You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

615 lines
16 KiB
Python

9 years ago
from wafo.plotbackend import plotbackend as plt
import numpy as np
#! CHAPTER3 Demonstrates distributions of wave characteristics
#!=============================================================
#!
#! Chapter3 contains the commands used in Chapter3 in the tutorial.
9 years ago
#!
#! Some of the commands are edited for fast computation.
#!
#! Section 3.2 Estimation of wave characteristics from data
#!----------------------------------------------------------
#! Example 1
9 years ago
#!~~~~~~~~~~
speed = 'fast'
#speed = 'slow'
9 years ago
import scipy.signal as ss
import wafo.data as wd
import wafo.misc as wm
import wafo.objects as wo
9 years ago
import wafo.stats as ws
import wafo.spectrum.models as wsm
xx = wd.sea()
xx[:, 1] = ss.detrend(xx[:, 1])
ts = wo.mat2timeseries(xx)
Tcrcr, ix = ts.wave_periods(vh=0, pdef='c2c', wdef='tw', rate=8)
Tc, ixc = ts.wave_periods(vh=0, pdef='u2d', wdef='tw', rate=8)
9 years ago
#! Histogram of crestperiod compared to the kernel density estimate
#!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import wafo.kdetools as wk
9 years ago
plt.clf()
print(Tc.mean())
print(Tc.max())
9 years ago
t = np.linspace(0.01,8,200);
ftc = wk.TKDE(Tc, L2=0, inc=128)
9 years ago
plt.plot(t,ftc.eval_grid(t), t, ftc.eval_grid_fast(t),'-.')
wm.plot_histgrm(Tc, normed=True)
plt.title('Kernel Density Estimates')
plt.xlabel('Tc [s]')
plt.axis([0, 8, 0, 0.5])
plt.show()
#! Extreme waves - model check: the highest and steepest wave
#!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 years ago
plt.clf()
S, H = ts.wave_height_steepness(method=0)
indS = S.argmax()
indH = H.argmax()
ts.plot_sp_wave([indH, indS],'k.')
9 years ago
plt.show()
#! Does the highest wave contradict a transformed Gaussian model?
#!----------------------------------------------------------------
# TODO: Fix this
#clf
#inds1 = (5965:5974)'; #! points to remove
#Nsim = 10;
#[y1, grec1, g2, test, tobs, mu1o, mu1oStd] = ...
# reconstruct(xx,inds1,Nsim);
#spwaveplot(y1,indA-10)
#hold on
#plot(xx(inds1,1),xx(inds1,2),'+')
#lamb = 2.;
#muLstd = tranproc(mu1o-lamb*mu1oStd,fliplr(grec1));
#muUstd = tranproc(mu1o+lamb*mu1oStd,fliplr(grec1));
#plot (y1(inds1,1), [muLstd muUstd],'b-')
9 years ago
#axis([1482 1498 -1 3]),
#wafostamp([],'(ER)')
9 years ago
#disp('Block = 6'),
#pause(pstate)
#
##!#! Expected value (solid) compared to data removed
#clf
#plot(xx(inds1,1),xx(inds1,2),'+'), hold on
#mu = tranproc(mu1o,fliplr(grec1));
#plot(y1(inds1,1), mu), hold off
#disp('Block = 7'), pause(pstate)
#! Crest height PDF
#!------------------
#! Transform data so that kde works better
9 years ago
plt.clf()
wave_data = ts.wave_parameters()
Ac = wave_data['Ac']
9 years ago
L2 = 0.6
ws.probplot(Ac**L2, dist='norm', plot=plt)
plt.show()
#!#!
