diff --git a/outputs_2017088_Survey2.py b/outputs_2017088_Survey2.py index 812b3c5..879973e 100644 --- a/outputs_2017088_Survey2.py +++ b/outputs_2017088_Survey2.py @@ -23,7 +23,7 @@ import xlsxwriter import math from cycler import cycler -from survey_tools import call_lastools +from survey_tools import call_lastools, extract_pts, update_survey_output ############################################################################### ########################## FIXED INPUTS ####################################### @@ -99,91 +99,6 @@ def make_raster(las, output, lastools_loc, keep_only_ground=False, step=0.2): return None -def extract_pts(las_in, cp_in, survey_date, beach, keep_only_ground=True): - """Extract elevations from a las surface based on x and y coordinates. - - Requires lastools in system path. - - Args: - las_in: input point cloud (las) - cp_in: point coordinates with columns: id, x, y, z (csv) - survey_date: survey date string, e.g. '19700101' - beach: beach name - keep_only_ground: only keep points classified as 'ground' (boolean) - - Returns: - Dataframe containing input coordinates with extracted elevations - """ - - cmd = ['lascontrol', '-i', las_in, '-cp', cp_in, '-parse', 'sxyz'] - - if keep_only_ground == True: - cmd += ['-keep_class', '2'] - - # Call lastools - process = subprocess.Popen( - cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) - stdout, stderr = process.communicate() - errcode = process.returncode - - # Handle errors, if detected - if errcode != 0: - print("Error. lascontrol failed on {}".format( - os.path.basename(las_in))) - print(stderr.decode()) - - # Load result into pandas dataframe - df = pd.read_csv(io.BytesIO(stdout)) - - # Tidy up dataframe - df = df.drop(columns=['diff']) - df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce') - df['Beach'] = beach - df = df[[ - 'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z' - ]] - - # Rename columns - new_names = { - 'ProfileNum': 'Profile', - 'lidar_z': 'Elevation_{}'.format(survey_date), - } - df = df.rename(columns=new_names) - - return df - - -def update_survey_output(df, output_dir): - """Update survey profile output csv files with current survey. - - Args: - df: dataframe containing current survey elevations - output_dir: directory where csv files are saved - - Returns: - None - """ - # Merge current survey with existing data - profiles = df['Profile'].unique() - for profile in profiles: - csv_name = os.path.join(output_csv_dir, profile + '.csv') - - # Extract survey data for current profile - current_profile = df[df['Profile'] == profile] - try: - # Load existing results - master = pd.read_csv(csv_name) - except FileNotFoundError: - master = current_profile.copy() - - # Add (or update) current survey - current_survey_col = df.columns[-1] - master[current_survey_col] = current_profile[current_survey_col] - - # Export updated results - master.to_csv(csv_name) - - def plot_profiles(profile_info, profile, output_loc, LL_limit): #plot the profile. expects output from CC_split_profile @@ -377,13 +292,11 @@ for i in range(0, len(params_file)): #0, len(params_file) output_poly_dir=params_file['SHP RASTER FOLDER'][i] output_tif_dir=params_file['TIF OUTPUT FOLDER'][i] cp_csv=params_file['INPUT CSV'][i] - # tmp_csv = params_file['TMP CSV'][i] - LL_file=params_file['LL FILE'][i] - # csv_loc=params_file['OUT CSV LOC'][i] - graph_loc = params_file['GRAPH LOC'][i] - volume_output=params_file['VOLUME OUTPUT'][i] - tmp_dir=params_file['TEMP DIR'][i] - int_dir=params_file['INTERIM DIR'][i] + profile_limit_file=params_file['PROFILE LIMIT FILE'][i] + csv_output_dir=params_file['CSV OUTPUT FOLDER'][i] + graph_loc = params_file['PNG OUTPUT FOLDER'][i] + volume_output=params_file['CSV VOLUMES FOLDER'][i] + tmp_dir=params_file['TMP FOLDER'][i] # Get base name of input las las_basename = os.path.splitext(os.path.basename(original_las))[0] @@ -410,11 +323,22 @@ for i in range(0, len(params_file)): #0, len(params_file) # las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA) #make a raster - make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True) + # make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True) + tif_name = os.path.join(output_tif_dir, las_basename + '.tif') + call_lastools('blast2dem', input=input_las, output=tif_name, + args=['-step', 0.2], verbose=False) #extract the points and get volumes - df = extract_pts(final_las, cp_csv, survey_date, beach, keep_only_ground=True) - update_survey_output(df, csv_loc) + # df = extract_pts(final_las, cp_csv, survey_date, beach, keep_only_ground=True) + df = extract_pts( + las_data, + cp_csv, + survey_date, + beach, + args=['-parse', 'sxyz', '-keep_class', '2'], + verbose=False) + update_survey_output(df, csv_output_dir) + #colourise the point cloud