You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

139 lines
3.9 KiB
Python

6 years ago
import io
import os
import base64
import datetime
import numpy as np
6 years ago
import pandas as pd
import webbrowser as wb
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
6 years ago
import plotly.plotly as py
import plotly.graph_objs as go
import wafo.objects as wo
6 years ago
app = dash.Dash()
app.title = 'daqviewer'
6 years ago
app.scripts.config.serve_locally = True
app.layout = html.Div([
dcc.Upload(
id='upload-data',
children=html.Div(
[html.A('Drag and drop csv files, or click to select.')]),
6 years ago
style={
'width': '99%',
6 years ago
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
# Allow multiple files to be uploaded
multiple=True),
6 years ago
html.Div(id='output-data-upload'),
])
def parse_contents(contents, filename, date):
basename, ext = os.path.splitext(filename)
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
# Check instrument type
inst_type = basename.split('_')[-1]
try:
if inst_type == 'WP':
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')),
index_col=0,
header=5,
skiprows=[6])
6 years ago
# Rename columns based on probe locations
suffixes = ['P1', 'P2', 'P3', 'incident', 'reflected']
col_names = list(df.columns)
for i, col in enumerate(col_names[:-4]):
if ('.' not in col) and (col_names[i + 4] == col + '.4'):
for j, suffix in enumerate(suffixes):
col_names[i + j] = '{}-{}'.format(col, suffix)
df.columns = col_names
else:
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')),
index_col=0,
header=3,
skiprows=[4])
6 years ago
except Exception as e:
print(e)
return html.Div(['There was an error processing this file.'])
# Zero time series based on first 5s
df -= df[:5].mean()
ts = []
6 years ago
for col in df.columns:
trace = go.Scatter(x=df.index, y=df[col], name=col, opacity=0.8)
ts.append(trace)
6 years ago
layout = dict(title=basename, xaxis=dict(rangeslider=dict()))
timeseries = dict(data=ts, layout=layout)
# Specify wave statistics
var = [
'Hm0', 'Tm01', 'Tm02', 'Tm24', 'Tp', 'Ss', 'Sp', 'Ka', 'Tp1', 'alpha',
'eps2', 'eps4'
]
spec = []
for col in df.columns:
t = df.index.values[:, np.newaxis]
x = df[[col]].values
6 years ago
# Get wave statistics
xx = wo.mat2timeseries(np.hstack([t, x]))
S = xx.tospecdata()
S.freqtype = 'f'
values, _, keys = S.characteristic(var)
6 years ago
# Plot energy spectrum
trace = go.Scatter(x=S.args, y=S.data, name=col, opacity=0.8)
spec.append(trace)
6 years ago
energy = dict(data=spec)
elements = html.Div([
dcc.Graph(id='time-series', figure=timeseries),
dcc.Graph(id='energy-spectrum', figure=energy)
6 years ago
])
return elements
@app.callback(Output('output-data-upload', 'children'), [
Input('upload-data', 'contents'),
Input('upload-data', 'filename'),
Input('upload-data', 'last_modified')
])
6 years ago
def update_output(list_of_contents, list_of_names, list_of_dates):
if list_of_contents is not None:
children = [
parse_contents(c, n, d)
for c, n, d in zip(list_of_contents, list_of_names, list_of_dates)
]
return children
def main():
port = 8050
wb.open('http://localhost:{}'.format(port))
app.run_server(port=port, debug=True)
6 years ago
if __name__ == '__main__':
main()