From 52b6b429688adf93f55c15f6e353087b4275d82e Mon Sep 17 00:00:00 2001 From: Per A Brodtkorb Date: Thu, 1 Jun 2017 18:12:30 +0200 Subject: [PATCH] Fixed change of value in conversion from REAL(8) to INTEGER(4) at line 134 and 719 + pep8 --- wafo/source/mvn/mvndst.f | 268 +++++++++++++++++++-------------------- 1 file changed, 134 insertions(+), 134 deletions(-) diff --git a/wafo/source/mvn/mvndst.f b/wafo/source/mvn/mvndst.f index 255efff..6265ab8 100644 --- a/wafo/source/mvn/mvndst.f +++ b/wafo/source/mvn/mvndst.f @@ -1,6 +1,6 @@ C f2py -m -h mvn1.pyf mvndst.f C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -! f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m mvnprd -c mvnprd.f +! f2py --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 -m mvnprd -c mvnprd.f * Note: The test program has been removed and a utlity routine mvnun has been * added. RTK 2004-08-10 @@ -14,9 +14,9 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * * This file contains a short test program and MVNDST, a subroutine * for computing multivariate normal distribution function values. -* The file is self contained and should compile without errors on (77) +* The file is self contained and should compile without errors on (77) * standard Fortran compilers. The test program demonstrates the use of -* MVNDST for computing MVN distribution values for a five dimensional +* MVNDST for computing MVN distribution values for a five dimensional * example problem, with three different integration limit combinations. * * Alan Genz @@ -25,7 +25,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * Pullman, WA 99164-3113 * Email : alangenz@wsu.edu * - SUBROUTINE mvnun(d, n, lower, upper, means, covar, maxpts, + SUBROUTINE mvnun(d, n, lower, upper, means, covar, maxpts, & abseps, releps, value, inform) * Parameters * @@ -39,12 +39,12 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * abseps double, absolute error tolerance * releps double, relative error tolerance * value double intent(out), integral value -* inform integer intent(out), +* inform integer intent(out), * if inform == 0: error < eps * elif inform == 1: error > eps, all maxpts used integer n, d, infin(d), maxpts, inform, tmpinf double precision lower(d), upper(d), releps, abseps, - & error, value, stdev(d), rho(d*(d-1)/2), + & error, value, stdev(d), rho(d*(d-1)/2), & covar(d,d), & nlower(d), nupper(d), means(d,n), tmpval integer i, j @@ -76,8 +76,8 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 end do value = value / n - - END + + END SUBROUTINE MVNDST( N, LOWER, UPPER, INFIN, CORREL, MAXPTS, & ABSEPS, RELEPS, ERROR, VALUE, INFORM ) @@ -86,9 +86,9 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * This subroutine uses an algorithm given in the paper * "Numerical Computation of Multivariate Normal Probabilities", in * J. of Computational and Graphical Stat., 1(1992), pp. 141-149, by -* Alan Genz +* Alan Genz * Department of Mathematics -* Washington State University +* Washington State University * Pullman, WA 99164-3113 * Email : AlanGenz@wsu.edu * @@ -106,8 +106,8 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * coefficient in row I column J of the correlation matrix * should be stored in CORREL( J + ((I-2)*(I-1))/2 ), for J < I. * THe correlation matrix must be positive semidefinite. -* MAXPTS INTEGER, maximum number of function values allowed. This -* parameter can be used to limit the time. A sensible +* MAXPTS INTEGER, maximum number of function values allowed. This +* parameter can be used to limit the time. A sensible * strategy is to start with MAXPTS = 1000*N, and then * increase MAXPTS if ERROR is too large. * ABSEPS REAL absolute error tolerance. @@ -116,15 +116,15 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * VALUE REAL estimated value for the integral * INFORM INTEGER, termination status parameter: * if INFORM = 0, normal completion with ERROR < EPS; -* if INFORM = 1, completion with ERROR > EPS and MAXPTS -* function vaules used; increase MAXPTS to +* if INFORM = 1, completion with ERROR > EPS and MAXPTS +* function vaules used; increase MAXPTS to * decrease ERROR; * if INFORM = 2, N > 500 or N < 1. * EXTERNAL MVNDFN - INTEGER N, INFIN(*), MAXPTS, INFORM, INFIS, IVLS + INTEGER N, INFIN(*), MAXPTS, INFORM, INFIS, IVLS, MVNDNT DOUBLE PRECISION CORREL(*), LOWER(*), UPPER(*), RELEPS, ABSEPS, - & ERROR, VALUE, E, D, MVNDNT, MVNDFN + & ERROR, VALUE, E, D, MVNDFN COMMON /DKBLCK/IVLS IF ( N .GT. 500 .OR. N .LT. 1 ) THEN INFORM = 2 @@ -143,13 +143,13 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * Call the lattice rule integration subroutine * IVLS = 0 - CALL DKBVRC( N-INFIS-1, IVLS, MAXPTS, MVNDFN, + CALL DKBVRC( N-INFIS-1, IVLS, MAXPTS, MVNDFN, & ABSEPS, RELEPS, ERROR, VALUE, INFORM ) ENDIF ENDIF END DOUBLE PRECISION FUNCTION MVNDFN( N, W ) -* +* * Integrand subroutine * INTEGER N, INFIN(*), INFIS, NL @@ -174,7 +174,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( INFA .EQ. 1 ) THEN AI = MAX( AI, A(I) - SUM ) ELSE - AI = A(I) - SUM + AI = A(I) - SUM INFA = 1 END IF END IF @@ -182,12 +182,12 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( INFB .EQ. 1 ) THEN BI = MIN( BI, B(I) - SUM ) ELSE - BI = B(I) - SUM + BI = B(I) - SUM INFB = 1 END IF END IF IJ = IJ + 1 - IF ( I .EQ. N+1 .OR. COV(IJ+IK+1) .GT. 0 ) THEN + IF ( I .EQ. N+1 .OR. COV(IJ+IK+1) .GT. 0 ) THEN CALL MVNLMS( AI, BI, 2*INFA+INFB-1, DI, EI ) IF ( DI .GE. EI ) THEN MVNDFN = 0 @@ -212,7 +212,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * CALL COVSRT( N, LOWER,UPPER,CORREL,INFIN,Y, INFIS,A,B,COV,INFI ) IF ( N - INFIS .EQ. 1 ) THEN - CALL MVNLMS( A(1), B(1), INFI(1), D, E ) + CALL MVNLMS( A(1), B(1), INFI(1), D, E ) ELSE IF ( N - INFIS .EQ. 2 ) THEN IF ( ABS( COV(3) ) .GT. 0 ) THEN D = SQRT( 1 + COV(2)**2 ) @@ -224,17 +224,17 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( INFI(1) .NE. 0 ) THEN IF ( INFI(2) .NE. 0 ) A(1) = MAX( A(1), A(2) ) ELSE - IF ( INFI(2) .NE. 0 ) A(1) = A(2) + IF ( INFI(2) .NE. 0 ) A(1) = A(2) END IF IF ( INFI(1) .NE. 1 ) THEN - IF ( INFI(2) .NE. 1 ) B(1) = MIN( B(1), B(2) ) + IF ( INFI(2) .NE. 1 ) B(1) = MIN( B(1), B(2) ) ELSE IF ( INFI(2) .NE. 1 ) B(1) = B(2) END IF IF ( INFI(1) .NE. INFI(2) ) INFI(1) = 2 - CALL MVNLMS( A(1), B(1), INFI(1), D, E ) + CALL MVNLMS( A(1), B(1), INFI(1), D, E ) END IF - INFIS = INFIS + 1 + INFIS = INFIS + 1 END IF END SUBROUTINE MVNLMS( A, B, INFIN, LOWER, UPPER ) @@ -247,14 +247,14 