You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

357 lines
11 KiB
Plaintext

6 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check change in mean slope\n",
"- Check the effect of changes in prestorm and poststorm mean slope.\n",
"- If there is a large berm, the prestorm mean slope (between dune toe and MHW) could be too small, and underpredict wave runup and TWL.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tools\n",
"import plotly.figure_factory as ff\n",
"import plotly.io as pio\n",
"\n",
"import itertools\n",
"\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"\n",
"from sklearn.metrics import confusion_matrix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import data\n",
"Import our data into pandas Dataframes for the analysis. Data files are `.csv` files which are stored in the `./data/interim/` folder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
"\n",
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
"impacts = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv', index_col=[0]),\n",
" 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv', index_col=[0]),\n",
" },\n",
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
" }\n",
"\n",
"\n",
"twls = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv', index_col=[0, 1]),\n",
" 'mean_slope_sto06':df_from_csv('twl_mean_slope_sto06.csv', index_col=[0, 1]),\n",
" }\n",
"}\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot prestorm vs poststorm mean slopes\n",
"Prestorm slopes have already been calculated as part of the TWL forecasting, however we'll need to extract the poststorm mean slopes from our profiles at each site."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prestorm slopes are easy as we have already calculated this as part of the \n",
"df_slopes_prestorm = twls['forecasted']['mean_slope_sto06'].groupby('site_id').head(1).reset_index().set_index(['site_id']).beta.to_frame()\n",
"\n",
"# Get x and z at mhw (z=0.7m) for each site\n",
"z_mhw = 0.7\n",
"mhw_poststorm = []\n",
"for site, df in df_profiles.xs('poststorm', level='profile_type').groupby('site_id'):\n",
" df = df.dropna(subset=['z'])\n",
" df = df.iloc[(df['z']-z_mhw).abs().argsort().head(1)].reset_index()\n",
" df = df.iloc[0]\n",
" mhw_poststorm.append({\n",
" 'site_id': df.site_id,\n",
" 'x_mhw': df.x,\n",
" 'z_mhw': df.z\n",
" })\n",
"# break\n",
"df_mhw_poststorm = pd.DataFrame(mhw_poststorm)\n",
"df_mhw_poststorm = df_mhw_poststorm.set_index('site_id')\n",
"\n",
"# Get x and z at poststorm dune toe for each site\n",
"df_dune_toe_poststorm = df_profile_features_crest_toes.xs('poststorm', level='profile_type')[['dune_toe_x','dune_toe_z']]\n",
"\n",
"# Join df for mhw and dune toe\n",
"df = df_mhw_poststorm.join(df_dune_toe_poststorm)\n",
"df['beta'] = -(df['dune_toe_z'] - df['z_mhw']) / (df['dune_toe_x'] -df['x_mhw'])\n",
"df_slopes_poststorm = df['beta'].to_frame()\n",
"\n",
"# Count how many nans\n",
"print('Number of nans: {}'.format(df_slopes_poststorm.beta.isna().sum()))\n",
"\n",
"# Display dataframe\n",
"print('df_slopes_poststorm:')\n",
"df_slopes_poststorm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's join our post storm slopes, prestorm slopes, observed and forecasted impacts into one data frame to make it easier to plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dfs = [df_slopes_poststorm.rename(columns={'beta':'poststorm_beta'}),\n",
" df_slopes_prestorm.rename(columns={'beta':'prestorm_beta'}),\n",
" impacts['observed']['storm_regime'].to_frame().rename(columns={'storm_regime': 'observed_regime'}),\n",
" impacts['forecasted']['mean_slope_sto06']['storm_regime'].to_frame().rename(columns={'storm_regime': 'forecasted_regime'})\n",
" ]\n",
"\n",
"df = pd.concat(dfs, axis='columns')\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_data.index"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot our data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = tools.make_subplots(\n",
" rows=2,\n",
" cols=2,\n",
" specs=[[{}, {}], [{}, {}]],\n",
" subplot_titles=('Swash/Swash', 'Swash/Collision', \n",
" 'Collision/Swash', 'Collision/Collision'),\n",
" shared_xaxes=True, shared_yaxes=True,)\n",
"\n",
"\n",
"# Loop through combinations of observed/forecasted swash/collision\n",
"data = []\n",
"for forecasted_regime, observed_regime in itertools.product(['swash','collision'],repeat=2):\n",
" \n",
" # Get data for this combination \n",
" query = 'forecasted_regime==\"{}\" & observed_regime==\"{}\"'.format(forecasted_regime, observed_regime)\n",
" df_data = df.query(query)\n",
" print(query)\n",
" \n",
" \n",
" # Determine which subplot to plot results in\n",
" if forecasted_regime == 'swash' and observed_regime == 'swash':\n",
" x_col = 1\n",
" y_col = 1\n",
" elif forecasted_regime == 'collision' and observed_regime == 'collision':\n",
" x_col = 2\n",
" y_col = 2\n",
" elif forecasted_regime == 'swash' and observed_regime == 'collision':\n",
" x_col = 2\n",
" y_col = 1\n",
" elif forecasted_regime == 'collision' and observed_regime == 'swash':\n",
" x_col = 1\n",
" y_col = 2\n",
" else:\n",
" print('something went wrong')\n",
" continue\n",
"\n",
" fig.append_trace(\n",
" go.Scatter(\n",
" x=df_data.prestorm_beta,\n",
" y=df_data.poststorm_beta,\n",
" text = df_data.index.tolist(),\n",
" hoverinfo = 'text',\n",
" mode = 'markers',\n",
" line = dict(\n",
" color = ('rgba(22, 22, 22, 0.2)'),\n",
" width = 0.5,)),\n",
" x_col,\n",
" y_col)\n",
"\n",
"# layout = go.Layout(\n",
"# xaxis=dict(domain=[0, 0.45]),\n",
"# yaxis=dict(\n",
"# domain=[0, 0.45],\n",
"# type='log',\n",
"# ),\n",
"# xaxis2=dict(domain=[0.55, 1]),\n",
"# xaxis4=dict(domain=[0.55, 1], anchor='y4'),\n",
"# yaxis3=dict(\n",
"# domain=[0.55, 1],\n",
"# type='log',\n",
"# ),\n",
"# yaxis4=dict(\n",
"# domain=[0.55, 1],\n",
"# anchor='x4',\n",
"# type='log',\n",
"# ))\n",
"\n",
"fig['layout'].update(showlegend=False, title='Specs with Subplot Title',height=800,)\n",
"\n",
"for ax in ['yaxis','yaxis2']:\n",
"# fig['layout'][ax]['type']='log'\n",
" fig['layout'][ax]['range']= [0,0.2]\n",
"\n",
"for ax in ['xaxis', 'xaxis2']:\n",
" fig['layout'][ax]['range']= [0,0.2]\n",
"\n",
"go.FigureWidget(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the above plot:\n",
"- In general, we can see that the prestorm mean slope is flatter than the poststorm mean slope. This can be explained by the presence of prestorm berms, which increase the prestorm mean slope. During the storm, these berms get eroded and decrease the slope.\n",
"- **Collision/Collision**: Where we observe and predict collision, we see steeper prestorm slopes. This is to be expected since larger slopes will generate more runup and higher TWLs.\n",
"- **Swash/Collision**: Where we predict collision but observe swash, we can see that the prestorm mean slopes >0.1 generate high TWLs. \n",
"\n"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}