# python 3.5 #requires LAStools to be installed (with the appropriate license). Note that LAStools requires no spaces in file names #should have previously run 2017088_las_manipulation to have a las that has the buildings and veg removed #note that the neilson volumes script must be in the same folder # this script will: #crop to a given polygon (crop away the swash zone) # extract values along a predefined profile, # do the volume analysis #export pngs of the surveys ########################### IMPORTS ########################################### import os import io import subprocess import pandas as pd import numpy as np import neilson_volumes import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import datetime import xlsxwriter import math from cycler import cycler from survey_tools import call_lastools ############################################################################### ########################## FIXED INPUTS ####################################### ######### UNCOMMENT THIS SECTION IF YOU WANT TO DEFINE EACH INPUT INDIVIDUALLY ###################### ##path to LasTools NOTE THERE CAN BE NO SPACES path_2_lastools='C:/ProgramData/chocolatey' # input_file=r"J:\Project\wrl2017088 Central Coast Council Aerial Survey and Coastal Analysis\04_Working\Python\Survey 2\Parameter Files\las outputs survey2.xlsx" input_file='Parameter Files/las outputs survey2.xlsx' #input_file=r"J:\Project\wrl2017088 Central Coast Council Aerial Survey and Coastal Analysis\04_Working\Python\Survey 2\Parameter Files\las outputs survey2_V2.xlsx" ############################## ############################### SUB ROUTINES ################################## def check_output(command,console): if console == True: process = subprocess.Popen(command) else: process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) output,error = process.communicate() returncode = process.poll() return returncode,output def crop_las(las, shp, output, lastools_loc): # output is the full path and filename (inc extension) to put in path_2_lasclip=lastools_loc+"\\bin\\lasclip" command="%s -i %s -poly %s -o %s" % (path_2_lasclip, las, shp, output) returncode,output = check_output(command, False) if returncode!= 0: print("Error. lasclip failed on %s" % shp.split('//')[-1].split('.')[0]) else: return None def las_boundary(las, crop_poly_name, path_2_crop_polygon, lastools_loc, zone): path_2_lasboundary=lastools_loc+"\\bin\\lasboundary" fname=crop_poly_name prjfname="%s%s.prj" %(path_2_crop_polygon, fname) path_2_crop_poly='%s%s.shp' % (path_2_crop_polygon, fname) command="%s -i %s -o %s" % (path_2_lasboundary, las, path_2_crop_poly) prj=open(prjfname, 'w') if zone==56: prj.write('PROJCS["GDA_1994_MGA_Zone_56",GEOGCS["GCS_GDA_1994",DATUM["D_GDA_1994",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",153.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]') elif zone==55: prj.write('PROJCS["GDA_1994_MGA_Zone_55",GEOGCS["GCS_GDA_1994",DATUM["D_GDA_1994",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",147.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]') elif zone==57: prj.write('PROJCS["GDA_1994_MGA_Zone_57",GEOGCS["GCS_GDA_1994",DATUM["D_GDA_1994",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",159.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]') prj.close() returncode,output = check_output(command, False) return None def make_raster(las, output, lastools_loc, keep_only_ground=False, step=0.2): #not that keep ground only option only rasters points classified as "2" in the lidar (ie ground) #this effectively creates a "bare earth dem" #note that this should only be used after remove_veg and/or remove_buildings has been run path_2_blastdem=lastools_loc+"\\bin\\blast2dem" if keep_only_ground==False: command="%s -i %s -o %s -step %s" % (path_2_blastdem, las, output, step) else: command="%s -i %s -o %s -step %s -keep_class 2" % (path_2_blastdem, las, output,step) returncode,output2 = check_output(command, False) if returncode!= 0: print("Error. blast2dem failed on %s" % las.split('\\')[-1].split('.')[0]) else: return None def extract_pts(las_in, cp_in, survey_date, beach, keep_only_ground=True): """Extract elevations from a las surface based on x and y coordinates. Requires lastools in system path. Args: las_in: input point cloud (las) cp_in: point coordinates with columns: id, x, y, z (csv) survey_date: survey date string, e.g. '19700101' beach: beach name keep_only_ground: only keep points classified as 'ground' (boolean) Returns: Dataframe containing input coordinates with extracted elevations """ cmd = ['lascontrol', '-i', las_in, '-cp', cp_in, '-parse', 'sxyz'] if keep_only_ground == True: cmd += ['-keep_class', '2'] # Call lastools process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() errcode = process.returncode # Handle errors, if detected if errcode != 0: print("Error. lascontrol failed on {}".format( os.path.basename(las_in))) print(stderr.decode()) # Load result into pandas dataframe df = pd.read_csv(io.BytesIO(stdout)) # Tidy up dataframe df = df.drop(columns=['diff']) df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce') df['Beach'] = beach df = df[[ 'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z' ]] # Rename columns new_names = { 'ProfileNum': 'Profile', 'lidar_z': 'Elevation_{}'.format(survey_date), } df = df.rename(columns=new_names) return df def update_survey_output(df, output_dir): """Update survey profile output csv files with current survey. Args: df: dataframe containing current survey elevations output_dir: directory where csv files are saved Returns: None """ # Merge current survey with existing data profiles = df['Profile'].unique() for profile in profiles: csv_name = os.path.join(output_csv_dir, profile + '.csv') # Extract survey data for current profile current_profile = df[df['Profile'] == profile] try: # Load existing results master = pd.read_csv(csv_name) except FileNotFoundError: master = current_profile.copy() # Add (or update) current survey current_survey_col = df.columns[-1] master[current_survey_col] = current_profile[current_survey_col] # Export updated results master.to_csv(csv_name) def plot_profiles(profile_info, profile, output_loc, LL_limit): #plot the profile. expects output from CC_split_profile YminorLocator=MultipleLocator(0.5) XminorLocator=MultipleLocator(5) fig,ax=plt.subplots(figsize=(8, 3)) num_plots=len(profile_info.keys())-1 colormap = plt.cm.jet ax.set_prop_cycle(cycler('color', [colormap(i) for i in np.linspace(0, 0.9, num_plots)])) max_y=0 for date in profile_info.keys(): if date!