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( INFIN .NE. 1 ) UPPER = MVNPHI(B) ENDIF UPPER = MAX( UPPER, LOWER ) - END - SUBROUTINE COVSRT( N, LOWER, UPPER, CORREL, INFIN, Y, + END + SUBROUTINE COVSRT( N, LOWER, UPPER, CORREL, INFIN, Y, & INFIS, A, B, COV, INFI ) * * Subroutine to sort integration limits and determine Cholesky factor. * INTEGER N, INFI(*), INFIN(*), INFIS - DOUBLE PRECISION + DOUBLE PRECISION & A(*), B(*), COV(*), LOWER(*), UPPER(*), CORREL(*), Y(*) INTEGER I, J, K, L, M, II, IJ, IL, JMIN DOUBLE PRECISION SUMSQ, AJ, BJ, SUM, SQTWPI, EPS, D, E @@ -266,10 +266,10 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 DO I = 1, N A(I) = 0 B(I) = 0 - INFI(I) = INFIN(I) + INFI(I) = INFIN(I) IF ( INFI(I) .LT. 0 ) THEN INFIS = INFIS + 1 - ELSE + ELSE IF ( INFI(I) .NE. 0 ) A(I) = LOWER(I) IF ( INFI(I) .NE. 1 ) B(I) = UPPER(I) ENDIF @@ -286,7 +286,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * IF ( INFIS .LT. N ) THEN DO I = N, N-INFIS+1, -1 - IF ( INFI(I) .GE. 0 ) THEN + IF ( INFI(I) .GE. 0 ) THEN DO J = 1,I-1 IF ( INFI(J) .LT. 0 ) THEN CALL RCSWP( J, I, A, B, INFI, N, COV ) @@ -328,7 +328,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 CVDIAG = SUMSQ ENDIF ENDIF - IJ = IJ + J + IJ = IJ + J END DO IF ( JMIN .GT. I ) CALL RCSWP( I, JMIN, A,B, INFI, N, COV ) COV(II+I) = CVDIAG @@ -339,7 +339,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * IF ( CVDIAG .GT. 0 ) THEN IL = II + I - DO L = I+1, N-INFIS + DO L = I+1, N-INFIS COV(IL+I) = COV(IL+I)/CVDIAG IJ = II + I DO J = I+1, L @@ -367,12 +367,12 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 B(I) = B(I)/CVDIAG ELSE IL = II + I - DO L = I+1, N-INFIS + DO L = I+1, N-INFIS COV(IL+I) = 0 IL = IL + L END DO * -* If the covariance matrix diagonal entry is zero, +* If the covariance matrix diagonal entry is zero, * permute limits and/or rows, if necessary. * * @@ -381,25 +381,25 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 A(I) = A(I)/COV(II+J) B(I) = B(I)/COV(II+J) IF ( COV(II+J) .LT. 0 ) THEN - CALL DKSWAP( A(I), B(I) ) + CALL DKSWAP( A(I), B(I) ) IF ( INFI(I) .NE. 2 ) INFI(I) = 1 - INFI(I) END IF DO L = 1, J COV(II+L) = COV(II+L)/COV(II+J) END DO - DO L = J+1, I-1 + DO L = J+1, I-1 IF( COV((L-1)*L/2+J+1) .GT. 0 ) THEN IJ = II - DO K = I-1, L, -1 + DO K = I-1, L, -1 DO M = 1, K CALL DKSWAP( COV(IJ-K+M), COV(IJ+M) ) END DO - CALL DKSWAP( A(K), A(K+1) ) - CALL DKSWAP( B(K), B(K+1) ) + CALL DKSWAP( A(K), A(K+1) ) + CALL DKSWAP( B(K), B(K+1) ) M = INFI(K) INFI(K) = INFI(K+1) INFI(K+1) = M - IJ = IJ - K + IJ = IJ - K END DO GO TO 20 END IF @@ -455,7 +455,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 & ABSERR, FINEST, INFORM ) * * Automatic Multidimensional Integration Subroutine -* +* * AUTHOR: Alan Genz * Department of Mathematics * Washington State University @@ -471,50 +471,50 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * 0 0 0 * * -* DKBVRC uses randomized Korobov rules for the first 100 variables. +* DKBVRC uses randomized Korobov rules for the first 100 variables. * The primary references are * "Randomization of Number Theoretic Methods for Multiple Integration" * R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14, -* and -* "Optimal Parameters for Multidimensional