Rw0}RjLsf?rprPq}{^y=;a(m>hQ z<7e*-sviMe{R>`h#|3}Uq=n~Wcd?lp{8g{ineSjmy$pr-857C2TW0Qu!Q(`=Tc+-z zuYp24@0Pi{iIhCEyJf`x4D=)_O}~l)`7PeQ?W!*TUA>W)6M0#V%h(x+n|3uq?<2>w zACvz&Jmc>`Al3Bk_0xWZz*oQ-@*4!EzYwwCLf`_hr+tXP&lo7}jd$=HNYe@dt`nwr zW&jI>8GR9`z8DE7eGv_D6(m|kiDtQ+c5Lj~;6(aOpngzg*$P8@=P`g-L#f-x8Z&b< znCn2yyc~gh8MqFCCmFaGfma#Wfk4@x5qKJb?r%b{w-C7CEd<^}VDMicVX6;CQ&YqA zEdHmO?p{BAe__;5?TLmtMIyBje{%&#|Y^(A=;Cr1%J@u5t70GfL^er}G)Od=c^h~bwV?Q_c^H&TouK(pH{fZNaSNIc z)p?*NiWak5O02;))l8I4NOy^LO*My$&Qi(Jzu^%S6^_yaMYq`_Mcw8=(SP<#ZNq~% zx(1EXuLe&wm+Nj~ieHWF7iWL3AJ#`dK;Ix5+$Ro3=VYn5GQ7Nl*y`tad7PIAc)1go zu{)7`dJiO#VLng-m#&{S3W0Azq9NlEm_8jBJ8#-i`1dNA%Mh4$0xo0T2DK4^As6s+ zF)q`u#D(kb>01%7bLQNEe_yz~-c)x$p!zjbI-B3no`tNHT_Nl3?pVq?3cRtC!I(x( z+$I*R+PJZVdzns%KYNtqydQ;a(VSPtIq!*bUWuI3nbRJHhm9-X_G*` zEeXx&!Km}|0{gs!X1g7M>G$J;F8eM1eVNQZA~5YQxV%d00|bVYLbWxdH7?UT z;leJP)(3&3-UZgkPy~8kiF>;cDXZt>GI}tcsd*4_`YgnuEBGz5dP}`I7X1H@y)S{U zs<{5YbLS=82LX$5AWulGuxS&GiT1s zoH-Z!d$~kCZRr)Y0x^TO^)5tCGihs2pm|TC__c_Cmx{0AK4aqE z&O{EJ@dJpg_YBc#bfCC<`y^{WerU!$M950&3xk}o7SK~jgHEG^LF%w#>a=Nc*kcsY zAZGj#Q0hM^B6ty{sWCQD(k48{SSH5e@E@SV5M)o3qf3z26~GPKNRPGjsHDdndQ79o zcsz;@Bl^r+@WvhXQ+`2*-Gi6mC~WwHc$xV)9_X;c`11oozKNF^AL5bnKA;#3o8g`4 z(F2c}1MuK6HUcjgW8?5=A9dIFkYLzyJZ95D_X5zGi7Me3;n9f*_!zjNDL~AiqlW7! zV|Cn6)BxnnZ&7BabIP}n@<%GAL$&0ThfT_#A>~X;$sJ22O-9>y#jJ>uRNQ<3T*^T& zE_E!ri%zjG`2Hm8D*VuhODOw0fSY2FGwufTHzY%M(aH5YV49EcL*!vEP(*{6@j4*! z0Y&r`5;`uctj)7T=TJK<2`{u2%e?3DOGWbTleCye8d^{k1E&^uokLn%Qz~(1R+g3{ zI3KE$f-V76NJ}n0cY&v`4W4eqCwC(LSaevT7zDK7cPH}rA&5|G_IM@&YNMhd-q0|W z6|{J!0qb@u)b$D-vubs1Wg~P)_~GivQC>o(W;Nh>tm_jJ4cO_Ut;zQg-hHyEc^@t` z>q9-Ii9THFRKR+-uMcN>Iz^z_2oY#Dx)AW(S2_dk$8I)m1`J>F@GYctRsP<~#ya66ltb1T;y{Qlz)c67zj#q2YWHY}BCIh8 z?PB#&K0xpOF**ZIZ7Zvqu(kPnCYjt{71lRn6X`Jx@7ge!D6GQmZn*tF$k;+wIRBty zv~DOQA708c+T%=tY~HzH40}ei#1o8p7=?|253Ne*x=(Uz90g`D+{R(;@)RQq$#0q> z=8(?iUX?ZJ^lAtEX^u%wv}mdEOz8X$7@GfutgFcP+_T)QF904)6!G;#@kg#Kjw|8P ziyav~#|W-DIhM47 z>Rlz)Ur~I?6vK8e$IwXc@(ERA7`85Bh^Zz59NaYAfPWr?*M$8KJt_N~{cAz*wFo~c6@oAX zu`m?fy#8E7TVn&;+pnd7Jggn3;rCZm=_0h868-~&8@2<38@2-@H*5#0MMPl3mc&k0 zyQLu@2_+4|uM4))-uFt&3YL}?EG;Xtw5&FzLCAD(uQ1@tQOh)Zxo3I%Lvm`#^TREnZgdC7kWXl9DwpeS@ID6&~1Q#%eREavou1v zd<#~rOS=_&vQ5R_YFn|yHWf=g-ioESsaUT-#Z;Age^!;OoMDjcRzCLGLgJ(ub23XZ zN9LT6lb1O>FKacI|2y}E8Cd}c0MF(~si`ab>gO!y(JYs6)M%wZ!(oiJ?7 z>6XaJ$yNVrtEz@_q}&yCi)&#Q1~Z2G+`3h{&>fe2Egs+Q!eSt%26StWZ=ok10e5^c zk8j4aTZr8E;mABwwp;;5im7aXdL=i~yWIz16;3GS1>a^c6oYSLK~IyLRIn4Hj$-A7 zD%=HJ2Q5`@R&WxM!}6E1ms=Dn6pq%d7$DzV#v17UnQN?xoo&ah%b*nvS+ zV(5g_KC!fHvL#6!hi|7C_O-?j3Pc?5-KI$!cE>UO$>pN<>=rZVK>)|_>=skaF^y-p zn5Az~++%rm>kx_^)oNRo6LiMLX3!fVQQEUx1X6i+i$Jkww+PHJJiEmfk@+o(pZMJn zijVf}<|8K0oMoLG0AX3b!3SqTiUy!ltStiqU^#njfRDKo%SuaTTNeewCQg`CIg`V! ziv#HCrKjNT!$~ISl0eXeGP<8X)&P#PJjL1?KvCh9b0?I|nQU!~M$d#pz7xx4o@!kg2qAA>vt~>vv#x3f zsR;gdAY?*W*~}93GN}7b06nR6*5s1emDCI04WLh%G7~NU5j1la)=7Z?AZE=epA8Rv zVDM`K0k|PD+q!muMV`*ci&}^DAEM*GuotxsJr2_VKw|cy)}a@VHP4G$hfER_6wF@J zI%M%-hUZ1CL+|7m8U+ImQnpYIOM`S?m?8V4V{)$5ekGpB?27wQ>jyq;lg zqyyr`Qi^K=$P1m5DAofPU)~MZNt_{kKOn5NS0`Jf#G-BbSm70mS2fo!v7DhA6ACwL zOpeAlmP>g!dEykL=@?3&4dFfbCDJ1n-gr86TIdvt5Z0Ap_DT&vi|(*qzW{SDb#|Xn zcnK@)Kqv~FFnNgv_(Nnye$luR0l#Pnx{JyQQ4KrgJHHi`4hn(?w7PorZ9HecP*R++ zo?kQ%9iqtOikKZ9cxWfA{M=$Yr(p#y=z0Ne7>8tpcv$C~6!t9ac|GbJ&;hA_faN^O zgyE`OxEae`Rix$oUPsLcFT&T6n(Jx#T)ny)Ep9?G!#=hWK80brQjgCi1*7y08{;no zuke!&4A(SNTh3#;jO^qWp+|XOUh+FZa3tEW8cml%lUkhi@k@;I2a$!Y>y+(0FV2AW z7hbz)bv@BLrWno9e18=di{(VKTg_UX5J;tWmBa>Lm>( zDWYE1AX<=a>9EbYb3`M%hSh;$<;q2?m&1n4c|~(iMi}4K^1qWyol%QJVdqtyFf+`& zOCOiQrv@zNFB;!B46UcO+Mr+4=z&%oZCpWHs0=j68{!Lrg&$l-Jdx?Up&8P@mblRDS>#t5HCCokKq@slM|jN&ZQdgRV%b*c)nm| z19f1(XyMbujZ9C-imR+dYm#DExw5&5gpL(nAWlZ=*bo&K8@dVasj;Cyf`MW~M0JOd zJ1_)w+?j}bi*w4L!PA=-mzE%)Z01R&C79A|0!pS#n1%Ut@+=5;fS4f5EO?6LTZ-jn zlPjzkoclGwoZ+V^DFkU%y=bMC;pSa}GGd4_%N=$r-bpJ|y9n;^0}O{^_(QJlh`%!E z#57f}SYf#%g-fyB7*c|(EO%4}!$~pfqp#g%~x<&D~(0%50P1Ceo!NI zCh3csCjc88BAQezqCmyk4zf+GpK>@&Ohl3jC#W;ECDQ-F3nv;m9N2#_mZA`)ekufY z03wZ9mxwe8dgI;rNOQ*$XADxaP6d#UG*_$43^AL#mnbd|#ZVG_ zqN8Rdy7kiciCFkZ>!$NlA2EmxQBEOmV~uBsZ1*N|A{N7ddoytv)xc~PTJDe4unEPi z#1<$%h-JAu6(^(b>C?9mpza;ikktLOjp+VNK}nnme-_W(qfn_aycO%-r6#4WysISFYUR%dK^^ZvU3bye01-7hQWd8FPbM~L(~hgp?^`u zy$Z6EH1~c&Vgx-jCjsN89Vcl9rxZF2Cmm-(IrLeaR~Q&~X(vyZjv=MP=gjb3d4;f5 zSYOvvxu~kDx)J0){0`_tp^x6F3Jo|(Lvn^romDz}GMDBBDijsSs9*uoD}e8#yN@kJ z#wg%%E0Lr@*@PL>Jkh`a-&%%fU?7;2t#eWqmhKY|tBekvP8kKAq-kIREx7T-I@3$j9@*gUI@P`}?^6Z6dKDEE?Ig`0W|mPQI&{Y5Q_&_G zIHhFPgxT1$lm;2&xUE}uzP*QtvYtZuARmnyiu?92^D_aCpQ zEZ;qwvW#+)=EIXFpEzMo*=!K#M+uA)LuGY+)hg(fwU+x{KJr6FKZr|4zP^(*{i>X# zX@EJ}*1(L(xFnBtlhiP3Q;s#-M69hs8dW}PW(f!?#ch5oM&p8&jMa_4npJc6qgF-A zr!_=MTPJA>b;_Lbauj?Dbvqmd=v&b0J(#();#7~)#b+0`n8>ty$dzI@H+^U*a zuclAV5D}KUOZ+&4@S$+P`c-YBcN-B;;_DU1_lfeW#$F zf+LME9kt;0IIcph0ujH^*>+_$mZz+{G%6$9xV)|b18lEGWJ0^HCss7yW_It@A$`M* zHTa4#)_&EL>HQi#FswVlqwWFjQg}a0#|B~bYT6-GTV?LA#UoHbl=riA^*JA^zUBT# z2axx(boI@*RV(PQ$bC?UkoU866pRnhkewL0eRO1_HmivfClJ~Q8#9g^aXLUdakoU86 zZ<nW zoTEL+XMy{QcpKdX?`L5mU(aB#YUBtkmdFQ#{sNL~7B?fq-iL)~jpV+r`6OTCu}DP? z-q6@WjaAy#UxiY)iZxbgLzerdUe`|oW3Q%~MthGuP%tE;&Do z2v8;4yd);)XIj2;t)<59(pbxtI+LH<*bk|yTS;Rqq;Yq7IF)Ber@oi)xU{FRF&ev1 zV=XsEr~eIVKq^YChW9h9QpM_2kJ@3Lk`=at#vasI%k7}kK56rOfZ0tWo>2&u&e7@M z{46#^(^Stpz}4pn_X3`acx#~&_9TmG-kM^o1qxQ{mRo8++LIVB6lUjVZkeqnFDJaZ zu68MAGlOu$4Xf)`t*&dr(rmiUAqmWkl|6l^)19etsord;HeCFWu6pEiubSu?$QDOU z@MZ_8Rj;NSnxXVc+(gR^W9H&B821$WYNoiao=E4|q!rN6sbNp^?p%8;N64nu_hznB zZBj4oJ}XQ=dm$Azsg7`drhC;)x$|sVCBXR^4Oy_oVmq66YSt+^YN}_@=g)cEpV4pBn#V4uA@$W+} zw14c9Ja*%4lFglp-CoQcVY7D4v}vVGav2I0IX`o=Y+A6W*n^Z9%$GZ8(f-?voTi8k|W!uH4M%DTJaxh)8Yfp&$Kwn zv6Wtl=|O3|xi%@yo{c6Ct=u|I1$@=9!xBfkL`_wYw#ep(Yutfq3Hlz zl6Y>5O-zKmx7b@Vq5G2y59Q8@Up?n%3%<5%PSOaa>Y83Wq+nSN*IXZ)_6 zpYgkKe#QWtpQ*oaex_c^AjXL@{{EYv?`I-6)=V$5#&d>M-&d>NS zoS*SuI6vdRaDK*r;rxvM(soim6$0mH>V=%2#c8>qoS(U^_Pgl4POiJdei}U%UJK<& zGYO7|Bt{4gO7TEo5B{udG?pFqR=7B2}z!;dsahA7r;c2<_k_I580RwV`qS-o6$ zyL}nrz~+Hw{~PU_k!_~YPk+K>Ws(Y3OS9)LE;SQm{*3d>glOEY-Vpk8^#(DrN4+WM zXYMcT)ZP}2ALaba{Vv0v>UK4AtI`hH`I&nSCnqVS_5iQt1auD2xT<+IEsMXWYw3~- zbvM_NM3C}-=KfNr&oI+5b`^CNnHWb@-#A5#dq3CSI5W%oISwPq58RTmw^F^sEUuEb`uot($2%z&ePhuf`n}&}7?fg>*oBn+b`pLu$LSBd#47a$j{xco zR0)Wf*wA<=-HHHnLPblKk(Pk3FOdxkNJYch9t~%+GO1`dJ3xbahjTTto?|F#&Sh%) z!?t#Vq5zbuH){Z`dCW@F+;l%6II&oQl2zRfh^sM2^+D|qaF8{C`baIT#B+idQR1f_ zq0f1QJ|}Lagt#gG9B0wL$`a3W^!~V{_`J$2s_kLuIRy32>uc&g#LI37Cs6es5~#O& zr_6^6YD`t{9FDDeAy?HLy^yEg$S(uGwbSyTpcE8b>rqhZQBWG7pfo^%dZ(73#xbb1 z%T!5dZS`gizz}O%wZyWEgm5vz$%9lvWo12C>HtXxUjU)_X#_Q%HBc~b!l}V0ktS~j z-Fm3R%6PiO`mH7SB7rhR{X`P?z60DKQ1FQ)P8}rh7%b@gPk$r3BEl*+5bz^tehXnb zS#Vp4wFt?6&<}3tNb-mZ%IPwovgy>3P9>m)YIHAKSVL)jDdtlK*8m)etwh6yaP#c;3Yyq&oD&IrV%29U~tV_L`W8ZVaVribR;so zhPMqxjMxGChS$}jy|7jjeMJ@E5kDFL7h|YcB3EHKQeu`K2$G2`o~2`~6siqBPEbAQ zT@K$ZL~GL|>o?7~UxB1IBQw=!yP41S0Z0Dhb_)vmCqWo_yP2=@V}vz|yFqQQeIM{h z46i-RYi|M?eFDh%EwbN-#Ns|N3xD#@0B%e*9%-?{%0CS+`7`ktaTtMP*W+y<@MAB+ zO98!n8!t2QQg9t!a6oz|{v?B1Yap_`UyOMV@M6m8b-d)iNRKD*7%>pxV+G{E<&;Yp zFTbFdE_gXiFIjkr>p+bKskaklr*ucMB0>Ij%zPsTN3di>(A&?zLiky@H9#JlP}UHZ zwu5PF;#)usVa^*&79U#(4_qCT^oJ7b zPfwIsYe3;YVFjodVX;m8e*bA=bHiEyiO!5T4%wQ zyCj?BfL?Yr-?d>RhR{-*)-LlAbtIT|DO0!?&~RESiVp5%T*iO+{Rle9@f~od(`zPexjp22vv=4{^&L?QgRIU zQtplzqujW_S_ez4F#7BieEs_kl%+)Z-NecpfXYUz-c6kRG5|Gn?o5pG_ zz#P=?9tt}^0NUkV3i%YkiOf$gG@vNc=kVfibvwNc^uY&9tdAcmvC0yK)p4ll=c~D& z*8xZUd^Pv;?F6CFtGSoo2BfX72$%AxBaS^OyGIWRlaEApHwj><4$ST8ZDPL?144mjny^$t1k_a)X;uE`ma$9_H9 za2tNOEYS~57#RB;{2K(lK*4?Fq{!gWB%O1S_j$y9t7TPW@QAB{9*Ig>;+L#gK7`sr z1NuImn-F!HRi?isPdz8ZbQgl(=`4PWRwgbJVurRAvz#YH7X&T?10h~D#d}l4bjOA0 zIF6@`z!L1ii4DDmMfvpCk<87K&A`(Zq7Y@34OM)c)3Nb~8li4X1S{61 z-HJWgrebfktyp54iX|U!#nRhUtXH67s!F{-t4h{pRNb~N9!IB{-|&rzRXC7^#$7UY z!OF%n8y75HwX%A_i4_aXrHTc0i|gta)SZw&YG^~%(3RM^T{~ja_q)>1Yl6yBP6e<;2n41&|(=|4DlR{;j0YeHVGV&$`W&~JC ze4(2Ze;|VOwTeN{Q#w1QaVc)I&|Z&aS9(_`syU_yE{(CNj1az-OnchW4e>P%4LZ0< z@gqct_^iFUNfC+CHz^{J>Lx`5if>XxV2*i{q6o#J_=$IfP<-@F3Ln8YDFPt2={EQv z-J}RWbdw?gwz)~+htXXH?Iy;iJv| zaccm_S<+1kKU&01iYRp8CWRjoxJl6#X>L;ZArUtze00Q33LhPHlfn;(x=G;&n41(| zA2NwMbKQKX?hOmslSJ>2u|e zfWjn_kb%#Y!z}+oYFaYOf4l>lHfWZwa>Up=*LVLTzi3pFlfrjm?X7IJiWc7KcEg8Vk^dR5{xy!itZ*vSo1IDJdzZWtohZPmkI=( z8j>~tc^svyl}t3intu>Tzy(R3ikkVO2-Qn?BJ1eH&l4Y04UM^e{CvSP8i-_b{rJOupD~YLAbyY39YX2QKvTSLjN5tF09M}^w};)0chUvasl7e?S%&pD#_bUwGN`{X zZjVfa>IlQPSYKo(sdIjlkjN9ia(6zcyK6cA& zWYgX^#_fyVrvk`+-oDr9u5&4$^pFeu;D+K@|KYuV3VrZPM{9L5#j;77OZmtRl?z4|jM$TI<- zHe=?gGkgTwlbcYsCpUm+Pi_#NJ-I;yn=Q(o+>a zMC9Y!lmGiax@~`SyCUUN`f%Xa`_XM1-vUCW-9k1#lFb!0_TO>7{dc@?|83(V*(yFh zl1=dg_TT!Q?7#JEWXGv&lqHOfk7Ofx$E)q`Vhe0$Fn_Wsr=2cnzNa~!R5YB_Saya` z^LR#L3CZUkLP^@p1YYa{R;z?=q_Dj-Hcw;m^)a1# zWP%#lnHtV#Sf$F;sR|QVRw-nbMiwiiWoPM>lM??B>L?SxG5u zAB`>7ShR^wKO0&seFxU=s}U6nq0;r$=@ulAfgYI-;A3g3<_if$plYxstYq5#HMkUg zz*j+4qW(J33S`cvn+iQZqZk^Emlu9{Jr#vUYx5=~zF_NtL z6xITUs3Su@R%%I=PI7iqQh#6^MOy+%U-Dyv;mDUU8&az8w^2!1$k_0wEw99NtfZ0Al zS$BE}H^H;+w5RJFlEB~SA39;MXKGw(g1PIUbaOwXYl5;3C+kixdIqvRwsof$Eff8q ztUK*f>_5P}3vAsI*wWs{r)@C^Vcp64wLRBv&w$t>uvF)@gY!c(J z?bQ5dQp~ey#)fStk6~O8wLiep79X}vU>kW;IfFijRwO{0h|CQE+fJQcv4pYh^pIc+ zmK5HK#HYyWX(q6_RN`i!=ATR@ZU))3 zgGW5**<0F!b(RASi(#m0-pW=&CEKRy9j2B>OboSYUWTcqmJ&JotGfA09#}TMGs_VQ zEj90ux{i#6zw@V4v;8gyyu zoW+9RxV|%cA~gSuTkxQ+>_L7X60sh*5W_E-#E;!#Q^)qi1z%i>w#)H_3b4Rb#O;N` z%SrAakS|c%Q&r$b9XOQ&ducZg_EbvPOMlAJp2{n+o{j46w7r(|A zQ6)(lSi0OG@*I3r1|Lw$K{7He$XeBa1FjqBbv{s(?G2ReH30h3dSBddCBps&upia5 zQr!R&nW7_d=}(QZJARV&Fn*$oSb?a0nt$ge zV6cV?cy3qs+C+Bbsj?qHP0|2wg}2>RV$B07{lOkN+;rK3+HMnYIcU3V!F|$ISh?JI z*@9Yc6X3jNI55oN;FN9v(Hpt!cdHQ45E!TM?hH)SC~JFbdB2)PbvR+)Z133vvxO>{ z?A4Rw$@A=60du=Qj+fW)6GQAHXqo7C?N3b6`_2+;AbzkY`Gn#yXAJw@FG{Q*peETc zq{7Dm-scH9Z)GD+_tg7V&_w$_c#Z-&dT0z^w1TF~Gu1>bw%H={uQ2C$v&7nq_`AI( z*=AFdyb2sO$u^ssqJc3Fh5^th)vS%U^v9}Oo%~@ys zYL*m;a}A=~-Q`^Tp*bCxR|wNnK8Qcm+Q2M926mQA#~+$Mg~*^iz!0tuaBqgJ0)ipj{tF$2{?S4B#*6z%SHtCC0jP;1}9R@6Z~R z1HaG(*Dz=t_=Ps9VB^3qbfF424*Wu!6&!Hj7uupwz5~C|MG6yi;1{}BWlRqI;EWzs z2{`ZzUGiUq`mAH;h_mHm9v*+*QQoo7?!JaYxelQYPJZlf#cdLMCV?}z*!@Da2V=c6 zHxC`6$ljTohjz3(DB}vt3vlDqnOp3`I^U$Y$TPRt13Dnp53ph%Wx}Au#|6&ZVt=or zX2eCExp^U(xW=UHl3<%1;R?%((l;*R%+13OjH5HR*vE7k+41`!WIQl0J`B0yf#eEn zH<~U??BPN_(HsYNN3nkptFW4IvSXhY_tD9`cjgxRg3j0?;`NzZ?28&1iu2CgVh?Ma z1K(206;|w@HOf^)y`;e;Mbyh0L<@T7Zm~x+vTK}L-kNi_*jL0p(2UhkT)XFPv9Icc znQ;;4Zn1yS_`Y$$bGO*nG$G6{zQ?SRmnm1R>$7NBDrP2r_D*hR zt}RC+WEX1m-Bc1a{GaHB8vi4Dp$_QU19Jxd>$VQ_6e^|qqLi9`6bG87A@iO<)4)Xr zzI+RrAPzQ^SbxTE5u)FRig&MGS5>X`TIsU9+=`X+4wUo=f-|fhtQCi@rN~0`96_R^ zvv?c=g(3^lOG^wZ_6e~Y*t;-D5bq6=IB$yY;13B8#AB^EHo^V~C?Xh<(kQb|c2E4F zSxSiZ3hUBtVNbRx?5(ziCAKLnIZ&AOBid55rj>ltN(#)f;6SUfuBtItUCyIR5*qWh zXf5SK@X4DqP#LYY$R}Pz1Aj5C#fCtuZ?5tT=t2W&S=63s-3Z{@nAXL#JPx!nt&7=6 z?{qZGrgbqFJj0+dt&7>Df{kfi%!Ml4nAXK?R&c>X>m(JmJx`=6~xM?W$kSt2$v@PoyftHl9codZ6XBRli{NbQ4-B0sakXE~6nf(z3I~yJ#AI zBrXO>P$CXHvWKJT5_zvVn`lg`v+NvtL1R-;Cu}>)T2+j@Hlm%I&KCw{REugFr|MS&^F7ZCD(B0l+EdVOFO!l|fg{Ow5Pb)<;xS~;Z} zO4zlrCH@gHYbzpk5an_BoD%E4^(EG2n7*fCMo!y61^$DA?gpwess)fZKDj4>ja-SN z6h2iUD8f;Sa3kQfzSwLK@7#}J{9gdOET!Duqu6%y(ynx(0F8N-1J+3%ivm!=Ye|&a60V^ ziDC}#pGo2L6_{cUpA0yiYf&ty8k+(40BsXF_ALbAim-wX0`f_P7qGe-d~l|=Jz`BD zk-PAM605_e5`2O|SPx=fLy=p{1>^yz$gO2^Rs&Y#F6Ho_a5#~>l*1pUa3;5o$?e=* zSUtJbmvel(c||YP>;_(%$?dMd8Hi4`Q_xyKR@O)0`SUiESiAAt0SxU6_U;MJdlW$L zL3nu|FMWpNrEd`)z55_lB-zM1e9h$8Z9?6 z7+}HwQV3>2iZG{d1Pk5{FoFe_M6%$5W3XU{e!+evJ~Q+llMzh>s?cGu;<}C4jz=~Z z#GC$A?07P8h8>CGI{^pTF}Ap%!cHgh@lo0xMMoHU`C1cDw4W59ZkQCMtu$o_vAsS3yZQG9wt)=Zd_eO z;Y9mgfT{324*eUT{<|?OoAE#ef$94>&}R-{CQkKFZnm4ZL+33`%`k@ue~~ z6J)eQs~5PVti(z|<|iQWy&kO@OzR@x6s;Ld&36fAS~Hl|-vK6Cdva*v5L|&HS`Q=3 zH}Mk#qG=s$f|%Z+NPvGsjKmGjUOU>EJc8ke!R6nAG%H3PD{zk7nVWP6y{-T%jaz)j zYJj&B$OC%^@!8t|J98bbr{+%2#-%}$JAX%phpB;Y9Pl#4&VWDSG0?