You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3045 lines
94 KiB
FortranFixed

C Version July 2007
C
C The MREG module provide 3 programs.
C
C 1) MREG
C 2) RIND
C 3) FI - normal CDF
C
C MREG and RIND are explained in the following:
C
C
C CALL MREG(F,R,B,DB,AA,BB,A,DA,VDER,M,N,NIT,INFR)
C
C F = expectation
C R = Covariance R(i+(j-1)*N) = Cov( Delta(T(i)), Delta(T(j)), length RDIM (in)
C B = Covariance B(i) = Cov(Delta(T(i)), XN), B(N+1)=Var(XN) length NMAX (in)
C DB = Covariance DB(i) = Cov(Delta(T(i)), Y0), DB(N+1)=Cov(XN,Y0) length NMAX (in)
C AA = Regression matrix coefficients size MMAX x MMAX
C BB = Regression vector coefficients length MMax + 1
C A = Slepian model coefficients, length (MMax + 1) * NMAX
C DA = Slepian model coefficients, length MMax + 1
C VDER = variance of Y0, Var(Y0)
C M = Number of regressors ( 0 < M < MMAX)
C N = dimension of the problem ( N < NMAX)
C NIT = 0,1,2..., maximum # of iterations/integrations done by quadrature
C to calculate the indicator function
C INFR = 1 means all input are the same as in the previous call except BB, A and DA
C 0 indicate new input
C
C The program MREG computes the following problem:
C
C We consider a process X(I)=X(T(I)) at the grid of N points T(1),...,T(N),
C
C X(I) = -A(I) + Z*A(I+N) + Sum Xj*A(I+(j+1)*N) + Delta(I), j=1,...,M-1
C
C where the sum disappears if M=1. We assume that Z,Xj are independent
C standard Rayleigh, Gaussian distributed rv. and independent of the zero
C mean Gaussian residual process, with covariance structure given in R,
C
C R(i+(j-1)N) = Cov (Delta(T(i)), Delta(T(j))).
C
C Additionally we have a zero mean Gaussian variable XN,
C independent of Z,Xj with covariance structure defined by
C B(i)= Cov (Delta(T(i)),XN), i=1,...,N, B(N+1)=Var(XN).
C Furthermore XN and Z,Xj satisfies the following equation system
C
C (BB + (XN,0,...,0)^T = AA*(Z,X1,...,Xm-1)^T (***)
C
C where AA is (M,M) matrix, BB is M-vector. We rewrite this equation, by
C introducing a variable Xm=XN/SQRT(Var(XN)) and construct new matrix AA1
c by adding the column (SQRT(Var(XN)),0,...,0) and the row with only zeros.
C The equations (***) writtes
C
C (BB,0)^T = AA1*(Z,X1,...,Xm-1,Xm)^T (****)
C
C where AA1 is (M+1,M+1) matrix, We assume that the rank of AA1 is M,
C otherwise the density is singular and we give a output F=0.CC
C
C Let Y0 be a zero-mean Gaussian variable independent of Z,Xj
C with covariance structure defined by
C DB(i)= Cov (Delta(T(i)),Y0), i=1,...,N, DB(N+1)=Cov(XN,Y0), Var(Y0)=VDER.
C Let Y be defined by
C
C Y=-DA(1) + Z*DA(2) + Sum Xj*DA(2+j) +Y0, j=1,...,M-1.
C
C The MREG program computes:
C
C F = E[ Y^+ *1{ HH<X(I)<0 for all I, I=1,...,N}|Z,X1,...,Xm-1 solves (***)]
C *f_{Z,X1,....,Xm-1}(***).
C
C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),XN)=0.0d0
C
C We renormalize vectors AN and DA, the covariance fkn R, DB
C and VDER. Then by renormalization we choose the Gaussian variable X such
C that F is written in the form
C
C F = E[(D0(1)+X*D0(2)+Y1)^+*(PC+X*PD)^+*1{HH <A0(I)+X*B0(I)+Delta1(I)<0}]
C
C Observe, PC+X*PD>0 defines integration region for X.
C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),Y1)=0.0d0
C For NIT=1 only (Delta(1),...,Delta(N))=0, i.e. we have to compute
C a one dimensional integral. Finally by conditioning on X the problem is
C put in the format of RIND-problem.
C
C INF indicates whether one
C has already called the subroutine before and ONLY! inputs BB, DA or A
C was changed.
C
C Observe the limitations are : N<NMAX = 201, 0<M< 5 = MMAX.
C
C
c 3-IX-93
C
C CALL RIND(XIND,R,BU,DBUN,DB,SQ,VDER,NIT,N,INFR)
C
C XIND = expectation/density (inout)
C R = Covariances Delta(ti), Delta(tj), size RDIM x 1 (in)
C R(i+(j-1)*N) = Cov( Delta(T(i)), Delta(T(j))
C BU = expectation of y(t), i.e., E(y(t)), size NMAX x 1 (in)
C DBUN = expectation of Y, i.e., E(Y)
C DB = Covariances Delta(T(i)), Y, size NMAX x 1 (in)
C DB(i) = Cov(Delta(T(i)), Y)
C SQ = standard deviations of Delta(T(i)), size NMAX x 1
C SQ(I) = SQRT (R(I+(I-1)*N))
C VDER = variance of Y, Var(Y)
C NIT = 0,1,2..., maximum # of iterations/integrations done by quadrature
C to calculate the indicator function
C N = dimension of the problem
C INFR = 1 means R, DB and SQ are the same as in the previous
C 0 indicate new R, DB and SQ.
C
C The program RIND computes the following problem:
C
C Let the process y(t)=BU(t)+Delta(t), where Delta(t) is zero mean
C Gaussian process and BU(t) be expectation of y(t). Consider the process x
C at the grid T(1),...,T(N), N=0,...,50, (N=0 means the empty grid T).
C Let y(I) = BU(T(I)) + Delta(T(I)). Observe we do not assume that the
C points T(I) are ordered or from, e.g. T(I) are in R^K.
C
C The covariance fkn of Delta at the points T(1),...,T(N), are given in
C the vector R; Cov( Delta(T(i)), Delta(T(j)) = R(i+(j-1)*N),
C furter E[y(T(i))] = BU(i). Hence the dimension of R must be N*N=2500.
C The vector SQ(1), ...., SQ(N) contains standard deviations of the residual
C Delta(T(I)), e.g. SQ(I) = SQRT (R(I+(I-1)*N)). However the small values
C of SQ could be corrupted by nummerical errors especially if the covariance
C structure was computed using the FFT algorithm. IF R(I+(I-1)*N)<EPS
C SQ(I)=0. and is used as an indicator that one is not allowed to
C condition on Delta(T(I)). Further when one have conditioned on the point
C T(I) the variance is put to zero.
C
C Consider in addition to y(t) a Gaussian variable Y, E[Y]=DBUN, Var(Y)=VDER,
C DB(I)=Cov(Delta(T(I)),Y).
C
C *** XIND - is the result; XIND=E[Y^+1{ HH<y(I)<0 for all I, I=1,...,N}] ***
C
C In the speccial case by choosing DB(I)=0, VDER=0 and DBUN=1, IAC=0,1,
C (if IAC=0 VDER can take any positive value), the output XIND is equal to
C XIND=Prob( HH < y(I) < 0 for all I, I=1,...,N).
C
C
C Some control variables:
C INFR=1 means that both R, DB and SQ are the same as in the previous
C call of RIND subroutine, INFR=0 indicates the new R, DB and SQ. The history
C of the conditioning is saved in the vectors INF(5), INFO(5): INF(1), ...,
C INF(5) are the times one has conditioned in the subroutines RINDT1,...,
C RINDT5, respectively. After conditioning INFO(i)=INF(i). Now if INF=INFO
C then the conditioning tree has not be changed and one not need to compute
C the conditonal covariances. This is really time saving trick. We are assume
C that the program saves all the time the matrices at the same fysical
C location, e.g. the values of variables are saved during the execution.
C This has all the time be checked when new compilator will be used.
C
C The variable ISQ marks which type of conditioning will be used ISQ=0
C means random time where the probability is minimum, ISQ=1 is the time
C where the variance of the residual process is minimal(ISQ=1 is faster).
C
C NIT, IAC are described in CROSSPACK paper, EPS0 is the accuracy constant
C used in choosing the number of nodes in numerical integrations
C (XX1, H1 vectors). The nodes and weights and other parameters are
C read in the subroutine INITINTEG from files Z.DAT, H.DAT and ACCUR.DAT.
C
C
C NIT=0, IAC=1 then one uses RIND0 - subroutine, all other cases
C goes through RIND1, ...,RIND5. NIT=0, here means explicite formula
C approximation for XIND=E[Y^+1{ HH<BU(I)<0 for all I, I=1,...,N}], where
C BU(I) is deterministic function.
C
C NIT=1, leads tp call RIND1, IAC=0 is also explicit form approximation,
C while IAC=1 leads to maximum one dimensional integral.
C .......
C NIT=5, leads tp call RIND5, IAC is maximally 4-dimensional integral,
C while IAC=1 leads to maximum 5 dimensional integral.
C
!
! Revised pab August 2007
! - replaced a call to SVDCMP with DSVDC derived from Lapack
! Revised pab July 2007
!
! - fixed some bugs
! - reimplemented as module mregmodule
! - moved the functions/subroutines in twog.f into rindmod and renamed it to MREG. -> mreg and rind publicly available
! - All commonblocks are replaced with a corresponding module
! References
! Rychlik, I and Lindgren, G (1993)
! "CROSSREG - A Technique for First Passage and Wave Density Analysis"
! Probability in the Engineering and Informational Sciences, Vol 7, pp 125--148
!
