|
|
|
from __future__ import division
|
|
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from numpy import pi, sqrt, ones, zeros # @UnresolvedImport
|
|
|
|
from scipy import integrate as intg
|
|
|
|
import scipy.special.orthogonal as ort
|
|
|
|
from scipy import special as sp
|
|
|
|
from wafo.plotbackend import plotbackend as plt
|
|
|
|
from scipy.integrate import simps, trapz
|
|
|
|
from wafo.demos import humps
|
|
|
|
#from pychebfun import Chebfun
|
|
|
|
|
|
|
|
_EPS = np.finfo(float).eps
|
|
|
|
_POINTS_AND_WEIGHTS = {}
|
|
|
|
|
|
|
|
__all__ = ['dea3', 'clencurt', 'romberg',
|
|
|
|
'h_roots', 'j_roots', 'la_roots', 'p_roots', 'qrule',
|
|
|
|
'gaussq', 'richardson', 'quadgr', 'qdemo']
|
|
|
|
|
|
|
|
|
|
|
|
def dea3(v0, v1, v2):
|
|
|
|
'''
|
|
|
|
Extrapolate a slowly convergent sequence
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
v0,v1,v2 : array-like
|
|
|
|
3 values of a convergent sequence to extrapolate
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
result : array-like
|
|
|
|
extrapolated value
|
|
|
|
abserr : array-like
|
|
|
|
absolute error estimate
|
|
|
|
|
|
|
|
Description
|
|
|
|
-----------
|
|
|
|
DEA3 attempts to extrapolate nonlinearly to a better estimate
|
|
|
|
of the sequence's limiting value, thus improving the rate of
|
|
|
|
convergence. The routine is based on the epsilon algorithm of
|
|
|
|
P. Wynn, see [1]_.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
# integrate sin(x) from 0 to pi/2
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> Ei= np.zeros(3)
|
|
|
|
>>> linfun = lambda k : np.linspace(0, np.pi/2., 2.**(k+5)+1)
|
|
|
|
>>> for k in np.arange(3):
|
|
|
|
... x = linfun(k)
|
|
|
|
... Ei[k] = np.trapz(np.sin(x),x)
|
|
|
|
>>> En, err = dea3(Ei[0],Ei[1],Ei[2])
|
|
|
|
>>> En, err
|
|
|
|
(array([ 1.]), array([ 0.0002008]))
|
|
|
|
>>> TrueErr = Ei-1.
|
|
|
|
>>> TrueErr
|
|
|
|
array([ -2.0080568e-04, -5.0199908e-05, -1.2549882e-05])
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
dea
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
.. [1] C. Brezinski (1977)
|
|
|
|
"Acceleration de la convergence en analyse numerique",
|
|
|
|
"Lecture Notes in Math.", vol. 584,
|
|
|
|
Springer-Verlag, New York, 1977.
|
|
|
|
'''
|
|
|
|
E0, E1, E2 = np.atleast_1d(v0, v1, v2)
|
|
|
|
abs = np.abs # @ReservedAssignment
|
|
|
|
max = np.maximum # @ReservedAssignment
|
|
|
|
delta2, delta1 = E2 - E1, E1 - E0
|
|
|
|
err2, err1 = abs(delta2), abs(delta1)
|
|
|
|
tol2, tol1 = max(abs(E2), abs(E1)) * _EPS, max(abs(E1), abs(E0)) * _EPS
|
|
|
|
|
|
|
|
with warnings.catch_warnings():
|
|
|
|
warnings.simplefilter("ignore") # ignore division by zero and overflow
|
|
|
|
ss = 1.0 / delta2 - 1.0 / delta1
|
|
|
|
smalle2 = (abs(ss * E1) <= 1.0e-3).ravel()
|
|
|
|
|
|
|
|
result = 1.0 * E2
|
|
|
|
abserr = err1 + err2 + abs(E2) * _EPS * 10.0
|
|
|
|
converged = (err1 <= tol1) & (err2 <= tol2).ravel() | smalle2
|
|
|
|
k4, = (1 - converged).nonzero()
|
|
|
|
if k4.size > 0:
|
|
|
|
result[k4] = E1[k4] + 1.0 / ss[k4]
|
|
|
|
abserr[k4] = err1[k4] + err2[k4] + abs(result[k4] - E2[k4])
|
|
|
|
return result, abserr
|
|
|
|
|
|
|
|
|
|
|
|
def clencurt(fun, a, b, n0=5, trace=False, args=()):
|
|
|
|
'''
|
|
|
|
Numerical evaluation of an integral, Clenshaw-Curtis method.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
a, b : array-like
|
|
|
|
Lower and upper integration limit, respectively.
|
|
|
|
n : integer
|
|
|
|
defines number of evaluation points (default 5)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Q = evaluated integral
|
|
|
|
tol = Estimate of the approximation error
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
CLENCURT approximates the integral of f(x) from a to b
|
|
|
|
using an 2*n+1 points Clenshaw-Curtis formula.
|
|
|
|
The error estimate is usually a conservative estimate of the
|
|
|
|
approximation error.
|
|
|
|
The integral is exact for polynomials of degree 2*n or less.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> val,err = clencurt(np.exp,0,2)
|
|
|
|
>>> abs(val-np.expm1(2))< err, err<1e-10
|
|
|
|
(array([ True], dtype=bool), array([ True], dtype=bool))
|
|
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
simpson,
|
|
|
|
gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Goodwin, E.T. (1961),
|
|
|
|
"Modern Computing Methods",
|
|
|
|
2nd edition, New yourk: Philosophical Library, pp. 78--79
|
|
|
|
|
|
|
|
[2] Clenshaw, C.W. and Curtis, A.R. (1960),
|
|
|
|
Numerische Matematik, Vol. 2, pp. 197--205
|
|
|
|
'''
|
|
|
|
|
|
|
|
# make sure n is even
|
|
|
|
n = 2 * n0
|
|
|
|
a, b = np.atleast_1d(a, b)
|
|
|
|
a_shape = a.shape
|
|
|
|
af = a.ravel()
|
|
|
|
bf = b.ravel()
|
|
|
|
|
|
|
|
Na = np.prod(a_shape)
|
|
|
|
|
|
|
|
s = np.r_[0:n + 1]
|
|
|
|
s2 = np.r_[0:n + 1:2]
|
|
|
|
s2.shape = (-1, 1)
|
|
|
|
x1 = np.cos(np.pi * s / n)
|
|
|
|
x1.shape = (-1, 1)
|
|
|
|
x = x1 * (bf - af) / 2. + (bf + af) / 2
|
|
|
|
|
|
|
|
if hasattr(fun, '__call__'):
|
|
|
|
f = fun(x)
|
|
|
|
else:
|
|
|
|
x0 = np.flipud(fun[:, 0])
|
|
|
|
n = len(x0) - 1
|
|
|
|
if abs(x - x0) > 1e-8:
|
|
|
|
raise ValueError(
|
|
|
|
'Input vector x must equal cos(pi*s/n)*(b-a)/2+(b+a)/2')
|
|
|
|
|
|
|
|
f = np.flipud(fun[:, 1::])
|
|
|
|
|
|
|
|
if trace:
|
|
|
|
plt.plot(x, f, '+')
|
|
|
|
|
|
|
|
# using a Gauss-Lobatto variant, i.e., first and last
|
|
|
|
# term f(a) and f(b) is multiplied with 0.5
|
|
|
|
f[0, :] = f[0, :] / 2
|
|
|
|
f[n, :] = f[n, :] / 2
|
|
|
|
|
|
|
|
# % x = cos(pi*0:n/n)
|
|
|
|
# % f = f(x)
|
|
|
|
# %
|
|
|
|
# % N+1
|
|
|
|
# % c(k) = (2/N) sum f''(n)*cos(pi*(2*k-2)*(n-1)/N), 1 <= k <= N/2+1.
|
|
|
|
# % n=1
|
|
|
|
fft = np.fft.fft
|
|
|
|
tmp = np.real(fft(f[:n, :], axis=0))
|
|
|
|
c = 2 / n * (tmp[0:n / 2 + 1, :] + np.cos(np.pi * s2) * f[n, :])
|
|
|
|
# % old call
|
|
|
|
# % c = 2/n * cos(s2*s'*pi/n) * f
|
|
|
|
c[0, :] = c[0, :] / 2
|
|
|
|
c[n / 2, :] = c[n / 2, :] / 2
|
|
|
|
|
|
|
|
# % alternative call
|
|
|
|
# % c = dct(f)
|
|
|
|
|
|
|
|
c = c[0:n / 2 + 1, :] / ((s2 - 1) * (s2 + 1))
|
|
|
|
Q = (af - bf) * np.sum(c, axis=0)
|
|
|
|
# Q = (a-b).*sum( c(1:n/2+1,:)./repmat((s2-1).*(s2+1),1,Na))
|
|
|
|
|
|
|
|
abserr = (bf - af) * np.abs(c[n / 2, :])
|
|
|
|
|
|
|
|
if Na > 1:
|
|
|
|
abserr = np.reshape(abserr, a_shape)
|
|
|
|
Q = np.reshape(Q, a_shape)
|
|
|
|
return Q, abserr
|
|
|
|
|
|
|
|
|
|
|
|
def romberg(fun, a, b, releps=1e-3, abseps=1e-3):
|
|
|
|
'''
|
|
|
|
Numerical integration with the Romberg method
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
function to integrate
|
|
|
|
a, b : real scalars
|
|
|
|
lower and upper integration limits, respectively.
|
|
|
|
releps, abseps : scalar, optional
|
|
|
|
requested relative and absolute error, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Q : scalar
|
|
|
|
value of integral
|
|
|
|
abserr : scalar
|
|
|
|
estimated absolute error of integral
|
|
|
|
|
|
|
|
ROMBERG approximates the integral of F(X) from A to B
|
|
|
|
using Romberg's method of integration. The function F
|
|
|
|
must return a vector of output values if a vector of input values is given.
