updated kreg_demo2

master
per.andreas.brodtkorb 13 years ago
parent d292a14330
commit 02f8fbf949

@ -3475,8 +3475,8 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
import scipy.stats as st
from sg_filter import SavitzkyGolay
dist = st.norm
scale1 = 0.4
loc1= 1
scale1 = 0.7
loc1= 2
norm1 = dist.pdf(-loc1, loc=-loc1, scale=scale1) + dist.pdf(-loc1, loc=loc1, scale=scale1)
fun1 = lambda x : (dist.pdf(x, loc=-loc1, scale=scale1) + dist.pdf(x, loc=loc1, scale=scale1))/norm1
@ -3511,8 +3511,8 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
c0 = gridcount(x[y==True],xi)
yi = np.where(c==0, 0, c0/c)
yi[yi==0] = yi[yi>0].min()/sqrt(n)
yi[yi==1] = 1-1.0/n #(1-yi[yi<1].max())/sqrt(n)
yi[yi==0] = 1.0/(c.min()+4)#yi[yi>0].min()/sqrt(n)
yi[yi==1] = 1-1.0/(c.min()+4) #(1-yi[yi<1].max())/sqrt(n)
logity =_logit(yi)
# plt.plot(xi, np.log(yi/(1-yi)), xi,logity,'.')
@ -3539,7 +3539,7 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
#return
#print(logyi)
gkreg = KRegression(xi, logity, hs=hs/3.5, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
gkreg = KRegression(xi, logity, hs=hs/2, xmin=xmin-2*hopt,xmax=xmax+2*hopt)
fg = gkreg.eval_grid(xi,output='plotobj', title='Kernel regression', plotflag=1)
sa = (fg.data-logity).std()
sa2 = iqrange(fg.data-logity) / 1.349
@ -3577,25 +3577,35 @@ def kreg_demo2(n=100, hs=None, symmetric=False, fun='hisj'):
pup2 = ((a+sqrt(a**2-2*pi**2*b))/b).clip(min=0,max=1)
pup = (pi + z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
plo = (pi - z0*np.sqrt(pi*(1-pi)/ciii)).clip(min=0,max=1)
den = 1+(z0**2./ciii);
xc=(pi+(z0**2)/(2*ciii))/den;
halfwidth=(z0*sqrt((pi*(1-pi)/ciii)+(z0**2/(4*(ciii**2)))))/den
plo = xc-halfwidth # wilson score
pup = xc+halfwidth # wilson score
#print(fg.data)
#fg.data = np.exp(fg.data)
plt.figure(2)
fg.plot(label='KReg grid')
kreg = KRegression(x, y, hs=hs)
kreg = KRegression(x, y, hs=hs*0.5)
f = kreg(xiii,output='plotobj', title='Kernel regression n=%d, %s=%g' % (n,fun,hs), plotflag=1)
f.plot(label='KRegression')
labtxt = '%d CI' % (int(100*(1-alpha)))
plt.plot(xi, syi, 'k',xi, syi2,'k--', label='smoothn')
plt.fill_between(xiii, pup, plo, alpha=0.15,color='r', linestyle='--', label=labtxt)
plt.fill_between(xiii, pup2, plo2,alpha = 0.10, color='b', linestyle=':',label='%d CI2' % (int(100*(1-alpha))))
plt.fill_between(xiii, pup, plo, alpha=0.20,color='r', linestyle='--', label=labtxt)
#plt.fill_between(xiii, pup2, plo2,alpha = 0.20, color='b', linestyle=':',label='%d CI2' % (int(100*(1-alpha))))
#plt.plot(xiii, 0.5*np.cos(xiii)+.5, 'r', label='True model')
plt.plot(xiii, fun1(xiii), 'r', label='True model')
plt.scatter(xi,yi, label='data')
print(np.nanmax(f.data))
print(kreg.tkde.tkde.hs)
plt.legend()
h = plt.gca()
#plt.setp(h,yscale='log')
plt.show()
def kde_gauss_demo(n=50):
@ -3662,6 +3672,6 @@ if __name__ == '__main__':
#kde_demo2()
#kreg_demo1(fast=True)
#kde_gauss_demo()
kreg_demo2(n=750,symmetric=True,fun='hisj')
kreg_demo2(n=3800,symmetric=True,fun='hste')
#test_smoothn_2d()
#test_smoothn_cardioid()
Loading…
Cancel
Save