|
|
|
from __future__ import absolute_import, division
|
|
|
|
import numpy as np
|
|
|
|
# from math import pow
|
|
|
|
# from numpy import zeros,dot
|
|
|
|
from numpy import (pi, convolve, linalg, concatenate, sqrt)
|
|
|
|
from scipy.sparse import spdiags
|
|
|
|
from scipy.sparse.linalg import spsolve, expm
|
|
|
|
from scipy.signal import medfilt
|
|
|
|
from .dctpack import dctn, idctn
|
|
|
|
from .plotbackend import plotbackend as plt
|
|
|
|
import scipy.optimize as optimize
|
|
|
|
from scipy.signal import _savitzky_golay
|
|
|
|
from scipy.ndimage import convolve1d
|
|
|
|
from scipy.ndimage.morphology import distance_transform_edt
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['SavitzkyGolay', 'Kalman', 'HodrickPrescott', 'smoothn']
|
|
|
|
|
|
|
|
|
|
|
|
class SavitzkyGolay(object):
|
|
|
|
r"""Smooth and optionally differentiate data with a Savitzky-Golay filter.
|
|
|
|
|
|
|
|
The Savitzky-Golay filter removes high frequency noise from data.
|
|
|
|
It has the advantage of preserving the original shape and
|
|
|
|
features of the signal better than other types of filtering
|
|
|
|
approaches, such as moving averages techniques.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : int
|
|
|
|
the size of the smoothing window is 2*n+1.
|
|
|
|
degree : int
|
|
|
|
the degree of the polynomial used in the filtering.
|
|
|
|
Must be less than `window_size` - 1, i.e, less than 2*n.
|
|
|
|
diff_order : int
|
|
|
|
order of the derivative to compute (default = 0 means only smoothing)
|
|
|
|
0 means that filter results in smoothing of function
|
|
|
|
1 means that filter results in smoothing the first derivative of the
|
|
|
|
function and so on ...
|
|
|
|
delta : float, optional
|
|
|
|
The spacing of the samples to which the filter will be applied.
|
|
|
|
This is only used if deriv > 0. Default is 1.0.
|
|
|
|
axis : int, optional
|
|
|
|
The axis of the array `x` along which the filter is to be applied.
|
|
|
|
Default is -1.
|
|
|
|
mode : str, optional
|
|
|
|
Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
|
|
|
|
determines the type of extension to use for the padded signal to
|
|
|
|
which the filter is applied. When `mode` is 'constant', the padding
|
|
|
|
value is given by `cval`. See the Notes for more details on 'mirror',
|
|
|
|
'constant', 'wrap', and 'nearest'.
|
|
|
|
When the 'interp' mode is selected (the default), no extension
|
|
|
|
is used. Instead, a degree `polyorder` polynomial is fit to the
|
|
|
|
last `window_length` values of the edges, and this polynomial is
|
|
|
|
used to evaluate the last `window_length // 2` output values.
|
|
|
|
cval : scalar, optional
|
|
|
|
Value to fill past the edges of the input if `mode` is 'constant'.
|
|
|
|
Default is 0.0.
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The Savitzky-Golay is a type of low-pass filter, particularly suited for
|
|
|
|
smoothing noisy data. The main idea behind this approach is to make for
|
|
|
|
each point a least-square fit with a polynomial of high order over a
|
|
|
|
odd-sized window centered at the point.
|
|
|
|
|
|
|
|
Details on the `mode` options:
|
|
|
|
|
|
|
|
'mirror':
|
|
|
|
Repeats the values at the edges in reverse order. The value
|
|
|
|
closest to the edge is not included.
|
|
|
|
'nearest':
|
|
|
|
The extension contains the nearest input value.
|
|
|
|
'constant':
|
|
|
|
The extension contains the value given by the `cval` argument.
|
|
|
|
'wrap':
|
|
|
|
The extension contains the values from the other end of the array.
|
|
|
|
|
|
|
|
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
|
|
|
|
`window_length` is 7, the following shows the extended data for
|
|
|
|
the various `mode` options (assuming `cval` is 0)::
|
|
|
|
|
|
|
|
mode | Ext | Input | Ext
|
|
|
|
-----------+---------+------------------------+---------
|
|
|
|
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
|
|
|
|
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
|
|
|
|
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
|
|
|
|
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> t = np.linspace(-4, 4, 500)
|
|
|
|
>>> noise = np.random.normal(0, 0.05, t.shape)
|
|
|
|
>>> noise = np.sqrt(0.05)*np.sin(100*t)
|
|
|
|
>>> y = np.exp( -t**2 ) + noise
|
|
|
|
>>> ysg = SavitzkyGolay(n=20, degree=2).smooth(y)
|
|
|
|
>>> np.allclose(ysg[:3], [ 0.01345312, 0.01164172, 0.00992839])
|
|
|
|
True
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
h = plt.plot(t, y, label='Noisy signal')
|
|
|
|
h1 = plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
|
|
|
|
h2 = plt.plot(t, ysg, 'r', label='Filtered signal')
|
|
|
|
h3 = plt.legend()
|
|
|
|
h4 = plt.title('Savitzky-Golay')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
|
|
|
|
Data by Simplified Least Squares Procedures. Analytical
|
|
|
|
Chemistry, 1964, 36 (8), pp 1627-1639.
|
|
|
|
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
|
|
|
|
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
|
|
|
|
Cambridge University Press ISBN-13: 9780521880688
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, n, degree=1, diff_order=0, delta=1.0, axis=-1,
|
|
|
|
mode='interp', cval=0.0):
|
|
|
|
self.n = n
|
|
|
|
self.degree = degree
|
|
|
|
self.diff_order = diff_order
|
|
|
|
self.mode = mode
|
|
|
|
self.cval = cval
|
|
|
|
self.axis = axis
|
|
|
|
self.delta = delta
|
|
|
|
window_length = 2 * n + 1
|
|
|
|
self._coeff = _savitzky_golay.savgol_coeffs(window_length,
|
|
|
|
degree, deriv=diff_order,
|
|
|
|
delta=delta)
|
|
|
|
|
|
|
|
def smooth_last(self, signal, k=0):
|
|
|
|
coeff = self._coeff
|
|
|
|
n = np.size((coeff - 1) // 2
|
|
|
|
y = np.squeeze(signal)
|
|
|
|
if n == 0:
|
|
|
|
return y
|
|
|
|
if y.ndim > 1:
|
|
|
|
coeff.shape = (-1, 1)
|
|
|
|
first_vals = y[0] - np.abs(y[n:0:-1] - y[0])
|
|
|
|
last_vals = y[-1] + np.abs(y[-2:-n - 2:-1] - y[-1])
|
|
|
|
y = concatenate((first_vals, y, last_vals))
|
|
|
|
return (y[-2 * n - 1 - k:-k] * coeff).sum(axis=0)
|
|
|
|
|
|
|
|
def __call__(self, signal):
|
|
|
|
return self.smooth(signal)
|
|
|
|
|
|
|
|
def smooth(self, signal):
|
|
|
|
dtype = np.result_type(signal, np.float)
|
|
|
|
x = np.asarray(signal, dtype=dtype)
|
|
|
|
|
|
|
|
coeffs = self._coeff
|
|
|
|
mode, axis = self.mode, self.axis
|
|
|
|
if mode == "interp":
|
|
|
|
window_length, polyorder = self.n * 2 + 1, self.degree
|
|
|
|
deriv, delta = self.diff_order, self.delta
|
|
|
|
y = convolve1d(x, coeffs, axis=axis, mode="constant")
|
|
|
|
_savitzky_golay._fit_edges_polyfit(x, window_length, polyorder,
|
|
|
|
deriv, delta, axis, y)
|
|
|
|
else:
|
|
|
|
y = convolve1d(x, coeffs, axis=axis, mode=mode, cval=self.cval)
|
|
|
|
return y
|
|
|
|
|
|
|
|
def _smooth(self, signal, pad=True):
|
|
|
|
"""
|
|
|
|
Returns smoothed signal (or it's n-th derivative).
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
y : array_like, shape (N,)
|
|
|
|
the values of the time history of the signal.
|
|
|
|
pad : bool
|
|
|
|
pad first and last values to lessen the end effects.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
ys : ndarray, shape (N)
|
|
|
|
the smoothed signal (or it's n-th derivative).
