diff --git a/outputs_2017088_Survey2.py b/outputs_2017088_Survey2.py index 9de895c..812b3c5 100644 --- a/outputs_2017088_Survey2.py +++ b/outputs_2017088_Survey2.py @@ -371,17 +371,15 @@ for i in range(0, len(params_file)): #0, len(params_file) original_las=params_file['INPUT LAS'][i] classified_las_dir=params_file['LAS CLASSIFIED FOLDER'][i] shp_swash_dir=params_file['SHP SWASH FOLDER'][i] - heatmap_crop_poly=params_file['HEATMAP CROP POLY'][i] - final_las = params_file['LAS FINAL FOLDER'][i] - # heatmap_las = params_file['HEATMAP LAS'][i] + crop_heatmap_poly=params_file['HEATMAP CROP POLY'][i] + output_las_dir=params_file['LAS OUTPUT FOLDER'][i] zone_MGA=params_file['ZONE MGA'][i] - output_poly_name=params_file['OUTPUT POLY NAME'][i] - path_2_output_poly=params_file['PATH TO OUTPUT'][i] - output_raster=params_file['OUTPUT RASTER'][i] - input_csv=params_file['INPUT CSV'][i] - tmp_csv = params_file['TMP CSV'][i] + output_poly_dir=params_file['SHP RASTER FOLDER'][i] + output_tif_dir=params_file['TIF OUTPUT FOLDER'][i] + cp_csv=params_file['INPUT CSV'][i] + # tmp_csv = params_file['TMP CSV'][i] LL_file=params_file['LL FILE'][i] - csv_loc=params_file['OUT CSV LOC'][i] + # csv_loc=params_file['OUT CSV LOC'][i] graph_loc = params_file['GRAPH LOC'][i] volume_output=params_file['VOLUME OUTPUT'][i] tmp_dir=params_file['TEMP DIR'][i] @@ -396,22 +394,26 @@ for i in range(0, len(params_file)): #0, len(params_file) # Get name of swash cropping polygon crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp') - # crop and get the output las + # Crop point cloud to swash boundary las_data = call_lastools('lasclip', input=input_las, output='-stdout', args=['-poly', crop_swash_poly], verbose=False) + # crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools) - crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools) + # Apply sea-side clipping polygon + las_data = call_lastools('lasclip', input=las_data, output='-stdout', + args=['-poly', crop_heatmap_poly], verbose=False) + # crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools) - #now crop out the heatmap las - crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools) + # Create clipping polygon for heatmap raster + shp_name = os.path.join(output_poly_dir, las_basename + '.shp') + call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False) + # las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA) - #create a polygon to crop a raster - las_boundary(heatmap_las, output_poly_name, path_2_output_poly, path_2_lastools, zone_MGA) #make a raster make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True) #extract the points and get volumes - df = extract_pts(final_las, input_csv, survey_date, beach, keep_only_ground=True) + df = extract_pts(final_las, cp_csv, survey_date, beach, keep_only_ground=True) update_survey_output(df, csv_loc) #colourise the point cloud