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [q,err] = romberg(np.sqrt,0,10,0,1e-4)
|
|
|
|
>>> q,err
|
|
|
|
(array([ 21.0818511]), array([ 6.6163547e-05]))
|
|
|
|
'''
|
|
|
|
h = b - a
|
|
|
|
hMin = 1.0e-9
|
|
|
|
# Max size of extrapolation table
|
|
|
|
tableLimit = max(min(np.round(np.log2(h / hMin)), 30), 3)
|
|
|
|
|
|
|
|
rom = zeros((2, tableLimit))
|
|
|
|
|
|
|
|
rom[0, 0] = h * (fun(a) + fun(b)) / 2
|
|
|
|
ipower = 1
|
|
|
|
fp = ones(tableLimit) * 4
|
|
|
|
|
|
|
|
# Ih1 = 0
|
|
|
|
Ih2 = 0.
|
|
|
|
Ih4 = rom[0, 0]
|
|
|
|
abserr = Ih4
|
|
|
|
# epstab = zeros(1,decdigs+7)
|
|
|
|
# newflg = 1
|
|
|
|
# [res,abserr,epstab,newflg] = dea(newflg,Ih4,abserr,epstab)
|
|
|
|
two = 1
|
|
|
|
one = 0
|
|
|
|
for i in xrange(1, tableLimit):
|
|
|
|
h *= 0.5
|
|
|
|
Un5 = np.sum(fun(a + np.arange(1, 2 * ipower, 2) * h)) * h
|
|
|
|
|
|
|
|
# trapezoidal approximations
|
|
|
|
# T2n = 0.5 * (Tn + Un) = 0.5*Tn + Un5
|
|
|
|
rom[two, 0] = 0.5 * rom[one, 0] + Un5
|
|
|
|
|
|
|
|
fp[i] = 4 * fp[i - 1]
|
|
|
|
# Richardson extrapolation
|
|
|
|
for k in xrange(i):
|
|
|
|
rom[two, k + 1] = rom[two, k] + \
|
|
|
|
(rom[two, k] - rom[one, k]) / (fp[k] - 1)
|
|
|
|
|
|
|
|
Ih1 = Ih2
|
|
|
|
Ih2 = Ih4
|
|
|
|
Ih4 = rom[two, i]
|
|
|
|
|
|
|
|
if (2 <= i):
|
|
|
|
res, abserr = dea3(Ih1, Ih2, Ih4)
|
|
|
|
# Ih4 = res
|
|
|
|
if (abserr <= max(abseps, releps * abs(res))):
|
|
|
|
break
|
|
|
|
|
|
|
|
# rom(1,1:i) = rom(2,1:i)
|
|
|
|
two = one
|
|
|
|
one = (one + 1) % 2
|
|
|
|
ipower *= 2
|
|
|
|
return res, abserr
|
|
|
|
|
|
|
|
|
|
|
|
def h_roots(n, method='newton'):
|
|
|
|
'''
|
|
|
|
Returns the roots (x) of the nth order Hermite polynomial,
|
|
|
|
H_n(x), and weights (w) to use in Gaussian Quadrature over
|
|
|
|
[-inf,inf] with weighting function exp(-x**2).
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [x,w] = h_roots(10)
|
|
|
|
>>> np.sum(x*w)
|
|
|
|
-5.2516042729766621e-19
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
return ort.h_roots(n)
|
|
|
|
else:
|
|
|
|
sqrt = np.sqrt
|
|
|
|
max_iter = 10
|
|
|
|
releps = 3e-14
|
|
|
|
C = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03]
|
|
|
|
# PIM4=0.7511255444649425
|
|
|
|
PIM4 = np.pi ** (-1. / 4)
|
|
|
|
|
|
|
|
# The roots are symmetric about the origin, so we have to
|
|
|
|
# find only half of them.
|
|
|
|
m = int(np.fix((n + 1) / 2))
|
|
|
|
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
anu = 2.0 * n + 1
|
|
|
|
rhs = np.arange(3, 4 * m, 4) * np.pi / anu
|
|
|
|
r3 = rhs ** (1. / 3)
|
|
|
|
r2 = r3 ** 2
|
|
|
|
theta = r3 * (C[0] + r2 * (C[1] + r2 * (C[2] + r2 * C[3])))
|
|
|
|
z = sqrt(anu) * np.cos(theta)
|
|
|
|
|
|
|
|
L = zeros((3, len(z)))
|
|
|
|
k0 = 0
|
|
|
|
kp1 = 1
|
|
|
|
for _its in xrange(max_iter):
|
|
|
|
# Newtons method carried out simultaneously on the roots.
|
|
|
|
L[k0, :] = 0
|
|
|
|
L[kp1, :] = PIM4
|
|
|
|
|
|
|
|
for j in xrange(1, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Hermite
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
km1 = k0
|
|
|
|
k0 = kp1
|
|
|
|
kp1 = np.mod(kp1 + 1, 3)
|
|
|
|
|
|
|
|
L[kp1, :] = (z * sqrt(2 / j) * L[k0, :] -
|
|
|
|
np.sqrt((j - 1) / j) * L[km1, :])
|
|
|
|
|
|
|
|
# L now contains the desired Hermite polynomials.
|
|
|
|
# We next compute pp, the derivatives,
|
|
|
|
# by the relation (4.5.21) using p2, the polynomials
|
|
|
|
# of one lower order.
|
|
|
|
|
|
|
|
pp = sqrt(2 * n) * L[k0, :]
|
|
|
|
dz = L[kp1, :] / pp
|
|
|
|
|
|
|
|
z = z - dz # Newtons formula.
|
|
|
|
|
|
|
|
if not np.any(abs(dz) > releps):
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
warnings.warn('too many iterations!')
|
|
|
|
|
|
|
|
x = np.empty(n)
|
|
|
|
w = np.empty(n)
|
|
|
|
x[0:m] = z # Store the root
|
|
|
|
x[n - 1:n - m - 1:-1] = -z # and its symmetric counterpart.
|
|
|
|
w[0:m] = 2. / pp ** 2 # Compute the weight
|
|
|
|
w[n - 1:n - m - 1:-1] = w[0:m] # and its symmetric counterpart.
|
|
|
|
return x, w
|
|
|
|
|
|
|
|
|
|
|
|
def j_roots(n, alpha, beta, method='newton'):
|
|
|
|
'''
|
|
|
|
Returns the roots of the nth order Jacobi polynomial, P^(alpha,beta)_n(x)
|
|
|
|
and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting
|
|
|
|
function (1-x)**alpha (1+x)**beta with alpha,beta > -1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
alpha,beta : scalars
|
|
|
|
defining shape of Jacobi polynomial
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
--------
|
|
|
|
>>> [x,w]= j_roots(10,0,0)
|
|
|
|
>>> sum(x*w)
|
|
|
|
2.7755575615628914e-16
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
[x, w] = ort.j_roots(n, alpha, beta)
|
|
|
|
else:
|
|
|
|
max_iter = 10
|
|
|
|
releps = 3e-14
|
|
|
|
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
alfbet = alpha + beta
|
|
|
|
|
|
|
|
z = np.cos(np.pi * (np.arange(1, n + 1) - 0.25 + 0.5 * alpha) /
|
|
|
|
(n + 0.5 * (alfbet + 1)))
|
|
|
|
|
|
|
|
L = zeros((3, len(z)))
|
|
|
|
k0 = 0
|
|
|
|
kp1 = 1
|
|
|
|
for _its in xrange(max_iter):
|
|
|
|
# Newton's method carried out simultaneously on the roots.
|
|
|
|
tmp = 2 + alfbet
|
|
|
|
L[k0, :] = 1
|
|
|
|
L[kp1, :] = (alpha - beta + tmp * z) / 2
|
|
|
|
|
|
|
|
for j in xrange(2, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Jacobi
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
km1 = k0
|
|
|
|
k0 = kp1
|
|
|
|
kp1 = np.mod(kp1 + 1, 3)
|
|
|
|
|
|
|
|
a = 2. * j * (j + alfbet) * tmp
|
|
|
|
tmp = tmp + 2
|
|
|
|
c = 2 * (j - 1 + alpha) * (j - 1 + beta) * tmp
|
|
|
|
b = (tmp - 1) * (alpha ** 2 - beta ** 2 + tmp * (tmp - 2) * z)
|
|
|
|
|
|
|
|
L[kp1, :] = (b * L[k0, :] - c * L[km1, :]) / a
|
|
|
|
|
|
|
|
# L now contains the desired Jacobi polynomials.
|
|
|
|
# We next compute pp, the derivatives with a standard
|
|
|
|
# relation involving the polynomials of one lower order.
|
|
|
|
|
|
|
|
pp = ((n * (alpha - beta - tmp * z) * L[kp1, :] +
|
|
|
|
2 * (n + alpha) * (n + beta) * L[k0, :]) /
|
|
|
|
(tmp * (1 - z ** 2)))
|
|
|
|
dz = L[kp1, :] / pp
|
|
|
|
z = z - dz # Newton's formula.
|
|
|
|
|
|
|
|
if not any(abs(dz) > releps * abs(z)):
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
warnings.warn('too many iterations in jrule')
|
|
|
|
|
|
|
|
x = z # %Store the root and the weight.
