You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1157 lines
64 KiB
Plaintext

6 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data exploration\n",
"This notebook provides an example how the data has been loaded and accessed for further analysis."
]
},
{
"cell_type": "code",
"execution_count": 1,
6 years ago
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T00:22:35.172482Z",
"start_time": "2018-11-19T00:22:35.000206Z"
6 years ago
}
},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": 2,
6 years ago
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T00:22:50.594936Z",
"start_time": "2018-11-19T00:22:35.173486Z"
6 years ago
},
"scrolled": true
},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"\n",
"from ipywidgets import widgets\n",
"from IPython.display import display, clear_output, Image"
]
},
{
"cell_type": "code",
"execution_count": 9,
6 years ago
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T00:51:58.002082Z",
"start_time": "2018-11-19T00:51:45.127794Z"
6 years ago
},
"pixiedust": {
"displayParams": {}
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\z5189959\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\numpy\\lib\\arraysetops.py:472: FutureWarning:\n",
6 years ago
"\n",
"elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
"\n"
]
}
],
"source": [
"data_folder = '../data/interim'\n",
"df_waves = pd.read_csv(os.path.join(data_folder, 'waves.csv'), index_col=[0,1])\n",
"df_tides = pd.read_csv(os.path.join(data_folder, 'tides.csv'), index_col=[0,1])\n",
"df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0,1,2])\n",
"df_sites = pd.read_csv(os.path.join(data_folder, 'sites.csv'),index_col=[0])\n",
"df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'),index_col=[0])\n",
"df_impacts_compared = pd.read_csv(os.path.join(data_folder,'impacts_observed_vs_forecasted_mean_slope_sto06.csv'),index_col=[0])\n",
"df_twl = pd.read_csv(os.path.join(data_folder,'twl_mean_slope_sto06.csv'),index_col=[0,1])"
6 years ago
]
},
{
"cell_type": "code",
"execution_count": 60,
6 years ago
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T01:46:34.068613Z",
"start_time": "2018-11-19T01:46:34.021932Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[1.2632991506198927,\n",
" 1.393768803168096,\n",
" 1.4898137015209056,\n",
" 1.4536075884721669,\n",
" 1.4108238472203196,\n",
" 1.3456902382958191,\n",
" 1.3190526770579034,\n",
" 1.291134623539095,\n",
" 1.2716049325008096,\n",
" 1.234754724771738,\n",
" 1.1825435278076464,\n",
" 1.2252064606390358,\n",
" 1.2640989420800277,\n",
" 1.2757496999030895,\n",
" 1.2958669929936903,\n",
" 1.2951053747668917,\n",
" 1.2997067012745651,\n",
" 1.2927882315939971,\n",
" 1.3309337732401414,\n",
" 1.3193355176891717,\n",
" 1.2844322857877195,\n",
" 1.2628576180893467,\n",
" 1.2097343104491254,\n",
" 1.2013077303201378,\n",
" 1.1993481704538602,\n",
" 1.2198569961855183,\n",
" 1.2984481427280574,\n",
" 1.3698938539307974,\n",
" 1.4269234117912923,\n",
" 1.4452966027439913,\n",
" 1.4230609854421774,\n",
" 1.3842558204110529,\n",
" 1.3450040465222477,\n",
" 1.29724974139755,\n",
" 1.251148426943638,\n",
" 1.2203239982067688,\n",
" 1.1863161021683857,\n",
" 1.1941366924930163,\n",
" 1.1469348307275298,\n",
" 1.1407884178283354,\n",
" 1.1054402354387345,\n",
" 1.0888031069851187,\n",
" 1.052178951137407,\n",
" 1.042391452505114,\n",
" 1.0022582557622686,\n",
" 0.9574583082522315,\n",
" 0.9273904554517179,\n",
" 0.913868938605881,\n",
" 0.8976037333617174,\n",
" 0.8635964508386459,\n",
" 0.8402776741681438,\n",
" 0.7892652851819926,\n",
" 0.7678051621170874,\n",
" 0.7603964513142425,\n",
" 0.7289481969705937,\n",
" 0.7362069163128326,\n",
" 0.7176683538993814,\n",
" 0.7428153798427477,\n",
" 0.7748796353406857,\n",
" 0.7535515003398277,\n",
" 0.7526143754038663,\n",
" 0.7548002343990244,\n",
" 0.7625400619385548,\n",
" 0.7714761024396927,\n",
" 0.7673985468074385,\n",
" 0.8022138592472895,\n",
" 0.8255303844225207,\n",
" 0.8397447444010038,\n",
" 0.8592502248961733,\n",
" 0.8835338840685852,\n",
" 0.9045770363106742,\n",
" 0.8924312148881293,\n",
" 0.8945346312705259,\n",
" 0.9017789065061824,\n",
" 0.8891514495423394,\n",
" 0.8751173253294721,\n",
" 0.8621537225328324,\n",