! Lindgren, G and Rychlik, I (1991)
! "Slepian Models and Regression Approximations in Crossing and xtreme value Theory",
! International Statistical Review, Vol 59, 2, pp 195--225
MODULE SIZEMOD
IMPLICIT NONE
INTEGER, PARAMETER :: MMAX = 6, NMAX = 201
INTEGER, PARAMETER :: RDIM = NMAX*NMAX
END MODULE SIZEMOD
MODULE EPSMOD
IMPLICIT NONE
! Constants determining accuracy of integration
!-----------------------------------------------
!if the conditional variance are less than:
C DOUBLE PRECISION :: EPS2=1.d-4 !- EPS2, the variable is
! considered deterministic
DOUBLE PRECISION :: EPS = 1.d-2 ! SQRT(EPS2)
C DOUBLE PRECISION :: XCEPS2=1.d-16 ! if Var(Xc) is less return NaN
DOUBLE PRECISION :: EPSS = 5.d-5 ! accuracy of Indicator
C DOUBLE PRECISION :: CEPSS=0.99995d0 ! accuracy of Indicator
DOUBLE PRECISION :: EPS0 = 5.d-5 ! used in GAUSSLE1 to implicitly
! determ. # nodes
C DOUBLE PRECISION :: fxcEpss=1.d-20 ! if less do not compute E(...|Xc)
C DOUBLE PRECISION :: xCutOff=5.d0 ! upper/lower truncation limit of the
! normal CDF
C DOUBLE PRECISION :: FxCutOff = 0.99999942669686d0
C DOUBLE PRECISION :: CFxCutOff = 5.733031438470704d-7 ! 1-FxCutOff,
END MODULE EPSMOD
MODULE RINTMOD
DOUBLE PRECISION, save :: C = 4.5d0
DOUBLE PRECISION, save :: FC = 0.999993204653751d0
C COMMON /RINT/ C,FC
END MODULE RINTMOD
MODULE TBRMOD
USE SIZEMOD
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(NMAX) :: HH
END MODULE TBRMOD
MODULE EXPACCMOD
DOUBLE PRECISION,PARAMETER:: PMAX = 40.0d0
C COMMON /EXPACC/ PMAX
END MODULE EXPACCMOD
MODULE INFCMOD
IMPLICIT NONE
INTEGER, save :: ISQ = 0, IAC=1
INTEGER, DIMENSION(10) :: INF,INFO
C DOUBLE PRECISION, DIMENSION(10)::
C COMMON /INFC/ ISQ,INF,INFO
END MODULE INFCMOD
MODULE CHECKMOD
IMPLICIT NONE
C III01,III11,... - variables,counts how many times one calls
C subroutine RIND0,RIND1,..., III*1 are also modified in the
C subroutines RIND*. This gives us statistics over the complexity of
C numerical calculations.
INTEGER :: III01,III11,III21,III31,III41,III51
INTEGER :: III61,III71,III81,III91,III101
INTEGER :: III0
END MODULE CHECKMOD
MODULE QUADRMOD
IMPLICIT NONE ! Quadratures available: Legendre
INTEGER :: I
C BLOCK DATA inithermite
INTEGER, PARAMETER :: NNW = 13
INTEGER, DIMENSION(25) :: NN
REAL*8 Z(126),H(126)
C COMMON /QUADR/ Z,H,NN,NNW
c COMMON /EXPACC/ PMAX
C COMMON /RINT/ C,FC
C DATA NNW /13/
DATA (NN(I),I=1,NNW)/2,3,4,5,6,7,8,9,10,12,16,20,24/
C DATA PMAX/40./
C DATA C/4.5/
DATA (H(I),I=1,61)/1.0d0,1.0d0,0.555555555555556d0,
* 0.888888888888889d0,
* 0.555555555555556d0,0.347854845137454d0,0.652145154862546d0,
* 0.652145154862546d0,0.347854845137454d0,0.236926885056189d0,
* 0.478628670499366d0,0.568888888888889d0,0.478628670499366d0,
* 0.236926885056189d0,0.171324492379170d0,0.360761573048139d0,
* 0.467913934572691d0,0.467913934572691d0,0.360761573048139d0,
* 0.171324492379170d0,0.129484966168870d0,0.279705391489277d0,
* 0.381830050505119d0,0.417959183673469d0,0.381830050505119d0,
* 0.279705391489277d0,0.129484966168870d0,0.101228536290376d0,
* 0.222381034453374d0,0.313706645877887d0,0.362683783378362d0,
* 0.362683783378362d0,0.313706645877887d0,0.222381034453374d0,
* 0.101228536290376d0,0.081274388361574d0,0.180648160694857d0,
* 0.260610696402935d0,0.312347077040003d0,0.330239355001260d0,
* 0.312347077040003d0,0.260610696402935d0,0.180648160694857d0,
* 0.081274388361574d0,0.066671344308688d0,0.149451349150581d0,
* 0.219086362515982d0,0.269266719309996d0,0.295524224714753d0,
* 0.295524224714753d0,0.269266719309996d0,0.219086362515982d0,
* 0.149451349150581d0,0.066671344308688d0,0.047175336386512d0,
* 0.106939325995318d0,0.160078328543346d0,0.203167426723066d0,
* 0.233492536538355d0,0.249147048513403d0,0.249147048513403d0/
DATA (H(I),I=62,101)/0.233492536538355d0,0.203167426723066d0,
* 0.160078328543346d0,0.106939325995318d0,
* 0.047175336386512d0,0.027152459411754094852d0,
* 0.062253523938647892863d0,0.095158511682492784810d0,
* 0.124628971255533872052d0,0.149595988816576732081d0,
* 0.169156519395002538189d0,0.182603415044923588867d0,
* 0.189450610455068496285d0,0.189450610455068496285d0,
* 0.182603415044923588867d0,0.169156519395002538189d0,
* 0.149595988816576732081d0,0.124628971255533872052d0,
* 0.095158511682492784810d0,0.062253523938647892863d0,
* 0.027152459411754094852d0,0.017614007139152118312d0,
* 0.040601429800386941331d0,0.062672048334109063570d0,
* 0.083276741576704748725d0,0.101930119817240435037d0,
* 0.118194531961518417312d0,0.131688638449176626898d0,
* 0.142096109318382051329d0,0.149172986472603746788d0,
* 0.152753387130725850698d0,0.152753387130725850698d0,
* 0.149172986472603746788d0,0.142096109318382051329d0,
* 0.131688638449176626898d0,0.118194531961518417312d0,
* 0.101930119817240435037d0,0.083276741576704748725d0,
* 0.062672048334109063570d0,0.040601429800386941331d0/
DATA (H(I),I=102,126)/0.017614007139152118312d0,
* 0.012341229799987199547d0, 0.028531388628933663181d0,
* 0.044277438817419806169d0, 0.059298584915436780746d0,
* 0.073346481411080305734d0, 0.086190161531953275917d0,
* 0.097618652104113888270d0, 0.107444270115965634783d0,
* 0.115505668053725601353d0, 0.121670472927803391204d0,
* 0.125837456346828296121d0, 0.127938195346752156974d0,
* 0.127938195346752156974d0, 0.125837456346828296121d0,
* 0.121670472927803391204d0, 0.115505668053725601353d0,
* 0.107444270115965634783d0, 0.097618652104113888270d0,
* 0.086190161531953275917d0, 0.073346481411080305734d0,
* 0.059298584915436780746d0, 0.044277438817419806169d0,
* 0.028531388628933663181d0, 0.012341229799987199547d0/
DATA (Z(I),I=1,58)/-0.577350269189626d0,0.577350269189626d0,
* -0.774596669241483d0,0.0d0,
* 0.774596669241483d0, -0.861136311594053d0, -0.339981043584856d0,
* 0.339981043584856d0, 0.861136311594053d0, -0.906179845938664d0,
* -0.538469310105683d0,0.0d0,
* 0.538469310105683d0, 0.906179845938664d0, -0.932469514203152d0,
* -0.661209386466265d0, -0.238619186083197d0, 0.238619186083197d0,
* 0.661209386466265d0, 0.932469514203152d0, -0.949107912342759d0,
* -0.741531185599394d0, -0.405845151377397d0, 0.0d0,
* 0.405845151377397d0, 0.741531185599394d0, 0.949107912342759d0,
* -0.960289856497536d0, -0.796666477413627d0, -0.525532409916329d0,
* -0.183434642495650d0, 0.183434642495650d0, 0.525532409916329d0,
* 0.796666477413627d0, 0.960289856497536d0, -0.968160239507626d0,
* -0.836031107326636d0, -0.613371432700590d0, -0.324253423403809d0,
* 0.0d0,
* 0.324253423403809d0, 0.613371432700590d0, 0.836031107326636d0,
* 0.968160239507626d0, -0.973906528517172d0, -0.865063366688985d0,
* -0.679409568299024d0, -0.433395394129247d0, -0.148874338981631d0,
* 0.148874338981631d0, 0.433395394129247d0, 0.679409568299024d0,
* 0.865063366688985d0, 0.973906528517172d0, -0.981560634246719d0,
* -0.904117256370475d0, -0.769902674194305d0, -0.587317954286617d0/
DATA (Z(I),I=59,99)/-0.367831498198180d0, -0.125233408511469d0,
* 0.125233408511469d0, 0.367831498198180d0,
* 0.587317954286617d0, 0.769902674194305d0,
* 0.904117256370475d0, 0.981560634246719d0,
* -0.989400934991649932596d0,
* -0.944575023073232576078d0, -0.865631202387831743880d0,
* -0.755404408355003033895d0, -0.617876244402643748447d0,
* -0.458016777657227386342d0, -0.281603550779258913230d0,
* -0.095012509837637440185d0, 0.095012509837637440185d0,
* 0.281603550779258913230d0, 0.458016777657227386342d0,
* 0.617876244402643748447d0, 0.755404408355003033895d0,
* 0.865631202387831743880d0, 0.944575023073232576078d0,
* 0.989400934991649932596d0, -0.993128599185094924786d0,
* -0.963971927277913791268d0, -0.912234428251325905868d0,
* -0.839116971822218823395d0, -0.746331906460150792614d0,
* -0.636053680726515025453d0, -0.510867001950827098004d0,
* -0.373706088715419560673d0, -0.227785851141645078080d0,
* -0.076526521133497333755d0, 0.076526521133497333755d0,
* 0.227785851141645078080d0, 0.373706088715419560673d0,
* 0.510867001950827098004d0, 0.636053680726515025453d0,
* 0.746331906460150792614d0, 0.839116971822218823395d0/
DATA (Z(I),I=100,126)/0.912234428251325905868d0,
* 0.963971927277913791268d0, 0.993128599185094924786d0,
* -0.995187219997021360180d0, -0.974728555971309498198d0,
* -0.938274552002732758524d0, -0.886415527004401034213d0,
* -0.820001985973902921954d0, -0.740124191578554364244d0,
* -0.648093651936975569252d0, -0.545421471388839535658d0,
* -0.433793507626045138487d0, -0.315042679696163374387d0,
* -0.191118867473616309159d0, -0.064056892862605626085d0,
* 0.064056892862605626085d0, 0.191118867473616309159d0,
* 0.315042679696163374387d0, 0.433793507626045138487d0,
* 0.545421471388839535658d0, 0.648093651936975569252d0,
* 0.740124191578554364244d0, 0.820001985973902921954d0,
* 0.886415527004401034213d0, 0.938274552002732758524d0,
* 0.974728555971309498198d0, 0.995187219997021360180d0/
END MODULE QUADRMOD
C
MODULE MREGMOD
IMPLICIT NONE
PRIVATE
PUBLIC :: RIND, MREG, FI
INTERFACE RIND
MODULE PROCEDURE RIND
END INTERFACE
INTERFACE MREG
MODULE PROCEDURE MREG
END INTERFACE
INTERFACE FI
MODULE PROCEDURE FI
END INTERFACE
INTERFACE C1_C2
MODULE PROCEDURE C1_C2
END INTERFACE
INTERFACE GAUSS1
MODULE PROCEDURE GAUSS1
END INTERFACE
INTERFACE GAUSINT
MODULE PROCEDURE GAUSINT
END INTERFACE
INTERFACE PYTHAG
MODULE PROCEDURE PYTHAG
END INTERFACE
CONTAINS
SUBROUTINE RIND(XIND,R,BU,DBUN,DB,SQ,VDER,NIT,N,INFR)
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE SIZEMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB, SQ
INTEGER, intent(in) :: NIT,N,INFR
REAL*8 SDER
INTEGER, save :: NNIT
INTEGER I,III
C DIMENSION R(1),BU(1),SQ(1),DB(1)
C DIMENSION INF(10),INFO(10),HH(101)
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
C COMMON /EPS/ EPS,EPSS,CEPSS
C
C III01,III11,... - variables,counts how many times one calls
C subroutine RIND0,RIND1,..., III*1 are also modified in the
C subroutines RIND*. This gives us statistics over the complexity of
C numerical calculations.
