You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
333 lines
12 KiB
Python
333 lines
12 KiB
Python
import os
|
|
from multiprocessing import Pool
|
|
|
|
import click
|
|
import numpy as np
|
|
import numpy.ma as ma
|
|
import pandas as pd
|
|
from scipy import stats
|
|
|
|
from analysis import runup_models
|
|
from utils import setup_logging
|
|
|
|
logger = setup_logging()
|
|
|
|
MULTIPROCESS_THREADS = int(os.environ.get("MULTIPROCESS_THREADS", 4))
|
|
|
|
|
|
def forecast_twl(
|
|
df_tides,
|
|
df_profiles,
|
|
df_waves,
|
|
df_profile_features,
|
|
runup_function,
|
|
n_processes=MULTIPROCESS_THREADS,
|
|
slope="foreshore",
|
|
profile_type="prestorm",
|
|
):
|
|
# Use df_waves as a base
|
|
df_twl = df_waves.copy()
|
|
|
|
# Merge tides
|
|
logger.info("Merging tides")
|
|
df_twl = df_twl.merge(df_tides, left_index=True, right_index=True)
|
|
|
|
# Estimate foreshore slope. Do the analysis per site_id. This is so we only have to query the x and z
|
|
# cross-section profiles once per site.
|
|
logger.info("Calculating beach slopes")
|
|
site_ids = df_twl.index.get_level_values("site_id").unique()
|
|
|
|
if slope == "foreshore":
|
|
# Process each site_id with a different process and combine results at the end
|
|
with Pool(processes=n_processes) as pool:
|
|
results = pool.starmap(
|
|
foreshore_slope_for_site_id, [(site_id, df_twl, df_profiles) for site_id in site_ids]
|
|
)
|
|
df_twl["beta"] = pd.concat(results)
|
|
|
|
elif slope == "mean":
|
|
df_temp = df_twl.join(
|
|
df_profile_features.query("profile_type=='{}'".format(profile_type)).reset_index(level="profile_type"),
|
|
how="inner",
|
|
)
|
|
df_temp["mhw"] = 0.5
|
|
with Pool(processes=n_processes) as pool:
|
|
results = pool.starmap(
|
|
mean_slope_for_site_id,
|
|
[(site_id, df_temp, df_profiles, "dune_toe_z", "dune_toe_x", "mhw") for site_id in site_ids],
|
|
)
|
|
df_twl["beta"] = pd.concat(results)
|
|
|
|
# Estimate runup
|
|
R2, setup, S_total, S_inc, S_ig = runup_function(Hs0=df_twl['Hs0'].tolist(), Tp=df_twl["Tp"].tolist(), beta=df_twl["beta"].tolist())
|
|
|
|
df_twl["R2"] = R2
|
|
df_twl["setup"] = setup
|
|
df_twl["S_total"] = S_total
|
|
|
|
# Estimate TWL
|
|
df_twl["R_high"] = df_twl["tide"] + df_twl["R2"]
|
|
df_twl["R_low"] = df_twl["tide"] + 1.1 * df_twl["setup"] - 1.1 / 2 * df_twl["S_total"]
|
|
|
|
# Drop unneeded columns
|
|
# df_twl.drop(columns=["E", "Exs", "P", "Pxs", "dir"], inplace=True, errors="ignore")
|
|
|
|
return df_twl
|
|
|
|
|
|
def mean_slope_for_site_id(
|
|
site_id, df_twl, df_profiles, top_elevation_col, top_x_col, btm_elevation_col, profile_type="prestorm"
|
|
):
|
|
"""
|
|
Calculates the foreshore slope values a given site_id. Returns a series (with same indicies as df_twl) of
|
|
foreshore slopes. This function is used to parallelize getting foreshore slopes as it is computationally
|
|
expensive, given the need to iterate for the foreshore slope.
|
|
:param site_id:
|
|
:param df_twl:
|
|
:param df_profiles:
|
|
:return: A dataframe with slope values calculated
|
|
"""
|
|
|
|
# Get the prestorm beach profile
|
|
profile = df_profiles.query("site_id =='{}' and profile_type == '{}'".format(site_id, profile_type))
|
|
profile_x = profile.index.get_level_values("x").tolist()
|
|
profile_z = profile.z.tolist()
|
|
|
|
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
|
|
|
|
df_beta = df_twl_site.apply(
|
|
lambda row: slope_from_profile(
|
|
profile_x=profile_x,
|
|
profile_z=profile_z,
|
|
top_elevation=row[top_elevation_col],
|
|
btm_elevation=row[btm_elevation_col],
|
|
method="end_points",
|
|
top_x=row[top_x_col],
|
|
),
|
|
axis=1,
|
|
)
|
|
return df_beta
|
|
|
|
|
|
def foreshore_slope_for_site_id(site_id, df_twl, df_profiles):
|
|
"""
|
|
Calculates the foreshore slope values a given site_id. Returns a series (with same indicies as df_twl) of
|
|
foreshore slopes. This function is used to parallelize getting foreshore slopes as it is computationally
|
|
expensive, given the need to iterate for the foreshore slope.
