diff --git a/notebooks/01_exploration.ipynb b/notebooks/01_exploration.ipynb
index 7d3e2d5..0430e6f 100644
--- a/notebooks/01_exploration.ipynb
+++ b/notebooks/01_exploration.ipynb
@@ -17,13 +17,8 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-19T02:55:24.823837Z",
- "start_time": "2018-12-19T02:55:16.373122Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
@@ -36,14 +31,8 @@
},
{
"cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-19T02:55:24.844241Z",
- "start_time": "2018-12-19T02:55:24.823837Z"
- },
- "scrolled": true
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
@@ -80,36 +69,13 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-19T02:57:41.855174Z",
- "start_time": "2018-12-19T02:57:13.770371Z"
- },
"pixiedust": {
"displayParams": {}
- },
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Importing waves.csv\n",
- "Importing tides.csv\n",
- "Importing profiles.csv\n",
- "Importing sites.csv\n",
- "Importing profile_features_crest_toes.csv\n",
- "Importing impacts_forecasted_foreshore_slope_sto06.csv\n",
- "Importing impacts_forecasted_mean_slope_sto06.csv\n",
- "Importing impacts_observed.csv\n",
- "Importing twl_foreshore_slope_sto06.csv\n",
- "Importing twl_mean_slope_sto06.csv\n",
- "Done!\n"
- ]
}
- ],
+ },
+ "outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
@@ -142,12 +108,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-11-27T23:02:57.631306Z",
- "start_time": "2018-11-27T23:02:57.615263Z"
- }
- },
+ "metadata": {},
"source": [
"## Profile/timeseries dashboard"
]
@@ -163,33 +124,14 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-19T02:59:16.919983Z",
- "start_time": "2018-12-19T02:59:15.659950Z"
- },
"code_folding": [
408
],
"hide_input": false
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a209da7c5b98416990efed34f38e82f0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "VBox(children=(VBox(children=(HTML(value='Filter by observed and predicted impacts:'), HBox(children=(V…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# Create widgets for filtering by observed and forecasted impacts\n",
"filter_title = widgets.HTML(\n",
@@ -665,13 +607,8 @@
},
{
"cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-18T21:44:39.877356Z",
- "start_time": "2018-12-18T21:44:39.864319Z"
- }
- },
+ "execution_count": null,
+ "metadata": {},
"outputs": [],
"source": [
"df_sites.site_no.to_csv('temp.csv')"
@@ -680,12 +617,7 @@
{
"cell_type": "markdown",
"metadata": {
- "ExecuteTime": {
- "end_time": "2018-11-22T22:52:36.039701Z",
- "start_time": "2018-11-22T22:52:36.035189Z"
- },
- "hide_input": true,
- "scrolled": true
+ "hide_input": true
},
"source": [
"## Confusion matrix\n",
@@ -694,32 +626,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-19T03:23:53.913428Z",
- "start_time": "2018-12-19T03:23:52.722678Z"
- },
"code_folding": [],
- "hide_input": false,
- "scrolled": false
+ "hide_input": false
},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6693731b472f4a9987be65ae4d528530",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "VBox(children=(VBox(children=(HTML(value='Filter by beach:'), SelectMultiple(index=(0, 1, 2, 3, 4, 5, 6…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# Create colorscale\n",
"rdylgr_cmap = matplotlib.cm.get_cmap('RdYlGn')\n",
@@ -823,12 +735,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-11T22:17:29.215527Z",
- "start_time": "2018-12-11T22:16:56.023Z"
- }
- },
+ "metadata": {},
"outputs": [],
"source": [
"# To output to file\n",
@@ -841,12 +748,7 @@
},
{
"cell_type": "markdown",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-03T23:02:47.179180Z",
- "start_time": "2018-12-03T23:02:46.367273Z"
- }
- },
+ "metadata": {},
"source": [
"## Identify sites with no results"
]
@@ -861,26 +763,9 @@
},
{
"cell_type": "code",
- "execution_count": 57,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-13T02:09:10.914191Z",
- "start_time": "2018-12-13T02:09:09.913622Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The following sites have no slope defined in the twl csv file:\n",
- "['ENTRA0078', 'ENTRA0079', 'MANNING0109']\n",
- "\n",
- "The following sites have no R_high defined in the twl csv file:\n",
- "['ENTRA0078', 'ENTRA0079', 'MANNING0109']\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"df_twls = twls['forecasted']['mean_slope_sto06']\n",
"\n",
@@ -904,1062 +789,9 @@
},
{
"cell_type": "code",
- "execution_count": 58,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-13T02:09:14.785919Z",
- "start_time": "2018-12-13T02:09:14.520986Z"
- },
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " prestorm_swash_vol | \n",
- " poststorm_swash_vol | \n",
- " swash_vol_change | \n",
- " swash_pct_change | \n",
- " prestorm_dune_face_vol | \n",
- " poststorm_dune_face_vol | \n",
- " dune_face_vol_change | \n",
- " dune_face_pct_change | \n",
- " storm_regime | \n",
- "
\n",
- " \n",
- " site_id | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " AVOCAn0009 | \n",
- " 4.5783 | \n",
- " 0.1110 | \n",
- " 4.4673 | \n",
- " 97.5750 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0001 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0002 | \n",
- " 97.9463 | \n",
- " 26.6638 | \n",
- " 71.2825 | \n",
- " 72.7771 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0003 | \n",
- " 70.7306 | \n",
- " 40.2020 | \n",
- " 30.7232 | \n",
- " 43.4369 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0004 | \n",
- " 98.2859 | \n",
- " 45.4986 | \n",
- " 52.6330 | \n",
- " 53.5509 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0005 | \n",
- " 95.5841 | \n",
- " 54.9753 | \n",
- " 40.5733 | \n",
- " 42.4478 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0006 | \n",
- " 113.0441 | \n",
- " 67.8912 | \n",
- " 45.2582 | \n",
- " 40.0359 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0007 | \n",
- " 65.3283 | \n",
- " 44.2821 | \n",
- " 21.4544 | \n",
- " 32.8409 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " AVOCAs0008 | \n",
- " 52.3933 | \n",
- " 45.2243 | \n",
- " 7.1728 | \n",
- " 13.6904 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BILG0001 | \n",
- " 20.3405 | \n",
- " 7.6207 | \n",
- " 12.7198 | \n",
- " 62.5344 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BILG0002 | \n",
