|
|
|
#include "math.h"
|
|
|
|
/*
|
|
|
|
* Install gfortran and run the following to build the module on windows:
|
|
|
|
* f2py c_library.pyf c_functions.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* findrfc.c -
|
|
|
|
*
|
|
|
|
* Returns indices to RFC turningpoints of a vector
|
|
|
|
* of turningpoints
|
|
|
|
*
|
|
|
|
* 1998 by Per Andreas Brodtkorb.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void findrfc(double *y1,double hmin, int *ind, int n,int *info) {
|
|
|
|
double xminus,xplus,Tpl,Tmi,*y,Tstart;
|
|
|
|
int i,j,ix=0,NC;
|
|
|
|
info[0] = 0;
|
|
|
|
if (*(y1+0)> *(y1+1)){
|
|
|
|
/* if first is a max , ignore the first max*/
|
|
|
|
y=&(*(y1+1));
|
|
|
|
NC=floor((n-1)/2);
|
|
|
|
Tstart=1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
y=y1;
|
|
|
|
NC=floor(n/2);
|
|
|
|
Tstart=0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (NC<1){
|
|
|
|
return; /* No RFC cycles*/
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (( *(y+0) > *(y+1)) && ( *(y+1) > *(y+2)) ){
|
|
|
|
info[0] = -1;
|
|
|
|
return; /*This is not a sequence of turningpoints, exit */
|
|
|
|
}
|
|
|
|
if ((*(y+0) < *(y+1)) && (*(y+1)< *(y+2))){
|
|
|
|
info[0]=-1;
|
|
|
|
return; /*This is not a sequence of turningpoints, exit */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
for (i=0; i<NC; i++) {
|
|
|
|
|
|
|
|
Tmi=Tstart+2*i;
|
|
|
|
Tpl=Tstart+2*i+2;
|
|
|
|
xminus=*(y+2*i);
|
|
|
|
xplus=*(y+2*i+2);
|
|
|
|
|
|
|
|
if(i!=0){
|
|
|
|
j=i-1;
|
|
|
|
while((j>=0) && (*(y+2*j+1)<=*(y+2*i+1))){
|
|
|
|
if( (*(y+2*j)<xminus) ){
|
|
|
|
xminus=*(y+2*j);
|
|
|
|
Tmi=Tstart+2*j;
|
|
|
|
} /*if */
|
|
|
|
j--;
|
|
|
|
} /*while j*/
|
|
|
|
} /*if i */
|
|
|
|
if ( xminus >= xplus){
|
|
|
|
if ( (*(y+2*i+1)-xminus) >= hmin){
|
|
|
|
*(ind+ix)=Tmi;
|
|
|
|
ix++;
|
|
|
|
*(ind+ix)=(Tstart+2*i+1);
|
|
|
|
ix++;
|
|
|
|
} /*if*/
|
|
|
|
goto L180;
|
|
|
|
}
|
|
|
|
|
|
|
|
j=i+1;
|
|
|
|
while((j<NC) ) {
|
|
|
|
if (*(y+2*j+1) >= *(y+2*i+1)) goto L170;
|
|
|
|
if( (*(y+2*j+2) <= xplus) ){
|
|
|
|
xplus=*(y+2*j+2);
|
|
|
|
Tpl=(Tstart+2*j+2);
|
|
|
|
}/*if*/
|
|
|
|
j++;
|
|
|
|
} /*while*/
|
|
|
|
|
|
|
|
|
|
|
|
if ( (*(y+2*i+1)-xminus) >= hmin) {
|
|
|
|
*(ind+ix)=Tmi;
|
|
|
|
ix++;
|
|
|
|
*(ind+ix)=(Tstart+2*i+1);
|
|
|
|
ix++;
|
|
|
|
} /*if*/
|
|
|
|
goto L180;
|
|
|
|
L170:
|
|
|
|
if (xplus <= xminus ) {
|
|
|
|
if ( (*(y+2*i+1)-xminus) >= hmin){
|
|
|
|
*(ind+ix)=Tmi;
|
|
|
|
ix++;
|
|
|
|
*(ind+ix)=(Tstart+2*i+1);
|
|
|
|
ix++;
|
|
|
|
} /*if*/
|
|
|
|
/*goto L180;*/
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
if ( (*(y+2*i+1)-xplus) >= hmin) {
|
|
|
|
*(ind+ix)=(Tstart+2*i+1);
|
|
|
|
ix++;
|
|
|
|
*(ind+ix)=Tpl;
|
|
|
|
ix++;
|
|
|
|
} /*if*/
|
|
|
|
} /*elseif*/
|
|
|
|
L180:
|
|
|
|
} /* for i */
|
|
|
|
info[0] = ix;
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* findcross.c -
|
|
|
|
*
|
|
|
|
* Returns indices to level v crossings of argument vector
|
|
|
|
*
|
|
|
|
* 1998 by Per Andreas Brodtkorb. last modified 23.06-98
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
void findcross(double *y, double v, int *ind, int n, int *info)
|
|
|
|
{ int i,start, ix=0,dcross=0;
|
|
|
|
start=0;
|
|
|
|