|
|
|
|
f = (sp.gammaln(alpha + n) + sp.gammaln(beta + n) -
|
|
|
|
sp.gammaln(n + 1) - sp.gammaln(alpha + beta + n + 1))
|
|
|
|
w = (np.exp(f) * tmp * 2 ** alfbet / (pp * L[k0, :]))
|
|
|
|
|
|
|
|
return x, w
|
|
|
|
|
|
|
|
|
|
|
|
def la_roots(n, alpha=0, method='newton'):
|
|
|
|
'''
|
|
|
|
Returns the roots (x) of the nth order generalized (associated) Laguerre
|
|
|
|
polynomial, L^(alpha)_n(x), and weights (w) to use in Gaussian quadrature
|
|
|
|
over [0,inf] with weighting function exp(-x) x**alpha with alpha > -1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Laguerre polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [x,w] = h_roots(10)
|
|
|
|
>>> np.sum(x*w)
|
|
|
|
-5.2516042729766621e-19
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule, gaussq
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[2]. Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if alpha <= -1:
|
|
|
|
raise ValueError('alpha must be greater than -1')
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
return ort.la_roots(n, alpha)
|
|
|
|
else:
|
|
|
|
max_iter = 10
|
|
|
|
releps = 3e-14
|
|
|
|
C = [9.084064e-01, 5.214976e-02, 2.579930e-03, 3.986126e-03]
|
|
|
|
|
|
|
|
# Initial approximations to the roots go into z.
|
|
|
|
anu = 4.0 * n + 2.0 * alpha + 2.0
|
|
|
|
rhs = np.arange(4 * n - 1, 2, -4) * np.pi / anu
|
|
|
|
r3 = rhs ** (1. / 3)
|
|
|
|
r2 = r3 ** 2
|
|
|
|
theta = r3 * (C[0] + r2 * (C[1] + r2 * (C[2] + r2 * C[3])))
|
|
|
|
z = anu * np.cos(theta) ** 2
|
|
|
|
|
|
|
|
dz = zeros(len(z))
|
|
|
|
L = zeros((3, len(z)))
|
|
|
|
Lp = zeros((1, len(z)))
|
|
|
|
pp = zeros((1, len(z)))
|
|
|
|
k0 = 0
|
|
|
|
kp1 = 1
|
|
|
|
k = slice(len(z))
|
|
|
|
for _its in xrange(max_iter):
|
|
|
|
# Newton's method carried out simultaneously on the roots.
|
|
|
|
L[k0, k] = 0.
|
|
|
|
L[kp1, k] = 1.
|
|
|
|
|
|
|
|
for jj in xrange(1, n + 1):
|
|
|
|
# Loop up the recurrence relation to get the Laguerre
|
|
|
|
# polynomials evaluated at z.
|
|
|
|
km1 = k0
|
|
|
|
k0 = kp1
|
|
|
|
kp1 = np.mod(kp1 + 1, 3)
|
|
|
|
|
|
|
|
L[kp1, k] = ((2 * jj - 1 + alpha - z[k]) * L[
|
|
|
|
k0, k] - (jj - 1 + alpha) * L[km1, k]) / jj
|
|
|
|
# end
|
|
|
|
# L now contains the desired Laguerre polynomials.
|
|
|
|
# We next compute pp, the derivatives with a standard
|
|
|
|
# relation involving the polynomials of one lower order.
|
|
|
|
|
|
|
|
Lp[k] = L[k0, k]
|
|
|
|
pp[k] = (n * L[kp1, k] - (n + alpha) * Lp[k]) / z[k]
|
|
|
|
|
|
|
|
dz[k] = L[kp1, k] / pp[k]
|
|
|
|
z[k] = z[k] - dz[k] # % Newton?s formula.
|
|
|
|
# k = find((abs(dz) > releps.*z))
|
|
|
|
|
|
|
|
if not np.any(abs(dz) > releps):
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
warnings.warn('too many iterations!')
|
|
|
|
|
|
|
|
x = z
|
|
|
|
w = -np.exp(sp.gammaln(alpha + n) - sp.gammaln(n)) / (pp * n * Lp)
|
|
|
|
return x, w
|
|
|
|
|
|
|
|
|
|
|
|
def p_roots(n, method='newton', a=-1, b=1):
|
|
|
|
'''
|
|
|
|
Returns the roots (x) of the nth order Legendre polynomial, P_n(x),
|
|
|
|
and weights (w) to use in Gaussian Quadrature over [-1,1] with weighting
|
|
|
|
function 1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of roots
|
|
|
|
method : 'newton' or 'eigenvalue'
|
|
|
|
uses Newton Raphson to find zeros of the Hermite polynomial (Fast)
|
|
|
|
or eigenvalue of the jacobi matrix (Slow) to obtain the nodes and
|
|
|
|
weights, respectively.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray
|
|
|
|
roots
|
|
|
|
w : ndarray
|
|
|
|
weights
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
Integral of exp(x) from a = 0 to b = 3 is: exp(3)-exp(0)=
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> [x,w] = p_roots(11,a=0,b=3)
|
|
|
|
>>> np.sum(np.exp(x)*w)
|
|
|
|
19.085536923187668
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
quadg.
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
[1] Davis and Rabinowitz (1975) 'Methods of Numerical Integration',
|
|
|
|
page 365, Academic Press.
|
|
|
|
|
|
|
|
[2] Golub, G. H. and Welsch, J. H. (1969)
|
|
|
|
'Calculation of Gaussian Quadrature Rules'
|
|
|
|
Mathematics of Computation, vol 23,page 221-230,
|
|
|
|
|
|
|
|
[3] Stroud and Secrest (1966), 'gaussian quadrature formulas',
|
|
|
|
prentice-hall, Englewood cliffs, n.j.
|
|
|
|
'''
|
|
|
|
|
|
|
|
if not method.startswith('n'):
|
|
|
|
x, w = ort.p_roots(n)
|
|
|
|
else:
|
|
|
|
|
|
|
|
m = int(np.fix((n + 1) / 2))
|
|
|
|
|
|
|
|
mm = 4 * m - 1
|
|
|
|
t = (np.pi / (4 * n + 2)) * np.arange(3, mm + 1, 4)
|
|
|
|
nn = (1 - (1 - 1 / n) / (8 * n * n))
|
|
|
|
xo = nn * np.cos(t)
|
|
|
|
|
|
|
|
if method.endswith('1'):
|
|
|
|
|
|
|
|
# Compute the zeros of the N+1 Legendre Polynomial
|
|
|
|
# using the recursion relation and the Newton-Raphson method
|
|
|
|
|
|
|
|
# Legendre-Gauss Polynomials
|
|
|
|
L = zeros((3, m))
|
|
|
|
|
|
|
|
# Derivative of LGP
|
|
|
|
Lp = zeros((m,))
|
|
|
|
dx = zeros((m,))
|
|
|
|
|
|
|
|
releps = 1e-15
|
|
|
|
max_iter = 100
|
|
|
|
# Compute the zeros of the N+1 Legendre Polynomial
|
|
|
|
# using the recursion relation and the Newton-Raphson method
|
|
|
|
|
|
|
|
# Iterate until new points are uniformly within epsilon of old
|
|
|
|
# points
|
|
|
|
k = slice(m)
|
|
|
|
k0 = 0
|
|
|
|
kp1 = 1
|
|
|
|
for _ix in xrange(max_iter):
|
|
|
|
L[k0, k] = 1
|
|
|
|
L[kp1, k] = xo[k]
|
|
|
|
|
|
|
|
for jj in xrange(2, n + 1):
|
|
|
|
km1 = k0
|
|
|
|
k0 = kp1
|
|
|
|
kp1 = np.mod(k0 + 1, 3)
|
|
|
|
L[kp1, k] = ((2 * jj - 1) * xo[k] * L[
|
|
|
|
k0, k] - (jj - 1) * L[km1, k]) / jj
|
|
|
|
|
|
|
|
Lp[k] = n * (L[k0, k] - xo[k] * L[kp1, k]) / (1 - xo[k] ** 2)
|
|
|
|
|
|
|
|
dx[k] = L[kp1, k] / Lp[k]
|
|
|
|
xo[k] = xo[k] - dx[k]
|
|
|
|
k, = np.nonzero((abs(dx) > releps * np.abs(xo)))
|
|
|
|
if len(k) == 0:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
warnings.warn('Too many iterations!')
|
|
|
|
|
|
|
|
x = -xo
|
|
|
|
w = 2. / ((1 - x ** 2) * (Lp ** 2))
|
|
|
|
else:
