You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
16 KiB
Plaintext
493 lines
16 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Evaluate prediction metrics \n",
|
|
"- This notebook is used to check out each of our storm impact prediction models performed in comparison to our observed storm impacts."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"heading_collapsed": true
|
|
},
|
|
"source": [
|
|
"## Setup notebook\n",
|
|
"Import our required packages and set default plotting options."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"hidden": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Enable autoreloading of our modules. \n",
|
|
"# Most of the code will be located in the /src/ folder, \n",
|
|
"# and then called from the notebook.\n",
|
|
"%matplotlib inline\n",
|
|
"%reload_ext autoreload\n",
|
|
"%autoreload"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"hidden": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from IPython.core.debugger import set_trace\n",
|
|
"\n",
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import os\n",
|
|
"import decimal\n",
|
|
"import plotly\n",
|
|
"import plotly.graph_objs as go\n",
|
|
"import plotly.plotly as py\n",
|
|
"import plotly.tools as tls\n",
|
|
"import plotly.figure_factory as ff\n",
|
|
"from plotly import tools\n",
|
|
"import plotly.io as pio\n",
|
|
"from scipy import stats\n",
|
|
"import math\n",
|
|
"import matplotlib\n",
|
|
"from matplotlib import cm\n",
|
|
"import colorlover as cl\n",
|
|
"from tqdm import tqdm_notebook\n",
|
|
"from ipywidgets import widgets, Output\n",
|
|
"from IPython.display import display, clear_output, Image, HTML\n",
|
|
"from scipy import stats\n",
|
|
"from sklearn.metrics import confusion_matrix\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from matplotlib.lines import Line2D\n",
|
|
"from cycler import cycler\n",
|
|
"from scipy.interpolate import interp1d\n",
|
|
"from pandas.api.types import CategoricalDtype"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"hidden": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Matplot lib default settings\n",
|
|
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
|
|
"plt.rcParams['axes.grid']=True\n",
|
|
"plt.rcParams['grid.alpha'] = 0.5\n",
|
|
"plt.rcParams['grid.color'] = \"grey\"\n",
|
|
"plt.rcParams['grid.linestyle'] = \"--\"\n",
|
|
"plt.rcParams['axes.grid']=True\n",
|
|
"\n",
|
|
"# https://stackoverflow.com/a/20709149\n",
|
|
"matplotlib.rcParams['text.usetex'] = True\n",
|
|
"\n",
|
|
"matplotlib.rcParams['text.latex.preamble'] = [\n",
|
|
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
|
|
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
|
|
" r'\\usepackage{helvet}', # set the normal font here\n",
|
|
" r'\\usepackage{amsmath}',\n",
|
|
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
|
|
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
|
|
"] "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Import data\n",
|
|
"Import our data from the `./data/interim/` folder and load it into pandas dataframes. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
|
|
" print('Importing {}'.format(csv))\n",
|
|
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
|
|
"\n",
|
|
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
|
|
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
|
|
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
|
|
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
|
|
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
|
|
"\n",
|
|
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
|
|
"impacts = {\n",
|
|
" 'forecasted': {\n",
|
|
" 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv',index_col=[0]),\n",
|
|