if ( y[0]< v){
|
|
|
|
dcross=-1; /* first is a up-crossing*/
|
|
|
|
}
|
|
|
|
else if ( y[0]> v){
|
|
|
|
dcross=1; /* first is a down-crossing*/
|
|
|
|
}
|
|
|
|
else if ( y[0]== v){
|
|
|
|
/* Find out what type of crossing we have next time.. */
|
|
|
|
for (i=1; i<n; i++) {
|
|
|
|
start=i;
|
|
|
|
if ( y[i]< v){
|
|
|
|
ind[ix] = i-1; /* first crossing is a down crossing*/
|
|
|
|
ix++;
|
|
|
|
dcross=-1; /* The next crossing is a up-crossing*/
|
|
|
|
goto L120;
|
|
|
|
}
|
|
|
|
else if ( y[i]> v){
|
|
|
|
ind[ix] = i-1; /* first crossing is a up-crossing*/
|
|
|
|
ix++;
|
|
|
|
dcross=1; /*The next crossing is a down-crossing*/
|
|
|
|
goto L120;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
L120:
|
|
|
|
for (i=start; i<n-1; i++) {
|
|
|
|
if (( (dcross==-1) && (y[i]<=v) && (y[i+1] > v) ) || ((dcross==1 ) && (y[i]>=v) && (y[i+1] < v) ) ) {
|
|
|
|
|
|
|
|
ind[ix] = i;
|
|
|
|
ix++;
|
|
|
|
dcross=-dcross;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
info[0] = ix;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DISUFQ Is an internal function to spec2nlsdat
|
|
|
|
*
|
|
|
|
* CALL: disufq(rvec,ivec,rA,iA, w,kw,h,g,nmin,nmax,m,n)
|
|
|
|
*
|
|
|
|
* rvec, ivec = real and imaginary parts of the resultant (size m X n).
|
|
|
|
* rA, iA = real and imaginary parts of the amplitudes (size m X n).
|
|
|
|
* w = vector with angular frequencies (w>=0)
|
|
|
|
* kw = vector with wavenumbers (kw>=0)
|
|
|
|
* h = water depth (h >=0)
|
|
|
|
* g = constant acceleration of gravity
|
|
|
|
* nmin = minimum index where rA(:,nmin) and iA(:,nmin) is
|
|
|
|
* greater than zero.
|
|
|
|
* nmax = maximum index where rA(:,nmax) and iA(:,nmax) is
|
|
|
|
* greater than zero.
|
|
|
|
* m = size(rA,1),size(iA,1)
|
|
|
|
* n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2)
|
|
|
|
*
|
|
|
|
* DISUFQ returns the summation of difference frequency and sum
|
|
|
|
* frequency effects in the vector vec = rvec +sqrt(-1)*ivec.
|
|
|
|
* The 2'nd order contribution to the Stokes wave is then calculated by
|
|
|
|
* a simple 1D Fourier transform, real(FFT(vec)).
|
|
|
|
*
|
|
|
|
* Install gfortran and run the following to build the module:
|
|
|
|
* f2py diffsumfunq.pyf disufq1.c -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71
|
|
|
|
*
|
|
|
|
* by Per Andreas Brodtkorb 15.08.2001
|
|
|
|
* revised pab 14.03.2002, 01.05.2002 22.07.2002, oct 2008
|
|
|
|
*/
|
|
|
|
|
|
|
|
void disufq(double *rvec, double *ivec,
|
|
|
|
double *rA, double *iA,
|
|
|
|
double *w, double *kw,
|
|
|
|
double h, double g,
|
|
|
|
int nmin, int nmax,
|
|
|
|
int m, int n)
|
|
|
|
{
|
|
|
|
double Epij, Edij;
|
|
|
|
double tmp1, tmp2, tmp3, tmp4, kfact;
|
|
|
|
double w1, w2, kw1, kw2, Cg;
|
|
|
|
double rrA, iiA, riA, irA;
|
|
|
|
int i,jy,ix,iz1,iv1,ixi,jyi;
|
|
|
|
//int iz2, iv2;
|
|
|
|
//Initialize rvec and ivec to zero
|
|
|
|
for (ix=0;ix<n*m;ix++) {
|
|
|
|
rvec[ix] = 0.0;
|
|
|
|
ivec[ix] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// kfact is set to 2 in order to exploit the symmetry.
|
|
|
|
// If you set kfact to 1, you must uncomment all statements
|
|
|
|
// including the expressions: rvec[iz2], rvec[iv2], ivec[iz2] and ivec[iv2].