- " 156.4205 | \n",
- " 98.1716 | \n",
- " 58.1659 | \n",
- " 37.1856 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOAT0001 | \n",
- " 23.8361 | \n",
- " 23.6865 | \n",
- " -0.0926 | \n",
- " -0.3885 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOAT0002 | \n",
- " 38.8398 | \n",
- " 14.0819 | \n",
- " 24.7579 | \n",
- " 63.7436 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOAT0003 | \n",
- " 73.6809 | \n",
- " 17.8545 | \n",
- " 55.8264 | \n",
- " 75.7678 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOAT0004 | \n",
- " 73.1954 | \n",
- " 23.1583 | \n",
- " 50.0372 | \n",
- " 68.3610 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOAT0005 | \n",
- " 53.5122 | \n",
- " 22.4537 | \n",
- " 31.0585 | \n",
- " 58.0400 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " BOOM0001 | \n",
- " 236.4540 | \n",
- " 218.4918 | \n",
- " 20.8725 | \n",
- " 8.8273 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " CATHIE0024 | \n",
- " 63.6452 | \n",
- " 38.4261 | \n",
- " 25.2191 | \n",
- " 39.6245 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " CATHIE0026 | \n",
- " 75.1334 | \n",
- " 43.7179 | \n",
- " 31.0940 | \n",
- " 41.3851 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " CRESn0069 | \n",
- " 37.5896 | \n",
- " 8.3495 | \n",
- " 29.2401 | \n",
- " 77.7877 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DEEWHYn0008 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DEEWHYn0009 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DEEWHYs0005 | \n",
- " 62.3514 | \n",
- " 24.9797 | \n",
- " 37.3716 | \n",
- " 59.9372 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DEEWHYs0008 | \n",
- " 1.0688 | \n",
- " 1.3640 | \n",
- " 0.0000 | \n",
- " 0.0000 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DIAMONDn0023 | \n",
- " 67.9416 | \n",
- " 21.1812 | \n",
- " 46.7603 | \n",
- " 68.8244 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DIAMONDs0006 | \n",
- " 74.9357 | \n",
- " 42.4382 | \n",
- " 32.2536 | \n",
- " 43.0416 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DIAMONDs0007 | \n",
- " 153.7639 | \n",
- " 127.9469 | \n",
- " 26.1595 | \n",
- " 17.0128 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DUNBn0031 | \n",
- " 36.5301 | \n",
- " 6.3289 | \n",
- " 30.2012 | \n",
- " 82.6748 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " DUNBn0055 | \n",
- " 189.5283 | \n",
- " 134.2760 | \n",
- " 56.7139 | \n",
- " 29.9237 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " ELIZA0002 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " STOCNs0170 | \n",
- " 198.2785 | \n",
- " 216.6368 | \n",
- " -18.6067 | \n",
- " -9.3841 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0175 | \n",
- " 136.2126 | \n",
- " 114.1715 | \n",
- " 22.4984 | \n",
- " 16.5171 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0179 | \n",
- " 67.7795 | \n",
- " 45.3981 | \n",
- " 22.3815 | \n",
- " 33.0210 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0180 | \n",
- " 166.0813 | \n",
- " 149.5195 | \n",
- " 15.3441 | \n",
- " 9.2389 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0181 | \n",
- " 90.1147 | \n",
- " 98.9808 | \n",
- " -9.1107 | \n",
- " -10.1102 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0182 | \n",
- " 67.8622 | \n",
- " 86.0118 | \n",
- " -18.1671 | \n",
- " -26.7705 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0183 | \n",
- " 125.9085 | \n",
- " 137.7342 | \n",
- " -12.6233 | \n",
- " -10.0257 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0184 | \n",
- " 146.6586 | \n",
- " 123.5371 | \n",
- " 23.2603 | \n",
- " 15.8602 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0185 | \n",
- " 141.5421 | \n",
- " 142.7279 | \n",
- " -1.2619 | \n",
- " -0.8915 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0186 | \n",
- " 115.9148 | \n",
- " 123.1507 | \n",
- " -7.8392 | \n",
- " -6.7629 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0187 | \n",
- " 126.5519 | \n",
- " 147.4371 | \n",
- " -22.4452 | \n",
- " -17.7359 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0188 | \n",
- " 345.5234 | \n",
- " 353.8766 | \n",
- " -11.3322 | \n",
- " -3.2797 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0189 | \n",
- " 171.6354 | \n",
- " 134.9192 | \n",
- " 35.8697 | \n",
- " 20.8988 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCNs0190 | \n",
- " 151.4113 | \n",
- " 116.6381 | \n",
- " 35.0161 | \n",
- " 23.1264 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCS0014 | \n",
- " 98.4991 | \n",
- " 57.3495 | \n",
- " 40.9006 | \n",
- " 41.5238 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " STOCS0043 | \n",
- " 36.4256 | \n",
- " 11.7208 | \n",
- " 24.7048 | \n",
- " 67.8225 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0005 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0015 | \n",
- " 56.2724 | \n",
- " 16.0428 | \n",
- " 40.2296 | \n",
- " 71.4908 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0016 | \n",
- " 97.8849 | \n",
- " 39.8432 | \n",
- " 58.0417 | \n",
- " 59.2958 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0017 | \n",
- " 36.5683 | \n",
- " 8.5380 | \n",
- " 28.0303 | \n",
- " 76.6520 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0018 | \n",
- " 42.1423 | \n",
- " 10.5498 | \n",
- " 31.5925 | \n",
- " 74.9662 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0019 | \n",
- " 39.6097 | \n",
- " 9.2404 | \n",
- " 30.3693 | \n",
- " 76.6714 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0020 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0021 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0022 | \n",
- " 1.1034 | \n",
- " 0.4478 | \n",
- " 0.6556 | \n",
- " 59.4166 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0023 | \n",
- " 4.4796 | \n",
- " 0.3356 | \n",
- " 4.1440 | \n",
- " 92.5081 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0024 | \n",
- " 61.8478 | \n",
- " 31.3007 | \n",
- " 30.5470 | \n",
- " 49.3907 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0025 | \n",
- " 45.9707 | \n",
- " 14.6125 | \n",
- " 31.3582 | \n",
- " 68.2134 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0026 | \n",
- " 32.8591 | \n",
- " 12.9479 | \n",
- " 19.9112 | \n",
- " 60.5957 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- " WAMBE0027 | \n",
