You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
57 lines
1.3 KiB
Python
57 lines
1.3 KiB
Python
5 years ago
|
"""get_ww3.py
|
||
|
Download records from WaveWatch III (WW3) global wave model.
|
||
|
D. Howe
|
||
|
2019-07-31
|
||
|
"""
|
||
|
import netCDF4
|
||
|
import pandas as pd
|
||
|
import xarray as xr
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
# Set coordinates
|
||
|
lon = 136.62
|
||
|
lat = -36.07
|
||
|
|
||
|
# Set product code
|
||
|
product_code = 'ww3.aus_4m'
|
||
|
|
||
|
# Select output variables
|
||
|
var_names = ['hs', 'dp', 'fp']
|
||
|
|
||
|
# Set time period
|
||
5 years ago
|
start_date = '1980-01'
|
||
|
end_date = '1980-12'
|
||
5 years ago
|
|
||
|
url = ('http://data-cbr.csiro.au/thredds/dodsC/catch_all/'
|
||
|
'CMAR_CAWCR-Wave_archive/CAWCR_Wave_Hindcast_aggregate/gridded/')
|
||
|
|
||
|
# Generate list of dates
|
||
5 years ago
|
t0 = pd.to_datetime(start_date)
|
||
|
t1 = pd.to_datetime(end_date) + pd.DateOffset(months=1)
|
||
|
dates = pd.date_range(t0, t1, freq='M')
|
||
5 years ago
|
|
||
|
# Create output dataframe
|
||
|
master = pd.DataFrame()
|
||
|
|
||
|
for date in tqdm(dates):
|
||
|
# Get date string for current month
|
||
|
date_str = date.strftime('%Y%m')
|
||
|
|
||
|
# Open dataset
|
||
|
ds = xr.open_dataset(url + f'{product_code}.{date_str}.nc')
|
||
|
|
||
|
# Extract variables from dataset
|
||
|
ds = ds.sel(longitude=lon, latitude=lat, method='nearest')
|
||
|
df = ds[var_names].to_dataframe()
|
||
|
|
||
|
# Add to output dataframe
|
||
|
master = master.append(df)
|
||
|
|
||
|
# Get lat and lon bearings
|
||
|
ew = 'E' if lon > 0 else 'W'
|
||
|
ns = 'N' if lat > 0 else 'S'
|
||
|
|
||
|
# Export to csv
|
||
|
csv_name = f'{product_code}_{abs(lon)}{ew}_{abs(lat)}{ns}.csv'
|
||
|
master.to_csv(csv_name)
|