You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
363 lines
11 KiB
Plaintext
363 lines
11 KiB
Plaintext
6 years ago
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# TWL Exceedance"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Setup notebook"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Enable autoreloading of our modules. \n",
|
||
|
"# Most of the code will be located in the /src/ folder, \n",
|
||
|
"# and then called from the notebook.\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"%reload_ext autoreload\n",
|
||
|
"%autoreload"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from IPython.core.debugger import set_trace\n",
|
||
|
"\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"import os\n",
|
||
|
"import decimal\n",
|
||
|
"import plotly\n",
|
||
|
"import plotly.graph_objs as go\n",
|
||
|
"import plotly.plotly as py\n",
|
||
|
"import plotly.tools as tls\n",
|
||
|
"import plotly.figure_factory as ff\n",
|
||
|
"from plotly import tools\n",
|
||
|
"import plotly.io as pio\n",
|
||
|
"from scipy import stats\n",
|
||
|
"import math\n",
|
||
|
"import matplotlib\n",
|
||
|
"from matplotlib import cm\n",
|
||
|
"import colorlover as cl\n",
|
||
|
"\n",
|
||
|
"from ipywidgets import widgets, Output\n",
|
||
|
"from IPython.display import display, clear_output, Image, HTML\n",
|
||
|
"\n",
|
||
|
"from sklearn.metrics import confusion_matrix"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Import data"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
|
||
|
" print('Importing {}'.format(csv))\n",
|
||
|
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
|
||
|
"\n",
|
||
|
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
|
||
|
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
|
||
|
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
|
||
|
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
|
||
|
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
|
||
|
"\n",
|
||
|
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
|
||
|
"impacts = {\n",
|
||
|
" 'forecasted': {\n",
|
||
|
" 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv', index_col=[0]),\n",
|
||
|
" 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv', index_col=[0]),\n",
|
||
|
" },\n",
|
||
|
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"twls = {\n",
|
||
|
" 'forecasted': {\n",
|
||
|
" 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv', index_col=[0, 1]),\n",
|
||
|
" 'mean_slope_sto06':df_from_csv('twl_mean_slope_sto06.csv', index_col=[0, 1]),\n",
|
||
|
" }\n",
|
||
|
"}\n",
|
||
|
"print('Done!')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Calculate vertical distribution of wave count\n",
|
||
|
"For each site, calculate how many waves reached a certain elevation (store as a binned histogram)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Helper functions\n",
|
||
|
"def find_nearest(array, value):\n",
|
||
|
" array = np.asarray(array)\n",
|
||
|
" idx = np.nanargmin((np.abs(array - value)))\n",
|
||
|
" return array[idx], idx"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df_profile_features_crest_toes.loc[(site_id,'prestorm'),'dune_toe_z']"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"data = []\n",