C
XIND=0.0d0
IF (N.lt.1) go to 99
IF (INFR.EQ.0) THEN
NNIT=MIN(NIT,N)
if (NNIT.gt.10) NNIT=10
DO I=1,10
INF(I)=0
INFO(I)=0
enddo
III=0
DO I=1,N
IF (SQ(I).GT.EPS) then
III=1
else
IF(BU(I).GT.0.0d0) THEN
RETURN
END IF
IF(BU(I).LT.HH(I)) THEN
RETURN
END IF
END IF
enddo
END IF
IF (III.eq.0) go to 99
! GO TO (10,20,30,40,50,60,70,80,90,100) NNIT
SELECT CASE (NNIT)
CASE (1)
CALL RIND1(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii11=iii11+1
CASE(2)
CALL RIND2(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii21=iii21+1
CASE(3)
CALL RIND3(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii31=iii31+1
CASE(4)
CALL RIND4(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii41=iii41+1
CASE(5)
CALL RIND5(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii51=iii51+1
CASE(6)
CALL RIND6(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii61=iii61+1
CASE(7)
CALL RIND7(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii71=iii71+1
CASE(8)
CALL RIND8(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii81=iii81+1
CASE (9)
CALL RIND9(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii91=iii91+1
CASE (10)
CALL RIND10(XIND,R,BU,DBUN,DB,SQ,VDER,N)
iii101=iii101+1
CASE DEFAULT
CALL RIND0(XIND,BU,DBUN,VDER,N)
iii01=iii01+1
END SELECT
RETURN
99 continue
SDER=0.0d0
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=PMEAN(DBUN,SDER)
return
END SUBROUTINE RIND
SUBROUTINE RIND0(XIND,BU,DBUN,VDER,N)
USE TBRMOD
USE EPSMOD
USE SIZEMOD
IMPLICIT NONE
INTEGER, intent(in) :: N
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(NMAX), intent(inout) :: BU
REAL*8 SDER
INTEGER I
! DIMENSION BU(NMAX)
C DIMENSION HH(101)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /TBR/ HH
IF (N.LT.1) GO TO 20
XIND=0.0d0
IF(DBUN.LT.0.0d0) THEN
RETURN
END IF
DO I=1,N
IF(BU(I).GT.0.0d0) THEN
RETURN
END IF
IF(BU(I).LT.HH(I)) THEN
RETURN
END IF
enddo
20 CONTINUE
SDER=0.0d0
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=PMEAN(DBUN,SDER)
RETURN
END SUBROUTINE RIND0
SUBROUTINE RIND1(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(NMAX), save :: B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8 XMI,XMA,DER,SDER
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XFF,XF,X,XH, SQ0, HHB
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! real*8 XIND,R,BU,DBUN,DB,SQ,VDER
! REAL*8 XX1,H1, B1,SQ1,XMI,XMA, SDER,DB1N , DER, SDER1
! REAL*8 XFF,X, XH, SQ0, HHB, SS0, VDER1, XF
! INTEGER I,J,III,II0,N1
C DIMENSION R(1),BU(1),SQ(1),DB(1),B1(NMAX),SQ1(NMAX)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX) ,B1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
c print *,'Topp of R1:',sq(1),sq(2),sq(3)
XIND=0.0d0
C Choice of the time for conditioning, two methods
C
C ISQ=1; INF(1)=II0 is the point where the SQ(I) obtaines its maximum, SQ0
C is the maximal st. deviation of the residual.
C
C ISQ=0; INF(1) is the time point when the probability P(hh<BU(I)+Delta(I)<0)
C obtains its minimum which is denoted by XFF.
C
XFF=1.0d0
IF (N.LT.1) GO TO 11
C
C If N<1 means empty grid we can not condition on any point and hence GO TO 11
C then XFF=1.0d0 and the XIND will be approximated by E[Y^+]=PMEAN(DBUN,SDER).
C Obs. E[Y]=DBUN and Var(Y)=VDER.
C
SQ0=0.0d0
DO I=1,N
SQ1(i)=0.0d0
IF (SQ(I).LE.eps) GO TO 1
HHB=HH(I)-BU(I)
C
C Obs. SQ(I)<=EPS idicates that the point is not good for conditioning.
C There can be two reasons for it: 1 Variance of the residual is too small
C or the point was already used before.
C
if (ISQ.GT.1) then
SS0 =R(I+(I-1)*N)
DB1N =DB(I)
VDER1=DB1N*DB1N/SS0
IF (VDER1.gt.SQ0) Then
SQ0=VDER1
II0=I
END IF
ELSE
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
END IF
X=-BU(I)/SQ(I)
XH=HHB/SQ(I)
XF=FI(X)-FI(XH)
IF(XF.LT.XFF) THEN
INF(1)=I
XFF=XF
END IF
1 CONTINUE
enddo
11 CONTINUE
C
C If the minimum probability XFF is close to 0 !!! then the indicator 1{}
C can be bounded by EPSS leading to the approximation of XIND=0 and RETURN.
C
IF(XFF.LT.EPSS) RETURN
C
C We are stoping because we assume that for all sample pathes I(0,t)=1
C
C If the minimum probability XFF is close to one then the indicator 1{}
C can be bounded by 1 leading to the approximation of XIND by E[Y^+]=
C PMEAN(DBUN,SDER), if IAC=1 or with E[Y]^+=MAX(0,DBUN).
C This reduces the order of integrations.
C
IF (XFF.GT.0.999d0*FC) THEN
SDER=0.
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
C
C We are conditioning on the point T(INF(1)). If ISQ=1 INF(1)=ii0.
C Obviously, X(INF(1))=BU(INF(1))+Delta(INF(1)), where SQ0 is a standard
C deviation of Delta(IN(1)), hence if X(INF(1))>XMA or X(INF(1))<XM1
C 1{}=0. Hence the values of X(INF(1)) are truncated to the interval [xmi,xma].
IF(ISQ.EQ.1) INF(1)=II0
SQ0=SQ(INF(1))
XMA=-BU(INF(1))/SQ0
XMI=XMA+HH(INF(1))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C
C Now we are checking whether INF(I)=INFO(I), I=1,..,5, what indicates
C that all conditional covariances and variancec are unchanged since the
C last call of this subroutine (R,SQ,DB) as well as
C
III=0
DO I=1,10
III=III + ABS(INF(I)-INFO(I))
enddo
IF (III.EQ.0) GO TO 99
DO I=1,N
B1(I) = R(I+(INF(1)-1)*N)
enddo
SS0 = B1(INF(1))
DB1N = DB(INF(1))
INFO(1) = INF(1)
VDER1 = VDER-DB1N*DB1N/SS0
SDER1 = 0.0d0
IF(VDER1.GT.EPS) SDER1=SQRT(VDER1)
DB1N = DB1N/SQ0
DO I=1,N
B1(I) = B1(I)/SQ0
enddo
99 CONTINUE
C
C Here conditioning is done
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,0.0d0,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) RETURN
C *******************************************************
C
C In this special case RIND1 if IAC=0 one can explicitly compute XIND
C and stop.
