|
|
|
#
|
|
|
|
# Author: Travis Oliphant 2002-2011 with contributions from
|
|
|
|
# SciPy Developers 2004-2011
|
|
|
|
#
|
|
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from scipy.special import comb
|
|
|
|
from scipy.misc.doccer import inherit_docstring_from
|
|
|
|
from scipy import special
|
|
|
|
from scipy import optimize
|
|
|
|
from scipy import integrate
|
|
|
|
from scipy.special import (gammaln as gamln, gamma as gam, boxcox, boxcox1p,
|
|
|
|
inv_boxcox, inv_boxcox1p, erfc, chndtr, chndtrix,
|
|
|
|
log1p, expm1,
|
|
|
|
i0, i1, ndtr as _norm_cdf, log_ndtr as _norm_logcdf)
|
|
|
|
|
|
|
|
from numpy import (where, arange, putmask, ravel, shape,
|
|
|
|
log, sqrt, exp, arctanh, tan, sin, arcsin, arctan,
|
|
|
|
tanh, cos, cosh, sinh)
|
|
|
|
|
|
|
|
from numpy import polyval, place, extract, asarray, nan, inf, pi
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from scipy.stats.mstats_basic import mode
|
|
|
|
try:
|
|
|
|
from scipy.stats import vonmises_cython
|
|
|
|
except:
|
|
|
|
vonmises_cython = None
|
|
|
|
|
|
|
|
from scipy.stats._tukeylambda_stats import (tukeylambda_variance as _tlvar,
|
|
|
|
tukeylambda_kurtosis as _tlkurt)
|
|
|
|
|
|
|
|
from ._distn_infrastructure import (
|
|
|
|
rv_continuous, valarray, _skew, _kurtosis, _lazywhere,
|
|
|
|
_ncx2_log_pdf, _ncx2_pdf, _ncx2_cdf, get_distribution_names,
|
|
|
|
)
|
|
|
|
|
|
|
|
from ._constants import _XMIN, _EULER, _ZETA3, _XMAX, _LOGXMAX, _EPS
|
|
|
|
|
|
|
|
|
|
|
|
## Kolmogorov-Smirnov one-sided and two-sided test statistics
|
|
|
|
class ksone_gen(rv_continuous):
|
|
|
|
"""General Kolmogorov-Smirnov one-sided test.
|
|
|
|
|
|
|
|
%(default)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _cdf(self, x, n):
|
|
|
|
return 1.0 - special.smirnov(n, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, n):
|
|
|
|
return special.smirnovi(n, 1.0 - q)
|
|
|
|
ksone = ksone_gen(a=0.0, name='ksone')
|
|
|
|
|
|
|
|
|
|
|
|
class kstwobign_gen(rv_continuous):
|
|
|
|
"""Kolmogorov-Smirnov two-sided test for large N.
|
|
|
|
|
|
|
|
%(default)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 1.0 - special.kolmogorov(x)
|
|
|
|
|
|
|
|
def _sf(self, x):
|
|
|
|
return special.kolmogorov(x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return special.kolmogi(1.0-q)
|
|
|
|
kstwobign = kstwobign_gen(a=0.0, name='kstwobign')
|
|
|
|
|
|
|
|
|
|
|
|
## Normal distribution
|
|
|
|
|
|
|
|
# loc = mu, scale = std
|
|
|
|
# Keep these implementations out of the class definition so they can be reused
|
|
|
|
# by other distributions.
|
|
|
|
_norm_pdf_C = np.sqrt(2*pi)
|
|
|
|
_norm_pdf_logC = np.log(_norm_pdf_C)
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_pdf(x):
|
|
|
|
return exp(-x**2/2.0) / _norm_pdf_C
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_logpdf(x):
|
|
|
|
return -x**2 / 2.0 - _norm_pdf_logC
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_ppf(q):
|
|
|
|
return special.ndtri(q)
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_sf(x):
|
|
|
|
return _norm_cdf(-x)
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_logsf(x):
|
|
|
|
return _norm_logcdf(-x)
|
|
|
|
|
|
|
|
|
|
|
|
def _norm_isf(q):
|
|
|
|
return -special.ndtri(q)
|
|
|
|
|
|
|
|
|
|
|
|
class norm_gen(rv_continuous):
|
|
|
|
"""A normal continuous random variable.
|
|
|
|
|
|
|
|
The location (loc) keyword specifies the mean.
|
|
|
|
The scale (scale) keyword specifies the standard deviation.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `norm` is::
|
|
|
|
|
|
|
|
norm.pdf(x) = exp(-x**2/2)/sqrt(2*pi)
|
|
|
|
|
|
|
|
The survival function, ``norm.sf``, is also referred to as the
|
|
|
|
Q-function in some contexts (see, e.g.,
|
|
|
|
`Wikipedia's <https://en.wikipedia.org/wiki/Q-function>`_ definition).
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.standard_normal(self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return _norm_pdf(x)
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return _norm_logpdf(x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return _norm_cdf(x)
|
|
|
|
|
|
|
|
def _logcdf(self, x):
|
|
|
|
return _norm_logcdf(x)
|
|
|
|
|
|
|
|
def _sf(self, x):
|
|
|
|
return _norm_sf(x)
|
|
|
|
|
|
|
|
def _logsf(self, x):
|
|
|
|
return _norm_logsf(x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return _norm_ppf(q)
|
|
|
|
|
|
|
|
def _isf(self, q):
|
|
|
|
return _norm_isf(q)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0.0, 1.0, 0.0, 0.0
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 0.5*(log(2*pi)+1)
|
|
|
|
|
|
|
|
@inherit_docstring_from(rv_continuous)
|
|
|
|
def fit(self, data, **kwds):
|
|
|
|
"""%(super)s
|
|
|
|
This function (norm_gen.fit) uses explicit formulas for the maximum
|
|
|
|
likelihood estimation of the parameters, so the `optimizer` argument
|
|
|
|
is ignored.
|
|
|
|
"""
|
|
|
|
floc = kwds.get('floc', None)
|
|
|
|
fscale = kwds.get('fscale', None)
|
|
|
|
|
|
|
|
if floc is not None and fscale is not None:
|
|
|
|
# This check is for consistency with `rv_continuous.fit`.
|
|
|
|
# Without this check, this function would just return the
|
|
|
|
# parameters that were given.
|
|
|
|
raise ValueError("All parameters fixed. There is nothing to "
|
|
|
|
"optimize.")
|
|
|
|
|
|
|
|
data = np.asarray(data)
|
|
|
|
|
|
|
|
if floc is None:
|
|
|
|
loc = data.mean()
|
|
|
|
else:
|
|
|
|
loc = floc
|
|
|
|
|
|
|
|
if fscale is None:
|
|
|
|
scale = np.sqrt(((data - loc)**2).mean())
|
|
|
|
else:
|
|
|
|
scale = fscale
|
|
|
|
|
|
|
|
return loc, scale
|
|
|
|
|
|
|
|
norm = norm_gen(name='norm')
|
|
|
|
|
|
|
|
|
|
|
|
class alpha_gen(rv_continuous):
|
|
|
|
"""An alpha continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `alpha` is::
|
|
|
|
|
|
|
|
alpha.pdf(x, a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2),
|
|
|
|
|
|
|
|
where ``Phi(alpha)`` is the normal CDF, ``x > 0``, and ``a > 0``.
|
|
|
|
|
|
|
|
`alpha` takes ``a`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return 1.0/(x**2)/_norm_cdf(a)*_norm_pdf(a-1.0/x)
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
return -2*log(x) + _norm_logpdf(a-1.0/x) - log(_norm_cdf(a))
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
return _norm_cdf(a-1.0/x) / _norm_cdf(a)
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
return 1.0/asarray(a-special.ndtri(q*special.ndtr(a)))
|
|
|
|
|
|
|
|
def _stats(self, a):
|
|
|
|
return [inf]*2 + [nan]*2
|
|
|
|
alpha = alpha_gen(a=0.0, name='alpha')
|
|
|
|
|
|
|
|
|
|
|
|
class anglit_gen(rv_continuous):
|
|
|
|
"""An anglit continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `anglit` is::
|
|
|
|
|
|
|
|
anglit.pdf(x) = sin(2*x + pi/2) = cos(2*x),
|
|
|
|
|
|
|
|
for ``-pi/4 <= x <= pi/4``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return cos(2*x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return sin(x+pi/4)**2.0
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return (arcsin(sqrt(q))-pi/4)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0.0, pi*pi/16-0.5, 0.0, -2*(pi**4 - 96)/(pi*pi-8)**2
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 1-log(2)
|
|
|
|
anglit = anglit_gen(a=-pi/4, b=pi/4, name='anglit')
|
|
|
|
|
|
|
|
|
|
|
|
class arcsine_gen(rv_continuous):
|
|
|
|
"""An arcsine continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `arcsine` is::
|
|
|
|
|
|
|
|
arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x)))
|
|
|
|
|
|
|
|
for ``0 < x < 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1.0/pi/sqrt(x*(1-x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 2.0/pi*arcsin(sqrt(x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return sin(pi/2.0*q)**2.0
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
mu = 0.5
|
|
|
|
mu2 = 1.0/8
|
|
|
|
g1 = 0
|
|
|
|
g2 = -3.0/2.0
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return -0.24156447527049044468
|
|
|
|
arcsine = arcsine_gen(a=0.0, b=1.0, name='arcsine')
|
|
|
|
|
|
|
|
|
|
|
|
class FitDataError(ValueError):
|
|
|
|
# This exception is raised by, for example, beta_gen.fit when both floc
|
|
|
|
# and fscale are fixed and there are values in the data not in the open
|
|
|
|
# interval (floc, floc+fscale).
|
|
|
|
def __init__(self, distr, lower, upper):
|
|
|
|
self.args = (
|
|
|
|
"Invalid values in `data`. Maximum likelihood "
|
|
|
|
"estimation with {distr!r} requires that {lower!r} < x "
|
|
|
|
"< {upper!r} for each x in `data`.".format(
|
|
|
|
distr=distr, lower=lower, upper=upper),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class FitSolverError(RuntimeError):
|
|
|
|
# This exception is raised by, for example, beta_gen.fit when
|
|
|
|
# optimize.fsolve returns with ier != 1.
|
|
|
|
def __init__(self, mesg):
|
|
|
|
emsg = "Solver for the MLE equations failed to converge: "
|
|
|
|
emsg += mesg.replace('\n', '')
|
|
|
|
self.args = (emsg,)
|
|
|
|
|
|
|
|
|
|
|
|
def _beta_mle_a(a, b, n, s1):
|
|
|
|
# The zeros of this function give the MLE for `a`, with
|
|
|
|
# `b`, `n` and `s1` given. `s1` is the sum of the logs of
|
|
|
|
# the data. `n` is the number of data points.
|
|
|
|
psiab = special.psi(a + b)
|
|
|
|
func = s1 - n * (-psiab + special.psi(a))
|
|
|
|
return func
|
|
|
|
|
|
|
|
|
|
|
|
def _beta_mle_ab(theta, n, s1, s2):
|
|
|
|
# Zeros of this function are critical points of
|
|
|
|
# the maximum likelihood function. Solving this system
|
|
|
|
# for theta (which contains a and b) gives the MLE for a and b
|
|
|
|
# given `n`, `s1` and `s2`. `s1` is the sum of the logs of the data,
|
|
|
|
# and `s2` is the sum of the logs of 1 - data. `n` is the number
|
|
|
|
# of data points.
|
|
|
|
a, b = theta
|
|
|
|
psiab = special.psi(a + b)
|
|
|
|
func = [s1 - n * (-psiab + special.psi(a)),
|
|
|
|
s2 - n * (-psiab + special.psi(b))]
|
|
|
|
return func
|
|
|
|
|
|
|
|
|
|
|
|
class beta_gen(rv_continuous):
|
|
|
|
"""A beta continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `beta` is::
|
|
|
|
|
|
|
|
gamma(a+b) * x**(a-1) * (1-x)**(b-1)
|
|
|
|
beta.pdf(x, a, b) = ------------------------------------
|
|
|
|
gamma(a)*gamma(b)
|
|
|
|
|
|
|
|
for ``0 < x < 1``, ``a > 0``, ``b > 0``, where ``gamma(z)`` is the gamma
|
|
|
|
function (`scipy.special.gamma`).
|
|
|
|
|
|
|
|
`beta` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, a, b):
|
|
|
|
return self._random_state.beta(a, b, self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
return np.exp(self._logpdf(x, a, b))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, b):
|
|
|
|
lPx = special.xlog1py(b-1.0, -x) + special.xlogy(a-1.0, x)
|
|
|
|
lPx -= special.betaln(a, b)
|
|
|
|
return lPx
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return special.btdtr(a, b, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
return special.btdtri(a, b, q)
|
|
|
|
|
|
|
|
def _stats(self, a, b):
|
|
|
|
mn = a*1.0 / (a + b)
|
|
|
|
var = (a*b*1.0)/(a+b+1.0)/(a+b)**2.0
|
|
|
|
g1 = 2.0*(b-a)*sqrt((1.0+a+b)/(a*b)) / (2+a+b)
|
|
|
|
g2 = 6.0*(a**3 + a**2*(1-2*b) + b**2*(1+b) - 2*a*b*(2+b))
|
|
|
|
g2 /= a*b*(a+b+2)*(a+b+3)
|
|
|
|
return mn, var, g1, g2
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
g1 = _skew(data)
|
|
|
|
g2 = _kurtosis(data)
|
|
|
|
|
|
|
|
def func(x):
|
|
|
|
a, b = x
|
|
|
|
sk = 2*(b-a)*sqrt(a + b + 1) / (a + b + 2) / sqrt(a*b)
|
|
|
|
ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2)
|
|
|
|
ku /= a*b*(a+b+2)*(a+b+3)
|
|
|
|
ku *= 6
|
|
|
|
return [sk-g1, ku-g2]
|
|
|
|
a, b = optimize.fsolve(func, (1.0, 1.0))
|
|
|
|
return super(beta_gen, self)._fitstart(data, args=(a, b))
|
|
|
|
|
|
|
|
@inherit_docstring_from(rv_continuous)
|
|
|
|
def fit(self, data, *args, **kwds):
|
|
|
|
"""%(super)s
|
|
|
|
In the special case where both `floc` and `fscale` are given, a
|
|
|
|
`ValueError` is raised if any value `x` in `data` does not satisfy
|
|
|
|
`floc < x < floc + fscale`.
|
|
|
|
"""
|
|
|
|
# Override rv_continuous.fit, so we can more efficiently handle the
|
|
|
|
# case where floc and fscale are given.
|
|
|
|
|
|
|
|
f0 = (kwds.get('f0', None) or kwds.get('fa', None) or
|
|
|
|
kwds.get('fix_a', None))
|
|
|
|
f1 = (kwds.get('f1', None) or kwds.get('fb', None) or
|
|
|
|
kwds.get('fix_b', None))
|
|
|
|
floc = kwds.get('floc', None)
|
|
|
|
fscale = kwds.get('fscale', None)
|
|
|
|
|
|
|
|
if floc is None or fscale is None:
|
|
|
|
# do general fit
|
|
|
|
return super(beta_gen, self).fit(data, *args, **kwds)
|
|
|
|
|
|
|
|
if f0 is not None and f1 is not None:
|
|
|
|
# This check is for consistency with `rv_continuous.fit`.
|
|
|
|
raise ValueError("All parameters fixed. There is nothing to "
|
|
|
|
"optimize.")
|
|
|
|
|
|
|
|
# Special case: loc and scale are constrained, so we are fitting
|
|
|
|
# just the shape parameters. This can be done much more efficiently
|
|
|
|
# than the method used in `rv_continuous.fit`. (See the subsection
|
|
|
|
# "Two unknown parameters" in the section "Maximum likelihood" of
|
|
|
|
# the Wikipedia article on the Beta distribution for the formulas.)
|
|
|
|
|
|
|
|
# Normalize the data to the interval [0, 1].
|
|
|
|
data = (ravel(data) - floc) / fscale
|
|
|
|
if np.any(data <= 0) or np.any(data >= 1):
|
|
|
|
raise FitDataError("beta", lower=floc, upper=floc + fscale)
|
|
|
|
xbar = data.mean()
|
|
|
|
|
|
|
|
if f0 is not None or f1 is not None:
|
|
|
|
# One of the shape parameters is fixed.
|
|
|
|
|
|
|
|
if f0 is not None:
|
|
|
|
# The shape parameter a is fixed, so swap the parameters
|
|
|
|
# and flip the data. We always solve for `a`. The result
|
|
|
|
# will be swapped back before returning.
|
|
|
|
b = f0
|
|
|
|
data = 1 - data
|
|
|
|
xbar = 1 - xbar
|
|
|
|
else:
|
|
|
|
b = f1
|
|
|
|
|
|
|
|
# Initial guess for a. Use the formula for the mean of the beta
|
|
|
|
# distribution, E[x] = a / (a + b), to generate a reasonable
|
|
|
|
# starting point based on the mean of the data and the given
|
|
|
|
# value of b.
|
|
|
|
a = b * xbar / (1 - xbar)
|
|
|
|
|
|
|
|
# Compute the MLE for `a` by solving _beta_mle_a.
|
|
|
|
theta, info, ier, mesg = optimize.fsolve(
|
|
|
|
_beta_mle_a, a,
|
|
|
|
args=(b, len(data), np.log(data).sum()),
|
|
|
|
full_output=True
|
|
|
|
)
|
|
|
|
if ier != 1:
|
|
|
|
raise FitSolverError(mesg=mesg)
|
|
|
|
a = theta[0]
|
|
|
|
|
|
|
|
if f0 is not None:
|
|
|
|
# The shape parameter a was fixed, so swap back the
|
|
|
|
# parameters.
|
|
|
|
a, b = b, a
|
|
|
|
|
|
|
|
else:
|
|
|
|
# Neither of the shape parameters is fixed.
|
|
|
|
|
|
|
|
# s1 and s2 are used in the extra arguments passed to _beta_mle_ab
|
|
|
|
# by optimize.fsolve.
|
|
|
|
s1 = np.log(data).sum()
|
|
|
|
s2 = np.log(1 - data).sum()
|
|
|
|
|
|
|
|
# Use the "method of moments" to estimate the initial
|
|
|
|
# guess for a and b.
|
|
|
|
fac = xbar * (1 - xbar) / data.var(ddof=0) - 1
|
|
|
|
a = xbar * fac
|
|
|
|
b = (1 - xbar) * fac
|
|
|
|
|
|
|
|
# Compute the MLE for a and b by solving _beta_mle_ab.
|
|
|
|
theta, info, ier, mesg = optimize.fsolve(
|
|
|
|
_beta_mle_ab, [a, b],
|
|
|
|
args=(len(data), s1, s2),
|
|
|
|
full_output=True
|
|
|
|
)
|
|
|
|
if ier != 1:
|
|
|
|
raise FitSolverError(mesg=mesg)
|
|
|
|
a, b = theta
|
|
|
|
|
|
|
|
return a, b, floc, fscale
|
|
|
|
|
|
|
|
beta = beta_gen(a=0.0, b=1.0, name='beta')
|
|
|
|
|
|
|
|
|
|
|
|
class betaprime_gen(rv_continuous):
|
|
|
|
"""A beta prime continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `betaprime` is::
|
|
|
|
|
|
|
|
betaprime.pdf(x, a, b) = x**(a-1) * (1+x)**(-a-b) / beta(a, b)
|
|
|
|
|
|
|
|
for ``x > 0``, ``a > 0``, ``b > 0``, where ``beta(a, b)`` is the beta
|
|
|
|
function (see `scipy.special.beta`).
|
|
|
|
|
|
|
|
`betaprime` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, a, b):
|
|
|
|
sz, rndm = self._size, self._random_state
|
|
|
|
u1 = gamma.rvs(a, size=sz, random_state=rndm)
|
|
|
|
u2 = gamma.rvs(b, size=sz, random_state=rndm)
|
|
|
|
return (u1 / u2)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
return np.exp(self._logpdf(x, a, b))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, b):
|
|
|
|
return (special.xlogy(a-1.0, x) - special.xlog1py(a+b, x) -
|
|
|
|
special.betaln(a, b))
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return special.betainc(a, b, x/(1.+x))
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
g1 = np.mean(data)
|
|
|
|
g2 = mode(data)[0]
|
|
|
|
|
|
|
|
def func(x):
|
|
|
|
a, b = x
|
|
|
|
me = a / (b - 1) if 1 < b else 1e100
|
|
|
|
mo = (a - 1) / (b + 1) if 1 <= a else 0
|
|
|
|
return [me - g1, mo - g2]
|
|
|
|
a, b = optimize.fsolve(func, (1.0, 1.5))
|
|
|
|
return super(betaprime_gen, self)._fitstart(data, args=(a, b))
|
|
|
|
|
|
|
|
def _munp(self, n, a, b):
|
|
|
|
if (n == 1.0):
|
|
|
|
return where(b > 1, a/(b-1.0), inf)
|
|
|
|
elif (n == 2.0):
|
|
|
|
return where(b > 2, a*(a+1.0)/((b-2.0)*(b-1.0)), inf)
|
|
|
|
elif (n == 3.0):
|
|
|
|
return where(b > 3, a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)),
|
|
|
|
inf)
|
|
|
|
elif (n == 4.0):
|
|
|
|
return where(b > 4,
|
|
|
|
a*(a+1.0)*(a+2.0)*(a+3.0)/((b-4.0)*(b-3.0)
|
|
|
|
* (b-2.0)*(b-1.0)), inf)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError
|
|
|
|
betaprime = betaprime_gen(a=0.0, name='betaprime')
|
|
|
|
|
|
|
|
|
|
|
|
class bradford_gen(rv_continuous):
|
|
|
|
"""A Bradford continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `bradford` is::
|
|
|
|
|
|
|
|
bradford.pdf(x, c) = c / (k * (1+c*x)),
|
|
|
|
|
|
|
|
for ``0 < x < 1``, ``c > 0`` and ``k = log(1+c)``.
|
|
|
|
|
|
|
|
`bradford` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return c / (c * x + 1.0) / log1p(c)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return log1p(c * x) / log1p(c)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return ((1.0+c)**q-1)/c
|
|
|
|
|
|
|
|
def _stats(self, c, moments='mv'):
|
|
|
|
k = log1p(c)
|
|
|
|
mu = (c-k)/(c*k)
|
|
|
|
mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k)
|
|
|
|
g1 = None
|
|
|
|
g2 = None
|
|
|
|
if 's' in moments:
|
|
|
|
g1 = sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3))
|
|
|
|
g1 /= sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k)
|
|
|
|
if 'k' in moments:
|
|
|
|
g2 = (c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3)
|
|
|
|
+ 6*c*k*k*(3*k-14) + 12*k**3)
|
|
|
|
g2 /= 3*c*(c*(k-2)+2*k)**2
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
k = log1p(c)
|
|
|
|
return k/2.0 - log(c/k)
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
loc = data.min() - 1e-4
|
|
|
|
scale = (data - loc).max()
|
|
|
|
m = np.mean((data - loc) / scale)
|
|
|
|
fun = lambda c: (c - log1p(c)) / (c * log1p(c)) - m
|
|
|
|
res = optimize.root(fun, 0.3)
|
|
|
|
c = res.x
|
|
|
|
return c, loc, scale
|
|
|
|
bradford = bradford_gen(a=0.0, b=1.0, name='bradford')
|
|
|
|
|
|
|
|
|
|
|
|
class burr_gen(rv_continuous):
|
|
|
|
"""A Burr (Type III) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
fisk : a special case of either `burr` or ``burr12`` with ``d = 1``
|
|
|
|
burr12 : Burr Type XII distribution
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `burr` is::
|
|
|
|
|
|
|
|
burr.pdf(x, c, d) = c * d * x**(-c-1) * (1+x**(-c))**(-d-1)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`burr` takes ``c`` and ``d`` as shape parameters.
|
|
|
|
|
|
|
|
This is the PDF corresponding to the third CDF given in Burr's list;
|
|
|
|
specifically, it is equation (11) in Burr's paper [1]_.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
|
|
|
|
Mathematical Statistics, 13(2), pp 215-232 (1942).