|
||
|
"for site_id, df_site_twl in twls['forecasted']['mean_slope_sto06'].groupby('site_id'):\n",
|
||
|
" \n",
|
||
|
" twl_eles_per_wave = []\n",
|
||
|
" \n",
|
||
|
" # Iterate through each timestamp and calculate the number of waves at each interavl.\n",
|
||
|
" # THIS LOOP IS SLOW\n",
|
||
|
" for row in df_site_twl.itertuples():\n",
|
||
|
" \n",
|
||
|
" distribution = stats.norm(loc=row.tide+row.setup, scale=row.S_total/4) # CHECK\n",
|
||
|
"\n",
|
||
|
" # Total number of waves we expect in this period\n",
|
||
|
" n_waves = int(3600 / row.Tp) # Check that we have 1 hour\n",
|
||
|
" \n",
|
||
|
" # Get z elevation of each wave twl in this hour and append to list\n",
|
||
|
" twl_eles_per_wave.extend([distribution.ppf(1-x/n_waves) for x in range(1,n_waves+1)])\n",
|
||
|
" \n",
|
||
|
" # Remove nans and infs # CHECK WHY INF\n",
|
||
|
" twl_eles_per_wave = list(np.asarray(twl_eles_per_wave)[np.isfinite(twl_eles_per_wave)])\n",
|
||
|
" \n",
|
||
|
" # Sort wave twl z elevations in descending list\n",
|
||
|
" twl_eles_per_wave.sort(reverse=True) \n",
|
||
|
" \n",
|
||
|
" # Get index of closest value of dune toe. This is the number of waves that exceeded the the dune toe\n",
|
||
|
" try:\n",
|
||
|
" _, idx = find_nearest(twl_eles_per_wave, dune_toe_z)\n",
|
||
|
" except:\n",
|
||
|
" continue\n",
|
||
|
" \n",
|
||
|
" # Get forecasted and observed impacts\n",
|
||
|
" forecasted_regime = impacts['forecasted']['mean_slope_sto06'].loc[site_id,'storm_regime']\n",
|
||
|
" observed_regime = impacts['observed'].loc[site_id,'storm_regime']\n",
|
||
|
" \n",
|
||
|
" counts, bin_edges = np.histogram(twl_eles_per_wave, bins=100) \n",
|
||
|
" \n",
|
||
|
" data.append({\n",
|
||
|
" 'site_id': site_id,\n",
|
||
|
" 'forecasted_regime': forecasted_regime,\n",
|
||
|
" 'observed_regime': observed_regime,\n",
|
||
|
" 'n_waves_exceeding_dune_toe': idx,\n",
|
||
|
" 'n_waves': [x for x in range(0,500,1)],\n",
|
||
|
" 'truncated_twl_levels': [twl_eles_per_wave[x] for x in range(0,500,1)],\n",
|
||
|
" 'truncated_dune_toe_z': df_profile_features_crest_toes.loc[(site_id,'prestorm'),'dune_toe_z'],\n",
|
||
|
" 'full_counts': counts,\n",
|
||
|
" 'full_bin_edges': bin_edges,\n",
|
||
|
" })\n",
|
||
|
" \n",
|
||
|
" print('Done {}'.format(site_id))\n",
|
||
|
"\n",
|
||
|
"data_twl = data\n",
|
||
|
"# df = pd.DataFrame(data)\n",
|
||
|
"# df = df.set_index('site_id')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"counts, bin_edges = np.histogram (data_twl[0]['twl_levels'], bins=50) "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"list(np.asarray(twl_eles_per_wave)[~np.isfinite(twl_eles_per_wave)])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"fig = tools.make_subplots(\n",
|
||
|
" rows=2,\n",
|
||
|
" cols=2,\n",
|
||
|
" specs=[[{}, {}], [{}, {}]],\n",
|
||
|
" subplot_titles=('Swash/Swash', 'Swash/Collision', \n",
|
||
|
" 'Collision/Swash', 'Collision/Collision'),\n",
|
||
|
" shared_xaxes=True, shared_yaxes=True,)\n",
|
||
|
"\n",
|
||
|
"data = []\n",
|
||
|
"for site in data_twl:\n",
|
||
|
" if site['forecasted_regime'] == 'swash' and site[\n",
|
||
|
