You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
614 lines
17 KiB
FortranFixed
614 lines
17 KiB
FortranFixed
15 years ago
|
MODULE SVD
|
||
|
IMPLICIT NONE
|
||
|
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12, 60)
|
||
|
|
||
|
! Based upon routines from the NSWC (Naval Surface Warfare Center),
|
||
|
! which were based upon LAPACK routines.
|
||
|
|
||
|
! Code converted using TO_F90 by Alan Miller
|
||
|
! Date: 2003-11-11 Time: 17:50:44
|
||
|
! Revised pab 2007
|
||
|
! Converted to fixed form
|
||
|
|
||
|
|
||
|
CONTAINS
|
||
|
|
||
|
|
||
|
SUBROUTINE drotg(da, db, dc, ds)
|
||
|
|
||
|
! DESIGNED BY C.L.LAWSON, JPL, 1977 SEPT 08
|
||
|
!
|
||
|
! CONSTRUCT THE GIVENS TRANSFORMATION
|
||
|
!
|
||
|
! ( DC DS )
|
||
|
! G = ( ) , DC**2 + DS**2 = 1 ,
|
||
|
! (-DS DC )
|
||
|
!
|
||
|
! WHICH ZEROS THE SECOND ENTRY OF THE 2-VECTOR (DA,DB)**T .
|
||
|
!
|
||
|
! THE QUANTITY R = (+/-)SQRT(DA**2 + DB**2) OVERWRITES DA IN
|
||
|
! STORAGE. THE VALUE OF DB IS OVERWRITTEN BY A VALUE Z WHICH
|
||
|
! ALLOWS DC AND DS TO BE RECOVERED BY THE FOLLOWING ALGORITHM:
|
||
|
! IF Z=1 SET DC=0.D0 AND DS=1.D0
|
||
|
! IF DABS(Z) < 1 SET DC=SQRT(1-Z**2) AND DS=Z
|
||
|
! IF DABS(Z) > 1 SET DC=1/Z AND DS=SQRT(1-DC**2)
|
||
|
!
|
||
|
! NORMALLY, THE SUBPROGRAM DROT(N,DX,INCX,DY,INCY,DC,DS) WILL
|
||
|
! NEXT BE CALLED TO APPLY THE TRANSFORMATION TO A 2 BY N MATRIX.
|
||
|
!
|
||
|
! ------------------------------------------------------------------
|
||
|
|
||
|
REAL (dp), INTENT(IN OUT) :: da
|
||
|
REAL (dp), INTENT(IN OUT) :: db
|
||
|
REAL (dp), INTENT(OUT) :: dc
|
||
|
REAL (dp), INTENT(OUT) :: ds
|
||
|
|
||
|
REAL (dp) :: u, v, r
|
||
|
IF (ABS(da) <= ABS(db)) GO TO 10
|
||
|
|
||
|
! *** HERE ABS(DA) > ABS(DB) ***
|
||
|
|
||
|
u = da + da
|
||
|
v = db / u
|
||
|
|
||
|
! NOTE THAT U AND R HAVE THE SIGN OF DA
|
||
|
|
||
|
r = SQRT(.25D0 + v**2) * u
|
||
|
|
||
|
! NOTE THAT DC IS POSITIVE
|
||
|
|
||
|
dc = da / r
|
||
|
ds = v * (dc + dc)
|
||
|
db = ds
|
||
|
da = r
|
||
|
RETURN
|
||
|
|
||
|
! *** HERE ABS(DA) <= ABS(DB) ***
|
||
|
|
||
|
10 IF (db == 0.d0) GO TO 20
|
||
|
u = db + db
|
||
|
v = da / u
|
||
|
|
||
|
! NOTE THAT U AND R HAVE THE SIGN OF DB
|
||
|
! (R IS IMMEDIATELY STORED IN DA)
|
||
|
|
||
|
da = SQRT(.25D0 + v**2) * u
|
||
|
|
||
|
! NOTE THAT DS IS POSITIVE
|
||
|
|
||
|
ds = db / da
|
||
|
dc = v * (ds + ds)
|
||
|
IF (dc == 0.d0) GO TO 15
|
||
|
db = 1.d0 / dc
|
||
|
RETURN
|
||
|
15 db = 1.d0
|
||
|
RETURN
|
||
|
|
||
|
! *** HERE DA = DB = 0.D0 ***
|
||
|
|
||
|
20 dc = 1.d0
|
||
|
ds = 0.d0
|
||
|
RETURN
|
||
|
|
||
|
END SUBROUTINE drotg
|
||
|
|
||
|
|
||
|
SUBROUTINE dswap1 (n, dx, dy)
|
||
|
! INTERCHANGES TWO VECTORS.