" 0.8501934225657698,\n",
" 0.8349119752654496,\n",
" 0.810591742829462,\n",
" 0.7951267561730182,\n",
" 0.7740848011611741,\n",
" 0.7364152898039934,\n",
" 0.7292952850398664,\n",
" 0.7093533687829578,\n",
" 0.7107420200968461,\n",
" 0.7187231371409383,\n",
" 0.7422012746928617,\n",
" 0.7970539274139279,\n",
" 0.8664577626991431,\n",
" 1.0115086760302945,\n",
" 1.1813901874116264,\n",
" 1.3193764924013396,\n",
" 1.4249254280401158,\n",
" 1.4599657994127124,\n",
" 1.4479294322109015,\n",
" 1.4030385044912117,\n",
" 1.3446684286012982,\n",
" 1.2925163876887016,\n",
" 1.2446316279829586,\n",
" 1.2098091099724722,\n",
" 1.1892752127476325,\n",
" 1.1481212531393388,\n",
" 1.1348915384977762,\n",
" 1.1098812210017803,\n",
" 1.0795799167381641,\n",
" 1.0345144546173055,\n",
" 0.9861396633770424,\n",
" 0.9570213815015416,\n",
" 0.9151721064493358,\n",
" 0.8871456344025952,\n",
" 0.8603675256610093,\n",
" 0.8314213104683977,\n",
" 0.801556648971357,\n",
" 0.7832473823225398,\n",
" 0.7861917058854403,\n",
" 0.7775335256878051,\n",
" 0.8038717996714059,\n",
" 0.8191247539180629,\n",
" 0.8714685918657985,\n",
" 0.9204031359563352,\n",
" 0.9701470471949544,\n",
" 0.9977216491845194,\n",
" 1.0117019987510287,\n",
" 1.0237014897684666,\n",
" 1.035735908490389,\n",
" 1.029246597670745,\n",
" 1.0279412447982703,\n",
" 1.0089957427104952,\n",
" 1.0177092555323095,\n",
" 1.015186251942808,\n",
" 1.0147341965721186,\n",
" 0.9726202852349026,\n",
" 0.9684820357793321,\n",
" 0.9546084244653746,\n",
" 0.9589759161165068,\n",
" 0.953681813597972,\n",
" 0.9529659427890556,\n",
" 0.9404538077817732,\n",
" 0.9300524814808376,\n",
" 0.9222194873100475,\n",
" 0.9017481517484488,\n",
" 0.9076603621918959,\n",
" 0.8862256995322542,\n",
" 0.8849165795617614,\n",
" 0.8841602602505668,\n",
" 0.8669393270833857,\n",
" 0.8650991391320055,\n",
" 0.8516334480516885,\n",
" 0.8548785794681827,\n",
" 0.8393830912173211,\n",
" 0.8397545090425697,\n",
" 0.8345690679109284,\n",
" 0.8455177640872806,\n",
" 0.8639961015857328,\n",
" 0.8646032495121627,\n",
" 0.8714037641606539,\n",
" 0.8740342223883719,\n",
" 0.8692493396127806,\n",
" 0.8600609911428099,\n",
" 0.8505467167521669,\n",
" 0.8475405142048628,\n",
" 0.8373268648191554,\n",
" 0.8301463580456817,\n",
" 0.8219577852673429,\n",
" 0.8331171378125211,\n",
" 0.8723196585969643,\n",
" 0.9319822903689668,\n",
" 0.9940823004100856,\n",
" 1.0434248912246848,\n",
" 1.101176776862885,\n",
" 1.160202085578775,\n",
" 1.2045316162106758,\n",
" 1.2698189315085562,\n",
" 1.3602329199109748,\n",
" 1.4496415572317367,\n",
" 1.634178668090898,\n",
" 1.869479984114988,\n",
" 2.1080339573236206,\n",
" 2.367410461576668,\n",
" 2.6226928356071317,\n",
" 2.9442015957178884,\n",
" 3.1934689280272237,\n",
" 3.369577640508405,\n",
" 3.363085077734422,\n",
" 3.3308943745259465,\n",
" 3.34345488671094,\n",
" 3.270858263633565,\n",
" 3.2662111341701667,\n",
" 3.2756378275893434,\n",
" 3.3639544916139155,\n",
" 3.3813825931175288,\n",
" 3.473438910554288,\n",
" 3.510285453735353,\n",
" 3.497185388999287,\n",
" 3.5310509729742883,\n",
" 3.5546726349870728,\n",
" 3.5401999948844587,\n",
" 3.5617762613322217,\n",
" 3.6112088114943175,\n",
" 3.7656363854245662,\n",
" 4.014488374401276,\n",
" 4.204022189099045,\n",
" 4.323008132565011,\n",
" 4.55292318924386,\n",
" 4.465660719519098,\n",
" 4.4462713982384505,\n",
" 4.2751386528659046,\n",
" 4.347505168964963,\n",
" 4.502927715648842,\n",
" 4.6885793802285765,\n",
" 4.628199944839338,\n",
" 4.455704001987412,\n",
" 4.317993775686132,\n",
" 4.115695546027388,\n",
" 3.8856856906623976,\n",
" 3.627439800093474,\n",
" 3.502885968925649,\n",
" 3.4164328569002587,\n",
" 3.3596064846507008,\n",
" 3.29411314173578,\n",
" 3.2749124810384576,\n",
" 3.214527754620344,\n",
" 3.17334523565404,\n",
" 3.1107136332898935,\n",
" 3.084373228564107,\n",
" 3.0189640476554875,\n",
" 3.0295228943214165,\n",
" 2.9996571416959896,\n",
" 2.9208446700168778,\n",
" 2.8680589886628094,\n",
" 2.907972334429489,\n",
" 2.861472344420395,\n",
" 2.8474889903361227,\n",
" 2.745248668694825,\n",
" 2.7303053202759995,\n",
" 2.6135951060595994,\n",
" 2.529475789890884,\n",
" 2.4903330472397327,\n",
" 2.439152558030405,\n",
" 2.4368767677687853,\n",
