|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
from wafo.sg_filter import SavitzkyGolay, smoothn # calc_coeff, smooth
|
|
|
|
|
|
|
|
|
|
|
|
def example_reconstruct_noisy_chirp():
|
|
|
|
"""
|
|
|
|
Example
|
|
|
|
-------
|
|
|
|
>>> example_reconstruct_noisy_chirp()
|
|
|
|
"""
|
|
|
|
plt.figure(figsize=(7, 12))
|
|
|
|
|
|
|
|
# generate chirp signal
|
|
|
|
tvec = np.arange(0, 6.28, .02)
|
|
|
|
true_signal = np.sin(tvec * (2.0 + tvec))
|
|
|
|
true_d_signal = (2+tvec) * np.cos(tvec * (2.0 + tvec))
|
|
|
|
|
|
|
|
# add noise to signal
|
|
|
|
noise = np.random.normal(size=true_signal.shape)
|
|
|
|
signal = true_signal + .15 * noise
|
|
|
|
|
|
|
|
# plot signal
|
|
|
|
plt.subplot(311)
|
|
|
|
plt.plot(signal)
|
|
|
|
plt.title('signal')
|
|
|
|
|
|
|
|
# smooth and plot signal
|
|
|
|
plt.subplot(312)
|
|
|
|
savgol = SavitzkyGolay(n=8, degree=4)
|
|
|
|
s_signal = savgol.smooth(signal)
|
|
|
|
s2 = smoothn(signal, robust=True)
|
|
|
|
plt.plot(s_signal)
|
|
|
|
plt.plot(s2)
|
|
|
|
plt.plot(true_signal, 'r--')
|
|
|
|
plt.title('smoothed signal')
|
|
|
|
|
|
|
|
# smooth derivative of signal and plot it
|
|
|
|
plt.subplot(313)
|
|
|
|
savgol1 = SavitzkyGolay(n=8, degree=1, diff_order=1)
|
|
|
|
|
|
|
|
dt = tvec[1]-tvec[0]
|
|
|
|
d_signal = savgol1.smooth(signal) / dt
|
|
|
|
|
|
|
|
plt.plot(d_signal)
|
|
|
|
plt.plot(true_d_signal, 'r--')
|
|
|
|
plt.title('smoothed derivative of signal')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
from wafo.testing import test_docstrings
|
|
|
|
test_docstrings(__file__)
|
|
|
|
# example_reconstruct_noisy_chirp()
|
|
|
|
# plt.show('hold') # show plot
|