Integration", +* and +* "Optimal Parameters for Multidimensional Integration", * P. Keast, SIAM J Numer Anal, 10, pp.831-838. * If there are more than 100 variables, the remaining variables are * integrated using the rules described in the reference * "On a Number-Theoretical Integration Method" * H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11. -* +* *************** Parameters ******************************************** ****** Input parameters * NDIM Number of variables, must exceed 1, but not exceed 40 * MINVLS Integer minimum number of function evaluations allowed. * MINVLS must not exceed MAXVLS. If MINVLS < 0 then the -* routine assumes a previous call has been made with +* routine assumes a previous call has been made with * the same integrand and continues that calculation. * MAXVLS Integer maximum number of function evaluations allowed. * FUNCTN EXTERNALly declared user defined function to be integrated. * It must have parameters (NDIM,Z), where Z is a real array * of dimension NDIM. -* +* * ABSEPS Required absolute accuracy. * RELEPS Required relative accuracy. ****** Output parameters * MINVLS Actual number of function evaluations used. * ABSERR Estimated absolute accuracy of FINEST. * FINEST Estimated value of integral. -* INFORM INFORM = 0 for normal exit, when +* INFORM INFORM = 0 for normal exit, when * ABSERR <= MAX(ABSEPS, RELEPS*ABS(FINEST)) -* and +* and * INTVLS <= MAXCLS. -* INFORM = 1 If MAXVLS was too small to obtain the required -* accuracy. In this case a value FINEST is returned with +* INFORM = 1 If MAXVLS was too small to obtain the required +* accuracy. In this case a value FINEST is returned with * estimated absolute accuracy ABSERR. ************************************************************************ EXTERNAL FUNCTN INTEGER NDIM, MINVLS, MAXVLS, INFORM, NP, PLIM, NLIM, KLIM, KLIMI, & SAMPLS, I, INTVLS, MINSMP PARAMETER ( PLIM = 28, NLIM = 1000, KLIM = 100, MINSMP = 8 ) - INTEGER P(PLIM), C(PLIM,KLIM-1) - DOUBLE PRECISION FUNCTN, ABSEPS, RELEPS, FINEST, ABSERR, DIFINT, + INTEGER P(PLIM), C(PLIM,KLIM-1) + DOUBLE PRECISION FUNCTN, ABSEPS, RELEPS, FINEST, ABSERR, DIFINT, & FINVAL, VARSQR, VAREST, VARPRD, VALUE DOUBLE PRECISION X(2*NLIM), VK(NLIM), ONE PARAMETER ( ONE = 1 ) @@ -525,7 +525,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( MINVLS .GE. 0 ) THEN FINEST = 0 VAREST = 0 - SAMPLS = MINSMP + SAMPLS = MINSMP DO I = MIN( NDIM, 10), PLIM NP = I IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10 @@ -537,8 +537,8 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( I .LE. KLIM ) THEN VK(I) = MOD( C(NP, MIN(NDIM-1,KLIM-1))*VK(I-1), ONE ) ELSE - VK(I) = INT( P(NP)*2**(DBLE(I-KLIM)/(NDIM-KLIM+1)) ) - VK(I) = MOD( VK(I)/P(NP), ONE ) + VK(I) = INT( P(NP)*2**(DBLE(I-KLIM)/(NDIM-KLIM+1)) ) + VK(I) = MOD( VK(I)/P(NP), ONE ) END IF END DO FINVAL = 0 @@ -558,7 +558,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( NP .LT. PLIM ) THEN NP = NP + 1 ELSE - SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) + SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) ) SAMPLS = MAX( MINSMP, SAMPLS ) ENDIF IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10 @@ -606,7 +606,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 & 2*247, 338, 366, 847, 2*753, 236, 2*334, 461, 711, 652, & 3*381, 652, 7*381, 226, 7*326, 126, 10*326, 2*195, 19*55, & 7*195, 11*132, 13*387/ - DATA P(12),(C(12,I),I = 1,99)/ 3079, 1189, 888, 259, 1082, 725, + DATA P(12),(C(12,I),I = 1,99)/ 3079, 1189, 888, 259, 1082, 725, & 811, 636, 965, 2*497, 2*1490, 392, 1291, 2*508, 2*1291, 508, & 1291, 2*508, 4*867, 934, 7*867, 9*1284, 4*563, 3*1010, 208, & 838, 3*563, 2*759, 564, 2*759, 4*801, 5*759, 8*563, 22*226/ @@ -643,19 +643,19 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 & 2*4037, 15808, 11401, 19398, 2*25950, 4454, 24987, 11719, & 8697, 5*1452, 2*8697, 6436, 21475, 6436, 22913, 6434, 18497, & 4*11089, 2*3036, 4*14208, 8*12906, 4*7614, 6*5021, 24*10145, - & 6*4544, 4*8394/ + & 6*4544, 4*8394/ DATA P(20),(C(20,I),I = 1,99)/ 79259, 34566, 9579, 12654, & 26856, 37873, 38806, 29501, 17271, 3663, 10763, 18955, & 1298, 26560, 2*17132, 2*4753, 8713, 18624, 13082, 6791, & 1122, 19363, 34695, 4*18770, 15628, 4*18770, 33766, 6*20837, & 5*6545, 14*12138, 5*30483, 19*12138, 9305, 13*11107, 2*9305/ DATA P(21),(C(21,I),I = 1,99)/118891, 31929, 49367, 10982, 3527, - & 27066, 13226, 56010, 18911, 40574, 2*20767, 9686, 2*47603, - & 2*11736, 41601, 12888, 32948, 30801, 44243, 2*53351, 16016, - & 2*35086, 32581, 2*2464, 49554, 2*2464, 2*49554, 2464, 81, 27260, - & 10681, 7*2185, 5*18086, 2*17631, 3*18086, 37335, 3*37774, + & 27066, 13226, 56010, 18911, 40574, 2*20767, 9686, 2*47603, + & 2*11736, 41601, 12888, 32948, 30801, 44243, 2*53351, 16016, + & 2*35086, 32581, 2*2464, 49554, 2*2464, 2*49554, 2464, 81, 27260, + & 10681, 7*2185, 5*18086, 2*17631, 3*18086, 37335, 3*37774, & 13*26401, 12982, 6*40398, 3*3518, 9*37799, 4*4721, 4*7067/ - DATA P(22),(C(22,I),I = 1,99)/178349, 40701, 69087, 77576, 64590, + DATA P(22),(C(22,I),I = 1,99)/178349, 40701, 69087, 77576, 64590, & 39397, 33179, 10858, 38935, 43129, 2*35468, 5279, 2*61518, 27945, & 2*70975, 2*86478, 2*20514, 2*73178, 2*43098, 4701, & 2*59979, 58556, 69916, 2*15170, 2*4832, 43064, 71685, 4832, @@ -682,28 +682,28 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 & 2*282859, 211587, 242821, 3*256865, 122203, 291915, 122203, & 2*291915, 122203, 2*25639, 291803, 245397, 284047, & 7*245397, 94241, 2*66575, 19*217673, 10*210249, 15*94453/ - DATA P(26),(C(26,I),I = 1,99)/902933, 333459, 375354, 102417, - & 383544, 292630, 41147, 374614, 48032, 435453, 281493, 358168, - & 114121, 346892, 238990, 317313, 164158, 35497, 2*70530, 434839, - & 3*24754, 393656, 2*118711, 148227, 271087, 355831, 91034, - & 2*417029, 2*91034, 417029, 91034, 2*299843, 2*413548, 308300, - & 3*413548, 3*308300, 413548, 5*308300, 4*15311, 2*176255, 6*23613, - & 172210, 4* 204328, 5*121626, 5*200187, 2*121551, 12*248492, + DATA P(26),(C(26,I),I = 1,99)/902933, 333459, 375354, 102417, + & 383544, 292630, 41147, 374614, 48032, 435453, 281493, 358168, + & 114121, 346892, 238990, 317313, 164158, 35497, 2*70530, 434839, + & 3*24754, 393656, 2*118711, 148227, 271087, 355831, 91034, + & 2*417029, 2*91034, 417029, 91034, 2*299843, 2*413548, 308300, + & 3*413548, 3*308300, 413548, 5*308300, 4*15311, 2*176255, 6*23613, + & 172210, 4* 204328, 5*121626, 5*200187, 2*121551, 12*248492, & 5*13942/ DATA P(27), (C(27,I), I = 1,99)/ 1354471, 500884, 566009, 399251, - & 652979, 355008, 430235, 328722, 670680, 2*405585, 424646, - & 2*670180, 641587, 215580, 59048, 633320, 81010, 20789, 2*389250, - & 2*638764, 2*389250, 398094, 80846, 2*147776, 296177, 2*398094, - & 2*147776, 396313, 3*578233, 19482, 620706, 187095, 620706, - & 187095, 126467, 12*241663, 321632, 2*23210, 3*394484, 3*78101, + & 652979, 355008, 430235, 328722, 670680, 2*405585, 424646, + & 2*670180, 641587, 215580, 59048, 633320, 81010, 20789, 2*389250, + & 2*638764, 2*389250, 398094, 80846, 2*147776, 296177, 2*398094, + & 2*147776, 396313, 3*578233, 19482, 620706, 187095, 620706, + & 187095, 126467, 12*241663, 321632, 2*23210, 3*394484, 3*78101, & 19*542095, 3*277743, 12*457259/ - DATA P(28), (C(28,I), I = 1, 99)/ 2031713, 858339, 918142, 501970, - & 234813, 460565, 31996, 753018, 256150, 199809, 993599, 245149, - & 794183, 121349, 150619, 376952, 2*809123, 804319, 67352, 969594, + DATA P(28), (C(28,I), I = 1, 99)/ 2031713, 858339, 918142, 501970, + & 234813, 460565, 31996, 753018, 256150, 199809, 993599, 245149, + & 794183, 121349, 150619, 376952, 2*809123, 804319, 67352, 969594, & 434796, 969594, 804319, 391368, 761041, 754049, 466264, 2*754049, - & 466264, 2*754049, 282852, 429907, 390017, 276645, 994856, 250142, - & 144595, 907454, 689648, 4*687580, 978368, 687580, 552742, 105195, - & 942843, 768249, 4*307142, 7*880619, 11*117185, 11*60731, + & 466264, 2*754049, 282852, 429907, 390017, 276645, 994856, 250142, + & 144595, 907454, 689648, 4*687580, 978368, 687580, 552742, 105195, + & 942843, 768249, 4*307142, 7*880619, 11*117185, 11*60731, & 4*178309, 8*74373, 3*214965/ * END @@ -716,7 +716,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 SUMKRO = 0 NK = MIN( NDIM, KLIM ) DO J = 1, NK - 1 - JP = J + MVNUNI()*( NK + 1 - J ) + JP = J + INT(MVNUNI()*( NK + 1 - J )) XT = VK(J) VK(J) = VK(JP) VK(JP) = XT @@ -737,64 +737,64 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 END * DOUBLE PRECISION FUNCTION MVNPHI( Z ) -* +* * Normal distribution probabilities accurate to 1.e-15. * Z = no. of standard deviations from the mean. -* +* * Based upon algorithm 5666 for the error function, from: * Hart, J.F. et al, 'Computer Approximations', Wiley 1968 -* +* * Programmer: Alan Miller -* +* * Latest revision - 30 March 1986 -* - DOUBLE PRECISION P0, P1, P2, P3, P4, P5, P6, +* + DOUBLE PRECISION P0, P1, P2, P3, P4, P5, P6, * Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, * Z, P, EXPNTL, CUTOFF, ROOTPI, ZABS PARAMETER( * P0 = 220.20 68679 12376 1D0, - * P1 = 221.21 35961 69931 1D0, + * P1 = 221.21 35961 69931 1D0, * P2 = 112.07 92914 97870 9D0, * P3 = 33.912 86607 83830 0D0, * P4 = 6.3739 62203 53165 0D0, - * P5 = .70038 30644 43688 1D0, + * P5 = .70038 30644 43688 1D0, * P6 = .035262 49659 98910 9D0 ) PARAMETER( * Q0 = 440.41 37358 24752 2D0, - * Q1 = 793.82 65125 19948 4D0, + * Q1 = 793.82 65125 19948 4D0, * Q2 = 637.33 36333 78831 1D0, - * Q3 = 296.56 42487 79673 7D0, + * Q3 = 296.56 42487 79673 7D0, * Q4 = 86.780 73220 29460 8D0, - * Q5 = 16.064 17757 92069 5D0, + * Q5 = 16.064 17757 92069 5D0, * Q6 = 1.7556 67163 18264 2D0, * Q7 = .088388 34764 83184 4D0 ) PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 ) PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 ) -* +* ZABS = ABS(Z) -* +* * |Z| > 37 -* +* IF ( ZABS .GT. 37 ) THEN P = 0 ELSE -* +* * |Z| <= 37 -* +* EXPNTL = EXP( -ZABS**2/2 ) -* +* * |Z| < CUTOFF = 10/SQRT(2) -* +* IF ( ZABS .LT. CUTOFF ) THEN P = EXPNTL*( (((((P6*ZABS + P5)*ZABS + P4)*ZABS + P3)*ZABS * + P2)*ZABS + P1)*ZABS + P0)/(((((((Q7*ZABS + Q6)*ZABS * + Q5)*ZABS + Q4)*ZABS + Q3)*ZABS + Q2)*ZABS + Q1)*ZABS * + Q0 ) -* +* * |Z| >= CUTOFF. -* +* ELSE - P = EXPNTL/( ZABS + 1/( ZABS + 2/( ZABS + 3/( ZABS + P = EXPNTL/( ZABS + 1/( ZABS + 2/( ZABS + 3/( ZABS * + 4/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI END IF END IF @@ -812,16 +812,16 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * coefficients. They are included for use in checking * transcription. * - DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, - * A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, - * C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, - * E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, + DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2, + * A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7, + * C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7, + * E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7, * P, Q, R PARAMETER ( SPLIT1 = 0.425, SPLIT2 = 5, * CONST1 = 0.180625D0, CONST2 = 1.6D0 ) -* +* * Coefficients for P close to 0.5 -* +* PARAMETER ( * A0 = 3.38713 28727 96366 6080D0, * A1 = 1.33141 66789 17843 7745D+2, @@ -839,9 +839,9 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * B6 = 2.87290 85735 72194 2674D+4, * B7 = 5.22649 52788 52854 5610D+3 ) * HASH SUM AB 55.88319 28806 14901 4439 -* +* * Coefficients for P not close to 0, 0.5 or 1. -* +* PARAMETER ( * C0 = 1.42343 71107 49683 57734D0, * C1 = 4.63033 78461 56545 29590D0, @@ -879,7 +879,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * F6 = 1.42151 17583 16445 88870D-7, * F7 = 2.04426 31033 89939 78564D-15 ) * HASH SUM EF 47.52583 31754 92896 71629 -* +* Q = ( 2*P - 1 )/2 IF ( ABS(Q) .LE. SPLIT1 ) THEN R = CONST1 - Q*Q @@ -894,7 +894,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 IF ( R .LE. SPLIT2 ) THEN R = R - CONST2 PHINVS = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3) - * *R + C2 )*R + C1 )*R + C0 ) + * *R + C2 )*R + C1 )*R + C0 ) * /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3) * *R + D2 )*R + D1 )*R + 1 ) ELSE @@ -952,7 +952,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 0 ) THEN BVNMVN = BVU ( -UPPER(1), -UPPER(2), CORREL ) END IF - END + END DOUBLE PRECISION FUNCTION BVU( SH, SK, R ) * * A function for computing bivariate normal probabilities. @@ -978,9 +978,9 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * R REAL, correlation coefficient * LG INTEGER, number of Gauss Rule Points and Weights * - DOUBLE PRECISION BVN, SH, SK, R, ZERO, TWOPI + DOUBLE PRECISION BVN, SH, SK, R, ZERO, TWOPI INTEGER I, LG, NG - PARAMETER ( ZERO = 0, TWOPI = 6.283185307179586D0 ) + PARAMETER ( ZERO = 0, TWOPI = 6.283185307179586D0 ) DOUBLE PRECISION X(10,3), W(10,3), AS, A, B, C, D, RS, XS DOUBLE PRECISION MVNPHI, SN, ASR, H, K, BS, HS, HK SAVE X, W @@ -1015,12 +1015,12 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 