" 'mean_slope_hol86': df_from_csv('impacts_forecasted_mean_slope_hol86.csv',index_col=[0]),\n",
|
|
" 'mean_slope_nie91': df_from_csv('impacts_forecasted_mean_slope_nie91.csv',index_col=[0]),\n",
|
|
" 'mean_slope_pow18': df_from_csv('impacts_forecasted_mean_slope_pow18.csv',index_col=[0]),\n",
|
|
" 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv',index_col=[0]),\n",
|
|
" },\n",
|
|
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
|
|
" }\n",
|
|
"\n",
|
|
"\n",
|
|
"twls = {\n",
|
|
" 'forecasted': {\n",
|
|
" 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv',index_col=[0,1]),\n",
|
|
" 'mean_slope_hol86': df_from_csv('twl_mean_slope_hol86.csv',index_col=[0,1]),\n",
|
|
" 'mean_slope_nie91': df_from_csv('twl_mean_slope_nie91.csv',index_col=[0,1]),\n",
|
|
" 'mean_slope_pow18': df_from_csv('twl_mean_slope_pow18.csv',index_col=[0,1]),\n",
|
|
" 'mean_slope_sto06': df_from_csv('twl_mean_slope_sto06.csv',index_col=[0,1]),\n",
|
|
" }\n",
|
|
"}\n",
|
|
"print('Done!')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"heading_collapsed": true
|
|
},
|
|
"source": [
|
|
"## Generate longshore plots for each beach"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"hidden": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"beach = 'NARRA'\n",
|
|
"\n",
|
|
"df_obs_impacts = impacts['observed'].loc[impacts['observed'].index.str.\n",
|
|
" contains(beach)]\n",
|
|
"\n",
|
|
"# Get index for each site on the beach\n",
|
|
"n = [x for x in range(len(df_obs_impacts))][::-1]\n",
|
|
"n_sites = [x for x in df_obs_impacts.index][::-1]\n",
|
|
"\n",
|
|
"# Convert storm regimes to categorical datatype\n",
|
|
"cat_type = CategoricalDtype(\n",
|
|
" categories=['swash', 'collision', 'overwash', 'inundation'], ordered=True)\n",
|
|
"df_obs_impacts.storm_regime = df_obs_impacts.storm_regime.astype(cat_type)\n",
|
|
"\n",
|
|
"# Create figure\n",
|
|
"f, (ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8) = plt.subplots(\n",
|
|
" 1,\n",
|
|
" 8,\n",
|
|
" sharey=True,\n",
|
|
" figsize=(18, 8),\n",
|
|
" gridspec_kw={'width_ratios': [4, 4, 2, 2, 2, 2, 2, 2]})\n",
|
|
"\n",
|
|
"# ax1: Impacts\n",
|
|
"\n",
|
|
"# Define colors for storm regime\n",
|
|
"cmap = {'swash': '#1a9850', 'collision': '#fee08b', 'overwash': '#d73027'}\n",
|
|
"\n",
|
|
"# Common marker style\n",
|
|
"marker_style = {\n",
|
|
" 's': 60,\n",
|
|
" 'linewidths': 0.7,\n",
|
|
" 'alpha': 1,\n",
|
|
" 'edgecolors': 'k',\n",
|
|
" 'marker': 'o',\n",
|
|
"}\n",
|
|
"\n",
|
|
"# Plot observed impacts\n",
|
|
"colors = [cmap.get(x) for x in df_obs_impacts.storm_regime]\n",
|
|
"colors = ['#d73027' if c is None else c for c in colors]\n",
|
|
"ax1.scatter([0 for x in n], n, color=colors, **marker_style)\n",
|
|
"\n",
|
|
"# Plot model impacts\n",
|
|
"for i, model in enumerate(impacts['forecasted']):\n",
|
|
"\n",
|
|
" # Only get model results for this beach\n",
|
|
" df_model = impacts['forecasted'][model].loc[impacts['forecasted'][model].\n",
|
|
" index.str.contains(beach)]\n",
|
|
"\n",
|
|
" # Recast storm regimes as categorical data\n",
|
|
" df_model.storm_regime = df_model.storm_regime.astype(cat_type)\n",
|
|
"\n",
|
|
" # Assign colors\n",
|
|
" colors = [cmap.get(x) for x in df_model.storm_regime]\n",
|
|
" colors = ['#aaaaaa' if c is None else c for c in colors]\n",
|
|
" ax1.scatter([i + 1 for x in n], n, color=colors, **marker_style)\n",
|
|
"\n",
|
|
"# Add model names to each impact on x axis\n",
|
|
"ax1.set_xticks(range(len(impacts['forecasted']) + 1))\n",
|
|
"ax1.set_xticklabels(['observed'] +\n",
|
|
" [x.replace('_', '\\_') for x in impacts['forecasted']])\n",
|
|
"ax1.xaxis.set_tick_params(rotation=90)\n",
|
|
"\n",
|
|
"# Add title\n",
|
|
"ax1.set_title('Storm regime')\n",
|
|
