{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Data exploration\n", "This notebook provides an example how the data has been loaded and accessed for further analysis." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T05:09:17.883914Z", "start_time": "2018-11-21T05:09:16.981157Z" } }, "outputs": [], "source": [ "# Enable autoreloading of our modules. \n", "# Most of the code will be located in the /src/ folder, \n", "# and then called from the notebook.\n", "\n", "%reload_ext autoreload\n", "%autoreload" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T05:09:17.891936Z", "start_time": "2018-11-21T05:09:17.884916Z" }, "scrolled": true }, "outputs": [], "source": [ "from IPython.core.debugger import set_trace\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import os\n", "\n", "import plotly\n", "import plotly.graph_objs as go\n", "import plotly.plotly as py\n", "\n", "from ipywidgets import widgets, Output\n", "from IPython.display import display, clear_output, Image" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T05:26:30.254784Z", "start_time": "2018-11-21T05:26:13.523566Z" }, "pixiedust": { "displayParams": {} } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\z5189959\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\numpy\\lib\\arraysetops.py:472: FutureWarning:\n", "\n", "elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", "\n" ] } ], "source": [ "def df_from_csv(csv, index_col, data_folder='../data/interim'):\n", " return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n", "\n", "df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n", "df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n", "df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n", "df_sites = df_from_csv('sites.csv', index_col=[0])\n", "df_profile_features = df_from_csv('profile_features.csv', index_col=[0])\n", "\n", "# Note that the forecasted data sets should be in the same order for impacts and twls\n", "impacts = {\n", " 'forecasted': {\n", " 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv', index_col=[0]),\n", " 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv', index_col=[0]),\n", " },\n", " 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n", " }\n", "\n", "\n", "twls = {\n", " 'forecasted': {\n", " 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv', index_col=[0, 1]),\n", " 'mean_slope_sto06':df_from_csv('twl_mean_slope_sto06.csv', index_col=[0, 1]),\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T04:02:25.614132Z", "start_time": "2018-11-21T04:02:25.609119Z" } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 60, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T06:07:17.024328Z", "start_time": "2018-11-21T06:07:14.488829Z" }, "code_folding": [], "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e4413b11f1694a8fb8da0c001aa18344", "version_major": 2, "version_minor": 0 }, "text/html": [ "

Failed to display Jupyter Widget of type VBox.

\n", "

\n", " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n", " that the widgets JavaScript is still loading. If this message persists, it\n", " likely means that the widgets JavaScript library is either not installed or\n", " not enabled. See the Jupyter\n", " Widgets Documentation for setup instructions.\n", "

\n", "

\n", " If you're reading this message in another frontend (for example, a static\n", " rendering on GitHub or NBViewer),\n", " it may mean that your frontend doesn't currently support widgets.\n", "

\n" ], "text/plain": [ "VBox(children=(VBox(children=(HTML(value='Filter by observed and predicted impacts:'), HBox(children=(VBox(children=(HTML(value='Observed Impacts'), SelectMultiple(index=(0, 1), options=('swash', 'collision'), value=('swash', 'collision')))), VBox(children=(HTML(value='Forecasted: foreshore_slope_sto06'), SelectMultiple(index=(0, 1, 2), options=('collision', 'swash', 'overwash'), value=('collision', 'swash', 'overwash')))), VBox(children=(HTML(value='Forecasted: mean_slope_sto06'), SelectMultiple(index=(0, 1, 2), options=('collision', 'swash', 'overwash'), value=('collision', 'swash', 'overwash')))))))), VBox(children=(HTML(value='Filter by site_id:'), HBox(children=(Dropdown(description='site_id: ', index=942, options=('AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', 'AVOCAn0004', 'AVOCAn0005', 'AVOCAn0006', 'AVOCAn0007', 'AVOCAn0008', 'AVOCAn0009', 'AVOCAs0002', 'AVOCAs0003', 'AVOCAs0004', 'AVOCAs0005', 'AVOCAs0006', 'AVOCAs0007', 'AVOCAs0008', 'BILG0001', 'BILG0002', 'BILG0003', 'BILG0004', 'BILG0005', 'BLUEYS0001', 'BLUEYS0002', 'BLUEYS0003', 'BLUEYS0004', 'BLUEYS0005', 'BLUEYS0006', 'BOAT0001', 'BOAT0002', 'BOAT0003', 'BOAT0004', 'BOAT0005', 'BOOM0001', 'BOOM0002', 'BOOM0003', 'BOOM0004', 'BOOM0005', 'BOOM0006', 'BOOM0007', 'BOOM0008', 'BOOM0009', 'BOOM0010', 'BOOM0011', 'BOOM0012', 'BOOM0013', 'BOOM0014', 'CATHIE0001', 'CATHIE0002', 'CATHIE0003', 'CATHIE0004', 'CATHIE0005', 'CATHIE0006', 'CATHIE0007', 'CATHIE0008', 'CATHIE0009', 'CATHIE0010', 'CATHIE0011', 'CATHIE0012', 'CATHIE0013', 'CATHIE0014', 'CATHIE0015', 'CATHIE0016', 'CATHIE0017', 'CATHIE0018', 'CATHIE0019', 'CATHIE0020', 'CATHIE0021', 'CATHIE0022', 'CATHIE0023', 'CATHIE0024', 'CATHIE0025', 'CATHIE0026', 'CATHIE0027', 'CATHIE0028', 'CATHIE0029', 'CRESn0001', 'CRESn0002', 'CRESn0003', 'CRESn0004', 'CRESn0005', 'CRESn0006', 'CRESn0007', 'CRESn0008', 'CRESn0009', 'CRESn0010', 'CRESn0011', 'CRESn0012', 'CRESn0013', 