|
|
|
|
|
|
|
|
kfact = 2.0;
|
|
|
|
if (h>10000){ /* deep water /Inifinite water depth */
|
|
|
|
for (ix = nmin-1;ix<nmax;ix++) {
|
|
|
|
ixi = ix*m;
|
|
|
|
iz1 = 2*ixi;
|
|
|
|
//iz2 = n*m-ixi;
|
|
|
|
kw1 = kw[ix];
|
|
|
|
Epij = kw1;
|
|
|
|
for (i=0;i<m;i++,ixi++,iz1++) {
|
|
|
|
rrA = rA[ixi]*rA[ixi]; ///
|
|
|
|
iiA = iA[ixi]*iA[ixi]; ///
|
|
|
|
riA = rA[ixi]*iA[ixi]; ///
|
|
|
|
|
|
|
|
/// Sum frequency effects along the diagonal
|
|
|
|
tmp1 = kfact*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*riA*Epij;
|
|
|
|
rvec[iz1] += tmp1;
|
|
|
|
ivec[iz1] += tmp2;
|
|
|
|
|
|
|
|
//rvec[iz2] += tmp1;
|
|
|
|
//ivec[iz2] -= tmp2;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/// Difference frequency effects are zero along the diagonal
|
|
|
|
/// and are thus not contributing to the mean.
|
|
|
|
}
|
|
|
|
for (jy = ix+1;jy<nmax;jy++){
|
|
|
|
kw2 = kw[jy];
|
|
|
|
Epij = 0.5*(kw2 + kw1);
|
|
|
|
Edij = -0.5*(kw2 - kw1);
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
jyi = jy*m;
|
|
|
|
iz1 = ixi+jyi;
|
|
|
|
iv1 = jyi-ixi;
|
|
|
|
//iz2 = (n*m-iz1);
|
|
|
|
//iv2 = (n*m-iv1);
|
|
|
|
for (i = 0;i<m;i++,ixi++,jyi++,iz1++,iv1++) {
|
|
|
|
|
|
|
|
rrA = rA[ixi]*rA[jyi]; ///rrA = rA[i][ix]*rA[i][jy];
|
|
|
|
iiA = iA[ixi]*iA[jyi]; ///iiA = iA[i][ix]*iA[i][jy];
|
|
|
|
riA = rA[ixi]*iA[jyi]; ///riA = rA[i][ix]*iA[i][jy];
|
|
|
|
irA = iA[ixi]*rA[jyi]; ///irA = iA[i][ix]*rA[i][jy];
|
|
|
|
|
|
|
|
/* Sum frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*(riA+irA)*Epij;
|
|
|
|
rvec[iz1] += tmp1;///rvec[i][ix+jy] += tmp1;
|
|
|
|
ivec[iz1] += tmp2;///ivec[i][ix+jy] += tmp2;
|
|
|
|
//rvec[iz2] += tmp1;///rvec[i][n*m-(ix+jy)] += tmp1;
|
|
|
|
//ivec[iz2] -= tmp2;///ivec[i][n*m-(ix+jy)] -= tmp2;
|
|
|
|
// iz2++;
|
|
|
|
|
|
|
|
/* Difference frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA+iiA)*Edij;
|
|
|
|
tmp2 = kfact*2.0*(riA-irA)*Edij;
|
|
|
|
|
|
|
|
rvec[iv1] += tmp1;///rvec[i][jy-ix] += tmp1;
|
|
|
|
ivec[iv1] += tmp2;///ivec[i][jy-ix] += tmp2;
|
|
|
|
|
|
|
|
//rvec[iv2] += tmp1;///rvec[i][n*m-(jy-ix)] += tmp1;
|
|
|
|
//ivec[iv2] -= tmp2;///ivec[i][n*m-(jy-ix)] -= tmp2;
|
|
|
|
//iv2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else{ /* Finite water depth */
|
|
|
|
for (ix = nmin-1;ix<nmax;ix++) {
|
|
|
|
kw1 = kw[ix];
|
|
|
|
w1 = w[ix];
|
|
|
|
tmp1 = tanh(kw1*h);
|
|
|
|
/// Cg, wave group velocity
|
|
|
|
Cg = 0.5*g*(tmp1 + kw1*h*(1.0- tmp1*tmp1))/w1; /// OK
|
|
|
|
tmp1 = 0.5*g*(kw1/w1)*(kw1/w1);
|
|
|
|
tmp2 = 0.5*w1*w1/g;
|
|
|
|
tmp3 = g*kw1/(w1*Cg);
|
|
|
|
|
|
|
|
if (kw1*h<300.0){
|
|
|
|
tmp4 = kw1/sinh(2.0*kw1*h);
|
|
|
|
}
|
|
|
|
else{ // To ensure sinh does not overflow.
