You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2486 lines
88 KiB
Python
2486 lines
88 KiB
Python
15 years ago
|
from __future__ import division
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from numpy import (pi, inf, meshgrid, zeros, ones, where, nonzero, #@UnresolvedImport
|
||
|
flatnonzero, ceil, sqrt, exp, log, arctan2, #@UnresolvedImport
|
||
|
tanh, cosh, sinh, random, atleast_1d, maximum, #@UnresolvedImport
|
||
|
minimum, diff, isnan, any, r_, conj, mod, #@UnresolvedImport
|
||
|
hstack, vstack, interp, ravel, finfo, linspace, #@UnresolvedImport
|
||
|
arange, array, nan, newaxis, fliplr, sign) #@UnresolvedImport
|
||
|
from numpy.fft import fft
|
||
|
from scipy.integrate import simps, trapz
|
||
|
from scipy.special import erf
|
||
|
from scipy.linalg import toeplitz
|
||
|
import scipy.interpolate as interpolate
|
||
|
from pylab import stineman_interp
|
||
|
|
||
|
from dispersion_relation import w2k #, k2w
|
||
|
from wafo.wafodata import WafoData, now
|
||
|
from wafo.misc import sub_dict_select, nextpow2, discretize, JITImport
|
||
|
from wafo.gaussian import Rind
|
||
|
from wafo.transform import TrData
|
||
|
from wafo.plotbackend import plotbackend
|
||
|
from wafo import c_library
|
||
|
# Trick to avoid error due to circular import
|
||
|
_WAFOCOV = JITImport('wafo.covariance')
|
||
|
|
||
|
|
||
|
__all__ = ['SpecData1D', 'SpecData2D']
|
||
|
|
||
|
def _set_seed(iseed):
|
||
|
'''Set seed of random generator'''
|
||
|
if iseed != None:
|
||
|
try:
|
||
|
random.set_state(iseed)
|
||
|
except:
|
||
|
random.seed(iseed)
|
||
|
|
||
|
def qtf(w, h=inf, g=9.81):
|
||
|
"""
|
||
|
Return Quadratic Transfer Function
|
||
|
|
||
|
Parameters
|
||
|
------------
|
||
|
w : array-like
|
||
|
angular frequencies
|
||
|
h : scalar
|
||
|
water depth
|
||
|
g : scalar
|
||
|
acceleration of gravity
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h_s = sum frequency effects
|
||
|
h_d = difference frequency effects
|
||
|
h_dii = diagonal of h_d
|
||
|
"""
|
||
|
w = atleast_1d(w)
|
||
|
num_w = w.size
|
||
|
|
||
|
k_w = w2k(w, theta=0, h=h, g=g)[0]
|
||
|
|
||
|
k_1, k_2 = meshgrid(k_w, k_w)
|
||
|
|
||
|
if h == inf: # go here for faster calculations
|
||
|
h_s = 0.25 * (abs(k_1) + abs(k_2))
|
||
|
h_d = -0.25 * abs(abs(k_1) - abs(k_2))
|
||
|
h_dii = zeros(num_w)
|
||
|
return h_s, h_d , h_dii
|
||
|
|
||
|
[w_1, w_2] = meshgrid(w, w)
|
||
|
|
||
|
|
||
|
|
||
|
w12 = (w_1 * w_2)
|
||
|
w1p2 = (w_1 + w_2)
|
||
|
w1m2 = (w_1 - w_2)
|
||
|
k12 = (k_1 * k_2)
|
||
|
k1p2 = (k_1 + k_2)
|
||
|
k1m2 = abs(k_1 - k_2)
|
||
|
|
||
|
if 0: # Langley
|
||
|
p_1 = (-2 * w1p2 * (k12 * g ** 2. - w12 ** 2.) +
|
||
|
w_1 * (w_2 ** 4. - g ** 2 * k_2 ** 2) +
|
||
|
w_2 * (w_1 ** 4 - g * 2. * k_1 ** 2)) / (4. * w12)
|
||
|
p_2 = w1p2 ** 2. * cosh((k1p2) * h) - g * (k1p2) * sinh((k1p2) * h)
|
||
|
|
||
|
h_s = (-p_1 / p_2 * w1p2 * cosh((k1p2) * h) / g -
|
||
|
(k12 * g ** 2 - w12 ** 2.) / (4 * g * w12) +
|
||
|
(w_1 ** 2 + w_2 ** 2) / (4 * g))
|
||
|
|
||
|
p_3 = (-2 * w1m2 * (k12 * g ** 2 + w12 ** 2) -
|
||
|
w_1 * (w_2 ** 4 - g ** 2 * k_2 ** 2) +
|
||
|
w_2 * (w_1 ** 4 - g ** 2 * k_1 ** 2)) / (4. * w12)
|
||
|
p_4 = w1m2 ** 2. * cosh(k1m2 * h) - g * (k1m2) * sinh((k1m2) * h)
|
||
|
|
||
|
|
||
|
h_d = (-p_3 / p_4 * (w1m2) * cosh((k1m2) * h) / g -
|
||
|
(k12 * g ** 2 + w12 ** 2) / (4 * g * w12) +
|
||
|
(w_1 ** 2. + w_2 ** 2.) / (4. * g))
|
||
|
|
||
|
else: # # Marthinsen & Winterstein
|
||
|
tmp1 = 0.5 * g * k12 / w12
|
||
|
tmp2 = 0.25 / g * (w_1 ** 2. + w_2 ** 2. + w12)
|
||
|
h_s = (tmp1 - tmp2 + 0.25 * g * (w_1 * k_2 ** 2. + w_2 * k_1 ** 2) /
|
||
|
(w12 * (w1p2))) / (1. - g * (k1p2) / (w1p2) ** 2. *
|
||
|
tanh((k1p2) * h)) + tmp2 - 0.5 * tmp1 ## OK
|
||
|
|
||
|
tmp2 = 0.25 / g * (w_1 ** 2 + w_2 ** 2 - w12) # #OK
|
||
|
h_d = (tmp1 - tmp2 - 0.25 * g * (w_1 * k_2 ** 2 - w_2 * k_1 ** 2) /
|
||
|
(w12 * (w1m2))) / (1. - g * (k1m2) / (w1m2) ** 2. *
|
||
|
tanh((k1m2) * h)) + tmp2 - 0.5 * tmp1 # # OK
|
||
|
|
||
|
|
||
|
##tmp1 = 0.5*g*k_w./(w.*sqrt(g*h))
|
||
|
##tmp2 = 0.25*w.^2/g
|
||
|
|
||
|
# Wave group velocity
|
||
|
c_g = 0.5 * g * (tanh(k_w * h) + k_w * h * (1.0 - tanh(k_w * h) ** 2)) / w
|
||
|
h_dii = (0.5 * (0.5 * g * (k_w / w) ** 2. - 0.5 * w ** 2 / g +
|
||
|
g * k_w / (w * c_g))
|
||
|
/ (1. - g * h / c_g ** 2.) - 0.5 * k_w / sinh(2 * k_w * h))# # OK
|
||
|
h_d.flat[0::num_w + 1] = h_dii
|
||
|
|
||
|
##k = find(w_1==w_2)
|
||
|
##h_d(k) = h_dii
|
||
|
|
||
|
#% The NaN's occur due to division by zero. => Set the isnans to zero
|
||
|
|
||
|
h_dii = where(isnan(h_dii), 0, h_dii)
|
||
|
h_d = where(isnan(h_d), 0, h_d)
|
||
|
h_s = where(isnan(h_s), 0, h_s)
|
||
|
|
||
|
return h_s, h_d , h_dii
|
||
|
|
||
|
class SpecData1D(WafoData):
|
||
|
"""
|
||
|
Container class for 1D spectrum data objects in WAFO
|
||
|
|
||
|
Member variables
|
||
|
----------------
|
||
|
data : array-like
|
||
|
One sided Spectrum values, size nf
|
||
|
args : array-like
|
||
|
freguency/wave-number-lag values of freqtype, size nf
|
||
|
type : String
|
||
|
spectrum type, one of 'freq', 'k1d', 'enc' (default 'freq')
|
||
|
freqtype : letter
|
||
|
frequency type, one of: 'f', 'w' or 'k' (default 'w')
|
||
|
tr : Transformation function (default (none)).
|
||
|
h : real scalar
|
||
|
Water depth (default inf).
|
||
|
v : real scalar
|
||
|
Ship speed, if type = 'enc'.
|
||
|
norm : bool
|
||
|
Normalization flag, True if S is normalized, False if not
|
||
|
date : string
|
||
|
Date and time of creation or change.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap(Hm0=3)
|
||
|
>>> w = np.linspace(0,4,256)
|
||
|
>>> S1 = Sj.tospecdata(w) #Make spectrum object from numerical values
|
||
|
>>> S = SpecData1D(Sj(w),w) # Alternatively do it manually
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
WafoData
|
||
|
CovData
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwds):
|
||
|
super(SpecData1D, self).__init__(*args, **kwds)
|
||
|
self.name = 'WAFO Spectrum Object'
|
||
|
self.type = 'freq'
|
||
|
self.freqtype = 'w'
|
||
|
self.angletype = ''
|
||
|
self.h = inf
|
||
|
self.tr = None
|
||
|
self.phi = 0.0
|
||
|
self.v = 0.0
|
||
|
self.norm = False
|
||
|
somekeys = ['angletype', 'phi', 'name', 'h', 'tr', 'freqtype', 'v',
|
||
|
'type', 'norm']
|
||
|
|
||
|
self.__dict__.update(sub_dict_select(kwds, somekeys))
|
||
|
|
||
|
self.setlabels()
|
||
|
|
||
|
def tocov_matrix(self, nr=0, nt=None, dt=None):
|
||
|
'''
|
||
|
Computes covariance function and its derivatives, alternative version
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nr : scalar integer
|
||
|
number of derivatives in output, nr<=4 (default 0)
|
||
|
nt : scalar integer
|
||
|
number in time grid, i.e., number of time-lags.
|
||
|
(default rate*(n_f-1)) where rate = round(1/(2*f(end)*dt)) or
|
||
|
rate = round(pi/(w(n_f)*dt)) depending on S.
|
||
|
dt : real scalar
|
||
|
time spacing for acfmat
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
acfmat : [R0, R1,...Rnr], shape Nt+1 x Nr+1
|
||
|
matrix with autocovariance and its derivatives, i.e., Ri (i=1:nr)
|
||
|
are column vectors with the 1'st to nr'th derivatives of R0.
|
||
|
|
||
|
NB! This routine requires that the spectrum grid is equidistant
|
||
|
starting from zero frequency.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap()
|
||
|
>>> S = Sj.tospecdata()
|
||
|
>>> acfmat = S.tocov_matrix(nr=3, nt=256, dt=0.1)
|
||
|
>>> acfmat[:2,:]
|
||
|
array([[ 3.06075987, 0. , -1.67750289, 0. ],
|
||
|
[ 3.05246132, -0.16662376, -1.66819445, 0.18634189]])
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
cov,
|
||
|
resample,
|
||
|
objects
|
||
|
'''
|
||
|
|
||
|
ftype = self.freqtype # %options are 'f' and 'w' and 'k'
|
||
|
freq = self.args
|
||
|
n_f = len(freq)
|
||
|
dt_old = self.sampling_period()
|
||
|
if dt is None:
|
||
|
dt = dt_old
|
||
|
rate = 1
|
||
|
else:
|
||
|
rate = max(round(dt_old * 1. / dt), 1.)
|
||
|
|
||
|
|
||
|
if nt is None:
|
||
|
nt = rate * (n_f - 1)
|
||
|
else: #%check if Nt is ok
|
||
|
nt = minimum(nt, rate * (n_f - 1))
|
||
|
|
||
|
|
||
|
checkdt = 1.2 * min(diff(freq)) / 2. / pi
|
||
|
if ftype in 'k':
|
||
|
lagtype = 'x'
|
||
|
else:
|
||
|
lagtype = 't'
|
||
|
if ftype in 'f':
|
||
|
checkdt = checkdt * 2 * pi
|
||
|
msg1 = 'Step dt = %g in computation of the density is too small.' % dt
|
||
|
msg2 = 'Step dt = %g is small, and may cause numerical inaccuracies.' % dt
|
||
|
|
||
|
if (checkdt < 2. ** -16 / dt):
|
||
|
print(msg1)
|
||
|
print('The computed covariance (by FFT(2^K)) may differ from the')
|
||
|
print('theoretical. Solution:')
|
||
|
raise ValueError('use larger dt or sparser grid for spectrum.')
|
||
|
|
||
|
|
||
|
# Calculating covariances
|
||
|
#~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
spec = self.copy()
|
||
|
spec.resample(dt)
|
||
|
|
||
|
acf = spec.tocovdata(nr, nt, rate=1)
|
||
|
acfmat = zeros((nt + 1, nr + 1), dtype=float)
|
||
|
acfmat[:, 0] = acf.data[0:nt + 1]
|
||
|
fieldname = 'R' + lagtype * nr
|
||
|
for i in range(1, nr + 1):
|
||
|
fname = fieldname[:i + 1]
|
||
|
r_i = getattr(acf, fname)
|
||
|
acfmat[:, i] = r_i[0:nt + 1]
|
||
|
|
||
|
eps0 = 0.0001
|
||
|
if nt + 1 >= 5:
|
||
|
cc2 = acfmat[0, 0] - acfmat[4, 0] * (acfmat[4, 0] / acfmat[0, 0])
|
||
|
if (cc2 < eps0):
|
||
|
warnings.warn(msg1)
|
||
|
cc1 = acfmat[0, 0] - acfmat[1, 0] * (acfmat[1, 0] / acfmat[0, 0])
|
||
|
if (cc1 < eps0):
|
||
|
warnings.warn(msg2)
|
||
|
return acfmat
|
||
|
|
||
|
def tocovdata(self, nr=0, nt=None, rate=None):
|
||
|
'''
|
||
|
Computes covariance function and its derivatives
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nr : number of derivatives in output, nr<=4 (default = 0).
|
||
|
nt : number in time grid, i.e., number of time-lags
|
||
|
(default rate*(length(S.data)-1)).
|
||
|
rate = 1,2,4,8...2**r, interpolation rate for R
|
||
|
(default = 1, no interpolation)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
R : CovData1D
|
||
|
auto covariance function
|
||
|
|
||
|
The input 'rate' gives together with the spectrum
|
||
|
the time-grid-spacing: dt=pi/(S.w[-1]*rate), S.w[-1] is the Nyquist freq.
|
||
|
This results in the time-grid: 0:dt:Nt*dt.
|
||
|
|
||
|
What output is achieved with different S and choices of Nt,Nx and Ny:
|
||
|
1) S.type='freq' or 'dir', Nt set, Nx,Ny not set: then result R(time) (one-dim)
|
||
|
2) S.type='k1d' or 'k2d', Nt set, Nx,Ny not set: then result R(x) (one-dim)
|
||
|
3) Any type, Nt and Nx set =>R(x,time); Nt and Ny set =>R(y,time)
|
||
|
4) Any type, Nt, Nx and Ny set => R(x,y,time)
|
||
|
5) Any type, Nt not set, Nx and/or Ny set => Nt set to default, goto 3) or 4)
|
||
|
|
||
|
NB! This routine requires that the spectrum grid is equidistant
|
||
|
starting from zero frequency.