'CRESn0014', 'CRESn0015', 'CRESn0016', 'CRESn0017', 'CRESn0018', 'CRESn0019', 'CRESn0020', 'CRESn0021', 'CRESn0022', 'CRESn0023', 'CRESn0024', 'CRESn0025', 'CRESn0026', 'CRESn0027', 'CRESn0028', 'CRESn0029', 'CRESn0030', 'CRESn0031', 'CRESn0032', 'CRESn0033', 'CRESn0034', 'CRESn0035', 'CRESn0036', 'CRESn0037', 'CRESn0038', 'CRESn0039', 'CRESn0040', 'CRESn0041', 'CRESn0042', 'CRESn0043', 'CRESn0044', 'CRESn0045', 'CRESn0046', 'CRESn0047', 'CRESn0048', 'CRESn0049', 'CRESn0050', 'CRESn0051', 'CRESn0052', 'CRESn0053', 'CRESn0054', 'CRESn0055', 'CRESn0056', 'CRESn0057', 'CRESn0058', 'CRESn0059', 'CRESn0060', 'CRESn0061', 'CRESn0062', 'CRESn0063', 'CRESn0064', 'CRESn0065', 'CRESn0066', 'CRESn0067', 'CRESn0068', 'CRESn0069', 'CRESn0070', 'CRESn0071', 'CRESn0072', 'CRESn0073', 'CRESn0074', 'CRESn0075', 'CRESn0076', 'CRESn0077', 'CRESn0078', 'CRESn0079', 'CRESn0080', 'CRESn0081', 'CRESn0082', 'CRESn0083', 'CRESn0084', 'CRESn0085', 'CRESn0086', 'CRESn0087', 'CRESn0088', 'CRESn0089', 'CRESn0090', 'CRESn0091', 'CRESn0092', 'CRESn0093', 'CRESn0094', 'CRESn0095', 'CRESn0096', 'CRESn0097', 'CRESn0098', 'CRESn0099', 'CRESn0100', 'CRESn0101', 'CRESn0102', 'CRESn0103', 'CRESn0104', 'CRESn0105', 'CRESn0106', 'CRESn0107', 'CRESn0108', 'CRESn0109', 'CRESn0110', 'CRESn0111', 'CRESn0112', 'CRESn0113', 'CRESn0114', 'CRESn0115', 'CRESn0116', 'CRESn0117', 'CRESn0118', 'CRESn0119', 'CRESn0120', 'CRESn0121', 'CRESn0122', 'CRESn0123', 'CRESn0124', 'CRESn0125', 'CRESs0001', 'CRESs0002', 'CRESs0003', 'CRESs0004', 'CRESs0005', 'CRESs0006', 'CRESs0007', 'CRESs0008', 'CRESs0009', 'CRESs0010', 'CRESs0011', 'CRESs0012', 'CRESs0013', 'CRESs0014', 'DEEWHYn0001', 'DEEWHYn0002', 'DEEWHYn0003', 'DEEWHYn0004', 'DEEWHYn0005', 'DEEWHYn0006', 'DEEWHYn0007', 'DEEWHYn0008', 'DEEWHYn0009', 'DEEWHYn0010', 'DEEWHYn0011', 'DEEWHYn0012', 'DEEWHYs0001', 'DEEWHYs0002', 'DEEWHYs0003', 'DEEWHYs0004', 'DEEWHYs0005', 'DEEWHYs0006', 'DEEWHYs0007', 'DEEWHYs0008', 'DIAMONDn0001', 'DIAMONDn0002', 'DIAMONDn0003', 'DIAMONDn0004', 'DIAMONDn0005', 'DIAMONDn0006', 'DIAMONDn0007', 'DIAMONDn0008', 'DIAMONDn0009', 'DIAMONDn0010', 'DIAMONDn0011', 'DIAMONDn0012', 'DIAMONDn0013', 'DIAMONDn0014', 'DIAMONDn0015', 'DIAMONDn0016', 'DIAMONDn0017', 'DIAMONDn0018', 'DIAMONDn0019', 'DIAMONDn0020', 'DIAMONDn0021', 'DIAMONDn0022', 'DIAMONDn0023', 'DIAMONDn0024', 'DIAMONDn0025', 'DIAMONDn0026', 'DIAMONDn0027', 'DIAMONDn0028', 'DIAMONDn0029', 'DIAMONDn0030', 'DIAMONDn0031', 'DIAMONDn0032', 'DIAMONDn0033', 'DIAMONDn0034', 'DIAMONDn0035', 'DIAMONDn0036', 'DIAMONDn0037', 'DIAMONDn0038', 'DIAMONDn0039', 'DIAMONDn0040', 'DIAMONDn0041', 'DIAMONDs0001', 'DIAMONDs0002', 'DIAMONDs0003', 'DIAMONDs0004', 'DIAMONDs0005', 'DIAMONDs0006', 'DIAMONDs0007', 'DUNBn0001', 'DUNBn0002', 'DUNBn0003', 'DUNBn0004', 'DUNBn0005', 'DUNBn0006', 'DUNBn0007', 'DUNBn0008', 'DUNBn0009', 'DUNBn0010', 'DUNBn0011', 'DUNBn0012', 'DUNBn0013', 'DUNBn0014', 'DUNBn0015', 'DUNBn0016', 'DUNBn0017', 'DUNBn0018', 'DUNBn0019', 'DUNBn0020', 'DUNBn0021', 'DUNBn0022', 'DUNBn0023', 'DUNBn0024', 'DUNBn0025', 'DUNBn0026', 'DUNBn0027', 'DUNBn0028', 'DUNBn0029', 'DUNBn0030', 'DUNBn0031', 'DUNBn0032', 'DUNBn0033', 'DUNBn0034', 'DUNBn0035', 'DUNBn0036', 'DUNBn0037', 'DUNBn0038', 'DUNBn0039', 'DUNBn0040', 'DUNBn0041', 'DUNBn0042', 'DUNBn0043', 'DUNBn0044', 'DUNBn0045', 'DUNBn0046', 'DUNBn0047', 'DUNBn0048', 'DUNBn0049', 'DUNBn0050', 'DUNBn0051', 'DUNBn0052', 'DUNBn0053', 'DUNBn0054', 'DUNBn0055', 'DUNBn0056', 'DUNBn0057', 'DUNBn0058', 'DUNBn0059', 'DUNBn0060', 'DUNBn0061', 'DUNBn0062', 'DUNBn0063', 'DUNBn0064', 'DUNBn0065', 'DUNBn0066', 'DUNBn0067', 'DUNBn0068', 'DUNBn0069', 'DUNBn0070', 'DUNBn0071', 'DUNBn0072', 'DUNBn0073', 'DUNBn0074', 'DUNBs0001', 'DUNBs0002', 'DUNBs0003', 'DUNBs0004', 'DUNBs0005', 'DUNBs0006', 'DUNBs0007', 'DUNBs0008', 'DUNBs0009', 'DUNBs0010', 'DUNBs0011', 'ELIZA0001', 'ELIZA0002', 'ELIZA0003', 'ELIZA0004', 'ELIZA0005', 'ELIZA0006', 'ELIZA0007', 'ENTRA0001', 'ENTRA0002', 'ENTRA0003', 'ENTRA0004', 'ENTRA0005', 'ENTRA0006', 'ENTRA0007', 'ENTRA0008', 'ENTRA0009', 'ENTRA0010', 'ENTRA0011', 'ENTRA0012', 'ENTRA0013', 'ENTRA0014', 'ENTRA0015', 'ENTRA0016', 'ENTRA0017', 'ENTRA0018', 'ENTRA0019', 'ENTRA0020', 'ENTRA0021', 'ENTRA0022', 'ENTRA0023', 'ENTRA0024', 'ENTRA0025', 'ENTRA0026', 'ENTRA0027', 'ENTRA0028', 'ENTRA0029', 'ENTRA0030', 'ENTRA0031', 'ENTRA0032', 'ENTRA0033', 'ENTRA0034', 'ENTRA0035', 'ENTRA0036', 'ENTRA0037', 'ENTRA0038', 'ENTRA0039', 'ENTRA0040', 'ENTRA0041', 'ENTRA0042', 'ENTRA0043', 'ENTRA0044', 'ENTRA0045', 'ENTRA0046', 'ENTRA0047', 'ENTRA0048', 'ENTRA0049', 'ENTRA0050', 'ENTRA0051', 'ENTRA0052', 'ENTRA0053', 'ENTRA0054', 'ENTRA0055', 'ENTRA0056', 'ENTRA0057', 'ENTRA0058', 'ENTRA0059', 'ENTRA0060', 'ENTRA0061', 'ENTRA0062', 'ENTRA0063', 'ENTRA0064', 'ENTRA0065', 'ENTRA0066', 'ENTRA0067', 'ENTRA0068', 'ENTRA0069', 'ENTRA0070', 'ENTRA0071', 'ENTRA0072', 'ENTRA0073', 'ENTRA0074', 'ENTRA0075', 'ENTRA0076', 'ENTRA0077', 'ENTRA0078', 'ENTRA0079', 'FOST0001', 'FOST0002', 'FOST0003', 'FOST0004', 'FOST0005', 'FOST0006', 'GRANTSn0001', 'GRANTSn0002', 'GRANTSn0003', 'GRANTSn0004', 'GRANTSn0005', 'GRANTSn0006', 'GRANTSn0007', 'GRANTSn0008', 'GRANTSn0009', 'GRANTSn0010', 'GRANTSn0011', 'GRANTSn0012', 'GRANTSn0013', 'GRANTSn0014', 'GRANTSn0015', 'GRANTSn0016', 'GRANTSn0017', 'GRANTSn0018', 'GRANTSn0019', 'GRANTSn0020', 'GRANTSn0021', 'GRANTSn0022', 'GRANTSn0023', 'GRANTSn0024', 'GRANTSs0001', 'GRANTSs0002', 'GRANTSs0003', 'GRANTSs0004', 