|
|
|
|
"""
|
|
|
|
coeff = self._coeff
|
|
|
|
n = np.size(coeff - 1) // 2
|
|
|
|
y = np.squeeze(signal)
|
|
|
|
if n == 0:
|
|
|
|
return y
|
|
|
|
if pad:
|
|
|
|
first_vals = y[0] - np.abs(y[n:0:-1] - y[0])
|
|
|
|
last_vals = y[-1] + np.abs(y[-2:-n - 2:-1] - y[-1])
|
|
|
|
y = concatenate((first_vals, y, last_vals))
|
|
|
|
n *= 2
|
|
|
|
d = y.ndim
|
|
|
|
if d > 1:
|
|
|
|
y1 = y.reshape(y.shape[0], -1)
|
|
|
|
res = []
|
|
|
|
for i in range(y1.shape[1]):
|
|
|
|
res.append(convolve(y1[:, i], coeff)[n:-n])
|
|
|
|
res = np.asarray(res).T
|
|
|
|
else:
|
|
|
|
res = convolve(y, coeff)[n:-n]
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def evar(y):
|
|
|
|
"""Noise variance estimation. Assuming that the deterministic function Y
|
|
|
|
has additive Gaussian noise, EVAR(Y) returns an estimated variance of this
|
|
|
|
noise.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
----
|
|
|
|
A thin-plate smoothing spline model is used to smooth Y. It is assumed
|
|
|
|
that the model whose generalized cross-validation score is minimum can
|
|
|
|
provide the variance of the additive noise. A few tests showed that
|
|
|
|
EVAR works very well with "not too irregular" functions.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
--------
|
|
|
|
1D signal
|
|
|
|
>>> n = 1e6
|
|
|
|
>>> x = np.linspace(0,100,n);
|
|
|
|
>>> y = np.cos(x/10)+(x/50)
|
|
|
|
>>> var0 = 0.02 # noise variance
|
|
|
|
>>> yn = y + sqrt(var0)*np.random.randn(*y.shape)
|
|
|
|
>>> s = evar(yn) # estimated variance
|
|
|
|
>>> np.abs(s-var0)/var0 < 3.5/np.sqrt(n)
|
|
|
|
True
|
|
|
|
|
|
|
|
2D function
|
|
|
|
>>> xp = np.linspace(0,1,50)
|
|
|
|
>>> x, y = np.meshgrid(xp,xp)
|
|
|
|
>>> f = np.exp(x+y) + np.sin((x-2*y)*3)
|
|
|
|
>>> var0 = 0.04 # noise variance
|
|
|
|
>>> fn = f + sqrt(var0)*np.random.randn(*f.shape)
|
|
|
|
>>> s = evar(fn) # estimated variance
|
|
|
|
>>> np.abs(s-var0)/var0 < 3.5/np.sqrt(50)
|
|
|
|
True
|
|
|
|
|
|
|
|
3D function
|
|
|
|
>>> yp = np.linspace(-2,2,50)
|
|
|
|
>>> [x,y,z] = np.meshgrid(yp,yp,yp, sparse=True)
|
|
|
|
>>> f = x*np.exp(-x**2-y**2-z**2)
|
|
|
|
>>> var0 = 0.5 # noise variance
|
|
|
|
>>> fn = f + np.sqrt(var0)*np.random.randn(*f.shape)
|
|
|
|
>>> s = evar(fn) # estimated variance
|
|
|
|
>>> np.abs(s-var0)/var0 < 3.5/np.sqrt(50)
|
|
|
|
True
|
|
|
|
|
|
|
|
Other example
|
|
|
|
-------------
|
|
|
|
http://www.biomecardio.com/matlab/evar.html
|
|
|
|
|
|
|
|
Note:
|
|
|
|
----
|
|
|
|
EVAR is only adapted to evenly-gridded 1-D to N-D data.
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
VAR, STD, SMOOTHN
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Damien Garcia -- 2008/04, revised 2009/10
|
|
|
|
y = np.atleast_1d(y)
|
|
|
|
d = y.ndim
|
|
|
|
sh0 = y.shape
|
|
|
|
|
|
|
|
S = np.zeros(sh0)
|
|
|
|
sh1 = np.ones((d,))
|
|
|
|
cos = np.cos
|
|
|
|
pi = np.pi
|
|
|
|
for i in range(d):
|
|
|
|
ni = sh0[i]
|
|
|
|
sh1[i] = ni
|
|
|
|
t = np.arange(ni).reshape(sh1) / ni
|
|
|
|
S += cos(pi * t)
|
|
|
|
sh1[i] = 1
|
|
|
|
|
|
|
|
S2 = 2 * (d - S).ravel()
|
|
|
|
# N-D Discrete Cosine Transform of Y
|
|
|
|
dcty2 = dctn(y).ravel() ** 2
|
|
|
|
|
|
|
|
def score_fun(L, S2, dcty2):
|
|
|
|
# Generalized cross validation score
|
|
|
|
M = 1 - 1. / (1 + 10 ** L * S2)
|
|
|
|
noisevar = (dcty2 * M ** 2).mean()
|
|
|
|
return noisevar / M.mean() ** 2
|
|
|
|
# fun = lambda x : score_fun(x, S2, dcty2)
|
|
|
|
Lopt = optimize.fminbound(score_fun, -38, 38, args=(S2, dcty2))
|
|
|
|
M = 1.0 - 1.0 / (1 + 10 ** Lopt * S2)
|
|
|
|
noisevar = (dcty2 * M ** 2).mean()
|
|
|
|
return noisevar
|
|
|
|
|
|
|
|
|
|
|
|
class _Filter(object):
|
|
|
|
def __init__(self, y, z0, weightstr, weights, s, robust, maxiter, tolz):
|
|
|
|
self.y = y
|
|
|
|
self.z0 = z0
|
|
|
|
self.weightstr = weightstr
|
|
|
|
self.s = s
|
|
|
|
self.robust = robust
|
|
|
|
self.maxiter = maxiter
|
|
|
|
self.tolz = tolz
|
|
|
|
|
|
|
|
self.auto_smooth = s is None
|
|
|
|
self.is_finite = np.isfinite(y)
|
|
|
|
self.nof = self.is_finite.sum() # number of finite elements
|
|
|
|
self.W = self._normalized_weights(weights, self.is_finite)
|
|
|
|
|
|
|
|
self.gamma = self._gamma_fun(y)
|
|
|
|
|
|
|
|
self.N = self._tensor_rank(y)
|
|
|
|
self.s_min, self.s_max = self._smoothness_limits(self.N)
|
|
|
|
|
|
|
|
# Initialize before iterating
|
|
|
|
self.Wtot = self.W
|
|
|
|
self.is_weighted = (self.W < 1).any() # Weighted or missing data?
|
|
|
|
|
|
|
|
self.z0 = self._get_start_condition(y, z0)
|
|
|
|
|
|
|
|
self.y[~self.is_finite] = 0 # arbitrary values for missing y-data
|
|
|
|
|
|
|
|
# Error on p. Smoothness parameter s = 10^p
|
|
|
|
self.errp = 0.1
|
|
|
|
|
|
|
|
# Relaxation factor RF: to speedup convergence
|
|
|
|
self.RF = 1.75 if self.is_weighted else 1.0
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _tensor_rank(y):
|
|
|
|
"""tensor rank of the y-array"""
|
|
|
|
return (np.array(y.shape) != 1).sum()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _smoothness_limits(n):
|
|
|
|
"""
|
|
|
|
Return upper and lower bound for the smoothness parameter
|
|
|
|
|
|
|
|
The average leverage (h) is by definition in [0 1]. Weak smoothing
|
|
|
|
occurs if h is close to 1, while over-smoothing appears when h is
|
|
|
|
near 0. Upper and lower bounds for h are given to avoid under- or
|
|
|
|
over-smoothing. See equation relating h to the smoothness parameter
|
|
|
|
(Equation #12 in the referenced CSDA paper).
|
|
|
|
"""
|
|
|
|
h_min = 1e-6 ** (2. / n)
|
|
|
|
h_max = 0.99 ** (2. / n)
|
|
|
|
|
|
|
|
s_min = (((1 + sqrt(1 + 8 * h_max)) / 4. / h_max) ** 2 - 1) / 16
|
|
|
|
s_max = (((1 + sqrt(1 + 8 * h_min)) / 4. / h_min) ** 2 - 1) / 16
|
|
|
|
return s_min, s_max
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _lambda_tensor(y):
|
|
|
|
"""
|
|
|
|
Return the Lambda tensor
|
|
|
|
|
|
|
|
Lambda contains the eigenvalues of the difference matrix used in this
|
|
|
|
penalized least squares process.
|
|
|
|
"""
|
|
|
|
d = y.ndim
|
|
|
|
Lambda = np.zeros(y.shape)
|
|
|
|
shape0 = [1, ] * d
|
|
|
|
for i in range(d):
|
|
|
|
shape0[i] = y.shape[i]
|
|
|
|
Lambda = Lambda + \
|
|
|
|
np.cos(pi * np.arange(y.shape[i]) / y.shape[i]).reshape(shape0)
|
|
|
|
shape0[i] = 1
|
|
|
|
Lambda = -2 * (d - Lambda)
|
|
|
|
return Lambda
|
|
|
|
|
|
|
|
def _gamma_fun(self, y):
|
|
|
|
Lambda = self._lambda_tensor(y)
|
|
|
|
|
|
|
|
def gamma(s):
|
|
|
|
return 1. / (1 + s * Lambda ** 2)
|
|
|
|
return gamma
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _initial_guess(y, I):
|
|
|
|
# Initial Guess with weighted/missing data
|
|
|
|
# nearest neighbor interpolation (in case of missing values)
|
|
|
|
z = y
|
|
|
|
if (1 - I).any():
|
|
|
|
notI = ~I
|
|
|
|
z, L = distance_transform_edt(notI, return_indices=True)
|
|
|
|
z[notI] = y[L.flat[notI]]
|
|
|
|
|
|
|
|
# coarse fast smoothing using one-tenth of the DCT coefficients
|
|
|
|
shape = z.shape
|
|
|
|
d = z.ndim
|
|
|
|
z = dctn(z)
|
|
|
|
for k in range(d):
|
|
|
|
z[int((shape[k] + 0.5) / 10) + 1::, ...] = 0
|
|
|
|
z = z.reshape(np.roll(shape, -k))
|
|
|
|
z = z.transpose(np.roll(range(d), -1))
|
|
|
|
# z = shiftdim(z,1);
|
|
|
|
return idctn(z)
|
|
|
|
|
|
|
|
def _get_start_condition(self, y, z0):
|
|
|
|
# Initial conditions for z
|
|
|
|
if self.is_weighted:
|
|
|
|
# With weighted/missing data
|
|
|
|
# An initial guess is provided to ensure faster convergence. For
|
|
|
|
# that purpose, a nearest neighbor interpolation followed by a
|
|
|
|
# coarse smoothing are performed.
|
|
|
|
if z0 is None:
|
|
|
|
z = self._initial_guess(y, self.is_finite)
|
|
|
|
else:
|
|
|
|
z = z0 # an initial guess (z0) has been provided
|
|
|
|
else:
|
|
|
|
z = np.zeros(y.shape)
|
|
|
|
return z
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _normalized_weights(weight, is_finite):
|
|
|
|
""" Return normalized weights.
|
|
|
|
|
|
|
|
Zero weights are assigned to not finite values (Inf or NaN),
|
|
|
|
(Inf/NaN values = missing data).