$k#1}WGBQE}R z2vI&ALNr4Uq05X_@K~W|2HoPDg4DMgBXe$v^$dOu$a7W#=*RJA6W3uA<^Fx3RUI}_ zF|Pxp8o~|4g%o_kP^tt$REHLV5Q_7=%@leUhZ01gF*$I6K;3dBira~wxF(8&2AdG> zm41kif2pY1N~oUX@}4I>UA4K9RckK_sSgKdQ1aKqGrczECFmAJRIG27EkF4H^ z(gRTfsJTE5ehMUKfn;^n|6b0HM_>rZ4E)5e+KfOG#C?4$a%r!#E%6!MjE@Z>RWUmF z_xSw^S-gSf3U=@tz^M)$%7hnULz= z#qT6!RRseEGYe7bM&N?8(2oh$vk>)4w^5+Tn}ucq@(RS6f4dV33WUtR8o!l@{-jr6 zhM)qk0WLU|yh^a1N~pjQqg8=wDrp83En6*dY^jQm#zWSmLAY&4$_6-3i;}000IlUI zQ4`KrENSFv6~Qb|iI#hHsFA0ia410(dg>Tt;3=J8R$g^sRTb<6&3k?*$*Y4h}qN<$C^hi zaULeTL-@Uh9M1Eo;Tbd)`%HQUrNJ8&cwB;9Mpz?xmo?^E z%2S9Fx?x!c+k=~+0X>5_LX0xItj-f6gurdc1M$Wo0&EW+#~<1wKs;l6P!AOCGa=IV zC{ic;@AyOAC`4Dfn@;AOxSXUXD%jDGoQRPZWK6c&2{%(hIjv@6dS6;MtNXK z4Z1sBRWx2NUXj~EzMnOyXAZ^N{H`L z+Z*W}8@?gl@U<`4L%q}oo5%cBI(w4}c0%edwSA!qcLCE~YJ0PSlaL%rH(LsBQK(d8 zq3%-K7b#5FkbjrjzF1|PVa0@ALXoljwJ!UTH>mjNonBPe{~TS!P3iV-o#8MUZhM0} zyLOwM-D7XvnvY)D-Ysj}k)#r?s9u+;96-cQI*}a_$Q@mYd6K+feGl7?yq0aZ|7|Qs zRN^xqYwMQOK*H{e6(f+B>En+eTOJ1-heNl0u@ut35c(uMneB_EwmcC~Ja%awh`kq( zD38Y`$geq`IL!)gMvp#^G%gMv$wh*FE#)OdB!rKogLo_Hq;Kl%w$^Zj9*W* zdaMJ%|KWV)BjDe``LU;zDn`GIm@amX0WT-6i=Ctcw_XW;i=AV@ZSRpli5@dwdX!8$ z6*@&TY>XXwgLs<81k4pIyu&pv$*s7h@D=UDxJT;9p9qrba4{`!6+fgmSP9FWVmw|g zchaf2vjAti@;1&6XYej#xcS+qyODvRPI-<$HV3JJ02wNx#OjzQ*t;X7BAqOYc zBYd%Z3o#RyAVQUTUA@{8OC%AHxC9eSwanvJs9gHB-pA6y)?gt8^y?XjP@|Hafe88) zuJdXYaxvt9eqD=0@w^a`kd(L*aT7vZ+Dhc0UNO~&s0N*gpk#;~)OAVS2<)eXRC_$2 z##S{XN&*Bz3Xa}Khp45t0+RyIV+#5dP%1WS#)PQdzf%Ows2NemhA7_-%?qy#opNO; zaSh@ZFe(*<6>>iJA#UebP?&?FtZWFP$)PSM0PZq`9$9#F%>=qzG2XgQ!=ppOpJdHfMtsrPE9@*ot&DDaJIe6)Q8D6kRsJJ2F8$G#{)xR zQ$fE4M51shhs`X8*d$R{iLqHhqHtNLGl{~^Bnmr|DD1KY=&mFRJ2Wp~q1v^LNbF7` z@w>>2MPhdni3b36Cy_W|f)4jwCee^;y@in~oGO-)U#4dNCwC*GiKc-kD54%lN z@-Us`A$=Uy*bmv)Qbmn{kAbXDfV8c@mi~{Ihvz{SUjN`k>(^(3;Qwfm|Is4lPGXfFz{9rcoPCY>!0W(`Z+0K>7+ZI#4IrJD2}D9u+}s5*~ltUh|(0o zCuO0kokn_r9m%C~VKV4r<6-7k4et~oV`x}-UKrA=VFGI21AYF&x zNF1yq1##cZ=nQfcq*ag;qUBYPF~X)!ZWhE=E-b-18g@(wvSVT-|0OB@1IzhBG}&v` zXy!}(pFS}0R18-}C4M~8L}LwY4+V(Aiw5GP^S)sK&bB4NQ%)CB>KQeBYIP8Ses zQEC6}T@aWfXv$!k)C>|1_J~WO1KnUcCc$(J9L3Z01vwb(m`leU-IRK*g z{(;B<2T)n0HBebplYxrQFsP}}!NFkIN(3pR*x80@hf;j1UJfy6t}euzmhub{f!TVP zp(KDCZg6Hk8{y|fl^N-S8EEno0w6}t|0N0I^>(ySN!ARm#m48$7#ak3?dOUXjBfQ+J)7n`q|phHY;@42F?@2xZfk z_^Y3e;PDr6H75`7(g2f70C$`m@{OoHk&~1gIl)A$KS2qZs3c^Pk&vB?giJOPG9@S> zQ&r(aXh}8EGYDjv&wEDv zd!0_C57eolBN;(GNT=tj87+l@A%0ONa<<_r%4}$kmda`clS5LO7&6xou)EUX@&h2UALG}~pE$-UAz#3< z8`&2I#XCMvr6!(ne$rrh<4LzI4p5C!CV2EIsTGVrQCA<0P4z9&HPhfEoe_bcWU{7S zhn^S!5qeU*W`a%-`cr~a6!BVVuoi@vYGlO({ngVB{6z&l! zrQ9fG_(~GxIV%k0DJF(x%~oYl(42U12Bn$ncOLBd49%8R!K{ON%*#R(&iCu4l)2M@ zh?Zpw48Z|ecDlitx$-!Ln>W&Ugnsi|0hZYc2n-YK1Vpin&z*?@hCyTDsyB~(%@Um= z`G>X$jBX9?N-;7rm6|x9X{#otc`&+(jq(@Nmq`Psc;IH;%EikTg76baq^3d%Q5BEeRv`^Uw+E5Y zizHT1?*PuMm|4rG^>ToTj9#r}66w`}(0<%JkRJVs#mu~exQfMSnHIop8>eCG0bvAtWW%ZPx z!qX#C@#twf4f=_{g3r{W37tpv$@2I*##bB+Z!n`^Cq=P>A8xi#ctDvA6bAZ7FG2?d zxmBq(1GO~c+`SDI8k>V@Wf{;-RQzm@#DH#tHJIrZtiysN`U5F9z~ZQCUXT<&RxG?zZNv!Ml+Fm5JYXhv*qy)T+ct91>2&0V+|Jud_riV4^h^O(Qy$YBxz|Lm;v_hQ>nmL*$c4 z^h_~BU8N}1ppG&%SZ91m%#)dsHL$F*K*7j*x{-xOZSl#3+QMCfSSNegMQUcyWW1(Q zAwCzJ5+D#Y#Fq#ZdqKq^kvG>bNQt~tP5gj(tI&~xv+6v9GqN(E0+Bj)oHMK^Mm}4Q z3CcXjY)Ho$`4%6PZ{bM!7QIAMlWjt9vQ1<$&!4G!0ffH0~2BmBk-iky)> zK#`GK5Sac*8f9K7^=OJl<*JRpd>Um&GNLp!%CKl_qgY@Cr}``~@(Oi4FJY06^c9rZ zuQb$x;|0Sls2oHOIKBVCBcP+wL=p^lCmQZfGGo{5#`8>(tmks1rMWys4OZ-hU|{+C z9#BweTz2uuVA;`Cmy0HY9%}YIx(D@%bYC?1yB_!=rrP!JwGGa%CudKaAWT}X;I0Sh z99oCM@bMa!BVw!9=R-9J`}pHc?eJ<%6nkO*@Kt-<*cDMZ8^wQso-nvMNz?Gk#V9gS z&7OzRM>+BkQa+$-_|*8LVyI6M4Qvb|6-!NSxq-39ZGk~V<93)CblB-7ctkKB_IIO( zwO<_VglM{{xKT?L}O-{9PA^%Jx&CTtXioWcv~V+GlC+e zlw`f!H|JB#V$5^>02Dlm( zO!9b0DMvw}PCF2K6cR@Ub|AjC{fBQx6EcnXm5n>v-xdf;>ImZn#X@A=5xp=rZ5PxM z$+UqN#%ALCW*Vb?wJ>6?GVK)(>WHKiYI#KS4DH+N;YeVDns$7(kcVLdJZiwjwc?ktD@o4(+EzY*ND`>RNps5bUx zb*fziS`53Pil<^QAEL3#3xll((`HJ|uA5>W7HHi_PB z^m*j#*l^T>O9|xTl&i4T{YKr3nNr2GwG>lM&O&K{1^YDVNQe zXn$x$o&Dti7S*KkclF3%fzeHu%gcf89OfNprUw@VbTX=&)L#_zFpGkJ(<;Ez{`U1$vv@|)#Mfr=tij=)%v3tM zUl=wS4gEALVPW9Ug?=ovDnJ)etWkQHQ0@Rn8%-E%1M^Dj>@l<(H`Z(g7evtzoExK0 zM9u1D9Bc2WkH66vJ)naN02YN4)YLgKazZT$Oq3jL5^3y#-9$A==>#-dYdXo)HlVT7 z9%IDlHoJ`8Hb7u8Ky7rKqaUN-i`WkbhrGYp7My6~)j0ktMxZo^JNbhcx)Tjz*g)v5 z1s=qy!9kp6*7Ti&!&mJBc*}H>0s)cT&8RN^wpvgg!RYIlnw7EqBJKpQ;P3&5P`ZP> z{-6V?=$`dXr2;)0*hu?Qa@(ubXDdVhU-g_3DN5)Cx(l5}G9s|`Y4%58cYDnKhW4v+ zRQ+vwOm}~uz(|Kmj7?9HzyVVx8jk%Vr2~$NB1-cm-#}s}bD-!klec>lU>t83G=L+^ zmIyI%oMPbrgc1;x0srR=qYP^szNJk->T$3N45I+(wKZ?0D_-!InS)717@`<7z$!3; z(g|6S$T4#&jG*w!LM-A)(dX9Sfg&U!HvbI!kzh1Np2(G~I*pMhfw;5c?UvKj4X6Fy zx)M8eIAZiG>KA8D7xl=aJ#<}NDvmb)bW_lfGn?l+a-psY@8<{47g=tOqe-0h0C~HQ zO2l40XeL7_J)kI094ac1+SI3u=YE}tCwsDj3M89ELdR_QMeHs{Z};gMX+>v>-z`+S zne!7jpqWm(k^QV*<|9tTTo_ukbsJcfP$(_R60U%+v z(U<0^jf1&lBL$-`eb_UFe2Lr|mG+@kOtU$pYyaqC3kXJ%_!VN?>t0ACN$&q5v@FZnMf{+I^ z1R)7g2tHzTbK2pHE0qz6I^C=gbZS43js&@MP zSCZ-ENI^Es2(nWGMDc_$JAhz$I)@Ot1dc&=65O9k8p9Bj!eIs)h{!4D8Q!7L|6%g) z>svi|%QLR?fA$9>7Mtee*ON46TaYCc*-2<;!K zs^JsVUZ4;Lhk3RhhkBTk^;tj&M4t!yVkDR)-3toH2D3ZFa+?e*SZ2|17@;IqKs6+4 zPw=RX5Me<(G{hPmJwzctNhpsogBl8-M6NrUhWN(5UQW)@BcX(mD*JLMy*!;4W~4<;ndla zXe{o#1UH{0Gt7ol4`b)F&Wfp=Hj#0Y2J<7 zKnIy^*r13z&Q3Z0B_Sk(7NKyaVLIzeSe^#wQq@0+euG4qT%c<_h7U*&vbP{MMiZgC zs0UO1Xsne7MY0W>6Xucx4ahnyDg#Z9mKtu@e+03= zQIS0M_XJyj{k?;-01oVLCB+iycM5V;0DH^A=3=dbp(kgu6yuev-@NBfruns)}) zHEn(3C@J7?w;Jh+8v4?e0VQ3PF%euH819U0FLacVD>Ochkk!qX7TJ8AiPwBHMVx#S zCwEoqHAX8z-FZNut<%lO2IDAK4%{LMhD~n z4%UurR!mI9uFx8&Suqi*W>xJAjA>sZAJa)b;>w_zzWxmoBh4Cs-P1TjK|E0qj;6r( zLF13r@h%CwFYs?K;@H*>JcaleH}eGk5rF^4_|!wqs?|;SjJH)aHg|em{Yj_h*40<7 zXkJo{PdwzVY&^3ucj>B?)ww5DiOFcCZ<)hauL1@0T0#i0^PKvZdJ}w z5J9i_zB=CF*N?uxpwk0EBv~=`;n9;U885b9aQ*8GP(LB?p*g+W_7SsST{k5=#ygh4u4g ze9k%f^TwS#L^c%4q>9tzvYh$zW%7PmpDB|o_?ctdXeIK@ZR1Nd$KA)dtDEba>Q)|4 z*S6t`&uOF24mKYZF+68guU@@swbz=8TNLNu!&a&Z4MU;QUd!VBvs*T@sY!J~Q|CR8 zrrvG~IUrNctH>EI^S8?>74kRMc6slH3c24pB=5rCN39n5bNqeA+AE85wR~WQ#0QVfSvxkt-@>Qj2V;kQq60NrlYZD;HMCgVx@K z1Wl@t`zTix{YQxYjJ2Kn6y&{qAIN(^it%TRKVi;=r9(F5nvn7agnS@Gos+w#ynSA^w618zym{lM zHOjMcWVlAIIx0I=$d!e5hK~6s#N3CNXTm3g*e?)_EJ>F%b{rYf17#DO$gM z!}J-;iVAXNV#U028P_7`w!AvcIjz}Q3*@kQGI^?OteGd>sj{+0_IHwzhn(+ZntWP+ zjC?M(MeV%XoRRYl_U%=`{srwc&&ic%?VW_C(gg0Hkf$hw8&G5SeGAzA0=YQ1am-u5 zd$#p4xaByd=hq{Dq6b?p#P6}b(Blmue8Ow#qK4|q)%o5yYEJ;uw=-afBv)r4zge2Yxl|LpB`GHlNgvN`AW+Un-o z>$XgjO@-3Uq-T;-Bjb0<{6l!#d4pUr^^w}=syAMD+w{L|ymCmL{KU$UH=TP_K4m!- zvU#uUdWiCx#(6z_Pee|gb~-=($CBD{r9~%=cOH=q+hwv-Q8cc4Y;NAtMYXkcGPy;r zJtWg=HWn2%_FP)@s|(M3$ocWQth+#bQRy^UUnsjc znNHv9mp)|oOI(+A9%yKsR!}4t)yUJGWcd)}!P33XW_xt%)`Fs~f9tns`6AhnBkSxz zLiRo)i+4UP-#NEJE_Yfm^qR-?D_A^Ho>k~{zwS2hbsehp3vooo9hGbCk>b^R?zvRH zdam7H$fK4$RLIUwp*+1wesu0$5(y6!G&i3&R=TauE5jR>jv0?G(b1@OiuW=Vq;y^=kb=7)?Z~t{c;?=sD8<+ zm5Q73iLKQ`@zJRf!`qt;)Pw<+Hr$Oy`GS)K6hfL4%7;OkU1E#6ys^%0r{+4j)kRKi zb&)-|bH;Exq@`On;#?CeLbiP7+?wk`LjG9b)7eH0C(XiO`H946aSO)|zrDHko?mQi zerG*m?-#9zeE+#Mc)t%{z$qQHG6Mqt-N}Dq5O-TGh8;cOn0`*AFSUl z|8Co(#oDD_>Icu=F3&)(@1IsWPp&Gw;lix*5ca6p?xY~U2hMel0Q{cV@4Vxb<_^8z z?y6{BxCBJK5JNQIuz{#}!K(1yk60~sc9#pMJu>}KC+mh&vwr(~ere1)zoh4X_Wm+neJ3@!Eag45qV0B?7R0)*|_&kBWE)gqu6V?*cvLe zd&RgZT*~J_ z$f*Eg&)F>uQ2yty&%yioQdR4dbGSWUv~!#kuCSe~+B0bpGQE{Eeadb@x;xfye_Gzj zx!xPH3k6WW;cV{>QMOw-+sEufIv>!T$#h@79)#~ccfTFh9Yy-zFFE61bH?{m#(Oy9 zTSK5m$fr2pTRGnwIp1H}=zgN_1ms)D`R<^6e|Bz@$u|$50+w&L$CWM2m7CGOw*1hd zez{~ri+uAO=aBrqtdU2~slnfz+_l7%Ps`WN*)DIA&QWGbmGqJgV96FpwpZk;?f+B^ zd7(f}k=2$B+<;G6N1_JE7P;rS(yzLFv7%elHmPpk zmk^y_%PQkb$wYiscEzfyyvmWsG0%IF5cU21Ilp*5I_L(04(eD_^cNZ4F8et-+s3WF zz%{2!~AXd&StRI>ym)FSD8o8pz&goo`Rq$bTQSM#6v&Sv{)maZcwb2=T zX0N5ccv^;?no>-|wQ@zPOr46zvc6@eynKV*TgX3IPD@s`EX0KP>A5?ro3k3n)iy3g zlKr(;HQ#sJMyJ@hzF=PIG^c2zoNMzSNeksF8 zvBWAGT6BGFb7R?hd2*{PDwHKTn3SE&tm<=QA{f0;uB~~bM4nl*QmzE(94)HO8an>M zGnf2%UDjOECJI=aSXDz(Q;v3$LE;#Y2rc3&R8y85DKM0-b)dcMtzFQ()mdZ+%3BSB z9pqvSRwQB!-`P`h7>A7EXCfGr){1{~as zfUO9)@>?_P{waf4u5(_Ql-G?qq+iNtKV;Vp2-%e)S|?$+l`ORfb{{*xOs+ZVlob!o zEvntRZS2yM-+kXHmNk22cQsRRj=Szcy5~~FO6QTwWyeg}n6svA-uiy)Cyc_YOqzNc zEq>2DWXFNa6bYm?z1>w57BxF+m8xoa7V`P9n<(<@cOIc0=q^Yzp7`$5wY7dw>(dB& zyt}B7aWyA?yLvvWTbxhp^$2;ryJ#vJH+Ic5nYiC+CV5m><1}x(PNp<1Zg!e?$c7r3 zv>jXAnx=*`k?5lCqP6b!)p=`{KJDb5m0z4+JO;n9t@SxfV~f0Uh?><%Vy-zEe;&=ImE zuI9Ab3uX8HGUccoK!RuIhMlr=lU$1xc9YX*?N4R%)O$C|y8Wk7lg3xbH96=4xn}Av z*|YGf`{vstQ|&>irxp#(9XEgNLo(jk`GaZIX!ac!V7+pNlN=!O1(dlrR@98=T_G$Z zIv$d76@wSZWm9G63hWxuvuP@%hH7gG{@Zm0I_yGQR2Ms^`8}}kQeZ!d6?=zGw~N!9 zye0GHx}Br^x;GG~-PuvJES&p`+_nJ?M-Xs(NVJaM_NeUW9N8ojTVL6I z{j;)qr_;N9tL#WSDHTq|1JHImR^SoF!!Pjg6I7rOSIc#U^$@hlH*cHgWMPwJr<2<3 zq{*u{9FebCHS&8K3Nh(a$lEtmAbk3c`LgHH(`ijQGgA(4k>#0rTb$-Ax7>J8rXF&B zYWGdOO7xTybo$my0dc)$XLA-#jH9)Qa|T9pC0SCpl6>g zT9<9R;klc)ENCu}u9N)UE6xRL>+T0VXY6(IAX-O02i4}n)rC+=KI%wnj(Y#N&2n49RGHRvRkJ)}d$at@8HeQe5_Z}N zX4D+K9I?+!6|K{Ej4fL-ZsT+re?)dXA{(9Laujp(3M%rs6sNTe(_NG7lp~iNDL}xl zIN*U4r>PuBzw{mBk>72|Z&=l^i?_`@Z_l>h`GE(U5qJr9oGNA75jmvkw(6gsj4di; z_xL%aZ|;&*wS(tSnR}&^`4ibO2clxDtT=K5bQk$+3##N|4TL=%BU`Y3ccsX<=f?-Q}>^EdbRw)@``1$vUR@feMmO6oHkT0-|px0 z_N~b0r)lCl`*z6Q+vTFYMIfYQInj818nlH)E%Si**D^x1q)}x*Swi>22%;?)$mE=O*Tp#-m2J55NjjZ^=PBWyzip9ZTKG`y82T8HNk|IdN-lvA803Pd5eSosKDcw=&pPGDjufpx;U1)tCQ)j zJ5rsNcdF%6%PSiC&VEcT*y;Dsvi*M2yuFYjZ*;-Tv_oEB*R*-Fd?=+=UL}v5w&^-F z|JrG5AbjpU7cpK@rcm8yT90^VGg*v;hkiST4eb#Aq@(P^1 zvGQN*(YdKRo!uAga&9P+KeRDa-mSxQ@Mzl3XXU@Fqw>=AkVXa9$;;(_`O-N@?~#|< zPT^MhZQ)QyKe?0|?T#)r;IBGoDlmVK<<-)+J07|ZY2zk2uA`*z`O1yfJZe6;88UJJgWf}tJNS@ zskH&rTGZfCZHoz5duack&%FD-JG*W`?f3fsioSVfXP$ZHnS17$XP$x2;nI|SK)R)G z&3bXzo+G#THl~W9(k~9J zlRcpH`oeY)dTcP8)9b2nK8cOMMu+2EyEwA4P1K{$$amG6R!zlOeNo)&PPY3~XXMJd zuQtl@yKZnL`_=@$+E}y>i}rElm>#fl=z6;xvff`{Uf5+r0Zgrd#H<(-Y?o{j{S$n< zL?y(K@v^g9ECVZJ>$hwdrH$Ktm@q@b-XX40_6)^xqcS;Tx#;W9to7B6zgBp1L?7?A zr9QE!>$=Cl_n#reKra~TcEp>l)5%506O8JsSCNWCSvW8lS$H$n?qAd`Vp|{)Xc1qa zz{D*p+eL3I5&kIOkg0($8=5d2C1N5k*OFTsR<6{`o z8pRtn*&?qHlcm3Idg_J63k$pDC77$_MM)#pB+nEHvQt*>RJe(;1;gbQ@xBebeQCqU z`QkF^b*eVT)7B5!GMuXnhE6B-yo0l~1w=yLgD#XiG zU0cK%pjS-FHww5OS|Qy=yd8GOId*xM*iL?TQ&yaBrGEhF%VIG>rq_*|;X|is6E{~w zI@ho9tLEvcxyj>Y{fN{Baxs?{{UH(_iZ1tz#nIDtH2Pw^!Y;ey!o6so zjhG#}k{z>$q8aVR8Ua(aOiYy(4?xBuy*}|fhph35gZL|cwG7ld9L(XTEAdyJA@(`i z#TVFwiVZ6}o8+6~9I!f3JPmnqhoeml$3o#DNHLe-PbE*$`0hC%{8(%^;5@5W<#FyB^vUs{`R({5rsv~`wKkH zrKv@-0)6XMTMOjv-nmPkOU8OaZppynv=Ixp#^gJ(o=!ozcZicZ_UsY8J6@AJH+@y~ zw+6X>lU%>KR`h8;gp;s_#2nwI6H1({hl|#O1aoumGgwGoL6yO$%JAoQM}ladqw{gY<7G; z-_pAEs3Wg9V&}L}Gp_LJ-Hr3y9*J@#Vg#afcgn2&3^4$))iLndun!OG!h5tkJUz6-J{OhsdcG!ON1CGhe1L#N@*!NI2IELK7Hm`VbNztN$yy6ls zUK%eu>Y-TpMn8BWKZm>M8=;J_u?hb~MPni+X|-v>MrtRIV(+orUA3mqA^PmF+ug3m za?dm6;D@e<=L7Ie<;HbsJO5U??>FN(8N3(gte%X-WKW{2hwnxu|7x2gFPCZWOjA_? z7LvF-J{vESpVe|$Sfiv@OsN;k1t5fZ8h;q=(z@UJ3YztO8Wv{58)7aM*YZLrso_U`P^oQm>&YY z4qM}l++1!|4LWLpav*X?&0Y3#kb2*yWZZJ7W6a>MFgaf&x66ardU{*riylZUgty&s zHili^ZFbn6{b8cJqjv&RI`(h$vdF04;VAlh3ixckB}Ge(-f0T)!lY>sS_1>k0+P0% z?g#aX45xMQhj2qvB>WICywN~{XEiUx4-bUYF08%bu+h?5f?H|wAQGH&^UDfM4)Uqs zgVRQyA+9PzWBCk?YJ}COw*3Vyp-b3PQcq8H*iqX+D;W#4hhpsRqEyivJLU44t%+-r zrlT@RZaSy}q zDfnp_^0O1Z7;8TpLWYY>HcROFY^>cAIKv#U=CCmK3%eV8+>WbL&wEFB6LPP~HDk?Fd*UJy-e9QE^Ea^u+DX1a%NMaat_mZQnR^ zuN+?ZR;F1qtLXir4f|Uxfs#FrkA_iq@UdizU6KkOcSkXiUL#R)i=YvhXPdTbvO#Pwb?1I`ygXVE zrDDP4^Y|*1NEc}w>H~tGLl`moV0Pl7F==TZ$^Ekauw(dOaZ{DsLu_BU_$%}owyo$g zf3^!Rlrdzc61ISd^EM>1P1+a8@y&(=6`p>k+!W!N^&mXgOM85F;>c91wDzzc{R~Py z(i(@i(Q7@tLaoX9C&YcrVfS7(u6&XwIad~l0qJAXM6o|jCRL0bA4sj8JZ7{*7!