You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
770 lines
28 KiB
FortranFixed
770 lines
28 KiB
FortranFixed
15 years ago
|
PROGRAM sp2mmt
|
||
|
C*******************************************************************************
|
||
|
C This program computes joint density of the maximum and the following *
|
||
|
C minimum or level u separated maxima and minima + period/wavelength *
|
||
|
C*******************************************************************************
|
||
|
use GLOBALDATA, only : Nt,Nj,Nd,Nc,Ntd,Ntdc,NI,Mb,
|
||
|
&NIT,Nx,TWOPI,XSPLT,SCIS,NSIMmax,COV
|
||
|
use rind
|
||
|
IMPLICIT NONE
|
||
|
double precision, dimension(:,:), allocatable :: BIG
|
||
|
double precision, dimension(:,:,:),allocatable :: ansr
|
||
|
double precision, dimension(: ), allocatable :: ex
|
||
|
double precision, dimension(:,:), allocatable :: xc
|
||
|
double precision, dimension(: ), allocatable :: fxind,h
|
||
|
double precision, dimension(: ), allocatable :: R0,R1,R2,R3,R4
|
||
|
double precision :: CC,U,XdInf,XtInf
|
||
|
double precision, dimension(1,4) :: a_up,a_lo ! size Mb X NI-1
|
||
|
integer , dimension(: ), allocatable :: seed
|
||
|
integer ,dimension(5) :: indI = 0 ! length NI
|
||
|
integer :: Nstart,Ntime,ts,tn,speed,seed1,seed_size
|
||
|
integer :: status,i,j,ij,Nx0,Nx1,DEF,isOdd !,TMP
|
||
|
LOGICAL :: SYMMETRY=.FALSE.
|
||
|
double precision :: dT ! lag spacing for covariances
|
||
|
|
||
|
! f90 -gline -fieee -Nl126 -C -o intmodule.f rind60.f sp2mmt.f
|
||
|
|
||
|
CALL INIT_LEVELS(Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx1,dT,u,def)
|
||
|
CALL INITDATA(speed)
|
||
|
|
||
|
if (SCIS.GT.0) then
|
||
|
!allocate(COV(1:Nx))
|
||
|
call random_seed(SIZE=seed_size)
|
||
|
allocate(seed(seed_size))
|
||
|
call random_seed(GET=seed(1:seed_size)) ! get current seed
|
||
|
seed(1)=seed1 ! change seed
|
||
|
call random_seed(PUT=seed(1:seed_size))
|
||
|
deallocate(seed)
|
||
|
if (ALLOCATED(COV)) then
|
||
|
open (unit=11, file='COV.out', STATUS='unknown')
|
||
|
write(11,*) 0.d0
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
allocate(R0(1:Ntime+1))
|
||
|
allocate(R1(1:Ntime+1))
|
||
|
allocate(R2(1:Ntime+1))
|
||
|
allocate(R3(1:Ntime+1))
|
||
|
allocate(R4(1:Ntime+1))
|
||
|
|
||
|
Nx0 = Nx1 ! just plain Mm
|
||
|
IF (def.GT.1) Nx0=2*Nx1 ! level v separated max2min densities wanted
|
||
|
|
||
|
|
||
|
allocate(h(1:Nx0))
|
||
|
|
||
|
CALL INIT_AMPLITUDES(h,Nx0)
|
||
|
CALL INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4)
|
||
|
! For DEF = 0,1 : (Maxima, Minima and period/wavelength)
|
||
|
! = 2,3 : (Level v separated Maxima and Minima and period/wavelength between them)
|
||
|
! If Nx==1 then the conditional density for period/wavelength between Maxima and Minima
|
||
|
! given the Max and Min is returned
|
||
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn)|| X'(t1) X'(tn) X(t1) X(tn)
|
||
|
! = [ Xt Xd Xc ]
|
||
|
!
|
||
|
! Nt = tn-2, Nd = 2, Nc = 4
|
||
|
!
|
||
|
! Xt= contains Nt time points in the indicator function
|
||
|
! Xd= " Nd derivatives in Jacobian
|
||
|
! Xc= " Nc variables to condition on
|
||
|
!
|
||
|
! There are 3 (NI=4) regions with constant barriers:
|
||
|
! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0.
|
||
|
! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1))
|
||
|
! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn))
|
||
|
!
|
||
|
!
|
||
|
! For DEF = 4,5 (Level v separated Maxima and Minima and period/wavelength from Max to crossing)
|
||
|
! If Nx==1 then the conditional joint density for period/wavelength between Maxima, Minima and Max to
|
||
|
! level v crossing given the Max and the min is returned
|
||
|
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
! Y= X'(t2)..X'(ts)..X'(tn-1)||X''(t1) X''(tn) X'(ts)|| X'(t1) X'(tn) X(t1) X(tn) X(ts)
|
||
|
! = [ Xt Xd Xc ]
|
||
|
!
|
||
|
! Nt = tn-2, Nd = 3, Nc = 5
|
||
|
!
|
||
|
! Xt= contains Nt time points in the indicator function
|
||
|
! Xd= " Nd derivatives
|
||
|
! Xc= " Nc variables to condition on
|
||
|
!
