"""las_outputs.py Crop swash zone, plot survey profiles, and complete a volume analysis based on the output from `las_manipulation.py`. Example usage: # Process single survey at specific beach python las_outputs.py survey-1-avoca.yaml # Process single survey at multiple beaches python las_outputs.py survey-1-avoca.yaml survey-1-pearl.yaml # Process all surveys at specific beach python las_outputs.py *avoca.yaml # Process all beaches for specific survey date python las_outputs.py survey-1*.yaml """ import os import io import re import sys import math import yaml import argparse import datetime import subprocess import numpy as np import pandas as pd from glob import glob from cycler import cycler import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import nielsen_volumes from survey_tools import call_lastools, extract_pts, update_survey_output def get_datestring(x): """Format a date integer into an ISO-8601 date string Args: x: unformatted date Returns: formatted date string Examples: >> get_datestring(19700101) '1970-01-01' """ datestr = pd.datetime.strptime(str(x), '%Y%m%d').strftime('%Y-%m-%d') return datestr def remove_temp_files(directory): for f in os.listdir(directory): os.unlink(os.path.join(directory, f)) return None def plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits, delta_vol, survey_date, scale_figures=False): csv_name = profile_name + '.csv' profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name)) # Remove metadata, and extract profile coordinates profiles = profiles.loc[:, 'Chainage':].set_index('Chainage') # Determine if current survey is the latest current_survey_col = 'Elevation_' + survey_date is_latest = profiles.columns[-1] == current_survey_col # Only plot profiles up to current survey date profiles = profiles.loc[:, :current_survey_col] # Find landward limit of profile (behind beach) ch_min = ch_limits.loc[profile_name, 'Landward Limit'] # Set figure dimensions based on beach size vertical_exag = 5 m_per_inch = 8 try: fig_h = profiles.dropna().values.max() / m_per_inch * vertical_exag fig_w = (profiles.index.max() - ch_min) / m_per_inch except ValueError: fig_h = 5 fig_w = 10 if scale_figures: fig, ax = plt.subplots(figsize=(fig_w, fig_h)) ax.set_aspect(vertical_exag) else: fig, ax = plt.subplots(figsize=(10, 5)) for col in profiles.columns: profile = profiles.loc[:, col] date_str = col.split('_')[-1] date = get_datestring(date_str) ax.plot(profile.index, profile, label=date) # Show landward limit of volume calculations ax.axvline(x=ch_min, color='#222222', linestyle='--', label='Landward limit') ax.set_title(profile_name) ax.set_xlabel('Chainage (m)', labelpad=10) ax.set_ylabel('Elevation (m AHD)', labelpad=10) Ylim=ax.get_ylim()[1] if Ylim<10: ax.set_ylim([ax.get_ylim()[0], 10]) # Remove empty space at left of figure try: ax.set_xlim(left=profile.first_valid_index() - 10) except TypeError: pass # Show most recent volume change if delta_vol is not None: ax.annotate('Most recent\nvolume change:\n{:+0.1f} m$^3$/m'.format(delta_vol), (0.05, 0.15), xycoords='axes fraction', fontsize=9, backgroundcolor='#ffffff', linespacing=1.5) ax.legend(edgecolor='none', facecolor='#ffffff', fontsize=9, labelspacing=1) ax.xaxis.set_minor_locator(MultipleLocator(5)) ax.yaxis.set_minor_locator(MultipleLocator(0.5)) ax.xaxis.grid(True, which='minor', color='k', linewidth=0.5, alpha=0.3) ax.yaxis.grid(True,which='minor',color='k', linewidth=0.5, alpha=0.3) # Save in folder with current date png_dirs = [os.path.join(graph_loc, get_datestring(survey_date))] if is_latest: # Save copy in'latest' if survey is most recent png_dirs += [os.path.join(graph_loc, 'latest')] for png_dir in png_dirs: # Prepare output directory try: os.makedirs(png_dir) except FileExistsError: pass png_name = os.path.join(png_dir, profile_name + '.png') plt.savefig(png_name, bbox_inches='tight', dpi=300) plt.close() def calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir): csv_prof = profile_name + '.csv' beach = re.search('.*(?=_\d)', profile_name).group() profiles = pd.read_csv(os.path.join(csv_output_dir, csv_prof)) # Remove metadata, and extract profile coordinates profiles = profiles.loc[:, 'Chainage':].set_index('Chainage') # Find landward limit of profile (behind beach) ch_min = ch_limits.loc[profile_name, 'Landward Limit'] # Open volume spreadsheet csv_vol = os.path.join(volume_output_dir, 'volumes.csv') try: volumes = pd.read_csv(csv_vol, index_col=0) except FileNotFoundError: # Create new dataframe if csv does not exist volumes = pd.DataFrame() # Get Nielsen erosion volumes for current survey date current_survey = 'Elevation_' + survey_date chainage = profiles.loc[:, current_survey].dropna().index elevation = profiles.loc[:, current_survey].dropna().values try: volume = nielsen_volumes.volume_available(chainage, elevation, ch_min) except