You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1270 lines
44 KiB
Python

'''
Contains FitDistribution and Profile class, which are
important classes for fitting to various Continous and Discrete Probability
Distributions
Author: Per A. Brodtkorb 2008
'''
from __future__ import division, absolute_import
import warnings
from wafo.plotbackend import plotbackend
from wafo.misc import ecross, findcross, argsreduce
from wafo.stats._constants import _EPS, _XMAX
from wafo.stats._distn_infrastructure import rv_frozen, rv_continuous
from scipy._lib.six import string_types
import numdifftools as nd # @UnresolvedImport
from scipy import special
from scipy.linalg import pinv2
from scipy import optimize
import numpy as np
from numpy import (alltrue, arange, zeros, log, sqrt, exp,
atleast_1d, any, asarray, nan, pi, isfinite)
from numpy import flatnonzero as nonzero
__all__ = ['Profile', 'FitDistribution']
floatinfo = np.finfo(float)
arr = asarray
all = alltrue # @ReservedAssignment
15 years ago
def chi2isf(p, df):
return special.chdtri(df, p)
def chi2sf(x, df):
return special.chdtrc(df, x)
def norm_ppf(q):
return special.ndtri(q)
# internal class to profile parameters of a given distribution
class Profile(object):
''' Profile Log- likelihood or Product Spacing-function.
which can be used for constructing confidence interval for
either phat[i], probability or quantile.
Parameters
----------
fit_dist : FitDistribution object
with ML or MPS estimated distribution parameters.
**kwds : named arguments with keys
i : scalar integer
defining which distribution parameter to keep fixed in the
profiling process (default first non-fixed parameter)
pmin, pmax : real scalars
Interval for either the parameter, phat(i), prb, or x, used in the
optimization of the profile function (default is based on the
100*(1-alpha)% confidence interval computed with the delta method.)
N : scalar integer
Max number of points used in Lp (default 100)
x : real scalar
Quantile (return value) (default None)
logSF : real scalar
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
link : function connecting the x-quantile and the survival probability
(SF) with the fixed distribution parameter, i.e.:
self.par[i] = link(x, logSF, self.par, i), where
logSF = log(Prob(X>x;phat)).
This means that if:
1) x is not None then x is profiled
2) logSF is not None then logSF is profiled
3) x and logSF are None then self.par[i] is profiled (default)
alpha : real scalar
confidence coefficent (default 0.05)
Returns
-------
Lp : Profile log-likelihood function with parameters phat given
the data, phat(i), probability (prb) and quantile (x) (if given), i.e.,
Lp = max(log(f(phat|data,phat(i)))),
or
Lp = max(log(f(phat|data,phat(i),x,prb)))
Member methods
-------------
plot() : Plot profile function with 100(1-alpha)% confidence interval
get_bounds() : Return 100(1-alpha)% confidence interval
Member variables
----------------
fit_dist : FitDistribution data object.
data : profile function values
args : profile function arguments
alpha : confidence coefficient
Lmax : Maximum value of profile function
alpha_cross_level :
PROFILE is a utility function for making inferences either on a particular
component of the vector phat or the quantile, x, or the probability, SF.
This is usually more accurate than using the delta method assuming
asymptotic normality of the ML estimator or the MPS estimator.
Examples
--------
# MLE
>>> import wafo.stats as ws
>>> R = ws.weibull_min.rvs(1,size=100);
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
# Better CI for phat.par[i=0]
>>> Lp = Profile(phat, i=0)
>>> Lp.plot()
>>> phat_ci = Lp.get_bounds(alpha=0.1)
>>> SF = 1./990
>>> x = phat.isf(SF)
# CI for x
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
>>> Lx.plot()
>>> x_ci = Lx.get_bounds(alpha=0.2)
# CI for logSF=log(SF)
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
>>> Lsf.plot()
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
'''
def __init__(self, fit_dist, **kwds):
try:
i0 = (1 - np.isfinite(fit_dist.par_fix)).argmax()
except:
i0 = 0
self.fit_dist = fit_dist
self.data = None
self.args = None
self.title = ''
self.xlabel = ''
self.ylabel = 'Profile log'
(self.i_fixed, self.N, self.alpha, self.pmin, self.pmax, self.x,
self.logSF, self.link) = map(
kwds.get,
['i', 'N', 'alpha', 'pmin', 'pmax', 'x', 'logSF', 'link'],
[i0, 100, 0.05, None, None, None, None, None])
self.title = '%g%s CI' % (100 * (1.0 - self.alpha), '%')
if fit_dist.method.startswith('ml'):
self.ylabel = self.ylabel + 'likelihood'
Lmax = fit_dist.LLmax
elif fit_dist.method.startswith('mps'):
self.ylabel = self.ylabel + ' product spacing'
Lmax = fit_dist.LPSmax
else:
raise ValueError(
"PROFILE is only valid for ML- or MPS- estimators")
if fit_dist.par_fix is None:
isnotfixed = np.ones(fit_dist.par.shape, dtype=bool)
else:
isnotfixed = 1 - np.isfinite(fit_dist.par_fix)
self.i_notfixed = nonzero(isnotfixed)
self.i_fixed = atleast_1d(self.i_fixed)
15 years ago
if 1 - isnotfixed[self.i_fixed]:
raise IndexError(
"Index i must be equal to an index to one of the free " +
"parameters.")