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c, d):
|
|
|
|
return c * d * (x**(-c - 1.0)) * ((1 + x**(-c))**(-d - 1.0))
|
|
|
|
|
|
|
|
def _cdf(self, x, c, d):
|
|
|
|
return (1 + x**(-c))**(-d)
|
|
|
|
|
|
|
|
def _ppf(self, q, c, d):
|
|
|
|
return (q**(-1.0/d) - 1)**(-1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, c, d):
|
|
|
|
nc = 1. * n / c
|
|
|
|
return d * special.beta(1.0 - nc, d + nc)
|
|
|
|
burr = burr_gen(a=0.0, name='burr')
|
|
|
|
|
|
|
|
|
|
|
|
class burr12_gen(rv_continuous):
|
|
|
|
"""A Burr (Type XII) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
fisk : a special case of either `burr` or ``burr12`` with ``d = 1``
|
|
|
|
burr : Burr Type III distribution
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `burr` is::
|
|
|
|
|
|
|
|
burr12.pdf(x, c, d) = c * d * x**(c-1) * (1+x**(c))**(-d-1)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`burr12` takes ``c`` and ``d`` as shape parameters.
|
|
|
|
|
|
|
|
This is the PDF corresponding to the twelfth CDF given in Burr's list;
|
|
|
|
specifically, it is equation (20) in Burr's paper [1]_.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
The Burr type 12 distribution is also sometimes referred to as
|
|
|
|
the Singh-Maddala distribution from NIST [2]_.
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] Burr, I. W. "Cumulative frequency functions", Annals of
|
|
|
|
Mathematical Statistics, 13(2), pp 215-232 (1942).
|
|
|
|
|
|
|
|
.. [2] http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/b12pdf.htm
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c, d):
|
|
|
|
return np.exp(self._logpdf(x, c, d))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c, d):
|
|
|
|
return log(c) + log(d) + special.xlogy(c-1, x) + special.xlog1py(-d-1, x**c)
|
|
|
|
|
|
|
|
def _cdf(self, x, c, d):
|
|
|
|
return 1 - self._sf(x, c, d)
|
|
|
|
|
|
|
|
def _logcdf(self, x, c, d):
|
|
|
|
return special.log1p(-(1 + x**c)**(-d))
|
|
|
|
|
|
|
|
def _sf(self, x, c, d):
|
|
|
|
return np.exp(self._logsf(x, c, d))
|
|
|
|
|
|
|
|
def _logsf(self, x, c, d):
|
|
|
|
return special.xlog1py(-d, x**c)
|
|
|
|
|
|
|
|
def _ppf(self, q, c, d):
|
|
|
|
return ((1 - q)**(-1.0/d) - 1)**(1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, c, d):
|
|
|
|
nc = 1. * n / c
|
|
|
|
return d * special.beta(1.0 + nc, d - nc)
|
|
|
|
burr12 = burr12_gen(a=0.0, name='burr12')
|
|
|
|
|
|
|
|
|
|
|
|
class fisk_gen(burr_gen):
|
|
|
|
"""A Fisk continuous random variable.
|
|
|
|
|
|
|
|
The Fisk distribution is also known as the log-logistic distribution, and
|
|
|
|
equals the Burr distribution with ``d == 1``.
|
|
|
|
|
|
|
|
`fisk` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `fisk` is::
|
|
|
|
|
|
|
|
fisk.pdf(x, c) = c * x**(-c-1) * (1 + x**(-c))**(-2)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`fisk` takes ``c`` as a shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
burr
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return burr_gen._pdf(self, x, c, 1.0)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return burr_gen._cdf(self, x, c, 1.0)
|
|
|
|
|
|
|
|
def _ppf(self, x, c):
|
|
|
|
return burr_gen._ppf(self, x, c, 1.0)
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
return burr_gen._munp(self, n, c, 1.0)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 2 - log(c)
|
|
|
|
fisk = fisk_gen(a=0.0, name='fisk')
|
|
|
|
|
|
|
|
|
|
|
|
# median = loc
|
|
|
|
class cauchy_gen(rv_continuous):
|
|
|
|
"""A Cauchy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `cauchy` is::
|
|
|
|
|
|
|
|
cauchy.pdf(x) = 1 / (pi * (1 + x**2))
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1.0/pi/(1.0+x*x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 0.5 + 1.0/pi*arctan(x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return tan(pi*q-pi/2.0)
|
|
|
|
|
|
|
|
def _sf(self, x):
|
|
|
|
return 0.5 - 1.0/pi*arctan(x)
|
|
|
|
|
|
|
|
def _isf(self, q):
|
|
|
|
return tan(pi/2.0-pi*q)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return nan, nan, nan, nan
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return log(4*pi)
|
|
|
|
|
|
|
|
def _fitstart(self, data, args=None):
|
|
|
|
# Initialize ML guesses using quartiles instead of moments.
|
|
|
|
p25, p50, p75 = np.percentile(data, [25, 50, 75])
|
|
|
|
return p50, (p75 - p25)/2
|
|
|
|
cauchy = cauchy_gen(name='cauchy')
|
|
|
|
|
|
|
|
|
|
|
|
class chi_gen(rv_continuous):
|
|
|
|
"""A chi continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `chi` is::
|
|
|
|
|
|
|
|
chi.pdf(x, df) = x**(df-1) * exp(-x**2/2) / (2**(df/2-1) * gamma(df/2))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
Special cases of `chi` are:
|
|
|
|
|
|
|
|
- ``chi(1, loc, scale)`` is equivalent to `halfnorm`
|
|
|
|
- ``chi(2, 0, scale)`` is equivalent to `rayleigh`
|
|
|
|
- ``chi(3, 0, scale)`` is equivalent to `maxwell`
|
|
|
|
|
|
|
|
`chi` takes ``df`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, df):
|
|
|
|
sz, rndm = self._size, self._random_state
|
|
|
|
return sqrt(chi2.rvs(df, size=sz, random_state=rndm))
|
|
|
|
|
|
|
|
def _pdf(self, x, df):
|
|
|
|
return np.exp(self._logpdf(x, df))
|
|
|
|
|
|
|
|
def _logpdf(self, x, df):
|
|
|
|
l = np.log(2) - .5*np.log(2)*df - special.gammaln(.5*df)
|
|
|
|
return l + special.xlogy(df-1.,x) - .5*x**2
|
|
|
|
|
|
|
|
def _cdf(self, x, df):
|
|
|
|
return special.gammainc(.5*df, .5*x**2)
|
|
|
|
|
|
|
|
def _ppf(self, q, df):
|
|
|
|
return sqrt(2*special.gammaincinv(.5*df, q))
|
|
|
|
|
|
|
|
def _stats(self, df):
|
|
|
|
mu = sqrt(2)*special.gamma(df/2.0+0.5)/special.gamma(df/2.0)
|
|
|
|
mu2 = df - mu*mu
|
|
|
|
g1 = (2*mu**3.0 + mu*(1-2*df))/asarray(np.power(mu2, 1.5))
|
|
|
|
g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1)
|
|
|
|
g2 /= asarray(mu2**2.0)
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
m = data.mean()
|
|
|
|
v = data.var()
|
|
|
|
# Supply a starting guess with method of moments:
|
|
|
|
df = max(np.round(v + m ** 2), 1)
|
|
|
|
return super(chi_gen, self)._fitstart(data, args=(df,))
|
|
|
|
chi = chi_gen(a=0.0, name='chi')
|
|
|
|
|
|
|
|
|
|
|
|
## Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2)
|
|
|
|
class chi2_gen(rv_continuous):
|
|
|
|
"""A chi-squared continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `chi2` is::
|
|
|
|
|
|
|
|
chi2.pdf(x, df) = 1 / (2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2)
|
|
|
|
|
|
|
|
`chi2` takes ``df`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, df):
|
|
|
|
return self._random_state.chisquare(df, self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, df):
|
|
|
|
return exp(self._logpdf(x, df))
|
|
|
|
|
|
|
|
def _logpdf(self, x, df):
|
|
|
|
return special.xlogy(df/2.-1, x) - x/2. - gamln(df/2.) - (log(2)*df)/2.
|
|
|
|
|
|
|
|
def _cdf(self, x, df):
|
|
|
|
return special.chdtr(df, x)
|
|
|
|
|
|
|
|
def _sf(self, x, df):
|
|
|
|
return special.chdtrc(df, x)
|
|
|
|
|
|
|
|
def _isf(self, p, df):
|
|
|
|
return special.chdtri(df, p)
|
|
|
|
|
|
|
|
def _ppf(self, p, df):
|
|
|
|
return self._isf(1.0-p, df)
|
|
|
|
|
|
|
|
def _stats(self, df):
|
|
|
|
mu = df
|
|
|
|
mu2 = 2*df
|
|
|
|
g1 = 2*sqrt(2.0/df)
|
|
|
|
g2 = 12.0/df
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
m = data.mean()
|
|
|
|
v = data.var()
|
|
|
|
# Supply a starting guess with method of moments:
|
|
|
|
df = max(np.round((m + v / 2) / 2), 1)
|
|
|
|
return super(chi2_gen, self)._fitstart(data, args=(df,))
|
|
|
|
chi2 = chi2_gen(a=0.0, name='chi2')
|
|
|
|
|
|
|
|
|
|
|
|
class cosine_gen(rv_continuous):
|
|
|
|
"""A cosine continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The cosine distribution is an approximation to the normal distribution.
|
|
|
|
The probability density function for `cosine` is::
|
|
|
|
|
|
|
|
cosine.pdf(x) = 1/(2*pi) * (1+cos(x))
|
|
|
|
|
|
|
|
for ``-pi <= x <= pi``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1.0/2/pi*(1+cos(x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 1.0/2/pi*(pi + x + sin(x))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0.0, pi*pi/3.0-2.0, 0.0, -6.0*(pi**4-90)/(5.0*(pi*pi-6)**2)
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return log(4*pi)-1.0
|
|
|
|
cosine = cosine_gen(a=-pi, b=pi, name='cosine')
|
|
|
|
|
|
|
|
|
|
|
|
class dgamma_gen(rv_continuous):
|
|
|
|
"""A double gamma continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `dgamma` is::
|
|
|
|
|
|
|
|
dgamma.pdf(x, a) = 1 / (2*gamma(a)) * abs(x)**(a-1) * exp(-abs(x))
|
|
|
|
|
|
|
|
for ``a > 0``.
|
|
|
|
|
|
|
|
`dgamma` takes ``a`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, a):
|
|
|
|
sz, rndm = self._size, self._random_state
|
|
|
|
u = rndm.random_sample(size=sz)
|
|
|
|
gm = gamma.rvs(a, size=sz, random_state=rndm)
|
|
|
|
return gm * where(u >= 0.5, 1, -1)
|
|
|
|
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
ax = abs(x)
|
|
|
|
return 1.0/(2*special.gamma(a))*ax**(a-1.0) * exp(-ax)
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
ax = abs(x)
|
|
|
|
return special.xlogy(a-1.0, ax) - ax - log(2) - gamln(a)
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
fac = 0.5*special.gammainc(a, abs(x))
|
|
|
|
return where(x > 0, 0.5 + fac, 0.5 - fac)
|
|
|
|
|
|
|
|
def _sf(self, x, a):
|
|
|
|
fac = 0.5*special.gammainc(a, abs(x))
|
|
|
|
return where(x > 0, 0.5-fac, 0.5+fac)
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
fac = special.gammainccinv(a, 1-abs(2*q-1))
|
|
|
|
return where(q > 0.5, fac, -fac)
|
|
|
|
|
|
|
|
def _stats(self, a):
|
|
|
|
mu2 = a*(a+1.0)
|
|
|
|
return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0
|
|
|
|
dgamma = dgamma_gen(name='dgamma')
|
|
|
|
|
|
|
|
|
|
|
|
class dweibull_gen(rv_continuous):
|
|
|
|
"""A double Weibull continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `dweibull` is::
|
|
|
|
|
|
|
|
dweibull.pdf(x, c) = c / 2 * abs(x)**(c-1) * exp(-abs(x)**c)
|
|
|
|
|
|
|
|
`dweibull` takes ``d`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, c):
|
|
|
|
sz, rndm = self._size, self._random_state
|
|
|
|
u = rndm.random_sample(size=sz)
|
|
|
|
w = weibull_min.rvs(c, size=sz, random_state=rndm)
|
|
|
|
return w * (where(u >= 0.5, 1, -1))
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
ax = abs(x)
|
|
|
|
Px = c / 2.0 * ax**(c-1.0) * exp(-ax**c)
|
|
|
|
return Px
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
ax = abs(x)
|
|
|
|
return log(c) - log(2.0) + special.xlogy(c - 1.0, ax) - ax**c
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
Cx1 = 0.5 * exp(-abs(x)**c)
|
|
|
|
return where(x > 0, 1 - Cx1, Cx1)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
fac = 2. * where(q <= 0.5, q, 1. - q)
|
|
|
|
fac = np.power(-log(fac), 1.0 / c)
|
|
|
|
return where(q > 0.5, fac, -fac)
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
return (1 - (n % 2)) * special.gamma(1.0 + 1.0 * n / c)
|
|
|
|
|
|
|
|
# since we know that all odd moments are zeros, return them at once.
|
|
|
|
# returning Nones from _stats makes the public stats call _munp
|
|
|
|
# so overall we're saving one or two gamma function evaluations here.
|
|
|
|
def _stats(self, c):
|
|
|
|
return 0, None, 0, None
|
|
|
|
dweibull = dweibull_gen(name='dweibull')
|
|
|
|
|
|
|
|
|
|
|
|
## Exponential (gamma distributed with a=1.0, loc=loc and scale=scale)
|
|
|
|
class expon_gen(rv_continuous):
|
|
|
|
"""An exponential continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `expon` is::
|
|
|
|
|
|
|
|
expon.pdf(x) = exp(-x)
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
A common parameterization for `expon` is in terms of the rate parameter
|
|
|
|
``lambda``, such that ``pdf = lambda * exp(-lambda * x)``. This
|
|
|
|
parameterization corresponds to using ``scale = 1 / lambda``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
if ix == 1:
|
|
|
|
return - (x - phat[0]) / logSF
|
|
|
|
elif ix == 0:
|
|
|
|
return x + phat[1] * logSF
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.standard_exponential(self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(-x)
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return -x
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return -special.expm1(-x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return -special.log1p(-q)
|
|
|
|
|
|
|
|
def _sf(self, x):
|
|
|
|
return exp(-x)
|
|
|
|
|
|
|
|
def _logsf(self, x):
|
|
|
|
return -x
|
|
|
|
|
|
|
|
def _isf(self, q):
|
|
|
|
return -log(q)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 1.0, 1.0, 2.0, 6.0
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 1.0
|
|
|
|
expon = expon_gen(a=0.0, name='expon')
|
|
|
|
|
|
|
|
|
|
|
|
## Exponentially Modified Normal (exponential distribution
|
|
|
|
## convolved with a Normal).
|
|
|
|
## This is called an exponentially modified gaussian on wikipedia
|
|
|
|
class exponnorm_gen(rv_continuous):
|
|
|
|
"""An exponentially modified Normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `exponnorm` is::
|
|
|
|
|
|
|
|
exponnorm.pdf(x, K) = 1/(2*K) exp(1/(2 * K**2)) exp(-x / K) * erfc(-(x - 1/K) / sqrt(2))
|
|
|
|
|
|
|
|
where the shape parameter ``K > 0``.
|
|
|
|
|
|
|
|
It can be thought of as the sum of a normally distributed random
|
|
|
|
value with mean ``loc`` and sigma ``scale`` and an exponentially
|
|
|
|
distributed random number with a pdf proportional to ``exp(-lambda * x)``
|
|
|
|
where ``lambda = (K * scale)**(-1)``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
An alternative parameterization of this distribution (for example, in
|
|
|
|
`Wikipedia <http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution>`_)
|
|
|
|
involves three parameters, :math:`\mu`, :math:`\lambda` and :math:`\sigma`.
|
|
|
|
In the present parameterization this corresponds to having ``loc`` and
|
|
|
|
``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
|
|
|
|
shape parameter :math:`K = 1/\sigma\lambda`.
|
|
|
|
|
|
|
|
.. versionadded:: 0.16.0
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, K):
|
|
|
|
expval = self._random_state.standard_exponential(self._size) * K
|
|
|
|
gval = self._random_state.standard_normal(self._size)
|
|
|
|
return expval + gval
|
|
|
|
|
|
|
|
def _pdf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
exparg = 0.5 * invK**2 - invK * x
|
|
|
|
# Avoid overflows; setting exp(exparg) to the max float works
|
|
|
|
# all right here
|
|
|
|
expval = _lazywhere(exparg < _LOGXMAX, (exparg,), exp, _XMAX)
|
|
|
|
return 0.5 * invK * expval * erfc(-(x - invK) / sqrt(2))
|
|
|
|
|
|
|
|
def _logpdf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
exparg = 0.5 * invK**2 - invK * x
|
|
|
|
return exparg + log(0.5 * invK * erfc(-(x - invK) / sqrt(2)))
|
|
|
|
|
|
|
|
def _cdf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
return _norm_cdf(x) - exp(expval) * _norm_cdf(x - invK)
|
|
|
|
|
|
|
|
def _sf(self, x, K):
|
|
|
|
invK = 1.0 / K
|
|
|
|
expval = invK * (0.5 * invK - x)
|
|
|
|
return _norm_cdf(-x) + exp(expval) * _norm_cdf(x - invK)
|
|
|
|
|
|
|
|
def _stats(self, K):
|
|
|
|
K2 = K * K
|
|
|
|
opK2 = 1.0 + K2
|
|
|
|
skw = 2 * K**3 * opK2**(-1.5)
|
|
|
|
krt = 6.0 * K2 * K2 * opK2**(-2)
|
|
|
|
return K, opK2, skw, krt
|
|
|
|
exponnorm = exponnorm_gen(name='exponnorm')
|
|
|
|
|
|
|
|
|
|
|
|
class exponweib_gen(rv_continuous):
|
|
|
|
"""An exponentiated Weibull continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `exponweib` is::
|
|
|
|
|
|
|
|
exponweib.pdf(x, a, c) =
|
|
|
|
a * c * (1-exp(-x**c))**(a-1) * exp(-x**c)*x**(c-1)
|
|
|
|
|
|
|
|
for ``x > 0``, ``a > 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`exponweib` takes ``a`` and ``c`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, a, c):
|
|
|
|
return exp(self._logpdf(x, a, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, c):
|
|
|
|
negxc = -x**c
|
|
|
|
exm1c = -special.expm1(negxc)
|
|
|
|
logp = (log(a) + log(c) + special.xlogy(a - 1.0, exm1c) +
|
|
|
|
negxc + special.xlogy(c - 1.0, x))
|
|
|
|
return logp
|
|
|
|
|
|
|
|
def _cdf(self, x, a, c):
|
|
|
|
exm1c = -special.expm1(-x**c)
|
|
|
|
return exm1c**a
|
|
|
|
|
|
|
|
def _ppf(self, q, a, c):
|
|
|
|
return (-special.log1p(-q**(1.0/a)))**asarray(1.0/c)
|
|
|
|
exponweib = exponweib_gen(a=0.0, name='exponweib')
|
|
|
|
|
|
|
|
|
|
|
|
class exponpow_gen(rv_continuous):
|
|
|
|
"""An exponential power continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `exponpow` is::
|
|
|
|
|
|
|
|
exponpow.pdf(x, b) = b * x**(b-1) * exp(1 + x**b - exp(x**b))
|
|
|
|
|
|
|
|
for ``x >= 0``, ``b > 0``. Note that this is a different distribution
|
|
|
|
from the exponential power distribution that is also known under the names
|
|
|
|
"generalized normal" or "generalized Gaussian".