|
|
|
|
"""
|
|
|
|
weights = weight * is_finite
|
|
|
|
if (weights < 0).any():
|
|
|
|
raise ValueError('Weights must all be >=0')
|
|
|
|
return weights / weights.max()
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _studentized_residuals(r, I, h):
|
|
|
|
median_abs_deviation = np.median(np.abs(r[I] - np.median(r[I])))
|
|
|
|
return np.abs(r / (1.4826 * median_abs_deviation) / sqrt(1 - h))
|
|
|
|
|
|
|
|
def robust_weights(self, r, I, h):
|
|
|
|
"""Return weights for robust smoothing."""
|
|
|
|
def bisquare(u):
|
|
|
|
c = 4.685
|
|
|
|
return (1 - (u / c) ** 2) ** 2 * ((u / c) < 1)
|
|
|
|
|
|
|
|
def talworth(u):
|
|
|
|
c = 2.795
|
|
|
|
return u < c
|
|
|
|
|
|
|
|
def cauchy(u):
|
|
|
|
c = 2.385
|
|
|
|
return 1. / (1 + (u / c) ** 2)
|
|
|
|
|
|
|
|
u = self._studentized_residuals(r, I, h)
|
|
|
|
|
|
|
|
wfun = {'cauchy': cauchy, 'talworth': talworth}.get(self.weightstr,
|
|
|
|
bisquare)
|
|
|
|
weights = wfun(u)
|
|
|
|
|
|
|
|
weights[np.isnan(weights)] = 0
|
|
|
|
return weights
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _average_leverage(s, N):
|
|
|
|
h = sqrt(1 + 16 * s)
|
|
|
|
h = sqrt(1 + h) / sqrt(2) / h
|
|
|
|
return h ** N
|
|
|
|
|
|
|
|
def check_smooth_parameter(self, s):
|
|
|
|
if self.auto_smooth:
|
|
|
|
if np.abs(np.log10(s) - np.log10(self.s_min)) < self.errp:
|
|
|
|
warnings.warn('''s = %g: the lower bound for s has been reached.
|
|
|
|
Put s as an input variable if required.''' % s)
|
|
|
|
elif np.abs(np.log10(s) - np.log10(self.s_max)) < self.errp:
|
|
|
|
warnings.warn('''s = %g: the Upper bound for s has been reached.
|
|
|
|
Put s as an input variable if required.''' % s)
|
|
|
|
|
|
|
|
def gcv(self, p, aow, DCTy, y, Wtot):
|
|
|
|
# Search the smoothing parameter s that minimizes the GCV score
|
|
|
|
s = 10.0 ** p
|
|
|
|
Gamma = self.gamma(s)
|
|
|
|
if aow > 0.9:
|
|
|
|
# aow = 1 means that all of the data are equally weighted
|
|
|
|
# very much faster: does not require any inverse DCT
|
|
|
|
residual = DCTy.ravel() * (Gamma.ravel() - 1)
|
|
|
|
else:
|
|
|
|
# take account of the weights to calculate RSS:
|
|
|
|
is_finite = self.is_finite
|
|
|
|
yhat = idctn(Gamma * DCTy)
|
|
|
|
residual = sqrt(Wtot[is_finite]) * (y[is_finite] - yhat[is_finite])
|
|
|
|
|
|
|
|
TrH = Gamma.sum()
|
|
|
|
RSS = linalg.norm(residual)**2 # Residual sum-of-squares
|
|
|
|
GCVscore = RSS / self.nof / (1.0 - TrH / y.size) ** 2
|
|
|
|
return GCVscore
|
|
|
|
|
|
|
|
def __call__(self, z, s):
|
|
|
|
auto_smooth = self.auto_smooth
|
|
|
|
norm = linalg.norm
|
|
|
|
y = self.y
|
|
|
|
Wtot = self.Wtot
|
|
|
|
Gamma = 1
|
|
|
|
if s is not None:
|
|
|
|
Gamma = self.gamma(s)
|
|
|
|
# "amount" of weights (see the function GCVscore)
|
|
|
|
aow = Wtot.sum() / y.size # 0 < aow <= 1
|
|
|
|
for nit in range(self.maxiter):
|
|
|
|
DCTy = dctn(Wtot * (y - z) + z)
|
|
|
|
if auto_smooth and not np.remainder(np.log2(nit + 1), 1):
|
|
|
|
# The generalized cross-validation (GCV) method is used.
|
|
|
|
# We seek the smoothing parameter s that minimizes the GCV
|
|
|
|
# score i.e. s = Argmin(GCVscore).
|
|
|
|
# Because this process is time-consuming, it is performed from
|
|
|
|
# time to time (when nit is a power of 2)
|
|
|
|
log10s = optimize.fminbound(
|
|
|
|
self.gcv, np.log10(self.s_min), np.log10(self.s_max),
|
|
|
|
args=(aow, DCTy, y, Wtot),
|
|
|
|
xtol=self.errp, full_output=False, disp=False)
|
|
|
|
s = 10 ** log10s
|
|
|
|
Gamma = self.gamma(s)
|
|
|
|
z0 = z
|
|
|
|
z = self.RF * idctn(Gamma * DCTy) + (1 - self.RF) * z
|
|
|
|
# if no weighted/missing data => tol=0 (no iteration)
|
|
|
|
tol = norm(z0.ravel() - z.ravel()) / norm(z.ravel())
|
|
|
|
converged = tol <= self.tolz or not self.is_weighted
|
|
|
|
if converged:
|
|
|
|
break
|
|
|
|
if self.robust:
|
|
|
|
# -- Robust Smoothing: iteratively re-weighted process
|
|
|
|
h = self._average_leverage(s, self.N)
|
|
|
|
self.Wtot = self.W * self.robust_weights(y - z, self.is_finite, h)
|
|
|
|
# re-initialize for another iterative weighted process
|
|
|
|
self.is_weighted = True
|
|
|
|
return z, s, converged
|
|
|
|
|
|
|
|
|
|
|
|
def smoothn(data, s=None, weight=None, robust=False, z0=None, tolz=1e-3,
|
|
|
|
maxiter=100, fulloutput=False):
|
|
|
|
'''
|
|
|
|
SMOOTHN fast and robust spline smoothing for 1-D to N-D data.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
data : array like
|
|
|
|
uniformly-sampled data array to smooth. Non finite values (NaN or Inf)
|
|
|
|
are treated as missing values.
|
|
|
|
s : real positive scalar
|
|
|
|
smooting parameter. The larger S is, the smoother the output will be.
|
|
|
|
Default value is automatically determined using the generalized
|
|
|
|
cross-validation (GCV) method.
|
|
|
|
weight : string or array weights
|
|
|
|
weighting array of real positive values, that must have the same size
|
|
|
|
as DATA. Note that a zero weight corresponds to a missing value.
|
|
|
|
robust : bool
|
|
|
|
If true carry out a robust smoothing that minimizes the influence of
|
|
|
|
outlying data.
|
|
|
|
tolz : real positive scalar
|
|
|
|
Termination tolerance on Z (default = 1e-3)
|
|
|
|
maxiter : scalar integer
|
|
|
|
Maximum number of iterations allowed (default = 100)
|
|
|
|
z0 : array-like
|
|
|
|
Initial value for the iterative process (default = original data)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
z : array like
|
|
|
|
smoothed data
|
|
|
|
|
|
|
|
To be made
|
|
|
|
----------
|
|
|
|
Estimate the confidence bands (see Wahba 1983, Nychka 1988).
|
|
|
|
|
|
|
|
Reference
|
|
|
|
---------
|
|
|
|
Garcia D, Robust smoothing of gridded data in one and higher dimensions
|
|
|
|
with missing values. Computational Statistics & Data Analysis, 2010.
|
|
|
|
http://www.biomecardio.com/pageshtm/publi/csda10.pdf
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
--------
|
|
|
|
|
|
|
|
1-D example
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> x = np.linspace(0,100,2**8)
|
|
|
|
>>> y = np.cos(x/10)+(x/50)**2 + np.random.randn(*x.shape)/10
|
|
|
|
>>> y[np.r_[70, 75, 80]] = np.array([5.5, 5, 6])
|
|
|
|
>>> z = smoothn(y) # Regular smoothing
|
|
|
|
>>> zr = smoothn(y,robust=True) # Robust smoothing
|
|
|
|
|
|
|
|
h=plt.subplot(121),
|
|
|
|
h = plt.plot(x,y,'r.',x,z,'k',linewidth=2)
|
|
|
|
h=plt.title('Regular smoothing')
|
|
|
|
h=plt.subplot(122)
|
|
|
|
h=plt.plot(x,y,'r.',x,zr,'k',linewidth=2)
|
|
|
|
h=plt.title('Robust smoothing')
|
|
|
|
|
|
|
|
2-D example
|
|
|
|
>>> xp = np.r_[0:1:.02]
|
|
|
|
>>> [x,y] = np.meshgrid(xp,xp)
|
|
|
|
>>> f = np.exp(x+y) + np.sin((x-2*y)*3);
|
|
|
|
>>> fn = f + np.random.randn(*f.shape)*0.5;
|
|
|
|
>>> fs = smoothn(fn);
|
|
|
|
|
|
|
|
h=plt.subplot(121),
|
|
|
|
h=plt.contourf(xp,xp,fn)
|
|
|
|
h=plt.subplot(122)
|
|
|
|
h=plt.contourf(xp,xp,fs)
|
|
|
|
|
|
|
|
2-D example with missing data
|
|
|
|
n = 256;
|
|
|
|
y0 = peaks(n);
|
|
|
|
y = y0 + rand(size(y0))*2;
|
|
|
|
I = randperm(n^2);
|
|
|
|
y(I(1:n^2*0.5)) = NaN; lose 1/2 of data
|
|
|
|
y(40:90,140:190) = NaN; create a hole
|
|
|
|
z = smoothn(y); smooth data
|
|
|
|
subplot(2,2,1:2), imagesc(y), axis equal off
|
|
|
|
title('Noisy corrupt data')
|
|
|
|
subplot(223), imagesc(z), axis equal off
|
|
|
|
title('Recovered data ...')