"\n",
|
|
"# Create custom legend\n",
|
|
"legend_elements = [\n",
|
|
" Line2D([0], [0],\n",
|
|
" marker='o',\n",
|
|
" color='w',\n",
|
|
" label='Swash',\n",
|
|
" markerfacecolor='#1a9850',\n",
|
|
" markersize=8,\n",
|
|
" markeredgewidth=1.0,\n",
|
|
" markeredgecolor='k'),\n",
|
|
" Line2D([0], [0],\n",
|
|
" marker='o',\n",
|
|
" color='w',\n",
|
|
" label='Collision',\n",
|
|
" markerfacecolor='#fee08b',\n",
|
|
" markersize=8,\n",
|
|
" markeredgewidth=1.0,\n",
|
|
" markeredgecolor='k'),\n",
|
|
" Line2D([0], [0],\n",
|
|
" marker='o',\n",
|
|
" color='w',\n",
|
|
" label='Overwash',\n",
|
|
" markerfacecolor='#d73027',\n",
|
|
" markersize=8,\n",
|
|
" markeredgewidth=1.0,\n",
|
|
" markeredgecolor='k'),\n",
|
|
"]\n",
|
|
"ax1.legend(\n",
|
|
" handles=legend_elements, loc='lower center', bbox_to_anchor=(0.5, 1.1))\n",
|
|
"\n",
|
|
"# Replace yticks with site_ids\n",
|
|
"yticks = ax1.get_yticks().tolist()\n",
|
|
"yticks = [n_sites[int(y)] if 0 <= y <= len(n_sites) else y for y in yticks]\n",
|
|
"ax1.set_yticklabels(yticks)\n",
|
|
"\n",
|
|
"# ax2: elevations\n",
|
|
"\n",
|
|
"# Dune elevations\n",
|
|
"df_feats = df_profile_features_crest_toes.xs(['prestorm'],\n",
|
|
" level=['profile_type'])\n",
|
|
"df_feats = df_feats.loc[df_feats.index.str.contains(beach)]\n",
|
|
"\n",
|
|
"ax2.plot(df_feats.dune_crest_z, n, color='#fdae61')\n",
|
|
"ax2.plot(df_feats.dune_toe_z, n, color='#fdae61')\n",
|
|
"ax2.fill_betweenx(\n",
|
|
" n,\n",
|
|
" df_feats.dune_toe_z,\n",
|
|
" df_feats.dune_crest_z,\n",
|
|
" alpha=0.2,\n",
|
|
" color='#fdae61',\n",
|
|
" label='$D_{low}$ to $D_{high}$')\n",
|
|
"\n",
|
|
"model_colors = [\n",
|
|
" '#1f78b4',\n",
|
|
" '#33a02c',\n",
|
|
" '#e31a1c',\n",
|
|
" '#6a3d9a',\n",
|
|
" '#a6cee3',\n",
|
|
" '#b2df8a',\n",
|
|
" '#fb9a99',\n",
|
|
" '#cab2d6',\n",
|
|
" '#ffff99',\n",
|
|
" ]\n",
|
|
"\n",
|
|
"# Define colors to cycle through for our R_high\n",
|
|
"ax2.set_prop_cycle(cycler('color', model_colors))\n",
|
|
"\n",
|
|
"# Plot R_high values\n",
|
|
"for model in impacts['forecasted']:\n",
|
|
"\n",
|
|
" # Only get model results for this beach\n",
|
|
" df_model = impacts['forecasted'][model].loc[impacts['forecasted'][model].\n",
|
|
" index.str.contains(beach)]\n",
|
|
"\n",
|
|
" # Recast storm regimes as categorical data\n",
|
|
" ax2.plot(df_model.R_high, n, label=model.replace('_', '\\_'))\n",
|
|
"\n",
|
|
"# Set title, legend and labels\n",
|
|
"ax2.set_title('TWL \\& dune\\nelevations')\n",
|
|
"ax2.legend(loc='lower center', bbox_to_anchor=(0.5, 1.1))\n",
|
|
"ax2.set_xlabel('Elevation (m AHD)')\n",
|
|
"\n",
|
|
"\n",
|
|
"# ax3: Plot R_high - D_low\n",
|
|
"\n",
|
|
"# Define colors to cycle through for our R_high\n",
|
|
"ax3.set_prop_cycle(cycler('color', model_colors))\n",
|
|
"\n",
|
|
"# Plot R_high values\n",
|
|
"for model in impacts['forecasted']:\n",
|
|
" \n",
|
|
" df_model = impacts['forecasted'][model].loc[impacts['forecasted'][model].\n",
|
|
" index.str.contains(beach)]\n",
|
|
" # R_high - D_low\n",
|
|
" ax3.plot(df_model.R_high - df_feats.dune_toe_z, n, label=model.replace('_', '\\_'))\n",
|
|
"\n",
|
|
"ax3.axvline(x=0,color='black',linestyle=':')\n",
|
|
"ax3.set_title('$R_{high}$ - $D_{low}$')\n",
|
|
"ax3.set_xlabel('Height (m)')\n",
|
|
"ax3.set_xlim([-2,2])\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"# Define colors to cycle through for our R2\n",
|
|
"ax4.set_prop_cycle(cycler('color', model_colors))\n",
|
|
"\n",
|
|
"# R_high - D_low\n",
|
|
"for model in impacts['forecasted']:\n",
|
|
" df_R2 = impacts['forecasted'][model].merge(twls['forecasted'][model],on=['site_id','datetime'])\n",
|
|
" df_R2 = df_R2.loc[df_R2.index.str.contains(beach)]\n",
|
|