|
||
|
! There are 4 (NI=5) regions with constant barriers:
|
||
|
! (indI(1)=0); for i\in (indI(1),indI(2)] Y(i)<0.
|
||
|
! (indI(2)=Nt) ; for i\in (indI(2)+1,indI(3)], Y(i)<0 (deriv. X''(t1))
|
||
|
! (indI(3)=Nt+1); for i\in (indI(3)+1,indI(4)], Y(i)>0 (deriv. X''(tn))
|
||
|
! (indI(4)=Nt+2); for i\in (indI(4)+1,indI(5)], Y(i)<0 (deriv. X'(ts))
|
||
|
!
|
||
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||
|
!
|
||
|
!Revised pab 22.04.2000
|
||
|
! - added mean separated min/max + (Tdm, TMd) period distributions
|
||
|
! - added scis
|
||
|
|
||
|
|
||
|
C ***** The bound 'infinity' is set to 10*sigma *****
|
||
|
XdInf = 10.d0*SQRT(R4(1))
|
||
|
XtInf = 10.d0*SQRT(-R2(1))
|
||
|
|
||
|
Nc = 4
|
||
|
NI=4; Nd=2;
|
||
|
Mb=1 ;
|
||
|
Nj = 0
|
||
|
indI(1) = 0
|
||
|
Nstart=MAX(2,Nstart)
|
||
|
|
||
|
isOdd = MOD(Nx1,2)
|
||
|
IF (def.LE.1) THEN ! just plain Mm
|
||
|
Nx = Nx1*(Nx1-1)/2
|
||
|
IJ = (Nx1+isOdd)/2
|
||
|
IF (H(1)+H(Nx1).EQ.0.AND.
|
||
|
& (H(IJ).EQ.0.OR.H(IJ)+H(IJ+1).EQ.0) ) THEN
|
||
|
SYMMETRY=.FALSE.
|
||
|
PRINT *,' Integration region symmetric'
|
||
|
! May save Nx1-isOdd integrations in each time step
|
||
|
! This is not implemented yet.
|
||
|
!Nx = Nx1*(Nx1-1)/2-Nx1+isOdd
|
||
|
ENDIF
|
||
|
|
||
|
CC = TWOPI*SQRT(-R2(1)/R4(1)) ! normalizing constant = 1/ expected number of zero-up-crossings of X'
|
||
|
|
||
|
ELSE ! level u separated Mm
|
||
|
Nx = (Nx1-1)*(Nx1-1)
|
||
|
IF ( ABS(u).LE.1D-8.AND.H(1)+H(Nx1+1).EQ.0.AND.
|
||
|
& (H(Nx1)+H(2*Nx1).EQ.0) ) THEN
|
||
|
SYMMETRY=.FALSE.
|
||
|
PRINT *,' Integration region symmetric'
|
||
|
! Not implemented for DEF <= 3
|
||
|
!IF (DEF.LE.3) Nx = (Nx1-1)*(Nx1-2)/2
|
||
|
ENDIF
|
||
|
|
||
|
IF (DEF.GT.3) THEN
|
||
|
Nstart = MAX(Nstart,3)
|
||
|
Nc = 5
|
||
|
NI=5; Nd=3;
|
||
|
ENDIF
|
||
|
CC = TWOPI*SQRT(-R0(1)/R2(1))*exp(0.5D0*u*u/R0(1)) ! normalizing constant= 1/ expected number of u-up-crossings of X
|
||
|
ENDIF
|
||
|
|
||
|
!print *,'def',def
|
||
|
IF (Nx.GT.1) THEN
|
||
|
IF ((DEF.EQ.0.OR.DEF.EQ.2)) THEN ! (M,m) or (M,m)v distribution wanted
|
||
|
allocate(ansr(Nx1,Nx1,1),stat=status)
|
||
|
ELSE ! (M,m,TMm), (M,m,TMm)v (M,m,TMd)v or (M,M,Tdm)v distributions wanted
|
||
|
allocate(ansr(Nx1,Nx1,Ntime),stat=status)
|
||
|
ENDIF
|
||
|
ELSEIF (DEF.GT.3) THEN ! Conditional distribution for (TMd,TMm)v or (Tdm,TMm)v given (M,m) wanted
|
||
|
allocate(ansr(1,Ntime,Ntime),stat=status)
|
||
|
ELSE ! Conditional distribution for (TMm) or (TMm)v given (M,m) wanted
|
||
|
allocate(ansr(1,1,Ntime),stat=status)
|
||
|
ENDIF
|
||
|
if (status.ne.0) print *,'can not allocate ansr'
|
||
|
allocate(BIG(Ntime+Nc+1,Ntime+Nc+1),stat=status)
|
||
|
if (status.ne.0) print *,'can not allocate BIG'
|
||
|
allocate(ex(1:Ntime+Nc+1),stat=status)
|
||
|
if (status.ne.0) print *,'can not allocate ex'
|
||
|
allocate(fxind(Nx),xc(Nc,Nx))
|
||
|
|
||
|
|
||
|
! Initialization
|
||
|
!~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
BIG = 0.d0
|
||
|
ex = 0.d0
|
||
|
ansr = 0.d0
|
||
|
a_up = 0.d0
|
||
|
a_lo = 0.d0
|
||
|
|
||
|
xc(:,:) = 0.d0
|
||
|
!xc(:,1:Nx) = 0.d0
|
||
|
!xc(2,1:Nx) = 0.d0
|
||
|
|
||
|