|
||
|
! USES UNROLLED LOOPS FOR INCREMENTS EQUAL ONE.
|
||
|
! JACK DONGARRA, LINPACK, 3/11/78.
|
||
|
! This version is for increments = 1.
|
||
|
|
||
|
INTEGER, INTENT(IN) :: n
|
||
|
REAL (dp), INTENT(IN OUT) :: dx(*)
|
||
|
REAL (dp), INTENT(IN OUT) :: dy(*)
|
||
|
|
||
|
REAL (dp) :: dtemp
|
||
|
INTEGER :: i, m, mp1
|
||
|
|
||
|
IF(n <= 0) RETURN
|
||
|
|
||
|
! CODE FOR BOTH INCREMENTS EQUAL TO 1
|
||
|
!
|
||
|
! CLEAN-UP LOOP
|
||
|
|
||
|
m = MOD(n,3)
|
||
|
IF( m == 0 ) GO TO 40
|
||
|
DO i = 1,m
|
||
|
dtemp = dx(i)
|
||
|
dx(i) = dy(i)
|
||
|
dy(i) = dtemp
|
||
|
END DO
|
||
|
IF( n < 3 ) RETURN
|
||
|
40 mp1 = m + 1
|
||
|
DO i = mp1,n,3
|
||
|
dtemp = dx(i)
|
||
|
dx(i) = dy(i)
|
||
|
dy(i) = dtemp
|
||
|
dtemp = dx(i + 1)
|
||
|
dx(i + 1) = dy(i + 1)
|
||
|
dy(i + 1) = dtemp
|
||
|
dtemp = dx(i + 2)
|
||
|
dx(i + 2) = dy(i + 2)
|
||
|
dy(i + 2) = dtemp
|
||
|
END DO
|
||
|
RETURN
|
||
|
END SUBROUTINE dswap1
|
||
|
|
||
|
|
||
|
SUBROUTINE drot1 (n, dx, dy, c, s)
|
||
|
! APPLIES A PLANE ROTATION.
|
||
|
! JACK DONGARRA, LINPACK, 3/11/78.
|
||
|
! This version is for increments = 1.
|
||
|
|
||
|
INTEGER, INTENT(IN) :: n
|
||
|
REAL (dp), INTENT(IN OUT) :: dx(*)
|
||
|
REAL (dp), INTENT(IN OUT) :: dy(*)
|
||
|
REAL (dp), INTENT(IN) :: c
|
||
|
REAL (dp), INTENT(IN) :: s
|
||
|
|
||
|
REAL (dp) :: dtemp
|
||
|
INTEGER :: i
|
||
|
|
||
|
IF(n <= 0) RETURN
|
||
|
! CODE FOR BOTH INCREMENTS EQUAL TO 1
|
||
|
|
||
|
DO i = 1,n
|
||
|
dtemp = c*dx(i) + s*dy(i)
|
||
|
dy(i) = c*dy(i) - s*dx(i)
|
||
|
dx(i) = dtemp
|
||
|
END DO
|
||
|
RETURN
|
||
|
END SUBROUTINE drot1
|
||
|
|
||
|
|
||
|
SUBROUTINE dsvdc(x, n, p, s, e, u, v, job, info)
|
||
|
|
||
|
INTEGER, INTENT(IN) :: n
|
||
|
INTEGER, INTENT(IN) :: p
|
||
|
REAL (dp), INTENT(IN OUT) :: x(:,:)
|
||
|
REAL (dp), INTENT(OUT) :: s(:)
|
||
|
REAL (dp), INTENT(OUT) :: e(:)
|
||
|
REAL (dp), INTENT(OUT) :: u(:,:)
|
||
|
REAL (dp), INTENT(OUT) :: v(:,:)
|
||
|
INTEGER, INTENT(IN) :: job
|
||
|
INTEGER, INTENT(OUT) :: info
|
||
|
|
||
|
! DSVDC IS A SUBROUTINE TO REDUCE A DOUBLE PRECISION NXP MATRIX X
|
||
|
! BY ORTHOGONAL TRANSFORMATIONS U AND V TO DIAGONAL FORM. THE
|
||
|
! DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X. THE
|
||
|
! COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS,
|
||
|
! AND THE COLUMNS OF V THE RIGHT SINGULAR VECTORS.