- " 26.4132 | \n",
- " 18.7142 | \n",
- " 7.6990 | \n",
- " 29.1484 | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- " NaN | \n",
- "
\n",
- " \n",
- "
\n",
- "
242 rows × 9 columns
\n",
- "
"
- ],
- "text/plain": [
- " prestorm_swash_vol poststorm_swash_vol swash_vol_change \\\n",
- "site_id \n",
- "AVOCAn0009 4.5783 0.1110 4.4673 \n",
- "AVOCAs0001 NaN NaN NaN \n",
- "AVOCAs0002 97.9463 26.6638 71.2825 \n",
- "AVOCAs0003 70.7306 40.2020 30.7232 \n",
- "AVOCAs0004 98.2859 45.4986 52.6330 \n",
- "AVOCAs0005 95.5841 54.9753 40.5733 \n",
- "AVOCAs0006 113.0441 67.8912 45.2582 \n",
- "AVOCAs0007 65.3283 44.2821 21.4544 \n",
- "AVOCAs0008 52.3933 45.2243 7.1728 \n",
- "BILG0001 20.3405 7.6207 12.7198 \n",
- "BILG0002 156.4205 98.1716 58.1659 \n",
- "BOAT0001 23.8361 23.6865 -0.0926 \n",
- "BOAT0002 38.8398 14.0819 24.7579 \n",
- "BOAT0003 73.6809 17.8545 55.8264 \n",
- "BOAT0004 73.1954 23.1583 50.0372 \n",
- "BOAT0005 53.5122 22.4537 31.0585 \n",
- "BOOM0001 236.4540 218.4918 20.8725 \n",
- "CATHIE0024 63.6452 38.4261 25.2191 \n",
- "CATHIE0026 75.1334 43.7179 31.0940 \n",
- "CRESn0069 37.5896 8.3495 29.2401 \n",
- "DEEWHYn0008 NaN NaN NaN \n",
- "DEEWHYn0009 NaN NaN NaN \n",
- "DEEWHYs0005 62.3514 24.9797 37.3716 \n",
- "DEEWHYs0008 1.0688 1.3640 0.0000 \n",
- "DIAMONDn0023 67.9416 21.1812 46.7603 \n",
- "DIAMONDs0006 74.9357 42.4382 32.2536 \n",
- "DIAMONDs0007 153.7639 127.9469 26.1595 \n",
- "DUNBn0031 36.5301 6.3289 30.2012 \n",
- "DUNBn0055 189.5283 134.2760 56.7139 \n",
- "ELIZA0002 NaN NaN NaN \n",
- "... ... ... ... \n",
- "STOCNs0170 198.2785 216.6368 -18.6067 \n",
- "STOCNs0175 136.2126 114.1715 22.4984 \n",
- "STOCNs0179 67.7795 45.3981 22.3815 \n",
- "STOCNs0180 166.0813 149.5195 15.3441 \n",
- "STOCNs0181 90.1147 98.9808 -9.1107 \n",
- "STOCNs0182 67.8622 86.0118 -18.1671 \n",
- "STOCNs0183 125.9085 137.7342 -12.6233 \n",
- "STOCNs0184 146.6586 123.5371 23.2603 \n",
- "STOCNs0185 141.5421 142.7279 -1.2619 \n",
- "STOCNs0186 115.9148 123.1507 -7.8392 \n",
- "STOCNs0187 126.5519 147.4371 -22.4452 \n",
- "STOCNs0188 345.5234 353.8766 -11.3322 \n",
- "STOCNs0189 171.6354 134.9192 35.8697 \n",
- "STOCNs0190 151.4113 116.6381 35.0161 \n",
- "STOCS0014 98.4991 57.3495 40.9006 \n",
- "STOCS0043 36.4256 11.7208 24.7048 \n",
- "WAMBE0005 NaN NaN NaN \n",
- "WAMBE0015 56.2724 16.0428 40.2296 \n",
- "WAMBE0016 97.8849 39.8432 58.0417 \n",
- "WAMBE0017 36.5683 8.5380 28.0303 \n",
- "WAMBE0018 42.1423 10.5498 31.5925 \n",
- "WAMBE0019 39.6097 9.2404 30.3693 \n",
- "WAMBE0020 NaN NaN NaN \n",
- "WAMBE0021 NaN NaN NaN \n",
- "WAMBE0022 1.1034 0.4478 0.6556 \n",
- "WAMBE0023 4.4796 0.3356 4.1440 \n",
- "WAMBE0024 61.8478 31.3007 30.5470 \n",
- "WAMBE0025 45.9707 14.6125 31.3582 \n",
- "WAMBE0026 32.8591 12.9479 19.9112 \n",
- "WAMBE0027 26.4132 18.7142 7.6990 \n",
- "\n",
- " swash_pct_change prestorm_dune_face_vol \\\n",
- "site_id \n",
- "AVOCAn0009 97.5750 NaN \n",
- "AVOCAs0001 NaN NaN \n",
- "AVOCAs0002 72.7771 NaN \n",
- "AVOCAs0003 43.4369 NaN \n",
- "AVOCAs0004 53.5509 NaN \n",
- "AVOCAs0005 42.4478 NaN \n",
- "AVOCAs0006 40.0359 NaN \n",
- "AVOCAs0007 32.8409 NaN \n",
- "AVOCAs0008 13.6904 NaN \n",
- "BILG0001 62.5344 NaN \n",
- "BILG0002 37.1856 NaN \n",
- "BOAT0001 -0.3885 NaN \n",
- "BOAT0002 63.7436 NaN \n",
- "BOAT0003 75.7678 NaN \n",
- "BOAT0004 68.3610 NaN \n",
- "BOAT0005 58.0400 NaN \n",
- "BOOM0001 8.8273 NaN \n",
- "CATHIE0024 39.6245 0.0 \n",
- "CATHIE0026 41.3851 NaN \n",
- "CRESn0069 77.7877 NaN \n",
- "DEEWHYn0008 NaN NaN \n",
- "DEEWHYn0009 NaN NaN \n",
- "DEEWHYs0005 59.9372 NaN \n",
- "DEEWHYs0008 0.0000 NaN \n",
- "DIAMONDn0023 68.8244 NaN \n",
- "DIAMONDs0006 43.0416 NaN \n",
- "DIAMONDs0007 17.0128 NaN \n",
- "DUNBn0031 82.6748 NaN \n",
- "DUNBn0055 29.9237 NaN \n",
- "ELIZA0002 NaN NaN \n",
- "... ... ... \n",
- "STOCNs0170 -9.3841 NaN \n",
- "STOCNs0175 16.5171 NaN \n",
- "STOCNs0179 33.0210 NaN \n",
- "STOCNs0180 9.2389 NaN \n",
- "STOCNs0181 -10.1102 NaN \n",
- "STOCNs0182 -26.7705 NaN \n",
- "STOCNs0183 -10.0257 NaN \n",
- "STOCNs0184 15.8602 NaN \n",
- "STOCNs0185 -0.8915 NaN \n",
- "STOCNs0186 -6.7629 NaN \n",
- "STOCNs0187 -17.7359 NaN \n",
- "STOCNs0188 -3.2797 NaN \n",
- "STOCNs0189 20.8988 NaN \n",
- "STOCNs0190 23.1264 NaN \n",
- "STOCS0014 41.5238 NaN \n",
- "STOCS0043 67.8225 NaN \n",
- "WAMBE0005 NaN NaN \n",
- "WAMBE0015 71.4908 NaN \n",
- "WAMBE0016 59.2958 NaN \n",
- "WAMBE0017 76.6520 NaN \n",
- "WAMBE0018 74.9662 NaN \n",
- "WAMBE0019 76.6714 NaN \n",
- "WAMBE0020 NaN NaN \n",
- "WAMBE0021 NaN NaN \n",
- "WAMBE0022 59.4166 NaN \n",
- "WAMBE0023 92.5081 NaN \n",
- "WAMBE0024 49.3907 NaN \n",
- "WAMBE0025 68.2134 NaN \n",
- "WAMBE0026 60.5957 NaN \n",
- "WAMBE0027 29.1484 NaN \n",
- "\n",
- " poststorm_dune_face_vol dune_face_vol_change \\\n",
- "site_id \n",
- "AVOCAn0009 NaN NaN \n",
- "AVOCAs0001 NaN NaN \n",
- "AVOCAs0002 NaN NaN \n",
- "AVOCAs0003 NaN NaN \n",
- "AVOCAs0004 NaN NaN \n",
- "AVOCAs0005 NaN NaN \n",
- "AVOCAs0006 NaN NaN \n",
- "AVOCAs0007 NaN NaN \n",
- "AVOCAs0008 NaN NaN \n",
- "BILG0001 NaN NaN \n",
- "BILG0002 NaN NaN \n",
- "BOAT0001 NaN NaN \n",
- "BOAT0002 NaN NaN \n",
- "BOAT0003 NaN NaN \n",
- "BOAT0004 NaN NaN \n",
- "BOAT0005 NaN NaN \n",
- "BOOM0001 NaN NaN \n",
- "CATHIE0024 0.0 0.0 \n",
- "CATHIE0026 NaN NaN \n",
- "CRESn0069 NaN NaN \n",
- "DEEWHYn0008 NaN NaN \n",
- "DEEWHYn0009 NaN NaN \n",
- "DEEWHYs0005 NaN NaN \n",
- "DEEWHYs0008 NaN NaN \n",
- "DIAMONDn0023 NaN NaN \n",
- "DIAMONDs0006 NaN NaN \n",
- "DIAMONDs0007 NaN NaN \n",
- "DUNBn0031 NaN NaN \n",
- "DUNBn0055 NaN NaN \n",
- "ELIZA0002 NaN NaN \n",
- "... ... ... \n",
- "STOCNs0170 NaN NaN \n",
- "STOCNs0175 NaN NaN \n",
- "STOCNs0179 NaN NaN \n",
- "STOCNs0180 NaN NaN \n",
- "STOCNs0181 NaN NaN \n",
- "STOCNs0182 NaN NaN \n",
- "STOCNs0183 NaN NaN \n",
- "STOCNs0184 NaN NaN \n",
- "STOCNs0185 NaN NaN \n",
- "STOCNs0186 NaN NaN \n",
- "STOCNs0187 NaN NaN \n",
- "STOCNs0188 NaN NaN \n",
- "STOCNs0189 NaN NaN \n",
- "STOCNs0190 NaN NaN \n",
- "STOCS0014 NaN NaN \n",
- "STOCS0043 NaN NaN \n",
- "WAMBE0005 NaN NaN \n",
- "WAMBE0015 NaN NaN \n",
- "WAMBE0016 NaN NaN \n",
- "WAMBE0017 NaN NaN \n",
- "WAMBE0018 NaN NaN \n",
- "WAMBE0019 NaN NaN \n",