isfree = isnotfixed
isfree[self.i_fixed] = False
self.i_free = nonzero(isfree)
self.Lmax = Lmax
self.alpha_Lrange = 0.5 * chi2isf(self.alpha, 1)
self.alpha_cross_level = Lmax - self.alpha_Lrange
# lowLevel = self.alpha_cross_level - self.alpha_Lrange / 7.0
phatv = fit_dist.par.copy()
self._par = phatv.copy()
# Set up variable to profile and _local_link function
self.profile_x = self.x is not None
self.profile_logSF = not (self.logSF is None or self.profile_x)
self.profile_par = not (self.profile_x or self.profile_logSF)
if self.link is None:
self.link = self.fit_dist.dist.link
if self.profile_par:
self._local_link = self._par_link
15 years ago
self.xlabel = 'phat(%d)' % self.i_fixed
p_opt = self._par[self.i_fixed]
elif self.profile_x:
self.logSF = fit_dist.logsf(self.x)
self._local_link = self._x_link
self.xlabel = 'x'
p_opt = self.x
elif self.profile_logSF:
p_opt = self.logSF
self.x = fit_dist.isf(exp(p_opt))
self._local_link = self._logSF_link
self.xlabel = 'log(SF)'
else:
raise ValueError(
"You must supply a non-empty quantile (x) or probability " +
"(logSF) in order to profile it!")
self.xlabel = self.xlabel + ' (' + fit_dist.dist.name + ')'
phatfree = phatv[self.i_free].copy()
self._set_profile(phatfree, p_opt)
def _par_link(self, fix_par, par):
return fix_par
def _x_link(self, fix_par, par):
return self.link(fix_par, self.logSF, par, self.i_fixed)
def _logSF_link(self, fix_par, par):
return self.link(self.x, fix_par, par, self.i_fixed)
def _correct_Lmax(self, Lmax):
if Lmax > self.Lmax: # foundNewphat = True
warnings.warn(
'The fitted parameters does not provide the optimum fit. ' +
'Something wrong with fit')
dL = self.Lmax - Lmax
self.alpha_cross_level -= dL
self.Lmax = Lmax
def _profile_optimum(self, phatfree0, p_opt):
phatfree = optimize.fmin(
self._profile_fun, phatfree0, args=(p_opt,), disp=0)
Lmax = -self._profile_fun(phatfree, p_opt)
self._correct_Lmax(Lmax)
return Lmax, phatfree
def _set_profile(self, phatfree0, p_opt):
pvec = self._get_pvec(phatfree0, p_opt)
self.data = np.ones_like(pvec) * nan
k1 = (pvec >= p_opt).argmax()
for size, step in ((-1, -1), (pvec.size, 1)):
phatfree = phatfree0.copy()
for ix in xrange(k1, size, step):
Lmax, phatfree = self._profile_optimum(phatfree, pvec[ix])
self.data[ix] = Lmax
if self.data[ix] < self.alpha_cross_level:
break
np.putmask(pvec, np.isnan(self.data), nan)
self.args = pvec
self._prettify_profile()
def _prettify_profile(self):
pvec = self.args
ix = nonzero(np.isfinite(pvec))
self.data = self.data[ix]
self.args = pvec[ix]
cond = self.data == -np.inf
if any(cond):
ind, = cond.nonzero()
self.data.put(ind, floatinfo.min / 2.0)
ind1 = np.where(ind == 0, ind, ind - 1)
15 years ago
cl = self.alpha_cross_level - self.alpha_Lrange / 2.0
t0 = ecross(self.args, self.data, ind1, cl)
self.data.put(ind, cl)
self.args.put(ind, t0)
def _get_variance(self):
if self.profile_par:
pvar = self.fit_dist.par_cov[self.i_fixed, :][:, self.i_fixed]
else:
i_notfixed = self.i_notfixed
phatv = self._par
if self.profile_x:
gradfun = nd.Gradient(self._myinvfun)
else:
gradfun = nd.Gradient(self._myprbfun)
drl = gradfun(phatv[self.i_notfixed])
pcov = self.fit_dist.par_cov[i_notfixed, :][:, i_notfixed]
pvar = np.sum(np.dot(drl, pcov) * drl)
return pvar
def _get_pvec(self, phatfree0, p_opt):
''' return proper interval for the variable to profile
'''
linspace = np.linspace
if self.pmin is None or self.pmax is None:
pvar = self._get_variance()
if pvar <= 1e-5 or np.isnan(pvar):
pvar = max(abs(p_opt) * 0.5, 0.5)
p_crit = (-norm_ppf(self.alpha / 2.0) *
sqrt(np.ravel(pvar)) * 1.5)
if self.pmin is None:
self.pmin = self._search_pmin(phatfree0,
p_opt - 5.0 * p_crit, p_opt)
p_crit_low = (p_opt - self.pmin) / 5
if self.pmax is None:
self.pmax = self._search_pmax(phatfree0,
p_opt + 5.0 * p_crit, p_opt)
p_crit_up = (self.pmax - p_opt) / 5
N4 = np.floor(self.N / 4.0)
pvec1 = linspace(self.pmin, p_opt - p_crit_low, N4 + 1)
pvec2 = linspace(
p_opt - p_crit_low, p_opt + p_crit_up, self.N - 2 * N4)
