You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
6.2 KiB
Plaintext
243 lines
6.2 KiB
Plaintext
6 years ago
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Profile picker"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"heading_collapsed": true
|
||
|
},
|
||
|
"source": [
|
||
|
"## Setup notebook"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Enable autoreloading of our modules. \n",
|
||
|
"# Most of the code will be located in the /src/ folder, \n",
|
||
|
"# and then called from the notebook.\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"%reload_ext autoreload\n",
|
||
|
"%autoreload"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from IPython.core.debugger import set_trace\n",
|
||
|
"\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"import os\n",
|
||
|
"import decimal\n",
|
||
|
"import plotly\n",
|
||
|
"import plotly.graph_objs as go\n",
|
||
|
"import plotly.plotly as py\n",
|
||
|
"import plotly.tools as tls\n",
|
||
|
"import plotly.figure_factory as ff\n",
|
||
|
"from plotly import tools\n",
|
||
|
"import plotly.io as pio\n",
|
||
|
"from scipy import stats\n",
|
||
|
"import math\n",
|
||
|
"import matplotlib\n",
|
||
|
"from matplotlib import cm\n",
|
||
|
"import colorlover as cl\n",
|
||
|
"import numpy.ma as ma\n",
|
||
|
"\n",
|
||
|
"from ipywidgets import widgets, Output\n",
|
||
|
"from IPython.display import display, clear_output, Image, HTML\n",
|
||
|
"\n",
|
||
|
"from sklearn.metrics import confusion_matrix\n",
|
||
|
"\n",
|
||
|
"import numpy as np\n",
|
||
|
"from matplotlib import pyplot as plt\n",
|
||
|
"\n",
|
||
|
"from sklearn import linear_model, datasets\n",
|
||
|
"\n",
|
||
|
"from scipy.interpolate import UnivariateSpline\n",
|
||
|
"from scipy.interpolate import interp1d\n",
|
||
|
"from scipy.interpolate import splrep, splev\n",
|
||
|
"from scipy.integrate import simps\n",
|
||
|
"from scipy.stats import linregress\n",
|
||
|
"from scipy.signal import find_peaks\n",
|
||
|
"import json"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Matplot lib default settings\n",
|
||
|
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
|
||
|
"plt.rcParams['axes.grid']=True\n",
|
||
|
"plt.rcParams['grid.alpha'] = 0.5\n",
|
||
|
"plt.rcParams['grid.color'] = \"grey\"\n",
|
||
|
"plt.rcParams['grid.linestyle'] = \"--\"\n",
|
||
|
"plt.rcParams['axes.grid']=True\n",
|
||
|
"\n",
|
||
|
"# https://stackoverflow.com/a/20709149\n",
|
||
|
"matplotlib.rcParams['text.usetex'] = True\n",
|
||
|
"\n",
|
||
|
"matplotlib.rcParams['text.latex.preamble'] = [\n",
|
||
|
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
|
||
|
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
|
||
|
" r'\\usepackage{helvet}', # set the normal font here\n",
|
||
|
" r'\\usepackage{amsmath}',\n",
|
||
|
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
|
||
|
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
|
||
|
"] "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Import data\n",
|
||
|
"Let's first import data from our pre-processed interim data folder."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
|
||
|
" print('Importing {}'.format(csv))\n",
|
||
|
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
|
||
|
"\n",
|
||
|
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
|
||
|
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
|
||
|
"\n",
|
||
|
"print('Done!')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Manually pick features"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%matplotlib notebook\n",
|
||
|
"\n",
|
||
|
"sites = df_profiles.index.get_level_values('site_id').unique()\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"fig =plt.figure(figsize=(10, 3))\n",
|
||
|
"\n",
|
||
|
"df_prestorm = df_profiles.xs((sites[0],'prestorm'),level=('site_id','profile_type'))\n",
|
||
|
"df_poststorm = df_profiles.xs((sites[0],'poststorm'),level=('site_id','profile_type'))\n",
|
||
|
"line_prestorm, = plt.plot(df_prestorm.index, df_prestorm.z, label='prestorm')\n",
|
||
|
"line_poststorm, = plt.plot(df_prestorm.index, df_prestorm.z, label='poststorm')\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# df_profiles.xs((sites[0],'prestorm'),level=('site_id','profile_type'))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"hide_input": false,
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.6"
|
||
|
},
|
||
|
"toc": {
|
||
|
"base_numbering": 1,
|
||
|
"nav_menu": {},
|
||
|
"number_sections": true,
|
||
|
"sideBar": true,
|
||
|
"skip_h1_title": false,
|
||
|
"title_cell": "Table of Contents",
|
||
|
"title_sidebar": "Contents",
|
||
|
"toc_cell": false,
|
||
|
"toc_position": {},
|
||
|
"toc_section_display": true,
|
||
|
"toc_window_display": false
|
||
|
},
|
||
|
"varInspector": {
|
||
|
"cols": {
|
||
|
"lenName": 16,
|
||
|
"lenType": 16,
|
||
|
"lenVar": 40
|
||
|
},
|
||
|
"kernels_config": {
|
||
|
"python": {
|
||
|
"delete_cmd_postfix": "",
|
||
|
"delete_cmd_prefix": "del ",
|
||
|
"library": "var_list.py",
|
||
|
"varRefreshCmd": "print(var_dic_list())"
|
||
|
},
|
||
|
"r": {
|
||
|
"delete_cmd_postfix": ") ",
|
||
|
"delete_cmd_prefix": "rm(",
|
||
|
"library": "var_list.r",
|
||
|
"varRefreshCmd": "cat(var_dic_list()) "
|
||
|
}
|
||
|
},
|
||
|
"types_to_exclude": [
|
||
|
"module",
|
||
|
"function",
|
||
|
"builtin_function_or_method",
|
||
|
"instance",
|
||
|
"_Feature"
|
||
|
],
|
||
|
"window_display": false
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|