|
|
|
|
tmp4 = 0.0;
|
|
|
|
}
|
|
|
|
// Difference frequency effects finite water depth
|
|
|
|
Edij = (tmp1-tmp2+tmp3)/(1.0-g*h/(Cg*Cg))-tmp4; /// OK
|
|
|
|
|
|
|
|
// Sum frequency effects finite water depth
|
|
|
|
Epij = (3.0*(tmp1-tmp2)/(1.0-tmp1/kw1*tanh(2.0*kw1*h))+3.0*tmp2-tmp1); /// OK
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
iz1 = 2*ixi;
|
|
|
|
//iz2 = n*m-ixi;
|
|
|
|
for (i=0;i<m;i++,ixi++,iz1++) {
|
|
|
|
|
|
|
|
rrA = rA[ixi]*rA[ixi]; ///
|
|
|
|
iiA = iA[ixi]*iA[ixi]; ///
|
|
|
|
riA = rA[ixi]*iA[ixi]; ///
|
|
|
|
|
|
|
|
|
|
|
|
/// Sum frequency effects along the diagonal
|
|
|
|
rvec[iz1] += kfact*(rrA-iiA)*Epij;
|
|
|
|
ivec[iz1] += kfact*2.0*riA*Epij;
|
|
|
|
//rvec[iz2] += kfact*(rrA-iiA)*Epij;
|
|
|
|
//ivec[iz2] -= kfact*2.0*riA*Epij;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/// Difference frequency effects along the diagonal
|
|
|
|
/// are only contributing to the mean
|
|
|
|
rvec[i] += 2.0*(rrA+iiA)*Edij;
|
|
|
|
}
|
|
|
|
for (jy = ix+1;jy<nmax;jy++) {
|
|
|
|
// w1 = w[ix];
|
|
|
|
// kw1 = kw[ix];
|
|
|
|
w2 = w[jy];
|
|
|
|
kw2 = kw[jy];
|
|
|
|
tmp1 = g*(kw1/w1)*(kw2/w2);
|
|
|
|
tmp2 = 0.5/g*(w1*w1+w2*w2+w1*w2);
|
|
|
|
tmp3 = 0.5*g*(w1*kw2*kw2+w2*kw1*kw1)/(w1*w2*(w1+w2));
|
|
|
|
tmp4 = (1-g*(kw1+kw2)/(w1+w2)/(w1+w2)*tanh((kw1+kw2)*h));
|
|
|
|
Epij = (tmp1-tmp2+tmp3)/tmp4+tmp2-0.5*tmp1; /* OK */
|
|
|
|
|
|
|
|
tmp2 = 0.5/g*(w1*w1+w2*w2-w1*w2); /*OK*/
|
|
|
|
tmp3 = -0.5*g*(w1*kw2*kw2-w2*kw1*kw1)/(w1*w2*(w1-w2));
|
|
|
|
tmp4 = (1.0-g*(kw1-kw2)/(w1-w2)/(w1-w2)*tanh((kw1-kw2)*h));
|
|
|
|
Edij = (tmp1-tmp2+tmp3)/tmp4+tmp2-0.5*tmp1; /* OK */
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
jyi = jy*m;
|
|
|
|
iz1 = ixi+jyi;
|
|
|
|
iv1 = jyi-ixi;
|
|
|
|
// iz2 = (n*m-iz1);
|
|
|
|
// iv2 = n*m-iv1;
|
|
|
|
for (i=0;i<m;i++,ixi++,jyi++,iz1++,iv1++) {
|
|
|
|
rrA = rA[ixi]*rA[jyi]; ///rrA = rA[i][ix]*rA[i][jy];
|
|
|
|
iiA = iA[ixi]*iA[jyi]; ///iiA = iA[i][ix]*iA[i][jy];
|
|
|
|
riA = rA[ixi]*iA[jyi]; ///riA = rA[i][ix]*iA[i][jy];
|
|
|
|
irA = iA[ixi]*rA[jyi]; ///irA = iA[i][ix]*rA[i][jy];
|
|
|
|
|
|
|
|
/* Sum frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*(riA+irA)*Epij;
|
|
|
|
rvec[iz1] += tmp1;///rvec[i][jy+ix] += tmp1;
|
|
|
|
ivec[iz1] += tmp2;///ivec[i][jy+ix] += tmp2;
|
|
|
|
//rvec[iz2] += tmp1;///rvec[i][n*m-(jy+ix)] += tmp1;
|
|
|
|
//ivec[iz2] -= tmp2;///ivec[i][n*m-(jy+ix)] -= tmp2;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/* Difference frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA+iiA)*Edij;
|
|
|
|
tmp2 = kfact*2.0*(riA-irA)*Edij;
|
|
|
|
rvec[iv1] += tmp1;///rvec[i][jy-ix] += tmp1;
|
|
|
|
ivec[iv1] += tmp2;///ivec[i][jy-ix] -= tmp2;
|
|
|
|
|
|
|
|
//rvec[iv2] += tmp1;
|
|
|
|
//ivec[iv2] -= tmp2;
|
|
|
|
//iv2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//return i;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* DISUFQ2 Is an internal function to spec2nlsdat
|
|
|
|
*
|
|
|
|
* CALL: disufq2(rsvec,isvec,rdvec,idvec,rA,iA, w,kw,h,g,nmin,nmax,m,n)
|
|
|
|
*
|
|
|
|
* rsvec, isvec = real and imaginary parts of the sum frequency
|
|
|
|
* effects (size m X n).
