|
|
|
#
|
|
|
|
# Author: Travis Oliphant 2002-2011 with contributions from
|
|
|
|
# SciPy Developers 2004-2011
|
|
|
|
#
|
|
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
|
|
|
|
from scipy._lib.six import string_types, exec_
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import keyword
|
|
|
|
import re
|
|
|
|
import inspect
|
|
|
|
import types
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from scipy.misc import doccer
|
|
|
|
from ._distr_params import distcont, distdiscrete
|
|
|
|
|
|
|
|
from scipy.special import xlogy, chndtr, gammaln, hyp0f1, comb
|
|
|
|
|
|
|
|
# for root finding for discrete distribution ppf, and max likelihood estimation
|
|
|
|
from scipy import optimize
|
|
|
|
|
|
|
|
# for functions of continuous distributions (e.g. moments, entropy, cdf)
|
|
|
|
from scipy import integrate
|
|
|
|
|
|
|
|
# to approximate the pdf of a continuous distribution given its cdf
|
|
|
|
from scipy.misc import derivative
|
|
|
|
|
|
|
|
from numpy import (arange, putmask, ravel, take, ones, sum, shape,
|
|
|
|
product, reshape, zeros, floor, logical_and, log, sqrt, exp,
|
|
|
|
ndarray)
|
|
|
|
|
|
|
|
from numpy import (place, any, argsort, argmax, vectorize,
|
|
|
|
asarray, nan, inf, isinf, NINF, empty)
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import numpy.random as mtrand
|
|
|
|
|
|
|
|
from ._constants import _EPS, _XMAX
|
|
|
|
from .estimation import FitDistribution
|
|
|
|
|
|
|
|
try:
|
|
|
|
from new import instancemethod
|
|
|
|
except ImportError:
|
|
|
|
# Python 3
|
|
|
|
def instancemethod(func, obj, cls):
|
|
|
|
return types.MethodType(func, obj)
|
|
|
|
|
|
|
|
|
|
|
|
# These are the docstring parts used for substitution in specific
|
|
|
|
# distribution docstrings
|
|
|
|
|
|
|
|
docheaders = {'methods': """\nMethods\n-------\n""",
|
|
|
|
'parameters': """\nParameters\n---------\n""",
|
|
|
|
'notes': """\nNotes\n-----\n""",
|
|
|
|
'examples': """\nExamples\n--------\n"""}
|
|
|
|
|
|
|
|
_doc_rvs = """\
|
|
|
|
``rvs(%(shapes)s, loc=0, scale=1, size=1)``
|
|
|
|
Random variates.
|
|
|
|
"""
|
|
|
|
_doc_pdf = """\
|
|
|
|
``pdf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Probability density function.
|
|
|
|
"""
|
|
|
|
_doc_logpdf = """\
|
|
|
|
``logpdf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Log of the probability density function.
|
|
|
|
"""
|
|
|
|
_doc_pmf = """\
|
|
|
|
``pmf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Probability mass function.
|
|
|
|
"""
|
|
|
|
_doc_logpmf = """\
|
|
|
|
``logpmf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Log of the probability mass function.
|
|
|
|
"""
|
|
|
|
_doc_cdf = """\
|
|
|
|
``cdf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Cumulative density function.
|
|
|
|
"""
|
|
|
|
_doc_logcdf = """\
|
|
|
|
``logcdf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Log of the cumulative density function.
|
|
|
|
"""
|
|
|
|
_doc_sf = """\
|
|
|
|
``sf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Survival function (1-cdf --- sometimes more accurate).
|
|
|
|
"""
|
|
|
|
_doc_logsf = """\
|
|
|
|
``logsf(x, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Log of the survival function.
|
|
|
|
"""
|
|
|
|
_doc_ppf = """\
|
|
|
|
``ppf(q, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Percent point function (inverse of cdf --- percentiles).
|
|
|
|
"""
|
|
|
|
_doc_isf = """\
|
|
|
|
``isf(q, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Inverse survival function (inverse of sf).
|
|
|
|
"""
|
|
|
|
_doc_moment = """\
|
|
|
|
``moment(n, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Non-central moment of order n
|
|
|
|
"""
|
|
|
|
_doc_stats = """\
|
|
|
|
``stats(%(shapes)s, loc=0, scale=1, moments='mv')``
|
|
|
|
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
|
|
|
|
"""
|
|
|
|
_doc_entropy = """\
|
|
|
|
``entropy(%(shapes)s, loc=0, scale=1)``
|
|
|
|
(Differential) entropy of the RV.
|
|
|
|
"""
|
|
|
|
_doc_fit = """\
|
|
|
|
``fit(data, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Parameter estimates for generic data.
|
|
|
|
"""
|
|
|
|
_doc_expect = """\
|
|
|
|
``expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)``
|
|
|
|
Expected value of a function (of one argument) with respect to the distribution.
|
|
|
|
"""
|
|
|
|
_doc_expect_discrete = """\
|
|
|
|
``expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)``
|
|
|
|
Expected value of a function (of one argument) with respect to the distribution.
|
|
|
|
"""
|
|
|
|
_doc_median = """\
|
|
|
|
``median(%(shapes)s, loc=0, scale=1)``
|
|
|
|
Median of the distribution.
|
|
|
|
"""
|
|
|
|
_doc_mean = """\
|
|
|
|
``mean(%(shapes)s, loc=0, scale=1)``
|
|
|
|
Mean of the distribution.
|
|
|
|
"""
|
|
|
|
_doc_var = """\
|
|
|
|
``var(%(shapes)s, loc=0, scale=1)``
|
|
|
|
Variance of the distribution.
|
|
|
|
"""
|
|
|
|
_doc_std = """\
|
|
|
|
``std(%(shapes)s, loc=0, scale=1)``
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
"""
|
|
|
|
_doc_interval = """\
|
|
|
|
``interval(alpha, %(shapes)s, loc=0, scale=1)``
|
|
|
|
Endpoints of the range that contains alpha percent of the distribution
|
|
|
|
"""
|
|
|
|
_doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf,
|
|
|
|
_doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf,
|
|
|
|
_doc_logsf, _doc_ppf, _doc_isf, _doc_moment,
|
|
|
|
_doc_stats, _doc_entropy, _doc_fit,
|
|
|
|
_doc_expect, _doc_median,
|
|
|
|
_doc_mean, _doc_var, _doc_std, _doc_interval])
|
|
|
|
|
|
|
|
# Note that the two lines for %(shapes) are searched for and replaced in
|
|
|
|
# rv_continuous and rv_discrete - update there if the exact string changes
|
|
|
|
_doc_default_callparams = """
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
q : array_like
|
|
|
|
lower or upper tail probability
|
|
|
|
%(shapes)s : array_like
|
|
|
|
shape parameters
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
size : int or tuple of ints, optional
|
|
|
|
shape of random variates (default computed from input arguments )
|
|
|
|
moments : str, optional
|
|
|
|
composed of letters ['mvsk'] specifying which moments to compute where
|
|
|
|
'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
|
|
|
|
'k' = (Fisher's) kurtosis.
|
|
|
|
Default is 'mv'.
|
|
|
|
"""
|
|
|
|
_doc_default_longsummary = """\
|
|
|
|
Continuous random variables are defined from a standard form and may
|
|
|
|
require some shape parameters to complete its specification. Any
|
|
|
|
optional keyword parameters can be passed to the methods of the RV
|
|
|
|
object as given below:
|
|
|
|
"""
|
|
|
|
_doc_default_frozen_note = """
|
|
|
|
Alternatively, the object may be called (as a function) to fix the shape,
|
|
|
|
location, and scale parameters returning a "frozen" continuous RV object:
|
|
|
|
|
|
|
|
rv = %(name)s(%(shapes)s, loc=0, scale=1)
|
|
|
|
- Frozen RV object with the same methods but holding the given shape,
|
|
|
|
location, and scale fixed.
|
|
|
|
"""
|
|
|
|
_doc_default_example = """\
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> from wafo.stats import %(name)s
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> fig, ax = plt.subplots(1, 1)
|
|
|
|
|
|
|
|
Calculate a few first moments:
|
|
|
|
|
|
|
|
%(set_vals_stmt)s
|
|
|
|
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')
|
|
|
|
|
|
|
|
Display the probability density function (``pdf``):
|
|
|
|
|
|
|
|
>>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s),
|
|
|
|
... %(name)s.ppf(0.99, %(shapes)s), 100)
|
|
|
|
>>> ax.plot(x, %(name)s.pdf(x, %(shapes)s),
|
|
|
|
... 'r-', lw=5, alpha=0.6, label='%(name)s pdf')
|
|
|
|
|
|
|
|
Alternatively, freeze the distribution and display the frozen pdf:
|
|
|
|
|
|
|
|
>>> rv = %(name)s(%(shapes)s)
|
|
|
|
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
|
|
|
|
|
|
|
|
Check accuracy of ``cdf`` and ``ppf``:
|
|
|
|
|
|
|
|
>>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s)
|
|
|
|
>>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s))
|
|
|
|
True
|
|
|
|
|
|
|
|
Generate random numbers:
|
|
|
|
|
|
|
|
>>> r = %(name)s.rvs(%(shapes)s, size=1000)
|
|
|
|
|
|
|
|
And compare the histogram:
|
|
|
|
|
|
|
|
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
|
|
|
|
>>> ax.legend(loc='best', frameon=False)
|
|
|
|
>>> plt.show()
|
|
|
|
|
|
|
|
Compare ML and MPS method
|
|
|
|
>>> phat = %(name)s.fit2(R, method='ml');
|
|
|
|
>>> phat.plotfitsummary(); plt.figure(plt.gcf().number+1)
|
|
|
|
>>> phat2 = %(name)s.fit2(R, method='mps')
|
|
|
|
>>> phat2.plotfitsummary(); plt.figure(plt.gcf().number+1)
|
|
|
|
|
|
|
|
Fix loc=0 and estimate shapes and scale
|
|
|
|
>>> phat3 = %(name)s.fit2(R, scale=1, floc=0, method='mps')
|
|
|
|
>>> phat3.plotfitsummary(); plt.figure(plt.gcf().number+1)
|
|
|
|
|
|
|
|
Accurate confidence interval with profile loglikelihood
|
|
|
|
>>> lp = phat3.profile()
|
|
|
|
>>> lp.plot()
|
|
|
|
>>> pci = lp.get_bounds()
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
_doc_default = ''.join([_doc_default_longsummary,
|
|
|
|
_doc_allmethods,
|
|
|
|
_doc_default_callparams,
|
|
|
|
_doc_default_frozen_note,
|
|
|
|
_doc_default_example])
|
|
|
|
|
|
|
|
_doc_default_before_notes = ''.join([_doc_default_longsummary,
|
|
|
|
_doc_allmethods,
|
|
|
|
_doc_default_callparams,
|
|
|
|
_doc_default_frozen_note])
|
|
|
|
|
|
|
|
docdict = {
|
|
|
|
'rvs': _doc_rvs,
|
|
|
|
'pdf': _doc_pdf,
|
|
|
|
'logpdf': _doc_logpdf,
|
|
|
|
'cdf': _doc_cdf,
|
|
|
|
'logcdf': _doc_logcdf,
|
|
|
|
'sf': _doc_sf,
|
|
|
|
'logsf': _doc_logsf,
|
|
|
|
'ppf': _doc_ppf,
|
|
|
|
'isf': _doc_isf,
|
|
|
|
'stats': _doc_stats,
|
|
|
|
'entropy': _doc_entropy,
|
|
|
|
'fit': _doc_fit,
|
|
|
|
'moment': _doc_moment,
|
|
|
|
'expect': _doc_expect,
|
|
|
|
'interval': _doc_interval,
|
|
|
|
'mean': _doc_mean,
|
|
|
|
'std': _doc_std,
|
|
|
|
'var': _doc_var,
|
|
|
|
'median': _doc_median,
|
|
|
|
'allmethods': _doc_allmethods,
|
|
|
|
'callparams': _doc_default_callparams,
|
|
|
|
'longsummary': _doc_default_longsummary,
|
|
|
|
'frozennote': _doc_default_frozen_note,
|
|
|
|
'example': _doc_default_example,
|
|
|
|
'default': _doc_default,
|
|
|
|
'before_notes': _doc_default_before_notes
|
|
|
|
}
|
|
|
|
|
|
|
|
# Reuse common content between continuous and discrete docs, change some
|
|
|
|
# minor bits.
|
|
|
|
docdict_discrete = docdict.copy()
|
|
|
|
|
|
|
|
docdict_discrete['pmf'] = _doc_pmf
|
|
|
|
docdict_discrete['logpmf'] = _doc_logpmf
|
|
|
|
docdict_discrete['expect'] = _doc_expect_discrete
|
|
|
|
_doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf',
|
|
|
|
'ppf', 'isf', 'stats', 'entropy', 'expect', 'median',
|
|
|
|
'mean', 'var', 'std', 'interval',
|
|
|
|
'fit']
|
|
|
|
for obj in _doc_disc_methods:
|
|
|
|
docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '')
|
|
|
|
docdict_discrete.pop('pdf')
|
|
|
|
docdict_discrete.pop('logpdf')
|
|
|
|
|
|
|
|
_doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods])
|
|
|
|
docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods
|
|
|
|
|
|
|
|
docdict_discrete['longsummary'] = _doc_default_longsummary.replace(
|
|
|
|
'Continuous', 'Discrete')
|
|
|
|
_doc_default_frozen_note = """
|
|
|
|
Alternatively, the object may be called (as a function) to fix the shape and
|
|
|
|
location parameters returning a "frozen" discrete RV object:
|
|
|
|
|
|
|
|
rv = %(name)s(%(shapes)s, loc=0)
|
|
|
|
- Frozen RV object with the same methods but holding the given shape and
|
|
|
|
location fixed.
|
|
|
|
"""
|
|
|
|
docdict_discrete['frozennote'] = _doc_default_frozen_note
|
|
|
|
|
|
|
|
_doc_default_discrete_example = """\
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> from wafo.stats import %(name)s
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> fig, ax = plt.subplots(1, 1)
|
|
|
|
|
|
|
|
Calculate a few first moments:
|
|
|
|
|
|
|
|
%(set_vals_stmt)s
|
|
|
|
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')
|
|
|
|
|
|
|
|
Display the probability mass function (``pmf``):
|
|
|
|
|
|
|
|
>>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s),
|
|
|
|
... %(name)s.ppf(0.99, %(shapes)s))
|
|
|
|
>>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf')
|
|
|
|
>>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5)
|
|
|
|
|
|
|
|
Alternatively, freeze the distribution and display the frozen ``pmf``:
|
|
|
|
|
|
|
|
>>> rv = %(name)s(%(shapes)s)
|
|
|
|
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
|
|
|
|
... label='frozen pmf')
|
|
|
|
>>> ax.legend(loc='best', frameon=False)
|
|
|
|
>>> plt.show()
|
|
|
|
|
|
|
|
Check accuracy of ``cdf`` and ``ppf``:
|
|
|
|
|
|
|
|
>>> prob = %(name)s.cdf(x, %(shapes)s)
|
|
|
|
>>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s))
|
|
|
|
True
|
|
|
|
|
|
|
|
Generate random numbers:
|
|
|
|
|
|
|
|
>>> r = %(name)s.rvs(%(shapes)s, size=1000)
|
|
|
|
"""
|
|
|
|
docdict_discrete['example'] = _doc_default_discrete_example
|
|
|
|
|
|
|
|
_doc_default_before_notes = ''.join([docdict_discrete['longsummary'],
|
|
|
|
docdict_discrete['allmethods'],
|
|
|
|
docdict_discrete['callparams'],
|
|
|
|
docdict_discrete['frozennote']])
|
|
|
|
docdict_discrete['before_notes'] = _doc_default_before_notes
|
|
|
|
|
|
|
|
_doc_default_disc = ''.join([docdict_discrete['longsummary'],
|
|
|
|
docdict_discrete['allmethods'],
|
|
|
|
docdict_discrete['frozennote'],
|
|
|
|
docdict_discrete['example']])
|
|
|
|
docdict_discrete['default'] = _doc_default_disc
|
|
|
|
|
|
|
|
|
|
|
|
# clean up all the separate docstring elements, we do not need them anymore
|
|
|
|
for obj in [s for s in dir() if s.startswith('_doc_')]:
|
|
|
|
exec('del ' + obj)
|
|
|
|
del obj
|
|
|
|
try:
|
|
|
|
del s
|
|
|
|
except NameError:
|
|
|
|
# in Python 3, loop variables are not visible after the loop
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def _moment(data, n, mu=None):
|
|
|
|
if mu is None:
|
|
|
|
mu = data.mean()
|
|
|
|
return ((data - mu)**n).mean()
|
|
|
|
|
|
|
|
|
|
|
|
def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args):
|
|
|
|
if (n == 0):
|
|
|
|
return 1.0
|
|
|
|
elif (n == 1):
|
|
|
|
if mu is None:
|
|
|
|
val = moment_func(1, *args)
|
|
|
|
else:
|
|
|
|
val = mu
|
|
|
|
elif (n == 2):
|
|
|
|
if mu2 is None or mu is None:
|
|
|
|
val = moment_func(2, *args)
|
|
|
|
else:
|
|
|
|
val = mu2 + mu*mu
|
|
|
|
elif (n == 3):
|
|
|
|
if g1 is None or mu2 is None or mu is None:
|
|
|
|
val = moment_func(3, *args)
|
|
|
|
else:
|
|
|
|
mu3 = g1 * np.power(mu2, 1.5) # 3rd central moment
|
|
|
|
val = mu3+3*mu*mu2+mu*mu*mu # 3rd non-central moment
|
|
|
|
elif (n == 4):
|
|
|
|
if g1 is None or g2 is None or mu2 is None or mu is None:
|
|
|
|
val = moment_func(4, *args)
|
|
|
|
else:
|
|
|
|
mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment
|
|
|
|
mu3 = g1*np.power(mu2, 1.5) # 3rd central moment
|
|
|
|
val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu
|
|
|
|
else:
|
|
|
|
val = moment_func(n, *args)
|
|
|
|
|
|
|
|
return val
|
|
|
|
|
|
|
|
|
|
|
|
def _skew(data):
|
|
|
|
"""
|
|
|
|
skew is third central moment / variance**(1.5)
|
|
|
|
"""
|
|
|
|
data = np.ravel(data)
|
|
|
|
mu = data.mean()
|
|
|
|
m2 = ((data - mu)**2).mean()
|
|
|
|
m3 = ((data - mu)**3).mean()
|
|
|
|
return m3 / np.power(m2, 1.5)
|
|
|
|
|
|
|
|
|
|
|
|
def _kurtosis(data):
|
|
|
|
"""
|
|
|
|
kurtosis is fourth central moment / variance**2 - 3
|
|
|
|
"""
|
|
|
|
data = np.ravel(data)
|
|
|
|
mu = data.mean()
|
|
|
|
m2 = ((data - mu)**2).mean()
|
|
|
|
m4 = ((data - mu)**4).mean()
|
|
|
|
return m4 / m2**2 - 3
|
|
|
|
|
|
|
|
|
|
|
|
# Frozen RV class
|
|
|
|
class rv_frozen_old(object):
|
|
|
|
|
|
|
|
def __init__(self, dist, *args, **kwds):
|
|
|
|
self.args = args
|
|
|
|
self.kwds = kwds
|
|
|
|
|
|
|
|
# create a new instance
|
|
|
|
self.dist = dist.__class__(**dist._ctor_param)
