# python 3.5
#requires LAStools to be installed (with the appropriate license). Note that LAStools requires no spaces in file names
#should have previously run 2017088_las_manipulation to have a las that has the buildings and veg removed
#note that the neilson volumes script must be in the same folder
# this script will:
#crop to a given polygon (crop away the swash zone)
# extract values along a predefined profile,
# do the volume analysis
#export pngs of the surveys
########################### IMPORTS ###########################################
import os
import io
import subprocess
import pandas as pd
import numpy as np
import neilson_volumes
import matplotlib . pyplot as plt
from matplotlib . ticker import MultipleLocator
import datetime
import xlsxwriter
import math
from cycler import cycler
from survey_tools import call_lastools
###############################################################################
########################## FIXED INPUTS #######################################
######### UNCOMMENT THIS SECTION IF YOU WANT TO DEFINE EACH INPUT INDIVIDUALLY ######################
##path to LasTools NOTE THERE CAN BE NO SPACES
path_2_lastools = ' C:/ProgramData/chocolatey '
# input_file=r"J:\Project\wrl2017088 Central Coast Council Aerial Survey and Coastal Analysis\04_Working\Python\Survey 2\Parameter Files\las outputs survey2.xlsx"
input_file = ' Parameter Files/las outputs survey2.xlsx '
#input_file=r"J:\Project\wrl2017088 Central Coast Council Aerial Survey and Coastal Analysis\04_Working\Python\Survey 2\Parameter Files\las outputs survey2_V2.xlsx"
##############################
############################### SUB ROUTINES ##################################
def check_output ( command , console ) :
if console == True :
process = subprocess . Popen ( command )
else :
process = subprocess . Popen ( command , shell = True , stdout = subprocess . PIPE , stderr = subprocess . STDOUT , universal_newlines = True )
output , error = process . communicate ( )
returncode = process . poll ( )
return returncode , output
def crop_las ( las , shp , output , lastools_loc ) :
# output is the full path and filename (inc extension) to put in
path_2_lasclip = lastools_loc + " \\ bin \\ lasclip "
command = " %s -i %s -poly %s -o %s " % ( path_2_lasclip , las , shp , output )
returncode , output = check_output ( command , False )
if returncode != 0 :
print ( " Error. lasclip failed on %s " % shp . split ( ' // ' ) [ - 1 ] . split ( ' . ' ) [ 0 ] )
else :
return None
def las_boundary ( las , crop_poly_name , path_2_crop_polygon , lastools_loc , zone ) :
path_2_lasboundary = lastools_loc + " \\ bin \\ lasboundary "
fname = crop_poly_name
prjfname = " %s %s .prj " % ( path_2_crop_polygon , fname )
path_2_crop_poly = ' %s %s .shp ' % ( path_2_crop_polygon , fname )
command = " %s -i %s -o %s " % ( path_2_lasboundary , las , path_2_crop_poly )
prj = open ( prjfname , ' w ' )
if zone == 56 :
prj . write ( ' PROJCS[ " GDA_1994_MGA_Zone_56 " ,GEOGCS[ " GCS_GDA_1994 " ,DATUM[ " D_GDA_1994 " ,SPHEROID[ " GRS_1980 " ,6378137.0,298.257222101]],PRIMEM[ " Greenwich " ,0.0],UNIT[ " Degree " ,0.0174532925199433]],PROJECTION[ " Transverse_Mercator " ],PARAMETER[ " False_Easting " ,500000.0],PARAMETER[ " False_Northing " ,10000000.0],PARAMETER[ " Central_Meridian " ,153.0],PARAMETER[ " Scale_Factor " ,0.9996],PARAMETER[ " Latitude_Of_Origin " ,0.0],UNIT[ " Meter " ,1.0]] ' )
elif zone == 55 :