|
|
|
|
|
|
|
|
`exponpow` takes ``b`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Exponentialpower.pdf
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, b):
|
|
|
|
return exp(self._logpdf(x, b))
|
|
|
|
|
|
|
|
def _logpdf(self, x, b):
|
|
|
|
xb = x**b
|
|
|
|
f = 1 + log(b) + special.xlogy(b - 1.0, x) + xb - exp(xb)
|
|
|
|
return f
|
|
|
|
|
|
|
|
def _cdf(self, x, b):
|
|
|
|
return -special.expm1(-special.expm1(x**b))
|
|
|
|
|
|
|
|
def _sf(self, x, b):
|
|
|
|
return exp(-special.expm1(x**b))
|
|
|
|
|
|
|
|
def _isf(self, x, b):
|
|
|
|
return (special.log1p(-log(x)))**(1./b)
|
|
|
|
|
|
|
|
def _ppf(self, q, b):
|
|
|
|
return pow(special.log1p(-special.log1p(-q)), 1.0/b)
|
|
|
|
exponpow = exponpow_gen(a=0.0, name='exponpow')
|
|
|
|
|
|
|
|
|
|
|
|
class fatiguelife_gen(rv_continuous):
|
|
|
|
"""A fatigue-life (Birnbaum-Saunders) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `fatiguelife` is::
|
|
|
|
|
|
|
|
fatiguelife.pdf(x, c) =
|
|
|
|
(x+1) / (2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`fatiguelife` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] "Birnbaum-Saunders distribution",
|
|
|
|
http://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, c):
|
|
|
|
z = self._random_state.standard_normal(self._size)
|
|
|
|
x = 0.5*c*z
|
|
|
|
x2 = x*x
|
|
|
|
t = 1.0 + 2*x2 + 2*x*sqrt(1 + x2)
|
|
|
|
return t
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return np.exp(self._logpdf(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return (log(x+1) - (x-1)**2 / (2.0*x*c**2) - log(2*c) -
|
|
|
|
0.5*(log(2*pi) + 3*log(x)))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return _norm_cdf(1.0 / c * (sqrt(x) - 1.0/sqrt(x)))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
tmp = c*special.ndtri(q)
|
|
|
|
return 0.25 * (tmp + sqrt(tmp**2 + 4))**2
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
# NB: the formula for kurtosis in wikipedia seems to have an error:
|
|
|
|
# it's 40, not 41. At least it disagrees with the one from Wolfram
|
|
|
|
# Alpha. And the latter one, below, passes the tests, while the wiki
|
|
|
|
# one doesn't So far I didn't have the guts to actually check the
|
|
|
|
# coefficients from the expressions for the raw moments.
|
|
|
|
c2 = c*c
|
|
|
|
mu = c2 / 2.0 + 1.0
|
|
|
|
den = 5.0 * c2 + 4.0
|
|
|
|
mu2 = c2*den / 4.0
|
|
|
|
g1 = 4 * c * (11*c2 + 6.0) / np.power(den, 1.5)
|
|
|
|
g2 = 6 * c2 * (93*c2 + 40.0) / den**2.0
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
fatiguelife = fatiguelife_gen(a=0.0, name='fatiguelife')
|
|
|
|
|
|
|
|
|
|
|
|
class foldcauchy_gen(rv_continuous):
|
|
|
|
"""A folded Cauchy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `foldcauchy` is::
|
|
|
|
|
|
|
|
foldcauchy.pdf(x, c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2))
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
`foldcauchy` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, c):
|
|
|
|
return abs(cauchy.rvs(loc=c, size=self._size,
|
|
|
|
random_state=self._random_state))
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return 1.0/pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return 1.0/pi*(arctan(x-c) + arctan(x+c))
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
return inf, inf, nan, nan
|
|
|
|
foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy')
|
|
|
|
|
|
|
|
|
|
|
|
class f_gen(rv_continuous):
|
|
|
|
"""An F continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `f` is::
|
|
|
|
|
|
|
|
df2**(df2/2) * df1**(df1/2) * x**(df1/2-1)
|
|
|
|
F.pdf(x, df1, df2) = --------------------------------------------
|
|
|
|
(df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`f` takes ``dfn`` and ``dfd`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, dfn, dfd):
|
|
|
|
return self._random_state.f(dfn, dfd, self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, dfn, dfd):
|
|
|
|
return exp(self._logpdf(x, dfn, dfd))
|
|
|
|
|
|
|
|
def _logpdf(self, x, dfn, dfd):
|
|
|
|
n = 1.0 * dfn
|
|
|
|
m = 1.0 * dfd
|
|
|
|
lPx = m/2 * log(m) + n/2 * log(n) + (n/2 - 1) * log(x)
|
|
|
|
lPx -= ((n+m)/2) * log(m + n*x) + special.betaln(n/2, m/2)
|
|
|
|
return lPx
|
|
|
|
|
|
|
|
def _cdf(self, x, dfn, dfd):
|
|
|
|
return special.fdtr(dfn, dfd, x)
|
|
|
|
|
|
|
|
def _sf(self, x, dfn, dfd):
|
|
|
|
return special.fdtrc(dfn, dfd, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, dfn, dfd):
|
|
|
|
return special.fdtri(dfn, dfd, q)
|
|
|
|
|
|
|
|
def _stats(self, dfn, dfd):
|
|
|
|
v1, v2 = 1. * dfn, 1. * dfd
|
|
|
|
v2_2, v2_4, v2_6, v2_8 = v2 - 2., v2 - 4., v2 - 6., v2 - 8.
|
|
|
|
|
|
|
|
mu = _lazywhere(
|
|
|
|
v2 > 2, (v2, v2_2),
|
|
|
|
lambda v2, v2_2: v2 / v2_2,
|
|
|
|
np.inf)
|
|
|
|
|
|
|
|
mu2 = _lazywhere(
|
|
|
|
v2 > 4, (v1, v2, v2_2, v2_4),
|
|
|
|
lambda v1, v2, v2_2, v2_4:
|
|
|
|
2 * v2 * v2 * (v1 + v2_2) / (v1 * v2_2**2 * v2_4),
|
|
|
|
np.inf)
|
|
|
|
|
|
|
|
g1 = _lazywhere(
|
|
|
|
v2 > 6, (v1, v2_2, v2_4, v2_6),
|
|
|
|
lambda v1, v2_2, v2_4, v2_6:
|
|
|
|
(2 * v1 + v2_2) / v2_6 * sqrt(v2_4 / (v1 * (v1 + v2_2))),
|
|
|
|
np.nan)
|
|
|
|
g1 *= np.sqrt(8.)
|
|
|
|
|
|
|
|
g2 = _lazywhere(
|
|
|
|
v2 > 8, (g1, v2_6, v2_8),
|
|
|
|
lambda g1, v2_6, v2_8: (8 + g1 * g1 * v2_6) / v2_8,
|
|
|
|
np.nan)
|
|
|
|
g2 *= 3. / 2.
|
|
|
|
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
m = data.mean()
|
|
|
|
v = data.var()
|
|
|
|
# Supply a starting guess with method of moments:
|
|
|
|
dfd = max(np.round(2 * m / (m - 1)), 5)
|
|
|
|
dfn = max(
|
|
|
|
np.round(2 * dfd * dfd * (dfd - 2) /
|
|
|
|
(v * (dfd - 4) * (dfd - 2) ** 2 - 2 * dfd * dfd)), 1)
|
|
|
|
return super(f_gen, self)._fitstart(data, args=(dfn, dfd,))
|
|
|
|
f = f_gen(a=0.0, name='f')
|
|
|
|
|
|
|
|
|
|
|
|
## Folded Normal
|
|
|
|
## abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S)
|
|
|
|
##
|
|
|
|
## note: regress docs have scale parameter correct, but first parameter
|
|
|
|
## he gives is a shape parameter A = c * scale
|
|
|
|
|
|
|
|
## Half-normal is folded normal with shape-parameter c=0.
|
|
|
|
|
|
|
|
class foldnorm_gen(rv_continuous):
|
|
|
|
"""A folded normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `foldnorm` is::
|
|
|
|
|
|
|
|
foldnormal.pdf(x, c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2)
|
|
|
|
|
|
|
|
for ``c >= 0``.
|
|
|
|
|
|
|
|
`foldnorm` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, c):
|
|
|
|
return (c >= 0)
|
|
|
|
|
|
|
|
def _rvs(self, c):
|
|
|
|
return abs(self._random_state.standard_normal(self._size) + c)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return _norm_pdf(x + c) + _norm_pdf(x-c)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return _norm_cdf(x-c) + _norm_cdf(x+c) - 1.0
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
# Regina C. Elandt, Technometrics 3, 551 (1961)
|
|
|
|
# http://www.jstor.org/stable/1266561
|
|
|
|
#
|
|
|
|
c2 = c*c
|
|
|
|
expfac = np.exp(-0.5*c2) / np.sqrt(2.*pi)
|
|
|
|
|
|
|
|
mu = 2.*expfac + c * special.erf(c/sqrt(2))
|
|
|
|
mu2 = c2 + 1 - mu*mu
|
|
|
|
|
|
|
|
g1 = 2. * (mu*mu*mu - c2*mu - expfac)
|
|
|
|
g1 /= np.power(mu2, 1.5)
|
|
|
|
|
|
|
|
g2 = c2 * (c2 + 6.) + 3 + 8.*expfac*mu
|
|
|
|
g2 += (2. * (c2 - 3.) - 3. * mu**2) * mu**2
|
|
|
|
g2 = g2 / mu2**2.0 - 3.
|
|
|
|
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
foldnorm = foldnorm_gen(a=0.0, name='foldnorm')
|
|
|
|
|
|
|
|
|
|
|
|
## Extreme Value Type II or Frechet
|
|
|
|
## (defined in Regress+ documentation as Extreme LB) as
|
|
|
|
## a limiting value distribution.
|
|
|
|
##
|
|
|
|
class frechet_r_gen(rv_continuous):
|
|
|
|
"""A Frechet right (or Weibull minimum) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
weibull_min : The same distribution as `frechet_r`.
|
|
|
|
frechet_l, weibull_max
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `frechet_r` is::
|
|
|
|
|
|
|
|
frechet_r.pdf(x, c) = c * x**(c-1) * exp(-x**c)
|
|
|
|
|
|
|
|
for ``x > 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`frechet_r` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
if ix == 0:
|
|
|
|
phati = log(-logSF) / log((x - phat[1]) / phat[2])
|
|
|
|
elif ix == 1:
|
|
|
|
phati = x - phat[2] * (-logSF) ** (1. / phat[0])
|
|
|
|
elif ix == 2:
|
|
|
|
phati = (x - phat[1]) / (-logSF) ** (1. / phat[0])
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
return phati
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return c*pow(x, c-1)*exp(-pow(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return log(c) + special.xlogy(c - 1, x) - pow(x, c)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return -special.expm1(-pow(x, c))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return pow(-special.log1p(-q), 1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
return special.gamma(1.0+n*1.0/c)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return -_EULER / c - log(c) + _EULER + 1
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
loc = data.min() - 0.01 # *np.std(data)
|
|
|
|
chat = 1. / (6 ** (1 / 2) / pi * np.std(log(data - loc)))
|
|
|
|
scale = np.mean((data - loc) ** chat) ** (1. / chat)
|
|
|
|
return chat, loc, scale
|
|
|
|
|
|
|
|
frechet_r = frechet_r_gen(a=0.0, name='frechet_r')
|
|
|
|
weibull_min = frechet_r_gen(a=0.0, name='weibull_min')
|
|
|
|
|
|
|
|
|
|
|
|
class frechet_l_gen(rv_continuous):
|
|
|
|
"""A Frechet left (or Weibull maximum) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
weibull_max : The same distribution as `frechet_l`.
|
|
|
|
frechet_r, weibull_min
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `frechet_l` is::
|
|
|
|
|
|
|
|
frechet_l.pdf(x, c) = c * (-x)**(c-1) * exp(-(-x)**c)
|
|
|
|
|
|
|
|
for ``x < 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`frechet_l` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return c*pow(-x, c-1)*exp(-pow(-x, c))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return exp(-pow(-x, c))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return -pow(-log(q), 1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
val = special.gamma(1.0+n*1.0/c)
|
|
|
|
if (int(n) % 2):
|
|
|
|
sgn = -1
|
|
|
|
else:
|
|
|
|
sgn = 1
|
|
|
|
return sgn * val
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return -_EULER / c - log(c) + _EULER + 1
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
loc = data.max() + 0.1 * np.std(data)
|
|
|
|
chat = 1. / (6 ** (1 / 2) / pi * np.std(log(loc - data)))
|
|
|
|
scale = np.mean((loc - data) ** chat) ** (1. / chat)
|
|
|
|
return chat, loc, scale
|
|
|
|
frechet_l = frechet_l_gen(b=0.0, name='frechet_l')
|
|
|
|
weibull_max = frechet_l_gen(b=0.0, name='weibull_max')
|
|
|
|
|
|
|
|
|
|
|
|
class genlogistic_gen(rv_continuous):
|
|
|
|
"""A generalized logistic continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `genlogistic` is::
|
|
|
|
|
|
|
|
genlogistic.pdf(x, c) = c * exp(-x) / (1 + exp(-x))**(c+1)
|
|
|
|
|
|
|
|
for ``x > 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`genlogistic` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return exp(self._logpdf(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return log(c) - x - (c+1.0)*special.log1p(exp(-x))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
Cx = (1+exp(-x))**(-c)
|
|
|
|
return Cx
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
vals = -log(pow(q, -1.0/c)-1)
|
|
|
|
return vals
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
zeta = special.zeta
|
|
|
|
mu = _EULER + special.psi(c)
|
|
|
|
mu2 = pi*pi/6.0 + zeta(2, c)
|
|
|
|
g1 = -2*zeta(3, c) + 2*_ZETA3
|
|
|
|
g1 /= np.power(mu2, 1.5)
|
|
|
|
g2 = pi**4/15.0 + 6*zeta(4, c)
|
|
|
|
g2 /= mu2**2.0
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
genlogistic = genlogistic_gen(name='genlogistic')
|
|
|
|
|
|
|
|
|
|
|
|
def log1pxdx(x):
|
|
|
|
'''Computes Log(1+x)/x
|
|
|
|
'''
|
|
|
|
xd = where((x == 0) | (x == inf), 1.0, x) # avoid 0/0 or inf/inf
|
|
|
|
y = where(x == 0, 1.0, log1p(x) / xd)
|
|
|
|
return where(x == inf, 0.0, y)
|
|
|
|
|
|
|
|
|
|
|
|
class genpareto_gen(rv_continuous):
|
|
|
|
"""A generalized Pareto continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `genpareto` is::
|
|
|
|
|
|
|
|
genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)
|
|
|
|
|
|
|
|
defined for ``x >= 0`` if ``c >=0``, and for
|
|
|
|
``0 <= x <= -1/c`` if ``c < 0``.
|
|
|
|
|
|
|
|
`genpareto` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
For ``c == 0``, `genpareto` reduces to the exponential
|
|
|
|
distribution, `expon`::
|
|
|
|
|
|
|
|
genpareto.pdf(x, c=0) = exp(-x)
|
|
|
|
|
|
|
|
For ``c == -1``, `genpareto` is uniform on ``[0, 1]``::
|
|
|
|
|
|
|
|
genpareto.cdf(x, c=-1) = x
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
# Reference
|
|
|
|
# Stuart Coles (2004)
|
|
|
|
# "An introduction to statistical modelling of extreme values".
|
|
|
|
# Springer series in statistics
|
|
|
|
c, loc, scale = phat
|
|
|
|
if ix == 2:
|
|
|
|
# Reorganizing w.r.t.scale, Eq. 4.13 and 4.14, pp 81 in
|
|
|
|
# Coles (2004) gives
|
|
|
|
# link = -(x-loc)*c/expm1(-c*logSF)
|
|
|
|
if c != 0.0:
|
|
|
|
phati = (x - loc) * c / expm1(-c * logSF)
|
|
|
|
else:
|
|
|
|
phati = -(x - loc) / logSF
|
|
|
|
elif ix == 1:
|
|
|
|
if c != 0:
|
|
|
|
phati = x + scale * expm1(c * logSF) / c
|
|
|
|
else:
|
|
|
|
phati = x + scale * logSF
|
|
|
|
elif ix == 0:
|
|
|
|
raise NotImplementedError(
|
|
|
|
'link(x,logSF,phat,i) where i=0 is not implemented!')
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
return phati
|
|
|
|
|
|
|
|
def _argcheck(self, c):
|
|
|
|
c = asarray(c)
|
|
|
|
self.b = _lazywhere(c < 0, (c,),
|
|
|
|
lambda c: -1. / c, np.inf)
|
|
|
|
return where(abs(c) == inf, False, True)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return np.exp(self._logpdf(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return _lazywhere((x == x) & (c != 0), (x, c),
|
|
|
|
lambda x, c: -special.xlog1py(c+1., c*x) / c,
|
|
|
|
-x)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return -inv_boxcox1p(-x, -c)
|
|
|
|
|
|
|
|
def _sf(self, x, c):
|
|
|
|
return inv_boxcox(-x, -c)
|
|
|
|
|
|
|
|
def _logsf(self, x, c):
|
|
|
|
return _lazywhere((x == x) & (c != 0), (x, c),
|
|
|
|
lambda x, c: -special.log1p(c*x) / c,
|
|
|
|
-x)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return -boxcox1p(-q, -c)
|
|
|
|
|
|
|
|
def _isf(self, q, c):
|
|
|
|
return -boxcox(q, -c)
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
d = asarray(data)
|
|
|
|
loc = d.min() - 0.01 * d.std()
|
|
|
|
# moments estimator
|
|
|
|
d1 = d - loc
|
|
|
|
m = d1.mean()
|
|
|
|
s = d1.std()
|
|
|
|
|
|
|
|
shape = ((m / s) ** 2 - 1) / 2
|
|
|
|
scale = m * ((m / s) ** 2 + 1) / 2
|
|
|
|
return shape, loc, scale
|
|
|
|
|
|
|
|
def hessian_nnlf(self, theta, x, eps=None):
|
|
|
|
try:
|
|
|
|
loc = theta[-2]
|
|
|
|
scale = theta[-1]
|
|
|
|
args = tuple(theta[:-2])
|
|
|
|
except IndexError:
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
if not self._argcheck(*args) or scale <= 0:
|
|
|
|
return inf
|
|
|
|
x = asarray((x - loc) / scale)
|
|
|
|
cond0 = (x <= self.a) | (x >= self.b)
|
|
|
|
if any(cond0):
|
|
|
|
np = self.numargs + 2
|
|
|
|
return valarray((np, np), value=nan)
|
|
|
|
eps = _EPS
|
|
|
|
c = args[0]
|
|
|
|
n = len(x)
|
|
|
|
if abs(c) > eps:
|
|
|
|
cx = c * x
|
|
|
|
sumlog1pcx = sum(log1p(cx))
|
|
|
|
# LL = n*log(scale) + (1-1/k)*sumlog1mkxn
|
|
|
|
r = x / (1.0 + cx)
|
|
|
|
sumix = sum(1.0 / (1.0 + cx) ** 2.0)
|
|
|
|
|
|
|
|
sumr = sum(r)
|
|
|
|
sumr2 = sum(r ** 2.0)
|
|
|
|
H11 = -2 * sumlog1pcx / c ** 3 + 2 * \
|
|
|
|
sumr / c ** 2 + (1.0 + 1.0 / c) * sumr2
|
|
|
|
H22 = c * (c + 1) * sumix / scale ** 2.0
|
|
|
|
H33 = (n - 2 * (c + 1) * sumr +
|
|
|
|
c * (c + 1) * sumr2) / scale ** 2.0
|
|
|
|
H12 = -sum((1 - x) / ((1 + cx) ** 2.0)) / scale
|
|
|
|
H23 = -(c + 1) * sumix / scale ** 2.0
|
|
|
|
H13 = -(sumr - (c + 1) * sumr2) / scale
|
|
|
|
|
|
|
|
else: # c == 0
|
|
|
|
sumx = sum(x)
|
|
|
|
# LL = n*log(scale) + sumx;
|
|
|
|
|
|
|
|
sumx2 = sum(x ** 2.0)
|
|
|
|
H11 = -(2 / 3) * sum(x ** 3.0) + sumx2
|
|
|
|
H22 = 0.0
|
|
|
|
H12 = -(n - sum(x)) / scale
|
|
|
|
H23 = -n * 1.0 / scale ** 2.0
|
|
|
|
H33 = (n - 2 * sumx) / scale ** 2.0
|
|
|
|
H13 = -(sumx - sumx2) / scale
|
|
|
|
|
|
|
|
# Hessian matrix
|
|
|
|
H = [[H11, H12, H13], [H12, H22, H23], [H13, H23, H33]]
|
|
|
|
return asarray(H)
|
|
|
|
|
|
|
|
def __stats(self, c):
|
|
|
|
# return None,None,None,None
|
|
|
|
k = -c
|
|
|
|
m = where(k < -1.0, inf, 1.0 / (1 + k))
|
|
|
|
v = where(k < -0.5, nan, 1.0 / ((1 + k) ** 2.0 * (1 + 2 * k)))
|
|
|
|
sk = where(k < -1.0 / 3, nan, 2. * (1 - k)
|
|
|
|
* sqrt(1 + 2.0 * k) / (1.0 + 3. * k))
|
|
|
|
# E(X^r) = s^r*(-k)^-(r+1)*gamma(1+r)*gamma(-1/k-r)/gamma(1-1/k)
|
|
|
|
# = s^r*gamma(1+r)./( (1+k)*(1+2*k).*....*(1+r*k))
|
|
|
|
# E[(1-k(X-m0)/s)^r] = 1/(1+k*r)
|
|
|
|
|
|
|
|
# Ex3 = (sk.*sqrt(v)+3*m).*v+m^3
|
|
|
|
# Ex3 = 6.*s.^3/((1+k).*(1+2*k).*(1+3*k))
|
|
|
|
r = 4.0
|
|
|
|
Ex4 = gam(1. + r) / \
|
|
|
|
((1. + k) * (1. + 2. * k) * (1. + 3. * k) * (1 + 4. * k))
|
|
|
|
m1 = m
|
|
|
|
ku = where(k < -1. / 4, nan,
|
|
|
|
(Ex4 - 4. * sk * v ** (3. / 2)
|
|
|
|
* m1 - 6 * m1 ** 2. * v - m1 ** 4.) / v ** 2. - 3.0)
|
|
|
|
return m, v, sk, ku
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
def __munp(n, c):
|
|
|
|
val = 0.0
|
|
|
|
k = arange(0, n + 1)
|
|
|
|
for ki, cnk in zip(k, comb(n, k)):
|
|
|
|
val = val + cnk * (-1) ** ki / (1.0 - c * ki)
|
|
|
|
return where(c * n < 1, val * (-1.0 / c) ** n, inf)
|
|
|
|
return _lazywhere(c != 0, (c,),
|
|
|
|
lambda c: __munp(n, c),
|
|
|
|
gam(n + 1))
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 1. + c
|
|
|
|
genpareto = genpareto_gen(a=0.0, name='genpareto')
|
|
|
|
|
|
|
|
|
|
|
|
class genexpon_gen(rv_continuous):
|
|
|
|
"""A generalized exponential continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `genexpon` is::
|
|
|
|
|
|
|
|
genexpon.pdf(x, a, b, c) = (a + b * (1 - exp(-c*x))) * \
|
|
|
|
exp(-a*x - b*x + b/c * (1-exp(-c*x)))
|
|
|
|
|
|
|
|
for ``x >= 0``, ``a, b, c > 0``.
|
|
|
|
|
|
|
|
`genexpon` takes ``a``, ``b`` and ``c`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
H.K. Ryu, "An Extension of Marshall and Olkin's Bivariate Exponential
|
|
|
|
Distribution", Journal of the American Statistical Association, 1993.
|
|
|
|
|
|
|
|
N. Balakrishnan, "The Exponential Distribution: Theory, Methods and
|
|
|
|
Applications", Asit P. Basu.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
_a, b, c, loc, scale = phat
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
fact1 = (xn + expm1(-c * xn) / c)
|
|
|
|
if ix == 0:
|
|
|
|
phati = b * fact1 + logSF
|
|
|
|
elif ix == 1:
|
|
|
|
phati = (phat[0] - logSF) / fact1
|
|
|
|
elif ix in [2, 3, 4]:
|
|
|
|
raise NotImplementedError('Only implemented for index in [0,1]!')
