You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

226 lines
8.2 KiB
Python

7 years ago
# python 3.5
#requires LAStools to be installed (with the appropriate license). Note that LAStools requires no spaces in file names
#should have previously run 2017088_las_manipulation to have a las that has the buildings and veg removed
#note that the neilson volumes script must be in the same folder
# this script will:
#crop to a given polygon (crop away the swash zone)
# extract values along a predefined profile,
# do the volume analysis
#export pngs of the surveys
########################### IMPORTS ###########################################
import os
import io
7 years ago
import subprocess
import pandas as pd
import numpy as np
import neilson_volumes
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import datetime
import xlsxwriter
import math
from cycler import cycler
from survey_tools import call_lastools, extract_pts, update_survey_output
7 years ago
def profile_plots_volume(csv_loc, LL_xlsx, output_xlsx, graph_location):
#get a list of all csvs which will each be analysed
file_list=[]
for file in os.listdir(csv_loc):
if file.endswith(".csv"):
file_list.append(os.path.join(csv_loc, file))
#now read the LL file
LL_limit_file=pd.read_excel(LL_xlsx, 'profile_locations')
LL_info={}
for i in range(0, len(LL_limit_file)):
#make a dictionary that alllows you to search the LL
prof="%s_%s" % (LL_limit_file['Profile'][i].split(" ")[0], LL_limit_file['Profile'][i].split(" ")[-1])
LL_info[prof]=LL_limit_file['Landward Limit'][i]
all_dates=[]
results_volume={}
for file in file_list:
#read the profile data - this should have all dates
profile_data=CC_split_profile(file)
profile=profile_data['info']['Profile']
#plot all of the profiles
print(profile)
plot_profiles(profile_data, profile, graph_location,LL_info[profile])
results_volume[profile]={}
#nowgo through each date and do a neilson volume calculations
for date in profile_data.keys():
if date!='info':
if date not in all_dates:
all_dates.append(date)
chainage=profile_data[date]['Chainage']
elevation=[0 if pd.isnull(profile_data[date]['Elevation'][i]) else profile_data[date]['Elevation'][i] for i in range(0, len(profile_data[date]['Elevation']))]
LL_limit=LL_info[profile]
#do a neilson calculation to get the ZSA volume
if len(elevation)>2:
#if there aren't enough available points don't do it
volume=neilson_volumes.volume_available(chainage, elevation, LL_limit)
if volume<0:
volume=0
print('%s %s has a negative volume available' % (profile, date))
else:
volume=0
results_volume[profile][date]=volume
#write an excel sheet which summarises the data
workbook = xlsxwriter.Workbook(output_xlsx)
worksheet=workbook.add_worksheet('Volumes')
row=0
col=0
worksheet.write(row, col, 'Profile')
for date in all_dates:
col=col+1
worksheet.write(row, col, date)
col=0
row=1
for prof in results_volume.keys():
worksheet.write(row, col, prof)
for date in all_dates:
col=col+1
try:
vol=results_volume[prof][date]
except KeyError:
print("error with profile %s on %s" % (prof, date))
vol=None
worksheet.write(row, col, vol)
col=0
row=row+1
return results_volume
7 years ago
def remove_temp_files(directory):
for f in os.listdir(directory):
os.unlink(os.path.join(directory, f))
return None
def plot_profiles(profile_name, survey_date, csv_output_dir, graph_loc, ch_limits):
csv_name = profile_name + '.csv'
profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name))
# Remove metadata, and extract profile coordinates
profiles = profiles.loc[:, 'Chainage':].set_index('Chainage')
# Find landward limit of profile (behind beach)
ch_min = ch_limits.loc[profile_name, 'Landward Limit']
ax = plt.axes()
for col in profiles.columns:
profile = profiles.loc[ch_min:, col]
date = '{}-{}-{}'.format(survey_date[:4], survey_date[4:6], survey_date[6:])
ax.plot(profile.index, profile, label=date)
ax.set_xlabel('Chainage (m)', labelpad=10)
ax.set_ylabel('Elevation (m AHD)', labelpad=10)
ax.legend(frameon=False, fontsize=9)
ax.xaxis.set_minor_locator(MultipleLocator(5))
ax.yaxis.set_minor_locator(MultipleLocator(0.5))
ax.xaxis.grid(True, which='minor', color='k', linewidth=0.5, alpha=0.3)
ax.yaxis.grid(True,which='minor',color='k', linewidth=0.5, alpha=0.3)
png_name = os.path.join(graph_loc, profile_name + '.png')
plt.savefig(png_name, bbox_inches='tight', dpi=300)
plt.close()
input_file = 'Parameter Files/las-manipulation-survey-2.xlsx'
7 years ago
params_file=pd.read_excel(input_file, sheet_name="PARAMS")
for i, row in params_file.iterrows():
print("Starting to process %s" % row['Beach'])
beach=row['Beach']
survey_date = row['SURVEY DATE']
original_las = row['INPUT LAS']
classified_las_dir = row['LAS CLASSIFIED FOLDER']
shp_swash_dir = row['SHP SWASH FOLDER']
crop_heatmap_poly = row['HEATMAP CROP POLY']
output_las_dir = row['LAS OUTPUT FOLDER']
zone_MGA = row['ZONE MGA']
output_poly_dir = row['SHP RASTER FOLDER']
output_tif_dir = row['TIF OUTPUT FOLDER']
cp_csv = row['INPUT CSV']
profile_limit_file = row['PROFILE LIMIT FILE']
csv_output_dir = row['CSV OUTPUT FOLDER']
graph_loc = row['PNG OUTPUT FOLDER']
volume_output = row['CSV VOLUMES FOLDER']
tmp_dir = row['TMP FOLDER']
7 years ago
# Get base name of input las
las_basename = os.path.splitext(os.path.basename(original_las))[0]
# Get name of input point cloud
input_las = os.path.join(classified_las_dir, las_basename + '.las')
# Get name of swash cropping polygon
crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp')
# Crop point cloud to swash boundary
las_data = call_lastools('lasclip', input=input_las, output='-stdout',
args=['-poly', crop_swash_poly], verbose=False)
# crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools)
# Apply sea-side clipping polygon
las_data = call_lastools('lasclip', input=las_data, output='-stdout',
args=['-poly', crop_heatmap_poly], verbose=False)
# crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools)
7 years ago
# Create clipping polygon for heatmap raster
shp_name = os.path.join(output_poly_dir, las_basename + '.shp')
call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False)
# las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA)
7 years ago
#make a raster
# make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True)
tif_name = os.path.join(output_tif_dir, las_basename + '.tif')
call_lastools('blast2dem', input=las_data, output=tif_name,
args=['-step', 0.2], verbose=False)
7 years ago
#extract the points and get volumes
df = extract_pts(
las_data,
cp_csv,
survey_date,
beach,
args=['-parse', 'sxyz', '-keep_class', '2'],
verbose=False)
update_survey_output(df, csv_output_dir)
# Get landward limit of surveys
ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
7 years ago
# Plot profiles of current beach
profile_names = df['Profile'].unique()
for profile_name in profile_names:
plot_profiles(profile_name, survey_date, csv_output_dir, graph_loc, ch_limits)
7 years ago
#delete the temp files from the tmp_dir and the interim_dir
remove_temp_files(tmp_dir)
#remove_temp_files(int_dir)
print("doing the volume analysis")
# test=profile_plots_volume(csv_output_dir, profile_limit_file, volume_output, graph_loc)