prj . write ( ' PROJCS[ " GDA_1994_MGA_Zone_55 " ,GEOGCS[ " GCS_GDA_1994 " ,DATUM[ " D_GDA_1994 " ,SPHEROID[ " GRS_1980 " ,6378137.0,298.257222101]],PRIMEM[ " Greenwich " ,0.0],UNIT[ " Degree " ,0.0174532925199433]],PROJECTION[ " Transverse_Mercator " ],PARAMETER[ " False_Easting " ,500000.0],PARAMETER[ " False_Northing " ,10000000.0],PARAMETER[ " Central_Meridian " ,147.0],PARAMETER[ " Scale_Factor " ,0.9996],PARAMETER[ " Latitude_Of_Origin " ,0.0],UNIT[ " Meter " ,1.0]] ' )
elif zone == 57 :
prj . write ( ' PROJCS[ " GDA_1994_MGA_Zone_57 " ,GEOGCS[ " GCS_GDA_1994 " ,DATUM[ " D_GDA_1994 " ,SPHEROID[ " GRS_1980 " ,6378137.0,298.257222101]],PRIMEM[ " Greenwich " ,0.0],UNIT[ " Degree " ,0.0174532925199433]],PROJECTION[ " Transverse_Mercator " ],PARAMETER[ " False_Easting " ,500000.0],PARAMETER[ " False_Northing " ,10000000.0],PARAMETER[ " Central_Meridian " ,159.0],PARAMETER[ " Scale_Factor " ,0.9996],PARAMETER[ " Latitude_Of_Origin " ,0.0],UNIT[ " Meter " ,1.0]] ' )
prj . close ( )
returncode , output = check_output ( command , False )
return None
def make_raster ( las , output , lastools_loc , keep_only_ground = False , step = 0.2 ) :
#not that keep ground only option only rasters points classified as "2" in the lidar (ie ground)
#this effectively creates a "bare earth dem"
#note that this should only be used after remove_veg and/or remove_buildings has been run
path_2_blastdem = lastools_loc + " \\ bin \\ blast2dem "
if keep_only_ground == False :
command = " %s -i %s -o %s -step %s " % ( path_2_blastdem , las , output , step )
else :
command = " %s -i %s -o %s -step %s -keep_class 2 " % ( path_2_blastdem , las , output , step )
returncode , output2 = check_output ( command , False )
if returncode != 0 :
print ( " Error. blast2dem failed on %s " % las . split ( ' \\ ' ) [ - 1 ] . split ( ' . ' ) [ 0 ] )
else :
return None
def extract_pts ( las_in , cp_in , survey_date , beach , keep_only_ground = True ) :
""" Extract elevations from a las surface based on x and y coordinates.
Requires lastools in system path .
Args :
las_in : input point cloud ( las )
cp_in : point coordinates with columns : id , x , y , z ( csv )
survey_date : survey date string , e . g . ' 19700101 '
beach : beach name
keep_only_ground : only keep points classified as ' ground ' ( boolean )
Returns :
Dataframe containing input coordinates with extracted elevations
"""
cmd = [ ' lascontrol ' , ' -i ' , las_in , ' -cp ' , cp_in , ' -parse ' , ' sxyz ' ]
if keep_only_ground == True :
cmd + = [ ' -keep_class ' , ' 2 ' ]
# Call lastools
process = subprocess . Popen (
cmd , stdout = subprocess . PIPE , stderr = subprocess . PIPE )
stdout , stderr = process . communicate ( )
errcode = process . returncode
# Handle errors, if detected
if errcode != 0 :
print ( " Error. lascontrol failed on {} " . format (
os . path . basename ( las_in ) ) )
print ( stderr . decode ( ) )
# Load result into pandas dataframe
df = pd . read_csv ( io . BytesIO ( stdout ) )
# Tidy up dataframe
df = df . drop ( columns = [ ' diff ' ] )
df [ ' lidar_z ' ] = pd . to_numeric ( df [ ' lidar_z ' ] , errors = ' coerce ' )
df [ ' Beach ' ] = beach
df = df [ [
' Beach ' , ' ProfileNum ' , ' Easting ' , ' Northing ' , ' Chainage ' , ' lidar_z '
] ]
# Rename columns
new_names = {
' ProfileNum ' : ' Profile ' ,
' lidar_z ' : ' Elevation_ {} ' . format ( survey_date ) ,
}
df = df . rename ( columns = new_names )
return df
def update_survey_output ( df , output_dir ) :
""" Update survey profile output csv files with current survey.