" 2.3475370460575014,\n",
" 2.3556983183736806,\n",
" 2.212536123406467,\n",
" 2.200817615698378,\n",
" 2.13859895332105,\n",
" 2.053540819899654,\n",
" 1.9580330469751663,\n",
" 1.92850392599216,\n",
" 1.8607478131182549,\n",
" 1.8192193348993184,\n",
" 1.739752655683747,\n",
" 1.7529300332032445,\n",
" 1.7285697305855519,\n",
" 1.7209222898565135,\n",
" 1.730323846580886,\n",
" 1.7602226717400549,\n",
" 1.7801514257593374,\n",
" 1.8478191773477528,\n",
" 1.8702440191372558,\n",
" 1.9288889269187404,\n",
" 1.977779637269245,\n",
" 1.974069087436935,\n",
" 1.967943192597384,\n",
" 1.9734792374254413,\n",
" 1.9563175455510269,\n",
" 1.9851023973301751,\n",
" 1.9852429909185416,\n",
" 1.960973516701933,\n",
" 1.9190006772680768,\n",
" 1.8871379330236293,\n",
" 1.8870815530722465,\n",
" 1.906325105157349,\n",
" 1.916718509077828,\n",
" 1.906721247909469,\n",
" 1.8748526018527751,\n",
" 1.8622401861424824,\n",
" 1.8463821096893551,\n",
" 1.8572306486131245,\n",
" 1.8591498672409832,\n",
" 1.8223814374026053,\n",
" 1.8143064584548998,\n",
" 1.786843829088606,\n",
" 1.770264490937835,\n",
" 1.7721429351265074,\n",
" 1.7555363714930243,\n",
" 1.7617766143642997,\n",
" 1.715462916442869,\n",
" 1.7274193576715526,\n",
" 1.7066412454414952,\n",
" 1.7168491132571937,\n",
" 1.6802648723507885,\n",
" 1.6475747104260474,\n",
" 1.6341871129751102,\n",
" 1.6091167908646318,\n",
" 1.5754827235715867,\n",
" 1.566181947942738,\n",
" 1.5473300334508406,\n",
" 1.5344938121808378,\n",
" 1.5791108463484766,\n",
" 1.5633578452614083,\n",
" 1.56291253637572,\n",
" 1.5231738814104063,\n",
" 1.4514498766069597,\n",
" 1.4376627927243346,\n",
" 1.4007086451410151,\n",
" 1.361294300581865,\n",
" 1.3392246803808323,\n",
" 1.2813975364411236,\n",
" 1.2601920400317963,\n",
" 1.209418405100685,\n",
" 1.2137070403515318,\n",
" 1.2049792764137484,\n",
" 1.1859767648774089,\n",
" 1.1682817640426169,\n",
" 1.1813938099398504,\n",
" 1.1216644444786041,\n",
" 1.0775990331361116,\n",
" 1.051008230001901,\n",
" 1.035272409784175,\n",
" 0.9994601153037259,\n",
" 0.9763690428293406,\n",
" 0.9455716397300884,\n",
" 0.9369020938970462,\n",
" 0.9204793767326028,\n",
" 0.914089505316063,\n",
" 0.8960105562010623,\n",
" 0.8934437292918901,\n",
" 0.9031614944756692,\n",
" 0.9588457279651288,\n",
" 1.0479761841513588,\n",
" 1.0475914732050602,\n",
" 1.0412848076668946,\n",
" 1.026783246785745,\n",
" 0.9808911279890768,\n",
" 0.9578515661507389,\n",
" 0.9364803077670656,\n",
" 0.9201806001439652,\n",
" 0.900943185485514,\n",
" 0.9043881333592584,\n",
" 0.9018505116725885,\n",
" 0.8880480709891933,\n",
" 0.8802535371737461,\n",
" 0.8924713481078699,\n",
" 0.9009292063519142,\n",
" 0.8990731179853512,\n",
" 0.9004002302179219,\n",
" 0.9026300674742864,\n",
" 0.9046738352677264,\n",
" 0.904834138707496,\n",
" 0.9067177221688292,\n",
" 0.8875546112442375,\n",
" 0.9010090916934979,\n",
" 0.8906147232150059,\n",
" 0.8760694369978883,\n",
" 0.8846086055607917,\n",
" 0.8732540400123358,\n",
" 0.8519251139287594,\n",
" 0.8569288126630621,\n",
" 0.8885552295624393,\n",
" 0.9078896892061099,\n",
" 0.9399039050339821,\n",
" 1.0325465634873403,\n",
" 1.18424717131601,\n",
" 1.4069828487068947,\n",
" 1.5374548940117276,\n",
" 1.5592208649143704,\n",
" 1.5432838207300614,\n",
" 1.430037758416392,\n",
" 1.4128296280377908,\n",
" 1.3924646086142305,\n",
" 1.2989964522293047,\n",
" 1.3115873758048104,\n",
" 1.2789734650111482,\n",
" 1.2562195218363923,\n",
" 1.2425567241967677,\n",
" 1.2515153481974286,\n",
" 1.2895012340687415,\n",
" 1.3511015057834526,\n",
" 1.2776611393828077,\n",
" 1.2889070757257357,\n",
" 1.2794203522299867,\n",
" 1.2548108180619686,\n",
" 1.2044788147076335,\n",
" 1.1968679971063805,\n",
" 1.1658325726462586,\n",
" 1.1352834921748485,\n",
" 1.1290167340765007,\n",
" 1.1071343580729138,\n",
" 1.0667294091019908,\n",
" 1.0462272327840756,\n",
" 1.0595637432866842,\n",
" 1.0531887583835708,\n",
" 1.00594994025436,\n",
" 1.0256902213209238,\n",
" 1.0057973617929692,\n",
" 0.9815316927612888,\n",
" 0.9694308369279236,\n",
" 0.9745064147967398,\n",
" 0.9642414097281632,\n",
" 0.9454858326097626,\n",
" 0.8915043979945115,\n",
" 0.8921364517144029,\n",
" 0.8938741538636313,\n",
" 0.9006158946503036,\n",
