🌊 Storm impact forecasting of June 2016 ECL on NSW coastline
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
Chris Leaman be8efd89b8 Fix formatting 6 years ago
notebooks Initial commit 6 years ago
src Fix formatting 6 years ago
.gitignore Initial commit 6 years ago
Makefile Initial commit 6 years ago
README.md Initial commit 6 years ago

README.md

2016 Narrabeen Storm EWS Performance

This repository investigates whether the storm impacts (i.e. Sallenger, 2000) of the June 2016 Narrabeen Storm could have been forecasted in advance.

Repository and analysis format

This repository follows the Cookiecutter Data Science structure where possible. The analysis is done in python (look at the /src/ folder) with some interactive, exploratory notebooks located at /notebooks.

Where to start?

Check out jupyter notebook ./notebooks/01_exploration.ipynb which has an example of how to import the data and some interactive widgets.

Available data

Raw, interim and processed data used in this analysis is kept in the /data/ folder.

  • /data/raw/processed_shorelines: This data was recieved from Tom Beuzen in October 2018. It consists of pre/post storm profiles at every 100 m sections along beaches ranging from Dee Why to Nambucca . Profiles are based on raw aerial LIDAR and were processed by Mitch Harley. Tides and waves (10 m contour and reverse shoaled deepwater) for each individual 100 m section is also provided.
  • /data/raw/raw_lidar: This is the raw pre/post storm aerial LIDAR which was taken for the June 2016 storm. .las files are the raw files which have been processed into .tiff files using PDAL. Note that these files have not been corrected for systematic errors, so actual elevations should be taken from the processed_shorelines folder. Obtained November 2018 from Mitch Harley from the black external HDD labeled "UNSW LIDAR".
  • /data/raw/profile_features: Dune toe and crest locations based on prestorm LIDAR. Refer to /notebooks/qgis.qgz as this shows how they were manually extracted. Note that the shapefiles only show the location (lat/lon) of the dune crest and toe. For actual elevations, these locations need to related to the processed shorelines.

Notebooks

  • /notebooks/01_exploration.ipynb: Shows how to import processed shorelines, waves and tides. An interactive widget plots the location and cross sections.
  • /notebooks/qgis.qgz: A QGIS file which is used to explore the aerial LIDAR data in /data/raw/raw_lidar. By examining the pre-strom lidar, dune crest and dune toe lines are manually extracted. These are stored in the /data/profile_features/.