diff --git a/.env b/.env index a71086e..8a4468b 100644 --- a/.env +++ b/.env @@ -10,11 +10,9 @@ MATLAB_PATH="C:/Program Files/MATLAB/R2016b/bin/win64/MATLAB.exe" # total water level. MULTIPROCESS_THREADS=2 -# The settings below should be left as is unless you know what you're doing. -# We want to create the pipenv virtualenv in the current folder -PIPENV_VENV_IN_PROJECT=1 +# The settings below should be left as is unless you know what you're doing. # Need to set pythonpath so that relative imports can be properly used in with pipenv # Refer to https://stackoverflow.com/q/52986500 and https://stackoverflow.com/a/49797761 -PYTHONPATH=${PWD} \ No newline at end of file +# PYTHONPATH=${PWD} \ No newline at end of file diff --git a/.gitignore b/.gitignore index 1dadcb9..5f368cf 100644 --- a/.gitignore +++ b/.gitignore @@ -18,3 +18,4 @@ __pycache__/ *.py[cod] *$py.class /.venv/ +*.log \ No newline at end of file diff --git a/Makefile b/Makefile index fc7f22b..c31a2c7 100644 --- a/Makefile +++ b/Makefile @@ -1,3 +1,5 @@ +SHELL=cmd + ############################### # Load environment variables @@ -12,13 +14,21 @@ CURRENT_DIR = $(shell pwd) . PHONY: venv_init venv-init: ##@environment Setup virtual environment - pip install pipenv - pipenv --python 3.7 - pipenv install + conda create -f environment.yml --prefix=.venv python=3.7 + +venv-activate: ##@environment Activates the virtual environment + activate $(CURRENT_DIR)/.venv + +venv-requirements-install: ##@environment Ensures environment.yml packages are installed + conda env update + +venv-requirements-export: ##@environment Exports current environment to environment.yml + conda env export --file environment.yml ############################### # Get data from network drive +.PHONY: push-data pull-data push-data: ##@data Copies data from ./data/ to data backup directory rclone copy ./data/ $(DATA_BACKUP_DIR) --exclude "*.las" --progress @@ -32,51 +42,42 @@ pull-data: ##@data Copies data from data backup directory to ./data/ # Process data .PHONY: process-mat -process-mat: ./data/interim/sites.csv ./data/interim/waves.csv ./data/interim/profiles.csv ./data/interim/tides.csv ##@data Process all .mat to .csv +impacts: ./data/interim/impacts_forecasted_foreshore_slope_sto06.csv ./data/interim/impacts_forecasted_mean_slope_sto06.csv ./data/interim/impacts_observed.csv ##@products makes obsered and forecasted impacts # Calculates beach orientations at each profile ./data/raw/processed_shorelines/orientations.mat: ./data/raw/processed_shorelines/profiles.mat $(MATLAB_PATH) -nosplash -r "cd $(CURRENT_DIR); run('./src/data/beach_orientations.m'); quit" # Produces a .csv of sites where our beach cross-sections are located -./data/interim/sites.csv: ./data/raw/processed_shorelines/*.mat - pipenv run python ./src/data/parse_mat.py create-sites-csv \ - --waves-mat "./data/raw/processed_shorelines/waves.mat" \ - --tides-mat "./data/raw/processed_shorelines/tides.mat" \ +./data/interim/sites.csv ./data/interim/profiles.csv: ./data/raw/processed_shorelines/profiles.mat + activate ./.venv && python ./src/data/parse_mat.py create-sites-and-profiles-csv \ --profiles-mat "./data/raw/processed_shorelines/profiles.mat" \ - --orientations-mat "./data/raw/processed_shorelines/orientations.mat" \ - --output-file "./data/interim/sites.csv" + --profiles-output-file "./data/interim/profiles.csv" \ + --sites-output-file "./data/interim/sites.csv" # Produces a .csv of waves for each site ./data/interim/waves.csv: ./data/interim/sites.csv ./data/raw/processed_shorelines/waves.mat - pipenv run python ./src/data/parse_mat.py create-waves-csv \ + activate ./.venv && python ./src/data/parse_mat.py create-waves-csv \ --waves-mat "./data/raw/processed_shorelines/waves.mat" \ --sites-csv "./data/interim/sites.csv" \ --output-file "./data/interim/waves.csv" -# Produces a .csv of profiles for each site -./data/interim/profiles.csv: ./data/interim/sites.csv ./data/raw/processed_shorelines/profiles.mat - pipenv run python ./src/data/parse_mat.py create-profiles-csv \ - --profiles-mat "./data/raw/processed_shorelines/profiles.mat" \ - --sites-csv "./data/interim/sites.csv" \ - --output-file "./data/interim/profiles.csv" - # Produces a .csv of tides for each site ./data/interim/tides.csv: ./data/interim/sites.csv ./data/raw/processed_shorelines/tides.mat - pipenv run python ./src/data/parse_mat.py create-tides-csv \ + activate ./.venv && python ./src/data/parse_mat.py create-tides-csv \ --tides-mat "./data/raw/processed_shorelines/tides.mat" \ --sites-csv "./data/interim/sites.csv" \ --output-file "./data/interim/tides.csv" # Creates a .shp of our sites to load into QGis ./data/interim/sites.shp: ./data/interim/sites.csv - pipenv run python ./src/data/csv_to_shp.py sites-csv-to-shp \ + activate ./.venv && python ./src/data/csv_to_shp.py sites-csv-to-shp \ --input-csv "./data/interim/sites.csv" \ --output-shp "./data/interim/sites.shp" # Creates a .csv of our dune toe and crest profile features ./data/interim/profile_features.csv: ./data/raw/profile_features/dune_crests.shp ./data/raw/profile_features/dune_toes.shp ./data/interim/sites.csv ./data/interim/profiles.csv - pipenv run python ./src/data/profile_features.py create-profile-features \ + activate ./.venv && python ./src/data/profile_features.py create-profile-features \ --dune-crest-shp "./data/raw/profile_features/dune_crests.shp" \ --dune-toe-shp "./data/raw/profile_features/dune_toes.shp" \ --sites-csv "./data/interim/sites.csv" \ @@ -85,7 +86,7 @@ process-mat: ./data/interim/sites.csv ./data/interim/waves.csv ./data/interim/pr # Creates a forecast of twl using sto06 and prestorm time varying prestorm foreshore slope ./data/interim/twl_foreshore_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features.csv - pipenv run python ./src/analysis/forecast_twl.py create-twl-forecast \ + activate ./.venv && python ./src/analysis/forecast_twl.py create-twl-forecast \ --waves-csv "./data/interim/waves.csv" \ --tides-csv "./data/interim/tides.csv" \ --profiles-csv "./data/interim/profiles.csv" \ @@ -94,9 +95,8 @@ process-mat: ./data/interim/sites.csv ./data/interim/waves.csv ./data/interim/pr --slope "foreshore" \ --output-file "./data/interim/twl_foreshore_slope_sto06.csv" -# Creates a forecast of twl using sto06 and prestorm mean foreshore slope ./data/interim/twl_mean_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features.csv - pipenv run python ./src/analysis/forecast_twl.py create-twl-forecast \ + activate ./.venv && python ./src/analysis/forecast_twl.py create-twl-forecast \ --waves-csv "./data/interim/waves.csv" \ --tides-csv "./data/interim/tides.csv" \ --profiles-csv "./data/interim/profiles.csv" \ @@ -106,41 +106,28 @@ process-mat: ./data/interim/sites.csv ./data/interim/waves.csv ./data/interim/pr --output-file "./data/interim/twl_mean_slope_sto06.csv" ./data/interim/impacts_observed.csv: ./data/interim/profiles.csv ./data/interim/profile_features.csv - pipenv run python ./src/analysis/observed_storm_impacts.py create-observed-impacts \ + activate ./.venv && python ./src/analysis/observed_storm_impacts.py create-observed-impacts \ --profiles-csv "./data/interim/profiles.csv" \ --profile-features-csv "./data/interim/profile_features.csv" \ --output-file "./data/interim/impacts_observed.csv" ./data/interim/impacts_forecasted_mean_slope_sto06.csv: ./data/interim/profile_features.csv ./data/interim/twl_mean_slope_sto06.csv - pipenv run python ./src/analysis/forecasted_storm_impacts.py create-forecasted-impacts \ + activate ./.venv && python ./src/analysis/forecasted_storm_impacts.py create-forecasted-impacts \ --profile-features-csv "./data/interim/profile_features.csv" \ --forecasted-twl-csv "./data/interim/twl_mean_slope_sto06.csv" \ --output-file "./data/interim/impacts_forecasted_mean_slope_sto06.csv" ./data/interim/impacts_forecasted_foreshore_slope_sto06.csv: ./data/interim/profile_features.csv ./data/interim/twl_foreshore_slope_sto06.csv - pipenv run python ./src/analysis/forecasted_storm_impacts.py create-forecasted-impacts \ + activate ./.venv && python ./src/analysis/forecasted_storm_impacts.py create-forecasted-impacts \ --profile-features-csv "./data/interim/profile_features.csv" \ --forecasted-twl-csv "./data/interim/twl_foreshore_slope_sto06.csv" \ --output-file "./data/interim/impacts_forecasted_foreshore_slope_sto06.csv" -################################################################################# -# PROJECT RULES # -################################################################################# -.PHONY: push-data parse_mat sites-csv-to-shp - - -mat-to-csv: ##@data Converts raw .mat files to .csv for python - cd ./src/data/ && python parse_mat.py - -sites-csv-to-shp: ##@data Create the sites.shp from sites.csv - cd ./src/data && python csv_to_shp.py sites_csv_to_shp "..\..\data\interim\sites.csv" "..\..\data\interim\sites.shp" - - ############################### # Misc commands format: ./src/*.py ##@misc Check python file formatting - pipenv run black --line-length 120 "src/" + activate ./.venv && black --line-length 120 "src/" ############################### diff --git a/Pipfile b/Pipfile deleted file mode 100644 index 0e234e9..0000000 --- a/Pipfile +++ /dev/null @@ -1,31 +0,0 @@ -[[source]] -name = "pypi" -url = "https://pypi.org/simple" -verify_ssl = true - -[dev-packages] - -[packages] -numpy = "*" -scipy = "*" -pandas = "*" -matplotlib = "*" -click = "*" -mat4py = "*" -black = "*" -shapely = "*" -fiona = {file = "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/Fiona-1.8.2-cp37-cp37m-win_amd64.whl"} -gdal = {file = "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/GDAL-2.3.2-cp37-cp37m-win_amd64.whl"} -pyproj = {file = "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/pyproj-1.9.5.1-cp37-cp37m-win_amd64.whl"} -colorlover = "*" -ipykernel = "*" -jupyter = "*" -plotly = "*" -jupyter-contrib-nbextensions = "*" -jupyter-nbextensions-configurator = "*" - -[requires] -python_version = "3.7" - -[pipenv] -allow_prereleases = true diff --git a/Pipfile.lock b/Pipfile.lock deleted file mode 100644 index 5359b48..0000000 --- a/Pipfile.lock +++ /dev/null @@ -1,753 +0,0 @@ -{ - "_meta": { - "hash": { - "sha256": "d1086c407632a2c2f9a8e1b657d7e0703ac8929bb3aa41f68ea364448c47cb33" - }, - "pipfile-spec": 6, - "requires": { - "python_version": "3.7" - }, - "sources": [ - { - "name": "pypi", - "url": "https://pypi.org/simple", - "verify_ssl": true - } - ] - }, - "default": { - "appdirs": { - "hashes": [ - "sha256:9e5896d1372858f8dd3344faf4e5014d21849c756c8d5701f78f8a103b372d92", - "sha256:d8b24664561d0d34ddfaec54636d502d7cea6e29c3eaf68f3df6180863e2166e" - ], - "version": "==1.4.3" - }, - "attrs": { - "hashes": [ - "sha256:10cbf6e27dbce8c30807caf056c8eb50917e0eaafe86347671b57254006c3e69", - "sha256:ca4be454458f9dec299268d472aaa5a11f67a4ff70093396e1ceae9c76cf4bbb" - ], - "version": "==18.2.0" - }, - "backcall": { - "hashes": [ - "sha256:38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", - "sha256:bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2" - ], - "version": "==0.1.0" - }, - "black": { - "hashes": [ - "sha256:817243426042db1d36617910df579a54f1afd659adb96fc5032fcf4b36209739", - "sha256:e030a9a28f542debc08acceb273f228ac422798e5215ba2a791a6ddeaaca22a5" - ], - "index": "pypi", - "version": "==18.9b0" - }, - "bleach": { - "hashes": [ - "sha256:48d39675b80a75f6d1c3bdbffec791cf0bbbab665cf01e20da701c77de278718", - "sha256:73d26f018af5d5adcdabf5c1c974add4361a9c76af215fe32fdec8a6fc5fb9b9" - ], - "version": "==3.0.2" - }, - "certifi": { - "hashes": [ - "sha256:339dc09518b07e2fa7eda5450740925974815557727d6bd35d319c1524a04a4c", - "sha256:6d58c986d22b038c8c0df30d639f23a3e6d172a05c3583e766f4c0b785c0986a" - ], - "version": "==2018.10.15" - }, - "chardet": { - "hashes": [ - "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae", - "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691" - ], - "version": "==3.0.4" - }, - "click": { - "hashes": [ - "sha256:2335065e6395b9e67ca716de5f7526736bfa6ceead690adf616d925bdc622b13", - "sha256:5b94b49521f6456670fdb30cd82a4eca9412788a93fa6dd6df72c94d5a8ff2d7" - ], - "index": "pypi", - "version": "==7.0" - }, - "click-plugins": { - "hashes": [ - "sha256:b1ee1ccc9421c73007fe290680d97984eb6eaf5f4512b7620c6aa46031d6cb6b", - "sha256:dfed74b5063546a137de99baaaf742b4de4337ad2b3e1df5ec7c8a256adc0847" - ], - "version": "==1.0.4" - }, - "cligj": { - "hashes": [ - "sha256:20f24ce9abfde3f758aec3399e6811b936b6772f360846c662c19bf5537b4f14", - "sha256:60c93dda4499562eb87509a8ff3535a7441053b766c9c26bcf874a732f939c7c", - "sha256:6c7d52d529a78712491974f975c33473f430c0f7beb18c0d7a402a743dcb460a" - ], - "version": "==0.5.0" - }, - "colorama": { - "hashes": [ - "sha256:a3d89af5db9e9806a779a50296b5fdb466e281147c2c235e8225ecc6dbf7bbf3", - "sha256:c9b54bebe91a6a803e0772c8561d53f2926bfeb17cd141fbabcb08424086595c" - ], - "markers": "sys_platform == 'win32'", - "version": "==0.4.0" - }, - "colorlover": { - "hashes": [ - "sha256:f12a091ca2bca29e0e9294a072693bc70d2fafc573bb7c0fc8070099b5de9cb2" - ], - "index": "pypi", - "version": "==0.2.1" - }, - "cycler": { - "hashes": [ - "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d", - "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8" - ], - "version": "==0.10.0" - }, - "decorator": { - "hashes": [ - "sha256:2c51dff8ef3c447388fe5e4453d24a2bf128d3a4c32af3fabef1f01c6851ab82", - "sha256:c39efa13fbdeb4506c476c9b3babf6a718da943dab7811c206005a4a956c080c" - ], - "version": "==4.3.0" - }, - "defusedxml": { - "hashes": [ - "sha256:24d7f2f94f7f3cb6061acb215685e5125fbcdc40a857eff9de22518820b0a4f4", - "sha256:702a91ade2968a82beb0db1e0766a6a273f33d4616a6ce8cde475d8e09853b20" - ], - "version": "==0.5.0" - }, - "entrypoints": { - "hashes": [ - "sha256:10ad569bb245e7e2ba425285b9fa3e8178a0dc92fc53b1e1c553805e15a8825b", - "sha256:d2d587dde06f99545fb13a383d2cd336a8ff1f359c5839ce3a64c917d10c029f" - ], - "version": "==0.2.3" - }, - "fiona": { - "file": "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/Fiona-1.8.2-cp37-cp37m-win_amd64.whl", - "hashes": [ - "sha256:ea6f9f7914fe25e7e9945cabf628edb94c483702f8181d9b868b6bfffec2db25" - ], - "index": "pypi", - "version": "==1.8.2" - }, - "gdal": { - "file": "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/GDAL-2.3.2-cp37-cp37m-win_amd64.whl", - "hashes": [ - "sha256:2f6c36ee59f9b24fb16514e4fce8b73e7833714feb9b8397f91662256e1b12d8" - ], - "index": "pypi", - "version": "==2.3.2" - }, - "idna": { - "hashes": [ - "sha256:156a6814fb5ac1fc6850fb002e0852d56c0c8d2531923a51032d1b70760e186e", - "sha256:684a38a6f903c1d71d6d5fac066b58d7768af4de2b832e426ec79c30daa94a16" - ], - "version": "==2.7" - }, - "ipykernel": { - "hashes": [ - "sha256:0aeb7ec277ac42cc2b59ae3d08b10909b2ec161dc6908096210527162b53675d", - "sha256:0fc0bf97920d454102168ec2008620066878848fcfca06c22b669696212e292f" - ], - "index": "pypi", - "version": "==5.1.0" - }, - "ipython": { - "hashes": [ - "sha256:a5781d6934a3341a1f9acb4ea5acdc7ea0a0855e689dbe755d070ca51e995435", - "sha256:b10a7ddd03657c761fc503495bc36471c8158e3fc948573fb9fe82a7029d8efd" - ], - "markers": "python_version >= '3.3'", - "version": "==7.1.1" - }, - "ipython-genutils": { - "hashes": [ - "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", - "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8" - ], - "version": "==0.2.0" - }, - "ipywidgets": { - "hashes": [ - "sha256:0f2b5cde9f272cb49d52f3f0889fdd1a7ae1e74f37b48dac35a83152780d2b7b", - "sha256:a3e224f430163f767047ab9a042fc55adbcab0c24bbe6cf9f306c4f89fdf0ba3" - ], - "version": "==7.4.2" - }, - "jedi": { - "hashes": [ - "sha256:0191c447165f798e6a730285f2eee783fff81b0d3df261945ecb80983b5c3ca7", - "sha256:b7493f73a2febe0dc33d51c99b474547f7f6c0b2c8fb2b21f453eef204c12148" - ], - "version": "==0.13.1" - }, - "jinja2": { - "hashes": [ - "sha256:74c935a1b8bb9a3947c50a54766a969d4846290e1e788ea44c1392163723c3bd", - "sha256:f84be1bb0040caca4cea721fcbbbbd61f9be9464ca236387158b0feea01914a4" - ], - "version": "==2.10" - }, - "jsonschema": { - "hashes": [ - "sha256:3ae8afd6f4ca6417f14bf43ef61341311598f14234cdb4174fe43d42b236a3c8", - "sha256:dfd8426040892c8d0ef6da574085f282569f189cb24b70091a66c21c12d6705e" - ], - "version": "==3.0.0a3" - }, - "jupyter": { - "hashes": [ - "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7", - "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78", - "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f" - ], - "index": "pypi", - "version": "==1.0.0" - }, - "jupyter-client": { - "hashes": [ - "sha256:27befcf0446b01e29853014d6a902dd101ad7d7f94e2252b1adca17c3466b761", - "sha256:59e6d791e22a8002ad0e80b78c6fd6deecab4f9e1b1aa1a22f4213de271b29ea" - ], - "version": "==5.2.3" - }, - "jupyter-console": { - "hashes": [ - "sha256:308ce876354924fb6c540b41d5d6d08acfc946984bf0c97777c1ddcb42e0b2f5", - "sha256:cc80a97a5c389cbd30252ffb5ce7cefd4b66bde98219edd16bf5cb6f84bb3568" - ], - "version": "==6.0.0" - }, - "jupyter-contrib-core": { - "hashes": [ - "sha256:1ec81e275a8f5858d56b0c4c6cd85335aa8e915001b8657fe51c620c3cdde50f", - "sha256:e65bc0e932ff31801003cef160a4665f2812efe26a53801925a634735e9a5794" - ], - "version": "==0.3.3" - }, - "jupyter-contrib-nbextensions": { - "hashes": [ - "sha256:40eba9492d22302599d0a8f29d1297efb06e233677fe2d6f4d224e7c3e373872", - "sha256:f4893d99fed6be6587cd2c722ef8841556283a697a482288b621b514beda2405" - ], - "index": "pypi", - "version": "==0.5.0" - }, - "jupyter-core": { - "hashes": [ - "sha256:927d713ffa616ea11972534411544589976b2493fc7e09ad946e010aa7eb9970", - "sha256:ba70754aa680300306c699790128f6fbd8c306ee5927976cbe48adacf240c0b7" - ], - "version": "==4.4.0" - }, - "jupyter-highlight-selected-word": { - "hashes": [ - "sha256:9545dfa9cb057eebe3a5795604dcd3a5294ea18637e553f61a0b67c1b5903c58", - "sha256:9fa740424859a807950ca08d2bfd28a35154cd32dd6d50ac4e0950022adc0e7b" - ], - "version": "==0.2.0" - }, - "jupyter-latex-envs": { - "hashes": [ - "sha256:b0a83e0cda2d33e61c4b2da94365d2de4dfcdc1ed67abdba3cbe390872cf5231" - ], - "version": "==1.4.4" - }, - "jupyter-nbextensions-configurator": { - "hashes": [ - "sha256:778f36a0996e622c224589327405583f4a539d183fa2fdaeecbc4397c1af9991", - "sha256:e2cea15dde24c9090104cf3ebedd6bcd354004cbea5e858b3776372ad50b7d46" - ], - "index": "pypi", - "version": "==0.4.0" - }, - "kiwisolver": { - "hashes": [ - "sha256:0ee4ed8b3ae8f5f712b0aa9ebd2858b5b232f1b9a96b0943dceb34df2a223bc3", - "sha256:0f7f532f3c94e99545a29f4c3f05637f4d2713e7fd91b4dd8abfc18340b86cd5", - "sha256:1a078f5dd7e99317098f0e0d490257fd0349d79363e8c923d5bb76428f318421", - "sha256:1aa0b55a0eb1bd3fa82e704f44fb8f16e26702af1a073cc5030eea399e617b56", - "sha256:2874060b91e131ceeff00574b7c2140749c9355817a4ed498e82a4ffa308ecbc", - "sha256:379d97783ba8d2934d52221c833407f20ca287b36d949b4bba6c75274bcf6363", - "sha256:3b791ddf2aefc56382aadc26ea5b352e86a2921e4e85c31c1f770f527eb06ce4", - "sha256:4329008a167fac233e398e8a600d1b91539dc33c5a3eadee84c0d4b04d4494fa", - "sha256:45813e0873bbb679334a161b28cb9606d9665e70561fd6caa8863e279b5e464b", - "sha256:53a5b27e6b5717bdc0125338a822605084054c80f382051fb945d2c0e6899a20", - "sha256:574f24b9805cb1c72d02b9f7749aa0cc0b81aa82571be5201aa1453190390ae5", - "sha256:66f82819ff47fa67a11540da96966fb9245504b7f496034f534b81cacf333861", - "sha256:79e5fe3ccd5144ae80777e12973027bd2f4f5e3ae8eb286cabe787bed9780138", - "sha256:83410258eb886f3456714eea4d4304db3a1fc8624623fc3f38a487ab36c0f653", - "sha256:8b6a7b596ce1d2a6d93c3562f1178ebd3b7bb445b3b0dd33b09f9255e312a965", - "sha256:9576cb63897fbfa69df60f994082c3f4b8e6adb49cccb60efb2a80a208e6f996", - "sha256:95a25d9f3449046ecbe9065be8f8380c03c56081bc5d41fe0fb964aaa30b2195", - "sha256:a424f048bebc4476620e77f3e4d1f282920cef9bc376ba16d0b8fe97eec87cde", - "sha256:aaec1cfd94f4f3e9a25e144d5b0ed1eb8a9596ec36d7318a504d813412563a85", - "sha256:acb673eecbae089ea3be3dcf75bfe45fc8d4dcdc951e27d8691887963cf421c7", - "sha256:b15bc8d2c2848a4a7c04f76c9b3dc3561e95d4dabc6b4f24bfabe5fd81a0b14f", - "sha256:b1c240d565e977d80c0083404c01e4d59c5772c977fae2c483f100567f50847b", - "sha256:c595693de998461bcd49b8d20568c8870b3209b8ea323b2a7b0ea86d85864694", - "sha256:ce3be5d520b4d2c3e5eeb4cd2ef62b9b9ab8ac6b6fedbaa0e39cdb6f50644278", - "sha256:e0f910f84b35c36a3513b96d816e6442ae138862257ae18a0019d2fc67b041dc", - "sha256:ea36e19ac0a483eea239320aef0bd40702404ff8c7e42179a2d9d36c5afcb55c", - "sha256:efabbcd4f406b532206b8801058c8bab9e79645b9880329253ae3322b7b02cd5", - "sha256:f923406e6b32c86309261b8195e24e18b6a8801df0cfc7814ac44017bfcb3939" - ], - "version": "==1.0.1" - }, - "lxml": { - "hashes": [ - "sha256:02bc220d61f46e9b9d5a53c361ef95e9f5e1d27171cd461dddb17677ae2289a5", - "sha256:22f253b542a342755f6cfc047fe4d3a296515cf9b542bc6e261af45a80b8caf6", - "sha256:2f31145c7ff665b330919bfa44aacd3a0211a76ca7e7b441039d2a0b0451e415", - "sha256:36720698c29e7a9626a0dc802ef8885f8f0239bfd1689628ecd459a061f2807f", - "sha256:438a1b0203545521f6616132bfe0f4bca86f8a401364008b30e2b26ec408ce85", - "sha256:4815892904c336bbaf73dafd54f45f69f4021c22b5bad7332176bbf4fb830568", - "sha256:5be031b0f15ad63910d8e5038b489d95a79929513b3634ad4babf77100602588", - "sha256:5c93ae37c3c588e829b037fdfbd64a6e40c901d3f93f7beed6d724c44829a3ad", - "sha256:60842230678674cdac4a1cf0f707ef12d75b9a4fc4a565add4f710b5fcf185d5", - "sha256:62939a8bb6758d1bf923aa1c13f0bcfa9bf5b2fc0f5fa917a6e25db5fe0cfa4e", - "sha256:75830c06a62fe7b8fe3bbb5f269f0b308f19f3949ac81cfd40062f47c1455faf", - "sha256:81992565b74332c7c1aff6a913a3e906771aa81c9d0c68c68113cffcae45bc53", - "sha256:8c892fb0ee52c594d9a7751c7d7356056a9682674b92cc1c4dc968ff0f30c52f", - "sha256:9d862e3cf4fc1f2837dedce9c42269c8c76d027e49820a548ac89fdcee1e361f", - "sha256:a623965c086a6e91bb703d4da62dabe59fe88888e82c4117d544e11fd74835d6", - "sha256:a7783ab7f6a508b0510490cef9f857b763d796ba7476d9703f89722928d1e113", - "sha256:aab09fbe8abfa3b9ce62aaf45aca2d28726b1b9ee44871dbe644050a2fff4940", - "sha256:abf181934ac3ef193832fb973fd7f6149b5c531903c2ec0f1220941d73eee601", - "sha256:ae07fa0c115733fce1e9da96a3ac3fa24801742ca17e917e0c79d63a01eeb843", - "sha256:b9c78242219f674ab645ec571c9a95d70f381319a23911941cd2358a8e0521cf", - "sha256:bccb267678b870d9782c3b44d0cefe3ba0e329f9af8c946d32bf3778e7a4f271", - "sha256:c4df4d27f4c93b2cef74579f00b1d3a31a929c7d8023f870c4b476f03a274db4", - "sha256:caf0e50b546bb60dfa99bb18dfa6748458a83131ecdceaf5c071d74907e7e78a", - "sha256:d3266bd3ac59ac4edcd5fa75165dee80b94a3e5c91049df5f7c057ccf097551c", - "sha256:db0d213987bcd4e6d41710fb4532b22315b0d8fb439ff901782234456556aed1", - "sha256:dbbd5cf7690a40a9f0a9325ab480d0fccf46d16b378eefc08e195d84299bfae1", - "sha256:e16e07a0ec3a75b5ee61f2b1003c35696738f937dc8148fbda9fe2147ccb6e61", - "sha256:e175a006725c7faadbe69e791877d09936c0ef2cf49d01b60a6c1efcb0e8be6f", - "sha256:edd9c13a97f6550f9da2236126bb51c092b3b1ce6187f2bd966533ad794bbb5e", - "sha256:fa39ea60d527fbdd94215b5e5552f1c6a912624521093f1384a491a8ad89ad8b" - ], - "version": "==4.2.5" - }, - "markupsafe": { - "hashes": [ - "sha256:7d263e5770efddf465a9e31b78362d84d015cc894ca2c131901a4445eaa61ee1" - ], - "version": "==1.1.0" - }, - "mat4py": { - "hashes": [ - "sha256:8272ce80747120ff44200b1fde341c657595813e1adf61262e44b52642c10dbe" - ], - "index": "pypi", - "version": "==0.4.1" - }, - "matplotlib": { - "hashes": [ - "sha256:16aa61846efddf91df623bbb4598e63be1068a6b6a2e6361cc802b41c7a286eb", - "sha256:1975b71a33ac986bb39b6d5cfbc15c7b1f218f1134efb4eb3881839d6ae69984", - "sha256:2b222744bd54781e6cc0b717fa35a54e5f176ba2ced337f27c5b435b334ef854", - "sha256:317643c0e88fad55414347216362b2e229c130edd5655fea5f8159a803098468", - "sha256:4269ce3d1b897d46fc3cc2273a0cc2a730345bb47e4456af662e6fca85c89dd7", - "sha256:65214fd668975077cdf8d408ccf2b2d6bdf73b4e6895a79f8e99ce4f0b43fcdb", - "sha256:74bc213ab8a92d86a0b304d9359d1e1d14168d4c6121b83862c9d8a88b89a738", - "sha256:88949be0db54755995dfb0210d0099a8712a3c696c860441971354c3debfc4af", - "sha256:8e1223d868be89423ec95ada5f37aa408ee64fe76ccb8e4d5f533699ba4c0e4a", - "sha256:9fa00f2d7a552a95fa6016e498fdeb6d74df537853dda79a9055c53dfc8b6e1a", - "sha256:c27fd46cab905097ba4bc28d5ba5289930f313fb1970c9d41092c9975b80e9b4", - "sha256:c94b792af431f6adb6859eb218137acd9a35f4f7442cea57e4a59c54751c36af", - "sha256:f4c12a01eb2dc16693887a874ba948b18c92f425c4d329639ece6d3bb8e631bb" - ], - "index": "pypi", - "version": "==3.0.2" - }, - "mistune": { - "hashes": [ - "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", - "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4" - ], - "version": "==0.8.4" - }, - "munch": { - "hashes": [ - "sha256:6ae3d26b837feacf732fb8aa5b842130da1daf221f5af9f9d4b2a0a6414b0d51" - ], - "version": "==2.3.2" - }, - "nbconvert": { - "hashes": [ - "sha256:08d21cf4203fabafd0d09bbd63f06131b411db8ebeede34b0fd4be4548351779", - "sha256:a8a2749f972592aa9250db975304af6b7337f32337e523a2c995cc9e12c07807" - ], - "version": "==5.4.0" - }, - "nbformat": { - "hashes": [ - "sha256:b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", - "sha256:f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402" - ], - "version": "==4.4.0" - }, - "notebook": { - "hashes": [ - "sha256:661341909008d1e7bfa1541904006f9789fa3de1cbec8379d2879819454cc04b", - "sha256:91705b109fc785198faed892489cddb233265564d5e2dad5e4f7974af05ee8dd" - ], - "version": "==5.7.2" - }, - "numpy": { - "hashes": [ - "sha256:0df89ca13c25eaa1621a3f09af4c8ba20da849692dcae184cb55e80952c453fb", - "sha256:154c35f195fd3e1fad2569930ca51907057ae35e03938f89a8aedae91dd1b7c7", - "sha256:18e84323cdb8de3325e741a7a8dd4a82db74fde363dce32b625324c7b32aa6d7", - "sha256:1e8956c37fc138d65ded2d96ab3949bd49038cc6e8a4494b1515b0ba88c91565", - "sha256:23557bdbca3ccbde3abaa12a6e82299bc92d2b9139011f8c16ca1bb8c75d1e95", - "sha256:24fd645a5e5d224aa6e39d93e4a722fafa9160154f296fd5ef9580191c755053", - "sha256:36e36b6868e4440760d4b9b44587ea1dc1f06532858d10abba98e851e154ca70", - "sha256:3d734559db35aa3697dadcea492a423118c5c55d176da2f3be9c98d4803fc2a7", - "sha256:416a2070acf3a2b5d586f9a6507bb97e33574df5bd7508ea970bbf4fc563fa52", - "sha256:4a22dc3f5221a644dfe4a63bf990052cc674ef12a157b1056969079985c92816", - "sha256:4d8d3e5aa6087490912c14a3c10fbdd380b40b421c13920ff468163bc50e016f", - "sha256:4f41fd159fba1245e1958a99d349df49c616b133636e0cf668f169bce2aeac2d", - "sha256:561ef098c50f91fbac2cc9305b68c915e9eb915a74d9038ecf8af274d748f76f", - "sha256:56994e14b386b5c0a9b875a76d22d707b315fa037affc7819cda08b6d0489756", - "sha256:73a1f2a529604c50c262179fcca59c87a05ff4614fe8a15c186934d84d09d9a5", - "sha256:7da99445fd890206bfcc7419f79871ba8e73d9d9e6b82fe09980bc5bb4efc35f", - "sha256:99d59e0bcadac4aa3280616591fb7bcd560e2218f5e31d5223a2e12a1425d495", - "sha256:a4cc09489843c70b22e8373ca3dfa52b3fab778b57cf81462f1203b0852e95e3", - "sha256:a61dc29cfca9831a03442a21d4b5fd77e3067beca4b5f81f1a89a04a71cf93fa", - "sha256:b1853df739b32fa913cc59ad9137caa9cc3d97ff871e2bbd89c2a2a1d4a69451", - "sha256:b1f44c335532c0581b77491b7715a871d0dd72e97487ac0f57337ccf3ab3469b", - "sha256:b261e0cb0d6faa8fd6863af26d30351fd2ffdb15b82e51e81e96b9e9e2e7ba16", - "sha256:c857ae5dba375ea26a6228f98c195fec0898a0fd91bcf0e8a0cae6d9faf3eca7", - "sha256:cf5bb4a7d53a71bb6a0144d31df784a973b36d8687d615ef6a7e9b1809917a9b", - "sha256:db9814ff0457b46f2e1d494c1efa4111ca089e08c8b983635ebffb9c1573361f", - "sha256:df04f4bad8a359daa2ff74f8108ea051670cafbca533bb2636c58b16e962989e", - "sha256:ecf81720934a0e18526177e645cbd6a8a21bb0ddc887ff9738de07a1df5c6b61", - "sha256:edfa6fba9157e0e3be0f40168eb142511012683ac3dc82420bee4a3f3981b30e" - ], - "index": "pypi", - "version": "==1.15.4" - }, - "pandas": { - "hashes": [ - "sha256:11975fad9edbdb55f1a560d96f91830e83e29bed6ad5ebf506abda09818eaf60", - "sha256:12e13d127ca1b585dd6f6840d3fe3fa6e46c36a6afe2dbc5cb0b57032c902e31", - "sha256:1c87fcb201e1e06f66e23a61a5fea9eeebfe7204a66d99df24600e3f05168051", - "sha256:242e9900de758e137304ad4b5663c2eff0d798c2c3b891250bd0bd97144579da", - "sha256:26c903d0ae1542890cb9abadb4adcb18f356b14c2df46e4ff657ae640e3ac9e7", - "sha256:2e1e88f9d3e5f107b65b59cd29f141995597b035d17cc5537e58142038942e1a", - "sha256:31b7a48b344c14691a8e92765d4023f88902ba3e96e2e4d0364d3453cdfd50db", - "sha256:4fd07a932b4352f8a8973761ab4e84f965bf81cc750fb38e04f01088ab901cb8", - "sha256:5b24ca47acf69222e82530e89111dd9d14f9b970ab2cd3a1c2c78f0c4fbba4f4", - "sha256:647b3b916cc8f6aeba240c8171be3ab799c3c1b2ea179a3be0bd2712c4237553", - "sha256:66b060946046ca27c0e03e9bec9bba3e0b918bafff84c425ca2cc2e157ce121e", - "sha256:6efa9fa6e1434141df8872d0fa4226fc301b17aacf37429193f9d70b426ea28f", - "sha256:be4715c9d8367e51dbe6bc6d05e205b1ae234f0dc5465931014aa1c4af44c1ba", - "sha256:bea90da782d8e945fccfc958585210d23de374fa9294a9481ed2abcef637ebfc", - "sha256:d318d77ab96f66a59e792a481e2701fba879e1a453aefeebdb17444fe204d1ed", - "sha256:d785fc08d6f4207437e900ffead930a61e634c5e4f980ba6d3dc03c9581748c7", - "sha256:de9559287c4fe8da56e8c3878d2374abc19d1ba2b807bfa7553e912a8e5ba87c", - "sha256:f4f98b190bb918ac0bc0e3dd2ab74ff3573da9f43106f6dba6385406912ec00f", - "sha256:f71f1a7e2d03758f6e957896ed696254e2bc83110ddbc6942018f1a232dd9dad", - "sha256:fb944c8f0b0ab5c1f7846c686bc4cdf8cde7224655c12edcd59d5212cd57bec0" - ], - "index": "pypi", - "version": "==0.23.4" - }, - "pandocfilters": { - "hashes": [ - "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9" - ], - "version": "==1.4.2" - }, - "parso": { - "hashes": [ - "sha256:895c63e93b94ac1e1690f5fdd40b65f07c8171e3e53cbd7793b5b96c0e0a7f24" - ], - "version": "==0.3.1" - }, - "pickleshare": { - "hashes": [ - "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", - "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" - ], - "version": "==0.7.5" - }, - "plotly": { - "hashes": [ - "sha256:53c647fdb28590de838678029f7d8fdc42f5ba4643d13c2afd2c4e4d56e18426", - "sha256:5dc85bde91bc80fa05f0d89e9f3a8eaee735b2b404047266874e0ff9c104407f" - ], - "index": "pypi", - "version": "==3.4.1" - }, - "prometheus-client": { - "hashes": [ - "sha256:046cb4fffe75e55ff0e6dfd18e2ea16e54d86cc330f369bebcc683475c8b68a9" - ], - "version": "==0.4.2" - }, - "prompt-toolkit": { - "hashes": [ - "sha256:c1d6aff5252ab2ef391c2fe498ed8c088066f66bc64a8d5c095bbf795d9fec34", - "sha256:d4c47f79b635a0e70b84fdb97ebd9a274203706b1ee5ed44c10da62755cf3ec9", - "sha256:fd17048d8335c1e6d5ee403c3569953ba3eb8555d710bfc548faf0712666ea39" - ], - "version": "==2.0.7" - }, - "pygments": { - "hashes": [ - "sha256:78f3f434bcc5d6ee09020f92ba487f95ba50f1e3ef83ae96b9d5ffa1bab25c5d", - "sha256:dbae1046def0efb574852fab9e90209b23f556367b5a320c0bcb871c77c3e8cc" - ], - "version": "==2.2.0" - }, - "pyparsing": { - "hashes": [ - "sha256:40856e74d4987de5d01761a22d1621ae1c7f8774585acae358aa5c5936c6c90b", - "sha256:f353aab21fd474459d97b709e527b5571314ee5f067441dc9f88e33eecd96592" - ], - "version": "==2.3.0" - }, - "pyproj": { - "file": "https://download.lfd.uci.edu/pythonlibs/h2ufg7oq/pyproj-1.9.5.1-cp37-cp37m-win_amd64.whl", - "hashes": [ - "sha256:2b8d0e937e1fa28b65bb351930ab2df9b5bd78e4cc953f7a5a415ff206a3acde" - ], - "index": "pypi", - "version": "==1.9.5.1" - }, - "pyrsistent": { - "hashes": [ - "sha256:05910b7ff43cec0a853c15da0bfaf2867faa95f29b08e71f5846a195f1f38c75" - ], - "version": "==0.14.7" - }, - "python-dateutil": { - "hashes": [ - "sha256:063df5763652e21de43de7d9e00ccf239f953a832941e37be541614732cdfc93", - "sha256:88f9287c0174266bb0d8cedd395cfba9c58e87e5ad86b2ce58859bc11be3cf02" - ], - "version": "==2.7.5" - }, - "pytz": { - "hashes": [ - "sha256:31cb35c89bd7d333cd32c5f278fca91b523b0834369e757f4c5641ea252236ca", - "sha256:8e0f8568c118d3077b46be7d654cc8167fa916092e28320cde048e54bfc9f1e6" - ], - "version": "==2018.7" - }, - "pywinpty": { - "hashes": [ - "sha256:79f2b4584111e36826e587d33eb4e7416a12ae1d6c094cb554e873c5c162fa5f" - ], - "markers": "os_name == 'nt'", - "version": "==0.5.4" - }, - "pyyaml": { - "hashes": [ - "sha256:254bf6fda2b7c651837acb2c718e213df29d531eebf00edb54743d10bcb694eb", - "sha256:3108529b78577327d15eec243f0ff348a0640b0c3478d67ad7f5648f93bac3e2", - "sha256:3c17fb92c8ba2f525e4b5f7941d850e7a48c3a59b32d331e2502a3cdc6648e76", - "sha256:8d6d96001aa7f0a6a4a95e8143225b5d06e41b1131044913fecb8f85a125714b", - "sha256:c8a88edd93ee29ede719080b2be6cb2333dfee1dccba213b422a9c8e97f2967b" - ], - "version": "==4.2b4" - }, - "pyzmq": { - "hashes": [ - "sha256:25a0715c8f69cf72f67cfe5a68a3f3ed391c67c063d2257bec0fe7fc2c7f08f8", - "sha256:2bab63759632c6b9e0d5bf19cc63c3b01df267d660e0abcf230cf0afaa966349", - "sha256:30ab49d99b24bf0908ebe1cdfa421720bfab6f93174e4883075b7ff38cc555ba", - "sha256:32c7ca9fc547a91e3c26fc6080b6982e46e79819e706eb414dd78f635a65d946", - "sha256:41219ae72b3cc86d97557fe5b1ef5d1adc1057292ec597b50050874a970a39cf", - "sha256:4b8c48a9a13cea8f1f16622f9bd46127108af14cd26150461e3eab71e0de3e46", - "sha256:55724997b4a929c0d01b43c95051318e26ddbae23565018e138ae2dc60187e59", - "sha256:65f0a4afae59d4fc0aad54a917ab599162613a761b760ba167d66cc646ac3786", - "sha256:6f88591a8b246f5c285ee6ce5c1bf4f6bd8464b7f090b1333a446b6240a68d40", - "sha256:75022a4c60dcd8765bb9ca32f6de75a0ec83b0d96e0309dc479f4c7b21f26cb7", - "sha256:76ea493bfab18dcb090d825f3662b5612e2def73dffc196d51a5194b0294a81d", - "sha256:7b60c045b80709e4e3c085bab9b691e71761b44c2b42dbb047b8b498e7bc16b3", - "sha256:8e6af2f736734aef8ed6f278f9f552ec7f37b1a6b98e59b887484a840757f67d", - "sha256:9ac2298e486524331e26390eac14e4627effd3f8e001d4266ed9d8f1d2d31cce", - "sha256:9ba650f493a9bc1f24feca1d90fce0e5dd41088a252ac9840131dfbdbf3815ca", - "sha256:a02a4a385e394e46012dc83d2e8fd6523f039bb52997c1c34a2e0dd49ed839c1", - "sha256:a3ceee84114d9f5711fa0f4db9c652af0e4636c89eabc9b7f03a3882569dd1ed", - "sha256:a72b82ac1910f2cf61a49139f4974f994984475f771b0faa730839607eeedddf", - "sha256:ab136ac51027e7c484c53138a0fab4a8a51e80d05162eb7b1585583bcfdbad27", - "sha256:c095b224300bcac61e6c445e27f9046981b1ac20d891b2f1714da89d34c637c8", - "sha256:c5cc52d16c06dc2521340d69adda78a8e1031705924e103c0eb8fc8af861d810", - "sha256:d612e9833a89e8177f8c1dc68d7b4ff98d3186cd331acd616b01bbdab67d3a7b", - "sha256:e828376a23c66c6fe90dcea24b4b72cd774f555a6ee94081670872918df87a19", - "sha256:e9767c7ab2eb552796440168d5c6e23a99ecaade08dda16266d43ad461730192", - "sha256:ebf8b800d42d217e4710d1582b0c8bff20cdcb4faad7c7213e52644034300924" - ], - "version": "==17.1.2" - }, - "qtconsole": { - "hashes": [ - "sha256:1ac4a65e81a27b0838330a6d351c2f8435d4013d98a95373e8a41119b2968390", - "sha256:bc1ba15f50c29ed50f1268ad823bb6543be263c18dd093b80495e9df63b003ac" - ], - "version": "==4.4.3" - }, - "requests": { - "hashes": [ - "sha256:65b3a120e4329e33c9889db89c80976c5272f56ea92d3e74da8a463992e3ff54", - "sha256:ea881206e59f41dbd0bd445437d792e43906703fff75ca8ff43ccdb11f33f263" - ], - "version": "==2.20.1" - }, - "retrying": { - "hashes": [ - "sha256:08c039560a6da2fe4f2c426d0766e284d3b736e355f8dd24b37367b0bb41973b" - ], - "version": "==1.3.3" - }, - "scipy": { - "hashes": [ - "sha256:0611ee97296265af4a21164a5323f8c1b4e8e15c582d3dfa7610825900136bb7", - "sha256:08237eda23fd8e4e54838258b124f1cd141379a5f281b0a234ca99b38918c07a", - "sha256:0e645dbfc03f279e1946cf07c9c754c2a1859cb4a41c5f70b25f6b3a586b6dbd", - "sha256:0e9bb7efe5f051ea7212555b290e784b82f21ffd0f655405ac4f87e288b730b3", - "sha256:108c16640849e5827e7d51023efb3bd79244098c3f21e4897a1007720cb7ce37", - "sha256:340ef70f5b0f4e2b4b43c8c8061165911bc6b2ad16f8de85d9774545e2c47463", - "sha256:3ad73dfc6f82e494195144bd3a129c7241e761179b7cb5c07b9a0ede99c686f3", - "sha256:3b243c77a822cd034dad53058d7c2abf80062aa6f4a32e9799c95d6391558631", - "sha256:404a00314e85eca9d46b80929571b938e97a143b4f2ddc2b2b3c91a4c4ead9c5", - "sha256:423b3ff76957d29d1cce1bc0d62ebaf9a3fdfaf62344e3fdec14619bb7b5ad3a", - "sha256:42d9149a2fff7affdd352d157fa5717033767857c11bd55aa4a519a44343dfef", - "sha256:625f25a6b7d795e8830cb70439453c9f163e6870e710ec99eba5722775b318f3", - "sha256:698c6409da58686f2df3d6f815491fd5b4c2de6817a45379517c92366eea208f", - "sha256:729f8f8363d32cebcb946de278324ab43d28096f36593be6281ca1ee86ce6559", - "sha256:8190770146a4c8ed5d330d5b5ad1c76251c63349d25c96b3094875b930c44692", - "sha256:878352408424dffaa695ffedf2f9f92844e116686923ed9aa8626fc30d32cfd1", - "sha256:8b984f0821577d889f3c7ca8445564175fb4ac7c7f9659b7c60bef95b2b70e76", - "sha256:8f841bbc21d3dad2111a94c490fb0a591b8612ffea86b8e5571746ae76a3deac", - "sha256:c22b27371b3866c92796e5d7907e914f0e58a36d3222c5d436ddd3f0e354227a", - "sha256:d0cdd5658b49a722783b8b4f61a6f1f9c75042d0e29a30ccb6cacc9b25f6d9e2", - "sha256:d40dc7f494b06dcee0d303e51a00451b2da6119acbeaccf8369f2d29e28917ac", - "sha256:d8491d4784aceb1f100ddb8e31239c54e4afab8d607928a9f7ef2469ec35ae01", - "sha256:dfc5080c38dde3f43d8fbb9c0539a7839683475226cf83e4b24363b227dfe552", - "sha256:e24e22c8d98d3c704bb3410bce9b69e122a8de487ad3dbfe9985d154e5c03a40", - "sha256:e7a01e53163818d56eabddcafdc2090e9daba178aad05516b20c6591c4811020", - "sha256:ee677635393414930541a096fc8e61634304bb0153e4e02b75685b11eba14cae", - "sha256:f0521af1b722265d824d6ad055acfe9bd3341765735c44b5a4d0069e189a0f40", - "sha256:f25c281f12c0da726c6ed00535ca5d1622ec755c30a3f8eafef26cf43fede694" - ], - "index": "pypi", - "version": "==1.1.0" - }, - "send2trash": { - "hashes": [ - "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", - "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b" - ], - "version": "==1.5.0" - }, - "shapely": { - "hashes": [ - "sha256:045e991636787c22bf3e18b57cdaa200681acc0e5db0720123643909d99ad32b", - "sha256:2e8398aacf67cfdfcd64154738c809fea52008afefb4704103f43face369230d", - "sha256:56b8184ef9cf2e2e1dd09ccfe341028af08ea57254524c9458e7f115655385af", - "sha256:7268fd767dc88ef083a528a1e8977a358c7a56cb349aae9e4c36913cfba30857", - "sha256:7e06705e0a20e10f0ce35b233b32b57f6b77044e58e2ad4023d6e64f6c3719a7", - "sha256:937502b7f7bfea39910e30617a30d74ce1b6585895b3d8a2a4602c223a0dd73c", - "sha256:99dc867fe6519c1af1840cceea8bcf5dd1ece077207bdcb19072cdb4fbda8584", - "sha256:9e45485c49fd9ee81a81be756e648a0c1c125e770e3ed42845350d75a46723ad", - "sha256:e3c3eb85f7d4308ccbfcdd23513bfe201b193673c98400219b9a480b903b3033", - "sha256:eb4f295b1ff558857d8061ff7716b1e10ec3c24b5b784bccb51dc87e6fd3ad07", - "sha256:f87c677c0b176827167d1ebad37bba36a9e6baf61f608ff8ef4b9d9ff002c3c3", - "sha256:ffe14cf22da9c95aa87a287ddb96202e3cbb4ec1ec862050d9e4b114307fa206" - ], - "index": "pypi", - "version": "==1.7a1" - }, - "six": { - "hashes": [ - "sha256:70e8a77beed4562e7f14fe23a786b54f6296e34344c23bc42f07b15018ff98e9", - "sha256:832dc0e10feb1aa2c68dcc57dbb658f1c7e65b9b61af69048abc87a2db00a0eb" - ], - "version": "==1.11.0" - }, - "terminado": { - "hashes": [ - "sha256:55abf9ade563b8f9be1f34e4233c7b7bde726059947a593322e8a553cc4c067a", - "sha256:65011551baff97f5414c67018e908110693143cfbaeb16831b743fe7cad8b927" - ], - "version": "==0.8.1" - }, - "testpath": { - "hashes": [ - "sha256:46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", - "sha256:b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8" - ], - "version": "==0.4.2" - }, - "toml": { - "hashes": [ - "sha256:229f81c57791a41d65e399fc06bf0848bab550a9dfd5ed66df18ce5f05e73d5c", - "sha256:235682dd292d5899d361a811df37e04a8828a5b1da3115886b73cf81ebc9100e" - ], - "version": "==0.10.0" - }, - "tornado": { - "hashes": [ - "sha256:0662d28b1ca9f67108c7e3b77afabfb9c7e87bde174fbda78186ecedc2499a9d", - "sha256:4e5158d97583502a7e2739951553cbd88a72076f152b4b11b64b9a10c4c49409", - "sha256:732e836008c708de2e89a31cb2fa6c0e5a70cb60492bee6f1ea1047500feaf7f", - "sha256:8154ec22c450df4e06b35f131adc4f2f3a12ec85981a203301d310abf580500f", - "sha256:8e9d728c4579682e837c92fdd98036bd5cdefa1da2aaf6acf26947e6dd0c01c5", - "sha256:d4b3e5329f572f055b587efc57d29bd051589fb5a43ec8898c77a47ec2fa2bbb", - "sha256:e5f2585afccbff22390cddac29849df463b252b711aa2ce7c5f3f342a5b3b444" - ], - "version": "==5.1.1" - }, - "traitlets": { - "hashes": [ - "sha256:9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", - "sha256:c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9" - ], - "version": "==4.3.2" - }, - "urllib3": { - "hashes": [ - "sha256:61bf29cada3fc2fbefad4fdf059ea4bd1b4a86d2b6d15e1c7c0b582b9752fe39", - "sha256:de9529817c93f27c8ccbfead6985011db27bd0ddfcdb2d86f3f663385c6a9c22" - ], - "version": "==1.24.1" - }, - "wcwidth": { - "hashes": [ - "sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c" - ], - "version": "==0.1.7" - }, - "webencodings": { - "hashes": [ - "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78" - ], - "version": "==0.5.1" - }, - "widgetsnbextension": { - "hashes": [ - "sha256:14b2c65f9940c9a7d3b70adbe713dbd38b5ec69724eebaba034d1036cf3d4740", - "sha256:fa618be8435447a017fd1bf2c7ae922d0428056cfc7449f7a8641edf76b48265" - ], - "version": "==3.4.2" - } - }, - "develop": {} -} diff --git a/README.md b/README.md index 341ff13..00f303c 100644 --- a/README.md +++ b/README.md @@ -7,19 +7,47 @@ structure where possible. The analysis is done in python (look at the `/src/` fo Development is conducted using a [gitflow](https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow) approach. The `master` branch stores the officialrelease history and the `develop` branch serves as an integration branch for features. Other `hotfix` and `feature` branches should be created and merged as necessary. -## Where to start? -Check .env -Uses pipenv -1. Clone this repository. -2. Pull data from WRL coastal J drive with `make pull-data` -3. Check out jupyter notebook `./notebooks/01_exploration.ipynb` which has an example of how to import the data and some interactive widgets. - -## Requirements +## How to start? + +#### Getting software requirements The following requirements are needed to run various bits: -- [Python 3.6+](https://conda.io/docs/user-guide/install/windows.html): Used for processing and analysing data. Jupyter notebooks are used for exploratory analyis and communication. +- [Anacond](https://www.anaconda.com/download/): Used for processing and analysing data. The Anaconda distribution is used for managing environments and is available for Windows, Mac and Linux. Jupyter notebooks are used for exploratory analyis and communication. - [QGIS](https://www.qgis.org/en/site/forusers/download): Used for looking at raw LIDAR pre/post storm surveys and extracting dune crests/toes - [rclone](https://rclone.org/downloads/): Data is not tracked by this repository, but is backed up to a remote Chris Leaman working directory located on the WRL coastal drive. Rclone is used to sync local and remote copies. Ensure rclone.exe is located on your `PATH` environment. - [gnuMake](http://gnuwin32.sourceforge.net/packages/make.htm): A list of commands for processing data is provided in the `./Makefile`. Use gnuMake to launch these commands. Ensure make.exe is located on your `PATH` environment. +- git + +#### Getting the repository +Clone the repository onto into your local environment: +``` +git clone http://git.wrl.unsw.edu.au:3000/chrisl/nsw-2016-storm-impact.git +cd nsw-2016-storm-impact +``` + +#### Getting the python environment set up +Commands for setting up the python environment are provided in the `Makefile`. Simply run the following commands in the repo root directory: +``` +make venv-init +make venv-activate +make venv-requirements-install +``` +You can see what these commands are actually running by inspecting the `Makefile`. + +#### Pull data +The actual raw, interim and processed data are not tracked by the repository as part of good