'GRANTSs0005', 'GRANTSs0006', 'GRANTSs0007', 'GRANTSs0008', 'GRANTSs0009', 'GRANTSs0010', 'GRANTSs0011', 'GRANTSs0012', 'GRANTSs0013', 'GRANTSs0014', 'HARGn0001', 'HARGn0002', 'HARGn0003', 'HARGn0004', 'HARGn0005', 'HARGn0006', 'HARGn0007', 'HARGs0001', 'HARGs0002', 'HARGs0003', 'HARGs0004', 'HARGs0005', 'HARGs0006', 'HARGs0007', 'HARR0001', 'HARR0002', 'HARR0003', 'HARR0004', 'HARR0005', 'HARR0006', 'HARR0007', 'HARR0008', 'HARR0009', 'HARR0010', 'HARR0011', 'HARR0012', 'HARR0013', 'HARR0014', 'HARR0015', 'HARR0016', 'HARR0017', 'HARR0018', 'HARR0019', 'HARR0020', 'HARR0021', 'HARR0022', 'HARR0023', 'HARR0024', 'HARR0025', 'HARR0026', 'HARR0027', 'HARR0028', 'HARR0029', 'HARR0030', 'HARR0031', 'HARR0032', 'HARR0033', 'HARR0034', 'HARR0035', 'HARR0036', 'HARR0037', 'HARR0038', 'HARR0039', 'HARR0040', 'HARR0041', 'HARR0042', 'HARR0043', 'HARR0044', 'HARR0045', 'HARR0046', 'HARR0047', 'HARR0048', 'HARR0049', 'HARR0050', 'HARR0051', 'HARR0052', 'HARR0053', 'HARR0054', 'HARR0055', 'HARR0056', 'LHOUSE0001', 'LHOUSE0002', 'LHOUSE0003', 'LHOUSE0004', 'LHOUSE0005', 'LHOUSE0006', 'LHOUSE0007', 'LHOUSE0008', 'LHOUSE0009', 'LHOUSE0010', 'LHOUSE0011', 'LHOUSE0012', 'LHOUSE0013', 'LHOUSEn0001', 'LHOUSEn0002', 'LHOUSEn0003', 'LHOUSEn0004', 'LHOUSEn0005', 'LHOUSEn0006', 'LHOUSEn0007', 'LHOUSEn0008', 'LHOUSEn0009', 'LHOUSEn0010', 'LHOUSEn0011', 'LHOUSEn0012', 'LHOUSEn0013', 'LHOUSEn0014', 'LHOUSEn0015', 'LHOUSEn0016', 'LHOUSEn0017', 'LHOUSEn0018', 'LHOUSEn0019', 'LHOUSEn0020', 'LHOUSEn0021', 'LHOUSEn0022', 'LHOUSEn0023', 'LHOUSEn0024', 'LHOUSEn0025', 'LHOUSEn0026', 'LHOUSEn0027', 'LHOUSEn0028', 'LHOUSEn0029', 'LHOUSEn0030', 'LHOUSEn0031', 'LHOUSEn0032', 'LHOUSEn0033', 'LHOUSEn0034', 'LHOUSEn0035', 'LHOUSEn0036', 'LHOUSEn0037', 'LHOUSEn0038', 'LHOUSEn0039', 'LHOUSEn0040', 'LHOUSEn0041', 'LHOUSEn0042', 'LHOUSEn0043', 'LHOUSEn0044', 'LHOUSEn0045', 'LHOUSEn0046', 'LHOUSEn0047', 'LHOUSEn0048', 'LHOUSEn0049', 'LHOUSEn0050', 'LHOUSEn0051', 'LHOUSEn0052', 'LHOUSEn0053', 'LHOUSEn0054', 'LHOUSEn0055', 'LHOUSEn0056', 'LHOUSEn0057', 'LHOUSEn0058', 'LHOUSEn0059', 'LHOUSEn0060', 'LHOUSEn0061', 'LHOUSEn0062', 'LHOUSEn0063', 'LHOUSEn0064', 'LHOUSEn0065', 'LHOUSEn0066', 'LHOUSEn0067', 'LHOUSEn0068', 'LHOUSEn0069', 'LHOUSEn0070', 'LHOUSEn0071', 'LHOUSEn0072', 'LHOUSEn0073', 'LHOUSEn0074', 'LHOUSEn0075', 'LHOUSEn0076', 'LHOUSEn0077', 'LHOUSEn0078', 'LHOUSEn0079', 'LHOUSEn0080', 'LHOUSEn0081', 'LHOUSEn0082', 'LHOUSEn0083', 'LHOUSEn0084', 'LHOUSEn0085', 'LHOUSEn0086', 'LHOUSEn0087', 'LHOUSEn0088', 'LHOUSEn0089', 'LHOUSEn0090', 'LHOUSEn0091', 'LHOUSEn0092', 'LHOUSEn0093', 'LHOUSEs0001', 'LHOUSEs0002', 'LHOUSEs0003', 'LHOUSEs0004', 'LHOUSEs0005', 'LHOUSEs0006', 'LHOUSEs0007', 'LHOUSEs0008', 'LHOUSEs0009', 'LHOUSEs0010', 'LHOUSEs0011', 'LHOUSEs0012', 'LHOUSEs0013', 'LHOUSEs0014', 'LHOUSEs0015', 'LHOUSEs0016', 'LHOUSEs0017', 'LHOUSEs0018', 'LHOUSEs0019', 'LHOUSEs0020', 'LHOUSEs0021', 'LHOUSEs0022', 'LHOUSEs0023', 'LHOUSEs0024', 'LHOUSEs0025', 'LHOUSEs0026', 'LHOUSEs0027', 'LHOUSEs0028', 'LHOUSEs0029', 'LHOUSEs0030', 'LHOUSEs0031', 'LHOUSEs0032', 'MACM0001', 'MACM0002', 'MACM0003', 'MACM0004', 'MACM0005', 'MACM0006', 'MACM0007', 'MACM0008', 'MACM0009', 'MACM0010', 'MACM0011', 'MACM0012', 'MACM0013', 'MACM0014', 'MACM0015', 'MACM0016', 'MANNING0001', 'MANNING0002', 'MANNING0003', 'MANNING0004', 'MANNING0005', 'MANNING0006', 'MANNING0007', 'MANNING0008', 'MANNING0009', 'MANNING0010', 'MANNING0011', 'MANNING0012', 'MANNING0013', 'MANNING0014', 'MANNING0015', 'MANNING0016', 'MANNING0017', 'MANNING0018', 'MANNING0019', 'MANNING0020', 'MANNING0021', 'MANNING0022', 'MANNING0023', 'MANNING0024', 'MANNING0025', 'MANNING0026', 'MANNING0027', 'MANNING0028', 'MANNING0029', 'MANNING0030', 'MANNING0031', 'MANNING0032', 'MANNING0033', 'MANNING0034', 'MANNING0035', 'MANNING0036', 'MANNING0037', 'MANNING0038', 'MANNING0039', 'MANNING0040', 'MANNING0041', 'MANNING0042', 'MANNING0043', 'MANNING0044', 'MANNING0045', 'MANNING0046', 'MANNING0047', 'MANNING0048', 'MANNING0049', 'MANNING0050', 'MANNING0051', 'MANNING0052', 'MANNING0053', 'MANNING0054', 'MANNING0055', 'MANNING0056', 'MANNING0057', 'MANNING0058', 'MANNING0059', 'MANNING0060', 'MANNING0061', 'MANNING0062', 'MANNING0063', 'MANNING0064', 'MANNING0065', 'MANNING0066', 'MANNING0067', 'MANNING0068', 'MANNING0069', 'MANNING0070', 'MANNING0071', 'MANNING0072', 'MANNING0073', 'MANNING0074', 'MANNING0075', 'MANNING0076', 'MANNING0077', 'MANNING0078', 'MANNING0079', 'MANNING0080', 'MANNING0081', 'MANNING0082', 'MANNING0083', 'MANNING0084', 'MANNING0085', 'MANNING0086', 'MANNING0087', 'MANNING0088', 'MANNING0089', 'MANNING0090', 'MANNING0091', 'MANNING0092', 'MANNING0093', 'MANNING0094', 'MANNING0095', 'MANNING0096', 'MANNING0097', 'MANNING0098', 'MANNING0099', 'MANNING0100', 'MANNING0101', 'MANNING0102', 'MANNING0103', 'MANNING0104', 'MANNING0105', 'MANNING0106', 'MANNING0107', 'MANNING0108', 'MANNING0109', 'MANNING0110', 'MANNING0111', 'MANNING0112', 'MANNING0113', 'MANNING0114', 'MANNING0115', 'MANNING0116', 'MANNING0117', 'MANNING0118', 'MANNING0119', 'MANNING0120', 'MANNING0121', 'MANNING0122', 'MANNING0123', 'MANNING0124', 'MANNING0125', 'MANNING0126', 'MANNING0127', 'MONA0001', 'MONA0002', 'MONA0003', 'MONA0004', 'MONA0005', 'MONA0006', 'MONA0007', 'MONA0008', 'MONA0009', 'MONA0010', 'MONA0011', 'MONA0012', 'MONA0013', 'MONA0014', 'MONA0015', 'MONA0016', 'MONA0017', 'MONA0018', 'MONA0019', 'MONA0020', 'MONA0021', 'NAMB0001', 'NAMB0002', 