|
||
|
!
|
||
|
! ON ENTRY
|
||
|
!
|
||
|
! X DOUBLE PRECISION(LDX,P), WHERE LDX.GE.N.
|
||
|
! X CONTAINS THE MATRIX WHOSE SINGULAR VALUE
|
||
|
! DECOMPOSITION IS TO BE COMPUTED. X IS
|
||
|
! DESTROYED BY DSVDC.
|
||
|
!
|
||
|
! LDX INTEGER.
|
||
|
! LDX IS THE LEADING DIMENSION OF THE ARRAY X.
|
||
|
!
|
||
|
! N INTEGER.
|
||
|
! N IS THE NUMBER OF ROWS OF THE MATRIX X.
|
||
|
!
|
||
|
! P INTEGER.
|
||
|
! P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
|
||
|
!
|
||
|
! LDU INTEGER.
|
||
|
! LDU IS THE LEADING DIMENSION OF THE ARRAY U.
|
||
|
! (SEE BELOW).
|
||
|
!
|
||
|
! LDV INTEGER.
|
||
|
! LDV IS THE LEADING DIMENSION OF THE ARRAY V.
|
||
|
! (SEE BELOW).
|
||
|
!
|
||
|
! JOB INTEGER.
|
||
|
! JOB CONTROLS THE COMPUTATION OF THE SINGULAR
|
||
|
! VECTORS. IT HAS THE DECIMAL EXPANSION AB
|
||
|
! WITH THE FOLLOWING MEANING
|
||
|
!
|
||
|
! A.EQ.0 DO NOT COMPUTE THE LEFT SINGULAR VECTORS.
|
||
|
! A.EQ.1 RETURN THE N LEFT SINGULAR VECTORS IN U.
|
||
|
! A.GE.2 RETURN THE FIRST MIN(N,P) SINGULAR
|
||
|
! VECTORS IN U.
|
||
|
! B.EQ.0 DO NOT COMPUTE THE RIGHT SINGULAR VECTORS.
|
||
|
! B.EQ.1 RETURN THE RIGHT SINGULAR VECTORS IN V.
|
||
|
!
|
||
|
! ON RETURN
|
||
|
!
|
||
|
! S DOUBLE PRECISION(MM), WHERE MM=MIN(N+1,P).
|
||
|
! THE FIRST MIN(N,P) ENTRIES OF S CONTAIN THE SINGULAR
|
||
|
! VALUES OF X ARRANGED IN DESCENDING ORDER OF MAGNITUDE.
|
||
|
!
|
||
|
! E DOUBLE PRECISION(P).
|
||
|
! E ORDINARILY CONTAINS ZEROS. HOWEVER SEE THE
|
||
|
! DISCUSSION OF INFO FOR EXCEPTIONS.
|
||
|
!
|
||
|
! U DOUBLE PRECISION(LDU,K), WHERE LDU.GE.N. IF
|
||
|
! JOBA.EQ.1 THEN K.EQ.N, IF JOBA.GE.2
|
||
|
! THEN K.EQ.MIN(N,P).
|
||
|
! U CONTAINS THE MATRIX OF LEFT SINGULAR VECTORS.
|
||
|
! U IS NOT REFERENCED IF JOBA.EQ.0. IF N.LE.P
|
||
|
! OR IF JOBA.EQ.2, THEN U MAY BE IDENTIFIED WITH X
|
||
|
! IN THE SUBROUTINE CALL.
|
||
|
!
|
||
|
! V DOUBLE PRECISION(LDV,P), WHERE LDV.GE.P.
|
||
|
! V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
|
||
|
! V IS NOT REFERENCED IF JOB.EQ.0. IF P.LE.N,
|
||
|
! THEN V MAY BE IDENTIFIED WITH X IN THE
|
||
|
! SUBROUTINE CALL.
|
||
|
!
|
||
|
! INFO INTEGER.
|
||
|
! THE SINGULAR VALUES (AND THEIR CORRESPONDING SINGULAR
|
||
|
! VECTORS) S(INFO+1),S(INFO+2),...,S(M) ARE CORRECT
|
||
|
! (HERE M=MIN(N,P)). THUS IF INFO.EQ.0, ALL THE
|
||
|
! SINGULAR VALUES AND THEIR VECTORS ARE CORRECT.