Args :
df : dataframe containing current survey elevations
output_dir : directory where csv files are saved
Returns :
None
"""
# Merge current survey with existing data
profiles = df [ ' Profile ' ] . unique ( )
for profile in profiles :
csv_name = os . path . join ( output_csv_dir , profile + ' .csv ' )
# Extract survey data for current profile
current_profile = df [ df [ ' Profile ' ] == profile ]
try :
# Load existing results
master = pd . read_csv ( csv_name )
except FileNotFoundError :
master = current_profile . copy ( )
# Add (or update) current survey
current_survey_col = df . columns [ - 1 ]
master [ current_survey_col ] = current_profile [ current_survey_col ]
# Export updated results
master . to_csv ( csv_name )
def plot_profiles ( profile_info , profile , output_loc , LL_limit ) :
#plot the profile. expects output from CC_split_profile
YminorLocator = MultipleLocator ( 0.5 )
XminorLocator = MultipleLocator ( 5 )
fig , ax = plt . subplots ( figsize = ( 8 , 3 ) )
num_plots = len ( profile_info . keys ( ) ) - 1
colormap = plt . cm . jet
ax . set_prop_cycle ( cycler ( ' color ' , [ colormap ( i ) for i in np . linspace ( 0 , 0.9 , num_plots ) ] ) )
max_y = 0
for date in profile_info . keys ( ) :
if date != ' info ' :
plt . plot ( profile_info [ date ] [ ' Chainage ' ] , profile_info [ date ] [ ' Elevation ' ] , label = date )
try :
if max ( [ i for i in profile_info [ date ] [ ' Elevation ' ] if pd . isnull ( i ) == False ] ) > max_y :
max_y = max ( [ i for i in profile_info [ date ] [ ' Elevation ' ] if pd . isnull ( i ) == False ] )
except :
print ( " empty elevation section for %s " % date )
plt . plot ( [ LL_limit , LL_limit ] , [ - 1 , max_y ] , ' r-- ' , alpha = 0.5 , label = " Landward Limit " )
plt . xlabel ( ' Chainage (m) ' , weight = ' bold ' )
plt . ylabel ( ' Elevation (m AHD) ' , weight = ' bold ' )
plt . legend ( loc = ' upper right ' , bbox_to_anchor = ( 1.3 , 1 ) )
plt . title ( profile )
plt . rcParams [ ' font.size ' ] = 8
ax . set_ylim ( [ - 1 , math . ceil ( max_y ) ] )
ax . xaxis . set_minor_locator ( XminorLocator )
ax . yaxis . set_minor_locator ( YminorLocator )
ax . xaxis . grid ( True , which = ' minor ' , color = ' k ' , linestyle = ' - ' , alpha = 0.3 )
ax . yaxis . grid ( True , which = ' minor ' , color = ' k ' , linestyle = ' - ' , alpha = 0.3 )
plt . grid ( which = ' major ' , color = ' k ' , linestyle = ' - ' )
today = datetime . datetime . now ( ) . date ( ) . strftime ( ' % Y % m %d ' )
plt . savefig ( os . path . join ( output_loc , ' %s _ %s .png ' % ( today , profile ) ) , bbox_inches = ' tight ' , dpi = 900 )
plt . clf ( )
return None
def CC_split_profile ( file2read ) :
# this reads the profile files and splits it into dates
file_master = pd . read_csv ( file2read )
beach_original = file_master [ ' Beach ' ] . tolist ( )
profile_original = file_master [ ' Profile ' ] . tolist ( )
date_original = file_master [ ' Date ' ] . tolist ( )
chainage_original = file_master [ ' Chainage ' ] . tolist ( )
elevation_original = file_master [ ' Elevation ' ] . tolist ( )
easting_original = file_master [ ' Easting ' ] . tolist ( )
northing_original = file_master [ ' Northing ' ] . tolist ( )
data = { }
i = 0
#add info on the beach and profile number