9 years ago
plt.clf()#
fac = wk.TKDE(Ac,L2=L2)(np.linspace(0.01,3,200), output='plot')
fac.plot()
# wafostamp([],'(ER)')
fac.integrate(a=0.01, b=3)
print('Block = 8'),
# pause(pstate)
#!#! Empirical crest height CDF
9 years ago
plt.clf()
Fac = fac.to_cdf()
Femp = ws.edf(Ac)
Fac.plot()
Femp.plot()
plt.axis([0, 2, 0, 1])
#wafostamp([],'(ER)')
#disp('Block = 9'), pause(pstate)
#!#! Empirical crest height CDF compared to a Transformed Rayleigh approximation
9 years ago
# facr = trraylpdf(fac.x{1},'Ac',grec1);
# Facr = cumtrapz(facr.x{1},facr.f);
# hold on
# plot(facr.x{1},Facr,'.')
# axis([1.25 2.25 0.95 1])
# wafostamp([],'(ER)')
# disp('Block = 10'), pause(pstate)
#!#! Joint pdf of crest period and crest amplitude
9 years ago
plt.clf()
Tcf = wave_data['Tcf']
Tcb = wave_data['Tcb']
Tc = Tcf + Tcb
fTcAc = wk.TKDE([Tc, Ac],L2=0.5, inc=256).eval_grid_fast(output='plot')
fTcAc.labels.labx = 'Tc [s]'
fTcAc.labels.laby = 'Ac [m]'
fTcAc.plot()
plt.hold(True)
plt.plot(Tc, Ac,'k.')
plt.hold(False)
plt.show()
#wafostamp([],'(ER)')
#disp('Block = 11'), pause(pstate)
9 years ago
#!#! Example 4: Simple wave characteristics obtained from Jonswap spectrum
plt.clf()
S = wsm.Jonswap(Hm0=5, Tp=10).tospecdata()
m, mt = S.moment(nr=4, even=False)
print(m)
print(mt)
# disp('Block = 12'), pause(pstate)
9 years ago
plt.clf()
S.bandwidth(['alpha'])
ch, Sa2 = S.characteristic(['Hm0', 'Tm02'])