|
|
|
|
|
|
|
|
# a, b may be set in _argcheck, depending on *args, **kwds. Ouch.
|
|
|
|
shapes, _, _ = self.dist._parse_args(*args, **kwds)
|
|
|
|
self.dist._argcheck(*shapes)
|
|
|
|
|
|
|
|
def pdf(self, x): # raises AttributeError in frozen discrete distribution
|
|
|
|
return self.dist.pdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def logpdf(self, x):
|
|
|
|
return self.dist.logpdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def cdf(self, x):
|
|
|
|
return self.dist.cdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def logcdf(self, x):
|
|
|
|
return self.dist.logcdf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def ppf(self, q):
|
|
|
|
return self.dist.ppf(q, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def isf(self, q):
|
|
|
|
return self.dist.isf(q, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def rvs(self, size=None):
|
|
|
|
kwds = self.kwds.copy()
|
|
|
|
kwds.update({'size': size})
|
|
|
|
return self.dist.rvs(*self.args, **kwds)
|
|
|
|
|
|
|
|
def sf(self, x):
|
|
|
|
return self.dist.sf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def logsf(self, x):
|
|
|
|
return self.dist.logsf(x, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def stats(self, moments='mv'):
|
|
|
|
kwds = self.kwds.copy()
|
|
|
|
kwds.update({'moments': moments})
|
|
|
|
return self.dist.stats(*self.args, **kwds)
|
|
|
|
|
|
|
|
def median(self):
|
|
|
|
return self.dist.median(*self.args, **self.kwds)
|
|
|
|
|
|
|
|
def mean(self):
|
|
|
|
return self.dist.mean(*self.args, **self.kwds)
|
|
|
|
|
|
|
|
def var(self):
|
|
|
|
return self.dist.var(*self.args, **self.kwds)
|
|
|
|
|
|
|
|
def std(self):
|
|
|
|
return self.dist.std(*self.args, **self.kwds)
|
|
|
|
|
|
|
|
def moment(self, n):
|
|
|
|
return self.dist.moment(n, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def entropy(self):
|
|
|
|
return self.dist.entropy(*self.args, **self.kwds)
|
|
|
|
|
|
|
|
def pmf(self, k):
|
|
|
|
return self.dist.pmf(k, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def logpmf(self, k):
|
|
|
|
return self.dist.logpmf(k, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
def interval(self, alpha):
|
|
|
|
return self.dist.interval(alpha, *self.args, **self.kwds)
|
|
|
|
|
|
|
|
|
|
|
|
# Frozen RV class
|
|
|
|
class rv_frozen(object):
|
|
|
|
''' Frozen continous or discrete 1D Random Variable object (RV)
|
|
|
|
|
|
|
|
Methods
|
|
|
|
-------
|
|
|
|
RV.rvs(size=1)
|
|
|
|
- random variates
|
|
|
|
|
|
|
|
RV.pdf(x)
|
|
|
|
- probability density function (continous case)
|
|
|
|
|
|
|
|
RV.pmf(x)
|
|
|
|
- probability mass function (discrete case)
|
|
|
|
|
|
|
|
RV.cdf(x)
|
|
|
|
- cumulative density function
|
|
|
|
|
|
|
|
RV.sf(x)
|
|
|
|
- survival function (1-cdf --- sometimes more accurate)
|
|
|
|
|
|
|
|
RV.ppf(q)
|
|
|
|
- percent point function (inverse of cdf --- percentiles)
|
|
|
|
|
|
|
|
RV.isf(q)
|
|
|
|
- inverse survival function (inverse of sf)
|
|
|
|
|
|
|
|
RV.stats(moments='mv')
|
|
|
|
- mean('m'), variance('v'), skew('s'), and/or kurtosis('k')
|
|
|
|
|
|
|
|
RV.entropy()
|
|
|
|
- (differential) entropy of the RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array-like
|
|
|
|
quantiles
|
|
|
|
q : array-like
|
|
|
|
lower or upper tail probability
|
|
|
|
size : int or tuple of ints, optional, keyword
|
|
|
|
shape of random variates
|
|
|
|
moments : string, optional, keyword
|
|
|
|
one or more of 'm' mean, 'v' variance, 's' skewness, 'k' kurtosis
|
|
|
|
'''
|
|
|
|
def __init__(self, dist, *args, **kwds):
|
|
|
|
self.dist = dist
|
|
|
|
args, loc, scale = dist._parse_args(*args, **kwds)
|
|
|
|
if isinstance(dist, rv_continuous):
|
|
|
|
self.par = args + (loc, scale)
|
|
|
|
else: # rv_discrete
|
|
|
|
self.par = args + (loc,)
|
|
|
|
|
|
|
|
def pdf(self, x):
|
|
|
|
''' Probability density function at x of the given RV.'''
|
|
|
|
return self.dist.pdf(x, *self.par)
|
|
|
|
|
|
|
|
def logpdf(self, x):
|
|
|
|
return self.dist.logpdf(x, *self.par)
|
|
|
|
|
|
|
|
def cdf(self, x):
|
|
|
|
'''Cumulative distribution function at x of the given RV.'''
|
|
|
|
return self.dist.cdf(x, *self.par)
|
|
|
|
|
|
|
|
def logcdf(self, x):
|
|
|
|
return self.dist.logcdf(x, *self.par)
|
|
|
|
|
|
|
|
def ppf(self, q):
|
|
|
|
'''Percent point function (inverse of cdf) at q of the given RV.'''
|
|
|
|
return self.dist.ppf(q, *self.par)
|
|
|
|
|
|
|
|
def isf(self, q):
|
|
|
|
'''Inverse survival function at q of the given RV.'''
|
|
|
|
return self.dist.isf(q, *self.par)
|
|
|
|
|
|
|
|
def rvs(self, size=None):
|
|
|
|
'''Random variates of given type.'''
|
|
|
|
kwds = dict(size=size)
|
|
|
|
return self.dist.rvs(*self.par, **kwds)
|
|
|
|
|
|
|
|
def sf(self, x):
|
|
|
|
'''Survival function (1-cdf) at x of the given RV.'''
|
|
|
|
return self.dist.sf(x, *self.par)
|
|
|
|
|
|
|
|
def logsf(self, x):
|
|
|
|
return self.dist.logsf(x, *self.par)
|
|
|
|
|
|
|
|
def stats(self, moments='mv'):
|
|
|
|
''' Some statistics of the given RV'''
|
|
|
|
kwds = dict(moments=moments)
|
|
|
|
return self.dist.stats(*self.par, **kwds)
|
|
|
|
|
|
|
|
def median(self):
|
|
|
|
return self.dist.median(*self.par)
|
|
|
|
|
|
|
|
def mean(self):
|
|
|
|
return self.dist.mean(*self.par)
|
|
|
|
|
|
|
|
def var(self):
|
|
|
|
return self.dist.var(*self.par)
|
|
|
|
|
|
|
|
def std(self):
|
|
|
|
return self.dist.std(*self.par)
|
|
|
|
|
|
|
|
def moment(self, n):
|
|
|
|
return self.dist.moment(n, *self.par)
|
|
|
|
|
|
|
|
def entropy(self):
|
|
|
|
return self.dist.entropy(*self.par)
|
|
|
|
|
|
|
|
def pmf(self, k):
|
|
|
|
'''Probability mass function at k of the given RV'''
|
|
|
|
return self.dist.pmf(k, *self.par)
|
|
|
|
|
|
|
|
def logpmf(self, k):
|
|
|
|
return self.dist.logpmf(k, *self.par)
|
|
|
|
|
|
|
|
def interval(self, alpha):
|
|
|
|
return self.dist.interval(alpha, *self.par)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def valarray(shape, value=nan, typecode=None):
|
|
|
|
"""Return an array of all value.
|
|
|
|
"""
|
|
|
|
|
|
|
|
out = ones(shape, dtype=bool) * value
|
|
|
|
if typecode is not None:
|
|
|
|
out = out.astype(typecode)
|
|
|
|
if not isinstance(out, ndarray):
|
|
|
|
out = asarray(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
|
|
|
|
"""
|
|
|
|
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
|
|
|
|
This one only evaluates f(arr1[cond], arr2[cond], ...).
|
|
|
|
For example,
|
|
|
|
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
|
|
|
|
>>> def f(a, b):
|
|
|
|
return a*b
|
|
|
|
>>> _lazywhere(a > 2, (a, b), f, np.nan)
|
|
|
|
array([ nan, nan, 21., 32.])
|
|
|
|
|
|
|
|
Notice it assumes that all `arrays` are of the same shape, or can be
|
|
|
|
broadcasted together.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if fillvalue is None:
|
|
|
|
if f2 is None:
|
|
|
|
raise ValueError("One of (fillvalue, f2) must be given.")
|
|
|
|
else:
|
|
|
|
fillvalue = np.nan
|
|
|
|
else:
|
|
|
|
if f2 is not None:
|
|
|
|
raise ValueError("Only one of (fillvalue, f2) can be given.")
|
|
|
|
|
|
|
|
arrays = np.broadcast_arrays(*arrays)
|
|
|
|
temp = tuple(np.extract(cond, arr) for arr in arrays)
|
|
|
|
out = valarray(shape(arrays[0]), value=fillvalue)
|
|
|
|
np.place(out, cond, f(*temp))
|
|
|
|
if f2 is not None:
|
|
|
|
temp = tuple(np.extract(~cond, arr) for arr in arrays)
|
|
|
|
np.place(out, ~cond, f2(*temp))
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
# This should be rewritten
|
|
|
|
def argsreduce(cond, *args):
|
|
|
|
"""Return the sequence of ravel(args[i]) where ravel(condition) is
|
|
|
|
True in 1D.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> rand = np.random.random_sample
|
|
|
|
>>> A = rand((4, 5))
|
|
|
|
>>> B = 2
|
|
|
|
>>> C = rand((1, 5))
|
|
|
|
>>> cond = np.ones(A.shape)
|
|
|
|
>>> [A1, B1, C1] = argsreduce(cond, A, B, C)
|
|
|
|
>>> B1.shape
|
|
|
|
(20,)
|
|
|
|
>>> cond[2,:] = 0
|
|
|
|
>>> [A2, B2, C2] = argsreduce(cond, A, B, C)
|
|
|
|
>>> B2.shape
|
|
|
|
(15,)
|
|
|
|
|
|
|
|
"""
|
|
|
|
newargs = np.atleast_1d(*args)
|
|
|
|
if not isinstance(newargs, list):
|
|
|
|
newargs = [newargs, ]
|
|
|
|
expand_arr = (cond == cond)
|
|
|
|
return [np.extract(cond, arr1 * expand_arr) for arr1 in newargs]
|
|
|
|
|
|
|
|
|
|
|
|
parse_arg_template = """
|
|
|
|
def _parse_args(self, %(shape_arg_str)s %(locscale_in)s):
|
|
|
|
return (%(shape_arg_str)s), %(locscale_out)s
|
|
|
|
|
|
|
|
def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None):
|
|
|
|
return (%(shape_arg_str)s), %(locscale_out)s, size
|
|
|
|
|
|
|
|
def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'):
|
|
|
|
return (%(shape_arg_str)s), %(locscale_out)s, moments
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
# Both the continuous and discrete distributions depend on ncx2.
|
|
|
|
# I think the function name ncx2 is an abbreviation for noncentral chi squared.
|
|
|
|
|
|
|
|
def _ncx2_log_pdf(x, df, nc):
|
|
|
|
a = asarray(df/2.0)
|
|
|
|
fac = -nc/2.0 - x/2.0 + (a-1)*log(x) - a*log(2) - gammaln(a)
|
|
|
|
return fac + np.nan_to_num(log(hyp0f1(a, nc * x/4.0)))
|
|
|
|
|
|
|
|
|
|
|
|
def _ncx2_pdf(x, df, nc):
|
|
|
|
return np.exp(_ncx2_log_pdf(x, df, nc))
|
|
|
|
|
|
|
|
|
|
|
|
def _ncx2_cdf(x, df, nc):
|
|
|
|
return chndtr(x, df, nc)
|
|
|
|
|
|
|
|
|
|
|
|
class rv_generic(object):
|
|
|
|
"""Class which encapsulates common functionality between rv_discrete
|
|
|
|
and rv_continuous.