|
|
|
|
* rdvec, idvec = real and imaginary parts of the difference frequency
|
|
|
|
* effects (size m X n).
|
|
|
|
* rA, iA = real and imaginary parts of the amplitudes (size m X n).
|
|
|
|
* w = vector with angular frequencies (w>=0)
|
|
|
|
* kw = vector with wavenumbers (kw>=0)
|
|
|
|
* h = water depth (h >=0)
|
|
|
|
* g = constant acceleration of gravity
|
|
|
|
* nmin = minimum index where rA(:,nmin) and iA(:,nmin) is
|
|
|
|
* greater than zero.
|
|
|
|
* nmax = maximum index where rA(:,nmax) and iA(:,nmax) is
|
|
|
|
* greater than zero.
|
|
|
|
* m = size(rA,1),size(iA,1)
|
|
|
|
* n = size(rA,2),size(iA,2), or size(rvec,2),size(ivec,2)
|
|
|
|
*
|
|
|
|
* DISUFQ2 returns the summation of sum and difference frequency
|
|
|
|
* frequency effects in the vectors svec = rsvec +sqrt(-1)*isvec and
|
|
|
|
* dvec = rdvec +sqrt(-1)*idvec.
|
|
|
|
* The 2'nd order contribution to the Stokes wave is then calculated by
|
|
|
|
* a simple 1D Fourier transform, real(FFT(svec+dvec)).
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* This is a MEX-file for MATLAB.
|
|
|
|
* by Per Andreas Brodtkorb 15.08.2001
|
|
|
|
* revised pab 14.03.2002, 01.05.2002
|
|
|
|
*/
|
|
|
|
|
|
|
|
void disufq2(double *rsvec, double *isvec,
|
|
|
|
double *rdvec, double *idvec,
|
|
|
|
double *rA, double *iA,
|
|
|
|
double *w, double *kw,
|
|
|
|
double h, double g,
|
|
|
|
int nmin, int nmax,
|
|
|
|
int m, int n)
|
|
|
|
{
|
|
|
|
double Epij, Edij;
|
|
|
|
double tmp1, tmp2, tmp3, tmp4, kfact;
|
|
|
|
double w1, w2, kw1, kw2, Cg;
|
|
|
|
double rrA, iiA, riA, irA;
|
|
|
|
int i,jy,ix,iz1,iv1,ixi,jyi;
|
|
|
|
//int iz2,iv2
|
|
|
|
|
|
|
|
//Initialize rvec and ivec to zero
|
|
|
|
for (ix=0;ix<n*m;ix++) {
|
|
|
|
rsvec[ix] = 0.0;
|
|
|
|
isvec[ix] = 0.0;
|
|
|
|
rdvec[ix] = 0.0;
|
|
|
|
idvec[ix] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// kfact is set to 2 in order to exploit the symmetry.
|
|
|
|
// If you set kfact to 1, you must uncomment all statements
|
|
|
|
// including the expressions: rvec[iz2], rvec[iv2], ivec[iz2] and ivec[iv2].
|
|
|
|
|
|
|
|
kfact = 2.0;
|
|
|
|
if (h>10000){ /* deep water /Inifinite water depth */
|
|
|
|
for (ix = nmin-1;ix<nmax;ix++) {
|
|
|
|
ixi = ix*m;
|
|
|
|
iz1 = 2*ixi;
|
|
|
|
//iz2 = n*m-ixi;
|
|
|
|
kw1 = kw[ix];
|
|
|
|
Epij = kw1;
|
|
|
|
for (i=0;i<m;i++,ixi++,iz1++) {
|
|
|
|
rrA = rA[ixi]*rA[ixi]; ///
|
|
|
|
iiA = iA[ixi]*iA[ixi]; ///
|
|
|
|
riA = rA[ixi]*iA[ixi]; ///
|
|
|
|
|
|
|
|
/// Sum frequency effects along the diagonal
|
|
|
|
tmp1 = kfact*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*riA*Epij;
|
|
|
|
rsvec[iz1] += tmp1;
|
|
|
|
isvec[iz1] += tmp2;
|
|
|
|
|
|
|
|
//rsvec[iz2] += tmp1;
|
|
|
|
//isvec[iz2] -= tmp2;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/// Difference frequency effects are zero along the diagonal
|
|
|
|
/// and are thus not contributing to the mean.