|
||
|
! IN ANY EVENT, THE MATRIX B = TRANS(U)*X*V IS THE
|
||
|
! BIDIAGONAL MATRIX WITH THE ELEMENTS OF S ON ITS DIAGONAL
|
||
|
! AND THE ELEMENTS OF E ON ITS SUPER-DIAGONAL (TRANS(U)
|
||
|
! IS THE TRANSPOSE OF U). THUS THE SINGULAR VALUES
|
||
|
! OF X AND B ARE THE SAME.
|
||
|
!
|
||
|
! LINPACK. THIS VERSION DATED 03/19/79 .
|
||
|
! G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
|
||
|
!
|
||
|
! DSVDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
|
||
|
!
|
||
|
! EXTERNAL DROT
|
||
|
! BLAS DAXPY,DDOT,DSCAL,DSWAP,DNRM2,DROTG
|
||
|
! FORTRAN DABS,DMAX1,MAX0,MIN0,MOD,DSQRT
|
||
|
|
||
|
! INTERNAL VARIABLES
|
||
|
|
||
|
INTEGER :: iter, j, jobu, k, kase, kk, l, ll, lls, lm1, lp1, ls,
|
||
|
& lu, m, maxit,mm, mm1, mp1, nct, nctp1, ncu, nrt, nrtp1
|
||
|
REAL (dp) :: t, work(n)
|
||
|
REAL (dp) :: b, c, cs, el, emm1, f, g, scale, shift, sl, sm, sn,
|
||
|
& smm1, t1, test, ztest
|
||
|
LOGICAL :: wantu, wantv
|
||
|
|
||
|
! SET THE MAXIMUM NUMBER OF ITERATIONS.
|
||
|
|
||
|
maxit = 30
|
||
|
|
||
|
! DETERMINE WHAT IS TO BE COMPUTED.
|
||
|
|
||
|
wantu = .false.
|
||
|
wantv = .false.
|
||
|
jobu = MOD(job,100)/10
|
||
|
ncu = n
|
||
|
IF (jobu > 1) ncu = MIN(n,p)
|
||
|
IF (jobu /= 0) wantu = .true.
|
||
|
IF (MOD(job,10) /= 0) wantv = .true.
|
||
|
|
||
|
! REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
|
||
|
! IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
|
||
|
|
||
|
info = 0
|
||
|
nct = MIN(n-1, p)
|
||
|
s(1:nct+1) = 0.0_dp
|
||
|
nrt = MAX(0, MIN(p-2,n))
|
||
|
lu = MAX(nct,nrt)
|
||
|
IF (lu < 1) GO TO 170
|
||
|
DO l = 1, lu
|
||
|
lp1 = l + 1
|
||
|
IF (l > nct) GO TO 20
|
||
|
|
||
|
! COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
|
||
|
! PLACE THE L-TH DIAGONAL IN S(L).
|
||
|
|
||
|
s(l) = SQRT( SUM( x(l:n,l)**2 ) )
|
||
|
IF (s(l) == 0.0D0) GO TO 10
|
||
|
IF (x(l,l) /= 0.0D0) s(l) = SIGN(s(l), x(l,l))
|
||
|
x(l:n,l) = x(l:n,l) / s(l)
|
||
|
x(l,l) = 1.0D0 + x(l,l)
|
||
|
|
||
|
10 s(l) = -s(l)
|
||
|
|
||
|
20 IF (p < lp1) GO TO 50
|
||
|
DO j = lp1, p
|
||
|
IF (l > nct) GO TO 30
|
||
|
IF (s(l) == 0.0D0) GO TO 30
|
||
|
|
||
|
! APPLY THE TRANSFORMATION.
|
||
|
|
||
|
t = -DOT_PRODUCT(x(l:n,l), x(l:n,j)) / x(l,l)
|
||
|
x(l:n,j) = x(l:n,j) + t * x(l:n,l)
|
||
|
|
||
|
! PLACE THE L-TH ROW OF X INTO E FOR THE
|
||
|
! SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
|
||
|
|
||
|
30 e(j) = x(l,j)
|
||
|
END DO
|
||
|
|
||
|
50 IF (.NOT.wantu .OR. l > nct) GO TO 70
|
||
|
|
||
|
! PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK MULTIPLICATION.