" 0.9038070077671668,\n",
" 0.9029920317337962,\n",
" 0.9168944419741138,\n",
" 0.9060133253634725,\n",
" 0.9234356237212368,\n",
" 0.9636884966733456,\n",
" 0.9755737029064364,\n",
" 0.9702829562843946,\n",
" 0.9718671879151456,\n",
" 0.9828543680939154,\n",
" 0.983976532687876,\n",
" 1.0192056294910876,\n",
" 1.02304570647853,\n",
" 1.0275918776272523,\n",
" 1.02350472267319,\n",
" 1.0363437201913752,\n",
" 1.0228960581536888,\n",
" 1.031773040065624,\n",
" 0.9961028819855686,\n",
" 0.9799407193704522,\n",
" 0.9639080227074568,\n",
" 0.9526042230966292,\n",
" 0.9513024537542358,\n",
" 0.9556460082467124,\n",
" 0.9286465597857544,\n",
" 0.9110140301695694,\n",
" 0.8984138010448336,\n",
" 0.910361202178044]"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_twl.query(\"site_id=='NARRA0018'\").Hs0.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 184,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T04:00:27.734848Z",
"start_time": "2018-11-19T04:00:26.097751Z"
},
"code_folding": [
277
],
"scrolled": false
6 years ago
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3790264e7f4a4fb6b5838d18c50957dc",
6 years ago
"version_major": 2,
"version_minor": 0
},
"text/html": [
"<p>Failed to display Jupyter Widget of type <code>VBox</code>.</p>\n",
"<p>\n",
" If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
" that the widgets JavaScript is still loading. If this message persists, it\n",
" likely means that the widgets JavaScript library is either not installed or\n",
" not enabled. See the <a href=\"https://ipywidgets.readthedocs.io/en/stable/user_install.html\">Jupyter\n",
" Widgets Documentation</a> for setup instructions.\n",
"</p>\n",
"<p>\n",
" If you're reading this message in another frontend (for example, a static\n",
" rendering on GitHub or <a href=\"https://nbviewer.jupyter.org/\">NBViewer</a>),\n",
" it may mean that your frontend doesn't currently support widgets.\n",
"</p>\n"
],
"text/plain": [
"VBox(children=(VBox(children=(HTML(value='<b>Filter by observed and predicted impacts:</b>'), HBox(children=(SelectMultiple(description='Forecasted Impacts', index=(0, 1, 2), options=('overwash', 'collision', 'swash'), value=('overwash', 'collision', 'swash')), SelectMultiple(description='Observed Impacts', index=(0, 1), options=('swash', 'collision'), value=('swash', 'collision')))))), VBox(children=(HTML(value='<b>Filter by site_id:</b>'), HBox(children=(Dropdown(description='site_id: ', index=943, options=('AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', 'AVOCAn0004', 'AVOCAn0005', 'AVOCAn0006', 'AVOCAn0007', 'AVOCAn0008', 'AVOCAn0009', 'AVOCAs0001', 'AVOCAs0002', 'AVOCAs0003', 'AVOCAs0004', 'AVOCAs0005', 'AVOCAs0006', 'AVOCAs0007', 'AVOCAs0008', 'BILG0001', 'BILG0002', 'BILG0003', 'BILG0004', 'BILG0005', 'BLUEYS0001', 'BLUEYS0002', 'BLUEYS0003', 'BLUEYS0004', 'BLUEYS0005', 'BLUEYS0006', 'BOAT0001', 'BOAT0002', 'BOAT0003', 'BOAT0004', 'BOAT0005', 'BOOM0001', 'BOOM0002', 'BOOM0003', 'BOOM0004', 'BOOM0005', 'BOOM0006', 'BOOM0007', 'BOOM0008', 'BOOM0009', 'BOOM0010', 'BOOM0011', 'BOOM0012', 'BOOM0013', 'BOOM0014', 'CATHIE0001', 'CATHIE0002', 'CATHIE0003', 'CATHIE0004', 'CATHIE0005', 'CATHIE0006', 'CATHIE0007', 'CATHIE0008', 'CATHIE0009', 'CATHIE0010', 'CATHIE0011', 'CATHIE0012', 'CATHIE0013', 'CATHIE0014', 'CATHIE0015', 'CATHIE0016', 'CATHIE0017', 'CATHIE0018', 'CATHIE0019', 'CATHIE0020', 'CATHIE0021', 'CATHIE0022', 'CATHIE0023', 'CATHIE0024', 'CATHIE0025', 'CATHIE0026', 'CATHIE0027', 'CATHIE0028', 'CATHIE0029', 'CRESn0001', 'CRESn0002', 'CRESn0003', 'CRESn0004', 'CRESn0005', 'CRESn0006', 'CRESn0007', 'CRESn0008', 'CRESn0009', 'CRESn0010', 'CRESn0011', 'CRESn0012', 'CRESn0013', 'CRESn0014', 'CRESn0015', 'CRESn0016', 'CRESn0017', 'CRESn0018', 'CRESn0019', 'CRESn0020', 'CRESn0021', 'CRESn0022', 'CRESn0023', 'CRESn0024', 'CRESn0025', 'CRESn0026', 'CRESn0027', 'CRESn0028', 'CRESn0029', 'CRESn0030', 'CRESn0031', 'CRESn0032', 'CRESn0033', 'CRESn0034', 'CRESn0035', 'CRESn0036', 'CRESn0037', 'CRESn0038', 'CRESn0039', 'CRESn0040', 'CRESn0041', 'CRESn0042', 'CRESn0043', 'CRESn0044', 'CRESn0045', 'CRESn0046', 'CRESn0047', 'CRESn0048', 'CRESn0049', 'CRESn0050', 'CRESn0051', 'CRESn0052', 'CRESn0053', 'CRESn0054', 'CRESn0055', 'CRESn0056', 