a_lo(1,1) = -Xtinf
|
||
|
a_lo(1,2) = -XdInf
|
||
|
a_up(1,3) = +XdInf
|
||
|
a_lo(1,4) = -Xtinf
|
||
|
ij = 0
|
||
|
IF (DEF.LE.1) THEN ! Max2min and period/wavelength
|
||
|
do I=2,Nx1
|
||
|
J = IJ+I-1
|
||
|
xc(3,IJ+1:J) = h(I)
|
||
|
xc(4,IJ+1:J) = h(1:I-1)
|
||
|
IJ = J
|
||
|
enddo
|
||
|
ELSE
|
||
|
! Level u separated Max2min
|
||
|
xc(Nc,:) = u
|
||
|
! H(1) = H(Nx1+1)= u => start do loop at I=2 since by definition we must have: minimum<u-level<Maximum
|
||
|
do i=2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
xc(3,IJ+1:J) = h(i) ! Max > u
|
||
|
xc(4,IJ+1:J) = h(Nx1+2:2*Nx1) ! Min < u
|
||
|
IJ = J
|
||
|
enddo
|
||
|
|
||
|
!CALL ECHO(transpose(xc(3:5,:)))
|
||
|
if (DEF.GT.3) GOTO 200
|
||
|
ENDIF
|
||
|
do Ntd = Nstart,Ntime
|
||
|
!Ntd=tn
|
||
|
Ntdc = Ntd+Nc
|
||
|
Nt = Ntd-Nd;
|
||
|
indI(2) = Nt;
|
||
|
indI(3) = Nt+1;
|
||
|
indI(4) = Ntd;
|
||
|
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),Ntd,0,R0,R1,R2,R3,R4) ! positive wave period
|
||
|
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
|
||
|
IF (Nx.LT.2) THEN
|
||
|
! Density of TMm given the Max and the Min. Note that the density is not scaled to unity
|
||
|
ansr(1,1,Ntd) = fxind(1)*CC
|
||
|
GOTO 100
|
||
|
ENDIF
|
||
|
IJ = 0
|
||
|
SELECT CASE (DEF)
|
||
|
CASE(:0)
|
||
|
! joint density of (M,m)
|
||
|
!~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
do i = 2, Nx1
|
||
|
J = IJ+i-1
|
||
|
ansr(1:i-1,i,1) = ansr(1:i-1,i,1)+fxind(ij+1:J)*CC*dt
|
||
|
IJ=J
|
||
|
enddo
|
||
|
CASE (1)
|
||
|
! joint density of (M,m,TMm)
|
||
|
do i = 2, Nx1
|
||
|
J = IJ+i-1
|
||
|
ansr(1:i-1,i,Ntd) = fxind(ij+1:J)*CC
|
||
|
IJ = J
|
||
|
enddo
|
||
|
CASE (2)
|
||
|
! joint density of level v separated (M,m)v
|
||
|
do i = 2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
ansr(2:Nx1,i,1) = ansr(2:Nx1,i,1)+fxind(ij+1:J)*CC*dt
|
||
|
IJ = J
|
||
|
enddo
|
||
|
CASE (3:)
|
||
|
! joint density of level v separated (M,m,TMm)v
|
||
|
do i = 2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
ansr(2:Nx1,i,Ntd) = ansr(2:Nx1,i,Ntd)+fxind(ij+1:J)*CC
|
||
|
IJ = J
|
||
|
enddo
|
||
|
END SELECT
|
||
|
|
||
|
100 if (ALLOCATED(COV)) then
|
||
|
write(11,*) COV(:) ! save coefficient of variation
|
||
|
endif
|
||
|
print *,'Ready: ',Ntd,' of ',Ntime
|
||
|
enddo
|
||
|
|
||
|
goto 800
|
||
|
|
||
|
200 do tn = Nstart,Ntime
|
||
|
Ntd = tn+1
|
||
|
Ntdc = Ntd + Nc
|
||
|
Nt = Ntd - Nd;
|
||
|
indI(2) = Nt;
|
||
|
indI(3) = Nt + 1;
|
||
|
indI(4) = Nt + 2;
|
||
|
indI(5) = Ntd;
|
||
|
!CALL COV_INPUT2(BIG(1:Ntdc,1:Ntdc),tn,-2,R0,R1,R2,R3,R4) ! positive wave period
|
||
|
IF (SYMMETRY) GOTO 300
|
||
|
|
||
|
do ts = 2,tn-1
|
||
|
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period
|
||
|
!print *,'Big='
|
||
|
!CALL ECHO(BIG(1:Ntdc,1:MIN(Ntdc,10)))
|
||
|
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
|
||
|
|
||
|
SELECT CASE (def)
|
||
|
CASE (:4)
|
||
|
IF (Nx.EQ.1) THEN
|
||
|
! Joint density (TMd,TMm) given the Max and the min. Note the density is not scaled to unity
|
||
|
ansr(1,ts,tn) = fxind(1)*CC
|
||
|
|
||
|
ELSE
|
||
|
! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd).
