You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

415 lines
15 KiB
Python

6 years ago
import os
import sys
import argparse
import subprocess
6 years ago
from tqdm import tqdm
import numpy as np
from scipy import interpolate
6 years ago
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, Polygon
6 years ago
from survey_tools import call_lastools
def remove_problems(x_list, y_list, z_list, x_now, y_now, check_value):
z_ave=nine_pt_moving_average(z_list)
deriv_ave, chainage=forward_derivative(x_list, y_list, z_ave)
deriv_real, chainage=two_point_derivative(x_list, y_list, z_list)
#first find the reference contour on the beach
#index_contour, x_now, y_now, distance=find_beach_reference_contour_choose_closest(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave, check_value)
index_contour, x_now, y_now, distance=find_beach_reference_contour(chainage, z_ave, x_list, y_list, x_now, y_now,deriv_ave,deriv_real,check_value)
if index_contour<len(chainage): #other wise keep everthing
#find the beach slope, get the interpolated line (beach line) and the index of the reference contour +1
beach_slope, beach_line, index_high=find_beach_slope(chainage, z_ave,index_contour, check_value)
#find the natural deviation of the lower beach
nat_dev=get_natural_deviation(chainage, z_list, index_contour, index_high, beach_line)
for i in range(index_contour, len(z_list)):
if abs(z_list[i]-float(beach_line(chainage[i])))>nat_dev:
break
else:
i=index_contour
z_return=z_list[0:i]
chainage_return=chainage[0:i]
return z_return, chainage_return, x_now, y_now, distance
def two_point_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i+1]-z_list[i-1])/(chain[i+1]-chain[i-1]) for i in range(1, len(z_list)-1)]
deriv.insert(0,0)
deriv.append(0)
return deriv, chain
def forward_derivative(x_list, y_list, z_list):
chain=[((x_list[0]-x_list[i])**2+(y_list[0]-y_list[i])**2)**0.5 for i in range(0,len(x_list))]
deriv=[(z_list[i]-z_list[i-1])/(chain[i]-chain[i-1]) for i in range(0, len(z_list)-1)]
deriv.insert(0,0)
return deriv, chain
def find_first_over_reference(z_list, value):
i=len(z_list)-1
while i>0 and z_list[i]<value:
i=i-1
return i
def nine_pt_moving_average(z_list):
i=0
move_ave=[]
while i<len(z_list):
if i<5:
ave=np.mean([z_list[j] for j in range(0,i+5)])
elif i>len(z_list)-5:
ave=np.mean([z_list[j] for j in range(i-4,len(z_list))])
else:
ave=np.mean([z_list[j] for j in range(i-4,i+5)])
move_ave.append(ave)
i=i+1
return move_ave
def find_neg_derivative(z_list, deriv_list):
i=len(z_list)-5
while z_list[i]>=0 and z_list[i+1]>=0 and z_list[i+2]>=0 and z_list[i+3]>=0 and z_list[i+4]>=0:
i=i-1
return i
def find_beach_reference_contour_choose_closest(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=0
choice_list=[]
distance_list=[]
if z_ave_list[i]>check_value:
state_now='over'
else:
state_now='under'
while i<len(z_ave_list):
if state_now=='under' and z_ave_list[i]>check_value: #only keep if it is downward sloping
state_now='over'
elif state_now=='over' and z_ave_list[i]<check_value:
choice_list.append(i)
state_now='under'
if x_last!=None:
distance_list.append(((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5)
i=i+1
if len(choice_list)>0 and x_last==None: #choose the first time for the first point
i=choice_list[0]
distance=0
elif len(choice_list)>0 and x_last!=None:
assert(len(choice_list)==len(distance_list))
i=choice_list[distance_list.index(min(distance_list))]