pvec3 = linspace(p_opt + p_crit_up, self.pmax, N4 + 1)
pvec = np.unique(np.hstack((pvec1, p_opt, pvec2, pvec3)))
else:
15 years ago
pvec = linspace(self.pmin, self.pmax, self.N)
return pvec
def _search_pmin(self, phatfree0, p_min0, p_opt):
phatfree = phatfree0.copy()
dp = p_opt - p_min0
if dp < 1e-2:
dp = 0.1
p_min_opt = p_min0
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
for _j in range(50):
p_min = p_opt - dp
Lmax, phatfree = self._profile_optimum(phatfree, p_min)
if np.isnan(Lmax):
dp *= 0.33
elif Lmax < self.alpha_cross_level - self.alpha_Lrange * 2:
p_min_opt = p_min
dp *= 0.33
elif Lmax < self.alpha_cross_level:
p_min_opt = p_min
break
else:
dp *= 1.67
return p_min_opt
def _search_pmax(self, phatfree0, p_max0, p_opt):
phatfree = phatfree0.copy()
dp = p_max0 - p_opt
if dp < 1e-2:
dp = 0.1
p_max_opt = p_max0
Lmax, phatfree = self._profile_optimum(phatfree, p_opt)
for _j in range(50):
p_max = p_opt + dp
Lmax, phatfree = self._profile_optimum(phatfree, p_max)
if np.isnan(Lmax):
dp *= 0.33
elif Lmax < self.alpha_cross_level - self.alpha_Lrange * 2:
p_max_opt = p_max
dp *= 0.33
elif Lmax < self.alpha_cross_level:
p_max_opt = p_max
break
else:
dp *= 1.67
return p_max_opt
def _myinvfun(self, phatnotfixed):
mphat = self._par.copy()
mphat[self.i_notfixed] = phatnotfixed
prb = exp(self.logSF)
return self.fit_dist.dist.isf(prb, *mphat)
15 years ago
def _myprbfun(self, phatnotfixed):
mphat = self._par.copy()
mphat[self.i_notfixed] = phatnotfixed
logSF = self.fit_dist.dist.logsf(self.x, *mphat)
return np.where(np.isfinite(logSF), logSF, np.nan)
def _profile_fun(self, free_par, fix_par):
''' Return negative of loglike or logps function
free_par - vector of free parameters
fix_par - fixed parameter, i.e., either quantile (return level),
probability (return period) or distribution parameter
'''
par = self._par.copy()
par[self.i_free] = free_par
# _local_link: connects fixed quantile or probability with fixed
# distribution parameter
15 years ago
par[self.i_fixed] = self._local_link(fix_par, par)
return self.fit_dist.fitfun(par)
def get_bounds(self, alpha=0.05):
'''Return confidence interval for profiled parameter
'''
15 years ago
if alpha < self.alpha:
warnings.warn(
'Might not be able to return CI with alpha less than %g' %
self.alpha)
cross_level = self.Lmax - 0.5 * chi2isf(alpha, 1)
15 years ago
ind = findcross(self.data, cross_level)
N = len(ind)
15 years ago
if N == 0:
warnings.warn('''Number of crossings is zero, i.e.,
upper and lower bound is not found!''')
15 years ago
CI = (self.pmin, self.pmax)
15 years ago
elif N == 1:
x0 = ecross(self.args, self.data, ind, cross_level)
isUpcrossing = self.data[ind] > self.data[ind + 1]
if isUpcrossing:
15 years ago
CI = (x0, self.pmax)
warnings.warn('Upper bound is larger')
else:
15 years ago
CI = (self.pmin, x0)
warnings.warn('Lower bound is smaller')
15 years ago
elif N == 2:
CI = ecross(self.args, self.data, ind, cross_level)
else:
warnings.warn('Number of crossings too large! Something is wrong!')
15 years ago
CI = ecross(self.args, self.data, ind[[0, -1]], cross_level)
return CI
def plot(self, axis=None):
''' Plot profile function with 100(1-alpha)% CI
'''
if axis is None:
axis = plotbackend.gca()
p_ci = self.get_bounds(self.alpha)
axis.plot(
self.args, self.data,
self.args[[0, -1]], [self.Lmax, ] * 2, 'r--',
self.args[[0, -1]], [self.alpha_cross_level, ] * 2, 'r--')
axis.vlines(p_ci, ymin=axis.get_ylim()[0],
ymax=self.Lmax, # self.alpha_cross_level,
color='r', linestyles='--')
axis.set_title(self.title)
axis.set_ylabel(self.ylabel)
axis.set_xlabel(self.xlabel)
class FitDistribution(rv_frozen):
'''
Return estimators to shape, location, and scale from data
Starting points for the fit are given by input arguments. For any
arguments not given starting points, dist._fitstart(data) is called
to get the starting estimates.
You can hold some parameters fixed to specific values by passing in
keyword arguments f0..fn for shape paramters and floc, fscale for
location and scale parameters.
