# python 3.5 #requires LAStools to be installed (with the appropriate license). Note that LAStools requires no spaces in file names #should have previously run 2017088_las_manipulation to have a las that has the buildings and veg removed #note that the neilson volumes script must be in the same folder # this script will: #crop to a given polygon (crop away the swash zone) # extract values along a predefined profile, # do the volume analysis #export pngs of the surveys ########################### IMPORTS ########################################### import os import io import re import sys import math import argparse import datetime import subprocess import numpy as np import pandas as pd from cycler import cycler import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import nielsen_volumes from survey_tools import call_lastools, extract_pts, update_survey_output def get_datestring(x): """Format a date integer into an ISO-8601 date string Args: x: unformatted date Returns: formatted date string Examples: >> get_datestring(19700101) '1970-01-01' """ datestr = pd.datetime.strptime(str(x), '%Y%m%d').strftime('%Y-%m-%d') return datestr def remove_temp_files(directory): for f in os.listdir(directory): os.unlink(os.path.join(directory, f)) return None def plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits, delta_vol, survey_date): csv_name = profile_name + '.csv' profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name)) # Remove metadata, and extract profile coordinates profiles = profiles.loc[:, 'Chainage':].set_index('Chainage') # Determine if current survey is the latest current_survey_col = 'Elevation_' + survey_date is_latest = profiles.columns[-1] == current_survey_col # Only plot profiles up to current survey date profiles = profiles.loc[:, :current_survey_col] # Find landward limit of profile (behind beach) ch_min = ch_limits.loc[profile_name, 'Landward Limit'] # Set figure dimensions based on beach size vertical_exag = 8 m_per_inch = 8 fig_h = profiles.dropna().values.max() / m_per_inch * vertical_exag fig_w = (profiles.index.max() - ch_min) / m_per_inch fig, ax = plt.subplots(figsize=(fig_w, fig_h)) for col in profiles.columns: profile = profiles.loc[ch_min:, col] date_str = col.split('_')[-1] date = get_datestring(date_str) ax.plot(profile.index, profile, label=date) ax.set_aspect(vertical_exag) ax.set_xlabel('Chainage (m)', labelpad=10) ax.set_ylabel('Elevation (m AHD)', labelpad=10) # Show most recent volume change if delta_vol is not None: ax.annotate('Most recent\nvolume change:\n{:0.1f} m$^3$/m'.format(delta_vol), (0.05, 0.15), xycoords='axes fraction', fontsize=9, backgroundcolor='#ffffff', linespacing=1.5) ax.legend(edgecolor='none', facecolor='#ffffff', fontsize=9) ax.xaxis.set_minor_locator(MultipleLocator(5)) ax.yaxis.set_minor_locator(MultipleLocator(0.5)) ax.xaxis.grid(True, which='minor', color='k', linewidth=0.5, alpha=0.3) ax.yaxis.grid(True,which='minor',color='k', linewidth=0.5, alpha=0.3) # Save in folder with current date png_dirs = [os.path.join(graph_loc, get_datestring(survey_date))] if is_latest: # Save copy in'latest' if survey is most recent png_dirs += [os.path.join(graph_loc, 'latest')] for png_dir in png_dirs: # Prepare output directory try: os.makedirs(png_dir) except FileExistsError: pass png_name = os.path.join(png_dir, profile_name + '.png') plt.savefig(png_name, bbox_inches='tight', dpi=300) plt.close() def calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir): csv_prof = profile_name + '.csv' beach = re.search('.*(?