{gE z0$YGR{=O}@n1y}dbC7`G!0USMo>o`3*-mXN)r~lcjlp`0z2sjwDUA`Us|-m8GP9E{ z`72?sDf(l{_KZ}sY5JMS7tk&WacMgQ%!eR$^7s~s{#~efPjZ7ygmz`pxYR(ZxUO-& zd{hRu=jPQm%NaQDcHJNgRI6n&%wiYBjvjf^YKWauF!v;WaN(sBTsvgIm7FvpwN+k{ zR41-(T#Mi~*9I;lLE9x}_~lQrXoe1zEPP!)gNI*Lvp&Es_Gyg0Mr6Cw#3=8W(PEN& z!t4>^%#<1OLaPz5hrLCtoRm~Cnpl(FTeqc(VF_YZ3UHI;gCfE*kG2Ako5n-TIiX%~IkC{*OJC@M8Y{79xGLAr@LPS};~sg*9dwOMV- zP-4wgwEGg$`HMwm`^9oeP_J-Mf;vKlSYt6XgK|Vkmly;cz8d}=?8guwTdztK&IIgg zouY5oCV^wgzKzh1$`q$~MPa*~AX_ti5Sirc#fmBC9l5v8*aaZTZ9Bo{f#V^m!a`-M z*jnko;nA<^>U?77acvapT%RNQx8OJ;9f>6;LLud;s`kCmK7sl`Rm&DEQ-Aaa`MlVQ zVPaoZ%D*Oipyk!lBz9I}!29Sp=}i_(5)kt$(Nfv?4bDH$?TcN$?A%+s*Ua+)9&W5Z z&c3vDlBW(Te3zMH%b_L&?87SUpg9KaybC@rqtkgZXUxdI;gqGVXH4IEn$?#Fpz!>t zibN6ThC*%Tq8K6mxr}128+-XN_w6kA!sk~p?q-SQbH@mv?4y5|?6YL1xhhy;G?Lc_ER|^PkEKh;w<`{0?Hj57Uug4C)B4s;% zf4VXqVK=QLb^yr>@oU9OTd&6XN%-|LelZrqH#yof;Pu|J7DHbI1td;l^rzwDkr*)- z<19`%W%@pB9cNRc%qa)H3iowz8(KQcAed0jG-k(Vzm^`Nr+fK>_odV3MnN5b!4U%!&Ku5K-BZXO68|JWe`nxBDE! zXyC}0@NR?O3-HT!InJ?soy5Eo3ezsEFoKw?)M1nZE2Hg`WYgVdKi|d;Ahcn;6nY?7a+y*6BY^|;;hMDVlYF_aJqM9=`U*%4iW?Vi@|mR{$4T|~!rnLv z4gAKH98kV;$n;FPoI0yPF*K@ePa5#P5%!AhVuV{<;}j!u#5Itvb#U-z3E?L^Q$$|l z87>j;7FW2ln`&2!WK0BCI7M=fn4d0AZG`gcY;h6}5&;G_LdVsrg&5HPB8H3g#;HZv z%|b|ea$_zag2qmRF!zK)VVfP|8}gP&b?(+EP&IqNGK{ zrI>ZQjS(;cct=eVw?iN8h%G(wQ7q0LpEqi(+5Y1;U=-SL9IiI_WU4&3ds6D8gJP-M z6xcO$kNj6`kS_CJs!PXyG#yt6QXqiCD!2s8D(HtolYkm99Ap0g>|MZKQ0}{5zKWi0 zEF1#8YQ%gmcDeBRY8jUjH}`6s>RXC6q}=7R(mH_HPb0PqXm_d=$0srFjLH)H+_1b0 zu|A7&e{7CKHg??CkvYtz4+|bz?px7WYi8@v&p_)9fg!D-ylIPX+w^9$P@1{m-e45U z;skMOdQvTP+pomlK)ir5EOGPaZ2labGZy7E*vQ%;W^Elbc!lWaMPj8nbTKPlE<*a{ zsO8f2YPHm#-q)v?L!C1TDdJ{`KXGp>P=6s3nnXYBb3wzP@Bs?;0~>uBp}_H>%`Jxk zZ@XxeiCh?5tW*S0yv>x-{ncTwFTHHr`$@T+=T<&S|~`S0`EpUEAZ>8 zj#quynL~re!V5$D%to}ktB-;9x~*#?@OD(E-yT1*8RUOyLj^d750D~4ALN9EkX{&k9U;D$NhpyA70@^z^&*|bh|~q zSLsumo5nrs(GU(fxYcx7`^H1`{1l!eHO~?*g+79GtFY2n?mD9t;w!UrmQb|(F?1I$ zy!65~NbT@)_NZH9-1SXsQ9*3be{o1>Q*BdoZC%#J$zWw*W3yWJ|Aa?@r*TPraz`@? zU?$e~uLhU$py8I@zu&w4-folKBtps_bZK~Y#-+EQsHMd zyLj7f4D2terZD0Mtd9Qso5FWG21&H8%9ZirlgBKoV{XH&GXpfPup@%-wNAAC8Jk-g zXR#!EiYG%RPcSE#I1V9QHal*VLI2SGhzFCgq$*-U0dH>p8ro)O%7(GyF1ePI(ED#b;OaM zq&20EXdQX&6jin_sKWVyJAlZXeGf51WYq6aDBn}|@SS=H1PsOV7XIMk)%!_!*Z4lF z^X4I-l3_fI%5p-zyuvyq%3{+#-|n9v`nKWdY(cWCw!C!i?0u5E$nc<6LsyQOqzLt(W}QR^w5om_t-M|G;Liz>!k#9LOQREGeI5o(4Fn%=>b0 z?&YA7b#e{_FLe#C<}RjSsxS18d;^{N@5*)+ zuFDs(p?5#C)rMZPm0qUzjt(-hEV{hulheTyM)laDvZ3#{GP>S5_u;*M< zf!pR@@sE`)^^mRAh&5GSh&sHp#J$xCb12n@!alDO5v0h3>t@Xo&YW4W6ktGKP9E$C z%$g}q;F@oU1U?$wy6ByH zu~p=V3%#OoMVt5)4)IR&iq}?1r|%Bw@|2Aah#TxsV1~v#bhdg!A}d~Upx{rC>D{6~ z^tpTET;ZV=?S%pH7aLZkk4jgQZ!7*lr6|5prao5dE00f3%oO$D@g7kBazzVKL}HF_ zeYXd9m;z8dazRdZDfFyT1H9FgWos?g5+FWh`6r1z8tEA z{y@2}Ui5RzRG-*XmE+sslBqKTGvq{ELa9VF&rIKj8LkSt=5*Kl#8B+oWx^fxzIE@o zn#5ZxnWzT^3VpcMqC*UB^NF=!v7ocznc7Fe-!E-`@he-6??$n?y2H0~eT8q9?>cd2 zhfmCdsOy!L`17ef$2U8Gnc2rm@u2|l=ky#+iz+S3k(l#tw9__eZ(Bd2Fmc9K`BAx? zl$?06+%hf+8fxpuEbv{`;L5};1b2&A*5x?Q*wQ6EgIL`-J04$HA$@|G@=uJtZ)vmJ_rz0+%uhX{JpoPyAU{>iij|Fku@*AVh6k z)LQ%Iji&ETp3$yBQsU;NDaomOuZkZj&hpAp;?3i68?X@tHYf!;>^w>tmv(-dxIUqL zDOB&umsM6IdVHxPQujY6T?WYtB8_=QirgEW#ePrT;b4Z)Cl3 z#k7j2(vRZQ2ihs8HoAn{D~5E`r-~)+-1Dt9RNPO2^iv*cY+eZQS*v6CiHT*dQDTv| z9Q%z&swpe#uyvVdJS4e~0`*NFf4UFi)We%aX^QBV0DW6?w$7r;2evc*1vpShPjuy` zin7jKauCM-8#C>qfNMnR-T)MZDGYf7SKRI5Vd|3OS4R~Sf7lK^mJufL zX0i({7cXYy@{cBu9gll|!^h4v&wchV?IcJ(n>~ALo6JRljj0WX>cqzflWUs-xQm0a ztvFAGGItGhLCgq;Naaa~yM@<<6|?=I zaXLicHHf;e%C8PZVyJ6Z5@qpoXcS0M2AX(Z)5?R{9>*+Wd1EVue>+AFT-u|NoPO!J z1XWg(Sm4=yW5K*4nC|J^F}+ZBH+_Ru94^XYm@sXd>^uum|HzZzjde{{$6wWrj{j>I zypU%VIj%Y>aqU}|Da$*e4-XuC=@}z&L3en~Yx3h(xnE3`3C;WFUvt^GByk2*8g}94 z(m8fIZF5Z_Sdi< zz@?8FSUqJYi1Cf$Ni31aZ$-}AeIgd)AGJIN5oHfAGc-4^M{PBV27A}uJopb z0l1HH$Wje5gR?_;Aa0-7>dWdmOm$EjtsTy;&&!REg@n8D2Qe_lgaO*#}ZfR<~nl zaI9F3wC^~<-nQ6RC+@BEHd{Gu>g^W4T-hm}adcT(*oljFofYlkOK3)XgvGdr55 zd&(Q=79*v1zYF$4-h@S zUl!=bHdlR)D+cci{R;YufsO>bO+kpElzV>XeW{R((O3iD8RTyD8OdyKo|JFYLHJX z3)G31DqF;w`W>B34RSWG z@VOml4+;F;F#-3iwr|H|3gy5yF|e}@MY8urBR^&v z^N&Vqx51QyJiGkhSK?HRQIBEzhv~)|u?@re30)1)bWR(>(XIuvPg^&3;azgqCCN>N zkZm}|*u}}PDS-x4-!1iX*5Yw#bB2`+8hjJs}) zj?qT-rcqqF4F(3%p5NgbdHOJyoVOX0QS&(6nT4!<%@tJ~&i!GT&kaq=bc)_KL3O8& zTLu{GlT~jEzdhyB31|$sq-syW%XQR2^a3PY%Np3ED*7eK+qyLxr(2Shj4V!J$5WF`!E(?oGzhZ`~WRL7q0n zG3H0Y*EJ?nt`b99Si-onSc$8b<(+><*XhFSiy5i_)5c$6&TlRjVOgdk@3sjjmcPSV z3U2)7$`fyB5`S6Iva3w&z<4Nc`ipFpxwT^FVhm^lQ^b={q1Zjpy+!ov5Pw?k_q>5k zP#rY-{V_05P{V~lY)$EK&zLmVdAuw-*e|o{@7RpP?@u79g5o@fKT(HaVrbhzp2o&Q zkXc)YeD;BR2jB(%aj6gp!D`mvahX3!#l6KuSu4I+?hQa+l1Y__t+?SkxdBtxAc5ocZ_yn_b3ocnA)A6usn#1d)ZgJysIq>kf z)YFF{e}QKCY_e}hknv*PPWo$1S6wYiqpprco&sfqb5Dekh+U~;eaP+!&iNG%le z&^Mrg@guApcEF0jOOO!lSd=2Z8PpED7{#~;=`+i@q!q1m{Sf;L1KPknD{=*qw>RbXO5~h_?@M z^HTJQZB4bL^i*|6?G0FOW4L@9P4Yq4$fn#{WzF;}7+QANp8n6>@>P@;d4tEo%9-b0 zRE*OBD49l_515-loE;QeDy5b#>VJ*M;s@>pOL#5iAgnV^;{L1^GcoP&o|^)jn<=UNhddI}qnZk!dEeQGq+ZS#F?u6OhPhj%& zPAn5w`DDs8c;KMMCyo?&sPS=MsZ+U|E+mGsPa#+=gg-aPiA z;&iuY#d!Go@)iu`F#qdUvrPg`0nfnX<5eSqx;?q`K_vMhuE&g)gC}_QW?m;d z*k7cGI+%JX?ULu@L^VPnVLOGe*_n6j&zvO?R}(!o6G(Mt#^n^VCH7hTA7P=-E-A7o1qq_E+0b!vPCRv6DK)E5$PYyl({#` z#8qiO79~y*=S-u)>r-;-&}Ii?2l@nzfzebd_r< zbhYLCSrwuP#shLz4TI^2>l*cF!3WfXzgF?H^@NYPg0*n zoy#Keu?_v{&8p5VMF%I*_(clDr@VCX(egG#Z;7cvbicT!6WSzQ(4<#_CDqa5W`S>N zgmAnoN)RWfh(g#scBdv28o!37EEMTAT-Z8csZ4CI#`ddCT-+s2OP7)K;;7j|cgcOB?KRqasM9B%(uTSELpTW`<=g`b$ha}-d0!$?VCxC5kutG-LiEVtclfZg~SC7@7zIWz>&iENjQH-S3fI$g$6}L*u<`W9qm}5^I5?Bl_DL zE4|`&=)(V_3RWXw4gGX1sa)vGT`+gsP>pr!?;$fp*|vxW(Kc>IIm|`T!pxA^lS{(P=Pl8;d9ij#Jziaq!hIZtaRgOm7CjF+0qOuw+{l9@|rp6At)%43Y z{o3Hy0-yFEP6BbTW&8#k1-NjFxWVp7vxD}2gZ2Zs1Km~SfH4KqiAH;+Nn6pnK&SN& zo5N*?0X>j=V}+!ZUS2qjL%V`c(+XH6;XSVH0;3J;-*IMNY>#P9=zFK+$T-pQjHADN z7_ukFF%0Hl}W+E$HjeNvj~pgz6EJ=2ljD}N!W+W zF30e`qKlT1N-GT#K|Aw)P7E8Q9rhQuXW+Ct-e(S3X$-kp+SiRq`-#g}E8|^eNXcEO zS#1=b@5of%O_sZU>-4rig+RF@OpT@~nEFT(d)GUWFC%g&97K zeEV#;{^>(Qe;yqH7NRyiBsa+1T~{T_37+~)-!RK8E zSJg!p^dq~s%v>1wx1xwY>|@7d1>+}F8?WDAE=TRVhsE-j>+X}cO@Z~4fLZR_xR*YH za$oQ%_B-h*;*u1R?i80Kz+Lovm=nV^iG>APUk=X}AmP9?DE+dM(@}q~tQKF;FxOfK zngMQldtKQcaUKR%W2u$IY2fEvH@HG~h2!YCF~T#8o_9xh9y$omh6v9+^t@H~{77j+ z-Tj}t_X(YJ;ULz!9rxdQD0{RWj=96qPQ7?$>+e9teRDkSfyh~|kshe^4+`uROFM4Q zoNk`!%xM7%&R}a6L1H32GG&8Id}T%kL}(Zc9>?^!T$HzPCZ^hwSCqAgzAeUWu^$Vs z+Y|uVZo()5wWvFAh>O0peR5IYKH*6aLsPJ{#$O3_54YR_%L!smOQDP}!C*FU#%^F^ z2Bv@}P+JR`0Ax^S+gn@Bb6r2L%Resc4P%R3>k7y5ikJ7%>nrM?tqj~QPD#hg6&8Wmf*nO-p*vMNkt*l>8g zu&j@%_9F9)H|{q;|1ieB0RnvSKI}9NzjE!VIQ__x8Oe!`vrdwai?^#VB7JR7hl*K0 ztc<=~Su_5$@u{N4?w^W9emmt)&9L1$ucpFPIBuV8hC%Ce@uN;io7xd@30K?l78({4 zTkI{hVrB<~`INS1)wt%kXm=E5T|Z=Teo^JG+wtQ%7>mgPd3HRBx*oRpxNeMPb^*N3vi$ozD*WrSkeEg;O}*T9T%h2qpM$ZZl1@tququqh+N z(;984EoU>baN(u1F}dGjrw;V~s;)$H!b{r?8n~wg!LPdrbHuM!2FthIk%PtR6Sx8L z?3I&G75njXpV$Sf^yPnfiAST2f#VtG#!gYyxo#He<4Dr|Oer-!Rn#4fNRbH%= zDN}McC&%+H{fLfu@#hupqWCk$;%;*1;Zl?xww1WUe*&16IiI-FxEqH2?|Nr>1Leh? z_0VT>KQFp%jjeMg2X2%n%BGRy78VxaRBbPG2D?B%x3S`kc(Hdy4Q!%dt=F%m73V+@ znZIJoaU>2ob$99&qplRG?YX$FgLR*+BUi+?>^r^T3Nh9X8mOv1Em$C?tJbznU6TF} zR=p`MDG1)HHV4`N)=@rEkAcJZfdIzAJM8wR@=`R}XR3Lz>lK?j!)J~MNj$K}U1DgZ zPHM`P729RSE?JRVOHfI@8JH!WS?db>ZvxJzpw;)Y>XvnK=|>*9G~)jzF%p9S(tA>A z9_)tEyGgm_D{9fY;rYDse1Vqm2B*uVwK$on5wGKz)>j_XRpfE~o+$g=l5OZ;Es#B6 zoz$>t-XPt%kO+cNfu6ov^k?7BV&GM#=JE*uSLI%uaQ?voGk2fJ>yC$ z;~lsr9Fg{J+|dLf+;I2SJ0Sr0tbF5^XVE1S&<$I}>Da%@gzTI5$@2T^g|kt-Rn<}0 z^l?*p(^6Q-^oD*Lvh&ZoAEOJOGC zmsK5@A!=|YzmXR~zx4-~B7=SdsQ~#EM#sP7VHSA4fl+@@GF~&ln*{f|W`MhNT;^H? z9n|wFS#q7H{)Z^jH2vcI4CP;s@hx#=2IYpY$?;3U)DCq^^d&IW+gsqvxM57w#*D4q z88@tM75SY|{5$#=V9fuO1ye9`E_M zOMD}}uqjqR3t#v*uf$hG8)V=bK~VF9I+HoZ=*Gwp9)9@&Lor*-}sopTb}+MU(jwUdrOYtHy@MrMg&(qHw_62y+RyXp)nW0G3g5BVW0 z`_QXT-@TM0@24E&RR$IeZ&l@mt_;CB4`l|1zZGP92kl-M#rp3(`=^HE6)3T8jJD5m zd9omf+U*4`ld!ImqdE7(&~B#u$!swP<_IwKLf4=&yE z)Y8SIP~M#ByK4G$XoM7IHm#mMz49^>cTOE}aWB;0FbR9Y94t0cGQXKkgA6b^zA#0c zh&R!^%6#=guJ1li8*`>2N} zS647!3lqeN*!t)6n7iglpaBD1{&i^fU(>ej_A<2j8yz)!%bteU-&b-7u63lFi~HtG zM8NY+{&l~p^qg^Z25@e!YGj^Z-1oDw{jI`0Hy#s38n80NHKG8 zw;2ch9hj1xNmp;ZVAPIMGh@!_h|QI#%($U^gv?!&C26MTj_RCUObF5ih}{3k0;zDD zYw11LAP#JH`q#_uNs}@Y@y6Q;DVdc!P~59<#DHf2k~1FQDKCxTnFY8Sac&n74*8Rl zU9P0HvgoQwXo_7pA%%+B04J^^;6ym%PEk;k3&~xltE~2_#Did^YekJJr`tu&3^B9D z;WV5O!=~PTC@q@2BBe>Yf1_mx}SI>gDJgMW7YG>}hYCITe1S3fXBiIOf zO-9hNcFA1FnS=DSomNfCPh@Lr+4O4j+M&~`GMS4SlY`29e=(KyO0G4FI{s=octq~Z zW!MI}%BF2lrQ3)q!bzFeEU-OQz(!y2FPJdLlb8{B<`Enl&2W7^6W1jvY2mXL2{Q4F znOH&3!Rwlq35Zo@dkDzEm^j@l*IY2F-l*>~48soFWc>ZEcbVtSGjG|=D_-I*@+1~r zIOY<}1eG3GflSCRTg>r{V@=5mm)XQw_V|q4Q65)r?x@7n#Kgo2@ycl8?JC&?KP1_2 zzs#eimU;6=TVtkL?PAE}ltX_tKar(vWNBw#+?~7KmAJPs@ygNX-w4%5HK@Gwzr&L4 zmtg4^5UK6R9kr1!@^a=&VFZ~yP)BkM)v<0Iq)_rPF^#C3V%DC7eQ2_Hb4=1^6q7?e)N zp^^mcV(2MWwP$Sc;OM4B)B)jvYH0p?V4TvG__OhoMifpT1>3+i8L#5J%uh2X;`EkD zYOLA+zmvOFFClkb%-x}tZm0ysCS>AjWyY3TNI=}!ho(c71<%_USv(W_Wz-veSK$P8 zyS-7l8zD8R#g(lQsfkBglb}a>CLaA$Z_ENyWv*0ZZV~=|t22Jr#fH^8L+dbfN6*|v zBjha+237<=5zOzhw0Y*Ak_QjgjMp_KxBgYAV z77tn&pE_!@(RK}f zM=KLPTs)zNFg{;=VMJK8dT|1WeS)w0UfNqr=c*8&J;fV?czh%EXL>plL-Cjg;y7V1 zEmg;X+Zhbw1E~qXvGS*-YvRnod!Q*fBIgHQO zW%NLk57U~Z=x+*rvbMa#z*4fBf?DDd@8O+57XMU$seDKyHdx| z`WMTOuf|0SH`CzbaZ`FI9~0-mZztL|>v`15(8RI5GEv?2v+6er4&P*(e2lc5=oe4u z`O)%hr3I^$T+>8L%PbeZj-(3 z`0B@5Rv6Z7aGNyw_{U{Egz?#r_=qqkev>Aj|2SK3?^@mWl=nOF3JBkiINqXpxy1{^ z_>crZSlux_hVem(u<iJo}k6BChPCQp28Vy>Q^ zHkO&R`M$(p9S3eRjPFeJ#1r3}h)mav$7d&^wGrlX4$3gBoV4`#_(Zh%P?ZnzIW&S# zwtqzv3c%C#Fs%=(xCjp$ueJWca6Uc}+5Sx0e1syyqK)>T&GU@Q*C^Io;oshG5QmRZ zM3%7=aTvx|DK_>H-{gVsQCzL#MDWi?DSo7f!|lXJ`h1;Yo*t&P0gFCNjuh)S5qac; z6xZo}Nuy!bIp3Q&U#9`L8OCQPdJ5y~6N9XHp>ct{^9_o#t+3Fzpvnzlk!{S%&z~mR z8uWM(?Sb!5j6O;@pQIQQCEUyp-=^p(?VV`fVSBIOy335q=P4rNI*}Ih#CIxqAZN`* zS~;6Ie2!v$4>)H2`NG5$khAD$Yd@xQ2z_aOlyH+rJ|z*ahr{i}$GCh_B0~?;cr?@J z^AdSFPH=5*(%<&;iMErh@bEh4TN6En`J==$)8xw&w^}sOR<1N;5@wowcp})q!kzGA`h1Y$mwLE1SD83`fMSPU?@@60V#LCu zth-cN*mET7X+?}BeA^*Z{^5O&uRKiEE>nF1wXb5}(ChT1H0Lmkrlbd0 z`3$Z38CHV+e~A@ljEBx3O`4SM-vjSvx-VrmDPqboC;ItDr*`j6CC+mS> zG!J)+9;USw6^^)zqJ%qx@o5ZhnI5i{p@~CdaA9+*hGX(UyKmR%bRzhm;kUFX;bs~% z0r!3SALBVsLs?G7dPHw08gC{JO^DsoLmiTT(xEx8c(|?cC&<4^gO?`cdaYE=kl;O1Cbyt-5>@N(bsje^{=^qTE$*z0hw)ofhGjV9XE4hcV zGV?$?T^H+gBFcdlyY}j38PP8lpD3#oObkckh4!Z2)p^nAn7q&?6dyIP=xFOIrbC-f zw@2aCijTaEjS_B_2Ms$tppRiuc%TWTT~T;2Y1m-q=%4yHr_nHRXvxO|S+tdpC^$5n z^MamE6dannnXH#<6danBDbVvAr5(_=OomP;3JwjeT&w3R3J#5ggssUmetH_u-a?_! zLPWXFBiwA`45QhHJ0ikZpA4gEhiH2r1gUV^cc3Y8tDGZvCJh>7IO!NTw5@RKF>q)M zp$p`qrDgIn9cgXciFm}}ef>RB<1b1+dHwqiEXu7s zM4`hg$CGqkqR`>xZ#VYP4$SiB z1=`SB$XLIaVZ2A%Qy8z)_7uijwLOLLa&2T-wDE{-VE$Q{M>-;8g4!C9;k?lKj#Uoe zU+XUn=T*&xJ(PjdOarpui+aE@`QVMpXzkpj!7G%n>1{EhKFAC2F>W{p4sRHS>C{A_ z!wZEM^uVvl5AO!Phx}P>Itm@${d-2A`!t-M>f|eI5_v%@O{cA`%Nfr5StPNux<2|x3|v0xR1T&Fr98N zj_MN#-&3OR_l^D%jUMxI=D8@V6%%cLfV-!9AP%oagvsS1phMn>!;23W z>Ns#agJJ6OgPt#~PD~tLX}A;k7OzqG;1!0gI!+WiyrQt?SU8yxa@AxXgUT?-0F$8vBxMMUKaT2G3fAaz~#rFL&g6v89|i1^9sPyW2D8a0QVmQ zhZg{jRbSNg50fEk{6uTpY;P3GQ#Jl4diroj!*{|z3Ha1o?@33fr+9^kM?LY8J(Our z@tP5j8rbnY!~-|q>EHQzd7j{VS4DZnCElXqC1p0vGjCDRk^v!`K2gFZ$T+bdvWm+y->o6Ei$e~*r>Wtxkf9?PyuUIq0tDn zi4gDe3(Dq|7L`DEK5u@};({e*Xfxsb9fhg?cIG3~4&|R03g;Ij*%lU+mFX>1%dSym z#cnsObJ+6o7W=#fOKtOM(lFGvHT1B|gbFAOBa$C2FjV-OXQ;#rmU;`8c-1|~`31J9 zrCwU#%?qNznO|C(Uug^R5zI%Z1R{B1^wRt#3-#JFiXd8B3CnF5$B}fkz+>cbzELT9 zbwtgmMzJW*x1{pHe1@_q9w*47KW>_6V~K|U8@8Zdu>PWDP|hBf4gT?6e6VpYZeXT(`=rhaWyPB zve#iY&VzyBeBUB(cv>N$V(wavR**3?vF#k|%H`gN}pRhW{u=eelEsT_whxx^M^I-JMTVRXq zIAJt{?Iw&$s6B>xM;3+_7%Igc;+oAtXYiPdOf!<6(Ep2@m9U0wt;@8cI!eih4P~K5 zsTY|=QS%JV1)(M#795%6F&oWyW7p`BAwHw=7HUiy%`oQv4>yd+a_gaZwXq;n7*^-j zLbZGwWf$3-H3WU#-186;t;oY#(J`yKhdv&eb&a!7mG%(VtWmATqwW&Ix=LhGSmkGB z(Y>U2enFnX>v38M)li7HP@QNDY556tpJ;^@mGj8bF`njC>+NvXLR^F;sJzvdD9l@H zDw5!U`3uRV|@X)mV+J#2&KWQ$2(-aTLCLo_miP zDa4A^phC&%8McBoE+Z+2%0r78##pF$tP<18NsILZ2Lg*rjZ|325AzRYKFm8ZTUubK zrS%ZkY%5wRY0>r3>w9+dFe+v$VV+u&p^6Bx87g|nT7ui#kbu)u%sqDr7E`w1@_k8x zC*NCCUSNY14|{b(#1dTp&o72JHLS0p%((6SPQ${I#fvDZ$Xi_I$x}Pvuxx}lwzlDB z1W0;p1?KiUs*F-=Oqx@pAF9AG_WzBc!ekD)v6YmR7L?