|
|
|
|
}
|
|
|
|
for (jy = ix+1;jy<nmax;jy++){
|
|
|
|
kw2 = kw[jy];
|
|
|
|
Epij = 0.5*(kw2 + kw1);
|
|
|
|
Edij = -0.5*(kw2 - kw1);
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
jyi = jy*m;
|
|
|
|
iz1 = ixi+jyi;
|
|
|
|
iv1 = jyi-ixi;
|
|
|
|
//iz2 = (n*m-iz1);
|
|
|
|
//iv2 = (n*m-iv1);
|
|
|
|
for (i = 0;i<m;i++,ixi++,jyi++,iz1++,iv1++) {
|
|
|
|
|
|
|
|
rrA = rA[ixi]*rA[jyi]; ///rrA = rA[i][ix]*rA[i][jy];
|
|
|
|
iiA = iA[ixi]*iA[jyi]; ///iiA = iA[i][ix]*iA[i][jy];
|
|
|
|
riA = rA[ixi]*iA[jyi]; ///riA = rA[i][ix]*iA[i][jy];
|
|
|
|
irA = iA[ixi]*rA[jyi]; ///irA = iA[i][ix]*rA[i][jy];
|
|
|
|
|
|
|
|
/* Sum frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*(riA+irA)*Epij;
|
|
|
|
rsvec[iz1] += tmp1; ///rvec[i][ix+jy] += tmp1;
|
|
|
|
isvec[iz1] += tmp2; ///ivec[i][ix+jy] += tmp2;
|
|
|
|
//rsvec[iz2] += tmp1;///rvec[i][n*m-(ix+jy)] += tmp1;
|
|
|
|
//isvec[iz2] -= tmp2;///ivec[i][n*m-(ix+jy)] += tmp2;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/* Difference frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA+iiA)*Edij;
|
|
|
|
tmp2 = kfact*2.0*(riA-irA)*Edij;
|
|
|
|
|
|
|
|
rdvec[iv1] += tmp1;///rvec[i][jy-ix] += tmp1;
|
|
|
|
idvec[iv1] += tmp2;///ivec[i][jy-ix] += tmp2;
|
|
|
|
|
|
|
|
//rdvec[iv2] += tmp1;///rvec[i][n*m-(jy-ix)] += tmp1;
|
|
|
|
//idvec[iv2] -= tmp2;///ivec[i][n*m-(jy-ix)] -= tmp2;
|
|
|
|
// iv2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else{ /* Finite water depth */
|
|
|
|
for (ix = nmin-1;ix<nmax;ix++) {
|
|
|
|
kw1 = kw[ix];
|
|
|
|
w1 = w[ix];
|
|
|
|
tmp1 = tanh(kw1*h);
|
|
|
|
/// Cg, wave group velocity
|
|
|
|
Cg = 0.5*g*(tmp1 + kw1*h*(1.0- tmp1*tmp1))/w1; /// OK
|
|
|
|
tmp1 = 0.5*g*(kw1/w1)*(kw1/w1);
|
|
|
|
tmp2 = 0.5*w1*w1/g;
|
|
|
|
tmp3 = g*kw1/(w1*Cg);
|
|
|
|
|
|
|
|
if (kw1*h<300.0){
|
|
|
|
tmp4 = kw1/sinh(2.0*kw1*h);
|
|
|
|
}
|
|
|
|
else{ // To ensure sinh does not overflow.
|
|
|
|
tmp4 = 0.0;
|
|
|
|
}
|
|
|
|
// Difference frequency effects finite water depth
|
|
|
|
Edij = (tmp1-tmp2+tmp3)/(1.0-g*h/(Cg*Cg))-tmp4; /// OK
|
|
|
|
|
|
|
|
// Sum frequency effects finite water depth
|
|
|
|
Epij = (3.0*(tmp1-tmp2)/(1.0-tmp1/kw1*tanh(2.0*kw1*h))+3.0*tmp2-tmp1); /// OK
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
iz1 = 2*ixi;
|
|
|
|
//iz2 = n*m-ixi;
|
|
|
|
for (i=0;i<m;i++,ixi++,iz1++) {
|
|
|
|
|
|
|
|
rrA = rA[ixi]*rA[ixi]; ///
|
|
|
|
iiA = iA[ixi]*iA[ixi]; ///
|
|
|
|
riA = rA[ixi]*iA[ixi]; ///
|
|
|
|
|
|
|
|
|
|
|
|
/// Sum frequency effects along the diagonal
|
|
|
|
rsvec[iz1] += kfact*(rrA-iiA)*Epij;
|
|
|
|
isvec[iz1] += kfact*2.0*riA*Epij;
|
|
|
|
//rsvec[iz2] += kfact*(rrA-iiA)*Epij;
|
|
|
|
//isvec[iz2] -= kfact*2.0*riA*Epij;
|
|
|
|
|
|
|
|
/// Difference frequency effects along the diagonal
|
|
|
|
/// are only contributing to the mean
|
|
|
|
//printf(" %f \n",2.0*(rrA+iiA)*Edij);
|
|
|
|
rdvec[i] += 2.0*(rrA+iiA)*Edij;
|
|
|
|
}
|
|
|
|
for (jy = ix+1;jy<nmax;jy++) {
|
|
|
|
// w1 = w[ix];
|
|
|
|
// kw1 = kw[ix];
|
|
|
|
w2 = w[jy];
|
|
|
|
kw2 = kw[jy];
|
|