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
super(rv_generic, self).__init__()
|
|
|
|
|
|
|
|
# figure out if _stats signature has 'moments' keyword
|
|
|
|
sign = inspect.getargspec(self._stats)
|
|
|
|
self._stats_has_moments = ((sign[2] is not None) or
|
|
|
|
('moments' in sign[0]))
|
|
|
|
|
|
|
|
def _construct_argparser(
|
|
|
|
self, meths_to_inspect, locscale_in, locscale_out):
|
|
|
|
"""Construct the parser for the shape arguments.
|
|
|
|
|
|
|
|
Generates the argument-parsing functions dynamically and attaches
|
|
|
|
them to the instance.
|
|
|
|
Is supposed to be called in __init__ of a class for each distribution.
|
|
|
|
|
|
|
|
If self.shapes is a non-empty string, interprets it as a
|
|
|
|
comma-separated list of shape parameters.
|
|
|
|
|
|
|
|
Otherwise inspects the call signatures of `meths_to_inspect`
|
|
|
|
and constructs the argument-parsing functions from these.
|
|
|
|
In this case also sets `shapes` and `numargs`.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if self.shapes:
|
|
|
|
# sanitize the user-supplied shapes
|
|
|
|
if not isinstance(self.shapes, string_types):
|
|
|
|
raise TypeError('shapes must be a string.')
|
|
|
|
|
|
|
|
shapes = self.shapes.replace(',', ' ').split()
|
|
|
|
|
|
|
|
for field in shapes:
|
|
|
|
if keyword.iskeyword(field):
|
|
|
|
raise SyntaxError('keywords cannot be used as shapes.')
|
|
|
|
if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field):
|
|
|
|
raise SyntaxError(
|
|
|
|
'shapes must be valid python identifiers')
|
|
|
|
else:
|
|
|
|
# find out the call signatures (_pdf, _cdf etc), deduce shape
|
|
|
|
# arguments
|
|
|
|
shapes_list = []
|
|
|
|
for meth in meths_to_inspect:
|
|
|
|
shapes_args = inspect.getargspec(meth)
|
|
|
|
shapes_list.append(shapes_args.args)
|
|
|
|
|
|
|
|
# *args or **kwargs are not allowed w/automatic shapes
|
|
|
|
# (generic methods have 'self, x' only)
|
|
|
|
if len(shapes_args.args) > 2:
|
|
|
|
if shapes_args.varargs is not None:
|
|
|
|
raise TypeError(
|
|
|
|
'*args are not allowed w/out explicit shapes')
|
|
|
|
if shapes_args.keywords is not None:
|
|
|
|
raise TypeError(
|
|
|
|
'**kwds are not allowed w/out explicit shapes')
|
|
|
|
if shapes_args.defaults is not None:
|
|
|
|
raise TypeError('defaults are not allowed for shapes')
|
|
|
|
|
|
|
|
shapes = max(shapes_list, key=lambda x: len(x))
|
|
|
|
shapes = shapes[2:] # remove self, x,
|
|
|
|
|
|
|
|
# make sure the signatures are consistent
|
|
|
|
# (generic methods have 'self, x' only)
|
|
|
|
for item in shapes_list:
|
|
|
|
if len(item) > 2 and item[2:] != shapes:
|
|
|
|
raise TypeError('Shape arguments are inconsistent.')
|
|
|
|
|
|
|
|
# have the arguments, construct the method from template
|
|
|
|
shapes_str = ', '.join(shapes) + ', ' if shapes else '' # NB: not None
|
|
|
|
dct = dict(shape_arg_str=shapes_str,
|
|
|
|
locscale_in=locscale_in,
|
|
|
|
locscale_out=locscale_out,
|
|
|
|
)
|
|
|
|
ns = {}
|
|
|
|
exec_(parse_arg_template % dct, ns)
|
|
|
|
# NB: attach to the instance, not class
|
|
|
|
for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']:
|
|
|
|
setattr(self, name,
|
|
|
|
instancemethod(ns[name], self, self.__class__)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.shapes = ', '.join(shapes) if shapes else None
|
|
|
|
if not hasattr(self, 'numargs'):
|
|
|
|
# allows more general subclassing with *args
|
|
|
|
self.numargs = len(shapes)
|
|
|
|
|
|
|
|
def _construct_doc(self, docdict, shapes_vals=None):
|
|
|
|
"""Construct the instance docstring with string substitutions."""
|
|
|
|
tempdict = docdict.copy()
|
|
|
|
tempdict['name'] = self.name or 'distname'
|
|
|
|
tempdict['shapes'] = self.shapes or ''
|
|
|
|
|
|
|
|
if shapes_vals is None:
|
|
|
|
shapes_vals = ()
|
|
|
|
vals = ', '.join(str(_) for _ in shapes_vals)
|
|
|
|
tempdict['vals'] = vals
|
|
|
|
|
|
|
|
if self.shapes:
|
|
|
|
tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals)
|
|
|
|
else:
|
|
|
|
tempdict['set_vals_stmt'] = ''
|
|
|
|
|
|
|
|
if self.shapes is None:
|
|
|
|
# remove shapes from call parameters if there are none
|
|
|
|
for item in ['callparams', 'default', 'before_notes']:
|
|
|
|
tempdict[item] = tempdict[item].replace(
|
|
|
|
"\n%(shapes)s : array_like\n shape parameters", "")
|
|
|
|
for i in range(2):
|
|
|
|
if self.shapes is None:
|
|
|
|
# necessary because we use %(shapes)s in two forms (w w/o ", ")
|
|
|
|
self.__doc__ = self.__doc__.replace("%(shapes)s, ", "")
|
|
|
|
self.__doc__ = doccer.docformat(self.__doc__, tempdict)
|
|
|
|
|
|
|
|
# correct for empty shapes
|
|
|
|
self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')')
|
|
|
|
|
|
|
|
def freeze(self, *args, **kwds):
|
|
|
|
"""Freeze the distribution for the given arguments.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution. Should include all
|
|
|
|
the non-optional arguments, may include ``loc`` and ``scale``.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
rv_frozen : rv_frozen instance
|
|
|
|
The frozen distribution.
|
|
|
|
|
|
|
|
"""
|
|
|
|
return rv_frozen(self, *args, **kwds)
|
|
|
|
|
|
|
|
def __call__(self, *args, **kwds):
|
|
|
|
return self.freeze(*args, **kwds)
|
|
|
|
|
|
|
|
# The actual calculation functions (no basic checking need be done)
|
|
|
|
# If these are defined, the others won't be looked at.
|
|
|
|
# Otherwise, the other set can be defined.
|
|
|
|
def _stats(self, *args, **kwds):
|
|
|
|
return None, None, None, None
|
|
|
|
|
|
|
|
# Central moments
|
|
|
|
def _munp(self, n, *args):
|
|
|
|
# Silence floating point warnings from integration.
|
|
|
|
olderr = np.seterr(all='ignore')
|
|
|
|
vals = self.generic_moment(n, *args)
|
|
|
|
np.seterr(**olderr)
|
|
|
|
return vals
|
|
|
|
|
|
|
|
## These are the methods you must define (standard form functions)
|
|
|
|
## NB: generic _pdf, _logpdf, _cdf are different for
|
|
|
|
## rv_continuous and rv_discrete hence are defined in there
|
|
|
|
def _argcheck(self, *args):
|
|
|
|
"""Default check for correct values on args and keywords.
|
|
|
|
|
|
|
|
Returns condition array of 1's where arguments are correct and
|
|
|
|
0's where they are not.
|
|
|
|
|
|
|
|
"""
|
|
|
|
cond = 1
|
|
|
|
for arg in args:
|
|
|
|
cond = logical_and(cond, (asarray(arg) > 0))
|
|
|
|
return cond
|
|
|
|
|
|
|
|
##(return 1-d using self._size to get number)
|
|
|
|
def _rvs(self, *args):
|
|
|
|
## Use basic inverse cdf algorithm for RV generation as default.
|
|
|
|
U = mtrand.sample(self._size)
|
|
|
|
Y = self._ppf(U, *args)
|
|
|
|
return Y
|
|
|
|
|
|
|
|
def _logcdf(self, x, *args):
|
|
|
|
return log(self._cdf(x, *args))
|
|
|
|
|
|
|
|
def _sf(self, x, *args):
|
|
|
|
return 1.0-self._cdf(x, *args)
|
|
|
|
|
|
|
|
def _logsf(self, x, *args):
|
|
|
|
return log(self._sf(x, *args))
|
|
|
|
|
|
|
|
def _ppf(self, q, *args):
|
|
|
|
return self._ppfvec(q, *args)
|
|
|
|
|
|
|
|
def _isf(self, q, *args):
|
|
|
|
return self._ppf(1.0-q, *args) # use correct _ppf for subclasses
|
|
|
|
|
|
|
|
# These are actually called, and should not be overwritten if you
|
|
|
|
# want to keep error checking.
|
|
|
|
def rvs(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Random variates of given type.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
scale : array_like, optional
|
|
|
|
Scale parameter (default=1).
|
|
|
|
size : int or tuple of ints, optional
|
|
|
|
Defining number of random variates (default=1).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
rvs : ndarray or scalar
|
|
|
|
Random variates of given `size`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
discrete = kwds.pop('discrete', None)
|
|
|
|
args, loc, scale, size = self._parse_args_rvs(*args, **kwds)
|
|
|
|
cond = logical_and(self._argcheck(*args), (scale >= 0))
|
|
|
|
if not np.all(cond):
|
|
|
|
raise ValueError("Domain error in arguments.")
|
|
|
|
|
|
|
|
# self._size is total size of all output values
|
|
|
|
self._size = product(size, axis=0)
|
|
|
|
if self._size is not None and self._size > 1:
|
|
|
|
size = np.array(size, ndmin=1)
|
|
|
|
|
|
|
|
if np.all(scale == 0):
|
|
|
|
return loc*ones(size, 'd')
|
|
|
|
|
|
|
|
vals = self._rvs(*args)
|
|
|
|
if self._size is not None:
|
|
|
|
vals = reshape(vals, size)
|
|
|
|
|
|
|
|
vals = vals * scale + loc
|
|
|
|
|
|
|
|
# Cast to int if discrete
|
|
|
|
if discrete:
|
|
|
|
if np.isscalar(vals):
|
|
|
|
vals = int(vals)
|
|
|
|
else:
|
|
|
|
vals = vals.astype(int)
|
|
|
|
|
|
|
|
return vals
|
|
|
|
|
|
|
|
def stats(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Some statistics of the given RV
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional (discrete RVs only)
|
|
|
|
scale parameter (default=1)
|
|
|
|
moments : str, optional
|
|
|
|
composed of letters ['mvsk'] defining which moments to compute:
|
|
|
|
'm' = mean,
|
|
|
|
'v' = variance,
|
|
|
|
's' = (Fisher's) skew,
|
|
|
|
'k' = (Fisher's) kurtosis.
|
|
|
|
(default='mv')
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
stats : sequence
|
|
|
|
of requested moments.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale, moments = self._parse_args_stats(*args, **kwds)
|
|
|
|
# scale = 1 by construction for discrete RVs
|
|
|
|
loc, scale = map(asarray, (loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond = self._argcheck(*args) & (scale > 0) & (loc == loc)
|
|
|
|
output = []
|
|
|
|
default = valarray(shape(cond), self.badvalue)
|
|
|
|
|
|
|
|
# Use only entries that are valid in calculation
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *(args+(scale, loc)))
|
|
|
|
scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
|
|
|
|
|
|
|
|
if self._stats_has_moments:
|
|
|
|
mu, mu2, g1, g2 = self._stats(*goodargs,
|
|
|
|
**{'moments': moments})
|
|
|
|
else:
|
|
|
|
mu, mu2, g1, g2 = self._stats(*goodargs)
|
|
|
|
if g1 is None:
|
|
|
|
mu3 = None
|
|
|
|
else:
|
|
|
|
if mu2 is None:
|
|
|
|
mu2 = self._munp(2, *goodargs)
|
|
|
|
# (mu2**1.5) breaks down for nan and inf
|
|
|
|
mu3 = g1 * np.power(mu2, 1.5)
|
|
|
|
|
|
|
|
if 'm' in moments:
|
|
|
|
if mu is None:
|
|
|
|
mu = self._munp(1, *goodargs)
|
|
|
|
out0 = default.copy()
|
|
|
|
place(out0, cond, mu * scale + loc)
|
|
|
|
output.append(out0)
|
|
|
|
|
|
|
|
if 'v' in moments:
|
|
|
|
if mu2 is None:
|
|
|
|
mu2p = self._munp(2, *goodargs)
|
|
|
|
if mu is None:
|
|
|
|
mu = self._munp(1, *goodargs)
|
|
|
|
mu2 = mu2p - mu * mu
|
|
|
|
if np.isinf(mu):
|
|
|
|
#if mean is inf then var is also inf
|
|
|
|
mu2 = np.inf
|
|
|
|
out0 = default.copy()
|
|
|
|
place(out0, cond, mu2 * scale * scale)
|
|
|
|
output.append(out0)
|
|
|
|
|
|
|
|
if 's' in moments:
|
|
|
|
if g1 is None:
|
|
|
|
mu3p = self._munp(3, *goodargs)
|
|
|
|
if mu is None:
|
|
|
|
mu = self._munp(1, *goodargs)
|
|
|
|
if mu2 is None:
|
|
|
|
mu2p = self._munp(2, *goodargs)
|
|
|
|
mu2 = mu2p - mu * mu
|
|
|
|
mu3 = mu3p - 3 * mu * mu2 - mu**3
|
|
|
|
g1 = mu3 / np.power(mu2, 1.5)
|
|
|
|
out0 = default.copy()
|
|
|
|
place(out0, cond, g1)
|
|
|
|
output.append(out0)
|
|
|
|
|
|
|
|
if 'k' in moments:
|
|
|
|
if g2 is None:
|
|
|
|
mu4p = self._munp(4, *goodargs)
|
|
|
|
if mu is None:
|
|
|
|
mu = self._munp(1, *goodargs)
|
|
|
|
if mu2 is None:
|
|
|
|
mu2p = self._munp(2, *goodargs)
|
|
|
|
mu2 = mu2p - mu * mu
|
|
|
|
if mu3 is None:
|
|
|
|
mu3p = self._munp(3, *goodargs)
|
|
|
|
mu3 = mu3p - 3 * mu * mu2 - mu**3
|
|
|
|
mu4 = mu4p - 4 * mu * mu3 - 6 * mu * mu * mu2 - mu**4
|
|
|
|
g2 = mu4 / mu2**2.0 - 3.0
|
|
|
|
out0 = default.copy()
|
|
|
|
place(out0, cond, g2)
|
|
|
|
output.append(out0)
|
|
|
|
else: # no valid args
|
|
|
|
output = []
|
|
|
|
for _ in moments:
|
|
|
|
out0 = default.copy()
|
|
|
|
output.append(out0)
|
|
|
|
|
|
|
|
if len(output) == 1:
|
|
|
|
return output[0]
|
|
|
|
else:
|
|
|
|
return tuple(output)
|
|
|
|
|
|
|
|
def entropy(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Differential entropy of the RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
scale : array_like, optional (continuous distributions only).
|
|
|
|
Scale parameter (default=1).
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
Entropy is defined base `e`:
|
|
|
|
|
|
|
|
>>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
|
|
|
|
>>> np.allclose(drv.entropy(), np.log(2.0))
|
|
|
|
True
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
# NB: for discrete distributions scale=1 by construction in _parse_args
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
|
|
|
|
output = zeros(shape(cond0), 'd')
|
|
|
|
place(output, (1-cond0), self.badvalue)
|
|
|
|
goodargs = argsreduce(cond0, *args)
|
|
|
|
# I don't know when or why vecentropy got broken when numargs == 0
|
|
|
|
# 09.08.2013: is this still relevant? cf check_vecentropy test
|
|
|
|
# in tests/test_continuous_basic.py
|
|
|
|
if self.numargs == 0:
|
|
|
|
place(output, cond0, self._entropy() + log(scale))
|
|
|
|
else:
|
|
|
|
place(output, cond0, self.vecentropy(*goodargs) + log(scale))
|
|
|
|
return output
|
|
|
|
|
|
|
|
def moment(self, n, *args, **kwds):
|
|
|
|
"""
|
|
|
|
n'th order non-central moment of distribution.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
n : int, n>=1
|
|
|
|
Order of moment.
|
|
|
|
arg1, arg2, arg3,... : float
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
kwds : keyword arguments, optional
|
|
|
|
These can include "loc" and "scale", as well as other keyword
|
|
|
|
arguments relevant for a given distribution.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
if not (self._argcheck(*args) and (scale > 0)):
|
|
|
|
return nan
|
|
|
|
if (floor(n) != n):
|
|
|
|
raise ValueError("Moment must be an integer.")
|
|
|
|
if (n < 0):
|
|
|
|
raise ValueError("Moment must be positive.")
|
|
|
|
mu, mu2, g1, g2 = None, None, None, None
|
|
|
|
if (n > 0) and (n < 5):
|
|
|
|
if self._stats_has_moments:
|
|
|
|
mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]}
|
|
|
|
else:
|
|
|
|
mdict = {}
|
|
|
|
mu, mu2, g1, g2 = self._stats(*args, **mdict)
|
|
|
|
val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
|
|
|
|
# Convert to transformed X = L + S*Y
|
|
|
|
# E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n)
|
|
|
|
if loc == 0:
|
|
|
|
return scale**n * val
|
|
|
|
else:
|
|
|
|
result = 0
|
|
|
|
fac = float(scale) / float(loc)
|
|
|
|
for k in range(n):
|
|
|
|
valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args)
|
|
|
|
result += comb(n, k, exact=True)*(fac**k) * valk
|
|
|
|
result += fac**n * val
|
|
|
|
return result * loc**n
|
|
|
|
|
|
|
|
def median(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Median of the distribution.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter, Default is 0.
|
|
|
|
scale : array_like, optional
|
|
|
|
Scale parameter, Default is 1.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
median : float
|
|
|
|
The median of the distribution.
|
|
|
|
|
|
|
|
See Also
|
|
|
|
--------
|
|
|
|
stats.distributions.rv_discrete.ppf
|
|
|
|
Inverse of the CDF
|
|
|
|
|
|
|
|
"""
|
|
|
|
return self.ppf(0.5, *args, **kwds)
|
|
|
|
|
|
|
|
def mean(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Mean of the distribution
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
mean : float
|
|
|
|
the mean of the distribution
|
|
|
|
"""
|
|
|
|
kwds['moments'] = 'm'
|
|
|
|
res = self.stats(*args, **kwds)
|
|
|
|
if isinstance(res, ndarray) and res.ndim == 0:
|
|
|
|
return res[()]
|
|
|
|
return res
|
|
|
|
|
|
|
|
def var(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Variance of the distribution
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
var : float
|
|
|
|
the variance of the distribution
|
|
|
|
|
|
|
|
"""
|
|
|
|
kwds['moments'] = 'v'
|
|
|
|
res = self.stats(*args, **kwds)
|
|
|
|
if isinstance(res, ndarray) and res.ndim == 0:
|
|
|
|
return res[()]
|
|
|
|
return res
|
|
|
|
|
|
|
|
def std(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
std : float
|
|
|
|
standard deviation of the distribution
|
|
|
|
|
|
|
|
"""
|
|
|
|
kwds['moments'] = 'v'
|
|
|
|
res = sqrt(self.stats(*args, **kwds))
|
|
|
|
return res
|
|
|
|
|
|
|
|
def interval(self, alpha, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Confidence interval with equal areas around the median.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
alpha : array_like of float
|
|
|
|
Probability that an rv will be drawn from the returned range.
|
|
|
|
Each value should be in the range [0, 1].
|
|
|
|
arg1, arg2, ... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter, Default is 0.
