You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1023 lines
36 KiB
Python

from numpy import (r_, minimum, maximum, atleast_1d, atleast_2d, mod, ones,
floor, random, eye, nonzero, where, repeat, sqrt, exp, inf,
diag, zeros, sin, arcsin, nan)
from numpy import triu
from scipy.special import ndtr as cdfnorm, ndtri as invnorm
from scipy.special import erfc
from wafo import mvn
import numpy as np
import wafo.mvnprdmod as mvnprdmod
import wafo.rindmod as rindmod
import warnings
from wafo.misc import common_shape
__all__ = ['Rind', 'rindmod', 'mvnprdmod', 'mvn', 'cdflomax', 'prbnormtndpc',
'prbnormndpc', 'prbnormnd', 'cdfnorm2d', 'prbnorm2d', 'cdfnorm',
'invnorm', 'test_docstring']
class Rind(object):
'''
RIND Computes multivariate normal expectations
Parameters
----------
S : array-like, shape Ntdc x Ntdc
Covariance matrix of X=[Xt,Xd,Xc] (Ntdc = Nt+Nd+Nc)
m : array-like, size Ntdc
expectation of X=[Xt,Xd,Xc]
Blo, Bup : array-like, shape Mb x Nb
Lower and upper barriers used to compute the integration limits,
Hlo and Hup, respectively.
indI : array-like, length Ni
vector of indices to the different barriers in the indicator function.
(NB! restriction indI(1)=-1, indI(NI)=Nt+Nd, Ni = Nb+1)
(default indI = 0:Nt+Nd)
xc : values to condition on (default xc = zeros(0,1)), size Nc x Nx
Nt : size of Xt (default Nt = Ntdc - Nc)
Returns
-------
val: ndarray, size Nx
expectation/density as explained below
err, terr : ndarray, size Nx
estimated sampling error and estimated truncation error, respectively.
(err is with 99 confidence level)
Notes
-----
RIND computes multivariate normal expectations, i.e.,
E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix))
where
"Indicator" = I{ Hlo(i) < X(i) < Hup(i), i = 1:N_t+N_d }
"Jacobian" = J(X(Nt+1),...,X(Nt+Nd+Nc)), special case is
"Jacobian" = |X(Nt+1)*...*X(Nt+Nd)|=|Xd(1)*Xd(2)..Xd(Nd)|
"condition" = Xc=xc(:,ix), ix=1,...,Nx.
X = [Xt, Xd, Xc], a stochastic vector of Multivariate Gaussian
variables where Xt,Xd and Xc have the length Nt,Nd and Nc, respectively
(Recommended limitations Nx,Nt<=100, Nd<=6 and Nc<=10)
Multivariate probability is computed if Nd = 0.
If Mb<Nc+1 then Blo[Mb:Nc+1,:] is assumed to be zero.
The relation to the integration limits Hlo and Hup are as follows
Hlo(i) = Blo(1,j)+Blo(2:Mb,j).T*xc(1:Mb-1,ix),
Hup(i) = Bup(1,j)+Bup(2:Mb,j).T*xc(1:Mb-1,ix),
where i=indI(j-1)+1:indI(j), j=2:NI, ix=1:Nx
NOTE : RIND is only using upper triangular part of covariance matrix, S
(except for method=0).
Examples
--------
Compute Prob{Xi<-1.2} for i=1:5 where Xi are zero mean Gaussian with
Cov(Xi,Xj) = 0.3 for i~=j and
Cov(Xi,Xi) = 1 otherwise
>>> import wafo.gaussian as wg
>>> n = 5
>>> Blo =-np.inf; Bup=-1.2; indI=[-1, n-1] # Barriers
>>> m = np.zeros(n); rho = 0.3;
>>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n)
>>> rind = wg.Rind()
>>> E0, err0, terr0 = rind(Sc,m,Blo,Bup,indI) # exact prob. 0.001946
>>> A = np.repeat(Blo,n); B = np.repeat(Bup,n) # Integration limits
>>> E1 = rind(np.triu(Sc),m,A,B) #same as E0
Compute expectation E( abs(X1*X2*...*X5) )
>>> xc = np.zeros((0,1))
>>> infinity = 37
>>> dev = np.sqrt(np.diag(Sc)) # std
>>> ind = np.nonzero(indI[1:])[0]
>>> Bup, Blo = np.atleast_2d(Bup,Blo)
>>> Bup[0,ind] = np.minimum(Bup[0,ind] , infinity*dev[indI[ind+1]])
>>> Blo[0,ind] = np.maximum(Blo[0,ind] ,-infinity*dev[indI[ind+1]])
>>> np.allclose(rind(Sc,m,Blo,Bup,indI, xc, nt=0),
... ([0.05494076], [ 0.00083066], [ 1.00000000e-10]), rtol=1e-3)
True
Compute expectation E( X1^{+}*X2^{+} ) with random
correlation coefficient,Cov(X1,X2) = rho2.