Parameters
----------
dist : scipy distribution object
distribution to fit to data
data : array-like
Data to use in calculating the ML or MPS estimators
args : optional
Starting values for any shape arguments (those not specified
will be determined by dist._fitstart(data))
kwds : loc, scale
Starting values for the location and scale parameters
Special keyword arguments are recognized as holding certain
parameters fixed:
f0..fn : hold respective shape paramters fixed
floc : hold location parameter fixed to specified value
fscale : hold scale parameter fixed to specified value
method : of estimation. Options are
'ml' : Maximum Likelihood method (default)
'mps': Maximum Product Spacing method
alpha : scalar, optional
Confidence coefficent (default=0.05)
search : bool
If true search for best estimator (default),
otherwise return object with initial distribution parameters
copydata : bool
If true copydata (default)
optimizer : The optimizer to use. The optimizer must take func,
and starting position as the first two arguments,
plus args (for extra arguments to pass to the
function to be optimized) and disp=0 to suppress
output as keyword arguments.
Return
------
phat : FitDistribution object
Fitted distribution object with following member variables:
LLmax : loglikelihood function evaluated using par
LPSmax : log product spacing function evaluated using par
pvalue : p-value for the fit
par : distribution parameters (fixed and fitted)
par_cov : covariance of distribution parameters
par_fix : fixed distribution parameters
par_lower : lower (1-alpha)% confidence bound for the parameters
par_upper : upper (1-alpha)% confidence bound for the parameters
Note
----
`data` is sorted using this function, so if `copydata`==False the data
in your namespace will be sorted as well.
Examples
--------
Estimate distribution parameters for weibull_min distribution.
>>> import wafo.stats as ws
>>> R = ws.weibull_min.rvs(1,size=100);
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
#Plot various diagnostic plots to asses quality of fit.
>>> phat.plotfitsummary()
#phat.par holds the estimated parameters
#phat.par_upper upper CI for parameters
#phat.par_lower lower CI for parameters
#Better CI for phat.par[0]
>>> Lp = phat.profile(i=0)
>>> Lp.plot()
>>> p_ci = Lp.get_bounds(alpha=0.1)
>>> SF = 1./990
>>> x = phat.isf(SF)
# CI for x
>>> Lx = phat.profile(i=0,x=x,link=phat.dist.link)
>>> Lx.plot()
>>> x_ci = Lx.get_bounds(alpha=0.2)
# CI for logSF=log(SF)
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
>>> Lsf.plot()
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
'''
def __init__(self, dist, data, args=(), method='ML', alpha=0.05,
par_fix=None, search=True, copydata=True, **kwds):
extradoc = '''
plotfitsummary()
Plot various diagnostic plots to asses quality of fit.
plotecdf()
Plot Empirical and fitted Cumulative Distribution Function
plotesf()
Plot Empirical and fitted Survival Function
plotepdf()
Plot Empirical and fitted Probability Distribution Function
plotresq()
Displays a residual quantile plot.
plotresprb()
Displays a residual probability plot.
profile()
Return Profile Log- likelihood or Product Spacing-function.
Parameters
----------
x : array-like
quantiles
q : array-like
lower or upper tail probability
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters ['mvsk'] specifying which moments to compute where
'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
'k' = (Fisher's) kurtosis. (default='mv')
'''
# Member variables
# ----------------
# data - data used in fitting
# alpha - confidence coefficient
# method - method used
# LLmax - loglikelihood function evaluated using par
# LPSmax - log product spacing function evaluated using par
# pvalue - p-value for the fit
# search - True if search for distribution parameters (default)
# copydata - True if copy input data (default)
#
# par - parameters (fixed and fitted)
# par_cov - covariance of parameters
# par_fix - fixed parameters
# par_lower - lower (1-alpha)% confidence bound for the parameters
# par_upper - upper (1-alpha)% confidence bound for the parameters
#
# '''
self.__doc__ = str(rv_frozen.__doc__) + extradoc
self.dist = dist
numargs = dist.numargs
self.method = method
self.alpha = alpha
self.par_fix = par_fix
self.search = search
self.copydata = copydata
if self.method.lower()[:].startswith('mps'):
self._fitfun = self._nlogps
else:
self._fitfun = self._nnlf
self.data = np.ravel(data)
if self.copydata:
self.data = self.data.copy()
self.data.sort()
par, fixedn = self._fit(*args, **kwds.copy())
super(FitDistribution, self).__init__(dist, *par)
self.par = arr(par)
somefixed = len(fixedn) > 0
if somefixed:
self.par_fix = [nan, ] * len(self.par)
for i in fixedn:
self.par_fix[i] = self.par[i]
self.i_notfixed = nonzero(1 - isfinite(self.par_fix))
self.i_fixed = nonzero(isfinite(self.par_fix))
numpar = numargs + 2
self.par_cov = zeros((numpar, numpar))
self._compute_cov()
# Set confidence interval for parameters
pvar = np.diag(self.par_cov)
zcrit = -norm_ppf(self.alpha / 2.0)
self.par_lower = self.par - zcrit * sqrt(pvar)
self.par_upper = self.par + zcrit * sqrt(pvar)
self.LLmax = -self._nnlf(self.par, self.data)
self.LPSmax = -self._nlogps(self.par, self.data)
self.pvalue = self._pvalue(self.par, self.data, unknown_numpar=numpar)
def __repr__(self):
params = ['alpha', 'method', 'LLmax', 'LPSmax', 'pvalue',
'par', 'par_lower', 'par_upper', 'par_fix', 'par_cov']
t = ['%s:\n' % self.__class__.__name__]
for par in params:
t.append('%s = %s\n' % (par, str(getattr(self, par))))
return ''.join(t)
def _reduce_func(self, args, kwds):