IF (IAC.LT.1) THEN
XIND=GAUSINT(XMI,XMA,DBUN,DB1N,1.0d0,0.0d0)
RETURN
END IF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
c print *,XMI,XMA,EPS0,N1
c write(11,*) XMI,XMA,EPS0,N1
XIND=0.0d0
DO J=1,N1
DER=DBUN+XX1(J)*DB1N
XIND=XIND+PMEAN(DER,SDER1)*H1(J)
III01=III01+1
c IF (N.eq.15) then
c print *,'der,dbun,db1n,sder1',der,dbun,db1n,sder1
c write(11,*) der,dbun,db1n,sder1
c end if
10 CONTINUE
enddo
c IF (N.eq.15) then
c do 999 iii=1,N
c print *,iii,sq(Iii)
c999 continue
c write(11,*) XIND,INF(1),INF(2),INF(3),inf(4)
c pause
c end if
RETURN
END SUBROUTINE RIND1
SUBROUTINE RIND2(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J, II0,III, N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1,R1,B1,DB1,BU1,SQ1
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 XFF,X, XH, SQ0, SDER, XF, XMI, XMA
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
c COMMON/CHECK/III0,III1,III2,III3,III4
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
c PRINT *,'Topp of 2:',sq(1),sq(2),sq(3)
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(2)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(2)=II0
SQ0=SQ(INF(2))
XMA=-BU(INF(2))/SQ0
XMI=XMA+HH(INF(2))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=2,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(2),N)
C III1=III1+1
SS0=B1(INF(2))
INFO(2)=INF(2)
DB1N=DB(INF(2))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(2))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
C
IF (SQ(I).LE.EPS) GO TO 3
C IF (SQ1(I).EQ.EPS1.OR.SQ(I).LE.EPS1) GO TO 3
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
5 B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
c PRINT *,'2:** ',XMI,XMA
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
c PRINT *,'2:****',XMI,XMA
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
c print *, 'Leaving R2: Exit 4', XIND,XIND1,VDER1
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
20 BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
c print *,'R2: before calling R1: (SQ1):',sq1(1),sq1(2),sq1(3)
CALL RIND1(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III11=III11+1
10 XIND=XIND+XIND1*H1(J)
ENDDO
c print *, 'Leaving R2: Exit 5', XIND,XIND1,VDER1
RETURN
END SUBROUTINE RIND2
SUBROUTINE RIND3(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J, II0,III, N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON/CHECK/III0,III1,III2,III3,III4
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
c PRINT *,'Topp of 3:',sq(1),sq(2),sq(3)
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
IF(XF.LT.XFF) THEN
INF(3)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF (XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF (IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(3)=II0
SQ0=SQ(INF(3))
XMA=-BU(INF(3))/SQ0
XMI=XMA+HH(INF(3))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
III=0
DO I=3,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(3),N)
SS0=B1(INF(3))
DB1N=DB(INF(3))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
INFO(3)=INF(3)
DB1N=DB1N/SQ0
SQ1(INF(3))=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) GO TO 3
XR1=R1(I+(I-1)*N)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
5 B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
c PRINT *,'3:** ',XMI,XMA
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
c PRINT *,'3:****',XMI,XMA,EPSS
IF (FI(XMA)-FI(XMI).LT.EPSS) RETURN
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
20 BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
c print *,'R3: before calling R2: (SQ1):',sq1(1),sq1(2),sq1(3)
CALL RIND2(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III21=III21+1
10 XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND3
SUBROUTINE RIND4(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,II0,III, N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON/CHECK/III0,III1,III2,III3,III4
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
c PRINT *,'Topp of 4:',SQ(1),SQ(2),SQ(3)
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
IF (XF.LT.XFF) THEN
INF(4)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF (XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF (IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(4)=II0
SQ0=SQ(INF(4))
XMA=-BU(INF(4))/SQ0
XMI=XMA+HH(INF(4))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
III=0
DO I=4,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(4),N)
SS0=B1(INF(4))
DB1N=DB(INF(4))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
INFO(4)=INF(4)
DB1N=DB1N/SQ0
SQ1(INF(4))=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) GO TO 3
XR1=R1(I+(I-1)*N)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
5 B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C PRINT *,'**',XMI,XMA
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
C PRINT *,INF(4),XMI,XMA
IF(FI(XMA)-FI(XMI).LT.EPSS) RETURN
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
20 BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND3(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III31=III31+1
10 XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND4
SUBROUTINE RIND5(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION INF(10),INFO(10),HH(101)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON/CHECK/III0,III1,III2,III3,III4
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
IF (XF.LT.XFF) THEN
INF(5)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF (XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.d0
IF(VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF (IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(5)=II0
SQ0=SQ(INF(5))
XMA=-BU(INF(5))/SQ0
XMI=XMA+HH(INF(5))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
III=0
DO I=5,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(5),N)
SS0=B1(INF(5))
DB1N=DB(INF(5))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
INFO(5)=INF(5)
DB1N=DB1N/SQ0
SQ1(INF(5))=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) GO TO 3
XR1=R1(I+(I-1)*N)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
5 B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) RETURN
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND4(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III41=III41+1
XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND5
C
SUBROUTINE RIND6(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(6)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(6)=II0
SQ0=SQ(INF(6))
XMA=-BU(INF(6))/SQ0
XMI=XMA+HH(INF(6))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=6,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(6),N)
C III1=III1+1
SS0=B1(INF(6))
INFO(6)=INF(6)
DB1N=DB(INF(6))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(6))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
C
IF (SQ(I).LE.EPS) GO TO 3
C IF (SQ1(I).EQ.EPS1.OR.SQ(I).LE.EPS1) GO TO 3
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
5 B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
20 BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND5(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III51=III51+1
10 XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND6
SUBROUTINE RIND7(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(7)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(7)=II0
SQ0=SQ(INF(7))
XMA=-BU(INF(7))/SQ0
XMI=XMA+HH(INF(7))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=7,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(7),N)
C III1=III1+1
SS0=B1(INF(7))
INFO(7)=INF(7)
DB1N=DB(INF(7))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(7))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
C
IF (SQ(I).LE.EPS) GO TO 3
C IF (SQ1(I).EQ.EPS1.OR.SQ(I).LE.EPS1) GO TO 3
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND6(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III61=III61+1
XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND7
SUBROUTINE RIND8(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(8)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(8)=II0
SQ0=SQ(INF(8))
XMA=-BU(INF(8))/SQ0
XMI=XMA+HH(INF(8))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=8,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(8),N)
C III1=III1+1
SS0=B1(INF(8))
INFO(8)=INF(8)
DB1N=DB(INF(8))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(8))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
C
IF (SQ(I).LE.EPS) GO TO 3
C IF (SQ1(I).EQ.EPS1.OR.SQ(I).LE.EPS1) GO TO 3
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
3 CONTINUE
ENDDO
DO I=1,N
B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND7(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III71=III71+1
XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND8
SUBROUTINE RIND9(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(9)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(9)=II0
SQ0=SQ(INF(9))
XMA=-BU(INF(9))/SQ0
XMI=XMA+HH(INF(9))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=9,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(9),N)
C III1=III1+1
SS0=B1(INF(9))
INFO(9)=INF(9)
DB1N=DB(INF(9))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(9))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
C
IF (SQ(I)>EPS) THEN
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
ENDIF
ENDDO
DO I=1,N
B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND8(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III81=III81+1
XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND9
SUBROUTINE RIND10(XIND,R,BU,DBUN,DB,SQ,VDER,N)
USE SIZEMOD
USE TBRMOD
USE INFCMOD
USE CHECKMOD
USE EPSMOD
USE RINTMOD
IMPLICIT NONE
REAL*8, intent(inout) :: XIND,DBUN,VDER
REAL*8, DIMENSION(RDIM), intent(inout) :: R
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,DB,SQ
INTEGER, intent(in) :: N
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(NMAX), save :: BU1,DB1,B1,SQ1
REAL*8, DIMENSION(24) :: XX1, H1
REAL*8, save :: DB1N,SDER1,VDER1, SS0
REAL*8 XMI,XMA,DER,SDER
REAL*8 XIND1,XFF,XF,X,XH, XR1, SQ0
INTEGER I,III,J,II0,N1
! INTEGER IAC,N
! INTEGER I,J,III,II0,N1
! REAL*8 XIND,R,BU,DBUN,DB,SQ,VDER
! real*8 XX1,H1
! REAL*8 R1,B1,DB1,BU1,SQ1
! REAL*8 XFF, SQ0, X, XH,XF, SDER, XMI,XMA
! REAL*8 SS0, DB1N, VDER1, XR1
! REAL*8 SDER1, DER,XIND1
C DIMENSION R(1),BU(1),SQ(1),DB(1)
! DIMENSION R(RDIM),BU(NMAX),SQ(NMAX),DB(NMAX)
! DIMENSION R1(RDIM),B1(NMAX),DB1(NMAX),BU1(NMAX),SQ1(NMAX)
! DIMENSION XX1(24),H1(24)
C DIMENSION HH(101),INF(10),INFO(10)
C COMMON /EPS/ EPS,EPSS,CEPSS
C COMMON /RINT/ C,FC
C COMMON /TBR/ HH
C COMMON /INFC/ ISQ,INF,INFO
C COMMON /CHECK1/ III01,III11,III21,III31,III41,III51
C *,III61,III71,III81,III91,III101
XIND=0.0d0
XFF=1.0d0
IF (N.LT.1) GO TO 11
SQ0=0.0d0
DO I=1,N
IF (SQ(I).LE.EPS) THEN
SQ1(I)=SQ(I)
GO TO 1
END IF
c CSQ=C*SQ(I)
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) GO TO 1
c IF (BU(I).LT.-CSQ.AND.BU(I).GT.HH(I)+CSQ) SQ1(I)=EPS1
C IF (BU(I).GT. CSQ.OR.BU(I).LT.HH(I)-CSQ) RETURN
IF (SQ(I).GT.SQ0) THEN
SQ0=SQ(I)
II0=I
END IF
X=-BU(I)/SQ(I)
XH=X+HH(I)/SQ(I)
XF=FI(X)-FI(XH)
c IF(XF.GT.CEPSS) SQ1(I)=EPS1
IF (XF.LT.XFF) THEN
INF(10)=I
XFF=XF
END IF
1 CONTINUE
ENDDO
11 CONTINUE
IF(XFF.LT.EPSS) RETURN
IF (XFF.GT.0.9999d0*FC) THEN
SDER=0.0d0
IF (VDER.GT.EPS) SDER=SQRT(VDER)
XIND=MAX(DBUN,0.0d0)
IF(IAC.LT.1) RETURN
XIND=PMEAN(DBUN,SDER)
RETURN
END IF
IF(ISQ.EQ.1) INF(10)=II0
SQ0=SQ(INF(10))
XMA=-BU(INF(10))/SQ0
XMI=XMA+HH(INF(10))/SQ0
XMI=MAX(-C,XMI)
XMA=MIN(C,XMA)
IF (XMI.GT.XMA) XMA=-C
C *************************************************
C
C We are conditioning on the point T(INF(2)) and write new model
C BU(I)+X*B1(I)+Delta1(I), I=1,...,N (Obs. we do not use I=1,N)
C SQ1(I) is standard deviation of Delta1 DBUN=BU'(N), DB1N=B1'(N) and X is
C N(0,1) independent of Delta1, SDER1 is standard deviation of Delta1'(N).