>>> m2 = [0, 0]; rho2 = np.random.rand(1)
>>> Sc2 = [[1, rho2], [rho2 ,1]]
>>> Blo2 = 0; Bup2 = np.inf; indI2 = [-1, 1]
>>> rind2 = wg.Rind(method=1)
>>> def g2(x):
... return (x*(np.pi/2+np.arcsin(x))+np.sqrt(1-x**2))/(2*np.pi)
>>> E2 = g2(rho2) # exact value
>>> E3 = rind(Sc2,m2,Blo2,Bup2,indI2,nt=0)
>>> E4 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0)
>>> E5 = rind2(Sc2,m2,Blo2,Bup2,indI2,nt=0,abseps=1e-4)
See also
--------
prbnormnd, prbnormndpc
References
----------
Podgorski et al. (2000)
"Exact distributions for apparent waves in irregular seas"
Ocean Engineering, Vol 27, no 1, pp979-1016.
P. A. Brodtkorb (2004),
Numerical evaluation of multinormal expectations
In Lund university report series
and in the Dr.Ing thesis:
The probability of Occurrence of dangerous Wave Situations at Sea.
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
Trondheim, Norway.
Per A. Brodtkorb (2006)
"Evaluating Nearly Singular Multinormal Expectations with Application to
Wave Distributions",
Methodology And Computing In Applied Probability, Volume 8, Number 1,
pp. 65-91(27)
'''
def __init__(self, **kwds):
'''
Parameters
----------
method : integer, optional
defining the integration method
0 Integrate by Gauss-Legendre quadrature (Podgorski et al. 1999)
1 Integrate by SADAPT for Ndim<9 and by KRBVRC otherwise
2 Integrate by SADAPT for Ndim<20 and by KRBVRC otherwise
3 Integrate by KRBVRC by Genz (1993) (Fast Ndim<101) (default)
4 Integrate by KROBOV by Genz (1992) (Fast Ndim<101)
5 Integrate by RCRUDE by Genz (1992) (Slow Ndim<1001)
6 Integrate by SOBNIED (Fast Ndim<1041)
7 Integrate by DKBVRC by Genz (2003) (Fast Ndim<1001)
xcscale : real scalar, optional
scales the conditinal probability density, i.e.,
f_{Xc} = exp(-0.5*Xc*inv(Sxc)*Xc + XcScale) (default XcScale=0)
abseps, releps : real scalars, optional
absolute and relative error tolerance.
(default abseps=0, releps=1e-3)
coveps : real scalar, optional
error tolerance in Cholesky factorization (default 1e-13)
maxpts, minpts : scalar integers, optional
maximum and minimum number of function values allowed. The
parameter, maxpts, can be used to limit the time. A sensible
strategy is to start with MAXPTS = 1000*N, and then increase MAXPTS
if ERROR is too large.
(Only for METHOD~=0) (default maxpts=40000, minpts=0)
seed : scalar integer, optional
seed to the random generator used in the integrations
(Only for METHOD~=0)(default floor(rand*1e9))
nit : scalar integer, optional
maximum number of Xt variables to integrate. This parameter can be
used to limit the time. If NIT is less than the rank of the
covariance matrix, the returned result is a upper bound for the
true value of the integral. (default 1000)
xcutoff : real scalar, optional
cut off value where the marginal normal distribution is truncated.
(Depends on requested accuracy. A value between 4 and 5 is
reasonable.)
xsplit : real scalar
parameter controlling performance of quadrature integration:
if Hup>=xCutOff AND Hlo<-XSPLIT OR
Hup>=XSPLIT AND Hlo<=-xCutOff then
do a different integration to increase speed
in rind2 and rindnit. This give slightly different results
if XSPILT>=xCutOff => do the same integration always
(Only for METHOD==0)(default XSPLIT = 1.5)
quadno : scalar integer
Quadrature formulae number used in integration of Xd variables.
This number implicitly determines number of nodes
used. (Only for METHOD==0)
speed : scalar integer
defines accuracy of calculations by choosing different parameters,
possible values: 1,2...,9 (9 fastest, default []).
If not speed is None the parameters, ABSEPS, RELEPS, COVEPS,
XCUTOFF, MAXPTS and QUADNO will be set according to
INITOPTIONS.
nc1c2 : scalar integer, optional
number of times to use the regression equation to restrict
integration area. Nc1c2 = 1,2 is recommended. (default 2)
(note: works only for method >0)
'''
self.method = 3
self.xcscale = 0
self.abseps = 0
self.releps = 1e-3,
self.coveps = 1e-10
self.maxpts = 40000
self.minpts = 0
self.seed = None
self.nit = 1000,
self.xcutoff = None
self.xsplit = 1.5
self.quadno = 2
self.speed = None
self.nc1c2 = 2
self.__dict__.update(**kwds)
self.initialize(self.speed)
self.set_constants()
def initialize(self, speed=None):
'''
Initializes member variables according to speed.