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter, Default is 1.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
a, b : ndarray of float
|
|
|
|
end-points of range that contain ``100 * alpha %`` of the rv's
|
|
|
|
possible values.
|
|
|
|
|
|
|
|
"""
|
|
|
|
alpha = asarray(alpha)
|
|
|
|
if any((alpha > 1) | (alpha < 0)):
|
|
|
|
raise ValueError("alpha must be between 0 and 1 inclusive")
|
|
|
|
q1 = (1.0-alpha)/2
|
|
|
|
q2 = (1.0+alpha)/2
|
|
|
|
a = self.ppf(q1, *args, **kwds)
|
|
|
|
b = self.ppf(q2, *args, **kwds)
|
|
|
|
return a, b
|
|
|
|
|
|
|
|
|
|
|
|
## continuous random variables: implement maybe later
|
|
|
|
##
|
|
|
|
## hf --- Hazard Function (PDF / SF)
|
|
|
|
## chf --- Cumulative hazard function (-log(SF))
|
|
|
|
## psf --- Probability sparsity function (reciprocal of the pdf) in
|
|
|
|
## units of percent-point-function (as a function of q).
|
|
|
|
## Also, the derivative of the percent-point function.
|
|
|
|
|
|
|
|
class rv_continuous(rv_generic):
|
|
|
|
"""
|
|
|
|
A generic continuous random variable class meant for subclassing.
|
|
|
|
|
|
|
|
`rv_continuous` is a base class to construct specific distribution classes
|
|
|
|
and instances from for continuous random variables. It cannot be used
|
|
|
|
directly as a distribution.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
momtype : int, optional
|
|
|
|
The type of generic moment calculation to use: 0 for pdf, 1 (default)
|
|
|
|
for ppf.
|
|
|
|
a : float, optional
|
|
|
|
Lower bound of the support of the distribution, default is minus
|
|
|
|
infinity.
|
|
|
|
b : float, optional
|
|
|
|
Upper bound of the support of the distribution, default is plus
|
|
|
|
infinity.
|
|
|
|
xtol : float, optional
|
|
|
|
The tolerance for fixed point calculation for generic ppf.
|
|
|
|
badvalue : object, optional
|
|
|
|
The value in a result arrays that indicates a value that for which
|
|
|
|
some argument restriction is violated, default is np.nan.
|
|
|
|
name : str, optional
|
|
|
|
The name of the instance. This string is used to construct the default
|
|
|
|
example for distributions.
|
|
|
|
longname : str, optional
|
|
|
|
This string is used as part of the first line of the docstring returned
|
|
|
|
when a subclass has no docstring of its own. Note: `longname` exists
|
|
|
|
for backwards compatibility, do not use for new subclasses.
|
|
|
|
shapes : str, optional
|
|
|
|
The shape of the distribution. For example ``"m, n"`` for a
|
|
|
|
distribution that takes two integers as the two shape arguments for all
|
|
|
|
its methods.
|
|
|
|
extradoc : str, optional, deprecated
|
|
|
|
This string is used as the last part of the docstring returned when a
|
|
|
|
subclass has no docstring of its own. Note: `extradoc` exists for
|
|
|
|
backwards compatibility, do not use for new subclasses.
|
|
|
|
|
|
|
|
Methods
|
|
|
|
-------
|
|
|
|
``rvs(<shape(s)>, loc=0, scale=1, size=1)``
|
|
|
|
random variates
|
|
|
|
|
|
|
|
``pdf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
probability density function
|
|
|
|
|
|
|
|
``logpdf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
log of the probability density function
|
|
|
|
|
|
|
|
``cdf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
cumulative density function
|
|
|
|
|
|
|
|
``logcdf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
log of the cumulative density function
|
|
|
|
|
|
|
|
``sf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
survival function (1-cdf --- sometimes more accurate)
|
|
|
|
|
|
|
|
``logsf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
log of the survival function
|
|
|
|
|
|
|
|
``ppf(q, <shape(s)>, loc=0, scale=1)``
|
|
|
|
percent point function (inverse of cdf --- quantiles)
|
|
|
|
|
|
|
|
``isf(q, <shape(s)>, loc=0, scale=1)``
|
|
|
|
inverse survival function (inverse of sf)
|
|
|
|
|
|
|
|
``moment(n, <shape(s)>, loc=0, scale=1)``
|
|
|
|
non-central n-th moment of the distribution. May not work for array
|
|
|
|
arguments.
|
|
|
|
|
|
|
|
``stats(<shape(s)>, loc=0, scale=1, moments='mv')``
|
|
|
|
mean('m'), variance('v'), skew('s'), and/or kurtosis('k')
|
|
|
|
|
|
|
|
``entropy(<shape(s)>, loc=0, scale=1)``
|
|
|
|
(differential) entropy of the RV.
|
|
|
|
|
|
|
|
``fit(data, <shape(s)>, loc=0, scale=1)``
|
|
|
|
Parameter estimates for generic data
|
|
|
|
|
|
|
|
``expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)``
|
|
|
|
Expected value of a function with respect to the distribution.
|
|
|
|
Additional kwd arguments passed to integrate.quad
|
|
|
|
|
|
|
|
``median(<shape(s)>, loc=0, scale=1)``
|
|
|
|
Median of the distribution.
|
|
|
|
|
|
|
|
``mean(<shape(s)>, loc=0, scale=1)``
|
|
|
|
Mean of the distribution.
|
|
|
|
|
|
|
|
``std(<shape(s)>, loc=0, scale=1)``
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
|
|
|
``var(<shape(s)>, loc=0, scale=1)``
|
|
|
|
Variance of the distribution.
|
|
|
|
|
|
|
|
``interval(alpha, <shape(s)>, loc=0, scale=1)``
|
|
|
|
Interval that with `alpha` percent probability contains a random
|
|
|
|
realization of this distribution.
|
|
|
|
|
|
|
|
``__call__(<shape(s)>, loc=0, scale=1)``
|
|
|
|
Calling a distribution instance creates a frozen RV object with the
|
|
|
|
same methods but holding the given shape, location, and scale fixed.
|
|
|
|
See Notes section.
|
|
|
|
|
|
|
|
**Parameters for Methods**
|
|
|
|
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
q : array_like
|
|
|
|
lower or upper tail probability
|
|
|
|
<shape(s)> : array_like
|
|
|
|
shape parameters
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
size : int or tuple of ints, optional
|
|
|
|
shape of random variates (default computed from input arguments )
|
|
|
|
moments : string, optional
|
|
|
|
composed of letters ['mvsk'] specifying which moments to compute where
|
|
|
|
'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
|
|
|
|
'k' = (Fisher's) kurtosis. (default='mv')
|
|
|
|
n : int
|
|
|
|
order of moment to calculate in method moments
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
|
|
|
|
**Methods that can be overwritten by subclasses**
|
|
|
|
::
|
|
|
|
|
|
|
|
_rvs
|
|
|
|
_pdf
|
|
|
|
_cdf
|
|
|
|
_sf
|
|
|
|
_ppf
|
|
|
|
_isf
|
|
|
|
_stats
|
|
|
|
_munp
|
|
|
|
_entropy
|
|
|
|
_argcheck
|
|
|
|
|
|
|
|
There are additional (internal and private) generic methods that can
|
|
|
|
be useful for cross-checking and for debugging, but might work in all
|
|
|
|
cases when directly called.
|
|
|
|
|
|
|
|
**Frozen Distribution**
|
|
|
|
|
|
|
|
Alternatively, the object may be called (as a function) to fix the shape,
|
|
|
|
location, and scale parameters returning a "frozen" continuous RV object:
|
|
|
|
|
|
|
|
rv = generic(<shape(s)>, loc=0, scale=1)
|
|
|
|
frozen RV object with the same methods but holding the given shape,
|
|
|
|
location, and scale fixed
|
|
|
|
|
|
|
|
**Subclassing**
|
|
|
|
|
|
|
|
New random variables can be defined by subclassing rv_continuous class
|
|
|
|
and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized
|
|
|
|
to location 0 and scale 1) which will be given clean arguments (in between
|
|
|
|
a and b) and passing the argument check method.
|
|
|
|
|
|
|
|
If positive argument checking is not correct for your RV
|
|
|
|
then you will also need to re-define the ``_argcheck`` method.
|
|
|
|
|
|
|
|
Correct, but potentially slow defaults exist for the remaining
|
|
|
|
methods but for speed and/or accuracy you can over-ride::
|
|
|
|
|
|
|
|
_logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf
|
|
|
|
|
|
|
|
Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could.
|
|
|
|
|
|
|
|
Statistics are computed using numerical integration by default.
|
|
|
|
For speed you can redefine this using ``_stats``:
|
|
|
|
|
|
|
|
- take shape parameters and return mu, mu2, g1, g2
|
|
|
|
- If you can't compute one of these, return it as None
|
|
|
|
- Can also be defined with a keyword argument ``moments=<str>``,
|
|
|
|
where <str> is a string composed of 'm', 'v', 's',
|
|
|
|
and/or 'k'. Only the components appearing in string
|
|
|
|
should be computed and returned in the order 'm', 'v',
|
|
|
|
's', or 'k' with missing values returned as None.
|
|
|
|
|
|
|
|
Alternatively, you can override ``_munp``, which takes n and shape
|
|
|
|
parameters and returns the nth non-central moment of the distribution.
|
|
|
|
|
|
|
|
A note on ``shapes``: subclasses need not specify them explicitly. In this
|
|
|
|
case, the `shapes` will be automatically deduced from the signatures of the
|
|
|
|
overridden methods.
|
|
|
|
If, for some reason, you prefer to avoid relying on introspection, you can
|
|
|
|
specify ``shapes`` explicitly as an argument to the instance constructor.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
To create a new Gaussian distribution, we would do the following::
|
|
|
|
|
|
|
|
class gaussian_gen(rv_continuous):
|
|
|
|
"Gaussian distribution"
|
|
|
|
def _pdf(self, x):
|
|
|
|
...
|
|
|
|
...
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, momtype=1, a=None, b=None, xtol=1e-14,
|
|
|
|
badvalue=None, name=None, longname=None,
|
|
|
|
shapes=None, extradoc=None):
|
|
|
|
|
|
|
|
super(rv_continuous, self).__init__()
|
|
|
|
|
|
|
|
# save the ctor parameters, cf generic freeze
|
|
|
|
self._ctor_param = dict(
|
|
|
|
momtype=momtype, a=a, b=b, xtol=xtol,
|
|
|
|
badvalue=badvalue, name=name, longname=longname,
|
|
|
|
shapes=shapes, extradoc=extradoc)
|
|
|
|
|
|
|
|
if badvalue is None:
|
|
|
|
badvalue = nan
|
|
|
|
if name is None:
|
|
|
|
name = 'Distribution'
|
|
|
|
self.badvalue = badvalue
|
|
|
|
self.name = name
|
|
|
|
self.a = a
|
|
|
|
self.b = b
|
|
|
|
if a is None:
|
|
|
|
self.a = -inf
|
|
|
|
if b is None:
|
|
|
|
self.b = inf
|
|
|
|
self.xtol = xtol
|
|
|
|
self._size = 1
|
|
|
|
self.moment_type = momtype
|
|
|
|
self.shapes = shapes
|
|
|
|
self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf],
|
|
|
|
locscale_in='loc=0, scale=1',
|
|
|
|
locscale_out='loc, scale')
|
|
|
|
|
|
|
|
# nin correction
|
|
|
|
self._ppfvec = vectorize(self._ppf_single, otypes='d')
|
|
|
|
self._ppfvec.nin = self.numargs + 1
|
|
|
|
self.vecentropy = vectorize(self._entropy, otypes='d')
|
|
|
|
self._cdfvec = vectorize(self._cdf_single, otypes='d')
|
|
|
|
self._cdfvec.nin = self.numargs + 1
|
|
|
|
|
|
|
|
# backwards compat. these were removed in 0.14.0, put back but
|
|
|
|
# deprecated in 0.14.1:
|
|
|
|
self.vecfunc = np.deprecate(self._ppfvec, "vecfunc")
|
|
|
|
self.veccdf = np.deprecate(self._cdfvec, "veccdf")
|
|
|
|
|
|
|
|
self.extradoc = extradoc
|
|
|
|
if momtype == 0:
|
|
|
|
self.generic_moment = vectorize(self._mom0_sc, otypes='d')
|
|
|
|
else:
|
|
|
|
self.generic_moment = vectorize(self._mom1_sc, otypes='d')
|
|
|
|
# Because of the *args argument of _mom0_sc, vectorize cannot count the
|
|
|
|
# number of arguments correctly.
|
|
|
|
self.generic_moment.nin = self.numargs + 1
|
|
|
|
|
|
|
|
if longname is None:
|
|
|
|
if name[0] in ['aeiouAEIOU']:
|
|
|
|
hstr = "An "
|
|
|
|
else:
|
|
|
|
hstr = "A "
|
|
|
|
longname = hstr + name
|
|
|
|
|
|
|
|
if sys.flags.optimize < 2:
|
|
|
|
# Skip adding docstrings if interpreter is run with -OO
|
|
|
|
if self.__doc__ is None:
|
|
|
|
self._construct_default_doc(longname=longname,
|
|
|
|
extradoc=extradoc)
|
|
|
|
else:
|
|
|
|
dct = dict(distcont)
|
|
|
|
self._construct_doc(docdict, dct.get(self.name))
|
|
|
|
|
|
|
|
def _construct_default_doc(self, longname=None, extradoc=None):
|
|
|
|
"""Construct instance docstring from the default template."""
|
|
|
|
if longname is None:
|
|
|
|
longname = 'A'
|
|
|
|
if extradoc is None:
|
|
|
|
extradoc = ''
|
|
|
|
if extradoc.startswith('\n\n'):
|
|
|
|
extradoc = extradoc[2:]
|
|
|
|
self.__doc__ = ''.join(['%s continuous random variable.' % longname,
|
|
|
|
'\n\n%(before_notes)s\n', docheaders['notes'],
|
|
|
|
extradoc, '\n%(example)s'])
|
|
|
|
self._construct_doc(docdict)
|
|
|
|
|
|
|
|
def _ppf_to_solve(self, x, q, *args):
|
|
|
|
return self.cdf(*(x, )+args)-q
|
|
|
|
|
|
|
|
def _ppf_single(self, q, *args):
|
|
|
|
left = right = None
|
|
|
|
if self.a > -np.inf:
|
|
|
|
left = self.a
|
|
|
|
if self.b < np.inf:
|
|
|
|
right = self.b
|
|
|
|
|
|
|
|
factor = 10.
|
|
|
|
if not left: # i.e. self.a = -inf
|
|
|
|
left = -1.*factor
|
|
|
|
while self._ppf_to_solve(left, q, *args) > 0.:
|
|
|
|
right = left
|
|
|
|
left *= factor
|
|
|
|
# left is now such that cdf(left) < q
|
|
|
|
if not right: # i.e. self.b = inf
|
|
|
|
right = factor
|
|
|
|
while self._ppf_to_solve(right, q, *args) < 0.:
|
|
|
|
left = right
|
|
|
|
right *= factor
|
|
|
|
# right is now such that cdf(right) > q
|
|
|
|
|
|
|
|
return optimize.brentq(self._ppf_to_solve,
|
|
|
|
left, right, args=(q,)+args, xtol=self.xtol)
|
|
|
|
|
|
|
|
# moment from definition
|
|
|
|
def _mom_integ0(self, x, m, *args):
|
|
|
|
return x**m * self.pdf(x, *args)
|
|
|
|
|
|
|
|
def _mom0_sc(self, m, *args):
|
|
|
|
return integrate.quad(self._mom_integ0, self.a, self.b,
|
|
|
|
args=(m,)+args)[0]
|
|
|
|
|
|
|
|
# moment calculated using ppf
|
|
|
|
def _mom_integ1(self, q, m, *args):
|
|
|
|
return (self.ppf(q, *args))**m
|
|
|
|
|
|
|
|
def _mom1_sc(self, m, *args):
|
|
|
|
return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0]
|
|
|
|
|
|
|
|
def _pdf(self, x, *args):
|
|
|
|
return derivative(self._cdf, x, dx=1e-5, args=args, order=5)
|
|
|
|
|
|
|
|
## Could also define any of these
|
|
|
|
def _logpdf(self, x, *args):
|
|
|
|
return log(self._pdf(x, *args))
|
|
|
|
|
|
|
|
def _cdf_single(self, x, *args):
|
|
|
|
return integrate.quad(self._pdf, self.a, x, args=args)[0]
|
|
|
|
|
|
|
|
def _cdf(self, x, *args):
|
|
|
|
return self._cdfvec(x, *args)
|
|
|
|
|
|
|
|
## generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined
|
|
|
|
## in rv_generic
|
|
|
|
|
|
|
|
def pdf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Probability density function at x of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
pdf : ndarray
|
|
|
|
Probability density function evaluated at x
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = asarray((x-loc)*1.0/scale)
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args+(scale,)))
|
|
|
|
scale, goodargs = goodargs[-1], goodargs[:-1]
|
|
|
|
place(output, cond, self._pdf(*goodargs) / scale)
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logpdf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the probability density function at x of the given RV.
