|
|
|
import io
|
|
|
|
import os
|
|
|
|
import subprocess
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
def call_lastools(tool_name, input, output=None, args=None, verbose=True):
|
|
|
|
"""Send commands to the lastools library.
|
|
|
|
|
|
|
|
Requires lastools in system path.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tool_name: name of lastools binary
|
|
|
|
input: bytes from stdout, or path to main input data
|
|
|
|
output: '-stdout' to pipe output, or path to main output data
|
|
|
|
args: list of additional arguments, formatted for lastools
|
|
|
|
verbose: show all warnings and messages from lastools (boolean)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
bytes of output las, if output='-stdout'
|
|
|
|
None, if output='path/to/las/file'
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
# Convert xyz file to las and pipe stdout to a python bytes object
|
|
|
|
las_data = call_lastools('txt2las', input='points.xyz', output='-stdout',
|
|
|
|
args=['-parse', 'sxyz'])
|
|
|
|
|
|
|
|
# Clip las_data with a shapefile, and save to a new las file
|
|
|
|
call_lastools('lasclip', input=las_data, output='points.las',
|
|
|
|
args=['-poly', 'boundary.shp'])
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Start building command string
|
|
|
|
cmd = [tool_name]
|
|
|
|
|
|
|
|
# Parse input
|
|
|
|
if type(input) == bytes:
|
|
|
|
# Pipe input las bytes to stdin
|
|
|
|
cmd += ['-stdin']
|
|
|
|
stdin = input
|
|
|
|
else:
|
|
|
|
# Load las from file path
|
|
|
|
cmd += ['-i', input]
|
|
|
|
stdin = None
|
|
|
|
|
|
|
|
# Parse output
|
|
|
|
if output == '-stdout':
|
|
|
|
# Pipe output las to stdout
|
|
|
|
cmd += ['-stdout']
|
|
|
|
elif output:
|
|
|
|
# Save output las to file
|
|
|
|
cmd += ['-o', output]
|
|
|
|
|
|
|
|
# Append additional lastools arguments, if provided
|
|
|
|
if args:
|
|
|
|
cmd += [str(a) for a in args]
|
|
|
|
|
|
|
|
process = subprocess.Popen(
|
|
|
|
cmd,
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
stderr=subprocess.PIPE,
|
|
|
|
stdin=subprocess.PIPE)
|
|
|
|
stdout, stderr = process.communicate(input=stdin)
|
|
|
|
|
|
|
|
# Handle errors, if detected
|
|
|
|
if process.returncode != 0:
|
|
|
|
print("Error: {} failed on {}".format(tool_name,
|
|
|
|
os.path.basename(input)))
|
|
|
|
print(stderr.decode())
|
|
|
|
|
|
|
|
elif verbose:
|
|
|
|
# Print addional messages if verbose mode is being used
|
|
|
|
print(stderr.decode())
|
|
|
|
|
|
|
|
# Output piped stdout if required
|
|
|
|
if output == '-stdout':
|
|
|
|
return stdout
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def extract_pts(las_in, cp_in, survey_date, beach, args=None, verbose=True):
|
|
|
|
"""Extract elevations from a las surface based on x and y coordinates.
|
|
|
|
|
|
|
|
Requires lastools in system path.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
las_in: bytes from stdout, or path to main input data
|
|
|
|
cp_in: point coordinates with columns: id, x, y, z (csv)
|
|
|
|
survey_date: survey date string, e.g. '19700101'
|
|
|
|
beach: beach name
|
|
|
|
args: list of additional arguments, formatted for lastools
|
|
|
|
verbose: show all warnings and messages from lastools (boolean)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Dataframe containing input coordinates with extracted elevations
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
# Extract elevations from 'points.las', using control points from 'cp.csv'
|
|
|
|
# Specify control point format as: id, x, y, z ('-parse', 'sxyz')
|
|
|
|
# Only use points classified as 'ground' ('-keep_class', '2')
|
|
|
|
extract_pts('points.las', 'cp.csv', survey_date='20001231', beach='manly',
|
|
|
|
args=['-parse', 'sxyz', '-keep_class', '2'])
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Assemble lastools arguments
|
|
|
|
if args:
|
|
|
|
args = ['-cp', cp_in] + args
|
|
|
|
else:
|
|
|
|
args = ['-cp', cp_in]
|
|
|
|
|
|
|
|
las_data = call_lastools(
|
|
|
|
'lascontrol', input=las_in, output='-stdout', args=args, verbose=False)
|
|
|
|
|
|
|
|
# Load result into pandas dataframe
|
|
|
|
df = pd.read_csv(io.BytesIO(las_data))
|
|
|
|
|
|
|
|
# Create empty dataframe if no control points intersect point cloud
|
|
|
|
if (df.iloc[:, 0] == '-').all():
|
|
|
|
df = pd.read_csv(cp_in)
|
|
|
|
df['diff'] = '-'
|
|
|
|
df['lidar_z'] = '-'
|
|
|
|
|
|
|
|
# Tidy up dataframe
|
|
|
|
df = df.drop(columns=['diff'])
|
|
|
|
df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce')
|
|
|
|
df['Beach'] = beach
|
|
|
|
df = df[[
|
|
|
|
'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z'
|
|
|
|
]]
|
|
|
|
|
|
|
|
# Rename columns
|
|
|
|
new_names = {
|
|
|
|
'ProfileNum': 'Profile',
|
|
|
|
'lidar_z': 'Elevation_{}'.format(survey_date),
|
|
|
|
}
|
|
|
|
df = df.rename(columns=new_names)
|
|
|
|
|
|
|
|
return df
|
|
|
|
|
|
|
|
|
|
|
|
def update_survey_output(df, output_dir):
|
|
|
|
"""Update survey profile output csv files with current survey.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
df: dataframe containing current survey elevations
|
|
|
|
output_dir: directory where csv files are saved
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
True if current survey is latest, otherwise False
|
|
|
|
"""
|
|
|
|
# Merge current survey with existing data
|
|
|
|
profiles = df['Profile'].unique()
|
|
|
|
for profile in profiles:
|
|
|
|
csv_name = os.path.join(output_dir, profile + '.csv')
|
|
|
|
|
|
|
|
# Extract survey data for current profile
|
|
|
|
current_profile = df[df['Profile'] == profile]
|
|
|
|
try:
|
|
|
|
# Load existing results
|
|
|
|
master = pd.read_csv(csv_name)
|
|
|
|
except FileNotFoundError:
|
|
|
|
master = current_profile.copy()
|
|
|
|
|
|
|
|
# Add (or update) current survey
|
|
|
|
current_survey_col = current_profile.columns[-1]
|
|
|
|
master[current_survey_col] = current_profile[current_survey_col].values
|
|
|
|
|
|
|
|
# Prepare output directory
|
|
|
|
try:
|
|
|
|
os.makedirs(output_dir)
|
|
|
|
except FileExistsError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
# Ensure survey dates are in correct order
|
|
|
|
elev_cols = sorted([col for col in master.columns if 'Elevation' in col])
|
|
|
|
other_cols = [col for col in master.columns if 'Elevation' not in col]
|
|
|
|
master = master[other_cols + elev_cols]
|
|
|
|
|
|
|
|
# Export updated results
|
|
|
|
master.to_csv(csv_name, index=False, float_format='%0.3f')
|