'CRESn0057', 'CRESn0058', 'CRESn0059', 'CRESn0060', 'CRESn0061', 'CRESn0062', 'CRESn0063', 'CRESn0064', 'CRESn0065', 'CRESn0066', 'CRESn0067', 'CRESn0068', 'CRESn0069', 'CRESn0070', 'CRESn0071', 'CRESn0072', 'CRESn0073', 'CRESn0074', 'CRESn0075', 'CRESn0076', 'CRESn0077', 'CRESn0078', 'CRESn0079', 'CRESn0080', 'CRESn0081', 'CRESn0082', 'CRESn0083', 'CRESn0084', 'CRESn0085', 'CRESn0086', 'CRESn0087', 'CRESn0088', 'CRESn0089', 'CRESn0090', 'CRESn0091', 'CRESn0092', 'CRESn0093', 'CRESn0094', 'CRESn0095', 'CRESn0096', 'CRESn0097', 'CRESn0098', 'CRESn0099', 'CRESn0100', 'CRESn0101', 'CRESn0102', 'CRESn0103', 'CRESn0104', 'CRESn0105', 'CRESn0106', 'CRESn0107', 'CRESn0108', 'CRESn0109', 'CRESn0110', 'CRESn0111', 'CRESn0112', 'CRESn0113', 'CRESn0114', 'CRESn0115', 'CRESn0116', 'CRESn0117', 'CRESn0118', 'CRESn0119', 'CRESn0120', 'CRESn0121', 'CRESn0122', 'CRESn0123', 'CRESn0124', 'CRESn0125', 'CRESs0001', 'CRESs0002', 'CRESs0003', 'CRESs0004', 'CRESs0005', 'CRESs0006', 'CRESs0007', 'CRESs0008', 'CRESs0009', 'CRESs0010', 'CRESs0011', 'CRESs0012', 'CRESs0013', 'CRESs0014', 'DEEWHYn0001', 'DEEWHYn0002', 'DEEWHYn0003', 'DEEWHYn0004', 'DEEWHYn0005', 'DEEWHYn0006', 'DEEWHYn0007', 'DEEWHYn0008', 'DEEWHYn0009', 'DEEWHYn0010', 'DEEWHYn0011', 'DEEWHYn0012', 'DEEWHYs0001', 'DEEWHYs0002', 'DEEWHYs0003', 'DEEWHYs0004', 'DEEWHYs0005', 'DEEWHYs0006', 'DEEWHYs0007', 'DEEWHYs0008', 'DIAMONDn0001', 'DIAMONDn0002', 'DIAMONDn0003', 'DIAMONDn0004', 'DIAMONDn0005', 'DIAMONDn0006', 'DIAMONDn0007', 'DIAMONDn0008', 'DIAMONDn0009', 'DIAMONDn0010', 'DIAMONDn0011', 'DIAMONDn0012', 'DIAMONDn0013', 'DIAMONDn0014', 'DIAMONDn0015', 'DIAMONDn0016', 'DIAMONDn0017', 'DIAMONDn0018', 'DIAMONDn0019', 'DIAMONDn0020', 'DIAMONDn0021', 'DIAMONDn0022', 'DIAMONDn0023', 'DIAMONDn0024', 'DIAMONDn0025', 'DIAMONDn0026', 'DIAMONDn0027', 'DIAMONDn0028',
6 years ago
" 'data': [{'name': 'Pre Storm Profile',\n",
" 'type': 'scatter',\n",
" 'uid': 'a7ef1527-c36f-4f59-9d62-64928b7b924f',\n",
6 years ago
" 'x': [0],\n",
" 'y': [0]},\n",
" {'name': 'Post Storm Profile',\n",
" 'type': 'scatter',\n",
" 'uid': '8f93d4ab-7ef5-4798-b76d-ea742faf88a5',\n",
" 'x': [0],\n",
" 'y': [0]},\n",
" {'marker': {'color': 'rgb(17, 157, 255)', 'size': 20},\n",
" 'mode': 'markers',\n",
" 'name': 'Pre-storm dune crest',\n",
" 'type': 'scatter',\n",
" 'uid': 'fd8574f3-f280-4ef6-9792-d1c14df1eb55',\n",
" 'x': [0],\n",
" 'y': [0]},\n",
" {'marker': {'color': 'rgb(231, 99, 250)', 'size': 20},\n",
" 'mode': 'markers',\n",
" 'name': 'Pre-storm dune toe',\n",
" 'type': 'scatter',\n",
" 'uid': '4e6d2022-7ff2-42e6-9334-d76411906808',\n",
6 years ago
" 'x': [0],\n",
" 'y': [0]}],\n",
" 'layout': {'height': 300,\n",
" 'legend': {'x': 0.5, 'y': 1},\n",
6 years ago
" 'margin': {'b': 50, 'l': 20, 'r': 20, 't': 50},\n",
" 'title': 'Bed Profiles',\n",
" 'xaxis': {'autorange': True,\n",
" 'range': [0, 200],\n",
" 'showgrid': True,\n",
" 'showline': True,\n",
" 'title': 'x (m)',\n",
" 'zeroline': True},\n",
" 'yaxis': {'autorange': False,\n",
" 'range': [-1, 20],\n",
" 'showgrid': True,\n",
" 'showline': True,\n",
" 'title': 'z (m)',\n",
" 'zeroline': True}}\n",
"}), FigureWidget({\n",
" 'data': [{'lat': array([-33.46381539, -33.46301835, -33.46221051, ..., -33.4279646 ,\n",
" -33.42732743, -33.42671036]),\n",
" 'lon': array([151.43639576, 151.43690633, 151.43738179, ..., 151.4501613 ,\n",
" 151.45092222, 151.45170635]),\n",
" 'marker': {'size': 10},\n",
" 'mode': 'markers',\n",
" 'text': array(['AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', ..., 'WAMBE0025', 'WAMBE0026',\n",
" 'WAMBE0027'], dtype='<U12'),\n",
" 'type': 'scattermapbox',\n",
" 'uid': 'e77778d2-afdf-479f-9ecb-642bad6011db'},\n",
6 years ago
" {'lat': [0],\n",
" 'lon': [0],\n",
" 'marker': {'color': 'rgb(255, 0, 0)', 'opacity': 0.5, 'size': 20},\n",
" 'mode': 'markers',\n",
" 'text': array(['AVOCAn0001', 'AVOCAn0002', 'AVOCAn0003', ..., 'WAMBE0025', 'WAMBE0026',\n",
" 'WAMBE0027'], dtype='<U12'),\n",
" 'type': 'scattermapbox',\n",
" 'uid': 'e9d1a48c-46d8-4783-b50c-81ff73913f8a'}],\n",
6 years ago
" 'layout': {'autosize': True,\n",
" 'height': 300,\n",
6 years ago
" 'hovermode': 'closest',\n",
" 'mapbox': {'accesstoken': ('pk.eyJ1IjoiY2hyaXNsZWFtYW4iLCJ' ... 'Hp5bCJ9.U2dwFg2c7RFjUNSayERUiw'),\n",