|
|
|
|
|
|
|
|
This uses a more numerically accurate calculation if available.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logpdf : array_like
|
|
|
|
Log of the probability density function evaluated at x
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = asarray((x-loc)*1.0/scale)
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args+(scale,)))
|
|
|
|
scale, goodargs = goodargs[-1], goodargs[:-1]
|
|
|
|
place(output, cond, self._logpdf(*goodargs) - log(scale))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def cdf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Cumulative distribution function of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
cdf : ndarray
|
|
|
|
Cumulative distribution function evaluated at `x`
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = (x-loc)*1.0/scale
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x > self.a) & (x < self.b)
|
|
|
|
cond2 = (x >= self.b) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
place(output, (1-cond0)+np.isnan(x), self.badvalue)
|
|
|
|
place(output, cond2, 1.0)
|
|
|
|
if any(cond): # call only if at least 1 entry
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args))
|
|
|
|
place(output, cond, self._cdf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logcdf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the cumulative distribution function at x of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logcdf : array_like
|
|
|
|
Log of the cumulative distribution function evaluated at x
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = (x-loc)*1.0/scale
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x > self.a) & (x < self.b)
|
|
|
|
cond2 = (x >= self.b) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue)
|
|
|
|
place(output, cond2, 0.0)
|
|
|
|
if any(cond): # call only if at least 1 entry
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args))
|
|
|
|
place(output, cond, self._logcdf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def sf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Survival function (1-cdf) at x of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
sf : array_like
|
|
|
|
Survival function evaluated at x
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = (x-loc)*1.0/scale
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x > self.a) & (x < self.b)
|
|
|
|
cond2 = cond0 & (x <= self.a)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
place(output, (1-cond0)+np.isnan(x), self.badvalue)
|
|
|
|
place(output, cond2, 1.0)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args))
|
|
|
|
place(output, cond, self._sf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logsf(self, x, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the survival function of the given RV.
|
|
|
|
|
|
|
|
Returns the log of the "survival function," defined as (1 - `cdf`),
|
|
|
|
evaluated at `x`.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logsf : ndarray
|
|
|
|
Log of the survival function evaluated at `x`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
x, loc, scale = map(asarray, (x, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
x = (x-loc)*1.0/scale
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0)
|
|
|
|
cond1 = (scale > 0) & (x > self.a) & (x < self.b)
|
|
|
|
cond2 = cond0 & (x <= self.a)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
place(output, (1-cond0)+np.isnan(x), self.badvalue)
|
|
|
|
place(output, cond2, 0.0)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((x,)+args))
|
|
|
|
place(output, cond, self._logsf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def ppf(self, q, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Percent point function (inverse of cdf) at q of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
q : array_like
|
|
|
|
lower tail probability
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : array_like
|
|
|
|
quantile corresponding to the lower tail probability q.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
q, loc, scale = map(asarray, (q, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
|
|
|
|
cond1 = (0 < q) & (q < 1)
|
|
|
|
cond2 = cond0 & (q == 0)
|
|
|
|
cond3 = cond0 & (q == 1)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = valarray(shape(cond), value=self.badvalue)
|
|
|
|
|
|
|
|
lower_bound = self.a * scale + loc
|
|
|
|
upper_bound = self.b * scale + loc
|
|
|
|
place(output, cond2, argsreduce(cond2, lower_bound)[0])
|
|
|
|
place(output, cond3, argsreduce(cond3, upper_bound)[0])
|
|
|
|
|
|
|
|
if any(cond): # call only if at least 1 entry
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
|
|
|
|
scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
|
|
|
|
place(output, cond, self._ppf(*goodargs) * scale + loc)
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def isf(self, q, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Inverse survival function at q of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
q : array_like
|
|
|
|
upper tail probability
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
location parameter (default=0)
|
|
|
|
scale : array_like, optional
|
|
|
|
scale parameter (default=1)
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
x : ndarray or scalar
|
|
|
|
Quantile corresponding to the upper tail probability q.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
q, loc, scale = map(asarray, (q, loc, scale))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
|
|
|
|
cond1 = (0 < q) & (q < 1)
|
|
|
|
cond2 = cond0 & (q == 1)
|
|
|
|
cond3 = cond0 & (q == 0)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = valarray(shape(cond), value=self.badvalue)
|
|
|
|
|
|
|
|
lower_bound = self.a * scale + loc
|
|
|
|
upper_bound = self.b * scale + loc
|
|
|
|
place(output, cond2, argsreduce(cond2, lower_bound)[0])
|
|
|
|
place(output, cond3, argsreduce(cond3, upper_bound)[0])
|
|
|
|
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
|
|
|
|
scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
|
|
|
|
place(output, cond, self._isf(*goodargs) * scale + loc)
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def link(self, x, logSF, theta, i):
|
|
|
|
'''
|
|
|
|
Return theta[i] as function of quantile, survival probability and
|
|
|
|
theta[j] for j!=i.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : quantile
|
|
|
|
logSF : logarithm of the survival probability
|
|
|
|
theta : list
|
|
|
|
all distribution parameters including location and scale.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
theta[i] : real scalar
|
|
|
|
fixed distribution parameter theta[i] as function of x, logSF and
|
|
|
|
theta[j] where j != i.
|
|
|
|
|
|
|
|
LINK is a function connecting the fixed distribution parameter theta[i]
|
|
|
|
with the quantile (x) and the survival probability (SF) and the
|
|
|
|
remaining free distribution parameters theta[j] for j!=i, i.e.:
|
|
|
|
theta[i] = link(x, logSF, theta, i),
|
|
|
|
where logSF = log(Prob(X>x; theta)).
|
|
|
|
|
|
|
|
See also
|
|
|
|
estimation.Profile
|
|
|
|
'''
|
|
|
|
return self._link(x, logSF, theta, i)
|
|
|
|
|
|
|
|
def _link(self, x, logSF, theta, i):
|
|
|
|
msg = ('Link function not implemented for the %s distribution' %
|
|
|
|
self.name)
|
|
|
|
raise NotImplementedError(msg)
|
|
|
|
|
|
|
|
|
|
|
|
def _nnlf(self, x, *args):
|
|
|
|
return -sum(self._logpdf(x, *args), axis=0)
|
|
|
|
|
|
|
|
def nnlf(self, theta, x):
|
|
|
|
'''Return negative loglikelihood function
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
This is ``-sum(log pdf(x, theta), axis=0)`` where theta are the
|
|
|
|
parameters (including loc and scale).
|
|
|
|
'''
|
|
|
|
try:
|
|
|
|
loc = theta[-2]
|
|
|
|
scale = theta[-1]
|
|
|
|
args = tuple(theta[:-2])
|
|
|
|
except IndexError:
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
if not self._argcheck(*args) or scale <= 0:
|
|
|
|
return inf
|
|
|
|
x = asarray((x-loc) / scale)
|
|
|
|
cond0 = (x <= self.a) | (self.b <= x)
|
|
|
|
if (any(cond0)):
|
|
|
|
return inf
|
|
|
|
else:
|
|
|
|
N = len(x)
|
|
|
|
return self._nnlf(x, *args) + N * log(scale)
|
|
|
|
|
|
|
|
def _penalized_nnlf(self, theta, x):
|
|
|
|
''' Return negative loglikelihood function,
|
|
|
|
i.e., - sum (log pdf(x, theta), axis=0)
|
|
|
|
where theta are the parameters (including loc and scale)
|
|
|
|
'''
|
|
|
|
try:
|
|
|
|
loc = theta[-2]
|
|
|
|
scale = theta[-1]
|
|
|
|
args = tuple(theta[:-2])
|
|
|
|
except IndexError:
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
if not self._argcheck(*args) or scale <= 0:
|
|
|
|
return inf
|
|
|
|
x = asarray((x-loc) / scale)
|
|
|
|
|
|
|
|
loginf = log(_XMAX)
|
|
|
|
|
|
|
|
if np.isneginf(self.a).all() and np.isinf(self.b).all():
|
|
|
|
Nbad = 0
|
|
|
|
else:
|
|
|
|
cond0 = (x <= self.a) | (self.b <= x)
|
|
|
|
Nbad = sum(cond0)
|
|
|
|
if Nbad > 0:
|
|
|
|
x = argsreduce(~cond0, x)[0]
|
|
|
|
|
|
|
|
N = len(x)
|
|
|
|
return self._nnlf(x, *args) + N*log(scale) + Nbad * 100.0 * loginf
|
|
|
|
|
|
|
|
def hessian_nnlf(self, theta, data, eps=None):
|
|
|
|
''' approximate hessian of nnlf where theta are the parameters (including loc and scale)
|
|
|
|
'''
|
|
|
|
#Nd = len(x)
|
|
|
|
np = len(theta)
|
|
|
|
# pab 07.01.2001: Always choose the stepsize h so that
|
|
|
|
# it is an exactly representable number.
|
|
|
|
# This is important when calculating numerical derivatives and is
|
|
|
|
# accomplished by the following.
|
|
|
|
|
|
|
|
if eps == None:
|
|
|
|
eps = (_EPS) ** 0.4
|
|
|
|
#xmin = floatinfo.machar.xmin
|
|
|
|
#myfun = lambda y: max(y,100.0*log(xmin)) #% trick to avoid log of zero
|
|
|
|
delta = (eps + 2.0) - 2.0
|
|
|
|
delta2 = delta ** 2.0
|
|
|
|
# Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
|
|
|
|
# 1/(d^2 L(theta|x)/dtheta^2)
|
|
|
|
# using central differences
|
|
|
|
|
|
|
|
LL = self.nnlf(theta, data)
|
|
|
|
H = zeros((np, np)) #%% Hessian matrix
|
|
|
|
theta = tuple(theta)
|
|
|
|
for ix in xrange(np):
|
|
|
|
sparam = list(theta)
|
|
|
|
sparam[ix] = theta[ix] + delta
|
|
|
|
fp = self.nnlf(sparam, data)
|
|
|
|
#fp = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[ix] = theta[ix] - delta
|
|
|
|
fm = self.nnlf(sparam, data)
|
|
|
|
#fm = sum(myfun(x))
|
|
|
|
|
|
|
|
H[ix, ix] = (fp - 2 * LL + fm) / delta2
|
|
|
|
for iy in range(ix + 1, np):
|
|
|
|
sparam[ix] = theta[ix] + delta
|
|
|
|
sparam[iy] = theta[iy] + delta
|
|
|
|
fpp = self.nnlf(sparam, data)
|
|
|
|
#fpp = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[iy] = theta[iy] - delta
|
|
|
|
fpm = self.nnlf(sparam, data)
|
|
|
|
#fpm = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[ix] = theta[ix] - delta
|
|
|
|
fmm = self.nnlf(sparam, data)
|
|
|
|
#fmm = sum(myfun(x));
|
|
|
|
|
|
|
|
sparam[iy] = theta[iy] + delta
|
|
|
|
fmp = self.nnlf(sparam, data)
|
|
|
|
#fmp = sum(myfun(x))
|
|
|
|
H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
|
|
|
|
H[iy, ix] = H[ix, iy]
|
|
|
|
sparam[iy] = theta[iy]
|
|
|
|
|
|
|
|
# invert the Hessian matrix (i.e. invert the observed information number)
|
|
|
|
#pcov = -pinv(H);
|
|
|
|
return - H
|
|
|
|
|
|
|
|
def nlogps(self, theta, x):
|
|
|
|
""" Moran's negative log Product Spacings statistic
|
|
|
|
|
|
|
|
where theta are the parameters (including loc and scale)
|
|
|
|
|
|
|
|
Note the data in x must be sorted
|
|
|
|
|
|
|
|
References
|
|
|
|
-----------
|
|
|
|
|
|
|
|
R. C. H. Cheng; N. A. K. Amin (1983)
|
|
|
|
"Estimating Parameters in Continuous Univariate Distributions with a
|
|
|
|
Shifted Origin.",
|
|
|
|
Journal of the Royal Statistical Society. Series B (Methodological),
|
|
|
|
Vol. 45, No. 3. (1983), pp. 394-403.
|
|
|
|
|
|
|
|
R. C. H. Cheng; M. A. Stephens (1989)
|
|
|
|
"A Goodness-Of-Fit Test Using Moran's Statistic with Estimated
|
|
|
|
Parameters", Biometrika, 76, 2, pp 385-392
|
|
|
|
|
|
|
|
Wong, T.S.T. and Li, W.K. (2006)
|
|
|
|
"A note on the estimation of extreme value distributions using maximum
|
|
|
|
product of spacings.",
|
|
|
|
IMS Lecture Notes Monograph Series 2006, Vol. 52, pp. 272-283
|
|
|
|
"""
|
|
|
|
|
|
|
|
try:
|
|
|
|
loc = theta[-2]
|
|
|
|
scale = theta[-1]
|
|
|
|
args = tuple(theta[:-2])
|
|
|
|
except IndexError:
|
|
|
|
raise ValueError("Not enough input arguments.")
|
|
|
|
if not self._argcheck(*args) or scale <= 0:
|
|
|
|
return inf
|
|
|
|
x = asarray((x - loc) / scale)
|
|
|
|
cond0 = (x <= self.a) | (self.b <= x)
|
|
|
|
Nbad = sum(cond0)
|
|
|
|
if Nbad > 0:
|
|
|
|
x = argsreduce(~cond0, x)[0]
|
|
|
|
|
|
|
|
lowertail = True
|
|
|
|
if lowertail:
|
|
|
|
prb = np.hstack((0.0, self.cdf(x, *args), 1.0))
|
|
|
|
dprb = np.diff(prb)
|
|
|
|
else:
|
|
|
|
prb = np.hstack((1.0, self.sf(x, *args), 0.0))
|
|
|
|
dprb = -np.diff(prb)
|
|
|
|
|
|
|
|
logD = log(dprb)
|
|
|
|
dx = np.diff(x, axis=0)
|
|
|
|
tie = (dx == 0)
|
|
|
|
if any(tie):
|
|
|
|
# TODO : implement this method for treating ties in data:
|
|
|
|
# Assume measuring error is delta. Then compute
|
|
|
|
# yL = F(xi-delta,theta)
|
|
|
|
# yU = F(xi+delta,theta)
|
|
|
|
# and replace
|
|
|
|
# logDj = log((yU-yL)/(r-1)) for j = i+1,i+2,...i+r-1
|
|
|
|
|
|
|
|
# The following is OK when only minimization of T is wanted
|
|
|
|
i_tie, = np.nonzero(tie)
|
|
|
|
tiedata = x[i_tie]
|
|
|
|
logD[i_tie + 1] = log(self._pdf(tiedata, *args)) - log(scale)
|
|
|
|
|
|
|
|
finiteD = np.isfinite(logD)
|
|
|
|
nonfiniteD = 1 - finiteD
|
|
|
|
Nbad += sum(nonfiniteD, axis=0)
|
|
|
|
if Nbad > 0:
|
|
|
|
T = -sum(logD[finiteD], axis=0) + 100.0 * log(_XMAX) * Nbad
|
|
|
|
else:
|
|
|
|
T = -sum(logD, axis=0) #Moran's negative log product spacing statistic
|
|
|
|
return T
|
|
|
|
|
|
|
|
def hessian_nlogps(self, theta, data, eps=None):
|
|
|
|
''' approximate hessian of nlogps where theta are the parameters (including loc and scale)
|
|
|
|
'''
|
|
|
|
np = len(theta)