'NAMB0003', 'NAMB0004', 'NAMB0005', 'NAMB0006', 'NAMB0007', 'NAMB0008', 'NAMB0009', 'NAMB0010', 'NAMB0011', 'NAMB0012', 'NAMB0013', 'NAMB0014', 'NAMB0015', 'NAMB0016', 'NAMB0017', 'NAMB0018', 'NAMB0019', 'NAMB0020', 'NAMB0021', 'NAMB0022', 'NAMB0023', 'NAMB0024', 'NAMB0025', 'NAMB0026', 'NAMB0027', 'NAMB0028', 'NAMB0029', 'NAMB0030', 'NAMB0031', 'NAMB0032', 'NAMB0033', 'NAMB0034', 'NAMB0035', 'NAMB0036', 'NAMB0037', 'NAMB0038', 'NAMB0039', 'NAMB0040', 'NAMB0041', 'NAMB0042', 'NAMB0043', 'NAMB0044', 'NAMB0045', 'NAMB0046', 'NAMB0047', 'NAMB0048', 'NAMB0049', 'NAMB0050', 'NAMB0051', 'NAMB0052', 'NAMB0053', 'NAMB0054', 'NAMB0055', 'NAMB0056', 'NAMB0057', 'NAMB0058', 'NAMB0059', 'NAMB0060', 'NAMB0061', 'NAMB0062', 'NAMB0063', 'NAMB0064', 'NAMB0065', 'NAMB0066', 'NAMB0067', 'NAMB0068', 'NAMB0069', 'NAMB0070', 'NAMB0071', 'NAMB0072', 'NAMB0073', 'NARRA0001', 'NARRA0002', 'NARRA0003', 'NARRA0004', 'NARRA0005', 'NARRA0006', 'NARRA0007', 'NARRA0008', 'NARRA0009', 'NARRA0010', 'NARRA0011', 'NARRA0012', 'NARRA0013', 'NARRA0014', 'NARRA0015', 'NARRA0016', 'NARRA0017', 'NARRA0018', 'NARRA0019', 'NARRA0020', 'NARRA0021', 'NARRA0022', 'NARRA0023', 'NARRA0024', 'NARRA0025', 'NARRA0026', 'NARRA0027', 'NARRA0028', 'NARRA0029', 'NARRA0030', 'NARRA0031', 'NARRA0032', 'NARRA0033', 'NARRA0034', 'NARRA0035', 'NARRA0036', 'NINEMn0001', 'NINEMn0002', 'NINEMn0003', 'NINEMn0004', 'NINEMn0005', 'NINEMn0006', 'NINEMn0007', 'NINEMn0008', 'NINEMn0009', 'NINEMn0010', 'NINEMn0011', 'NINEMn0012', 'NINEMn0013', 'NINEMn0014', 'NINEMn0015', 'NINEMn0016', 'NINEMn0017', 'NINEMn0018', 'NINEMn0019', 'NINEMn0020', 'NINEMn0021', 'NINEMn0022', 'NINEMn0023', 'NINEMn0024', 'NINEMn0025', 'NINEMn0026', 'NINEMn0027', 'NINEMn0028', 'NINEMn0029', 'NINEMn0030', 'NINEMn0031', 'NINEMn0032', 'NINEMn0033', 'NINEMn0034', 'NINEMn0035', 'NINEMn0036', 'NINEMn0037', 'NINEMn0038', 'NINEMn0039', 'NINEMn0040', 'NINEMn0041', 'NINEMn0042', 'NINEMn0043', 'NINEMn0044', 'NINEMn0045', 'NINEMn0046', 'NINEMn0047', 'NINEMn0048', 'NINEMn0049', 'NINEMn0050', 'NINEMn0051', 'NINEMn0052', 'NINEMn0053', 'NINEMn0054', 'NINEMs0001', 'NINEMs0002', 'NINEMs0003', 'NINEMs0004', 'NINEMs0005', 'NINEMs0006', 'NINEMs0007', 'NINEMs0008', 'NINEMs0009', 'NINEMs0010', 'NINEMs0011', 'NINEMs0012', 'NINEMs0013', 'NINEMs0014', 'NINEMs0015', 'NINEMs0016', 'NINEMs0017', 'NINEMs0018', 'NINEMs0019', 'NINEMs0020', 'NINEMs0021', 'NINEMs0022', 'NINEMs0023', 'NINEMs0024', 'NINEMs0025', 'NINEMs0026', 'NINEMs0027', 'NINEMs0028', 'NINEMs0029', 'NINEMs0030', 'NINEMs0031', 'NINEMs0032', 'NINEMs0033', 'NINEMs0034', 'NINEMs0035', 'NINEMs0036', 'NINEMs0037', 'NINEMs0038', 'NINEMs0039', 'NINEMs0040', 'NINEMs0041', 'NINEMs0042', 'NINEMs0043', 'NINEMs0044', 'NINEMs0045', 'NINEMs0046', 'NINEMs0047', 'NINEMs0048', 'NINEMs0049', 'NINEMs0050', 'NINEMs0051', 'NINEMs0052', 'NINEMs0053', 'NINEMs0054', 'NINEMs0055', 'NINEMs0056', 'NINEMs0057', 'NINEMs0058', 'NINEMs0059', 'NINEMs0060', 'NSHORE_n0001', 'NSHORE_n0002', 'NSHORE_n0003', 'NSHORE_n0004', 'NSHORE_n0005', 'NSHORE_n0006', 'NSHORE_n0007', 'NSHORE_n0008', 'NSHORE_n0009', 'NSHORE_n0010', 'NSHORE_n0011', 'NSHORE_n0012', 'NSHORE_n0013', 'NSHORE_n0014', 'NSHORE_n0015', 'NSHORE_n0016', 'NSHORE_n0017', 'NSHORE_n0018', 'NSHORE_n0019', 'NSHORE_n0020', 'NSHORE_n0021', 'NSHORE_n0022', 'NSHORE_n0023', 'NSHORE_n0024', 'NSHORE_n0025', 'NSHORE_n0026', 'NSHORE_n0027', 'NSHORE_n0028', 'NSHORE_n0029', 'NSHORE_n0030', 'NSHORE_n0031', 'NSHORE_n0032', 'NSHORE_n0033', 'NSHORE_n0034', 'NSHORE_n0035', 'NSHORE_n0036', 'NSHORE_n0037', 'NSHORE_n0038', 'NSHORE_n0039', 'NSHORE_n0040', 'NSHORE_n0041', 'NSHORE_n0042', 'NSHORE_n0043', 'NSHORE_n0044', 'NSHORE_n0045', 'NSHORE_n0046', 'NSHORE_n0047', 'NSHORE_n0048', 'NSHORE_n0049', 'NSHORE_n0050', 'NSHORE_n0051', 'NSHORE_n0052', 'NSHORE_n0053', 'NSHORE_n0054', 'NSHORE_n0055', 'NSHORE_n0056', 'NSHORE_n0057', 'NSHORE_n0058', 'NSHORE_n0059', 'NSHORE_n0060', 'NSHORE_n0061', 'NSHORE_n0062', 'NSHORE_n0063', 'NSHORE_n0064', 'NSHORE_n0065', 'NSHORE_n0066', 'NSHORE_n0067', 'NSHORE_n0068', 'NSHORE_n0069', 'NSHORE_n0070', 'NSHORE_n0071', 'NSHORE_n0072', 'NSHORE_n0073', 'NSHORE_n0074', 'NSHORE_n0075', 'NSHORE_n0076', 'NSHORE_n0077', 'NSHORE_n0078', 'NSHORE_n0079', 'NSHORE_n0080', 'NSHORE_n0081', 'NSHORE_n0082', 'NSHORE_s0001', 'NSHORE_s0002', 'NSHORE_s0003', 'NSHORE_s0004', 'NSHORE_s0005', 'NSHORE_s0006', 'NSHORE_s0007', 'NSHORE_s0008', 'NSHORE_s0009', 'NSHORE_s0010', 'NSHORE_s0011', 'NSHORE_s0012', 'NSHORE_s0013', 'NSHORE_s0014', 'NSHORE_s0015', 'NSHORE_s0016', 'NSHORE_s0017', 'NSHORE_s0018', 'NSHORE_s0019', 'NSHORE_s0020', 'NSHORE_s0021', 'NSHORE_s0022', 'NSHORE_s0023', 'NSHORE_s0024', 'NSHORE_s0025', 'NSHORE_s0026', 'NSHORE_s0027', 'NSHORE_s0028', 'NSHORE_s0029', 'NSHORE_s0030', 'NSHORE_s0031', 'NSHORE_s0032', 'NSHORE_s0033', 'NSHORE_s0034', 'NSHORE_s0035', 'NSHORE_s0036', 'NSHORE_s0037', 'NSHORE_s0038', 'NSHORE_s0039', 'NSHORE_s0040', 'NSHORE_s0041', 'NSHORE_s0042', 'NSHORE_s0043', 'NSHORE_s0044', 'OLDBAR0001', 'OLDBAR0002', 'OLDBAR0003', 'OLDBAR0004', 'OLDBAR0005', 'OLDBAR0006', 'OLDBAR0007', 'OLDBAR0008', 'OLDBAR0009', 'OLDBAR0010', 'OLDBAR0011', 'OLDBAR0012', 'OLDBAR0013', 'OLDBAR0014', 'OLDBAR0015', 'OLDBAR0016', 'OLDBAR0017', 'OLDBAR0018', 'OLDBAR0019', 'OLDBAR0020', 'OLDBAR0021', 'OLDBAR0022', 'OLDBAR0023', 'OLDBAR0024', 'OLDBAR0025', 'OLDBAR0026', 'OLDBAR0027', 'OLDBAR0028', 'OLDBAR0029', 'OLDBAR0030', 'OLDBAR0031', 'OLDBAR0032', 'OLDBAR0033', 'OLDBAR0034', 'OLDBAR0035', 