Parameter
---------
speed : scalar integer
defining accuracy of calculations.
Valid numbers: 1,2,...,10
(1=slowest and most accurate,10=fastest, but less accuracy)
Member variables initialized according to speed:
-----------------------------------------------
speed : Integer defining accuracy of calculations.
abseps : Absolute error tolerance.
releps : Relative error tolerance.
covep : Error tolerance in Cholesky factorization.
xcutoff : Truncation limit of the normal CDF
maxpts : Maximum number of function values allowed.
quadno : Quadrature formulae used in integration of Xd(i)
implicitly determining # nodes
'''
if speed is None:
return
self.speed = min(max(speed, 1), 13)
self.maxpts = 10000
self.quadno = r_[1:4] + (10 - min(speed, 9)) + (speed == 1)
if speed in (11, 12, 13):
self.abseps = 1e-1
elif speed == 10:
self.abseps = 1e-2
elif speed in (7, 8, 9):
self.abseps = 1e-2
elif speed in (4, 5, 6):
self.maxpts = 20000
self.abseps = 1e-3
elif speed in (1, 2, 3):
self.maxpts = 30000
self.abseps = 1e-4
if speed < 12:
tmp = max(abs(11 - abs(speed)), 1)
expon = mod(tmp + 1, 3) + 1
self.coveps = self.abseps * ((1.0e-1) ** expon)
elif speed < 13:
self.coveps = 0.1
else:
self.coveps = 0.5
self.releps = min(self.abseps, 1.0e-2)
if self.method == 0:
# This gives approximately the same accuracy as when using
# RINDDND and RINDNIT
# xCutOff= MIN(MAX(xCutOff+0.5d0,4.d0),5.d0)
self.abseps = self.abseps * 1.0e-1
trunc_error = 0.05 * max(0, self.abseps)
self.xcutoff = max(min(abs(invnorm(trunc_error)), 7), 1.2)
self.abseps = max(self.abseps - trunc_error, 0)
def set_constants(self):
if self.xcutoff is None:
trunc_error = 0.1 * self.abseps
self.nc1c2 = max(1, self.nc1c2)
xcut = abs(invnorm(trunc_error / (self.nc1c2 * 2)))
self.xcutoff = max(min(xcut, 8.5), 1.2)
# self.abseps = max(self.abseps- truncError,0);
# self.releps = max(self.releps- truncError,0);
if self.method > 0:
names = ['method', 'xcscale', 'abseps', 'releps', 'coveps',
'maxpts', 'minpts', 'nit', 'xcutoff', 'nc1c2', 'quadno',
'xsplit']
constants = [getattr(self, name) for name in names]
constants[0] = mod(constants[0], 10)
rindmod.set_constants(*constants) # @UndefinedVariable
def __call__(self, cov, m, ab, bb, indI=None, xc=None, nt=None, **kwds):
if any(kwds):
self.__dict__.update(**kwds)
self.set_constants()
if xc is None:
xc = zeros((0, 1))
BIG, Blo, Bup, xc = atleast_2d(cov, ab, bb, xc)
Blo = Blo.copy()
Bup = Bup.copy()
Ntdc = BIG.shape[0]
Nc = xc.shape[0]
if nt is None:
nt = Ntdc - Nc
unused_Mb, Nb = Blo.shape
Nd = Ntdc - nt - Nc
Ntd = nt + Nd
if indI is None:
if Nb != Ntd:
raise ValueError('Inconsistent size of Blo and Bup')
indI = r_[-1:Ntd]
Ex, indI = atleast_1d(m, indI)
if self.seed is None:
seed = int(floor(random.rand(1) * 1e10)) # @UndefinedVariable
else:
seed = int(self.seed)