# First of all, convert fshapes params to fnum: eg for stats.beta,
# shapes='a, b'. To fix `a`, can specify either `f1` or `fa`.
# Convert the latter into the former.
shapes = self.dist.shapes
if shapes:
shapes = shapes.replace(',', ' ').split()
for j, s in enumerate(shapes):
val = kwds.pop('f' + s, None) or kwds.pop('fix_' + s, None)
if val is not None:
key = 'f%d' % j
if key in kwds:
raise ValueError("Duplicate entry for %s." % key)
else:
kwds[key] = val
args = list(args)
Nargs = len(args)
fixedn = []
names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
x0 = []
for n, key in enumerate(names):
if key in kwds:
fixedn.append(n)
args[n] = kwds.pop(key)
else:
x0.append(args[n])
fitfun = self._fitfun
if len(fixedn) == 0:
func = fitfun
restore = None
else:
if len(fixedn) == Nargs:
raise ValueError("All parameters fixed. " +
"There is nothing to optimize.")
def restore(args, theta):
# Replace with theta for all numbers not in fixedn
# This allows the non-fixed values to vary, but
# we still call self.nnlf with all parameters.
i = 0
for n in range(Nargs):
if n not in fixedn:
args[n] = theta[i]
i += 1
return args
def func(theta, x):
newtheta = restore(args[:], theta)
return fitfun(newtheta, x)
return x0, func, restore, args, fixedn
@staticmethod
def _hessian(nnlf, theta, data, eps=None):
''' approximate hessian of nnlf where theta are the parameters
(including loc and scale)
'''
if eps is None:
eps = (_EPS) ** 0.4
num_par = len(theta)
# pab 07.01.2001: Always choose the stepsize h so that
# it is an exactly representable number.
# This is important when calculating numerical derivatives and is
# accomplished by the following.
delta = (eps + 2.0) - 2.0
delta2 = delta ** 2.0
# Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
# 1/(d^2 L(theta|x)/dtheta^2)
# using central differences
LL = nnlf(theta, data)
H = zeros((num_par, num_par)) # Hessian matrix
theta = tuple(theta)
for ix in xrange(num_par):
sparam = list(theta)
sparam[ix] = theta[ix] + delta
fp = nnlf(sparam, data)
sparam[ix] = theta[ix] - delta
fm = nnlf(sparam, data)
H[ix, ix] = (fp - 2 * LL + fm) / delta2
for iy in range(ix + 1, num_par):
sparam[ix] = theta[ix] + delta
sparam[iy] = theta[iy] + delta
fpp = nnlf(sparam, data)
sparam[iy] = theta[iy] - delta
fpm = nnlf(sparam, data)
sparam[ix] = theta[ix] - delta
fmm = nnlf(sparam, data)
sparam[iy] = theta[iy] + delta
fmp = nnlf(sparam, data)
H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
H[iy, ix] = H[ix, iy]
sparam[iy] = theta[iy]
return -H
def _nnlf(self, theta, x):
return self.dist._penalized_nnlf(theta, x)
def _nlogps(self, theta, x):
""" Moran's negative log Product Spacings statistic
where theta are the parameters (including loc and scale)
Note the data in x must be sorted
References
-----------
R. C. H. Cheng; N. A. K. Amin (1983)
"Estimating Parameters in Continuous Univariate Distributions with a
Shifted Origin.",
Journal of the Royal Statistical Society. Series B (Methodological),
Vol. 45, No. 3. (1983), pp. 394-403.
R. C. H. Cheng; M. A. Stephens (1989)
"A Goodness-Of-Fit Test Using Moran's Statistic with Estimated
Parameters", Biometrika, 76, 2, pp 385-392
Wong, T.S.T. and Li, W.K. (2006)
"A note on the estimation of extreme value distributions using maximum
product of spacings.",
IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
"""
n = 2 if isinstance(self.dist, rv_continuous) else 1
try:
loc = theta[-n]
scale = theta[-1]
args = tuple(theta[:-n])
except IndexError:
raise ValueError("Not enough input arguments.")
if not isinstance(self.dist, rv_continuous):
scale = 1
if not self.dist._argcheck(*args) or scale <= 0:
return np.inf
dist = self.dist
x = asarray((x - loc) / scale)
cond0 = (x <= dist.a) | (dist.b <= x)
Nbad = np.sum(cond0)
if Nbad > 0:
x = argsreduce(~cond0, x)[0]
lowertail = True
if lowertail:
prb = np.hstack((0.0, dist.cdf(x, *args), 1.0))
dprb = np.diff(prb)
else:
prb = np.hstack((1.0, dist.sf(x, *args), 0.0))
dprb = -np.diff(prb)
logD = log(dprb)
dx = np.diff(x, axis=0)
tie = (dx == 0)
if any(tie):
# TODO : implement this method for treating ties in data:
# Assume measuring error is delta. Then compute
# yL = F(xi-delta,theta)
# yU = F(xi+delta,theta)
# and replace
# logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
# The following is OK when only minimization of T is wanted
i_tie, = np.nonzero(tie)
tiedata = x[i_tie]
logD[i_tie + 1] = log(dist._pdf(tiedata, *args)) - log(scale)
finiteD = np.isfinite(logD)
nonfiniteD = 1 - finiteD
Nbad += np.sum(nonfiniteD, axis=0)
if Nbad > 0:
T = -np.sum(logD[finiteD], axis=0) + 100.0 * log(_XMAX) * Nbad
else:
T = -np.sum(logD, axis=0)
return T
def _fit(self, *args, **kwds):
dist = self.dist
data = self.data
Narg = len(args)
if Narg > dist.numargs:
raise ValueError("Too many input arguments.")