# disp('Block = 13'), pause(pstate)
#!#! Section 3.3.2 Explicit form approximations of wave characteristic densities
#!#! Longuett-Higgins model for Tc and Ac
9 years ago
# plt.clf()
# t = np.linspace(0,15,100)
# h = np.linspace(0,6,100)
# flh = lh83pdf(t, h, [m[0],m[1], m[2])
# #disp('Block = 14'), pause(pstate)
#
# #!#! Transformed Longuett-Higgins model for Tc and Ac
# clf
# [sk, ku ]=spec2skew(S);
# sa = sqrt(m(1));
# gh = hermitetr([],[sa sk ku 0]);
# flhg = lh83pdf(t,h,[m(1),m(2),m(3)],gh);
# disp('Block = 15'), pause(pstate)
#!#! Cavanie model for Tc and Ac
9 years ago
# clf
# t = np.linspace(0,10,100);
# h = np.linspace(0,7,100);
# fcav = cav76pdf(t,h,[m(1) m(2) m(3) m(5)],[]);
# disp('Block = 16'), pause(pstate)
#
# #!#! Example 5 Transformed Rayleigh approximation of crest- vs trough- amplitude
# clf
# xx = load('sea.dat');
# x = xx;
# x(:,2) = detrend(x(:,2));
# SS = dat2spec2(x);
# [sk, ku, me, si ] = spec2skew(SS);
# gh = hermitetr([],[si sk ku me]);
# Hs = 4*si;
# r = (0:0.05:1.1*Hs)';
# fac_h = trraylpdf(r,'Ac',gh);
# fat_h = trraylpdf(r,'At',gh);
# h = (0:0.05:1.7*Hs)';
# facat_h = trraylpdf(h,'AcAt',gh);
# pdfplot(fac_h)
# hold on
# pdfplot(fat_h,'--')
# hold off
# wafostamp([],'(ER)')
# disp('Block = 17'), pause(pstate)
#
# #!#!
# clf
# TC = dat2tc(xx, me);
# tc = tp2mm(TC);
# Ac = tc(:,2);
# At = -tc(:,1);
# AcAt = Ac+At;
# disp('Block = 18'), pause(pstate)
#
# #!#!
# clf
# Fac_h = [fac_h.x{1} cumtrapz(fac_h.x{1},fac_h.f)];
# subplot(3,1,1)
# Fac = plotedf(Ac,Fac_h);
# hold on
# plot(r,1-exp(-8*r.^2/Hs^2),'.')
# axis([1. 2. 0.9 1])
# title('Ac CDF')
#
# Fat_h = [fat_h.x{1} cumtrapz(fat_h.x{1},fat_h.f)];
# subplot(3,1,2)
# Fat = plotedf(At,Fat_h);
# hold on
# plot(r,1-exp(-8*r.^2/Hs^2),'.')
# axis([1. 2. 0.9 1])
# title('At CDF')
#
# Facat_h = [facat_h.x{1} cumtrapz(facat_h.x{1},facat_h.f)];
# subplot(3,1,3)
# Facat = plotedf(AcAt,Facat_h);
# hold on
# plot(r,1-exp(-2*r.^2/Hs^2),'.')
# axis([1.5 3.5 0.9 1])
# title('At+Ac CDF')
#
# wafostamp([],'(ER)')
# disp('Block = 19'), pause(pstate)
#
# #!#! Section 3.4 Exact wave distributions in transformed Gaussian Sea
# #!#! Section 3.4.1 Density of crest period, crest length or encountered crest period
# clf
# S1 = torsethaugen([],[6 8],1);
# D1 = spreading(101,'cos',pi/2,[15],[],0);
# D12 = spreading(101,'cos',0,[15],S1.w,1);
# SD1 = mkdspec(S1,D1);
# SD12 = mkdspec(S1,D12);
# disp('Block = 20'), pause(pstate)
#
# #!#! Crest period
# clf
# tic
# f_tc = spec2tpdf(S1,[],'Tc',[0 11 56],[],4);
# toc
# pdfplot(f_tc)
# wafostamp([],'(ER)')
# simpson(f_tc.x{1},f_tc.f)
# disp('Block = 21'), pause(pstate)
#
# #!