git practices. A copy of the raw data is stored on the WRL Coastal J:\ drive and can be copied using the following command. +``` +make pull-data +``` +If you have updated the data and want to copy it back to the J:\ drive, use the following command. Note that it is probably not a good idea to modify data stored in `./data/raw`. +``` +make push-data +``` + +#### View notebooks +Jupyter notebooks have been set up to help explore the data. Once you have set up your environment and pulled the data, this is probably a good place to start as you. To run the notebook, use the following command and navigate to the `./notebooks` folder. +``` +jupyter notebook +``` ## Available data Raw, interim and processed data used in this analysis is kept in the `/data/` folder. Data is not tracked in the repository due to size constraints, but stored locally. A mirror is kept of the coastal folder J drive which you can @@ -44,4 +72,5 @@ been corrected for systematic errors, so actual elevations should be taken from - [ ] Implement (bayesian change detection algorithm)[https://github.com/hildensia/bayesian_changepoint_detection] to help detect dune crests and toes from profiles. Probably low priority at the moment since we are doing manual detection. - [ ] Implement dune impact calculations as per Palmsten & Holman. Calculation should be done in a new dataframe. - [ ] Implement data/interim/*.csv file checking using py.test. Check for correct columns, number of nans etc. Testing of code is probably a lower priority than just checking the interim data files at the moment. -- [ ] Investigate using [modin](https://github.com/modin-project/modin) to help speed up analysis. \ No newline at end of file +- [ ] Investigate using [modin](https://github.com/modin-project/modin) to help speed up analysis. +- [ ] Need to think about how relative imports are handled, see [here](https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html). Maybe the click CLI interface should be moved to the `./src/` folder and it can import all the other packages? \ No newline at end of file diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..561fc32 --- /dev/null +++ b/environment.yml @@ -0,0 +1,149 @@ +name: C:\Users\z5189959\Desktop\nsw-2016-storm-impact\.venv +channels: + - defaults + - conda-forge +dependencies: + - appdirs=1.4.3=py_1 + - attrs=18.2.0=py_0 + - backcall=0.1.0=py_0 + - black=18.9b0=py_0 + - bleach=3.0.2=py_0 + - boost=1.66.0=py36_vc14_1 + - boost-cpp=1.66.0=vc14_1 + - ca-certificates=2018.10.15=ha4d7672_0 + - certifi=2018.10.15=py36_1000 + - colorama=0.4.0=py_0 + - colorlover=0.2.1=py_0 + - curl=7.60.0=vc14_0 + - entrypoints=0.2.3=py36_1002 + - expat=2.2.5=vc14_0 + - freetype=2.8.1=vc14_0 + - freexl=1.0.2=vc14_2 + - geotiff=1.4.2=vc14_1 + - hdf4=4.2.13=vc14_0 + - hdf5=1.10.1=vc14_2 + - icu=58.2=vc14_0 + - ipykernel=5.1.0=py36h39e3cac_1001 + - ipython=7.1.1=py36h39e3cac_1000 + - jedi=0.13.1=py36_1000 + - jinja2=2.10=py_1 + - jpeg=9b=vc14_2 + - jupyter_client=5.2.3=py_1 + - jupyter_contrib_core=0.3.3=py_2 + - jupyter_contrib_nbextensions=0.5.0=py36_1000 + - jupyter_highlight_selected_word=0.2.0=py36_1000 + - jupyter_latex_envs=1.4.4=py36_1000 + - jupyter_nbextensions_configurator=0.4.0=py36_1000 + - kealib=1.4.7=vc14_4 + - krb5=1.14.6=vc14_0 + - libgdal=2.2.4=vc14_5 + - libiconv=1.14=vc14_4 + - libnetcdf=4.6.1=vc14_2 + - libpng=1.6.34=vc14_0 + - libpq=9.6.3=vc14_0 + - libsodium=1.0.16=vc14_0 + - libspatialite=4.3.0a=vc14_19 + - libtiff=4.0.9=vc14_0 + - libxml2=2.9.5=vc14_1 + - libxslt=1.1.32=vc14_0 + - lxml=4.2.3=py36heafd4d3_0 + - markupsafe=1.1.0=py36hfa6e2cd_1000 + - matplotlib=2.2.2=py36_1 + - mistune=0.8.4=py36hfa6e2cd_1000 + - nbconvert=5.3.1=py_1 + - notebook=5.7.2=py36_1000 + - openjpeg=2.3.0=vc14_2 + - openssl=1.0.2p=hfa6e2cd_1001 + - pandoc=2.4=0 + - pandocfilters=1.4.2=py_1 + - parso=0.3.1=py_0 + - pickleshare=0.7.5=py36_1000 + - proj4=4.9.3=vc14_5 + - prometheus_client=0.4.2=py_0 + - prompt_toolkit=2.0.7=py_0 + - pygments=2.2.0=py_1 + - python=3.6.6=he025d50_0 + - pywinpty=0.5.4=py36_1002 + - pyzmq=17.1.2=py36hf576995_1001 + - qt=5.6.2=vc14_1 + - send2trash=1.5.0=py_0 + - sqlite=3.20.1=vc14_2 + - terminado=0.8.1=py36_1001 + - testpath=0.4.2=py36_1000 + - tk=8.6.8=vc14_0 + - toml=0.10.0=py_0 + - vc=14=0 + - wcwidth=0.1.7=py_1 + - webencodings=0.5.1=py_1 + - winpty=0.4.3=4 + - xerces-c=3.2.0=vc14_0 + - yaml=0.1.7=vc14_0 + - zeromq=4.2.5=vc14_2 + - zlib=1.2.11=vc14_0 + - asn1crypto=0.24.0=py36_0 + - blas=1.0=mkl + - cffi=1.11.5=py36h74b6da3_1 + - chardet=3.0.4=py36_1 + - click=7.0=py36_0 + - click-plugins=1.0.4=py36_0 + - cligj=0.5.0=py36_0 + - cryptography=2.3.1=py36h74b6da3_0 + - cycler=0.10.0=py36h009560c_0 + - decorator=4.3.0=py36_0 + - fiona=1.7.10=py36h5bf8d1d_0 + - gdal=2.2.2=py36hcebd033_1 + - geos=3.6.2=h9ef7328_2 + - icc_rt=2017.0.4=h97af966_0 + - idna=2.7=py36_0 + - intel-openmp=2019.1=144 + - ipython_genutils=0.2.0=py36h3c5d0ee_0 + - jsonschema=2.6.0=py36h7636477_0 + - jupyter_core=4.4.0=py36_0 + - kiwisolver=1.0.1=py36h6538335_0 + - libboost=1.67.0=hd9e427e_4 + - libcurl=7.61.1=h7602738_0 + - libkml=1.3.0=he5f2a48_4 + - libssh2=1.8.0=hd619d38_4 + - m2w64-gcc-libgfortran=5.3.0=6 + - m2w64-gcc-libs=5.3.0=7 + - m2w64-gcc-libs-core=5.3.0=7 + - m2w64-gmp=6.1.0=2 + - m2w64-libwinpthread-git=5.0.0.4634.697f757=2 + - mkl=2018.0.3=1 + - mkl_fft=1.0.6=py36hdbbee80_0 + - mkl_random=1.0.1=py36h77b88f5_1 + - msys2-conda-epoch=20160418=1 + - munch=2.3.2=py36_0 + - nbformat=4.4.0=py36h3a5bc1b_0 + - numpy=1.15.4=py36ha559c80_0 + - numpy-base=1.15.4=py36h8128ebf_0 + - pandas=0.23.4=py36h830ac7b_0 + - pip=18.1=py36_0 + - plotly=3.4.1=py36h28b3542_0 + - pycparser=2.19=py36_0 + - pyopenssl=18.0.0=py36_0 + - pyparsing=2.3.0=py36_0 + - pyproj=1.9.5.1=py36_0 + - pyqt=5.6.0=py36_2 + - pysocks=1.6.8=py36_0 + - python-dateutil=2.7.5=py36_0 + - pytz=2018.7=py36_0 + - pyyaml=3.13=py36hfa6e2cd_0 + - requests=2.20.1=py36_0 + - retrying=1.3.3=py36_2 + - scipy=1.1.0=py36h4f6bf74_1 + - setuptools=40.6.2=py36_0 + - shapely=1.6.4=py36hc90234e_0 + - sip=4.19.8=py36h6538335_0 + - six=1.11.0=py36_1 + - tornado=5.1.1=py36hfa6e2cd_0 + - traitlets=4.3.2=py36h096827d_0 + - urllib3=1.23=py36_0 + - vs2015_runtime=14.15.26706=h3a45250_0 + - wheel=0.32.3=py36_0 + - win_inet_pton=1.0.1=py36_1 + - wincertstore=0.2=py36h7fe50ca_0 + - xz=5.2.4=h2fa13f4_4 + - pip: + - mat4py==0.4.1 +prefix: C:\Users\z5189959\Desktop\nsw-2016-storm-impact\.venv diff --git a/notebooks/01_exploration.ipynb b/notebooks/01_exploration.ipynb index 03189fd..9150b26 100644 --- a/notebooks/01_exploration.ipynb +++ b/notebooks/01_exploration.ipynb @@ -10,11 +10,11 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2018-11-25T21:56:41.533322Z", - "start_time": "2018-11-25T21:56:41.362045Z" + "end_time": "2018-11-27T03:27:16.641947Z", + "start_time": "2018-11-27T03:27:15.791353Z" } }, "outputs": [], @@ -29,11 +29,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2018-11-25T21:57:10.456785Z", - "start_time": "2018-11-25T21:56:41.534324Z" + "end_time": "2018-11-27T03:27:16.655952Z", + "start_time": "2018-11-27T03:27:16.642938Z" }, "scrolled": true }, @@ -70,11 +70,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2018-11-25T21:57:33.969096Z", - "start_time": "2018-11-25T21:57:10.456785Z" + "end_time": "2018-11-27T03:27:31.268696Z", + "start_time": "2018-11-27T03:27:16.657959Z" }, "pixiedust": { "displayParams": {} @@ -130,23 +130,23 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2018-11-25T22:27:09.754717Z", - "start_time": "2018-11-25T22:27:06.633214Z" + "end_time": "2018-11-27T03:27:34.422864Z", + "start_time": "2018-11-27T03:27:31.278426Z" }, "code_folding": [ 408 ], - "hide_input": false, + "hide_input": true, "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9bf50bbca81147ee9d37120a32bed4ea", + "model_id": "80589953e2e04fecb2a0f3add40b3d5b", "version_major": 2, "version_minor": 0 }, @@ -166,45 +166,45 @@ "

\n" ], "text/plain": [ - "VBox(children=(VBox(children=(HTML(value='Filter by observed and predicted impacts:'), HBox(children=(VBox(children=(HTML(value='Observed Impacts'), SelectMultiple(index=(0, 1), options=('swash', 'collision'), value=('swash', 'collision')))), VBox(children=(HTML(value='Forecasted: foreshore_slope_sto06'), SelectMultiple(index=(0, 1, 2, 3), options=('swash', 'collision', 'overwash', 'inundation'), value=('swash', 'collision', 'overwash', 'inundation')))), VBox(children=(HTML(value='Forecasted: mean_slope_sto06'), SelectMultiple(index=(0, 1, 2), options=('swash', 'collision', 'overwash'), value=('swash', 'collision', 'overwash')))))))), HBox(children=(VBox(children=(HTML(value='Filter by site_id:'), HBox(children=(Dropdown(description='site_id: ', index=942, options=('AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', 'AVOCAn0004', 'AVOCAn0005', 'AVOCAn0006', 'AVOCAn0007', 'AVOCAn0008', 'AVOCAn0009', 'AVOCAs0002', 'AVOCAs0003', 'AVOCAs0004', 'AVOCAs0005', 'AVOCAs0006', 'AVOCAs0007', 'AVOCAs0008', 'BILG0001', 'BILG0002', 'BILG0003', 'BILG0004', 'BILG0005', 'BLUEYS0001', 'BLUEYS0002', 'BLUEYS0003', 'BLUEYS0004', 'BLUEYS0005', 'BLUEYS0006', 'BOAT0001', 'BOAT0002', 'BOAT0003', 'BOAT0004', 'BOAT0005', 'BOOM0001', 'BOOM0002', 'BOOM0003', 'BOOM0004', 'BOOM0005', 'BOOM0006', 'BOOM0007', 'BOOM0008', 'BOOM0009', 'BOOM0010', 'BOOM0011', 'BOOM0012', 'BOOM0013', 'BOOM0014', 'CATHIE0001', 'CATHIE0002', 'CATHIE0003', 'CATHIE0004', 'CATHIE0005', 'CATHIE0006', 'CATHIE0007', 'CATHIE0008', 'CATHIE0009', 'CATHIE0010', 'CATHIE0011', 'CATHIE0012', 'CATHIE0013', 'CATHIE0014', 'CATHIE0015', 'CATHIE0016', 'CATHIE0017', 'CATHIE0018', 'CATHIE0019', 'CATHIE0020', 'CATHIE0021', 'CATHIE0022', 'CATHIE0023', 'CATHIE0024', 'CATHIE0025', 'CATHIE0026', 'CATHIE0027', 'CATHIE0028', 'CATHIE0029', 'CRESn0001', 'CRESn0002', 'CRESn0003', 'CRESn0004', 'CRESn0005', 'CRESn0006', 'CRESn0007', 'CRESn0008', 'CRESn0009', 'CRESn0010', 'CRESn0011', 'CRESn0012', 'CRESn0013', 'CRESn0014', 'CRESn0015', 'CRESn0016', 'CRESn0017', 'CRESn0018', 'CRESn0019', 'CRESn0020', 'CRESn0021', 'CRESn0022', 'CRESn0023', 'CRESn0024', 'CRESn0025', 'CRESn0026', 'CRESn0027', 'CRESn0028', 'CRESn0029', 'CRESn0030', 'CRESn0031', 'CRESn0032', 'CRESn0033', 'CRESn0034', 'CRESn0035', 'CRESn0036', 'CRESn0037', 'CRESn0038', 'CRESn0039', 'CRESn0040', 'CRESn0041', 'CRESn0042', 'CRESn0043', 'CRESn0044', 'CRESn0045', 'CRESn0046', 'CRESn0047', 'CRESn0048', 'CRESn0049', 'CRESn0050', 'CRESn0051', 'CRESn0052', 'CRESn0053', 'CRESn0054', 'CRESn0055', 'CRESn0056', 'CRESn0057', 'CRESn0058', 'CRESn0059', 'CRESn0060', 'CRESn0061', 'CRESn0062', 'CRESn0063', 'CRESn0064', 'CRESn0065', 'CRESn0066', 'CRESn0067', 'CRESn0068', 'CRESn0069', 'CRESn0070', 'CRESn0071', 'CRESn0072', 'CRESn0073', 'CRESn0074', 'CRESn0075', 'CRESn0076', 'CRESn0077', 'CRESn0078', 'CRESn0079', 'CRESn0080', 'CRESn0081', 'CRESn0082', 'CRESn0083', 'CRESn0084', 'CRESn0085', 'CRESn0086', 'CRESn0087', 'CRESn0088', 'CRESn0089', 'CRESn0090', 'CRESn0091', 'CRESn0092', 'CRESn0093', 'CRESn0094', 'CRESn0095', 'CRESn0096', 'CRESn0097', 'CRESn0098', 'CRESn0099', 'CRESn0100', 'CRESn0101', 'CRESn0102', 'CRESn0103', 'CRESn0104', 'CRESn0105', 'CRESn0106', 'CRESn0107', 'CRESn0108', 'CRESn0109', 'CRESn0110', 'CRESn0111', 'CRESn0112', 'CRESn0113', 'CRESn0114', 'CRESn0115', 'CRESn0116', 'CRESn0117', 'CRESn0118', 'CRESn0119', 'CRESn0120', 'CRESn0121', 'CRESn0122', 'CRESn0123', 'CRESn0124', 'CRESn0125', 'CRESs0001', 'CRESs0002', 'CRESs0003', 'CRESs0004', 'CRESs0005', 'CRESs0006', 'CRESs0007', 'CRESs0008', 'CRESs0009', 'CRESs0010', 'CRESs0011', 'CRESs0012', 'CRESs0013', 'CRESs0014', 'DEEWHYn0001', 'DEEWHYn0002', 'DEEWHYn0003', 'DEEWHYn0004', 'DEEWHYn0005', 'DEEWHYn0006', 'DEEWHYn0007', 'DEEWHYn0008', 'DEEWHYn0009', 'DEEWHYn0010', 'DEEWHYn0011', 'DEEWHYn0012', 'DEEWHYs0001', 'DEEWHYs0002', 'DEEWHYs0003', 'DEEWHYs0004', 'DEEWHYs0005', 'DEEWHYs0006', 'DEEWHYs0007', 'DEEWHYs0008', 'DIAMONDn0001', 'DIAMONDn0002', 'DIAMONDn0003', 'DIAMONDn0004', 'DIAMONDn0005', 'DIAMONDn0006', 'DIAMONDn0007', 'DIAMONDn0008', 'DIAMONDn0009', 'DIAMONDn0010', 'DIAMONDn0011', 'DIAMONDn0012', 'DIAMONDn0013', 'DIAMONDn0014', 'DIAMONDn0015', 'DIAMONDn0016', 'DIAMONDn0017', 'DIAMONDn0018', 'DIAMONDn0019', 'DIAMONDn0020', 'DIAMONDn0021', 'DIAMONDn0022', 'DIAMONDn0023', 'DIAMONDn0024', 'DIAMONDn0025', 'DIAMONDn0026', 'DIAMONDn0027', 'DIAMONDn0028', 'DIAMONDn0029', 'DIAMONDn0030', 'DIAMONDn0031', 'DIAMONDn0032', 'DIAMONDn0033', 'DIAMONDn0034', 'DIAMONDn0035', 'DIAMONDn0036', 'DIAMONDn0037', 'DIAMONDn0038', 'DIAMONDn0039', 'DIAMONDn0040', 'DIAMONDn0041', 'DIAMONDs0001', 'DIAMONDs0002', 'DIAMONDs0003', 'DIAMONDs0004', 'DIAMONDs0005', 'DIAMONDs0006', 'DIAMONDs0007', 'DUNBn0001', 'DUNBn0002', 'DUNBn0003', 'DUNBn0004', 'DUNBn0005', 'DUNBn0006', 'DUNBn0007', 'DUNBn0008', 'DUNBn0009', 'DUNBn0010', 'DUNBn0011', 'DUNBn0012', 'DUNBn0013', 'DUNBn0014', 'DUNBn0015', 'DUNBn0016', 'DUNBn0017', 'DUNBn0018', 'DUNBn0019', 'DUNBn0020', 'DUNBn0021', 'DUNBn0022', 'DUNBn0023', 'DUNBn0024', 'DUNBn0025', 'DUNBn0026', 'DUNBn0027', 'DUNBn0028', 'DUNBn0029', 'DUNBn0030', 'DUNBn0031', 'DUNBn0032', 'DUNBn0033', 'DUNBn0034', 'DUNBn0035', 'DUNBn0036', 'DUNBn0037', 'DUNBn0038', 'DUNBn0039', 'DUNBn0040', 'DUNBn0041', 'DUNBn0042', 'DUNBn0043', 'DUNBn0044', 'DUNBn0045', 'DUNBn0046', 'DUNBn0047', 'DUNBn0048', 'DUNBn0049', 'DUNBn0050', 'DUNBn0051', 'DUNBn0052', 'DUNBn0053', 'DUNBn0054', 'DUNBn0055', 'DUNBn0056', 'DUNBn0057', 'DUNBn0058', 'DUNBn0059', 'DUNBn0060', 'DUNBn0061', 'DUNBn0062', 'DUNBn0063', 'DUNBn0064', 'DUNBn0065', 'DUNBn0066', 'DUNBn0067', 'DUNBn0068', 'DUNBn0069', 'DUNBn0070', 'DUNBn0071', 'DUNBn0072', 'DUNBn0073', 'DUNBn0074', 'DUNBs0001', 'DUNBs0002', 'DUNBs0003', 'DUNBs0004', 'DUNBs0005', 'DUNBs0006', 'DUNBs0007', 'DUNBs0008', 'DUNBs0009', 'DUNBs0010', 'DUNBs0011', 'ELIZA0001', 'ELIZA0002', 'ELIZA0003', 'ELIZA0004', 'ELIZA0005', 'ELIZA0006', 'ELIZA0007', 'ENTRA0001', 'ENTRA0002', 'ENTRA0003', 'ENTRA0004', 'ENTRA0005', 'ENTRA0006', 'ENTRA0007', 'ENTRA0008', 'ENTRA0009', 'ENTRA0010', 'ENTRA0011', 'ENTRA0012', 'ENTRA0013', 'ENTRA0014', 'ENTRA0015', 'ENTRA0016', 'ENTRA0017', 'ENTRA0018', 'ENTRA0019', 'ENTRA0020', 'ENTRA0021', 'ENTRA0022', 'ENTRA0023', 'ENTRA0024', 'ENTRA0025', 'ENTRA0026', 'ENTRA0027', 'ENTRA0028', 'ENTRA0029', 'ENTRA0030', 'ENTRA0031', 'ENTRA0032', 'ENTRA0033', 'ENTRA0034', 'ENTRA0035', 'ENTRA0036', 'ENTRA0037', 'ENTRA0038', 'ENTRA0039', 'ENTRA0040', 'ENTRA0041', 'ENTRA0042', 'ENTRA0043', 'ENTRA0044', 