|
|
|
|
# pab 07.01.2001: Always choose the stepsize h so that
|
|
|
|
# it is an exactly representable number.
|
|
|
|
# This is important when calculating numerical derivatives and is
|
|
|
|
# accomplished by the following.
|
|
|
|
|
|
|
|
if eps == None:
|
|
|
|
eps = (_EPS) ** 0.4
|
|
|
|
#xmin = floatinfo.machar.xmin
|
|
|
|
#myfun = lambda y: max(y,100.0*log(xmin)) #% trick to avoid log of zero
|
|
|
|
delta = (eps + 2.0) - 2.0
|
|
|
|
delta2 = delta ** 2.0
|
|
|
|
# Approximate 1/(nE( (d L(x|theta)/dtheta)^2)) with
|
|
|
|
# 1/(d^2 L(theta|x)/dtheta^2)
|
|
|
|
# using central differences
|
|
|
|
|
|
|
|
LL = self.nlogps(theta, data)
|
|
|
|
H = zeros((np, np)) # Hessian matrix
|
|
|
|
theta = tuple(theta)
|
|
|
|
for ix in xrange(np):
|
|
|
|
sparam = list(theta)
|
|
|
|
sparam[ix] = theta[ix] + delta
|
|
|
|
fp = self.nlogps(sparam, data)
|
|
|
|
#fp = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[ix] = theta[ix] - delta
|
|
|
|
fm = self.nlogps(sparam, data)
|
|
|
|
#fm = sum(myfun(x))
|
|
|
|
|
|
|
|
H[ix, ix] = (fp - 2 * LL + fm) / delta2
|
|
|
|
for iy in range(ix + 1, np):
|
|
|
|
sparam[ix] = theta[ix] + delta
|
|
|
|
sparam[iy] = theta[iy] + delta
|
|
|
|
fpp = self.nlogps(sparam, data)
|
|
|
|
#fpp = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[iy] = theta[iy] - delta
|
|
|
|
fpm = self.nlogps(sparam, data)
|
|
|
|
#fpm = sum(myfun(x))
|
|
|
|
|
|
|
|
sparam[ix] = theta[ix] - delta
|
|
|
|
fmm = self.nlogps(sparam, data)
|
|
|
|
#fmm = sum(myfun(x));
|
|
|
|
|
|
|
|
sparam[iy] = theta[iy] + delta
|
|
|
|
fmp = self.nlogps(sparam, data)
|
|
|
|
#fmp = sum(myfun(x))
|
|
|
|
H[ix, iy] = ((fpp + fmm) - (fmp + fpm)) / (4. * delta2)
|
|
|
|
H[iy, ix] = H[ix, iy]
|
|
|
|
sparam[iy] = theta[iy];
|
|
|
|
|
|
|
|
# invert the Hessian matrix (i.e. invert the observed information number)
|
|
|
|
#pcov = -pinv(H);
|
|
|
|
return - H
|
|
|
|
|
|
|
|
# return starting point for fit (shape arguments + loc + scale)
|
|
|
|
def _fitstart(self, data, args=None):
|
|
|
|
if args is None:
|
|
|
|
args = (1.0,)*self.numargs
|
|
|
|
return args + self.fit_loc_scale(data, *args)
|
|
|
|
|
|
|
|
# Return the (possibly reduced) function to optimize in order to find MLE
|
|
|
|
# estimates for the .fit method
|
|
|
|
def _reduce_func(self, args, kwds):
|
|
|
|
args = list(args)
|
|
|
|
Nargs = len(args)
|
|
|
|
fixedn = []
|
|
|
|
index = list(range(Nargs))
|
|
|
|
names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
|
|
|
|
x0 = []
|
|
|
|
for n, key in zip(index, names):
|
|
|
|
if key in kwds:
|
|
|
|
fixedn.append(n)
|
|
|
|
args[n] = kwds[key]
|
|
|
|
else:
|
|
|
|
x0.append(args[n])
|
|
|
|
method = kwds.get('method', 'ml').lower()
|
|
|
|
if method.startswith('mps'):
|
|
|
|
fitfun = self.nlogps
|
|
|
|
else:
|
|
|
|
fitfun = self._penalized_nnlf
|
|
|
|
|
|
|
|
if len(fixedn) == 0:
|
|
|
|
func = fitfun
|
|
|
|
restore = None
|
|
|
|
else:
|
|
|
|
if len(fixedn) == len(index):
|
|
|
|
raise ValueError(
|
|
|
|
"All parameters fixed. There is nothing to optimize.")
|
|
|
|
|
|
|
|
def restore(args, theta):
|
|
|
|
# Replace with theta for all numbers not in fixedn
|
|
|
|
# This allows the non-fixed values to vary, but
|
|
|
|
# we still call self.nnlf with all parameters.
|
|
|
|
i = 0
|
|
|
|
for n in range(Nargs):
|
|
|
|
if n not in fixedn:
|
|
|
|
args[n] = theta[i]
|
|
|
|
i += 1
|
|
|
|
return args
|
|
|
|
|
|
|
|
def func(theta, x):
|
|
|
|
newtheta = restore(args[:], theta)
|
|
|
|
return fitfun(newtheta, x)
|
|
|
|
|
|
|
|
return x0, func, restore, args
|
|
|
|
|
|
|
|
def fit(self, data, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Return MLEs for shape, location, and scale parameters from data.
|
|
|
|
|
|
|
|
MLE stands for Maximum Likelihood Estimate. Starting estimates for
|
|
|
|
the fit are given by input arguments; for any arguments not provided
|
|
|
|
with starting estimates, ``self._fitstart(data)`` is called to generate
|
|
|
|
such.
|
|
|
|
|
|
|
|
One can hold some parameters fixed to specific values by passing in
|
|
|
|
keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
|
|
|
|
and ``floc`` and ``fscale`` (for location and scale parameters,
|
|
|
|
respectively).
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
data : array_like
|
|
|
|
Data to use in calculating the MLEs.
|
|
|
|
args : floats, optional
|
|
|
|
Starting value(s) for any shape-characterizing arguments (those not
|
|
|
|
provided will be determined by a call to ``_fitstart(data)``).
|
|
|
|
No default value.
|
|
|
|
kwds : floats, optional
|
|
|
|
Starting values for the location and scale parameters; no default.
|
|
|
|
Special keyword arguments are recognized as holding certain
|
|
|
|
parameters fixed:
|
|
|
|
|
|
|
|
f0...fn : hold respective shape parameters fixed.
|
|
|
|
|
|
|
|
floc : hold location parameter fixed to specified value.
|
|
|
|
|
|
|
|
fscale : hold scale parameter fixed to specified value.
|
|
|
|
|
|
|
|
optimizer : The optimizer to use. The optimizer must take func,
|
|
|
|
and starting position as the first two arguments,
|
|
|
|
plus args (for extra arguments to pass to the
|
|
|
|
function to be optimized) and disp=0 to suppress
|
|
|
|
output as keyword arguments.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
shape, loc, scale : tuple of floats
|
|
|
|
MLEs for any shape statistics, followed by those for location and
|
|
|
|
scale.
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
This fit is computed by maximizing a log-likelihood function, with
|
|
|
|
penalty applied for samples outside of range of the distribution. The
|
|
|
|
returned answer is not guaranteed to be the globally optimal MLE, it
|
|
|
|
may only be locally optimal, or the optimization may fail altogether.
|
|
|
|
"""
|
|
|
|
Narg = len(args)
|
|
|
|
if Narg > self.numargs:
|
|
|
|
raise TypeError("Too many input arguments.")
|
|
|
|
|
|
|
|
start = [None]*2
|
|
|
|
if (Narg < self.numargs) or not ('loc' in kwds and
|
|
|
|
'scale' in kwds):
|
|
|
|
# get distribution specific starting locations
|
|
|
|
start = self._fitstart(data)
|
|
|
|
args += start[Narg:-2]
|
|
|
|
loc = kwds.get('loc', start[-2])
|
|
|
|
scale = kwds.get('scale', start[-1])
|
|
|
|
args += (loc, scale)
|
|
|
|
x0, func, restore, args = self._reduce_func(args, kwds)
|
|
|
|
|
|
|
|
optimizer = kwds.get('optimizer', optimize.fmin)
|
|
|
|
# convert string to function in scipy.optimize
|
|
|
|
if not callable(optimizer) and isinstance(optimizer, string_types):
|
|
|
|
if not optimizer.startswith('fmin_'):
|
|
|
|
optimizer = "fmin_"+optimizer
|
|
|
|
if optimizer == 'fmin_':
|
|
|
|
optimizer = 'fmin'
|
|
|
|
try:
|
|
|
|
optimizer = getattr(optimize, optimizer)
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError("%s is not a valid optimizer" % optimizer)
|
|
|
|
vals = optimizer(func, x0, args=(ravel(data),), disp=0)
|
|
|
|
if restore is not None:
|
|
|
|
vals = restore(args, vals)
|
|
|
|
vals = tuple(vals)
|
|
|
|
return vals
|
|
|
|
|
|
|
|
def fit2(self, data, *args, **kwds):
|
|
|
|
''' Return Maximum Likelihood or Maximum Product Spacing estimator object
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
data : array-like
|
|
|
|
Data to use in calculating the ML or MPS estimators
|
|
|
|
args : optional
|
|
|
|
Starting values for any shape arguments (those not specified
|
|
|
|
will be determined by dist._fitstart(data))
|
|
|
|
kwds : loc, scale
|
|
|
|
Starting values for the location and scale parameters
|
|
|
|
Special keyword arguments are recognized as holding certain
|
|
|
|
parameters fixed:
|
|
|
|
f0..fn : hold respective shape paramters fixed
|
|
|
|
floc : hold location parameter fixed to specified value
|
|
|
|
fscale : hold scale parameter fixed to specified value
|
|
|
|
method : of estimation. Options are
|
|
|
|
'ml' : Maximum Likelihood method (default)
|
|
|
|
'mps': Maximum Product Spacing method
|
|
|
|
alpha : scalar, optional
|
|
|
|
Confidence coefficent (default=0.05)
|
|
|
|
search : bool
|
|
|
|
If true search for best estimator (default),
|
|
|
|
otherwise return object with initial distribution parameters
|
|
|
|
copydata : bool
|
|
|
|
If true copydata (default)
|
|
|
|
optimizer : The optimizer to use. The optimizer must take func,
|
|
|
|
and starting position as the first two arguments,
|
|
|
|
plus args (for extra arguments to pass to the
|
|
|
|
function to be optimized) and disp=0 to suppress
|
|
|
|
output as keyword arguments.
|
|
|
|
|
|
|
|
Return
|
|
|
|
------
|
|
|
|
phat : FitDistribution object
|
|
|
|
Fitted distribution object with following member variables:
|
|
|
|
LLmax : loglikelihood function evaluated using par
|
|
|
|
LPSmax : log product spacing function evaluated using par
|
|
|
|
pvalue : p-value for the fit
|
|
|
|
par : distribution parameters (fixed and fitted)
|
|
|
|
par_cov : covariance of distribution parameters
|
|
|
|
par_fix : fixed distribution parameters
|
|
|
|
par_lower : lower (1-alpha)% confidence bound for the parameters
|
|
|
|
par_upper : upper (1-alpha)% confidence bound for the parameters
|
|
|
|
|
|
|
|
Note
|
|
|
|
----
|
|
|
|
`data` is sorted using this function, so if `copydata`==False the data
|
|
|
|
in your namespace will be sorted as well.
|
|
|
|
'''
|
|
|
|
return FitDistribution(self, data, *args, **kwds)
|
|
|
|
|
|
|
|
def fit_loc_scale(self, data, *args):
|
|
|
|
"""
|
|
|
|
Estimate loc and scale parameters from data using 1st and 2nd moments.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
data : array_like
|
|
|
|
Data to fit.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Lhat : float
|
|
|
|
Estimated location parameter for the data.
|
|
|
|
Shat : float
|
|
|
|
Estimated scale parameter for the data.
|
|
|
|
|
|
|
|
"""
|
|
|
|
mu, mu2 = self.stats(*args, **{'moments': 'mv'})
|
|
|
|
tmp = asarray(data)
|
|
|
|
muhat = tmp.mean()
|
|
|
|
mu2hat = tmp.var()
|
|
|
|
Shat = sqrt(mu2hat / mu2)
|
|
|
|
Lhat = muhat - Shat*mu
|
|
|
|
if not np.isfinite(Lhat):
|
|
|
|
Lhat = 0
|
|
|
|
if not (np.isfinite(Shat) and (0 < Shat)):
|
|
|
|
Shat = 1
|
|
|
|
return Lhat, Shat
|
|
|
|
|
|
|
|
@np.deprecate
|
|
|
|
def est_loc_scale(self, data, *args):
|
|
|
|
"""This function is deprecated, use self.fit_loc_scale(data) instead.
|
|
|
|
"""
|
|
|
|
return self.fit_loc_scale(data, *args)
|
|
|
|
|
|
|
|
def _entropy(self, *args):
|
|
|
|
def integ(x):
|
|
|
|
val = self._pdf(x, *args)
|
|
|
|
return -xlogy(val, val)
|
|
|
|
|
|
|
|
# upper limit is often inf, so suppress warnings when integrating
|
|
|
|
olderr = np.seterr(over='ignore')
|
|
|
|
h = integrate.quad(integ, self.a, self.b)[0]
|
|
|
|
np.seterr(**olderr)
|
|
|
|
|
|
|
|
if not np.isnan(h):
|
|
|
|
return h
|
|
|
|
else:
|
|
|
|
# try with different limits if integration problems
|
|
|
|
low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
|
|
|
|
if np.isinf(self.b):
|
|
|
|
upper = upp
|
|
|
|
else:
|
|
|
|
upper = self.b
|
|
|
|
if np.isinf(self.a):
|
|
|
|
lower = low
|
|
|
|
else:
|
|
|
|
lower = self.a
|
|
|
|
return integrate.quad(integ, lower, upper)[0]
|
|
|
|
|
|
|
|
def entropy(self, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Differential entropy of the RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
scale : array_like, optional
|
|
|
|
Scale parameter (default=1).
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, scale = self._parse_args(*args, **kwds)
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
|
|
|
|
output = zeros(shape(cond0), 'd')
|
|
|
|
place(output, (1-cond0), self.badvalue)
|
|
|
|
goodargs = argsreduce(cond0, *args)
|
|
|
|
# np.vectorize doesn't work when numargs == 0 in numpy 1.5.1
|
|
|
|
if self.numargs == 0:
|
|
|
|
place(output, cond0, self._entropy() + log(scale))
|
|
|
|
else:
|
|
|
|
place(output, cond0, self.vecentropy(*goodargs) + log(scale))
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None,
|
|
|
|
conditional=False, **kwds):
|
|
|
|
"""Calculate expected value of a function with respect to the
|
|
|
|
distribution.
|
|
|
|
|
|
|
|
The expected value of a function ``f(x)`` with respect to a
|
|
|
|
distribution ``dist`` is defined as::
|
|
|
|
|
|
|
|
ubound
|
|
|
|
E[x] = Integral(f(x) * dist.pdf(x))
|
|
|
|
lbound
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
func : callable, optional
|
|
|
|
Function for which integral is calculated. Takes only one argument.
|
|
|
|
The default is the identity mapping f(x) = x.
|
|
|
|
args : tuple, optional
|
|
|
|
Argument (parameters) of the distribution.
|
|
|
|
lb, ub : scalar, optional
|
|
|
|
Lower and upper bound for integration. default is set to the
|
|
|
|
support of the distribution.
|
|
|
|
conditional : bool, optional
|
|
|
|
If True, the integral is corrected by the conditional probability
|
|
|
|
of the integration interval. The return value is the expectation
|
|
|
|
of the function, conditional on being in the given interval.
|
|
|
|
Default is False.
|
|
|
|
|
|
|
|
Additional keyword arguments are passed to the integration routine.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
expect : float
|
|
|
|
The calculated expected value.
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
The integration behavior of this function is inherited from
|
|
|
|
`integrate.quad`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
lockwds = {'loc': loc,
|
|
|
|
'scale': scale}
|
|
|
|
self._argcheck(*args)
|
|
|
|
if func is None:
|
|
|
|
def fun(x, *args):
|
|
|
|
return x * self.pdf(x, *args, **lockwds)
|
|
|
|
else:
|
|
|
|
def fun(x, *args):
|
|
|
|
return func(x) * self.pdf(x, *args, **lockwds)
|
|
|
|
if lb is None:
|
|
|
|
lb = loc + self.a * scale
|
|
|
|
if ub is None:
|
|
|
|
ub = loc + self.b * scale
|
|
|
|
if conditional:
|
|
|
|
invfac = (self.sf(lb, *args, **lockwds)
|
|
|
|
- self.sf(ub, *args, **lockwds))
|
|
|
|
else:
|
|
|
|
invfac = 1.0
|
|
|
|
kwds['args'] = args
|
|
|
|
# Silence floating point warnings from integration.
|
|
|
|
olderr = np.seterr(all='ignore')
|
|
|
|
vals = integrate.quad(fun, lb, ub, **kwds)[0] / invfac
|
|
|
|
np.seterr(**olderr)
|
|
|
|
return vals
|
|
|
|
|
|
|
|
|
|
|
|
## Handlers for generic case where xk and pk are given
|
|
|
|
## The _drv prefix probably means discrete random variable.
|
|
|
|
|
|
|
|
def _drv_pmf(self, xk, *args):
|
|
|
|
try:
|
|
|
|
return self.P[xk]
|
|
|
|
except KeyError:
|
|
|
|
return 0.0
|
|
|
|
|
|
|
|
|
|
|
|
def _drv_cdf(self, xk, *args):
|
|
|
|
indx = argmax((self.xk > xk), axis=-1)-1
|
|
|
|
return self.F[self.xk[indx]]
|
|
|
|
|
|
|
|
|
|
|
|
def _drv_ppf(self, q, *args):
|
|
|
|
indx = argmax((self.qvals >= q), axis=-1)
|
|
|
|
return self.Finv[self.qvals[indx]]
|
|
|
|
|
|
|
|
|
|
|
|
def _drv_nonzero(self, k, *args):
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
|
|
|
def _drv_moment(self, n, *args):
|
|
|
|
n = asarray(n)
|
|
|
|
return sum(self.xk**n[np.newaxis, ...] * self.pk, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
def _drv_moment_gen(self, t, *args):
|
|
|
|
t = asarray(t)
|
|
|
|
return sum(exp(self.xk * t[np.newaxis, ...]) * self.pk, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
def _drv2_moment(self, n, *args):
|
|
|
|
"""Non-central moment of discrete distribution."""
