diff --git a/las_outputs.py b/las_outputs.py index a389466..cd6982f 100644 --- a/las_outputs.py +++ b/las_outputs.py @@ -180,25 +180,21 @@ for i, row in params_file.iterrows(): # Crop point cloud to swash boundary las_data = call_lastools('lasclip', input=input_las, output='-stdout', args=['-poly', crop_swash_poly], verbose=False) - # crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools) # Apply sea-side clipping polygon las_data = call_lastools('lasclip', input=las_data, output='-stdout', args=['-poly', crop_heatmap_poly], verbose=False) - # crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools) # Create clipping polygon for heatmap raster shp_name = os.path.join(output_poly_dir, las_basename + '.shp') call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False) - # las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA) - #make a raster - # make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True) + # Make a raster from point cloud tif_name = os.path.join(output_tif_dir, las_basename + '.tif') call_lastools('blast2dem', input=las_data, output=tif_name, args=['-step', 0.2], verbose=False) - #extract the points and get volumes + # Extract elevations along profiles from triangulated surface df = extract_pts( las_data, cp_csv, @@ -216,10 +212,8 @@ for i, row in params_file.iterrows(): for profile_name in profile_names: plot_profiles(profile_name, survey_date, csv_output_dir, graph_loc, ch_limits) - - #delete the temp files from the tmp_dir and the interim_dir + # Remove temprary files remove_temp_files(tmp_dir) - #remove_temp_files(int_dir) print("doing the volume analysis") # test=profile_plots_volume(csv_output_dir, profile_limit_file, volume_output, graph_loc)