|
|
tmp1 = g*(kw1/w1)*(kw2/w2);
|
|
|
|
tmp2 = 0.5/g*(w1*w1+w2*w2+w1*w2);
|
|
|
|
tmp3 = 0.5*g*(w1*kw2*kw2+w2*kw1*kw1)/(w1*w2*(w1+w2));
|
|
|
|
tmp4 = (1-g*(kw1+kw2)/(w1+w2)/(w1+w2)*tanh((kw1+kw2)*h));
|
|
|
|
Epij = (tmp1-tmp2+tmp3)/tmp4+tmp2-0.5*tmp1; /* OK */
|
|
|
|
|
|
|
|
tmp2 = 0.5/g*(w1*w1+w2*w2-w1*w2); /*OK*/
|
|
|
|
tmp3 = -0.5*g*(w1*kw2*kw2-w2*kw1*kw1)/(w1*w2*(w1-w2));
|
|
|
|
tmp4 = (1.0-g*(kw1-kw2)/(w1-w2)/(w1-w2)*tanh((kw1-kw2)*h));
|
|
|
|
Edij = (tmp1-tmp2+tmp3)/tmp4+tmp2-0.5*tmp1; /* OK */
|
|
|
|
//printf("Edij = %f Epij = %f \n", Edij,Epij);
|
|
|
|
|
|
|
|
ixi = ix*m;
|
|
|
|
jyi = jy*m;
|
|
|
|
iz1 = ixi+jyi;
|
|
|
|
iv1 = jyi-ixi;
|
|
|
|
// iz2 = (n*m-iz1);
|
|
|
|
// iv2 = (n*m-iv1);
|
|
|
|
for (i=0;i<m;i++,ixi++,jyi++,iz1++,iv1++) {
|
|
|
|
rrA = rA[ixi]*rA[jyi]; ///rrA = rA[i][ix]*rA[i][jy];
|
|
|
|
iiA = iA[ixi]*iA[jyi]; ///iiA = iA[i][ix]*iA[i][jy];
|
|
|
|
riA = rA[ixi]*iA[jyi]; ///riA = rA[i][ix]*iA[i][jy];
|
|
|
|
irA = iA[ixi]*rA[jyi]; ///irA = iA[i][ix]*rA[i][jy];
|
|
|
|
|
|
|
|
/* Sum frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA-iiA)*Epij;
|
|
|
|
tmp2 = kfact*2.0*(riA+irA)*Epij;
|
|
|
|
rsvec[iz1] += tmp1;///rsvec[i][jy+ix] += tmp1;
|
|
|
|
isvec[iz1] += tmp2;///isvec[i][jy+ix] += tmp2;
|
|
|
|
//rsvec[iz2] += tmp1;///rsvec[i][n*m-(jy+ix)] += tmp1;
|
|
|
|
//isvec[iz2] -= tmp2;///isvec[i][n*m-(jy-ix)] += tmp2;
|
|
|
|
//iz2++;
|
|
|
|
|
|
|
|
/* Difference frequency effects */
|
|
|
|
tmp1 = kfact*2.0*(rrA+iiA)*Edij;
|
|
|
|
tmp2 = kfact*2.0*(riA-irA)*Edij;
|
|
|
|
rdvec[iv1] += tmp1;
|
|
|
|
idvec[iv1] += tmp2;
|
|
|
|
|
|
|
|
//rdvec[iv2] += tmp1;
|
|
|
|
//idvec[iv2] -= tmp2;
|
|
|
|
// iv2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* ++++++++++ BEGIN RF3 [ampl ampl_mean nr_of_cycle] */
|
|
|
|
/* ++++++++++ Rain flow without time analysis */
|
|
|
|
//By Adam Nieslony
|
|
|
|
//Visit the MATLAB Central File Exchange for latest version
|
|
|
|
//http://www.mathworks.com/matlabcentral/fileexchange/3026
|
|
|
|
void findrfc3_astm(double *array_ext, double *array_out, int n, int *nout) {
|
|
|
|
|
|
|
|
double *pr, *po, a[16384], ampl, mean;
|
|
|
|
int tot_num, index, j, cNr1, cNr2;
|
|
|
|
|
|
|
|
tot_num = n;
|
|
|
|
|
|
|
|
// pointers to the first element of the arrays
|
|
|
|
pr = &array_ext[0];
|
|
|
|
po = &array_out[0];
|
|
|
|
|
|
|
|
// The original rainflow counting by Nieslony, unchanged
|
|
|
|
j = -1;
|
|
|
|
cNr1 = 1;
|
|
|
|
for (index=0; index<tot_num; index++) {
|
|
|
|
a[++j]=*pr++;
|
|
|
|
while ( (j >= 2) && (fabs(a[j-1]-a[j-2]) <= fabs(a[j]-a[j-1])) ) {
|
|
|
|
ampl=fabs( (a[j-1]-a[j-2])/2 );
|
|
|
|
switch(j) {
|
|
|
|
case 0: { break; }
|
|
|
|
case 1: { break; }
|
|
|
|
case 2: {
|
|
|
|
mean=(a[0]+a[1])/2;
|
|
|
|
a[0]=a[1];
|
|
|
|
a[1]=a[2];
|
|
|
|
j=1;
|
|
|
|
if (ampl > 0) {
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=0.50;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
mean=(a[j-1]+a[j-2])/2;
|
|
|
|
a[j-2]=a[j];
|
|
|
|
j=j-2;
|
|
|
|
if (ampl > 0) {