|
|
|
|
# Algorithm given by Davis and Rabinowitz in 'Methods
|
|
|
|
# of Numerical Integration', page 365, Academic Press, 1975.
|
|
|
|
|
|
|
|
e1 = n * (n + 1)
|
|
|
|
|
|
|
|
for _j in xrange(2):
|
|
|
|
pkm1 = 1
|
|
|
|
pk = xo
|
|
|
|
for k in xrange(2, n + 1):
|
|
|
|
t1 = xo * pk
|
|
|
|
pkp1 = t1 - pkm1 - (t1 - pkm1) / k + t1
|
|
|
|
pkm1 = pk
|
|
|
|
pk = pkp1
|
|
|
|
|
|
|
|
den = 1. - xo * xo
|
|
|
|
d1 = n * (pkm1 - xo * pk)
|
|
|
|
dpn = d1 / den
|
|
|
|
d2pn = (2. * xo * dpn - e1 * pk) / den
|
|
|
|
d3pn = (4. * xo * d2pn + (2 - e1) * dpn) / den
|
|
|
|
d4pn = (6. * xo * d3pn + (6 - e1) * d2pn) / den
|
|
|
|
u = pk / dpn
|
|
|
|
v = d2pn / dpn
|
|
|
|
h = (-u * (1 + (.5 * u) * (v + u *
|
|
|
|
(v * v - u * d3pn / (3 * dpn)))))
|
|
|
|
p = (pk + h * (dpn + (.5 * h) * (d2pn + (h / 3) *
|
|
|
|
(d3pn + .25 * h * d4pn))))
|
|
|
|
dp = dpn + h * (d2pn + (.5 * h) * (d3pn + h * d4pn / 3))
|
|
|
|
h = h - p / dp
|
|
|
|
xo = xo + h
|
|
|
|
|
|
|
|
x = -xo - h
|
|
|
|
fx = (d1 - h * e1 * (pk + (h / 2) *
|
|
|
|
(dpn + (h / 3) * (d2pn + (h / 4) *
|
|
|
|
(d3pn + (.2 * h) * d4pn)))))
|
|
|
|
w = 2 * (1 - x ** 2) / (fx ** 2)
|
|
|
|
|
|
|
|
if (m + m) > n:
|
|
|
|
x[m - 1] = 0.0
|
|
|
|
|
|
|
|
if not ((m + m) == n):
|
|
|
|
m = m - 1
|
|
|
|
|
|
|
|
x = np.hstack((x, -x[m - 1::-1]))
|
|
|
|
w = np.hstack((w, w[m - 1::-1]))
|
|
|
|
|
|
|
|
if (a != -1) | (b != 1):
|
|
|
|
# Linear map from[-1,1] to [a,b]
|
|
|
|
dh = (b - a) / 2
|
|
|
|
x = dh * (x + 1) + a
|
|
|
|
w = w * dh
|
|
|
|
|
|
|
|
return x, w
|
|
|
|
|
|
|
|
|
|
|
|
def qrule(n, wfun=1, alpha=0, beta=0):
|
|
|
|
'''
|
|
|
|
Return nodes and weights for Gaussian quadratures.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : integer
|
|
|
|
number of base points
|
|
|
|
wfun : integer
|
|
|
|
defining the weight function, p(x). (default wfun = 1)
|
|
|
|
1,11,21: p(x) = 1 a =-1, b = 1 Gauss-Legendre
|
|
|
|
2,12 : p(x) = exp(-x^2) a =-inf, b = inf Hermite
|
|
|
|
3,13 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre
|
|
|
|
4,14 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi
|
|
|
|
5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind
|
|
|
|
6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind
|
|
|
|
7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1
|
|
|
|
8 : p(x) = 1/sqrt(b-x), a = 0, b = 1
|
|
|
|
9 : p(x) = sqrt(b-x), a = 0, b = 1
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
bp = base points (abscissas)
|
|
|
|
wf = weight factors
|
|
|
|
|
|
|
|
The Gaussian Quadrature integrates a (2n-1)th order
|
|
|
|
polynomial exactly and the integral is of the form
|
|
|
|
b n
|
|
|
|
Int ( p(x)* F(x) ) dx = Sum ( wf_j* F( bp_j ) )
|
|
|
|
a j=1
|
|
|
|
where p(x) is the weight function.
|
|
|
|
For Jacobi and Laguerre: alpha, beta >-1 (default alpha=beta=0)
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
---------
|
|
|
|
>>> [bp,wf] = qrule(10)
|
|
|
|
>>> sum(bp**2*wf) # integral of x^2 from a = -1 to b = 1
|
|
|
|
0.66666666666666641
|
|
|
|
>>> [bp,wf] = qrule(10,2)
|
|
|
|
>>> sum(bp**2*wf) # integral of exp(-x.^2)*x.^2 from a = -inf to b = inf
|
|
|
|
0.88622692545275772
|
|
|
|
>>> [bp,wf] = qrule(10,4,1,2)
|
|
|
|
>>> (bp*wf).sum() # integral of (x+1)*(1-x)^2 from a = -1 to b = 1
|
|
|
|
0.26666666666666755
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
gaussq
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
Abromowitz and Stegun (1954)
|
|
|
|
(for method 5 to 9)
|
|
|
|
'''
|
|
|
|
|
|
|
|
if (alpha <= -1) | (beta <= -1):
|
|
|
|
raise ValueError('alpha and beta must be greater than -1')
|
|
|
|
|
|
|
|
if wfun == 1: # Gauss-Legendre
|
|
|
|
[bp, wf] = p_roots(n)
|
|
|
|
elif wfun == 2: # Hermite
|
|
|
|
[bp, wf] = h_roots(n)
|
|
|
|
elif wfun == 3: # Generalized Laguerre
|
|
|
|
[bp, wf] = la_roots(n, alpha)
|
|
|
|
elif wfun == 4: # Gauss-Jacobi
|
|
|
|
[bp, wf] = j_roots(n, alpha, beta)
|
|
|
|
elif wfun == 5: # p(x)=1/sqrt((x-a)*(b-x)), a=-1 and b=1 (default)
|
|
|
|
jj = np.arange(1, n + 1)
|
|
|
|
wf = ones(n) * np.pi / n
|
|
|
|
bp = np.cos((2 * jj - 1) * np.pi / (2 * n))
|
|
|
|
|
|
|
|
elif wfun == 6: # p(x)=sqrt((x-a)*(b-x)), a=-1 and b=1
|
|
|
|
jj = np.arange(1, n + 1)
|
|
|
|
xj = jj * np.pi / (n + 1)
|
|
|
|
wf = np.pi / (n + 1) * np.sin(xj) ** 2
|
|
|
|
bp = np.cos(xj)
|
|
|
|
|
|
|
|
elif wfun == 7: # p(x)=sqrt((x-a)/(b-x)), a=0 and b=1
|
|
|
|
jj = np.arange(1, n + 1)
|
|
|
|
xj = (jj - 0.5) * pi / (2 * n + 1)
|
|
|
|
bp = np.cos(xj) ** 2
|
|
|
|
wf = 2 * np.pi * bp / (2 * n + 1)
|
|
|
|
|
|
|
|
elif wfun == 8: # p(x)=1/sqrt(b-x), a=0 and b=1
|
|
|
|
[bp1, wf1] = p_roots(2 * n)
|
|
|
|
k, = np.where(0 <= bp1)
|
|
|
|
wf = 2 * wf1[k]
|
|
|
|
bp = 1 - bp1[k] ** 2
|
|
|
|
|
|
|
|
elif wfun == 9: # p(x)=np.sqrt(b-x), a=0 and b=1
|
|
|
|
[bp1, wf1] = p_roots(2 * n + 1)
|
|
|
|
k, = np.where(0 < bp1)
|
|
|
|
wf = 2 * bp1[k] ** 2 * wf1[k]
|
|
|
|
bp = 1 - bp1[k] ** 2
|
|
|
|
else:
|
|
|
|
raise ValueError('unknown weight function')
|
|
|
|
return bp, wf
|
|
|
|
|
|
|
|
|
|
|
|
class _Gaussq(object):
|
|
|
|
'''
|
|
|
|
Numerically evaluate integral, Gauss quadrature.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fun : callable
|
|
|
|
a,b : array-like
|
|
|
|
lower and upper integration limits, respectively.
|
|
|
|
releps, abseps : real scalars, optional
|
|
|
|
relative and absolute tolerance, respectively.
|
|
|
|
(default releps=abseps=1e-3).
|
|
|
|
wfun : scalar integer, optional
|
|
|
|
defining the weight function, p(x). (default wfun = 1)
|
|
|
|
1 : p(x) = 1 a =-1, b = 1 Gauss-Legendre
|
|
|
|
2 : p(x) = exp(-x^2) a =-inf, b = inf Hermite
|
|
|
|
3 : p(x) = x^alpha*exp(-x) a = 0, b = inf Laguerre
|
|
|
|
4 : p(x) = (x-a)^alpha*(b-x)^beta a =-1, b = 1 Jacobi
|
|
|
|
5 : p(x) = 1/sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 1'st kind
|
|
|
|
6 : p(x) = sqrt((x-a)*(b-x)), a =-1, b = 1 Chebyshev 2'nd kind
|
|
|
|
7 : p(x) = sqrt((x-a)/(b-x)), a = 0, b = 1
|
|
|
|
8 : p(x) = 1/sqrt(b-x), a = 0, b = 1
|
|
|
|
9 : p(x) = sqrt(b-x), a = 0, b = 1
|
|
|
|
trace : bool, optional
|
|
|
|
If non-zero a point plot of the integrand (default False).
|
|
|
|
gn : scalar integer
|
|
|
|
number of base points to start the integration with (default 2).
|
|
|
|
alpha, beta : real scalars, optional
|
|
|
|
Shape parameters of Laguerre or Jacobi weight function
|
|
|
|
(alpha,beta>-1) (default alpha=beta=0)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
val : ndarray
|
|
|
|
evaluated integral
|
|
|
|
err : ndarray
|
|
|
|
error estimate, absolute tolerance abs(int-intold)
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
GAUSSQ numerically evaluate integral using a Gauss quadrature.