#! Crest length
#
# if strncmpi(speed,'slow',1)
# opt1 = rindoptset('speed',5,'method',3);
# opt2 = rindoptset('speed',5,'nit',2,'method',0);
# else
# #! fast
# opt1 = rindoptset('speed',7,'method',3);
# opt2 = rindoptset('speed',7,'nit',2,'method',0);
# end
#
#
# clf
# if strncmpi(speed,'slow',1)
# NITa = 5;
# else
# disp('NIT=5 may take time, running with NIT=3 in the following')
# NITa = 3;
# end
# #!f_Lc = spec2tpdf2(S1,[],'Lc',[0 200 81],opt1); #! Faster and more accurate
# f_Lc = spec2tpdf(S1,[],'Lc',[0 200 81],[],NITa);
# pdfplot(f_Lc,'-.')
# wafostamp([],'(ER)')
# disp('Block = 22'), pause(pstate)
#
#
# f_Lc_1 = spec2tpdf(S1,[],'Lc',[0 200 81],1.5,NITa);
# #!f_Lc_1 = spec2tpdf2(S1,[],'Lc',[0 200 81],1.5,opt1);
#
# hold on
# pdfplot(f_Lc_1)
# wafostamp([],'(ER)')
#
# disp('Block = 23'), pause(pstate)
# #!#!
# clf
# simpson(f_Lc.x{1},f_Lc.f)
# simpson(f_Lc_1.x{1},f_Lc_1.f)
#
# disp('Block = 24'), pause(pstate)
# #!#!
# clf
# tic
#
# f_Lc_d1 = spec2tpdf(rotspec(SD1,pi/2),[],'Lc',[0 300 121],[],NITa);
# f_Lc_d12 = spec2tpdf(SD12,[],'Lc',[0 200 81],[],NITa);
# #! f_Lc_d1 = spec2tpdf2(rotspec(SD1,pi/2),[],'Lc',[0 300 121],opt1);
# #! f_Lc_d12 = spec2tpdf2(SD12,[],'Lc',[0 200 81],opt1);
# toc
# pdfplot(f_Lc_d1,'-.'), hold on
# pdfplot(f_Lc_d12), hold off
# wafostamp([],'(ER)')
#
# disp('Block = 25'), pause(pstate)
#
# #!#!
#
#
# clf
# opt1 = rindoptset('speed',5,'method',3);
# SD1r = rotspec(SD1,pi/2);
# if strncmpi(speed,'slow',1)
# f_Lc_d1_5 = spec2tpdf(SD1r,[], 'Lc',[0 300 121],[],5);
# pdfplot(f_Lc_d1_5), hold on
# else
# #! fast
# disp('Run the following example only if you want a check on computing time')
# disp('Edit the command file and remove #!')
# end
# f_Lc_d1_3 = spec2tpdf(SD1r,[],'Lc',[0 300 121],[],3);
# f_Lc_d1_2 = spec2tpdf(SD1r,[],'Lc',[0 300 121],[],2);
# f_Lc_d1_0 = spec2tpdf(SD1r,[],'Lc',[0 300 121],[],0);
# #!f_Lc_d1_n4 = spec2tpdf2(SD1r,[],'Lc',[0 400 161],opt1);
#
# pdfplot(f_Lc_d1_3), hold on
# pdfplot(f_Lc_d1_2)
# pdfplot(f_Lc_d1_0)
# #!pdfplot(f_Lc_d1_n4)
#
# #!simpson(f_Lc_d1_n4.x{1},f_Lc_d1_n4.f)
#
# disp('Block = 26'), pause(pstate)
#
# #!#! Section 3.4.2 Density of wave period, wave length or encountered wave period
# #!#! Example 7: Crest period and high crest waves
# clf
# tic
# xx = load('sea.dat');
# x = xx;
# x(:,2) = detrend(x(:,2));
# SS = dat2spec(x);
# si = sqrt(spec2mom(SS,1));
# SS.tr = dat2tr(x);
# Hs = 4*si
# method = 0;
# rate = 2;
# [S, H, Ac, At, Tcf, Tcb, z_ind, yn] = dat2steep(x,rate,method);
# Tc = Tcf+Tcb;
# t = linspace(0.01,8,200);
# ftc1 = kde(Tc,{'L2',0},t);
# pdfplot(ftc1)
# hold on
# #! f_t = spec2tpdf(SS,[],'Tc',[0 8 81],0,4);
# f_t = spec2tpdf(SS,[],'Tc',[0 8 81],0,2);
# simpson(f_t.x{1},f_t.f)
# pdfplot(f_t,'-.')
# hold off
# wafostamp([],'(ER)')
# toc
# disp('Block = 27'), pause(pstate)
#
# #!#!