|
|
|
|
# many changes, originally not even a return
|
|
|
|
tot = 0.0
|
|
|
|
diff = 1e100
|
|
|
|
# pos = self.a
|
|
|
|
pos = max(0.0, 1.0*self.a)
|
|
|
|
count = 0
|
|
|
|
# handle cases with infinite support
|
|
|
|
ulimit = max(1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)
|
|
|
|
llimit = min(-1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)
|
|
|
|
|
|
|
|
while (pos <= self.b) and ((pos <= ulimit) or
|
|
|
|
(diff > self.moment_tol)):
|
|
|
|
diff = np.power(pos, n) * self.pmf(pos, *args)
|
|
|
|
# use pmf because _pmf does not check support in randint and there
|
|
|
|
# might be problems ? with correct self.a, self.b at this stage
|
|
|
|
tot += diff
|
|
|
|
pos += self.inc
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
if self.a < 0: # handle case when self.a = -inf
|
|
|
|
diff = 1e100
|
|
|
|
pos = -self.inc
|
|
|
|
while (pos >= self.a) and ((pos >= llimit) or
|
|
|
|
(diff > self.moment_tol)):
|
|
|
|
diff = np.power(pos, n) * self.pmf(pos, *args)
|
|
|
|
# using pmf instead of _pmf, see above
|
|
|
|
tot += diff
|
|
|
|
pos -= self.inc
|
|
|
|
count += 1
|
|
|
|
return tot
|
|
|
|
|
|
|
|
|
|
|
|
def _drv2_ppfsingle(self, q, *args): # Use basic bisection algorithm
|
|
|
|
b = self.b
|
|
|
|
a = self.a
|
|
|
|
if isinf(b): # Be sure ending point is > q
|
|
|
|
b = int(max(100*q, 10))
|
|
|
|
while 1:
|
|
|
|
if b >= self.b:
|
|
|
|
qb = 1.0
|
|
|
|
break
|
|
|
|
qb = self._cdf(b, *args)
|
|
|
|
if (qb < q):
|
|
|
|
b += 10
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
qb = 1.0
|
|
|
|
if isinf(a): # be sure starting point < q
|
|
|
|
a = int(min(-100*q, -10))
|
|
|
|
while 1:
|
|
|
|
if a <= self.a:
|
|
|
|
qb = 0.0
|
|
|
|
break
|
|
|
|
qa = self._cdf(a, *args)
|
|
|
|
if (qa > q):
|
|
|
|
a -= 10
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
qa = self._cdf(a, *args)
|
|
|
|
|
|
|
|
while 1:
|
|
|
|
if (qa == q):
|
|
|
|
return a
|
|
|
|
if (qb == q):
|
|
|
|
return b
|
|
|
|
if b <= a+1:
|
|
|
|
# testcase: return wrong number at lower index
|
|
|
|
# python -c "from scipy.stats import zipf;print zipf.ppf(0.01, 2)" wrong
|
|
|
|
# python -c "from scipy.stats import zipf;print zipf.ppf([0.01, 0.61, 0.77, 0.83], 2)"
|
|
|
|
# python -c "from scipy.stats import logser;print logser.ppf([0.1, 0.66, 0.86, 0.93], 0.6)"
|
|
|
|
if qa > q:
|
|
|
|
return a
|
|
|
|
else:
|
|
|
|
return b
|
|
|
|
c = int((a+b)/2.0)
|
|
|
|
qc = self._cdf(c, *args)
|
|
|
|
if (qc < q):
|
|
|
|
if a != c:
|
|
|
|
a = c
|
|
|
|
else:
|
|
|
|
raise RuntimeError('updating stopped, endless loop')
|
|
|
|
qa = qc
|
|
|
|
elif (qc > q):
|
|
|
|
if b != c:
|
|
|
|
b = c
|
|
|
|
else:
|
|
|
|
raise RuntimeError('updating stopped, endless loop')
|
|
|
|
qb = qc
|
|
|
|
else:
|
|
|
|
return c
|
|
|
|
|
|
|
|
|
|
|
|
def entropy(pk, qk=None, base=None):
|
|
|
|
"""Calculate the entropy of a distribution for given probability values.
|
|
|
|
|
|
|
|
If only probabilities `pk` are given, the entropy is calculated as
|
|
|
|
``S = -sum(pk * log(pk), axis=0)``.
|
|
|
|
|
|
|
|
If `qk` is not None, then compute the Kullback-Leibler divergence
|
|
|
|
``S = sum(pk * log(pk / qk), axis=0)``.
|
|
|
|
|
|
|
|
This routine will normalize `pk` and `qk` if they don't sum to 1.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
pk : sequence
|
|
|
|
Defines the (discrete) distribution. ``pk[i]`` is the (possibly
|
|
|
|
unnormalized) probability of event ``i``.
|
|
|
|
qk : sequence, optional
|
|
|
|
Sequence against which the relative entropy is computed. Should be in
|
|
|
|
the same format as `pk`.
|
|
|
|
base : float, optional
|
|
|
|
The logarithmic base to use, defaults to ``e`` (natural logarithm).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
S : float
|
|
|
|
The calculated entropy.
|
|
|
|
|
|
|
|
"""
|
|
|
|
pk = asarray(pk)
|
|
|
|
pk = 1.0*pk / sum(pk, axis=0)
|
|
|
|
if qk is None:
|
|
|
|
vec = xlogy(pk, pk)
|
|
|
|
else:
|
|
|
|
qk = asarray(qk)
|
|
|
|
if len(qk) != len(pk):
|
|
|
|
raise ValueError("qk and pk must have same length.")
|
|
|
|
qk = 1.0*qk / sum(qk, axis=0)
|
|
|
|
# If qk is zero anywhere, then unless pk is zero at those places
|
|
|
|
# too, the relative entropy is infinite.
|
|
|
|
mask = qk == 0.0
|
|
|
|
qk[mask] = 1.0 # Avoid the divide-by-zero warning
|
|
|
|
quotient = pk / qk
|
|
|
|
vec = -xlogy(pk, quotient)
|
|
|
|
vec[mask & (pk != 0.0)] = -inf
|
|
|
|
vec[mask & (pk == 0.0)] = 0.0
|
|
|
|
S = -sum(vec, axis=0)
|
|
|
|
if base is not None:
|
|
|
|
S /= log(base)
|
|
|
|
return S
|
|
|
|
|
|
|
|
|
|
|
|
# Must over-ride one of _pmf or _cdf or pass in
|
|
|
|
# x_k, p(x_k) lists in initialization
|
|
|
|
|
|
|
|
class rv_discrete(rv_generic):
|
|
|
|
"""
|
|
|
|
A generic discrete random variable class meant for subclassing.
|
|
|
|
|
|
|
|
`rv_discrete` is a base class to construct specific distribution classes
|
|
|
|
and instances from for discrete random variables. rv_discrete can be used
|
|
|
|
to construct an arbitrary distribution with defined by a list of support
|
|
|
|
points and the corresponding probabilities.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
a : float, optional
|
|
|
|
Lower bound of the support of the distribution, default: 0
|
|
|
|
b : float, optional
|
|
|
|
Upper bound of the support of the distribution, default: plus infinity
|
|
|
|
moment_tol : float, optional
|
|
|
|
The tolerance for the generic calculation of moments
|
|
|
|
values : tuple of two array_like
|
|
|
|
(xk, pk) where xk are points (integers) with positive probability pk
|
|
|
|
with sum(pk) = 1
|
|
|
|
inc : integer
|
|
|
|
increment for the support of the distribution, default: 1
|
|
|
|
other values have not been tested
|
|
|
|
badvalue : object, optional
|
|
|
|
The value in (masked) arrays that indicates a value that should be
|
|
|
|
ignored.
|
|
|
|
name : str, optional
|
|
|
|
The name of the instance. This string is used to construct the default
|
|
|
|
example for distributions.
|
|
|
|
longname : str, optional
|
|
|
|
This string is used as part of the first line of the docstring returned
|
|
|
|
when a subclass has no docstring of its own. Note: `longname` exists
|
|
|
|
for backwards compatibility, do not use for new subclasses.
|
|
|
|
shapes : str, optional
|
|
|
|
The shape of the distribution. For example ``"m, n"`` for a
|
|
|
|
distribution that takes two integers as the first two arguments for all
|
|
|
|
its methods.
|
|
|
|
extradoc : str, optional
|
|
|
|
This string is used as the last part of the docstring returned when a
|
|
|
|
subclass has no docstring of its own. Note: `extradoc` exists for
|
|
|
|
backwards compatibility, do not use for new subclasses.
|
|
|
|
|
|
|
|
Methods
|
|
|
|
-------
|
|
|
|
``generic.rvs(<shape(s)>, loc=0, size=1)``
|
|
|
|
random variates
|
|
|
|
|
|
|
|
``generic.pmf(x, <shape(s)>, loc=0)``
|
|
|
|
probability mass function
|
|
|
|
|
|
|
|
``logpmf(x, <shape(s)>, loc=0)``
|
|
|
|
log of the probability density function
|
|
|
|
|
|
|
|
``generic.cdf(x, <shape(s)>, loc=0)``
|
|
|
|
cumulative density function
|
|
|
|
|
|
|
|
``generic.logcdf(x, <shape(s)>, loc=0)``
|
|
|
|
log of the cumulative density function
|
|
|
|
|
|
|
|
``generic.sf(x, <shape(s)>, loc=0)``
|
|
|
|
survival function (1-cdf --- sometimes more accurate)
|
|
|
|
|
|
|
|
``generic.logsf(x, <shape(s)>, loc=0, scale=1)``
|
|
|
|
log of the survival function
|
|
|
|
|
|
|
|
``generic.ppf(q, <shape(s)>, loc=0)``
|
|
|
|
percent point function (inverse of cdf --- percentiles)
|
|
|
|
|
|
|
|
``generic.isf(q, <shape(s)>, loc=0)``
|
|
|
|
inverse survival function (inverse of sf)
|
|
|
|
|
|
|
|
``generic.moment(n, <shape(s)>, loc=0)``
|
|
|
|
non-central n-th moment of the distribution. May not work for array
|
|
|
|
arguments.
|
|
|
|
|
|
|
|
``generic.stats(<shape(s)>, loc=0, moments='mv')``
|
|
|
|
mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k')
|
|
|
|
|
|
|
|
``generic.entropy(<shape(s)>, loc=0)``
|
|
|
|
entropy of the RV
|
|
|
|
|
|
|
|
``generic.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False)``
|
|
|
|
Expected value of a function with respect to the distribution.
|
|
|
|
Additional kwd arguments passed to integrate.quad
|
|
|
|
|
|
|
|
``generic.median(<shape(s)>, loc=0)``
|
|
|
|
Median of the distribution.
|
|
|
|
|
|
|
|
``generic.mean(<shape(s)>, loc=0)``
|
|
|
|
Mean of the distribution.
|
|
|
|
|
|
|
|
``generic.std(<shape(s)>, loc=0)``
|
|
|
|
Standard deviation of the distribution.
|
|
|
|
|
|
|
|
``generic.var(<shape(s)>, loc=0)``
|
|
|
|
Variance of the distribution.
|
|
|
|
|
|
|
|
``generic.interval(alpha, <shape(s)>, loc=0)``
|
|
|
|
Interval that with `alpha` percent probability contains a random
|
|
|
|
realization of this distribution.
|
|
|
|
|
|
|
|
``generic(<shape(s)>, loc=0)``
|
|
|
|
calling a distribution instance returns a frozen distribution
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
|
|
|
|
You can construct an arbitrary discrete rv where ``P{X=xk} = pk``
|
|
|
|
by passing to the rv_discrete initialization method (through the
|
|
|
|
values=keyword) a tuple of sequences (xk, pk) which describes only those
|
|
|
|
values of X (xk) that occur with nonzero probability (pk).
|
|
|
|
|
|
|
|
To create a new discrete distribution, we would do the following::
|
|
|
|
|
|
|
|
class poisson_gen(rv_discrete):
|
|
|
|
# "Poisson distribution"
|
|
|
|
def _pmf(self, k, mu):
|
|
|
|
...
|
|
|
|
|
|
|
|
and create an instance::
|
|
|
|
|
|
|
|
poisson = poisson_gen(name="poisson",
|
|
|
|
longname='A Poisson')
|
|
|
|
|
|
|
|
The docstring can be created from a template.
|
|
|
|
|
|
|
|
Alternatively, the object may be called (as a function) to fix the shape
|
|
|
|
and location parameters returning a "frozen" discrete RV object::
|
|
|
|
|
|
|
|
myrv = generic(<shape(s)>, loc=0)
|
|
|
|
- frozen RV object with the same methods but holding the given
|
|
|
|
shape and location fixed.
|
|
|
|
|
|
|
|
A note on ``shapes``: subclasses need not specify them explicitly. In this
|
|
|
|
case, the `shapes` will be automatically deduced from the signatures of the
|
|
|
|
overridden methods.
|
|
|
|
If, for some reason, you prefer to avoid relying on introspection, you can
|
|
|
|
specify ``shapes`` explicitly as an argument to the instance constructor.
|
|
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
--------
|
|
|
|
|
|
|
|
Custom made discrete distribution:
|
|
|
|
|
|
|
|
>>> from scipy import stats
|
|
|
|
>>> xk = np.arange(7)
|
|
|
|
>>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2)
|
|
|
|
>>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
|
|
|
|
>>>
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> fig, ax = plt.subplots(1, 1)
|
|
|
|
>>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r')
|
|
|
|
>>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4)
|
|
|
|
>>> plt.show()
|
|
|
|
|
|
|
|
Random number generation:
|
|
|
|
|
|
|
|
>>> R = custm.rvs(size=100)
|
|
|
|
|
|
|
|
Check accuracy of cdf and ppf:
|
|
|
|
|
|
|
|
>>> prb = custm.cdf(x, <shape(s)>)
|
|
|
|
>>> h = plt.semilogy(np.abs(x-custm.ppf(prb, <shape(s)>))+1e-20)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, a=0, b=inf, name=None, badvalue=None,
|
|
|
|
moment_tol=1e-8, values=None, inc=1, longname=None,
|
|
|
|
shapes=None, extradoc=None):
|
|
|
|
|
|
|
|
super(rv_discrete, self).__init__()
|
|
|
|
|
|
|
|
# cf generic freeze
|
|
|
|
self._ctor_param = dict(
|
|
|
|
a=a, b=b, name=name, badvalue=badvalue,
|
|
|
|
moment_tol=moment_tol, values=values, inc=inc,
|
|
|
|
longname=longname, shapes=shapes, extradoc=extradoc)
|
|
|
|
|
|
|
|
if badvalue is None:
|
|
|
|
badvalue = nan
|
|
|
|
if name is None:
|
|
|
|
name = 'Distribution'
|
|
|
|
self.badvalue = badvalue
|
|
|
|
self.a = a
|
|
|
|
self.b = b
|
|
|
|
self.name = name
|
|
|
|
self.moment_tol = moment_tol
|
|
|
|
self.inc = inc
|
|
|
|
self._cdfvec = vectorize(self._cdf_single, otypes='d')
|
|
|
|
self.return_integers = 1
|
|
|
|
self.vecentropy = vectorize(self._entropy)
|
|
|
|
self.shapes = shapes
|
|
|
|
self.extradoc = extradoc
|
|
|
|
|
|
|
|
if values is not None:
|
|
|
|
self.xk, self.pk = values
|
|
|
|
self.return_integers = 0
|
|
|
|
indx = argsort(ravel(self.xk))
|
|
|
|
self.xk = take(ravel(self.xk), indx, 0)
|
|
|
|
self.pk = take(ravel(self.pk), indx, 0)
|
|
|
|
self.a = self.xk[0]
|
|
|
|
self.b = self.xk[-1]
|
|
|
|
self.P = dict(zip(self.xk, self.pk))
|
|
|
|
self.qvals = np.cumsum(self.pk, axis=0)
|
|
|
|
self.F = dict(zip(self.xk, self.qvals))
|
|
|
|
decreasing_keys = sorted(self.F.keys(), reverse=True)
|
|
|
|
self.Finv = dict((self.F[k], k) for k in decreasing_keys)
|
|
|
|
self._ppf = instancemethod(vectorize(_drv_ppf, otypes='d'),
|
|
|
|
self, rv_discrete)
|
|
|
|
self._pmf = instancemethod(vectorize(_drv_pmf, otypes='d'),
|
|
|
|
self, rv_discrete)
|
|
|
|
self._cdf = instancemethod(vectorize(_drv_cdf, otypes='d'),
|
|
|
|
self, rv_discrete)
|
|
|
|
self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete)
|
|
|
|
self.generic_moment = instancemethod(_drv_moment,
|
|
|
|
self, rv_discrete)
|
|
|
|
self.moment_gen = instancemethod(_drv_moment_gen,
|
|
|
|
self, rv_discrete)
|
|
|
|
self._construct_argparser(meths_to_inspect=[_drv_pmf],
|
|
|
|
locscale_in='loc=0',
|
|
|
|
# scale=1 for discrete RVs
|
|
|
|
locscale_out='loc, 1')
|
|
|
|
else:
|
|
|
|
self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf],
|
|
|
|
locscale_in='loc=0',
|
|
|
|
# scale=1 for discrete RVs
|
|
|
|
locscale_out='loc, 1')
|
|
|
|
|
|
|
|
# nin correction needs to be after we know numargs
|
|
|
|
# correct nin for generic moment vectorization
|
|
|
|
_vec_generic_moment = vectorize(_drv2_moment, otypes='d')
|
|
|
|
_vec_generic_moment.nin = self.numargs + 2
|
|
|
|
self.generic_moment = instancemethod(_vec_generic_moment,
|
|
|
|
self, rv_discrete)
|
|
|
|
# backwards compat. was removed in 0.14.0, put back but
|
|
|
|
# deprecated in 0.14.1:
|
|
|
|
self.vec_generic_moment = np.deprecate(_vec_generic_moment,
|
|
|
|
"vec_generic_moment",
|
|
|
|
"generic_moment")
|
|
|
|
|
|
|
|
# correct nin for ppf vectorization
|
|
|
|
_vppf = vectorize(_drv2_ppfsingle, otypes='d')
|
|
|
|
_vppf.nin = self.numargs + 2 # +1 is for self
|
|
|
|
self._ppfvec = instancemethod(_vppf,
|
|
|
|
self, rv_discrete)
|
|
|
|
|
|
|
|
# now that self.numargs is defined, we can adjust nin
|
|
|
|
self._cdfvec.nin = self.numargs + 1
|
|
|
|
|
|
|
|
# generate docstring for subclass instances
|
|
|
|
if longname is None:
|
|
|
|
if name[0] in ['aeiouAEIOU']:
|
|
|
|
hstr = "An "
|
|
|
|
else:
|
|
|
|
hstr = "A "
|
|
|
|
longname = hstr + name
|
|
|
|
|
|
|
|
if sys.flags.optimize < 2:
|
|
|
|
# Skip adding docstrings if interpreter is run with -OO
|
|
|
|
if self.__doc__ is None:
|
|
|
|
self._construct_default_doc(longname=longname,
|
|
|
|
extradoc=extradoc)
|
|
|
|
else:
|
|
|
|
dct = dict(distdiscrete)
|
|
|
|
self._construct_doc(docdict_discrete, dct.get(self.name))
|
|
|
|
|
|
|
|
#discrete RV do not have the scale parameter, remove it
|
|
|
|
self.__doc__ = self.__doc__.replace(
|
|
|
|
'\n scale : array_like, '
|
|
|
|
'optional\n scale parameter (default=1)', '')
|
|
|
|
|
|
|
|
def _construct_default_doc(self, longname=None, extradoc=None):
|
|
|
|
"""Construct instance docstring from the rv_discrete template."""