" 'bearing': 0,\n",
" 'center': {'lat': -33.7, 'lon': 151.3},\n",
" 'pitch': 0,\n",
" 'style': 'satellite-streets',\n",
" 'zoom': 12},\n",
" 'margin': {'b': 50, 'l': 20, 'r': 20, 't': 50},\n",
" 'showlegend': False}\n",
"}))), FigureWidget({\n",
" 'data': [{'name': 'Hs0', 'type': 'scatter', 'uid': 'f4c191f6-fd4f-41f5-b779-95260f23f281', 'x': [0, 1], 'y': [0, 1]},\n",
" {'name': 'Tp',\n",
" 'type': 'scatter',\n",
" 'uid': '6f12399d-6b75-40f7-b713-893f7c353f38',\n",
" 'x': [0, 2],\n",
" 'y': [0, 2],\n",
" 'yaxis': 'y2'},\n",
" {'name': 'beta',\n",
" 'type': 'scatter',\n",
" 'uid': 'd8212fc8-5399-4c1f-8623-ba5ade277599',\n",
" 'x': [0, 3],\n",
" 'y': [0, 3],\n",
" 'yaxis': 'y3'}],\n",
" 'layout': {'height': 200,\n",
" 'margin': {'b': 50, 'l': 50, 'r': 50, 't': 50},\n",
" 'title': 'Hydro/Morpho Parameters',\n",
" 'xaxis': {'domain': [0.0, 0.9], 'title': 'time', 'zeroline': False},\n",
" 'yaxis': {'title': 'Hs0 (m)'},\n",
" 'yaxis2': {'overlaying': 'y', 'side': 'right', 'title': 'Tp (s)'},\n",
" 'yaxis3': {'overlaying': 'y', 'position': 0.97, 'side': 'right', 'title': 'beta (-)'}}\n",
"}), FigureWidget({\n",
" 'data': [{'line': {'color': 'rgb(91,220,229)', 'width': 2},\n",
" 'name': 'R High',\n",
" 'type': 'scatter',\n",
" 'uid': '0aa45aab-f418-4273-b898-080a738dd57a',\n",
" 'x': [0, 1],\n",
" 'y': [0, 1]},\n",
" {'line': {'color': 'rgb(13,174,186)', 'width': 2},\n",
" 'name': 'R Low',\n",
" 'type': 'scatter',\n",
" 'uid': 'd874630e-6006-4d4e-a962-a95e817855fb',\n",
" 'x': [0, 2],\n",
" 'y': [0, 2]},\n",
" {'line': {'color': 'rgb(214, 117, 14)', 'dash': 'dot', 'width': 2},\n",
" 'name': 'Dune Crest',\n",
" 'type': 'scatter',\n",
" 'uid': '0042b440-e49a-4d54-8ac2-fac51d6b67e1',\n",
" 'x': [0, 3],\n",
" 'y': [0, 3]},\n",
" {'line': {'color': 'rgb(142, 77, 8)', 'dash': 'dash', 'width': 2},\n",
" 'name': 'Dune Toe',\n",
" 'type': 'scatter',\n",
" 'uid': '996ee70f-9f12-4670-b771-d1c01ee1cdff',\n",
" 'x': [0, 3],\n",
" 'y': [0, 3]},\n",
" {'line': {'color': 'rgb(8,51,137)', 'dash': 'dot', 'width': 2},\n",
" 'name': 'Tide+Surge WL',\n",
" 'type': 'scatter',\n",
" 'uid': '0331b331-b34a-4bd2-befe-3ef7d9c71b65',\n",
" 'x': [0, 4],\n",
" 'y': [0, 4]}],\n",
" 'layout': {'height': 200,\n",
" 'margin': {'b': 50, 'l': 50, 'r': 50, 't': 50},\n",
" 'title': 'Water Level & Dune Toe/Crest',\n",
" 'xaxis': {'domain': [0.0, 0.95], 'title': 'time', 'zeroline': False},\n",
" 'yaxis': {'title': 'Water Level (m)'}}\n",
"})))"
6 years ago
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create widgets for filtering by observed and forecasted impacts\n",
"\n",
"filter_title = widgets.HTML(\n",
" value=\"<b>Filter by observed and predicted impacts:</b>\",\n",
")\n",
"\n",
"observed_impact_select = widgets.SelectMultiple(\n",
" options=df_impacts_compared.storm_regime_observed.dropna().unique(),\n",
" value=df_impacts_compared.storm_regime_observed.dropna().unique().tolist(),\n",
" description='Observed Impacts',\n",
" disabled=False\n",
")\n",
"\n",
"forecasted_impact_select = widgets.SelectMultiple(\n",
" options=df_impacts_compared.storm_regime_forecasted.dropna().unique(),\n",
" value=df_impacts_compared.storm_regime_forecasted.dropna().unique().tolist(),\n",
" description='Forecasted Impacts',\n",
" disabled=False\n",
")\n",
"\n",
"filter_container = widgets.VBox(children=[filter_title,widgets.HBox(children=[forecasted_impact_select,observed_impact_select])])\n",
"\n",
"\n",
"# Create widgets for selecting site_id\n",
"\n",
"site_id_title = widgets.HTML(\n",
" value=\"<b>Filter by site_id:</b>\",\n",
")\n",
"\n",
"site_id_select = widgets.Dropdown(\n",
6 years ago
" description='site_id: ',\n",
" value='NARRA0001',\n",
" options=df_profiles.index.get_level_values('site_id').unique().sort_values().tolist()\n",
")\n",
"site_id_container = widgets.VBox(children=[site_id_title,widgets.HBox(children=[site_id_select])])\n",
"\n",
6 years ago
"\n",
"\n",
"# Add panel for pre/post storm profiles\n",
"trace1 = go.Scatter(\n",
" x = [0],\n",
" y = [0],\n",
" name='Pre Storm Profile'\n",
")\n",
"trace2 = go.Scatter(\n",
" x = [0],\n",
" y = [0],\n",
" name='Post Storm Profile'\n",
")\n",
"trace3 = go.Scatter(\n",
" x = [0],\n",
" y = [0],\n",
" name='Pre-storm dune crest',\n",