distance=min(distance_list)
if i>=len(x_list):
i=len(x_list)-1
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_reference_contour(chain_list, z_ave_list, x_list, y_list, x_last, y_last, deriv_ave_list,deriv_real_list, check_value):
#note that z_list should be the 9 point moving average
#assumes that beaches are shallow (|derivative|<0.3), sloping and between 0 - 4 m AHD
i=len(z_ave_list)-1
while i>=0 and (z_ave_list[i]>check_value+2 or z_ave_list[i]<check_value-2 or deriv_ave_list[i]>0 or max([abs(i) for i in deriv_real_list[max(0,i-7):i]]+[0])>0.3):#beaches are shallow sloping, low
i=i-1
#find the first time it gets to check_value after this
while i>=0 and z_ave_list[i]<check_value:
i=i-1
if i==0:
i=len(z_ave_list)-1 # the whole this is above the beach
if x_last!=None:
distance=((x_last - x_list[i])**2+(y_last - y_list[i])**2)**0.5
else:
distance=0
x=x_list[i]
y=y_list[i]
return i, x, y, distance
def find_beach_slope(chain_list, z_ave_list, ref_index, check_value):
#ref index is the index of the check value
#find the beach slope between this point and 1 m above this point
i=ref_index
while i>0 and z_ave_list[i]<check_value+1:
i=i-1
# Hide numpy floating point arithmetic warnings
np.seterr(all='ignore')
slope=(z_ave_list[i]-z_ave_list[ref_index])/(chain_list[i]-chain_list[ref_index])
# Show numpy floating point arithmetic warnings
np.seterr(all=None)
beach_ave=interpolate.interp1d([min(chain_list),max(chain_list)], [(min(chain_list)-chain_list[ref_index])*slope+z_ave_list[ref_index], (z_ave_list[ref_index]-(chain_list[ref_index]-max(chain_list))*slope)])
return slope, beach_ave, i
def get_natural_deviation(chain_list, z_list, ref_index, ref_high, beach_ave):
#for the points considered to be on the beach (reference contour to reference contour +1), find the average natural deviation
deviation=[]
for i in range(ref_high, ref_index+1):
dev_tmp=abs(z_list[i] - float(beach_ave(chain_list[i])))
deviation.append(dev_tmp)
natural_deviation=min(np.max(deviation),0.4) #THIS MAY BE TOO CONSERVATIVE
return natural_deviation
def distance_point_to_poly(x_list, y_list, x_now, y_now):
#make a line from the mid of x_list, y_list
end=Point(x_list[-1], y_list[-1])
point=Point(x_now, y_now)
dist=point.distance(end)
return dist
6 years ago
def polygon_wave_runup(xyz_1m, direction, shp_name, set_check_value, distance_check, zone):
#print('starting processing of wave runup')
all_data=pd.read_csv(xyz_1m, header=None, names=['X','Y','Z'])
if direction=='north_south':
all_data_sorted=all_data.sort_values(by=['X', 'Y'], ascending=[1,0])
elif direction=='west_east':
all_data_sorted=all_data.sort_values(by=['Y', 'X'], ascending=[0,1])
fixed_now=0
a=0
X_tmp=[]
processed_data = pd.DataFrame(columns=['X','Y','Z'])
list_to_print=[10,20,30,40,50,60,70,80,90]
crop_line=[]
top_line=[]
tmp_x_last=None
tmp_y_last=None
exceed_list=[]
# Create progress bar
pbar = tqdm(all_data_sorted.iterrows(), total=all_data_sorted.shape[0])
for index, line in pbar:
a=a+1
percent_done=round(a/len(all_data_sorted)*100,1)
if percent_done in list_to_print:
#print("Finished %s%% of the processing" % percent_done)
list_to_print=list_to_print[1:len(list_to_print)]
if direction=='north_south':
check_this=line['X']
elif direction=='west_east':
check_this=line['Y']
if check_this==fixed_now:
X_tmp.append(line['X'])
Y_tmp.append(line['Y'])
Z_tmp.append(line['Z'])
else:
if len(X_tmp)!=0:
#try: ########may need to change!~!