|
||
|
NB! If you are using a model spectrum, spec, with sharp edges
|
||
|
to calculate covariances then you should probably round off the sharp
|
||
|
edges like this:
|
||
|
|
||
|
Example:
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap()
|
||
|
>>> S = Sj.tospecdata()
|
||
|
>>> S.data[0:40] = 0.0
|
||
|
>>> S.data[100:-1] = 0.0
|
||
|
>>> Nt = len(S.data)-1
|
||
|
>>> acf = S.tocovdata(nr=0, nt=Nt)
|
||
|
|
||
|
R = spec2cov(spec,0,Nt)
|
||
|
win = parzen(2*Nt+1)
|
||
|
R.data = R.data.*win(Nt+1:end)
|
||
|
S1 = cov2spec(acf)
|
||
|
R2 = spec2cov(S1)
|
||
|
figure(1)
|
||
|
plotspec(S),hold on, plotspec(S1,'r')
|
||
|
figure(2)
|
||
|
covplot(R), hold on, covplot(R2,[],[],'r')
|
||
|
figure(3)
|
||
|
semilogy(abs(R2.data-R.data)), hold on,
|
||
|
semilogy(abs(S1.data-S.data)+1e-7,'r')
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
cov2spec
|
||
|
'''
|
||
|
|
||
|
freq = self.args
|
||
|
n_f = len(freq)
|
||
|
|
||
|
if freq[0] > 0:
|
||
|
txt = '''Spectrum does not start at zero frequency/wave number.
|
||
|
Correct it with resample, for example.'''
|
||
|
raise ValueError(txt)
|
||
|
d_w = abs(diff(freq, n_f=2, axis=0))
|
||
|
if any(d_w > 1.0e-8):
|
||
|
txt = '''Not equidistant frequencies/wave numbers in spectrum.
|
||
|
Correct it with resample, for example.'''
|
||
|
raise ValueError(txt)
|
||
|
|
||
|
|
||
|
if rate is None:
|
||
|
rate = 1 # %interpolation rate
|
||
|
elif rate > 16:
|
||
|
rate = 16
|
||
|
else: # make sure rate is a power of 2
|
||
|
rate = 2 ** nextpow2(rate)
|
||
|
|
||
|
if nt is None:
|
||
|
nt = rate * (n_f - 1)
|
||
|
else: #check if Nt is ok
|
||
|
nt = minimum(nt, rate * (n_f - 1))
|
||
|
|
||
|
spec = self.copy()
|
||
|
|
||
|
if self.freqtype in 'k':
|
||
|
lagtype = 'x'
|
||
|
else:
|
||
|
lagtype = 'time'
|
||
|
|
||
|
d_t = spec.sampling_period()
|
||
|
#normalize spec so that sum(specn)/(n_f-1)=acf(0)=var(X)
|
||
|
specn = spec.data * freq[-1]
|
||
|
if spec.freqtype in 'f':
|
||
|
w = freq * 2 * pi
|
||
|
else:
|
||
|
w = freq
|
||
|
|
||
|
nfft = rate * 2 ** nextpow2(2 * n_f - 2)
|
||
|
|
||
|
# periodogram
|
||
|
rper = r_[specn, zeros(nfft - (2 * n_f) + 2), conj(specn[n_f - 1:0:-1])]
|
||
|
time = r_[0:nt + 1] * d_t * (2 * n_f - 2) / nfft
|
||
|
|
||
|
r = fft(rper, nfft).real / (2 * n_f - 2)
|
||
|
acf = _WAFOCOV.CovData1D(r[0:nt + 1], time, lagtype=lagtype)
|
||
|
acf.tr = spec.tr
|
||
|
acf.h = spec.h
|
||
|
acf.norm = spec.norm
|
||
|
|
||
|
if nr > 0:
|
||
|
w = r_[w , zeros(nfft - 2 * n_f + 2) , -w[n_f - 1:0:-1] ]
|
||
|
fieldname = 'R' + lagtype * nr
|
||
|
for i in range(1, nr + 1):
|
||
|
rper = -1j * w * rper
|
||
|
d_acf = fft(rper, nfft).real / (2 * n_f - 2)
|
||
|
setattr(acf, fieldname[0:i + 1], d_acf[0:nt + 1])
|
||
|
return acf
|
||
|
|
||
|
def to_linspec(self, ns=None, dt=None, cases=20, iseed=None,
|
||
|
fn_limit=sqrt(2), gravity=9.81):
|
||
|
'''
|
||
|
Split the linear and non-linear component from the Spectrum
|
||
|
according to 2nd order wave theory
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
SL, SN : SpecData1D objects
|
||
|
with linear and non-linear components only, respectively.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ns : scalar integer
|
||
|
giving ns load points. (default length(S)-1=n-1).
|
||
|
If np>n-1 it is assummed that S(k)=0 for all k>n-1
|
||
|
cases : scalar integer
|
||
|
number of cases (default=20)
|
||
|
dt : real scalar
|
||
|
step in grid (default dt is defined by the Nyquist freq)
|
||
|
iseed : scalar integer
|
||
|
starting seed number for the random number generator
|
||
|
(default none is set)
|
||
|
fnLimit : real scalar
|
||
|
normalized upper frequency limit of spectrum for 2'nd order
|
||
|
components. The frequency is normalized with
|
||
|
sqrt(gravity*tanh(kbar*water_depth)/Amax)/(2*pi)
|
||
|
(default sqrt(2), i.e., Convergence criterion).
|
||
|
Generally this should be the same as used in the final
|
||
|
non-linear simulation (see example below).
|
||
|
|
||
|
SPEC2LINSPEC separates the linear and non-linear component of the
|
||
|
spectrum according to 2nd order wave theory. This is useful when
|
||
|
simulating non-linear waves because:
|
||
|
If the spectrum does not decay rapidly enough towards zero, the
|
||
|
contribution from the 2nd order wave components at the upper tail can
|
||
|
be very large and unphysical. Another option to ensure convergence of
|
||
|
the perturbation series in the simulation, is to truncate the upper tail
|
||
|
of the spectrum at FNLIMIT in the calculation of the 2nd order wave
|
||
|
components, i.e., in the calculation of sum and difference frequency effects.
|
||
|
|
||
|
Example:
|
||
|
--------
|
||
|
np = 10000;
|
||
|
iseed = 1;
|
||
|
pflag = 2;
|
||
|
S = jonswap(10);
|
||
|
fnLimit = inf;
|
||
|
[SL,SN] = spec2linspec(S,np,[],[],fnLimit);
|
||
|
x0 = spec2nlsdat(SL,8*np,[],iseed,[],fnLimit);
|
||
|
x1 = spec2nlsdat(S,8*np,[],iseed,[],fnLimit);
|
||
|
x2 = spec2nlsdat(S,8*np,[],iseed,[],sqrt(2));
|
||
|
Se0 = dat2spec(x0);
|
||
|
Se1 = dat2spec(x1);
|
||
|
Se2 = dat2spec(x2);
|
||
|
clf
|
||
|
plotspec(SL,'r',pflag), % Linear components
|
||
|
hold on
|
||
|
plotspec(S,'b',pflag) % target spectrum for simulated data
|
||
|
plotspec(Se0,'m',pflag), % approx. same as S
|
||
|
plotspec(Se1,'g',pflag) % unphysical spectrum
|
||
|
plotspec(Se2,'k',pflag) % approx. same as S
|
||
|
axis([0 10 -80 0])
|
||
|
hold off
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
spec2nlsdat
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
P. A. Brodtkorb (2004),
|
||
|
The probability of Occurrence of dangerous Wave Situations at Sea.
|
||
|
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
|
||
|
Trondheim, Norway.
|
||
|
|
||
|
Nestegaard, A and Stokka T (1995)
|
||
|
A Third Order Random Wave model.
|
||
|
In proc.ISOPE conf., Vol III, pp 136-142.
|
||
|
|
||
|
R. S Langley (1987)
|
||
|
A statistical analysis of non-linear random waves.
|
||
|
Ocean Engng, Vol 14, pp 389-407
|
||
|
|
||
|
Marthinsen, T. and Winterstein, S.R (1992)
|
||
|
'On the skewness of random surface waves'
|
||
|
In proc. ISOPE Conf., San Francisco, 14-19 june.
|
||
|
'''
|
||
|
|
||
|
# by pab 13.08.2002
|
||
|
|
||
|
# TODO % Replace inputs with options structure
|
||
|
# TODO % Can be improved further.
|
||
|
|
||
|
method = 'apstochastic'
|
||
|
trace = 1 #% trace the convergence
|
||
|
max_sim = 30
|
||
|
tolerance = 5e-4
|
||
|
|
||
|
L = 200 #%maximum lag size of the window function used in
|
||
|
#%spectral estimate
|
||
|
#ftype = self.freqtype #options are 'f' and 'w' and 'k'
|
||
|
# switch ftype
|
||
|
# case 'f',
|
||
|
# ftype = 'w';
|
||
|
# S = ttspec(S,ftype);
|
||
|
# end
|
||
|
Hm0 = self.characteristic('Hm0')
|
||
|
Tm02 = self.characteristic('Tm02')
|
||
|
|
||
|
|
||
|
if not iseed is None:
|
||
|
_set_seed(iseed) #% set the the seed
|
||
|
|
||
|
n = len(self.data)
|
||
|
if ns is None:
|
||
|
ns = max(n - 1, 5000)
|
||
|
if dt is None:
|
||
|
S = self.interp(dt) # interpolate spectrum
|
||
|
else:
|
||
|
S = self.copy()
|
||
|
|
||
|
ns = ns + mod(ns, 2) # make sure np is even
|
||
|
|
||
|
water_depth = abs(self.h);
|
||
|
kbar = w2k(2 * pi / Tm02, 0, water_depth)[0]
|
||
|
|
||
|
# Expected maximum amplitude for 1000 waves seastate
|
||
|
num_waves = 10000
|
||
|
Amax = sqrt(2 * log(num_waves)) * Hm0 / 4
|
||
|
|
||
|
fLimitLo = sqrt(gravity * tanh(kbar * water_depth) * Amax / water_depth ** 3);
|
||
|
|
||
|
|
||
|
freq = S.args
|
||
|
eps = finfo(float).eps
|
||
|
freq[-1] = freq[-1] - sqrt(eps)
|
||
|
Hw2 = 0
|
||
|
|
||
|
SL = S
|
||
|
|
||
|
indZero = nonzero(freq < fLimitLo)[0]
|
||
|
if len(indZero):
|
||
|
SL.data[indZero] = 0
|
||
|
|
||
|
maxS = max(S.data);
|
||
|
#Fs = 2*freq(end)+eps; % sampling frequency
|
||
|
|
||
|
for ix in xrange(max_sim):
|
||
|
[x2, x1] = spec2nlsdat(SL, [np, cases], [], iseed, method, fnLimit)
|
||
|
#%x2(:,2:end) = x2(:,2:end) -x1(:,2:end);
|
||
|
S2 = dat2spec(x2, L)
|
||
|
S1 = dat2spec(x1, L)
|
||
|
#%[tf21,fi] = tfe(x2(:,2),x1(:,2),1024,Fs,[],512);
|
||
|
#%Hw11 = interp1q(fi,tf21.*conj(tf21),freq);
|
||
|
if True:
|
||
|
Hw1 = exp(interp1q(S2.args, log(abs(S1.data / S2.data)), freq))
|
||
|
else:
|
||
|
# Geometric mean
|
||
|
Hw1 = exp((interp1q(S2.args, log(abs(S1.data / S2.data)), freq) + log(Hw2)) / 2)
|
||
|
#end
|
||
|
#Hw1 = (interp1q( S2.w,abs(S1.S./S2.S),freq)+Hw2)/2;
|
||
|
#plot(freq, abs(Hw11-Hw1),'g')
|
||
|
#title('diff')
|
||
|
#pause
|
||
|
#clf
|
||
|
|
||
|
#d1 = interp1q( S2.w,S2.S,freq);;
|
||
|
|
||
|
SL.data = (Hw1 * S.data)
|
||
|
|
||
|
if len(indZero):
|
||
|
SL.data[indZero] = 0
|
||
|
#end
|
||
|
k = nonzero(SL.data < 0)[0]
|
||
|
if len(k): # Make sure that the current guess is larger than zero
|
||
|
#%k
|
||
|
#Hw1(k)
|
||
|
Hw1[k] = min(S1.data[k] * 0.9, S.data[k])
|
||
|
SL.data[k] = max(Hw1[k] * S.data[k], eps)
|
||
|
#end
|
||
|
Hw12 = Hw1 - Hw2
|
||
|
maxHw12 = max(abs(Hw12))
|
||
|
if trace == 1:
|
||
|
plotbackend.figure(1),
|
||
|
plotbackend.semilogy(freq, Hw1, 'r')
|
||
|
plotbackend.title('Hw')
|
||
|
plotbackend.figure(2),
|
||
|
plotbackend.semilogy(freq, abs(Hw12), 'r')
|
||
|
plotbackend.title('Hw-HwOld')
|
||
|
|
||
|
#pause(3)
|
||
|
plotbackend.figure(1),
|
||
|
plotbackend.semilogy(freq, Hw1, 'b')
|
||
|
plotbackend.title('Hw')
|
||
|
plotbackend.figure(2),
|
||
|
plotbackend.semilogy(freq, abs(Hw12), 'b')
|
||
|
plotbackend.title('Hw-HwOld')
|
||
|
#figtile
|
||
|
#end
|
||
|
|
||
|
print('Iteration : %d, Hw12 : %g Hw12/maxS : %g' % (ix, maxHw12, (maxHw12 / maxS)))
|
||
|
if (maxHw12 < maxS * tolerance) and (Hw1[-1] < Hw2[-1]) :
|
||
|
break
|
||
|
#end
|
||
|
Hw2 = Hw1
|
||
|
#end
|
||
|
|
||
|
#%Hw1(end)
|
||
|
#%maxS*1e-3
|
||
|
#%if Hw1(end)*S.>maxS*1e-3,
|
||
|
#% warning('The Nyquist frequency of the spectrum may be too low')
|
||
|
#%end
|
||
|
|
||
|
SL.date = now() #datestr(now)
|
||
|
#if nargout>1
|
||
|
SN = SL.copy()
|
||
|
SN.data = S.data - SL.data
|
||
|
SN.note = SN.note + ' non-linear component (spec2linspec)'
|
||
|
#end
|
||
|
SL.note = SL.note + ' linear component (spec2linspec)'
|
||
|
|
||
|
return SL, SN
|
||
|
|
||
|
|
||
|
def to_t_pdf(self, u=None, pdef='Tc', paramt=None, **options):
|
||
|
'''
|
||
|
Density of crest/trough- period or length, version 2.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : real scalar
|
||
|
reference level (default the most frequently crossed level).
|
||
|
pdef : string, 'Tc', Tt', 'Lc' or 'Lt'
|
||
|
'Tc', gives half wave period, Tc (default).
|
||
|
'Tt', gives half wave period, Tt
|
||
|
'Lc' and 'Lt' ditto for wave length.
|
||
|
paramt : [t0, tn, nt]
|
||
|
where t0, tn and nt is the first value, last value and the number
|
||
|
of points, respectively, for which the density will be computed.
|
||
|
paramt= [5, 5, 51] implies that the density is computed only for
|
||
|
T=5 and using 51 equidistant points in the interval [0,5].
|
||
|
options : optional parameters
|
||
|
controlling the performance of the integration. See Rind for details.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
SPEC2TPDF2 calculates pdf of halfperiods Tc, Tt, Lc or Lt
|
||
|
in a stationary Gaussian transform process X(t),
|
||
|
where Y(t) = g(X(t)) (Y zero-mean Gaussian with spectrum given in S).
|
||
|
The transformation, g, can be estimated using LC2TR,
|
||
|
DAT2TR, HERMITETR or OCHITR.