" ax4.plot(df_R2.R2, n, label=model.replace('_', '\\_'))\n",
|
|
"\n",
|
|
"ax4.set_title(r'$R_{2\\%}$')\n",
|
|
"ax4.set_xlabel('Height (m)')\n",
|
|
"\n",
|
|
"# Need to chose a model to extract environmental parameters at maximum R_high time\n",
|
|
"model = 'mean_slope_sto06'\n",
|
|
"df_beach = impacts['forecasted'][model].merge(twls['forecasted'][model], on=['site_id','datetime'])\n",
|
|
"df_beach = df_beach.loc[df_beach.index.str.contains(beach)]\n",
|
|
"\n",
|
|
"# Wave height, wave period, beach slope\n",
|
|
"ax5.plot(df_beach.beta, n,color='#4daf4a')\n",
|
|
"ax5.set_title(r'$\\beta$')\n",
|
|
"ax5.set_xlabel('Mean prestorm\\nbeach slope')\n",
|
|
"ax5.set_xlim([0,0.15])\n",
|
|
"\n",
|
|
"ax6.plot(df_beach.Hs0, n,color='#999999')\n",
|
|
"ax6.set_title('$H_{s0}$')\n",
|
|
"ax6.set_xlabel('Sig. wave height (m)')\n",
|
|
"ax6.set_xlim([3,5])\n",
|
|
"\n",
|
|
"ax7.plot(df_beach.Tp, n,color='#999999')\n",
|
|
"ax7.set_title('$T_{p}$')\n",
|
|
"ax7.set_xlabel('Peak wave period (s)')\n",
|
|
"ax7.set_xlim([8,14])\n",
|
|
"\n",
|
|
"ax8.plot(df_beach.tide, n,color='#999999')\n",
|
|
"ax8.set_title('Tide \\& surge')\n",
|
|
"ax8.set_xlabel('Elevation (m AHD)')\n",
|
|
"ax8.set_xlim([0,2])\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.tight_layout()\n",
|
|
"f.subplots_adjust(top=0.88)\n",
|
|
"f.suptitle(beach)\n",
|
|
"\n",
|
|
"# # Print to figure\n",
|
|
"plt.savefig('07_{}.png'.format(beach), dpi=600, bbox_inches='tight')\n",
|
|
"\n",
|
|
"plt.show()\n",
|
|
"plt.close()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Generate classification reports for each model\n",
|
|
"Use sklearn metrics to generate classification reports for each forecasting model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sklearn.metrics\n",
|
|
"\n",
|
|
"# Get observed impacts\n",
|
|
"df_obs = impacts['observed']\n",
|
|
"\n",
|
|
"# Convert storm regimes to categorical datatype\n",
|
|
"cat_type = CategoricalDtype(\n",
|
|
" categories=['swash', 'collision', 'overwash', 'inundation'], ordered=True)\n",
|
|
"df_obs.storm_regime = df_obs_impacts.storm_regime.astype(cat_type)\n",
|
|
"\n",
|
|
"for model in impacts['forecasted']:\n",
|
|
" df_for = impacts['forecasted'][model]\n",
|
|
" df_for.storm_regime = df_for.storm_regime.astype(cat_type)\n",
|
|
"\n",
|
|
" m = sklearn.metrics.classification_report(\n",
|
|
" df_obs.storm_regime.astype(cat_type).cat.codes.values,\n",
|
|
" df_for.storm_regime.astype(cat_type).cat.codes.values,\n",
|
|
" labels=[0, 1, 2, 3],\n",
|
|
" target_names=['swash', 'collision', 'overwash', 'inundation'])\n",
|
|
" print(model)\n",
|
|
" print(m)\n",
|
|
" print()\n",
|
|
" "
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"hide_input": false,
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.6"
|
|
},
|
|
"toc": {
|
|
"base_numbering": 1,
|
|
"nav_menu": {},
|
|
"number_sections": true,
|
|
"sideBar": true,
|
|
"skip_h1_title": false,
|
|
"title_cell": "Table of Contents",
|
|
"title_sidebar": "Contents",
|
|
"toc_cell": false,
|
|
"toc_position": {},
|
|
"toc_section_display": true,
|
|
"toc_window_display": false
|
|
},
|
|
"varInspector": {
|
|
"cols": {
|
|
"lenName": 16,
|
|
"lenType": 16,
|
|
"lenVar": 40
|
|
},
|
|
"kernels_config": {
|
|
"python": {
|
|
"delete_cmd_postfix": "",
|
|
"delete_cmd_prefix": "del ",
|
|
"library": "var_list.py",
|
|
"varRefreshCmd": "print(var_dic_list())"
|
|
},
|
|
"r": {
|
|
"delete_cmd_postfix": ") ",
|
|
"delete_cmd_prefix": "rm(",
|
|
"library": "var_list.r",
|
|
"varRefreshCmd": "cat(var_dic_list()) "
|
|
}
|
|
},
|
|
"types_to_exclude": [
|
|
"module",
|
|
"function",
|
|
"builtin_function_or_method",
|
|
"instance",
|
|
"_Feature"
|
|
],
|
|
"window_display": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|