|
|
|
|
The Quadrature integrates a (2m-1)th order polynomial exactly and the
|
|
|
|
integral is of the form
|
|
|
|
b
|
|
|
|
Int (p(x)* Fun(x)) dx
|
|
|
|
a
|
|
|
|
GAUSSQ is vectorized to accept integration limits A, B and
|
|
|
|
coefficients P1,P2,...Pn, as matrices or scalars and the
|
|
|
|
result is the common size of A, B and P1,P2,...,Pn.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
---------
|
|
|
|
integration of x**2 from 0 to 2 and from 1 to 4
|
|
|
|
|
|
|
|
>>> from scitools import numpyutils as npt
|
|
|
|
>>> A = [0, 1]; B = [2,4]
|
|
|
|
>>> fun = npt.wrap2callable('x**2')
|
|
|
|
>>> [val1,err1] = gaussq(fun,A,B)
|
|
|
|
>>> val1
|
|
|
|
array([ 2.6666667, 21. ])
|
|
|
|
>>> err1
|
|
|
|
array([ 1.7763568e-15, 1.0658141e-14])
|
|
|
|
|
|
|
|
Integration of x^2*exp(-x) from zero to infinity:
|
|
|
|
>>> fun2 = npt.wrap2callable('1')
|
|
|
|
>>> val2, err2 = gaussq(fun2, 0, npt.inf, wfun=3, alpha=2)
|
|
|
|
>>> val3, err3 = gaussq(lambda x: x**2,0, npt.inf, wfun=3, alpha=0)
|
|
|
|
>>> val2, err2
|
|
|
|
(array([ 2.]), array([ 6.6613381e-15]))
|
|
|
|
>>> val3, err3
|
|
|
|
(array([ 2.]), array([ 1.7763568e-15]))
|
|
|
|
|
|
|
|
Integrate humps from 0 to 2 and from 1 to 4
|
|
|
|
>>> val4, err4 = gaussq(humps,A,B)
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
qrule
|
|
|
|
gaussq2d
|
|
|
|
'''
|
|
|
|
def _get_dx(self, wfun, jacob, alpha, beta):
|
|
|
|
if wfun in [1, 2, 3, 7]:
|
|
|
|
dx = jacob
|
|
|
|
elif wfun == 4:
|
|
|
|
dx = jacob ** (alpha + beta + 1)
|
|
|
|
elif wfun == 5:
|
|
|
|
dx = ones((np.size(jacob), 1))
|
|
|
|
elif wfun == 6:
|
|
|
|
dx = jacob ** 2
|
|
|
|
elif wfun == 8:
|
|
|
|
dx = sqrt(jacob)
|
|
|
|
elif wfun == 9:
|
|
|
|
dx = sqrt(jacob) ** 3
|
|
|
|
else:
|
|
|
|
raise ValueError('unknown option')
|
|
|
|
return dx.ravel()
|
|
|
|
|
|
|
|
def _points_and_weights(self, gn, wfun, alpha, beta):
|
|
|
|
global _POINTS_AND_WEIGHTS
|
|
|
|
name = 'wfun%d_%d_%g_%g' % (wfun, gn, alpha, beta)
|
|
|
|
x_and_w = _POINTS_AND_WEIGHTS.setdefault(name, [])
|
|
|
|
if len(x_and_w) == 0:
|
|
|
|
x_and_w.extend(qrule(gn, wfun, alpha, beta))
|
|
|
|
xn, w = x_and_w
|
|
|
|
return xn, w
|
|
|
|
|
|
|
|
def _initialize_trace(self, max_iter):
|
|
|
|
if self.trace:
|
|
|
|
self.x_trace = [0] * max_iter
|
|
|
|
self.y_trace = [0] * max_iter
|
|
|
|
|
|
|
|
def _plot_trace(self, x, y):
|
|
|
|
if self.trace:
|
|
|
|
self.x_trace.append(x.ravel())
|
|
|
|
self.y_trace.append(y.ravel())
|
|
|
|
hfig = plt.plot(x, y, 'r.')
|
|
|
|
plt.setp(hfig, 'color', 'b')
|
|
|
|
|
|
|
|
def _plot_final_trace(self):
|
|
|
|
if self.trace > 0:
|
|
|
|
plt.clf()
|
|
|
|
plt.plot(np.hstack(self.x_trace), np.hstack(self.y_trace), '+')
|
|
|
|
|
|
|
|
def _get_jacob(self, wfun, A, B):
|
|
|
|
if wfun in [2, 3]:
|
|
|
|
nk = np.size(A)
|
|
|
|
jacob = ones((nk, 1))
|
|
|
|
else:
|
|
|
|
jacob = (B - A) * 0.5
|
|
|
|
if wfun in [7, 8, 9]:
|
|
|
|
jacob = jacob * 2
|
|
|
|
return jacob
|
|
|
|
|
|
|
|
def _warn(self, k, a_shape):
|
|
|
|
nk = len(k)
|
|
|
|
if nk > 1:
|
|
|
|
if (nk == np.prod(a_shape)):
|
|
|
|
tmptxt = 'All integrals did not converge'
|
|
|
|
else:
|
|
|
|
tmptxt = '%d integrals did not converge' % (nk, )
|
|
|
|
tmptxt = tmptxt + '--singularities likely!'
|
|
|
|
else:
|
|
|
|
tmptxt = 'Integral did not converge--singularity likely!'
|
|
|
|
warnings.warn(tmptxt)
|
|
|
|
|
|
|
|
def _initialize(self, wfun, a, b, args):
|
|
|
|
args = np.broadcast_arrays(*np.atleast_1d(a, b, *args))
|
|
|
|
a_shape = args[0].shape
|
|
|
|
args = map(lambda x: np.reshape(x, (-1, 1)), args)
|
|
|
|
A, B = args[:2]
|
|
|
|
args = args[2:]
|
|
|
|
if wfun in [2, 3]:
|
|
|
|
A = zeros((A.size, 1))
|
|
|
|
return A, B, args, a_shape
|
|
|
|
|
|
|
|
def __call__(self, fun, a, b, releps=1e-3, abseps=1e-3, alpha=0, beta=0,
|
|
|
|
wfun=1, trace=False, args=(), max_iter=11):
|
|
|
|
self.trace = trace
|
|
|
|
gn = 2
|
|
|
|
|
|
|
|
A, B, args, a_shape = self._initialize(wfun, a, b, args)
|
|
|
|
|
|
|
|
jacob = self._get_jacob(wfun, A, B)
|
|
|
|
shift = int(wfun in [1, 4, 5, 6])
|
|
|
|
dx = self._get_dx(wfun, jacob, alpha, beta)
|
|
|
|
|
|
|
|
self._initialize_trace(max_iter)
|
|
|
|
|
|
|
|
# Break out of the iteration loop for three reasons:
|
|
|
|
# 1) the last update is very small (compared to int and to releps)
|
|
|
|
# 2) There are more than 11 iterations. This should NEVER happen.
|
|
|
|
dtype = np.result_type(fun((A+B)*0.5, *args))
|
|
|
|
nk = np.prod(a_shape) # # of integrals we have to compute
|
|
|
|
k = np.arange(nk)
|
|
|
|
opts = (nk, dtype)
|
|
|
|
val, val_old, abserr = zeros(*opts), ones(*opts), zeros(*opts)
|
|
|
|
for i in xrange(max_iter):
|
|
|
|
xn, w = self._points_and_weights(gn, wfun, alpha, beta)
|
|
|
|
x = (xn + shift) * jacob[k, :] + A[k, :]
|
|
|
|
|
|
|
|
pi = [xi[k, :] for xi in args]
|
|
|
|
y = fun(x, *pi)
|
|
|
|
self._plot_trace(x, y)
|
|
|
|
val[k] = np.sum(w * y, axis=1) * dx[k] # do the integration
|
|
|
|
if any(np.isnan(val)):
|
|
|
|
val[np.isnan(val)] = val_old[np.isnan(val)]
|
|
|
|
if 1 < i:
|
|
|
|
abserr[k] = abs(val_old[k] - val[k]) # absolute tolerance
|
|
|
|
k, = np.where(abserr > np.maximum(abs(releps * val), abseps))
|
|
|
|
nk = len(k) # of integrals we have to compute again
|
|
|
|
if nk == 0:
|
|
|
|
break
|
|
|
|
val_old[k] = val[k]
|
|
|
|
gn *= 2 # double the # of basepoints and weights
|
|
|
|
else:
|
|
|
|
self._warn(k, a_shape)
|
|
|
|
|
|
|
|
# make sure int is the same size as the integration limits
|
|
|
|
val.shape = a_shape
|
|
|
|
abserr.shape = a_shape
|
|
|
|
|
|
|
|
self._plot_final_trace()
|
|
|
|
return val, abserr
|
|
|
|
gaussq = _Gaussq()
|
|
|
|
|
|
|
|
|
|
|
|
def richardson(Q, k):
|
|
|
|
# license BSD
|
|
|
|
# Richardson extrapolation with parameter estimation
|
|
|
|
c = np.real((Q[k - 1] - Q[k - 2]) / (Q[k] - Q[k - 1])) - 1.
|
|
|
|
# The lower bound 0.07 admits the singularity x.^-0.9
|
|
|
|
c = max(c, 0.07)
|
|
|
|
R = Q[k] + (Q[k] - Q[k - 1]) / c
|
|
|
|
return R
|
|
|
|
|
|
|
|
|
|
|
|
def quadgr(fun, a, b, abseps=1e-5, max_iter=17):
|
|
|
|
'''
|
|
|
|
Gauss-Legendre quadrature with Richardson extrapolation.
|
|
|
|
|
|
|
|
[Q,ERR] = QUADGR(FUN,A,B,TOL) approximates the integral of a function
|
|
|
|
FUN from A to B with an absolute error tolerance TOL. FUN is a function
|
|
|
|
handle and must accept vector arguments. TOL is 1e-6 by default. Q is
|
|
|
|
the integral approximation and ERR is an estimate of the absolute error.