start = [None] * 2
if (Narg < dist.numargs) or not ('loc' in kwds and 'scale' in kwds):
# get distribution specific starting locations
start = dist._fitstart(data)
args += start[Narg:-2]
loc = kwds.pop('loc', start[-2])
scale = kwds.pop('scale', start[-1])
args += (loc, scale)
x0, func, restore, args, fixedn = self._reduce_func(args, kwds)
if self.search:
optimizer = kwds.pop('optimizer', optimize.fmin)
# convert string to function in scipy.optimize
if not callable(optimizer) and isinstance(optimizer, string_types):
if not optimizer.startswith('fmin_'):
optimizer = "fmin_" + optimizer
if optimizer == 'fmin_':
optimizer = 'fmin'
try:
optimizer = getattr(optimize, optimizer)
except AttributeError:
raise ValueError("%s is not a valid optimizer" % optimizer)
# by now kwds must be empty, since everybody took what they needed
if kwds:
raise TypeError("Unknown arguments: %s." % kwds)
vals = optimizer(func, x0, args=(np.ravel(data),), disp=0)
vals = tuple(vals)
else:
vals = tuple(x0)
if restore is not None:
vals = restore(args, vals)
return vals, fixedn
def _compute_cov(self):
'''Compute covariance
'''
somefixed = (self.par_fix is not None) and any(isfinite(self.par_fix))
H = np.asmatrix(self._hessian(self._fitfun, self.par, self.data))
self.H = H
try:
if somefixed:
allfixed = all(isfinite(self.par_fix))
if allfixed:
self.par_cov[:, :] = 0
else:
pcov = -pinv2(H[self.i_notfixed, :][..., self.i_notfixed])
for row, ix in enumerate(list(self.i_notfixed)):
self.par_cov[ix, self.i_notfixed] = pcov[row, :]
else:
self.par_cov = -pinv2(H)
except:
15 years ago
self.par_cov[:, :] = nan
15 years ago
def fitfun(self, phat):
return self._fitfun(phat, self.data)
15 years ago
def profile(self, **kwds):
''' Profile Log- likelihood or Log Product Spacing- function,
which can be used for constructing confidence interval for
either phat(i), probability or quantile.
Parameters
----------
**kwds : named arguments with keys
i : scalar integer
defining which distribution parameter to profile, i.e. which
parameter to keep fixed (default first non-fixed parameter)
pmin, pmax : real scalars
Interval for either the parameter, phat(i), prb, or x, used in the
optimization of the profile function (default is based on the
100*(1-alpha)% confidence interval computed with the delta method.)
N : scalar integer
Max number of points used in Lp (default 100)
x : real scalar
Quantile (return value) (default None)
logSF : real scalar
log survival probability,i.e., SF = Prob(X>x;phat) (default None)
link : function connecting the x-quantile and the survival probability
(SF) with the fixed distribution parameter, i.e.:
self.par[i] = link(x,logSF,self.par,i), where
logSF = log(Prob(X>x;phat)).
This means that if:
1) x is not None then x is profiled
2) logSF is not None then logSF is profiled
3) x and logSF are None then self.par[i] is profiled (default)
alpha : real scalar
confidence coefficent (default 0.05)
Returns
-------
Lp : Profile log-likelihood function with parameters phat given
the data, phat(i), probability (prb) and quantile (x), i.e.,
Lp = max(log(f(phat|data,phat(i)))),
or
Lp = max(log(f(phat|data,phat(i),x,prb)))
Member methods
-------------
plot() : Plot profile function with 100(1-alpha)% confidence interval
get_bounds() : Return 100(1-alpha)% confidence interval
Member variables
----------------
fit_dist : FitDistribution data object.
data : profile function values
args : profile function arguments
alpha : confidence coefficient
Lmax : Maximum value of profile function
alpha_cross_level :
PROFILE is a utility function for making inferences either on a
particular component of the vector phat or the quantile, x, or the
probability, SF. This is usually more accurate than using the delta
method assuming asymptotic normality of the ML estimator or the MPS
estimator.