|
|
|
|
subplot(224), imagesc(y0), axis equal off
|
|
|
|
title('... compared with original data')
|
|
|
|
|
|
|
|
3-D example
|
|
|
|
[x,y,z] = meshgrid(-2:.2:2);
|
|
|
|
xslice = [-0.8,1]; yslice = 2; zslice = [-2,0];
|
|
|
|
vn = x.*exp(-x.^2-y.^2-z.^2) + randn(size(x))*0.06;
|
|
|
|
subplot(121), slice(x,y,z,vn,xslice,yslice,zslice,'cubic')
|
|
|
|
title('Noisy data')
|
|
|
|
v = smoothn(vn);
|
|
|
|
subplot(122), slice(x,y,z,v,xslice,yslice,zslice,'cubic')
|
|
|
|
title('Smoothed data')
|
|
|
|
|
|
|
|
Cardioid
|
|
|
|
|
|
|
|
t = linspace(0,2*pi,1000);
|
|
|
|
x = 2*cos(t).*(1-cos(t)) + randn(size(t))*0.1;
|
|
|
|
y = 2*sin(t).*(1-cos(t)) + randn(size(t))*0.1;
|
|
|
|
z = smoothn(complex(x,y));
|
|
|
|
plot(x,y,'r.',real(z),imag(z),'k','linewidth',2)
|
|
|
|
axis equal tight
|
|
|
|
|
|
|
|
Cellular vortical flow
|
|
|
|
[x,y] = meshgrid(linspace(0,1,24));
|
|
|
|
Vx = cos(2*pi*x+pi/2).*cos(2*pi*y);
|
|
|
|
Vy = sin(2*pi*x+pi/2).*sin(2*pi*y);
|
|
|
|
Vx = Vx + sqrt(0.05)*randn(24,24); adding Gaussian noise
|
|
|
|
Vy = Vy + sqrt(0.05)*randn(24,24); adding Gaussian noise
|
|
|
|
I = randperm(numel(Vx));
|
|
|
|
Vx(I(1:30)) = (rand(30,1)-0.5)*5; adding outliers
|
|
|
|
Vy(I(1:30)) = (rand(30,1)-0.5)*5; adding outliers
|
|
|
|
Vx(I(31:60)) = NaN; missing values
|
|
|
|
Vy(I(31:60)) = NaN; missing values
|
|
|
|
Vs = smoothn(complex(Vx,Vy),'robust'); automatic smoothing
|
|
|
|
subplot(121), quiver(x,y,Vx,Vy,2.5), axis square
|
|
|
|
title('Noisy velocity field')
|
|
|
|
subplot(122), quiver(x,y,real(Vs),imag(Vs)), axis square
|
|
|
|
title('Smoothed velocity field')
|
|
|
|
|
|
|
|
See also SMOOTH, SMOOTH3, DCTN, IDCTN.
|
|
|
|
|
|
|
|
-- Damien Garcia -- 2009/03, revised 2010/11
|
|
|
|
Visit
|
|
|
|
http://www.biomecardio.com/matlab/smoothn.html
|
|
|
|
for more details about SMOOTHN
|
|
|
|
'''
|
|
|
|
return SmoothNd(s, weight, robust, z0, tolz, maxiter, fulloutput)(data)
|
|
|
|
|
|
|
|
|
|
|
|
class SmoothNd(object):
|
|
|
|
def __init__(self, s=None, weight=None, robust=False, z0=None, tolz=1e-3,
|
|
|
|
maxiter=100, fulloutput=False):
|
|
|
|
self.s = s
|
|
|
|
self.weight = weight
|
|
|
|
self.robust = robust
|
|
|
|
self.z0 = z0
|
|
|
|
self.tolz = tolz
|
|
|
|
self.maxiter = maxiter
|
|
|
|
self.fulloutput = fulloutput
|
|
|
|
|
|
|
|
@property
|
|
|
|
def weightstr(self):
|
|
|
|
if isinstance(self._weight, str):
|
|
|
|
return self._weight.lower()
|
|
|
|
return 'bisquare'
|
|
|
|
|
|
|
|
@property
|
|
|
|
def weight(self):
|
|
|
|
if self._weight is None or isinstance(self._weight, str):
|
|
|
|
return 1.0
|
|
|
|
return self._weight
|
|
|
|
|
|
|
|
@weight.setter
|
|
|
|
def weight(self, weight):
|
|
|
|
self._weight = weight
|
|
|
|
|
|
|
|
def _init_filter(self, y):
|
|
|
|
return _Filter(y, self.z0, self.weightstr, self.weight, self.s,
|
|
|
|
self.robust, self.maxiter, self.tolz)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def num_steps(self):
|
|
|
|
return 3 if self.robust else 1
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
|
|
|
|
y = np.atleast_1d(data)
|
|
|
|
if y.size < 2:
|
|
|
|
return data
|
|
|
|
|
|
|
|
_filter = self._init_filter(y)
|
|
|
|
z = _filter.z0
|
|
|
|
s = _filter.s
|
|
|
|
converged = False
|
|
|
|
for _i in range(self.num_steps):
|
|
|
|
z, s, converged = _filter(z, s)
|
|
|
|
|
|
|
|
if not converged:
|
|
|
|
msg = '''Maximum number of iterations (%d) has been exceeded.
|
|
|
|
Increase MaxIter option or decrease TolZ value.''' % (self.maxiter)
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
|
|
|
_filter.check_smooth_parameter(s)
|
|
|
|
|
|
|
|
if self.fulloutput:
|
|
|
|
return z, s
|
|
|
|
return z
|
|
|
|
|
|
|
|
|
|
|
|
def test_smoothn_1d():
|
|
|
|
x = np.linspace(0, 100, 2 ** 8)
|
|
|
|
y = np.cos(x / 10) + (x / 50) ** 2 + np.random.randn(x.size) / 10
|
|
|
|
y[np.r_[70, 75, 80]] = np.array([5.5, 5, 6])
|
|
|
|
z = smoothn(y) # Regular smoothing
|
|
|
|
zr = smoothn(y, robust=True) # Robust smoothing
|
|
|
|
_h0 = plt.subplot(121),
|
|
|
|
_h = plt.plot(x, y, 'r.', x, z, 'k', linewidth=2)
|
|
|
|
plt.title('Regular smoothing')
|
|
|
|
plt.subplot(122)
|
|
|
|
plt.plot(x, y, 'r.', x, zr, 'k', linewidth=2)
|
|
|
|
plt.title('Robust smoothing')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_smoothn_2d():
|
|
|
|
|
|
|
|
# import mayavi.mlab as plt
|
|
|
|
xp = np.r_[0:1:0.02]
|
|
|
|
[x, y] = np.meshgrid(xp, xp)
|
|
|
|
f = np.exp(x + y) + np.sin((x - 2 * y) * 3)
|
|
|
|
fn = f + np.random.randn(*f.shape) * 0.5
|
|
|
|
_fs, s = smoothn(fn, fulloutput=True)
|
|
|
|
fs2 = smoothn(fn, s=2 * s)
|
|
|
|
_h = plt.subplot(131),
|
|
|
|
_h = plt.contourf(xp, xp, fn)
|
|
|
|
_h = plt.subplot(132),
|
|
|
|
_h = plt.contourf(xp, xp, fs2)
|
|
|
|
_h = plt.subplot(133),
|
|
|
|
_h = plt.contourf(xp, xp, f)
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_smoothn_cardioid():
|
|
|
|
t = np.linspace(0, 2 * pi, 1000)
|
|
|
|
cos = np.cos
|
|
|
|
sin = np.sin
|
|
|
|
randn = np.random.randn
|
|
|
|
x0 = 2 * cos(t) * (1 - cos(t))
|
|
|
|
x = x0 + randn(t.size) * 0.1
|
|
|
|
y0 = 2 * sin(t) * (1 - cos(t))
|
|
|
|
y = y0 + randn(t.size) * 0.1
|
|
|
|
z = smoothn(x + 1j * y, robust=False)
|
|
|
|
plt.plot(x0, y0, 'y',
|
|
|
|
x, y, 'r.',
|
|
|
|
z.real, z.imag, 'k', linewidth=2)
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
class HodrickPrescott(object):
|
|
|
|
|
|
|
|
'''Smooth data with a Hodrick-Prescott filter.
|
|
|
|
|
|
|
|
The Hodrick-Prescott filter removes high frequency noise from data.
|
|
|
|
It has the advantage of preserving the original shape and
|
|
|
|
features of the signal better than other types of filtering
|
|
|
|
approaches, such as moving averages techniques.
|
|
|
|
|
|
|
|
Parameter
|
|
|
|
---------
|
|
|
|
w : real scalar
|
|
|
|
smooting parameter. Larger w means more smoothing. Values usually
|
|
|
|
in the [100, 20000] interval. As w approach infinity H-P will approach
|
|
|
|
a line.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> t = np.linspace(-4, 4, 500)
|
|
|
|
>>> y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
|
|
|
|
>>> ysg = HodrickPrescott(w=10000)(y)
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
h = plt.plot(t, y, label='Noisy signal')
|
|
|
|
h1 = plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
|
|
|
|
h2 = plt.plot(t, ysg, 'r', label='Filtered signal')
|
|
|
|
h3 = plt.legend()
|
|
|
|
h4 = plt.title('Hodrick-Prescott')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
.. [1] E. T. Whittaker, On a new method of graduation. In proceedings of
|
|
|
|
the Edinburgh Mathematical association., 1923, 78, pp 88-89.
|
|
|
|
.. [2] R. Hodrick and E. Prescott, Postwar U.S. business cycles: an
|
|
|
|
empirical investigation,
|
|
|
|
Journal of money, credit and banking, 1997, 29 (1), pp 1-16.