" mode = 'markers',\n",
" marker = dict(\n",
" color = 'rgb(17, 157, 255)',\n",
" size = 20,\n",
" ),\n",
")\n",
"trace4 = go.Scatter(\n",
" x = [0],\n",
" y = [0],\n",
" name='Pre-storm dune toe',\n",
" mode = 'markers',\n",
" marker = dict(\n",
" color = 'rgb(231, 99, 250)',\n",
" size = 20,\n",
" ),\n",
")\n",
6 years ago
"\n",
"layout = go.Layout(\n",
" title = 'Bed Profiles',\n",
" height=300,\n",
" legend=dict(x=0.5, y=1),\n",
6 years ago
" margin=dict(t=50,b=50,l=20,r=20),\n",
" xaxis=dict(\n",
" title = 'x (m)',\n",
" autorange=True,\n",
" showgrid=True,\n",
" zeroline=True,\n",
" showline=True,\n",
" range=[0, 200]\n",
" ),\n",
" yaxis=dict(\n",
" title = 'z (m)',\n",
" autorange=False,\n",
" showgrid=True,\n",
" zeroline=True,\n",
" showline=True,\n",
" range=[-1, 20]\n",
" )\n",
")\n",
"\n",
"g1 = go.FigureWidget(data=[trace1, trace2, trace3, trace4],\n",
6 years ago
" layout=layout)\n",
"\n",
"\n",
"# Add panel for google maps\n",
"mapbox_access_token = 'pk.eyJ1IjoiY2hyaXNsZWFtYW4iLCJhIjoiY2pvNTY1MzZpMDc2OTN2bmw5MGsycHp5bCJ9.U2dwFg2c7RFjUNSayERUiw'\n",
"\n",
"data = [\n",
" go.Scattermapbox(\n",
" lat=df_sites['lat'],\n",
" lon=df_sites['lon'],\n",
" mode='markers',\n",
" marker=dict(\n",
" size=10\n",
" ),\n",
" text=df_sites.index.get_level_values('site_id'),\n",
" ),\n",
" go.Scattermapbox(\n",
" lat=[0],\n",
" lon=[0],\n",
" mode='markers',\n",
" marker=dict(\n",
" size=20,\n",
" color='rgb(255, 0, 0)',\n",
" opacity = 0.5,\n",
" ),\n",
" text=df_sites.index.get_level_values('site_id'),\n",
" ),\n",
"]\n",
"\n",
"layout = go.Layout(\n",
" autosize=True,\n",
" height=300,\n",
6 years ago
" hovermode='closest',\n",
" showlegend=False,\n",
" margin=dict(t=50,b=50,l=20,r=20),\n",
" mapbox=dict(\n",
" accesstoken=mapbox_access_token,\n",
" bearing=0,\n",
" center=dict(\n",
" lat=-33.7,\n",
" lon=151.3\n",
" ),\n",
" pitch=0,\n",
" zoom=12,\n",
" style='satellite-streets'\n",
" ),\n",
")\n",
"\n",
"fig = dict(data=data, layout=layout)\n",
"g2 = go.FigureWidget(data=data,layout=layout)\n",
"\n",
"\n",
"# Add panel for time series\n",
"\n",
"trace_Hs0 = go.Scatter(\n",
" x = [0,1],\n",
" y = [0,1],\n",
" name='Hs0'\n",
")\n",
"trace_Tp = go.Scatter(\n",
" x = [0,2],\n",
" y = [0,2],\n",
" name='Tp',\n",
" yaxis='y2'\n",
")\n",
"trace_beta = go.Scatter(\n",
" x = [0,3],\n",
" y = [0,3],\n",
" name='beta',\n",
" yaxis='y3'\n",
")\n",
"data=[trace_Hs0, trace_Tp, trace_beta]\n",
"\n",
"layout = go.Layout(\n",
" title = 'Hydro/Morpho Parameters',\n",
" height=200,\n",
" margin=dict(t=50,b=50,l=50,r=50),\n",
" xaxis=dict(\n",
" title='time',\n",
" domain=[0.0, 0.9],\n",
" zeroline=False,\n",
" ),\n",
" yaxis=dict(\n",
" title = 'Hs0 (m)',\n",
" ),\n",
" yaxis2=dict(\n",
" title='Tp (s)',\n",
" overlaying='y',\n",
" side='right'\n",
" ),\n",
" yaxis3=dict(\n",
" title='beta (-)',\n",
" overlaying='y',\n",
" side='right',\n",
" position=0.97\n",
" )\n",
")\n",
"\n",
"g3 = go.FigureWidget(data=data, layout=layout)\n",
"\n",
"\n",
"# Add panel for water level\n",
"\n",
"trace_R_high = go.Scatter(\n",
" x = [0,1],\n",
" y = [0,1],\n",
" name='R High',\n",
" line = dict(\n",
" color = ('rgb(91,220,229)'),\n",
" width = 2)\n",
")\n",
"trace_R_low = go.Scatter(\n",
" x = [0,2],\n",
" y = [0,2],\n",
" name='R Low',\n",
" line = dict(\n",
" color = ('rgb(13,174,186)'),\n",
" width = 2)\n",
")\n",
"trace_dune_crest = go.Scatter(\n",
" x = [0,3],\n",
" y = [0,3],\n",
" name='Dune Crest',\n",
" line = dict(\n",
" color = ('rgb(214, 117, 14)'),\n",
" width = 2,\n",
" dash = 'dot')\n",
")\n",
"trace_dune_toe = go.Scatter(\n",
" x = [0,3],\n",
" y = [0,3],\n",
" name='Dune Toe',\n",
" line = dict(\n",
" color = ('rgb(142, 77, 8)'),\n",
" width = 2,\n",
" dash = 'dash')\n",
")\n",
"trace_tide = go.Scatter(\n",
" x = [0,4],\n",
" y = [0,4],\n",
" name='Tide+Surge WL',\n",
" line = dict(\n",
" color = ('rgb(8,51,137)'),\n",
" width = 2,\n",
" dash = 'dot')\n",
")\n",
"\n",
"data=[trace_R_high, trace_R_low, trace_dune_crest, trace_dune_toe,trace_tide]\n",
"\n",
"layout = go.Layout(\n",
" title = 'Water Level & Dune Toe/Crest',\n",
" height=200,\n",
" margin=dict(t=50,b=50,l=50,r=50),\n",
" xaxis=dict(\n",
" title='time',\n",
" domain=[0.0, 0.95],\n",