ValueError: volume = np.nan # Update spreadsheet volumes.loc[profile_name, 'Volume_' + survey_date] = volume # Save updated volumes spreadsheet volumes = volumes[volumes.columns.sort_values()] volumes = volumes.sort_index() volumes.to_csv(csv_vol) # Get most recent volume difference for current profile current_date_idx = volumes.columns.get_loc('Volume_' + survey_date) previous_date_idx = current_date_idx - 1 if previous_date_idx < 0: # Return None if there is only one survey delta_vol = None else: previous_vol = volumes.loc[profile_name][previous_date_idx] current_vol = volumes.loc[profile_name][current_date_idx] delta_vol = current_vol - previous_vol return delta_vol def process(yaml_file): with open(yaml_file, 'r') as f: params = yaml.safe_load(f) print("Starting to process %s" % params['BEACH']) beach = params['BEACH'] survey_date = str(params['SURVEY DATE']) original_las = params['INPUT LAS'] classified_las_dir = params['LAS CLASSIFIED FOLDER'] shp_swash_dir = params['SHP SWASH FOLDER'] crop_heatmap_poly = params['HEATMAP CROP POLY'] output_las_dir = params['LAS OUTPUT FOLDER'] zone_MGA = params['ZONE MGA'] output_poly_dir = params['SHP RASTER FOLDER'] output_tif_dir = params['TIF DEM FOLDER'] cp_csv = params['INPUT CSV'] profile_limit_file = params['PROFILE LIMIT FILE'] csv_output_dir = params['CSV OUTPUT FOLDER'] graph_loc = params['PNG OUTPUT FOLDER'] volume_output_dir = params['CSV VOLUMES FOLDER'] tmp_dir = params['TMP FOLDER'] # Get base name of input las #las_basename = os.path.splitext(os.path.basename(original_las))[0] las_basename='%s_%s' % (beach.lower().replace(" ","_"), survey_date) # Get name of input point cloud input_las = os.path.join(classified_las_dir, las_basename + '.las') # Get name of swash cropping polygon crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp') # Crop point cloud to swash boundary print('Cropping swash...') las_data = call_lastools('lasclip', input=input_las, output='-stdout', args=['-poly', crop_swash_poly], verbose=False) # Export classified, clipped las for delivery to client las_name = os.path.join(output_las_dir, las_basename + '.las') with open (las_name, 'wb') as f: f.write(las_data) # Apply sea-side clipping polygon print('Cropping back of beach...') las_data = call_lastools('lasclip', input=las_data, output='-stdout', args=['-poly', crop_heatmap_poly], verbose=False) # Create clipping polygon for heatmap raster print('Creating heat map cropping polygon...') shp_name = os.path.join(output_poly_dir, las_basename + '.shp') call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False) # Make a raster from point cloud print('Creating heat map raster...') tif_name = os.path.join(output_tif_dir, las_basename + '.tif') call_lastools('las2dem', input=las_data, output=tif_name, args=['-step', 1, '-keep_class', 2], verbose=False) # IF THIS STEP ISN'T WORKING: # might mean there are no data lines # trying running with args=['-step', 1, '-keep_class', 2, '-rescale', 0.001,0.001,0.001] #call_lastools('las2dem', input=las_data, output=tif_name, # args=['-step', 1, '-keep_class', 2, '-rescale', 0.001,0.001,0.001], verbose=False) # Extract elevations along profiles from triangulated surface print('Extracting profile elevations...') df = extract_pts( las_data, cp_csv, survey_date, beach, args=['-parse', 'sxyz', '-keep_class', '2'], verbose=False) # Update survey profiles update_survey_output(df, csv_output_dir) # Get landward limit of surveys ch_limits = pd.read_excel(profile_limit_file, index_col='Profile') # Plot profiles, and save sand volumes for current beach print('Updating figures...') profile_names = df['Profile'].unique() for profile_name in profile_names: delta_vol = calculate_volumes(profile_name, survey_date, csv_output_dir, ch_limits, volume_output_dir) plot_profiles(profile_name, csv_output_dir, graph_loc, ch_limits, delta_vol, survey_date) # Remove temprary files remove_temp_files(tmp_dir) def main(): example_text = """examples: # Process single survey at specific beach python las_outputs.py survey-1-avoca.yaml # Process single survey at multiple beaches python las_outputs.py survey-1-avoca.yaml survey-1-pearl.yaml # Process all surveys at specific beach python las_outputs.py *avoca.yaml # Process all beaches for specific survey date python las_outputs.py survey-1*.yaml """ # Set up command line arguments parser = argparse.ArgumentParser( epilog=example_text, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('input', help='path to yaml file(s)', nargs='*') # Print usage if no arguments are provided if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) # Parse arguments args = parser.parse_args() yaml_files = [] [yaml_files.extend(glob(f)) for f in args.input] for yaml_file in yaml_files: process(yaml_file) if __name__ == '__main__': main()