data [ ' info ' ] = { ' Profile ' : profile_original [ 0 ] , ' Beach ' : beach_original [ 0 ] }
date_now = date_original [ 0 ]
while i < len ( file_master ) :
chainage_tmp = [ ]
elevation_tmp = [ ]
easting_tmp = [ ]
northing_tmp = [ ]
while i < len ( file_master ) and date_now == date_original [ i ] :
chainage_tmp . append ( chainage_original [ i ] )
elevation_tmp . append ( elevation_original [ i ] )
easting_tmp . append ( easting_original [ i ] )
northing_tmp . append ( northing_original [ i ] )
i = i + 1
data [ date_now ] = { ' Beach ' : beach_original [ i - 1 ] , ' Profile ' : profile_original [ i - 1 ] , ' Easting ' : easting_tmp , ' Northing ' : northing_tmp , ' Elevation ' : elevation_tmp , ' Chainage ' : chainage_tmp }
if i < len ( file_master ) :
date_now = date_original [ i ]
return data
def profile_plots_volume ( csv_loc , LL_xlsx , output_xlsx , graph_location ) :
#get a list of all csvs which will each be analysed
file_list = [ ]
for file in os . listdir ( csv_loc ) :
if file . endswith ( " .csv " ) :
file_list . append ( os . path . join ( csv_loc , file ) )
#now read the LL file
LL_limit_file = pd . read_excel ( LL_xlsx , ' profile_locations ' )
LL_info = { }
for i in range ( 0 , len ( LL_limit_file ) ) :
#make a dictionary that alllows you to search the LL
prof = " %s _ %s " % ( LL_limit_file [ ' Profile ' ] [ i ] . split ( " " ) [ 0 ] , LL_limit_file [ ' Profile ' ] [ i ] . split ( " " ) [ - 1 ] )
LL_info [ prof ] = LL_limit_file [ ' Landward Limit ' ] [ i ]
all_dates = [ ]
results_volume = { }
for file in file_list :
#read the profile data - this should have all dates
profile_data = CC_split_profile ( file )
profile = profile_data [ ' info ' ] [ ' Profile ' ]
#plot all of the profiles
print ( profile )
plot_profiles ( profile_data , profile , graph_location , LL_info [ profile ] )
results_volume [ profile ] = { }
#nowgo through each date and do a neilson volume calculations
for date in profile_data . keys ( ) :
if date != ' info ' :
if date not in all_dates :
all_dates . append ( date )
chainage = profile_data [ date ] [ ' Chainage ' ]
elevation = [ 0 if pd . isnull ( profile_data [ date ] [ ' Elevation ' ] [ i ] ) else profile_data [ date ] [ ' Elevation ' ] [ i ] for i in range ( 0 , len ( profile_data [ date ] [ ' Elevation ' ] ) ) ]
LL_limit = LL_info [ profile ]
#do a neilson calculation to get the ZSA volume
if len ( elevation ) > 2 :
#if there aren't enough available points don't do it
volume = neilson_volumes . volume_available ( chainage , elevation , LL_limit )
if volume < 0 :
volume = 0
print ( ' %s %s has a negative volume available ' % ( profile , date ) )
else :
volume = 0
results_volume [ profile ] [ date ] = volume
#write an excel sheet which summarises the data
workbook = xlsxwriter . Workbook ( output_xlsx )
worksheet = workbook . add_worksheet ( ' Volumes ' )
row = 0
col = 0
worksheet . write ( row , col , ' Profile ' )
for date in all_dates :
col = col + 1
worksheet . write ( row , col , date )
col = 0
row = 1
for prof in results_volume . keys ( ) :
worksheet . write ( row , col , prof )
for date in all_dates :
col = col + 1
try :
vol = results_volume [ prof ] [ date ]
except KeyError :
print ( " error with profile %s on %s " % ( prof , date ) )