C
III=0
DO I=10,10
III=III + ABS(INF(I)-INFO(I))
ENDDO
IF (III.EQ.0) GO TO 99
CALL M_COND(R1,B1,DB1,R,DB,INF(10),N)
C III1=III1+1
SS0=B1(INF(10))
INFO(10)=INF(10)
DB1N=DB(INF(10))
VDER1=VDER-DB1N*DB1N/SS0
SDER1=0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C SQ0=SQRT(SS0)
DB1N=DB1N/SQ0
SQ1(INF(10))=0.0d0
DO I=1,N
C
C IF (SQ1(I).EQ.EPS1) GO TO 3 - the .EQ. can not be raplaced with .LT. without
C some general changes in the strategy of SQ and SQ1 values. More exactly
C SQ can not be changed in this subroutine when for some I we would like to
C put SQ1(I)=EPS1 in the first loop. This SQ1 should not be changed here and
C thus we have GO TO 3 statement. Observe that the other SQ1 values are
cc
IF (SQ(I)>EPS) THEN
XR1=R1(I+(I-1)*N)
c IF(XR1.LT.0.0d0) CALL ERROR(I,N,-1)
SQ1(I)=0.0d0
IF (XR1.GT.EPS) SQ1(I)=SQRT(XR1)
ENDIF
ENDDO
DO I=1,N
B1(I)=B1(I)/SQ0
ENDDO
99 CONTINUE
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
C
CALL C1_C2(XMI,XMA,BU,B1,DBUN,DB1N,SDER1,SQ1,N)
IF(FI(XMA)-FI(XMI).LT.EPSS) THEN
RETURN
ENDIF
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO J=1,N1
DO I=1,N
BU1(I)=BU(I)+XX1(J)*B1(I)
ENDDO
DER=DBUN+XX1(J)*DB1N
CALL RIND9(XIND1,R1,BU1,DER,DB1,SQ1,VDER1,N)
III91=III91+1
XIND=XIND+XIND1*H1(J)
ENDDO
RETURN
END SUBROUTINE RIND10
SUBROUTINE C1_C2(C1,C2,BU,B1,DBUN,DB1N,SDER,SQ,N)
C
C We assume that the process y is of form y(I)=BU(I)+X*B1(I)+Delta(I),
C I=1,...,N, SQ(I) is standard deviation of Delta(I), where X is N(0,1)
C independent of Delta. Let Y = DBUN + DB1N*X + Z, where Z is zero-mean
C Gaussian with standart independent of X (it can depend on Delta(I)) with
C standart deviation SDER. Since we are truncating all Gaussian variables to
C the interval [-C,C], then if for any I
C
C a) BU(I)+x*B1(I)-C*SQ(I)>0 or
C
C b) BU(I)+x*B1(I)+C*SQ(I)<HH then
C
C XIND|X=x = E[Y^+1{ HH<y(I)<0 for all I, I=1,...,N}|X=x] = 0 !!!!!!!!!
C
C Further, see discussion in comments to the subroutine PMEAN, by first upper-
C bounding the indicator 1{} in XIND by 1, XIND|X=x = 0 if
C
C c) DBUN+x*DB1N+4.5*SDER<0.0d0
C
C Consequently, for increasing the accuracy (by excluding possible discon-
C tinuouities) we shall exclude such X=x values for which XIND|X=x = 0.0d0
C XIND=E([XIND|X]). Hence we assume that if C1<X<C2 any of the previous
C conditions are satisfied.
C
C OBSERVE!!, C1, C2 has to be set to upper bounds of possible values, e.g.
C C1=-C, C2=C before calling C1_C2 subroutine.
C
C NOTE: Check that integration limits contained in TBRMOD is used correctly
C If order of variables are changed then also the integration limits in HH should reflect this
USE EPSMOD
USE RINTMOD
USE TBRMOD
USE SIZEMOD
IMPLICIT NONE
REAL*8, DIMENSION(NMAX), intent(inout) :: BU,SQ,B1
REAL*8, intent(inout) :: C1,C2
REAL*8, intent(in) :: DBUN,DB1N,SDER
INTEGER, intent(in) :: N
REAL*8 CSQ, HHB, CC1, CC2, X
INTEGER I
C DIMENSION BU(1),B1(1),SQ(1)
! DIMENSION BU(NMAX),SQ(NMAX),B1(NMAX)
C DIMENSION HH(101)
C COMMON /EPS/EPS,EPSS,CEPSS
C COMMON/RINT/C,FC
C COMMON/TBR/HH
DO I=1,N
CSQ=C*SQ(I)
HHB=HH(I)-BU(I)
C
C If ABS(B1(I)) < EPS we can have overflow and hence we consider two cases
C 1) BU(I) is so large or small so we can surely assume that the probability
C of staying between the barriers is 0, consequently C1=C2=0
C 2) we do not change the original limits.
C
IF (ABS(B1(I)).LT. EPS) THEN
IF (BU(I).GT.CSQ.OR.BU(I).LT.HH(I)-CSQ) THEN
C1=0.0d0
C2=0.0d0
RETURN
END IF
C
C In other cases this part follows from the description of the problem.
C
ELSE
IF (B1(I).GT.EPS) THEN
CC1=(HHB-CSQ)/B1(I)
CC2=(-BU(I)+CSQ)/B1(I)
IF (C1.LT.CC1) C1=CC1
IF (C2.GT.CC2) C2=CC2
ELSE
CC2=(HHB-CSQ)/B1(I)
CC1=(-BU(I)+CSQ)/B1(I)
IF (C1.LT.CC1) C1=CC1
IF (C2.GT.CC2) C2=CC2
END IF
END IF
ENDDO
X=-DBUN-4.5d0*SDER
IF(DB1N.GT.EPS.AND.C1.LT.X/DB1N) C1=X/DB1N
IF(DB1N.LT.-EPS.AND.C2.GT.X/DB1N) C2=X/DB1N
if(abs(db1n).lt.eps.and.x.gt.0.0d0) then
C1=0.0d0
C2=0.0d0
RETURN
END IF
c
c In the following three rows we are cutting C1, C2 to the interval [-C,C].
c Obs. all tree lines are neccessary.
c
C1=MAX(-C,C1)
C2=MIN( C,C2)
IF (C1.GT.C2) C2=-C
C PRINT *,2,C1,C2
RETURN
END SUBROUTINE C1_C2
REAL*8 FUNCTION GAUSINT(X1,X2,A,B,C,D)
C
C Let X be stardized Gaussian variable, i.e. X=N(0,1).
C The function calculate the followin integral E[I(X1<X<X2)(A+BX)(C+DX)],
C where I(X1<X<X2) is an indicator function of the set {X1<X<X2}.
C
IMPLICIT NONE
REAL*8, intent(in) :: X1,X2,A,B,C,D
REAL*8 Y1,Y2,Y3
REAL*8, PARAMETER:: SP = 0.398942280401433d0
IF(X1.GE.X2) THEN
GAUSINT=0.0d0
RETURN
END IF
Y1=(A*D+B*C+X1*B*D)*EXP(-0.5d0*X1*X1)
Y2=(A*D+B*C+X2*B*D)*EXP(-0.5d0*X2*X2)
Y3=(A*C+B*D)*(FI(X2)-FI(X1))
GAUSINT=Y3+SP*(Y1-Y2)
RETURN
END FUNCTION GAUSINT
SUBROUTINE GAUSS1(N,H1,XX1,XMI,XMA,EPS0)
USE CHECKMOD
USE QUADRMOD
IMPLICIT NONE
INTEGER, intent(out) :: N
REAL*8, DIMENSION(24), intent(out) :: H1,XX1
REAL*8, intent(in) :: XMI,XMA,EPS0
REAL*8, DIMENSION(24) :: Z1
REAL*8 SDOT, SDOT1, DIFF1
INTEGER NNN, J, I1
! DIMENSION Z1(24),XX1(1),H1(1)
C DIMENSION Z(126),H(126)
C DIMENSION NN(25)
C COMMON/QUADR/ Z,H,NN,NNW
C COMMON/CHECKQ/ III0
REAL*8, parameter:: SP= 0.398942280401433d0
IF (XMA.LT.XMI) THEN
PRINT *,'Error XMIN>XMAX in GAUSS1 - stop!'
C STOP
END IF
NNN=0
DO I=1,NNW
N=NN(I)
DO J=1,N
XX1(J)=0.5d0*(Z(NNN+J)*(XMA-XMI)+XMA+XMI)
Z1(J)=XX1(J)*XX1(J)
H1(J)=0.5d0*SP*(XMA-XMI)*H(NNN+J)*EXP(-0.5d0*Z1(J))
ENDDO
NNN=NNN+N
SDOT=GAUSINT(XMI,XMA,0.0d0,1.0d0,0.0d0,1.0d0)
SDOT1=0.d0
DO I1=1,N
SDOT1=SDOT1+Z1(I1)*H1(I1)
ENDDO
DIFF1=ABS(SDOT-SDOT1)
IF(EPS0.LT.DIFF1) GO TO 10
III0=III0+N
C PRINT *,'N. of nodes',III0
RETURN
10 CONTINUE
ENDDO
END SUBROUTINE GAUSS1
SUBROUTINE M_COND(Syy_cd,Syyii,Syx_cd,Syy,Syx,ii,N)
C
C INPUT:
C
C ii IS THE INDEX OF THE TIME ON WHICH WE ARE CONDITIONING.