|
||
|
|
||
|
u(l:n,l) = x(l:n,l)
|
||
|
|
||
|
70 IF (l > nrt) CYCLE
|
||
|
|
||
|
! COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
|
||
|
! L-TH SUPER-DIAGONAL IN E(L).
|
||
|
|
||
|
e(l) = SQRT( SUM( e(lp1:p)**2 ) )
|
||
|
IF (e(l) == 0.0D0) GO TO 80
|
||
|
IF (e(lp1) /= 0.0D0) e(l) = SIGN(e(l), e(lp1))
|
||
|
e(lp1:lp1+p-l-1) = e(lp1:p) / e(l)
|
||
|
e(lp1) = 1.0D0 + e(lp1)
|
||
|
|
||
|
80 e(l) = -e(l)
|
||
|
IF (lp1 > n .OR. e(l) == 0.0D0) GO TO 120
|
||
|
|
||
|
! APPLY THE TRANSFORMATION.
|
||
|
|
||
|
work(lp1:n) = 0.0D0
|
||
|
DO j = lp1, p
|
||
|
work(lp1:lp1+n-l-1) = work(lp1:lp1+n-l-1) + e(j) *
|
||
|
& x(lp1:lp1+n-l-1,j)
|
||
|
END DO
|
||
|
DO j = lp1, p
|
||
|
x(lp1:lp1+n-l-1,j) = x(lp1:lp1+n-l-1,j) - (e(j)/e(lp1)) *
|
||
|
& work(lp1:lp1+n-l-1)
|
||
|
END DO
|
||
|
|
||
|
120 IF (.NOT.wantv) CYCLE
|
||
|
|
||
|
! PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
|
||
|
! BACK MULTIPLICATION.
|
||
|
|
||
|
v(lp1:p,l) = e(lp1:p)
|
||
|
END DO
|
||
|
|
||
|
! SET UP THE FINAL BIDIAGONAL MATRIX OF ORDER M.
|
||
|
|
||
|
170 m = MIN(p,n+1)
|
||
|
nctp1 = nct + 1
|
||
|
nrtp1 = nrt + 1
|
||
|
IF (nct < p) s(nctp1) = x(nctp1,nctp1)
|
||
|
IF (n < m) s(m) = 0.0D0
|
||
|
IF (nrtp1 < m) e(nrtp1) = x(nrtp1,m)
|
||
|
e(m) = 0.0D0
|
||
|
|
||
|
! IF REQUIRED, GENERATE U.
|
||
|
|
||
|
IF (.NOT.wantu) GO TO 300
|
||
|
IF (ncu < nctp1) GO TO 200
|
||
|
DO j = nctp1, ncu
|
||
|
u(1:n,j) = 0.0_dp
|
||
|
u(j,j) = 1.0_dp
|
||
|
END DO
|
||
|
|
||
|
200 DO ll = 1, nct
|
||
|
l = nct - ll + 1
|
||
|
IF (s(l) == 0.0D0) GO TO 250
|
||
|
lp1 = l + 1
|
||
|
IF (ncu < lp1) GO TO 220
|
||
|
DO j = lp1, ncu
|
||
|
t = -DOT_PRODUCT(u(l:n,l), u(l:n,j)) / u(l,l)
|
||
|
u(l:n,j) = u(l:n,j) + t * u(l:n,l)
|
||
|
END DO
|
||
|
|
||
|
220 u(l:n,l) = -u(l:n,l)
|
||
|
u(l,l) = 1.0D0 + u(l,l)
|
||
|
lm1 = l - 1
|
||
|
IF (lm1 < 1) CYCLE
|
||
|
u(1:lm1,l) = 0.0_dp
|
||
|
CYCLE
|
||
|
|
||
|
250 u(1:n,l) = 0.0_dp
|
||
|
u(l,l) = 1.0_dp
|
||
|
END DO
|
||
|
|
||
|
! IF IT IS REQUIRED, GENERATE V.