|
|
|
|
|
|
|
|
QUADGR uses a 12-point Gauss-Legendre quadrature. The error estimate is
|
|
|
|
based on successive interval bisection. Richardson extrapolation
|
|
|
|
accelerates the convergence for some integrals, especially integrals
|
|
|
|
with endpoint singularities.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> Q, err = quadgr(np.log,0,1)
|
|
|
|
>>> quadgr(np.exp,0,9999*1j*np.pi)
|
|
|
|
(-2.0000000000122662, 2.1933237448479304e-09)
|
|
|
|
|
|
|
|
>>> quadgr(lambda x: np.sqrt(4-x**2),0,2,1e-12)
|
|
|
|
(3.1415926535897811, 1.5809575870662229e-13)
|
|
|
|
|
|
|
|
>>> quadgr(lambda x: x**-0.75,0,1)
|
|
|
|
(4.0000000000000266, 5.6843418860808015e-14)
|
|
|
|
|
|
|
|
>>> quadgr(lambda x: 1./np.sqrt(1-x**2),-1,1)
|
|
|
|
(3.141596056985029, 6.2146261559092864e-06)
|
|
|
|
|
|
|
|
>>> quadgr(lambda x: np.exp(-x**2),-np.inf,np.inf,1e-9) #% sqrt(pi)
|
|
|
|
(1.7724538509055152, 1.9722334876348668e-11)
|
|
|
|
|
|
|
|
>>> quadgr(lambda x: np.cos(x)*np.exp(-x),0,np.inf,1e-9)
|
|
|
|
(0.50000000000000044, 7.3296813063450372e-11)
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
QUAD,
|
|
|
|
QUADGK
|
|
|
|
'''
|
|
|
|
# Author: jonas.lundgren@saabgroup.com, 2009. license BSD
|
|
|
|
# Order limits (required if infinite limits)
|
|
|
|
if a == b:
|
|
|
|
Q = b - a
|
|
|
|
err = b - a
|
|
|
|
return Q, err
|
|
|
|
elif np.real(a) > np.real(b):
|
|
|
|
reverse = True
|
|
|
|
a, b = b, a
|
|
|
|
else:
|
|
|
|
reverse = False
|
|
|
|
|
|
|
|
# Infinite limits
|
|
|
|
if np.isinf(a) | np.isinf(b):
|
|
|
|
# Check real limits
|
|
|
|
if ~ np.isreal(a) | ~np.isreal(b) | np.isnan(a) | np.isnan(b):
|
|
|
|
raise ValueError('Infinite intervals must be real.')
|
|
|
|
|
|
|
|
# Change of variable
|
|
|
|
if np.isfinite(a) & np.isinf(b):
|
|
|
|
# a to inf
|
|
|
|
fun1 = lambda t: fun(a + t / (1 - t)) / (1 - t) ** 2
|
|
|
|
[Q, err] = quadgr(fun1, 0, 1, abseps)
|
|
|
|
elif np.isinf(a) & np.isfinite(b):
|
|
|
|
# -inf to b
|
|
|
|
fun2 = lambda t: fun(b + t / (1 + t)) / (1 + t) ** 2
|
|
|
|
[Q, err] = quadgr(fun2, -1, 0, abseps)
|
|
|
|
else: # -inf to inf
|
|
|
|
fun1 = lambda t: fun(t / (1 - t)) / (1 - t) ** 2
|
|
|
|
fun2 = lambda t: fun(t / (1 + t)) / (1 + t) ** 2
|
|
|
|
[Q1, err1] = quadgr(fun1, 0, 1, abseps / 2)
|
|
|
|
[Q2, err2] = quadgr(fun2, -1, 0, abseps / 2)
|
|
|
|
Q = Q1 + Q2
|
|
|
|
err = err1 + err2
|
|
|
|
|
|
|
|
# Reverse direction
|
|
|
|
if reverse:
|
|
|
|
Q = -Q
|
|
|
|
return Q, err
|
|
|
|
|
|
|
|
# Gauss-Legendre quadrature (12-point)
|
|
|
|
xq = np.asarray(
|
|
|
|
[0.12523340851146894, 0.36783149899818018, 0.58731795428661748,
|
|
|
|
0.76990267419430469, 0.9041172563704748, 0.98156063424671924])
|
|
|
|
wq = np.asarray(
|
|
|
|
[0.24914704581340288, 0.23349253653835478, 0.20316742672306584,
|
|
|
|
0.16007832854334636, 0.10693932599531818, 0.047175336386511842])
|
|
|
|
xq = np.hstack((xq, -xq))
|
|
|
|
wq = np.hstack((wq, wq))
|
|
|
|
nq = len(xq)
|
|
|
|
dtype = np.result_type(fun(a), fun(b))
|
|
|
|
|
|
|
|
# Initiate vectors
|
|
|
|
Q0 = zeros(max_iter, dtype=dtype) # Quadrature
|
|
|
|
Q1 = zeros(max_iter, dtype=dtype) # First Richardson extrapolation
|
|
|
|
Q2 = zeros(max_iter, dtype=dtype) # Second Richardson extrapolation
|
|
|
|
|
|
|
|
# One interval
|
|
|
|
hh = (b - a) / 2 # Half interval length
|
|
|
|
x = (a + b) / 2 + hh * xq # Nodes
|
|
|
|
# Quadrature
|
|
|
|
Q0[0] = hh * np.sum(wq * fun(x), axis=0)
|
|
|
|
|
|
|
|
# Successive bisection of intervals
|
|
|
|
for k in xrange(1, max_iter):
|
|
|
|
|
|
|
|
# Interval bisection
|
|
|
|
hh = hh / 2
|
|
|
|
x = np.hstack([x + a, x + b]) / 2
|
|
|
|
# Quadrature
|
|
|
|
Q0[k] = hh * \
|
|
|
|
np.sum(wq * np.sum(np.reshape(fun(x), (-1, nq)), axis=0), axis=0)
|
|
|
|
|
|
|
|
# Richardson extrapolation
|
|
|
|
if k >= 5:
|
|
|
|
Q1[k] = richardson(Q0, k)
|
|
|
|
Q2[k] = richardson(Q1, k)
|
|
|
|
elif k >= 3:
|
|
|
|
Q1[k] = richardson(Q0, k)
|
|
|
|
|
|
|
|
# Estimate absolute error
|
|
|
|
if k >= 6:
|
|
|
|
Qv = np.hstack((Q0[k], Q1[k], Q2[k]))
|
|
|
|
Qw = np.hstack((Q0[k - 1], Q1[k - 1], Q2[k - 1]))
|
|
|
|
elif k >= 4:
|
|
|
|
Qv = np.hstack((Q0[k], Q1[k]))
|
|
|
|
Qw = np.hstack((Q0[k - 1], Q1[k - 1]))
|
|
|
|
else:
|
|
|
|
Qv = np.atleast_1d(Q0[k])
|
|
|
|
Qw = Q0[k - 1]
|
|
|
|
|
|
|
|
errors = np.atleast_1d(abs(Qv - Qw))
|
|
|
|
j = errors.argmin()
|
|
|
|
err = errors[j]
|
|
|
|
Q = Qv[j]
|
|
|
|
if k >= 2: # and not iscomplex:
|
|
|
|
_val, err1 = dea3(Q0[k - 2], Q0[k - 1], Q0[k])
|
|
|
|
|
|
|
|
# Convergence
|
|
|
|
if (err < abseps) | ~np.isfinite(Q):
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
warnings.warn('Max number of iterations reached without convergence.')
|
|
|
|
|
|
|
|
if ~ np.isfinite(Q):
|
|
|
|
warnings.warn('Integral approximation is Infinite or NaN.')
|
|
|
|
|
|
|
|
# The error estimate should not be zero
|
|
|
|
err = err + 2 * np.finfo(Q).eps
|
|
|
|
# Reverse direction
|
|
|
|
if reverse:
|
|
|
|
Q = -Q
|
|
|
|
|
|
|
|
return Q, err
|
|
|
|
|
|
|
|
|
|
|
|
def boole(y, x):
|
|
|
|
a, b = x[0], x[-1]
|
|
|
|
n = len(x)
|
|
|
|
h = (b - a) / (n - 1)
|
|
|
|
return (2 * h / 45) * (7 * (y[0] + y[-1]) + 12 * np.sum(y[2:n - 1:4]) +
|
|
|
|
32 * np.sum(y[1:n - 1:2]) +
|
|
|
|
14 * np.sum(y[4:n - 3:4]))
|
|
|
|
|
|
|
|
|
|
|
|
def qdemo(f, a, b, kmax=9, plot_error=False):
|
|
|
|
'''
|
|
|
|
Compares different quadrature rules.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
f : callable
|
|
|
|
function
|
|
|
|
a,b : scalars
|
|
|
|
lower and upper integration limits
|
|
|
|
|
|
|
|
Details
|
|
|
|
-------
|
|
|
|
qdemo(f,a,b) computes and compares various approximations to
|
|
|
|
the integral of f from a to b. Three approximations are used,
|
|
|
|
the composite trapezoid, Simpson's, and Boole's rules, all with
|
|
|
|
equal length subintervals.
|
|
|
|
In a case like qdemo(exp,0,3) one can see the expected
|
|
|
|
convergence rates for each of the three methods.
|
|
|
|
In a case like qdemo(sqrt,0,3), the convergence rate is limited
|
|
|
|
not by the method, but by the singularity of the integrand.