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
try:
tmp_x_last=X_tmp[len(X_tmp)-distance_check] #beacuse this is a 1m DSM, this works
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append([tmp_x_last, tmp_y_last])
top_line.append([X_tmp[0], Y_tmp[0]])
except:
print('problem with the last crop point, keeping whole line')
crop_line.append([X_tmp[-1], Y_tmp[-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
else:
if direction=='north_south':
fixed_now=line['X']
elif direction=='west_east':
fixed_now=line['Y']
X_tmp=[line['X']]
Y_tmp=[line['Y']]
Z_tmp=[line['Z']]
#for the last line
derivative, chainage=forward_derivative(X_tmp, Y_tmp, Z_tmp)
if len(X_tmp)>10:
Z_set, chainage_tmp, temp_x, temp_y, distance=remove_problems(X_tmp, Y_tmp, Z_tmp,tmp_x_last, tmp_y_last, set_check_value)
#except:
else:
Z_set=Z_tmp
temp_x=X_tmp[len(Z_set)-1]
temp_y=Y_tmp[len(Z_set)-1]
distance=0
X_set=X_tmp[0:len(Z_set)]
Y_set=Y_tmp[0:len(Z_set)]
#write to new data frame
#if len(Z_set)>0:
# for i in range(0, len(Z_set)):
# processed_data =processed_data.append({'X':X_set[i],'Y':Y_set[i],'Z':Z_set[i],'r':r_set[i],'g':g_set[i],'b':b_set[i]}, ignore_index=True)
#add to crop line
distance_2_old=distance_point_to_poly(X_tmp, Y_tmp, temp_x, temp_y)
if distance_2_old<distance_check: # find a way to change so it is checking the distance from the first crop polyogn, concave_now.buffer(buffer)
tmp_x_last=temp_x
tmp_y_last=temp_y
crop_line.append([X_tmp[len(Z_set)-1], Y_tmp[len(Z_set)-1]])
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise crop by the distance_check
else:
exceed_list.append(1)
tmp_x_last=X_tmp[len(X_tmp)-distance_check]
tmp_y_last=Y_tmp[len(Y_tmp)-distance_check]
crop_line.append(tmp_x_last, tmp_y_last)
top_line.append([X_tmp[0], Y_tmp[0]])
#otherwise dont add. straight line is better
if direction=='north_south':
y_filtered=nine_pt_moving_average([i[1] for i in crop_line])
crop_new=[[crop_line[i][0],y_filtered[i]] for i in range(0, len(crop_line))]
elif direction=='west_east':
x_filtered=nine_pt_moving_average([i[0] for i in crop_line])
crop_new=[[x_filtered[i],crop_line[i][1]] for i in range(0, len(crop_line))]
for_shape=crop_new+top_line[::-1]
for_shape.append(crop_new[0])
#print('exceeded the manual distance_check %s%% of the time. manually cropping undertaken' % (round(len(exceed_list)/a,2)*100))
#making the cropping shapefile
#print('making the crop polygon')
6 years ago
# Export polygon as shapefile
df = gpd.GeoDataFrame(geometry=[Polygon(for_shape)])
df.crs = {'init': 'epsg:283{}'.format(zone), 'no_defs': True}
df.to_file(shp_name, driver='ESRI Shapefile')
return None
def remove_temp_files(directory):
for f in os.listdir(directory):
os.unlink(os.path.join(directory, f))
return None
6 years ago
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'input_file',
metavar='PARAMS_FILE',
help='name of parameter file',
default=None)
# Print usage if no arguments are provided
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# read the parameters file and scroll through it
input_file = args.input_file
input_file = 'Parameter Files/las-manipulation-survey-2.xlsx'
6 years ago
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
input_las = row['INPUT LAS']
6 years ago
initial_crop_poly = row['INITIAL CROP POLY']
lasground_step = row['LASGROUND STEP']
6 years ago
zone_MGA = row['ZONE MGA']
check_value = row['CHECK VALUE']
direct = row['DIRECTION']
check_distance = row['CHECK DISTANCE']
las_dir = row['LAS CLASSIFIED FOLDER']
shp_dir = row['SHP SWASH FOLDER']
6 years ago
tmp_dir = row['TMP FOLDER']
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(input_las))[0]
6 years ago
# Crop to beach boundary
print('Clipping...')
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
6 years ago
args=['-poly', initial_crop_poly], verbose=False)
# Classify ground points
print('Classifying ground...')
6 years ago
las_data = call_lastools('lasground_new', input=las_data, output='-stdout',
args=['-step', lasground_step], verbose=False)
6 years ago
# Save classified point cloud
las_name = os.path.join(las_dir, las_basename + '.las')
with open (las_name, 'wb') as f:
f.write(las_data)
6 years ago
# Interpolate point cloud onto a grid
print('Interpolating to grid...')
xyz_name = os.path.join(tmp_dir, las_basename + '.xyz')
call_lastools('las2dem', input=las_data, output=xyz_name,
6 years ago
args=['-step', 1], verbose=False)
# Make runup clipping mask from gridded point cloud
6 years ago
print('Calculating runup clipping mask...')
shp_name = os.path.join(shp_dir, las_basename + '.shp')
polygon_wave_runup(xyz_name, direct, shp_name, check_value, check_distance, zone_MGA)
6 years ago
#NOTE THAT YOU NEED TO CHECK THE OUTPUT SHP FILE AND ADJUST AS REQUIRED
#delete the temp files
remove_temp_files(tmp_dir)
if __name__ == '__main__':
main()