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
The density of Tc is computed by:
|
||
|
>>> import pylab as plb
|
||
|
>>> from wafo.spectrum import models as sm
|
||
|
>>> w = np.linspace(0,3,100)
|
||
|
>>> Sj = sm.Jonswap()
|
||
|
>>> S = Sj.tospecdata()
|
||
|
>>> f = S.to_t_pdf(pdef='Tc', paramt=(0, 10, 51), speed=7)
|
||
|
>>> h = f.plot()
|
||
|
|
||
|
estimated error bounds
|
||
|
>>> h2 = plb.plot(f.args, f.data+f.err, 'r', f.args, f.data-f.err, 'r')
|
||
|
|
||
|
>>> plb.close('all')
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
Rind, spec2cov2, specnorm, dat2tr, dat2gaus,
|
||
|
definitions.wave_periods,
|
||
|
definitions.waves
|
||
|
|
||
|
'''
|
||
|
|
||
|
opts = dict(speed=9)
|
||
|
opts.update(options)
|
||
|
if pdef[0] in ('l', 'L'):
|
||
|
if self.type != 'k1d':
|
||
|
raise ValueError('Must be spectrum of type: k1d')
|
||
|
elif pdef[0] in ('t', 'T'):
|
||
|
if self.type != 'freq':
|
||
|
raise ValueError('Must be spectrum of type: freq')
|
||
|
else:
|
||
|
raise ValueError('pdef must be Tc,Tt or Lc, Lt')
|
||
|
# if strncmpi('l',def,1)
|
||
|
# spec=spec2spec(spec,'k1d')
|
||
|
# elseif strncmpi('t',def,1)
|
||
|
# spec=spec2spec(spec,'freq')
|
||
|
# else
|
||
|
# error('Unknown def')
|
||
|
# end
|
||
|
pdef2defnr = dict(tc=1, lc=1, tt= -1, lt= -1)
|
||
|
defnr = pdef2defnr[pdef.lower()]
|
||
|
|
||
|
S = self.copy()
|
||
|
S.normalize()
|
||
|
m, unused_mtxt = self.moment(nr=2, even=True)
|
||
|
A = sqrt(m[0] / m[1])
|
||
|
|
||
|
|
||
|
if self.tr is None:
|
||
|
y = linspace(-5, 5, 513)
|
||
|
#g = _wafotransform.
|
||
|
g = TrData(y, sqrt(m[0]) * y)
|
||
|
else:
|
||
|
g = self.tr
|
||
|
|
||
|
|
||
|
if u is None:
|
||
|
u = g.gauss2dat(0) #% most frequently crossed level
|
||
|
|
||
|
# transform reference level into Gaussian level
|
||
|
un = g.dat2gauss(u)
|
||
|
|
||
|
#disp(['The level u for Gaussian process = ', num2str(u)])
|
||
|
|
||
|
if paramt is None:
|
||
|
#% z2 = u^2/2
|
||
|
z = -sign(defnr) * un / sqrt(2)
|
||
|
expectedMaxPeriod = 2 * ceil(2 * pi * A * exp(z) * (0.5 + erf(z) / 2))
|
||
|
paramt = [0, expectedMaxPeriod, 51]
|
||
|
|
||
|
t0 = paramt[0]
|
||
|
tn = paramt[1]
|
||
|
Ntime = paramt[2]
|
||
|
t = linspace(0, tn / A, Ntime) #normalized times
|
||
|
Nstart = max(round(t0 / tn * (Ntime - 1)), 1) #% index to starting point to
|
||
|
#% evaluate
|
||
|
|
||
|
dt = t[1] - t[0]
|
||
|
nr = 2
|
||
|
R = S.tocov_matrix(nr, Ntime - 1, dt)
|
||
|
#R = spec2cov2(S,nr,Ntime-1,dt)
|
||
|
|
||
|
|
||
|
xc = vstack((un, un))
|
||
|
indI = -ones(4, dtype=int)
|
||
|
Nd = 2
|
||
|
Nc = 2
|
||
|
XdInf = 100.e0 * sqrt(-R[0, 2])
|
||
|
XtInf = 100.e0 * sqrt(R[0, 0])
|
||
|
|
||
|
B_up = hstack([un + XtInf, XdInf, 0])
|
||
|
B_lo = hstack([un, 0, -XdInf])
|
||
|
#%INFIN = [1 1 0]
|
||
|
#BIG = zeros((Ntime+2,Ntime+2))
|
||
|
ex = zeros(Ntime + 2, dtype=float)
|
||
|
#%CC = 2*pi*sqrt(-R(1,1)/R(1,3))*exp(un^2/(2*R(1,1)))
|
||
|
#% XcScale = log(CC)
|
||
|
opts['xcscale'] = log(2 * pi * sqrt(-R[0, 0] / R[0, 2])) + (un ** 2 / (2 * R[0, 0]))
|
||
|
|
||
|
f = zeros(Ntime, dtype=float)
|
||
|
err = zeros(Ntime, dtype=float)
|
||
|
|
||
|
rind = Rind(**opts)
|
||
|
#h11 = fwaitbar(0,[],sprintf('Please wait ...(start at: %s)',datestr(now)))
|
||
|
for pt in xrange(Nstart, Ntime):
|
||
|
Nt = pt - Nd + 1
|
||
|
Ntd = Nt + Nd
|
||
|
Ntdc = Ntd + Nc
|
||
|
indI[1] = Nt - 1
|
||
|
indI[2] = Nt
|
||
|
indI[3] = Ntd - 1
|
||
|
|
||
|
#% positive wave period
|
||
|
BIG = self._covinput(pt, R)
|
||
|
|
||
|
tmp = rind(BIG, ex[:Ntdc], B_lo, B_up, indI, xc, Nt)
|
||
|
f[pt], err[pt] = tmp[:2]
|
||
|
#fwaitbar(pt/Ntime,h11,sprintf('%s Ready: %d of %d',datestr(now),pt,Ntime))
|
||
|
#end
|
||
|
#close(h11)
|
||
|
|
||
|
|
||
|
titledict = dict(tc='Density of Tc', tt='Density of Tt', lc='Density of Lc', lt='Density of Lt')
|
||
|
Htxt = titledict.get(pdef.lower())
|
||
|
|
||
|
if pdef[0].lower() == 'l':
|
||
|
xtxt = 'wave length [m]'
|
||
|
else:
|
||
|
xtxt = 'period [s]'
|
||
|
|
||
|
Htxt = '%s_{v =%2.5g}' % (Htxt, u)
|
||
|
pdf = WafoData(f / A, t * A, title=Htxt, xlab=xtxt)
|
||
|
pdf.err = err / A
|
||
|
pdf.u = u
|
||
|
pdf.options = opts
|
||
|
return pdf
|
||
|
|
||
|
|
||
|
def _covinput(self, pt, R):
|
||
|
"""
|
||
|
Return covariance matrix for Tc or Tt period problems
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
pt : scalar integer
|
||
|
time
|
||
|
R : array-like, shape Ntime x 3
|
||
|
[R0,R1,R2] column vectors with autocovariance and its derivatives,
|
||
|
i.e., Ri (i=1:2) are vectors with the 1'st and 2'nd derivatives of R0.
|
||
|
|
||
|
The order of the variables in the covariance matrix are organized as follows:
|
||
|
For pt>1:
|
||
|
||X(t2)..X(ts),..X(tn-1)|| X'(t1) X'(tn)|| X(t1) X(tn) ||
|
||
|
= [Xt Xd Xc]
|
||
|
|
||
|
where
|
||
|
|
||
|
Xt = time points in the indicator function
|
||
|
Xd = derivatives
|
||
|
Xc=variables to condition on
|
||
|
|
||
|
Computations of all covariances follows simple rules:
|
||
|
Cov(X(t),X(s))=r(t,s),
|
||
|
then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
|
||
|
a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give
|
||
|
the same result).
|
||
|
|
||
|
Consequently
|
||
|
Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
|
||
|
Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
|
||
|
Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
|
||
|
Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
|
||
|
Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
|
||
|
|
||
|
"""
|
||
|
# cov(Xd)
|
||
|
Sdd = -toeplitz(R[[0, pt], 2])
|
||
|
# cov(Xc)
|
||
|
Scc = toeplitz(R[[0, pt], 0])
|
||
|
# cov(Xc,Xd)
|
||
|
Scd = array([[0, R[pt, 1]], [ -R[pt, 1], 0]])
|
||
|
|
||
|
if pt > 1 :
|
||
|
#%cov(Xt)
|
||
|
Stt = toeplitz(R[:pt - 1, 0]) # Cov(X(tn),X(ts)) = r(ts-tn) = r(|ts-tn|)
|
||
|
#%cov(Xc,Xt)
|
||
|
Sct = R[1:pt, 0] # Cov(X(tn),X(ts)) = r(ts-tn) = r(|ts-tn|)
|
||
|
Sct = vstack((Sct, Sct[::-1]))
|
||
|
#%Cov(Xd,Xt)
|
||
|
Sdt = -R[1:pt, 1] # Cov(X'(t1),X(ts)) = -r'(ts-t1) = r(|s-t|)
|
||
|
Sdt = vstack((Sdt, -Sdt[::-1]))
|
||
|
#N = pt + 3
|
||
|
big = vstack((hstack((Stt, Sdt.T, Sct.T)),
|
||
|
hstack((Sdt, Sdd, Scd.T)),
|
||
|
hstack((Sct, Scd, Scc))))
|
||
|
else:
|
||
|
#N = 4
|
||
|
big = vstack((hstack((Sdd, Scd.T)),
|
||
|
hstack((Scd, Scc))))
|
||
|
return big
|
||
|
|
||
|
def to_specnorm(self):
|
||
|
S = self.copy()
|
||
|
S.normalize()
|
||
|
return S
|
||
|
|
||
|
def sim(self, ns=None, cases=1, dt=None, iseed=None, method='random', derivative=False):
|
||
|
''' Simulates a Gaussian process and its derivative from spectrum
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ns : scalar
|
||
|
number of simulated points. (default length(spec)-1=n-1).
|
||
|
If ns>n-1 it is assummed that acf(k)=0 for all k>n-1
|
||
|
cases : scalar
|
||
|
number of replicates (default=1)
|
||
|
dt : scalar
|
||
|
step in grid (default dt is defined by the Nyquist freq)
|
||
|
iseed : int or state
|
||
|
starting state/seed number for the random number generator
|
||
|
(default none is set)
|
||
|
method : string
|
||
|
if 'exact' : simulation using cov2sdat
|
||
|
if 'random' : random phase and amplitude simulation (default)
|
||
|
derivative : bool
|
||
|
if true : return derivative of simulated signal as well
|
||
|
otherwise
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
xs = a cases+1 column matrix ( t,X1(t) X2(t) ...).
|
||
|
xsder = a cases+1 column matrix ( t,X1'(t) X2'(t) ...).
|
||
|
|
||
|
Details
|
||
|
-------
|
||
|
Performs a fast and exact simulation of stationary zero mean
|
||
|
Gaussian process through circulant embedding of the covariance matrix
|
||
|
or by summation of sinus functions with random amplitudes and random
|
||
|
phase angle.
|
||
|
|
||
|
If the spectrum has a non-empty field .tr, then the transformation is
|
||
|
applied to the simulated data, the result is a simulation of a transformed
|
||
|
Gaussian process.
|
||
|
|
||
|
Note: The method 'exact' simulation may give high frequency ripple when
|
||
|
used with a small dt. In this case the method 'random' works better.
|
||
|
|
||
|
Example:
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap();S = Sj.tospecdata()
|
||
|
>>> ns =100; dt = .2
|
||
|
>>> x1 = S.sim(ns,dt=dt)
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import scipy.stats as st
|
||
|
>>> x2 = S.sim(20000,20)
|
||
|
>>> truth1 = [0,np.sqrt(S.moment(1)[0]),0., 0.]
|
||
|
>>> funs = [np.mean,np.std,st.skew,st.kurtosis]
|
||
|
>>> for fun,trueval in zip(funs,truth1):
|
||
|
... res = fun(x2[:,1::],axis=0)
|
||
|
... m = res.mean()
|
||
|
... sa = res.std()
|
||
|
... assert(np.abs(m-trueval)<sa)
|
||
|
|
||
|
waveplot(x1,'r',x2,'g',1,1)
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
cov2sdat, gaus2dat
|
||
|
|
||
|
Reference
|
||
|
-----------
|
||
|
C.S Dietrich and G. N. Newsam (1997)
|
||
|
"Fast and exact simulation of stationary
|
||
|
Gaussian process through circulant embedding
|
||
|
of the Covariance matrix"
|
||
|
SIAM J. SCI. COMPT. Vol 18, No 4, pp. 1088-1107
|
||
|
|
||
|
Hudspeth, S.T. and Borgman, L.E. (1979)
|
||
|
"Efficient FFT simulation of Digital Time sequences"
|
||
|
Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM2,
|
||
|
|
||
|
'''
|
||
|
|
||
|
spec = self.copy()
|
||
|
if dt is not None:
|
||
|
spec.resample(dt)
|
||
|
|
||
|
|
||
|
ftype = spec.freqtype
|
||
|
freq = spec.args
|
||
|
|
||
|
d_t = spec.sampling_period()
|
||
|
Nt = freq.size
|
||
|
|
||
|
if ns is None:
|
||
|
ns = Nt - 1
|
||
|
|
||
|
if method in 'exact':
|
||
|
|
||
|
#nr=0,Nt=None,dt=None
|
||
|
acf = spec.tocovdata(nr=0)
|
||
|
T = Nt * d_t
|
||
|
i = flatnonzero(acf.args > T)
|
||
|
|
||
|
# Trick to avoid adding high frequency noise to the spectrum
|
||
|
if i.size > 0:
|
||
|
acf.data[i[0]::] = 0.0
|
||
|
|
||
|
return acf.sim(ns=ns, cases=cases, iseed=iseed, derivative=derivative)
|
||
|
|
||
|
_set_seed(iseed)
|
||
|
|
||
|
ns = ns + mod(ns, 2) # make sure it is even
|
||
|
|
||
|
f_i = freq[1:-1]
|
||
|
s_i = spec.data[1:-1]
|
||
|
if ftype in ('w', 'k'):
|
||
|
fact = 2. * pi
|
||
|
s_i = s_i * fact
|
||
|
f_i = f_i / fact
|
||
|
|
||
|
x = zeros((ns, cases + 1))
|
||
|
|
||
|
d_f = 1 / (ns * d_t)
|
||
|
|
||
|
|
||
|
# interpolate for freq. [1:(N/2)-1]*d_f and create 2-sided, uncentered spectra
|
||
|
f = arange(1, ns / 2.) * d_f
|
||
|
|
||
|
f_u = hstack((0., f_i, d_f * ns / 2.))