'ENTRA0045', 'ENTRA0046', 'ENTRA0047', 'ENTRA0048', 'ENTRA0049', 'ENTRA0050', 'ENTRA0051', 'ENTRA0052', 'ENTRA0053', 'ENTRA0054', 'ENTRA0055', 'ENTRA0056', 'ENTRA0057', 'ENTRA0058', 'ENTRA0059', 'ENTRA0060', 'ENTRA0061', 'ENTRA0062', 'ENTRA0063', 'ENTRA0064', 'ENTRA0065', 'ENTRA0066', 'ENTRA0067', 'ENTRA0068', 'ENTRA0069', 'ENTRA0070', 'ENTRA0071', 'ENTRA0072', 'ENTRA0073', 'ENTRA0074', 'ENTRA0075', 'ENTRA0076', 'ENTRA0077', 'ENTRA0078', 'ENTRA0079', 'FOST0001', 'FOST0002', 'FOST0003', 'FOST0004', 'FOST0005', 'FOST0006', 'GRANTSn0001', 'GRANTSn0002', 'GRANTSn0003', 'GRANTSn0004', 'GRANTSn0005', 'GRANTSn0006', 'GRANTSn0007', 'GRANTSn0008', 'GRANTSn0009', 'GRANTSn0010', 'GRANTSn0011', 'GRANTSn0012', 'GRANTSn0013', 'GRANTSn0014', 'GRANTSn0015', 'GRANTSn0016', 'GRANTSn0017', 'GRANTSn0018', 'GRANTSn0019', 'GRANTSn0020', 'GRANTSn0021', 'GRANTSn0022', 'GRANTSn0023', 'GRANTSn0024', 'GRANTSs0001', 'GRANTSs0002', 'GRANTSs0003', 'GRANTSs0004', 'GRANTSs0005', 'GRANTSs0006', 'GRANTSs0007', 'GRANTSs0008', 'GRANTSs0009', 'GRANTSs0010', 'GRANTSs0011', 'GRANTSs0012', 'GRANTSs0013', 'GRANTSs0014', 'HARGn0001', 'HARGn0002', 'HARGn0003', 'HARGn0004', 'HARGn0005', 'HARGn0006', 'HARGn0007', 'HARGs0001', 'HARGs0002', 'HARGs0003', 'HARGs0004', 'HARGs0005', 'HARGs0006', 'HARGs0007', 'HARR0001', 'HARR0002', 'HARR0003', 'HARR0004', 'HARR0005', 'HARR0006', 'HARR0007', 'HARR0008', 'HARR0009', 'HARR0010', 'HARR0011', 'HARR0012', 'HARR0013', 'HARR0014', 'HARR0015', 'HARR0016', 'HARR0017', 'HARR0018', 'HARR0019', 'HARR0020', 'HARR0021', 'HARR0022', 'HARR0023', 'HARR0024', 'HARR0025', 'HARR0026', 'HARR0027', 'HARR0028', 'HARR0029', 'HARR0030', 'HARR0031', 'HARR0032', 'HARR0033', 'HARR0034', 'HARR0035', 'HARR0036', 'HARR0037', 'HARR0038', 'HARR0039', 'HARR0040', 'HARR0041', 'HARR0042', 'HARR0043', 'HARR0044', 'HARR0045', 'HARR0046', 'HARR0047', 'HARR0048', 'HARR0049', 'HARR0050', 'HARR0051', 'HARR0052', 'HARR0053', 'HARR0054', 'HARR0055', 'HARR0056', 'LHOUSE0001', 'LHOUSE0002', 'LHOUSE0003', 'LHOUSE0004', 'LHOUSE0005', 'LHOUSE0006', 'LHOUSE0007', 'LHOUSE0008', 'LHOUSE0009', 'LHOUSE0010', 'LHOUSE0011', 'LHOUSE0012', 'LHOUSE0013', 'LHOUSEn0001', 'LHOUSEn0002', 'LHOUSEn0003', 'LHOUSEn0004', 'LHOUSEn0005', 'LHOUSEn0006', 'LHOUSEn0007', 'LHOUSEn0008', 'LHOUSEn0009', 'LHOUSEn0010', 'LHOUSEn0011', 'LHOUSEn0012', 'LHOUSEn0013', 'LHOUSEn0014', 'LHOUSEn0015', 'LHOUSEn0016', 'LHOUSEn0017', 'LHOUSEn0018', 'LHOUSEn0019', 'LHOUSEn0020', 'LHOUSEn0021', 'LHOUSEn0022', 'LHOUSEn0023', 'LHOUSEn0024', 'LHOUSEn0025', 'LHOUSEn0026', 'LHOUSEn0027', 'LHOUSEn0028', 'LHOUSEn0029', 'LHOUSEn0030', 'LHOUSEn0031', 'LHOUSEn0032', 'LHOUSEn0033', 'LHOUSEn0034', 'LHOUSEn0035', 'LHOUSEn0036', 'LHOUSEn0037', 'LHOUSEn0038', 'LHOUSEn0039', 'LHOUSEn0040', 'LHOUSEn0041', 'LHOUSEn0042', 'LHOUSEn0043', 'LHOUSEn0044', 'LHOUSEn0045', 'LHOUSEn0046', 'LHOUSEn0047', 'LHOUSEn0048', 'LHOUSEn0049', 'LHOUSEn0050', 'LHOUSEn0051', 'LHOUSEn0052', 'LHOUSEn0053', 'LHOUSEn0054', 'LHOUSEn0055', 'LHOUSEn0056', 'LHOUSEn0057', 'LHOUSEn0058', 'LHOUSEn0059', 'LHOUSEn0060', 'LHOUSEn0061', 'LHOUSEn0062', 'LHOUSEn0063', 'LHOUSEn0064', 'LHOUSEn0065', 'LHOUSEn0066', 'LHOUSEn0067', 'LHOUSEn0068', 'LHOUSEn0069', 'LHOUSEn0070', 'LHOUSEn0071', 'LHOUSEn0072', 'LHOUSEn0073', 'LHOUSEn0074', 'LHOUSEn0075', 'LHOUSEn0076', 'LHOUSEn0077', 'LHOUSEn0078', 'LHOUSEn0079', 'LHOUSEn0080', 'LHOUSEn0081', 'LHOUSEn0082', 'LHOUSEn0083', 'LHOUSEn0084', 'LHOUSEn0085', 'LHOUSEn0086', 'LHOUSEn0087', 'LHOUSEn0088', 'LHOUSEn0089', 'LHOUSEn0090', 'LHOUSEn0091', 'LHOUSEn0092', 'LHOUSEn0093', 'LHOUSEs0001', 'LHOUSEs0002', 'LHOUSEs0003', 'LHOUSEs0004', 'LHOUSEs0005', 'LHOUSEs0006', 'LHOUSEs0007', 'LHOUSEs0008', 'LHOUSEs0009', 'LHOUSEs0010', 'LHOUSEs0011', 'LHOUSEs0012', 'LHOUSEs0013', 'LHOUSEs0014', 'LHOUSEs0015', 'LHOUSEs0016', 'LHOUSEs0017', 'LHOUSEs0018', 'LHOUSEs0019', 'LHOUSEs0020', 'LHOUSEs0021', 'LHOUSEs0022', 'LHOUSEs0023', 'LHOUSEs0024', 'LHOUSEs0025', 'LHOUSEs0026', 'LHOUSEs0027', 'LHOUSEs0028', 'LHOUSEs0029', 'LHOUSEs0030', 'LHOUSEs0031', 'LHOUSEs0032', 'MACM0001', 'MACM0002', 'MACM0003', 'MACM0004', 'MACM0005', 'MACM0006', 'MACM0007', 'MACM0008', 'MACM0009', 'MACM0010', 'MACM0011', 'MACM0012', 'MACM0013', 'MACM0014', 'MACM0015', 'MACM0016', 'MANNING0001', 'MANNING0002', 'MANNING0003', 'MANNING0004', 'MANNING0005', 'MANNING0006', 'MANNING0007', 'MANNING0008', 'MANNING0009', 'MANNING0010', 'MANNING0011', 'MANNING0012', 'MANNING0013', 'MANNING0014', 'MANNING0015', 'MANNING0016', 'MANNING0017', 'MANNING0018', 'MANNING0019', 'MANNING0020', 'MANNING0021', 'MANNING0022', 'MANNING0023', 'MANNING0024', 'MANNING0025', 'MANNING0026', 'MANNING0027', 'MANNING0028', 'MANNING0029', 'MANNING0030', 'MANNING0031', 'MANNING0032', 'MANNING0033', 'MANNING0034', 'MANNING0035', 'MANNING0036', 'MANNING0037', 'MANNING0038', 'MANNING0039', 'MANNING0040', 'MANNING0041', 'MANNING0042', 'MANNING0043', 'MANNING0044', 'MANNING0045', 'MANNING0046', 'MANNING0047', 'MANNING0048', 'MANNING0049', 'MANNING0050', 'MANNING0051', 'MANNING0052', 'MANNING0053', 'MANNING0054', 'MANNING0055', 'MANNING0056', 'MANNING0057', 'MANNING0058', 'MANNING0059', 'MANNING0060', 'MANNING0061', 'MANNING0062', 'MANNING0063', 'MANNING0064', 'MANNING0065', 'MANNING0066', 'MANNING0067', 'MANNING0068', 'MANNING0069', 'MANNING0070', 'MANNING0071', 'MANNING0072', 'MANNING0073', 'MANNING0074', 'MANNING0075', 'MANNING0076', 'MANNING0077', 'MANNING0078', 'MANNING0079', 'MANNING0080', 'MANNING0081', 'MANNING0082', 'MANNING0083', 'MANNING0084', 'MANNING0085', 'MANNING0086', 'MANNING0087', 'MANNING0088', 'MANNING0089', 'MANNING0090', 'MANNING0091', 'MANNING0092', 'MANNING0093', 'MANNING0094', 'MANNING0095', 'MANNING0096', 'MANNING0097', 'MANNING0098', 'MANNING0099', 'MANNING0100', 'MANNING0101', 'MANNING0102', 'MANNING0103', 'MANNING0104', 'MANNING0105', 'MANNING0106', 'MANNING0107', 'MANNING0108', 'MANNING0109', 'MANNING0110', 'MANNING0111', 'MANNING0112', 'MANNING0113', 'MANNING0114', 'MANNING0115', 'MANNING0116', 'MANNING0117', 'MANNING0118', 'MANNING0119', 'MANNING0120', 'MANNING0121', 'MANNING0122', 'MANNING0123', 'MANNING0124', 'MANNING0125', 'MANNING0126', 'MANNING0127', 'MONA0001', 'MONA0002', 'MONA0003', 'MONA0004', 'MONA0005', 'MONA0006', 'MONA0007', 'MONA0008', 'MONA0009', 'MONA0010', 'MONA0011', 'MONA0012', 'MONA0013', 'MONA0014', 'MONA0015', 'MONA0016', 'MONA0017', 'MONA0018', 'MONA0019', 'MONA0020', 'MONA0021', 'NAMB0001', 'NAMB0002', 'NAMB0003', 'NAMB0004', 'NAMB0005', 'NAMB0006', 'NAMB0007', 'NAMB0008', 'NAMB0009', 'NAMB0010', 'NAMB0011', 'NAMB0012', 'NAMB0013', 'NAMB0014', 'NAMB0015', 'NAMB0016', 'NAMB0017', 'NAMB0018', 'NAMB0019', 'NAMB0020', 'NAMB0021', 'NAMB0022', 'NAMB0023', 'NAMB0024', 'NAMB0025', 'NAMB0026', 'NAMB0027', 'NAMB0028', 'NAMB0029', 'NAMB0030', 'NAMB0031', 'NAMB0032', 'NAMB0033', 'NAMB0034', 'NAMB0035', 'NAMB0036', 'NAMB0037', 'NAMB0038', 'NAMB0039', 'NAMB0040', 'NAMB0041', 'NAMB0042', 'NAMB0043', 'NAMB0044', 'NAMB0045', 'NAMB0046', 'NAMB0047', 'NAMB0048', 'NAMB0049', 'NAMB0050', 'NAMB0051', 'NAMB0052', 'NAMB0053', 'NAMB0054', 'NAMB0055', 'NAMB0056', 'NAMB0057', 'NAMB0058', 'NAMB0059', 'NAMB0060', 'NAMB0061', 'NAMB0062', 'NAMB0063', 'NAMB0064', 'NAMB0065', 'NAMB0066', 'NAMB0067', 'NAMB0068', 'NAMB0069', 'NAMB0070', 'NAMB0071', 'NAMB0072', 'NAMB0073', 'NARRA0001', 'NARRA0002', 'NARRA0003', 'NARRA0004', 'NARRA0005', 'NARRA0006', 'NARRA0007', 'NARRA0008', 'NARRA0009', 'NARRA0010', 'NARRA0011', 'NARRA0012', 'NARRA0013', 'NARRA0014', 'NARRA0015', 'NARRA0016', 'NARRA0017', 'NARRA0018', 'NARRA0019', 'NARRA0020', 'NARRA0021', 'NARRA0022', 'NARRA0023', 'NARRA0024', 'NARRA0025', 'NARRA0026', 'NARRA0027', 'NARRA0028', 'NARRA0029', 'NARRA0030', 'NARRA0031', 'NARRA0032', 'NARRA0033', 'NARRA0034', 'NARRA0035', 'NARRA0036', 'NINEMn0001', 'NINEMn0002', 'NINEMn0003', 'NINEMn0004', 'NINEMn0005', 'NINEMn0006', 'NINEMn0007', 'NINEMn0008', 'NINEMn0009', 'NINEMn0010', 'NINEMn0011', 'NINEMn0012', 'NINEMn0013', 'NINEMn0014', 'NINEMn0015', 'NINEMn0016', 'NINEMn0017', 'NINEMn0018', 'NINEMn0019', 'NINEMn0020', 'NINEMn0021', 'NINEMn0022', 'NINEMn0023', 'NINEMn0024', 'NINEMn0025', 'NINEMn0026', 'NINEMn0027', 'NINEMn0028', 'NINEMn0029', 'NINEMn0030', 'NINEMn0031', 'NINEMn0032', 'NINEMn0033', 'NINEMn0034', 'NINEMn0035', 'NINEMn0036', 'NINEMn0037', 'NINEMn0038', 'NINEMn0039', 'NINEMn0040', 'NINEMn0041', 'NINEMn0042', 'NINEMn0043', 'NINEMn0044', 'NINEMn0045', 'NINEMn0046', 'NINEMn0047', 'NINEMn0048', 'NINEMn0049', 'NINEMn0050', 'NINEMn0051', 'NINEMn0052', 'NINEMn0053', 'NINEMn0054', 'NINEMs0001', 'NINEMs0002', 'NINEMs0003', 'NINEMs0004', 'NINEMs0005', 'NINEMs0006', 'NINEMs0007', 'NINEMs0008', 'NINEMs0009', 'NINEMs0010', 'NINEMs0011', 'NINEMs0012', 'NINEMs0013', 'NINEMs0014', 'NINEMs0015', 'NINEMs0016', 'NINEMs0017', 'NINEMs0018', 'NINEMs0019', 'NINEMs0020', 'NINEMs0021', 'NINEMs0022', 'NINEMs0023', 'NINEMs0024', 'NINEMs0025', 'NINEMs0026', 'NINEMs0027', 'NINEMs0028', 'NINEMs0029', 'NINEMs0030', 'NINEMs0031', 'NINEMs0032', 'NINEMs0033', 'NINEMs0034', 'NINEMs0035', 'NINEMs0036', 'NINEMs0037', 'NINEMs0038', 'NINEMs0039', 'NINEMs0040', 'NINEMs0041', 'NINEMs0042', 'NINEMs0043', 'NINEMs0044', 'NINEMs0045', 'NINEMs0046', 'NINEMs0047', 'NINEMs0048', 'NINEMs0049', 'NINEMs0050', 'NINEMs0051', 'NINEMs0052', 'NINEMs0053', 'NINEMs0054', 'NINEMs0055', 'NINEMs0056', 'NINEMs0057', 'NINEMs0058', 'NINEMs0059', 'NINEMs0060', 'NSHORE_n0001', 'NSHORE_n0002', 'NSHORE_n0003', 'NSHORE_n0004', 'NSHORE_n0005', 'NSHORE_n0006', 'NSHORE_n0007', 'NSHORE_n0008', 'NSHORE_n0009', 'NSHORE_n0010', 'NSHORE_n0011', 'NSHORE_n0012', 'NSHORE_n0013', 'NSHORE_n0014', 'NSHORE_n0015', 'NSHORE_n0016', 'NSHORE_n0017', 'NSHORE_n0018', 'NSHORE_n0019', 'NSHORE_n0020', 'NSHORE_n0021', 'NSHORE_n0022', 'NSHORE_n0023', 'NSHORE_n0024', 'NSHORE_n0025', 'NSHORE_n0026', 'NSHORE_n0027', 'NSHORE_n0028', 'NSHORE_n0029', 'NSHORE_n0030', 'NSHORE_n0031', 'NSHORE_n0032', 'NSHORE_n0033', 'NSHORE_n0034', 'NSHORE_n0035', 'NSHORE_n0036', 'NSHORE_n0037', 'NSHORE_n0038', 'NSHORE_n0039', 'NSHORE_n0040', 'NSHORE_n0041', 'NSHORE_n0042', 'NSHORE_n0043', 'NSHORE_n0044', 'NSHORE_n0045', 'NSHORE_n0046', 'NSHORE_n0047', 'NSHORE_n0048', 'NSHORE_n0049', 'NSHORE_n0050', 'NSHORE_n0051', 'NSHORE_n0052', 'NSHORE_n0053', 'NSHORE_n0054', 'NSHORE_n0055', 'NSHORE_n0056', 'NSHORE_n0057', 'NSHORE_n0058', 'NSHORE_n0059', 'NSHORE_n0060', 'NSHORE_n0061', 'NSHORE_n0062', 'NSHORE_n0063', 'NSHORE_n0064', 'NSHORE_n0065', 'NSHORE_n0066', 'NSHORE_n0067', 'NSHORE_n0068', 'NSHORE_n0069', 'NSHORE_n0070', 'NSHORE_n0071', 'NSHORE_n0072', 'NSHORE_n0073', 'NSHORE_n0074', 'NSHORE_n0075', 'NSHORE_n0076', 'NSHORE_n0077', 'NSHORE_n0078', 'NSHORE_n0079', 'NSHORE_n0080', 'NSHORE_n0081', 'NSHORE_n0082', 'NSHORE_s0001', 'NSHORE_s0002', 'NSHORE_s0003', 'NSHORE_s0004', 'NSHORE_s0005', 'NSHORE_s0006', 'NSHORE_s0007', 'NSHORE_s0008', 'NSHORE_s0009', 'NSHORE_s0010', 'NSHORE_s0011', 'NSHORE_s0012', 'NSHORE_s0013', 'NSHORE_s0014', 'NSHORE_s0015', 'NSHORE_s0016', 'NSHORE_s0017', 'NSHORE_s0018', 'NSHORE_s0019', 'NSHORE_s0020', 'NSHORE_s0021', 'NSHORE_s0022', 'NSHORE_s0023', 'NSHORE_s0024', 'NSHORE_s0025', 'NSHORE_s0026', 'NSHORE_s0027', 'NSHORE_s0028', 'NSHORE_s0029', 'NSHORE_s0030', 'NSHORE_s0031', 'NSHORE_s0032', 'NSHORE_s0033', 'NSHORE_s0034', 'NSHORE_s0035', 'NSHORE_s0036', 'NSHORE_s0037', 'NSHORE_s0038', 'NSHORE_s0039', 'NSHORE_s0040', 'NSHORE_s0041', 'NSHORE_s0042', 'NSHORE_s0043', 'NSHORE_s0044', 'OLDBAR0001', 'OLDBAR0002', 'OLDBAR0003', 'OLDBAR0004', 'OLDBAR0005', 'OLDBAR0006', 'OLDBAR0007', 'OLDBAR0008', 'OLDBAR0009', 'OLDBAR0010', 'OLDBAR0011', 'OLDBAR0012', 'OLDBAR0013', 'OLDBAR0014', 'OLDBAR0015', 'OLDBAR0016', 'OLDBAR0017', 'OLDBAR0018', 'OLDBAR0019', 'OLDBAR0020', 'OLDBAR0021', 'OLDBAR0022', 'OLDBAR0023', 'OLDBAR0024', 'OLDBAR0025', 'OLDBAR0026', 'OLDBAR0027', 'OLDBAR0028', 'OLDBAR0029', 'OLDBAR0030', 'OLDBAR0031', 'OLDBAR0032', 'OLDBAR0033', 'OLDBAR0034', 'OLDBAR0035', 'OLDBAR0036', 'ONEMILE0001', 'ONEMILE0002', 'ONEMILE0003', 'ONEMILE0004', 'ONEMILE0005', 'ONEMILE0006', 'ONEMILE0007', 'ONEMILE0008', 'ONEMILE0009', 'ONEMILE0010', 'ONEMILE0011', 'ONEMILE0012', 'ONEMILE0013', 'PEARLn0001', 'PEARLn0002', 'PEARLn0003', 'PEARLn0004', 'PEARLn0005', 'PEARLs0001', 'PEARLs0002', 'PEARLs0003', 'PEARLs0004', 'PEARLs0005', 'SCOT0001', 'SCOT0002', 'SCOT0003', 'SCOT0004', 'SCOT0005', 'SCOT0006', 'SCOT0007', 'SCOT0008', 'SCOT0009', 'SCOT0010', 'SCOT0011', 'SCOT0012', 'STOCNn0001', 'STOCNn0002', 'STOCNn0003', 'STOCNn0004', 'STOCNn0005', 'STOCNn0006', 'STOCNn0007', 'STOCNn0008', 'STOCNn0009', 'STOCNn0010', 'STOCNn0011', 'STOCNn0012', 'STOCNn0013', 'STOCNn0014', 'STOCNn0015', 'STOCNn0016', 'STOCNn0017', 'STOCNn0018', 'STOCNn0019', 'STOCNn0020', 'STOCNn0021', 'STOCNn0022', 'STOCNn0023', 'STOCNn0024', 'STOCNn0025', 'STOCNn0026', 'STOCNn0027', 'STOCNn0028', 'STOCNn0029', 'STOCNn0030', 'STOCNn0031', 'STOCNn0032', 'STOCNn0033', 'STOCNn0034', 'STOCNn0035', 'STOCNn0036', 'STOCNn0037', 'STOCNn0038', 'STOCNn0039', 'STOCNn0040', 'STOCNn0041', 'STOCNn0042', 'STOCNn0043', 'STOCNn0044', 'STOCNn0045', 'STOCNn0046', 'STOCNn0047', 'STOCNn0048', 'STOCNn0049', 'STOCNn0050', 'STOCNn0051', 'STOCNn0052', 'STOCNn0053', 'STOCNn0054', 'STOCNn0055', 'STOCNn0056', 'STOCNn0057', 'STOCNn0058', 'STOCNn0059', 'STOCNn0060', 'STOCNn0061', 'STOCNn0062', 'STOCNn0063', 'STOCNn0064', 'STOCNn0065', 'STOCNs0001', 'STOCNs0002', 'STOCNs0003', 'STOCNs0004', 'STOCNs0005', 'STOCNs0006', 'STOCNs0007', 'STOCNs0008', 'STOCNs0009', 'STOCNs0010', 'STOCNs0011', 'STOCNs0012', 'STOCNs0013', 'STOCNs0014', 'STOCNs0015', 'STOCNs0016', 'STOCNs0017', 'STOCNs0018', 'STOCNs0019', 'STOCNs0020', 'STOCNs0021', 'STOCNs0022', 'STOCNs0023', 'STOCNs0024', 'STOCNs0025', 'STOCNs0026', 'STOCNs0027', 'STOCNs0028', 'STOCNs0029', 'STOCNs0030', 'STOCNs0031', 'STOCNs0032', 'STOCNs0033', 'STOCNs0034', 'STOCNs0035', 'STOCNs0036', 'STOCNs0037', 'STOCNs0038', 'STOCNs0039', 'STOCNs0040', 'STOCNs0041', 'STOCNs0042', 'STOCNs0043', 'STOCNs0044', 'STOCNs0045', 'STOCNs0046', 'STOCNs0047', 'STOCNs0048', 'STOCNs0049', 'STOCNs0050', 'STOCNs0051', 'STOCNs0052', 'STOCNs0053', 'STOCNs0054', 'STOCNs0055', 'STOCNs0056', 'STOCNs0057', 'STOCNs0058', 'STOCNs0059', 'STOCNs0060', 'STOCNs0061', 'STOCNs0062', 'STOCNs0063', 'STOCNs0064', 'STOCNs0065', 'STOCNs0066', 'STOCNs0067', 'STOCNs0068', 'STOCNs0069', 'STOCNs0070', 'STOCNs0071', 'STOCNs0072', 'STOCNs0073', 'STOCNs0074', 'STOCNs0075', 'STOCNs0076', 'STOCNs0077', 'STOCNs0078', 'STOCNs0079', 'STOCNs0080', 'STOCNs0081', 'STOCNs0082', 