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
return phati
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b, c):
|
|
|
|
return (a + b*(-special.expm1(-c*x)))*exp((-a-b)*x +
|
|
|
|
b*(-special.expm1(-c*x))/c)
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b, c):
|
|
|
|
return -special.expm1((-a-b)*x + b*(-special.expm1(-c*x))/c)
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, b, c):
|
|
|
|
return np.log(a+b*(-special.expm1(-c*x))) + \
|
|
|
|
(-a-b)*x+b*(-special.expm1(-c*x))/c
|
|
|
|
genexpon = genexpon_gen(a=0.0, name='genexpon')
|
|
|
|
|
|
|
|
|
|
|
|
class genextreme_gen(rv_continuous):
|
|
|
|
"""A generalized extreme value continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
gumbel_r
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
For ``c=0``, `genextreme` is equal to `gumbel_r`.
|
|
|
|
The probability density function for `genextreme` is::
|
|
|
|
|
|
|
|
genextreme.pdf(x, c) =
|
|
|
|
exp(-exp(-x))*exp(-x), for c==0
|
|
|
|
exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1), for x <= 1/c, c > 0
|
|
|
|
|
|
|
|
Note that several sources and software packages use the opposite
|
|
|
|
convention for the sign of the shape parameter ``c``.
|
|
|
|
|
|
|
|
`genextreme` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, c):
|
|
|
|
min = np.minimum
|
|
|
|
max = np.maximum
|
|
|
|
self.b = where(c > 0, 1.0 / max(c, _XMIN), inf)
|
|
|
|
self.a = where(c < 0, 1.0 / min(c, -_XMIN), -inf)
|
|
|
|
return where(abs(c) == inf, 0, 1)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return exp(self._logpdf(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
x1 = where((c == 0) & (x == inf), 0.0, x)
|
|
|
|
cx = c * x1
|
|
|
|
cond1 = (c == 0) * (x == x)
|
|
|
|
logex2 = where(cond1, 0.0, log1p(-cx))
|
|
|
|
logpex2 = -x * log1pxdx(-cx)
|
|
|
|
# logpex2 = where(cond1,-x, logex2/c)
|
|
|
|
pex2 = exp(logpex2)
|
|
|
|
# Handle special cases
|
|
|
|
logpdf = where(
|
|
|
|
(cx == 1) | (cx == -inf), -inf, -pex2 + logpex2 - logex2)
|
|
|
|
putmask(logpdf, (c == 1) & (x == 1), 0.0)
|
|
|
|
return logpdf
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return exp(self._logcdf(x, c))
|
|
|
|
|
|
|
|
def _logcdf(self, x, c):
|
|
|
|
x1 = where((c == 0) & (x == inf), 0.0, x)
|
|
|
|
cx = c * x1
|
|
|
|
loglogcdf = -x * log1pxdx(-cx)
|
|
|
|
# loglogcdf = where((c==0)*(x==x),-x,log1p(-cx)/c)
|
|
|
|
return -exp(loglogcdf)
|
|
|
|
|
|
|
|
def _sf(self, x, c):
|
|
|
|
return -expm1(self._logcdf(x, c))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
x = -log(-log(q))
|
|
|
|
return _lazywhere((x == x) & (c != 0), (x, c),
|
|
|
|
lambda x, c: -expm1(-c * x) / c, x)
|
|
|
|
|
|
|
|
def _isf(self, q, c):
|
|
|
|
x = -log(-special.log1p(-q))
|
|
|
|
result = _lazywhere((c == 0)*(x == x), (x, c),
|
|
|
|
f=lambda x, c: x,
|
|
|
|
f2=lambda x, c: -special.expm1(-c*x)/c)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
g = lambda n: gam(n*c+1)
|
|
|
|
g1 = g(1)
|
|
|
|
g2 = g(2)
|
|
|
|
g3 = g(3)
|
|
|
|
g4 = g(4)
|
|
|
|
g2mg12 = where(abs(c) < 1e-7, (c*pi)**2.0/6.0, g2-g1**2.0)
|
|
|
|
gam2k = where(abs(c) < 1e-7, pi**2.0/6.0,
|
|
|
|
special.expm1(gamln(2.0*c+1.0)-2*gamln(c+1.0))/c**2.0)
|
|
|
|
eps = 1e-14
|
|
|
|
gamk = where(abs(c) < eps, -_EULER, special.expm1(gamln(c+1))/c)
|
|
|
|
|
|
|
|
m = where(c < -1.0, nan, -gamk)
|
|
|
|
v = where(c < -0.5, nan, g1**2.0*gam2k)
|
|
|
|
|
|
|
|
# skewness
|
|
|
|
sk1 = where(c < -1./3, nan,
|
|
|
|
np.sign(c)*(-g3+(g2+2*g2mg12)*g1)/((g2mg12)**(3./2.)))
|
|
|
|
sk = where(abs(c) <= eps**0.29, 12*sqrt(6)*_ZETA3/pi**3, sk1)
|
|
|
|
|
|
|
|
# kurtosis
|
|
|
|
ku1 = where(c < -1./4, nan,
|
|
|
|
(g4+(-4*g3+3*(g2+g2mg12)*g1)*g1)/((g2mg12)**2))
|
|
|
|
ku = where(abs(c) <= (eps)**0.23, 12.0/5.0, ku1-3.0)
|
|
|
|
return m, v, sk, ku
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
d = asarray(data)
|
|
|
|
# Probability weighted moments
|
|
|
|
log = np.log
|
|
|
|
n = len(d)
|
|
|
|
d.sort()
|
|
|
|
koeff1 = np.r_[0:n] / (n - 1)
|
|
|
|
koeff2 = koeff1 * (np.r_[0:n] - 1) / (n - 2)
|
|
|
|
b2 = np.dot(koeff2, d) / n
|
|
|
|
b1 = np.dot(koeff1, d) / n
|
|
|
|
b0 = d.mean()
|
|
|
|
z = (2 * b1 - b0) / (3 * b2 - b0) - log(2) / log(3)
|
|
|
|
shape = 7.8590 * z + 2.9554 * z ** 2
|
|
|
|
scale = (2 * b1 - b0) * shape / \
|
|
|
|
(exp(gamln(1 + shape)) * (1 - 2 ** (-shape)))
|
|
|
|
loc = b0 + scale * (expm1(gamln(1 + shape))) / shape
|
|
|
|
return shape, loc, scale
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
k = arange(0, n+1)
|
|
|
|
vals = 1.0/c**n * np.sum(
|
|
|
|
comb(n, k) * (-1)**k * special.gamma(c*k + 1),
|
|
|
|
axis=0)
|
|
|
|
return where(c*n > -1, vals, inf)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return _EULER*(1 - c) + 1
|
|
|
|
|
|
|
|
genextreme = genextreme_gen(name='genextreme')
|
|
|
|
|
|
|
|
|
|
|
|
def _digammainv(y):
|
|
|
|
# Inverse of the digamma function (real positive arguments only).
|
|
|
|
# This function is used in the `fit` method of `gamma_gen`.
|
|
|
|
# The function uses either optimize.fsolve or optimize.newton
|
|
|
|
# to solve `digamma(x) - y = 0`. There is probably room for
|
|
|
|
# improvement, but currently it works over a wide range of y:
|
|
|
|
# >>> y = 64*np.random.randn(1000000)
|
|
|
|
# >>> y.min(), y.max()
|
|
|
|
# (-311.43592651416662, 351.77388222276869)
|
|
|
|
# x = [_digammainv(t) for t in y]
|
|
|
|
# np.abs(digamma(x) - y).max()
|
|
|
|
# 1.1368683772161603e-13
|
|
|
|
#
|
|
|
|
_em = 0.5772156649015328606065120
|
|
|
|
func = lambda x: special.digamma(x) - y
|
|
|
|
if y > -0.125:
|
|
|
|
x0 = exp(y) + 0.5
|
|
|
|
if y < 10:
|
|
|
|
# Some experimentation shows that newton reliably converges
|
|
|
|
# must faster than fsolve in this y range. For larger y,
|
|
|
|
# newton sometimes fails to converge.
|
|
|
|
value = optimize.newton(func, x0, tol=1e-10)
|
|
|
|
return value
|
|
|
|
elif y > -3:
|
|
|
|
x0 = exp(y/2.332) + 0.08661
|
|
|
|
else:
|
|
|
|
x0 = 1.0 / (-y - _em)
|
|
|
|
|
|
|
|
value, info, ier, mesg = optimize.fsolve(func, x0, xtol=1e-11,
|
|
|
|
full_output=True)
|
|
|
|
if ier != 1:
|
|
|
|
raise RuntimeError("_digammainv: fsolve failed, y = %r" % y)
|
|
|
|
|
|
|
|
return value[0]
|
|
|
|
|
|
|
|
|
|
|
|
## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
|
|
|
|
|
|
|
|
## gamma(a, loc, scale) with a an integer is the Erlang distribution
|
|
|
|
## gamma(1, loc, scale) is the Exponential distribution
|
|
|
|
## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
|
|
|
|
|
|
|
|
class gamma_gen(rv_continuous):
|
|
|
|
"""A gamma continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
erlang, expon
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gamma` is::
|
|
|
|
|
|
|
|
gamma.pdf(x, a) = x**(a-1) * exp(-x) / gamma(a)
|
|
|
|
|
|
|
|
for ``x >= 0``, ``a > 0``. Here ``gamma(a)`` refers to the gamma function.
|
|
|
|
|
|
|
|
`gamma` has a shape parameter `a` which needs to be set explicitly.
|
|
|
|
|
|
|
|
When ``a`` is an integer, `gamma` reduces to the Erlang
|
|
|
|
distribution, and when ``a=1`` to the exponential distribution.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, a):
|
|
|
|
return self._random_state.standard_gamma(a, self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return exp(self._logpdf(x, a))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
return special.xlogy(a-1.0, x) - x - gamln(a)
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
return special.gammainc(a, x)
|
|
|
|
|
|
|
|
def _sf(self, x, a):
|
|
|
|
return special.gammaincc(a, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
return special.gammaincinv(a, q)
|
|
|
|
|
|
|
|
def _stats(self, a):
|
|
|
|
return a, a, 2.0/sqrt(a), 6.0/a
|
|
|
|
|
|
|
|
def _entropy(self, a):
|
|
|
|
return special.psi(a)*(1-a) + a + gamln(a)
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
# The skewness of the gamma distribution is `4 / sqrt(a)`.
|
|
|
|
# We invert that to estimate the shape `a` using the skewness
|
|
|
|
# of the data. The formula is regularized with 1e-8 in the
|
|
|
|
# denominator to allow for degenerate data where the skewness
|
|
|
|
# is close to 0.
|
|
|
|
a = 4 / (1e-8 + _skew(data)**2)
|
|
|
|
return super(gamma_gen, self)._fitstart(data, args=(a,))
|
|
|
|
|
|
|
|
@inherit_docstring_from(rv_continuous)
|
|
|
|
def fit(self, data, *args, **kwds):
|
|
|
|
f0 = (kwds.get('f0', None) or kwds.get('fa', None) or
|
|
|
|
kwds.get('fix_a', None))
|
|
|
|
floc = kwds.get('floc', None)
|
|
|
|
fscale = kwds.get('fscale', None)
|
|
|
|
|
|
|
|
if floc is None:
|
|
|
|
# loc is not fixed. Use the default fit method.
|
|
|
|
return super(gamma_gen, self).fit(data, *args, **kwds)
|
|
|
|
|
|
|
|
# Special case: loc is fixed.
|
|
|
|
|
|
|
|
if f0 is not None and fscale is not None:
|
|
|
|
# This check is for consistency with `rv_continuous.fit`.
|
|
|
|
# Without this check, this function would just return the
|
|
|
|
# parameters that were given.
|
|
|
|
raise ValueError("All parameters fixed. There is nothing to "
|
|
|
|
"optimize.")
|
|
|
|
|
|
|
|
# Fixed location is handled by shifting the data.
|
|
|
|
data = np.asarray(data)
|
|
|
|
if np.any(data <= floc):
|
|
|
|
raise FitDataError("gamma", lower=floc, upper=np.inf)
|
|
|
|
if floc != 0:
|
|
|
|
# Don't do the subtraction in-place, because `data` might be a
|
|
|
|
# view of the input array.
|
|
|
|
data = data - floc
|
|
|
|
xbar = data.mean()
|
|
|
|
|
|
|
|
# Three cases to handle:
|
|
|
|
# * shape and scale both free
|
|
|
|
# * shape fixed, scale free
|
|
|
|
# * shape free, scale fixed
|
|
|
|
|
|
|
|
if fscale is None:
|
|
|
|
# scale is free
|
|
|
|
if f0 is not None:
|
|
|
|
# shape is fixed
|
|
|
|
a = f0
|
|
|
|
else:
|
|
|
|
# shape and scale are both free.
|
|
|
|
# The MLE for the shape parameter `a` is the solution to:
|
|
|
|
# log(a) - special.digamma(a) - log(xbar) + log(data.mean) = 0
|
|
|
|
s = log(xbar) - log(data).mean()
|
|
|
|
func = lambda a: log(a) - special.digamma(a) - s
|
|
|
|
aest = (3-s + np.sqrt((s-3)**2 + 24*s)) / (12*s)
|
|
|
|
xa = aest*(1-0.4)
|
|
|
|
xb = aest*(1+0.4)
|
|
|
|
a = optimize.brentq(func, xa, xb, disp=0)
|
|
|
|
|
|
|
|
# The MLE for the scale parameter is just the data mean
|
|
|
|
# divided by the shape parameter.
|
|
|
|
scale = xbar / a
|
|
|
|
else:
|
|
|
|
# scale is fixed, shape is free
|
|
|
|
# The MLE for the shape parameter `a` is the solution to:
|
|
|
|
# special.digamma(a) - log(data).mean() + log(fscale) = 0
|
|
|
|
c = log(data).mean() - log(fscale)
|
|
|
|
a = _digammainv(c)
|
|
|
|
scale = fscale
|
|
|
|
|
|
|
|
return a, floc, scale
|
|
|
|
|
|
|
|
gamma = gamma_gen(a=0.0, name='gamma')
|
|
|
|
|
|
|
|
|
|
|
|
class erlang_gen(gamma_gen):
|
|
|
|
"""An Erlang continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
gamma
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The Erlang distribution is a special case of the Gamma distribution, with
|
|
|
|
the shape parameter `a` an integer. Note that this restriction is not
|
|
|
|
enforced by `erlang`. It will, however, generate a warning the first time
|
|
|
|
a non-integer value is used for the shape parameter.
|
|
|
|
|
|
|
|
Refer to `gamma` for examples.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _argcheck(self, a):
|
|
|
|
allint = np.all(np.floor(a) == a)
|
|
|
|
allpos = np.all(a > 0)
|
|
|
|
if not allint:
|
|
|
|
# An Erlang distribution shouldn't really have a non-integer
|
|
|
|
# shape parameter, so warn the user.
|
|
|
|
warnings.warn(
|
|
|
|
'The shape parameter of the erlang distribution '
|
|
|
|
'has been given a non-integer value %r.' % (a,),
|
|
|
|
RuntimeWarning)
|
|
|
|
return allpos
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
# Override gamma_gen_fitstart so that an integer initial value is
|
|
|
|
# used. (Also regularize the division, to avoid issues when
|
|
|
|
# _skew(data) is 0 or close to 0.)
|
|
|
|
a = int(4.0 / (1e-8 + _skew(data)**2))
|
|
|
|
return super(gamma_gen, self)._fitstart(data, args=(a,))
|
|
|
|
|
|
|
|
# Trivial override of the fit method, so we can monkey-patch its
|
|
|
|
# docstring.
|
|
|
|
def fit(self, data, *args, **kwds):
|
|
|
|
return super(erlang_gen, self).fit(data, *args, **kwds)
|
|
|
|
|
|
|
|
if fit.__doc__ is not None:
|
|
|
|
fit.__doc__ = (rv_continuous.fit.__doc__ +
|
|
|
|
"""
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The Erlang distribution is generally defined to have integer values
|
|
|
|
for the shape parameter. This is not enforced by the `erlang` class.
|
|
|
|
When fitting the distribution, it will generally return a non-integer
|
|
|
|
value for the shape parameter. By using the keyword argument
|
|
|
|
`f0=<integer>`, the fit method can be constrained to fit the data to
|
|
|
|
a specific integer shape parameter.
|
|
|
|
""")
|
|
|
|
erlang = erlang_gen(a=0.0, name='erlang')
|
|
|
|
|
|
|
|
|
|
|
|
class gengamma_gen(rv_continuous):
|
|
|
|
"""A generalized gamma continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gengamma` is::
|
|
|
|
|
|
|
|
gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a)
|
|
|
|
|
|
|
|
for ``x > 0``, ``a > 0``, and ``c != 0``.
|
|
|
|
|
|
|
|
`gengamma` takes ``a`` and ``c`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, c):
|
|
|
|
return (a > 0) & (c != 0)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, c):
|
|
|
|
return np.exp(self._logpdf(x, a, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, c):
|
|
|
|
return np.log(abs(c)) + special.xlogy(c*a - 1, x) - x**c - special.gammaln(a)
|
|
|
|
|
|
|
|
def _cdf(self, x, a, c):
|
|
|
|
xc = x**c
|
|
|
|
val1 = special.gammainc(a, xc)
|
|
|
|
val2 = special.gammaincc(a, xc)
|
|
|
|
return np.where(c > 0, val1, val2)
|
|
|
|
|
|
|
|
def _sf(self, x, a, c):
|
|
|
|
xc = x**c
|
|
|
|
val1 = special.gammainc(a, xc)
|
|
|
|
val2 = special.gammaincc(a, xc)
|
|
|
|
return np.where(c > 0, val2, val1)
|
|
|
|
|
|
|
|
def _ppf(self, q, a, c):
|
|
|
|
val1 = special.gammaincinv(a, q)
|
|
|
|
val2 = special.gammainccinv(a, q)
|
|
|
|
return np.where(c > 0, val1, val2)**(1.0/c)
|
|
|
|
|
|
|
|
def _isf(self, q, a, c):
|
|
|
|
val1 = special.gammaincinv(a, q)
|
|
|
|
val2 = special.gammainccinv(a, q)
|
|
|
|
return np.where(c > 0, val2, val1)**(1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, a, c):
|
|
|
|
# Pochhammer symbol: poch(a,n) = gamma(a+n)/gamma(a)
|
|
|
|
return special.poch(a, n*1.0/c)
|
|
|
|
|
|
|
|
def _entropy(self, a, c):
|
|
|
|
val = special.psi(a)
|
|
|
|
return a*(1-val) + 1.0/c*val + special.gammaln(a) - np.log(abs(c))
|
|
|
|
gengamma = gengamma_gen(a=0.0, name='gengamma')
|
|
|
|
|
|
|
|
|
|
|
|
class genhalflogistic_gen(rv_continuous):
|
|
|
|
"""A generalized half-logistic continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `genhalflogistic` is::
|
|
|
|
|
|
|
|
genhalflogistic.pdf(x, c) = 2 * (1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2
|
|
|
|
|
|
|
|
for ``0 <= x <= 1/c``, and ``c > 0``.
|
|
|
|
|
|
|
|
`genhalflogistic` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, c):
|
|
|
|
self.b = 1.0 / c
|
|
|
|
return (c > 0)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
limit = 1.0/c
|
|
|
|
tmp = asarray(1-c*x)
|
|
|
|
tmp0 = tmp**(limit-1)
|
|
|
|
tmp2 = tmp0*tmp
|
|
|
|
return 2*tmp0 / (1+tmp2)**2
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
limit = 1.0/c
|
|
|
|
tmp = asarray(1-c*x)
|
|
|
|
tmp2 = tmp**(limit)
|
|
|
|
return (1.0-tmp2) / (1+tmp2)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return 1.0/c*(1-((1.0-q)/(1.0+q))**c)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 2 - (2*c+1)*log(2)
|
|
|
|
genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic')
|
|
|
|
|
|
|
|
|
|
|
|
class gompertz_gen(rv_continuous):
|
|
|
|
"""A Gompertz (or truncated Gumbel) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gompertz` is::
|
|
|
|
|
|
|
|
gompertz.pdf(x, c) = c * exp(x) * exp(-c*(exp(x)-1))
|
|
|
|
|
|
|
|
for ``x >= 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`gompertz` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return exp(self._logpdf(x, c))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return log(c) + x - c * special.expm1(x)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return -special.expm1(-c * special.expm1(x))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return special.log1p(-1.0 / c * special.log1p(-q))
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 1.0 - log(c) - exp(c)*special.expn(1, c)
|
|
|
|
gompertz = gompertz_gen(a=0.0, name='gompertz')
|
|
|
|
|
|
|
|
|
|
|
|
class gumbel_r_gen(rv_continuous):
|
|
|
|
"""A right-skewed Gumbel continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
gumbel_l, gompertz, genextreme
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gumbel_r` is::
|
|
|
|
|
|
|
|
gumbel_r.pdf(x) = exp(-(x + exp(-x)))
|
|
|
|
|
|
|
|
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
|
|
|
|
distribution. It is also related to the extreme value distribution,
|
|
|
|
log-Weibull and Gompertz distributions.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(self._logpdf(x))
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return -x - exp(-x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return exp(-exp(-x))
|
|
|
|
|
|
|
|
def _logcdf(self, x):
|
|
|
|
return -exp(-x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return -log(-log(q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return _EULER, pi*pi/6.0, 12*sqrt(6)/pi**3 * _ZETA3, 12.0/5
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
# http://en.wikipedia.org/wiki/Gumbel_distribution
|
|
|
|
return _EULER + 1.