# clf
# tic
#
# if strncmpi(speed,'slow',1)
# NIT = 4;
# else
# NIT = 2;
# end
# #! f_t2 = spec2tpdf(SS,[],'Tc',[0 8 81],[Hs/2],4);
# tic
# f_t2 = spec2tpdf(SS,[],'Tc',[0 8 81],Hs/2,NIT);
# toc
#
# Pemp = sum(Ac>Hs/2)/sum(Ac>0)
# simpson(f_t2.x{1},f_t2.f)
# index = find(Ac>Hs/2);
# ftc1 = kde(Tc(index),{'L2',0},t);
# ftc1.f = Pemp*ftc1.f;
# pdfplot(ftc1)
# hold on
# pdfplot(f_t2,'-.')
# hold off
# wafostamp([],'(ER)')
# toc
# disp('Block = 28'), pause(pstate)
#
# #!#! Example 8: Wave period for high crest waves
# #! clf
# tic
# f_tcc2 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],-1);
# toc
# simpson(f_tcc2.x{1},f_tcc2.f)
# f_tcc3 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],3,5);
# #! f_tcc3 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[0],1,5);
# simpson(f_tcc3.x{1},f_tcc3.f)
# pdfplot(f_tcc2,'-.')
# hold on
# pdfplot(f_tcc3)
# hold off
# toc
# disp('Block = 29'), pause(pstate)
#
# #!#!
# clf
# [TC tc_ind v_ind] = dat2tc(yn,[],'dw');
# N = length(tc_ind);
# t_ind = tc_ind(1:2:N);
# c_ind = tc_ind(2:2:N);
# Pemp = sum(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2)/length(t_ind)
# ind = find(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2);
# spwaveplot(yn,ind(2:4))
# wafostamp([],'(ER)')
# disp('Block = 30'), pause(pstate)
#
# #!#!
# clf
# Tcc = yn(v_ind(1+2*ind),1)-yn(v_ind(1+2*(ind-1)),1);
# t = linspace(0.01,14,200);
# ftcc1 = kde(Tcc,{'kernel' 'epan','L2',0},t);
# ftcc1.f = Pemp*ftcc1.f;
# pdfplot(ftcc1,'-.')
# wafostamp([],'(ER)')
# disp('Block = 31'), pause(pstate)
#
# tic
# f_tcc22_1 = spec2tccpdf(SS,[],'t>',[0 12 61],[Hs/2],[Hs/2],-1);
# toc
# simpson(f_tcc22_1.x{1},f_tcc22_1.f)
# hold on
# pdfplot(f_tcc22_1)
# hold off
# wafostamp([],'(ER)')
# disp('Block = 32'), pause(pstate)
#
# disp('The rest of this chapter deals with joint densities.')
# disp('Some calculations may take some time.')
# disp('You could experiment with other NIT.')
# #!return
#
# #!#! Section 3.4.3 Joint density of crest period and crest height
# #!#! Example 9. Some preliminary analysis of the data
# clf
# tic
# yy = load('gfaksr89.dat');
# SS = dat2spec(yy);
# si = sqrt(spec2mom(SS,1));
# SS.tr = dat2tr(yy);
# Hs = 4*si
# v = gaus2dat([0 0],SS.tr);
# v = v(2)
# toc
# disp('Block = 33'), pause(pstate)
#
# #!#!
# clf
# tic
# [TC, tc_ind, v_ind] = dat2tc(yy,v,'dw');
# N = length(tc_ind);
# t_ind = tc_ind(1:2:N);
# c_ind = tc_ind(2:2:N);
# v_ind_d = v_ind(1:2:N+1);
# v_ind_u = v_ind(2:2:N+1);
# T_d = ecross(yy(:,1),yy(:,2),v_ind_d,v);
# T_u = ecross(yy(:,1),yy(:,2),v_ind_u,v);
#
# Tc = T_d(2:end)-T_u(1:end);
# Tt = T_u(1:end)-T_d(1:end-1);
# Tcf = yy(c_ind,1)-T_u;
# Ac = yy(c_ind,2)-v;
# At = v-yy(t_ind,2);
# toc
# disp('Block = 34'), pause(pstate)
#
# #!#!
# clf
# tic
# t = linspace(0.01,15,200);
# kopt3 = kdeoptset('hs',0.25,'L2',0);
# ftc1 = kde(Tc,kopt3,t);
# ftt1 = kde(Tt,kopt3,t);
# pdfplot(ftt1,'k')
# hold on
# pdfplot(ftc1,'k-.')