'OLDBAR0036', 'ONEMILE0001', 'ONEMILE0002', 'ONEMILE0003', 'ONEMILE0004', 'ONEMILE0005', 'ONEMILE0006', 'ONEMILE0007', 'ONEMILE0008', 'ONEMILE0009', 'ONEMILE0010', 'ONEMILE0011', 'ONEMILE0012', 'ONEMILE0013', 'PEARLn0001', 'PEARLn0002', 'PEARLn0003', 'PEARLn0004', 'PEARLn0005', 'PEARLs0001', 'PEARLs0002', 'PEARLs0003', 'PEARLs0004', 'PEARLs0005', 'SCOT0001', 'SCOT0002', 'SCOT0003', 'SCOT0004', 'SCOT0005', 'SCOT0006', 'SCOT0007', 'SCOT0008', 'SCOT0009', 'SCOT0010', 'SCOT0011', 'SCOT0012', 'STOCNn0001', 'STOCNn0002', 'STOCNn0003', 'STOCNn0004', 'STOCNn0005', 'STOCNn0006', 'STOCNn0007', 'STOCNn0008', 'STOCNn0009', 'STOCNn0010', 'STOCNn0011', 'STOCNn0012', 'STOCNn0013', 'STOCNn0014', 'STOCNn0015', 'STOCNn0016', 'STOCNn0017', 'STOCNn0018', 'STOCNn0019', 'STOCNn0020', 'STOCNn0021', 'STOCNn0022', 'STOCNn0023', 'STOCNn0024', 'STOCNn0025', 'STOCNn0026', 'STOCNn0027', 'STOCNn0028', 'STOCNn0029', 'STOCNn0030', 'STOCNn0031', 'STOCNn0032', 'STOCNn0033', 'STOCNn0034', 'STOCNn0035', 'STOCNn0036', 'STOCNn0037', 'STOCNn0038', 'STOCNn0039', 'STOCNn0040', 'STOCNn0041', 'STOCNn0042', 'STOCNn0043', 'STOCNn0044', 'STOCNn0045', 'STOCNn0046', 'STOCNn0047', 'STOCNn0048', 'STOCNn0049', 'STOCNn0050', 'STOCNn0051', 'STOCNn0052', 'STOCNn0053', 'STOCNn0054', 'STOCNn0055', 'STOCNn0056', 'STOCNn0057', 'STOCNn0058', 'STOCNn0059', 'STOCNn0060', 'STOCNn0061', 'STOCNn0062', 'STOCNn0063', 'STOCNn0064', 'STOCNn0065', 'STOCNs0001', 'STOCNs0002', 'STOCNs0003', 'STOCNs0004', 'STOCNs0005', 'STOCNs0006', 'STOCNs0007', 'STOCNs0008', 'STOCNs0009', 'STOCNs0010', 'STOCNs0011', 'STOCNs0012', 'STOCNs0013', 'STOCNs0014', 'STOCNs0015', 'STOCNs0016', 'STOCNs0017', 'STOCNs0018', 'STOCNs0019', 'STOCNs0020', 'STOCNs0021', 'STOCNs0022', 'STOCNs0023', 'STOCNs0024', 'STOCNs0025', 'STOCNs0026', 'STOCNs0027', 'STOCNs0028', 'STOCNs0029', 'STOCNs0030', 'STOCNs0031', 'STOCNs0032', 'STOCNs0033', 'STOCNs0034', 'STOCNs0035', 'STOCNs0036', 'STOCNs0037', 'STOCNs0038', 'STOCNs0039', 'STOCNs0040', 'STOCNs0041', 'STOCNs0042', 'STOCNs0043', 'STOCNs0044', 'STOCNs0045', 'STOCNs0046', 'STOCNs0047', 'STOCNs0048', 'STOCNs0049', 'STOCNs0050', 'STOCNs0051', 'STOCNs0052', 'STOCNs0053', 'STOCNs0054', 'STOCNs0055', 'STOCNs0056', 'STOCNs0057', 'STOCNs0058', 'STOCNs0059', 'STOCNs0060', 'STOCNs0061', 'STOCNs0062', 'STOCNs0063', 'STOCNs0064', 'STOCNs0065', 'STOCNs0066', 'STOCNs0067', 'STOCNs0068', 'STOCNs0069', 'STOCNs0070', 'STOCNs0071', 'STOCNs0072', 'STOCNs0073', 'STOCNs0074', 'STOCNs0075', 'STOCNs0076', 'STOCNs0077', 'STOCNs0078', 'STOCNs0079', 'STOCNs0080', 'STOCNs0081', 'STOCNs0082', 'STOCNs0083', 'STOCNs0084', 'STOCNs0085', 'STOCNs0086', 'STOCNs0087', 'STOCNs0088', 'STOCNs0089', 'STOCNs0090', 'STOCNs0091', 'STOCNs0092', 'STOCNs0093', 'STOCNs0094', 'STOCNs0095', 'STOCNs0096', 'STOCNs0097', 'STOCNs0098', 'STOCNs0099', 'STOCNs0100', 'STOCNs0101', 'STOCNs0102', 'STOCNs0103', 'STOCNs0104', 'STOCNs0105', 'STOCNs0106', 'STOCNs0107', 'STOCNs0108', 'STOCNs0109', 'STOCNs0110', 'STOCNs0111', 'STOCNs0112', 'STOCNs0113', 'STOCNs0114', 'STOCNs0115', 'STOCNs0116', 'STOCNs0117', 'STOCNs0118', 'STOCNs0119', 'STOCNs0120', 'STOCNs0121', 'STOCNs0122', 'STOCNs0123', 'STOCNs0124', 'STOCNs0125', 'STOCNs0126', 'STOCNs0127', 'STOCNs0128', 'STOCNs0129', 'STOCNs0130', 'STOCNs0131', 'STOCNs0132', 'STOCNs0133', 'STOCNs0134', 'STOCNs0135', 'STOCNs0136', 'STOCNs0137', 'STOCNs0138', 'STOCNs0139', 'STOCNs0140', 'STOCNs0141', 'STOCNs0142', 'STOCNs0143', 'STOCNs0144', 'STOCNs0145', 'STOCNs0146', 'STOCNs0147', 'STOCNs0148', 'STOCNs0149', 'STOCNs0150', 'STOCNs0151', 'STOCNs0152', 'STOCNs0153', 'STOCNs0154', 'STOCNs0155', 'STOCNs0156', 'STOCNs0157', 'STOCNs0158', 'STOCNs0159', 'STOCNs0160', 'STOCNs0161', 'STOCNs0162', 'STOCNs0163', 'STOCNs0164', 'STOCNs0165', 'STOCNs0166', 'STOCNs0167', 'STOCNs0168', 'STOCNs0169', 'STOCNs0170', 'STOCNs0171', 'STOCNs0172', 'STOCNs0173', 'STOCNs0174', 'STOCNs0175', 'STOCNs0176', 'STOCNs0177', 'STOCNs0178', 'STOCNs0179', 'STOCNs0180', 'STOCNs0181', 'STOCNs0182', 'STOCNs0183', 'STOCNs0184', 'STOCNs0185', 'STOCNs0186', 'STOCNs0187', 'STOCNs0188', 'STOCNs0189', 'STOCNs0190', 'STOCNs0191', 'STOCNs0192', 'STOCNs0193', 'STOCNs0194', 'STOCNs0195', 'STOCNs0196', 'STOCNs0197', 'STOCNs0198', 'STOCNs0199', 'STOCNs0200', 'STOCNs0201', 'STOCNs0202', 'STOCNs0203', 'STOCNs0204', 'STOCNs0205', 'STOCNs0206', 'STOCNs0207', 'STOCNs0208', 'STOCNs0209', 'STOCS0001', 'STOCS0002', 'STOCS0003', 'STOCS0004', 'STOCS0005', 'STOCS0006', 'STOCS0007', 'STOCS0008', 'STOCS0009', 'STOCS0010', 'STOCS0011', 'STOCS0012', 'STOCS0013', 'STOCS0014', 'STOCS0015', 'STOCS0016', 'STOCS0017', 'STOCS0018', 'STOCS0019', 'STOCS0020', 'STOCS0021', 'STOCS0022', 'STOCS0023', 'STOCS0024', 'STOCS0025', 'STOCS0026', 'STOCS0027', 'STOCS0028', 'STOCS0029', 'STOCS0030', 'STOCS0031', 'STOCS0032', 'STOCS0033', 'STOCS0034', 'STOCS0035', 'STOCS0036', 'STOCS0037', 'STOCS0038', 'STOCS0039', 'STOCS0040', 'STOCS0041', 'STOCS0042', 'STOCS0043', 'STOCS0044', 'STOCS0045', 'STOCS0046', 'STUART0001', 'STUART0002', 'STUART0003', 'STUART0004', 'STUART0005', 'STUART0006', 'STUART0007', 'STUART0008', 'STUART0009', 'STUART0010', 'STUART0011', 'STUART0012', 'STUART0013', 'STUART0014', 'STUART0015', 'STUART0016', 'STUART0017', 'STUART0018', 'STUART0019', 'STUART0020', 'STUART0021', 'STUART0022', 'STUART0023', 'STUART0024', 'STUART0025', 'STUART0026', 'STUART0027', 'STUART0028', 'STUART0029', 'STUART0030', 'STUART0031', 'STUART0032', 'STUART0033', 'STUART0034', 'STUART0035', 'STUART0036', 