diff --git a/src/analysis/observed_storm_impacts.py b/src/analysis/observed_storm_impacts.py index 29a5dde..e8537a2 100644 --- a/src/analysis/observed_storm_impacts.py +++ b/src/analysis/observed_storm_impacts.py @@ -36,6 +36,8 @@ def volume_change(df_profiles, df_profile_features, zone): for site_id, df_site in sites: logger.debug("Calculating change in beach volume at {} in {} zone".format(site_id, zone)) + + # TODO Change this query to an index query = "site_id=='{}'&profile_type=='prestorm'".format(site_id) prestorm_dune_toe_x = df_profile_features.query(query).dune_toe_x.tolist() prestorm_dune_crest_x = df_profile_features.query(query).dune_crest_x.tolist() @@ -44,7 +46,7 @@ def volume_change(df_profiles, df_profile_features, zone): prestorm_dune_crest_x = return_first_or_nan(prestorm_dune_crest_x) prestorm_dune_toe_x = return_first_or_nan(prestorm_dune_toe_x) - # If no dune to has been defined, Dlow = Dhigh. Refer to Sallenger (2000). + # If no dune toe has been defined, Dlow = Dhigh. Refer to Sallenger (2000). if np.isnan(prestorm_dune_toe_x): prestorm_dune_toe_x = prestorm_dune_crest_x @@ -145,6 +147,10 @@ def storm_regime(df_observed_impacts): df_observed_impacts.loc[swash, "storm_regime"] = "swash" df_observed_impacts.loc[collision, "storm_regime"] = "collision" + + # TODO We may be able to identify observed regimes by looking at the change in crest and toe elevation. This would be useful for + # locations where we have overwash and cannot calculate the change in volume correctly. Otherwise, maybe it's better to put it in manually. + return df_observed_impacts