|
|
:param site_id:
|
|
:param df_twl:
|
|
:param df_profiles:
|
|
:return: A dataframe with slope values calculated
|
|
"""
|
|
|
|
# Get the prestorm beach profile
|
|
profile = df_profiles.query("site_id =='{}' and profile_type == 'prestorm'".format(site_id))
|
|
profile_x = profile.index.get_level_values("x").tolist()
|
|
profile_z = profile.z.tolist()
|
|
|
|
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
|
|
|
|
df_beta = df_twl_site.apply(
|
|
lambda row: foreshore_slope_from_profile(
|
|
profile_x=profile_x,
|
|
profile_z=profile_z,
|
|
tide=row.tide,
|
|
runup_function=runup_models.sto06,
|
|
Hs0=row.Hs0,
|
|
Tp=row.Tp,
|
|
),
|
|
axis=1,
|
|
)
|
|
return df_beta
|
|
|
|
|
|
def foreshore_slope_from_profile(profile_x, profile_z, tide, runup_function, **kwargs):
|
|
"""
|
|
Returns the foreshore slope given the beach profile, water level (tide) and runup_function. Since foreshore slope is
|
|
dependant on the setup elevation and swash magnitude, which in tern is dependant on the foreshore slope, the process
|
|
requires iteration to solve.
|
|
:param profile_x:
|
|
:param profile_z:
|
|
:param tide:
|
|
:param runup_function: The name of a function which will return runup values (refer to runup_models.py)
|
|
:param kwargs: Additional keyword arguments which will be passed to the runup_function (usually Hs0, Tp).
|
|
:return:
|
|
"""
|
|
|
|
# Sometimes there is no tide value for a record, so return None
|
|
if np.isnan(tide):
|
|
return None
|
|
|
|
# Initalize estimates
|
|
max_number_iterations = 30
|
|
iteration_count = 0
|
|
averaged_accuracy = 0.03 # if slopes within this amount, average after max number of iterations
|
|
acceptable_accuracy = 0.01 # if slopes within this amount, accept after max number of iterations
|
|
preferred_accuracy = 0.001 # if slopes within this amount, accept
|
|
beta = 0.05
|
|
|
|
while True:
|
|
R2, setup, S_total, _, _ = runup_function(beta=beta, **kwargs)
|
|
beta_new = slope_from_profile(
|
|
profile_x=profile_x,
|
|
profile_z=profile_z,
|
|
method="end_points",
|
|
top_elevation=tide + setup + S_total / 2,
|
|
btm_elevation=tide + setup - S_total / 2,
|
|
)
|
|
|
|
# Return None if we can't find a slope, usually because the elevations we've specified are above/below our
|
|
# profile x and z coordinates.
|
|
if beta_new is None:
|
|
return None
|
|
|
|
# If slopes do not change much between interactions, return the slope
|
|
if abs(beta_new - beta) < preferred_accuracy:
|
|
return beta
|
|
|
|
# If we can't converge a solution, return None
|
|
if iteration_count > max_number_iterations:
|
|
if abs(beta_new - beta) < acceptable_accuracy:
|
|
return beta
|
|
elif abs(beta_new - beta) < averaged_accuracy:
|
|
return (beta_new + beta) / 2
|
|
else:
|
|
return None
|
|
|
|
beta = beta_new
|
|
iteration_count += 1
|
|
|
|
|
|
def slope_from_profile(profile_x, profile_z, top_elevation, btm_elevation, method="end_points", top_x=None, btm_x=None):
|
|
"""
|
|
Returns a slope (beta) from a bed profile, given the top and bottom elevations of where the slope should be taken.
|
|
:param x: List of x bed profile coordinates
|
|
:param z: List of z bed profile coordinates
|
|
:param top_elevation: Top elevation of where to take the slope
|
|
:param btm_elevation: Bottom elevation of where to take the slope
|
|
:param method: Method used to calculate slope (end_points or least_squares)
|
|
:param top_x: x-coordinate of the top end point. May be needed, as there may be multiple crossings of the
|
|
top_elevation.