'STUART0037', 'STUART0038', 'STUART0039', 'STUART0040', 'STUART0041', 'STUART0042', 'STUART0043', 'STUART0044', 'STUART0045', 'STUART0046', 'STUART0047', 'STUART0048', 'STUART0049', 'STUART0050', 'STUART0051', 'STUART0052', 'STUART0053', 'STUART0054', 'STUART0055', 'STUART0056', 'STUART0057', 'STUART0058', 'STUART0059', 'STUART0060', 'STUART0061', 'STUART0062', 'STUART0063', 'STUART0064', 'STUART0065', 'STUART0066', 'STUART0067', 'STUART0068', 'STUART0069', 'STUART0070', 'STUART0071', 'STUART0072', 'STUART0073', 'STUART0074', 'STUART0075', 'STUART0076', 'STUART0077', 'STUART0078', 'STUART0079', 'STUART0080', 'STUART0081', 'STUART0082', 'STUART0083', 'STUART0084', 'STUART0085', 'STUART0086', 'STUART0087', 'STUART0088', 'STUART0089', 'SWRO0001', 'SWRO0002', 'SWRO0003', 'SWRO0004', 'SWRO0005', 'SWRO0006', 'SWRO0007', 'SWRO0008', 'SWRO0009', 'SWRO0010', 'SWRO0011', 'SWRO0012', 'SWRO0013', 'SWRO0014', 'SWRO0015', 'SWRO0016', 'SWRO0017', 'SWRO0018', 'SWRO0019', 'SWRO0020', 'SWRO0021', 'SWRO0022', 'SWRO0023', 'SWRO0024', 'SWRO0025', 'SWRO0026', 'TREACH0001', 'TREACH0002', 'TREACH0003', 'TREACH0004', 'TREACH0005', 'TREACH0006', 'TREACH0007', 'TREACH0008', 'TREACH0009', 'TREACH0010', 'TREACH0011', 'TREACH0012', 'TREACH0013', 'TREACH0014', 'TREACH0015', 'TREACH0016', 'WAMBE0001', 'WAMBE0002', 'WAMBE0003', 'WAMBE0004', 'WAMBE0005', 'WAMBE0006', 'WAMBE0007', 'WAMBE0008', 'WAMBE0009', 'WAMBE0010', 'WAMBE0011', 'WAMBE0012', 'WAMBE0013', 'WAMBE0014', 'WAMBE0015', 'WAMBE0016', 'WAMBE0017', 'WAMBE0018', 'WAMBE0019', 'WAMBE0020', 'WAMBE0021', 'WAMBE0022', 'WAMBE0023', 'WAMBE0024', 'WAMBE0025', 'WAMBE0026', 'WAMBE0027'), value='NARRA0001'),)))), HBox(children=(FigureWidget({\n", " 'data': [{'name': 'Pre Storm Profile',\n", " 'type': 'scatter',\n", " 'uid': '391027af-be5a-4413-863d-53385a59391d',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'name': 'Post Storm Profile',\n", " 'type': 'scatter',\n", " 'uid': 'a5d7d2e9-d3af-462c-9466-51c2b6f09aa4',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'marker': {'color': 'rgb(17, 157, 255)', 'size': 20},\n", " 'mode': 'markers',\n", " 'name': 'Pre-storm dune crest',\n", " 'type': 'scatter',\n", " 'uid': '2eba8b17-45a7-4bcd-b988-31bbb487fb1f',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'marker': {'color': 'rgb(231, 99, 250)', 'size': 20},\n", " 'mode': 'markers',\n", " 'name': 'Pre-storm dune toe',\n", " 'type': 'scatter',\n", " 'uid': '022f5c93-fc10-4d1d-ac97-e30b8efd28d1',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'name': 'Peak R_high: foreshore_slope_sto06',\n", " 'type': 'scatter',\n", " 'uid': '0c93ba4e-2213-4db9-9b13-1227d17f5074',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'name': 'Peak R_high: mean_slope_sto06',\n", " 'type': 'scatter',\n", " 'uid': 'dceb5ce7-eb4c-4af6-9a79-cf0b2291e801',\n", " 'x': [0],\n", " 'y': [0]}],\n", " 'layout': {'height': 300,\n", " 'legend': {'font': {'size': 10}},\n", " 'margin': {'b': 50, 'l': 50, 'r': 20, 't': 50},\n", " 'title': 'Bed Profiles',\n", " 'xaxis': {'autorange': True,\n", " 'range': [0, 200],\n", " 'showgrid': True,\n", " 'showline': True,\n", " 'title': 'x (m)',\n", " 'zeroline': True},\n", " 'yaxis': {'autorange': False,\n", " 'range': [-1, 20],\n", " 'showgrid': True,\n", " 'showline': True,\n", " 'title': 'z (m)',\n", " 'zeroline': True}}\n", "}), FigureWidget({\n", " 'data': [{'lat': array([-33.46381539, -33.46301835, -33.46221051, ..., -33.4279646 ,\n", " -33.42732743, -33.42671036]),\n", " 'lon': array([151.43639576, 151.43690633, 151.43738179, ..., 151.4501613 ,\n", " 151.45092222, 151.45170635]),\n", " 'marker': {'size': 10},\n", " 'mode': 'markers',\n", " 'text': array(['AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', ..., 'WAMBE0025', 'WAMBE0026',\n", " 'WAMBE0027'], dtype='Filter by observed and predicted impacts:\",\n", ")\n", "\n", "titles = ['Observed Impacts']\n", "selectboxes = [widgets.SelectMultiple(\n", " options=impacts['observed'].storm_regime.dropna().unique().tolist(),\n", " value=impacts['observed'].storm_regime.dropna().unique().tolist(),\n", " disabled=False)]\n", "\n", "# Iterate through each of our forecasted impacts \n", "for forecast in impacts['forecasted']:\n", " selectboxes.append(\n", " widgets.SelectMultiple(\n", " options=impacts['forecasted'][forecast].storm_regime.dropna().unique().tolist(),\n", " value=impacts['forecasted'][forecast].storm_regime.dropna().unique().tolist(),\n", " disabled=False))\n", " titles.append('Forecasted: {}'.format(forecast))\n", "\n", "titles = [widgets.HTML(value=title) for title in titles]\n", " \n", "children = widgets.HBox(children=[widgets.VBox(children=[title, box]) for title, box in zip(titles, selectboxes)])\n", "filter_container = widgets.VBox(children=[filter_title,children])\n", "\n", "\n", "\n", "# Create widgets for selecting site_id\n", "site_id_title = widgets.HTML(\n", " value=\"Filter by site_id:\",\n", ")\n", "\n", "site_id_select = widgets.Dropdown(\n", " description='site_id: ',\n", " value='NARRA0001',\n", " options=df_profiles.index.get_level_values('site_id').unique().sort_values().tolist()\n", ")\n", "site_id_container = widgets.VBox(children=[site_id_title,widgets.HBox(children=[site_id_select])])\n", "\n", "\n", "\n", "# Add panel for pre/post storm profiles\n", "trace1 = go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name='Pre Storm Profile'\n", ")\n", "trace2 = go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name='Post