# f_tc4 = spec2tpdf(SS,[],'Tc',[0 12 81],0,4,5);
# f_tc2 = spec2tpdf(SS,[],'Tc',[0 12 81],0,2,5);
# f_tc = spec2tpdf(SS,[],'Tc',[0 12 81],0,-1);
# pdfplot(f_tc,'b')
# hold off
# legend('kde(Tt)','kde(Tc)','f_{tc}')
# wafostamp([],'(ER)')
# toc
# disp('Block = 35'), pause(pstate)
#
# #!#! Example 10: Joint characteristics of a half wave:
# #!#! position and height of a crest for a wave with given period
# clf
# tic
# ind = find(4.4<Tc & Tc<4.6);
# f_AcTcf = kde([Tcf(ind) Ac(ind)],{'L2',[1 .5]});
# pdfplot(f_AcTcf)
# hold on
# plot(Tcf(ind), Ac(ind),'.');
# wafostamp([],'(ER)')
# toc
# disp('Block = 36'), pause(pstate)
#
# #!#!
# clf
# tic
# opt1 = rindoptset('speed',5,'method',3);
# opt2 = rindoptset('speed',5,'nit',2,'method',0);
#
# f_tcfac1 = spec2thpdf(SS,[],'TcfAc',[4.5 4.5 46],[0:0.25:8],opt1);
# f_tcfac2 = spec2thpdf(SS,[],'TcfAc',[4.5 4.5 46],[0:0.25:8],opt2);
#
# pdfplot(f_tcfac1,'-.')
# hold on
# pdfplot(f_tcfac2)
# plot(Tcf(ind), Ac(ind),'.');
#
# simpson(f_tcfac1.x{1},simpson(f_tcfac1.x{2},f_tcfac1.f,1))
# simpson(f_tcfac2.x{1},simpson(f_tcfac2.x{2},f_tcfac2.f,1))
# f_tcf4=spec2tpdf(SS,[],'Tc',[4.5 4.5 46],[0:0.25:8],6);
# f_tcf4.f(46)
# toc
# wafostamp([],'(ER)')
# disp('Block = 37'), pause(pstate)
#
# #!#!
# clf
# f_tcac_s = spec2thpdf(SS,[],'TcAc',[0 12 81],[Hs/2:0.1:2*Hs],opt1);
# disp('Block = 38'), pause(pstate)
#
# clf
# tic
# mom = spec2mom(SS,4,[],0);
# t = f_tcac_s.x{1};
# h = f_tcac_s.x{2};
# flh_g = lh83pdf(t',h',[mom(1),mom(2),mom(3)],SS.tr);
# clf
# ind=find(Ac>Hs/2);
# plot(Tc(ind), Ac(ind),'.');
# hold on
# pdfplot(flh_g,'k-.')
# pdfplot(f_tcac_s)
# toc
# wafostamp([],'(ER)')
# disp('Block = 39'), pause(pstate)
#
# #!#!
# clf
# #! f_tcac = spec2thpdf(SS,[],'TcAc',[0 12 81],[0:0.2:8],opt1);
# #! pdfplot(f_tcac)
# disp('Block = 40'), pause(pstate)
#
# #!#! Section 3.4.4 Joint density of crest and trough height
# #!#! Section 3.4.5 Min-to-max distributions Markov method
# #!#! Example 11. (min-max problems with Gullfaks data)
# #!#! Joint density of maximum and the following minimum
# clf
# tic
# tp = dat2tp(yy);
# Mm = fliplr(tp2mm(tp));
# fmm = kde(Mm);
# f_mM = spec2mmtpdf(SS,[],'mm',[],[-7 7 51],opt2);
#
# pdfplot(f_mM,'-.')
# hold on
# pdfplot(fmm,'k-')
# hold off
# wafostamp([],'(ER)')
# toc
# disp('Block = 41'), pause(pstate)
#
# #!#! The joint density of still water separated maxima and minima.
# clf
# tic
# ind = find(Mm(:,1)>v & Mm(:,2)<v);
# Mmv = abs(Mm(ind,:)-v);
# fmmv = kde(Mmv);
# f_vmm = spec2mmtpdf(SS,[],'vmm',[],[-7 7 51],opt2);
# clf
# pdfplot(fmmv,'k-')
# hold on
# pdfplot(f_vmm,'-.')
# hold off
# wafostamp([],'(ER)')
# toc
# disp('Block = 42'), pause(pstate)
#
#
# #!#!
# clf
# tic
# facat = kde([Ac At]);
# f_acat = spec2mmtpdf(SS,[],'AcAt',[],[-7 7 51],opt2);
# clf
# pdfplot(f_acat,'-.')
# hold on
# pdfplot(facat,'k-')
# hold off
# wafostamp([],'(ER)')
# toc
# disp('Block = 43'), pause(pstate)