|
||
|
s_u = hstack((0., abs(s_i) / 2., 0.))
|
||
|
|
||
|
|
||
|
s_i = interp(f, f_u, s_u)
|
||
|
s_u = hstack((0., s_i, 0, s_i[(ns / 2) - 2::-1]))
|
||
|
del(s_i, f_u)
|
||
|
|
||
|
# Generate standard normal random numbers for the simulations
|
||
|
randn = random.randn
|
||
|
z_r = randn((ns / 2) + 1, cases)
|
||
|
z_i = vstack((zeros((1, cases)), randn((ns / 2) - 1, cases), zeros((1, cases))))
|
||
|
|
||
|
amp = zeros((ns, cases), dtype=complex)
|
||
|
amp[0:(ns / 2 + 1), :] = z_r - 1j *z_i
|
||
|
del(z_r, z_i)
|
||
|
amp[(ns / 2 + 1):ns, :] = amp[ns / 2 - 1:0:-1, :].conj()
|
||
|
amp[0, :] = amp[0, :]*sqrt(2.)
|
||
|
amp[(ns / 2), :] = amp[(ns / 2), :]*sqrt(2.)
|
||
|
|
||
|
|
||
|
# Make simulated time series
|
||
|
T = (ns - 1) * d_t
|
||
|
Ssqr = sqrt(s_u * d_f / 2.)
|
||
|
|
||
|
# stochastic amplitude
|
||
|
amp = amp * Ssqr[:, newaxis]
|
||
|
|
||
|
|
||
|
# Deterministic amplitude
|
||
|
#amp = sqrt[1]*Ssqr(:,ones(1,cases)).*exp(sqrt(-1)*atan2(imag(amp),real(amp)))
|
||
|
del(s_u, Ssqr)
|
||
|
|
||
|
|
||
|
x[:, 1::] = fft(amp, axis=0).real
|
||
|
x[:, 0] = linspace(0, T, ns) #' %(0:d_t:(np-1)*d_t).'
|
||
|
|
||
|
|
||
|
if derivative:
|
||
|
xder = zeros(ns, cases + 1)
|
||
|
w = 2. * pi * hstack((0, f, 0., -f[-1::-1]))
|
||
|
amp = -1j * amp * w[:, newaxis]
|
||
|
xder[:, 1:(cases + 1)] = fft(amp, axis=0).real
|
||
|
xder[:, 0] = x[:, 0]
|
||
|
|
||
|
if spec.tr is not None:
|
||
|
print(' Transforming data.')
|
||
|
g = spec.tr
|
||
|
G = fliplr(g) #% the invers of g
|
||
|
if derivative:
|
||
|
for i in range(cases):
|
||
|
tmp = tranproc(hstack((x[:, i + 1], xder[:, i + 1])), G)
|
||
|
x[:, i + 1] = tmp[:, 0]
|
||
|
xder[:, i + 1] = tmp[:, 1]
|
||
|
|
||
|
else:
|
||
|
for i in range(cases):
|
||
|
x[:, i + 1] = tranproc(x[:, i + 1], G)
|
||
|
|
||
|
if derivative:
|
||
|
return x, xder
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
# function [x2,x,svec,dvec,amp]=spec2nlsdat(spec,np,dt,iseed,method,truncationLimit)
|
||
|
def sim_nl(self, ns=None, cases=1, dt=None, iseed=None, method='random',
|
||
|
fnlimit=1.4142, reltol=1e-3, g=9.81):
|
||
|
"""
|
||
|
Simulates a Randomized 2nd order non-linear wave X(t)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ns : scalar
|
||
|
number of simulated points. (default length(spec)-1=n-1).
|
||
|
If ns>n-1 it is assummed that R(k)=0 for all k>n-1
|
||
|
cases : scalar
|
||
|
number of replicates (default=1)
|
||
|
dt : scalar
|
||
|
step in grid (default dt is defined by the Nyquist freq)
|
||
|
iseed : int or state
|
||
|
starting state/seed number for the random number generator
|
||
|
(default none is set)
|
||
|
method : string
|
||
|
'apStochastic' : Random amplitude and phase (default)
|
||
|
'aDeterministic' : Deterministic amplitude and random phase
|
||
|
'apDeterministic' : Deterministic amplitude and phase
|
||
|
fnlimit : scalar
|
||
|
normalized upper frequency limit of spectrum for 2'nd order
|
||
|
components. The frequency is normalized with
|
||
|
sqrt(gravity*tanh(kbar*water_depth)/amp_max)/(2*pi)
|
||
|
(default sqrt(2), i.e., Convergence criterion [1]_).
|
||
|
Other possible values are:
|
||
|
sqrt(1/2) : No bump in trough criterion
|
||
|
sqrt(pi/7) : Wave steepness criterion
|
||
|
reltol : scalar
|
||
|
relative tolerance defining where to truncate spectrum for the
|
||
|
sum and difference frequency effects
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
xs2 = a cases+1 column matrix ( t,X1(t) X2(t) ...).
|
||
|
xs1 = a cases+1 column matrix ( t,X1'(t) X2'(t) ...).
|
||
|
|
||
|
Details
|
||
|
-------
|
||
|
Performs a Fast simulation of Randomized 2nd order non-linear
|
||
|
waves by summation of sinus functions with random amplitudes and
|
||
|
phase angles. The extent to which the simulated result are applicable
|
||
|
to real seastates are dependent on the validity of the assumptions:
|
||
|
|
||
|
1. Seastate is unidirectional
|
||
|
2. Surface elevation is adequately represented by 2nd order random
|
||
|
wave theory
|
||
|
3. The first order component of the surface elevation is a Gaussian
|
||
|
random process.
|
||
|
|
||
|
If the spectrum does not decay rapidly enough towards zero, the
|
||
|
contribution from the 2nd order wave components at the upper tail can
|
||
|
be very large and unphysical. To ensure convergence of the perturbation
|
||
|
series, the upper tail of the spectrum is truncated at FNLIMIT in the
|
||
|
calculation of the 2nd order wave components, i.e., in the calculation
|
||
|
of sum and difference frequency effects. This may also be combined with
|
||
|
the elimination of second order effects from the spectrum, i.e., extract
|
||
|
the linear components from the spectrum. One way to do this is to use
|
||
|
SPEC2LINSPEC.
|
||
|
|
||
|
Example
|
||
|
--------
|
||
|
np =100; dt = .2
|
||
|
[x1, x2] = spec2nlsdat(jonswap,np,dt)
|
||
|
waveplot(x1,'r',x2,'g',1,1)
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
spec2linspec, spec2sdat, cov2sdat
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Nestegaard, amp and Stokka T (1995)
|
||
|
amp Third Order Random Wave model.
|
||
|
In proc.ISOPE conf., Vol III, pp 136-142.
|
||
|
|
||
|
.. [2] R. spec Langley (1987)
|
||
|
amp statistical analysis of non-linear random waves.
|
||
|
Ocean Engng, Vol 14, pp 389-407
|
||
|
|
||
|
.. [3] Marthinsen, T. and Winterstein, spec.R (1992)
|
||
|
'On the skewness of random surface waves'
|
||
|
In proc. ISOPE Conf., San Francisco, 14-19 june.
|
||
|
"""
|
||
|
|
||
|
# TODO % Check the methods: 'apdeterministic' and 'adeterministic'
|
||
|
Hm0, Tm02 = self.characteristic(['Hm0', 'Tm02'])[0].tolist()
|
||
|
|
||
|
_set_seed(iseed)
|
||
|
|
||
|
spec = self.copy()
|
||
|
if dt is not None:
|
||
|
spec.resample(dt)
|
||
|
|
||
|
|
||
|
ftype = spec.freqtype
|
||
|
freq = spec.args
|
||
|
|
||
|
d_t = spec.sampling_period()
|
||
|
Nt = freq.size
|
||
|
|
||
|
if ns is None:
|
||
|
ns = Nt - 1
|
||
|
|
||
|
ns = ns + mod(ns, 2) # make sure it is even
|
||
|
|
||
|
f_i = freq[1:-1]
|
||
|
s_i = spec.data[1:-1]
|
||
|
if ftype in ('w', 'k'):
|
||
|
fact = 2. * pi
|
||
|
s_i = s_i * fact
|
||
|
f_i = f_i / fact
|
||
|
|
||
|
s_max = max(s_i)
|
||
|
water_depth = min(abs(spec.h), 10. ** 30)
|
||
|
|
||
|
x = zeros((ns, cases + 1))
|
||
|
|
||
|
df = 1 / (ns * d_t)
|
||
|
|
||
|
# interpolate for freq. [1:(N/2)-1]*df and create 2-sided, uncentered spectra
|
||
|
f = arange(1, ns / 2.) * df
|
||
|
f_u = hstack((0., f_i, df * ns / 2.))
|
||
|
w = 2. * pi * hstack((0., f, df * ns / 2.))
|
||
|
kw = w2k(w , 0., water_depth, g)[0]
|
||
|
s_u = hstack((0., abs(s_i) / 2., 0.))
|
||
|
|
||
|
|
||
|
|
||
|
s_i = interp(f, f_u, s_u)
|
||
|
nmin = (s_i > s_max * reltol).argmax()
|
||
|
nmax = flatnonzero(s_i > 0).max()
|
||
|
s_u = hstack((0., s_i, 0, s_i[(ns / 2) - 2::-1]))
|
||
|
del(s_i, f_u)
|
||
|
|
||
|
# Generate standard normal random numbers for the simulations
|
||
|
randn = random.randn
|
||
|
z_r = randn((ns / 2) + 1, cases)
|
||
|
z_i = vstack((zeros((1, cases)),
|
||
|
randn((ns / 2) - 1, cases),
|
||
|
zeros((1, cases))))
|
||
|
|
||
|
amp = zeros((ns, cases), dtype=complex)
|
||
|
amp[0:(ns / 2 + 1), :] = z_r - 1j * z_i
|
||
|
del(z_r, z_i)
|
||
|
amp[(ns / 2 + 1):ns, :] = amp[ns / 2 - 1:0:-1, :].conj()
|
||
|
amp[0, :] = amp[0, :]*sqrt(2.)
|
||
|
amp[(ns / 2), :] = amp[(ns / 2), :]*sqrt(2.)
|
||
|
|
||
|
|
||
|
# Make simulated time series
|
||
|
|
||
|
T = (ns - 1) * d_t
|
||
|
Ssqr = sqrt(s_u * df / 2.)
|
||
|
|
||
|
|
||
|
if method.startswith('apd') : # apdeterministic
|
||
|
# Deterministic amplitude and phase
|
||
|
amp[1:(ns / 2), :] = amp[1, 0]
|
||
|
amp[(ns / 2 + 1):ns, :] = amp[1, 0].conj()
|
||
|
amp = sqrt(2) * Ssqr[:, newaxis] * exp(1J * arctan2(amp.imag, amp.real))
|
||
|
elif method.startswith('ade'): # adeterministic
|
||
|
# Deterministic amplitude and random phase
|
||
|
amp = sqrt(2) * Ssqr[:, newaxis] * exp(1J * arctan2(amp.imag, amp.real))
|
||
|
else:
|
||
|
# stochastic amplitude
|
||
|
amp = amp * Ssqr[:, newaxis]
|
||
|
# Deterministic amplitude
|
||
|
#amp = sqrt(2)*Ssqr(:,ones(1,cases)).*exp(sqrt(-1)*atan2(imag(amp),real(amp)))
|
||
|
del(s_u, Ssqr)
|
||
|
|
||
|
|
||
|
x[:, 1::] = fft(amp, axis=0).real
|
||
|
x[:, 0] = linspace(0, T, ns) #' %(0:d_t:(np-1)*d_t).'
|
||
|
|
||
|
|
||
|
|
||
|
x2 = x.copy()
|
||
|
|
||
|
# If the spectrum does not decay rapidly enough towards zero, the
|
||
|
# contribution from the wave components at the upper tail can be very
|
||
|
# large and unphysical.
|
||
|
# To ensure convergence of the perturbation series, the upper tail of
|
||
|
# the spectrum is truncated in the calculation of sum and difference
|
||
|
# frequency effects.
|
||
|
# Find the critical wave frequency to ensure convergence.
|
||
|
|
||
|
num_waves = 1000. # Typical number of waves in 3 hour seastate
|
||
|
kbar = w2k(2. * pi / Tm02, 0., water_depth)[0]
|
||
|
amp_max = sqrt(2 * log(num_waves)) * Hm0 / 4 #% Expected maximum amplitude for 1000 waves seastate
|
||
|
|
||
|
f_limit_up = fnlimit * sqrt(g * tanh(kbar * water_depth) / amp_max) / (2 * pi)
|
||
|
f_limit_lo = sqrt(g * tanh(kbar * water_depth) * amp_max / water_depth) / (2 * pi * water_depth)
|
||
|
|
||
|
nmax = min(flatnonzero(f <= f_limit_up).max(), nmax) + 1
|
||
|
nmin = max(flatnonzero(f_limit_lo <= f).min(), nmin) + 1
|
||
|
|
||
|
#if isempty(nmax),nmax = np/2end
|
||
|
#if isempty(nmin),nmin = 2end % Must always be greater than 1
|
||
|
f_limit_up = df * nmax
|
||
|
f_limit_lo = df * nmin
|
||
|
|
||
|
print('2nd order frequency Limits = %g,%g' % (f_limit_lo, f_limit_up))
|
||
|
|
||
|
|
||
|
|
||
|
## if nargout>3,
|
||
|
## %compute the sum and frequency effects separately
|
||
|
## [svec, dvec] = disufq((amp.'),w,kw,min(h,10^30),g,nmin,nmax)
|
||
|
## svec = svec.'
|
||
|
## dvec = dvec.'
|
||
|
##
|
||
|
## x2s = fft(svec) % 2'nd order sum frequency component
|
||
|
## x2d = fft(dvec) % 2'nd order difference frequency component
|
||
|
##
|
||
|
## % 1'st order + 2'nd order component.
|
||
|
## x2(:,2:end) =x(:,2:end)+ real(x2s(1:np,:))+real(x2d(1:np,:))
|
||
|
## else
|
||
|
amp = amp.T
|
||
|
rvec, ivec = c_library.disufq(amp.real, amp.imag, w, kw, water_depth, g, nmin, nmax, cases, ns)
|
||
|
|
||
|
svec = rvec + 1J * ivec
|
||
|
svec.shape = (cases, ns)
|
||
|
x2o = fft(svec, axis=1).T # 2'nd order component
|
||
|
|
||
|
|
||
|
# 1'st order + 2'nd order component.
|
||
|
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
|
||
|
|
||
|
return x2, x
|
||
|
|
||
|
|
||
|
|
||
|
def stats_nl(self, h=None, moments='sk', method='approximate', g=9.81):
|
||
|
"""
|
||
|
Statistics of 2'nd order waves to the leading order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
h : scalar
|
||
|
water depth (default self.h)
|
||
|
moments : string (default='sk')
|
||
|
composed of letters ['mvsk'] specifying which moments to compute:
|
||
|
'm' = mean,
|
||
|
'v' = variance,
|
||
|
's' = (Fisher's) skew,
|
||
|
'k' = (Fisher's) kurtosis.