# INFIN = INTEGER, array of integration limits flags: size 1 x Nb
# if INFIN(I) < 0, Ith limits are (-infinity, infinity);
# if INFIN(I) = 0, Ith limits are (-infinity, Hup(I)];
# if INFIN(I) = 1, Ith limits are [Hlo(I), infinity);
# if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)].
infinity = 37
dev = sqrt(diag(BIG)) # std
ind = nonzero(indI[1:] > -1)[0]
infin = repeat(2, len(indI) - 1)
infin[ind] = (2 - (Bup[0, ind] > infinity * dev[indI[ind + 1]])
- 2 * (Blo[0, ind] < -infinity * dev[indI[ind + 1]]))
Bup[0, ind] = minimum(Bup[0, ind], infinity * dev[indI[ind + 1]])
Blo[0, ind] = maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]])
ind2 = indI + 1
return rindmod.rind(BIG, Ex, xc, nt, ind2, Blo, Bup, infin, seed) # @UndefinedVariable @IgnorePep8
def test_rind():
''' Small test function
'''
n = 5
Blo = -inf
Bup = -1.2
indI = [-1, n - 1] # Barriers
10 years ago
# A = np.repeat(Blo, n)
# B = np.repeat(Bup, n) # Integration limits
m = zeros(n)
rho = 0.3
Sc = (ones((n, n)) - eye(n)) * rho + eye(n)
rind = Rind()
E0 = rind(Sc, m, Blo, Bup, indI) # exact prob. 0.001946 A)
print(E0)
A = repeat(Blo, n)
B = repeat(Bup, n) # Integration limits
_E1 = rind(triu(Sc), m, A, B) # same as E0
xc = zeros((0, 1))
infinity = 37
dev = sqrt(diag(Sc)) # std
ind = nonzero(indI[1:])[0]
Bup, Blo = atleast_2d(Bup, Blo)
Bup[0, ind] = minimum(Bup[0, ind], infinity * dev[indI[ind + 1]])
Blo[0, ind] = maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]])
_E3 = rind(Sc, m, Blo, Bup, indI, xc, nt=1)
def cdflomax(x, alpha, m0):
'''
Return CDF for local maxima for a zero-mean Gaussian process
Parameters
----------
x : array-like
evaluation points
alpha, m0 : real scalars
irregularity factor and zero-order spectral moment (variance of the
process), respectively.
Returns
-------
prb : ndarray
distribution function evaluated at x
Notes
-----
The cdf is calculated from an explicit expression involving the
standard-normal cdf. This relation is sometimes written as a convolution
M = sqrt(m0)*( sqrt(1-a^2)*Z + a*R )
where M denotes local maximum, Z is a standard normal r.v.,
R is a standard Rayleigh r.v., and "=" means equality in distribution.
Note that all local maxima of the process are considered, not
only crests of waves.
Example
-------
>>> import pylab
>>> import wafo.gaussian as wg
>>> import wafo.spectrum.models as wsm
>>> import wafo.objects as wo
>>> import wafo.stats as ws
>>> S = wsm.Jonswap(Hm0=10).tospecdata();
>>> xs = S.sim(10000)
>>> ts = wo.mat2timeseries(xs)
>>> tp = ts.turning_points()
>>> mM = tp.cycle_pairs()
>>> m0 = S.moment(1)[0]
>>> alpha = S.characteristic('alpha')[0]
>>> x = np.linspace(-10,10,200);
>>> mcdf = ws.edf(mM.data)
>>> h = mcdf.plot(), pylab.plot(x,wg.cdflomax(x,alpha,m0))
See also
--------
spec2mom, spec2bw
'''
c1 = 1.0 / (sqrt(1 - alpha ** 2)) * x / sqrt(m0)
c2 = alpha * c1
return cdfnorm(c1) - alpha * exp(-x ** 2 / 2 / m0) * cdfnorm(c2)
def prbnormtndpc(rho, a, b, D=None, df=0, abseps=1e-4, IERC=0, HNC=0.24):
'''
Return Multivariate normal or T probability with product correlation.
Parameters
----------
rho : array-like
vector of coefficients defining the correlation coefficient by:
correlation(I,J) = rho[i]*rho[j]) for J!=I
where -1 < rho[i] < 1
a,b : array-like
vector of lower and upper integration limits, respectively.
Note: any values greater the 37 in magnitude, are considered as
infinite values.
D : array-like
vector of means (default zeros(size(rho)))
df = Degrees of freedom, NDF<=0 gives normal probabilities (default)
abseps = absolute error tolerance. (default 1e-4)
IERC = 1 if strict error control based on fourth derivative
0 if error control based on halving the intervals (default)
HNC = start interval width of simpson rule (default 0.24)
Returns
-------
value = estimated value for the integral
bound = bound on the error of the approximation
inform = INTEGER, termination status parameter:
0, if normal completion with ERROR < EPS;
1, if N > 1000 or N < 1.
2, IF any abs(rho)>=1
4, if ANY(b(I)<=A(i))
5, if number of terms exceeds maximum number of evaluation points
6, if fault accurs in normal subroutines
7, if subintervals are too narrow or too many
8, if bounds exceeds abseps
PRBNORMTNDPC calculates multivariate normal or student T probability
with product correlation structure for rectangular regions.
The accuracy is as best around single precision, i.e., about 1e-7.