|
|
|
|
.. [3] Kim Hyeongwoo, Hodrick-Prescott filter,
|
|
|
|
2004, www.auburn.edu/~hzk0001/hpfilter.pdf
|
|
|
|
'''
|
|
|
|
|
|
|
|
def __init__(self, w=100):
|
|
|
|
self.w = w
|
|
|
|
|
|
|
|
def _get_matrix(self, n):
|
|
|
|
w = self.w
|
|
|
|
diag_matrix = np.repeat(
|
|
|
|
np.atleast_2d([w, -4 * w, 6 * w + 1, -4 * w, w]).T, n, axis=1)
|
|
|
|
A = spdiags(diag_matrix, np.arange(-2, 2 + 1), n, n).tocsr()
|
|
|
|
A[0, 0] = A[-1, -1] = 1 + w
|
|
|
|
A[1, 1] = A[-2, -2] = 1 + 5 * w
|
|
|
|
A[0, 1] = A[1, 0] = A[-2, -1] = A[-1, -2] = -2 * w
|
|
|
|
return A
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
x = np.atleast_1d(x).flatten()
|
|
|
|
n = len(x)
|
|
|
|
if n < 4:
|
|
|
|
return x.copy()
|
|
|
|
|
|
|
|
A = self._get_matrix(n)
|
|
|
|
return spsolve(A, x)
|
|
|
|
|
|
|
|
|
|
|
|
class Kalman(object):
|
|
|
|
|
|
|
|
'''
|
|
|
|
Kalman filter object - updates a system state vector estimate based upon an
|
|
|
|
observation, using a discrete Kalman filter.
|
|
|
|
|
|
|
|
The Kalman filter is "optimal" under a variety of
|
|
|
|
circumstances. An excellent paper on Kalman filtering at
|
|
|
|
the introductory level, without detailing the mathematical
|
|
|
|
underpinnings, is:
|
|
|
|
|
|
|
|
"An Introduction to the Kalman Filter"
|
|
|
|
Greg Welch and Gary Bishop, University of North Carolina
|
|
|
|
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
|
|
|
|
|
|
|
|
PURPOSE:
|
|
|
|
The purpose of each iteration of a Kalman filter is to update
|
|
|
|
the estimate of the state vector of a system (and the covariance
|
|
|
|
of that vector) based upon the information in a new observation.
|
|
|
|
The version of the Kalman filter in this function assumes that
|
|
|
|
observations occur at fixed discrete time intervals. Also, this
|
|
|
|
function assumes a linear system, meaning that the time evolution
|
|
|
|
of the state vector can be calculated by means of a state transition
|
|
|
|
matrix.
|
|
|
|
|
|
|
|
USAGE:
|
|
|
|
filt = Kalman(R, x, P, A, B=0, Q, H)
|
|
|
|
x = filt(z, u=0)
|
|
|
|
|
|
|
|
filt is a "system" object containing various fields used as input
|
|
|
|
and output. The state estimate "x" and its covariance "P" are
|
|
|
|
updated by the function. The other fields describe the mechanics
|
|
|
|
of the system and are left unchanged. A calling routine may change
|
|
|
|
these other fields as needed if state dynamics are time-dependent;
|
|
|
|
otherwise, they should be left alone after initial values are set.
|
|
|
|
The exceptions are the observation vector "z" and the input control
|
|
|
|
(or forcing function) "u." If there is an input function, then
|
|
|
|
"u" should be set to some nonzero value by the calling routine.
|
|
|
|
|
|
|
|
System dynamics
|
|
|
|
---------------
|
|
|
|
|
|
|
|
The system evolves according to the following difference equations,
|
|
|
|
where quantities are further defined below:
|
|
|
|
|
|
|
|
x = Ax + Bu + w meaning the state vector x evolves during one time
|
|
|
|
step by premultiplying by the "state transition
|
|
|
|
matrix" A. There is optionally (if nonzero) an input
|
|
|
|
vector u which affects the state linearly, and this
|
|
|
|
linear effect on the state is represented by
|
|
|
|
premultiplying by the "input matrix" B. There is also
|
|
|
|
gaussian process noise w.
|
|
|
|
z = Hx + v meaning the observation vector z is a linear function
|
|
|
|
of the state vector, and this linear relationship is
|
|
|
|
represented by premultiplication by "observation
|
|
|
|
matrix" H. There is also gaussian measurement
|
|
|
|
noise v.
|
|
|
|
where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
|
|
|
|
v ~ N(0,R) meaning v is gaussian noise with covariance R
|
|
|
|
|
|
|
|
VECTOR VARIABLES:
|
|
|
|
|
|
|
|
s.x = state vector estimate. In the input struct, this is the
|
|
|
|
"a priori" state estimate (prior to the addition of the
|
|
|
|
information from the new observation). In the output struct,
|
|
|
|
this is the "a posteriori" state estimate (after the new
|
|
|
|
measurement information is included).
|
|
|
|
z = observation vector
|
|
|
|
u = input control vector, optional (defaults to zero).
|
|
|
|
|
|
|
|
MATRIX VARIABLES:
|
|
|
|
|
|
|
|
s.A = state transition matrix (defaults to identity).
|
|
|
|
s.P = covariance of the state vector estimate. In the input struct,
|
|
|
|
this is "a priori," and in the output it is "a posteriori."
|
|
|
|
(required unless autoinitializing as described below).
|
|
|
|
s.B = input matrix, optional (defaults to zero).
|
|
|
|
s.Q = process noise covariance (defaults to zero).
|
|
|
|
s.R = measurement noise covariance (required).
|
|
|
|
s.H = observation matrix (defaults to identity).
|
|
|
|
|
|
|
|
NORMAL OPERATION:
|
|
|
|
|
|
|
|
(1) define all state definition fields: A,B,H,Q,R
|
|
|
|
(2) define intial state estimate: x,P
|
|
|
|
(3) obtain observation and control vectors: z,u
|
|
|
|
(4) call the filter to obtain updated state estimate: x,P
|
|
|
|
(5) return to step (3) and repeat
|
|
|
|
|
|
|
|
INITIALIZATION:
|
|
|
|
|
|
|
|
If an initial state estimate is unavailable, it can be obtained
|
|
|
|
from the first observation as follows, provided that there are the
|
|
|
|
same number of observable variables as state variables. This "auto-
|
|
|
|
intitialization" is done automatically if s.x is absent or NaN.
|
|
|
|
|
|
|
|
x = inv(H)*z
|
|
|
|
P = inv(H)*R*inv(H')
|
|
|
|
|
|
|
|
This is mathematically equivalent to setting the initial state estimate
|
|
|
|
covariance to infinity.
|
|
|
|
|
|
|
|
Example (Automobile Voltimeter):
|
|
|
|
-------
|
|
|
|
# Define the system as a constant of 12 volts:
|
|
|
|
>>> V0 = 12
|
|
|
|
>>> h = 1 # voltimeter measure the voltage itself
|
|
|
|
>>> q = 1e-5 # variance of process noise s the car operates
|
|
|
|
>>> r = 0.1**2 # variance of measurement error
|
|
|
|
>>> b = 0 # no system input
|
|
|
|
>>> u = 0 # no system input
|
|
|
|
>>> filt = Kalman(R=r, A=1, Q=q, H=h, B=b)
|
|
|
|
|
|
|
|
# Generate random voltages and watch the filter operate.
|
|
|
|
>>> n = 50
|
|
|
|
>>> truth = np.random.randn(n)*np.sqrt(q) + V0
|
|
|
|
>>> z = truth + np.random.randn(n)*np.sqrt(r) # measurement
|
|
|
|
>>> x = np.zeros(n)
|
|
|
|
|
|
|
|
>>> for i, zi in enumerate(z):
|
|
|
|
... x[i] = filt(zi, u) # perform a Kalman filter iteration
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
hz = plt.plot(z,'r.', label='observations')
|
|
|
|
|
|
|
|
# a-posteriori state estimates:
|
|
|
|
hx = plt.plot(x,'b-', label='Kalman output')
|
|
|
|
ht = plt.plot(truth,'g-', label='true voltage')
|
|
|
|
h = plt.legend()
|
|
|
|
h1 = plt.title('Automobile Voltimeter Example')
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
def __init__(self, R, x=None, P=None, A=None, B=0, Q=None, H=None):
|
|
|
|
self.R = R # Estimated error in measurements.
|
|
|
|
self.x = x # Initial state estimate.
|
|
|
|
self.P = P # Initial covariance estimate.
|
|
|
|
self.A = A # State transition matrix.
|
|
|
|
self.B = B # Control matrix.
|
|
|
|
self.Q = Q # Estimated error in process.
|
|
|
|
self.H = H # Observation matrix.