~LS;YN9XdNHf{WW&Jy>qtu z1q9EYB5zqpzEf7PSfMY@43O#Jg3QCI&aY?Xc7(yOf zkiW2U3^oHVWa&zD6TLwMg+r13tjJrOpT}*b&qz3|oI=f_EWf-UuWVjEwvq098b2{5 zFyF>M>Rb{je9@wRmsU~`%)cH@%^m0iO6=Nm1F-7Y8m`Lo7x^N@?OMegt2>vVJ3_`< zQ8XVrV=bP>T4*-6`n6fzQDku6sT+q;4^>Ywq=tBOry{(Os&G{u#}JAAPj%bK#>c8q z!n9CfhhRZ?6&Z%A)qoaDL-}5ln{7u-cCyh>6w}wPb^{j}qjBc}JFo z78vRYp&HhLL(NLdv?)Uh!#heEAtF7LeHiWVV>>O4AH461WG%!+sHQQRdGj&l5<27KR zFW>1f_5X)RwDI&lK8MX4L-?WLmV`gT-7|;HC#`JdO|;qZ5tmRHZb_J{+~K(WlwZI` z_#=FF+f;(HmA6k4PBy#=t_^w6!Nkt(~i|Bd@LWrF@{?b&ceM2y)214 zQH2K-WVlBC5(KTm2X<}%*kL%I1NgJyJOnU8#mO28FxhZs0n9L*ChLcupJ@96ADJTT zHr$f%bX>;NnIi7LRCqu^hHFgG-qsX+Bt#J|;}~xZ#$B=fKE>o-lEr zRp9{zUxxd5+th{_Uu;7Rf3)K}jviAQV(9)IJ_~_AKEX$dgnz+jBL5BUK1j_%<_{)s zBG4U;9j5BA1tj5b@gZjfq=$6k2zw(cya`B^-X`^katIQOB@8CUyE*C~x$nfMMR@~1 zzf@jX5`>L(vdjqE-bKOUQw0n7xZ#$BBhebe3Ko7Zsqlb;4A&B(@wDslsm1|VX1FEc z-O3$mNHnGvkB_*7!wt72d`P*&ag&u_z(!br&u*Je;8ET_Nmyxk6D$vU6OtOR&HOUq zAh8(23>BP35F{2$SYdb*1c}8Gt}(m`f?V=eocgB`mLxo1p-v+R5{@HWYIqX_3C9r{ zTw2YYw&dQ&$KoOU&~Qt_&$Gj8g}DDz;Q<9lARM(qkQ78EWHha^v{*5WeWD7UelEaB z!$}Y%5KB1T@Ftk3oLK|`!?zir)o>C#s+?H_M!Ht{Yw1d+o1ieW34)2mg}BW&3zv5D z0{B=SgbjvU627Y3q2@w6dSBopE@8LfmV}o_jAyi~x6ufXA>3@ZCE@$Z9imG+doSQ4 zUBVX)w@DL-zv4pFP3=bwWG9OTxf6d77V8URA zW3^-ko5`TyVzqRvu~N%G95Yaiw9rEccB|xlClfMRcoP`K?K_$9eZ!j|Sn?+m{sSMd z2~IUi;bcOi6s8db>*Hj?OH?ULBXHqEwVq7K64Cl9Yu%=jn|=yFn&Es5;E3Toh}4FF zoZU8sH9HC)hP*tBlGXc6wlv}|FPLciJwB`m2u@u{XLc1Ru2osF`XCE{#Sg?YfOv@! z=ayiOv;{?o-E6XZv5J$;=rsBxkY6-`xOATT0}D&ESzSuA_F%n2Bx#v?pCQz-wm)>r8+&7>U5@hmr80n zQ+>~HvRqj`+H~Tvs-}m$n!OZ^{Fi2%4SJ#CCA$iMrJ&{YI^^gbqbymWi;POW72qDj z`4qsf4d)vG?;Fk{lsRi2lvw#J5RE8%c0c47-8K_|)eI-WAC+?o!ON!DF4P+4*&0z|`c;!1~A%M}ptQG!gVD@aq_mo6{*@lyyoK=QS#rA%dD$cAy;ANh{ zRs&dKCk8KO8_P%P^A#gg7XkPUr#X^F^pRkxk#U3LDQvam4@sI7S-gi;@n(^kVDS?F zG=-RTHh_`KtWef0hG?{P3O-ImgwqVSB>YUdLz5P9KftHuhxT0K@i98#aKkMLuT$<& zblP_vfRDI@gABJMOoa}*zLF$vq6!ZvmV%la9x3cN?3;v-UJ(h-h}TO z-ULH~gbB~W2W$dY(3_BHYh7DQI)*HyDq_tUKoN6+O>R$pMqj<7R9^p&A460K{fh}eq zzGkDKIpKJGs)+**H{6o&TBM@a5OII3!UGCkuiQRKcsD+fCAe;0u(kjf;Da~8XF+em z<3SnT1Ve*~5T0dt6I>PaCL|xgCO8U9F=Xv6#YQ$kkd0Wv$MB)P34(0I5*q1c6S(jp zud#$ide+RTWm__hnTptSf?yhPgr6AR1i>`o2n}LZGsuJ&u`$Y!o97JY*8nU4ZS2{N zl)6=JvZBW^Yj6PKjxxxYURiS>)4<0{C7fosC1J1p@Jc1_Eh;>q;BCt7lZ5x+14{%i z2E7Rl5&<(cWm0;8B8#C9aFF4agr^`2dK;qo=^7OtQ1B+@_DRAwgZ_l?;X~2{Cj?0l z8stJrCn0<-zT<4u8e*n5#4zgdz%zfFam?Q)&vWuHFyT`J6W~0&rC5W z5Wa>F*aVS;e*@G5DpvLd2u@a**;N3)Fr19fNZPD4ANXTc=rk9=lZG>dXw3%oK>V{J zo<-tBMzKu-xYclmn6pZSrq(CmW9uTEXt*We^AX#5;?7s$0R`LPMwJpQoNZ*EkkPc7 z)?&pl_McR&=>!vJs#vjvv+!X@aSjMvZ4isi1q>37CCpNUrxO$zti=-k%l zoc=MupA6qPFp;Df$+`t#sEVFt7BAWb`7s!=8pAK(^{#=)Y_b%A7%EH)@jW1YrVyvD z1`?6c;LSe!3PQeCp;Jyq$SEpxN(gaEh`6=DCw{C#%yt5>^tCQ<2y(G6@UfK=b{lR< zc&Vz?&;p#e19DVFD>w>n6eqz0xvITMLPpbCsTM1Su~({C*#uV@v0@1e@PRLaAhFmG zF{^Tx1Y@C&O-!x2N%Kzz`RNwPY2|RPRMe*tR4ZrpYJdjAX_oF7M6FQKv#J3eP|oQu z0_-w;I{`j6oP!Y6U^%M@PEtdK-VQ*n;WUYUg`Yx|NY*(3M&VeY382Pg5g`Vl#L(jM zm4#9G)C2{1q2ZQ^#se6w@(tTF}w+G33?NfnkIG7h{cd- z9zO6z5F{2$$e8dZ_^II}cm*F9dW63axv5Mp zm_}SEjj2o{NI1?clu7VgiVw{(luK(=pN|mI)k>V)y>EE^4ZtWCtG4)pg&iO3gHRZ5 zNjOBgL!E`VgYjv^Lta*g4tZJql}};3fRBj~zG%25;op@zln8Nuqx=F2eg!uYBsdDH zWR#B->QsUts#R*Xn?MDh$|j&N+>&sda)&q|?f~T%P;d;~;DF#LsFG36R;W`6f~Xb; zeAeSP_{ag_ZwDe264ou>v6n;Bdn&2^T7Ns62^#k@5>DI2&%TO^~O&eUgyTwA^U1 zVi?r;Pnl{TZ7EyR0p`pf_sPs2`xR!!sNw`LRkErl~f|sgF$tD;ZL?tXUya|p%A%>KK;a06{DM&5cDoHIo zRtvWd_q6ahEnFD^;qan`57xqIgh&0GgB4f4TEpQ47jT~8mV}FxJ5*DAk!gSt9z!_D zaN_|~SSV5MaNP5iU%*B<4IiqHAQF`iIlX{S^-aJR4YwqGP0gqwvc%o1!UGDPvsRHM z7>$p0M;L=>NR8kn<;*4^G5DHUC#^1nRtzDDfIw`BSRjVPf;?DNrtu)ji@`&7D4H*h z(QHP-1WcUMScnO0C*c5QFMJrcOahpK=D_DJ!}ocBw+-iUAajzUI@K4X3fvG;YY-)+ zL=|T`0lC4T^E&{NfRljnFeAB@Fu7YdJ~eGR?r%;7!sYJVr3HqiNzAGHoOUf z#9~9lteHb2CP^&Fxz&`$Ao_eoDXR*=;4o|T?{JQS4~4V=;Ae)j8{jL$c`;ZXr`XP_ z0x)u5HO8HwG)y5*-3;(M!^x;$8_wQ{bCQZal~nQ#r&;o?h(1^$W-(lhdG46jn6zz_$Ay%zNX&~Qg17A(+NIR&Zz_jH`ConpwM89z{sLC zz3@FnJ3h7!LSeWiVN-i}>-hipI`ep|=k5QWwDG~lPRBKclg!spH!0&yb-COwpS?Gq zU0g(wS;;XE5g7_?8Ima~p^$G}Lxz$ebICkLW-cW&SHIVDt=`|L9jySBC0jdP{7-{3iOHwSQab(0%x7H5ED%bku~vI0q;mT9ISPF92)TdxSj z$%s_+b@aFwGSAWwGVhznwph+z)xa4 z&VZ!fgYwOn>CIQ-YO3o?T^U;hJGlf0#lj$4KthGYx5Nl1Jo9%SDk+~vp zyvw9={(EU%Mip?Z>j3^{I;(=%>tw0|%r#kkMj$e`6a355`7)Bi1+D`)t<{@0Vn2{6 zDQH%+GMy^i>N2U6z@IEI{g9xeB6hH-a6jRAmw^7tnDpiUtKKA|AUM%=0Dm@}&63#r zWaU4W)1bBM16Qhm3O)X@laXP+V<+| z<%L<&+V3Q7RQE2Hsq$ChAeW~JK2(LFu5mA!23t*)QNl!*$@J;Iw*`ju8S63&Oy|Mc z#>GD(>B~@CN7;NCtW4j-^ww7Le>nYp#GeSt(0a$t5dg z$#I0Cr`Yp_qj~=(`DYoCmBI(dcF6#ZaEVrKg6YMrJmI=0X9l#e&XLl#DtI4!XV3Nsbia?~E zhsihub}&~3oM*CjqcGWJ)+apye^SdxYpoJE(Pb8xz7g0|E#0iOa! z$e0hD<2ryhU2V&e{s0KE^JSV37S?Mo${b8;<^)!2?WJ?z6K7C)t zmcT`>12{=<{quJsu`8OdZag+_ha+M?yfOAe&yl?VkmF|?qh5e(DMs4{;&jC%o!n#_ zB~ukec%@8k5D!vJ2FdMxZj692HnLt75RXyH#;D}RC@}^V=kCE=vLea0wB`_OCsSpO za0hpTc#KAPy1PLvdH8~PR_<^KU$VMi`{j(kGayDjs>ZhE1fO%Uudo< zsX6y}>inR7^hL&jgk4<+@WV%2ei%S(Xzg|5Y-ybX@PxUW14y^r@yPWm(EBl&3IK7h zV%96YO;1ttbrxBhAk1+&=iE`zC!ew4;4%Rqyr1PObyUH!ZaQ zX@SJKhY@J#)Kv-}9e{$%ZSW3NBiqaExn zBNPtmU~VwlWCTdoYTP(i0mfscpI+z23TWSKOgRbkMe>8 z+zUpy7mRf8bHYNG9|=FY++y864ZUSbcA{{y%ln0wU4ASytY-ns3x9KYh;V|-QNl!* zFAJZz{7G2ma&6tR>)G8~*-F^MB{%W}my?BiT|Owh?eZ%j&>f)4R@$IX!#Xm_Q*|G5 zb~NJ!!gnq=)d}w=Q^0M)y(YszCuMCrEtS25p)TJLes;M`*uWkp={uJH|8aW34o(E# z^fLtf3`MQZ(95>h5hq}vZCb=uKIxLJtlH{F?9|~dL2lCywnebV-Kw?-QML%tkdFGG zT&6_;2iPJ+zrQq%>C!|j&Fj82;2o0@tHhH)Z-Q8*16^{Lo#c`Q^HoaU4$afdf3!uY zQHvK)V<>h)FVe{)l5^VKCRna%M*ci6g9~he>6eZKa+)=zJ=Nk*`}Eb7)-Kjssidvx zo^i8Nk;ct#)f$WM_gszcew)--@qw19)>WAfwJK^H7+;RG@>}(gohj3@j8p6NHm`I6 z*!GS6@c}mT#|PNPy$=fiaWDAIWe3%?jh&4U>}|5b2CwTU{S@H_lOdSl-Y10jTz)9T zw*uJN?~1*JAugMRvt3>+jCVO%c-G~I!VfN2()>Ev94ng(e{s2su$RmI1YUV`U!5oL z!lMlWkGZ!=FF9Mv6wpoR;c`!*>T;AY-sNQBE|(7qZ@J_}YaKhwl?{X~Ty_`sbGg63 zA=41t?fwN3P+mrtZtm+b6q|yaGo^_j`SWaZ+>>Qx9wEK z+kiPP8?;M-?NkI-HW>onzli-i(zYk!C3}D^O~krQa>*(Uv?)Z~D%_|#R=n)ZcFDxJ zd*o$e95_j4!aXbbj?mWY2HdmqW^;^~;|1=`CYB!80pIJJu`=G8!GW#=*sCqC&e@wk zVu#4IL}0U@>`fln++_4;;rjoY7kp$g0;I~lF(cDOmZ@@w`pmTM*Pzhs-Fo+-0rd2vsrB3JPZ{=q(Ej7Yd7Aekc6w zGU>jHE_Zj=*URZvm1*ut>pZ>Np6~C*3vhw!0P;>ezjTXF(Ytt=y^9x@x(;CbQ(MLk z(2q(UBC{U=S^p^i*>!k+Y4~1>j17bv}Fy%7R*;S z(ypn4{|S|EiG}J56mhBR0B)sUnP{;L^8IG*b>r&(n-zf2+~PJVs-s2fixRPu>i~Xb zI-3}=UCdWEUMa0qV3N7@tC-@Q?goF5p+Kg`EVKgR(DZF^XZ-|h7yD^geGVaZbsfOb zrnAC`-OYS;V_8~H9dMwzn*(^UyFu#=^!8rm!D(drt>3IQJT7fb&*y}<^{0kpoDDe9 zbpR)u&MKXt{l3Z1Ljg{79l(1{XR*Vt*AK?X$O|uW9l&c%XR$+cJ=EI^@D$epJk4|# z+jEIlOGaMU+jRgBGo8f_*h)W8CnFXPbREE(O=qzS^&QvuWyHcot^?Rc|6VhHK&PLs zpZ}K;3um|v;Hzig&+-!cl(pB5L)ETl9B7V1;qC4QcgAi=w%ikOJzcJEu5|x~59`x# zj*MF1`K|+af$3Z=U#o7J)h*6&9l)8Uv)Ca!=pC<&SUAje0Pi#1GIpf->J5-~o#5mV zNUFHG057uUD!4?Z)ha^omA<39P_9ujy(_z3xY1+;Cc76*aWC-h>HDv<qn=LkCL6L}72&0X)`pHc?`$=F<-m#_hR@=9&vhGqXz;0$)w0FF*SWgIp%9 zeRa8?xk7>tcbT-#+EK6eGRlN=TnF%3(^;AGbUokO3-A@!0esDL7Q0X@^1h6`@FUj& z{KRw?+qtf%nv7W3)pYlgB-Jo@bz2w`+nj>(S$q=0D z-ciD3E|XO{NtYwcl^%q}x9OEfM$vGo>i`yR$Db8l(seuY=?^A|?Og|OJ=0n2n78#i z6EgC`D_sZhYSUTl5M2-T_5vK{I)LY!&SD4XMm)rC%mN(fI)GD5w~Rf}eDwx6N~XgF zt}=IX0O^+d$b%8$UIlobHHToNj1vnzSqQF(-SA48ZmKMAdMD-b2IM`{A}b)SrUb8X zH@IG=;Yx6#yFon7QnIT9bY>6nGhBcJT?gM$_1@M2YjxxC*w@RfvyAiZ_`;?Vu#6; z3Y=oHdYV9F?nSFPZ4GCnt?8keCD&{jL&7<(1Gw%Nc0AJ0m5E&-(~#hGlhrqcRTP;U za`9;0^D?{V#igzTxaK7-lXm{IJ{yn`3%j`v;OVBbITPDQrUF2Jla*tHX7_@V-J2ZV z;krCWMt(TLbpY3F^(KVaD`d(KZZ=uHMfkUS!4K|D@^jfvd2-XgUapC<F6&h1=z`T0FO7FZA5=vA1TWX(@U4fnk#+t)xf2Ut%Yq}2XI}}S;nRl z^;2LnVqquO0UTkvWo!@g)f-^XxE=m0_QS(tKO7SK;n}etdhYCp1E?d;U4U_pVlGD^ zm!p`=QAk%({W{CEZSFVk6>V>H9M&0KHB#Idde_@L=5Hk_ibmSs#I_H!M;fu^(A zdHM=!zJEnkfD2p)@O#r)>~vk6WoQ%%^)s zJVK^}1dcLya{%vlH)x&V5cvjMb2v(v?lReso~ms(ueAVsyAI$9rn6dzt(dQFJX~6} zfFsP^96-9|&icN(+}~X3YsbPb^*cQ>762}C9l*6!U;ed&*zc`fztbcBSElS>nYs0- z7T2(8RYB_v4ctF6MuTl#2XIZ(*%W8#4d`qcv2c#-0RCpWW$c^gt2e;+WvUE(Xzu0! z{^D-%2N?=v_`pIV5N9aDU)>Gj4C$-MJMt~G=I|TA$4b|EjF!DFV>WQC>i|wRoz13U zv8tEZDv51f2e8MImU}|%pRB!Z94@VygY(R-zmzG`Eq4&;b+|Rx3-C14%|$pr_QO|W zKlG97=_5KfazF*=$n@|5@yMlY0 zPb0B!TD$gKJnJi)A~;t@D5P6%=JaY~&GiC|LyK^7?1!(JZZ5*_V?T_mNOwI~ML-pu z6r)ubBAo3K#G{np-R>r_*Oso$GWFliTFXZY$GN;oc-$og{OWQAO>0e?T6uk;yUXNJ z!pw$SU~QVfSbE+0N$?@lXZxOV9bl~?plntDwD7EZlZgZH}*;8Uiv+J@+pv!VVeS^=KoI)E3L z&SJ-?Z{2eh;5gR-oMJkQZP0ZaZ!f^Mt^+vQbj#Rw=F=aL61S9Tt-$Yv?(Crj7`Lap zHb5mG;!`NVfvy91jOlFHA$or})ZZ@_;4s$#{K0g~*mKNRZ-C=vDiQo%=rj*4z_>jv zah}SaZ&T1Oq=^e$2QX??BC+pVd)@f6w1x%07h1IL^#Y9Bvth?*SQ&=`E^r;dPWqHJ z|M;0F-_O=wH~v9;fw;Im9c#>J9TXX3!LhCb_#e~R$`U)re05{%_JtQ~31sAgi(Cir z=20!{CU$l6)s1UQ>z)N2;!sGp+^wAJRiJmAHJweaJ)pgvb+3UqYY7f@H#kS8^(?`< zyFr{deefp9l8*rPQ_L_~a!vPfx$ETqo}hnpbCdt$n*yBZI)MKg-SU-$*t=yqHK5-p zWc74mn#({PO0wL7(C0bpQvs(~U__rMT+S63DED>Z`wINY`+!X>umb+#vb%7g%WU-Y zF?WnwPPW!6b=~6<%rO~)$KA{5&$}1=>R!NHG*PCro=*uhxfg`)1zvypA~}7Qo|!Ux zW{NXh2XMVsUvv`tw6)ib2hQd^)xba*cM?3>-Qd{R4G(+FqQTKJq9KFizOK)WQDCfp zS+WSkV-(?0?gsG~ML5XDh(J6>F&iU&xqexB53mGPavkY%w(yNh@Po+^4799OGQI0E zIgy>!`VR}N>_?!>e(~_RH|HN|$WGo0=%-e?(oeFiKJ=4hoHJaWBaCr5PPp0SBf>K- zlR_4!`OD<@n##ayDrYs7v;1Z9kFrc<@=td8vfvX%Hg4DOn6+ zzqfXMt^GUg-^y1|AKfxVVQrU5?_brrvbn15g>_set&4Ber}8rDfJzH+o zmPbY`oZ~uxYmEQj*m>4oZ-A}apOfz+nQHz@_|9b;Wm!QcZ&F}GJ3R|z3<}%24&alf zv)3SE*N~|@m}4?sa#~B~s({B$Mu0rI!#!M==b9_LRJh#bqrzh@liHfD)+a_XYJ;6z z2k?H)DF0f#gM25;bhf}nCPT2&IP(^T6KomMio2_oeyVM-Fw|u-dg*c->qA75#H-=a9`|(WXnDCc9n~0l|4i_$>qhur7po( zlOed?z5ge?>hde0?^w%F77lU=2AT}75$<*GYr=ajSGqz!iXqd$y9s-_JW)8q<@3S< zm!AngyG$08y8FnIKQ4c?^o-m!Q>9zdp7d+lMjy7z>==lhTnBIy)7cSi(mTnH_O4P# zM(pG|fd4R^#cr?bJ!QF<^rjvfN@hceom>a7q_5iYCyv;gWx5;g7oK(bsz7A!7TZ&< zqph_HPB2*kXSf$!>0U72WEtFIvIg#TFL>F#4E2u5>UY8~CM%$=6;NGKSlMI+cv;VmM&~#6!x=KR3wCuKz{zj5yhTUJSC?sHrUG$lMtq zh=|+{4!=_0&y+C^9N{{EGfihpMeHbj0i@I!n6n z5`EGmBNi@l9l#F16Z@mJ>ysX+b`=9!hc?OA(Yoty5j(jK;NGUQ5{B#g9B(hc5v~LH zl6UwMe6=ngG*^|@CrpOG1Jjc`eJj0Lm$4dfhU);X zxi$W*6k_LEd)@e*v^E?3VD9Ds7Sv5{utJ;xws$vZo%l)hdPb(D{Y?1MWwN`XBHePU^{iYgn5(jq;H~MMF-5K9(wxAf zCPVPFdp{6JI*4vidLKNSDc)WPud|_qW!F zz@uCyf&1vPzq!IA1W%K`W0}`e-=C6E8(iQzfVb?{a%sPoZ?R0Z{Yg!0$tY96B##k} zb(xIbxuDP4WaNjtxDMdIS7@1kANhvKl<6elT$fh}Q(c1lOhyj~FS!@I<6f}Xy`Z=} z$s(|p$q;PdUeM%T(AmA)3q9Nmc69H~!cg~uQ``&AbT1g|-iL&b-21Jt%q3V$^Hn)u zN0T9_xEIvi3yybhvW&NCHq&fk)#rsBENOKg;SHBRr}?Yh)Rm>pJ%#_KJ{Nm;mNU-8 z8m{5pnRc9%x%vdFFi!1_8{}sjjh|mxLpfD*aF%lR_9 zHN*w31Gu9;{LDWXiT%{t>&7+h!_g|(Bo2i=+znc1_*lKyx8{(@ZCxg{{F1g-X#I<| zrq8D)J#RY7s1$Z`9l(*Mvqd9z2lLg92TN;#zz}mc2XKVDLF)|Nj2(nI;)h}Q)SwcbA>T3#|l@wyjGa(G8w&}E)Oi{k>ofS>&^D-4ZPk71YtHQf3 zKM_82nG{W*N6l3MFPp5==OdT&`NCz=r*xIxZ_20%ws#%C5vH@6i0x>;y0KYWTMkY( zcXI&gmV0LO*X3d63bWSq=9r*QZ*Q_saP?FF;zZX0Tt#1cjJN-Jo@br{sIqnxl_}l{7%^#hcvESZkF$fwiW)*YuudFSDCN?BqIt@0-q6ir8-E zs~d+&Ye~RK=57w)6nBH$V>cvQZUJ-23M4(znj;V=E5cjd4dP_QELr+oJYLNwSY$X> zxWy%bPrFPG#)O617#Y)r6I}=J8`IfziM`)^b>kdqO#nP;?&bh~?QYOILxWxe+Q=9U zwsjrAO-yH_5xcrfTMs&!Ot)$AwfbyFMkct_bpUt2uH}IuwypW<#%|K88|)N^!anW> ztusu}1N0`Dt&%v=bpYFS#-G(q?87qEJzsd)o;B)taUrdHs{%p0h=}Tm`TH;dI0o*O#x}=uH^0hUeR!dw#rqu$0xtjyH zv%5j-3{9F`M_U!WzKES%2XKupEmw=!?lR30yks(ZMR?0)QdTcrE-+V()i|A@W6R?}?9%VZtNbh34?oF!c7a)PkP`XPnXH46#cN}k0|mE@wDYOZ6?_zx-x-mEKKJnNE5H?&OQ{(@H;W|f9nP3e6&PapQpw~rU~<&F5d>i~XeI=jyo>w1Z|7vOiU z1K36{g!yN}kO}&PQ^sb(VXgysi|H&cu_Mf8!e~_U-2Ez5U z$a+n3>e^#1FtZ>4teZ?zU+SJwfYZ#rAmlCIl%djYQLI)EKb zXR)*N3NTy7O29d;1NfZjT&$iFv+b#&SaFW)04_4!GWHeo)f-^z_Idi2_M6IIJsb5SBVupY0X*Dv z%h-RKuigM7nT{FwgU|w@gDf-zacFuBOS*m9`K?rd?Og|OuIa1-Vz)M5y#UYh_9C1Z z`(fO##Tc7-djR*8>3ITQPlP zT87$kS%!3K^K|a#`+ZP=3tR_qM{Q&NX-Dj5)?PO*me$KASU(PhJ!Eo&KgduZ(^rEi^<0mD#CRwGy-vkM%dlm zAkL8PeA8=s%*fbz*vWMO&oP~yYGSuHU){K`v`!