- "WAMBE0020 NaN NaN \n",
- "WAMBE0021 NaN NaN \n",
- "WAMBE0022 NaN NaN \n",
- "WAMBE0023 NaN NaN \n",
- "WAMBE0024 NaN NaN \n",
- "WAMBE0025 NaN NaN \n",
- "WAMBE0026 NaN NaN \n",
- "WAMBE0027 NaN NaN \n",
- "\n",
- " dune_face_pct_change storm_regime \n",
- "site_id \n",
- "AVOCAn0009 NaN NaN \n",
- "AVOCAs0001 NaN NaN \n",
- "AVOCAs0002 NaN NaN \n",
- "AVOCAs0003 NaN NaN \n",
- "AVOCAs0004 NaN NaN \n",
- "AVOCAs0005 NaN NaN \n",
- "AVOCAs0006 NaN NaN \n",
- "AVOCAs0007 NaN NaN \n",
- "AVOCAs0008 NaN NaN \n",
- "BILG0001 NaN NaN \n",
- "BILG0002 NaN NaN \n",
- "BOAT0001 NaN NaN \n",
- "BOAT0002 NaN NaN \n",
- "BOAT0003 NaN NaN \n",
- "BOAT0004 NaN NaN \n",
- "BOAT0005 NaN NaN \n",
- "BOOM0001 NaN NaN \n",
- "CATHIE0024 NaN NaN \n",
- "CATHIE0026 NaN NaN \n",
- "CRESn0069 NaN NaN \n",
- "DEEWHYn0008 NaN NaN \n",
- "DEEWHYn0009 NaN NaN \n",
- "DEEWHYs0005 NaN NaN \n",
- "DEEWHYs0008 NaN NaN \n",
- "DIAMONDn0023 NaN NaN \n",
- "DIAMONDs0006 NaN NaN \n",
- "DIAMONDs0007 NaN NaN \n",
- "DUNBn0031 NaN NaN \n",
- "DUNBn0055 NaN NaN \n",
- "ELIZA0002 NaN NaN \n",
- "... ... ... \n",
- "STOCNs0170 NaN NaN \n",
- "STOCNs0175 NaN NaN \n",
- "STOCNs0179 NaN NaN \n",
- "STOCNs0180 NaN NaN \n",
- "STOCNs0181 NaN NaN \n",
- "STOCNs0182 NaN NaN \n",
- "STOCNs0183 NaN NaN \n",
- "STOCNs0184 NaN NaN \n",
- "STOCNs0185 NaN NaN \n",
- "STOCNs0186 NaN NaN \n",
- "STOCNs0187 NaN NaN \n",
- "STOCNs0188 NaN NaN \n",
- "STOCNs0189 NaN NaN \n",
- "STOCNs0190 NaN NaN \n",
- "STOCS0014 NaN NaN \n",
- "STOCS0043 NaN NaN \n",
- "WAMBE0005 NaN NaN \n",
- "WAMBE0015 NaN NaN \n",
- "WAMBE0016 NaN NaN \n",
- "WAMBE0017 NaN NaN \n",
- "WAMBE0018 NaN NaN \n",
- "WAMBE0019 NaN NaN \n",
- "WAMBE0020 NaN NaN \n",
- "WAMBE0021 NaN NaN \n",
- "WAMBE0022 NaN NaN \n",
- "WAMBE0023 NaN NaN \n",
- "WAMBE0024 NaN NaN \n",
- "WAMBE0025 NaN NaN \n",
- "WAMBE0026 NaN NaN \n",
- "WAMBE0027 NaN NaN \n",
- "\n",
- "[242 rows x 9 columns]"
- ]
- },
- "execution_count": 58,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"df_impacts = impacts['observed']\n",
"df_no_obs_impacts = df_impacts[df_impacts.storm_regime.isnull()]\n",
@@ -2000,253 +832,9 @@
},
{
"cell_type": "code",
- "execution_count": 74,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-13T02:37:07.225965Z",
- "start_time": "2018-12-13T02:37:07.213921Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "231 sites have no dune crests:\n",
- "AVOCAn0009\n",
- "AVOCAs0001\n",
- "AVOCAs0002\n",
- "AVOCAs0003\n",
- "AVOCAs0004\n",
- "AVOCAs0005\n",
- "AVOCAs0006\n",
- "AVOCAs0007\n",
- "AVOCAs0008\n",
- "BILG0001\n",
- "BILG0002\n",
- "BOAT0001\n",
- "BOAT0002\n",
- "BOAT0003\n",
- "BOAT0004\n",
- "BOAT0005\n",
- "BOOM0001\n",
- "CATHIE0026\n",
- "CRESn0069\n",
- "DEEWHYn0008\n",
- "DEEWHYn0009\n",
- "DEEWHYs0005\n",
- "DEEWHYs0008\n",
- "DIAMONDs0006\n",
- "DIAMONDs0007\n",
- "ENTRA0005\n",
- "ENTRA0006\n",
- "ENTRA0077\n",
- "ENTRA0078\n",
- "ENTRA0079\n",
- "FOST0003\n",
- "GRANTSn0004\n",
- "GRANTSn0005\n",
- "GRANTSn0006\n",
- "GRANTSn0007\n",
- "GRANTSn0008\n",
- "GRANTSn0009\n",
- "GRANTSn0021\n",
- "GRANTSs0014\n",
- "HARGs0003\n",
- "HARGs0004\n",
- "HARGs0005\n",
- "HARR0056\n",
- "LHOUSE0001\n",
- "LHOUSE0002\n",
- "LHOUSE0003\n",
- "LHOUSE0004\n",
- "LHOUSE0012\n",
- "LHOUSE0013\n",
- "LHOUSEs0015\n",
- "MACM0008\n",
- "MACM0012\n",
- "MACM0013\n",
- "MACM0014\n",
- "MACM0015\n",
- "MACM0016\n",
- "MANNING0001\n",
- "MANNING0002\n",
- "MANNING0003\n",
- "MANNING0004\n",
- "MANNING0005\n",
- "MANNING0101\n",
- "MANNING0102\n",
- "MANNING0103\n",
- "MANNING0104\n",
- "MANNING0105\n",
- "MANNING0106\n",
- "MANNING0107\n",
- "MANNING0108\n",
- "MANNING0109\n",
- "MONA0001\n",
- "MONA0002\n",
- "MONA0003\n",
- "MONA0014\n",
- "MONA0015\n",
- "MONA0016\n",
- "MONA0017\n",
- "MONA0018\n",
- "MONA0019\n",
- "MONA0020\n",
- "MONA0021\n",
- "NAMB0027\n",
- "NAMB0041\n",
- "NARRA0001\n",
- "NARRA0028\n",
- "NARRA0035\n",
- "NINEMn0050\n",
- "OLDBAR0035\n",
- "PEARLn0001\n",
- "PEARLn0002\n",
- "PEARLn0003\n",
- "PEARLn0004\n",
- "PEARLs0003\n",
- "PEARLs0004\n",
- "PEARLs0005\n",
- "STOCNn0012\n",
- "STOCNn0013\n",
- "STOCNn0014\n",
- "STOCNn0015\n",
- "STOCNn0016\n",
- "STOCNn0017\n",
- "STOCNn0018\n",
- "STOCNn0019\n",
- "STOCNn0020\n",
- "STOCNn0021\n",
- "STOCNn0022\n",
- "STOCNn0023\n",
- "STOCNn0024\n",
- "STOCNn0025\n",
- "STOCNn0026\n",
- "STOCNn0027\n",
- "STOCNn0028\n",
- "STOCNn0029\n",
- "STOCNn0030\n",
- "STOCNn0031\n",
- "STOCNn0032\n",
- "STOCNn0033\n",
- "STOCNn0034\n",
- "STOCNn0035\n",
- "STOCNn0036\n",
- "STOCNn0037\n",
- "STOCNn0038\n",
- "STOCNn0039\n",
- "STOCNn0044\n",
- "STOCNn0059\n",
- "STOCNn0062\n",
- "STOCNn0063\n",
- "STOCNn0064\n",
- "STOCNn0065\n",
- "STOCNs0022\n",
- "STOCNs0025\n",
- "STOCNs0026\n",
- "STOCNs0031\n",
- "STOCNs0045\n",
- "STOCNs0048\n",
- "STOCNs0049\n",
- "STOCNs0053\n",
- "STOCNs0055\n",
- "STOCNs0056\n",
- "STOCNs0057\n",
- "STOCNs0058\n",
- "STOCNs0059\n",
- "STOCNs0060\n",
- "STOCNs0061\n",
- "STOCNs0062\n",
- "STOCNs0073\n",
- "STOCNs0079\n",
- "STOCNs0088\n",
- "STOCNs0089\n",
- "STOCNs0090\n",
- "STOCNs0091\n",
- "STOCNs0092\n",
- "STOCNs0093\n",
- "STOCNs0094\n",
- "STOCNs0095\n",
- "STOCNs0096\n",
- "STOCNs0097\n",
- "STOCNs0098\n",
- "STOCNs0099\n",
- "STOCNs0100\n",
- "STOCNs0101\n",
- "STOCNs0102\n",
- "STOCNs0103\n",
- "STOCNs0104\n",
- "STOCNs0105\n",
- "STOCNs0106\n",
- "STOCNs0107\n",
- "STOCNs0108\n",
- "STOCNs0109\n",
- "STOCNs0110\n",
- "STOCNs0111\n",
- "STOCNs0112\n",
- "STOCNs0113\n",
- "STOCNs0114\n",
- "STOCNs0115\n",
- "STOCNs0116\n",
- "STOCNs0117\n",
- "STOCNs0118\n",
- "STOCNs0119\n",
- "STOCNs0120\n",
- "STOCNs0121\n",
- "STOCNs0122\n",
- "STOCNs0123\n",
- "STOCNs0124\n",
- "STOCNs0125\n",
- "STOCNs0126\n",
- "STOCNs0127\n",
- "STOCNs0128\n",
- "STOCNs0137\n",
- "STOCNs0141\n",
- "STOCNs0144\n",
- "STOCNs0150\n",
- "STOCNs0155\n",
- "STOCNs0156\n",
- "STOCNs0157\n",
- "STOCNs0158\n",
- "STOCNs0159\n",
- "STOCNs0160\n",
- "STOCNs0167\n",
- "STOCNs0168\n",
- "STOCNs0169\n",
- "STOCNs0170\n",
- "STOCNs0175\n",
- "STOCNs0179\n",
- "STOCNs0180\n",
- "STOCNs0181\n",
- "STOCNs0182\n",
- "STOCNs0183\n",
- "STOCNs0184\n",
- "STOCNs0185\n",
- "STOCNs0186\n",
- "STOCNs0187\n",
- "STOCNs0188\n",
- "STOCNs0189\n",
- "STOCNs0190\n",
- "STOCS0014\n",
- "STOCS0043\n",