|
||
|
method : string
|
||
|
'approximate' method due to Marthinsen & Winterstein (default)
|
||
|
'eigenvalue' method due to Kac and Siegert
|
||
|
|
||
|
Skewness = kurtosis-3 = 0 for a Gaussian process.
|
||
|
The mean, sigma, skewness and kurtosis are determined as follows:
|
||
|
method == 'approximate': due to Marthinsen and Winterstein
|
||
|
mean = 2 * int Hd(w1,w1)*S(w1) dw1
|
||
|
sigma = sqrt(int S(w1) dw1)
|
||
|
skew = 6 * int int [Hs(w1,w2)+Hd(w1,w2)]*S(w1)*S(w2) dw1*dw2/m0^(3/2)
|
||
|
kurt = (4*skew/3)^2
|
||
|
|
||
|
where Hs = sum frequency effects and Hd = difference frequency effects
|
||
|
|
||
|
method == 'eigenvalue'
|
||
|
|
||
|
mean = sum(E)
|
||
|
sigma = sqrt(sum(C^2)+2*sum(E^2))
|
||
|
skew = sum((6*C^2+8*E^2).*E)/sigma^3
|
||
|
kurt = 3+48*sum((C^2+E^2).*E^2)/sigma^4
|
||
|
|
||
|
where
|
||
|
h1 = sqrt(S*dw/2)
|
||
|
C = (ctranspose(V)*[h1;h1])
|
||
|
and E and V is the eigenvalues and eigenvectors, respectively, of the 2'order
|
||
|
transfer matrix. S is the spectrum and dw is the frequency spacing of S.
|
||
|
|
||
|
Example:
|
||
|
--------
|
||
|
#Simulate a Transformed Gaussian process:
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap()
|
||
|
>>> S = Sj.tospecdata()
|
||
|
>>> me, va, sk, ku = S.stats_nl(moments='mvsk')
|
||
|
|
||
|
|
||
|
Hm0=7;Tp=11
|
||
|
S = jonswap([],[Hm0 Tp]); [sk, ku, me]=spec2skew(S)
|
||
|
g=hermitetr([],[Hm0/4 sk ku me]); g2=[g(:,1), g(:,2)*Hm0/4]
|
||
|
ys = spec2sdat(S,15000) % Simulated in the Gaussian world
|
||
|
xs = gaus2dat(ys,g2) % Transformed to the real world
|
||
|
|
||
|
See also
|
||
|
---------
|
||
|
hermitetr, ochitr, lc2tr, dat2tr
|
||
|
|
||
|
References:
|
||
|
-----------
|
||
|
Langley, RS (1987)
|
||
|
'A statistical analysis of nonlinear random waves'
|
||
|
Ocean Engineering, Vol 14, No 5, pp 389-407
|
||
|
|
||
|
Marthinsen, T. and Winterstein, S.R (1992)
|
||
|
'On the skewness of random surface waves'
|
||
|
In proceedings of the 2nd ISOPE Conference, San Francisco, 14-19 june.
|
||
|
|
||
|
Winterstein, S.R, Ude, T.C. and Kleiven, G. (1994)
|
||
|
'Springing and slow drift responses:
|
||
|
predicted extremes and fatigue vs. simulation'
|
||
|
In Proc. 7th International behaviour of Offshore structures, (BOSS)
|
||
|
Vol. 3, pp.1-15
|
||
|
"""
|
||
|
|
||
|
#% default options
|
||
|
if h is None:
|
||
|
h = self.h
|
||
|
|
||
|
#S = ttspec(S,'w')
|
||
|
w = ravel(self.args)
|
||
|
S = ravel(self.data)
|
||
|
if self.freqtype in ['f', 'w']:
|
||
|
vari = 't'
|
||
|
if self.freqtype == 'f':
|
||
|
w = 2. * pi * w
|
||
|
S = S / (2. * pi)
|
||
|
#m0 = self.moment(nr=0)
|
||
|
m0 = simps(S, w)
|
||
|
sa = sqrt(m0)
|
||
|
Nw = w.size
|
||
|
|
||
|
Hs, Hd, Hdii = qtf(w, h, g)
|
||
|
|
||
|
#%return
|
||
|
#%skew=6/sqrt(m0)^3*simpson(S.w,simpson(S.w,(Hs+Hd).*S1(:,ones(1,Nw))).*S1.')
|
||
|
|
||
|
Hspd = trapz(trapz((Hs + Hd) * S[newaxis, :], w) * S, w)
|
||
|
output = []
|
||
|
if method[0] == 'a': # %approx : Marthinsen, T. and Winterstein, S.R (1992) method
|
||
|
if 'm' in moments:
|
||
|
output.append(2. * trapz(Hdii * S, w))
|
||
|
if 'v' in moments:
|
||
|
output.append(m0)
|
||
|
skew = 6. / sa ** 3 * Hspd
|
||
|
if 's' in moments:
|
||
|
output.append(skew)
|
||
|
if 'k' in moments:
|
||
|
output.append((4. * skew / 3.) ** 2. + 3.)
|
||
|
else:
|
||
|
raise ValueError('Unknown option!')
|
||
|
|
||
|
## elif method[0]== 'q': #, #% quasi method
|
||
|
## Fn = self.nyquist_freq()
|
||
|
## dw = Fn/Nw
|
||
|
## tmp1 =sqrt(S[:,newaxis]*S[newaxis,:])*dw
|
||
|
## Hd = Hd*tmp1
|
||
|
## Hs = Hs*tmp1
|
||
|
## k = 6
|
||
|
## stop = 0
|
||
|
## while !stop:
|
||
|
## E = eigs([Hd,Hs;Hs,Hd],[],k)
|
||
|
## %stop = (length(find(abs(E)<1e-4))>0 | k>1200)
|
||
|
## %stop = (any(abs(E(:))<1e-4) | k>1200)
|
||
|
## stop = (any(abs(E(:))<1e-4) | k>=min(2*Nw,1200))
|
||
|
## k = min(2*k,2*Nw)
|
||
|
## #end
|
||
|
##
|
||
|
##
|
||
|
## m02=2*sum(E.^2) % variance of 2'nd order contribution
|
||
|
##
|
||
|
## %Hstd = 16*trapz(S.w,(Hdii.*S1).^2)
|
||
|
## %Hstd = trapz(S.w,trapz(S.w,((Hs+Hd)+ 2*Hs.*Hd).*S1(:,ones(1,Nw))).*S1.')
|
||
|
## ma = 2*trapz(S.w,Hdii.*S1)
|
||
|
## %m02 = Hstd-ma^2% variance of second order part
|
||
|
## sa = sqrt(m0+m02)
|
||
|
## skew = 6/sa^3*Hspd
|
||
|
## kurt = (4*skew/3).^2+3
|
||
|
## elif method[0]== 'e': #, % Kac and Siegert eigenvalue analysis
|
||
|
## Fn = self.nyquist_freq()
|
||
|
## dw = Fn/Nw
|
||
|
## tmp1 =sqrt(S[:,newaxis]*S[newaxis,:])*dw
|
||
|
## Hd = Hd*tmp1
|
||
|
## Hs = Hs*tmp1
|
||
|
## k = 6
|
||
|
## stop = 0
|
||
|
##
|
||
|
##
|
||
|
## while (not stop):
|
||
|
## [V,D] = eigs([Hd,HsHs,Hd],[],k)
|
||
|
## E = diag(D)
|
||
|
## %stop = (length(find(abs(E)<1e-4))>0 | k>=min(2*Nw,1200))
|
||
|
## stop = (any(abs(E(:))<1e-4) | k>=min(2*Nw,1200))
|
||
|
## k = min(2*k,2*Nw)
|
||
|
## #end
|
||
|
##
|
||
|
##
|
||
|
## h1 = sqrt(S*dw/2)
|
||
|
## C = (ctranspose(V)*[h1;h1])
|
||
|
##
|
||
|
## E2 = E.^2
|
||
|
## C2 = C.^2
|
||
|
##
|
||
|
## ma = sum(E) % mean
|
||
|
## sa = sqrt(sum(C2)+2*sum(E2)) % standard deviation
|
||
|
## skew = sum((6*C2+8*E2).*E)/sa^3 % skewness
|
||
|
## kurt = 3+48*sum((C2+E2).*E2)/sa^4 % kurtosis
|
||
|
return output
|
||
|
|
||
|
def moment(self, nr=2, even=True, j=0):
|
||
|
''' Calculates spectral moments from spectrum
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nr : int
|
||
|
order of moments (recomended maximum 4)
|
||
|
even : bool
|
||
|
False for all moments,
|
||
|
True for only even orders
|
||
|
j : int
|
||
|
0 or 1
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
m : list of moments
|
||
|
mtext : list of strings describing the elements of m, see below
|
||
|
|
||
|
Details
|
||
|
-------
|
||
|
Calculates spectral moments of up to order NR by use of
|
||
|
Simpson-integration.
|
||
|
|
||
|
/ /
|
||
|
mj_t^i = | w^i S(w)^(j+1) dw, or mj_x^i = | k^i S(k)^(j+1) dk
|
||
|
/ /
|
||
|
|
||
|
where k=w^2/gravity, i=0,1,...,NR
|
||
|
|
||
|
The strings in output mtext have the same position in the list
|
||
|
as the corresponding numerical value has in output m
|
||
|
Notation in mtext: 'm0' is the variance,
|
||
|
'm0x' is the first-order moment in x,
|
||
|
'm0xx' is the second-order moment in x,
|
||
|
'm0t' is the first-order moment in t,
|
||
|
etc.
|
||
|
For the calculation of moments see Baxevani et al.
|
||
|
|
||
|
Example:
|
||
|
>>> import numpy as np
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap(Hm0=3)
|
||
|
>>> w = np.linspace(0,4,256)
|
||
|
>>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values
|
||
|
>>> S.moment()
|
||
|
([0.56220770033914191, 0.35433180985851975], ['m0', 'm0tt'])
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Baxevani A. et al. (2001)
|
||
|
Velocities for Random Surfaces
|
||
|
'''
|
||
|
one_dim_spectra = ['freq', 'enc', 'k1d']
|
||
|
if self.type not in one_dim_spectra:
|
||
|
raise ValueError('Unknown spectrum type!')
|
||
|
|
||
|
f = ravel(self.args)
|
||
|
S = ravel(self.data)
|
||
|
if self.freqtype in ['f', 'w']:
|
||
|
vari = 't'
|
||
|
if self.freqtype == 'f':
|
||
|
f = 2. * pi * f
|
||
|
S = S / (2. * pi)
|
||
|
else:
|
||
|
vari = 'x'
|
||
|
S1 = abs(S) ** (j + 1.)
|
||
|
m = [simps(S1, x=f)]
|
||
|
mtxt = 'm%d' % j
|
||
|
mtext = [mtxt]
|
||
|
step = mod(even, 2) + 1
|
||
|
df = f ** step
|
||
|
for i in range(step, nr + 1, step):
|
||
|
S1 = S1 * df
|
||
|
m.append(simps(S1, x=f))
|
||
|
mtext.append(mtxt + vari * i)
|
||
|
return m, mtext
|
||
|
|
||
|
def nyquist_freq(self):
|
||
|
"""
|
||
|
Return Nyquist frequency
|
||
|
"""
|
||
|
return self.args[-1]
|
||
|
|
||
|
def sampling_period(self):
|
||
|
''' Returns sampling interval from Nyquist frequency of spectrum
|
||
|
|
||
|
Returns
|
||
|
---------
|
||
|
dT : scalar
|
||
|
sampling interval, unit:
|
||
|
[m] if wave number spectrum,
|
||
|
[s] otherwise
|
||
|
|
||
|
Let wm be maximum frequency/wave number in spectrum,
|
||
|
then dT=pi/wm if angular frequency, dT=1/(2*wm) if natural frequency (Hz)
|
||
|
|
||
|
Example
|
||
|
-------
|
||
|
S = jonswap
|
||
|
dt = spec2dt(S)
|
||
|
|
||
|
See also
|
||
|
'''
|
||
|
|
||
|
if self.freqtype in 'f':
|
||
|
wmdt = 0.5 # Nyquist to sampling interval factor
|
||
|
else: # ftype == w og ftype == k
|
||
|
wmdt = pi
|
||
|
|
||
|
wm = self.args[-1] #Nyquist frequency
|
||
|
dt = wmdt / wm #sampling interval = 1/Fs
|
||
|
return dt
|
||
|
|
||
|
def resample(self, dt=None, Nmin=0, Nmax=2 ** 13 + 1, method='stineman'):
|
||
|
'''
|
||
|
Interpolate and zero-padd spectrum to change Nyquist freq.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dt : scalar
|
||
|
wanted sampling interval (default as given by S, see spec2dt)
|
||
|
unit: [s] if frequency-spectrum, [m] if wave number spectrum
|
||
|
Nmin : scalar
|
||
|
minimum number of frequencies.
|
||
|
Nmax : scalar
|
||
|
minimum number of frequencies
|
||
|
method : string
|
||
|
interpolation method (options are 'linear', 'cubic' or 'stineman')
|
||
|
|
||
|
To be used before simulation (e.g. spec2sdat) or evaluation of covariance
|
||
|
function (spec2cov) to directly get wanted sampling interval.
|
||
|
The input spectrum is interpolated and padded with zeros to reach
|
||
|
the right max-frequency, w(end)=pi/dt, f(end)=1/(2*dt), or k(end)=pi/dt.
|
||
|
The objective is that output frequency grid should be at least as dense
|
||
|
as the input grid, have equidistant spacing and length equal to
|
||
|
2^k+1 (>=Nmin). If the max frequency is changed, the number of points
|
||
|
in the spectrum is maximized to 2^13+1.
|
||
|
|
||
|
Note: Also zero-padding down to zero freq, if S does not start there.