~D+hh&=L9YV6&$Q6=9Uw`|GJaGH z#@*8?<_0a&J#KF?fdjmMBRth~a|h_L+27jRRz5Gf2F{YHeh}B6+%HYHYgJ^nDq<(s z0o=}XZdG)>wfXeVyyA8}@RC%awxuj16|A}r;G?FqRKy-`zPj;YX&pq+I`mNaPPFDK zILTxL&TuaniYQjb?w-L5; znIv6Vmql|`+Y8-XCaq0>)%$RnEw9+gbpWq6ovjJ6-DDaP^fFoPBlLAI80y|(0{wHZ z^ZV(tpSi*#g&{7JLT2gP^s{9Y0_V66;LE17LdNL5U0p^j9P2uOYi-$bors+#Q_aW-`k9rteIecGfD&Y!$^$t^+vCbXGjE+sRZA=x?%m zpm4m)WJR*T3V{b$YmLC6E&*en%gMs+F7FcVaruDoh|3p*H(V~?Uf)xdshpjKJzO3k9P9D~;bfQ7h5KDTEIj7& zDd9Pnn`#06Y>N>XY1Dg4vrDFSP*0G6FKmt@&l zb4iw+HJ4=BS#wF2oi&$a*;#W*mi;l8-w8jt+)8zK_JtcLu;z+o*;#W*mi;uBXA2j* zyhfPdlFeWz6w79?6OwGkD=yy=es;N%mWBOM0E@-`NU}xjk0e{f{z$S#?2jZ{bhOLk zg_B&KC5&=8R$v1a%O0|UlI$THD4E=<3kT`jzcTJIxX5(?S39QVJx1&@nYx4Z4@1^A z6uP_ILFhBsyt@nZS3oipeFiH+Z>9#pldMxXM!5QLcf;Fd8Ud`KBt*mQEN=)7jNNdE zyTRDl4JW%BJQTa(JLax}A7VFL{RkVft8k8tA>mc-o+7*(yWxM_-SJ5Ms=174_<)Qx z7QT+%u;D0kgDYi3!zu0tkHl{Hw7IKb$D=*ECLSAWc!o^lOu*$EG$_Bq>)EPS*_CcC z*_F^G=w~tn=eifL3(5+%v<;|&oqR7qKlg%W_kt~aLD`jFF4=gNT8~_o*_XBo`uMtm zYfM&I*=Jn7BCxos;XB}q$r^VtSp_@07aZVTFxb7|Y4?JK?ga<=qJk4lhTtssf|2e8 zzAsg9mwUk@Cacd0uecYmLz*Vo**B$+(BCB(X|f6~bT7Evz2Hjsg8SVI9(OPJ+`Yi> zru4>b)K0DCoA!b5q03Gx>+fFS`@)AVzZRDFq+1DIx1FGA?q#SaUA`bJaG4yd+)$@! zOE0wD&38`%m*@`fV1-1SzwKRe{(4)VD0?cTuLM2E=+`)8Jb++t*8x1lbnXqvc)g>R z5eqxH4&agY5qZnlzgl~}0dB2!y-x?7<4{O9xsw?*DKhR=fW2gTlLF!a(l5Mnp#h=& zEi?qX`T!-^#|8*NoS~EqcBw+|wqEHo@&{eE^BzgmiE?dat||qSGxv68lv>AGj<9Rm znjVr*)Uw!GYoNjURzSgI4Qvv7;{kV3AY*C}#_|P9ztZabfIgLyu?4WJ>i}-~ApUF% zh~3lL>&6?UwbtNfb2kT&Zn-VkFK*7gH~gDi*UR*9pu-fGcM31N{8aeX8w0r zA2wgz_?5KE1Fb`6&CwS;GSb31t^@ek6D`jGv2R+te!o+k`#5Q1$MH)GJy+SW`XGjzOBHoWVyrkt}d6DD_vU3 z+RjEumv)#gFECelt#FgeWc<#$jH}yU(x;K$u6XHF- zyS?x&eT!Ab9>7ms2k;lu+13)f*nD*(?YRk0*X7;TtWzT1?>c}BOlPTxon^kdk@j4w z;rdmibL`ia^wW&u2-g98!E~02*sIJ}H~v9;fw=K9Ex@(HgD$~CG998KBtveAasvb; zpr=Ah@Jd0jn$BiS?8fG+8;_ON z=?2G}yE%Y#%N=@pZE4N*0zA@ma}j#CdLik?N+gwyR{Iq)t;kivH7=9ZlIGG*W_640 zUF%mt_2G}{T;00f*nFy6+*hUoL1gac0G{M-a7yfkWXnybmoBU33Xc$ua@j0+|L`

Nku}#q+^d-N zN^j)xYMx|~l_!L`E|VobQI{8(t2#rt&n0-wWC*;D^szGJGQFV4m?<3QI)E!{VYI>N z-)|yzhPBs?_e*P`!BggL4j|of>!0gYp!ef4Ed+>r6|-LHL+J)JKW~whK>0jp`g|It zmM5&WM&F-Zu8;<%3wEzs9<l(O+F3i$PzGPGYXSfdFnxTEAnjTDIACc+F1Lm8oz9JmBkA1~-fpCS(yM);;pAdd> z*;X0Jnme~7ecm!vz)L10Kw`ZHfsL$tMAFAxW=Yet9A>Qy=i{WU?d0+@Ym|AbOrK$p zagNKZw)9vJ*JqdK$XFaW!gT;U=)>att`mEmOp61aG+BK{c-6gtPPw@gc&oQ=w5z^; zld1dV!W}N}6+U$NrLe^13d&M!`B^oY7)uomep`IcvX;T#ySV#s@miT~HW1f8I62|D zTDDYkFN+MP3ir7DO@lMCD$MtZM;)+OQEe5X3I_BOnFX3I@mK?rezR84;gGSeaE|K$ zzHd4^_Qbv{)3D%OlT|=uu9(uE`T->wNnv}}0UTmFOG<24nY!;F?CkOgfyh=#w>4J< z9AmNyJTQG!W*N(5+|2^ZS;q98X&1E|YpvyrfUtO17%@ytu?OLNQ zsY|W_LYy?2^MH~*fsiq0IM8(fe=?oTnb;#`$^n$hro8$S^>M7jIzM=20BnJr&??Hv(VPkr0X?n6FqHY)CT9c4&ZmDv-KkOMVV>? zOHHQt(s2DW&p9$O!4a+lSo^-^y8vPzkSWuDg#Wrc>pT5~hD_c`!iz576+U$Ny|AHD zDPV7btdhymCFx|#l&(Ck+2$%UPXBM|P#!7FaM@oOPqpObZ1gh8E0#QcGJUP?f%T~z zE4*Sd`dsK}-6JxQLhm}5!%~-2yu4+KNE(_<%bTR6hg+r^HGS%mOuh^?mf>5=R3pWXJEmeas?t$6gocJ1-#Lz8Q@Ge;(v#G~2lkqU#n|sOMY*bx@P3A zmr1jyNqe##$#pU=FM>m5+z@b>>i|yE`?mbc2eD&iI?kZaUUsklU3k;wGGTOI^NtbP z{?p{1!s{-768>aw3aecO2FUGomcK&&_iU(IPbJ;m^4B(1((abO_L%Ud%luTlyfS#f zx<_>Xn{|(}?ork~eFP<=^H)&m-+K0x6W76%U-}2N*C^*wuY)O*S6(W+-KJc7Meup1 z_rV8L<|VC`RY%fCENMj2ODt2AC5=ehU`ZpEwCZxCaFI)fVuf{gv&gKl*1QwWC$BV00@ zD_t_1B`ztpqg5DE>Ntn!^N(_sZGoq?>bDs1X< zOW|~vXAAVtpT)F$h3?NvGNmhgp}J17?%_1yE|*}Y$qJb3 zUXpgTOd;6OWTlUAynD%ifqU!1RQJ9heC~36O{0@dB?McVtZXan;@)H}Cu_u2tWS+m zH+OlcFxVwSO>y~(@TSWT1hVOnlh9W!J=w#D=*umcy}XJeTnF%ip)EIv*vn+vATZHn z^%h}uMQSV75H@%DXJLrTVFIagdv&?`+-%)Ly8qiHc)(-?X1ez=;W?M&U)M5)}F<0qFE@i9)9P2uO8(!V=jRvs~Tf08s7vGR+ zdf+W{HwSQ4b(0&c9%q2-yBoAl{Iq(#Aj`l1(EFitWVS=%2-g98z;yOjYPhbim#I6r z&t&>mD%AFuWn_X?*8%)~c+0&e_Ar?;fgvWVCkoG>ZCg2Cpi^#FvpyC247ENHeO|CW z5q%D`KG98rcTYFqNCgtCw^A1hqg;YmI_4}=30^r8pup;jNg)=$z$uT7MspSmYQ&O2G3OvyM{aDnRpUUO>8 zgGKBIG94_?a0;^8Rw%pNSLmxw^6n$hKX=Bm?&;gzkCdjp^$o$gCMz2Yo!tw%yLT7i zZ|-HBLtP#vjCBddo2*BW~y>qt2CtO0WL=fUVr-4!~u%` z#`;9``KJY@w?M-=nyie4gl%01@Yf4lE+nyQ$+VE*?(mr28{2v+n7ZXWh$m-_rskx*z6}?oYeSx~CIeM=c$#wG1{k8G@tSOZVH| z3ue2QObc9sg(fSX3CrBu=3M=e2$`NCpqD_m$Y1Xq|WPZ92PFSy^m z;1TzNC*2F?x);3TUhtvG%729K+zWm*8G^|wIJr_k3W=x?%esBoftPZCab2}YW%TqfM*-ggCm zu%sVpl#bDTC*v6g+q(|n$$BG}|N4~J&15=|;31RMS;FSW;;n8aoaXW@f&RH?Sk}El z_eZRIjqY1opBmlIaG7;apJ7?|GToTX~V2pbi>Km8e3ctDp1sgR4JDMz0zzFw(i%nL>3Qw6VKP|jsGJIS3)aBR0 z4<^eXIL;Ou>~69Q{^{OkVXS+>c$1YIg^4CZ@RZ5&tHRqZzY><148e~kD{YR~EMz>1 zg|$ppnuKlK3%a?tyU^RceTC2^IK*UloN$6maI(qrslu5q!38EmFxtJB3Rk%VkD3fW z5x#Z_elb}F%h~Y?!HOo!D+#N*1Z$ZLK?nD4AZ+9kY-KV8UEJGM=<8G-}cd!TTbOK_CQ5S;AZ3MaY_ z;34`dGk=Q`J5#1x6g*`zdPZ2!z5$>VGFVp+x*S6EW(amI^?e*_~W%6Dn zEOI$bX-JiOk4>hTmZ<`0ZQIa%&sq7Zp0oBcBi&*nl^N+BneM_x!ZMfHpylh*LCXyK ze>P~k0}R?jnb-k%h3V!1o}*m&;R~jl19-7A;)hI!9fKPxHGbI3baMdfu^;~4^2Os6 z;7vYG5i$woDTI%lQJMDVFuTSEhhulX98Z4nG5y$s6pvoHbo2+6T$B z@BzHcbaM%MY(4$a1!BFuUWD&6@RbwB*obluoCt`%-=TEFfn{@xtod<7WiE5hBpUjfGb z(k-FxM`Ua@jO#At>JF%TL(9=zf^i)|u8wru$T!mS72y@8n;T(VUolr-BlUUidNIr0 z+(_=Y?qaU)bj#VV-ZH%&eXZ$^R~pGAGWROAgM!#qeHq657P$OPSVdbS@3F%1F3%D! zb~#>n*yZ|~{zfvzCTD`A@#w(wm&yOGOpjsE-?~SK33r$*vyh&t4E||Jqy2@!F7Fp6 zYC5VvIS7*MJ!>PGEK6>Jo2gHni7dx^re=X`3S1~~+$4X~GLbFUovHM)qN^0_D^WdH z@_Z}0db{wc%UhJ?F3VK;MPMJbD9Lu}0h6tN`m7=UuAU$CFE2%H$|QqXL#ow|{b+z35o(F6`hEoNO{YS2*7#xY%TQv@q7a;0E_TFTCgy{9v*M zPV8+%fHO_jz`5?dL73!TFwecO3GcalU--sk*rt!}3YqHtT=>!@SnF?iYv9i&%V1yk zf~(yNZgnrX*S%n&dw&vE+}(y)O$bfaz##X6!6w7gh09IWz(kW}aEp7vRQLXC4`q<4 z^vi^CCd1o=!GE{X!LcUGV4{1$G?U>y!Yr4`#&4#@z0cOUI!EvotzM(Wy4e=2y0eyM zs;yG>L*X);WA!GXy_HqnPU!A3n`4#PeB<7}s*v-Rdv$KgM$P4C(O9uuAmu%5(qhVys(Y&0r+J&nCti~XiI(sA$J65LTHwgE+ z1P{2JCCqX8jIhAvo5BY!(>2lMCFZJ-=_Z#G1y5Q554o32uec=Bhc1&$*Xi5$n=hd9G^0N*p6RYC02vfR*_t3t~w)>?f{c*kY3CX1)( z6Bildz@@GOIQmXozw{-F*fs93ak{B#Cs}StS_fKd<#b_;%dx_hE|*jM>ei=1_dQ&m zB`{F#jSrbtwLWD6dsu6_GPJI&R=t@tu5OW4Ks2wZa2M-U1+C|Cm_m=SULlo^aJf*R zL`|u)K#tt(NZ-o>tMobBWs*Jjyd>zz{|RIaUxw;6l8<`;!)RVEZCwX&t!sV3lG8x!Mlwx&mhhy@eCt4S zRfY=_T;4CdT;?;bD;IkSH?-ym5Y1k~x$Xw7E8a)Gsx^m) z31eK|A<$9tpdLEq_L4piTWgfHrt8Jvr+Djd;ZB##GVYUr?}zWUkTJEZxTqw^Q|>?g}S7__T)pMWF6AoZICOn)+)&D*lF&iNLE!3 z7U1JW>nTeg%T&$EO&=Yzrs$iSGL8(K<2r!nUFT8_@Pmz210{v1P7s-_fw+1w z*uCI%lOZ_Ay~zN%w?pfw#k*H%oo<2YOyARxAKBZWp;eTIj#e^`1V%EN51(o?FD%EHe~e!VP{23_7rY*`IH?tNT_!oDsK6$ZOZ&y_M2tb4hg(C9KtS|(|e^(m8dcb6pX=aQtyxy&bhn-XGo1T9XQa(WC-4KFKf`K zjtT&~xMZ@FlzS<8S(y&AJ~fJ8=#uWcT40SnXSz&ACw`I#=K2uys0U`pDt(=;D1LwI zQvp6?2(EH32_JPy()ic{iqRIco~K*>5L|7taF!z_a>Eg*1gn4#(e|3x(;B) zbhf7@-SF-Fflz?$T?goNWzbRvWaDnRpc4@U1#C~S&`a_UnyG4vy1MOwpVsKM;gUw?% ze97J5<=74X>u#_tc0^GnbrlwV-(@GGPyxqe0uYep}+jP=>s_5LL(5D zQ-Z&`8^q<5l5*&oY(%b}BK53d-O3r4!U2lWSp#u~67+7_p3^NJxCl>?>A?kt%QUw}c)7bloUIXFXoFP2 zXc^J)8h3-Z%yiG!P=>uNS&cEya>)==T$1);>t7=k{d2brea^7J>LlSHYfbNaTFheQoz9dUBqhFD&sE+nqK3pu8kqJ_F5}cnWC2}Yr zqwDQw4?V654(I+ zc+TbP0%PR1{9s*9l_hf{`kCA{>p+P~dop+4RVzr>0S=`QqN`?s|bg=4&ZC1vv*F!o@u_iainxQZ!RvBCG$pKnGfJ%f{ay! zx5$#<>C!W0X*MnxJ_$hoUO9})DnbU(x&ZRAT<`&R1G3^yvgcNjxy8wfFdi&j#mnTo zL#9={U+|>qDoz-qvnaE(C{A=8z}cp=RqVNwJ~NjQ3wyf`;QBk;Hm7e&h#er)sNhnQ z)iJ^>myZdrn+(C*?tNGI-o4;w_x>s{KyKD&$VCb*%85xcI=Neie5}(Uv(q6Ca~;5| z^bS<9X|2RQVC{9|m!|at7h>N}h^-snHr*V+g5{_iJH`26IrhWf8>jB$6yOyyz0U!0 ziXz-xCO3#Pr0*7}G|mvf>nuYE;tZuMLzv4@%CAeDp_pZ;3OT_3fur+jiL9AYvA!`(~w*)G>sS1QpNW`ayilB5(B*XH@t z50h3>*Eg(tME52OjI!<#-F-gkXVE1+Xxqs+tFXQ60P<&F^JkUVPBIk&PCXD=J6#xk zkjcx1*@u{%BU~`hBaxc(iYO+je@wj$1SGr!f`pWDc5Pz?pxV-?6mg(?PINb53b^5wHmfrD%far3N6It|m>j#|UG4@;VmAy1STtBs3qfwU zjjc@?92vVIYo*+vr>}ky_O<0JgL$zV`l^-zM(*Uq=hiM@ZBDi+RzW=T61>sf;1QD{ zxY#CMWeujd1kalc!Q1ZLLi4*`rsD`$1)UA>x_beOATLNwc5iRtQI{N^ zwuf3?(9vWBHn8=n0$;%p?BHH-pve%N?_R)qYIRC*sk^}jS~Qggx|yu*B%JPYtT4{y zL&9vAPYJ&4>07s9S~1pAnGV;w9A|4&0W6@r?ESiS3_@_c$;xoy1(yqiS6wpoCv6o% z@RrHSA)0!#twLpi@Qq9Gv&nEd&4y#8M@zOK>AiJ_4!~P>7eo|$iWM7C^C+t@qEO$b zh+;RiQKOB8-Cd3nX1S!oHa4p5$VeMCVr4m!xv#skbt!jK{(sp})}lQ!C)dzWT1@ zGFz8$byc^iRTy&4IpjLv52?DJtiq5Ax3{vw-oig!QtY)ZKNeQ=TGkZSbqP9{tbmQ( z%WVE>GItI`jw5GL1Me+VO@^Gz^WDqIoaT~~$+1*ya`(TenRK)%RK8LzelJzP1~ya` zFtW}IOZj(~mk6w*yzJ+lexSHLI$Hh;4J(KyMoEpNmS>shXdv^}ic=w;yz zm!#UnRxx4~$Jr`IJEf}_Wvduvs~G*J#q?E-)=gJ2eH-zFG7Yj!wcV6yPnlls*PEox zl}Vl~jCHx5HfvMcu-a&48f*JeyDd$ce%gMj5^ipp%G(KjT%ND4w_Eq}Tf#3cA5wYG z*nXFPNGmO`p`@Ew{&d4QHJ-FeQcjOfLzc9fC9P&jt0d(hDVC%hq}(C;S<^4t^wWd= zHkXz>B;yxWX4-m-TA%g~wD=^_R*sAx#MJe(c5OM^wQy^pi_7FLI_yS$N5-}{zx>~5 zc(y>xznKv4L`mbVXVuikYZf=zOlp$_wm`8{1;0tsomfY?IgNU2vW=3maFRWQcvJRQ zLe@~;M+Igq$-T%LN-hy>4I9e8Ncu@C7c~^isenHTt+tBW-bbxwqgEL;-nDGhYBp*$ z8?~B^T4mID1G7=9jM{21Pu2}I-0r0s$CyRbqGWeMx+uG=yd!NPTjzmKl}xmX}93n@E7b&Po2xS@}ex`YT2Vynt#}K>pZd1yr*Fs#yWm ztbl4(K>h@Ae7%<6J3(itmP=*1-Puev?O}@&X5*x1Wq-Ad@YbxLw3SziQFb6x*N-|_ z@zWsL;W7GtR$a#HFdXYTfbW>jUWbYOKl9a%Z%FHD2L2#4piA6d$`2c-D#EucRSm?U z=@;)k<=ah0g|N5l0G?|)t1!~_aG8!+GSU$JSjtct-Qh6T0c_AuI_2MJ5POzPI{@weXvRu6M!`4MyA>ZxRC8GCSm*7Q{*@*g8 zhM_W>nK;aK0LLBBYG(4CBg>twA-X)zToup|(OTU`Xj?PcB5OczI*ZVup-*bm={{cuS?kB7td_dJjx z$pcR|t^dj`j)?uR9{Zs$Pd(X^25S7qYb-z(Lp2s5D-thEm)H&C(hD#yy_hS#kSo1N z>2G-H1sIoJ%#~iCbe5T6;l-xw1sLyU`c?Y(8h<0@)G^;upajX|gi~E66Z=_n`M~Or zK8b7AbCCEGEwBR4GFb*=Oh(i`)g_>Oy|)L4sCs>^Ru?{Vc|w1EjxLjz>2Lrfli8>n zlVLC9JzroxWDxvBrEdm@D*sp;D!fj(!DPg!4K`G`xv+;zu&2vpu4`(7jIIS7%<#VV z&4Y6bnEp{(Rv_~H%=JN+CDqRyR9=$wV~ug7&8|iss@6)66}f{cwF?(A3nGE`tk{oKTbmG%**Z&HTQ3ssiI)LSA zE$bk5uC?puKg3(7S{-1TjFKVUa?hb$uL8YpvtAL1dlj=@E$Uk2V+C-M4^V>Mt!{(u z=rxw0*PDGqn~~!jMfjcNYi@)mSiX7@#$_}nW#~bb-pS;6!TQxpFdlF1+<570Cb4gL zY$J?gJLF>17tPN4?5+Y7MjI)F!; z&SDpTq|eD^)Bu;d4&W-SV&};>-`fjtf$IQ%VLHn@=2e|-nVoHMtm^=Fc+C$=awLhJ zWbOL(dhu784i8vn?&bi}EqA8qb+oy#V9U(%l@OQ*wx%82trcaiHq} z?qt7Blg)zIVb)$ZULdWT8QkO&JSXGe!`IvmK8xM(2X}*&;xXV_{92CwY?829?1o#q z8~i~<1uA>S5=S5|qX<87H;Bt9!WAuX1mZG^a1(cfxQrrX?A+6Aq7uxNCEt)?jvwc) zncNEMlC(3cjdRyqOOrBbPqzO$^`mCJ=q0X(i}cWxae81|*8x2GVte^WKX@W`Lz&hQ zj5JxjSQzK>I^i{!-w3_bU&rWg0;zH*D$7(M)6Ui>8ZKPmlBCzTOe!6y%hSzOA&>~Y zoIWjh^7M@$+5R^TwRvFr)FUHqov1;##Lehr#J|YbU8a{f;8lj;LibX`c$eh)$mJJ; zkCeU~X0?}JQR}A`SZ00pvV}>vW6X(qRh8MzERJ;@z{i_gZU?b@KaWfY4l>M7H(F0;Jc94f@N`&84vgF4mVNf7%(nVLpHh zk|qJ@U2@mxzsk~#TC((0X-~#ILu0&Vd$j|kH7#5Nai4!lrPC>Gd648!EPo)Fw4C!3vmH} zB6I|qR>3mWShZ7KCX-XLIr1=EZm0=!^#)AFafK6I2XOmm@n`Shh<(A@>&8E5FAx{E zr^l84-JT|Ay$DB})=##ISHymJC)?3MIX1}UA@9|8?Z;<(_1n|(_%%7n)%rLMQJ;K$N&Z3d zpC{9{Tr0fjazkaUPZNIKY( z)>!CqF7FVYbD2yd_vS)>QKF%ZjMDGRt*XHUbL&U-#3$Sh zo{rscvAe;yu^Tc-ZtA%)3XB!kke;|)dqDg3GQAH6aSbK-q`N^}LkTW%H;8K}Wi_O4 zWpZN_8RG`)RRi%DjqoXVgLsTa_>H?kJVs+SM*601D>Ywek>NODwoCed=`!n+zL>A4 zmK|i;lR>azkri-E?1rAU0)C9$&=)#=uQBfl9V{6e4;Q!&;4e?M+<0P_SbN<#Tf|p8tY;#pee`j)KrJ{1> z+-WAg#ppp#sga|kc15&iN}ph1sgomE`XUQUT^hmCw^&%}wg{FUPTAO&YKW>KeT9Xk zu8v@7)zlkjucBqD@LHyfYN@EA71AeKSSqS$h4exTOGOo}kp6>(rJ{;fNMHQ48EL66 z5jvqldXHxeEOk2~So(eoOZ_E+r9ZN;)Ta?F{VUU~YN@G+j7ZP5u++Q=mbQIUEp=@K zOFxF-ic;@Ju(a*6c=b@1?L%{Pq>+xA*iBkg;ck+tABP|;dS}zr+YzF7q11Asy{P+a zgy?ao1vaWiKV+j1qttE)YV&#&Ky*)(8bb6Ulxj(|3-zUqevPvAjwi#!$R~N5rjb4x zVL6c6+SG7lKa>U=RBD_>rEFzKN)0r1895kLZ=+|UZn05~o2|>pT*t*5ibnVhL#%cK z;`O$-1{@CQTtkc(&(0P;gF!U;q~Epia_P(k$%`oBeu~fzsc%el)c2^(VS3JASq-WZAx%4fI&4i1uDT-Tno0$kkkGjLAOV^rsi_y15 zxb(C;Enm9%Zp)W$xX0qsx0v{>a_OfdT)I&Cy>2)8%A^O`aw?>cx8;;ckGjj0Qz8AB ziMNzVkGADkNS|xVDU-g%#Aj7VUuoLhQYIahA5VI<|1{G-E#=a?Q3qT>YMzN!OZB5R zpi=!!v|9E1ka~eiePp85pQ8FxD^RHcCR#lh^^8TO{)VvTrKMFJ$ZiQ*z(_oc;J8vR z+US`On-Ne)>?Gv_lR8rBV@s4;!_<1@E~o`Is$n|I)NiDU{J>Zm`7|B#BH|gniIite zYPGs^I>JQ%KI%bl&SyU6VhbV%liu3K%caMCVpKhyV7fPAD zZcv_GOzKFf7frNU>P-{PO1*1QS^CySrDTnwaz^6`m@_&;M&C2UG0Og(jpp*iv#wz# zGYK&>2|d%s%cVb_n{24K3r#u?1V?