- "WAMBE0005\n",
- "WAMBE0015\n",
- "WAMBE0016\n",
- "WAMBE0017\n",
- "WAMBE0018\n",
- "WAMBE0019\n",
- "WAMBE0020\n",
- "WAMBE0021\n",
- "WAMBE0022\n",
- "WAMBE0023\n",
- "WAMBE0024\n",
- "WAMBE0025\n",
- "WAMBE0026\n",
- "WAMBE0027\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"df_no_crests = df_profile_features_crest_toes.query('profile_type==\"prestorm\" & (dune_crest_x != dune_crest_x)')\n",
"print('{} sites have no dune crests:'.format(len(df_no_crests)))\n",
diff --git a/notebooks/04_profile_picker.ipynb b/notebooks/04_profile_picker.ipynb
deleted file mode 100644
index ce31898..0000000
--- a/notebooks/04_profile_picker.ipynb
+++ /dev/null
@@ -1,743 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-05T00:54:50.235522Z",
- "start_time": "2018-12-05T00:54:42.731587Z"
- }
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "import os\n",
- "import numpy.ma as ma\n",
- "\n",
- "import numpy\n",
- "from pyearth import Earth\n",
- "from matplotlib import pyplot\n",
- "\n",
- "np.random.seed(2017)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-05T00:54:54.936556Z",
- "start_time": "2018-12-05T00:54:50.271465Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Importing profiles.csv\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "C:\\Users\\z5189959\\Desktop\\nsw-2016-storm-impact\\.venv\\lib\\site-packages\\numpy\\lib\\arraysetops.py:522: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
- " mask |= (ar1 == a)\n"
- ]
- }
- ],
- "source": [
- "def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
- " print('Importing {}'.format(csv))\n",
- " return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
- "\n",
- "df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-04T23:49:04.770025Z",
- "start_time": "2018-12-04T23:49:04.265699Z"
- }
- },
- "source": [
- "## Try using pyearth"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 73,
- "metadata": {
- "ExecuteTime": {
- "end_time": "2018-12-05T01:54:00.320555Z",
- "start_time": "2018-12-05T01:53:58.905803Z"
- },
- "code_folding": [
- 5,
- 20,
- 31,
- 40
- ],
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4ZGWZ8P/vXXtlreyd9J5uOr3TYDeNg4CAwoALig6LDuIy4juKzshwiSC+Oj+HURzGV0bHUUYRdQRkUVBEhh1UaKQbeqW7odNL9j2VVCW1n+f3Ry2k0kkn3Z2kstyf68qV1HlOznlOVXLu8+xijEEppdTcZct1BpRSSuWWBgKllJrjNBAopdQcp4FAKaXmOA0ESik1x2kgUEqpOU4DgZrzROQsEXlTRIIi8gER+YOIXJNK+7iI/CnXeVRqMmkgUMdFRL4uIv+T63xMsP8P+L4xpsAY87Ax5mJjzM8m84Qi8k4RaRpjn7tFxIjIGUO2LReRowb/pPaNi0jNsO1fF5FYKsj5ReRFEXn7sHxYqfSAiOwXkU+McHwRkYMi8voIaW4RuUtE+kWkTUSuH5Z+gYjsE5FBEXlWRBYPSbs8ladBEXluhGOfLyKvpo59UESuPdZ7pk6MBoI5SEQcc+Xc4zzfYmDPZOflBPUA/3KsHUQkH/gQ0Ad8dIRdfmWMKQDKgWeBB4alt6TSi4AvAv8tInXD9jkHqARqRWTTsLSvA6eQfB/PA74kIn+dyls58Gvgq0ApsBX41bDr+y7wrRGuywn8BvgRUAxcAXxHRE4d8Y1QJ0wDwSwhIodF5CYReV1EekXkpyLiSaW9U0SaRORGEWkDfpra/l4R2T7kSXH9kOPdKCLNQ54SL0j9c98MXJF6gtyR2rdGRH4rIj0ickBEPj3kOF8XkQdF5H9EpB/4eGrbA6ltARHZJSIrUvnvEJFGEblwgq/106m89aTyWpPaXg/UAr9LXZNbRJ4Tkb8b5dwrReTJ1HH2i8jlx8jnJ0Rkb+oaD4rIZ1Lb84E/ADWpcwaHP8kP8TNgvYicO9p5SAYBP8mSzTWj7WSMiQO/BOaLSMUI6cYY8xjJm/P6YcnXAI8Aj41wjo8B3zDG9Bpj9gL/DXw8lXYZsMcY84AxJkwyaJwqIitT53zKGHM/0DJClktJBqdfpPL2CrAXWD3aNaoTo4FgdvkocBGwDFgB3DIkbR7Jf6zFwLUicjpwF/AZoIzkU9dvUzfCOuA6YJMxpjB1zMPGmMeBfyX1hGmMST+Z3Qs0ATXAh4F/FZELhpz7UuBBwEfyRgTwPuAXQAnwGvC/JP8e55O8of1oAq/1fOCbwOVANXAEuA/AGLMMaADel7qmyGgnTN3AnwTuIfl0fBXwAxFZM8qvdADvJXkz+wTw/0TkdGPMAHAxqSfx1NdIN0KAQZLv+a3HeC+uIfkZ3AesTH22I+XfRfKm3Q30jpBuE5H3kyw5HBiyPY/k5/rL1NeVqWMhIiUkP/cdQw61A0i/J2uGpqWuvX5I+qiMMe2p6/qEiNglWaW1GNA2mwmmgWB2+b4xptEY00PyxnHVkDQL+JoxJmKMCQGfBn5kjHnZGJNI1YlHgDOBBOAGVouI0xhz2BhTP9IJRWQh8A7gRmNM2BizHfgxcPWQ3V5K1b1bqXMD/NEY87+pp9QHgArgW8aYGMkb2hIR8U3QtX4UuMsY82rqRn8T8HYRWXKM44/kvSQD4k+NMXFjzKvAQyRvkkcxxvzeGFOfepp9HngCOPs4zwnJoLhIRC4eniAii0hWx9yTunE+zdFP7JeLiB9If+4fTr3vaTVD0n8DXG+MeW1I+mUk/zaeAB4FHMB7UmkFqe99Q/bvAwqHpA9NG54+lnuB/5s6/x+BrxhjGsf5u2qcNBDMLkP/QY6QfFJL60wVzdMWA/+Uqhbyp24EC4EaY8wB4B9JFuM7ROS+Y1Rd1AA9xpjAsHPPHyVfae1Dfg4BXcaYxJDX8NZNZiTHc601qX0AMMYEST4VD83jeCwGNg97zz5KsgRyFBG5WES2pKqR/MAlJJ+2j0sqeH0j9SXDkq8G9qYCMCSf2D+Sql9Pu98Y4wOqgN3A24YdoyWVXgT8B3D+sPRrUseIp/Lya94KNsHU96Ih+xcBgSHpQ9OGp48qVX30K5KlGBfJUsSXROQ9x/xFddw0EMwuC4f8vIjsetfhPU0agVuNMb4hX3nGmHsBjDH3GGPeQfLmZ4DbRjlOC1AqIkOf8BYBzcc490Q4nmttIXkdQKaKp4zsPI5HI/D8sPeswBjz98N3FBE3ydLC7UBV6kb7GG/dyI/3PfkpyQbTDw7b/jGSDbhtqTaR75AMNkeVHowxXSSrAr8uItUjpEeAG4F1IvKB1HUsIBkY/nbIOT4MXCIi5caYXqAVGNqAeypvNb7vGZqWeu+XMb7G+bXA/lTJ0TLG7Ad+P9K1qZOjgWB2+ZyILBCRUpKNur86xr7/DfwfEdksSfki8h4RKRSROkl223MDYZJP6Omn9XaS1TY2gFQx/UXgmyLikWSD86d4qy1gshzPtd5Dsp55Q+qa/hV42Rhz+DjP+SiwQkSuFhFn6muTiKwaYV8Xyeq1TiCeqtYZ2gDeDpSJSPF4Tpyqyvk6yRs1AKk682XAGcCG1Ndaktc7YqOxMWYfyfaYL42SHgX+nWR1DCRLHG8AdUPOsYJkm1C6Ou7nwC0iUpJ6iv80cHcq7TfAWhH5UKpB//8CO1P5IFX37yFZ3WRL/Q2lSzOvAaek/hZFRJaRrJ4b2h6hJoAGgtnlHpL1uAdTX6N2OzTGbCX5D/t9kg2HB3irp4ebZHe+LqCNZMPozam0dNfDbhF5NfXzVcASkk/evyFZP//kRFzQMRzPtT5NsvviQySfXpcBVx7vCVPVXxemfreF5HtzG8n3a6R9vwDcT/L9/Qjw2yHp+0jWfx9MVTONVvU21L2p/KddAzxijNlljGlLfwF3AO9NBcmR/BvJRvTKUdLvItkm8b7UOX4w9Pipc/yQt4LN10g2AB8Bngf+LdWxAGNMJ8leTbem3ofNZL/3V5N80Pgvku0nIZIPKaTapT5JsrqqP3Xsh4CfjPE+qeMkRhemmRVE5DDwd8aYp3Kdl8k2l65VqamgJQKllJrjNBAopdQcp1VDSik1x2mJQCml5ricTT52PMrLy82SJUtynQ2llJpRtm3b1mWMOWpeqeFmRCBYsmQJW7duzXU2lFJqRhGRI2PvpVVDSik152kgUEqpOU4DgVJKzXEaCJRSao7TQKCUUnPcjOg1NNMZY4hEIsRiMZxOJ263G5Hh08orpVRuaCCYZJZl0dTUREdHBwBut5vKykoqKys1GCilpgUNBJPIsizq6+vZvn07lmVht9txOp10dnbicrnw+XwaDJRSOaeBYJIYY2hqamLHjh10d3cjIsRiMUQEp9NJIpFg3bp1VFVVaTBQSuWUNhZPkkgkQnt7O8YYXC4XALFYjEgkQjQapbW1lZ07d+L3+9GJ/5RSuaQlgkkSi8Ww2+04HA7sdjuhUIh4PA5AIpFgcHCQw4cPIyJaMlBK5ZQGgknicCTf2nQvoWAwiDEm005gWRaWZdHS0oLNZqOwsJD8/Pwc51opNRdpIJgExhj6+/szbQIABQUFGGMybQU2mw3LsgiFQhw4cACPx8OZZ56J3W7Pce6VUnONthFMgkgkQl9fH/Pnz2f16tWsW7cOp9NJa2srRUVFeDwejDF4vV4gGTgOHDjAG2+8gWVZOc69Umqu0UAwCdJP/DabDbfbTSgU4k9/+hNdXV1s27aNRCKB3W4nFothWRbGGKLRKLt37+bgwYMaDJRSU0oDwSRItwEYYwgGg9x7770kEgkAQqEQu3btYmBgAK/Xm6k6CoVCBAIBXn31VQ0GSqkppYFgErjdbnw+HwMDAwwODhKLxbLS0wPNjhw5QiKRIJFI4PV6McbQ19fH9u3bNRgopaaMBoJJICKUl5dTXl7Ok08+SSQSGXG/trY2GhoacLvdWJZFJBJhcHCQnp4etm/fTmNjo44xUEpNOg0Ek8AYQ2dnJ7/85S85cOBAVtrwsQJ9fX3s3r2bwcFBEolEJr2np4ddu3bpgDOl1KTTQDAJIpEIjz/+OLt3787avmDBAm644QZKSkqytofDYd544w36+vpwOBwkEglCoRCNjY1s3bo1M0JZKaUmgwaCSfDnP/+ZF198MWtbcXExn/zkJ1m+fDk333wzy5Yty0q3LIvGxka6uroy4w9EhI6ODvbv308oFJrKS1BKzSEaCCbYnj17ePDBB7O2eb1eLrvsMsrKygAoKirii1/8ImedddZRv9/c3ExjYyM2my3TrfTIkSPU19dr47FSalJoIJhADQ0N/OhHP8q6Ydvtdi699FJqa2txu92Z7U6nk6uvvporrrgCmy37Y+jv7+fAgQNEo1EGBwfp7+9n165d2pNIKTUpJi0QiMhdItIhIruHbCsVkSdF5M3U95JjHWMm6erq4nvf+15WDyER4fLLL+fMM8+koqLiqIZiEeH888/nC1/4Anl5eVlpoVCIN954g8HBQex2OwMDA9qtVCk1KSazRHA38NfDtn0ZeNoYcwrwdOr1jDcwMMD3vvc9+vv7s7afd9551NTUEAgEjvn7q1at4qabbqK6ujprezwep76+np6eHkKhEL29vTrgTCk14SYtEBhjXgB6hm2+FPhZ6uefAR+YrPNPpUceeYS2trasbWeeeSZnn302+fn5+P3+UccSpFVWVnLjjTeybt26rO3GGBoaGujo6CCRSOiAM6XUhJvqNoIqY0wrQOp75RSff1Jc+N4LCfjeeurvKe7hzHeeCSSrf2w221Gji0fi9Xr57Gc/y0UXXXRUWmdnJwcOHCAQCOiAM6XUhJq2jcUicq2IbBWRrZ2dnbnOzqgGY4N8+Ncf5j7vfezN20urq5Xf5P2Gb2/9NpB8orcsC6fTOa7j2Ww2LrvsMj75yU9m1jRICwQCHDp0iHA4rAPOlFITZqoDQbuIVAOkvneMtqMx5k5jzEZjzMaKioopy+DxCMfDvP/e9/P8kecxYvhj8R95rPQxVpes5rpV1zE4OMjAwAA+ny+rx9B4bN68mRtuuIHCwsKs7dFolL1799LZ2akDzpRSE2KqA8FvgWtSP18DPDLF558wkXiEy351GU8fevqtjQJ1pXX88yn/TFlBGT6fj4ULF47YY2g8li5dyi233MLChQuztluWRUNDA52dnbS3t+uAs2nMGEM4HCYQCBAOhzVgq2lpMruP3gu8BNSJSJOIfAr4FvBuEXkTeHfq9YwTS8S44sEr+MOBP2RtX1G0gm+v+zZEoKOjg56enjF7DI3F5/PxpS99ibVr1x6V1tzczL59+zh48CD79+/PTHWtpof0nFMNDQ20t7dngrcGAzXdTNpSlcaYq0ZJumCyzjkZjDGEQiF6enoYGBggGo/yTy/+E0+2PJm13yL3Im6svpGe5h5EBIfDQV5eHn6/P7Mq2YlyuVx89rOf5f777+e5557LSuvs7GRgYIB4PI5lWWzYsEGXu5wExhgikQixWCyzDvVYpbxwOExHRwdutxuHw4HD4ZiQvwelJpquWXwMxhja29vZvXs3ra2t9PT2cHf/3WxPbM/ar1IqucZ2Dd2N3SQSCQoLC9m7dy+BQIB58+YRi8VO+h/fbrdzxRVXUFZWxsMPP5z19D84OMjOnTuJRqN4vV5Wrlx51GhldXzSVToDAwOZh4FQKITdbseyLHw+3zGr/IwxtLW10dXVlVlrorCwEJfLNSF/D0pNJA0EKcOf+FwuV6aXjt/vR2zCvYP3HhUEyqSMzxd/nnwrn0QikXlajMViHDp0CIBFixZNSB5tNhvvete7KC4u5t57781qF4hGo+zatYtoNIrL5aK2tnZGBYMTeeKezLx0dHRw+PBhgsEgoVCIaDTK/PnzqaysxOPxjPlkHw6HMz260uM9WltbcTgcRKNR8vLyyM/Pp7CwEI/Hk7NrVQo0EABv1eX6/X5sNhuJRALLsggEArS1tdHX18fPe3/Oy5GXs36vREq41nUtxbZiEiaR6e5ps9kQEYwxxOPxCc2rzWZj06ZNuFwu7rvvPvx+f9Z17Nu3j0gkwoc+9CGWLVs2I4KBZVk0NzdnZl4NhUJ4PB4qKiooLS2lqKhoSq8jEonQ3t5OT08PsViMYDCI3+/PrDhXUVGRCfbDA0G6JHHw4EE6OzsJh8OZlej6+/ux2+2ZIFdSUsLixYtZvHgxlZWVGgxUzsz5QGCMob+/n5aWlkwR3rIs9u/fj8vlIhgM8vPOn/NC5IWs3yuWYj7t/DQl9pJM459lWXg8HoqLi4nFYjgcDsrKyiYlGKxfv55gMMgTTzxBR0d2L9xDhw5x991389GPfnTaVxMZY2hubuaNN97A7/fT2dlJNBolGo1SWFhISUkJtbW1bNiw4ahxFZPBsiy6uro4ePBgplrH7/cTjUaxLAu3200oFGLhwoVHjQ1JP1C0t7fT3NxMT08PwWCQXbt24Xa7cTqdlJaWYrfbyc/PZ3BwEL/fj9frpbi4WKuLVM7M6UCQ/sdtamqioaGBSCRCfn6yiqetrQ2Px8Mv2n9xVBAopJBrXddSZivD6XRmqpIAEokEAwMDuN1u5s2bh9frHfdgsuNht9s5/fTTiUajbNu2jYMHD2b1Runq6uInP/kJH/vYx1i/fv20fdoMh8O0trbS19dHZ2dnpkTgcDgIBAIkEgn8fj/xeJxNmzZNaEP40HYAy7KIx+O8+eabWetCBAIB4vF4pnTX39+fKTmKCP39/fT19dHX10dvby8dHR0EAoHMMdOi0SiQnHU2PdrcbrfT29uL0+mkrKyM0tLSnFaJqblrTgeCSCRCT08Pvb29tLe343Q66e7uBpI3qIcDD/NM+Jms3yl1lXLXOXdRW1SLw+FARHC73eTl5eFwOGhpaaGvr4+CggK8Xi8lJSXHPZhsvPLy8lizZg2JRLJaqr6+Pqv0EQwG+fGPf8ynPvUpNmzYkPW76QbQ3t5e4vE4xcXFU14Fk25Q7enpyVTDQDLIpds6EokENpuNffv2UVRUxJIlS7LaYk70ppluBzhy5AiBQICWlha6uroIhULE43ESiQTxeJxIJEIikchUF9bX12OMYdu2bSd03nSVU3V1NWVlZZmV6AoKCggEApSUlJzwuBOlTtScDgTRaJRAIEBnZyder5dYLMbg4CCRSIRnzbM8nXg6a/8iRxEPvv9Bzltz3qjHLC0tnbJGTxGhqqqKTZs2ISIUFhayZ8+eoxqRf/jDH3L55Zdz3nnnZdou2tvb2bNnD319fRhjcLvdLFu2jLq6uikLBpFIhGAwiN1ux+PxMDg4SDweJx6PIyIkEolMI7Ixhi1btrB//35KS0sz1SyLFi3C6/WO+h5Ho9Gsp/b0V09PD62trZmn9/QT+1SIxWKZMQVVVVWUlZXR3t6Ox+Oht7dXu5eqKTdnA4Exhr6+PlpbW4lEIsTjcaLRKCLCi7YXeTqaHQQKHYXcvv52Tl9w+jGPKyJ4PJ4p+0cWEXw+H+vWrctUXxw8eDBrSmxjDL/61a9oaGjgox/9KIlEgtbWVgYGBigpKcFmsxEKhWhqaqKmpobi4uIpyXskEqG/vz/TK8flchGNRnE6nYTDYUSEWCyG3W4nEAjg9/vp6OjA6XTicDhwOp0UFRVl1oDu6+sjGAwSDAYzN/xcjrgWEVwuV2alueFCoRCHDx/G7/fjdDopLi6mtLRUu5eqKTdnA0EkEmFwcJB58+bR19eH3W4nHA7zx/gfeSz6WNa+XpuXb6/7NmefcvZRc/9MB0NLBuFwGIfDQWtrK83NzVn7vfTSS7S0tPDxj388a13k9FO4MYaBgYEpCQSWZdHS0kJjYyN5eXkUFhYSj8dxuVzk5+fT19dHV1cXAwMDxGIxotFoJp/pkkKuOJ3OTJ69Xi8OhwPLsjLvvcvlwm6343Q6KS8vZ8mSJQwODrJ792527tx5VN79fj9btmyhtbWV888/f1LalJQ6ljkbCNJPmtXV1YTDYdra2ni853EeCWdPf+Sxebj7gru5aM1FFBYWTtseOOmSwerVqwkEAixcuBCbzUZzc3NWo+WRI0e44447ePe7341lWQSDwUwvnXTJwBgzodVZ6a6T6ad0v9/P4cOHaWhoYHBwkFgsRiwWy1QB5Ur65m232yksLKSmpoZFixbh8/kyVYetra309PTQ399POBzOtB8YY3A6nZkHhXRwKCoqorCwkEWLFnH22WfT2trK/fffz969e486f0tLC+Xl5ZPWpqTUaOZsIHA6nViWhc1mo7a2lucCz/GrwK+y9nHb3Nx57p18+MwPT9sAMJSIsHTpUvr6+ti1a1fmBnbkyJGshXH8fj8PPPAA+fn55OXlUVBQQGFhIUuXLiUajRKJREbsHx8Kheju7s60K6SrbtKlikAgcFRdfLq6Jtc3eIfDgd1ux+Vy4Xa78Xg85OfnU1VVlRnkZVkWLpeL+fPnc+qpp5Kfn58JiOFwmL1795JIJDJP/OkxJ+l90l2PXS5XZqDYmjVrKCsry7QV1dTU8JnPfIYnn3ySJ598MqvKaNmyZSxdulQbitWUm7OBwO12U1xcTGdnJw8fepivv/r17HS7m/svvZ/3rnnvjAgCaXa7PdPnfvv27RQUFOByuTh48CCDg4NZ+w4MDDAwMEB6vYedO3dis9koLS2ltLSUwsJC3G53po6+vb2dQCCQqabJ5QppIpK5wTscDmw2W9Z3u92e6Wqavmmng5Hdbs/0CGpvb6empoba2loAamtrKS8vP+ozT5dajDGZr+HSx4XkMqNLly6lurr6qGN5PB42b95Me3s7W7duzWy3LIvu7m7tNaSm3JwNBGmPNT7G1179Goa3/rFddhePXPkIFy0/eqWwmcBut2dmK3399dfp6+ujoqKCI0eOjPm76QFVXV1dk53NEaUH5A39ysvLw+VyZerfRYTOzk6am5uJRqPY7fZMg78xBofDkXXDHnpTNcZkuqSmp3ZIjw1Ys2bNqDfh9HiRdLvK0H3SN/r0MQsKCtiwYcOoPbBEhMrKSs4444ysQNDY2EhbW1um7UGpqTJnA0EkEuH+3fdz8ys3Y/HWk63D5uDBv3lwxgaBNLvdzrp16ygsLGTLli3YbDaKiooYGBjIyXTV6af39ECq9I09Pz8ft9vN4sWLOf/88/H5fGMeyxjD4OAgu3bt4s0338xq10hXU6VLAMNLLcYYbDYbNpstk4d0w29xcfGoT+Jut5vq6mq6u7sJBoNYloVlWZlzOhwOSktLmT9/PsuWLcu00YxGRFi8eDEej4dwOAwkexHt27ePgoICrSJSU2rOBoJH9j3C9X++noR566ZoFzt3v+du3lf3vhzmbOLYbDaqq6uZP38+sViMFStWEAgEiEQimRtyKBTKNNimB1Mdj6H17+mn5vSNNj8/H4fDkRmMlb5ppp/a7XY7Xq+X0tJS3va2t427t5KIkJ+fzxlnnEFdXR1dXV2Zxtqenp5Ml8yBgYGjFoNJB4h0FZLH48kMCEyPDh/tnFVVVRQVFWWmJLcsi1gshs1my2prGe8kch6PhwULFnDgwIHMtoaGBubPn091dbWWCtSUmROBYPjMlk83PM3Vv7uauHnrpmcTG7e//XY+tPpDOczpxPN4PKxYsYJQKJSZ/TKRSGC32ykoKGDevHmZ1+l+/cFgkO7u7qyGzOLi4qx693T/+HR1idPpJBaLZcYCpNlstsxTebqqJt1Ya7fbKS8vZ926dSxcuPC4n4BtNhslJSWZcQQAS5YsYdWqVUfdrNNtCn19fTQ3NxMIBDKliOLiYqqrq8fsrSMi5OXlkZeXd1z5HI3b7aa2tjYrEHR3dxMKhQgGgxoI1JSZ9YEgPZVAemWol9pf4vMvfZ6YFcvsIwhfXfdVrlp/1azruicizJs3j+Li4qybYzwex+PxUFpayqFDh9ixYwexWAzLsjINzGkulwvLsnA6nXi9XmpqaqipqaG7u5uWlpZMV0ogc3O1LCtTH5/+DmQGg+Xl5VFRUcHq1avHrEY53us91s166EJDoVCIvLw8SkpKjjk6ebKICKeddhpPPPFEZlt6xPO8efMoKyubUR0V1Mw16wNBehrgeDzOtq5t3LD9BqIme5TndYuv49Ill1JUVDQr62XHujmmq2QOHDiAzWZjYGAg8ySfrsIpLi6moKCAtWvXUldXl1mgpa+vLzMmoKmpiXg8Tl5eHolEgnA4nOlLX1JSkplfJ10aycUNeKKf6k9WdXU1JSUl9Pb2ZrZ1dHRQX1+Px+OZcetKqJlp1geC9HQDe/r3cNPrNx0VBK6puIbzfednnpLnIofDwemnn87y5cvp7e0lGo2SSCQy8/A4nU48Hg9VVVUsWLAgq5dMSUkJPp+PFStW8PLLL3PgwAHy8vIyVUA2m42VK1dSW1ubk6fu6c7j8VBXV8eWLVsy23p7e/H7/bz66qsAGgzUpJvVgcCyLNra2nip4SW+1fwtwiaclX6l70rO9Z5LNBrN1HfPVTabDZ/Pl9VrZ7yrhqUbbzdv3pyZqsPj8WSqgZYtW6b13aMQETZu3JgVCPr6+rAsi1AoxP79+3G73SxYsECDqJo0szYQGGNoamri2X3PclvzbYRM9uRjlzgv4e3ydkKhEAUFBVRWVs669oGTdbwT6OXl5bFy5Uo6Ozszo7YrKip0ArUxrFq1KquRPV0i83q9uN1uenp69H1Uk2rWBoJQKMSTO5/kK/u/wqDJHlF7ifcS3u16Ny6Xi+LiYjZs2KBPXBMgPVAqvUJbrtcenikcDgd1dXXs2rUrs623tzezUI3D4dAZSdWkmpUVj8YYntv9HNdvv55gIpiVdnH+xVxedTmlpaVUV1ezadOmGbO270yQLkXoouzHZ/369Vmvu7u7MyWCdKO9UpNlVv517WndwzXPXEN/oj9r+wXeC7h6/tWUlJSQl5fHkiVLsho/lcqV9JQgaX6/PzMtOEB/f78GVjVpZmUgeOD1B+iKZM+Vc0nZJXzhlC+wevVqvF4v+fn5+o+lpo10CbW1tRUgEwTmz59PYWEhfr9fF7hXk2ZWBoIvn/VlOno7+OHrPwTg/TXv53OLP8fKlSvvDc5TAAAgAElEQVS1LUBNW2vWrMkEAoD9+/fjdDpxuVz4fD7mzZungUBNilkZCDweD/987j/jsrloCjZxy6m3UF5Wzvz58zUIqGlr7dq1PPXUU5nXnZ2dmUV9gsFgZq4j/RtWEy0ngUBEvgj8HWCAXcAnjBnWyf/kjk9FRQW3vee2zFq42ntFTXfLly/PzNkEyVHxgUAgU5WZnjBQSwVqok15K6mIzAe+AGw0xqwF7MCVk3AePB4PRUVF2hagZgSn08mKFSuytgUCAQoKCigqKsoKEkpNpFx1l3EAXhFxAHlAS47yodS0sm7duqzXra2tmQn8IpFIZvZXpSbSlAcCY0wzcDvQALQCfcaYJ4bvJyLXishWEdmaXkpRqdlueDfSnp4eAoEAHR0dtLS0cOTIkZwuEapmp1xUDZUAlwJLgRogX0T+dvh+xpg7jTEbjTEbKyoqpjqbSuVERUUFlZWVmdfGGOx2OwsWLKCsrIympib6+/uPcQSljl8uqobeBRwyxnQaY2LAr4G/ykE+lJqW1qxZk/W6sbGRvr4+AoEAwWCQlpaWrFXXlDpZuQgEDcCZIpInyRbcC4C9OciHUtPS8Oqh5ubmzBKgiUSCYDCYWQhIqYmQizaCl4EHgVdJdh21AXdOdT6Umq5WrFiRNbfQ4OAgDQ0NtLa24nK5GBgYoK2tTUsFasLkpNeQMeZrxpiVxpi1xpirjTGRXORDqenI5XId1Y10YGCA5cuXs2jRIjweDwMDA0Qi+m+jJobOtqbUNDS8naCjo4N4PE53d3dmTEx6/QKlTpYGAqWmoeHtBB0dHVldSQ8fPpyZoVSpk6WBQKlpqKqqirKyssxry7Lo7OzMrFHgcrno7+/X6iE1ITQQKDUNichR1UOBQACfz0d5eTnFxcVYlqVTTqgJoYFAqWlqeCBoaWnBZrMRj8eJRCKICE6nM0e5U7PJrJyGWqnZYOXKldjtdhKJBJBcpWz//v2Z6qGKigpcLleOc6lmAy0RKDVNeTweli9fnrXNZrOxatUqVq9ejc1m055DakJoIFBqGhupeigvLw/LskgkEhoI1ITQQKDUNDa8G+mhQ4doamqiq6uL9vZ2+vr6tAupOmkaCJSaxmpqavD5fJnX8Xicjo4OIDlT6eDgoHYhVSdNA4FS09hI3Ui7urooKCjAsizC4bAGAnXSNBAoNc0NDwQHDhzg0KFDHDlyhDfffFMXq1EnTQOBUtPcqlWrsNne+lft6+sjFovhcrmorKyku7ubQCCQwxyqmU4DgVLTXF5eHrW1tVnbAoEAxcXFuN1ujDEMDAzkKHdqNtBAoNQMMNqqZX6/n56eHkKhkPYeUifsuAKBiOSLiH2yMqOUGtnwbqQtLS1EIhEikQjV1dWZaSeUOhHHDAQiYhORj4jI70WkA9gHtIrIHhH5NxE5ZWqyqdTctmDBAgoLCzOvE4kEDoeD2tpaKisrdXCZOiljlQieBZYBNwHzjDELjTGVwNnAFuBbIvK3k5xHpeY8m812VPVQU1MTwWCQ7u5uHVymTspYgeBdxphvGGN2GmMy/dOMMT3GmIeMMR8CfjW5WVRKwdHtBPX19ZmfdXCZOhnHnH3UGBMDEJF1wMrU5r3GmN3D91FKTa7Vq1cjIpmnfr/fj81mo6CgAK/XSzweJxaL4fF4cpxTNdOM1UZQLCLPAQ8DHwE+CjwiIs+KSNEU5E8plVJQUMCSJUuytu3bt49AIEBbWxu9vb04HDqzvDp+Y1UNfQPYCpxijPmgMeYDwCnAK8Ctk505pVS24dVDzc3NOcqJmk3GbCMAvjysfcACbk6lKaWm0PBupG1tbeTn51NcXEx+fr4uXalOyFiBIGqMiQ/fmNqmrVJKTbHFixeTn5+feR0Oh6mvr6e/v5+Ojg7tOaROyFgVih4ROQ2QYdsFcE9OlpRSo7HZbKxevZpXXnkls625uZmqqqqsnkPaYKyOx1iBoA34zjHSlFJTbM2aNVmBoL29nXnz5uF0OgmFQtpzSB23sbqPvnOK8qGUGqfhDcZtbW3EYjGcTieWZeF0OnOUMzVTHTMQiMhlx0o3xvz6RE4qIj7gx8BawACfNMa8dCLHUmquKSoqYtGiRTQ0NGS27d27l5UrV+Lz+XC7tdZWHZ+xqobeN+zn3w15bYATCgTAHcDjxpgPi4gLyDvB4yg1J61ZsyYrELS2tnLhhRfidrsRGd6kp9SxjVU19In0zyLy2tDXJyo1EO0c4OOpc0QBnS1LqeOwZs0a/vCHP2Re79+/X1cpUyfseKahnqg+abVAJ/BTEXlNRH4sIvnDdxKRa0Vkq4hs7ezsnKBTKzU71NbW4vV6M68HBgbYunUrnZ2d2n1UHbdcLEzjAE4H/ssYcxowAHx5+E7GmDuNMRuNMRsrKiqmOo9KTWt2u50VK1ZkbWtubsbv9+vEc+q4jTXX0O9E5Lci8lugNv3zkG0nogloMsa8nHr9IMnAoJQ6DsMDwYEDB7DZbDq6WB23sRqLbx/y879PxAmNMW0i0igidcaY/cAFwOsTcWyl5pK1a9fywAMPZF43NzczMDCg3UfVcRursfj5kbaLyELgSmDE9HH4PPDLVI+hg8BJN0IrNddUVVVRWVlJR0cHAMYYurq6WL9+fY5zpmaacbcRiEi5iPy9iLwAPAdUnehJjTHbU/X/640xHzDG9J7osZSaq0SEU089NWtbY2Ojdh9Vx22sNoJCEfmYiDwO/AVYDtQaY5YZY26YkhwqpUY1fDbSPXv2aK8hddzGKhF0AJ8iufbAMmPMP6F9/pWaNpYvX541kri/v5+mpqYc5kjNRGMFgpsBD/BfwE0ismzys6SUGi+Hw0FdXV3Wtt27d4+yt1IjO2YgMMb8P2PMZuD9JKeefhioEZEbRWTFsX5XKTX5jDEsXrw4a9v27du1ekgdl3E1FhtjDhpjbjXGrAM2AcXAH8b4NaXUJItEIlRVZffbaGhooK+vL0c5UjPRcY8sNsbsMsbcbIzRaiKlciwWi1FSUkJZWVlmm2VZvP66Ds1R45eLKSaUUhMkvQbB8uXLs7a/8cYbOcqRmok0ECg1g7ndbnw+HwsWLMjavm/fPm0nUOOmgUCpGUxEqKioYPPmzTgcb00U0NvbS2traw5zpmaScQUCEXlvasroHhHpF5GAiPRPduaUUuMTiURYuHBh1jbtRqrGa7wlgu8C1wBlxpgiY0yhMaZoEvOllBqnSCSC3+8/ajbSXbt25ShHaqYZbyBoBHYbrXRUatqJxWLYbDZOOeWUrO319fWEw+Ec5UrNJGNNQ532JeAxEXkeyKx6YYz5zqTkSik1bumeQyUlJZSUlNDbm5zDMZFI8MYbb+hspGpM4y0R3AoMkpxuonDIl1Iqx9xuN8XFxfj9/qN6D2k7gRqP8ZYISo0xF05qTpRSJ23RokVZbQPp2Uh1amp1LOMtETwlIhoIlJqGIpEIfX19+Hw+Vq5cid1uz6R1dXVlFq5RajTjDQSfAx4XkZB2H1VqeonFYogIfr+f9vZ2KioqstL37NmTo5ypmWK8k84VGmNsxhivdh9VanpxOp2Ew2FaW1sJBoNZ8w6BBgI1trFWKFsyRrqIyIJj7aOUmlxutxuXy0VfXx/hcJi8vLys9P379xON6npSanRjlQj+TUQeSi1XuUZEKkVkkYicLyLfAP4MrJqCfCqlRiEilJaWUlBQgN1up7y8HI/Hk0mPxWI6CZ06prEWpvkb4KtAHfCfwB+BR4C/A/YD5xtjnpzsTCqljq2goIC8vDwsyyISiRxVPbRz584c5UzNBGN2HzXGvA58ZQryopQ6QR6PhyVLlhAIBIjH41RVVdHc3JxJ1/UJ1LHo7KNKzQIiwoIFC6irq8Nut1NaWpo1dqCzs5Ourq4c5lBNZxoIlJolbDYbNTU1VFVVUV5ert1I1bhpIFBqFkkkEpSXl1NSUkJ1dXVWmk43oUYz3vUInhaRS4Ztu3NysqSUOlFOp5NoNEooFDpqNtJ9+/YRi8VylDM1nY23RLAUuFFEvjZk28ZJyI9S6iS43W7y8/MJh8OICG63O5MWjUY5cOBADnOnpqvxBgI/cAFQJSK/E5Hikz2xiNhTq549erLHUkoliQjz5s3D5/Nht9uPWrVMu5GqkYw3EIgxJm6M+SzwEPAnoPIkz/0PwN6TPIZSahiPx0NxcTGDg4MUFWXPBKPdSNVIxhsIfpj+wRhzN/Bx4IkTPWlqWor3AD8+0WMopUaWHmnscrmoq6vL6kba1taWWbhGqbTxTjr3o2GvtxljPnkS5/0uyVXPrNF2EJFrRWSriGzt7Ow8iVMpNffYbDZ8Ph+xWIzi4uyaXO09pIab8u6jIvJeoMMYs+1Y+xlj7jTGbDTGbBzeH1opdWwulwu32008HqeyMrsWV9sJ1HC5GEdwFvB+ETkM3AecLyL/k4N8KDVrud1u3G43AwMDR807pN1I1XBTHgiMMTcZYxYYY5YAVwLPGGP+dqrzodRsNnRG0qKioqx2gurqao4cOYIxJoc5VNOJjixWapYqKCjA4/GwdevWrJt+c3Mz27Ztw+/3azBQwPgXr58UxpjngOdymQelZiuPx0NtbS1lZWV0d3dntsfjcV544QVisRjr1q2jurqawsJCPB6PLnI/R+U0ECilJk96RtILL7yQcDhMQ0NDJi0ej/Piiy/S2dnJ0qVLqampYfHixVRWVmowmIM0ECg1i9lsNpYtW8bb3/52EolE1hoFiUSC+vp68vLyMstbejyeo9oU1OyngUCpWc7r9bJ8+XL6+/uJRCJZ6xLEYjF27dpFJBLJTFutJYO5RwOBUrNcuoooGo0yODjIjh078Pv9mfRYLMabb76JZVk4HA6CwSAulwufz6fBYI7QQKDUHGCz2aitrcUYg91uZ/v27fT09GTSo9Eohw4dAqCnp4doNMrq1atZsGABNpt2LpztNBAoNUek2wvcbjfz58/n8ccfZ+j0LeFwmEOHDrF48WI6Ojqw2+2Z0oSWDGY3DfVKzSE2m42FCxfytre9jauuuuqo6SfC4TDd3dtwu/eRSMTo7u4mEonkKLdqqmggUGqOERG8Xi+rVq3imms+RmXlW6UClyvM6ac/SVXVN3E4/pbu7m/Q3v4CljXq/JBqFtBAoNQcZbPZKC9v55xzfkd5eRtud4jzz3+UsrJkYHA4erHbf82hQxfx0kvLOXjwFgYGTn49A2MM4XCYQCBAOBzW0c3TgMyED2Hjxo1m69atuc6GUrOOMQl6e5/ljTd+SkfHcxQVtYz5O/n566msvIrKyivxepeM+1yWZeH3+6mvrycYDOJ0OrEsi4KCAubPn09RUZGObp5gIrLNGDPmssIaCJRSGGPw+7t4/fW7GRx8FLt9CzZbdMzfKyo6k8rKq6iouBy3e15mu2VZ9Pf309vbSyQSIRwO09bWRktLC8FgkHg8jmVZuFyuzAR5S5YsYdmyZVRVVWkwmCDjDQTaa0gphYjg85WzaNGV7Ny5mu7uZhyOv1BY+Ar5+a9js8VH/L3+/i3092/hwIEv4vOdh893GcacTX19O52dnQQCAfr7+0kkEiQSCYDMU38ikSAajeLxeOjv7+fIkSPE43GKiooyI53V1NBAoJQCksFg/vz5RCIRXnmln+7uDfT0bMDhCFNUtJ3i4m3k5e1HZKRaBAu//2n8/qcxxk4wWEcotIFgcDUiHgDsdjuWZRGLxRCRTDBIJBIYYwiFQjQ3NzNv3jxWrFihpYIppIFAKZWRHng2ODjIa6+9hmVZhEI2urs309p6Gm73IOXlu6mo2IXdvnfEY4gk8Plex+d7nUTCid+/ip6e0+jtPQVjkgHAGJPpiWRZViZAJBIJ3nzzTSorK3Vk8xTSNgKl1FEGBwd55ZVXaGpqoq+vLzOWwBhDJBLBsiw8Hj+VlXsoLd1Bfv7YjczxuJeenjV0da0jEFiO3e7KlApcLhcOR/K51OFwsHDhQtauXcvChQt1ZPNJ0DYCpdQJ83q91NXVEYlE6O/vz9yME4lEZsRxLFZGS8u5tLa+E7e7nbKyHZSV7cDr7RrxmA5HiMrKrVRWbgVKKCx8H8HgZg4d8mJZyS6lIkIkEskEoA0bNlBXV4fdbp/Cq597tESglBpRsieRny1bttDY2EgikSASiRCPx0kkEpkqnvR3ALvdhtvdQEXFLkpLd+By+cc4CxhTRTC4ie7uUxkcrCaRsDLHy8/PZ82aNWzcuDFTYlDjpyUCpdRJSfYk8rFhwwYsy6KxsRFjDDabLfOVfoq3LAuv14uIUFBwOgUFF1FVtYCqqg76+39DZ+eDxGIjlxRE2iksfJTCwkeJRObR23safv/pDAyUEAqFeO2114hEImzcuJG8vDxtN5gEWiJQSh2TMYbBwUHq6+t588038fv9hEIhYrEYLpcLl8tFWVkZZWVlFBYWjjg4zLJi+P3P0N5+L11dvyGR6B/zvIODC/D730Zv76lAJbW1taxevVrbDY6DDihTSk2odBfPnp4eBgYGAHA6neTn5+PxeHC73bjd7jGf2BOJMD09j9HRcS/d3Y9iWeExzx0M1hIMngGcy/r152i7wThpIFBKTXvxeICurkfo6LiX3t4nMGbkgWtpxtgYHFxFfv772LDhOoqLa7Sq6Bg0ECilZpRYrJvOzodob7+Hvr4XgGPfm4xx4nS+g6qqq6ip+RB5eSUaFIbRQKCUmrEGBxt4/fX/pKfnIVyu+jH3N8aD3X4uxcUfpKzsIkpLKzON13OZBgKl1IyW7qn0+utP0d//MEVFW/F628b8vUQin2j07RQVfQCf7xwSiWRPp7y8PAoKCigsLJwzs5xq91Gl1Ixms9lYtGgR5eVXsnXrcvbu3YvNdoTCwlcoLX0Nt7tnxN+z2wfwep8iFnuK5uYienrW09t7OtHoUkpKSpk3bx4LFy5k8eLFWmpI0RKBUmrai8fjbN++nX379tHd3Y1lJXC7D1FWtoOSku24XIExjxEOl9HTs4FAYBN2+zIWLVpEXV3drO6OqlVDSqlZJb2wza5du2hubqa7u5tQKITNBvn59ZSWvkZZ2W4cjtCYx+ruXkIksgGn851s2HAJy5Ytm5XBYNoGAhFZCPwcmAdYwJ3GmDuO9TsaCJRSaZZl0dfXx6FDhzh06BB+v59gMJga5RynuPhNyst34vPtwW4fe3Gd1tZvcOqpl83KsQnTuY0gDvyTMeZVESkEtonIk8aYk18MVSk169lsNkpKSvD5fKxcuZKenh6CwSB+v5+Ojg56exfQ3n4GjY0BCgp2Ulq6HZ9vPzZb4qhjtbUtZseOJUSjrxAKhdiwYcOsCwbjMeWBwBjTCrSmfg6IyF5gPqCBQCk1biJCXl5eZjUzY5IzmAYCAYLBINFoFGPeTzQapb+/hUDgcQ4d2sHKlX/Cbk8Ghaef/gj/8z9/w2c/+wzG7MLhcLB27do5Fwxy2mtIRJYApwEvj5B2LXAtwKJFi6Y0X0qpmUdE8Hq9eL1eKisrs9KMWU8odC6lpQf50pcSlJX9ifPOu49nnrmScNjNd797IVde+SzxeLJkMNdmO81ZY7GIFADPA7caY359rH21jUApNREsy+LQoUb+4R/g979ffFT6xRdv5f3v38aGDaeyadOmGV8yGG8bQU6ayUXECTwE/HKsIKCUUhMluRTnIu67r5zrrjt01PrLf/jDRu66651s3/46u3fvJpE4ul1hNpryso8kR2/8BNhrjPnOVJ9fKTW3JddMyOe7313EkiVHuOmmBcRib90KX3mljt7efK677pk5U02UixLBWcDVwPkisj31dUkO8qGUmsPsdjv/+I8L+c//3EdBQfbYgwMHFvCtb72Xp5+uZ+vWrbO+ZJCLXkN/AnRMt1Iq5+x2O5/4xEpKSnbxuc/V0tFRnElrayvltts+yODgE3i9u2d1b6LZN5ROKaWOg8Ph4IMfXM/99zeyfHn2pHaBQB633/4efvKTDrZs2cLAwAAzYTaG46WBQCk159ntdt7xjlX8+MdH2LjxQFZaNOrk+99/F3fcYfHCCy/Q0NCAZVk5yunk0ECglFIkg8FZZ72NO+7o4uKLt2elGSM88MDZ3H77fF5+eSuNjY2zqmSggUAppVIcDgebN2/im98UrrnmRWy27Cf/Z55Zzze/eRovvbSD9vb2WVMy0ECglFJD2O121q5dy+c/7+Yf//EZ3O7sieu2b6/lxhvP4KGH/sgrr7wyK9oNNBAopdQwdrudDRs28KlP1XDLLU9QXBzMSm9omMfXvnYh//u/h9myZQvt7e0zOhhoIFBKqRHY7XZWrlzJFVfU8Y1vPEVNTXdWend3MbfddilPPRVlz549DA4O5iinJ08DgVJKjcJms7Fs2TIuvngtt932Z1ataspKHxz0cPvtF/LLXxpefvnlGVtNpIFAKaWOITk/US1nn30qt966nb/6q71Z6fG4nZ/+9F3ccUc+L700M6uJNBAopdQYbDYbixYt4sILz+M//iPEBz+47ah9fvvbzXzjGwt59dVd+P3+GRUMNBAopdQ4iAj5+fmcdtoG/uVfvFx77Qs4HNlzEL3wwgpuuGElTz31lxk18EwDgVJKHQebzUZdXR3XXpvPDTc8SV5eOCt9796FfPGLG3n00e3U19fPiGAwu+dWVUqpSZDuXur17qe09Eluu+1curuLMunNzWV85SsX0NPzLB/6UIy6urppPWGdBgKllDoB6e6lLpeLkpLnufXWMzh8uCqT3tdXwK23XoTf/zwf+UiIDRs2TNtgoFVDSil1gtI9it75zlV87WvPs359fVZ6JOLiu9+9gO9/P8L+/funbTWRlgiUUuokpIOBMQaXays/+UmQZ545NZNuWTbuvvuv6Ozcxbe+tY9Vq6ZfNZEGAqWUOknpgWculwufbw+lpf089NA7MOatNbh+//t1dHYe5JvffJnNm08lLy+P5Mq9uadVQ0opNQHSYw3OPfdc/v7vY1x77eM4nbGsff7yl1quvXYpjz760rTqXqqBQCmlJkh6rMHmzZv5m79x8eUvP05hYfYcRPX11XzhCxt5+OFd06Z7qQYCpZSaYHl5eaxZs4Zzz83jxhsfpqqqJyu9o8PHLbdcwD33HOTgwYM5DwbaRqCUUhNMRKiqqqKwsBCPZztFRY9xxx3vpL5+QWafYNDLrbdeQCDwCv/n/0BtbS02W26ezbVEoJRSkyBdTXTmmWdywQWnc/PNz7Nx476sfWIxB9/5zpl87Wt97N27j0QiMcrRJpcGAqWUmkTpgWdnn30G11+/nYsvzp6wzhjhnnvexhe+YNiy5RXi8fiU51GrhpRSapIN7V5aWLiLsrJnueeec7Cst8YTPPPMGrq6DvPd777KOee8bUrHGmiJQCmlpkC6e+lZZ53Fxz4W5/rrn8bjiWTts3PnEj7xiaU899zUVhNpIFBKqSkiIvh8PtatW8df/7Wd66//DT5fIGufI0cquOKKRdxzz44pW/FMq4aUUmoKDe1R5HBspaDg1/zgB5fQ1FSR2ae7u5DPfGYNTU3b+chH5rFw4cJJ7VGUkxKBiPy1iOwXkQMi8uVc5EEppXIl3aPorLPO4rzz6rjxxsdYvfpw1j6hkJuvfnUjt9/eQWNj46SWDKa8RCAiduA/gXcDTcArIvJbY8zrU50XpZTKJYfDwaZNm/B6vXi9z/OLX4R4/vlVmfREws73v7+JQOAgP/hBmLw87+TkY1KOemxnAAeMMQcBROQ+4FJAA4FSas6x2+2sXbuWeDyO3f4Xioq6+d3v3pG1z9NPV9LRMciSJbMnEMwHGoe8bgI2D99JRK4FrgVYtGjR1ORMKaVy4K0Vz7zY7duoqBjg5z+/gHjcQVFRmH/91x0UFNRN2vlzEQhGmnf1qMovY8ydwJ0AGzdunPxmc6WUyqH0wDOn04nHs53Fi5/ne997O1/96k7q6pzk5+dP2rlzEQiagIVDXi8AWnKQD6WUmlbSA8/cbjdLl3bw7nfvo7CwgIqKCjwez6SdNxeB4BXgFBFZCjQDVwIfyUE+lFJq2rHZbCxcuJDKykpisRhOpxO32z2pi9hMeSAwxsRF5DrgfwE7cJcxZs9U50MppaYrEcHj8UxqKWConAwoM8Y8BjyWi3MrpZTKplNMKKXUHKeBQCml5jgNBEopNcdpIFBKqTlOpmKK05MlIp3AkSk6XTnQNUXnmk70uucWve65YbExpmKsnWZEIJhKIrLVGLMx1/mYanrdc4tetxpKq4aUUmqO00CglFJznAaCo92Z6wzkiF733KLXrTK0jUAppeY4LREopdQcp4FAKaXmuDkdCETksIjsEpHtIrI1ta1URJ4UkTdT30tync+JICJ3iUiHiOwesm3Ea5Wk/xCRAyKyU0ROz13OT84o1/11EWlOfe7bReSSIWk3pa57v4hclJtcnzwRWSgiz4rIXhHZIyL/kNo+qz/zY1z3rP/MT4oxZs5+AYeB8mHbvg18OfXzl4Hbcp3PCbrWc4DTgd1jXStwCfAHkqvJnQm8nOv8T/B1fx24YYR9VwM7ADewFKgH7Lm+hhO87mrg9NTPhcAbqeub1Z/5Ma571n/mJ/M1p0sEo7gU+Fnq558BH8hhXiaMMeYFoGfY5tGu9VLg5yZpC+ATkeqpyenEGuW6R3MpcJ8xJmKMOQQcAM6YtMxNImNMqzHm1dTPAWAvyfXCZ/VnfozrHs2s+cxPxlwPBAZ4QkS2ici1qW1VxphWSP5RAZU5y93kG+1a5wONQ/Zr4tj/TDPRdakqkLuGVP/NyusWkSXAacDLzKHPfNh1wxz6zI/XXA8EZxljTgcuBj4nIufkOkPTxEhr4s2mfsb/BSwDNgCtwL+nts+66xaRAuAh4B+NMf3H2nWEbTP22ke47jnzmZ+IOR0IjDEtqe8dwG9IFgnb00Xi1PeO3OVw0o12rU3AwiH7LQBapjhvk8YY026MSRhjLOC/easqYFZdt4g4Sd4Mf2mM+Qyq3agAAAK4SURBVHVq86z/zEe67rnymZ+oORsIRCRfRArTPwMXAruB3wLXpHa7BngkNzmcEqNd62+Bj6V6kpwJ9KWrE2aDYXXfHyT5uUPyuq8UEbeILAVOAf4y1fmbCJJc6fwnwF5jzHeGJM3qz3y0654Ln/lJyXVrda6+gFqSvQV2AHuAr6S2lwFPA2+mvpfmOq8TdL33kiwSx0g+BX1qtGvl/2/v3l2jiKI4jn9/JEgUK7GxVRAFQQLGRgW1038hKFj7QGwljVjE0sJG7HwUlpZBEAsbIyiJFgpKahutfIDkWMyAm7Aom2TNkvl+YGD3zr1wLgN79s7jTLNcvkNzB8UicGSz49/ged9v57VA80Owp6f/9Xbe74Ezmx3/OuZ9nOYUxwLwpt3ObvVj/pd5b/ljvp7NEhOS1HGdPTUkSWqYCCSp40wEktRxJgJJ6jgTgSR1nIlAGlCS7UmeJxkbYMylJBeGGZe0Vt4+Kg0oyUVgvKpuDzBmB/CiqiaHF5m0Nq4IpFaSqbYo2UT75Pm7JIf6dJ2mfSI3ycl2dfA4yYcks0mmk7xM866LfQBV9Q1YStK5ypYafeObHYA0KqpqPskT4CawHXhQVW97+yTZBuytqqWe5sPAQZpy15+Ae1V1tH0pymXgatvvFXCCLpYw0EgzEUgr3QDmgR/AlT77dwNfV7XNV1uXJ8lHYK5tXwRO9fT7DBzY0GilDeCpIWmlXcBOmrdbTfTZ/71P+8+ez8s935dZ+Wdroh0vjRQTgbTSXWAGeAjcWr2zqr4AY0n6JYl/2c+fqpfSyDARSK0k54FfVfUImAWmkpzu03WOpsrloI4BT9cRojQU3j4qDSjJJHCtqs4Nc4z0v7gikAZUVa+BZ4M8UEZzkXlmSCFJ6+KKQJI6zhWBJHWciUCSOs5EIEkdZyKQpI4zEUhSx/0GkrNT5gXsXqMAAAAASUVORK5CYII=\n",
- "text/plain": [
- "