From 53a65e4f3d50ffd84e8070f2adf5f93705807988 Mon Sep 17 00:00:00 2001 From: Per A Brodtkorb Date: Tue, 13 Jun 2017 12:12:08 +0200 Subject: [PATCH] pep8 --- wafo/covariance/estimation.py | 3 +- wafo/objects.py | 101 +++++++++++++++++----------------- 2 files changed, 52 insertions(+), 52 deletions(-) diff --git a/wafo/covariance/estimation.py b/wafo/covariance/estimation.py index 8b4a3a9..cc3c110 100644 --- a/wafo/covariance/estimation.py +++ b/wafo/covariance/estimation.py @@ -143,7 +143,8 @@ class CovarianceEstimator(object): nfft = 2 ** nextpow2(n) raw_periodogram = abs(fft(x, nfft)) ** 2 / Ncens - auto_cov = np.real(fft(raw_periodogram)) / nfft # ifft = fft/nfft since raw_periodogram is real! + # ifft = fft/nfft since raw_periodogram is real! + auto_cov = np.real(fft(raw_periodogram)) / nfft if self.flag.startswith('unbiased'): # unbiased result, i.e. divide by n-abs(lag) diff --git a/wafo/objects.py b/wafo/objects.py index c89d094..7f0d850 100644 --- a/wafo/objects.py +++ b/wafo/objects.py @@ -848,11 +848,11 @@ class CyclePairs(PlotData): n = len(F) # Size of matrix N = np.sum(F) # Total number of cycles - Fsmooth = np.zeros((n,n)) + Fsmooth = np.zeros((n, n)) if method == 1 or method == 2: # Kernel estimator - d = 2 # 2-dim + d = 2 # 2-dim x = np.arange(n) I, J = np.meshgrid(x, x) @@ -862,59 +862,59 @@ class CyclePairs(PlotData): # therefore we choose a slightly smaller bandwidth if aut_h == 1: - h_norm = smoothcmat_hnorm(F,NOsubzero); - h = 0.7*h_norm # Don't oversmooth - - #h0 = N^(-1/(d+4)); - #FF = F+F'; - #mean_F = sum(sum(FF).*(1:n))/N/2; - #s2 = sum(sum(FF).*((1:n)-mean_F).^2)/N/2; - #s = sqrt(s2); % Mean of std in each direction - #h_norm = s*h0; % Optimal for Normal distr. - #h = h_norm; % Test + h_norm = smoothcmat_hnorm(F, NOsubzero) + h = 0.7 * h_norm # Don't oversmooth + + # h0 = N^(-1/(d+4)); + # FF = F+F'; + # mean_F = sum(sum(FF).*(1:n))/N/2; + # s2 = sum(sum(FF).*((1:n)-mean_F).^2)/N/2; + # s = sqrt(s2); % Mean of std in each direction + # h_norm = s*h0; % Optimal for Normal distr. + # h = h_norm; % Test # endif # Calculating kernel estimate # Kernel: 2-dim normal density function - for i in range(n-1): - for j in range(i+1,n): - if F(i,j) != 0: - F1 = exp(-1/(2*h**2)*((I-i)**2+(J-j)**2)); # Gaussian kernel - F1 = F1+F1.T; # Mirror kernel in diagonal - F1 = np.triu(F1,1+NOsubzero); # Set to zero below and on diagonal - F1 = F[i,j] * F1/np.sum(F1) # Normalize - Fsmooth = Fsmooth+F1; + for i in range(n - 1): + for j in range(i + 1, n): + if F[i, j] != 0: + F1 = exp(-1 / (2 * h**2) * ((I - i)**2 + (J - j)**2)) # Gaussian kernel + F1 = F1 + F1.T # Mirror kernel in diagonal + F1 = np.triu(F1, 1 + NOsubzero) # Set to zero below and on diagonal + F1 = F[i, j] * F1 / np.sum(F1) # Normalize + Fsmooth = Fsmooth + F1 # endif # endfor # endfor # endif method 1 or 2 if method == 2: - Fpilot = Fsmooth/N; - Fsmooth = np.zeros(n,n); - [I1,I2] = find(F>0); - logg = 0; - for i in range(len(I1)): # =1:length(I1): - logg = logg + F(I1(i),I2(i)) * log(Fpilot(I1(i),I2(i))); - #endfor - g = np.exp(logg/N); - lamda = (Fpilot/g)**(-alpha); - - for i in range(n-1): # = 1:n-1 - for j in range(i+1, n): # = i+1:n - if F[i,j] != 0: - hi = h*lamda[i,j] - F1 = np.exp(-1/(2*hi**2)*((I-i)**2+(J-j)**2)); # Gaussian kernel - F1 = F1+F1.T; # Mirror kernel in diagonal - F1 = np.triu(F1,1+NOsubzero); # Set to zero below and on diagonal - F1 = F[i,j] * F1/np.sum(F1); # Normalize - Fsmooth = Fsmooth+F1; + Fpilot = Fsmooth / N + Fsmooth = np.zeros(n, n) + [I1, I2] = find(F > 0) + logg = 0 + for i in range(len(I1)): # =1:length(I1): + logg = logg + F(I1[i], I2[i]) * log(Fpilot(I1[i], I2[i])) + # endfor + g = np.exp(logg / N) + _lamda = (Fpilot / g)**(-alpha) + + for i in range(n - 1): # = 1:n-1 + for j in range(i + 1, n): # = i+1:n + if F[i, j] != 0: + hi = h * _lamda[i, j] + F1 = np.exp(-1 / (2 * hi**2) * ((I - i)**2 + (J - j)**2)) # Gaussian kernel + F1 = F1 + F1.T # Mirror kernel in diagonal + F1 = np.triu(F1, 1 + NOsubzero) # Set to zero below and on diagonal + F1 = F[i, j] * F1 / np.sum(F1) # Normalize + Fsmooth = Fsmooth + F1 # endif # endfor # endfor - #endif method 2 + # endif method 2 return Fsmooth,h def cycle_matrix(self, param=(), ddef=1, method=0, h=None, NOsubzero=0, alpha=0.5): @@ -1029,30 +1029,29 @@ class CyclePairs(PlotData): cp1, cp2 = np.copy(self.args), np.copy(self.data) # Make so that minima is in first column - ix = np.flatnonzero(cp1>cp2) + ix = np.flatnonzero(cp1 > cp2) if np.any(ix): cp1[ix], cp2[ix] = cp2[ix], cp1[ix] # Make discretization a, b, n = param - delta = (b-a)/(n-1) # Discretization step - cp1 = (cp1-a)/delta + 1 - cp2 = (cp2-a)/delta + 1 + delta = (b - a) / (n - 1) # Discretization step + cp1 = (cp1 - a) / delta + 1 + cp2 = (cp2 - a) / delta + 1 if ddef == 0: - cp1 = np.clip(np.round(cp1), 0, n-1) - cp2 = np.clip(np.round(cp2), 0, n-1) + cp1 = np.clip(np.round(cp1), 0, n - 1) + cp2 = np.clip(np.round(cp2), 0, n - 1) elif ddef == +1: - cp1 = np.clip(np.floor(cp1), 0, n-2) - cp2 = np.clip(np.ceil(cp2), 1, n-1) + cp1 = np.clip(np.floor(cp1), 0, n - 2) + cp2 = np.clip(np.ceil(cp2), 1, n - 1) elif ddef == -1: - cp1 = np.clip(np.ceil(cp1), 1, n-1) - cp2 = np.clip(np.floor(cp2), 0, n-2) + cp1 = np.clip(np.ceil(cp1), 1, n - 1) + cp2 = np.clip(np.floor(cp2), 0, n - 2) else: raise ValueError('Undefined discretization definition, ddef = {}'.format(ddef)) - if np.any(ix): cp1[ix], cp2[ix] = cp2[ix], cp1[ix] return np.asarray(cp1, type=int), np.asarray(cp2, type=int)