|
||
|
|
||
|
300 IF (.NOT.wantv) GO TO 350
|
||
|
DO ll = 1, p
|
||
|
l = p - ll + 1
|
||
|
lp1 = l + 1
|
||
|
IF (l > nrt) GO TO 320
|
||
|
IF (e(l) == 0.0D0) GO TO 320
|
||
|
DO j = lp1, p
|
||
|
t = -DOT_PRODUCT(v(lp1:lp1+p-l-1,l),
|
||
|
& v(lp1:lp1+p-l-1,j)) / v(lp1,l)
|
||
|
v(lp1:lp1+p-l-1,j) = v(lp1:lp1+p-l-1,j) + t * v(lp1:lp1+p-l-1,l)
|
||
|
END DO
|
||
|
|
||
|
320 v(1:p,l) = 0.0D0
|
||
|
v(l,l) = 1.0D0
|
||
|
END DO
|
||
|
|
||
|
! MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
|
||
|
|
||
|
350 mm = m
|
||
|
iter = 0
|
||
|
|
||
|
! QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
|
||
|
|
||
|
! ...EXIT
|
||
|
360 IF (m == 0) GO TO 620
|
||
|
|
||
|
! IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET FLAG AND RETURN.
|
||
|
|
||
|
IF (iter < maxit) GO TO 370
|
||
|
info = m
|
||
|
! ......EXIT
|
||
|
GO TO 620
|
||
|
|
||
|
! THIS SECTION OF THE PROGRAM INSPECTS FOR NEGLIGIBLE ELEMENTS
|
||
|
! IN THE S AND E ARRAYS. ON COMPLETION
|
||
|
! THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
|
||
|
!
|
||
|
! KASE = 1 IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L < M
|
||
|
! KASE = 2 IF S(L) IS NEGLIGIBLE AND L < M
|
||
|
! KASE = 3 IF E(L-1) IS NEGLIGIBLE, L < M, AND
|
||
|
! S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
|
||
|
! KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
|
||
|
|
||
|
370 DO ll = 1, m
|
||
|
l = m - ll
|
||
|
! ...EXIT
|
||
|
IF (l == 0) EXIT
|
||
|
test = ABS(s(l)) + ABS(s(l+1))
|
||
|
ztest = test + ABS(e(l))
|
||
|
IF (ztest /= test) CYCLE
|
||
|
e(l) = 0.0D0
|
||
|
! ......EXIT
|
||
|
EXIT
|
||
|
END DO
|
||
|
|
||
|
IF (l /= m - 1) GO TO 410
|
||
|
kase = 4
|
||
|
GO TO 480
|
||
|
|
||
|
410 lp1 = l + 1
|
||
|
mp1 = m + 1
|
||
|
DO lls = lp1, mp1
|
||
|
ls = m - lls + lp1
|
||
|
! ...EXIT
|
||
|
IF (ls == l) EXIT
|
||
|
test = 0.0D0
|
||
|
IF (ls /= m) test = test + ABS(e(ls))
|
||
|
IF (ls /= l + 1) test = test + ABS(e(ls-1))
|
||
|
ztest = test + ABS(s(ls))
|
||
|
IF (ztest /= test) CYCLE
|
||
|
s(ls) = 0.0D0
|
||
|
! ......EXIT
|
||
|
EXIT
|
||
|
END DO
|
||
|
|
||
|
IF (ls /= l) GO TO 450
|
||
|
kase = 3
|
||
|
GO TO 480
|
||
|
|
||
|
450 IF (ls /= m) GO TO 460
|
||
|
kase = 1
|
||
|
GO TO 480
|
||
|
|
||
|
460 kase = 2
|
||
|
l = ls
|
||
|
480 l = l + 1
|
||
|
|
||
|
! PERFORM THE TASK INDICATED BY KASE.
|
||
|
|
||
|
SELECT CASE ( kase )
|
||
|
CASE ( 1)
|
||
|
GO TO 490
|
||
|
CASE ( 2)
|
||
|
GO TO 520
|
||
|
CASE ( 3)
|
||
|
GO TO 540
|
||
|
CASE ( 4)
|
||
|
GO TO 570
|
||
|
END SELECT
|
||
|
|
||
|
! DEFLATE NEGLIGIBLE S(M).
|
||
|
|
||
|
490 mm1 = m - 1
|
||
|
f = e(m-1)
|
||
|
e(m-1) = 0.0D0
|
||
|
DO kk = l, mm1
|
||
|
k = mm1 - kk + l
|
||
|
t1 = s(k)
|
||
|
CALL drotg(t1, f, cs, sn)
|
||
|
s(k) = t1
|
||
|
IF (k == l) GO TO 500
|
||
|
f = -sn*e(k-1)
|
||
|
e(k-1) = cs*e(k-1)
|
||
|
|
||
|
500 IF (wantv) CALL drot1(p, v(1:,k), v(1:,m), cs, sn)
|
||
|
END DO
|
||
|
GO TO 610
|
||
|
|
||
|
! SPLIT AT NEGLIGIBLE S(L).