C N number of variables in covariance matrix Syy
C
C Covariance matrix Syy(I+(J-1)*N)=Cov(Yi,Yj) (is unchanged)
C Covariance vector Syx(I)=Cov(Yi,X) (is unchanged)
C
C OUTPUT:
C
C Covariance matrix Syy_cd(I+(J-1)*N)=Cov(Xi,Xj|Xii)
C Covariance vector Syyii(I)=Cov(Xi,Xii)
C Covariance vector Syx_cd(I)=Cov(Xi,Y|Xii)
C Variance Q1=Var(Xii)=Syyii(ii)
c Obs. If Q1<EPS there is no conditioning
C
C M_COND(R1,B1,DB1,R,DB,INF(10),N)
USE EPSMOD
USE SIZEMOD
IMPLICIT NONE
INTEGER, intent(in) :: II,N
REAL*8, DIMENSION(RDIM), intent(inout) :: Syy_cd,Syy
REAL*8, DIMENSION(NMAX), intent(inout) :: Syyii,Syx_cd,Syx
REAL*8 Q1
INTEGER I,J
! DIMENSION Syy_cd(RDIM),Syyii(NMAX),Syx_cd(NMAX),Syy(RDIM),Syx(NMAX)
C DIMENSION Syy_cd(1),Syyii(1),Syx_cd(1),Syy(1),Syx(1)
C COMMON /EPS/ EPS,EPSS,CEPSS
IF (II.LE.0.OR.II.GT.N) THEN
PRINT *,'The conditioning time in M_COND is out of range, stop!'
STOP
END IF
C
C Q1=Var(Xii)=Syyii(ii)
C
Q1=Syy(II+(II-1)*N)
IF(Q1.LE.eps) then
DO I=1,N
Syyii(I)=0.0d0
ENDDO
Q1=1.0d0
else
DO I=1,N
Syyii(I)=Syy(I+(II-1)*N)
ENDDO
end if
DO I=1,N
DO J=1,N
Syy_cd(I+(J-1)*N)=Syy(I+(J-1)*N)-Syy(II+(J-1)*N)*Syyii(I)/Q1
ENDDO
Syx_cd(I)=Syx(I)-Syx(II)*Syyii(I)/Q1
ENDDO
RETURN
END SUBROUTINE M_COND
REAL*8 FUNCTION PMEAN(XX,SS)
C
C PMEAN is the positive mean of a Gaussian variable with mean XX and
C standart deviation SS, i.e. PMEAN=SS*FIFUNK(XX/SS), where
C FIFUNK(x)=f(x)+x*FI(x), f and FI are density and distribution
C functions of N(0,1) variable, respectively. We have modified the
C algorithm 209 from CACAM for evaluation of FIFUNK, to avoid the operations
C of type SS*XX/SS, which can give numerical errors when SS and XX are
C both small.
C
C ** NUMERICAL ACCURACY **
C
C
C Obs. that, our general assumption is that the process is normalized, i.e.
C Var (X(t)) = Var (X'(t)) = 1.0d0 Consequently all conditional variances
C are less than 1, and usualy close to zero, i.e. SS<1.0d0. Now since SS<1.0d0
C and FIFUNK(x)<0.0000001 for x<-4.5 we have defined FIFUNK(x)=0.0d0
C if x<-4.5 and FIFUNK(x)=x if x>
C 4.5. Under we have a table with
C exact values of FIFUNK.
C
C x FIFUNK(x)
C
C -5.0 0.00000005233
C -4.5 0.00000069515
C -4.0 0.00000711075
C 4.0 4.00000700000
C 4.5 4.50000100000
C
C Obviously the tresholds -4.5 and 4.5 can be increased.
C
C
IMPLICIT NONE
REAL*8, intent(in) :: XX, SS
REAL*8 X,Y,W,Z
REAL*8, parameter :: SP = 0.398942280401433d0
IF(XX.LT.4.5d0*SS) GO TO 1
PMEAN=XX
RETURN
1 IF(XX.GT.-4.5d0*SS) GO TO 3
PMEAN=0.0d0
RETURN
3 continue
if (SS .LT. 0.0000001d0) then
PMEAN=0.0d0
RETURN
end if
X=XX/SS
IF(X==0) goto 8
Y=0.5d0*ABS(X)
IF(Y<1.0d0) then
W=Y*Y
Z=((((((((0.000124818987d0*W-0.001075204047d0)*W
1 +0.005198775019d0)*W-0.019198292d0)*W+0.05905403564d0)*W
2 -0.15196875136d0)*W+0.3191529327d0)*W-0.5319230073d0)*W
3 +0.7978845606d0)*Y*2.0d0
else
Y=Y-2.0d0
Z=(((((((((((((-0.000045255659d0*Y+0.00015252929d0)*Y
* -0.000019538132d0)*Y-0.000676904986d0)*Y
1 +0.001390604284d0)*Y-0.000794620820d0)*Y
2 -0.002034254874d0)*Y+0.006549791214d0)*Y-0.010557625006d0)*Y+
3 0.011630447319d0)*Y-0.009279453341d0)*Y+0.005353579108d0)*Y-
4 0.002141268741d0)*Y+0.000535310849d0)*Y+0.9999366575d0
endif
IF(X.GT.0.0d0) PMEAN=SS*SP*EXP(-0.5d0*X*X)+XX*0.5d0*(Z+1.0d0)
IF(X.LT.0.0d0) PMEAN=SS*SP*EXP(-0.5d0*X*X)+XX*0.5d0*(1.0d0-Z)
RETURN
8 PMEAN=SS*SP
RETURN
END FUNCTION PMEAN
REAL*8 FUNCTION FI(XX)
C
C Algorithm 209 from CACAM.
C FI(xx) is a distribution functions of N(0,1) variable.
C
IMPLICIT NONE
REAL*8, intent(in) :: XX
REAL*8 X, Y,Z, W
X=XX
IF(X==0) then
FI=0.5d0
RETURN
endif
Y=0.5d0*ABS(X)
IF(Y>3.0d0) then
IF(X.GT.0.0d0) FI=1.0d0
IF(X.LT.0.0d0) FI=0.0d0
RETURN
endif
IF (Y<1.0d0) then
W=Y*Y
Z=((((((((0.000124818987d0*W-0.001075204047d0)*W
1 +0.005198775019d0)*W-0.019198292d0)*W+0.05905403564d0)*W
2 -0.15196875136d0)*W+0.3191529327d0)*W-0.5319230073d0)*W
3 +0.7978845606d0)*Y*2.0d0
ELSE
Y=Y-2.0d0
Z=(((((((((((((-0.000045255659d0*Y+0.00015252929d0)*Y
1 -0.000019538132d0)*Y-0.000676904986d0)*Y+0.001390604284d0)*Y
2 -0.000794620820d0)*Y-0.002034254874d0)*Y+0.006549791214d0)*Y
3 -0.010557625006d0)*Y+0.011630447319d0)*Y-0.009279453341d0)*Y
4 +0.005353579108d0)*Y-0.002141268741d0)*Y+0.000535310849d0)*Y
5 +0.9999366575d0
endif
100 IF(X.GT.0.0d0) FI=0.5d0*(Z+1.0d0)
IF(X.LT.0.0d0) FI=0.5d0*(1.0d0-Z)
RETURN
END FUNCTION FI
C Version 1991-XII-14
C The MREG program.
C
C
C We consider a process X(I)=X(T(I)) at the grid of N points T(1),...,T(N),
C
C X(I) = -A(I) + Z*A(I+N) + Sum Xj*A(I+(j+1)*N) + Delta(I),
C
C the sum disapears if M=1, j=1,...,M-1. We assume that Z,Xj are independend
C standart Rayleigh, Gaussian distributed rv. and independent of the zero
C mean Gaussian residual process, with covariance structure given in R,
C
C R(i+(j-1)N) = Cov (Delta(T(i)), Delta(T(j))).
C
C Additionally we have a zero mean Gaussian variable XN,
C independent of Z,Xj with covariance structure defined by
C B(i)= Cov (Delta(T(i)),XN), i=1,...,N, B(N+1)=Var(XN).
C Furthermore XN and Z,Xj satisfies the following equation system
C
C (BB + (XN,0,...,0)^T = AA*(Z,X1,...,Xm-1)^T (***)
C
C where AA is (M,M) matrix, BB is M-vector. We rewrite this equation, by
C introducing a variable X_M=XN/SQRT(XN) and construct new matrix AA1
c by adding the column (SQRT(Var(XN)),0,...,0) and the row with only zeros.
C The equations (***) writtes
C
C (BB,0)^T = AA1*(Z,X1,...,Xm-1,Xm)^T (****)
C
C where AA1 is (M+1,M+1) matrix, We assume that the rank of AA1 is M,
C otherwise the density is singular and we give a output F=0.CC
C
C Let Y0 be a zero-mean Gaussian variable independent of Z,Xj
C with covariance structure defined by
C DB(i)= Cov (Delta(T(i)),Y0), i=1,...,N, DB(N+1)=Cov(XN,Y0), Var(Y0)=VDER.
C Let Y be defined by
C
C Y=-DA(1) + Z*DA(2) + Sum Xj*DA(2+j) +Y0,
C
C j=1,...,M-1. The program computes:
C
C F = E[ Y^+ *1{ HH<X(I)<0 for all I, I=1,...,N}|Z,X1,...,X_M-1 solves (***)]
C *f_{Z,X1,....,XM-1}(***).
C
C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),XN)=0.0d0
C
C We renormalize vectors AN and DA, the covariance fkn R, DB
C and VDER. Then by renormalization we choose the Gaussian variable X such
C that F is written in the form
C
C F = E[(D0(1)+X*D0(2)+Y1)^+*(PC+X*PD)^+*1{HH <A0(I)+X*B0(I)+Delta1(I)<0}]
C
C Observe, PC+X*PD>0 defines integration region for X.
C In the simplest case NIT=0 we define (Delta(1),...,Delta(N),Y1)=0.0d0
C For NIT=1 only (Delta(1),...,Delta(N))=0, i.e. we have to compute
C a one dimensional integral. Finally by conditioning on X the problem is
C put in the format of RIND-problem.