" zeroline=False,\n",
" ),\n",
" yaxis=dict(\n",
" title = 'Water Level (m)',\n",
" ),\n",
")\n",
"\n",
"g4 = go.FigureWidget(data=data, layout=layout)\n",
6 years ago
"\n",
"\n",
"def update_profile(change):\n",
6 years ago
" \n",
" site_id = site_id_select.value\n",
6 years ago
" site_profile = df_profiles.query('site_id == \"{}\"'.format(site_id))\n",
" prestorm_profile = site_profile.query('profile_type == \"prestorm\"')\n",
" poststorm_profile = site_profile.query('profile_type == \"poststorm\"')\n",
"\n",
" poststorm_x = poststorm_profile.index.get_level_values('x').tolist()\n",
" poststorm_z = poststorm_profile.z.tolist()\n",
"\n",
" prestorm_x = prestorm_profile.index.get_level_values('x').tolist()\n",
" prestorm_z = prestorm_profile.z.tolist()\n",
" \n",
" site_features = df_profile_features.query('site_id == \"{}\"'.format(site_id))\n",
" dune_crest_x = site_features.dune_crest_x\n",
" dune_crest_z = site_features.dune_crest_z\n",
" dune_toe_x = site_features.dune_toe_x\n",
" dune_toe_z = site_features.dune_toe_z\n",
6 years ago
" \n",
" # Update beach profile section plots\n",
6 years ago
" with g1.batch_update():\n",
" g1.data[0].x = prestorm_x\n",
" g1.data[0].y = prestorm_z\n",
" g1.data[1].x = poststorm_x\n",
" g1.data[1].y = poststorm_z\n",
" g1.data[2].x = dune_crest_x\n",
" g1.data[2].y = dune_crest_z\n",
" g1.data[3].x = dune_toe_x\n",
" g1.data[3].y = dune_toe_z\n",
" \n",
" # Relocate plan of satellite imagery\n",
6 years ago
" site_coords = df_sites.query('site_id == \"{}\"'.format(site_id))\n",
" with g2.batch_update():\n",
" g2.layout.mapbox['center'] = {\n",
" 'lat': site_coords['lat'].values[0],\n",
" 'lon': site_coords['lon'].values[0]\n",
" }\n",
" g2.layout.mapbox['zoom'] = 15\n",
" g2.data[1].lat = [site_coords['lat'].values[0]]\n",
" g2.data[1].lon = [site_coords['lon'].values[0]]\n",
" g2.data[1].text = site_coords['lon'].index.get_level_values('site_id').tolist()\n",
"\n",
" # Update time series plots \n",
" df_timeseries = df_twl.query(\"site_id=='{}'\".format(site_id))\n",
" times = df_timeseries.index.get_level_values('datetime').tolist()\n",
" with g3.batch_update():\n",
" g3.data[0].x = times\n",
" g3.data[1].x = times\n",
" g3.data[2].x = times\n",
" g3.data[0].y = df_timeseries.Hs0.tolist()\n",
" g3.data[1].y = df_timeseries.Tp.tolist()\n",
" g3.data[2].y = df_timeseries.beta.tolist()\n",
" \n",
" # Update water levels plot\n",
" df_timeseries = df_twl.query(\"site_id=='{}'\".format(site_id))\n",
" with g4.batch_update():\n",
" g4.data[0].x = times\n",
" g4.data[1].x = times\n",
" g4.data[2].x = [min(times), max(times)]\n",
" g4.data[3].x = [min(times), max(times)]\n",
" g4.data[4].x = times\n",
" g4.data[0].y = df_timeseries.R_high.tolist()\n",
" g4.data[1].y = df_timeseries.R_low.tolist()\n",
" g4.data[2].y = dune_crest_z.tolist()[0], dune_crest_z.tolist()[0],\n",
" g4.data[3].y = dune_toe_z.tolist()[0], dune_toe_z.tolist()[0],\n",
" g4.data[4].y = df_timeseries.tide.tolist()\n",
6 years ago
" \n",
" \n",
"def update_filter(change):\n",
" \n",
" # Get filtered impacts\n",
" observed_impacts = observed_impact_select.value\n",
" forecasted_impacts = forecasted_impact_select.value\n",
" \n",
" # Get sites with these impacts \n",
" site_id_select.options = df_impacts_compared.loc[df_impacts_compared.storm_regime_forecasted.isin(forecasted_impacts) & \n",
" df_impacts_compared.storm_regime_observed.isin(observed_impacts),].index.tolist()\n",
" \n",
" \n",
"site_id_select.observe(update_profile, names=\"value\")\n",
"observed_impact_select.observe(update_filter, names=\"value\")\n",
"forecasted_impact_select.observe(update_filter, names=\"value\")\n",
6 years ago
"\n",
"widgets.VBox([filter_container,site_id_container,widgets.HBox([g1,g2]),g3,g4])"
6 years ago
]
},
{
"cell_type": "code",
"execution_count": 178,
6 years ago
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-19T03:23:37.582663Z",
"start_time": "2018-11-19T03:23:37.577662Z"
6 years ago
}
},
"outputs": [
{
"data": {
"text/plain": [
"([3.111490610630103, 3.111490610630103],)"
6 years ago
]
},
"execution_count": 178,
6 years ago
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g4.data[2].y"
6 years ago
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}