|
|
|
|
gumbel_r = gumbel_r_gen(name='gumbel_r')
|
|
|
|
|
|
|
|
|
|
|
|
class gumbel_l_gen(rv_continuous):
|
|
|
|
"""A left-skewed Gumbel continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
gumbel_r, gompertz, genextreme
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gumbel_l` is::
|
|
|
|
|
|
|
|
gumbel_l.pdf(x) = exp(x - exp(x))
|
|
|
|
|
|
|
|
The Gumbel distribution is sometimes referred to as a type I Fisher-Tippett
|
|
|
|
distribution. It is also related to the extreme value distribution,
|
|
|
|
log-Weibull and Gompertz distributions.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(self._logpdf(x))
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return x - exp(x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return -expm1(-exp(x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return log(-log1p(-q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return -_EULER, pi*pi/6.0, \
|
|
|
|
-12*sqrt(6)/pi**3 * _ZETA3, 12.0/5
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return _EULER + 1.
|
|
|
|
gumbel_l = gumbel_l_gen(name='gumbel_l')
|
|
|
|
|
|
|
|
|
|
|
|
class halfcauchy_gen(rv_continuous):
|
|
|
|
"""A Half-Cauchy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `halfcauchy` is::
|
|
|
|
|
|
|
|
halfcauchy.pdf(x) = 2 / (pi * (1 + x**2))
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 2.0/pi/(1.0+x*x)
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return np.log(2.0/pi) - special.log1p(x*x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 2.0/pi*arctan(x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return tan(pi/2*q)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return inf, inf, nan, nan
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return log(2*pi)
|
|
|
|
halfcauchy = halfcauchy_gen(a=0.0, name='halfcauchy')
|
|
|
|
|
|
|
|
|
|
|
|
class halflogistic_gen(rv_continuous):
|
|
|
|
"""A half-logistic continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `halflogistic` is::
|
|
|
|
|
|
|
|
halflogistic.pdf(x) = 2 * exp(-x) / (1+exp(-x))**2 = 1/2 * sech(x/2)**2
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(self._logpdf(x))
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return log(2) - x - 2. * special.log1p(exp(-x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return tanh(x/2.0)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return 2*arctanh(q)
|
|
|
|
|
|
|
|
def _munp(self, n):
|
|
|
|
if n == 1:
|
|
|
|
return 2*log(2)
|
|
|
|
if n == 2:
|
|
|
|
return pi*pi/3.0
|
|
|
|
if n == 3:
|
|
|
|
return 9*_ZETA3
|
|
|
|
if n == 4:
|
|
|
|
return 7*pi**4 / 15.0
|
|
|
|
return 2*(1-pow(2.0, 1-n))*special.gamma(n+1)*special.zeta(n, 1)
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 2-log(2)
|
|
|
|
halflogistic = halflogistic_gen(a=0.0, name='halflogistic')
|
|
|
|
|
|
|
|
|
|
|
|
class halfnorm_gen(rv_continuous):
|
|
|
|
"""A half-normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `halfnorm` is::
|
|
|
|
|
|
|
|
halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`halfnorm` is a special case of `chi` with ``df == 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return abs(self._random_state.standard_normal(size=self._size))
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return sqrt(2.0/pi)*exp(-x*x/2.0)
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return 0.5 * np.log(2.0/pi) - x*x/2.0
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return _norm_cdf(x)*2-1.0
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return special.ndtri((1+q)/2.0)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return (sqrt(2.0/pi), 1-2.0/pi, sqrt(2)*(4-pi)/(pi-2)**1.5,
|
|
|
|
8*(pi-3)/(pi-2)**2)
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 0.5*log(pi/2.0)+0.5
|
|
|
|
halfnorm = halfnorm_gen(a=0.0, name='halfnorm')
|
|
|
|
|
|
|
|
|
|
|
|
class hypsecant_gen(rv_continuous):
|
|
|
|
"""A hyperbolic secant continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `hypsecant` is::
|
|
|
|
|
|
|
|
hypsecant.pdf(x) = 1/pi * sech(x)
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1.0/(pi*cosh(x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 2.0/pi*arctan(exp(x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return log(tan(pi*q/2.0))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0, pi*pi/4, 0, 2
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return log(2*pi)
|
|
|
|
hypsecant = hypsecant_gen(name='hypsecant')
|
|
|
|
|
|
|
|
|
|
|
|
class gausshyper_gen(rv_continuous):
|
|
|
|
"""A Gauss hypergeometric continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gausshyper` is::
|
|
|
|
|
|
|
|
gausshyper.pdf(x, a, b, c, z) =
|
|
|
|
C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c)
|
|
|
|
|
|
|
|
for ``0 <= x <= 1``, ``a > 0``, ``b > 0``, and
|
|
|
|
``C = 1 / (B(a, b) F[2, 1](c, a; a+b; -z))``
|
|
|
|
|
|
|
|
`gausshyper` takes ``a``, ``b``, ``c`` and ``z`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, b, c, z):
|
|
|
|
return (a > 0) & (b > 0) & (c == c) & (z == z)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b, c, z):
|
|
|
|
Cinv = gam(a)*gam(b)/gam(a+b)*special.hyp2f1(c, a, a+b, -z)
|
|
|
|
return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c
|
|
|
|
|
|
|
|
def _munp(self, n, a, b, c, z):
|
|
|
|
fac = special.beta(n+a, b) / special.beta(a, b)
|
|
|
|
num = special.hyp2f1(c, a+n, a+b+n, -z)
|
|
|
|
den = special.hyp2f1(c, a, a+b, -z)
|
|
|
|
return fac*num / den
|
|
|
|
gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper')
|
|
|
|
|
|
|
|
|
|
|
|
class invgamma_gen(rv_continuous):
|
|
|
|
"""An inverted gamma continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `invgamma` is::
|
|
|
|
|
|
|
|
invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)
|
|
|
|
|
|
|
|
for x > 0, a > 0.
|
|
|
|
|
|
|
|
`invgamma` takes ``a`` as a shape parameter.
|
|
|
|
|
|
|
|
`invgamma` is a special case of `gengamma` with ``c == -1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return exp(self._logpdf(x, a))
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
return (-(a+1) * log(x) - gamln(a) - 1.0/x)
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
return 1.0 - special.gammainc(a, 1.0/x)
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
return 1.0 / special.gammaincinv(a, 1.-q)
|
|
|
|
|
|
|
|
def _stats(self, a, moments='mvsk'):
|
|
|
|
m1 = _lazywhere(a > 1, (a,), lambda x: 1. / (x - 1.), np.inf)
|
|
|
|
m2 = _lazywhere(a > 2, (a,), lambda x: 1. / (x - 1.)**2 / (x - 2.),
|
|
|
|
np.inf)
|
|
|
|
|
|
|
|
g1, g2 = None, None
|
|
|
|
if 's' in moments:
|
|
|
|
g1 = _lazywhere(
|
|
|
|
a > 3, (a,),
|
|
|
|
lambda x: 4. * np.sqrt(x - 2.) / (x - 3.), np.nan)
|
|
|
|
if 'k' in moments:
|
|
|
|
g2 = _lazywhere(
|
|
|
|
a > 4, (a,),
|
|
|
|
lambda x: 6. * (5. * x - 11.) / (x - 3.) / (x - 4.), np.nan)
|
|
|
|
return m1, m2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self, a):
|
|
|
|
return a - (a+1.0) * special.psi(a) + gamln(a)
|
|
|
|
invgamma = invgamma_gen(a=0.0, name='invgamma')
|
|
|
|
|
|
|
|
|
|
|
|
# scale is gamma from DATAPLOT and B from Regress
|
|
|
|
class invgauss_gen(rv_continuous):
|
|
|
|
"""An inverse Gaussian continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `invgauss` is::
|
|
|
|
|
|
|
|
invgauss.pdf(x, mu) = 1 / sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`invgauss` takes ``mu`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
When `mu` is too small, evaluating the cumulative distribution function will be
|
|
|
|
inaccurate due to ``cdf(mu -> 0) = inf * 0``.
|
|
|
|
NaNs are returned for ``mu <= 0.0028``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, mu):
|
|
|
|
return self._random_state.wald(mu, 1.0, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, mu):
|
|
|
|
return 1.0/sqrt(2*pi*x**3.0)*exp(-1.0/(2*x)*((x-mu)/mu)**2)
|
|
|
|
|
|
|
|
def _logpdf(self, x, mu):
|
|
|
|
return -0.5*log(2*pi) - 1.5*log(x) - ((x-mu)/mu)**2/(2*x)
|
|
|
|
|
|
|
|
def _cdf(self, x, mu):
|
|
|
|
fac = sqrt(1.0/x)
|
|
|
|
# Numerical accuracy for small `mu` is bad. See #869.
|
|
|
|
C1 = _norm_cdf(fac*(x-mu)/mu)
|
|
|
|
C1 += exp(1.0/mu) * _norm_cdf(-fac*(x+mu)/mu) * exp(1.0/mu)
|
|
|
|
return C1
|
|
|
|
|
|
|
|
def _stats(self, mu):
|
|
|
|
return mu, mu**3.0, 3*sqrt(mu), 15*mu
|
|
|
|
invgauss = invgauss_gen(a=0.0, name='invgauss')
|
|
|
|
|
|
|
|
|
|
|
|
class invweibull_gen(rv_continuous):
|
|
|
|
"""An inverted Weibull continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `invweibull` is::
|
|
|
|
|
|
|
|
invweibull.pdf(x, c) = c * x**(-c-1) * exp(-x**(-c))
|
|
|
|
|
|
|
|
for ``x > 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`invweibull` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
F.R.S. de Gusmao, E.M.M Ortega and G.M. Cordeiro, "The generalized inverse
|
|
|
|
Weibull distribution", Stat. Papers, vol. 52, pp. 591-619, 2011.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
xc1 = np.power(x, -c - 1.0)
|
|
|
|
xc2 = np.power(x, -c)
|
|
|
|
xc2 = exp(-xc2)
|
|
|
|
return c * xc1 * xc2
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
xc1 = np.power(x, -c)
|
|
|
|
return exp(-xc1)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return np.power(-log(q), -1.0/c)
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
return special.gamma(1 - n / c)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 1+_EULER + _EULER / c - log(c)
|
|
|
|
invweibull = invweibull_gen(a=0, name='invweibull')
|
|
|
|
|
|
|
|
|
|
|
|
class johnsonsb_gen(rv_continuous):
|
|
|
|
"""A Johnson SB continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
johnsonsu
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `johnsonsb` is::
|
|
|
|
|
|
|
|
johnsonsb.pdf(x, a, b) = b / (x*(1-x)) * phi(a + b * log(x/(1-x)))
|
|
|
|
|
|
|
|
for ``0 < x < 1`` and ``a, b > 0``, and ``phi`` is the normal pdf.
|
|
|
|
|
|
|
|
`johnsonsb` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, b):
|
|
|
|
return (b > 0) & (a == a)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
trm = _norm_pdf(a + b*log(x/(1.0-x)))
|
|
|
|
return b*1.0/(x*(1-x))*trm
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return _norm_cdf(a + b*log(x/(1.0-x)))
|
|
|
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
return 1.0 / (1 + exp(-1.0 / b * (_norm_ppf(q) - a)))
|
|
|
|
johnsonsb = johnsonsb_gen(a=0.0, b=1.0, name='johnsonsb')
|
|
|
|
|
|
|
|
|
|
|
|
class johnsonsu_gen(rv_continuous):
|
|
|
|
"""A Johnson SU continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
johnsonsb
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `johnsonsu` is::
|
|
|
|
|
|
|
|
johnsonsu.pdf(x, a, b) = b / sqrt(x**2 + 1) *
|
|
|
|
phi(a + b * log(x + sqrt(x**2 + 1)))
|
|
|
|
|
|
|
|
for all ``x, a, b > 0``, and `phi` is the normal pdf.
|
|
|
|
|
|
|
|
`johnsonsu` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, b):
|
|
|
|
return (b > 0) & (a == a)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
x2 = x*x
|
|
|
|
trm = _norm_pdf(a + b * log(x + sqrt(x2+1)))
|
|
|
|
return b*1.0/sqrt(x2+1.0)*trm
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return _norm_cdf(a + b * log(x + sqrt(x*x + 1)))
|
|
|
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
return sinh((_norm_ppf(q) - a) / b)
|
|
|
|
johnsonsu = johnsonsu_gen(name='johnsonsu')
|
|
|
|
|
|
|
|
|
|
|
|
class laplace_gen(rv_continuous):
|
|
|
|
"""A Laplace continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `laplace` is::
|
|
|
|
|
|
|
|
laplace.pdf(x) = 1/2 * exp(-abs(x))
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.laplace(0, 1, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 0.5*exp(-abs(x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return where(x > 0, 1.0-0.5*exp(-x), 0.5*exp(x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return where(q > 0.5, -log(2) - log1p(-q), log(2 * q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0, 2, 0, 3
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return log(2)+1
|
|
|
|
laplace = laplace_gen(name='laplace')
|
|
|
|
|
|
|
|
|
|
|
|
class levy_gen(rv_continuous):
|
|
|
|
"""A Levy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
levy_stable, levy_l
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `levy` is::
|
|
|
|
|
|
|
|
levy.pdf(x) = 1 / (x * sqrt(2*pi*x)) * exp(-1/(2*x))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
This is the same as the Levy-stable distribution with a=1/2 and b=1.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1 / sqrt(2*pi*x) / x * exp(-1/(2*x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
# Equivalent to 2*norm.sf(sqrt(1/x))
|
|
|
|
return special.erfc(sqrt(0.5 / x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
# Equivalent to 1.0/(norm.isf(q/2)**2) or 0.5/(erfcinv(q)**2)
|
|
|
|
val = -special.ndtri(q/2)
|
|
|
|
return 1.0 / (val * val)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return inf, inf, nan, nan
|
|
|
|
levy = levy_gen(a=0.0, name="levy")
|
|
|
|
|
|
|
|
|
|
|
|
class levy_l_gen(rv_continuous):
|
|
|
|
"""A left-skewed Levy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
levy, levy_stable
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `levy_l` is::
|
|
|
|
|
|
|
|
levy_l.pdf(x) = 1 / (abs(x) * sqrt(2*pi*abs(x))) * exp(-1/(2*abs(x)))
|
|
|
|
|
|
|
|
for ``x < 0``.
|
|
|
|
|
|
|
|
This is the same as the Levy-stable distribution with a=1/2 and b=-1.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
ax = abs(x)
|
|
|
|
return 1/sqrt(2*pi*ax)/ax*exp(-1/(2*ax))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
ax = abs(x)
|
|
|
|
return 2 * _norm_cdf(1 / sqrt(ax)) - 1
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
val = _norm_ppf((q + 1.0) / 2)
|
|
|
|
return -1.0 / (val * val)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return inf, inf, nan, nan
|
|
|
|
levy_l = levy_l_gen(b=0.0, name="levy_l")
|
|
|
|
|
|
|
|
|
|
|
|
class levy_stable_gen(rv_continuous):
|
|
|
|
"""A Levy-stable continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
levy, levy_l
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
Levy-stable distribution (only random variates available -- ignore other
|
|
|
|
docs)
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, alpha, beta):
|
|
|
|
sz = self._size
|
|
|
|
TH = uniform.rvs(loc=-pi/2.0, scale=pi, size=sz)
|
|
|
|
W = expon.rvs(size=sz)
|
|
|
|
if alpha == 1:
|
|
|
|
return 2/pi*(pi/2+beta*TH)*tan(TH)-beta*log((pi/2*W*cos(TH))/(pi/2+beta*TH))
|
|
|
|
|
|
|
|
ialpha = 1.0/alpha
|
|
|
|
aTH = alpha*TH
|
|
|
|
if beta == 0:
|
|
|
|
return W/(cos(TH)/tan(aTH)+sin(TH))*((cos(aTH)+sin(aTH)*tan(TH))/W)**ialpha
|
|
|
|
|
|
|
|
val0 = beta*tan(pi*alpha/2)
|
|
|
|
th0 = arctan(val0)/alpha
|
|
|
|
val3 = W/(cos(TH)/tan(alpha*(th0+TH))+sin(TH))
|
|
|
|
res3 = val3*((cos(aTH)+sin(aTH)*tan(TH)-val0*(sin(aTH)-cos(aTH)*tan(TH)))/W)**ialpha
|
|
|
|
return res3
|
|
|
|
|
|
|
|
def _argcheck(self, alpha, beta):
|
|
|
|
if beta == -1:
|
|
|
|
self.b = 0.0
|
|
|
|
elif beta == 1:
|
|
|
|
self.a = 0.0
|
|
|
|
return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1)
|
|
|
|
|
|
|
|
def _pdf(self, x, alpha, beta):
|
|
|
|
raise NotImplementedError
|
|
|
|
levy_stable = levy_stable_gen(name='levy_stable')
|
|
|
|
|
|
|
|
|
|
|
|
class logistic_gen(rv_continuous):
|
|
|
|
"""A logistic (or Sech-squared) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `logistic` is::
|
|
|
|
|
|
|
|
logistic.pdf(x) = exp(-x) / (1+exp(-x))**2
|
|
|
|
|
|
|
|
`logistic` is a special case of `genlogistic` with ``c == 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.logistic(size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(self._logpdf(x))
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return -x - 2. * special.log1p(exp(-x))
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return special.expit(x)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return -log1p(-q) + log(q)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0, pi*pi/3.0, 0, 6.0/5.0
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
# http://en.wikipedia.org/wiki/Logistic_distribution
|
|
|
|
return 2.0
|
|
|
|
logistic = logistic_gen(name='logistic')
|
|
|
|
|
|
|
|
|
|
|
|
class loggamma_gen(rv_continuous):
|
|
|
|
"""A log gamma continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `loggamma` is::
|
|
|
|
|
|
|
|
loggamma.pdf(x, c) = exp(c*x-exp(x)) / gamma(c)
|
|
|
|
|
|
|
|
for all ``x, c > 0``.
|
|
|
|
|
|
|
|
`loggamma` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, c):
|
|
|
|
return log(self._random_state.gamma(c, size=self._size))
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return exp(c*x-exp(x)-gamln(c))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return special.gammainc(c, exp(x))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return log(special.gammaincinv(c, q))
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
# See, for example, "A Statistical Study of Log-Gamma Distribution", by
|
|
|
|
# Ping Shing Chan (thesis, McMaster University, 1993).
|
|
|
|
mean = special.digamma(c)
|
|
|
|
var = special.polygamma(1, c)
|
|
|
|
skewness = special.polygamma(2, c) / np.power(var, 1.5)
|
|
|
|
excess_kurtosis = special.polygamma(3, c) / (var*var)
|
|
|
|
return mean, var, skewness, excess_kurtosis
|
|
|
|
|
|
|
|
loggamma = loggamma_gen(name='loggamma')
|
|
|
|
|
|
|
|
|
|
|
|
class loglaplace_gen(rv_continuous):
|
|
|
|
"""A log-Laplace continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `loglaplace` is::
|
|
|
|
|
|
|
|
loglaplace.pdf(x, c) = c / 2 * x**(c-1), for 0 < x < 1
|
|
|
|
= c / 2 * x**(-c-1), for x >= 1
|
|
|
|
|
|
|
|
for ``c > 0``.
|
|
|
|
|
|
|
|
`loglaplace` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
T.J. Kozubowski and K. Podgorski, "A log-Laplace growth rate model",
|
|
|
|
The Mathematical Scientist, vol. 28, pp. 49-60, 2003.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
cd2 = c/2.0
|
|
|
|
c = where(x < 1, c, -c)
|
|
|
|
return cd2*x**(c-1)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return where(x < 1, 0.5*x**c, 1-0.5*x**(-c))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c))
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
return c**2 / (c**2 - n**2)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return log(2.0/c) + 1.0
|
|
|
|
loglaplace = loglaplace_gen(a=0.0, name='loglaplace')
|
|
|
|
|
|
|
|
|
|
|
|
def _lognorm_logpdf(x, s):
|
|
|
|
return _lazywhere(x != 0, (x, s),
|
|
|
|
lambda x, s: -log(x)**2 / (2*s**2) - log(s*x*sqrt(2*pi)),
|
|
|
|
-np.inf)
|
|
|
|
|
|
|
|
|
|
|
|
class lognorm_gen(rv_continuous):
|
|
|
|
"""A lognormal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `lognorm` is::
|
|
|
|
|
|
|
|
lognorm.pdf(x, s) = 1 / (s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)
|
|
|
|
|
|
|
|
for ``x > 0``, ``s > 0``.
|
|
|
|
|
|
|
|
`lognorm` takes ``s`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
A common parametrization for a lognormal random variable ``Y`` is in
|
|
|
|
terms of the mean, ``mu``, and standard deviation, ``sigma``, of the
|
|
|
|
unique normally distributed random variable ``X`` such that exp(X) = Y.