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self._filter = self._filter_first
|
|
|
|
|
|
|
|
def _set_A(self, n):
|
|
|
|
if self.A is None:
|
|
|
|
self.A = np.eye(n)
|
|
|
|
self.A = np.atleast_2d(self.A)
|
|
|
|
|
|
|
|
def _set_Q(self, n):
|
|
|
|
if self.Q is None:
|
|
|
|
self.Q = np.zeros((n, n))
|
|
|
|
self.Q = np.atleast_2d(self.Q)
|
|
|
|
|
|
|
|
def _set_H(self, n):
|
|
|
|
if self.H is None:
|
|
|
|
self.H = np.eye(n)
|
|
|
|
self.H = np.atleast_2d(self.H)
|
|
|
|
|
|
|
|
def _set_P(self, HI):
|
|
|
|
if self.P is None:
|
|
|
|
self.P = np.dot(np.dot(HI, self.R), HI.T)
|
|
|
|
self.P = np.atleast_2d(self.P)
|
|
|
|
|
|
|
|
def _init_first(self, n):
|
|
|
|
self._set_A(n)
|
|
|
|
self._set_Q(n)
|
|
|
|
self._set_H(n)
|
|
|
|
try:
|
|
|
|
HI = np.linalg.inv(self.H)
|
|
|
|
except:
|
|
|
|
HI = np.eye(n)
|
|
|
|
self._set_P(HI)
|
|
|
|
return HI
|
|
|
|
|
|
|
|
def _first_state(self, z):
|
|
|
|
n = np.size(z)
|
|
|
|
HI = self._init_first(n)
|
|
|
|
# initialize state estimate from first observation
|
|
|
|
x = np.dot(HI, z)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def _filter_first(self, z, u):
|
|
|
|
|
|
|
|
self._filter = self._filter_main
|
|
|
|
|
|
|
|
if self.x is None:
|
|
|
|
self.x = self._first_state(z)
|
|
|
|
return self.x
|
|
|
|
|
|
|
|
n = np.size(self.x)
|
|
|
|
self._init_first(n)
|
|
|
|
return self._filter_main(z, u)
|
|
|
|
|
|
|
|
def _predict_state(self, x, u):
|
|
|
|
return np.dot(self.A, x) + np.dot(self.B, u)
|
|
|
|
|
|
|
|
def _predict_covariance(self, P):
|
|
|
|
A = self.A
|
|
|
|
return np.dot(np.dot(A, P), A.T) + self.Q
|
|
|
|
|
|
|
|
def _compute_gain(self, P):
|
|
|
|
"""Kalman gain factor."""
|
|
|
|
H = self.H
|
|
|
|
PHT = np.dot(P, H.T)
|
|
|
|
innovation_covariance = np.dot(H, PHT) + self.R
|
|
|
|
# return np.linalg.solve(PHT, innovation_covariance)
|
|
|
|
return np.dot(PHT, np.linalg.inv(innovation_covariance))
|
|
|
|
|
|
|
|
def _update_state_from_observation(self, x, z, K):
|
|
|
|
innovation = z - np.dot(self.H, x)
|
|
|
|
return x + np.dot(K, innovation)
|
|
|
|
|
|
|
|
def _update_covariance(self, P, K):
|
|
|
|
return P - np.dot(K, np.dot(self.H, P))
|
|
|
|
# return np.dot(np.eye(len(P)) - K * self.H, P)
|
|
|
|
|
|
|
|
def _filter_main(self, z, u):
|
|
|
|
''' This is the code which implements the discrete Kalman filter:
|
|
|
|
'''
|
|
|
|
P = self._predict_covariance(self.P)
|
|
|
|
x = self._predict_state(self.x, u)
|
|
|
|
|
|
|
|
K = self._compute_gain(P)
|
|
|
|
|
|
|
|
self.P = self._update_covariance(P, K)
|
|
|
|
self.x = self._update_state_from_observation(x, z, K)
|
|
|
|
|
|
|
|
return self.x
|
|
|
|
|
|
|
|
def __call__(self, z, u=0):
|
|
|
|
return self._filter(z, u)
|
|
|
|
|
|
|
|
|
|
|
|
def test_kalman():
|
|
|
|
V0 = 12
|
|
|
|
h = np.atleast_2d(1) # voltimeter measure the voltage itself
|
|
|
|
q = 1e-9 # variance of process noise as the car operates
|
|
|
|
r = 0.05 ** 2 # variance of measurement error
|
|
|
|
b = 0 # no system input
|
|
|
|
u = 0 # no system input
|
|
|
|
filt = Kalman(R=r, A=1, Q=q, H=h, B=b)
|
|
|
|
|
|
|
|
# Generate random voltages and watch the filter operate.
|
|
|
|
n = 50
|
|
|
|
truth = np.random.randn(n) * np.sqrt(q) + V0
|
|
|
|
z = truth + np.random.randn(n) * np.sqrt(r) # measurement
|
|
|
|
x = np.zeros(n)
|
|
|
|
|
|
|
|
for i, zi in enumerate(z):
|
|
|
|
x[i] = filt(zi, u) # perform a Kalman filter iteration
|
|
|
|
|
|
|
|
_hz = plt.plot(z, 'r.', label='observations')
|
|
|
|
# a-posteriori state estimates:
|
|
|
|
_hx = plt.plot(x, 'b-', label='Kalman output')
|
|
|
|
_ht = plt.plot(truth, 'g-', label='true voltage')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Automobile Voltimeter Example')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def lti_disc(F, L=None, Q=None, dt=1):
|
|
|
|
"""LTI_DISC Discretize LTI ODE with Gaussian Noise.
|
|
|
|
|
|
|
|
Syntax:
|
|
|
|
[A,Q] = lti_disc(F,L,Qc,dt)
|
|
|
|
|
|
|
|
In:
|
|
|
|
F - NxN Feedback matrix
|
|
|
|
L - NxL Noise effect matrix (optional, default identity)
|
|
|
|
Qc - LxL Diagonal Spectral Density (optional, default zeros)
|
|
|
|
dt - Time Step (optional, default 1)
|
|
|
|
|
|
|
|
Out:
|
|
|
|
A - Transition matrix
|
|
|
|
Q - Discrete Process Covariance
|
|
|
|
|
|
|
|
Description:
|
|
|
|
Discretize LTI ODE with Gaussian Noise. The original
|
|
|
|
ODE model is in form
|
|
|
|
|
|
|
|
dx/dt = F x + L w, w ~ N(0,Qc)
|
|
|
|
|
|
|
|
Result of discretization is the model
|
|
|
|
|
|
|
|
x[k] = A x[k-1] + q, q ~ N(0,Q)
|
|
|
|
|
|
|
|
Which can be used for integrating the model
|
|
|
|
exactly over time steps, which are multiples
|
|
|
|
of dt.
|
|
|
|
|
|
|
|
"""
|
|
|
|
n = np.shape(F)[0]
|
|
|
|
if L is None:
|
|
|
|
L = np.eye(n)
|
|
|
|
|
|
|
|
if Q is None:
|
|
|
|
Q = np.zeros((n, n))
|
|
|
|
# Closed form integration of transition matrix
|
|
|
|
A = expm(F * dt)
|
|
|
|
|
|
|
|
# Closed form integration of covariance
|
|
|
|
# by matrix fraction decomposition
|
|
|
|
|
|
|
|
Phi = np.vstack((np.hstack((F, np.dot(np.dot(L, Q), L.T))),
|
|
|
|
np.hstack((np.zeros((n, n)), -F.T))))
|
|
|
|
AB = np.dot(expm(Phi * dt), np.vstack((np.zeros((n, n)), np.eye(n))))
|
|
|
|
# Q = AB[:n, :] / AB[n:(2 * n), :]
|
|
|
|
Q = np.linalg.solve(AB[n:(2 * n), :].T, AB[:n, :].T)
|
|
|
|
return A, Q
|
|
|
|
|
|
|
|
|
|
|
|
def test_kalman_sine():
|
|
|
|
"""Kalman Filter demonstration with sine signal."""
|
|
|
|
sd = 0.5
|
|
|
|
dt = 0.1
|
|
|
|
w = 1
|
|
|
|
T = np.arange(0, 30 + dt / 2, dt)
|
|
|
|
n = len(T)
|
|
|
|
X = 3*np.sin(w * T)
|
|
|
|
Y = X + sd * np.random.randn(n)
|
|
|
|
|
|
|
|
''' Initialize KF to values
|
|
|
|
x = 0
|
|
|
|
dx/dt = 0
|
|
|
|
with great uncertainty in derivative
|
|
|
|
'''
|
|
|
|
M = np.zeros((2, 1))
|
|
|
|
P = np.diag([0.1, 2])
|
|
|
|
R = sd ** 2
|
|
|
|
H = np.atleast_2d([1, 0])
|
|
|
|
q = 0.1
|
|
|
|
F = np.atleast_2d([[0, 1],
|
|
|
|
[0, 0]])
|
|
|
|
A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)
|
|
|
|
|
|
|
|
# Track and animate
|
|
|
|
m = M.shape[0]
|
|
|
|
_MM = np.zeros((m, n))
|
|
|
|
_PP = np.zeros((m, m, n))
|
|
|
|
'''In this demonstration we estimate a stationary sine signal from noisy
|
|
|
|
measurements by using the classical Kalman filter.'
|
|
|
|
'''
|
|
|
|
filt = Kalman(R=R, x=M, P=P, A=A, Q=Q, H=H, B=0)
|
|
|
|
|
|
|
|
# Generate random voltages and watch the filter operate.
|
|
|
|
# n = 50
|
|
|
|
# truth = np.random.randn(n) * np.sqrt(q) + V0
|
|
|
|
# z = truth + np.random.randn(n) * np.sqrt(r) # measurement
|
|
|
|
truth = X
|
|
|
|
z = Y
|
|
|
|
x = np.zeros((n, m))
|
|
|
|
|
|
|
|
for i, zi in enumerate(z):
|
|
|
|
x[i] = np.ravel(filt(zi, u=0))
|
|
|
|
|
|
|
|
_hz = plt.plot(z, 'r.', label='observations')
|
|
|
|
# a-posteriori state estimates:
|
|
|
|
_hx = plt.plot(x[:, 0], 'b-', label='Kalman output')
|
|
|
|
_ht = plt.plot(truth, 'g-', label='true voltage')
|
|
|
|
plt.legend()
|
|
|
|
plt.title('Automobile Voltimeter Example')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