Example:
--------
>>> import wafo.gaussian as wg
>>> rho2 = np.random.rand(2)
>>> a2 = np.zeros(2)
>>> b2 = np.repeat(np.inf,2)
>>> [val2,err2, ift2] = wg.prbnormtndpc(rho2,a2,b2)
>>> def g2(x):
... return 0.25+np.arcsin(x[0]*x[1])/(2*np.pi)
>>> E2 = g2(rho2) # exact value
>>> np.abs(E2-val2)<err2
True
>>> rho3 = np.random.rand(3)
>>> a3 = np.zeros(3)
>>> b3 = np.repeat(inf,3)
>>> [val3, err3, ift3] = wg.prbnormtndpc(rho3,a3,b3)
>>> def g3(x):
... return 0.5-sum(np.sort(np.arccos([x[0]*x[1],
... x[0]*x[2],x[1]*x[2]])))/(4*np.pi)
>>> E3 = g3(rho3) # Exact value
>>> np.abs(E3-val3) < 5 * err2
True
See also
--------
prbnormndpc, prbnormnd, Rind
Reference
---------
Charles Dunnett (1989)
"Multivariate normal probability integrals with product correlation
structure", Applied statistics, Vol 38,No3, (Algorithm AS 251)
'''
if D is None:
D = zeros(len(rho))
# Make sure integration limits are finite
A = np.clip(a - D, -100, 100)
B = np.clip(b - D, -100, 100)
return mvnprdmod.prbnormtndpc(rho, A, B, df, abseps, IERC, HNC) # @UndefinedVariable @IgnorePep8
def prbnormndpc(rho, a, b, abserr=1e-4, relerr=1e-4, usesimpson=True,
usebreakpoints=False):
'''
Return Multivariate Normal probabilities with product correlation
Parameters
----------
rho = vector defining the correlation structure, i.e.,
corr(Xi,Xj) = rho(i)*rho(j) for i~=j
= 1 for i==j
-1 <= rho <= 1
a,b = lower and upper integration limits respectively.
tol = requested absolute tolerance
Returns
-------
value = value of integral
error = estimated absolute error
PRBNORMNDPC calculates multivariate normal probability
with product correlation structure for rectangular regions.
The accuracy is up to almost double precision, i.e., about 1e-14.
Example:
-------
>>> import wafo.gaussian as wg
>>> rho2 = np.random.rand(2)
>>> a2 = np.zeros(2)
>>> b2 = np.repeat(np.inf,2)
>>> [val2,err2, ift2] = wg.prbnormndpc(rho2,a2,b2)
>>> g2 = lambda x : 0.25+np.arcsin(x[0]*x[1])/(2*np.pi)
>>> E2 = g2(rho2) #% exact value
>>> np.abs(E2-val2)<err2
True
>>> rho3 = np.random.rand(3)
>>> a3 = np.zeros(3)
>>> b3 = np.repeat(inf,3)
>>> [val3,err3, ift3] = wg.prbnormndpc(rho3,a3,b3)
>>> def g3(x):
... return 0.5-sum(np.sort(np.arccos([x[0]*x[1],
... x[0]*x[2],x[1]*x[2]])))/(4*np.pi)
>>> E3 = g3(rho3) # Exact value
>>> np.abs(E3-val3)<err2
True
See also
--------
prbnormtndpc, prbnormnd, Rind
Reference
---------
P. A. Brodtkorb (2004),
"Evaluating multinormal probabilites with product correlation structure."
In Lund university report series
and in the Dr.Ing thesis:
"The probability of Occurrence of dangerous Wave Situations at Sea."
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
Trondheim, Norway.
'''
# Call fortran implementation
val, err, ier = mvnprdmod.prbnormndpc(rho, a, b, abserr, relerr, usebreakpoints, usesimpson) # @UndefinedVariable @IgnorePep8
if ier > 0:
warnings.warn('Abnormal termination ier = %d\n\n%s' %
(ier, _ERRORMESSAGE[ier]))
return val, err, ier
_ERRORMESSAGE = {}
_ERRORMESSAGE[0] = ''
_ERRORMESSAGE[1] = '''
Maximum number of subdivisions allowed has been achieved. one can allow
more subdivisions by increasing the value of limit (and taking the
according dimension adjustments into account). however, if this yields
no improvement it is advised to analyze the integrand in order to
determine the integration difficulties. if the position of a local
difficulty can be determined (i.e. singularity discontinuity within
the interval), it should be supplied to the routine as an element of
the vector points. If necessary an appropriate special-purpose
integrator must be used, which is designed for handling the type of
difficulty involved.
'''
_ERRORMESSAGE[2] = '''
the occurrence of roundoff error is detected, which prevents the requested
tolerance from being achieved. The error may be under-estimated.'''
_ERRORMESSAGE[3] = '''
Extremely bad integrand behaviour occurs at some points of the integration
interval.'''
_ERRORMESSAGE[4] = '''
The algorithm does not converge. Roundoff error is detected in the
extrapolation table. It is presumed that the requested tolerance cannot be
achieved, and that the returned result is the best which can be obtained.
'''
_ERRORMESSAGE[5] = '''
The integral is probably divergent, or slowly convergent.
It must be noted that divergence can occur with any other value of ier>0.
'''
_ERRORMESSAGE[6] = '''the input is invalid because:
1) npts2 < 2
2) break points are specified outside the integration range
3) (epsabs<=0 and epsrel<max(50*rel.mach.acc.,0.5d-28))
4) limit < npts2.'''
def prbnormnd(correl, a, b, abseps=1e-4, releps=1e-3, maxpts=None, method=0):
'''
Multivariate Normal probability by Genz' algorithm.
