From 3f767d602447f93119ccfe2c48a91a35479ba978 Mon Sep 17 00:00:00 2001 From: Per A Brodtkorb Date: Thu, 29 Dec 2016 13:57:20 +0100 Subject: [PATCH] Simplified things. --- wafo/padua.py | 87 ++++++++++++++++++++++++++++++++++----------------- 1 file changed, 59 insertions(+), 28 deletions(-) diff --git a/wafo/padua.py b/wafo/padua.py index 69153c4..251c853 100644 --- a/wafo/padua.py +++ b/wafo/padua.py @@ -85,7 +85,8 @@ Contents.m : Contents file for Matlab from __future__ import absolute_import, division import numpy as np from numpy.fft import fft -from .dctpack import dct +from wafo.dctpack import dct +from wafo.polynomial import map_from_interval, map_to_interval # from scipy.fftpack.realtransforms import dct @@ -97,8 +98,8 @@ class _ExampleFunctions(object): ---------- x,y : array-like evaluate the function in the points (x,y) - id : scalar int (default 0) - id defining which test function to use. Options are + i : scalar int (default 0) + defining which test function to use. Options are 0: franke 1: half_sphere 2: poly_degree20 @@ -132,10 +133,11 @@ class _ExampleFunctions(object): Maple: 0.40696958949155611906 ''' exp = np.exp - return (3. / 4 * exp(-((9. * x - 2)**2 + (9. * y - 2)**2) / 4) + - 3. / 4 * exp(-(9. * x + 1)**2 / 49 - (9. * y + 1) / 10) + - 1. / 2 * exp(-((9. * x - 7)**2 + (9. * y - 3)**2) / 4) - - 1. / 5 * exp(-(9. * x - 4)**2 - (9. * y - 7)**2)) + x9, y9 = 9. * x, 9. * y + return (3. / 4 * exp(-((x9 - 2)**2 + (y9 - 2)**2) / 4) + + 3. / 4 * exp(-(x9 + 1)**2 / 49 - (y9 + 1) / 10) + + 1. / 2 * exp(-((x9 - 7)**2 + (y9 - 3)**2) / 4) - + 1. / 5 * exp(-(x9 - 4)**2 - (y9 - 7)**2)) @staticmethod def half_sphere(x, y): @@ -192,7 +194,7 @@ class _ExampleFunctions(object): The value of the definite integral on the square [-1,1] x [-1,1] is 4. ''' - return np.ones(np.shape(x)) + return np.ones(np.shape(x+y)) @staticmethod def exp_xy(x, y): @@ -274,12 +276,12 @@ class _ExampleFunctions(object): arg_z = 1. / arg_z return np.exp(-arg_z) - def __call__(self, x, y, id=0): # @ReservedAssignment + def __call__(self, x, y, i=0): s = self test_function = [s.franke, s.half_sphere, s.poly_degree20, s.exp_fun1, s.exp_fun100, s.cos30, s.constant, s.exp_xy, s.runge, s.abs_cubed, s.gauss, s.exp_inv] - return test_function[id](x, y) + return test_function[i](x, y) example_functions = _ExampleFunctions() @@ -315,8 +317,8 @@ def padua_points(n, domain=(-1, 1, -1, 1)): a, b, c, d = domain t0 = [np.pi] if n == 0 else np.linspace(0, np.pi, n + 1) t1 = np.linspace(0, np.pi, n + 2) - zn = (a + b + (b - a) * np.cos(t0)) / 2 - zn1 = (c + d + (d - c) * np.cos(t1)) / 2 + zn = map_to_interval(np.cos(t0), a, b) + zn1 = map_to_interval(np.cos(t1), c, d) Pad1, Pad2 = np.meshgrid(zn, zn1) ix = _find_m(n) @@ -357,6 +359,30 @@ def padua_fit(Pad, fun, *args): coefficents: coefficient matrix abs_err : interpolation error estimate + Example + ------ + >>> import numpy as np + >>> import wafo.padua as wp + >>> domain = [0, 1, 0, 1] + >>> a, b, c, d = domain + >>> points = wp.padua_points(21, domain) + >>> C0f, abs_error = wp.padua_fit(points, wp.example_functions.franke) + >>> x1 = np.linspace(a, b, 100) + >>> x2 = np.linspace(c, d, 101) + >>> val = wp.padua_val(x1, x2, C0f, domain, use_meshgrid=True) + >>> X1, X2 = np.meshgrid(x1, x2) + >>> true_val = wp.example_functions.franke(X1, X2) + + >>> np.allclose(val, true_val, atol=10*abs_error) + True + >>> np.allclose(np.abs(val-true_val).max(), 0.0073174614275738296) + True + >>> np.allclose(abs_error, 0.0022486904061664046) + True + + import matplotlib.pyplot as plt + plt.contour(x1, x2, val) + ''' N = np.shape(Pad)[1] @@ -387,7 +413,6 @@ def padua_fit(Pad, fun, *args): def paduavals2coefs(f): - useFFTwhenNisMoreThan = 100 m = len(f) n = int(round(-1.5 + np.sqrt(.25 + 2 * m))) x = padua_points(n) @@ -401,16 +426,15 @@ def paduavals2coefs(f): G = np.zeros(idx.max() + 1) G[idx] = 4 * w * f - if (n < useFFTwhenNisMoreThan): + use_dct = 100 < n + if use_dct: + C = np.rot90(dct(dct(G.T).T)) # , axis=1) + else: t1 = np.r_[0:n + 1].reshape(-1, 1) Tn1 = np.cos(t1 * t1.T * np.pi / n) t2 = np.r_[0:n + 2].reshape(-1, 1) Tn2 = np.cos(t2 * t2.T * np.pi / (n + 1)) C = np.dot(Tn2, np.dot(G, Tn1)) - else: - - # dct = @(c) chebtech2.coeffs2vals(c); - C = np.rot90(dct(dct(G.T).T)) # , axis=1) C[0] = .5 * C[0] C[:, 1] = .5 * C[:, 1] @@ -427,7 +451,7 @@ def paduavals2coefs(f): def padua_fit2(Pad, fun, *args): N = np.shape(Pad)[1] # recover the degree n from N = (n+1)(n+2)/2 - _n = int(round(-3 + np.sqrt(1 + 8 * N)) / 2) + # _n = int(round(-3 + np.sqrt(1 + 8 * N)) / 2) C0f = fun(Pad[0], Pad[1], *args) return paduavals2coefs(C0f) @@ -477,21 +501,28 @@ def padua_val(X, Y, coefficients, domain=(-1, 1, -1, 1), use_meshgrid=False): fxy : array-like evaluation of the interpolation polynomial at the target points ''' + def transform(tn, x, a, b): + xn = map_from_interval(x, a, b).clip(min=-1, max=1).reshape(1, -1) + tx = np.cos(tn * np.arccos(xn)) * np.sqrt(2) + tx[0] = 1 + return tx + X, Y = np.atleast_1d(X, Y) original_shape = X.shape - min, max = np.minimum, np.maximum # @ReservedAssignment a, b, c, d = domain n = np.shape(coefficients)[1] - X1 = min(max(2 * (X.ravel() - a) / (b - a) - 1, -1), 1).reshape(1, -1) - X2 = min(max(2 * (Y.ravel() - c) / (d - c) - 1, -1), 1).reshape(1, -1) tn = np.r_[0:n][:, None] - TX1 = np.cos(tn * np.arccos(X1)) - TX2 = np.cos(tn * np.arccos(X2)) - TX1[1:n + 1] = TX1[1:n + 1] * np.sqrt(2) - TX2[1:n + 1] = TX2[1:n + 1] * np.sqrt(2) + tx1 = transform(tn, X.ravel(), a, b) + tx2 = transform(tn, Y.ravel(), c, d) + if use_meshgrid: # eval on meshgrid points - return np.dot(TX1.T, np.dot(coefficients, TX2)).T + return np.dot(tx1.T, np.dot(coefficients, tx2)).T # scattered points - val = np.sum(np.dot(TX1.T, coefficients) * TX2.T, axis=1) + val = np.sum(np.dot(tx1.T, coefficients) * tx2.T, axis=1) return val.reshape(original_shape) + + +if __name__ == '__main__': + from wafo.testing import test_docstrings + test_docstrings(__file__)