|`Xxb#zg)rjf(gSB1SZW9&SX$P+9{4cIMN_sQ zbw`BgBamJ+#O%wcf7+#CuJiY%Wjs zCit(JJlRgvM>hI3%38|G(owc_8NAF!T}9eo;w=!OUXy;r#>=JOc{$l@e+7Hlq|cfy z{T@O~r6THVXLc-ECm|$vpkA_3mwG5KuQt%A-=bcyQITZF>sk@p3^d~II5pn8l=`qq z9r;+C8t;ljfvQYu_CS zP?7p&M3o+CVW|rvSo$IhOBFIKE1b&8q|Y|-SryWEM7VU6FJ8pG3YDv3YrtW|rPemt zW~HT@Ei4sPC@p=Tg{30HY1f0E;R+dE(@?9WBE#LJTP!RU8SW;1zlEhD!||mt&v06X zhZ^b#smMZiX*E`#lb|9C@wMC0V3SR9R>^nUsH=GP6fUJ98cyj^HeN3MiizijUfl5p zYccw$C|&wAg!M$~`UsYO&cafKtck8M^s-eb+u{h9e%8ciRY=Q@_@2FZY`xl*tClLy zdspryS17sOBxj|fc65_|!NO8eh2x=+h2sz^kd}_pQNDN#ypqdR1Ete6*KjYnLdl&7(@!d@SU2ha zSy-ynHm#eqH5MO%Wb6b)!yz5jvAeXj){>Tv>KG5xX<%<7c{$Qi4#x;r0SWPGK1{%@WNS|us<vH6*By(F272Tyr zSy(DE++Ess#R#t}V#ht0vbmnhrpcu7sO z9IcCJ*rnIE@p9>hOgy*th`X)9T8!R}I9()lg@I?4OJ8YWsX`XU7-~zI^sh~PR)zF< z1Zz?kM6mR&Cf-seeP4u2KY&1&ib{z`+N)=|>Z^1*!g;!vT%qJkO!6qHs2Sa)@3F8{ zRBktEYb@SHWNb%7qbnU%y}Puv){>Tv>KKpu0I*9DM)DTaVjImB5bq-DkJ%PXXEA4Jr5F|8%c5RHt8)!e?gqNAhkwBl~y)yig>xol=}gb zYn0Suh!$z-mn|$68LN=q&=?yfwIw39^wt)ZifS2;qgP(JsjZ<_uY!sUr*pN8JM7Pt z`<65;43 z^|gU#l}jrda6Di@QLZxSml51SD#}%n%M~|I^@?(pOaIN}%1TAK($YU#SSqS*ymLJO z)@71MeIF%z?^<64k^!%yI$1W}M$FcLe%Hp!r4Q#+<9CI)KbZ6uqqj4so@%M>BdYWm z3rj7*LYXY}GSo3rk%bEBu@;t!EX01})uCJ#$_#a+R78#Y!lPD*x~-v(l8OrJCS7e| zsmMaSynjKiz9u=IiJ5AyS|RE$>8)+NT>51b&&@<}_c2(D(H9ZN3GPJQW1|nCo<-El z($8C1Y6-^5WVF^$M@mgaH07kvvhV_w4C4P%GUlz4Ud75~YpzKiC8f$?D=qz)g{7iO zrgO&PRnjw7A!GF>S5_*@)h(AR(T`Ezq@`~+xyDFERp>7LgoULdW8HJc;@Rd^p_`0F zeYcsLjhBMSn&4(@6aoNTFz@)bry)o(ZrqnMZs`Q~2mMUc7 zTWg`r%T_Te$BjMQE3I6meuPkQsZULGgj6?ESXL^kLt47V!ctKk;_2Yot&m;ShqXb~ z+0x|Vp(^;Rjk=~Qb(n!hs$ECes7qa!mpu){b9(qfo{b)Ynqs4lSjtOV<1tb{H>p`E zlMbTMlwRM)%cb|@)TH_4>LTt=CY?Ld z6-ggz)61pzG4WYx>9ZnS`oaj8ZjW&3zel)qe^Yi#xpY*Icsx{(-3+&-Li*>np53G^ zH}|Pxf6{M87_TR+^=lK&N?mGEnp~c(c&R$! zINHC6&|!v*O{KF3YoI`N2vz$4Re(8-)N&QldB&sbk*~^@VPu!19dW+HD6Q>4J>oi%abRPs*YD5G}PqeVq>BAY3X?umbwIy|GVn!&g+RLd6bH6 zw9(^HVtQ{l8rY_fM$}=_Gi{uobMw_K4rCaO_hoUH>4z=+G)e|pRi$K%s8nP(_9U-j<+A&x$u&w!l~cz^e`R4Q z85AtNwlO?PDl!~*qi486hHpSP=}AQvy5*{t^{N)XLGdi4Wuenp7$X%`t-JI$7M6+( zcb8trRBen@RJHgLhG)2&47VB!Bcvh=o8_uD!mC<*=I-DUatdY5) z7x#UW-eUAe#96YX4veVMqY+@KC0HnvrD{VRBQ+b**h`;aVX4SMJj(BoYfY1!T_3fT zjY{=3(UDU9OmvjgP>V{bZaBTv(I%ReQh9ik)G-!y(?{*HMn}lft|oQFekf}xZXu0z zd75}DdNQK!ls?tQ%cWm5@mzO`dxODRjJ};XGfC<$1J5d#e%8WLOR!KTOLrLR7^%oY zg>;97r6LP)cY1XwmxU-j_I)qCLg}{|Q=_D!61qu0V_~VtLhSqMnG!@jB3)|Z<{5cYbbws(L}$m<45u_d)Dk zr~&lic0>lG??fC~@q3V%tQSittz4xJK-?{F72g%H_r&eCpiD0gK(sVTkMi5ecNjzA)BDoLlHKM zTx!;)+5hBWn8S&o&dK-I^$fQqCA|X@-$Pk1hL}XYUWDG)Pt=RaQKGa4B+jW9=R}Fp z7y5~MQK%jpm<%oD(mhQE{d^F=)r+VeX=xQ_f5%6nUPMKurEl>Q^MRria%*A>`U7jb-&OxThCsw)1gC0vyxIs>IT5_Pp93Sh$K z{NDj#dPu1%IH0T?X;E1@%SNTFrIAvXTJ#FkA{%`RwH_5?U&<9#?V9Wz(YAy*$mAKL zq9)m>iaOOsrEICDsLL#>qS|frS(KfBS*dQO)G;bGnu>rXwDbRc#Cuopb6)ObpzIka z+azP=6N~cSgp>I%hIa|iFic@1bM1=fh*JM!Gvrd2X^x1VKS#P_Nh`YauE^@#FvZ;a zT`%@Gi9BBm-RLLkMH3=x(pnJWoO-bkQKIxEexhFdD@v4JojS!i^`cNEqlsKDE$@jv zT`!_argN2yW|vpVbQ8qu{G56b)gvt}e~-=TMO2S?0%`Z$3NgD_c0rlqJDArL$7@wZ zi@Qr#b>!aewc-utwdE^5+e>dEuAVc$6vm!1m3i06^Jld^|N9eE0BzK!zVgns-NgNdnrJHbS&pFq8AqNAi#2PUzMZ()pA1DJ3( z|1B|wo(K9GVM;2)1|~ziU#P40u&MkvVK4sggSaJUE^)25?zJ|q7Vq`OSlkS8=_Hw; z`YSI@c^zddJyLa04p775pNO*&re2Pi6>%d&OiU`5>HkX4duY#;q;n8AmmNGTF4p0x z8h$E*xZv>0H}*;$_9h>eJ;cvG+xJRk`6}Z@NCQ9g-uhL(+}X;_J+48&&S$`I8_wq2 z`bY-ujYubNnm!rB*8y+jrXon!bgo*HzZLy9(tbGa2oV<+P2=NkCI>4)K!^7nYVjk38o^dDo>cTquVBd>mI2k=pTmwuB5N zz7OKU($WtgPj!^{U9=0u@akGVd_f*TR;|nNi{X>torIi$oQ1eh40qgSxDQ8p&hhds zExkK++6rk#{^r%M7`_Xf*+`l`+Y~vGc$1fJY3a(VJSwY{{K|U@;=k7UlyK-x8T zy>=GE&xZGVWH8*lklTshsk~8GTDtNokIL$cDDT}~{-vc~e-Py(T?g}orYyh7AbuC( z!qU=Tfcq-44*4sQPU7!)`InZy4|%dk8}c^dLNWYt>i7)OK7yaHGw+`x{tDv4($c?z z`yXU&@~?xWkTs;Eu(b3Y;0{2VklVa`#c;O{X8UpjVI8FArx;x8hvARl}9K~+4%6B&inBQBgw{B-0jQav!iA+OWP`xfd?nItMTu}Lwkhs24LNWZ$aMcF2{XIl&S6`^@ z>I=19eWA9iOtrlVQJd8VF03d!-R|Sd1BlAqigH!XJg=NLsP7kutB=yoN1DlVDdNJi z^2V>jy^@ec$jyig8*DHvwH?yA4G#+F$t}LnvypP7FLLA7q#@mq0m$=P@w-!`328+d zdJId|qSx4hwF)_PW7ew8`98{lXu? z`*Q0%r2Sa#eu6Y1cOlLEChZ=i`5NXJc^Z!4V>|F#_J%1)8mUIwPvbmJ8MSZ1N7~Nk zr@Kh)eD(pPfimwws;J8uNW*)a3;)5n;dwqAc#(QO#&_}`Cm(Cwe=lU5Xu}IgioIe6 z(tI>H(s3SskKNW^&_77WES@Ge2R>{1b4b@sh}L7)*k_S;@?LW>{z017(aL-6x{+Pm z&Yv#Y^84dxKkZW6I=fl_s{MAa)SmQj2kGK;&E;DmTIToq_ey@wEJ2K-^-d7_o6vOv} zI|kVUuJYV<33pvUTv%HAJo284bRZ>Oz7}3zj-Es2G{aS$ zlxIgT-_p|EJZ_rF{Xda5=FELa1Ac!GQgsX8cSYLq^}iw=$V*5kY40PI%*hLot{eG! z&hIH7*%WDJO}H3oKu$wyv3UbhOWu2scJjW0)PBVKKBOJlgr9VG&F91Mb6Ib8;Krp$ z6S4v8MjE{h(zXuwc1W{cVsko@LN-A%tO2JY8Ro?KNY`52(VaCigRNg8&0zN;*&F!M z4$?tezg2sYKO>n>`P3DuB0dA@{A90GcV4HW^`)J<{}*W{?YBs(i}$`?P;WR|XF6$9 zU)GZ@+N5DP%rU3pNF5ppM_Eo?z9y z?r3J+pr4!RpHGp_v)TX7!FRYucG!IEvaV=7=w$EO^ex(dHNUoNrGEJMdY56Jx%(F+ zgYRp;rtv-Be+O|b?|9@zq|>{uR}9}8+rL7_BS#=E6vHd`;JpiS1TqD2;mlQeL>kht z8V^N977)J^abaoc&VMs~cwdEN=(GKi3~fj=7HR4>9jSbked@KnQcdiq_aRyK;ggWg zb9pirI)fa9G$D^6ZTQ>y z7xJ|;WDasF;=*@~(T~V(o!n^?DMyAN{{t&UyRc6s>n?HEE?h=js9O;dGgRSk*9i+YF*%SY9q?R=C_eZjb^6!nfu&g{+&acQTn zh^vRQH;{F2PhNEcE< zSq-gRzd{<=OHTTVb&5KwU1_98f%>*n=2J*Jw%IQ9OhH^&)^z2o_42v$s%Y;-Bu(1mNb^~o2dIAsb=?Kr1;@|4#5Fy{g&6-m-{MEI zGu@Yg=X&2jbzxXC*fO_f8*2bj1i@H)@l+Pm|l5u_Dagt*W_ymTmQ19Ac4!hOea9zoK_ zv+f}-T-?BOU6EGgS|ko9@#HpS&n9dkF04D1enmD%wnSX`ac3S&*NRwIVO-xpR^NxZBl{4~?43)$abM0j!@1c#avkDAGw}t;!aRJ> zKXAPdIS3hzxZuX8?I6w}*>A~l1jdU9@U@5!2uG_lr<`Ihm;#?6$`z*rn`0(b-O1CHk0!`ieZXT>JC ze?+pReM`T0aINCfW3YEJ<()}A@ZCA&X$7mpMl)r-IS7Ad4*wR(WV!Bq26h=kl1}+2^Nr{+2ouKLg!{ zY>I4)xQBS2d5wJpqn;nC2NdergPWsWXp7S4=hnTv%3~ z##)cH)bktlWY2vNjlCYSsAq1vCuZuglJbFe>Z&@AL*xVQk)e9*rhGt8qLdG4?5hwx zZLtF%a3OoOeeKH2FK21?SG1kgsoR=}dv2s_Z+<=Wn9~QncJw9Q9})j9q$BE=fnasZ z!8?LH3lQ0oFR6UlbYW@f$I`DSAnI2=rPYl~6WE=I3(Lwo1)tE^xo3OI7vvl6`IlM) z!m?cW&AFOY7?Mu_t1siiI~Z@#^;aWtZ` zH0NADJG)Cu|0idK50SQ;xK?&EXI0|!iGPIt1aZNgiyGMb|A|zc%llHKjn7ElLiE|m z{6Em1%V-~aO()otOYtFm>vqlvogeZ*vX3}N6Yt`DP)U3wk_O)ysbcRRhqSWSuFdNX z_IjNMQtbcQ_cPn`_|+Y3-uG^z&wtJ5Sch@0;dM5mqGO3k{y>eaW=AGCc0{h^1k>7i?S(3&2oriZBM zVQF3e;C(8(1FeUgxzKTzePYswXgyoWg~zy_sfXe0h3M%zdeTl6;=l~<3wX-D)# z9QTAC*^o^amX+7>9OoOP?RkFSj8r1KB6|A9Mu-c`%By{X&*G8RC+QO;gY1Cl`3%<~ zE-Wi=jlb}{MdWNmcZNR&(Ou|WSX#QfTfDnJyliwuHe}OWob+DFdS;!}FsnI0;p=WglQQ5w&#m-#%3>jr7YL=RBW<3;p{ zkW>eL2G+rQVcnl!H-6WR<#n%a-3Hr*u^-#}y{4E8xO-6C~kL)~sr zchp<`w7pWgN8KHW?qsIBn{|?=+fM0TNxBbGD{a%gesn7v-JGVAG~HH3x9HGqIdm6_ z>4(5S+1}+qKaSV$^!3we{hV4q+tp8b^&?gNm{dPR)Xxj`6G8oCPrn<}FTq^UFQ^Vf z^sQ?BN=Dxoza4R5Y3ZXOjzwI4mv0>+`mVbB8AB^^{T4{}FGQ-4@rVmQmETH6*>k^5 z@a?E|3lV(}y9uptbn8pj`nI+UDsNeMs;|DloyL~FTQ0kNll%W~LZ69~rqt6K^~Znz zmr5N`GJZy5-#-4(q-yFK>*r2VFR1C6)G7tqUsE%Enn-EKG3;acpNWuCgJ>+&m&T4k zuHk=W0=W$&8zH5sJ``@twjEzu^6)D52Tmrt`PXMcU1MGJlEhRgx${GxaWiK+tc*x$ zNx6F&Yu6h+K%(9_=7_12rX8^(y)v%;h)L6I&-|72Ci+NiDoxc)AE)1-rDV@o){B&W zK{S7gexG7_snn;$I(S*E4@ovPuf?qGAJ=x9OR3Mo=_X7xc@!R@c%3<0am1 z;N4bpy&+^2$TdInk)uF9;WuwNk2)D->n(ib5|GRbrQYcL7UYt>e9rwKj|}&b=Rs~f z#791qomW@!?0gM!z+|7Z79+gzG#}X-)W{lBpV|&)2Q=+ zfdguDhyezrTKUnBZF|k^$#4esZ^&`R15oD-KTe7`bn1XX15;^+D7S93Q`X}T`Sp1j zWV=Uwqzfb+TUJZ|1CogmQ^O$x`c>u-YB*%TfK>aoap}}&NdG~ps_h&iJ8M#rRaxG0 zJ--#m;tn6#6{L2mU+3W<4Kbq92lpQ^uqlTK7}z&el`Eb80UFYrX%(>Pv68OmF_{Q%PdO4)Y3#Y8CW6~9P6f65#Zh(Rr;lUDNNg9W zv9zM|%c!4K@x0*LWjQKKJ5VyXcBwU{p9|TE&Iwg+zbM3sPEF@y-qv~MoVtdf%BgA8 z`LM5w*IBij2j@h`G1a{cq%}rdyR03x%Rk4O45<~}F5N1@wrk>~uvMv48#R0(s$rqC zmTGlBoNK@F=f$%iKl{-l)>B>sIWj`51AYeb`G5ReWvivQ-$98tzcvQhfDw=uaN789b7K8 z^izH>h~az_V+mzt8>BYR3FKJ96ZlQ27&zNG#?ob^8Ohf9 z;(XQmhJ3Z^Qtkqum_Y@6)mB@Li9)=##B-2?Szd5!O9Ly443w5=7fJ@Vwy<49{ybyS zvI*@)CzQ zAG717aX+6MHLS?s0=8>r zWBts=nuMd(9Jt4R2i4T1uIIpR)`TKHb|@`vS|=*Y6mt|vYXWHmN!2-zs+rZ$r|*Ei zeKRqlY)x=#W5o5CEnPkK1{Nn6`|h9XvDk9SnJy{TuE#o^XBKFM>#?S_U5^b8do|iU zbsvUkmzi4U-dabc)d(Tpxm{W0;jR_)ZdD(u6>-Jlh-*b_UDQ8?IMM#Tq*ln_+3IJ4 zRB4HRt{;X=A`b2W=SO^SlYn%6#97mD9^`*$stt~9sqE|mCvdaWeUY8DjGe*!4>~sW zc*LRevD2IXYz2AY`G~`U0%ueHhxK_k;wX1%NrwMnSzksR-i*WP&i}B^DK(l)G|U_GH>`kb0c{rO8=f?7*<4lcEx5LP$7M)ZH_8}bNsL1_uwae*M;kVjbG zxR|coGGNI! z);BW5!urTJl(ID6kVh=dH{=mZ^Ns0L!TLu1j2Y8sB>aNxsa@%x%BPF_hB#y3bln

P0Z79WK5`>S|D&Rn#N=8G($?&Ao)+?ykGuoYaI9Umv}f@C6=cFuzMcPp zWZL{(8!~jA`}jyDNb{vWvOh={7ddjL$|FEp6G#(C`$3MgGSw{siCP?;8<@FXKy%~A<6I`IM#o}xr0Q2ys!!Fw*Di|98$wIbAUL;qr^D@j(Q;( zvT&@AiL*V4VVx(!u|6iwS#ZMooC?Q!oj7hqOO|yV9P5YTXm1Mllt)t8D{If;`D=)IMx}1Tf&KFQ%Tr=B2~hPXKoRW*32W}s#i)&bcHzF zyR~K>K#IJtw4^@`e~(x)XwBRe$gY`6CqrJ)npp*A*UTnjS{ai;`>9rLyJpTMwpo&( zSGa;c8KEnw&!a)Q+fUDjW7o_X^)rvGYpAc8G1y-?htZ(g>S&b+tGiP6)88|cbOG%; zwLp!yT2JCv43S+o&Y&lD4%)AEV<;}88B$j%_F z>T|7RFy}E!u>PanH(c)IKTSA>^`EmCetl+{4Dz2XL9PGvATgk%JzkRNr?*oK1tWJ)%7>tZu4i(lqmV zVP-RbA3U2}jYs+W;Kd;6J>704%eR13B{+*g+H0fn5+(I#kXk+v$nAq~fwU$#UxH*t z`kV?nCY$w<9w6xvJ~9xb)}1p=SqFer4)r28JmFIBKBKrvtm&WFWB;ap{$;dE zgw-{6KZet_uUkn3m9ouLj&sP$SX(MI9;!*nR`fy`w6^TEi(6aNO$P-etu5OypmuHf zD|Y0Ox!~q<8;5c0tIY*_Xft}l_Mz%?5{?+|!n*?5J``tP%2Mr<;a735ilb}6AxFM? z1(mVBdORF?QZmR_x8BJ4>ht)|J4phspWA)g&?V8e54JeV~&qJ1JXOOo4*5+N!VF+-F(i*AZ-`;cKQohZIyH z+K=)%b3vLC$U>0j$9&FhLRx&}&mawxeB>>V+VMW}Z;*5XS&wDCeU{JZ4O07zLuzI= za7DOrVjFI(bBmo3dx~?sk7Pj_68$p;q$<(Rr-{Q=>)iS0N|4S+eB?HeWY7N@Bz2GD z)XbV$Go!w4LffgXba_G}l#KHPb!zHuM^@u}-MW*HYz)#- z?<2iIGN<^+P>`<6edJ&eewy#~*f@~(M17`$bSCUHfmHt9wN!P!1SHE>Byv4}6G&IW zHy#DaB*y)9kj^r{^e&LvfBJUH*wSkGgwCvEDk`-uNQO@ybI4{wY8_J3P&c7wdP8HT z&LPURo$QSBk-i}M1T$x6C`d=5&Lcs(j&vVC1A`E7~*vIV`o9>@V z?a6AC4B9U~XD_t-#cZt^Ndm9xX{lYKRMv(;x`3nM*fmNVHmL$(f$W&sRGf1c9J`K* zLzVHH{O}4KyN(s-tit|g*D-Ov%r{|PZ!L~l*~HP+o-phS$F6naY!wnfYT($_PaL+U z0%0y3yB>-&pa6qC5RP3T#o4YP=K*odnkmj>aO9)O@Dd!mii)#pwA&>)-@&o#syN!k z!hYVEp|&fnI5<)&=|1i(QN_M&W=hF3Tp&0&SrD%VV#lt}rYwwveN+v{uGr#?A(yT- zB*P3ib`2M&2Z>>wn`FnV>f)RNCoF3L9J|hoQ}~>47aY6t7w5bnJ7zBsX9SfA>-;4g zyE}+;9c|Z)O@<2k&+ZQ5T#cR8lLTJ%fn)azarABRuwA>su{(%3cakgYpM6!9S;NJd z!HeXW0;HDygToJR}Rr#l?G4~laq zgO!1o3HFR41YCc{)XcJ~w~OJe97=fJW1sW?}%&hM8r z!mI1y*d11!cUTmD6L21YWA{OEGNgz8^Aa4pGm5iyK~9&-a(lP=1T(Z#x-oTjyKoWC zhH&D&+teo<_if?Cr-CAO28mNkeW`6}5j(@hsdF3}P@wI4FVh`2*GS?U48&Ms$)NW# z-}08izVAMyGL;$`OnAMQ=}wm@p|s>h{E)xAp!YI!f#nf=GmY4ec?`b00jCp!eJ}F? zG4b*OoBs{e*}j*#Ash(kV`zKwOxqA3XC)B#4(Jo?*>^zWr%!F*7Y{msO`1M!W^`fm zT5{F8cN}5eOjRF&(_ZV&T7q5$=}I8~6;kJOHr+(y;uw?o11YrWo1E{ zVq|5U>(*j+GHi_L#De{ybKT)B?p*ggF4EuB-2bO@U46!#>lR`sTsMAAOKs1qES}&@?>|}UC95Y_x>_#F^nHN5RW5-mS zXGrDnnitmKV{|*p;v7b5*siVN#N%F)ffLrJADq||if}aFUq|eGZ^w>iQ8H-0?|-11 z@57l7Ba;MPX}*6(6;#vGlB@Wi>}O@reD5N+o$tdz!gguCKh7}O`CbJ_vAn>1KZvY$ zzPIHi=B{1zqdx9BTi#cMOrBx%PpkX z`yPK~tN=%Ije~*26ZleJfuI$j@1<@9c#T)P1T3up|L);dfLj@#@MN_CyO140l@*>E zWb|Nh%m|9Z+lB(W-Xu77yu_jV3UKDZu_GuBE?B_BuZLqtP@JA{k}E);3HB3>MN9ZZ z!>vf)XRv_<`@I4pc|o6^SWggVPg0XBr2F*bk|mTSlX_QT{YQ4_@B;0+opxD|5=Y-P zQu~wPZ*Wp>7L+90?UNl7HwX2^_RRDQGt6w?eYFEE3 zsazh*57hU+@#?oIKQ+E`yD{~#tKY0?`~+)!K5;Mlr)hk2g(|GBp&taN?Ja*r8mnIY zxy@y#c0EYdm2S0Bwi7_wxA(7oodMF3KrRC5jO^I8t`(&6WZ%wWkgmkHm^whxm-(Fc zL7LqfZtA?s7Su3-Yz9)BXvMZd67{JBX;0K=S8-nT+de{^1TqPv>v+FD=YUjh>bL!J zkfsE3BS<=d+y&D1KfkPpK{AO}ye!1cFVoV0f}|3hAH|vAm%ch*9L(?qr`+}49w1%+ z_RHEyoD+P`aFFIiu5lpQi+#>@2I)+U`?nxn@wmJFG~ML)VJbu0JN&k922!=9 zPSKpBYFQ!B{Hphu`k6w8GwUp(SG_az&n3Q{UxG9wJbVI3bAodMNGe8ZW=)$s zZTg&PRSCLW!xeufvFFI9_w@V1!+xuNAVDl zw!}9Qrz=uUzqLEtWY~Uw;icN>s$04BS!IPMWwADZ zW7lVKw2Osd8#s2w7H8j(05TAcUBkuMu^?wO9J{I)FKav;yUvSKxX!cT*pVpa8aOuor7e@>_p;J!wFq+lI+BsL*bMn$#6OxyMM`!&Z}Xa z{{YACXyWW&kn;!}yT^%h5uC6-FT%0Ao;Vt>Rgh$OACBDz#kq#Wkn=qpyEBTz!7LS? z`#0DI*zAnrY{HAMU47x$y;7X<1G-IvALwjk$iICiHNr?5YF!LfU{I138aIfcvE z-CUfV3v$wM?EWs!U^t~nGGyd>X2%z&aDDp0v1b5rhLR!d!+qe`Q$cY%hp4Ph?I7X| zMkU`j0jKI!mN_|yb5TJ~BOH5{5N8CrWHA}$!Lg?caVC%$a`gVoo;SqlQIN9$JN5)3 zj^<$4_PgNNGl@7gaLSNmcoL31frz7z6TG6^$9C=xOHS&1{53iIYTFN}s` z&syT_N^01yqv6=ompB^tkaIp9dma-c*fX0r{PZ%V zOv&&CkUhnT^9`J>lLTI^-OD>smxSY>3>(3T&)7xY<8K8gJ}npdwqaj5@q4S10*gFl z=~}@h93gayC@pDQonPLo3W=a=1*2FB?6m@&Ro@Jp-h47bw_yM~2h;Y@=XI^1nI>xl zN=wpksuJbsg{~Ehjjt6nVNnk}&I?>C_+7cXQu;`c?mpuZqZ zY?