|
|
|
|
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> qdemo(np.exp,0,3)
|
|
|
|
true value = 19.08553692
|
|
|
|
ftn, Boole, Chebychev
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.4008539142, 0.3153169910, 19.5061466023, 0.4206096791
|
|
|
|
5, 19.0910191534, 0.0054822302, 19.0910191534, 0.0054822302
|
|
|
|
9, 19.0856414320, 0.0001045088, 19.0855374134, 0.0000004902
|
|
|
|
17, 19.0855386464, 0.0000017232, 19.0855369232, 0.0000000000
|
|
|
|
33, 19.0855369505, 0.0000000273, 19.0855369232, 0.0000000000
|
|
|
|
65, 19.0855369236, 0.0000000004, 19.0855369232, 0.0000000000
|
|
|
|
129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
ftn, Clenshaw-Curtis, Gauss-Legendre
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.5061466023, 0.4206096791, 19.0803304585, 0.0052064647
|
|
|
|
5, 19.0834145766, 0.0021223465, 19.0855365951, 0.0000003281
|
|
|
|
9, 19.0855369150, 0.0000000082, 19.0855369232, 0.0000000000
|
|
|
|
17, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
33, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
65, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
|
|
|
|
ftn, Simps, Trapz
|
|
|
|
evals approx error approx error
|
|
|
|
3, 19.5061466023, 0.4206096791, 22.5366862979, 3.4511493747
|
|
|
|
5, 19.1169646189, 0.0314276957, 19.9718950387, 0.8863581155
|
|
|
|
9, 19.0875991312, 0.0020622080, 19.3086731081, 0.2231361849
|
|
|
|
17, 19.0856674267, 0.0001305035, 19.1414188470, 0.0558819239
|
|
|
|
33, 19.0855451052, 0.0000081821, 19.0995135407, 0.0139766175
|
|
|
|
65, 19.0855374350, 0.0000005118, 19.0890314614, 0.0034945382
|
|
|
|
129, 19.0855369552, 0.0000000320, 19.0864105817, 0.0008736585
|
|
|
|
257, 19.0855369252, 0.0000000020, 19.0857553393, 0.0002184161
|
|
|
|
513, 19.0855369233, 0.0000000001, 19.0855915273, 0.0000546041
|
|
|
|
'''
|
|
|
|
true_val, _tol = intg.quad(f, a, b)
|
|
|
|
print('true value = %12.8f' % (true_val,))
|
|
|
|
neval = zeros(kmax, dtype=int)
|
|
|
|
vals_dic = {}
|
|
|
|
err_dic = {}
|
|
|
|
|
|
|
|
# try various approximations
|
|
|
|
methods = [trapz, simps, boole, ]
|
|
|
|
|
|
|
|
for k in xrange(kmax):
|
|
|
|
n = 2 ** (k + 1) + 1
|
|
|
|
neval[k] = n
|
|
|
|
x = np.linspace(a, b, n)
|
|
|
|
y = f(x)
|
|
|
|
for method in methods:
|
|
|
|
name = method.__name__.title()
|
|
|
|
q = method(y, x)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
|
|
|
|
name = 'Clenshaw-Curtis'
|
|
|
|
q, _ec3 = clencurt(f, a, b, (n - 1) / 2)
|
|
|
|
vals_dic.setdefault(name, []).append(q[0])
|
|
|
|
err_dic.setdefault(name, []).append(abs(q[0] - true_val))
|
|
|
|
|
|
|
|
name = 'Chebychev'
|
|
|
|
ck = np.polynomial.chebyshev.chebfit(x, y, deg=min(n-1, 36))
|
|
|
|
cki = np.polynomial.chebyshev.chebint(ck)
|
|
|
|
q = np.polynomial.chebyshev.chebval(x[-1], cki)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
# ck = chebfit(f,n,a,b)
|
|
|
|
# q = chebval(b,chebint(ck,a,b),a,b)
|
|
|
|
# qc2[k] = q; ec2[k] = abs(q - true)
|
|
|
|
|
|
|
|
name = 'Gauss-Legendre' # quadrature
|
|
|
|
q = intg.fixed_quad(f, a, b, n=n)[0]
|
|
|
|
# [x, w]=qrule(n,1)
|
|
|
|
# x = (b-a)/2*x + (a+b)/2 % Transform base points X.
|
|
|
|
# w = (b-a)/2*w % Adjust weigths.
|
|
|
|
# q = sum(feval(f,x)*w)
|
|
|
|
vals_dic.setdefault(name, []).append(q)
|
|
|
|
err_dic.setdefault(name, []).append(abs(q - true_val))
|
|
|
|
|
|
|
|
# display results
|
|
|
|
names = sorted(vals_dic.keys())
|
|
|
|
num_cols = 2
|
|
|
|
formats = ['%4.0f, ', ] + ['%10.10f, ', ] * num_cols * 2
|
|
|
|
formats[-1] = formats[-1].split(',')[0]
|
|
|
|
formats_h = ['%4s, ', ] + ['%20s, ', ] * num_cols
|
|
|
|
formats_h[-1] = formats_h[-1].split(',')[0]
|
|
|
|
headers = ['evals'] + ['%12s %12s' % ('approx', 'error')] * num_cols
|
|
|
|
while len(names) > 0:
|
|
|
|
print(''.join(fi % t for fi, t in zip(formats_h,
|
|
|
|
['ftn'] + names[:num_cols])))
|
|
|
|
print(' '.join(headers))
|
|
|
|
|
|
|
|
data = [neval]
|
|
|
|
for name in names[:num_cols]:
|
|
|
|
data.append(vals_dic[name])
|
|
|
|
data.append(err_dic[name])
|
|
|
|
data = np.vstack(tuple(data)).T
|
|
|
|
for k in xrange(kmax):
|
|
|
|
tmp = data[k].tolist()
|
|
|
|
print(''.join(fi % t for fi, t in zip(formats, tmp)))
|
|
|
|
if plot_error:
|
|
|
|
plt.figure(0)
|
|
|
|
for name in names[:num_cols]:
|
|
|
|
plt.loglog(neval, err_dic[name], label=name)
|
|
|
|
|
|
|
|
names = names[num_cols:]
|
|
|
|
if plot_error:
|
|
|
|
plt.xlabel('number of function evaluations')
|
|
|
|
plt.ylabel('error')
|
|
|
|
plt.legend()
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# val, err = clencurt(np.exp, 0, 2)
|
|
|
|
# valt = np.exp(2) - np.exp(0)
|
|
|
|
# [Q, err] = quadgr(lambda x: x ** 2, 1, 4, 1e-9)
|
|
|
|
# [Q, err] = quadgr(humps, 1, 4, 1e-9)
|
|
|
|
#
|
|
|
|
# [x, w] = h_roots(11, 'newton')
|
|
|
|
# sum(w)
|
|
|
|
# [x2, w2] = la_roots(11, 1, 't')
|
|
|
|
#
|
|
|
|
# from scitools import numpyutils as npu #@UnresolvedImport
|
|
|
|
# fun = npu.wrap2callable('x**2')
|
|
|
|
# p0 = fun(0)
|
|
|
|
# A = [0, 1, 1]; B = [2, 4, 3]
|
|
|
|
# area, err = gaussq(fun, A, B)
|
|
|
|
#
|
|
|
|
# fun = npu.wrap2callable('x**2')
|
|
|
|
# [val1, err1] = gaussq(fun, A, B)
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Integration of x^2*exp(-x) from zero to infinity:
|
|
|
|
# fun2 = npu.wrap2callable('1')
|
|
|
|
# [val2, err2] = gaussq(fun2, 0, np.inf, wfun=3, alpha=2)
|
|
|
|
# [val2, err2] = gaussq(lambda x: x ** 2, 0, np.inf, wfun=3, alpha=0)
|
|
|
|
#
|
|
|
|
# Integrate humps from 0 to 2 and from 1 to 4
|
|
|
|
# [val3, err3] = gaussq(humps, A, B)
|
|
|
|
#
|
|
|
|
# [x, w] = p_roots(11, 'newton', 1, 3)
|
|
|
|
# y = np.sum(x ** 2 * w)
|
|
|
|
|
|
|
|
x = np.linspace(0, np.pi / 2)
|
|
|
|
_q0 = np.trapz(humps(x), x)
|
|
|
|
[q, err] = romberg(humps, 0, np.pi / 2, 1e-4)
|
|
|
|
print(q, err)
|
|
|
|
|
|
|
|
|
|
|
|
def test_docstrings():
|
|
|
|
np.set_printoptions(precision=7)
|
|
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
|
|
|
|
|
|
|
|
|
|
# def levin_integrate():
|
|
|
|
# ''' An oscillatory integral
|
|
|
|
# Sheehan Olver, December 2010
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# (Chebfun example quad/LevinIntegrate.m)
|
|
|
|
#
|
|
|
|
# This example computes the highly oscillatory integral of
|
|
|
|
#
|
|
|
|
# f * exp( 1i * w * g ),
|
|
|
|
#
|
|
|
|
# over (0,1) using the Levin method [1]. This method computes the integral
|
|
|
|
# by rewriting it as an ODE
|
|
|
|
#
|
|
|
|
# u' + 1i * w * g' u = f,
|
|
|
|
#
|
|
|
|
# so that the indefinite integral of f * exp( 1i * w * g ) is
|
|
|
|
#
|
|
|
|
# u * exp( 1i * w * g ).
|
|
|
|
#
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# We use as an example
|
|
|
|
#
|
|
|
|
# f = 1 / ( x + 2 );
|
|
|
|
# g = cos( x - 2 );
|
|
|
|
# w = 100000;
|
|
|
|
#
|
|
|
|
# #
|
|
|
|
# References:
|
|
|
|
#
|
|
|
|
# [1] Levin, D., Procedures for computing one and two-dimensional integrals
|
|
|
|
# of functions with rapid irregular oscillations, Maths Comp., 38 (1982) 531--538
|
|
|
|
# '''
|
|
|
|
# exp = np.exp
|
|
|
|
# domain=[0, 1]
|
|
|
|
# x = Chebfun.identity(domain=domain)
|
|
|
|
# f = 1./(x+2)
|
|
|
|
# g = np.cos(x-2)
|
|
|
|
# D = np.diff(domain)
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# # Here is are plots of this integrand, with w = 100, in complex space