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=1.00;
|
|
|
|
cNr1++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cNr2 = 1;
|
|
|
|
for (index=0; index<j; index++) {
|
|
|
|
ampl=fabs(a[index]-a[index+1])/2;
|
|
|
|
mean=(a[index]+a[index+1])/2;
|
|
|
|
if (ampl > 0){
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=0.50;
|
|
|
|
cNr2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// array of ints nout is outputted
|
|
|
|
nout[0] = cNr1;
|
|
|
|
nout[1] = cNr2;
|
|
|
|
}
|
|
|
|
/* ++++++++++ END RF3 */
|
|
|
|
|
|
|
|
|
|
|
|
// ++ BEGIN RF5 [ampl ampl_mean nr_of_cycle cycle_begin_time cycle_period_time]
|
|
|
|
/* ++++++++++ Rain flow with time analysis */
|
|
|
|
//By Adam Nieslony
|
|
|
|
//Visit the MATLAB Central File Exchange for latest version
|
|
|
|
//http://www.mathworks.com/matlabcentral/fileexchange/3026
|
|
|
|
void
|
|
|
|
findrfc5_astm(double *array_ext, double *array_t, double *array_out, int n, int *nout) {
|
|
|
|
double *pr, *pt, *po, a[16384], t[16384], ampl, mean, period, atime;
|
|
|
|
int tot_num, index, j, cNr1, cNr2;
|
|
|
|
|
|
|
|
|
|
|
|
// tot_num = mxGetM(array_ext) * mxGetN(array_ext);
|
|
|
|
tot_num = n;
|
|
|
|
|
|
|
|
// pointers to the first element of the arrays
|
|
|
|
pr = &array_ext[0];
|
|
|
|
pt = &array_t[0];
|
|
|
|
po = &array_out[0];
|
|
|
|
|
|
|
|
// array_out = mxCreateDoubleMatrix(5, tot_num-1, mxREAL);
|
|
|
|
|
|
|
|
// The original rainflow counting by Nieslony, unchanged
|
|
|
|
j = -1;
|
|
|
|
cNr1 = 1;
|
|
|
|
for (index=0; index<tot_num; index++) {
|
|
|
|
a[++j]=*pr++;
|
|
|
|
t[j]=*pt++;
|
|
|
|
while ( (j >= 2) && (fabs(a[j-1]-a[j-2]) <= fabs(a[j]-a[j-1])) ) {
|
|
|
|
ampl=fabs( (a[j-1]-a[j-2])/2 );
|
|
|
|
switch(j)
|
|
|
|
{
|
|
|
|
case 0: { break; }
|
|
|
|
case 1: { break; }
|
|
|
|
case 2: {
|
|
|
|
mean=(a[0]+a[1])/2;
|
|
|
|
period=(t[1]-t[0])*2;
|
|
|
|
atime=t[0];
|
|
|
|
a[0]=a[1];
|
|
|
|
a[1]=a[2];
|
|
|
|
t[0]=t[1];
|
|
|
|
t[1]=t[2];
|
|
|
|
j=1;
|
|
|
|
if (ampl > 0) {
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=0.50;
|
|
|
|
*po++=atime;
|
|
|
|
*po++=period;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
mean=(a[j-1]+a[j-2])/2;
|
|
|
|
period=(t[j-1]-t[j-2])*2;
|
|
|
|
atime=t[j-2];
|
|
|
|
a[j-2]=a[j];
|
|
|
|
t[j-2]=t[j];
|
|
|
|
j=j-2;
|
|
|
|
if (ampl > 0) {
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=1.00;
|
|
|
|
*po++=atime;
|
|
|
|
*po++=period;
|
|
|
|
cNr1++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cNr2 = 1;
|
|
|
|
for (index=0; index<j; index++) {
|
|
|
|
ampl=fabs(a[index]-a[index+1])/2;
|
|
|
|
mean=(a[index]+a[index+1])/2;
|
|
|
|
period=(t[index+1]-t[index])*2;
|
|
|
|
atime=t[index];
|
|
|
|
if (ampl > 0){
|
|
|
|
*po++=ampl;
|
|
|
|
*po++=mean;
|
|
|
|
*po++=0.50;
|
|
|
|
*po++=atime;
|
|
|
|
*po++=period;
|
|
|
|
cNr2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// /* free the memeory !!!*/
|
|
|
|
// mxSetN(array_out, tot_num - cNr);
|
|
|
|
nout[0] = cNr1;
|
|
|
|
nout[1] = cNr2;
|
|
|
|
}
|
|
|
|
/* ++++++++++ END RF5 */
|