='info': plt.plot(profile_info[date]['Chainage'], profile_info[date]['Elevation'], label=date) try: if max([i for i in profile_info[date]['Elevation'] if pd.isnull(i)==False])>max_y: max_y=max([i for i in profile_info[date]['Elevation'] if pd.isnull(i)==False]) except: print("empty elevation section for %s" % date) plt.plot([LL_limit,LL_limit], [-1,max_y], 'r--', alpha=0.5, label="Landward Limit") plt.xlabel('Chainage (m)',weight='bold') plt.ylabel('Elevation (m AHD)',weight='bold') plt.legend(loc='upper right', bbox_to_anchor=(1.3,1)) plt.title(profile) plt.rcParams['font.size']=8 ax.set_ylim([-1,math.ceil(max_y)]) ax.xaxis.set_minor_locator(XminorLocator) ax.yaxis.set_minor_locator(YminorLocator) ax.xaxis.grid(True, which='minor', color='k', linestyle='-', alpha=0.3) ax.yaxis.grid(True,which='minor',color='k', linestyle='-', alpha=0.3) plt.grid(which='major', color='k', linestyle='-') today=datetime.datetime.now().date().strftime('%Y%m%d') plt.savefig(os.path.join(output_loc, '%s_%s.png' % (today, profile)),bbox_inches='tight',dpi=900) plt.clf() return None def CC_split_profile(file2read): # this reads the profile files and splits it into dates file_master=pd.read_csv(file2read) beach_original=file_master['Beach'].tolist() profile_original=file_master['Profile'].tolist() date_original=file_master['Date'].tolist() chainage_original=file_master['Chainage'].tolist() elevation_original=file_master['Elevation'].tolist() easting_original=file_master['Easting'].tolist() northing_original=file_master['Northing'].tolist() data={} i=0 #add info on the beach and profile number data['info']={'Profile':profile_original[0], 'Beach':beach_original[0]} date_now=date_original[0] while i2: #if there aren't enough available points don't do it volume=neilson_volumes.volume_available(chainage, elevation, LL_limit) if volume<0: volume=0 print('%s %s has a negative volume available' % (profile, date)) else: volume=0 results_volume[profile][date]=volume #write an excel sheet which summarises the data workbook = xlsxwriter.Workbook(output_xlsx) worksheet=workbook.add_worksheet('Volumes') row=0 col=0 worksheet.write(row, col, 'Profile') for date in all_dates: col=col+1 worksheet.write(row, col, date) col=0 row=1 for prof in results_volume.keys(): worksheet.write(row, col, prof) for date in all_dates: col=col+1 try: vol=results_volume[prof][date] except KeyError: print("error with profile %s on %s" % (prof, date)) vol=None worksheet.write(row, col, vol) col=0 row=row+1 return results_volume def remove_temp_files(directory): for f in os.listdir(directory): os.unlink(os.path.join(directory, f)) return None ############################################################################### ########################### RUN CODE ########################################## input_file = 'Parameter Files/las-manipulation-survey-2.xlsx' params_file=pd.read_excel(input_file, sheet_name="PARAMS") for i in range(0, len(params_file)): #0, len(params_file) print("Starting to process %s" % params_file['Beach'][i]) beach=params_file['Beach'][i] survey_date=params_file['SURVEY DATE'][i] original_las=params_file['INPUT LAS'][i] classified_las_dir=params_file['LAS CLASSIFIED FOLDER'][i] shp_swash_dir=params_file['SHP SWASH FOLDER'][i] heatmap_crop_poly=params_file['HEATMAP CROP POLY'][i] final_las = params_file['LAS FINAL FOLDER'][i] # heatmap_las = params_file['HEATMAP LAS'][i] zone_MGA=params_file['ZONE MGA'][i] output_poly_name=params_file['OUTPUT POLY NAME'][i] path_2_output_poly=params_file['PATH TO OUTPUT'][i] output_raster=params_file['OUTPUT RASTER'][i] input_csv=params_file['INPUT CSV'][i] tmp_csv = params_file['TMP CSV'][i] LL_file=params_file['LL FILE'][i] csv_loc=params_file['OUT CSV LOC'][i] graph_loc = params_file['GRAPH LOC'][i] volume_output=params_file['VOLUME OUTPUT'][i] tmp_dir=params_file['TEMP DIR'][i] int_dir=params_file['INTERIM DIR'][i] # Get base name of input las las_basename = os.path.splitext(os.path.basename(original_las))[0] # Get name of input point cloud input_las = os.path.join(classified_las_dir, las_basename + '.las') # Get name of swash cropping polygon crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp') # crop and get the output las las_data = call_lastools('lasclip', input=input_las, output='-stdout', args=['-poly', crop_swash_poly], verbose=False) crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools) #now crop out the heatmap las crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools) #create a polygon to crop a raster las_boundary(heatmap_las, output_poly_name, path_2_output_poly, path_2_lastools, zone_MGA) #make a raster make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True) #extract the points and get volumes df = extract_pts(final_las, input_csv, survey_date, beach, keep_only_ground=True) update_survey_output(df, csv_loc) #colourise the point cloud #delete the temp files from the tmp_dir and the interim_dir remove_temp_files(tmp_dir) #remove_temp_files(int_dir) print("doing the volume analysis") test=profile_plots_volume(csv_loc, LL_file, volume_output, graph_loc)