|
|
:param btm_x: x-coordinate of the bottom end point
|
|
:return:
|
|
"""
|
|
|
|
# Need all data to get the slope
|
|
if any([x is None for x in [profile_x, profile_z, top_elevation, btm_elevation]]):
|
|
return None
|
|
|
|
end_points = {"top": {"z": top_elevation}, "btm": {"z": btm_elevation}}
|
|
|
|
for end_type in end_points.keys():
|
|
|
|
# Add x coordinates if they are specified
|
|
if top_x and end_type == "top":
|
|
end_points["top"]["x"] = top_x
|
|
continue
|
|
if btm_x and end_type == "top":
|
|
end_points["btm"]["x"] = btm_x
|
|
continue
|
|
|
|
elevation = end_points[end_type]["z"]
|
|
intersection_x = crossings(profile_x, profile_z, elevation)
|
|
|
|
# No intersections found
|
|
if len(intersection_x) == 0:
|
|
return None
|
|
|
|
# One intersection
|
|
elif len(intersection_x) == 1:
|
|
end_points[end_type]["x"] = intersection_x[0]
|
|
|
|
# More than on intersection
|
|
else:
|
|
if end_type == "top":
|
|
# For top elevation, take most seaward intersection
|
|
end_points[end_type]["x"] = intersection_x[-1]
|
|
else:
|
|
# For bottom elevation, take most landward intersection that is seaward of top elevation
|
|
end_point_btm = [x for x in intersection_x if x > end_points["top"]["x"]]
|
|
if len(end_point_btm) == 0:
|
|
# If there doesn't seem to be an intersection seaward of the top elevation, return none.
|
|
return None
|
|
else:
|
|
end_points[end_type]["x"] = end_point_btm[0]
|
|
|
|
if method == "end_points":
|
|
x_top = end_points["top"]["x"]
|
|
x_btm = end_points["btm"]["x"]
|
|
z_top = end_points["top"]["z"]
|
|
z_btm = end_points["btm"]["z"]
|
|
return -(z_top - z_btm) / (x_top - x_btm)
|
|
|
|
elif method == "least_squares":
|
|
profile_mask = [True if end_points["top"]["x"] < pts < end_points["btm"]["x"] else False for pts in profile_x]
|
|
slope_x = np.array(profile_x)[profile_mask].tolist()
|
|
slope_z = np.array(profile_z)[profile_mask].tolist()
|
|
slope, _, _, _, _ = stats.linregress(slope_x, slope_z)
|
|
return -slope
|
|
|
|
|
|
def crossings(profile_x, profile_z, constant_z):
|
|
"""
|
|
Finds the x coordinate of a z elevation for a beach profile. Much faster than using shapely to calculate
|
|
intersections since we are only interested in intersections of a constant value. Will return multiple
|
|
intersections if found. Used in calculating beach slope.
|
|
Adapted from https://stackoverflow.com/a/34745789
|
|
:param profile_x: List of x coordinates for the beach profile section
|
|
:param profile_z: List of z coordinates for the beach profile section
|
|
:param constant_z: Float of the elevation to find corresponding x coordinates
|
|
:return: List of x coordinates which correspond to the constant_z
|
|
"""
|
|
|
|
# Remove nans to suppress warning messages
|
|
valid = ~ma.masked_invalid(profile_z).mask
|
|
profile_z = np.array(profile_z)[valid]
|
|
profile_x = np.array(profile_x)[valid]
|
|
|
|
# Normalize the 'signal' to zero.
|
|
# Use np.subtract rather than a list comprehension for performance reasons
|
|
z = np.subtract(profile_z, constant_z)
|
|
|
|
# Find all indices right before any crossing.
|
|
# TODO Sometimes this can give a runtime warning https://stackoverflow.com/a/36489085
|
|
indicies = np.where(z[:-1] * z[1:] < 0)[0]
|
|
|
|
# Use linear interpolation to find intersample crossings.
|
|
return [profile_x[i] - (profile_x[i] - profile_x[i + 1]) / (z[i] - z[i + 1]) * (z[i]) for i in indicies]
|
|
|
|
|
|
@click.command()
|
|
@click.option("--waves-csv", required=True, help="")
|
|
@click.option("--tides-csv", required=True, help="")
|
|
@click.option("--profiles-csv", required=True, help="")
|
|
@click.option("--profile-features-csv", required=True, help="")
|
|
@click.option("--runup-function", required=True, help="", type=click.Choice(["sto06"]))
|
|
@click.option("--slope", required=True, help="", type=click.Choice(["foreshore", "mean"]))
|
|
@click.option("--profile-type", required=True, help="", type=click.Choice(["prestorm", "poststorm"]))
|
|
@click.option("--output-file", required=True, help="")
|
|
def create_twl_forecast(
|
|
waves_csv, tides_csv, profiles_csv, profile_features_csv, runup_function, slope, profile_type, output_file
|
|
):
|
|
logger.info("Creating forecast of total water levels")
|
|
logger.info("Importing data")
|
|
df_waves = pd.read_csv(waves_csv, index_col=[0, 1])
|
|
df_tides = pd.read_csv(tides_csv, index_col=[0, 1])
|
|
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
|
|
df_profile_features = pd.read_csv(profile_features_csv, index_col=[0, 1])
|
|
|
|
logger.info("Forecasting TWL")
|
|
df_twl = forecast_twl(
|
|
df_tides,
|
|
df_profiles,
|
|
df_waves,
|
|
df_profile_features,
|
|
runup_function=getattr(runup_models, runup_function),
|
|
slope=slope,
|
|
profile_type=profile_type,
|
|
)
|
|
|
|
df_twl.to_csv(output_file)
|
|
logger.info("Saved to %s", output_file)
|
|
logger.info("Done!")
|