%6Ii|Aw?Sh2Jb;w0X2OaW;>%KDlezvIQ}<)84+0@)_!)J&_XpE7A?VUyiTQh zdC0U0lj^4BeVVfXJFPKCHM$xkO()uSzBLo-Cko9ZIFG=oeA020{w7FM;yXegfn-ng z>-;rH=LtTt%FnT!;G{vC63FHtZSj>`m9+y%^X9&t0U+tzyU_-*QmHA4I`09eBmQ1f z&6K*CjSbUh)+RUy!nrkvYbH92Fb)VTp91Sp66rAHK-k{ zU%@3n@3yvi!@b*jm+Q`#n6~);^lt0PKJMMtQTTdzRqYbB)U;h?g{zwE{azg7;o|H7 z!oHb+T!02YIxIP2qE^HSC?_lBQPQ-g&R=%wk?{ zlO*t}7aZ%);%IjW7Npb=IM&0(*{L9BI2`Nq;_L<|?4w`9v9mxNIy|pk0I6xJkC_+Z z>|4-I6C68J#Hoi9E;$R}*tsLlS#Y$TCd0LG>}(R}FcQNZ?G8A0Hi`2hoOO~$c=ae8 zJ9or6ok3>-$P3Sl6Z_9)q=t4rQdu$QC^(`2tcF|J8K<(eWQClK;k1)oDWxUX(>Z$) z%LVgG_H7z+>qe2Cu@83Qb)yJpH#qT1QiQWVoYuHLp?|4nhrx;0`66~E!-?1VBAhvJ z;@zPL=QKF+XZ=Mu7r@CZrOw*%hw~0wBx@FY(E_si;;cu7`&tglMwsa=#xRZ+ws3-nBq?d z8pBTquAqOiUq$;xSY2cHMmTMbV~~45(x)f(Q;^n^edIqNnP+`uquy{5*H`<2q!PQ; zz93!axLo{3Y-at8##C#34OYcZ6enT%M379z-(k-IX_^wv9aHCvKw1-@%-#Xgw!oDo z(vu+bj`DN82r@r`ybE%C0_g%tZRnR?%B8gn6P$HGI!^P;+6km9f$R;^5T9gJpF@Sb zZFAYZ<4BOo#C6&xkaUc!jJ2s|B8>y}N%uw|B44 z6bi5OT}(@@ud1wHse^)WBOL3i;_N|svM9IbzOX&%q}q4cftl3(>Q&?6;xO?G>^mRA zu|6-(WLXOg{fzC=&H`~BCOzCw`@pgDLL9v#OV(LNv)X3OOcAFiFT(v|5*#~s#L?Bl zus-LhEHj(LIl7>o%Vo#RFL89mBee5JICjQ~^Cg_MkYxC)$}%%foK2|knn?n$K8IuH zpg4SSJ;kz-7b@@=JHNy^8xD?=7q)?8=a)G0ov;so3CGSjaX3O2;7o*L=b$(P;e`Es zvN&c|in9)cE%R!_?1y9LsW{h={95}s>hv=dIeMisdl|0SGw z)hfa%tMt~)BKzt3aN?ECT*(QVW!^zw&&54?L}^Jg{S%&}w4b)0;P%tmIL6t*fN4K{ zEZ$ECkseUYeyZO<+5L1eC5BgJwVzf3YXs~az+MO|O%3`{;R?e!HYmvLr`?&p(RYpN zr%s=7O#Y6#4gJ$TKU(JlE4J7n;+*gA1qXt3#GmV}j5WL^6U-?yD=q z58vqF{BZ5C18J%Ja6@hdrCup58B14&VM@2doVka^J*Kj@P2_hkX2(4y&SKzj z)w(e5Lvb46gk`nGy(-R81?|XtpNhTr3OM0PBJb^cmh;}RR3^OEZQj+wv)(%#JB7VB z8+)(%FPu^G-o>%^o(V^v*X9MhcTJW)yRzM%mzev;?{TsBx_j3&u)@_(a9;c*{gZLO z;SH<1QvC4KZJZw#zZcxT9CEB5-p(?T3ED3|+?bCEq(KCedqCH9R) zaFW5TY*)m-!7UdiJCDe5SKFDMy==)VTLw;crLJ1t>1;ZM5!^oPE^w_{|JvPoOVbvq z)Sz4wqnNy9AYVAL-tuQgFf=tN?hTa{zUP*yF>!B*GaV$H-SQ~yP1d7E!wFX{dDPYC zI*$ugXCMd{x z)PG}-nmB#N)Vkm*S|k0_<$j?bSh0mRsh<J6NA)|fH2SUdAoF73l<9(!p&Tgvnk1q8{2W;w5)3K>vJfa3~%Js3hR?IK`L+bk#l634^7l2Nh)m2UeH`V<}f#xAK;z(9bT%9YA*k~%FX46 z@JJ4Md7-4g^Fx)jZ(gc>xgH$rhvLjB$mt2kdZswt3UY?QvA!zK8E{Gh-e{F&yjPr2 z1vwMoSbr8rAO9!Y<=zkK^9kb#CF`@W+!>TL3p>{5Wv36T0}EeX&^K_bABxk1)UeLy zs?NqU#n}&n_Tyx@8IJW;aeg2%To0dwV?9%x!r#{T6pr;(ajLKr)@Q>3&U?jKg~_7T zJQ;XoM{Zt}^h_p3uMU6{&!!TNA_cpv#G9rz8^+KyFuk+^SWwbwSQkaN_l+BvX*{rtH+xf27)Lry=bdIPt1wzDXEzw8woN z?{SYZSm6m)d)ztaxjpV^c9)5Ef%D91k6WE##7U{oY5WhzU3**y1npX-B~AR-*(e#b z$IXrRxb7IyNiHu?&eLhP$IS~0a(mpC6lAY!&75>>ea*xf)2G%<=05oD{8YiE(9XXu z`P9@KPMhPbl$ExMH{f&%J$7%}(=iYtXN-I0T0HzL( zdqZVy8rTppEA9<(3VW|SYBAaEsp$Z66+Sinc%}2Gg>a~LUXVx4k3DK{Qp4uUqp~b! z)}xA_nwqJPJ%?woBX(Y(oDu6ekJ4|%lEHb@$k?MMj+-^n`B9F075&rHv}BLE6HfX> z|5Wf-Aug9O_6|taeCO7kCH@7{aFU;E9S+B>2|K+(Iug0|)&V-swKC2LKkVqd_rTEQ zsGPiabgT2;Gd4=4ewFLaC?@Z19PYgLTI_`T*RN@*?Rk0TL4gecbKuyX7v~(1V4zbM ziett?oGAr4x52TaBhIk}InThc<0Z~z1vwwVu_GwX=z^TJS^n&picRm}w;$6uo za9^#+*r-G!u_c_OabR}|~2~x`%Xy4tq_YMtB4w2={l&go2+#t*2 zeB^eJ_6>aGL6D|*{nDQWX-L%YJt33*Twf|zt&gOJaPCcf^I>z4rbJo2K(bT)TmwNm zj_{FvKvGBh$Ow@1VLtL3kk&~)G8v?KD<3%nq{>~*Q1_&60LfJOoCiSK`ufPTAPrZ# z6>?>)b^CHTU7lWA@z`V^#ohaFhb=+5nDS z6U6x)!?t;{AYS!?V^;}ro}fMqYhKtLj$Jpz`H^=B`{glsE)yKPl8D2yQ{X8chr_XJ zi#QKcR=B4e4acrF;v7UjXM(aWfMeGmaq3COR9;vN$F4}?>|fB%^Kk4MCC(wVi_127 z;UhS9)e=YFCkgvUdv}JewR`uS^fQOSyr8{%%JpvV?z=tToez$=I#JhRgo;qs2>yrd zGVjsiy}JtzhlaeMy}LWGJyGj9M>Fymykzgbl0&^_d1;BB7Ml$2M6D;Q+4pF3W=v{K zewM2oYqClm%bq zT7Tms(?L@FMkcPATTopq>_V$rYL7K1jOCJc*mN=7)0jW&Xa0*B|ft(DIO&}M6 zbp748d?QFljI4}v%V4%GrZn?3#X1%Som)0y3hP~0X~|ay@~IhfJ{fdwS>spk-0~yS ze(MCmUGr?;C-Rn(-q_e6!O@Ec=nXsHRn}~fps3WdaO`{+=i-8#_u<$TKpb5W2^Wv= z;n+1noGT!xg~_mvF1ecdF3v`9!Y=wb96R5|;ZjV2_dCCUW9Pd#Ut%=eb4SXK@l|m+ z1Quxf6xlIrf;g3QPI#6$9*$il#M!E#orQ4hx>20d2FI=>#W_#Hv1^MsQz^@?r9|TJ z9vr*ch*MXvf6A($oApPWN8p6#mM!4e6-k^=$PjFCsU6|iHA{*cWJsi7=iqi}yoEH^) zz%lEpIK61N=3z2q;MkQ`oWGM8&cQw4*tJ)jYv|;4l16xSBpkaMi?b;Rw7hUC9J@Xj z=UfHHuGqyni{aQcyg27?aO|pHobw5s_ykhqd$1|GKR%Nb;j9lQKBbi4J_SNgIPoc^ z2xkzS_>@wFvmcyz$1lkgD9L`u>;;lEgYgX}*FFJH=hZ8pap%?Tx%zSeC&6UUdG$7o zD1mP}l@uCNomblt%_`PIINKzR@Ji>^>=y34I+j=AT}^aeZDBrZ=J6f`JIUbAt5;AN zdtTLDfOom_6Kh1xM_V>VwwK)w=?G^qRU>->782% za&F;$EQ85-jSLrXaGhJ$+;f%a+@kOCeQSEj|EF`ysuSJ0H85y-;dD6G6U3QJLGtWmSO~|CyEr`Xy1*KK zBOL1q;%JXsC253LkHN9NA0<3Hl)c|c*EH-lq6N*sM# zEF7`{aIBAs^Cm{au^0`iSPjE?>{zdpo!zK&kAS3;x%ESFl%6b085*%;JyV?B zY2F@zo%7*XUlnIhjD#!FwX$QpR~&tdmkSJe;XXL=xR>*a5!`~ z_1MRja5wd;TARDHh#lQcJ@)4!c60~$cor1lyhWXBr&H)L-6<;!TKyhtajV~NX>6{XIOW1ve-T@~& z!+DgT_d#kKeI&InE6H>p=>gI{)kl5-(wVSx7)Uztq_g8dT6gzzT_}VtsU($&#_kr` zndu`>f}AHp=Ke37CXBmg?v%^i%)ObD`I>>xXy(3k zw41s8S>!py<%J(;sr5Q}?^}7P_GS0|oY#qSRzc1HIMxrvxuGCuG#u-h;)I_TD${Xr ztgnirt0G~z8jkf|aV`l7Ab)~m{aKt_3v%9vV?A7))8K@~t@caj^Ww}b$mt2k&H`~x zgcGhL!{OLjAkN}~oT+f^yb$MVILYA7kQW|eODHYTJE<@%z>b|wvNME6h5PbiICg%C z6TX|5)tBMe87Iy#?C5=9GJFTe&Ny-AkQlmanzhc(L2>35n{QnO&tmT`)b_^uxs9~Tax@n2@(PFZg1LJYuNN&t zALi;@pj}ZPUK`gLAFG+z(6=&IUlsd4b#7`aUT3n<#`?yX6ZgDD)QZ);`rGJFX~hT2 z(DOIPt!S88KWoDD9cR?@Gsav?zEICEp%u=1Ek||kMMaanwxa8NZ(Qdi#*d#`7d(Qe z;s93uCDgg5p-Q<6J#cdxyqj6^Pr-5!P8cdy4pTJDY)#v7Am<8X*{*xR} zS#|Y!GOmx%U(i3fu%hepV_ctbmv;4eHLlOZy2)DV@`6sD-5F(Q^v^>6hiy9>&M$dq zf`SvCI%QI))AczpXteFgA=%ks+xdtiFZ`6TNWD~imyucRuxD1d9X11!>?7AdU&sA3 zWzsmN&(682E;Ff7j9{Dd`DBw!x@(u^sO`hSlf)I-E{%n*R@kw)-P9rfpT_hL@tFQV z!^KVpjn~=ncr73?ug)_j)HT-O4IH|3{w*zXveKzZw~W%>!e^TNPxdoFN~fkD_)4lh zHBA;21f81p;Nuak@TDag{wM1LV8(ROGK^^&TlQ*C;W0g2v-0-hJCPex%Tav}3M#Xr z$286RYIUW(zo=T93>wo#cer_~JIid8B=AaOx;Y1OI|m;J394;Qxs~yF4Tckr7nfsr zVi9#A)!s=yw4*Vt=kk#q(?5hp$g44}i^p`!g7wineS8UHN+$D}c&fKM36B+&2yQO- z#@3R?{Yb_=OCK)n)MPno`;I}wSM<1_#&SWmDQjX-mKv#Xe{-=L_cY_q#|3#oU+IzU%v1p(%}f z>oSac*D{RzAU;&G^Zk&b$YwBv6xNJl~3jnzLw2JA*n6G;CTNKYUGhx0N*qW7MQUC;ld z(z`eSBrFfmcW)C&|3`z;GePO?%T@ZDpHl^%=N*Q2OJ`ReEPo`es4tcLt^Z zz=1ugPt@}r%T;>!VBALsrGFBXJ}+qd%ga^zCqdhL1*NwKrEeIN-nm?*e;<_IKPdgF zpmbe>Pxkx=%T;d7l3%Ii%8FL(Ual3%jhx(ES+Z}$Q_FIND&EZt z*|96h&boeM`q^B`Ngm|fj^EwYu)w?ih||9iQ(%h3t; za|*(!7gm^WL|1#tjTe%Tc?AkRe&z z3Ts!iBCYM!d0GQ^mTgRqP&0L|T0))G>DT$3cyw$owPGF|CW#kTbSt{Yt(aM;5ve~= z!;Yo2qTT1jt+2V&3f>g||9C96id!+UVLZ=|nmK7=;(p~%Qp40k%iuqTqdMz*R>`oU zd%kypI{O~|EA8n#C7Ig%8k?g>YC1apE_49q0S0-qDP&-Iq2?VBw_+Yd>$eZsUE z4T%Lht#-8+pI_=pjr$96+ue$7bE&19uv`~zX`Ji-v898Tp{3K~mNpc;1?ncWwDV!x z(n43d)Y9$YRC4u6SHEqGegRVTh>wf{Nj>T#(?D7i$O$0n$9&GY;ymFaH-a=j=_3z; zbn>&ET>|B}nD7KBx2`{JFzNHUP;y?<2iI8eXA2~ zX7cZ)>{ijZ^#8{(9UYJ9_4v=P)s#56ncEbPshMyS@^1mZJFRGYCu#*&3WbB)Kv3WA?%O3xCh=pXqSY?>ml?j|J&G)OtGC{i1gzwsiGa-wbz@5-|?0$9{C< zRiK7HWxl6e=_PvJR-d>WMO=^R4tw@IcEkkk)sUF$d_Tc}U8_Xj{47+Ts9lz$c8z9% zrs-Z-(e0{b@HN})sVVtx!L{p(xLs4nvGmUIzHVY_b{bX8Ze-h4Xm;0-ZA$&LR0luj zGM{akTnp4N_bItSt_R6%>~n4fNyi-7QSq5ge9mLa6?2?#*!rkl+tIwWjeYlT`TDTZ zWskM%pG9&1%;8HO)2I61UK9B(YSuGjG_^lSTLP(8OEcDv zZBZRaTtkypV`(KeRIat zuos-cEbV5EidTL+7V?d4S+aT?ru!Gp0$u+}4w_r}>aeJE^POZ@ ziq&ofcsKT+nFSrFAFar4AGI`DmDpevoL0v%Xci>BgXIuWKkaTT3UQ)U;?ub8N7OeSS)YHvPtB%=sU3^A-PPH0 zRObg-*7%8w7u=Yxs5*Za*O>}Ws|$X!JC8cI_gi|MEk|{}py(R4qUx+mdG>TMbJo@cz~)jb zt_^&1MYm#5h3okvC-B74Ny%?qL2Xz`qH~?)sLr|wS$OaMfA*H>y?L!$ zGfViXXI^miN$sLur9R=B5P$w2uK@1T_CdNEt+_t$kO6#^FNyRYj@blf;PEs!LZaSS zzS74Ar8ftq_XkU+4JY|GFf{0a*ca! zQ2Hf7>AGi3vh-m=+tbTc`rx4ShM@HFp!8>gws&8y((eyS|2imL_bN-aeZ$wYq?4v7Lx0r?4@z$gN`Eu(y1~m; zdUH_v<3Z`QLFs=8O0Qb3(%XX4KL|?K9-j2NAA{0|FIVYz2Bm)zls+#geYL>nv&&Wb zyrA^^gVIL_r7sNHK6bfEzal98g`o5)LFvx~rPnT3>Fq)3-v^~P2c>6%o8$?*?55Nz6!10hfh zA`xubW}HhR7{Z-moP$f8-+Qk<`}M4RgM$ZLu=`i9-m7}`>eZ|2>gv9#`(!TZwUT~Q zNk6Wn*Gl^CT+$~>`VA%hu#!Gh(l5;={f3f$UrFCp(!Z&sU!F_)VI_T6N#CcW|Dp2p zZ_FkAl9GN)NvC&AW2^f~RrfdNl731_e_cs`LP>vANxwdq^i3uGx{|)Gq@PpLZ_FkA zeI@-7EVe{?Ub(KMe_nZ;x95_6PD#J2>i)En{;aC|t+}M1R?;sk>HC%R&nfA5=92!r zl72}^r>{0eZE^5nCH?MP(&69aVRF$`rNE!E37S-<(T&UrE2Fq^~IHr5t4M{R1Wa zQC0W1lyv%Pv#~=nhut@q^jk{$$Exm^mGnoI^vCCteqBkwr=(Am^beHP?Vn5fJtcjg z() zVl;l=x0PFCt1DL4_q4)!MQQ9^Wi98F#(rK|%X4!{zptdzDX4LKy{)8=eS4X@AD>J5 zn@alos_vUg`W;pGQ*%jQRMIz<^p2AL3s6q%qvn(Tw36Oe(!UFfjoRYiPkZU6r__7& z6uax*uhZIH_vgJV(}J!RsB!c6ed{S^*ZotrUVH4iKW9t0$FBQN9H02f5|!UREqwyp zG2}^>_9XV%#Ghf^SKhG}HM?G`*ybSZKAUFkfwiBuUH8p4{hmD19pAgnTL7Q2ZDF6n ztX#92x5&X8Xo9$3oSmyzUQyEDw;HpuRyLLNOIBm<`PaF*q+eCi?95Zv{ic%sv8wxJCH+|?{mNX@?<(n!s=B|Wr2j`H{pwuO-%!#& zP<0i-<>=+jB|3rKEpXNx!P3|G1L=?p)H}Q_}aT9(O}Y zf1sqlH<$F+mGrx+?&p>C)2iJ+m`nN%CH*5M{dFb%Nmcg`=aNoefr%pO)%!~Nu9A)q z?%7;sjC(Mb^mmo?M^w9CSJHn~)%~Nnq+eFj-&1w(E9sl6?w`yh{T(I!J4*T+O8UUp z-OP8M-Xos3^BwOq?R+QjtEL6NYiog0G=Jak`3~`CtJ`C~bIWRDcFezmMGwOVYH9rJ zeCOFc^ke5ce};8mxw%)F&HUmq+Y4sbeeHc~KM%$G>q!l^?q^)xdl#_>aJ=yhw#a8= z_qC_rh6100iNmD%4?E$3TtRq&0vP1~kdhJ9^1C^0wqfi?XpoEdyb(wL`+nIEaisId zT$$VSbD>ufovTF)4W<8uAL(?i{WN_ShRRI#6IagK2GP>*d)ue?oSlu@IofJ%+teZ} zk3wMNdk=nyTR}+T6DZ;0@5+AchjGScFWb%Q&QrYhj#WM)=`4X}Kfbw1j zD#!rHaU)%j63AN-^5a14Ga#Y40_4qz<{A*|H-zRFf!sSUk_Gv7AoQa>2ZVlJ&%XuaI)r#V|2~k%qPqVP zkncn^57EH1FXZ!AfZWG7f4!a;fb5Sne+-D-87uWlh)-vKP@aoG_C>k=84%*?%lxl^ z*!5N6^9|+`w$5(?*^J8b2S99eD!D#`GukEQxB7V;2>pC3|8*etq*=+eqG*l-u`3Lw zUPOZ>2J)tYjDgrySwa3j5c;;M*Vs=1*&k{CUjrF}+_%oJ0J#zQjSq+>>IMG;$l)m0 z{|0g;Lg?6ayDlN+`9UD(B0kGN?9(oxISNF6&=|)6XsX8VE1-G8cv1BCK~<+UybYft zM0&=F(9^nyub4!#3goII{&1KilsWJuUjt2y+yt@`@%gtv-j0x8 z1M(EIdCmV9Ajg6D@_Y*jmC<{xhrZJ3*xgxRhu>#`+>G@6G!SoxNm>^<0NFEOHFgv< z52Et?2#}BOTRju!49H_}KE8xCkmp^lWR#71lZ%~8kwyIj%7xsL3(`|+)7^;XP0;w> zM10Vyox>5$*Fp2;sJ(t2$iz!e(sBbHfPTg{#7T7Iyf0hR|B76fTrQ&ipFqw=8vA1) z_afSgX&LhR!Mhe7!PeDpJB3V&QF9W%QY?LlEKLg~^h~_rs z!cY26lB7c%YM;iV)q9}%a^%Mz5Fgh%$*{_@EtJRm=d{9!@EEP4dOdk$v4y06Fa97NR}}#O~;jnqB~MF7h^)fY^6@pn0;NZPBRb z{58+Sd!lOdpDn6aTDj{1)YM+DH=qv_;2$6++7V2gE0; z=^q2R5=q|&Z}d@AufGQ5zLQScSOy|Hl&ti>1%v_#-@|I7cyf% zZve3?70@9*9!%yU`%Lwb%Ub0HHfyo=h;q?E16Q3k zl5Cgf1*e@>k-hT+ppo@wTb^ftd=P2uIFOGWXPmx;Y4LXFea9zBd%X;wERnN1EuS;U z)rq3YA&^@U=dS`e?vNzGblZ#xo(3O^7eUdR< zi1Za8AGumkc}@X&EkaTt-;7FF0HL36<+lt%T!r&Dfb5TQ-DR46L9X95xxAP7HY0}v znhpl)=OcT590)o=K=Z>uZlAXrLsI8iAa)n7l;?RMccSwAD3FgFlBC_DM09#R(qRf3 zyNWJ+z6#`gRGzN^ksoaAp}&Mn9SPs0Tuv5I{|b<64oRltVUD8%<(x_IVTS+7a5h#q zDRu~c-jxuxLGHP8-XV1NJIHlBYQg^nBx80b;*6BQ!aXySVh8ZAyF` zlI)auouSNbZ0g|mQ=pL_q(Af*aj7-`OXp$pk@VjHLUi7Ge-8-#Jo4@H@NAK%eK>_} z;E&2HW&SMg9&y^B{C^q9Q;|P>8pyh<1<^bUgnquJF9NyZybY!GfxH&wDuH|^;`~p5 zydCAb284dT7Po-Z5zT*4G`|nz5hshwHBW6?VBQQ2rzY-e{P&TGhJpU{CFe&>Lk#-->7qXX8ndnIakWTBTXlxjCpq1eN=Uz(pt*`mBR#>HZdqAhj`(~7G;->=&GoB5 z?w+@GCq5qnc|StF4dhbfHy-U_gpFu^2#AlUiO&fjc9r;H0y=*e$mxhr1?0Lzk~70B zn;c$w;A%>_{vl}Yfq}QWt3ck3Xl??bpZCVMft-%4?gJq92@CYx8x~cDk;wJRZy|l5 zpLM4j2+Y#)MpoI|$+S!7rMmlkJSc2h+U=Ivw!MQR%ka$Ngbe9$ujjBAs|X z`TR>qUO15)J@JK;UqlE1>~9}?DLHlW%vrg^2W4RD8+lb{CDuHtuyjxn(0^9vMpH?7L)P{C;*2`E%Q-%fYO3rnkO zONs{h#$^jfj4tSW&0=vGJIPK_ZY``VA6!)gm7z$IvR6*~nXTsJV!fGe5P6JO+kILF z*7zh#%U)5k3L05<(g{w!Y{`R!lG~t>0b_d`-p$7q4f{&CWbY)~DK*Z*!9z=HEkx;f z)FXJS>~3Q%+q7p@bgS$Ytb`2vYi-$T%_R2KhURYaQUszkjhq#hK+M_EdZ`98= zh-h8&>2D#*MA^WnT3B0J1)t5F&aS{Ua!#sOYFr*X(3Z0rl`SQca=Kcrt*$L1z)VMz zAq1=*s-R_iNdQ-&38 z*j`nZ0+Us!xG4lj@K(KYG@Y5kJtXEf9p{>yOrMM2N$PaEuzu(O3ZuVHxF|=HvfIqX4F>0$kNdV2%N|(*5r$~5*sjVNZX>UD>xHGob-C=*CE7W! z3N*{&8cee-pUJkowuEAWLw^C6%mLYO$(9m|Lm_%8zQWn$MupgAa}B9`2YOun5KH?P zyrRMc%u?!6hPBBCZ>-(G6x;Jq{w6(I0(Ra+$p^H;b+&=1qu-@dznhtQLzIVNk63ra z3q_KQ%|r}YcBl<&hg$TCG1f!JWFiFzDAmFuzU6oT9p%Wv0lI?iA(X-=ArGuBq9b8F zldjfmbQFhHVbCRE7CrfYl0W=tf~+Xw3c{>r{MHEX;$Tn0nGGCeS|cIB#5KuR@K1I! zKZyuQCwVYOM3j!JVOnQ6OS~*f=*wovlW|e!gS?k=xK`EF05&lxr{g*wWywxjju8xE z9uTDFNwtZBpiWb$leXSaK)SH9wn(ns^2l-3OLlSmWCT_haTq$yMG)@wre#I3VsA6+ zZPDV(1`d5+!AKnC;BsEXgeoc_pAp|)F*1)5OFgR2u3D^&xKeRiP=KVM)7wdTybB`G zxmK^HP)cr+IJtqUn>3Nab)wU=PIB6oq^8PshCtcPL^+nqyI#TZxXnwI`!