Storm Profile'\n", ")\n", "trace3 = go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name='Pre-storm dune crest',\n", " mode = 'markers',\n", " marker = dict(\n", " color = 'rgb(17, 157, 255)',\n", " size = 20,\n", " ),\n", ")\n", "trace4 = go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name='Pre-storm dune toe',\n", " mode = 'markers',\n", " marker = dict(\n", " color = 'rgb(231, 99, 250)',\n", " size = 20,\n", " ),\n", ")\n", "\n", "forecast_traces = []\n", "for forecast in impacts['forecasted']:\n", " forecast_traces.append(go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name = 'Peak R_high: {}'.format(forecast)\n", " ))\n", " \n", "layout = go.Layout(\n", " title = 'Bed Profiles',\n", " height=300,\n", " legend=dict(font={'size':10}),\n", " margin=dict(t=50,b=50,l=50,r=20),\n", " xaxis=dict(\n", " title = 'x (m)',\n", " autorange=True,\n", " showgrid=True,\n", " zeroline=True,\n", " showline=True,\n", " range=[0, 200]\n", " ),\n", " yaxis=dict(\n", " title = 'z (m)',\n", " autorange=False,\n", " showgrid=True,\n", " zeroline=True,\n", " showline=True,\n", " range=[-1, 20]\n", " )\n", ")\n", "\n", "g_profiles = go.FigureWidget(data=[trace1, trace2, trace3, trace4]+forecast_traces,\n", " layout=layout)\n", "\n", "\n", "# Add panel for google maps\n", "mapbox_access_token = 'pk.eyJ1IjoiY2hyaXNsZWFtYW4iLCJhIjoiY2pvNTY1MzZpMDc2OTN2bmw5MGsycHp5bCJ9.U2dwFg2c7RFjUNSayERUiw'\n", "\n", "data = [\n", " go.Scattermapbox(\n", " lat=df_sites['lat'],\n", " lon=df_sites['lon'],\n", " mode='markers',\n", " marker=dict(\n", " size=10\n", " ),\n", " text=df_sites.index.get_level_values('site_id'),\n", " ),\n", " go.Scattermapbox(\n", " lat=[0],\n", " lon=[0],\n", " mode='markers',\n", " marker=dict(\n", " size=20,\n", " color='rgb(255, 0, 0)',\n", " opacity = 0.5,\n", " ),\n", " text=df_sites.index.get_level_values('site_id'),\n", " ),\n", "]\n", "\n", "layout = go.Layout(\n", " autosize=True,\n", " height=300,\n", " hovermode='closest',\n", " showlegend=False,\n", " margin=dict(t=50,b=50,l=20,r=20),\n", " mapbox=dict(\n", " accesstoken=mapbox_access_token,\n", " bearing=0,\n", " center=dict(\n", " lat=-33.7,\n", " lon=151.3\n", " ),\n", " pitch=0,\n", " zoom=12,\n", " style='satellite-streets'\n", " ),\n", ")\n", "\n", "fig = dict(data=data, layout=layout)\n", "g_map = go.FigureWidget(data=data,layout=layout)\n", "\n", "\n", "# Add panel for time series\n", "\n", "trace_Hs0 = go.Scatter(\n", " x = [0,1],\n", " y = [0,1],\n", " name='Hs0'\n", ")\n", "trace_Tp = go.Scatter(\n", " x = [0,2],\n", " y = [0,2],\n", " name='Tp',\n", " yaxis='y2'\n", ")\n", "\n", "forecast_traces = []\n", "for forecast in impacts['forecasted']:\n", " forecast_traces.append(go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name = 'Beta: {}'.format(forecast),\n", " yaxis='y3'\n", " ))\n", "\n", " \n", "data=[trace_Hs0, trace_Tp] + forecast_traces\n", "\n", "layout = go.Layout(\n", " title = 'Hydro/Morpho Parameters',\n", " height=200,\n", " margin=dict(t=50,b=50,l=50,r=50),\n", " xaxis=dict(\n", " title='time',\n", " domain=[0.0, 0.9],\n", " zeroline=False,\n", " ),\n", " yaxis=dict(\n", " title = 'Hs0 (m)',\n", " ),\n", " yaxis2=dict(\n", " title='Tp (s)',\n", " overlaying='y',\n", " side='right'\n", " ),\n", " yaxis3=dict(\n", " title='beta (-)',\n", " overlaying='y',\n", " side='right',\n", " position=0.97\n", " )\n", ")\n", "\n", "g_params = go.FigureWidget(data=data, layout=layout)\n", "\n", "\n", "# Add panel for water level\n", "trace_dune_crest = go.Scatter(\n", " x = [0,3],\n", " y = [0,3],\n", " name='Dune Crest',\n", " line = dict(\n", " color = ('rgb(214, 117, 14)'),\n", " width = 2,\n", " dash = 'dot')\n", ")\n", "trace_dune_toe = go.Scatter(\n", " x = [0,3],\n", " y = [0,3],\n", " name='Dune Toe',\n", " line = dict(\n", " color = ('rgb(142, 77, 8)'),\n", " width = 2,\n", " dash = 'dash')\n", ")\n", "trace_tide = go.Scatter(\n", " x = [0,4],\n", " y = [0,4],\n", " name='Tide+Surge WL',\n", " line = dict(\n", " color = ('rgb(8,51,137)'),\n", " width = 2,\n", " dash = 'dot')\n", ")\n", "\n", "forecast_traces = []\n", "for forecast in twls['forecasted']:\n", " forecast_traces.append(go.Scatter(\n", " x = [0],\n", " y = [0],\n", " name = 'R_high: {}'.format(forecast),\n", " ))\n", " \n", "data=[trace_dune_crest, trace_dune_toe,trace_tide] + forecast_traces\n", "\n", "layout = go.Layout(\n", " title = 'Water Level & Dune Toe/Crest',\n", " height=200,\n", " margin=dict(t=50,b=50,l=50,r=50),\n", " xaxis=dict(\n", " title='time',\n", " domain=[0.0, 0.95],\n", " zeroline=False,\n", " ),\n", " yaxis=dict(\n", " title = 'Water Level (m)',\n", " ),\n", ")\n", "\n", "g_twls = go.FigureWidget(data=data, layout=layout)\n", "\n", "\n", "\n", "def update_profile(change):\n", " \n", " site_id = site_id_select.value\n", " \n", " if site_id is None:\n", " return \n", " \n", " site_profile = df_profiles.query('site_id == \"{}\"'.format(site_id))\n", " prestorm_profile = site_profile.query('profile_type == \"prestorm\"')\n", " poststorm_profile = site_profile.query('profile_type == \"poststorm\"')\n", "\n", " poststorm_x = poststorm_profile.index.get_level_values('x').tolist()\n", " poststorm_z = poststorm_profile.z.tolist()\n", "\n", " prestorm_x = prestorm_profile.index.get_level_values('x').tolist()\n", " prestorm_z = prestorm_profile.z.tolist()\n", " \n", " site_features = df_profile_features.query('site_id == \"{}\"'.format(site_id))\n", " dune_crest_x = site_features.dune_crest_x\n", " dune_crest_z = site_features.dune_crest_z\n", " dune_toe_x = site_features.dune_toe_x\n", " dune_toe_z = site_features.dune_toe_z\n", " \n", " # Update beach profile section plots\n", " with g_profiles.batch_update():\n", " g_profiles.data[0].x = prestorm_x\n", " g_profiles.data[0].y = prestorm_z\n", " g_profiles.data[1].x = poststorm_x\n", " g_profiles.data[1].y = poststorm_z\n", " g_profiles.data[2].x = dune_crest_x\n", " g_profiles.data[2].y = dune_crest_z\n", " g_profiles.data[3].x = dune_toe_x\n", " g_profiles.data[3].y = dune_toe_z\n", " \n", " for n, forecast in enumerate(impacts['forecasted']):\n", " R_high = max(impacts['forecasted'][forecast].query(\"site_id=='{}'\".format(site_id)).R_high)\n", " g_profiles.data[4+n].x=[200,400]\n", " g_profiles.data[4+n].y=[R_high, R_high]\n", " \n", " # Relocate plan of satellite imagery\n", " site_coords = df_sites.query('site_id == \"{}\"'.format(site_id))\n", " with g_map.batch_update():\n", " g_map.layout.mapbox['center'] = {\n", " 'lat': site_coords['lat'].values[0],\n", " 'lon': site_coords['lon'].values[0]\n", " }\n", " g_map.layout.mapbox['zoom'] = 15\n", " g_map.data[1].lat = [site_coords['lat'].values[0]]\n", " g_map.data[1].lon = [site_coords['lon'].values[0]]\n", " g_map.data[1].text = site_coords['lon'].index.get_level_values('site_id').tolist()\n", "\n", " # Update time series plots \n", " df_waves_site = df_waves.query(\"site_id=='{}'\".format(site_id))\n", " times = df_waves_site.index.get_level_values('datetime').tolist()\n", " Hs0s = df_waves_site.Hs0.tolist()\n", " Tps = df_waves_site.Tp.tolist()\n", " with g_params.batch_update():\n", " g_params.data[0].x = times\n", " g_params.data[0].y = Hs0s\n", " g_params.data[1].x = times\n", " g_params.data[1].y = Tps\n", " \n", " for n, forecast in enumerate(twls['forecasted']):\n", " df_twl = twls['forecasted'][forecast].query(\"site_id=='{}'\".format(site_id))\n", " times = df_twl.index.get_level_values('datetime').tolist()\n", " beta = df_twl.beta.tolist()\n", " g_params.data[2+n].x= times\n", " g_params.data[2+n].y= beta\n", "\n", "\n", " # Update water levels plot\n", " df_tide_site = df_tides.query(\"site_id=='{}'\".format(site_id))\n", " mask = (df_tide_site.index.get_level_values('datetime') >= min(times)) & (df_tide_site.index.get_level_values('datetime') <= max(times))\n", " df_tide_site = df_tide_site.loc[mask]\n", "\n", " with g_twls.batch_update():\n", " g_twls.data[0].x = [min(times), max(times)]\n", " g_twls.data[1].x = [min(times), max(times)]\n", " g_twls.data[2].x = df_tide_site.index.get_level_values('datetime')\n", " g_twls.data[0].y = dune_crest_z.tolist()[0], dune_crest_z.tolist()[0],\n", " g_twls.data[1].y = dune_toe_z.tolist()[0], dune_toe_z.tolist()[0],\n", " g_twls.data[2].y = df_tide_site.tide.tolist()\n", " \n", " for n, forecast in enumerate(twls['forecasted']):\n", " df_twl = twls['forecasted'][forecast].query(\"site_id=='{}'\".format(site_id))\n", " times = df_twl.index.get_level_values('datetime').tolist()\n", " R_high = df_twl.R_high.tolist()\n", " g_twls.data[3+n].x= times\n", " g_twls.data[3+n].y= R_high\n", " \n", " \n", "site_id_select.observe(update_profile, names=\"value\")\n", " \n", " \n", " \n", "def update_filter(change):\n", " \n", " # Iterate through each box, only keeping site_ids which are not filtered out by each box\n", " valid_site_ids = impacts['observed'].index.tolist()\n", " dfs = [impacts['observed']] + [impacts['forecasted'][key] for key in impacts['forecasted']]\n", " \n", " for box, df in zip(selectboxes, dfs):\n", " valid_site_ids = list(set(valid_site_ids).intersection(set(df[df.storm_regime.isin(box.value)].index.tolist())))\n", " site_id_select.options = sorted(valid_site_ids)\n", "\n", " # TODO Update options in selectboxes with number of observations?\n", " \n", "# Update the filter if any of the boxes changes\n", "for box in selectboxes:\n", " box.observe(update_filter, names=\"value\")\n", " \n", "# Display our widgets!\n", "widgets.VBox([filter_container,site_id_container,widgets.HBox([g_profiles,g_map]),g_twls,g_params])\n", "\n", "\n", "\n", "# For table\n", "# out = Output()\n", "# with out:\n", "# display(df_waves.head(3))\n", "\n", "# widgets.VBox([filter_container,site_id_container, out])\n" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "ExecuteTime": { "end_time": "2018-11-21T06:04:27.672922Z", "start_time": "2018-11-21T06:04:26.098269Z" } }, "outputs": [], "source": [ "# print(max(impacts['forecasted']['foreshore_slope_sto06'].query(\"site_id=='{}'\".format('NARRA0018')).R_high))\n", "# print(max(impacts['forecasted']['mean_slope_sto06'].query(\"site_id=='{}'\".format('NARRA0018')).R_high))\n", "\n", "# df_twl = twls['forecasted']['foreshore_slope_sto06'].query(\"site_id=='{}'\".format('NARRA0018'))\n", "\n", "df_waves_site = df_waves.query(\"site_id=='{}'\".format(\"NARRA0016\"))\n", "times = df_waves_site.index.get_level_values('datetime').tolist()\n", "\n", "\n", "df_tides_site = df_tides.query(\"{} <= datetime <= {}\".format(min(times), max(times)))\n", "mask = (df_tides.index.get_level_values('datetime') >= min(times)) & (df_waves_site.index.get_level_values('datetime') <= max(times))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "toc": { "base_numbering": 1, "nav_menu": { "height": "47px", "width": "262px" }, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }