You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

770 lines
28 KiB
FortranFixed

PROGRAM sp2mmt
C*******************************************************************************
C This program computes joint density of the maximum and the following *
C minimum or level u separated maxima and minima + period/wavelength *
C*******************************************************************************
use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb,
&NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV
use rind
IMPLICIT NONE
double precision, dimension(:,:), allocatable :: BIG
double precision, dimension(:,:,:),allocatable :: ansr
double precision, dimension(: ), allocatable :: ex
double precision, dimension(:,:), allocatable :: xc
double precision, dimension(: ), allocatable :: fxind,h
double precision, dimension(: ), allocatable :: R0,R1,R2,R3,R4
double precision :: CC,U,XdInf,XtInf
double precision, dimension(1,4) :: a_up,a_lo ! size Mb X NI-1
integer , dimension(: ), allocatable :: seed
integer ,dimension(5) :: indI = 0 ! length NI
integer :: Nstart,Ntime,ts,tn,speed,seed1,seed_size
integer :: status,i,j,ij,Nx0,Nx1,DEF,isOdd !,TMP
LOGICAL :: SYMMETRY=.FALSE.
double precision :: dT ! lag spacing for covariances
! f90 -gline -fieee -Nl126 -C -o intmodule.f rind60.f sp2mmt.f
CALL INIT_LEVELS(Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx1,dT,u,def)
CALL INITDATA(speed)
if (SCIS.GT.0) then
!allocate(COV(1:Nx))
call random_seed(SIZE=seed_size)
allocate(seed(seed_size))
call random_seed(GET=seed(1:seed_size)) ! get current seed
seed(1)=seed1 ! change seed
call random_seed(PUT=seed(1:seed_size))
deallocate(seed)
if (ALLOCATED(COV)) then
open (unit=11, file='COV.out', STATUS='unknown')
write(11,*) 0.d0
endif
endif
allocate(R0(1:Ntime+1))
allocate(R1(1:Ntime+1))
allocate(R2(1:Ntime+1))
allocate(R3(1:Ntime+1))
allocate(R4(1:Ntime+1))
Nx0 = Nx1 ! just plain Mm
IF (def.GT.1) Nx0=2*Nx1 ! level v separated max2min densities wanted
allocate(h(1:Nx0))
CALL INIT_AMPLITUDES(h,Nx0)
CALL INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4)
! For DEF = 0,1 : (Maxima, Minima and period/wavelength)
! = 2,3 : (Level v separated Maxima and Minima and period/wavelength between them)
! If Nx==1 then the conditional density for period/wavelength between Maxima and Minima
! given the Max and Min is returned
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn)|| X'(t1) X'(tn) X(t1) X(tn)
! = [ Xt Xd Xc ]
!
! Nt = tn-2, Nd = 2, Nc = 4
!
! Xt= contains Nt time points in the indicator function
! Xd= " Nd derivatives in Jacobian
! Xc= " Nc variables to condition on
!
! There are 3 (NI=4) regions with constant barriers:
! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0.
! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1))
! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn))
!
!
! For DEF = 4,5 (Level v separated Maxima and Minima and period/wavelength from Max to crossing)
! If Nx==1 then the conditional joint density for period/wavelength between Maxima, Minima and Max to
! level v crossing given the Max and the min is returned
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn) X'(ts)|| X'(t1) X'(tn) X(t1) X(tn) X(ts)
! = [ Xt Xd Xc ]
!
! Nt = tn-2, Nd = 3, Nc = 5
!
! Xt= contains Nt time points in the indicator function
! Xd= " Nd derivatives
! Xc= " Nc variables to condition on
!
! There are 4 (NI=5) regions with constant barriers:
! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0.
! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1))
! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn))
! (indI(4)=Nt+2); for i\in (indI(4)+1,indI(5)], Y(i)<0 (deriv. X'(ts))
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!Revised pab 22.04.2000
! - added mean separated min/max + (Tdm, TMd) period distributions
! - added scis
C ***** The bound 'infinity' is set to 10*sigma *****
XdInf = 10.d0*SQRT(R4(1))
XtInf = 10.d0*SQRT(-R2(1))
Nc = 4
NI=4; Nd=2;
Mb=1 ;
Nj = 0
indI(1) = 0
Nstart=MAX(2,Nstart)
isOdd = MOD(Nx1,2)
IF (def.LE.1) THEN ! just plain Mm
Nx = Nx1*(Nx1-1)/2
IJ = (Nx1+isOdd)/2
IF (H(1)+H(Nx1).EQ.0.AND.
& (H(IJ).EQ.0.OR.H(IJ)+H(IJ+1).EQ.0) ) THEN
SYMMETRY=.FALSE.
PRINT *,' Integration region symmetric'
! May save Nx1-isOdd integrations in each time step
! This is not implemented yet.
!Nx = Nx1*(Nx1-1)/2-Nx1+isOdd
ENDIF
CC = TWOPI*SQRT(-R2(1)/R4(1)) ! normalizing constant = 1/ expected number of zero-up-crossings of X'
ELSE ! level u separated Mm
Nx = (Nx1-1)*(Nx1-1)
IF ( ABS(u).LE.1D-8.AND.H(1)+H(Nx1+1).EQ.0.AND.
& (H(Nx1)+H(2*Nx1).EQ.0) ) THEN
SYMMETRY=.FALSE.
PRINT *,' Integration region symmetric'
! Not implemented for DEF <= 3
!IF (DEF.LE.3) Nx = (Nx1-1)*(Nx1-2)/2
ENDIF
IF (DEF.GT.3) THEN
Nstart = MAX(Nstart,3)
Nc = 5
NI=5; Nd=3;
ENDIF
CC = TWOPI*SQRT(-R0(1)/R2(1))*exp(0.5D0*u*u/R0(1)) ! normalizing constant= 1/ expected number of u-up-crossings of X
ENDIF
!print *,'def',def
IF (Nx.GT.1) THEN
IF ((DEF.EQ.0.OR.DEF.EQ.2)) THEN ! (M,m) or (M,m)v distribution wanted
allocate(ansr(Nx1,Nx1,1),stat=status)
ELSE ! (M,m,TMm), (M,m,TMm)v (M,m,TMd)v or (M,M,Tdm)v distributions wanted
allocate(ansr(Nx1,Nx1,Ntime),stat=status)
ENDIF
ELSEIF (DEF.GT.3) THEN ! Conditional distribution for (TMd,TMm)v or (Tdm,TMm)v given (M,m) wanted
allocate(ansr(1,Ntime,Ntime),stat=status)
ELSE ! Conditional distribution for (TMm) or (TMm)v given (M,m) wanted
allocate(ansr(1,1,Ntime),stat=status)
ENDIF
if (status.ne.0) print *,'can not allocate ansr'
allocate(BIG(Ntime+Nc+1,Ntime+Nc+1),stat=status)
if (status.ne.0) print *,'can not allocate BIG'
allocate(ex(1:Ntime+Nc+1),stat=status)
if (status.ne.0) print *,'can not allocate ex'
allocate(fxind(Nx),xc(Nc,Nx))
! Initialization
!~~~~~~~~~~~~~~~~~
BIG = 0.d0
ex = 0.d0
ansr = 0.d0
a_up = 0.d0
a_lo = 0.d0
xc(:,:) = 0.d0
!xc(:,1:Nx) = 0.d0
!xc(2,1:Nx) = 0.d0
a_lo(1,1) = -Xtinf
a_lo(1,2) = -XdInf
a_up(1,3) = +XdInf
a_lo(1,4) = -Xtinf
ij = 0
IF (DEF.LE.1) THEN ! Max2min and period/wavelength
do I=2,Nx1
J = IJ+I-1
xc(3,IJ+1:J) = h(I)
xc(4,IJ+1:J) = h(1:I-1)
IJ = J
enddo
ELSE
! Level u separated Max2min
xc(Nc,:) = u
! H(1) = H(Nx1+1)= u => start do loop at I=2 since by definition we must have: minimum<u-level<Maximum
do i=2,Nx1
J = IJ+Nx1-1
xc(3,IJ+1:J) = h(i) ! Max > u
xc(4,IJ+1:J) = h(Nx1+2:2*Nx1) ! Min < u
IJ = J
enddo
!CALL ECHO(transpose(xc(3:5,:)))
if (DEF.GT.3) GOTO 200
ENDIF
do Ntd = Nstart,Ntime
!Ntd=tn
Ntdc = Ntd+Nc
Nt = Ntd-Nd;
indI(2) = Nt;
indI(3) = Nt+1;
indI(4) = Ntd;
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,0,R0,R1,R2,R3,R4) ! positive wave period
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
IF (Nx.LT.2) THEN
! Density of TMm given the Max and the Min. Note that the density is not scaled to unity
ansr(1,1,Ntd) = fxind(1)*CC
GOTO 100
ENDIF
IJ = 0
SELECT CASE (DEF)
CASE(:0)
! joint density of (M,m)
!~~~~~~~~~~~~~~~~~~~~~~~~
do i = 2, Nx1
J = IJ+i-1
ansr(1:i-1,i,1) = ansr(1:i-1,i,1)+fxind(ij+1:J)*CC*dt
IJ=J
enddo
CASE (1)
! joint density of (M,m,TMm)
do i = 2, Nx1
J = IJ+i-1
ansr(1:i-1,i,Ntd) = fxind(ij+1:J)*CC
IJ = J
enddo
CASE (2)
! joint density of level v separated (M,m)v
do i = 2,Nx1
J = IJ+Nx1-1
ansr(2:Nx1,i,1) = ansr(2:Nx1,i,1)+fxind(ij+1:J)*CC*dt
IJ = J
enddo
CASE (3:)
! joint density of level v separated (M,m,TMm)v
do i = 2,Nx1
J = IJ+Nx1-1
ansr(2:Nx1,i,Ntd) = ansr(2:Nx1,i,Ntd)+fxind(ij+1:J)*CC
IJ = J
enddo
END SELECT
100 if (ALLOCATED(COV)) then
write(11,*) COV(:) ! save coefficient of variation
endif
print *,'Ready: ',Ntd,' of ',Ntime
enddo
goto 800
200 do tn = Nstart,Ntime
Ntd = tn+1
Ntdc = Ntd + Nc
Nt = Ntd - Nd;
indI(2) = Nt;
indI(3) = Nt + 1;
indI(4) = Nt + 2;
indI(5) = Ntd;
!CALL COV_INPUT2(BIG(1:Ntdc,1:Ntdc),tn,-2,R0,R1,R2,R3,R4) ! positive wave period
IF (SYMMETRY) GOTO 300
do ts = 2,tn-1
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period
!print *,'Big='
!CALL ECHO(BIG(1:Ntdc,1:MIN(Ntdc,10)))
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
SELECT CASE (def)
CASE (:4)
IF (Nx.EQ.1) THEN
! Joint density (TMd,TMm) given the Max and the min. Note the density is not scaled to unity
ansr(1,ts,tn) = fxind(1)*CC
ELSE
! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd).
ij = 0
do i = 2,Nx1
J = IJ+Nx1-1
ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+
& fxind(ij+1:J)*CC*dt
IJ = J
enddo
ENDIF
CASE (5:)
IF (Nx.EQ.1) THEN
! Joint density (Tdm,TMm) given the Max and the min. Note the density is not scaled to unity
ansr(1,tn-ts+1,tn) = fxind(1)*CC
ELSE
! 5, gives level u separated Max2min and wave period from the crossing of level u to the min (M,m,Tdm).
ij = 0
do i = 2,Nx1
J = IJ+Nx1-1
ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+
& fxind(ij+1:J)*CC*dt
IJ = J
enddo
ENDIF
END SELECT
if (ALLOCATED(COV)) then
write(11,*) COV(:) ! save coefficient of variation
endif
enddo
GOTO 400
300 do ts = 2,FLOOR(DBLE(Ntd)/2.d0) ! Using the symmetry since U = 0 and the transformation is linear
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period
!print *,'Big='
!CALL ECHO(BIG(1:Ntdc,1:Ntdc))
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
IF (Nx.EQ.1) THEN
! Joint density of (TMd,TMm),(Tdm,TMm) given the max and the min. Note that the density is not scaled to unity
ansr(1,ts,tn) = fxind(1)*CC
IF (ts.LT.tn-ts+1) THEN
ansr(1,tn-ts+1,tn) = fxind(1)*CC
ENDIF
GOTO 350
ENDIF
IJ = 0
SELECT CASE (def)
CASE (:4)
! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd).
do i = 2,Nx1
j = ij+Nx1-1
ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+
& fxind(ij+1:J)*CC*dt
IF (ts.LT.tn-ts+1) THEN
ansr(i,2:Nx1,tn-ts+1) =
& ansr(i,2:Nx1,tn-ts+1)+fxind(ij+1:J)*CC*dt ! exploiting the symmetry
ENDIF
IJ = J
enddo
CASE (5:)
! 5, gives level u separated Max2min and wave period from the crossing of level u to min (M,m,Tdm).
do i = 2,Nx1
J = IJ+Nx1-1
ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+
& fxind(ij+1:J)*CC*dt
IF (ts.LT.tn-ts+1) THEN
ansr(i,2:Nx1,ts) = ansr(i,2:Nx1,ts)+
& fxind(ij+1:J)*CC*dt ! exploiting the symmetry
ENDIF
IJ = J
enddo
END SELECT
350 enddo
400 print *,'Ready: ',tn,' of ',Ntime
enddo
800 open (unit=11, file='dens.out', STATUS='unknown')
!print *,'ans, IJ,def', shape(ansr),IJ,DEF
if (Nx.GT.1) THEN
ij = 1
IF (DEF.GT.2.OR.DEF.EQ.1) IJ = Ntime
!print *,'ans, IJ,def', size(ansr),IJ,DEF
do ts = 1,ij
do j=1,Nx1
do i=1,Nx1
write(11,*) ansr(i,j,ts)
enddo
enddo
enddo
ELSE
ij = 1
IF (DEF.GT.3) IJ = Ntime
!print *,'ans, IJ,def', size(ansr),IJ,DEF
do ts = 1,Ntime
do j = 1,ij
write(11,*) ansr(1,j,ts)
enddo
enddo
ENDIF
close(11)
900 continue
deallocate(BIG)
deallocate(ex)
deallocate(fxind)
deallocate(ansr)
deallocate(xc)
deallocate(R0)
deallocate(R1)
deallocate(R2)
deallocate(R3)
deallocate(R4)
deallocate(h)
if (allocated(COV) ) then
deallocate(COV)
endif
stop
!return
CONTAINS
SUBROUTINE INIT_LEVELS
& (Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx,dT,u,def)
IMPLICIT NONE
integer, intent(out):: Ntime,Nstart,NIT,speed,Nx,DEF,SCIS,SEED1
double precision ,intent(out) :: dT,U
OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN')
READ (14,*) Ntime
READ (14,*) Nstart
READ (14,*) NIT
READ (14,*) speed
READ (14,*) SCIS
READ (14,*) seed1
READ (14,*) Nx
READ (14,*) dT
READ (14,*) U
READ (14,*) DEF
if (Ntime.lt.2) then
print *,'The number of wavelength points is too small, stop'
stop
end if
CLOSE(UNIT=14)
RETURN
END SUBROUTINE INIT_LEVELS
C******************************************************
SUBROUTINE INIT_AMPLITUDES(h,Nx)
IMPLICIT NONE
double precision, dimension(:), intent(out) :: h
integer, intent(in) :: Nx
integer :: ix
OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN')
C
C Reading in amplitudes
C
do ix=1,Nx
READ (4,*) H(ix)
enddo
CLOSE(UNIT=4)
RETURN
END SUBROUTINE INIT_AMPLITUDES
C**************************************************
C***********************************************************************
C***********************************************************************
SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4)
IMPLICIT NONE
double precision, dimension(:),intent(out) :: R0,R1,R2
double precision, dimension(:),intent(out) :: R3,R4
integer,intent(in) :: Ntime
integer :: i
open (unit=1, file='Cd0.in',STATUS='unknown')
open (unit=2, file='Cd1.in',STATUS='unknown')
open (unit=3, file='Cd2.in',STATUS='unknown')
open (unit=4, file='Cd3.in',STATUS='unknown')
open (unit=5, file='Cd4.in',STATUS='unknown')
do i=1,Ntime
read(1,*) R0(i)
read(2,*) R1(i)
read(3,*) R2(i)
read(4,*) R3(i)
read(5,*) R4(i)
enddo
close(1)
close(2)
close(3)
close(3)
close(5)
return
END SUBROUTINE INIT_COVARIANCES
C**********************************************************************
SUBROUTINE COV_INPUT2(BIG,tn,ts,R0,R1,R2,R3,R4)
IMPLICIT NONE
double precision, dimension(:,:),intent(inout) :: BIG
double precision, dimension(:),intent(in) :: R0,R1,R2
double precision, dimension(:),intent(in) :: R3,R4
integer ,intent(in) :: tn,ts
integer :: i,j,N,shft
! the order of the variables in the covariance matrix
! are organized as follows:
! for ts <= 1:
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn)
! = [ Xt | Xd | Xc ]
!
! for ts > =2:
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) X(ts)
! = [ Xt | Xd | Xc ]
!
! where
!
! Xt= time points in the indicator function
! Xd= derivatives
! Xc=variables to condition on
! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s),
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
!
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
if (ts.GT.1) THEN
! Assumption: a previous call to covinput has been made
! need only to update the last row and column of big:
N=tn+5
!Cov(Xt,Xc)
do i=1,tn-2
j=abs(i+1-ts)
BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts))
enddo
!Cov(Xc)
BIG(N ,N) = R0(1) ! cov(X(ts),X(ts))
BIG(tn+3 ,N) = R0(ts) ! cov(X(t1),X(ts))
BIG(tn+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts))
BIG(tn+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts))
BIG(tn+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts))
!Cov(Xd,Xc)
BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts))
BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts))
! make lower triangular part equal to upper
do j=1,N-1
BIG(N,j) = BIG(j,N)
enddo
return
endif
IF (ts.LT.0) THEN
shft = 1
N=tn+5;
ELSE
shft = 0
N=tn+4;
ENDIF
do i=1,tn-2
!cov(Xt)
do j=i,tn-2
BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1))
enddo
!cov(Xt,Xc)
BIG(i ,tn+3) = R1(i+1) !cov(X'(ti+1),X(t1))
BIG(tn-1-i ,tn+4) = -R1(i+1) !cov(X'(ti+1),X(tn))
BIG(i ,tn+1) = -R2(i+1) !cov(X'(ti+1),X'(t1))
BIG(tn-1-i ,tn+2) = -R2(i+1) !cov(X'(ti+1),X'(tn))
!Cov(Xt,Xd)
BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1))
BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn))
enddo
!cov(Xd)
BIG(tn-1 ,tn-1 ) = R4(1)
BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn))
BIG(tn ,tn ) = R4(1)
!cov(Xc)
BIG(tn+3 ,tn+3) = R0(1) ! cov(X(t1),X(t1))
BIG(tn+3 ,tn+4) = R0(tn) ! cov(X(t1),X(tn))
BIG(tn+1 ,tn+3) = 0.d0 ! cov(X(t1),X'(t1))
BIG(tn+2 ,tn+3) = R1(tn) ! cov(X(t1),X'(tn))
BIG(tn+4 ,tn+4) = R0(1) ! cov(X(tn),X(tn))
BIG(tn+1 ,tn+4) =-R1(tn) ! cov(X(tn),X'(t1))
BIG(tn+2 ,tn+4) = 0.d0 ! cov(X(tn),X'(tn))
BIG(tn+1 ,tn+1) =-R2(1) ! cov(X'(t1),X'(t1))
BIG(tn+1 ,tn+2) =-R2(tn) ! cov(X'(t1),X'(tn))
BIG(tn+2 ,tn+2) =-R2(1) ! cov(X'(tn),X'(tn))
!Xc=X(t1),X(tn),X'(t1),X'(tn)
!Xd=X''(t1),X''(tn)
!cov(Xd,Xc)
BIG(tn-1 ,tn+3) = R2(1) !cov(X''(t1),X(t1))
BIG(tn-1 ,tn+4) = R2(tn) !cov(X''(t1),X(tn))
BIG(tn-1 ,tn+1) = 0.d0 !cov(X''(t1),X'(t1))
BIG(tn-1 ,tn+2) = R3(tn) !cov(X''(t1),X'(tn))
BIG(tn ,tn+3) = R2(tn) !cov(X''(tn),X(t1))
BIG(tn ,tn+4) = R2(1) !cov(X''(tn),X(tn))
BIG(tn ,tn+1) =-R3(tn) !cov(X''(tn),X'(t1))
BIG(tn ,tn+2) = 0.d0 !cov(X''(tn),X'(tn))
! make lower triangular part equal to upper
do j=1,N-1
do i=j+1,N
BIG(i,j) = BIG(j,i)
enddo
enddo
RETURN
END SUBROUTINE COV_INPUT2
SUBROUTINE COV_INPUT(BIG,tn,ts,R0,R1,R2,R3,R4)
IMPLICIT NONE
double precision, dimension(:,:),intent(inout) :: BIG
double precision, dimension(:),intent(in) :: R0,R1,R2
double precision, dimension(:),intent(in) :: R3,R4
integer ,intent(in) :: tn,ts
integer :: i,j,N,shft, tnold = 0
! the order of the variables in the covariance matrix
! are organized as follows:
! for ts <= 1:
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn)
! = [ Xt | Xd | Xc ]
!
! for ts > =2:
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(ts) X'(t1),X'(tn),X(t1),X(tn) X(ts)
! = [ Xt | Xd | Xc ]
!
! where
!
! Xt= time points in the indicator function
! Xd= derivatives
! Xc=variables to condition on
! Computations of all covariances follows simple rules: Cov(X(t),X(s)) = r(t,s),
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
!
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
SAVE tnold
if (ts.GT.1) THEN
shft = 1
N=tn+5+shft
!Cov(Xt,Xc)
do i=1,tn-2
j=abs(i+1-ts)
BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts))
enddo
!Cov(Xc)
BIG(N ,N) = R0(1) ! cov(X(ts),X(ts))
BIG(tn+shft+3 ,N) = R0(ts) ! cov(X(t1),X(ts))
BIG(tn+shft+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts))
BIG(tn+shft+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts))
BIG(tn+shft+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts))