|
||
|
|
||
|
520 f = e(l-1)
|
||
|
e(l-1) = 0.0D0
|
||
|
DO k = l, m
|
||
|
t1 = s(k)
|
||
|
CALL drotg(t1, f, cs, sn)
|
||
|
s(k) = t1
|
||
|
f = -sn*e(k)
|
||
|
e(k) = cs*e(k)
|
||
|
IF (wantu) CALL drot1(n, u(1:,k), u(1:,l-1), cs, sn)
|
||
|
END DO
|
||
|
GO TO 610
|
||
|
|
||
|
! PERFORM ONE QR STEP.
|
||
|
!
|
||
|
! CALCULATE THE SHIFT.
|
||
|
|
||
|
540 scale = MAX(ABS(s(m)),ABS(s(m-1)),ABS(e(m-1)),ABS(s(l)),ABS(e(l)))
|
||
|
sm = s(m)/scale
|
||
|
smm1 = s(m-1)/scale
|
||
|
emm1 = e(m-1)/scale
|
||
|
sl = s(l)/scale
|
||
|
el = e(l)/scale
|
||
|
b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0D0
|
||
|
c = (sm*emm1)**2
|
||
|
shift = 0.0D0
|
||
|
IF (b == 0.0D0 .AND. c == 0.0D0) GO TO 550
|
||
|
shift = SQRT(b**2+c)
|
||
|
IF (b < 0.0D0) shift = -shift
|
||
|
shift = c/(b + shift)
|
||
|
|
||
|
550 f = (sl + sm)*(sl - sm) - shift
|
||
|
g = sl*el
|
||
|
|
||
|
! CHASE ZEROS.
|
||
|
|
||
|
mm1 = m - 1
|
||
|
DO k = l, mm1
|
||
|
CALL drotg(f, g, cs, sn)
|
||
|
IF (k /= l) e(k-1) = f
|
||
|
f = cs*s(k) + sn*e(k)
|
||
|
e(k) = cs*e(k) - sn*s(k)
|
||
|
g = sn*s(k+1)
|
||
|
s(k+1) = cs*s(k+1)
|
||
|
IF (wantv) CALL drot1(p, v(1:,k), v(1:,k+1), cs, sn)
|
||
|
CALL drotg(f, g, cs, sn)
|
||
|
s(k) = f
|
||
|
f = cs*e(k) + sn*s(k+1)
|
||
|
s(k+1) = -sn*e(k) + cs*s(k+1)
|
||
|
g = sn*e(k+1)
|
||
|
e(k+1) = cs*e(k+1)
|
||
|
IF (wantu .AND. k < n) CALL drot1(n, u(1:,k), u(1:,k+1), cs, sn)
|
||
|
END DO
|
||
|
e(m-1) = f
|
||
|
iter = iter + 1
|
||
|
GO TO 610
|
||
|
|
||
|
! CONVERGENCE.
|
||
|
|
||
|
! MAKE THE SINGULAR VALUE POSITIVE.
|
||
|
|
||
|
570 IF (s(l) >= 0.0D0) GO TO 590
|
||
|
s(l) = -s(l)
|
||
|
IF (wantv) v(1:p,l) = -v(1:p,l)
|
||
|
|
||
|
! ORDER THE SINGULAR VALUE.
|
||
|
|
||
|
590 IF (l == mm) GO TO 600
|
||
|
! ...EXIT
|
||
|
IF (s(l) >= s(l+1)) GO TO 600
|
||
|
t = s(l)
|
||
|
s(l) = s(l+1)
|
||
|
s(l+1) = t
|
||
|
IF (wantv .AND. l < p) CALL dswap1(p, v(1:,l), v(1:,l+1))
|
||
|
IF (wantu .AND. l < n) CALL dswap1(n, u(1:,l), u(1:,l+1))
|
||
|
l = l + 1
|
||
|
GO TO 590
|
||
|
|
||
|
600 iter = 0
|
||
|
m = m - 1
|
||
|
|
||
|
610 GO TO 360
|
||
|
|
||
|
620 RETURN
|
||
|
END SUBROUTINE dsvdc
|
||
|
|
||
|
END MODULE SVD
|