=_\d)', profile_name).group() profiles = pd.read_csv(os.path.join(csv_output_dir, csv_prof)) # Remove metadata, and extract profile coordinates profiles = profiles.loc[:, 'Chainage':].set_index('Chainage') # Find landward limit of profile (behind beach) ch_min = ch_limits.loc[profile_name, 'Landward Limit'] # Open volume spreadsheet csv_vol = os.path.join(volume_output_dir, 'volumes.csv') try: volumes = pd.read_csv(csv_vol, index_col=0) except FileNotFoundError: # Create new dataframe if csv does not exist volumes = pd.DataFrame() for current_date in profiles.columns: # Get Nielsen erosion volumes chainage = profiles.loc[:, current_date].dropna().index elevation = profiles.loc[:, current_date].dropna().values volume = nielsen_volumes.volume_available(chainage, elevation, ch_min) # Update spreadsheet volumes.loc[profile_name, 'Volume_' + survey_date] = volume # Save updated volumes spreadsheet volumes = volumes[volumes.columns.sort_values()] volumes = volumes.sort_index() volumes.to_csv(csv_vol) # Get most recent volume difference for current profile try: previous_vol = volumes.loc[profile_name].values[-2] current_vol = volumes.loc[profile_name].values[-1] delta_vol = current_vol - previous_vol except IndexError: # Return None if there is only one survey delta_vol = None return delta_vol def main(): parser = argparse.ArgumentParser() parser.add_argument( 'input_file', metavar='PARAMS_FILE', help='name of parameter file', default=None) # Print usage if no arguments are provided if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() # read the parameters file and scroll through it input_file = args.input_file params_file=pd.read_excel(input_file, sheet_name="PARAMS") for i, row in params_file.iterrows(): print("Starting to process %s" % row['BEACH']) beach=row['BEACH'] survey_date = str(row['SURVEY DATE']) original_las = row['INPUT LAS'] classified_las_dir = row['LAS CLASSIFIED FOLDER'] shp_swash_dir = row['SHP SWASH FOLDER'] crop_heatmap_poly = row['HEATMAP CROP POLY'] output_las_dir = row['LAS OUTPUT FOLDER'] zone_MGA = row['ZONE MGA'] output_poly_dir = row['SHP RASTER FOLDER'] output_tif_dir = row['TIF OUTPUT FOLDER'] cp_csv = row['INPUT CSV'] profile_limit_file = row['PROFILE LIMIT FILE'] csv_output_dir = row['CSV OUTPUT FOLDER'] graph_loc = row['PNG OUTPUT FOLDER'] volume_output_dir = row['CSV VOLUMES FOLDER'] tmp_dir = row['TMP FOLDER'] # Get base name of input las las_basename = os.path.splitext(os.path.basename(original_las))[0] # Get name of input point cloud input_las = os.path.join(classified_las_dir, las_basename + '.las') # Get name of swash cropping polygon crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp') # Crop point cloud to swash boundary print('Cropping swash...') las_data = call_lastools('lasclip', input=input_las, output='-stdout', args=['-poly', crop_swash_poly], verbose=False) # Apply sea-side clipping polygon print('Cropping back of beach...') las_data = call_lastools('lasclip', input=las_data, output='-stdout', args=['-poly', crop_heatmap_poly], verbose=False) # Create clipping polygon for heatmap raster print('Creating heat map cropping polygon...') shp_name = os.path.join(output_poly_dir, las_basename + '.shp') call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False) # Make a raster from point cloud print('Creating heat map raster...') tif_name = os.path.join(output_tif_dir, las_basename + '.tif') call_lastools('las2dem', input=las_data, output=tif_name, args=['-step', 0.2, '-keep_class', 2], verbose=False) # Extract elevations along profiles from triangulated surface print('Extracting profile elevations...') df = extract_pts( las_data, cp_csv, survey_date, beach, args=['-parse', 'sxyz', '-keep_class', '2'], verbose=False) # Update survey profiles update_survey_output(df, csv_output_dir) # Get landward limit of surveys ch_limits = pd.read_excel(profile_limit_file, index_col='Profile') # Plot profiles, and save sand volumes for current beach print('Updating figures...') profile_names = df['Profile'].unique() for profile_name in profile_names: delta_vol = calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir) plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits, delta_vol, survey_date) # Remove temprary files remove_temp_files(tmp_dir) if __name__ == '__main__': main()