Parameters
CORREL = Positive semidefinite correlation matrix
A = vector of lower integration limits.
B = vector of upper integration limits.
ABSEPS = absolute error tolerance.
RELEPS = relative error tolerance.
MAXPTS = maximum number of function values allowed. This
parameter can be used to limit the time. A sensible strategy is to
start with MAXPTS = 1000*N, and then increase MAXPTS if ERROR is too
large.
METHOD = integer defining the integration method
-1 KRBVRC randomized Korobov rules for the first 20 variables,
randomized Richtmeyer rules for the rest, NMAX = 500
0 KRBVRC, NMAX = 100 (default)
1 SADAPT Subregion Adaptive integration method, NMAX = 20
2 KROBOV Randomized KOROBOV rules, NMAX = 100
3 RCRUDE Crude Monte-Carlo Algorithm with simple
antithetic variates and weighted results on restart
4 SPHMVN Monte-Carlo algorithm by Deak (1980), NMAX = 100
Returns
-------
VALUE REAL estimated value for the integral
ERROR REAL estimated absolute error, with 99% confidence level.
INFORM INTEGER, termination status parameter:
if INFORM = 0, normal completion with ERROR < EPS;
if INFORM = 1, completion with ERROR > EPS and MAXPTS
function vaules used; increase MAXPTS to
decrease ERROR;
if INFORM = 2, N > NMAX or N < 1. where NMAX depends on the
integration method
Example
-------
Compute the probability that X1<0,X2<0,X3<0,X4<0,X5<0,
Xi are zero-mean Gaussian variables with variances one
and correlations Cov(X(i),X(j))=0.3:
indI=[0 5], and barriers B_lo=[-inf 0], B_lo=[0 inf]
gives H_lo = [-inf -inf -inf -inf -inf] H_lo = [0 0 0 0 0]
>>> Et = 0.001946 # # exact prob.
>>> n = 5; nt = n
>>> Blo =-np.inf; Bup=0; indI=[-1, n-1] # Barriers
>>> m = 1.2*np.ones(n); rho = 0.3;
>>> Sc =(np.ones((n,n))-np.eye(n))*rho+np.eye(n)
>>> rind = Rind()
>>> E0, err0, terr0 = rind(Sc,m,Blo,Bup,indI, nt=nt)
>>> A = np.repeat(Blo,n)
>>> B = np.repeat(Bup,n)-m
>>> [val,err,inform] = prbnormnd(Sc,A,B);[val, err, inform]
[0.0019456719705212067, 1.0059406844578488e-05, 0]
>>> np.abs(val-Et)< err0+terr0
array([ True], dtype=bool)
>>> 'val = %2.5f' % val
'val = 0.00195'
See also
--------
prbnormndpc, Rind
'''
m, n = correl.shape
Na = len(a)
Nb = len(b)
if (m != n or m != Na or m != Nb):
raise ValueError('Size of input is inconsistent!')
if maxpts is None:
maxpts = 1000 * n
maxpts = max(round(maxpts), 10 * n)
