You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

321 lines
10 KiB
Python

"""las_outputs.py
Crop swash zone, plot survey profiles, and complete a volume analysis based
on the output from `las_manipulation.py`.
Example usage:
# Process single survey at specific beach
python las_outputs.py survey-1-avoca.yaml
# Process single survey at multiple beaches
python las_outputs.py survey-1-avoca.yaml survey-1-pearl.yaml
# Process all surveys at specific beach
python las_outputs.py *avoca.yaml
# Process all beaches for specific survey date
python las_outputs.py survey-1*.yaml
"""
import os
import io
import re
import sys
import math
import yaml
import argparse
import datetime
import subprocess
import numpy as np
import pandas as pd
from glob import glob
from cycler import cycler
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import nielsen_volumes
from survey_tools import call_lastools, extract_pts, update_survey_output
def get_datestring(x):
"""Format a date integer into an ISO-8601 date string
Args:
x: unformatted date
Returns:
formatted date string
Examples:
>> get_datestring(19700101)
'1970-01-01'
"""
datestr = pd.datetime.strptime(str(x), '%Y%m%d').strftime('%Y-%m-%d')
return datestr
def remove_temp_files(directory):
for f in os.listdir(directory):
os.unlink(os.path.join(directory, f))
return None
def plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits, delta_vol, survey_date, scale_figures=False):
csv_name = profile_name + '.csv'
profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name))
# Remove metadata, and extract profile coordinates
profiles = profiles.loc[:, 'Chainage':].set_index('Chainage')
# Determine if current survey is the latest
current_survey_col = 'Elevation_' + survey_date
is_latest = profiles.columns[-1] == current_survey_col
# Only plot profiles up to current survey date
profiles = profiles.loc[:, :current_survey_col]
# Find landward limit of profile (behind beach)
ch_min = ch_limits.loc[profile_name, 'Landward Limit']
# Set figure dimensions based on beach size
vertical_exag = 8
m_per_inch = 8
try:
fig_h = profiles.dropna().values.max() / m_per_inch * vertical_exag
fig_w = (profiles.index.max() - ch_min) / m_per_inch
except ValueError:
fig_h = 5
fig_w = 10
if scale_figures:
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
ax.set_aspect(vertical_exag)
else:
fig, ax = plt.subplots(figsize=(10, 5))
for col in profiles.columns:
profile = profiles.loc[:, col]
date_str = col.split('_')[-1]
date = get_datestring(date_str)
ax.plot(profile.index, profile, label=date)
# Show landward limit of volume calculations
ax.axvline(x=ch_min, color='#222222', linestyle='--', label='Landward limit')
ax.set_title(profile_name)
ax.set_xlabel('Chainage (m)', labelpad=10)
ax.set_ylabel('Elevation (m AHD)', labelpad=10)
# Show most recent volume change
if delta_vol is not None:
ax.annotate('Most recent\nvolume change:\n{:+0.1f} m$^3$/m'.format(delta_vol),
(0.05, 0.15), xycoords='axes fraction', fontsize=9,
backgroundcolor='#ffffff', linespacing=1.5)
ax.legend(edgecolor='none', facecolor='#ffffff', fontsize=9, labelspacing=1)
ax.xaxis.set_minor_locator(MultipleLocator(5))
ax.yaxis.set_minor_locator(MultipleLocator(0.5))
ax.xaxis.grid(True, which='minor', color='k', linewidth=0.5, alpha=0.3)
ax.yaxis.grid(True,which='minor',color='k', linewidth=0.5, alpha=0.3)
# Save in folder with current date
png_dirs = [os.path.join(graph_loc, get_datestring(survey_date))]
if is_latest:
# Save copy in'latest' if survey is most recent
png_dirs += [os.path.join(graph_loc, 'latest')]
for png_dir in png_dirs:
# Prepare output directory
try:
os.makedirs(png_dir)
except FileExistsError:
pass
png_name = os.path.join(png_dir, profile_name + '.png')
plt.savefig(png_name, bbox_inches='tight', dpi=300)
plt.close()
def calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir):
csv_prof = profile_name + '.csv'
beach = re.search('.*(?=_\d)', profile_name).group()
profiles = pd.read_csv(os.path.join(csv_output_dir, csv_prof))
# Remove metadata, and extract profile coordinates
profiles = profiles.loc[:, 'Chainage':].set_index('Chainage')
# Find landward limit of profile (behind beach)
ch_min = ch_limits.loc[profile_name, 'Landward Limit']
# Open volume spreadsheet
csv_vol = os.path.join(volume_output_dir, 'volumes.csv')
try:
volumes = pd.read_csv(csv_vol, index_col=0)
except FileNotFoundError:
# Create new dataframe if csv does not exist
volumes = pd.DataFrame()
# Get Nielsen erosion volumes for current survey date
current_survey = 'Elevation_' + survey_date
chainage = profiles.loc[:, current_survey].dropna().index
elevation = profiles.loc[:, current_survey].dropna().values
try:
volume = nielsen_volumes.volume_available(chainage, elevation, ch_min)
except ValueError:
volume = np.nan
# Update spreadsheet
volumes.loc[profile_name, 'Volume_' + survey_date] = volume
# Save updated volumes spreadsheet
volumes = volumes[volumes.columns.sort_values()]
volumes = volumes.sort_index()
volumes.to_csv(csv_vol)
# Get most recent volume difference for current profile
current_date_idx = volumes.columns.get_loc('Volume_' + survey_date)
previous_date_idx = current_date_idx - 1
if previous_date_idx < 0:
# Return None if there is only one survey
delta_vol = None
else:
previous_vol = volumes.loc[profile_name][previous_date_idx]
current_vol = volumes.loc[profile_name][current_date_idx]
delta_vol = current_vol - previous_vol
return delta_vol
def process(yaml_file):
with open(yaml_file, 'r') as f:
params = yaml.safe_load(f)
print("Starting to process %s" % params['BEACH'])
beach = params['BEACH']
survey_date = str(params['SURVEY DATE'])
original_las = params['INPUT LAS']
classified_las_dir = params['LAS CLASSIFIED FOLDER']
shp_swash_dir = params['SHP SWASH FOLDER']
crop_heatmap_poly = params['HEATMAP CROP POLY']
output_las_dir = params['LAS OUTPUT FOLDER']
zone_MGA = params['ZONE MGA']
output_poly_dir = params['SHP RASTER FOLDER']
output_tif_dir = params['TIF DEM FOLDER']
cp_csv = params['INPUT CSV']
profile_limit_file = params['PROFILE LIMIT FILE']
csv_output_dir = params['CSV OUTPUT FOLDER']
graph_loc = params['PNG OUTPUT FOLDER']
volume_output_dir = params['CSV VOLUMES FOLDER']
tmp_dir = params['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(original_las))[0]
# Get name of input point cloud
input_las = os.path.join(classified_las_dir, las_basename + '.las')
# Get name of swash cropping polygon
crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp')
# Crop point cloud to swash boundary
print('Cropping swash...')
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', crop_swash_poly], verbose=False)
las_name = 'crop-1.las'
with open (las_name, 'wb') as f:
f.write(las_data)
# Apply sea-side clipping polygon
print('Cropping back of beach...')
las_data = call_lastools('lasclip', input=las_data, output='-stdout',
args=['-poly', crop_heatmap_poly], verbose=False)
# Create clipping polygon for heatmap raster
print('Creating heat map cropping polygon...')
shp_name = os.path.join(output_poly_dir, las_basename + '.shp')
call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False)
# Make a raster from point cloud
print('Creating heat map raster...')
tif_name = os.path.join(output_tif_dir, las_basename + '.tif')
call_lastools('las2dem', input=las_data, output=tif_name,
args=['-step', 1, '-keep_class', 2], verbose=False)
# Extract elevations along profiles from triangulated surface
print('Extracting profile elevations...')
df = extract_pts(
las_data,
cp_csv,
survey_date,
beach,
args=['-parse', 'sxyz', '-keep_class', '2'],
verbose=False)
# Update survey profiles
update_survey_output(df, csv_output_dir)
# Get landward limit of surveys
ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
# Plot profiles, and save sand volumes for current beach
print('Updating figures...')
profile_names = df['Profile'].unique()
for profile_name in profile_names:
delta_vol = calculate_volumes(profile_name, survey_date,
csv_output_dir, ch_limits,
volume_output_dir)
plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits,
delta_vol, survey_date)
# Remove temprary files
remove_temp_files(tmp_dir)
def main():
example_text = """examples:
# Process single survey at specific beach
python las_outputs.py survey-1-avoca.yaml
# Process single survey at multiple beaches
python las_outputs.py survey-1-avoca.yaml survey-1-pearl.yaml
# Process all surveys at specific beach
python las_outputs.py *avoca.yaml
# Process all beaches for specific survey date
python las_outputs.py survey-1*.yaml
"""
# Set up command line arguments
parser = argparse.ArgumentParser(
epilog=example_text,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('input', help='path to yaml file(s)', nargs='*')
# Print usage if no arguments are provided
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
# Parse arguments
args = parser.parse_args()
yaml_files = []
[yaml_files.extend(glob(f)) for f in args.input]
for yaml_file in yaml_files:
process(yaml_file)
if __name__ == '__main__':
main()