" 'observed_regime'] == 'swash':\n",
|
||
|
" x_col = 1\n",
|
||
|
" y_col = 1\n",
|
||
|
" elif site['forecasted_regime'] == 'collision' and site[\n",
|
||
|
" 'observed_regime'] == 'collision':\n",
|
||
|
" x_col = 2\n",
|
||
|
" y_col = 2\n",
|
||
|
" elif site['forecasted_regime'] == 'swash' and site[\n",
|
||
|
" 'observed_regime'] == 'collision':\n",
|
||
|
" x_col = 2\n",
|
||
|
" y_col = 1\n",
|
||
|
" elif site['forecasted_regime'] == 'collision' and site[\n",
|
||
|
" 'observed_regime'] == 'swash':\n",
|
||
|
" x_col = 1\n",
|
||
|
" y_col = 2\n",
|
||
|
" else:\n",
|
||
|
" continue\n",
|
||
|
"\n",
|
||
|
" fig.append_trace(\n",
|
||
|
" go.Scattergl(\n",
|
||
|
" x=[x - site['dune_toe_z'] for x in site['twl_levels']],\n",
|
||
|
" y=site['n_waves'],\n",
|
||
|
" name=site['site_id'],\n",
|
||
|
" line = dict(\n",
|
||
|
" color = ('rgba(22, 22, 22, 0.2)'),\n",
|
||
|
" width = 0.5,)),\n",
|
||
|
" x_col,\n",
|
||
|
" y_col)\n",
|
||
|
"\n",
|
||
|
"# layout = go.Layout(\n",
|
||
|
"# xaxis=dict(domain=[0, 0.45]),\n",
|
||
|
"# yaxis=dict(\n",
|
||
|
"# domain=[0, 0.45],\n",
|
||
|
"# type='log',\n",
|
||
|
"# ),\n",
|
||
|
"# xaxis2=dict(domain=[0.55, 1]),\n",
|
||
|
"# xaxis4=dict(domain=[0.55, 1], anchor='y4'),\n",
|
||
|
"# yaxis3=dict(\n",
|
||
|
"# domain=[0.55, 1],\n",
|
||
|
"# type='log',\n",
|
||
|
"# ),\n",
|
||
|
"# yaxis4=dict(\n",
|
||
|
"# domain=[0.55, 1],\n",
|
||
|
"# anchor='x4',\n",
|
||
|
"# type='log',\n",
|
||
|
"# ))\n",
|
||
|
"\n",
|
||
|
"fig['layout'].update(showlegend=False, title='Specs with Subplot Title',height=800,)\n",
|
||
|
"\n",
|
||
|
"for ax in ['yaxis','yaxis2']:\n",
|
||
|
"# fig['layout'][ax]['type']='log'\n",
|
||
|
" fig['layout'][ax]['range']= [0,100]\n",
|
||
|
"\n",
|
||
|
"for ax in ['xaxis', 'xaxis2']:\n",
|
||
|
" fig['layout'][ax]['range']= [-1,1]\n",
|
||
|
"\n",
|
||
|
"go.FigureWidget(fig)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"fig['layout']['yaxis']"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"hide_input": false,
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.6"
|
||
|
},
|
||
|
"toc": {
|
||
|
"base_numbering": 1,
|
||
|
"nav_menu": {},
|
||
|
"number_sections": true,
|
||
|
"sideBar": true,
|
||
|
"skip_h1_title": false,
|
||
|
"title_cell": "Table of Contents",
|
||
|
"title_sidebar": "Contents",
|
||
|
"toc_cell": false,
|
||
|
"toc_position": {},
|
||
|
"toc_section_display": true,
|
||
|
"toc_window_display": false
|
||
|
},
|
||
|
"varInspector": {
|
||
|
"cols": {
|
||
|
"lenName": 16,
|
||
|
"lenType": 16,
|
||
|
"lenVar": 40
|
||
|
},
|
||
|
"kernels_config": {
|
||
|
"python": {
|
||
|
"delete_cmd_postfix": "",
|
||
|
"delete_cmd_prefix": "del ",
|
||
|
"library": "var_list.py",
|
||
|
"varRefreshCmd": "print(var_dic_list())"
|
||
|
},
|
||
|
"r": {
|
||
|
"delete_cmd_postfix": ") ",
|
||
|
"delete_cmd_prefix": "rm(",
|
||
|
"library": "var_list.r",
|
||
|
"varRefreshCmd": "cat(var_dic_list()) "
|
||
|
}
|
||
|
},
|
||
|
"types_to_exclude": [
|
||
|
"module",
|
||
|
"function",
|
||
|
"builtin_function_or_method",
|
||
|
"instance",
|
||
|
"_Feature"
|
||
|
],
|
||
|
"window_display": false
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|