{O zp%fl81%H7lFc{ud^W-dBgsoMZ=_E_ab2z3gtTK~$r6r|o1!?qb3M>!MFyc^hHeBc# zuyrggdXTna_o|xBv29bYNVGLqc}eDlo0t0+NLDCVb=Luo2C<{c=W#|})K zxm$1W1lrk=OT%(Kh7gJdby{x|n(o0RAp9LoYI5Nil{XfaSJu~P61Yc>WGC+<&}n9) zd7jHg{wA+63>A~4nq(9JS&kUoFdU~ z2qADt#-kxkUNP~fnY~TT!FD?79vJz2|wNudoYZ4gb}ZVC*3J{h74qZJS=)p2nu%)Sz!6zsWGS}TM@0V zCoK)hs#oxe$_y1OROonB~M|FU(`wYB}f z$+XdN*$XsjlrPW()+01i8thxk6v@)8eJaiAPq3V;6q+i!m@a%;%KBj0r5s#f*Ra75TRax zxiHDWKt^j(Hdx@HA1e?D7~sfb7?E94P4U=&60M1?RcWP+E7VG2tJO^Ol`~E2su#(}Kjo6HKNtsL63|Q%aYJ@ZZ@q7tO z5W9$N(t49tfbA86E<8%&o&63?b~dwdOW05#HgY+&F8;LDYUX5%|Io)LNL&y#MxK|6wSEIUds^LlpoM%ktpS{2Ier|GdwcM{o8NKsx=XG4Uv zczQ0I`jU7x%;P&ks8N1x2kAnzm;}*&DJ^t!7*RS8xb~U zM_D>buyqoP)E4vK%FnymM`ofjAf>n10Grl7crQ~ z(on<6coCWl?T6-Il-BkjtB+l$U`jN943%>X??m9^^yUZ zmM73?nox7enVg|ef;SsV<57-V&eV)Z1SG36AYBR=wElEFNqbvvp_SIDWoBpg<%LSJ zNyJ2}(5B8#QNnE&H~vSuwy8n%)0%E)YC)}RRy=;3W>{@*^aipbcs^_h2uIQ!+X05y zpUBFHB+>ANN6efMs0w=rrbEo$iCsj`)`Ud@UMY@J@EEfu(;|Zo%1b^Tn>5riI$K4O z4`>>T;c<)^DXjwvjO~P&T;j=8f(JVRvqoy1W;>A$!eKpPdg5Z)w#b*st#@2)E7U%9 zC!lBR_Sv1KdMFea6+G~DLLH`t9*n*TE-ZMArbVUI7ju;{;_G_LZ)Dh(f zlF5j|WV#QM!=`CEX5nugoAJ&9hS@9uaSbK4(R^C^jFMRq-fPb;M(Dd|QyC9Fn;`Jx znke+-50Y>%`FE>s0aJO}8&}k{0^@S@|7}@dTj>IImzI zMBrsqGsn3|+y7+7jPIn6iya$5!C6=e8-RaX#rQLOkKEQj!>#e46p{=+oTJr!Kaz30F!!rpERW2WhUTJdLypFcvHGL3}v6#&ZNS znPh9FHkZV}cm;5FEw@-wuk8BJI0^5fDJq@=!iXdWEsFxZ!rah21Qr-bKig3C@rH7GnIe_47jiB5o#8VEBo9-00znExb1OkOkwTCIR z5i5hxM64TU7A@%w;}D7#3(;9y>_mvfC|X7;iI$}$LedZk)uC-imm;trNz?|SGqst< z3@SDdo#xC$l6=#{Ry4IwhS%X8U|}_Vs_{WVPY|aQb_a*JJ|T$feR9hU-_j|lb0buZ zdJ0vhiMc*2uexEFe--ZqsIs#WP+py6x$2Zw-l0Z#gy~{21CuEX{hC9AAk2$H5BQCm z2&1X8tQ1ET?_pYqHw*DLc0_G3E!OgGNeLwAR4+%T5zl4`>{cUM&%q*r&eR|XOFzuJ zWm?iE3cQmM*NYu{fsG0+9OG;a`+YsIB+w` zeb80{gvG#f5sHemdk7V$lY>&WWhQ$K^`seustmNH3B$tLDN(bH%uFe0MuP;VX^^I+ z1%%$b3>aE2th5C+_H0rDqclj8hYL5L9GFqEu%_qEu=|A~fGN2(ZYof-|z)YR*XJ%JTL#EU=dt3K1^Tb53&Z z*wZF6H+j@VDHR4KS`6Up4E+ixrI0HJ8+a?s&n+@cCOD%5o3_c*2bbJu=_x6i%RDFM z83IqDNuu=CSEkrMHOOgZP4)LAl3ZqZTdgs^NfF2uaTXMcJcv|hNe_|~D$nGFZ=uHc%UtrQLWTHvtR&*~cAmAHk3m7h`w&ZsK^2V-+ z52@VOMH-JXNGr*`Ybu`{w3nwbjTQi|odi?OCvez?g7}6s8A-*`ngTSNRM56|l@!(r zMTFG;0@)_u78WQ}u$?8jb`}!f*mBQ|ZHotxZ}tELv5ktXbO$gaYXy?0rH!pA2tioh z7GhIT(h74AtwIx|E==wqQjIMlWjlkxuf)-e0iP)?HB}B%_xla(*er6-k!)Y<=iWPS*lL zGtPFz*(ip1q0Br484QaQpW|i^;PlC0OR32!lZ`m87Ex@kR@rucF4>GE!=55`aY3V` zhIMlOh(I`!%U9K+HB$v*;Y(rh%8YQdLt1FJV&vL*1($qm!66WsaR|po8m2TofbcbD zDTKNTyQa@t;y~thto_d7nHrwXltUfF9=9M%m*lR$ zjI9PMs3wkjRQsEl_IfjT` zJP;aA(X~01dZ8OQR+g9H?(r;pj8OzPNMRytvLSEk?baGYoHLYZKab@yY&Lu9GRA&h zWJXjrJV8*xLlR=YOq|U)x~j7F0*m3z(a)%lhETWoyVMons0FQdAkBo1-qG)PnrOXaF*0IvcAIPIAGNOuMcbZd}M8=;Bt zpgf@$^KEP;LFS~*Wm#ffd5TMsCFH`3esBT(_#Goz45Y9+j55p`VS+u<`5;`kwF!7A zf-QA;@5KbCL2&~?GgC?2%tR5YlkvX%6vdsDFw_aAa$!Mv-AA^E+PbJJpmDInbdO}& z+-A6|>;}iVJ>aIeL?6GQiT#6ibHii~OX2fNi7js^|@qEMHzf=w6a9Gdz!%H8>o!TqGOA zqKjE$AFFaSWecF5K*SKcXt6-t?@X#}+Ap4A9?wwVD+R#$5qW>G#M$%he!fgsQw-wv z5~o|4OF08<+rAG5I*W|$Htp@oUD{NS_$!>=GU;I#L?wPbxT6^*b?=(ql^sm-g{8H1 zdNEkAA=VKMh%nQDv=p37%)^fN5##EVDA&4ybXIN_LPje6jx+)Tne3Ygj-I9 zzM%@)3gSr?524xGa5)2M2cKUlMqTENqmTK98}5}U-WwU&a?baZlQeSZ5WZsA1%VTFuKa@MHq@AG`$sHLsi?~y0j`Bhzi>52;RaB^> zyu>f;C$w3V9)2O9EpbpBwx`JR_oTnnwI!qD=e6H#LBj z6g#V)aA0jeIS=r}7mxeX0L@K&++RZ8t+T*B zZs8y*8Xp0`+ac@=F5#I!BfMS2j_#!|eevu`96fmY%!w}@e=&LK#HkmL`GW^@SPV~L zQ6|3Tle*0{3Qi{>n>*@4G~coJ$LP$)=W)8lFq2abBk{YvDcl-)I2uFX(eTt>s(SqF zi{Z(KQ7&ROsK+!(k4~BzjdA+T!cLZME#TzD?c^nMRN^u6t62q*&q|C{XA4UGo=@C? z?Z6pJ9nNI+m&USFy??@<+W7f=h;GcaVP(jNCcr#C=xu~;Z25#;aa4K=+c_Ur=T!~l zgsOUom!h05nD}IM{OGYWr!ZGMda=$<>>eg>&nd?+fvhtWDm!v`NydQaB)k!w=YOv)s4)vKIsO_W9amBgatZ2P0yq$jS+J%IL^EMG?{G< zm``|aB?>Vp_HGb4Az3vs#Ryz->~_E-$i_g_dZw&vBz z?l5R*nz`|w%{rsKs&rUqNypVm=9h8U$1#l2XNwo$>T)uJ!?fM7)iQ)Ry)Wi^RBv;u zs`(W+7L2zvux8+jCRTJN8>N#?j4VeE)1hApy?uz@ZM`E`0`#0rrx-Q;uHe>T*D&B^4T1BJ@ zPk=Mgv&s|E0i7>s-ZMWIM-dd>r;~|2?1y@-%h>Sev?2W! zlnaM9+h9OS^b!U-DBpR?!>rrb+hIn@1}r&V#*s;%FUm9gs>qAo3up!&V#P=Id=Yea z-X!lI^X3UG{2iYOiQ!~OJ4uYPP}!;hPiB0vsh7x(zY`l3Yk{oZ!4K=^CgX@cHurI z{6?=t6m5QlygNHr3j9u*qn!|$9ldCRZMfdOV{dkwZh$}#Nnd3_6`Da3Yyz7CDIwOa z4!>a(Rt4rLdwctZnFBG+1JeOwP$d9zMG4$Wfpa@)C*?ex#}fsng|t1ia)N?|mey(S z*vt^NLtVnfvdz=h_l{dGB#i(^`JDB(=xdXP zLLY=`e;ZgT`U2K zB=&NS(AftO2HDJdKIN^ogbffYEw)vD8^3ecAtDd-ojhd-<+*L6xcC#k)9f~Be z!?qmYxxAFf;t{+8c<|g~)EfmubI*h-F>4Nz$YsZHMm8uxkhjFJRxx>x-pCMgtpIK| z^O=cAeX$=9L*f;@V2E$XL5xFzrC3eS60PwPb2MMdFlBt!+bI748Zl1}3$8AS1E9kALa4SR>r!i;Awd0Rw@jT4eplO}cmC=xz4I*(w!Q5w?|8?rcDKFt zfwp%Zen;CczoTvE&%B}S!C&3~z$Q26t<2Pj|Jx1TXmoGD6Vk80tKX9ZQ1#bU3C?{R4Yg`GVq%D)(_lo^*>3$2-y_3&ScV@a& zov=N#Z{ij2w1nB`gI_&Jw;A^X$~2?C!;?G<_&_`b^dyY@0Sgqcmp0~ znDn9Q^zE7L6Lqrx|BwDZ#DPx#f8>_7_+2Z3*L254|M2A?bH}%W%)KATWF~(7HTM>9 zd*_=z!yZ;@*vjU=<4gYiTN}d5iw&9F%7*UW%ujSb*S%Vu`HNNj`LhAgbglSHU5_?o z?(GMP?ni(9wfFuWfsyLBefL5{C%WHs?=83;{u~fdwD0(q-;FW`Tp4di86R=4R%aIf z>%IROi5H)6rH+y~e<#u(K>GZ*T6%vCM1;RL*N~|k1cYSQ6X%4|>~uJ{=OQo& zI#YR-{UQOM63*Sgxf$szKa`|PO8d?~;LY`TQ}`ruWC~+1S zz^0{!u<>F;Cd`1OlDDGN-U`TRJ(YQHYxtrsgZzc%@LLx^{sz7wnN6o6`c8>(VEXXyY|Qwd4ga>%knwNc z8omfzGq$A2YGskNBG#16 zE6C&jkFM3P6uN&n(;3`wKKjjiu|3|i)Qij|Z<+`p=K&;l^ShrTC_nM;9|^pzr3~>0 z9c>!_KFx&w2LJU9LC4L}ljT?GN#%EuQaMO*$(yv>4722xnpY2RT|L~kdidtm!&_Dl zZ(cpzTJUDF1#dFDdblb41?0_5ZVx&q{h4#~8#l~6G4FflgU<7T*9_KrJ$`3z;PveA zdLMpP(5YWty?z&7pZC47k~eXMQpQlqgi2WfNi4*H z<;;bzJo#9;>zLo!=Xdm%y}q({?80MTuKfM{w3GLv;BUc+)}G<;Ok?dH=aLzGrC| zCQT{dk2Dg`Ji82&mGZ}9s4s?20HWF}<+}k{jwA8ggE4d{h8_ZBIYur=IYt3l8E0c? zIEKamS&lmaSs8c5Z*PyG?J;x@Aj@$-O0yh$VhVQ0P&S740&+S2CC&lJsM;Mv*%;aj z$Z`yScXgFIpp+j0WI2Xn=xhv)0^&GW%Fh9^9P{zp^D#6VLkoZ`M-ysfIhx~IW@4xz zhFSqxjxkp^r?oa5{{B+_ES}M@E9FN4JqOU@JKX#0-+iyWr$uYemYT9}-xwZV+K7(O z>O)qW*c+(>CpNZx>{0aCh7Ik$P%XZ+I$X$_7%x{>FY>yPiVcsSkd8T!4NC_AoyTMnSlNoMIH{_a^=J^I7$9 zrr0Fd&+kn=A?)WlRH-=23Vv+TGe5tt&Ko`hId$IfnV-L(Z^Sx`0h{#G&mTyVvw>9v zpP9lD$2Xbo$?tbbGn)kZ`8~-4f_{Ey@_?Y9-;HajaR7!yrUw>B;{iZEcu{H`0wkGi zJPSxt*EkGFjG~;J9>K3t<7o6ugr6S6&$sKpLZ00u8~(_YM69-y_g%dd!&qHRsgWhH zYeuE8qh!PBQr%L5tCv!*E=4vwhpi1WRW)Ka&W8J}ERD@D7ySlsr`*`{r}t$pjQ<*h z?H7YQZzIjW=;yluT=*!j7f&7%%vV94u%916F>h~p`-XzlZ?=#h#^Y@Gs>f6r7>I9Q zg?SJ?o|@L8@H8 z_{1+v3lTHJS_<;~NlX5pSaI)|@4>?9^Yb%GwXEXK6E4~l!d6`JRK;aoalEUzJRv_n zD@4rf=O1FH(i0ftzZ~R4qJOmIW3mN;{3ZNs`Iy(U;n5&Z`JuUSF38W57f1yQEWZR8 zNyeCj3`G*NplE8YdULC(GIm+vi-lEhY&EJX9zm!e{a>hv>H_s4_VjBbLt3Z zUs^bcIvak;1glm!t5T}1!y!v)!g&^?L%0q}!2k8LiEv7R+T-6b#qGrLEQpG89E`?~ zL>wuDP8@0HuOp7rEZ5ZKw)dsP(b1#V;TLC}I1YlmYH^$(pE1|VPYXB$dx&W;A<0h) z7!ABpA6C3~#?P;S9ER%vby&BaJ4_VO)-_(lN2hxH_ z)YvB2TcebT@X)4o!b3xH9pPC@glF-0TxkgoW^_3Au8*S`QxzwGf3y|{ zGddg`{@0=7_5{b<*5crZ?r?DEtT7wR1Y~QQZAMeV%;D1$vM(m9?Tai>pxc=#^*`Uc zrq$h^Ee>XMICid&V=2M$s2VLSAIU@FDfEQ|zXhNkPLM9=djNV&dfU zc1zi8H+9t5%o%0bu*&T=!rNN^-s)jE{hGp;+(cK?p+L5N3pWcBGyC3fkmpZm{8tAZ z!}kUG9+pj&j)F;9ti~H2KQ;o7_vXisQ7?6%fyRXdFTg|$O88~5{VDBdxjAee6{U-_3Q<~tlVCA~1?n17tr ztz!NeKJfq*3UXVi+Yx}{ebPEtyHuOz~Yg?cyrMMKnxqiw&Oye|0{%HM_ zr_(7-`me8_@=Q9VDXFhmD=%&iylrm1rAQ46|BBzrcHY35tCjx=OB+8m41ZAb)F|+s z^yJ5Ytnk3fFT7c9a4h?DgNTx5DgXe{Dl~{wIrGGF%EE>$X*x!|$wEQM99}@(Zw~MK zbqQ5Ts=>0e%hAPJlD0Aja%+s7+R#u^iSlhh{oHI-gL7enpQlw_lIO$Fo=1@ekuOFc zD`m*&0ZP%QQ3-=j_{YEI=-cJWwHcuAEt|ow3GOBH0S2=5ozt_(fjE%U(_}r%-+C%p z??Zv~!SGHJ0zr}gl9@HZy&nK46`x@eZ`rvcHHUG&)Z!i$v=>(^h)|%XDyZKT#Jd$l z$T?T#-PD|Yp9<>U2?rBjvqNDf&zVp(uVtH|bNT0@MLUdw=37BRW=Fr`ZSmupwUTl? z;jMBfF6M=jqkv7J>CwDz{#H4DoSU||Ux^RkYV{!$=&9;6fXrkZ?^Yi|ku!psrGpLv zNEinf#37=QhX)Qtp|mH2t)S$o3OeBm;@t`&Lr zpMK>l7heS+F8mK(PKc=BAiv5og{l)FaD z9-eOFugB&(2J!Dg$mc`mVbqEQ)+DXAshTPqv0@dpal0Y)M&}*?vb!9z(YcP%C!gZV z9#>0Nu5Wq&r$8$gGctueS`L7!(CW$${IzOKW?dRRW}3!5dIB1{2Aso`g|~ccW=(Z`EDYk+uAo=N$M&Z;1ZKRT@)!s&d!yyX zeQ7$*fm^EFt~k9b5^2E-l5l_-o&v|2`;g0hg!e1wKFoGdB_a%|YM7ym^V&oqfkpwHYi3dtHtIu2z-z_IOh%2)>SMvhR$^ixC$M!f}+~;KJesYPd=qG zpP0{u8zas{g<{2~t~f!C(2O@(4=Zeju3S?wP_?E7s;C+zRUkZ~YQWmS!+n%gmA4={ z7p0GZXF*=q;&H&%OA>Js&GPiI$Tr_o?YG zOgzaB_zm>(RIcV$TQD#>Mdff@Y${!(SE{fl9{mVqN>Hm(QdH60ttNzt7AiLmBy#yQ zY^J?&<)38Y>bJzNZia3 zk3Y*uh^w$=`0Cws{Z@3md7)7tvEslOiCD}Y@WP3SL#iud*lp?r@WZD%Y$vM|c*6$`t%k`t z8le7;S7^trdRT7i#n0Z#C6FAMsPnI~_yWJU6KP6bpRJ@d!&QXenDkN{apPnmTk!fY zCut3zi%R7t+YsM?r%~X~dzPBO*pe0z$?cNtG=oS09^n~HNGn3q99pA7`PR3)X+#!J zEECOigGh?aM@Xb0V$rGj$X)oU`O-}ek=M&~Q8i(STO69kBDJMWfO6xknMNT2$P=it zYROA1UoF{v*ep?*ua^Q@<>;|NCLW^YMvPwX0aD5o$wD%=NpQ6U2y(*^+%=0;E!S|1 z2**=oULV$#o$U2N_L_l}vd24XX=@#@>Pz0T$zDHY?{R6RnN`p4}y ziFW(Bf17qgqqruS1ksa=f4BK%zIZtrUWQ`mEFf04lxOH@YIqsMPYf@2g`a+# z8>hCwg>0i!Qw%i&vh1yZQrR>3iR^pA--@!Y#ASvtv;@eqF9S+tpT|#R-yhx+Wj`Kg z8i=8X0NE(n1IQ53@0>!^jh{fYGyLbbx@s^e)T+T~4TBg`Wr!{VGDLKCrVw$37KnC- zABhmn#@VN0Xc~}ZpQ+A1fuG3U9{x&{eGUk%^e~1Pt6+4@05U{$#irH#}0R95+ zpgG-Pq40Mh?^^E8Lf&z#Dg0arufSxh^bvH+u|EcCdFu^>ya~gQgPB<7ZXEXqHgy zuEt1SD&cx4unS`1$#a_j-xL(@ug={b<&F%Rs2EiUA&Rs`tWHqYw5lsFz@^l93`@TJ z3%uL{YoZ`8c=iBE#S#ZXN-do$bf5idw_AocE^&XijgyY;=1Je+EnkFHp~g8yJZePO zHehV{%FFn4R-a*yyeJxkG7sPR$cw8ce4u&qba zRY@*)^$@AolMRaz#`Vx))VxwT@Dxf~6V8$6DPc`sBrJ_(wK9yvfp>e5x!Vg{j;lMR zr&T@ZkhyVQ)hz{3AoGMctxEc&&5^O84jpp64zONV#jw9lmn&yxK`bkIt$nwuQ@Kg= zo6&gCK5(~ZH{kBKCPB{E)P?3vetUQe-{pp;3e!0dQ zp|T>;dNF9a>hY82k(Sw(?!8 zv;X=O{M@V7=T)sQK&?-RQ`A)JYnJ*fbhw~+jD+izZRjZW^MTdGT)f?Q;A*)U#HCa+ zX~mng>vL}{x&yW7IN&>U^(8NjuAvrPYb`n&L=Ihjp-Z8wmNqlQ{|W8v_-J$WW8x#P z;-diZkr3zVDL!Jl-qQOk;$wZ*P#;{qmi1FGZ+)!S(gUA;>+ zif}E2>~szV9cQ&8P(^Fc=E*)%R~+EAa01tIo^UzO=h3dg#_nc&P(Eodb;YVEX-jQB z^tzv`f%tB3x#f}k_0$9B)zheC(3>!jkAD()vDJk)ZFL!8IUnWq;>lsbe1$b+T%&zV zX8E}8G%Sb7AYNm|30HAjfVfSF4wDqO;WKIJ{pgjt(`VOHSPHC)7NwlVGL~-g-_WpL zC-i}@zQ(G;=Tuf2UwvIeeDzgU6~1LuJ=U8>Uw5@|?K9z8Uwu&2*6ZR=R@NJUH9$XA zzA3h|Qp$WjYI@A)yGCX4jAp~rrz0DxMsm%|v4Ek9&p$&8w>^#J5yMi? z!gc9fp=4_o9(KEBc;ire)Av7J3%A@gAr4Js!}t85st_5p>)LJ;S|U^I zpBjwTmBMJcaSTY)g^g121CA3&8L7Z4fx_Yk?oD&~&} z-Y=Mxz%3w{zCy%L3GNg85Mi^howOsSCn7Ds4{u9~@31oHDf1P42XC$5Ug6@1_Gz@SxtGb)G4ku{0l2PK}kvyvHAj}^I(H>&wjXo-3=s)E`g z8~*qYxLFnS2NVf{SRzF-A7CG+H*boBKcq;`qG&1--XRo_3PL)~V$S)Ayaj541{7S< zF1fVu*lN8A&jM&fXpb6@tHg-f7Q78 zQo`dfIkK)GJQ*vJY?bi*78-bs@D!v5Q9l-y4WGiP2b`8yE5`+B!-dK>Alecr|Itkd z!=zuM^6G!)GdO73WIWXaApe5SW=7O*w1~@Ooqq`FO5O>kE_ui8#-K0!>QB7EUM~o4 z4gJ>|v#%j8AjxYLVR-RtqwEw36{S^ggD6%iS1ZG*><#1tJrvhR+3$(7a~;aEZ;!Lz z2`H6)D}EyT?cwx&j`+QCrrj}=1!Se)4=9y=Cw?OP=CBZDpF#6knR78T0m#-8CIK0u zDL^SiqxcC#H-|eTL}&2C5HT*ppngDxi2BzMQTwJ4F-#ALwuax`Wfk(yFkLiZg>N|( zsb|}DG|1$}In>C|5P&>ThImx7Sl)f4?9I@dZE*t8dN~=Pk(0JOv?sfG^o~u$p#WLv zCXF8NkFu~$Y(TtQ+Pd&!#|7XjMEs!T`kB(WN(V=-%~C|JeAVo#;Vg=EQ?Fau+2+Bkyulad(|0eN8%3e6v5h9Fct^=iWMSc&SR#%nnUH0bZI_53)dg&+!z*KG= za>0<1PYMSjJy$P=?M2rteo^#+FYZVMtt_i6$}j&36P8aNN|JOjLV{6tE|O_GeJL}lEBsLO{M_lDpq=;wPnsyW6AC?e z2$-;1hN}cufMk+TP3VDJBwMe;*6GKXirH2PCl-`G368Uk>!Cs(L?u}UuUDyK#~%m# ze_Ms2;D^dBpbNn$Q78Zpek*BXfay{W$Of?&fjxN3xQCQ3W#!SKwuB#hjT;;|5Ll-6 z7-Ib``z}DK?04ZOvNwl^qU?v_O#5PJKOoCaqcoL$4}K#1=J1XvduyDDYQpGf0A$&l z0Hw08pskU;HT>pJi1?JMGc~N^L{d)?w9+~07F>D$0!!1ro9zM+f|wOBA9zdJ>NCxq zKZxt0y2RYK*VZT*KFP!7j+yPsAF^GkvS_>VPJ(fai=^>5&u!s(YzU(4{&h1zBq`WQ zLl#i?rK8V=Q=xW&f=-lr*+fX9<$~m#e3B7*j7VM^QVv6CA2UG_q!bH(SEW(bVoAV~z zX?4by0rYGaOf-P?=_TZ2GxLthqnQaQ;t<<1$rvqRyZ~@eBvuAkX=1VEDiw-UCXWT2 z29N93!Di4-Z8CCe3TpJV2p*133LHedp|8;5-1stSWayFr5lcwXh9lOBiZ=XPy^6U! z61So&O94j2V621QHQ8y7dNc3_aM zLm7vM)Io|H7jd}Z2u3LEfsO+7ZYA@RyucH;KvfyYiSt6z#jGR72?nc~Ld5G8z$$6P zWQxjfUdNmNxoRn5XY-zttD;nkh-I7`ZlbGVl62q<^7;(M0vg8V(R z;i@^z-1|KYS2u^}?s3@uAR?fALa9hIGsKf!5fthY}ROME81fiW~<EzG-rNMhpF0{Z^@VXs?z>K7x}D zqY>_M;9Z8sa{K5#Z2vg{tzqLCe`q{oqfycEu3`m2cWCGLCG;|kXFpOM^>`Pmr|~Q` z>{6EG!?cyT62hj8VLV+GmC@K^9e}QZ+&Hi500NjsM@p#!ELk3O00vw(qd1KsOYs0u zHSVmWx_oNP!BD!#2<0LoLoG2}B3yYX@N6pfAq|(#z`$_XX2a#l8Bk^$6|lMoI5J;V z1sDm4X6Bfm8dTF@qGJw?5REuJ3trEq_QM+&vnlZh*JJUo`cl+n-FZhr(9xOgQe3Y<&s2Ii&4zP!hR}}Bw&b6Ua^hI{OFVsgIgW)m{!YA%esw<> zaOOWNZXivJ?EQw!|8iV7I!jj{Q?t-znJ7u}ef5%ieTe~0!x2Q(FYLv2bEiBWjg@io z!_kS6j&wr2stHfofbcAPmnt05RZ~tLJ1?coyXD-`<;=ssvJO4Jn^Ut@SKdoGX>hK( zvFut&S?sCJfyHk$ZM33ZegRJhccxfwX-~