|
|
|
|
if extradoc is None:
|
|
|
|
extradoc = ''
|
|
|
|
if extradoc.startswith('\n\n'):
|
|
|
|
extradoc = extradoc[2:]
|
|
|
|
self.__doc__ = ''.join(['%s discrete random variable.' % longname,
|
|
|
|
'\n\n%(before_notes)s\n', docheaders['notes'],
|
|
|
|
extradoc, '\n%(example)s'])
|
|
|
|
self._construct_doc(docdict_discrete)
|
|
|
|
|
|
|
|
def _nonzero(self, k, *args):
|
|
|
|
return floor(k) == k
|
|
|
|
|
|
|
|
def _pmf(self, k, *args):
|
|
|
|
return self._cdf(k, *args) - self._cdf(k-1, *args)
|
|
|
|
|
|
|
|
def _logpmf(self, k, *args):
|
|
|
|
return log(self._pmf(k, *args))
|
|
|
|
|
|
|
|
def _cdf_single(self, k, *args):
|
|
|
|
m = arange(int(self.a), k+1)
|
|
|
|
return sum(self._pmf(m, *args), axis=0)
|
|
|
|
|
|
|
|
def _cdf(self, x, *args):
|
|
|
|
k = floor(x)
|
|
|
|
return self._cdfvec(k, *args)
|
|
|
|
|
|
|
|
# generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic
|
|
|
|
|
|
|
|
def rvs(self, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Random variates of given type.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
size : int or tuple of ints, optional
|
|
|
|
Defining number of random variates (default=1). Note that `size`
|
|
|
|
has to be given as keyword, not as positional argument.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
rvs : ndarray or scalar
|
|
|
|
Random variates of given `size`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
kwargs['discrete'] = True
|
|
|
|
return super(rv_discrete, self).rvs(*args, **kwargs)
|
|
|
|
|
|
|
|
def pmf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Probability mass function at k of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like
|
|
|
|
quantiles
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information)
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
pmf : array_like
|
|
|
|
Probability mass function evaluated at k
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray((k-loc))
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, np.clip(self._pmf(*goodargs), 0, 1))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logpmf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the probability mass function at k of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like
|
|
|
|
Quantiles.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter. Default is 0.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logpmf : array_like
|
|
|
|
Log of the probability mass function evaluated at k.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray((k-loc))
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, self._logpmf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def cdf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Cumulative distribution function of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like, int
|
|
|
|
Quantiles.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
cdf : ndarray
|
|
|
|
Cumulative distribution function evaluated at `k`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray((k-loc))
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k < self.b)
|
|
|
|
cond2 = (k >= self.b)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
place(output, cond2*(cond0 == cond0), 1.0)
|
|
|
|
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, np.clip(self._cdf(*goodargs), 0, 1))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logcdf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the cumulative distribution function at k of the given RV
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like, int
|
|
|
|
Quantiles.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logcdf : array_like
|
|
|
|
Log of the cumulative distribution function evaluated at k.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray((k-loc))
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k < self.b)
|
|
|
|
cond2 = (k >= self.b)
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
place(output, cond2*(cond0 == cond0), 0.0)
|
|
|
|
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, self._logcdf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def sf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Survival function (1-cdf) at k of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like
|
|
|
|
Quantiles.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
sf : array_like
|
|
|
|
Survival function evaluated at k.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray(k-loc)
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k <= self.b)
|
|
|
|
cond2 = (k < self.a) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = zeros(shape(cond), 'd')
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
place(output, cond2, 1.0)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, np.clip(self._sf(*goodargs), 0, 1))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def logsf(self, k, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Log of the survival function of the given RV.
|
|
|
|
|
|
|
|
Returns the log of the "survival function," defined as ``1 - cdf``,
|
|
|
|
evaluated at `k`.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
k : array_like
|
|
|
|
Quantiles.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
logsf : ndarray
|
|
|
|
Log of the survival function evaluated at `k`.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
k, loc = map(asarray, (k, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
k = asarray(k-loc)
|
|
|
|
cond0 = self._argcheck(*args)
|
|
|
|
cond1 = (k >= self.a) & (k <= self.b)
|
|
|
|
cond2 = (k < self.a) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = empty(shape(cond), 'd')
|
|
|
|
output.fill(NINF)
|
|
|
|
place(output, (1-cond0) + np.isnan(k), self.badvalue)
|
|
|
|
place(output, cond2, 0.0)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((k,)+args))
|
|
|
|
place(output, cond, self._logsf(*goodargs))
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def ppf(self, q, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Percent point function (inverse of cdf) at q of the given RV
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
q : array_like
|
|
|
|
Lower tail probability.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
scale : array_like, optional
|
|
|
|
Scale parameter (default=1).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
k : array_like
|
|
|
|
Quantile corresponding to the lower tail probability, q.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
q, loc = map(asarray, (q, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (loc == loc)
|
|
|
|
cond1 = (q > 0) & (q < 1)
|
|
|
|
cond2 = (q == 1) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
output = valarray(shape(cond), value=self.badvalue, typecode='d')
|
|
|
|
# output type 'd' to handle nin and inf
|
|
|
|
place(output, (q == 0)*(cond == cond), self.a-1)
|
|
|
|
place(output, cond2, self.b)
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(loc,)))
|
|
|
|
loc, goodargs = goodargs[-1], goodargs[:-1]
|
|
|
|
place(output, cond, self._ppf(*goodargs) + loc)
|
|
|
|
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def isf(self, q, *args, **kwds):
|
|
|
|
"""
|
|
|
|
Inverse survival function (inverse of `sf`) at q of the given RV.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
q : array_like
|
|
|
|
Upper tail probability.
|
|
|
|
arg1, arg2, arg3,... : array_like
|
|
|
|
The shape parameter(s) for the distribution (see docstring of the
|
|
|
|
instance object for more information).
|
|
|
|
loc : array_like, optional
|
|
|
|
Location parameter (default=0).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
k : ndarray or scalar
|
|
|
|
Quantile corresponding to the upper tail probability, q.
|
|
|
|
|
|
|
|
"""
|
|
|
|
args, loc, _ = self._parse_args(*args, **kwds)
|
|
|
|
q, loc = map(asarray, (q, loc))
|
|
|
|
args = tuple(map(asarray, args))
|
|
|
|
cond0 = self._argcheck(*args) & (loc == loc)
|
|
|
|
cond1 = (q > 0) & (q < 1)
|
|
|
|
cond2 = (q == 1) & cond0
|
|
|
|
cond = cond0 & cond1
|
|
|
|
|
|
|
|
# same problem as with ppf; copied from ppf and changed
|
|
|
|
output = valarray(shape(cond), value=self.badvalue, typecode='d')
|
|
|
|
# output type 'd' to handle nin and inf
|
|
|
|
place(output, (q == 0)*(cond == cond), self.b)
|
|
|
|
place(output, cond2, self.a-1)
|
|
|
|
|
|
|
|
# call place only if at least 1 valid argument
|
|
|
|
if any(cond):
|
|
|
|
goodargs = argsreduce(cond, *((q,)+args+(loc,)))
|
|
|
|
loc, goodargs = goodargs[-1], goodargs[:-1]
|
|
|
|
# PB same as ticket 766
|
|
|
|
place(output, cond, self._isf(*goodargs) + loc)
|
|
|
|
|
|
|
|
if output.ndim == 0:
|
|
|
|
return output[()]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def _entropy(self, *args):
|
|
|
|
if hasattr(self, 'pk'):
|
|
|
|
return entropy(self.pk)
|
|
|
|
else:
|
|
|
|
mu = int(self.stats(*args, **{'moments': 'm'}))
|
|
|
|
val = self.pmf(mu, *args)
|
|
|
|
ent = -xlogy(val, val)
|
|
|
|
k = 1
|
|
|
|
term = 1.0
|
|
|
|
while (abs(term) > _EPS):
|
|
|
|
val = self.pmf(mu+k, *args)
|
|
|
|
term = -xlogy(val, val)
|
|
|
|
val = self.pmf(mu-k, *args)
|
|
|
|
term -= xlogy(val, val)
|
|
|
|
k += 1
|
|
|
|
ent += term
|
|
|
|
return ent
|
|
|
|
|
|
|
|
def expect(self, func=None, args=(), loc=0, lb=None, ub=None,
|
|
|
|
conditional=False):
|
|
|
|
"""
|
|
|
|
Calculate expected value of a function with respect to the distribution
|
|
|
|
for discrete distribution
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
fn : function (default: identity mapping)
|
|
|
|
Function for which sum is calculated. Takes only one argument.
|
|
|
|
args : tuple
|
|
|
|
argument (parameters) of the distribution
|
|
|
|
lb, ub : numbers, optional
|
|
|
|
lower and upper bound for integration, default is set to the
|
|
|
|
support of the distribution, lb and ub are inclusive (ul<=k<=ub)
|
|
|
|
conditional : bool, optional
|
|
|
|
Default is False.
|
|
|
|
If true then the expectation is corrected by the conditional
|
|
|
|
probability of the integration interval. The return value is the
|
|
|
|
expectation of the function, conditional on being in the given
|
|
|
|
interval (k such that ul<=k<=ub).
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
expect : float
|
|
|
|
Expected value.
|
|
|
|
|
|
|
|
Notes
|
|
|
|
-----
|
|
|
|
* function is not vectorized
|
|
|
|
* accuracy: uses self.moment_tol as stopping criterium
|
|
|
|
for heavy tailed distribution e.g. zipf(4), accuracy for
|
|
|
|
mean, variance in example is only 1e-5,
|
|
|
|
increasing precision (moment_tol) makes zipf very slow
|
|
|
|
* suppnmin=100 internal parameter for minimum number of points to
|
|
|
|
evaluate could be added as keyword parameter, to evaluate functions
|
|
|
|
with non-monotonic shapes, points include integers in (-suppnmin,
|
|
|
|
suppnmin)
|
|
|
|
* uses maxcount=1000 limits the number of points that are evaluated
|
|
|
|
to break loop for infinite sums
|
|
|
|
(a maximum of suppnmin+1000 positive plus suppnmin+1000 negative
|
|
|
|
integers are evaluated)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# moment_tol = 1e-12 # increase compared to self.moment_tol,
|
|
|
|
# too slow for only small gain in precision for zipf
|
|
|
|
|
|
|
|
# avoid endless loop with unbound integral, eg. var of zipf(2)
|
|
|
|
maxcount = 1000
|
|
|
|
suppnmin = 100 # minimum number of points to evaluate (+ and -)
|
|
|
|
|
|
|
|
if func is None:
|
|
|
|
def fun(x):
|
|
|
|
# loc and args from outer scope
|
|
|
|
return (x+loc)*self._pmf(x, *args)
|
|
|
|
else:
|
|
|
|
def fun(x):
|
|
|
|
# loc and args from outer scope
|
|
|
|
return func(x+loc)*self._pmf(x, *args)
|
|
|
|
# used pmf because _pmf does not check support in randint and there
|
|
|
|
# might be problems(?) with correct self.a, self.b at this stage maybe
|
|
|
|
# not anymore, seems to work now with _pmf
|
|
|
|
|
|
|
|
self._argcheck(*args) # (re)generate scalar self.a and self.b
|
|
|
|
if lb is None:
|
|
|
|
lb = (self.a)
|
|
|
|
else:
|
|
|
|
lb = lb - loc # convert bound for standardized distribution
|
|
|
|
if ub is None:
|
|
|
|
ub = (self.b)
|
|
|
|
else:
|
|
|
|
ub = ub - loc # convert bound for standardized distribution
|
|
|
|
if conditional:
|
|
|
|
if np.isposinf(ub)[()]:
|
|
|
|
# work around bug: stats.poisson.sf(stats.poisson.b, 2) is nan
|
|
|
|
invfac = 1 - self.cdf(lb-1, *args)
|
|
|
|
else:
|
|
|
|
invfac = 1 - self.cdf(lb-1, *args) - self.sf(ub, *args)
|
|
|
|
else:
|
|
|
|
invfac = 1.0
|
|
|
|
|
|
|
|
#tot = 0.0
|
|
|
|
low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args)
|
|
|
|
low = max(min(-suppnmin, low), lb)
|
|
|
|
upp = min(max(suppnmin, upp), ub)
|
|
|
|
supp = np.arange(low, upp+1, self.inc) # check limits
|
|
|
|
tot = np.sum(fun(supp))
|
|
|
|
diff = 1e100
|
|
|
|
pos = upp + self.inc
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# handle cases with infinite support
|
|
|
|
|
|
|
|
while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount:
|
|
|
|
diff = fun(pos)
|
|
|
|
tot += diff
|
|
|
|
pos += self.inc
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
if self.a < 0: # handle case when self.a = -inf
|
|
|
|
diff = 1e100
|
|
|
|
pos = low - self.inc
|
|
|
|
while ((pos >= lb) and (diff > self.moment_tol) and
|
|
|
|
count <= maxcount):
|
|
|
|
diff = fun(pos)
|
|
|
|
tot += diff
|
|
|
|
pos -= self.inc
|
|
|
|
count += 1
|
|
|
|
if count > maxcount:
|
|
|
|
warnings.warn('expect(): sum did not converge', RuntimeWarning)
|
|
|
|
return tot/invfac
|
|
|
|
|
|
|
|
|
|
|
|
def get_distribution_names(namespace_pairs, rv_base_class):
|
|
|
|
"""
|
|
|
|
Collect names of statistical distributions and their generators.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
namespace_pairs : sequence
|
|
|
|
A snapshot of (name, value) pairs in the namespace of a module.
|
|
|
|
rv_base_class : class
|
|
|
|
The base class of random variable generator classes in a module.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
distn_names : list of strings
|
|
|
|
Names of the statistical distributions.
|
|
|
|
distn_gen_names : list of strings
|
|
|
|
Names of the generators of the statistical distributions.
|
|
|
|
Note that these are not simply the names of the statistical
|
|
|
|
distributions, with a _gen suffix added.
|
|
|
|
|
|
|
|
"""
|
|
|
|
distn_names = []
|
|
|
|
distn_gen_names = []
|
|
|
|
for name, value in namespace_pairs:
|
|
|
|
if name.startswith('_'):
|
|
|
|
continue
|
|
|
|
if name.endswith('_gen') and issubclass(value, rv_base_class):
|
|
|
|
distn_gen_names.append(name)
|
|
|
|
if isinstance(value, rv_base_class):
|
|
|
|
distn_names.append(name)
|
|
|
|
return distn_names, distn_gen_names
|