# % array of correlation coefficients; the correlation
# % coefficient in row I column J of the correlation matrix
# % should be stored in CORREL( J + ((I-2)*(I-1))/2 ), for J < I.
# % The correlation matrix must be positive semidefinite.
D = np.diag(correl)
if (any(D != 1)):
raise ValueError('This is not a correlation matrix')
# Make sure integration limits are finite
A = np.clip(a, -100, 100)
B = np.clip(b, -100, 100)
ix = np.where(np.triu(np.ones((m, m)), 1) != 0)
L = correl[ix].ravel() # % return only off diagonal elements
infinity = 37
infin = np.repeat(2, n) - (B > infinity) - 2 * (A < -infinity)
err, val, inform = mvn.mvndst(A, B, infin, L, maxpts, abseps, releps) # @UndefinedVariable @IgnorePep8
return val, err, inform
# CALL the mexroutine
# t0 = clock;
# if ((method==0) && (n<=100)),
# %NMAX = 100
# [value, err,inform] = mexmvnprb(L,A,B,abseps,releps,maxpts);
# elseif ( (method<0) || ((method<=0) && (n>100)) ),
# % NMAX = 500
# [value, err,inform] = mexmvnprb2(L,A,B,abseps,releps,maxpts);
# else
# [value, err,inform] = mexGenzMvnPrb(L,A,B,abseps,releps,maxpts,method);
# end
# exTime = etime(clock,t0);
# '
# gauss legendre points and weights, n = 6
_W6 = [0.1713244923791705e+00, 0.3607615730481384e+00, 0.4679139345726904e+00]
_X6 = [-0.9324695142031522e+00, -
0.6612093864662647e+00, -0.2386191860831970e+00]
# gauss legendre points and weights, n = 12
_W12 = [0.4717533638651177e-01, 0.1069393259953183e+00, 0.1600783285433464e+00,
0.2031674267230659e+00, 0.2334925365383547e+00, 0.2491470458134029e+00]
_X12 = [-0.9815606342467191e+00, -0.9041172563704750e+00,
-0.7699026741943050e+00,
- 0.5873179542866171e+00, -0.3678314989981802e+00,
-0.1252334085114692e+00]
# gauss legendre points and weights, n = 20
_W20 = [0.1761400713915212e-01, 0.4060142980038694e-01,
0.6267204833410906e-01, 0.8327674157670475e-01,
0.1019301198172404e+00, 0.1181945319615184e+00,
0.1316886384491766e+00, 0.1420961093183821e+00,
0.1491729864726037e+00, 0.1527533871307259e+00]
_X20 = [-0.9931285991850949e+00, -0.9639719272779138e+00,
- 0.9122344282513259e+00, -0.8391169718222188e+00,
- 0.7463319064601508e+00, -0.6360536807265150e+00,
- 0.5108670019508271e+00, -0.3737060887154196e+00,
- 0.2277858511416451e+00, -0.7652652113349733e-01]
def cdfnorm2d(b1, b2, r):
'''
Returnc Bivariate Normal cumulative distribution function
Parameters
----------
b1, b2 : array-like
upper integration limits
r : real scalar
correlation coefficient (-1 <= r <= 1).
Returns
-------
bvn : ndarray
distribution function evaluated at b1, b2.
Notes
-----
CDFNORM2D computes bivariate normal probabilities, i.e., the probability
Prob(X1 <= B1 and X2 <= B2) with an absolute error less than 1e-15.
This function is based on the method described by Drezner, z and
G.O. Wesolowsky, (1989), with major modifications for double precision,
and for |r| close to 1.
Example
-------
>>> import wafo.gaussian as wg
>>> x = np.linspace(-5,5,20)
>>> [B1,B2] = np.meshgrid(x, x)
>>> r = 0.3;
>>> F = wg.cdfnorm2d(B1,B2,r)
surf(x,x,F)
See also
--------
cdfnorm
Reference
---------
Drezner, z and g.o. Wesolowsky, (1989),
"On the computation of the bivariate normal integral",
Journal of statist. comput. simul. 35, pp. 101-107,
'''
# Translated into Python
# Per A. Brodtkorb
#
# Original code
# by alan genz
# department of mathematics
# washington state university
# pullman, wa 99164-3113
# email : alangenz@wsu.edu
cshape = common_shape(b1, b2, r, shape=[1, ])
one = ones(cshape)
h, k, r = (-b1 * one).ravel(), (-b2 * one).ravel(), (r * one).ravel()
bvn = where(abs(r) > 1, nan, 0.0)
two = 2.e0
twopi = 6.283185307179586e0
hk = h * k
k0, = nonzero(abs(r) < 0.925e0)
if len(k0) > 0:
hs = (h[k0] ** 2 + k[k0] ** 2) / two
asr = arcsin(r[k0])
k1, = nonzero(r[k0] >= 0.75)
if len(k1) > 0:
k01 = k0[k1]
for i in range(10):
for sign in - 1, 1:
sn = sin(asr[k1] * (sign * _X20[i] + 1) / 2)
bvn[k01] = bvn[k01] + _W20[i] * \
exp((sn * hk[k01] - hs[k1]) / (1 - sn * sn))
k1, = nonzero((0.3 <= r[k0]) & (r[k0] < 0.75))