|
||
|
ij = 0
|
||
|
do i = 2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+
|
||
|
& fxind(ij+1:J)*CC*dt
|
||
|
IJ = J
|
||
|
enddo
|
||
|
ENDIF
|
||
|
CASE (5:)
|
||
|
IF (Nx.EQ.1) THEN
|
||
|
! Joint density (Tdm,TMm) given the Max and the min. Note the density is not scaled to unity
|
||
|
ansr(1,tn-ts+1,tn) = fxind(1)*CC
|
||
|
ELSE
|
||
|
|
||
|
! 5, gives level u separated Max2min and wave period from the crossing of level u to the min (M,m,Tdm).
|
||
|
ij = 0
|
||
|
do i = 2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+
|
||
|
& fxind(ij+1:J)*CC*dt
|
||
|
IJ = J
|
||
|
enddo
|
||
|
ENDIF
|
||
|
END SELECT
|
||
|
if (ALLOCATED(COV)) then
|
||
|
write(11,*) COV(:) ! save coefficient of variation
|
||
|
endif
|
||
|
enddo
|
||
|
GOTO 400
|
||
|
300 do ts = 2,FLOOR(DBLE(Ntd)/2.d0) ! Using the symmetry since U = 0 and the transformation is linear
|
||
|
CALL COV_INPUT(BIG(1:Ntdc,1:Ntdc),tn,ts,R0,R1,R2,R3,R4) ! positive wave period
|
||
|
!print *,'Big='
|
||
|
!CALL ECHO(BIG(1:Ntdc,1:Ntdc))
|
||
|
CALL RINDD(fxind,Big(1:Ntdc,1:Ntdc),ex,xc,indI,a_lo,a_up)
|
||
|
IF (Nx.EQ.1) THEN
|
||
|
! Joint density of (TMd,TMm),(Tdm,TMm) given the max and the min. Note that the density is not scaled to unity
|
||
|
ansr(1,ts,tn) = fxind(1)*CC
|
||
|
IF (ts.LT.tn-ts+1) THEN
|
||
|
ansr(1,tn-ts+1,tn) = fxind(1)*CC
|
||
|
ENDIF
|
||
|
GOTO 350
|
||
|
ENDIF
|
||
|
IJ = 0
|
||
|
SELECT CASE (def)
|
||
|
CASE (:4)
|
||
|
|
||
|
! 4, gives level u separated Max2min and wave period from Max to the crossing of level u (M,m,TMd).
|
||
|
do i = 2,Nx1
|
||
|
j = ij+Nx1-1
|
||
|
ansr(2:Nx1,i,ts) = ansr(2:Nx1,i,ts)+
|
||
|
& fxind(ij+1:J)*CC*dt
|
||
|
IF (ts.LT.tn-ts+1) THEN
|
||
|
ansr(i,2:Nx1,tn-ts+1) =
|
||
|
& ansr(i,2:Nx1,tn-ts+1)+fxind(ij+1:J)*CC*dt ! exploiting the symmetry
|
||
|
ENDIF
|
||
|
IJ = J
|
||
|
enddo
|
||
|
CASE (5:)
|
||
|
! 5, gives level u separated Max2min and wave period from the crossing of level u to min (M,m,Tdm).
|
||
|
do i = 2,Nx1
|
||
|
J = IJ+Nx1-1
|
||
|
|
||
|
ansr(2:Nx1,i,tn-ts+1)=ansr(2:Nx1,i,tn-ts+1)+
|
||
|
& fxind(ij+1:J)*CC*dt
|
||
|
IF (ts.LT.tn-ts+1) THEN
|
||
|
ansr(i,2:Nx1,ts) = ansr(i,2:Nx1,ts)+
|
||
|
& fxind(ij+1:J)*CC*dt ! exploiting the symmetry
|
||
|
ENDIF
|
||
|
IJ = J
|
||
|
enddo
|
||
|
END SELECT
|
||
|
350 enddo
|
||
|
400 print *,'Ready: ',tn,' of ',Ntime
|
||
|
enddo
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
800 open (unit=11, file='dens.out', STATUS='unknown')
|
||
|
!print *,'ans, IJ,def', shape(ansr),IJ,DEF
|
||
|
if (Nx.GT.1) THEN
|
||
|
ij = 1
|
||
|
IF (DEF.GT.2.OR.DEF.EQ.1) IJ = Ntime
|
||
|
!print *,'ans, IJ,def', size(ansr),IJ,DEF
|
||
|
do ts = 1,ij
|
||
|
do j=1,Nx1
|
||
|
do i=1,Nx1
|
||
|
write(11,*) ansr(i,j,ts)
|
||
|
enddo
|
||
|
enddo
|
||
|
enddo
|
||
|
ELSE
|
||
|
ij = 1
|
||
|
IF (DEF.GT.3) IJ = Ntime
|
||
|
!print *,'ans, IJ,def', size(ansr),IJ,DEF
|
||
|
do ts = 1,Ntime
|
||
|
do j = 1,ij
|
||
|
write(11,*) ansr(1,j,ts)
|
||
|
enddo
|
||
|
enddo
|
||
|
ENDIF
|
||
|
close(11)
|
||
|
900 continue
|
||
|
deallocate(BIG)
|
||
|
deallocate(ex)
|
||
|
deallocate(fxind)
|
||
|
deallocate(ansr)
|
||
|
deallocate(xc)
|
||
|
deallocate(R0)
|
||
|
deallocate(R1)
|
||
|
deallocate(R2)
|
||
|
deallocate(R3)
|
||
|