|
||
|
If empty input dt, this is the only effect.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
spec2cov, spec2sdat, covinterp, spec2dt
|
||
|
'''
|
||
|
|
||
|
ftype = self.freqtype
|
||
|
w = self.args.ravel()
|
||
|
n = w.size
|
||
|
|
||
|
#%doInterpolate = 0
|
||
|
|
||
|
if ftype == 'f':
|
||
|
Cnf2dt = 0.5 # Nyquist to sampling interval factor
|
||
|
else: #% ftype == w og ftype == k
|
||
|
Cnf2dt = pi
|
||
|
|
||
|
wnOld = w[-1] # Old Nyquist frequency
|
||
|
dTold = Cnf2dt / wnOld # sampling interval=1/Fs
|
||
|
|
||
|
|
||
|
if dt is None:
|
||
|
dt = dTold
|
||
|
|
||
|
# Find how many points that is needed
|
||
|
nfft = 2 ** nextpow2(max(n - 1, Nmin - 1))
|
||
|
dttest = dTold * (n - 1) / nfft
|
||
|
|
||
|
while (dttest > dt) and (nfft < Nmax - 1):
|
||
|
nfft = nfft * 2
|
||
|
dttest = dTold * (n - 1) / nfft
|
||
|
|
||
|
nfft = nfft + 1
|
||
|
|
||
|
wnNew = Cnf2dt / dt #% New Nyquist frequency
|
||
|
dWn = wnNew - wnOld
|
||
|
doInterpolate = dWn > 0 or w[1] > 0 or (nfft != n) or dt != dTold or any(abs(diff(w, axis=0)) > 1.0e-8)
|
||
|
|
||
|
if doInterpolate > 0:
|
||
|
S1 = self.data
|
||
|
|
||
|
dw = min(diff(w))
|
||
|
|
||
|
if dWn > 0:
|
||
|
#% add a zero just above old max-freq, and a zero at new max-freq
|
||
|
#% to get correct interpolation there
|
||
|
Nz = 1 + (dWn > dw) # % Number of zeros to add
|
||
|
if Nz == 2:
|
||
|
w = hstack((w, wnOld + dw, wnNew))
|
||
|
else:
|
||
|
w = hstack((w, wnNew))
|
||
|
|
||
|
S1 = hstack((S1, zeros(Nz)))
|
||
|
|
||
|
if w[0] > 0:
|
||
|
#% add a zero at freq 0, and, if there is space, a zero just below min-freq
|
||
|
Nz = 1 + (w[0] > dw) #% Number of zeros to add
|
||
|
if Nz == 2:
|
||
|
w = hstack((0, w[0] - dw, w))
|
||
|
else:
|
||
|
w = hstack((0, w))
|
||
|
|
||
|
S1 = hstack((zeros(Nz), S1))
|
||
|
|
||
|
|
||
|
#% Do a final check on spacing in order to check that the gridding is
|
||
|
#% sufficiently dense:
|
||
|
#np1 = S1.size
|
||
|
dwMin = finfo(float).max
|
||
|
#%wnc = min(wnNew,wnOld-1e-5)
|
||
|
wnc = wnNew
|
||
|
specfun = lambda xi : stineman_interp(xi, w, S1)
|
||
|
|
||
|
x, unused_y = discretize(specfun, 0, wnc)
|
||
|
dwMin = minimum(min(diff(x)), dwMin)
|
||
|
|
||
|
newNfft = 2 ** nextpow2(ceil(wnNew / dwMin)) + 1
|
||
|
if newNfft > nfft:
|
||
|
if (nfft <= 2 ** 15 + 1) and (newNfft > 2 ** 15 + 1):
|
||
|
warnings.warn('Spectrum matrix is very large (>33k). Memory problems may occur.')
|
||
|
|
||
|
nfft = newNfft
|
||
|
self.args = linspace(0, wnNew, nfft)
|
||
|
if method == 'stineman':
|
||
|
self.data = stineman_interp(self.args, w, S1)
|
||
|
else:
|
||
|
intfun = interpolate.interp1d(w, S1, kind=method)
|
||
|
self.data = intfun(self.args)
|
||
|
self.data = self.data.clip(0) # clip negative values to 0
|
||
|
|
||
|
def normalize(self, gravity=9.81):
|
||
|
'''
|
||
|
Normalize a spectral density such that m0=m2=1
|
||
|
|
||
|
Paramter
|
||
|
--------
|
||
|
gravity=9.81
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Normalization performed such that
|
||
|
INT S(freq) dfreq = 1 INT freq^2 S(freq) dfreq = 1
|
||
|
where integration limits are given by freq and S(freq) is the
|
||
|
spectral density; freq can be frequency or wave number.
|
||
|
The normalization is defined by
|
||
|
A=sqrt(m0/m2); B=1/A/m0; freq'=freq*A; S(freq')=S(freq)*B
|
||
|
|
||
|
If S is a directional spectrum then a normalized gravity (.g) is added
|
||
|
to Sn, such that mxx normalizes to 1, as well as m0 and mtt.
|
||
|
(See spec2mom for notation of moments)
|
||
|
|
||
|
If S is complex-valued cross spectral density which has to be
|
||
|
normalized, then m0, m2 (suitable spectral moments) should be given.
|
||
|
|
||
|
Example:
|
||
|
-------
|
||
|
S = jonswap
|
||
|
[Sn,mn4] = specnorm(S)
|
||
|
mts = spec2mom(S,2) % Should be equal to one!
|
||
|
'''
|
||
|
mom, unused_mtext = self.moment(nr=4, even=True)
|
||
|
m0 = mom[0]
|
||
|
m2 = mom[1]
|
||
|
m4 = mom[2]
|
||
|
|
||
|
SM0 = sqrt(m0)
|
||
|
SM2 = sqrt(m2)
|
||
|
A = SM0 / SM2
|
||
|
B = SM2 / (SM0 * m0)
|
||
|
|
||
|
if self.freqtype == 'f':
|
||
|
self.args = self.args * A / 2 / pi
|
||
|
self.data = self.data * B * 2 * pi
|
||
|
elif self.freqtype == 'w' :
|
||
|
self.args = self.args * A
|
||
|
self.data = self.data * B
|
||
|
m02 = m4 / gravity ** 2
|
||
|
m20 = m02
|
||
|
self.g = gravity * sqrt(m0 * m20) / m2
|
||
|
self.A = A
|
||
|
self.norm = True
|
||
|
self.date = now()
|
||
|
|
||
|
def bandwidth(self, factors=0):
|
||
|
'''
|
||
|
Return some spectral bandwidth and irregularity factors
|
||
|
|
||
|
Parameters
|
||
|
-----------
|
||
|
factors : array-like
|
||
|
Input vector 'factors' correspondence:
|
||
|
0 alpha=m2/sqrt(m0*m4) (irregularity factor)
|
||
|
1 eps2 = sqrt(m0*m2/m1^2-1) (narrowness factor)
|
||
|
2 eps4 = sqrt(1-m2^2/(m0*m4))=sqrt(1-alpha^2) (broadness factor)
|
||
|
3 Qp=(2/m0^2)int_0^inf f*S(f)^2 df (peakedness factor)
|
||
|
|
||
|
Returns
|
||
|
--------
|
||
|
bw : arraylike
|
||
|
vector of bandwidth factors
|
||
|
Order of output is the same as order in 'factors'
|
||
|
|
||
|
Example:
|
||
|
>>> import numpy as np
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap(Hm0=3)
|
||
|
>>> w = np.linspace(0,4,256)
|
||
|
>>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values
|
||
|
>>> S.bandwidth([0,1,2,3])
|
||
|
array([ 0.65354446, 0.3975428 , 0.75688813, 2.00207912])
|
||
|
'''
|
||
|
|
||
|
# if self.freqtype in 'k':
|
||
|
# vari = 'k'
|
||
|
# else:
|
||
|
# vari = 'w'
|
||
|
|
||
|
m, unused_mtxt = self.moment(nr=4, even=False)
|
||
|
|
||
|
fact = atleast_1d(factors)
|
||
|
alpha = m[2] / sqrt(m[0] * m[4])
|
||
|
eps2 = sqrt(m[0] * m[2] / m[1] ** 2. - 1.)
|
||
|
eps4 = sqrt(1. - m[2] ** 2. / m[0] / m[4])
|
||
|
f = self.args
|
||
|
S = self.data
|
||
|
Qp = 2 / m[0] ** 2. * simps(f * S ** 2, x=f)
|
||
|
bw = array([alpha, eps2, eps4, Qp])
|
||
|
return bw[fact]
|
||
|
|
||
|
def characteristic(self, fact='Hm0', T=1200, g=9.81):
|
||
|
"""
|
||
|
Returns spectral characteristics and their covariance
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fact : vector with factor integers or a string or a list of strings
|
||
|
defining spectral characteristic, see description below.
|
||
|
T : scalar
|
||
|
recording time (sec) (default 1200 sec = 20 min)
|
||
|
g : scalar
|
||
|
acceleration of gravity [m/s^2]
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ch : vector
|
||
|
of spectral characteristics
|
||
|
R : matrix
|
||
|
of the corresponding covariances given T
|
||
|
chtext : a list of strings
|
||
|
describing the elements of ch, see example.
|
||
|
|
||
|
|
||
|
Description
|
||
|
------------
|
||
|
If input spectrum is of wave number type, output are factors for
|
||
|
corresponding 'k1D', else output are factors for 'freq'.
|
||
|
Input vector 'factors' correspondence:
|
||
|
1 Hm0 = 4*sqrt(m0) Significant wave height
|
||
|
2 Tm01 = 2*pi*m0/m1 Mean wave period
|
||
|
3 Tm02 = 2*pi*sqrt(m0/m2) Mean zero-crossing period
|
||
|
4 Tm24 = 2*pi*sqrt(m2/m4) Mean period between maxima
|
||
|
5 Tm_10 = 2*pi*m_1/m0 Energy period
|
||
|
6 Tp = 2*pi/{w | max(S(w))} Peak period
|
||
|
7 Ss = 2*pi*Hm0/(g*Tm02^2) Significant wave steepness
|
||
|
8 Sp = 2*pi*Hm0/(g*Tp^2) Average wave steepness
|
||
|
9 Ka = abs(int S(w)*exp(i*w*Tm02) dw ) /m0 Groupiness parameter
|
||
|
10 Rs = (S(0.092)+S(0.12)+S(0.15)/(3*max(S(w))) Quality control parameter
|
||
|
11 Tp1 = 2*pi*int S(w)^4 dw Peak Period (robust estimate for Tp)
|
||
|
------------------
|
||
|
int w*S(w)^4 dw
|
||
|
|
||
|
12 alpha = m2/sqrt(m0*m4) Irregularity factor
|
||
|
13 eps2 = sqrt(m0*m2/m1^2-1) Narrowness factor
|
||
|
14 eps4 = sqrt(1-m2^2/(m0*m4))=sqrt(1-alpha^2) Broadness factor
|
||
|
15 Qp = (2/m0^2)int_0^inf w*S(w)^2 dw Peakedness factor
|
||
|
|
||
|
Order of output is same as order in 'factors'
|
||
|
The covariances are computed with a Taylor expansion technique
|
||
|
and is currently only available for factors 1, 2, and 3. Variances
|
||
|
are also available for factors 4,5,7,12,13,14 and 15
|
||
|
|
||
|
Quality control:
|
||
|
----------------
|
||
|
Critical value for quality control parameter Rs is Rscrit = 0.02
|
||
|
for surface displacement records and Rscrit=0.0001 for records of
|
||
|
surface acceleration or slope. If Rs > Rscrit then probably there
|
||
|
are something wrong with the lower frequency part of S.
|
||
|
|
||
|
Ss may be used as an indicator of major malfunction, by checking that
|
||
|
it is in the range of 1/20 to 1/16 which is the usual range for
|
||
|
locally generated wind seas.
|
||
|
|
||
|
Examples:
|
||
|
---------
|
||
|
>>> import numpy as np
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap(Hm0=5)
|
||
|
>>> S = Sj.tospecdata() #Make spectrum ob
|
||
|
>>> S.characteristic(1)
|
||
|
(array([ 8.59007646]), array([[ 0.03040216]]), ['Tm01'])
|
||
|
|
||
|
>>> [ch, R, txt] = S.characteristic([1,2,3]) # fact a vector of integers
|
||
|
>>> S.characteristic('Ss') # fact a string
|
||
|
(array([ 0.04963112]), array([[ 2.63624782e-06]]), ['Ss'])
|
||
|
|
||
|
>>> S.characteristic(['Hm0','Tm02']) # fact a list of strings
|
||
|
(array([ 4.99833578, 8.03139757]), array([[ 0.05292989, 0.02511371],
|
||
|
[ 0.02511371, 0.0274645 ]]), ['Hm0', 'Tm02'])
|
||
|
|
||
|
See also
|
||
|
---------
|
||
|
bandwidth,
|
||
|
moment
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Krogstad, H.E., Wolf, J., Thompson, S.P., and Wyatt, L.R. (1999)
|
||
|
'Methods for intercomparison of wave measurements'
|
||
|
Coastal Enginering, Vol. 37, pp. 235--257
|
||
|
|
||
|
Krogstad, H.E. (1982)
|
||
|
'On the covariance of the periodogram'
|
||
|
Journal of time series analysis, Vol. 3, No. 3, pp. 195--207
|
||
|
|
||
|
Tucker, M.J. (1993)
|
||
|
'Recommended standard for wave data sampling and near-real-time processing'
|
||
|
Ocean Engineering, Vol.20, No.5, pp. 459--474
|
||
|
|
||
|
Young, I.R. (1999)
|
||
|
"Wind generated ocean waves"
|
||
|
Elsevier Ocean Engineering Book Series, Vol. 2, pp 239
|
||
|
"""
|
||
|
|
||
|
#% TODO % Need more checking on computing the variances for Tm24,alpha, eps2 and eps4
|
||
|
#% TODO % Covariances between Tm24,alpha, eps2 and eps4 variables are also needed
|
||
|
|
||
|
tfact = dict(Hm0=0, Tm01=1, Tm02=2, Tm24=3, Tm_10=4, Tp=5, Ss=6, Sp=7, Ka=8,
|
||
|
Rs=9, Tp1=10, Alpha=11, Eps2=12, Eps4=13, Qp=14)
|
||
|
tfact1 = ('Hm0', 'Tm01', 'Tm02', 'Tm24', 'Tm_10', 'Tp', 'Ss', 'Sp', 'Ka',
|
||
|
'Rs', 'Tp1', 'Alpha', 'Eps2', 'Eps4', 'Qp')
|
||
|
|
||
|
if isinstance(fact, str):
|
||
|
fact = list((fact,))
|
||
|
if isinstance(fact, (list, tuple)):
|
||
|
nfact = []
|
||
|
for k in fact:
|
||
|
if isinstance(k, str):
|
||
|
nfact.append(tfact.get(k.capitalize(), 15))
|
||
|
else:
|
||
|
nfact.append(k)
|
||
|
else:
|
||
|
nfact = fact
|
||
|
|
||
|
nfact = atleast_1d(nfact)
|
||
|
|
||
|
if any((nfact > 14) | (nfact < 0)):
|
||
|
raise ValueError('Factor outside range (0,...,14)')
|
||
|
|
||
|
#vari = self.freqtype
|
||
|
|
||
|
f = self.args.ravel()
|
||
|
S1 = self.data.ravel()
|
||
|
m, unused_mtxt = self.moment(nr=4, even=False)
|
||
|
|
||
|
#% moments corresponding to freq in Hz
|
||
|
for k in range(1, 5):
|
||
|
m[k] = m[k] / (2 * pi) ** k
|
||
|
|
||
|
#pi = np.pi
|
||
|
ind = flatnonzero(f > 0)
|
||
|
m.append(simps(S1[ind] / f[ind], f[ind]) * 2. * pi) # % = m_1
|
||
|
m_10 = simps(S1[ind] ** 2 / f[ind], f[ind]) * (2 * pi) ** 2 / T # % = COV(m_1,m0|T=t0)
|
||
|
m_11 = simps(S1[ind] ** 2. / f[ind] ** 2, f[ind]) * (2 * pi) ** 3 / T #% = COV(m_1,m_1|T=t0)
|
||
|
|
||
|
#sqrt = np.sqrt
|
||
|
#% Hm0 Tm01 Tm02 Tm24 Tm_10
|
||
|
Hm0 = 4. * sqrt(m[0])
|
||
|
Tm01 = m[0] / m[1]
|
||
|
Tm02 = sqrt(m[0] / m[2])
|
||
|
Tm24 = sqrt(m[2] / m[4])
|
||
|
Tm_10 = m[5] / m[0]
|
||
|
|
||
|
Tm12 = m[1] / m[2]
|
||
|
|
||
|
ind = S1.argmax()
|
||
|
maxS = S1[ind]
|
||
|
#[maxS ind] = max(S1)
|
||
|
Tp = 2. * pi / f[ind] # % peak period /length
|
||
|
Ss = 2. * pi * Hm0 / g / Tm02 ** 2 # % Significant wave steepness
|
||
|
Sp = 2. * pi * Hm0 / g / Tp ** 2 # % Average wave steepness
|
||
|
Ka = abs(simps(S1 * exp(1J * f * Tm02), f)) / m[0] #% groupiness factor
|
||
|
|
||
|
#% Quality control parameter
|
||
|
#% critical value is approximately 0.02 for surface displacement records
|
||
|
#% If Rs>0.02 then there are something wrong with the lower frequency part
|
||
|
#% of S.