'STOCNs0083', 'STOCNs0084', 'STOCNs0085', 'STOCNs0086', 'STOCNs0087', 'STOCNs0088', 'STOCNs0089', 'STOCNs0090', 'STOCNs0091', 'STOCNs0092', 'STOCNs0093', 'STOCNs0094', 'STOCNs0095', 'STOCNs0096', 'STOCNs0097', 'STOCNs0098', 'STOCNs0099', 'STOCNs0100', 'STOCNs0101', 'STOCNs0102', 'STOCNs0103', 'STOCNs0104', 'STOCNs0105', 'STOCNs0106', 'STOCNs0107', 'STOCNs0108', 'STOCNs0109', 'STOCNs0110', 'STOCNs0111', 'STOCNs0112', 'STOCNs0113', 'STOCNs0114', 'STOCNs0115', 'STOCNs0116', 'STOCNs0117', 'STOCNs0118', 'STOCNs0119', 'STOCNs0120', 'STOCNs0121', 'STOCNs0122', 'STOCNs0123', 'STOCNs0124', 'STOCNs0125', 'STOCNs0126', 'STOCNs0127', 'STOCNs0128', 'STOCNs0129', 'STOCNs0130', 'STOCNs0131', 'STOCNs0132', 'STOCNs0133', 'STOCNs0134', 'STOCNs0135', 'STOCNs0136', 'STOCNs0137', 'STOCNs0138', 'STOCNs0139', 'STOCNs0140', 'STOCNs0141', 'STOCNs0142', 'STOCNs0143', 'STOCNs0144', 'STOCNs0145', 'STOCNs0146', 'STOCNs0147', 'STOCNs0148', 'STOCNs0149', 'STOCNs0150', 'STOCNs0151', 'STOCNs0152', 'STOCNs0153', 'STOCNs0154', 'STOCNs0155', 'STOCNs0156', 'STOCNs0157', 'STOCNs0158', 'STOCNs0159', 'STOCNs0160', 'STOCNs0161', 'STOCNs0162', 'STOCNs0163', 'STOCNs0164', 'STOCNs0165', 'STOCNs0166', 'STOCNs0167', 'STOCNs0168', 'STOCNs0169', 'STOCNs0170', 'STOCNs0171', 'STOCNs0172', 'STOCNs0173', 'STOCNs0174', 'STOCNs0175', 'STOCNs0176', 'STOCNs0177', 'STOCNs0178', 'STOCNs0179', 'STOCNs0180', 'STOCNs0181', 'STOCNs0182', 'STOCNs0183', 'STOCNs0184', 'STOCNs0185', 'STOCNs0186', 'STOCNs0187', 'STOCNs0188', 'STOCNs0189', 'STOCNs0190', 'STOCNs0191', 'STOCNs0192', 'STOCNs0193', 'STOCNs0194', 'STOCNs0195', 'STOCNs0196', 'STOCNs0197', 'STOCNs0198', 'STOCNs0199', 'STOCNs0200', 'STOCNs0201', 'STOCNs0202', 'STOCNs0203', 'STOCNs0204', 'STOCNs0205', 'STOCNs0206', 'STOCNs0207', 'STOCNs0208', 'STOCNs0209', 'STOCS0001', 'STOCS0002', 'STOCS0003', 'STOCS0004', 'STOCS0005', 'STOCS0006', 'STOCS0007', 'STOCS0008', 'STOCS0009', 'STOCS0010', 'STOCS0011', 'STOCS0012', 'STOCS0013', 'STOCS0014', 'STOCS0015', 'STOCS0016', 'STOCS0017', 'STOCS0018', 'STOCS0019', 'STOCS0020', 'STOCS0021', 'STOCS0022', 'STOCS0023', 'STOCS0024', 'STOCS0025', 'STOCS0026', 'STOCS0027', 'STOCS0028', 'STOCS0029', 'STOCS0030', 'STOCS0031', 'STOCS0032', 'STOCS0033', 'STOCS0034', 'STOCS0035', 'STOCS0036', 'STOCS0037', 'STOCS0038', 'STOCS0039', 'STOCS0040', 'STOCS0041', 'STOCS0042', 'STOCS0043', 'STOCS0044', 'STOCS0045', 'STOCS0046', 'STUART0001', 'STUART0002', 'STUART0003', 'STUART0004', 'STUART0005', 'STUART0006', 'STUART0007', 'STUART0008', 'STUART0009', 'STUART0010', 'STUART0011', 'STUART0012', 'STUART0013', 'STUART0014', 'STUART0015', 'STUART0016', 'STUART0017', 'STUART0018', 'STUART0019', 'STUART0020', 'STUART0021', 'STUART0022', 'STUART0023', 'STUART0024', 'STUART0025', 'STUART0026', 'STUART0027', 'STUART0028', 'STUART0029', 'STUART0030', 'STUART0031', 'STUART0032', 'STUART0033', 'STUART0034', 'STUART0035', 'STUART0036', 'STUART0037', 'STUART0038', 'STUART0039', 'STUART0040', 'STUART0041', 'STUART0042', 'STUART0043', 'STUART0044', 'STUART0045', 'STUART0046', 'STUART0047', 'STUART0048', 'STUART0049', 'STUART0050', 'STUART0051', 'STUART0052', 'STUART0053', 'STUART0054', 'STUART0055', 'STUART0056', 'STUART0057', 'STUART0058', 'STUART0059', 'STUART0060', 'STUART0061', 'STUART0062', 'STUART0063', 'STUART0064', 'STUART0065', 'STUART0066', 'STUART0067', 'STUART0068', 'STUART0069', 'STUART0070', 'STUART0071', 'STUART0072', 'STUART0073', 'STUART0074', 'STUART0075', 'STUART0076', 'STUART0077', 'STUART0078', 'STUART0079', 'STUART0080', 'STUART0081', 'STUART0082', 'STUART0083', 'STUART0084', 'STUART0085', 'STUART0086', 'STUART0087', 'STUART0088', 'STUART0089', 'SWRO0001', 'SWRO0002', 'SWRO0003', 'SWRO0004', 'SWRO0005', 'SWRO0006', 'SWRO0007', 'SWRO0008', 'SWRO0009', 'SWRO0010', 'SWRO0011', 'SWRO0012', 'SWRO0013', 'SWRO0014', 'SWRO0015', 'SWRO0016', 'SWRO0017', 'SWRO0018', 'SWRO0019', 'SWRO0020', 'SWRO0021', 'SWRO0022', 'SWRO0023', 'SWRO0024', 'SWRO0025', 'SWRO0026', 'TREACH0001', 'TREACH0002', 'TREACH0003', 'TREACH0004', 'TREACH0005', 'TREACH0006', 'TREACH0007', 'TREACH0008', 'TREACH0009', 'TREACH0010', 'TREACH0011', 'TREACH0012', 'TREACH0013', 'TREACH0014', 'TREACH0015', 'TREACH0016', 'WAMBE0001', 'WAMBE0002', 'WAMBE0003', 'WAMBE0004', 'WAMBE0005', 'WAMBE0006', 'WAMBE0007', 'WAMBE0008', 'WAMBE0009', 'WAMBE0010', 'WAMBE0011', 'WAMBE0012', 'WAMBE0013', 'WAMBE0014', 'WAMBE0015', 'WAMBE0016', 'WAMBE0017', 'WAMBE0018', 'WAMBE0019', 'WAMBE0020', 'WAMBE0021', 'WAMBE0022', 'WAMBE0023', 'WAMBE0024', 'WAMBE0025', 'WAMBE0026', 'WAMBE0027'), value='NARRA0001'),)))), HTML(value=''))), HBox(children=(FigureWidget({\n", + "VBox(children=(VBox(children=(HTML(value='Filter by observed and predicted impacts:'), HBox(children=(VBox(children=(HTML(value='Observed Impacts'), SelectMultiple(index=(0, 1), options=('swash', 'collision'), value=('swash', 'collision')))), VBox(children=(HTML(value='Forecasted: foreshore_slope_sto06'), SelectMultiple(index=(0, 1, 2), options=('swash', 'collision', 'overwash'), value=('swash', 'collision', 'overwash')))), VBox(children=(HTML(value='Forecasted: mean_slope_sto06'), SelectMultiple(index=(0, 1, 2), options=('swash', 'overwash', 'collision'), value=('swash', 'overwash', 'collision')))))))), HBox(children=(VBox(children=(HTML(value='Filter by site_id:'), HBox(children=(Dropdown(description='site_id: ', index=943, options=('AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', 'AVOCAn0004', 'AVOCAn0005', 'AVOCAn0006', 'AVOCAn0007', 'AVOCAn0008', 'AVOCAn0009', 'AVOCAs0001', 'AVOCAs0002', 'AVOCAs0003', 'AVOCAs0004', 'AVOCAs0005', 'AVOCAs0006', 'AVOCAs0007', 'AVOCAs0008', 'BILG0001', 'BILG0002', 'BILG0003', 'BILG0004', 'BILG0005', 'BLUEYS0001', 'BLUEYS0002', 'BLUEYS0003', 'BLUEYS0004', 'BLUEYS0005', 'BLUEYS0006', 'BOAT0001', 'BOAT0002', 'BOAT0003', 'BOAT0004', 'BOAT0005', 'BOOM0001', 'BOOM0002', 'BOOM0003', 'BOOM0004', 'BOOM0005', 'BOOM0006', 'BOOM0007', 'BOOM0008', 'BOOM0009', 'BOOM0010', 'BOOM0011', 'BOOM0012', 'BOOM0013', 'BOOM0014', 'CATHIE0001', 'CATHIE0002', 'CATHIE0003', 'CATHIE0004', 'CATHIE0005', 'CATHIE0006', 'CATHIE0007', 'CATHIE0008', 'CATHIE0009', 'CATHIE0010', 'CATHIE0011', 'CATHIE0012', 'CATHIE0013', 'CATHIE0014', 'CATHIE0015', 'CATHIE0016', 'CATHIE0017', 'CATHIE0018', 'CATHIE0019', 'CATHIE0020', 'CATHIE0021', 'CATHIE0022', 'CATHIE0023', 'CATHIE0024', 'CATHIE0025', 'CATHIE0026', 'CATHIE0027', 'CATHIE0028', 'CATHIE0029', 'CRESn0001', 'CRESn0002', 'CRESn0003', 'CRESn0004', 'CRESn0005', 'CRESn0006', 'CRESn0007', 'CRESn0008', 'CRESn0009', 'CRESn0010', 'CRESn0011', 'CRESn0012', 'CRESn0013', 'CRESn0014', 'CRESn0015', 'CRESn0016', 'CRESn0017', 'CRESn0018', 'CRESn0019', 'CRESn0020', 'CRESn0021', 'CRESn0022', 'CRESn0023', 'CRESn0024', 'CRESn0025', 'CRESn0026', 'CRESn0027', 'CRESn0028', 'CRESn0029', 'CRESn0030', 'CRESn0031', 'CRESn0032', 'CRESn0033', 'CRESn0034', 'CRESn0035', 'CRESn0036', 'CRESn0037', 'CRESn0038', 'CRESn0039', 'CRESn0040', 'CRESn0041', 'CRESn0042', 'CRESn0043', 'CRESn0044', 'CRESn0045', 'CRESn0046', 'CRESn0047', 'CRESn0048', 'CRESn0049', 'CRESn0050', 'CRESn0051', 'CRESn0052', 'CRESn0053', 'CRESn0054', 'CRESn0055', 'CRESn0056', 'CRESn0057', 'CRESn0058', 'CRESn0059', 'CRESn0060', 'CRESn0061', 'CRESn0062', 'CRESn0063', 'CRESn0064', 'CRESn0065', 'CRESn0066', 'CRESn0067', 'CRESn0068', 'CRESn0069', 'CRESn0070', 'CRESn0071', 'CRESn0072', 'CRESn0073', 'CRESn0074', 'CRESn0075', 'CRESn0076', 'CRESn0077', 'CRESn0078', 'CRESn0079', 'CRESn0080', 'CRESn0081', 'CRESn0082', 'CRESn0083', 'CRESn0084', 'CRESn0085', 'CRESn0086', 'CRESn0087', 'CRESn0088', 'CRESn0089', 'CRESn0090', 'CRESn0091', 'CRESn0092', 'CRESn0093', 'CRESn0094', 'CRESn0095', 'CRESn0096', 'CRESn0097', 'CRESn0098', 'CRESn0099', 'CRESn0100', 'CRESn0101', 'CRESn0102', 'CRESn0103', 'CRESn0104', 'CRESn0105', 'CRESn0106', 'CRESn0107', 'CRESn0108', 'CRESn0109', 'CRESn0110', 'CRESn0111', 'CRESn0112', 'CRESn0113', 'CRESn0114', 'CRESn0115', 'CRESn0116', 'CRESn0117', 'CRESn0118', 'CRESn0119', 'CRESn0120', 'CRESn0121', 'CRESn0122', 'CRESn0123', 'CRESn0124', 'CRESn0125', 'CRESs0001', 'CRESs0002', 'CRESs0003', 'CRESs0004', 'CRESs0005', 'CRESs0006', 'CRESs0007', 'CRESs0008', 'CRESs0009', 'CRESs0010', 'CRESs0011', 'CRESs0012', 'CRESs0013', 'CRESs0014', 'DEEWHYn0001', 'DEEWHYn0002', 'DEEWHYn0003', 'DEEWHYn0004', 'DEEWHYn0005', 'DEEWHYn0006', 'DEEWHYn0007', 'DEEWHYn0008', 'DEEWHYn0009', 'DEEWHYn0010', 'DEEWHYn0011', 'DEEWHYn0012', 'DEEWHYs0001', 'DEEWHYs0002', 'DEEWHYs0003', 'DEEWHYs0004', 'DEEWHYs0005', 'DEEWHYs0006', 'DEEWHYs0007', 'DEEWHYs0008', 'DIAMONDn0001', 'DIAMONDn0002', 'DIAMONDn0003', 'DIAMONDn0004', 'DIAMONDn0005', 'DIAMONDn0006', 'DIAMONDn0007', 'DIAMONDn0008', 'DIAMONDn0009', 'DIAMONDn0010', 'DIAMONDn0011', 'DIAMONDn0012', 'DIAMONDn0013', 'DIAMONDn0014', 'DIAMONDn0015', 'DIAMONDn0016', 'DIAMONDn0017', 'DIAMONDn0018', 'DIAMONDn0019', 'DIAMONDn0020', 'DIAMONDn0021', 'DIAMONDn0022', 'DIAMONDn0023', 'DIAMONDn0024', 'DIAMONDn0025', 'DIAMONDn0026', 'DIAMONDn0027', 'DIAMONDn0028', 'DIAMONDn0029', 'DIAMONDn0030', 'DIAMONDn0031', 'DIAMONDn0032', 'DIAMONDn0033', 'DIAMONDn0034', 'DIAMONDn0035', 'DIAMONDn0036', 'DIAMONDn0037', 'DIAMONDn0038', 'DIAMONDn0039', 'DIAMONDn0040', 'DIAMONDn0041', 'DIAMONDs0001', 'DIAMONDs0002', 'DIAMONDs0003', 'DIAMONDs0004', 'DIAMONDs0005', 'DIAMONDs0006', 'DIAMONDs0007', 'DUNBn0001', 'DUNBn0002', 'DUNBn0003', 'DUNBn0004', 'DUNBn0005', 'DUNBn0006', 'DUNBn0007', 'DUNBn0008', 'DUNBn0009', 'DUNBn0010', 'DUNBn0011', 'DUNBn0012', 'DUNBn0013', 'DUNBn0014', 'DUNBn0015', 'DUNBn0016', 'DUNBn0017', 'DUNBn0018', 'DUNBn0019', 'DUNBn0020', 'DUNBn0021', 'DUNBn0022', 'DUNBn0023', 'DUNBn0024', 'DUNBn0025', 'DUNBn0026', 'DUNBn0027', 'DUNBn0028', 'DUNBn0029', 'DUNBn0030', 'DUNBn0031', 'DUNBn0032', 'DUNBn0033', 'DUNBn0034', 'DUNBn0035', 'DUNBn0036', 'DUNBn0037', 'DUNBn0038', 'DUNBn0039', 'DUNBn0040', 'DUNBn0041', 'DUNBn0042', 'DUNBn0043', 'DUNBn0044', 'DUNBn0045', 'DUNBn0046', 'DUNBn0047', 'DUNBn0048', 'DUNBn0049', 'DUNBn0050', 'DUNBn0051', 'DUNBn0052', 'DUNBn0053', 'DUNBn0054', 'DUNBn0055', 'DUNBn0056', 'DUNBn0057', 'DUNBn0058', 'DUNBn0059', 'DUNBn0060', 'DUNBn0061', 'DUNBn0062', 'DUNBn0063', 'DUNBn0064', 'DUNBn0065', 'DUNBn0066', 'DUNBn0067', 'DUNBn0068', 'DUNBn0069', 'DUNBn0070', 'DUNBn0071', 'DUNBn0072', 'DUNBn0073', 'DUNBn0074', 'DUNBs0001', 'DUNBs0002', 'DUNBs0003', 'DUNBs0004', 'DUNBs0005', 'DUNBs0006', 'DUNBs0007', 'DUNBs0008', 'DUNBs0009', 'DUNBs0010', 'DUNBs0011', 'ELIZA0001', 'ELIZA0002', 'ELIZA0003', 'ELIZA0004', 'ELIZA0005', 'ELIZA0006', 'ELIZA0007', 'ENTRA0001', 'ENTRA0002', 'ENTRA0003', 'ENTRA0004', 'ENTRA0005', 'ENTRA0006', 'ENTRA0007', 'ENTRA0008', 'ENTRA0009', 'ENTRA0010', 'ENTRA0011', 'ENTRA0012', 'ENTRA0013', 'ENTRA0014', 'ENTRA0015', 'ENTRA0016', 'ENTRA0017', 'ENTRA0018', 'ENTRA0019', 'ENTRA0020', 'ENTRA0021', 'ENTRA0022', 'ENTRA0023', 'ENTRA0024', 'ENTRA0025', 'ENTRA0026', 'ENTRA0027', 'ENTRA0028', 'ENTRA0029', 'ENTRA0030', 'ENTRA0031', 'ENTRA0032', 'ENTRA0033', 'ENTRA0034', 'ENTRA0035', 'ENTRA0036', 'ENTRA0037', 'ENTRA0038', 'ENTRA0039', 'ENTRA0040', 'ENTRA0041', 'ENTRA0042', 'ENTRA0043', 'ENTRA0044', 'ENTRA0045', 'ENTRA0046', 'ENTRA0047', 'ENTRA0048', 'ENTRA0049', 'ENTRA0050', 'ENTRA0051', 'ENTRA0052', 'ENTRA0053', 'ENTRA0054', 'ENTRA0055', 'ENTRA0056', 'ENTRA0057', 'ENTRA0058', 'ENTRA0059', 'ENTRA0060', 'ENTRA0061', 'ENTRA0062', 'ENTRA0063', 'ENTRA0064', 'ENTRA0065', 'ENTRA0066', 'ENTRA0067', 'ENTRA0068', 'ENTRA0069', 'ENTRA0070', 'ENTRA0071', 'ENTRA0072', 'ENTRA0073', 'ENTRA0074', 'ENTRA0075', 'ENTRA0076', 'ENTRA0077', 'ENTRA0078', 'ENTRA0079', 'FOST0001', 'FOST0002', 'FOST0003', 'FOST0004', 'FOST0005', 'FOST0006', 'GRANTSn0001', 'GRANTSn0002', 'GRANTSn0003', 'GRANTSn0004', 'GRANTSn0005', 'GRANTSn0006', 'GRANTSn0007', 'GRANTSn0008', 'GRANTSn0009', 'GRANTSn0010', 'GRANTSn0011', 'GRANTSn0012', 'GRANTSn0013', 'GRANTSn0014', 'GRANTSn0015', 'GRANTSn0016', 'GRANTSn0017', 'GRANTSn0018', 'GRANTSn0019', 'GRANTSn0020', 'GRANTSn0021', 'GRANTSn0022', 'GRANTSn0023', 'GRANTSn0024', 'GRANTSs0001', 'GRANTSs0002', 'GRANTSs0003', 'GRANTSs0004', 'GRANTSs0005', 'GRANTSs0006', 'GRANTSs0007', 'GRANTSs0008', 'GRANTSs0009', 'GRANTSs0010', 'GRANTSs0011', 'GRANTSs0012', 'GRANTSs0013', 'GRANTSs0014', 'HARGn0001', 'HARGn0002', 'HARGn0003', 'HARGn0004', 'HARGn0005', 'HARGn0006', 'HARGn0007', 'HARGs0001', 'HARGs0002', 'HARGs0003', 'HARGs0004', 'HARGs0005', 'HARGs0006', 'HARGs0007', 'HARR0001', 'HARR0002', 'HARR0003', 'HARR0004', 'HARR0005', 'HARR0006', 'HARR0007', 'HARR0008', 'HARR0009', 'HARR0010', 'HARR0011', 'HARR0012', 'HARR0013', 'HARR0014', 'HARR0015', 'HARR0016', 'HARR0017', 'HARR0018', 'HARR0019', 'HARR0020', 'HARR0021', 'HARR0022', 'HARR0023', 'HARR0024', 'HARR0025', 'HARR0026', 'HARR0027', 'HARR0028', 'HARR0029', 'HARR0030', 'HARR0031', 'HARR0032', 'HARR0033', 'HARR0034', 'HARR0035', 'HARR0036', 'HARR0037', 'HARR0038', 'HARR0039', 'HARR0040', 'HARR0041', 'HARR0042', 'HARR0043', 'HARR0044', 'HARR0045', 'HARR0046', 'HARR0047', 'HARR0048', 'HARR0049', 'HARR0050', 'HARR0051', 'HARR0052', 'HARR0053', 'HARR0054', 'HARR0055', 'HARR0056', 'LHOUSE0001', 'LHOUSE0002', 'LHOUSE0003', 'LHOUSE0004', 'LHOUSE0005', 'LHOUSE0006', 'LHOUSE0007', 'LHOUSE0008', 'LHOUSE0009', 'LHOUSE0010', 'LHOUSE0011', 'LHOUSE0012', 'LHOUSE0013', 'LHOUSEn0001', 'LHOUSEn0002', 'LHOUSEn0003', 'LHOUSEn0004', 'LHOUSEn0005', 'LHOUSEn0006', 'LHOUSEn0007', 'LHOUSEn0008', 'LHOUSEn0009', 'LHOUSEn0010', 'LHOUSEn0011', 'LHOUSEn0012', 'LHOUSEn0013', 'LHOUSEn0014', 'LHOUSEn0015', 'LHOUSEn0016', 'LHOUSEn0017', 'LHOUSEn0018', 'LHOUSEn0019', 'LHOUSEn0020', 'LHOUSEn0021', 'LHOUSEn0022', 'LHOUSEn0023', 'LHOUSEn0024', 'LHOUSEn0025', 'LHOUSEn0026', 'LHOUSEn0027', 'LHOUSEn0028', 'LHOUSEn0029', 'LHOUSEn0030', 'LHOUSEn0031', 'LHOUSEn0032', 'LHOUSEn0033', 'LHOUSEn0034', 'LHOUSEn0035', 'LHOUSEn0036', 'LHOUSEn0037', 'LHOUSEn0038', 'LHOUSEn0039', 'LHOUSEn0040', 'LHOUSEn0041', 'LHOUSEn0042', 'LHOUSEn0043', 'LHOUSEn0044', 'LHOUSEn0045', 'LHOUSEn0046', 'LHOUSEn0047', 'LHOUSEn0048', 'LHOUSEn0049', 'LHOUSEn0050', 'LHOUSEn0051', 'LHOUSEn0052', 'LHOUSEn0053', 'LHOUSEn0054', 'LHOUSEn0055', 'LHOUSEn0056', 'LHOUSEn0057', 'LHOUSEn0058', 'LHOUSEn0059', 'LHOUSEn0060', 'LHOUSEn0061', 'LHOUSEn0062', 'LHOUSEn0063', 'LHOUSEn0064', 'LHOUSEn0065', 'LHOUSEn0066', 'LHOUSEn0067', 'LHOUSEn0068', 'LHOUSEn0069', 'LHOUSEn0070', 'LHOUSEn0071', 'LHOUSEn0072', 'LHOUSEn0073', 'LHOUSEn0074', 'LHOUSEn0075', 'LHOUSEn0076', 'LHOUSEn0077', 'LHOUSEn0078', 'LHOUSEn0079', 'LHOUSEn0080', 'LHOUSEn0081', 