deallocate(R4)
|
||
|
deallocate(h)
|
||
|
|
||
|
if (allocated(COV) ) then
|
||
|
deallocate(COV)
|
||
|
endif
|
||
|
stop
|
||
|
!return
|
||
|
|
||
|
CONTAINS
|
||
|
|
||
|
|
||
|
|
||
|
SUBROUTINE INIT_LEVELS
|
||
|
& (Ntime,Nstart,NIT,speed,SCIS,SEED1,Nx,dT,u,def)
|
||
|
IMPLICIT NONE
|
||
|
integer, intent(out):: Ntime,Nstart,NIT,speed,Nx,DEF,SCIS,SEED1
|
||
|
double precision ,intent(out) :: dT,U
|
||
|
|
||
|
|
||
|
OPEN(UNIT=14,FILE='reflev.in',STATUS= 'UNKNOWN')
|
||
|
READ (14,*) Ntime
|
||
|
READ (14,*) Nstart
|
||
|
READ (14,*) NIT
|
||
|
READ (14,*) speed
|
||
|
READ (14,*) SCIS
|
||
|
READ (14,*) seed1
|
||
|
READ (14,*) Nx
|
||
|
READ (14,*) dT
|
||
|
READ (14,*) U
|
||
|
READ (14,*) DEF
|
||
|
|
||
|
if (Ntime.lt.2) then
|
||
|
print *,'The number of wavelength points is too small, stop'
|
||
|
stop
|
||
|
end if
|
||
|
CLOSE(UNIT=14)
|
||
|
|
||
|
RETURN
|
||
|
END SUBROUTINE INIT_LEVELS
|
||
|
|
||
|
C******************************************************
|
||
|
SUBROUTINE INIT_AMPLITUDES(h,Nx)
|
||
|
IMPLICIT NONE
|
||
|
double precision, dimension(:), intent(out) :: h
|
||
|
integer, intent(in) :: Nx
|
||
|
integer :: ix
|
||
|
|
||
|
|
||
|
OPEN(UNIT=4,FILE='h.in',STATUS= 'UNKNOWN')
|
||
|
|
||
|
C
|
||
|
C Reading in amplitudes
|
||
|
C
|
||
|
do ix=1,Nx
|
||
|
READ (4,*) H(ix)
|
||
|
enddo
|
||
|
CLOSE(UNIT=4)
|
||
|
|
||
|
RETURN
|
||
|
END SUBROUTINE INIT_AMPLITUDES
|
||
|
|
||
|
C**************************************************
|
||
|
|
||
|
C***********************************************************************
|
||
|
C***********************************************************************
|
||
|
|
||
|
SUBROUTINE INIT_COVARIANCES(Ntime,R0,R1,R2,R3,R4)
|
||
|
IMPLICIT NONE
|
||
|
double precision, dimension(:),intent(out) :: R0,R1,R2
|
||
|
double precision, dimension(:),intent(out) :: R3,R4
|
||
|
integer,intent(in) :: Ntime
|
||
|
integer :: i
|
||
|
open (unit=1, file='Cd0.in',STATUS='unknown')
|
||
|
open (unit=2, file='Cd1.in',STATUS='unknown')
|
||
|
open (unit=3, file='Cd2.in',STATUS='unknown')
|
||
|
open (unit=4, file='Cd3.in',STATUS='unknown')
|
||
|
open (unit=5, file='Cd4.in',STATUS='unknown')
|
||
|
|
||
|
do i=1,Ntime
|
||
|
read(1,*) R0(i)
|
||
|
read(2,*) R1(i)
|
||
|
read(3,*) R2(i)
|
||
|
read(4,*) R3(i)
|
||
|
read(5,*) R4(i)
|
||
|
enddo
|
||
|
close(1)
|
||
|
close(2)
|
||
|
close(3)
|
||
|
close(3)
|
||
|
close(5)
|
||
|
return
|
||
|
END SUBROUTINE INIT_COVARIANCES
|
||
|
|
||
|
C**********************************************************************
|
||
|
|
||
|
SUBROUTINE COV_INPUT2(BIG,tn,ts,R0,R1,R2,R3,R4)
|
||
|
IMPLICIT NONE
|
||
|
double precision, dimension(:,:),intent(inout) :: BIG
|
||
|
double precision, dimension(:),intent(in) :: R0,R1,R2
|
||
|
double precision, dimension(:),intent(in) :: R3,R4
|
||
|
integer ,intent(in) :: tn,ts
|
||
|
integer :: i,j,N,shft
|
||
|
! the order of the variables in the covariance matrix
|
||
|
! are organized as follows:
|
||
|
! for ts <= 1:
|
||
|
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn)
|
||
|
! = [ Xt | Xd | Xc ]
|
||
|
!
|
||
|
! for ts > =2:
|
||
|
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn) X(ts)
|
||
|
! = [ Xt | Xd | Xc ]
|
||
|
!
|
||
|
! where
|
||
|
!