!Cov(Xd,Xc)
BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts))
BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts))
!ADD a level u crossing at ts
!Cov(Xt,Xd)
do i = 1,tn-2
j = abs(i+1-ts)
BIG(i,tn+shft) = -R2(j+1) !cov(X'(ti+1),X'(ts))
enddo
!Cov(Xd)
BIG(tn+shft,tn+shft) = -R2(1) !cov(X'(ts),X'(ts))
BIG(tn-1 ,tn+shft) = R3(ts) !cov(X''(t1),X'(ts))
BIG(tn ,tn+shft) = -R3(tn-ts+1) !cov(X''(tn),X'(ts))
!Cov(Xd,Xc)
BIG(tn+shft ,N ) = 0.d0 !cov(X'(ts),X(ts))
BIG(tn+shft,tn+shft+3) = R1(ts) ! cov(X'(ts),X(t1))
BIG(tn+shft,tn+shft+4) = -R1(tn-ts+1) ! cov(X'(ts),X(tn))
BIG(tn+shft,tn+shft+1) = -R2(ts) ! cov(X'(ts),X'(t1))
BIG(tn+shft,tn+shft+2) = -R2(tn-ts+1) ! cov(X'(ts),X'(tn))
IF (tnold.EQ.tn) THEN ! A previous call to covinput with tn==tnold has been made
! need only to update row and column N and tn+1 of big:
! make lower triangular part equal to upper and then return
do j=1,tn+shft
BIG(N,j) = BIG(j,N)
BIG(tn+shft,j) = BIG(j,tn+shft)
enddo
do j=tn+shft+1,N-1
BIG(N,j) = BIG(j,N)
BIG(j,tn+shft) = BIG(tn+shft,j)
enddo
return
ENDIF
tnold = tn
ELSE
N = tn+4
shft = 0
endif
do i=1,tn-2
!cov(Xt)
do j=i,tn-2
BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1))
enddo
!cov(Xt,Xc)
BIG(i ,tn+shft+3) = R1(i+1) !cov(X'(ti+1),X(t1))
BIG(tn-1-i ,tn+shft+4) = -R1(i+1) !cov(X'(ti+1),X(tn))
BIG(i ,tn+shft+1) = -R2(i+1) !cov(X'(ti+1),X'(t1))
BIG(tn-1-i ,tn+shft+2) = -R2(i+1) !cov(X'(ti+1),X'(tn))
!Cov(Xt,Xd)
BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1))
BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn))
enddo
!cov(Xd)
BIG(tn-1 ,tn-1 ) = R4(1)
BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn))
BIG(tn ,tn ) = R4(1)
!cov(Xc)
BIG(tn+shft+3 ,tn+shft+3) = R0(1) ! cov(X(t1),X(t1))
BIG(tn+shft+3 ,tn+shft+4) = R0(tn) ! cov(X(t1),X(tn))
BIG(tn+shft+1 ,tn+shft+3) = 0.d0 ! cov(X(t1),X'(t1))
BIG(tn+shft+2 ,tn+shft+3) = R1(tn) ! cov(X(t1),X'(tn))
BIG(tn+shft+4 ,tn+shft+4) = R0(1) ! cov(X(tn),X(tn))
BIG(tn+shft+1 ,tn+shft+4) =-R1(tn) ! cov(X(tn),X'(t1))
BIG(tn+shft+2 ,tn+shft+4) = 0.d0 ! cov(X(tn),X'(tn))
BIG(tn+shft+1 ,tn+shft+1) =-R2(1) ! cov(X'(t1),X'(t1))
BIG(tn+shft+1 ,tn+shft+2) =-R2(tn) ! cov(X'(t1),X'(tn))
BIG(tn+shft+2 ,tn+shft+2) =-R2(1) ! cov(X'(tn),X'(tn))
!Xc=X(t1),X(tn),X'(t1),X'(tn)
!Xd=X''(t1),X''(tn)
!cov(Xd,Xc)
BIG(tn-1 ,tn+shft+3) = R2(1) !cov(X''(t1),X(t1))
BIG(tn-1 ,tn+shft+4) = R2(tn) !cov(X''(t1),X(tn))
BIG(tn-1 ,tn+shft+1) = 0.d0 !cov(X''(t1),X'(t1))
BIG(tn-1 ,tn+shft+2) = R3(tn) !cov(X''(t1),X'(tn))
BIG(tn ,tn+shft+3) = R2(tn) !cov(X''(tn),X(t1))
BIG(tn ,tn+shft+4) = R2(1) !cov(X''(tn),X(tn))
BIG(tn ,tn+shft+1) =-R3(tn) !cov(X''(tn),X'(t1))
BIG(tn ,tn+shft+2) = 0.d0 !cov(X''(tn),X'(tn))
! make lower triangular part equal to upper
do j=1,N-1
do i=j+1,N
BIG(i,j) = BIG(j,i)
enddo
enddo
RETURN
END SUBROUTINE COV_INPUT
END PROGRAM sp2mmt