C
C INF indicates whether one
C has already called the subroutine before and ONLY! inputs BB, DA or A
C was changed.
C
C Observe the limitations are : N<=100, 0<M <= 5 = MMAX.
C
C revised pab 2007
C - replaced all common blocks with modules
C - fixed some bugs
SUBROUTINE MREG(F,R,B,DB,AA,BB,A,DA,VDER,M,N,NIT,INFR)
USE SIZEMOD
USE EPSMOD
USE RINTMOD
USE INFCMOD
USE SVD
IMPLICIT NONE
! INTEGER, PARAMETER :: MMAX = 5, NMAX = 101, RDIM = 10201
INTEGER, PARAMETER :: Nw = MMAX+1
INTEGER, intent(in) :: M,N,NIT,INFR
REAL*8, intent(in) :: VDER
REAL*8, intent(inout) :: F
REAL*8, intent(inout) :: R(RDIM),B(NMAX),DB(NMAX),BB(Nw)
REAL*8, intent(inout) :: A(Nw*NMAX),DA(Nw),AA(MMAX-2,MMAX-2)
REAL*8, DIMENSION(Nw), save :: AO, DA0, W1, E1
REAL*8, DIMENSION(Nw,Nw), save :: AA1, U1,V1
REAL*8, DIMENSION(NMAX), save :: DB1, SQ
REAL*8, DIMENSION(RDIM), save :: R1
REAL*8, DIMENSION(Nw*NMAX), save :: A1
REAL*8, DIMENSION(NMAX) :: A0,B0,B1
REAL*8, DIMENSION(24) :: XX1,H1
REAL*8, DIMENSION(2) :: D0
REAL*8, save :: QD, DB1N,VDER1,SQD, SDER1,DET1
REAL*8 XIND, DB0N,FR1, XR1,XMI,XMA
REAL*8 CC, PC, PD, P, X
INTEGER INF1, I, I1, J, N1,I2,infoID
INTEGER, save :: IDET, NNIT
C DIMENSION AA1(6,6),V1(6,6)
C DIMENSION W1(6),AO(6),DA0(6)
C DIMENSION A0(2*Nmax),B0(2*Nmax),B1(2*Nmax),DB1(2*Nmax)
! DIMENSION D0(2)
! DIMENSION XX1(24),H1(24)
C COMMON /EPS/EPS,EPSS,CEPSS
C COMMON/RINT/ C,FC
C
C If INFR=0 we have to initiate conditioning and renormalization transf.
C
INF1=0
F=0.0d0
IF (N.LT.0) RETURN
IF (N.EQ.0) GO TO 2
DO I=1,N
DO I1=1,M+1
A1(I+(I1-1)*N)=A(I+(I1-1)*N)
ENDDO
ENDDO
2 CONTINUE
DO I=1,M+1
DA0(I)=DA(I)
ENDDO
C
C Renormalization
C
IF (INFR.EQ.1) GO TO 105
NNIT=MIN(NIT,N)
DO i=1,n
SQ(i)=0.0d0
ENDDO
DO I=1,M
DO J=1,M
AA1(I,J)=AA(I,J)
ENDDO
ENDDO
NNIT=MIN(NIT,N)
QD =B(N+1)
DB1N =DB(N+1)
VDER1=VDER
IF(QD.le.eps) then
DB1N = 0.0d0
SQD = 0.0d0
NNIT = 0
DO I=1,N
DB1(I) = DB(I)
A1(I+(M+1)*N)=0.0d0
SQ(I) = 0.0d0
ENDDO
else
SQD = SQRT(QD)
VDER1 = VDER1-DB1N*DB1N/QD
DB1N = DB1N/SQD
DO I=1,N
DB1(I) = DB(I)-DB(N+1)*(B(I)/QD)
A1(I+(M+1)*N) = B(I)/SQD
ENDDO
end if
SDER1 = 0.0d0
IF (VDER1.GT.EPS) SDER1=SQRT(VDER1)
C print *,'sqd,SDER1',sqd,SDER1
C PAB: BUG DA0 M+2 can be larger than NW = MMAX+1
DA0(M+2) = DB1N
BB(M+1) = 0.0d0
AA1(1,M+1)=SQD
DO I=1,M
AA1(I+1,M+1)=0.0d0
AA1(M+1,I)=0.0d0
ENDDO
! New call to avoid calling Numerical recipess SVDCMP
CALL dsvdc(AA1,M+1,M+1,W1, E1, U1, V1, 11, infoID)
! CALL SVDCMP(AA1,M+1,M+1,NW,NW,W1,V1)
DET1 = 1.0d0
idet = 0
DO I=1,M+1
IF ( W1(I).LT.0.00001d0 ) THEN
idet = idet+1
W1(I) = 0.0d0
DO J=1,M+1
AO(J)=V1(J,I)
ENDDO
GO TO 35
END IF
DET1=DET1*W1(I)
35 CONTINUE
ENDDO
C print *,'det1',det1
IF(DET1.LT.0.001d0) NNIT=0
c
c Obs. QD can not be small since NNIT>0
c
IF (NNIT.GT.1) THEN
DO I=1,N
XR1=R(I+(I-1)*N)-B(I)*(B(I)/QD)
IF(XR1.GT.EPS) THEN
SQ(I)=SQRT(XR1)
ENDIF
ENDDO
DO I=1,N
DO J=1,N
R1(J+(I-1)*N)=R(J+(I-1)*N)-B(I)*(B(J)/QD)
ENDDO
ENDDO
END IF
105 CONTINUE
if (idet.gt.1) return
C
C Renormalization is done
C
CALL R_ORT(CC,PC,PD,U1,V1,W1,AO,BB,A1,A0,B0,DA0,D0,DET1,M+1,N)
IF(CC.LT.0.0d0) RETURN
XMI=-C
XMA= C
IF(ABS(PD).LE.EPS.AND.PC.LT.0.0d0) RETURN
IF(ABS(PD).LE.EPS) GO TO 102
X=-PC/PD
IF(PD.GT.0.0d0.AND.XMI.LT.X) XMI=X
IF(PD.LT.0.0d0.AND.XMA.GT.X) XMA=X
102 CONTINUE
c PRINT *,'XMI,XMA',XMI,XMA
IF(NNIT.eq.1.AND.IAC.LT.1.OR.NNIT.eq.0.OR.XMI.GE.XMA) THEN
CALL C1_C2(XMI,XMA,A0,B0,D0(1),D0(2),0.0d0,SQ,N)
c PRINT *,'XMI,XMA',XMI,XMA
F=GAUSINT(XMI,XMA,D0(1),D0(2),PC,PD)*CC
c print *,'return',f,cc
RETURN
END IF
C
C ***********************************************************
C
C We shall condition on the values of X, XMI<X<XMA, but for some
C X values XIND will be zero leading to reduced accuracy. Hence we try
C to exclude them and narrow the interval [XMI,XMA]
c
c PRINT *,XMI,XMA
CALL C1_C2(XMI,XMA,A0,B0,D0(1),D0(2),SDER1,SQ,N)
c PRINT *,XMI,XMA
IF(FI(XMA)-FI(XMI).LT.EPSS) RETURN
CALL GAUSS1(N1,H1,XX1,XMI,XMA,EPS0)
DO I2=1,N1
FR1=CC*H1(I2)*(PC+XX1(I2)*PD)
DO I=1,N
B1(I)=A0(I)+XX1(I2)*B0(I)
ENDDO
DB0N=D0(1)+XX1(I2)*D0(2)
C
C INF1=1 means that both R1 and SQ are the same as in the previous
C call of TWOREG subroutine, INF=0 indicates the new R and SQ.
c
c print *,'go in rind'
CALL RIND(XIND,R1,B1,DB0N,DB1,SQ,VDER1,NNIT-1,N,INF1)
c if (n.gt.29) print *,XIND,DB0N,VDER1,b1(N),b1(n-1)
INF1=1
F=F+FR1*XIND
ENDDO
RETURN
END SUBROUTINE MREG
SUBROUTINE R_ORT(C,PC,PD,U1,V1,W1,AO,BB,A0,A,B,DA,D0,DET,M,N)
USE EXPACCMOD
USE SIZEMOD
IMPLICIT NONE
INTEGER, PARAMETER :: Nw = MMAX+1
INTEGER, intent(in) :: M,N
REAL*8, DIMENSION(Nw,Nw), intent(inout) :: U1, V1
REAL*8, DIMENSION(Nw ), intent(inout) :: W1,AO,BB, DA
REAL*8, DIMENSION(Nw*NMAX), intent(inout):: A0
REAL*8, DIMENSION(NMAX), intent(inout) :: A, B
REAL*8, DIMENSION(2), intent(inout) :: D0
REAL*8, intent(inout):: C,PC,PD,DET
REAL*8, DIMENSION(Nw ) :: XO
REAL*8 DER0,DER1,P
INTEGER I,J
C COMMON/EXPACC/PMAX
REAL*8, parameter :: SP = 0.398942280401433d0
C=-999.
CALL SVBKSB(U1,W1,V1,M,M,Nw,Nw,BB,XO)
P = 0.0d0
DER0 = -DA(1)
DER1 = 0.0d0
DO I=1,M
P = P + XO(I) * XO(I)
DER0 = DER0 + XO(I) * DA(I+1)
DER1 = DER1 + AO(I) * DA(I+1)
ENDDO
IF (P.GT.PMAX) RETURN
C=(SP**(M-2))*EXP(-0.5d0*P)/ABS(DET)
c print *,'XO',XO(1),XO(2),XO(3),XO(4)
c print *,'AO',AO(1),AO(2),AO(3),AO(4)
if(N.lt.1) go to 100
DO I=1,N
A(I) = -A0(I)
B(I) = 0.0d0
DO J=1,M
B(I) = B(I)+AO(J)*A0(I+J*N)
A(I) = A(I)+XO(J)*A0(I+J*N)
ENDDO
ENDDO
100 continue
D0(1)=DER0
D0(2)=DER1
PC=XO(1)
PD=AO(1)
RETURN
END SUBROUTINE R_ORT
REAL*8 FUNCTION pythag(a,b)
IMPLICIT NONE
REAL*8, intent(in) :: a,b
REAL*8 absa,absb
absa=abs(a)
absb=abs(b)
IF (absa.GT.absb) THEN
pythag=absa*SQRT(1.0d0+(absb/absa)**2)
ELSE
IF (absb.EQ.0.0d0) THEN
pythag=0.0d0
ELSE
pythag=absb*SQRT(1.0d0+(absa/absb)**2)
ENDIF
ENDIF
RETURN
END FUNCTION PYTHAG
SUBROUTINE SVBKSB(U,W,V,M,N,MP,NP,B,X)
C
C Solves AX=B for a vector X, where A is specified by the arrays
C U, W, V as returned by SVDCMP. M and N are the logical
C dimensions of A, and will be equal for a square matrices. MP and NP
C are the physical dimensions of A. B is the input right-hand side.