|
||
|
! Xt= time points in the indicator function
|
||
|
! Xd= derivatives
|
||
|
! Xc=variables to condition on
|
||
|
|
||
|
! Computations of all covariances follows simple rules: Cov(X(t),X(s))=r(t,s),
|
||
|
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
|
||
|
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
|
||
|
!
|
||
|
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
|
||
|
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
|
||
|
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
|
||
|
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
|
||
|
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
|
||
|
|
||
|
if (ts.GT.1) THEN
|
||
|
! Assumption: a previous call to covinput has been made
|
||
|
! need only to update the last row and column of big:
|
||
|
N=tn+5
|
||
|
!Cov(Xt,Xc)
|
||
|
do i=1,tn-2
|
||
|
j=abs(i+1-ts)
|
||
|
BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts))
|
||
|
enddo
|
||
|
!Cov(Xc)
|
||
|
BIG(N ,N) = R0(1) ! cov(X(ts),X(ts))
|
||
|
BIG(tn+3 ,N) = R0(ts) ! cov(X(t1),X(ts))
|
||
|
BIG(tn+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts))
|
||
|
BIG(tn+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts))
|
||
|
BIG(tn+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts))
|
||
|
!Cov(Xd,Xc)
|
||
|
BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts))
|
||
|
BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts))
|
||
|
|
||
|
! make lower triangular part equal to upper
|
||
|
do j=1,N-1
|
||
|
BIG(N,j) = BIG(j,N)
|
||
|
enddo
|
||
|
return
|
||
|
endif
|
||
|
IF (ts.LT.0) THEN
|
||
|
shft = 1
|
||
|
N=tn+5;
|
||
|
ELSE
|
||
|
shft = 0
|
||
|
N=tn+4;
|
||
|
ENDIF
|
||
|
|
||
|
|
||
|
do i=1,tn-2
|
||
|
!cov(Xt)
|
||
|
do j=i,tn-2
|
||
|
BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1))
|
||
|
enddo
|
||
|
!cov(Xt,Xc)
|
||
|
BIG(i ,tn+3) = R1(i+1) !cov(X'(ti+1),X(t1))
|
||
|
BIG(tn-1-i ,tn+4) = -R1(i+1) !cov(X'(ti+1),X(tn))
|
||
|
BIG(i ,tn+1) = -R2(i+1) !cov(X'(ti+1),X'(t1))
|
||
|
BIG(tn-1-i ,tn+2) = -R2(i+1) !cov(X'(ti+1),X'(tn))
|
||
|
!Cov(Xt,Xd)
|
||
|
BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1))
|
||
|
BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn))
|
||
|
enddo
|
||
|
|
||
|
!cov(Xd)
|
||
|
BIG(tn-1 ,tn-1 ) = R4(1)
|
||
|
BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn))
|
||
|
BIG(tn ,tn ) = R4(1)
|
||
|
|
||
|
!cov(Xc)
|
||
|
BIG(tn+3 ,tn+3) = R0(1) ! cov(X(t1),X(t1))
|
||
|
BIG(tn+3 ,tn+4) = R0(tn) ! cov(X(t1),X(tn))
|
||
|
BIG(tn+1 ,tn+3) = 0.d0 ! cov(X(t1),X'(t1))
|
||
|
BIG(tn+2 ,tn+3) = R1(tn) ! cov(X(t1),X'(tn))
|
||
|
BIG(tn+4 ,tn+4) = R0(1) ! cov(X(tn),X(tn))
|
||
|
BIG(tn+1 ,tn+4) =-R1(tn) ! cov(X(tn),X'(t1))
|
||
|
BIG(tn+2 ,tn+4) = 0.d0 ! cov(X(tn),X'(tn))
|
||
|
BIG(tn+1 ,tn+1) =-R2(1) ! cov(X'(t1),X'(t1))
|
||
|
BIG(tn+1 ,tn+2) =-R2(tn) ! cov(X'(t1),X'(tn))
|
||
|
BIG(tn+2 ,tn+2) =-R2(1) ! cov(X'(tn),X'(tn))
|
||
|
!Xc=X(t1),X(tn),X'(t1),X'(tn)
|
||
|
!Xd=X''(t1),X''(tn)
|
||
|
!cov(Xd,Xc)
|
||
|
BIG(tn-1 ,tn+3) = R2(1) !cov(X''(t1),X(t1))
|
||
|
BIG(tn-1 ,tn+4) = R2(tn) !cov(X''(t1),X(tn))
|
||
|
BIG(tn-1 ,tn+1) = 0.d0 !cov(X''(t1),X'(t1))
|
||
|
BIG(tn-1 ,tn+2) = R3(tn) !cov(X''(t1),X'(tn))
|
||
|
BIG(tn ,tn+3) = R2(tn) !cov(X''(tn),X(t1))
|
||
|
BIG(tn ,tn+4) = R2(1) !cov(X''(tn),X(tn))
|
||
|
BIG(tn ,tn+1) =-R3(tn) !cov(X''(tn),X'(t1))
|
||
|
BIG(tn ,tn+2) = 0.d0 !cov(X''(tn),X'(tn))
|
||
|
|
||
|
|
||
|
! make lower triangular part equal to upper
|
||
|
do j=1,N-1
|
||
|
do i=j+1,N
|
||
|
BIG(i,j) = BIG(j,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
RETURN
|
||
|
END SUBROUTINE COV_INPUT2
|
||
|
|
||
|
SUBROUTINE COV_INPUT(BIG,tn,ts,R0,R1,R2,R3,R4)
|
||
|
IMPLICIT NONE
|
||
|
double precision, dimension(:,:),intent(inout) :: BIG
|
||
|
double precision, dimension(:),intent(in) :: R0,R1,R2
|
||
|
double precision, dimension(:),intent(in) :: R3,R4
|
||
|
integer ,intent(in) :: tn,ts
|
||
|
integer :: i,j,N,shft, tnold = 0
|
||
|
! the order of the variables in the covariance matrix
|
||
|
! are organized as follows:
|
||
|
! for ts <= 1:
|
||
|
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(t1),X'(tn),X(t1),X(tn)
|
||
|
! = [ Xt | Xd | Xc ]
|
||
|
!