# for k in range(m):
|
|
|
|
# [M,P] = kf_predict(M,P,A,Q);
|
|
|
|
# [M,P] = kf_update(M,P,Y(k),H,R);
|
|
|
|
#
|
|
|
|
# MM(:,k) = M;
|
|
|
|
# PP(:,:,k) = P;
|
|
|
|
#
|
|
|
|
# %
|
|
|
|
# % Animate
|
|
|
|
# %
|
|
|
|
# if rem(k,10)==1
|
|
|
|
# plot(T,X,'b--',...
|
|
|
|
# T,Y,'ro',...
|
|
|
|
# T(k),M(1),'k*',...
|
|
|
|
# T(1:k),MM(1,1:k),'k-');
|
|
|
|
# legend('Real signal','Measurements','Latest estimate',
|
|
|
|
# 'Filtered estimate')
|
|
|
|
# title('Estimating a noisy sine signal with Kalman filter.');
|
|
|
|
# drawnow;
|
|
|
|
#
|
|
|
|
# pause;
|
|
|
|
# end
|
|
|
|
# end
|
|
|
|
#
|
|
|
|
# clc;
|
|
|
|
# disp('In this demonstration we estimate a stationary sine signal '
|
|
|
|
# 'from noisy measurements by using the classical Kalman filter.');
|
|
|
|
# disp(' ');
|
|
|
|
# disp('The filtering results are now displayed sequantially for 10 time '
|
|
|
|
# 'step at a time.');
|
|
|
|
# disp(' ');
|
|
|
|
# disp('<push any key to see the filtered and smoothed results together>')
|
|
|
|
# pause;
|
|
|
|
# %
|
|
|
|
# % Apply Kalman smoother
|
|
|
|
# %
|
|
|
|
# SM = rts_smooth(MM,PP,A,Q);
|
|
|
|
# plot(T,X,'b--',...
|
|
|
|
# T,MM(1,:),'k-',...
|
|
|
|
# T,SM(1,:),'r-');
|
|
|
|
# legend('Real signal','Filtered estimate','Smoothed estimate')
|
|
|
|
# title('Filtered and smoothed estimate of the original signal');
|
|
|
|
#
|
|
|
|
# clc;
|
|
|
|
# disp('The filtered and smoothed estimates of the signal are now '
|
|
|
|
# 'displayed.')
|
|
|
|
# disp(' ');
|
|
|
|
# disp('RMS errors:');
|
|
|
|
# %
|
|
|
|
# % Errors
|
|
|
|
# %
|
|
|
|
# fprintf('KF = %.3f\nRTS = %.3f\n',...
|
|
|
|
# sqrt(mean((MM(1,:)-X(1,:)).^2)),...
|
|
|
|
# sqrt(mean((SM(1,:)-X(1,:)).^2)));
|
|
|
|
|
|
|
|
|
|
|
|
class HampelFilter(object):
|
|
|
|
"""Hampel Filter.
|
|
|
|
|
|
|
|
HAMPEL(X,Y,DX,T,varargin) returns the Hampel filtered values of the
|
|
|
|
elements in Y. It was developed to detect outliers in a time series,
|
|
|
|
but it can also be used as an alternative to the standard median
|
|
|
|
filter.
|
|
|
|
|
|
|
|
X,Y are row or column vectors with an equal number of elements.
|
|
|
|
The elements in Y should be Gaussian distributed.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
dx : positive scalar (default 3 * median(diff(X))
|
|
|
|
which defines the half width of the filter window. Dx should be
|
|
|
|
dimensionally equivalent to the values in X.
|
|
|
|
t : positive scalar (default 3)
|
|
|
|
which defines the threshold value used in the equation
|
|
|
|
|Y - Y0| > T * S0.
|
|
|
|
adaptive: real scalar
|
|
|
|
if greater than 0 it uses an experimental adaptive Hampel filter.
|
|
|
|
If none it uses a standard Hampel filter
|
|
|
|
fulloutput: bool
|
|
|
|
if True also the vectors: outliers, Y0,LB,UB,ADX, which corresponds to
|
|
|
|
the mask of the replaced values, nominal data, lower and upper bounds
|
|
|
|
on the Hampel filter and the relative half size of the local window,
|
|
|
|
respectively. outliers.sum() gives the number of outliers detected.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
---------
|
|
|
|
Hampel filter removal of outliers
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> randint = np.random.randint
|
|
|
|
>>> Y = 5000 + np.random.randn(1000)
|
|
|
|
>>> outliers = randint(0,1000, size=(10,))
|
|
|
|
>>> Y[outliers] = Y[outliers] + randint(1000, size=(10,))
|
|
|
|
>>> YY, res = HampelFilter(fulloutput=True)(Y)
|
|
|
|
>>> YY1, res1 = HampelFilter(dx=1, t=3, adaptive=0.1, fulloutput=True)(Y)
|
|
|
|
>>> YY2, res2 = HampelFilter(dx=3, t=0, fulloutput=True)(Y) # Y0 = median
|
|
|
|
|
|
|
|
X = np.arange(len(YY))
|
|
|
|
plt.plot(X, Y, 'b.') # Original Data
|
|
|
|
plt.plot(X, YY, 'r') # Hampel Filtered Data
|
|
|
|
plt.plot(X, res['Y0'], 'b--') # Nominal Data
|
|
|
|
plt.plot(X, res['LB'], 'r--') # Lower Bounds on Hampel Filter
|
|
|
|
plt.plot(X, res['UB'], 'r--') # Upper Bounds on Hampel Filter
|
|
|
|
i = res['outliers']
|
|
|
|
plt.plot(X[i], Y[i], 'ks') # Identified Outliers
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
References
|
|
|
|
----------
|
|
|
|
Chapters 1.4.2, 3.2.2 and 4.3.4 in Mining Imperfect Data: Dealing with
|
|
|
|
Contamination and Incomplete Records by Ronald K. Pearson.
|
|
|
|
|
|
|
|
Acknowledgements
|
|
|
|
I would like to thank Ronald K. Pearson for the introduction to moving
|
|
|
|
window filters. Please visit his blog at:
|
|
|
|
http://exploringdatablog.blogspot.com/2012/01/moving-window-filters-and
|
|
|
|
-pracma.html
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self, dx=None, t=3, adaptive=None, fulloutput=False):
|
|
|
|
self.dx = dx
|
|
|
|
self.t = t
|
|
|
|
self.adaptive = adaptive
|
|
|
|
self.fulloutput = fulloutput
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _check(dx):
|
|
|
|
if not np.isscalar(dx):
|
|
|
|
raise ValueError('DX must be a scalar.')
|
|
|
|
if dx < 0:
|
|
|
|
raise ValueError('DX must be larger than zero.')
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def localwindow(X, Y, DX, i):
|
|
|
|
mask = (X[i] - DX <= X) & (X <= X[i] + DX)
|
|
|
|
Y0 = np.median(Y[mask])
|
|
|
|
# Calculate Local Scale of Natural Variation
|
|
|
|
S0 = 1.4826 * np.median(np.abs(Y[mask] - Y0))
|
|
|
|
return Y0, S0
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def smgauss(X, V, DX):
|
|
|
|
Xj = X
|
|
|
|
Xk = np.atleast_2d(X).T
|
|
|
|
Wjk = np.exp(-((Xj - Xk) / (2 * DX)) ** 2)
|
|
|
|
G = np.dot(Wjk, V) / np.sum(Wjk, axis=0)
|
|
|
|
return G
|
|
|
|
|
|
|
|
def _adaptive(self, Y, X, dx):
|
|
|
|
localwindow = self.localwindow
|
|
|
|
Y0, S0, ADX = self._init(Y, dx)
|
|
|
|
Y0Tmp = np.nan * np.zeros(Y.shape)
|
|
|
|
S0Tmp = np.nan * np.zeros(Y.shape)
|
|
|
|
DXTmp = np.arange(1, len(S0) + 1) * dx
|
|
|
|
# Integer variation of Window Half Size
|
|
|
|
# Calculate Initial Guess of Optimal Parameters Y0, S0, ADX
|
|
|
|
for i in range(len(Y)):
|
|
|
|
j = 0
|
|
|
|
S0Rel = np.inf
|
|
|
|
while S0Rel > self.adaptive:
|
|
|
|
Y0Tmp[j], S0Tmp[j] = localwindow(X, Y, DXTmp[j], i)
|
|
|
|
if j > 0:
|
|
|
|
S0Rel = np.abs((S0Tmp[j - 1] - S0Tmp[j]) /
|
|
|
|
(S0Tmp[j - 1] + S0Tmp[j]) / 2)
|
|
|
|
j += 1
|
|
|
|
|
|
|
|
Y0[i] = Y0Tmp[j - 2]
|
|
|
|
S0[i] = S0Tmp[j - 2]
|
|
|
|
ADX[i] = DXTmp[j - 2] / dx
|
|
|
|
|
|
|
|
# Gaussian smoothing of relevant parameters
|
|
|
|
DX = 2 * np.median(np.diff(X))
|
|
|
|
ADX = self.smgauss(X, ADX, DX)
|
|
|
|
S0 = self.smgauss(X, S0, DX)
|
|
|
|
Y0 = self.smgauss(X, Y0, DX)
|
|
|
|
return Y0, S0, ADX
|
|
|
|
|
|
|
|
def _init(self, Y, dx):
|
|
|
|
S0 = np.nan * np.zeros(Y.shape)
|
|
|
|
Y0 = np.nan * np.zeros(Y.shape)
|
|
|
|
ADX = dx * np.ones(Y.shape)
|
|
|
|
return Y0, S0, ADX
|
|
|
|
|
|
|
|
def _fixed(self, Y, X, dx):
|
|
|
|
localwindow = self.localwindow