Examples
--------
# MLE
>>> import wafo.stats as ws
>>> R = ws.weibull_min.rvs(1,size=100);
>>> phat = FitDistribution(ws.weibull_min, R, 1, scale=1, floc=0.0)
# Better CI for phat.par[i=0]
>>> Lp = Profile(phat, i=0)
>>> Lp.plot()
>>> phat_ci = Lp.get_bounds(alpha=0.1)
>>> SF = 1./990
>>> x = phat.isf(SF)
# CI for x
>>> Lx = phat.profile(i=0, x=x, link=phat.dist.link)
>>> Lx.plot()
>>> x_ci = Lx.get_bounds(alpha=0.2)
# CI for logSF=log(SF)
>>> Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
>>> Lsf.plot()
>>> sf_ci = Lsf.get_bounds(alpha=0.2)
See also
--------
Profile
'''
15 years ago
return Profile(self, **kwds)
def plotfitsummary(self):
''' Plot various diagnostic plots to asses the quality of the fit.
PLOTFITSUMMARY displays probability plot, density plot, residual
quantile plot and residual probability plot.
The purpose of these plots is to graphically assess whether the data
could come from the fitted distribution. If so the empirical- CDF and
PDF should follow the model and the residual plots will be linear.
Other distribution types will introduce curvature in the residual
plots.
'''
15 years ago
plotbackend.subplot(2, 2, 1)
# self.plotecdf()
self.plotesf()
15 years ago
plotbackend.subplot(2, 2, 2)
self.plotepdf()
15 years ago
plotbackend.subplot(2, 2, 3)
self.plotresq()
plotbackend.subplot(2, 2, 4)
self.plotresprb()
fixstr = ''
if self.par_fix is not None:
numfix = len(self.i_fixed)
15 years ago
if numfix > 0:
format0 = ', '.join(['%d'] * numfix)
format1 = ', '.join(['%g'] * numfix)
12 years ago
phatistr = format0 % tuple(self.i_fixed)
phatvstr = format1 % tuple(self.par[self.i_fixed])
15 years ago
fixstr = 'Fixed: phat[%s] = %s ' % (phatistr, phatvstr)
infostr = 'Fit method: %s, Fit p-value: %2.2f %s' % (
self.method, self.pvalue, fixstr)
try:
15 years ago
plotbackend.figtext(0.05, 0.01, infostr)
except:
pass
11 years ago
def plotesf(self, symb1='r-', symb2='b.'):
''' Plot Empirical and fitted Survival Function
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution.
If so the empirical CDF should resemble the model CDF.
Other distribution types will introduce deviations in the plot.
'''
n = len(self.data)
15 years ago
SF = (arange(n, 0, -1)) / n
plotbackend.semilogy(
self.data, SF, symb2, self.data, self.sf(self.data), symb1)
# plotbackend.plot(self.data,SF,'b.',self.data,self.sf(self.data),'r-')
plotbackend.xlabel('x')
plotbackend.ylabel('F(x) (%s)' % self.dist.name)
plotbackend.title('Empirical SF plot')
11 years ago
def plotecdf(self, symb1='r-', symb2='b.'):
''' Plot Empirical and fitted Cumulative Distribution Function
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution.
If so the empirical CDF should resemble the model CDF.
Other distribution types will introduce deviations in the plot.
'''
n = len(self.data)
15 years ago
F = (arange(1, n + 1)) / n
plotbackend.plot(self.data, F, symb2,
self.data, self.cdf(self.data), symb1)
plotbackend.xlabel('x')
plotbackend.ylabel('F(x) (%s)' % self.dist.name)
plotbackend.title('Empirical CDF plot')
def _get_grid(self, odd=False):
x = np.atleast_1d(self.data)
n = np.ceil(4 * np.sqrt(np.sqrt(len(x))))
mn = x.min()
mx = x.max()
d = (mx - mn) / n * 2
e = np.floor(np.log(d) / np.log(10))
m = np.floor(d / 10 ** e)
if m > 5:
m = 5
elif m > 2:
m = 2
d = m * 10 ** e
mn = (np.floor(mn / d) - 1) * d - odd * d / 2
mx = (np.ceil(mx / d) + 1) * d + odd * d / 2
limits = np.arange(mn, mx, d)
return limits
def _staircase(self, x, y):
xx = x.reshape(-1, 1).repeat(3, axis=1).ravel()[1:-1]
yy = y.reshape(-1, 1).repeat(3, axis=1)
# yy[0,0] = 0.0 # pdf
yy[:, 0] = 0.0 # histogram
yy.shape = (-1,)
yy = np.hstack((yy, 0.0))
return xx, yy
def _get_empirical_pdf(self):
limits = self._get_grid()
pdf, x = np.histogram(self.data, bins=limits, normed=True)
return self._staircase(x, pdf)
def plotepdf(self, symb1='r-', symb2='b-'):
'''Plot Empirical and fitted Probability Density Function
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution.
If so the histogram should resemble the model density.
Other distribution types will introduce deviations in the plot.
'''
x, pdf = self._get_empirical_pdf()
ymax = pdf.max()
# plotbackend.hist(self.data,normed=True,fill=False)
plotbackend.plot(self.data, self.pdf(self.data), symb1,
x, pdf, symb2)
11 years ago
ax = list(plotbackend.axis())
ax[3] = min(ymax * 1.3, ax[3])
11 years ago
plotbackend.axis(ax)
plotbackend.xlabel('x')
plotbackend.ylabel('f(x) (%s)' % self.dist.name)
plotbackend.title('Density plot')
11 years ago
def plotresq(self, symb1='r-', symb2='b.'):
'''PLOTRESQ displays a residual quantile plot.