ELSE IF ( ABS(R) .LT. 0.75 ) THEN NG = 2 LG = 6 - ELSE + ELSE NG = 3 LG = 10 ENDIF H = SH - K = SK + K = SK HK = H*K BVN = 0 IF ( ABS(R) .LT. 0.925 ) THEN @@ -1032,7 +1032,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 SN = SIN(ASR*(-X(I,NG)+1 )/2) BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) ) END DO - BVN = BVN*ASR/(2*TWOPI) + MVNPHI(-H)*MVNPHI(-K) + BVN = BVN*ASR/(2*TWOPI) + MVNPHI(-H)*MVNPHI(-K) ELSE IF ( R .LT. 0 ) THEN K = -K @@ -1042,32 +1042,32 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 AS = ( 1 - R )*( 1 + R ) A = SQRT(AS) BS = ( H - K )**2 - C = ( 4 - HK )/8 + C = ( 4 - HK )/8 D = ( 12 - HK )/16 BVN = A*EXP( -(BS/AS + HK)/2 ) + *( 1 - C*(BS - AS)*(1 - D*BS/5)/3 + C*D*AS*AS/5 ) IF ( HK .GT. -160 ) THEN B = SQRT(BS) BVN = BVN - EXP(-HK/2)*SQRT(TWOPI)*MVNPHI(-B/A)*B - + *( 1 - C*BS*( 1 - D*BS/5 )/3 ) + + *( 1 - C*BS*( 1 - D*BS/5 )/3 ) ENDIF A = A/2 DO I = 1, LG XS = ( A*(X(I,NG)+1) )**2 RS = SQRT( 1 - XS ) BVN = BVN + A*W(I,NG)* - + ( EXP( -BS/(2*XS) - HK/(1+RS) )/RS + + ( EXP( -BS/(2*XS) - HK/(1+RS) )/RS + - EXP( -(BS/XS+HK)/2 )*( 1 + C*XS*( 1 + D*XS ) ) ) XS = AS*(-X(I,NG)+1)**2/4 RS = SQRT( 1 - XS ) BVN = BVN + A*W(I,NG)*EXP( -(BS/XS + HK)/2 ) - + *( EXP( -HK*(1-RS)/(2*(1+RS)) )/RS + + *( EXP( -HK*(1-RS)/(2*(1+RS)) )/RS + - ( 1 + C*XS*( 1 + D*XS ) ) ) END DO BVN = -BVN/TWOPI ENDIF IF ( R .GT. 0 ) BVN = BVN + MVNPHI( -MAX( H, K ) ) - IF ( R .LT. 0 ) BVN = -BVN + MAX( ZERO, MVNPHI(-H)-MVNPHI(-K) ) + IF ( R .LT. 0 ) BVN = -BVN + MAX( ZERO, MVNPHI(-H)-MVNPHI(-K) ) ENDIF BVU = BVN END @@ -1076,25 +1076,25 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 * Uniform (0,1) random number generator * * Reference: -* L'Ecuyer, Pierre (1996), +* L'Ecuyer, Pierre (1996), * "Combined Multiple Recursive Random Number Generators" * Operations Research 44, pp. 816-822. * * INTEGER A12, A13, A21, A23, P12, P13, P21, P23 INTEGER Q12, Q13, Q21, Q23, R12, R13, R21, R23 - INTEGER X10, X11, X12, X20, X21, X22, Z, M1, M2, H + INTEGER X10, X11, X12, X20, X21, X22, Z, M1, M2, H DOUBLE PRECISION INVMP1 PARAMETER ( M1 = 2147483647, M2 = 2145483479 ) PARAMETER ( A12 = 63308, Q12 = 33921, R12 = 12979 ) PARAMETER ( A13 = -183326, Q13 = 11714, R13 = 2883 ) PARAMETER ( A21 = 86098, Q21 = 24919, R21 = 7417 ) PARAMETER ( A23 = -539608, Q23 = 3976, R23 = 2071 ) - PARAMETER ( INVMP1 = 4.656612873077392578125D-10 ) + PARAMETER ( INVMP1 = 4.656612873077392578125D-10 ) * INVMP1 = 1/(M1+1) SAVE X10, X11, X12, X20, X21, X22 - DATA X10, X11, X12, X20, X21, X22 - & / 15485857, 17329489, 36312197, 55911127, 75906931, 96210113 / + DATA X10, X11, X12, X20, X21, X22 + & / 15485857, 17329489, 36312197, 55911127, 75906931, 96210113 / * * Component 1 * @@ -1104,7 +1104,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 P12 = A12*( X11 - H*Q12 ) - H*R12 IF ( P13 .LT. 0 ) P13 = P13 + M1 IF ( P12 .LT. 0 ) P12 = P12 + M1 - X10 = X11 + X10 = X11 X11 = X12 X12 = P12 - P13 IF ( X12 .LT. 0 ) X12 = X12 + M1 @@ -1117,7 +1117,7 @@ C f2py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 P21 = A21*( X22 - H*Q21 ) - H*R21 IF ( P23 .LT. 0 ) P23 = P23 + M2 IF ( P21 .LT. 0 ) P21 = P21 + M2 - X20 = X21 + X20 = X21 X21 = X22 X22 = P21 - P23 IF ( X22 .LT. 0 ) X22 = X22 + M2