|
|
|
|
Y0, S0, ADX = self._init(Y, dx)
|
|
|
|
for i in range(len(Y)):
|
|
|
|
Y0[i], S0[i] = localwindow(X, Y, dx, i)
|
|
|
|
return Y0, S0, ADX
|
|
|
|
|
|
|
|
def _filter(self, Y, X, dx):
|
|
|
|
if len(X) <= 1:
|
|
|
|
Y0, S0, ADX = self._init(Y, dx)
|
|
|
|
elif self.adaptive is None:
|
|
|
|
Y0, S0, ADX = self._fixed(Y, X, dx)
|
|
|
|
else:
|
|
|
|
Y0, S0, ADX = self._adaptive(Y, X, dx) # 'adaptive'
|
|
|
|
return Y0, S0, ADX
|
|
|
|
|
|
|
|
def __call__(self, y, x=None):
|
|
|
|
Y = np.atleast_1d(y).ravel()
|
|
|
|
if x is None:
|
|
|
|
x = range(len(Y))
|
|
|
|
X = np.atleast_1d(x).ravel()
|
|
|
|
|
|
|
|
dx = 3 * np.median(np.diff(X)) if self.dx is None else self.dx
|
|
|
|
self._check(dx)
|
|
|
|
|
|
|
|
Y0, S0, ADX = self._filter(Y, X, dx)
|
|
|
|
YY = Y.copy()
|
|
|
|
T = self.t
|
|
|
|
# Prepare Output
|
|
|
|
self.UB = Y0 + T * S0
|
|
|
|
self.LB = Y0 - T * S0
|
|
|
|
outliers = np.abs(Y - Y0) > T * S0 # possible outliers
|
|
|
|
np.putmask(YY, outliers, Y0) # YY[outliers] = Y0[outliers]
|
|
|
|
self.outliers = outliers
|
|
|
|
self.num_outliers = outliers.sum()
|
|
|
|
self.ADX = ADX
|
|
|
|
self.Y0 = Y0
|
|
|
|
if self.fulloutput:
|
|
|
|
return YY, dict(outliers=outliers, Y0=Y0,
|
|
|
|
LB=self.LB, UB=self.UB, ADX=ADX)
|
|
|
|
return YY
|
|
|
|
|
|
|
|
|
|
|
|
def demo_hampel():
|
|
|
|
randint = np.random.randint
|
|
|
|
Y = 5000 + np.random.randn(1000)
|
|
|
|
outliers = randint(0, 1000, size=(10,))
|
|
|
|
Y[outliers] = Y[outliers] + randint(1000, size=(10,))
|
|
|
|
YY, res = HampelFilter(dx=3, t=3, fulloutput=True)(Y)
|
|
|
|
YY1, res1 = HampelFilter(dx=1, t=3, adaptive=0.1, fulloutput=True)(Y)
|
|
|
|
YY2, res2 = HampelFilter(dx=3, t=0, fulloutput=True)(Y) # median
|
|
|
|
plt.figure(1)
|
|
|
|
plot_hampel(Y, YY, res)
|
|
|
|
plt.title('Standard HampelFilter')
|
|
|
|
plt.figure(2)
|
|
|
|
plot_hampel(Y, YY1, res1)
|
|
|
|
plt.title('Adaptive HampelFilter')
|
|
|
|
plt.figure(3)
|
|
|
|
plot_hampel(Y, YY2, res2)
|
|
|
|
plt.title('Median filter')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def plot_hampel(Y, YY, res):
|
|
|
|
X = np.arange(len(YY))
|
|
|
|
plt.plot(X, Y, 'b.') # Original Data
|
|
|
|
plt.plot(X, YY, 'r') # Hampel Filtered Data
|
|
|
|
plt.plot(X, res['Y0'], 'b--') # Nominal Data
|
|
|
|
plt.plot(X, res['LB'], 'r--') # Lower Bounds on Hampel Filter
|
|
|
|
plt.plot(X, res['UB'], 'r--') # Upper Bounds on Hampel Filter
|
|
|
|
i = res['outliers']
|
|
|
|
plt.plot(X[i], Y[i], 'ks') # Identified Outliers
|
|
|
|
# plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_tide_filter():
|
|
|
|
# import statsmodels.api as sa
|
|
|
|
import wafo.spectrum.models as sm
|
|
|
|
sd = 10
|
|
|
|
Sj = sm.Jonswap(Hm0=4.*sd)
|
|
|
|
S = Sj.tospecdata()
|
|
|
|
|
|
|
|
q = (0.1 * sd) ** 2 # variance of process noise s the car operates
|
|
|
|
r = (100 * sd) ** 2 # variance of measurement error
|
|
|
|
b = 0 # no system input
|
|
|
|
u = 0 # no system input
|
|
|
|
|
|
|
|
from scipy.signal import butter, filtfilt, lfilter_zi # lfilter,
|
|
|
|
freq_tide = 1. / (12 * 60 * 60)
|
|
|
|
freq_wave = 1. / 10
|
|
|
|
freq_filt = freq_wave / 10
|
|
|
|
dt = 1.
|
|
|
|
freq = 1. / dt
|
|
|
|
fn = (freq / 2)
|
|
|
|
|
|
|
|
P = 10 * np.diag([1, 0.01])
|
|
|
|
R = r
|
|
|
|
H = np.atleast_2d([1, 0])
|
|
|
|
|
|
|
|
F = np.atleast_2d([[0, 1],
|
|
|
|
[0, 0]])
|
|
|
|
A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)
|
|
|
|
|
|
|
|
t = np.arange(0, 60 * 12, 1. / freq)
|
|
|
|
w = 2 * np.pi * freq # 1 Hz
|
|
|
|
tide = 100 * np.sin(freq_tide * w * t + 2 * np.pi / 4) + 100
|
|
|
|
y = tide + S.sim(len(t), dt=1. / freq)[:, 1].ravel()
|
|
|
|
# lowess = sa.nonparametric.lowess
|
|
|
|
# y2 = lowess(y, t, frac=0.5)[:,1]
|
|
|
|
|
|
|
|
filt = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
|
|
|
|
filt2 = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
|
|
|
|
# y = tide + 0.5 * np.sin(freq_wave * w * t)
|
|
|
|
# Butterworth filter
|
|
|
|
b, a = butter(9, (freq_filt / fn), btype='low')
|
|
|
|
# y2 = [lowess(y[max(i-60,0):i + 1], t[max(i-60,0):i + 1], frac=.3)[-1,1]
|
|
|
|
# for i in range(len(y))]
|
|
|
|
# y2 = [lfilter(b, a, y[:i + 1])[i] for i in range(len(y))]
|
|
|
|
# y3 = filtfilt(b, a, y[:16]).tolist() + [filtfilt(b, a, y[:i + 1])[i]
|
|
|
|
# for i in range(16, len(y))]
|
|
|
|
# y0 = medfilt(y, 41)
|
|
|
|
_zi = lfilter_zi(b, a)
|
|
|
|
# y2 = lfilter(b, a, y)#, zi=y[0]*zi) # standard filter
|
|
|
|
y3 = filtfilt(b, a, y) # filter with phase shift correction
|
|
|
|
y4 = []
|
|
|
|
y5 = []
|
|
|
|
for _i, j in enumerate(y):
|
|
|
|
tmp = filt(j, u=u).ravel()
|
|
|
|
tmp = filt2(tmp[0], u=u).ravel()
|
|
|
|
# if i==0:
|
|
|
|
# print(filt.x)
|
|
|
|
# print(filt2.x)
|
|
|
|
y4.append(tmp[0])
|
|
|
|
y5.append(tmp[1])
|
|
|
|
_y0 = medfilt(y4, 41)
|
|
|
|
print(filt.P)
|
|
|
|
# plot
|
|
|
|
|
|
|
|
plt.plot(t, y, 'r.-', linewidth=2, label='raw data')
|
|
|
|
# plt.plot(t, y2, 'b.-', linewidth=2, label='lowess @ %g Hz' % freq_filt)
|
|
|
|
# plt.plot(t, y2, 'b.-', linewidth=2, label='filter @ %g Hz' % freq_filt)
|
|
|
|
plt.plot(t, y3, 'g.-', linewidth=2, label='filtfilt @ %g Hz' % freq_filt)
|
|
|
|
plt.plot(t, y4, 'k.-', linewidth=2, label='kalman')
|
|
|
|
# plt.plot(t, y5, 'k.', linewidth=2, label='kalman2')
|
|
|
|
plt.plot(t, tide, 'y-', linewidth=2, label='True tide')
|
|
|
|
plt.legend(frameon=False, fontsize=14)
|
|
|
|
plt.xlabel("Time [s]")
|
|
|
|
plt.ylabel("Amplitude")
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_smooth():
|
|
|
|
t = np.linspace(-4, 4, 500)
|
|
|
|
y = np.exp(-t ** 2) + np.random.normal(0, 0.05, t.shape)
|
|
|
|
n = 11
|
|
|
|
ysg = SavitzkyGolay(n, degree=1, diff_order=0)(y)
|
|
|
|
|
|
|
|
plt.plot(t, y, t, ysg, '--')
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_hodrick_cardioid():
|
|
|
|
t = np.linspace(0, 2 * np.pi, 1000)
|
|
|
|
cos = np.cos
|
|
|
|
sin = np.sin
|
|
|
|
randn = np.random.randn
|
|
|
|
x0 = 2 * cos(t) * (1 - cos(t))
|
|
|
|
x = x0 + randn(t.size) * 0.1
|
|
|
|
y0 = 2 * sin(t) * (1 - cos(t))
|
|
|
|
y = y0 + randn(t.size) * 0.1
|
|
|
|
smooth = HodrickPrescott(w=20000)
|
|
|
|
# smooth = HampelFilter(adaptive=50)
|
|
|
|
z = smooth(x) + 1j * smooth(y)
|
|
|
|
plt.plot(x0, y0, 'y',
|
|
|
|
x, y, 'r.',
|
|
|
|
z.real, z.imag, 'k', linewidth=2)
|
|
|
|
plt.show('hold')
|
|
|
|
|
|
|
|
|
|
|
|
def test_docstrings():
|
|
|
|
import doctest
|
|
|
|
print('Testing docstrings in %s' % __file__)
|
|
|
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_docstrings()
|
|
|
|
# test_kalman_sine()
|
|
|
|
# test_tide_filter()
|
|
|
|
# demo_hampel()
|
|
|
|
# test_kalman()
|
|
|
|
# test_smooth()
|
|
|
|
# test_hodrick_cardioid()
|
|
|
|
# test_smoothn_1d()
|
|
|
|
# test_smoothn_cardioid()
|