|
|
|
|
This parametrization corresponds to setting ``s = sigma`` and ``scale =
|
|
|
|
exp(mu)``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, s):
|
|
|
|
return exp(s * self._random_state.standard_normal(self._size))
|
|
|
|
|
|
|
|
def _pdf(self, x, s):
|
|
|
|
return exp(self._logpdf(x, s))
|
|
|
|
|
|
|
|
def _logpdf(self, x, s):
|
|
|
|
return _lognorm_logpdf(x, s)
|
|
|
|
|
|
|
|
def _cdf(self, x, s):
|
|
|
|
return _norm_cdf(log(x) / s)
|
|
|
|
|
|
|
|
def _logcdf(self, x, s):
|
|
|
|
return _norm_logcdf(log(x) / s)
|
|
|
|
|
|
|
|
def _ppf(self, q, s):
|
|
|
|
return exp(s * _norm_ppf(q))
|
|
|
|
|
|
|
|
def _sf(self, x, s):
|
|
|
|
return _norm_sf(log(x) / s)
|
|
|
|
|
|
|
|
def _logsf(self, x, s):
|
|
|
|
return _norm_logsf(log(x) / s)
|
|
|
|
|
|
|
|
def _stats(self, s):
|
|
|
|
p = exp(s*s)
|
|
|
|
mu = sqrt(p)
|
|
|
|
mu2 = p*(p-1)
|
|
|
|
g1 = sqrt((p-1))*(2+p)
|
|
|
|
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self, s):
|
|
|
|
return 0.5 * (1 + log(2*pi) + 2 * log(s))
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
scale = data.std()
|
|
|
|
loc = data.min() - 0.001
|
|
|
|
logd = log(data - loc)
|
|
|
|
m = logd.mean()
|
|
|
|
s = sqrt((logd ** 2).mean() - m ** 2)
|
|
|
|
return s, loc, scale
|
|
|
|
lognorm = lognorm_gen(a=0.0, name='lognorm')
|
|
|
|
|
|
|
|
|
|
|
|
class gilbrat_gen(rv_continuous):
|
|
|
|
"""A Gilbrat continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gilbrat` is::
|
|
|
|
|
|
|
|
gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2)
|
|
|
|
|
|
|
|
`gilbrat` is a special case of `lognorm` with ``s = 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return exp(self._random_state.standard_normal(self._size))
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return exp(self._logpdf(x))
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return _lognorm_logpdf(x, 1.0)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return _norm_cdf(log(x))
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return exp(_norm_ppf(q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
p = np.e
|
|
|
|
mu = sqrt(p)
|
|
|
|
mu2 = p * (p - 1)
|
|
|
|
g1 = sqrt((p - 1)) * (2 + p)
|
|
|
|
g2 = np.polyval([1, 2, 3, 0, -6.0], p)
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 0.5 * log(2 * pi) + 0.5
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
scale = data.std()
|
|
|
|
loc = data.min() - 0.001
|
|
|
|
return loc, scale
|
|
|
|
gilbrat = gilbrat_gen(a=0.0, name='gilbrat')
|
|
|
|
|
|
|
|
|
|
|
|
class maxwell_gen(rv_continuous):
|
|
|
|
"""A Maxwell continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
A special case of a `chi` distribution, with ``df = 3``, ``loc = 0.0``,
|
|
|
|
and given ``scale = a``, where ``a`` is the parameter used in the
|
|
|
|
Mathworld description [1]_.
|
|
|
|
|
|
|
|
The probability density function for `maxwell` is::
|
|
|
|
|
|
|
|
maxwell.pdf(x) = sqrt(2/pi)x**2 * exp(-x**2/2)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] http://mathworld.wolfram.com/MaxwellDistribution.html
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return chi.rvs(3.0, size=self._size, random_state=self._random_state)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return sqrt(2.0/pi)*x*x*exp(-x*x/2.0)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return special.gammainc(1.5, x*x/2.0)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return sqrt(2*special.gammaincinv(1.5, q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
val = 3*pi-8
|
|
|
|
return (2*sqrt(2.0/pi), 3-8/pi, sqrt(2)*(32-10*pi)/val**1.5,
|
|
|
|
(-12*pi*pi + 160*pi - 384) / val**2.0)
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return _EULER + 0.5*log(2*pi)-0.5
|
|
|
|
maxwell = maxwell_gen(a=0.0, name='maxwell')
|
|
|
|
|
|
|
|
|
|
|
|
class mielke_gen(rv_continuous):
|
|
|
|
"""A Mielke's Beta-Kappa continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `mielke` is::
|
|
|
|
|
|
|
|
mielke.pdf(x, k, s) = k * x**(k-1) / (1+x**s)**(1+k/s)
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`mielke` takes ``k`` and ``s`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, k, s):
|
|
|
|
return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s)
|
|
|
|
|
|
|
|
def _cdf(self, x, k, s):
|
|
|
|
return x**k / (1.0+x**s)**(k*1.0/s)
|
|
|
|
|
|
|
|
def _ppf(self, q, k, s):
|
|
|
|
qsk = pow(q, s*1.0/k)
|
|
|
|
return pow(qsk/(1.0-qsk), 1.0/s)
|
|
|
|
mielke = mielke_gen(a=0.0, name='mielke')
|
|
|
|
|
|
|
|
|
|
|
|
class nakagami_gen(rv_continuous):
|
|
|
|
"""A Nakagami continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `nakagami` is::
|
|
|
|
|
|
|
|
nakagami.pdf(x, nu) = 2 * nu**nu / gamma(nu) *
|
|
|
|
x**(2*nu-1) * exp(-nu*x**2)
|
|
|
|
|
|
|
|
for ``x > 0``, ``nu > 0``.
|
|
|
|
|
|
|
|
`nakagami` takes ``nu`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, nu):
|
|
|
|
return 2*nu**nu/gam(nu)*(x**(2*nu-1.0))*exp(-nu*x*x)
|
|
|
|
|
|
|
|
def _cdf(self, x, nu):
|
|
|
|
return special.gammainc(nu, nu*x*x)
|
|
|
|
|
|
|
|
def _ppf(self, q, nu):
|
|
|
|
return sqrt(1.0/nu*special.gammaincinv(nu, q))
|
|
|
|
|
|
|
|
def _stats(self, nu):
|
|
|
|
mu = gam(nu+0.5)/gam(nu)/sqrt(nu)
|
|
|
|
mu2 = 1.0-mu*mu
|
|
|
|
g1 = mu * (1 - 4*nu*mu2) / 2.0 / nu / np.power(mu2, 1.5)
|
|
|
|
g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1
|
|
|
|
g2 /= nu*mu2**2.0
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
nakagami = nakagami_gen(a=0.0, name="nakagami")
|
|
|
|
|
|
|
|
|
|
|
|
class ncx2_gen(rv_continuous):
|
|
|
|
"""A non-central chi-squared continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `ncx2` is::
|
|
|
|
|
|
|
|
ncx2.pdf(x, df, nc) = exp(-(nc+x)/2) * 1/2 * (x/nc)**((df-2)/4)
|
|
|
|
* I[(df-2)/2](sqrt(nc*x))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`ncx2` takes ``df`` and ``nc`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, df, nc):
|
|
|
|
return self._random_state.noncentral_chisquare(df, nc, self._size)
|
|
|
|
|
|
|
|
def _logpdf(self, x, df, nc):
|
|
|
|
return _ncx2_log_pdf(x, df, nc)
|
|
|
|
|
|
|
|
def _pdf(self, x, df, nc):
|
|
|
|
return _ncx2_pdf(x, df, nc)
|
|
|
|
|
|
|
|
def _cdf(self, x, df, nc):
|
|
|
|
return _ncx2_cdf(x, df, nc)
|
|
|
|
|
|
|
|
def _ppf(self, q, df, nc):
|
|
|
|
return special.chndtrix(q, df, nc)
|
|
|
|
|
|
|
|
def _stats(self, df, nc):
|
|
|
|
val = df + 2.0*nc
|
|
|
|
return (df + nc, 2*val, sqrt(8)*(val+nc)/val**1.5,
|
|
|
|
12.0*(val+2*nc)/val**2.0)
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
m = data.mean()
|
|
|
|
v = data.var()
|
|
|
|
# Supply a starting guess with method of moments:
|
|
|
|
nc = (v / 2 - m) / 2
|
|
|
|
df = m - nc
|
|
|
|
return super(ncx2_gen, self)._fitstart(data, args=(df, nc))
|
|
|
|
ncx2 = ncx2_gen(a=0.0, name='ncx2')
|
|
|
|
|
|
|
|
|
|
|
|
class ncf_gen(rv_continuous):
|
|
|
|
"""A non-central F distribution continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `ncf` is::
|
|
|
|
|
|
|
|
ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) *
|
|
|
|
df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) *
|
|
|
|
(df2+df1*x)**(-(df1+df2)/2) *
|
|
|
|
gamma(df1/2)*gamma(1+df2/2) *
|
|
|
|
L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) /
|
|
|
|
(B(v1/2, v2/2) * gamma((v1+v2)/2))
|
|
|
|
|
|
|
|
for ``df1, df2, nc > 0``.
|
|
|
|
|
|
|
|
`ncf` takes ``df1``, ``df2`` and ``nc`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, dfn, dfd, nc):
|
|
|
|
return self._random_state.noncentral_f(dfn, dfd, nc, self._size)
|
|
|
|
|
|
|
|
def _pdf_skip(self, x, dfn, dfd, nc):
|
|
|
|
n1, n2 = dfn, dfd
|
|
|
|
term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + gamln(n1/2.)+gamln(1+n2/2.)
|
|
|
|
term -= gamln((n1+n2)/2.0)
|
|
|
|
Px = exp(term)
|
|
|
|
Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1)
|
|
|
|
Px *= (n2+n1*x)**(-(n1+n2)/2)
|
|
|
|
Px *= special.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)), n2/2, n1/2-1)
|
|
|
|
Px /= special.beta(n1/2, n2/2)
|
|
|
|
# This function does not have a return. Drop it for now, the generic
|
|
|
|
# function seems to work OK.
|
|
|
|
|
|
|
|
def _cdf(self, x, dfn, dfd, nc):
|
|
|
|
return special.ncfdtr(dfn, dfd, nc, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, dfn, dfd, nc):
|
|
|
|
return special.ncfdtri(dfn, dfd, nc, q)
|
|
|
|
|
|
|
|
def _munp(self, n, dfn, dfd, nc):
|
|
|
|
val = (dfn * 1.0/dfd)**n
|
|
|
|
term = gamln(n+0.5*dfn) + gamln(0.5*dfd-n) - gamln(dfd*0.5)
|
|
|
|
val *= exp(-nc / 2.0+term)
|
|
|
|
val *= special.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc)
|
|
|
|
return val
|
|
|
|
|
|
|
|
def _stats(self, dfn, dfd, nc):
|
|
|
|
mu = where(dfd <= 2, inf, dfd / (dfd-2.0)*(1+nc*1.0/dfn))
|
|
|
|
mu2 = where(dfd <= 4, inf, 2*(dfd*1.0/dfn)**2.0 *
|
|
|
|
((dfn+nc/2.0)**2.0 + (dfn+nc)*(dfd-2.0)) /
|
|
|
|
((dfd-2.0)**2.0 * (dfd-4.0)))
|
|
|
|
return mu, mu2, None, None
|
|
|
|
ncf = ncf_gen(a=0.0, name='ncf')
|
|
|
|
|
|
|
|
|
|
|
|
class t_gen(rv_continuous):
|
|
|
|
"""A Student's T continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `t` is::
|
|
|
|
|
|
|
|
gamma((df+1)/2)
|
|
|
|
t.pdf(x, df) = ---------------------------------------------------
|
|
|
|
sqrt(pi*df) * gamma(df/2) * (1+x**2/df)**((df+1)/2)
|
|
|
|
|
|
|
|
for ``df > 0``.
|
|
|
|
|
|
|
|
`t` takes ``df`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, df):
|
|
|
|
return self._random_state.standard_t(df, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, df):
|
|
|
|
r = asarray(df*1.0)
|
|
|
|
Px = exp(gamln((r+1)/2)-gamln(r/2))
|
|
|
|
Px /= sqrt(r*pi)*(1+(x**2)/r)**((r+1)/2)
|
|
|
|
return Px
|
|
|
|
|
|
|
|
def _logpdf(self, x, df):
|
|
|
|
r = df*1.0
|
|
|
|
lPx = gamln((r+1)/2)-gamln(r/2)
|
|
|
|
lPx -= 0.5*log(r*pi) + (r+1)/2*log(1+(x**2)/r)
|
|
|
|
return lPx
|
|
|
|
|
|
|
|
def _cdf(self, x, df):
|
|
|
|
return special.stdtr(df, x)
|
|
|
|
|
|
|
|
def _sf(self, x, df):
|
|
|
|
return special.stdtr(df, -x)
|
|
|
|
|
|
|
|
def _ppf(self, q, df):
|
|
|
|
return special.stdtrit(df, q)
|
|
|
|
|
|
|
|
def _isf(self, q, df):
|
|
|
|
return -special.stdtrit(df, q)
|
|
|
|
|
|
|
|
def _stats(self, df):
|
|
|
|
mu2 = _lazywhere(df > 2, (df,),
|
|
|
|
lambda df: df / (df-2.0),
|
|
|
|
np.inf)
|
|
|
|
g1 = where(df > 3, 0.0, np.nan)
|
|
|
|
g2 = _lazywhere(df > 4, (df,),
|
|
|
|
lambda df: 6.0 / (df-4.0),
|
|
|
|
np.nan)
|
|
|
|
return 0, mu2, g1, g2
|
|
|
|
t = t_gen(name='t')
|
|
|
|
|
|
|
|
|
|
|
|
class nct_gen(rv_continuous):
|
|
|
|
"""A non-central Student's T continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `nct` is::
|
|
|
|
|
|
|
|
df**(df/2) * gamma(df+1)
|
|
|
|
nct.pdf(x, df, nc) = ----------------------------------------------------
|
|
|
|
2**df*exp(nc**2/2) * (df+x**2)**(df/2) * gamma(df/2)
|
|
|
|
|
|
|
|
for ``df > 0``.
|
|
|
|
|
|
|
|
`nct` takes ``df`` and ``nc`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, df, nc):
|
|
|
|
return (df > 0) & (nc == nc)
|
|
|
|
|
|
|
|
def _rvs(self, df, nc):
|
|
|
|
sz, rndm = self._size, self._random_state
|
|
|
|
n = norm.rvs(loc=nc, size=sz, random_state=rndm)
|
|
|
|
c2 = chi2.rvs(df, size=sz, random_state=rndm)
|
|
|
|
return n * sqrt(df) / sqrt(c2)
|
|
|
|
|
|
|
|
def _pdf(self, x, df, nc):
|
|
|
|
n = df*1.0
|
|
|
|
nc = nc*1.0
|
|
|
|
x2 = x*x
|
|
|
|
ncx2 = nc*nc*x2
|
|
|
|
fac1 = n + x2
|
|
|
|
trm1 = n/2.*log(n) + gamln(n+1)
|
|
|
|
trm1 -= n*log(2)+nc*nc/2.+(n/2.)*log(fac1)+gamln(n/2.)
|
|
|
|
Px = exp(trm1)
|
|
|
|
valF = ncx2 / (2*fac1)
|
|
|
|
trm1 = sqrt(2)*nc*x*special.hyp1f1(n/2+1, 1.5, valF)
|
|
|
|
trm1 /= asarray(fac1*special.gamma((n+1)/2))
|
|
|
|
trm2 = special.hyp1f1((n+1)/2, 0.5, valF)
|
|
|
|
trm2 /= asarray(sqrt(fac1)*special.gamma(n/2+1))
|
|
|
|
Px *= trm1+trm2
|
|
|
|
return Px
|
|
|
|
|
|
|
|
def _cdf(self, x, df, nc):
|
|
|
|
return special.nctdtr(df, nc, x)
|
|
|
|
|
|
|
|
def _ppf(self, q, df, nc):
|
|
|
|
return special.nctdtrit(df, nc, q)
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
me = np.mean(data)
|
|
|
|
# g2 = mode(data)[0]
|
|
|
|
sa = np.std(data)
|
|
|
|
|
|
|
|
def func(df):
|
|
|
|
return ((df - 2) * (4 * df - 1) -
|
|
|
|
(4 * df - 1) * df / (sa ** 2 + me ** 2) +
|
|
|
|
me ** 2 / (sa ** 2 + me ** 2) * (df * (4 * df - 1) -
|
|
|
|
3 * df))
|
|
|
|
|
|
|
|
df0 = np.maximum(2 * sa / (sa - 1), 1)
|
|
|
|
df = optimize.fsolve(func, df0)
|
|
|
|
mu = me * (1 - 3 / (4 * df - 1))
|
|
|
|
return super(nct_gen, self)._fitstart(data, args=(df, mu))
|
|
|
|
|
|
|
|
def _stats(self, df, nc, moments='mv'):
|
|
|
|
#
|
|
|
|
# See D. Hogben, R.S. Pinkham, and M.B. Wilk,
|
|
|
|
# 'The moments of the non-central t-distribution'
|
|
|
|
# Biometrika 48, p. 465 (2961).
|
|
|
|
# e.g. http://www.jstor.org/stable/2332772 (gated)
|
|
|
|
#
|
|
|
|
mu, mu2, g1, g2 = None, None, None, None
|
|
|
|
|
|
|
|
gfac = gam(df/2.-0.5) / gam(df/2.)
|
|
|
|
c11 = sqrt(df/2.) * gfac
|
|
|
|
c20 = df / (df-2.)
|
|
|
|
c22 = c20 - c11*c11
|
|
|
|
mu = np.where(df > 1, nc*c11, np.inf)
|
|
|
|
mu2 = np.where(df > 2, c22*nc*nc + c20, np.inf)
|
|
|
|
if 's' in moments:
|
|
|
|
c33t = df * (7.-2.*df) / (df-2.) / (df-3.) + 2.*c11*c11
|
|
|
|
c31t = 3.*df / (df-2.) / (df-3.)
|
|
|
|
mu3 = (c33t*nc*nc + c31t) * c11*nc
|
|
|
|
g1 = np.where(df > 3, mu3 / np.power(mu2, 1.5), np.nan)
|
|
|
|
#kurtosis
|
|
|
|
if 'k' in moments:
|
|
|
|
c44 = df*df / (df-2.) / (df-4.)
|
|
|
|
c44 -= c11*c11 * 2.*df*(5.-df) / (df-2.) / (df-3.)
|
|
|
|
c44 -= 3.*c11**4
|
|
|
|
c42 = df / (df-4.) - c11*c11 * (df-1.) / (df-3.)
|
|
|
|
c42 *= 6.*df / (df-2.)
|
|
|
|
c40 = 3.*df*df / (df-2.) / (df-4.)
|
|
|
|
|
|
|
|
mu4 = c44 * nc**4 + c42*nc**2 + c40
|
|
|
|
g2 = np.where(df > 4, mu4/mu2**2 - 3., np.nan)
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
nct = nct_gen(name="nct")
|
|
|
|
|
|
|
|
|
|
|
|
class pareto_gen(rv_continuous):
|
|
|
|
"""A Pareto continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `pareto` is::
|
|
|
|
|
|
|
|
pareto.pdf(x, b) = b / x**(b+1)
|
|
|
|
|
|
|
|
for ``x >= 1``, ``b > 0``.
|
|
|
|
|
|
|
|
`pareto` takes ``b`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, b):
|
|
|
|
return b * x**(-b-1)
|
|
|
|
|
|
|
|
def _cdf(self, x, b):
|
|
|
|
return 1 - x**(-b)
|
|
|
|
|
|
|
|
def _ppf(self, q, b):
|
|
|
|
return pow(1-q, -1.0/b)
|
|
|
|
|
|
|
|
def _stats(self, b, moments='mv'):
|
|
|
|
mu, mu2, g1, g2 = None, None, None, None
|
|
|
|
if 'm' in moments:
|
|
|
|
mask = b > 1
|
|
|
|
bt = extract(mask, b)
|
|
|
|
mu = valarray(shape(b), value=inf)
|
|
|
|
place(mu, mask, bt / (bt-1.0))
|
|
|
|
if 'v' in moments:
|
|
|
|
mask = b > 2
|
|
|
|
bt = extract(mask, b)
|
|
|
|
mu2 = valarray(shape(b), value=inf)
|
|
|
|
place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2)
|
|
|
|
if 's' in moments:
|
|
|
|
mask = b > 3
|
|
|
|
bt = extract(mask, b)
|
|
|
|
g1 = valarray(shape(b), value=nan)
|
|
|
|
vals = 2 * (bt + 1.0) * sqrt(bt - 2.0) / ((bt - 3.0) * sqrt(bt))
|
|
|
|
place(g1, mask, vals)
|
|
|
|
if 'k' in moments:
|
|
|
|
mask = b > 4
|
|
|
|
bt = extract(mask, b)
|
|
|
|
g2 = valarray(shape(b), value=nan)
|
|
|
|
vals = (6.0*polyval([1.0, 1.0, -6, -2], bt) /
|
|
|
|
polyval([1.0, -7.0, 12.0, 0.0], bt))
|
|
|
|
place(g2, mask, vals)
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 1 + 1.0/c - log(c)
|
|
|
|
pareto = pareto_gen(a=1.0, name="pareto")
|
|
|
|
|
|
|
|
|
|
|
|
class lomax_gen(rv_continuous):
|
|
|
|
"""A Lomax (Pareto of the second kind) continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The Lomax distribution is a special case of the Pareto distribution, with
|
|
|
|
(loc=-1.0).
|
|
|
|
|
|
|
|
The probability density function for `lomax` is::
|
|
|
|
|
|
|
|
lomax.pdf(x, c) = c / (1+x)**(c+1)
|
|
|
|
|
|
|
|
for ``x >= 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`lomax` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return c*1.0/(1.0+x)**(c+1.0)
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return log(c) - (c+1)*special.log1p(x)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return -special.expm1(-c*special.log1p(x))
|
|
|
|
|
|
|
|
def _sf(self, x, c):
|
|
|
|
return exp(-c*special.log1p(x))
|
|
|
|
|
|
|
|
def _logsf(self, x, c):
|
|
|
|
return -c*special.log1p(x)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return special.expm1(-special.log1p(-q)/c)
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk')
|
|
|
|
return mu, mu2, g1, g2
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 1+1.0/c-log(c)
|
|
|
|
lomax = lomax_gen(a=0.0, name="lomax")
|
|
|
|
|
|
|
|
|
|
|
|
class pearson3_gen(rv_continuous):
|
|
|
|
"""A pearson type III continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `pearson3` is::
|
|
|
|
|
|
|
|
pearson3.pdf(x, skew) = abs(beta) / gamma(alpha) *
|
|
|
|
(beta * (x - zeta))**(alpha - 1) * exp(-beta*(x - zeta))
|
|
|
|
|
|
|
|
where::
|
|
|
|
|
|
|
|
beta = 2 / (skew * stddev)
|
|
|
|
alpha = (stddev * beta)**2
|
|
|
|
zeta = loc - alpha / beta
|
|
|
|
|
|
|
|
`pearson3` takes ``skew`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
R.W. Vogel and D.E. McMartin, "Probability Plot Goodness-of-Fit and
|
|
|
|
Skewness Estimation Procedures for the Pearson Type 3 Distribution", Water
|
|
|
|
Resources Research, Vol.27, 3149-3158 (1991).
|
|
|
|
|
|
|
|
L.R. Salvosa, "Tables of Pearson's Type III Function", Ann. Math. Statist.,
|
|
|
|
Vol.1, 191-198 (1930).
|
|
|
|
|
|
|
|
"Using Modern Computing Tools to Fit the Pearson Type III Distribution to
|
|
|
|
Aviation Loads Data", Office of Aviation Research (2003).