|
||
|
Rs = np.sum(interp(r_[0.0146, 0.0195, 0.0244] * 2 * pi, f, S1)) / 3. / maxS
|
||
|
Tp2 = 2 * pi * simps(S1 ** 4, f) / simps(f * S1 ** 4, f)
|
||
|
|
||
|
|
||
|
alpha1 = Tm24 / Tm02 # % m(3)/sqrt(m(1)*m(5))
|
||
|
eps2 = sqrt(Tm01 / Tm12 - 1.)# % sqrt(m(1)*m(3)/m(2)^2-1)
|
||
|
eps4 = sqrt(1. - alpha1 ** 2) # % sqrt(1-m(3)^2/m(1)/m(5))
|
||
|
Qp = 2. / m[0] ** 2 * simps(f * S1 ** 2, f)
|
||
|
|
||
|
ch = r_[Hm0, Tm01, Tm02, Tm24, Tm_10, Tp, Ss, Sp, Ka, Rs, Tp2, alpha1, eps2, eps4, Qp]
|
||
|
|
||
|
#% Select the appropriate values
|
||
|
ch = ch[nfact]
|
||
|
chtxt = [tfact1[i] for i in nfact]
|
||
|
|
||
|
#if nargout>1,
|
||
|
#% covariance between the moments:
|
||
|
#%COV(mi,mj |T=t0) = int f^(i+j)*S(f)^2 df/T
|
||
|
mij, unused_mijtxt = self.moment(nr=8, even=False, j=1)
|
||
|
for ix, tmp in enumerate(mij):
|
||
|
mij[ix] = tmp / T / ((2. * pi) ** (ix - 1.0))
|
||
|
|
||
|
|
||
|
#% and the corresponding variances for
|
||
|
#%{'hm0', 'tm01', 'tm02', 'tm24', 'tm_10','tp','ss', 'sp', 'ka', 'rs', 'tp1','alpha','eps2','eps4','qp'}
|
||
|
R = r_[4 * mij[0] / m[0],
|
||
|
mij[0] / m[1] ** 2. - 2. * m[0] * mij[1] / m[1] ** 3. + m[0] ** 2. * mij[2] / m[1] ** 4.,
|
||
|
0.25 * (mij[0] / (m[0] * m[2]) - 2. * mij[2] / m[2] ** 2 + m[0] * mij[4] / m[2] ** 3),
|
||
|
0.25 * (mij[4] / (m[2] * m[4]) - 2 * mij[6] / m[4] ** 2 + m[2] * mij[8] / m[4] ** 3) ,
|
||
|
m_11 / m[0] ** 2 + (m[5] / m[0] ** 2) ** 2 * mij[0] - 2 * m[5] / m[0] ** 3 * m_10,
|
||
|
nan,
|
||
|
(8 * pi / g) ** 2 * (m[2] ** 2 / (4 * m[0] ** 3) * mij[0] + mij[4] / m[0] - m[2] / m[0] ** 2 * mij[2]),
|
||
|
nan * ones(4),
|
||
|
m[2] ** 2 * mij[0] / (4 * m[0] ** 3 * m[4]) + mij[4] / (m[0] * m[4]) + mij[8] * m[2] ** 2 / (4 * m[0] * m[4] ** 3) -
|
||
|
m[2] * mij[2] / (m[0] ** 2 * m[4]) + m[2] ** 2 * mij[4] / (2 * m[0] ** 2 * m[4] ** 2) - m[2] * mij[6] / m[0] / m[4] ** 2,
|
||
|
(m[2] ** 2 * mij[0] / 4 + (m[0] * m[2] / m[1]) ** 2 * mij[2] + m[0] ** 2 * mij[4] / 4 - m[2] ** 2 * m[0] * mij[1] / m[1] +
|
||
|
m[0] * m[2] * mij[2] / 2 - m[0] ** 2 * m[2] / m[1] * mij[3]) / eps2 ** 2 / m[1] ** 4,
|
||
|
(m[2] ** 2 * mij[0] / (4 * m[0] ** 2) + mij[4] + m[2] ** 2 * mij[8] / (4 * m[4] ** 2) - m[2] * mij[2] / m[0] +
|
||
|
m[2] ** 2 * mij[4] / (2 * m[0] * m[4]) - m[2] * mij[6] / m[4]) * m[2] ** 2 / (m[0] * m[4] * eps4) ** 2,
|
||
|
nan]
|
||
|
|
||
|
#% and covariances by a taylor expansion technique:
|
||
|
#% Cov(Hm0,Tm01) Cov(Hm0,Tm02) Cov(Tm01,Tm02)
|
||
|
S0 = r_[ 2. / (sqrt(m[0]) * m[1]) * (mij[0] - m[0] * mij[1] / m[1]),
|
||
|
1. / sqrt(m[2]) * (mij[0] / m[0] - mij[2] / m[2]),
|
||
|
1. / (2 * m[1]) * sqrt(m[0] / m[2]) * (mij[0] / m[0] - mij[2] / m[2] - mij[1] / m[1] + m[0] * mij[3] / (m[1] * m[2]))]
|
||
|
|
||
|
R1 = ones((15, 15))
|
||
|
R1[:, :] = nan
|
||
|
for ix, Ri in enumerate(R):
|
||
|
R1[ix, ix] = Ri
|
||
|
|
||
|
|
||
|
|
||
|
R1[0, 2:4] = S0[:2]
|
||
|
R1[1, 2] = S0[2]
|
||
|
for ix in [0, 1]: #%make lower triangular equal to upper triangular part
|
||
|
R1[ix + 1:, ix] = R1[ix, ix + 1:]
|
||
|
|
||
|
|
||
|
R = R[nfact]
|
||
|
R1 = R1[nfact, :][:, nfact]
|
||
|
|
||
|
|
||
|
#% Needs further checking:
|
||
|
#% Var(Tm24)= 0.25*(mij[4]/(m[2]*m[4])-2*mij[6]/m[4]**2+m[2]*mij[8]/m[4]**3) ...
|
||
|
return ch, R1, chtxt
|
||
|
|
||
|
def setlabels(self):
|
||
|
''' Set automatic title, x-,y- and z- labels on SPECDATA object
|
||
|
|
||
|
based on type, angletype, freqtype
|
||
|
'''
|
||
|
|
||
|
N = len(self.type)
|
||
|
if N == 0:
|
||
|
raise ValueError('Object does not appear to be initialized, it is empty!')
|
||
|
|
||
|
labels = ['', '', '']
|
||
|
if self.type.endswith('dir'):
|
||
|
title = 'Directional Spectrum'
|
||
|
if self.freqtype.startswith('w'):
|
||
|
labels[0] = 'Frequency [rad/s]'
|
||
|
labels[2] = 'S(w,\theta) [m^2 s / rad^2]'
|
||
|
else:
|
||
|
labels[0] = 'Frequency [Hz]'
|
||
|
labels[2] = 'S(f,\theta) [m^2 s / rad]'
|
||
|
|
||
|
if self.angletype.startswith('r'):
|
||
|
labels[1] = 'Wave directions [rad]'
|
||
|
elif self.angletype.startswith('d'):
|
||
|
labels[1] = 'Wave directions [deg]'
|
||
|
elif self.type.endswith('freq'):
|
||
|
title = 'Spectral density'
|
||
|
if self.freqtype.startswith('w'):
|
||
|
labels[0] = 'Frequency [rad/s]'
|
||
|
labels[1] = 'S(w) [m^2 s/ rad]'
|
||
|
else:
|
||
|
labels[0] = 'Frequency [Hz]'
|
||
|
labels[1] = 'S(f) [m^2 s]'
|
||
|
else:
|
||
|
title = 'Wave Number Spectrum'
|
||
|
labels[0] = 'Wave number [rad/m]'
|
||
|
if self.type.endswith('k1d'):
|
||
|
labels[1] = 'S(k) [m^3/ rad]'
|
||
|
elif self.type.endswith('k2d'):
|
||
|
labels[1] = labels[0]
|
||
|
labels[2] = 'S(k1,k2) [m^4/ rad^2]'
|
||
|
else:
|
||
|
raise ValueError('Object does not appear to be initialized, it is empty!')
|
||
|
if self.norm != 0:
|
||
|
title = 'Normalized ' + title
|
||
|
labels[0] = 'Normalized ' + labels[0].split('[')[0]
|
||
|
if not self.type.endswith('dir'):
|
||
|
labels[1] = labels[1].split('[')[0]
|
||
|
labels[2] = labels[2].split('[')[0]
|
||
|
|
||
|
self.labels.title = title
|
||
|
self.labels.xlab = labels[0]
|
||
|
self.labels.ylab = labels[1]
|
||
|
self.labels.zlab = labels[2]
|
||
|
|
||
|
class SpecData2D(WafoData):
|
||
|
""" Container class for 2D spectrum data objects in WAFO
|
||
|
|
||
|
Member variables
|
||
|
----------------
|
||
|
data : array_like
|
||
|
args : vector for 1D, list of vectors for 2D, 3D, ...
|
||
|
|
||
|
type : string
|
||
|
spectrum type (default 'freq')
|
||
|
freqtype : letter
|
||
|
frequency type (default 'w')
|
||
|
angletype : string
|
||
|
angle type of directional spectrum (default 'radians')
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import wafo.spectrum.models as sm
|
||
|
>>> Sj = sm.Jonswap(Hm0=3)
|
||
|
>>> w = np.linspace(0,4,256)
|
||
|
>>> S = SpecData1D(Sj(w),w) #Make spectrum object from numerical values
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
WafoData
|
||
|
CovData
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwds):
|
||
|
super(SpecData2D, self).__init__(*args, **kwds)
|
||
|
|
||
|
self.name = 'WAFO Spectrum Object'
|
||
|
self.type = 'freq'
|
||
|
self.freqtype = 'w'
|
||
|
self.angletype = ''
|
||
|
self.h = inf
|
||
|
self.tr = None
|
||
|
self.phi = 0.
|
||
|
self.v = 0.
|
||
|
self.norm = 0
|
||
|
somekeys = ['angletype', 'phi', 'name', 'h', 'tr', 'freqtype', 'v', 'type', 'norm']
|
||
|
|
||
|
self.__dict__.update(sub_dict_select(kwds, somekeys))
|
||
|
|
||
|
if self.type.endswith('dir') and self.angletype == '':
|
||
|
self.angletype = 'radians'
|
||
|
|
||
|
self.setlabels()
|
||
|
|
||
|
def toacf(self):
|
||
|
pass
|
||
|
def sim(self):
|
||
|
pass
|
||
|
def sim_nl(self):
|
||
|
pass
|
||
|
def rotate(self):
|
||
|
pass
|
||
|
def moment(self, nr=2, vari='xt', even=True):
|
||
|
'''
|
||
|
Calculates spectral moments from spectrum
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nr : int
|
||
|
order of moments (maximum 4)
|
||
|
vari : string
|
||
|
variables in model, optional when two-dim.spectrum,
|
||
|
string with 'x' and/or 'y' and/or 't'
|
||
|
even : bool
|
||
|
False for all moments,
|
||
|
True for only even orders
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
m : list of moments
|
||
|
mtext : list of strings describing the elements of m, see below
|
||
|
|
||
|
Details
|
||
|
-------
|
||
|
Calculates spectral moments of up to order four by use of
|
||
|
Simpson-integration.
|
||
|
|
||
|
//
|
||
|
m_jkl=|| k1^j*k2^k*w^l S(w,th) dw dth
|
||
|
//
|
||
|
|
||
|
where k1=w^2/gravity*cos(th-phi), k2=w^2/gravity*sin(th-phi)
|
||
|
and phi is the angle of the rotation in S.phi. If the spectrum
|
||
|
has field .g, gravity is replaced by S.g.
|
||
|
|
||
|
The strings in output mtext have the same position in the cell array
|
||
|
as the corresponding numerical value has in output m
|
||
|
Notation in mtext: 'm0' is the variance,
|
||
|
'mx' is the first-order moment in x,
|
||
|
'mxx' is the second-order moment in x,
|
||
|
'mxt' is the second-order cross moment between x and t,
|
||
|
'myyyy' is the fourth-order moment in y
|
||
|
etc.
|
||
|
For the calculation of moments see Baxevani et al.
|
||
|
|
||
|
Example:
|
||
|
S=demospec('dir')
|
||
|
[m,mtext]=spec2mom(S,2,'xyt')
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Baxevani A. et al. (2001)
|
||
|
Velocities for Random Surfaces
|
||
|
'''
|
||
|
|
||
|
##% Tested on: Matlab 6.0
|
||
|
##% Tested on: Matlab 5.3
|
||
|
##% History:
|
||
|
##% Revised by I.R. 04.04.2001: Introducing the rotation angle phi.
|
||
|
##% Revised by A.B. 23.05.2001: Correcting 'mxxyy' and introducing
|
||
|
##% 'mxxyt','mxyyt' and 'mxytt'.