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution. If so the
plot will be linear. Other distribution types will introduce
curvature in the plot.
'''
15 years ago
n = len(self.data)
eprob = (arange(1, n + 1) - 0.5) / n
y = self.ppf(eprob)
15 years ago
y1 = self.data[[0, -1]]
11 years ago
plotbackend.plot(self.data, y, symb2, y1, y1, symb1)
plotbackend.xlabel('Empirical')
plotbackend.ylabel('Model (%s)' % self.dist.name)
plotbackend.title('Residual Quantile Plot')
plotbackend.axis('tight')
plotbackend.axis('equal')
11 years ago
def plotresprb(self, symb1='r-', symb2='b.'):
''' PLOTRESPRB displays a residual probability plot.
The purpose of the plot is to graphically assess whether
the data could come from the fitted distribution. If so the
plot will be linear. Other distribution types will introduce curvature
in the plot.
'''
n = len(self.data)
# ecdf = (0.5:n-0.5)/n;
15 years ago
ecdf = arange(1, n + 1) / (n + 1)
mcdf = self.cdf(self.data)
15 years ago
p1 = [0, 1]
plotbackend.plot(ecdf, mcdf, symb2,
p1, p1, symb1)
plotbackend.xlabel('Empirical')
plotbackend.ylabel('Model (%s)' % self.dist.name)
plotbackend.title('Residual Probability Plot')
plotbackend.axis('equal')
plotbackend.axis([0, 1, 0, 1])
def _pvalue(self, theta, x, unknown_numpar=None):
''' Return P-value for the fit using Moran's negative log Product
Spacings statistic
where theta are the parameters (including loc and scale)
Note: the data in x must be sorted
'''
dx = np.diff(x, axis=0)
15 years ago
tie = (dx == 0)
if any(tie):
warnings.warn(
'P-value is on the conservative side (i.e. too large) due to' +
' ties in the data!')
T = self.dist.nlogps(theta, x)
n = len(x)
15 years ago
np1 = n + 1
if unknown_numpar is None:
k = len(theta)
else:
k = unknown_numpar
isParUnKnown = True
15 years ago
m = (np1) * (log(np1) + 0.57722) - 0.5 - 1.0 / (12. * (np1))
v = (np1) * (pi ** 2. / 6.0 - 1.0) - 0.5 - 1.0 / (6. * (np1))
C1 = m - sqrt(0.5 * n * v)
C2 = sqrt(v / (2.0 * n))
# chi2 with n degrees of freedom
Tn = (T + 0.5 * k * isParUnKnown - C1) / C2
pvalue = chi2sf(Tn, n) # _WAFODIST.chi2.sf(Tn, n)
return pvalue
12 years ago
def test_doctstrings():
import doctest
doctest.testmod()
def test1():
import wafo.stats as ws
dist = ws.weibull_min
# dist = ws.bradford
R = dist.rvs(0.3, size=1000)
phat = FitDistribution(dist, R, method='ml')
# Better CI for phat.par[i=0]
Lp1 = Profile(phat, i=0) # @UnusedVariable
Lp1.plot()
import matplotlib.pyplot as plt
plt.show()
# Lp2 = Profile(phat, i=2)
# SF = 1./990
# x = phat.isf(SF)
#
# CI for x
# Lx = Profile(phat, i=0,x=x,link=phat.dist.link)
# Lx.plot()
# x_ci = Lx.get_bounds(alpha=0.2)
#
# CI for logSF=log(SF)
# Lsf = phat.profile(i=0, logSF=log(SF), link=phat.dist.link)
# Lsf.plot()
# sf_ci = Lsf.get_bounds(alpha=0.2)
# pass
# _WAFODIST = ppimport('wafo.stats.distributions')
# nbinom(10, 0.75).rvs(3)
# import matplotlib
# matplotlib.interactive(True)
# t = _WAFODIST.bernoulli(0.75).rvs(3)
# x = np.r_[5, 10]
# npr = np.r_[9, 9]
# t2 = _WAFODIST.bd0(x, npr)
# Examples MLE and better CI for phat.par[0]
# R = _WAFODIST.weibull_min.rvs(1, size=100);
# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
# Lp = phat.profile(i=0)
# Lp.plot()
# Lp.get_bounds(alpha=0.1)
# R = 1. / 990
# x = phat.isf(R)
#
# CI for x
# Lx = phat.profile(i=0, x=x)
# Lx.plot()
# Lx.get_bounds(alpha=0.2)
#
# CI for logSF=log(SF)
# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
# Lpr.plot()
# Lpr.get_bounds(alpha=0.075)
#
# _WAFODIST.dlaplace.stats(0.8, loc=0)
# pass
# t = _WAFODIST.planck(0.51000000000000001)
# t.ppf(0.5)
# t = _WAFODIST.zipf(2)
# t.ppf(0.5)
# import pylab as plb
# _WAFODIST.rice.rvs(1)
# x = plb.linspace(-5, 5)
# y = _WAFODIST.genpareto.cdf(x, 0)
# plb.plot(x,y)
# plb.show()
#
#
# on = ones((2, 3))
# r = _WAFODIST.genpareto.rvs(0, size=100)
# pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
# lp = pht.profile()
15 years ago
if __name__ == '__main__':
test1()
# test_doctstrings()