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _preprocess(self, x, skew):
|
|
|
|
# The real 'loc' and 'scale' are handled in the calling pdf(...). The
|
|
|
|
# local variables 'loc' and 'scale' within pearson3._pdf are set to
|
|
|
|
# the defaults just to keep them as part of the equations for
|
|
|
|
# documentation.
|
|
|
|
loc = 0.0
|
|
|
|
scale = 1.0
|
|
|
|
|
|
|
|
# If skew is small, return _norm_pdf. The divide between pearson3
|
|
|
|
# and norm was found by brute force and is approximately a skew of
|
|
|
|
# 0.000016. No one, I hope, would actually use a skew value even
|
|
|
|
# close to this small.
|
|
|
|
norm2pearson_transition = 0.000016
|
|
|
|
|
|
|
|
ans, x, skew = np.broadcast_arrays([1.0], x, skew)
|
|
|
|
ans = ans.copy()
|
|
|
|
|
|
|
|
mask = np.absolute(skew) < norm2pearson_transition
|
|
|
|
invmask = ~mask
|
|
|
|
|
|
|
|
beta = 2.0 / (skew[invmask] * scale)
|
|
|
|
alpha = (scale * beta)**2
|
|
|
|
zeta = loc - alpha / beta
|
|
|
|
|
|
|
|
transx = beta * (x[invmask] - zeta)
|
|
|
|
return ans, x, transx, skew, mask, invmask, beta, alpha, zeta
|
|
|
|
|
|
|
|
def _argcheck(self, skew):
|
|
|
|
# The _argcheck function in rv_continuous only allows positive
|
|
|
|
# arguments. The skew argument for pearson3 can be zero (which I want
|
|
|
|
# to handle inside pearson3._pdf) or negative. So just return True
|
|
|
|
# for all skew args.
|
|
|
|
return np.ones(np.shape(skew), dtype=bool)
|
|
|
|
|
|
|
|
def _stats(self, skew):
|
|
|
|
ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
|
|
|
|
self._preprocess([1], skew))
|
|
|
|
m = zeta + alpha / beta
|
|
|
|
v = alpha / (beta**2)
|
|
|
|
s = 2.0 / (alpha**0.5) * np.sign(beta)
|
|
|
|
k = 6.0 / alpha
|
|
|
|
return m, v, s, k
|
|
|
|
|
|
|
|
def _pdf(self, x, skew):
|
|
|
|
# Do the calculation in _logpdf since helps to limit
|
|
|
|
# overflow/underflow problems
|
|
|
|
ans = exp(self._logpdf(x, skew))
|
|
|
|
if ans.ndim == 0:
|
|
|
|
if np.isnan(ans):
|
|
|
|
return 0.0
|
|
|
|
return ans
|
|
|
|
ans[np.isnan(ans)] = 0.0
|
|
|
|
return ans
|
|
|
|
|
|
|
|
def _logpdf(self, x, skew):
|
|
|
|
# PEARSON3 logpdf GAMMA logpdf
|
|
|
|
# np.log(abs(beta))
|
|
|
|
# + (alpha - 1)*log(beta*(x - zeta)) + (a - 1)*log(x)
|
|
|
|
# - beta*(x - zeta) - x
|
|
|
|
# - gamln(alpha) - gamln(a)
|
|
|
|
ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
|
|
|
|
self._preprocess(x, skew))
|
|
|
|
|
|
|
|
ans[mask] = np.log(_norm_pdf(x[mask]))
|
|
|
|
ans[invmask] = log(abs(beta)) + gamma._logpdf(transx, alpha)
|
|
|
|
return ans
|
|
|
|
|
|
|
|
def _cdf(self, x, skew):
|
|
|
|
ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
|
|
|
|
self._preprocess(x, skew))
|
|
|
|
|
|
|
|
ans[mask] = _norm_cdf(x[mask])
|
|
|
|
ans[invmask] = gamma._cdf(transx, alpha)
|
|
|
|
return ans
|
|
|
|
|
|
|
|
def _rvs(self, skew):
|
|
|
|
ans, x, transx, skew, mask, invmask, beta, alpha, zeta = (
|
|
|
|
self._preprocess([0], skew))
|
|
|
|
if mask[0]:
|
|
|
|
return self._random_state.standard_normal(self._size)
|
|
|
|
ans = self._random_state.standard_gamma(alpha, self._size)/beta + zeta
|
|
|
|
if ans.size == 1:
|
|
|
|
return ans[0]
|
|
|
|
return ans
|
|
|
|
|
|
|
|
def _ppf(self, q, skew):
|
|
|
|
ans, q, transq, skew, mask, invmask, beta, alpha, zeta = (
|
|
|
|
self._preprocess(q, skew))
|
|
|
|
ans[mask] = _norm_ppf(q[mask])
|
|
|
|
ans[invmask] = special.gammaincinv(alpha, q[invmask])/beta + zeta
|
|
|
|
return ans
|
|
|
|
pearson3 = pearson3_gen(name="pearson3")
|
|
|
|
|
|
|
|
|
|
|
|
class powerlaw_gen(rv_continuous):
|
|
|
|
"""A power-function continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `powerlaw` is::
|
|
|
|
|
|
|
|
powerlaw.pdf(x, a) = a * x**(a-1)
|
|
|
|
|
|
|
|
for ``0 <= x <= 1``, ``a > 0``.
|
|
|
|
|
|
|
|
`powerlaw` takes ``a`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
`powerlaw` is a special case of `beta` with ``b == 1``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return a*x**(a-1.0)
|
|
|
|
|
|
|
|
def _logpdf(self, x, a):
|
|
|
|
return log(a) + special.xlogy(a - 1, x)
|
|
|
|
|
|
|
|
def _cdf(self, x, a):
|
|
|
|
return x**(a*1.0)
|
|
|
|
|
|
|
|
def _logcdf(self, x, a):
|
|
|
|
return a*log(x)
|
|
|
|
|
|
|
|
def _ppf(self, q, a):
|
|
|
|
return pow(q, 1.0/a)
|
|
|
|
|
|
|
|
def _stats(self, a):
|
|
|
|
return (a / (a + 1.0),
|
|
|
|
a / (a + 2.0) / (a + 1.0) ** 2,
|
|
|
|
-2.0 * ((a - 1.0) / (a + 3.0)) * sqrt((a + 2.0) / a),
|
|
|
|
6 * polyval([1, -1, -6, 2], a) / (a * (a + 3.0) * (a + 4)))
|
|
|
|
|
|
|
|
def _entropy(self, a):
|
|
|
|
return 1 - 1.0/a - log(a)
|
|
|
|
powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw")
|
|
|
|
|
|
|
|
|
|
|
|
class powerlognorm_gen(rv_continuous):
|
|
|
|
"""A power log-normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `powerlognorm` is::
|
|
|
|
|
|
|
|
powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) *
|
|
|
|
(Phi(-log(x)/s))**(c-1),
|
|
|
|
|
|
|
|
where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf,
|
|
|
|
and ``x > 0``, ``s, c > 0``.
|
|
|
|
|
|
|
|
`powerlognorm` takes ``c`` and ``s`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c, s):
|
|
|
|
return (c/(x*s) * _norm_pdf(log(x)/s) *
|
|
|
|
pow(_norm_cdf(-log(x)/s), c*1.0-1.0))
|
|
|
|
|
|
|
|
def _cdf(self, x, c, s):
|
|
|
|
return 1.0 - pow(_norm_cdf(-log(x)/s), c*1.0)
|
|
|
|
|
|
|
|
def _ppf(self, q, c, s):
|
|
|
|
return exp(-s * _norm_ppf(pow(1.0 - q, 1.0 / c)))
|
|
|
|
powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm")
|
|
|
|
|
|
|
|
|
|
|
|
class powernorm_gen(rv_continuous):
|
|
|
|
"""A power normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `powernorm` is::
|
|
|
|
|
|
|
|
powernorm.pdf(x, c) = c * phi(x) * (Phi(-x))**(c-1)
|
|
|
|
|
|
|
|
where ``phi`` is the normal pdf, and ``Phi`` is the normal cdf,
|
|
|
|
and ``x > 0``, ``c > 0``.
|
|
|
|
|
|
|
|
`powernorm` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return (c*_norm_pdf(x) * (_norm_cdf(-x)**(c-1.0)))
|
|
|
|
|
|
|
|
def _logpdf(self, x, c):
|
|
|
|
return log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return 1.0-_norm_cdf(-x)**(c*1.0)
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return -_norm_ppf(pow(1.0 - q, 1.0 / c))
|
|
|
|
powernorm = powernorm_gen(name='powernorm')
|
|
|
|
|
|
|
|
|
|
|
|
class rdist_gen(rv_continuous):
|
|
|
|
"""An R-distributed continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `rdist` is::
|
|
|
|
|
|
|
|
rdist.pdf(x, c) = (1-x**2)**(c/2-1) / B(1/2, c/2)
|
|
|
|
|
|
|
|
for ``-1 <= x <= 1``, ``c > 0``.
|
|
|
|
|
|
|
|
`rdist` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return np.power((1.0 - x**2), c / 2.0 - 1) / special.beta(0.5, c / 2.0)
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
term1 = x / special.beta(0.5, c / 2.0)
|
|
|
|
res = 0.5 + term1 * special.hyp2f1(0.5, 1 - c / 2.0, 1.5, x**2)
|
|
|
|
# There's an issue with hyp2f1, it returns nans near x = +-1, c > 100.
|
|
|
|
# Use the generic implementation in that case. See gh-1285 for
|
|
|
|
# background.
|
|
|
|
if np.any(np.isnan(res)):
|
|
|
|
return rv_continuous._cdf(self, x, c)
|
|
|
|
return res
|
|
|
|
|
|
|
|
def _munp(self, n, c):
|
|
|
|
numerator = (1 - (n % 2)) * special.beta((n + 1.0) / 2, c / 2.0)
|
|
|
|
return numerator / special.beta(1. / 2, c / 2.)
|
|
|
|
rdist = rdist_gen(a=-1.0, b=1.0, name="rdist")
|
|
|
|
|
|
|
|
|
|
|
|
class rayleigh_gen(rv_continuous):
|
|
|
|
"""A Rayleigh continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `rayleigh` is::
|
|
|
|
|
|
|
|
rayleigh.pdf(r) = r * exp(-r**2/2)
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
`rayleigh` is a special case of `chi` with ``df == 2``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
if ix == 1:
|
|
|
|
return x - phat[0] / sqrt(-2.0 * logSF)
|
|
|
|
elif ix == 0:
|
|
|
|
return x - phat[1] * sqrt(-2.0 * logSF)
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
def _rvs(self):
|
|
|
|
return chi.rvs(2, size=self._size, random_state=self._random_state)
|
|
|
|
|
|
|
|
def _pdf(self, r):
|
|
|
|
return exp(self._logpdf(r))
|
|
|
|
|
|
|
|
def _logpdf(self, r):
|
|
|
|
rr2 = r * r / 2.0
|
|
|
|
return where(rr2 == inf, - rr2, log(r) - rr2)
|
|
|
|
|
|
|
|
def _cdf(self, r):
|
|
|
|
return -special.expm1(-0.5 * r**2)
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return sqrt(-2 * special.log1p(-q))
|
|
|
|
|
|
|
|
def _sf(self, r):
|
|
|
|
return exp(-0.5 * r**2)
|
|
|
|
|
|
|
|
def _isf(self, q):
|
|
|
|
return sqrt(-2 * log(q))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
val = 4 - pi
|
|
|
|
return (np.sqrt(pi/2), val/2, 2*(pi-3)*sqrt(pi)/val**1.5,
|
|
|
|
6*pi/val-16/val**2)
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return _EULER/2.0 + 1 - 0.5*log(2)
|
|
|
|
rayleigh = rayleigh_gen(a=0.0, name="rayleigh")
|
|
|
|
|
|
|
|
|
|
|
|
class truncrayleigh_gen(rv_continuous):
|
|
|
|
|
|
|
|
"""A truncated Rayleigh continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `truncrayleigh` is::
|
|
|
|
|
|
|
|
truncrayleigh.cdf(r) = 1 - exp(-((r+c)**2-c**2)/2)
|
|
|
|
|
|
|
|
for ``x >= 0, c>=0``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _argcheck(self, c):
|
|
|
|
return (c >= 0)
|
|
|
|
|
|
|
|
def _link(self, x, logSF, phat, ix):
|
|
|
|
c, loc, scale = phat
|
|
|
|
if ix == 2:
|
|
|
|
return x - loc / (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
elif ix == 1:
|
|
|
|
return x - scale * (sqrt(c * c - 2 * logSF) - c)
|
|
|
|
elif ix == 0:
|
|
|
|
xn = (x - loc) / scale
|
|
|
|
return - 2 * logSF / xn - xn / 2.0
|
|
|
|
else:
|
|
|
|
raise IndexError('Index to the fixed parameter is out of bounds')
|
|
|
|
|
|
|
|
def _fitstart(self, data, args=None):
|
|
|
|
if args is None:
|
|
|
|
args = (0.0,) * self.numargs
|
|
|
|
return args + self.fit_loc_scale(data, *args)
|
|
|
|
|
|
|
|
def _pdf(self, r, c):
|
|
|
|
rc = r + c
|
|
|
|
return rc * exp(-(rc * rc - c * c) / 2.0)
|
|
|
|
|
|
|
|
def _logpdf(self, r, c):
|
|
|
|
rc = r + c
|
|
|
|
return log(rc) - (rc * rc - c * c) / 2.0
|
|
|
|
|
|
|
|
def _cdf(self, r, c):
|
|
|
|
rc = r + c
|
|
|
|
return - expm1(-(rc * rc - c * c) / 2.0)
|
|
|
|
|
|
|
|
def _logsf(self, r, c):
|
|
|
|
rc = r + c
|
|
|
|
return -(rc * rc - c * c) / 2.0
|
|
|
|
|
|
|
|
def _sf(self, r, c):
|
|
|
|
return exp(self._logsf(r, c))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return sqrt(c * c - 2 * log1p(-q)) - c
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
# TODO: correct this it is wrong!
|
|
|
|
val = 4 - pi
|
|
|
|
return (np.sqrt(pi / 2),
|
|
|
|
val / 2,
|
|
|
|
2 * (pi - 3) * sqrt(pi) / val ** 1.5,
|
|
|
|
6 * pi / val - 16 / val ** 2)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
# TODO: correct this it is wrong!
|
|
|
|
return _EULER / 2.0 + 1 - 0.5 * log(2)
|
|
|
|
truncrayleigh = truncrayleigh_gen(a=0.0, name="truncrayleigh", shapes='c')
|
|
|
|
|
|
|
|
# Reciprocal Distribution
|
|
|
|
|
|
|
|
|
|
|
|
class reciprocal_gen(rv_continuous):
|
|
|
|
"""A reciprocal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `reciprocal` is::
|
|
|
|
|
|
|
|
reciprocal.pdf(x, a, b) = 1 / (x*log(b/a))
|
|
|
|
|
|
|
|
for ``a <= x <= b``, ``a, b > 0``.
|
|
|
|
|
|
|
|
`reciprocal` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, b):
|
|
|
|
self.a = a
|
|
|
|
self.b = b
|
|
|
|
self.d = log(b*1.0 / a)
|
|
|
|
return (a > 0) & (b > 0) & (b > a)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
return 1.0 / (x * self.d)
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, b):
|
|
|
|
return -log(x) - log(self.d)
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return (log(x)-log(a)) / self.d
|
|
|
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
return a*pow(b*1.0/a, q)
|
|
|
|
|
|
|
|
def _munp(self, n, a, b):
|
|
|
|
return 1.0/self.d / n * (pow(b*1.0, n) - pow(a*1.0, n))
|
|
|
|
|
|
|
|
def _fitstart(self, data):
|
|
|
|
a = np.min(data)
|
|
|
|
a -= 0.01 * np.abs(a)
|
|
|
|
b = np.max(data)
|
|
|
|
b += 0.01 * np.abs(b)
|
|
|
|
if a <= 0:
|
|
|
|
da = np.abs(a) + 0.001
|
|
|
|
a += da
|
|
|
|
b += da
|
|
|
|
return super(reciprocal_gen, self)._fitstart(data, args=(a, b))
|
|
|
|
|
|
|
|
def _entropy(self, a, b):
|
|
|
|
return 0.5*log(a*b)+log(log(b/a))
|
|
|
|
reciprocal = reciprocal_gen(name="reciprocal")
|
|
|
|
|
|
|
|
class rice_gen(rv_continuous):
|
|
|
|
"""A Rice continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `rice` is::
|
|
|
|
|
|
|
|
rice.pdf(x, b) = x * exp(-(x**2+b**2)/2) * I[0](x*b)
|
|
|
|
|
|
|
|
for ``x > 0``, ``b > 0``.
|
|
|
|
|
|
|
|
`rice` takes ``b`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
The Rice distribution describes the length, ``r``, of a 2-D vector
|
|
|
|
with components ``(U+u, V+v)``, where ``U, V`` are constant, ``u, v``
|
|
|
|
are independent Gaussian random variables with standard deviation
|
|
|
|
``s``. Let ``R = (U**2 + V**2)**0.5``. Then the pdf of ``r`` is
|
|
|
|
``rice.pdf(x, R/s, scale=s)``.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, b):
|
|
|
|
return b >= 0
|
|
|
|
|
|
|
|
def _rvs(self, b):
|
|
|
|
# http://en.wikipedia.org/wiki/Rice_distribution
|
|
|
|
sz = self._size if self._size else 1
|
|
|
|
t = b/np.sqrt(2) + self._random_state.standard_normal(size=(2, sz))
|
|
|
|
return np.sqrt((t*t).sum(axis=0))
|
|
|
|
|
|
|
|
def _cdf(self, x, b):
|
|
|
|
return chndtr(np.square(x), 2, np.square(b))
|
|
|
|
|
|
|
|
def _ppf(self, q, b):
|
|
|
|
return np.sqrt(chndtrix(q, 2, np.square(b)))
|
|
|
|
|
|
|
|
def _pdf(self, x, b):
|
|
|
|
# We use (x**2 + b**2)/2 = ((x-b)**2)/2 + xb.
|
|
|
|
# The factor of exp(-xb) is then included in the i0e function
|
|
|
|
# in place of the modified Bessel function, i0, improving
|
|
|
|
# numerical stability for large values of xb.
|
|
|
|
return x * exp(-(x-b)*(x-b)/2.0) * special.i0e(x*b)
|
|
|
|
|
|
|
|
def _munp(self, n, b):
|
|
|
|
nd2 = n/2.0
|
|
|
|
n1 = 1 + nd2
|
|
|
|
b2 = b*b/2.0
|
|
|
|
return (2.0**(nd2) * exp(-b2) * special.gamma(n1) *
|
|
|
|
special.hyp1f1(n1, 1, b2))
|
|
|
|
rice = rice_gen(a=0.0, name="rice")
|
|
|
|
|
|
|
|
|
|
|
|
# FIXME: PPF does not work.
|
|
|
|
class recipinvgauss_gen(rv_continuous):
|
|
|
|
"""A reciprocal inverse Gaussian continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `recipinvgauss` is::
|
|
|
|
|
|
|
|
recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2))
|
|
|
|
|
|
|
|
for ``x >= 0``.
|
|
|
|
|
|
|
|
`recipinvgauss` takes ``mu`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, mu):
|
|
|
|
return 1.0/self._random_state.wald(mu, 1.0, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, mu):
|
|
|
|
return 1.0/sqrt(2*pi*x)*exp(-(1-mu*x)**2.0 / (2*x*mu**2.0))
|
|
|
|
|
|
|
|
def _logpdf(self, x, mu):
|
|
|
|
return -(1-mu*x)**2.0 / (2*x*mu**2.0) - 0.5*log(2*pi*x)
|
|
|
|
|
|
|
|
def _cdf(self, x, mu):
|
|
|
|
trm1 = 1.0/mu - x
|
|
|
|
trm2 = 1.0/mu + x
|
|
|
|
isqx = 1.0/sqrt(x)
|
|
|
|
return 1.0-_norm_cdf(isqx*trm1)-exp(2.0/mu)*_norm_cdf(-isqx*trm2)
|
|
|
|
recipinvgauss = recipinvgauss_gen(a=0.0, name='recipinvgauss')
|
|
|
|
|
|
|
|
|
|
|
|
class semicircular_gen(rv_continuous):
|
|
|
|
"""A semicircular continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `semicircular` is::
|
|
|
|
|
|
|
|
semicircular.pdf(x) = 2/pi * sqrt(1-x**2)
|
|
|
|
|
|
|
|
for ``-1 <= x <= 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 2.0/pi*sqrt(1-x*x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return 0.5+1.0/pi*(x*sqrt(1-x*x) + arcsin(x))
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0, 0.25, 0, -1.0
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 0.64472988584940017414
|
|
|
|
semicircular = semicircular_gen(a=-1.0, b=1.0, name="semicircular")
|
|
|
|
|
|
|
|
|
|
|
|
class skew_norm_gen(rv_continuous):
|
|
|
|
"""A skew-normal random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The pdf is::
|
|
|
|
|
|
|
|
skewnorm.pdf(x, a) = 2*norm.pdf(x)*norm.cdf(ax)
|
|
|
|
|
|
|
|
`skewnorm` takes ``a`` as a skewness parameter
|
|
|
|
When a=0 the distribution is identical to a normal distribution.
|
|
|
|
rvs implements the method of [1]_.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
|
|
|
|
.. [1] A. Azzalini and A. Capitanio (1999). Statistical applications of the
|
|
|
|
multivariate skew-normal distribution. J. Roy. Statist. Soc., B 61, 579-602.