|
||
|
! for ts > =2:
|
||
|
! X'(t2)..X'(ts),...,X'(tn-1) X''(t1),X''(tn) X'(ts) X'(t1),X'(tn),X(t1),X(tn) X(ts)
|
||
|
! = [ Xt | Xd | Xc ]
|
||
|
!
|
||
|
! where
|
||
|
!
|
||
|
! Xt= time points in the indicator function
|
||
|
! Xd= derivatives
|
||
|
! Xc=variables to condition on
|
||
|
|
||
|
! Computations of all covariances follows simple rules: Cov(X(t),X(s)) = r(t,s),
|
||
|
! then Cov(X'(t),X(s))=dr(t,s)/dt. Now for stationary X(t) we have
|
||
|
! a function r(tau) such that Cov(X(t),X(s))=r(s-t) (or r(t-s) will give the same result).
|
||
|
!
|
||
|
! Consequently Cov(X'(t),X(s)) = -r'(s-t) = -sign(s-t)*r'(|s-t|)
|
||
|
! Cov(X'(t),X'(s)) = -r''(s-t) = -r''(|s-t|)
|
||
|
! Cov(X''(t),X'(s)) = r'''(s-t) = sign(s-t)*r'''(|s-t|)
|
||
|
! Cov(X''(t),X(s)) = r''(s-t) = r''(|s-t|)
|
||
|
! Cov(X''(t),X''(s)) = r''''(s-t) = r''''(|s-t|)
|
||
|
SAVE tnold
|
||
|
|
||
|
if (ts.GT.1) THEN
|
||
|
shft = 1
|
||
|
N=tn+5+shft
|
||
|
!Cov(Xt,Xc)
|
||
|
do i=1,tn-2
|
||
|
j=abs(i+1-ts)
|
||
|
BIG(i,N) = -sign(R1(j+1),R1(j+1)*dble(ts-i-1)) !cov(X'(ti+1),X(ts))
|
||
|
enddo
|
||
|
!Cov(Xc)
|
||
|
BIG(N ,N) = R0(1) ! cov(X(ts),X(ts))
|
||
|
BIG(tn+shft+3 ,N) = R0(ts) ! cov(X(t1),X(ts))
|
||
|
BIG(tn+shft+4 ,N) = R0(tn-ts+1) ! cov(X(tn),X(ts))
|
||
|
BIG(tn+shft+1 ,N) = -R1(ts) ! cov(X'(t1),X(ts))
|
||
|
BIG(tn+shft+2 ,N) = R1(tn-ts+1) ! cov(X'(tn),X(ts))
|
||
|
!Cov(Xd,Xc)
|
||
|
BIG(tn-1 ,N) = R2(ts) !cov(X''(t1),X(ts))
|
||
|
BIG(tn ,N) = R2(tn-ts+1) !cov(X''(tn),X(ts))
|
||
|
|
||
|
!ADD a level u crossing at ts
|
||
|
|
||
|
!Cov(Xt,Xd)
|
||
|
do i = 1,tn-2
|
||
|
j = abs(i+1-ts)
|
||
|
BIG(i,tn+shft) = -R2(j+1) !cov(X'(ti+1),X'(ts))
|
||
|
enddo
|
||
|
!Cov(Xd)
|
||
|
BIG(tn+shft,tn+shft) = -R2(1) !cov(X'(ts),X'(ts))
|
||
|
BIG(tn-1 ,tn+shft) = R3(ts) !cov(X''(t1),X'(ts))
|
||
|
BIG(tn ,tn+shft) = -R3(tn-ts+1) !cov(X''(tn),X'(ts))
|
||
|
|
||
|
!Cov(Xd,Xc)
|
||
|
BIG(tn+shft ,N ) = 0.d0 !cov(X'(ts),X(ts))
|
||
|
BIG(tn+shft,tn+shft+3) = R1(ts) ! cov(X'(ts),X(t1))
|
||
|
BIG(tn+shft,tn+shft+4) = -R1(tn-ts+1) ! cov(X'(ts),X(tn))
|
||
|
BIG(tn+shft,tn+shft+1) = -R2(ts) ! cov(X'(ts),X'(t1))
|
||
|
BIG(tn+shft,tn+shft+2) = -R2(tn-ts+1) ! cov(X'(ts),X'(tn))
|
||
|
|
||
|
|
||
|
|
||
|
IF (tnold.EQ.tn) THEN ! A previous call to covinput with tn==tnold has been made
|
||
|
! need only to update row and column N and tn+1 of big:
|
||
|
! make lower triangular part equal to upper and then return