C X is the output solution vector. No input quantities are destroyed,
C so the routine may be called sequentialy with different B's.
C
USE SIZEMOD
IMPLICIT NONE
C INTEGER, PARAMETER :: NMAX=100
C Maximum anticipated value of N
INTEGER, intent(in) :: M,N,MP,NP
INTEGER :: J,I,JJ
REAL*8, intent(inout) :: U,W,V,B,X
REAL*8 TMP, S
DIMENSION U(MP,NP),W(NP),V(NP,NP),B(MP),X(NP),TMP(NMAX)
DO J=1,N
C Cumulate U^T*B
S=0.0d0
IF (W(J).NE.0.0d0) THEN
C Nonzero rezult only if wj is nonzero
DO I=1,M
S=S+U(I,J)*B(I)
ENDDO
S=S/W(J)
C This is the divide by wj
ENDIF
TMP(J)=S
ENDDO
DO J=1,N
S=0.0d0
DO JJ=1,N
S=S+V(J,JJ)*TMP(JJ)
ENDDO
X(J)=S
ENDDO
RETURN
END SUBROUTINE SVBKSB
SUBROUTINE SVDCMP(A,M,N,MP,NP,W,V)
C
C Given a matrix A, with logical dimensions M by N and physical
C dimensions MP by NP, this routine computes its singular value
C decomposition, A=U.W.V^T, see Numerical Recipes, by Press W.,H.
C Flannery, B. P., Teukolsky S.A. and Vetterling W., T. Cambrige
C University Press 1986, Chapter 2.9. The matrix U replaces A on
C output. The diagonal matrix of singular values W is ouyput as a vector
C W. The matrix V (not the transpose V^T) is output as V. M must be
C greater or equal to N; if it is smaller, then A should be filled up
C to square with zero rows.
C
USE SIZEMOD
IMPLICIT NONE
C PARAMETER (NMAX=100)
INTEGER, intent(in) :: M,N,MP,NP
INTEGER :: I,L,K,J, ITS, NM
REAL*8, intent(inout) :: A,W,V
REAL*8 RV1,G, S,SCALE,ANORM, F,H, C, Y,Z,X
C Maximum anticipated values of N
DIMENSION A(MP,NP),W(NP),V(NP,NP),RV1(NMAX)
IF(M.LT.N) THEN
print *, 'You must augment A with extra zero rows. stop'
stop
ENDIF
C Householder reduction to bidiagonal form
G=0.0d0
SCALE=0.0d0
ANORM=0.0
DO I=1,N
L=I+1
RV1(I)=SCALE*G
G=0.0d0
S=0.0d0
SCALE=0.0d0
IF (I.LE.M) THEN
DO K=I,M
SCALE=SCALE+ABS(A(K,I))
ENDDO
IF (SCALE.NE.0.0d0) THEN
DO K=I,M
A(K,I)=A(K,I)/SCALE
S=S+A(K,I)*A(K,I)
ENDDO
F=A(I,I)
G=-SIGN(SQRT(S),F)
H=F*G-S
A(I,I)=F-G
IF (I.NE.N) THEN
DO J=L,N
S=0.0d0
DO K=I,M
S=S+A(K,I)*A(K,J)
ENDDO
F=S/H
DO K=I,M
A(K,J)=A(K,J)+F*A(K,I)
ENDDO
ENDDO
ENDIF
DO K=I,M
A(K,I)=SCALE*A(K,I)
ENDDO
ENDIF
ENDIF
W(I)=SCALE*G
G=0.0d0
S=0.0d0
SCALE=0.0d0
IF ((I.LE.M).AND.(I.NE.N)) THEN
DO K=L,N
SCALE=SCALE+ABS(A(I,K))
ENDDO
IF (SCALE.NE.0.0d0) THEN
DO K=L,N
A(I,K)=A(I,K)/SCALE
S=S+A(I,K)*A(I,K)
ENDDO
F=A(I,L)
G=-SIGN(SQRT(S),F)
H=F*G-S
A(I,L)=F-G
DO K=L,N
RV1(K)=A(I,K)/H
ENDDO
IF (I.NE.M) THEN
DO J=L,M
S=0.0d0
DO K=L,N
S=S+A(J,K)*A(I,K)
ENDDO
DO K=L,N
A(J,K)=A(J,K)+S*RV1(K)
ENDDO
ENDDO
ENDIF
DO K=L,N
A(I,K)=SCALE*A(I,K)
ENDDO
ENDIF
ENDIF
ANORM=MAX(ANORM,(ABS(W(I))+ABS(RV1(I))))
ENDDO
c print *,'25'
C Accumulation of right-hand transformations.
DO I=N,1,-1
IF (I.LT.N) THEN
IF (G.NE.0.0d0) THEN
DO J=L,N
V(J,I)=(A(I,J)/A(I,L))/G
C Double division to avoid posible underflow.
ENDDO
DO J=L,N
S=0.0d0
DO K=L,N
S=S+A(I,K)*V(K,J)
ENDDO
DO K=L,N
V(K,J)=V(K,J)+S*V(K,I)
ENDDO
ENDDO
ENDIF
DO J=L,N
V(I,J)=0.0d0
V(J,I)=0.0d0
ENDDO
ENDIF
V(I,I)=1.0d0
G=RV1(I)
L=I
32 ENDDO
c print *,'32'
C Accumulation of the left-hang transformation
DO I=N,1,-1
L=I+1
G=W(I)
IF (I.LT.N) THEN
DO J=L,N
A(I,J)=0.0d0
ENDDO
ENDIF
IF (G.NE.0.0d0) THEN
G=1.0d0/G
IF (I.NE.N) THEN
DO J=L,N
S=0.0d0
DO K=L,M
S=S+A(K,I)*A(K,J)
ENDDO
F=(S/A(I,I))*G
DO K=I,M
A(K,J)=A(K,J)+F*A(K,I)
ENDDO
ENDDO
ENDIF
DO J=I,M
A(J,I)=A(J,I)*G
37 ENDDO
ELSE
DO J=I,M
A(J,I)=0.0d0
38 ENDDO
ENDIF
A(I,I)=A(I,I)+1.0d0
39 ENDDO
c print *,'39'
C Diagonalization of the bidiagonal form
C Loop over singular values
DO K=N,1,-1
C Loop allowed iterations
DO ITS=1,30
C Test for spliting
DO L=K,1,-1
NM=L-1
C Note that RV1(1) is always zero
IF((ABS(RV1(L))+ANORM).EQ.ANORM) GO TO 2
IF((ABS(W(NM))+ANORM).EQ.ANORM) GO TO 1
ENDDO
c print *,'41'
1 C=0.0d0
S=1.0d0
DO I=L,K
F=S*RV1(I)
IF ((ABS(F)+ANORM).NE.ANORM) THEN
G=W(I)
H=SQRT(F*F+G*G)
W(I)=H
H=1.0d0/H
C= (G*H)
S=-(F*H)
DO J=1,M
Y=A(J,NM)
Z=A(J,I)
A(J,NM)=(Y*C)+(Z*S)
A(J,I)=-(Y*S)+(Z*C)
ENDDO
ENDIF
ENDDO
c print *,'43'
2 Z=W(K)
IF (L.EQ.K) THEN
C Convergence
IF (Z.LT.0.0d0) THEN
C Singular values are made nonnegative
W(K)=-Z
DO J=1,N
V(J,K)=-V(J,K)
ENDDO
ENDIF
GO TO 3
ENDIF
IF (ITS.EQ.30) THEN
print *, 'No convergence in 30 iterations. stop.'
stop
ENDIF
X=W(L)
NM=K-1
Y=W(NM)
G=RV1(NM)
H=RV1(K)
F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2.0*H*Y)
G=SQRT(F*F+1.0d0)
F=((X-Z)*(X+Z)+H*((Y/(F+SIGN(G,F)))-H))/X
C Next QR transformation
C=1.0d0
S=1.0d0
DO J=L,NM
I=J+1
G=RV1(I)
Y=W(I)
H=S*G
G=C*G
Z=SQRT(F*F+H*H)
RV1(J)=Z
C=F/Z
S=H/Z
F= (X*C)+(G*S)
G=-(X*S)+(G*C)
H=Y*S
Y=Y*C
DO NM=1,N
X=V(NM,J)
Z=V(NM,I)
V(NM,J)= (X*C)+(Z*S)
V(NM,I)=-(X*S)+(Z*C)
ENDDO
c print *,'45',F,H
Z=pythag(F,H)
W(J)=Z
C Rotation can be arbitrary if Z=0.
IF (Z.NE.0.0d0) THEN
c print *,1/Z
Z=1.0d0/Z
c print *,'*'
C=F*Z
S=H*Z
ENDIF
F= (C*G)+(S*Y)
X=-(S*G)+(C*Y)
DO NM=1,M
Y=A(NM,J)
Z=A(NM,I)
A(NM,J)= (Y*C)+(Z*S)
A(NM,I)=-(Y*S)+(Z*C)
ENDDO
c print *,'46'
ENDDO
c print *,'47'
RV1(L)=0.0d0
RV1(K)=F
W(K)=X
ENDDO
3 CONTINUE
ENDDO
c print *,'49'
RETURN
END SUBROUTINE SVDCMP
END MODULE MREGMOD