|
||
|
##% Revised by A.B. 21.10.2001: Correcting 'mxxyt'.
|
||
|
##% Revised by A.B. 21.10.2001: Adding odd-order moments.
|
||
|
##% By es 27.08.1999
|
||
|
|
||
|
|
||
|
pi = pi
|
||
|
two_dim_spectra = ['dir', 'encdir', 'k2d']
|
||
|
if self.type not in two_dim_spectra:
|
||
|
raise ValueError('Unknown 2D spectrum type!')
|
||
|
|
||
|
## if (vari==None and nr<=1:
|
||
|
## vari='x'
|
||
|
## elif vari==None:
|
||
|
## vari='xt'
|
||
|
## else #% secure the mutual order ('xyt')
|
||
|
## vari=''.join(sorted(vari.lower()))
|
||
|
## Nv=len(vari)
|
||
|
##
|
||
|
## if vari[0]=='t' and Nv>1:
|
||
|
## vari = vari[1::]+ vari[0]
|
||
|
##
|
||
|
## Nv = len(vari)
|
||
|
##
|
||
|
## if not self.type.endswith('dir'):
|
||
|
## S1 = self.tospecdata(self.type[:-2]+'dir')
|
||
|
## else:
|
||
|
## S1 = self
|
||
|
## w = ravel(S1.args[0])
|
||
|
## theta = S1.args[1]-S1.phi
|
||
|
## S = S1.data
|
||
|
## Sw = simps(S,x=theta)
|
||
|
## m = [simps(Sw,x=w)]
|
||
|
## mtext=['m0']
|
||
|
##
|
||
|
## if nr>0:
|
||
|
##
|
||
|
## nw=w.size
|
||
|
## if strcmpi(vari(1),'x')
|
||
|
## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'
|
||
|
## % integral S*cos(th) dth
|
||
|
## end
|
||
|
## if strcmpi(vari(1),'y')
|
||
|
## Ss=simpson(th,S1.S.*(sin(th)*ones(1,nw))).'
|
||
|
## % integral S*sin(th) dth
|
||
|
## if strcmpi(vari(1),'x')
|
||
|
## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'
|
||
|
## end
|
||
|
## end
|
||
|
## if ~isfield(S1,'g')
|
||
|
## S1.g=gravity
|
||
|
## end
|
||
|
## kx=w.^2/S1.g(1) % maybe different normalization in x and y => diff. g
|
||
|
## ky=w.^2/S1.g(end)
|
||
|
##
|
||
|
## if Nv>=1
|
||
|
## switch vari
|
||
|
## case 'x'
|
||
|
## vec = kx.*Sc
|
||
|
## mtext(end+1)={'mx'}
|
||
|
## case 'y'
|
||
|
## vec = ky.*Ss
|
||
|
## mtext(end+1)={'my'}
|
||
|
## case 't'
|
||
|
## vec = w.*Sw
|
||
|
## mtext(end+1)={'mt'}
|
||
|
## end
|
||
|
## else
|
||
|
## vec = [kx.*Sc ky.*Ss w*Sw]
|
||
|
## mtext(end+(1:3))={'mx', 'my', 'mt'}
|
||
|
## end
|
||
|
## if nr>1
|
||
|
## if strcmpi(vari(1),'x')
|
||
|
## Sc=simpson(th,S1.S.*(cos(th)*ones(1,nw))).'
|
||
|
## % integral S*cos(th) dth
|
||
|
## Sc2=simpson(th,S1.S.*(cos(th).^2*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^2 dth
|
||
|
## end
|
||
|
## if strcmpi(vari(1),'y')||strcmpi(vari(2),'y')
|
||
|
## Ss=simpson(th,S1.S.*(sin(th)*ones(1,nw))).'
|
||
|
## % integral S*sin(th) dth
|
||
|
## Ss2=simpson(th,S1.S.*(sin(th).^2*ones(1,nw))).'
|
||
|
## % integral S*sin(th)^2 dth
|
||
|
## if strcmpi(vari(1),'x')
|
||
|
## Scs=simpson(th,S1.S.*((cos(th).*sin(th))*ones(1,nw))).'
|
||
|
## % integral S*cos(th)*sin(th) dth
|
||
|
## end
|
||
|
## end
|
||
|
## if ~isfield(S1,'g')
|
||
|
## S1.g=gravity
|
||
|
## end
|
||
|
##
|
||
|
## if Nv==2
|
||
|
## switch vari
|
||
|
## case 'xy'
|
||
|
## vec=[kx.*Sc ky.*Ss kx.^2.*Sc2 ky.^2.*Ss2 kx.*ky.*Scs]
|
||
|
## mtext(end+(1:5))={'mx','my','mxx', 'myy', 'mxy'}
|
||
|
## case 'xt'
|
||
|
## vec=[kx.*Sc w.*Sw kx.^2.*Sc2 w.^2.*Sw kx.*w.*Sc]
|
||
|
## mtext(end+(1:5))={'mx','mt','mxx', 'mtt', 'mxt'}
|
||
|
## case 'yt'
|
||
|
## vec=[ky.*Ss w.*Sw ky.^2.*Ss2 w.^2.*Sw ky.*w.*Ss]
|
||
|
## mtext(end+(1:5))={'my','mt','myy', 'mtt', 'myt'}
|
||
|
## end
|
||
|
## else
|
||
|
## vec=[kx.*Sc ky.*Ss w.*Sw kx.^2.*Sc2 ky.^2.*Ss2 w.^2.*Sw kx.*ky.*Scs kx.*w.*Sc ky.*w.*Ss]
|
||
|
## mtext(end+(1:9))={'mx','my','mt','mxx', 'myy', 'mtt', 'mxy', 'mxt', 'myt'}
|
||
|
## end
|
||
|
## if nr>3
|
||
|
## if strcmpi(vari(1),'x')
|
||
|
## Sc3=simpson(th,S1.S.*(cos(th).^3*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^3 dth
|
||
|
## Sc4=simpson(th,S1.S.*(cos(th).^4*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^4 dth
|
||
|
## end
|
||
|
## if strcmpi(vari(1),'y')||strcmpi(vari(2),'y')
|
||
|
## Ss3=simpson(th,S1.S.*(sin(th).^3*ones(1,nw))).'
|
||
|
## % integral S*sin(th)^3 dth
|
||
|
## Ss4=simpson(th,S1.S.*(sin(th).^4*ones(1,nw))).'
|
||
|
## % integral S*sin(th)^4 dth
|
||
|
## if strcmpi(vari(1),'x') %both x and y
|
||
|
## Sc2s=simpson(th,S1.S.*((cos(th).^2.*sin(th))*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^2*sin(th) dth
|
||
|
## Sc3s=simpson(th,S1.S.*((cos(th).^3.*sin(th))*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^3*sin(th) dth
|
||
|
## Scs2=simpson(th,S1.S.*((cos(th).*sin(th).^2)*ones(1,nw))).'
|
||
|
## % integral S*cos(th)*sin(th)^2 dth
|
||
|
## Scs3=simpson(th,S1.S.*((cos(th).*sin(th).^3)*ones(1,nw))).'
|
||
|
## % integral S*cos(th)*sin(th)^3 dth
|
||
|
## Sc2s2=simpson(th,S1.S.*((cos(th).^2.*sin(th).^2)*ones(1,nw))).'
|
||
|
## % integral S*cos(th)^2*sin(th)^2 dth
|
||
|
## end
|
||
|
## end
|
||
|
## if Nv==2
|
||
|
## switch vari
|
||
|
## case 'xy'
|
||
|
## vec=[vec kx.^4.*Sc4 ky.^4.*Ss4 kx.^3.*ky.*Sc3s ...
|
||
|
## kx.^2.*ky.^2.*Sc2s2 kx.*ky.^3.*Scs3]
|
||
|
## mtext(end+(1:5))={'mxxxx','myyyy','mxxxy','mxxyy','mxyyy'}
|
||
|
## case 'xt'
|
||
|
## vec=[vec kx.^4.*Sc4 w.^4.*Sw kx.^3.*w.*Sc3 ...
|
||
|
## kx.^2.*w.^2.*Sc2 kx.*w.^3.*Sc]
|
||
|
## mtext(end+(1:5))={'mxxxx','mtttt','mxxxt','mxxtt','mxttt'}
|
||
|
## case 'yt'
|
||
|
## vec=[vec ky.^4.*Ss4 w.^4.*Sw ky.^3.*w.*Ss3 ...
|
||
|
## ky.^2.*w.^2.*Ss2 ky.*w.^3.*Ss]
|
||
|
## mtext(end+(1:5))={'myyyy','mtttt','myyyt','myytt','myttt'}
|
||
|
## end
|
||
|
## else
|
||
|
## vec=[vec kx.^4.*Sc4 ky.^4.*Ss4 w.^4.*Sw kx.^3.*ky.*Sc3s ...
|
||
|
## kx.^2.*ky.^2.*Sc2s2 kx.*ky.^3.*Scs3 kx.^3.*w.*Sc3 ...
|
||
|
## kx.^2.*w.^2.*Sc2 kx.*w.^3.*Sc ky.^3.*w.*Ss3 ...
|
||
|
## ky.^2.*w.^2.*Ss2 ky.*w.^3.*Ss kx.^2.*ky.*w.*Sc2s ...
|
||
|
## kx.*ky.^2.*w.*Scs2 kx.*ky.*w.^2.*Scs]
|
||
|
## mtext(end+(1:15))={'mxxxx','myyyy','mtttt','mxxxy','mxxyy',...
|
||
|
## 'mxyyy','mxxxt','mxxtt','mxttt','myyyt','myytt','myttt','mxxyt','mxyyt','mxytt'}
|
||
|
##
|
||
|
## end % if Nv==2 ... else ...
|
||
|
## end % if nr>3
|
||
|
## end % if nr>1
|
||
|
## m=[m simpson(w,vec)]
|
||
|
## end % if nr>0
|
||
|
## % end %%if Nv==1... else... to be removed
|
||
|
## end % ... else two-dim spectrum
|
||
|
|
||
|
|
||
|
|
||
|
def interp(self):
|
||
|
pass
|
||
|
def normalize(self):
|
||
|
pass
|
||
|
def bandwidth(self):
|
||
|
pass
|
||
|
def setlabels(self):
|
||
|
''' Set automatic title, x-,y- and z- labels on SPECDATA object
|
||
|
|
||
|
based on type, angletype, freqtype
|
||
|
'''
|
||
|
|
||
|
N = len(self.type)
|
||
|
if N == 0:
|
||
|
raise ValueError('Object does not appear to be initialized, it is empty!')
|
||
|
|
||
|
labels = ['', '', '']
|
||
|
if self.type.endswith('dir'):
|
||
|
title = 'Directional Spectrum'
|
||
|
if self.freqtype.startswith('w'):
|
||
|
labels[0] = 'Frequency [rad/s]'
|
||
|
labels[2] = 'S(w,\theta) [m**2 s / rad**2]'
|
||
|
else:
|
||
|
labels[0] = 'Frequency [Hz]'
|
||
|
labels[2] = 'S(f,\theta) [m**2 s / rad]'
|
||
|
|
||
|
if self.angletype.startswith('r'):
|
||
|
labels[1] = 'Wave directions [rad]'
|
||
|
elif self.angletype.startswith('d'):
|
||
|
labels[1] = 'Wave directions [deg]'
|
||
|
elif self.type.endswith('freq'):
|
||
|
title = 'Spectral density'
|
||
|
if self.freqtype.startswith('w'):
|
||
|
labels[0] = 'Frequency [rad/s]'
|
||
|
labels[1] = 'S(w) [m**2 s/ rad]'
|
||
|
else:
|
||
|
labels[0] = 'Frequency [Hz]'
|
||
|
labels[1] = 'S(f) [m**2 s]'
|
||
|
else:
|
||
|
title = 'Wave Number Spectrum'
|
||
|
labels[0] = 'Wave number [rad/m]'
|
||
|
if self.type.endswith('k1d'):
|
||
|
labels[1] = 'S(k) [m**3/ rad]'
|
||
|
elif self.type.endswith('k2d'):
|
||
|
labels[1] = labels[0]
|
||
|
labels[2] = 'S(k1,k2) [m**4/ rad**2]'
|
||
|
else:
|
||
|
raise ValueError('Object does not appear to be initialized, it is empty!')
|
||
|
if self.norm != 0:
|
||
|
title = 'Normalized ' + title
|
||
|
labels[0] = 'Normalized ' + labels[0].split('[')[0]
|
||
|
if not self.type.endswith('dir'):
|
||
|
labels[1] = labels[1].split('[')[0]
|
||
|
labels[2] = labels[2].split('[')[0]
|
||
|
|
||
|
self.labels.title = title
|
||
|
self.labels.xlab = labels[0]
|
||
|
self.labels.ylab = labels[1]
|
||
|
self.labels.zlab = labels[2]
|
||
|
|
||
|
def test_specdata():
|
||
|
import wafo.spectrum.models as sm
|
||
|
Sj = sm.Jonswap()
|
||
|
S = Sj.tospecdata()
|
||
|
me, va, sk, ku = S.stats_nl(moments='mvsk')
|
||
|
|
||
|
def main():
|
||
|
import matplotlib
|
||
|
matplotlib.interactive(True)
|
||
|
from wafo.spectrum import models as sm
|
||
|
|
||
|
w = linspace(0, 3, 100)
|
||
|
Sj = sm.Jonswap()
|
||
|
S = Sj.tospecdata()
|
||
|
|
||
|
f = S.to_t_pdf(pdef='Tc', paramt=(0, 10, 51), speed=7)
|
||
|
f.err
|
||
|
f.plot()
|
||
|
f.show()
|
||
|
#pdfplot(f)
|
||
|
#hold on,
|
||
|
#plot(f.x{:}, f.f+f.err,'r',f.x{:}, f.f-f.err) estimated error bounds
|
||
|
#hold off
|
||
|
#S = SpecData1D(Sj(w),w)
|
||
|
R = S.tocovdata(nr=1)
|
||
|
S1 = S.copy()
|
||
|
Si = R.tospecdata()
|
||
|
ns = 5000
|
||
|
dt = .2
|
||
|
x1 = S.sim_nl(ns=ns, dt=dt)
|
||
|
x2 = TimeSeries(x1[:, 1], x1[:, 0])
|
||
|
R = x2.tocovdata(lag=100)
|
||
|
R.plot()
|
||
|
|
||
|
S.plot('ro')
|
||
|
t = S.moment()
|
||
|
t1 = S.bandwidth([0, 1, 2, 3])
|
||
|
S1 = S.copy()
|
||
|
S1.resample(dt=0.3, method='cubic')
|
||
|
S1.plot('k+')
|
||
|
x = S1.sim(ns=100)
|
||
|
import pylab
|
||
|
pylab.clf()
|
||
|
pylab.plot(x[:, 0], x[:, 1])
|
||
|
pylab.show()
|
||
|
|
||
|
pylab.close('all')
|
||
|
print('done')
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
if True: #False : #
|
||
|
import doctest
|
||
|
doctest.testmod()
|
||
|
else:
|
||
|
main()
|