|
||
|
do j=1,tn+shft
|
||
|
BIG(N,j) = BIG(j,N)
|
||
|
BIG(tn+shft,j) = BIG(j,tn+shft)
|
||
|
enddo
|
||
|
do j=tn+shft+1,N-1
|
||
|
BIG(N,j) = BIG(j,N)
|
||
|
BIG(j,tn+shft) = BIG(tn+shft,j)
|
||
|
enddo
|
||
|
return
|
||
|
ENDIF
|
||
|
tnold = tn
|
||
|
ELSE
|
||
|
N = tn+4
|
||
|
shft = 0
|
||
|
endif
|
||
|
|
||
|
|
||
|
do i=1,tn-2
|
||
|
!cov(Xt)
|
||
|
do j=i,tn-2
|
||
|
BIG(i,j) = -R2(j-i+1) ! cov(X'(ti+1),X'(tj+1))
|
||
|
enddo
|
||
|
!cov(Xt,Xc)
|
||
|
BIG(i ,tn+shft+3) = R1(i+1) !cov(X'(ti+1),X(t1))
|
||
|
BIG(tn-1-i ,tn+shft+4) = -R1(i+1) !cov(X'(ti+1),X(tn))
|
||
|
BIG(i ,tn+shft+1) = -R2(i+1) !cov(X'(ti+1),X'(t1))
|
||
|
BIG(tn-1-i ,tn+shft+2) = -R2(i+1) !cov(X'(ti+1),X'(tn))
|
||
|
!Cov(Xt,Xd)
|
||
|
BIG(i,tn-1) = R3(i+1) !cov(X'(ti+1),X''(t1))
|
||
|
BIG(tn-1-i,tn) =-R3(i+1) !cov(X'(ti+1),X''(tn))
|
||
|
enddo
|
||
|
|
||
|
!cov(Xd)
|
||
|
BIG(tn-1 ,tn-1 ) = R4(1)
|
||
|
BIG(tn-1 ,tn ) = R4(tn) !cov(X''(t1),X''(tn))
|
||
|
BIG(tn ,tn ) = R4(1)
|
||
|
|
||
|
!cov(Xc)
|
||
|
BIG(tn+shft+3 ,tn+shft+3) = R0(1) ! cov(X(t1),X(t1))
|
||
|
BIG(tn+shft+3 ,tn+shft+4) = R0(tn) ! cov(X(t1),X(tn))
|
||
|
BIG(tn+shft+1 ,tn+shft+3) = 0.d0 ! cov(X(t1),X'(t1))
|
||
|
BIG(tn+shft+2 ,tn+shft+3) = R1(tn) ! cov(X(t1),X'(tn))
|
||
|
BIG(tn+shft+4 ,tn+shft+4) = R0(1) ! cov(X(tn),X(tn))
|
||
|
BIG(tn+shft+1 ,tn+shft+4) =-R1(tn) ! cov(X(tn),X'(t1))
|
||
|
BIG(tn+shft+2 ,tn+shft+4) = 0.d0 ! cov(X(tn),X'(tn))
|
||
|
BIG(tn+shft+1 ,tn+shft+1) =-R2(1) ! cov(X'(t1),X'(t1))
|
||
|
BIG(tn+shft+1 ,tn+shft+2) =-R2(tn) ! cov(X'(t1),X'(tn))
|
||
|
BIG(tn+shft+2 ,tn+shft+2) =-R2(1) ! cov(X'(tn),X'(tn))
|
||
|
!Xc=X(t1),X(tn),X'(t1),X'(tn)
|
||
|
!Xd=X''(t1),X''(tn)
|
||
|
!cov(Xd,Xc)
|
||
|
BIG(tn-1 ,tn+shft+3) = R2(1) !cov(X''(t1),X(t1))
|
||
|
BIG(tn-1 ,tn+shft+4) = R2(tn) !cov(X''(t1),X(tn))
|
||
|
BIG(tn-1 ,tn+shft+1) = 0.d0 !cov(X''(t1),X'(t1))
|
||
|
BIG(tn-1 ,tn+shft+2) = R3(tn) !cov(X''(t1),X'(tn))
|
||
|
BIG(tn ,tn+shft+3) = R2(tn) !cov(X''(tn),X(t1))
|
||
|
BIG(tn ,tn+shft+4) = R2(1) !cov(X''(tn),X(tn))
|
||
|
BIG(tn ,tn+shft+1) =-R3(tn) !cov(X''(tn),X'(t1))
|
||
|
BIG(tn ,tn+shft+2) = 0.d0 !cov(X''(tn),X'(tn))
|
||
|
|
||
|
|
||
|
! make lower triangular part equal to upper
|
||
|
do j=1,N-1
|
||
|
do i=j+1,N
|
||
|
BIG(i,j) = BIG(j,i)
|
||
|
enddo
|
||
|
enddo
|
||
|
RETURN
|
||
|
END SUBROUTINE COV_INPUT
|
||
|
END PROGRAM sp2mmt
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|