'LHOUSEn0082', 'LHOUSEn0083', 'LHOUSEn0084', 'LHOUSEn0085', 'LHOUSEn0086', 'LHOUSEn0087', 'LHOUSEn0088', 'LHOUSEn0089', 'LHOUSEn0090', 'LHOUSEn0091', 'LHOUSEn0092', 'LHOUSEn0093', 'LHOUSEs0001', 'LHOUSEs0002', 'LHOUSEs0003', 'LHOUSEs0004', 'LHOUSEs0005', 'LHOUSEs0006', 'LHOUSEs0007', 'LHOUSEs0008', 'LHOUSEs0009', 'LHOUSEs0010', 'LHOUSEs0011', 'LHOUSEs0012', 'LHOUSEs0013', 'LHOUSEs0014', 'LHOUSEs0015', 'LHOUSEs0016', 'LHOUSEs0017', 'LHOUSEs0018', 'LHOUSEs0019', 'LHOUSEs0020', 'LHOUSEs0021', 'LHOUSEs0022', 'LHOUSEs0023', 'LHOUSEs0024', 'LHOUSEs0025', 'LHOUSEs0026', 'LHOUSEs0027', 'LHOUSEs0028', 'LHOUSEs0029', 'LHOUSEs0030', 'LHOUSEs0031', 'LHOUSEs0032', 'MACM0001', 'MACM0002', 'MACM0003', 'MACM0004', 'MACM0005', 'MACM0006', 'MACM0007', 'MACM0008', 'MACM0009', 'MACM0010', 'MACM0011', 'MACM0012', 'MACM0013', 'MACM0014', 'MACM0015', 'MACM0016', 'MANNING0001', 'MANNING0002', 'MANNING0003', 'MANNING0004', 'MANNING0005', 'MANNING0006', 'MANNING0007', 'MANNING0008', 'MANNING0009', 'MANNING0010', 'MANNING0011', 'MANNING0012', 'MANNING0013', 'MANNING0014', 'MANNING0015', 'MANNING0016', 'MANNING0017', 'MANNING0018', 'MANNING0019', 'MANNING0020', 'MANNING0021', 'MANNING0022', 'MANNING0023', 'MANNING0024', 'MANNING0025', 'MANNING0026', 'MANNING0027', 'MANNING0028', 'MANNING0029', 'MANNING0030', 'MANNING0031', 'MANNING0032', 'MANNING0033', 'MANNING0034', 'MANNING0035', 'MANNING0036', 'MANNING0037', 'MANNING0038', 'MANNING0039', 'MANNING0040', 'MANNING0041', 'MANNING0042', 'MANNING0043', 'MANNING0044', 'MANNING0045', 'MANNING0046', 'MANNING0047', 'MANNING0048', 'MANNING0049', 'MANNING0050', 'MANNING0051', 'MANNING0052', 'MANNING0053', 'MANNING0054', 'MANNING0055', 'MANNING0056', 'MANNING0057', 'MANNING0058', 'MANNING0059', 'MANNING0060', 'MANNING0061', 'MANNING0062', 'MANNING0063', 'MANNING0064', 'MANNING0065', 'MANNING0066', 'MANNING0067', 'MANNING0068', 'MANNING0069', 'MANNING0070', 'MANNING0071', 'MANNING0072', 'MANNING0073', 'MANNING0074', 'MANNING0075', 'MANNING0076', 'MANNING0077', 'MANNING0078', 'MANNING0079', 'MANNING0080', 'MANNING0081', 'MANNING0082', 'MANNING0083', 'MANNING0084', 'MANNING0085', 'MANNING0086', 'MANNING0087', 'MANNING0088', 'MANNING0089', 'MANNING0090', 'MANNING0091', 'MANNING0092', 'MANNING0093', 'MANNING0094', 'MANNING0095', 'MANNING0096', 'MANNING0097', 'MANNING0098', 'MANNING0099', 'MANNING0100', 'MANNING0101', 'MANNING0102', 'MANNING0103', 'MANNING0104', 'MANNING0105', 'MANNING0106', 'MANNING0107', 'MANNING0108', 'MANNING0109', 'MANNING0110', 'MANNING0111', 'MANNING0112', 'MANNING0113', 'MANNING0114', 'MANNING0115', 'MANNING0116', 'MANNING0117', 'MANNING0118', 'MANNING0119', 'MANNING0120', 'MANNING0121', 'MANNING0122', 'MANNING0123', 'MANNING0124', 'MANNING0125', 'MANNING0126', 'MANNING0127', 'MONA0001', 'MONA0002', 'MONA0003', 'MONA0004', 'MONA0005', 'MONA0006', 'MONA0007', 'MONA0008', 'MONA0009', 'MONA0010', 'MONA0011', 'MONA0012', 'MONA0013', 'MONA0014', 'MONA0015', 'MONA0016', 'MONA0017', 'MONA0018', 'MONA0019', 'MONA0020', 'MONA0021', 'NAMB0001', 'NAMB0002', 'NAMB0003', 'NAMB0004', 'NAMB0005', 'NAMB0006', 'NAMB0007', 'NAMB0008', 'NAMB0009', 'NAMB0010', 'NAMB0011', 'NAMB0012', 'NAMB0013', 'NAMB0014', 'NAMB0015', 'NAMB0016', 'NAMB0017', 'NAMB0018', 'NAMB0019', 'NAMB0020', 'NAMB0021', 'NAMB0022', 'NAMB0023', 'NAMB0024', 'NAMB0025', 'NAMB0026', 'NAMB0027', 'NAMB0028', 'NAMB0029', 'NAMB0030', 'NAMB0031', 'NAMB0032', 'NAMB0033', 'NAMB0034', 'NAMB0035', 'NAMB0036', 'NAMB0037', 'NAMB0038', 'NAMB0039', 'NAMB0040', 'NAMB0041', 'NAMB0042', 'NAMB0043', 'NAMB0044', 'NAMB0045', 'NAMB0046', 'NAMB0047', 'NAMB0048', 'NAMB0049', 'NAMB0050', 'NAMB0051', 'NAMB0052', 'NAMB0053', 'NAMB0054', 'NAMB0055', 'NAMB0056', 'NAMB0057', 'NAMB0058', 'NAMB0059', 'NAMB0060', 'NAMB0061', 'NAMB0062', 'NAMB0063', 'NAMB0064', 'NAMB0065', 'NAMB0066', 'NAMB0067', 'NAMB0068', 'NAMB0069', 'NAMB0070', 'NAMB0071', 'NAMB0072', 'NAMB0073', 'NARRA0001', 'NARRA0002', 'NARRA0003', 'NARRA0004', 'NARRA0005', 'NARRA0006', 'NARRA0007', 'NARRA0008', 'NARRA0009', 'NARRA0010', 'NARRA0011', 'NARRA0012', 'NARRA0013', 'NARRA0014', 'NARRA0015', 'NARRA0016', 'NARRA0017', 'NARRA0018', 'NARRA0019', 'NARRA0020', 'NARRA0021', 'NARRA0022', 'NARRA0023', 'NARRA0024', 'NARRA0025', 'NARRA0026', 'NARRA0027', 'NARRA0028', 'NARRA0029', 'NARRA0030', 'NARRA0031', 'NARRA0032', 'NARRA0033', 'NARRA0034', 'NARRA0035', 'NARRA0036', 'NINEMn0001', 'NINEMn0002', 'NINEMn0003', 'NINEMn0004', 'NINEMn0005', 'NINEMn0006', 'NINEMn0007', 'NINEMn0008', 'NINEMn0009', 'NINEMn0010', 'NINEMn0011', 'NINEMn0012', 'NINEMn0013', 'NINEMn0014', 'NINEMn0015', 'NINEMn0016', 'NINEMn0017', 'NINEMn0018', 'NINEMn0019', 'NINEMn0020', 'NINEMn0021', 'NINEMn0022', 'NINEMn0023', 'NINEMn0024', 'NINEMn0025', 'NINEMn0026', 'NINEMn0027', 'NINEMn0028', 'NINEMn0029', 'NINEMn0030', 'NINEMn0031', 'NINEMn0032', 'NINEMn0033', 'NINEMn0034', 'NINEMn0035', 'NINEMn0036', 'NINEMn0037', 'NINEMn0038', 'NINEMn0039', 'NINEMn0040', 'NINEMn0041', 'NINEMn0042', 'NINEMn0043', 'NINEMn0044', 'NINEMn0045', 'NINEMn0046', 'NINEMn0047', 'NINEMn0048', 'NINEMn0049', 'NINEMn0050', 'NINEMn0051', 'NINEMn0052', 'NINEMn0053', 'NINEMn0054', 'NINEMs0001', 'NINEMs0002', 'NINEMs0003', 'NINEMs0004', 'NINEMs0005', 'NINEMs0006', 'NINEMs0007', 'NINEMs0008', 'NINEMs0009', 'NINEMs0010', 'NINEMs0011', 'NINEMs0012', 'NINEMs0013', 'NINEMs0014', 'NINEMs0015', 'NINEMs0016', 'NINEMs0017', 'NINEMs0018', 'NINEMs0019', 'NINEMs0020', 'NINEMs0021', 'NINEMs0022', 'NINEMs0023', 'NINEMs0024', 'NINEMs0025', 'NINEMs0026', 'NINEMs0027', 'NINEMs0028', 'NINEMs0029', 'NINEMs0030', 'NINEMs0031', 'NINEMs0032', 'NINEMs0033', 'NINEMs0034', 'NINEMs0035', 'NINEMs0036', 'NINEMs0037', 'NINEMs0038', 'NINEMs0039', 'NINEMs0040', 'NINEMs0041', 'NINEMs0042', 'NINEMs0043', 'NINEMs0044', 'NINEMs0045', 'NINEMs0046', 'NINEMs0047', 'NINEMs0048', 'NINEMs0049', 'NINEMs0050', 'NINEMs0051', 'NINEMs0052', 'NINEMs0053', 'NINEMs0054', 'NINEMs0055', 'NINEMs0056', 'NINEMs0057', 'NINEMs0058', 'NINEMs0059', 'NINEMs0060', 'NSHORE_n0001', 'NSHORE_n0002', 'NSHORE_n0003', 'NSHORE_n0004', 'NSHORE_n0005', 'NSHORE_n0006', 'NSHORE_n0007', 'NSHORE_n0008', 'NSHORE_n0009', 'NSHORE_n0010', 'NSHORE_n0011', 'NSHORE_n0012', 'NSHORE_n0013', 'NSHORE_n0014', 'NSHORE_n0015', 'NSHORE_n0016', 'NSHORE_n0017', 'NSHORE_n0018', 'NSHORE_n0019', 'NSHORE_n0020', 'NSHORE_n0021', 'NSHORE_n0022', 'NSHORE_n0023', 'NSHORE_n0024', 'NSHORE_n0025', 'NSHORE_n0026', 'NSHORE_n0027', 'NSHORE_n0028', 'NSHORE_n0029', 'NSHORE_n0030', 'NSHORE_n0031', 'NSHORE_n0032', 'NSHORE_n0033', 'NSHORE_n0034', 'NSHORE_n0035', 'NSHORE_n0036', 'NSHORE_n0037', 'NSHORE_n0038', 'NSHORE_n0039', 'NSHORE_n0040', 'NSHORE_n0041', 'NSHORE_n0042', 'NSHORE_n0043', 'NSHORE_n0044', 'NSHORE_n0045', 'NSHORE_n0046', 'NSHORE_n0047', 'NSHORE_n0048', 'NSHORE_n0049', 'NSHORE_n0050', 'NSHORE_n0051', 'NSHORE_n0052', 'NSHORE_n0053', 'NSHORE_n0054', 'NSHORE_n0055', 'NSHORE_n0056', 'NSHORE_n0057', 'NSHORE_n0058', 'NSHORE_n0059', 'NSHORE_n0060', 'NSHORE_n0061', 'NSHORE_n0062', 'NSHORE_n0063', 'NSHORE_n0064', 'NSHORE_n0065', 'NSHORE_n0066', 'NSHORE_n0067', 'NSHORE_n0068', 'NSHORE_n0069', 'NSHORE_n0070', 'NSHORE_n0071', 'NSHORE_n0072', 'NSHORE_n0073', 'NSHORE_n0074', 'NSHORE_n0075', 'NSHORE_n0076', 'NSHORE_n0077', 'NSHORE_n0078', 'NSHORE_n0079', 'NSHORE_n0080', 'NSHORE_n0081', 'NSHORE_n0082', 'NSHORE_s0001', 'NSHORE_s0002', 'NSHORE_s0003', 'NSHORE_s0004', 'NSHORE_s0005', 'NSHORE_s0006', 'NSHORE_s0007', 'NSHORE_s0008', 'NSHORE_s0009', 'NSHORE_s0010', 'NSHORE_s0011', 'NSHORE_s0012', 'NSHORE_s0013', 'NSHORE_s0014', 'NSHORE_s0015', 'NSHORE_s0016', 'NSHORE_s0017', 'NSHORE_s0018', 'NSHORE_s0019', 'NSHORE_s0020', 'NSHORE_s0021', 'NSHORE_s0022', 'NSHORE_s0023', 'NSHORE_s0024', 'NSHORE_s0025', 'NSHORE_s0026', 'NSHORE_s0027', 'NSHORE_s0028', 'NSHORE_s0029', 'NSHORE_s0030', 'NSHORE_s0031', 'NSHORE_s0032', 'NSHORE_s0033', 'NSHORE_s0034', 'NSHORE_s0035', 'NSHORE_s0036', 'NSHORE_s0037', 'NSHORE_s0038', 'NSHORE_s0039', 'NSHORE_s0040', 'NSHORE_s0041', 'NSHORE_s0042', 'NSHORE_s0043', 'NSHORE_s0044', 'OLDBAR0001', 'OLDBAR0002', 'OLDBAR0003', 'OLDBAR0004', 'OLDBAR0005', 'OLDBAR0006', 'OLDBAR0007', 'OLDBAR0008', 'OLDBAR0009', 'OLDBAR0010', 'OLDBAR0011', 'OLDBAR0012', 'OLDBAR0013', 'OLDBAR0014', 'OLDBAR0015', 'OLDBAR0016', 'OLDBAR0017', 'OLDBAR0018', 'OLDBAR0019', 'OLDBAR0020', 'OLDBAR0021', 'OLDBAR0022', 'OLDBAR0023', 'OLDBAR0024', 'OLDBAR0025', 'OLDBAR0026', 'OLDBAR0027', 'OLDBAR0028', 'OLDBAR0029', 'OLDBAR0030', 'OLDBAR0031', 'OLDBAR0032', 'OLDBAR0033', 'OLDBAR0034', 'OLDBAR0035', 'OLDBAR0036', 'ONEMILE0001', 'ONEMILE0002', 'ONEMILE0003', 'ONEMILE0004', 'ONEMILE0005', 'ONEMILE0006', 'ONEMILE0007', 'ONEMILE0008', 'ONEMILE0009', 'ONEMILE0010', 'ONEMILE0011', 'ONEMILE0012', 'ONEMILE0013', 'PEARLn0001', 'PEARLn0002', 'PEARLn0003', 'PEARLn0004', 'PEARLn0005', 'PEARLs0001', 'PEARLs0002', 'PEARLs0003', 'PEARLs0004', 'PEARLs0005', 'SCOT0001', 'SCOT0002', 'SCOT0003', 'SCOT0004', 'SCOT0005', 'SCOT0006', 'SCOT0007', 'SCOT0008', 'SCOT0009', 'SCOT0010', 'SCOT0011', 'SCOT0012', 'STOCNn0001', 'STOCNn0002', 'STOCNn0003', 'STOCNn0004', 'STOCNn0005', 'STOCNn0006', 'STOCNn0007', 'STOCNn0008', 'STOCNn0009', 'STOCNn0010', 'STOCNn0011', 'STOCNn0012', 'STOCNn0013', 'STOCNn0014', 'STOCNn0015', 'STOCNn0016', 'STOCNn0017', 'STOCNn0018', 'STOCNn0019', 'STOCNn0020', 'STOCNn0021', 'STOCNn0022', 'STOCNn0023', 'STOCNn0024', 'STOCNn0025', 'STOCNn0026', 'STOCNn0027', 'STOCNn0028', 'STOCNn0029', 'STOCNn0030', 'STOCNn0031', 'STOCNn0032', 'STOCNn0033', 'STOCNn0034', 'STOCNn0035', 'STOCNn0036', 'STOCNn0037', 'STOCNn0038', 'STOCNn0039', 'STOCNn0040', 'STOCNn0041', 'STOCNn0042', 'STOCNn0043', 'STOCNn0044', 'STOCNn0045', 'STOCNn0046', 'STOCNn0047', 'STOCNn0048', 'STOCNn0049', 'STOCNn0050', 'STOCNn0051', 'STOCNn0052', 'STOCNn0053', 'STOCNn0054', 'STOCNn0055', 'STOCNn0056', 'STOCNn0057', 'STOCNn0058', 'STOCNn0059', 'STOCNn0060', 'STOCNn0061', 'STOCNn0062', 'STOCNn0063', 'STOCNn0064', 'STOCNn0065', 'STOCNs0001', 'STOCNs0002', 'STOCNs0003', 'STOCNs0004', 'STOCNs0005', 'STOCNs0006', 'STOCNs0007', 'STOCNs0008', 'STOCNs0009', 'STOCNs0010', 'STOCNs0011', 'STOCNs0012', 'STOCNs0013', 'STOCNs0014', 'STOCNs0015', 'STOCNs0016', 'STOCNs0017', 'STOCNs0018', 'STOCNs0019', 'STOCNs0020', 'STOCNs0021', 'STOCNs0022', 'STOCNs0023', 'STOCNs0024', 'STOCNs0025', 'STOCNs0026', 'STOCNs0027', 'STOCNs0028', 'STOCNs0029', 'STOCNs0030', 'STOCNs0031', 'STOCNs0032', 'STOCNs0033', 'STOCNs0034', 'STOCNs0035', 'STOCNs0036', 'STOCNs0037', 'STOCNs0038', 'STOCNs0039', 'STOCNs0040', 'STOCNs0041', 'STOCNs0042', 'STOCNs0043', 'STOCNs0044', 'STOCNs0045', 'STOCNs0046', 'STOCNs0047', 'STOCNs0048', 'STOCNs0049', 'STOCNs0050', 'STOCNs0051', 'STOCNs0052', 'STOCNs0053', 'STOCNs0054', 'STOCNs0055', 'STOCNs0056', 'STOCNs0057', 'STOCNs0058', 'STOCNs0059', 'STOCNs0060', 'STOCNs0061', 'STOCNs0062', 'STOCNs0063', 'STOCNs0064', 'STOCNs0065', 'STOCNs0066', 'STOCNs0067', 'STOCNs0068', 'STOCNs0069', 'STOCNs0070', 'STOCNs0071', 'STOCNs0072', 'STOCNs0073', 'STOCNs0074', 'STOCNs0075', 'STOCNs0076', 'STOCNs0077', 'STOCNs0078', 'STOCNs0079', 'STOCNs0080', 'STOCNs0081', 'STOCNs0082', 'STOCNs0083', 'STOCNs0084', 'STOCNs0085', 'STOCNs0086', 'STOCNs0087', 'STOCNs0088', 'STOCNs0089', 'STOCNs0090', 'STOCNs0091', 'STOCNs0092', 'STOCNs0093', 'STOCNs0094', 'STOCNs0095', 'STOCNs0096', 'STOCNs0097', 'STOCNs0098', 'STOCNs0099', 'STOCNs0100', 'STOCNs0101', 'STOCNs0102', 'STOCNs0103', 'STOCNs0104', 'STOCNs0105', 'STOCNs0106', 'STOCNs0107', 'STOCNs0108', 'STOCNs0109', 'STOCNs0110', 'STOCNs0111', 'STOCNs0112', 'STOCNs0113', 'STOCNs0114', 'STOCNs0115', 'STOCNs0116', 'STOCNs0117', 'STOCNs0118', 'STOCNs0119', 'STOCNs0120', 'STOCNs0121', 'STOCNs0122', 'STOCNs0123', 'STOCNs0124', 'STOCNs0125', 'STOCNs0126', 'STOCNs0127', 'STOCNs0128', 'STOCNs0129', 'STOCNs0130', 'STOCNs0131', 'STOCNs0132', 'STOCNs0133', 'STOCNs0134', 'STOCNs0135', 'STOCNs0136', 'STOCNs0137', 'STOCNs0138', 'STOCNs0139', 'STOCNs0140', 'STOCNs0141', 'STOCNs0142', 'STOCNs0143', 'STOCNs0144', 'STOCNs0145', 'STOCNs0146', 'STOCNs0147', 'STOCNs0148', 'STOCNs0149', 'STOCNs0150', 'STOCNs0151', 'STOCNs0152', 'STOCNs0153', 'STOCNs0154', 'STOCNs0155', 'STOCNs0156', 'STOCNs0157', 'STOCNs0158', 'STOCNs0159', 'STOCNs0160', 'STOCNs0161', 'STOCNs0162', 'STOCNs0163', 'STOCNs0164', 'STOCNs0165', 'STOCNs0166', 'STOCNs0167', 'STOCNs0168', 'STOCNs0169', 'STOCNs0170', 'STOCNs0171', 'STOCNs0172', 'STOCNs0173', 'STOCNs0174', 'STOCNs0175', 'STOCNs0176', 'STOCNs0177', 'STOCNs0178', 'STOCNs0179', 'STOCNs0180', 'STOCNs0181', 'STOCNs0182', 'STOCNs0183', 'STOCNs0184', 'STOCNs0185', 'STOCNs0186', 'STOCNs0187', 'STOCNs0188', 'STOCNs0189', 'STOCNs0190', 'STOCNs0191', 'STOCNs0192', 'STOCNs0193', 'STOCNs0194', 'STOCNs0195', 'STOCNs0196', 'STOCNs0197', 'STOCNs0198', 'STOCNs0199', 'STOCNs0200', 'STOCNs0201', 'STOCNs0202', 'STOCNs0203', 'STOCNs0204', 'STOCNs0205', 'STOCNs0206', 'STOCNs0207', 'STOCNs0208', 'STOCNs0209', 'STOCS0001', 'STOCS0002', 'STOCS0003', 'STOCS0004', 'STOCS0005', 'STOCS0006', 'STOCS0007', 'STOCS0008', 'STOCS0009', 'STOCS0010', 'STOCS0011', 'STOCS0012', 'STOCS0013', 'STOCS0014', 'STOCS0015', 'STOCS0016', 'STOCS0017', 'STOCS0018', 'STOCS0019', 'STOCS0020', 'STOCS0021', 'STOCS0022', 'STOCS0023', 'STOCS0024', 'STOCS0025', 'STOCS0026', 'STOCS0027', 'STOCS0028', 'STOCS0029', 'STOCS0030', 'STOCS0031', 'STOCS0032', 'STOCS0033', 'STOCS0034', 'STOCS0035', 'STOCS0036', 'STOCS0037', 'STOCS0038', 'STOCS0039', 'STOCS0040', 'STOCS0041', 'STOCS0042', 'STOCS0043', 'STOCS0044', 'STOCS0045', 'STOCS0046', 'STUART0001', 'STUART0002', 'STUART0003', 'STUART0004', 'STUART0005', 'STUART0006', 'STUART0007', 'STUART0008', 'STUART0009', 'STUART0010', 'STUART0011', 'STUART0012', 'STUART0013', 'STUART0014', 'STUART0015', 'STUART0016', 'STUART0017', 'STUART0018', 'STUART0019', 'STUART0020', 'STUART0021', 'STUART0022', 'STUART0023', 'STUART0024', 'STUART0025', 'STUART0026', 'STUART0027', 'STUART0028', 'STUART0029', 'STUART0030', 'STUART0031', 'STUART0032', 'STUART0033', 'STUART0034', 'STUART0035', 'STUART0036', 'STUART0037', 'STUART0038', 'STUART0039', 'STUART0040', 'STUART0041', 'STUART0042', 'STUART0043', 'STUART0044', 'STUART0045', 'STUART0046', 'STUART0047', 'STUART0048', 'STUART0049', 'STUART0050', 'STUART0051', 'STUART0052', 'STUART0053', 'STUART0054', 'STUART0055', 'STUART0056', 'STUART0057', 'STUART0058', 'STUART0059', 'STUART0060', 'STUART0061', 'STUART0062', 'STUART0063', 'STUART0064', 'STUART0065', 'STUART0066', 'STUART0067', 'STUART0068', 'STUART0069', 'STUART0070', 