|
|
|
|
# w = 100;
|
|
|
|
# line_opts = dict(line_width=1.6)
|
|
|
|
# font_opts = dict(font_size= 14)
|
|
|
|
# #
|
|
|
|
#
|
|
|
|
# intg = f*exp(1j*w*g)
|
|
|
|
# xs, ys, xi, yi, d = intg.plot_data(1000)
|
|
|
|
# #intg.plot(with_interpolation_points=True)
|
|
|
|
# #xi = np.linspace(0, 1, 1024)
|
|
|
|
# # plt.plot(xs, ys) # , **line_opts)
|
|
|
|
# # plt.plot(xi, yi, 'r.')
|
|
|
|
# # #axis equal
|
|
|
|
# # plt.title('Complex plot of integrand') #,**font_opts)
|
|
|
|
# # plt.show('hold')
|
|
|
|
# ##
|
|
|
|
# # and of just the real part
|
|
|
|
# # intgr = np.real(intg)
|
|
|
|
# # xs, ys, xi, yi, d = intgr.plot_data(1000)
|
|
|
|
# #intgr.plot()
|
|
|
|
# # plt.plot(xs, np.real(ys)) # , **line_opts)
|
|
|
|
# # plt.plot(xi, np.real(yi), 'r.')
|
|
|
|
# #axis equal
|
|
|
|
# # plt.title('Real part of integrand') #,**font_opts)
|
|
|
|
# # plt.show('hold')
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # The Levin method will be accurate for large and small w, and the time
|
|
|
|
# # taken is independent of w. Here we take a reasonably large value of w.
|
|
|
|
# w = 1000;
|
|
|
|
# intg = f*exp(1j*w*g)
|
|
|
|
# val0 = np.sum(intg)
|
|
|
|
# # val1 = sum(intg)
|
|
|
|
# print(val0)
|
|
|
|
# ##
|
|
|
|
# # Start timing
|
|
|
|
# #tic
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # Construct the operator L
|
|
|
|
# L = D + 1j*w*np.diag(g.differentiate())
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # From asymptotic analysis, we know that there exists a solution to the
|
|
|
|
# # equation which is non-oscillatory, though we do not know what initial
|
|
|
|
# # condition it satisfies. Thus we find a particular solution to this
|
|
|
|
# # equation with no boundary conditions.
|
|
|
|
#
|
|
|
|
# u = L / f
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # Because L is a differential operator with derivative order 1, \ expects
|
|
|
|
# # it to be given a boundary condition, which is why the warning message is
|
|
|
|
# # displayed. However, this doesn't cause any problems: though there are,
|
|
|
|
# # in fact, a family of solutions to the ODE without boundary conditions
|
|
|
|
# # due to the kernel
|
|
|
|
# #
|
|
|
|
# # exp(- 1i * w * g),
|
|
|
|
# #
|
|
|
|
# # it does not actually matter which particular solution is computed.
|
|
|
|
# # Non-uniqueness is also not an issue: \ in matlab is least squares, hence
|
|
|
|
# # does not require uniqueness. The existence of a non-oscillatory solution
|
|
|
|
# # ensures that \ converges to a u with length independent of w.
|
|
|
|
# #
|
|
|
|
# # One could prevent the warning by applying a boundary condition consistent
|
|
|
|
# # with the rest of the system, that is
|
|
|
|
# # L.lbc = {L(1,:),f(0)};
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # Now we evaluate the antiderivative at the endpoints to obtain the
|
|
|
|
# # integral.
|
|
|
|
#
|
|
|
|
# u(1)*exp(1j*w*g(1)) - u(0)*exp(1j*w*g(0))
|
|
|
|
#
|
|
|
|
# #toc
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# ##
|
|
|
|
# # Here is a way to compute the integral using Clenshaw--Curtis quadrature.
|
|
|
|
# # As w becomes large, this takes an increasingly long time as the
|
|
|
|
# # oscillations must be resolved.
|
|
|
|
#
|
|
|
|
# #tic
|
|
|
|
# sum( f*exp(1j*w*g) )
|
|
|
|
# #toc
|
|
|
|
|
|
|
|
|
|
|
|
# aLevinTQ[omega_,a_,b_,f_,g_,nu_,wprec_,prm_,test_,basis_,np_]:=
|
|
|
|
#
|
|
|
|
# Module[{r,betam,A,AA,BB,S,F,w=N[omega, wprec]},
|
|
|
|
# M=Length[nu]-1;
|
|
|
|
# PB[k_,t_]:=If[basis==1,t^k,ChebyshevT[k,t]];
|
|
|
|
#
|
|
|
|
# ff[t_]:=((b-a)/2)*f[(b-a)*t/2+(a+b)/2];
|
|
|
|
#
|
|
|
|
# gg[t_]:=g[(b-a)*t/2+(a+b)/2];
|
|
|
|
# dgg[t_]:=Derivative[1][gg][t];
|
|
|
|
#
|
|
|
|
# If[test==0, betam=Min[Abs[dgg[-1]*w], Abs[dgg[1]*w]];
|
|
|
|
# While[prm*M/betam >=1, betam=2*betam]];
|
|
|
|
# If[test>0,x[k_]:=N[Cos[k*Pi/M], wprec],x[k_]:=
|
|
|
|
# Which[k<prm*M, N[-1+k/betam, wprec], k==Ceiling[prm*M],0,
|
|
|
|
# k>prm*M, N[1-(M-k)/betam, wprec]]];
|
|
|
|
#
|
|
|
|
# Psi[k_,t_]:=Derivative[0,1][PB][k,t]+I*w*dgg[t]*PB[k,t];
|
|
|
|
#
|
|
|
|
# ne[j_]:=nu[[j+1]]; S[-1]=0; S[j_]:=Sum[ne[i],{i,0,j}];
|
|
|
|
# nn=S[M]-1;
|
|
|
|
# A=ConstantArray[0,{nn+1,nn+1}];
|
|
|
|
# F=ConstantArray[0,nn+1]; r=0;
|
|
|
|
# While[r<M+1, Do[Do[ AA[j,k]=
|
|
|
|
# Limit[Derivative[0,Mod[j-S[r-1],ne[r]]][Psi][k,t],t->x[r]],
|
|
|
|
# {k,0,S[M]-1}],{j,S[r-1],S[r]-1}];
|
|
|
|
#
|
|
|
|
# Do[BB[j]=Limit[Derivative[Mod[j-S[r-1],ne[r]]][ff][t],
|
|
|
|
# t->x[r]],{j,S[r-1],S[r]-1}];
|
|
|
|
# Do[F[[j]]=BB[j-1],{j,S[r-1]+1,S[r]}];
|
|
|
|
# Do[Do[A[[j,k]]=AA[j-1,k-1],{k,1,S[M]}],{j,S[r-1]+1,S[r]}];
|
|
|
|
# r=r+1;]; (*sv=SingularValueList[N[A,wprec]];
|
|
|
|
# con=sv[[1]]/sv[[-1]]; Print["cond2(A)= ",N[con,3]];*)
|
|
|
|
# LS=Block[{MaxExtraPrecision=0},LeastSquares[N[A, wprec],F]];
|
|
|
|
# vvv[t_]:=Sum[LS[[k+1]]*PB[k,t], {k,0,nn}];
|
|
|
|
# NR=vvv[1]*Exp[I*w*gg[1]]-vvv[-1]*Exp[I*w*gg[-1]];
|
|
|
|
# Print["n=", np+ii+2s-2, ", Result= ", N[NR, wprec/2+5]];
|
|
|
|
# If[ii==0,PR=NR];];
|
|
|
|
# (* End of subroutine aLevinTQ /A.I. Hascelik, July 2013/ *)
|
|
|
|
#
|
|
|
|
# def main_levin():
|
|
|
|
# a=1; b=2;
|
|
|
|
# omega=100;
|
|
|
|
# prm=1/2;
|
|
|
|
# f[t_]=Exp[4t]
|
|
|
|
# g[t_]=t+Exp[4t]*Gamma[t]
|
|
|
|
#
|
|
|
|
# dg[t_]:=Derivative[1][g][t];
|
|
|
|
#
|
|
|
|
# prec=16
|
|
|
|
# wprec=2*prec
|
|
|
|
# delta = min(abs(omega*dg(a)), abs(omega*dg(b)))
|
|
|
|
# alpha = min(abs(omega*g(a)), abs(omega*g(b)))
|
|
|
|
# s=1; #(*if s>1, the integral is computed by Q_s^L*)
|
|
|
|
# test= 1 if delta<10 or alpha <=10 or s>1 else 0
|
|
|
|
#
|
|
|
|
# m = 1 if s>1 else np.floor(prec/max(np.log10(beta+1),1)+2)
|
|
|
|
# nc = 2*m+1 #(*or np=2m, number of collocation points*)
|
|
|
|
# basis=1; # (*take basis=0 for the Chebysev basis*)
|
|
|
|
# for ii in range(0, 2, 2):
|
|
|
|
# nu = np.ones((nc+ii,)) # ConstantArray[1,nc+ii];
|
|
|
|
# nu[0] = s
|
|
|
|
# nu[-1] = s
|
|
|
|
# #nu[[1]]=s;
|
|
|
|
# #nu[[-1]]=s;
|
|
|
|
# aLevinTQ[omega,a,b,f,g,nu,wprec,prm,test,basis,nc],
|
|
|
|
# #{ii,0,2,2}];
|
|
|
|
# Print["Error= ",Abs[NR-PR]];
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# levin_integrate()
|
|
|
|
test_docstrings()
|
|
|
|
# qdemo(np.exp, 0, 3, plot_error=True)
|
|
|
|
# plt.show('hold')
|
|
|
|
# main()
|