if len(k1) > 0:
k01 = k0[k1]
for i in range(6):
for sign in - 1, 1:
sn = sin(asr[k1] * (sign * _X12[i] + 1) / 2)
bvn[k01] = bvn[k01] + _W12[i] * \
exp((sn * hk[k01] - hs[k1]) / (1 - sn * sn))
k1, = nonzero(r[k0] < 0.3)
if len(k1) > 0:
k01 = k0[k1]
for i in range(3):
for sign in - 1, 1:
sn = sin(asr[k1] * (sign * _X6[i] + 1) / 2)
bvn[k01] = bvn[k01] + _W6[i] * \
exp((sn * hk[k01] - hs[k1]) / (1 - sn * sn))
bvn[k0] *= asr / (two * twopi)
bvn[k0] += fi(-h[k0]) * fi(-k[k0])
k1, = nonzero((0.925 <= abs(r)) & (abs(r) <= 1))
if len(k1) > 0:
k2, = nonzero(r[k1] < 0)
if len(k2) > 0:
k12 = k1[k2]
k[k12] = -k[k12]
hk[k12] = -hk[k12]
k3, = nonzero(abs(r[k1]) < 1)
if len(k3) > 0:
k13 = k1[k3]
a2 = (1 - r[k13]) * (1 + r[k13])
a = sqrt(a2)
b = abs(h[k13] - k[k13])
bs = b * b
c = (4.e0 - hk[k13]) / 8.e0
d = (12.e0 - hk[k13]) / 16.e0
asr = -(bs / a2 + hk[k13]) / 2.e0
k4, = nonzero(asr > -100.e0)
if len(k4) > 0:
bvn[k13[k4]] = (a[k4] * exp(asr[k4]) *
(1 - c[k4] * (bs[k4] - a2[k4]) *
(1 - d[k4] * bs[k4] / 5) / 3 +
c[k4] * d[k4] * a2[k4] ** 2 / 5))
k5, = nonzero(hk[k13] < 100.e0)
if len(k5) > 0:
# b = sqrt(bs);
k135 = k13[k5]
bvn[k135] = bvn[k135] - exp(-hk[k135] / 2) * sqrt(twopi) * fi(-b[k5] / a[k5]) * \
b[k5] * (1 - c[k5] * bs[k5] * (1 - d[k5] * bs[k5] / 5) / 3)
a /= two
for i in range(10):
for sign in - 1, 1:
xs = (a * (sign * _X20[i] + 1)) ** 2
rs = sqrt(1 - xs)
asr = -(bs / xs + hk[k13]) / 2
k6, = nonzero(asr > -100.e0)
if len(k6) > 0:
k136 = k13[k6]
bvn[k136] += (a[k6] * _W20[i] * exp(asr[k6]) *
(exp(-hk[k136] * (1 - rs[k6]) /
(2 * (1 + rs[k6]))) / rs[k6] -
(1 + c[k6] * xs[k6] *
(1 + d[k6] * xs[k6]))))
bvn[k3] = -bvn[k3] / twopi
k7, = nonzero(r[k1] > 0)
if len(k7):
k17 = k1[k7]
bvn[k17] += fi(-np.maximum(h[k17], k[k17]))
k8, = nonzero(r[k1] < 0)
if len(k8) > 0:
k18 = k1[k8]
bvn[k18] = -bvn[k18] + np.maximum(0, fi(-h[k18]) - fi(-k[k18]))
bvn.shape = cshape
return bvn
def fi(x):
return 0.5 * (erfc((-x) / sqrt(2)))
def prbnorm2d(a, b, r):
'''
Returns Bivariate Normal probability
Parameters
---------
a, b : array-like, size==2
vector with lower and upper integration limits, respectively.
r : real scalar
correlation coefficient
Returns
-------
prb : real scalar
computed probability Prob(A[0] <= X1 <= B[0] and A[1] <= X2 <= B[1])
with an absolute error less than 1e-15.
Example
-------
>>> import wafo.gaussian as wg
>>> a = [-1, -2]
>>> b = [1, 1]
>>> r = 0.3
>>> wg.prbnorm2d(a,b,r)
array([ 0.56659121])
See also
--------
cdfnorm2d,
cdfnorm,
prbnormndpc
'''
infinity = 37
lower = np.asarray(a)
upper = np.asarray(b)
if np.all((lower <= -infinity) & (infinity <= upper)):
return 1.0
if (lower >= upper).any():
return 0.0
correl = r
infin = np.repeat(2, 2) - (upper > infinity) - 2 * (lower < -infinity)
if np.all(infin == 2):
return (bvd(lower[0], lower[1], correl)
- bvd(upper[0], lower[1], correl)
- bvd(lower[0], upper[1], correl)
+ bvd(upper[0], upper[1], correl))
elif (infin[0] == 2 and infin[1] == 1):
return (bvd(lower[0], lower[1], correl) -
bvd(upper[0], lower[1], correl))
elif (infin[0] == 1 and infin[1] == 2):
return (bvd(lower[0], lower[1], correl) -
bvd(lower[0], upper[1], correl))
elif (infin[0] == 2 and infin[1] == 0):
return (bvd(-upper[0], -upper[1], correl) -
bvd(-lower[0], -upper[1], correl))
elif (infin[0] == 0 and infin[1] == 2):
return (bvd(-upper[0], -upper[1], correl) -
bvd(-upper[0], -lower[1], correl))
elif (infin[0] == 1 and infin[1] == 0):
return bvd(lower[0], -upper[1], -correl)
elif (infin[0] == 0 and infin[1] == 1):
return bvd(-upper[0], lower[1], -correl)
elif (infin[0] == 1 and infin[1] == 1):
return bvd(lower[0], lower[1], correl)
elif (infin[0] == 0 and infin[1] == 0):
return bvd(-upper[0], -upper[1], correl)
return 1
def bvd(lo, up, r):
return cdfnorm2d(-lo, -up, r)
def test_docstrings():
import doctest
doctest.testmod()
if __name__ == '__main__':
test_docstrings()
# if __name__ == '__main__':
# if False: #True: #
# test_rind()
# else:
# import doctest
# doctest.testmod()