|
|
|
|
http://azzalini.stat.unipd.it/SN/faq-r.html
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _argcheck(self, a):
|
|
|
|
return np.isfinite(a)
|
|
|
|
|
|
|
|
def _pdf(self, x, a):
|
|
|
|
return 2.*_norm_pdf(x)*_norm_cdf(a*x)
|
|
|
|
|
|
|
|
def _rvs(self, a):
|
|
|
|
u0 = self._random_state.normal(size=self._size)
|
|
|
|
v = self._random_state.normal(size=self._size)
|
|
|
|
d = a/np.sqrt(1 + a**2)
|
|
|
|
u1 = d*u0 + v*np.sqrt(1 - d**2)
|
|
|
|
return np.where(u0 >= 0, u1, -u1)
|
|
|
|
|
|
|
|
def _stats(self, a, moments='mvsk'):
|
|
|
|
output = [None, None, None, None]
|
|
|
|
const = np.sqrt(2/pi) * a/np.sqrt(1 + a**2)
|
|
|
|
|
|
|
|
if 'm' in moments:
|
|
|
|
output[0] = const
|
|
|
|
if 'v' in moments:
|
|
|
|
output[1] = 1 - const**2
|
|
|
|
if 's' in moments:
|
|
|
|
output[2] = ((4 - pi)/2) * (const/np.sqrt(1 - const**2))**3
|
|
|
|
if 'k' in moments:
|
|
|
|
output[3] = (2*(pi - 3)) * (const**4/(1 - const**2)**2)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
skewnorm = skew_norm_gen(name='skewnorm')
|
|
|
|
|
|
|
|
|
|
|
|
class trapz_gen(rv_continuous):
|
|
|
|
"""A trapezoidal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The trapezoidal distribution can be represented with an up-sloping line
|
|
|
|
from ``loc`` to ``(loc + c*scale)``, then constant to ``(loc + d*scale)``
|
|
|
|
and then downsloping from ``(loc + d*scale)`` to ``(loc+scale)``.
|
|
|
|
|
|
|
|
`trapz` takes ``c`` and ``d`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
The standard form is in the range [0, 1] with c the mode.
|
|
|
|
The location parameter shifts the start to `loc`.
|
|
|
|
The scale parameter changes the width from 1 to `scale`.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, c, d):
|
|
|
|
return (c >= 0) & (c <= 1) & (d >= 0) & (d <= 1) & (d >= c)
|
|
|
|
|
|
|
|
def _pdf(self, x, c, d):
|
|
|
|
u = 2 / (d - c + 1)
|
|
|
|
|
|
|
|
condlist = [x < c, x <= d, x > d]
|
|
|
|
choicelist = [u * x / c, u, u * (1 - x) / (1 - d)]
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
|
|
|
|
def _cdf(self, x, c, d):
|
|
|
|
condlist = [x < c, x <= d, x > d]
|
|
|
|
choicelist = [x**2 / c / (d - c + 1),
|
|
|
|
(c + 2 * (x - c)) / (d - c + 1),
|
|
|
|
1 - ((1 - x)**2 / (d - c + 1) / (1 - d))]
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
|
|
|
|
def _ppf(self, q, c, d):
|
|
|
|
qc, qd = self._cdf(c, c, d), self._cdf(d, c, d)
|
|
|
|
condlist = [q < qc, q <= qd, q > qd]
|
|
|
|
choicelist = [np.sqrt(q * c * (1 + d - c)),
|
|
|
|
0.5 * q * (1 + d - c) + 0.5 * c,
|
|
|
|
1 - sqrt((1 - q) * (d - c + 1) * (1 - d))]
|
|
|
|
return np.select(condlist, choicelist)
|
|
|
|
trapz = trapz_gen(a=0.0, b=1.0, name="trapz")
|
|
|
|
|
|
|
|
|
|
|
|
class triang_gen(rv_continuous):
|
|
|
|
"""A triangular continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The triangular distribution can be represented with an up-sloping line from
|
|
|
|
``loc`` to ``(loc + c*scale)`` and then downsloping for ``(loc + c*scale)``
|
|
|
|
to ``(loc+scale)``.
|
|
|
|
|
|
|
|
`triang` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
The standard form is in the range [0, 1] with c the mode.
|
|
|
|
The location parameter shifts the start to `loc`.
|
|
|
|
The scale parameter changes the width from 1 to `scale`.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, c):
|
|
|
|
return self._random_state.triangular(0, c, 1, self._size)
|
|
|
|
|
|
|
|
def _argcheck(self, c):
|
|
|
|
return (c >= 0) & (c <= 1)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return where(x < c, 2*x/c, 2*(1-x)/(1-c))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
return where(x < c, x*x/c, (x*x-2*x+c)/(c-1))
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
return where(q < c, sqrt(c*q), 1-sqrt((1-c)*(1-q)))
|
|
|
|
|
|
|
|
def _stats(self, c):
|
|
|
|
return (c+1.0)/3.0, (1.0-c+c*c)/18, sqrt(2)*(2*c-1)*(c+1)*(c-2) / \
|
|
|
|
(5 * np.power((1.0-c+c*c), 1.5)), -3.0/5.0
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return 0.5-log(2)
|
|
|
|
triang = triang_gen(a=0.0, b=1.0, name="triang")
|
|
|
|
|
|
|
|
|
|
|
|
class truncexpon_gen(rv_continuous):
|
|
|
|
"""A truncated exponential continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `truncexpon` is::
|
|
|
|
|
|
|
|
truncexpon.pdf(x, b) = exp(-x) / (1-exp(-b))
|
|
|
|
|
|
|
|
for ``0 < x < b``.
|
|
|
|
|
|
|
|
`truncexpon` takes ``b`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, b):
|
|
|
|
self.b = b
|
|
|
|
return (b > 0)
|
|
|
|
|
|
|
|
def _pdf(self, x, b):
|
|
|
|
return exp(-x)/(-special.expm1(-b))
|
|
|
|
|
|
|
|
def _logpdf(self, x, b):
|
|
|
|
return -x - log(-special.expm1(-b))
|
|
|
|
|
|
|
|
def _cdf(self, x, b):
|
|
|
|
return special.expm1(-x)/special.expm1(-b)
|
|
|
|
|
|
|
|
def _ppf(self, q, b):
|
|
|
|
return -special.log1p(q*special.expm1(-b))
|
|
|
|
|
|
|
|
def _munp(self, n, b):
|
|
|
|
# wrong answer with formula, same as in continuous.pdf
|
|
|
|
# return gam(n+1)-special.gammainc(1+n, b)
|
|
|
|
if n == 1:
|
|
|
|
return (1-(b+1)*exp(-b))/(-special.expm1(-b))
|
|
|
|
elif n == 2:
|
|
|
|
return 2*(1-0.5*(b*b+2*b+2)*exp(-b))/(-special.expm1(-b))
|
|
|
|
else:
|
|
|
|
# return generic for higher moments
|
|
|
|
# return rv_continuous._mom1_sc(self, n, b)
|
|
|
|
return self._mom1_sc(n, b)
|
|
|
|
|
|
|
|
def _entropy(self, b):
|
|
|
|
eB = exp(b)
|
|
|
|
return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB)
|
|
|
|
truncexpon = truncexpon_gen(a=0.0, name='truncexpon')
|
|
|
|
|
|
|
|
|
|
|
|
class truncnorm_gen(rv_continuous):
|
|
|
|
"""A truncated normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The standard form of this distribution is a standard normal truncated to
|
|
|
|
the range [a, b] --- notice that a and b are defined over the domain of the
|
|
|
|
standard normal. To convert clip values for a specific mean and standard
|
|
|
|
deviation, use::
|
|
|
|
|
|
|
|
a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std
|
|
|
|
|
|
|
|
`truncnorm` takes ``a`` and ``b`` as shape parameters.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, a, b):
|
|
|
|
self.a = a
|
|
|
|
self.b = b
|
|
|
|
self._nb = _norm_cdf(b)
|
|
|
|
self._na = _norm_cdf(a)
|
|
|
|
self._sb = _norm_sf(b)
|
|
|
|
self._sa = _norm_sf(a)
|
|
|
|
if self.a > 0:
|
|
|
|
self._delta = -(self._sb - self._sa)
|
|
|
|
else:
|
|
|
|
self._delta = self._nb - self._na
|
|
|
|
self._logdelta = log(self._delta)
|
|
|
|
return (a != b)
|
|
|
|
|
|
|
|
def _pdf(self, x, a, b):
|
|
|
|
return _norm_pdf(x) / self._delta
|
|
|
|
|
|
|
|
def _logpdf(self, x, a, b):
|
|
|
|
return _norm_logpdf(x) - self._logdelta
|
|
|
|
|
|
|
|
def _cdf(self, x, a, b):
|
|
|
|
return (_norm_cdf(x) - self._na) / self._delta
|
|
|
|
|
|
|
|
def _ppf(self, q, a, b):
|
|
|
|
if self.a > 0:
|
|
|
|
return _norm_isf(q*self._sb + self._sa*(1.0-q))
|
|
|
|
else:
|
|
|
|
return _norm_ppf(q*self._nb + self._na*(1.0-q))
|
|
|
|
|
|
|
|
def _stats(self, a, b):
|
|
|
|
nA, nB = self._na, self._nb
|
|
|
|
d = nB - nA
|
|
|
|
pA, pB = _norm_pdf(a), _norm_pdf(b)
|
|
|
|
mu = (pA - pB) / d # correction sign
|
|
|
|
mu2 = 1 + (a*pA - b*pB) / d - mu*mu
|
|
|
|
return mu, mu2, None, None
|
|
|
|
truncnorm = truncnorm_gen(name='truncnorm')
|
|
|
|
|
|
|
|
|
|
|
|
# FIXME: RVS does not work.
|
|
|
|
class tukeylambda_gen(rv_continuous):
|
|
|
|
"""A Tukey-Lamdba continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
A flexible distribution, able to represent and interpolate between the
|
|
|
|
following distributions:
|
|
|
|
|
|
|
|
- Cauchy (lam=-1)
|
|
|
|
- logistic (lam=0.0)
|
|
|
|
- approx Normal (lam=0.14)
|
|
|
|
- u-shape (lam = 0.5)
|
|
|
|
- uniform from -1 to 1 (lam = 1)
|
|
|
|
|
|
|
|
`tukeylambda` takes ``lam`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, lam):
|
|
|
|
return np.ones(np.shape(lam), dtype=bool)
|
|
|
|
|
|
|
|
def _pdf(self, x, lam):
|
|
|
|
Fx = asarray(special.tklmbda(x, lam))
|
|
|
|
Px = Fx**(lam-1.0) + (asarray(1-Fx))**(lam-1.0)
|
|
|
|
Px = 1.0/asarray(Px)
|
|
|
|
return where((lam <= 0) | (abs(x) < 1.0/asarray(lam)), Px, 0.0)
|
|
|
|
|
|
|
|
def _cdf(self, x, lam):
|
|
|
|
return special.tklmbda(x, lam)
|
|
|
|
|
|
|
|
def _ppf(self, q, lam):
|
|
|
|
return special.boxcox(q, lam) - special.boxcox1p(-q, lam)
|
|
|
|
|
|
|
|
def _stats(self, lam):
|
|
|
|
return 0, _tlvar(lam), 0, _tlkurt(lam)
|
|
|
|
|
|
|
|
def _entropy(self, lam):
|
|
|
|
def integ(p):
|
|
|
|
return log(pow(p, lam-1)+pow(1-p, lam-1))
|
|
|
|
return integrate.quad(integ, 0, 1)[0]
|
|
|
|
tukeylambda = tukeylambda_gen(name='tukeylambda')
|
|
|
|
|
|
|
|
|
|
|
|
class uniform_gen(rv_continuous):
|
|
|
|
"""A uniform continuous random variable.
|
|
|
|
|
|
|
|
This distribution is constant between `loc` and ``loc + scale``.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.uniform(0.0, 1.0, self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return 1.0*(x == x)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
def _ppf(self, q):
|
|
|
|
return q
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 0.5, 1.0/12, 0, -1.2
|
|
|
|
|
|
|
|
def _entropy(self):
|
|
|
|
return 0.0
|
|
|
|
uniform = uniform_gen(a=0.0, b=1.0, name='uniform')
|
|
|
|
|
|
|
|
|
|
|
|
class vonmises_gen(rv_continuous):
|
|
|
|
"""A Von Mises continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
If `x` is not in range or `loc` is not in range it assumes they are angles
|
|
|
|
and converts them to [-pi, pi] equivalents.
|
|
|
|
|
|
|
|
The probability density function for `vonmises` is::
|
|
|
|
|
|
|
|
vonmises.pdf(x, kappa) = exp(kappa * cos(x)) / (2*pi*I[0](kappa))
|
|
|
|
|
|
|
|
for ``-pi <= x <= pi``, ``kappa > 0``.
|
|
|
|
|
|
|
|
`vonmises` takes ``kappa`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
vonmises_line : The same distribution, defined on a [-pi, pi] segment
|
|
|
|
of the real line.
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _rvs(self, kappa):
|
|
|
|
return self._random_state.vonmises(0.0, kappa, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x, kappa):
|
|
|
|
return exp(kappa * cos(x)) / (2*pi*i0(kappa))
|
|
|
|
|
|
|
|
def _cdf(self, x, kappa):
|
|
|
|
return vonmises_cython.von_mises_cdf(kappa, x)
|
|
|
|
|
|
|
|
def _stats_skip(self, kappa):
|
|
|
|
return 0, None, 0, None
|
|
|
|
|
|
|
|
def _entropy(self, kappa):
|
|
|
|
return (-kappa * i1(kappa) / i0(kappa)
|
|
|
|
+ np.log(2 * np.pi * i0(kappa)))
|
|
|
|
vonmises = vonmises_gen(name='vonmises')
|
|
|
|
vonmises_line = vonmises_gen(a=-np.pi, b=np.pi, name='vonmises_line')
|
|
|
|
|
|
|
|
|
|
|
|
class wald_gen(invgauss_gen):
|
|
|
|
"""A Wald continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `wald` is::
|
|
|
|
|
|
|
|
wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))
|
|
|
|
|
|
|
|
for ``x > 0``.
|
|
|
|
|
|
|
|
`wald` is a special case of `invgauss` with ``mu == 1``.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
"""
|
|
|
|
def _rvs(self):
|
|
|
|
return self._random_state.wald(1.0, 1.0, size=self._size)
|
|
|
|
|
|
|
|
def _pdf(self, x):
|
|
|
|
return invgauss._pdf(x, 1.0)
|
|
|
|
|
|
|
|
def _logpdf(self, x):
|
|
|
|
return invgauss._logpdf(x, 1.0)
|
|
|
|
|
|
|
|
def _cdf(self, x):
|
|
|
|
return invgauss._cdf(x, 1.0)
|
|
|
|
|
|
|
|
def _stats(self):
|
|
|
|
return 1.0, 1.0, 3.0, 15.0
|
|
|
|
wald = wald_gen(a=0.0, name="wald")
|
|
|
|
|
|
|
|
|
|
|
|
class wrapcauchy_gen(rv_continuous):
|
|
|
|
"""A wrapped Cauchy continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `wrapcauchy` is::
|
|
|
|
|
|
|
|
wrapcauchy.pdf(x, c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x)))
|
|
|
|
|
|
|
|
for ``0 <= x <= 2*pi``, ``0 < c < 1``.
|
|
|
|
|
|
|
|
`wrapcauchy` takes ``c`` as a shape parameter.
|
|
|
|
|
|
|
|
%(after_notes)s
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
def _argcheck(self, c):
|
|
|
|
return (c > 0) & (c < 1)
|
|
|
|
|
|
|
|
def _pdf(self, x, c):
|
|
|
|
return (1.0-c*c)/(2*pi*(1+c*c-2*c*cos(x)))
|
|
|
|
|
|
|
|
def _cdf(self, x, c):
|
|
|
|
output = np.zeros(x.shape, dtype=x.dtype)
|
|
|
|
val = (1.0+c)/(1.0-c)
|
|
|
|
c1 = x < pi
|
|
|
|
c2 = 1-c1
|
|
|
|
xp = extract(c1, x)
|
|
|
|
xn = extract(c2, x)
|
|
|
|
if np.any(xn):
|
|
|
|
valn = extract(c2, np.ones_like(x)*val)
|
|
|
|
xn = 2*pi - xn
|
|
|
|
yn = tan(xn/2.0)
|
|
|
|
on = 1.0-1.0/pi*arctan(valn*yn)
|
|
|
|
place(output, c2, on)
|
|
|
|
if np.any(xp):
|
|
|
|
valp = extract(c1, np.ones_like(x)*val)
|
|
|
|
yp = tan(xp/2.0)
|
|
|
|
op = 1.0/pi*arctan(valp*yp)
|
|
|
|
place(output, c1, op)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def _ppf(self, q, c):
|
|
|
|
val = (1.0-c)/(1.0+c)
|
|
|
|
rcq = 2*arctan(val*tan(pi*q))
|
|
|
|
rcmq = 2*pi-2*arctan(val*tan(pi*(1-q)))
|
|
|
|
return where(q < 1.0/2, rcq, rcmq)
|
|
|
|
|
|
|
|
def _entropy(self, c):
|
|
|
|
return log(2*pi*(1-c*c))
|
|
|
|
wrapcauchy = wrapcauchy_gen(a=0.0, b=2*pi, name='wrapcauchy')
|
|
|
|
|
|
|
|
|
|
|
|
class gennorm_gen(rv_continuous):
|
|
|
|
"""A generalized normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `gennorm` is [1]_::
|
|
|
|
|
|
|
|
beta
|
|
|
|
gennorm.pdf(x, beta) = --------------- exp(-|x|**beta)
|
|
|
|
2 gamma(1/beta)
|
|
|
|
|
|
|
|
`gennorm` takes ``beta`` as a shape parameter.
|
|
|
|
For ``beta = 1``, it is identical to a Laplace distribution.
|
|
|
|
For ``beta = 2``, it is identical to a normal distribution
|
|
|
|
(with ``scale=1/sqrt(2)``).
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
laplace : Laplace distribution
|
|
|
|
norm : normal distribution
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
|
|
|
|
.. [1] "Generalized normal distribution, Version 1",
|
|
|
|
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _pdf(self, x, beta):
|
|
|
|
return np.exp(self._logpdf(x, beta))
|
|
|
|
|
|
|
|
def _logpdf(self, x, beta):
|
|
|
|
return np.log(.5 * beta) - special.gammaln(1. / beta) - abs(x)**beta
|
|
|
|
|
|
|
|
def _cdf(self, x, beta):
|
|
|
|
c = .5 * np.sign(x)
|
|
|
|
# evaluating (.5 + c) first prevents numerical cancellation
|
|
|
|
return (.5 + c) - c * special.gammaincc(1. / beta, abs(x)**beta)
|
|
|
|
|
|
|
|
def _ppf(self, x, beta):
|
|
|
|
c = np.sign(x - .5)
|
|
|
|
# evaluating (1. + c) first prevents numerical cancellation
|
|
|
|
return c * special.gammainccinv(1. / beta, (1. + c) - 2.*c*x)**(1. / beta)
|
|
|
|
|
|
|
|
def _sf(self, x, beta):
|
|
|
|
return self._cdf(-x, beta)
|
|
|
|
|
|
|
|
def _isf(self, x, beta):
|
|
|
|
return -self._ppf(x, beta)
|
|
|
|
|
|
|
|
def _stats(self, beta):
|
|
|
|
c1, c3, c5 = special.gammaln([1./beta, 3./beta, 5./beta])
|
|
|
|
return 0., np.exp(c3 - c1), 0., np.exp(c5 + c1 - 2. * c3) - 3.
|
|
|
|
|
|
|
|
def _entropy(self, beta):
|
|
|
|
return 1. / beta - np.log(.5 * beta) + special.gammaln(1. / beta)
|
|
|
|
gennorm = gennorm_gen(name='gennorm')
|
|
|
|
|
|
|
|
|
|
|
|
class halfgennorm_gen(rv_continuous):
|
|
|
|
"""The upper half of a generalized normal continuous random variable.
|
|
|
|
|
|
|
|
%(before_notes)s
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The probability density function for `halfgennorm` is::
|
|
|
|
|
|
|
|
beta
|
|
|
|
halfgennorm.pdf(x, beta) = ------------- exp(-|x|**beta)
|
|
|
|
gamma(1/beta)
|
|
|
|
|
|
|
|
`gennorm` takes ``beta`` as a shape parameter.
|
|
|
|
For ``beta = 1``, it is identical to an exponential distribution.
|
|
|
|
For ``beta = 2``, it is identical to a half normal distribution
|
|
|
|
(with ``scale=1/sqrt(2)``).
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
gennorm : generalized normal distribution
|
|
|
|
expon : exponential distribution
|
|
|
|
halfnorm : half normal distribution
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
|
|
|
|
.. [1] "Generalized normal distribution, Version 1",
|
|
|
|
https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
|
|
|
|
|
|
|
|
%(example)s
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _pdf(self, x, beta):
|
|
|
|
return np.exp(self._logpdf(x, beta))
|
|
|
|
|
|
|
|
def _logpdf(self, x, beta):
|
|
|
|
return np.log(beta) - special.gammaln(1. / beta) - x**beta
|
|
|
|
|
|
|
|
def _cdf(self, x, beta):
|
|
|
|
return special.gammainc(1. / beta, x**beta)
|
|
|
|
|
|
|
|
def _ppf(self, x, beta):
|
|
|
|
return special.gammaincinv(1. / beta, x)**(1. / beta)
|
|
|
|
|
|
|
|
def _sf(self, x, beta):
|
|
|
|
return special.gammaincc(1. / beta, x**beta)
|
|
|
|
|
|
|
|
def _isf(self, x, beta):
|
|
|
|
return special.gammainccinv(1. / beta, x)**(1. / beta)
|
|
|
|
|
|
|
|
def _entropy(self, beta):
|
|
|
|
return 1. / beta - np.log(beta) + special.gammaln(1. / beta)
|
|
|
|
halfgennorm = halfgennorm_gen(a=0, name='halfgennorm')
|
|
|
|
|
|
|
|
|
|
|
|
# Collect names of classes and objects in this module.
|
|
|
|
pairs = list(globals().items())
|
|
|
|
_distn_names, _distn_gen_names = get_distribution_names(pairs, rv_continuous)
|
|
|
|
|
|
|
|
__all__ = _distn_names + _distn_gen_names
|