'STUART0071', 'STUART0072', 'STUART0073', 'STUART0074', 'STUART0075', 'STUART0076', 'STUART0077', 'STUART0078', 'STUART0079', 'STUART0080', 'STUART0081', 'STUART0082', 'STUART0083', 'STUART0084', 'STUART0085', 'STUART0086', 'STUART0087', 'STUART0088', 'STUART0089', 'SWRO0001', 'SWRO0002', 'SWRO0003', 'SWRO0004', 'SWRO0005', 'SWRO0006', 'SWRO0007', 'SWRO0008', 'SWRO0009', 'SWRO0010', 'SWRO0011', 'SWRO0012', 'SWRO0013', 'SWRO0014', 'SWRO0015', 'SWRO0016', 'SWRO0017', 'SWRO0018', 'SWRO0019', 'SWRO0020', 'SWRO0021', 'SWRO0022', 'SWRO0023', 'SWRO0024', 'SWRO0025', 'SWRO0026', 'TREACH0001', 'TREACH0002', 'TREACH0003', 'TREACH0004', 'TREACH0005', 'TREACH0006', 'TREACH0007', 'TREACH0008', 'TREACH0009', 'TREACH0010', 'TREACH0011', 'TREACH0012', 'TREACH0013', 'TREACH0014', 'TREACH0015', 'TREACH0016', 'WAMBE0001', 'WAMBE0002', 'WAMBE0003', 'WAMBE0004', 'WAMBE0005', 'WAMBE0006', 'WAMBE0007', 'WAMBE0008', 'WAMBE0009', 'WAMBE0010', 'WAMBE0011', 'WAMBE0012', 'WAMBE0013', 'WAMBE0014', 'WAMBE0015', 'WAMBE0016', 'WAMBE0017', 'WAMBE0018', 'WAMBE0019', 'WAMBE0020', 'WAMBE0021', 'WAMBE0022', 'WAMBE0023', 'WAMBE0024', 'WAMBE0025', 'WAMBE0026', 'WAMBE0027'), value='NARRA0001'),)))), HTML(value=''))), HBox(children=(FigureWidget({\n", " 'data': [{'line': {'color': 'rgb(51,160,44)', 'width': 2},\n", " 'name': 'Pre Storm Profile',\n", " 'type': 'scatter',\n", - " 'uid': 'c8ea5f67-a68e-492f-a718-c6d2b6a1a3ab',\n", + " 'uid': 'dede4ee7-342d-41c2-b899-daa42347f70c',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'line': {'color': 'rgb(255,127,0)', 'width': 2},\n", " 'name': 'Post Storm Profile',\n", " 'type': 'scatter',\n", - " 'uid': 'ac860cf0-1e87-4a16-b5a1-ef914032c675',\n", + " 'uid': 'd51ed30f-dc58-4334-a0d2-e0e76b9f3ff4',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'marker': {'color': 'rgba(255,255,255,0)', 'line': {'color': 'rgba(106,61,154, 1)', 'width': 2}, 'size': 10},\n", " 'mode': 'markers',\n", " 'name': 'Pre-storm dune crest',\n", " 'type': 'scatter',\n", - " 'uid': '6d629f5f-ecdb-4a38-b5da-9390e53902c4',\n", + " 'uid': 'a09876d4-eebe-4a20-9f56-ddf10095c5de',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'marker': {'color': 'rgba(255,255,255,0)', 'line': {'color': 'rgba(202,178,214,1)', 'width': 2}, 'size': 10},\n", " 'mode': 'markers',\n", " 'name': 'Pre-storm dune toe',\n", " 'type': 'scatter',\n", - " 'uid': '7caff243-2d24-4b71-9eea-a037a121f7ff',\n", + " 'uid': '329c7dd8-2f5a-42e9-9813-81b6acb08419',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'line': {'color': 'rgb(44,127,184)', 'width': 4},\n", " 'mode': 'lines',\n", " 'name': 'Peak R_high: foreshore_slope_sto06',\n", " 'type': 'scatter',\n", - " 'uid': '0797ed89-9dd1-4b71-bbb9-dde65ce0e010',\n", + " 'uid': '8cef75dd-a4eb-40de-8149-a6179a9c6ba6',\n", " 'x': [0],\n", " 'y': [0]},\n", " {'line': {'color': 'rgb(127,205,187)', 'width': 4},\n", " 'mode': 'lines',\n", " 'name': 'Peak R_high: mean_slope_sto06',\n", " 'type': 'scatter',\n", - " 'uid': '6db4b49a-049d-4182-b307-f14deeb8af01',\n", + " 'uid': 'c1691092-a100-4799-a807-13d8c2dc0679',\n", " 'x': [0],\n", " 'y': [0]}],\n", " 'layout': {'height': 300,\n", @@ -224,16 +224,16 @@ " 'title': 'z (m)',\n", " 'zeroline': True}}\n", "}), FigureWidget({\n", - " 'data': [{'lat': array([-33.46381539, -33.46301835, -33.46221051, ..., -33.4279646 ,\n", - " -33.42732743, -33.42671036]),\n", - " 'lon': array([151.43639576, 151.43690633, 151.43738179, ..., 151.4501613 ,\n", - " 151.45092222, 151.45170635]),\n", + " 'data': [{'lat': array([-33.45779575, -33.4584035 , -33.45911131, ..., -33.44589876,\n", + " -33.44665247, -33.44732817]),\n", + " 'lon': array([151.44105489, 151.44024676, 151.43957804, ..., 151.44420973,\n", + " 151.44479881, 151.44550951]),\n", " 'marker': {'size': 10},\n", " 'mode': 'markers',\n", " 'text': array(['AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', ..., 'WAMBE0025', 'WAMBE0026',\n", " 'WAMBE0027'], dtype=' x_last_ele), "z"] = np.nan + logger.info("Removed zeros from end of profiles") return df_profiles @@ -198,31 +278,7 @@ def matlab_datenum_to_datetime(matlab_datenum): return datetime.fromordinal(int(matlab_datenum)) + timedelta(days=matlab_datenum % 1) - timedelta(days=366) -def get_unique_sites(dfs, cols=["beach", "lat", "lon"]): - """ - Generates a dataframe of unique sites based on beach names, lats and lons. Creates a unique site ID for each. - :param dfs: - :param cols: - :return: - """ - - rows = [] - df_all = pd.concat([df[cols] for df in dfs]) - beach_groups = df_all.groupby(["beach"]) - for beach_name, beach_group in beach_groups: - site_groups = beach_group.groupby(["lat", "lon"]) - siteNo = 1 - for site_name, site_group in site_groups: - site = "{}{:04d}".format(beach_name, siteNo) - rows.append({"site_id": site, "lat": site_name[0], "lon": site_name[1], "beach": beach_name}) - siteNo += 1 - - df = pd.DataFrame(rows) - - return df - - -def replace_unique_sites(df, df_sites, cols=["lat", "lon"]): +def replace_unique_sites(df, df_sites): """ Replaces beach/lat/lon columns with the unique site_id :param dfs: @@ -232,56 +288,37 @@ def replace_unique_sites(df, df_sites, cols=["lat", "lon"]): # Make the sites index a column, so it can be merged into df df_sites["site_id"] = df_sites.index.get_level_values("site_id") - # Merging on a float can lead to subtle bugs. Lets convert lat/lons to integers and merge on that instead - precision = 8 - df_sites["lat_int"] = np.round(df_sites["lat"] * 10 ** precision).astype(np.int64) - df_sites["lon_int"] = np.round(df_sites["lon"] * 10 ** precision).astype(np.int64) - df["lat_int"] = np.round(df["lat"] * 10 ** precision).astype(np.int64) - df["lon_int"] = np.round(df["lon"] * 10 ** precision).astype(np.int64) + # Create eastings and northings so we can calculate distances + site_points = [convert_coord_systems(Point(lon, lat)).xy for lon, lat in zip(df_sites["lon"], df_sites["lat"])] + df_sites["easting"] = [x[0][0] for x in site_points] + df_sites["northing"] = [x[1][0] for x in site_points] - df_merged = df.merge(df_sites, on=["lat_int", "lon_int"]) + # Process each unique combination lat/lons in groups + groups = df.groupby(["lat", "lon"]) + for (lat, lon), df_group in groups: - # Check that all our records have a unique site identifier - n_unmatched = len(df) - len(df_merged) - if n_unmatched > 0: - logger.warning("Not all records (%d of %d) matched with a unique site", n_unmatched, len(df)) - - df_merged = df_merged.drop( - columns=[ - "lat_x", - "lon_x", - "lat_int", - "lon_int", - "beach_y", - "beach_x", - "lat_y", - "lon_y", - "orientation", - "profile_x_lat_lon", - ] - ) + # Calculate distances from each point to each site and determine closest site + easting, northing = [x[0] for x in convert_coord_systems(Point(lon, lat)).xy] + distances_to_sites = np.sqrt((df_sites["easting"] - easting) ** 2 + (df_sites["northing"] - northing) ** 2) + min_distance = distances_to_sites.min() + closest_site = distances_to_sites.idxmin() - return df_merged + # Do some logging so we can check later. + if min_distance > 1: + logger.warning("Closest site to (%.4f,%.4f) is %s (%.2f m away)", lat, lon, closest_site, min_distance) + else: + logger.info("Closest site to (%.4f,%.4f) is %s (%.2f m away)", lat, lon, closest_site, min_distance) + # Assign site_id based on closest site + df.loc[df_group.index, "site_id"] = closest_site -@click.command(short_help="create sites.csv") -@click.option("--waves-mat", required=True, help=".mat file containing wave records") -@click.option("--tides-mat", required=True, help=".mat file containing tide records") -@click.option("--profiles-mat", required=True, help=".mat file containing beach profiles") -@click.option("--orientations-mat", required=True, help=".mat file containing orientation of beach profiles") -@click.option("--output-file", required=True, help="where to save sites.csv") -def create_sites_csv(waves_mat, tides_mat, profiles_mat, orientations_mat, output_file): - logger.info("Creating %s", output_file) - df_waves = parse_waves(waves_mat=waves_mat) - df_tides = parse_tides(tides_mat=tides_mat) - df_profiles = parse_profiles(profiles_mat=profiles_mat) - df_orientations = parse_orientations(orientations_mat=orientations_mat) - df_sites = get_unique_sites(dfs=[df_waves, df_tides, df_profiles]) - df_sites = combine_sites_and_orientaions(df_sites, df_orientations) - df_sites = specify_lat_lon_profile_center(df_sites) - df_sites.set_index(["site_id"], inplace=True) - df_sites.to_csv(output_file) - logger.info("Created %s", output_file) + nan_count = df.site_id.isna().sum() + if nan_count > 0: + logger.warning("Not all records (%d of %d) matched with a unique site", nan_count, len(df)) + + df = df.drop(columns=["lat", "lon", "beach"]) + + return df @click.command(short_help="create waves.csv") @@ -301,17 +338,22 @@ def create_waves_csv(waves_mat, sites_csv, output_file): @click.command(short_help="create profiles.csv") @click.option("--profiles-mat", required=True, help=".mat file containing beach profiles") -@click.option("--sites-csv", required=True, help=".csv file description of cross section sites") -@click.option("--output-file", required=True, help="where to save profiles.csv") -def create_profiles_csv(profiles_mat, sites_csv, output_file): - logger.info("Creating %s", output_file) - df_profiles = parse_profiles(profiles_mat=profiles_mat) - df_sites = pd.read_csv(sites_csv, index_col=[0]) - df_profiles = replace_unique_sites(df_profiles, df_sites) +@click.option("--profiles-output-file", required=True, help="where to save profiles.csv") +@click.option("--sites-output-file", required=True, help="where to save sites.csv") +def create_sites_and_profiles_csv(profiles_mat, profiles_output_file, sites_output_file): + logger.info("Creating sites and profiles csvs") + df_profiles, df_sites = parse_profiles_and_sites(profiles_mat=profiles_mat) df_profiles.set_index(["site_id", "profile_type", "x"], inplace=True) df_profiles.sort_index(inplace=True) - df_profiles.to_csv(output_file) - logger.info("Created %s", output_file) + df_profiles = remove_zeros(df_profiles) + + df_sites.set_index(["site_id"], inplace=True) + df_sites.sort_index(inplace=True) + + df_profiles.to_csv(profiles_output_file) + logger.info("Created %s", profiles_output_file) + df_sites.to_csv(sites_output_file) + logger.info("Created %s", sites_output_file) @click.command(short_help="create profiles.csv") @@ -335,8 +377,7 @@ def cli(): if __name__ == "__main__": - cli.add_command(create_sites_csv) cli.add_command(create_waves_csv) - cli.add_command(create_profiles_csv) + cli.add_command(create_sites_and_profiles_csv) cli.add_command(create_tides_csv) cli() diff --git a/src/data/profile_features.py b/src/data/profile_features.py index 78ba406..cb63568 100644 --- a/src/data/profile_features.py +++ b/src/data/profile_features.py @@ -15,22 +15,6 @@ logging.config.fileConfig("./src/logging.conf", disable_existing_loggers=False) logger = logging.getLogger(__name__) -def shapes_from_shp(shp_file): - """ - Parses a shape file and returns a list of shapely shapes, ids and properties - :param shp_file: - :return: - """ - shapes = [] - ids = [] - properties = [] - for feat in fiona.open(shp_file, "r"): - shapes.append(shape(feat["geometry"])) - ids.append(feat["id"]) - properties.append(feat["properties"]) - return shapes, ids, properties - - def convert_coord_systems(g1, in_coord_system="EPSG:4326", out_coord_system="EPSG:28356"): """ Converts coordinates from one coordinates system to another. Needed because shapefiles are usually defined in @@ -50,6 +34,22 @@ def convert_coord_systems(g1, in_coord_system="EPSG:4326", out_coord_system="EPS return g2 +def shapes_from_shp(shp_file): + """ + Parses a shape file and returns a list of shapely shapes, ids and properties + :param shp_file: + :return: + """ + shapes = [] + ids = [] + properties = [] + for feat in fiona.open(shp_file, "r"): + shapes.append(shape(feat["geometry"])) + ids.append(feat["id"]) + properties.append(feat["properties"]) + return shapes, ids, properties + + def distance_to_intersection(lat, lon, landward_orientation, beach, line_strings, line_properties): """ Returns the distance at whjch a line drawn from a lat/lon at an orientation intersects a line stinrg @@ -143,7 +143,7 @@ def parse_profile_features(df_sites, df_profiles, dune_crest_shp, dune_toe_shp): lambda row: beach_profile_elevation(row["{}_x".format(feat)], df_profiles, "prestorm", row.name), axis=1 ) - df_profile_features = df_profile_features.drop(columns=["beach", "lat", "lon", "orientation"]) + df_profile_features = df_profile_features.drop(columns=["beach", "lat", "lon", "orientation", "profile_x_lat_lon"]) return df_profile_features diff --git a/src/logging.yaml b/src/logging.yaml new file mode 100644 index 0000000..fc82b31 --- /dev/null +++ b/src/logging.yaml @@ -0,0 +1,50 @@ +--- +version: 1 +disable_existing_loggers: False +formatters: + simple: + format: "%(asctime)s - %(filename)s - %(levelname)s - %(message)s" + +handlers: + console: + class: logging.StreamHandler + level: DEBUG + formatter: simple + stream: ext://sys.stdout + + info_file_handler: + class: logging.handlers.RotatingFileHandler + level: INFO + formatter: simple + filename: info.log + maxBytes: 10485760 # 10MB + backupCount: 3 + encoding: utf8 + + warning_file_handler: + class: logging.handlers.RotatingFileHandler + level: WARNING + formatter: simple + filename: warning.log + maxBytes: 10485760 # 10MB + backupCount: 3 + encoding: utf8 + + error_file_handler: + class: logging.handlers.RotatingFileHandler + level: ERROR + formatter: simple + filename: error.log + maxBytes: 10485760 # 10MB + backupCount: 3 + encoding: utf8 + +loggers: + my_module: + level: ERROR + handlers: [console] + propagate: no + +root: + level: INFO + handlers: [console, info_file_handler, error_file_handler, warning_file_handler] diff --git a/src/utils.py b/src/utils.py new file mode 100644 index 0000000..0df1fc6 --- /dev/null +++ b/src/utils.py @@ -0,0 +1,16 @@ +import logging.config +import os +import yaml + + +def setup_logging(path="./src/logging.yaml", default_level=logging.INFO): + """ + Setup logging configuration + """ + if os.path.exists(path): + with open(path, "rt") as f: + config = yaml.safe_load(f.read()) + logging.config.dictConfig(config) + else: + logging.basicConfig(level=default_level) + return logging.getLogger(__name__)