vol = None
worksheet . write ( row , col , vol )
col = 0
row = row + 1
return results_volume
def remove_temp_files ( directory ) :
for f in os . listdir ( directory ) :
os . unlink ( os . path . join ( directory , f ) )
return None
###############################################################################
########################### RUN CODE ##########################################
input_file = ' Parameter Files/las-manipulation-survey-2.xlsx '
params_file = pd . read_excel ( input_file , sheet_name = " PARAMS " )
for i in range ( 0 , len ( params_file ) ) : #0, len(params_file)
print ( " Starting to process %s " % params_file [ ' Beach ' ] [ i ] )
beach = params_file [ ' Beach ' ] [ i ]
survey_date = params_file [ ' SURVEY DATE ' ] [ i ]
original_las = params_file [ ' INPUT LAS ' ] [ i ]
classified_las_dir = params_file [ ' LAS CLASSIFIED FOLDER ' ] [ i ]
shp_swash_dir = params_file [ ' SHP SWASH FOLDER ' ] [ i ]
crop_heatmap_poly = params_file [ ' HEATMAP CROP POLY ' ] [ i ]
output_las_dir = params_file [ ' LAS OUTPUT FOLDER ' ] [ i ]
zone_MGA = params_file [ ' ZONE MGA ' ] [ i ]
output_poly_dir = params_file [ ' SHP RASTER FOLDER ' ] [ i ]
output_tif_dir = params_file [ ' TIF OUTPUT FOLDER ' ] [ i ]
cp_csv = params_file [ ' INPUT CSV ' ] [ i ]
# tmp_csv = params_file['TMP CSV'][i]
LL_file = params_file [ ' LL FILE ' ] [ i ]
# csv_loc=params_file['OUT CSV LOC'][i]
graph_loc = params_file [ ' GRAPH LOC ' ] [ i ]
volume_output = params_file [ ' VOLUME OUTPUT ' ] [ i ]
tmp_dir = params_file [ ' TEMP DIR ' ] [ i ]
int_dir = params_file [ ' INTERIM DIR ' ] [ i ]
# Get base name of input las
las_basename = os . path . splitext ( os . path . basename ( original_las ) ) [ 0 ]
# Get name of input point cloud
input_las = os . path . join ( classified_las_dir , las_basename + ' .las ' )
# Get name of swash cropping polygon
crop_swash_poly = os . path . join ( shp_swash_dir , las_basename + ' .shp ' )
# Crop point cloud to swash boundary
las_data = call_lastools ( ' lasclip ' , input = input_las , output = ' -stdout ' ,
args = [ ' -poly ' , crop_swash_poly ] , verbose = False )
# crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools)
# Apply sea-side clipping polygon
las_data = call_lastools ( ' lasclip ' , input = las_data , output = ' -stdout ' ,
args = [ ' -poly ' , crop_heatmap_poly ] , verbose = False )
# crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools)
# Create clipping polygon for heatmap raster
shp_name = os . path . join ( output_poly_dir , las_basename + ' .shp ' )
call_lastools ( ' lasboundary ' , input = las_data , output = shp_name , verbose = False )
# las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA)
#make a raster
make_raster ( heatmap_las , output_raster , path_2_lastools , keep_only_ground = True )
#extract the points and get volumes
df = extract_pts ( final_las , cp_csv , survey_date , beach , keep_only_ground = True )
update_survey_output ( df , csv_loc )
#colourise the point cloud
#delete the temp files from the tmp_dir and the interim_dir
remove_temp_files ( tmp_dir )
#remove_temp_files(int_dir)
print ( " doing the volume analysis " )
test = profile_plots_volume ( csv_loc , LL_file , volume_output , graph_loc )